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Abstract

In this work we investigate the wave propagation in three different complex
systems. In the first two systems we focus on the wave propagation through
random potentials, the first one in a microwave and the second one in an
acoustic setup. In both systems we focus on the non-Gaussian properties of
the measured quantities. The third system is a paradigmatic example of a
fully chaotic open system with a fractal repeller. Here the relation of the
classical periodic orbits and quantum mechanical quantities is studied.
In the first experiment we induce a potential into the microwave cavity by
placing randomly distributed metallic scatterers on the bottom plate. Spa-
tially resolved measurements of the full wave function reveal strong intensity
fluctuations and a condensation of the wave flow along classical caustics.
Additionally the scaling behavior of the branching with respect to the stan-
dard deviation of the potential is investigated and the predicted exponent of
−2/3 is reproduced. As there are several open modes in the cavity due to
the high frequency, effects of mode interference and mode coupling are found
and explained, which go beyond the theoretical model. Perturbation theory
of the Helmholtz equation for non-parallel top and bottom plate reveals ex-
tra source terms for the wave function, which are induced by the other open
modes. These dynamics are also found in the experimental data.
The second experiment deals with an acoustic setup, where the sound of a
turbulent air flow is recorded. Here strong deviations from the central limit
theorem, which predicts a Gaussian distribution of wave intensities, are ob-
served. In a second experiment performed in a wind tunnel a monochromatic
sound wave is sent through the air flow. The hope to learn something about
the properties of the turbulence by investigating the modulations of the orig-
inal sound is not met. But again non-Gaussian behavior is found.
In the third part of this thesis another complex system is studied in a mi-
crowave setup: The n-disk system consists of n equal disks placed on an
equilateral polygon in a two dimensional plane. Such an open systems pro-
vides complex resonances, which are extracted from our measured spectra
via an elaborate algorithm, the harmonic inversion. The challenges of this
extraction are discussed in detail and possible solutions for arising problems
are suggested. The finally obtained resonances are used for the calculation
of the counting function of the real parts, whose growth is predicted by the
Hausdorff dimension as leading order. The distributions of the imaginary
parts are studied with respect to the opening of the system. The largest
(negative) imaginary part defines the spectral gap, which is compared to
predictions, which can be calculated by using the periodic orbits of the sys-

I



tem. By similar means a suggestions for the development of the maximum
of this distribution is tested. Moreover the experimental data is compared
to the quantum mechanical calculation of the system.

Zusammenfassung

In dieser Arbeit wird die Wellenausbreitung in drei verschiedenen komplexen
Systemen untersucht. In den ersten beiden geht es um Wellenausbreitung
in zufälligen Potentialen, einmal in einem Mikrowellenaufbau und einmal in
einem akustischen Experiment. Der Fokus liegt hier auf den nicht-Gaußschen
Eigenschaften der Messgrößen. Das dritte System ist ein typisches Beispiel
für vollchaotische offene Systeme mit fraktalem Repeller. Damit untersuchen
wir die Verbindung zwischen klassischen periodischen Bahnen und quanten-
mechanischen Größen.
Im ersten Experiment bauen wir in die Mikrowellenkavität ein Potential ein,
indem wir metallische Streukörper auf der Bodenplatte zufällig verteilen. In
ortsaufgelösten Messungen können wir die gesamte Wellenfunktion unter-
suchen und finden starke Fluktuationen in der Intensität der Wellenfunk-
tion. Besonders hohe Intensitäten finden sich dort, wo das analoge klas-
sische System Kaustiken ausbildet. Außerdem wird untersucht, in welchem
Abstand zur Quelle die Verästelungen starker Intensität anfangen, und ihre
Skalierung bezüglich der Eigenschaften des Potentials getestet. Der vorherge-
sagte Exponent von −2/3 kann reproduziert werden. Da bei den hohen Fre-
quenzen, bei denen gemessen wurde, mehrere Moden in der Kavität offen
sind, konnten zusätzlich Effekte durch Interferenz von Moden und Koppeln
zwischen Moden gefunden werden, die nicht in den theoretischen Modellen
berücksichtigt sind. Erst ein störungstheoretischer Ansatz für die Helmholtz-
Gleichung zeigt für nicht parallele Deckel- und Bodenplatte, dass es zusätzliche
Quellterme für eine Mode durch die jeweils anderen Moden gibt. Dieser Ef-
fekt kann in dem experimentellen Daten bestätigt werden.
Im zweiten Experiment mit dem akustischen Aufbau wurde der Schall, der
von einer turbulenten Luftströmung verursacht wird, gemessen. Die Ergeb-
nisse weichen stark von einer Gaußverteilung der Intensitäten ab, die der
zentrale Grenzwertsatz vorhersagt. In einem zweiten Experiment in einem
großen Windkanal wird zusätzlich ein Ton defnierter Frequenz durch den
Luftstrom gesendet. Die Hoffnung, aus der Modulation dieses Signals Rück-
schlüsse auf die Eigenschaften der Turbulenz ziehen zu können, wird nicht
erfüllt. Aber wieder wird nicht-Gaußsches Verhalten gefunden.
Für den dritten Teil der Arbeit kommen wieder Mikrowellenexperimente zum
Einsatz, um ein weiteres komplexes System zu erforschen. Das sogenannte

II



n-Scheiben System besteht aus n gleichartigen Scheiben, die auf einem gleich-
seitigen Polygon in einer zweidimensionalen Ebene positioniert sind. In solch
offenen Systemen sind die Resonanzen nicht mehr reell, sondern komplex.
Diese aus unseren Messdaten zu extrahieren, erfordert einen ausgefeilten
Algorithmus, die harmonische Inversion. Die Herausforderungen der Reso-
nanzextrahierung werden angesprochen und Lösungsvorschläge diskutiert.
Die letztendlich erhaltenen Resonanzen werden benutzt, um die Zählfunk-
tion der Realteile aufzustellen. Ihr Wachstum ist in führender Ordnung
durch die Hausdorff-Dimension gegeben. Die Verteilung der Imaginärteile
wird in Abhängigkeit der Öffnung des Systems untersucht. Der größte der
ausschließlich negativen Imaginärteile gibt die spektrale Lücke an. Diese
wird mit den Vorhersagen verglichen, die auf Berechnungen über die peri-
odischen Bahnen beruhen. Auch für die Abhängigkeit des Maximums der
Verteilung von der Öffnung des Systems gibt es theoretische Annahmen, die
auf ähnlichen Berechnungen beruht. Diese konnte ebenfalls unterstützt wer-
den. Zusätzlich werden die experimentellen Resonanzen mit quantenmecha-
nischen Berechnung verglichen.
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1 Introduction

Wave phenomena in complex media are found in every field of physics and af-
fect many parts of our everyday life. Multitudinous effects are related to that
from lengths of a few Angstroms to thousand of kilometers, from quantum
mechanical eigenfunctions of a Schrödinger equation describing elementary
particles [1], over Bloch waves in periodic crystals [2], to water waves in the
ocean, seismic waves due to continental drifts [3], or sound waves in our
communication. There is great variety of complex dynamics to treat. One
important topic is the interplay between the (quantum mechanical) wave
picture and the corresponding (classical) point particle dynamic. As due
to Bohr’s correspondence principle the classical behavior must reappear in
the quantum mechanical description for high energies, the semiclassical limit
[4]. One might also think about Feynman’s path integral methods, a gen-
eralization of the classical action principle of a single trajectory [5]. But
already before the semiclassical limit is reached there are relations between
classical/particle properties and quantum mechanical quantities as e.g. the
eigenvalue distribution [6], counting function [7], wave intensity distributions
[8].
In the first part of this thesis we investigate the wave propagation in a ran-
dom potential landscape using a microwave setup [9]. Though the potential
is very weak the wave pattern is shaped in an astonishing way: Instead of a
random speckle pattern the wave intensity condenses along branches. Those
occur, where the analogous classical system provides caustics and has noth-
ing to do with Anderson localization, that takes place on much larger length
scales [10, 11]. Due to the flexibility and the controllability of the microwave
setup it is possible to introduce potentials with exactly defined properties,
i.e. their strength and their correlations [9, 12]. Thereby it is possible to
study the emergence of the branches with respect to the structure of the
potentials. The predicted scaling behavior is shown experimentally and an
agreement between classical particle densities and wave intensities is found.
One additional effect beyond the theoretical model is the mode coupling be-
tween the different open modes. In this point we have to expand the simple
mode picture of the microwave resonator description and find many evidences
for the interaction between the modes in our experimental results.
The basic idea of waves traveling through a random potential is taken up in
the second part of this thesis, but in a different setup. Here we use sound
waves and send them through a turbulent air stream or record the sound
generated by the turbulence. In this setup it is possible to measure the wave
signal time dependently and not only standing waves as in the microwave
setup. The challenge of this experiment was the installation of a new acous-
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1 INTRODUCTION

tical setup and the specification of the best quantities to study the influence
of the turbulence potential. Finally the experimental setup is functional and
first evidences of a non-Gaussian distributions of the signal are found, but
the parameter dependency is still questionable.
The third part deals with another open system, again studied via microwave
cavities: the n-disk system, a paradigmatic example of fully chaotic sys-
tem with a fractal repeller [13, 14]. Here one is typically not interested in
the wave intensity distribution, but in the structure of the resonances. As
the system is open, the resonances become complex. Thus we count the
resonances regarding their real part to obtain the counting function and to
study its growth. Additionally we investigate the distribution of their imag-
inary parts, especially the largest (negative) imaginary part, which defines
the spectral gap. The predictions of the slope of the counting function in the
semiclassical limit as well as the development of the gap and the maximum of
the distribution of imaginary parts are calculated using the periodic orbits of
the underlying classical system. Again the fingerprints of classical dynamic
are found in the wave picture.
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2 Microwave Basics

Quantum chaos in flat metallic cavities, the microwave billiards, have been
studied experimentally over the last 23 years in many variations [9]. Two
metallic plates adjusted parallel to each other with a small distance in an
arbitrary shape define the volume, in which –inserted by an antenna– elec-
tromagnetic waves propagate. The underlying electromagnetic treatment for
those systems is well understood and was often described in detail [9, 15, 16].
Nevertheless it is convenient to repeat the important equations once more.
From Maxwell’s equations for solenoidal fields the Helmholtz equations for
~E and ~B can be derived:

(∆ + k2) ~E(~r) = 0 (2.1)

(∆ + k2) ~B(~r) = 0 (2.2)

with wavenumber k = ω/c and angular frequency ω. c is the speed of light in
the medium in the cavities. The boundary conditions at the metallic surfaces
of the cavity with the normal vector ~n look like

~n× ~E = 0 (2.3)

~n · ~B = 0 (2.4)

Exploiting the boundary conditions (2.3), (2.4) E‖ = 0 andB⊥ = 0 at top and
bottom plate a separation ansatz of the mode in z-direction (perpendicular
to the plates) and the modes in x- and y-direction (parallel to the plates) is
possible. For a cavity with a height smaller than half of the wavelength only
the z-component of the fields ~E and ~B can form a standing wave. The first
state is called TM-mode, the latter one TE-mode. Hence this component ψ
can be treated separately by two dimensional Helmholtz equation (2.1)

(∆xy + k2xy) ψ(~r) = 0 (2.5)

The wavenumbers are given by

k2 = k2x + k2y + k2z

⇒ kxy =
√

k2 − k2z (2.6)

For higher frequencies, i.e. smaller wavelengths, there exists also standing
waves in z-direction. In this case solutions for TM modes look like E(x, y, z) =
E(x, y) cos(nπz/h), which –inserted in equation (2.1)– leads to

[

−∆xy +
(nπ

h

)2
]

Ez(x, y) = k2Ez(x, y) (2.7)
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2 MICROWAVE BASICS

A comparison with the analog two dimensional Schrödinger equation

~
2

2m
[−∆xy + V (x, y)]ψ(x, y) = Eψ(x, y)

suggests to treat the extra term due to the modes in z-direction (n > 0)
as a potential [17, 12]. The eigenvalue E corresponds to k2 and kz can be
evaluated via

kz =
2π

λz
=
nπ

h
(2.8)

for n being the number of half wavelengths, which fit in the cavity height h.
For n = 0 the potential-free original case, the TM0 mode, is reproduced.
In part III about n-disk systems I will present microwave measurements
in flat cavities, where only the TM0 mode propagates and no potential is
induced, but the shape of the billiard boundary defines the system. In part I
about branching formation we use from the potential term in equation (2.7)

V (x, y) =

(
nπ

h(x, y)

)2

(2.9)

By varying the height h(x, y) between the two plates we can introduce a
potential landscape for the propagating waves. As this height variation must
be adiabatic, as otherwise the mode separation ansatz is not valid anymore,
our system can only be approximated in this picture. Especially the TM0

mode cannot be well described by this ansatz, as the potential corresponding
to n = 0 is equal to zero and thus the mode is supposed to be constant.
However, we will observe a spacial dependency of this mode experimentally,
which then can be explained by perturbation theory, given in the appendix
A. In the discussion of the experimental results in section 7 additional effects
causing such an observation are mentioned.
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Part I

Branched Flow in Weak

Potentials

3 Motivation

The investigation of branched flow attracted much attention in various fields
of physics, like electron gas in a quantum point contact [18, 19, 20], rogue
sea waves [21], sound waves propagating through the ocean [22] and even
microwaves experiments [23]. It is a universal phenomenon as many two di-
mensional flows can be approximately described by a Hamilton flow through
a random potential. Is the potential weak and embodies a correlation, the
basic ingredients are given for branching to occur. Especially the question
how freak events, which are extreme events of rare probability, for example
monster waves in the ocean [24], may be influenced by an underlying branch-
ing pattern of the classical flow, is of actual interest. Its significance for the
survival of sailors and the protection of valuable goods transported on the
seaway are obvious. Already in the 1970s Berry studied the influence of clas-
sical caustics on waves in random media [25] by analyzing the moments of
the intensity distributions.
A phenomenon, which appears in so different contexts, but might be a con-
sequence of one universal underlying model, is a typical application for mi-
crowave measurements. In his PhD-thesis Ruven Höhmann already observed
branched wave functions in his measurements related to freak waves [23, 26].
He used randomly distributed brass scatterers to imitate a random potential,
measured the wavefunction spatially resolved and obtained instead of random
speckle patterns clear branching structures shown in figure 1 for frequencies
around 30 GHz. The right part of figure 1 shows the ray density of the classi-
cal dynamics of the same potential. Here one can clearly see the similarities
between the microwave intensity and the underlying classical behavior of the
system. Further analysis had shown, that these enhanced intensities do not
gather in the valleys of the potential, but follow the slopes of the scatterers,
a clear hint that caustic formation is responsible [27]. In this direction I have
thus performed further experiments to investigate in detail the connection
between caustics and branched flow. First of all the theoretical approaches
must be understood. They provide a scaling law for the occurrence of the
first branches with respect to the properties of the potential. This behavior
is the basis for many theories on the formation and the counting of branches
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3 MOTIVATION

Figure 1: Example of branched microwave wavefunction (left) and the cor-
responding classical trajectory density (right), taken from [26]

[27, 28, 21], but was not experimentally verified, yet. The model will be
presented in section 4. I shall present a new experiment to test this scaling
law and to go beyond a qualitative comparison of branching patterns and
the underlying classical trajectory densities. In the theoretical approaches
I shall focus on the requirements on the experiment, which will result from
them. These will be implemented in a new setup explained in section 5, as
it turned out that the former experiments did not meet the demands. The
quality and the adequacy of the new setup is tested in basic measurements
first. They are discussed in section 6 and offer a convincing starting point for
the measurements on large potential landscapes, see section 7. In the data
analysis I will first establish a method to separate the several open modes
from each other, because the scaling behavior is only valid for single modes
and not for a superposition of multiple wave energies. For the single modes
the branching pattern is compared to classical simulations of particle density
in the same potential showing a reasonable agreement. Based on this simi-
larity a quantity which defines the first occurrence of branches needs to be
established and analyzed. The variance of the amplitudes over circles with a
fixed distance from the source antenna is a promising candidate. Therewith
the scaling law can be observed experimentally. Additionally one effect be-
yond the theory will arise: the coupling between modes. Consequences of it
are found in the variance plots as well as in the wave patterns. With a per-
turbation ansatz they can be explained satisfactorily and display surprising
properties, especially in the range where a mode just opened.
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4 Theoretical Background

4.1 Classical Caustics

In this chapter I will give a brief overview over caustic formation in classical
flows. Figure 2 (a) shows a typical example of the formation of caustics.
In black the density of particle trajectories starting from the left with the
same energy but with uniformly distributed angles is plotted. The potential
is illustrated in the green-white color scale and in (b) in three dimensions
and compared to the particle energy (orange). This figure as well as many
theoretical models [27, 28, 21] use a weak Gaussian correlated potential in
two dimensions

〈V (~r)〉 = 0 c(|~r − ~r ′|) = 〈V (~r)V (~r ′)〉 = ǫ2e−|~r−~r ′|2/l2c (4.1)

where ǫ denotes the potential strength and lc is its correlation length. The
potential is supposed to be weak compared to the kinetic energy Ek of the
particle to avoid backscattering and Anderson localization on the scales we
are looking at, see figure 2 (b). In the experiment by Topinka [18] and
numerical simulations e.g. by Kaplan [27] a typical ratio is ǫ/Ek ≈ 0.08.
The process of caustic formation is visualized in 2 (c) and (d). We start the
initial momentum in x -direction and set px and the mass to one. Based on
these starting conditions the motion can be assumed to be unidirectional and
x plays the role of the time. Hence we have x(t) = t and px(t) = px(0) = 1.
For the evolution in transverse direction we then have

dy(t)/dt = py(t), dpy(t)/dt = −∂V (t, y)/∂y

and a reduced one-dimensional dynamic with an effective time-varying ran-
dom potential. Initially we have zero transverse momentum py, thus investi-
gate the stretching and folding of a straight manifold py = 0 in the reduced
(y/vy)-phase space, see lower panel of figure 2 (c). The upper panel in (c)
shows the evolution of particle density in the configuration space. The ver-
tical lines indicate the discrete time steps ti at which the deformation of the
manifold is plotted in the lower panel. In (d) the projection of two folded
manifolds (red and orange) to the particle density ρ in configuration space is
plotted. We see that caustics are caused by folding of the manifolds, i.e. the
classical density diverges where

dpy
dy

∣
∣
∣
∣
t

= ∞

In such a weak potential a trajectory must pass over many correlation lengths
in longitudinal x -direction, until it has traveled over one correlation length
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4 THEORETICAL BACKGROUND

density via manifold

direct density estimation

a

c d

b

Figure 2: Process of deformation of a classical manifold in weak Gaussian
correlated potential leading to caustics, provided by Jakob Metzger

in the transverse y-direction. The homogeneous “kicks” of the potential on
the manifold over a correlation length result in the stretching and folding
and therefore in the formation of the caustics. It occurs on the characteristic
time scale [27]

t0 ∝ lc ǫ
−2/3 (4.2)

Its derivation is given in appendix B. This universal time scale enables
universal theories for very different systems and potentials.
Up now all the considerations were performed for classical system, but can
be expanded also to quantum and wave mechanical investigations. Then
additionally a smoothing on a scale b ≪ 1 must be performed in order to
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4.1 Classical Caustics

get a well-defined height of the branch [27]. The uncertainty principle in
quantum mechanics for example takes care on the smoothing automatically
as the phase space area enclosed by a fold must be larger than ~ to resolve a
caustic. Exploiting these considerations analytic expressions for the number
of branches in those systems with respect to the source distance were found,
e.g. in a far distance approximations [27] or even as a universal expression
[28]. These theories are all based on the scaling law (4.2), which is now
investigated experimentally for the first time.
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5 SETUP

5 Setup

5.1 The Scattering Potential

The experimental setup should realize the theoretical model described in the
previous section, i.e. a system with waves propagating through a potential,
which is Gaussian correlated with 〈V (~r)V (~r ′)〉 = ǫ2 exp(−|~r − ~r ′|2/l2c) for
two given positions ~r and ~r ′. A typical value for the standard deviation is
6 to 8 % of the particle energy, thus the potential is supposed to be very
weak. Correspondingly I have to setup my new experiment with respect to
these conditions. The former experiments used metallic cones (with height
H = 10 mm and radius R = 12.5 mm and a minimal distance to the top plate
of hmin = 10 mm) which lead to an effective potential of

V (~r) =
(nπ)2

(hmin + H
R
|~r|)2 (5.1)

For |~r| = 0 it is not differentiable (see right part of figure 3) and thus does not
meet the requirement of being smooth. Jakob Metzger performed simulations

Figure 3: Geometry and potential of a conical scatterer with singularity at
r = 0

with the cone potential to illustrate the strong scattering properties of each
scatterer, see figure 4. Here it becomes clear, that the branching occurring
in the wave pattern is not a multi-scattering effect in a weak potential as
assumed, but every branch appears behind one scatterer (red circle), which
appear to divide the flow. Consequently they are not suitable for our purpose.
For the required weak potential we still want to use individual scatterers, as
this guarantees the highest flexibility in the setup. A milling out of a certain
shape in the bottom plate would be very cumbersome. A second simulation
(figure 5) reveals that randomly distributed spherical caps would be a suitable

10



5.1 The Scattering Potential

 

 

Figure 4: Left: Potential landscape given by conical scatterers. Right:
Branching of an incoming plane wave in the given potential [29]

alternative as their scattering strength is much weaker and thus get closer
to the assumptions of the model. Based on these simulations two different

 

 

Figure 5: Left: Potential landscape given by spherical scatterers. Right:
Branching of an incoming plane wave in the given potential [29]

types of scatterers are made to offer the possibility of studying weaker and
stronger potentials. The sizes of the scatterers are given in figure 6 and their
potentials in a colored 3d-plot in figure 7 revealing a much smoother potential
than the one of the conical scatterers.
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5 SETUP

Figure 6: Geometry of the new scatterers, the upper one is defined as type
II and the lower one as type I

Figure 7: Potential corresponding to the new scatterers, left: type II, right:
type I

5.2 The Measurement Table

As described above it was suitable to establish new scatterers with a weaker
potential. Consequently the branching will appear in larger distances from
the source and the former setup used by Ruven Höhmann with an accessible
range of 340 mm x 240 mm turned out to be too small. In the former version
the bottom plate with the scatterers was fixed and the top plate with a
second antenna moved over the cavity. The disadvantages are then that the
usable area of the bottom plate can only reach a quarter of the table size.
Moreover the cavity is slightly perturbed by the movement of the plates.
The new setup is based on another principle: The top and bottom plates are
fixed in a distance of 20 mm, but there are small holes in the top plate through
which a thin wire antenna is inserted and extends 3 mm into the cavity.
Before it was tested that these small holes do not affect the measurements,
as their diameter is very small (2 mm) compared to the wavelength of ≈
1 cm (at 30 GHz e.g.). The worst the quality factor of the billiard might
be reduced a little, which is however not the limiting parameter in these

12



5.2 The Measurement Table

kinds of experiments on open cavities. A second antenna is positioned at
[0, 260] mm in the bottom plate, is teflon-coated and extends 5 mm into the
cavity. Thereby transmission measurements can be performed. A side view
of the cavity and the two antennas is illustrated in figure 8. The new table
enables a measurement field of 1060 mm x 520 mm with a resolution of 5 mm.
As the movement of the antenna must be very accurate not to miss the holes,

Figure 8: Side view of the cavity: One antenna (right) is fixed in the bottom
plate, the other one (golden pin) is moved over the top plate and inserted
through holes with a distance of 5 mm. The open ends of the cavity are
surrounded with absorbers to avoid reflections at open ends. Inside the
cavity the scatterers are distributed establishing a weak potential landscape

which are only 0.7 mm larger than the antenna’s diameter of 1.3 mm, the
lower part of the “elevator” is slightly flexible so that the two metallic pins to
the left and the right (see figure 8) can guide the antenna into the hole. Then
the whole elevator is pressed firmly on the plate to guarantee equal contact
in all of the measurements. A photograph of the whole setup is presented
in figure 9. The new table was already used for measurements of the Goos-
Hänchen shift [30] and investigations of mixed phase spaces with a mushroom
billiard [31]. For the measurements of the transmission spectrum we used a
Wiltron 360B vector network analyzer (VNA) providing frequencies up to
40 GHz and a step width of 10 MHz. It offers access to the full scattering
matrix of the system, the modulus as well as the phase of the measured signal
as a function of frequency.
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5 SETUP

Figure 9: Photo of measuring table and vector network analyzer with two
cables to the fixed and movable antennas
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6 Results on Basic Measurements

6.1 Empty Cavity

To test the quality of the setup the empty cavity surrounded with absorbers
but without any scatterers was measured. As the measurement of the full
accessible area takes 8 weeks we restricted ourselves to a smaller field of
x ∈ [−95, 95] and y ∈ [0, 250] and measured a frequency range of 15 to
35 GHz. The intensity of the wavefunction for different frequencies is pre-
sented in figure 10. As expected we observe the circular waves starting from

Figure 10: Two examples of wavefunctions (intensities) of the empty cavity
at 15 GHz (left) and 25 GHz (right)

the fixed antenna slightly above the field at the position [0, 260]. We did
not measure directly atop this antenna, as the two antennas would touch
each other destroying any reasonable result. As already studied by Ruven
Höhmann [26] we expect for the free wave propagation a superposition of
Hankel functions for every open mode with the singularity at the source an-
tenna. For frequencies less than 15 GHz there are only the TM0, the TM1

and the TE1 modes open, from which only the first two can couple to our
dipole antenna. Thus only the two are taken into account leading to a wave
function of

ψ(r, φ) = a0H0(k0r) + a1H1(k1r) (6.1)

with wave numbers k0 and k1 for zeroth and first mode according to equa-
tion (2.6) and the complex coupling constants a0 and a1, which depend on
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6 RESULTS ON BASIC MEASUREMENTS

frequency. A fit of this equation to the data is shown in figure 11 reveal-
ing a good agreement with the assumptions. The higher the frequency the

Figure 11: Radial dependent wavefunction at 15 GHz with fit corresponding
to equation (6.1)

more modes are open and the more fit parameter appear in equation (6.1)
which makes the fit much more sensitive on the starting parameters and
thus reduces its reliability. Nevertheless it is shown that the coupling of the
antennas, the absorbers and the measurement mechanism work suitable. A
new feature, which was not investigated by Ruven Höhmann, is revealed by
looking at the intensity of the wavefunction radial dependently, see figure 12.
There are two obvious maxima with a distance of 149 mm, denoted by the ar-
row. The length corresponds to a frequency of 2 GHz, which is the difference
between the two propagating frequencies of ν0 = 15 GHz and ν1 = 13 GHz
revealing a beating between the modes, also seen in figure 11 (left). For
higher frequencies and measurements with scatterers placed in the cavity the
two modes do not only interfere with each other, but couple to each other
by exchanging energy. This will be investigated in detail in section 7.3.
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6.2 Characterizing the Scatterers

Figure 12: Intensity of radial dependent wavefunction averaged over all angles
at 15 GHz. The distance between the two maxima is 149 mm (arrow)

6.2 Characterizing the Scatterers

With the next basis measurements small configurations of one or two scat-
terers are investigated to study their characteristics. Two examples of single
scatterer measurements are presented in figure 13. It can be nicely seen that
the circular wave starting at the source antenna is bent around the scatter-
ers. In figure 13 (left) the wavefunction is symmetric around the vertical
axis, in the right picture this symmetry is slightly perturbed. A reason for
that might be an inaccurate placing of the scatterer or small differences in
the absorbers. For focusing effects two scatterers are necessary: They are
placed in a symmetric setup and I measured again the small field around
them. The results are presented in figure 14. For both scatterer arrange-
ments one can see again the circular wave coming from the source antenna,
which is then perturbed by the scatterers’ potential. A focusing along the
vertical symmetry axis and an intensity enhancement behind the scatterers
is found (see arrows). In comparison with classical and wave simulations
(here the example for the scatterers of type II is shown in figure 15) we see
caustic formation and intensity enhancement at the same positions. These
results are also in agreement with the measurements by Ruven Höhmann:
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6 RESULTS ON BASIC MEASUREMENTS

Figure 13: Wavefunctions (intensities) of one scatterer (type I) at 15 GHz
(left) and of one scatterer (type II) at 27 GHz (right). Note the different field
sizes. The one antenna is still fixed at [0, 260].

Though he has used scatterers with a stronger potential the bending and the
characteristics of the wave functions agree in both measurements. Now all
the requirements for large scatterer arrangements are verified.

18



6.2 Characterizing the Scatterers

Figure 14: Wavefunctions (intensities) of two scatterers of type I at 25 GHz
(left) and of two scatterers of type II at 25 GHz (right), the arrows mark the
intensity enhancement according to the simulations in figure 15
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Figure 15: Trajectory density and wave simulation for the arrangement of
two scatterers of type II, provided by Jakob Metzger. The labels are given
in m.
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7 RESULTS ON LARGE SCATTERER CONFIGURATIONS

7 Results on large Scatterer Configurations

7.1 Mode Filtering

In the following three different arrangements of scatterers are measured in
the full accessible field.

Figure 16: The potentials of configuration 1, 2 and 3 in a shade plot. The
circles mark the border of the scatterers and the darker the color the higher
the potential. Outside of the scatterers the potential is constant.

The potentials are presented in figure 16. For the first two configura-
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7.1 Mode Filtering

tions the smaller scatterers (type I) are used, for the third one type II. On
the basis of the data of configuration 2 the procedure of data analysis is de-
scribed. Figure 17 shows this configuration and the wave function at 25 GHz.
Figure 18 shows the radial decay of the wavefunction at 25 GHz, which was

Figure 17: Wave function intensity at 25 GHz (upper panel) and the same
where the exponential decay was removed (lower panel).

removed to obtain the lower panel of figure 17. From the theoretical point
of view one would expect a 1/r decay for the intensity and this was also
found in the simulations. Nevertheless already Ruven Höhmann found an
exponential decay in his experiments. As a reason for it absorber effects
or skin effects of top and bottom plate can be excluded, as the exponential
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7 RESULTS ON LARGE SCATTERER CONFIGURATIONS

decay was only found in the large arrangements of scatterers and not in the
empty cavity measurement. Another effect not accounted for in theory and
simulation is the scattering between modes and the different coupling of the
antennas to different modes. Thus a possible explanation of the decay is the
scattering from the mode which is coupled strongest to the antenna into the
other modes which couple weaker. Correspondingly the measured intensity
decays exponentially with the distances from the source. Figure 17 reveals a

Figure 18: Radial Decay of the intensity of the wavefunction at 25 GHz
with exponential fit (orange line). Only for the presentation the data was
smoothed over 5 points

second deviation from theory: Again a clear beating with half a wavelength
of ≈ 40 mm which corresponds to the frequency difference of ∆ν = 3.8 GHz
of the TM1 and the TM2 mode can be seen in the circular waves around
the source. As neither the theory nor the simulation take into account sev-
eral modes, but assume only one single propagating frequency, we have to
filter the different modes to analyze them separately. A two dimensional fast
Fourier transform (FFT) offers a possibility to identify the different modes,
see figure 19. In the left part of the figure there are three clear circles at
≈ 20, 23, 25 GHz of speckles (inside the smaller black circle, in between the
two black circles and outside of the larger black circle, respectively), the fre-
quencies of the propagating modes TM2, TM1 and TM0. Every mode is now
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7.1 Mode Filtering

Figure 19: 2d FFT of configuration 2 at 25 GHz. The speckles between the
plotted circles belong to TM1. To filter this mode out all values outside are
set to zero (right)

filtered out separately and transformed back. In the right part one can see
that the lower half of the circle is much brighter than the upper half, showing
that there is only weak back scattering and the assumption of the theory of
a quasi-one dimensional dynamic in positive ~r direction is justified.
After separating the modes for every frequency the individual exponential
decays ∝ exp(a1r) are removed. The decay constant a1 for the modes are
plotted frequency dependent in figure 20. The values are in the range of
−0.007 and −0.001 mm−1 and thus the decay is slightly weaker as in the for-
mer experiment in which Ruven Höhmann found values between −0.009 and
−0.005 mm−1. As expected the new scatterers cause only weaker coupling of
the different modes. Moreover the figure shows that the TM0 (black), TM1

(blue) mode are very similar to each other and define the overall decay (or-
ange), while the TM2 mode starts with a weak decay, which becomes stronger
the higher the frequency is. The observation that even the TM0 mode feels
a potential and shows similarities to the first mode cannot be explained in
the simple mode picture of equation (2.7) anymore. This picture assumes
parallel top and bottom plate and thus a constant height. On this condition
the separation of the z-coordinate is possible. If height variation up to first
order is considered, additional source terms appear in the Helmholtz equa-
tion, which lead to a coupling between different modes (see appendix A).
Figure 21 shows that the filtering process was successful: Here the filtered
TM1 mode of the wave function at 25 GHz is shown. Now the beating is gone
and the branches are much more pronounced than before. For all the further
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7 RESULTS ON LARGE SCATTERER CONFIGURATIONS

Figure 20: Decay constants for TM0 (black), TM1 (blue), TM2 (red) and for
the mixture of all modes before filtering (orange)

Figure 21: The same wavefunction as in figure 17, but only the TM1 mode
at 25 GHz (decay is removed)

investigations this filtered data is the basis.
In figure 22 the TM0 mode for the same configuration and the same frequency
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7.1 Mode Filtering

is plotted. Though this mode is supposed to be constant due to the simple
mode picture (equation (2.9)) we observe not only strong intensity fluctua-
tions but also a clear branching. This structure has striking similarities with
the brightest branches in figure 21, the first mode in the same configuration.
As according to equation (A.3) the TM1 mode acts as an extra source term
for the TM0 mode this behavior becomes elucidated.
In the comparison between our measured wave pattern, the simulated wave

Figure 22: The same wavefunction as in figure 17, but only the TM0 mode
at 25 GHz (decay is removed)

pattern and the particle density calculated for the same potential the similar-
ity between classical caustics and the (micro-)wave flow becomes convincing,
see figure 23. The five main branches (see arrows) appear clearly in all three
plots. The contours of the scatterers are marked by red circles to make it
easy to identify the positions of the branches in all plots. The green circles
indicates r0, the occurring of the first branches in the wave plot. The plot
of the classical density (lower left) shows that the first caustics appear di-
rectly behind the first disks at a distance around 150 mm. But this is not the
distance of the highest intensity fluctuations in the wave plot (green circle).
At that indicated distance several classical caustics converge or cross each
other. The dependency of this position from the properties of the potential
is presented next.
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7 RESULTS ON LARGE SCATTERER CONFIGURATIONS
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Figure 23: Measured wave function (upper) in comparison with classical ray
dynamics (lower left) and wave simulations (lower right) for configuration 2
at 30 GHz and the TM1 mode, the main branches are marked by arrows and
r0 by the circle (simulations provided by J. Metzger [29])

7.2 Correlation Function and Correlation Length

Equation (4.2) gives the scaling law for t0 (i.e. a length r0 in our case) depend-
ing on the standard deviation ǫ =

√

〈V (r)V (r)〉 and the correlation length lc
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7.2 Correlation Function and Correlation Length

of the potential. In a Gaussian correlated potential there is only one length
scale, but in this experimental realization there are two: the radius of the
scatterers and their mean distance. Thus I calculate the correlation function
and fit a Gaussian decay to the first points. From this fit the correlation
length is extracted according to equation (4.1). Figure 24 shows the corre-
lation functions for the three scatterer configurations and the Gaussian fit
(orange). As the potential for the second mode differs only by a factor of
n2 = 4, which does not play a role in the normalized correlation function,
only the calculations for one mode are shown. In the beginning the decay

Figure 24: Correlation functions for the three configurations 1,2 and 3 (from
left top to bottom) and a Gaussian fit to the starting of the decay, where
only the data to the left of the vertical dashed orange line has been used in
the fit. The horizontal dotted line marks the zero position to emphasize the
undershoot.

of the correlation is well described by a Gaussian (with fixed amplitude 1
and mean of 0). The fit range takes all the values of the correlation function
into account, which are greater equal to 0.5. It was checked, that the fitting
parameters did not depend sensitively on small changes in the fitting range.
The extracted correlation lengths are given in table 1. They turned out to be
smaller than the scatterer radii of r1 = r2 = 24 mm and r3 = 34.34 mm. It
is worth mentioning that the first two configurations turned out to have dif-
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7 RESULTS ON LARGE SCATTERER CONFIGURATIONS

ferent correlations lengths, though the same scatterers were used. Probably
the undershoot caused by the self-avoiding of the scatterers, which cannot
be placed overlapping, leads to a compression of the first decay. In configu-
ration 1 this undershoot appears much earlier (≈ 30 mm) as in configuration
2 (≈ 40 mm), as here the scatterers are placed much denser (309/m2) as in
configuration 2 (83/m2). Thus the compression effect might be stronger in
the first case leading to a steeper decay and a smaller correlation length.
The standard deviations of the potentials for the different modes and the
energies of the propagating waves, by which the potential is normalized, are
given in table 1, too. The theoretical model assumes a weak potential, not

Configuration lc/mm ǫ/m−2 kxy/m−1 ǫ/k2xy
1 (mode 1) 14.91 33049.0 608.8 0.089
1 (mode 2) 132196.0 544.6 0.446
2 (mode 1) 17.88 19951.1 608.8 0.054
2 (mode 2) 79804.5 544.6 0.269
3 (mode 1) 24.10 19559.5 608.8 0.053
3 (mode 2) 78237.9 544.6 0.264

Table 1: Correlation lengths, standard deviations of the different potentials
and the wavenumbers of the propagating waves (exemplary for 30 GHz)

reaching more than 12% of the particle energy. In the experiment strictly
speaking only the TM1 mode meets this requirement, see fifth column of ta-
ble 1. Nevertheless we will also analyze the TM2 and see what we can extract
from it. The TM0 mode was not investigated further, as it is supposed to be
constant and no clear potential shape can be assigned to it.

7.3 Mode Coupling and Scaling Behavior

One intention of these experiments is the investigation of the distance be-
tween source and first appearance of branching. As the wave function plots
still include some noise and speckles it is not easy to extract the position of
the first branching from there. It turned out that the variance of amplitude
values A(r, ϕ) on circles in dependence of the radius r is a reliable quantity
to extract the t0.

Var(r) =
1

N − 1

N−1∑

j=0

[A(r, j∆ϕ) − 〈A(r, ϕ)〉ϕ] (7.1)

In figure 25 the perfect agreement between the prominent peak in the variance
and the occurring of the branches is shown for simulations.
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7.3 Mode Coupling and Scaling Behavior

For the comparison of the variances of the simulation and the experiment the
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Figure 25: Simulation of a flow in Gaussian correlated potential (left) and
the variance Var(r) corresponding to equation (7.1) with radius r [m] (right).
The vertical line corresponds to the distances indicated by the circle in the
left picture, where the first branching occurs, provided by J. Metzger [29]

Figure 26: Variance Var(r) of TM1 mode (left) and TM2 (right) at 30 GHz
with data from the simulation (orange), the solid vertical lines each indicate
the peak expected for the mode and the dotted lines the peak caused by
mode coupling to the other mode

1/r decay was removed from the calculated data and the exponential decay
from the measured data. To reduce the influence of noise in the experiment
an average over 5 points in radial direction was performed. Due to this
average the small speckles (see e.g. upper panel in figure 23) loose their
influence while branches, which follow approximately this radial direction,
have an enhanced impact. Figure 26 includes the experimental (black) and
the numerical (orange) variance for configuration 2. For the main peaks at
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7 RESULTS ON LARGE SCATTERER CONFIGURATIONS

r0 = 395 mm (left) and r0 = 170 mm (right) we find an agreement between
experiment and simulation. Also in the wave function (figure 27) the solid
circles (corresponding to the solid lines) indicate a distance of large intensity
fluctuations. But here again the impact of mode coupling becomes crucial: In

Figure 27: Wave function of TM1 mode (upper panel) and TM2 (lower panel),
the circles corresponds to the distances indicated in figure 26

the variance pictures the peak of the other mode occurs, in the wave pictures
we observe additional branching belonging to the other mode. In other words
the wave of TM1 acts as a source term for TM2 and the other way round.
Equation (A.3) reveals this effect exemplary for the TM1 and TM0 mode. A
similar behavior was also found in the other measurements.
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7.3 Mode Coupling and Scaling Behavior

Figure 28: Wave functions of TM2 mode at the frequencies ν =
15.5, 17.5, 18 GHz (from top to bottom) of the second configuration

Other interesting dynamics occur at frequencies, at which a certain mode
just opens, e.g. the TM2 mode at 14.99 GHz. The corresponding wave func-

31



7 RESULTS ON LARGE SCATTERER CONFIGURATIONS

tions for different frequencies starting at 15.5 GHz are presented in figure 28.
When the mode is just open (upper panel) its intensity is only distributed
over the centers of the scatterers. At frequencies around 17 GHz the pattern
starts to leave the scatterers (middle panel). Here the transversal wave vec-
tor (kxy) holds an energy of 8.02 GHz. At ≈ 18 GHz larger patterns over the
entire field are formed, the energy of the transversal wave reaches 10 GHz.
According to equation (A.3) the potential, strictly speaking the derivatives
of the potential, are part of the source terms and influence the coupling be-
tween two modes.
Nevertheless it is surprising, that the wave functions are that strongly located
on the scatterers even though the TM2 mode opens already at 14.99 GHz.
This observation suggest, that the approximation of perfect mode decoupling
and sharp cutoff frequencies is not sufficient to explain the wave pattern near
the cutoff frequencies. Here the higher order terms inducing the mode cou-
pling seem to become dominant. Furthermore one has to keep in mind, that
even in the approximation of perfect mode decoupling the transversal wave
lengths are approximately 80 mm for 15.5GHz. Accordingly one would not
expect a completely free propagation in the scatterer free region, because the
scatterer distances are often smaller than half a wavelength. The energy can
thus travel much easier through the potential via the TM0 and TM1 modes
and then couple back to the TM2 mode at points, where the height varia-
tions, i.e. the coupling terms, are strong.

Due to the mode coupling the extraction of the correct peak in the variance
plot for different frequencies, modes and potentials was not unambiguous, as
in every plot more than one peak occurred as it is observed in figure 26. As
discussed above the peaks of two different modes appear in the plots, thus
only the peak in the expected range was considered for the scaling analysis.
The results are presented in figure 29. The peak positions r0 were rescaled
with the extracted correlations lengths ls, see table 1, and the standard de-
viation of the potential ǫ was scaled with the particle energy k2xy. For the
first configurations (upper left) the frequencies 30 and 25 GHz with first and
second modes and 20 and 16 GHz with the first mode (second mode did not
show clear peaks) are taken into account. The blue line is a line fit with
a standard regress routine giving an exponent of −0.54 and a χ2-error of
0.005. In the fit the first data point was neglected. The orange line marks
the expected exponent of −2/3. In the second configuration (upper right) the
frequencies 30 GHz (first and second mode), 25 GHz (first and second mode),
20 GHz (second mode) and 16 GHz (first mode) are analyzed, resulting in an
exponent of −0.50 with a χ2-error of 0.042. In the third case (lower left) all
5 frequencies with both modes could be evaluated. Here I found an exponent
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7.3 Mode Coupling and Scaling Behavior

of −0.60 with a deviation of χ2 = 0.016. The last plot shows all the analyzed
data points and an exponent of −0.56 (χ2 = 0.060). We observe a scaling

Figure 29: Scaling behavior of the peaks in the variance curves for the con-
figurations 1 (upper left), 2 (upper right), 3 (lower left) and all together
(lower right). The blue line is a line fit to the data points and the orange
line indicate the exponent of −2/3

behavior of the branches, compatible with the predicted exponent of −2/3
(orange line). The small deviations can be explained by the difficulties of
extracting the correct peak in the variance pictures. Also the curves of the
simulations do not show one single dominant peak, but some noise and oscil-
lations, which is even stronger in the experimental data. Moreover the mode
coupling complicates the identification of the correct peak and influences the
peak positions with respect to their theoretical value. The effect of random
speckles causing the noise in the variance curves was reduced by the averag-
ing in radial direction, but has unfortunately still some disturbing influence
on the data. Additionally one must have in mind that the used potentials are
not Gaussian correlated in strict sense. The influence of two different length
scales is not investigated theoretically, yet. The data points belonging to the
TM2 mode are even not supposed to fit the exponent as they do not fulfill the
assumption of a weak potential, see values in table 1. Nevertheless the last
plot in figure 29 includes all identified peaks in the variance plots of the two
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7 RESULTS ON LARGE SCATTERER CONFIGURATIONS

modes and shows a clear trend following the fit (blue line), but is described
almost as good by the orange line, indicating the theoretical exponent. Thus
we have shown a reliable consistency between our experimental data and the
theoretical scaling assumptions, even in a larger range than expected.
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Part II

Sound Waves

8 Motivation

In 2008 Ruven Höhmann et al. performed measurements on “Freak Waves in
the linear regime: a microwave study” [23]. They measured the transmission
of waves traveling through a random potential built with metallic cone scat-
terers in a quasi-two-dimensional resonator. The scatterers were randomly
distributed in the microwave cavity. At high frequencies branching structures
in the flow were found, which were the basis for the investigations in part
I. In the lower frequency regime the wave height distribution was analyzed.
Here large deviations from Rayleigh’s law, a prediction of the random plane
wave model, were found [25]. From the measured wave patterns ψi in the fre-
quency regime many propagating waves were calculated by a superposition
of the measured patterns including a random phase according to

ψ(~r, t) =
N∑

i=1

ψi(~r) e
i(2πνit−ϕi) , (8.1)

where ψi(~r) is the measured wave pattern at frequency νi and ϕi is a random
phase. Performing the time average of the wave intensities at a fixed position
~r a Rayleigh distribution was found. But the local time-averaged values s =
〈I〉t were not equal, but χ2

n-distributed. So the overall intensity distribution
was thus given by the compounding of the two distributions

P (I) =

∫ ∞

0

ds Ploc(I, s) g(s) (8.2)

where the local intensity distribution is given by the Rayleigh distribution
[32]

Ploc(I, s) = e−I/s s−1 (8.3)

with s = 〈I〉 and the distribution of s by a χ2-distribution

g(s) = χ2
n(s) =

(n

2

)n/2 1

Γ(n/2)
sn/2−1 exp

(

−ns
2

)

(8.4)

Performing the integration one obtains a K-distribution

P (I) =
n

Γ(n/2)

(
nI

2

)n/4−1/2

Kn/2−1

(

2

√

nI

2

)

(8.5)
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8 MOTIVATION

and found a good agreement of fit (red curve) (with 8.5) and the experimen-
tal values, see red crosses in figure 30. Thus also the time-dependent waves

Figure 30: Overall experimental intensities (black crosses) with Rayleigh
(black curve) and K-distribution (red curve) and experimental data without
extremest events, the hot spot, (red crosses) (figure taken from [26])

showed a non-Rayleigh behavior with a large increase of the probability to
find high intensities. Only the extremest events, the so called hot spots,
could not be included in this description (black crosses). The fit value of
n, the degree of freedom in the χ2 function, was in the range between 30
and 35, compared to N ≈ 150 superimposed wave patterns (see equation
(8.1)) depending on the realization. Thus the pulse components are in part
correlated. The idea of the compounding of a χ2 and a Rayleigh or normal
distribution (either for intensity of amplitude) is also found in a complete
different context. Münnix et al. investigated correlations in credit risks us-
ing random matrix theory and found again a K-distribution for the averaged
price distribution in a credit portfolio with correlations resulting from the
compounding of χ2 distributed variances and a multivariate normal distribu-
tion for the prices [33].
Based on these observations a new measuring idea was developed: To get
direct access to time-dependent waves without going the long way round
on frequency dependent measurements, we came up with performing mea-
surements on sound waves. The abstract idea of waves traveling through
a random potential (with correlations) should be projected on a turbulent
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air stream, replacing the potential, and sound propagating through it. It
is similar to White and Fornberg’s idea, that freak waves in the ocean are
caused by random currents [24]. We expect the turbulence pattern to be
stationary for a small time, in which the sound waves will be influenced.
After a short time the actual turbulence flow changes which will lead to a
different modification of the traveling sound waves. Thus the fixed position
measurements of the microwaves are translated into small time windows, in
which the sound is recorded. This way of experiments was completely new
terrain in our group, but we wanted to find out if those measurements were
realizable with a reasonable effort. As no estimations on the turbulence-
sound-interaction were available, we did not know in advance, what sam-
pling rate, sound frequency were needed to sample the potential, i.e. the
vortices in the air stream. Consequently we follow the experimenter’s way to
find out how far to come with a low-cost equipment and the simple model.
That meant to start with cost-efficient standard sound equipment like sound
card, microphone and loudspeaker in the audible frequency regime, instead
of spending much more money on e.g. faster ultrasound setups. The aim
of this experimental approach was to test if the idea of stationary vortex
pattern for short times and K-distributed intensities for long time can be
observed with this standard equipment. In the end it turned out that in
the accessible parameter range these effects were not observable. For the
transfer between the microwave experiment and the acoustical setup a more
detailed theoretical background is mandatory. Nevertheless all the detailed
experimental approaches are documented and discussed in the following.
The next sections are organized as follows. First the basis measurements with
the simplest, already present equipment are presented in section 9. Based on
the first result the new setup was developed and the data analyzing meth-
ods were improved, see section 10. Using the new setup and methods more
test measurements were performed and studied, revealing other problems.
To solve these problems the entire setup was moved into a professional wind
tunnel in Oldenburg, where the main measurements took place. The corre-
sponding findings are presented in section 11.
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9 MEASUREMENTS WITHOUT EXTERNAL SOUND GENERATION

9 Measurements without external Sound Gen-

eration

For the first measurements we used a standard fan and a cheap table micro-
phone to record the sound. The fan has 3 velocity steps corresponding to
three different revolutions per minute presented in table 2, measured with
a light barrier instrument. As the fan has 3 blades there are 3 light inter-
ruptions (counts of the instrument) per rotor revolution. A photograph of

fan level light interruptions p.m. Rotor Frequency νrot [Hz] νrot · 3 [Hz]

1 2030 ± 10 11.28 33.83
2 2800 ± 10 15.56 46.67
3 3320 ± 10 18.44 55.33

Table 2: Data values of the fan

this setup is presented in figure 31. A typical recorded sound signal A(t) in
a small time range is presented in figure 32, where the time development of
the recorded amplitudes in arbitrary units is plotted.

The entire signals last around 50 s including many rotor rotations leading to

Figure 31: Experimental setup with fan, microphone and Laptop

a sufficient statistic. We are convinced that the turbulence patterns change
several times during this period. One problem are too high amplitudes, which
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Figure 32: Detail of a typical recorded signal (fan level 1); amplitude in arbi-
trary units, small time range; the vertical lines and the arrows mark different
time windows used for the investigation of the intensity distributions, see
figure 34

exceeds the digital resolution of the sound card of 216 amplitude levels giving
access to amplitudes from −32768 to 32767 a.u. Thus amplitudes exceeding
these limiting values are filtered out of the signal for further analysis. For
first investigations the overall intensity distribution of I = A2 is plotted, nor-
malized by the mean intensity 〈I〉, shown in figure 33. We find an agreement
with the K-distribution corresponding to equation (8.5) and n = 2 (red line).
The agreement takes place over 3 orders of magnitude within the accessible
intensity range. The small deviations in the tail are surely caused by a lack
of statistic for those large events. But n = 2, which is the degree of freedom
in the χ2 function, is unexpected small.
Nevertheless we checked the other assumptions coming from our basic model:
The intensity distribution of a time window, which is short enough that the
turbulence configuration is stable, should lead to a Rayleigh distribution with
a decrease changing from window to window. These decreases s (e.g. the lo-
cal mean value) should follow a χ2 distribution. How long those small time
windows are supposed to be is not evident. On the one hand side enough
data points are needed to obtain a proper statistic including the tails. On
the other hand we do not want to average over several turbulence patterns.
The identification of the correct timescale during which the vortex patterns
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9 MEASUREMENTS WITHOUT EXTERNAL SOUND GENERATION

Figure 33: Intensity distribution of the same measurement as in figure 32
(black histogram) and in red equation (8.5) with n = 2

remain stable is the challenge of the data analysis. In the microwave experi-
ments this separation is undisputed, because instead of a time separation a
well-defined separation of (antenna) position appears. The distributions for
different window lengths are shown in figure 34. We cut the full signal with a
length of 43.69 s and 2093481 data points in 100, 300 and 1000 sub-windows
of length 0.436 s (20934 points), 0.146 s (6978 points) and 0.0436 s (2093
points), respectively, to find out in which time range the expected Rayleigh
behavior can be found. These window lengths are indicated in figure 32, all
three starting at the black vertical line stopping at the blue or red or orange
line, respectively. The problem is that for too short windows local structure
destroys the idea of random fluctuations resulting in large deviations from
the Rayleigh law (blue line) in figure 34 (a). Furthermore the number of
points is quite small for statistical analysis. For the second case (b) the over-
all decay seems to agree quite convincingly with Rayleigh’s prediction (blue
line), but several oscillations on the histogram are revealed. This shows that
there is still local structure resolved which is not averaged out. Also for the
longest window, where many signal oscillations are included per window, the
agreement is not better, as the distribution does not start at 1 but is already
arched there and might already follow a K-distribution better than the plot-
ted Rayleigh distribution (blue line). In the limit of sub-window length of
the same order as the full signal length we expect the K-distribution of figure
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(a) length = 0.0436 s (b) length = 0.146 s

(c) length = 0.436 s

Figure 34: Examples of local intensity distributions of different time windows
with Rayleigh law (blue lines) corresponding to equation (8.3) with fixed
slope 〈I〉

33 to reappear, pointing out that the chosen sub window length of 0.436 s
is already too long to resolve stable turbulence patterns. Nevertheless we
had a further look into the values of s for all three examples. The distri-
butions of the local mean values s is shown in figure 35 with s normalized
like s = 〈I〉loc/〈s〉, where two different fit possibilities are added. In blue
the fit with the χ2-distribution according to equation (8.4) is plotted and in
red a normal distribution. Unfortunately it is not decidable, which of these
fits describe the data better, as both have a nearly equal curve progression
and deviation errors of the same order. Moreover the obtained values for the
n-parameters of 10.6, 34.4, 61.3 of the χ2-distribution do not coincide with
the value of 2 in the overall intensity distribution of figure 33, resulting in
a violation of consistency. Several other window lengths and other experi-
mental data from the other fan levels and data from an experiment with a
small turbine were analyzed, all resulting in similar non-consistent outcomes.
Concluding we have seen a non-Gaussian distributions of intensities follow-
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9 MEASUREMENTS WITHOUT EXTERNAL SOUND GENERATION

(a) 1000 windows of length = 0.0436 s,
nfit = 10.6

(b) 300 windows of length = 0.1456 s,
nfit = 34.3

(c) 100 windows of length = 0.436 s,
nfit = 61.3

Figure 35: Distributions of local mean value with Gauss (red) and χ2 fit
(according to equation (8.4)) (blue), in orange the χ2 distribution for the
expected value of n = 2 is plotted

ing the expected K-distribution. However the segmentation of the signal in
short time window and their analysis is still not convincing and results in
the contradiction of the degrees of freedom. But the simple setup leaves
room for development: As the propagating sound waves are not controlled
at all, because they are caused by the rotor noise and the wind velocity, it
makes it hard to test the vortex structures without knowing the exact sound
input. Only if the incoming sound waves are well characterized the influence
of the vortex potential on them can be identified. This leads us to the second
generation of pre-experiments.
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10 Measurements with external Sound Gen-

eration

To overcome the uncertainties of the sound generated by rotor noise and
the air stream we added a new component to our setup: a loudspeaker to
generate sound waves with a controlled, adjustable frequency. After a few
attempts with borrowed equipment it became clear that we needed a high
end equipment concerning a high and reliable sound frequency (to probe
the turbulence) for the loudspeaker and a high sampling rate of the sound
card to obtain a good resolution of the generated frequency. Our financial
limits restricted us to standard audio technique offering frequencies up to
20 kHz and sampling rates of 192 kHz resulting in 9 to 10 data points per
frequency period. We bought the ribbon tweeter MHT 12 of Visaton with a
frequency response of 20-40 kHz, a linear amplitude frequency response and a
high degree of signal fidelity. The microphone is a E 614 by Sennheiser with
a frequency response of 40 Hz - 20 kHz, a good directional characteristic and
a small diameter of 20 mm, as in our model the source is assumed to be even
point-like (compared to the wavelenghts). A new sound card with matching
connectors and a maximal sampling rate of 192 kHz was necessary to exploit
the quality of microphone and loudspeaker. For controlling the experiment
a Labview program was written, dealing with the synchronization of genera-
tion and recording of a provided fixed frequency. A photograph of the setup
is presented in figure 36.
Now the question arose whether the loudspeaker-microphone axis should be
positioned along or across the air flow. We expected the vortex patterns to
change with respect to their distance to the source, the fan. Thus a posi-
tioning along the flow might lead to an averaging over many vortex patterns.
Moreover the tools would be standing in the wind, influencing the turbulence.
The advantage on the other hand is, that the length of wave propagation in
the flow is only limited by the size of the lab. Measuring across the stream
only the cross section of the air stream is available for the propagating waves,
but the sort of turbulence patterns is supposed to be constant due to the fixed
distance to the source. Based on these considerations the across positioning
seems to be more promising. Nevertheless we always tested also the other
configuration. (This case will be marked in the further analysis). A typical
signal and its Fourier Transform are presented in figure 37 and 38.
The signal looks very erratic and only in the zoom 37(b) the oscillations that

lie on top of the line in 37(a) are observable. But in the Fourier transform
38(a) the peak at 15 kHz, the generated frequency, is clearly visible (arrow).
In the zoom of the Fourier Transform the peak occurs very sharp and clean
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10 MEASUREMENTS WITH EXTERNAL SOUND GENERATION

Figure 36: Setup with microphone (middle), loudspeaker (left), fan (right)
and external sound card (middle in the front) in the “along”-configuration

(a) Complete recorded signal (b) Zoom

Figure 37: Amplitudes of recorded signal of fan level 1 with main frequency
νin = 15 kHz in arbitrary units and a black bar indicating the corresponding
period length Tin in the zoom

over two orders of magnitude.
Our first attempt to cut the signal again in small time windows, Fourier trans-
form them and to compare the height of the peak at the main frequency –an
analogous procedure as in the first experiments in section 9– failed due to an
insufficient resolution in the Fourier transformed signal of the short windows.
The peak included only a few data points, thus an analysis of its maximum
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(a) FFT of the complete signal (b) Zoom around main peak as a log-plot

Figure 38: Fast Fourier transform of the same signal with dominant peak at
νin = 15 kHz

was not reliable. Hence we decided to filter the signal to get rid of the fre-
quencies caused by the air stream and the motor and use only frequencies
from a window around the main peak. An example of such a filtered signal
is shown in figure 39. The filtering was a standard Fourier filter: the ori-

Figure 39: Amplitudes (a.u.) of filtered signal of fan level 1 with main
frequency νin = 15 kHz in arbitrary units, the vertical dotted line marks the
mean amplitude

ginal signal was Fourier transformed, a window around the main peak was
cut out using a rectangular window function, as other more complex win-
dow functions like Hanning or Hamming led to the same results, and finally
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10 MEASUREMENTS WITH EXTERNAL SOUND GENERATION

the remaining data was back transformed. The result was a regular cosine
curve of the main frequency, but with an envelope shaping the amplitudes
and small variations of the mean period length. These deviations from the
mean amplitude are marked in figure 40(a) as well as the deviations from
the main frequency in the period length (figure 40(b)). As the deviations of

(a) Deviations from mean amplitude
marked in blue (note the different scales!)

(b) Zoom: Deviations from mean ampli-
tude marked in red and the mean periods
are marked by vertical lines

Figure 40: Filtered signal with main frequency of 15 kHz (fan’s level 1)

the periods can only be seen in large zoom-ins (see figure 40(b)), where of
course only a few oscillations are shown, those two deviations are analyzed
statistically. To avoid windowing effects of the filter procedure the first and
last 1500 periods were not taken into account for further investigations. To
extract these deviations reliably a fit was necessary, as due to the small sam-
pling rate of only ≈ 10 data points per period the extremal data point did
not describe the maximum correctly.
After attempts with parabolic and order 4 polynomial fits a local cosine fit
of a few data points around the extremal points lead to the cleanest results.
But how many points are to include into one fit? On the one hand more
data points mean longer times used for one fit, which is supposed to be local.
On the other hand minimum 3 points were needed for a cosine fit. Hence we
ended up with 5 data points per fit of every half period. One example of a
zoom in the filtered signal with the fit ranges indicated by the vertical lines
and two half cosine fits of a minimum and maximum are presented in figure
41. Here the deviation between the extremal data points (red crosses) and
the extrema of the fitted cosines (arrows) can be seen. From these fits we
obtained position and amplitude of the extremal points. From the difference
of the x -positions of the extrema the local period length Ploc was calculated,
indicated by the horizontal arrow in the figure. These are the data points
for all further investigations. Figure 42(a)/42(b) includes the distributions
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Figure 41: Amplitudes of filtered signal (same as in the figures before) with
two exemplary half cosine fits (orange) in the range between the vertical lines;
the minimal and maximal data points are marked by a red cross, the extrema
of the fits by arrows. The horizontal arrow gives the length of half the local
period length Ploc/2 = 0.03333 ms which corresponds to a local frequency of
15.0010 GHz
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10 MEASUREMENTS WITH EXTERNAL SOUND GENERATION

of deviations of the mean amplitude A ≡ Ai − Ā and the deviations from
the mean period lengths P ≡ Pi − P̄ . Large deviations from a normal dis-

(a) Amplitudes A (b) Periods P

Figure 42: Distributions of A and P with a normal distribution (blue)

tribution (in blue as a guide to the eye) are found. Plotting A and P over
the time (see figure 43) reveals that those quantities are continuous proving
that frequency and sampling rate are fast enough to probe the development
of the envelopes of the signal. We hope that the vortex patterns are mapped
on this development. To test this assumption we changed the turbulence (by
placing a obstacle between fan and setup, surely influencing the turbulence
in any certain way, see figure 44) and compared the results before and after.

The distributions of A and P are changed dramatically, if one compares
figure 42 and figure 45. In the latter one P (P ) looks very Gaussian. But
P (A) has large deviations from a normal distribution. Another interesting
quantity to look at, especially in comparison of different underlying turbu-
lence patterns is the (anti-)correlation between A and P , which might already
be suspected by a closer look into figure 43. For a more precise analysis we
created a two dimensional density plot for A and P , presented in figure 46.
Additionally the correlation coefficient for two quantities defined as

Cor(A,P ) =
1
N

∑N
i=1(Ai − Ā)(Pi − P̄ )

√
1
N

∑N
i=1(Ai − Ā)2 · 1

N

∑N
i=1(Pi − P̄ )2

(10.1)

with N the number of accessible data points is calculated. −1 means in
this normalization perfect anti-, 1 perfect correlation. 0 is the value of com-
pletely uncorrelated data. Here we obtain the value Cor(A,P ) = −0.029 for
the measurement with, respectively Cor(A,P ) = −0.627 without the extra
obstacle. The figure 46, as well as the calculations of Cor(A,P ), show that
the anti-correlation –meaning that higher amplitudes are related to smaller
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Figure 43: Time development of amplitudes (orange) and periods (blue)

Figure 44: Schematic picture of the setup with obstacle between fan and
loudspeaker

49



10 MEASUREMENTS WITH EXTERNAL SOUND GENERATION

(a) Amplitudes A (b) Period lengths P

Figure 45: Distributions of A and P with a normal distribution (blue) ob-
tained in the setup with additional obstacle in the air stream

Figure 46: Shade plot of the density of correlated A and P ; without obstacle
Cor(A,P ) = −0.627 (left) and with obstacle Cor(A,P ) = −0.029 (right)

period lengths– is destroyed by changing the turbulence pattern. Summa-
rizing our findings it seems that the analyzed quantities are reasonable and
contain some information about the flow, information which of course has to
be quantified and tested in a more precise way.
Unfortunately already figure 43 shows a clear signature of a remaining pe-
riodicity. This is checked by a Fourier Transform of A and P . Figure 47
shows the modulus of the FT of A (the results for P are not presented, but
show a similar behavior) and in vertical lines a frequency of σ1 = 11.97 Hz
(red dotted) and σ2 = 3σ1 = 35.92 Hz (black dashed). It is obvious that
the amplitude signal contains striking peaks at the two frequencies. They
obviously correspond to the rotor of the fan and the frequency for the three
blades, respectively, as indicated in table 2. The same oscillatory character-
istics with 35.92 Hz is found looking at the autocorrelation functions, defined
as the time average 〈...〉t over A(t)A(t + ∆t) (see figure 48). Again we also
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(a) without obstacle (b) with obstacle

Figure 47: Fourier transform of A for both setups (a.u.) with main frequen-
cies indicated by vertical lines

checked the consistency with P and several other measurements with other
rotor velocities, which are not shown here. It seems that the obstacle be-

(a) without obstacle (b) with obstacle

Figure 48: Autocorrelation function of A for both setups (a.u.) with main
frequencies indicated by vertical lines at δt = 0.028 s ⇒ ν = 35.92 Hz

tween fan and sound setup minimizes the effect of the rotor frequency, as the
occurrence of the peaks in the Fourier Transform and the autocorrelation
function is less prominent, but it is still present. Now we have reached the
limits of our cheap basic setup, as we must realize that the turbulence created
by the fan is not “random” enough, e.g. contains to much information about
its source and cannot be treated as a random potential for the propagating
waves as it was proposed in our model. Here was the point to hop on a more
professional level. Thus we started a cooperation with the group of professor
Joachim Peinke in Oldenburg, where a large wind tunnel with very reliable
conditions is installed.
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11 MEASUREMENTS IN A LARGE WIND TUNNEL

11 Measurements in a large Wind Tunnel

Through this cooperation I got the possibility to perform the next mea-
surements in the institute of physics of the Carl-von-Ossietzky University in
Oldenburg in professor Peinke’s group. Their wind tunnel is a recirculating
acoustic tunnel schematically presented in figure 49. In the laminar regime

Figure 49: Scheme of wind tunnel of the Göttinger style used in Oldenburg,
taken from [34]

the wind tunnel has a background turbulence intensity of less than 0.2% and
a maximal wind speed of 50 m/s can be reached. The tunnel is normally open
with a 1.8 m long test section (denoted by “Meßvolumen” in the picture) be-
tween the absorbing funnel and the injector (“Düse”). The streams’ cross
section at the injector has the size of 1.0 x 0.80 m2. The drive mechanism of
the tunnel is a direct current engine with a maximum power of 77 kW. The
speed of the wind is regulated via the rotational frequency of the air blower
(“Gebläse”) and the direction of the stream vectors is parallelized in the flow
straightener (“Gleichrichter”). The control can be carried out manually at
an operator console. Additionally the tunnel has a temperature controll sys-
tem, ensuring a variation of temperature of less than ±1◦ C. The approach
velocity is defined by the controlling voltage at the wind tunnel. In this the-
sis instead of the voltage the corresponding speed of wind and the rotations
per minute will be indicated (e.g. the speed of the free air stream without
any obstacles or grids), because these are the more intuitive quantities. A
controlling voltage of 1.0 V corresponds here to a reference wind speed of
5.26 m/s. All the information about the wind tunnel were communicated to
me during my stay in Oldenburg or can be found in [35].
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11.1 Findings

To generate a turbulent air flow obstacles in the stream are installed system-
atically: To obtain homogeneous and isotropic turbulence rectangular grids
of a defined mesh size are used. The largest scale of the turbulence pattern
is thus predetermined by the mesh size. The formation of vortices is based
on the viscous shear forces at the grid elements. Eddies arise mainly in the
plane perpendicular to the grid with vortex vectors oriented parallel to the
bars. Hence there is a large anisotropy of turbulence directly behind the
grid. Downstream the current field changes due to the interaction and the
dissolution of the eddies, respectively the dissipation. Thus we can expect
the turbulence only to be homogeneous and isotropic if the distance to the
grid is sufficiently large (depending on mesh size, wind speed etc.).
The precise characteristics of the turbulence created with the accessible grids
is unknown. Thus I exhaust the full parameter range like mesh size, bar
width, wind velocity, distances to the grid and generated sound frequency to
see where the findings match with our basis model.

11.1 Findings

For the experiments in the wind tunnel in Oldenburg the same sound equip-
ment as in the previous section was used. First measurements without extra
grid were performed to be the reference for the further analysis. Then 3
regular rectangular grids were installed and finally one fractal grid. The last
was used only as investigation of its turbulence is of actual interest of the
local group in Oldenburg and there might be some new aspects from which
they could take benefit [36]. A picture of the grids and the setup is shown in
figure 50. Loudspeaker and microphone are installed to the right and to the
left outside of the air stream in the height of the grid center, see figure 51.
Sound card and PC are positioned outside of the test section. I made sure
that the temperature during my experiments was constant at 20◦ ± 0.5◦ C.

The relevant settings of my LabView program are documented in table 3.
The excited frequencies were for all setups (defined by wind speed, grid and

Volume 100
Amplitude 20

Sampling Rate 192 kHz
number of channels 1 (mono)

bits per sample 16
recording time 15 s

pause between recordings 2 s

Table 3: Setting of the controlling LabView program
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11 MEASUREMENTS IN A LARGE WIND TUNNEL

(a) grid 1 (b) grid 3

(c) fractal grid (d) no grid

Figure 50: Photograph of the different grids respectively tunnel without grid
with microphone, loudspeaker and sound card in the front

distance to the grid) ν = 0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0 kHz. 0 Hz
means in this case that no sound was generated, so that the pure noise of
the wind and the environment was measured. The nine measurements were
performed automatically with a short pause in between to adjust properly
for the new frequency. Hence the sound was started at t0, but the recording
started 2 s later when transient oscillation of the loudspeaker was over. The
recording time of 15 s was a compromise between gathering enough statis-
tic for the analysis but performing as many measurements during my stay
as possible. After the recording of the nine different frequencies the wind
speed was increased from 5 to 20 m/s in 5 m/s-steps. One more measurement
nearly without wind ≤ 0.23 m/s but with running engine was additionally
performed. All these parameter combinations were measured three times for
each installed grid in distance to the grid plane of 16, 88 and 150 cm. The
mesh sizes of the grids are found in table 4. The fractal grid consists of 5
generations of squares, the denoted values belong to the largest cell. The ra-
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11.1 Findings

Figure 51: Sketch of experimental arrangement of microphone-loudspeaker-
axis parallel to the grid in distance d

tios of the bars’s length and thickness between every iteration are RL = 0.5
respectively Rt = 0.5 [36]. The data analysis was performed in the same

Grid no. mesh size/bar length bar width

1 2.2 cm 0.35 cm
2 4.5 cm 0.8 cm
3 8.9 cm 1.5 cm

4 (fractal) Lmax = 44.7 cm tmax = 2.37 cm

Table 4: Geometry of the used grids

way as in section 10. Again A and P are the quantities obtained and used
for further treatment. Of course all the data was analyzed, but due to the
large amount of measurements only a few exemplary measurements are pre-
sented. Learning from the experiences in the test measurements we checked
the Fourier Transform for any unwanted periodicities. Only a small 50 Hz
instability and a slight 9 Hz peak are found. The first one is the expected
frequency of the electricity network, the second one corresponds to the time
of circulation of the wind tunnel. Both effects are much smaller than the
influence of the rotation frequencies of the fan, thus we hope to be close to
our ideal model of a random potential.
First of all the distributions of A (not shown) and P were investigated. Fig-
ure 52 includes exemplary several different distributions of P . On that basis
all the relevant properties will be discussed. In the left column of figure 52 a
linear and in the right column a logarithmic plot are presented, which
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11 MEASUREMENTS IN A LARGE WIND TUNNEL

(a) without grid, distance d = 16 cm, wind speed = 20m/s, 5 kHz

(b) without grid, d = 16 cm, wind speed = 20m/s, 20 kHz

(c) grid 3, d = 16 cm, wind speed = 10m/s, 5 kHz

(d) grid 3, d = 16 cm, wind speed = 10m/s, 20 kHz

Figure 52: Distributions of P with normal distributions (blue) in a linear
(left column) and a log plot (right column)

56



11.1 Findings

makes the deviations from the normal distribution (fit in blue) more vis-
ible. The first 4 pictures correspond to measurements without grid with a
wind velocity of 20 m/s, setup positioned 16 cm away from the grid plane and
with sound frequency of 5 respectively 20 kHz. The lower 4 pictures belong
to grid number 3 and a wind speed of 10 m/s. In the linear plot all the dis-
tributions follow the normal distribution. But the logarithmic plots in 52 (d)
and (h) reveal some deviations in the tails. Especially (h) contains significant
deviations and asymmetry. Here we hope to find the reminiscences of the
turbulence’s nature. Hence we focus on the third and fourth momenta, skew-
ness S and kurtosis K, of the distributions and their parametric dependency.
The skewness is a measure of the lopsidedness of a distribution, vanishing
for any symmetric one. The kurtosis describes the deviations from a normal
distribution.

S(x) =
1

N

N−1∑

j=0

(
xj − x̄√

Var

)3

(11.1)

K(x) =
1

N

N−1∑

j=0

(
xj − x̄√

Var

)4

− 3 (11.2)

where x̄ is the mean value, Var the variance and N the number of data points.
We expect these two moments to grow continuously with increasing turbu-
lence and –if not increasing– at least to have a monotonous behavior. Again
the variety of quantities and parameter combinations makes it impossible to
present all the results. But a typical selection is shown in the figures 53 and
54.

No monotonous behavior was found in any of the plots. The data points

(a) Skewness of P (A) (b) Kurtosis of P (A)

Figure 53: Grid 3, wind speed = 5 m/s, black crosses: d = 150 cm; blue
triangles: d = 88 cm; red diamonds: d = 16 cm
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11 MEASUREMENTS IN A LARGE WIND TUNNEL

(a) Skewness of P (A) (b) Kurtosis of P (A)

Figure 54: Grid 3, ν = 15 kHz, black crosses: d = 150 cm; blue triangles: d
= 88 cm; red diamonds: d = 16 cm

of the kurtosis seem to distribute randomly around zero, changing its sign.
The skewness is mostly positive, but seems not to depend significantly on the
wind speed. The three curves of the different distances to the grid among
themselves do not follow a certain order neither: The red curve of the min-
imal distance is in between the two other curves (figure 53 (b)) or nearly
the lowest one (figure 54 (a)). No trend is recognizable. One problem is the
low number of data points per curve (4 to 8) thus we tried to map more
measurements on one new parameter, a Reynolds number defined as

Re =
v L

νvis
(11.3)

where v is the mean velocity of fluid (we used the wind speed), L a charac-
teristic length dimension (we took the mesh width of the grids) and νvis =
1.322 10−5 m2/s the kinematic viscosity of the air. It is clear that for a stream
through a grid a Reynolds number is a microscopic quantity corresponding
to local velocities on smaller scales, but we only try to map several parameter
dependencies on one scale. Unfortunately also the the plots in figure 55 with
several data points show no continuous behavior at all. Hence the idea of
mapping length scale and wind speed on one parameter does not work. Even
in the measurements with other grids, other frequencies and other distances
between setup and grid no promising parameter dependence has occurred.
The last chance are the experiments without extra sound, but only the noise
of the wind and the background. Here we hoped to find the characteristics
of turbulence in the decline of the time correlation function of the recorded
signal. Again the procedure of cutting the signal into smaller time windows
failed for the same reasons as in the test measurements. Thus we had a look
at the autocorrelation function of the time signal, in particular its decay. For
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(a) Skewness of P (A) (b) Kurtosis of P (A)

Figure 55: fixed distance d = 88 cm to the grid, mesh width and wind speed
mapped onto Re; black crosses: ν = 5 kHz; blue diamonds: ν = 10 kHz; red
squares: ν = 15 kHz

this purpose we investigate its first zero crossing t0, presented in figure 56.
As we have ∆t = 0.001 s in the autocorrelation function, this is the resolu-
tion of the zero crossing. Initially we expected that a more turbulent air flow

(a) no grid (b) grid 3

Figure 56: Zero crossing t0 of the autocorrelation function; black crosses: d
= 150 cm; blue triangles: d = 88 cm; red diamonds: d = 16 cm

leads to a faster decay of the sound signal’s autocorrelation, thus to smaller
values of t0. For one grid t0 should thus decay for higher wind speeds and
there should be an observable difference between the different grids and for
different distances to the grid. This behavior was observed in figure 56(a)
for the laminar flow without grid. Here the autocorrelation decays for higher
wind speeds from 10 m/s. However here the data for the measurements with
grid look very similar to the measurements with the laminar flow. Moreover
there is nearly no difference between the different distances between setup
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12 DISCUSSION

and grid. Thus it is impossible to gather information about the turbulence,
a typical correlation length or its intensity from these measurements.

12 Discussion

Finally after evaluating all these measurements carefully the experiments
have shown that the suggested picture of vortex fields changing smoothly
with time and providing a random potential for the propagating sound waves
could not be observed. Possible causes for the discrepancy of experimental
findings and the model are the following: It is not clear if the transfer of
our basic model to the physical system of sound waves traveling through a
turbulent air stream is correct and where its limits are. Though the exact
characteristics of the flow behind the grids are not known it is clear that the
turbulence is created on one scale and breaks down through the cascade until
the dissipation regime is reached. Kolmogorow found in his works in 1962
the 5/3-law for the spectral density P (k) ∝ k−5/3 depending on the wave
number k [37]. Thus it is impossible to define a proper correlation length
in a turbulent flow, as all vortex sizes between the largest initial size and
the dissipation length appear with a certain probability. If and how many of
them can be resolved with our sound waves is unclear. Maybe ultra-sound
frequencies and higher sampling rates would be more suitable to resolve the
structures. In addition the turbulence intensities in the wind tunnel may be
too small to imitate a random potential. Pascal Knebel wrote in his thesis
[35] about his development of active grids to increase the turbulence intensity
as it is hard to reach it with standard grids. He writes that one needs on the
one hand a large distance to the grid to obtain a homogeneous and isotropic
turbulence independent from direction and geometry of the grid, but that on
the other hand then the dissipation becomes more prominent and shrinks the
turbulence intensity. The reason for this problem is that the redistribution of
the vorticity runs slower than the dissipation. Consequently, the turbulence
was neither homogeneous nor isotropic in the close distances to the grid. But
this was a strong assumption in our model. For the largest distances isotropy
and homogeneity are improved, but here the turbulence becomes too weak.
This might be the reason for the similar findings for the laminar flow without
and the turbulent flow with grids (see e.g. figure 56).
The second type of experiments without external sound, where the recorded
signal was caused by the turbulence, was much too complicated to match
with our simple model. The process of sound radiated from a fluid flow is a
very complex problem and is investigated for decades [38, 39].
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Approaching a new experimental field within a limited time and with a lim-
ited budget is always risky, but holds a large potential in case of success.
In summary our setup with the accessible equipment was not appropriate to
adapt to the simple model, which was developed in microwave measurements.
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13 MOTIVATION

Part III

Study of n-Disk Systems

13 Motivation

The study of n-disk systems, its classical and quantum mechanical dynamics,
offers many relations to the fundamental fields and topics of quantum chaos:
We will investigate periodic orbits and the system’s repeller, which turns out
to be fractal. For the categorization and bookkeeping of the infinitely many
periodic orbits we need to exploit symmetries by applying group theory, need
to find symbolic dynamics and take care of the pruning. These periodic clas-
sical trajectories will leave its fingerprints also in quantum properties and
we will find a spectral gap of the complex quantum mechanical resonances,
which can be calculated from classical geometrical properties of the system
using transfer operators and the thermodynamic formalism resulting in clas-
sical zeta functions.
The relation between classical and quantum mechanical quantities manifests
itself in many famous equations like the Gutzwiller trace formula, relating
the eigenvalue spectrum of the Schrödinger operator to the periodic orbits
of the underlying classical system [6], the (fractal) Weyl law concerning the
asymptotic eigenlevel number [7] and its relation to the system’s dimension
or the Hausdorff dimension of the fractal repeller, respectively. Not only the
spectrum but also chaotic wave functions include the memory of the classical
dynamic as was already observed experimentally in our group for two- [40]
and three-dimensional [41] billiards and named scarring [8, 42].
The n-disk system is a system, which is very instructive due to its simple
geometry, defined only by the ratio of disk radius to disk distance. This
unique geometric parameter defines at the same time the opening of the sys-
tem. Thus it offers the possibility to control the opening very accurately and
allows for a continuous transition from a closed over a weakly to a wide open
configuration. This transition is studied in the numerical calculations (see
section 15) and in the experimental realization as well (section 16.1). Open
systems are experimentally difficult to handle, as the resonances in the spec-
trum become broad and overlap strongly. Here we face the data extraction
of the resonances as the big challenge. The harmonic inversion, our solution
to this problem, is presented in section 16.2. With the successfully extracted
resonances the distribution of their imaginary parts is studied, especially
their distance to the real axis, the spectral gap. The results are shown in
section 17.2 and we published them in [43]. Beside the imaginary parts of the
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complex resonances we can investigate the counting function of the real parts
and its asymptotic exponent and compare it with the calculated Hausdorff
dimension (section 17.3). The results on this have already been published in
[44].

14 Definition of n-Disk Systems

A paradigmatic hyperbolic open system with a classical fractal repeller is
the n-disk system (see figure 65 and 66). The repeller are those points in
phase space that do not escape to infinity neither for positive nor for negative
times. It has been introduced in the late 80s by Ikawa in mathematics [45] and
by Gaspard and Rice [13, 46] and Cvitanović and Eckhardt [14] in physics.
Theoretically it has been studied in the classical, semiclassical and quantum
mechanical regime and there has also been an experimental study on the
spectral autocorrelation [47, 48]. A n-disk system describes the scattering of
a classical or quantum mechanical particle in a 2 dimensional plane on n hard
disks (i.e. infinite circular potentials) whose centers form a regular polygon.
While the distance between the centers historically is denoted by R the radius
of the disks is called a and up to scaling the geometry is completely described
by the ratio R/a (for an illustration see figures 65 and 66). This ratio also
defines the “openness” of the system: For R/a = 2 the disks are touching
each other and we have a closed area in the interior between the disks. By
increasing this ratio parameter the distances between the disks become larger
and the interior couples to the outside. The system’s simplicity allows for a
detailed study of quantum mechanical, semiclassical and classical scattering.
For the classical study of the n-disk system one is interested in the trajectories
of particles which perform hard wall reflections on the disks or escape to
infinity. From periodic trajectories a wide range of classical quantities like the
classical escape rate, the fractal dimension of the repeller and the topological
pressure can be calculated. Though they are purely classical they will play
a role in the analysis of the quantum resonances. This will be described in
section 15. From here on we restrict n > 2 as there is just one periodic
orbit in the 2-disk system (the bouncing ball between the disks) and only
from n = 3 there exist infinitely many periodic orbits providing the needed
complexity.
The big advantage of the n-disk systems is that the orbits can be categorized
and provide a constructive topological description of the system dynamics:
With the so called symbolic coding every orbit can be translated into a word
including the labels 1, 2, . . . , n (the alphabet) for every disk, with that the
particle collides. Orbits belonging to the repeller are described by an infinite
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14 DEFINITION OF N-DISK SYSTEMS

series of labels, where especially the periodic orbits consist of a bi-finite but
periodically repeated sequence, e.g. a bouncing ball orbit between disks 1 and
2 will be denoted by 12 or simply by 12 if it is clear from the context that a
periodic orbit is meant. It is shown (e.g. in [49]) that there exists a one to one
correspondence between every possible label sequence and the periodic orbits
with the only restriction that two consecutive labels must not be the same.
This one to one correspondence is only valid for disks sufficiently far apart,
because for very narrow configurations some orbits do intersect with another
disk’s boundary which will prohibit these orbits. In this case the symbolic
dynamics is not complete anymore and an additional grammar, i.e. pruning
rules, must be introduced, see figure 57. For all calculations based on the
symbolic dynamics it thus must be ensured that the appearing orbits are not
pruned. Considering the restriction of the symbol repetition and respecting

Figure 57: Periodic Orbit 0213243041 (= 21 in reduced coding) in the 5-disk
system pruned (R/a = 2.1) (left) and valid (R/a = 2.5) (right)

the symmetry degeneration of orbits (e.g. the bouncing balls 12 and 23 can
be transfered into each other by a rotation operation and thus look the same
in the projection onto the fundamental domain) we took advantage of the
symbolic dynamics for the symmetry reduced system, invented by Eckhardt
and Cvitanović in 1989 [14]. For the 3-disk system they have shown that the
symbolic dynamics associated with the numbering of the disks of the collision
(with the restriction that the same disk cannot be hit twice in serial) can be
reduced to the binary code 0 for reflecting backwards to the previous disk
and 1 for reflecting forwards to the next disk. Hence the global symbolic
orbit 12 becomes 0 and the orbit 123 becomes 1 in reduced code. Further
details can be found in the original publications [49, 50]. Generally speaking
a coding of a n-disk system of n labels with the only rule regarding symbol
repetition will lead to (n− 1) reduced labels without extra restrictions. For
the 5-disk system we had to generalize this reduced alphabet: We chose the
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Figure 58: 3-disk (left) and 5-disk (right) fundamental domain with the
fundamental (= order 1) orbits 0, 1 respectively 1, 1, 2, 2

four symbols 1, 2, 1, 2, where the number plays the role of the distance to
the next disk of collision. The underlining indicates a reverse of orientation
of the following dynamic after the collision with the disk. Consequently the
direction changes from clockwise to anticlockwise or the other way round. A
non-underlined number keeps the orientation and indicates a flight to a disk
in distance 1 or 2 in the current direction. For example the global orbit 12
becomes 1 and the orbit 12345 becomes 1. The fundamental orbits of the
3-disk and 5-disk systems are illustrated in figure 58. It is obvious that all
periodic orbits of an order n in the symmetry reduced case include orbits up
to much higher orders in the global code. E.g. the global orbit 0213243041
(see figure 57) of order 10 reduces to 12 (order 2) and is consequently already
included in a second order symmetry reduced calculation. Why this reduction
leads to a better convergence of the computations of the classical quantities
and how it is implemented will be explained in section 15.6 and appendix H.
The quantum n-disk system is described by the Helmholtz equation

−∇2ψn = k2nψn (14.1)

with Dirichlet boundary conditions on the disks boundaries. As the system
is open the quantum resonances kn = Re(kn) + iIm(kn) are complex valued.
For the 3-disk system Gaspard and Rice [51] gave an explicit expression for
the scattering matrix in terms of Bessel and Hankel functions which allows
for the calculation of the quantum resonances numerically, which is presented
in the appendix I and whose findings are compared with the experiments in
section 17.1.
We realize such a “quantum” n-disk system in a microwave analog system
based on the ideas presented already in section 2 and described in detail in
16.1.
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15 THEORETICAL BACKGROUND

15 Theoretical Background

15.1 Classical Escape Rate

The escape rate is a classical quantity which turned out to be also interesting
in a quantum system in the description of the distributions of the imaginary
parts of resonances [52]. This connection will be exploited in the section of
the experimental results 17.2. But first a definition of this quantity is given
and based on that in the next passages its relation to a ζ-function and topo-
logical pressure is presented.
Imagine a classical open scattering system with a scattering center (e.g.
several hard disks of our n-disk system) and N0 point-like particles with
a fixed energy. They will be launched towards the scattering center in all
angles. For the limit of large N0 and large times the number of particles in
the scattering region (e.g. inside a virtual box around the disks) goes like
N(t)/N0 ∝ exp(−γt), where γ is referred to as the “classical escape rate”.
γ is related to the largest eigenvalue of a transfer operator F̂t which is in-
troduced now. This section does not intend to give a detailed mathematical
derivation of all the classical and semiclassical calculations, but I would like
to give an overview of the ideas of the abstract mathematical way and try to
give some intuitive arguments where the strict derivations are too bulky and
not helpful for a further understanding.
The transfer operator describes the time development of a function ϕ ∈
C∞(ΣE), where ΣE is an energy shell in phase space. Such a function may
be the probability density, which modulus square denotes the probability of
finding particles in a certain phase space volume. For the time development
a Hamiltonian flow acting on the phase space variables p and q like

Φt : ΣE → ΣE

p, q 7→ p(t), q(t) (15.1)

is responsible. Now the time development of ϕ, i.e. the transfer operator,
can be defined as

F̂t ϕ(p, q) ≡ ϕt(p, q) := ϕ(Φ−t(p, q)) (15.2)

Figure 60 (b) is a good illustration for the appearance of Φ−t(p, q). The
important property of the transfer operator F̂n·tϕ = F̂ n

t ϕ can easily be seen
as for the flow it is Φt1+t2(p, q) = Φt2(Φt1(p, q)). Now let us suppose that F̂t0

acting on a Hilbert space H is diagonalizable, then there is a complete set of
complex eigenfunctions ϕi and eigenvalues λi with 1 ≥ |λ0| ≥ |λ1| ≥ . . .. This
inequality is true for open systems without gain where the particle probability
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15.1 Classical Escape Rate

always decays with time. For later application it is suitable to write the
eigenvalues as λi = exp(−t0γi) with γi ∈ C and 0 ≤ Re(γ0) ≤ Re(γ1) ≤ . . ..
Now any probability distribution ϕ0 on ΣE at time t = 0 can be written as
a superposition of the eigenfunctions ϕi

ϕ0 = Σiciϕi

At time t = nt0 we find

ϕt = F̂t ϕ0

= F̂ n
t0
ϕ0 = F̂ n

t0
Σiciϕi

= Σiciλ
n
i ϕi

= Σici exp(−nt0γi)ϕi

= Σici exp(−tγi)ϕi

t→∞−−−→ c0 exp(−tγ0)ϕ0

This means that for large times only the decay with the smallest Re(γ0) sur-
vives and we obtain for the probability an exponential behavior ∝ exp(−tγ0),
the requested condition on the idea of an escape rate. Now the problem is
of course how to obtain the eigenfunctions and eigenvalues (especially the
largest one) of F̂t. The problem can also be restated as

F̂t0 ϕ0 = λ0ϕ0 ⇔ λ−1
0 F̂t0 ϕ0 = ϕ0

⇔ det
(

λ−1
0 F̂t0 − 1

)

= 0

⇔ det
(

et0γ0F̂t0 − 1

)

= 0 (15.3)

Thus the finding of the escape rate is equivalent of finding the root with the

largest real part of ζ̃−1(s) ≡ det
(

et0sF̂t0 − 1

)

.

Up to now we considered only global dynamic on the energy shell, but our
aim is to connect the periodic orbits in symbolic coding with this problem.
The symbolic coding is a discrete dynamic as it only considers the collisions
with the disks and its order, but not the free flight in between. Thus it makes
sense to come to a reduced and discrete dynamic on a Poincare section. In
the n-disk case this is typically the collision point on the disks’ wall and the
angle of reflection. But the explicit form is not important here: Let S be a
submanifold of the energy shell ΣE and P acting on it like

P : S → S
z 7→ Φtz(z) (15.4)
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15 THEORETICAL BACKGROUND

Figure 59: Poincare section S with a function ϕ and the two points z1 and
z2 with their evolution with Φ and tz1 > tz2

with tz > 0 is the shortest time with Φtz(z) ∈ S. A schematic picture of this
procedure is given in figure 59. The naive definition of a transfer operator

P̂ : C∞(S) → C∞(S)

ϕ(z) 7→ ϕ
(
P−1(z)

)
(15.5)

is not convenient as its eigenfunction can not be continued on the full ΣE as
the time tz depends on the starting point z, see figure 59. Thus a family of
operators is defined like

P̂s : C∞(S) → C∞(S)

ϕ(z) 7→ e−tzs ϕ
(
P−1(z)

)
(15.6)

because if there exists an s with det(1 − P̂s) = 0, i.e. there is a ϕ0, which is
eigenfunction of P̂s with eigenvalue 1, then ϕ0(z) can be continued for every
(p, q) ∈ ΣE:

ϕ̃0(p, q) := ϕ0(zp,q)e
−stp,q

where zp,q ∈ S with ∃t s.t. Φt(zp,q) = (p, q) and this t ≡ tp,q the time between
zp,q and (p, q) (figure 60(a)). This continuation of ϕ is in agreement with the
dynamics on the Poincare section, because it is

ϕ0 = P̂sϕ0 (postulated for s)

⇔ ϕ0(z) = e−tzs ϕ0

(
P−1(z)

)
(definition of P̂s)

⇔ ϕ0(P (z̃)) = e−tzs ϕ0(z̃) (with z = P (z̃))
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15.1 Classical Escape Rate

(a) continuation for every (p, q) ∈ ΣE (b) notations of times t and tp,q

Figure 60: Poincare section S

where the last equation gives the evolution of ϕ0 on S.
ϕ̃ is an eigenfunction of F̂t as

F̂t ϕ̃0(p, q) ≡ ϕ̃0 (Φ−t(p, q)) = ϕ0(zp,q) e
−s(tp,q−t) = ϕ̃0(p, q) e

st

The illustrations of the different times are plotted in figure 60(b). To sum-
marize the findings up to here: Finding the classical escape rate is equivalent
of finding the correct s in the operator family P̂s, such that there is an eigen-
function ϕ0 with eigenvalue 1. So we are led to the problem of finding the
poles of the dynamical ζ-function

ζ−1(s) := det(1 − P̂s) (15.7)

The determinant of an operator can be evaluated by the identity ln det =
Tr ln [50] or det exp = exp Tr, for which a heuristic explanation is given in
appendix C. Thus we have

det(1 − P̂s) = det exp
(

ln(1 − P̂s)
)

= exp Tr
(

ln(1 − P̂s)
)

Via the antiderivative of the geometric series we obtain

det(1 − P̂s) = exp

(

−
∞∑

n=1

Tr(P̂s
n
)

n

)

(15.8)

Here one needs to admit that the trace is only defined for trace class opera-
tors. We do not want to enter the mathematical discussion of the existence
of the trace, but simply assume that it exists in a suitable Hilbert space. The
next step is to evaluate the trace. Let us first rewrite:

P̂sϕ(z) := e−tzs ϕ
(
P−1(z)

)

=

∫

e−tzs δ(x− P−1(z)) ϕ(x) dx
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15 THEORETICAL BACKGROUND

where e−tzs δ(x − P−1(z)) can be understood as the kernel of an integral
operator, from which the trace can then be calculated (appendix D).

TrP̂s =

∫

e−tzs δ(z − P−1(z)) dz

=
∑

z:P (z)=z

e−tzs/| det(1 − JP (z))|

where | det(1− JP (z))| is the determinant of the Jakobi matrix, the stability
matrix evaluated on the trajectory starting and ending in z. Analogously

TrP̂s

n
=

∑

z:Pn(z)=z

e−tz,ns/| det(1 − Jn
P (z))| (15.9)

with tz,n :=
∑n−1

l=0 tP l(z) is a Birkhoff sum over n evolutions of P . We now
can write equation (15.7) with equations (15.8) and (15.9)

ζ−1(s) := det(1 − P̂s) = exp

(

−
∞∑

n=1

∑

z:Pn(z)=z e
−tz,ns | det(1 − Jn

P (z))|−1

n

)

(15.10)
This double sum could now be calculated, if all the fixed points P n(z) = z in
the Poincare section are known, but it can be simplified even more. The sum
over all orbit lengths (i.e. applications of Poincare operator) combined with
the sum over all orbits of length n can also be translated into a sum over
all prime periodic orbits, meaning orbits that are only passed through once,
times the sum over the number of cyclings through the orbit. Expressed
in a mathematical language: For a z with P n(z) = z and cycling time tz
there will be a smallest number k ≥ 1 with P k(z) = z. This k is called
primitive period and n/k the multiplicity of the orbit, i.e. the number how
often this orbit is run through. Further its true that for 1 ≤ m ≤ n the cycle
time and the stability do not depend on the starting point on the orbit, i.e.
tz,n = tP k(z),n ≡ Tp and | det(1 − JP (z))| = | det(1 − Jp)|. As for a periodic
orbit p the number of fixed points P n(z) = z coincides with its primitive
period kp we obtain for ζ

ζ−1(s) = exp



−
∞∑

n=1

∑

p∈PO(n)

kp
np

e−Tps

| det(1 − Jp)|



 (15.11)

where the second sum now runs over all periodic orbits of length n. For
every periodic orbit it is either kp = np –a primitive orbit– or np = j kp, a
repeated cycling of a primitive orbit. Moreover we have for period time and
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15.1 Classical Escape Rate

stability matrix Tp = j Tp′ and Jp = J j
p′ connecting an orbit p ∈ PO(n) and

its corresponding primitive orbit p′ ∈ PPO.

ζ−1(s) = exp

(

−
∑

p′∈PPO

∞∑

j=1

1

j

(
e−Tp′s

)j

| det(1 − J j
p′)|

)

(15.12)

Now we factorize the determinant into products of expanding and contracting
eigenvalues as presented in [53]: For the 2 dimensional Hamiltonian system
we have the two eigenvalues Λp and λp = 1/Λp and can thereby write (using
the geometric series)

| det(1 − J j
p)|−1 = |(1 − Λj

p) (1 − λjp)|−1 = |Λp|−j

∞∑

h=0

∞∑

k=0

Λ−hj
p λkjp

= |Λp|−j

∞∑

h=0

∞∑

k=0

Λ−(h+k)j
p = |Λp|−j

∞∑

k=0

(k + 1)Λ−kj
p

Inserting it into equation (15.12):

ζ−1(s) = exp

(

−
∑

p∈PPO

∞∑

j=1

∞∑

k=0

(k + 1)
1

j

(
e−Tps

)j
(|Λp|−jΛ−kj

p )

)

= exp

(
∑

p∈PPO

∞∑

k=0

(k + 1) ln

(

1 − e−Tps

|Λp|Λk
p

))

=
∏

p∈PPO

∞∏

k=0

(

1 − e−Tps

|Λp|Λk
p

)k+1

a Selberg product of zeta functions. Interchanging the two products [49] (only
allowed where it converges absolutely) one obtains a product of ζk functions.

ζ−1(s) =
∞∏

k=0

∏

p∈PPO

(

1 − e−Tps

|Λp|Λk
p

)k+1

(15.13)

≡
∞∏

k=0

1/ζk+1
k

From these definitions, the zeroth factor will be the one whose zeros have the
largest real part. As we are only interested in these zeros we will only study
this ζ-function as it is commonly done in literature, for example in [54, 49, 50].
Wirzba in [55] investigates numerically the resonances of the dynamical and
a slightly different Selberg product zeta function (i. e. without the exponent
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15 THEORETICAL BACKGROUND

k + 1), the Gutzwiller-Voros function, and finds for both a good agreement
with the exact quantum mechanical ones for regions not too deep in the
complex plane. This justifies the ansatz of considering only the zeroth term
and by defining the weight τp of a prime periodic orbit as

τp :=
e−Tps

Λp

(15.14)

we can write ζ(s) ≡ ζ0(s) which is the form of the well-known dynamical

ζ-function [46] of Ruelle

ζ−1(s) =
∏

p∈PPO

(

1 − e−Tps

Λp

)

=
∏

PPO

(1 − τp) (15.15)

15.2 Generalized Weights and the Topological Pres-

sure

The weights in (15.15) can be regarded as a special case of a generalized
weight function (for the strict derivation see [13])

τAp := exp

∫ Tp

0

[A(Φt(zp)) − s] dt (15.16)

with a function A : Σe → C. To obtain the special case (15.14) one has to
take

A = −κ(u)(z) := − d

dt

∣
∣
∣
t=0

ln Λz(t) (15.17)

the local unstable Lyapunov exponent. Thus the integral in (15.16) becomes

exp

∫ Tp

0

[
−κ(u)(Φt(zp)) − s

]
dt = Λ−1

zp (Tp) e
−sTp ≡ Λ−1

p e−sTp (15.18)

and the original weight of equation (15.14) is revealed. For an arbitrary
weight function A the largest real pole of ζA(z) is called the topological pres-

sure P (A). Its existence was shown in [56]. For further purpose one choses
a certain form for the function A

Aβ ≡ −β κ(u) (15.19)

with a free parameter β and obtains the ζ-function and the topological pres-
sure with respect to β

ζ−1
−β κ(u)(z) =: ζ−1

β (z) =
∏

p

[

1 − exp(−zTp)
Λβ

p

]

(15.20)

P (−β κ(u)) =: P (β) (15.21)
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15.3 Spectral Gap

For β = 1 thus the topological pressure −P (1) denotes the classical escape
rate. Typical shapes of the topological pressure for the 3-disk system and
two different R/a parameters are shown in figure 61. Later in section 15.4
we will see, that also the root of the topological pressure has a crucial sig-
nificance, indicating the Hausdorff dimension. An interesting property of

Figure 61: Topological Pressure (black solid line) for systems with R/a = 2.2
(left) and with R/a = 4.5 (right) and marks for P (dH) = 0, P (1/2) and P (1)

the distribution of imaginary parts of the resonances has been observed in
[52]: Numerically they found a concentration at Im(k) = −γ0/2 = P (1)/2
that is at half of the classical escape rate. This corresponds to the classical
expectation as the quantum mechanical probability density is the modulus
square of the wave function [13]. Thus we compared the experimentally (and
also numerically) derived resonance distributions with the calculated classical
escape rate, see section 17.2.

15.3 Spectral Gap

In 1988 and 1989 Ikawa [45] and Gaspard/Rice [13] independently derived a
connection between the topological pressure, being a purely classical quan-
tity, and the quantum mechanical spectral gap. A spectral gap in this context
is a constant C < 0 such that Im(kn) ≤ C. Gaspard and Rice started from
Gutzwiller’s trace formula and used semiclassical zeta functions to conclude
that Im(kn) ≤ P (1/2). They also confirmed this estimate numerically [13].
Later this estimate for the spectral gap has been also obtained mathemati-
cally for more general semiclassical systems [57]. It is, however, known that
this bound is in general not optimal as it does not take into account phase
cancellation (see section 8.2 in [58] and [59]). Some arguments for this bound
on the spectral gap are given in appendix G.
Especially for weakly open systems this bound has no implication: As P (β)
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15 THEORETICAL BACKGROUND

is monotonously decreasing it is evident that for systems with dH > 1/2 the
bound P (1/2) is positive (see figure 61 left), but the imaginary parts are
negative anyway. Such systems are nowadays also called systems with “thick
repeller” in contrast to systems with “thin repeller” where dH < 1/2 and
P (1/2) is a true constraint on the imaginary parts (see e.g. [58]) (see figure
61 right). In section 17.2 we will compare the calculated values of the bound
of the spectral gap with our experimentally derived resonance distribution.

15.4 Hausdorff Dimension and Counting Function

The famous Weyl formula states that the number of levels N(k) := {#kn :
kn ≤ k} is given by N(k) = V kD/(D/2)!(4π)D/2 + . . . for a system with
volume V in a D-dimensional space [52] and especially for 2 dimensional
billiard systems by

NWeyl(k) =
1

4π
Ak2 ± 1

4π
Uk + c (15.22)

where ± depends on the boundary condition: + for Neumann and − for
Dirichlet boundary conditions. The constant c is defined by the curvature
and the corners in the system [60]. The dimension of the billiard (d = 2)
defines the leading exponent for large k. To transfer this concept on the
n-disk systems we first need to generalize the standard idea of dimension,
which relates points to the dimension zero, curves to dimension one and
areas to dimension two. All these values are integer, but it turned out that
there are sets, to which it is not possible to assign such an integer dimension
for instance fractals like the famous cantor set. Thus there are additional
ways to describe the dimension, which can relate even non-integer values to
a set’s dimension. Of course these new concepts must not be contradictory
to the standard dimension. One new concept is introduced in the following:
the Hausdorff dimension. Imagine a set in a d -dimensional space which is
covered by d -dimensional spheres of radius r < ǫ. The minimal number of
spheres N(ǫ) needed to cover the entire set grows with decreasing ǫ. In the
limit ǫ→ 0 the number of spheres is supposed to grow as

N(ǫ) ∝ 1/ǫDH (15.23)

where the exponent DH is then called “Hausdorff dimension”. Accordingly
to the Weyl law for closed systems Sjöstrand presented a conjecture about
a fractal Weyl law in 1990 [61], which attracted much attention thanks to a
second publication in 2003 by Lu, Sridhar and Zworski [52] who additionally
confirmed it numerically:
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15.5 Semiclassical ζ-Function

For open systems where eigenvalues turn into complex resonances k̃n =
Rek̃n + iImk̃n the counting statistics of resonances is typically defined by

N(k) := #{k̃n : Im k̃n > −C, Re k̃n ≤ k} (15.24)

where C is a fixed finite positive constant, which should not be too small.
The fractal Weyl law now states the proportionality for k → ∞

N(k) ∝ k1+dH ⇔ lnN(k)/ ln k ∝ 1 + dH (15.25)

where dH = (DH −2)/2 is the partial Hausdorff dimension of the repeller. In
[52] they give several mathematical arguments and confirm this conjecture
by some computations of n-disk systems. A short summary of intuitive
arguments and the relation between partial and global Hausdorff dimension
is given in appendix E. In section 17.3 the counting of our experimental
resonances is described and the found slope of lnN(k)/ ln k is compared with
theoretical values: As explained e.g. in [62] the reduced Hausdorff dimension
dH of the fractal repeller is given by the condition P (dH) = 0. In appendix
F a heuristic derivation for that is presented.
To find the root of the topological pressure seems to be very laborious at first
glance: Applying a Newton algorithm on P (β) means a lot of calculations as
for every value of it the root of ζ−1

β (s) must be found. But at second sight it
gets clear that finding a root of ζ in s, which is again supposed to be zero,
is equivalent of finding directly the root of

ζ−1
β (0) =

∏

p

[

1 − 1

Λβ
p

]

(15.26)

which is obviously much easier to evaluate numerically and will thus be used
for calculating the Hausdorff dimension for our system in section 17.3.

15.5 Semiclassical ζ-Function

Gaspard and Rice also derived a semiclassical zeta function in [46] starting
from Gutzwiller’s trace formula using a Green’s function formalism

ζ−1
sc (z) =

∏

p

(

1 − 1
√

Λp

exp(izTp + inpπ)

)

(15.27)

with length Tp, stability Λp and word length np of the periodic orbits. The
poles of this zeta functions are supposed to coincide with the exact quantum
mechanical ones in the semiclassical limit. Figure 62 shows the semiclassical
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15 THEORETICAL BACKGROUND

resonances in orange dots and the quantum mechanical ones as black crosses
(their calculation will be explained in appendix I), revealing a good agreement
even for small Re ka. Resonances deep in the complex plane with Im(kn) <
−0.8 do not show this agreement because of convergence problems of the
calculations of the zeta function. Here it would be necessary not only to
take into account orbits until order n = 8, but much higher orders or even
instead of ζ−1

sc (z) the full Selberg product according to equation (15.13). But

Figure 62: Semiclassical resonances of the 3-disk system R/a = 4.5 (orange
dots) calculated up to order n = 8 in good agreement with quantum me-
chanical resonances (black crosses)

to test low lying resonances with large imaginary parts (particularly with
regard to the resonances gap, see section 17.2) for much higher energies as
it will be possible for the quantum mechanical numerics this function is very
convenient.

15.6 Convergence of Algorithm and Cycle Expansion

If one wants to compute the classical or semiclassical ζ-function one faces
the problem of dealing with the infinite product

ζβ(z)−1 =
∏

p

[1 − tp] (15.28)

where tp is the abbreviation for the orbits weights, defined in (15.20) respec-
tively (15.27). Truncating it like

∏

p

[1 − tp] ≈ (1− t1) . . . (1− tn) with 1 . . . n

just numbering period orbits would only lead to a very slow convergence. In
1989 Cvitanović and Eckhardt [14] presented the cycle expansion, an effective
and well converging way of its calculation: Instead of truncating the prod-
uct, they expanded it and then truncated the sum after a finite word length
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15.6 Convergence of Algorithm and Cycle Expansion

(concerning the reduced code in the fundamental domain). The convergence
of the numerics is surprisingly good and already for second order convenient
[14]. For the 3-disk binary code it is explained in detail in [14], [50] and [49]:
But there seems to be no reference dealing with the 5-disk case, thus we will
present it here as an illustrating example: In section 14 it was found that we
need the four symbols 1, 2, 1, 2 to describe all the period orbits in the 5-disk
fundamental domain. Thus the ζ-function becomes (up to order 2)

ζ−1 = (1 − zt1)(1 − zt2)(1 − zt1)(1 − zt2)(1 − zt12) (15.29)

(1 − zt11)(1 − zt12)(1 − zt21)(1 − zt22)(1 − zt12) . . .

where z is a book keeper variable to indicate the total word length and will
be set to one in the final evaluation. Now the product is expanded and the
terms are reorganized such that the terms of the same power of z (i.e. the
same total word length) are grouped together leading to

≈ 1 − zt1 − zt2 − zt1 − zt2 + z2t1t2 + z2t1t1 + z2t1t2 + z2t2t1 (15.30)

+z2t2t2 + z2t1t2 − z2t12 − z2t11 − z2t12 − z2t21 − t22 − z2t12

= 1 − z(t1 + t2 + t1 + t2) + (15.31)

z2 [(t1t2 − t12) + (t1t1 − t11) + (t1t2 − t12) + (t2t1 − t21) + (t2t2 − t22) + (t1t2 − t12)]

This grouping of terms reveals that every parenthesis includes the difference
between a longer orbit and the combination of its shorter “shadowing” orbits.
This behavior is illustrated in figure 63. Here it becomes visible that the

Figure 63: Periodic orbits in the fundamental domain (shaded region) of
the 5-disk system: left: orbit 11 (black) with shadowing orbits 1 and 1 (red
dashed); right: orbit 12 with the shadowing orbits 1 and 2

orbits 1 and 1 (red dashed) approximate the longer orbit 11 (black) in the
left picture and that the orbits 1 and 2 (red dashed) approximate 12 (black)

77



15 THEORETICAL BACKGROUND

in the right. This is also true for the other orbit combinations, even for
longer ones [14]. These approximations will lead to an appropriate canceling
of the terms in parenthesis. Thus the correction decays exponentially with
orbit length [50]. This mechanism makes the cycle expansion so successful
and often doubles the number of significant digits for a given cycle length as
compared to other methods [14]. It is worth mentioning that the ζ-function
is thus dominated by short orbits of the word length 1 as these are the
fundamental ones with which the other orbits are approximated and as these
have –of course– no shorter partners to cancel out.

15.7 Factorization of the ζ-Function

The discrete symmetries of the geometry of the n-disk system can help to
simplify the treatment of the dynamics even more. A very detailed descrip-
tion is given in [50] and its main ideas for the example of the 3-disk system
will be repeated in the following, as we take benefit from them in the im-
plementation of the ζ-function. Let G = {e, g2, g3, . . . gg} be the symmetry
group under which our system is invariant. For the 3-disk case we have
C3v = {e, σ12, σ23, σ31, C3, C

2
3}, the identity, reflections with respect to axes

and rotations by 2π/3 and 4π/3, respectively, illustrated in figure 64. Let us

Figure 64: Full 3-disk system with symmetry axes

first reduce the number of independent cycles by means of the symmetries:
For cycles p those discrete symmetries mean that there can exist subgroups
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15.7 Factorization of the ζ-Function

Hp of G of order hp, whose elements leave the cycle invariant. The weight
of a cycle tp remains invariant under any symmetry transformations g. The
elements of the quotient space b ∈ G/Hp generate degenerate cycles bp with
a multiplicity of mp = g/hp. Thus the product in equation (15.28) can be
rewritten as ∏

p

[1 − tp] =
∏

p̂

[1 − tp̂]
mp̂ (15.32)

where p̂ is only one representative per class of mp̂ degenerate cycles. In
our example the group C3v subdivides into Ce = {e} (dimension he = 1),
Cv = {e, σi} (dimension hCv = 2) and C3 = {e, C3, C

2
3} (dimension hC3 = 3)

leading to possible cycle multiplicities of g/hC3 = 2 (e.g. for cycles 123 and
132), g/hCv = 3 (e.g. 1213) and g/he = 6 (e.g. 12123, which has no symme-
try). In the next step it is shown that all computations can be restricted to
the fundamental domain, as each global cycle p corresponds to a fundamental
domain cycle p̂. The global phase space M can be presented by the funda-
mental domain M̃ and its images under the action of the symmetry group
aM̃ ≡Ma, bM̃ = Mb, . . . . Let us assume orbit segments starting in Ma and
ending in Mb, then h = ab−1 is the symmetry operation mapping the end-
point domain onto the starting point domain. Its left regular representation
D(h) is a g× g matrix with entries D(h)ab = 1 if a = hb and zero otherwise.
D(h) thus maps a tile Ma to a different tile Mha 6= Ma (for h 6= e). However,
there are boundary points left invariant under this transformation, e.g. σ12,
the reflection across an axis, leaves the axis itself invariant. It is important
that TrD(h) = gδh,e is only non-zero for h = e, as only D(e) has diagonal
elements. Next each factor in the product (15.28) will be related to the left
regular representation D(h) by the same means as in the derivation of the
ζ-function in section 15.1, but here for an orbit p̃ in the fundamental domain
and hp̃ an element of Hp, the symmetry group of p:

det(1 −D(hp̃) tp̃) = exp Tr ln(1 −D(hp̃) tp̃) (15.33)

= exp

(

−
∞∑

n=1

Tr(D(hnp̃ ) tnp̃ )

n

)

with k defined by hkp̃ = e = exp

(

−
∞∑

n=1

Tr(D(hknp̃ ) tknp̃ )

kn

)

= exp

(

−
∞∑

n=1

Tr(D(en) tknp̃ )

kn

)

= exp

(

−
∞∑

n=1

g tknp̃
kn

)
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= exp

(

−g
k

∞∑

n=1

(tkp̃)n

n

)

= exp
(g

k
ln
(
1 − tkp̃

))

=
(
1 − tkp̃

)g/k

Here tkp̃ = tp relates the weight of the orbit in the fundamental domain p̃ with
the global orbit p and g/k = mp, the multiplicity of the orbit, thus we are in
accordance with (15.32). This identity is valid cycle by cycle in (15.28). As
we know from the symmetry considerations above D(h) decomposes in dα
dimensional blocks of irreducible representations D(h) = ⊕α dαDα(h). Thus
the determinant (15.33) factorizes as

det(1 −D(h) t) =
∏

α

det(1 −Dα(h)t)dα (15.34)

Regarding the transfer operator this factorization means that it reduces to
block diagonal form, every block belonging to the invariant subspace. The
ζ-function now finally factorizes as

ζ−1 =
∏

p

(1 − tp)

=
∏

p̃

det(1 −D(hp̃) tp̃)

=
∏

p̃

∏

α

det(1 −Dα(hp̃) tp̃)
dα

=
∏

α

∏

p̃

det(1 −Dα(hp̃) tp̃)
dα

︸ ︷︷ ︸

≡( 1
ζα

)
dα

The determinants of the d-dimensional irreducible representations can be
evaluated using an expansion in terms of traces, for our example with one-
and two-dimensional representations we obtain in terms of group characters

det(1 −Dα(h) t) = 1 − χα(h)t for one dim.

det(1 −Dα(h) t) = 1 − χα(h)t+
1

2

(
χ2
α(h) − χα(h2)

)
t2 for two dim.

Now we can easily write down the exact factorization of the ζ-function ζ =
ζA1ζA2ζ

2
E with the two one-dimensional representations A1 and A2 and the
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15.7 Factorization of the ζ-Function

two-dimensional representation E for our example using the character table
5.

C3v A1 A2 E
e 1 1 2

C3, C
2
3 1 1 -1

σ 1 -1 0

Table 5: Character table for C3v

Thus equation (15.34) becomes

det(1 −D(h) t) = (1 − χA1(h)t) (1 − χA2(h)t)
(
1 − χE(h)t+ χA2(h)t2

)2

with χA2(h) = 1
2
(χ2

E(h) − χE(h2)) for every group element h. For orbits tp̃
belonging to symmetry e we obtain with g = 6 and k = 1 from (15.33)

e : (1 − tp̃)
6 = (1 − tp̃) (1 − tp̃)

(
1 − 2tp̃ + t2p̃

)2

For the rotations i.e. k = 3

C3, C
2
3 :

(
1 − t3p̃

)2
= (1 − tp̃) (1 − tp̃)

(
1 + tp̃ + t2p̃

)2

For the reflection we have with k = 2

σ :
(
1 − t2p̃

)3
= (1 − tp̃) (1 + tp̃)

(
1 + 0tp̃ − t2p̃

)2

The terms in the first parentheses always belong to the A1 representation,
where we observe that it is given by the standard binary expansion as all
characters are equal to 1

1/ζA1 = (1−t0) (1−t1) (1−t10) (1−t001) (1−t011) (1−t0001) (1−t0011) (1−t0111) . . .

The second pair of parentheses represents A2 with

1/ζA2 = (1+t0) (1−t1) (1+t10) (1−t001) (1+t011) (1+t0001) (1−t0011) (1+t0111) . . .

where every orbit with an odd number of zeros gets an extra minus sign. The
third parentheses belong to E and lead to the following zeta function

1/ζE = (1 + t1 + t21) (1 − t20) (1 + t100 + t2001) (1 − t210) (1 + t1001 + t21001) . . .

Regarding our experiments in which we realize the fundamental domain with
Dirichlet boundary conditions at the symmetry axes (the detailed description
can be found in section 16.1) that means that though the setup obeys the
A2 symmetry of the full system, we have to consider the ζ-function for the
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15 THEORETICAL BACKGROUND

A1 case: Because this factor ζA1 of the symmetry decomposition of the full
system equals the full ζ-function of the fundamental domain system, which is
the one we realized. Hence all the quantities like e.g. the classical escape rate
obtained from a ζ-function which are compared to any experimental result
are computed for the A1 representation.
Up to what order it is necessary to compute the ζ-function for our purpose
and which role the pruning plays for the convergence is presented on a tech-
nical level in the next section.
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16 Experimental Setup and Resonance Ex-

traction

16.1 The Experiments

In the experiments we realized the quantum version of the symmetry reduced
3- and 5-disk system using a microwave cavity. To maintain the clearness in
the text we will often refer to a n-disk system, also here in the experimental
part, instead of writing “3-disk and 5-disk system, respectively”. In both ex-
periments the baseplate is an aluminum triangle whose largest side is 100 cm
long. Two sidewalls with a height of 6 mm are set atop, including an angle
of 60◦ for the 3-disk, and 36◦ for the 5-disk system, respectively. Thus the
resonator forms the fundamental domain of the n-disk system with metallic
sidewalls, which act as mirrors reducing the symmetry of the system: Those
walls induce Dirichlet boundary conditions for the electric field of the TM0

mode, thereby restricting the measurements to a single representation A2 of
the underlying symmetry group Cnv (see sketches on the left of figures 65 and
66) as explained in section 14. The advantage of this symmetry reduction is
of course the access to a much larger system as it would be realizable in a full
symmetry construction, additionally the degeneracies due to the symmetries
are lifted. The third side of the cavity is left open, but additionally covered
with a wide strip of microwave absorber. In the case of the 3-disk system it
is a serrated absorber of the same height as the cavity Those measurements
were performed by Alexander Potzuweit in his Diploma thesis [63]. In the
newer measurements of the 5-disk system a reticular absorber material with
smoothly increasing height was used. The absorbers were tested and devel-
oped by Tobias Weich during his Diploma thesis [64] and the measurements
were performed by myself. Both absorber shapes aim to avoid any reflections
at the open end, imitating infinity.
The R/a parameter can be adjusted by moving a half-disk inset of radius
a = 19.5 cm, which is in contact with top and bottom plate, along the one
metallic side wall. In the 3-disk system the R/a range between 2.26 and 6.17
was technically accessible, in the 5-disk case we were able to reach values
between 2 and 3.9, both with a stepwidth of ∆R = 10 mm. A thin wire an-
tenna (r=0.7 mm), which is sufficiently short not to touch the bottom plate,
is inserted through a hole in the top plate (not shown in the photographs in
figures 65 and 66), placed in between the acute angle of the aluminum walls
and the movable disk inset. The position is chosen such that the antenna
is not too close to the walls and is not touched by the disk inset even for
the smallest accessible R/a values. Thus always a coupling to the interior of
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16 EXPERIMENTAL SETUP AND RESONANCE EXTRACTION

Figure 65: Sketch of 3-disk system with shaded fundamental domain, the
disk radius is denoted by a, the disk distance by R and photograph of the
experimental cavity with disk inset and absorber of first type (top plate
removed)

R

a

Figure 66: On the left of this figure a sketch of the full 5-disk scattering
system is given. The gray shaded part indicates the fundamental domain of
the symmetry reduction. On the right side a photograph of the experimental
setup is presented (top plate removed). The reticulated absorber (second
type) is fixed at the third open side of the cavity

the scattering system is guaranteed, where the long-living states exist. The
whole setup is covered by a second aluminum plate of the same size and
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16.2 Data Analysis by Means of the Harmonic Inversion

shape as the bottom plate that is screwed onto the billiard walls leaving no
gaps or slits.
The reflection coefficient is then measured with a vector-network-analyzer
(VNA), revealing the complex S-matrix. The height of the cavity h = 6 mm
(along the vertical z -direction) leads to a cutoff frequency of 25 GHz. By
limiting the frequency range to be analyzed to 24 GHz we thus make sure
that only the TM0 mode can propagate and the cavity may be considered as
two-dimensional. Under the assumption of a point-like antenna the measured
reflection signal is of the form [65]

S11(ν) = 1 +
∑

j

Ãj

ν2 − ν2j
(16.1)

where the νj are the complex valued resonance positions. As we are interested
in the complex resonance positions we need to extract νj and Ãj from the
experimental signal: For closed systems and low frequencies the resonances
are well separated and could be treated by a multi-Lorentz-fit. But for open
systems, where the resonances overlap strongly, a fit would not converge.
Therefore a more sophisticated method is needed.

16.2 Data Analysis by Means of the Harmonic Inver-

sion

In figure 67 the spectra for three different R/a parameters of the 5-disk sys-
tem are shown. For the closed system (R/a=2, black solid line) even in the
high frequency regime some separate resonances are visible. For R/a=2.25
the opening between the half circle and the straight wall is approximately
24 mm. Thus the opening supports approximately 4 modes in the shown fre-
quency range and the resonances can still be recognized but are sufficiently
broadened (red dotted line). By further increasing the opening (R/a=3.83,
blue dashed line) the resonances become strongly overlapping. In order to
extract the resonances from this frequency signal we use the Harmonic In-
version (HI) algorithm as it has been presented by Main et al. [66] in 2000. It
was already applied in our group on experimental data by Kuhl et al. [67] to
determine the line width distributions in slightly open cavities with antenna
and wall absorption. To illustrate the challenges of applying this algorithm to
experimental data, I first give a short summary of the algorithm and refer to
[66, 67] for further details. Afterwards I present some additional procedures
around the application of the HI to circumvent the occurring problems. A
lot of investigation of the limits of the HI applied on our experimental data
was already performed by Tobias Weich [64]. The implementations of the
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16 EXPERIMENTAL SETUP AND RESONANCE EXTRACTION

Figure 67: The plot shows measured reflection spectra for the closed system
R/a = 2 (black solid line), a system in the transition region with R/a = 2.25
(red dotted line) and an open system with R/a = 3.83 (blue dashed line).

procedures of data analysis based on the improved HI method and the inves-
tigation of the presented experimental data with the new tool was done in
the scope of this thesis.

For all studied resonances one has |Re(νj)| ≫ |Im(νj)|, thus equation (16.1)
can be approximated by

Ãj

ν2 − ν2j
=

Ãj

(ν − νj)(ν + νj)
≈ Aj

ν − νj
(16.2)

with Aj =
Ãj

2νj
. This leads to

S11(ν) = 1 +
∑

j

Aj

ν − νj
, (16.3)

which is more convenient in the following.
The HI algorithm consists of 4 steps: windowing, truncating the Fourier
transformed signal, Padé approximation and finally filtering. In the first
step the large measured signal is divided into overlapping windows. This is
necessary to reduce the number of resonances in each window, which then
will be analyzed separately. Otherwise it is not possible to apply the Padé
approximation. In order to reduce boundary effects of the signal division,
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16.2 Data Analysis by Means of the Harmonic Inversion

only those extracted resonances within a given range ∆νr in the center of
each of the windows will be taken into account. The windows must therefore
overlap. In the following I use ∆νr=1 GHz with an overlapping region of
1 GHz on each side leading to a total window size of 3 GHz. Here a rectan-
gular windowing is the most suited as in other window shapes, like Cosine or
Hamming, the data points in the center obtain a higher weight than those
closer to the edges which is not wanted for the further treatment. Applying

Figure 68: This figure shows the fast Fourier transform of the reflection signal
of the frequency window from 20 to 23 GHz for the closed (R/a = 2, upper
black curve) and an open (R/a = 3.83, lower orange curve) 5-disk system.
The unit of the x-axis is the number of data points of this discrete time signal.
The inset shows the decay for the closed system in a double logarithmic plot.
The red straight line corresponds to an 1/n-decay. The light blue shaded
region indicates the variation of the cutoff parameter between 80 and 120
data points, which is used in the data analysis described in the text.

a fast Fourier transform (FFT) to each measured window of 3 GHz width
and a step-width of 0.1 MHz we obtain a discrete time series of 30 000 data
points. Using (16.3) and neglecting the window effects and experimental
uncertainties, the ideal FFT signal is given by

C(t) = δ(t) +
∑

j

dje
−2πiνjt. (16.4)

In open systems the resonance frequencies have a negative imaginary part
and C(t) decays exponentially with t. In figure 68 examples for two R/a
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parameters are shown. The decay at the beginning given by a sum of ex-
ponentials is due to the widths of the resonances and then changes to an
1/n decay, the windowing effect of the rectangular cut of the signal (see the
inset). The relevant information of the decay is hence contained in the first
part of the time signal. By truncating the time signal after Ntrunc data points
we make sure that the number of data points is not too large for the Padé
approximation. As it will be crucial in the sequel that the analyzed time
series is of form (16.4) it is important that one cuts off the signal before the
1/n decay takes over. On the other hand Ntrunc should also be chosen suffi-
ciently large such that the relevant information is contained in the truncated
signal. Figure 68 shows that for the analyzed microwave spectra and a total
window size of 3 GHz a truncation between Ntrunc = 80 . . . 120 is reasonable,
see shaded region.
After this truncation an equidistant discrete time series of Ntrunc data points
C(∆t ·n) =

∑

j dje
−2πiνj∆t·n with n = 0 . . . Ntrunc−1 remains and the central

idea is now to interpret this signal as a system of nonlinear equations of the
form

cn =

Ntrunc/2∑

k=1

dkz
n
k with n = 0 . . . Ntrunc − 1 (16.5)

which is solved by the Padé approximation [66, 68]. A consequence of this

Figure 69: This figure shows the resonances of the 5-disk system with R/a =
3.83 in the complex plane obtained via the HI for one set of parameters. The
light blue circles are resonances that are removed by the filter, whereas the
black dots correspond to the remaining resonances.

approach is that Ntrunc/2 determines the number of resonances which are
returned by the Padé approximation. Choosing this parameter according to
the criteria discussed above Ntrunc/2 will be larger than the true number of
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resonances and the Padé approximation will generate spurious resonances
which have to be filtered out. There are two filter mechanisms: (i) The
Padé approximation is performed a second time with a time signal shifted
by one point, i.e. C(∆t · n) with n = 1 . . . Ntrunc. Resonances that are un-
stable concerning a minimal tolerance (“pointError”) are rejected. (ii) Only

resonances whose heights
|Aj |

|Imνj |
exceed sufficiently the noise level of < 0.005

are accepted (“HiFilter”). The noise can be observed e.g. in the black line
in figure 67. For the data analyzed in this thesis we set this filter to 0.05.
The effect of the filtering is illustrated in figure 69. Without filtering the HI
returns too many resonances, especially there appear resonances with very
small widths which are not realistic for such an open system. After filtering,
only the resonances shown as black dots survive and the other resonances
(light blue circles) are sorted out. For the remaining resonances a spectral
gap and a conglomeration around Im(ν) ≈ −0.03 can be observed. We will
see later in section 17.2 that this corresponds to half the classical escape rate
−γ5Disk

R/a=3.83 · 0.5 = −0.031 GHz.
The description of the algorithm above shows that the HI-algorithm requires
the fixing of several parameters, such as Ntrunc or the window overlap. T.
Weich tested in his Diploma thesis [64] that for ideal (numerical) data of the
form of equation (16.3) the HI results are independent on the exact parame-
ter choice as long as they are in a plausible range. But this assumption will
never be exactly true for experimental data due to inevitable experimental
noise and errors which lead to the problem, visualized in figure 70. Here
the measured microwave spectrum for R/a = 3.83 (black solid line) was an-
alyzed by the harmonic inversion in order to extract the resonances in the
valid range between 21 and 22 GHz. Therefore the HI was applied to the
data with 160 different parameter sets by varying Ntrunc between 80 and 120
– as discussed above– and changing the buffer region on both sides between
1 and 0.98 GHz, respectively. According to figure 68 all these parameter sets
are plausible. If the complex resonance positions of these 160 HI results are
plotted in one plot (light blue dots in the lower part of figure 70) one observes
that the resonances of the different parameter sets form clusters in the com-
plex plane but are not equal. If one pursues, however, an individual result
of a particular parameter set marked by the red circles one observes, that
for this parameter set several clusters are missing. For other parameter sets
nearly all the clusters within the valid interval matches with the individual
resonances. The blue triangles mark one example. So which parameter set
is the correct one?
One reasonable criterion is the reconstruction of the original signal with the
found resonances (and their amplitudes): Suppose one is interested in reso-
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Figure 70: The upper plot shows the measured microwave spectrum (R/a =
3.83) (black solid line) as well as two reconstructions obtained by the HI
results for two different parameter sets (orange dashed and red dotted lines).
The lower plot shows the corresponding complex resonance positions. The
red circles correspond to the resonances of the reconstructed signal shown
above as red dotted line and the blue triangles to the orange dashed line.
Light blue dots represent the resonance positions of the HI results for all
parameter sets. The two vertical dashed lines mark the valid range of the
analyzed window.

nances in the frequency interval from 21 to 22 GHz as in figure 70 and has
chosen to take the overlap on each side to be 1 GHz. The HI Algorithm thus
analyzes the whole interval from 20 to 23 GHz. As a result it returns a set
of resonances and amplitudes {(νj, Aj)}. The superposition

∑

j
Aj

ν−νj
is now

compared with the measured signal S11(ν) between 21 and 22 GHz. Note
that all the resonances in the large window ranging between 20 and 23 GHz
are contained in the superposition. But what about resonances outside this
window and very broad resonances which cannot be extracted from the sig-
nal? Here we approximate their influence by a complex valued linear function
over the size of the valid region. Such a background function is thus fitted
to the difference between superposition and measured signal. The result of
the full reconstruction (which now contains the superposition of Lorentzians
and the fitted background) is plotted in the upper part of figure 70. While
the reconstructed signal (orange dashed line) of one set of resonances (blue
triangles) agrees well with the measured data, the deviation of another re-
construction (red dotted line) using the other set (red circles) is enormous.

90



16.2 Data Analysis by Means of the Harmonic Inversion

It is clear that thus one set of resonances is more reliable than another one
depending on their reconstruction.
This finding led us to the general proceeding of data analysis used in the
following sections: As it is not sufficient to use only one parameter set for
applying the HI on such kind of experimental data and, as even the set lead-
ing to the best reconstruction may overlook single resonances, we perform the
HI for many parameter sets, calculate the reconstructions in the described
way, reject those with unconvincing reconstruction by means of their χ2 value
and average over all the others. The used parameters are given in table 6. Of

measured frequency range: 1 − 25 GHz
window size: 1 GHz

overlap of windows: 1 GHz
total window size: 3 GHz

number of windows: 22
accessible frequency range: 2 − 24 GHz

Ntrunc: 80 . . . 120
shift of overlap region: 0.02 GHz

total number of parameter sets: 160
point error: 0.01

HI filter: 0.05
reconstruction tolerance: χ2 error < variance of the signal

Table 6: HI parameters

course this averaging process does only make sense for statistical properties
as counting function or probability distributions P (Im(k)). But these are
the quantities we focus on. The averaging process is described in detail in
the corresponding text passages of the next section, tests of its robustness
are given as well.
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17 EXPERIMENTAL RESULTS

17 Experimental Results

17.1 Resonances of the 3-Disk System

For the 3-disk system there is a second way to test the reliability of the HI by
comparing the experimentally obtained resonances with the theoretical ones.
For the symmetry reduced 3-disk system the resonances were calculated by
the algorithm of Gaspard and Rice [51], see appendix I.
One remark in advance concerning the expected agreement of the individual
resonances: Even for experiments with closed microwave systems it is known
that only the low lying resonances agree well with the theoretical predictions.
But the spectrum is not very robust: For higher frequencies the experimental
perturbations (antenna, misalignments,. . . ) will disturb it such that the in-
dividual measured resonances cannot be associated anymore directly to the
theoretical ones. However statistical properties such as the resonance den-
sity persist. In this case for the open 3-disk system we expect this effect
to be even more significant since the spectra of non hermitian Hamiltonians
are known to be even much more unstable under perturbations compared to
hermitian Hamiltonians [69].
Figure 71 shows the good HI-resonances in orange respectively blue (the best
one) for R/a = 5.5 and in the full measured Re(k)-range from 40 to 500 m−1

corresponding to frequencies between 2 and 24 GHz. Again the orange poles
form “clouds” around the blue triangles –the drawn-out shape of the clouds
is a consequence of the non isometric axis ranges. The black crosses indicate
the numerically calculated resonances. The composition of resonance chains
is typical for large R/a parameters [51, 52, 55]. As expected the individual
resonance structure is not reproduced by the experimental data. So let’s
have a look at a statistical quantity: the distribution of the imaginary parts
P (Im(k)).
They are shown in the right part of figure 71, in black the calculated and
in blue for the experimental spectrum. Both distributions show up to be
the same within the limits of error. The same was true for the other good
resonance sets. All the distributions shown below have hence been obtained
by superimposing the results of all good reconstructions, calling it simply
P (Im(k)) without extra indicating the averaging. The example correspond-
ing to this R/a parameter is shown in the right hand part of figure 71 in
orange, it looks also very similar to the other two distributions. P (Im(k))
is robust with respect to errors in the reconstruction as long as the number
of resonances entering the reconstruction can be determined reliably and the
fluctuations of resonance positions can be assumed to be Gaussian and inde-
pendent. For the example shown in figure 71 the number varied between 94
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17.2 Spectral Gap and Classical Escape Rate

for the numerical data and 117 for the individual reconstruction, a precision
of about 20%. For all three histogramms we find a very good agreement with
the bound of P (1/2) for the spectral gap (dashed black line in the right hand
side of the figure) and classical escape rate (−γcl/2 = solid black line) for the
maxima.

Figure 71: In the left panel the resonances for R/a = 5.5 in the complex
k-plane are shown and the distribution of the imaginary parts of k in the
right panel. The orange clouds correspond to all resonances leading to good
reconstruction as well as the orange (averaged) histogram. Note that many
orange dots overlay each other. Blue triangles and histogram describe the set
belonging to the best reconstruction. Black crosses (and histogram) are the
numerical poles. The dashed line in the right panel corresponds to P (1/2),
the solid line is −γcl/2.

17.2 Spectral Gap and Classical Escape Rate

By measuring the averaged distribution P (Im(k)) for symmetry reduced 3-
and 5-disk systems for different R/a parameters we can now study its para-
metric dependence on the opening of the system (see figure 72) and can
compare gap and maximum with the data calculated in appendix H.
For every R/a value we set up the averaged histogram P (Im(k)) correspond-
ing to the orange one in figure 71 and plotted them as a shade plot using
the color code from white to black with increasing data value. For the 5-disk
case the measured data is presented in figure 72(a). For R/a = 2 the system
is completely closed, however, we observe already a small gap ≈ −0.15 m−1

caused by antenna and wall absorbing effects. While opening the system we
first observe that the very narrow width distribution gets wider and that the
maximum of the distribution moves towards higher imaginary parts. From
approximately R/a = 2.5 the resonance free region starts to grow and reaches
a value of approximately ≈ −0.5 m−1 for the maximal accessible opening at
R/a = 3.9. Over the whole R/a range the value of P (1/2) stays positive,
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17 EXPERIMENTAL RESULTS

thus it provides no lower bound on the spectral gap. The solid black line
in the shade plot corresponds to half the classical escape rate. It stops for
R/a = 2.41 because for lower R/a values pruning sets in (in order 4). As
already observed numerically in the high frequency regime [52] also in our
experimental data in a much lower frequency regime the maximum of the
width distribution is described by −γcl/2. Here we emphasize that there are
no free parameters to fit γ to the experiments. Theoretical and experimental
values were derived independently!
More open systems can be realized by measuring the 3-disk system. Here the
repeller becomes thin for R/a ≥ 2.83 i.e. P (1/2) becomes negative and pro-
vides a lower bound on the gap. As for the 5-disk system one observes again
that the gap is increasing and for high R/a values the gap coincides well
with the lower bound P (1/2) (dotted black line). At which R/a parameter
exactly the gap in the experimental data opens and whether it opens before
P (1/2) becomes negative is less clear as compared to the 5-disk system. The
internal region of the totally closed system (R/a = 2) is too small to enable
meaningful measurements. Here there are no pruned orbits of order 4 from
R/a = 2.01, thus we are able to plot the calculated curve in the full measured
range. The maximum of the width distribution decreases for R/a > 3 which
is surprising at first sight. This decrease agrees however, with the decrease
of the classical escape rate (solid black line). The reason for it is the chosen
scaling. As in the experiments the disk radius stays fixed we chose a scaling
proportional to a. Also in the theoretical studies a is normalized to 1. For
a classical particle an increase of R/a means that each scattering at a disk
is more defocussing. However, also the time of flight between two scatter-
ing events increases linearly which overcompensates the defocussing effect for
large enough R/a leading to the decrease of γ. While for large R/a the max-
imum of the width distribution coincides with −γcl/2 this coincidence seems
not be true anymore for R/a < 3.5. As a consistency check figure 72(c) shows
the shade plot for the numerical data of the symmetry reduced 3-disk system.
Also there the correspondence of −γcl/2 (solid black line) is clearly visible
only for R/a > 3.5 and becomes less prominent for smaller R/a values. For
R/a > 4 the lower bound P (1/2) (dotted black line) coincides well with the
numerically observed gap and seems to be a sharp bound there. The open-
ing of the spectral gap is, however, not described by P (1/2) which becomes
most obvious for 2.5 < R/a < 2.83. Here P (1/2) is still positive but a clear
gap is already visible, the same phenomenon as observed in the experimental
data of the 5-disk system. Have in mind that the prediction of the gap is
in the semiclassical limit whereas the experiments and numerical calculation
are taking into account only up to 200 resonances. Thus the good agreement
between the theoretical predictions and our experimental data comes as a
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17.3 Counting Function and Hausdorff Dimension

(a) 5-disk experiment

(b) 3-disk experiment (c) 3-disk simulation

Figure 72: These figures show shade plots of the distribution of Im(k) de-
pending on the R/a parameter for the 5-disk (a), the 3-disk experiment (b)
and the 3-disk numeric (c). The classical escape rate (precisely: −γcl/2) is
the solid black line. P (1/2) corresponds to the dotted line. For the 5-disk
case the P (1/2) is still positive and hence does not arise in the plot. All
curves are only plotted where no pruning (until order n = 4) occurs.

surprise. We recognized that the resonance with the largest imaginary part,
which defines the gap, is always found at quite low lying wave numbers, see
e.g. the resonance at Re(k) = 55 m−1 in figure 71. It is not evident that
those low lying resonances should already coincide with the prediction of a
semiclassical quantity. But for larger R/a values it appears that this gap
defined by just these resonances is optimally described by P (1/2).

17.3 Counting Function and Hausdorff Dimension

For the investigation of the trend of the counting function exponents we fo-
cus on the 5-disk system as the accessible R/a range started at 2, the closed
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17 EXPERIMENTAL RESULTS

case, and then the system can be opened step by step. In the 3-disk case the
remaining area was so small that the antenna would have to be positioned
to close to the walls. Hence in the following only the 5-disk data is analyzed.
In order to study spectral asymptotics we have to determine the counting
function (15.24) from the measured reflection spectrum. The resonances are
obtained by applying the HI on the measured signal with all the parame-
ters given in table 6 according to section 16.2. For each window and each
parameter set the HI returns a set of complex resonances and amplitudes.
Every set is checked for the reconstruction criterion and rejected or accepted.
Now the density of states in the valid range of each window is obtained by
averaging over the results of all remaining parameter sets taking care of a
correct normalization. The averaged counting function finally was obtained
by the averaged density of states of all windows. In the following we will refer
to this “averaged counting function” only as “counting function”. In figure

Figure 73: The counting functions for R/a=2, 2.25, and 3.9 (in this order
from bottom to top) are plotted in black (histograms). Fits of their slope in
the frequency range 15-24 GHz, corresponding to a k range of 315-500 mm−1

(dotted vertical line) are shown in blue (straight lines). The light orange
curve over the lower histogram corresponds to the Weyl formula with 12%
loss for the closed system. Plotted in the inset is the difference between the
Weyl formula with 12% loss and the experimental counting function for the
closed system (R/a=2).

73 three examples of the experimentally obtained counting functions for dif-
ferent R/a-parameters are shown: for the closed (R/a = 2) and the most
open system (R/a = 3.9) as well as for the transition region (R/a = 2.25).
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17.3 Counting Function and Hausdorff Dimension

The curve of the closed system is compared to the prediction of the Weyl law
(15.22) with area and boundary term corresponding to our cavity. Measuring
only at one fixed position we cannot expect to find all resonances as several
of them have an amplitude of the order of the noise. In closed room temper-
ature aluminum cavities of similar sizes this typically lead to a loss of 5-10%.
Here we found the best agreement between the histogramm of R/a = 2 and
the Weyl law (15.22) with 12% loss (orange curve), which is still reasonable.
The inset shows that the experimental data fluctuates around the theory
with a deviation of less than 4 resonances.
For the open systems the fractal Weyl law only predicts the asymptotic ex-
ponent of the counting function. To compare our results with this prediction
the slope was fitted with a standard regression (blue lines) to our experi-
mental counting functions in the interval 15-24 GHz (marked by the dotted
vertical line). For the fit we need on the one hand a sufficiently large range
to extract the slope reliably, on the other hand we need large k to get into
the semiclassical regime. In the chosen fit range all counting functions show
an approximately linear behavior, especially the two extremal ones, indicat-
ing a suitable fit range also for all the other R/a parameters. In figure 74
shows the slopes of the counting functions obtained by this means paramet-
rically plotted versus R/a. For the quantum-mechanically closed system the
classical Weyl law predicts a value of 2. As long as the slit between disk
and metallic wall is smaller than half a wavelength of the maximal frequency
24 GHz, the system is quantum mechanically closed and couples only by tun-
neling to the exterior. This region is highlighted by the darker blue shading
and an exponent of 2 is still expected. For large R/a-parameter the fractal
Weyl law predicts a fractional exponent between 1 and 2. The black solid line
shows the calculated exponent 1+dH of the fractal Weyl law, where dH is the
reduced fractal dimension of the repeller. The calculation of the exponent
was described in section 15.4. Due to pruning effects this method fails to
calculate dH for small R/a parameters, thus the black theoretical line stops
at R/a = 2.4. In between we expect a transition region smoothly connecting
the two extremal regions (light blue shading). Experimentally the expected
start value of about 2 for the closed system and a smooth transition to lower
non-integer values between 1 and 2 is seen. For the open system the fitted
exponents do not match the theoretically predicted curve, but the paramet-
ric dependence can be seen by shifting the theoretical curve down by 0.4.
Nevertheless the exponents are significantly larger than one and definitely
non integer.
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17 EXPERIMENTAL RESULTS

Figure 74: The data points correspond to the fitted exponent of the counting
function in dependence of the R/a parameter. The solid line shows the
asymptotic exponent 1+dH predicted by the fractal Weyl law and the dashed
curve is the same shifted by 0.4 as a guide to the eye. The three squares mark
the examples which have already been presented in the previous figures. The
darker shaded blue region indicates the R/a values without open channels
whereas in the range marked by the lighter shaded blue region only a few
open channels (1. . . 8) exist.

17.4 Discussion

A possible explanation for the exponents being too low could be the fol-
lowing. Suppose that the probability, that the harmonic inversion overlooks
some resonances, increases when the resonances become more and more over-
lapping. The density of states for the 5-disk system is supposed to increase
like kdH thus with increasing k the resonances become stronger overlapping
and the supposed loss of resonances increases as well. Such a loss, which
increases with k, would lead to a systematically lower fitted exponent. Even
if the procedure of averaging over many HI parameter sets and checking the
reconstruction significantly increases the reliability of the results, those ambi-
guities will remain as this error occurs in every obtained resonance set. This
assumption also is in accordance with the closed systems where no shift is
necessary: As the resonance for the more closed systems are significantly less
overlapping even for high frequencies (see figure 67) the loss-mechanism may
not have set in, yet. Moreover there are of course the experimental uncer-
tainties influencing the findings: The exponential behavior of the counting

98
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function is predicted in the semiclassical limit, corresponding to the limit
of infinite frequencies. Experimentally we are, however, restricted to a finite
frequency and width range. In order to approach the semiclassical regime one
may either increase the billiard size or reduce the billiard height and increase
the frequency range (to remain below the cutoff frequency). Our cavity has
already a side length of 1 m, a sufficient increase is hardly manageable. Also
the height of 6 mm leaves no margin for reduction. Moreover one has to
keep in mind that the fit takes place at a logarithmic scale and a significant
improvement of the fit range would however demand an exponential increase
of size or frequency range. Furthermore the loss mechanism described above
will be much worse. Concluding we have to admit that a better experimen-
tal realization avoiding those sources of errors is not achievable. But the
parametric dependence of dH was reproduced correctly, as well as the non
integer nature of this fractal dimension, being the first experimental finding
on the fractal Weyl law. Moreover the results on the spectral gap confirming
that the expression for it is only a bound and not a sharp limit hopefully
motivate the mathematicians to focus on improving this bound. Up to now
also the conglomeration of imaginary parts around the escape rate (−γcl/2)
is not well explained by mathematical means, but was now observed in a real
physical system for the first time. Another important direction of research is
the understanding of the shape of the distribution of imaginary parts. Here
there are mainly theoretical approaches for weakly open system, coupling via
only few channels to the environment [70, 67]. For wide open systems the
shape of the distribution is of actual research interest [71].
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A Mode Separation in the Helmholtz Equa-

tion

In the next paragraphs the separation of modes in the Helmholtz-equation
is examined carefully, going beyond the standard mode picture of [17, 12].
The problem becomes more and more complicated the more modes are open.
To keep the description as simple as possible the final equations are set up
for the coupling of zeroth and first mode, to illustrate it with a concrete
example. However from the universal ansatz the bulky expressions for other
modes can be derived as well.
The starting point for the perturbation ansatz is the full Helmholtz equation
for the z component of the electric field ψ(x, y, z) = Ez(x, y, z)

−(∂2x + ∂2y + ∂2z ) ψ(x, y, z) = k2 ψ(x, y, z) (A.1)

We assume a spatially varying height h(x, y) between the plates, which is a
smooth function with a small derivative in x and y direction ∂x/yh(x, y) = ǫ.
The ansatz for the wavefunction is given by the sum over the different cosine
components as in (2.7), but with the spatially varying h(x, y)

ψ(x, y, z) =
nmax∑

n=0

ψn(x, y) cos

(
nπz

h(x, y)

)

where the maximal mode number nmax is given by the condition

k2 −
(

nπz

h(x, y)

)2
!

≥ 0 ∀n ∈ [0, 1, . . . nmax]

Strictly speaking even nmax becomes a function of the position (x, y), which
lead to fuzzy cut-off frequencies for the modes. Inserting the ansatz into the
primary equation (A.1) we obtain

∆ ψ(x, y, z) =
nmax∑

n=0

cos

(
nπz

h(x, y)

)

∆xyψn(x, y)+

2∂xψn(x, y) ∂x cos

(
nπz

h(x, y)

)

+ 2∂yψn(x, y) ∂y cos

(
nπz

h(x, y)

)

+

ψn(x, y)∆xy cos

(
nπz

h(x, y)

)

− ψn(x, y)

(
nπ

h(x, y)

)2

cos

(
nπz

h(x, y)

)

Due to the varying height there occur the extra terms including first and
second order derivatives of the cosine which will be treated next: From here
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we write h ≡ h(x, y) except if its spatial dependency is stressed.

∂x cos

(
nπz

h(x, y)

)

= sin (nπz/h)
(
nπz/h2

)
∂xh(x, y)

∂xx cos

(
nπz

h(x, y)

)

= cos (nπz/h)
(
nπz/h2

)2
(∂xh(x, y))2
︸ ︷︷ ︸

ǫ2

− sin (nπz/h)
(
2nπz/h3

)
(∂xh(x, y))2
︸ ︷︷ ︸

ǫ2

+ sin (nπz/h)
(
nπz/h2

)
∂xxh(x, y)

and analogously for ∂y and ∂yy. As the derivative of h(x, y) is assumed to be
small we neglect the two terms of order ǫ2 in the further calculations. Thus
we obtain

∆ ψ(x, y, z) =
nmax∑

n=0

cos (nπz/h) ∆xyψn(x, y) + 2∂xψn(x, y) sin (nπz/h)
(
nπz/h2

)
∂xh(x, y)

+2∂yψn(x, y) sin (nπz/h)
(
nπz/h2

)
∂yh(x, y) + ψn(x, y) sin (nπz/h)

(
nπz/h2

)
∆xyh(x, y)

−ψn(x, y) (nπ/h)2 cos (nπz/h) + O(ǫ2)

(A.2)

As we only want to explain the potential dependency of the n = 0 mode we
restrict the occurring modes in this ansatz to TM0 and TM1 and write down
the two summands:

TM0 : ∆xyψ0(x, y)

TM1 : cos (nπz/h) ∆xyψ1(x, y) + ψ1(x, y)(π/h)2 cos (nπz/h) + sin (nπz/h) (πz/h2) ·
[2∂xψ1(x, y) ∂xh(x, y) + 2∂yψ1(x, y) ∂yh(x, y) + ψ1(x, y) ∆xyh(x, y)]

Now the z sin(πz/h)-term is expanded in the basis of the cosines, approxi-
mated again by the first two modes:

z sin(πz/h) =
∞∑

n=0

[∫ h

0

z sin(πz/h) cos(nπz/h)dz

]

cos(nπz/h)

≈
[∫ h

0

z sin(πz/h)dz

]

︸ ︷︷ ︸

=C0

+

[∫ h

0

z sin(πz/h) cos(πz/h)dz

]

︸ ︷︷ ︸

=C1

cos(nπz/h)
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Now all the summands can be inserted in equation (A.2)

∆ ψ(x, y, z) =
{

∆xyψ0(x, y) + 2C0[2∂xψ1(x, y) ∂xh(x, y)

+ 2∂yψ1(x, y) ∂yh(x, y) + ψ1(x, y) ∆xyh(x, y)]
}

+ cos(πz/h)
{

∆xyψ1(x, y) + 2C1[2∂xψ1(x, y) ∂xh(x, y)

+ 2∂yψ1(x, y) ∂yh(x, y) + ψ1(x, y) ∆xyh(x, y)] − (π/h)2ψ1(x, y)
}

+ O(ǫ2)

The terms in curly brackets {. . . } contain the description of the zeroth and
first component in the cosine expansion. The second one contains only ψ1

and its derivatives. From that the TM1 mode in first order perturbation can
be calculated directly at least numerically, as it is not coupled to the other
mode. Is one interested in only the correction of the TM0 mode in first order
perturbation, then one needs to solve only the original potential equation for
TM1 (2.7), as the additional terms will lead to order ǫ2 terms if inserted into

(∆xy + k2) ψ0(x, y) = 2C0[2∂xψ1(x, y) ∂xh(x, y)

+ 2∂yψ1(x, y) ∂yh(x, y) + ψ1(x, y) ∆xyh(x, y)]
(A.3)

Here the inhomogeneity on the right hand side is only dependent on TM1

and the first and second derivatives of the height function h(x, y), which act
as a source for TM0. From this we see, that the zeroth mode is coupled
to the first mode and will correspondingly feel a potential. This explains
the observed mode coupling and the experimentally measured patterns for
TM0, shown in section 7.3. The impact of the source terms is additionally
illustrated in the figures 28.
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B SCALING BEHAVIOR OF BRANCHED FLOWS

B Scaling Behavior of branched Flows

A detailed and mathematically strict derivation of the scaling law can be
found in [72, 73]. In the following a hand-waving description is given.
The main idea of treating the weak random potential is a random walk ansatz
for the momentum in the transverse y-direction.

dpy
dt

= σ2
0η(t) (B.1)

where η with 〈η(t)η(t′)〉 = δ(t− t′) is a delta-correlated Gaussian white noise
and σ2

0 ∝ ǫ2/lc the kick strength (using the notation from [28]). The central
limit theorem gives us the corresponding Fokker Planck equation for the
probability P (p̃y, t) = 〈δ(p̃y − py)〉η of finding p̃y at time t for the solution py
of the Langevin equation (B.1) averaged over many noise realizations.

∂P (py, t)

∂t
=
σ2
0

2

∂2P (py, t)

∂p2y

It is a diffusion equation with the solution

P (py, t) =
1

√

2πσ2
0t
e−

p2y/2σ2
0t

The second moment can be seen directly from the distribution

〈p2y〉 = σ2
0t

Its square root gives the typical velocity in y-direction. The integral over it
in time from 0 to t indicates the corresponding distance in y-direction, which
was covered during t0.

∫ t

0

√

〈p2y(τ)〉dτ = σ0t
3/2

As discussed above caustics occur if a trajectory has traveled around one
correlation length lc in transverse direction, thus it is at t = t0

lc
!

= σ0t
3/2
0

Using the proportionality expression for σ2
0 we finally obtain

t0 = (lc/σ0)
2/3 ∝ lcǫ

−2/3
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C Determinant of Operators

Here only a heuristic argument for the identity ln det = Tr ln is given, for
details see [50]. Let us assume a diagonal matrix








d1 0 . . . 0
0 d2 . . . 0
... 0

. . .
...

0 . . . 0 dn








(C.1)

Then one can write

det expD = ed1 . . . edn = ed1+...+dn = exp (TrD) (C.2)

Thus for a matrix lnL := D we obtain

det exp lnL = detL = exp (Tr lnL)

ln detL = Tr lnL

As ln and det are independent of the chosen basis the identity is valid for all
finite operators and for those infinite ones which have a trace.
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D INTEGRAL OPERATORS

D Integral Operators

An integral operator with kernel K(x, y) is defined as

(K̂ϕ)(x) :=

∫

K(x, y)ϕ(y) dy

This is a sort of a generalization of the matrix multiplication

(Aν)i =
∑

j

Aijνj

and especially

TrA :=
∑

i

Aii

Based on this the (flat) trace for integral operators is -if existing-

TrbK̂ :=

∫

K(y, y) dy

For well-behaved operators the flat trace and the trace, TrK̂ :=
∑〈ν|K̂|ν〉,

where the ν form an orthonormal basis of the Hilbert space H, coincide.
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E Heuristic Arguments for the fractal Weyl

Law

In [52] Lu, Sridhar and Zworski gave some intuitive and some more mathe-
matically rigorous derivations of the fractal Weyl law. Some of their ideas
are repeated in the following to demonstrate their way of argumentation.
The standard Weyl law counts the number of independent quantum states
in an energy shell ΣE in a phase space of dimension 2dPS, where dPS is the
dimension of the system in configuration space. The smallest volume of a
maximally localized quantum state is –based on the uncertainty principle–

a box with side length
√
~ and a volume

√
~
2dPS

= ~
dPS . Thus the number

of resolved, i.e. countable, states is volume of energy shell divided by the
~-boxes = Vol(ΣE)/~dPS .
For an open system the volume of the energy shell is infinite, as many points
are carried to infinity (or come from infinity if you reverse the time direction).
Hence the number of quantum resonances must be related to the volume of
the trapped set T , the set of points, which are not carried to infinity by the
classical flow (again in both time directions). Thus we obtain for the num-
ber of maximally localized states on the trapped set, which corresponds to
the number of eigenvalues of the parameter dependent differential equation
−~

2∆ψn = k2nψn

#EV~,a,b := {kn | a ≤ kn ≤ b} ∝ Vol(T~)

~dPS/2

where T~ = {z ∈ PS | d(z, k) <
√
~, k ∈ T } are those points in phase space

with a distance to a point k in the trapped set of less than
√
~. Consider

now a covering of it
⋃

i

Xi with |Xi| <
√
~

⇒ Vol(T~) ∝ N(~)
︸ ︷︷ ︸

∝ ~
DH/2

·Vol(Xi)
︸ ︷︷ ︸

∝ ~
dPS/2

where the definition of the Hausdorff dimension (15.25) for the first under-
brace appears for small ~. For the number of resonances we then end up
with

#EV~,a,b ∝ ~
−DH/2 for small ~ (E.1)

This problem is equivalent to the counting function of the non-parametric
differential equation −∆ψn = k̃2nψn defined as

N(k) := #{0 < k̃n < k} where k is a real number
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E HEURISTIC ARGUMENTS FOR THE FRACTAL WEYL LAW

Let us choose k = 1/~. Then

N(k) = #{0 < k̃n <
1

~
} = #{0 < ~k̃n < 1}

and k̃n solves −∆ψn = k̃2nψn if and only if kn := ~k̃n solves −~
2∆ψn = k2nψn.

Thus we know

N(k) = #EV~=1/k, a=0, b=1

(E.1)∝ (1/k)−DH/2

The Hausdorff dimension DH and the reduced Hausdorff dimension dH of a
trapped set used e. g. in equation (15.23) are related by DH = 2dH + 2. This
can be easily understood as DH is given as

DH(trapped Set) = 1 + 1 + d
(u)
H + d

(s)
H

where the first 1 corresponds to the conserved energy, as it lets the periodic
orbits unchanged, the second 1 corresponds to the neutral direction of the
classical flow and d

(u/s)
H is the dimension of the unstable/stable manifold on

the Poincare section. As the dynamics are reversible it is d
(u)
H = d

(s)
H ≡ dH .

Thus the Counting function finally looks like in the high energy regime

N(k) ∝ k1+dH
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F How the Hausdorff Dimension relates to

the Root of the topological Pressure?

For the following argumentation an alternative definition of the Hausdorff
dimension is more suitable than the one introduced in eq. (15.4). Let C be
a set with a covering C ⊂ ∪Xi with |Xi| < ǫ, then the Hausdorff dimension
is the number with

∑

i

|xi|s ǫ→0−→







0, s too large

finite, s = dH

∞, s too small

It can be easily shown that this is equivalent to the statement that the
number of covering spheres of a set goes like N(ǫ) ∝ ǫ−dH for ǫ → 0. Let us
now cover the volume of the set with spheres of radius ǫ.

Vol ∝
∑

i

ǫsi = N(ǫ) ǫs, where N(ǫ) is the number of necessary spheres

As the volume is supposed to be finite we have s = dH ⇔ N(ǫ) ∝ ǫ−dH .
An illustrative example of the new definition is the covering of a 2 dimensional
area, where the number of needed boxes with side length 1/n goes like n2,
thus we find

Vol ∝
∑

i

(1/n)s = n2(1/n)s = finite ⇔ s = 2

And for the Cantor 2/3-set the number of intervals goes like 2n and the
interval size with (1/3)n so that

Vol ∝ 2n(1/3)ns = finite ⇔ s = ln(2)/ ln(3)

the known Hausdorff dimension of the Cantor 2/3-set. In order to understand
the relation between Hausdorff dimension and topological pressure in a very
heuristic way we restrict the two dimensional dynamics on the Poincare sec-
tion to the unstable manifold. The corresponding one-dimensional map E(s)
is expanding –as it was restricted to the unstable manifold. As we neglected
the coordinate of the stable manifold, the map is not invertible anymore, but
a so-called 2:1 map, i.e. a map where each point has two preimages. As an
illustrative example such a map consists of two branches 0 and 1 (coming
from the two valued symbolic dynamics of the symmetry-reduced 3 disk sys-
tem) with slopes larger than one (as it is expanding). As shown in figure 75
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F HOW THE HAUSDORFF DIMENSION RELATES TO THE ROOT

OF THE TOPOLOGICAL PRESSURE?

Figure 75: Schematic picture of map E(s) on the unstable manifold and the
intervals of first and second order for the symmetry reduced 3 disk system

only the subsets I0 and I1 of the full interval I remain finite under the map.
With the second iteration there are four intervals I00, I01, I10 and I11 remain-
ing finite. Further iterations lead to more and smaller nested intervals. The
trapped set is then T ⊂ E−n(I0 ∪ I1) for every n ∈ N. The interval of sec-
ond order is e.g. defined like I01 = E−1

1 E−1
0 (I). Thus for every binary word

w ∈ Wn of length n (equivalent to a periodic orbit) there is a corresponding
interval Iw including a fixpoint xw. A covering of this fractal set of intervals
then has the form

Voln =
∑

w∈Wn

|Iw|s =
∑

w∈Wn

(1/Λw)s (F.1)

where the stability Λw can be described by
(

d
dx
En(xw)

)−1
for large n, the

derivative at the fixpoints, which goes like 1/Iw. Now we can rewrite equation
(F.1)

∑

w∈Wn

(1/Λw)s = exp(n 1/n ln
∑

Λ−s
w

︸ ︷︷ ︸

:=P̃n(s)

)

= exp(n P̃ (s))
def dH−→
n→∞







0, limn→∞ P̃n(s) < 0

finite, limn→∞ P̃n(s = dH) = 0

∞, limn→∞ P̃n(s) > 0
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Now it needs to be shown that limn→∞ P̃n(s) = 0 ⇔ P (s) = 0, where P is
the standard topological pressure defined in equation (15.21).

P (s) = 0 ⇔ 0 = ζ−1
s (0)

(with (15.10)) = exp

(

−
∞∑

n=1

∑

fixpoints(n) Λ−s
z

n

)

= exp



−
∑

n

1

n




n

√
∑

w∈Wn

Λ−s
w





n



= 1 − n

√
∑

w∈Wn

Λ−s
w

⇔ 1

n
ln

(
∑

w∈Wn

Λ−s
w

)

︸ ︷︷ ︸

P̃n(s)

= ln(1) = 0

Thus s = dH and the Hausdorff dimension is fixed by the condition P (dH) =
0.
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G BOUND FOR THE SPECTRAL GAP

G Bound for the spectral Gap

Finding the resonance-free area in the complex plane is equivalent of finding
the area where the ζ-function converges. It is possible to define the area,
where it converges absolutely, which is of course a stronger condition. We
have shown in section 15.5 that the resonances of the semiclassical ζ-function
agree well with the quantum mechanical ones. Thus we start with the form
(15.11) of the semiclassical ζ-function (15.27) knowing that a series

∑

n fn
converges absolutely if |fn| ≤ n−α for an exponent α > 1:

ζ−1(z) = exp



−
∞∑

n=1

∑

p∈PO(n)

kp
np

τp





and the weights were defined as (15.16)

τp = exp

∫ Tp

0

[Aβ − z] dt

and for the semiclassical case

z = −ik (G.1)

Aβ = −β κ(u) + iπǫ

where β = (1/2 + j), j ∈ N and
∫ Tp

0
ǫ dt = np, the number of reflection of a

trajectory. With
∫ Tp

0
κ(u) dt = ln Λp (15.17) and for β = 1/2 one recovers the

case (15.27).
Let us now consider the modulus of the weight

|τp| = exp

∫ Tp

0

[ReA− z] dt

as another weight

τ̃p = exp

∫ Tp

0

[
−1/2 κ(u) − z

]
dt for the case β = 1/2

With these weights now a classical ζ-function ζ̃β=1/2(z) in the same form as in
(15.15) can be defined. It is known [56] that it has a maximal real pole (i.e.
the topological pressure P (β = 1/2)). Thus we know that ζ̃(z) converges
on the real axis right from P (1/2) (thick black line in figure 76 “rra”) to

infinity. As ζ̃(z)
∣
∣
∣
rra

is a sum over exponentials with real arguments it is
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Figure 76: Schematic picture of the resonances of the semiclassical ζ-function
(black crosses) in the complex plane and the resonance free region (blue
shaded) defined by P (1/2)

even absolutely convergent. On the other hand ζ̃(z)
∣
∣
∣
rra

equals by definition

exp
(
∑

n

∑

p
kp
np

|τp|
)

, which thus is absolutely convergent. Hence ζ(z) =

exp
(
∑

n

∑

p
kp
np
τp

)

converges absolutely in the shaded region in the figure

76 and P (1/2) is finally the bound for the resonances.
Additionally we have from the definitions

ReA < ReA′ ⇒ P (A) < P (A′)

so that the smallest possible real part of A (= 1/2 κ(u)) defines the best bound
on the gap. Note that the complex plane in figure 76 is rotated by 90◦ (i.e.
multiplication by i) compared to the complex plane in the other figures, e.g.
69. This comes from the extra i in front of the resonance position k in (G.1).
For further purpose the semiclassical resonances were rotated backwards to
coincide with the quantum mechanical ones.
Here it must be emphasized that the range of convergence can be of course
larger than the range of absolute convergence, so that we found only a very
rough bound as no phase cancellations were taken into account. But as it
was presented in the experimental part of this thesis this bound seems to be
sharp for wide open systems (see figure 72(b)).
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H IMPLEMENTATION OF THE ζ-FUNCTION

H Implementation of the ζ-Function

For the implementation of the ζ-function the IDL procedures written by
Alexander Potzuweit in [63] were the basis for my modifications. Especially
the symmetry reduction was disregarded before and was added in the scope
of this thesis. In the following a short overview over the algorithm and
the main procedures is given, that can all be found in the idl4dat.lib: The
most important procedure is calc ZetaFunc stability st.pro. It obtains the
system’s geometry (i.e. position and radius of the disks) and returns the
Hausdorff dimension, the classical escape rate, P (1/2) or the values of the
function value of the classical or semiclassical ζ-function up to a specified
order L of periodic orbits. First the stabilities and orbit lengths of the certain
disk geometry are calculated. With the function get orbits SymRed.pro all
the symbolic orbits of a word length w ≤ W are collected combinatorically,
e.g. the orbits 0 and 1 in the 3-disk case in order W = 1. Afterwards these
orbits must be converted in the global notation of disk numbers (0 → 23
and 1 → 123) because only from this notation the function calc orbit st.pro
can calculate the coordinates of the orbits, precisely the coordinates of the
collisions with the disks, using a minimization method by IDL (amoeba.pro).
Now optionally a pruning check can be performed: All line segments of the
orbits are checked for intersection points with the disks’ boundaries. If there
are more intersection points then start and end point this orbit and with
that all other orbits of that order are rejected and ”NaN“ is returned. If all
the orbits are valid then its stabilities are calculated using the monodromy
matrices [62]. We have

mcoll =

( −1 0
−2

a cos(φ)
−1

)

for the collisions (H.1)

mline =

(
1 Lfree

0 1

)

for the free flights (H.2)

where φ is the angle of the reflection respective to the perpendicular at the
intersection point, a the disk radius and Lfree the length of the line segment.
Those matrices are now consecutively multiplied for every orbit. The stabil-
ity of the orbit is now the eigenvalue of the final matrix whose modulus square
is larger than one. This is done in calc lambda.pro with the IDL procedure
La eigenproblem.pro. At the same time the geometrical orbit length and the
word length (corresponds to the number of reflections) are saved. Note that
all those findings are valid for the global geometry. To return to the sym-
metry reduction the ratio f between global word length and reduced word
length is needed, as this describes the multiplicity of the reduced orbit. Now
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the reduced length and reduced stability can be calculated via Lred = Lglob/f
and Λred = f

√
Λglob as the period length of the full orbit is the sum along the

segments and its stability the product of the reduced stabilities [50]. From
the reduced word lengths, geometrical lengths and stabilities of the individ-
ual orbits every combination up to a fixed maximal order is calculated us-
ing a recursive algorithm (calc LambdaComb rek.pro, calc TpComb rek.pro,
calc NpComb rek.pro). From that the classical or semiclassical ζ-function is
accessible. Via different keywords in calc ZetaFunc stability st.pro the roots
in z of equation (15.20) for β values of 1 (escape rate) or 1/2 (bound) or the
(real) root in β for z = 0 (dH) can be obtained. Moreover the function values
of classical (15.20) or semiclassical (15.27) ζ-function can be returned with
keywords zeta values respectively SemiClass values. Hence it is possible to

Figure 77: Classical escape rate for a 5-disk system with a = 1 in order
n = 1 . . . 7 (from black to orange). The vertical lines indicate the start point
of the curves, where no orbits are pruned

carry out a loop over many R/a configurations and return dH (further used
in section 17.3) or γcl and P (1/2) (see section 17.2) parametrically. One ex-
ample is shown in figure 77 for γcl in a 5-disk system, calculated in orders
n = 0 . . . 7. All the curves are only plotted in a range, where no pruning
occurs. That means that all the included periodic orbits were checked for
no extra intersection points with disk boundaries, see the orbit examples in
figure 57. The vertical lines mark the corresponding R/a parameters. It
turns out that the curves converge well and also the ending of the pruning
seems to converge around R/a = 2.41. Based on this picture and tests of
the 3-disk systems we decided to calculate the classical quantities in all the
further plots up to an order of 4, which corresponds to the red line in the
figure, to achieve a suitable accuracy, but take care of the computing time.
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I CALCULATION OF QUANTUM MECHANICAL N -DISK

RESONANCES

I Calculation of quantum mechanical n-Disk

Resonances

For the 3-disk system Gaspard and Rice [51] 1989 gave an explicit expression
for its scattering matrix in terms of Bessel and Hankel functions which allows
to calculate the quantum resonances numerically by evaluating the poles of
the scattering matrix. In 1999 Wirzba investigated the scattering matrices
for any n-disk system with arbitrary disk radii and disk number in detail
[55]. As the numerical code was already implemented for Sebastian Möckel’s
Bachelor thesis [74] and he already gave a detailed description and summary
of the derivation of the matrices I restrict here to only a short overview over
the algorithm: The boundary value problem of a quantum mechanical wave,
scattered at hard obstacles, has to be solved. Let ψk

m(~r) be a solution of
the problem at wave number k and m the quantum number of the angular
momentum. It obeys

(∆r + k2) ψk
m(~r) = 0 (I.1)

outside and ψk
m(~r) = 0 at the disks’ boundaries. Sufficiently far apart from

the scattering center the wave function can be described in terms of the
scattering matrix S like

(∆r + k2) ψk
m(~r) ∝ 1√

2πkr

∞∑

l=−∞

[
δmle

−i(kr−π/2l−π/4) + Smle
i(kr−π/2l−π/4)

]
eilφr

(I.2)
where r and φr are modulus and polar angle of vector ~r. The scattering
element Sml defines the scattering of an incoming wave with quantum number
of the angular momentum m into an outgoing wave with quantum number
l. As S corresponds to the unity matrix if no scattering occurs it is suitable
to write S as the deviation from unity S(k) ≡ 1 − iT (k). In general S can
be extremely complicated, but for our symmetric n-disk systems one can
decompose it into [55]

Smm′(k) = δmm′ − iTmm′(k) (I.3)

= δmm′ − iCj
ml(k)

(
M−1(k)

)jj′

ll′
Dj′

l′m′(k) (I.4)

The indicesm,m′, l, l′ correspond to the angular momenta, whereas the upper
indices j, j′ indicate the disk numbers. There are explicit expression for the
matrices C, D and M , but they are quite bulky and we will see that only M
is relevant for the singularities of the scattering matrix

M jj′

ll′ = δjj′δll′ + (1 − δjj′)
aj
aj′

Jl(kaj)

H
(1)
l′ (kaj′)

H
(1)
l−l′(kRjj′) e

i(αj′j−l′(αj′j−π)) (I.5)
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where Rjj′ is the distance between the disk centers j and j′, αj′j the angle
between the vector pointing at disk center j′ and the vector connecting the
disk centers j and j′ and H(1) the Hankel function of first kind. For the
determinants one finds

det
L
S =

detL(M − iDC)

detL(M)
(I.6)

where index L stands for the operation on the extended tuple (l, j) of quan-
tum numbers and disks and index l only for the quantum numbers. Equation
(I.6) shows that the singularities of the scattering matrix S, i.e. the quantum
resonances, corresponds to the roots of the determinant of M as long as D
and C behave well (what they do [55]!).
For the 3-disk case equation (I.5) reduces to

M jj′

ll′ = δjj′δll′ +
Jl(ka)

H
(1)
l′ (ka)

H
(1)
l−l′(kR) ξjj′(l, l

′) (I.7)

with

ξjj′(l, l
′) = (1 − δjj′) e

i(αj′j−l′(αj′j−π)) (I.8)

For the symmetry reduced case of the 3-disk system M can be decomposed
even more with respect to the three different representations of the group
C3ν : the one-dimensional symmetric A1 and antisymmetric A2 and the two-
dimensional representation E. Their concrete expressions can be found in
[51] and form the basis of the computation. All the results –presented for
example in figures 71 and 72(c)– are calculated for the A2 representation
as this one corresponds to the experiments. For the code the implementa-
tion of complex Bessel and Hankel function was performed using the TBCI

templated C++ numerical library, the calculation of the determinant was
done with a stabilized LU-decomposition and the root finding process was a
globally convergent Newton-Raphson algorithm with line search and back-
tracking, both taken form the numerical recipes [75]. The approximation of
the infinite-dimensional matrices and the limits of the used functions were al-
ready investigated in [74], finding a satisfying accuracy of two decimal places
for the resonances.
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[23] R. Höhmann, U. Kuhl, H.-J. Stöckmann, L. Kaplan, and E. J. Heller.
Freak waves in the linear regime: A microwave study. Phys. Rev. Lett.,
104:093901, 2010.

[24] B. S. White and B. Fornberg. On the chance of freak waves at sea. J.

Fluid Mech., 355:113, 1998.

[25] M. V. Berry. Regular and irregular semiclassical wavefunctions. J. Phys.
A, 10:2083, 1977.
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M. Hentschel. Measurement of the Goos-Hänchen shift in a microwave
cavity. New J. of Physics, 13:023013, 2011.

[31] L. Bittrich. Flooding of Regular Phase Space Islands by Chaotic States.
PhD thesis, Technische Universität Dresden, 2010.

[32] M. S. Longuet-Higgins. The statistical analysis of a random, moving
surface. Phil. Trans. R. Soc. Lond. A, 249:321, 1957.
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