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1 INTRODUCTION

1 Introduction

Mixture models are widely used to analyze datasets with independent observa-
tions showing heterogeneity in such a sense that there are multiple subpopula-
tions. There are several applications in biology, pattern recognition and many
other areas where the task of a model-based segmentation of a dataset is of in-
terest. Hidden Markov models are an extension of mixture models because they
additionally allow for a certain serial dependence between observations and are
thus applied to deal with data that exhibit dependence over time. There is also
a wide range of different areas of application as speech recognition, see e.g. Ra-
biner (1989), or financial economics, see e.g. Rydén, Teräsvirta and Åsbrink
(1998).

Before presenting mixture and hidden Markov models in more detail, we in-
troduce a general setting which covers the models of interest. To this end, let
(Xt, St)t∈T denote a bivariate stochastic process with T = {1, . . . , T} (from now
on we omit the set T in the subscript). Hereby, for each t ∈ T, St is a discrete
random variable with St ∈ {1, . . . , k} for some k ∈ N. The process (St)t is named
state process and its realizations are commonly not observable. The number of
states k is a parameter of high interest for us and its choice in applications will
be discussed below. The process (Xt)t is called observable process and is inde-
pendent given (St)t. Further, for t = 1, . . . , T , the conditional distribution of Xt

given (St)t depends on St only. Throughout this thesis the observable process
is real-valued and uni- or multivariate, depending on the considered scenario.
Conditional on St = j, the distribution function of Xt is denoted by Fj(·),
j = 1, . . . , k, and is referred to as state-dependent distributions. We assume
that these distributions have densities w.r.t. Lebesgue measure. Summarizing,
the parameters of the described model comprise the number of states k ∈ N, the
distribution of the state process (St)t and the state-dependent distributions.

1.1 Finite Mixture Models

A finite mixture model is obtained by letting the state process (St)t be an i.i.d.
sequence with P (St = j) = pj, pj ≥ 0, j = 1, . . . , k and

k
j=1 pj = 1. Hence,

the observable process (Xt)t is also i.i.d. and the distribution function is given
by F (x) =

k
j=1 pjFj(x). Note that, due to the restriction

k
j=1 pj = 1, pk

is already defined by p1, . . . , pk−1. If further the state-dependent distributions
belong to a parametric family given by F (·; θ), θ ∈ Θ ⊂ Rd, then Xt has
distribution function

F (x; p1, . . . , pk, θ1, . . . , θk) =
k

j=1

pjF (x; θj),
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1.1 Finite Mixture Models 1 INTRODUCTION

θj ∈ Θ, j = 1, . . . , k. In the following we will concentrate on the case of parame-
tric state-dependent distributions such that all belong to the same family and
denote p(k) = (p1, . . . , pk), θ(k) = (θ1, . . . , θk), or simply p and θ if the number
of components is known, where in case of mixture models states are also referred
to as components.

Identifiability of the parameters of a mixture model, that means that same dis-
tribution functions imply the same parameter, is an important issue e.g. for
parameter estimation, see Frühwirth-Schnatter (2006, chap. 1) for a short dis-
cussion. This topic is well studied for many parametric families, see e.g. Teicher
(1963) or Yakowitz and Spragins (1968) for the normal distribution.

The parameters of a k-state mixture can be estimated by maximum likelihood,
i.e.


p̂(k), θ̂(k)


= argmax


l
(k)
T (p,θ)

k
j=1pj = 1, pj ≥ 0, θj ∈ Θ, j = 1, . . . , k


,

where the log-likelihood of a k-state mixture model is given by

l
(k)
T (p,θ) =

T

t=1

log
 k

j=1

pjf(Xt; θj)

,

with f(·; θ) denoting the density function of the parametric family w.r.t. Le-
besgue measure. In applications we always calculate the MLEs (as well for
hidden Markov models) by direct constrained numerical maximization of the
log-likelihood. Another common way is to apply the EM algorithm which was
introduced by Dempster, Laird and Rubin (1977).

The choice of the number of components k is an important aspect since it has
crucial impact on the quality of statistical inferences made by using mixture
models. One possible strategy is to apply model selection criteria such as the
Akaike information criterion (AIC) or the Baysian information criterion (BIC).
Keribin (2000) shows that BIC chooses asymptotically the right number of com-
ponents. Another approach, which will be pursued by us, is to successively test
the hypothesis

H0 : k = k0 against H1 : k = k1 > k0,

using likelihood based tests, starting with k0 = 1. Under H0 the likelihood-ratio
test (LRT) statistic

2 ·

l
(k1)
T


p̂(k1), θ̂(k1)


− l

(k0)
T


p̂(k0), θ̂(k0)



does asymptotically not exhibit the usual χ2
· -distribution (even for k0 = 1) sin-

ce the true parameter is not identified in the alternative parameter space. Thus
further theory and other approaches have been developed. Chen, Chen and
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1 INTRODUCTION 1.2 Hidden Markov Models

Kalbfleisch (2001), (2004) and Li and Chen (2010) propose modified likelihood-
ratio tests for analyzing the hypothesis H0 : k = 1, H0 : k = 2 and generally
H0 : k = k0 for state-dependent distributions with an one-dimensional parame-
ter as e.g. the Poisson distribution or the univariate normal distribution with
fixed mean. Basically, penalty functions on the weight parameters are applied
to force the estimates away from zero. Especially for normal mixtures there are
various tests, among which Chen, Li and Fu (2012) propose a test for assessing
the general hypothesis of k0 against 2k0 components for normal location- and
scale-mixtures. In each paper the asymptotic distribution of the corresponding
modified likelihood-ratio statistic is deduced and in finite-sample applications
this distribution is used for testing. Generally, if the asymptotic distribution
of the test statistic is not available or the finite-sample behavior of the test is
not accurate, bootstrapping the (modified) likelihood-ratio statistic is a proper
approach, see McLachlan (1987). In Vollmer, Holzmann and Schwaiger (2013)
a parametric bootstrap technique is used to assess the number of components
of a normal mixture for a GDP dataset.

Commonly, mixture models are applied for model-based clustering, as the un-
observed components can be estimated and linked to groups. One aims to find
the most likely component to each observation given the (estimated) mixture
model. This can be done by maximum-a-posteriori estimation, i.e.

ŜMAP
t = argmax


p̂jf(Xt; θ̂j)

j = 1, . . . , k

, t = 1, . . . , T,

where p̂j, θ̂j, j = 1, . . . , k, are the estimated parameters. In case of mixture
models having state-dependent distributions with distinctly different locations
(relatively seen to scales) this leads to accurate decoding results, i.e. peaks in
the density are linked to clusters. But components of a mixture model do not ne-
cessarily coincide with density based clusters: In case of scale mixtures, i.e. equal
locations but different scales, an accurate decoding around the mode is nearly
impossible. To overcome this difficulty Biernacki, Celeux and Govaert (2000)
introduce a model selection criteria in order to find components which corre-
spond to clusters, and Baudry, Raftery, Celeux, Lo and Gottardo (2010) merge
components which represent density based clusters after estimation. A strategy
of combining states in case of hidden Markov models has been investigated in
Holzmann and Schwaiger (2013a).

1.2 Hidden Markov Models

A k-state hidden Markov model (HMM) is given by the process (Xt, St)t intro-
duced above when the state process (St)t is considered as a (first order) Markov
chain with state space {1, . . . , k}, i.e. for t > 1 satisfying

P (St = jt|S1 = j1, . . . , St−1 = jt−1) = P (St = jt|St−1 = jt−1),
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1.2 Hidden Markov Models 1 INTRODUCTION

with jτ ∈ {1, . . . , k}, τ = 2, . . . , t. The name hidden Markov model is caused by
the fact that only the process (Xt)t is observable while the Markov chain (St)t
is hidden. Zucchini and MacDonald (2009) provide a practical introduction to
hidden Markov models with applications and code examples.

A Markov chain is said to be homogeneous if for i, j = 1, . . . , k the transition
probabilities P (St = j|St−1 = i) are independent of the time t. The Markov
chain is then characterized by its initial distribution P (S1 = j), j = 1, . . . , k,
and the transition probability matrix (t.p.m.) Γ = (γi,j)i,j with

γi,j = P (St = j|St−1 = i), t > 1.

Finite-state hidden Markov models are also called Markov-dependent finite mix-
tures suggesting their relation to finite-state mixture models. In detail, mixture
models form a subclass of hidden Markov models since a t.p.m. with all rows
being equal directly implies an independent state process. Assuming the Markov
chain to be ergodic yields the unique existence of a stationary distribution which
is denoted by π = π(k) = (π1, . . . , πk) and satisfies π ·Γ = π. Furthermore, for
any starting distribution the probabilities P (St = j) then converge towards πj,
j = 1, . . . , k, for t → ∞. Hence, under ergodicity, the assumption to start the
Markov chain in its stationary distribution is a mild restriction, especially for
asymptotic considerations.

The observable process (Xt)t is dependent over time via the Markov chain. Thus,
hidden Markov models are suitable to model serially-dependent data when the
dependence is induced by a latent Markov dependent group belonging. When
Fj(·) denotes again the conditional distribution function of Xt given St = j,

the marginal distribution function of Xt is given by the mixture
k

j=1 P (St =
j)Fj(x). If the Markov chain is started in its stationary distribution the latter
mixture is independent of t and the weights are given by π.

A popular example of HMMs, which Rydén et al. (1998) use to describe log-
returns of asset prices, is a normal HMM with fixed zero means and state-
dependent standard deviations. Let therefore (εt)t be an i.i.d. sequence of stan-
dard normal random variables, (St)t a stationary k-state Markov chain and
σj ∈ R, j = 1, . . . , k, with 0 < σ1 < · · · < σk. Then by letting Xt = σStεt, the
process (Xt, St)t is a k-state HMM. Its observable process has a scale-mixture
of normals as stationary distribution, which covers the fat-tailed distribution
of the log-returns. Further, each state of the Markov chain refers to a different
market situation characterized by the level of variance of the observable process.
The estimated transition behavior of the Markov chain is typically very persis-
tent and Rydén et al. (1998) find by bootstrapping models with two or three
states. In Holzmann and Schwaiger (2013b) normal and skew-normal HMMs
are considered to model log-returns, and it is discussed that for time-periods
containing the financial crisis in 2008 even four states are required to describe
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1 INTRODUCTION 1.2 Hidden Markov Models

the data well, see below for further discussion on choosing the number of states
of an HMM.

Analogously to mixture models we focus on the case that the state-dependent
distributions are given by a parametric family with distribution function F (·; θ)
and density function f(·; θ), θ ∈ Θ ⊂ Rd, respectively. The parameters of a
k-state HMM with ergodic Markov chain starting in its stationary distribu-
tion are then given by the transition probability matrix Γ ∈ Rk×k and the
state-dependent parameters θ = θ(k) = (θ1, . . . , θk), such that (Xt|St = j) ∼
F (·; θj), j = 1, . . . , k. Similarly to mixture models, identifiability of HMMs is well
studied. One very important result in this context is given by Leroux (1992).
If all state-dependent distributions belong to the same parametric family, then
identifiability of the HMM holds if the corresponding finite mixture is identifia-
ble. The log-likelihood of the observable part is given by

LT (Γ,θ) = log

π Γ f(X1;θ) Γ f(X2;θ) · . . . · Γ f(XT ;θ) 1

T

,

where f(Xt;θ) = diag

f(Xt; θ1), . . . , f(Xt; θk)


and 1 = (1, . . . , 1). The log-

likelihood can be computed numerically stable by an algorithm given in chapter
3 of Zucchini and MacDonald (2009).

For a given number of states k, maximum likelihood estimation of a hidden Mar-
kov model can be done by direct numerical maximization of the log-likelihood or
by the EM algorithm. Under regularity conditions, Leroux (1992) shows consis-
tency of the MLE and Bickel, Ritov and Rydén (1998) its asymptotic normality.
Lindgren (1978) introduces a quasi-likelihood based approach. He proposes to
estimate the state-dependent parameters and the weights of the stationary mix-
ture of an HMM by using the log-likelihood of a mixture model. Under regula-
rity conditions these estimates are consistent. The transition probability matrix
cannot be estimated by this approach since it is neither involved in the mixture
log-likelihood nor is there a unique mapping from the stationary distribution
back to the transition probability matrix.

In fact, besides selecting an appropriate parametric family, the choice of the
number of states is the critical part in model estimation. Model selection criteria
like AIC or BIC can be applied here as well, but a likelihood-ratio test for the
number of states based on the likelihood LT (Γ,θ), as described for mixture
models in the previous section, leads to problems. Even for testing H0 : k =
1, the likelihood-ratio statistic does not converge towards a χ2

· -distribution.
Instead, it diverges to infinity as T → ∞, see Gassiat and Keribin (2000). To
overcome arising problems when using the full-model likelihood, Dannemann
and Holzmann (2008) propose a quasi-likelihood based likelihood-ratio test for
investigating the hypothesis H0 : k = 2. Based on the marginal distribution of
the HMM, they show that the asymptotic distribution of the modified likelihood-
ratio statistic of Chen et al. (2004) still holds in case of a Markov dependent
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1.2 Hidden Markov Models 1 INTRODUCTION

state process. In Holzmann and Schwaiger (2013b) this approach is followed
and the work of Li and Chen (2010) and Chen et al. (2012) is extended for
HMMs in order to test the hypothesis H0 : k = k0 for an arbitrary k0 ∈ N.
However, likelihood ratio-tests using the full-model likelihood are in certain
situations also possible for HMMs and the usual χ2

· -distribution holds. Giudici
et al. (2000) extend the theory of likelihood-ratio testing from the i.i.d. to the
HMM setting. Their framework does not cover tests for the number of states but
e.g. special restrictions on the state-dependent parameters can be tested. They
test for equal entries in the state-dependent covariance matrices of a multivariate
normal HMM. In Holzmann and Schwaiger (2013a) their result is used and it
is shown that a full-model likelihood ratio test can be applied to test special
restrictions on the transition probability matrix of an HMM.

The possibility of using an HMM for model based clustering is one of the reasons
for the popularity of this model class. The serial dependence induced by a dataset
or resp. an estimated model is a very important information for state decoding.
In the introductory example of this section the stationary distribution is a scale
mixture, but due to the persistent state transition an accurate decoding also
around the common mean is possible. Given all realizations of the observable
process, one can estimate the hidden states by e.g. calculating the most likely
sequence of states, i.e.

argmax

P (S1 = j1, . . . , ST = jT |X1 = x1, . . . , XT = xT )

jt = 1, . . . , k, t = 1, . . . , T

.

The latter strategy is denoted as global decoding and can be done efficiently
with the Viterbi algorithm, see Viterbi (1967). Further, states can be estimated
using local decoding, i.e. by estimating the most likely state isolated given the
whole observable process for each t, see Zucchini and MacDonald (2009) for
details on both approaches. In Holzmann and Schwaiger (2013b) the Viterbi
algorithm is used to identify volatility periods of financial assets.
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2 SUMMARY OF PUBLICATIONS

2 Summary of Publications

2.1 English

Testing for the number of states in hidden Markov models

Hidden Markov models with state-dependent scale are used in the literature to
model asset log-return time-series, see Section 1.2 or e.g. Rydén et al. (1998).
Commonly, Markov chains with two or three states are used therefor. In ”Testing
for the number of states in hidden Markov models” we deal with quasi-likelihood
based testing procedures, which enables us to investigate the question whether
in light of the financial crisis of 2008 three volatility states are still sufficient or
if a fourth crisis-state should be added.

In detail we generalize existing testing procedures for i.i.d. mixture models to
hidden Markov models by considering penalized quasi-likelihood ratio tests.
They can be applied in order to assess the number of states k of a hidden Markov
model with univariate state-dependent distribution fulfilling certain regularity
conditions. For two different models, which differ in the assumptions concerning
the state-dependent distribution, we propose tests for the hypothesis

H0 : k = k0 against H1 : k > k0,

for fixed k0 ∈ N. Note that for k0 = 2 a quasi-LRT for HMMs has been developed
by Dannemann and Holzmann (2008).

In the setting of a k-state HMM with state-dependent distributions belonging
to the same parametric family having density f(·, θ) w.r.t. Lebesgue measu-

re, the quasi-log-likelihood is given by l
(k)
T (p,θ), see Section 1.1. Thus, the

quasi-log-likelihood neglects the serial-dependence of the hidden Markov chain
and replaces it by an i.i.d. state migration, see Lindgren (1978). The quasi-
maximum-likelihood estimator (QMLE) is the parameter which maximizes the
quasi-log-likelihood given the usual restrictions of mixture model estimation.
We consider two different types of state-dependent distributions implying two
different tests.

Normal HMM

The first test is based on the assumption of a normal state-dependent distri-
bution where both the mean and standard deviation parameter depend on the
state of the Markov chain, i.e. θj = (µj, σj), µj ∈ R, σj > 0, j = 1, . . . , k0. The
quasi-log-likelihood is unbounded in this case, but this problem can be solved
by adding a penalty function which penalizes small values of σj. For estimation
under the hypothesis of k0 states we thus use the same penalty as in Chen et al.
(2012). For estimation under the alternative of a mixture with 2k0 components
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2.1 English 2 SUMMARY OF PUBLICATIONS

a different penalty function on the scale parameters and more restrictions on the
weights are applied. Essentially, we use the restricted parameter space for 2k0-
dimensional weight vectors as used in Chen et al. (2012), which asymptotically
bounds all weights away from zero under the null hypothesis. Our first main
statement is the asymptotic distribution of the penalized quasi-LRT statistic
Zn, i.e.

Zn
d→ χ2

2k0
as n→ ∞,

which holds for a k0-state normal HMM with distinct means and an ergodic
hidden Markov chain.

Univariate switching parameter

As a second model class we assume the parametric family of state-dependent
distributions with density f(·, θ) to be parametrized by a d-dimensional parame-
ter ν ∈ Θ1 and a one dimensional parameter ϑ ∈ Θ2, i.e. θ = (ν, ϑ). The main
difference to the previously discussed setting of a normal HMM is that ν is as-
sumed to be a nuisance parameter, i.e. (Xt|St = j) ∼ f(·, θj) with θj = (ν, ϑj).
Note that we extend the test of Li and Chen (2010) to additionally allow for a
nuisance parameter and a Markov dependent state process.

In case of finite mixture models having a univariate state-dependent parameter,
the asymptotic distribution of the LRT statistic is surprisingly more involved
than in case of a normal state-dependent distribution with a bivariate parameter.
The asymptotic distribution of the LRT statistic is, under a set of regularity
conditions on the density and under a special estimation procedure, see Li and
Chen (2010), given by a mixture of point mass in zero and k0 χ

2
· -distributions.

The weights of the asymptotic mixture depend on the true parameter value.
This fact transfers to the case of a quasi LRT with structural parameter. Our
second main statement is the asymptotic distribution of the quasi LRT statistic
Rn under the hypothesis of a k0-state HMM, i.e.

Rn
d→

k0

j=0

αjχ
2
j as n→ ∞,

where χ2
0 denotes the point mass at zero and the weights again depend on

the true parameters. The asymptotic distribution holds e.g. for the Poisson
distribution or (skew-)normal and t-distributions with state-dependent scale if
a lower bound on the scale parameter is applied. Note that in applications the
unknown weights can be replaced by estimates.

We provide an extensive simulation study for normal and skew-normal state
dependent distributions, which indicate a good finite sample behavior of both
tests.

Application to log-returns

To answer the question of how many volatility states are needed, we apply

8



2 SUMMARY OF PUBLICATIONS 2.1 English

a normal and a skew-normal HMM and the corresponding tests to a 15-year
dataset of daily log-returns of the S&P 500 index. In case of the skew-normal
HMM the hypotheses of k0 = 1, 2 and 3 can be clearly rejected using asymptotic
critical values. In case of the normal HMM one and two states can also be
rejected by this way, whereas three states can be rejected using simulated critical
values. In both models the hypothesis of four states cannot be rejected, and
estimating the maximum-a-posteriori state sequence using four states, in fact
highlights a clear connection of the fourth state and the financial crisis of 2008.

Hidden Markov Models with state-dependent mixtures

Generally, hidden Markov models with state-dependent finite mixtures provide
much more flexibility than a simple parametric family as e.g. the normal distri-
bution. Using these HMMs for modeling or clustering serially-dependent data is
thus a convenient way to benefit of good properties concerning adequate charac-
terization of state-dependent distributions and of the simplicity of mixtures. In
this paper we analyze the dependence structure of this model class. Our results
have applications to model selection as well as to model-based clustering. We
propose algorithms for both purposes.

The parametrization of such a model is not unique since one can parametrize
an r-state HMM with mixtures as state-dependent distribution as a k-state
HMM, where r < k, such that each component of the state-dependent mixture is
interpreted as a single state of a k-state Markov chain. We therefore investigate
the dependence structure of the hidden Markov chain and deduce a unique
minimal representation of the HMM if the state-dependent densities belong to
the same parametric family.

At first we analyze the dependence structure of Markov chains isolated and the-
refor define a function λ on the space of transition probability matrices with fixed
number of states. In detail when the original Markov chain with t.p.m. Γ has
k-states and G = {G1, . . . , Gr} denotes a partition of the state space {1, . . . , k},
the mapped t.p.m. is given by


λG(Γ)


i,j

= P

St ∈ G(j)

St−1 ∈ G(i)

· P

St = j

St ∈ G(j)

, i, j = 1, . . . , k,

where G(j) = l ⇔ j ∈ Gl, j = 1, . . . , k. As the sets Gl can be interpreted as
groups of states, the mapped t.p.m. is thus given by the transition probabilities
between groups and by the conditional probability within the attained group.
Therefore, the mapping can be interpreted as a reduction of information con-
cerning the state migration. The first main result is the existence of a unique,
minimal partition G∗

Γ such that λG∗
Γ
(Γ) = Γ. Note that minimal refers in this

context to the number of sets in the partition.

9



2.1 English 2 SUMMARY OF PUBLICATIONS

We prove that an arbitrary HMM with Markov chain having t.p.m. Γ can be
parametrized equivalently by an r-state HMM with state-dependent finite mix-
tures, whenever λG(Γ) = Γ holds for a partition G = {G1, . . . , Gr} of the original
state space {1, . . . , k}. Equivalently here refers to identical distributions of the
observable processes under both parameterizations. We attain the requested uni-
que minimal representation of the HMM as a Corollary, if k-component mixtures
of the used parametric family are identifiable. The resulting partition is deno-
ted by independence partition and the sets contained therein by independence
clusters. Note that we refer to the mentioned reparametrization as merging,
since several states are interpreted as a new state having a finite mixture as
state-dependent distribution.

For model selection purposes and in case that the state-dependent densities
belong to a known parametric family, we propose a likelihood-ratio test. The
test is based on the full-model log-likelihood LT (Γ,θ), see Section 1.2. In detail,
for a given partition G = {G1, . . . , Gr} of the state space {1, . . . , k} we test

H0 : λG(Γ) = Γ against H1 : λG(Γ) ̸= Γ.

Under the assumption of the true parameter to be an interior point of the
null-hypothesis parameter space and under further regularity assumptions, we
show that the LRT statistic is asymptotically χ2

· -distributed with k2 − 2k −
r2 + 2r degrees of freedom. For the normal or respectively multivariate-normal
distribution the regularity conditions are fulfilled if we impose lower bounds
on the scale parameters or respectively on the determinants of the covariance
matrices. In order to investigate the finite-sample behavior of the test we provide
an extensive simulation study.

Since merging in general changes the distribution of the observable process, we
provide an algorithm which uses the upper LRT in order to find the indepen-
dence partition iteratively via backward selection. For a given dataset and a
parametric family of densities the algorithm starts with the trivial partition
G0 = {{1}, . . . , {k}}. In each iteration step all partitions resulting from combi-
ning two sets are considered and for each of it the test is performed. The new
partition is then given by the one associated with the highest p-value or the
iteration is stopped if all tests can be rejected given a predefined level α > 0. A
simulation study indicates a level of α = 0.01 to be a good choice.

In case of i.i.d. mixture models, component-distributions which refer to the same
density based cluster are supposed to be interpreted as a single finite mixture
component-distribution, since then a meaningful maximum-a-posteriori analysis
is possible, see Baudry et al. (2010) or Hennig (2010). For HMMs the situation
is more involved. If there is a strong serial-dependence in the dataset, then also
states whose state-dependent distributions marginally strongly overlap can still
be well separated. Only if the dependence structure justifies merging, i.e. states
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2 SUMMARY OF PUBLICATIONS 2.1 English

are in the same independence cluster, and if state-dependent distributions re-
present a density based cluster, states should be merged. Thus, we propose an
entropy based algorithm which iteratively finds density based clusters within
the independence partition. The entropy of the local-decoding probabilities are
calculated for several candidate models and the one with minimal entropy is
chosen. This procedure is iterated until all possible states w.r.t. the indepen-
dence partition are merged. The final model is given by the model of the last
iteration step, or if the plot of the entropy values shows an elbow the according
model is selected.

Using normal state-dependent distributions, we apply our methodology to log-
returns of daily gold prices covering a 15-year period. The information criteria
AIC and resp. BIC choose six and resp. four states. We start with a six-state
model and obtain a four-state HMM by applying iterative testing and entropy
based merging. Two state-dependent distributions are given by normal distri-
butions. The remaining two are both mixtures with two components.

Peaks vs Components

Quah (1996) finds a rich and a poor convergence club by relating peaks in the
density of the GDP to welfare groups. In ”Peaks vs Components”we illustrate at
first that this approach can lead to ambiguous conclusions, since when associa-
ting peaks with groups the results are not invariant under changes of the scale.
The number of peaks (modes of the density) can vary when e.g. the log-GDP
data is considered.

In our paper we analyze welfare groups of countries all over the world by ap-
plying finite mixture models. The GDP per capita of 190 countries from 1970
to 2009 given by the ”Penn World tables 7.0”, see Heston, Summers and Aten
(2011), is considered. Instead of peaks in the density we use components of a
mixture model as decision criterion of the group membership of a country. The
application of such models is not new to economic literature. Paap and Dijk
(1998) apply a two-state mixture of a normal and Weibull distribution to model
the GDP per capita. In the present paper we challenge the twin-peaks approach
and suggest a finite mixture of normal distributions with state-dependent mean
and standard deviation as an alternative.

At first we consider the mode-based approach an apply it to the kernel density
estimate. In order to find an appropriate choice of the bandwidth we apply the
Silvermantest, see Silverman (1981), and obtain a validated number of modes
for each year. We thereby find evidence for two peaks at first (1970-1990) and
for three peaks thereafter.

In a second step we investigate the panel dataset by estimating for each year a
normal mixture. To this end we find and validate the number of components by
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iterative testing. Note that since the likelihood of the considered mixture model
is unbounded and diverges as σj → ∞, an usual LRT cannot be applied. Thus,
we use a test based on a penalized version of the log-likelihood as proposed in
Chen and Li (2009) which results by adding
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to the log-likelihood, where sn denotes the empirical standard deviation of the
dataset and σj the standard deviation of the jth component. The final test
decision is then based on critical values which are the result of a parametric
bootstrap.

The tests result in mixture models with at first three (1970-1995) and then two
components (1996-2009). Since the component-means differ distinctly (relatively
seen to the standard deviations) the three components can be interpreted as
low-, middle- and high-income countries. Because of the same reason, the two
components of the mixtures for years after 1995 also refer to low- and high-
income countries. Additionally, the low-income component of the mixtures after
1995 can be seen as results of a union of two previous components. Finally, by
computing a-posteriori probabilities we obtain a detailed insight into the group
membership of all countries over the course of time.

2.2 German

Testing for the number of states in hidden Markov models

Hidden Markov Modelle (HMMs) mit zustandsabhängigem Skalenparameter
sind in der Literatur weitverbreitet, um log-return Zeitreihen von Assetpreisen
zu modellieren, siehe Abschnitt 1.2 oder z.B. Rydén et al. (1998). Gewöhnlich
werden dazu Markov-Ketten mit zwei oder drei Zustände verwendet. In ”Tes-
ting for the number of states in hidden Markov models” befassen wir uns mit
quasi-Likelihood basierten Testverfahren, um unter anderem der Frage nachzu-
gehen, ob angesichts der Finanzkrise von 2008 drei verschiedene Zustände der
Volatilität ausreichen, oder ob ein vierter Krisen-Zustand hinzugefügt werden
sollte.

Genauer verallgemeinern wir vorhandene Testverfahren von Mischungsmodellen
auf HMMs, indem wir penalisierte quasi-Likelihood-Quotienten-Tests untersu-
chen. Falls die zustandsbedingte Verteilung des HMMs univariat ist und gewisse
Regularitätsbedingungen erfüllt sind, können die vorgestellten Testverfahren da-
zu verwendet werden, die Anzahl der Zustände k eines HMMs festzustellen. Für

12
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zwei verschiedene Modelle, welche sich in den Annahmen bezüglich der zustands-
bedingten Verteilungen unterscheiden, dient der Test dazu, die Hypothese

H0 : k = k0 gegen H1 : k > k0

für fixiertes k0 ∈ N zu testen. Für k0 = 2 wurde bereits von Dannemann and
Holzmann (2008) ein quasi-Likelihood-Quotienten-Test vorgeschlagen.

Die quasi-log-Likelihood eines HMMs, welches über k Zustände und zustandsbe-
dingte Verteilungen der selben parametrischen Familie mit Dichte f(·; θ) bzgl. des
Lebesgue Maßes verfügt, ist durch l

(k)
T (p,θ) gegeben, siehe Abschnitt 1.1. So-

mit vernachlässigt die quasi-log-Likelihood die serielle Abhängigkeitsstruktur
der Markov-Kette und ersetzt diese durch einen u.i.v. Zustandsübergang, siehe
Lindgren (1978). Der quasi-Maximum-Likelihood-Schätzer ist definiert als der
Parameter, welcher die quasi-log-Likelihood gegeben den üblichen Nebenbedin-
gungen für Mischungsmodelle maximiert. Wir betrachten zwei verschiedenen
zustandsbedingten Verteilungen, welche jeweils einen anderen Test zur Folge
haben.

Normalverteilung

Dem ersten Test liegt die Annahme einer zustandsbedingten Normalverteilung
zu Grunde, wobei sowohl Lokations- als auch Skalenparameter von der Markov-
Kette abhängig sind, d.h. θj = (µj, σj), µj ∈ R, σj > 0, j = 1, . . . , k0. Die
quasi-log-Likelihood ist in diesem Fall unbeschränkt, jedoch kann dieses Pro-
blem durch hinzufügen einer Penaltyfunktion, welche kleine Werte für σj be-
straft, gelöst werden. Für die Schätzung unter der Hypothese von k0 Zuständen
verwenden wir die Penaltyfunktion wie in Chen et al. (2012). Für die Schätzung
unter der Alternative eines Mischungsmodells mit 2k0 Zuständen wenden wir ei-
ne weitere Penaltyfunktion bzgl. der Skalenparameter und zusätzliche Nebenbe-
dingungen an die Gewichte der Mischung an. Im Grunde verwenden wir den ein-
geschränkten Parameterraum für 2k0-dimensionale Mischgewichte wie in Chen
et al. (2012) eingeführt, welcher unter gültiger Nullhypothese asymptotisch alle
Gewichte von Null weg beschränkt. Unser erstes Hauptresultat ist die asympto-
tische Verteilung der penalisierten quasi-Likelihood-Quotienten-Test Statistik
Zn,

Zn
d→ χ2

2k0
, für n→ ∞

welche unter der Nullhypothese eines HMMs mit normalverteilten zustandsbe-
dingten Verteilungen, k0 Zuständen, verschiedenen Lokationsparametern und
ergodischer Markov-Kette gilt.

Eindimensionaler zustandsabhängiger Parameter

Als zweite Modellklasse nehmen wir an, dass die parametrische Familie der
zustandsbedingten Verteilungen mit Dichte f(·, θ) durch einen d-dimensionalen
Parameter ν ∈ Θ1 und einen eindimensionalen Parameter ϑ parametrisiert wird,
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d.h. θ = (ν, ϑ). Der Hauptunterschied zu dem zuvor diskutierten Fall ist die
Tatsache, dass ν hier als Strukturparameter betrachtet wird, d.h. (Xt|St = j) ∼
f(·, θj) mit θj = (ν, ϑj). Wir erweitern den Test von Li and Chen (2010), um
einerseits einen Strukturparameter und andererseits einen Markov-abhängigen
Zustandsprozess berücksichtigen zu können.

Im Falle eines endlichen Mischungsmodelles mit univariatem zustandsabhängigen
Parameteren ist die asymptotische Verteilung der Likelihood-Quotienten-Test
Statistik überraschenderweise komplizierter als bei zustandsabhängiger Normal-
verteilung mit bivariatem Parameter. Die asymptotische Verteilung ist unter ge-
wissen Regularitätsbedingungen an die Dichte und unter Anwendung einer spe-
ziellen Schätzmethodik der Parameter, siehe Li and Chen (2010), gegeben durch
ein Mischungsmodell aus der Punktmasse in Null und k0 χ

2
· -Verteilungen. Die

Gewichte der asymptotischen Mischung hängen dabei vom wahren Parameter-
wert ab. Unser zweites Hauptresultat ist die asymptotische Verteilung der quasi
Likelihood-Quotienten-Test Statistik Rn unter der Hypothese eines HMMs mit
k0 Zuständen,

Rn
d→

k0

j=0

αjχ
2
j für n→ ∞,

wobei χ2
0 die Punktmasse in Null bezeichnet und die Gewichte wieder vom wah-

ren Parameterwert abhängen. Die asymptotische Verteilung gilt z.B. für die
Poisson Verteilung oder für die (schiefe-)Normalverteilung bzw. t-Verteilung mit
zustandsabhängigem Skalenparameter, falls eine untere Schranke für den Ska-
lenparameter benutzt wird. In Anwendungen können die unbekannten Gewichte
durch Schätzer ersetzt werden.

Eine umfangreiche Simulationsstudie für normale- und schief-normale zustands-
bedingte Verteilungen belegt ein gutes Verhalten bei endlichen Stichproben-
größen.

Anwendung auf log-returns

Um der Frage nach der Anzahl benötigter Volatilitäts-Zustände auf den Grund
zu gehen, wenden wir hidden Markov Modelle mit zustandsbedingter Normal-
und schiefer Normalverteilung an. Wir betrachten die täglichen log-returns des
S&P 500 über einen Zeitraum von 15 Jahren und wenden je nach Modell den
zugehörigen Test an. Im Fall der schiefen Normalverteilung können die Hypothe-
sen von k0 = 1, 2 und 3 unter Berücksichtigung der asymptotischen kritischen
Werte klar verworfen werden. Im Fall der Normalverteilung können sowohl ein
als auch zwei Zustände auf diese Art verworfen werden. Drei Zustände können
unter Verwendung simulierter kritischer Werte ebenso verworfen werden. Da
vier Zustände für beide Modelle nicht verworfen werden können, wählen wir
jeweils vier Zustände. Die Schätzung der maximum-a-posteriori Zustandsfolge
stellt schließlich einen klaren Zusammenhang zwischen dem vierten Zustand und
der Finanzkrise von 2008 her.

14
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Hidden Markov Models with state-dependent mixtures

Hidden Markov Modelle mit zustandsbedingten endlichen Mischungsmodellen
bieten generell deutlich mehr Flexibilität als einfache parametrische Familien wie
z.B. die Normalverteilung. Bei der Anwendung solcher HMMs für die Modellie-
rung oder das Clustering seriell abhängiger Daten profitiert man dabei von der
Möglichkeit einer adäquaten Beschreibung der zustandsbedingten Verteilungen
und der guten Handhabbarkeit von Mischungsmodellen. In dieser Arbeit ana-
lysieren wir die Abhängigkeitsstruktur dieser Modellklasse. Unsere Ergebnisse
haben Anwendungen für die Modellwahl und das modellbasierte Clustering. Für
beide Aufgaben schlagen wir je einen Algorithmus vor.

Die Parametrisierung eines solchen Modells ist nicht eindeutig, denn ein HMM
mit r Zuständen und zustandsbedingten Mischungen lässt sich als HMM mit k
Zuständen parametrisieren, wobei r < k und jede Komponente der zustandsbe-
dingten Mischungen als einzelner Zustand der Markov-Kette mit k Zuständen
interpretiert wird. Wir untersuchen daher die Abhängigkeitsstruktur der laten-
ten Markov-Kette und leiten daraus, falls die zustandsbedingten Dichten zur
selben parametrischen Familie gehören, eine eindeutige, minimale Darstellung
des HMMs ab.

Zunächst analysieren wir die Abhängigkeitsstruktur der Markov-Kette isoliert
und definieren dazu eine Funktion λ auf dem Raum der Übergangsmatrizen
mit fixierter Anzahl von Zuständen. Konkret bezeichne Γ die Übergangsmatrix
einer Markov-Kette mit k Zuständen und G = {G1, . . . , Gr} eine Partition des
Zustandsraums {1, . . . , k}. Die abgebildete Übergangsmatrix ist dann gegeben
durch


λG(Γ)


i,j

= P

St ∈ G(j)

St−1 ∈ G(i)

· P

St = j

St ∈ G(j)

, i, j = 1, . . . , k,

wobei G(j) = l ⇔ j ∈ Gl, j = 1, . . . , k. Da die Mengen Gl als Gruppen von
Zuständen interpretiert werden können, ist die abgebildete Übergangsmatrix ge-
geben durch die Übergangswahrscheinlichkeiten zwischen den einzelnen Grup-
pen und die bedingte Wahrscheinlichkeit in der eingetretenen Gruppe. Die Ab-
bildung kann daher als Reduzierung der Information bzgl. des Zustandsübergangs
der Markov-Kette angesehen werden. Das erste Hauptresultat ist die eindeutige
Existenz einer minimalen Partition G∗

Γ mit λG∗
Γ
(Γ) = Γ. Hierbei bezieht sich

minimal auf die Anzahl der Mengen in der Partition.

Wir zeigen, dass ein beliebiges HMM mit Übergangsmatrix Γ und k Zuständen
der Markov-Kette äquivalent parametrisiert werden kann durch ein HMM mit r
Zuständen und zustandsbedingten endlichen Mischungen, falls λG(Γ) = Γ gilt.
Hierbei ist G = {G1, . . . , Gr} eine Partition des Zustandsraums {1, . . . , k} und
äquivalent bezieht sich auf identische Verteilungen des beobachtbaren Prozes-
ses unter beiden Parametrisierungen. Wir erhalten die gewünschte eindeutige,
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minimale Darstellung als Korollar, falls Mischungen mit k Komponenten der ver-
wendeten parametrischen Familie identifizierbar sind. Die resultierende Partiti-
on bezeichnen wir als independence partition und die darin enthaltenen Mengen
als independence clusters. Wir bezeichnen ferner die beschriebene Umparame-
trisierung als merging, denn mehrere Zustände werden als ein neuer Zustand
interpretiert, welcher eine endliche Mischung als zustandsbedingte Verteilung
hat.

Zum Zweck der Modellwahl und in dem Fall, dass die zustandsbedingten Dichten
einer bekannten parametrischen Familie angehören, schlagen wir einen Likelihood-
Quotienten-Test vor. Der Test basiert auf der vollen Likelihood des Modells
LT (Γ,θ), siehe Abschnitt 1.2. Genauer sei G = {G1, . . . , Gr} erneut eine Parti-
tion des Zustandsraums {1, . . . , k}. Wir testen

H0 : λG(Γ) = Γ gegen H1 : λG(Γ) ̸= Γ.

Unter der Annahme, dass der wahre Parameter ein innerer Punkt des Null-
hypothesen-Parameterraums ist, und unter weiteren Regularitätsannahmen zei-
gen wir, dass die Likelihood-Quotienten-Test Statistik asymptotisch χ2

· -verteilt
ist mit k2−2k−r2+2r Freiheitsgraden. Für die Normalverteilung bzw. die mul-
tivariate Normalverteilung sind die Regularitätsbedingungen erfüllt, falls man
die Skalenparameter bzw. die Determinanten der Kovarianzmatrizen von Null
weg beschränkt. Das Verhalten bei endlichen Stichprobengrößen untersuchen
wir mittels einer umfangreichen Simulationsstudie.

Da merging im Allgemeinen die Verteilung des beobachtbaren Prozesses ändert,
schlagen wir einen Algorithmus vor, welcher obigen Likelihood-Quotienten-Test
verwendet und dazu dient, iterativ mittels backward selection die independence
partition zu finden. Für einen gegebenen Datensatz und eine gegebene parame-
trische Familie von Dichten startet der Algorithmus mit der trivialen Partition
G0 = {{1}, . . . , {k}}. In jedem Schritt werden alle Partitionen betrachtet, die
durch Vereinigung zweier Mengen entstehen und für jede Partition wir der Test
durchgeführt. Die neue Partition ist dann gegeben durch diejenige, welche beim
vorherigen Testen den größten P-Wert erzeugte oder die Iteration wird gestoppt,
falls alle Tests bzgl. eines vorgegebenen Niveaus α > 0 verworfen werden können.
Eine Simulationsstudie zeigt, dass α = 0.01 eine gute Wahl für das Niveau ist.

Im Fall von u.i.v. Mischungsmodellen sollten zustandsbedingte Verteilungen,
die ein dichtebasiertes Cluster bilden, als eine einzelne Komponente mit einer
Mischung als zustandsbedingte Verteilung betrachtet werden, denn unter dieser
Voraussetzung ist eine aussagekräftige maximum-a-posteriori Analyse möglich,
siehe Baudry et al. (2010) oder Hennig (2010). Für HMMs ist die Situation kom-
plizierter. Falls die Daten stark seriell abhängig sind, lassen sich Zustände, deren
zustandsbedinge Verteilungen sich marginal stark überlappen, dennoch gut tren-
nen. Zustände sollten nur kombiniert werden, falls die Abhängigkeitsstruktur
dies ermöglicht, d.h. wenn die Zustände im selben independence Cluster liegen
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und wenn die zustandsbedingten Verteilungen ein dichtebasiertes Cluster dar-
stellen. Daher schlagen wir einen entropiebasierten Algorithmus vor, welcher
iterativ dichtebasierte Cluster innerhalb der independence partition findet. Für
verschiedene Kandidatenmodelle wird die Entropie der ”local-decoding” Wahr-
scheinlichkeiten berechnet und das Modell mit dem minimalen Wert ausgewählt.
Diese Prozedur wird solange iteriert, bis alle möglichen Zustände bzgl. der inde-
pendence partition kombiniert wurden. Das finale Modell ist schließlich gegeben
durch das Modell des letzten Iterationsschritts oder falls die Entropiewerte einen
Ellenbogen aufweisen wird das zugehörige Modell ausgewählt.

Wir wenden unsere Methodik mit normalverteilten zustandsbedingten Vertei-
lungen auf tägliche log-returns des Goldpreises an, wobei der Datensatz einen
Zeitraum von 15 Jahren umfasst. Die Informationskriterien AIC bzw. BIC wählen
sechs bzw. vier Zustände. Wir starten mit sechs Zuständen und erhalten durch
iteratives Testen und entropiebasiertes merging ein HMM mit vier Zuständen.
Zwei der zustandsbedingten Verteilungen sind gegeben durch Normalverteilun-
gen. Die beiden übrigen bestehen jeweils aus einer Mischung mit zwei Kompo-
nenten.

Peaks vs Components

Quah (1996) unterteilt Länder der Welt in eine reiche und eine arme Gruppe, in-
dem er Moden der Dichte des BIP mit Wohlfahrtsgruppen assoziiert. In ”Peaks
vs Components” zeigen wir zunächst, dass diese Vorgehensweise zu mehrdeuti-
gen Schlussfolgerungen führen kann, da die so erzielten Ergebnisse nicht invari-
ant unter Veränderung der Skala sind. Konkret kann die Anzahl der Moden der
Dichteschätzung variieren, wenn z.B. die log-BIP Daten betrachtet werden.

In unserer Arbeit wenden wir endliche Mischungsmodelle an, um Wohlfahrts-
gruppen von Ländern der gesamten Welt zu analysieren. Wir betrachten das BIP
pro Kopf von 190 Ländern in den Jahren 1970 bis 2009, wie es in den ”Penn
World tables 7.0”veröffentlicht wurde, siehe Heston, Summers and Aten (2011).
Anstatt Moden der Dichte ziehen wir Komponenten des Mischungsmodells als
Entscheidungskriterium der Gruppenzugehörigkeit heran. Die Anwendung sol-
cher Modelle ist nicht neu in der volkswirtschaftlichen Literatur. Paap and Dijk
(1998) verwenden ein Mischungsmodell mit zwei Komponenten bestehend aus ei-
ner Normal- und einer Weibullverteilung um das BIP zu modellieren. In unserer
Arbeit hinterfragen wir den Ansatz zweier Komponenten kritisch und schlagen
die Verwendung endlicher Mischungsmodelle bestehend aus Normalverteilungen
mit variablem Lokations- und Skalenparameter als Alternative vor.

Zunächst betrachten wir den modenbasierten Ansatz und wenden diesen auf die
Kerndichteschätzung an. Um eine geeignete Bandbreite zu finden verwenden
wir den Silvermantest, siehe Silverman (1981), und erhalten somit für jedes
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Jahr eine validierte Anzahl von Moden. Wir finden dadurch Belege für zunächst
zwei (1970-1990) und anschließend für drei Moden.

Im zweiten Schritt untersuchen wir den Paneldatensatz, indem wir für jedes Jahr
ein Mischungsmodell mit zustandsabhängigen Normalverteilungen schätzen. Wir
finden und validieren die Anzahl der Komponenten durch iteratives Testen. Da
die Likelihood des hier betrachteten Mischungsmodells unbeschränkt ist und für
σj → ∞ divergiert, kann ein gewöhnlicher Likelihood-Quotienten-Test nicht an-
gewendet werden. Daher verwenden wir einen Test, der auf einer penalisierten
Version der log-Likelihood, wie in in Chen and Li (2009) vorgeschlagen, basiert.
Diese penalisierte Version der log-Likelihood resultiert durch Addieren von
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zur log-Likelihood. Hierbei bezeichnet sn die empirische Standardabweichung
des Datensatzes und σj die Standardabweichung der j-ten Komponente. Die
finale Testentscheidung wird schließlich auf Grund kritischer Werte, die durch
ein parametrisches Bootstrap-Verfahren ermittelt wurden, gefällt.

Die durchgeführten Tests führen zu Mischungsmodellen mit zunächst drei (1970-
1995) und anschließend zwei Komponenten (1996-2009). Auf Grund deutlicher
Unterschiede der Lokationsparameter, relativ gesehen zu den Skalanparame-
tern, können die drei Komponenten als Länder mit niedrigem, mittlerem und
hohem Einkommen interpretiert werden. Analog lassen sich die zwei Kompo-
nenten der Mischungen der Jahre nach 1995 als Länder mit geringerem und
höherem Einkommen interpretieren. Zusätzlich kann die ärmere Komponente
der Mischungen nach 1995 als Vereinigung zweier vorheriger Komponenten an-
gesehen werden. Indem wir abschließend die a-posteriori Wahrscheinlichkeiten
berechnen, erhalten wir detaillierte Erkenntnisse über die Gruppenzugehörigkeit
aller Länder im Zeitablauf.
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Sankhyā: The Indian Journal of Statistics, Series A 49–66.

Leroux, B. G. (1992). Maximum-likelihood estimation for hidden Markov
models. Stochastic processes and their applications, 40 127–143.

Li, P. and Chen, J. (2010). Testing the Order of a Finite Mixture. Journal of
the American Statistical Association, 105 1084–1092.

Lindgren, G. (1978). Markov Regime Models for Mixed Distributions and
Switching Regressions. Scandinavian Journal of Statistics 81–91.

McLachlan, G. (1987). On Bootstrapping the Likelihood Ratio Test Stastistic
for the Number of Components in a Normal Mixture. Applied Statistics, 36
318–324.

Paap, R. and Dijk, H. K. (1998). Distribution and Mobility of Wealth of
Nations. European Economic Review, 42 1269–1293.

Quah, D. (1996). Twin peaks: Growth and convergence in models of distribu-
tion dynamics. Economic Journal, 106 1045–1055.

Rabiner, L. (1989). A Tutorial on Hidden Markov Models and Selected Ap-
plications in Speech Recognition. Proceedings of the IEEE, 77 257–286.
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Testing for the number of states in
hidden Markov models
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Under the mixture of distributions hypothesis asset returns mar-
ginally follow a scale mixture of a certain, e.g. the normal, distribu-
tion, a simple specification being a three component scale mixture
with high, intermediate and low volatility states. We propose tests
for the number of states in hidden Markov models, and use these to
assess whether in view of recent financial turbulences, three volatility
states are still sufficient. Based on a quasi-likelihood which neglects
the dependence structure of the regime, our tests extend existing
tests for independent finite mixtures. Here, our main theoretical in-
sight is the surprising fact that the asymptotic distribution of the
proposed tests for HMMs is the same as for independent mixtures
with corresponding weights. Thus, our results also state that exist-
ing tests for independent mixtures are indeed robust against Markov-
dependence in the regime. As application we determine the number
of volatility states for logarithmic returns of the S&P 500 index
in two HMMs, one with state-dependent normal distributions and
switching mean and scale, and the other with state-dependent skew-
normal distributions with switching scale and structural mean and
skewness parameters. It turns out that in both models, four states
are indeed required, and a maximum-a-posteriori analysis shows that
the highest volatility state mainly corresponds to the recent finan-
cial crisis. Finally, simulations indicate the good finite sample per-
formance of the proposed testing methodology.

Keywords: hypothesis testing, hidden Markov models, volatility states, finite
mixtures
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1. Introduction

The mixture of distributions hypothesis for asset returns refers to specifications
for which the marginal distribution of the returns follows a scale-mixture of a
certain, e.g. the normal, distribution (Shephard and Andersen 2009), thus gener-
ating heteroscedastic return volatility. A simple version is a finite scale-mixture
of normals, as proposed in Kon (1984), typically with three states corresponding
to high, intermediate and low volatility. In order to induce volatility clustering
one additionally requires positive serial correlation of the latent scale process,
e.g. via a stationary finite-state Markov chain with high diagonal entries (Rydén
et al. 1998).

For the resulting class of processes, called hidden Markov models (HMMs), we
shall propose tests with a tractable asymptotic distribution for the number of
states of the underlying unobserved regime, and investigate whether in view of
recent financial turbulences, three volatility states are still sufficient.

More precisely, an HMM is a bivariate process (St, Xt)t≥1, where (St)t≥1 is an
unobservable, finite-state Markov chain and (Xt)t≥1 is the observable process
with values in some Borel-subset of a Eucledian space, which are related as
follows. Given (St)t≥1, the (Xt)t≥1 are conditionally independent, and for each
t ≥ 1, the conditional distribution of Xt depends on St only. The unobservable
Markov chain is also called the regime or the latent process of the HMM.We shall
assume that (St) is stationary and ergodic with state space M = {1, . . . , k},
so that the stationary distribution π = (π1, . . . , πk) of the associated transition
matrix γlm = P (St+1 = m|St = l), l,m ∈ M is uniquely determined.

The conditional distributions of Xt given St = l, l = 1, . . . , k, called the state-
dependent distributions, are assumed to have densities f(·,ν,ϑl) from some
parametric family w.r.t. some σ-finite measure. Thus, ν ∈ Θ1 ⊂ Rd1 is a
structural parameter and the ϑl ∈ Θ2 ⊂ Rd2 are actually state-dependent.

HMMs provide a flexible and very widely used class of models for dependent
data, in particular in the presence of overdispersion (for series of count data)
or unobserved heterogeneity, see the monographs by MacDonald and Zucchini
(1997) for further examples of applications, and by Cappé et al. (2005) for a
state-of-the-art overview of theoretical developments for HMMs.

In statistical applications of HMMs, selection of the number of states k of the
latent process is a task of major importance. To this end, in certain models for
fixed k0 ∈ N we shall propose tests for the hypothesis

H0 : k = k0 against H1 : k > k0.

Since Gassiat and Keribin (2000) show that the LRT statistic for testing k = 1
against k ≥ 2 for an HMM diverges to ∞, we shall follow the quasi-likelihood
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based approach in Lindgren (1978) and in Dannemann and Holzmann (2008)
and proceed via the marginal finite mixture.

Specifically, we use the testing approaches for the number of states in a finite
mixture by Chen, Li and Fu (2012) for normal state-dependent distributions
with switching means and scales, as well as that by Li and Chen (2010) for a
univariate switching parameter, extended to allow for nuisance parameters. Our
main theoretical insight is the surprising fact that the asymptotic distribution of
these tests for HMMs is the same as for independent mixtures with correspond-
ing weights. Thus, our results also state that existing tests for independent
mixtures are indeed robust against Markov-dependence in the regime.

The structure of the paper is as follows. In Section 2 we develop the rele-
vant testing methodology. Section 3 contains results of an extensive simulation
study.

As application, in Section 4 we determine the number of volatility states for
logarithmic returns of the S&P 500 index in two HMMs, one with states de-
pendent normal distributions and switching mean and scale, and the other with
state-dependent skew-normal distributions with switching scale and structural
mean and skewness parameters. It turns out that in both models, four states are
indeed required, and a maximum-a-posteriori analysis shows that the highest
volatility state mainly corresponds to the recent financial crisis.

The Appendix contains a proof of the main insight that the asymptotic dis-
tribution of the test by Chen et al. (2012) remains the same for HMMs as for
independent finite mixtures. The supplementary Appendix B contains techni-
cal details for the asymptotic distribution theory, while Appendix C contains
details on the finite-sample tuning of the tests, additional simulation results as
well as results of an application to oil price logarithmic returns.

2. Quasi-likelihood based estimation and testing

2.1 Quasi-likelihood estimation

Following Lindgren (1978) and Dannemann and Holzmann (2008), we consider
a quasi log-likelihood which neglects the dependence in the regime. For given
number of states k, set θ = θ(k) = (νT ,ϑT

1 , . . . ,ϑ
T
k )

T ∈ Θ(k) = Θ1 ×Θk
2,

f
(k)
mix(Xt;θ,π) :=

k

j=1

πj f

Xt|St = j;θ


=

k

j=1

πj f(Xt;ν,ϑj),

where π = (π1, . . . , πk) with πj ≥ 0, π1 + . . .+ πk = 1, and

l(k)n (θ,π) =
n

t=1

log

f
(k)
mix(Xt;θ,π)


.
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The quasi maximum-likelihood estimator (QMLE) is then given by

(θ(k), π(k)) := (θ, π) := argmax{l(k)n (θ,π) : θ ∈ Θ(k),
k−1

j=1

πj ≤ 1, πj ≥ 0}.

We are mainly interested in two specific situations, for which we intend to extend
the testing methodology for mixtures to the case of HMMs.

Example 1 (Normal HMMs). One of the most important classes of HMMs are
those with normal state-dependent distributions. If both mean µ and variance
σ2 are allowed to switch, we have that

fXt|St=j(x) = φ(x;µj, σj), j = 1, . . . , k,

where φ denotes the normal density. We let φ
(k)
mix(x;µ,σ,π) denote the corre-

sponding k-component normal mixture. Without compactness assumption on
the parameter space, and thus in particular a lower bound for the standard devi-
ations σj, it is well known that the quasi log-likelihood l

(k)
n is unbounded. How-

ever, there are ways of dealing with this issue, in particular by adding penalty
terms, see e.g. Chen, Tan and Zhang (2008). We shall follow the approach by
Chen et al. (2012), and use the penalized quasi log-likelihood

pl(k)n (µ,σ,π) =
n

t=1

log

φ
(k)
mix(Xt;µ,σ,π)


+ p(k)(X1, . . . , Xn,σ), (1)

where

p(k)(X1, . . . , Xn,σ) = − 1

n

k

j=1


ŝ2n/σ

2
j + log(σ2

j/ŝ
2
n)


and ŝ2n is the empirical variance of X1, . . . , Xn.

Example 2 (Univariate switching parameters). Here the parameter space Θ2 for
the switching parameter is one-dimensional. Important special cases are Poisson
HMMs (for which there are no nuisance parameters), as well as HMMs with
normal or more generally skew-normal state-dependent distributions, where only
a single parameter is allowed to switch.

For the normal distribution, the asymptotic theory below does not apply to the
case of a switching mean with a structural variance. However, it does apply
in case of a switching scale parameter, if the other parameters are taken as
structural. In this case, a lower bound or a penalty on the scale parameters is
again required to avoid unbounded quasi-likelihoods and achieve consistency.

We shall present our general asymptotic theory for the case of a one-dimensional
switching parameter without penalty function (which is not required for Poisson
HMMs), under conditions which guarantee consistency of MLE of the mixing
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distribution in case of i.i.d. observations. Thus, lower bounds on the scale pa-
rameter for (skew-) normal HMMs with switching scale parameter are required.
Nevertheless, we also investigate penalty functions on the scale parameter in
our simulation study.

2.2 Testing for the number of states: Normal HMMs

First, we consider normal HMMs with switching means and standard devia-
tions.

The testing procedure is a simplified version of that proposed by Chen et
al. (2012) in case of independent finite mixtures, see below for further com-
ments.

Our main contribution is to show that the asymptotic distribution remains un-
changed if we pass from an independent mixture to an HMM with same the
marginal mixture. This is quite surprising since, for example, the asymptotic
distribution of the QMLE under an HMM is quite different from that of the
MLE in case of independent mixtures. Thus, our results show that the test by
Chen et al. (2012) is robust w.r.t. Markov dependence in the regime.

Let

µ(k0), σ(k0), π(k0)


=

µ, σ, π


:= arg max

µ,σ,π
pl(k0)n (µ,σ,π)

denote the (penalized quasi-likelihood) estimates under k0-states, where pl
(k0)
n

is defined in (1). We assume that the estimated means µ̂1 < . . . < µ̂k0 are
increasingly ordered.

The test by Chen et al. (2012) is against a specific class of mixtures with 2k0
components. To define it, consider the set of 2k0-dimensional weight vectors

Ω2k0
(J ) :=


π1β1, π1(1− β1), . . . , πk0

βk0
, πk0

(1− βk0
)

:

βj ∈ J ,
k0

j=1

πj = 1, πj ≥ 0

,

(2)

where J ⊂ (0, 0.5] with 0.5 ∈ J is a finite set (we shall use J = {0.1, 0.3, 0.5}).

Further, partition the real line into k0 subsets by Ij := (ηj−1, ηj], where η0 =
−∞, ηk0 = ∞ and ηj = (µj(k0) + µj+1(k0))/2 for j = 1, . . . , k0 − 1.

Then estimate the specific alternative 2k0-state normal mixture model with
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weights in Ω2k0(J ) and two successive µ’s in each set Ij as follows

(µ, σ, π) = argmax
pln

(2k0)
(µ,σ,π) : π ∈ Ω2k0

(J ), µ2j−1, µ2j ∈ Ij ,

j = 1, . . . , k0,σ ∈ R2k0
+


,

pln
(2k0)

(µ,σ,π) =

n

t=1

log

φ
(2 k0)
mix (Xt;µ,σ,π)


− an

k0

j=1

w

σ2j−1, σ2j , σ̂j(k0)


,

w

σ2j−1, σ2j , σ̂j(k0)


= σ̂2

j (k0)/σ
2
2j−1 − 1 + log(σ2

2j−1/σ̂
2
j (k0))

+ σ̂2
j (k0)/σ

2
2j − 1 + log(σ2

2j/σ̂
2
j (k0)),

(3)

where an > 0 is a tuning constant, the choice of which is further discussed
below. Finally, the quasi-likelihood ratio test statistic is then given by

Zn = 2

pln

(2k0)
(µ, σ, π)− l(k0)n (µ, σ, π)


. (4)

Assumption A1. (Xt, St)t is a hidden Markov model. The Markov chain (St)t
is finite-state, stationary, irreducible and aperiodic. �

Theorem 1. If (Xt, St)t is a k0-state normal HMM fulfilling assumption A1 with
distinct means µi in each state, we have for the quasi-likelihood test statistic that

Zn
d→ χ2

2k0
. (5)

Remarks a. Fixed proportions and EM iterations. We test against fixed pro-
portions βj only, and do not perform EM-iterations since this does not seem
to increase the power substantially, and requires an additional penalty func-
tion on the proportions. However, the EM-version is possible as well, and the
asymptotic theory also applies.

b. Tuning parameters. The test statistic requires the choice of a tuning pa-

rameter an in pln
(2k0)

, and in fact, since the penalty term involving this tuning
constant is not only used for estimation, but is also included in the test statistic
in (4), the finite-sample performance crucially depends on its choice. For a range
of possible values of the true mixture, Chen et al. (2012) give recommendations
based on simulations. Since our test statistic is slightly different (no penalties on
the proportions), we also need to calibrate an distinctly. See the simulations for
details. Further, care is needed if the true underlying parameter constellation
is far from those used for calibration of an, see Section 4.

2.3 Testing for the number of states: Univariate switching parameter

Next we consider the general case, but with a univariate switching parameter
ϑ ∈ Θ2 ⊂ R. Here, we extend the test by Li and Chen (2010) to include
nuisance parameters, and as above show that its asymptotic distribution remains
unchanged if we pass from an independent mixture to an HMM with the same
marginal mixture.
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We shall write θ(k0) = θ =

ν, ϑ1, . . . , ϑk0


for the QMLE, where we assume

that the entries of ϑ are ordered: ϑ̂1 ≤ . . . ≤ ϑ̂k0 . As above, the test is against
a specific class of mixtures with 2k0 components. The set of weights Ω2k0(J ) is
defined as in (2).

Partition Θ2 into k0 subsets by Ij := (ηj−1, ηj], where η0 = inf Θ2, ηk0 = supΘ2

and ηj = (ϑj + ϑj+1)/2 for j = 1, . . . , k0 − 1. We further restrict the parame-

ter space of the state-dependent parameters, such that each parameter in ϑ is
possibly split into two components within the interval Ij. Thus, we set

Rn = 2

l(2k0)n (θ, π)− l(k0)n (θ, π)


,

(θ, π) = argmax

l(2k0)n (θ,π) : π ∈ Ω2k0(J ),θ = (ν, ϑ1, . . . , ϑ2k0),

ν ∈ Θ1, ϑ2j−1, ϑ2j ∈ Ij, j = 1, . . . , k0

.

(6)

We now present the asymptotic distribution of the test statistic under the hy-
pothesis of k0 states, which is somewhat more involved and requires additional
notation.

Let π∗
j := P (St = j) for j ∈ {1, . . . , k0} denote the true stationary probability

of the Markov chain for state j and π∗ :=

π∗
1, . . . , π

∗
k0


, θ∗ =


ν∗, ϑ∗

1, . . . , ϑ
∗
k0



with ϑ∗
1 < · · · < ϑ∗

k0
and ν∗ := (ν∗1 , . . . , ν

∗
d1
). The assumption of irreducibility,

see A1, implies π∗
j > 0.

Assumption A2. The support of f(x;ν, ϑ) does not depend on the parameter
(ν, ϑ) ∈ Θ1 ×Θ2. Further, the derivatives

∂i1

∂ϑi1
f(x;ν, ϑ) and

∂i2+i3+i4+i5

∂νi2l ∂ν
i3
i ∂ν

i4
h ∂ϑ

i5
f(x;ν, ϑ)

where i1 = 1, 2, 3, 4 and i2, i3, i4, i5 = 0, 1, 2, 3 with i2 + i3 + i4 + i5 ≤ 3 exist for
l, i, h = 1, . . . , d1. �

For t = 1, . . . , n, j = 1, . . . , k0 and l = 1, . . . , d1 let

Y ′
tj :=

fϑ(Xt;ν∗, ϑ∗
j)

f
(k0)
mix (Xt;θ

∗,π∗)
, Y ′′

tj :=
fϑϑ(Xt;ν∗, ϑ∗

j)

f
(k0)
mix (Xt;θ

∗,π∗)
,

where fϑ denotes the partial derivative of f(x;ν, ϑ) w.r.t. ϑ. Note that Y
′
tj is (ex-

cept for the constant π∗
j ) the partial derivative of log(f

(k0)
mix (Xt;θ,π)) w.r.t. the

state-dependent parameter ϑj evaluated at the true values of the parameters.
Further, set

U
{l}
t :=

f
(k0)
mix,νl

(Xt;ν
∗, ϑ∗

1, . . . , ϑ
∗
k,π

∗)

f
(k0)
mix (Xt;θ

∗,π∗)
,
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where f
(k0)
mix,νl

is the partial derivative of f
(k0)
mix w.r.t. νl, and in addition, let

∆tj :=
f(Xt;ν

∗, ϑ∗
j)− f(Xt;ν

∗, ϑ∗
k0
)

f
(k0)
mix (Xt;θ

∗,π∗)
.

Set bTt :=

bT1t, b

T
2t


where

bT1t =

U

{1}
t , . . . , U

{d}
t ,∆t1, . . . ,∆tk0−1, Y

′
t1, . . . , Y

′
tk0


,

bT2t =

Y ′′
t1, . . . , Y

′′
tk0


.

Further, let Σ := COV(b1) with submatrices Σij := E([bi1 − E(bi1)][bj1 −
E(bj1)]

T ), i, j = 1, 2, (the moments exist by Assumption A4 below), and de-
fine

b̃2t := b2t −Σ21Σ
−1
11 b1t,

Σ22 := Σ22 −Σ21Σ
−1
11 Σ12 = COV(b̃2t).

All expected values are computed w.r.t. the true parameters θ∗ = (ν∗,ϑ∗)
with ϑ∗

1 < · · · < ϑ∗
k0

and Γ∗, the true underlying transition matrix. The next
assumption guarantees consistency of the marginal mixing distribution.

Assumption A3 (Consistency of the mixing distribution). Assume that Θ1 ⊂
Rd1 , Θ2 ⊂ R are closed, and that

a. E
 log f (k0)

mix (X1;θ
∗,π∗)

 <∞,

b. lim∥(ν,ϑ)∥→∞ f(x;ν, ϑ) = 0 for all x,

c. The density f(x;ν, ϑ) is uniformly bounded in ν ∈ Θ1, ϑ ∈ Θ2 and in x.

d. Finite mixtures in f(x;ν, ϑ) with structural ν are identifiable.

More refined conditions are possible, see e.g. Leroux (1992). However, mixtures
of Poisson distributions, (skew-)normal distributions and t-distributions with
lower bound on the scale parameter, which are of main interest here, satisfy
the assumption. For details on part d. see e.g. Holzmann, Munk and Gneiting
(2006).

The next assumption requires that the components in the score are, locally
around the true parameter values, uniformly dominated by an integrable func-
tion. It is essential for the asymptotic expansion of the quasi likelihood test
statistic Rn in (6). In the supplementary Appendix B, we show that the follow-
ing two assumptions are satisfied for the skew-normal distribution with fixed
skewness parameter, structural location and switching scale as well as for the
t-distribution with fixed degrees of freedom, and either fixed scale and switching
location or fixed location and switching scale.
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Assumption A4. Given ϵ > 0 let E1(ν, ϵ) := {ν ′ ∈ Θ1 : ||ν ′ − ν|| ≤ ϵ} for
ϵ > 0 and E2(ϑ, ϵ) := {ϑ′ ∈ Θ2 : |ϑ′ − ϑ| ≤ ϵ}, and set

Y ′
t (ν, ϑ) :=

fϑ(Xt;ν, ϑ)

f
(k0)
mix (Xt;θ

∗,π∗)
, . . . , Y ′′′′

t (ν, ϑ) :=
fϑϑϑϑ(Xt;ν, ϑ)

f
(k0)
mix (Xt;θ

∗,π∗)
,

∆tj(ν) :=
f(Xt;ν, ϑ

∗
j)− f(Xt;ν, ϑ

∗
k0
)

f
(k0)
mix (Xt;θ

∗,π∗)
.

There exists an integrable function g, i.e. E
g(Xt)

 < ∞, and an ϵ0 > 0, such

that for ν ∈ E1(ν
∗, ϵ0) and ϑ ∈ k0

j=1E2(ϑ
∗
j , ϵ0), we have that

∆tj(ν)
3 ≤ g(Xt),

Y ′
t (ν, ϑ)

3 ≤ g(Xt), . . . ,
Y ′′′′

t (ν, ϑ)
3 ≤ g(Xt),

∂
i1+i2+i3+i4/(∂νi1l ∂ν

i2
i ∂ν

i3
h ∂ϑ

i4)f(Xt;ν, ϑ)

f
(k0)
mix (Xt;θ

∗,π∗)

3 ≤ g(Xt),

for i1 + i2 + i3 + i4 ≤ 3, im ≥ 0 and l, i, h = 1, . . . , d1. �

Finally, we need the following assumption, which guarantees that an expansion
in terms of second derivatives of the switching parameters suffices. For the
validity, see the supplementary Appendix B.

Assumption A5. The covariance matrix Σ = COV(b1) is positive definite. �

Theorem 2. Under the hypothesis of k0 states, for the test statistic Rn we have
under the Assumptions A1-A5 that

Rn
d→

k0

j=0

αjχ
2
j , (7)

where

w ∼ N (0, Σ22), v̂ := arg sup
v≥0


2v′w−v′ Σ22v


, αj = P

 k0

h=1

I

v̂h > 0


= j


and {v ≥ 0} := {(v1, . . . , vk0) : vj ≥ 0, j = 1, . . . , k0}.

Remark. (Estimating parameters in the asymptotic distribution) The asymp-

totic distribution in (7) depends on parameters through Σ22 and has to be
estimated. To this end, the true parameters in the vectors bt are replaced by
estimators, leading to b̂t, say. Then Σ is estimated as the empirical covariance
matrix of the b̂t. A more explicit form of the asymptotic distribution in case of
k0 = 3 states can be found in Li and Chen (2010).
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3. Simulations

Here we present some of the results of an extensive simulation study of the
proposed tests. Further simulation results as well as some technical details are
provided in Appendix C. We investigate hidden Markov models with switching
variance and skew-normal innovations as well as normal HMMs with both pa-
rameters switching, focusing on the hypotheses of k∗ = 2 and k∗ = 3 states.
Throughout, we denote by Γ = (γlm)l,m=1,...,k0 the transition probability matrix
(t.p.m.) of the hidden Markov chain. For the simulations we apply the soft-
ware R in the version 2.15 and compute 10000 repetitions for simulated sizes,
and 2500 for power simulations respectively. For the calculation of the quasi
maximum likelihood estimators, we use the function constrOptim.

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

γ1,1 85 25 50 95 76.25 80
γ2,2 85 25 50 80 5 20

(a) k∗ = 2

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

γ1,1 90 20 100/3 90 15 25
γ1,2 5 40 100/3 10 85 50
γ2,1 5 40 100/3 5 42.5 25
γ2,2 90 20 100/3 80 32.5 50
γ3,1 5 40 100/3 0 0 25
γ3,3 90 20 100/3 70 50 25

(b) k∗ = 3

Table 1: Transition probability matrices with k∗ = 2, 3 states (in percent).

3.1 Normal HMMs with switching means and variances

The choice of the tuning parameter an in pln
(2k0)

is quite crucial for the finite-
sample performance since the penalty term involving this tuning constant is not
only used for estimation, but is also included in the test statistic in (4). There-
fore we follow Chen et al. (2012) and Chen and Li (2011) by reproducing their
tuning of this constant with exactly the same design as in the first mentioned
paper, see Appendix C.1 for further details.

For analyzing the finite sample behavior of the test we simulate rejection rates
for normal HMMs under the true hypotheses of two and three states. The
two state HMM, denoted by Nor1, has parameters (µ1, µ2) = (−1.75, 1.75)
and (σ1, σ2) = (1, 1), the three state HMM, denoted by Nor2, has parameters
(µ1, µ2, µ3) =
(−3.5, 0, 4.5) and (σ1, σ2, σ3) = (0.6, 1.2, 0.6). For each scenario the simulations
are performed with six different t.p.m.s, i.e. for Nor1 with t.p.m.s Γ1, . . . ,Γ6

and for Nor2 with Γ7, . . . ,Γ12, see Tables 1a and 1b. Note that Γ1,Γ2 and Γ3

have the same stationary distribution and Γ3 is the i.i.d. benchmark. The same
holds for the triples (Γ4,Γ5,Γ6), (Γ7,Γ8,Γ9) and (Γ10,Γ11,Γ12). The results are
listed in Table 2. One directly can observe, that the dependence structure has
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little effect on the finite sample behavior. Further, due to tuning the penalty
constants, the levels are quite accurate.

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

9.96 10.15 10.4 8.15 8.57 8.46
4.92 5.12 5.23 3.71 3.81 3.89
1.01 1.08 0.86 0.65 0.61 0.67

(a) n = 200 and Nor1

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

10.91 10.93 10.67 9.15 9.24 9.26
5.72 5.52 5.67 4.45 4.85 4.22
1.16 1.32 1.09 0.75 0.91 0.74

(b) n = 400 and Nor1

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

9.25 9.94 9.62 9.89 9.24 10.18
4.27 4.72 4.80 5.06 4.30 5.01
0.79 0.83 0.95 0.97 0.69 0.93

(c) n = 200 and Nor2

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

10.65 10.65 11.42 11.26 11.59 11.18
5.51 5.41 5.78 5.41 5.65 5.76
1.22 0.91 1.15 0.98 1.17 1.11

(d) n = 400 and Nor2

Table 2: Simulated levels in percent for normal hidden Markov models under
the hypothesis of two and three regimes with different sample sizes n.
Each table lists line by line the rejection rates on levels 10%, 5% and
1%.

3.2 Skew-Normal HMM with switching variances

We consider a location-scale family of the standardized skew-normal family,
parametrized in the skewness ξ, see Appendix C.1 for further details. We refer
to this family by SN (µ, σ, ξ).

Now, we simulate from two- and three-state skew-normal HMMs with parame-
ters listed in Table 3. When using this parametric family one has to face two
challenges: The likelihood is unbounded for scale parameters converging to zero
and for finite sample sizes there is a non-negligible probability for the shape
parameter to diverge towards the boundary of its parameter space, see Azzalini
and Arellano-Valle (2012).

First, the likelihood is unbounded for σj → 0. Using appropriate fixed lower
bounds theoretically solves this problem. However, in the simulations we use
the penalties from the normal case in the estimation process. The test statistic
itself remains the same as in (6), the penalty is not included here, thus, the
penalty does not play such an important role in this context. The penalization
of the scale parameters depends on two tuning constants. Under the hypothesis
we again use the inverse of the sample size and under the alternative we always
use the constant 0.05, as it turned out that its choice is not that crucial.

Second, one obtains anti-conservative tests for moderate sample sizes (e.g. n =
500 for a three state HMM), if the skewness parameter is distinctly away from
zero (e.g. ξ = 0.3), because estimates of the skewness parameter may diverge.
Thus, we also penalize ξ in a data dependent way, see Appendix C.1.
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Table 3 list the null distributions considered in the simulation study, the results
for SN2 and SN4 are provided in Appendix C.2. The scenarios SN1−SN4 corre-
spond to cases under the hypothesis, the scenarios SP1 and SP2 are alternative
scenarios.

For SN1 − SN4, each simulation is performed for sample sizes n = 500, n =
1000 and the same transition probability matrices as given in table 1. For the
investigation of the finite sample behavior under the true hypothesis of two
states we performed 10.000 repetitions. In case of three states we simulated
5.000 repetitions due to the higher computational complexity. The resulting
sizes are displayed in Tables 4 and 8: The test performs well for all models
under consideration.

Concerning power under alternatives SP1 (when testing for two states) and SP2

(testing for three states), for proper estimation of the power we use simulated
critical values. Precisely, for given alternative, we generate a single large sample
(n = 25.000) from this alternative and fit a corresponding null model to this
sample by (full-model) maximum likelihood. Note that this will approximate
the null model with minimal Kullback-Leibler distance to the given alternative.
From this null model, we generate 2.500 samples of sizes 500 or 1000 (depending
on the scenario), and in each case compute the test statistics. Finally, the
finite sample critical values in the actual simulation are calculated as empirical
quantiles of the previously performed simulation.

When testing for two states under a three state HMM, the results in Table 5a
and 5b indicate that the test has good finite sample power properties, and that
the power depends on the t.p.m. mainly through its stationary distribution.

For analysing the power under the false hypothesis of three states we simulated
w.r.t. parameters given by SP2 in table 3 and transition probability matrices Γ13

- Γ18, given in the simulation appendix C.2. Again, (Γ13,Γ14,Γ15) have the same
stationary distribution, and so have (Γ16,Γ17,Γ18). As before the first t.p.m. has
persistent structure, the second is non-persistent and the third the i.i.d. bench-
mark. The simulated power is somewhat lower than in the above scenario when
testing for two states (see tables 5c and 5d), but remains reasonably high, and
also mainly depends on the t.p.m. through its stationary distribution.

σ1 σ2 σ3 σ4 µ ξ
SN1 1 3 10 0.2
SN2 2 7 0 −0.15
SN3 1 10 30 −5 0.1
SN4 1 3 9 5 −0.3
SP1 1 5 10 −3 −0.25
SP2 0.5 5 15 35 3 1/3

Table 3: Parameters of the skew-normal hidden Markov model.
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Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

9.37 9.47 9.28 8.77 8.53 9.24
4.80 4.94 4.51 4.57 4.58 5.18
1.02 1.09 0.95 1.04 1.22 1.18

(a) n = 500 and SN1

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

9.44 9.51 9.91 8.76 9.13 8.90
4.80 4.99 4.94 4.37 4.57 4.50
0.86 1.05 1.08 0.87 1.03 1.00

(b) n = 1000 and SN1

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

8.88 8.46 9.60 10.06 10.22 10.34
4.66 3.90 4.94 5.52 5.34 5.32
0.98 0.76 0.70 1.26 1.30 1.54

(c) n = 500 and SN3

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

9.66 10.50 11.02 10.48 10.72 11.62
5.00 5.28 5.74 5.52 5.24 5.90
0.88 1.04 1.40 1.14 1.16 1.34

(d) n = 1000 and SN3

Table 4: Simulated levels (10.000 and resp. 5.000 repetitions) in percent for
skew-normal hidden Markov models under the hypothesis of two and
three states with different sample sizes n and different parameters.
Each table lists line by line the rejection rates on levels 10%, 5% and
1%.

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

81.16 85.68 86.16 92.04 94.64 94.28
71.08 78.08 77.44 86.80 89.88 88.64
47.48 53.96 56.44 71.84 74.36 71.12

(a) n = 500 and SP1

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

97.40 97.76 98.00 99.88 99.92 99.92
94.40 96.12 95.88 99.64 99.56 99.64
83.72 89.72 87.68 97.52 98.28 97.96

(b) n = 1000 and SP1

Γ13 Γ14 Γ15 Γ16 Γ17 Γ18

57.84 61.04 60.08 63.76 66.52 62.56
44.40 47.76 45.08 50.32 53.88 47.92
23.12 22.08 18.84 25.08 28.80 22.20

(c) n = 500 and SP2

Γ13 Γ14 Γ15 Γ16 Γ17 Γ18

85.28 87.88 87.96 92.68 92.40 89.36
76.84 77.84 79.36 85.52 85.88 80.52
52.88 53.88 61.60 71.48 71.32 57.96

(d) n = 1000 and SP2

Table 5: Simulated power (2.500 repetitions) in percent for skew-normal hidden
Markov models for the hypothesis of two, resp. three regimes under
alternatives with three resp. four states, with different sample sizes n
and different parameters. Each table lists line by line the rejection
rates on levels 10%, 5% and 1%.
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4. Volatility states in series of asset returns

In this section we examine the number of volatility states in a time series of
logarithmic returns of daily closing prices of the S&P 500 price return index
(GSPC) for the last 15 years from August 31st 2012 backwards, using two dis-
tinct classes of HMMs: one with skew-normal state-dependent distributions
with switching scale and structural mean and skewness, and another with nor-
mal state-dependent distributions with switching means and variances. See the
simulations for further details on the implementation of the tests for these mod-
els, both of which cover skewness in the marginal distribution of the process.

For each model we apply our appropriate test methodology and in addition
compare the results to those of model selection criteria such as AIC or BIC based
on the full-model likelihood of the HMM. All computations were performed using
our R Package qLRT 1. A further applications to oil price logarithmic returns is
given in Appendix C.3.

For the skew-normal HMM we reject the hypotheses of k0 = 1, 2 and k0 = 3
volatility states but could not reject four states. Since AIC and BIC select five
and resp. four states we decide for the HMM with four states.

In case of the normal HMM, we reject the hypotheses of k0 = 1 and k0 = 2
states but could not reject three states based on the asymptotic distribution of
the test statistic, i.e. χ2

6. Again AIC selects five and BIC four states, therefore,
we investigated more closely the finite sample distribution of the test statistic
in case of strongly switching scales but only moderately switching means. To
this end we simulated the finite-sample distribution of the test statistic given
the MLE of the normal HMM with three states as null model (2.500 repetitions,
each dataset has the same length as the original dataset). It turned out that the
test using the asymptotic distribution is strongly conservative and that using
the simulated critical values we can also reject the hypothesis of k0 = 3 in
case of the normal HMM (p-value = 1.04%). Four states cannot be rejected.
Note that the simulation section focused on scenarios where the means switch
substiantially, compared to the standard deviations.

We also estimated the full models with four states, which turn out to be quite
similar:

σ̂SN = (0.58, 1.01, 1.59, 3.55), µ̂SN = 0.06, ξ̂SN = −0.05

σ̂Nor = (0.58, 1.01, 1.59, 3.53), µ̂Nor = (0.10, 0.03,−0.04,−0.33),

Γ̂SN =




98.05 1.95 0.00 0.00
1.40 97.39 1.05 0.17
0.00 1.96 97.36 0.68
0.00 0.00 4.97 95.03


 , Γ̂Nor =




97.93 2.07 0.00 0.00
1.49 97.29 1.06 0.16
0.00 1.95 97.35 0.70
0.00 0.00 4.99 95.01


 ,

1available on http://www.uni-marburg.de/fb12/stoch/research/rpackage
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with resulting stationary distributions

π̂SN = (29.19, 40.66, 25.28, 4.87), π̂Nor = (29.27, 40.52, 25.34, 4.88).

Finally, we estimate the maximum-a-posteriori paths of the underlying four-
state Markov chains, given the observations, using the Viterbi algorithm. Fig. 1
shows the time series of log-returns together with the estimated states of both
models, where the lowest value corresponds to state one and the highest to state
four.

Both paths are rather similar: They switch into the most volatility state on
September 15, 2008, which was the day when Lehman Brothers filed for chapter
11. For both HMMs the period linked to the financial crisis holds until March
30th 2009. We observe four further high-volatility periods: In October 1997
(two days for both HMMs: 27th and 28th), which corresponds to the Asian
financial crisis in 1997, in August/September 1998 (11 days: August 27th till
September 11th), in July/August 2002 (16 days for the normal HMM: July 18th
till August 8th; 20 days for the skew-normal HMM: July 18th till August 14th)
and in August 2011 (13 days for the normal HMM: 2nd till 18th; 8 days for the
skew-normal HMM: 2nd till 11th), which corresponds to the European sovereign
debt crisis in 2011. Note, that on August 4th 2011 the European Central Bank
announced to buy government bonds of the countries involved in this crisis
(Portugal, Italy, Ireland, Greece and Spain). The highest (fourth) volatility
state thus may be interpreted as a crisis state. In contrast, the time from
October 2003 until June 2007 was dominated by the smallest (first) volatility
state, which was followed by a few months in the second and third state, before
in fall 2008 the financial crisis started and the volatility switched to the highest
level.

normal HMM skew-normal HMM
p-value AIC BIC p-value AIC BIC

k0 = 1 ≤ 10−4 12946.73 12961.20 ≤ 10−4 12917.17 12935.88
k0 = 2 ≤ 10−4 11740.28 11777.70 ≤ 10−4 11735.89 11773.31
k0 = 3 0.01 11436.83 11511.67 0.003 11443.62 11512.22
k0 = 4 0.051 11375.17 11499.90 0.628 11381.23 11493.49
k0 = 5 – 11366.58 11553.67 – 11370.45 11538.84
k0 = 6 – 11372.07 11634.00 – 11382.64 11619.62

Table 6: Selecting the number of states of S&P 500 log-returns.
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A. Appendix

A.1. Proof of Theorem 1

Proof. Set

Dtj := φ(Xt;µ
∗
j , σ

∗
j )− φ(Xt;µ

∗
k0
, σ∗

k0
), j = 1, . . . , k0 − 1

A
(l)
tj := ∂lφ(Xt;µ

∗
j , σ

∗
j )/∂

lµ, j = 1, . . . , k0, l = 1, . . . , 4.

and let cTt = (cT1t, c
T
2t) where

cT1t :=

Dt1, . . . , Dt(k0−1), A

′
t1, . . . , A

′
tk0
, A′′

t1, . . . , A
′′
tk0


/φ

(k)
mix(Xt;µ

∗,σ∗,π∗)

cT2t :=

A′′′

t1, . . . , A
′′′
tk0
, A′′′′

t1 , . . . , A
′′′′
tk0


/φ

(k)
mix(Xt;µ

∗,σ∗,π∗)

Then setΨ := COV(ct) with submatricesΨji := E([cj1−E(cj1)][ci1−E(ci1)]T ),
i, j = 1, 2, and define

c̃2t := c2t −Ψ21Ψ
−1
11 c1t,

Ψ22 := Ψ22 −Ψ21Ψ
−1
11 Ψ12 = COV(c̃2t).

Due to the mixing properties of the HMM, the arguments in Chen, Li and Fu
(2012) apply (the order assessments remain valid) to obtain the expansion

Zn =

n−1/2

n

t=1

c̃T2t


Ψ−1

22


n−1/2

n

t=1

c̃2t


+ oP (1).

Now the sequence c̃2t is centered, and n−1/2
n

t=1 c̃2t asymptotically normal
by the central limit theorem for stationary sequences, with long-run covariance
matrix

Ψ22 + 2
∞

t=2

E

c̃2tc̃

T
21 + c̃21c̃

T
2t


.

If this reduces to Ψ22, the conclusion of the theorem is evident. To show this,
we show that (c̃2t)t is actually a martingale difference sequence.

To this end, we consider the filtration (Ft)t∈N with

Ft := σ (Sj, cj; j ≤ t) for t ∈ N.

Then L (ct | Ft−1) = L (ct |St−1), where L denotes the (conditional) distribution
of a random variable, and therefore also L(c̃2t|Ft−1) = L(c̃2t|St−1). Thus, it
remains to show that

E (c̃2t |St−1 = j) = 0, j = 1, . . . , k0. (8)
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Let
λh := E (c1 |S1 = h) ,

and recall that γjh := P (St = h |St−1 = j) for h = 1, . . . , k0. As the Markov
chain can adopt k0 states under the hypothesis, it follows that

E (ct |St−1 = j) =

k0

h=1

γjhλh and E (clt |St−1 = j) =

k0

h=1

γjhλhl for l = 1, 2,

where we partition λT
h =


λT

h1,λ
T
h2


with λh1 ∈ R3k0−1. We get

E (c̃2t |St−1 = j)T =

k0

h=1

γjhλ
T
h2 −


k0

h=1

γjhλ
T
h1


Ψ−1

11 Ψ12. (9)

Since 0 = E (c1) =
k0

h=1 π
∗
hλh, we obtain

λk0 =

k0−1

h=1

αhλh, with αh := −π∗
h/π

∗
k0
, (10)

and setting dh := γjh + γjk0αh for h = 1, . . . , k0 − 1 and inserting (10) in (9)
gives

E (c̃2t |St−1 = j)T =

k0−1

h=1

dhλ
T
h2 −


k0−1

h=1

dhλ
T
h1


Ψ−1

11 Ψ12. (11)

Now observe that

E (D1hc1) = λh − λk0 , h = 1, . . . , k0 − 1.

Let

S :=


Ik0−1

0(4k0)×(k0−1)


, T :=


Ik0−1

02k0×(k0−1)


,

then from the definition of Ψ and (10) we get

ΨS =

E (D11c1) , . . . , E (D1k0−1c1)



=

λ1 −

k0−1

h=1

αhλh, . . . , λk0−1 −
k0−1

h=1

αhλh


=: Λ, (12)

where 0· denotes matrices of zeros and I · are identity matrices, all with the
appropriate dimensions. This result also holds for the partitioned λ vectors, i.e.

Ψl1T =

λ1l −

k0−1
h=1 αhλhl , · · · , λ(k0−1)l −

k0−1
h=1 αhλhl


, l = 1, 2.

Now, we show below that

span (Λ) = span{λ1, . . . ,λk0−1}, (13)
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where span (Λ) denotes the space spanned by the columns of Λ. Therefore,
there is a matrix M ∈ R(k0−1)×(k0−1) such that ΛM =


d1λ1 , . . . , dk0−1λk0−1



and thus from (12)

ΨSM =

d1λ1, . . . , dk0−1λk0−1



and hence for the submatrices of Ψ

Ψl1 TM =

d1λ1l, . . . , dk0−1λ(k0−1)l


, l = 1, 2.

This implies


1 , · · · , 1


MTT TΨ1l =

k0−1

h=1

dhλ
T
hl, l = 1, 2.

Using this subsequently for l = 1 and l = 2 we get


k0−1

h=1

dhλ
T
h1


Ψ−1

11 Ψ12 =

1 , · · · , 1


MTT TΨ11Ψ

−1
11 Ψ12 =

k0−1

h=1

dhλ
T
h2

which due to (11) implies (8).

It remains to show (13). Here, we evidently only need to show that for any
ω = (ω1, . . . , ωk0−1)

T ∈ Rk0−1 the vector
k0−1

h=1 ωhλh is in span (Λ). This is the
case since the matrix




1− α1 −α1 · · · −α1

−α2 1− α2 · · · −α2
...

. . .
...

−αk0−1 · · · 1− αk0−1




has determinant 1−
k0−1

h=1 αh


= (π∗

k0
)−1 ̸= 0 and hence is invertible.
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B. Supplement: Technical details

B.1. Concerning the Assumptions A4 and A5

We start by discussing the validity of Assumption A5 in some relevant mod-
els. For a one-parameter family (and hence no structural parameters), under
the assumption that the corresponding moments exist this follows from linear
independence of the families of densities and their first and second derivatives
(essentially the notion of strong identifiability by Chen 1995). It is satisfied
e.g. by the Poisson distribution.

Now suppose that the f > 0 is a twice-continuously differentiable density
w.r.t. Lebesgue measure, and let f(x;µ, σ) = f


(x− µ)/σ


/σ denote the corre-

sponding location-scale family.

Lemma 3. a. Suppose that for any µ ∈ R, 0 < σ1 < . . . < σk0 and aj, bj, cj, dj ∈
R, j = 1, . . . , k0, the condition

k0

j=1


ajf(x;µ, σj) + bj

∂f(x;µ, σj)

∂µ
+ cj

∂f(x;µ, σj)

∂σ
+ dj

∂2f(x;µ, σj)

∂2σ


= 0 (14)

∀x ∈ R implies that aj = bj = cj = dj = 0, j = 1, . . . , k0. Then, under the
assumption that the moments exist, Assumption A5 is satisfied in the HMM with
state-dependend densities from f(·;µ, σ) with switching scale σ and structural
location µ.
b. Similarly, suppose that for any µ1 < . . . < µk0 ∈ R, σ > 0 and aj, bj, cj, dj ∈
R, j = 1, . . . , k0, the condition

k0

j=1


ajf(x;µj, σ) + bj

∂f(x;µj, σ)

∂µ
+ cj

∂2f(x;µj, σ)

∂2µ
+ dj

∂f(x;µj, σ)

∂σ


= 0 (15)

∀x ∈ R implies that aj = bj = cj = dj = 0, j = 1, . . . , k0. Then, under the
assumption that the moments exist, Assumption A5 is satisfied in the HMM with
state-dependent densities from f(·;µ, σ) with switching location µ and structural
scale σ.

Proof of Lemma 3. We only show part a., part b. is completely analogous. Un-
der the assumption that the corresponding moments exist, Assumption A5 is
satisfied if and only if the corresponding random variables are linearly indepen-
dent in L2. From the definitions, this is the case if for all aj, bj, cj, d ∈ R,

k0

j=1


ajf(X1;µ, σj)+bj

∂f(X1;µ, σj)

∂σ
+cj

∂2f(X1;µ, σj)

∂2σ


+d

∂f
(k0)
mix (X1;µ, σ1, . . . , σk0

)

∂µ
= 0 a.s.
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implies aj = bj = cj = d = 0. Since the distribution of X1 is equivalent to
Lebesgue measure, this is equivalent to

k0

j=1


ajf(x;µ, σj) + bj

∂f(x;µ, σj)

∂σ
+ cj

∂2f(x;µ, σj)

∂2σ


+ d

k0

j=1

πj
∂f(x;µ, σj)

∂µ
= 0

for Lebesgue-almost all x ∈ R, which, by continuity, then holds for all x ∈ R.
Then aj = bj = cj = d = 0 follows immediately from (14), as required.

We consider two special cases. The skew-normal family SN (α) is defined by

f̃0(x;α) = 2φ(x) Φ(αx), α ∈ R (16)

where Φ is the distribution function of the standard normal, see Azzalini (1985).
For a fixed α, we show below that condition a. of the lemma is satisfied for the
corresponding location-scale family. However, it is well-known that condition
b. is not satisfied for the normal distribution, see e.g. Chen and Li (2009), and
indeed, Assumption A5 is not satisfied. For the t-distribution with density

f(x) = Γ


ν + 1

2


Γ
ν
2

√
πν


1 +

x2

ν

(ν+1)/2 −1

, ν > 0, (17)

we show below that for fixed degrees of freedom ν, both conditions are satisfied
for the corresponding location-scale family.

Lemma 4. 1. For the location-scale family of the skew-normal distribution with
fixed skewness parameter α, condition a. of Lemma 3 is satisfied.
2. For the location-scale family of the t-distribution with fixed degrees of freedom
α, conditions a. and b. of Lemma 3 are satisfied.

Proof. Ad. 1.: Let

ψ(t, µ, σ) = exp(µit− 0.5 σ2t2) · (1 + i erf(σδt/
√
2))

be the characteristic function of the skew-normal distribution with parameters
µ, σ, where

δ = α/
√
1 + α2 and erf(x) = 2/

√
π

 x

0

exp(−t2) dt.

Then, taking Fourier transforms and interchanging derivative and integrals in
(14) gives

k0

j=1


ajψ(t, µ, σj) + bjψσ(t, µ, σj) + cjψσσ(t, µ, σj) + djψµ(t, µ, σj)


= 0, (18)
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∀t where ψσ, ψσσ and ψµ are the derivatives of the characteristic function w.r.t. σ,
twice σ and µ. Now

ψµ(t, µ, σ) =it · ψ(t;µ, σ)

ψσ(t, µ, σ) =− σt2 · ψ(t;µ, σ) (1 + i erf(σδt/
√
2)) + i

δt
√
2√
π

· exp

− σ2t2δ2/2


exp(µit− 0.5 σ2t2),

ψσσ(t, µ, σ) =ψ(t;µ, σ)

σ2t4 − t2


− i exp(µit− 0.5 σ2t2) exp


− σ2t2δ2/2


t3σ

√
2√
π


2δ + δ3


.

Plugging this into (18), multiplying by e−iµt and taking the real part gives

k0

j=1

exp(−1/2 σ2
j t

2)

aj − bj σj t

2 + cj

σ2
j t

4 − t2

− dj t erf(σjδt/

√
2)

= 0 ∀t. (19)

Suppose that σ2
1 < . . . < σ2

k0
. Now in (19),

1. multiply by exp(σ2
1t

2/2)/t4, let t→ ∞ to conclude c1 = 0,

2. multiply by exp(σ2
1t

2/2)/t2, let t→ ∞ to conclude b1 = 0,

3. multiply by exp(σ2
1t

2/2)/t, let t→ ∞ to conclude d1 = 0,

4. multiply by exp(σ2
1t

2/2), let t→ ∞ to conclude a1 = 0.

Now proceed by induction over k0.

Ad 2.: The characteristic function of the location-scale family of the t-distribution
is given by (cf. Hurst 1995)

ϕ(t;µ, σ) = eiµt
Km (

√
νσ|t|) (√νσ|t|)m
Γ (m) 2m−1

, m =
1

2
ν, (20)

where Γ(·) is the Gamma function and Kp(·) is the modified Bessel function
of the second kind and order p (cf. Andrews 1986, chapter 6). The partial
derivatives are given by

ϕµ(t;µ, σ) = it eiµt
Km (

√
νσ|t|) (√νσ|t|)m
Γ (m) 2m−1

,

ϕ(t;µ, σ)µµ = −t2 eiµt Km (
√
νσ|t|) (√νσ|t|)m
Γ (m) 2m−1

ϕσ(t;µ, σ) = −|t| eiµtKm−1(
√
νσ|t|)√ν (√νσ|t|)m
Γ(m)2m−1

,

ϕσσ(t;µ, σ) =
|t|√νeiµt
Γ(m)2m−1

√
ν|t|
m

σm−1
√

νσ|t|Km−2(
√
νσ|t|)−Km−1(

√
νσ|t|)


,

cf. Andrews (1986).
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(a): Switching σ. As above, taking the Fourier transform and interchanging
integral and derivative, and dividing by (

√
ν|t|)meiµt/Γ(m)2m−1 gives

k0

j=1

Km(σj
√
ν|t|)σm

j


aj − bj|t|

√
nu

Km−1(σj
√
ν|t|)

Km(σj
√
ν|t|)

+ cj

νt2

Km−2(σj
√
ν|t|)

Km(σj
√
ν|t|) −√

ν
Km−1(σj

√
ν|t|)

Km(σj
√
ν|t|)σj


+ itdj


= 0 ∀t.

Now use Km−1(x)/Km(x) → 1 and Km(x) ∼

2/(πx) e−x as x→ ∞. Consider

the real part in the above display, and

1. multiply by eσ1x/t3/2, let t→ ∞ to conclude c1 = 0,

2. multiply by eσ1x/t1/2, let t→ ∞ to conclude b1 = 0,

3. multiply by eσ1x t1/2, let t→ ∞ to conclude a1 = 0,

4. Finally, consider the imaginary part, multiply by eσ1x/t1/2, let t → ∞ to
conclude d1 = 0.

Now proceed by induction.

(b). Switching µ. As above, taking the Fourier transform and interchanging
integral and derivative, and dividing by (

√
νσ|t|)mKm (

√
νσ|t|) /Γ(m)2m−1 gives

k0

j=1

eiµjt

aj + bjit− cjt

2 − dj|t|
Km−1(σ

√
ν|t|)

Km(σ
√
ν|t|)


= 0 ∀t.

Now, multiply by e−iµ1tt−2, and average the resulting equation over t = t0, 2t0, . . . , nt0
to obtain

c1 +

k0

j=2

cj
1

n

n

l=1

eilt0(µj−µ1) = o(1), n→ ∞, (21)

where t0 > 0 is chosen such that t0(µj −µ1) ̸∈ 2πZ. Now since for j = 2, . . . , k0,

1

n

n

l=1

eilt0(µj−µ1) =
1

n

ei(n+1)t0(µj−µ1) − 1

eit0(µj−µ1) − 1
→ 0, n→ ∞,

we obtain c1 = 0 by letting n → ∞ in (21). Repeat this argument to obtain
c2 = . . . = ck0 = 0.

Next, proceed similarly when multiply by e−iµ1tt−1 to conclude −d1 + ib1 = 0,
that is, d1 = b1 = 0, and similarly for j = 2, . . . , k0. Finally, multiply by e−iµjt

to deal with the aj.

Next, consider Assumption 4.
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Lemma 5. Assumption A4 is satisfied
a. for the skew-normal distribution with fixed skewness parameter, structural
location and switching scale
b. for the t-distribution with fixed degrees of freedom, and either fixed scale and
switching location or fixed location and switching scale.

Proof. a. We start by bounding the partial derivatives of the skew-normal
density (see (16)) which arise in the assumption. First note that for fixed α ∈ R,
F (x;µ, σ) := Φ(α (x− µ)/σ) as well as any finite number of partial derivatives
w.r.t µ and σ are uniformly bounded in x ∈ R and µ, σ varying over compact
sets. Therefore, for compact K and ϵ, σ0 > 0,

sup
µ∈K

sup
σ0−ϵ≤σ≤σ0+ϵ

∂jσ ∂lµf(x;α, µ, σ)
 ≤ C(1+x8) exp


− x2

2(σ0 + ϵ)


, x ∈ R, j+ l ≤ 4,

where f(x;α, µ, σ) is the skew-normal density with skewness parameter α, lo-
cation µ and scale σ. Now, suppose that σ1 < . . . < σk0 are ordered. Then

1

|f (k0)
mix (x;µ

∗, σ∗
1, . . . , σ

∗
k0
,π∗)|2

≤ C1 exp

x2/ σ2

k0


, x ∈ R.

Choose
ϵ < σ∗

k0
(


3/2− 1)

and consider parameters (µ, σ) such that µ is in a compact neighborhood of µ∗

and
σ ∈ U := ∪k0

j=1Uϵ(σ
∗
j ), Uϵ(σ

∗
j ) := {σ : |σ − σ∗

j | ≤ ϵ}.

Since Xt has density f
(k0)
mix (x;µ

∗, σ∗
1, . . . , σ

∗
k0
,π∗), for j + l ≤ 4 we obtain

E sup
µ∈K

sup
σ∈U

∂jσ ∂lµf(Xt;α, µ, σ)
3

f
(k0)
mix (Xt;µ∗, σ∗

1, . . . , σ
∗
k0
,π∗)3

≤

C(1 + x8)3 exp


− x2


3/(2(σk0 + ϵ)2)− 1/σ2

k0


dx <∞

by the choice of ϵ.

b. For the location-scale family f(x; ν, µ, σ) of the t-distribution (see (17)), we
have for compact sets K1, K2 that

sup
µ∈K1

sup
σ∈K2

∂jµ∂kσf(x; ν, µ, σ)
 ≤ C(1 + |x|)−(ν+1), j + k ≤ 4.

Since also
1

f
(k0)
mix (x;µ

∗, σ∗
1, . . . , σ

∗
k0
,π∗)

≤ C1|x|1+ν , x ∈ R,

the integrability assumption is obvious.
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B.2. Proof of Theorem 2

The proof proceeds in several steps. First we show the following tightness state-
ment, which is required for the expansion of the quasi-likelihood statistic. For
i, l = 1, . . . , d1, let

R
{l}
t (ν, ϑ) :=

∂
∂νl
f(Xt;ν, ϑ)

f
(k0)
mix (Xt;θ

∗,π∗)
, T

{l}
t (ν, ϑ) :=

∂2

∂νl∂ϑ
f(Xt;ν, ϑ)

f
(k0)
mix (Xt;θ

∗,π∗)
,

V
{l,i}
t (ν,ϑ) :=

∂2

∂νl∂νi
f
(k0)
mix (Xt; (ν,ϑ),π

∗)

f
(k0)
mix (Xt;θ

∗,π∗)−1

(22)

Lemma 6. Under A2 and A4, for fixed j = 1, . . . , k0 and (ν, ϑ) ∈ E1(ν
∗, ϵ0)×

E2(ϑ
∗
j , ϵ0) the following processes are tight

n−1/2


R
{l}
t (ν, ϑ), n−1/2


V

{l,i}
t (ν,ϑ), n−1/2


T

{l}
t (ν, ϑ)

n−1/2


Y ′
t (ν, ϑ), n−1/2


Y ′′
t (ν, ϑ), n−1/2


Y ′′′
t (ν, ϑ),

where i, l = 1, . . . , d1.

Proof of Lemma 6. Let ζ := (ν, ϑ) ∈ E1(ν
∗, ϵ0) × E2(ϑ

∗
j , ϵ0). We show the

tightness of
T {l}
n (ζ) := n−1/2


T

{l}
t (ζ).

Using Billingsley (1968, p. 95) or Klicnarova (2007, prop. 1) for the multivariate
case, it suffices to show that for some C > 0,

E
 T {l}

n (ζ1)− T {l}
n (ζ2)

2 ≤ C ||ζ1 − ζ2||21, (23)

for all n. Now,

E
 T {l}

n (ζ1)− T {l}
n (ζ2)

2
= E


T
{l}
1 (ζ1)− T

{l}
1 (ζ2)

2

+
2

n

n

t=2

(n+ 1− t) E

T
{l}
1 (ζ1)− T

{l}
1 (ζ2)


T
{l}
t (ζ1)− T

{l}
t (ζ2)


.
(24)

Using the multivariate mean-value theorem and assumption A4 gives

T {l}
1 (ζ1)− T

{l}
1 (ζ2)

 =
∇T

ζ T
{l}
1 (ζ0) · (ζ1 − ζ2)

 ≤

g(X1)

1/3

||ζ1 − ζ2||1. (25)

This immediately bounds the first term on the right side of (24).

As for the second, we let

λm = E

T

{l}
1 (ζ1)− T

{l}
1 (ζ2)|S1 = m


, λ = (λ1, . . . , λk0)

T .

48



Testing for the number of states in hidden Markov models

Then for t = 2, . . . , n, we have that

E

T

{l}
1 (ζ1)− T

{l}
1 (ζ2)


T

{l}
t (ζ1)− T

{l}
t (ζ2)


= λTΓt−1λ.

Now

0 = E

T

{l}
1 (ζ1)− T

{l}
1 (ζ2)


= λTπ,

and therefore for some c > 0,

λTΓt−1λ
 ≤ crt−1∥λ∥2,

where 0 ≤ r < 1 can be chosen slightly larger than the second-largest eigenvalue
of Γ, see e.g. Seneta (2006, theorem 1.2). By (25), we get for some c1 > 0

∥λ∥2 ≤ c1||ζ1 − ζ2||21.

Therefore

 2
n

n

t=2

(n+ 1− t) E

T

{l}
1 (ζ1)− T

{l}
1 (ζ2)


T

{l}
t (ζ1)− T

{l}
t (ζ2)

 ≤ 2cc1

∞

t=2

rt−1||ζ1 − ζ2||21

which concludes the proof.

Let us next turn to consistency of the QMLE.

Recall that we assume the entries of

ϑ∗
1, . . . , ϑ

∗
k0


to be distinct and ordered

ϑ∗
1 < · · · < ϑ∗

k0
, ν∗ := (ν∗1 , . . . , ν

∗
d1
), θ∗ = (ν∗, ϑ∗

1, . . . , ϑ
∗
k0
). Let π∗

j := P (St = j)
for j ∈ {1, . . . , k0} denote the true stationary probability of the Markov chain
for state j and π∗ :=


π∗
1, . . . , π

∗
k0


. The assumption of irreducibility, see A1,

implies π∗
j > 0.

For the QMLE under the hypothesis we write θ(k0) = θ =

ν, ϑ1, . . . , ϑk0


,

where ϑ̂1 ≤ . . . ≤ ϑ̂k0 . For the QMLE (θ, π) under our specific alternative with
2k0 states, see (6), we write

θ = (ν, ϑ̃1, . . . , ϑ̃2k0), π =

β̃1π̃1, (1− β̃1)π̃1, . . . , β̃k0 π̃k0 , (1− β̃k0)π̃k0


,

where each β̃j ∈ J .

Lemma 7. Under Assumptions A1, A2 and A3, we have that

a. ν → ν∗, π̂j → π∗
j and ϑ̂j → ϑ∗

j , j = 1, . . . , k0, in probability,

b. ν → ν∗, π̃j → π∗
j and ϑ̃2j−1, ϑ̃2j → ϑ∗

j , j = 1, . . . , k0, in probability.
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Proof of Lemma 7. a. Let Θ̄1 be the closure of Θ1 in R̄d1 , where R̄ = R ∪
{+∞,−∞}, and similarly for Θ̄2. For parameters θ = (ν, ϑ1, . . . , ϑk0), ν ∈ R̄d1 ,
ϑj ∈ Θ̄2 and k0 weights π let

Gθ,π(t, s) =

k0

j=1

πj I(ϑj ≤ t, ν1 ≤ s1, . . . , νd1 ≤ sd1), t ∈ Θ̄2, s ∈ Θ̄1

denote the corresponding mixing distribution with at most k0 components. Let
dw() denote a metric which metrizes weak convergence of probabilities on Θ̄2 ×
Θ̄1. Our claim follows from the weak convergence

dw

Gθ,π, Gθ∗,π∗


→ 0 in probability, (26)

since by assumption Gθ∗,π∗ has k0 distinct support points, so that the (ordered)
support points and weights of Gθ,π must converge as well.

To show (26), we apply the classical consistency result by Wald (1949), in the
version of theorem 5.14 in van der Vaart (1998) for general M-estimators. Since
the result only relies on a law of large numbers of an integrable function in the
observations, the theorem also applies in case of stationary, ergodic observations
(the P in van der Vaart is the univariate marginal distribution). In our case,
the parameter is the mixing distribution Gθ,π, ν ∈ Θ̄2, ϑj ∈ Θ̄1, j = 1, . . . , k0,
which ranges through a compact set by compactness of Θ̄2 and Θ̄1, and the
criterion function is the mixing density for ν ∈ Θ2, ϑj ∈ Θ1, j = 1, . . . , k0,

mGθ,π
(x) :=



Θ2×Θ1

f(x; s, t) dGθ,π(t, s) = f
(k)
mix(x;θ,π),

and mGθ,π
(x) = −∞, if the parameters are not all contained in Θ1 and Θ2. The

quasi log-likelihood of section 2, expressed in terms of the mixing distribution,
is thus given by

ln

Gθ,π


=

n

t=1

mGθ,π
(Xt).

It remains to check the assumptions for Theorem 5.14 in van der Vaart (1998).
First, by identifiability of finite mixtures and the existence of the Kulback diver-
gence, Assumption A3 a. and d., from the definiteness of the Kulback-Leibler
divergence and the boundary condition mGθ,π

(x) = −∞ the set of maximizers
of EmGθ,π

(X1) in Gθ,π is the singleton Gθ∗,π∗ , and as noted above the space of
mixing distributions is compact.

Now, condition (5.13) in van der Vaart (1998) is immediate from the uniform
boundedness condition Assumption A3 c., For condition (5.12), if dw(Gθl,πl

, Gθ,π)
→ 0, l → ∞, where all mixing distributions as above have at most k0 support
points, then support points of the Gθl,πl

must converge to some support point
of Gθ,π, or their weight converges to 0. Further, the sum of the weights of the
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support points converging to a specific support of Gθ,π converges to the weight
of that support point. Therefore, (5.12) in van der Vaart (1998) follows by the
continuity and limit properties of the densities, Assumption A2 and Assumption
A3 b.

Finally, by definition of Gθ,π we have that

ln

Gθ,π


≥ ln


Gθ∗,π∗


, (27)

so that (26) finally follows from theorem 5.14 in van der Vaart (1998).

b. Now consider mixing distributions Gθ,π with up to 2k0 states for parame-
ters θ = (ν, ϑ1, . . . , ϑ2k0) and 2k0-dimensional weights π (potentially with zero
entries). We shall show that

dw

Gθ,π, Gθ∗,π∗


→ 0 in probability,

then by the specific forms of the parameter vector θ and the weight vector π,
the claim in part b. follows. In order to apply theorem 5.14 in van der Vaart
(1998), by the arguments in part a. we only need to check that

ln

Gθ,π


≥ ln(Gθ∗,π∗) + oP (1). (28)

Now Gθ,π can apparently be written as an element in

{Gθ,π : π ∈ Ω2k0(J ),ν ∈ Θ1, ϑ2j−1, ϑ2j ∈ Ij, j = 1, . . . , k0}.

Since Gθ,π is by definition the maximizer of ln over this class, we have

ln

Gθ,π


≥ ln


Gθ,π


,

which together with (27) implies (28).

Setting

sn :=
n

t=1

b̃2t,

we have the following quadratic approximation to the test statistics.

Lemma 8. For the test statistic we have under the assumptions A1-A5 that

Rn − sup
z≥0


2z′sn − nz′ Σ22z

 = oP (1), (29)

where {z ≥ 0} := {(z1, . . . , zk0) : zj ≥ 0, j = 1, . . . , k0}.
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Proof of Lemma 8. The proof is quite similar to those in Chen, Chen and Kalbfleisch
(2004) and Li and Chen (2010).

Decompose

Rn = 2(l(2k0)n (θ, π)− l(k0)n (θ∗,π∗))− 2(l(k0)n (θ, π)− l(k0)n (θ∗,π∗))

=: R(1)
n −R(0)

n .

Consider R
(1)
n : We have R

(1)
n = 2

n
t=1 log(1 + δt), where

δt :=
f
(2k0)
mix (Xt; θ, π)− f

(k0)
mix (Xt;θ

∗,π∗)

f
(k0)
mix (Xt;θ

∗,π∗)
.

First we derive an upper bound on R
(1)
n . Since, log(1+x) ≤ x−x2/2+x3/3 we

shall consider
n

t=1 δ
l
t for l = 1, 2, 3.

For t = 1, . . . , n we have

k0−1

j=1

(π̃j − π∗j )∆tj(ν,ϑ∗) =

k0−1

j=1

(π̃j − π∗j )f(Xt; ν, ϑ∗j )
f
(k0)
mix (Xt;θ

∗,π∗)
−

f(Xt; ν, ϑ∗k0)
f
(k0)
mix (Xt;θ

∗,π∗)

k0−1

j=1

(π̃j − π∗j )

=

k0

j=1

(π̃j − π∗j )f(Xt; ν, ϑ∗j )
f
(k0)
mix (Xt;θ

∗,π∗)
,

since
k0−1

j=1

(π̃j − π∗
j ) = (1− π̃k0)− (1− π∗

k0
) = −π̃k0 + π∗

k0
= −(π̃k0 − π∗

k0
).

Now, we subtract the right side of the previous equation and add the resulting
zero to δt. This gives

δt =

k0−1

j=1

(π̃j − π∗j )∆tj(ν,ϑ∗) +
f
(k0)
mix


Xt; (ν,ϑ∗),π∗− f

(k0)
mix (Xt;θ

∗,π∗)

f
(k0)
mix (Xt;θ

∗,π∗)

+

k0

j=1

π̃j β̃j

f(Xt; ν, ϑ̃2j−1)− f(Xt; ν, ϑ∗j )



f
(k0)
mix (Xt;θ

∗,π∗)

+

k0

j=1

π̃j(1− β̃j)

f(Xt; ν, ϑ̃2j)− f(Xt; ν, ϑ∗j )



f
(k0)
mix (Xt;θ

∗,π∗)
.

(30)

Now we expand each of the terms in (30). To start, for t = 1, . . . , n and
j = 1, . . . , k0 − 1

∆tj(ν,ϑ∗) = ∆tj(ν
∗,ϑ∗) +


∆tj(ν,ϑ∗)−∆tj(ν

∗,ϑ∗)


= ∆tj(ν
∗,ϑ∗) + (ν − ν∗)T ∇ν


∆tj(ν,ϑ

∗)


= ∆tj(ν
∗,ϑ∗) +

d

l=1


(ν̃l − ν∗l ) [R

{l}
t (ν, ϑ∗

j)−R
{l}
t (ν, ϑ∗

k0
)]
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for some ν between ν and ν∗, and where R
{l}
t is defined in (22). Therefore, we

obtain

k0−1

j=1

(π̃j − π∗
j )∆tj(ν,ϑ∗) =

k0−1

j=1

(π̃j − π∗
j )∆tj(ν

∗,ϑ∗) + ε
(A)
tn ,

where

ε
(A)
tn :=

k0−1

j=1


(π̃j − π∗

j ) ·
d

l=1


ν̃l − ν∗l

 
R

{l}
t (ν, ϑ∗

j)−R
{l}
t (ν, ϑ∗

k0
)


.

Therefore,

n

t=1

k0−1

j=1

(π̃j − π∗
j )∆tj(ν,ϑ∗) =

n

t=1

k0−1

j=1


(π̃j − π∗

j )∆tj(ν
∗,ϑ∗)


+ ε(A)

n , (31)

where due to Lemmas 6 and 7,

ε(A)
n =

n

t=1

ε
(A)
tn = oP (n

1/2)

k0−1

j=1


π̃j − π∗

j


.

The second part of (30) can be expanded similarly. Here, for brevity we omit

Xt,π
∗,ϑ∗, k0 in the marginal mixture, i.e. writing ft,mix(ν) for f

(k0)
mix


Xt; (ν,ϑ

∗),π∗.
We obtain

ft,mix(ν)− ft,mix(ν
∗)

ft,mix(ν∗)
=


ν − ν∗T ∇ν ft,mix(ν

∗) + 1/2

ν − ν∗T ∇νν ft,mix(ν)


ν − ν∗

ft,mix(ν∗)

=

d

l=1

(ν̃l − ν∗l ) U
{l}
t (ν∗,ϑ∗) + 1/2

d

l,i=1


(ν̃l − ν∗l )(ν1i − ν∗i ) V

{l,i}
t (ν,ϑ∗)

=:

d

l=1

(ν̃l − ν∗l ) U
{l}
t (ν∗,ϑ∗) + ε

(B)
tn

where and ν is again between ν and ν∗, and V {l,i}
t (ν,ϑ) is defined in (22). By

Lemmas 6 and 7 it follows that

n

i=1

f
(k0)
mix


Xt; (ν,ϑ

∗),π∗− f
(k0)
mix


Xt; (ν

∗,ϑ∗),π∗

f
(k0)
mix


Xt; (ν∗,ϑ∗),π∗



=
n

i=1

d

l=1


U

{l}
t (ν∗) (ν̃l − ν∗l )


+ ε(B)

n ,

(32)

where

ε(B)
n =

n

t=1

ε
(B)
tn = oP (n

1/2)
d

l=1

(ν̃l − ν∗l ).
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To expand the remaining term in (30), we now consider


f(Xt; ν, ϑ̃2j−i)− f(Xt; ν, ϑ∗

j)

/f

(k0)
mix (Xt;θ

∗,π∗)

for t = 1, . . . , n, j = 1, . . . , k0 and i = 0, 1. We have

f(Xt; ν, ϑ̃2j−i)− f(Xt; ν, ϑ∗
j)

f
(k0)
mix (Xt;θ

∗,π∗)
=
f(Xt;ν

∗, ϑ̃2j−i)− f(Xt;ν
∗, ϑ∗

j)

f
(k0)
mix (Xt;θ

∗,π∗)
+ ε

(C1)
tjin

where

ε
(C1)
tjin :=

d

l=1

(ν̃l − ν∗l )
fνl(Xt;νj, ϑ̃2j−i)− fνl(Xt;νj, ϑ

∗
j)

f
(k0)
mix (Xt;θ

∗,π∗)

=
d

l=1

(ν̃l − ν∗l ) (ϑ̃2j−i − ϑ∗
j)
fνlϑ(Xt;νj, ϑ2j−i)

f
(k0)
mix (Xt;θ

∗,π∗)
,

and ϑ2j−i and νj lie between the appropriate parameters.

Moreover,

f(Xt;ν
∗, ϑ̃2j−i)− f(Xt;ν

∗, ϑ∗
j)

f
(k0)
mix (Xt;θ

∗,π∗)

= Y ′
tj(ϑ̃2j−i − ϑ∗

j) + 1/2 Y ′′
tj(ϑ̃2j−i − ϑ∗

j)
2 + 1/6 Y ′′′

tj (ν
∗, ϑ

′
2j−i)(ϑ̃2j−i − ϑ∗

j)
3.

Therefore, setting ε
(C2)
tjin := 1/6 Y ′′′

tj (ν
∗, ϑ̃2j−i)(ϑ̃2j−i − ϑ∗

j)
3 let us define the error

term by

ε
(C)
tn :=

k0

j=1


π̃jβ̃j


ε
(C1)
tj1n + ε

(C2)
tj1n


+ π̃j(1− β̃j)


ε
(C1)
tj0n + ε

(C2)
tj0n


,

We obtain that

n

t=1

k0

j=1

π̃j β̃j

f(Xt; ν, ϑ̃2j−1)− f(Xt; ν, ϑ∗j )


+ π̃j(1− β̃j)


f(Xt; ν, ϑ̃2j)− f(Xt; ν, ϑ∗j )



f
(k0)
mix (Xt;θ

∗,π∗)

=

n

t=1

k0

j=1


π̃j m1jY

′
tj + π̃j m2jY

′′
tj


+ ε(C)

n ,

(33)

where

mhj := β̃j(ϑ̃2j−1 − ϑ∗
j)

h + (1− β̃j)(ϑ̃2j − ϑ∗
j)

h, for h = 1, 2

and

ε(C)
n :=

n

t=1

ε
(C)
tn = oP (n

1/2)

k0

j=1

π̃j(m1j + m2j)
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by Lemmas 6 and 7. Due to equations (31), (32) and (33) we may write

n

t=1

δt =
n

t=1

bTt τ + εn,

where εn = ε
(A)
n + ε

(B)
n + ε

(C)
n and

τ =

π̃1 − π∗1, . . . , π̃k0−1 − π∗k0−1, ν̃1 − ν∗1 , . . . , ν̃d1 − ν∗d1 ,

π̃1 m11, . . . , π̃k0 m1k0 , π̃1 m21, . . . , π̃k0 m2k0

T
.

(34)

Using |x| ≤ 1 + x2 we further see that

|εn| ≤ oP (1)

3k0−1+d1

j=1

n1/2|τj| ≤ oP (1)

3k0−1+d1

j=1

(n τ 2j + 1) = oP (n) τ T τ + oP (1).

Turning to
n

t=1 δ
2
i we have

n

t=1

δ2t =
n

t=1

(bTt τ )2 + ε(Q)
n

where

ε(Q)
n :=

n

t=1


ε
(A)
tn + ε

(B)
tn + ε

(C)
tn

2
+ 2

n

t=1


bTt τ (ε

(A)
tn + ε

(B)
tn + ε

(C)
tn )

.

Now

|ε(A)
tn | ≤ oP (1) g(Xt)

1/3

k0−1

j=1

(π̃j − π∗
j ),

|ε(B)
tn | ≤ oP (1) g(Xt)

1/3

d

l=1

(ν̃l − ν∗l ),

|ε(C)
tn | ≤ oP (1) g(Xt)

1/3

k0

j=1

π̃j (m1j + m2j).

By integrability of g(Xt), we get from the ergodic theorem

n

t=1


ε
(A)
tn + ε

(B)
tn + ε

(C)
tn

2 ≤ 4
n

t=1


(ε

(A)
tn )2 + (ε

(B)
tn )2 + (ε

(C)
tn )2



≤oP (n) τ T τ + oP (1) = OP (εn) + oP (1).

As in Li and Chen (2010), by the Cauchy inequality the second error term of
the expansion of

n
t=1 δ

2
t results in no higher order. Since the remainder term
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of the expansion of
n

t=1 δ
3
t is also OP (εn), we obtain the following bound for

R
(1)
n

R(1)
n ≤ 2

n

t=1

bTt τ −
n

t=1

(bTt τ )2 + 2/3
n

t=1

(bTt τ )3 +OP (εn). (35)

In order to estimate the cubic term, from

n−1

n

t=1

btb
T
t

a.s.→ E(b1b
T
1 )

we obtain
n

t=1

(bTt τ )2 = n τ TΣτ (1 + oP (1)).

Because of the positive definiteness of Σ, we further get

n

t=1

(bTt τ )2 +OP (εn) = n τ TΣτ (1 + oP (1)) + oP (1)

and n
t=1(b

T
t τ )3n

t=1(b
T
t τ )2

≤ max(|τ |) = oP (1).

Thus, (35) reduces to the following bound

R(1)
n ≤ 2

n

t=1

bTt τ − n τ TΣτ (1 + oP (1)) + oP (1).

Now, analogously to Li and Chen (2010) the just established upper bound for

R
(1)
n is bounded by OP (1) and thus we deduce τ = OP (n

−1/2). As for R
(0)
n , the

classic expansion is

R(0)
n =

n

t=1

bT1t

n Σ11

−1
n

t=1

bT1t + oP (1).

Therefore,

R(1)
n −R(0)

n ≤ sup
τ∈R3k0−1+d1


2
 n

t=1

bTt

τ − nτTΣτ


−

n

t=1

bT1t

n Σ11

−1
n

t=1

bT1t + oP (1)

= sup
τ1∈R2k0−1+d1


2
 n

t=1

bT1t

τ 1 − nτT

1 Σ11τ 1


+ sup

{τ2≥0}


2τT

2

 n

t=1

b̃2t

− nτT

2
Σ22τ 2



−
n

t=1

bT1t

n Σ11

−1
n

t=1

bT1t + oP (1)

= sup
{τ2≥0}


2τT

2

 n

t=1

b̃2t

− nτT

2
Σ22τ 2


+ oP (1),
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where {z ≥ 0} := {(z1, . . . , zk0) : zj ≥ 0, j = 1, . . . , k0}.
The reasoning why this upper bound is attained in our setting is analogous to
the i.i.d. case without structural parameters, i.e. to this in Li and Chen (2010).
Let τ ∗ := (τ̃ ∗

1, τ
∗
2), with

τ̃ ∗
1 = arg sup

τ1∈R2k0−1+d1


2
 n

t=1

bT1t

τ 1 − nτT

1 Σ11τ 1


= n−1Σ−1

11

n

t=1

b1t = OP (n
−1/2),

τ ∗
2 = arg sup

τ2≥0


2τT

2

 n

t=1

b̃2t

− nτT

2
Σ22τ 2


,

(36)

denote the vector attaining the upper bound of the previous display, where
the order assessment of τ̃ ∗

1 is due to the CLT for stationary weak dependent
processes.

The unrestricted optimal point of the second function in (36) is n−1 Σ−1

22 sn =
OP (n

−1/2), since n−1/2sn is asymptotically normal. This implies that the unre-
stricted and hence the restricted optimum of the second function are bounded

by n−1sTn Σ
−1

22 sn = OP (1). Therefore, we also have τ ∗
2 = OP (n

−1/2), because
otherwise we would get a contradiction to the OP (1) upper bound.

Denote by θ̄, π̄ the parameter leading, under the same mapping as in (34), to τ ∗.
Due to the non-negativity restriction in (36) and τ ∗ = OP (n

−1/2) its existence
is obvious. Further, since τ ∗ = OP (n

−1/2)

π̄ − π∗ = OP (n
−1/2), ν̄ − ν∗ = OP (n

−1/2),

ϑ̄2j−1 − ϑ∗
j = OP (n

−1/4), ϑ̄2j − ϑ∗
j = OP (n

−1/4), j = 1, . . . , k0.

Now, due to the previous order assessment and a further expansion, see Chen,
Chen and Kalbfleisch (2004, proof of Lemma 2) for a similar argument, we
obtain

R̄(1)
n : = 2(l(2k0)n (θ̄, π̄)− l(k0)n (θ∗,π∗)) = 2

 n

t=1

bTt

τ ∗ − n(τ ∗)TΣτ ∗ + oP (1)

= sup
τ∈R3k0−1+d1


2
 n

t=1

bTt

τ − nτ TΣτ


+ oP (1)

and thus

R̄(1)
n −R(0)

n = sup
{τ2≥0}


2τ T

2

 n

t=1

b̃2t

− nτ T

2
Σ22τ 2


+ oP (1).

Since R
(1)
n ≥ R̄

(1)
n due to the maximizing property of the QMLE under the

alternative, it holds

R(1)
n −R(0)

n ≥ R̄(1)
n −R(0)

n = sup
{τ2≥0}


2τ T

2

 n

t=1

b̃2t

− nτ T

2
Σ22τ 2


+ oP (1).

57



Testing for the number of states in hidden Markov models

This ends the proof of Lemma 8.

To conclude the proof of Theorem 2 we show that (b̃2t)t is a martingale difference
sequence, which is quite analogous to the case in Appendix 1. Then (7) follows
as in the i.i.d. setting of Li and Chen (2010).

Consider the filtration (Ft)t∈N with

Ft := σ (Sj, bj; j ≤ t) for t ∈ N.

Then L (bt | Ft−1) = L (bt |St−1), and therefore also L(b̃2t|Ft−1) = L(b̃2t|St−1).
Thus, it remains to show that

E

b̃2t |St−1 = j


= 0, j = 1, . . . , k0. (37)

Let

λh := E (b1 |S1 = h) and γjh := P (St = h |St−1 = j) for h = 1, . . . , k0.

As the Markov chain can adopt k0 states under the hypothesis, it follows that

E (bt |St−1 = j) =

k0

h=1

γjhλh and E (blt |St−1 = j) =

k0

h=1

γjhλhl for l = 1, 2,

where we partition λT
h =


λT

h1,λ
T
h2


with λh1 ∈ R2k0−1+d. We get

E

b̃2t |St−1 = j

T
=

k0

h=1

γjhλ
T
h2 −


k0

h=1

γjhλ
T
h1


Σ−1

11 Σ12. (38)

Since 0 = E (b1) =
k0

h=1 π
∗
hλh, we obtain

λk0 =

k0−1

h=1

chλh, with ch := −π∗
h/π

∗
k0
, (39)

and inserting (39) in (38) gives setting dh := γjh + γjk0ch for h = 1, . . . , k0 − 1,

E

b̃2t |St−1 = j

T
=

k0−1

h=1

dhλ
T
h2 −


k0−1

h=1

dhλ
T
h1


Σ−1

11 Σ12. (40)

Now observe that

E (∆1hb1) = λh − λk0 , h = 1, . . . , k0 − 1.
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Let

S :=




0d×(k0−1)

Ik0−1

0(2k0)×(k0−1)


 , T :=




0d×(k0−1)

Ik0−1

0k0×(k0−1)


 ,

then from the definition of Σ and (39) we get

ΣS =

E (∆11b1) , . . . , E (∆1k0−1b1)



=

λ1 −

k0−1

h=1

chλh, . . . , λk0−1 −
k0−1

h=1

chλh


=: Λ, (41)

where 0· denotes matrices of zeros and I · are identity matrices, all with the
appropriate dimensions. This result also holds for the partitioned λ vectors,
i.e.

Σl1T =

λ1l −

k0−1
h=1 chλhl , · · · , λ(k0−1)l −

k0−1
h=1 chλhl


, l = 1, 2.

As in Appendix 1, one shows that

span (Λ) = span{λ1, . . . ,λk0−1},

where span (Λ) denotes the space spanned by the columns of Λ. Therefore,
there is a matrix M ∈ R(k0−1)×(k0−1) such that ΛM =


d1λ1 , . . . , dk0−1λk0−1



and thus from (41)

ΣSM =

d1λ1, . . . , dk0−1λk0−1



and hence for the submatrices of Σ

Σl1 TM =

d1λ1l, . . . , dk0−1λ(k0−1)l


, l = 1, 2.

This implies


1 , · · · , 1


MTT TΣ1l =

k0−1

h=1

dhλ
T
hl, l = 1, 2.

Using this subsequently for l = 1 and l = 2 we get


k0−1

h=1

dhλ
T
h1


Σ−1

11 Σ12 =

1 , · · · , 1


MTT TΣ11Σ

−1
11 Σ12 =

k0−1

h=1

dhλ
T
h2

which due to (40) implies (37). This ends the proof of Theorem 2.
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C. Supplement: Details on Simulations, additional results,

further applications

C.1. Details on Simulation

Normal HMMs with switching means and variances

The constant in the penalty function in pln
(2k0)

in (3) is a crucial choice for the
finite sample behavior of the test, since it appears directly in the quasi-likelihood
ratio test statistic. Therefore we follow Chen, Li and Fu (2012) and Chen and Li
(2011) by reproducing their tuning of this constant using the design from the first
mentioned paper: For different null models, sample sizes and penalty constants
(of the alternative fit) the actual rejection rate given a base tuning level (e.g. 5%)
is simulated. Then a function reflecting the difference of these levels is linearly
regressed by the misclassification rate of the model (see Maitra and Melnykov,
2010), the inverse of the sample size and a function of the penalty constant.
The root of the regressed function finally gives the tuned penalty constant as a
function of the sample size and the misclassification rate of a given model.

We obtained the following tuning formulas a
(2)
n and a

(3)
n when testing for two

and three states

a(2)n =
0.35 exp(−1.168− 0.772 w̄12 − 153.712 n−1)

1 + exp(−1.168− 0.772 w̄12 − 153.712 n−1)
,

a(3)n =
0.35 exp(−1.237− 0.34 w̄123 − 186.733 n−1)

1 + exp(−1.237− 0.34 w̄123 − 186.733 n−1)
,

where n denotes the sample size, w̄12 = log(w12/(1−w12)) and w̄123 = log(w12w23

/(1−w12)(1−w23)), where wij = P (St = i) wj|i + P (St = j) wi|j is the average
misclassification rate between state i and j, i.e. wi|j denotes the probability to
assign an observation to state i although it comes from state j.

Skew-Normal HMM with switching variances

Consider the skew-normal family SN (α) defined by the density

2φ(x) Φ(αx), α ∈ R

where Φ is the distribution function of the standard normal and φ its density
function, see Azzalini (1985). Let δ = α/(1 + α2), and let µ(α) = δ


2/π,

σ2(α) = 1− 2 δ2/π, denote the mean and variance of SN (α). We shall use the
standardized version of the skew-normal distribution with density

f0(x, α) = σ(α) 2 φ

σ(α)x+ µ(α)


Φ

α(σ(α)x+ µ(α))


.

As proposed by Azzalini (1985), we now consider a parametrization of the family
of skew-normals, which is given by the location-scale-shape family generated by
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the upper distribution and a different parametrization of the skewness. Indeed,
if Zα has density f0(x, α), we parametrize in ξ(α) = E(Z3

α) instead of α, and
further consider the location-scale-shape family generated by r.v.’s µ + σZα

with µ ∈ R and σ > 0. We refer to this family by SN (µ, σ, ξ) or simply
as the family of skew-normal distributions (although this is not the common
parametrization). Using this parametrization has two major advantages: The
parameters can directly be interpreted as the mean, the standard deviation and
the skewness. Further, the Fisher information of this family is not singular, see
Azzalini (1985).

Penalty on ξ: We require a penalty function that converges to zero for n→ ∞.
Since we don’t want to push the estimated skewness towards zero, we use a
penalty function penξ : (−0.996, 0.996) → (−∞, 0] which is very flat in the
middle and drops rapidly at the boundary of the domain,

penξ(y) = −5000/n·

exp


[h(y)−h(0)]4


−1

, h(x) := φ−1


(x+0.996)/1.992


,

where φ−1 is the quantile function of a normal distribution with standard devi-
ation 1/3 and mean zero. Nevertheless, the penalty function has it maximum
zero for ξ = 0, but due to the flat structure it mainly prevents the divergence
of ξ̂.

C.2. Additional Simulations

Poisson HMMs: Levels

We simulate from a three-state Poisson HMM with parameters 1, 5 and 15 for
the state-dependent Poisson distributions. We use the transition probability
matrices Γ7, . . . ,Γ12 as defined in Table 1b. The simulated sizes, using the test
according to Theorem 2, are listed in Table 7: For both sample sizes (n = 250
and n = 500) the tests are slightly conservative, but improve with rising sample
size.

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

6.91 7.26 7.36 7.27 7.48 7.05
3.34 3.40 3.43 3.33 3.26 3.20
0.37 0.46 0.47 0.60 0.47 0.53

(a) Sample size n = 250

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

8.83 8.60 8.74 8.14 8.22 8.72
4.24 4.19 4.33 3.97 3.97 4.31
0.70 0.85 0.53 0.62 0.69 0.76

(b) Sample size n = 500

Table 7: Simulated rejection rates in percent for Poisson HMMs under the true
hypothesis of three regimes and different sample sizes n. Each table
lists line by line the rejection rates on levels 10%, 5% and 1%.
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Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

9.11 8.84 9.30 9.37 9.48 9.23
4.61 4.28 4.49 4.80 5.21 5.07
0.94 0.95 1.01 1.15 1.02 1.16

(a) n = 500 and SN2

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

9.91 4.72 9.36 9.88 8.49 9.70
5.39 4.90 4.89 4.60 4.13 4.89
1.02 1.02 0.99 1.01 0.88 1.03

(b) n = 1000 and SN2

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

10.14 9.86 10.02 11.84 11.60 11.84
5.92 5.86 5.44 7.02 7.08 7.02
1.56 1.74 1.42 2.08 1.90 2.04

(c) n = 500 and SN4

Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

9.06 7.98 8.92 10.50 10.54 10.94
4.14 4.02 4.76 6.28 5.88 6.74
1.02 0.76 1.20 1.76 1.58 1.62

(d) n = 1000 and SN4

Table 8: Simulated rejection rates (10.000 and resp. 5.000 repetitions) in percent
for skew-normal hidden Markov models under the true hypothesis of
two and three states with different sample sizes n and different param-
eters. Each table lists line by line the rejection rates on levels 10%, 5%
and 1%.

Further results for skew-normal HMMs

Transition probability matrices with four states

For simulating the finite sample power properties under the false hypothesis of
three states, we apply the following transition probability matrices

Γ13 =




0.91 0.03 0.03 0.03
0.03 0.91 0.03 0.03
0.03 0.03 0.91 0.03
0.03 0.03 0.03 0.91


 , Γ14 =




0.1 0.3 0.3 0.3
0.3 0.1 0.3 0.3
0.3 0.3 0.1 0.3
0.3 0.3 0.3 0.1


 ,

Γ16 =




0.95 0.05 0 0
0.06 0.92 0.013 0
0 0.02 0.905 0.075
0 0 0.15 0.850


 , Γ17 =




0.4 0.6 0 0
0.8 0.1 0.1 0
0 0.15 0.45 0.4
0 0 0.8 0.2




and Γ15 and Γ18 being transition probability matrices of the i.i.d. case corre-
sponding to (Γ13,Γ14) and (Γ16,Γ17), i.e. are given by probabilities 1/4 (1, 1, 1, 1)
and (0.4, 0.3, 0.2, 0.1).

C.3. Application to oil price logarithmic returns

We further investigate the log-returns of the daily WTI oil spot prices (source
US Department of Energy via wikiposit.org; September 2nd 1997 until August
31st 2012). We again use the normal and skew-normal hidden Markov models
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and reject one and two states with p-values of ≤ 10−4, 0.001 for the skew-normal
HMM and ≤ 10−4, 0.017 respectively for the normal one. Three states cannot
be rejected (even using simulated critical values for the normal HMM; p-value
of 0.497 for the normal HMM and of 1 for the skew-normal one). Since BIC
indicates three states for both models we decide nevertheless for the three state
model (AIC selects five states for the normal and four states for the skew-normal
HMM). The parameter estimates are given by σ̂SN = (1.71, 2.39, 5.79), µ̂SN =
0.08, ξ̂ = −0.12 for the skew-normal HMM and by σ̂Nor = (1.70, 2.32, 5.62),
µ̂Nor = (0.09, 0.13,−0.63) for the normal one with t.p.m’s

Γ̂SN =



98.31 0.79 0.90
1.56 97.04 1.40
1.26 11.47 87.27


 , Γ̂Nor =



98.34 0.65 1.00
1.61 96.48 1.91
0.31 14.24 85.46


 .

The estimated models are again similar, where the dependence structure (of
both) is slightly different to the fit of the S&P 500, since there is a higher
probability to remain in the most volatility state.
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Hidden Markov Models with state-dependent

mixtures: Minimal representation, model

testing and applications to clustering

Hajo Holzmann and Florian Schwaiger

Fakultät für Mathematik und Informatik, Philipps-Universität
Marburg, Germany

Finite-state hidden Markov models (HMMs), also called Markov-
dependent finite mixtures, form a popular, frequently used model
class for serially dependent observations with unobserved hetero-
geneity. We consider HMMs in which the state-dependent distribu-
tions are themselves finite mixtures. In such models, the parametriza-
tion is not unique, since components from the state-dependent mix-
tures may also be represented as states in the underlying Markov
chain. We analyze the structure of the resulting Markov chains in
detail, and in particular determine a unique (up to label switching)
representation for the HMM in which the Markov chain has a mini-
mal number of states. Further, we propose a likelihood-ratio test for
the hypothesis that the number of states in the Markov chain can be
reduced without changing the distribution of the time-series model.
Our method has important applications in cluster analysis and model
selection. After highlighting the relevance of serial dependence for
clustering, we propose a two-step clustering algorithm. Starting with
a BIC choice for a standard HMM (with simple state-dependent dis-
tributions), in the first step we determine the minimal representation
of the HMM by testing, and in the second step we merge components
in the resulting state-dependent finite mixtures by using a local en-
tropy criterion. The states in the resulting Markov chain, potentially
split according to the remaining state-dependent components, are
then interpreted as clusters. For model selection, we illustrate our
method on a series of logarithmic returns of gold prices using normal
HMMs. The AIC choice is a six-state HMM, while the BIC choice
has four states. When starting with the AIC choice, successive test-
ing results in a four-state Markov chain, with two state-dependent
distributions consisting of two-component normal mixtures.

Keywords: hidden Markov models, merging states, clustering, likelihood-ratio
test, financial log-returns
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1. Introduction

A finite state hidden Markov model (HMM) is a bivariate process (Xt, St)t∈N,
where (St)t is a unobservable finite state Markov chain with k ∈ N states, the
observable process (Xt)t is independent given the Markov chain (St)t and the
conditional distribution of each Xt depends on St only. Finite-state HMMs, also
called Markov-dependent finite mixtures, form a popular, frequently used model
class for serially dependent observations with unobserved heterogeneity, with
areas of application such as speech recognition, modeling of financial time series
or biological sequence analysis. For a comprehensive treatment of theoretical
properties of HMMs see Cappé et al. (2005), Zucchini and MacDonald (2009)
is a more basic introduction with applications and further references.

Typically, the state-dependent distributions of an HMM, that is, the condi-
tional distributions of the Xt given the St, are assumed to belong to a standard
parametric family such as the Poisson or the (multivariate) normal distribution.
If these are not flexible enough, finite mixtures as state-dependent distribu-
tions may provide a more appropriate choice. Ajmera and Wooters (2003) used
HMMs with normal mixtures as state-dependent distributions for speaker seg-
mentation in the context of speech recognition. Geweke and Amisano (2011)
analyzed such models in a Bayesian framework and gave an application to mod-
eling S&P 500 log returns. Chiu et. al (2011) formulate the EM algorithm for
HMMs with state-dependent finite normal mixtures, and use these to analyze
epileptic seizure dynamics. Volant et. al (2013) propose a criterion for selecting
the number of states in the Markov chain together with the number of compo-
nents in each mixture, in particular for the purpose of cluster analysis, and also
formulate the EM algorithm.

In this paper, we analyze the structure of HMMs with state-dependent finite
mixtures in detail and give applications to clustering and model selection. On
the methodological side, we show that the parametrization is not unique, since
components from the state-dependent mixtures may also be represented as states
in the underlying Markov chain. However, we show that there is a unique (up
to label switching) representation for the HMM in which the underlying Markov
chain has a minimal number of states. Moreover, we propose a likelihood-ratio
test for the hypothesis that the number of states in the Markov chain can be
reduced without changing the distribution of the HMM.

Our methodology has important applications in cluster analysis and model se-
lection. After highlighting the relevance of serial dependence for clustering,
we propose a two-step clustering algorithm. Starting with a BIC choice for a
standard HMM (with simple state-dependent distributions), in the first step
we determine the minimal representation of the HMM by a backward selection
based on testing. Given the minimal representation, we can make certain that
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no states in the Markov chain are merged for which relevant dependence in-
formation is lost. Thus, in the second step we restrict ourselves to merging
components in the resulting state-dependent finite mixtures, based on a local
entropy criterion, similar to Baudry et al. (2010) in the context of independent
finite mixtures. Finally, the states in the resulting Markov chain, potentially
split according to the remaining state-dependent components, are interpreted as
clusters. For model selection, we illustrate our method on a series of logarithmic
returns of gold prices using normal HMMs. The AIC choice is a six-state HMM,
while the BIC choice has four states. When starting with the AIC choice, suc-
cessive testing results in a four-state Markov chain, with two state-dependent
distributions consisting of two-component normal mixtures.

The outline of the paper is as follows. Section 2 contains the methodology,
Section 3 presents our clustering algorithm. Section 4 has some additional sim-
ulations on the levels of our proposed test, as well as on the performance of the
backward selection. This is investigated both in a correctly specified setting, as
well as in a misspecified setting where data are generated from a two-state skew-
normal HMM, but ordinary normal HMMs are used in the analysis. Section 5
finally gives an application of the proposed methodology in the context of model
selection to a series of logarithmic returns of daily gold prices. Some technical
arguments and some further numerical results are provided in an appendix.

2. Methodology for HMMs with state-dependent mixtures

In this section we present our methodology. Section 2 analyzes Markov chains
under restrictions on the dependence structure. This is used in Section 2.2 to
determine the distinct representations of an HMM with state-dependent finite
mixtures, and in particular to determine its unique (up to label switching)
representation with minimal number of states. Finally, Section 2.3 develops
a likelihood-ratio test for the hypothesis that states in the Markov chain may
be represented as mixture components.

2.1. Markov chains under dependence structure restrictions

Let (St)t be a k-state Markov chain with ergodic transition probability matrix
(t.p.m.) Γ = (γi,j)i,j=1,...,k having the stationary distribution π = (π1, . . . , πk).
In the following we always assume πj > 0 for j = 1, . . . , k.
For a (disjoint) partition G = {G1, . . . , Gr} of the state space (into non-empty
sets), we let G(j) be the function which maps a state j ∈ {1, . . . , k} onto its
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group, i.e. for j ∈ Gl we have G(j) = Gl. If P

St−1 = i, St ∈ G(j)


> 0) we

have the general formula

γi,j = P

St ∈ G(j)

St−1 = i

· P

St = j

St−1 = i, St ∈ G(j)

. (1)

Define the reduced t.p.m. λG(Γ) by

λG(Γ)


i,j

= P

St ∈ G(j)

St−1 ∈ G(i)

· P

St = j

St ∈ G(j)

, i, j = 1, . . . , k. (2)

Lemma 1. The matrix λG(Γ) is a t.p.m., and the following statements are
equivalent.

1. We have
λG(Γ) = Γ. (3)

2. For i, j = 1, . . . , k it holds

P

St ∈ G(j)

St−1 = i

= P


St ∈ G(j)

St−1 ∈ G(i)


and if P

St ∈ G(j), St−1 = i


> 0 also

P

St = j

St ∈ G(j), St−1 = i

= P


St = j

St ∈ G(j)

.

3. There exists a t.p.m. (νl,m)l,m ∈ Rr×r and (p1, . . . , pk) ∈ Rk, with pj ≥ 0,
g∈Gl

pg = 1, l = 1, . . . , r, such that

γi,j = νa(i),a(j) · pj, i, j = 1, . . . , k

where a : {1, . . . , k} → {1, . . . , r} and a(g) = l :⇔ g ∈ Gl.

The elementary proof is provided in the appendix.

Next, we show that there is a unique partition G∗
Γ fulfilling (3) and having

a minimal number of sets. Note that when G is a partition with r sets, a
k-state Markov chain satisfying λG(Γ) = Γ can be parametrized by r2 − 2 ·
r + k parameters, thus, a partition with a minimal number of sets provides a
parametrization of the t.p.m. with a minimal number of parameters.

Theorem 1. There exits a unique partition G∗
Γ of the state space, which has a

minimal number of sets and fulfills λG∗
Γ
(Γ) = Γ.

We call the partition G∗
Γ the independence partition of the Markov chain (St)t

or of the transition probability matrix Γ.

When G = {G1, . . . , Gr} and H = {H1, . . . Hq} are two partitions of the state
space {1, . . . , k} such that r > q and each set Gl ∈ G is a subset of a certain set
in H, we call G a refinement of H or H a coarsening of G. We remark that for
any refinement G of the independence partition G∗

Γ, the restriction λG(Γ) = Γ
also holds. To show this one first uses the property that each set of G is a subset
of one set in G∗

Γ, yielding equal rows in Γ for indices in the same set of G. Then
the statement follows with the same arguments as used at the end of the proof
of Lemma 2.
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2.2. Representations of HMMs with state-dependent mixtures

Let (Xt, St)t be a k-state HMM with state space {1, . . . , k}, state dependent
densities fj(x) = fXt|St=j(x), j = 1, . . . , k, t.p.m. Γ and stationary distribution
π = (π1, . . . , πk).

Definition 1 (Reducing states to mixture components in an HMM). Let G =
{G1, . . . , Gr} be a partition of {1, . . . , k}. Call reducing states to mixture com-
ponents with respect to G the mapping of the HMM (Xt, St)t onto the new

HMM (X
(G)
t , S

(G)
t )t, the distribution of which is determined by the t.p.m. Γ(G),


Γ(G)

l,m
:= P


St ∈ Gm

St−1 ∈ Gl


, l,m = 1, . . . , r

of the Markov chain (S
(G)
t )t (on the state space {1, . . . , r}), and the state-

dependent densities

f
(G)
l (x) := f

X
(G)
t |S(G)

t =l
(x) := fXt|St∈Gj

(x), x ∈ Rd, l = 1, . . . , r.

of the observable process (X
(G)
t )t. �

The parameters of the reduced HMM are easily determined as follows. For
l,m = 1, . . . , r we have that


Γ(G)

l,m
= P


St ∈ Gm

St−1 ∈ Gl


=


g∈Gm

P

St = g

St−1 ∈ Gl



=


g∈Gm



h∈Gl


P

St = h



P

St ∈ Gl

 · P

St = g

St−1 = h


=


g∈Gm



h∈Gl


πh

a∈Gl
πa

· γh,g


and for x ∈ Rd that

f
(G)
l (x) =



g∈Gl

P (St = g|St ∈ Gl) · fg(x) =


g∈Gl

πg
a∈Gl

πa
fg(x).

Thus, the state dependent distributions are indeed given by mixtures of the
original state dependent distributions. We say that states in each element of
the partition G are reduced to mixture components.

Theorem 2. The distribution of the observable process

X

(G)
t


t
after reduc-

ing states to mixture components w.r.t. the partition G is the same as that of
an HMM with t.p.m. λG(Γ) (on the original state space {1, . . . , k}) and state-
dependent densities fj(x), j = 1, . . . , k.

In particular, if λG(Γ) = Γ we have that (Xt)t
(d)
=

X

(G)
t


t
.
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The proof is given in the appendix.

Corollary 1. Let (Xt, St)t be a k-state HMM with t.p.m. Γ and state-dependent
densities fj belonging to a parametric family, i.e. fj(x) = f(x; θ(j)), θ(j) ∈M ⊂
Rp. If k component-mixtures in this parametric family are identifiable, then the
independence partition G∗

Γ of Γ of the set {1, . . . , k} is the unique partition with
minimal number of states for which we may reduce states within each member

of the partition to mixture components, i.e. for which (Xt)t
(d)
=

X

(G)
t


t
.

We call G∗
Γ the independence partition of the HMM and the elements of the

independence partition G∗
Γ = {G1, . . . , Gr} of the HMM its independence clus-

ters. The corollary follows from Theorems 1 and 2, since identifiability of k-
component mixtures garantuees identifiability of the parameters of the HMM.

2.3. Testing the validity of reducing states to mixture components

Suppose that the state-dependent densities f1(·), . . . , fk(·) belong to a known
parametric family, i.e. fj(x) = f(x; θ(j)), θ(j) ∈ M ⊂ Rp, j = 1, . . . , k. We
denote the complete parameter vector by η =


(γi,j)i,j=1,...,k, θ(1), . . . , θ(k)


∈

Θ ⊂ Rd. Given a parameter vector η we denote its t.p.m. by Γη and the
associated stationary distribution by πη, the state dependent parameters by
θη(j), and the log-likelihood function of the observable part by

LT


η) = log


pη(X1, . . . , XT )


,

where pη denotes the density function of (X1, . . . , XT ) given parameter η.

In the following we denote the true, unknown parameter by η0 and always as-
sume πη0

> 0. Giudici, Rydén and Vandekerkhove (2000) extend the asymptotic
chi-square distribution of the likelihood-ratio for i.i.d. models to hidden Markov
models. We are interested in testing hypotheses on the dependence structure,
i.e. whether the hidden Markov chain fulfils the restriction introduced in sec-
tion 2.1. Specifically, for a given partition G = {G1, . . . , Gr} of the state space
consider

H0 : λG(Γη) = Γη versus H1 : λG(Γη) ̸= Γη,

or equivalently H0 : η ∈ Θ0,G versus H1 : η ∈ Θ \ Θ0,G with Θ0,G = {η ∈ Θ :
λG(Γη) = Γη}.

An essential condition for the asymptotic chi-square distribution of the LRT is
for the null parameter to be an interior point of the parameter space. In our
context, we require P (St ∈ Gl|St−1 ∈ Gm) > 0 for 1 ≤ l,m ≤ r.
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Theorem 3. Assume the Markov chain (St)t to be ergodic, the MLE η̂T to be
strongly consistent, assumptions A2 - A4 of Giudici et al. (2000) concerning
the parametric family f(·, θ) to hold and the Fisher information J (η0) of the
HMM to be nonsingular. If η0 ∈ Θ0,G and Pη0

(St ∈ Gl|St−1 ∈ Gm) > 0 for
l,m = 1, . . . , r then

2 ·

sup
η∈Θ

LT


η)− sup

η∈Θ0,G
LT


η)


d→ χ2
h(k,r), as T → ∞,

with h(k, r) = k2 − 2k − r2 + 2r and G = {G1, . . . , Gr}.

3. Clustering serially-dependent observations

3.1. Importance of dependence for state decoding

Clusters for independent data usually correspond to peaks of the density, the
aim is to determine density-based clusters. In the following example we illustrate
the well-known fact that for serially dependent data, groups which marginally
strongly overlap, thus forming only a single density-based cluster, can still be
very well separated (decoded) when taking advantage of the serial dependence.

We simulate a sequence of length T = 2.500 from a two-state HMM with state
dependent bivariate normal distributions fXt|St=j(x) = ϕ(x;µj,Σj), j = 1, 2,
where the parameters are chosen as

µ
(1)
1 = µ

(1)
2 =


0 0


, Σ

(1)
1 =


10 0
0 1.5


, Σ

(1)
2 =


3 0
0 11


, Γ(1) =


0.95 0.05
0.05 0.95


.

The stationary distribution of the observable part (Xt)t is the two-component
mixture of normals with the above parameters and weight vector π =


0.5 0.5


.

Figure 1a illustrates contour lines of the state dependent densities and gives
a scatter plot of the data. Marginally, we only see a single (density-based)
cluster. When fitting a two-component normal mixture by ML and determining
states by maximum-a-posteriori, the cluster assignment does not reflect the true
overlapping group structure and 647 of 2.500 observations are wrongly classified
(25.88% of the data). Figure 1b illustrates this result, where data assigned to
the first (resp. second) component are colored blue (resp. green), and the dashed
line depicts the border of the maximum a posteriori clustering.

In contrast, when using a serially-dependent HMM we can separate the two
groups very well. When first estimating the parameters by ML and then per-
forming global decoding using the Viterbi-algorithm, i.e. finding the sequence of
states s1, . . . , sT which maximizes P (S1 = s1, . . . , ST = sT |X1 = x1, . . . , XT =
xT ) only 140 observations (5.6%) are wrongly classified. Thus, even observations
in the heavily overlapping area (around µ1 = µ2 = 0) can be well separated.

71



Hidden Markov Models with state-dependent mixtures

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

(a) state dependent densities
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(c) misclassified HMM

Figure 1: Clustering a sample of a two-state hidden Markov model of bivariate
normals.

3.2. Merging states in HMMs

When clustering data by using (independent) finite mixtures based on a maximum-
a-posteriori analysis, the components need to correspond well to cluster shapes.
Otherwise, a single cluster will be modeled by several mixture components and
a direct maximum-a-posteriori analysis will lead to too many clusters.

A popular alternative to using more flexible (but more involved) state-dependent
distributions is to stick with relatively simple ones (like normals), but to merge
the components corresponding to a single cluster into a single component.

Baudry et al. (2010) propose an entropy-based criterion for selecting the can-
didate components for merging in independent finite mixtures, Hennig (2010)
compares distinct methods in a simulation study.

For HMMs, the situation apparently is more involved. As seen above, strongly
overlapping components, which marginally (density-based) might be merged
into a single component, can still be well-separated by strong serial dependence.
Therefore, we only allow to merge states within the same elements of the in-
dependence partition, for which we shall use the local-decoding entropy of the
HMM.

Let us describe our merging and clustering algorithm in detail.

Input The observed series x1, . . . , xT and the parametric family of the
state dependent densities f(·, θ).

Step 1 Select and fit an appropriate finite-state HMM with state depen-
dent densities from f(·, θ), e.g. by using the BIC (or possibly the
AIC). Denote the number of states of the selected HMM by k.
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Step 2 Determine the independence partition G∗ = {G1, . . . , Gr} of the
selected HMM with k states using a backward selection based on
the p-values of the test in Theorem 3, according to a certain sig-
nificance level (say 0.05 or 0.1). Details for the backward selection
algorithm are given in Section 4.2.

We let Γ̂ and θ̂1, . . . , θ̂k denote the parameters of the ML-fit under
the independence restrictions given by G∗, so that Γ̂ is a k × k-
t.p.m. for which λG∗(Γ̂) = Γ̂, and we let (Xt, St)t denote a k-state
HMM with these parameters.

Step 3 InitializeH0 = {{1}, . . . , {k}}, i = 0. Compute the local decoding

entropy LDE(0) of the HMM (X
(H0)
t , S

(H0)
t )t = (Xt, St)t via

LDE(0) := −
T

t=1

k

j=1

φt,j(H0) · log

φt,j(H0)


,

φt,j(H0) := P

S
(H0)
t = j

X(H0)
1 = x1, . . . , X

(H0)
T = xT


,

for j = 1, . . . , k, t = 1, . . . , T .

Iteration If i+ 1 > k − r, stop, otherwise

For each partition H which is a coarsening of Hi with one element
less than Hi, but a refinement of the independence partition G∗,
compute the local decoding entropy of the HMM (X

(H)
t , S

(H)
t )t

LDE(H) := −
T

t=1

k−(i+1)

j=1

φt,j(H) · log

φt,j(H)


,

φt,j(H) := P

S
(H)
t = j

X(H)
1 = x1, . . . , X

(H)
T = xT


,

for j = 1, . . . , k − (i + 1), t = 1, . . . , T . Choose Hi+1 = H for
which LDE(H) =: LDE(i+1) is minimal, and continue iteration
with i+ 1.

Choosing the clusters .

We obtain a nested sequence of partitions

{{1}, . . . , {k}} = H0,H1, . . . ,Hk−r = G∗,

together with the local decoding entropies

LDE(0) ≥ LDE(1) ≥ . . . ≥ LDE(k − r),

and choose 0 ≤ i∗ ≤ k − r appropriately, e.g. as an elbow in the
entropy plot or if the relative reduction in the entropy exeeds a
certain threshold.

The elements inHi∗ correspond to clusters, while the states within
each element of Hi∗ are merged.
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3.3. Numerical Illustrations

We present two numerical illustrations of the above algorithm.

1. Five-state normal HMM with two independence clusters

First, we consider the following five-state bivariate normal HMM.

µ1 =


2.5
1.5

T

µ2 =


3.5
2

T

µ3 =


2
7

T

µ4 =


3
0.5

T

µ5 =


2.5
6

T

Σ1 =


0.30 0.18
0.18 0.30


Σ2 =


0.30 −0.18
−0.18 0.30


Σ3 =


0.48 −0.42
−0.42 0.48



Σ4 =


1.20 0.27
0.27 1.20


Σ5 =


0.5 0.4
0.4 0.5



Γ =




25.50 17.00 42.50 10.00 5.00
25.50 17.00 42.50 10.00 5.00
25.50 17.00 42.50 10.00 5.00
6.00 4.00 10.00 70.00 10.00
4.50 3.00 7.50 10.00 75.00




(4)

Its independence partition is given by G∗ =

{1, 2, 3}, {4}, {5}


, but within

{1, 2, 3}, only states {1, 2} form a density-based cluster. See Figure 2 for the
contour lines of the state-dependent densities. We generate a sequence of 1000

0 1 2 3 4 5 6

−
2

0
2

4
6

8

Figure 2: Contour lines of the state dependent bivariate normals. States one to
three are depicted by (black) solid lines, state four by (red) dashed
lines and state five by (green) dashed lines.

observations, for a (correctly specified) normal HMM the BIC indeed selects five
states:
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no. of states 2 3 4 5 6 7

BIC 6492.975 6000.316 5894.382 5891.908 5979.094 6073.929

The parameter estimates for five states are listed in the appendix. The backward
selection then leads to the independence partition G∗, as follows.

Step i Max. p-value of λGi
(Γ) = (Γ) Partition Gi with max. p-value

1 60.61%

{1, 3}, {2}, {4}, {5}



2 72.78%

{1, 2, 3}, {4}, {5}



3 ≤ 10−4

{1, 2, 3, 4}, {5}



Under the independence restrictions implied by G∗ we obtain the estimate

Γ̂ =




26.00 17.25 41.71 12.82 2.22
26.00 17.25 41.71 12.82 2.22
26.00 17.25 41.71 12.82 2.22
6.36 4.22 10.20 69.28 9.94
4.72 3.13 7.57 9.67 74.91




for Γ. The local decoding entropies, together with the corresponding partitions,
are plotted in Figure 3a. There is a distinctive elbow after the first merge, so
that the four elements of the partition H1∗ = {{1, 2}, {3}, {4}, {5}} correspond
to the clusters, and only states 1 and 2 are merged.

2. Two-state skew-normal HMM

Second, we consider the following two-state bivariate skew-normal HMM :

Σ1 =


4.80 −0.48
−0.48 1.20


, Σ2 =


4.0 −0.4
−0.4 1.0


, Γ =


0.9 0.1
0.1 0.9



α1 =

14 −6


, α2 =


14 0


,

µ1 =

−5.0 3.3


, µ2 =


−1.5 6.0


.

(5)

Specifically, the two-dimensional skew-normal density is given by

2ϕ

y;µ,Σ


· Φ1


αTω−1(y − µ)


,

where Φ1(·) is the distribution function of univariate standard-normal, and

ω−1 = diag

Σ

−1/2
11 ,Σ

−1/2
22


.

We consider a series of lenght 5000, and fit a (misspecified) normal HMM. In
order to fit strongly skewed state-dependend densities, the BIC selects 5 states,
the first three corresponding to the first component, the other two to the second
component:
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(a) normal

●

●
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(b) skew-normal

Figure 3: Local decoding entropies of estimated HMMs(a): series according
to five-state normal HMM, (b) series according to two-state skew-
normal HMM, local decoding entropies based on fitted five-state nor-
mal HMM.

no. of states 2 3 4 5 6 7

BIC 34274.92 33814.44 33364.45 33324.97 33330.39 33419.65

The estimated five-state transition matrix in the normal HMM is

Γ̂Nor =




25.92 39.45 23.92 7.37 3.35
23.35 44.16 21.30 2.43 8.75
20.72 44.38 25.37 4.12 5.41
2.89 4.32 2.50 33.76 56.53
3.75 2.85 3.45 36.20 53.75



,

which has approximate independence restrictions. If we apply the backward se-
lection procedure in this misspecified situation, we obtain G∗ =


{1, 2, 3}, {4, 5}



as independence partition:

Step i Max. p-value of λGi
(Γ) = (Γ) Partition Gi with max. p-value

1 62.99%

{1, 3}, {2}, {4}, {5}



2 22.45%

{1, 3}, {2}, {4, 5}



3 11.94%

{1, 2, 3}, {4, 5}



4 ≤ 10−4

{1, 2, 3, 4, 5}



Under the independence restrictions implied by G∗, the fitted transition matrix
is given by
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Γ̂ =




89.37 ·



0.26 0.47 0.27
0.26 0.47 0.27
0.26 0.47 0.27


 10.63 ·



0.39 0.61
0.39 0.61
0.39 0.61




09.92 ·

0.26 0.47 0.27
0.26 0.47 0.27


90.08 ·


0.39 0.61
0.39 0.61





,

and fitted values for the state-dependent parameters are listed in the appendix,
see Figures 4a and 4b for contour plots of the true densities and the fitted normal
state-dependent densities.

When applying our merging algorithm, we obtain the LDEs with corresponding
partitions as plotted in Figure 3b. There is no elbow, so that we ought to perform
all possible merges, leading to H3∗ = G∗, the elements of which correspond to
the two clusters. The misclassifications from a clustering using global decoding,
together with the true group assigment, is plotted in Figure 4c.
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(c) merged normal HMM

Figure 4: State dependent densities of (a) true skew-normal HMM and (b) es-
timated normal HMM; (c) wrongly estimated states using the Viterbi
algorithm and the estimated, merged normal HMM (49 of 5.000 obser-
vations). The states of the normal fit are ordered ascending by mean
of the x-coordinate.

Further simulation results in the above two settings are presented in Section
4.

4. Further simulation results

4.1. Simulated sizes

We simulate the levels of the likelihood-ratio test for the five-state normal HMM
with three independence clusters as specified in (4). The regularity conditions
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of Theorem 3 are satisfied if we impose lower bounds on the determinants of the
state-dependent covariance matrices.

For the three partitions G1 =

{1, 2}, {3}, {4}, {5}


, G2 =


{1}, {2, 3}, {4}, {5}



and G3 =

{1, 2, 3}, {4}, {5}


for which λGi

(Γ) = Γ is satisfied, we simu-
late the levels of the corresponding tests for three different sample sizes (T =
1.000, 2.500, 5.000), with M = 5.000 simulations each. The sizes corresponding
to asymptotic levels of α = 10%, 5%, 1% are listed in Table 1. The tests are
somewhat anti-conservative for the smaller sample sizes, but quite accurate for
higher ones. Note that states 2 and 3 are much better separated than states
1 and 2, which also leads to somewhat more accurate levels of the test. The
simulations were conducted on the MaRC2 supercomputer of the university of
Marburg, and their duration was a few days.

level/T 1.000 2.500 5.000
10% 16.62 12.84 11.80
5% 9.22 7.36 6.20
1% 2.20 1.50 1.68

(a) G1 =

{1, 2}, {3}, {4}, {5}



level/T 1.000 2.500 5.000
10% 15.36 10.92 10.76
5% 8.36 5.94 5.60
1% 2.18 1.50 1.32

(b) G2 =

{1}, {2, 3}, {4}, {5}



level/T 1.000 2.500 5.000
10% 16.30 12.46 11.32
5% 9.30 6.90 5.80
1% 2.38 1.44 1.16

(c) G3 =

{1, 2, 3}, {4}, {5}



Table 1: Simulated rejection rates in percent (series lenghts 1.000, 2.500 and
5.000) for accessing finite sample behavior of χ2

· - approximation in
case of a normal HMM, row-wise to levels 10%, 5% and 1%. (a), (b)
χ2
7 - approximation, (c) χ2

12 - approximation.

4.2. Backward selection

We start by spelling out the backward selection algorithm for determining the
independence partition based on Theorem 3 in detail.

Input: The observed series x1, . . . , xT and the parametric family of the
state dependent densities f(·, θ), and the test level α > 0.

Step 1 Select and fit an appropriate finite-state HMM with state depen-
dent densities from f(·, θ), e.g. by using the BIC (or possibly the
AIC). Denote the number of states of the selected HMM by k.

Step 2 Initialize G0 = {{1}, . . . , {k}}, i = 1.
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Iteration For each partition G which is a coarsening of Gi−1 with one element
less than Gi−1, compute the p-value of the likelihood-ratio test of
H0 : λG(Γ) = Γ based on the asymptotic χ2-distribution with
2i(k − 1)− i2 degrees of freedom.

If the maximal p-value of these tests is < α, we set G∗ = Gi−1 and
stop.

Otherwise we choose the partition G̃ with maximal p-value. If
G̃ = {{1, . . . , k}} is the trivial partition (in step i = k− 1), we let
G∗ = {{1, . . . , k}} and stop,

otherwise we let Gi = G̃ and continue the iteration with i+ 1.

We continue by simulating the performance of the backward selection in two
examples.

Five-state normal HMM with two independence clusters

We apply the backward selection algorithm to the five-state normal HMM with
three independence clusters as specified in (4), where we always start with a
HMM with five states. The results are given in Table 2. The backward selection
most often selects the independence partition with three elements. Since no
partition with less states is selected, the power of the test at the given t.p.m. is
quite high.

length T 1.000 2.500 5.000
level/ind. clusters 3 4 5 3 4 5 3 4 5

10% 830 127 43 881 101 18 448 44 8
5% 905 79 16 934 59 7 471 23 6
1% 977 21 2 991 8 1 496 4 -

Table 2: Simulation results of backward selection under a normal HMM: Ab-
solute frequency of selected sets in independence cluster according to
used level. M = 1.000 repetitions for lenghts of T = 1.000 and 2.500;
M = 500 repetitions for lenght T = 5.000.

Two-state skew-normal HMM

Finally, we apply the backward selection algorithm in the misspecified situation
where we simulate series from the two-state skew-normal HMM in (5), but fit
normal HMMs. We generate M = 1.000 repetitions for lenghts T = 1.000 and
2.500, as well as M = 500 repetitions for length T = 5.000.

We start with a BIC-choice for the number of states, the results are as follows.
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length / states 3 4 5 6
1.000 138 862 0 0
2.500 0 815 185 0
5.000 0 2 158 340

length T 1.000 2.500 5.000
BIC choice level/ind. clus. 2 3 4 2 3 4 5 2 3 4 5 6

10% 128 10 - - - - - - - - - -
3 states 5% 132 6 - - - - - - - - - -

1% 136 2 - - - - - - - - - -
10% 730 76 56 702 71 42 - 2 - - - -

4 states 5% 788 51 23 755 43 17 - 2 - - - -
1% 844 14 4 809 5 1 - 2 - - - -
10% - - - 153 16 15 1 136 16 6 - -

5 states 5% - - - 162 13 10 - 148 7 3 - -
1% - - - 176 5 4 - 155 2 1 - -
10% - - - - - - - 280 34 22 2 2

6 states 5% - - - - - - - 311 20 8 - 1
1% - - - - - - - 344 4 1 1 -

Table 3: Simulation results of the backward selection of normal HMMs under a
true skew-normal HMM: Absolute frequency of number of elements in
independence partition according to used level.

Finally, the results of the backward selection for the number of states in the
independence partition, split according to the initial BIC-choice, are given in
Table 3.

A two-element independence partition is chosen most often in all settings.

5. Model selection: An application to logarithmic returns of

daily gold prices

We conclude with an application which illustrates how our methodology can be
used for model selection and fine-tuning.

We consider a series of logarithmic returns of the daily gold prices in London
in U.S. dollar form September 2nd 1997 until August 31st 2012. When fitting
normal HMMs, the AIC selects six states, while the BIC selects only four:

no. of states 2 3 4 5 6 7 8
AIC 11250 11125 11060 11035 11023 11034 11052
BIC 11294 11213 11204 11248 11318 11423 11547
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We therefore start with the six-state HMM, for which the estimated t.p.m. is
given by

µ̃ =

−0.252 0.821 −0.202 0.119 0.018 0.008



σ̃ =

1.454 0.652 0.561 2.281 0.796 0.293



Γ̃ =




47.75 28.74 23.42 0.08 0.01 0.00
11.86 15.53 71.96 0.65 0.00 0.00
54.48 33.26 8.01 0.00 4.26 0.00
2.53 0.00 0.00 97.47 0.00 0.00
0.00 0.00 0.00 0.24 60.31 39.45
3.22 1.05 0.00 0.18 69.36 26.19



.

the other parameter estimates are given in the appendix. Next we apply the
backward-selection algorithm to find the independence partition of the six-state
HMM, which yields

Step i Max. p-value of λGi
(Γ) = (Γ) Partition Gi with max. p-value

1 94.04%

{1}, {2}, {3}, {4}, {5, 6}



2 45.80%

{1, 2}, {3}, {4}, {5, 6}



3 0.47%

{1, 2, 3}, {4}, {5, 6}



giving G∗ =

{1, 2}, {3}, {4}, {5, 6}


as independence partition.

When estimating under the independence restrictions implied by G∗, we ob-
tain

σ̂ =

1.531 0.695 0.626 2.244 0.805 0.296



µ̂ =

−0.259 0.717 −0.290 0.072 0.026 0.006



and

Γ̂ =




51.04 ·

0.5043 0.4957
0.5043 0.4957


48.58 ·


1
1


0.37 ·


1
1


0.01 ·


0.661 0.339
0.661 0.339



95.64 ·

0.5043 0.4957


0.00 0.00 4.36 ·


0.661 0.339



2.57 ·

0.5043 0.4957


0.00 97.43 0.00 ·


0.661 0.339



1.42 ·

0.5043 0.4957
0.5043 0.4957


0.00 ·


1
1


0.22 ·


1
1


98.36 ·


0.661 0.339
0.661 0.339





.

The local decoding entropy for the initial model is given by 3300.245, after the
first merging step (states 5 and 6) by 2521.548, and after the second step by
1896.366.

Therefore, also for clustering purposes it is reasonable to consider the reduced
representation with four states, t.p.m. λG∗(Γ̂), and state-dependent densities

f1(x) = p
(1)
1 · ϕ(x; µ̂1, σ̂1) + p

(1)
2 · ϕ(x; µ̂2, σ̂2), f2(x) = ϕ(x; µ̂3, σ̂3)

f4(x) = p
(2)
1 · ϕ(x; µ̂5, σ̂5) + p

(2)
2 · ϕ(x; µ̂6, σ̂6), f3(x) = ϕ(x; µ̂4, σ̂4)

p(1) =

0.5043; 0.4957

T
, p(2) =


0.661; 0.339

T
.
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Figure 5 illustrates the estimated state dependent distributions.

Let us briefly describe and comment on the resulting four-state model.

State 1 has a positive-mean, comparatively high volatility and is left skewed.
State 2 has a negative mean and small volatility, these two states form a kind
of cycle, out of which transition is (almost) only possible from the second to the
fourth state. The fourth state, which arises as a scale mixture of two normals,
has mean almost = 0 but a heavier tail than an ordinary normal distribution.
Finally, the third state has distinctly the highest volatility. Both states 3 and 4
are highly persistent.

Using the merged model and the Viterbi algorithm we estimated the most likely
series of states, see Figure 6. The third state e.g. occurred from October 26th
2007 until April 6th 2009, a time period containing the financial crisis.
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Figure 5: Histogram of logarithmic returns of gold prices in percent (Septem-
ber 2nd 1997 until August 31st 2012) and estimated state dependent
densities of the merged four-state hidden Markov model (densities of
states one to four are colored in black, red, green and blue).
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Figure 6: Time-series of logarithmic returns of gold prices in percent (September
2nd 1997 until August 31st 2012) and estimated series of states using
the merged model and the Viterbi algorithm (states one to four are
given by colors black, red, green and blue).
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Appendix

A. Proofs

Proof of Lemma 1. λG(Γ) is a t.p.m. since

k

j=1


λG(Γ)


i,j

=
r

l=1



g∈Gl

P

St ∈ Gl

St−1 ∈ G(i)

· P

St = g

St ∈ Gl


= 1.

In order to validate that 1. implies 2., note

γi,j = P

St ∈ G(j)

St−1 ∈ G(i)

· P

St = j

St ∈ G(j)

, i, j = 1, . . . , k,

implies γi,j = γh,j for all h ∈ G(i), i.e. under 1. Γ has equal rows with indices
in the same group of partition G. Thus,

P

St ∈ G(j)

St−1 ∈ G(i)

=


g∈G(j)



h∈G(i)


P

St−1 = h



P

St−1 ∈ G(i)

 · γh,g


=


g∈G(j)

γi,g


h∈G(i)


P

St−1 = h



P

St−1 ∈ G(i)




=


g∈G(j)

γi,g = P

St ∈ G(j)

St−1 = i

,

which gives the first claim of 2. If further P

St ∈ G(j), St−1 = i


> 0 then

γi,g > 0 for at least one g ∈ G(j) and thus P

St ∈ G(j)

St−1 ∈ G(i)

> 0.

Further, due to 1. and (1)

P

St ∈ G(j)

St−1 = i

· P

St = j

St−1 = i, St ∈ G(j)


= P

St ∈ G(j)

St−1 ∈ G(i)

· P

St = j

St ∈ G(j)


and hence also the second claim of 2. follows.

Now, assume 2. to hold, then for l,m = 1, . . . , r set νl,m = P (St ∈ Gm|St−1 ∈
Gl) and pj = P (St = j|St ∈ G(j)). Note a(·) is constant on each group
of the partition, N = (νl,m)l,m ∈ Rr×r defines a t.p.m. and p = (p1, . . . , pk)
has the desired property of 3.. At first, if P


St−1 = i, St ∈ G(j)


= 0 we

have γi,j = 0 and also P

St ∈ G(j)

St−1 = i

= 0. Thus, due to 2. also

P

St ∈ G(j)

St−1 ∈ G(i)

= 0 and hence 3. holds in this case. If otherwise

P

St−1 = i, St ∈ G(j)


> 0 due to (1) and the validity of both statements in 2.

γi,j = P

St ∈ G(j)

St−1 ∈ G(i)

· P

St = j

St ∈ G(j)

= νa(i),a(j) · pj.
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Finally, assume 3. to hold. Hence, for i, j = 1, . . . , k

P

St ∈ G(j)

St−1 ∈ G(i)

=


g∈G(j)



h∈G(i)


P

St−1 = h



P

St−1 ∈ G(i)

 · νa(h),a(g) · pg


= νa(i),a(j),

P

St ∈ G(j)

St−1 = i

=


g∈G(j)


νa(h),a(g) · pg


= νa(i),a(j).

If P

St−1 = i, St ∈ G(j)


= 0, again γi,g = 0 for all g ∈ G(j). Due to 3. we

further have for h ∈ G(i) and g ∈ G(j) γh,g = νa(i),a(g) · pg = γi,g = 0. Thus

also νa(i),a(j) = 0 and hence γi,j =

λG(Γ)


i,j

= 0. If otherwise P

St−1 = i, St ∈

G(j)

> 0 due to (1) we directly get pj = P


St = j

St−1 = i, St ∈ G(j)

, and

since pj is independent of i, pj = P

St = j

St ∈ G(j)

, which finally gives

γi,j = νa(i),a(j) · pj = P

St ∈ G(j)

St−1 ∈ G(i)

· P

St = j

St ∈ G(j)

=

λG(Γ)


i,j
.

Lemma 2. Let Γ = (γi,j)i,j=1,...,k denote the (ergodic) t.p.m. of the stationary
Markov chain (St)t. Suppose that G = {G1, . . . , Gr} and H = {H1, . . . Hq} are
two distinct partitions of the state space for which λG(Γ) = λH(Γ) = Γ and
H is not a refinement of G. Then there exists a partition I which is a strict
coarsening of G and for which λI(Γ) = Γ.

Proof of Lemma 2. Since H is not a refinement of G, there exist H ∈ H, G ∈ G
with H ∩G ̸= ∅ and H \G ̸= ∅, w.l.o.g. this is true for G1 and H1. Define the
partition I by

I1 = G1 ∪


{l : Gl∩H1 ̸=∅}
Gl,

Il = Gl, for l ∈ {1, . . . , r} with Gl ∩H1 = ∅.

Evidently I is a coarsening of G and has at least one element less than G. We
shall prove that λI(Γ) = Γ, that is,

γi,j = P

St ∈ I(j)

St−1 ∈ I(i)

· P

St = j

St ∈ I(j)


1 ≤ i, j ≤ k. (6)

Note that (6) in particular requires that rows of Γ with indices in the same
element of the partition I be equal. Since Γ = λG(Γ), this is true for G, and
hence evidently for all elements of the partition I exept for I1. Suppose that
i, j ∈ I1, i ∈ Gl, i

′ ∈ Gl′ , we need to show that the ith and the i′th row of Γ
be equal. By definition of I1, there exist j ∈ Gl ∩ H1 and j′ ∈ Gl′ ∩ H1, and
hence the ith and the jth row as well as the i′th and the j′th row of Γ are equal.
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But since also Γ = λH(Γ), the jth and the j′th row of Γ are also equal, and the
conclusion of equal rows for indices in the elements of I follows, formally,

γi,g = γh,g, i, h ∈ I ∈ I, 1 ≤ g ≤ k. (7)

Now, due to (7),


λI(Γ)


i,j

= P

St = j

St ∈ I(j)

· P

St ∈ I(j)

St−1 ∈ I(i)


=
πj

g∈I(j) πg
·


g∈I(j)



h∈I(i)


πh

l∈I(i) πl
· γh,g



=
πj

g∈I(j) πg
·


g∈I(j)
γi,g



h∈I(i)

πh
l∈I(i) πl

=
πj

g∈I(j) πg
·


g∈I(j)
γi,g,

(8)

where π = (π1, . . . , πk) denotes the stationary distribution of (St)t. Therefore,
in order to show (6), it sufficies to show that

γi,j
πj

=


g∈I(j) γi,g
g∈I(j) πg

, 1 ≤ i, j ≤ k. (9)

which is equivalent to

γi,j
πj

=
γi,a
πa
, 1 ≤ i, j ≤ k, a ∈ I(j). (10)

Indeed, (9) evidently implies (10), while using (10) one computes

γi,j =
1

g∈I(j) πg
·


g∈I(j)
πg γi,j =

1
g∈I(j) πg

·


g∈I(j)
πj γi,g =

πj
g∈I(j) πg

·


g∈I(j)
γi,g,

that is, (9).

Now, in order to show (10), we note that the corresponding property holds for
the partitions G and H, so that (10) evidently holds if I(j) ̸= I1. To cover this
case, suppose that j, a ∈ I1, so that j ∈ Gl and a ∈ Gl′ for some 1 ≤ l, l′ ≤ r.
By definition of I1, there exist j

′ ∈ Gl ∩H1 and a
′ ∈ Gl′ ∩H1, and therefore for

1 ≤ i ≤ k:
γi,j
πj

=
γi,j′

πj′
=
γi,a′

πa′
=
γi,a
πa
.

Proof of Theorem 1. Let

G∗
Γ ∈ argmin


cardG : G is partition of {1, . . . , k} with λG(Γ) = Γ


. (11)
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Note that λ{1},...,{k}
(Γ) = Γ is always satisfied. Suppose that H is a parti-

tion of {1, . . . , k} with Γ = λH(Γ), then H must be a refinement of G∗
Γ, since

otherwise by Lemma 2, there would exist a strict coarsening I of G∗
Γ satisfying

Γ = λI(Γ), thus contradicting the choice of G∗
Γ. Therefore G∗

Γ is the unique
minimizer in (11).

Proof of Theorem 2. Denote by (Y
(G)
t , T

(G)
t )t the HMMwith Markov chain (T

(G)
t )t

having t.p.m. λG(Γ) and observable process (Y
(G)
t )t with state dependent densi-

ties fj(x), j = 1, . . . , k.

Proving (Y
(G)
t )t

(d)
= (X

(G)
t )t yields the claim, since then under λG(Γ) = Γ di-

rectly (Xt)t
(d)
= (Y

(G)
t )t (t.p.m.’s and state dependent densities coincide) and

thus (Xt)t
(d)
=

X

(G)
t


t
.

The remainder is to prove (Y
(G)
t )t

(d)
= (X

(G)
t )t: At first, reducing dependence

information does not change the stationary distribution of the Markov chain,
i.e. for j ∈ {1, . . . k}, we have

P

T

(G)
t = j


= P


St = j


.

To show this, let π denote the stationary distribution of (St)t, we have

k

i=1

πi P

St ∈ G(j)

St−1 ∈ G(i)

=

r

l=1



g∈Gl

πg P

St ∈ G(j)

St−1 ∈ Gl



=
r

l=1


P

St ∈ G(j)

St−1 ∈ Gl


P

St ∈ Gl


=

r

l=1


P

St ∈ G(j), St−1 ∈ Gl



=P

St ∈ G(j)


,

and thus

π ·

λG(Γ)


·,j =

k

i=1


πi P


St ∈ G(j)

St−1 ∈ G(i)

P

St = j

St ∈ G(j)


= P

St = j

St ∈ G(j)
 k

i=1


πi P


St ∈ G(j)

St−1 ∈ G(i)


= P (St = j).

Further, as mentioned before, for the MC (S
(G)
t )t it holds

P

S
(G)
t = l


= P


St ∈ Gl


, l = 1, . . . , r


Γ(G)

l,m
= P


S
(G)
t = l

S(G)
t−1 = m


= P


St ∈ Gl

St−1 ∈ Gm


, l,m = 1, . . . , r.
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Further, since fj(x) = fXt|St=j(x) denotes the state dependent density of the
original HMM, the state dependent densities of the transformed HMMs are
given for x ∈ Rd by

f
(G)
l (x) = f

X
(G)
t |S(G)

t =l
(x) =



g∈Gl

P

St = g|St ∈ Gl


· fg(x), l = 1, . . . , r

and

fj(x) = f
Y

(G)
t |T (G)

t =j
(x), j = 1, . . . , k.

Assuming the Markov chain to start in its stationary distribution given by the
t.p.m., the density of the observable process (Y

(G)
t )t=1,...,T of the reduced model

is given by

f
(Y

(G)
1 ,...,Y

(G)
T )

(x1, . . . , xT )

=
k

j1,...,jT=1


P

T

(G)
1 = j1


fj1(x1)

T

t=2

P

T

(G)
t = jt

T (G)
t−1 = jt−1


fjt(xt)



=
r

l1,...,lT=1



g1∈Gl1

· · ·


gT∈GlT


P

S1 = g1


fg1(x1)

T

t=2


λG(Γ)


gt−1,gt

fgt(xt)


(12)

Since here gt−1 ∈ Glt−1 and gt ∈ Glt ,


λG(Γ)


gt−1,gt

=

Γ(G)

lt−1,lt
P

St = gt|St ∈ Glt


.

Therefore

f
(Y

(G)
1 ,...,Y

(G)
T )

(x1, . . . , xT )

=
r

l1,...,lT=1



g1∈Gl1

· · ·


gT∈GlT


P

S1 = g1


fg1(x1)

T

t=2


Γ(G)

lt−1,lt
P

St = gt|St ∈ Glt


fgt(xt)



and hence in the latter sum only P (ST = gT |ST ∈ GlT ) · fgT (x) depends on gT ,
i.e. everything else can be factorized. Iterating this procedure over gt gives

f
(Y

(G)
1 ,...,Y

(G)
T )

(x1, . . . , xT )

=
r

l1,...,lT=1

 

g1∈Gl1

P

S1 = g1


fg1(x1)

T

t=2


Γ(G)

lt−1,lt



gt∈Glt

P (St = gt|St ∈ Glt)fgt(xt)


=
r

l1,...,lT=1


P

S
(G)
1 = l1


f
(G)
l1

(x1)
T

t=2


Γ(G)

lt−1,lt
f
(G)
lt

(xt)


= f
(X

(G)
1 ,...,X

(G)
T )

(x1, . . . , xT ).
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Proof of Theorem 3. In Γη one arbitrary column is redundant, leading to k2 −
k parameters. To prove the claim it is sufficient to show that Γη can be
parametrized in dependence of G via (k2 − k) parameters such that (k2 − 2k −
r2 + 2r) of them are zero if and only if η ∈ Θ0,G.

Since we assume that PΓη(St ∈ Gl|St−1 ∈ Gm) > 0, we may set

A = (αi,l) i=1,...,k

l=1,...,r
, (αi,l) =



g∈Gl

(Γη)i,g,

B = (βi,j)i,j=1,...,k, βi,j = α−1
i,a(j) · (Γη)i,j.

Obviously, (Γη)i,j = αi,a(j) · βi,j. In the parametrization via A,B also one
column in A (since all rows of A have to sum up to one), and r columns in
B (since all columns of B with indices in the same group have to sum up
to one) are redundant. In order to access the non-redundant parameters in
a convenient way, consider a label switching in the Markov chain, such that
G1 = {1, . . . , n1}, G2 = {n1+1, . . . , n2}, . . . , Gr = {nr−1+1, . . . , nr}. Thus, the
Markov chain can be parametrized via

A = (αi,l) i=1,...,k

l=1,...,r−1
, B = (βi,j) i=1,...,k

j=1,...,k, j ̸=n1,...,nr

.

Note,

αi,l = PΓη


St ∈ Gl|St−1 = i


, βi,j = PΓη


St = j|St−1 = i, St ∈ Gl


.

Due to Lemma 1, λG(Γη) = Γη, i.e. H0, is equivalent to

αi,l = PΓη


St ∈ Gl|St−1 ∈ Ga(i)


, i = 1, . . . , k, l = 1, . . . , r − 1,

βi,j = PΓη


St = j|St ∈ Gl


, i = 1, . . . , k, j = 1, . . . , k, j ̸= n1, . . . , nr.

Therefore, H0 is equivalent to

α1+n(m−1),l = · · · = αnm,l, m = 1, . . . , r, l = 1, . . . , r − 1,

β1,j = · · · = βk,j, j = 1, . . . , k, j ̸= n1, . . . , nr

where n0 = 0, which yields (r − 1) · (k − r) restrictions to A and (k − r) ·
(k − 1) restrictions to B. Altogether, Γη can be parametrized via matrices
A, B and H0 can be formulated via equality restrictions according to the new
parameters. Thus, doing a second re-parametrization, where for each group of
parameters that should be equal under H0, all these parameters are expressed
as the difference to one base parameter, yields the requested parametrization.
Finally, k2 − 2k − r2 + 2r parameters in the re-parametrized version being zero
is equivalent to H0, which concludes the proof.
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B. Additional estimation results

B.1. Results concerning the simulations

All transition probability matrices are given in percent.

1. Five-state normal HMM with two independence clusters

The estimated BIC-optimal unrestricted five-state HMM of the first simulated
dataset is given by

µ̃1 =


2.51
1.51

T

µ̃2 =


3.57
2.01

T

µ̃3 =


2.03
6.98

T

µ̃4 =


2.94
0.40

T

µ̃5 =


2.48
6.02

T

Σ̃1 =


0.20 0.14
0.14 0.32


Σ̃2 =


0.29 −0.23
−0.23 0.32


Σ̃3 =


0.43 −0.37
−0.37 0.42



Σ̃4 =


1.09 0.13
0.13 1.04


Σ̃5 =


0.56 0.42
0.42 0.49



Γ̃ =




25.01 20.21 40.10 12.42 2.26
21.95 19.54 46.37 9.72 2.43
29.31 13.69 40.86 13.98 2.16
6.04 3.14 10.62 70.27 9.94
9.02 0.00 7.11 8.93 74.93



.

Under the independence restriction G∗ =

{1, 2, 3}, {4}, {5}


, which has been

found by backward selection, the estimated HMM is given by

µ̂1 =


2.48
1.47

T

µ̂2 =


3.53
2.03

T

µ̂3 =


2.03
6.98

T

µ̂4 =


2.94
0.39

T

µ̂5 =


2.48
6.02

T

Σ̂1 =


0.19 0.13
0.13 0.30


Σ̂2 =


0.30 −0.22
−0.22 0.31


Σ̂3 =


0.43 −0.37
−0.37 0.42



Σ̂4 =


1.09 0.12
0.12 1.03


Σ̂5 =


0.56 0.43
0.43 0.49



Γ̂ =




26.00 17.25 41.71 12.82 2.22
26.00 17.25 41.71 12.82 2.22
26.00 17.25 41.71 12.82 2.22
6.36 4.22 10.20 69.28 9.94
4.72 3.13 7.57 9.67 74.91



.
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2. Two-state skew-normal HMM

The estimated BIC-optimal unrestricted five-state HMM of the second simulated
dataset is given by

µ̃1 =


−4.52
3.16

T

µ̃2 =


−3.52
2.87

T

µ̃3 =


−2.00
2.35

T

µ̃4 =


−0.88
5.94

T

µ̃5 =


0.69
5.73

T

Σ̃1 =


0.76 0.73
0.73 0.88


Σ̃2 =


1.08 0.62
0.62 0.89


Σ̃3 =


2.57 0.35
0.35 0.84



Σ̃4 =


0.16 0.01
0.01 0.94


Σ̃5 =


1.33 −0.08
−0.08 1.03



Γ̂Nor =




25.92 39.45 23.92 7.37 3.35
23.35 44.16 21.30 2.43 8.75
20.72 44.38 25.37 4.12 5.41
2.89 4.32 2.50 33.76 56.53
3.75 2.85 3.45 36.20 53.75



.

Under the independence restriction G∗ =

{1, 2, 3}, {4, 5}


, which has been

found by backward selection, the estimated HMM is given by

µ̂1 =


−4.58
3.13

T

µ̂2 =


−3.54
2.89

T

µ̂3 =


−2.02
2.38

T

µ̂4 =


−0.88
5.93

T

µ̂5 =


0.70
5.73

T

Σ̂1 =


0.74 0.72
0.72 0.88


Σ̂2 =


1.03 0.61
0.61 0.91


Σ̂3 =


2.53 0.34
0.34 0.85



Σ̂4 =


0.17 0.01
0.01 0.95


Σ̂5 =


1.33 −0.08
−0.08 1.02



Γ̂ =




89.37 ·



0.26 0.47 0.27
0.26 0.47 0.27
0.26 0.47 0.27


 10.63 ·



0.39 0.61
0.39 0.61
0.39 0.61




09.92 ·

0.26 0.47 0.27
0.26 0.47 0.27


90.08 ·


0.39 0.61
0.39 0.61





.

B.2. Results concerning the application

The estimated AIC-optimal unrestricted six-state HMM is given by

µ̃ =

−0.252 0.821 −0.202 0.119 0.018 0.008



σ̃ =

1.454 0.652 0.561 2.281 0.796 0.293



Γ̃ =




47.75 28.74 23.42 0.08 0.01 0.00
11.86 15.53 71.96 0.65 0.00 0.00
54.48 33.26 8.01 0.00 4.26 0.00
2.53 0.00 0.00 97.47 0.00 0.00
0.00 0.00 0.00 0.24 60.31 39.45
3.22 1.05 0.00 0.18 69.36 26.19



.
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When estimating under the independence restrictions implied by G∗ =
{1, 2}, {3}, {4}, {5, 6}


, we obtain

µ̂ =

−0.259 0.717 −0.290 0.072 0.026 0.006



σ̂ =

1.531 0.695 0.625 2.244 0.805 0.296



Γ̂ =




51.04 ·

0.5043 0.4957
0.5043 0.4957


48.58 ·


1
1


0.37 ·


1
1


0.01 ·


0.661 0.339
0.661 0.339



95.64 ·

0.5043 0.4957


0.00 0.00 4.36 ·


0.661 0.339



2.57 ·

0.5043 0.4957


0.00 97.43 0.00 ·


0.661 0.339



1.42 ·

0.5043 0.4957
0.5043 0.4957


0.00 ·


1
1


0.22 ·


1
1


98.36 ·


0.661 0.339
0.661 0.339





.
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1 Introduction

The notion of twin peaks in the cross-country distribution of gross domestic
product (GDP) per capita was introduced by Quah (1993, 1996, 1997). He
interpreted the emergence of twin peaks as polarization of the distribution of
per capita income into a rich and a poor convergence club. Bianchi (1997)
confirmed Quah’s observation of twin peaks via rigorous statistical testing. The
contributions of Quah are part of a larger literature on convergence (e.g. Barro,
1991; Barro and Sala-i-Martin, 1992; Mankiw et al., 1992; Sala-i-Martin, 1996;
Galor, 1996; Jones, 1997; Graham and Temple, 2006). It is controversial in this
literature whether the twin peaks represent locally stable equilibria/convergence
clubs (Quah, 1996) or whether they are only a temporary phenomenon caused
by a high frequency of growth miracles (Jones, 1997).

The unified growth theory (c.f. Galor, 2010 for an overview) provides another
explanation for multiple regimes in the cross-country distribution of GDP per
capita which also uncovers the forces that have lead to the emergence of these
regimes. The theory suggests that growth segments economies into three funda-
mental regimes: a Malthusian regime with slow growing economies, fast growing
economies in a sustained growth regime, and a third group in the transition from
one regime to the other. One important difference to models with multiple equi-
libria is that this segmentation does not represent the long-run steady state of
these economies. Variations in the levels of income only reflect country-specific
characteristics and not the actual stage of development. Thus, there are no
critical levels that permit economies to switch from one regime to the other, but
rather critical rates of progress.

Recent theoretical work by Schumacher (2009) and Strulik (2012) provides alter-
native explanations for the emergence of multiple equilibria in the cross-country
distribution of GDP per capita. Schumacher (2009) endogenizes discounting via
wealth in a neoclassical growth model and shows that this can generate multiple
equlibria. Strulik (2012) formulates an endogenous growth theory with endoge-
nous patience, which can explain the take-off from stagnation to modern growth.
He concludes that either all countries adjust to the same balanced growth path
or that lagging countries will never catch up.

In this paper we challenge Quah’s twin peaks result. We show that the number of
peaks of a distribution is not preserved under strictly monotonic transformations
of the data: a simple log transformation may change the number of peaks in
the crosscountry distribution of GDP per capita. This fact casts doubts on the
economic interpretation of twin peaks: it does not make much sense to call a
country high income on the original scale of the GDP per capita data and middle
income on a log scale of the same data. A suitable measure of convergence clubs
or growth regimes should not be affected by a simple log transformation of the
data.
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We therefore propose another method to identify different regimes within a
distribution which does not have this problem. We will use mixture models to
estimate the cross-country distribution of GDP per capita and to statistically as-
sign countries to different convergence clubs. Mixture models are not new to the
economic literature and have been used in quite a few articles to model income
distributions. Most prominently, Paap and Dijk (1998) used a two-component
mixture, consisting of a truncated normal distribution and a Weibull distribu-
tion, to model the cross-country distribution of GDP per capita. Nevertheless,
we are not aware of any article that challenges the twin peaks approach and
suggests mixture models as an alternative.

2 Data

We use the Penn World Tables 7.0 (PWT) data for the period from 1970 to 2009
(Heston et al. 2011). The PWT is a panel dataset containing 190 countries and
38 variables. We use the variable rgdpch, which is PPP converted GDP per
capita (chain series) at 2005 constant prices. We consider the mentioned GDP
per capita variable on its original scale (US$1000) and on a logarithmic scale
with base 10.

We exclude a few small countries whose economies heavily depend on oil export
from the analysis: Bahrain, Brunei, Equatorial Guinea, Gabon, Kuwait, Qatar,
Suriname, Timor-Leste and Trinidad and Tobago. The reason for this choice is,
that these countries show large fluctuations in GDP per capita, which are mostly
driven by fluctuations of the oil price. Arguably, these countries are not essential
for understanding multiple equilibria in the world’s cross-country distribution
of GDP per capita. The PWT dataset contains two versions of China, we thus
exclude the second version (CH2) from the analysis. We believe that using a
balanced panel is most appropriate for analyzing the cross-country distribution
of GDP per capita over time, because a balanced panel is not affected by changes
in the sample composition. This leaves 151 countries in the dataset, for which
we have GDP per capita data for all years from 1970 to 2009.

3 Peaks

Figure 1 shows simple kernel density estimates of the cross-country distribution
of GDP per capita in 1985 on the original scale (US$1000) and on a logarith-
mic scale with base 10. The density of the data on the original scale has two
peaks and the density of the data on a log scale has three peaks. This simple
picture illustrates that the number of peaks is not preserved under a simple log
transformation: Quah’s twin peaks become triple peaks on the log scale.
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However, the different numbers of peaks in the plots could be a simple artifact
of the nonparametric curve estimates, e.g. from inaccurate choice of the tuning
parameter. It is therefore necessary to validate the statistical significance of the
peaks via rigorous statistical testing. To this end we utilize Silverman’s test.
Formally, a peak of a density f (and similarly of the kernel estimator f̂) is a
local maximum of f (or f̂). Silverman (1981) showed that the number of modes
of f̂ is a right-continuous, monotonically decreasing function of the bandwidth
h if the normal kernel K(x) = (2π)−1 exp(−x2/2) is employed. This allowed
him to define the k-critical bandwidth hc(k) as the minimal bandwidth h for
which f̂ still just has k peaks and not yet k + 1 peaks. Based on the notion
of the k-critical bandwidth, Silverman (1981) proposed a bootstrap test for the
hypotheses

H̃k : f has at most k modes against K̃k : f has more than k peaks.

This test is known to be slightly conservative (even asymptotically), for H̃1 we
therefore use the adjustment proposed by Hall and York (2001). The tests were
performed using our R-package silvermantest (available online at http://www.uni-
marburg.de/fb12/stoch/research/rpackage). We apply Silverman’s test to the
distributions of GDP per capita and log-GDP per capita for all years from 1970
to 2009. We report the p-values in Tables 1 and 2.

For the distribution of GDP per capita we can reject the null hypothesis of a
single peak from 1970 to 1990, but we cannot reject the null hypothesis of two
peaks in favor of three or more peaks. This is basically the period that Quah
studied in his influential papers, and our results confirm his findings. From
1991 onwards we can also reject the null hypothesis of two peaks in favor of
three peaks (but not more). Thus, we find evidence for two peaks from 1970
to 1990 and for three peaks thereafter. For the distribution of log-GDP per
capita we can reject the null hypothesis of two peaks in favor of three peaks
(but not more) from 1970 to 1990, but we fail to reject the null hypothesis of a
single peak. Note that this result does not mean that the null hypothesis of a
single peak is correct, it just means that there is not enough evidence to reject
it at a level of 5%. Thus, there is evidence of three peaks, but none of only
two peaks from 1970 to 1990. From 1991 onwards we cannot reject any of the
null hypotheses (with the exception of a few transition years from 1992 to 1994
where the distribution appears to have four peaks) and thus find evidence for
only a single peak.

What do we learn from this analysis? The number of peaks is relevant informa-
tion for the proper visualization of data. However, our results show clearly that
peaks should neither be used for economic interpretation of the cross-country
distribution of GDP per capita nor for assigning countries to convergence clubs,
growth regimes and the like. It does not make sense to conclude that the distri-
bution of the GDP per capita consists of two convergence clubs between 1970
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and 1990, while the distribution of log GDP per capita consists of three conver-
gence clubs over the same period.

4 Components

Methods

We now turn to mixture models to estimate the cross-country distribution of
GDP per capita. Let fX denote the density of the cross-country distribution of
GDP per capita X for a given year. We model

fX(x) = α1g(x;φ1) + . . .+ αmg(x, φm), x > 0,

where g(x;φ) is a parametric family of densities and the weights αi ≥ 0 sum up
to one. There is no general simple connection between the number of modes of
f and the number of components m. Typically, for single-peaked g, the number
of peaks of f will be at most m, but often will be less than m. The number
of components is preserved if the data are transformed via a strictly monotonic
transformation (if densities are correspondingly transformed). We let Y = logX
and model the density of log-income fY by

fY (y) = α1ϕ(y;µ1, σ1) + . . .+ αmϕ(y;µm, σm),

where ϕ(·, µ, σ) is the density of the normal distribution with mean µ ∈ R and
standard deviation σ > 0. Then g(·;φ) in the representation of fX is the log-
normal distribution. The number of components is determined via statistical
inference: We aim to test successively for ascending m in N the hypotheses

Hm0 : m0 = m against Km0 : m0 ≥ m+ 1,

where m0 ∈ N is the true, unknown number of components. Testing in para-
metric models is often accomplished by using the likelihood ratio test (LRT).
However, the standard theory of the LRT does not apply for the number of
components in finite mixture models (Dacunha-Castelle and Gassiat, 1999).
Recently, Chen et al. (2001, 2004) and Chen and Kalbfleisch (2005) suggested
modified LRTs, which retain comparatively simple limit theory as well as the
good power properties of the LRT. Unfortunately, these tests are only valid if
the switching parameter is one-dimensional and hence we cannot apply them
for selecting the number of components.

In our setting with switching µ and σ only an asymptotic test for homogeneity,
i.e. for H1, is available, see Chen and Li (2009). Therefore, in order to test all
hypotheses under investigation with the same methodology, we apply the com-
monly used parametric bootstrap.4 As is well known, since µ and σ both switch

4We used 1000 bootstrap replications.
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the likelihood function is unbounded if small values of the standard deviation
are allowed. Therefore, we use a penalized log-likelihood as proposed in Chen
and Li (2009) as follows:

ln(X1, . . . , Xn;µ,σ,α) =
n

i=1

log
 m

j=1

αjϕ(Xi;µj, σj)

+ pn(X1, . . . , Xn,σ),

where µ = (µ1, . . . , µm), σ = (σ1, . . . , σm) and α = (α1, . . . , αm−1) with αm :=
1−m−1

j=1 αj for m > 1 and α = 1 for m = 1, and

pn(X1, . . . , Xn,σ) = − 1

20

m

j=1


s2n
σ2
j

+ log


σ2
j

s2n


,

where s2n = n−1
n

i=1(Xi − X̄)2 with X̄ = n−1
n

i=1Xi. The function pn penal-
izes small values of a σj, and guarantees a bounded (penalized) likelihood.

After fitting the model and selecting the number of components, we can use the
mixture model for cluster analysis, see e.g. Fraley and Raftery (2002). Each
observation can be assigned a-posteriori probabilities to belong to each of the
components in the mixture model. Specifically, the a-posteriori probability of
an observation y to belong to group j is equal to

pj(y) =
α̂jϕ(y; µ̂j, σ̂j)

α̂1ϕ(y; µ̂1, σ̂1) + . . .+ α̂mϕ(y; µ̂m, σ̂m)
,

for m = 2 or m = 3 in case of a two- or a three-component mixture. Therefore,
we do not merely assign an income level to each country, but rather a probability
distribution, which makes transitions from one group to the other much more
transparent. One may then assign an observation y to one of the components
by using the maximum a-posteriori estimate (MPE), which assigns the j to the
country i for which pj(y) is maximal. One can also determine the threshold
tj,j+1, j = 1, . . . ,m − 1, for the values of the log-GDP per capita at which the
MPE changes between group j and j + 1, by solving the equations

pj(tj,j+1) = pj+1(tj,j+1),

restricted to the interval [µ̂j, µ̂j+1]. This yields three levels of income which we
label poor, intermediate, and rich, with indices 1, 2, 3 when a three-component
mixture is fitted or two levels of income which we label poor and rich when a
two-component mixture is fitted.

Results

Table 3 displays the results of the parametric bootstrap test based on 1000
bootstrap samples. We can always reject the hypothesis of homogeneity, i.e. of
a single normal distribution. Further, we cannot reject the null hypothesis of
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two components in 1970, 1971 and 1972 at the 5 percent significance level,
however, the p-values are already quite. From 1973 to 1995 we can reject the
null hypothesis of two components with p-values at the 5% level. From 1996 to
2001 the p-values are still quite low, but we cannot reject the null hypothesis
at the 5 % level anymore. After 2002 the p-values are rather large and the null
hypothesis cannot be rejected. Overall, we observe a three component mixture
that evolves into a two component mixture. We thus model the cross country
distribution of GDP per capita with three components from 1970 to 1995 and
with two components from 1996 to 2009.

In Figure 2 we show the fitted three-component mixtures for 1975 and 1985 and
compare it to the corresponding kernel density estimators based on the smallest
bandwidths which produce three peaks. Further, Figure 3 shows the fitted two-
component mixtures for 1996 and 2005 with the corresponding kernel density
estimators based on the smallest bandwidths which produce two peaks. We
also provide quantile-quantile (qq) plots of the data against the fitted mixture
models, see figure 4 and 5. The qq-plots show that the three respectively the
two component mixtures describe the data well.

Figure 6 shows the development of the different component means over time as
well as the thresholds where the maximum a-posteriori estimate changes from
one component to the other. The component means are also shown in Table 4.
The mean of the low-income and the middle-income component hardly changes
between 1970 and 1990, but both component means show substantial increases
from 1991 to 1995. The mean of the high-income component steadily grows
from 1970 to 1995 (by roughly 50 percent over the entire period).

After 1995 the three components merge into two components. The new higher-
income component basically continues on the growth path of the high-income
component from the previous model, whereas, the low-income and middle-
income components from the previous model merge into a new lower-income
component. Both component means steadily grow between 1996 and 2009 (both
roughly by one third over the entire period).

The observation that the low-income and middle-income components of the
three-component model merge into a new lower-income component in the two-
component model is also supported by the component weights which are dis-
played in Table 5. In 1970 the low-income component constitutes about 50
percent of the countries, whereas the middle-income and high-income compo-
nents represent 33 and 17 percent respectively. Over time, this picture reverses:
Between 1970 and 1990, the size of the low-income component decreases to
roughly 31 % and the size of the middle income component increases to 50 %.
After 1996 the lower-income component is about as large as the low-income and
middle-income components were jointly, which again supports the observation
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that those two components merged into a new lower-income component. Be-
tween 1991 and 1995 there is some variation in the component sizes, but before
and after this picture is remarkably stable.

It is also important to keep the relative component sizes in mind when we
interpret the component means. Even though the means of both the low-income
and middle-income components stagnated between 1970 and 1990, there was
still quite a bit of growth, because many countries made transition from the
low-income component to the middle income component.

5 Concluding Remarks

In this paper we challenge the long standing twin peaks finding in the cross-
country distribution of GPD per capita. We show that the number of peaks of
a distribution depends on the scale (e.g. original or logarithmic) and argue that
this feature is highly undesirable for economic interpretations. As an alternative
approach to peaks, we use finite mixture models to investigate the cross-country
distribution of GDP per capita, since (1) the number of components does not
depend on the scale, (2) components in the mixture arguably correspond better
to income clubs in the distribution than peaks, and (3) finite mixture models
allow for an accurate analysis of the intra-distributional dynamics by using a-
posteriori probability estimates.

Interestingly, our conclusions are not so different from Quah’s, however, this
might well be a coincidence. For the period that Quah studied, we find that
the cross-country distribution of GDP per capita consisted of three components,
which seem more like transition regimes rather than convergence clubs. Only
for more recent years did we find that the cross-country distribution of GDP
per capita consists of two groups which are quite stable and follow their own
growth paths, and thus could potentially be interpreted as convergence clubs. In
any case, we wanted to make the point that in our opinion, components should
take the place of peaks in the literature on economic growth, because they do
not suffer from the inherent shortcomings that peaks have and thus can lead to
more meaningful economic interpretations.
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Figure 1: Kernel density estimate for GDP per capita in US$1000 (a) and log
GDP per capita (b) for 1985. We use the logarithm to the base 10.
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1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
at most 1 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.030 0.023 0.008
at most 2 0.267 0.245 0.286 0.170 0.154 0.429 0.932 0.814 0.954 0.916
at most 3 0.585 0.644 0.620 0.768 0.874 0.812 0.858 0.528 0.740 0.854
at most 4 0.170 0.232 0.238 0.624 0.775 0.678 0.728 0.770 0.352 0.596

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
at most 1 0.001 0.002 0.001 0.000 0.000 0.000 0.007 0.000 0.001 0.000
at most 2 0.650 0.302 0.672 0.806 0.430 0.364 0.390 0.784 0.833 0.508
at most 3 0.569 0.251 0.814 0.598 0.316 0.038 0.042 0.476 0.361 0.523
at most 4 0.546 0.954 0.836 0.520 0.784 0.750 0.488 0.152 0.184 0.175

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
at most 1 0.003 0.011 0.021 0.044 0.041 0.016 0.009 0.011 0.021 0.061
at most 2 0.251 0.024 0.017 0.002 0.008 0.031 0.142 0.138 0.042 0.002
at most 3 0.434 0.460 0.038 0.022 0.009 0.065 0.178 0.247 0.407 0.296
at most 4 0.326 0.124 0.134 0.106 0.222 0.254 0.245 0.116 0.188 0.220

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
at most 1 0.031 0.029 0.026 0.036 0.029 0.025 0.011 0.006 0.005 0.009
at most 2 0.000 0.000 0.002 0.000 0.000 0.002 0.008 0.017 0.042 0.034
at most 3 0.300 0.136 0.552 0.580 0.638 0.676 0.608 0.310 0.221 0.154
at most 4 0.221 0.101 0.536 0.235 0.278 0.378 0.416 0.144 0.022 0.204

Table 1: P-values for testing the number of peaks in the cross-country distribu-
tion of GDP per capita with Silverman’s test.

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
at most 1 0.215 0.212 0.129 0.011 0.033 0.104 0.308 0.551 0.393 0.529
at most 2 0.084 0.051 0.003 0.006 0.013 0.024 0.034 0.130 0.075 0.118
at most 3 0.202 0.352 0.413 0.858 0.824 0.360 0.144 0.054 0.048 0.011
at most 4 0.729 0.596 0.656 0.654 0.367 0.290 0.711 0.276 0.822 0.850

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
at most 1 0.533 0.163 0.249 0.167 0.197 0.221 0.180 0.246 0.264 0.264
at most 2 0.128 0.048 0.039 0.034 0.018 0.011 0.013 0.020 0.036 0.012
at most 3 0.002 0.032 0.063 0.699 0.859 0.956 0.607 0.850 0.734 0.404
at most 4 0.811 0.822 0.414 0.770 0.780 0.816 0.744 0.642 0.764 0.348

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
at most 1 0.220 0.220 0.228 0.275 0.246 0.227 0.173 0.168 0.139 0.103
at most 2 0.008 0.166 0.118 0.180 0.128 0.352 0.386 0.235 0.202 0.154
at most 3 0.878 0.004 0.013 0.013 0.120 0.214 0.408 0.166 0.389 0.388
at most 4 0.708 0.840 0.457 0.605 0.199 0.070 0.174 0.848 0.594 0.091

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
at most 1 0.136 0.105 0.102 0.109 0.133 0.126 0.157 0.171 0.245 0.262
at most 2 0.208 0.140 0.068 0.122 0.173 0.112 0.112 0.158 0.117 0.104
at most 3 0.048 0.326 0.259 0.475 0.544 0.667 0.566 0.492 0.563 0.722
at most 4 0.126 0.284 0.444 0.472 0.138 0.250 0.242 0.258 0.261 0.436

Table 2: P-values for testing the number of peaks in the cross-country distribu-
tion of log GDP per capita with Silverman’s test.
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1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
1 vs. 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
2 vs. 3 0.07 0.16 0.16 0.01 0.01 0.02 0.01 0.02 0.07 0.02

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
1 vs. 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
2 vs. 3 0.02 0.01 0.00 0.01 0.02 0.01 0.01 0.02 0.04 0.02

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
1 vs. 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
2 vs. 3 0.01 0.04 0.41 0.07 0.07 0.04 0.06 0.19 0.06 0.05

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
1 vs. 2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
2 vs. 3 0.16 0.10 0.05 0.27 0.40 0.23 0.33 0.38 0.41 0.29

Table 3: Bootstrap p-values for testing the hypotheses of one and two compo-
nents in the cross-country distribution of GDP per capita.
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Figure 2: Fitted three-component mixture densities (solid line) and kernel den-
sity estimate based on hc(3) (dashed line) for the log-data.
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Figure 3: Fitted two-component mixture densities (solid line) and kernel density
estimate based on hc(2) (dashed line) for the log-data.
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Figure 4: QQ plot of the log-data with three components.
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Figure 5: QQ plot of the log-data with two components.
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Figure 6: Estimated means (based on the log GDP data, but displayed on the
original scale) of the three or respectively two distinct groups (solid
lines). Income levels where the maximum a-posteriori estimates switch
from one group to the other (dashed lines).
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low middle high
1970 1136 4669 16651
1971 1129 4719 17225
1972 1042 4411 17641
1973 983 4475 18726
1974 1000 4652 19058
1975 948 4463 18980
1976 881 4290 19457
1977 886 4314 19408
1978 928 4547 19607
1979 798 4025 20385
1980 933 4838 20910
1981 979 5038 20604
1982 1025 5202 20908
1983 916 4796 21196
1984 915 4782 21739
1985 930 4728 22048
1986 922 4798 22407
1987 962 5144 23678
1988 927 4847 23933
1989 952 5040 24853
1990 916 4985 24721
1991 842 4401 24771
1992 1120 5649 23460
1993 1292 6245 22985
1994 1342 6416 23634
1995 1472 6773 24290

(a) Component means for the years
1970 to 1995 (balanced dataset).

low high
1996 2752 25910
1997 2799 26646
1998 2842 27211
1999 2901 27807
2000 2964 28897
2001 2953 28827
2002 3016 29470
2003 3137 30396
2004 3308 31732
2005 3423 32402
2006 3591 33512
2007 3760 34544
2008 3905 34259
2009 3946 32791

(b) Component means for
the years 1996 to 2009
(balanced dataset).

Table 4: Estimated means (based on the log GDP data, but displayed on the
original scale) of the three or respectively two distinct groups.
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low middle high
1970 0.50 0.33 0.17
1971 0.48 0.35 0.17
1972 0.43 0.40 0.17
1973 0.40 0.44 0.17
1974 0.39 0.44 0.17
1975 0.35 0.49 0.15
1976 0.30 0.56 0.14
1977 0.29 0.56 0.15
1978 0.31 0.54 0.16
1979 0.23 0.62 0.15
1980 0.33 0.51 0.16
1981 0.35 0.47 0.17
1982 0.37 0.46 0.17
1983 0.33 0.51 0.17
1984 0.33 0.49 0.18
1985 0.33 0.49 0.18
1986 0.32 0.50 0.18
1987 0.34 0.48 0.18
1988 0.30 0.51 0.18
1989 0.31 0.52 0.17
1990 0.31 0.50 0.19
1991 0.25 0.57 0.18
1992 0.42 0.36 0.22
1993 0.49 0.27 0.24
1994 0.50 0.25 0.24
1995 0.53 0.23 0.24

(a) Component weights for the years
1970 to 1995 (balanced dataset).

low high
1996 0.81 0.19
1997 0.81 0.19
1998 0.81 0.19
1999 0.81 0.19
2000 0.82 0.18
2001 0.81 0.19
2002 0.81 0.19
2003 0.82 0.18
2004 0.83 0.17
2005 0.82 0.18
2006 0.82 0.18
2007 0.83 0.17
2008 0.83 0.17
2009 0.83 0.17

(b) Component weights for
the years 1996 to 2009
(balanced dataset).

Table 5: Estimated weights (based on the log GDP data) of the three or respec-
tively two distinct groups.
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