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Zusammenfassung 

Neisseria gonorrhoeae, der Erreger der sexualübertragenden Erkrankung Gonorrhoe, ist ein gram-

negatives menschen-adaptiertes Diplococcus. 80% der klinischen Isolate enthalten durch den 

horizontalen Gentransfer erworbene Gonoccale Genetische Insel (GGI), welche ein ungewöhnliches 

Type-Vier-Secretionssystem (T4SS) kodiert. In manchen Stämmen von  N. gonorrhoeae ist Einzelstrang-

DNA-Bindendes Protein (SSB) nicht nur auf dem Chromosom kodiert, es gibt ein zweites SSB, SsbB, 

welches innerhalb der GGI kodiert ist. SSB sind hoch konservierte, essentielle Proteine, die in allen 

Domänen des Lebens vertreten sind. Diese Proteinklasse bindet mit sehr niedriger Sequenzspezifität und 

gleichzeitig mit sehr hoher Affinität an die Einzelstrang-DNA (ssDNA), außerdem sind sie bei der DNA-

Rekombination, Replikation und Reparatur unerlässlich. Die zweite Kopie von SSB kann entweder auf 

einem Chromosom oder einem Plasmid kodiert sein. Diese SSBs sind bei diversen Mechanismen wie 

natürliche Kompetenz, Plasmidtrennung und DNA Transport, tätig. Wir haben die physiologische Rolle 

von SsbB Protein analysiert, sowie seine Funktionen biochemisch charakterisiert. Wir stellten fest, dass 

die nähesten Homologe von SsbB innerhalb konservierter genetischer Kluster auf den genetischen Inseln 

verschiedener Proteobacteria lokalisiert sind. Diese Kluster kodieren DNA Prozessierungs Enzyme wie 

ParA und ParB, Partitionierungsproteine, TopB, Topoisomerase und vier konservierte hypothetische 

Proteine. Die in diesen Klustern gefundene SsbB Homologe bilden eine separate/gesonderte von den 

anderen Familie der einzelstrang DNA Binde Proteine. Wir konnten demonstrieren, dass im Gegensatz 

zu den meisten anderen SSBs, SsbB kann nicht Escherichia coli ssb Deletionsmutante komplementieren. 

Aufgereinigtes SsbB bildete ein stabiles Tetramer. Elektrophoretische Mobilitäts Gel-Shift Assay, 

Fluoreszenztitrationsassay und die Raster-Kraft Mikroskopie demonstrierten, dass SsbB mit hoher 

Affinität  an die ssDNA  bindet. Ein SsbB-Tetramer braucht minimum 15 nucleotide, Zwei SsbB-

Tetramere brauchen 70 Nukleotide, um an die ssDNA zu binden.  Der Bindungsmotif war von Mg2+ oder 

NaCl Konzentration unabhängig. Wir konnten keine Rolle von SsbB weder für die DNA Sekretion noch für 

die DNA Aufnahme zeigen, jedoch wir konnten demonstrieren, dass SsbB die Aktivität der 

Topoisomerase I stimuliert. Wir vermuten, dass SsbB eine noch unbekannte Rolle für die Erhaltung der 

genetischen Inseln spielt.   

Bemerkenswerterweise wurde für die T4SS von N. gonorrhoeae Secretion von ssDNA gebunden an die 

Relaxase direkt ins Medium gezeigt. Derzeit ist fast nichts über die exakte Funktion der sekretierten DNA 

bekannt. Studien haben gezeigt, dass nicht nur die Exopolysaccharide aber auch die extrazellulare DNA 

(eDNA) eine wichtige Rolle für die anfängliche Etablierung von Biofilmen spielen kann. Die 

Zusammensetzung und der Ursprung der eDNA sind nicht komplett erforscht. Die Biofilme von N. 
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gonorrhoeae enthalten große Mengen der eDNA, welche eine wichtige Rolle für die Biofilmbildung 

spielt. Um die Rolle der ssDNA für die Biofilmbildung zu untersuchen, wurde der Verlauf der 

Biofilmbildung von N. gonorrhoeae Stamm MS11 mit dem MS11ΔTraB Stamm, welcher in Secretion von  

ssDNA beeinträgtigt ist, und dem komlementierten Stamm MS11 ΔtraB::traB, wo die Secretion wieder 

hergestellt ist,  verglichen. Des Weiteren wurde die Rolle der ssDNA für die Biofilmbildung durch die 

Behandlung der Biofilme mit der Exonuklease I, welche spezifisch nur ssDNA degradiert, untersucht. 

Diese Experimente demonstrierten, dass die secretierte ssDNA stark die Biofilmbildung stimuliert, vor 

allem aber in der Phase der anfänglichen  Anhaftung.  

Darüber hinaus haben wir eine einzigartige Methode entwickelt, um die ssDNA and dsDNA separat zu 

detektieren. Für die Visualisierung der ssDNA, wurden SSB Proteine, welche mit sehr niedriger 

Sequenzspezifität und gleichzeitig mit sehr hoher Affinität an die ssDNA binden, eingesetzt. Das 

hochstabile SSB Protein aus Thermoanaerobacter tengcongensis sowie verschiedene Cysteine-Mutanten 

in diesem Protein wurden isoliert. Die verschiedenen Cystein-enthaltene Proteine wurden mit 

umweltempfindlichen Fluoreszenzproben markiert. Die spezifischen Kombinationen von Cystein- 

Mutanten und Fluoreszenzproben wurden getestet, um solche Kombinationen zu erhalten, bei denen 

eine Zunahme der Fluoreszenz nach der Bindung des Proteins stattfindet. Für die Detektion der dsDNA 

wurde das thermostabile dopple-strang DNA bindendes Protein Sac7d aus Sulfolobus acidocadarius 

verwendet. Beide Proteine wurden für die Visualisierung von ssDNA und dsDNA in den Biofilmen sowie 

planktonischen Kulturen verwendet. Bemerkenswerterweise, konnte mit dieser Methode nur dsDNA in 

den Biofilmen von N. gonorrhoeae detektiert werden. Wir schlussfolgern, dass ssDNA eine wichtige Rolle 

für die Biofilmbildung spielt, jedoch sind die Mengen der ssDNA in den Biofilmen viel geringer als der 

dsDNA. 
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Abstract 

Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhoea, is a Gram-

negative human-adapted diplococcus. 80% of the clinical N. gonorrhoeae isolates encode an unusual 

Type IV secretion system (T4SS) within the horizontally acquired region - the Gonococcal Genetic Island 

(GGI). Next to the Single Stranded DNA binding protein (SSB) encoded on the chromosome, a second 

SSB, SsbB, is encoded within the GGI. SSBs are highly conserved, essential proteins found in all kingdoms 

of life. They bind single stranded DNA (ssDNA) with high affinity, have low sequence specificity and are 

involved in DNA recombination, DNA replication and DNA repair. A second copy of SSBs can be encoded 

on the chromosome or on a plasmid. These SSBs can be involved in diverse mechanisms like natural 

competence, plasmid segregation and DNA transport. We analyzed the physiological role of SsbB and 

characterized its function biochemically. We found that close homologs of SsbB are located within a 

conserved genetic cluster found in genetic islands of different proteobacteria. This cluster encodes DNA 

processing enzymes such as the ParA and ParB partitioning proteins, the TopB topoisomerase and four 

conserved hypothetical proteins. The SsbB homologs found in these clusters form a family separated 

from other ssDNA binding proteins. Remarkably, in contrast to most other SSBs, SsbB did not 

complement the Escherichia coli ssb deletion mutant. Purified SsbB formed a stable tetramer. 

Electrophoretic mobility shift assays, fluorescence titration assays, as well as atomic force microscopy 

demonstrated that SsbB binds ssDNA specifically with high affinity. SsbB binds single stranded DNA with 

minimal binding frames of 15 and 70 nucleotides for one or two SsbB tetramersrespectively. The binding 

mode was independent of increasing Mg2+ or NaCl concentrations. No role of SsbB in ssDNA secretion or 

DNA uptake could be identified, but SsbB strongly stimulated Topoisomerase I activity. We propose that 

these novel SsbBs play an unknown role in the maintenance of genetic islands.  

Remarkably the T4SS of N.gonorrhoeae was shown to secrete ssDNA directly into the medium. Currently 

nothing is known about the exact function of the secreted DNA. Studies have shown that not only 

exopolysaccharides but also extracellular DNA (eDNA) can play an important role in the initial 

establishment of biofilms. The composition and the origin of the eDNA are not completely understood. 

N. gonorrhoeae biofilms contain large amounts of extracellular DNA which play an important role in 

biofilm formation. To study the role of ssDNA in biofilm formation, the development of biofilms of N. 

gonorrhoeae strain MS11 was compared with a MS11 ΔtraB strain, which is impaired in ssDNA secretion 

and the MS11 ΔtraB::traB complementation strain in which ssDNA secretion is restored. Furthermore, 

the role of ssDNA in biofilm formation was studied by treating biofilms with Exonuclease I which 
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specifically degrades ssDNA. These experiments demonstrated that the secreted ssDNA strongly 

stimulated biofilm formation especially during initial attachment.  

Furthermore, we developed a unique technique to separately detect ssDNA and dsDNA. To visualize 

ssDNA, SSB proteins, which specifically bind ssDNA with high affinity in a sequence-independent 

manner, were employed. The highly stable SSB protein from Thermoanaerobacter tengcongensis, and 

different cysteine mutants within this protein were purified to homogeneity. The different cysteines 

containing proteins were labelled with environmentally sensitive fluorescent probes. Specific 

combinations of cysteine mutants and fluorescent probes were selected to obtain proteins that showed 

a strongly increased fluorescence upon binding of ssDNA. To visualize dsDNA the thermostable double 

stranded DNA binding protein Sac7d of Sulfolobus acidocadarius was used. Both proteins were applied 

to visualize single- and double-stranded DNA in biofilms and planktonic cultures. Remarkably, only 

dsDNA could be detected in N. gonorrhoeae biofilms using this approach. We conclude that ssDNA plays 

an important role in biofilm formation, but that the amount of ssDNA necessary is much lower than the 

amount of dsDNA found in mature biofilms. 
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Abbreviations 

AFM   Atomic Force Microscopy 

Bp   Base pairs 

Cm    Chloramphenicol  

CLSM   Confocal Laser Scanning Microscopy 

DAPI   6-diamidino-2-phenylindole 

DDAO   7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) 

DGI   Disseminated Gonoccocal Infection 

dsDNA   Double-stranded DNA 

DUS   DNA Uptake Sequence 

EMSA   Electrophoretic Mobility Shift Assay 

EPS    Exopolymeric Substances 

Hrs    Hours  

GGI   Gonococcal Genetic Island 

IB    Inclusion Bodies  

IM    Inner Membrane  

IPTG    Isopropyl β-D-1-thiogalaktopyranoside  

IANBD N-((2-(iodoacetoxy)ethyl)-N-Methyl)amino-7-Nitrobenz-2-Oxa-1,3-Diazole 

LB    Luria-Bertani medium  

Mpf   mating pair formation (complex) 

Min    Minutes  

Ni-NTA    Nickel-nitriloacetic acid  

OD    Optical Density  

OM    Outer Membrane  

PID   Pelvic Inflammatory Disease  

RT    Room Temperature  

SSB    Single-stranded DNA Binding protein 

ssDNA    single-stranded DNA 

SDS-PAGE   Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis  

T4SS   Type IV Secretion System  

T4P   Type IV Pili  

WT   Wild Type 
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Introduction (Chapter 1) 

1.1 Neisseria gonorrhoeae 

Of the genus Neisseria, which currently consists of eleven species that can colonize humans, only 

two, Neisseria meningitidis and Neisseria gonorrhoeae, are human pathogens. N. meningitidis (also 

referred to as the meningococcus) causes bacterial meningitis and is the causative agent of 

meningococcal septicaemia. N. gonorrhoeae (also referred to as the gonococcus) causes the sexually 

transmitted disease gonorrhea. Many individuals carry N. meningitidis in the upper respiratory tract 

and remain perfectly healthy, but N. gonorrhoeae is never part of the healthy flora and is only found 

after contact with an infected person. Gonorrhea was reported as a human disease as early as 5 B.C. 

making it one of the earliest described human diseases. Nowadays, despite intensive studies on the 

mechanisms of its pathogenicity, no vaccines are available and gonococcal infections remain a major 

global health threat with more than sixty million cases worldwide every year [1]. Due to the rapid 

development of high resistance to many different antibiotics many drugs are no longer effective in 

killing many of the N. gonorrhoeae strains. The emergence and spread of resistance in N. 

gonorrhoeae has occurred mainly by the acquisition of new DNA via conjugation and transformation. 

N. gonorrhoeae is an obligate human pathogen that primarily infects superficial mucosal surfaces 

lined with columnar epithelium such as urethra, cervix, rectum, pharynx and conjunctiva. As a 

sexually transmitted disease agent, the gonococcus normally colonizes the genital tract [2]. Most of 

the gonococcal infections in males are inflammatory and pyogenic infections of the urogenital tract, 

whereas about 50% of infections in woman are asymptomatic. When untreated, the bacterium can 

leave the genital tract and the infection can become systemic. Women with a persistent infection 

may develop pelvic inflammatory disease (PID), ectopic pregnancy, infertility and/or a disseminated 

gonoccocal infection (DGI) [3].  

Although a mouse model has been used in several studies and this model is currently further 

optimized to more resemble an infection in humans, no animal model exists that represents the full 

spectrum of disease during gonococcal infection. The insights of the pathogenicity mechanism have 

therefore mainly been studied in human volunteers, tissue and organ cultures, and immortalized or 

malignant tissue culture cell lines [4-7]. These studies have shown that gonococci adhere mainly to 

the nonciliated epithelial cells and that attachment to ciliated cells does not occur [8]. Attachment is 

mediated by type IV pili and outer membrane Opa proteins [9-11]. Type IV pili not only are 

important for attachment, but pilus retraction allows gonococci to form organized microbial 

communities on the cell surface via both specific and nonspecific interactions [12]. These 

microcolonies stimulate the formation of cortical plaques—structures in the cell cortex which 
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contain high concentrations of transmembrane receptors, nonreceptor tyrosine kinases and their 

anchors, and components of the cortical cytoskeleton [13]. The different Opa proteins bind to 

different carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs) which are 

receptors on the human cells [14]. Binding of the Opa proteins to the CEACAMs inactivates the 

lymphocyte cells and the proliferation of these cells is switched off, thereby hindering the memory 

of the immune system and increasing the susceptibility to opportunistic pathogens [15]. After 

adherence, the gonococci enter the epithelial cell by receptor-mediated endocytosis [16]. The major 

porin protein Por was proposed to be the invasin that mediates the penetration into the host cell 

[17]. The gonococci then transverse the cell and multiply on the basal-lateral membrane [15]. For a 

persistent infection, the N. gonorrhoeae cells have to evade the immune system. Many surface 

structures among which the Type IV pili and the Opa proteins can undergo both phase and antigenic 

variation. The ability to modulate the surface antigenic structure rapidly is one of the most 

important requirements for a successful gonococcal infection. Furthermore, N. gonorrhoeae can 

modulate its lipooligosaccharides (LOS) and is able to utilize host-derived N-acetylneuraminic acid 

(sialic acid) to sialylate the oligosaccharide component of its LOS [18]. Also this sialylation undergoes 

phase variation [19]. Gonococci with nonsialylated LOS are more invasive than those with sialylated 

LOS but on the other hand sialylation of LOS makes them more resistant to bactericidal effects of 

serum [20]. 

Many other processes contribute to the evasion of the immune system by N. gonorrhoeae. For 

example, the secreted IgA protease can cleave the human IgA immunoglobulin, thus preventing the 

recognition of N. gonorrhoeae by the immune system [21]. Finally the ability of the gonococcus to 

bind only human transferrin- or lactoferrin could be a reason, why N. gonorrhoeae is a exclusively 

human pathogen [15]. 

 

Figure 1-1: Differential interference contrast microscopy (DIC) of a mixture of diplococcal and monococcal 

planctonic Neisseria gonorrhoeae MS11 cells. Black arrows indicate monococcal bacteria, white arrows show 

diplococcal bacteria. The bar is 10 µm in length. 
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Gonoccoci are gram-negative aerobic or facultative anaerobic bacteria which exist as a mixture of 

monococcal and diplococcal cells (Fig. 1-1) [22]. Although N. gonorrhoeae is very efficient in 

colonizing humans and shows an effective transmission from human to human during sexual 

contact, N. gonorrhoeae is a fragile organism outside its human host. N. gonorrhoeae is susceptible 

to many parameters such as temperature, drying, UV light, pH and others. The cultivation of 

gonoccocal cultures requires very stringent conditions like a temperature between 35 and 37 oC in 

an atmosphere of 3-10 % CO2 [23]. 

N. gonorrhoeae is not well-suited for growth in liquid. The gonococcus is a pathogen of mucosal 

surfaces and expresses potent autolysins whose activity increases following glucose depletion during 

stationary phase, leading to rapid cell lysis especially during growth in medium [23]. Liquid cultures 

require a relatively high initial inoculum relative to most organisms. Traditional undefined broths 

(e.g. nutrient broth, brain heart infusion, Thayer-Martin agar etc.) allow limited multiplication of 

bacteria, but a large inocula in excess of 105 CFU ml -1 is needed to achieve growth in the liquid 

culture [24]. Chemically defined liquid media for N. gonorrhoeae are usually minimal media which do 

not support the growth of low inocula. The M199 cell culture medium is often used as a component 

of a defined liquid medium and has an stabilizing effect for N. gonorrhoeae [25]. The most 

commonly used medium for cultivation of gonococci is chemically defined, clear and protein-free 

Graver-Wade liquid medium [26]. The gonococcus is also capable of anaerobic growth when 

provided with a suitable electron acceptor [27]. 

Although the gonococcus is a very fastidious organism outside the host, careful handling of the 

bacterium is still required, since strains rapidly develop a high resistance against many different 

antibiotics. This is based on its high rate of obtaining mutations, and the fact that it is highly 

naturally competent during all phases of growth [28]. N. gonorrhoeae preferentially takes up DNA 

that contains a 10-12 base (5´-ATGCCGTCTGAA-3`) genus-specific DNA uptake sequence (DUS) [29]. 

The DUS is found frequently in the neisserial genome, with on average one DUS per 1100 bp [30]. 

Neisseria use Type IV pili (T4P) to take up DNA. A direct correlation is observed between the piliation 

status of the gonococci and competence. The piliated gonococci are much better transformable than 

the non-piliated bacteria [31]. DNA transfer occurs at such a high rate that N. gonorrhoeae is 

considered a panmictic or non clonal organism [32]. The DNA for transformation is obtained from 

neighboring gonococci by either autolysis of a subpopulation or via secretion via a Type IV secretion 

system encoded within a Gonococcal Genetic Island (GGI) [33].  

N. gonorrhoeae is very sensitive to its surroundings and readily undergoes autolysis. The exact 

mechanism of autolysis is not known, but the N-acetylmuramyl-alanine amidase, AmiC was 

identified as the major autolysin in vitro [34]. Further endopeptidase activities capable of cleaving 
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the peptide-cross links in peptidoglycan and N-acetylglycoseaminidase activities that cleave the 

glucan backbone were described [35,36]. Recently the peptidoglycan transglycosylase AtlA was 

identified as an autolysin which acts in the stationary phase [37]. 

The exact role of autolysis is not known, but possible advantages are the release of nutrients to a 

starving population, modulation of the host immune response and DNA donation for natural 

transformation. DNA released by autolysis was suggested to be the primary source of DNA for 

natural transformation, but recent findings show that N. gonorrhoeae can also donate DNA for 

transformation via a type IV secretion encoded on the Gonoccocal Genetic Island (GGI) [38]. This 

secreted DNA is the focus of this thesis. 

1.2 The Gonoccal Genetic Island 

Approximately 80 % of gonoccocal and some meningococcal strains contain a 57-kb horizontally 

acquired genomic island called the Gonococcal Genetic Island, GGI [38-40]. Sequencing of the GGI 

revealed that the G+C content of the GGI was 44 % [38]. This is significantly lower than the 51 % G+C 

contents which was found for the currently sequenced genomes of N. gonorrhoeae strains [33], 

suggesting that the GGI was horizontally acquired. The origin of the GGI is unknown, but since N. 

gonorrhoeae is an obligate human pathogen, it is assumed that the GGI was acquired from another 

human pathogen [40]. The GGI was found inserted into the chromosome at the dif site, resulting in 

duplication of the site [33]. One site, the difA site contains the original dif consensus sequence (5’-

AATTCGCATAATGTATATTATGTTAAAT-3’) while the difB site has four mismatches compared to the 

consensus sequence. dif sites are recognized by the site-specific recombinase XerCD [33,41] which 

separates the chromosomal dimers during replication [42]. It was demonstrated that XerCD can 

excise from the GGI when the difB site is mutagenized to the consensus dif site [41]. The excised GGI 

is instable and can only be rescued by either integration of an essential gene in the GGI or by re-

integration in the chromosome [41].  

The GGI contains 62 open reading frames (ORFs) (Fig. 1-2). The first three operons contain genes 

that encode proteins related to Type IV secretion systems ([33], Pachulec et al, manuscript in 

preparation). The other half of the GGI encodes mainly proteins for which the function is still 

unknown and putative DNA processing proteins like e.g. the partitioning proteins ParA and ParB, the 

single stranded DNA binding protein SsbB, the DNA topoisomerase TopB, the DNA helicase Yea and 

the DNA methylases Ydg and YdhA [33] (Fig.1-2).  
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1.3 Type IV secretion systems 

Secretion systems of Gram-negative bacteria are classified into six major evolutionarily and 

functionally related groups, termed type I to type VI secretion systems [43]. The Type IV Secretion 

Systems (T4SS) form one of the most diverse secretion systems. They can transport diverse 

substrates, like DNA and proteins, to many different recipient cells [44-48]. Based on the substrates 

that the T4SS systems transport they are divided into 2 large groups of the conjugative  and effector 

translocation T4SSs, and a small group containing the DNA release/uptake T4SSs [43]. Conjugation 

systems deliver DNA substrates to the target cell. These systems require the establishment of direct 

contact between the donor and the recipient cell (mating pair formation, Mpf). Conjugation systems 

play an important role in disseminating DNA among bacterial populations [49,50]. T4SSs are also 

involved in the delivery of virulence factors and toxins to other hosts. The subfamily of the effector 

translocation systems comprises for example the phytopathogen Agrobacterium tumefaciens and 

several pathogens of mammals, such as Heliobacter pylori, Legionella pneumophila, and Brucella and 

Bartonella species. Also effector translocator systems deliver their cargo to mostly eukaryotic target 

cells through direct cell-to-cell contact, with the exception of the B. pertussis Ptl system, which 

exports the A/B pertussis toxin (PT) to the extracellular milieu [40]. DNA uptake and release systems 

form the smallest subfamily. The secretion process does not require the contact to the target cell: 

DNA uptake and release are mediated from or into the extracellular milieu. It consists of the ComB 

DNA uptake system, H. pylori [51]  and the Tra-like DNA-release system that is encoded in the GGI of 

N. gonorrhoeae [52]. 

All substrates are transported through a cell envelope-spanning structure that forms a channel 

across the inner and the outer membrane.  Almost all T4SSs consist of multiple components, which 

can be divided in components that form the mating pair formation complex that spans the inner and 

outer membranes, components that form the pilus and the type IV coupling protein (T4CP) that acts 

as substrate receptor and that transfers the substrate to the mating pair formation complex. In 

addition, conjugative T4SS also contain components involved in the processing of the DNA. The 

currently best studied T4SS is the T4SS encoded on the Ti plasmid of A. tumefaciens. Most of the 

proteins of this T4SS are either named VirB (involved in the formation of the Mpf complex, the 

transport process or pilus formation) or VirD (the relaxase and coupling protein) [43].  

In the T4SS encoded on the Ti plasmid of A. tumefaciens 11 proteins, VirB1 to VirB11, are involved in 

the formation of the Mpf complex and the pilus. The core of the T4SS is formed by VirB7, VirB9 and 

VirB10. The structure of the core complex of the pKM101 plasmid, which consists of the TraN 

(homolog of VirB7), TraO (homolog of VirB9) and TraF (homolog of VirB10) proteins was recently 
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solved. Fourteen copies of TraN, TraO and TraF together form a large complex of approximately 20 

nm in diameter and more than 1 MDa in size [53]. The pilus is built of major and minor T-pilus 

components VirB2 and VirB5 [54]. The T4SS of A. tumefaciens encodes the VirB4, VirB11 and VirD4 

ATPases. Recent biochemical and structural data shows that these proteins are most likely active in 

their hexameric form [55,56]. VirD4 is the coupling protein that is involved in transfer of the 

substrates to the Mpf complex. Remarkable, both the F-plasmid and the T4SS encoded within the 

GGI do not contain a homolog of VirB11 [57].  

The key protein in conjugation is the relaxase. It recognizes the origin of transfer (oriT), catalyzes the 

initial cleavage of the oriT in the donor and mediates the ligation of the transported DNA. Currently 

eight MOB (Mobility) classes have been identified: MOBB, MOBT, MOBF, MOBH, MOBQ, MOBC, MOBP, 

and MOBV [58-61]. The main characteristics of the MOBF and MOBH families, which are most relevant 

for this thesis will be shortly introduced here.  

Many different members of the MOBF family have been identified and studied, among which the TraI 

relaxase of the F plasmid and the TrwC relaxase of R388 plasmid [59]. The relaxases of the MOBF 

family are large proteins which consist of two domains: an N-terminal relaxase domain (containing 

two catalytically active tyrosines) and a characteristic C-terminal helicase domain. The relaxase 

domain contains three well conserved motifs. Motif I harbors two catalytic tyrosine residues, motif II 

contains a conserved aspartate, and motif III represents a conserved histidine triad motif [62]. The 

prototype of the new MOBH family is the TraI relaxase from the IncHI1 group plasmid R27. Some 

clades of the MOBH family are composed entirely of integrative and conjugative elements (ICEs) and 

genomic islands (GIs) [59]. The TraI relaxase encoded within the GGI of N. gonorrhoeae is the best 

analyzed member of the MOBH systems. It exhibits some features of relaxases, but also has some 

hallmarks like a metal-dependent HD phosphohydrolase domain, an N-terminal hydrophobic region 

and a C-terminal DUF1528 domain, which have not been identified in previously characterized 

relaxases [59].  

It was demonstrated that MOB families occur not randomly, but have adapted to plasmids of 

different sizes [63]. MOBV is found almost exclusively among mobilizable plasmids, while MOBF and 

MOBH were present almost exclusively in conjugative plasmids. Next to the different MOB classes, 

T4SS can also be annotated according to their MPF complexes. Currently 8 different classes are 

identified, but the known proteobacterial T4SSs were classified into four classes: the vir system in 

MPFT, the F-plasmid like systems in MPFF, the R64 plasmid like systemsin MPFI, and the systems 

resembling ICEHIN1056 of the Haemophilus influenzae genomic island in MPFG. MPFT is by far the 

most abundant T4SS, and MPFG and MPFF might derive from an ancestral MPFT. However, MPFI and 



Introduction   

19 
 

T4SSs from other clades have not derived from MPFT, an seem to be a proteobacterial invention 

[63]. Although certain combinations of families of mobility factors and families of MPF complexes 

appear much more frequently, mobility factors of different families can be found associated with 

different families of MPF complexes [60]. 

The process of conjugative DNA transfer proceeds in three steps: 1) DNA substrate processing, 2) 

substrate recruitment, and 3) translocation. The first step of the DNA processing for transfer (Dtr) is 

well conserved among the conjugative systems [64]. The relaxosome, which contains the relaxase 

and accessory proteins, is involved in DNA processing and delivery to the mating pair formation 

complex (Mpf). First the origin of transfer (oriT) is recognized by binding auxiliary proteins, like e.g. , 

TraY and TraM of the F-plasmid [65]. These proteins stimulate the relaxase binding by facilitating the 

access to the oriT [66-68]. After the relaxase is bound to the oritT sequence, the relaxase cleaves one 

strand of the DNA  [69]. After cleavage the relaxase often remains bound to the 5’ end of the DNA 

via a covalent bond [70]. In a next step, the relaxosome is targeted to the coupling protein, which 

transfers the relaxosome complex to the Mpf. The exact mechanism of tranlocation is not clear. 

Different models for the substrate translocation have been proposed. The channel model suggests 

that the substrate is recruited by the coupling protein and transported across the membrane via the 

Mpf complex [71]. The shoot-and-pump model proposes that the unfolded relaxase and the DNA are 

transported independently from each other. DNA is pumped by the coupling protein (pump) and the 

relaxase is first unfolded and then translocated across the membrane via the Mpf complex (shoot) 

[72]. The ping-pong model postulates that the coupling protein is the only translocase, which 

recruits the T-DNA and transfers the relaxase to the chaperone for unfolding (ping) [71]. In the next 

step the chaperone protein transfers the unfolded substrate back to the couplinfg protein (pong) 

[54]. 

1.4 The Type IV secretion system encoded with the GGI 

Approximately half of the genes encoded within the GGI show homology to proteins involved in Type 

IV secretion. These genes are located in the first half of the GGI. The genes encoding the relaxase 

TraI and the coupling protein TraD are encoded in one operon with the yaf and yaa genes. yaf and 

yaa encode proteins of unknown function. The relaxase TraI and the coupling protein TraD belong to 

the MobH mobilization family. The genes that encode for proteins involved in formation of the MPF 

complex are encoded in opposite direction of the genes involved in targeting. These proteins show 

homology to the proteins of the F-plasmid, and sequence analysis shows that the MPF complex 

belongs to the MPFF family. Between the genes that encode for known components of the MPF 

complex of the F-plasmid, also several genes which encode for proteins of unknown function are 
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identified (e.g. yag, ybe, ybi and ych). The function of these genes/proteins is currently unknown. 

The GGI also encodes the TraA pilin protein. The N- and C- termini of TraA are circularized by TrbI 

after removal of the signal peptide by the leader peptidase LepB [73]. Such a circularization reaction 

was previously only seen for pili subunits with MPF complexes of the MPFT family [60].  

A function of the T4SS encoded within the GGI was discovered by the group of Joseph Dillard. It was 

demonstrated that strains containing the T4SS secrete large amounts of DNA into the medium. 

Mutations of different genes of the Type IV secretion system (the traI, traD, atla, traH, traN, traF, 

traL, traE, traK, traB, dscbC, traV, traC, traW, traU and traG) genes led to a strong reduction of DNA 

secretion (Emilia Pachulec, thesis). Remarkably, the traA gene of our N. gonorrohoeae laboratory 

strain MS11 encodes a truncated variant of the TraA pilin, and neither TraA nor TrbI are essential for 

DNA secretion. Remarkably, deletion of parA and parB leads to the abolishment of secretion, while 

the rest of this region, from exp1 – yfeB, encoding 35 hypothetical proteins, can be deleted without 

any effect on DNA secretion (Fig.1-2).  

Figure 1-2: Map of the gonococcal genetic island (GGI) from N. gonorrhoeae strain MS11. Arrows represent 

ORFs, red colored arrows indicate ORFs with homology to T4SS, white arrows display ORFs of unknown 

function, dark blue arrows represent ORFs with homology to DNA processing proteins, blue arrows represent 

proteins with putative DNA processing activities (adapted from [40]). 

Further experiments demonstrated that the secreted DNA was single stranded, and that the DNA 

was protected from its 5’ end, most likely by the TraI relaxase bound to the DNA [74]. The secreted 

DNA can be taken up by neighboring cells. Comparison of the MS11 strain which contains the GGI, 

with the ND100 strain which was derived from MS11 but does not contain the GGI demonstrated 

that the transfer of chromosomal markers increased 500-1000 fold in the presence of the GGI  

(Emilia Pachulec, thesis). 
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1.5 Role of the GGI in host–pathogen interactions 

Genetic islands often are important for pathogenicity [75] and provide selective advantages, such as 

enhanced pathogenicity, additional metabolism routes, or ecological fitness [75].The most 

prominent example of a pathogenicity island encoding a T4SS is the cytotoxin-associated gene (cag)-

pathogenicity island of Heliobacter pylori. This T4SS forms a syringe-like pilus structure for the 

injection of virulence factors such as the CagA effector protein into host target cells [76]. 

There is currently no direct evidence for the role of the GGI in pathogenesis, since the presence of 

the GGI does not correlate with any particular disease form. However, certain versions of GGI have 

been correlated with DGI [38].  The GGI is present with a similar frequency in gonococcal strains 

isolated from women with either symptomatic or asymptomatic infection and in clinical isolates 

causing both pelvic inflammatory disease and local infection [77].  

However, it was recently found that gonococcal strains which contain the GGI can survive 

intracellularly in epithelial cells even if they lack a functional Ton complex [78]. The Ton-complex is 

involved in the uptake of iron. Strains that lack a functional Ton complex cannot survive in the 

absence of the GGI. The structural components of the T4SS were required for Ton-independent 

survival, whereas DNA secretion was not important. A functional Ton complex is required for iron 

import [79], which led the to the suggestion that either iron can pass the cell membrane through the 

T4SS apparatus, or that an unknown factor is secreted via the T4SS, which chelates iron for the 

uptake by gonococci [78]. 

1.5.1 GGI in N. meningitidis  

The GGI has also been identified in N. meningitidis. In contrast to 80 % of N. gonorrhoeae strains 

which possess the GGI, only 17.5 % of the N. meningitidis strains were found to carry the GGI. Five 

distinct meningococcal GGI types which have insertions or deletions relative to the gonococcal GGI 

were identified. In the majority of meningococcal strains insertions or deletions disrupted the genes 

for T4SS, and only two strains were found that carry GGIs with a nearly complete T4SS-encoding 

region. The GGI of N. meningitidis was also integrated into the dif sites of the meningococcal 

chromosome by the site-specific recombinase XerCD. This GGI can be excised and lost from the 

genome. In contrast to the gonococcal T4SS, the meningococcal T4SS does not secrete DNA, nor 

does it confer Ton-independent intracellular survival [80].  
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1.5.2 Regulation of GGI 

Currently only very little is known about the regulation of DNA secretion in N. gonorrhoeae. It was 

shown that DNA secretion is increased in strains producing T4P, so called piliated strains. Microarray 

analysis demonstrated that a piliated strain showed increased expression of the gene for the 

putative type IV secretion coupling protein TraD and the relaxase TraI, whereas a nonpiliated variant 

showed increased expression of genes for transcriptional and translational machinery. It is proposed 

that the T4SS apparatus is made constitutively, while its activity is controlled through regulation 

of traD and traI [74]. 

1.5.3 Secretion of single stranded DNA 

The DNA transported via conjugative Type IV secretion systems to other cells and the DNA 

transported via the T4SS of N. gonorrhoeae were both shown to be single stranded. When DNA 

forms the double helix structure, it is stabilized by hydrogen bonds and base-stacking interactions 

between the nucleotides [81]. Single stranded DNA deaminates significantly faster (> 100 times) 

than double stranded DNA and is much less stable than double stranded DNA [82]. ssDNA is also 

more sensitive to enzymatic digestion. In conjugative Type IV secretion systems, the single stranded 

DNA is replicated after it is transported to the acceptor. The single stranded Ti-DNA which is 

transported into the plant cell by the Type IV secretion system encoded on the Agrobacterium 

tumefaciens The pTi plasmid is bound and protected by VirE2 as soon as it arrives in the recipient 

cell. VirE2 is a single stranded DNA binding protein encoded on the Ti plasmid that is transported 

into the recipient plant cell. VirE2 is transported separately from the transported DNA and is kept in 

an unfolded state in the donor cell by its chaperone VirE1. Except for it role in the protection of the 

transported ssDNA, VirE2 was also proposed to aid in the transport of the ssDNA by pulling the single 

stranded DNA into the recipient cell after the VirE2 has bound [83].  

1.6 Single-stranded DNA binding Proteins (SSBs) 

In many other processes which involve DNA, like DNA recombination or DNA repair, the double helix 

is unwound and separated into the two complementary strands. At this state the DNA is sensitive to 

degradation by nucleases. All living organisms express a single-stranded DNA binding protein which 

binds and protects the single stranded DNA at these stages. Single-stranded DNA-binding proteins 

(SSBs) are essential proteins which are found in all kingdoms of life as well as in bacteriophages and 

adenoviruses [84-87]. SSBs bind with a high affinity to single-stranded DNA and with much lower 

affinity to other DNA forms [88]. Binding to ssDNA is essential sequence independent. All SSBs 

structures contain a very similar fold. This structural motif is called the 

Oligosaccharide/Oligonucleotide binding domain OB-domain or the OB-fold [89]. 

http://en.wikipedia.org/wiki/Hydrogen_bond
http://en.wikipedia.org/wiki/Stacking_(chemistry)
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1.6.1 Oligosaccharide/Oligonucleotide binding domain  

The family of nucleotide-binding OB-domains is characterized by a high extent of structural 

homology [90] and the absence of pronounced similarity of amino acid sequences. Individual OB-

domains range from 70 to 150 amino acid residues [89]. The OB fold is found in all domains of life 

and also viruses suggesting that ssb proteins arose through gene duplication events from a common 

ancestral SSB protein [91,92]. The OB-fold consists of two three-stranded antiparallel β-sheets, 

where strand 1 is shared by both sheets [89]. As shown in Figure 1-3, the β-sheets pack orthogonally, 

forming a five-stranded β-barrel arranged in a 1-2-3-5-4-1 topology. OB-folds share several structural 

determinants [93]. 

 

Figure 1-3: The canonical OB-fold domain. The OB-fold from AspRS is shown in stereo as representative of the 

OB-fold domain (reproduced from [90]). 

 

A glycine (or other small residue) in the first half of the β1 and a β-bulge in the second half of β1 

allow this strand to contribute to both β-sheets by curving completely around the β-barrel. A second 

glycine residue often occurs at the beginning of strand 4, breaking the α-helix between strands 3 and 

4. As shown in Figure 1-4, the canonical interface is augmented by the loops between β1 and β2 

(referred to as L12), β3 and α (L3α), α and β4 (Lα4), and β4 and β5 (L45). These loops define a cleft 

that runs across the surface of the OB-fold perpendicular to the axis of the β-barrel. The majority of 

nucleic acid—binding partners bind within this cleft, typically perpendicular to the anti-parallel β-

strands, with a polarity running 5’ to 3‘ from strands β4 and β5 to strand β2. Loops presented by a β-

sheet appear to provide an ideal recognition surface for single-stranded nucleic acids, allowing 

binding through aromatic stacking, hydrogen bonding, hydrophobic packing, and polar interactions 

[90]. 
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Figure 1-4: Tertiary structure of OB-domain of SSB from E.coli bound to 23-base oligonucleotide (reproduced 

from [88]). 

Most of the interactions between the DNA and the protein occur via interaction of the protein with 

the nucleic acid nitrogen bases, whereas no interaction with the phosphate groups is found [94]. 

Escherichia coli SSB is the best studied member of this protein family. The 3D-structure of 

Escherichia coli SSB bound to two 35-mer ssDNAs was determined. This revealed several residues 

involved in ssDNA binding. Trp40, Trp54 and Phe60 make extensive interactions with the ssDNA in 

the SSB-ssDNA complex [95]. 

Binding of the DNA to the protein is promoted via stacking interactions between nucleotide residues 

and aromatic amino acid residues of the protein, as well as through non-polar interactions of ribose 

or nitrogen base rings with hydrophobic chains of amino acid residues [90,94]. 

Contrary to the OB-domain, the C-terminal part is less structured. It contains many negatively 

charged amino acid residues (in the eubacterial SSBs). The C-terminal region is important for cell 

survival in vivo. It is not involved in either DNA binding nor in ligomerization, but it is crucial for SSB 

interaction with different proteins [96]. The three-dimensional structure of the C-terminal domain 

was not resolved up to date [97]. 

1.6.2 Classification of SSBs 

Many SSBs form higher oligomeric structures, where the OB-folds play an important role in the 

oligomerisation of the subunits. The large family of SSBs has been divided in three major subgroups 

in accordance with their oligomeric state [88]. The first major subgroup consists of the eubacterial 

SSBs. Most eubacterial SSBs contain a single OB-fold, but the functional form of these proteins 

requires oligomerization of the single monomers to form homotetramers. In addition to the DNA-

binding activity, the OB-domain is involved in formation of the homotetrameric structure [88]. The 

second major subgroup is formed by SSBs that form homodimers. Currently only a few eubacterial 
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(the SSBs from the extreme thermophiles Thermus thermophiles, Thermus aquaticus and 

Deinococcus radiodurans), some euryarcheal SSBs  (replication protein A from Methanosarcina 

acetivorans and Methanopyrus kandleri) and some SSB proteins from bacteriophages (gp32 of phage 

T4, gp2.5 of phage T7) belong to this subgroup [98-100]. The third major subgroup of SSB proteins 

includes heterotrimeric complexes. Such structural organization is characteristic for most eukaryotic 

SSBs, often also known as replication protein A (RPA). (Most mitochondrial SSBs are an exception to 

this rule and form functional dimers, similar to the eubacterial SSBs.) Eukaryotes studied to date 

possess the RPA trimeric complex, with subunits of 70 kDa (RPA1), 29 kDa (RPA2), and 14 kDa (RPA3) 

[101,102]. The RPA1 subunit contains four structurally related domains and is responsible for high 

affinity ssDNA binding. In addition to ssDNA-binding, RPA1 has been shown to interact with a 

number of cellular proteins that regulate the cell cycle, DNA repair and recombination. RPA3 does 

not bind to ssDNA but is required to form the stable heterotrimer [84]. In contrast to the RPA1 

proteins which are conserved among various species, the RPA2 subunit appears to be poorly 

conserved. RPA2 is thought to have a regulatory function, thought to be controlled by 

phosphorylation [103]. Remarkably, the SSBs found in Archaea differ in the two major subdivisions 

of the euryarchaea and the crenarchaea. The euryarchaea have a eukaryotic-type RPA [104] while 

the crenarchaea resemble the bacterial SSB proteins [105]. 

Some recently characterized SSBs do not fit in to the standard classification. For example proteins 

from Methanococcus jannaschii and Methanobacterium thermoautotrophicus contain four and five 

OB-domains and a zinc finger domain [104,106]. 

Another interesting exception is the SSB from Sulfolobus solfataricus. This is the only known 

monomeric SSB. The OB fold is distinct from that from Escherichia coli SSB and shares closer 

structural similarity with the DNA-binding domain of RPA [107]. Despite the monomeric structure 

the SSB of Sulfolobus solfataricus seems to form tetramers upon DNA binding, which is not highly co-

operative [108]. 

1.6.3 Binding of SSBs to ssDNA 

The binding behavior of SSBs is often dependent on the conditions and many SSBs can bind ssDNA in 

different modes. For the well-studied SSB from E.coli, two types of complexes with ssDNA have been 

identified. These DNA binding modes are denoted as the (SSB)65 and (SSB)35 modes. In the (SSB)65 

mode, ~65 –nucleotides of ssDNA wrap around and interact with all four subunits of the tetramer. 

The (SSB)65 binding mode is a limited co-operativity mode in which SSB shows only some tendency to 

form protein clusters along ssDNA. This binding mode is observed at salt concentrations (>0,2 M 

NaCl or > 3mM MgCl2) and low protein binding density [109-111]. In the (SSB)35 mode, ~35-
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nucleotides interact with only two of the four subunits. The (SSB)35 binding mode is a high unlimited 

cooperativity mode in which the SSB forms long protein clusters along DNA. This binding mode is 

preferred at low monovalent salt concentrations (<10 mM NaCl) and high protein to DNA ratios (Fig. 

1-5) [109-111]. 

 

Figure 1-5: A hypothetical model of the SSB35 and SSB65 type complex formation upon SSB interaction with the 

ssDNA (adapted from [112]) 

The binding modes are flexible and the transitions among these different binding modes can be 

modulated by the monovalent salt concentration, divalent and multivalent cations, as well as the 

SSB to ssDNA concentartions [113-115].  

1.6.4 Additional functions of SSBs 

Next to their essential role in DNA replication, recombination and repair, SSBs fullfill additional 

functions. Some naturally competent bacteria like Bacillus subtillis and Streptococcus pneumonae 

contain next to the main SSB a second SSB. For example, in the genome of Bacillus subtilis two 

paralogous SSB genes are encoded, ssb and ywpH. Whereas SSB is essential for cell survival, YwpH is 

required for natural transformation [116]. These paralogous proteins have distinctive expression 

patterns. Also in Haemophilus influenzae, HI0250, the second SSB protein encoded within the 

genome is induced 3.4 fold when the cells become naturally competent [117]. Another example is 

Streptococcus pneumonia, whose genome encodes two paralogues, designated SsbA and SsbB. The 

SsbA protein is expressed constitutively whereas SsbB is induced during competence [118,119]. 

Benam et. al. have suggested that the SSB from Neisseria meningitidis might also have a functional 

role in transformation [120]. A second additional role for SSBs is found in conjugative plasmids. 

Nearly all conjugative plasmids encode a SSB homolog [121]. These plasmid ssb genes appear to be 

coordinately regulated with the tra regulon (conjugal transfer) genes, but their presence does not 

appear to be necessary for conjugal transfer of the plasmids involved [122,123]. They seem not to be 
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necessary for conjugal transfer of the plasmids, but might be involved in plasmid stability [124]. Thus 

the exact function of these SSBs is still unclear. 

1.7 Biofilms 

Biofilms are defined as surface-attached microbial communities embedded in a self-produced 

extracellular matrix of polymeric substances and are considered the favored lifestyle of bacteria in 

natural and clinical settings [125]. About 80% of the world´s microbial biomass resides in biofilms 

and more than 75% of human microbial infections are assisted by the stable formation of biofilms 

[126]. [126]. Biofilms confer a number of survival advantages to bacteria, including increased 

resistance to antimicrobial agents [127]. 

The formation of biofilms protects the cells from the environment. The EPS matrix provides 

protection from a variety of environmentally stresses, such as UV radiation, pH shift and osmotic 

shock. The water channels in the biofilm enable the exchange of nutrients and metabolites with the 

bulk aqueous phase. Bacteria involved in biofilm formation undergo a transition from a planktonic 

and motile form to an aggregated mode that is essentially sessile and embodied in an exopolymer 

matrix. Planktonic bacteria first localize on a suitable surface for attachment. This attachment is 

initially reversible and becomes irreversible once the bacteria start to produce exopolymeric 

substances (EPS). This EPS enables the maturation of the biofilm. The maturing biofilm begins to take 

on a 3-dimensional shape. The last stage in the cycle is the detachment of bacteria from the biofilm 

[128]. 

EPS produced by different biofilm communities are very diverse in their composition. Many different 

exopolymers like exopolysaccharides, secreted proteins, membrane vesicles and extracellular DNA 

are major components of the EPS. But also outer membrane proteins and a variety of cell 

appendages like fimbrae, pili, flagella may function as a part of the biofilm matrix [129]. Recent 

studies indicate that not only exopolysaccharides but also extracellular DNA can play a key role in 

the initial establishment of biofilms [130]. 
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Figure1-6: Scheme of biofilm formation.  

1.7.1 Extracellular DNA as important matrix component in biofilms 

During the last decade, extracellular DNA was discovered as a key component for initial biofilm 

formation for Streptococcus pneumonia, Enterococcus faecalis, Staphylococcus aureus, 

Staphylococcus epidermidis, Haemophilus influenza, Neisseria meningitidis, N. gonorrhoeae and 

many others [131-137]. Evidence that extracellular DNA may function as a cell-to-surface adhesin 

and/or cell-to-cell adhesin during the initial phase of biofilm formation was first presented by 

Whitchurch et.al. [130]. They showed that biofilm formation of P. aeruginosa was inhibited by the 

presence of DNase I. A structural role of eDNA has been demonstrated in the biofilm of many 

bacterial species both Gram-negative such as Pseudomonas aeruginosa [130,138] and Gram-positive 

such as Staphylococcus aureus, Streptococcus pneumoniae, Bacillus cereus and Listeria 

monocytogenes [137,139-141]. For example extracellular DNA was shown to be a crucial structural 

matrix component of Bordetella biofilms when the biofilm was isolated from patient and when the 

biofilms were grown under laboratory conditions. But in contrast to other gram negative bacteria 

DNase I treatment disrupted also mature Bordetella biofilm grown under both static and 

hydrodynamic conditions. These findings suggest that Bordetella utilizes external DNA as a key 

component to confer structural stability to biofilms [142]. Next to important roles for external DNA 

in initial attachment and as a structural component, other roles for DNA in the biofilm have also 

been suggested. Several studies have shown that extracellular DNA can provide nutrition and energy 

for sessile cells [143,144]. Furthermore, it is very likely that extracellular DNA not only stabilizes 

biofilms, but also plays a role in exchange of genetic material within the biofilm [145-147]. 

 

DNA can be released into the biofilm via several different mechanisms. The most common 

mechanism by which extracellular DNA is released into the biofilm is autolysis. For S. epidermidis it 
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was demonstrated that the major autolysin, AtlE which is important for eDNA release, is 

indispensible for primary attachment and biofilm development [148]. Different mechanisms that 

induce autolysis have been identified. For example, in P. aeruginosa a part of the population lyses 

under the control of a quorum sensing system, while in E. faecalis autolysis occurs via a fratricidal 

mechanism. In S. aureus autolysis originates from an altruistic suicide, i.e., a programmed cell death 

similar to apoptosis of eukaryotic cells. DNA can however also be released via active secretion, as 

has been observed in P. aeruginosa and in N. gonorrhoeae. The release of vesicles containing DNA 

and prophage-mediated lysis of a sub-population of cells are further possible sources of extracellular 

DNA. The amount of extracellular DNA is further regulated by nucleases. 

1.7.2 Biofilm formation by Neisseria gonorrhoeae 

Microscopic examination of biopsied human cervical tissue showed that gonococci are capable to 

form biofilms during natural cervical infection [149]. Further studies revealed the ability of N. 

gonorrhoeae to form biofilms both on glass, on primary urethral epithelial cells and on cervical 

epithelial cells and in continuous flow-chamber systems [150]. Those data strongly suggest that N. 

gonorrhoeae biofilms do not only contribute to persistent infection but are also directly associated 

with the absence of symptoms in women [151]. N. gonorrhoeae lacks the genes for production of 

exopolysaccharides, thus the biofilm matrix must be stabilized by a number of other components 

[112]. Microscopic examinations on N. gonorrhoeae biofilms showed bacteria embedded in a 

continuous matrix containing water channels and membranous structures, which are derived from 

the outer membrane [150]. Another study demonstrated that outer membrane blebbing is an 

important factor in gonoccocal biofilm formation and that hypo- or hyperblebbing directly affects 

biofilm thickness and density [149]. 

Comparison of transcriptional profiles of planctonic N. gonorrhoeae cells with N. gonorrhoeae cells 

grown in biofilms demonstrated that 3,8 % of the genome was differently regulated. Genes required 

for anaerobic respiration (aniA, reductase, ccp,cytochrome c peroxidase and norB, nitric oxide 

reductase) were more highly expressed during biofilm growth, while other genes involved in 

respiration with NADH as an electron donor (the nuo operon) were more highly expressed during 

planktonic growth. The expression of these genes was shown to be required for the mature biofilm 

formation over glass and human cervical cells [151]. It was demonstrated that anaerobic respiration 

occurs predominantly in the substratum of gonoccal biofilms and nitric oxide (NO) can be used in the 

biofilm as a substrate for anaerobic growth. On the other hand NO can also stimulate biofilm 

dispersal when it is present at a sublethal concentrations [152]. Many genes involved in oxidative 

stress tolerance were shown to be important for efficient biofilm formation [151],[153-156]. 
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Similar to other well studied bacterial biofilms, also the N. gonorrhoeae biofilm was shown to 

contain large amounts of DNA. The possible sources of the extracellular DNA in gonococcal biofilms 

are diverse. Gonococci are well known to be highly autolytic. For N. meninigitidis, it was 

demonstrated that the release of DNA in biofilms was mediated by lytic transglycosylases, 

cytoplasmic N-acetylmuramyl-L-alanine amidases and at later stages of biofilm formation, by outer 

membrane phospholipase A. Furthermore, the release of membrane blebs, which are associated 

with large amounts of DNA is also important for gonococcal biofilm formation. The gonoccocus 

expresses a thermonuclease Nuc, which is homologous to the staphylococcal thermonuclease. 

Deletion of nuc results in the formation of a significantly thicker biofilm containing more biomass 

and more extracellular in comparison to the wild-type N. gonorrhoeae biofilms [137]. Another 

source of DNA within the biofilm might be the DNA secreted by the unusual Type IV secretion 

system (T4SS) within a horizontally acquired region, the gonococcal genetic island (GGI). This 

secretion system and its function in biofilm formation is one of the topics of this thesis. 

1.7.3 Visualization of eDNA in biofilms 

The most advanced technique to study microbial biofilms is the use of a confocal laser scanning 

microscope (CLSM). Using this technique, different molecules are detected by fluorescence. 

Currently many different fluorescent markers are available to detect the DNA. Most of the DNA 

within a biofilm is located inside the cells. To specifically visualize DNA outside of the cell, 

fluorescent probes which cannot penetrate the intact membrane of living bacteria can be used. For 

this purpose, currently for example propidium iodide, ethidium bromide and 7-hydroxy-9H-(1,3- 

dichloro-9,9-dimethylacridin-2-one) (DDAO) can be used. 

1.8 Scope of the thesis 

This study describes first the characterization of the single-stranded DNA binding protein SsbB 

encoded on the GGI, secondly the development of the novel method on the basis of the SSB for the 

visualization of the single-stranded DNA in the biofilms of different N. gonorrhoeae strains, and 

finally the effect of secreted ssDNA on biofilm formation by  N. gonorrhoeae. 

The first part of the study provides a detailed biochemical characterization of the single-stranded 

DNA binding protein SsbB, encoded on the GGI. The role of the SsbB encoded within this region has 

not been previously characterized. It is show that SsbB is part of conserved homologous cluster, 

found in several other proteobacteria. The physiological role of this protein belonging to a novel 

class of SSBs is characterized and its function is studied biochemically.  
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In the second part we present the development of a novel method where SSB is used as a biosensor 

for the visualization and detection of the single-stranded DNA. DNA is the structural component of 

biofilms of many species. Whether this DNA is present in a single stranded or double stranded form 

and whether other components are bound to this DNA is currently still unknown. Single-stranded 

DNA binding proteins (SSBs) bind to ssDNA with high specificity but without clear sequence 

specificity and bind to dsDNA only with much lower affinity. Fluorescently labeled SSB were used to 

specifically detect ssDNA. This technique could be used for the planktonic cultures and for the 

biofilms of different species as well.  

The third part deals with the role of the extracellular single- and double-stranded DNA in the biofilm 

formation of N. gonorrhoeae. Biofilms formed by N. gonorrhoeae contain large amounts of DNA. It 

has been proposed that this DNA is either released via autolysis or via membrane blebs and that an 

endogenous nuclease controls its incorporation into the biofilm. Many clinical isolates of N. 

gonorrhoeae contain a GGI which encodes a Type IV Secretion System (T4SS). This T4SS was shown 

to secrete single stranded DNA. By specific degradation of either ssDNA or dsDNA during and after 

the biofilm formation we revealed the important role of the ssDNA for the initial biofilm formation. 
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2.1 Aim of the study 

N. gonorrhoeae is a highly naturally competent organism [52,157]. It encodes a chromosomal SSB that 

showed DNA binding properties comparable to E. coli SSB [158] and a SSB (SsbB) that is encoded within 

a 57 kb horizontally acquired genetic island called the Gonococcal Genetic Island (GGI). This GGI is found 

in 85 % of the clinical isolates [38]. Approximately half of the GGI encodes a T4SS which is involved in the 

secretion of ssDNA directly into the medium [33]. The secreted DNA is rapidly taken up by the highly 

active competence system of Neisseria species and incorporated in the genome. The presence of the 

T4SS in the GGI increases the transfer rate of chromosomal markers approximately 500 fold [38]. The 

function of the other half of the GGI is currently unknown. It contains mostly hypothetical proteins, but 

also putative DNA processing proteins like partitioning proteins parA and parB, single stranded DNA 

binding protein ssbB, DNA topoisomerase topB, DNA helicase yea and DNA methylases ydg and ydhA 

[33]. 

The role of the SsbB encoded within this region has not been characterized. We show that SsbB is part 

of conserved homologous cluster, found in several other proteobacteria.  

This chapter presents the biochemical characterization of the GGI-encoded ssDNA binding protein, SsbB. 

The physiological characterization of the SsbB was performed by Samta Jain and the results of the 

physiological characterization are presented in the appendix.  

2.2 Results 

2.2.1 Sequence Analysis 

The SSB encoded within the GGI was previously annotated as SsbB on the basis of 28 % identity to 

Xylella fastidiosa XF1778 SsbB [33]. Based on the nucleotide sequence, the predicted SsbB monomer has 

a length of 143 amino acid residues and a calculated molecular mass of 16,36 kDa. SsbB contains an N-

terminal conserved OB fold in the region between residues 5 and 108 [89] and a relatively short 

disordered acidic C-terminus. SsbB shares only relatively low sequence similarity with the essential 

chromosomal SSBs from e.g. E. coli and N. gonorrhoeae. Figure 2-1 shows a sequence comparison of 

different ssDNA binding proteins with SsbB encoded on the GGI. 
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Figure 2-1: Sequence comparison of different ssDNA binding proteins. (Escherichia coli SSB (GenBank: 

AAA24649.1), the chromosomal SSB of Neisseria gonorrhoeae MS11 (GenBank: ZP_06132898.1), Pseudomonas 

aeruginosa SSB (GenBank: AAG07620.1), Xylella fastidiosa 9a5c SSB (NP_299066.1), Bacillus subtilis SsbA 

(ADM40106.1), Streptococcus pneumoniae SsbA (GenBank: ABJ55175.1), F-plasmid SSB (GenBank:NP_061439.1), 

B. subtilis SsbB (ADM39609.1), S. pneumoniae SsbB (GenBank: ABJ54110.1) and SsbB of N. gonorrhoeae MS11. 

Identical residues are highlighted in black, similar residues are highlighted in grey. 

Four essential aromatic residues Trp40, Trp 54, Phe 60 and Trp 88 participate in binding of ssDNA via 

stacking interactions in the EcoSSB-DNA complex [95]. These residues are conserved in most SSB families 

as Phe/Tyr/Trp residues. The corresponding residues in SsbB are Lys42, Trp56, Trp62 and Tyr90. The 

glycine residues in the glycine-rich hinge of EcoSSB (Gly125, Gly 128 and Gly 129) are not conserved in 

SsbB. Remarkably, the C-termini of the paralogous SSBs from B. subtillis, S. pneumoniae and SsbB from 

N. gonorrhoeae lack a large glycine rich domain.  

Analysis of the genetic surroundings of the closest homologs of SsbB revealed that SsbB is located in a 

cluster of homologous genes that is found in several proteobacteria (Figure 2-2).  
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Figure 2-2: Comparison of the genetic environment of homologs of SsbB of N. gonorrhoeae reveals that the ssbB 

gene is located within a cluster conserved in several proteobacteria. Shared synteny was determined and the 

figure was composed using the Absynte website (http://archaea.u-psud.fr/absynte). Homologous proteins are 

indicated using similar colors. 

http://archaea.u-psud.fr/absynte
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Remarkably, this cluster contains the DNA partitioning proteins ParA and ParB, four conserved 

hypothetical proteins containing different domains of unknown functions and a Topoisomerase. Three 

of the four conserved proteins contain conserved domains of unknown function (DUF2857, DUF1845 

and DUF 3158). These clusters are often found at the borders of large genetic islands, like the PAGI-

3(SG), PAGI-2(C) and the clc-like genetic islands found in Pseudomonas aeruginosa and other organisms 

[159,160]. The cluster found within the GGI contains next to SsbB, the ParA and ParB proteins, the 

Topoisomerase, the proteins with the DUF 2857 (YfeB) and the DUF1845 (Yfb) domain. YfeA, Yfd and Yfa 

show only very little to no homology to the other two conserved hypothetical proteins. Other clusters in 

which some of the proteins are missing are also identified in other species. The sequence conservation 

of these SSBs and their genetic surroundings suggests that they form a novel class of SSBs with a 

possible role in partitioning, stability or transport of the DNA of the genetic islands in which they are 

encoded. 

To determine the relation of these SSBs encoded within genetic islands with other SSBs, a phylogenic 

tree was constructed. The sequences used to generate this tree were based on 78 ssDNA-binding 

protein sequences, which were recently used to identify different subfamilies of eukaryotic, 

crenarchaeal, euryarchaeal, mitochondrial, gram-negative and gram-positive bacteria SSBs and a 

subfamily proposed to consist exclusively of the proteins from lactococcal bacteriophages [161], The 

sequences of proteins with strong homology to N. gonorrhea SsbB, encoded within genetic islands and 

their chromosomal homologs were included in this set, and a phylogenetic tree was created (Figure 2-3). 
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Figure 2-3: Unrooted phylogenetic tree of the ssDNA-binding proteins. The SSB phylogeny was reconstructed using 

sequences representative of the different SSB families [161], as described in Materials and Methods. SSB proteins 

related to N. gonorrhoeae SsbB found in Genetic Islands or Integrated Conjugative Elements are shown in red. 

Other colours indicate: Eukaryotes (grey), Crenarchaea (blue), Euryarchaea (dark purple), mitochondria (light blue), 

Gram-negative bacteria (light purple), Gram-positive bacteria (green), Lactococcus phages (orange). 

Our phylogenetic analysis demonstrated that the N. gonorrhoeae SsbB-like proteins form a separate 

cluster of SSB proteins. The phylogenetic distance from other SSBs and the genetic surroundings 

suggests that these proteins have evolved within a cluster of proteins to form a novel class of SSBs with 
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a possible role in partitioning, stability or transport of the DNA of the genetic islands in which they are 

encoded. 

To further characterize a member of this protein family, the operon structure and the expression levels 

of ssbB have been determined by Katja siewering (see appendix). It was demonstrated that the ssbB, 

topB, yeh, yegB and yegA genes form an operon (Data not shown). It was further shown that the parA, 

parB, yfeB and yfb genes, although they are often found genetically linked to ssb, are not encoded in the 

same operon. Furthermore expression of the operon containing ssb seems constitutive and no 

differences in the expression levels of the ssbB and topB genes were observed between piliated and 

non-piliated cells.  

Since it was determined that the ssbB gene is expressed in N. gonorrhoeae, we set-out to further 

characterize SsbB. Many SSBs, independently of whether they were encoded on plasmids or on the 

chromosome [121,122,162,163] have been shown to be able to complement the essential chromosomal 

E. coli ssb gene for cellular viability. In collaboration with the group of prof. Joseph Dillard, it was tested 

whether SsbB could complement the E. coli SSB. Shortly, ssbB was cloned downstream of a lac promoter 

in an E. coli expression vector, and tested using a complementation assay described previously [162]. 

Remarkably, SsbB was not able to complement the E. coli ssb mutation. Since this strongly differs from 

other characterized SSBs, and none of the members of this cluster of SSB proteins have been studied, 

we further set out to characterize the function of N. gonorrhoeae SsbB. 

2.2.2 Overexpression, purification and determination of the oligomeric state of SsbB 

SsbB was expressed in E. coli as the native protein and with N-terminal OneSTrEP- and His-tags. The 

three proteins were purified to homogeneity (> 99% purity as assayed by Silver staining, data not 

shown) with yields of 1.7, 3.5 and 10 mg/g wet cells for native, His-tagged and OneSTrep-tagged SsbB 

respectively. Analysis by gel filtration chromatography revealed single peaks for the WT and N- His- and 

OneSTrEP tagged proteins respectively, indicating that all three proteins form stable tetramers (Figure 2-

4).  
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Figure 2-4: Purification and gelfiltration of different SsbBs proteins. A) SDS-PAGE Analysis of 1 = SsbB, 2 = His-SsbB, 

3 = Strep-SsbB. B) All three proteins eluted as tetramers from the SD200 gelfiltration column. The positions of the 

various markers for both the gelfiltration and the SDS-PAGE are indicated. 

Attempts to destabilize the tetramer by incubations at increasingly higher temperatures or with 

increasing concentrations of chaotrophic agents like guanidinium and urea led to aggregation of the 

protein before any monomeric proteins could be detected (data not shown), demonstrating that SsbB 

forms a stable tetramer that is difficult to dissociate.  

In a next step it was attempted to fluorescently label SsbB using cysteine specific fluorescent probes 

incorporated at different positions. Therefore, the single native cysteine at position 56 was changed to a 

serine, and several other residues where mutated to cysteines. Remarkably, SsbB was shown to be very 

sensitive to mutations: attempts to exchange the native cysteine to a serine led to formation of inclusion 

bodies, and complete loss of soluble protein. The same result was observed after deletion of the last 32 

amino acids of the C-terminus. Remarkably, these last 32 amino-acids are not part of the OB fold, and 

show no conservation with other SsbBs (Figure 2-5). We therefore conclude that SsbB is remarkably 

sensitive to mutations and that the native Cysteine is indispensable for the correct folding and stability. 



Chapter 2   

40 
 

 

Figure 2-5: SDS-PAGE analysis of the purified SsbB mutants. Abbreviations: M = Page Ruler prestained 

protein Ladder; C = cells, D = disrupted cells; Cyt = cytosolic fraction; I = inclusion bodies, WT = native 

SsbB, Cys-Ser = SsbBC56S, Cys-Ser Ser-Cys = SsbBC56S/S128C, ΔAA = SsbB with truncated last 32 amino 

acids. 

 

2.2.3 SsbB binds to fluorescently and radioactively labeled ssDNA with high but different 
affinities 

To determine whether SsbB binds ssDNA, fluorescently Cy3-labeled dT35 and dT75 oligonucleotides were 

incubated with increasing amounts of purified SsbB and used in electrophoretic mobility shift assays 

(EMSA). The 35-mer Cy3-labeled oligonucleotide showed a single mobility shift upon binding to SsbB 

(Figure 2-6 A). Binding occurred with a stoichiometry of one dT35 oligonucleotide per tetramer. A similar 

experiment performed with the Cy3-labeled 75-mer showed two complexes with different mobilities 

(Figure 2-6 B).  
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Figure 2-6: Analysis of the binding mode of SsbB by electrophoretic mobility shift assays. 

A) 8 nM of fluorescently labeled dT35 and B) dT75 oligonucleotides were incubated in SBA buffer (10 mM NaOH, 2 

mM EDTA, pH 7.5) with increasing concentrations (0-64 nM) tetrameric SsbB. The reactions were separated by 

polyacrylamide gel electrophoresis and were visualized using a LAS-4000 imager (Fujifilm). C) 2 nM of a 
32

P- labeled 

dT75 oligonucleotide was incubated with increasing concentrations (0-5000 nM) tetrameric SsbB in SBA buffer. The 

reactions were separated by polyacrylamide gel electrophoresis and were visualized by autoradiography. The circle 

(o) indicates the free oligonucleotide, while one (*) or two (**) asterixes represent oligonucleotides bound with 

one or two SsbB tetramers. 

The first complex was formed at a (SsbB)4/dT75 ratio of 1 and the second complex was formed at a 

(SsbB)4/dT75 ratio of 2, demonstrating that the first complex contains one SsbB tetramer and the second 

complex contains two tetramers bound to the dT75 nucleotide. Stoichiometric binding was observed at 8 

nM for both the dT35 and dT75 oligonucleotides, which is a higher affinity then is generally reported for 

other SSBs in EMSAs [164],[165]. We therefore performed a similar experiment with a radioactively 

labeled dT75 oligonucleotide (Fig. 2-6 C). Again two different complexes, representing one and two SsbB 
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tetramers bound to the T75 oligomer were observed. The complexes were however formed at a 

concentration of approximately 100 nM (SsbB)4, which is similar to affinities observed for other SSBs, 

but 10-fold lower than the affinity observed for the fluorescently labeled oligonucleotide. This 

demonstrates that the presence of a fluorescent label on an oligonucleotide can strongly influence the 

binding properties. Since the observed affinity was affected by the presence of the fluorescent probe, 

we also studied the effects of other components on the observed affinity. No large differences were 

observed when the binding reactions were performed using either SBA, Tris-HCl or Tris-Acetate based 

buffers supplemented with either 0 or 10 mM MgCl2 and/or 10, 200 or 500 mM NaCl. To compare the 

effects of N-terminal tags on ssDNA binding, the EMSAs described above were also performed with 

native SsbB, His-tagged SsbB and OneSTrEP-tagged SsbB. No differences were found between native 

SsbB and OneSTrEP-tagged SsbB, but His-tagged SsbB bound ssDNA with a lower affinity (Figure 2-7).  

 

Figure 2-7: EMSA with His-SsbB, SsbB and Strep-SsbB bound to Cy3 labeled T75. Increasing concentrations 

of SsbB proteins (His-tagged, Strep-tagged and tag-less) were incubated with 8nm Cy3 labeled T75-mer. The 

reactions were separated by polyacrylamide gel electrophoresis and were visualized using a LAS-4000 imager 

(Fujifilm). 

 

Therefore, the following experiments were only performed using native or OneSTrEP-tagged SsbB. 
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2.2.4 Quenching of intrinsic tryptophan fluorescence 

SsbB has two tryptophane residues (Trp56 and Trp62) jn the OB fold domain, allowing an analysis of 

DNA binding by tryptophan fluorescence quenching. 

Fluorescence titrations with poly(dT) under low (20 mM NaCl), medium (200 mM NaCl) and high (500 

mM NaCl) salt conditions and in the presence of 10 mM MgCl2 are shown in Figure 14A). The average 

length of the poly(dT) was approximately 1000 bases as estimated by agarose gel electrophoresis. When 

binding to poly(dT), the intrinsic tryptophan fluorescence of SsbB decreases with only 35 %. Remarkably, 

the fluorescence quenching is lower than normally seen for other SSBs and the quenching is not 

dependent on either the salt (see Fig. 2-8 A) or the Mg2+ concentration (data not shown).  

No suitable fit was obtained when the binding curves were fitted to the model of Schwarz and 

Watanabe [166], (Personal communication, Peter Lens, Philipps-Universität Marburg). 

In a subsequent experiment, titrations were performed with dTn oligomers of fixed lengths. Titrations 

nucleotides with lengths (n) of 25, 35 and 45 are shown in Figure 2-8 B. These data show a biphasic 

curve. The initial phase shows that SsbB binds with high affinity to these oligonucleotides with a 

stoichiometry of 1 oligonucleotide per SsbB tetramer. The initial phase results in approximately 35 % 

quenching, similar to what was observed for the poly(dT). The second phase represents a second 

binding event with much lower affinity. These data thus demonstrate that SsbB binds these 

oligonucleotides with one oligonucleotide per SsbB tetramer, most likely in a (SSB)35 like manner. This 

binding is non-cooperative and independent of salt and Mg2+ concentrations. 
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Figure 2-8: Fluorescence titrations of SsbB  

A) 0.4 µM SsbB was titrated with increasing concentrations of poly(dT) in a buffer containing 20 mM Tris pH 7.5 

and either 20 mM NaCl (open circles), 200 mM NaCl (close circles) and 500 mM NaCl (closed triangles). B) 0.4 µM 

SsbB was titrated with increasing concentrations of dTn of 25 (closed circles), 35 (open circles) and 45 (closed 

triangles) nucleotides in a buffer containing 20 mM Tris pH 7.5 and 200 mM NaCl. 

2.2.5 Determination of the minimal binding frame for one or two SsbB tetramers 

Since we were unable to determine the binding frame using fluorescence titrations, EMSAs were 

performed with poly(dT) oligonucleotides with different lengths (Figure 2-9 A). In these experiments, the 

gels were coomassie stained to detect the SsbB protein. These experiments were performed in an 

excess of oligonucleotides and showed a small mobility shift for 15 nucleotides and larger shifts for 

oligonucleotides of increasing lengths. This demonstrated that SsbB can bind to oligonucleotides of 15 

nucleotides and longer. To determine the minimal length required to bind two SsbBs, EMSAs were 

performed with even longer oligonucleotides (Figure 2-9 B). When these EMSAs were performed at low 

protein to nucleotide ratios ((SsbB)4/dTn<1) only binding of one tetramer per dTn was observed. Further 

experiments were performed at a tetrameric SSB to nucleotide ratio of 4 ((SsbB)4/dTn=4). Upon 
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increasing the length of the added oligonucleotide, lengths smaller than 70 nucleotides resulted in a 

shift to a faster mobility as compared to the free protein indicating binding of one SsbB tetramer. In 

contrast, at oligonucleotide lengths larger than 70 nucleotides a small shift was observed to a slower 

mobility, indicating the binding of two SsbB tetramers. These experiments demonstrated that the 

minimal binding frame for two SsbB tetramers is 70 nucleotides.  

 

Figure 2-9: Analysis of the minimal binding frame of SsbB by electrophoretic mobility shift assays  

A) Determination of the minimal binding frame of one SsbB tetramer. Each binding reaction contained 1 μM 

(SsbB)4 and 5 μM dTn of different lengths (6-35 nucleotides) and was performed in SBA buffer. The reactions were 

analyzed by polyacrylamide gel electrophoresis and SsbB was later visualized by Coomassie staining. B) 

Determination of the minimal binding frame of two SsbB tetramers. The binding reaction contained 1 μM (SsbB)4 

and 0.25 μM dTn of different lengths (67-74 nucleotides) and was performed in SBA buffer. The reactions were 

analyzed by polyacrylamide gel electrophoresis and SsbB was later visualized by Coomassie staining. The square (□) 

indicates the free SsbB tetramer, while one (*) or two (**) asterixes represent an oligonucleotide bound to one or 

two SsbB tetramers. 

2.2.6 SsbB binding to ssDNA visualized by atomic force microscopy 

The AFM experiments were performed together with Dr. Eveline Peeters, University Brussels. 

Atomic Force Microscopy (AFM) experiments were performed in air to analyze the architecture of SsbB-

ssDNA complexes at a single molecule-level (Figure 2-10). SsbB protein was incubated with M13 ssDNA, 

which is a 6407 nt-long circular DNA molecule. Images were recorded of deposited reactions with 

concentration ratios (R) ranging from 1/707 to 1/44 (corresponding to tetramer/nucleotides). In order to 
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improve the adsorption of the ssDNA molecules and complexes, the trivalent cationic polyamine 

spermidine was included in the reaction mixtures, as described before [167]. Adsorbed unbound ssDNA 

molecules visualized with AFM, appear condensed because of hairpins and other secondary structures 

that are formed between complementary regions (Figure 2-10 A). At low ratios, SsbB tetramers bind the 

DNA apparently randomly, observed as individual “blobs” on the nucleoprotein complexes (Figure 2-10 

B and C). Tetramers do not bind in arrays or clusters, but are rather distributed independently over the 

ssDNA molecules. This might suggest that under these conditions SsbB binds preferentially to DNA 

regions without secondary structure, and is initially excluded from condensed regions. At higher R, DNA 

molecules are saturated by SsbB protein, thereby resolving the condensed ssDNA structures (Fig. 2-10 D 

and 2-10 E). As observed for E.coli SSB, the co-existence of different types of structures (quasi-naked 

ssDNA, more or less saturated complexes) was observed in the same deposition. This indicates that 

there might be some limited cooperativity in the SsbB-ssDNA interaction, upon binding to longer ssDNA 

molecules [167]. Evidence is also provided that SsbB binds specifically to ssDNA, and not to dsDNA. A 

deposition of a reaction mixture containing both types of DNA visualized a saturated SsbB-ssDNA 

complex adsorbed next to an unbound dsDNA molecule (Fig. 2-10 F). 
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Figure 2-10: SsbB binding to M13 ssDNA visualized by atomic force microscopy.  

A selection of AFM images, zoomed to display one DNA molecule or complex per image. The scale bar in all 

pictures equals 100 nm. These images were made for SsbB-ssDNA complexes at concentration ratios (R, 

corresponding to tetramer/nucleotides) of (A) 0, (B) 1/707, (C) 1/354, (D) 1/88 and (E) 1/44. (F) SsbB binds only to 

ssDNA (indicated by 1) and not to dsDNA (indicated by 2). The two bound proteins on the dsDNA are probably not 

SsbB, as indicated by their larger apparent volume, but impurities present in the M13 preparation. 



Chapter 2   

48 
 

2.2.7 The physiological characterization of the SsbB  

DNA secretion studies demonstrated that neither deletion of ssbB (Pachulec, manuscript in 

preparation), nor overexpression of SsbB (Samta Jain, see appendix) had any effect on ssDNA secretion. 

SsbB could also not be detected in the medium or in outer membrane blebs, suggesting that the SsbB is 

also not secreted (Samta Jain, see appendix). Finally, it was tested whether SsbB had an effect on DNA 

uptake. Addition of high concentrations of SsbB (3.5 μM) to the medium had no effect (Samta Jain, see 

appendix), but when SsbB was overexpressed in the acceptor strain, a lower transformation rate was 

observed. Therefore overexpression of SsbB either affects DNA uptake, DNA stability in the acceptor 

strain, or the efficiency of recombination. It has previously been shown that SSB overexpression could 

have a negative effect on RecA recombinase activity [168]. Thus these data most likely show that SsbB 

has no influence on ssDNA secretion and/or DNA uptake. 

2.2.8 SsbB stimulates topoisomerase activity 

Since SsbB does not affect DNA secretion or uptake, further possible functions of SsbB were studied. In 

the GGI, ssbB is co-transcribed with the topoisomerase I, topB. It has been previously shown that other 

SSBs, like the SSBs of E. coli and of Mycobacterium tuberculosis could stimulate E. coli topoisomerase I 

activity [169]. It was shown that these stimulating effects occurred by enhancing DNA binding to 

toposiomerase I, and not via any direct interaction between the SSB and the topoisomerase I. SsbB 

strongly stimulated the activity of E. coli topoisomerase in a concentration dependent manner (Figure 2-

11). This demonstrates that SsbB can stimulate a heterologous DNA processing enzyme. 

 

 

 

 

Figure 2-11: SsbB stimulates E. coli 
Topoisomerase I activity. 

Supercoiled plasmid DNA was incubated with 
0.12 units of topoisomerase and with 
increasing amounts of purified SsbB, as 
indicated. Reactions were carried out at 37ºC 
for 30 min. DNA was resolved on a 1% 
agarose gel and stained with ethidium 
bromide. Arrow heads indicate the relaxed 
and supercoiled forms of plasmid. 
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2.3 Discussion 

Within this study we have found that the GGI encodes a conserved cluster of genes also found in other 

genetic islands. This cluster is often found in integrated conjugative elements like the PAGI-3(SG), PAGI-

2(C) and the clc-like genetic islands found in Pseudomonas aeruginosa and other organisms, and consists 

of a core set of 8 genes, which are generally transcribed in the same direction, and consists of the 

partitioning proteins ParA and ParB, four conserved hypothetical proteins containing respectively a 

DUF2857, no DUF, a DUF1845 and a DUF 3158 domain, a ssDNA binding protein and a topoisomerase I. 

Similar to what is observed for the GGI, these clusters are often located near the border of the 

integrated element. Two of the eight proteins, the protein that did not contain a conserved DUF and the 

protein with a DUF3158 domain could not be identified within the GGI. The integrated conjugative 

elements in which this cluster is found often contain a type IV secretion system involved in conjugation 

of the integrated element. This occurs after excision of the element from the chromosome, and the 

generation of a circular intermediate. Indeed it has been proposed that such a cluster found in the clc 

genetic island of Pseudomonas sp. strain B13 might play a role in preparing the DNA for conjugal 

transfer [170], possibly by stabilization of the circular intermediate or targeting the DNA to the type IV 

secretion system. The GGI is maintained within the chromosome of N. gonorrhoeae. It is flanked by a 

perfect and an imperfect dif site. When repaired, the presence of two correct dif sites causes excision of 

GGI from the chromosome by the XerCD recombinase [41]. The excised circular GGI can only be 

detected transiently, but even the transiently present circular GGI might transfer from one cell to 

another. Mutagenesis of ParA within the GGI abolished the secretion of ssDNA [33] further suggesting a 

role for the ParA-TopB genetic cluster in the maintenance or transport of ssDNA. 

To further functionally characterize SsbB, it was purified to homogeneity. Similar to many other SSBs, 

SsbB was shown to form a stable tetramer. The tetramer bound ssDNA with high affinity, characterized 

by an equilibrium dissociation constant of 100 nM. Remarkably, SsbB bound with at least 10-fold higher 

affinity to Cy3-labeled oligonucleotides, demonstrating that fluorescent labels can strongly influence the 

binding affinity. Fluorescently labeled oligonucleotides are currently widely used, and our data shows 

special care should be taken when they are used to directly determine binding affinities.  

A combination of EMSAs, fluorescence titrations and atomic force microscopy were used to characterize 

the binding of SsbB to ssDNA. This demonstrated that the oligonucleotide length required for SsbB 

binding was approximately 15 nucleotides, which is similar to the binding frames of the SSBs of E. coli 

and Mycobacterium tuberculosis that vary between 15 and 17 nucleotides [171,172]. Fluorescence 
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titrations demonstrated that SsbB binds first to one oligonucleotide after which a second 

oligonucleotide can only bind to the same SsbB with lower affinity. A similar negative cooperativity was 

observed for E.coli SSB [85], [173]. Titrations to determine the oligonucleotide length to which two 

SsbBs could bind showed that a second SsbB tetramer could only bind if the ssDNA was longer than 70 

nucleotides. Indeed, many different SSBs can bind with 2 SSB tetramers to an oligonucleotide of 75 

nucleotides at low salt or low Mg2+ concentrations [85]. Generally, these SSBs, like for example the E. 

coli SSB, bind DNA with two of the OB folds occluding approximately 35 nucleotides in a highly 

cooperative mode. At higher salt or Mg2+ concentrations, the binding mode changes to a mode with 

lower co-operativity where the ssDNA is bound to four OB folds occluding approximately 65 nucleotides. 

In this mode only one SSB tetramer can bind to an oligonucleotide of 75 nucleotides [85]. Remarkably, 

within our experiments we have not observed that SsbB binding to ssDNA was sensitive to either salt or 

Mg2+ concentrations. Using atomic force microscopy, we have also studied binding to longer DNA 

fragments. SsbB tetramers bound distributed independently over the ssDNA molecules. This might 

suggest that SsbB binding is initially excluded from condensed regions and that SsbB initially only binds 

to DNA regions without secondary structure. Regions with higher secondary structure are only resolved 

at higher SsbB concentrations. SsbB was expressed only at low levels under normal growth conditions, 

suggesting that SsbB under these conditions either binds distributed evenly over exposed ssDNA 

stretches, or is specifically targeted to certain regions by other proteins.  

Although SsbB functions in many respects similar to other SSBs, SsbB could not complement the E.coli 

ssb mutant, even when overexpressed to high levels. We therefore set out to find a specific function for 

SsbB. First, the role of SsbB in ssDNA secretion was studied. VirE2, a ssDNA binding protein encoded on 

the A. tumefaciens Ti plasmid is necessary for transport of the T-DNA to the plant cell nucleus. VirE2 is 

transported directly to the target cell, where it binds and protects the ssDNA [174]. It was demonstrated 

that the binding of the transported VirE2 to the ssDNA pulls the DNA into the target cell  [83]. Before 

transport to the target cell, VirE2 is kept transport competent by VirE1 [175].  

No homolog of VirE1 could however be detected within the GGI, and neither deletion of the ssbB gene 

nor the overexpression of SsbB affected ssDNA secretion. SsbB could not be detected in the medium 

isolated from strains involved in ssDNA secretion via the type IV secretion system. Also the addition of 

purified SsbB to the culture supernatant at concentrations 1000 fold higher then detected in the 

medium did not affect the GGI dependent transfer of chromosomal markers. This makes it unlikely that 

SsbB either function inside the cell to assist the transport of DNA, or is secreted into the medium where 
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it could assist the transport of the ssDNA. Another possibility studied is that SsbB functions not in the 

process of export of ssDNA, but in the process of the uptake of ssDNA. If SsbB is involved in competence, 

it is expected that the presence of SsbB increases the transformation efficiency. Surprisingly, when SSB 

was overexpressed in the recipient cell, the transformation efficiency was reduced. Most likely the 

overexpression of SsbB interferes with the activity of RecA in the recombination process [168,176]. It is 

therefore concluded that SsbB is not involved in DNA secretion and uptake. 

In general, these SSBs found in genetic islands might together with the topoisomerase I homologs serve 

to stabilize the circular form of the GGI when it has excised from the chromosome before it is re-

integrated or exported. We demonstrate that SsbB, together with TopB forms an operon separately 

from the other genes found in the conserved cluster. This suggests that, although the partitioning 

protein ParA and the SSB are found in the same cluster they might function in different processes. The 

possible interaction with other proteins encoded within the GGI should be studied to further 

characterize the role of the SSBs within the genetic islands.  
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3.1 Aim of the study  

Currently many different methods and stains are available to fluorescently detect DNA, such as Ethidium 

bromide, Propidium iodide, DDAO (7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one), SYTO 60, 

SYBR Green, OliGreen and many others. However, to our knowledge, all currently available stains detect 

both ssDNA and dsDNA.  

As described in the introduction and chapter 2, cells have evolved a specialized class of ssDNA-binding 

(SSB) proteins that bind to ssDNA with high affinity and in a sequence-independent manner. 

Oligonucleotide/oligosaccharide-binding (OB) domains bind ssDNA through a combination of 

electrostatic and base-stacking interactions with the phosphodiester backbone and nucleotide bases, 

respectively.  

I aimed to use this highly specific DNA binding reaction of SSBs to specifically detect ssDNA in the 

medium and in biofilms, by fluorescently labelling and detecting these SSBs, and I set-out to develop a 

system in which we can reduce the background fluorescence of non-bound SSB by using an approach in 

which the fluorescence of the SSB increases upon DNA binding. It has been previously shown that the 

fluorescence of E.coli SSB (G24C) labelled with IDCC (7-diethylamino-3-(((2-

oidacetoamido)ethyl)amino)carbonyl)coumarin) was increased 6-fold upon binding DNA.  

The final aim of this study was to determine the role of single stranded DNA (ssDNA) in biofilm 

formation, and to visualize ssDNA in biofilms of different species. 

3.2 Results 

3.2.1 Expression and purification of the SsbB from Neisseria gonorrhoeae  

In the genome of N. gonorrhoeae, a second SSB (SsbB), besides the chromosomal SSB, is encoded within 

the Gonococcal Genetic Island (GGI). Since SsbB was characterized in detail (see Chapter 1), I set up 

experiments to test whether this protein could be used as a biosensor for the detection of the ssDNA. 

Within these experiments I set-out to fluorescently label SsbB using cysteine specific fluorescent probes. 

The mutagenesis of the only native cysteine of SsbB (Cys56) to serine led to the incorrect folding of the 

protein and to inclusion body formation (Figure 2-5).  

A structural model obtained by modeling SsbB on the crystal structurs of E.coli ssb 

(http://swissmodel.expasy.org/), suggested that the native Cys56 is located on the inside of the protein 

and was most likely inaccessible for the labeling (Figure 3-1 A).  Since the native cysteine could not be 

exchanged, it was tested whether the native Cys56 was accessible to the cysteine specific fluorescent 

http://swissmodel.expasy.org/
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maleimide probes (Figure 3-1 B,C). This demonstrated that the native cysteine was not accessible for 

maleimide probes.  

 

Figure 3-1: A) SsbB (in pink) structure prediction based on SSB from E. coli (in blue). The native Cysteine56 is 

presented in yellow, serine128 is presented in green. B) SDS-Page Analysis of 1 = SsbB, 2 = heat denatured SsbB 

and 3 = SsbBD26C. Proteins were later visualized by Coomassie staining (in B) or by fluorescent detection (in C). 

Two different positions, Asp26 and Ser128, were selected and these residues were mutated to 

cysteines. Both proteins were overexpressed and purified to homogeneity (Data not shown). Both 

proteins eluted from the gelfiltration column as tetramers. The labelling conditions for both proteins 

were optimized by testing different coumarin-maleimide probes. Since the SsbBS128C mutant was less 

stable then wt SsbB and aggregated over time, the SsbBD26C mutant was used for further experiments. 

3.2.2 Detection of ssDNA with labeled SsbB 

To demonstrate ‘proof of principe’, an attempt was made to detect ssDNA bound to beads using 

fluorescence microscopy. The size of the beads was 1 nm in diameter which is a comparable size as N. 

gonorrhoeae cells. DNA was first immobilized on the magnetic beads. Initially beads with the silica-like 

structure and beads with Oligo-T-tails, which can catch poly-A-DNA were used. After addition of the 

labeled SsbB a fluorescent signal was observed mainly in the medium. This observation indicated that 

most likely SsbB was able to strip DNA away from the beads. To immobilize DNA stronger on the beads, 

the streptavidin-biotin interaction was used. The streptavidin-covered beads were first incubated with 

Biotinylated-DNA. The labeled SsbB was added to the pre-incubated beads and fluorescent microscopy 

was performed. It was shown that the fluorescent signal increased more then 10 times after addition of 

the labeled SsbB for the beads covered with DNA in comparison with the beads without DNA (Figure 3-

2), demonstrating that using this method we are indeed able to detect ssDNA. 
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Figure 3-2: A biotinylated T100 oligonucleotide was bound to streptavidin covered beads and incubated with 

Fluorescein-labelled  SsbBS128C. Beads are 1nm in diameter. The upper panel shows the image obtained after 

addition of the labelled SsbBS128C  to the streptavidin covered beads. The lower panel represents beads which 

were incubated with the biotinylated T100 oligonucleotide and with fluorescien-labeled SsbBS128C. The beads 

were visualized by DIC or Fluorescent Microscopy (GFP-channel) 

To test whether the fluorescence was sensitive to DNA binding, the fluorescence intensity of the labeled 

protein as tested as a function of the ssDNA added. Remarkably, for both proteins the fluorescence 

intensity of the coumarin-maleimide labeled proteins decreased upon addition of ssDNA (data not 

shown). This is in contrast to previous studies performed with the E. coli SSB G24C mutant, which 

showed a 6 fold increase in fluorescence after binding to ssDNA when the protein was labeled with IDCC 

[177]. Unfortunately the IDCC fluorescent probe is currently no longer commercially available. The 

fluorescence experiments also revealed that the labeled proteins were not stable for prolonged periods 

at 37 °C. Since e.g. study of the localization of DNA in biofilms using Confocal Laser Scanning Microscopy 

are performed at 37 °C  and might take several hours, it was decided to also test other SSBs which might 

be more stable.  

3.2.3 Expression and purification of the SulSSB from Sulfolobus solfataricus  

Since SsbB was found to be instable at 37 C, it was decided to test SSB proteins of several 

(hyper)thermophiles. In a first attempt, the SSB of Sulfolobus solfataricus (SulSSB) was tested.The SSB 

from S. solfataricus is an abundant protein with a unique structural organization, which exists as a 
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monomer in solution and multimerizes upon DNA binding [105]. Remarkably, the crystal structure of 

SulSSB protein shows similarity to eubacterial homotetrameric proteins, since its OB-domain is flanked 

by a C-terminal negatively charged region with conserved aspartate residues [108].  

SulSSB was overexpressed and purified to homogeneity (data not shown). Agarose gel electrophoretic 

analysis demonstrated that DNA binding of SulSSB is not highly co-operative (data not shown).  

The SSB from S. solfataricus does not contain any cysteines. SulSSB was labelled with different 

coumarine probes, but for all the fluorescence intensity of the coumarin-maleimide labeled proteins 

decreased upon addition of ssDNA (data not shown). Since SulSSB binds ssDNA in non-cooperative 

manner and no suitable coumarine-maleimide probes could be found, we looked for further alternative 

stable SSB proteins. 

3.2.4 Expression and purification of the TteSSB2 from Thermoanaerobacter tengcongensis 

In the next attempt, TteSSB2 of Thermoanaerobacter tengcongensis was used. This protein binds ssDNA 

with high affinity and remained fully active even after 6 h incubation at 100 °C [178]. TteSSB2 was 

overexpressed and purified (Figure 3-3). Gelfiltration experiments confirmed that TteSSB2 forms a 

tetramer (Figure 3-3 B) and electrophoretic mobility shift assays demonstrated that TteSSB2 binds 

ssDNA with an affinity of approximately 100 nM (Figure 3-3 C), whereas it does not bind to dsDNA even 

at concentrations of 5 µM (Figure 3-3 D). 
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Figure 3-3: Purification and specificity of the single-stranded DNA binding protein TteSSB2.  

TteSSB2 was overexpressed in E.coli and purified by a heat-step followed by anion exchange and gel filtration 

chromatography. (B) TteSSB2 eluted as a tetramer from the SD200 gelfiltration column and was essentially pure as 

assayed by (A) Coomassie staining of an SDS-PAGE of the purified protein. The positions of the various markers for 

both the gelfiltration and the SDS-PAGE are indicated. Electromobility shift assays were performed with incubating 

either a Cy3 labeled dT90 oligonucleotide (C) or a Cy3 labeled PCR product (D) with increasing concentration of 

TteSSB2. The fluorescently labeled DNA was analyzed after separation on 7.5 % polyacrylamide gels using a LAS-

4000 imager.  

As a control for DNA binding, also the thermostable Sac7d protein from Sulfolobus acidocadarius was 

overexpressed and purified to homogeneity (Figure 3-4 A). Sac7d is a 7 kDa chromatin protein that is 

highly conserved in the Crenarchaeota. The protein was purified as a monomer (Figure 3-4 B) and shows 

higher affinity for double-stranded DNA than for single-stranded DNA [179]. Purified Sac7d bound to 

ssDNA and dsDNA with approximately equal affinities of 2 µM (Figure 3-4 C and 3-4 D). This indicates 

that fluorescently Sac7d could be used as protein that binds both single stranded and double stranded 

DNA. 
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Figure 3-4: Purification and specificity of the DNA binding protein Sac7d.  

His-tagged Sac7d was overexpressed in E.coli and purified by Ni-NTA affinity, anion exchange and gel filtration 

chromatography. (B) Sac7d eluted as a monomer from the SD200 gelfiltration column and was essentially pure as 

assayed by (A) Coomassie staining of an SDS-PAGE of the purified protein. The positions of the various markers for 

both the gelfiltration and the SDS-PAGE are indicated. Electromobility shift assays were performed with incubating 

either a Cy3 labeled dT90 oligonucleotide (C) or a Cy3 labeled PCR product (D) with increasing concentrations of 

Sac7d. The fluorescently labeled DNA was analyzed after separation on 7.5 % polyacrylamide gels using a LAS-4000 

imager.  

To detect TteSSB2 and Sac7d, we aimed to label the proteins with fluorescent dyes by coupling these 

dyes to cysteine residues in the proteins. Neither TteSSB2 nor Sac7d contains any native cysteines. 

Previously, E. coli SSB labelled with an extrinsic environmentally sensitive fluorophore was shown to be 

a sensitive probe for ssDNA binding [180]. The fluorescence of E. coli SSB labelled at position G26C with 

IDCC (N-[2-(iodoacetamido)ethyl]-7-diethylaminocoumarin-3-carboxamide) increase up to 6.1 fold upon 

binding to ssDNA [180]. To test whether similar results could be obtained with TteSSB2 and Sac7d, four 
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cysteine mutants (G24C, W55C, Q79C and R81C) were created in TteSSB2 and 2 cysteine mutants (S18C 

and L48C) were created in Sac7d (Figure 3-5).  

 

Figure 3-5: Purification of thermostable Sac7d and TteSSB2 proteins. 

A) His-tagged Sac7d mutants were overexpressed in E.coli and purified by Ni-NTA affinity, anion exchange and gel 

filtration chromatography. B) TteSSB2 was overexpressed in E.coli and purified by a heat-step followed by anion 

exchange and gel filtration chromatography. 

The G24C mutation in TteSSB2 is homologous to the G26C mutation in E. coli SSB. The other positions 

were chosen in such a manner that, predicted by either homology modelling of TteSSB2 or by the Sac7d 

crystal structure, labelling at these positions would most likely not interfere with DNA binding, but that 

the positions would still be close to the bound DNA such as that the DNA binding might influence 

fluorescence. All proteins were purified to homogeneity (Figure 3-5). The proteins were labelled with 

fluoresceine. Equal labelling of the proteins was confirmed by loading the labelled protein on a gel and 

by imaging the gel using a LAS-4000 imager (data not shown). The different labelled mutants were 

tested for DNA binding by fluorescent imaging of Streptavidin incubated beads Biotinylated-DNA and 

fluorescent microscopy was performed. It was shown that the fluorescent signal increased more then 10 

times after addition of the labeled SsbB for the beads covered with DNA in comparison with the beads 

without DNA. Labelling of TteSSB2 at positions Q79C and R81C, completely abolished binding to ssDNA, 

but ssDNA binding was not affected in the other mutants (Figure 3-6).  
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Figure 3-6: Detection of the biotynaleted T100-mer on the magnetic Streptavidine-beads with different 

TteSSB2 mutants. A) Streptavidine covered magnetic beads were first incubated with biotynaleted T100mer. Next 

fluoresceine-labelled TteSSB2 cysteine mutants were added to the beads and bead-protein-complexes were 

immobilized on the agarose covered slides. B) Represents the TteSSBR81C and TteSSBQ79C proteins  at an 

increased sensitivity. The beads were visualized by Fluorescent Microscopy (GFP-channel). The bars are 5 µm 

length.  

The influence on the fluorescent intensity upon binding to DNA was studied for different combinations 

of cysteine mutants and fluorophores (Table 1).  
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Of the labels tested, the TteSSB2-W55C mutant labelled with IANBD gave the largest (4-fold) increase in 

fluorescence. No increase or decrease was detected for the labelled Sac7d mutants. The TteSSB2 W55C 

mutant and the Sac7d S18C mutant labelled either with IANBD or Texas Red were selected for further 

experiments. 

Table 1: Fluorescence changes upon DNA binding for various mutant: fluorophore combinations. 

Protein Fluorophore Exitation 

(nm) 

Emission 

(nm) 

Fluorescence 

ratio (± DNA) 

TteSSB2 G24C IANBD  

Fluorescein 

Texas Red 

MIANS 

472 

492 

583 

322 

536 

515 

603 

417 

1,6 

1,1 

1 

1,6 

TteSSB2 W55C IANBD  

Fluorescein 

Texas Red 

MIANS (M8) 

472 

492 

583 

322 

536 

515 

603 

417 

4 

1,2 

1 

1,8 

TteSSB2 R81C Fluorescein 492 515 No binding to 

DNA 

TteSSB2 Q79C Fluorescein 492 515 No binding to 

DNA 

Sac7d S18C IANBD  

Texas Red 

472 

583 

536 

603 

1 

0,8 

Sac7d L48C IANBD  

Texas Red 

472 

583 

536 

603 

1 

0,8 

 

Titrations were performed with 50 nM TteSSB2 or Sac7d with increasing concentrations ssDNA or DNA. 

Experiments were performed at 8 ºC in a buffer containing 20 mM Tris pH 7.5 and 1 mM dithiothreithol. 

The excitation and emission wavelengths and the increase of fluorescence at saturating DNA 

concentration are indicated. IANBD is N-((2-(iodoacetoxy)ethyl)-N-Methyl)amino-7-Nitrobenz-2-Oxa-1,3-

Diazole, Fluorescein is Fluorescein-5-Maleimide, Texas Red is 5- (chlorosulfonyl)- 2- (2,3,6,7,12,13,16,17- 

octahydro- 1H,5H,11H,15H- pyrido[3,2,1- ij]quinolizino[1',9':6,7,8]chromeno[2,3- f]quinolin- 4- ium- 9- 

yl)benzenesulfonate C2 maleimide and MIANS is 2-(4'-Maleimidylanilino)Naphthalene-6-Sulfonic Acid. 
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3.2.5 ssDNA and dsDNA can be visualized in biofilms of the thermoacidophilic archaea 

Sulfolobus acidocaldaris using fluorescently labelled TteSSB2 and Sac7d 

We aimed to demonstrate that ssDNA and dsDNA could indeed be visualized in biofilms using CSLM and 

fluorescently labelled ssDNA and dsDNA binding proteins. To demonstrate this, the presence of ssDNA 

and dsDNA in biofilms of the thermoacidophile Sulfolobus acidocaldaris was studied. It has previously 

been shown that three day old biofilms of S. acidocaldaris contain extracellular DNA [181]. This DNA is 

found at positions where cellular aggregates are visible. This DNA was sensitive to DNase I treatment, 

but removal of the DNA had no effect on the structure of the biofilms, which suggested that 

extracellular DNA does not play a structural role in biofilms of S. acidocaldaris [181]. Based on the 

conditions under which the S. acidocaldaris biofilms were grown (76°C and pH 3.0) it was assumed, that 

the DNA would be present as a mixture of denaturated ssDNA and dsDNA. Before imaging the biofilm 

was washed with Brock media of pH 5 and imaged by CLSM after incubation with DAPI (to visualize the 

cells), DDAO (to visualize the external DNA), IANBD labelled TteSSB2-W55C (to visualize ssDNA) and 

Texas Red labelled Sac7d S18C (to visualize both ssDNA and dsDNA). Since the fluorescence spectra of 

DDAO and Texas Red overlap, these fluorephores could not be used at the same time. In a first 

experiment a three day old static biofilm of S. acidocaldaris was imaged by CLSM after incubation with 

DAPI, DDAO and IANBD labelled TteSSB2-W55C. As has been described previously, S. acidocaldarius 

readily formed biofilms which contained a high density of cells and large aggregates, forming towering 

structures above the surface of attached cells. Labelling with DDAO showed the presence of external 

DNA which was associated with the large aggregates forming towering structures above the surface 

(Figure 3-7 A).  
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Figure 3-7: Vizualization of DNA in static biofilms formed by S. acidocaldarius 

Three day old biofilms formed by S. acidocaldarius were labelled with (A) DAPI, DDAO and IANBD labelled TteSSB2-

W55C or with (B) DAPI, Texas Red labelled Sac7d-S18C and IANBD labelled TteSSB2-W55C and visualized by CLSM. 

The lower right panels show an overlay of the signals. In (C) a zoom-in of the overlay shown in (B) is shown. 

Micrographs represent three-dimensional images. The bar in (A) and (B) is 20 µm in length, while the bar in (C) is 5 

µm in length. 
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The labelling with IANBD labelled TteSSB2-W55C showed a very similar labelling pattern as DDAO, 

demonstrating that IANBD labelled TteSSB2-W55C was co-localizing with the DNA. The highly specific 

binding of TteSSB2 to ssDNA demonstrates that in biofilms of S. acidocaldarius large amounts of ssDNA 

can be detected. In a second experiment a three day old static biofilm of S. acidocaldaris was imaged 

after incubation with DAPI, Texas Red labelled Sac7d-S18C and IANBD labelled TteSSB2-W55C ( Figure 3-

7 B). Both Texas Red labelled Sac7d-S18C and IANBD labelled TteSSB2-W55C specifically stained the 

large aggregates forming towering structures above the surface. Remarkably, although the labelling 

patterns of Texas Red labelled Sac7d-S18C and IANBD labelled TteSSB2-W55C overlapped in many 

positions, several positions were only labelled Texas Red labelled Sac7d-S18C or IANBD labelled 

TteSSB2-W55C demonstrating that three day old static biofilm of S. acidocaldaris contain both ssDNA 

and dsDNA (Figure 3-7 C). It also demonstrates that ssDNA and dsDNA can be detected in biofilms using 

CSLM with fluorescently labelled TteSSB2 and Sac7d. 

3.3 Discussion 

In this study we developed a method to specifically and separately detect ss- and dsDNA using 

fluorescently labeled (thermo)stable ssDNA and dsDNA binding proteins. Both proteins bind to DNA in 

an essentially sequence aspecific manner. The fluorescent detection of the labeled proteins was 

optimized by introducing the fluorescent probes at positions where their fluorescence increases upon 

ssDNA binding. This reduces the signal of the proteins that are not bound to DNA. Detection of ssDNA 

using TteSSB2 of Thermoanaerobacter tengcongensis was highly specific, and ssDNA could be specifically 

detected in biofilms of Sulfolobus acidocadarius. This technique can be applied to various bacteria 

growing at different conditions, since the TteSSB2 is an extremely stable protein, which does not bind to 

the cell surface.  

The Sac7d protein from Sulfolobus acidocadarius bound with slightly higher affinity to dsDNA, but most 

likely will detect both ssDNA and dsDNA, especially since even secreted ssDNA will contain many 

positions where the ssDNA will anneal and form stretches of dsDNA. Indeed the Sac7d specifically 

detected DNA in biofilms of Sulfolobus acidocadarius. 

This technique enables the visualisation of the secretion and uptake of DNA in vivo. The combination of 

the fluorescently labelled ssDNA binding proteins and the remarkable property of our system to 

transport DNA directly into the medium instead of into other cells will enable us to follow this process in 

real time on the level of single molecules. It will be possible to determine the timing and the localisation 

of the secretion process. These experiments can be performed both on planktonic cells as on biofilms. 

We will also use it to detect the fate of the secreted DNA within culture. 
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4.1  Aim of the study 

N. gonorrhoeae is an obligate human pathogen which normally colonizes the genital tract and causes 

the disease gonorrhea. Gonococci are capable to form biofilms during natural cervical infection and both 

over glass and in continuous flow-chamber systems. Many clinical isolates contain a gonoccocal genetic 

island (GGI) which encodes a novel Type IV Secretion System (T4SS). The T4SS of N. gonorrhoeae 

secretes single-stranded DNA (ssDNA) in a contact independent manner directly into the medium. N. 

gonorrhoeae biofilm contains large amounts of extracellular DNA. Like for many well studied bacterial 

biofilms also N.gonorrhoeae biofilm was shown to contain large amounts of DNA which is a major matrix 

component [137]. We suggest that the actively secreted ssDNA could play an important role in 

gonococcal biofilm formation. 

Currently many different methods and stains are available to fluorescently detect nucleic acids. Not a 

single stain or method is known for separate visualization of double- and single-stranded DNA. In this 

study we take advantage of the unique technique we developed (see Chapter 3), which utilizes the 

highly specific DNA binding reaction of SSBs.  

The aim of this study was to study visualize the secreted ssDNA and double-stranded DNA in the biofilms 

and in the planktonic cultures of N. gonorrhoeae.  

4.2 Results 

4.2.1 Exonuclease I inhibits the initial stages of biofilm formation 

DNA is an important structural component of biofilms of many microorganisms. DNA plays an important 

role in the initial attachment [130], but also the amount of DNA within biofilms determines the final 

structure and thickness of the biofilm [130].  Whether this DNA is present as ss- or dsDNA and whether 

other components are bound to this DNA is currently still unknown. Biofilms formed by N. gonorrhoeae 

contain large amounts of DNA [137]. It has been proposed that this DNA is either released via autolysis 

or via membrane blebs and that an endogenous nuclease controls its incorporation into the biofilm. 

Many clinical isolates of N. gonorrhoeae contain a GGI, which encodes a T4SS [38]. N. gonorrhoeae 

strain MS11 was shown to secrete ssDNA via this T4SS [33].  

To study the effect of secreted ssDNA on biofilm formation in N. gonorrhoeae, two approaches were 

taken. In the first approach, the effect of the addition of Exonuclease I, which highly specifically 

degrades ssDNA, on biofilm formation was tested. Therefore, Exonuclease I was over-expressed and 

purified to homogeneity (Figure 4-1 A). As expected, Exonuclease I eluted from the gelfiltration column 
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as a monomer. The specificity of the purified Exonuclease I in the medium used for the biofilm 

experiments was tested in an assay where increasing concentrations of the enzyme were incubated with 

either Cy3 labeled dT90-oligomers (to test for nuclease activity on ssDNA) or a PCR product generated 

with Cy3 labeled primers (to test for nuclease activity on dsDNA) were incubated in the medium used for 

the continuous flow experiments for 1 hour at 37 0C (Figure 4-1 C and D). This demonstated that 

Exonuclease I is highly specific for ssDNA (Figure 4-1).   

In contrast, purified Exonuclease III digested dsDNA efficiently, but also showed significant activity 

against ssDNA in the medium used for the continuous flow experiments, and therefore was not further 

used. Purification and characterization of Exonuclease III are presented in the Figure 4-1 EIII.  

 

Figure 4-1 EIII: Purification and characterization of Exonuclease III 

His-tagged Exonuclease III was purified by Ni-NTA affinity, anion exchange and gel filtration chromatography. (B) 

His-tagged Exonuclease III eluted as a monomer from the SD200 gelfiltration column and was essentially pure as 

assayed by (A) Coomassie staining of an SDS-PAGE of the purified protein. The positions of the various markers for 

both the gelfiltration and the SDS-PAGE are indicated. To test the specificity of the purified ExonucleaseIII, 150 ng 

of a Cy3 labeled dT90 oligonucleotide (C) or 150 ng of a Cy3 labeled PCR product (D) were incubated with increasing 
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concentrations of Exonuclease I for 1 h at 37 °C. The fluorescently labeled DNA was analyzed after separation on a 

7.5 % polyacrylamide gels using a LAS-4000 imager.  

 

After the purification and characterization of Exonuclease I, the initial biofilm formation of N. 

gonorrhoeae strain MS11 was investigated in a continuous flow chamber system. The system was 

perfused at a rate of 0.2 mm s-1 with Graver-Wade medium supplemented with Kellogg’s supplements 

and 0.042% NaHCO3 diluted 1:5 with phosphate buffered saline (PBS) or with the same medium 

containing purified Exonuclease I (Figure 4-2). The quantification of the relative biofilm formation is 

shown in Figure 4-2 B.  

 

Figure 4-1: Purification and characterization of Exonuclease I 

His-tagged Exonuclease I was purified by Ni-NTA affinity, anion exchange and gel filtration chromatography. (B) 

His-tagged Exonuclease I eluted as a monomer from the SD200 gelfiltration column and was essentially pure as 

assayed by (A) Coomassie staining of an SDS-PAGE of the purified protein. The positions of the various markers for 

both the gelfiltration and the SDS-PAGE are indicated. To test the specificity of the purified Exonuclease I, 150 ng 

of a Cy3 labeled dT90 oligonucleotide (C) or 150 ng of a Cy3 labeled PCR product (D) were incubated with increasing 

concentrations of Exonuclease I for 1 h at 37 °C. The fluorescently labeled DNA was analyzed after separation on a 

7.5 % polyacrylamide gels using a LAS-4000 imager.  
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The system was inoculated with an exponentially growing N. gonorrhoeae culture and biofilm 

development was monitored by Confocal Laser Scanning Microscopy (CLSM) after 3 and 6 hrs. Almost no 

attached cells could be detected when Exonuclease I was added (Figure 4-2). This suggested that ssDNA 

is important for initial attachment of N. gonorrhoeae. 

 

Figure 4-2: The effect of Exonuclease I on initial attachment. 

Confocal microscopy of continuous flow chambers inoculated with N. gonorrhoeae strain MS11 imaged 3 (left 

panels) and 6 hrs (right panels) after inoculation. The flow chambers contained either minimal medium (upper 

panels) or minimal medium containing Exonuclease I (lower panels). The enzymes were refreshed every 2 hrs. (A) 

The biofilm was stained with Syto62 and visualized by CLSM. Micrographs represent three-dimensional images. 

The bar is 20 µm in length. (B) Quantification of the amount of biofilm formed in (A). Biofilm formation is depicted 

relative to the amount of biofilm formed by MS11 after 24 hours. 

4.2.2 DNA secretion facilitates biofilm formation 

Since initial attachment of N. gonorrhoeae strain MS11 was influenced by the addition of Exonuclease I, 

and thus most likely by the presence of ssDNA, it was tested whether the ssDNA secreted via the T4SS 

encoded with the GGI facilitates biofilm formation. 

Therefore, biofilm formation of N. gonorrhoeae strain MS11 and an MS11 strain containing a deletion of 

the traB gene (MS11ΔtraB) were compared. The traB gene encodes a component of the T4SS core 

complex spanning the inner and outer membrane and deletion of this gene results in the abolishment of 

DNA secretion [40]. The traB mutation does not affect the growth rate (data not shown). To 

demonstrate that any observed effects were caused by the deletion of the traB gene, a strain was 



Chapter 4   

70 
 

created in which the traB gene was restored (MS11ΔtraB::traB). Since biofilm formation is strongly 

affected by the presence and absence of Type IV pili [182], and the Type IV pili of N. gonorrhoeae can 

undergo both phase and antigenic variation [183], piliation of the three strains was compared by 

comparing colony morphology after growth on plates, by sequencing the pilE gene, and by determining 

the expression levels of PilE by Western blotting of isolated membranes with a PilE antibody.  No 

differences between the three mutants were observed in these three aspects (Figure 4-3). 

 

Figure 4-3: Western Blott Analysis on isolated membranes with PilE-AB. 

1 = ND500 (negative control, has different pilE), 2 = MS11, 3 = MS11ΔTraB, 4 = MS11ΔTraB:TraB, M = 

Marker. 

Biofilms of the three strains were grown for 3 days in a continuous flow chamber system. After 48 and 

72 hrs, most of the surface was covered by strain MS11 and the formation of distinct three-dimensional 

structures was observed (Figure 4-4 A). The MS11ΔtraB strain showed strongly reduced biofilm 

formation after 48 and 72 hrs. Also the formation of the distinct three-dimensional structures was 

strongly reduced. The MS11ΔtraB::traB complementation strain showed similar biofilm formation as 

was observed for strain MS11 after 48 and 72 hrs, with coverage of most of the surface and formation of 

distinct three-dimensional structures (Figure 4-4). The quantification of biofilm formation is shown in 

Figure 4-4 B. Increasing the flow rate two-fold showed that the biofilm of the MS11ΔtraB strain could be 

easily washed away and was less stable than the biofilms of the MS11 and the MS11ΔtraB::traB strains. 

This demonstrated that the deletion of the traB gene strongly influences biofilm formation. 

The observation that the traB deletion affects biofilm formation suggests that either the presence of the 

T4SS or a substrate secreted by the T4SS facilitates biofilm formation and contributes to the stabilization 

of the biofilm. Since ssDNA is secreted via the T4SS [33], and biofilm formation was strongly influenced 
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by the presence of Exonuclease I, we propose that ssDNA secreted via the T4SS plays an important role 

in biofilm development and stabilization. 

 

Figure 4-4: Deletion of the traB gene results in a strong decrease of biofilm formation.  

Confocal microscopy of continuous flow chambers inoculated with N. gonorrhoeae strain MS11, 

MS11∆traB and MS11∆traB::traB imaged 24, 48 and 72 hrs after inoculation. (A) The biofilm was stained 

with Syto62 and visualized by CLSM. Micrographs represent three-dimensional projections. The bar is 20 

µm in length. (B) Quantification of the amount of biofilm formed in (A). Biofilm formation is depicted 

relative to the amount of biofilm formed by MS11 after 24 hours. 

 

4.2.3 Treatment of biofilms with Exonuclease I only affects strains that secrete ssDNA 

To test the effect of the specific degradation of ssDNA, 24 hrs old biofilms of MS11 and the non-

secreting mutant MS11∆traB were perfused for 1 hour with medium containing Exonuclease I (Figure 4-

5 A). The quantification of biofilm formation is shown in Fig. 4-5 B.  Treatment of biofilms formed by 

strain MS11 demonstrated that single cells attached to the glass surface were washed away, but that 

the distinct three-dimensional structures were not affected by treatment with Exonuclease I. The 

observation that attached cells of the MS11∆traB strain were not affected by treatment with 

Exonuclease I suggested that ssDNA plays an important role in the initial attachment of the single cells 

to the surface, but that this putative role is taken over by other components at later stages of biofilm 
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formation. Indeed, DNA has previously been proposed to function as a cell-to-surface and/or cell-to-cell 

adhesin during the initial phase of biofilm formation[184]. 

 

Figure 4-5: The effect of Exonuclease I on 24 hrs old biofilms. 

Confocal microscopy of continuous flow chambers inoculated with N. gonorrhoeae strain MS11 and MS11∆traB 

imaged 24 hrs after inoculation either after 1 hour perfusion with medium, or 1 hour perfusion with medium 

containing Exonuclease I. (A) Biofilm was stained with Syto62 and visualized by CLSM. Micrographs represent 

three-dimensional images. The bar is 20 µm in length. (B) Quantification of the amount of biofilm formed in (A). 

Biofilm formation is depicted relative to the amount of biofilm formed by MS11 after 24 hours. 

4.2.4 Visualization of single-stranded DNA 

Since our experiments provided strong evidence for a role of ssDNA in biofilm formation of N. 

gonorrhoeae strains, we developed a technique to specifically visualize ssDNA. Currently, many different 

methods and stains are available to fluorescently detect DNA, such as Ethidium bromide, Propidium 

iodide, DDAO (7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one), SYTO 60, SYBR Green, OliGreen 

and many others. To our knowledge, all currently available stains detect however both ssDNA and 

dsDNA. ssDNA binding proteins (SSBs) bind to ssDNA with high specificity but without clear sequence 

specificity, and bind to dsDNA only with much lower affinity. We used fluorescently labelled TteSSB2 of 

T. tengcongensis to specifically detect ssDNA. This protein binds specifically to ssDNA with high affinity 

and remained fully active even after 6 hrs incubation at 100°C [185]. As a control for dsDNA binding, also 

the thermostable Sac7d protein from S.s acidocadarius was overproduced and purified to homogeneity. 

In the medium used for the continuous flow experiments, Sac7d bound only slightly better to dsDNA 
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than to ssDNA and therefore could only be used to image both ssDNA and dsDNA. A detailed description 

of the purification, characterization, DNA binding specificity and optimization of fluorescent labelling of 

TteSSB2 and Sac7d is provided in the Chapter 3. 

4.2.5 The majority of eDNA in biofilms of N. gonorrhoeae MS11 is double-stranded 

Since ssDNA might play an important role in the initial attachment of single cells to the surface, we tried 

to visualize ssDNA and dsDNA in a 10 hrs old biofilm of MS11 (Figure 4-6). Specifically, 10 hrs old biofilms 

were used, since at that time point the formation of the distinct three-dimensional structures has 

started, but also single attached cells were still observed. In 10 hrs old biofilms, the single attached cells 

were still sensitive to Exonuclease I. To enable comparison of the amounts of ssDNA and total external 

DNA, biofilms were incubated with Texas Red-labelled Sac7d-S18C or Texas Red-labelled TteSSB2-W55C 

(Fig. 4-6). Both proteins showed approximately equal fluorescence intensity. Interestingly, dsDNA, but 

not ssDNA could be detected in the 10 hrs old biofilms of MS11. The dsDNA co-localized with the distinct 

three-dimensional structures. Thus, the amounts of ssDNA which can be detected are very small in 

comparison to the dsDNA present in the biofilm. Since we were not able to detect ssDNA under the 

continuous flow conditions, we attempted to visualize ssDNA in planktonic cultures. Texas Red-labelled 

Sac7d-S18C or Texas Red-labelled TteSSB2-W55C were added to planktonic cultures (Figure 4-7). Again, 

under these conditions, external DNA could be easily detected with Sac7d-S18C, but no ssDNA was 

detected with TteSSB2-W55C. When labelled Sac7d-S18C was used, closer inspection revealed that two 

different intensities of fluorescence were associated with different cells, most likely indicating lysed and 

non-lysed cells. To confirm that Texas Red-labelled TteSSB2-W55C could in fact be used to detect ssDNA, 

M13 derived ssDNA was added to the culture and the culture was imaged again. Indeed ssDNA attached 

to the cells could now be detected (Figure 4-7). We therefore concluded that, compared to the amounts 

of external dsDNA, only minor amounts of ssDNA were present in cultures of N. gonorrhoeae. These 

minor amounts, however, stimulated the initial attachment of the cells.  
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Figure 4-6: Detection of ssDNA and dsDNA in 10 hrs old continuous flow biofilms of N. gonorrhoeae. 

Confocal microscopy of continuous flow chambers inoculated with N. gonorrhoeae strain MS11 imaged 10 hrs 

after inoculation. The biofilm was stained with Syto62 and IANBD- labelled TteSSB2-W55C (left side) and Syto62 

and IANBD-labelled Sac7d-S18C (right side) and visualized by CLSM. Micrographs represent three-dimensional 

projections. The bar is 20 µm in length. 
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Figure 4-7: Detection of ssDNA and dsDNA in an exponentially growing culture of N. gonorrhoeae. 

N. gonorrhoeae MS11 was grown exponentially in minimal medium. The cells were incubated with IANBD-labelled 

Sac7d-S18C (upper row) or IANBD-labelled TteSSB2-W55C (second row), or was first incubated with ssDNA and 

then incubated with IANBD- labelled TteSSB2-W55C (third row). The cells were visualized by DIC (left side) or CLSM 

(right side). Micrographs represent three-dimensional projections. The bar is 5 µm in length. 
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4.3 Discussion 

Since the study of Whitchurch et al. [130] eDNA is known as one of the major structural components of 

many bacterial biofilms [129,186,187]. The presence of eDNA was demonstrated using different 

fluorescent probes that bound to DNA and the importance of eDNA was demonstrated mainly by 

assessing the effect of DNase I treatment. This often results in release of biomass from grown biofilms, 

and significantly inhibited biofilm formation [130], [136], [188]. None of the fluorescent probes used in 

these studies like e.g. propidium iodide, DDAO [138], SYTOX Orange [188], ethidium bromide [138], and 

PicoGreen [189], can however discriminate between ssDNA and dsDNA. Also DNase I treatment 

degrades both ssDNA and dsDNA. Thus, it is currently unknown whether different forms of DNA, such as 

e.g. ssDNA or dsDNA or specific components bound to the eDNA play a specific and/or different role in 

biofilm. The amounts of the different forms of DNA have also not been assessed before.  

eDNA was also shown to play an important role in biofilm formation in N. gonorrhoeae [137]. Cultures of 

N. gonorrhoeae strain MS11 were found to contain ssDNA, which is secreted directly into the medium 

via the T4SS encoded within the GGI [33]. The biofilm formation of N. gonorrhoeae has previously not 

only been studied in MS11, a strain that contains the GGI, but also in N. gonorrhoeae strains 1291 and 

FA1090 which do not contain a GGI. All three of these strains were able to form biofilms [150]. Biofilm 

formation of N. gonorrhoeae is affected by many different factors, like the ability to release blebs [149], 

the expression of Nuc, the extracellular thermonuclease [137], and the presence of Type IV pili. Many 

gonococcal genes, like the PilE gene undergo rapid variation [183], which complicates a direct 

comparison of different isolates. Therefore, we have studied the effects of ssDNA secretion by 

comparing biofilm formation in MS11 with biofilm formation in a mutant and a complementation 

mutant directly derived from MS11.  

We show in this study that actively secreted ssDNA facilitates biofilm formation of N. gonorrhoeae. Our 

data suggest that ssDNA plays an important role in the initial attachment of single cells to the surface 

and that this role is taken over by other components at later stages of biofilm formation. The ΔtraB 

mutant that does not secrete ssDNA showed strongly reduced biofilm formation. The formation of the 

distinct three-dimensional structures observed in the wild type (WT) and complementation mutant was 

strongly reduced in the ΔtraB mutant, and the stability of the formed biofilm was also strongly reduced. 

This is the first time that an effect of ssDNA on biofilm formation is demonstrated.  
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Lappann et al. demonstrated that in N. meningitidis the capability to form biofilms differs between 

different lineages [136]. In the most prevalent lineages, biofilm formation is dependent on eDNA. These 

lineages form stable biofilms and show a very stable interaction with the host. Several less prevalent 

lineages do not use eDNA for biofilm formation, and form much less stable biofilms. It was proposed 

that the lineages that do not use eDNA for biofilm formation and show poor colonization properties 

compensate for their poor colonization properties by higher transmission rates. Possibly, the secretion 

of ssDNA via the T4SS modulates the colonization and transmission rates of N. gonorrhoeae strains.  

In this study we developed a method to specifically detect ss- and dsDNA, using fluorescently labelled 

thermostable ssDNA and dsDNA binding proteins. Both proteins bind to DNA in an essentially sequence 

unspecific manner. The fluorescent detection of the labelled proteins was optimized by introducing the 

fluorescent probes at positions where their fluorescence increases upon ssDNA binding. This reduces 

the signal of the proteins that are not bound to DNA. Detection of ssDNA using TteSSB2 of 

Thermoanaerobacter tengcongensis was highly specific, and ssDNA could be specifically detected in 

biofilms of S. acidocaldarius. TteSSB2 could also be used to detect ssDNA bound to N. gonorrhoeae 

strains, when ssDNA had been added to the culture. The Sac7d protein from S. acidocaldarius bound to 

dsDNA with higher affinity, but most likely will detect both ssDNA and dsDNA, especially since even 

secreted ssDNA will contain many positions where the ssDNA will anneal and form stretches of dsDNA. 

Indeed the Sac7d specifically detected DNA in biofilms of S. acidocaldarius and of N. gonorrhoeae.  

 

In this study we attempted to detect both ss- and dsDNA within biofilms of N. gonorrhoeae. During the 

initial phase in which cells attach to the surface, and where experiments with Exonuclease I 

demonstrated that ssDNA plays an important role, neither ssDNA nor dsDNA could be detected. Most 

likely the amounts of ss- and dsDNA are too low for detection at these stages using the fluorescently 

labelled proteins. At later stages, large amounts of dsDNA could be easily detected. DNA has been found 

in different patterns for different organisms. For example, the eDNA of Pseudomonas aeruginosa is 

present in the micro-colonies and organized as a grid-like structure on the substratum [138], whereas 

the eDNA in Bacillus cereus biofilms is evenly distributed over the surface, and in biofilms of 

Haemophilus influenzae and the gamma proteobacterium F8 eDNA occurs as filamentous strands 

[190,191]. In N. gonorrhoeae the DNA was primary localized inside the mature mushrooms-like 

structures. The localization of the DNA using the fluorescently labelled Sac7d resembled the localization 

patterns found for N. gonorrhoeae using other DNA stains. It was remarkable that no ssDNA could be 

detected in the biofilms of gonococci. This suggests that either only low amounts of ssDNA are present 
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at these stages compared to dsDNA, or that the ssDNA is shielded from detection by the TteSSB2 

protein. 

In conclusion, the data presented here show that ssDNA secreted via the T4SS with the GGI facilitates 

initial attachment of N. gonorrhoeae to surfaces. This ssDNA is present only in low amounts. In the 

mature biofilm, much larger amounts of eDNA are found. This DNA is mostly double stranded and does 

not play an important structural role within the biofilm.  
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Chapter 5 

Materials and Methods 

5.1 Reagents and equipment 

5.1.1 Reagents 

All reagents used in this work were purchased from Difco (Heidelberg), Fermentas (Sankt-Leon Rot), 

Merck (Darmstadt), Carl Roth (Karlsruhe) and Sigma-Aldrich (Steinheim), if not indicated otherwise. 

5.1.2 Enzymes and Kits 

Table 2: Enzymes and Kits used in this study 

Enzyme or Kit Manufacturer 

DnaseI Roche, Mannheim 

Ribonuclease A Sigma Alrich, Steinheim 

Phusion Hot Start High-Fidelity DNA Polymerase Finnzymes, Hess. Oldendorf 

2x DyNAzyme™ II Polymerase Master Mix Finnzymes, Hess. Oldendorf 

T4-Ligase New England Biolabs, Frankfurt a. M. 

Restriction enzymes New England Biolabs, Frankfurt a. M. 

CloneJET™ PCR Cloning Kit Fermentas, St. Leon-Rot 

2x Maxima™ SYBR Green/ROX qPCR Master Mix Fermentas, St. Leon-Rot 

GenElute™ PCR Clean-Up Kit Sigma Aldrich, Steinheim 

Zyppy™ Plasmid Miniprep Kit Zymo Research, Freiburg 

Zymoclean™ Gel DNA Recovery Kit Zymo Research, Freiburg 

ZR Genomic DNA II Kit Zymo Research, Freiburg 

FireSilver Staining Kit Proteom Factory, Berlin 

Dig High Prime DNA Labeling and Detection Kit  Roche, Mannheim 

 

 

 

 

 



Chapter 5   

80 
 

Table 3: DNA and protein ladders used in this study 

Ladder Manufacturer 

DNA ladder: Fermentas GmbH, St. Leon-Rot 

GeneRuler™ 1kb Plus DNA Ladder    

Protein ladder: Fermentas GmbH, St. Leon-Rot 

PageRuler™ Protein Ladder 

(10kDa to 200kDa) 

  

 

Table 4: Equipment used in this study 

Application  Device  Manufacturer  

Cell disruption  Branson sonifier  Heinemann (Schwäbisch 

Gmünd)  

Centrifugation  RC 5B plus, Ultra Pro 80, 

Multifuge 1 S-R, Biofuge 

frasco, Biofuge pico  

Sorvall/Thermo Scientific 

(Dreieich), Heraeus/Thermo 

Scientific (Dreieich),  

PCR  MasteCycler personal  

MasteCycler epgradient  

Eppendorf (Hamburg)  

Electroporation  GenePulser Xcell  Bio-Rad (Munchen)  

Protein electrophoresis  Mini-PROTEAN® 3 cell  Bio-Rad (Munchen)  

Western blotting  TE77 semi-dry transfer unit  Amersham Biosciences 

(Munchen)  

Chemiluminescence 

detection  

Fuji Photo Film FPM 100A  

Luminescent image analyzer 

LAS-4000  

Fujifilm (Düsseldorf)  

Immunofluorescence 

microscopy  

Diagnostic microscope slides 

12 well  

Thermo Scientific (Dreieich)  
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Electron microscopy  Carbon-film covered grids  PLANO (Wetzlar)  

Imaging  Leica DM6000B and DM IRE2 

light microscopes  

Nikon Eclipse TE 2000-E light 

microscope  

 

 

Determination of optical 

densities  

Ultrospec 2100 pro 

spectrophotometer  

Amersham Biosciences 

(Munchen) 

 

Determination of nucleic 

acids absorption  

Nanodrop ND-1000 UV-Vis 

spectrophotometer  

Nanodrop (Wilmington)  

 

5.2 Microbiological methods 

5.2.1 Cultivation of bacteria  

5.2.1.1 Cultivation of E.coli 

E. coli strains (see table 1) were used for cloning and overexpression and were grown in Luria-Bertani 

(LB) medium at 37C with the appropriate antibiotics; ampicillin (100 μg/ml), erythromycin (500 µg/ml) 

or chloramphenicol (34 μg/ml). 

5.2.1.2 Cultivation of N. gonorrhoeae 

N. gonorrhoeae strains were plated from glycerol stocks on GC agar (BD Difco, Heidelberg, Germany) 

containing Kellogg’s supplements[192] and grown overnight under 5% CO2 at 37 °C. When necessary, 

chloramphenicol and/or erythromycin were added at the final concentration 10 μg/ml 

5.2.1.3 Cultivation of Sulfolobus ssp. 

Sulfolobus strains were grown in Brock medium at 76 °C, with pH adjusted to 3 using sulphuric acid, and 

supplemented with 0.1% (w/v) tryptone [193].  
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5.2.2 Strains used in this study 

Table 5: E.coli strains used in this study 

Strain Description Source or reference 

DH5α F- endA1 glnV44 thi-1 recA1 

relA1 gyrA96 deoR nupG 

Φ80dlacZΔM15 Δ(lacZYA-

argF)U169, hsdR17(rK- mK+), 

λ– 

Invitrogen 

Tuner (DE3) F– ompT hsdSB(rB– mB–) gal 

dcm lacY1 (DE3) 

Novagen 

C43 (DE3) F- ompT hsdSB (rB
- mB

-) gal 

dcm (DE3) 

[194] 

RDP268 F- thr-J leuB6 proA2 his4 

argE3 thi-J ara-14 lacYJ galK2 

xyl-5 mtl-l rpsL31 tsx-33 

supE4422 ssb:Km, λ– 

[162] 

 

Table 6: N. gonorrhoeae strains used in this study 

Strain Description Source or reference 

MS11 Neisseria gonorrhoeae strain  [22] 

ND500 MS11AΔGGI [33] 

SJ001 MS11 strain with pilQ truncation [195] 

SJ023 MS11 strain transformed with 

plasmid pSJ023. N-terminal one 

strep tagged SSB+OE behind a lac 

promoter inserted between lctP 

and aspC on the chromosome, 

(CmR) 

This study 

SJ038 MS11 strain transformed with 

plasmid pSJ038; SSB+OE behind a 

This study 
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lac promoter inserted between 

lctP and aspC on the 

chromosome, (CmR) 

EP005 MS11ΔTraB, (ErmR) [196] 

EP006 MS11 ΔrecA, (ErmR) [196] 

EP030 ND500 ΔrecA, (ErmR) [196] 

EP015 MS11 strain transformed with 

plasmid pKH35 vector between 

lctP and aspC region on the 

chromosome, (CmR) 

[196] 

EP029 ND500 strain transformed with 

plasmid pKH35 vector between 

lctP and aspC region on the 

chromosome, (CmR) 

[196] 

KS001 MS11ΔTraB:TraB This study 

 

Table 7: Sulfolobus spp used in this study 

Strain Description Reference or source 

S.solfataricus P2 (DSM1617)  [197] 

S.acidocaldarius (DSM639)  [197] 

S.tokodaii (DSM16993)  [197] 
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5.3 Molecular biological methods 

5.3.1 Polymerase Chain Reaction (PCR) 

Amplification of DNA sequences for preparative purposes was done by using Phusion Hot Start High-

Fidelity DNA Polymerase (Finnzymes, Hess. Oldendorf). 

Table 8: Composition of PCR reaction mixture and thermal cycling protocol used for standard PCR 

reactions 

50 µl PCR reaction mixture    Thermal cycling protocol 

35,5 µl sterile H20dd Initial denaturation  98°C 30 sec 1x 

10 µl 5x HF-Phusion buffer Denaturation  98°C 10 sec   

1 µl dNTPs Annealing  50-65 °C* 20 sec 30 cycles 

1 µl Primer 1 (10 µM) Extension 72°C (30sec/kb)   

1 µl Primer 2 (10µM)  Final extension 72°C 10 min 1x 

1 µl Template DNA   

 

  

0,5 µl Phusion polymerase       

*annealing temperature was chosen between 50 and 65°C, depending on the melting temperature of 

the primer pair 

5.3.2 Primers and plasmids used in this study  

Table 9: Primers used in this study 

Primer 5-3 Sequence Used for 

400F-GGI CACACCTCGAGTTACAATGGGATGTCATCATCAGC NgSsbB 
amplification 

401R-GGI CTCTCCATATGCACCATCACCATCACCATCACCATCACCACATGTCAGTTCAACTTTTTGTTCG NgSsbB 
amplification; 
introduces 10 x 
His and NdeI site 

402F-GGI GGGCAGCATCACGATTCCAGTACTCGCTAGAAATCCACTCC exchange 
Cysteine 59 to 
Serine of NgSsbB 

403R-GGI TGGAATCGTGATGCTGCCCATCTCCATAAAATATTACAGG exchange 
Cysteine 59 to 
Serine of NgSsbB 

404F-GGI GCTCACGTTTAGGACGCAACTTGATAGCTTCTACAC exchange Serine 
128 to Cysteine 
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of NgSsbB 

405F-GGI GCGTCCTAAACGTGAGCAGTGTCAGGACAATAATC exchange Serine 
128 to Cysteine 
of NgSsbB 

406R-GGI ACCCGAGGTCTCTGCGCCATGTCAGTTCAACTTTTTGTTCG NgSsbB 
amplification; 
introduces BsaI 
site for cloning 
in pPR-IBA102  

407F-GGI AGGGAAGGTCTCGTATCATTACAATGGGATGTCATCATCAGC NgSsbB 
amplification; 
introduces BsaI 
site for cloning 
in pPR-IBA102  

423F-GGI AGGCCACTCGAGTTACAATGGGATGTCATCATCAGC amplification of 
NgSsbBWT-tag-
less, introduces 
XhoI site, 
forward 

424R-GGI AGGCCACATATGTCAGTTCAACTTTTTGTTCG amplification of 
NgSsbBWT-tag-
less, introduces 
NdeI site, 
reverse 

427R-GGI GTACGATTGAGGCTTCACAGTTTTTAGGGCTAGCTACAGGACGC exchange 
Asparagin 26 to 
Cysteine of 
NgSsbB 

428F-GGI TGAAGCCTCAATCGTACTGAATTTTTCAGTTGCCTCACC exchange 
Asparagine 26 to 
Cysteine of 
NgSsbB 

429R-GGI AAGATGTATTCATTGTTTAAGATCCGGCTGCTAACAAAGCC amplification of 
Trun-NgSsbB, 
reverse 

430F-GGI TTAAACAATGAATACATCTTGAACACG amplification of 
Trun-NgSsbB, 
forward 

611 AAGTGAACCACCGGATGACAGCTCGGGGTAATCAG exchange 
Glycine 24 to 
Cysteine in 
TteSSB2 

612 CATCCGGTGGTTCACTTTTCTCTGGCCGTGGATCG exchange 
Glycine 24 to 
Cysteine in 
TteSSB2 

613 TTCCAGGATTTCTGCCAGGCGATTACAGGCAACCACCGGAATG exchange 
Tryptophan 55 
to Cysteine in 
TteSSB2 

614 CTGGCAGAAATCCTGGAACAGTATGCGGTGAAAGGC exchange 
Tryptophan 55 
to Cysteine in 
TteSSB2 

615 TCCGTGTAGCGACGGGTACACAGACGACCAACCACGG exchange 
Glutamine 79 to 
Cysteine in 
TteSSB2 

616 CCCGTCGCTACACGGATGGCAGTGGTAAAAACGTTCG exchange 
Glutamine 79 to 
Cysteine in 
TteSSB2 

617 TGCCATCCGTGTAGCGACAGGTCTGCAGACGACCAAC exchange 
Arginine 81 to 
Cysteine in 
TteSSB2 
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618 CGCTACACGGATGGCAGTGGTAAAAACGTTCGCATTCTGG exchange 
Arginine 81 to 
Cysteine in 
TteSSB2 

678 CTCTCCATATGCACCATCACCATCACCATCACCATCACCACCGAATGGAAGAAAAAGTAGGTAATC SulSSB1 

679 CACACCTCGAGTCACTCCTCTTCACCTTCTTCG SulSSB2 

680 CTTCGTTTTCTTGTCTCCTACCACATCTTCTTCCATACC SulSSB3 

681 GGAGACAAGAAAACGAAGAAGGTGAAGAGGAGTGAC SulSSB4 

985 CTCTCCATATGCACCATCACCATCACCATCACCATCACCACATGATGAATGACGGTAAGC ExoI 
amplification 

986 CACACCTCGAGTTAGACAATCTCTTGCGCGTAC ExoI 
amplification 

1016 CTCTCCATATGCACCATCACCATCACCATCACCATCACCACATGAAATTTGTCTCTTTTAATATC ExoIII from BL21 
for 

1017 GTATCTCGAGTTAGCGGCGGAAGGTCG ExoIII from BL21 
rev 

1040 AGACACTTGTAAGATAAAGAAGGTTTGGAGAG Ser18-Cys 
mutagenesis for 
Sac7d 

1041 TTATCTTACAAGTGTCTACTTCTTTCTCTTCACCC Ser18-Cys 
mutagenesis for 
Sac7d 

1042 ACGCACATATGGTGAAGGTAAAGTTC Amplification of 
Sac7d 

1043 AGCCACTCGAGTCAGTGATGGTGATGGTGATGGTGATGGTGATGTTTCTTCTCTCTTTCTGC Amplification of 
Sac7d 

1044 CTTTTGGAGCATCACACTCGCTTACAGCTCCTCTACC Lys48-Cys 
mutagenesis for 
Sac7d 

1045 AAGCGAGTGTGATGCTCCAAAAGAATTATTAGACATG Lys48-Cys 
mutagenesis for 
Sac7d 

pHJ002_For 5’-GCGGTAGGTCTCAGCGCCATGTCAGTTCAACTTTTTGTTCGTG-3’  

pHJ002_Rev 5’-CGCGGTAGGTCTCATATCACAATGGGATGTCATCATCAGCGT-3’  

pSJ038_For 5’- GCGGCCATATGATATGTCAGTTCAACTTTTTGTTCGTGG-3’  

pSJ038_Rev 5’- GCGCCTCGAGCGTGGCCATATATTTACAATGGG-3’  

ssb-Hind 5’-GCTAAGCTTTCAGCCCATAATGCAGCAAG-3’  

ssb-Xho 5’-ACTCGAGATGACTGTCCGTGGGCATTT-3’  

ForwardDus CCGAAGCTTGAGCTTGCCGTCTGAAATGG  

ReverseDus TATCGAATTCCTGCAGCCCGGGGGATCCAC  

ForwardErmC TACTGCCGGCCGCTCTAGAACTAGTG  

ReverseErmC TCGGAATTCGCTGCATGCCGTCTGAAACC  

GGI-89F CGCGAATTCTCAGAACGCGCTTACATCAG  

GGI-90R CGCGAGCTCCAGTACGACATCGACTTGAC  

GGI-87F GCGGAAGCTTGGAGGTTGAGATGAGGGTGAAAG  

GGI-88R CTGCGGTACCGATACCGCTAATTGCAGGCG  
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Table 10: Plasmids used in chapter 2 

Plasmids Description References 

pET-20b(+) Cloning/expression vector, 

(AmpR) 

Novagen 

pPR-IBA-102 N-terminal OneStrep vector pPR-

IBA-102(AmpR) 

IBA GmbH 

pIDN3 IDM vector (ErmR) [198] 

pKH35 Complementation vector (CmR), 

6.5kb 

[33] 

pKH37 Complementation vector (CmR), 

6.5kb 

[199] 

pMV009 SsbB gene cloned in the pET-

20b(+) vector. PCR product of 

the full length ssbB gene created 

with primers 423F-GGI and 

424R-GGI, (Amp) 

This study 

pHJ002 ssb gene with N-terminus 

OneSTrEP tag cloned in the pBR-

IBA102 vector. PCR product of 

the full length ssb gene created 

with primers pHJ002_For and 

pHJ002_Rev using MS11A 

genomic DNA as template and 

cloned in the BsaI site of pBR-

IBA102. 

This study 

pSJ023 N-terminal one strep tagged ssb 

gene cloned in pKH37 vector. 

ssb gene cloned from pHJ002 in 

the XbaI and HindIII sites of 

pKH37. 

This study 

pSJ038 ssb gene cloned in pKH37 This study 
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vector. PCR product of the full 

length ssb gene created with 

primers pSJ038_For and 

pSJ038_Rev using MS11A 

genomic DNA as template and 

cloned in the XhoI and NdeI sites 

of pKH37. 

pKH113 ssb gene cloned in pIDN3 vector. 

PCR product of the full length 

ssb gene created with primers 

ssb-Hind and ssb-Xho using 

MS11A genomic DNA as 

template and cloned in the 

HindIII and XhoI sites of pIDN3. 

 

pKH114 ermC and ssb gene cloned from 

pKH113 in pRPZ146 using PstI 

and SphI; replacing the E. coli 

ssb and tet from pRPZ146.  

 

 

Table 11: Plasmids used in chapter 3 

Plasmids Description References 

pMV001 N-terminal fusion of 10-His to ssb gene 

from S. solfataricus cloned in the pET-

20b(+) vector, PCR was performed on 

gDNA of S. solfataricus using primers 

678 and 678 and cloned in in the NdeI 

and XhoI sites of pET-20b(+), (Amp) 

This study 

pMV002 SSB2-Cys from S. solfataricus cloned in 

the pET-20b(+) vector, Mutagenesis 

PCR was performed on pMV001 using 

primers 680 and 681,  (Amp) 

This study 
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pMV003 N-terminal fusion of 10-His to ssbB 

gene cloned in the pET-20b(+) vector.  

PCR product of the full length ssbB 

gene created with primers 401R-GGI 

and 400F-GGI on MS11A genomic DNA 

cloned in the NdeI and XhoI sites of 

pET-20b(+), (Amp) 

This study 

pMV010 N-10xHis-ssbBD26C from N. 

gonorrhoeae cloned in the pET-20b(+) 

vector, Mutagenesis PCR was 

performed on pMV003 using primers 

427R-GGI and428F-GGI, (Amp) 

This study 

pMV011 TteSSB2 from T. thencongensis cloned 

in the pET-20b(+) vector,  

the NdeI/XhoI fragment of pMV002 

containing the ttessb2 gene was cloned 

in the NdeI and XhoI sites of pET-

20b(+), (Amp) 

This study 

pMV012 TteSSB2G24C from T. thencongensis 

cloned in the pET-20b(+) vector, 

Mutagenesis PCR was performed on 

pMV011 using primers 611 and 612,  

(Amp) 

This study 

pMV013 TteSSB2W55C from T. thencongensis 

cloned in the pET-20b(+) vector, 

Mutagenesis PCR was performed on 

pMV011 using primers 613 and 614, 

(Amp) 

This study 

pMV014 TteSSB2Q79C from T. thencongensis 

cloned in the pET-20b(+) vector, 

Mutagenesis PCR was performed on 

pMV011 using primers 615 and 616, 

This study 
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(Amp) 

pMV015 TteSSB2W55C from T. thencongensis 

cloned in the pET-20b(+) vector. 

Mutagenesis PCR was performed on 

pMV011 using primers 617 and 618, 

(Amp) 

This study 

pMV023 Overexpression of His10 –tagged Sac7d 

from S.acidocaldarius 

PCR product of the sac7d gene created 

with primers 1042 and 1043 on 

genomic DNA of S.acidocaldarius 

cloned in the NdeI and XhoI sites of 

pET-20b(+), (Amp) 

This study 

pMV024 Overexpression of His10-Sac7dSer18Cys 

from S. acidocaldarius. 

Mutagenesis PCR was performed on 

pMV023 using primers 1040 and 1041, 

(Amp) 

This study 

pMV025 Sac7dL48C from S. acidocadarius 

cloned in the pET-20b(+) vector, 

Overexpression of His10-Sac7dLys48Cys 

from S.acidocaldarius. 

Mutagenesis PCR was performed on 

pMV023 using primers 1044 and 1045. 

Amp 

This study 

 

Table 12: Plasmids used for chapter 4 

Plasmids Description References 

pET-20b(+) Cloning/expression vector, 

(AmpR) 

Novagen 

pSH001 Cloning vector, (ErmR) [196] 
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pIND1 IDM vector (ErmR) [198] 

pEP015_2 traB replacement [196] 

pEP015_1 traB replacement [196] 

pMV019 Overexpression of His10-

tagged Exonuclease I.  

PCR product of the full 

length sbcB gene of E.coli  

created with primers 986 

and 985 on BL21 genomic 

DNA cloned in the NdeI and 

XhoI sites of pET-20b(+), 

(Amp) 

This study 

pMV020 ExonucleaseIII 

overexpression 

N-terminal fusion of 10-His 

to xthA gene from E. coli 

cloned in the pET-20b(+) 

vector, PCR product of full 

length xthA gene of E.coli 

creared with primers 1016 

and 1017 on BL21 gDNA 

cloned in the NdeI and XhoI 

sites of pET-20b(+), (Amp)  

 

This study 

pMV023 Overexpression of His10 –

tagged Sac7d from 

S.acidocaldarius 

PCR product of the sac7d 

gene created with primers 

1042 and 1043 on genomic 

DNA of S.acidocaldarius 

cloned in the NdeI and XhoI 

This study 
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sites of pET-20b(+). 

pMV024 Overexpression of His10-

Sac7dSer18Cys from S. 

acidocaldarius. 

Mutagenesis PCR was 

performed on pMV023 using 

primers 1040 and 1041, 

(Amp) 

This study 

pMV025 Overexpression of His10-

Sac7dLys48Cys from 

S.acidocaldarius. 

Circular PCR was performed 

on pMV023 using primers 

1044 and 1045, (Amp) 

This study 

pMV022 TteSSB2 in pUC57 GenScript 

 

5.3.3 Colony lysis for colony PCR 

The colony PCR method was performed to screen recombinant clones for the presence of the correct 

insert. To perform a PCR on a lyzed colony, the DyNAzym II Polymerase Master Mix was used. Therefore 

single colonies were picked with a sterile pipette tip and transferred to a tube containing 25 µl lysis 

buffer (1% Triton X-100, 20 mM Tris-HCl, 2 mM EDTA (pH 8.0)). After that the samples were heat-

denatured at 95°C for 20 min. 2 µl of the cell lysates were directly used as DNA templates for PCR. 

5.3.4 Agarose gel electrophoresis 

In order to analyze PCR products, plasmids and other DNA fragments, they were separated according to 

their size via agarose gel electrophoresis. Therefore, samples were mixed with 6x loading dye (50% 

sucrose solution; 0,1% bromphenol blue) before loading on a 1% (w/v) agarose gel containing 1 µg/ml 

ethidium bromide. 1xSBA-buffer (Table 13) was used as gel and electrophoresis buffer. Voltage and 

running time were adjusted according to the demanded separation characteristics. GeneRuler 1kb Plus 

DNA Ladder (Fermentas, St. Leon Roth) was used as molecular size marker and DNA fragments were 

visualized by illuminating UV-light (wavelength 365 nm), photographed by the Bio-Doc Imaging System 

and printed by the Mitsubishi Electronic P93 printer. To isolate a DNA fragment from the agarose gel, 
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the piece with the desired band was cut by a lancet on a UV-table and was purified using the Zymoclean 

Gel DNA Recovery Kit (Zymo Research, Freiburg). 

Table 13: Composition of 20x SBA buffer 

20x SBA buffer (pH 8,5) 200 mM NaOH 

 

40 mM EDTA (pH 8,0) 

 

Adjust with boric acid to pH 8,5 

 

5.3.5 DNA restriction 

To digest DNA fragments, restriction enzymes from New England Biolabs (Frankfurt a.M.) were used. 

Buffer and incubation temperature were chosen according to the manufacturers recommendations. To 

prepare samples for preparative purposes, a total volume of 50 µl was used and incubated over night. 

For analytical purposes, 10 µl reactions were prepared and incubated for 1 h. The volume of the 

restriction enzyme was about 0,1% of the total volume. Digested products were purified with GenElute 

PCR Clean-Up Kit (Sigma Aldrich, Steinheim). 

5.3.6 Ligation 

In order to ligate two DNA fragments, which were treated before with the same restriction enzyme, T4-

ligase (New England biolabs, Frankfurt a.M.) was used. This enzyme catalyzes the formation of 

phosophodiester bonds between neighboring 3´-OH and 5’-phosphate ends. To ligate two DNA 

fragments, equal concentrations of both were mixed and T4-Ligase buffer (New England biolabs, 

Frankfurt a.M.) and 5 units of the enzyme were added. The reaction mix was then incubated for 2 h at 

room temperature.  

5.3.7 Transformation of competent E.coli cells  

After thawing a 50 µl aliquot of competent E.coli TOP10F’ cells on ice, 50 ng of plasmid DNA was added 

and incubated on ice for 30 min. Subsequently the cells were placed at 42°C for 90 sec and were then 

immediately placed on ice. Then 700 µl of LB medium was added to the tube and the cells were 

incubated at 37°C for 30 to 45 min while shaking vigorously. The transformed cells were either used to 

inoculate liquid LB-medium or were used to be grown on LB agar plates. For the latter a volume of 50 µl 

but also the residual cells, which were concentrated by centrifugation, were plated on two different LB 
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plates containing the appropriate antibiotic. After incubation over night at 37°C, single colonies could be 

picked for further use. 

5.3.8 Transformation of N. gonorrhoeae 

A volume of 20 µl from the purified and concentrated (200 ng/µl) PCR product was denatured at 95°C 

for 5 min and was then immediately put on ice. After cooling down the transformation construct was 

pipetted on a GCB agar plate and was put in the laminar flow cabinet until the DNA solution was dried. 

Next the plate was pre-warmed at 37°C and a piliated colony from an overnight plate of N. gonorrhoeae 

MS11A was picked with a sterile loop and was swept over the dried DNA solution. The plate was 

incubated overnight at 37°C in a 5% CO2 atmosphere. The next day the cell material was taken by a 

sterile swab and plated on a pre-warmed GCB plate containing chloramphenicol (10 µg/ml) as selection 

marker. The plate was again incubated for 48 h. Single colonies were picked and screened for the 

presence of the correct insert. Positive clones were plated again on a new plate and incubated over 

night at 37°C to make glycerol stocks for long term storage. 

5.3.9 DNA Sequencing 

DNA constructs, used for preparative purposes in this study, were sequenced by Eurofins MWG 

Operon's DNA sequencing service (Hamburg). 

5.3.10 Co-culture assay for DNA uptake and transformation 

The assay was performed as described previously [33]. N. gonorrhoeae strains EP006 or EP030 which 

have an erythromycin marker inserted within the recA gene to ensure one directional transfer were 

used as donors, while N. gonorrhoeae strains EP015, EP029 and SJ038 which contain a chromosomal 

chloramphenicol marker were used as acceptor strains. Shortly, piliated N. gonorrhoeae strains were 

grown overnight on GCB agar plates at 37 °C under 5 % CO2 and transferred to 3 ml of GCBL medium 

supplemented with Kellogg's supplements and 0.042 % NaHCO3. Cultures were grown for 2.5 hrs at 37 

°C with shaking under 5% CO2. 1 ml of both donor and recipient cultures were centrifuged and pellets 

were resuspended in 3 ml of GCBL. 0.5 ml of donor and recipient cells were mixed in 3 ml of GCBL, and 

growth was continued. After 5 hrs, serial dilutions were spread on selective media containing 

erythromycin and chloramphenicol. Transfer frequencies were calculated as CFU of transformants per 

CFU of donor. To study the effect of SsbB on DNA transformation, a similar assay was performed after 

addition of 50 μl of 2 mg/ml purified OneSTrEP-tagged SsbB directly after mixing the strains and again 

after 2.5 hrs. 
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5.3.11 Complementation of E. coli SSB 

To determine if SsbB could substitute for E. coli SSB, we attempted to replace pRDP146 with pKH114 in 

E. coli SSB mutant RDP268. pKH114 carries ermC and the GGI ssb in place of tet and the E. coli ssb that 

are on pRPZ146 [162]. RDP268 carries the aphA gene in place of ssb on the chromosome and is unable 

to grow unless complemented with an ssb gene [162]. pRDP146 is capable of complementing the 

mutation as is a similar plasmid carrying the E. coli F-plasmid single-stranded binding protein gene ssf. 

Electroporation was used to introduce pKH114 into RDP268, and transformants were selected on LB 

agar plates containing erythromycin. Fifty ErmR colonies were replica plated to plates containing 

tetracycline or erythromycin. All fifty transformants grew on both selective media. Plasmid screening by 

the method of Kado and Liu [200]. demonstrated that the ErmR TetR colonies carried both plasmids, 

pKH114 and pRDP146. Since these two plasmids carry the same origin of replication, they should be 

incompatible, and growth without selection for the antibiotic resistance markers would allow for loss of 

one plasmid if it were not essential for growth [162]. To determine if pRDP146 could be lost, two 

transformants were grown overnight in Luria broth with erythromycin, but without tetracycline. 

Dilutions of the culture were plated on LB agar containing erythromycin. 856 ErmR colonies were replica-

plated to LB agar containing tetracycline. All ErmR colonies maintained TetR, suggesting that pRDP146 

was required for growth and that the GGI SSB could not substitute for E. coli SSB in the SSB mutant 

RDP268. 

5.3.12 Transcriptional Mapping 

N. gonorrhoeae strains were grown in GCBL liquid medium containing 0.042 % NaHCO3 and Kellogg’s 

supplements until OD600 ~0,6 was reached. Total RNA of 1 ml culture was isolated using the peqGOLD 

TriFast® reagent (peqLab). To remove contaminating DNA, total RNA was treated with 1 unit RNase-free 

DNaseI (Fermentas) for 30 min at 37 °C. RNA was quantified spectrophotometrically, and quality 

assessed by agarose gel electrophoresis. The MuLV transcriptase and the random hexamer primer of the 

first strand cDNA synthesis kit (Fermentas) were used to generate cDNA. A control of cDNA synthesis 

was performed without MuLV transcriptase. Transcripts were mapped using the following primers: for 

yaf-ssbB, 705R-GGI and 767F-GGI, for ssb-topB, 703R-GGI and 702F-GGI, for topB-yeh, 708R-GGI and 

709F-GGI, for yeh-yegB, 701R-GGI and 499F-GGI and for yegA-yef, 498R-GGI and 726F-GGI. 
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5.3.13 Quantitative PCR 

Transcript levels of ssbB, topB, traI and traD and the reference gene secY were determined for RNA 

isolated from piliated (EP006) and non piliated (SJ001) N. gonorrhoeae strains by quantitative Real-Time 

PCR (qRT-PCR). Oligonucleotide primers were designed using clone manager 9 professional edition (Sci-

Ed Software). The primers used were as follows: for ssbB, 766R-GGI and 767F-GGI, for topB, 769F-GGI 

and 770R-GGI, for traI, 474R-GGI and 475F-GGI, for traD, 472R-GGI and 473F-GGI and for secY, 697 and 

698. cDNA was isolated as described above. qRT-PCRs were performed using the SYBR Green/ ROX qPCR 

Master Mix (Fermentas) in a 7300 Real Time PCR System of Applied Biosystems. Reaction mixtures were 

prepared in a 25 µl volume and run in triplicate for each gene. N. gonorrhoeae strain MS11 

chromosomal DNA was used to establish the primer efficiency. Six biological replicates were performed. 

Results were depicted as the level of transcript compared with the secY gene (2^-ΔCt). 

5.3.14 DNA secretion assays 

N. gonorrhoeae strains MS11, ND500 and SJ038 were grown overnight on GCB agar plates at 37 °C under 

5 % CO2 and inoculated in 3 ml of defined medium (Graver-Wade medium) [26] supplemented with 

Kellogg’s supplements and 0.042 % NaHCO3 [201]. These cultures were grown while shaking for 1.5 hrs 

at 37 °C under 5 % CO2 and then diluted to an OD600 ~ 0.2. To remove DNA derived from the initial 

starting culture, the cultures were diluted to OD600 ~ 0.1 and growth was continued for 2 hrs. After three 

dilutions, samples were collected directly after the dilution and after 2 hrs. At these times also the OD600 

was determined. Cells were directly removed by centrifugation for 5 mins in a table top centrifuge at 

14.000 rpm. Supernatants were assayed for the amount of DNA using PicoGreen (Invitrogen). The 

amount of secreted DNA was calculated by comparison to a DNA standard curve. The amount of 

secreted DNA was expressed as amount of µgr secreted DNA/∆OD600. In all assays N. gonorrhoeae 

ND500 (MS11:∆GGI) was included as a background.  

5.3.15 Isolation of secreted fraction 

To analyze the secreted fraction of N. gonorrhoeae, a 250 ml culture of SJ023 was grown to OD600 of 0.5 

in GCBL medium. Cells were then harvested by centrifugation at 8000 rpm for 10 mins. The medium 

supernatant was filtered through a 0.2 μm filter to remove the cell debris. The supernatant was 

centrifuged at 40.000 rpm in a Ti45 rotor for 1 hour at 4 °C to obtain the pellet containing the blebs. The 

pellet was resuspended in 250 µl 2X sample buffer (SB) with 0.5 M Tris-HCl pH 6.8, 10 % (w/v) SDS, 0.1 % 

(w/v) bromophenol blue, 20 % glycerol and 10 mM DTT. After removal of the pellet, the supernatant 

fraction was concentrated 100 fold by trichloroacetic acidprecipitation. At higher concentrations the 
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pellets could not be fully resuspended anymore. The harvested cell pellet was resuspended into 20 ml of 

buffer A (50 mM Tris-HCl pH 7.5) and disrupted using a French press at 15 psi. Cell debris was removed 

by centrifugation at 6000 rpm for 10 mins and 40 µl supernatant was dissolved with 40 µl of 2X SB and 

20 µl was loaded () on the gel. Alternatively, either the cytoplasmic supernatant or the medium 

supernatant obtained from 120 ml culture of SJ023 were applied to a Strep-tactin Sepharose column 

(IBA) equilibrated with buffer D. Bound proteins were eluted with buffer D containing 2.5 mM 

desthiobiotin, separated on a 15 % SDS-PAGE gel and analyzed by Coomassie staining and Western 

blotting using an Strep-Tactin AP conjugate antibody (IBA). 

5.4 Biochemical methods 

5.4.1 Induction and overexpression of recombinant proteins in E.coli 

In order to overexpress and isolate proteins in E.coli BL21 pLysS cells were transformed with the 

overexpression vector, containing the desired gene. Then 30 ml of LB medium containing the 

appropriate antibiotic was inoculated with transformed cells and incubated over night at 37°C in the 

shaking incubator. From the overnight culture 10 ml was used to inoculate 1 l LB-medium with the 

appropriate antibiotic. The culture was incubated at 37°C while shaking until an OD600 of 0,5-0,6 was 

reached. Then the cells were induced by the addition of 0,5 M IPTG to a final concentration of 5 mM and 

were grown again for 2-3 h under the conditions mentioned before. After that the cells were collected 

by centrifugation at 6000 rpm at 4°C for 20 min. Finally the pellet was washed with cold LEW buffer (50 

mM NaH2PO4, 300 mM NaCl, pH 8.0) and was collected again by centrifugation under the same 

conditions as done before. In the end the pellet was shock frozen with liquid nitrogen and kept at -20°C 

until further use. 

5.4 2 Cell disruption and purification of recombinant proteins 

In order to isolate recombinant cytoplasmic proteins, transformed and induced cells were thawed on ice 

and resuspended on 30 ml cold LEW buffer containing a pinch DNAseI (Roche, Mannheim) and a tablet 

of Protease Inhibitor Cocktail (Complete-Mini; Roche, Mannheim). Cell disruption was performed using 

French Pressure Cell Press, SLM Aminco (SLM Instruments Inc., Rochester, NY, USA) at a pressure of 

1100 pounds per square inch (≈ 75bar). This procedure was repeated three times. Then the disrupted 

cells were centrifuged at 4°C at 8000 rpm for 20 min in a Fiberlite F10-6x500y rotor (Thermo Scientific) 

and the supernatant, containing the cytoplasmic proteins, was harvested. For purification of the isolated 

proteins, an ÄKTA purifier (GE Healthcare, USA) was used. His tagged proteins were purified by loading 

the supernatant on a HiTrap Chelating 1 ml column (GE Healthcare, USA), which was preloaded with 0,1 



Chapter 5   

98 
 

M NiSO4 and equilibrated in LEW buffer. The column was washed with 10 volumes of LEW buffer and 

eluted with a linear gradient of LEW buffer supplemented with 400 mM imidazole. Peak fractions were 

collected and used for further analysis. 

5.4.3 TCA precipitation 

To concentrate proteins in a solution a TCA precipitation was performed. Therefore an equal volume of 

25 % TCA was added to the sample and left on ice for at least 30 min. After that the sample was 

centrifuged for 5 min at 13000 rpm at 4°C. Subsequently the pellet was washed with 1 ml of acetone 

and was centrifuged again under the same conditions as before. The acetone wash step was repeated 

once more and the pellet was resuspended in a small volume of TE-buffer. 

5.4.4 SDS-PAGE 

A polyacrylamide matrix, consisting of a 4% stacking gel (Table 16) and a 15% separating gel (Table 17) 

was used to separate the samples. Before loading on the gel the proteins in the samples had to be 

denatured by the addition of 5x SDS loading buffer (Table 14)  and adjacent exposure to heat at 95°C for 

10 min. SDS-PAGE was performed in 1x TBE buffer (Table 15) using the Bio-Rad Mini-PROTEAN 

Electrophoresis System at a voltage of 150 mV for 80 min (Electrophoresis Power Supply, Consort 

EV265). The gels were either stained with Coomassie Brillant Blue R-250 (10% acetic acid, 45% 

methanol, 1 g Coomassie R250, 45% H2Odd) or with Silver Solution, comprised in the FireSilver Staining 

Kit (Proteome Factory, Berlin). For destaining of the gel, destaining solution (5% CuSO4, 7% acetic acid, 

10 % 2-propanol) was used. 

Table 14: Composition of 5x SDS loading buffer 

5x SDS loading buffer 10 % (w/v) SDS 

  50 % glycerol 

  0,04 % bromphenol blue 

  500 mM DTT 

  300 mM Tris/HCl 
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Table 15: Composition of 10x TBE buffer 

10x TBE buffer 440 M Tris base 

  440 M Boric acid 

  2% EDTA (0,5 M; pH8,0) 

 

Table 16: Composition of 4% polyacrylamide stacking gel 

4 % polyacrylamide stacking gel 3 ml H2Odd 

  

1,25 ml stacking gel buffer (0,5 M 

Tris; 0,4 % SDS; pH 6.8) 

  0,65 ml acrylamide 30% 

  60 µl APS 10% 

  6 µl TEMED 

 

Table 17: Composition of 15% polyacrylamide separating gel 

15 % polyacrylamide separating gel 3,65 ml H2Odd 

  

2,5 ml separating gel buffer 

(1,5 M Tris; 0,4 % SDS; pH 8.8) 

  3,75 ml acrylamide 40% 

  80 µl APS 10% 

  8 µl TEMED 

 

5.4.5 Expression and purification of TteSSB2, Sac7d, ExoI and ExoIII 

All proteins were overexpressed in E. coli strain BL21pLysS. Cells were grown in 1 L of LB medium 

supplemented with 1% glucose at 37 °C to an OD600 of 0.5 and induced with 0.5 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG). After 3 hrs the cells were harvested by centrifugation, resuspended in 30 
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ml of buffer A (50 mM NaPO4, 300 mM NaCl, pH 8.0) and stored at -80 °C. Prior to purification, frozen 

cell pellets were thawed on ice. After thawing, the solution was supplemented with 1 Tablet of Protease 

Inhibitor Cocktail (Roche) and 1 mg of DNase I (Roche), and the cells were disrupted by passing them 3 

times through a high-pressure Cell Disrupter (Constant Cell Disruption Systems) at 2,300 bar. Cell debris 

was removed by centrifugation at 10,000 rpm in an F10-6x500y rotor (FiberLite) and the supernatant 

was filtered through a 0.45 µm filter. Purifications were performed on an ÄKTA-Purifier system (GE 

Healthcare).  

His-tagged ExoI, ExoIII and Sac7d were purified by loading the clarified supernatant on a 1 ml Hi-Trap 

Chelating column (GE Healthcare) preloaded with 0.1 M NiSO4 and equilibrated in buffer A. The column 

was washed with 10 column volumes of buffer A and bound proteins were eluted with a linear gradient 

of buffer A supplemented with 400 mM imidazol. Peak fractions containing proteins were pooled and 

diluted with two volumes of buffer B (10 mM Tris-HCl pH 8.0, 10 mM NaCl). This sample was loaded on a 

Hi-Trap Q column (GE Healthcare) equilibrated with buffer B, and the protein was eluted with a linear 

gradient up to 1 M NaCl in buffer B. Fractions containing proteins were concentrated to 2 ml using 

Amicon Ultra – 10K Concentrators (Millipore). Finally, these fractions were loaded on a Superdex SD200 

gelfiltration column (GE Healthcare), equilibrated with buffer C containing 150 mM NaCl and 20 mM 

Tris-HCl pH 8.0. Fractions containing proteins were pooled and frozen in liquid N2 until further use.  

To purify TteSSB2, the disrupted cell suspension was heated for 15 min at 75 °C, followed by 

centrifugation at 10,000 rpm in an F10-6x500y rotor (FiberLite). The supernatant was filtered through a 

0.45 µm filter. The filtrate was loaded on Hi-Trap Q column (GE Healthcare) equilibrated with buffer B, 

and the protein was eluted with a linear gradient up to 1 M NaCl in buffer B. Fractions containing 

proteins were concentrated to 2 ml using Amicon Ultra – 10K Concentrators (Millipore). Finally, these 

fractions were loaded on a Superdex SD200 gelfiltration column (GE Healthcare), equilibrated with 

buffer C containing 150 mM NaCl and 20 mM Tris-HCl pH 8.0. Fractions containing proteins were pooled, 

and frozen in liquid N2 until further usage.  

5.4.6 Expression and purification of SsbB 

SsbB proteins were overexpressed in E. coli strain C43 (DE3). Cells were grown in 1 L of Luria-Broth 

medium at 37 °C to an OD600 of 0.5 and induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside 

(IPTG). After 3 hrs the cells were harvested by centrifugation, resuspended in 30 ml of buffer A (50 mM 

NaPO4, 300 mM NaCl, pH 8.0) and stored at -80 °C. Before purification, frozen cell pellets were thawed 

on ice. After thawing, the solution was supplemented with 1 tablet of Protease Inhibitor Cocktail (Roche) 
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and 1 mgr of DNase I (Roche), and the cells were disrupted 3 times in a high-pressure Cell Disrupter 

(Constant Cell Disruption Systems) at 2.300 bar. Cell debris was removed by centrifugation at 10.000 

rpm in an F10-6x500y rotor (FiberLite) and the supernatant was filtered through a 0.45 µm filter. 

Purifications were performed on an AKTA-Purifier system (GE Healthcare). His-tagged SsbB was purified 

by loading the clarified supernatant on a 1 ml Hi-Trap Chelating column (GE Healthcare) preloaded with 

0.1 M NiSO4 and equilibrated in buffer A. The column was washed with 10 column volumes of buffer A 

and bound proteins were eluted with a linear gradient of buffer A supplemented with 400 mM imidazol. 

Peak fractions containing SsbB were pooled and diluted with two volumes of buffer B (10 mM Tris-HCl 

pH 8.0, 10 mM NaCl). This sample was loaded on a Hi-Trap Q column (GE Healthcare) equilibrated with 

buffer B, and the protein was eluted with a linear gradient up to 1 M NaCl in buffer B. Fractions 

containing SsbB were concentrated to 2 ml using Amicon Ultra – 10K Concentrators (Millipore). Finally 

these fractions were loaded on a Superdex SD200 gelfiltration column (GE Healthcare), equilibrated with 

buffer C containing 150 mM NaCl and 20 mM Tris-HCl pH 8.0. Fractions containing tetrameric SsbB were 

pooled, and frozen in liquid N2 until further use. OneSTrEP-tagged SsbB was purified by loading the 

clarified supernatant on a Strep-tactin Sepharose column (IBAGO) equilibrated with buffer D (150 mM 

NaCl, 1 mM EDTA, 100 mM Tris-HCl pH 8.0). SsbB was eluted with buffer D containing 2.5 mM 

desthiobiotin. Peak fractions containing SsbB were pooled and diluted with two volumes of buffer B and 

purified over Hi-Trap Q and Superdex SD200 columns as described above. Native SsbB was purified over 

a Hi-Trap Q column, as described above. Peak fractions were loaded on a 5 ml Hi-Trap Desalting column 

(GE Healthcare) equilibrated with buffer E (50 mM NaCl, 1 mM EDTA, 1 mM TCEP, 20 mM Tris-HCl, pH 

8.0), fractions containing SsbB were collected. Desalted SsbB fractions were loaded on the DNA-cellulose 

column (Amersham Bioscience) equilibrated in buffer E and eluted over night at 4 oC with buffer E 

containing 1 M NaCl. Finally SsbB was further purified on a Superdex SD200. 

5.4.7 Polyacrylamide Gel Electrophoresis Mobility Shift Assays  

The ssDNA binding reactions were performed in SBA buffer (10 mM NaOH, 2 mM EDTA, titrated to pH 

7.5 with Boric acid) which was when indicated supplemented with 10 mM MgCl2 and/or 200 or 500 mM 

NaCl. To determine the binding mode of SsbB, 5’ Cy3 labeled labeled dTn primers were used. 8 nM of 

dT35 or dT75 primers were mixed with increasing concentrations of (SsbB)4 [ 0 – 64 nM]. The reaction 

solutions were incubated at 4 °C for 15 min after whichthe reaction was mixed with 5X gel loading 

solution (0.25 % bromphenol blue, 40 % sucrose). The aliquots were analyzed by electrophoresis on 7.5 

% native polyacrylamide gels using a buffer system consisting of the SBA buffer supplemented with the 

same MgCl2 concentration as used in the binding reaction. The fluorescently labeled primers were 
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visualized on a LAS-4000 imager (Fujifilm). To determine the minimal binding frame of one SsbB 

tetramer, 1 μM (SsbB)4 was incubated with 5 μM of unlabeled dTn oligonucleotide. To determine the 

minimal binding frame of two SsbB tetramers, 1 μM (SsbB)4 was incubated with 0.25 μM of unlabeled 

dTn oligonucleotide. A similar incubation and separation protocol as described above was used, except 

that the bands corresponding to the SsbB protein were visualized by G-250 BioSafe Coomassie Brilliant 

Blue staining. 

5.4.8 Fluoresence titrations 

Titrations were performed on a temperature-controlled PC1 spectrofluorometer (ISS Inc) with a cooled 

photomultiplier. The excitation wavelength was set to 285 nm and the emission wavelength to 340 nm. 

The slit widths for the excitation and the emission beam were set to 1 and 2 nm respectively. 

Experiments were performed at 8°C in a buffer containing 20 mM Tris pH 7.5 and 1 mM dithiothreithol. 

When applicable, 20, 200 or 500 mM NaCl or 10 mM MgCl2 was added. Samples were allowed to 

equilibrate for 90 s between measurements. 

5.4.8 Protein isolation from Neisseria cells for Western Blotting 

Neisseria cells were inocaleted from the o.n plates in 3 ml prewarmed GCB medium and grown at 37 0C 

with continuous shaking for 2 hours. Those cultures were used to start fresh culture, the starting OD600 

was 0,2. The cultures were grown till OD600=0,7-0,8. Cells were collected by centrifugation. TriFast 

reagent (peqlab) was used for total protein isolation. Protein isolation was performed like described in 

the manual without any modifications. Isolated protein fractions were solubilized in 100 µl protein-

loading-buffer (SDS, bromphenol) at 75°C for 15 min and loaded on the SDS-Gel for further analysis.  

5.4.9 Western Blotting 

15% polyacrylamide SDS-PAGE gels were run for all the analysis with SsbB. Western blotting was 

performed by electroblotting the gels on PVDF membranes and incubating with 1:4000 dilution of Strep-

Tactin AP conjugate antibody (IBA). The chemiluminescence signal was obtained using the CDP-star 

substrate (Roche) on a LAS-4000 imager (Fujifilm). 

5.4.10 Site-specific labeling of proteins via cysteines 

Prior to labelling of the cysteines, purified proteins were reduced by incubation with 10 mM tris[2-

carboxyethyl]phosphine (TCEP) for 10 min on ice. 2 µl of 50 mM stock solution of the fluorescent probe 

was added to a total volume of 200 µl containing the protein of interest at a concentration of 100 

μM/ml in buffer C. Labelling was performed in the dark for 2 hrs at room temperature. The reaction was 
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stopped by addition of 10 mM gluthation. Access of dye and gluthation was removed by separation of 

the reaction solution on a 2 ml PD-column (GE Healthcare) equilibrated with buffer C. Fractions 

containing the labelled protein were frozen in liquid N2 until further use. 

5.4.11 Activity assays for specificity of ExoI and ExoIII 

The specificity of the enzymes for ssDNA and dsDNA was tested using a dT90 oligonucleotide labelled 

with Cy3 at the 5’ end, and a 468 bp PCR product obtained with an unlabelled primer 407R-GGI and a 

Cy3-labelled primer. The reactions were performed in the growth medium used in the continuous flow 

experiments (Graver-Wade medium diluted 1:5 with PBS). Shortly, 150 ng of the dT90 oligonucleotide or 

the PCR product was mixed with increasing concentrations of ExoI or ExoIII [0 – 5,000 nM] in a total 

volume of 12 μl. The reaction was incubated at 37 °C for 1 hr after which the reaction was mixed with 3 

μl 40 % sucrose. The aliquots were analyzed by electrophoresis on 7.5 % native polyacrylamide gels 

using a buffer system consisting of the SBA buffer. The fluorescently labelled DNA was visualized on a 

LAS-4000 imager (Fujifilm).  

5.4.12 Topoisomerase DNA relaxation assay 

For the DNA relaxation assay, supercoiled plasmid DNA was prepared using the Nucleobond kit (Bioké). 

500 ng of supercoiled plasmid DNA was incubated with 0.12 units of Topoisomerase I (New England 

Biolabs) in the buffer supplied by the manufacturer with increasing amounts of SsbB. A total reaction 

volume of 25 μl was incubated at 37 ºC for 30 mins and stopped by the addition of 10 mM EDTA and 

incubation at 65 ºC for 20 mins. The samples were run on a 1 % agarose gel at 100 V for 1 hr and then 

stained in buffer containing ethidium bromide for 30 mins and visualized using an UV gel documentation 

system (Bio-Rad). 

5.4.13 Visualisition of ssDNA/dsDNA in the biofilms 

For visualization of DNA in the biofilms, either 500 nM labelled TteSSB2 or 500 nM labelled Sac7d was 

inoculated in to the channels. After 10 min the flow was resumed to wash away unbound protein.  

5.5 Bioinformatics 

Sequence alignments of different SSBs were performed by Clustal X 2.0. 

The synteny of SsbB homologs was determined using Absynte (http://archaea.u-psud.fr/absynte) [202]. 

 

http://archaea.u-psud.fr/absynte
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5.6 Microscopy 

5.6.1 Fluorescent light microscopy 

To perform light microscopy, N. gonorrhoeae colonies were scraped from overnight grown plates and 

diluted in Graver-Wade medium [26] supplemented with Kellogg’s supplements and 0.042 % NaHCO3. 

Cultures were grown at 37 °C constantly shaken at 140 rpm. Cells were grown to an OD600 of 0.8, 

collected by centrifugation and diluted in fresh medium. This procedure was repeated at least three 

times, until most DNA derived from lysed cells was removed. Samples were collected directly after the 

last dilution. When the indicated enzymes (1 μM ExoI) or M13ssDNA (final concentration 0.0625 µgr/ml) 

were added, incubation was continued for 15 minutes. 2 µl of the cell suspension was loaded on the 

glass slide covered with 1 %-agarose. Microscopy and image acquisition was performed on a Zeiss 

Imager M1. Image data obtained were processed with MethaMorph software.  

5.6.2 Confocal Laser Microscopy 

For continuous-flow chamber experiments with N. gonorrhoeae a Graver-Wade medium supplemented 

with Kellogg’s supplements and 0.042% NaHCO3 diluted 1:5 with PBS was used. Colonies from 3 plates 

grown overnight were collected and inoculated in 3 ml prewarmed Graver-Wade medium. Cultures 

were grown to an OD600 of 0.8, diluted 1:1,000 with fresh Graver-Medium and 200 µl of the diluted cell 

suspension was inoculated in the continuous-flow chamber. Flow chamber experiments were performed 

as described previously [203]. Strains were grown in three separate channels. From each channel at 

least six image stacks were acquired. When indicated 1 µM of ExoI was injected into the channels for 1 

hour. The flow rate was stopped during the incubation time. To exclude the effect of stopped flow, one 

channel was inoculated with medium not containing enzymes and compared afterwards with the 

channels containing enzymes. Microscopy and image acquisition was performed on a Leica TCS SP5 

(Leica Microsystems, Wetzlar). Images were processed and quantified using the IMARIS software 

package (Bitplane AG, Zürich, Switzerland). At least two fully independent experiments were performed. 

Biofilm experiments with different Sulfolobus spp. were performed as described previously [181]. 
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6 Appendix 

Physiological characterization of SsbB 

Physiological characterization of SsbB was performed by Katja Siewering and Samta Jain.  

6.1 SsbB is expressed in N. gonorrhoeae 

The ssbB gene is located between several genes transcribed in the same direction (Figure 5-1 A).  

 

Figure 5-1: Analysis of the transcription of the yfa-yef region. Reverse transcriptase was used to map the 

operon structure of the ssb-yegA region within the GGI of N. gonorrhoeae strain MS11. A) Schematic 

representation of the yfa-yef region of the GGI. Genes are indicated by arrows and the expected PCR products by 

lines over the genes. Primer combinations for which a PCR product was obtained are indicated by black boxes and 

primer combinations for which no PCR product was obtained are indicated by white boxes. B) Operon mapping of 

the ssb-yegA operon. Transcripts were determined by PCR. (+) indicates reactions on cDNA created in the presence 

of reverse transcriptase and (–) indicates reactions on cDNA created in the absence of reverse transcriptase. C) 
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Quantitative gene expression levels of ssbB, topB, traI and traD of piliated and non-piliated N. gonorrhoeae strains 

were determined by qRT-PCR. The graph shows the mRNA levels as comparative gene expression after normalizing 

each gene to secY. Values depict means ± standard deviation of six biological replicates. 

Homologs of the ParA and ParB proteins, the topoisomerase, and the proteins with the DUF2857 (YfeB) 

and the DUF1845 (Yfb) domains are conserved within the SsbB homologs encoded within genetic 

islands. The yegA gene is followed by a previously unnamed gene (annotated as NgonM_04872 in the 

MS11 whole genome shotgun sequence) which encodes a 149 amino acids long conserved hypothetical 

protein with a DUF3577 domain. This gene was named yef. In general, intergenic regions between the 

open reading frames (ORFs) of these genes are small, suggesting transcription in polycistronic 

messengers. To analyze the transcriptional linkage of these genes, reverse transcription PCR (RT-PCR) 

was performed with primer pairs spanning different intergenic regions (Figure 5-1 A,B). Successful 

amplification by these primer pairs was confirmed on chromosomal DNA (data not shown). No 

amplification products were detected in control reactions in the absence of reverse transcriptase (Figure 

5-1 B). The RT-PCR analysis demonstrated that the ssbB, topB, yeh, yegB and yegA genes form an operon 

(Figure 5-1 B). It further showed that the parA, parB, yfeB and yfb genes, although they are often found 

genetically linked to ssb, are not encoded in the same operon. In a next step we set-out to determine 

whether any possible regulation of the operon could be identified. The first operon of the GGI 

containing the traI and traD genes which encode proteins involved in targeting the secreted DNA to the 

secretion apparatus is upregulated in piliated cells compared to non-piliated cells [74]. To determine the 

expression levels of the ssbB gene and to test whether a similar difference could be observed in the 

expression of the ssbB-yegA operon, a qualitative real time PCR (qRT-PCR) using primers designed 

against the ssbB, topB, traI and traD genes and against the secY gene as a control was performed on 

mRNA isolated from piliated and non-piliated strains (Figure 5-1 C). The qRT-PCR revealed relatively low 

levels of transcription compared to the transcript containing the secY gene but higher levels of 

transcription than the traI and traD genes. However, no differences in the expression levels of the ssbB 

and topB genes were observed between piliated and non-piliated cells.  

6.2 SsbB has no effect on DNA secretion or uptake 

Since it was demonstrated that SsbB is expressed and forms an active ssDNA binding protein, we 

commenced to study possible functions of SsbB. SsbB is encoded within the GGI that encodes a T4SS 

involved in the secretion of ssDNA into the medium. The ssDNA binding protein VirE2 encoded by the A. 

tumefaciens T4SS is transported to the recipient cells [175] where it helps in importing the bound single 

stranded DNA [204]. It also has previously been proposed that the SSB encoded within clc-like elements 
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might be involved in DNA transport [170]. DNA secretion studies demonstrated that deletion of ssbB had 

no effect on the secretion of ssDNA (Pachulec, manuscript in preparation). To test whether 

overexpression of SsbB had any effect on ssDNA secretion, WT or OneSTrEP-tagged SsbB expressed from 

an inducible lac promoter was inserted into the chromosome of N. gonorrhoeae strain MS11. DNA 

secretion assays showed that there was no significant effect of SsbB overexpression on DNA release 

(Figure 5-2 A). To test whether SsbB might be secreted, different fractions were isolated, and compared 

to an isolated cytosolic fraction. The medium was concentrated by trichloroacetic acid (TCA) and the 

outer membrane derived vesicles, called blebs [205], were concentrated by ultracentrifugation 

respectively. OneSTrEP-tagged SsbB could only be detected in the cytoplasmic fraction (Figure 5-2 B). 

Western blotting with purified OneSTrEP-tagged SsbB showed that the detection limit is 50 fmol 

(corresponding to 1 ng or 10 µl of 5 nM solution (Figure 5-2 B right panel). In a further attempt to detect 

SsbB, OneSTrEP-tagged SsbB was purified from cells and medium using a Strep-tactin Sepharose column, 

but again significant amounts of SsbB could be purified only from the cytosolic fraction, but not of the 

medium fraction (data not shown). It is concluded that One-Strep-tagged SsbB is not secreted via the 

T4SS at significant levels. 

Several SSBs like YwpH of Bacillus subtilis [116] and SsbB of Streptococcus pneumoniae [119] play an 

important role in DNA uptake and competence. To test whether SsbB might play a similar role, the effect 

of SsbB on the efficiency of DNA uptake by N. gonorrhoeae was tested in co-culture experiments (Figure 

5-2 C).  In these experiments, strains in which the recA gene is disrupted by an erythromycin marker to 

ensure unidirectional transfer of DNA were used as donor strains, whereas strains with a chlorampenicol 

marker were used as acceptor strains. Similar to previous observations, transfer of chromosomal 

markers increased strongly in strains containing the GGI, whereas the transfer decreased in strains not 

containing the GGI [38]. Similar transfer rates were observed when the transfer frequencies of 

chromosomal markers to either acceptor strains with or without the GGI were determined. Transfer of 

the markers was abolished when DNase I was added to the medium, but the addition of high 

concentrations of SsbB (3.5 μM) to the medium had no effect. When SsbB was overexpressed in the 

acceptor strain, a lower transformation rate was observed. Therefore overexpression of SsbB either 

affects DNA uptake, DNA stability in the acceptor strain, or the efficiency of recombination. It has 

previously been shown that SSB overexpression could have a negative effect on RecA recombinase 

activity [168]. Thus these data show that SsbB has no influence on ssDNA secretion and/or DNA uptake. 
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Figure 5-2: In vivo functional analysis of SsbB in Neisseria gonorrhoeae. 
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A) DNA secretion assay with fluorimetric detection of the secreted DNA in the culture supernatant. MS11 is the 

wild type strain which contains the GGI and ND500 is the MS11 strain in which the GGI was deleted. This strain 

does not secrete DNA into the medium. Strain MS11 transformed with plasmid pKH37-SsbB expresses SsbB from 

an inducible lac promoter. Results depicted are the average of at least 3 independent experiments. (B-left panel) 

Western blot using anti-Strep II antibody to detect the secretion of SsbB in the medium. Different fractions of the 

Neisseria gonorrhoeae strain SJ023-MS overexpressing N-terminal OneSTrEP-tagged SsbB from an inducible lac 

promoter were isolated and run on a 15% SDS-PAGE gel. The different lanes are representative of the cytosolic, 

blebs and the medium fractions, isolated from 240 μl, 20 ml and 2 ml of a logarithmically growing culture of OD600 

~ 0.5. (B-right panel) Western blotting with purified OneSTrEP-tagged SsbB showed that the detection 

limit is 50 fmol (corresponding to 1 ng or 10 µl of 5 nM solution (C) Co-culture DNA transfer assay to 

determine the effect of SsbB on the DNA uptake efficiency. Donor and recipient strains were mixed and grown 

together at 37ºC for 5 hrs and plated on selective media. The donor strains contain the erythromycin marker in the 

recA gene and the recipients contain the pKH37 or pSJ038 plasmids that contain the chloramphenicol marker and 

are integrated into the chromosome between the aspC and lctP genes. Vector pSJ038 is derived from pKH37 and 

expresses SsbB from an inducible lac promoter. The transfer of the erythromycin was measured as transfer 

frequency (CFU of transconjugants per CFU of donor). The values are the average from three independent 

experiments. It is indicated when purified SsbB (3.5 µM) and DNase I were added to the medium.  
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