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Kurzfassung

Teil I: Optimierung von Cluster-Verfahren und Datenbank-Screening
Methoden in Cavbase

Im Zyklus der rationellen Arzneimittelentwicklung werden Affinität und
Selektivität von potentiellen Wirkstoffen intensiv erforscht. Da diese beiden
Eigenschaften keine lineare Abhängigkeit zueinander aufweisen, führt hö-
here Affinität nicht gezwungenermaßen auch zu einer höheren Selektivität.
Diese Informationen über potentielle Bindung an unerwünschte Zielproteine
(Off-Targets) sind essenziell für eine erfolgreiche Arzneistoffentwicklung.

Computer-basierte Verfahren spielen eine immer größere Rolle für die
Analyse und Vorhersage von Selektivitätsprofilen. Da die meisten erfolgreich
eingesetzten niedermolekularen Arzneistoffe in Vertiefungen auf Protein-
oberflächen binden, spielen physiko-chemische Eigenschaften von Bindeta-
schen eine zentrale Rolle in der Erkennung und damit auch der Bindung von
Liganden. Cavbase ist eine Methode, die es ermöglicht Bindetaschen anhand
der physiko-chemischen Eigenschaften dort exponierter Aminosäuren zu be-
schreiben und unabhängig von ihrer Proteinsequenz und Faltungsgeometrie
zu vergleichen. Die Bindetaschen-basierte Klassifizierung von Proteinen ist
ein effektiver Ansatz, um relevante Informationen für Selektivitätsanalysen
zu extrahieren, die durch Anwendung von Clustermethoden erreicht wer-
den kann. In der vorliegenden Arbeit wurde ein neuartiger Arbeitsablauf
zur Untersuchung von wichtigen Parametern einer Clusterung entwickelt.
Für einen Datensatz von Proteinen wird eine Ähnlichkeitsmatrix berech-
net und anschließend dem entwickelten Arbeitsablauf übergeben. Dieser
Ansatz wurde erfolgreich an zwei unterschiedlichen und anspruchsvollen
Datensätzen getestet. Die vorhergesagte Anzahl der Cluster, die am besten

xxi
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geeignete Clustermethode und die anschließende Clusterstruktur waren in
Übereinstimmung mit den Referenzklassifikation der Proteine. Im Falle der
Protease-Proteinfamilie führte die Bindetaschen-basierte Klassifizierung zur
einer signifikanten Gruppierung von Proteineinträgen, die unabhängig von
Sequenzinformation entstanden. Damit konnte auf struktureller Ebene die
Kreuzreaktivität zwischen dem Protein Calpain-1 und Cysteincathepsinen
detektiert werden, die bis jetzt nur auf Basis von Liganddaten beschrieben
wurde. Im weiteren Verlauf wurden elf unterschiedliche Serinproteasen
untersucht, indem die Topologie der Liganden, Bindetaschen- und Sequenz-
informationen miteinander verglichen wurden. Die entstandenen Cluster
zeigen einen Korrelationstrend zwischen der Ähnlichkeit im Liganden- und
Bindetaschenraum. Diese Ergebnisse deuten darauf hin, dass Bindeta-
schenklassifizierungen wichtige Vorhersagen in Bezug auf unerwünschte
Zielstrukturen geben können, die in Optimierungszyklen einer Leitstruktur
berücksichtigt werden sollten.

Eine automatisierte Zerlegung von Bindetaschen in Subtaschen auf Basis
von gebundenen Liganden wurde etabliert. Drei Fallbeispiele von Bin-
detaschen nicht verwandter Proteine, die jedoch den gleichen Liganden
binden, wurden in einem Screening gegen eine Datenbank von etwa 275.000
Bindetaschen getestet. Die Subtaschen-basierte Methode führte dazu, dass
die gesuchten Proteine auf höheren Rängen anzutreffen waren. Für die
Subtaschen-basierte Suche der Cyclooxygenase-2 wurde das Celecoxib
Analogon SC-558 verwendet. Das Ergebnis zeigt eine präzisere Ähnlich-
keitsbewertung zwischen der Cyclooxygenase-2 und der Carboanhydrase-II
sowie der 3-Phosphoinositid-abhägigen Proteinkinase 1. Interessanterweise
wurden weitere mögliche Bindungspartner von Celecoxib vorgeschlagen.
Diese Hypothese wird in Zukunft weiter untersucht.

Teil II: Virtuelles Screening nach neuen Molekülen mit antima-
laria und antibakterieller Wirkung
Eine steigende Anzahl von Resistenzen auf derzeitig angewandte an-

tiparasitäre und antibakterielle Arzneistoffe erfordert die Entwicklung

xxii



neuartiger Antiinfektiva. Ein potentieller Wirkstoffkandidat sollte einen
möglichst unterschiedlichen Wirkungsmechanismus aufweisen als die bereits
in der Therapie verwendeten Arzneistoffe, für die vielseitige Resistenzen
beschrieben wurden. Viele Bemühungen in der Forschung sind bestrebt,
Stoffwechselwege aufzufinden, die mögliche Zielstrukturen für die Inhibi-
torentwicklung beinhalten.

Für den Parasiten Plasmodium falciparum, den Erreger der Malaria, wur-
de das Schlüsselenzym der Fettsäuresynthese Typ-2, Enoyl ACP Reduktase
(ENR), als potentielle Zielstruktur vorgeschlagen. In einem virtuellen Scree-
ning einer hauseigenen virtuellen Datenbank von fragmentartigen Klein-
molekülen konnten acht vielversprechende Strukturen ausfindig gemacht
werden, die von unserem Projektpartner synthetisiert und anschließend
auf ihre biologische Wirkung getestet wurden. Ein Salicylsäureamidderivat
zeigte in einem zellulären Assay inhibitorische Wirkung im erythrozytären
Stadium der Plasmodium Parasiten. Diese Verbindung wurde in weiteren
Schritten optimiert, in dem Struktur-Aktivitäts-Beziehungen und kombi-
natorisches Docking für Salicylamide analysiert wurden. Aus dieser Studie
konnten zwei potente Verbindungen hervorgehen, die eine niedrige Zytoto-
xizität aufweisen und in einstellig mikromolarer Konzentration sowohl im
erythrozytären als auch im prä-erythrozytären Stadium ihre hemmende
Wirkung entfalten. Die Wirkung im prä-erythrozytären Stadium zeigte
sich der Wirkung von Primaquin überlegen.
Die Biosynthese der Tetrahydrofolsäure ist ein essenzieller Stoffwech-

selweg für fast alle Organismen. Das Enzym Pyruvoyltetrahydropterin
Synthase im Plasmodium falciparum (PfPTPS) übernimmt in diesem
Stoffwechselweg die Katalyse einer Reaktion, die gewöhnlich von Dihydro-
neopterin Aldolase katalysiert wird, das jedoch im Plasmodium Genom
fehlt. Die Einbettung des Enzyms PfPTPS in den Folatstoffwechsel qua-
lifiziert es als eine potentielle Zielstruktur zur Entwicklung neuartiger
Antifolate. Eine spezielle auf dieses Zielprotein hin aufgearbeitete Biblio-
thek weist Kleinmoleküle mit zink-bindenden funktionellen Gruppen auf.
Die Durchführung eines virtuellen Screenings führte zur Auswahl von neun

xxiii
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Molekülen für die Synthese, die anschließend auf ihre biologische Wirkung
evaluiert werden sollen.
Eine Vielzahl pathogener Mikroorganismen sind auf die Synthese der

Isoprenoide aus dem Methylerithritolphosphatweg (MEP-Weg) angewiesen,
daher eignet sich die Inhibition dieses Stoffwechselweges als eine sinnvolle
Strategie für die Wirkstoffentwicklung, wie es für den IspC Inhibitor Fos-
midomycin gezeigt wurde. IspD ist eines der Enzyme des MEP-Weges und
wurde als Modellprotein zur Untersuchung der bestimmenden Faktoren für
eine strukturbasierte Wirkstoffentwickung ausgewählt. Ein Datensatz von
leitstrukturartigen Kleinmolekülen aus der ZINC Datenbank wurde für
ein virtuelles Screening benutzt, das zur Auswahl von sieben Kandidaten
führte. Sechs Verbindungen konnten kommerziell erworben und getestet
werden. Für drei Verbindungen konnte eine Proteinbindung gemessen wer-
den. Diese Ergebnisse liefern einen erfolgversprechenden Ausgangspunkt
für weitere Experimente, wie Bestimmung der Bindungskonstanten und
Proteinkokristallisation.
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Summary

Part I: Optimization of Clustering and Database Screening Pro-
cedures for Cavbase
In rational drug design approaches two major properties of a drug can-

didate are exploited during the optimization cycles: affinity and selectivity.
Since both properties do not correlate in a linear manner, i.e. high affinity
does not necessarily lead to high selectivity, knowledge about the potential
off-targets is essential for drug development.
Computational approaches play an increasingly important role for the

analysis and prediction of selectivity profiles. As most of the successfully
administered small molecule drugs bind in depressions on the surface of
proteins, physicochemical properties of the pocket-exposed aminoacids play
a central role in ligand recognition during the binding event. Cavbase is
a methodology to describe binding sites in terms of the exposed physic-
ochemical properties and to compare them independent of the sequence
and fold homology. Classification of proteins by means of their binding
site properties is a promising approach to achieve relevant information
for selectivity modeling. For this purpose, a novel workflow has been
developed to explore the important parameters of a clustering procedure,
which will allow an accurate classification of proteins. For a given data set
a similarity matrix can be generated and subsequently utilized as input
for a clustering procedure. It has been successfully applied on two diverse
and challenging data sets. The predicted number of clusters, suggested
by the clustering methods, and the subsequent clustering of proteins are
in agreement with considered expert classifications. In case of the human
proteases data set, the binding site-based classification leads to significant
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groups of proteins independent from sequence information. As a conse-
quence, the cross-reactivity between calpain-1 and cysteine cathepsins on
the structural level could be detected, which so far has only been described
for the ligand data. In a benchmark study using ligand topology, binding
site, and sequence information of eleven serine proteases the emerged clus-
ters indicate a pronounced correlation between the cavity and ligand data.
These results emphasize the importance of the binding site information
which should be considered for ligand design during lead optimization
cycles.

An automated procedure for binding site decomposition was established
taking the information of the bound ligand into consideration. In the sub-
sequent screening of three test cases against a database of about 275,000
pocket entries a more significant ranking of remotely related proteins was
achieved. Using the subsites of cyclooxygenase-2 defined by fragments
of the celecoxib analog SC-558 for screening, resulted in an improved
ranking for known targets of celecoxib, such as carbonic anhydrase-II and
3-phosphoinositide-dependent protein kinase 1. Additional binding part-
ners for celecoxib have been suggested and these predictions are planned
to be evaluated in future.

Part II: Virtual Screening for Novel Antimalarial and Antibac-
terial Molecules
The increasing number of resistances to currently applied antimalarial

and antibacterial drugs give rise to an urgent need for the development of
new and affordable antiinfectives. A promising candidate should exhibit
a mode of action differing from the available drugs for which pronounced
resistance has been described. Many efforts are invested in the investigation
of parasitic metabolism in order to find pathways that would provide
putative targets for inhibitor design.

For the Plasmodium parasites, the pathogen of malaria, the key enzyme
of the type II fatty acid biosynthesis, enoyl ACP reductase (ENR), has been
suggested as a target. We performed a virtual screening for novel scaffolds
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of Plasmodium falciparum ENR using an in-house fragment-like virtual
library and selected eight promising hits for synthesis and subsequent
biological evaluation as multistage inhibitors by our project partners. A
salicylamide derivative inhibited erythrocytic parasite growth in a cell-
based assay and was considered for further optimization. A comprehensive
analysis of the structure-activity relationships and the docking results
of a combinatorial library of salicylamides resulted in two highly active
structures. Both compounds comprise low cell-toxicity and display at one-
digit micromolar concentrations potent inhibition of the parasitic growth
in erythrocytic stage as well as superior inhibition profile compared to the
gold-standard primaquine in pre-erythrocytic stages.
Biosynthesis of tetrahydrofolate is an essential pathway in almost all

living organisms. Pyruvoyltetrahydropterin synthase of Plasmodiun falci-
parum (PfPTPS) has been found to fill the gap in the folate biosynthetic
pathway in Plasmodium parasites, since dihydroneopterin aldolase could
not be identified in the genome. Integration of PfPTPS in the folate
metabolism qualifies the protein for inhibitor design, as antifolates are well-
established and effective agents for prophylaxis and treatment of malaria.
A focused library of compounds comprising zinc binding groups has been
created and docked into the binding site of the protein. Nine virtual
screening hits have been selected for synthesis and will be subjected further
biological testing by our project partners.

Many pathogenic organisms rely on the synthesis of isoprenoids via the
non-mevalonate pathway (DXP/MEP). Inhibition of this pathway is a
promising strategy for the development of potent antiinfective agents, as
it has been shown for the IspC inhibitor fosmidomycin. IspD catalyzes
the third reaction step in the DXP/MEP pathway and has been selected
for our study as model protein to elucidate the structural determinants
for structure-based drug design. Virtual screening of the lead-like sub-
set retrieved from the ZINC database resulted in the selection of seven
promising hits. Six molecules were purchased and subsequently tested in
an experimental enzyme binding assay. Two compounds showed weak and
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one compound moderate binding affinity. These results deliver an adequate
starting point for further experiment, such as measurement of the binding
constants and co-crystallization trials.
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1
Chapter 1.

Exploring Functional
Relationships of Proteases
via Binding Pockets

1.1. Introduction

Greatly desired properties of a drug are either high affinity and selectivity
toward one particular target or dependent on the mode-of-action also in
special cases a promiscuous binding to a set of multiple targets might
be important (Kawasaki and Freire, 2011). The latter situation can be
given e.g. for kinases where a set of proteins of the kinome has to be
downregulated in a disease situation. During lead optimization it is difficult
to assign clear-cut criteria to the optimization strategy. In particular the
information about the target and the target family have to be analyzed and
considered in the optimization. General rules to follow in structure-based
selectivity optimization such as shape and electrostatic complementary,
flexibility, role of water, and allosteric or noncompetetive binding have
been suggested (Huggins et al., 2012). Methods that make use of pocket
information for selectivity analysis and prediction have gained an increasing
importance over last years, yet their potential has to be utilized for routine
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1. Exploring Functional Relationships of Proteases via Binding Pockets

applications (Pérot et al., 2010).
Various studies have used structural pocket similarity considerations

leading to an accurate functional classification of kinases (Kuhn et al.,
2007; Kinnings and Jackson, 2009; Spitzer et al., 2011). They found that
on low sequence identity level binding sites can be highly conserved, on
the contrary, kinases related by high sequence similarity can still expose
significant differences in their pockets. Thereby experimentally observed
cross-reactivities of known kinase inhibitors could be rationalized. Apart
from cross-reactivity considerations regarding members of the same proteins
family the prediction of potent binding to structurally and sequentially
remote proteins is of utmost challenge. Therefore, the binding pocket of a
given query protein can be screened against a database of pockets classified
in the same way. A different picture emerges when a query binding site is
screened against a pocket database. Local binding site similarities of remote
proteins contributing to ligand binding can be detected (Weber et al., 2004;
Milletti and Vulpetti, 2010). Bearing in mind the work of Mestres et al.
(Mestres et al., 2009) that a drug interacts on average with six targets in a
cell, both approaches, either the functional classification of protein families
and the broad database screening for similarities in sequentially remote
proteins provide indispensable information to be considered for the ligand
selectivity profile.
A wide range of different approaches for pocket detection and compar-

ison have been developed up to now, which have been comprehensively
reviewed elsewhere (Pérot et al., 2010). Since, our present study is based
on Cavbase, a brief introduction of this methodology follows. Cavbase is
able to detect, describe and compare protein binding pockets independent
of their sequence and fold geometry (Schmitt et al., 2002). The pocket
detection is performed using the Ligsite algorithm (Hendlich, 1997), which
exploits geometric data about the protein structure only, and during this
step any information about a possibly bound ligand is neglected. After
pocket detection, pseudocenters are assigned to the cavity-flanking residues
according to predefined rules (Schmitt et al., 2002; Kuhn et al., 2006).
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The pseudocenters encode physicochemical properties that are exposed
on the surface of the detected pocket. Currently, seven different types of
pseudocenters are implemented in Cavbase, covering the following proper-
ties: metal, H-bond donor, acceptor, mixed donor-acceptor, hydrophobic,
π (ability to form pi-pi interactions) and aromatic. The pocket compari-
son is computed by a clique-detection algorithm which relies only on the
information stored by means of the pseudocenters. After the maximum
common subgraph (MCS) is found, cavities are superimposed and a scoring
function evaluates the overlap of the surfaces of the aligned pockets.
For a given data set of protein binding pockets, an all-against-all com-

parison can be performed, and based on the resulting similarity matrix a
clustering procedure can be applied. Functional classifications based on
Cavbase similarity scores have been presented for α-carbonic anhydrases
(α-CAs) and kinases (Kuhn et al., 2006, 2007). In case of the α-CAs
(Kuhn et al., 2006) a separation on subfamily level was achieved and
conformational or mutational differences were easily detectable. Kinases
could be clustered on superfamily level, different activation states in the
subfamilies could be distinguished. In both studies the Cluto tool-kit (Zhao
and Karypis, 2005) was applied for the clustering procedure. However,
several limitations can occur when using Cluto. First, cavities that share
only a marginal similarity are included and might end-up in the same
cluster, which will bias the clustering. Second, Cluto provides a limited
number of methods to evaluate the obtained clustering structure in order to
choose the most suitable clustering strategy for the given problem. Third,
Cluto requires as a prerequisite a predefined number of expected clusters,
an assignment which usually appears quite arbitrary as the number of
expected clusters is a priori not known.
In the present study we introduce a new clustering workflow which

was designed and validated for clustering of data sets in terms of the
Cavbase similarity metric, but the implemented routines can be applied to
any similarity or distance matrix. The proposed procedure estimates the
number of expected clusters, filters cavities using a user-defined threshold
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and compares different clustering strategies. In case, the user is unfamiliar
with the clustering methods, application of cluster validation statistics can
assist detecting the most appropriate clustering algorithm.
Structural data of binding sites can provide relevant information with

respect to classification and prediction of ligand promiscuity and selectivity.
Based on the developed clustering procedure we perform a comparative
analysis of the cavity space of proteases. Evaluating the architecture in
terms of similarity of the cavity, sequence, and ligand spaces for a subset of
human serine proteases provides some important insights into the question
whether a ligand-based classification correlates better with a cavity- or
a sequence-based classification, as this issue is of utmost importance for
the prediction of cross-reactivity among targets in computer-assisted drug
design.

6



1.1. Introduction

Cavbase

All-against-all 

similarity matrix

Normalization

Threshold filtering

Distance calculation

Estimating number of 

clusters

Clustering method 

selection

Cluster evaluation

Visualization & 

result interpretation

(a)

ChEMBL

Ligand filter 

- Ki < 1µM

- MW < 600 Da

- Not chiral

- Max. 100 ligands

per protein

Similarity matrix

-Topology fingerprint

-Tanimoto similarity

L1 L2 L3 L4

L1

L2

L3

L4

L1‘ L2‘ L3‘

L1

L2

L3

L4

L1 L2 L3 L4 

L1‘

L2‘

L3‘

L1‘ L2‘ L3‘

L1‘

L2‘

L3‘

0.7 0.34

0.34 0.7

Delete trivial matches 

& compute mean 

similarity

(b)

Figure 1.1.: (a) Clustering workflow exemplified for Cavbase. (b) Com-
putation of the similarity matrix for serine proteases using the inhibition
data accessible on the ChEMBL database.
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1.2. Materials and methods

1.2.1. Data sets selection and benchmark

The first data set is used for the validation of the clustering workflow and
contains 502 cavities from 16 different proteins covering all six principal
classes of enzymes according to the Enzyme Commission (Bairoch, 2000).
This data set will be referred to in the following as EC data set (Table 1.1).
It is worth mentioning that the data is challenging for classification issues
due to two aspects. First, the number of individual entries accounted in
the classes deviates strongly, ranging from 5 up to 70. Second, four classes
are represented by proteins originating from multiple organisms and one
group consists of four different enzyme isoforms, therefore common binding
site motifs must be detected independent from any given sequence identity.
The second data set comprises human proteases only except bovine

trypsin. These data are termed the proteases data set (Table 1.2, Table 1.3).
In order to retrieve a reliable and methodologically orthogonal reference
classification the Merops database (Rawlings et al., 2010), release 8.4, has
been consulted. Merops is a manually curated database that classifies
proteases in a hierarchical manner and assigns proteins to families and
clans. A Merops family contains proteins for which relationships to a
representative protease or another family members can be shown in terms
of sequence comparison using a subset of residues only that are responsible
for the catalyzed reaction. If possible, families are grouped into clans.
A clan contains proteins for which relationships can be established and
considers the three-dimensional arrangement of catalytic and non-catalytic
residues. Hence, Merops clans include proteins for which relationships
cannot be established merely based on sequence comparison, Cavbase
should be able to detect sequence-independent relationships, which would
then be reflected by the emerged clustering structure. The proteases data
set is also used for the workflow validation, but in addition we investigate
the differences between the computed clustering and the original Merops
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classification. The proteases data set considers 90 individual proteases
from 12 Merops clans.

The last part of the present study is focused on the serine proteases, a sub-
set of proteases. We generated and compared ligand-, cavity-, and sequence-
based clustering. For this purpose we selected 11 proteins for which suf-
ficient public data on ligand inhibition are available (Table 1.4). Ligand
data for the regarded proteins have been retrieved from the ChEMBL
database (ChEMBL Accessed July 2011). Only ligands have been included
in the data set that fulfilled following criteria: molecular weight should
be below 600 Da, inhibition constant Ki better than 1µM, achiral, and a
maximum of 100 compounds per protein were considered.

1.2.2. Data sets

Table 1.1.: 16 EC classes are represented in the EC data set composed
by 502 binding sites.

EC number Name Remarks (e.g. organism) Number
1.1.1.21 Aldose/xylose reductase Human, pig, C. tenius1 62
1.1.1.42 Isocitrate dehydrogenase E.coli 21
1.1.1.62 Estradiol 17β-dehydrogenase Human 16
1.14.13.2 Hydroxybenzoate-monooxygenase P. fluorescens 30
2.7.1.37 Cyclin-dependent kinase 2 Human 46
2.7.1.112 C-Src tyrosine kinase Human, mouse1 20
2.7.4.9 Thymidilate kinase Human, M.tuberculosis, S.cerevisiase1 35
3.4.21.5 Thrombin Human 41
3.4.23.16 HIV-1 protease HIV 48
3.4.24.86 TNF-α converting enzyme Human 16
4.1.1.23 COMP-decarboxylase Human, S. cerevisiae1 36
4.2.1.1 α-Carbonic anhydrase I,II,III,IV2 Human 70
5.3.1.5 Xylose isomerase A. missouriensis 13
5.4.2.1 Phosphoglycerate mutase S. cerevisiae 5
6.3.2.1 Pantoate-β-alanine ligase M.tuberculosis 27
6.3.4.4 Adenylosuccinate synthase E. coli 16
1. Four proteins are regarded that originate from more than one organism.
2. The α-carbonic anhydrase group comprises four different human isoforms.
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Table 1.2.: Proteases data set. Aspartate, cysteine, and metallo proteases.

Catalytic mechanism Merops clan Protease pdb id

AP

AA Pepsin A 1qrp
AA Memapsin-2 2vij
AA Renin 2g24
AA Cathepsin D 1lya
AA Cathepsin E 1tzsa

CS

CA Cathepsin B 2ipp
CA Cathepsin C 2djg
CA Cathepsin F 1m6d
CA Cathepsin K 1mem
CA Cathepsin L 1mhw
CA Cathepsin S 1nqc
CA Cathepsin V 1fh0
CA Bleomycin hydrolase 1cb5
CA Calpain-1 1zcm
CA Calpain-2 1kfu
CA Calpain-9 1ziv
CA Ubitiquin carboxy-terminal hydrolase L1 2etl
CA TNFα-induced protein-3 3dkb
CA Otubain-2 1tff
CD Caspase-1 1rwn
CD Caspase-2 1pyo
CD Caspase-3 2dko
CD Caspase-7 2qlb
CD Caspase-8 2c2z

MP

MA Angiotensin-converting enzyme peptidase unit-2 1o8a
MA Angiotensin-converting enzyme-2 1r42
MA Matrix metallo protease-1 2tcl
MA Matrix metallo protease-2 1qib
MA Matrix metallo protease-3 1ciz
MA Matrix metallo protease-7 1mmq
MA Matrix metallo protease-8 1zs0
MA Matrix metallo protease-9 1gkc
MA Matrix metallo protease-10 1q3a
MA Matrix metallo protease-12 3f19
MA Matrix metallo protease-13 1you
MA Matrix metallo protease-16 1rm8
MA TNFα-converting enzyme 3b92
MA ADAMTS1 protease 2v4b
MA ADAMTS4 protease 2rjp
MA ADAMTS5 protease 3b8z
MA Neprilysin 1r1h
MA Endothelin-converting enzyme-1 3dwb
MC Carboxypeptidase A2 1aye
MC Carboxypeptidase A4 2pcu
MC Carboxypeptidase M 1uwy
MC Carboxypeptidase U 3d68
MS Membrane dipeptidase 1itu
MG Methionyl aminopeptidase-2 1b6a
MG Xaa-Pro dipeptidase 2okn
MP AMSH-like protease 2znr
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Table 1.3.: Proteases data set. Serine and threonine proteases.

Catalytic mechanism Merops clan Protease pdb id

SP

PA Trypsin (bovine) 2zft
PA Trypsin IVa 1h4w
PA Granzyme A 1orf
PA Granzyme B 1iau
PA α-Tryptase 2f9n
PA β-Tryptase 2bm2
PA Kallikrein 1 1spj
PA Kallikrein 3 2zch
PA Kallikrein 5 2psx
PA Kallikrein 6 1lo6
PA Kallikrein 7 2qxj
PA DECS1 2oq5
PA Cathepsin G 1cgh
PA Chymase 1klt
PA Prostasin 3e0p
PA Complement factor B 2ok5
PA Complement factor D 1bio
PA Complement component C1r 1md8
PA Complement component C1s 1elv
PA Complement component C2a 2odp
PA Plasma kallikrein 2any
PA Coagulation factor VIIa 1kli
PA Coagulation factor Xa 2jkh
PA Coagulation factor XIa 1zsk
PA Thrombin 1vzq
PA Activated Protein C 3f6u
PA Hepsin 1o5e
PA Mannan-binding lectin-associated serine peptidase 2 1q3x
PA u-plasminogen activator 1gj7
PA t-plasminogen activator 1a5h
PA Matriptase 1eax
SC dipeptidyl-peptidase-4 2g63
SC Fibroblast activation protein α-subunit 1z68
SC Cholinesterase 1p0i
SC Bile salt dependent lipase 1f6w
SC Serine carboxypeptidase A 1ivy
SC Valacylovir hydrolase 2ocg
SC Phosphatase methylesterase-1 3c5v
SB Tripeptidyl-peptidase I 3edy

TP PB Taspase-1 2a8j
’Catalytic mechanism’ column: SP = serine protease, TP = threonine protease
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Table 1.4.: Ligands of 11 serine proteases retrieved from the ChEMBL
database.

Serine protease Number of retrieved ligands
Chymase 52
Factor VIIa 100
Factor Xa 100
Kallikrein 1 23
Matriptase 19
Plasma kallikrein 27
Thrombin 100
Tissue-type plasminogen activator 36
Trypsin (bovine) 62
β2-Tryptase 72
Urokinase-type plasminogen activator 100
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1.2.3. Similarity matrices

The pocket similarity matrix has been generated by Cavbase. The com-
parison of sequences was carried out by the fasta35 program (Pearson and
Lipman, 1988). The sequence identity values were examined the same
way as the Cavbase similarity scores. A sequence identity matrix was
constructed and used as input for the clustering procedure.
The computation of the ligand-based similarity matrix for serine pro-

teases has been performed as follows. 691 ligands were mutually compared
using the RDKit topology fingerprint (Greg Landrum, RDKit) and a Tani-
moto similarity measure (Greg Landrum, RDKit). Since it is known which
ligand is associated with which target, the computed similarity matrix can
be divided in 121 groups (11x11 proteins). For each group the average
similarity is calculated disregarding the trivial matches of identical ligands.
This step leads to a more compact matrix that is ready to compare with
the other matrices (Figure 1.1b).

1.2.4. Clustering workflow

The basic process of a cluster analysis implies steps like feature selection or
extraction, clustering algorithm design or selection, cluster validation, and
result interpretation (Xu and Wunsch, 2009). These essential steps have
been adopted to create a clustering workflow, which has been validated
for the Cavbase similarity metric (Figure 1.1a). Each step is described in
detail in the following sections.

1.2.4.1. Distance calculation

The generated Cavbase similarity matrix is symmetrized and normalized.
Following the strategy of normalization implicates that all variables are
given an equal weight and they can be converted to distances. A vector
of normalization factors is determined by FN = 1√

SD
, where SD are the

similarity values from the main diagonal. Rows and columns are subse-
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quently multiplied by this vector. The resulting normalized similarity
matrix contains 1 on the main diagonal and other values are between 0 and
1. As clustering algorithms depend on the input given in the distance ma-
trix, different clusterings will emerge applying different distance measures.
In order to cover the search space as efficient as possible, four different
distance measures (D1 −D4) were computed from the normalized input
scores SN .

D1 = 1− SN

D2 = 1
SN
− 1

D3 = (SN − 1)2

D4 =
√

1− SN

1.2.4.2. Threshold filtering

In general, variables with no information content in a data set will make the
clustering less clear-cut, therefore, they should be assigned a zero weight,
which virtually discards them from the analysis (Kaufman and Rousseeuw,
1990). In order to avoid any unreasonable bias in our clustering we check
for data points that fall below a predefined threshold. E.g. such a data
point could correspond to a cavity that shares marginal similarity to any
other members of the data set except itself. In the following, a threshold
of 20% was set a minimal mutual similarity for all data sets.

1.2.4.3. Estimating number of clusters

A crucial parameter in a clustering procedure is the number of expected
clusters, therefore most algorithms require a predefined value given by
the user during data set compilation. In case, the number of clusters is
not predefined or the data set is not appropriately evaluated, silhouettes
can be applied. We have selected two rather complementary approaches:
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Average Silhouettes (AS) (Rousseeuw, 1986) and Median Split Silhouettes
(MSS) (Pollard and van der Laan, 2002) (section 1.5). AS is a reliable
global measure of the relevance of clustering results, whereas MSS analyzes
the local structure within a cluster by calculating the average homogeneity
of the clusters in the clustering result. Both methods were implemented
for the partitioning around medoids clustering (Kaufman and Rousseeuw,
1990). We will stress the predictive power of these two methods when
applied to Cavbase similarity matrices.

1.2.4.4. Clustering algorithms and cluster validity assessment

There is a wide range of clustering algorithms, which makes selection of the
most appropriate algorithm difficult. We considered the most commonly
used hierarchical agglomerative methods (Ward’s method, single, complete,
group average, median, and centroid linkage), the hierarchical divisive
analysis and the partitioning around medoids method (Kaufman and
Rousseeuw, 1990). For a given k different clustering methods can lead to
different results. Therefore, internal and external criteria can be applied
for cluster validity assessment. Detailed description of these approaches
can be found elsewhere (Halkidi et al., 2001). In general, external criteria
evaluate the results of a clustering algorithm using a predefined structure
and internal criteria validate the results in terms of quantities using the
proximity matrix itself. We made use of the Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985) as an external measure to compare the clustering
results to an independent reference classification or for the comparison
between each other (section 1.5). Furthermore, we tested the ability of
nine internal cluster validity criteria (section 1.5) to discriminate between
meaningful and less significant clustering structures with respect to the
reference classifications.
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1.3. Results and discussion

1.3.1. Clustering workflow validation
1.3.1.1. Threshold filter

The application of a threshold of 20% for the normalized similarity score
to discard data points, leads only in case of the proteases data set to
an elimination of 16 cavities, which will be discussed in detail below.
Subsequently the resulting proteases set contains 74 entries.

1.3.1.2. Number of clusters

In our approach, the estimation of number of clusters depends on one
user-specified parameter, namely the maximum number of clusters. This
means, the program subsequently computes AS and MSS for the possible
number of clusters, from 2 to kmax. In case of the EC data set AS is
able to find the number of 16 Enzyme Commission (EC) classes taking
D2 as distance. Interestingly, MSS performs better on the proteases data
and suggest for three distance measures 7 clusters, which is the number
of clans for the data points remaining after the filtering step (Table 1.5).
For further analysis the number of clusters was set to 16 for the EC data
set and for the proteases to 7, which is in accordance with the reference
classifications.
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Table 1.5.: Estimated number of clusters for the EC and proteases data
set with kmax=25

Data Set Distance Average Silhouette Median Split Silhouette

EC

D1 17 20
D2 16 21
D3 22 18
D4 14 23

Proteases

D1 8 7
D2 8 24
D3 10 7
D4 9 7

1.3.1.3. Cluster validity

As mentioned above, we were interested whether for a given k any cluster
validity criterium is able to discriminate between significant and less
significant clustering structures. For this purpose the internal cluster
validity criteria were checked for correlation with the ARI. An ARI of 1
means that the generated clustering matches a predefined splitting. The
lower the ARI the less the agreement with the external classification. A
correlation could be found for the entropy of the clustering (Meilă, 2007),
which was derived from the information theory (Table 1.6). The correlation
plot in Figure 1.2 shows that clustering structures with high ARI values
have also a high entropy values. This finding can guide a user to consider
only clustering methods best-ranked according to the entropy measure
instead of considering all possible clusterings, and investigate them in more
detail.
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Table 1.6.: Pearson correlation coefficients between cluster statistics and
the Adjusted Rand Index.
AB: Average Distance Between Clusters, AW: Average Distance Within
Clusters, WB: Ratio of Average Distance Within and Between Clusters, NB:
Number of Distances Between Clusters, NW: Number of Distances Within
Clusters, DI: Dunn Index, E: Entropy, CH: Calinski and Harabasz index,
AS: Average Silhouette. For details see section 1.5.

cluster validity method Pearson correlation coefficient
EC data set k = 16 Proteases data set k = 7

AB 0.23 -0.11
AW -0.28 -0.46
WB -0.72 -0.38
NB 0.93 0.99
NW -0.93 -0.99
DI 0.19 -0.02
E 0.96 0.99

CH 0.26 0.31
AS 0.77 0.60

(a) EC data set (b) Proteases data set

Figure 1.2.: Pearson correlation of the clustering entropy to the ARI.
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1.3.2. Detailed analysis of the proteases clustering
Cavbase is able to cluster successfully the proteases data on the Merops
clan level, whereas sequence approaches fail rather miserably (Figure 1.3).
This result demonstrates the advantage of a binding site-based classification
particularly of remote or unrelated proteins. An all-against-all sequence
comparison of proteins in such a data set reveals only a low signal-to-
noise ratio, and the obtained clustering disagrees with available knowledge.
Although binding site-based clustering of proteases can be matched to the
Merops clan classification, there are differences. Due to the initial threshold
filtering, 16 cavities are removed from the data set (Table 1.7). In order to
illustrate the impact of this step, besides clustering bias prevention, the
relationships of the discarded proteins to one another within their group
and the relationships to other clustered proteins will be discussed.

Table 1.7.: Protease entries that comprise a similarity values below 0.2
(or 20%) with any other members of the data set are discarded.
’Catalytic mechanism’ column: CP = cysteine protease, MP = metallo
protease, SP = serine protease, TP = threonine protease

Catalytic mechanism Merops clan Protein name
CP CA Human bleomycin hydrolase
CP CA Calpain-2
CP CA Calpain-9
CP CA Ubiquitin carboxy-terminal hydrolase L1
CP CA TNFα-induced protein-3
CP CA Otubain-2
MP MC Carboxypeptidase U
MP MS Membrane dipeptidase
MP MG Methionyl aminopeptidase-2
MP MG Xaa-Pro dipeptidase
MP MP AMSH-like protease
SP SC Serine carboxypeptidase A
SP SC Valacylovir hydrolase
SP SC Protein phosphatase methylesterase-1
SP SB Tripeptidyl-peptidase-1
TP PB Taspase-1
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Figure 1.3.: Cavbase and sequence clustering of proteases. On the x-axis
all implemented clustering methods and used distances are shown. The
y-axis represents the ARI. As the Merops clan classification was defined
as reference, a clustering that matches the reference classification, has
an ARI of 1, which is depicted as a solid line intersecting the y-axis.
ARIs of the Cavbase approach are shown in blue and the results from
the sequence analysis are shown in red. Cavbase is able to reproduce the
Merops clan classification in case of complete-linkage for all calculated
distances, in case of Ward’s method and divisive analysis for the D2
distance measure. In contrast, sequence analysis of the proteases data
set delivers rather poor performance.
Used clustering methods: ward = Ward’s method, single = single linkage,
complete = complete linkage, average = group average, median =
median linkage, centroid = centroid linkage, diana = hierarchical divisive
analysis, pam = partitioning around medoids.

20



1.3. Results and discussion

(a) UCH-L1 vs. TNFα-IP3 (b) UCH-L1 vs. otubain-2

Figure 1.4.: Overlapping active site surface regions of ubiquitin carboxy-
terminal hydrolase L1 (UCH-L1) is superimposed onto the cavities of (a)
tumor necrosis factor-α-induced protein-3 (TNFα-IP3) and (b) otubain-
2.

Four proteins that represent an entire Merops clan on themselves were
discarded from the data set. These proteins are: membrane-bound dipep-
tidase, AMSH-like peptidase, tripeptidyl-peptidase-1, and taspase-1.
Three other proteins which are cysteine proteases from the same clan

belong to the group of deubiquitinating enzymes (DUBs). DUBs have
different topologies and mechanisms of substrate recognition, but the spa-
tial arrangement of the catalytic triad and the oxyanion hole are highly
conserved (Nanao et al., 2004). The resulting selectivity and uniqueness
of DUBs’ binding sites is reflected by the filtering step of the Cavbase
similarity matrix. UCH-L1, TNFα-IP3, and otubain-2 are from the same
clan, but apparently the differences in their binding sites are significant.
In Figure 1.4 the mutually matched binding site surface patches of both
enzymes are superimposed and shown in a side-by-side view. The enzymes
share only the conserved catalytic core in common. Although the arrange-
ment of the proposed catalytically active histidine (His161) of UCH-L1
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is too remote to create a catalytically active His-Cys diad (Das et al.,
2006), Cavbase is able to match the conserved environment around the
catalytically active cysteines.

UCH-L1 enzyme is associated with Parkinson’s disease and lung cancer
(Das et al., 2006) and active-site inhibitors of this enzyme show antiprolif-
erative effects in the H1299 lung cancer cell line (Liu et al., 2003). Even
though the three DUBs are only sparsely populating the cysteine protease
family, the application of the filtering step before clustering the matrix
can provide valuable information about the uniqueness and singularity
of particular binding sites which can help to resolve the selectivity issues
of a specific target protein. A cavity screening of the UCH-L1 binding
site against the entire Cavbase containing about 275 000 cavity entries
revealed that most similar binding sites, apart from UCH-L1 itself, show a
similarity of only 20% or lower.
Interestingly, also proteins from the same Merops family and clan are

discarded applying the 20% threshold filter. This indicates high specificity
of these enzymes towards their substrates, owing to differently exposed
active site properties, which is not reflected in the sequence space. An
example is valacylovir hydrolase and protein phosphatase methylesterase-
1 which both fall into the same Merops family. Valacyclovir hydrolase
displays high specificity for cleavage of amino acid esters (Lai et al., 2008),
whereas the protein phosphatase methylesterase-1 binds selectively the
carboxy-terminal residues of the catalytic subunit of protein phosphatase-
2A (Xing et al., 2008).

The cysteine protease human bleomycin hydrolase (hBH) is also removed
in cavity space although it shares high sequence identity of about 50% to the
cathepsins B, K, and S. hBH is a representative of a self-compartmentalizing
protease. The flexibility of its C-terminus contributes to the active site and
controls the activity of the enzyme (O’Farrell et al., 1999). The C-terminus
near the catalytic cysteine is involved in substrate binding and forms a
specific cavity that barely shares any similarity with the regarded cysteine
cathepsins.
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1.3.2.1. Selectivity of calpain-1 inhibitors over cysteine cathepsins

Calpains are also cysteine proteases that participate in many calcium
regulated functions, e.g. cell proliferation, differentiation, and apoptosis.
Their activity depends on the presence of calcium ions. All considered
calpains are assigned to the same Merops family C2 and clan CA. In our
cavity cluster analysis calpain-2 and calpain-9 are removed from the data
set whereas calpain-1 is assigned to the cluster comprising the cysteine
cathepsins from the Merops C1 family. From this finding several conclusions
can be drawn. First, separation of individual calpains reflects the structural
flexibility and diversity of active sites in calpains (Davis et al., 2007).
Second, detecting calpain-1 in the same cluster with cysteine cathepsins
leads to the assumption that their binding site properties are similar, despite
the low sequence identity of calpain-1 with the other cathepsins, which
varies from 25 to 44%. It is interesting to see whether this assumption is
also reflected by independent ligand data published in literature. Indeed,
the majority of calpain-1 inhibitors lack selectivity over corresponding
cathepsins (Donkor, 2011). The overlapping binding site surfaces are
visualized for calpain-1 and three cysteine cathepsins V, B, S in Figure 1.5.
The Ligsite algorithm detects as geometrically most distinct subsites of
calpains S1, S2, S1’, S2’ which were used for the analysis. The S1 and
S1’ pockets of calpain-1 are highly similar to the corresponding subsites
of cathepsins, but the S2 and S2’ pockets differ in terms of their exposed
properties. This observation suggests for the design of putatively selective
ligands a stronger focus on specific interactions with the residues in the
S2/S2’ subpockets. Commonly used P2 residues to be considered in ligands
are valine and leucine, which provide affinity towards calpains, however do
not facilitate selectivity (Choe et al., 2006). For instance, Cuerrier et al.
reported that placement of groups capable of hydrogen-bond formation at
the P2 position improves ligand selectivity of calpain-1 over the cysteine
cathepsins (Cuerrier et al., 2007). Similar effects to achieve selectivity
by exchanging hydrophobic for hydrogen bonding groups have been also
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described for aspartyl proteases (Kawasaki and Freire, 2011).
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(a)

(b)

Figure 1.5.: Cross-reactivity between calpain-1 and cysteine cathepsins.
(a) Sequence independent similarity of binding site surfaces is detected.
Although calpain-2 and calpain-9 exhibit a high sequence identity to
calpain-1, the binding site of calpain-1 shares a higher similarity to the
cathepsins.
(b) Hence, calpain-1 is found in the same cluster with the cathepsins.
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1.3.3. Ligand, cavity, and sequence data: Cluster
analysis of serine proteases

Weskamp et al. have shown that the cavity space correlates well with
ligand binding data and fold space (Weskamp et al., 2009). A more
detailed analysis of Stegemann et al. concentrated on a data set of proteins
with mutual sequence identity below 25 % that bind cofactors as ligands
(Stegemann and Klebe, 2011). Comprehensive studies on kinases showed
significant correlation between similarity of binding sites and the respective
ligands they bind (Kinnings and Jackson, 2009; Spitzer et al., 2011). In
the present work, we were interested whether the previously observed
trends can be extended to serine proteases considering a broad range of
bioactive ligands. Therefore we faced the ligand similarity matrix with
those obtained from cavity and sequence space and performed a similar
clustering.

In order to extract information by comparable means from the different
matrices, k and the applied clustering method must be identical. The
determination of an optimal k was performed for the three spaces. Our
routine suggested for the ligand data a marked value of five and for
the sequence data the number of clusters was estimated to four and six,
respectively (Table 1.8). The values suggested for the cavity data are less
clear-cut, as k = 2 is too small to come up with a meaningful clustering and
k = 8 leads to a clustering comprising a large number of singletons. Hence,
selection of the most appropriate clustering was performed for each k on
sequence and ligand data using the above introduced entropy measure as
evaluation criterion (Figure 1.6). The results have been mutually compared
by the ARI. Sequence and cavity data reveal clusterings that deviate
significantly, as indicated by the ARI. However, the emerging clustering
based on cavity data correlates well with the clustering based on ligand
topology and the obtained similarity is significantly more pronounced than
on the corresponding sequence data level (Table 1.9).

26



1.3. Results and discussion

Table 1.8.: Serine proteases. Estimated number of clusters based on the
ligand similarity, Cavbase score, and sequence identity matrices of serine
proteases with kmax=11

Data set Distance Average Silhouette Median Split Silhouette
Ligands D1−4 5 5
Cavities D1−4 2 8
Sequences D1−4 4 6

(a) Sequences: k = 4 (b) Sequences: k = 6 (c) Ligands: k = 5

Figure 1.6.: Entropy measure for the (a,b) sequence and (c) ligand
clusterings of serine proteases. The highest entropy values for the
sequence data using k = 4 are found for three and using k = 6 for six
of the applied clustering methods. Ligand data suggest for k = 5 the
divisive analysis clustering for D2 and D3.
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Table 1.9.: ARIs for the clustering structures of the ligand, cavity, and
sequence space.

k Clustering Method Distance Sequence-Cavity Sequence-Ligand Cavity-Ligand

4

ward

D1 0.09 0 0.06
D2 -0.03 0 0.04
D3 -0.03 0 0.04
D4 0.09 0 0.06

complete

D1 -0.03 -0.1 0.04
D2 -0.03 -0.1 0.04
D3 -0.03 -0.1 0.04
D4 -0.03 -0.1 0.03

diana

D1 -0.01 -0.1 -0.05
D2 -0.01 -0.1 -0.05
D3 -0.01 -0.1 -0.05
D4 -0.01 -0.06 -0.06

5 diana D2 0.01 0.12 0.13
D3 0.01 0.12 0.13

6

ward

D1 0.39 0.25 0.39
D2 0.11 0.25 0.25
D3 0.39 0.25 0.39
D4 0.11 0.25 0.39

single

D1 0.04 0.11 0.3
D2 0.04 0.11 0.3
D3 0.04 0.11 0.3
D4 0.04 0.11 0.3

complete

D1 0.18 0.25 0.51
D2 0.18 0.25 0.51
D3 0.18 0.25 0.51
D4 0.18 0.25 0.51

average

D1 0.18 0.25 0.51
D2 0.18 0.25 0.51
D3 0.18 0.25 0.51
D4 0.18 0.25 0.51

diana

D1 0.04 0.25 0.39
D2 0.04 0.25 0.39
D3 0.04 0.25 0.39
D4 0.04 0.25 0.39

pam

D1 0.04 0.35 0.2
D2 0.18 0.35 0.56
D3 0.04 0.35 0.2
D4 0.04 0.35 0.2
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A more detailed analysis of the investigated spaces has been carried out
using the following clustering settings: k = 6 with the complete-linkage
clustering method and the previously introduced distance measure D3.
The results are depicted in terms of heatmaps in Figure 1.7. The more
bluish the color the more similar are the data points, whereas, red color
indicates increasing dissimilarity.

The overall structuring of three heatmaps suggests much higher discrimi-
native power for the ligand and cavity data compared to the sequence data.
The latter shows hardly any discriminative power apart from urokinase-
type plasminogen activator (uPA) and tissue-type plasminogen activator
(tPA) or trypsin and and kallikrein-1 which end up in joint clusters. On
the ligand heatmap trypsin is of special evidence as strikingly an extended
blue bar demonstrates the unspecific character of this particular enzyme.
With respect to substrate cleavage trypsin is one of the most promiscuous
enzymes in this family (Hilpert et al., 1994). Two clusters are identically
indicated in the three input spaces based on ligand, cavity and sequence
data. Coagulation factor Xa (fXa) and thrombin share a common cluster
whereas chymase ends up in all cases as a singleton. Thrombin and fXa
are closely related members of the blood coagulation cascade (Sanderson,
1999) and even the successful development of dual inhibitors acting equally
potent against both enzymes has been accomplished (Nar et al., 2001).
The human chymase, which is the only representative chymotrypsin-like
protease in the data set, is found as a singleton, reflecting its distinct
properties in the data set and its high selectivity towards its biological
substrates (McGrath et al., 1997).

Focusing on the more discriminating spaces based on ligand and cavity
information, related cluster patterns are found for the two-fold clusters
formed by Coagulation factor VIIa (fVIIa) and plasma kallikrein (PK) and
the singleton created by β-tryptase. The latter β-tryptase is a mast cell
serine protease that has been directly linked to the pathology of asthma
(Molinari et al., 1996). Its clustering as a singleton is supported by the fact
that successful design of selective β-tryptase inhibitors could be achieved
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(a)

(b) (c)

Figure 1.7.: Heatmaps obtained for clustering (a) ligand, (b) cavity, and
(c) sequence data applying the complete-linkage method and k = 6.
Deep blue color represents maximum possible similarity and deep red
color maximum dissimilarity in the corresponding data set. The range
between the maxima is mixed with white color. For reasons of clarity
the six individual clusters are separated only by horizontal black lines
and the entries are labeled to the right of the heatmap.

in several studies (Combrink et al., 1998; Hopkins et al., 2005; Lee et al.,
2006a). On the contrary, only a few attempts have been described to
address the selectivity problem depicted in the heatmaps of fVIIa and
PK, which is particularly indicated for the ligand clustering (Olivero et al.,
2005; Young et al., 2006). Interestingly, the latter selectivity issue reflected
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by the properties of known ligands is already suggested by our comparative
analysis in cavity space as fVIIa and PK show the highest mutual similarity
in this space. As a consequence and reflecting the current state of inhibitor
development a similar clustering is therefore proposed for ligand topology
information and exposed physicochemical properties of the binding pockets.
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1.4. Conclusions
In the present study, we describe the development, validation, and applica-
tion of a novel clustering workflow with particular focus on the Cavbase
similarity metric. Owing to the implemented routines any proximity ma-
trix can be provided as input. The program is able to predict the correct
number of clusters for two data sets of binding sites and clusters them au-
tomatically in accordance with expert classifications, based on orthogonal
information such as EC numbers and Merops clans.
As a case study, human proteases were analyzed in more detail. Clus-

tering based on cavity information indicates a cross-reactivity between
the cysteine protease calpain-1 and cysteine cathepsins, which has been
reported upon calpain-1 inhibitor development in literature (Donkor, 2011).
Unlike binding site information, the usage of a sequence identity matrix
as input for clustering fails to produce any meaningful results, thereby
making the detection of the described cross-reactivity virtually impossible.
Finally, we utilize our workflow in an attempt to investigate the rela-

tionships between ligand, cavity, and sequence spaces of serine proteases.
Clustering of ligands, using solely similarities based on their topologies,
leads to a pattern that shows higher correlation to the clustering of binding
sites than to that of sequences. On the one hand, this result has to be
treated with caution, as only eleven serine proteases were considered in
the analysis. This fact results mainly from the limited access to the sparse
ligand data stored in public databases. On the other hand, the evaluation
of binding site information along with protein classification from orthogonal
sources can deliver in a data mining approach valuable data to discriminate
proteins with respect to selectivity criteria for the development of putative
ligands that standard sequence comparison methods can hardly achieve.
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1.5. Supporting information

1.5.1. Cluster validation statistics - Internal criteria
Let Z = {z1, z2, ...zl} be a set of numbers then avg(Z) := 1

l

∑l
i=1 zi. Let

X = {x1, x2, ...xn} be the data set and C1, ...Ck the clusters with nj = |Cj|
the number of elements in Cj ∀j = 1...k. As every element is in one and
only one cluster, there is ∑k

j=1 nj = n.
Let us define the function C : X −→ {1, ..., k} as C(xi) = j ⇔ xi ∈ Cj

1.5.1.1. Average Distance Between Clusters (AB)

AB = avg({d(xi, xj)|C(xi) 6= C(xj)})

1.5.1.2. Average Distance W ithin Clusters (AW )

AW = avg({d(xi, xj)|C(xi) = C(xj) ∧ i 6= j})

1.5.1.3. Ratio of Average Distance W ithin and Between Clusters
(WB)

WB = AW

AB

1.5.1.4. Number of Distances Between Clusters (NB)

NB =
∑

i<j≤k

ninj

1.5.1.5. Number of Distances W ithin Clusters (NW )

NW =
k∑

j=1

nj(nj − 1)
2
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1.5.1.6. Dunn Index (DI, Dunn (1973))

DI = min({d(xi, xj)|C(xi) 6= C(xj)}
max({d(xi, xj)|C(xi) = C(xj)}

1.5.1.7. Entropy (E, Meilă (2007))

E = −
k∑

j=1

nj

n
log

nj

n

k is the number of non-empty clusters. n is the number of data points in
the data set and nj is number of data points in cluster Ck.

1.5.1.8. Calinski and Harabasz index (CH, Calinski and Harabasz
(1974))

CH =
(n− k) ∑

C(xi)6=C(xj) d(xi, xj)2

(k − 1) ∑
C(xi)=C(xj) d(xi, xj)2

1.5.1.9. Average Silhouette (AS, Rousseeuw (1986))

Calculate average distance of object xi to other elements of its own cluster.

a(xi) = avg{d(xi, xj)|C(xi) = C(xj)∧i 6= j} = 1
nC(xi) − 1

∑
C(xi)=C(xj)

d(xi, xj)

Calculate average distance of object xi to members of clusters j.

bj(xi) = avg({d(xi, xl)|C(xl) = j}) = 1
nj

∑
C(xl)=j

d(xi, xl)

bj0(xi) = min
j 6=C(xi)

bj(xi)
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The silhouette of element xi is defined as follows.

Si = bj0(xi)− a(xi)
max(bj0(xi), a(xi))

The average silhouette over all elements of the clustering is calculated and
should be minimized.

AS = avg({Si}n
i=1)

1.5.1.10. Median Split Silhouette (MSS, Pollard and van der Laan
(2002))

For a given clustering result with k clusters each cluster is splitted into
two or more clusters and a new silhouette is computed for each element
relative to other elements of the same parent cluster. The average for each
parent cluster is the split silouette SSi, i = 1, 2, . . . , k. MSS is the median
of split silhouettes over k clusters:

MSS(k) = 1
k

k∑
i=1

SSi
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1.5.2. Cluster validation statistics - External criteria
1.5.2.1. Adjusted Rand Index (ARI, Hubert and Arabie (1985))

Given a clustering with partitions U and V , for all possible pairs of data
points i and j the quantities of a, b, c and d and their cluster assignments
CU(i), CU(j), CV (i) and CV (j) are computed.

a = |{i, j|CU(i) = CU(j) ∧ CV (i) = CV (j)}|

b = |{i, j|CU(i) = CU(j) ∧ CV (i) 6= CV (j)}|

c = |{i, j|CU(i) 6= CU(j) ∧ CV (i) = CV (j)}|

c = |{i, j|CU(i) 6= CU(j) ∧ CV (i) 6= CV (j)}|

a and d count the correspondeces, b and c count the deviations of two
partitionings. The Rand Index (RI )is defined as follows

RI(U, V ) = a+ d

a+ b+ c+ d

Using a different pepresentation based on the contingency table defined by
U and V , the Adjusted Rand Index is defined as

ARI(U, V ) =
∑

lk( nlk
2 )− [∑l( nl

2 ) ·∑k( nk
2 )]/( n

2 )
1
2 [∑l( nl

2 ) + ∑
k( nk

2 )]− [∑l( nl
2 ) ·∑k( nk

2 )]/( n
2 )

nlk = the number of data points which where assigned to the same cluster.
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2
Chapter 2.

Automated Decomposition
of Cavities Based on
Bound Ligand Information

2.1. Preliminary remarks
The present study was accomplished in collaboration with Thomas Rick-
meyer, who stayed for an internship of six months in our research group.

2.2. Introduction
A general introduction of the Cavbase methodology has been presented in
section 1.1. The current implementation of the binding site comparison and
subsequent similarity calculation is able to find a global pairwise similarity
(Schmitt et al., 2002), therefore, local similarities of subpockets are more
difficult to detect. The following reasons can be put forward to explain
this observation. First, the similarity calculation algorithm based on a
clique detection as implemented in Cavbase is not exhaustive, since the
maximal number of scored cliques is restricted to the 100 most largest
ones. This fact becomes in particular a limitation when applied to large
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binding pockets. Second, the detection of the MCS does not guarantee
that all local similarities are regarded and in consequence even scored on
high ranks. Therefore, an approach is needed to detect local binding site
similarities that sum-up and produce a more accurate representation of
regions which are shared in common by two cavities. Such a procedure
is of particular interest for the screening of a pocket database, in order
to find pocket similarities of proteins remote in sequence or obviously not
belonging to the same protein family.
One well-known example of more accurate similarity detection using

subpockets in Cavbase has been described for a particular cross-reactivity
of the drug celecoxib. Celecoxib was originally designed as a specific
inhibitor of cyclooxygenase-2 (COX-2). However, celecoxib also shows
nanomolar inhibition of α-carbonic anhydrase II (α-CA II). Reasons for
this phenomenon could be successfully elucidated on structural level by
comparing the crystal structures complexed by celecoxib and using sub-
pockets defined by the functional groups of the SC-558 inhibitor, a bromo
analog of celecoxib bound to COX-2 (Weber et al., 2004).

The primary goal of this study targeted the improvement of the binding
site similarity detection between remote proteins using more appropriately
the local information about subcavities. As in the previously mentioned
case of celecoxib it was achieved using the subpockets defined by functional
groups (fragments) of the bound ligand. Therefore a subcavity was defined
as that part of the total cavity extracted by Ligsite that accommodated
manually predefined ligand fragments. We attempted to develop an au-
tomatic procedure to perform such screenings. Since, different ligand
fragmentation methods lead not only to different splitted fragments but
also to a deviating number of fragments, the method will take directly
impact on the size and shape as well as the number of generated subcavities
for a given pocket. Therefore, we tested two different ligand fragmentation
strategies in our approach, which will be described together with the cavity
decomposition procedure in section 2.3.
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2.3. Automated binding site decomposition
procedure

2.3.1. Ligand fragmentation methods
Most common cheminformatic methods which are used to split bonds
and/or match substructures of a molecule are encoded in line notation,
as realized in the widely used Simplified Molecular-Input Line-Entry
System (SMILES). Since, 3-D information of the ligand must be retained
in order to enable distance calculation to the adjacent pocket environment,
a software that accepts and preserves ligand information in 3-D format is
required. The program Decomposition And Identification of Molecules
(DAIM) (Kolb and Caflisch, 2006) fulfills this requirement. Originally,
DAIM was developed to compute a set of unique fragments using a virtual
compound library as input. The generated fragments can be used further for
fragment-based docking. An internal definition of fragments is implemented
in DAIM (for details see Kolb and Caflisch (2006)). However, individual
parameter definitions for uncleavable bonds can be provided by the user.
This flexibility of the program allowed us to implement rules compatible
with the well-known Retrosynthetic Combinatorial Analysis Procedure
(RECAP) (Lewell et al., 1998) for compound decomposition. The idea
of RECAP is the generation of virtual but chemically more reasonable
compound libraries. Primarily, eleven bond types, which in turn can
be made by common chemical reactions, were considered in RECAP to
generate a set of building blocks that can be reassembled in a subsequent
combinatorial procedure.
The presented approaches, DAIM and RECAP, apply rather different

ligand fragmentation rules as they were originally designed to accomplish
different tasks. We adopted fragmentation rules from both strategies and
investigated their suitability for subsequent cavity decomposition.
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2.3.2. Cavity decomposition workflow
The developed workflow starts with the ligand extraction in Protein Data
Bank (PDB) format. The ligand file is converted to MOL2 format using
MOE whereby hydrogens and partial charges are added simultaneously.
Next, the ligand is decomposed according to the two presented strategies.
For each generated fragment the Cavbase assigned pseudocenters are
selected, which reside on the protein residues within the radius of 4.5 Å to
any atom of the fragment. This information along with the corresponding
surface patches was considered as subcavity. In the next step, the program
checks whether pseudocenters are assigned to more than one subcavity and
re-assigns them to the closest one only. Subsequently, the subcavites are
stored and ready to use as queries. If in a comparison several subcavities
originating from the same Ligsite cavity are matched with a candidate
cavity a total similarity score is computed as the sum of the individual
scores which have been calculated separately for each individual subcavity
match.
Figure 2.1 shows the established workflow exemplified for the COX-2

inhibitor SC-558. Worth mentioning, the default DAIM rules lead in case of
SC-558 to rather small fragments (Figure 2.2). Therefore, we modified the
initial fragment definition in DAIM in order achieve the most reasonable
subcavity representation for COX-2 based on visual inspection.
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Figure 2.1.: Cavity decomposition workflow exemplified for COX-2 in-
hibitor SC-558 (PDB 6COX) applying modified DAIM rules for ligand
fragmentation. The inhibitor is a celecoxib analog, which contains
bromine in place of a methyl group.
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2.4. Case studies
For test purposes ligands were required which are known to bind to remotely
related proteins. Three cases could be identified, where crystal structures
are available:

1. SC-558 bound to COX-2 (6COX) and celecoxib bound to α-CA II
(1OQ5),

2. ritonavir bound to endothiapepsin (3PRS) and human immunodefi-
ciency virus (HIV) protease (1RL8),

3. lovastatin bound to lymphocyte function-associated antigen-1 (LFA-
1) (1CQP) and simvastatin bound to 3-hydroxy-3-methyl-glutaryl-
CoA reductase (HMG-CoA reductase) (1HW9).

The results will be discussed in section 2.5.

2.4.1. Pairwise comparison
Three different scenarios for cavity comparison with respect to the query
have been constructed using a radius of 4.5 Å as default for cavity restric-
tion:

1. complete Ligsite cavity,

2. ligand defined, and

3. fragment defined subcavity.

2.4.1.1. SC-558

The fragments of SC-558 after decomposition are shown in Figure 2.2. The
similarity scores are presented in Table 2.1.
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 2.2.: Fragments of the inhibitor SC-558 (a) are shown. b–f are
fragments of the default DAIM rules. g–i are fragments generated by
modified DAIM rules. j, k are computed by RECAP.

Table 2.1.: Similarity scores of the Ligsite, SC-558, and respecitve frag-
ment defined cavities of COX-2 vs. α-CA II (6COX vs. 1OQ5). Using
the complete Ligsite cavity as query does not lead to correct match of
active sites.

Ligsite Complete RECAP DAIM

cavity ligand frag 1 frag 2 ∑ frag 1 frag 2 frag 3 ∑
(4.696) 3.296 3.296 3.333 6.629 1.676 3.931 3.333 8.94
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2.4.1.2. Ritonavir

The fragments of ritonavir after decomposition are shown in Figure 2.3.
Here, the application of DAIM resulted in 17 fragments. Among them
were also fragments such as methyl, phenyl, thiazole groups, which were
unsuitable for reasonable subcavity definition, and therefore discarded.
The similarity scores are presented in Table 2.2.

(a)

(b) (c) (d) (e)

Figure 2.3.: Fragments of the inhibitor ritonavir (a) are shown. b–e are
computed by RECAP.
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Table 2.2.: Similarity scores of the Ligsite, ritonavir, and the respecitve
fragment defined cavities of endothiapepsin vs. HIV protease (3PRS vs.
1RL8). The formyl fragment Figure 2.3e was discarded for the cavity
comparison, due to its small size.

Ligsite Complete RECAP

cavity ligand frag 1 frag 2 frag 3 ∑
9.606 7.415 6.405 2.304 1.641 10.35

2.4.1.3. Lovastatin

The fragments of lovastatin after decomposition are shown in Figure 2.4.
The similarity scores are presented in Table 2.3.

(a) (b) (c) (d)

(e) (f)

Figure 2.4.: Fragments of the inhibitor lovastatin (a) are shown. b–d
are fragments generated by DAIM rules. e, f are computed by RECAP.

45



Table 2.3.: Similarity scores of the Ligsite, lovastatin, and the respecitve
fragment defined cavities of LFA-1 vs. HMG-CoA reductase (1CQP vs.
1HW9). The ethyl moiety (Figure 2.4d) was discarded for the cavity
comparison, due to is small size.

Ligsite Complete RECAP DAIM

cavity ligand frag 1 frag 2 ∑ frag 1 frag 2 ∑
3.517 2.531 2.226 2.361 4.587 0.914 2.396 3.31



2.4. Case studies

2.4.2. Database screening
The introduced cavity decomposition strategy was applied on a database
containing about 275,000 cavities. COX-2 was used as query. The respec-
tive EC number is 1.14.99.1.
Proteins from diverse EC classes were selected for the comparison of

the emerging rankings when different screening setups were tested. The
respective EC numbers are listed in brackets, if available.

• α-CA II (4.2.1.1),

• α-carbonic anhydrase V (α-CA V) (4.2.1.1),

• α-carbonic anhydrase XIII (α-CA XIII) (4.2.1.1),

• 70 kDa heat shock protein (HSP70) (3.6.1.3),

• 90 kDa heat shock protein (HSP90) (3.6.1.3),

• peroxisome proliferator-activated receptorγ (PPARγ), and

• 3-phosphoinositide-dependent protein kinase 1 (PDK-1) (2.7.11.1).

In the following result tables only the top ranked protein belonging to
identical EC class are shown, which is the case for classes 4.2.1.1 and
3.6.1.3.

Results from the pairwise comparison studies suggested that matched
subpockets of the target protein can be found rather distantly from each
other in the candidate proteins, hence the ligand present in the query
pocket will hardly bind simultaneously to all the matched subpockets
in the candidate proteins. Therefore, we included a routine that checks
whether binding of the original query ligand would be geometrically feasible
in the hit candidate pockets. The centers of each subpocket found in
the candidate proteins were determined based on the coordinates of the
matched pseudocenters. If the distances between these centers fall below a
given threshold, then scores of the subpockets are added, otherwise the
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scores are discarded. The applied threshold limits depend on the geometry
of the original ligand. Therefore, the distance between the farthest ligand
atoms is considered. The resulting scores and the subsequently generated
ranking only includes those proteins which were able to match all defined
subcavities with appropriate mutual distances.

Table 2.4.: Pocket database screening using Ligsite cavity and complete
ligand as queries.

Rank % Score Protein name PDB id
Ligsite cavity. Top 40 are COX entries.

1023 0.379 7.933 α-CA XIII 3D0H
106 0.039 9.996 PPARγ 2G0H
233 0.086 9.913 HSP70 3FZF

45387 16.810 6.047 PDK-1 2PE0
Complete ligand. Top 37 are COX entries
625 0.213 6.622 murine α-CA V 1DMX

1397 0.517 6.160 PPARγ 3IA6
227 0.084 7.485 bovine HSP70 1BA0

85589 3.181 5.218 PDK-1 2PE0
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2.4. Case studies

Table 2.5.: Pocket database screening using modified DAIM rules.

Rank % Score Protein name PDB id
DAIM setup, no distance check. Top 35 are COX entries.
599 0.222 11.542 α-CA II 1ZFK
59 0.022 13.188 PPARγ 2VV3
30 0.014 13.863 bovine HSP70 1BA0

1358 0.503 11.055 PDK-1 2PE0
DAIM setup, with distance check. Top 32 are COX entries.
252 0.093 11.542 α-CA II 1ZFK
38 0.014 13.190 PPARγ 2VV3
82 0.030 12.312 bovine HSP70 1KAY
563 0.209 11.055 PDK-1 2PE0

Table 2.6.: Pocket database screening using RECAP rules.

Rank % Score Protein name PDB id
RECAP setup, no distance check. Top 37 are COX entries.
2054 0.761 9.331 α-CA V 1DMX
167 0.061 10.864 PPARγ 2VV3
66 0.024 11.678 bovine HSP70 1BA0

5538 2.051 8.797 PDK-1 2PE0
RECAP setup, with distance check. Top 35 are COX entries.
1207 0.447 9.331 α-CA V 1DMX
96 0.035 10.864 PPARγ 2VV3
119 0.044 10.731 HSP90 3K99
3423 1.268 8.797 PDK-1 2PE0
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2.5. Discussion

One of the first aspects we can learn from the pairwise comparisons of
subcavities is the impact that the ligand fragmentation strategy takes on
the achieved results. First, fragmentation according to the used strategies
does not lead in all cases to a reasonable complementarity of the protein
binding site with respect to the structurally determined subcavities. Second,
too small fragments are inadequate for a subcavity definition, since they
result in the selection of subcavities comprising rather a small subset of the
original pseudocenters, and therefore no relevant distribution of the exposed
physicochemical properties is any longer given. These two observations
indicate that an automated cavity decomposition procedure requires a
compilation and the subsequent evaluation of rules with particular focus
on fragmentation of ligands bound in protein pockets.
Concerning the screening of COX-2 subpockets defined by SC-558, a

significant improvement could be observed for α-CA II ranking. Using
the original Ligsite cavity from COX-2 as query the matched α-CA II
cavity was found on rank 10,036. Restriction of the Ligsite cavity using
contiguous spheres of 4.5 Å around all ligand atoms lead to rank 5,107.
Modifying the DAIM rules, the composite approach based on subcavity
ranking moved the α-CA II as candidate hit on rank 599 and after the
distance compatibility check on position 252. In case of RECAP α-CA II is
found at rank 3302 and 1977 respectively. The following conclusions can be
drawn. The definition of fragments plays a crucial role for the scoring and
ranking, which explains the discrepancy between the performance of the
modified DAIM and RECAP rules. Furthermore, the strategy of checking
the distance compatibility of the matched subcavities with respect to each
other improves the ranking of α-CA II as a hit in both cases. Unfortunately,
we were unable to solve the case, where different subpockets overlap partly
the same region in the target pocket, therefore, leading to a bias toward a
higher score. This drawback could be potentially solved by computing a
penalty term for these cases or by screening the queries against a database
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of subpockets as targets.
Most notable and unexpected result is the ranking of the PDK-1 as a

hitted candidate pocket for celecoxib on rank 563 using modified DAIM
rules. In the contrary, Ligsite but also the ligand defined cavity definition
have only scored this protein at position 45,387 and 85,387 respectively.
According to the Drug Bank database (Wishart et al., 2006) PDK-1 is listed
as a second target for celecoxib apart from COX-2. Arico et al. used anti-
PDK1 immunoprecipitates derived from human colon carcinoma cell line
29 (HT29) to measure the inhibition of the Ser/Thr kinase activity. They
found that PDK-1 is inhibited by celecoxib at the half-maximal inhibitory
concentration (IC50) of 3.5 µM (Arico et al., 2002). Zhu et al. reported
an IC50 of 48 µM measured in an enzyme assay using the recombinant
PDK-1 protein. Subsequent structure-based optimization cycles lead to
the celecoxib analog OSU-03012 that inhibits PDK-1 kinase activity in low
micromolar range (IC50=5 µM, (Zhu et al., 2004)).

(a) (b)

Figure 2.5.: Structure of the PDK-1 inhibitor OSU-03012 (a) and
celecoxib (b).

Interestingly, PPARγ and HSP70 are also found on high ranks suggesting
that these proteins are potential binding partners for celecoxib as well.
This hypothesis should be validated experimentally. The low solubility
of celecoxib in water and most likely its weak affinity to the suggested
proteins has to be considered in the experimental setup to allow for sufficient
sensitivity in the assay.
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3
Chapter 3.

Novel FAS II Inhibitors as
Multistage Antimalarials

3.1. Preliminary remarks
This chapter has been prepared as part of a contribution for a scientific
journal. Meanwhile, it has been accepted for publication in ChemMedChem.
Dr. Florian Schrader performed the synthesis of the compounds. In a
collaboration with the Department for Infectious Diseases and Parasitology
Unit at the Heidelberg University Hospital the compounds were tested for
their growth inhibition of the Plasmodium parasites in cell-based assays.
The cytotoxicities to human cell lines were measured at the Department
for Infection Biology of Hans-Knöll-Institute in Jena. TgENR enzyme
inhibition values were assayed at the Department of Molecular Microbiology
and Immunology, Johns Hopkins Bloomberg School of Public Health,
Baltimore, USA. My contribution to this project was to carry out the
initial virtual screening and hit identification. Furthermore, I supported
the optimization of the lead compound using combinatorial and docking
techniques.

55



3. Novel FAS II Inhibitors as Multistage Antimalarials

3.2. Introduction

Over two billion people in about 100 countries run the risk of falling
ill with malaria, a disease, which often turns out to be fatal for young
children (Murray et al., 2012). Their chances to survive depend not least
on the development of new, affordable drugs, as increasing resistance
against the currently used drugs is observed. Malaria is caused by the
protozoan Plasmodium and is transmitted by the Anopheles mosquito.
When this insect feeds on an infected individual, it may ingest Plasmodium
gametocytes along with the blood meal. These represent the only stages in
the life cycle of Plasmodium, which are infectious to the mosquito. Inside
of the mosquito host Plasmodium sporozoites are subsequently formed.
These motile stages travel to the salivary gland of the mosquito and may be
injected along with its saliva while feeding on another human host. There,
Plasmodium sporozoites migrate actively into the circulation and finally
end up in the liver, where they infect hepatocytes. It takes up to 7-10 days
for P. falciparum sporozoites to subsequently develop into several thousand
first-generation merozoites (Sturm et al., 2006). As a consequence, the liver-
stage is therefore characterized by huge metabolic demands. Merozoites
are then released into the blood to begin their pathological blood-stage
development by infecting erythrocytes. Subsequently, the patient begins
to suffer from symptoms like fever, pain and nausea (WHO).

Replicating in the liver as well as in erythrocytes, Plasmodium parasites
require vast amounts of fatty acids (FA). Metabolism in these two stages
of the life cycle, however, is fundamentally different (Yu et al., 2008; Tarun
et al., 2009). In the blood-stage, the vast majority of the FAs are acquired
from the host (Vial et al., 1982). In earlier studies it was assumed that
Plasmodium acquires FAs merely by scavenging, however, it was recently
found to be capable of type II fatty acid biosynthesis (FAS II). FAS enzymes
are targeted to the apicoplast, a relict, non-photosynthetic plastid of algal
origin. In most plants as well as in bacteria, discrete enzymes catalyze
the distinct steps in plasmodial FAS II (Figure 3.1). In contrast to this,
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Figure 3.1.: Type II fatty acid biosynthesis. The most vital precursor to
fatty acids in Plasmodium is acetyl-CoA, which is provided by acetyl-CoA-
Synthase or pyruvate dehydrogenase. Fatty acid biosynthesis (FAS) begins
with the carboxylation of acetyl-CoA by acetyl-CoA carboxylase (ACC). The
resulting product malonyl-CoA is then converted to malonyl-ACP by the
malonyl-CoA ACP transacylase (FabD). The acyl carrier protein (ACP) is a
small, acidic protein which binds acyl intermediates as thioesters during fatty
acid synthesis and carries them from one to the other enzymes. The first
reaction is a condensation catalyzed by β-ketoacyl-ACP synthase III (FabH),
which uses acetyl-CoA and malonyl-ACP as substrates. Next is a NADPH-
dependent reduction of β-ketoacyl-ACP to β-hydroxyacyl-ACP catalyzed by
β-ketoacyl-ACP reductase (FabG). β-hydroxy-acyl-ACP dehydratase (FabZ)
then forms trans-2-enoyl-ACP by removing a molecule of water from the acyl
chain. Trans-enoyl-ACP is finally NADH-dependently reduced by enoyl-ACP
reductase (FabI), which presents the rate limiting step in fatty acid chain
elongation. Another molecule of malonyl-ACP may subsequently be used to
add two more carbon atoms to the nascent acyl chain by β-ketoacyl-ACP
synthase II. This cycle continues with the length of the acyl chain increasing
by two carbons until the desired fatty acid is produced.
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in mammals FAS is performed by a multi enzyme complex, handling all
four of the enzymatic steps of the elongation of fatty acids (type I fatty
acid biosynthesis (FAS I)). Although there is no difference in mechanism
in the elongation of fatty acid chains, this fundamentally distinct setup
of enzymes makes FAS I insensitive to a number of FAS II inhibitors and
qualifies fatty acid biosynthesis in Plasmodium as a potential drug target.
Triclosan is an antibacterial and antifungal agent, commonly used in a

large variety of consumer products such as toothpastes and pillowcases. In
1998 it was first shown to be an E. coli FAS inhibitor and to specifically
inhibit E. coli enoyl ACP reductase (ENR) (McMurry et al., 1998). The
contemporary discovery of the plastidial origin of the apicoplast and its
suggestion as a drug target (McFadden et al., 1996; Kohler, 1997) prompted
efforts to assay Triclosan as an antiplasmodial agent. In the following
Triclosan proved to inhibit PfENR with a Ki of 0.4 nM (Kapoor et al.,
2001) and, in addition to that, the growth of blood-stage P. falciparum
at a low micromolar concentration (Surolia and Surolia, 2001; McLeod
et al., 2001). Subsequent work by Yu et al. showed that Triclosan inhibits
another essential target in blood stage parasites: Disruption of the gene
encoding PfENR did not affect parasite growth or Triclosan susceptibility.

Similarly, other inhibitors of plasmodial FAS, and PfENR inhibitors in
particular, frequently do show an inhibitory effect on blood-stage cultured
parasites as well (Tasdemir et al., 2006, 2007). Hence it is tempting to
speculate on a common off-target (Vaughan et al., 2009; Spalding and
Prigge, 2008). The genome of Plasmodium appears to encode for three
different fatty acid elongases (ELO). In contrast to FAS I and FAS II,
ELO pathways use CoA rather than ACP as an acyl carrier. Importantly,
ELO pathways contain an enoyl-CoA reductase (EnCR) which catalyzes
a similar reaction to that of PfENR. Although ELO pathways typically
elongate long-chain FAs such as palmitate (Lee et al., 2006b), trypanosomes
were recently shown to synthesize most of their FAs from butyryl-CoA
precursors (Kohlwein et al., 2001).
Type II fatty acid synthesis, and ENR in particular, has been shown
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to play a key role in the development of liver-stage malaria parasites (Yu
et al., 2008; Vaughan et al., 2009). ENR-deficient P. berghei sporozoites
are markedly less infective to mice and typically fail to complete liver-stage
development in vitro. This defect is characterized by an inability to form
intrahepatic merosomes, which normally initiate blood-stage infections.
Even though it is not clear how Triclosan and other FAS II inhibitors act
upon blood-stage parasites, present data suggest that FAS II inhibitors
may provide true causal chemoprophylaxis and could simultaneously cure
blood-stage Malaria (Yu et al., 2008; Vaughan et al., 2009).
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3.3. Results and discussion

3.3.1. Virtual screening

In an effort to find structurally novel, potent inhibitors, we performed a
virtual screening based on two different PfENR crystal structures (PDB
codes: 2O2Y, 2OOS), as the structures indicate that the active-site residue
Phe368 can adopt two alternative conformations (Figure 3.2).

Figure 3.2.: Crystal structures of PfENR and NAD+ with bound inhibitor
Triclosan (PDB 2O2Y) (a), and a 5-substituted Triclosan derivative
(PDB 2OOS) (b). Introduction of a large hydrophobic substituent at the
5-position of Triclosan induces a conformational transition of Phe368.
Hydrogen bond interactions of the inhibitor’s phenolic OH group to
Tyr277 and 2’-hydroxyl group of the nicotinamide ribose are depicted as
red dashed lines. For reasons of clarity Ile323 and Val222 are not shown.

The PfENR binding site hosts an NAD+ molecule, which was retained
during docking as integral part of the pocket. A total of 13,200 compounds
retrieved from an in-house fragment-like library (Table 3.1) were docked
into the respective pocket using GOLD (Jones et al., 1997). Results were
re-ranked applying the DSX scoring function (Neudert and Klebe, 2011a).
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Table 3.1.: Properties of the fragment-like library used for screening.

Property Min Max
No. of heavy atoms 8 20
Molecular weight (Dalton) (MW) 122 360
Lipinski donor 0 4
Lipinski acceptor 1 8
Calculated log of the octanol/water partition coefficient (clogP) -1.2 7.6
Free rotatable bonds 0 7
Total polar surface area (Å2) (TPSA) 12 126

Eight chemically diverse hits were selected, which satisfied the pattern of
interactions supposed to be essential for inhibitor binding as indicated by
the reference crystal structures (Perozzo et al., 2002). Docked compounds
were requested to exhibit stacking interactions with the nicotinamide moi-
ety of NAD+ and to form hydrogen bonds to Tyr277 and the 2’-hydroxyl
group of the nicotinamide ribose. The achieved respective docking poses
are depicted in Figure 3.3 a-h.

Out of the set of compounds derived from the virtual screening (VS), eight
molecules were selected with respect to sufficient drug-likeliness, chemical
diversity and synthetic accessibility and easy scope of variation. In a
first step, minor modifications were performed to the chemical structure of
these eight promising screening hits in order to overcome obvious metabolic
instability or to facilitate convenient synthesis (Figure 3.4). The intended
modifications were validated by subsequent docking whether binding to
the target protein and consistency with the derived pharmacophore were
still fulfilled.

With the outlined modifications the eight target compounds (Figure 3.4)
were synthesized by Dr. Florian Schrader (Schrader, 2012) and subsequently
tested for biological activity (subsection 3.3.2).
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Figure 3.3.: Docking poses of the eight selected most promising hits from
virtual screening (a-h). All compounds comprise an aromatic moiety,
which is able to establish stacking interactions with the nicotinamide
portion of NAD+. Hydrogen bonding to Tyr277 and/or the 2’-hydroxyl
group of the ribose can be formed by a carbonyl oxygen (a, b, g, h) or
by nitrogen atoms (c-f).
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Figure 3.4.: The eight selected VS hits and the respective chemical
modifications.

63



3. Novel FAS II Inhibitors as Multistage Antimalarials

3.3.2. Biological evaluation and structure–activity
relationship

The inhibitor-binding pocket of both PfENR and Toxoplasma gondii
ENR (TgENR) are highly conserved with only one amino acid difference
(Figure 3.5, Muench et al. (2007)). We therefore used the Toxoplasma
homolog for the enzyme inhibition assay.

Figure 3.5.: Inhibitor binding sites of the PfENR and TgENR Enzymes

Activity against the asexual blood-stage is considered to be a prerequisite
for antimalarial drug activity. Therefore, all synthesized compounds were
first tested for their inhibitory activity against cultured blood-stage P.
falciparum (multidrug-resistant Dd2 isolate). This way, the compounds
could also prove themselves to be sufficiently cell-permeable, which poses
a critical hurdle to overcome by appropriate drug design of compounds
targeting living parasites intra-cellularly.

Out of our eight promising hits from virtual screening the aryloxyalkyl-
benzamide derivative inhibited the growth of bloodstage Dd2 malaria
parasites in the cell-based assay with an IC50 of 7.9 µM (Figure 3.4). The
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inhibition of the TgENR enzyme was rather poor at a 1 µM concentration
(10 %). Nevertheless, in the following experiments we tried to evaluate
whether this scaffold could be chemically optimized to display an inhibitor
of blood-stage Plasmodium and ENR at the same time.

The respective docking pose of 1a suggests that its polar 2-OH-substituent
does not specifically interact with the inhibitor binding site of ENR (Fig-
ure 3.6a). At this position, non-polar substituents might lead to an en-
hanced affinity toward the enzyme as they could potentially interact with
the hydrophobic amino acids Ile323 and Ala320. We therefore synthesized
derivatives 6a and 5e, which either bear such a non-polar 2-substituent or
lack this group. Interestingly, both derivatives inhibit the TgENR enzyme
as depicted in Figure 3.7.

(a) (b)

Figure 3.6.: Docking pose for (a) 1a and (b) 5j.

In the cell-based assay, removal of the 2-substituent (5e) results in a
three-fold decline of activity (24.3 µM). However, the 2-chloro-derivative
(6a) shows no reduction in activity against blood-stage parasites (7.5 µM)
and displays an even lower cytotoxicity (>172.6 µM compared to 59.3 µM
for the 2-OH substituted derivative 1a). As the 2-chlorobenzoic acid
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Figure 3.7.: Inhibition of TgENR at a concentration of 1 µM of derivatives
of 1a

derivative inhibits blood-stage malaria parasites and the TgENR as well,
it qualifies as a lead structure for subsequent optimization.

Initially, we evaluated whether selected heteroatoms are mandatory
in this compound. We subsequently varied the apparently important
2-substituent introducing a fluoro- and trifluoromethyl group. For the
2-fluoro (6i, 10.5 µM) and 2-trifluoromethyl derivates (6j, 43.1 µM) there
was no considerable improvement in the cell-based assay. We also prepared
a derivative with a 3-chloro-substituted benzoic acid moiety (6l) instead
of attachment at the 2-position. Compared to the 2-chloro substituted
derivative (6a) this change led to a more than three-fold reduction of
activity (26.6 µM) in the cell-based assay. These data stimulated us to the
assumption that the 2-position of the benzoic acid moiety is optimal for
substitution. Apparently, the substituent does not necessarily act as an
H-bond donor or acceptor as either the OH or Cl substituted derivatives
show equipotent inhibition. We prepared the sulphur homolog (6d) by
using thiocresolate as a nucleophile for ether synthesis. As there was about
a four-fold reduction in activity (32.0 µM) in the cell-based assay we kept
the original composition.

Based on the 2-chloro benzoic acid moiety a series of derivatives have
been prepared to optimize the lead structure. Docking of 6a suggested
a hydrogen bonding interaction to the hydroxy group of Tyr267 within
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the binding site. Therefore, a series incorporating hydrogen bond acceptor
and/or donor functionalities in 3- and 4-position of the benzoic moiety have
been synthesized and tested. None of these compounds showed improved
activity in the cell-based assay compared to the original compound. Strik-
ingly, introduction of a polar group in almost all cases led to a complete
loss of activity in the cell-based assay. The only derivatives which at
least partially maintained activity was the 4-amino (6q, 10.5 µM) and
the 4-hydroxy derivatives (6t, 17.8 µM). We therefore abandoned the idea
of introducing polar groups at the 4-position. In an attempt to increase
activity through an entropic gain in binding, we conformationally rigidified
the molecule by incorporating a fixed linker between the aromatic rings
as a 3-substituted azetidine (6c, 32.6 µM) and a 3-subsitituted piperidine
(6b, >50 µM) heterocycle. As these modifications were clearly detrimen-
tal to activity in the cell-based assay, it seems that the most favorable
conformations required for binding of the inhibitors are no longer easily
accessible by incorporation of the two tested rigid linkers. This prompted
us to remain with the original oxyethylamide moiety as a linker.

3.3.3. Combinatorial library

To elaborate the chemical space and the potential of aryloxyalkylbenzamide
derivatives, a combinatorial virtual library was generated considering com-
mercially available agents. This library contained about 430,000 molecules
with a MW 600 Da. 10,000 compounds were pre-selected from the com-
puted library using a coarse-grained docking procedure, followed by a
second, more extensive docking run. The results were re-ranked by DSX
and visually inspected. The most promising derivatives were selected for
synthesis and subsequent biological testing. The top-ranked compound
comprised a naphthaleneoxy instead of the m-tolyloxy moiety. This deriva-
tive displayed the same interaction patterns as the initial compound (1a)
but the increased molecular surface of the naphthyl moiety provided more
van der Waals interactions to hydrophobic residues Val222, Ala319, Ala322,
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Ile323, and additionally Asn218 (Figure 3.6b).
Docking into the crystal structure suggested the oxyaryl moiety of a

4-isopropylbenzoxy- (6e) a 5,6,7,8-tetrahydronaphthaleneoxy- (6f) and
a naphthaleneoxy derivative (6g) to interact with lipophilic amino acid
residues. We synthesized these compounds and observed a decline in activ-
ity in the cell-based assay for the isopropylbenzeneoxy derivate (22.0 µM).
In contrast, for the tetrahydronaphthyloxy derivate (2.5 µM) and the
naphthyloxy (1.7 µM) we observed a three-fold, respectively more than
four-fold improvement in the cell-based assay. At a 1 µM concentration,
the naphthaleneoxy derivative showed slightly higher inhibition (58 %) in
the TgENR assay than the original m-tolyloxy derivative (6a, 41 %). In
addition, it displayed a selectivity index (SI) of more than 50 (Figure 3.10).

Encouraged by this fact, we also prepared a derivative that included both
the naphthoxy- and the salicylic acid moiety connected by the ethylamine
linker (5j). This compound is the most active derivate in our series of
salicylic acid amides in the cell-based assay (3.0 µM). It shows 58 %
inhibition of TgENR at 1 µM concentration and displays a SI of more
than 50. In order to confirm that this improvement can be attributed
to a directional interaction with the target protein, we also prepared the
1-naphthoxy derivative (5k). This compound showed an eight-fold drop in
activity (25.0 µM) compared with the 2-naphthoxy derivative. Therefore,
6g and 5j represent the most promising compounds in this series so far
and were tested for plasmodial sporozoite- and liver-stage inhibition.

3.3.4. Evaluation of the effect on pre-erythrocytic
parasites

In order to address the question of whether compound 6g and 5j have an
effect on the motor machinery of the parasite - e.g. the infectious sporozoite
- crucial for the invasion of liver cells, we first performed two-color host-cell
invasion assays. Therefore, salivary gland sporozoites of P. berghei were
applied to immortalized human hepatoma cell lines (HuH7) and allowed to
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Figure 3.8.: Inhibition of TgENR at a concentration of 1 µM of struc-
turally optimized derivatives of 1a.

invade for 90 minutes in the presence of different concentrations of either
compound 6g or 5j. Quantification of the numbers of extracellular versus
intracellular parasites revealed that we could not observe any effect on the
invasion of liver cells compared to our DMSO-treated control (Figure 3.11)
(Aikawa et al., 1984; Tsuji et al., 1994).

Next we tested the inhibitory effect of the compounds on the develop-
ment of the exoerythrocytic form (EEF) of the parasite (the clinically silent
liver-stage) by applying 6g and 5j to the culture medium after invasion of
infectious P. berghei sporozoites into HuH7 cells. After early- (24 h), mid-
(40 h) and late- (60 h) intrahepatic development, cells were fixed and liver-
stages were visualized by immunostaining of intracellular malarial HSP70
(Tsuji et al., 1994; Pinzon-Ortiz et al., 2001). Interestingly, the number of
liver-stages by immunofluorescence microscopy was not significantly differ-
ent in the various conditions tested (Figure 3.12a-c) except for a decrease
in liver-stage numbers when compound 6g was applied in a concentration
of 40 µM (Figure 3.12a). However we have to take into consideration that
due to the overall inhibitory growth effect in consequence of compound
incubation, i.e. resulting in reasonable small liver-stages by size, we most
likely failed to incorporate every single fluorescent liver-stage. Strikingly,
when we measured the diameter, i.e. developmental status of the maturing
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Figure 3.9.: Structure and antimalarial activity of amide derivatives of
salicylic acid.
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Figure 3.10.: Structure and antimalarial activity of amide derivatives of
2-chloro-benzoic acid and various aryl amide derivatives (next page).
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Figure 3.11.: 6g and 5j have no effect on the invasion of HuH7 cells in vitro.
Infectious P. berghei sporozoites were pre-incubated with either 0.5 % DMSO,
10 µM CytochalasinD, or compound of interest at different concentrations
(0.2 µM, 2 µM or 40 µM) and allowed to invade for 90 min under drug cover.
After sporozoite double-staining 50 sporozoites were counted and classified as
invaded or non-invaded.

intrahepatic liver-stages by confocal microscopy and subsequently image-
processed with Zeiss Image Examiner we could clearly find that already at
reasonable early time points after sporozoite inoculation at 24 h and 6g
treatment 40 µM caused a significant developmental delay compared to
the control infection (Figure 3.12d; p<0.0001). More importantly, at later
time points during liver-stage development we observed a significant atten-
uation of liver-stage growth even at lower concentrations of 2 µM for both
compounds 6g and 5j tested (Figure 3.12e and f; p<0.0001). Interestingly,
when compared to Primaquine (a member of the 8-aminoquinoline group
of antimalarials exclusively active against the intrahepatic stages) at a
standard inhibitory concentration of 10 µM, compounds 6g and 5j exert
a more potent inhibition of malarial liver-stage growth with a calculated
IC90 at 60 h of 2.79 µM and 3.14 µM, respectively.
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Figure 3.12.: Establishment of exoerythrocytic stages is not impaired but
the development is significantly compromised in vitro. 24 h, 40 h or 60 h
after infection of HuH7 with infectious P. berghei sporozoites cells were fixed,
stained with anti-PbHSP70 and analyzed by immunofluorescence microscopy.
We could not observe any difference in numbers of exoerythrocytic forms (a-c)
only 6g applied at a concentration of 40 µM caused a prominent reduction of
liver-stage numbers at 40 h and 60 h after infection (b and c). Measurements
of liver-stage growth over time revealed that already at 24 h p.i. 40 µM of
6g caused a significant developmental delay compared to the DMSO control
(d). At later time points even 2 µM of 6g or 5j could arrest the growth
of exoerythrocytic stages significantly (e and f). PQ, Primaquine 10 µM;
p<0.0001.
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Figure 3.13.: Representative confocal pictures of malarial exoerythrocytic
stages at 24 h, 40 h and 60 h after infection with infectious PbANKA
sporozoites (scale bar 10 µM).

3.4. Conclusion
In summary, we showed that FAS II inhibitors qualify as antimalarial agents
against pre-erythrocytic malarial parasites. In addition, compared to the
gold-standard Primaquine, compounds 6g and 5j show at least a five-fold
enhanced inhibitory effect on both, the development of clinically-silent liver-
stages as well as disease-inducing erythrocytic blood-stage P. falciparum
parasites. Due to their low cell-toxicity, these substances can be considered
as most promising candidates to further evaluate their potency in in vivo
experimental models. Altogether, this work provides evidence for novel
concepts in chemical treatment of pre-erythrocytic malarial parasites and
the pharmacological management of Plasmodium infections.
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3.5. Materials and methods

3.5.1. Virtual screening and docking

The fragment-like library was designed according to the methodology
reported by Köster et al. (Köster et al., 2011). Lipinski acceptor, clogP,
TPSA were slightly modified in order to expand the chemical space of the
library, in particular the number of lipophilic compounds was increased.
All properties were calculated within the MOE software. A total of 13,200
ligands were minimized and protonated using the MMFF94x implemented
in MOE. Ligands were docked into the binding sites of two PfENR X-ray
structures (2O2Y, 2OOS) using the GOLD program. For the docking
procedure solvent molecules were removed and the binding site was defined
by a radius of 7 Åaround the respective inhibitor, considering NAD+ as
a part of the protein. Docking runs were performed applying 50 Genetic
Algorithm (GA) runs, a search efficiency of 50 %, and the Astex Statistical
Potential (ASP) scoring function (Mooij and Verdonk, 2005). For each
compound 5 best-scored solutions were further evaluated. After clustering
the poses according to root-mean-square-deviation (RMSD) < 2 Å, the
results were locally minimized, re-scored and re-ranked by DSX using
the per-atom-score as indicator. Top ranked 200 solutions were visually
inspected. Graphical representations of protein-ligand interactions were
prepared using PyMOL (Schrödinger, LLC, 2010).
For the creation of a combinatorial library of aryloxyalkylbenzamides

the ZINC database was screened for commercially available derivatives of
salicylic acid and bromoethylethers applying the fconv (Neudert and Klebe,
2011b) substructure search. We were able to retrieve 3068 salicylic acid
and 190 bromoethylether non-redundant derivatives. The hydroxyl group
of the carboxy moiety was defined as linker L1 and the bromine atom as
linker L2, respectively. All fragments were connected via a nitrogen atom
(Figure 3.14) using the combinatorial routine of CoLibri (BioSolveIT).
The computed library of about 580,000 molecules was filtered using a
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MW threshold < 450 Da resulting in nearly 110,000 compounds ready for
screening. The parameters for the initial docking were set to 30 GA runs,
search efficiency 30 %, ASP scoring function, and only the best-scored pose
per compound was considered for further evaluation. The DSX per-atom-
score was considered in the re-ranking procedure. Top 10,000 compounds
were used for a next docking run. All next settings for the docking and the
analysis of results were set to those described for the fragment-like library
screening.

Figure 3.14.: Schematic illustration of the combinatorial library genera-
tion for salicylamides.
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4
Chapter 4.

Virtual Screening for
Pyruvoyltetrahydropterin
Synthase Scaffolds

4.1. Introduction

4.1.1. Folate metabolism in P. falciparum

Tetrahydrofolate (THF) plays an important role in the metabolism of
almost all living organisms. It is the major one-carbon carrier in cells and
serves as a cofactor in methyltransferase reactions. Cellular processes, such
as synthesis of nucleotides for DNA replication, synthesis of amino acids
glycine and methionine, and metabolism of histidine, glutamic acid and
serine, rely on the availability of THF (Ragsdale, 2008). THF is a crucial
cofactor in metabolism, which in turn serves as a booster for growth and
rapid cell division like those in tumors, bacteria, and malarial parasites.
Hence, the folate biosynthetic pathway has been successfully exploited as
a target in anti-cancer and anti-infective drug design (Nzila et al., 2005).
De novo synthesis of 7,8-dihydrofolate (DHF) (Figure 4.1), the precursor

of THF, is absent in mammalian cells. On the contrary, plants, most
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bacteria as well as unicellular eukaryotes are able to synthesize THF.
For unclear reasons, some parasitic protozoa such as Plasmodium and
Toxoplasma have both, the folate biosynthetic and the salvage pathways
(Hyde et al., 2008). The folate pathway is depicted in Figure 4.2 a.

Figure 4.1.: Structure of DHF and its components. Pterin: 2-amino-4-
hydroxy-7,8-dihydropteridine; pAB: p-aminobenzoic acid. Adapted from
(Nzila et al., 2005)

4.1.2. Antifolates

Inhibitors of the folate biosynthetic pathway are effective agents for pro-
phylaxis and treatment of malaria. They are classified into two classes:
dihydropteroate synthase (DHPS) inhibitors (class I antifolates) and di-
hydrofolate reductase (DHFR) inhibitors (class II antifolates). DHPS
inhibitors, such as sulfadoxine, sulfalene, and dapsone, are sulfur-based
drugs and show as single drug administration only a weak antiparasitic
effect, but they display in combination with DHFR inhibitors synergistic
effects. Well known DHFR inhibitors are pyrimethamine, and the prodrugs
proguanil and chlorproguanil that are used as monotherapy and in combi-
nation with other drugs. The brand names of antifolates and antifolate
combinations are summarized in Table 4.1. More detailed information
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Figure 4.2.: Conventional folate (a) and biopterin (b) biosynthetic
pathways. Pathway (c) shows the PfPTPS catalyzed reaction.
Abbreviations: GTP, guanosine triphosphate; GTP-CH, GTP-
cyclohydrolase I; DHN-PPP, 7,8-dihydroneopterin triphosphate; DHN,
7,8-dihydroneopterin; DHNA, dihydroneopterin aldolase; DHPT, 7,8-
dihydro-6-hydroxymethylpterin; HPPK, 6-hydroxymethyl-dihydropterin
pyrophosphokinase; DHPT-PP, 7,8-dihydro-6-hydroxymethylpterin
pyrophosphate; DHPS, dihydropteroate synthase; DHP, 7,8 dihy-
dropteroate; DHFS, dihydrofolate synthase; DHF, 7,8-dihydrofolate;
FPGS, folylpoly-gamma-glutamate synthetase; DHFR, dihydrofolate
reductase; THF, tetrahydrofolate; Glu, glutamate; PTPS, pyruvoyl-
tetrahydropterin synthase; PTP, 6-pyruvoyltetrahydropterin; SR,
sepiapterin reductase; THP, tetrahydrobiopterin.

DHPS, DHFR are key enzymes that are inhibited by commonly used an-
tifolates (section 4.1.2).
1 DHFR plays a central role in the folate pathway and has three functions: control
of the de novo synthesis, salvage of exogenous folate derivatives, and recycling of
DHF (Nzila, 2006a).
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about medicinal chemistry, mechanism of action and spread of resistances
of antifolates can be found elsewhere (Schlitzer, 2007; Nzila, 2006a,b).

Table 4.1.: Commonly used antimalarials with antifolate activity.

brand name DHPS inhibitor DHFR inhibitor
Paludrine R© - proguanil
Daraprim R© - pyrimethamine
Fansidar R© sulfadoxine pyrimethamine
Metakelfin R© sulfalene pyrimethamine
Maloprim R© dapsone pyrimethamine
LapDap R© dapsone proguanil

4.1.3. Pyruvoyltetrahydropterin synthase orthologue of
P. falciparum

Following statement regarding the folate biosynthesis can be found in the
P. falciparum genome paper: “All but one of the enzymes dihydroneopterin
aldolase (DHNA) required for de novo synthesis of folate from GTP were
identified” (Gardner et al., 2002). The reasons remain unclear, whether
the dhna gene was missed by the BLAST (Altschul, 1997) search or the
respective gene is missing in the genome of P. falciparum. The lack of
knowledge how Plasmodium parasites are able to fill the gap in the folate
biosynthetic pathway lead the group of John Hyde to the discovery of a
pyruvoyltetrahydropterin synthase (PTPS) orthologue using both bioinfor-
matic methods and biochemical assay techniques (Dittrich et al., 2008).
It is worth mentioning that the success of their work was supported by
bioinformatic tools which make use of secondary and tertiary structure
elements, since sequence-based approaches failed to deliver any statistically
significant hits.
Originally, PTPS is embedded in the de novo biosynthesis of tetrahydro-
biopterin (BH4). BH4 is required as a cofactor for aromatic amino acid
hydrolases, for all NO synthases and glyceryl-ether monooxygenases (Thöny
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et al., 2000). PTPS catalyzes the reaction of 7,8-dihydroneopterin triphos-
phate (DHN-PPP) to 6-pyruvoyltetrahydropterin (PTP) (Figure 4.2 b).
The difference between the conventional PTPS enzyme and the PTPS
orthologue found in P. falciparum is an active site mutation of a cysteine
residue to glutamate leading to different catalytic properties of the enzyme.
The respective glutamate is labeled as Glu161 in the PfPTPS binding site
(Figure 4.4). Interestingly, PTPS substrate DHN-PPP is closely related to
that of DHNA (Figure 4.3). Most likely the mutation and the substrate
similarity give rise to the ability of PfPTPS to produce both PTP, an
intermediate of the BH4 pathway, and 7,8-dihydro-6-hydroxymethylpterin
(DHPT), an intermediate of the folate pathway, from the precursor DHN-
PPP (Figure 4.2 c). Regarding the equilibrium it has been shown that
the balance is shifted to the side of DHPT formation due to the higher
efficiency of PfPTPS(Dittrich et al., 2008).
Since, it has been shown that PTPS is an integral part of the Plasmodium
folate pathway and its inhibition is likely to block parasite growth, a VS
was performed in order to identify scaffolds as putatitive inhibitors of this
enzyme.

Figure 4.3.: Substrates and products of conventional DHNA and PTPS
catalyzed reactions.
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4.1.4. Binding site of Pf PTPS
The crystal structure of PfPTPS reveals a rather small, zinc containing
active site. The volume of the binding site occupied by the native lig-
and is about 300 Å3 (Relibase+). Biopterin is bound in the interface
between two protein chains. The zinc ion is chelated by oxygens of the 1,2-
dihydroxypropyl moiety of biopterin, hence qualifying it as a zinc-binding
group (ZBG). The interactions of biopterin with the protein chains are
not only rich in hydrogen bonds but perpendicular the heterocyclic ring
system also forms π − π-stacking interactions to adjacent phenylalanine
and tyrosine side chains (Figure 4.4).
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Figure 4.4.: (a) PfPTPS binding site with biopterin. Biopterin binds in
the interface between two protein chains (white: chain A, orange: chain
B.) The 1H -pteridin-4-one moiety forms two hydrogen bonds to the
carboxyl group of Glu128B and one to the hydroxyl group of Thr127B.
Three hydrogen bonds are established to the backbone atoms of Ile62A,
Phe64A, and Thr127B. In addition, face-to-face aromatic interactions
to the side chains of Tyr60A and Phe64A are formed. A water molecule
occupies a small subpocket; up to now any function has been attributed
to this water molecule in literature.

4.2. Targeted Library Design

A ligand library has been created prior to VS considering both properties
of the PfPTPS binding site which are: The small volume and the presence
of a zinc ion. Regarding the pocket size of PfPTPS, the fragment-like
subset of the ZINC database (Irwin and Shoichet, 2006) was selected as
a matter of choice for the ligand library, although a general definition
for fragment-like compounds is absent in literature. The so-called “Rule
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of Three” (“RO3”) (Congreve et al., 2003) provides filter criteria for the
construction of fragment libraries: MW is < 300, number of hydrogen-bond
donor (HBD)s is ≤ 3, number of hydrogen-bond acceptor (HBA)s is ≤ 3,
and clogP is ≤ 3. A more recent study demonstrates that expansions of
the “RO3” thresholds lead to an increase of hit rates as well as coverage
of a large variety of chemotypes (Köster et al., 2011). However, the
criteria of the ZINC database for fragment-like compounds deviate from
the previously described rules and are defined as follows: MW ≤ 250, clogP
≤ 3.5, and number of rotatable bonds ≤ 5. This library has been screened
for known ZBGs (Figure 4.5) using the substructure search implemented in
fconv (Neudert and Klebe, 2011b). Compounds which contained at least
one ZBG were allowed to pass the filter. Starting initially with 413,796
entries, the library size was reduced to 12,068 molecules. Redundant entries
were subsequently discarded, resulting in a ligand set of 4,140 structurally
unique compounds. After all, the ligands were protonated and minimized
by MOE using the MMFF94x.
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Figure 4.5.: Seven ZBGs were used to extract molecules from the ZINC
fragment-like subset for the docking experiments. Cyclic as well as non-
cyclic groups were considered from literature (Puerta et al., 2006; Klebe,
2009). Worth mentioning, cyclic ZBGs have been designed in order to
overcome the limitations, such as reactivity or metabolic instability of
non-cyclic zinc-chelating groups (Puerta et al., 2006).

4.3. Docking Setup
For the docking studies a PfPTPS crystal structure (PDB 1Y13) comprising
a resolution of 2.2 Å was used. The receptor site was defined by applying
a radius of 8.0 Å around the native ligand biopterin in the active site. All
ligands (section 4.2) were docked into the pocket using the GOLD program
(Jones et al., 1997). Important parameters are summarized in Table 4.2.
Five top ranked docking solution for each compound were generated and
subsequently clustered taking a RMSD of 2.0 Å of all ligand atoms as
cluster criterion. All solution were re-scored and re-ranked using the DSX
per-atom-score (Neudert and Klebe, 2011a). Out of the generated solutions
200 top ranked docking poses were visually inspected and nine compounds
were selected for further investigation (Figure 4.6).
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Table 4.2.: Parameters for GOLD used in the PfPTPS screening (PDB
1Y13).

Parameter Value
Binding site 8.0 Å around biopterin
GA runs 30
Scoring function ASP (Mooij and Verdonk, 2005)
Top N solutions 5
Search efficiency 100 %
Early termination off

4.4. Results and Discussion
All nine selected structures provide apart from the ZBG a HBD group most
likely required for the interaction with the acidic side chain of Glu128B
at the bottom of the binding pocket, as it has been also observed for the
native ligand. For the design of high affinity binders, the interaction of
a strong HBD functionality, e.g. a positively charged basic group, with
Glu128B is most likely as much important as the key interaction to the
zinc ion.
Four selected compounds (Figure 4.6 b–e) incorporating an endo cyclic
ZBG share the 1-hydroxy-2-oxo-3,4-dihydroquinoline core structure in
common. The docking pose of one derivative (Figure 4.7 a) indicates
hydrogen bonding of the amidine moiety to the side chain of Glu128B and
in addition to the backbone carbonyl of Ile62A.
One screening hit (Figure 4.6 d), a 3-aminoisoquinoline derivative, provides
an exocyclic ZBG at position 7, it therefore shows a different substitution
pattern to the latter compounds. The hit list also comprises three molecules
with a sulfonamide moiety as ZBG (Figure 4.6 g–i). In Figure 4.7 b the
docking solution of a representative compound is depicted. The nitrogen
atom of the 3-carboxamide moiety forms a hydrogen bond to Glu128B and
the oxygen atom accepts hydrogens from both, the backbone nitrogen and
the hydroxy group, of Thr127B.
The last compound to mention (Figure 4.6j) provides an interesting three-
armed substitution pattern of benzene. This particular 1,3,5-substituted
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(a) biopterin

(b) (c) (d)

(e) (f)

(g) (h) (i)

(j)

Figure 4.6.: Nine fragment-like compounds (b-j) selected from the
PfPTPS virtual screening.
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benzene derivative has a ZBG at position 1, a methylene carboxamidine
group as a HBD at position 3, and a chlorine atom at position 5, which
might be capable to displace the water molecule from the binding site
(Figure 4.7 c).

Summing up, inhibition of the folate pathway up-stream the key enzyme
DHFR, e.g. the DHPS, brings about synergistic effects, thereby benefits for
malaria treatment. Following this strategy, inhibition of PfPTPS should
be associated with a similar result. Up to now no inhibitors for PfPTPS
have been reported in literature. Using a targeted fragment-like library
of commercially available compounds for the PfPTPS screening resulted
in selection of nine promising hits. Their predicted binding has to be
validated experimentally.
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(a) (b)

(c)

Figure 4.7.: Docking poses for three (Figure 4.6 b, g, j) selected virtual
screening hits are shown. Hydrogen bonds which contribute to the
inhibitor binding mode are depicted as red dashed lines and the respective
amino acids are labeled. A water molecule is shown in the binding site
for the sake of completeness, but it has been discarded for the docking
experiments.
(c) The distance between the chlorine atom and the water molecule
is 2.0 Å, indicating a clash between the atoms. The predicted ligand
binding mode would lead to a displacement of the water molecule by
the chlorine atom.

91





5
Chapter 5.

Virtual Screening for IspD
Scaffolds

5.1. Inroductory remarks
The present study was carried out in cooperation with Thomas Rick-
meyer during his internship and Kan Fu who performed the experimental
measurements.

5.2. Motivation
Isoprenoids play essential roles in primary and secondary metabolism in all
living organisms, including thousands of mono-, sesqui-, di-, and triterpenes,
sterols, and carotenoids (Sacchettini, 1997). The fundamental precursors of
isoprenoids are isopentenyl diphosphate (IPP) and its isomer dimethylallyl
diphosphate (DMAPP). IPP can be produced via the mevalonate (Beytía
and Porter, 1976) or the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-
erythritol 4-phosphate (DXP/MEP) (Rohmer, 1999) pathways. There
are several reasons which make the DXP/MEP pathway attractive for
the development of new antibacterial and antimalarial drugs. First, a
wide range of pathogenic organisms such as M. tuberculosis, P. falciparum
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synthesize IPP via this pathway. Second, the DXP/MEP pathway is
absent in mammalian cells. Third, the DXP/MEP pathway comprises
eight distinct enzymes, therefore providing a large amount of targets which
can be exploited for synergistic effects by inhibiting more than one enzyme.
An example for the DXP/MEP pathway inhibition is the well-studied

inhibitor fosmidomycin (Figure 5.1a). Fosmidomycin inhibits the second
reaction catalyzed by 1-desoxy-D-xylulose-5-phosphate reductoisomerase
(IspC). The inhibitor shows antibacterial, including multidrug-resistant
strains (Davey et al., 2011), as well as antimalarials effects. It displays an
IC50 for IspC from E. coli at 30 nM, from M. tuberculosis at 310 nM, and
from P. falciparum at 35 nM (Jawaid et al., 2009; Schlitzer, 2007). The
parasite growth in case of P. falciparum is inhibited at nanomolar IC50

values (Schlitzer, 2007). In an effort to improve the potency and bioavail-
ability of fosmidomycin for the treatment of malaria structural variations
have been performed, leading to the compound FR-900098 which displays
higher activity against the Plasmodium parasites (Figure 5.1b, Jomaa
(1999)). Prodrug strategies were successfully applied to increase the effi-
cacy of FR-900098 in a murine malaria model (Figure 5.1c, Ortmann et al.
(2003)). These examples demonstrate that inhibition of the DXP/MEP
pathway turns out to be an effective strategy for the development of
effective antibacterials as well as antimalarials.
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(a) Fosmidomycin (b) FR900098

(c) SCHL-7166

Figure 5.1.: Inhibitors of the IspC.

5.3. IspD as drug target
For a better understanding of the structural determinants for structure-
based drug design (SBDD) 4-diphosphocytidyl-2-C-methylerythritol syn-
thetase (IspD) from E. coli has been selected as model protein. The term
IspD will refer in the following to the enzyme of E. coli. IspD catalyzes the
third reaction step in the DXP/MEP pathway converting 2-C-methyl-D-
erythritol 4-phosphate (MEP) to 4-diphosphocytidyl-2-C-methylerythritol
(CDP-ME) (Figure 5.2). Up to now seven protein crystal structures of
IspD have been published. Four structures are in the apo form, two are
complexed with the native substrate or the product in the active site
respectively. One crystal structure contains the 1,2-propanediol molecule
in the active site of IspD mimicking the binding mode of methylerythritol
(ME) (Behnen et al., 2012). Thus, none of the published crystal structures
of IspD from E. coli accommodate any known inhibitor in the active site.
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Figure 5.2.: IspD catalyzed reaction step.

5.4. Active site of IspD
In this section the exemplified active site originates from the IspD crystal
structure containing CDP-ME and a magnesium ion, which is essentially
required for the cytidyltransferase activity (PDB 1INI, resolution 1.8 Å,
Richard et al. (2001)). This structure was also utilized for the VS.
IspD is organized as a homodimer. The monomeric units are clung

together by a subdomain which resembles a curved arm. The active
site is between the interface and MEP as well as phosphate pockets are
partly formed by the interlocking arms (Figure 5.3a). The substrate
specificity for the pyrimidine base cytosine is achieved via the hydrogen
bond interactions and the steric constrictions. The cytosine moiety shows
hydrogen bonds to the backbone atoms of Ala14A, Ala15A, Gly82A, and
Asp83A, and to the hydroxyl group of Ser88A. The two hydroxyl groups
of the ribose display hydrogen bonds to the backbone carbonyl of Pro13A
and backbone amide of Gly16A. The phosphate groups are bound in an
arginine and lycine rich region. They participate in hydrogen bonds to
the side chains of Arg20A, Lys27A, and Arg157B. Last substructure of
the CDP-ME molecule to mention is ME, which interacts with backbone
atoms of Thr140B, Arg157B, Thr189 and with the side chains of Asp106A
and Arg109A respectively (Figure 5.3b).
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ribose

phosphate (CTP)
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Figure 5.3.: IspD homodimer and its active site. (a) The active site is located
adjacent to the interface. For reasons of clarity the surface of the binding
site is colored according to the moieties it interacts with: cytosine in yellow,
ribose in red, ME in orange, phosphate groups of the CDP-ME molecule
in dark blue. The surface area which interacts with the phosphates of the
substrate cytidine triphosphate (CTP) is depicted in light blue. The small
yellow sphere represents the magnesium ion complexed by the phosphate
groups. (b) Hydrogen bond interactions between IspD and bound CDP-ME
are depicted as red dashed lines.
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5.5. Docking setup and results
Initial studies indicated that lead-like compounds are suitable for docking
into the pocket of IspD, mostly due to their size. Drug-like (Lipinski, 2000)
molecules were too large and bulky to fit into the binding pocket accord-
ingly. Therefore, nearly four million compounds were retrieved from the
ZINC (Irwin and Shoichet, 2006) considering the lead-like subset. Worth
mentioning, the used ligand data included also fragment-like compounds
(section 4.2) and the ZINC content is very dynamic. The rules for subset
definition have been also modified since the retrieval of the compounds
used for the docking. Protonation states were assigned and minimization
of the ligands was performed by MOE using the MMFF94x.

The architecture of the used protein structure and its respective active
site has been described in the previous section 5.4. The native ligand
CDP-ME, ions and water molecules were removed from the binding site
prior to docking. Protein residues coinciding with a radius of 7 Å around
the native reaction product CDP-ME were included in the receptor site
definition, and contributing residues originated from both chains of the
homodimer. Key parameters for the docking studies using GOLD (Jones
et al., 1997) are summarized in Table 5.1.

Table 5.1.: Parameters for GOLD used in the IspD screening (PDB 1INI).

Parameter Value
Binding site 7.0 Å around CDP-ME
GA runs 10
Scoring function ASP (Mooij and Verdonk, 2005)
Top N solutions 1
Search efficiency 30 %
Early termination on (top 5 solutions & rmsd tolerance 1.5 Å)
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Nearly 40,000 best ASP scored compounds were re-scored and re-ranked
by DSX (Neudert and Klebe, 2011a). A visual inspection of the top 200
compounds lead to the selection of six instantly available compounds
(Figure 5.4a-e, g) for experimental testing (section 5.6). One molecule
(Figure 5.4f) comprised a promising docking pose, in which the oxygen
atoms of the sulfonamide group are positioned in a similar fashion as the
oxygens of diphosphate moiety of CDP-ME. Owing to the fact that this
compound is not directly available for purchase, a synthesis is planned in
collaboration with the group of Professor Schlitzer.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.4.: IspD virtual screening hits ordered according to the DSX
ranking.
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5.6. Experimental results
The experimental enzyme binding assay of six purchased ligands was
performed by Kan Fu at the Institute of Organic Chemistry, University
of Frankfurt, in collaboration with Dr. Marcus Maurer and Dr. Krishna
Saxena from the group of Prof. Harald Schwalbe. Three distinct nuclear
magnetic resonance (NMR) techniques were applied:

− saturation transfer difference (STD) (Mayer and Meyer, 1999),

− water ligand observation by gradient spectroscopy (WaterLOGSY)
(Dalvit et al., 2000), and

− T2 method (Hajduk et al., 1997).

These preliminary experiments allowed the estimation of the binding
strength of the selected ligands (Table 5.2). Two compounds could not
be measured due to insufficient solubility and one compound showed no
binding. Interestingly, the top ranked compound displayed the highest
binding affinity amongst the VS hits. The docking pose is visualized in
Figure 5.5. Two ligands showed only weak binding. The explicit Ki and/or
IC50 values of the active ligands are planned to be characterized in near
future.

Table 5.2.: Experimental binding of IspD hits. Compounds are labeled
according to their appearance in Figure 5.4.

Compound ZINC id DSX rank Binding
a 65381879 1 moderate
b 19148434 32 weak
c 4891045 40 (poor solubility)
d 4872921 53 no binding
e 4139891 64 (poor solubility)
f 49739899 144 (not available)
g 5329261 175 weak
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5. Virtual Screening for IspD Scaffolds

Figure 5.5.: Top ranked docking pose emerged from the IspD VS is
depicted. The putative binding mode exhibits two hydrogen bonds to
the backbone amide of Ala180A and to the backbone carbonyl of Pro13A.
The dihydroquinoline-2-one moiety occupies the cystosine and ribose
pockets. The triazol and the phenylethyl moieties extend from the region
of phosphate pocket to the ME pocket. The color code of CDP-ME
subpockets has been adapted from Figure 5.3a
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Glossary

Active site Active sites are in most cases depressions on protein surface.
The active site is that region where substrates bind which leads in
case of enzymes to a catalytic reaction leading to one or several
products. Binding of a substrate to the active site of a receptor
protein leads to signal transduction. 22, 43, 105

Binding pocket see binding site. 4, 38

Binding site The region of a protein where a ligand binds, but it is not
necessarily an active site. 4, 37, 105

Cavity A depression on the protein surface. It can be an active site or a
binding site. 6, 38

Merck molecular force field 94x This force field was parameterized for
gas phase small organic molecules in medicinal chemistry. 76, 86, 98

Virtual screening A computational method that screens huge libraries of
small molecules for a putative binder with respect to a particular
target and/or model. 60, 89, 100
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