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  Summary 
 

IV 
 

Metatranscriptomics is a state-of-the-art technique to elucidate the functional 

activities of microbial communities, but its application is still limited to marine 

microbial assemblages. In my PhD project, we established the complete approach of 

soil metatranscriptomics, involving RNA extraction, cDNA library preparation by 

random priming, 454-pyrosequencing, and bioinformatic data analysis. The 

approach was tested on microbial communities in the oxic surface layer and the 

anoxic bulk soil of flooded rice paddy soil microcosms.  

 Total RNA was recovered in high integrity and purity by low-pH phenol 

extraction (pH 5.0) followed by Q-Sepharose column chromatography. We were able 

to enrich mRNA sequences up to 50-70% in the metatranscriptome libraries using 

Ribo-Zero™ rRNA removal kit (Meta-Bacteria). All the 454 reads obtained were 

preprocessed prior to data analysis to minimize sequence ambiguities. A total of 

10,000 SSU-ribotags (total RNA) were analyzed to elucidate community composition 

in the oxic and anoxic zones at three different incubation time points (25, 45 and 90 

days after transplantation of rice seedlings). Additionally, about 45,000 and 12,000 

mRNA-tags (enriched mRNA) were obtained for the analysis of functional activities 

in, respectively, the oxic and anoxic zone of 90-day-old rice microcosms.   

 SSU-ribotag data analysis revealed no major temporal changes in community 

composition except for Geobacter, Clostridia and methanogens in the anoxic bulk 

soil. However, the taxonomic composition of microbial communities was clearly 

distinct between the oxic and anoxic zones, with cyanobacteria being the dominant 

group in the surface layer. Although mRNA-tags related to basic cellular functions 

were most abundant in both mRNA datasets, the expression of specific functions in 

response to different oxygen conditions was observed such as, for example, 

methane oxidation in the oxic zone and methanogenesis in the anoxic zone. 

  Our metatranscriptomic approach provides a means to analyze the 

composition and functional gene expression of complex soil microbial communities 

while avoiding the limitations of PCR-based approaches. 



  Zusammenfassung 
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Metatranskriptomik ist eine ‘state-of-the-art’ Technik um die funktionellen Aktivitäten 

mikrobieller Gemeinschaften aufzuklären. Die Anwendung hat sich bis auf wenige 

Ausnahmen bis jetzt auf marine Lebensräume fokussiert. In meiner Doktorarbeit 

haben wir den gesamten Ablauf der Metatranskriptomik, einschließlich RNA 

Extraktion, Vorbereiten von cDNA Bibliotheken mittels Zufalls-priming, 454 

Pyrosequenzierung und bioinformatische Analyse für terrestrische Lebensräume 

etabliert. Der gesamte, entwickelte Ablauf wurde bezogen auf mikrobielle 

Gemeinschaften in oxischer- und anoxischer Erde von Reisbodenmikrokosmen 

umfassend getestet. 

Gesamt-RNA von hoher Integrität und Reinheit konnte bei einem pH Wert von 5 

mittels Phenolextraktion kombiniert mit Q-Sepharose Säulenchromatographie 

gewonnen werden. Durch Anwendung des  Ribo-Zero ™ rRNA removal kits (Meta-

Bacteria) war es uns möglich mRNA bis zu einem Grad von 50-70% in unseren 

Metatranskriptombibliotheken anzureichern. Alle erhaltenen 454 reads sind vor der 

eigentlichen Datenverarbeitung vorverarbeitet worden um potentielle Unklarheiten 

auszuräumen. Insgesamt 10,000 SSU-ribotags (Gesamt-RNA) sind analysiert 

worden um die Gemeinschaftsstruktur in den oxischen und anoxischen Zonen an 

drei unterschiedlichen Inkubationszeitpunkten  (25, 45 und 90 Tage, nach dem 

Pflanzen von Reiskeimlingen) aufklären zu können. Zusätzlich konnten 45,000 

beziehungsweise 12,000 mRNA-tags (angereicherte mRNA) für die Analyse 

funktioneller Aktivitäten, bezogen auf die oxische und anoxische Zone 90 Tage alter 

Reismikrokosmen gewonnen werden. 

Die Analyse der SSU-ribotags hat keine gravierenden Veränderungen der 

mikrobiellen Gemeinschaften gezeigt, mit Ausnahme von Geobacter, Clostridien und 

Methanogenen in der anoxischen Zone. Nichtsdestotrotz konnte belegt werden das 

klare taxonomische Unterschiede zwischen der oxischen und anoxischen Zone 

vorliegen, wobei Cyanobakterien die dominierende Gruppe der oxischen Zone 

darstellen. Obwohl mRNA-tags bezogen auf grundlegende zelluläre Funktionen das 

Gros in beiden Datensätzen ausmachten, konnten spezifische Funktionen in 

Abhängigkeit zur Verfügbarkeit von Sauerstoff gezeigt werden. So zum Beispiel 
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Methanoxidierung in der oxischen Zone und Methanogenese unter anoxischen 

Bedingungen. 

Der von uns etablierte Ansatz der Metatranskriptomik stellt ein nützliches Mittel dar 

um die Zusammensetznung und funktionelle Genexpression von komplexen, 

terrestrischen mikrobiellen Gemeinschaften untersuchen zu können, ohne den 

Beschränkungen PCR-basierter Techniken zu unterliegen. 
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1. Introduction 

Microorganisms are found everywhere in the biosphere, including soil, water 

bodies and sediments, but also in symbiotic interactions with plants and animals. 

They may even be detected in aerosols in the atmosphere. Besides, they exist at 

extreme environmental conditions such as, for example, high pressure, salt 

concentration or temperature. The total number of prokaryotic cells on earth was 

estimated to be 4-6 × 1030 cells. The prokaryotic biomass includes 350-550 Pg of 

C, 85-130 Pg of N and 9-14 Pg of P (Whitman et al, 1998). The total amount of 

prokaryotic carbon is comparable to that of total plant biomass (Hogan, 2009). As 

the most diverse group of organisms on earth, microbial growth and activities 

greatly influence the cycling and transformation of nutrients that make up living 

systems, involving, for example, fixation of gases (C & N), decomposition of 

organic matter or conversion of inorganic substances to simple molecules that 

can be exploited by other organisms. 

 

1.1. Microorganisms exist in complex communities 

Most microorganisms in nature live under either nutrient- or energy-limiting 

conditions. In order to survive in infertile situations, they exist in complex 

communities, interacting with physiologically different microorganisms in 

contiguous environments (Newman & Banfield, 2002). They communicate in 

spatial and temporal heterogeneity, primarily via the secretion and receipt of 

products of their own metabolic activities or extracellular signaling molecules 

(Surette et al, 1999). These signaling mechanisms enable microorganisms to 

detect changes in their environment, construct mutually beneficial associations 

with other organisms, gain advantages over competitors, and communicate with 

their host (Fenchel, 2002). For instance, fermenting bacteria produce hydrogen 

as a metabolite of carbohydrate metabolism. Hydrogen is then oxidized and 

converted into CH4 by methanogens with CO2 as an electron acceptor. The 

consumption of hydrogen by methanogens makes the complete fermentation of 

carbohydrates thermodynamically favorable. Understanding of microbe-microbe 



 1 Introduction 
 

2 
 

and microbe-environment interactions remains one of the great challenges in 

microbial ecology.  

 One of the possibilities to study such interactions is cultivation. However, it 

is estimated that from most environments, less than 1% of microorganisms are 

cultivable under laboratory conditions (Rondon et al, 1999). Microbial function 

and activity in complex communities can differ from the individual behavior in 

laboratory culture (Schink, 2000). For example, E.coli is the most studied 

bacterial species, used for the development of genetic tools and as a model 

system for multiple research foci such as, for example, bacterial cell growth, and 

biochemical behavior and structure. However, the ecological role and niche of E. 

coli is not yet fully understood (van Elsas et al, 2011). 

 Therefore, the in situ identification of community members is one of the 

major challenges in microbial ecology, addressed in particular by molecular 

ecology methods. Diversity and structure of microbial communities are examined 

using various techniques including direct counting (Bloem, 1995; Weinbauer et al, 

1998), phospholipid fatty acid (PLFA) analysis (Zelles & Bai, 1994; Yu & Harch, 

2001), fluorescent in situ hybridization (FISH) (Christensen et al, 1999), 

molecular fingerprinting such as amplified rDNA restriction analysis (ARDRA) 

(Gich et al, 2000), terminal restriction fragment length polymorphism (T-RFLP) 

analysis (Horz et al, 2000) and denaturing/temperature gradient gel 

electrophoresis (DGGE/TGGE) (Heuer et al, 2001), and cloning and comparative 

sequence analysis of phylogenetic and functional marker genes. All these 

approaches can provide information on the diversity, structure and compositional 

change of microbial communities. They may also provide insights into a particular 

functional potential when functional markers such as amoA, pmoA or mcrA are 

used for analysis. However, they cannot provide global information on functional 

activity and changes therein, which occur in response to environmental cues and 

may be related to, for example, nutrient uptake, energy flow, or degradation of 

substrates. 
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 Moreover, the distribution of metabolic pathways does not necessarily 

correspond to the microbial rRNA gene-based phylogeny, presumably due to 

lateral gene transfer (Pace, 1997). Therefore, species identification often does 

not allow firm conclusions about community function. Collectively, there is a 

strong need for alternative approaches that allow community-wide analysis of 

functional gene contents (metagenomics), functional gene transcription 

(metatranscriptomics), and functional protein production (metaproteomics) 

(Figure 1.1). 

 

 

Figure 1.1. Meta-omics approaches to microbial community analysis.   

 

1.2. Functional analysis of microbial community 

It is reported that a considerable amount of the bacterial genome is dedicated to 

shaping the organisms' habitats and maintaining their ecosystems, representing a 

major commitment to community and niche (Phelan et al, 2011). Cultivation-

independent genomic approaches have greatly advanced our understanding of 

the genetic diversity and potential of microbial communities. Metagenomics 
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enables us to study microorganisms by deciphering their genetic information 

directly from the environment without the need to cultivate. 16S rRNA gene 

surveys offer insights into the phylogenetic composition of microbial communities. 

However, environmental genomics and 16S rRNA gene surveys only provide 

limited clues about the functional significance of the observed genes, as 

metagenomic approaches may detect not only viable but also non-viable cells 

including dead populations (Fukui et al, 1996; Schmid et al, 2001).  

 Hence, in situ activities (and changes therein) in response to 

environmental factors or stress have to be monitored through functional units 

such as mRNA molecules or proteins. So far, metabolic activities of microbial 

communities were investigated by reverse transcription quantitative PCR (RT-

qPCR) of marker genes specific for particular functional guilds such as nitrogen 

fixation (nifH), nitrite reduction (nirS, nirK), ammonia oxidation (amoA), or 

methane oxidation (pmoA) (Bürgmann et al, 2003; Chen et al, 2007; Ebie et al, 

2004; Knauth et al, 2005; Kolb et al, 2005; Sharma et al, 2005). Basically, RT-

qPCR requires sequence information of target genes to design primers and 

probes. As a consequence, the range of detection is limited by their target 

specificity. Zhou and his colleagues developed a functional gene array, which 

contains several thousands of oligonucleotide probes in hundreds of gene 

categories (He et al, 2007). Microarray-based techniques allow to overcome the 

constraints related to the number of genes whose expression levels can be 

analyzed and quantified simultaneously. However, functional genes often contain 

highly conserved regions and sequence motifs. Thus, potential cross-

hybridization of highly related sequences and the need of complex quantification 

algorithms are major challenges in microarray applications. Massively parallel 

sequencing technologies enable high-throughput monitoring of community-wide 

expression profiles at reasonable costs (Frias-Lopez et al, 2008; Vila-Costa et al, 

2010; Stewart et al, 2011). Community-wide patterns of mRNA expression and 

their variations in response to environmental change can be monitored via RNA-

seq without prior knowledge. Therefore, metatranscriptomics lately became the 

state-of-the-art technology to investigate community-wide functional activity in 

marine environments. 
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 Since proteins mediate diverse functions, such as catalytic activities and 

cellular building blocks (Graham et al, 2007), the identification of expressed 

proteins on a large scale would provide a profound picture of the functional and 

structural status of a microbial community. However, metaproteomics is not 

suitable to investigate community-wide changes in functional activity with high 

throughput (Zhang et al, 2010). Metabolomics has advantages in deciphering 

microbial metabolism. Metabolites are the currency of metabolic reactions 

occurring in cells. The levels of their concentrations change in response to 

genetic or physiological status of microbial communities (Raamsdonk et al, 

2001). However, microbial metabolomics needs improvements in resolution and 

detection sensitivity (Cascante & Marin, 2008). Metabolomics may have greater 

potential to perform functional analysis of a microbial community when combined 

with metatranscriptomics or metaproteomics (Dunn, 2008).      

 

1.3. Next-generation sequencing technology 

Over the past 6 years, there has been a great progress in sequencing technology 

from conventional Sanger sequencing to next-generation sequencing (NGS), 

which is defined by massively parallel sequencing in a single run and, as a 

consequence, a price per base that is several orders of magnitude lower than 

that of previous technologies. The performance of NGS platforms which are 

currently available or will be available soon on the market is compared in Table 
1.1. The Illumina sequencing platform generates millions of short reads (single 

reads: 75-120 bp; paired-end reads: 200 bp) per run with the lowest cost-per-

base and is being used primarily for de novo and re-sequencing of genomes, 

including human, viral and bacterial genomes. Meanwhile, 454 GS 

Titanium/FLX+ offers the longest reads with average read lengths of 400 bp (GS 

FLX) and 750 bp (GS FLX+) among currently available sequencing technologies 

combined, however, with relatively low throughput of 1,000,000 reads per run. 

Increased read length has great advantages to determine the community 

composition and genetic structure of complex microbial communities, and  
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putative recombination events among their members (Konstantinidis et al, 2009; 

Mackelprang et al, 2011). The average read length of the current 454 GS 

Titanium/FLX+ chemistry covers 40% (GS FLX) or 80% (GS FLX+) of the 

average sequence length of bacterial genes (~950 bp) (Casjens, 1998). In 

particular, metatranscriptome data sets from soil microbial communities for which 

mostly a specific reference metagenome will not be available for mapping require 

sufficient read lengths for functional annotation and taxonomic binning with high 

significance (Figure 1.2). In this PhD project, 454 sequencing was, therefore, the 

method of choice to investigate bacterial mRNA expression profiles in soil.   

 

 

Figure 1.2. Plot of expressd sequence tag (EST) cDNA length versus 
BLASTX E-value. The proportion of assignable ESTs within the different length 
categories is indicated at the top. The number of assignable versus non-
assignable ESTs is given in parenthesis (Shrestha et al, 2009) 

 

1.4.  Application of next-generation sequencing to environmental 
transcriptomics 

Potential metabolic activity of microbial communities has been investigated by 

PCR-based detection and analysis of phylogenetic and functional markers, 
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combined with cellular incorporation of C13 or N15 offered in labeled substrates 

that are utilized only by particular functional guilds, such as methane oxidizers or 

methanogens (Lu & Conrad, 2005; Hori et al, 2007; Dumont et al, 2011; 

Pratscher et al, 2011). In 2005, the first attempt to monitor functional activity of a 

bacterial community in situ was made by Poretsky et al. (2005). cDNA libraries 

were constructed from mRNA that had been freshly extracted from marine 

environment. Their analysis revealed various transcripts involved in 

environmentally important processes, such as sulfur oxidation, C1 carbon 

assimilation and nitrogen fixation. Metatranscriptomics potentially reveals 

functional gene expression under natural environmental conditions without PCR-

based bias towards known genes. Various metatranscriptome analyses in marine 

environments have followed this initial study, using massively parallel 454-

pyrosequencing. Novel groups of small RNAs were found to be present in high 

numbers in metatranscriptome data sets (Shi et al, 2009). More recently, 

community-wide responses of marine microbial assemblages to substrate 

amendments (e.g., dimethylsulfoniopropionate, polyamines putrescine, and 

spermidine) were investigated to characterize the functional activity of those 

members able to utilize the substrates offered (Vila-Costa et al, 2010; McCarren 

et al, 2010; Mou et al, 2011). Differential expression of transporter genes 

triggered by dissolved organic carbon (DOC) was also examined by 

metatranscriptomics, revealing possible bioreactive components of the coastal 

DOC pool and ecological roles of certain bacterial taxa in carbon turnover 

(Poretsky et al, 2010).  

 As shown in Table 2, most of the metatranscriptome studies that have 

been done so far were focused on open ocean microbial assemblages. Only very 

few studies have analyzed the metatranscriptome of soil microbial communities. 

This is because (i) the extraction of highly-purified soil mRNA is very challenging, 

(ii) soil microbial communities are more diverse than marine assemblages and 

vary greatly in their composition between sites and, as a consequence, (iii) 

available reference genomes or metagenomes for functional annotation and 

taxonomic binning are poorly available as compared to marine microbial 

assemblages. 



 1 Introduction 
 

9 
 

 



 1 Introduction 
 

10 
 

 The first metatranscriptome study in soil focused on the functional diversity 

of eukaryotic (mainly fungal) microorganisms by selective sequencing of poly-

adenylated transcripts (Bailly et al, 2007). Urich and colleagues made an attempt 

to relate taxonomic groups to their ecological function by assessing community 

structure and function simultaneously (Urich et al, 2008). cDNA of total 

community RNA was analyzed without prior mRNA enrichment. As a 

consequence, a very limited number of putative mRNA transcripts were detected. 

More recently, the functional status of paddy soil bacterial communities was 

surveyed by RT-PCR of enriched mRNA, using a primer (SD14 oligonucleotide) 

that specifically targets the Shine-Dalgarno sequence of bacterial transcripts 

(Shrestha et al, 2009). This study was effective in analyzing a high proportion of 

protein-coding transcripts, but had the use of PCR and primer bias as a major 

shortcoming. Therefore, we developed an improved method for extraction of total 

RNA from soil and assessed different strategies to enrich intact mRNA suitable 

for soil metatranscriptomics (Mettel et al, 2010).  

 

1.5. Rice paddy as a model system 

CH4 is the second most important greenhouse gas with a global warming 

potential greater than that of CO2. Flooded rice fields are one of the major 

biogenic sources of atmospheric methane. The emission of CH4 from flooded rice 

field is the net balance between CH4 production by methanogenic archaea in 

anoxic bulk soil and CH4 oxidation by methanotrophic bacteria in oxic surface soil. 

Due to the importance of microbial action to produce and consume the 

greenhouse gas CH4, flooded rice paddies have long been used as model 

systems to investigate community structure and functional groups such as, for 

example, methanogens, and methanotrophs. Besides methane production, 

flooding creates oxygen-limited conditions. Flooded rice paddy soil can be 

differentiated into three compartments having different physico-chemical 

conditions: oxic surface soil, anoxic bulk soil, and rhizosphere (Figure 1.3).The 

latter compartment may be further separated into rhizoplane and rhizosphere soil. 
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Between these compartments, microscale oxygen and chemical gradients were 

defined and provided information about the activity and spatial distribution of 

functional groups of microorganism. Against this background, flooded rice-

planted microcosms were studied for temporal changes in community 

composition and active metabolic pathways under different conditions of oxygen 

availability. 

 

 

Figure 1.3. Cross-section through a drained rice microcosm (a) and 
schematic cross-section through the compartmentalized rice paddy soil (b). 
The rice was cultivated for 90 days under flooded condition in the greenhouse. 
Redox reactions characteristic of oxic and anoxic zones are shown (Liesack et al, 
2000). 
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Figure 1.4. Growth stage of rice plant from germinating seed to a mature 
plant. (International Rice Research Institute: http://www.knowledgebank.irri.org/)   

 

1.5.1. Growth stage of rice plant 

The growth season of the rice plant is generally divided into the vegetative, 

reproductive, and ripening stage (Figure 1.4). The vegetative growth stage is 

characterized by active tillering and an increase in height. During this period, the 

seminal root develops and starts growing both vertically and laterally. The 

reproductive stage begins with panicle formation at the end of the last internode 

protected by leaf sheaths and, depending on varieties, lasts 30 to 45 days to 

flowering. Rice plant development in reproductive stage is most greatly affected 

by environmental conditions that determine crop yield, such as weather and 

nutritional status. During the ripening stage, the starch and sugars accumulated 

in the culms and leaf sheath are transferred to grains, increasing grain in size and 

weight. The carbohydrates are photosynthesized and fill grains. Therefore, the 

ripening stage is very sensitive to light intensity and temperature.  

 The amount and composition of exudates released from rice roots change 

over growth phase, resulting in considerable variation in CH4 emission in relation 

to plant age (Aulakh et al, 2001; Wang & Adachi, 2000). Since root exudates 
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provide substrates for methanogenesis in anoxic bulk soil, diversity and 

community structure may change over time. Therefore, this study aimed to 

elucidate the taxonomic composition of microbial communities in the oxic surface 

layer and the anoxic bulk soil of rice-planted microcosms by use of a PCR-

independent ribotag analysis. 

 

 
Figure 1.5. In situ profile of oxygen down to a depth of 90 mm in the soil. 
The vertical profile was measured 5 mm from the base of a rice plant. The upper 
O2 maximum was due to microphytobenthic photosynthesis, whereas the lower 
maximum was associated with rice roots (Revsbech et al, 1999). 
 

 

1.5.2. Various microbial processes in flooded rice paddy 
 
After flooding of rice fields, oxygen is consumed by aerobic bacteria and chemical 

oxidation reactions. Dissolved O2 is depleted within top 5 mm of surface layer in 

flooded rice-planted paddy soil microcosms (Figure 1.5) (Revsbech et al, 1999). 

In the oxic surface layer, apart from degradable organic matter, the diffusion of 

methane produced in the anoxic zone causes an increase in the biological 

oxygen demand (Gilbert & Frenzel, 1995). A significant amount of oxygen is 

consumed for the oxidation of reduced compounds such as sulfide, ammonium, 

and ferrous iron (Canfield et al, 1993). The gradients of terminal electron 

acceptors and reduced compounds govern the activities and spatial distribution of 

diverse functional groups of microorganisms in flooded rice paddy soil.  
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 The degradation of organic matter to methane and carbon dioxide is well 

characterized in anoxic rice field soil (Chin et al, 1998). Organic matter that 

remains after harvest is hydrolyzed by a variety of cellulases, hemicellulases, and 

pectinases secreted from cellulolytic microorganisms. Groups of fermenting 

bacteria convert the resulting sugar monomers into acetate, alcohols, fatty acids, 

CO2 and H2. Among these fermentation products, more reduced ones, such as 

alcohols and fatty acids, are further oxidized by acetogenic bacteria in syntrophic 

association, producing mainly acetic acids as well as carbon dioxide and 

hydrogen. Methanogens utilize the intermediate or end products of hydrolysis, 

fermentation, and acetogenesis and convert them into CH4. The concerted action 

of all functional groups of microorganisms involved in these processes drives the 

biogeochemical cycles in flooded rice paddies.   
 

 

 
 

Figure 1.6. Anaerobic degradation pathway of organic matter to methane. 
Major functional groups of microbial organisms catalyzing the reactions are 
shown in ellipses (Liu & Whitman, 2008).   
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1.6. Aim of the project 

The main objective of my PhD project was to establish the complete method 

procedure for soil metatranscriptomics. This had to include the extraction of total 

RNA, enrichment of high-quality mRNA, construction of cDNA libraries for 454-

pyrosequencing, and setting up a bioinformatic analysis pipeline for large 

sequence data sets generated by NGS technology. Using this method procedure, 

the metatranscriptome of microbial communities inhabiting the oxic surface layer 

and anoxic bulk soil of flooded rice paddy soil microcosms should be analyzed. 

The microcosms were incubated in the greenhouse under normal day/night 

cycles. Samples for metatranscriptome analysis were taken from three different 

time points, corresponding to the different growth stages of the rice plant: tillering, 

flowering, and ripening. We hypothesized that the simultaneous assessment of 

community composition (total RNA) and functional activity (enriched mRNA) 

should provide information on which bacterial species are involved in 

biogeochemical cycling through which metabolic pathways. We expected to 

detect major differences in the taxonomic composition (ribotags) and in the 

expression of particular functional genes (mRNA-tags) when comparing 

metratranscriptome data sets obtained from communities adapted to different 

physico-chemical conditions, such as oxic versus anoxic paddy soil. Overall, we 

anticipated that the combined analysis of taxonomic composition and functional 

gene expression by this PCR-independent approach represents a new avenue to 

link microbial community structure to active functioning in flooded rice paddy soil 

and other soil environments.  

For easy understanding, small subunit ribosomal RNA of microbial community 

was described with SSU rRNA as a collective term and small subunit rRNA of a 

bacterial organism was expressed by 16S rRNA throughout the text. 
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2. Methodology 
2.1. Materials 
2.1.1. Soil sample 
Soil was taken from drained paddy field of the Italian Rice Research Institute in 

Vercelli, Italy. The soil characteristics have been described previously (Holzapfel-

Pschorn et al, 1985). 

 

2.1.2. Instruments 
 
Items        Manufacturer 
FastPrep®-24 bead beater     MP Biomedicals, USA 
 
NanoDrop® ND-1000 UV-Vis spectrophotometry NanoDrop Tech. Inc., USA 
 
Qubit® 2.0 Fluorometer     Invitrogen, USA 
 
Experion automated electrophoresis system  Bio-Rad, USA 
 
Mastercycler Gradient     Eppendorf, Germany  
 
Magnetic stand      Invitrogen, Germany 
 
FlashGel™ Camera      Lonza, USA  
 
FlashGel™ Dock system     Lonza, USA 
 
QuantiFluor™      Promega, USA 
 
Swing-bucket rotor A-2-DWP    Eppendorf, Germany 
 
Centrifuge 5804R      Eppendorf, Germany 
 
Ultra-Turrax tube drive     IKA, Germany 
Multipette® plus      Eppendorf, Germany 
 
454 GS Junior sequencer     Roche/454, USA 
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2.1.3.  Chemicals and reagents 
 
Items       Manufacturer    
Absolve™      PerkinElmer, Boston, USA 
 
Urea       Merck, Darmstadt, Germany 
 
KH2PO4      Sigma, Steinheim, Germany 
 
KCl       Fluka, Buchs, Switzerland 
 
DEPC-treated water     Ambion, Austin, USA 
 
Tris-HCl       Sigma, Steinheim, Germany 
 
Polyvinylpyrrolidone K25    Fluka, Buchs, Switzerland 
 
Water-saturated phenol (pH4.5)   Carl Roth, Karlsruhe, Germany 
 
Phenol-chloroform-isoamyl alcohol (pH5.5) Carl Roth, Karlsruhe, Germany 
 
Chloroform-isoamyl alcohol [24:1 (v/v)]   Carl Roth, Karlsruhe, Germany 
 
MgCl2       Carl Roth, Karlsruhe, Germany 
 
Na2EDTA      Sigma, Steinheim, Germany 
 
SDS       Merck, Darmstadt, Germany 
 
Sodium acetate     Sigma, Steinheim, Germany 
 
Isopropanol      Carl Roth, Karlsruhe, Germany 
 
Ethanol (Nuclease-free)    Applichem, Darmstadt, Germany  
 
RNase-free TE buffer    Applichem, Darmstadt, Germany 
 
Q-sepharose® Fast Flow    Sigma-Aldrich, Sweden 
 
NaCl       Carl Roth, Karlsruhe, Germany 
 
Humic acids      Sigma, Steinheim, Germany 
 
Glass beads (0.17-0.18 mm)   Satorius,  Goettingen, Germany 
 
Sodium hydroxide solution (10M)   Sigma, Buchs, Switzerland 
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2.1.4. Enzymes and kits 
 
 
Items        Manufacturer 
Non-stick RNase-free 1.5 ml microfuge tube  Ambion, Austin, USA 
 
Turbo™ DNase      Ambion, Austin, USA 
 
RNasin® Ribonuclease Inhibitor    Promega, Madison, USA 
 
AutoSeq™ G-50      GE Health Care, Germany  
 
RNA Clean & Concentrator™-5     Zymo Research, USA 
 
Qubit® RNA assay kit     Invitrogen, Oregon, USA  
 
Ribo-Zero™ rRNA removal Kit (Meta-Bacteria)  Epicentre, Madison, USA 
 
MicrobExpress™ Bacterial mRNA Purification kit Ambion, Austin, USA  
 
Experion™ RNA HighSens Analysis Kit   Bio-Rad, Hercules, USA 
 
SuperScript® II reverse transcriptase   Invitrogen, Carlsbad, USA 
 
NEBNext® mRNA Library Prep Master Mix  NEB, Ipswich, USA 
 
GS Rapid Library Prep Kit     Roche, Branford, USA 
 
E.coli rRN A standard     Roche, Indianapolis, USA 
 
Wizard® SV Gel and PCR Clean-up Kit   Promega, Madison, USA 
 
Agencourt® Ampure® XP      Beckman Coulter, USA 
 
FlashGel® DNA Cassette (1.2%)    Lonza, Rockland, USA 
 
GS Junior Titanium emPCR Kit (Lib-L)   Roche, Branford, USA 
 
GS Junior Titanium Sequencing Kit   Roche, Branford, USA  
 
GS Junior Titanium PicoTiterPlate Kit   Roche, Branford, USA 
 
DNA Smart Ladder      Eurogentec, Seraing,  
        Belium 
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2.2. Methods 
2.2.1. Seeding 

Dry rice seeds (Oryza sativa variety KORAL type japonica) were spread and 

germinated on moist filter paper in a plastic petri dish at room temperature for 14 

days.  

 

2.2.2. Preparation of microcosms 

Drained paddy soil collected from the Italian Rice Research Institute in Vercelli 

(Italy), was air-dried at room temperature. The soil was sieved (pore size: 2 mm) 

prior to its use. Soil (1.8 kg) was mixed with 940 ml of demineralized water and 

60 ml of fertilizer solution containing 9.89 g of urea, 7.605 g of KH2PO4 and 7.07 

g of KCl per liter. The soil suspension was then filled into a 2.5-liter pot. In the 

center of the pot, a nylon mash bag (25 µm mesh; 7 cm in depth and 9 cm radius) 

was placed to separate roots and rhizosphere from the bulk soil, but to allow free 

movement of water and root exudates between the two compartments. The 

prepared microcosms were flooded with demineralized water to a level 5 cm 

above the soil surface. The flooded microcosms were covered with aluminum foil 

and incubated for 5 days in the greenhouse.  

 

2.2.3. Transplantation and incubation 

After incubating the flooded microcosms for five days, one 14-day-old rice 

seeding was transplanted into the center of the nylon bag in each pot. Fertilizer 

solution (20 ml) was added to the flooding water. The day of plantation was taken 

as day zero of the rice paddy soil incubation. Flooded rice microcosms were 

incubated in the greenhouse with a relative humidity of 70%, 12 hours light period 

and 28/22 °C day/night temperature (Shrestha et al, 2008). The flooding water 

was kept at a level of 5 cm above soil surface by adding demineralized water 
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every two days over the complete incubation period. After 50 days of incubation, 

20 ml of fertilizer solution was again added to the microcosms.  

 

2.2.4. Sampling     

Sampling points were chosen according to plant growth stage. After 25 days, 45 

days and 90 days of incubation, flooded water was discarded. Oxic soil of the 

upper 3-mm surface layer was carefully sampled using a small spatula. Wet soil 

was collected in 1-gram aliquots in 2-ml screw cap tubes and shock-frozen in 

liquid nitrogen. In order to sample the anoxic bulk soil, the nylon bag containing 

the rice plant was removed from the microcosms. After rice plant removal, dark 

bulk soil was immediately collected in 2-ml screw tubes and shock-frozen in liquid 

nitrogen. For each sampling time point except 25 days, two pots were incubated 

and sampled to produce data sets from two independent replicate microcosms. 

Several soil aliquots were sampled from each replicate microcosm to ensure 

sufficient raw material for RNA extraction and processing.  The shock-frozen 

samples were stored at -80 °C until RNA extraction. 

 

2.2.5.  Extraction of total RNA 

Prior to extraction, glassware was made RNase-free by treatment with diethyl 

pyrocarbonate (DEPC) treated water (Blumberg, 1987). The working bench was 

treated with 2% Absolve™ (Perkin, USA). The frozen soil aliquots were mixed 

with an equal volume of glass beads (0.17 to 0.18 mm in diameter) and 

resuspended in 700 µl of TPM buffer (50 mM Tris-HCl [pH5.0], 1.7% [wt/vol] 

polyvinylpyrrolidone, 20 mM MgCl2). Subsequently, the mixture was shaken in a 

bead beater at 6.0 ms-1 for 35 seconds (FastPrep®-2). Soil, glass beads and cell 

debris were pelleted by centrifugation at 20,000 × g for 1 minute at 4℃, and the 

supernatant was transferred to a fresh 2-ml microcentrifuge tube. 700 µl of PBL 

buffer (5 mM Tris-HCl [pH5.0], 5 mM Na2EDTA, 0.1 % [wt/vol] sodium dodecyl 
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sulfate, and 6% [vol/vol] water-saturated phenol) was added to the soil pellet, and 

the lysis procedure was repeated as described above. The supernatant of the 

second lysis was mixed with that of the first lysis. The pooled supernatants were 

treated with 500 µl of water-saturated phenol (pH 4.5), and then homogenized by 

shaking vigorously. After centrifugation at 20,000 × g for 3 minutes at 4 ℃, the 

supernatant was extracted with phenol-chloroform-isoamyl alcohol (25:24:1 

[vol/vol/vol], pH 5.5) and finally with chloroform-isoamyl alcohol (24:1 [vol/vol]). 

The resulting aqueous phase was mixed with 0.1 volume of 3 M sodium acetate 

(pH 5.7) and 0.7 volume of isopropanol, incubated at room temperature for 5 

minutes, and centrifuged for 30 minutes at 20,000 × g and 4 ℃. The nucleic acid 

pellet was washed with 500 µl of 70 % ethanol, air dried for 2 minutes, and 

resuspended in 25 µl of TE buffer (10 mM Tris-HCl, 1 mM EDTA [pH8.0]) 

(Ambion). Ten samples equal to 10 gram of soil were processed simultaneously. 

The collective amount of total RNA was pooled into one 1.5-ml non-stick RNase-

free microfuge tube (Ambion). Subsequently, 5 U TurboTM DNase (Ambion) and 

10 U RNasin® Plus RNase inhibitor (Promega) were added to the pooled RNA 

sample, which was adjusted to 300 µl with 1× DNase buffer. After incubation for 

60 minutes at 37 ℃, DNase-treated total RNA was immediately purified using Q-

Sepharose chromatography.  

 

2.2.6. RNA purification 

An aliquot (750 ul) of Q-Sepharose Fast Flow (Sigma-Aldrich) was transferred to 

an empty illustra™ Autoseq® column, and packed by centrifugation with 650 × g 

for 10 seconds. A packed Q-Sepharose column was washed three times with 200 

µl of DEPC-treated water (Ambion) by centrifugation at 650 × g for 10 seconds. 

The DEPC water was discarded after each washing step. The total RNA obtained 

from the DNase treatment was then loaded onto the resin, equilibrated for 1 

minute, and then centrifuged at 400 × g for 7 seconds. The RNA was selectively 

eluted by loading 80 µl of 1.5 M NaCl in DEPC-treated water (pH 5.5) onto the 

resin and centrifugation at 400 × g for 5 seconds. This elution step was repeated 
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five times and the eluates were collected in a single 2-ml tube. The RNA eluate 

was precipitated as described above. The precipitate was dissolved in 100 µl 

RNase-free TE buffer and subjected to RNA Clean & Concentrator™-5 (Zymo 

Research) according to the small RNA elimination protocol, resulting in the 

removal of fragments < 200 nt. Total RNA was eluted twice with 20 µl of RNase-

free TE buffer.  

 

2.2.7. Determination of humic acid content and purity of RNA extracts 

Serial dilutions of commercially available humic acids were prepared in distilled 

water. Using a NanoDrop ND-1000 spectrophotometer, a linear relationship 

between UV absorbance at 400 nm (A400) and the concentration of humic acids 

was determined. The amount of co-extracted humic acids in purified RNA was 

measured by comparing the absorbance of each sample at 400 nm against a 

standard curve generated from commercial humic acids (Mettel et al, 2010). The 

purity of RNA was evaluated by measurement of absorbance at 230, 260, and 

280 nm. The ratio of A260/A280 and A230/A260 indicates protein or phenol 

contamination and salt contamination, respectively.  For highly purified RNA, 

A260/A280 and A230/A260 should be in the range of 1.8-2.0 and 0.3-0.9, respectively.  

 

2.2.8. Quantitation of total RNA  

The concentration of purified total RNA was determined applying a Qubit® 

fluorometer (Invitrogen), using Qubit® RNA assay kit. This assay is sufficiently 

sensitive to detect RNA in the range from 250 pg/µl to 100 ng/µl. Aliquots of total 

RNA (0.5 µl) were diluted 20-fold with RNase-free TE buffer and 2 µl of the 

dilution was used for quantification. Total RNA (350 ng) was aliquoted into fresh 

non-stick RNase-free tubes. Total RNA extracts from 25-day-old and 45-day-old 

microcoms were immediately converted into cDNA. One aliquot of total RNA from 

the 90-day-old microcosms was stored on ice during another aliquot was 
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subjected to mRNA enrichment. Both total RNA and enriched mRNA were then 

converted into cDNA libraries in a single procedure.   

 

2.2.9. mRNA enrichment 

In order to remove ribosomal RNA (rRNA), the Ribo-Zero™ rRNA Removal Kit 

(Meta-Bacteria) (Epicentre) was applied according to manufacturer’s instructions. 

About 5 µg of total RNA was used as the starting material. Accordingly, 10 µl of 

Ribo-Zero RNA Removal Solution was added to the total RNA sample. As 

recommended in the manufacturer’s manual, rRNA-depleted samples were 

purified by a column-based method using the RNA Clean & Concentrator™-5, 

following the manufacturer’s small RNA elimination protocol. Enriched mRNA 

was eluted with 20 µl of TE buffer. 

 

2.2.10. Quality assessment of total RNA and mRNA 

Quantitative removal of rRNA and size distribution of enriched mRNA were 

assessed by automated capillary electrophoresis using an ExperionTM system 

(Bio-Rad). Total RNA and enriched mRNA were denatured and loaded onto the 

ExperionTM HighSense microfluidic chip. The capillary electrophoresis was carried 

out according to the manufacturer’s protocol.  

 

2.2.11.  cDNA synthesis 

Aliquots (350 ng) of total RNA or mRNA enriched by subtractive hybridization 

were converted into single-stranded cDNA using SuperScript® II reverse 

transcriptase (Invitrogen) with random hexamers. Template RNA molecules were 

denatured at 65 °C for 5 minutes and quickly chilled on ice for 3 minutes. 

Random primers were annealed at 25 °C for 10 minutes, and first-strand cDNA 
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synthesis was performed at 42 °C for 50 minutes. The reverse transcriptase was 

then inactivated by heating at 70 °C for 15 minutes. Double-stranded cDNA was 

synthesized using the NEBNext® second-strand synthesis system (New England 

Biolabs) employing RNase H and DNA polymerase I. The reaction was carried 

out at 16 °C for 3 hours. Double-stranded cDNA was purified using the Wizard® 

SV Gel and PCR Clean-Up kit (Promega) following the manufacturer's 

instructions and finally eluted with 18 µl of nuclease-free water.  

 

2.2.12. 454 sequencing library construction 

Purified cDNA was end-repaired and dA-tailed applying the NEBNext® End Prep 

Enzyme Mix and End Repair Reaction Buffer (New England Biolabs). The 

reaction mixture was incubated at 25 °C for 20 minutes and inactivated at 72 °C 

for 20 minutes. GS FLX Titanium Rapid Library MID adaptors were added to the 

mixture and ligated to dA-tailed cDNA using Quick T4 DNA ligase. The adaptor-

ligated cDNA library was purified using Agencourt® AMPure® XP beads 

(Beckman Coulter Genomics) in combination with NEBNext® sizing buffer 

according to the manufacturer's protocol. At the elution step, the DNA-carrying 

beads were resuspended in 53 µl of TE buffer and then pelleted using a magnetic 

stand (Ambion). The supernatant was carefully transferred to a fresh 

microcentrifuge tube.  

 

2.2.13. Quality assessment of 454 sequencing library  

In order to assess the size distribution of the prepared 454 sequencing library, 4 

µl of the library were mixed with 1 µl of 5 × FlashGel® Loading Dye. The mixture 

was loaded onto a FlashGel® DNA cassette of 1.2 % agarose and run at 250 volts 

for 6 minutes (Lonza).   
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2.2.14. Quantitation of 454 sequencing library  

The adaptor-ligated 454 sequencing library was quantified using a QuantiFluor™ 

fluorometer and single-use cuvettes (Promega). A standard curve was generated 

from eight serially diluted standards with 2/3rd dilution factor, starting from the 2.5 

× 109 molecules/µl solution of the RL Standard in GS Rapid Library Prep kit 

(Roche). The relative fluorescence unit (RFU) of each standard dilution was read 

and recorded using the blue channel, which was set to a standard value of 250. A 

linear trend line of standard dilutions was created using the Rapid Library 

Quantitation Calculator provided by Roche (http://my454.com/my454/tools-

downloads/rapid-library-calc.asp). RFUs of sample libraries were recorded under 

the same parameter setting used for standard dilution and transferred back to its 

tube after measurement. Given that the correlation coefficient of the standard 

curve offered a minimum value of 0.9 and sample RFUs were within the range of 

the standard curve, samples were diluted to a working stock of 1 × 107 

molecules/µl in TE buffer as indicated by Rapid Library Quantitation Calculator.  

 

2.2.15. Pyrosequencing   

Different 454 sequencing libraries were mixed in equal molar ratio. The libraries 

were constructed from total RNA of oxic or anoxic soil sampled from different 

plant growth stages. The mixture of libraries was mixed with the capture beads in 

a ratio of 100:1 and clonally amplified by emulsion PCR according to the emPCR 

amplification method manual (Roche). DNA templates on enriched beads were 

sequenced on a 454 GS Junior sequencer (Roche), following the protocol of the 

manufacturer. Sequencing libraries produced from enriched mRNA of 90-day-old 

rice microcosms were sequenced by GS FLX + at the Max Planck Genome 

Centre Cologne. 

  

http://my454.com/my454/tools-downloads/rapid-library-calc.asp�
http://my454.com/my454/tools-downloads/rapid-library-calc.asp�
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2.3. Bioinformatic analysis 
2.3.1. Quality filtration of raw 454-pyrosequencing data 

In order to remove chimeric reads, reads with undetermined bases (called “N”) or 

those showing low sequence complexity, PRINSEQ, a stand-alone tool 

(Schmieder & Edwards, 2011), was installed on our linux server. Reads which 

are shorter than 200 bp or those having mean quality scores lower than 20, were 

filtered out. If reads contained characters other than A, C, G, T and N or more 

than 1% of ambiguous signals (N), they were eliminated from the datasets. A 

complexity score was applied to remove low-complexity reads that contain 

homopolymers or dinucleotide repeats. The complexity of a sequence was 

calculated using the following equation: 

 

         

where, 
 k =  the alphabet size (43) 
 w = the window size (3) 
 ni =  the number of words i in a window 
 l  = the number of possible words in a window of size 64  
 s = the scaling factor (100/31) 
 

Complexity scores above 7 were used as low-complexity cutoff as suggested by 

Schmieder et al. (2011). Datasets obtained by metagenomics or 

metatranscriptomics were found to contain artificial duplicates, which may 

comprise 10-35 % of total reads (Gomez-Alvarez et al, 2009).  In this study, exact 

duplicates and reverse complimentary reads sharing 100 % sequence identity 

and length were defined to be artificial replicates and therefore discarded. 3' end 

sequences of each read were trimmed off when quality scores were below 10. 

Filter and trim options applied are summarized in Table 2.1. 
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Filter or Trim options Parameters defined 

Minimum sequence length in bp 200 

Minimum mean quality score 20 

Maximum allowed rate of Ns in % 1 

Removal of sequences with characters  

other than A, C, G T or N 
Yes 

Trim ends by quality scores from 3’-end only 

Trim ends by quality scores while Minimum score is less than 10 

Low-complexity threshold 7 (using DUST) 

Table 2.1. Sets of options applied for the filtering and trimming of raw 454 
reads. 

 

2.3.2. Differentiation of rRNA and non-rRNA sequences 

The quality-filtered sequence libraries constructed from total RNA were screened 

to identify rRNA by BLASTN against SILVA small and large subunit ribosomal 

RNA reference databases (SSURef and LSURef, respectively), using an e-value 

cutoff of 1e-10. Some query sequences had matches to both SSURef and 

LSURef databases. In that case, the best hit alignments from both databases 

were taken and their bit score values were automatically compared. The query 

sequences were assigned to either SSU or LSU based on the higher bit score 

value, using a custom-coded python script. Sequence reads which had no 

significant hit to the rRNA databases were classified as non-rRNA sequences, 

and then subjected to mRNA-tag analysis.  

 

2.3.3. SSU-ribotag analysis 

SSU rRNA sequences obtained from total RNA libraries were used to determine 

the taxonomic composition of soil microbial communities. SSU rRNA sequences 

from the same or different cDNA libraries were grouped into operational 

taxonomic units (OTUs). The OTU cluster analysis was done using a non-
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redundant version of the SILVA SSU Ref database as a template. The SILVA 

sequence to which preprocessed 454 reads were mapped with ≥ 95% sequence 

identity was used as the representative sequence for taxonomic assignment and 

phylogenetic analysis of the OTU. The number of preprocessed 454 reads 

mapped or assigned to each reference sequence was recorded along with the 

library identifier and used to calculate alpha- and beta-diversity via the QIIME 

pipeline, an open source software package (Caporaso et al, 2010). 

 

2.3.4. mRNA-tag analysis  
2.3.4.1. Removal of small, non-coding RNA 

Small, non-coding RNA was detected by comparing non-ribosomal RNA 

sequences against a database of non-coding RNA families, Rfam 

10.1(http://rfam.sanger.ac.uk), using BLASTN with the maximum e-value of 1e-10 

(Gardner et al, 2011). Sequences identified as small RNA were excluded from 

furthur analysis. 

 

2.3.4.2. Functional and taxonomic annotation of mRNA-tags 

While MG-RAST (http://metagenomics.anl.gov/) was originally developed for 

analysis and comparison of metagenomic data sets, its ORF annotation pipeline 

can also be used for analysis of mRNA-tag data. Taxonomic origin of 

preprocessed putative mRNA was predicted based on the best hit in searches 

against the M5NR database with a maximum e-value of 1e-05. M5NR is a non-

redundant, integrated database sharing similarity results between several 

databases for rapid annotation (Table 2.2). Functions of each putative mRNA 

sequence were hierarchically classified according to SEED subsystems with e-

value cutoff of 1e-5. The statistical significance of differential taxonomic and 

functional distribution was determined by Fisher’s exact test using STAMP 

(Statistical Analysis of Metagenomic Profiles) software package (Parks & Beiko, 

http://rfam.sanger.ac.uk/�
http://metagenomics.anl.gov/�
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2010). Active metabolic pathways were found by mapping annotated sequences 

to KEEG pathway map, and then compared using KEGG Mapper (Kanehisa et al, 

2011) 

Table 2.2. Complete list of databases comprising M5NR (Last update: 2011-

02-22) 
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3.  Results 

3.1. Sampling 

Samples from the flooded rice paddy soil microcosms were taken at different time 

points. Temporal sampling was made according to the different plant growth 

stages (incubation time after transplantation of rice seedlings): tillering (25 days); 

flowering (45 days); and ripening (90 days). The oxic surface soil (light brown) 

could easily be distinguished from the anoxic bulk soil (dark grey) (Figure 3.1).  

 

Figure 3.1. Plant growth stages (upper panel) and oxic surface soil versus 
anoxic bulk soil (lower panel) at each sampling time point.  

 

 3.2. RNA extraction and purification 

Low-pH extraction (pH 4.5 – 5.0) of total RNA resulted in an effective removal of 
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humic acids in raw extracts. A crucial step in the extraction of total RNA is 

sequential Q-Sepharose column chromatography that eliminated 95% of the 

humic acid contaminants present in the raw extract, as judged by UV absorbance 

at 400 nm. An important criterion for RNA purity is the absorbance ratio between 

260 nm and 280 nm (A260/A280). The value of A260/A280 was always greater 

than 1.7, which allowed further processing such as cDNA synthesis and mRNA 

enrichment. The RNA integrity was assessed by capillary electrophoresis with 

fluorescence detection. Commercial E.coli RNA was used as reference standard. 

It contained three dominant bands corresponding to 5S, 16S, and 23S rRNA. 

Total RNA extracted from the paddy soil microcosms showed two major bands at 

exactly the positions of the E. coli 16S and 23S rRNA (Figure 3.2). Low intensity 

of the 5S RNA peak indicated its efficient removal by RNA clean & concentratorTM 

column purification. The ratio of 16S and 23S rRNA band intensity indicated 

sufficient integrity of the paddy soil RNA extracts, according to the manufacturer’s 

instructions (Bio-Rad).  Using 0.7 gram of soil (wet weight), a total of about 500 

ng and 350 ng of purified total RNA was obtained from oxic surface soil and 

anoxic bulk soil, respectively. 

 

Figure 3.2. Total RNA extracted from the oxic and anoxic zones of flooded 
rice paddy soil microcosms at different plant growth stages. Experion™ 
RNA ladder was used as a size marker (lane L). Commercial E. coli RNA was 
used as a reference standard for identifying the positions of the 16S and 23S 
rRNA, using an Experion™ RNA HighSens Chip for analysis (lane 11). 



 3 Results 
 

32 
 

3.3. mRNA enrichment 

Two commercial kits that are based on subtractive hybridization of rRNA were 

tested for their rRNA removal efficiency: (i) MICROBExpress™ bacterial mRNA 

enrichment kit (Ambion) and (ii) Ribo-Zero™ rRNA removal kit (Meta-Bacteria) 

(Epicentre). A considerable amount of 16S and 23S rRNA was eliminated by both 

kits, as judged by the reduction of the rRNA peaks in the Experion Bioanalyzer 

electropherograms (Figure 3.3). While still small peaks related to 16S and 23S 

rRNA were observed in the electropherogram after MICROBExpress™ treatment, 

the electropherogram of the Ribo-Zero™-treated aliquot was close to the 

baseline, even at retention times where the 16S and 23S rRNA peaks would be 

positioned. Based on this finding, we anticipated that rRNA was more efficiently 

depleted by Ribo-Zero™ than by MICROBExpress™. This assumption was later 

confirmed by 454-pyrosequening of cDNA libraries generated from mRNA 

enriched by either MICROBExpress™ or Ribo-Zero™. Sequence data analysis 

revealed that about 10-20 % and 50-70% of total 454 reads were derived from 

putative mRNA after treatment of total RNA with MICROBExpress™ and Ribo-

Zero™, respectively. 

 

3.4. cDNA synthesis and 454 library preparation 

Double-stranded cDNA of total RNA and enriched mRNA was produced by 

random priming, followed by adaptor ligation and small fragment removal. Free 

adaptors and cDNA fragments smaller than 400 bp were eliminated from the 

cDNA libraries by a sizing step using AMP pure bead treatment (Figure 3.4). 

After removal of small fragments, the cDNA ranged from 750 bp to 1250 bp, 

regardless of whether total RNA or enriched mRNA was used as template. This 

size distribution allowed the use of the most recent versions of Roche 454 

pyrosequencing chemistry (GS FLX Titanium and GS FLX+). 
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Figure 3.3. Overlay electropherogram of total RNA (red) and mRNA enriched 
by either MICROBExpress™ bacterial mRNA enrichment kit (blue) or Ribo-
Zero™ rRNA removal kit (green). The x axis shows the retention time of size-
separated fragments in seconds, and the y axis shows the relative fluorescence 
intensity of each fragment.  

 

3.5.  454-pyrosequencing 

We performed two independent runs on a 454 Junior sequencer using the GS 

FLX Titanium chemistry. On average, we obtained 206,148 key pass wells 

(96.1%) out of 214,490 raw wells for each run. A raw well is defined as a well 

showing any signal on a picotiter plate and a key pass well is the one that has 

four key bases next to the adaptor sequence. Among key pass wells, 24,436 

wells (11.9%) were discarded due to poor nucleotide incorporation or 

interruptions. A certain proportion of wells (12.6%) were discarded due to multiple 

nucleotide incorporations, possibly occurring from a bead carrying two or more 

DNA fragments. Additionally, 65,999 wells (32.0%) failed to pass the data 

processing for shotgun sequencing due to poor quality score. Finally, a total of 

80,000 reads of sufficient quality (38.8%) were obtained and subjected to further 

preprocessing. The 454 reads that passed all the automated quality checks 

featured lengths between 40 bp and 1,196 bp. The average read length and 

median read length was 377 bp and 437 bp, respectively. 
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Figure 3.4. Size distribution of cDNA libraries analyzed by high-
performance gel electrophoresis (Flashgel DNA cassette [1.2%]). Lane L: 
FlashGel™ DNA marker (100 bp -4 kb). Lane 1 to 10: libraries produced from 
total RNA; lane 1, 25D-anoxic bulk soil; lane 2, 25D-oxic surface soil; lane 3, 
45D-anoxic bulk soil (1); lane 4, 45D-anoxic bulk soil (2); lane  5, 45D-oxic 
surface soil (1); lane 6, 45D-oxic surface soil (2); lane 7, 90D-anoxic bulk soil (1); 
lane 8, 90D-anoxic bulk soil (2); lane 9, 90D-oxic surface soil (1); lane 10, 90D-
oxic surface soil (2). Lanes 11 and 12: libraries produced from enriched mRNA 
(lane 11, 90D-anoxic bulk soil (1); lane 12, 90D-oxic suface soil (1).  

 

3.6. Preprocessing of 454 sequence data 

The 454 reads were clustered into sample-specific data sets based on multiplex 

identifier. Each data set was processed individually. Basic statistics of each 454 

cDNA library are summarized in Table 3.1. It was reported that the 454 platform 

systematically generates artificial sequence replications at different steps of 

whole-genome pyrosequencing. Those replicates accounted for 3.5 % - 18.1% of 

total reads in GS FLX sequencing data sets under experimental condition where 

every DNA template is completely unique (Dong et al, 2011).  In this study, each 

cDNA library was found to contain 0.3 % to 1.6 % of artificial duplicates, which 

shared identical sequences of the same length. Using PrinSeq (Schmieder & 

Edwards, 2011), about 6 % of total reads of a single GS Junior run were detected 

to be artificial replicates. These replicates were randomly distributed. Finally, 

about 75 % of total reads passed the preprocessing, which included 200-bp size 

cutoff, quality filtration and trimming the 3’-end sequences. The mean size of  
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each individual cDNA library shifted up from between 314 bp and 406 bp to 

between 423 bp and 469 bp. Reads that passed preprocessing had mean quality 

scores greater than 30 (Q30). Plotting the quality score over read length showed 

that all preprocessed reads had high sequence quality (Figure 3.5). 

 

 

Figure 3.5. Comparison of the base quality distribution for a given 454 data 
set prior to and after preprocessing.  Dotted lines indicate the range of the 
quality score. Blue boxes show the quality score of 25th to 75th percentile of all the 
reads.   
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3.7. Community structure analysis using ribosomal RNA tags 

3.7.1. Extraction of small subunit rRNA sequences 

The vast majority of preprocessed reads in total RNA data sets (95-98%) had 

significant BLASTN hits against the SILVA rRNA database (Pruesse et al, 2011). 

These reads were classified as rRNA-derived sequences (ribotags). On average, 

45% of ribotags of a given sample-specific data set was assigned to small 

subunit rRNA (SSU-ribotags), which were used for analysis of community 

composition. The minimum number of SSU-ribotags analyzed for a given sample 

was 3,144 (sample 90D-oxic2) and the maximum number was 14,186 (sample 

45D-oxic1). Overall, comparable numbers of SSU-ribotags (~5,000) were 

obtained for each sample (Table 3.1). 

 

3.7.2. Clustering of SSU-ribotags into operational taxonomic units (OTUs)   

In order to determine rarefaction curves, richness, and evenness for each 

sample-specific SSU-ribotag data set, the preprocessed reads were clustered for 

each data set into operational taxonomic units (OTUs). Since cDNA was 

generated by random priming, the SSU-ribotags are derived from different 

regions of SSU rRNA. SSU-ribotags were clustered into OTUs by mapping them 

to full-length rRNA sequences with a given sequence identity cutoff. In SILVA 

(http://www.arb-silva.de), the non-redundant version of the SSU Ref database 

(release 108) was used as a reference data set, which was built by dereplication 

of the full SSU Ref data set using a cutoff of 99 % sequence identity. The full-

length rRNA sequence to which SSU-ribotags were mapped was taken as the 

reference standard for a given OTU. At the species level, defined by 97 % 

sequence identity, about 64 % of all the SSU-ribotags could be mapped to full-

length rRNA reference sequences, and 36 % of SSU-ribotags were identified as 

representing novel groups or species. By lowering the sequence identity cutoff for 

OTU clustering, the more SSU-ribotags grouped together. However, 2 to 5 % of 

SSU-ribotags could not be mapped to any known 16S rRNA sequence, using a 

cutoff of 85 % sequence identity. These sequences may represent novel 
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microbial lineages at the phylum and subphylum levels.  

 

3.7.3.  Bacterial diversity and richness 

In order to compute estimates of genus-level diversity within samples, a threshold 

of 95 % sequence identity was applied (Schloss & Handelsman, 2005). Using this 

cutoff, the numbers of unique OTUs in samples from the anoxic bulk soil were 

almost 1.5-fold greater than those in samples from the oxic surface layer, for both 

45 day- and 90 day-old microcosms. In general, the rarefraction curves were 

composed of 1,500 to 2,000 OTUs (oxic surface layer) or 2,500 to 3,000 OTUs 

(anoxic bulk soil) and did not show any saturation, even after random sampling of 

up to 5,000 SSU-ribotags. However, the rarefaction curve of SSU-ribotags 

obtained from the anoxic bulk soil of the 25 day-old microcosm began to be 

saturated already after 1,800 OTUs when 2,900 SSU-ribotags had been 

randomly sampled (Figure 3.6a). Obviously, the microbial communities in the 

anoxic bulk soil were more diverse at the genus level than those in the oxic 

surface layer during flowering (45 days) and ripening (90 days). Comparing the 

number of OTUs observed in rarefraction analysis with the estimated number of 

OTUs determined by Chao1 richness estimator revealed that, on average, 30 % 

and 34.1 % of the estimated taxonomic richness were covered by SSU-ribotags 

from samples of the oxic surface layer and anoxic bulk soil (45D/90D), 

respectively. The SSU-ribotag data set from the anoxic bulk soil of the 25-day-old 

microcosm showed the highest coverage of 60.2 %, in good correspondence to 

the results of the rarefaction analysis.  

 The evenness of OTUs was estimated by Shannon diversity index. In 

order to avoid biases derived from different sampling efforts, Shannon diversity 

indices were plotted for each sample against the expected number of OTUs as 

estimated by Chao1 (Figure 3.6b). The Chao1 estimates were computed by 

randomly selecting 2,500 and 3,300 SSU-ribotags from each sample. The 

Shannon diversity index ranged from 8.0 to 9.1 in the oxic surface layer and from 

9.7 to 10.8 in the anoxic bulk soil.  Despite the lowest OTU richness,  the sample  
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Figure 3.6. OTU-based microbial diversity analysis in samples from the oxic 
surface layer and the anoxic bulk soil of flooded rice paddy soil 
microcosms. Samples for analysis were taken at different time points (25, 45, 
and 90 days after transplantation of rice seedlings). (a) Rarefaction curves 
displaying the average number of OTUs observed by random sampling within 
each SSU-ribotag data set. (b) Plot of Shannon diversity index versus Chao1 
estimates for total genus-level diversity. 
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from the 25-day-old microcosm showed a greater Shannon diversity index than 

the samples from the oxic surface layer. The comparison of the mean Shannon 

index values between the microbial communities from the oxic and anoxic zones 

indicate that the anaerobic communities are more evenly composed than the 

aerobic communities.  

 

3.7.4.  Comparative taxonomic analysis 

The standard reference sequence of each OTU was taxonomically classified 

using the RDP Bayesian classifier with a confidence threshold of 80 %. The 

taxonomic composition of microbial communities in the oxic surface layer greatly 

differed from that in the anoxic bulk soil. Bacteria were the most abundant 

domain in both soil zones. The relative proportion of eukaryotes was significantly 

higher in the oxic surface layer than in the anoxic bulk soil, but archaea were 

present in a higher proportion in the anoxic soil. At phylum level, the microbial 

communities in the oxic surface layer were dominated by cyanobacteria (40-55 % 

of total SSU-ribotags), corresponding to a relatively low community richness and 

evenness. Other abundant bacterial phyla were Proteobacteria (13-30%), 

Chloroflexi (2.4%), Actinobacteria (2.3%), Planctomycetes (2.0%), and 

Verrucomicrobia (1.4 %). By contrast, the predominant bacterial phyla in the 

anoxic bulk soil were Proteobacteria (30%), Firmicutes (11.6–18.6%), 

Actinobacteria (11.4-17.5%), Chloroflexi (7.5%), and Acidobacteria (6.3%) 

(Figure 3.7). Principal Coordinate Analysis (PCoA) confirmed that the microbial 

communities in the oxic surface layer greatly differed from those in the anoxic 

bulk soil (Figure 3.8).  
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Figure 3.7. Relative abundance of phyla, including major subclasses of 
Proteobacteria. Abundance measurement was made based on the number of 
SSU-ribotags assigned to the respective group.   
 
 
Due to the dominance of the Cyanobacteria, members of other major groups 

were generally less abundant in the oxic surface layer than in the anoxic bulk soil, 

except for the Gammaproteobacteria. These accounted for about 9 % of total 

SSU-ribotags in samples from the oxic surface layer, which is almost four times 

greater than their relative abundance in the anoxic bulk soil (2.3%). 

Xanthomonadales was the characteristic group of Gammaproteobacteria in the 

oxic surface layer. Four OTUs were affiliated with the Xanthomonadales. One of 

the OTUs whose standard reference sequence is GenBank ID EU131032.1.1502 

contains 586 SSU-ribotags. Among the non-cyanobacterial OTUs, it was the OTU 

with the greatest number of SSU-ribotags assigned to it (after three 

cyanobacteria-affiliated OTUs). Among the methane-oxidizing bacteria, 

Crenothrix-like bacteria were prominent in the oxic surface layer, while type II 

methanotrophs (Methylocystis) were detected primarily in the anoxic bulk soil. 
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Type I methanotrophs were detected similarly in both the oxic conditions. Over all 

samples, the methane-oxidizing bacteria accounted, on average, for 4 % and 2.8 % 

of total SSU-ribotags in the oxic surface layer and the anoxic bulk soil, 

respectively. Non-cyanobacterial groups at the order level, which showed 

greatest relative abundance, were highly representative of the anoxic bulk soil. 

Among those, the groups that were most differential for the comparison between 

oxic surface layer and anoxic bulk soil were Actinobacteria, Clostridia, Geobacter, 

Anaeromyxobacter, Bacillus, and methanogens.  

 

 
Figure 3.8. Principal coordinate analysis based on Unifrac distance matrix. 
Blue dots represent SSU-ribotag data sets from samples of the oxic surface layer, 
while red dots are SSU-ribotag data sets from samples of the anoxic bulk soil.  
 
 
 
3.7.5. Microbial community succession over time 
 
The taxonomic assignments of SSU-ribotags showed highly similar community 

compositions at the different plant growth stages. No major temporal changes in 

the community composition were observed, except for a few groups. In the oxic 

surface layer, the relative abundance of eukaryotic organisms decreased from 16% 

to 11% of total SSU-ribotags. In addition, there was a slight increase in the 
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relative abundance of the Burkholderiales and Myxococcales, and a doubling in 

the relative abundance of the Xanthomonadales. Changes in relative abundance 

primarily occurred between flowering(45D) and ripening (90D) (Figure 3.9a).  

 In the anoxic bulk anoxic soil, the microbial communities exhibited more 

gradual changes over time than those in the oxic surface layer. The most 

significant decline in the relative abundances was observed for the Actinobacteria, 

Burkholderiales, and Verrucomicrobia (Figure 3.9b). Microorganisms assumed to 

be characteristic of anoxic soil, such as Geobacter, Clostridia, and methanogens, 

were enriched during plant growth. The percentage of SSU-ribotags assigned to 

these three groups increased from 1.5 % to 5.5 %, 8.5 % to 13.3 % and 1.4% to 

4.6 %, respectively. The most abundant methanogens were Methanosaeta and 

members of the Methanosarcinaceae. 

 

Figure 3.9. Temporal changes in the relative abundance of particular 
microbial groups over time, as shown for the oxic surface soil (a) and the 
anoxic bulk soil (b). 
 
 
3.8. Functional analysis of paddy soil microbial communities 
 
PCR-independent SSU-ribotag analysis was applied to assess the taxonomic 

composition of aerobic versus anaerobic microbial communities at different plant 
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growth stages. Overall, there occurred only little changes in the relative 

abundance of particular microbial groups; slightly more pronounced in the anoxic 

bulk soil than in the oxic surface layer. Therefore, we chose 90-day-old flooded 

rice paddy soil microcosms (ripening stage) to explore functional activities of 

aerobic versus anaerobic microbial communities. In SSU-ribotag analysis, these 

microbial communities had shown greatest differences in their taxonomic 

composition, in particular with regard to the presence and relative abundance of 

Geobacter, Clostridia, and methanogens. The mRNA samples from the oxic 

surface layer and the anoxic bulk soil were enriched by subtractive hybridization 

of rRNA. The cDNA libraries produced from the enriched mRNA were analyzed 

using the 454 GS FLX+ chemistry. In total, we obtained 29,859 and 80,027 raw 

reads from the anoxic and oxic samples, respectively. The average read length 

within the two cDNA libraries was 349.5 and 455.5 bp. The short average read 

length of the data set from the anoxic bulk soil was due to a relatively high 

proportion of short fragments (< 200 nucleotides). These short sequence reads 

failed to pass the quality filtration (Table 3.2). As a consequence, the average 

read length of preprocessed reads increased up to 529.3 bp for the data set from 

the anoxic bulk soil, but the number of reads used for further bioinformatic 

analysis decreased to 18,274 (61.2%). The average read length of the data set 

from the oxic surface layer was 525.2 bp. 

 
 Anoxic bulk soil Oxic surface layer 
No. of raw reads 29,859 80,027 
No. of preprocessed reads 18,274 (61.2%) 65,622 (82.0%) 
No. of rRNA 6,115 (33.5%) 16,042 (24.4%) 
No. of small RNA 122 (0.67%) 626 (0.95%) 
No. of putative mRNA 12,037 (85.8%) 48,954 (74.6%) 
Table 3.2. Statistics of cDNA libraries constructed from enriched mRNA. 
Percentage values are given in parenthesis. The relative proportion of 
preprocessed reads was calculated in relation to the total number of raw reads (= 
100%), and the relative proportion of reads derived from rRNA, small RNA, and 
putative mRNA was calculated in relation to the total number of preprocessed 
reads (= 100%).                                                                                                                                                
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3.8.1. Removal of rRNA sequences 
 

Within the two preprocessed data sets, about 33.5% and 24.4% of preprocessed  

reads had significant matches to known rRNA sequences (Table 3.2). When 

compared to the sequence composition of the data sets that were obtained from 

total RNA, almost all rRNA (98-99%) had been removed by the mRNA 

enrichment method applied. The remaining rRNA sequences were mainly 

composed of LSU rRNA. The capture probe specificity and sensitivity presumably 

introduces some bias in the taxonomic composition of the non-captured rRNA, in 

particular with regard to a strong relative increase of eukaryotic rRNA. All the 454 

reads identified as being derived from rRNA were excluded from further 

bioinformatic analysis.  

 

 

3.8.2. Detection of small RNA 

 

A total of only 122 reads out of 12,159 non-rRNA sequences in the data set from 

the anoxic bulk soil and 626 reads out of 49,580 non-rRNA sequences in the data 

set from the oxic surface layer were identified as small RNA, thereby accounting 

for less than 1% of the non-rRNA sequence data sets. Most of the small RNA 

reads were assigned to eukaryotic organisms (Figure 3.10). The majority of the 

bacteria-derived small RNA reads was annotated as bacterial RNase P class A, a 

ubiquitous endoribonuclease. The RNA component of bacterial RNase P varies in 

length from 338 to 444 nucleotides (Brown & Pace, 1992). Physical elimination of 

small cDNA fragments (< 400 nucleotides) during 454 library preparation 

removes most but not all small RNA-derived sequences, thereby resulting in a 

biased and limited diversity of small RNA in cDNA libraries produced to analyze 

putative mRNA. 
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Figure 3.10. Taxonomic affiliation of small RNA detected in the 
preprocessed data set from the oxic surface layer, including the number of 
small RNA reads assigned to each taxonomic group. 
 
 
 
3.8.3. Functional annotation of putative mRNA-tags 

 

Data sets of 12,037 and 48,954 putative mRNA-tags were finally obtained from 

the anoxic bulk soil and oxic surface layer, respectively. The putative mRNA-tags 

were functionally annotated by searching against the integrated protein database. 

The proportion of putative mRNA-tags that could be functionally annotated was 

higher in the data set from the oxic surface layer (60%) than in that from the 

anoxic bulk soil (40%), suggesting that the anaerobic microbial community is less 

well represented by public genomic databases. The mRNA-tags that had 

homologs in public databases were classified into hierarchical functional 

categories using the SEED subsystem. Differences in the frequency with which 

particular transcripts (oxic versus anoxic zone) were assigned to the different 

subcategories were statistically analyzed using STAMP (Statistical Analysis of 

Metagenomic Profile) (Parks & Beiko, 2010). Overall, the functional repertoire in 

both data sets were highly similar, as concluded from the relative distribution of 

mRNA-tags at the level 1 functional subsystem (Figure 3. 11). Similar to 

metatranscriptome studies of marine assemblages, almost half of the functionally 

annotated mRNA-tags were associated with carbohydrate, amino acids or protein 

metabolism (Gilbert et al, 2008). This finding reflects the high transcript level of 
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house-keeping genes in microorganisms, regardless of whether in soil or marine 

systems. 

 

 
 
Figure 3.11. Functional classification of mRNA-tags obtained from aerobic 
(oxic surface layer) and anaerobic (anoxic bulk soil) microbial communities. 
The transcriptome data sets were subjected to the automated annotation process 
into the SEED subsystem using MG-RAST. The proportion of sequences (y-axis) 
assigned to a particular level 1 category was calculated by dividing the number of 
mRNA-tags assigned to this category by the total number of mRNA-tags 
assigned to the SEED subsystem. Subsystems that showed significant 
differences in the number of mRNA-tags (P<0.05; Fisher’s exact test) between 
the oxic and anoxic zone are marked by an asterisk (*). 
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 Subsystems involved in carbohydrate and protein metabolism were 

significantly overrepresented in the data set from the anoxic zone. mRNA-tags 

related to DNA metabolism and non-protein components (cofactors, vitamins, and 

prosthetic groups) as well as cell wall metabolism were present in higher 

proportions in the data set from the oxic surface layer than in that from the anoxic 

bulk soil (Figure 3.11). Among the carbohydrate utilization profiles, the central 

carbohydrate metabolism showed the most differential distribution of mRNA-tags 

within the subcategories (Figure 3.12). mRNA-tags assigned to pyruvate 

metabolism to form acetate via acetyl-coA were significantly overrepresented in 

the data set from the anoxic bulk soil, while those related to anaplerotic reactions 

to supplement intermediates of pyruvate metabolism were significantly more 

present in the data set from the oxic surface layer. Ethylmalonyl-CoA pathway of 

C2 assimilation was also one of the subcategories in central carbohydrate 

metabolism, which showed significantly higher number of mRNA-tags in the data 

set from the anoxic bulk soil than in that from the oxic surface layer (Figure 3.13). 

Multiple copies of particulate methane monooxygenase (pMMO) transcripts were 

detected only in the data set from the oxic zone, suggesting methane oxidation 

activity in the oxic surface layer around the time of sampling.  
 
 Differential functional activities between the aerobic and anaerobic 

microbial communities were also concluded for other subcategories. The 31 

subcategories, listed in Figure 3.13, showed with high significance different 

frequencies with which mRNA-tags from the two data sets (oxic versus anoxic 

zone) were assigned to them (P-value < 0.01). Among these subcategories, 

transcripts involved in methanogenesis was most indicative of the anoxic bulk soil 

(p-value of 1.20e-9). These transcripts accounted for approximately 0.5% of total 

mRNA-tags from the anaerobic microbial community. The relatively high level of 

transcripts encoding proteins involved in methanogenesis, including methyl-

coenzyme M reductase, agrees well with the fact that methanogenesis is one of 

the key metabolic processes in the anoxic bulk soil of flooded rice fields. mRNA-

tags affiliated with bacterial tRNA and rRNA modification, purine conversion, 

ribosome biogenesis and RNA methylation were more frequently detected in the 

data set from the oxic surface layer than in that from the anoxic bulk soil (Figure 
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3.13).  

 

 

 

Figure 3.12. Relative distribution of mRNA-tags assigned to the different 
subcategories of central carbohydrate metabolism. The results for the data 
set from the anoxic bulk soil is shown in blue, while those for the data set from 
the oxic surface layer are indicated in red. The percentage scale indicates the 
proportion of mRNA-tags which are assigned to the respective subcategory in 
relation to the total number of mRNA-tags assigned  to the central carbohydrate 
metabolism.  
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Figure 3.13. SEED level 3 subsystems to which mRNA-tags were assigned 
with significantly different frequencies (P-value < 0.01; Fisher’s exact test), 
when comparing the data sets from the oxic surface layer (yellow) and 
anoxic bulk soil (blue). 
 
 
3.8.4. Taxonomic binning of putative mRNA-tags 
 
The mRNA-tags were taxonomically binned based on the best homologous hit in 

the M5NR protein database using MG-RAST server. The majority of mRNA-tags 

(94.9% in the data set from the oxic surface layer and 90.4% in that from the 

anoxic bulk soil) were derived from bacteria. Both archaea and eukaryotes were 

slightly overrepresented in the data set from the anoxic bulk soil as compared to 

that from the oxic surface layer (3.8% vs 1.3% and 5.0% vs. 3.5%, respectively). 

Overall, taxonomic binning of mRNA-tags was less powerful than SSU-ribtotag 

analysis in differentiating between the aerobic and anaerobic microbial 
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communities (Figure 3.14).  

 At the phylum and class levels, when comparing the relative abundance of 

each group in the two mRNA data sets (oxic versus anoxic zone), Actinobacteria, 

Deltaproteobactera, Clostridia, Bacilli, and Methanomicrobia were 

overrepresented in the data set from the anoxic bulk soil. Cyanobacteria, 

Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and 

Flavobacteria were detected in the oxic surface layer with significantly higher 

proportion than in the anoxic bulk soil (P<0.01; Fisher’s exact test) (Figure 3.15), 

in reasonable agreement with the SSU-ribotag analysis. However, SSU-ribotag 

analysis suggested that Alphaproteobacteria was overrepresented in the anoxic 

bulk soil, while taxonomic binning of mRNA-tags identified a greater proportion of 

Alphaproteobacteria in the data set from the oxic surface layer. In samples from 

the oxic surface layer, the proportion of mRNA-tags assigned to Flavobacteria 

were 20-fold greater than that assigned to Flavobacteria in the corresponding 

SSU-ribotag data set (2.77% vs 0.2 %).   

 

 

Figure 3.14. Taxonomic binning of mRNA-tags based on the best 
homologous protein.  An e-value cutoff of 1e-05 was taken as threshold to 
consider best hits in BLASTX search significant. The relative abundance was 
calculated based on the number of mRNA-tags assigned to the respective group 
in relation to the total number of mRNA-tags that could be taxonomically binned.   
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Figure 3.15. Profile scatter plot showing the percentage proportion of the 
different phyla and classes in the mRNA data sets from the oxic surface 
layer and the anoxic bulk soil.  
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4.  Discussion 

4.1. Sampling and RNA extraction 

RNA has a short half-life in bacterial cells, so that cellular expression profiles may 

change rapidly in response to environmental cues. Therefore, the preservation of 

the RNA expression profiles at the time of sampling is critical in the analysis of 

functional activity by metatranscriptomics (Auer et al, 2003). RNAlater®, a 

commercial RNA stabilization reagent, is being widely used to extract RNA from 

tissues, marine samples, and soil (Mutter et al, 2004; Meyer et al, 2006; Frias-

Lopez et al, 2004). According to my own experience, RNAlater® treatment of soil 

has a negative effect on the removal efficiency of organic compounds, including 

humic acids, during the extraction and purification of total RNA. Therefore, we 

decided to avoid the RNAlater® treatment which, however, increased the 

procedural challenge to achieve the extraction of total RNA with sufficiently high 

integrity. After the assessment of various procedural steps, the combination of 

shock-freezing and low-pH conditions proved to be the optimal procedure to 

extract RNA of high integrity and quantity. Shock-freezing of soil samples with 

liquid nitrogen replaced the RNAlater® treatment in order to maintain the 

metatranscriptome expression profile at the time of sampling. The shock-frozen 

samples were immediately subjected to the extraction of total RNA. The use of 

low-pH buffers had shown to stabilize the RNA during the extraction procedure. 

Co-extracted humic acids and other organic compounds, which inhibit chemical 

and enzymatic downstream processing, were successively removed by Q-

Sepharose column chromatography.  

 

4.2. mRNA enrichment 

The predominance of rRNA in total cellular RNA is a major technical challenge in 

metatranscriptome analysis using RNA-seq. While eukaryotic mRNAs can be 

selectively converted into cDNA by targeting their poly(A) tails, prokaryotic 

mRNAs need to be enriched prior to cDNA synthesis in order to increase the 

proportion of mRNA sequences in RNA-seq data sets. Commercially available 
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kits for mRNA enrichment are based on the removal of rRNA by either subtractive 

hybridization or 5’-monophosphate-dependent exonuclease digestion. We 

evaluated both methods with respect to the removal efficiency of rRNA and the 

preservation of mRNA diversity. The exonuclease treatment was found to 

degrade not only rRNA but also a considerable amount of soil mRNA (Mettel et al, 

2010). mRNAs carrying a monophosphate group at the 5’ end were reported to 

generally occur during mRNA decay in prokaryotes (Celesnik et al, 2007). Thus, 

the exonuclease treatment would direct metatranscriptomic studies toward the 

analysis of unprocessed mRNAs that are 5’-triphosphorylated. We therefore 

decided to use subtractive hybridization of rRNA in order to cover full diversity of 

mRNA transcripts. Two mRNA enrichment kits that are based on subtractive 

hybridization were tested: MICROBExpress™ Bacterial mRNA enrichment kit and 

Ribo-Zero™ rRNA removal kit (Meta-Bacteria). Their performance was assessed 

by capillary electrophoresis and small-scale sequencing. The MICROBExpress™ 

Bacterial mRNA enrichment kit depleted rRNA in soil extracts with a removal 

efficiency of about 95%, as determined by comparing the fluorescence signal 

intensities of rRNA in total RNA with those in the enriched mRNA. One limitation 

of MICROBExpress™ is that the oligonucleotide probes used for capturing of 16S 

and 23S rRNA do not target archaeal and eukaryal rRNA. In addition, rRNA of 

some particular bacterial taxa is not captured such as, for example, that from 

members of the Planctomycetes (a complete list is available on the 

manufacturer’s website). The rRNA removal efficiency of MICROBExpress™ 

declined with increasing partial fragmentation of the total RNA used for mRNA 

enrichment. Fragmentation of rRNA, particularly of 23S rRNA, occurs in many 

bacteria depending on growth phase (Selenska-Pobell & Evguenieva-

Hackenberg, 1995; Klein et al, 2002). In addition, some physical fragmentation 

during the extraction of total RNA from soil cannot be completely avoided. The 

Ribo-Zero™ rRNA removal kit (Meta-Bacteria) was assessed because its 

manufacturer claimed that the kit is able to capture both intact and partially 

degraded rRNA. In fact, we observed a dramatic increase in the proportion of 

mRNA-derived reads after treatment with Ribo-Zero™. The exact procedure on 

how this high rRNA removal efficiency is achieved is not yet released by the 



 4 Discussions 
 

55 
 

manufacturer. Taken together, the rRNA removal efficiency achieved by use of 

Ribo-Zero™ was tremendously greater than that observed by use of 

MICROBExpress™ (Figure 4.1). Based on these findings, we used the Ribo-

Zero™ rRNA removal kit for mRNA enrichment in this study. 

 

  

Figure 4.1. Comparison of metatranscriptome libraries after mRNA 
enrichment using MicrobExpress or Ribo-Zero, shown in relation to total 
RNA (non-enriched control). Blue, red and green indicate the proportion of LSU 
rRNA, SSU rRNA, and non-rRNA sequences, respectively.  

 

 

4.3. cDNA synthesis and 454 library preparation 

Metranscriptome studies performed in marine systems, even the most recently 

published study (Shi et al, 2011), amplified the enriched mRNA by in vitro 

transcription (IVT) prior to cDNA synthesis  to have sufficient starting amount of 

cDNA for  454 library preparation. The cDNA rapid library preparation method for 

use of the GS FLX Titanium chemistry requires a minimum of 200 ng of enriched 

mRNA as the starting material, but avoids IVT amplification. We were able to 

produce sufficient amount of enriched mRNA for the rapid library preparation 

method by pooling ten aliquots of total RNA extracted from the same microcosm. 
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We assume that the direct conversion of enriched mRNA into cDNA avoids 

potential bias which may be introduced during RNA amplification via IVT. 

Therefore, RNA-seq data sets obtained after the use of the rapid library 

preparation method may reflect the mRNA composition in the metatranscriptome 

more accurately than those that involved the use of IVT amplification.  It should 

also be noted that in all published studies, metatranscriptome libraries produced 

by IVT amplification have been sequenced using 454 GS FLX chemistry with 

read lengths not greater than 200 bp (Table 1.2), rather than the Titanium 

chemistry with increased read lengths as applied by us. 

 

4.4. Preprocessing of 454 sequence data 

Raw data of next-generation-sequencing contain low-quality sequences, 

sequence artifacts, sequence contaminations, sequence replicates and 

ambiguous sequence motifs. In de novo whole-genome sequencing, high 

coverage may compensate for some of these uncertainties in sequence reads. 

However, quality control and preprocessing of sequence data is crucial for correct 

functional annotation and taxonomic binning. This is true in particular in soil 

metatranscriptomics due to the complexity of community structure and, compared 

to marine metatranscriptomics, the limited amount of genomic and metagenomic 

reference data to which the soil metatransciptome data can be compared or 

mapped. Therefore, raw image data of 454 GS FLX Titanium runs have to pass 

through image and signal processing. Chimeric reads, reads with undetermined 

bases (called “N”) or those showing low sequence complexity will need to be 

removed by supplementary read filtering strategies. In this study, various quality 

filters were applied to raw reads data to omit ambiguous reads (Table 2.1). 

Additionally, reads with poor sequence quality at their 3’-ends were trimmed off to 

prevent incorrect annotation caused by low-quality base calls. The accuracy of 

base-calling in pyrosequencing decreases towards the end of reads (Balzer et al, 

2010). Consequently, sequencing errors occur more frequently at the 3’ end 

(Balzer et al, 2011). Quality trimming allows to keep more reads in the data set 

and to use a reliable portion of the sequences for downstream analysis.   
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4.5. Removal of non-coding RNA  

Cellular RNA is primarily composed of ribosomal RNA (rRNA) and transfer RNA 

(tRNA). In ocean metatranscriptome data sets, a significant fraction of cDNA 

sequences that could not be assigned to rRNA or known protein-coding genes 

was found to comprise well-known small RNA as well as new groups of 

previously unrecognized putative small RNA (Shi et al, 2009). The non-coding 

RNA, such as rRNA and tRNA but also small RNA, has to be identified and 

removed from the metatranscriptome libraries prior to the functional annotation of 

the mRNA-tags. Otherwise, they could be misclassified as protein-coding 

transcripts and then be added to the protein database as putative or hypothetical 

proteins. For example, it is reported that one conserved region of 23S rRNA was 

consistently misclassified to create spurious Pfam protein family (PF10695) with 

the function of cell wall hydrolase (Tripp et al, 2011). In our study, all the 

preprocessed reads were screened against the most updated SILVA rRNA 

databases and subsequently against the Rfam database, using an e-value cutoff 

of 1e-10.  

 

4.6. Community structure analysis based on SSU-ribotags 

Microbial community structure in complex environments has been widely studied 

using the 16S rRNA gene as phylogenetic marker. Next-generation sequencing 

technologies, in particular 454 pyrosequencing with average read lengths of up to 

800 bp, enables the high-throughput analysis of microbial community composition. 

However, PCR-based amplicon sequencing may introduce bias due to primer 

selectivity and exponential amplification. DNA-based approaches are a good 

indicator of the genetic presence and potential but do not provide information on 

those community members that are active. Another concern is the possible 

presence of free DNA (Prosser, 2007). Some of these limitations can be solved 

by analysis of total RNA rather than DNA, because cDNA is synthesized by 

random priming. The RNA approach avoids the potential bias introduced by PCR 

amplification, identifies the microbial groups active or at least viable at the time of 

sampling and, when combined with the analysis of enriched mRNA, provides a 
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linkage between community composition and functional activities. 

 

4.7. Functional activity in the oxic surface layer  

Ribotag analysis combined with metatranscriptome data provides insights into the 

functional activities of microbial communities. For example, one of the 

biogeochemical characteristics of the oxic surface layer is methane oxidation, 

while the anoxic rice paddy bulk soil is defined by methane production and its 

emission to the atmosphere. However, a significant portion of the methane 

produced in the bulk soil is immediately oxidized by methanotrophic activity prior 

to emission. The amount of methane that is oxidized before it reaches the 

atmosphere is in the range from 45% to 60% (Khalil et al, 1998). Thus, the 

activity of methanotrophic bacteria in the oxic surface layer, but also in the 

partially oxygenated rhizosphere, represents a biofilter that reduces the emission 

of methane to the atmosphere. In full agreement with the methanotrophic 

pathway, transcripts of genes encoding particulate methane monooxygenase 

were detected only in the oxic surface layer but not in the anoxic bulk soil. In 

SSU-ribotag analysis, we observed a spatial distribution pattern of 

methanotrophs. Ribotags affiliated with Crenotrichaceae were primarily detected 

in the oxic surface layer, while those of type II methanotrophs were retrieved from 

both oxygen zones, but more frequently from the anoxic zone. Ribotags of type I 

methanotrophs were detected in both oxic surface layer and anoxic bulk soil. At 

the rRNA level, the detection of type I and type II methanotrophs in the anoxic 

zone is not unexpected. Previous PCR-based studies already revealed the 

presence of methanotrophs in the anoxic bulk soil, in particular type II 

methanotrophs (Horz et al, 2001). It has been suggested that some 

methanotrophs are capable of fermentation (Roslev & King, 1995). In fact, 

Vecherskaya et al. (2009) showed that a Methylocystis parvus strain is capable of 

fermentative metabolism of poly-3-hydroxybutyrate (PHB) under anaerobic 

conditions. Moreover, type II methanotrophs may persist as “resting stages”, such 

as cysts (Methylocystis) or spores (Methylosinus), under unfavorable conditions 

(Hanson & Hanson, 1996). 
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 Under periodic light condition, a filamentous green matrix developed early 

on the surface layer of the flooded rice microcosms. Ribotag analysis revealed 

that this biofilm was primarily formed by Cyanobacteria. Nearly half of the SSU-

ribotags from all the sampling time points were assigned to this phylum (Figure 
3.7). The primary function of the Cyanobacteria is oxygenic photosynthesis, 

thereby explaining why the O2 concentrations in the surface soil layer of flooded 

rice paddy microcosms is higher in the light than in the dark (Frenzel et al, 1992). 

In the mRNA-tag data set obtained from the oxic surface layer, Cyanobacteria 

ranked second after Proteobacteria in the number of mRNA-tags taxonomically 

assigned at the phylum level, accounting for about 10% of annotated mRNA-tags. 

About 5% of the Cyanobacteria-derived mRNA-tags were annotated as proteins 

involved in photosynthesis. Vijayan et al. (2011) reported that genes related to 

photosynthesis, ribosome and RNA polymerase are most highly transcribed in 

Synechococcus elongates PCC 7942. The distribution of Cyanobacteria-derived 

mRNA-tags to functional categories in our environmental data set differed from 

the distribution of mRNA-tags in the pure culture transcriptome of S. elongates 

PCC 7942. This discrepancy may have both biological and method-inherent 

reasons. Members of the Cyanobacteria were reported to exhibit relatively rapid 

mRNA decay rates of 2.4 minutes (Steglich et al, 2010). The rapid turnover rates 

may lead to rapid changes in the expression profiles in response to 

environmental cues such as stress that may have affected cyanobacterial cells 

during soil sampling. Another possibility is that among the cyanobacterial mRNA-

tags, basic functional categories such as carbohydrate, protein and amino acids 

metabolism are overrepresented due to misclassification in taxonomic binning. I 

refer to section 4.7 for further details.  

 In SSU-ribotag analysis, Gammaproteobacteria ranked second after the 

Cyanobacteria in the number of tags assigned at the phylum level. The OTU with 

the greatest number of SSU-ribotags was affiliated with the order 

Xanthomonadales, accounting for 5% to 7% of the SSU-ribotags in the oxic 

surface layer over all samplings. Its 16S rRNA reference sequence (see section 
2.3.3) had been obtained in an environmental study from the heavy DNA fraction 

of a stable-isotope probing (DNA-SIP) experiment using 13CH4. It was indicative 
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of an uncultured bacterium assumed to be detected and rRNA-labeled due to 

cross-feeding of 13CH4-derived compounds. Alternatively, this bacterium may 

represent a novel, uncultivated methanotroph present in the alkaline coal mine 

soil studied (Han et al, 2009). Thus, the high relative abundance of 

Xanthomonadales, including the prevalence of a few particular phylotypes, in the 

oxic surface layer may be related directly or indirectly to methane oxidation and 

calls for further research on the putative functional role of this Xanthomonadales 

population.     

 
 

4.8. Functional activity in the anoxic bulk soil 

Under anaerobic condition in the dark, microorganisms gain their energy by 

anaerobic respiration or fermentation. Different microbial guilds interact to break 

down and degrade complex organic matter in the anaerobic food chain. Diverse 

organisms exist and perform different types of fermentation or anaerobic 

respiration using various electron acceptors (McInerney et al, 2009). In our study, 

the taxonomic composition of the microbial communities showed the greater 

diversity in the anoxic bulk soil with higher richness and evenness than in the oxic 

surface layer. Over the different plant growth stages, there occurred no major 

changes in community composition at the phylum level, but shifts in their relative 

abundances. However, in the anoxic bulk soil, the richness of genus-level OTUs 

in the 25-day-old rice microcosm (tillering) was remarkably lower than that in the 

45-day-old (flowering) and 90-day-old (ripening) rice microcosms (Figure 3.6). In 

order to experimentally define our sampling material as anoxic soil, roots and 

rhizosphere soil were separated from the bulk soil by a gaze bag. In contrast to 

the later plant growth stages, the roots of 25 day-old plants did not sufficiently 

grow to fill the bag. Thus, plants in the tillering stage may not have released 

sufficient amount of root exudates to promote the same OTU diversity as 

observed in the anoxic bulk soil of the 45-day-old and 90-day-old microcosm. 

 In the anoxic bulk soil, microorganisms typically involved in the anaerobic 

biodegradation of organic matter were detected with high frequency in both the 

SSU-ribotag and mRNA-tag data sets (Figure 3.7 and Figure 3.15). Geobacter, 
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Anaeromyxobacter, Clostridia, and methanogens represented the dominant 

groups of the anaerobic microbial community, but were not present or only 

present as minor population in the oxic zone. Previous studies have shown that 

Geobacter and Anaeromyxobacter have functional significance in flooded rice 

paddy soil as dissimilatory Fe(III) reducers (Jackel et al, 2005; Ratering & Schnell, 

2000; Hori et al, 2007). Our findings are corroborated by the results of a previous 

study that detected Geobacter-related mRNA-tags specifically in the anoxic zone 

of flooded paddy soil by RT-PCR using a primer that targets bacterial Shine-

Dalgarno sequences (SD14 primer), followed by amplicon cloning and Sanger 

sequencing of 800 random clones (Shrestha et al, 2009). Comparative analysis 

of our mRNA data sets suggests that different pyruvate metabolism pathways 

were expressed in the oxic and anoxic zones of the flooded rice paddy soil 

microcosms (Figure 3.12). Pyruvate metabolism II, defined by the formation of 

acetate via acetyl-CoA, was greatly overrepresented in the anoxic bulk soil, as 

judged by the frequency of mRNA-tags related to this pathway. The genome 

sequences of organisms having a syntrophic life style such as, for example, 

Geobacter sulfurreducens, Pelobacter carbinolicus, Desulfovibrio desulfuricans 

G20, Syntrophobacter fumaroxidans, and Syntrophus aciditrophicus, revealed 

that genes encoding pathways of acetate formation are present in multiple gene 

copies (Kosaka et al, 2008; Butler et al, 2009; McInerney et al, 2007).  

 Methane production is a energy-yielding metabolism unique to 

methanogens in anoxic environments (Thauer et al, 2008). In rice field soil, 

methane is mainly produced by the reduction of carbon dioxide (perfomed by 

hydrogenotrophic methanogens) or the fermentation of acetate (performed by 

acetoclastic methanogens) (Conrad & Claus, 2005). Approximately 65% of CH4 

produced in anoxic rice field soil is derived from acetate (Chidthaisong et al, 

1999). Methanosarcina (generalist) and Methanosaeta (specialist) are the only 

methanogens that can utilize acetate to form methane. In good agreement with 

previous studies based on PCR, both hydrogenotrophic and acetoclastic 

methanogens were detected in the SSU-ribotag data sets with similar read 

frequency (Frenzel et al, 1999; Krüger et al, 2005). However, twice as much of 

the methanogenesis-related mRNA-tags were taxonomically assigned to 
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Methanosarcina and Methanosaeta than to hydrogenotrophic methanogens. 

Particularly, mRNA-tags of the methyl-coenzyme M reductase (MCR), which is 

involved in the terminal step of methane formation, were mostly derived from 

acetoclastic methanogens. The strong expression of acetate-producing pyruvate 

metabolism II pathways among members of the bulk soil microbial community 

along with the high transcriptional activity of acetoclastic methanogens reflects 

that acetate is an important metabolite in anoxic rice paddy soil and a major 

substrate for methane production (Chidthaisong et al, 1999). These findings are 

also a good example of the new insights into the functional activity that can be 

gained by soil metatranscriptomics, even if used as a stand-alone approach. 

However, in particular, it will be a powerful tool if combined with other approaches, 

such as ribotag analysis, metagenomics, and/or process measurements.  

 

 

Figure 4.2. Comparison of the relative proportion of SSU-ribotags and 
mRNA-tags assigned to respective taxonomic groups.  

 

4.9. Discrepancies between SSU-ribotag and mRNA-tag data analysis 
 
In principle, we observed a similar trend between the taxonomic assignment of 

SSU-ribotags and the taxonomic binning of mRNA transcripts in the 
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corresponding data sets from either oxic surface layer or anoxic bulk soil. 

Taxonomic groups that were more frequently detected in the SSU-ribotag data 

set from the oxic surface layer than in that from the anoxic bulk soil (and vice 

versa) were also overrepresented in the corresponding mRNA-tag data set. 

However, when performing a more detailed inspection of the corresponding SSU-

ribotag and mRNA-tag data sets, it became obvious that considerable 

discrepancies occur in the relative abundances of certain taxonomic groups 

(Figure 4.2). These discrepancies may be explained by a combination of several 

factors: (1) Differences in the SSU-ribotag and mRNA-tag frequencies may reflect 

the native situation because the number of SSU-ribotags represents the cellular 

biomass of the respective taxon, while mRNA-tags are indicative of the in situ 

cellular activity (Weller & Ward, 1989; Urich et al, 2008). Since even starving cells 

contain a certain amount of rRNA, high biomass of inactive cells may lead to a 

low frequency of mRNA-tags relative to SSU-ribotags. (2) The discrepancy could 

be due to incorrect taxonomic binning of mRNA-tags. These were functionally 

and taxonomically annotated by searching translated cDNA against non-

redundant protein databases, because protein sequences are evolutionarily more 

conserved than nucleotide sequences (Mount, 2001). The amino acid sequences 

of various proteins involved in basic cellular function, stability, or reproduction are 

highly conserved among microorganisms, regardless of phylogenetic affiliation 

(Gaasterland et al, 2000). It has been reported that the accurate taxonomic 

binning of mRNA is negatively affected by potential lateral gene transfer 

(Poretsky et al, 2005; Shrestha et al, 2009). Therefore, as exemplified in Figure 

4.3, it should be noted that taxonomic binning of genes which are highly 

conserved and distributed among many organisms has to be interpreted with 

care, in particular if assignments are made at the genus or even species level 

(Burke et al, 2011). (3) The relative proportion of mRNA-tags taxonomically 

assigned to Proteobacteria was greater than the relative proportion of SSU-

ribotags assigned to this group (Figure 4.2). Among the 8448 bacterial genome 

projects including finished and on-going projects, almost half of them focus on 

members of the Proteobacteria, and 45% of the metagenome projects are 

surveying aquatic systems that are dominated by Proteobacteria (Figure 4.4). As 



 4 Discussions 
 

64 
 

a consequence, the taxonomic binning of mRNA-tags may lead to a bias toward 

an underrepresentation of microbial groups that are not well represented by 

genome sequences (Urich et al, 2008).    

 

 
 

Figure 4.3. BLASTX matches of an exemplary mRNA-tag 
(HH02YNVO2FO0UB) in the data set from the anoxic bulk soil. Top 29 hits out 
of 94 matches are shown. The taxonomic origin of the different BLASTX hits is 
highly diverse. They have nearly identical sequence similarity scores. The 
function of all hit sequences was annotated as potassium uptake protein.  
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Figure 4.4. (a) Phylogenetic distribution of bacterial genome projects 
(October 2011, 8448 projects) and (b) metagenome classification depending 
on ecosystem categories (March 2012, 334 projects). The genome and 
metagenome data are available at http://www.genomesonline.org/cgi-
bin/GOLD/index.cgi. 

 

4.10. Current status and perspectives 

In this study, we analyzed aerobic and anaerobic microbial communities in 

flooded rice paddy soil microcosms through soil metatranscriptomics, a novel 

molecular ecology approach to gain insights into the functional activities of soil 

microbial communities. We observed a similar functional distribution of mRNA-

tags related to the maintenance of the basic cellular machinery (Figure 3.11). 

This finding may not be surprising as the basic cellular machinery is highly 

conserved among bacteria, regardless of whether they possess an aerobic or 

anaerobic metabolism. Common metatranscriptome patterns of basic cellular 

machinery have also been observed between different study sites in marine 

systems (Stewart et al, 2011). On the other hand, gene expression in response to 

particular environmental conditions was observed. As one example, transcripts 

encoding particulate methane monooxygeanase (methane oxidation) were 

detected only in the oxic surface layer, while those encoding methyl-coenzyme M 

reductase (methanogenesis) were identified only in the anoxic bulk soil.  

 In addition to the SSU-ribotag datasets, about 48,000 and 12,000 mRNA-
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tags were obtained from the oxic surface layer and the anoxic bulk soil, 

respectively. In order to further search for candidates of ecologically relevant 

genes and to have mRNA-tag datasets of comparable size, we intend to increase 

the number 454 pyrosequences from the anoxic bulk soil to about 40,000 to 

50,000 mRNA-tags. We annotated and compared functional activities of microbial 

communities adapted to either oxic or anoxic conditions, using a hierarchical 

system of functional categories. Given a sufficient number of mRNA-tags, the 

metatranscriptome level of particular genes or gene families among members of 

a microbial community can be monitored to quantify their ecological importance.  

 The differential representation of Cyanobacteria-derived reads in the SSU-

ribotag and mRNA-tag datasets from the surface layer shall be addressed in 

further studies. The cyanobacterial biofilm was formed soon after transplantation 

of the rice seedling and may already have been aged at the time of sampling to 

analyze enriched mRNA. Thus, a large portion of the biofilm may have been 

composed of inactive cells, thereby explaining the low relative abundance of 

mRNA-tags affiliated with cyanobacteria, in particular with oxygenic 

photosynthesis. This may also explain why a much greater number of functional 

subcategories had a siginificantly higher metatranscriptome level in the anoxic 

bulk soil than in the oxic surface layer.Therefore, we intend to perform an 

analysis of total RNA and enriched mRNA from the oxic zone of flooded paddy 

soil microcosms shortly after a cyanobacterial biofilm is visible. We expect that 

the mRNA-tag analysis in early plant growth stage, when the biofilm is freshly 

formed, could give some clue to explain the relationship between metabolic 

activity and biomass of Cyanobacteria.     
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