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iv Summary 

Summary 

It is at present well established that there are physiological interactions 

between the nervous, endocrine, and immune systems. This work focuses on 

the impact that the lack of a functional thymus has on neurotransmitter and 

neurotrophin concentrations in the spleen and in defined brain regions, using as 

a model homozygous Foxn1nu mice. This spontaneous mutation results in 

defective development of the thymus anlage, and therefore, in lack of mature T 

cells. The first part of this work shows that Foxn1nu mice have: 1) an increased 

splenic sympathetic innervation that is maintained during adult life; 2) alterations 

in noradrenergic and serotonergic neurotransmitters in defined brain regions 

comparable to those in the spleen; 3) increased density of noradrenergic fibers 

in the spleen and hypothalamus; 4) increased brain-derived nerve growth factor 

(BDNF) and neurotrophin-3 (NT-3) concentrations, and BDNF signals in the 

spleen and hippocampus; 5) marked alterations in the anatomy of the 

hippocampus; and 6) increased corticosterone blood levels. All these alterations 

are abolished in Foxn1nu mice reconstituted by thymus transplantation at birth.  

The second part studied whether the alterations detected in nude mice reflect 

a more general condition that causally relates the catecholaminergic system 

with the expression of neurotrophins. The results demonstrate that destruction 

of noradrenergic neurons by administration of a neurotoxin, results in a 

permanent or transient denervation that is paralleled by increased or decreased 

neurotrophin concentrations in the spleen and in the brain and in corticosterone 

blood levels, depending on the age at which mice are denervated.  

Taken together, the results reported here indicate that the alterations in 

neurotransmitters and neurotrophins observed in homozygous Foxn1nu mice are 

not just an epiphenomenon fortuitously associated with the absence of a 

functional thymus, but that most likely mature T cells, by acting either directly or 

indirectly, exert an inhibitory influence on the development of splenic 

sympathetic innervation and of catecholaminergic and serotonergic 

mechanisms in the central nervous system. In more general terms, these 

results provide new evidence that the immune system can affect the nervous 

and endocrine systems. 



  

 

v Zusammenfassung 

Zusammenfassung 

Physiologische Wechselwirkungen zwischen neuronalem, endokrinem und  

Immunsystem sind inzwischen gut belegt. Diese Arbeit befasst sich mit 

Auswirkungen des Fehlens von funktionsfähigem Thymus auf Neurotransmitter- 

und Neurotrophin-Konzentrationen in der Milz sowie bestimmten Hirnregionen 

unter Verwendung homozygoter Foxn1nu Mäuse als Modell. Diese 

Spontanmutation führt zu einer fehlerhaften Entwicklung der Thymusanlage mit 

Ausbleiben der Entwicklung reifer T-Zellen.  

Der erste Teil der Arbeit zeigt bei Foxn1nu Mäusen 1) eine verstärkte 

sympathische Innervation der Milz, die auch im Erwachsenalter anhält; 2) 

Änderungen noradrenerger und serotonerger Neurotransmitter in bestimmten 

Hirnregionen, vergleichbar denen in der Milz; 3) eine erhöhte Dichte 

noradrenerger Fasern in Milz und Hypothalamus; 4) eine Erhöhung der 

Konzentrationen des Wachstumsfaktors „brain-derived nerve growth factor“ 

(BDNF) und von Neurotrophin-3 (NT-3) sowie von BDNF-Signalen in Milz und 

Hippocampus; 5) ausgeprägte anatomische Änderungen des Hippocampus und 

6) erhöhte Kortikosteron-Blutwerte. Diese Änderungen verschwinden nach 

Rekonstitution der Foxn1nu Mäuse durch Thymustransplantation bei Geburt. 

Der zweite Teil geht der Frage nach, ob diese Änderungen in athymischen 

Mäusen grundsätzlicher bedeuten, dass das catecholaminerge System 

ursächlich mit der Neurotrophinbildung in Verbindung steht. Die Befunde 

zeigen, dass die Zerstörung noradrenerger Neurone nach Neurotoxinapplikation 

zu einer dauerhaften oder vorübergehenden Denervierung führt, begleitet von 

zu- oder abnehmenden Kortikosteron-Blutspiegeln sowie Neurotrophin-

Konzentrationen in Milz und Gehirn, abhängig vom Alter der Denervierung. 

Zusammengenommen weisen die hier vorgelegten Ergebnisse darauf hin, 

dass die bei Foxn1nu Mäusen gefundenen Änderungen an Neurotransmittern 

und Neurotrophinen kein Epiphänomen darstellen, das zufällig mit dem Fehlen 

der Thymusfunktion einhergeht, sondern dass wahrscheinlich reife T-Zellen 

direkt oder indirekt eine inhibitorische Wirkung auf die Entwicklung der 

sympathischen Milzinnervation sowie auf catecholaminerge und serotonerge 

Mechanismen des zentralen Nervensystems entfalten. Die Ergebnisse liefern 

somit neue Belege, dass das Immunsystem  nervale und endokrine Systeme 

beeinflussen kann.  



  

 

1 Introduction 

1. Introduction  

1.1. Interactions between the immune, endocrine, and 
nervous systems 

 

The nervous, endocrine, and immune systems are the major adaptive 

systems of the body. An appropriate communication between these systems is 

essential to maintain homeostasis and health. So far, the best studied neural 

and endocrine pathways involved in this cross-talk are the hypothalamic-

pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS) 

(Elenkov et al., 2000). 

The general immunosuppressive and anti-inflammatory effects of cortisol, 

the end product of the HPA axis, have been known for over 60 years, and it is 

now known that changes in endogenous levels of this hormone can affect the 

immune response (Besedovsky and del Rey, 1996). Evidence accumulated 

over the last three decades indicates that the SNS, a component of the 

autonomic nervous system (ANS), innervates all lymphoid organs, and that 

noradrenaline (NA), the main sympathetic neurotransmitter, can modulate 

several immune parameters. Therefore, the SNS provides another major 

integrative and regulatory pathway between the brain and the immune system 

(Elenkov et al., 2000). 

This work focuses on interactions between these systems, in particular on 

the effect that the thymus, and as a consequence, the presence of T cells, has 

on neurotransmitter and neurotrophin concentrations in one lymphoid organ, 

the spleen, and in certain brain regions, and on corticosterone blood levels in 

mice. 

1.2. Brief historical background 

Evidence that lymphoid organs are innervated dates back to the end of the 

19th century, when nerves were found to enter into lymph nodes independently 

from blood vessels (Elenkov et al., 2000).  Between 1880 and 1920, Langley, in 

collaboration with Anderson, defined the functional features of the sympathetic 

and parasympathetic systems, showing how differently effector target tissues 

and organs were affected by segmental ventral root stimulation (Janig and 

McLachlan, 1992). In 1898, Otto von Fürth isolated a bioactive compound from 



  

 

2 Introduction 

animal tissue and called this partly purified product “suprarenin“. Three years 

later, Takamine and Aldrich isolated the responsible component in crystalline 

form (Benschop et al., 1996). Takamine named the substance adrenaline, and 

Aldrich described the correct formula (C9H18NO3). Thus, adrenaline (A) was the 

first hormone isolated from tissue more than 100 years ago. In 1907, a by-

product in the synthesis of A (or epinephrine) was identified. This substance, 

which became commercially available as Arterenol in 1908, was in fact NA (or 

norepinephrine), and was formally discovered and isolated from tissue 40 years 

later (Benschop et al., 1996). 

At the end of the 19th century and at the beginning of the last century, while 

Sherrington introduced the concept of chemical neurotransmission (Vizi and 

Labos, 1991), Metchnikoff and Ehrlich developed the concept of cellular and 

humoral immunity (Elenkov et al., 2000). The pronounced leukocytosis 

observed after injection of A into humans was first described by Loeper and 

Crouzon in 1904  (Elenkov et al., 2000). In 1919, the observation of Ishigami 

that the phagocytic activity of leukocytes was decreased during periods of 

marked psychological stress in humans suffering from chronic tuberculosis, 

was probably the first finding to indicate that stress can affect the immune 

system (Elenkov et al., 2000). In 1920s, Metalnikov and Chorine showed that 

immune reactions could be conditioned by a classical Pavlovian paradigm 

(Elenkov et al., 2000). In 1930s, anatomists demonstrated that the thymus 

gland is innervated (for review see Kendall and al-Shawaf, 1991). At this time, 

the thymus was regarded as a rudimentary organ, but, after about 30 years, it 

was discovered that it functions as a primary lymphoid organ. In the 1930s, the 

concept of “stress response” was developed by Hans Selye, who described the 

involution of the thymus in animals exposed to stressors (Elenkov et al., 2000). 

The stress response was called “fight or flight” reaction by the physiologist 

Cannon, who linked the adaptive response to stress with catecholamine 

secretion and actions. Cannon also emphasized the sympathetic “generalized” 

response, or the “wisdom of the body” that occurs during stress, contrasting 

with more “discrete” functions of parasympathetic pathways (Chrousos and 

Gold, 1992; Janig and McLachlan, 1992). At about the same time, Loewi and 

Dale, in pursuing the concept of chemical synaptic transmission, mimicked the 

response of peripheral organs to autonomic nerve stimulation by applying 
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substances that they extracted from the same or other peripheral organs 

(Elenkov et al., 2000).  

In the 1940s, Euler isolated NA from a lymphoid organ, the spleen, and later 

provided evidence that NA is the major neurotransmitter released by 

sympathetic nerves (Axelrod and Kopin, 1969). However, in the following two 

decades, the spleen was often considered only as a “blood reservoir“, and 

studies focused on the role of sympathetic innervation in the regulation of the 

contraction of the splenic capsule in certain mammals, and of vascular 

resistance and blood flow. This led to the assumption at that time, that NA-

containing nerve fibers in the spleen have no other functions. Interestingly, in 

the 1950s, Dougherty and Frank noticed an about 400% increase in blood 

lymphocyte numbers within 10 min after subcutaneous injection of A, and they 

called them “stress-lymphocytes” (Dougherty and Frank, 1953). These cells 

had the morphology of large granular lymphocytes or natural killer (NK) cells, 

whose function and characteristics were described in the late seventies 

(Benschop et al., 1996). 

Only in the 1970s and the 1980s, however, due to the pioneering work of 

Besedovsky and coworkers, it became clear that classic hormones and newly 

described cytokines are involved in a functionally relevant cross-talk between 

the nervous, endocrine, and immune systems (Besedovsky et al., 1986; 

Besedovsky et al., 1975; Besedovsky et al., 1979). They showed that the 

immune response to innocuous antigens induces an increase in plasma 

corticosteroid levels (Besedovsky et al., 1986; Besedovsky et al., 1975; 

Besedovsky et al., 1981), alters the activity of hypothalamic noradrenergic 

neurons (Besedovsky et al., 1983), and the content and turnover rate of NA in 

the spleen (Besedovsky et al., 1979). Also in the 1970s, the presence of 

functional adrenergic receptors on lymphocytes were first described, when it 

was reported that adrenergic agents modulate lymphocyte proliferation 

(Hadden et al., 1970). In the 1970s and 1980s, comprehensive morphological 

studies provided evidence that both primary and secondary lymphoid organs 

are innervated by sympathetic noradrenergic nerve fibers (Bulloch and 

Pomerantz, 1984; Felten and Olschowka, 1987; Fink and Weihe, 1988). 

Furthermore, it was shown that classical behavioral conditioning (Ader and 

Cohen, 1982), stressful stimuli (Chrousos, 1995; Cohen et al., 1991; Keller et 
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al., 1983), or by lesions in specific brain regions (Elenkov et al., 2000) can 

result in alteration of immune functions. Finally, evidence was obtained in 

experimental animals that the susceptibility to autoimmune diseases can be 

modulated by the activity of the HPA axis and the SNS (Sternberg et al., 1989; 

Wilder, 1995) and that stress mediators may exert both pro- and anti-

inflammatory effects (Chrousos, 1995; Karalis et al., 1991). Thus, an explosive 

growth of the research area that studies neuro-endocrine-immune 

communication has occurred in the last two decades (Besedovsky et al., 1983; 

Besedovsky and del Rey, 1996; Besedovsky et al., 1987; Besedovsky et al., 

1979; del Rey et al., 2006). 

1.3. The nervous system 

The nervous system, which controls and integrates the functional activity of 

the organs and bodily systems, enables the body to respond to changes in its 

external and internal environment. Anatomically, the nervous system is divided 

into the central nervous system (CNS), composed by the brain and the spinal 

cord, and the peripheral nervous system (PNS), which consists of cranial, 

spinal, and peripheral nerves. Functionally, it is divided into the somatic nervous 

system, which consists of somatic parts of the CNS and PNS, and the ANS, 

composed by autonomic parts of the CNS and the PNS (Ross, 2011). 

1.3.1.   The brain 

 The brain has the consistency of firm jelly, and therefore is protectively 

encased in a thick bony skull. The brain literally floats in cerebrospinal fluid 

(CSF) secreted by the choroid plexus, which slowly circulates down through the 

four ventricles, up through the subarachnoid space and exits into the cerebral 

veins through the arachnoid villi. The brain has no lymphatic system, so the 

CSF serves as a partial substitute (Zakharov et al., 2003). The dura mater is a 

tough, protective connective tissue that is tightly bound to the skull, and 

encases the cerebral veins. The subarachnoid space, containing CSF, arteries, 

and web-like strands of connective/supportive tissue called the arachnoid 

mater, is found under the dura mater. The pia mater is a permeable membrane 

of collagen, elastin fibers, and fibroblasts on the floor of the subarachnoid 

space, which allows diffusion between the CSF and the interstitial fluid of the 

brain tissue. The pia mater lies on a membrane that is infiltrated with astrocyte 
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processes. The dura mater, the arachnoid mater, and the pia mater are 

collectively referred to as the meninges (Ross, 2011). 

While the brain and CSF are separated by the somewhat permeable pia 

mater, the blood-cerebrospinal fluid barrier and the blood-brain barrier (BBB) 

represent substantial protection for the brain against undesirable substances 

present in the blood. These barriers are very permeable to water, oxygen, 

carbon dioxide, and small lipid-soluble substances. They are also somewhat 

permeable to small electrolytes, and special transport systems exist for some 

specific molecules, such as essential amino acids. The barriers are largely 

constituted by elaborated tight junctions among endothelial cells, which form 

continuous-type capillaries, and their integrity depends on astrocytes. The BBB 

creates a protected environment for the brain, wherein certain molecules can 

perform functions independent of those they perform in the rest of the body. 

This is particularly important for the neurotransmitters serotonin (5-HT) (which is 

highly concentrated in platelets and the intestine) and NA (which affects blood 

pressure and metabolism). All the amino acids that function as 

neurotransmitters are non-essential.  This means that they can be 

manufactured in the brain, without the need of being supplied from outside the 

brain.  

The brain is subdivided into the cerebrum, cerebellum, and brainstem, which 

is connected with the spinal cord. The hypothalamus, hippocampus, and 

brainstem are important brain parts in vertebrates. Only these structures are 

briefly mentioned below since these are the brain regions studied in this work. 

The hypothalamus is a very small and complex region at the base of the 

forebrain, located below the thalamus, and just above the brainstem.  It is 

composed of numerous small nuclei with a variety of functions. One of the most 

important functions of the hypothalamus is to link the nervous system to the 

endocrine system via the pituitary gland. The hypothalamus is responsible for 

certain metabolic processes and other activities of ANS. It synthesizes and 

secretes releasing hormones, which in turn stimulate or inhibit the secretion of 

pituitary hormones. Furthermore, it regulates sleep and wake cycles, eating and 

drinking, and circadian rhythms.  

The hippocampus is found only in mammals. However, the medial pallium, 

the area from which it derives, has counterparts in all vertebrates. Humans and 
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other mammals have two hippocampi, one on each side of the brain. It contains 

two main interlocking parts: Ammon’s horn and the dentate gyru (DG). There is 

evidence that this part of the brain is involved in learning and memory, and 

plays important roles in the consolidation of information, from short-term to long-

term memory, and spatial navigation.  

The brainstem is the posterior part of the brain, continuous with the spinal 

cord. It is usually described as including the medulla oblongata, pons, and 

midbrain. It provides the main motor and sensory innervation to the face and 

neck via the cranial nerves. The brainstem also plays an important role in the 

regulation of cardiac and respiratory functions, and eating.  It is pivotal in 

maintaining consciousness and regulating the sleep cycle.  

1.3.2. The autonomic nervous system  

The ANS forms the major efferent component of the PNS and regulates the 

function of most tissues and organs, with the exception of skeletal muscles 

(Tsigos and Chrousos, 2002). The ANS has three divisions: the SNS and the 

parasympathetic nerve system, which originate in the CNS (Tsigos and 

Chrousos, 2002), and the enteric system, which lies within the wall of the 

gastrointestinal tract. While the functioning of most body systems is modulated 

by the SNS and the parasympathetic nerve systems (Gilbey and Spyer, 1993), 

the enteric system regulates intestinal functions, although it is also affected by 

projections from the SNS and the parasympathetic nerve system (Elenkov et 

al., 2000). 

Most sympathetic preganglionic fibers terminate in ganglia located in the 

paravertebral chains on either side of the spinal column, and the remaining in 

prevertebral ganglia, such as the superior cervical, the celiac, and the superior 

and inferior mesenteric ganglia. Post-ganglionic sympathetic fibers, originating 

in the paravertebral and prevertebral ganglia, run to the organs target of this 

type of innervation. The preganglionic neurons are cholinergic, whereas the 

postganglionic neurons are mostly noradrenergic and release NA. The adrenal 

medulla can be considered as a modified sympathetic ganglion, in which the 

postganglionic nerve cells do not leave the medulla. They release A and NA at 

a ratio of approximately 4:1. Thus, the principal end products of the SNS are 

catecholamines (Elenkov et al., 2000). 

http://en.wikipedia.org/wiki/Sleep_cycle
http://en.wikipedia.org/wiki/Adrenal_medulla
http://en.wikipedia.org/wiki/Adrenal_medulla


  

 

7 Introduction 

1.3.3. The hypothalamus-pituitary-adrenal axis 

Interactions between the hypothalamus, the pituitary gland, and the adrenal 

glands constitute a complex neuro-endocrine axis that is critical for the 

integration and coordination of important physiological functions and for the 

maintenance of homeostasis (Fig. 1). The hypothalamus controls the secretion 

of adrenocorticotrophic hormone (ACTH) from the anterior pituitary by 

secreting corticotrophin-releasing hormone (CRH), a 41 amino acid peptide 

first isolated in 1981 by W. Vale (Vale et al., 1981). Arginine vasopressin 

(AVP), also synthetized in the hypothalamus, acts as a synergistic factor with 

CRH in stimulating ACTH secretion (Lamberts et al., 1984). In turn, ACTH 

stimulates the secretion of glucocorticoid hormones by the adrenal cortex (Vale 

et al., 1981). 

Under basal conditions, both CRH and AVP synthetized by parvocellular 

neurosecretory neurons are secreted in the portal system with a frequency of 

about two to three episodes per hour (Engler et al., 1989). In humans, the 

secretion of CRH and AVP increases in the early morning, resulting finally in 

increased ACTH and cortisol secretary bursts in the general circulation 

(Chrousos and Gold, 1998; Horrocks et al., 1990). CRH and AVP secretion 

markedly increases during acute stress, resulting in increased ACTH and 

cortisol secretion (Tsigos and Chrousos, 1994). Depending on the type of 

stress, other factors such as AVP of magnocellular neuron origin, angiotensin 

II, and various cytokines and lipid mediators of inflammation act on the 

hypothalamus, pituitary or adrenal glands, potentiating the activity of the HPA 

axis (Holmes et al., 1986; Phillips, 1987). Other factors may also participate in 

the regulation of cortisol secretion, such as hormones and cytokines, either 

originating from the adrenal medulla or from the systemic circulation, as well as 

neuronal information from the autonomic innervation of the adrenal cortex 

(Hinson, 1990; Ottenweller and Meier, 1982). 

The final effectors of the HPA axis are glucocorticoids, which contribute to 

control body homeostasis and the response of the organism to stressful 

situations. In turn, they play a key regulatory role on the termination of the 

stress response by exerting a negative feedback at hypothalamic and pituitary 

gland levels, thus inhibiting further ACTH release. This feedback limits the 

duration of the tissue exposure to glucocorticoids, thus minimizing the 

http://en.wikipedia.org/wiki/Parvocellular_neurosecretory_neurons
http://en.wikipedia.org/wiki/Parvocellular_neurosecretory_neurons
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catabolic, anti-reproductive, and immunosuppressive effects of these hormones 

(Tsigos and Chrousos, 2002). 

 

Fig. 1. The hypothalamus-pituitary- adrenal axis. CRH and AVP are secreted in the portal 

system, resulting finally in ACTH and cortisol secretory bursts in the general circulation. 

Glucocorticoids, in turn, exert a negative feedback (-ve) and inhibit further CRH, AVP, and 

ACTH release. 

 

Noradrenergic neuronal fibers in the hypothalamus, which mainly arise from 

cell bodies in brainstem nuclei, modulate the activity of efferent pathways to the 

pituitary and to descending brainstem and spinal cord regions associated with 

the ANS. Since cell bodies producing CRH are localized in the paraventricular 

nucleus (PVN) of the hypothalamus, NA changes in the PVN during immune 

response (Carlson et al., 1987) are important for the activation of the neuro-
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endocrine axis (Besedovsky et al., 1986). In general, the activation of the HPA 

axis inhibits inflammatory mechanisms and regulates both the extent and the 

specificity of an ongoing immune response (Sapolsky et al., 2000). On the 

other hand, immune cells release products that have the capacity to affect 

central and peripheral noradrenergic mechanisms (Besedovsky et al., 1983; 

Kabiersch et al., 1988), and to induce endocrine changes (Besedovsky et al., 

1986; Malarkey and Mills, 2007) that are relevant for immunoregulation 

(Elenkov et al., 2000; Sapolsky et al., 2000).  

1.3.4. Neurotransmitters  

Neurons communicate with each other by releasing chemical messengers, 

termed neurotransmitters. More than 100 different neurotransmitters are known 

today, which result in a large diversity in chemical signaling between neurons. 

Neurotransmitters are divided into large transmitter molecules composed of 3 to 

36 amino acids, and small transmitter molecules. Large transmitter molecules 

include neuropeptide neurotransmitters, such as CRH, -endorphin, Substance 

P, neurotensin, somatostatin, and AVP. Acetylcholine, amino acid 

neurotransmitters, such as glutamate, GABA, glycine, and aspartate, the 

biogenic amines, such as dopamine (DA), NA, 5-HT, and histamine, are among 

the small molecule neurotransmitters (Purves D, 2008).  

Only the biogenic amines NA, DA and 5-HT, which are active in the brain 

and in the PNS, are briefly mentioned below since these are the 

neurotransmitters studied in this work.  

All catecholamines derive from tyrosine (Tyr), a non-essential amino acid that 

can be synthesized in the liver from phenylalanine by the enzyme phenylalanine 

hydroxylase. However, Tyr cannot be synthesized in the brain, and it must 

therefore enter the brain by a large neutral amino acid transporter, which also 

transports phenylalanine, tryptophan (Trp), methionine, and the branch-chained 

amino acids. All these amino acids compete for the transporter, so the amount 

of Tyr entering the brain can be limited by the presence of a large quantity of 

one of the other amino acids in the blood stream. Tyr can be converted to 

dihydroxyphenylalanine (DOPA) by a reaction requiring tetrahydrobiopterin as 

cofactor, oxygen as co-substrate, and the enzyme tyrosine hydroxylase (TH), 

the first and rate-limiting step in catecholamine synthesis (Purves D, 2008). 

DOPA is further converted to DA, which is finally converted to NA by dopamine-
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β-hydroxylase (DBH) (Elenkov et al., 2000). DA and NA are transported into 

synaptic vesicles by the vesicular monoamine transporter (VMAT). In the 

adrenal medulla, NA can be converted to A by the enzyme phenylethanolamine 

N-methyltransferase (PNMT) (Purves D, 2008) (Fig. 2). TH- and DBH-

immunostaining are often used as specific markers of noradrenergic innervation 

in various organs. 

DA is found in several brain regions, and the corpus striatum is the major 

DA-containing area. This area receives major inputs from the substantia nigra 

and plays an essential role in the coordination of body movements (Purves D, 

2008). Small amounts of DA are found in peripheral organs, for example in 

mast cells and secretory cells of the gastrointestinal tract, and in the fluid-filled 

spaces of organs, e.g., the lumen of the small intestine.  DA is also found in 

peripheral organs that receive sympathetic innervation. This DA may serve a 

neurotransmitter function, activating DA-receptor-mediated events in the organ, 

and could be released into the extracellular space and potentially into the 

bloodstream during sympathetic activation (Snider and Kuchel, 1983). 

NA in the brain is found mostly in the locus coeruleus, a nucleus in the pons 

that projects diffusely to a variety of forebrain targets. This brainstem nucleus 

influences sleep and wakefulness, attention, and feeding behavior. NA is also 

found in the neocortex, hippocampus, hypothalamus, and cerebellum (Purves 

D, 2008). In the periphery, NA is released from postganglionic neurons of the 

SNS, and act as transmitter in the tissues. As already mentioned, the adrenal 

medulla can also release NA into the blood, thus acting as a hormone. 

A is present in the brain at lower levels than the other catecholamines. A-

containing neurons in the CNS are present in the lateral segmental and in the 

medulla, and project to the hypothalamus and thalamus. The function of these 

neurons is not known (Fuller, 1982; Mefford, 1987; Purves D, 2008). In the 

periphery, it is produced in the chromaffin cells of the adrenal medulla from NA 

and is also release into the blood. 

http://en.wikipedia.org/wiki/Postganglionic_neuron
http://en.wikipedia.org/wiki/Sympathetic_nervous_system
http://en.wikipedia.org/wiki/Adrenal_medulla
http://en.wikipedia.org/wiki/Adrenal_medulla
http://en.wikipedia.org/wiki/Hormone
http://en.wikipedia.org/wiki/Medullary_chromaffin_cell
http://en.wikipedia.org/wiki/Adrenal_medulla
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Fig. 2. Catecholamine biosynthetic pathway. The amino acid tyrosine is the precursor for 

all three catecholamines. The first step in this pathway is catalyzed by tyrosine hydroxylase, the 

rate-limiting step. 

 

Serotonin is an indolamine, and its name derives from “serum” and “tonic” 

since it was first isolated from the serum as a vasoconstrictory substance. 

Later, it was found primarily in groups of neurons in the raphe region of the 

pons and upper brainstem, which have widespread projections to the forebrain. 

5-HT is synthesized from the essential amino acid Trp. The first and rate-

limiting step in 5-HT synthesis is catalyzed by the enzyme tryptophan 

hydroxylase (Purves D, 2008). 5-HT in the brain is involved in the control of 

sleep, thermoregulation, appetite, addictive behaviors, cognitive abilities, 

learning, memory, mood, aggression and anxiety. In the periphery, 5-HT is 

mainly located in the enterochromaffin cells in the gut, where it regulates 

intestinal movement. When it is secreted from these cells, it can reach other 

tissues via the blood, where it is taken up by platelets and stored, and 

contributes to hemostasis. 
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1.3.5. Neurotrophins and their receptors 

 

Neurotrophic factors are a group of proteins that play an important role in the 

development and maintenance of the nervous system (Barde, 1989). The first 

neurotrophic factor to be characterized was nerve growth factor (NGF), which 

is essential for neuronal growth and differentiation during development, and 

also supports the survival and maintenance of sympathetic, neural crest-

derived sensory and septal cholinergic neurons during adulthood (Leibrock et 

al., 1989; Levi-Montalcini, 1987). The second factor of the NGF family 

described was brain-derived neurotrophic factor (BDNF), which was discovered 

about two decades ago (Barde, 1989). BDNF supports placode-derived 

sensory, retinal ganglion, dopaminergic and cholinergic neurons of the 

substantia nigra and forebrain (Alderson et al., 1990; Hyman et al., 1991; 

Lindsay et al., 1985; Rodriguez-Tebar et al., 1989). Neurotrophins-3 (NT-3), 

and NT-4/5 are other NGF homologues, structurally related to NGF with 55%-

65% amino acid sequence homology (Berkemeier et al., 1991; Ernfors et al., 

1990; Hallbook et al., 1991; Hohn et al., 1990; Ip et al., 1992). It has also been 

reported that the NT-3 knockout mice develop severe deficits in the peripheral 

sensory and SNS (Ernfors et al., 1995). Studies performed on adult lung 

biopsies indicate that neurotrophins and their receptors are expressed by a 

variety of lung resident cells. Constitutive expression of NGF, BDNF and NT3 

on airway epithelial cells has been documented (for review see Renz and Kilic, 

2012) 

Neurotrophins also play a crucial role in the survival and differentiation of 

visceral neurons during development (Huang and Reichardt, 2001; Snider, 

1994). They are also expressed in visceral targets of adult rodents and humans 

(Katoh-Semba et al., 1996; Katoh-Semba et al., 1989; Lommatzsch et al., 1999; 

Timmusk et al., 1993; Yamamoto et al., 1996; Zhou and Rush, 1993), and 

retrogradely transported in adult visceral sensory and motor neurons (Helke et 

al., 1998). There is evidence that the levels of NGF in several tissues that are 

target of sympathetic neurons correlate with the density of sympathetic 

innervation (Korsching and Thoenen, 1983),  and that these tissues are the 

major source of NGF required by sympathetic neuron survival and functioning 

(Korsching and Thoenen, 1985). Although originally isolated from the 

submaxillary gland, NGF is synthesized by several cell types, including smooth 
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muscle cells, fibroblasts, and neurons, and it was the first neurotrophin shown 

to be expressed also by immune cells (T and B lymphocytes, macrophages, 

and mast cells) (Besser and Wank, 1999; Kerschensteiner et al., 1999; 

Kerschensteiner et al., 2003).  BDNF, which was previously thought to be 

primarily present in neurons in the CNS, is also produced by muscle cells and 

by developing and mature sympathetic neurons (Causing et al., 1997). More 

recently, it has been shown that BDNF is also expressed in immune cells 

(Besser and Wank, 1999; Kerschensteiner et al., 1999; Kerschensteiner et al., 

2003), and that it can be produced in vitro by all major immune cell types, 

including CD4+ and CD8+ T lymphocytes, B lymphocytes, and monocytes 

(Kerschensteiner et al., 2003). Thus, neurotrophins can act as growth factors 

with a wide spectrum of functions outside the nervous system, such as 

modulation and regulation of immune functions (Aloe, 2001; Nockher and Renz, 

2003; Vega et al., 2003). There is evidence suggesting that NGF acts as a 

cytokine-like factor in the development and function of the immune system. It 

has already been described that NGF affects mast cell, B cell, T cell, 

macrophage and eosinophil functions (Braun et al., 1998; Nassenstein et al., 

2003; Nilsson et al., 1997; Torcia et al., 2001), but there is much less 

information available regarding the role of BDNF in the immune system 

(Schuhmann et al., 2005).  

Two classes of receptors for neurotrophins have been described: low affinity 

receptors with similar characteristics on target cells (p75) (Chao et al., 1986; 

Hallbook et al., 1991; Hempstead et al., 1989), and high affinity receptors, 

which are members of the Trk proto-oncogene family and have tyrosine kinase 

activity. Trk A binds NGF, NT-3 and NT-4/5 with high affinity (Berkemeier et al., 

1991; Cordon-Cardo et al., 1991; Hempstead et al., 1991; Klein et al., 1991) 

and is expressed on neural crest-derived cells (Martin-Zanca et al., 1990). Trk 

B binds BDNF, NT-3, NT-4/5 (Berkemeier et al., 1991; Soppet et al., 1991; 

Squinto et al., 1991) and is expressed in the embryonic and adult nervous 

system (Klein et al., 1990; Klein et al., 1989). Finally, Trk C binds only NT-3 

(Lamballe et al., 1991; Zhou and Rush, 1993).  T lymphocytes express both 

types of Trk B receptors (Besser and Wank, 1999), the full length Trk Bgp145 

receptor and the truncated Trk Bgp65 receptor, which lacks the intracellular 

signal transduction domain (Huang and Reichardt, 2003). Within the context of 
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this work, it is interesting to mention that the pattern of Trk B expression 

depends on the developmental stage of T cells (Maroder et al., 1996; Maroder 

et al., 2000; Schuhmann et al., 2005). 

1.4. Lymphatic tissues and organs 
 

The bone marrow, where B cells are produced in most mammals, and the 

thymus, where hematopoietic progenitors derived from the bone marrow mature 

and develop into T cells, are the main primary lymphoid organs in mammals. 

The thymus is composed of two lobes located in the superior mediastinum and 

anterior to the heart and great vessels. The thymus is fully formed and 

functional at birth, but most of the lymphatic tissue is replaced by adipose tissue 

at the time of puberty, when T cell differentiation and proliferation decrease. 

This processes is called thymic involution (Ross, 2011), but T lymphopoiesis 

continues throughout adult life.  

  The lymph nodes, the spleen, and the mucosa-associated lymphoid tissue 

(MALT) constitute the main secondary lymphoid organs, where specific immune 

responses to antigens derived from the tissues, blood, and the mucosa, 

respectively, take place. 

Lymph nodes are small, bean-shaped, and encapsulated lymphatic organs. 

They are located along lymphatic vessels and filter the lymph, which percolates 

on its way to the blood vascular system (Ross, 2011). The spleen is the largest 

lymphatic organ. It is located in the upper left quadrant of the abdominal cavity 

and has a rich blood supply. It contains large numbers of lymphocytes, 

macrophages and dendritic cells, and a meshwork of reticular cells and fibers 

and specialized vascular spaces or channels, which allow the spleen to monitor 

the blood immunologically (Ross, 2011). 

The spleen consists of two functionally and morphologically different 

regions: the white and the red pulp. The white pulp contains mostly 

lymphocytes, while the red pulp is made up of several cells types, but mainly 

red blood cells.  

The spleen is encapsulated by a dense connective tissue. Trabeculae 

extend from the capsule into the parenchyma of the organ. On the medial 

surface of the spleen is located the hilum, the site for the passage of the 

splenic artery and vein, nerves, and lymphatic vessels. Lymphatic vessels 
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originate in the white pulp near the trabeculae, and they constitute a route for 

lymphocytes to leave the spleen. The branches of the splenic central artery 

course through the capsule and trabeculae and enter the white pulp. The 

periarteriolar lymphatic sheath (PALS) is formed by lymphocytes aggregated 

around the central artery. PALS resemble a lymphatic nodule and consist of B 

lymphocytes surrounded by T lymphocytes, which are the main cell type in the 

PALS (Ross, 2011) . 

1.5. Sympathetic innervation of lymphoid organs 

The ANS innervates most organs of the body, although lymphoid organs are 

predominantly innervated by the SNS (Madden et al., 1995). Histofluorescense 

studies in the 1960s demonstrated that noradrenergic nerves fibers are present 

in lymphoid organs (Bulloch and Pomerantz, 1984; Dahlstroem and 

Zetterstroem, 1965; Felten et al., 1985; Giron et al., 1980; Kendall et al., 1988; 

Reilly et al., 1979; Williams and Felten, 1981; Zetterstrom et al., 1973). More 

recently, specific immunohistochemistry for TH and DBH were used to detect 

and confirm the presence of noradrenergic innervation in lymphoid tissues 

(Felten and Olschowka, 1987; Vizi et al., 1995; Weihe et al., 1991). The 

available data about the innervation of lymphoid organs in humans is relatively 

scarce, since most of the current knowledge is based on studies in rodents 

(Elenkov et al., 2000; Felten et al., 1985; Felten et al., 1988; Weihe et al., 

1991).   

The SNS innervates both the smooth muscle of the vasculature and the 

parenchyma of specific compartments in primary and secondary lymphoid 

organs (Felten et al., 1985). Sympathetic nerve fibers and their varicosities 

travel in plexuses that run adjacent to smooth muscle cells of the blood vessels 

in lymphoid organs (Felten et al., 1985), and can therefore control blood flow 

and influence lymphocyte traffic (Elenkov et al., 2000). However, noradrenergic 

fibers are not only associated with blood vessels, but are also present in the 

parenchyma of lymphoid organs (Felten et al., 1985; Vizi et al., 1995). Thus, 

perivascular and parenchymal noradrenergic nerve fibers release NA, which 

can affect lymphoid cell functions and exert an immunomodulatory role (Elenkov 

et al., 2000). Zones containing T cells, macrophages and plasma cells are richly 

innervated by noradrenergic fibers, while the nodular and follicular zones in 
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which mainly developing and mature B cells are found, are poorly innervated 

(Felten et al., 1985). Thus, immature and mature thymocytes, T lymphocytes, 

macrophages, mast cells (Blennerhassett and Bienenstock, 1998), plasma 

cells, and enterochromaffin cells appear to be the main targets of the 

noradrenergic innervation. Noradrenergic innervation of both perivascular and 

parenchymal zones of lymphoid organs, particularly in the thymus, are closely 

associated with mast cells, suggesting that there is a possible humoral role for 

NA in the development of T cells in the thymus. Since noradrenergic fibers 

appear early in development, and their arrival generally precedes the 

development of the cellular compartment of the immune system, it has been 

proposed that NA plays a role in the maturation of the immune system (Elenkov 

et al., 2000). The innervation of the spleen is described in more detail below, 

since this secondary lymphoid organ was studied in this work. 

Approximately 98% of the splenic nerve fibers are sympathetic (Klein et al., 

1982). These fibers enter the spleen together with the splenic artery and travel 

with the vasculature in the plexuses (Williams and Felten, 1981). They reach 

the white pup from both the vascular and trabecular plexuses and continue 

mainly along the central artery and its branches. From these plexuses, 

noradrenergic varicosities radiate into the PALS (Williams and Felten, 1981). 

The highest density of noradrenergic fibers in the spleen is associated with the 

central artery in the white pulp and the PALS; dense linear arrays of 

varicosities extend away from the periarteriolar plexus and travel into the 

parenchyma (Felten et al., 1985; Williams and Felten, 1981). Sympathetic 

nerve fibers are mainly present in the T-dependent areas, but also in the 

marginal zone and marginal sinus, where macrophages and B cells reside. 

These are the sites where lymphocytes can directly contact noradrenergic 

fibers (Felten et al., 1985; Felten and Olschowka, 1987). Sympathetic nerve 

fibers sparsely innervate the B cell-containing follicles (Williams and Felten, 

1981). The red pulp also contains scattered sympathetic fibers associated with 

the plexuses along trabecular and surrounding tissues (Elenkov et al., 2000). 

Activated B cells migrate to the red pulp of spleen although some exit the 

lymphoid tissue to migrate to the bone marrow or epithelial surfaces. A small 

number of activated B cells are also present in the T-dependent zone. These B 

cells can migrate back to the follicle to differentiate into germinal center cells. 
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Further migration events occur within the germinal center during the processes 

of selection and affinity maturation (Cyster, 2005). It is worth noting that the 

spleen is devoid of parasympathetic innervation (Bellinger et al., 1993) 

1.6. Effects of the immune response on the nervous system   
 

It is at present well established that immune cells produce soluble mediators 

that can influence the CNS and modify its activity in different ways. For 

example, these mediators can affect the local release of neurotransmitters and 

change neuronal plasticity, sleep patterns, thermoregulation, neurogenesis, and 

behavior (Kin and Sanders, 2006; Ziv et al., 2006). 

Although the brain was originally considered as an immunologically 

privileged site to which immune cells do not have access under physiological 

conditions, some researchers believe now that the arm of the immune system 

to the CNS may be not completely blocked by the endothelial BBB (Engelhardt 

and Coisne, 2011; Kleine and Benes, 2006). Others groups reported T cells 

trafficking within the meninges and choroid plexus epithelia but not into the 

brain parenchyma (Carrithers et al., 2000; Carrithers et al., 2002), although T 

cells can cross BBB and migrate into brain under pathological conditions 

(Prendergast and Anderton, 2009; Wilson et al., 2010).  A well-established fact 

is that immune-derived cytokines can influence the CNS directly or indirectly. 

Although it is still not completely clear how cytokines can reach the brain, 

several mechanisms have been proposed, including 1) a saturable transport 

mechanism or direct entry via the circumventricular organs, which lack the 

BBB, 2) stimulation of the release of inflammatory mediators at the BBB, and 3) 

activation of afferent neurons, mainly of the vagus nerve (Banks et al., 2002; 

Dantzer et al., 2000; Guyon et al., 2008; Hosoi et al., 2002; Matsumura and 

Kobayashi, 2004) (for review see Kin and Sanders, 2006). A very interesting 

find also is that cytokines can induce their own production in several organs, 

including the brain (Besedovsky and del Rey, 2011). 

Cytokines in the CNS exert a variety of neuromodulatory functions. 

Noteworthy is the effect of pro-inflammatory mediators, especially interleukin-1 

(IL-1), on neuronal activity in the hypothalamus, which can be both stimulatory 

and inhibitory. Through the stimulation of the paraventricular nucleus in the 

hypothalamus, this cytokine can, for example, affect thermoregulation, food 
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intake, and the functioning of the HPA axis (Besedovsky and del Rey, 1996, 

2011). Furthermore, immune mediators can also influence synaptic plasticity. 

IL-1β and interleukin-6 (IL-6), for example, can modulate long-term potentiation 

in the hippocampus in an opposite way, and also affect learning and memory 

(Balschun et al., 2004; Schneider et al., 1998; Yirmiya and Goshen, 2011). 

Cytokines can also affect the metabolism of different neurotransmitters in the 

CNS. For example, IL-1β induces a reduction in NA content in the 

hypothalamus, hippocampus, brainstem and spinal cord. IL-1β and IL-6 can 

stimulate the metabolism of DA in the striatum, hippocampus and prefrontal 

cortex, and reduce of 5-HT in the hippocampus (Besedovsky and del Rey, 

1996). 

Pro-inflammatory cytokines, mainly IL-1β and tumor necrosis factor α 

(TNFα), activate autonomic centers in the hypothalamus and brainstem, 

increasing the sympathetic tone and NA concentration in the systemic 

circulation, which influence different vegetative functions. However, this 

cytokine has different effects on the SNS in the peripheral organs (Rogausch et 

al., 2004; Rogausch et al., 1995; Rogausch et al., 2003). Since, acting at post-

ganglionic levels, it can directly inhibit the local release of NA from the nerve 

endings (Rogausch et al., 1997). IL-6, IL-2 and TNFα can also inhibit NA 

release. This effect, which can be achieved through the effect on 

autoreceptors, serves to fine-tuning neurotransmitter release (Straub et al., 

1998).  

The initial activation of the SNS during the immune response to innocuous 

antigens is followed by a marked decrease in splenic NA concentration. 

Conversely, reduced immune activity caused either by the lack of mature T cells 

in athymic mice or by reduced antigenic challenge in germ-free rats results in 

increased sympathetic activity in lymphoid organs (for review see del Rey and 

Besedovsky, 2008). Within the context of this work, it is relevant to mention that 

it has been shown that T cells or their products can affect the sympathetic 

innervation of the spleen. Sympathetic innervation is increased in the spleen of 

young mice that genetically lack a thymus, as evaluated by increased NA 

concentration and density of noradrenergic nerve fibers, and that these 

alterations can be normalized by thymus transplantation or T cell inoculation at 

the birth (Besedovsky et al., 1987). 
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The large amount of reports available showing in vitro effects of immune-

derived products on neural cells are not included in these comments. Only in 

vivo work is included here since it may represent a more physiological 

approach to study immune-neural interactions.  

1.7. Effects of the nervous system on the immune response  

The SNS exerts numerous immunomodulatory functions in lymphoid organs. 

Catecholamines are potent immune modulators that can both enhance and 

inhibit the activity of immune cells (for review see Elenkov et al., 2000). The 

immunoregulatory effects of catecholamines depend on different factors such 

as the type of immune response in course, the strength and duration of the 

adrenergic stimulus, and the subtype of stimulated immune cells and its degree 

of activation and differentiation (Elenkov et al., 2000; Kin and Sanders, 2006). 

The immunomodulatory effect of SNS mediators is mainly exerted by 

stimulation of β2-adrenoreceptors, which are expressed by B lymphocytes, 

CD4+ and CD8+ T cells, innate immunity cells, and Th1 helper cells (Nance and 

Sanders, 2007). It is important to mention that stimulated cells express more -

receptors than resting cells, also that there is a difference in the number of 

receptors expressed by CD4+ and CD8+ T cells. Furthermore, there is also 

functional evidence of the presence of -receptors in lymphoid cells (for review 

see Elenkov et al., 2000). 

Sympathetic neurotransmitters, and in particular NA, can affect nearly all 

immune parameters evaluated so far, including the production of cytokines and 

immunoglobulins, antigen presentation, the expression co-stimulatory and 

adhesion molecules, and the activation, clonal expansion and deletion of 

lymphocytes (Besedovsky and del Rey, 1996; Kohm and Sanders, 2000). NA 

can suppress cellular immunity by inhibiting the activity of Th1-cells, 

macrophages, and NK cells, and inhibiting the production pro-inflammatory 

cytokines, such as TNFα, IL-1β and interferon γ (INFγ). On the other hand, NA 

can promote humoral immune functions by increasing the activity of B 

lymphocytes and, indirectly, the release of anti-inflammatory cytokines, such as 

IL-10 and transforming growth factor β (TGFβ) (Besedovsky and del Rey, 

1996). NA can also inhibit the expansion of antigen-activated T cells. The 

stimulation of β2-adrenoreceptors and consequent increased levels of cAMP, 
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reduce the production and secretion of IL-2 and the expression of IL-2 receptors 

(Feldman et al., 1987; Ramer-Quinn et al., 2000). It has also been shown that 

NA can induce lymphoid cells apoptosis (Del Rey et al., 2003). This evidence 

indicates that sympathetic neurotransmitters can influence the immune 

response. Another type of evidence also supports this possibility. For example, 

chemical denervation at birth results in an increased number of 

immunoglobulin-secreting cells in the spleen of adult, non-overtly immunized 

mice. These results strongly suggest that there is a permanent increase in the 

activity of splenic B lymphocytes in mice deprived of sympathetic innervation, 

since neonatal administration of 6-hydroxydopamine (6-OH-DA) results in 

permanent destruction of sympathetic nerve endings. Furthermore, other results 

show enhancing effects of sympathectomy during adulthood on antibody-

forming cells in the spleen during a specific immune response. Since 6-OH-DA 

administered at birth not only interferes with the sympathetic innervation of 

peripheral organs but also with central noradrenergic neurons, these studies 

reveal the relevance of central and autonomic mechanisms in immunoregulation 

under basal and activated conditions (for review see Besedovsky and del Rey, 

1996).                

1.8. Neurotrophins and the immune response 
 

Neurotrophins, which play a crucial role in neuronal development, survival and 

function in the peripheral and CNS (Snider, 1994), can also affect the immune 

system. As mentioned, NGF was the first neurotrophin shown to be expressed 

by immune cells (T and B lymphocytes, macrophages, and mast cells). B 

lymphocytes express the two types of NGF receptors, P75NTR and Trk A, and 

can therefore respond to NGF stimulation (Besser and Wank, 1999). BDNF, 

which was previously thought to be primarily expressed in the nervous system, 

can be produced in vitro by essentially all major types of immune cells, 

including CD4+ and CD8+ T lymphocytes, B lymphocytes, and monocytes 

(Kerschensteiner et al., 2003). Comparison of mRNA splice variants in the 

immune system and the CNS revealed that whereas all splice variants are 

expressed in the CNS, only mBDNF3 mRNA is detectable in immune cells, in 

primary and secondary lymphoid organs, and in purified T cells and 

macrophages. mBDNF 3 mRNA seems to be differentially regulated in the CNS 
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and the immune system after activation, opening perspectives for selective 

therapeutic manipulation (Kruse et al., 2007). There are also reports indicating 

the presence of NT3 and NT4/5 on immune cells (Besser and Wank, 1999; 

Moalem et al., 2000). It therefore appears likely that neurotrophins can also be 

involved in the bidirectional crosstalk between the nervous and the immune 

systems. It has been recently reported that immunoreactive NGF is strongly 

and widely distributed around the arteries and PALS in the spleen of severe 

combined immunodeficiency (SCID) mice, which are deficient in functional T 

and B cells. These results suggest that NGF production is inhibited by immune 

cells in normal mice (Kannan-Hayashi et al., 2008). On the other hand, 

activated CD4+ T cell clones express Trk, and also synthesize and release 

biologically active NGF. These results suggest that NGF, as an autocrine 

and/or paracrine factor, may be involved in the development and regulation of 

immune responses (Ehrhard et al., 1993). There are several in vivo studies 

indicating that NGF synthesis is up-regulated during an inflammatory process, 

and that inflammation and tissue damage generate mediators that control the 

local concentration of NGF (De Simone et al., 1996; Safieh-Garabedian et al., 

1995; Stanzel et al., 2008). For example, inflammatory cytokines such as IL-1β, 

TNFα and IL-6 are able to modify the basal production of NGF and induce its 

synthesis in a variety of cell types and tissues (Bandtlow et al., 1990; Manni 

and Aloe, 1998; Marz et al., 1999; Takaoka et al., 2009). 

The expression of BDNF is decreased in the hippocampus of SCID mice and 

of transgenic mice expressing a T cell receptor that recognizes ovalbumin, but 

increased in the hippocampus of transgenic mice that recognize myelin basic 

protein. These results suggest that immune cells play a very important role in 

the expression of BDNF in the hippocampus (Ziv et al., 2006). On the other 

hand, BDNF participates in several hippocampal functions, including spatial 

learning and memory (Mizuno et al., 2000), and adult neurogenesis (Scharfman 

et al., 2005). It is also interesting to mention that B cells numbers are reduced in 

BDNF-/- mice, suggesting that this neurotrophin may play an important role in B 

cell development (Schuhmann et al., 2005). Using a conditional knockout model 

with inducible deletion of BDNF, it has been shown that clinical symptoms and 

structural damage are increased when BDNF is absent during the initial phase 

of clinical EAE (Lee et al., 2012).  

http://en.wikipedia.org/wiki/Myelin_basic_protein
http://en.wikipedia.org/wiki/Myelin_basic_protein
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1.9. Athymic (nude) mice as an animal model  
 

In 1966, Flanagan first described a spontaneous mutation resulting in “nude” 

mice that was found in the animal colony of the Ruchill Hospital, Glasgow, 

United Kingdom (Flanagan, 1966; Segre et al., 1995). Mutations in the nude 

locus produce the remarkable pleiotropic phenotype of hairlessness and 

athymia (Flanagan, 1966; Pantelouris, 1968). Genetic studies demonstrated 

that the nude mutation segregates as a single autosomal locus on mouse 

chromosome 1L (Flanagan, 1966), and is inherited in a classical Mendelian 

recessive manner (Flanagan, 1966; Pantelouris, 1973). The nomenclature to 

design nude mice has changed several times since its discovery. The most 

actual one was introduced in 2000 by Kaestner and colleagues when the gene 

responsible for the mutation was identified as a member of the Fox gene 

family, and the nomenclature was updated to Foxn1n (Kaestner et al., 2000). 

Animals homozygous for Foxn1n mutation remain hairless throughout life, 

have a subnormal growth rate, and reduced fertility (Pantelouris, 1973), and it 

has been shown that the lack of the thymus affects sexual maturation 

(Besedovsky and Sorkin, 1974).  Because of the athymia, nude mice lack T 

lymphocyte functions (Loor and Kindred, 1973; Raff, 1973), and it has been 

shown that IL-2, a product of activated T cells, induces specific cytotoxic T 

lymphocytes and helper T cells in these mice (Gillis et al., 1979; Wagner et al., 

1980). Later, other studies suggested that athymic nude mice have a small 

number of functional post-thymic T cells (Ikehara et al., 1984).  

Athymic nude mice have a highly impaired immune system, and they are 

extensively used in cancer research for the transplant of tumors and tissues 

from other species (Segre et al., 1995). These mice offer an excellent model for 

the purpose of the work reported here, namely to study the relevance of the 

thymus, and as consequence of T lymphocytes, for the development of the 

central and peripheral nervous systems because immunocompetence can be 

reversed by thymus implantation (Loor and Kindred, 1974). 
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1.10. Aims  
 

 As described above, it is at present well established that there are 

physiological interactions between the nervous, endocrine and immune 

systems. These interactions are based on a complex network, in which 

immune-derived products, neurotransmitters, neurotrophins, and hormones 

function as mediators between these systems and influence each other. In the 

Research Group in which this work has been performed, it has been reported 

long ago that the sympathetic innervation of the spleen is increased in young 

athymic mice (Besedovsky et al., 1987). The fact that this alteration can be 

normalized by thymus transplantation or T cell inoculation showed that this 

defect is not genetically programmed, but rather a phenotypical manifestation 

related to the absence of mature T cells. On this basis, the first aim of this work 

was to study if the absence of a functional thymus in a host can affect 

noradrenergic neurons in the brain in a comparable way as it does in the 

spleen, and, if so, whether alterations can be reversed by thymus implantation 

at birth. For this purpose, mice that congenitally lack a thymus have been used 

as model. A further aspect that needed investigation was if the alterations in 

splenic sympathetic innervation observed in young nude mice are still present 

during adult life. It was also unknown whether the serotonergic system is 

affected by the absence of the thymus. A systematic study of the effects that the 

lack of a thymus may have on corticosterone blood levels was also missing. 

Thus, the first aim of this work was to address these aspects.  

The second part aimed at studying whether there are alterations in the 

concentration of the main neurotrophins in the spleen and brain of athymic 

mice, since these proteins are essential for neural development and functioning. 

Finally, the aim of the last part of this work was to study whether the 

alterations detected in nude mice reflect a more general condition that causally 

relates the catecholaminergic system with the expression of neurotrophins. As a 

first approach to this question, sympathetic innervation was decreased by 

chemical destruction of noradrenergic neurons at different stages of 

development, and neurotrophin concentrations in the spleen and brain were 

determined in parallel. 
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2. Materials  

2.1 Animals 

Original breeding pairs from heterozygous Foxn1n/Foxn1+ mice on Balb/c 

background were kindly provided by Dr. C. Johner, Max Planck Institute of 

Immunobiology and Epigenetics, Freiburg, and wild type Balb/c were obtained 

from the colony originally established by Dr. K. Hartmann at the Institute for 

Experimental Immunology, Marburg. A parallel colony derived from these mice 

was also maintained at the Department of Physiology, Interamerican Open 

University, Argentina, and some of the samples used in this work have been 

obtained there.  

Only male mice were used in this study and they were derived from crossing 

Balb/c Foxn1n males and Balb/c Foxn1n/Foxn1+ females. Animals were bred 

under conventional conditions under constant temperature, humidity, and 12h 

light-dark cycles, and fed ad libitum. Newborn homozygous Foxn1n pups can be 

easily identified by the lack, or poorly developed, whiskers. They were 

separated from the Foxn1n/Foxn1+ littermates when they were less than 1 day-

old, and re-distributed so that each Foxn1n/ Foxn1+ mother was left with one 

genotype only and with a maximum of 5 pups.  

The Foxn1+/Foxn1+ Balb/c mice used for the denervation experiments were 

derived from Foxn1+/Foxn1+ Balb/c breedings. 

2.2 Chemicals  

Chemical (continuation) Source 

6-amino caproic acid Sigma-Aldrich, Germany 

Acetic acid Merck, Germany 

Acetonitrile  Carl Roth, Germany 

Aluminium oxide  Merck, Germany 

Ascorbic acid Sigma-Aldrich, Germany 

Benzamidin- HCl Applichem GmbH, Germany 

Citric acid Merck, Germany 

Copper (‖) sulfate (98%) Acros Organics, USA 

Copper (‖) acetat (monohydrate) Fisher Scientific, United Kingdom 

Disodium hydrogen phosphat dihydrate Marck, Germany 
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Chemical Source 

Dulbecco’s phosphate buffer saline (PBS)  PAA, Austria 

Ethanol (96% and 99,8%) Otto Fischer, Germany 

Formaldehyd Merck, Germany 

Hydrochloric acid Merck, Germany 

Isopropanol (99,98%) Carl Roth, Germany 

Octyl- sulfat Merck, Germany 

Perchloric acid  Merck, Germany 

Phenylmethyl sulfanyl fluoride Sigma-Aldrich, Germany 

Picric acid  Fluka, Switzerland 

Sodium chloride  Merck, Germany 

Sodium citrate (dihydrate) Merck, Germany 

Sodium dihydrogen phosphate    Merck, Germany 

Sulfuric acid (2M) Carl Roth, Germany 

 

2.3 Kits or antibodies 

Kit or antibody Source 

Alexa Fluor® 488 conjugated streptavidin Molecular Probes, Holland 

Avidin/Biotin blocking Kit Vector Laboratories, USA 

Bicinchoninic acid protein assay kit Pierce, USA 

Biotinylated donkey anti-sheep IgG polyclonal 
antibody  

Dianova, Germany 

Corticosterone ELISA Kit IBL international GmbH, Germany 

Human BDNF ELISA Kit R&D Systems Inc., USA 

Human NT-3 ELISA Kit R&D Systems Inc., USA 

Human ß-NGF ELISA Kit R&D Systems Inc., USA 

Indocarbocyanine conjugated mouse anti-
rabbit IgG polyclonal antibody 

Abcam PLC, United Kingdom 

Rabbit monoclonal anti-BDNF Epitomics Inc., USA 

Sheep anti-tyrosine hydroxylase polyclonal 
antibody 

Chemicon, USA 
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2.4 Reagents  

Reagent Source 

4-hydroxy-3-methoxyphenylglycol- 
hemipiperazinium salt 

Sigma-Aldrich, Germany 

5-hydroxy-Indol-acetic acid Sigma-Aldrich, Germany 

5-hydroxytryptamin (serotonin) Sigma-Aldrich, Germany 

6-hydroxydopamin Sigma-Aldrich, Germany 

Adrenalin (L-Adrenalin-D-Hydrogentartrate) Sigma-Aldrich, Germany 

Bovine serum albumin Sigma-Aldrich, Germany 

Cresyl violet acetate Acros organics, USA 

Dihydroxyphenylacetic acid Sigma-Aldrich, Germany 

Dopamine Sigma-Aldrich, Germany 

EDTA disodium salt dihydrate Carl Roth, Germany 

Nerve growth factor, 2.5s, murine Promega, Germany 

Noradrenaline Sigma-Aldrich, Germany 

Tryptophan Sigma-Aldrich, Germany 

TWEEN 20 Sigma-Aldrich, Germany 

Tyrosine Sigma-Aldrich, Germany 

 

2.5 Tools 

Tool (continuation) Source 

14ml polypropylene round-bottom tubes Becton Dickinson Labware, USA 

15ml and 25ml conical tubes Becton Dickinson Labware, USA 

96-well plates Nunc, Denmark 

Combitips Eppendorf, Germany 

Petri dishes (3,5mm) Iwaki, Japan 

Serologic pipette (2ml, 5ml, 10ml) Becton Dickinson Labware, USA 

Disposable syringes (1ml, 20ml) Braun, Germany 

Sterile filters Sartorius, Germany 

Sterile needles (27 G) Becton Dickinson Labware, USA 

Plastic tubes (1,5ml, 0,5ml) Eppendorf, Germany 

EDTA-coated tubes (1,5ml) Roland Vetter, Germany 
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Tool Source 

HPLC-Septen Wicom, Germany 

HPLC-Vials Wicom, Germany 

 

2.6 Equipment 

Equipment Source 

High accuracy balances (AJ150, PM400 and 
PM300) 

Mettler, Germany 

Autosampler AS-2000A Hitachi, Japan 

Centrifuge Biofuge® Fresco Heraeus®, Germany 

HPLC-Electrochemical detector Antec Leyden, Holland 

HPLC-Pump P580 Gynkotek, Germany 

Incubator Heraeus®, Germany 

Micropipette, 10µl, 100µl, and 1000µl Eppendorf, Germany 

Microplate Reader Sunrise Remote Tecan, Switzerland 

Microtome HM 325 Thermo Fisher Scientific Inc., 
Germany 

Multi pipette® Plus Eppendorf, Germany 

Olympus Fluoview laser scanning microscope Olympus Optical Co., Germany 

Oven Heraeus®, Germany 

Pipette boy Integra Biosciences, Germany 

Sterile bank Nuaire, USA 

Vortex IKA® Labortechnik, Germany 

 

2.7 Software 

Software Source 

Endnote (version X4.0.2) Thomson Reuters, USA 

Magellan (version 3.11) Tecan, Switzerland 

Microsoft office (2007) Microsoft, USA 

Statview (version 5.0) SAS Institute Inc., USA 

Motic Image plus (version 2.0) Motic, Germany 

Chromeleon (version 6.01) Dionex Corp., USA 

Paint (version 6.1) Microsoft, USA 
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2.8 Various 

Various Source 

Dry-ice FB Chemistry, Uni-Marburg 

Eukitt quick-hardening mounting medium Sigma-Aldrich, Germany 

Fluorescent mounting medium Dako, USA 

Histoacryl Braun, Germany 

Paraplast plus Carl Roth, Germany 

Xylol Carl Roth, Germany 
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3. Methods 

3.1 Preparation of buffers and solutions 

3.1.1. Phosphate buffer saline (50 mM)  

6,55g NaH2PO4.H2O, 36,05g Na2HPO4.2H2O, and 45g NaCl are dissolved in 

4500ml distilled water (dist.W.). 

3.1.2. Bovine serum albumin (1%) 

1g Bovine serum albumin (BSA) is dissolved in 100ml 50mM PBS.   

3.1.3. Neurotrophin-ELISA wash buffer 

500µl TWEEN 20 are added to 1000ml 50mM phosphate buffer saline (PBS) 

and the pH of solution is adjusted to 7,4 with HCl (1M).  

3.1.4. Protease inhibitor solution 

Solution A: 10M 6-amino caproic acid: (M.W.=131,18) 

6, 56g 6-amino caproic acid are dissolved in 5ml 50mM PBS 

  

Solution B: 1M ethylenediaminetetraacetic acid (EDTA): (M.W.=372,24)  

1,861g EDTA are dissolved in 5ml 50mM PBS. 

 

Solution C: 0.5M benzamidine-HCl: (M.W.= 156,61) 

0,3914g benzamidine-HCl are dissolved in 5ml 50mM PBS. 

 

Solution D: 20mM phenylmethylsulfonyl fluoride: (M.W.= 174,19) 

17,42g phenylmethylsulfonyl fluoride are dissolved in 5ml 100% ethanol  

 
Working solution: 0,5ml from solutions A, B, C, and D each are mixed, the 

volume is completed to 50ml with 50mM PBS, and the mixture used immediately. 

Thus, the final working solution contains 100mM 6-amino caproic acid, 10mM 

EDTA, 5mM benzamidine-HCl and 0,2mM phenylmethylsulfonyl fluoride.  

3.1.5. Bouin-Hollande fixative 

A stock solution is prepared by dissolving 50g copper (‖) acetate 

(monohydrate) and 60g picric acid (≈ 40% in H2O) in 1L dist.w.  
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The working solution is prepared by mixing 100 parts of the stock solution, 10 

parts of formaldehyde, and 1 part of glacial acetic acid, and immediately used.  

3.1.6. Citrate buffer 

 

Solution A is prepared by dissolving 21,01g citric acid (monohydrate) in 

1000ml dist.w.  

 

 Solution B is prepared by dissolving 29,41g sodium citrate (dihydrate) in 

1000ml dist.w.  

 

The working solution is prepared by mixing 54ml solution A and 246ml 

solution B, and completing the volume to 3000ml with dist.w. The pH is adjusted 

to 6,0 with HCl (1M). 

3.1.7. Eluent solution for high performance liquid chromatography 

Solution A is prepared by dissolving 9,79g Na2HPO4 in 1100ml dist.w. 

 

Solution B is prepared by dissolving 10,5g citric acid in 1000ml dist.w.  

 

The above indicated volumes of solutions A and B are mixed. 0,45g octyl-

sulfate and 0,075g EDTA are dissolved in 1800 ml of this mixture, the solution is 

filtered, and 10% Acetonitril is added. Finally, the solution is degassed for 10min.  

3.1.8. Cresyl violet solution (0,1%) 

0,1g Cresyl violet acetate are dissolved in 100ml dist.w., and 300µl glacial 

acetic acid are added to the solution before use. The mixture is filtered and 

immediately used.  

3.2. Thymus reconstitution 

Thymi were obtained from newborn Balb/c Foxn1n/Foxn1+ mice and placed 

in cold PBS. Another group of newborn (less than 24 h-old) athymic Balb/c 

Foxn1n male mice were anesthetized by hypothermia by placing them at -18Cº 

for 2-3min.  A small (about 1mm) incision was done in the skin in each axillary 

region, forming a small pocket. One thymus per axillary region was carefully 

placed inside and the skin closed using Histoacryl (Besedovsky et al., 1987).  
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3.3. Chemical denervation 

6-HO-DA was dissolved in 0.01% ascorbic acid and injected i.p. at a dose of 

150mg/kg body weight. Ascorbic acid is used to protect 6-OH-DA from 

oxidation. Control mice received 0.01% ascorbic acid alone. Newborn Balb/c 

male mice received 6-OH-DA or the vehicle on 5 consecutive days and were 

killed when they were 21 day-old (Thoenen and Tranzer, 1968). Fourteen day-

old mice received two injections of 6-OH-DA or vehicle on two consecutive 

days. One group of mice was killed when they were 21 day-old and another 

when they were 67 day-old. Adult mice (60 day-old) also received two injections 

of 6-OH-DA or vehicle on two consecutive days, and were killed one week later 

(del Rey et al., 2002). 

3.4. Organ and blood collection 

Groups of athymic (Balb/c Foxn1n) male mice and their heterozygous 

thymus- bearing littermates (Balb/c Foxn1n/Foxn1+) were killed by cervical 

dislocation at different times after birth. Groups of athymic Balb/c Foxn1n male 

mice that had been implanted with two thymi at birth were killed when they 

were 21, or 60 day-old. Blood was collected in EDTA-coated tubes. The 

plasma was aliquot and frozen at -80oC until used for corticosterone 

determinations.  

The spleen of 7, 14, 21, and 60 day-old mice was cut into three sections: S1, 

S2 and S3 (Fig. 3).  S1 and S3 were immediately frozen and kept at -80Cº until 

use for neurotransmitter and neurotrophin determinations. S2 sections were 

fixed by immersion in Bouin-Hollande (see 3.1.5). The spleen of newborn (˂ 24 

hour-old) mice was not divided, but was collected from different mice for 

histology, neurotransmitter and neurotrophin determinations 

 

Fig. 3. Spleens were divided into three sections, denominated S1, S2 and S3 
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The left and right kidneys and hippocampi of the same mice were collected, 

immediately frozen, and kept at -80Cº until use for neurotransmitter and 

neurotrophin determinations. The hypothalamus and brainstem were collected 

and divided into right and left parts (Fig. 4), immediately frozen and kept at -

80Cº until use for neurotransmitter and neurotrophin determinations. 

Respectively, some regions were fixed and used for histological studies. In the 

case of newborn mice, the brain was taken as a whole and not subdivided into 

different regions. 

 

Fig. 4. Collection of brain regions. The brains were processed using a Mouse Brain AID, 

designed by Dr. J. Wildmann at the Research Group Immunophysiology. This system allows 

transverse cuts at the defined positions A and B. From the resulting slab (1) the HT was 

punched out and divided into the right and left halves. The right and left parts of hippocampus 

were also collected separately. The cerebellum (Cb) was removed from the caudal section of 

the brain (2). The brainstem was collected from the remaining tissue and divided into right and 

left halves. 

 



  

 

33 Methods 

The same procedure of organ collection and processing was followed with 

the spleen and brain of mice that were sympathetically denervated and the 

corresponding controls.  

3.5. High-performance liquid chromatography 

High-performance liquid chromatography (HPLC) is a chromatographic 

technique that allows separating a mixture of compounds based on the 

competitive interaction between the components of the mixture and the mobile 

phase (eluent) with the stationary phase. It is used in biochemistry and 

analytical chemistry to identify, quantify, or purify the individual components of 

the mixture. 

HPLC typically utilizes different types of stationary phases, a pump that 

moves the mobile phase and analytes through the column, and one or more 

detectors. The detector may also provide other characteristic information (i.e. 

UV/Vis spectroscopic data for the analytes). Analyte retention time varies 

depending on the extent of its interaction with the stationary phase, the 

ratio/composition of solvents used, and the flow rate of the mobile phase. A 

pump provides the high pressure required to propel the mobile phase and 

analyte through the densely packed column (Fig.5). The increased density of 

packed column arises from smaller particle sizes, which allows for a better 

separation because of highly increased surface area. This allows the use of 

columns of shorter length when compared to ordinary column chromatography. 

The HPLC system used in this work is a reversed-phase chromatography 

(RPC). RP-HPLC has a non-polar stationary phase and an aqueous, 

moderately polar mobile phase. One common stationary phase is silica treated 

with RMe2SiCl, where R is a straight chain alkyl group such as C18H37 or 

C8H17. Substances are pumped by the mobile phase through the stationary 

phase. The eluted substances are detected electrochemically at the end of the 

stationary phase. The height and area of the peaks obtained are proportional to 

the electrical signal generated at the working electrode. The time that elapses 

from injecting the sample to the appearance of the peak maximum is 

characteristic for a given substance and is known as its retention time. The use 

of standards with known concentrations allows identification and quantification 
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of the individual components of the mixture. A representative chromatogram of 

the standard mixture used for the HPLC analysis is shown in Fig. 6. 

 

 

Fig. 5. Representation of a HPLC system with mobile phase (solvent). The system is 

connected to a computer for data analysis. 

(From: http://www.chemistry.nmsu.edu/Instrumentation/Waters_HPLCSystem.gif). 

 

 

Fig. 6. Chromatogram of a standard mixture. The figure shows a representative 

chromatogram obtained by injecting 20µl of a mixture of 8 standard compounds (10
-6

M Tyr, 10
-

7
M MHPG, 10

-7
M DOPAC, 10

-7
M NA, 10

-7
M 5-HIAA, 10

-7
M Trp, 10

-7
M DA, and 10

-7
M 5-HT). Y-

axis: Icell (nA) (current); x-axis: retention time.  

http://www.chemistry.nmsu.edu/Instrumentation/Waters_HPLCSystem.gif
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3.5.1. Sample preparation 

The left kidney and hippocampus, the left part of the hypothalamus and 

brain stem, and a piece of the spleen (S1) were used for neurotransmitter 

determination by HPLC. Perchloric acid (PCA) (0,4M) was added to samples of 

peripheral tissues and eluent (see 3.1.7) to brain tissues, at a proportion 1/20 

or 1/40 weight to volume, respectively. The tissue was disrupted using an 

ultrasonic cell disruptor for 5-10 sec set at maximal power. Sonicates were 

centrifuged at 20.000 x g at 4Cº for 15min. Supernatants were removed and 

centrifuged again at the same speed and temperature for 5min.  

3.5.2. Standards 

A mixture containing A, NA, DOPAC, DA, 5-HT, 5-hydroxy-indol-acetic acid 

(5-HIAA), Trp, and 4-hydroxy-3-methoxy-phenylglycol hemipiperazinium salt 

(MHPG) at a final concentration of 10-7M and Tyr at a final concentration of 10-6 

M was used as standard. The mixture was prepared in 0,4 M PCA or in eluent, 

when used as standard for determinations in peripheral tissue or brain 

samples, respectively. 

3.5.3. Procedure 

100µl of each sample or 200µl of the standard mixture were filled into glass 

vials and placed in the autosampler. 10µl of the samples were injected for the 

analysis. The data were collected and integrated using Chromeleon software 

(Dionex Corp., version 6.01). 

3.6. Determination of neurotrophin concentration 

The right kidney and hippocampus, the right part of the hypothalamus and 

brain stem and part S3 of the spleen were used for neurotrophin 

determinations, and processed as described below.  

3.6.1. Tissue processing 

The frozen tissue was weighed just before homogenization, and transferred 

to 1,5ml Eppendorf cups. Protease inhibitor solution (see 3.1.4.) was added to 

the samples at a relation 1/10-1/20 weight to volume for NGF determination, 

and 1/5-1/10 for BDNF and NT-3 determinations. The tissues were disrupted 

using an ultrasonic cell disruptor for 5-10sec set at maximal power. Sonicated 
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samples were centrifuged at 20.000xg at 4Cº for 10min. Supernatants were 

removed, aliquoted, and stored at -80Cº until used for neurotrophin and protein 

determinations.  

3.6.2. Protein determination  

 Protein concentration in the samples was determined by the Bradford 

method using a commercially available kit. This assay is based on the use of 

bicinchoninic acid (BCA) for the colorimetric detection and quantitation of total 

protein. This method combines the reduction of Cu+2 to Cu+1 by proteins in an 

alkaline medium (the biuret reaction) with a highly sensitive and selective 

colorimetric detection of the cuprous ion (Cu+1) using BCA (Smith et al., 1985).  

The purple-colored reaction product is formed by the chelation of two 

molecules of BCA with one Cu+1. This water-soluble complex exhibits a strong 

absorbance at 570nm that is nearly linear with increasing protein 

concentrations over a broad working range (25-2.000 µg/ml). The 

macromolecular structure of proteins, the number of peptide bonds, and the 

presence of four particular amino acids (cysteine, cystine, tryptophan and 

tyrosine) are reported to be responsible for color formation with BCA 

(Wiechelman et al., 1988).   

 

 Assay Procedure 

The test was performed according to the indications of the manufacturer. 

Bovine serum albumin (BSA) is used as reference standard. Samples are 

diluted 1/200 with 50mM PBS. A series of standards containing 2.000, 1.500, 

1.000, 750, 500, 250, 125 and 25µg/ml BSA/ml is prepared in 50mM PBS. The 

detection reagent is prepared by mixing 50 parts of BCA (reagent A), consisting 

of a sodium carbonate, sodium bicarbonate, bicinchonic acid and sodium 

tartrate in sodium hydroxide, with 1 part of BCA (reagent B), consisting of a 4% 

cupric sulfate solution. 15µl of each standard, sample and blank (50mM PBS 

alone) are distributed per well in 96-well plates, and 200µl of the detection 

reagent are added. The plate is incubated at 37Cº for 30min, and cooled at 

room temperature for 10min. The optical density is determined at 570nm 

immediately after cooling the plate. The concentration of total protein in the 

samples is calculated with reference to the standard curve. 
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3.6.3. Neurotrophin determination 

  NGF, BDNF and NT3 concentrations were determined by an enzyme-

linked immunosorbent assay (ELISA), using commercially available kits. 

In brief, the principle of the sandwich ELISA used for these determinations 

consists in a capture antibody bound to a 96-well plate, which binds the antigen 

present in a sample, and a detection antibody that binds to another epitope of 

the same antigen. The detection antibody is directly linked to biotin, which has a 

high binding specificity for streptavidin. Streptavidin conjugated to horseradish 

peroxidase (HRP) is used as detection system. In the presence of hydrogen 

peroxide, HRP catalyzes the oxidation of the chromogenic substrate 

tetramethylbenzidin (TMB), which yields a first charge-transfer blue complex 

(Fig.7). The reaction is stopped by sulfuric acid, resulting in a stable yellow color 

complex that can be detected spectrophotometrically by determining the optical 

density at 450 nm.   

 

Fig. 7. Sandwich ELISA. (1) A plate is coated with the capture antibody, and remaining protein-

binding sites on the plate are blocked by addition of blocking buffer; (2) sample is added, and 

the antigen present binds to the capture antibody; (3) detecting antibody is added; (4) enzyme-

linked secondary antibody is added, which binds to the detecting antibody; (5) substrate is 

added, and converted by the enzyme to a detectable form. 

 

Neurotrophin kits 
 
Human β-NGF, human BDNF and human NT-3 DuoSets from R&D Systems 

were used for the determination of these neurotrophins. These kits contain the 
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basic components required for the development of sandwich ELISAs to 

determine the concentration of the human neurotrophins. Due to the high 

homology between the murine and human forms of NGF (82-98%) 

(Lommatzsch et al., 2005; Ullrich et al., 1983), BDNF (˃98%) and NT3 (˃98%) 

(Lommatzsch et al., 2005), and antibody cross-reactivity between these 

species, these kits are suitable to evaluate the concentration of these 

neurotrophins in the mouse samples.  

For all neurotrophins, the capture antibody was the corresponding mouse 

anti-human neurotrophin. The concentration of these antibodies was 360µg/ml 

in 50mM PBS.  As detection antibody, a biotinylated goat anti-human 

neurotrophin was used for NGF and NT3, and a biotinylated mouse anti-human 

was used for BDNF.  The concentration of the detection antibodies was 9µg/ml 

for NGF; 4,5µg/ml for BDNF; and 36µg/ml for NT3, all in 50mM PBS containing 

1%BSA (see 3.1.2.). Streptavidin conjugated to horseradish-peroxidase was 

used as detection system. The standards used derived from stock solutions of 

murine NGF (mNGF; 0,4µl/ml), hBDNF (110ng/ml), and hNT3 (80ng/ml), all in 

50mM PBS containing 1%BSA. 

 
Plate coating 

The capture antibodies were diluted with 50mM PBS to working 

concentration of 2µg/ml for NGF and BDNF, and 5µg/ml for NT-3. 100µl/well of 

the capture antibody were distributed into 96-well plates. The plates were 

sealed and incubate overnight at RT. 

  

Blocking step 

On the following day, the content of the plates was aspirated and the wells 

washed three times with wash buffer (see 3.1.3). After the last wash, the buffer 

was completely removed by inverting the plates and blotting on clean paper 

towels. Finally, blockade was performed by 50mM PBS containing 1%BSA 

(300µl/well) and incubated at RT for 1hr. 

 

Assay Procedure 

The test was performed according to the indications of the manufacturer, 

with few modifications. A series of standards containing 25, 125, 250, 500, 750, 

1.000, and 1.500pg/ml of the corresponding neurotrophin were prepared. 
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Based on preliminary experiments to determine the optimal protein 

concentration to evaluate neurotrophin levels in tissue, supernatants from 

homogenates were diluted with PBS containing 2% BSA for NGF and 5% BSA 

for BDNF and NT-3. The standards were prepared using the corresponding 

BSA concentration. 100µl per well of each standard, samples and blank were 

distributed in antibody-coated plates. The plates were covered and incubated 

2hr at RT. The detection antibodies were diluted with PBS containing 1%BSA 

to final concentrations of 50ng/ml for NGF, 25ng/ml for BDNF, and 200ng/ml for 

NT3, and 100µl distributed per well after the washing steps. The plates were 

covered and incubate 2hr at RT. 100µl of the working dilution (1:200) 

streptavidin-HRP 1% BSA were distributed per well after the washing step. The 

plates were covered and incubate 20min at RT in the dark. Finally, after a 

further wash, 100µl substrate solution, consisting in equal parts of TMB and 

peroxidase (H2O2), were distributed per well. The plates were covered and 

incubate 20min at RT in the dark. The reactions were stopped by addition of 

1M H2SO4 (50µl/well) and the optical density at 450nm was determined 

immediately after, using 570nm as reference wavelength. The concentration of 

the neurotrophins in the samples were calculated from the corresponding 

standard curve 

3.7. Corticosterone determination 

A competitive ELISA was used to evaluate corticosterone levels in plasma. 

Competitive ELISAs differ from the sandwich ELISAs (as used for neurotrophin 

determination) in that the antigen to be evaluated in the sample is mixed with a 

fix amount of an unlabeled antigen-enzyme conjugate. Enzyme-antigen 

complexes and the endogenous antigen present in the sample compete for 

binding to an antibody coated to a well. Thus, as more antigen is present in the 

sample, less enzyme-antigen complexes are able to bind to the antibody 

attached to the well (hence “competition”). After removal of the unbound 

enzyme, a substrate is added and converted to a chromogenic signal by the 

bound enzyme complex. Therefore, higher antigen concentrations in the 

sample result in the production of weaker signals. 

The corticosterone ELISA kit used in this work is a solid phase enzyme-

linked immunosorbent assay, based on this principle of competitive binding. 
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Microtiter wells are coated with a polyclonal antibody directed towards an 

antigenic site on the corticosterone molecule. The corticosterone present in a 

sample competes with a corticosterone-HRP conjugates for binding to the 

coated antibody. After incubation, the unbound conjugate is washed off. The 

amount of bound peroxidase conjugate is inversely proportional to the 

concentration of corticosterone in the sample. After addition of the substrate 

solution, the intensity of the color developed is inversely proportional to the 

concentration of corticosterone in the sample. 

 

Corticosterone ELISA kit 

The kit from IBL international used in this work includes a 96-well plate 

coated with a polyclonal anti-corticosterone antibody, a series of standards 

containing 0, 5, 15, 30, 60, 120, 140nmol corticosterone/l; the enzyme 

conjugate (corticosterone conjugated to HRP), conjugate diluent, TMB 

substrate solution, stop solution (0,5M H2SO4), and concentrated washing 

solution. 

 

 Assay Procedure 

The test was performed according to the indications of the manufacturer. 

20µl/well of each standard, sample (appropriated diluted with standard 0) or 

blank (standard 0) were distributed in the anti-corticosterone antibody coated 

plates, and 200µl enzyme conjugate added. After mixing, the plate was 

covered and incubated for 1hr at RT. The wells were rinsed three times with 

wash solution, and residual droplets were removed by striking the wells sharply 

on absorbent paper. 100µl substrate solution were distributed per well, and the 

plate was covered and incubated for 15min at RT. The reaction was stopped by 

addition of 50µl/well of the stop solution. The optical density was determined 

immediately after at 450nm with a microtiter plate reader. The concentration of 

corticosterone in the samples was calculated with reference to the standard 

curve. 

3.8. Immunohistochemical staining 

In principle, the methods used for immunohistochemistry can be classified 

as direct and indirect. The direct method is a one-step procedure based on the 
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direct reaction between an antigen and an appropriately labeled antibody. The 

indirect method requires the use of two antibodies, a primary unlabeled 

antibody and a secondary labeled antibody. The key step responsible for good 

quality immunohistochemical staining is the binding of the primary antibody to 

its antigen and depends on many factors, including fixation, washing, and 

incubation conditions as well as the appropriate mounting of specimens onto 

slides (Buchwalow and Böcker, 2010). Indirect immunostaining was used in 

this work to detect TH and BDNF. 

3.8.1. Fixation and washing 

The choice of an appropriate fixation method for biological probes is crucial, 

since it may affect the quality of immunohistochemical staining. The 

morphology of the cells and tissues must be preserved to characterize the 

localization of the component under study, and the antigenicity of the 

component of interest must still be present after fixation and accessible to the 

antibody (Hyatt, 2002).  

Formaldehyde has several advantages over alcohols and acetone. It can 

preserve the morphological detail of the tissues due to inducing molecular 

cross-links in proteins, but on the other hand, it can change the native three-

dimensional protein conformation, which makes it more difficult for the antibody 

to bind to its target (Boenisch, 2005). In order to avoid this problem, the tissues 

should be placed in 70% alcohol for long-term storage, which can minimize 

adverse effects of antigen damage (Buchwalow and Böcker, 2010). 

A better fixative is Bouin-Hollande (see 3.1.5.), which combines the 

advantages of picric acid and formaldehyde (Treilhou-Lahille et al., 1981).  

The S2 section of the spleen, selected left kidneys and hippocampi, and left 

parts of the hypothalamus and brainstem were fixed by immersion in Bouin-

Hollande solution for 48hr with permanent shaking. The volume of the fixation 

solution used was 10 times the weight of the tissue. After fixation, samples 

were washed in 70% isopropanol until the alcohol became colorless.  

3.8.2. Embedding and cutting 

Dehydration is the first step in the processing of fixed tissues. The water in 

the specimen is replaced first with alcohol and then with a paraffin solvent 
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(clearing agent) such as xylol. After fixation, dehydration and clearing, tissues 

blocks are impregnated by paraffin wax (Buchwalow and Böcker, 2010).  

 

Procedure 

The fixed tissues were dehydrated by immersion in a graded series of 

isopropanol at RT (once in 80% isopropanol, twice in 95% isopropanol, and 

three times in 100% isopropanol, 15min each time). The dehydrated tissues 

were then cleared by immersion in xylol (twice for 15min at RT) and 

impregnated by immersion in Paraplast plus (twice for 15min in a 62ºC oven). 

Finally, the tissues were embedded in Parapast plus. Adjacent sections (7µm 

thick) were cut using a microtome. 

3.8.3. Mounting paraffin sections onto slides 

To promote adherence to the glass and to decrease the chance that the 

specimens dissociate from the slides, paraffin tissue sections were mounted on 

“double dipped” salinized slides by treating them with amino-propyl-tri-ethoxy-

saline (APTES). Treated slides can be kept indefinitely (Buchwalow and 

Böcker, 2010). These slides were prepared by washing them in detergent for 

1hr, followed by washing with running tap water for 10min, three times with 

dist.w. for 5min, and 70% isopropanol for 45min, and kept at 60ºC overnight. 

On the following day, slides were immersed in a freshly prepared 2% APTES 

solution in dry acetone for 30sec, and then in dry acetone twice for 30sec. 

Slides were quickly washed twice in dist.w., finally dried overnight at 42ºC, and 

store at R.T until used.  

 

Mounting procedure 

The paraffin sections were mounted onto treated slides using a water bath at 

42ºC filled with deionized water. The slides were dried on a 56ºC warm plate 

during cutting and then overnight in an oven at 60ºC to increase adhesion of 

the tissue sections to the surface of the glass slide.  

3.8.4. Deparaffinization and rehydration 

Sections were deparaffinized by placing the slides in a cuvette containing 

sufficient xylol to cover the tissue completely, twice for 10min at RT, and 

rehydrated by treatment in 100% isopropanol for 10min, methanol/H2O2 (600ml 

100% methanol mixed with 3ml 30% H2O2) for 30min, and a graded series of 
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isopropanol at RT (100% for 10min, and 96%, 80%, and 70% for 5min each). 

Finally, slides were washed twice in dist.w. for 5min. 

3.8.5. Heat-induced antigen retrieval 

The previous steps, especially fixation and embedding, may alter the 

conformation of the protein, negatively affecting antigen-antibody interactions 

and decreasing the intensity of the final reaction in the immunohistochemical 

staining (Boenisch, 2005; Buchwalow and Böcker, 2010; Shi et al., 2001). 

Antigen retrieval, which is important to increase the sensitivity for 

immunodetection, was performed by heating. The slides were placed in a 

container with citrate buffer (see 3.1.6) and heated at 92-95ºC for 15min. The 

slides were then cooled at RT, and the tissue sections were circled with a 

hydrophobic barrier pen. After heating, the sections were immediately 

processed for immunohistochemistry and they were not allowed to dry during 

the whole procedure. 

3.8.6. Indirect immunostaining method 

Indirect immunostaining methods are more commonly used than direct ones, 

due to higher sensitivity as a result of signal amplification by several secondary 

antibodies binding to different antigenic sites on Fc and Fab (antigen binding) 

fragments of the primary antibody. In indirect immunostainig, the bound primary 

unlabeled antibody (first layer) is visualized by using a secondary antibody 

(second layer). The secondary antibody is directly labeled with a fluorescent 

dye, for example, indocarbocyanine (CY3). Alternatively, the secondary 

antibody is biotinylated and detected by streptavidin conjugated with Alexa flour 

488. This method was used in this work to detect TH and BDNF. 

 

TH detection 

Blocking step: sections were sequentially incubated in PBS containing 5% 

BSA (30 min) and 1% BSA (15 min), followed by treatment with 30% avidin in 

1% BSA (20 min) and 30% biotin in 1% BSA (20 min) at RT, using the 

Avidin/Biotin blocking kit from Vector Laboratories. Slides were washed in 

dist.w. and rinsed in PBS containing 1%BSA. 

Primary antibody: sections were incubated with a polyclonal anti-TH 

antibody raised in sheep at a 1/200 dilution overnight at 4°C, and then for 2h at 
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37°C. Slides were washed three times in dist.w. for 5min, then in 50mM PBS 

for 10min, and finally rinsed with 50mM PBS containing 0,5% BSA. 

Secondary antibody and visualization: following treatment with the primary 

antibody, sections were incubated with the corresponding dilution of the 

biotinylated donkey anti-sheep IgG polyclonal antibody at a 1/200 dilution, for 

45 min at 37°C. The slides were washed three times in dist.w. for 5min, 

followed by 50mM PBS for 10min. After rinsing with 50mM PBS containing 

0,5% BSA, the sections were incubated with Alexa Fluor®488 steptavidin 

conjugate (which binds to the biotinylated secondary antibody) at a 1/200 

dilution for 2h at 37°C, and the washing steps in dist.w. and PBS were 

repeated.  

Mounting: The stained sections were mounted in fluorescent mounting 

medium and incubated overnight at 4°C in the dark. Green positive signals 

were visualized with a fluorescence microscope.  

 

Table 1. Antibodies and fluorescence label used to detect TH-containing fibers 

 

 Detection Produced in  Conjugation Isotypic 

Primary Ab. Anti-TH sheep -------------- polyclonal 

Secondary Ab. Anti-sheep IgG donkey biotinylated polyclonal 

Fluorescence label Alexa Fluor®488 -------------- streptavidin ------------ 

 

 

Fig. 8.  TH detection. The indirect method of immunohistochemical staining used to detect TH, 

uses a first (primary) antibody against the antigen, a biotinylated secondary antibody against the 

first antibody, and a fluorescent-labeled streptavidin-conjugate.  
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BDNF detection 

The blocking steps and the treatment with the primary antibody were exactly 

as described for TH detection. In this case, the primary antibody was a rabbit 

anti-BDNF monoclonal antibody, used at a dilution 1/200. The sections were 

then incubated with a secondary mouse anti-rabbit IgG polyclonal antibody 

conjugated with indocarbocyanine (CY3) for 2h at 37°C. The sections were 

shortly treated (1-3 min) with 4% formaldehyde in 50mM PBS. This step is 

recommended to block the detachment of the fluorophore from the antibody 

and to preserve the staining pattern for a longer storage. The washing step was 

repeated. Sections were mounted as described above for the method used to 

detect TH, and red positive signals were visualized using a fluorescent 

microscope. 

 

Table 2. Antibodies used for BDNF detection 
 

 Antibody Produced in  Conjugation Isotype 

Primary Ab. Anti-BDNF rabbit -------------- monoclonal 

Secondary 

Ab. 

Anti-Rabbit 

IgG 

mouse indocarbocyanine 

(CY3)  

polyclonal 

 

 

Fig. 9. BDNF detection. The indirect method of immunohistochemical staining used to detect 

BDNF uses a first (primary) antibody against the antigen, and a directly labeled secondary 

antibody against the first antibody. 

 

3.9. Histological staining (Nissl staining) 

This staining is commonly used to identify the basic neuronal structure in 

brain and spinal cord tissue, and serves to detect Nissl bodies in the cytoplasm 
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of neurons on paraffin embedded tissue sections. Nissl bodies are stained 

purple-blue.  

 

Procedure 

Fixation, washing, embedding, cutting, and mounting of paraffin sections onto 

slides were done exactly as described above for immunohistochemistry. The 

sections were deparaffinized in xylol three times for 10min,  rehydrated  in  

isopropanol (100% twice for 5 min, and 95% and in 70% for 3min each), rinsed 

in tap water, and then in dist.w. Sections were stained with 0,1% cresyl violet 

solution for 10min, quickly rinsed in dist.w., and differentiated in 95% 

isopropanol for 30 min. The sections were dehydrated in 100% isoproponal  

twice for 5min, cleared in xylol twice for 5 min, and finally, mounted with 

permanent mounting medium.  

3.10. Statistical analysis  

Results are expressed as mean ± SE. Data were analyzed by one-way 

analysis of variance (ANOVA) followed by Fisher`s test for multiple 

comparisons, using Statview version 5.0. Differences were considered 

significant when p<0.05. Regression analysis was performed by analysis 

of covariance (ANCOVA) also using Statview version 5.0. 
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4. Results 

 
The results are divided into 5 main sections. The first four sections deal with 

the effect that the lack of a functional thymus has on the concentration of: 1) 

catecholamines, 2) indolamines, and 3) neurotrophins in the periphery and in 

defined brain regions, and 4) corticosterone blood levels. The fifth section 

addresses the effect that chemical sympathectomy has on neurotrophin and 

corticosterone concentration in tissues and blood, respectively. 

The animals used in the first four sections of this work were congenitally 

athymic Foxn1n mice, their heterozygous thymus-bearing littermates 

(Foxn1n/Foxn1+), and Foxn1n mice that had been transplanted with a thymus at 

birth.  The terms Foxn1n, nude, or athymic mice are used indistinctly in the text 

to refer to the homozygous mutated animals.   

Since it has been reported that athymic mice have an abnormal growth rate as 

compared to normal mice, the body weight was recorded before sacrifice. The 

organs were weighted before homogenization, and the corresponding 

organ/body weight index was calculated. The results of these determinations 

are shown in Table 3. The body weight was significantly lower in athymic mice 

than in their heterozygous thymus-bearing littermates at nearly all ages studied. 

Thymus transplantation into newborn nude mice resulted in normalization of the 

body weight in 21 day-old mice, although it was still lower in 60 day-old mice 

when compared to the heterozygous littermates. The only statistically significant 

difference between athymic and heterozygous mice in the spleen weight was 

observed on 1 and 7 day-old animals.  Thymus implantation at birth resulted in 

a spleen weight that was even bigger than that of heterozygous mice on day 21. 

The weight of the kidney of Foxn1n mice was lower than that of the 

Foxn1n/Foxn1+ animals on days 14, 21, and 60; and it was completely 

normalized by thymus implantation. When the weight of the organs was refered 

to the body weight, the spleen index in athymic mice was relatively smaller or 

larger than in the heterozygous littermates on days 7 and 21, respectively. 

Thymus transplantation resulted in a significant higher splenic index than in 

heterozygous mice at this age. The kidney/body weight index was only larger in 

14 day-old athymic mice than in the thymus-bearing animals. Thymus 

transplantation did not affect this index in 21- and 60-day-old mice. 
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Table 3.  Body, spleen, and kidney weight of athymic Foxn1n, Foxn1n/Foxn1+,  
                and Foxn1n transplanted with a thymus at birth 

 

A. Body weight (g) 

 Body weight (g) 

Age (days) Foxn1n (athymic) Foxn1n (athymic) Foxn1n+ thymus 

1 1,29 ± 0,03* 1,48 ± 0,05 n.d. 

7 5,11 ± 0,20* 5,36 ± 0,36* n.d. 
14 6,08 ± 0,45* 7,91 ± 0,52 n.d  
21   7,85 ± 0,50 * #* 10,11 ± 0,79 9,72 ± 0,20 
60 21,31 ± 0,27* 23,76 ± 0,33 21,27 ± 0,65§* 

 

B. Organ weights  

 Spleen weight (mg) 

Age (days) Foxn1n (athymic) Foxn1n/ Foxn1+ Foxn1n + thymus 

1 2, 99 ± 0,18* 3, 49± 0,23* n.d.* 
7 36,18 ± 2,11* 45,89± 1,61* n.d.* 

14 44,42 ± 5,93* 55,03 ± 5,23* n.d. 
21 68,83 ± 7,13*# 63,10 ± 5,63* 111,38 ± 9,77§ 

60 118,56 ± 8,93* 99,73 ± 6,03* 116,40 ± 10,96 
 

 Kidney weight (mg) 

Age (days) Foxn1n (athymic) Foxn1n/ Foxn1+ Foxn1n + thymus 

1 7,40 ± 0,41 8,57 ± 0,56* n.d.* 
7 29,65 ± 1,43* 31,04 ± 2,16   n.d.* 

14 43,50 ± 2,20* 52,20 ± 3,61*             n.d. 
21 55,96 ± 3,24*# 67,20 ± 4,23* 65,71 ± 1,54* 
60 182,90 ± 4,23* 195,80 ± 4,08* 178,94 ± 8,06* 

 

C. Organ/body weight index 

 Spleen mg/g body weight 

Age (days) Foxn1n (athymic) Foxn1n/ Foxn1+ Foxn1n + thymus 

1 2,21 ± 0,18 2,33 ± 0,10 n.d.* 
7 7,08 ± 0,34* 8,77 ± 0,58 n.d.* 

14 6,89 ± 0,57* 6,87 ± 0,27 n.d. 
21    8,63 ± 0,66**# 6,25 ± 0,25* 11,46 ± 1,02  § 

60 5,61 ±0,42 4,21 ± 0,28* 5,57 ± 0,67 
 

 Kidney mg/g body weight 

Age (days) Foxn1n (athymic) Foxn1n/ Foxn1+ Foxn1n + thymus 

1 5,448 ± 0,278 5,536 ± 0,171* n.d.* 
7 5,798 ± 0,142   5,817 ± 0,199   n.d.* 

14 7,354 ± 0,290* 6,550 ± 0,13*             n.d. 
21 7,160 ± 0,165 6,720 ± 0,204 6,770 ± 0,139 
60 8,543 ± 0,148 8,186 ± 0,162 8,411 ± 0,221 

 

n.s. = not statistically significantly different. Statistically significant differences: * Foxn1
n
 vs 

Foxn1
n
/Foxn1

+
; # Foxn1

n
 vs Fox1

n
 with thymus; § Fox1

n
 with thymus vs Foxn1

n
/Foxn1

+
. 
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4.1. The absence of the thymus affects catecholamine, 
precursor, and metabolite concentrations in the spleen 
and brain 

4.1.1. Effects on the spleen 

Changes in NA concentration in organs during ontogeny are considered an 

expression of the development of sympathetic innervation (De Champlain and 

Smith, 1974). Since it has been previously shown that T cells or their products 

can affect the sympathetic innervation of the spleen (Besedovsky et al., 1987), 

the first part of the studies reported in this work were performed to confirm 

these results, and to study whether the increase in sympathetic innervation 

detected in young athymic mice is also observed during adulthood. 

NA concentration was determined by HPLC in the spleen of 1, 7, 14, 21 and 

60 day-old athymic male mice (Foxn1n) and their heterozygous thymus-bearing 

littermates (Foxn1n/Foxn1+). The same determinations were performed in 21 

and 60 day-old athymic mice implanted with a thymus at birth. The kidney was 

used as an abdominal control organ.  

While no differences were detected at the birth, higher NA concentrations 

were found in the spleen of 7, 14, 21, and 60 day-old Foxn1n mice as 

compared to the Foxn1n/Foxn1+ littermates (Fig. 10A). The difference in splenic 

NA concentration between Foxn1n and Foxn1n/Foxn1+ mice was statistically 

significant in 7 (p˂0,02), 14 (p˂0,007), and 21 (p˂0,008) day-old mice, 

confirming the results obtained by Besedovsky et al.(Besedovsky et al., 1987), 

and further showing that the same tendency is observed in adult mice. The 

results also confirmed that NA concentration in the spleen of 7 day-old thymus-

bearing mice (113,9 ± 35,3 ng/g spleen) dropped to values of about 40% of 

those observed at birth (189,1 ± 32,7ng/g spleen). Such a drop was not 

detected in the spleen of Foxn1n mice (1 day-old: 188,1 ± 60,2 ng/g spleen; 7 

day-old: 165,3 ± 37,1 ng/g spleen). It is remarkable that T cells effector 

functions, such as cytotoxicity, are also first detected in the normal mouse 

spleen during the first week of life (Wu et al., 1975).  

To assert whether the high splenic NA concentration in athymic mice was 

restricted to this lymphoid organ or it reflects a general hyperactivity of the 

sympathetic system, the concentration of NA in another abdominal organ, the 

kidney, was determined. No differences between NA levels in the kidney of 
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Foxn1n and Foxn1n/Foxn1+ mice were detected (Fig. 10B), confirming previous 

results (Besedovsky et al., 1987). The results obtained in the kidney were of 

additional significance as they allowed to discard the possibility that the 

differences observed between the splenic NA concentration of Foxn1n and 

Foxn1n/Foxn1+ mice may have been a consequence of endocrine disturbances 

known to occur in athymic mice (Besedovsky and Sorkin, 1974).  

 

Fig. 10. Increased splenic NA concentration and content in athymic mice during 

ontogeny. NA concentration was determined in the spleen and left kidney of athymic male mice 

(Foxn1
n
) and their heterozygous thymus-bearing (Foxn1

n
/Foxn1

+
) littermates at different ages, 1 

(n=7/group); 7 (n=7/group); 14 (n=13/group); 21 (n=10/group); and 60 (n=7/group) day-old mice. 

(A, C) spleen; (B, D) kidney. A, B: NA concentration; C, D: total NA content in the organ. * 

Statistically significantly different from Foxn1
n
/Foxn1

+
. 

 

Since Foxn1n mice have smaller spleen and kidneys than Foxn1n/Foxn1+ 

mice, the results were also expressed as total NA content in the organs 

studied. The total NA content in the spleen of Foxn1n mice was also 

significantly higher than in Foxn1n/Foxn1+ mice (14 day-old: p˂0,04; 21 day-
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old: p˂0,0006; 60 day-old:p˂0,0003). The same tendency was observed in 7 

day-old mice (Fig. 10C). No significant differences were detected in the kidneys 

(Fig. 10D). 

Following neonatal thymus grafting to nude mice, lymphoid organs are 

populated by T cells (Loor and Kindred, 1974), and reconstituted mice develop 

T cell-mediated immune mechanisms (Loor and Kindred, 1974). Furthermore, 

some endocrine functions are normalized (Besedovsky and Sorkin, 1974). 

Thus, the concentration of NA in the spleen of 21 and 60 day-old athymic mice 

implanted with thymus at birth was determined. Splenic NA concentration in 

these mice reached levels comparable to those of normal thymus-bearing 

littermates (Fig. 11A), confirming previously reported results (Besedovsky et 

al., 1987). The differences between athymic mice and athymic mice implanted 

with thymus at birth were statistically significant in 21 day-old animals 

(p˂0,0001), and the same tendency was observed in 60 day-old mice. Splenic 

NA concentration in 21 day-old athymic implanted with thymus at birth was also 

significantly lower than in Foxn1n/Foxn1+ mice (p˂0,03).    

 

Fig. 11. Thymus implantation into athymic newborn mice results in decreased NA 

concentration and content in the spleen. Two thymi from newborn Foxn1
n
/Foxn1

+
 donors 

were grafted into less than 24h-old male Foxn1
n
 mice (Foxn1

n
 with thymus). NA concentration 

in the spleen was determined when mice were 21 (n=9) or 60 (n=10) day-old mice. (A) NA 

concentration; (B) total NA content. Statistically significant difference: * Foxn1
n
 vs. 

Foxn1
n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; and § Fox1

n 
with thymus vs. Foxn1

n
/Foxn1

+
. 

 

The results were also expressed as total NA content in the spleen. Total NA 

content in the spleen of 21 and 60 day-old athymic mice implanted with thymus 
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at birth was statistically significantly lower than in athymic mice (p˂0,04 and 

p˂0,0001, respectively).  Splenic NA content in 60 day-old athymic implanted 

with thymus at birth was also significantly lower than in Foxn1n/Foxn1+ mice 

(p˂0,0001) (Fig. 11B).  

To study whether the alteration in NA observed in the spleen of athymic 

mice was restricted to this catecholamine, the concentration of DA, another 

catecholamine that is the direct precursor in the synthesis of NA, was 

determined by HPLC in the spleen and kidney of the same animals used 

above.  

 

Fig. 12. Increased splenic DA concentration and content in athymic mice during 

ontogeny. DA concentration was determined in the spleen and left kidney of athymic male mice 

(Foxn1
n
) and their heterozygous thymus-bearing (Foxn1

n
/ Foxn1

+
) littermates at different ages, 

1 (n=7/group); 7 (n=7/group); 14 (n=13/group); 21 (n=10/group); and 60 (n=7/group) day-old 

mice. (A, C) spleen; (B, D) kidney. A, B: DA concentration; C, D: total DA content in the organ. 

* Statistically significantly different from Foxn1
n
/Foxn1

+
. 
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While no differences were detected at the birth, and on 7 and 14 day-old 

mice, statistically significantly higher DA concentrations were found in the 

spleen of 21 and 60 day-old Foxn1n mice as compared to the Foxn1n/Foxn1+ 

littermates, (p˂0,04 and p˂0,02, respectively) (Fig. 12A). No differences in DA 

concentration in the kidney of Foxn1n and Foxn1n/Foxn1+ mice were detected 

(Fig. 12B).  

The results were also expressed as total DA content in the organs studied. 

While no statistically differences were detected at the birth and in 7 and 14 day-

old mice, DA content was statistically significantly higher in the spleen of 21 

and 60 day-old Foxn1n mice as compared to Foxn1n/Foxn1+ mice (p˂0,0001 

and p˂0,005, respectively) (Fig. 12C). No significantly differences were 

detected in the kidney (Fig. 12D). 

The concentration of DA in the spleen of 21 and 60 day-old athymic mice 

implanted with thymus at birth was also determined. Splenic DA concentration 

in these mice reached levels comparable to those of normal thymus-bearing 

littermates (Fig. 13 A). The differences between athymic and athymic mice 

implanted with thymus at birth were statistically significant (21 day-old: 

p˂0,001; 60 day-old: p˂0,004).  

 

Fig. 13. Thymus implantation into athymic newborn mice results in decreased DA 

concentration and content in the spleen. Two thymi from newborn Balb/c Foxn1
n
/Foxn1

+
 

donors were grafted into less than 24 h-old athymic male nude Balb/c mice (Foxn1
n
 with 

thymus). DA concentration in the spleen was determined when mice were 21 (n=9) or 60 (n=10) 

day-old (Foxn1
n
 with thymus). (A) DA concentration. (B) Total DA content. Statistically 

significantly different between Foxn1
n
 and Foxn1

n
/Foxn1

+
 (*); Foxn1

n
 and Fox1

n 
with thymus (#); 

and between Fox1
n 

with thymus and Foxn1
n
/Foxn1

+
 (§). 
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Total splenic DA content in 21 and 60 day-old athymic mice implanted with 

thymus at birth was statistically significantly lower than in athymic mice 

(p˂0,006; and p˂0,009, respectively) (Fig. 13B). 

Tyr, the precursor of NA, and DOPAC, the metabolite of DA, were 

determined by HPLC in the spleen and kidney of the same animals used 

above. While no differences were detected at the birth, higher Tyr 

concentrations were found in the spleen of 7, 14, 21, and 60 day-old Foxn1n 

mice as compared to the Foxn1n/Foxn1+ littermates. These differences reached 

statistically significance in 7 (p˂0,007) and 60 (p˂0,03) day-old mice, and the 

same tendency was observed in 14 and 21 day-old mice (Fig. 14 A). No 

significantly differences were detected in the kidney (Fig 14 B).  

 

Fig. 14. Increased splenic Tyr, but not DOPAC concentrations in athymic mice. Tyr and 

DOPAC concentrations were determined in the spleen and left kidney of athymic male mice 

(Foxn1
n
) and their heterozygous thymus-bearing (Foxn1

n
/ Foxn1

+
) littermates at different ages, 

1 (n=7/group); 7 (n=7/group); 14 (n=13/group); 21 (n=10/group); and 60 (n=7/group) day-old 

mice. (A, C) spleen; (B, D) kidney.  A, B: Tyr concentration; C, D: DOPAC concentration. * 

Statistically significantly different from Foxn1
n
/Foxn1

+
. 



  

 

55 Results 

Significantly higher DOPAC concentrations were detected only in the spleen 

of 60 day-old Foxn1n/Foxn1+ as compared to Foxn1n (p˂0,006) (Fig. 14 C). No 

significantly differences were detected in the kidney (Fig. 14D). 

Thymus implantation into newborn Foxn1n resulted in splenic Tyr 

concentrations comparable to those of normal thymus-bearing littermates, and 

statistically significantly different from those of Foxn1n mice (21 day-old: 

p˂0,004; 60 day-old: p˂0,002) (Fig. 15 A). However, thymus grafting did not 

normalize DOPAC concentration in the spleen of 60 day-old mice, since the 

values were still significantly lower in the reconstituted mice when compared to 

Foxn1n/Foxn1+ mice (p˂0,03) (Fig. 15 B).  

 

 
 
Fig. 15. Thymus implantation into athymic newborn mice decreases Tyr, but not DOPAC, 

concentration in the spleen. Thymus implantation into athymic newborn mice decreases Tyr, 

but not DOPAC, concentration in the spleen. Two thymi from newborn Balb/c Foxn1
n
/Foxn1

+
 

donors were grafted into less than 24 h-old athymic male nude Balb/c mice (Foxn1
n
 with 

thymus). Tyr (A) and DOPAC (B) concentrations were determined when mice were 21 (n=9) or 

60 (n=10) day-old mice. Statistically significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 

vs. Fox1
n 
with thymus; and § Fox1

n 
with thymus vs. Foxn1

n
/Foxn1

+
. 

 

4.1.2. Effects on the brain 

 
Since administration of supernatants from T cell cultures to normal mice 

evokes changes in central noradrenergic mechanisms (Besedovsky et al., 

1983; Besedovsky et al., 1981), it was likely that mature T cells would have 

also an impact on brain neurotransmitters. Thus, the concentration of NA, its 

precursor and main metabolite were determined in several brain regions of 
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athymic male mice, and their heterozygous thymus-bearing littermates at 

different times in ontogeny. A third group of athymic mice implanted with 

thymus at birth was also included. The brain tissue used in these studies 

derives from the same mice used for the determinations in the spleen and 

kidney shown above. 

It was not possible to divide the small brain of newborn mice into well-

defined regions with the technology available. Thus, at this time-point, the brain 

was taken as a whole and divided only into right and left hemispheres. The left 

part was used for neurotransmitter determinations. No differences in NA 

concentration between newborn athymic mice and thymus-bearing 

heterozygous littermates were detected in the whole brain (Fig. 16).

 

 

 

Fig. 16. No differences in NA concentration 

in the whole brain of newborn athymic mice 

(Foxn1
n
) and their heterozygous thymus-

bearing littermates (Foxn1
n
/Foxn1

+
); n=7/ 

group.

 

Higher NA concentrations were found in the hypothalamus, brainstem, and 

hippocampus of Foxn1n mice as compared to the Foxn1n/Foxn1+ littermates at 

later stages of development.  

The differences between hypothalamic NA levels in Foxn1n and 

Foxn1n/Foxn1+ were statistically significant at all ages studied (7 day-old: 

p˂0,02; 14 day-old: p˂0,04; 21 day-old: p˂0,0002; 60 day-old: p˂0,0005). 

Thymus implantation at birth normalized hypothalamic NA concentration in 

athymic mice. The differences between athymic and athymic mice implanted 

with thymus at birth were statistically significant in 21 (p˂0,01) and in 60 

(p˂0,0002) day-old mice (Fig 17 A).  

Comparable results were obtained in the brainstem and in the hippocampus 

at the same time-points. The differences between NA levels in the brainstem of 

Foxn1n and Foxn1n/Foxn1+ were statistically significant in 7 (p˂0,02), 14 

(p˂0,0001), 21 (p˂0,0001), and 60 (p˂0,0001) day-old mice. The differences 
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between athymic and athymic mice implanted with thymus at birth were 

statistically significant in 21 (p˂0,008) and 60 (p˂0,0001) day-old mice (Fig 17 

B).  

NA concentration in the hippocampus of 7 (p˂0,01), 21 (p˂0,04) and 60 

(p˂0,005) day-old Foxn1n mice was higher than in Foxn1n/Foxn1+ animals and 

the same tendency was observed in 14 day-old mice. Although not reaching 

statistical significance, thymus implantation at birth tended to abrogate these 

differences (Fig 17 C). 

 

 Fig. 17. Increased NA concentration in the hypothalamus, brainstem, and hippocampus 

of athymic mice during ontogeny and normalization following thymus implantation at 

birth.  NA concentration in the hypothalamus (A), brainstem (B), and hippocampus (C) were 

determined by HPLC in athymic (Foxn1
n
), heterozygous thymus-bearing littermates 

(Foxn1
n
/Foxn1

+
) at different ages, 1 (n=7/group); 7 (n=7/group); 14 (n=13/group); 21 

(n=10/group); and 60 (n=7/group) day-old mice, and athymic mice implanted with a thymus at 

birth and sacrificed when they were 21 (n=9) or 60 (n=10) day-old (Foxn1
n 

with thymus). 

Statistically significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; 

and § Fox1
n 
with thymus vs. Foxn1

n
/Foxn1

+
. 
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The concentration of DA, a catecholamine that gives rise to NA but also 

functions as a neurotransmitter itself in the brain, was also determined in the 

same brain regions of the same groups of mice and at the same time points. 

While no differences between athymic mice and thymus-bearing 

heterozygous littermates were detected in the whole brain of newborn mice 

(Fig. 18), higher DA concentrations were detected in the hypothalamus, 

brainstem, and hippocampus of 7, 14, 21, and 60 day-old Foxn1n mice as 

compared to Foxn1n/Foxn1+ littermates. DA concentration was completely 

normalized in 21 and 60 day-old athymic mice that were implanted with a 

thymus at birth.  

 

 
 
 
Fig. 18. No differences in DA concentration 

in the whole brain of athymic mice (Foxn1
n
) 

mice and heterozygous thymus-bearing 

littermates (Foxn1
n
/Foxn1

+
); n= 7/group.

 

The differences in hypothalamic DA levels between Foxn1n and 

Foxn1n/Foxn1+ were statistically significant (day 7: p˂0,0003, day 14: p˂0,03, 

day 21: p˂0,004, day 60: p˂0,0002), as well as between athymic and athymic 

mice implanted with thymus at birth (day 21 and day 60: p˂0,003) (Fig 19 A).  

 Essentially the same differences were observed in the brainstem. DA levels 

in Foxn1n and Foxn1n/Foxn1+ were statistically significantly different in 21 

(p˂0,001) and 60 (p˂0,0001) day-old mice. The same tendency was observed 

in 7 and 14 day-old mice. The difference between athymic and athymic mice 

implanted with thymus at birth was statistically significant at both ages studied 

(21 day-old: p˂0,004; 60 day-old: p˂0,0002) (Fig 19 B).  

The results obtained in the hippocampus are depicted in Figure 18 C, which 

shows that Foxn1n mice have more DA in this brain region than Foxn1n/Foxn1+ 

animals when they were 7 (p˂0,02) and 21 day-old (p˂0,003). The same 

tendency was observed in 60 day-old mice. Thymus reconstitution at birth 

abrogated this difference, resulting in significant differences in DA 

concentration in the hippocampus of 21 day-old Foxn1n mice and Foxn1n 
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implanted with thymus at birth (p˂0,03). However, and contrary to what was 

observed in the other two brain regions studied, DA concentration in the 

hippocampus of 60 day-old Foxn1n mice implanted with thymus at birth was 

even higher than in Foxn1n (p˂0,03), and Foxn1n/Foxn1+ (p˂0,005) mice (Fig 

19C).

 

 
Fig. 19. Increased DA concentration in the hypothalamus, brainstem, and hippocampus 

of athymic mice during ontogeny and normalization following thymus implantation at 

birth.   DA concentration in hypothalamus (A), brainstem (B), and hippocampus (C) were 

determined by HPLC in athymic (Foxn1
n
), heterozygous thymus-bearing littermates 

(Foxn1
n
/Foxn1

+
) at different ages, 1 (n=7/group); 7 (n=7/group); 14 (n=13/group); 21 

(n=10/group); and 60 (n=7/group) day-old mice, and athymic mice implanted with a thymus at 

birth and sacrificed when they were 21 (n=9) or 60 (n=10) day-old (Foxn1
n 

with thymus). 

Statistically significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; 

and § Fox1
n 
with thymus vs. Foxn1

n
/Foxn1

+
. 

 

 

Tyr, the amino acid precursor of NA, MHPG, a main metabolite of NA 

degradation in the brain, and DOPAC, an important metabolite of DA derived 

from the action of the enzyme monoaminooxidase (Eisenhofer et al., 2004), 

were evaluated in parallel to NA and DA in the same brain samples.  
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While no differences between athymic mice and thymus-bearing 

heterozygous littermates were detected in the whole brain of less than 24 hour-

old mice (Fig. 20 A-C), higher Tyr, MHPG, and DOPAC concentrations were 

detected in the hypothalamus, brainstem, and hippocampus of Foxn1n mice as 

compared to the Foxn1n/Foxn1+ littermates at later stages of development. 

Such differences were completely normalized in 21 and 60 day-old athymic 

mice implanted with thymus at birth. 

 

Fig. 20. No differences in Try, MHPG, and DOPAC concentrations in the whole brain of 

newborn athymic mice (Foxn1
n
) and their heterozygous thymus-bearing littermates 

(Foxn1
n
/Foxn1

+
). n= 7/group. (A) Tyr concentration, (B) MHPG concentration, and (C) DOPAC 

concentration. 

 

The differences between hypothalamic Tyr levels in Foxn1n and 

Foxn1n/Foxn1+ were statistically significant at all ages studied (7day-old: 

p˂0,04, 14 day-old: p˂0,0001, 21 day-old: p˂0,0001, 60 day-old: p˂0,01). Such 

differences were abrogated in 21 (p˂0,0001) and 60 (p˂0,01) day-old athymic 

mice implanted with thymus at birth (Fig 21 A).  

Comparable results were obtained in the brainstem at the same time-points. 

Try level in the brainstem of Foxn1n mice was statistically significantly higher 

than Foxn1n/Foxn1+ in 7 (p˂0,002), 14 (p˂0,002), 21 (p˂0,0001), and 60 

(p˂0,0001) day-old mice. The difference between athymic and athymic mice 

implanted with thymus at birth was statistically significant in both ages studied 

(day 21: p˂0,01, day 60: p˂0,0001) mice. However, on day 21, Tyr 

concentration in the brainstem of athymic mice implanted with thymus at birth 

was not completely normalized yet, since it was significantly higher than in 

Foxn1n/Foxn1+ (p˂0,003)  (Fig 21B).  
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While no difference was found in 7 day-old mice, statistically significantly 

higher Tyr concentration in the hippocampus of 14 (p˂0,005), 21 (p˂0,02) and 

60 (p˂0,005) day-old Foxn1n mice than in Foxn1n/Foxn1+ animals. Thymus 

implantation at birth abrogated these differences (21 day-old: p˂0,04; 60 day-

old: p˂0,003) (Fig 21 C). 

 

Fig. 21. Increased Tyr concentration in the hypothalamus, brainstem, and hippocampus 

of athymic mice during ontogeny and normalization following thymus implantation at 

birth. Tyr concentration in the hypothalamus (A), brainstem (B), and hippocampus (C) were 

determined by HPLC in athymic (Foxn1
n
), heterozygous thymus-bearing littermates 

(Foxn1
n
/Foxn1

+
) at different ages, 1 (n=7/group); 7 (n=7/group); 14 (n=13/group); 21 

(n=10/group); and 60 (n=7/group) day-old, and athymic mice implanted with a thymus at birth 

and sacrificed when they were 21 (n=9) or 60 (n=10) day-old (Foxn1
n 

with thymus). Statistically 

significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; and § Fox1

n 

with thymus vs. Foxn1
n
/Foxn1

+
. 

 

The differences in MHPG levels in the hypothalamus of Foxn1n and 

Foxn1n/Foxn1+ were statistically significant (day 7: p˂0,0001; day 14: 

p˂0,0003; day 21: p˂0,003; day 60: p˂0,002), as well as between athymic and 
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athymic mice implanted with thymus at birth (day 21: p˂0,002, day 60: p˂0,02). 

The concentration of MHPG in 60 day-old Foxn1n mice implanted with thymus 

at birth was even significantly lower than in Foxn1n/Foxn1+ (p˂0,02) (Fig 22 A).  

Essential the same differences were observed in the brainstem. MHPG 

levels in Foxn1n and Foxn1n/Foxn1+ were statistically significantly different in 7 

(p˂0,02), 14 (p˂0,0001), and 21 (p˂0,0001) day-old mice. The same tendency 

was observed in 60 day-old mice. The difference between athymic and athymic 

mice implanted with thymus at birth was statistically significant in 21 day-old 

mice (p˂0,003), and the same tendency was observed in 60 day-old mice (Fig 

22 B).  

 

Fig. 22. Increased MHPG concentration in the hypothalamus, brainstem, and 

hippocampus of athymic mice during ontogeny and normalization following thymus 

implantation at birth. MHPG concentration in the hypothalamus (A), brainstem (B), and 

hippocampus (C) were determined by HPLC in athymic (Foxn1
n
), heterozygous thymus-bearing 

littermates (Foxn1
n
/Foxn1

+
) at different ages, 1 (n=7/group); 7 (n=7/group); 14 (n=13/group); 21 

(n=10/group); and 60 (n=7/group) day-old, and athymic mice implanted with a thymus at birth 

and sacrificed when they were 21 (n=9) or 60 (n=10) day-old (Foxn1
n 

with thymus). Statistically 

significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; and § Fox1

n 

with thymus vs. Foxn1
n
/Foxn1

+
. 



  

 

63 Results 

 

Although not reaching statistical significance, the same tendency was 

observed in MHPG concentration in the hippocampus of Foxn1n as compared 

to Foxn1n/Foxn1+. Thymus reconstitution at birth abrogated this difference, 

resulting in statistically significantly differences in MHPG concentration in the 

hippocampus of 21 (p˂0,04), and 60 (p˂0,03) day-old Foxn1n with thymus 

compared to Foxn1n mice (Fig 22 C).  

Comparable results were obtained in DOPAC levels in the same brain 

regions at the same time-points. The differences between hypothalamic 

DOPAC levels of Foxn1n and Foxn1n/Foxn1+ were statistically significant in 7 

(p˂0,02), 14 (p˂0,01), 21 (p˂0,0001), and 60 (p˂0,0001) day-old mice. Such 

differences were abrogated in 21 (p˂0,0001), and 60 (p˂0,0001) day-old 

athymic mice implanted with thymus (Fig 23 A).  

Essential the same differences were observed in the brainstem. DOPAC 

levels of Foxn1n and Foxn1n/Foxn1+ were also statistically significantly different 

in 7 (p˂0,0008), 14 (p˂0,02), 21 (p˂0,0001), and 60 (p˂0,0001) day-old mice. 

Thymus reconstitution at birth diminished this difference, resulting in significant 

differences in DOPAC concentration in the brainstem of Foxn1n mice and 

Foxn1n implanted with thymus at birth (21 day-old: p˂0,03); 60 day-old: 

p˂0,0001). However, DOPAC concentration in the brainstem of 60 day-old, 

thymus reconstituted Foxn1n was still higher than in Foxn1n/Foxn1+ animals 

(p˂0,0004) (Fig 23 B).  

The results obtained in the hippocampus are depicted in Figure 22 C, which 

shows that 14 (p˂0,03) and 21 (p˂0,0001) day-old Foxn1n have more DOPAC 

in this brain region than Foxn1n/Foxn1+ animals. The same tendency was 

observed in 7 day-old mice. However, thymus reconstitution at birth did not 

abrogate this difference, since the values were still significantly higher when 

compared to Foxn1n/Foxn1+ in 21 (p˂0,0003), and 60 (p˂0,02) day-old mice,  

and even higher than in Foxn1n in 60 day-old mice: (p˂0,003) (Fig 23 C).  

The results were also expressed as ratio metabolite/catecholamine 

(MHPG/NA and DOPAC/DA) and precursor/catecholamine (Tyr/NA) in the 

same brain regions of the same groups of mice and at the same time point. 
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Fig. 23. Increased DOPAC concentration in the hypothalamus, brainstem, and 

hippocampus of athymic mice during ontogeny and normalization following thymus 

implantation at birth. DOPAC concentration in the hypothalamus (A), brainstem (B), and 

hippocampus (C) were determined by HPLC in athymic (Foxn1
n
), heterozygous thymus-bearing 

littermates (Foxn1
n
/Foxn1

+
) at different ages, 1 (n=7/group); 7 (n=7/group); 14 (n=13/group); 21 

(n=10/group); and 60 (n=7/group) day-old, and athymic mice implanted with a thymus at birth 

and sacrificed when they were 21 (n=9) or 60 (n=10) day-old (Foxn1
n 

with thymus). Statistically 

significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; and § Fox1

n 

with thymus vs. Foxn1
n
/Foxn1

+
. 

 

Statistically significant higher MHPG/NA ratios were detected in the 

hypothalamus of Foxn1n mice as compared to Foxn1n/Foxn1+ in 7 (p˂0,0001), 

14 (p˂0,0003), 21 (p˂0,0006), and 60 (p˂0,003) day-old mice. This ratio was 

normalized in athymic mice implanted with thymus at birth (21 day-old: p˂0,002 

and 60 day-old: p˂0,001) (Fig. 24 A). However, no statistically differences were 

detected in MHPG/NA between these three groups in the brainstem and 

hippocampus (Fig. 24 B, C). 
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Fig. 24. Increased MHPG/NA ratio in the hypothalamus of athymic mice during ontogeny 

and normalization following thymus implantation at birth. MHPG/NA in the hypothalamus 

(A), brainstem (B), and hippocampus (C) were calculated in athymic (Foxn1
n
), heterozygous 

thymus-bearing littermates (Foxn1
n
/Foxn1

+
), and athymic mice implanted with a thymus at birth 

(Foxn1
n 

with thymus) at the times indicated in the figure. Statistically significant difference: * 

Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; and # Foxn1

n
 vs. Fox1

n 
with thymus. 

 

No statistically significant differences between Foxn1n, Foxn1n/Foxn1+, and 

athymic mice implanted with thymus at birth were detected in the DOPAC/DA 

ratio in the hypothalamus, brainstem and hippocampus (Fig. 25 A-C). This ratio 

was statistically significantly higher only in the hippocampus of 60 day-old 

Foxn1n/Foxn1+ as compared to athymic mice (p˂0,006) and athymic mice 

implanted with thymus at birth (p˂0,002) (Fig. 25C).  
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Fig. 25. No difference in the DOPAC/DA ratio in hypothalamus, hippocampus and 

brainstem of athymic mice during the ontogeny. DOPAC/DA ratio in the hypothalamus (A), 

brainstem (B), and hippocampus (C) was calculated in athymic (Foxn1
n
), heterozygous thymus-

bearing littermates (Foxn1
n
/Foxn1

+
), and athymic mice implanted with a thymus at birth (Foxn1

n 

with thymus) at the time indicated in the figure. Statistically significant difference: * Foxn1
n
 vs. 

Foxn1
n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; and § Fox1

n 
with thymus vs. Foxn1

n
/Foxn1

+
. 

 

While there were no differences in 7 day-old mice, statistically significantly 

higher Tyr/NA ratios in the hypothalamus of Foxn1n as compared to 

Foxn1n/Foxn1+ mice were detected at later stages of development (day 14: 

p˂0,03, day 21: p˂0,0001, day 60: p˂0,03). Thymus reconstitution at birth 

abrogated the difference as compared to 21day-old athymic mice (p˂0,002). 

The same tendency was observed in 60 day-old mice (Fig. 26 A).  

Although not reaching statistical significance, the same tendency to 

increased Tyr/NA ratios was observed in the brainstem of Foxn1n as compared 

to Foxn1n/Foxn1+ mice. Such tendencies were abrogated by thymus 

implantation, and the ratio was significantly reduced in the brainstem of 60 day-
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old, thymus-reconstituted mice when compared to Foxn1n mice (p˂0,04). The 

same tendency was observed in 21 day-old mice (Fig. 26 B). However, no 

differences were detected between the three groups in the hippocampus at any 

age studied (Fig. 26 C). 

 

 

  Fig. 26. Increased Tyr/NA ratio in the hypothalamus and brainstem of athymic mice 

during ontogeny and normalization following thymus implantation at birth. The Tyr/NA 

ratio in the hypothalamus (A), brainstem (B), and hippocampus (C) of athymic (Foxn1
n
), 

heterozygous thymus-bearing littermates (Foxn1
n
/Foxn1

+
), and athymic mice implanted with a 

thymus at birth (Foxn1
n 

with thymus) at the time indicated in the figure was calculated. 

Statistically significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; and # Foxn1

n
 vs. Fox1

n 
with 

thymus. 
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4.1.3. Alteration in tyrosine-hydroxylase-containing fibers in the 
spleen and brain of athymic mice 

 

The results showing that there were clear differences between Foxn1n and 

Foxn1n/Foxn1+ mice in catecholamine concentration in the spleen and brain, 

and that these alterations were abrogated by thymus implantation at birth, led 

to perform immunohistochemical studies to detected fibers containing TH, the 

rate-limiting step in catecholamine synthesis (Elenkov et al., 2000; Purves D, 

2008), in both organs and at different times during ontogeny. 

 No obvious differences between newborn Foxn1n and Foxn1n/Foxn1+ mice 

in the sympathetic innervation of the spleen were detected (Fig 27). However, 

there were clear immunohistochemical differences between the various groups 

latter in ontogeny. Enhanced immunofluorescence signals for TH were 

observed in the spleen of 7, 14, 21, and 60 day-old Foxn1n mice as compared 

to Foxn1n/Foxn1+ littermates. Representative examples are shown in Fig. 28.  

  

                     Foxn1n/Foxn1+                                           Foxn1n                          

 

 

Fig. 27. No marked difference in immunofluorescence signals for TH in the spleen of 

newborn Foxn1
n
 mice and Foxn1

n
/Foxn1

+
 littermates. The photos show a representative 

staining in Foxn1
n
/Foxn1

+
 (A) and Foxn1

n
 (B). 
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                       Foxn1n/Foxn1+                                         Foxn1n                           

 
 

Fig. 28. Increased intensity of immunofluorescent TH signals in the spleen of Foxn1
n
 

mice. Left panel: Foxn1
n
/Foxn1

+
; right panel: Foxn1

n
 mice. A, B: 7-day-old; C, D: 14-day-old; E, 

F: 21-day-old; G, H: 60-day-old.  
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As shown in a representative example in Fig. 29, these differences were 

abrogated by thymus implantation at birth. 

 

      Foxn1n/Foxn1+                         Foxn1n                  Foxn1n with thymus 

 

Fig. 29. Implantation of a thymus into athymic newborn mice decreases 

immunofluorescent TH signals in the spleen. The photos show representative results of TH-

immunofluorescence in the spleen of Foxn1
n
/Foxn1

+ 
(left), athymic Foxn1

n
 mice (center), and 

Foxn1
n
 mice implanted with thymus at birth (right). A, B, C: 21 day-old; D, E, F: 60 day-old.  

 

The differences between Foxn1n and Foxn1n/Foxn1+ mice in 

immunofluorescent signals for TH were even more marked in the hypothalamus 

at all ages studied (Fig.30). Enhanced TH-immunofluorescent signals were also 

observed in the hypothalamus of Foxn1n mice as compared to thymus-grafted 

Foxn1n mice (Fig. 31).   
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                      Foxn1n/Foxn1+                                           Foxn1n                           

 

Fig. 30. Increased intensity of TH-immunofluorescent signals in the hypothalamus of 

athymic mice. Right panel: Foxn1
n
 mice, left panel: Foxn1

n
/Foxn1

+ 
littermates. A, B: 7-day-old, 

C, D: 14-day-old, E, F: 21-day-old, G, H: 60 day-old.  
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           Foxn1n/Foxn1+                                    Foxn1n                   Foxn1n with thymus 

 

Fig. 31. Implantation of a thymus into athymic newborn mice decreases TH-

immunofluorescent signals in the hypothalamus. The photos show representative results of 

TH-immunofluorescence in the hypothalamus of Foxn1
n
/Foxn1

+
 (left), Foxn1

n
 mice (center), and 

Foxn1
n
 mice implanted with thymus at birth (right). A, B, C: 21 day-old; D, E, F: 60 day-old.  

 

4.2. The absence of the thymus affects indolamine, 
precursor, and metabolite concentrations in the spleen 
and brain  

4.2.1. Effects on the spleen 

 

In the periphery, 5-HT is mainly located in enterochromaffin cells in the gut. 

When it is secreted from these cells, it can reach other tissues via the blood, 

where it is taken up by platelets and stored. Some authors have reported that 

serotonin can be synthetized also by cells in the renal proximal tubules (Sole et 

al., 1986); and others that it can be synthetized in all tissues in which it is found, 

with the exception of platelets (Ghatak et al., 1998). Thus, 5-HT concentration 

was determined by HPLC in the spleen and kidney of the same mice used in 

the previous studies. The only small, but statistically significant difference in 5-
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HT concentration in the spleen was observed in 21 day-old mice, in which 5-HT 

was higher in Foxn1n than Foxn1n/Foxn1+ (p˂0,03), and the same tendency 

was observed in 60 day-old mice (Fig. 32 A). The same difference was 

observed when the results were expressed as total splenic 5-HT content, higher 

5-HT levels were found only in 21 day-old Foxn1n than Foxn1n/Foxn1+ (p˂0,02), 

and the same tendency was observed in 60 day-old (Fig. 31 C). No differences 

in 5-HT concentration or content were observed in the kidney at any time point 

(Fig.32 B, D).  

 

Fig. 32. Increased 5-HT concentration and content in the spleen during ontogeny.  5-HT 

concentration was determined in the spleen and left kidney of athymic male mice (Foxn1
n
) and 

their heterozygous thymus-bearing (Foxn1
n
/ Foxn1

+
) littermates at different ages, 1 (n=7/group); 

7 (n=7/group); 14 (n=13/group); 21 (n=10/group); and 60 (n=7/group) day-old mice. (A, C) 

spleen; (B, D) kidney. A, B: 5-HT concentration, C, D: total 5-HT in the organ. * Statistically 

significantly different from Foxn1
n
/ Foxn1

+
. 
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Thymus reconstitution at birth abrogated the differences in splenic 5-HT 

concentrations between athymic and normal littermates observed in 21 day-old 

mice, resulting now in significant differences between athymic and athymic mice 

implanted with thymus at birth (p˂0,0001), and the concentration in thymus-

reconstituted mice was even lower than in Foxn1n/Foxn1+ mice (p<0,004) 

(Fig.33A). The same tendency was observed in 60 day-old mice. No statistically 

significant differences between athymic mice implanted with thymus at birth and 

athymic mice were detected when 5-HT was expressed as total content in the 

spleen, and both groups significantly differed from Foxn1n/Foxn1+ (p˂0,015) 

(Fig.33B). 

  

Fig. 33. Thymus implantation into athymic newborn mice results in decreased 5-HT 

concentration in the spleen. Two thymi from newborn Foxn1
n
/Foxn1

+
 donors were grafted into 

less than 24h-old athymic male nude mice (Foxn1
n
 with thymus). 5-HT concentration in the 

spleen was determined when mice were 21 (n=9) or 60 (n=10) day-old mice. (A) 5-HT 

concentration. (B) Total 5-HT content. Statistically significant difference: * Foxn1
n
 vs. 

Foxn1
n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; and § Fox1

n 
with thymus vs. Foxn1

n
/Foxn1

+
. 

 

The concentrations of Trp, the precursor of 5-HT, and 5-HIAA, its main 

metabolite, were determined in parallel.  

Significantly higher Trp concentrations were found in the spleen of 1 

(p˂0,04), 14 (p˂0,03), and 21(p˂0,04) day-old Foxn1n mice as compared to the 

Foxn1n/Foxn1+ littermates. The same tendency was observed in 7 and 60 day-

old mice (Fig. 34 A). No significantly differences were detected at any time 

point in the kidney (Fig. 34 B).  
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Significantly higher 5-HIAA concentrations were found in the spleen of 1 

(p˂0,0002), 7 (p˂0,02), and 14 (p˂0,0003) day-old Foxn1n mice as compared 

to the Foxn1n/Foxn1+ littermates, but not later in ontogeny (Fig. 34 C). Again, 

no differences were detected in the kidney (Fig. 34 D).  

 

Fig. 34. Increased splenic Trp and 5-HIAA concentrations in athymic mice during 

ontogeny. Trp and 5-HIAA concentrations were determined in spleen and left kidney of athymic 

male mice (Foxn1
n
) and their heterozygous thymus-bearing (Foxn1

n
/Foxn1

+
) littermates at 

different ages, 1 (n=7/group); 7 (n=7/group); 14 (n=13/group); 21 (n=10/group); and 60 

(n=7/group) day-old mice. (A, C) spleen; (B, D) kidney. A, B: Trp concentration, C, D: 5-HIAA 

concentration. * Statistically significantly different from Foxn1
n
/ Foxn1

+
.  

 

Thymus implantation at birth to athymic mice resulted in splenic Trp 

concentrations comparable to those of normal thymus-bearing littermates, and 

were significantly different from those of athymic Foxn1n mice when they were 

21 day-old (p˂0,045). The same tendency was observed in 60 day-old mice 

(Fig. 35 A). Thymus implantation did not induce any significant effect on splenic 
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5-HIAA concentrations, at a time in ontogeny in which its absence was not 

paralleled by changes in this metabolite (Fig. 35 B).  

 

Fig. 35. Thymus implantation into athymic newborn mice results in normalization of Trp 

concentrations in the spleen. Two thymi from newborn Balb/c Foxn1
n
/Foxn1

+
 donors were 

grafted into less than 24h-old male athymic nude Balb/c mice (Foxn1
n
 with thymus). Trp and 5-

HIAA concentrations in the spleen were determined when mice were 21 (n=9) or 60 (n=10) day-

old mice. (A) Trp concentration. (B) 5-HIAA concentration. Statistically significant difference: * 

Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; and # Foxn1

n
 vs. Fox1

n 
with thymus. 

 

4.2.2. Effects on the brain 

 

It is known that 5-HT can act as an immunomodulator in the periphery, but it 

functions as a neurotransmitter in the CNS (Ader et al., 1990; Neveu and Le 

Moal, 1990). This indolamine is found primarily in groups of neurons in the 

raphe region of the pons and upper brainstem, which have widespread 

projections to the forebrain (Purves D, 2008). Thus, 5-HT, Trp, and 5-HIAA 

concentrations were determined in several brain regions of the same groups of 

mice and at the same time points. 

No differences in 5-HT, Trp, and 5-HIAA concentrations between athymic 

mice and thymus-bearing heterozygous littermates were detected in the whole 

brain of less than 24 hour-old mice (Fig. 36 A-C). However, higher 5-HT, Trp, 

and 5-HIAA concentrations were detected in the hypothalamus, brainstem, and 

hippocampus of Foxn1n mice as compared to the Foxn1n/Foxn1+ littermates at 

later stages of development. Such differences were abrogated by thymus 

implantation at birth. 
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Fig. 36. No differences in 5-HT, Trp, and 5-HIAA concentrations in the whole brain of newborn 

athymic mice (Foxn1
n
) and their heterozygous thymus- bearing littermates (Foxn1

n
/Foxn1

+
). 

(n=7/group) 

 

The differences between Foxn1n and Foxn1n/Foxn1+ mice in hypothalamic 

5-HT concentration were statistically significant at all ages studied (7day-old: 

p˂0,002, 14 day-old: p˂0,003, 21 day-old: p˂0,0001, 60 day-old: p˂0,0002). 

Thymus implantation at birth significantly decreased hypothalamic 5-HT 

concentration in 21 day-old athymic mice as compared to nude mice 

(p˂0,0001).  However, 5-HT concentration in the hypothalamus of 60 day-old 

Foxn1n implanted with thymus at birth was even higher than in Foxn1n (p˂0,03) 

and Foxn1n/Foxn1+ mice (p˂0,001) (Fig. 37 A).  

Comparable results were obtained in the brainstem and in the hippocampus 

at the same time-points, with the exception that in these regions, thymus 

implantation resulted in decreased 5-HT also in 60-day-old mice. The 

differences between Foxn1n and Foxn1n/Foxn1+ in 5-HT concentration in the 

brainstem were statistically significant in 7 (p˂0,0001), 14 (p˂0,002), 21 

(p˂0,0001), and 60 (p˂0,0001) day-old mice. The difference between athymic 

and athymic mice implanted with thymus at birth was statistically significant in 

21 day-old (p˂0,006) and 60 day-old (p˂0,003) animals, but 5-HT 

concentration in the brainstem of 60 day-old athymic Foxn1n implanted with 

thymus at birth was still significantly higher than in Foxn1n/Foxn1+ (p˂0,02)  

(Fig. 37 B).  

5-HT in the hippocampus of 7 (p˂0,002), 14 (p˂0,003), 21 (p˂0,0001) and 

60 (p˂0,0002)  day-old Foxn1n mice was higher than in Foxn1n/Foxn1+ 

animals, and than in 21 and 60 day-old athymic mice implanted with thymus at 

birth (p˂0,01 and p˂0,03, respectively). However, 5-HT concentration in the 
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hippocampus of 60 day-old athymic implanted with thymus at birth was still 

significant higher than in Foxn1n/Foxn1+ (p˂0,001) (Fig. 37 C).  

 
Fig. 37. Increased 5-HT concentration in the hypothalamus, brainstem, and hippocampus 

of athymic mice during ontogeny and normalization following thymus implantation at 

birth.  5-HT concentration was determined by HPLC in the hypothalamus (A), brainstem (B), 

and hippocampus (C) of athymic (Foxn1
n
), heterozygous thymus-bearing littermates 

(Foxn1
n
/Foxn1

+
) at different ages (days 1; n=7/group; 7: n=7/group); 14: n=13/group; 21: 

n=10/group; and 60: n=7/group), and of athymic mice implanted with a thymus at birth (Foxn1
n 

with thymus) and sacrificed when they were 21 (n=9) or 60 (n=10) day-old. Statistically 

significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; and § Fox1

n 

with thymus vs. Foxn1
n
/Foxn1

+
. 

 

The differences in hypothalamic Trp levels between Foxn1n and 

Foxn1n/Foxn1+ were statistically significant on days 14 (p˂0,0001), 21 (p˂0,02) 

and 60 (p˂0,0007), and the same tendency was observed in 7 day-old mice. 

Thymus implantation at birth normalized the increased Trp levels observed in 

athymic mice (day 21: p˂0,02, day 60: p˂0,0002) (Fig 38 A).  
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Essentially the same differences were observed in the brainstem. Trp levels 

in Foxn1n and Foxn1n/Foxn1+ were statistically significantly different at all ages 

studied (7 day-old: p˂0,03, 14 day-old: p˂0,01, 21 day-old: p˂0,02, 60 day-old: 

p˂0,0001). The difference between athymic and athymic mice implanted with 

thymus at birth was statistically significant on days 21 (p˂0,005), and 60 

(p˂0,0001) (Fig 38 B).  

 

Fig. 38. Increased Trp concentration in the hypothalamus, brainstem, and hippocampus 

of athymic mice during ontogeny and normalization following thymus implantation at 

birth.  Trp concentration was determined by HPLC in the hypothalamus (A), brainstem (B), and 

hippocampus (C) of athymic (Foxn1
n
), heterozygous thymus-bearing littermates 

(Foxn1
n
/Foxn1

+
) at different ages (days 1: n=7/group; 7: n=7/group; 14: n=13/group; 21: 

n=10/group; and 60: n=7/group), and of athymic mice implanted with a thymus at birth (Foxn1
n 

with thymus) and sacrificed when they were 21 (n=9) or 60 (n=10) day-old. Statistically 

significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; and § Fox1

n 

with thymus vs. Foxn1
n
/Foxn1

+
. 

 

The results obtained in the hippocampus are depicted in Figure 38 C, which 

shows that Foxn1n mice have more Trp in this brain region than Foxn1n/Foxn1+ 
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animals when they were 21 (p˂0,0001) and 60 day-old  (p˂0,004). Thymus 

reconstitution at birth resulted in significant differences in Trp concentration in 

the hippocampus of Foxn1n and Foxn1n mice implanted with thymus at birth in 

21 (p˂0,005), and 60 (p˂0,004) day-old mice. Trp concentration in the 

hippocampus of athymic mice implanted with thymus at birth was still higher 

than in Foxn1n/Foxn1+ in 21 day-old animals (p˂0,01) but even lower than in 

these mice when they were 60 day-old (p˂0,0001)  (Fig 38 C). 

The differences between hypothalamic 5-HIAA levels of Foxn1n and 

Foxn1n/Foxn1+ were statistically significant at all ages studied (7 day-old: 

p˂0,02; 14 day-old: p˂0,001; and p˂0,0001 for 21 and 60 day-old). As 

mentioned, thymus implantation at birth normalized the hypothalamic levels of 

this metabolite in athymic mice. The difference between athymic and athymic 

mice implanted with thymus at birth was statistically significant in 21 (p˂0,0001) 

and in 60 (p˂0,0001) day-old mice (Fig 39 A).  

Significant higher 5-HIAA levels were also detected in the brainstem of 7 

(p˂0,003), 14 (p˂0,0001), 21 (p˂0,002), and 60 (p˂0,0001) day-old Foxn1n 

mice as compared to the Foxn1n/Foxn1+ littermates. Thymus implantation at 

birth to athymic mice resulted in 5-HIAA concentrations in the brainstem 

comparable to those of normal thymus-bearing littermates, and were 

significantly different from those of athymic mice at both ages studied (21 day-

old: p˂0,0004, and 60 day-old: p˂0,001). However, 5-HIAA concentration in the 

brainstem of 60 day-old athymic Foxn1n mice implanted with thymus at birth 

was still higher than in Foxn1n/Foxn1+ (p˂0,001) (Fig 39 B).  

Comparable results were obtained in the hippocampus at the same time-

points. The differences between 5-HIAA concentration in the hippocampus of 

Foxn1n and Foxn1n/Foxn1+ were statistically significant on days 21 (p˂0,04) 

and day 60 (p˂0,0001). The same tendency was observed in 7 and 14 day-old 

mice. Thymus implantation at birth resulted in completely normalized 5-HIAA 

concentrations in the hippocampus of 21 (p˂0,008) and 60 day-old (p˂0,0001) 

mice as compared to Foxn1n (Fig 39 C). 
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Fig. 39. Increased 5-HIAA concentration in the hypothalamus, brainstem, and 

hippocampus of athymic mice during ontogeny and normalization following thymus 

implantation at birth.  5-HIAA concentration was determined by HPLC in the hypothalamus 

(A), brainstem (B), and hippocampus (C) of athymic (Foxn1
n
), heterozygous thymus-bearing 

littermates (Foxn1
n
/Foxn1

+
) at different ages (days 1; n=7/group; 7: n=7/group; 14: n=13/group; 

21: n=10/group; and 60: n=7/group), and of athymic mice implanted with a thymus at birth 

(Foxn1
n 

with thymus) and sacrificed when they were 21 (n=9) or 60 (n=10) day-old. Statistically 

significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; and § Fox1

n 

with thymus vs. Foxn1
n
/Foxn1

+
. 

 

The ratio metabolite/indolamine (5-HIAA/5-HT) and precursor/indolamine 

(Trp/5-HT) were also calculated. 

 While no differences between athymic mice and thymus-bearing 

heterozygous littermates were detected in 5-HIAA/5-HT in the hypothalamus at 

any of the ages studied, statistically significantly lower 5-HIAA/5-HT ratios were 

observed in the hypothalamus of 21 day-old: (p˂0,002), and 60 day-old: 

(p˂0,004) athymic mice implanted with thymus at birth, as compared to Foxn1n 
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and Foxn1n/Foxn1+ mice (day 21: p˂0,007: day 60: p˂0,03) (Fig. 40 A). 

However, no differences were observed among these three groups in the 5-

HIAA/5-HT ratio in the hippocampus and brainstem (Fig. 40 B,C). 

 

Fig. 40. No difference in the ratio 5-HIAA/5-HT in the hypothalamus, brainstem, and 

hippocampus of athymic mice during the ontogeny. 5-HIAA/5-HT ratio in the hypothalamus 

(A), brainstem (B), and hippocampus (C) of athymic (Foxn1
n
), heterozygous thymus-bearing 

littermates (Foxn1
n
/Foxn1

+
), and athymic mice implanted with a thymus at birth (Foxn1

n 
with 

thymus) were calculated. Statistically significant difference: # Foxn1
n
 vs. Fox1

n 
with thymus; and 

§ Fox1
n 
with thymus vs. Foxn1

n
/Foxn1

+
. 

 

The only statistically significantly difference in the Trp/5-HT ratio was 

observed in the hypothalamus of 60 day-old mice. This ratio was higher in 

Foxn1n/Foxn1+ mice than in Foxn1n (p˂0,0002), and Foxn1n mice implanted 

with thymus at birth (p˂0,02) (Fig. 41 A). However, no differences were 

observed among these three groups neither at the other time-points, nor in the 

hippocampus and brainstem at any age studied (Fig. 41B,C). 
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Fig. 41. No difference in the ratio Trp/5-HT in the hypothalamus, brainstem, and 

hippocampus of athymic mice during the ontogeny. Trp/5-HT ratios in the hypothalamus 

(A), brainstem (B), and hippocampus (C) were calculated. Statistically significant difference: * 

Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; and § Fox1

n 
with thymus vs. Foxn1

n
/Foxn1

+
. 

 

For a quick overview of the changes in neurotransmitters, precursors and 

metabolites in the spleen and in several brain regions described above, the 

results are schematically summarized in Table 4. The symbols indicate 

statistically significant differences between Foxn1n and Foxn1n mice implanted 

with thymus at birth as compared to normal, thymus-bearing Foxn1n/Foxn1+ 

animals.  
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Table 4.  Differences in neurotransmitter, precursor and metabolite 

concentrations in the spleen and different brain regions of athymic Foxn1n and 

the effect of thymus reconstitution at birth 

 

A. Spleen 

 Tyr NA  

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

˃1 n.s. n.d. n.s. n.d. 

7  n.d.  n.d. 

14  n.d.  n.d. 

21     

60     

 

 DA DOPAC 

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

˃1 n.s. n.d. n.s. n.d. 

7 n.s. n.d. n.s. n.d. 

14 n.s. n.d. n.s. n.d. 

21   n.s. n.s. 

60     

 

 Trp 5-HT 5-HIAA  

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

˃1  n.d. n.s. n.d.  n.d. 

7  n.d. n.s. n.d.  n.d. 

14  n.d. n.s. n.d.  n.d. 

21     n.s. n.s. 

60     n.s. n.s. 

 

The symbols indicate statistically significant differences as compared to normal, thymus-bearing 

Foxn1
n
/Foxn1

+ 
mice.  :  increased; :  increased but not significant; decreased;  

normalized; n.s. = not statistically significant; n.d. = not done. Less than 24 hour-old mice are 

not included since the brain was not dissected into different regions, but evaluated as a whole.  
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B.  Hypothalamus 

 Tyr NA MHPG 

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

7  n.d.  n.d.  n.d. 

14  n.d.  n.d.  n.d. 

21       

60       

 

 MHPG/NA Tyr/NA 

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

7  n.d. n.s. n.d. 

14  n.d.  n.d. 

21     

60     
 

 DA DOPAC DOPAC/DA 

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

7  n.d.  n.d. n.s. n.d. 

14  n.d.  n.d. n.s. n.d. 

21     n.s. n.s. 

60     n.s. n.s. 
 

 Trp 5-HT 5-HIAA 

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

7  n.d.  n.d.  n.d. 

14  n.d.  n.d.  n.d. 

21       

60       
 

 5-HIAA/5-HT Trp/5-HT 

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n + 

thymus 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

7 n.s. n.d. n.s. n.d. 

14 n.s. n.d. n.s. n.d. 

21 n.s.  n.s. n.s. 

60 n.s.    

 
The symbols indicate statistically significant differences as compared to normal, thymus-bearing 

Foxn1
n
/Foxn1

+ 
mice.  :  increased; :  increased but not significant; decreased;  

normalized; n.s. = not statistically significant; n.d. = not done. Less than 24 hour-old mice are 

not included since the brain was not dissected into different regions, but evaluated as a whole.  



  

 

86 Results 

C.  Brainstem 

 Tyr  NA  MHPG  

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

7  n.d.  n.d.  n.d. 

14  n.d.  n.d.  n.d. 

21       

60       

 

  MHPG/NA Tyr/NA  

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

7 n.s. n.d. n.s. n.d. 

14 n.s. n.d.  n.d. 

21 n.s. n.s.   

60 n.s. n.s.   
 

 DA  DOPAC  DOPAC/ DA 

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

7  n.d.  n.d. n.s. n.d. 

14  n.d.  n.d. n.s. n.d. 

21     n.s. n.s. 

60     n.s. n.s. 
 

 Trp  5-HT  5-HIAA  

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

7  n.d.  n.d.  n.d. 

14  n.d.  n.d.  n.d. 

21       

60       
 

 5-HIAA/5-HT Trp/5-HT 

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n + 

thymus 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

7 n.s. n.d. n.s. n.d. 

14 n.s. n.d. n.s. n.d. 

21 n.s. n.s. n.s. n.s. 

60 n.s. n.s. n.s. n.s. 
 

The symbols indicate statistically significant differences as compared to normal, thymus-bearing 

Foxn1
n
/Foxn1

+ 
mice.  :  increased; :  increased but not significant; decreased;  

normalized; n.s. = not statistically significant; n.d. = not done. Less than 24 hour-old mice are 

not included since the brain was not dissected into different regions, but evaluated as a whole.  
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D.  Hippocampus 

 Tyr  NA  MHPG  

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

7  n.d.  n.d.  n.d. 

14  n.d.  n.d.  n.d. 

21       

60       

 

  MHPG/NA Tyr/NA  

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus 

7 n.s. n.d. n.s. n.d. 

14 n.s. n.d. n.s. n.d. 

21 n.s. n.s. n.s. n.s. 

60 n.s. n.s. n.s. n.s. 

 

 DA  DOPAC  DOPAC/ DA 

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

7  n.d.  n.d. n.s. n.d. 

14  n.d.  n.d. n.s. n.d. 

21     n.s. n.s. 

60       

 

 Trp  5-HT  5-HIAA  

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

7  n.d. n.s. n.d.  n.d. 

14  n.d.  n.d.  n.d. 

21       

60       

 

 5-HIAA/5-HT Trp/5-HT 

Age 

(days) 

Foxn1n 

(athymic) 

Foxn1n + 

thymus 

Foxn1n 

(athymic) 

Foxn1n  + 

thymus  

7 n.s. n.d. n.s. n.d. 

14 n.s. n.d. n.s. n.d. 

21 n.s. n.s. n.s. n.s. 

60 n.s. n.s. n.s. n.s. 
 

The symbols indicate statistically significant differences as compared to normal, thymus-bearing 

Foxn1
n
/Foxn1

+ 
mice.  :  increased; :  increased but not significant; decreased;  

normalized; n.s. = not statistically significant; n.d. = not done. Less than 24 hour-old mice are 

not included since the brain was not dissected into different regions, but evaluated as a whole.  
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4.3. The concentration of certain neurotrophins is affected 
by the absence of the thymus  

 

These results presented above clearly show that there are differences 

between Foxn1n and Foxn1n/Foxn1+ mice in the concentration of 

neurotransmitters and their metabolites and precursors in the spleen and in 

defined brain regions. It has been well established that neurotrophins play an 

important role in the development, maintenance, and functioning of the nervous 

system, regulate axon growth, dendrite pruning, and the pattern of innervation, 

and are crucial for normal neuronal function (Huang and Reichardt, 2001; 

Snider, 1994). Neurotrophins also play a role in the immune system, and can 

be expressed by immune cells (Besser and Wank, 1999). It therefore appears 

likely that neurotrophins can contribute to a bi-directional cross-talk between 

the nervous and the immune systems (Kerschensteiner et al., 2003). Based on 

this evidence and on the results shown in the previous sections, the prediction 

was made that the presence of the thymus, and as consequence, of mature T 

cells or T cell-derived factors, can affect neurotrophin concentrations in 

lymphoid organs and in the brain.  

 The concentration of NGF, BDNF and NT-3 was determined in peripheral 

organs and brain regions of the same athymic, heterozygous thymus-bearing 

littermates and athymic mice implanted with thymus at birth used for the 

studies shown in the previous sections. The concentration of the neurotrophins 

was expressed per mg protein in the samples, as determined by the Bradford 

protein assay. However, it was first necessary to validate the ELISA kits to be 

used for neurotrophin determinations since no clear references were available 

for evaluations in tissues. The recovery of exogenous NGF, BDNF, and NT-3 

was measured in mouse spleen and brain lysates by adding different known 

concentrations of neurotrophin standards. The recovery was calculated as the 

percentage of the ratio between the obtained and the expected values (Table 

5).  

As can be seen from the table, the recovery of the three neurotrophins was 

better in the middle concentration range for both organs. Thus, the dilutions for 

the determinations in the samples were done so that they were within this 

range. 
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Table 5.  Neurotrophin recovery  

A. NGF recovery 

Sample Endogenous  

NGF (pg/ml) 

Added 

 (pg/ml) 

Measured  

Conc. (pg/ml) 

Expected 

Conc. (pg/ml) 

Recovery 

(%) 

 

 

Spleen 

 

 

890  

1732 3500 2622 133 

1090 2200 1890 116 

623 1740 1513 115 

290 1320 1180 111 

130 1190 1020 116 

63 1000 953 104 

 

 

Brain 

 

 

384  

1732 2896 2116 137 

1090 1652 1474 112 

623 985 1007 98 

290 691 674 103 

130 582 514 113 

63 486 447 109 
  

B. BDNF recovery 

Sample Endogenous  

BDNF (pg/ml) 

Added 

 (pg/ml) 

Measured 

Conc. (pg/ml) 

Expected 

Con. (pg/ml) 

Recovery 

(%) 

 

 

Spleen 

 

 

235  

1026 990 1261 79 

644 787 879 90 

498 774 733 106 

388 669 623 107 

273 604 508 119 

138 465 373 125 

 

 

Brain 

 

 

336  

941 942 1070 88 

734 893 807 111 

471 770 693 111 

357 618 594 104 

258 585 492 119 

156 588 412 143 
 

C. NT-3 recovery 

Sample Endogenous  

NT-3 (pg/ml) 

Added 

(pg/ml) 

Measured 

Con. (pg/ml) 

Expected 

Con. (pg/ml) 

Recovery 

(%) 

 

 

Spleen 

 

 

391  

964 1036 1261 82 

703 938 879 107 

446 792 733 108 

318 765 623 123 

201 664 508 131 

102 570 373 153 

 

 

Brain 

 

 

405  

964 1152 1370 84 

703 912 1109 82 

446 838 852 98 

318 725 723 100 

201 718 606 118 

102 616 508 121 
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4.3.1. Effects on NGF concentration in the spleen and brain 

 
As mentioned, the spleen and brain regions used in these studies derived 

from the same mice used for the neurotransmitter determinations. No significant 

differences between athymic and thymus-bearing mice in splenic NGF 

concentration were detected, although a marked tendency to increased 

concentration of this neurotrophin was observed on 1 day-old nude mice (Fig. 

42 A).  

 

Fig. 42. No significant differences between NGF concentrations in the spleen, 

hippocampus, and hypothalamus of athymic, thymus-bearing, and athymic mice 

implanted with thymus at birth. NGF concentration in the spleen (A), hippocampus (B), and 

hypothalamus (C) were determined in athymic (Foxn1
n
), heterozygous thymus-bearing 

littermates (Foxn1
n
/Foxn1

+
) at different ages (days 1; n=7/group; 7: n=7/group; 14: n=13/group; 

21: n=10/group; and 60: n=7/group), and of athymic mice implanted with a thymus at birth 

(Foxn1
n 
with thymus) and sacrificed when they were 21 (n=9) or 60 (n=10) day-old.  

 

Although the differences in the hypothalamus and in the hippocampus did not 

reach statistical significance either, higher NGF concentrations in Foxn1n mice 

than in Foxn1n/Foxn1+, were consistently detected at all ages studied. 

Furthermore, thymus implantation into newborn Foxn1n mice completely 

reverted this strong tendency (Fig. 42 B,C). 
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Interestingly, significantly correlations between NGF and NA concentrations 

were established in the spleen, hypothalamus, and hippocampus. The 

statistical significance of each of these correlations is indicated in Fig. 43. 

However, there were no statistically significant differences between the slopes 

of the regression lines of Foxn1n and Foxn1n/Foxn1+ mice.  

 

Fig. 43. Significant correlations between NGF and NA concentrations in the spleen, 

hypothalamus, and hippocampus Foxn1
n
 and Foxn1

n
/Foxn1

+
 mice. There was no 

statistically significant difference between the slopes of the regressions lines of Foxn1
n
 and 

Foxn1
n
/Foxn1

+
 mice. The left panels (A,D,G) show the correlations observed in Foxn1

n
; the 

panels in the center (B,E,H) those in Foxn1
n
/Foxn1

+
; the panels to the right show both 

correlations superimposed. A,B,C: spleen; D,E,F: hypothalamus; G,H,I: hippocampus.   
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4.3.2. Effects on BDNF concentration in the spleen and brain 

 

The second neurotrophin evaluated in the spleen, kidney, and brain regions 

of athymic and thymus-bearing mice was BDNF, which was also determined by 

ELISA and the concentration expressed per mg protein.  

While no differences were detected in 7 day-old mice, statistically 

significantly higher splenic BDNF concentrations were determined in 14 

(p˂0,001), 21 (p˂0,04), and 60 (p˂0,03) day-old Foxn1n as compared to 

Foxn1n/Foxn1+ mice. BDNF concentrations were completely normalized in 

athymic mice implanted with thymus at birth, and were significantly lower than 

in 21 (p˂0,009) and 60 (p˂0,0009) day-old athymic mice ( Fig. 44 A). No 

differences in BDNF concentration were detected in the kidney at any time-

point (Fig. 44 B).  

 

Fig. 44. Increased BDNF concentration in the spleen of athymic mice during ontogeny 

and normalization by thymus implantation at birth. BDNF determinations were performed in 

the spleen (A) and right kidney (B) of athymic male mice (Foxn1
n
) and their heterozygous 

thymus-bearing (Foxn1
n
/Foxn1

+
) at different ages, and in 21 and 60 day-old athymic mice in 

which a thymus was implanted at birth (Foxn1
n 

with thymus); n=8/group. Statistically significant 

difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; and # Foxn1

n
 vs. Fox1

n 
with thymus. 

 

The same determinations were performed in the hypothalamus and 

hippocampus of mice of the three experimental groups. Clearly higher BDNF 

concentrations were detected in both the hypothalamus and hippocampus of 

Foxn1n as compared to Foxn1n/Foxn1+ mice. The differences were statistically 

significant in the hypothalamus of 7 (p<0,002) and 21 (p<0,003) day-old 

animals, and the same tendency was observed in 14 and 60 day-old mice. 
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BDNF concentrations were completely normalized in athymic mice implanted 

with thymus at birth, which had significantly lower concentrations of the 

neurotrophin than 21 day-old Foxn1n mice (p˂0,0002). The same tendency was 

observed in 60 day-old mice (Fig. 45 A). Comparable results were obtained in 

the hippocampus: Foxn1n mice had more BDNF than Foxn1n/Foxn1+ mice (day 

7: p˂0,02; day 21: p˂0,005; day 60: p˂0,009), and the same tendency was 

observed in 14 day-old mice. Thymus implantation at birth also normalized the 

alterations observed in athymic mice. The differences in hippocampal BDNF 

concentration between Foxn1n and Foxn1n implanted with thymus at birth were 

statistically significant in 21 and 60 day-old mice (p˂0,0002 and p˂0,04, 

respectively) (Fig. 45 B).  

 

Fig. 45. Increased BDNF concentration in the hypothalamus and hippocampus of athymic 

mice during ontogeny and normalization by thymus implantation at birth. BDNF 

determinations were performed in the hypothalamus (A) and hippocampus (B) of athymic male 

mice (Foxn1
n
) and their heterozygous thymus-bearing (Foxn1

n
/ Foxn1

+
) at different ages, and in 

21 and 60 day-old athymic mice in which a thymus was implanted at birth (Foxn1
n 

with thymus); 

n=8/group. Statistically significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; and # Foxn1

n
 vs. 

Fox1
n 
with thymus. 

 

The results showing that there were clear differences between thymus-

bearing Foxn1n/Foxn1+ and Foxn1n mice in BDNF concentration in the spleen 

and brain led to perform immunohistochemical studies. Although attempts were 

done to detect BDNF in the spleen immunohistochemically, this proved to be 

rather difficult due to the low concentration of this neurotrophin in this organ, 

and no results are shown. The hippocampus was chosen because BDNF 

concentration was here somewhat higher than in the hypothalamus. 
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There were clear immunohistochemical differences between the various 

groups in the hippocampus at all ages studied. Enhanced BDNF fluorescence 

intensity was observed in the hippocampus of Foxn1n mice as compared to 

normal Foxn1n/Foxn1+ (Fig. 46). 

                    Foxn1n/Foxn1+                                          Foxn1n                          

 

Fig. 46. Increased intensity of BDNF positive signals in the hippocampus of athymic 

mice. (A,B) 7-day-old; (C,D) 14-day-old; (E,F) 21-day-old; and (G,H) 60-day-old.  



  

 

95 Results 

It could be appreciated that thymus implantation into newborn athymic mice 

also resulted in normalization of this parameter, namely BDNF fluorescent 

signals in the hippocampus decreased and were comparable to those of 

normal littermates in 21 and 60 day-old athymic mice that received a thymus 

transplant at birth (Fig. 47). 

 

   Foxn1n/Foxn1+                          Foxn1n                    Foxn1n with thymus 

 

Fig. 47. Thymus implantation into athymic newborn mice decreases the intensity of 

BDNF positive signals in the hippocampus. The photos show representative examples of the 

hippocampus of Foxn1
n
/ Foxn1

+ 
(left), Foxn1

n
 (center), and Foxn1

n
 mice implanted with thymus 

at birth (right). Samples were collected when mice were 21 (A, B, C) or 60 (D, E, F) day-old, 

and stained for BDNF, as described in Methods.  

 

It is well established that the highest BDNF concentration in the 

hippocampus is present in the CA1, CA2, and CA3 regions and in the DG 

(Conner et al., 1998; Thoenen et al.). These regions could be clearly identified 

in Foxn1n/Foxn1+ hippocampal sections but not in those obtained from Foxn1n 

mice, despite of the increased BDNF fluorescent intensity observed in these 

mice.  This observation suggested that there might be also anatomical 

differences in the hippocampus of athymic mice.  Thus, standard Nissl staining, 

commonly used for identifying basic neuronal structures, was performed in 

another brain sections. Longitudinal sections of the whole brain of 60 day-old 

Foxn1n and Foxn1n/Foxn1+ (n=3/group) were stained with Nissl staining, in 
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order to better compare the anatomical structure of the hippocampus of these 

mice. As illustrated in Fig. 48, regions such as CA1, CA2, CA3, and DG were 

not clearly defined in the hippocampus of Foxn1n mice. This interesting 

observation deserves a more detailed anatomical study.  

 

 

  
Fig. 48. The anatomy of the hippocampus of 60 day-old athymic mice and thymus-

bearing. (A,B,C) thymus-bearing Foxn1
n
/Foxn1

+
, (D,E,F) athymic Foxn1

n
 mice. There were 

differences between the anatomy of hippocampus of athymic mice and thymus bearing mice. 

The regions CA1, CA2, CA3, and DG are defined in the hippocampus of Foxn1
n
/Foxn1

+
 but 

undefined in the hippocampus of Foxn1
n
 mice  

 

4.3.3. Effects on NT-3 concentrations in the spleen and brain 

 
The third neurotrophin that was evaluated in the spleen and hippocampus 

was NT-3.  These determinations were performed in tissues obtained from 14, 

21, and 60 day-old athymic mice and their heterozygous thymus-breading 

littermates, as well as in the group of athymic mice implanted with thymus at 

birth and sacrificed when they were 21 or 60 day-old. NT-3 concentrations were 

also determined by ELISA and the results expressed per mg protein. The 

kidney was used as an abdominal control organ also for this parameter. The 
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organs used to evaluate NT-3 were the same as those used for BDNF 

determinations, but not enough material was available from 7 day-old mice.  

The results obtained for this neurotrophin were comparable to those of 

BDNF. Higher splenic NT-3 concentrations were detected in 14 (p˂0,005) and 

21 (p˂0,03) day-old Foxn1n mice as compared to the age-matched 

Foxn1n/Foxn1+ mice and when pair-wise comparisons between these groups 

were done, the difference was also statistically significant in 60 day-old mice 

(p˂0,04). The concentrations were completely normalized in 21 day-old Foxn1n 

animals implanted with thymus at birth, and were significantly different from 

those in Foxn1n mice (p˂0,03) (Fig 49 A). The same tendency was observed in 

60 day-old mice. No significantly differences were detected in the kidney (Fig 

49 B).  

 

Fig. 49. Increased NT-3 concentration in the spleen of athymic mice during ontogeny and 

normalization by thymus implantation at birth. NT-3 determinations were performed in 

spleen (A) and right kidney (B) of athymic male mice (Foxn1
n
) and their heterozygous thymus-

bearing (Foxn1
n
/ Foxn1

+
) at different ages, and in 21 and 60 day-old athymic mice implanted 

with thymus at birth (Foxn1
n
 with thymus). 14 day (n=5/group), 21 and 60 day (n=7/group). 

Statistically significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; 

and § Fox1
n 
vs. Foxn1

n
/Foxn1

+ 
when pair-wise comparisons between these group were done. 

 

The differences in NT-3 concentrations in the hippocampus seemed to 

appear later in ontogeny than in BDNF, since no difference between athymic 

and normal mice was apparent in 14 day-old mice. However, higher NT-3 

concentrations were detected in the hippocampus of Foxn1n mice as compared 

to Foxn1n/Foxn1+ mice in older mice (day 21: p<0.0001; day 60: p< 0,003) NT-

3 concentrations in athymic mice implanted with a thymus at birth reached 
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levels comparable to those of the normal littermates in 60 day-old mice. 

Interestingly, NT-3 levels in 21 day-old Foxn1n implanted with a thymus were 

even significantly lower than in Foxn1n/Foxn1+ mice (p˂0,007) (Fig. 50). 

 

 

 

 
 

Fig. 50. Increased NT-3 concentration in 

the hippocampus of athymic mice during 

ontogeny and normalization by thymus 

implantation at birth. NT-3 determination in 

hippocampous of athymic male mice 

(Foxn1
n
) and heterozygous thymus-bearing 

(Foxn1
n
/ Foxn1

+
) at different ages, and in 21, 

and 60 day-old athymic mice implanted with 

thymus at birth  (Foxn1
n
 with thymus); 

n=7/group. Statistically significant difference: 

* Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. 

Fox1
n 

with thymus; and § Fox1
n 

with thymus 

vs.Foxn1
n
/Foxn1

+
.

4.4. The absence of the thymus is paralleled by increased 
corticosterone blood levels  

 
Normann et al. reported that corticosterone blood levels are higher in 

athymic mice than in euthymic mice (Normann et al., 1988). Others suggested 

that such levels are higher in athymic mice only under stress conditions 

(Spinedi et al., 1997). As shown here, NA concentration in the hypothalamus, is 

influenced by the presence of the thymus, and this effect might result in 

changes in the activity of the HPA axis (Besedovsky and del Rey, 1996). Thus, 

corticosterone concentrations in blood of the same animals used for 

neurotransmitter and NGF determinations were determined by ELISA.  

While no difference was detected in 7 day-old mice, higher corticosterone 

concentrations were found in 1 (p<0,005), 14 (p<0,01), 21 (p<0,04), and 60 

(p<0,0001) day-old Foxn1n mice as compared to age-matched Foxn1n/Foxn1+ 

mice. As with most of the parameters evaluated in this work, thymus 

transplantation to newborn nude mice resulted in normal corticosterone 
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concentrations when these mice were 21 day-old, and the values were 

significantly different from those of Foxn1n mice (p˂0,03). The same tendency 

was observed in 60 day-old mice, although at this age, corticosterone levels of 

thymus-transplanted Foxn1n mice were still significantly higher than those of 

Foxn1n/Foxn1+ (p˂0,002) (Fig. 51). 

Fig. 51. Increased corticosterone concentration in blood of athymic mice during 

ontogeny and normalization by thymus implantation at birth. Corticosterone determinations 

were performed in blood of athymic male mice (Foxn1
n
) and their heterozygous thymus-bearing 

(Foxn1
n
/Foxn1

+
) at different ages (day 1: n=7/group; day 7: n=7/group; day 14: n=13/group; day 

21: n=10/group); day 60: n=7/group), and athymic mice implanted with a thymus at birth (Foxn1
n 

with thymus) and sacrificed when they were 21 (n=9) or 60 (n=10) day-old. Statistically 

significant difference: * Foxn1
n
 vs. Foxn1

n
/Foxn1

+
; # Foxn1

n
 vs. Fox1

n 
with thymus; and § Fox1

n 

with thymus vs. Foxn1
n
/Foxn1

+
. 

 

4.5. Sympathetic denervation results in changes in 
neurotrophin and corticosterone concentrations  

 

Most of the alterations in neurotransmitter concentration and noradrenergic 

fibers, as well as in the concentration of certain neurotrophins in the spleen and 

in defined brain regions of athymic mice described in the previous sections 

could be reversed by thymus implantation at birth. These results show that the 

alterations detected in athymic mice are not directly linked to the Foxn1n 

mutation that nude mice carry, but rather phenotipical manifestations related to 

the absence of the thymus. Still, besides the defective development of the 
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thymus anlage, nude mice have other defects, such as abnormal hair growth 

and delayed sexual maturation. The question arises of whether the alterations 

in the catecholaminergic system and neurotrophin expression detected in nude 

mice reflect a more general condition that causally relates these parameters. As 

a first approach to answer this question, a model that could mimic a situation 

opposite to that observed in athymic mice regarding splenic NA concentrations 

was chosen. Thus, the sympathetic innervation in normal mice was decreased 

by chemical destruction of noradrenergic neurons and neurotrophin 

concentrations in the spleen and brain were determined in parallel. To clarify 

whether there is a critical time period in which catecholamine depletion would 

result in changes in neurotrophin and corticosterone concentrations, 

sympathectomy was performed at different ages. 

For this purpose, the neurotoxin 6-OH-DA, which destroys noradrenergic 

fibers (Korsching and Thoenen, 1985), was injected into normal, male Balb/c 

mice at different ages, and groups of animals were sacrificed at different times 

after chemical denervation. At this stage of the studies, it was not feasible to 

include all possible combinations. Thus, based on previous reports and in 

preliminary results, the experiments were limited to four different groups of 

mice: 1) denervated at birth or 2) when they were 14 day-old, and sacrificed 

when they were 21 day-old; 3) denervated when they were 14 or 4) 60 day-old 

and killed when they were 67 day-old. Age- and sex-matched controls that 

received the vehicle alone (ascorbic acid) were included in each group. NA was 

determined in the spleen and brain to control for the degree of catecholamine 

depletion, and neurotrophin concentrations were evaluated in the same 

samples. Corticosterone blood levels were evaluated in parallel.     

It is well established that 6-OH-DA injection at birth induces a permanent 

destruction of sympathetic nerves (Glatzel et al., 2001; Thoenen and Tranzer, 

1968), while administration of the neurotoxin to adult mice results in a transient 

sympathectomy, i.e. sympathetic innervation is recovered after a few weeks 

(del Rey et al., 2002; Glatzel et al., 2001).  However, the effect of denervating 

at around 14 days of life is not known.  Also, the effect of peripheral 

administration of 6-OH-DA at different ages on central brain catecholamines is 

still poorly defined.  
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4.5.1  Sympathetic denervation decreases NA concentration 

 

NA concentration in the spleen, hypothalamus, and hippocampus of mice 

that received 6-OH-DA or the vehicle alone was determined by HPLC.  The 

results obtained are summarized in table 6.  

NA concentration in the spleen of mice that received 6-OH-DA was 

significantly reduced as compared to the corresponding vehicle-injected 

controls, irrespectively of whether they received the neurotoxin when they were 

less than 1, 14, or 60 day-old (Table 6A). 

NA concentration in the hypothalamus was also significantly reduced in 6-

OH-DA-treated mice as compared to the corresponding control, with the 

exception of the group of mice that received the neurotoxin when they were 60 

day-old and were sacrificed one week later (Table 6B).  

  
Table 6. Decreased NA concentrations in the spleen, hypothalamus, and 

hippocampus of 6-OH-DA-treated mice 
 

A. Spleen 

Age at injection 
(days) 

Age at sacrifice 
(days) 

Treatment Splenic NA 
(ng/g) 

p  

< 1  (birth) 21 
Vehicle 445 ± 97  

6-OH-DA 7 ± 1 ˂0,0001 

 
14 21 

Vehicle 363 ± 71  

6-OH-DA 4 ± 1 ˂0,0001 

67 
Vehicle 502 ± 102  

6-OH-DA 88 ± 12 ˂0,0001 

60 67 
Vehicle 790 ± 65  

6-OH-DA 60 ± 27 ˂0,0001 
 

B. Hypothalamus 

Age at injection 
(days) 

Age at sacrifice 
(days) 

Treatment hypothalamic 
NA (ng/g) 

p  

< 1  (birth) 21 
Vehicle 1031 ± 92  

6-OH-DA 351 ± 82 ˂0,0001 

 

14 
21 

Vehicle 961 ± 36  

6-OH-DA 516 ± 18 ˂0,0001 

67 
Vehicle 1691 ± 31  

6-OH-DA 1488 ± 35 ˂0,007 

60 67 
Vehicle 1471 ± 86  

6-OH-DA 1316 ± 64 n.s. 
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C. Hippocampus 

Age at injection 
(days) 

Age at sacrifice 
(days) 

Treatment Hippocampal 
NA (ng/g) 

p  

< 1  (birth) 21 
Vehicle 203 ± 42  

6-OH-DA 27 ± 12 ˂0,0001 

 

14 
21 

Vehicle 252 ±15  

6-OH-DA 62 ±20 ˂0,0002 

67 
Vehicle 355 ± 79  

6-OH-DA 47 ± 19 ˂0,0001 

60 67 
Vehicle 360 ± 14  

6-OH-DA 308 ± 16 ˂0,05 

 

Mice received 6-OH-DA or the vehicle alone injected at birth, or when they were 14 or 60 day-

old (n=6/group). NA concentration in the spleen (A), hypothalamus (B), and hippocampus (C) 

was determined at different times after injection, as indicated in the table. 

 

Comparable results were obtained in the hippocampus, but statistically 

significant differences were also obtained in this brain region when 6-OH-DA 

was injected into adult (60 day-old) mice (Table 6C). 

Although 6-OH-DA treatment resulted in NA depletion in the spleen and in 

the brain in all groups (with the only exception of the hypothalamus in adult 

mice mentioned above), the magnitude of the decrease was not the same. 

Thus, for better appreciation of the different effects, the results were also 

expressed as percentage of the simultaneous control group, and are 

summarized in Table 7. As a whole, 6-OH-DA administration during adulthood 

resulted in less NA depletion than when the neurotoxin was administered at 

birth or when mice were 14 day-old. 

 

Table 7. Injection of 6-OH-DA at different ages results in different degrees of 

NA depletion 

 

Organs Age at injection 

(days) 

Age at sacrifice 

(days) 

NA  (% of 

control) 

p 

 

 

 

Spleen 

< 1  (birth) 21 2,0 ± 0,6 
vs. a: n.s. 

vs. b: p<0,0001 

vs. c: p<0,002  

14 21 (a) 1,0 ± 0,0 
vs. b: p <0,0001 

vs. c: p <0,004  

67 (b) 17,0 ± 1,0 vs. c: p <0,0001 

60 67 (c) 7,0 ± 1,8 - 
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Organs Age at injection 

(days) 

Age at sacrifice 

(days) 

NA  (% of 

control) 

p 

 

 

 

Hypothalamus 

 

 

< 1  (birth) 21 34,0 ± 3,3 
vs. d: p<0,001  

vs. e: p <0,002  

vs.  f: p <0,0001  

14 21 (d) 53,5 ± 1,5 
vs. e: p <0,0001 

vs.  f: p <0,0001  

67 (e) 19,8 ± 1,2 vs.  f: p <0,0001 

60 67 (f) 89,3 ± 2,6 - 

 

 

 

Hippocampus 

< 1  (birth) 21 13,3 ± 2,4 
vs. g: n.s.  

vs. h: n.s. 

vs. i: p <0,0007      

14 21 (g) 35,5 ± 5,5 
vs. h: n.s.  

vs. i: p<0,03  

67 (h) 23,6 ± 8,8 vs. i: p <0,003  

60 67 (i) 93,0 ± 5,7 - 

  
Mice received 6-OH-DA injected i.p. at different ages and groups of animals were sacrificed at 

various times. NA concentration in the spleen, hypothalamus, and hippocampus of 6-OH-DA- 

and vehicle-treated mice was determined by HPLC. The results shown in the table were 

calculated taking as 100% the mean NA concentration of the corresponding age-matched 

control group. n= 6 per group. The statistical significances indicated correspond to the 

comparison of a given group vs those identified with a letter. n.s.: not statistically significantly 

different. 

 

4.5.2.  Sympathetic denervation affects NGF and BDNF 
concentration 

 
NGF concentrations were determined by ELISA in the spleen, hippocampus, 

and hypothalamus of the same denervated and control mice whose NA 

concentration is shown in the table above. Protein concentrations in the 

samples were determined by the Bradford assay, and the results are 

expressed as pg of the neurotrophin per mg protein. 

As a whole, the results indicate that the effects of noradrenergic denervation 

at birth or during adulthood on NGF concentration are different (Fig. 52).  

NGF concentration was significantly lower in the spleen of mice treated with 

6-OH-DA at birth as compared to corresponding control group (p˂0,03).  The 

same tendency was observed when 6-OH-DA was injected into 14 day-old 

mice and killed when animals were 21 or 60 day-old. However, exactly the 

opposite results were obtained when chemical sympathectomy was performed 
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in adult mice that were killed one week later: NGF concentration was 

significantly higher in the spleen of denervated mice as compared to the control 

group (p˂0,0007) (Fig. 52A). 

Essentially the same effects were observed in the hippocampus: NGF 

concentration was significantly lower in the hippocampus of mice treated with 

6-OH-DA at birth as compared to the corresponding control group (p˂0,03), 

and there was the same tendency in 21 or 60 day-old mice that received 6-OH-

DA when they were 14 day-old. As in the spleen, denervation during adulthood 

resulted in the opposite effect also in the hippocampus: NGF concentrations 

were significantly higher in 6-OH-DA-treated mice than in the control group 

(p˂0,01) (Fig. 52B).  

 

Fig. 52. Effect of noradrenergic denervation at different ages on NGF concentration. NGF 

concentrations were determined in the spleen (A), hippocampus (B), and hypothalamus (C) of 

6-OH-DA- and vehicle-treated mice (n=6/group). The corresponding NA concentrations of 

these organs are given in table 4 A-C. * Statistically significantly different from the age-

matched, vehicle-treated controls. 
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In the hypothalamus, the differences between 6-OH-DA- and vehicle-treated 

mice did not reached statistical significance, but showed the same tendency 

(Fig. 52C).  

 

The remaining aliquots of the spleen and hippocampus obtained from the 6-

OH-DA- and vehicle-treated mice shown above were used to determine BDNF 

concentration by ELISA. The results obtained for this neurotrophin are also 

expressed as pg BDNF per mg protein. Unfortunately, not enough material 

from the hypothalamus was available to determine BDNF concentrations. 

However, the results of the spleen and hippocampus are included here to 

illustrate the effect of denervation on other neurotrophin, which was essentially 

the same as for NGF. 

BDNF concentration was significantly lower in the spleen of mice that 

received 6-OH-DA at birth or when they were 14 day-old as compared to the 

control group (p˂0,006 and p˂ 0,03, respectively) (Fig 53A). The same 

tendency was observed in the hippocampus (Fig 53B). Conversely, significantly 

higher BDNF concentrations were found in both, spleen and hippocampus 

when mice were denervated during adulthood (p˂0,002, and p˂0,03) (Fig. 53 

A,B). 

 

Fig. 53. Effect of noradrenergic denervation at different ages on BDNF concentration. 

BDNF concentrations were determined in the spleen (A), and hippocampus (B) of 6-OH-DA- 

and vehicle-treated mice (n=6/group). The corresponding NA concentrations in these organs 

are given in table 4 A-C. * Statistically significantly different from the age-matched, vehicle-

treated control. 
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4.5.3. Corticosterone concentration 

 
Since permanent and transient sympathectomy affected NA content in the 

hypothalamus, which may lead to changes in the activity of the HPA axis, 

corticosterone concentration in blood of the denervated and control mice used 

above was evaluated using a commercially available ELISA kit.  

 Corticosterone concentrations were statistically significantly lower in blood 

of mice treated with 6-OH-DA at birth or when they were 14 day-old, and 

sacrificed on day 21, as compared to the corresponding controls (p˂0,007 and 

p˂0,02, respectively). However, the concentration of the hormone was 

significantly higher in blood of denervated adult mice than in the vehicle-

injected controls, independently of whether they received 6-OH-DA when they 

were 14 (p˂0,0001) or 60 (p˂0,002) day-old (Fig. 54). 

 
Fig. 54. Effect of noradrenergic denervation at different ages on corticosterone 

concentration. Corticosterone concentrations were determined in blood of 6-OH-DA- and 

vehicle-treated mice (n=6/group). The corresponding NA concentrations in these organs are 

given in table 4 A-C. * Statistically significantly different from the age-matched, vehicle-treated 

control. 
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5. Discussion 

There is good evidence demonstrating the interplay between the nervous, 

endocrine and the immune systems. This work addressed a particular aspect of 

these interactions, namely whether the absence of a functional thymus, and 

therefore the resulting missing population of the host with mature T cells, can 

affect the development of noradrenergic innervation in lymphoid organs and in 

defined brain regions. For this purpose, homozygous Foxn1nu mice, which 

congenitally lack a thymus, have been used as a model. These mice offer the 

advantage that immunocompetence can be easily reversed by thymus 

implantation (Loor and Kindred, 1974). Therefore, three groups of mice were 

used in the first part of this study: athymic mice, their heterozygous thymus-

bearing littermates, and athymic mice implanted with a thymus at birth.    

For reasons of simplicity, in some parts in this work, it is referred to the effect 

of T cells on the variables studied, although in a strict sense, the experiments 

reported here do not allow to distinguish between effects of T cells or their 

products and potential effects of the thymus itself, for example some of the 

hormones derived from its epithelium (Podosinnikov et al., 1986; Reggiani et al., 

2009). However, based on previous reports, this last possibility seems unlikely 

and this aspect will be discussed below. 

The spleen was chosen as a secondary lymphoid organ, and the kidney was 

used as an abdominal, control non-lymphoid organ. The hypothalamus was 

chosen because it controls certain activities of the ANS and neuro-endocrine 

responses. Its function is regulated by the classical monoamine 

neurotransmitters NA, DA and 5-HT (for review see Qiu et al., 1996). The 

brainstem was used as a second brain region because it is involved in the 

regulation of neural pathways between the CNS and the endocrine system, and 

also because most of the noradrenergic innervation of the hypothalamus arises 

from cell bodies in brainstem nuclei, (Livnat et al., 1985). The hippocampus 

was also included because it has been recently reported that T lymphocytes 

can affect hippocampal neurogenesis and spatial learning abilities (Ziv et al., 

2006).  

http://en.wikipedia.org/wiki/Noradrenaline
http://en.wikipedia.org/wiki/Dopamine
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5.1.  The lack of a functional thymus affects catecholamine 
and indolamine concentration in the spleen and brain 

 

It is well established that the sympathetic innervation of several peripheral 

organs in rodents is not completely developed until relatively late in ontogeny 

(De Champlain and Smith, 1974). This situation is also observed in the spleen, 

where the T cell compartment also develops late in postnatal life (Bach et al., 

1975). In athymic mice, the thymus-dependent areas in the spleen are not 

populated by mature T cells because T cell lymphopoiesis is interfered with 

early in embryogenesis (Pritchard and Micklem, 1974). The results reported in 

this work show that athymic Foxn1n mice have higher splenic NA 

concentration, the main sympathetic neurotransmitter, and TH-fluorescent 

positive signals than their normal, thymus-bearing littermates Foxn1n/Foxn1+. 

This situation does not reflect a general sympathetic hyperactivity in nude mice 

since no such differences are detected in the kidney. Furthermore, thymus 

grafting into newborn nude mice normalizes splenic NA concentration and the 

number of TH-fluorescent positive signals. The results reported here are in 

agreement with previous works showing that: 1) NA concentration is increased 

in the spleen of young athymic mice (Besedovsky et al., 1987); 2) reduced 

immunological activity in germ-free animals results in increased NA levels in 

lymphoid organs (del Rey et al., 1981); and 3) NA levels decrease in the spleen 

of rats during the course of an immune response to innocuous antigens 

(Besedovsky et al., 1979; del Rey et al., 1982), and at late phases of the 

response to superantigens in mice (del Rey et al., 2002); 4) NA concentration 

and TH-containing fibers are markedly decreased during the development of an 

autoimmune lymphoproliferative disease (del Rey et al., 2006). Most 

importantly, it has been shown that these changes in NA concentration have an 

impact on the immune response. Furthermore, there is a negative correlation 

between NA levels in the spleen and lymphocyte proliferation (Bellinger et al., 

2008; Leposavic et al., 2010). From this evidence, it can be concluded that the 

degree of immune activity plays an important role in regulating the sympathetic 

innervation of the spleen. 

The results also show that, as compared to normal thymus-bearing 

littermates, athymic mice have higher splenic concentrations of DA and Tyr (the 

precursor of NA and DA synthesis), particularly more marked at later stages of 
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development, and that thymus grafting into newborn nude mice normalizes 

these concentrations. No differences were detected in the kidney.  

While the NA present in the spleen is most likely derived from the 

sympathetic nerves, the source of DA is not so clear. It has been reported that 

DA is preferentially metabolized to the acid metabolite DOPAC (Eisenhofer et 

al., 2004), and that the conversion of DA to NA in sympathetic nerves is about 

90%. Since there is more DA and its metabolites than NA excreted in the urine, 

it was originally thought that this reflects inefficient conversion of DA to NA in 

sympathetic nerves (Kopin, 1985). However, it is at present believed that a 

substantial amount of the DA produced in the body is derived from sources 

independent of the sympathetic nerves, the adrenal medulla, or the brain; and 

that about a half is produced in mesenteric organs (Eisenhofer et al., 2004). 

Since DA is also found in the circulation, it is likely that the DA detected in the 

spleen derives partially from incomplete conversion to NA in sympathetic nerves 

and partially from the blood. The tissue concentrations of DOPAC significantly 

differed in the spleen of 60 day-old mice, showing lower values in athymic mice. 

A possibility would be that a local reduction in the activity of the metabolic 

enzymes monoamine oxidase (MAO) and alcohol dehydrogenase (ADH) 

together with an increased supply of Tyr might result in elevated NA and DA 

concentrations in the spleen of nude mice. The results show that thymus 

implantation abrogates the differences in NA and DA, but not DOPAC, 

concentration in adult mice. It is therefore possible that other mechanisms are 

affected by the absence of mature T cells since several other enzymes are 

involved in the metabolism of catecholamines (Eisenhofer et al., 2004). To add 

more complexity to this system, it has been also reported that picomol levels of 

DA are found in lymphocytes, neutrophils and macrophages. For example, it 

has been shown that normal mouse spleen cells contain more DA than 

macrophages, and that T cells contain more DA than B cells (Bergquist et al., 

1998). Furthremore, the presences of an active DA uptake system in murine 

and human lymphocytes and bone marrow cells was also suggested (Basu et 

al., 1993). 

As already mentioned, a large body of in vivo and in vitro experimental 

evidence has shown that sympathetic nerves, and NA itself, can have marked 

effects on the functioning of the immune system (for review see Elenkov et al., 
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2000). However, much less is known about the immunoregulatory role that 

peripheral DA may play, and only speculations can be done. The presence of 

intracellular DA in lymphocytes (Bergquist et al., 1998) and of DA receptors on 

murine and human T and B cells (Ricci and Amenta, 1994) suggest that this 

catecholamine may affect lymphoid cell activity in an autocrine regulatory way. 

In vitro studies demonstrated that DA can induce thymic cell apoptosis in mice 

(Offen et al., 1995), and inhibit lymphocyte proliferation and T cell-mediated 

cytotoxicity, acting through D1/D5, and D3 dopamine receptors (Cosentino et 

al., 2007; Ghosh et al., 2003). Increased plasma catecholamine concentrations, 

including DA, and decreased catecholamine biosynthesis were found in the 

spleen of rats exposed to a stressful situation (Gavrilovic et al., 2012).  

 

The studies reported here show that athymic Foxn1n mice have also higher 

NA and DA concentrations in the hypothalamus, brainstem, and hippocampus.  

Increased positive signals in TH-containing fibers have also been detected in 

the hypothalamus, and thymus grafting into newborn athymic mice normalizes 

these alterations. It has been previously reported that NA turnover rate in the 

hypothalamus is reduced by immunological processes (Besedovsky et al., 

1983), and that the decrease of central NA concentration following immune 

stimulation is localized to specific regions (Carlson et al., 1987). Furthermore, it 

is known that T cells produce soluble mediators that have the capacity to evoke 

both central autonomic and endocrine changes (Besedovsky et al., 1983; 

Besedovsky et al., 1981). It is therefore likely that the absence of mature T 

cells in nude mice results in increased NA concentration in certain brain 

regions, as shown in this work. In addition, as already mentioned in the 

Introduction, there are different views on whether lymphoid cells can enter into 

a healthy brain (Engelhardt and Coisne, 2011; Kleine and Benes, 2006). In any 

case, taking this evidence as a whole, it can be concluded that T cells can 

affect noradrenergic innervation in the CNS, either directly, by T cells trafficking 

into the brain, or indirectly, by releasing specific molecular messengers.  

This study showed that athymic mice have also higher concentrations of Tyr 

(the catecholamine precursor), and MHPG (NA metabolite), and DOPAC (DA 

metabolite), in the hypothalamus, brain stem, and hippocampus as compared to 

normal thymus-bearing littermates, and that thymus grafting into newborn 

athymic mice results in normalization of their levels in the brain. It has been 
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reported that brain Tyr concentration affects the synthesis of brain NA (Gibson 

and Wurtman, 1978). Furthermore, the simultaneous evaluation of precursor 

amino acid, monoamine, and metabolites is usually taken as an index of 

neuronal activity in the monoaminergic system (Maas et al., 1987; Murai et al., 

1988; Muskiet et al., 1978). Increased Tyr/NA and MHPG/NA ratios were found 

in the hypothalamus of athymic mice, probably reflecting an accelerated NA 

synthesis and metabolism. These ratios were normalized by thymus 

implantation. The ratio DOPAC/DA did not significantly differ between athymic 

and thymus-bearing littermates, since metabolite and precursor increased both 

in the same proportion in athymic mice. The ratios MHPG/NA and DOPAC/DA 

were not significantly different in the brain stem and in the hippocampus of nude 

mice as compared to thymus-bearing littermates, also most likely due to the fact 

that metabolite and neurotransmitter were increased in the same proportion in 

Foxn1n mice. The exception was a decreased DOPAC/DA ratio in the 

hippocampus on day 60, which might be interpreted as a decreased DA 

metabolism in this brain region in athymic mice. This was the only time-point, 

the only monoaminergic metabolite, and the only brain region in which a 

decrease in DOPAC concentration was observed in nude mice, and this was 

not normalized, but even increased after thymus grafting. More experiments are 

needed to clarify if this finding represents a specific regional effect of the lack of 

mature T cells. It has been reported that NA concentration is selectively 

decreased in the PVN of the hypothalamus at the peak of an immune response.  

Decreases in NA concentration were not detected in other hypothalamic sites or 

in the A1 cell group of the medulla, which sends noradrenergic projections to 

the hypothalamus, suggesting that the effect is selective and regional. 

Morphometric evaluation of varicosities revealed no alterations in the density of 

catecholamine-containing varicosities in the PVN, further suggesting that the 

decrease in NA concentration is a metabolic effect and not a loss or 

redistribution of fibers. NA concentration also was decreased in the 

hippocampus at the rising phase of the immune response (Carlson et al., 1987). 

Regarding indolamines, most of the 5-HT in the periphery is produced and 

stored in enterochromaffin cells in the gut. It is also partially stored in platelets, 

which can release 5-HT in multiple peripheral organs. Besides its functions in 

the CNS, 5-HT is involved in the regulation of vasoconstriction and vasodilation 
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(Frohlich and Meston, 2000) and has also been implicated in several 

physiological and pathological functions in peripheral organs and tissues, 

including the immune system (Abdouh et al., 2004; Idzko et al., 2004; Iken et 

al., 1995; Lesurtel et al., 2006; O'Connell et al., 2006; Walther et al., 2003).It 

has also been reported that platelets and 5-HT are destroyed in the spleen 

(Mellinkoff et al., 1962). Interesting in the context of this work is the proposal 

that NA alters 5-HT concentration in splenic platelets (Walker and Codd, 1985), 

and that 5-HT can be accumulated by noradrenergic nerve terminals (for review 

see Mossner and Lesch, 1998). 

The only statistically significant changes in splenic 5-HT concentration and 

content in nude mice was an increase observed on day 21, although the same 

tendency was observed in 60 day-old mice.  However, both the concentration of 

the amino acid precursor Trp and of its main metabolite 5-HIAA were 

significantly increased in the spleen of nude mice as compared to normal mice 

at most time points studied.  This might indicate the reaching of a steady state 

after a challenge of the serotonergic system. Thymus transplantation 

normalized splenic Trp concentration in nude mice, while in terms of 5-HIAA, 

the changes induced by thymic reconstitution did not reach statistical 

significance.  

For 20 years, 5-HT has been proposed as a modulator of T cell functions. 

Early studies, mainly pharmacological, already showed that 5-HT can stimulate 

T cell proliferation and implicated the 5-HT1A receptor in this effect. More 

progress has been done recently. For example, Leon-Ponte et al. showed that 

the selective stimulation of 5-HT7 receptors plays an important role in the 

activation of naïve T cells (Leon-Ponte et al., 2007). Other work also showed 

that 5-HT can be transported and even synthetized by immune cells. 5-HT 

uptake is optimized during late stages of dendritic cell functions, such as 

interactions with T cells in lymphoid tissues. Similarly, B lymphocytes exhibit a 

marked increase in the expression of 5-HT transporters upon activation 

(Meredith et al., 2005), a relevant finding given the recent report that T 

lymphocytes can synthesize 5-HT (Leon-Ponte et al., 2007), and that T cells 

can also uptake 5-HT. These results are well summarized in a recent review 

(Ahern, 2011). As a whole, this evidence may indicate that the changes in Trp 
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and 5-HIAA concentration observed in the spleen of nude mice may be a 

consequence of the lack of mature T cells. 

About 10% of the total 5-HT found in the body is synthesized in serotonergic 

neurons in the CNS, where it exerts several functions, including regulation of 

mood, appetite, sleep, and some cognitive functions, such as memory and 

learning, and is the target of several classes of pharmacological 

antidepressants (for review see Young et al., 2011). It has been reported that 

IL-2 injection reduces extracellular 5-HT levels in several brain regions, and that 

it has dose-dependent effects on depressive-related behavior after delayed, but 

not acute, testing, but no effects on anxiety-like behavior (Karrenbauer et al., 

2011). It has also been proposed that antidepressants that target the uptake of 

serotonin into neurons also affect its uptake by immune cells (Ahern, 2011). 

In this work, it is shown that athymic mice exhibited significantly increased 

concentrations of 5-HT, its precursor Trp, and its main metabolite 5-HIAA in the 

hypothalamus, hippocampus, and brainstem, at all ages studied. These 

alterations characterize an increased serotonergic activity in these brain 

regions, and they were all normalized to control values by thymus 

transplantation at birth. The ratios Trp/5-HT and 5-HIAA/5-HT were comparable 

in nude and normal, thymus-bearing mice. Again, also in these ratios, this is 

due to the fact that both substances were proportionally increased in athymic 

mice. The only significant effect of thymus graft on these ratios was a decrease 

in the hypothalamus even below the values of normal mice. 

The evidence so far available regarding effects of a peripheral immune 

response on 5-HT levels in the brain is scarce and somewhat contradictory (for 

review see Mossner and Lesch, 1998). Even using the same antigen (sheep red 

blood cells, SRBC) to trigger the immune response, some authors reported an 

early increase in 5-HT concentration in the hippocampus and in the nucleus 

tractus solitarius, and decrease in the PVN (Carlson et al., 1987), while others 

found that its levels are decreased in the hypothalamus and cortex late during 

the immune response (Gardier et al., 1994). A third group reported increased 5-

HT and HIAA in the hypothalamus, followed by a marked decrease in 5-HT level 

at later stages of the immune response, with similar observations in the 

brainstem and hippocampus (Qiu et al., 1996).  

It is at present very difficult to attempt at integrating the changes in 
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catecholamines and indolamines observed in the spleen and in the brain of 

athymic mice. Some brain regions involved in the control of splenic immune 

function have been identified in brain lesion and stimulation studies (Irwin, 

1994). However, it is unclear how these regions are interconnected and whether 

other brain areas are also involved (Tyagi and Divya, 2012). Stimulation or 

ablation of central hypothalamic nuclei is correlated with changes in electrical 

activity of the splenic nerve (Tyagi and Divya, 2012). For example, lesions in the 

preoptic nucleus of the hypothalamus raise splenic nerve activity and suppress 

NK cell cytotoxicity. It has also been shown that central catecholamine depletion 

inhibits the primary antibody response to SRBC (Cross et al., 1986; Cross and 

Roszman, 1988) and mitogen-stimulated splenic lymphocyte proliferation and 

cytokine production (Pacheco-Lopez et al., 2003). Other studies reported 

impairment or enhancement of splenic T-lymphocyte proliferation after injection 

of 6-OH-DA into the striatum and nucleus accumbens (Deleplanque et al., 1992; 

Deleplanque et al., 1994; Neveu and Le Moal, 1990). Whether central 

dopaminergic activity can contribute to regulate splenic functions needs still to 

be determined (Mok et al., 1990; Sim and Hsu, 1990). However, there is at 

present enough evidence available showing that brain NA, DA and 5-HT can 

contribute to the regulation of splenic functions by the CNS (Idova et al., 2012; 

Tyagi and Divya, 2012).  

The studies reported in this work add evidence for the converse situation, 

namely that the homozygous presence of the Foxn1 mutation, with the 

consequent  lack of functional T lymphocytes, affects central and peripheral  

noradrenergic and serotonergic mechanisms, and that these alterations can be 

reversed by thymus implantation at birth. 

5.2. The absence of a functional thymus affects 
corticosterone blood levels 

 

The present results show that athymic mice have higher corticosterone 

blood levels than normal thymus-bearing littermates, and that, thymus grafting 

into newborn athymic mice normalizes the concentration of this hormone. 

Corticosterone blood levels in less than 1-day-old athymic mice were 

significantly higher than in the thymus-bearing littermates. Since it has been 

reported that there is a lack of response of the HPA axis to stress in early 

postnatal life due to the immaturity of this axis (Sapolsky and Meaney, 1986), It 
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is possible that such elevated levels of corticosterone derive from the blood of 

the mother. However, this would not explain why corticosterone blood levels in 

newborn mice are higher in athymic than in thymus-bearing littermates. 

Whether athymic mice have a different corticosterone metabolism than thymus-

bearing littermates is not known, and further experiments are needed to clarify 

this difference. With the only exception of 7 day-old mice, the levels of 

corticosterone were also significantly higher in athymic than in thymus-bearing 

mice at all other ages studied. Independently of the presence of a thymus, 

corticosterone levels were higher in 14 and 21 day-old mice.  Since these mice 

were still with the mother at the moment of killing, such increased 

glucocorticoid levels could have been the result of an acute stress situation at 

removal from the cage. Sixty-day-old mice were individually caged one week 

before sample collection, and this resulted in lower basal corticosterone levels. 

Also in this age group, athymic mice had higher glucocorticoid levels than the 

heterozygous control mice, and this difference was abrogated by thymus 

implantation at birth.  

It has been shown that supernatants of activated T cells can increase 

glucocorticoid levels upon injection into normal mice (Besedovsky et al., 1985). 

It has been also demonstrated that NA levels are selectively decreased in PVN 

during the immune response (Carlson et al., 1987) . Since cell bodies 

producing CRH are localized in the PVN, NA changes in this nucleus during the 

immune response may be important for activation of the neuroendocrine axis, 

resulting in increased corticosterone production (Besedovsky et al., 1981). 

Interestingly, corticosterone blood levels and inflammatory responses are 

higher in athymic mice than in euthymic mice (Normann et al., 1988). One 

possibility is that these effects are mediated by IL-1, since macrophages from 

athymic mice produce more IL-1 than macrophages from euthymic mice when 

stimulated by lipopolysaccharide in vitro (Normann et al., 1988). Other authors 

demonstrated that, under basal conditions, Swiss nude mice have increased 

ACTH and VAP levels than normal mice, but similar corticosterone blood 

levels. However, when subject to certain stressful conditions, higher 

glucocorticoid levels were found in athymic mice as compared to the controls 

(Spinedi et al., 1997). On the other hand, after insulin-induce hypoglycemia and 
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CRH stimulation, Swiss nude mice showed significantly lower ACTH and 

corticosterone levels than the controls (Gaillard et al., 1998). 

The studies reported in this work showed that nude mice had increased 

plasma corticosterone concentrations, probably under stressful conditions, as 

observed in 14- and 21-day-old mice, and also under basal conditions, as in 

60-day-old mice, and that the levels can be normalized by thymus implantation 

at birth.  

 

5.3. The concentration of certain neurotrophins is affected 
by the absence of the thymus  

 

The data above collectively show that the absence of a thymus is paralleled 

by increased NA concentration and nerve density in a lymphoid organ and in 

certain brain regions. One possibility to explain these results would be that 

athymic mice have increased levels of neurotrophins. Previous work in this 

Research Group has shown that the sympathetic innervation in the spleen of 

Fas-deficient lpr/lpr mice, which develop an autoimmune lymphoproliferative 

disease, is lost as the disease progresses, and that this alteration contributes 

to aggravate the disease (del Rey et al., 2006).  As continuation of this work, it 

was later found that supernatants from spleen cells obtained from lpr/lpr mice 

inhibit dendrite growth (Diplomarbeit J.S. Grigoleit, manuscript in preparation), 

and significantly decrease dopamine metabolism (Diplomarbeit A. Wagner, 

manuscript in preparation) by PC12 cells, which are commonly used as model 

of sympathetic neurons. As a whole, these results indicate that immune cells 

produce factors that can affect noradrenergic cell growth and activity. Another 

interesting result derived from this work was that, in parallel to decreased NA 

concentration, NGF concentration is significantly lower in the spleen of lpr/lpr 

mice than in normal littermates.  

 Neurotrophins are essential for neuronal growth and differentiation during 

development, and important regulators of survival and maintenance of nerve 

cells during adulthood. They are also target-derived modulators of neuronal 

function in postnatal viscera (Lommatzsch et al., 2005). It is established that 

neurotrophin expression is altered in pathological conditions of internal organs, 

such as urinary bladder (Vizzard et al., 2000) and salivary gland (Lipps, 2002).  
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The thymic stroma generates many signals that regulate T cell development 

(Boyd et al., 1993). A number of thymic stroma-derived cytokines and growth 

factors also play an important role in driving T cell development (Lommatzsch et 

al., 2005), and the neurotrophic microenvironment within the thymic stroma can 

contribute to this process (Maroder et al., 1996). Indeed, thymic stromal cells 

are able to produce neurotrophic factors, such as NGF, BDNF, NT-4, and ciliary 

neurotrophic factor (CNTF) (Maroder et al., 1996; Screpanti et al., 1992; 

Screpanti et al., 1993; Screpanti et al., 1995). These factors may sustain the 

development and modulation of an appropriate intrathymic neural cell 

population able to produce selected neuropeptides and/or neurotransmitters 

that may, in turn, influence thymocyte development. Indeed, the expression of 

several neuropeptides and neurotransmitters such as catecholamines, 

(Leposavic et al., 2007), which are traditionally regarded as being synthesized 

and secreted only by neurons, has been described in thymic stroma (Ericsson 

et al., 1990; Geenen et al., 1986). Kurz et al. (Kurz et al., 1997) suggested that 

NA can influence T cell maturation by acting, not only directly on developing T 

cells, but also indirectly, on  thymic non-lymphoid cells. In addition, Pilipović et 

al. (Leposavic et al., 2010) reported that thymic lymphoid and non-lymphoid 

cells can produced NA. 

It is well established that BDNF is also a sympathetic neuron-derived factor. 

Developing and mature sympathetic neurons synthesize BDNF, and 

preganglionic neurons express the full-length BDNF/TrkB receptor. When the 

concentration of sympathetic neuron-derived BDNF is increased, preganglionic 

cell bodies and axons hypertrophy, and the preganglionic synaptic innervation 

to sympathetic neurons is increased. Conversely, when BDNF synthesis is 

blocked, the preganglionic synaptic innervation to sympathetic neurons is 

decreased (Causing et al., 1997). It has also been reported that NT-3 knockout 

mice develop severe deficits in the peripheral sensory and sympathetic nervous 

systems (Ernfors et al., 1995).  

 In this study, it is shown that athymic mice have higher BDNF and NT-3 

concentrations in the spleen than their normal thymus-bearing littermates, and 

that this situation does not reflect a general increase in neurotrophin 

concentrations, since no significant differences were found in the kidney. 

Furthermore, the results also indicate that such alterations are not genetically 
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programmed, since thymus grafting into newborn athymic mice normalizes 

BDNF and NT-3 concentrations.  

It has been reported that NGF levels correlate with the density of 

sympathetic innervation, and that sympathetic ganglia contain the highest NGF 

levels of all tissues studied (Korsching and Thoenen, 1983). This observation 

may explain the positive correlation between NA and NGF concentrations 

reported here.  

Neurotrophins also play an important role in the CNS. Neurotrophins have 

emerged as major modulators of synaptic plasticity (Lu, 2003; McAllister et al., 

1999), the dominant underlying mechanism for brain function (for review see Je 

et al., 2011). For example, it is well established that NGF is essential for the 

formation of central pain circuitry. Exogenous administration of this neurotrophin 

to rodents results in the rapid onset of hyperalgesia (Taiwo et al., 1991). 

Together with its receptors (p75 and TrkA), it plays a critical trophic role on 

forebrain cholinergic neurons that degenerate during brain aging and 

neurodegenerative disorders (Fischer et al., 1987; Sofroniew et al., 2001). 

During development, both NGF and BDNF regulate naturally occurring cell 

death, synaptic connectivity, fiber guidance, dendritic morphology, and 

neuroplasticity (for review see Berry et al., 2012). It has also been established 

that BDNF affects hippocampal development and neuroplasticity. Increased 

BDNF signaling enhances neurogenesis, neurite sprouting, electrophysiological 

activity, and other processes reflective of a general enhancement of 

hippocampal function. Increased hippocampal activity may mediate beneficial 

effects, such as enhanced learning and memory (for review see Murray and 

Holmes, 2011). Interestingly, it was also found that T cells can affect spatial 

learning and memory, and the expression of BDNF in the DG (Ziv et al., 2006). 

It has also been reported that microglia are a source of trophic factors known to 

support the development and normal function of CNS cells. On the other hand, 

BDNF and NT-3 induce microglia proliferation and phagocytic activity in vitro 

(Elkabes et al., 1996). The loss of BDNF during earlier stages of development 

causes hyperactivity and more pronounced hippocampal-dependent learning 

deficits. The absence of BDNF in the forebrain attenuates the actions of the 

anti-depressant desipramine, in the forced swim test, suggesting the 

involvement of BDNF in anti-depressant efficacy (Monteggia et al., 2004). 
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Reduced NGF and BDNF signaling in the adult brain may be involved in the 

pathophysiology of psychiatric disorders, such as depression (for review see 

Berry et al., 2012). Interestingly, depressed patients have decreased serum 

levels of BDNF, and the treatment with anti-depressants promotes an increase 

in these levels. Anti-depressants drugs, which mainly act by increasing the 

levels of the monoamines serotonin and noradrenaline in the synaptic cleft, are 

associate with several structural and neurochemical changes in which the levels 

of neurotrophins, particularly of BDNF, are altered (for review see Neto et al., 

2011). It is also interesting to note that BDNF, but not NGF, decreases 5-HT 

uptake in some B lymphoblast lines, which would functionally lead to increased 

extracellular 5-HT levels (Mossner et al., 2000). Indeed, in studies in the rat, it 

has been found that BDNF increases 5-HT levels in the brain and spinal cord 

(Siuciak et al., 1994). In a subsequent study, this group showed that BDNF 

increases tryptophan hydroxylase mRNA levels in the rat brain (Siuciak et al., 

1998).  

In this study, it is shown that athymic mice have higher BDNF and NT-3 

concentrations in defined brain regions than their normal thymus-bearing 

littermates. The results also indicate that such alterations are not genetically 

programmed since thymus grafting into newborn athymic mice normalizes 

BDNF and NT-3 concentrations.  

In addition, although there are some tendencies, the results showing that 

there are no statistically significant differences between athymic mice and their 

normal thymus-bearing littermates in NGF concentration in the spleen and 

brain regions, indicate that there is some selectivity in the neurotrophins 

affected by the lack of a functional thymus. On the other hand, significant 

correlations between NGF and NA concentrations were detected in both 

athymic mice and their normal thymus-bearing littermates.  It seems that this 

correlation was independent of the presence of T cells, because there were no 

differences in the slope of the regression curves between athymic and thymus-

bearing littermates. At the same time, they also indicate that there is a relation 

between the concentrations of NGF and NA present in an organ.  

Immunohistochemical studies also showed higher BDNF fluorescent signals 

in the hippocampus of athymic mice as compared to normal thymus-bearing 

littermates, and that thymus grafting into newborn athymic mice abrogated this 
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difference. These studies also showed a different distribution of these signals in 

the hippocampus of athymic mice compared with their normal thymus-bearing 

littermates.  Again, thymus grafting into newborn athymic mice abrogated this 

difference. While performing these studies, it became apparent that the 

histological pattern of the different regions in the hippocampus of athymic mice 

differed from that of the normal mice. In fact, the standard histological studies 

that were performed as consequence of these observations showed that 

regions such as CA1, CA2, and CA3, and the DG are ill defined in the 

hippocampus of athymic mice. More detailed histological studies are needed to 

clarify this aspect. In this context, it is interesting to note that the groups of J. 

Kipnis (USA) and M. Schwartz (Israel) have recently shown that T cells can 

affect adult neurogenesis by affecting progenitor-cell proliferation and neuronal 

differentiation, as well as particular learning abilities. Ziv et al. (Ziv et al., 2006) 

also found that there is less dendritic arborization in the DG of nude as 

compared to wild-type mice, and less percentage of cells expressing early 

neuronal differentiation markers.   

5.4. Sympathetic denervation at different stages of life 
affects NA, neurotrophin, and corticosterone 
concentrations 

 

 The previous parts of this work showed that the increase in noradrenergic 

innervation in the spleen and brain of athymic mice is paralleled by increased 

concentration of the neurotrophins BDNF and NT-3. The fact that both changes 

could be reverted by thymus implantation indicated that it is unlikely that these 

alterations are fortuitously and independently associated to the Foxn1 genetic 

mutation, or to other alterations observed in athymic mice, such as lack of 

hairs. The positive correlations established between NA and NGF 

concentrations also suggested that these parameters are related. Although no 

causal effects can be concluded from these correlations alone, it is well 

established that neurotrophins are essential for neuronal development and 

functioning.  Different approaches can be followed to study whether 

manipulation of one of these parameter results in changes in the other. For 

example, one possibility would be to study the effect of increasing NA 

concentration on the amount of neurotrophins that are produced in vivo, or vice 

versa. However, this type of experiments is difficult to interpret, since it is 
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almost impossible to mimic local increases on neurotransmitter or 

neurotrophins in tissues by administration of noradrenergic agonists or 

neurotrophic factors. The disadvantage is also that systemic administration of 

noradrenergic agonists or blockers results in many other changes in the host, 

and are, in general, of acute nature.  Another alternative is to determine the 

impact that selective depletion of noradrenergic fibers has on neurotrophin 

concentration. This was the approach chosen here, since it is well known that 

chemical sympathectomy results in prolonged changes in the sympathetic 

tonus, and that sympathectomized animals can well survive this treatment as 

long as they do not have to cope with very stressful situations or marked 

changes in ambient temperature.  Although this approach has also drawbacks, 

it was chosen as a first attempt to study whether decreasing noradrenergic 

innervation at a given stage of development affects neurotrophin concentration 

in the spleen and brain. For this purpose, 6-OH-DA was injected into normal 

mice at different ages and neurotrophin concentration was determined in the 

spleen and some brain regions.   

It is well established that the neurotoxin 6-OH-DA destroys sympathetic 

nerve terminals. Injection of this neurotoxin at birth results in permanent 

destruction of sympathetic nerve terminals (Glatzel et al., 2001; Thoenen and 

Tranzer, 1968), while administration of 6-OH-DA during adult life results in a 

more transient sympathectomy (del Rey et al., 2002; Glatzel et al., 2001). A 

large percentage of the cell bodies in sympathetic ganglia are completely and 

permanently destroyed by 6-OH-DA administered at birth due to the sensitivity 

of the perikaryon to the neurotoxin (Angeletti, 1971; Angeletti and Levi-

Montalcini, 1970a, b). It has been proposed that the sensitivity to 6-OH-DA is 

decreased in adult animals due to less accumulation of the neurotoxin in the 

perikaryon than in the terminal nerve endings (Tranzer, 1971). Others authors 

argued that the sensitivity of the perikarya to 6-OH-DA cannot account for the 

different effects because there are no big differences between young and adult 

animals in the size of the neuronal cell body (Furness, 1971). Some authors 

suggested that the fact that cell bodies are incompletely covered by a layer of 

satellite cells in the neonate could explain the different susceptibility to 6-OH-

DA (Bloom, 1971). The size of the dendritic tree may be also important in 

sequestering significant amounts of 6-OH-DA. In the neonate, more 6-OH-DA 
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is available for uptake by perikarya due to less arborization of terminal 

plexuses (Cheah et al., 1971).  

Four groups were used in the studies reported here, in which 6-OH-DA was 

injected to newborn, 2 week-old, and adult mice, and animals were sacrificed at 

different ages. The aim was to study the effect of destroying sympathetic nerve 

fibers at different stages of development on NA and neurotrophin 

concentrations in the spleen and brain.  

A substantial and significant decrease in splenic NA concentration was 

observed in all groups. It has been previously shown that 6-OH-DA 

administration at birth results in a permanent reduction of noradrenergic fibers 

in peripheral organs. The results reported here show that a permanent splenic 

denervation is also observed when the neurotoxin is administered into 14 day-

old mice. A nearly complete (approximately 90%) decrease in splenic NA 

concentration is as well observed shortly (7 days) after adult sympathectomy, 

and previous findings in this Research Group have shown that the levels of the 

neurotransmitter in the spleen are practically normalized 2 weeks later 

(unpublished results). 

The effect of 6-OH-DA on NA concentration in the brain observed in the 

experiments reported here differed from that in the spleen, since the reduction 

in the concentration of the neurotransmitter was less pronounced, particularly in 

the hippocampus, when the neurotoxin was administered to adult mice. It has 

been reported that 6-OH-DA administered peripherally can cross the still not 

completely developed BBB in newborn animals, thus reducing NA content in the 

CNS much more significantly than in adult animals (Lytle et al., 1972). The 

results obtained here showing that the degree of NA depletion in the 

hypothalamus and hippocampus was more marked when mice were denervated 

at birth than when the neurotoxin was injected into adult mice, agree with this 

and several other reports. Interestingly, the depletion of NA was remarkably 

more pronounced in the hippocampus than hypothalamus. It has been reported 

that all brain regions can be affected by 6-OH-DA administration, albeit not all to 

the same degree (for review see Kostrzewa and Jacobowitz, 1974).  

As mentioned above, the main scope of these experiments was to study 

whether alterations in the SNS at different ages result in changes in 

neurotrophin concentration. It is shown here that NGF and BDNF 
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concentrations were decreased in the spleen and in defined brain regions of 

mice denervated at birth or when they were 14 day-old, conditions under which 

sympathetic nerve terminals are nearly completely and permanently destroyed, 

as compared to the corresponding control groups. These results are in 

agreement with the results reported above, showing that BDNF concentrations 

are higher in the spleen and brain of athymic mice, which have more 

noradrenergic innervation than normal thymus-bearing mice. The results are 

also in accordance with the positive correlation between NA and NGF 

concentrations detected in the spleen and brain regions, as reported in this 

work, and with previous findings showing that a decrease in the density of 

sympathetic innervation ia paralleled by decreased NGF concentration 

(Korsching and Thoenen, 1983). It has also been reported that BDNF 

transgenic and knockout mice have increased, respectively decreased, 

sympathetic innervation (Causing et al., 1997)  

However, administration of 6-OH-DA into 60 day-old mice, in which also NA 

concentrations were decreased, resulted in increased NGF and BDNF 

concentrations in the spleen and hippocampus. Several factors may explain the 

opposite effects of denervation on neurotrophin concentrations. Among them, 

the age at which 6-OH-DA was administered, resulting either in permanent or 

transient denervation might be particularly relevant. It has been proposed that 

the accumulation of NGF in target tissues after 6-OH-DA injection may be due 

not only to the lack of NGF removal by retrograde transport, but also reflect an 

increased rate of synthesis influenced by the presence or activity of the 

sympathetic nerve terminals (Barth et al., 1984). It has also been reported that 

the damage of dopaminergic neurons by intra nigral or intra striatal 6-OH-DA 

injection may result in increased NGF (Nitta et al., 1992) and BDNF (Branchi et 

al., 2010) synthesis in brain. This evidence and the differences in experimental 

design mentioned above might contribute to explain the results showing that 

neurotrophin concentrations were increased in the spleen and brain following 

administration of 6-OH-DA to adult animals. It is clear that additional 

experiments are needed to further clarify this problem. However, as a whole, 

the results presented in this work show that: 1) the effect of NA depletion on 

neurotrophin levels depend on the age at which the neurotoxin is administered, 
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and 2) NA depletion for a relatively short time has different effects than a more 

prolonged absence of noradrenergic fibers. 

Previous work in this Research Group has shown that local surgical 

denervation of the spleen or general chemical sympathectomy by 6-OH-DA 

results in increased immune responses (del Rey et al., 1981), indicating that the 

immune cells involved are released from the suppressive action of NA 

(Besedovsky et al., 1979). As continuation of this work, this group also found 

that sympathetic denervation results in decreased SEB-induced cell proliferation 

and IL-2 production, and impedes the specific clonal deletion induced by the 

superantigen in normal mice, without affecting anergy (del Rey et al., 2002). A 

number of other studies have also used 6-OH-DA to investigate the effects of 

sympathetic denervation on various aspects of the immune response, including 

in vivo (Madden et al., 1994) and in vitro (Kruszewska et al., 1995) proliferation 

of lymphocytes, mitogen-induced T cell proliferation (Lyte et al., 1991), and 

cytokine production (Lyte et al., 1991). Also, the destruction of noradrenergic 

fibers by 6-OH-DA leads to the recruitment of phagocytic cells (Perry et al., 

1987). In turn, these cells can release cytokines such as IL-1β and IL-6, both of 

which have been implicated in the activation of the HPA axis (Besedovsky et al., 

1986; Kim et al., 2009; Watkins et al., 1995). In addition, destruction of 

peripheral noradrenergic fibers in adult mice may stimulate feedback 

mechanisms that ultimately signal activation of the HPA axis (Leo et al., 1998). 

This mode of activation may be mediated by the connections between 

catecholaminergic nuclei in the brainstem and the PVN of the hypothalamus 

(Leibowitz et al., 1989; Leo et al., 1998; Swanson and Kuypers, 1980).  

As it happened with the concentration of the neurotrophins, also 

corticosterone blood levels were differentially affected, depending on the age at 

which 6-OH-DA was injected. Administration of the neurotoxin to newborn or 14 

day-old mice resulted in decreased corticosterone blood levels when mice were 

21 day-old. As in the experiments performed in athymic mice, the litters were 

still with the mothers at the moment of sacrifice, and not individually caged, as 

it was done with adult mice. This procedure could have resulted in a 

considerable acute stress, which may explain the high levels of corticosterone 

determined at this age in the control mice. Albeit this observation, the results 

show that, under the same conditions, corticosterone levels in denervated mice 
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were significantly lower than in vehicle-injected mice. This finding is in 

agreement with the report by Jiang et al (Jiang et al., 2004) showing that i.p. 

injection of 6-OH-DA blocks cold stress-induced suppression of NK cytotoxicity. 

In this publication, it was also shown that cold stress-induced suppression of 

splenic NK activity, Fos expression in the PVN, and the elevation of the plasma 

corticosterone concentration were abrogated by central administration of the 

neurotoxin (Jiang et al., 2004).  

In this work, it is reported that peripheral injection of 6-OH-DA also results in 

decreased NA concentration in the hypothalamus, although to different degrees 

depending on the age at which the neurotoxin is administered. Although NA has 

been long considered as an inhibitor of the HPA axis, further studies have 

demonstrated that it can also have stimulatory influences (for review see 

Locatelli et al., 2010). These apparent discrepancies are most likely due to the 

different experimental approaches used to address this matter, raging from 

situations of stress of different magnitude, or infusion of adrenergic agonists or 

antagonists to in vitro experiments. Furthermore, it seems at present that 

whether the HPA axis is inhibited or stimulated by NA depends also on the type 

of adrenergic receptors that are involved,  receptors being stimulatory and  

inhibitory.  Both types of effects have been found in the experiments reported in 

this work. The relatively modest decrease in NA concentration in the 

hypothalamus of denervated, adult mice was paralleled by increased 

corticosterone blood levels, which would agree with an inhibitory effect of the 

neurotransmitter on the HPA axis. Conversely, decreased corticosterone blood 

levels were detected in young mice denervated when they were 1- or 14 day-

old, and in which NA concentration in the hypothalamus was reduced by more 

than 50% by peripheral injection of 6-OH-DA. These results would agree with 

those obtained in athymic mice, in which higher catecholamine concentrations 

in the hypothalamus were paralleled by increased corticosterone blood levels. 

It should be considered, however, that several other factors could contribute 

to changes in the activity of the HPA axis following denervation, for example, an 

increase in the release of pro-inflammatory cytokines, as mentioned above. 

Increased levels of certain cytokines could also explain the results observed in 

athymic mice. For example, it has been reported that, as compared to euthymic 

mice, macrophages from athymic mice stimulated in vitro with 
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lipopolysaccharide produce more IL-1(Normann et al., 1988) a cytokine that 

can strongly stimulate the HPA axis (Besedovsky et al., 1986),.  

 

5.5. Conclusions and perspectives  
 

The evidence available indicates that the effect of sympathetic 

neurotransmitters and neuro-endocrine mechanisms under the control of 

central noradrenergic neurons on immune cell activity does not represent a 

unidirectional process, but that such influences are bi-directional. Indeed, the 

presence of a functional thymus, and the consequent reconstitution of the host 

by T cells, can also influence the development of neural structures. The results 

in nude mice reported here are in agreement with the view that, in general, 

immune cells play an inhibitory role on the development of the sympathetic 

innervation of lymphoid organs and/or in the activity of the SNS and of central 

noradrenergic neurons (Besedovsky et al., 1979; del Rey et al., 1981). This 

mutual immune-neural effects re-inforce the concept that a neuro-endocrine-

immune network of interactions operates during development and adult life.  

In brief, the results described in this work show that: 1) the absence of a 

functional thymus results in increased neurotransmitter and neurotrophin 

concentrations in the spleen and in defined brain regions, and in corticosterone 

concentrations in blood; 2) these alterations are completely normalized when 

athymic mice are implanted with a thymus at birth; 3) the levels of 

neurotrophins in the spleen and brain are affected by the degree of 

noradrenergic innervation, as shown by a pharmacological manipulation that 

destroys of sympathetic nerve terminals. These results indicate that the 

alterations observed in athymic mice are not just a genetic epiphenomenon 

fortuitously associated with the absence of a functional thymus, but rather that 

mature T cells, by acting either directly or indirectly, exert an inhibitory 

influence on the development of splenic sympathetic innervation and 

noradrenergic innervation of the CNS. At the same time, these findings open 

further questions and offer many perspectives for future work. Some of them 

are briefly commented below.  

It would be certainly necessary to formally prove that the alterations 

detected in athymic mice, in particular those at central levels, are caused by 
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the lack of mature T cells, by directly reconstituting the animals with this cell 

type. Also, it would be interesting to study the contribution of the innate immune 

system to the changes detected, since the animals used for the studies 

reported here were not bred under germ-free or specific-pathogen free 

conditions and nude mice have a rather active innate immune system.   

This work concentrated on the study of neurotrophins as possible 

contributors to the altered innervation observed in athymic mice. However, it is 

conceivable that other mediators, such as semaphorins, could be involved as 

well. Semaphorins are a class of secreted and membrane-bound proteins that, 

by acting as repellent or attractant factors, affect axon and dendrite growth, and 

control synapse formation and function (for review see Yoshida, 2012), and 

also play a relevant role in immune function (for review see Takamatsu and 

Kumanogoh, 2012). 

As mentioned, while performing the studies reported here, it was found that 

there are marked alterations in the anatomy of the hippocampus. These studies 

should be also extended to other brain regions, since changes in BDNF and 

NT-3 concentrations can affect neurogenesis in the whole brain.   

Besides affecting many physiological functions, most of the neurotransmitters 

and neurotrophins, whose levels are altered in the brain of nude mice, are also 

involved in the control of behavior. In fact, as already mentioned, it has been 

shown that T lymphocytes are important to maintain hippocampal neurogenesis 

and spatial learning abilities (Ziv et al., 2006). Coupled to this recent evidence, 

the results reported in this work offer several perspectives for future research in 

other related disciplines. For example, it is interesting to mention here that, 

while breeding athymic mice, it was observed that heterozygous Foxn1n/Foxn1+ 

mothers seem to have a preference in the handling of normal thymus-bearing 

pups as compared to the athymic littermates. A very interesting, although 

complex, aspect to investigate would be to study if athymic pups, already at 

birth, would show a different behavior that could justify this observation. 

The human equivalent of the murine nude phenotype was first reported in 1996 

(Pignata et al., 1996). As in mice, also in humans this form of immunodeficiency 

is characterized by an intrinsic defect of the thymus, together with congenital 

alopecia and nails dystrophy, and is due to mutations in the Foxn1 gene. This 

mutation in human results in prenatal blockage of CD4+ T cell maturation and 
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severe impairment of CD8+ cells (Vigliano et al., 2011). It would be of basic and 

clinical relevance to ascertain whether alterations in neurotransmitters and 

neurotrophins similar to those reported here in mice carrying the mutated Foxn1 

gene, are also present in these patients. The discovery of the mutation in 

humans is rather recent, but it is interesting to mention in this context that brain 

alterations have been reported in two human fetuses carriers of this mutation 

(Amorosi et al., 2010). 
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7. Appendix 

7.1. Abbreviations 

5-HIAA 5-hydroxy-indol-acetic acid 

5-HT Serotonin 

6-OH-DA 6-hydroxydopamine 

A Adrenaline 

Ab antibody 

ACTH adrenocorticotrophic hormone 

ANS autonomic nervous system 

APTES amino propyl triethoxy saline 

AVP arginine vasopressin 

BBB blood-brain barrier 

BCA bicinchoninic acid 

BDNF brain-derived neurotrophic factor 

BSA bovines serum albumin 

CNS central nervous system 

CRH corticotrophin releasing hormone 

CSF cerebrospinal fluid 

DA Dopamine 

DBH Dopamine-ß-hydroxylase 

dist.w. distilled water 

DG dentate gyrus 

DOPAC dihydroxylphenylacetic acid 

ELISA enzyme linked immunosorbent assay 

Fig figure 

Foxn1 
forkhead box 

HPA axis hypothalamus- pituitary- adrenal axis 

HPLC high performance liquid chromatography 

HRP horseradish peroxidare 

i.p intraperitoneal 

IL-1 Interleukin-1 

IL-2 Interleukin-2 

IL-6 Interleukin-6 
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MHPG 4-hydroxy-3-methoxyphenylglycol-hemipiperinium salt 

min minute 

NA Noradrenaline 

NGF Nerve growth factor 

NK Natural killer 

NT-3 Neurotophins-3 

NT-4 Neurotrophins-4 

OD optical density 

PALS periarterial lymphatic sheath 

PBS phosphate buffer saline 

PNS peripheral nervous system 

PVN paravertricular nucleus 

RT room temperature 

SCID severe combined immunodeficiexy 

SNS sympathetic nervous system 

TH Tyrosine hydroxylase 

TMB tetramethylbenzidine 

TNFα tumor necrosis factor-α 

Trk Tyrosine kinase 

Trp Tryptophan 

Tyr Tyrosine 
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