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Abstract 

Background K+ conductance TASK channels belong to the family of two pore 

domain potassium channels. They are involved in regulation of neuronal excitability, 

cardiovascular homeostasis and endocrine activity. TASK channel activity is down-

regulated by activation Gq-protein coupled receptors (GqPCR). In various tissues this 

regulatory mechanism is crucial for proper organ function. Well studied examples of 

GqPCR mediated TASK channel inhibition are the cholinergic inhibition of IK,SO in 

cerebellar granule neurons, angiotensin II stimulated aldosterone secretion in adrenal 

zona-glomerulosa cells and vasoconstriction of the pulmonary artery by endothelin-1. 

Despite intense research, the mechanism underlying this inhibition remains elusive. 

Strong evidence exists for two competing hypotheses: TASK channels could be either 

blocked directly by the Gq-alpha subunit released on GqPCR activation, or their closure 

could be a direct consequence of Phospholipase C (PLC)-mediated phosphatidyl-

inositol(4,5)-bis-phosphate (PtdIns(4,5)P2) depletion. 

In the present study I investigated the role of PLC mediated phosphoinositide 

cleavage in the process of TASK channel regulation by GqPCR in the intact cell. 

Recently developed genetically encoded switchable phosphoinositide-phosphatases 

were used to specifically deplete PtdIns(4,5)P2. Additionally, I interfered with 

PtdIns(4,5)P2 resynthesis and PLC activity. I found that blockage of PLC results in 

abolishment of GqPCR induced TASK inhibition. However depletion of the PLC 

substrate PtdIns(4,5)P2 alone was not sufficient to inhibit TASK. 

These results show that PLC activation is an indispensable step in TASK channel 

inhibition. They further demonstrate that the depletion of PtdIns(4,5)P2 does not directly 

inhibit TASK and therefore suggest that a regulatory mechanism downstream of 

PtdIns(4,5)P2-hydrolysis mediates TASK channel inhibition. 
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Zusammenfassung 

Die Hintergrund-K+-Strom leitenden TASK Kanäle gehören zur Familie der Zwei-

Poren-Domänen-Kalium-Kanäle. Sie sind an der Regulation der neuronalen 

Erregbarkeit, der kardiovaskulären Homöostase und der endokrinen Aktivität beteiligt. 

Die TASK Kanal Aktivität wird durch Gq-Protein gekoppelte Rezeptoren (GqPCR) 

herunterreguliert. In verschiedenen Geweben ist dieser regulatorische Mechanismus 

entscheidend für die korrekte Organfunktion. Gut untersuchte Beispiele der GqPCR 

vermittelten TASK Inhibition sind die cholinerge Inhibition von IK,SO in zerebellären 

Körnerzellen, die Aldosteron-Sekretion durch Angiotensin II in Zona-glomerulosa-

Zellen der Nebenniere und die Depolarisation von glatten Gefäßmuskelzellen durch 

Endothelin-1. 

Trotz intensiver Forschung ist der Mechanismus, der dieser Inhibition zugrunde 

liegt kaum verstanden. Es gibt starke experimentelle Hinweise für zwei konkurrierende 

Hypothesen: TASK Kanäle könnten entweder direkt durch die Gqα-Untereinheit 

blockiert werden, die durch GqPCR-Aktivierung freigesetzt wird. Alternativ könnte ihr 

Schließen direkte Konsequenz des Phospholipase C (PLC) vermittelten Phosphatidyl-

inositol(4,5)-bis-phosphate (PtdIns(4,5)P2) Abbaus sein.  

In der vorliegenden Studie habe ich die Rolle des PLC-vermittelten PtdIns(4,5)P2-

Abbaus im Prozess der TASK Kanal Regulation durch GqPCR in der intakten Zelle 

untersucht. Es wurden neu entwickelte genetisch kodierte schaltbare Phosphatasen 

genutzt, um PtdIns(4,5)P2 spezifisch abzubauen. Zudem habe ich in die PtdIns(4,5)P2-

Resynthese und die PLC-Aktivität eingegriffen. Ich konnte zeigen, dass die Blockierung 

der PLC die TASK Kanal Inhibition durch GqPCR verhindert. Jedoch bewirkt der Abbau 

des PLC-Substrats PtdIns(4,5)P2 selbst nicht die TASK Inhibition.  

Diese Ergebnisse zeigen dass PLC Aktivierung ein notwendiger Schritt für die 

TASK Kanal Inhibition ist. Zudem zeigen sie, dass der Abbau von PtdIns(4,5)P2 TASK 

nicht direkt inhibiert und legen daher einen der PtdIns(4,5)P2-Hydrolyse 

nachgeschalteten regulatorischen Mechanismus für die Inhibition der TASK Kanäle 

nahe.  
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1 Introduction 

1.1 The Two pore domain potassium channel family 

Two pore domain acid sensitive potassium (TASK) channels belong to the 

superfamily of “two pore domains in tandem” potassium channels (K2P). It is named 

after their two pore domains in a tandem structure that is unique among potassium 

channels. K2P channels give raise to the “leak” potassium conductance, which has 

already been observed in the early days of electrophysiology when the high resting 

permeability of the cell membrane for potassium ions became apparent (Hodgkin & 

Huxley, 1947, 1952). However its molecular entities remained unknown until the late 

90ies when an ion channel was cloned from saccaromyces cervisiae with biophysical 

properties similar to that of the “leak” conductances (Fink et al., 1996). Soon the first 

mammalian channel was cloned and the unique structure of two pore domains in 

tandem was revealed (Lesage et al., 1996). The name “leak” conductance arose from 

the early idea that this conductance was essentially unregulated. However this is not 

the case, they are in contrast subject to modulation by diverse physiological and 

pharmacological stimuli (Enyedi & Czirjak, 2010). 

1.1.1 Structural characteristics of K2P Channels 

The K2P family is diverse in both, functional and structural aspects. Structural key 

features conserved throughout the family are the two pore domains and four 

transmembrane domains architecture. Each pore domain consists of two 

transmembrane domains which are linked by a pore loop. Both pore domains follow 

one on another, i.e. they are in “tandem” (Fig. 1) (Lesage et al., 1996; Brohawn, 2012; 

Miller, 2012). As four pore domains are necessary to form a functional channel, K2P 

channels are the only mammalian potassium channels where a functional channel is 

assembled by only a dimer (Hille, 2001; Brohawn, 2012; Miller, 2012). 

These structural characteristics were initially identified in TWIK (two pore weakly 

inward rectifying K+) channels, the first mammalian K2P channel to be cloned (Lesage 

et al., 1996). Subsequent research led to the identification of 18 K2P channels. They 

were named numerically as K2P1.1 to K2P18.1 according to their gene names (KCNK1 

to KCNK18, see Fig. 2) (Goldstein et al., 2005). The overall sequence homology of K2P 

channels is low compared to other potassium channels. This low sequence homology 

goes along with high functional diversity. It was therefore reasonable to categorize K2P 
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channels into six subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK, see Tab. 

1 and Fig. 2) by functional considerations (Enyedi & Czirjak, 2010). 

Tab. 1: The K2P Channel Subfamilies 

Abbreviation In words 
TWIK Two pore weakly inward rectifying K

+
 

TREK TWIK-related K
+
 

TASK TWIK-related acid sensitive K
+
 

TALK TWIK-related alkaline pH activated K
+
 

THIK Tandem pore domain halothane inhibited K
+
 

TRESK TWIK-related spinal cord K
+
 

 

 

  

Fig. 1: Topology of K2P channels. P1, P2: 

First and second pore domain. TM1-4: 

transmembrane regions. The plasma membrane is 

indicated in grey. 

Fig. 2: Human K2P dendrogram. 

Abbreviations used as given in Tab. 1. Figure taken 

from Enyedi & Czirjak, 2010. 

1.1.2 Electrophysiological characteristics of K2P Channels 

The biophysical properties of K2P channels closely resemble the ideal potassium 

leak conductance as observed by Hodgkin and Huxley (Hodgkin & Huxley, 1947). To fit 

the observations, a potassium leak channel has to exhibit three key properties: First of 

all it is open at resting potential and its conductance is insensitive to voltage changes. 

Furthermore both activation and deactivation kinetics are instantaneous and no 

inactivation is present. Finally it does not show any rectification: when electrolytes are 

distributed symmetrically over the membrane its conductance shows a linear and 

symmetric current-voltage dependency. According to these properties its current can 

be well described by the Goldman-Hodgkin-Katz equation (Goldman, 1943; Hodgkin & 

Katz, 1949). All these criteria are almost perfectly met by the current carried by K2P 
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channels. They are therefore often referred to as open- or outward-rectifying (Fig. 3) 

(Goldstein et al., 2001; Hille, 2001) The term “outward-rectifying” reflects the fact that a 

potassium leak current shows larger outward currents due to the asymmetrical 

distribution of electrolytes (in particular potassium) over the cell membrane. K2P 

channels thereby provide a continuous potassium flux that shifts the membrane 

potential towards the equilibrium potential of potassium resulting in stabilization of the 

resting membrane potential and facilitation of repolarisation (Goldstein et al., 2005; 

Enyedi & Czirjak, 2010).  

Noteworthy K2P channels do not totally resemble an ideal potassium leak 

conductance. In fact they slightly deviate from an ideal leak channel. For instance 

TWIK channels show a weak inward rectification (Lesage et al., 1996), while TASK 

channels exhibit slight outward rectification also at symmetrical potassium 

concentrations. In addition their activation is time dependent (although with very fast 

kinetics) (Duprat et al., 1997). 

 

Fig. 3: Comparison of TASK currents and 

Goldman-Hodgkin-Katz current equation. 

Current-voltage relationship of TASK-3 as 

measured in xenopus oocytes (black traces) and 

as estimated by the Goldman-Hodgkin-Katz 

current equation (grey traces). Experiments and 

calculations were performed for 80 mM and 2 mM 

extracellular K+. Figure obtained from Enyedi & 

Czirjak, 2010. 

1.1.3 Physiological importance of K2P channels 

Despite early expectations suggesting a unregulated leak, K2P channels are subject 

to regulation by a diverse number of physiological and pharmacological stimuli. K2P 

channels serve as essential sensors for the metabolic state of the body. TASK, TALK 

and TREK are sensitive to changes in pH (Duprat et al., 1997; Reyes et al., 1998; 

Lesage et al., 2000). By this mechanism TASK channels (inhibited by protons) are 

involved in chemoreception in the carotid body while TALK channels (activated by 

protons) contribute to the re-absorption of bicarbonate in kidney’s tubules (Duprat et 
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al., 2007; Bayliss & Barrett, 2008). By a not yet fully understood mechanism TASK are 

also involved in oxygen sensing in carotid body glomus-cells (Duprat et al., 2007). 

Another key feature of K2P is their sensitivity to volatile anesthetics. Application of e.g. 

halothane activates various channels of this group, thereby stabilizing the resting 

membrane potential of a cell (Patel et al., 1999; Talley et al., 2001; Liu et al., 2004). As 

K2P channels are involved in arousal, pain sensation, generation of motor impulses and 

setting of vascular tone, the direct action of volatile anesthetics on K2P channels 

explains the bulk of the clinical effects of these drugs (i.e. immobilization, sedation and 

analgesia) (Bayliss & Barrett, 2008). 

Physiologically K2P are involved in diverse signaling cascades by coupling to G-

protein coupled receptors (GPCR). TREK channels are inhibited by stimulation of Gs- 

and GqPCR, e.g. in dorsal raphe nuclei, where attenuation of these inhibition pathways 

may cause depression (Bayliss & Barrett, 2008). Inhibition of TREK channels via 

protein-kinase C (PKC) mediates NO release in vascular endothelium cells and thereby 

provokes vasodilatation (Enyedi & Czirjak, 2010). Also TASK are subject to inhibition 

by GqPCR. In contrast to TREK channel inhibition, the mechanism underlying TASK 

channel inhibition remains elusive. As the aim of this study is to resolve this 

mechanism, its physiological relevance and suggested signaling pathways will be 

detailed in the next chapters. 

1.2 The TASK channel subfamily 

1.2.1 Structure and functional characteristics 

The TASK channel subfamily consists of three members: TASK-1, TASK-3 and 

TASK-5 (Goldstein et al., 2005). TASK-1 and TASK-3 are the closest known relatives 

within the K2P family (Kim et al., 2000) and also share the main electrophysiological 

features (Enyedi & Czirjak, 2010). In contrast TASK-5 is apparently non-functional 

(Enyedi & Czirjak, 2010). TASK-1 and TASK-3 exhibit currents that are strongly 

inhibited by extracellular acidification, although the range of pH sensitivity differs 

between both channels (Rajan et al., 2000; Morton et al., 2003). While TASK-3 is 

maximally activated at a physiological pH of 7.4 TASK-1 is about half active at the 

same value (Duprat et al., 1997; Kim et al., 2000). Another key feature of TASK 

channels is their activation by halothane. Clinically relevant concentrations of halothane 

increase TASK-1 currents by 50% and TASK-3 by 130% (Talley & Bayliss, 2002). Also 
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GqPCR mediated inhibition is present in both channels. Robust receptor activation 

results in almost complete inhibition of both channels (Talley & Bayliss, 2002; Mathie, 

2007). Noteworthy activation by halothane and inhibition by GqPCR share a common 

site of action: they both require a six-amino acid motif (VLRFXT) which is conserved 

among the TASK channel family (Talley & Bayliss, 2002). 

1.2.2 Physiological relevance and GqPCR mediated inhibition 

TASK channels are widely expressed throughout the whole body. In many organs 

their regulation is essential to carry out basic organ functions. For instance they are 

involved in the integration of motor impulses, sensation of chemical stimuli, the 

regulation of vascular tone and respiratory frequency (Duprat et al., 2007; Bayliss & 

Barrett, 2008; Gurney & Manoury, 2009). Furthermore TASK channels mediate non-

organ specific processes as being involved in oncogenesis and apoptosis (Patel & 

Lazdunski, 2004; Bayliss & Barrett, 2008). In many of these processes their inhibition 

by Gqα-protein coupled receptor (GqPCR) activation is a crucial modulatory 

mechanism. As TASK channel functions are diverse, this chapter will exemplify only 

some key functions where modulation by GqPCR is of outstanding importance. 

Generation and modulation of motor impulses is influenced by TASK channels in 

the brain and in peripheral neurons. In giant motorneurons of the caudal pontine 

reticular formation TASK-3 channels are under the regulation of 5-hydroxytryptamin-2 

receptors, also belonging to the family of GqPCR. Serotoninergic input from the raphe-

nuclei leads to receptor activation and subsequent depolarization of the giant neurons, 

presumably influencing the startle motor response (Weber et al., 2008). Similar findings 

were made for the TASK-like conductance in dorsal vagal neurons (Hopwood & Trapp, 

2005). Additionally a current mainly carried by TASK-1/TASK-3 heterodimers, called 

IK,SO (SO for standing outward), in cerebellar granule neurons is subject to inhibition by 

stimulation of various GqPCR, like the muscarinic acetylcholine receptor 1 (m1R) (Millar 

et al., 2000; Talley et al., 2001; Chemin et al., 2003; Kang et al., 2004). In these cells, 

knock-out of TASK-1 leads to marked changes of their electrophysiological properties. 

As cerebellar granule neurons are involved in processing motor impulses, TASK-1 

knock-out mice show altered motor behavior (Aller et al., 2005). Moreover TASK-1 is 

responsible for a remarkable “leak” current in motorneurons of the hypoglossal nerve. 

This current is under inhibitory regulation of various GqPCR, such as 5-

hydroxytryptamin-2 receptors, adrenoreceptors, type I metabotropic glutamate 

receptors and thyreotropin releasing hormone receptors (Talley et al., 2000). As 
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GqPCR inhibition of TASK is such a prominent mechanism in motor system it is 

believed to strongly influence the generation of motor impulses (Bayliss & Barrett, 

2008). 

GqPCR inhibition of TASK furthermore strongly affects the cardiovascular system. A 

well studied example in this context is the inhibition of heteromeric TASK-1/TASK-3 

channels by angiotensin II in zona glomerulosa adrenal cells. Stimulation of AT1-type 

GqPCR leads to an inhibition of a TASK-like conductance, resulting in a pronounced 

depolarization of these cells (Czirjak et al., 2000). This triggers the release of 

aldosterone and thereby influences glomerular filtration rate and systemic blood 

pressure (Bayliss & Barrett, 2008). Consequently the phenotype of TASK-1 or TASK-

1/TASK-3 double knock-out mice reconstitutes the clinical features of a primary 

hyperaldosteronism (Bayliss & Barrett, 2008; Davies et al., 2008; Heitzmann et al., 

2008). 

A TASK-like conductance was also found in rat cardiomyocytes. This conductance, 

mediated by TASK-1 has been shown to be modulated by stimulation of α1-type 

adrenoreceptors and platelet-activating factor receptor, both GqPCR (Besana et al., 

2004; Putzke et al., 2007). Adrenergic stimulation results in an increased action 

potential frequency and membrane depolarization (Putzke et al., 2007). Accordingly 

TASK-1 knock-out mice showed a decreased variability in the heart rate (Donner et al., 

2010).  

Motor function, aldosterone secretion and heart rate modulation are just three 

examples for the relevance of GqPCR mediated TASK channel inhibition. They 

demonstrate that this mechanism is of crucial physiological relevance and 

understanding of this mechanism can possibly help to understand and treat various 

related diseases. 

1.3 The GqPCR signaling pathway 

GqPCR belong to the heterogeneous family of G-protein coupled receptors (GPCR) 

(Foord et al., 2005). They initiate diverse intracellular signaling cascades. The signaling 

pathway is mainly routed by the type of the coupling G-protein. In the context of the 

current work, only the group of Gq-protein coupled receptors (GqPCR) is of further 

interest. Muscarinic acetylcholine receptors type 1 and 3, 5-hydroxytryptamin-2 

receptors, α1-adrenoreceptors, metabotropic glutamate receptors type I, thyreotropin 
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releasing hormone receptors, endothelin A and B receptors are common 

representatives of this group (Foord et al., 2005). The general principle of GqPCR 

signaling is well established. In brief G-proteins are heterotrimers assembled of a 

GTP/GDP binding α- and a βγ subunit complex. The α-subunit determines the species 

of G-protein (e.g. Gq) (Foord et al., 2005). In the resting state only a small fraction of 

GqPCR associate with the Gqαβγ protein complex having a GDP bound (Fig. 4.1). The 

fraction of GqPCR associated with the Gqα-GDP-βγ complex increases upon receptor 

activation for yet unknown reasons (Falkenburger et al., 2010b). Activation of these 

GqPCR associated with Gqα-GDP-βγ leads to the replacement of the GDP by GTP (Fig. 

4.2). This step initiates the dissociation of the receptor-G-protein complex into a Gqα-

GTP and a GqPCR- βγ-complex (Fig. 4.3 and Fig. 5). The Gqα-GTP now propagates 

signaling to its effectors (Fig. 4.4). The intrinsic GTPase activity of Gqα then terminates 

signaling by hydrolysis of GTP enabling reorganization of the complex (Fig. 4.5 + 6) 

(For review see: Gilman, 1987; Mizuno & Itoh, 2009). Both, the Gβγ and the Gqα 

proteins can propagate GqPCR signaling (McCudden et al., 2005). 

The signaling effect exhibited by Gβγ depends on the exact composition of β and γ 

subunits. There are 5 genes coding for Gβ and 12 coding for Gγ. Depending on their 

combination they can initiate different signaling pathways, including activation of inward 

rectifying potassium channels, various calcium channels and phospholipase C (PLC-β) 

(Huang et al., 1998; McCudden et al., 2005; Drin & Scarlata, 2007). There is evidence 

suggesting that the Gβγ composition has a role in specific receptor-effector coupling 

and thereby in target specific signal propagation (McCudden et al., 2005).  

The main function of Gqα is to activate PLC-β, thereby initiating an almost 

ubiquitous signaling cascade. It additionally activates RhoA via G-protein exchange 

factors (GEF, Fig. 5) (Mizuno & Itoh, 2009). RhoA itself is well known to play a role in 

oncogenesis. Additionally RhoA dependent regulation of ion channels has recently 

been reported (Szaszi et al., 2000; Karpushev et al., 2010). 

 



Introduction 

 

MORITZ LINDNER  - 8 - 

 

Fig. 4: The G protein cycle. R Receptor, A 

Agonist, Pi Phosphate,  G-Protein a subunit  

G-Protein  subunits. 1, The G-protein cycle 

initiates with a G-protein associated with the 

receptor and a GDP bound. 2, Receptor activation 

leads to replacement of GDP by GTP. 3, 

Subsequently the G-protein-Receptor complex 

dissociates into Gqα-GTP and a receptor-βγ-

complex. 4, Gqα-GTP then activates the effector 

(here PLC-β). 5, Intrinsic GTPase activity 

hydrolyses GTP to GDP thereby terminating the 

signaling activity. 6, after GTP hydrolysis Gqα-

GDP leaves the effector and re-associates with 

the  subunit. 

When activated, PLC-β hydrolyzes phosphatidyl-inositol-4,5-bis-phosphate 

[PtdIns(4,5)P2] into inositol-3,4,5-tris-phospate [Ins(1,4,5)P3], diacyl-glycerol (DAG) and 

a proton (Huang et al., 2010). Strong PLC-β activation results in a dramatic decrease of 

PtdIns(4,5)P2 membrane abundance (Falkenburger et al., 2010b). Finally Ins(1,4,5)P3 

creation leads to an emptying of calcium stores, while DAG activates Protein Kinase C 

(PKC) (Fig. 5). 

Most of the second messengers involved in this signaling cascade have also been 

shown to regulate ion channels. DAG activates transient receptor potential channels 

while Ins(1,4,5)P3 is well known to activate the Ins(1,4,5)P3 receptor type calcium 

channel covering the membrane of the endoplasmatic reticulum (Hille, 2001; Dietrich et 

al., 2005). Direct interaction of G-proteins with ion channels was demonstrated for Kir3 

channels (Luscher & Slesinger, 2010). PtdIns(4,5)P2 has received further attention, 

when it was shown that some Kir and Kv channels are under immediate control of this 

membrane lipid (Hilgemann & Ball, 1996; Baukrowitz et al., 1998). The hydrolysis of 

PtdIns(4,5)P2 by PLC-β is a key process in GqPCR signaling and will therefore receive 

further attention in the next chapter. 
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Fig. 5 Gq-Protein Signaling cascade: R 

Receptor, A Agonist,  G-Protein  subunit,  G-

Protein  subunits. Receptor activation by an 

agonist leads to replacement of Gqα bound GDP by 

GTP. Subsequently the Gqα -complex dissociates. 

Gqα activates PLC-β and GEFs. Also G  can 

activate PLC-β. Active PLC-β hydrolyses 

PtdIns(4,5)P2 to Ins(1,4,5)P3, DAG and a proton. 

Ins(1,4,5)P3 releases calcium from intracellular 

stores meanwhile DAG activates PKC. 

1.4 Phosphoinositides and the role of Phospholipase C 

PtdIns(4,5)P2 is only one representative of the group of phosphoinositides (PtdIns). 

These lipidic messenger molecules do not only regulate the function of ion channels 

but they also control a plethora of other cellular processes at the cell membrane. They 

are a minor component of the eukaryotic plasma membrane and they are maintained at 

a specific equilibrium by interaction of various lipid kinases and phosphatases (Di 

Paolo & De Camilli, 2006). Potential interaction, regulation, and distribution 

mechanisms are still not fully understood. However understanding has dramatically 

increased within the last years. It has especially become clear that PtdIns(4,5)P2 may 

play a permissive role for protein function, i.e. PtdIns(4,5)P2 dependency does not 

necessarily mean that a protein is also regulated by PLC-β mediated PtdIns(4,5)P2 

hydrolysis (Gamper & Shapiro, 2007; Hilgemann, 2007; Suh & Hille, 2008; 

Falkenburger et al., 2010a). 

1.4.1 Chemical structures of phosphoinositides and their distribution at 

the plasma membrane 

Phosphatidyl inositol is the precursor molecule of all PtdIns. PtdIns consist of a 

hydrophilic inositol group connected to a lipophilic lipid backbone. The phospolipidic 

backbone is assembled by two fatty acids esterified to a glycerol moiety which is 

phosphorylated in the remaining OH-position. Via this phosphate group the molecule is 

linked to cyclic myo-inositol, thereby assembling phosphatidyl-inositol. Differential 
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phosphorylation of one, two or all three of the OH-groups in 3-, 4- or 5-position of the 

myo-inositol results in seven different molecules termed phosphoinositides (PtdIns, Fig. 

6) (Di Paolo & De Camilli, 2006). The lipophilic backbone anchors the PtdIns into the 

plasma membrane while the inositol group is the main site for protein interaction (Di 

Paolo & De Camilli, 2006). 

Phosphoinositides show an abundance of only 15 % of the phosphatidyl-inositol 

concentration of the cell membranes, making up approximately 1.5 % of its overall 

phospholipid content (Di Paolo & De Camilli, 2006; Gamper & Shapiro, 2007; 

Hilgemann, 2007). PtdIns(4)P and PtdIns(4,5)P2 are the two most abundant PtdIns, 

accounting for about 5 % of the total phosphatidyl-inositol concentration each. They 

thereby exceed the concentration of other PtdIns by a multiple (Di Paolo & De Camilli, 

2006; Kwiatkowska, 2010). 

 

Fig. 6: Chemical structure of Phosphatidyl-inositol. The hydrophilic inositol group is drawn 

in green, the lipophilic phospholipid backbone in black. By differential phosphorylation in 3 -, 4 - 

and 5 - positions (red) nine different Phosphoinositide species are obtained. Modified from D. 

Oliver. 

1.4.2 Phospholipase C mediates GqPCR induced PtdIns signaling 

PtdIns(4,5)P2 was the first PtdIns to receive major attention. It was originally 

believed to serve only as a precursor molecule for the second messengers Ins(1,4,5)P3 

and DAG in the GqPCR-PLC-β pathway. It was suggested to be thereby involved into 

the regulation of ion fluxes and signal propagation (Berridge & Irvine, 1989). More 

recently it has been demonstrated that PtdIns(4,5)P2 directly regulates ion channels 

(Hilgemann & Ball, 1996; Baukrowitz et al., 1998; reviewed in: Suh & Hille, 2008).  

PtdIns(4,5)P2 hydrolysis to Ins(1,4,5)P3 and DAG is carried out by Phospholipase C 

enzymes. The diverse group of Phospholipase C consists of thirteen isotypes divided 
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into six groups ( , , , ) (Suh et al., 2008). They all hydrolyze the phosphate 

bond between the lipidic backbone and the myo-inositol-derived head group of 

PtdIns(4,5)P2 (Drin & Scarlata, 2007). However only Phospholipase C PLC-β  

enzymes are activated in consequence to GqPCR stimulation (Suh et al., 2008). This 

activation is mainly mediated by GTP-Gqα but can also be achieved by certain Gβγ 

subunits. It has been shown that Gβγ-mediated activation of PLC-β occurs via 

membrane recruitment. In contrast the probably more prevalent mechanism of Gqα 

activation is still not understood (Drin & Scarlata, 2007; Suh et al., 2008).  

As a necessary cofactor, all Phospholipase C enzymes need calcium (Lomasney et 

al., 2012). In case of PLC-β, resting calcium concentrations are sufficient for enzymatic 

activity: its calcium dependence resembles a bell shaped curve with the maximum at 

about 100 µM calcium (Ryu et al., 1987). As PLC-β activation liberates calcium from 

intracellular stores, PLC-β activation might enhance its own activity in a positive 

feedback manner (Rhee, 2001). 

PLC-β activation is a powerful mechanism to reduce PtdIns(4,5)P2 concentrations 

to approximately 10 % of their resting values (Falkenburger et al., 2010b). Usually this 

PtdIns(4,5)P2 cleavage is counterbalanced by fast subsequent PI5KI 5 -kinase 

activation (D'Angelo et al., 2008). Thereby PLC-β activation also results in a notable 

depletion of PtdIns(4)P (Willars et al., 1998; Horowitz et al., 2005). PLC-β also 

hydrolyzes PtdIns(4)P in vitro (Ryu et al., 1987). If this also happens under 

physiological conditions has not been demonstrated yet. Regardless if by direct or 

indirect means strong PLC-β activation results in depletion of PtdIns(4,5)P2 and 

PtdIns(4)P. As these two molecules are the two most abundant PtdIns of the plasma 

membrane, a remarked decrease in overall membrane PtdIns is the consequence 

(Horowitz et al., 2005).Therefore PLC-β activation can also affect processes that are 

regulated by PtdIns(4)P. 

After termination of PLC-β activity PtdIns(4,5)P2 and PtdIns(4)P are resynthesized 

by ATP-dependent phosphorylation steps (Suh & Hille, 2002). Thereby PtdIns(4,5)P2 

and PtdIns(4)P are restored to resting level and the signaling process is terminated (Di 

Paolo & De Camilli, 2006). 
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1.4.3 Various ion channels are modulated by Phosphoinositides 

PtdIns signaling is involved in many cellular functions. Fast time scale changes in 

PtdIns levels are especially important for the regulation of ion channels. During the past 

15 years a plethora of ion channels has been shown to be regulated by (or to depend 

on) PtdIns (reviewed in Suh & Hille, 2008). While for many of them a physiological 

implication is rather speculative, interaction mechanism and physiological function is 

now well established for others. The Kir and Kv7 ion channel families have been 

investigated in detail and will serve to exemplify the most common PtdIns interaction 

schemes.  

The family of inward rectifying potassium channels (Kir) consists of eight 

subfamilies. All family members share the feature of an inward rectification of the 

potassium flux (Hille, 2001). One member of the Kir family, the Kir6.2 or KATP channel, 

was the first ion channel for which PtdIns(4,5)P2 sensitivity was demonstrated 

(Hilgemann & Ball, 1996). PtdIns modulate KATP activity by decreasing their affinity to 

its blocker ATP (Baukrowitz et al., 1998; MacGregor et al., 2002; Suh & Hille, 2008). 

The interaction of this channel with PtdIns is characterized by low specificity and low 

affinity. As KATP channels are low in specifity ion channel activity is changed in 

consequence to alteration of PtdIns(4,5)P2, PtdIns(3,4,5)P3 or PtdIns(3,4)P2 levels 

(Rohacs et al., 2003). Due to their low affinity, the decrease in PtdIns concentration 

achieved by GqPCR receptor activation is sufficient to alter KATP activity (Baukrowitz et 

al., 1998).In contrast to KATP, Kir2.1 channels are highly specific and highly affine 

towards PtdIns(4,5)P2. While PtdIns(4,5)P2 generally activates Kir2.1, e.g. by 

application on excised patches, GqPCR activation does not modify PtdIns(4,5)P2 levels 

enough to alter channel activity (Rohacs et al., 2003; Du et al., 2004; Rohacs, 2009). In 

this case PtdIns may function as a cofactor which is essential for an ion channel to 

reach open state, but they will not mediate receptor signaling onto this channel (Suh & 

Hille, 2008). 

The Kv7 family forms part of the superfamily of voltage gated potassium channels 

and consists of five members (Kv7.1-Kv7.5, KCNQ1-5). Kv7 channels are present e.g. in 

cardiomyocytes (Kv7.1), neurons (Kv7.2/Kv7.3) and in cochlear outer hair cells (Kv7.4) 

(for review, see Robbins, 2001). The Kv7 channels are a classical example of 

potassium channels blocked by GqPCR activation. Their inhibition in response to 

application of muscarine was name giving to the “M”-current found in sympathetic 

neurons back in the 1980 (Brown & Adams, 1980). The M-current has been shown to 
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be the electrophysiological correlate of the KCNQ 2/3 gene products (Wang et al., 

1998). The mechanism underlying its muscarinic inhibition remained unclear for a long 

time, but could be clearly attributed to be a direct consequence of PtdIns(4,5)P2 

hydrolysis (Suh & Hille, 2002; Zhang et al., 2003; Suh et al., 2006). Kv7 are specifically 

sensitive to PtdIns(4,5)P2. For inhibition of Kv7 currents turnover of PtdIns(4,5)P2 to 

PtdIns(4)P is sufficient, i.e. the overall PtdIns concentration may remain unchanged (Li 

et al., 2005; Suh et al., 2006). The mechanism of interaction with phosphoinositides is 

probably best studied for this group of channels. This makes them a valuable tool to 

monitor PtdIns(4,5)P2 changes in the plasma membrane (Suh & Hille, 2002; Zhang et 

al., 2003; Suh et al., 2004; Li et al., 2005; Winks et al., 2005; Suh et al., 2006; 

Hernandez et al., 2008; Hernandez et al., 2009; Falkenburger et al., 2010c). 

1.4.4 Phosphoinositides do not only regulate ion channels 

Beside their direct signaling effect on ion channels PtdIns are also involved in a 

wide range of other signaling processes. This includes basic functions like cell cycle 

control, apoptosis, cytoskeleton formation, protein trafficking or exocytosis (Di Paolo & 

De Camilli, 2006). Accordingly disequilibrium in PtdIns homeostasis has been linked to 

various pathological conditions (Halstead et al., 2005). In contrast to ion channel 

regulation these effects are mostly not due to fast changes in PtdIns concentrations 

mediated by PLC-β activation. They rather result from long term changes in PtdIns 

concentrations by an altered activity of phosphatases and kinases (Di Paolo & De 

Camilli, 2006; Suh & Hille, 2008). In the context of this study the effect on these slow 

processes is of minor importance. To give a general overview, they are summarized in 

Fig. 7. 
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Fig. 7: Common examples of processes regulated by PtdIns(4,5)P2. These include endo- and 

exocytosis, cell motility, second messenger creation, regulation of ion channels and transporters, cell 

adhesion and cytoskeleton formation (Figure from: Di Paolo & De Camilli, 2006). 

1.5 Recent insight into the regulation of TASK channels by Gq-

protein coupled receptors 

The GqPCR pathway and the physiological relevance of GqPCR signaling for TASK 

channel inhibition have been described so far. This thesis investigates how GqPCR 

mediated inhibition of TASK is achieved. A number of previous studies have addressed 

this question before. However, no consensus could be established. To understand the 

motivation for the present work it is thus necessary to review their experimental 

findings. 

1.5.1 Gqα is essential for receptor inhibition TASK channels 

It has been shown that activation of the Gqα subunit is required for TASK channel 

inhibition. Genetic knock-out and pharmacological blockage of Gqα abolished inhibition 

of TASK channels by GqPCR (Chen et al., 2006; Veale et al., 2007). Furthermore 

constitutive activation of Gqα by a non-hydrolysable GTP analog maintained TASK 

channels inhibited after GqPCR activation (Czirjak et al., 2001; Chemin et al., 2003; 

Chen et al., 2006). It is therefore consensus that activation of Gqα is a necessary step 

within the cascade leading to TASK inhibition. 

1.5.2 Activated Gqα may directly inhibit TASK channels 

Results from Chen et al. (2006) provided good evidence for a direct interaction of 

Gqα with TASK (Fig. 8 A): In cells where Gqα was knocked out, TASK channel inhibition 

could be reconstituted by transfection of both wild-type Gqα and a mutant of Gqα that 

was inefficient to activate PLC. The authors could additionally show by co-
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immunoprecipitation that activated Gqα associates with TASK channels, also 

suggesting a direct interaction (Chen et al., 2006). 

1.5.3 The role Phospholipase C is unclear 

PLC-β is directly activated by Gqα. Therefore a requirement of PLC-β in the 

inhibitory process would exclude a direct inhibition of TASK by Gqα. Various studies 

probed the role of PLC-β for TASK channel inhibition. Some authors find that 

pharmacological blockage of PLC-β abolishes GqPCR mediated TASK inhibition 

(Czirjak et al., 2001; Chemin et al., 2003). However others do not find TASK channel 

inhibition altered after pretreatment with a PLC-β blocker (Boyd et al., 2000; Chen et 

al., 2006). 

1.5.4 TASK inhibition may result from PtdIns(4,5)P2 depletion 

As some studies found that PLC-β was involved in TASK channel inhibition the role 

of PtdIns(4,5)P2 was tested. It was hypothesized that TASK channels may require 

PtdIns(4,5)P2 for activity (Chemin et al., 2003; Lopes et al., 2005). As PtdIns(4,5)P2 is 

cleaved after PLC-β activation the decrease in PtdIns(4,5)P2 concentration could be 

the stimulus for TASK channel closure (Fig. 8 B). Chemin et al. showed that inclusion 

of PtdIns(4,5)P2 antibodies into the intracellular solution abolished TASK currents 

(Chemin et al., 2003). Additionally direct application of PtdIns(4,5)P2 onto excised 

patches recovered channels from rundown after patch excision (Chemin et al., 2003; 

Lopes et al., 2005). Together the results from these studies suggested that the 

presence of PtdIns(4,5)P2 is required for the channel to function. However this does not 

necessarily mean that PtdIns(4,5)P2 hydrolysis by PLC-β effectively inhibits TASK 

channels after GqPCR activation, as the residual PtdIns(4,5)P2 might still be sufficient 

to keep the channel fully open (Rohacs, 2009). 

It has been shown that wortmannin, a PtdIns(3)- and PtdIns(4)-kinase inhibitor, 

decelerates the recovery of TASK channels after GqPCR activation (Czirjak et al., 

2001; Chemin et al., 2003). These results suggested that changes in PtdIns(4,5)P2 

concentration as they occur due to GqPCR activation could be sufficient to inhibit TASK 

channels. Inconsistently no such findings were observed for staurosporin, a broad 

spectrum kinase inhibitor also affecting PtdIns(3)- and PtdIns(4)-kinases despite it was 

used in the same study (Chemin et al., 2003; Karaman et al., 2008).  
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1.5.5 Downstream messengers have been tested 

TASK channel inhibition could be also mediated by downstream messengers like 

Ins(1,4,5)P3, calcium, DAG or Protein Kinase C (PKC). 

The role of Ins(1,4,5)P3 was tested twice, giving contrary results. Addition of 

Ins(1,4,5)P3 to the intracellular solution induced a rundown of TASK currents (Chemin 

et al., 2003) while injection of Ins(1,4,5)P3 into oocytes left TASK currents unaffected 

(Czirjak et al., 2001). Changing intracellular calcium or blocking calcium release from 

intracellular stores had no effect on TASK currents, suggesting that calcium was not 

the direct inhibitor of TASK (Czirjak et al., 2001; Veale et al., 2007).  

Although a review reported DAG not to have any effect on TASK currents (Mathie, 

2007), in fact there is no experimental evidence in literature that the effect of DAG on 

TASK has really been tested. The role of PKC, as the main downstream effector of 

DAG, has been extensively probed after the identification of various PKC 

phosphorylation sites in TASK channels (Duprat et al., 1997; Kim et al., 2000; Lopes et 

al., 2000; Rajan et al., 2000; Vega-Saenz de Miera et al., 2001; Chemin et al., 2003; 

Besana et al., 2004; Mathie, 2007; Veale et al., 2007). However it is now clear that 

PKC does not mediate TASK inhibition (Veale et al., 2007; Schiekel et al., in revision).  

In summary, at present there are two competing hypotheses concerning the way 

GqPCR transmit their signal to TASK: There could be either a direct interaction 

between Gqα and the channel (Fig. 8 A) or Phospholipase C mediated hydrolysis of 

PtdIns(4,5)P2 might provoke TASK inhibition (Fig. 8 B). While an involvement (no 

matter if by direct or indirect means) of Gqα seems evident, experimental results 

concerning the role of PtdIns(4,5)P2 are much more controversial. 
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Fig. 8: Competing hypotheses on the 

mechanism of TASK channel inhibition: A, 

TASK channels are directly inhibited by Gqα or B, 

their closure is a direct consequence of 

PtdIns(4,5)P2 hydrolysis. Figure adapted from 

Mathie, 2007. 

1.6 Tools for monitoring and manipulating PtdIns levels 

To substantially contribute to this highly studied field, monitoring and modulating of 

the candidate messenger molecules inside the living cell is required. This chapter will 

present the recent advances for both monitoring and manipulating of PtdIns 

concentrations and will discuss their limitations. 

1.6.1 Live cell imaging of PtdIns dynamics 

Studying of PtdIns dynamics in the living cell required the development of specific 

sensor domains. The discovery that certain proteins specifically interact with one type 

of PtdIns was an indispensable prerequisite. Study of these proteins revealed the 

existence of common PtdIns binding motifs. Examples of such binding motifs are the 

pleckstrin homology (PH) domains (Stauffer et al., 1998). These domains are 

conserved among distinct proteins were they mediate protein-protein or protein-lipid 

interaction. Of special interest are the PtdIns binding PH domains which vary in their 

exact PtdIns specificity. In the context of the present work, two PH domains are 

especially noteworthy: On the one hand PLC-δ1-PH binds to PtdIns(4,5)P2 and 

Ins(1,4,5)P3, yeast Osh2p-PH on the other hand binds to PtdIns(4)P and PtdIns(4,5)P2 

(Varnai & Balla, 2006; Balla et al., 2008). By coupling such PH domains to fluorescent 

proteins PtdIns can be “traced”: A fluorescently tagged PH domain binds to a 

membrane where high concentrations of a PtdIns are present. When the concentration 

of this PtdIns decreases at the membrane the fluorescent tagged PH domain leaves 

the membrane and moves into the cytosol (Fig. 9). Thus membrane fluorescence 
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directly correlates to the membrane PtdIns concentration making the optical 

observation of PtdIns dynamics at the membrane of living cells possible (Stauffer et al., 

1998). In this study I made use of two different PH domains: PHPLCδ1GFP to monitor 

PtdIns(4,5)P2 specifically (Stauffer et al., 1998) and PH2xOSH2GFP for combined 

observation of PtdIns(4)P and PtdIns(4,5)P2 at the plasma membrane (Balla et al., 

2008). 

Not only PH domains can function as PtdIns sensors. PtdIns sensors can also arise 

from proteins structurally unrelated to PH-domains. An example is the C-terminus of 

the Tubby protein that binds PtdIns(4,5)P2 highly specific. In contrast to PLC-δ1-PH, it 

shows no affinity to Ins(1,4,5)P3 (Santagata et al., 2001; Szentpetery et al., 2009). 

 

Fig. 9: Scheme of a PtdIns(4,5)P2 

fluorescence sensor. A, Fluorescent protein 

tagged PtdIns(4,5)P2 binding domain (like 

PLC-δ1-PH or Tubby) binds PtdIns(4,5)P2 and 

is thereby held at the membrane (left). Upon 

depletion of PtdIns(4,5)P2 the sensor 

dissociates from the plasma membrane (right). 

1.6.2 Manipulation of PtdIns(4,5)P2 levels in intact cells 

GqPCR activation results in alteration of the concentration of various intracellular 

messengers. To investigate the effect of PtdIns on a protein under observation different 

approaches have been developed in the past years. 

 A classical way to probe the affinity of ion channels to different PtdIns is the direct 

application of water soluble PtdIns analogous (e.g. diC8-PtdIns(4,5)P2) to an excised 

patch. Thereby the concentration of PtdIns at the inner membrane surface is increased. 

The achieved concentrations of PtdIns may strongly exceed physiological 

concentrations. An opposite effect can be achieved by application of PtdIns specific 

antibodies onto excised patches, resulting in a massive reduction of PtdIns 

concentrations (e.g.: Huang et al., 1998). Results from both methods are considered to 

have limited portability to the situation in intact cell (Balla et al., 2009).  

While these both methods usually cannot be used in the intact cell, poly-cationic 

agents like neomycin or poly-lysine may function as PtdIns scavengers also in the 
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living cell. They are usually applied by diffusion from the patch pipette into the cell (e.g.: 

Leitner et al., 2010). But also in this case PtdIns levels achieved can be far outside (i.e. 

below) the physiological values, and thus observed effects do not necessarily represent 

physiological PtdIns signals. 

A more recent approach to study PtdIns dynamics is the overexpression of PtdIns-

kinases. By overexpression of a certain kinase the relative abundance of different 

PtdIns species and their synthesis kinetics is changed (Winks et al., 2005). 

Unfortunately such an overexpression may possibly induce long term compensatory 

effects that will interfere with the effect under observation (Balla et al., 2009).  

The latest approaches aim to alter PtdIns concentrations in the intact cell and on a 

time scale fast enough to be accessible to live-cell observations by electrophysiological 

and imaging approaches. 

In the first of these approaches a chemically inducible dimerisation mechanism is 

used to recruit PtdIns-converting enzymes to the membrane. This concept is based on 

the effect of the rapamycin. In nature the membrane permeable rapamycin induces the 

dimerisation of two protein domains, first the FKBP domain from the FK506 binding 

protein and second the FRB domain from the “mammalian target of rapamycin”-protein. 

Both of these protein domains were modified to generate a mechanism for the 

recruitment different proteins to the membrane (Spencer et al., 1993). On the one hand 

FRB was fused to the membrane anchoring sequence Lyn11 (Lyn11-FRB). On the 

other hand FKBP was linked to a cyan fluorescent protein (CFP)-tagged yeast 

PtdIns(4,5)P2 5-phosphatase Inp54p (CF-Inp54). Application of rapamycin to cells 

expressing both constructs lead to a strong membrane translocation of the CF-Inp54 

phosphatase and pronounced depletion of PtdIns(4,5)P2 (Fig. 10 A) (Suh et al., 2004; 

Varnai et al., 2006). 

A distinct approach to deplete membrane PtdIns became available by the 

characterization of the voltage sensitive phosphatase from Ciona intestinalis (Ci-VSP). 

Ci-VSP consists of a voltage sensing domain – as known from many voltage-sensitive 

ion channels – linked to a phosphatase (Murata et al., 2005). The phosphatase domain 

exhibits 5’phosphatase activity on PtdIns(4,5)P2 and PtdIns(3,4,5)P2 (Halaszovich et 

al., 2009). Membrane depolarization results in a conformational change in Ci-VSP 

making PtdIns accessible for the phosphatase (Fig. 10 B). By this mechanism Ci-VSP 
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becomes a tool that quickly, gradually and reversibly alters PtdIns levels upon 

depolarization (Murata et al., 2005; Halaszovich et al., 2009; Sakata et al., 2011).  

Both of these approaches are able to mimic PLC-β induced PtdIns(4,5)P2 depletion. 

But in contrast to PLC-β they do not create the downstream messengers Ins(1,4,5)P3 

and DAG (Willars et al., 1998; Horowitz et al., 2005; Suh et al., 2006). Noteworthy the 

amount of overall membrane PtdIns remains unchanged in both approaches, while it is 

strongly depleted by PLC-β activation (Willars et al., 1998; Horowitz et al., 2005; Balla 

et al., 2008). 

 

Fig. 10: Recently developed tools to manipulate PtdIns concentrations in the living cell. A, The 

rapamycin based membrane recruitment strategy consists of a membrane-anchored FRB protein and 

FKBP protein linked to the 5 -phosphatase Inp54p and a CFP. Application of rapamycin leads to a 

dimerisation of both constructs and subsequent hydrolysis of PtdIns(4,5)P2 to PtdIns(4)P. B, The voltage 

sensitive phosphatase Ci-VSP. Depolarization activates the phosphatase domain resulting in 

dephosphorylation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 at the 5-position. 

1.7 Aim of this study 

Despite the crucial physiological relevance of GqPCR mediated inhibition of TASK 

channels investigation of the molecular mechanism underlying this inhibition is still 

unclear (Mathie, 2007). As existing evidence is rather controversial a careful re-

evaluation using state-of-the-art methods is required.  

Today there are two competing hypothesis how TASK channel inhibition could 

occur: TASK channels might be either closed by activated Gqα, in a PLC-β independent 

fashion (Chen et al., 2006) or they may be closed by depletion of PtdIns(4,5)P2 

following PLC-β activation (Czirjak et al., 2001; Chemin et al., 2003; Lopes et al., 
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2005). PLC-β mediated PtdIns(4,5)P2 hydrolysis has a key function in GqPCR 

signaling. Questioning the exact role of PtdIns(4,5)P2 hydrolysis for TASK channel 

inhibition can help to evaluate the recently existing hypotheses.  

This study therefore aims to clarify the physiological role of PLC-β mediated 

PtdIns(4,5)P2 hydrolysis for TASK channel inhibition. I therefore question (1) whether 

PtdIns(4,5)P2 represents the direct mediator of TASK channel inhibition, (2) whether 

functioning of PLC-β is required for successful TASK inhibition and (3) whether 

PtdIns(4,5)P2 hydrolysis by PLC-β is a necessary step within the signaling cascade.  
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2 Materials and methods 

2.1 Molecular biology 

Generation of expression vectors was performed by Eva Naudascher, Gisela 

Fischer and Olga Ebers as described elsewhere (Lindner et al., 2011). The constructs 

used in this study are listed in Tab. 2. 

Tab. 2: Constructs used in this study, source or reference and vector informations 

Construct Reference Vector See chapter 
pEGFP-C1 Clontech, Laboratories, 

Mountain View, CA, USA 
 - - 

CF-Inp54 (Suh & Hille, 2008) pCFP-N1 1.6.2 
Ci-VSP-RFP (Halaszovich et al., 2009) pRFP-C1 1.6.2 
Kv7.4 NM_004700.2 pEGFP-C1 1.4.3 
Lyn11-FRB (Suh & Hille, 2008) pC4RHE 1.6.2 
m1-R NM_000738.2 pSGHV0 1.3 
PH2xOSH2GFP (Balla et al., 2008) pEGFP-C1 1.6.1 
PHPLCδ1GFP (Halaszovich et al., 2009) pEGFP-N1 1.6.1 
PHPLCδ1YFP P51178 pcDNA3 1.6.1 
RF-PJ (Lindner et al., 2011) pEGFP-C1 3.3 
RF-PJ-5ptase (Lindner et al., 2011) pEGFP-C1 3.3 
RF-PJ-dead (Lindner et al., 2011) pEGFP-C1 3.3 
RF-PJ-Sac (Lindner et al., 2011) pEGFP-C1 3.3 
TASK-1 (Zuzarte et al., 2009) pcDNA3.1 1.2 
TASK-3 (Rajan et al., 2002) pcDNA3.1 1.2 
PKCγ26-89YFP NW_047555 pYFP-N1 3.6 
Tubby-RFP (Santagata et al., 2001) pRFP-C1 1.6.1 
TASK-1NQ (Zuzarte et al., 2009) pcDNA3.1 3.5 
Et-AR (Schiekel et al., in revision) dsRed 3.5 

 

 

2.2 Cell culture and transfection 

Chinese Hamster Ovary (CHO) cells were cultured in MEM alpha Medium (GIBCO, 

Invitrogen, Carlsbad, CA, USA) with 10% fetal bovine serum (Biochrom AG, Berlin, 

Germany) and 1% PenStrep (GIBCO, Invitrogen, Carlsbad, CA, USA) added. Cells 

were seeded on glass cover slips for electrophysiology and confocal microscopy or on 

glass bottom dishes (WillCo Wells B. V., Amsterdam, The Netherlands) for total internal 

reflection (TIRF) microscopy experiments. 24 to 48 hours after seeding cells were 

transiently transfected with JetPEI transfection reagent (PolyPlus Transfection, Illkirch, 

France), at 70% confluence. 

The expression vectors used are summarized in Tab. 2. When multiple constructs 

were used in the same transfection, the total amount of DNA was kept constant. If no 

DNA coding for a fluorescent protein was included, the empty pEGFP-C1 vector was 
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added in a mass ratio of approximately 1:3 to be able to select transfected cells in 

patch-clamp experiments. All experiments were performed another 24 to 48 hours after 

transfection. Culturing of the CHO cells was mainly performed by Sigrid Petzold, Olga 

Ebers, Christian Goecke and intermittently by myself. 

For experiments sufficient expression levels of the transfected constructs were 

verified as follows: When an ion channel was included into the transfection, its 

presence was documented by electrophysiological recording of the characteristic 

current. Presence of the fluorescent biosensors PHPLCδ1GFP or PH2xOSH2GFP in TIRF 

experiments was evidenced by green membrane fluorescence. When Ci-VSP-RFP was 

included in the transfection cells expressing Ci-VSP-RFP were selected for a clear 

membrane-bound red fluorescence. For experiments requiring co-expression of the 

rapamycin system (i.e. membrane anchor and phosphatase) only cells were selected 

that showed a clear cytosolic CFP or RFP fluorescence respectively. Cells were only 

included in the analysis when a translocation of the CFP or RFP fluorescence could be 

observed upon application of rapamycin. Translocation indicates successful expression 

of both, the membrane anchor and the fluorescence-tagged enzyme. 

2.3 Chemicals 

A list of chemicals used in this study is given in Tab. 3. XE991 and OxoM were both 

prepared as 10 mM stock solution in H2O. Rapamycin was purchased as a solution in 

Me2SO and stored in single use aliquots. Analogously, U-73122 and U-73343 were 

dissolved in Me2SO to a concentration of 5 mM and stored in single use aliquots. The 

peptide Et-1 was dissolved in 1 % acetic acid to a stock concentration of 200 mM. All 

stocks were stored as aliquots at - 20 ° C and diluted to their final concentration in Ex-0 

directly before use. Final concentration of Me2SO did never exceed 0.1 vol% in the 

application solution. Solutions containing acetic acid were adjusted for pH before use. 

Application solutions of U-73122 and U-73343 were renewed every 30 to 45 min as the 

observed effects of U-73122 strongly decreased after this interval of time. 
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Tab. 3: List of chemicals used with their supplier. Abbreviations are marked as bold. 

Substance Supply 
(Et-1): Endothelin-1 Gift from J. Daut (Schiekel et al., in revision) 
CaCl2 Cat-No: CN93.1, Carl Roth GmbH + Co. KG, 

76231 Karlsruhe, Germany 
D-Glucose Cat-No: X997.1, Carl Roth GmbH + Co. KG 
HEPES: 4-(2-Hydroxyethyl)piperazine-1-
ethanesulfonic acid 

Cat-No: 9105.2, Carl Roth GmbH + Co. KG 

K2EGTA: Ethylenglycol-bis(aminoethylether)-
N,N,N′N′-tetraacetic acid 

Cat-No: 3054.1, Carl Roth GmbH + Co. KG 

K4BAPTA: 2,2′-(Ethylenedioxy)dianiline-N,N,N′,N′-
tetraacetic acid 

Cat-No: 19641, MERCK KGAA, 64293 
Darmstadt, Germany 

KCl Cat-No: 6781.1, Carl Roth GmbH + Co. KG 
KOH Cat-No: 6751.3, Carl Roth GmbH + Co. KG 
Me2SO: Di-methyl-sulfoxide Cat-No: D2650, Sigma Aldrich, Sigma-Aldrich 

Chemie GmbH, Munich, Germany 
MgCl2 Cat-No: KK36.1, Carl Roth GmbH + Co. KG 
Na2AMP-PCP: β,γ-Methyleneadenosine-5′-
triphosphate 

Cat-No: M7510, Sigma Aldrich 

Na2ATP: Adenosine-tri-phosphate Cat-No: A6559, Sigma Aldrich 
Na3-GTP: Guanosine-tri-phosphate Cat-No: G8877, Sigma Aldrich 
NaCl Cat-No: 3957.1, Carl Roth GmbH + Co. KG 
NaH2PO4 Cat-No: 5075.1, Carl Roth GmbH + Co. KG 
NMDG: N-Methyl-D-glucamine Cat-No: M2004, Sigma Aldrich 
OxoM: Oxotremorine-Methiodide Cat-No: 1067, Tocris Bioscience, Bristol, UK 
Rapamycin Rapamycin inSolution, Cat-No: 553211; Merck  
U-73122 Cat-No: U6756, Sigma Aldrich 
U-73343 Cat-No: M6881, Sigma Aldrich 
XE991: (10,10-bis[4-pyridinylmethyl]-9[10H]-
anthracenone- dihydrochloride) 

Cat-No: 2000, Ellisville, Missouri, USA 

 

2.4 Solutions 

Extracellular solution (Ex-0) used to perfuse the cells during measurement 

contained (mM) 144 NaCl, 5,8 KCl, 1.3 CaCl2, 0.9 MgCl2, 0.7 NaH2PO4, 10 HEPES and 

5.6 D-glucose. pH was adjusted to 7.4 with NaOH and osmolarity was checked with 

OSMOMAT 030 (Gonotec GmbH, Berlin, Germany). NaCl was replaced by an 

equimolar amount of NMDG-Cl when indicated. Osmolarity was 310 +/- 5 mOsm/kg. 

Standard intracellular solution (ICS) contained (mM) 135 KCl, 3.5 MgCl2, 0.1 CaCl2 

(equals 100nM free Ca2+), 5 K2EGTA, 5 HEPES, 2.5 Na2-ATP, 0.1 Na3-GTP 0 with pH 

adjusted to 7.3 by adding KOH. Osmolarity was 295 +/- 5 mOsm/kg. 

For some experiments Na2-ATP was replaced by 3 mM Na2-AMP-PCP. In other 

experiments the EGTA concentration was either raised to 20 mM or EGTA was 

replaced by 20 mM BAPTA. As both EGTA and BAPTA are provided as potassium 

salts the amount of KCl had to be reduced as indicated below. Thereby osmolarity was 

also held in the desired range. A summary of all ICS used is given in Tab. 4. 
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Tab. 4: Composition of intracellular solutions used in this study. Values represent the 

concentrations in mM. 

 ICS ICS-AMP-
PCP 

ICS-BAPTA ICS-EGTA 

KCl 135 135 105 105 
MgCl2 3.5 3.5 3.5 3.5 
CaCl2 0.1 0.1 0.1 0.1 
K2EGTA 5 5 0 20 
K4BAPTA 0 0 20 0 
HEPES 5 5 5 5 
Na2-ATP 2.5 0  3 3 
Na2-AMP-PCP 0 3 0 0 
Na3-GTP 0.1 0.1 0.1 0.1 

 

 

2.5 Patch-clamp experiments 

When investigating the regulation of any ion channel it is of special importance to 

observe the current through the channel under observation. Today the patch-clamp 

technique is a widely established method for the observation of such transmembrane 

currents (Neher & Sakmann, 1976; Hamill et al., 1981). The following paragraph will 

not give methodological details but will only describe how patch-clamp experiments 

were carried out specifically in this study.  

Measurements were performed in the whole cell voltage clamp mode either with 

EPC10 combined patch-clamp amplifier and interface (HEKA Elektronik Dr. Schulze 

GmbH, Ludwigshafen/Rhein, Germany) or Axopatch 200B (Axon Instruments, 

Molecular Devices, Sunnyvale, CA, USA) with a separate ITC-16 interface (Instrutech, 

HEKA Elektronik Dr. Schulze GmbH). Recorded currents were low-pass filtered at 2 

kHz and sampled at 5 kHz 

Borosilicate glass capillaries (GB100T-8P, Science Products, Hofheim, Germany) 

or quartz glass capillaries (Q100-70-7.5 Sutter Instrument, Novato, CA, USA) both with 

an outer diameter of 1 mm were used for patch pipettes. Pipettes were crafted on a 

P2000 Puller (Sutter) and only used if the open pipette resistance was between 1 and 4 

MΩ when filled with ICS. 

In all experiments transfected cells were identified by fluorescence as described 

above using a C-SHG1 mercury lamp (Nikon, Tokyo, Japan) with an Eclipse E600FN 

Microscope (Nikon, Tokyo, Japan). Patch pipettes and the headstage were fixed to an 

electrically driven 3-axis mini 25-XL manipulator (Luigs & Neumann Feinmechanik & 

Elektrotechnik GmbH, Ratingen, Germany) under control of a MCL-3 (Lang GmbH & 
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Co. KG, Hüttenberg, Germany). Seal formation was achieved by approaching the 

pipette directly to the cell and subsequently releasing the positive pressure. Pressure 

(approx. 0.07 bar) was generated by a PR-10 pressure regulator (Scientific Instruments 

West Palm Beach, Florida). Fast capacitances were compensated after gigaseal 

formation. 

Membrane rupture was performed by short application of negative pressure and a 

synchronous “Zap” – a 0.1 ms voltage pulse of about -500 mV. By rupture of the 

membrane the whole-cell mode was achieved. The series resistance (Rs), mainly 

reflecting the resistance across the ruptured membrane under the pipette tip was 

subsequently measured. Rs was not compensated, but was carefully observed 

throughout the measurement for changes. Cells were only accepted if Rs was within 

the range of 2 to 6 MΩ. 

Electrophysiological recordings were controlled by PatchMaster (HEKA Elektronik 

Dr. Schulze GmbH) on a PC (Dell Inc., Round Rock, TX, USA) or Mac (Apple Inc., 

Cupertino, CA,USA). 

2.6 Microscopy 

In this study it was frequently necessary to determine whether a fluorescent probe 

was localized at the cell membrane or in the cytosol. The resolution of classical wide-

field microscopy is usually insufficient for this task. Therefore I made use of Total 

Internal Reflection Fluorescence Microscopy (TIRF) that allows to specifically observe 

membrane fluorescence. In some occasions I used confocal microscopy instead of 

TIRF. Use of confocal microscopy became necessary for the simple practical reason 

that the confocal microscopy setup used in this laboratory allowed observation of 3 

different fluorescent probes at a time, while the TIRF setup did not.  

2.6.1 Total internal reflection fluorescence microscopy (TIRF) 

TIRF is a highly sensitive method to study changes of fluorescence in regions in 

nearest proximity to the cell membrane. Briefly in the TIRF technique, the fluorescent 

probe is not excited directly by the light of a laser source, but rather by an evanescent 

field. This field is obtained as a “side effect” of total reflection. It occurs as light enters 

from material of higher into a material of a lower refractive index at an angle that is 

equal or smaller than a critical angle. The critical angle is a function of the refractive 

index of the two media. The intensity of this evanescent field exponentially decreases 
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with the distance from the interface and depends on the wavelength of the laser light, 

the numerical aperture of the microscope objective, the refractive index and the angle 

of the exciting light entering the refractive plane. The length constant for the depth of 

the evanescent field is usually around 80 nm for visible light. 

By this decay of the evanescent field only the fluorescent probes in the closest 

proximity of the refractive plane (i.e. the fluorescent probes in the cell membrane 

attached to the refractive plane) are excited (Fig. 10 B). A more detailed description 

TIRF microscopy and its application in bioscience is provided elsewhere (Yuste & 

Konnerth, 2005). 

In this study TIRF imaging was performed with a BX51WI upright microscope 

(Olympus, Hamburg, Germany) equipped with a TIRF condenser (numerical aperture 

of 1.45; Olympus) and a 488 nm laser (20 milliwatts; Picarro, Sunnyvale, CA). 

Fluorescence was observed through a LUMPlanFI/IR 40x/0.8-numerical aperture water 

immersion objective (Olympus). Image acquisition was carried out with an IMAGO-QE 

cooled CCD camera (TILL Photonics GmbH, Gräfelfing, Germany). Wide-field 

fluorescence illumination was achieved with a monochromator (Polychrome IV, TILL 

Photonics GmbH) coupled to the BX51WI microscope through fiber optics. GFP 

fluorescence was excited at 488 nm. The laser shutter for TIRF illumination, the 

monochromatic light source, and image acquisition were controlled by TILLvisION 

software (TILL Photonics GmbH). For experiments combining electrophysiology and 

TIRF imaging, data acquisition was synchronized by triggering PatchMaster protocols 

from the TILL imaging system. 

2.6.2 Confocal microscopy 

Confocal microscopy is a high resolution fluorescent microscopic method first 

described in the 1950ies (Minsky, 1957) and subsequently introduced into biosciences 

(e.g.: Egger & Petran, 1967). For review see (Fine et al., 1988; Fine, 2007).  

A confocal microscope (in this case: laser scanning microscope) consists of a laser 

emitting light of a defined wavelength through an aperture of minimal size onto one 

spot of a specimen, thereby exciting the fluorescent proteins at that single spot in the 

focal plane. The size of this spot is described by the point spread function (PSF), 

determining the maximal resolution of any light microscope. To increase resolution a 

detector aperture (called pinhole) is introduced in confocal microscopy. This pinhole is 
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only permeable for light that arises from one single spot. The size of this spot is also 

determined by the PSF. Ideally the excited spot and detected spot completely overlap. 

In contrast to wide field microscopy in confocal microscopy the discriminable spot size 

is determined by the product of the excitation PSF and the detection PSF. Thereby the 

resolution of confocal microscopy strongly approaches the diffraction limit. By this 

process not the whole specimen is monitored at a time, but just one single point is 

detected, the process has to be repeated for each point of the specimen, i.e. it has to 

be scanned (Fig. 10 A). 

In this study I used an upright LSM 710 Axio Examiner.Z1 microscope equipped 

with a W Plan/Apochromat 20x/1.0 DIC M27 75-mm water immersion objective (Carl 

Zeiss AG, Jena, Germany). Thereby a lateral resolution of approximately 170 nm can 

be achieved for an excitation wave length of 458 nm. RFP and CFP were excited at 

561 nm using a diode-pumped solid-state laser (Carl Zeiss) and at 458 nm using an 

Argon laser (Carl Zeiss) respectively. CFP emission was sampled at 454 – 581 nm and 

RFP emission at 582 – 754 nm. When performing experiments where an additional 

YFP-tagged sensor was included, this was excited at 514 nm using an Argon laser and 

sampled at 519 – 583 nm. Additionally the detection bandwidth for CFP was adjusted 

to 454 – 515 nm. 
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Fig. 10: Schematic drawings illustrating the principles of confocal (A) and TIRF (B) 

microscopy. A, A single spot of a fluorescent specimen is excited by laser light (cyan). Light emitted from 

the specimen (dark green) only passes the pinhole if it originates directly from the focal plane (yellow). 

Light from outside this plane (light green) fails to pass the pinhole. B, Laser light (cyan) is totally reflected 

at the lower surface of a glass dish (gray), thereby inducing an evanescent field (yellow) that excites 

fluorescent sensors (light green) in close proximity to the dish’s surface. 

 

2.7 Bath chamber and application of chemicals 

During both imaging and electrophysiological recordings cells were kept within a 

bath chamber. This chamber was continuously perfused with Ex-0 to keep the 

extracellular environment of the cells constant during the experiment. For this work it 

was of importance to alter the extracellular conditions during the experiments. For 

instance it was necessary to expose the cell to extracellular solutions which contained 

the muscarinic agonist OxoM or rapamycin. To quickly exchange extracellular fluids an 

application barrel (Microfil 28 Gauge, World Precision Instruments Inc., Sarasota, FL, 

USA) fixed to a custom-built manipulator was placed in front of the cell before the 

beginning of the recordings. This barrel was connected to various tubes. Each of these 

tubes could provide a different solution. The flow through these tubes was switchable 

by a tree way valve. A steady flow of Ex-0 from one of the tubes through the barrel was 

maintained and switched to an alternative solution when required. The application 

system was optimized for low dead space, allowing complete exchange of the 

extracellular solution within a few seconds.  
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Fig. 11: Schematic view of the bath 

chamber and the application system. Cell 

under observation (black) is located in a bath 

chamber (gray) and continuously perfused with 

Ex-0 (blue). Alternative solutions (A, B, C) can be 

applied directly onto the cell via the application 

system (red). 

 

2.8 Data analysis 

Data were analyzed using IgorPro (Wavemetrics, Lake Oswego, Oregon/USA) and 

TILLvisION software. 

Regions of interest (ROI) in TIRF recordings were defined to include the majority of 

a single cell’s footprint. To avoid movement artifacts the margins of the cell were 

excluded from analysis. F/F0 -traces were calculated from the TIRF signal intensity F, 

averaged from the ROI, and the initial fluorescence intensity F0. Fluorescence 

intensities were background-corrected. This background correction was achieved by 

subtracting the signal obtained from a cell-free reference area from the signal obtained 

from the cell under observation. 

All TIRF traces were further corrected for bleaching of the fluorescent proteins. 

Signal decrease at the beginning of a recording before any other intervention can 

usually be attributed to bleaching of the fluorescent probes (e.g.: Halaszovich et al., 

2009). To correct traces for bleaching the initial signal decay was fit 

monoexponentially. The obtained fit curve was extrapolated and subtracted from the 

entire recording.  

Time constants were obtained from mono-exponential fits of the single traces. All 

data are given as mean ± standard error of the mean, with n representing the number 

of individual cells analyzed. Statistical analysis was performed by ANOVA test followed 

by a two-tailed Dunett’s t-test. Significance was assigned for p < 0.05 and marked with 

asterisks in the corresponding graph. 
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3 Results 

3.1 Reconstitution of GqPCR induced TASK channel inhibition in an 

experimentally suitable model system 

It is well established that TASK-1 and TASK-3 channels are under control of 

GqPCR in both, native tissue and cultured cells (Boyd et al., 2000; Czirjak et al., 2001; 

Chemin et al., 2003; Lopes et al., 2005; Chen et al., 2006; Mathie, 2007; Veale et al., 

2007). To access the question how GqPCR inhibition of TASK is carried out, an 

established cell line was used in this study. Chinese hamster ovary (CHO) cells show 

almost no endogenous electrical currents and are easy to transfect. They are therefore 

commonly used for electrophysiological studies (e.g.: Leitner et al., 2010). To test if this 

model system would serve for my purposes I expressed either TASK-1 or TASK-3 

alone in CHO cells. Currents were recorded after whole cell formation in response to a 

voltage ramp from -100 mV to +50 mV (Fig. 13, A). Cells expressing TASK-1 only 

showed small current amplitudes (100 – 500 pA) compared to those obtained in cells 

expressing TASK-3 (2 - 6 nA, Fig. 13, a). As expected for cells exhibiting predominantly 

a potassium conductance the resting potential of these cells was close to the reversal 

potential of potassium. 

TASK currents are inhibited by extracellular acidification (Duprat et al., 1997). To 

further document that the recorded currents represent TASK, I superperfused the cells 

with an extracellular solution with pH = 5.9 for 1 min. Under this condition currents in 

both TASK-1 and TASK-3 transfected cells were almost completely inhibited (Fig. 13, 

B). With these results I conclude that CHO cells heterologously expressing TASK-1 or 

TASK-3 provide an experimental environment suitable to study TASK channels. 
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Fig. 13: Whole cell recordings from CHO 

cells heterologously expressing TASK-1 or 

TASK-3. A, A stimulus ramp (gray, top) from – 100 

to + 50 mV was used to record TASK currents. 

CHO cells expressing TASK-1 exhibited the 

characteristic pH sensitive current. The three traces 

shown were recorded from a representative cell 

directly before, at the end of, and 1 min after 

application of an extracellular solution with pH 5.9 

(black, middle). Analogous recordings from a CHO 

cell expressing TASK-3 (black, bottom). B, Average 

and normalized time courses obtained from CHO 

cells expressing TASK-1 (black, n=5) or TASK-3 

(blue, n=8). The area marked in gray indicates the 

time interval where cells were exposed to an 

extracellular solution with pH decreased to 5.9. 

Upon application of low pH TASK-1 currents drop to 

9.9 ± 2.2 % of their original value. Analogously 

TASK-3 currents were reduced to 9.0 ± 3.6 %. 

 

 

In a next step it was necessary to reconstitute GqPCR inhibition of TASK in the 

model system described above. When TASK-1 or TASK-3 were co-expressed with the 

Gqα-coupled muscarinic acetylcholine receptor (m1R) 1 minute application of 10 µM of 

the muscarinic agonist Oxotremorine-M (OxoM) led to a fast and almost complete 

inhibition of both TASK-1 and TASK-3 currents. Recovery was much slower and only 

achieved 70% of the initial value, reaching steady state after 4 minutes (Fig. 14 A). 

A common and fast downstream mediator of the GqPCR signaling cascade is 

PtdIns(4,5)P2 hydrolysis by PLC-β (e.g.: Horowitz et al., 2005). This lipid has 

repetitively been shown to mediate GqPCR induced ion channel inhibition and this role 
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has also been suggested for TASK-1 and TASK-3 (Czirjak et al., 2001; Chemin et al., 

2003; Lopes et al., 2005). 

To confirm that GqPCR activation results in a decrease of PtdIns(4,5)P2 levels I 

made advantage of two distinct but well established PtdIns(4,5)P2 biosensors. The PH-

domain of Phospholipase Cδ1 fused to a GFP (PHPLCδ1GFP) as an optical sensor and 

Kv7.4, a bona-fide PtdIns(4,5)P2-sensitive voltage gated potassium channel as an 

electrophysiological sensor were used (Stauffer et al., 1998; Zhang et al., 2003; 

Delmas & Brown, 2005; Varnai et al., 2006). 

In live cell TIRF microscopy changes in PHPLCδ1GFP membrane association were 

monitored in CHO cells co-expressing m1R and PHPLCδ1GFP. Application of 10 µM 

OxoM (1 min) lead to a pronounced decrease in membrane fluorescence. Notably 

decrease of PHPLCδ1GFP signal occurred much slower than inhibition of TASK 

channels. Recovery kinetic after agonist washout was almost similar to TASK-1 (Fig. 

14 B, D). If PtdIns(4,5)P2 was directly involved in TASK inhibition, inhibition kinetics 

would suggest that the affinity of PHPLCδ1GFP to PtdIns(4,5)P2 was higher compared to 

that of TASK. 

Patch-clamp recordings from cells co-expressing m1R and Kv7.4 showed a fast and 

strong current inhibition when subjected to the same experimental protocol (i.e. 10 µM 

OxoM for one minute).Total extent of inhibition was comparable to the inhibition 

observed in TASK, but inhibition kinetics where slower. Kv7.4 current recovery was also 

incomplete and occurred slightly slower than in TASK (Fig. 14 C, D, Tab. 5). Assuming 

that PtdIns(4,5)P2 mediates TASK inhibition these results would suggest that affinity 

towards PtdIns(4,5)P2 was higher also in Kv7.4 than in TASK. 

In summary activation of m1R resulted in both, inhibition of TASK channels and 

PtdIns(4,5)P2 depletion. However, inhibition proceeded consistently faster in TASK 

than the signal decay of the two bona-fide PtdIns(4,5)P2 dependent processes 

monitored. 
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Fig. 14: Receptor-mediated inhibition of TASK channels and concomitant depletion of 

PtdIns(4,5)P2. A, shows averaged time courses of cells expressing m1R and either TASK-1 or TASK-3. 

Application of the muscarinic agonist OxoM (10 µM, 60 s) inhibited currents to 17.0 ± 2.4 % for TASK-1 

and 9.7 ± 2.4 % for TASK-3. B, TIRF recordings from CHO cells expressing m1R and PHPLCδ1GFP. 

Application of 10 µM OxoM triggered a strong and reversible decrease in TIRF fluorescence, indicative of 

translocation of the GFP-fused sensor from the membrane to the cytosol. Insets show epifluorescence 

(upper) and TIRF image (lower panel) of a representative cell before and after application of OxoM. Scale 

bar, 10 µm. C left, Kv7.4 recordings analogous to A where OxoM reduced currents to 12 ± 5.5 % of their 

initial value. C right, voltage protocol (gray) as used for recording of Kv7.4 currents (Brown & Adams, 

1980) and current response (black) as obtained from a representative cell. D Average time constants for 

the onset of current inhibition and PHPLCδ1GFP translocation of the data shown in A-C. Asterisks indicate 

significantly faster time constants of TASK1 and TASK3 compared to Kv7.4 (p ≤ 0.05). 
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Tab. 5: Summary of maximum inhibition and time constants obtained for TASK-1, TASK-3, 

Kv7.4 and PHPLCδ1GFP on GqPCR activation. 

 I/I0 or F/F0 τ(signal decay) τ(recovery) N 
TASK-1 0.17 (±0.76) 4.82 (±1.18) 104.16 (±25.35) 6 
TASK-3 0.097 (±0.73) 4.61 (±0.59) 74.02 (±17.27) 12 
Kv7.4 0.12(±0.64) 13.8 (±3.28) 166.65 (±72.26) 11 
PHPLCδ1GFP 0.49 (±0.03) 21.43 (±3.18) 101.92 (±13.51) 17 

 

3.2 Specific depletion of PtdIns(4,5)P2 does not inhibit TASK 

channels 

To evaluate the proposed role of PtdIns(4,5)P2 I used various genetically encoded 

tools that specifically mimic GqPCR induced PtdIns(4,5)P2 depletion without affecting 

the concentrations of the second messenger molecules, especially DAG, Ins(1,4,5)P3 

or calcium, that might be induced by PLC-β activity. 

In a first approach the voltage gated 5 -phosphoinoside-phosphatase Ci-VSP 

(Murata et al., 2005; Halaszovich et al., 2009) was used. It has been shown that in cells 

expressing Ci-VSP depolarization results in a rapid dephosporylation of PtdIns(4,5)P2 

to PtdIns(4)P (Halaszovich et al., 2009; Falkenburger et al., 2010c). To verify the 

efficacy of this approach cells co-expressing Ci-VSP and Kv7.4 were patched. In 

response to a 50 s depolarization step to +80 mV Kv7.4 currents were strongly 

inhibited. Noteworthy the extent of current inhibition achieved was considerably lower 

than that achieved by m1R activation (Fig. 12 A, Tab. 6). 

Subsequently the effect of Ci-VSP induced PtdIns(4,5)P2 depletion on TASK 

currents was tested. Ci-VSP was therefore co-expressed with either TASK-1 or TASK-

3 and recordings analogously to the experiments with Kv7.4 were performed. In 

contrast to the observations on Kv7.4 neither TASK-1 nor TASK-3 currents were altered 

by depolarization steps to +80 mV (Fig. 12 A, Tab. 6).  

To evaluate the extent of PtdIns(4,5)P2 depletion I compared these results with 

experiments performed by Michael G. Leitner published elsewhere (Lindner et al., 

2011). Here membrane fluorescence was observed by TIRF microscopy in patched 

cells co-expressing Ci-VSP and PHPLCδ1YFP. Application of a +80 mV depolarization 

step (50 s) led to a robust decrease of membrane fluorescence, confirming strong 

PtdIns(4,5)P2 depletion (Fig. 12 B, Tab. 6). 
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Fig. 12: Insensitivity of TASK currents to 

Ci-VSP-induced PtdIns(4,5)P2 depletion. A, 

Mean time course of currents obtained from cells 

co-transfected with Ci-VSP and either TASK-1, 

TASK-3 or Kv7.4. Depolarization to + 80 mV 

reduced current amplitude to 32.9 (±5.9) % of its 

original value for Kv7.4 while it remained 

unchanged for TASK-1 (97.2 (±3.2) %) and TASK-

3 108.9 (±6). B, Mean time course of TIRF 

intensities from voltage clamped cells expressing 

Ci-VSP and PHPLCδ1GFP decreased to 30.1 (±2.8) 

% decrease upon depolarization to + 80 mV (Data 

obtained from: Lindner et al., 2011).  

 

 

Tab. 6: Effect of Ci-VSP-induced PtdIns(4,5)P2 depletion. 

 Residual (%) Tau (s) N 
TASK-1 97.2 (±3.2) - 6 
TASK-3 108.9 (±6) - 7 
Kv7.4 32.9 (±5.9)  15.43 (±3.24) 10 
PHPLCδ1YFP 30.1 (±2.8) 10.65 (±1.41) 7 

 

 

To verify these results PtdIns(4,5)P2 was depleted by an additional approach using 

an established enzyme recruitment strategy (Suh et al., 2006; Varnai et al., 2006). This 

approach is based on the rapamycin dependent hetero-dimerisation of the FRB-domain 

from mTOR and the FKBP protein. A Lyn11 membrane anchor is coupled to the FRB-

domain (Lyn11-FRB) and a CFP tagged Inp54p-5 -phosphatase to a FKBP protein 

(CF-Inp54). Rapamycin thus induces the recruitment of the phosphatase to the 

membrane. This results in PtdIns(4,5)P2 dephosphorylation and thus decrease of 

PtdIns(4,5)P2 abundance at the plasma membrane (See chapter 1.6.2). 

First, Kv7.4 and Lyn11-FRB were co-transfected either with or without CF-Inp54. 

During current recording, 5 µM Rapamycin (1 min) induced a strong inhibition of Kv7.4 
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currents only in those cells also expressing CF-Inp54. This suggests that the observed 

PtdIns(4,5)P2 depletion represents a specific effect of CF-Inp54 recruitment (Fig. 13 B, 

Tab. 7). After application of Rapamycin subsequently XE991, a selective Kv7 blocker, 

was applied. XE991 blocked only a small residual current remaining after CF-Inp54 

induced PtdIns(4,5)P2 depletion: This observation indicates that Kv7.4 was almost 

completely blocked by CF-Inp54 activation. 

Finally, Lyn11-FRB and CF-Inp54 were co-expressed with either of the TASK 

channels under observation. For both, TASK-1 and TASK-3, application of 5 µM 

Rapamycin (1 min) did not induce any current inhibition. To assure that membrane 

translocation of CF-Inp54 had occurred, translocation of cyan fluorescence was 

observed simultaneously in wide-field fluorescence microscopy (Fig. 13 C, Tab. 7). 

These results can be complemented with results obtained earlier in this group by 

Christian R. Halaszovich and myself where PHPLCδ1YFP, Lyn11-FRB and CF-Inp54 

were co-transfected (Lindner et al., 2011). In TIRF recordings application of 5 µM 

Rapamycin (1 min) led to a strong PHPLCδ1YFP dissociation from the membrane, also 

reporting a depletion of membrane PtdIns(4,5)P2 (Fig. 13 A, Tab. 7). 

To summarize, PtdIns(4,5)P2 was specifically depleted by two different approaches. 

Despite strong PtdIns(4,5)P2 depletion by either approach TASK channel activity 

remained totally unchanged. 
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Fig. 13: CF-Inp54-induced PtdIns(4,5)P2 

depletion leaves TASK currents unaltered. A, 

TIRF recordings from cells co-transfected with 

PHPLCδ1YFP, CF-Inp54 and Lyn11-FRB. 

Application of rapamycin decreased TIRF 

intensity to 73.1 (±2.7) %, indicating dissociation 

of PHPLCδ1YFP from the membrane (Data 

obtained from: Lindner et al., 2011). B, Kv7.4-

mediated current in cells co-expressing CF-Imp 

and Lyn11-FRB was robustly suppressed to 36.2 

(±6.3) % upon application of rapamycin. When 

the translocatable phosphatase was omitted 

(Lyn11-FRB only), currents were not affected by 

rapamycin. Residual currents were blocked by 

the Kv7 channel inhibitor XE991. C, normalized 

current amplitudes measured from cells co-

expressing CF-Inp54, Lyn11-FRB and either 

TASK-1 or TASK-3. Currents were unaffected by 

application of rapamycin. Current amplitudes 2 

min after application of rapamycin were 89.9 ± 

4.1% (n = 5) and 89.6 ± 2.5% (n = 6) for TASK-1 

and TASK-3, respectively. 

 

Tab. 7: Effects of CF-Inp54 recruitment-induced PtdIns(4,5)P2 depletion. 

 Residual (%) Tau (s) n 
TASK-1 99 (±3.8) - 5 
TASK-3 93,4 (±1.1) - 5 
Kv7.4 36.2 (±6.3) 10.74 (±4.83) 5 
PHPLCδ1YFP 73.1 (±2.7) 57.63 (±10.3) 13 

 

 

3.3 Depletion of overall PtdIns leaves TASK channels unaffected 

The effect of the both phosphatases on membrane PtdIns used here strongly differs 

from the effect of PLC-β. CF-Inp54 and Ci-VSP stoichiometrically convert PtdIns(4,5)P2 

into PtdIns(4)P, leaving the overall PtdIns concentration in the membrane essentially 
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unchanged. PLC-β in contrast depletes both PtdIns, PtdIns(4,5)P2 and PtdIns(4)P, 

resulting in a robust decrease of the overall membrane PtdIns concentration (Willars et 

al., 1998; Horowitz et al., 2005). 

As suggested for other ion channels TASK might be activated unspecifically by 

PtdIns. In this case simple conversion of PtdIns(4,5)P2 to PtdIns(4)P would have no 

effect on TASK currents. To test if TASK channels might be unspecifically regulated by 

PtdIns a modification of the described heteromerisation approach was used to the 

effect of PLC-β on PtdIns more closely. This novel construct was generated by Gerry 

R. Hammond and colleagues as described elsewhere (Lindner et al., 2011). In brief the 

5 -phosphatase was replaced by a new protein which was engineered in analog to the 

native dual-specificity phosphatase synaptojanin (Mani et al., 2007). Inp54p was 

replaced by a 4 - and a 5 -phosphatase in tandem, namely the yeast phosphatase Sac 

on the N-terminus and human INPP5E on the C-terminus. In allusion to synaptojanin, 

this phosphatase was termed pseudojanin (PJ). To allow Rapamycin induced 

membrane recruitment, an RFP-tagged FKBP was fused to PJ (RF-PJ) (Fig. 14 A, left). 

Beside this “wild-type” RF-PJ three mutants of RF-PJ were created, to allow an 

independent depletion of each of the two PtdIns. In the first mutant the 4 -phosphatase 

activity was inactivated. In accordance to its remaining activity it was termed RF-PJ-

5ptase. In the other mutant the 5 -phosphatase was inactivated. It was therefore 

termed RF-PJ-Sac. Finally a double mutant was created that had no phosphatase 

activity left (RF-PJ-dead).  

This construct had so far not been tested for functionality. Thus Rapamycin-induced 

membrane translocation of RF-PJ was first confirmed by confocal microscopy. In CHO 

cells co-transfected with Lyn11-FRB and RF-PJ application of 5 µM rapamycin (1 min) 

resulted in robust translocation of RF-PJ to the plasma membrane (Fig. 14 A, right). 

Before testing its effect on TASK it had to be determined to which extent PtdIns(4)P 

and PtdIns(4,5)P2 levels can be changed by activation of this novel phosphatase. 

Therefore PHPLCδ1GFP or PH2xOSH2GFP were co-transfected together with Lyn11-FRB 

and RF-PJ or one of its mutants. Changes in membrane association of the 

fluorescence sensors PHPLCδ1GFP and PH2xOSH2GFP were observed by TIRF imaging. 

While PHPLCδ1GFP specifically binds PtdIns(4,5)P2, PH2xOSH2GFP binds both, plasma 

membrane PtdIns(4)P and PtdIns(4,5)P2 (Roy & Levine, 2004; Balla et al., 2008). 

When fully active RF-PJ was transfected, application of 5 µM Rapamycin led to 
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dissociation of PHPLCδ1GFP from the plasma membrane. The same observation was 

made for RF-PJ-5ptase. In contrast recruitment of RF-PJ-Sac or RF-PJ-dead to the 

plasma membrane did not induce translocation of PHPLCδ1GFP (Fig. 14 B, Tab. 8). 

These results indicate that recruitment of RF-PJ with an intact 5-phosphatase domain 

results in depletion of PtdIns(4,5)P2. 

When using PH2xOSH2GFP RF-PJ recruitment also lead to a strong decrease in 

membrane fluorescence, reflecting a robust decrease in concentrations of both 

PtdIns(4)P and PtdIns(4,5)P2. Mutation of either (RF-PJ-Sac or RF-PJ-5ptase) or both 

(RF-PJ-dead) of the phosphatase domains completely abolished this effect. These 

observations suggest that RF-PJ efficiently depletes PtdIns(4)P and PtdIns(4,5)P2 and 

that depletion of both is required for dissociation of PH2xOSH2GFP from the membrane. 

They additionally show that either of the membrane lipids PtdIns(4)P and PtdIns(4,5)P2 

is sufficient for membrane localization of PH2xOSH2GFP. Additionally these results 

provide the evidence that RF-PJ efficiently depletes PtdIns(4)P. (Fig. 14 C, Tab. 8).  

To finally probe whether TASK channels are activated unspecifically by PtdIns, 

cells co-transfected with TASK-3, Lyn11-FRB and RF-PJ were studied in patch-clamp 

experiments. Application of 5 µM Rapamycin (1 min) did not exhibit any effect on 

TASK-3, despite successful RF-PJ recruitment as verified by RFP translocation to the 

membrane. 

Due to diffusion of pipette solution into the cell patch-clamping may change the 

composition of intracellular fluid. It seemed possible that this change inactivates RF-PJ. 

To address this possibility effectiveness of RF-PJ in patched cells expressing Kv7.4 as 

a PtdIns sensor was tested. Under these conditions application of 5 µM Rapamycin (1 

min) led to a robust decrease of Kv7.4 currents. The extent of inhibition was 

comparable to the observations made for Inp54p recruitment, indicating a similar 

effectiveness of both phosphatases (Fig. 14 D, Tab. 8). 

In conclusion, RF-PJ efficiently depletes both, PtdIns(4)P and PtdIns(4,5)P2, the 

most abundant phosphoinositides in the plasma membrane: Yet alteration in the 

concentration of these lipids does not exhibit any effect on TASK-3 currents.  
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Fig. 14: TASK currents are 

insensitive to combined depletion of 

PtdIns(4)P and PtdIns(4,5)P2 by 

recruitment of the phosphatase 

pseudojanin. A, Schematic illustration of 

the double specificity phosphatase 

pseudojanin (RF-PJ) and its recruitment to 

the plasma membrane (left). Confocal 

images of RF-PJ before and after 

recruitment to the plasma membrane by 5 

µM Rapamycin (right). Scale Bar: 10 µm. B, 

TIRF recordings, performed on cells co-

transfected with PHPLCδ1GFP, Lyn11-FRB, 

and either of the RF-PJ mutants. 

Dissociation of PHPLCδ1GFP from the 

membrane upon application of Rapamycin 

(shaded) was only observed with intact 5-

phosphatase domain. C, Experiments 

performed analogously to B but with 

PH2xOSH2GFP. Dissociation of PH2xOSH2GFP 

from the membrane required both 

phosphatase domains to be active. D, 

whole-cell recordings from cells co-

transfected with Lyn11-FRB, fully intact PJ 

and either TASK-3 or Kv7.4. While Kv7.4 

currents were robustly inhibited by 

recruitment of PJ (residual currents, 30.6 ± 

7.8%), TASK currents were not affected 

(residual currents, 97.4 ± 3.9%). 
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3.4 Recovery of TASK channels from GqPCR mediated inhibition 

occurs independently of PtdIns(4,5)P2 resynthesis. 

PtdIns dependency of ion channels can also be demonstrated by observation of 

their behavior during PtdIns resynthesis after PLC-β-mediated hydrolysis (Suh & Hille, 

2002; Halaszovich et al., 2009). In case PtdIns mediated the inhibition of an ion 

channel its recovery kinetics should change when interfering with PtdIns(4,5)P2 

resynthesis. As PtdIns(4,5)P2 resynthesis occurs as a cascade of sequential 

phosphorylation steps that require ATP, omission of intracellular ATP can block 

PtdIns(4,5)P2 resynthesis. With such an approach it has been demonstrated that 

recovery of bona-fide PtdIns(4,5)P2 dependent Kv7 channels requires ATP (Suh & Hille, 

2002). To complement my data it would thus be interesting also to test the effect of 

interference with PtdIns(4,5)P2 resynthesis on TASK channels. 

The PtdIns(4,5)P2 dependence of TASK recovery was examined in cells where all 

intracellular ATP was replaced by the non-hydrolysable analog AMP-PCP. During 

patch clamp recording the intracellular solution (ICS) filling the patch-pipette diffuses 

into the cell. The volume of the patch-pipette exceeds that of the patched cell by a 

manifold. Therefore it leads to a virtually complete replacement of the normal 

intracellular liquid. It has been previously shown that when the ATP in the ICS is 

replaced by 3 mM AMP-PCP PtdIns(4,5)P2 resynthesis can be completely abolished 

(Suh & Hille, 2002; Halaszovich et al., 2009). Cells co-expressing TASK-3 and m1R 

were patched and a period of 4 min was waited order to give the AMP-PCP sufficient 

time to diffuse into the cell. Subsequent application of 10 µM OxoM (1 min) led to a 

close-to-complete inhibition of TASK-3 currents. Recovery was complete and had 

similar kinetics as under control conditions where ATP was included (Fig. 15 A & B, 

Tab. 9). Similar results were obtained for TASK-1. 

Tab. 8: Mean residual TIRF intensities or current amplitudes in % after 

membrane recruitment of pseudojanin or its mutants (n>4). 

 RF-PJ RF-PJ-Sac RF-PJ-
5ptase 

RF-PJ-dead 

PHPLCδ1GFP 63.1 (±5.5) 56.4 (±2.9) 95.3 (±2.4) 96.1 (±9.1) 
PH2xOSH2GFP 57.7 (±7.1) 95(±1.1) 100 (±2.5) 94.3 (±2.7) 
Kv7.4 30.6 (±7.8)    
TASK-3 97.4 (±3.9)    
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In contrast, in experiments with Kv7.4 recovery from muscarinic inhibition was 

completely abolished when measuring with intracellular AMP-PCP (Fig. 15 A, Tab. 9) 

confirming that AMP-PCP efficiently blocked PtdIns(4,5)P2 resynthesis. 

As both TASK-1 and TASK-3 channels recover from m1R induced inhibition in the 

presence of AMP-PCP it must be concluded that PtdIns(4,5)P2 depletion does not 

directly mediate GqPCR induced inhibition. 

Fig. 15: Independence of TASK recovery from PtdIns(4,5)P2 resynthesis. A, Recovery of TASK-3 

and Kv7.4 when ATP was omitted. CHO cells co-expressing m1R and TASK-3 (n=5) or Kv7.4 (n=6) where 

patched with 3 mM AMP-PCP in the intracellular solution. Recordings were started 4 minutes after whole-

cell formation was achieved. B, Average time constants for recovery of TASK-3 from muscarinic inhibition 

were similar in presence of 2.5 mM ATP (time courses shown in Fig. 14 A) or 3 mM AMP-PCP (A).  

 

Tab. 9: Averaged recovery time constants (s) in presence of 2.5 mM ATP or 3 mM AMP-PCP 

 ATP AMP-PCP 
TASK-1 104.16 (±25.35) 100.33 (±8.62) 
TASK-3 74.02 (±17.27) 91.34 (±18.53) 
Kv7.4 117.46 (±30.96) - 

 

 

3.5 Inhibition of PLC-β abolishes GqPCR mediated TASK inhibition 

Having excluded the popular hypothesis that hydrolysis of PtdIns(4,5)P2 would 

directly inhibit TASK, I went on to evaluate the second proposed mechanism of TASK 

channel inhibition: i.e. direct interaction with Gqα. 

Reliable experimental approaches to interfere directly with Gqα activity have not 

been developed so far. However it is possible to extract informations about the role of 

Gqα in TASK channel inhibition by accessing the role of PLC-β. In the GqPCR pathway, 
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Gqα activation occurs directly upstream to activation of PLC-β. Thus if a direct 

interaction between Gqα and TASK would mediate the inhibition, any experimental 

interference with PLC-β activity should not affect TASK channel inhibition. Therefore I 

tested the effect of PLC-β blockage on GqPCR-to-TASK signaling by two independent 

approaches. 

3.5.1 Interfering with PLC-β activity by removal of intracellular calcium 

It is well established that PLC-β needs calcium as an essential cofactor for 

enzymatic activity (Rhee, 2001; Bunney & Katan, 2011). Thus PLC-β-dependent 

signaling on ion channels has been shown to be blocked by removal of intracellular 

calcium (Horowitz et al., 2005). Therefore it was tested here if GqPCR activation leads 

to an inhibition of TASK channels also under calcium-free conditions. To minimize the 

level of resting free calcium in the cell I used an intracellular solution (ICS) where all 

calcium was omitted and the concentration of the calcium chelator EGTA was raised to 

20 mM. Thereby intracellular calcium should be buffered to virtually zero. Before the 

beginning of the recordings a period of at least 4 min was waited after whole cell 

formation to give enough time to the ICS to diffuse into the cell. To check for a 

successful blockage of PLC-β the effect of m1R stimulation on Kv7.4 was observed in 

cells expressing these both constructs. As Kv7.4 depend on PtdIns(4,5)P2, they serve 

as an indirect monitor of PLC-β activity in these experiments. Upon application of 

OxoM (10 µM, 1 min) Kv7.4-current inhibition was almost abolished (Fig. 16 A. Tab. 

10), indicating a strong blockage of PLC-β, with only minor residual activity. 

It was subsequently tested if TASK channels could still be blocked by GqPCR 

activation under similar experimental conditions. Therefore TASK-3 currents were 

observed in cells co-expressing the m1R and TASK-3. In presence of 20 mM EGTA 

application of OxoM (10 µM, 1 min) only led to a minor inhibition of TASK-3 currents 

(Fig. 16 A. Tab. 10). 

These data are consistent with an involvement of PLC-β, arguing against a direct 

interaction of Gqα with TASK to mediate TASK inhibition. The remaining inhibition of 

both Kv7.4 and TASK-3 is probably due to a residual activity of PLC-β. This activity may 

induce release of calcium from intracellular stores and thereby further facilitate PLC-β 

activation (see chapter 1.4.2). To more effectively buffer also fast calcium transients 

experiments were repeated using BAPTA instead of EGTA. BAPTA is another calcium 

chelator. Although its calcium affinity is equal, it exhibits much faster buffering kinetics 
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(Fakler & Adelman, 2008). Under these conditions Kv7.4 inhibition by m1R activation 

(10 µM OxoM for 1 min) was completely abolished (Fig. 16 B. Tab. 10), suggesting that 

PLC-β was essentially blocked. 

When performing similar experiments with TASK-3 or TASK-1 transfected, their 

inhibition was also massively reduced. However a minimal residual inhibition could still 

be observed (Fig. 16 B. Tab. 10, for TASK-1 data not shown, n=3). 

These data strongly suggest an essential involvement of PLC-β in the inhibitory 

regulation of TASK. Consequently a direct inhibitory effect of Gqα on TASK is very 

unlikely. Noteworthy abolishment of inhibition by both calcium chelators was less 

complete for TASK than for Kv7.4. 

 

Fig. 16: Removal of intracellular calcium 

blocks muscarinic inhibition of TASK-3. Cells 

co-expressing m1R and either TASK-3 or Kv7.4. 

Cells were patch-clamped with a pipette solution 

containing no calcium and either 20 mM EGTA (A) 

or 20 mM BAPTA (B). For comparison TASK-3 

traces recorded with standard intracellular solution 

were plotted (also shown in Fig. 14). Recordings 

were started 4 min after whole-cell was achieved. 

10 µM OxoM was applied for 1 min. In presence of 

EGTA a inhibition was 24.9 (± 3.7) % for TASK-3 

and 22.5 (± 6.4) % for Kv7.4. When BAPTA was 

present in the pipette solution Kv7.4 inhibition was 

completely abolished [-7 (± 5) %] while a minimal 

inhibition was still present in TASK-3 [15.9 (± 5.9) 

%]. n > 5 for all traces. 

 

3.5.2 Effect of the PLC-β blocker U-73122 on m1R inhibition of TASK 

PLC-β activation is generally considered to be the first calcium-dependent step in 

the GqPCR signaling cascade (Horowitz et al., 2005). However there is no evidence 

demonstrating that Gqα activation is unaffected by the absence of calcium. Therefore 
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an independent approach was necessary to confirm the involvement of PLC-β in TASK 

channel inhibition. The PLC-β inhibitor U-73122, an alkylating lipophilic agent, has 

been repetitively used to study the role of PLC-β in different cell types (Mogami et al., 

1997; Horowitz et al., 2005).  

This is not the first experiment aiming to investigate the role of PLC-β in TASK 

channel inhibition by using U-73122. There are rather 5 reports in literature, where the 

effect of U-73122 on TASK channel inhibition was probed (Boyd et al., 2000; Czirjak et 

al., 2001; Chemin et al., 2003; Lopes et al., 2005; Chen et al., 2006). As already stated 

earlier, previously published results were controversial. In those studies who found an 

effect of U-73122, experiments were not carefully controlled for possible side effects 

(Czirjak et al., 2001; Chemin et al., 2003; Lopes et al., 2005). Vice versa reports that 

showed U-73122 to have no effect on TASK channel inhibition at all, did not provide 

sufficient positive controls for effective PLC-β inhibition (Boyd et al., 2000; Chen et al., 

2006). 

First the effectiveness of U-73122 was probed in cells co-expressing m1R and 

PHPLCδ1GFP as a PtdIns(4,5)P2 sensor. The membrane translocation of PHPLCδ1GFP 

upon muscarinic stimulation was observed in TIRF recordings. Either U-73122 or its 

inactive analog U-73343 were applied to the cells in a concentration of 5 µM for 3 

minutes previous to application of OxoM (10 µM, 1 min). When pretreated with U-

73343, OxoM-induced dissociation of PHPLCδ1GFP was equal to cells which were not 

pretreated (Fig. 17 B. Tab. 10). In contrast pretreatment with U-73122 led to an almost 

complete abolishment of PHPLCδ1GFP dissociation, indicating strong blockage of PLC-β. 

Several side effects of U-73122 have been reported before (e.g.: Mogami et al., 

1997; Horowitz et al., 2005). In my hands application of 5 µM U-73122 (3 min) led to 

the development of a remarkable unselective conductance that shifted reversal 

potential towards zero (Fig. 17 A). The cell outward current-density observed at + 50 

mV reached values of 67.6 (±14.9) pA / pF after 3 min. Subsequent superperfusion 

with an extracellular solution where sodium was replaced by the same amount of 

NMDG (Ex-NMDG) abolished the inward component of this current and repolarized 

cells to -53 mV (Fig. 17 A). To allow better observation of the current of interest all 

experiments with U-73122 or U-73343 were performed in Ex-NMDG. 

To test whether U-73122 abolished TASK channel inhibition the m1R and TASK-3 

were co-transfected. When 5 µM U-73122 was applied to the cells for 3 min channel 
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inhibition by OxoM (10 µM, 1 min) was fully abolished. In contrast, control experiments 

where U-73122 was omitted showed fast and robust inhibition (Fig. 17, Tab. 10). To 

evaluate if U-73122 had the same effect on inhibition of TASK-1 currents I performed 

analogous experiments with TASK-1NQ. This mutant has a retention-signal removed 

and thus exhibits 4.5 times bigger currents (Zuzarte et al., 2009). The use of TASK-1NQ 

instead of TASK-1 became necessary to obtain a better ratio between the TASK 

current under observation and the outward current induced by U-73122. As already 

expected from my observations with BAPTA TASK-1NQ channels behave similar to 

TASK-3, yielding full blockage of inhibition by U-73122 pre-treatment.  
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Fig. 17: Blockage of PLC-β abolishes TASK channel inhibition. A, untransfected CHO cells were 

patch-clamped and exposed to 5 µM U-73122. Left panel shows averaged and cell size adjusted outward 

current at +50 mV (upper trace) and inward current at -100 mV (lower trace). Within 3 min of application 

an unselective conductance appeared, whose inward component disappeared when extracellular Sodium 

was replaced by NMDG (n=5). Right panel shows the cell size adjusted I-V relationships obtained from 

the same batch of cells before (black) and at the end (red) of U-73122 application and when extracellular 

sodium was omitted (blue). B, TIRF recordings from cells co-expressing m1R and PHPLCδ1GFP pretreated 

with either 5 µM U-73122 (red) or 5 µM of its inactive analog U-73343 (black) for 3 min. Subsequent 

application of 10 µM OxoM for 1 min showed a normal extent of inhibition in presence of U-73343 (47.3 ± 

7.5 %, n=22) while it was only residually present when pretreated with U-73122 (8.9 ± 3 %, n=33). 

Analogous observations were made in patch-clamp recordings of cells co-expressing m1R and TASK-3 

(C) or TASK-1NQ (D). C, for TASK-3 inhibition was 7.3 ± 11 % (n=5) with and 93.4 ± 2.6 % (n=5) without 

pretreatment with 5 µM U-73122. D, for TASK-1NQ inhibition was 4.1 ± 10.9 % (n=7) and 83.3 ± 3.8 % 

(n=8) respectively. E, Summarized OxoM sensitive TASK-3 currents under control conditions (see Fig. 14 

A) significantly differ from currents after pretreatment with U-73122 (C) and when intracellular calcium 

was omitted by EGTA (see Fig. 19 A) or BAPTA (see Fig. 19 B). 
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Tab. 10: Current inhibition achieved with 10 µM OxoM under different experimental conditions. 

 Control U-73122 EGTA BAPTA 
TASK-1/1NQ 17 (± 2.4) % 4.1 (± 10.9) % - 1.3 (± 9.9) % 
TASK-3 12.5 (± 2.4) % 7.3 (± 11) % 24.9 (± 3.7) % 15.9 (± 5.9) % 
Kv7.4 88 (± 5.5) % - 22.5 (± 6.4) % -7 (± 5) % 

 

 

3.5.3 U-73122 also abolishes endothelin-1 induced TASK channel 

inhibition 

So far it was demonstrated that PLC-β activation is required for inhibition of TASK 

channels by m1R activation. To test if PLC-β-dependent inhibition represents a general 

mechanism also present in other GqPCR TASK channel inhibition by endothelin 

receptor type A (Et-AR, also from the GqPCR family) was additionally examined. TASK-

1 channels are expressed in rat cardiomyocytes where they are inhibited by endothelin-

1 (Et-1) via Et-AR (Schiekel et al., in revision). Et-1 levels are increased in various 

cardiovascular pathologies like congestive heart failure, atrial fibrillation and 

hypertension (Damron et al., 1993; Ono et al., 1994; Rubanyi & Polokoff, 1994). 

Concurrently it leads to a prolongation of action potential in cardiomyocytes (Brunner et 

al., 2006; Deng et al., 2010; Schiekel et al., in revision). Therefore it was of particular 

interest to further dissect the underlying signal transduction pathway. 

To address this issue CHO cells were first co-transfected with Et-AR and the 

PtdIns(4,5)P2 sensor PHPLCδ1GFP. And the effect of the Et-AR agonist Et-1 on 

PtdIns(4,5)P2 membrane abundance was observed in TIRF recordings. In consistence 

with earlier findings (Cho et al., 2005), application of 200 nM Et-1 (1 min) led to strong 

hydrolysis of PtdIns(4,5)P2, indicated by PHPLCδ1GFP dissociation to the membrane. 

Also in consistence with previous findings, fluorescent signals did not recover within the 

observed interval of time (Fig. 18 A, C) (Chun et al., 1995). 

In a next step it was verified that Et-AR induced PtdIns(4,5)P2 depletion is also due 

to PLC-β activation. Experiments performed as above were repeated with a 3 min 

interval of application of 5 µM U-73122 or the same amount of its inactive analog U-

73343 directly before the application of 200 nM Et-1 (1 min). PtdIns(4,5)P2 hydrolysis 

was totally unchanged after pre-application of U-73343, while 5 µM U-73122 led to a 

complete abolishment of Et-AR induced PtdIns(4,5)P2 depletion (Fig. 18 A, C). These 

findings confirm that Et-AR induced PtdIns(4,5)P2 depletion represents hydrolysis by 

PLC-β. 
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Subsequently it was tested if Et-AR activation could lead to TASK-1NQ channel 

inhibition, when both were co-transfected in CHO cells. Cells were patched and TASK-

1NQ currents were observed in sodium free environment (Ex-NMDG). Application of 200 

nM Et-1 (1 min) led to a robust and fast inhibition of TASK currents (Fig. 18 B, D). To 

test if TASK inhibition by Et-AR is achieved by a similar mechanism as TASK inhibition 

by m1R I tested whether PLC-β activation is also required. Analogous to the 

experiments performed with PHPLCδ1GFP 5 µM of either U-73122 or U-73343 (3 min) 

were preapplied before application of 200 nM Et-1 (1 min). U-73122 totally abolished 

the inhibitory effect of Et-1 application. In contrast, the inactive U-73343 did not change 

the effect of Et-1. However U-73343 itself led to a 56.74 ± 11.87 % decrease of TASK-

1NQ currents (Fig. 18 B, D), which was completely reversible within 3 min (n=6, data not 

shown). 

U-73122 application makes TASK-1NQ currents insensitive to m1R and Et-AR 

activation. As hypothesized above, a blockage of PLC-β could underlie this effect. 

However it is also possible that U-73122 modifies TASK channels in a way that makes 

them insensitive to GqPCR induced inhibition or the remaining components of the U-

73122 induced unselective current could obscure TASK inhibition. Therefore further 

experiments were performed to demonstrate that after U-73122 application and 

subsequent GqPCR activation the remaining current really represents TASK-1. Cells 

were co-transfected with the Et-AR and TASK-1NQ and patched in sodium-free Ex-

NMDG. To quantify TASK-1NQ current amplitude, Ex-NMDG with pH = 5.9 was applied 

for 1 min. As expected for TASK channels the recorded current amplitude was 

massively reduced. In a subsequent interval of 1 min where cells were exposed to Ex-

NMDG with the normal pH of 7.4 TASK currents recovered to their original value. Then 

5 µM U-73122 was applied for 3 min leaving TASK currents mostly unchanged. U-

73122 application was followed by an interval of 200 nM Et-1 application (1 min), which 

did not result in any current change. Ultimately pH was again reduced to 5.9. This was 

still effective to robustly block the recorded currents indicating that they still represent 

TASK (Fig. 18 E). In conclusion U-73122 really blocks GqPCR signaling on TASK by 

interfering with the signaling cascade and not directly with the channel. 

Similar experiments were performed with native rat cardiomyocytes and confirmed 

the results obtained in CHO cells (Experiments performed by Julia Schiekel, data not 

shown) (Schiekel et al., in revision). 
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Fig. 18: Et-AR activation inhibits TASK-1NQ by a PLC-β dependent mechanism. A and C, TIRF-

recordings from cells co-transfected with Et-AR and PHPLCδ1GFP. A, Shows time courses of cells exposed 

either to a control solution, 5µM U-73122 or 5µM U-73343 (area highlighted in light gray) before 

application of 200 nM Et-1 (dark gray). Signal intensities recorded from cells previously exposed to the 

control solution (black trace) decreased by 59.37 (± 2) % of the resting value (n = 16). In cells pre-

exposed to U-73122 (red) Et-1 reduced the signal only by 3.47 (± 1.86) % (n = 29) while it was robustly 

reduced by 52.75 (± 2.86) % in cells pre-exposed to U-73343 (blue, n = 27). Box-plot illustrating the 

residual signal intensities after application of Et-1 is given in C. B, Time courses from patch-clamp 

recordings from cells co-transfected with Et-AR and TASK-1NQ that were subject to a similar protocol as 

cells in A. D, Corresponding box-plots as in B. Et-1-induced current decrease was 74.8 (± 7.42) % under 

control conditions (black, n = 5), effectively none (- 8.27 [± 12.82] %, n = 8) in cells previously exposed to 

U-73122 (red) and 75.86 (± 7.48 ) % when pre-exposed to U-73343. E, Patch clamp recording from a 

sample cell demonstrating that currents recorded after application of U-73122 and Et-1 still represent 

TASK. Areas in the different gray tones represent application of extracellular solution with pH = 5.9 (dark), 

U-73122 (intermediate) and Et-1 (light) respectively. Inset: Bars represent the mean resting (black) and 

residual current amplitude from 6 cells subject to a similar treatment as the cell shown. pH sensitive 

current component was 72.25 (± 6.62) % before U-73122 versus 60.73 (± 12.05) % after Et-1 application. 

U-73122 and Et-1 left currents unchanged (+ 12.16 [± 13.75 ] % and + 14.31 [± 7.79 ] %). 
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Tab. 11: Relative signal decrease achieved by of 200 nM Et-1 after 

pretreatment with control solution, 5 µM U-73343 or 5 µM U-73122. 

 Control U-73343 U-73122 
TASK-1NQ 74.8 (± 7.42) % 75.86 (± 7.48 ) % -8.27 (± 12.82 ) % 
PHPLCδ1GFP 59.37 (± 2) % 52.75 (± 2.86) % 3.47 (± 1.86) % 

 

 

In summary, inhibition of PLC-β by both deprivation of calcium and pharmacological 

blockage by U-73122 resulted in a close-to-total block of m1R induced signal 

propagation onto TASK channels. Inhibition of TASK not only by m1R but also by Et-

AR activation were blocked by U-73122, suggesting that PLC-β activation is a 

necessary step for TASK channel inhibition by any GqPCR. Finally my results could be 

reproduced in a native system, underlining their physiological relevance. Noteworthy, 

and in contrast to earlier studies, my approaches to block PLC-β are controlled for 

effectiveness and specificity by using two independent PtdIns(4,5)P2 reporters, Kv7.4 

and PHPLCδ1GFP.  

3.6 GqPCR mediated TASK inhibition is slower when PtdIns(4,5)P2 

levels are reduced 

Up to this point it was shown that signal propagation from GqPCR to TASK 

channels requires PLC-β activation. However depletion of PtdIns(4,5)P2 or other PtdIns 

does not cause channel closure. This observation suggest that TASK channel inhibition 

is mediated by a messenger molecule located downstream of PtdIns(4,5)P2 hydrolysis. 

However, PLC-β activation might possibly initiate signaling pathways other than the 

PtdIns(4,5)P2 pathway. Therefore it remains to be tested if the hydrolysis of 

PtdIns(4,5)P2 to Ins(1,4,5)P3 and DAG is really required for successful signal 

propagation, i.e. if PtdIns(4,5)P2 has a permissive role. This can be done by artificially 

decreasing PtdIns(4,5)P2 levels (e.g. by CF-Inp54, the switchable phosphatase 

described above [chapter 3.2]) and observing changes in TASK channel inhibition by 

subsequent GqPCR activation.  

To test the role of PtdIns(4,5)P2 as a permissive mediator of GqPCR induced TASK 

channel inhibition CHO cells were co-transfected with five different constructs: 1) 

Lyn11-FRB and 2) CF-Inp54 for Rapamycin induced dimerisation, 3) the m1R, 4) 

PHPLCδ1GFP as PtdIns(4,5)P2-sensor and 5) TASK-3. Synchronous TIRF and patch-
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clamp recordings were performed to monitor alteration in PtdIns(4,5)P2 concentration 

and TASK current at the same time.  

The m1R was stimulated with OxoM (10 µM, 1 min) resulting a decrease of 

PHPLCδ1GFP membrane fluorescence paired with a robust inhibition of TASK-3. After 

signal recovery recruitment CF-Inp54 by application of Rapamycin (5 µM, 1 min), 

induced a pronounced dissociation of PHPLCδ1GFP from the membrane. TASK current 

remained unchanged during this interval of time. By reapplication of OxoM (10 µM, 1 

min) no further decrease in PHPLCδ1GFP membrane association was achieved. In 

contrast TASK currents were strongly inhibited. Interestingly TASK inhibition time 

constants were slower for the second application of OxoM than for the first (Fig. 19 A & 

C, Tab. 12). 

This experiment did not give the desired “all-or-nothing” result, i.e. TASK inhibition 

was not fully present or fully abolished, but instead inhibition kinetics were “only” 

slowed. Do these slower inhibition kinetics reflect the permissive role of PtdIns(4,5)P2? 

If so, also the generation of PtdIns(4,5)P2 hydrolysis products should be only slowed, 

but not completely abolished. Indeed, it has been shown that DAG is still produced by 

GqPCR activation after CF-Inp54 recruitment (Suh et al., 2006). Both, DAG production 

and TASK channel inhibition after CF-Inp54 recruitment might possibly arise from 

hydrolysis of residual PtdIns(4,5)P2 molecules which are accessible to PLC-β, but not 

to CF-Inp54, e.g. for affinity reasons. In this case GqPCR activation could still produce 

an amount of PtdIns(4,5)P2 downstream messenger molecules, but less than under 

normal conditions where PtdIns(4,5)P2 concentrations were high.  

To test if DAG production kinetics were changed when PtdIns(4,5)P2 levels were 

altered, it became necessary to observe the translocation of CF-Inp54, changes in 

PtdIns(4,5)P2 and in DAG simultaneously. Thus 3 different fluorescence proteins had to 

be observed at a time. This could not be achieved by TIRF microscopy in this 

laboratory. For this practical reason these experiments were performed using confocal 

microscopy. In contrast to TIRF that uniquely senses membrane fluorescence, confocal 

microscopy is more robust to detect cytosolic fluorescence changes. Therefore in these 

experiments cytosolic fluorescence is monitored and thus an signal increase reflects a 

translocation of a fluorescent probe away from the membrane (i.e. fluorescence 

intensities reciprocally correlate with the membrane concentration of the fluorescent 

sensor). 



Results 

 

MORITZ LINDNER  - 54 - 

CHO cells were co-transfected with 1) Lyn11-FRB, 2) CF-Inp54, 3) the m1R, 4) 

Tubby-RFP to sense PtdIns(4,5)P2 and 5) PKCγ26-89YFP as DAG sensor. The Tubby 

domain is another PtdIns(4,5)P2 sensor, being more specific than PLC-δ1-PH but 

having some yet not fully understood side effects (Leitner MG, unpublished). Here it 

was used for the practical reason of having a RFP as fluorescence tag. 

The first application of OxoM (10 µM, 1 min) led to a robust and fast decrease of 

cytosolic PKCγ26-89YFP, indicating DAG synthesis. As usually observed for Tubby-RFP, 

this GqPCR receptor stimulation did not result in Tubby-RFP translocation (Leitner MG, 

unpublished). After recovery of the PKCγ26-89YFP signal a subsequent application of 

Rapamycin (5 µM, 1 min) left PKCγ26-89YFP constant while both Tubby-RFP 

translocation into the cytosol and translocation of CF-Inp54 to the membrane could be 

observed. On second application of OxoM (10 µM, 1 min) PKCγ26-89YFP reassociated 

with the plasma membrane but only with slower kinetics (Fig. 19 B & C, Tab. 12). Thus 

PLC-β conducted production of messengers downstream of PtdIns(4,5)P2 occurs 

slower after depletion of PtdIns(4,5)P2 by CF-Inp54. 

Both TASK-3 and DAG production are decelerated after decrease of PtdIns(4,5)P2 

levels. The residual DAG production indicates that there is still some PtdIns(4,5)P2 

available for hydrolysis by PLC-β after CF-Inp54 recruitment. As TASK-3 inhibition is 

still present, but slower, after CF-Inp54 recruitment it is reasonable to conclude that 

TASK inhibition occurs downstream of PtdIns(4,5)P2 hydrolysis. 
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Fig. 19: Chemically induced 

PtdIns(4,5)P2 depletion equally 

decelerates TASK channel inhibition and 

DAG synthesis. Cells co-transfected with 

m1R, Lyn11-FRB, CF-Inp54 and either 

PHPLCδ1GFP and TASK-3 in A or Tubby-

RFP and PKCγ26-89YFP in B. Cells treated 

subsequently with 10 µM OxoM, 5 µM 

Rapamycin and again 10 µM OxoM for 1 

min each. A, Simultaneous TIRF and Patch-

Clamp recordings reveal slower TASK-3 

inhibition kinetics after CF-Inp54 recruitment 

(n = 5). B, Cytosolic fluorescence courses 

obtained by confocal imaging. Membrane 

association of PKCγ26-89YFP indicating DAG 

production occurs slower after CF-Inp54 

recruitment (n = 10). C, Time constants for 

TASK-3 inhibition (black) and PKCγ26-89YFP 

membrane association (yellow) as shown in 

A and B. 

 

Tab. 12: PtdIns(4,5)P2 depletion increases time constants for 

muscarinic TASK-3 inhibition and DAG production.  

 Before rapamycin (s) After rapamycin (s) N 

PKCγ26-89YFP 20.09 (±3.37) 35.62 (±3.89) 10 
TASK-3 13.6312 (±2.64) 25.3093 (±6.79) 5 
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3.7 In absence of PtdIns(4,5)P2 available to PLC-β GqPCR activation 

fails to inhibit TASK 

TASK channel inhibition and DAG production analogously decelerate after 

reduction of membrane PtdIns(4,5)P2 levels, indicating a permissive role of 

PtdIns(4,5)P2 for TASK channel inhibition. To fortify the hypothesis of a permissive role 

of PtdIns(4,5)P2, it would be interesting to see how TASK channel inhibition was 

affected when PtdIns(4,5)P2 virtually unavailable to PLC-β. The previous chapter 

showed that CF-Inp54 is not able to decrease PtdIns(4,5)P2 levels far enough. 

However such a virtual absence might be achieved by activation of PLC-β itself. If the 

resynthesis of PtdIns(4,5)P2 after PLC-β activation was blocked, no PtdIns(4,5)P2 

would be available for hydrolysis by a second PLC-β activation.  

To create a virtual absence of PtdIns(4,5)P2 experiments were performed 

analogously to those in chapter 3.4: Cells were co-transfected with the m1R and TASK-

3. Patch pipettes were loaded with an intracellular solution containing no ATP but 3 mM 

of its non hydrolysable analog AMP-PCP, to block ATP-dependent PtdIns(4,5)P2 

resynthesis. After whole cell formation a period of 4 min was waited to give the AMP-

PCP sufficient time to diffuse into the cell. Subsequently 10 µM OxoM (1 min) was 

applied resulting in a robust inhibition of TASK-3 (70.3 ± 9.7 %). Agonist application 

was followed by a 4 min wash-out interval. During this period recovery of TASK-3 

currents occurred. Upon subsequent application of 10 µM OxoM (1 min) TASK currents 

remained practically unchanged (currents increased by 1.3 ± 5.5 %, Fig. 1 A and B), 

suggesting that PtdIns(4,5)P2 is required to propagate signaling on TASK. 

In a similar experimental approach the behavior of DAG was measured instead of 

TASK-3 (Leitner MG unpublished). Cells were analogously patched and an interval of 4 

min was given for AMP-PCP to diffuse into the cell. Afterwards the DAG sensor 

PKCγ26-89YFP was observed by TIRF microscopy. First application of 10 µM OxoM (1 

min) resulted in a massive translocation of PKCγ26-89YFP to the membrane, 

representing intensive DAG production. DAG levels recovered to their resting value 

within 5 min, indicated by a dissociation of PKCγ26-89YFP from the membrane. The 

second application of 10 µM OxoM (1 min) did not result in a novel change in PKCγ26-

89YFP signal strength. Thus, no DAG was produced when no more PtdIns(4,5)P2 was 

available to PLC-β. 
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These results demonstrated that TASK channel inhibition cannot occur in absence 

of PtdIns(4,5)P2. PtdIns(4,5)P2.  therefore forms a permissive mediator in the process 

of GqPCR induced TASK channel inhibition. 

 

Fig. 20: TASK inhibition only occurs in the presence of PtdIns(4,5)P2. Cells co-transfected with 

m1R and TASK-3 were patched with a pipette solution containing 3 mM AMP-PCP instead of ATP. A 

period of 4 minutes was waited before beginning the experiments. A gives the average time course of 5 

cells with gray columns indicating the application intervals of 10 µM OxoM. First application results in an 

inhibition of TASK currents while the second application leaves TASK currents almost unchanged. B, 

Mean current inhibition, given as fraction of the pre-application current amplitude. 
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4 Discussion 

In the present work, I investigated the mechanism underlying the GqPCR-induced 

inhibition of TASK channels. Up until today there had been two main hypotheses which 

messenger molecule would directly mediate TASK channel inhibition. It was suggested 

that inhibition results either from a direct interaction of the channel with activated Gqα 

or from depletion of PtdIns(4,5)P2. 

To evaluate the these hypotheses distinct approaches to specifically modulate the 

levels of plasma membrane PtdIns(4,5)P2 were used here. I consistently found no 

changes in TASK channel activity suggesting that the depletion of PtdIns(4,5)P2 itself 

does not lead to TASK channel inhibition. In a next step it was investigated if the 

inhibition of TASK could be due to a direct interaction of the channel with Gqα by 

probing the involvement of PLC-β in channel inhibition. Two differential approaches 

showed that PLC-β activation is needed for effective signal transduction. As PLC-β is 

located downstream of Gqα by these results a direct inhibitory effect of Gqα on TASK 

could also be excluded. Finally the role of PtdIns(4,5)P2 as one step within the 

signaling cascade that led to TASK channel inhibition was questioned. By decreasing 

the level of PtdIns(4,5)P2 available for hydrolysis by PLC-β the inhibitory effect of 

GqPCR activation on TASK was largely abolished. These experimental results 

demonstrate that the messenger molecule directly inhibiting TASK channels is located 

downstream of PtdIns(4,5)P2 hydrolysis. 

4.1 Does PtdIns(4,5)P2 directly influence TASK channel activity? 

By a set of switchable phosphatases, namely Ci-VSP, CF-Inp54 and RF-PJ the 

effect of GqPCR triggered PLC-β activation on PtdIns(4,5)P2 was mimicked. Activation 

of any of these constructs left TASK-1 and TASK-3 currents unchanged. To evaluate 

the accuracy of these approaches the degree of PtdIns(4,5)P2 depletion achieved has 

to be considered. If Ci-VSP, CF-Inp54 and RF-PJ could accurately mimic the effect of 

PLC-β on PtdIns(4,5)P2, the degree of PtdIns(4,5)P2 depletion achieved by GqPCR and 

switchable phosphatases should be approximately the same. Two different biosensors 

were used to monitor changes in PtdIns(4,5)P2 concentrations: PHPLCδ1GFP as an 

established and extensively used fluorescent sensor (Stauffer et al., 1998) and Kv7.4 a 

well characterized PtdIns(4,5)P2-regulated ion channel (Suh & Hille, 2002; Zhang et al., 

2003; Suh et al., 2006). When using PHPLCδ1GFP m1R induced membrane dissociation 

could be mimicked by recruitment of both CF-Inp54 and RF-PJ. For both constructs 
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time constants were slower, but the overall degree of PHPLCδ1GFP translocation was 

the same. Ci-VSP-mediated PtdIns(4,5)P2 depletion led to a much faster and even 

more complete PHPLCδ1GFP translocation (Fig. 12 A, Tab. 6). Assuming that 

PHPLCδ1GFP translocation directly and uniquely reflects PtdIns(4,5)P2 depletion, these 

observations suggest that CF-Inp54 and RF-PJ deplete PtdIns(4,5)P2 to a similar 

degree as m1R, whereas Ci-VSP depletes PtdIns(4,5)P2 even stronger. In fact it has to 

be taken into consideration that PHPLCδ1GFP also binds Ins(1,4,5)P3 beside 

PtdIns(4,5)P2 (reviewed in Varnai & Balla, 2006). Creation of Ins(1,4,5)P3 on m1R 

facilitates the translocation of PHPLCδ1GFP to the cytosol. Therefore the degree of 

PtdIns(4,5)P2 depletion achieved by m1R activation may be overestimated compared 

to that achieved by my switchable phosphatases where no Ins(1,4,5)P3 is created. 

Thus my findings suggest that the engineered phosphatases deplete PtdIns(4,5)P2 

even more efficient than the m1R. 

When using Kv7.4 as a PtdIns(4,5)P2 sensor inhibition kinetics achieved with the 

engineered phosphatases were consistently faster than dissociation of PHPLCδ1GFP 

probably reflecting a lower apparent affinity of the channel for PtdIns(4,5)P2. This 

observation is in agreement with recent reports in the literature (Falkenburger et al., 

2010c). Inhibition kinetics of Kv7.4 were faster upon PtdIns(4,5)P2 manipulation by 

exogenous phosphatases than upon m1R activation, while the total extent of inhibition 

achieved were equal. These observations are consistent with recent findings from other 

groups, who described that effects of voltage-sensitive and chemically recruited 

phosphatases on PtdIns(4,5)P2 sensitive ion channels were comparable to those of 

GqPCR induced PtdIns(4,5)P2 depletion (Suh et al., 2006; Varnai et al., 2006; 

Hernandez et al., 2009; Falkenburger et al., 2010c).  

Comparing the m1R mediated inhibition of TASK-1 and TASK-3 with that of Kv7.4, 

inhibition of TASK occurred about threefold faster than inhibition of low PtdIns(4,5)P2 

affinity Kv7.4 (Tab. 5) (Hernandez et al., 2009). If the inhibition of TASK was due to 

PtdIns(4,5)P2 depletion, TASK-1 and TASK-3 should have an even lower PtdIns(4,5)P2 

affinity than Kv7.4. Hence, TASK should be more sensitive to activation of Ci-VSP, CF-

Inp54 or RF-PJ. In contrast these phosphatases left TASK channels unaffected, while 

they successfully inhibited Kv7.4. These findings make a direct regulation of TASK 

channels by PtdIns(4,5)P2 unlikely. 
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Earlier findings demonstrate that direct application of PtdIns(4,5)P2 to excised 

patches enhanced TASK currents and intracellular application of PtdIns(4,5)P2 

scavengers partially inhibited TASK (Chemin et al., 2003; Lopes et al., 2005). How do 

those findings fit to the results presented in this study? PtdIns(4,5)P2 changes achieved 

by those methods might extremely exceed the changes achieved by the engineered 

phosphatases used in this study(Rohacs, 2009). As outlined above, they must also 

exceed the changes achieved by GqPCR activation. The PtdIns(4,5)P2 sensitivity 

observed by Lopes et al. and Chemin et al. therefore does not represent a relevant 

mechanism for GqPCR signaling on TASK. However these results may reflect a role of 

PtdIns(4,5)P2 as a cofactor necessary for channel function, rather than a regulatory 

mechanism (see chapter 1.4.3). Such a role of PtdIns(4,5)P2 as necessary cofactor is 

suggested as a general mechanism for many other ion channels but still lacks 

experimental evidence (Hilgemann, 2007). My results do not exclude such a cofactor 

role of PtdIns(4,5)P2 and are therefore in accordance with experimental findings from 

Lopes and Chemin.  

4.2 Are other PtdIns involved in TASK channel regulation? 

The insensitivity of TASK channels to Ci-VSP and CF-Inp54 activation slows that 

receptor induced PtdIns(4,5)P2 depletion is not sufficient for channel inhibition. 

However it remained possible that not PtdIns(4,5)P2 depletion as such, but depletion of 

overall PtdIns or depletion of PtdIns(4)P could mediate current inhibition. It has been 

shown that ion channels such as KATP are activated also by PtdIns other than 

PtdIns(4,5)P2 (Rohacs et al., 2003). Furthermore it has been demonstrated that PLC-β 

activation does not only deplete PtdIns(4,5)P2 but also PtdIns(4)P, which is present in 

the plasma membrane with comparable abundance (Willars et al., 1998; Horowitz et 

al., 2005; Di Paolo & De Camilli, 2006). If TASK channels were unspecifically regulated 

by PtdIns like KATP, activation of Ci-VSP or CF-Inp54 should fail to inhibit TASK. 

Therefore a novel switchable dual specificity phosphatase termed RF-PJ was 

introduced in this study (Lindner et al., 2011). By using an established set of 

fluorescence sensors I could demonstrate that RF-PJ efficiently depletes both, 

PtdIns(4)P and PtdIns(4,5)P2. As PtdIns(4)P and PtdIns(4,5)P2 are two major PtdIns 

species at the cell membrane also the overall PtdIns concentration is significantly 

reduced. However TASK were insensitive to activation of RF-PJ, suggesting that 

GqPCR triggered depletion of these membrane lipids does not evoke TASK channel 

inhibition. 
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Here it was also tested if TASK channel recovery from receptor induced inhibition 

could be derailed by blockage of PtdIns(4)P and PtdIns(4,5)P2 resynthesis. In 

agreement with my results obtained with RF-PJ, recovery of TASK channels could still 

occur in the presence of the non-hydrolysable ATP analog AMP-PCP, where 

PtdIns(4,5)P2 resynthesis is blocked (Suh & Hille, 2002). Thus these experiments 

confirm that receptor induced TASK inhibition is carried out neither by single nor 

combinatorial alteration of PtdIns(4)P or PtdIns(4,5)P2.  

4.3 May specific PtdIns(4,5)P2 pools be involved in the regulation 

of TASK channels? 

It has been suggested that the plasma membrane harbors functionally distinct pools 

of PtdIns. Such pools might, e.g. be organized in lipid rafts or caveolae (Cho et al., 

2005; Hilgemann, 2007; Johnson et al., 2008; Oldfield et al., 2009; Vasudevan et al., 

2009). They have been used to explain receptor-specific PtdIns(4,5)P2 signaling on 

potassium channels in cardiomyocytes (Cho et al., 2005). It was additionally 

demonstrated that GqPCR induced Kv7 inhibition requires receptor-channel co-

localization within the same PtdIns pool even in cultured cells (Oldfield et al., 2009). 

TASK channel inhibition might be due to GqPCR induced PtdIns(4,5)P2 depletion within 

such a spatially limited PtdIns pool. In this case the m1R must be localized within the 

same pool as TASK, as it is efficient to inhibit the channel. In contrast the exogenous 

phosphatases did not have any effect on TASK. If GqPCR inhibition was due to 

PtdIns(4,5)P2 depletion anyhow, the exogenous phosphatases and TASK must exist in 

distinct pools. As activation of m1R and of the exogenous phosphatases induced a 

strong signal alteration for all of the bona-fide PtdIns sensors used (Kv7.4, 

PH2xOSH2GFP and PHPLCδ1GFP) they must be distributed equally over the membrane, 

i.e. within and outside the exclusively m1R- or TASK-harboring pool. This hypothetical 

distribution of the TASK, GqPCR, exogenous phosphatases and the sensor domains is 

illustrated in Fig. 21. Such a membrane distribution seems very unlikely and could be 

clearly excluded by other experimental findings presented here: By inhibition of PtdIns 

resynthesis by AMP-PCP the role of those PtdIns that had been depleted due to m1R 

activation itself can be specifically accessed. As m1R inhibits TASK it is guaranteed 

that the correct PtdIns pool was observed. In the experiments with AMP-PCP recovery 

of TASK channels was not altered. Thus TASK channel inhibition cannot be due to 

PtdIns depletion within a special pool of membrane lipids. 
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Fig. 21: Hypothetical model of a cell membrane containing PtdIns(4,5)P2 signaling 

microdomains. The left domain contains my exogenous phosphatases, the m1R, PHPLCδ1GFP and the 

Kv7 channels. In contrast the right domain additionally contains the TASK channel but it is missing the 

exogenous phosphatases. 

4.4 Can a direct inhibitory mechanism by Gqα be excluded? 

It is hard to directly and specifically interfere with Gqα signaling, as knowledge on 

the regulatory mechanism of this protein is still limited. Therefore the role of Gqα was 

resolved by interfering with the activity of PLC-β, which is directly activated by Gqα. If 

PLC-β was dispensable for TASK channel inhibition this would suggest a direct 

interaction of Gqα and TASK. PLC-β was blocked by detraction of calcium, which is a 

necessary cofactor to this enzyme. Strong buffering of intracellular resting calcium with 

EGTA robustly decreased m1R-induced inhibition of TASK-3, most likely reflecting 

blockage of PLC-β. Using the fast calcium buffer BAPTA instead of EGTA equally 

reduced the response of TASK-3 to receptor stimulation. In fact BAPTA was even more 

effective, probably reflecting a stronger block of PLC-β by buffering also calcium 

released from intracellular stores. Thus PLC-β is needed for TASK inhibition and a 

direct inhibitory effect of Gqα on TASK can be excluded.  

The necessity of PLC-β for TASK channel inhibition was confirmed by an 

independent approach using U-73122, an established PLC-β blocking agent (e.g.: 

Mogami et al., 1997; Stauffer et al., 1998; Suga et al., 2003; Horowitz et al., 2005). In 

the present work U-73122 was efficient to block the inhibition of TASK-3 and TASK-1NQ 

channels by two different GqPCR (namely m1R and Et-AR). Also previous studies have 

used U-73122 to investigate TASK channel inhibition revealing contradictory results 

(Boyd et al., 2000; Czirjak et al., 2001; Chemin et al., 2003; Lopes et al., 2005; Chen et 

al., 2006). However those studies do not provide sufficient controls. This work is the 

first to provide both positive and negative controls and to report and deal with critical 

side effects of U-73122 and therefore also helps understand the diverging results 

obtained before.  
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PLC-β activation is generally considered the first calcium dependent step in the 

GqPCR cascade. It is also considered to be the only step within the cascade blocked by 

U-73122. But for both, calcium and U-73122, the evidence is missing. To clarify this 

issue in future it will help to examine the GqPCR pathway for other calcium dependent 

or U-73122 sensitive steps e.g. by making use of FRET (fluorescence resonance 

energy transfer). Thereby e.g. successful dissociation of the GqPCR-Gqα complex or 

conformational changes within the GqPCR could be monitored.  

This work additionally shows that PtdIns(4,5)P2 hydrolysis by PLC-β is necessary 

for efficient signal propagation from GqPCR to TASK. The m1R was activated and 

TASK currents were monitored either after CF-Inp54 induced PtdIns(4,5)P2 depletion or 

after previous PtdIns(4,5)P2 depletion by m1R activation. TASK channel inhibition was 

strongly reduced after CF-Inp54 recruitment and completely abandoned after previous 

m1R activation, most likely as a consequence of reduced PtdIns(4,5)P2 levels. As this 

approach interferes with the signaling cascade far downstream of Gqα it provides 

further evidence arguing against a direct inhibitory mechanism by Gqα. 

While these experiments convincingly exclude a direct inhibitory effect of Gqα on 

TASK channels, a different experimental approach by Chen et al. appeared to provide 

good evidence in favor of a direct inhibitory mechanism by Gqα. Thus detailed 

discussion is required at this point (Chen et al., 2006). In their study Chen et al. used a 

cell line derived from Gqα knock-out mice. When these cells were transfected only with 

a GqPCR and TASK, GqPCR agonists did not induce TASK channel inhibition. Further 

co-transfection of Gqα was required to reconstitute the inhibitory effect. However the 

ability of Gqα to activate PLC-β was seemingly not required: When transfecting a 

mutant Gqα that was shown to possess a strongly reduced PLC-β affinity in vitro, TASK 

inhibition was still present (Venkatakrishnan & Exton, 1996; Chen et al., 2006). 

Noteworthy the study by Chen et al lacks the evidence that activation of PLC-β does 

really not occur in presence of the mutated Gqα. To clarify the discrepancy between my 

work (Lindner et al., 2011; Schiekel et al., in revision) and the work of Chen et al 

Bettina Wilke probed if PLC-β activation occurs in presence of the mutated Gqα by 

performing experiments similar to those by Chen et al but with PHPLCδ1GFP instead of 

TASK (Wilke et al., Unpublished). Her experiments show that PLC-β activation still 

occurs in presence of mutated Gqα but not in total absence of Gqα. Therefore the 

results by Chen et al do not help to evaluate the role of Gqα for TASK channel inhibition 

and the contradiction to the present results is resolved. 
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4.5 What is the role of PLC-β activity in the inhibition process? 

Above experiments, where PLC-β was blocked either pharmacologically or by 

withdrawal of its calcium were discussed. The discussion so far focused on the 

conclusions that can be drawn about a direct inhibitory action of Gqα on TASK. These 

experiments obviously also tell us about the role of PLC-β itself: When PLC-β was 

bocked by either approach GqPCR activation did not lead to TASK channel inhibition 

any more. Thus PLC-β activation is a necessary step for TASK channel inhibition. 

PLC-β hydrolyses PtdIns(4,5)P2 to Ins(1,4,5)P3, DAG. Frequently ignored it thereby 

also generates one proton (Huang et al., 2010). It is well established that after 

blockage of PLC-β neither the concentration of PtdIns(4,5)P2 will decrease nor will the 

concentration of Ins(1,4,5)P3, DAG or protons increase (Horowitz et al., 2005). Having 

ruled out a direct role of PtdIns(4,5)P2 my experiments suggest that alteration of any of 

the other molecules should mediate TASK inhibition. However, also an immediate 

interaction between activated PLC-β and TASK might explain the results. This 

possibility could be ruled out by an experiment where Ins(1,4,5)P3, DAG and protons 

were not created, while PLC-β activity remained intact. PtdIns(4,5)P2 was depleted by 

CF-Inp54 recruitment before the activation of the m1R and the effect of m1R activation 

on TASK was observed. I found that depletion of PtdIns(4,5)P2 decreases speed and 

total extent of TASK inhibition, as it would be expected if this molecule was a 

permissive mediator in the signaling cascade to inhibit TASK.  

Moreover the m1R was used to deplete PtdIns(4,5)P2 while its resynthesis was 

blocked by AMP-PCP and afterwards the effect of a novel m1R activation on TASK 

was observed. Thereby a virtual absence of PtdIns(4,5)P2 could be achieved. Under 

this condition m1R activation failed to inhibit TASK despite fully functional PLC-β. 

These experimental observations show that creation of PtdIns(4,5)P2 metabolites by 

PLC-β and not just PLC-β activity as such is essential for TASK channel inhibition.  

4.6 The mechanism of GqPCR mediated TASK inhibition 

The present work could clearly attribute TASK channel inhibition to a messenger 

molecule downstream of PLC-β mediated PtdIns(4,5)P2 hydrolysis. Remaining 

candidates therefore include the direct hydrolysis products of PtdIns(4,5)P2: 

Ins(1,4,5)P3, DAG and protons. Also potential downstream messenger molecules have 

to be considered. Those include calcium, as liberated from the endoplasmatic reticulum 
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by Ins(1,4,5)P3, PKC activated by DAG, and DAG metabolites such as phosphatidic 

acid and monoacyl-glycerol.  

4.6.1 PKC 

An effect of PKC was clearly excluded before, as GqPCR mediated inhibition 

remains present in TASK channels which have all potential phosphorylation sites 

removed (Czirjak et al., 2001; Chemin et al., 2003; Veale et al., 2007). The present 

results further show that TASK channel inhibition fully persists when all ATP is 

removed and thus all phosphorylation processes are blocked. Therefore this work 

provides additional evidence against an involvement of PKC.  

4.6.2 Calcium 

The role of calcium is less clear. Literature provides only indirect evidence generally 

arguing against a role of calcium (Czirjak et al., 2001; Chemin et al., 2003; Veale et al., 

2007). In contrast, my results are consistent with calcium as a possible candidate. The 

fast calcium chelator BAPTA blocks m1R induced inhibition of TASK much more 

effective than EGTA at equal concentration. Noteworthy BAPTA and EGTA do not 

differ in buffering capacity but only in buffering speed (Fakler & Adelman, 2008; 

Enyeart et al., 2011) Therefore BAPTA is considered to be capable to buffer also fast 

calcium transients as they occur by opening of intracellular Ins(1,4,5)P3-sensitive 

stores. The difference in efficiency to block TASK channel inhibition could thus be 

explained by differences in store-released calcium available to either PLC-β or to 

TASK. Both of these possible explanations require a minimal residual PLC-β activity in 

presence of both BAPTA and EGTA that leads to the creation of Ins(1,4,5)P3 and 

subsequent release of calcium from intracellular stores. 

Previous studies have excluded calcium to have an inhibitory effect on TASK by 

artificial induction of calcium release from intracellular stores or previous emptying of 

those (Czirjak et al., 2001; Chemin et al., 2003; Veale et al., 2007). However none of 

these studies examined the direct influence of calcium on TASK channels. This could 

be easily done by application of high calcium containing solutions on excised patches 

or by whole cell patch clamp recordings with an intracellular solution containing high 

calcium concentrations. Performing such an experiment will be required to safely 

exclude calcium as a direct inhibitor of TASK. 
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4.6.3 Ins(1,4,5)P3 and DAG 

The remaining common messenger molecules Ins(1,4,5)P3 and DAG need further 

attention. As discussed above (see chapter 4.5), both, TASK channel inhibition and 

DAG production by GqPCR activation are only decelerated (but not fully abolished) 

after previous PtdIns(4,5)P2 depletion by CF-Inp54. This might suggest that TASK 

channel inhibition is mediated via the DAG branch. 

While earlier research mostly argues against a role of Ins(1,4,5)P3 (Czirjak et al., 

2001; Veale et al., 2007), the role of DAG has never been tested. To clarify this issue 

the direct effect of these two messenger molecules on TASK channels should be 

examined. This could be performed e.g. by application of these substances onto an 

excised patch and subsequent confirmation in the intact cell. In addition a different 

approach may provide further evidence: Whole-cell patch-clamp experiments could 

help where the two principal DAG metabolizing enzymes, namely DAG lipase and DAG 

kinase (Migas et al., 1997; Sakane & Kanoh, 1997; Basavarajappa, 2007; Shulga et al., 

2011) are expressed together with a GqPCR and TASK. If DAG would directly inhibit 

TASK channels recovery from inhibition should be accelerated by overexpression of 

DAG lipase or DAG kinase. DAG lipase metabolizes DAG to monoacyl-glycerol and 

arachidonic acid while DAG kinase phosphorylates DAG to phosphatidic acid (Migas et 

al., 1997) (Fig. 22). Overexpression of DAG lipase thus results in creation of higher 

levels of monoacyl-glycerol and arachidonic acid after PLC-β activation. If TASK 

inhibition was due to one of those molecules, the overexpression of DAG lipase would 

result in prolonged channel recovery. In contrast overexpression of DAG kinase would 

sequester the substrate of DAG lipase and therefore result in accelerated recovery. If 

TASK inhibition was due an increase in phosphatidic acid concentrations, opposite 

results would be achieved. As specific inhibitors exist for both DAG lipase and DAG 

kinase these observations could be validated by an independent pharmacological 

approach. 

The hypothesis of a regulation of TASK by DAG or one of its metabolites is 

especially interesting as a regulatory effect of arachidonic acid is described for TREK 

and TRAAK channels, both members of the K2P family (Goldstein et al., 2005). A direct 

effect of DAG on any K2P channel has not been described yet. However regulation of 

different ion channels by DAG is well established. Well studied examples are channels 

from the transient receptor potential family, TRPC (Harteneck & Gollasch, 2010). 
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Fig. 22: Metabolism of DAG. DAG or its metabolites might inhibit TASK channels. AA arachidonic 

acid, MAG monoacyl glycerol, PA phosphatidic acid. 

 

4.6.4 Protons 

Hydrolysis of PtdIns(4,5)P2 also results in the liberation of a proton (Rebecchi & 

Pentyala, 2000). It has been demonstrated that this proton release results in a slight 

intracellular acidification in the range of 0.1 pH units (Huang et al., 2010). The 

response of TASK to intracellular acidification has frequently been tested (Duprat et al., 

1997; Rajan et al., 2000; Patel & Honore, 2001). It was consistently shown that 

decrease of intracellular pH does not affect TASK currents. TASK channel inhibition by 

protons can therefore be excluded.  

4.6.5 Non-canonical inhibitory mechanisms 

So far messenger molecules classically known to affect ion channels were 

discussed. However two very untypical inhibitory mechanisms need to be considered. 

First, GqPCR induced TASK channel inhibition may depend on combinatorial alteration 

of two or even more messenger molecules within the classical GqPCR cascade. 

Second, TASK inhibition might be due to activation of the Rho-GEF pathway. This 

signaling pathway has recently been shown to influence ion channel function (Szaszi et 

al., 2000; Karpushev et al., 2010) but is classically involved in oncogenesis, cell cycle 

control, and cytoskeleton formation (Lazer & Katzav, 2010). If the Rho-GEF pathway 

was involved in the inhibition of TASK channels it would have to contain a calcium 

dependent and U-73122 sensitive step, as both blocks TASK inhibition. So far no such 

sensitivity of the Rho-GEF pathway has been reported. Also the permissive role of 

PtdIns(4,5)P2 appears to be inconsistent with the Rho-GEF pathway. In conclusion, it is 

unlikely that the Rho-GEF pathway is important for TASK channel inhibition. 
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4.7 Concluding remarks 

In the present work the mechanism underlying the GqPCR induced inhibition of 

TASK channels was investigated. The two popular hypotheses of an inhibitory 

mechanism where TASK is directly blocked by PtdIns(4,5)P2 depletion or Gqα 

activation could be excluded. Additionally it could be shown that beside PtdIns(4,5)P2, 

the classical PLC-β substrate, also the depletion of other PtdIns does not result in 

TASK channel inhibition. Furthermore this work provides clear evidence that hydrolysis 

of PtdIns(4,5)P2 to Ins(1,4,5)P3 and DAG by PLC-β is indispensable for TASK channel 

inhibition. It therefore demonstrates that the role of PtdIns(4,5)P2 for TASK channel 

inhibition is that of a permissive mediator rather than of a direct messenger itself. 

Despite of these advances, the final effector of TASK channel inhibition remains to 

be identified. If no atypical mechanism is involved, the present work only spares a few 

candidate molecules: Those are Ins(1,4,5)P3 and calcium, on the one hand and DAG 

together with its metabolites on the other hand. Finally I have discussed a subsequent 

experimental approach to identify the molecule that directly mediates TASK channel 

inhibition.  
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