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Subband population and electron subband mobility for two 
interacting Si- -doping layers in GaAs 

P.M.  K o e n r a a d  a, A . C . L .  H e e s s e l s  a, F . A . P .  B l o m  a, J . A . A . J .  P e r e n b o o m  b and  

J . H .  W o l t e r  a 
aDepartment of Physics, Eindhoven University of Technology, The Netherlands 
bHigh Field Magnet Laboratory, University of Nijmegen, The Netherlands 

In this paper we present measurements of the subband population and quantum mobility in the various subbands of 
GaAs samples that contain two coupled Si-~-layers and of GaAs samples that contain a single ~-doping layer which was 
increased in thickness by thermal annealing. The measured subband population will be compared with the subband 
population obtained from self-consistent solutions of the coupled Poisson and Schr6dinger equation. The experimental 
results on both types of structures are compared and show that the population of the higher subbands is not sensitive to the 
charge distribution of the ionized donors in the center of the confining potential. The quantum mobility in the highest 
subbands on the contrary is sensitive to the distribution of the ionized donors. 

1. Introduction 

With growth techniques like Molecular Beam 
Epi taxy (MBE)  and Chemical Beam Epitaxy 
(CBE)  it is possible to control the concentration 
and doping profile at an atomic level. With 
present-day techniques one can easily obtain 

doping profiles with a thickness of 20/~ or less 
by growing at 480°C or less. Because the width 
of the resulting confining potential  of the ionized 
donors  is in the order  of  200/~, quantum states 
are formed in the potential  well. When the 
donor  concentrat ion in the doping layer is larger 
than 0.3 × 1012, metallic conduction occ.urs in the 
layer and thus a degenerate  2-dimensional elec- 
tron gas is formed.  Normally more  than one 
subband is populated in these structures. The 
charge distribution of the electrons over  the 
subbands is determined by the width of the 
doping profile. 

The  mobility of the electrons in ~-doped struc- 
tures is very low compared  to G a A s /  
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AlxGal_xAs heterostructures because of the 
strong overlap between the electrons and the 
ionized donors in ~-doped structures. Due  to the 
fact that  the wavefunction in each subband is 
different the overlap of the wavefunction with 
the ionized donors will not be the same in each 
subband.  Thus the mobility also differs for each 
subband.  

In this paper  we have studied the subband 
populat ion in GaAs  samples containing two 20/~ 
thick Si~-doping layers in close proximity of 
another.  Our  self-consistent calculations show 
that  coupling between the two layers is still 
strong in structures where the separation is 

200 ~ .  We have determined the coupling be- 
tween the two ~-doped layers  f rom the subband 
populat ion determined by Shubnikov-de  Haas  
(SdH) measurements .  The effect of the coupling 
between the ~-layers on the mobility of the 
electrons in the various subbands was also 
studied by determination of the quantum mobili- 
ty f rom the SdH oscillations. 

These results on subband population and 
mobili ty will be compared  with results obtained 
on G a A s  structures which contained only one 
~-doping spike. The width of the confining 
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potential in this single g-doped structure was 
increased by thermal annealing. From the com- 
parison of the subband population and the 
mobility in both type of structures we can de- 
termine the sensitivity of the electric transport 
properties on the distribution of the ionized 
donors. 

Kido et al. [1] also studied GaAs structures 
containing two adjacent Si-8-doping in GaAs. 
They found that the subband population in their 
double doped structures was equal to the sub- 
band population of a GaAs structure containing 
a single thick Si-~-layer. 
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2. Theory 

We calculated the confining potential, subband 
energies and envelope wavefunctions self-consis- 
tently by solving simultaneously the coupled 
Poisson and Schr6dinger equation. Due to the 
high electron density in a g-doped structure more 
than one subband is populated. Therefore  we 
have to solve the following one-dimensional 
Shr6dinger equation for each subband separ- 
ately: 

2m* Oz 2 + g ( z )  ~bi(z ) = g i ~ ( z  ) (1) 

where i is the subband index. The potential U(z)  
consists of only one term in the case of g-doped 
structures and is given by the Poisson equation 

0 2 ep ( z )  
Oz 2 U ( z ) -  (2) 

E 0 E r 

where p(z )  is the charge distribution which is the 
sum of the ionized donors, the electrons and the 
charged background impurities. The equations 
are coupled because ~Oi(z), U(z)  and E i appear in 
both equations. The nonparabolicity of the F- 
conduction is taken into account in these calcula- 
tions. The exchange and correlation potential 
can be neglected in g-doped structures with high 
doping concentrations [2]. 

Figure 1 shows the probability distribution 
[~/i(Z)[ 2, E i and U(z)  in a g-doped structure that 
contains 2.5 x 1012 cm -2 electrons, two g-doping 

z (A) 

Fig. 1. The probability distribution of the electrons in the 
various subbands (solid line) and the electrostatic potential 
(dashed line) in a GaAs structure containing two adjacent 
Si-8-1ayers. The total electron density is 2.5 x 1012 cm 2 and 
the donor concentration is equal in the two doping layers that 
are separated by 120/~. 

layers of 20 ]~ thick separated at 120 .~ and a 
background impurity concentration of 10 ~5 cm -3. 
The figure clearly shows that the two g-layers 
give rise to a single confining potential. 

In fig. 2 we have plotted the subband energy in 
the same structure as described above as a func- 
tion of the separation of the doping layers. The 
dependence of the subband energy on the dis- 

1 2 5  . . . . . . . . . . . . . . . . . . . . . . . .  
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Fig. 2. The subband energy in a double Si-~-doped GaAs 
structure with an electron density of 2.5 × 1012 cm ~ as a 
function of the separation between the two doping layers. 
Ebar,er is the barrier height between the two ~-doping layers. 
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tance clearly resembles the dependence of the 
energy levels in two coupled quantum wells as 
described by Merzbacher [3]. If the double well 
would describe a di-atomic molecule then the 
even subbands would correspond to the bonding 
states and the odd states to the anti-bonding 
states. At  a separation of 220/~ we observe that 
the i = 0 and i = 1 subbands have become almost 
degenerate.  Another  way to represent this de- 
generacy is by defining the wavefunctions 

= [ g 0 ( z )  +  01(z)1/q  

and 

' e r ( z )  = [ g 0 ( z )  - 

which correspond to the electrons trapped in the 
left or the right potential well of the g-doping 
layer, respectively. 

3. Experiments 

The  samples were grown at 480°C in a com- 
puter-controlled Varian MBE system. We grew 
GaAs samples containing two Si-g-layers sepa- 
rated by 20A,  40A,  80/k, 120A and 160A, 
respectively. The intended doping concentration 
was 2.5 × 1012 cm -2 per g-layer. We also grew 
two samples containing either a single doping 
layer of 2.5 x 1012 cm -2 or 5 × 1012 cm -2. These 
structures correspond to the cases of infinite 
separation of the g-layers and no separation of 
the g-layers, respectively. In order  to obtain a 
planar doping profile on a smooth surface the 
growth of the GaAs was interrupted by closing 
the Ga shutter 10s before opening the Si 
furnace. 

The structure with a single doping layer of 
5 × 1012 cm -2 was used in the annealing experi- 
ments. A number of samples from this wafer 
were annealed in a Rapid Thermal Annealer  
(RTA)  at 800°C for 3s ,  10s, 30s, 100s and 
300 s, respectively. The samples were annealed 
face down on a Si-wafer in a controlled N 2 
atmosphere.  

The subband population can be determined 
from Shubnikov-de  Haas measurements. We 

carried out measurements on Hall bar shaped 
samples in magnetic fields up to 20 T. The weak 
oscillations in Pxx and Pxy w e r e  resolved by 
measuring dpxx/dB and dpxr/dB with a modula- 
tion field of 18 mT at a frequency of 21.3 Hz. 
The subband population was determined from 
the Fourier  transform of dpxx/dB and dPxy/dB. 
The doping concentration in all the samples with 
a double g-layer was close to the intended dop- 
ing concentration of 5 x 1012 cm -z. In the two 
samples with a single g-doping layer we found 
that the width of the doping profile was equal to 
20 • or less. 

The SdH oscillations of a single subband can 
be separated by filtering the corresponding peak 
in the frequency domain of the Fourier trans- 
form. The SdH oscillations of a single subband 
can then be obtained by taking the inverse 
Fourier  transform of this peak. The quantum or 
single-particle mobility of such a single subband 
was determined from a so-called Dingle plot [4]. 
In such a plot the logarithmetic amplitude of the 
SdH oscillations is plotted against 1/B. The 
slope of the straight line through the data points 
is equal to "rr/tXq. Normally for each subband we 
have at least 6 to 8 data points to determine the 
quantum mobility. The accuracy for the quantum 
mobility is about 10% in this case. When the 
electron concentration in a subband is smaller 
than 0.3 × 1012 c m  -2 the number of data points 
reduces to 2 or 3 and thus the accuracy will be 
less. 

4. Discussion 

In fig. 3(A) we have plotted the measured 
subband population as a function of the distance 
between the doping layers. In the same figure we 
also show the calculated subband population as 
determined by the self-consistent calculations. 
We observe a very nice accordance between 
theory and experiment. The structure with the 
doping layers 160/~ apart showed only one peak 
in the high-density region of the Fourier trans- 
form. This single peak actually is the overlap of 
the two peaks of the i = 0 and i -- 1 levels which 
have become degenerate at this distance of the 
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Fig. 3. (A) Subband population in the double ~-doped struc- 
ture. The solid line represents the calculated subband popula- 
tion. (B) Quantum subband mobility in the double ~-doped 
structure. The dashed line is only to guide the eye. 

doping layers. This result is contrary to the 
results of Kido et al. [1] who conclude that two 
adjacent 8-layers behave, up to distances of 
300 A, as a single doping layer. 

In fig. 4(A) we show the subband population 
in the annealed samples as a function of the 
thickness of the doping layer. The thickness of 
the doping layer was determined from the fit of 
the measured subband population to subband 
population as obtained from calculations where 
we used the doping profile thickness as the free 
parameter .  The thickness we give is the full- 
width-half-maximum of the Gauss curve describ- 
ing the doping profile. The figure clearly shows 
that we do not observe any degenerate levels in 
the annealed sample. This was of course to be 
expected for an uncoupled ~-layer. 

Comparisons of the measured subband popu- 
lation in both types of structures (see fig. 5) 
shows that the population in the i = 1, i = 2 and 
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Fig. 4. (A) Subband population in the annealed structure 
containing a single doping layer. The solid line represents the 
calculated subband population. (B) Quantum subband 
mobility in the annealed structure containing a single doping 
layer. The dashed line is only to guide the eye. 

i = 3 subband is almost equal for the single and 
double ~-doped structures. The difference is only 
found in the i ' = 0 level. This implies that for the 
higher levels it does not matter  what the poten- 
tial shape in the center of the potential well 
looks like. Thus the subband population of the 
higher levels is not sensitive to the charge dis- 
tribution in the center of the well. It is very 
appealing that we find the same subband popula- 
tion for the higher subbands in a single-doped 
structure and a double-doped structure where 
the distance between the two adjacent doping 
profiles is equal to full-width-half-maximum of 
the Gaussian profile in the single-doped 
structure. 

In fig. 3(B) we show the quantum mobility in 
the subbands for the structure with two adjacent 
doping layers. When the two doping layers are 
separated enough we observe that the mobility in 
the i = 0 and the i = 1 subband become equal. 
This is to be expected when the two levels 
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Fig. 5. The subband population in the structure containing 
two doping layers (open symbols) and in the annealed struc- 
ture containing a single doping layer (filled symbols). The 
lines represent the calculated subband population. The top 
axis gives the FWHM of the Gaussian doping profile in the 
annealed sample. The bottom axis gives the separation of the 
two doping layers in the double-doped structure. 

h igher  subbands  the quan tum subband  mobili ty 
in these subbands  is sensitive to the actual dop- 
ing profile in the center  o f  the well. 

5. Conclusions 

O u r  measu remen t s  show that  in samples with 
two doping  layers 20 ,~ thick and a doping con- 
cent ra t ion  of  2.5 x 10 ~a cm -2 the i = 0 and i -- 1 
subband  b e c o m e  degenera te  at a separat ion of  
160/~.  The  measuremen t s  also show that  the 
subband  popula t ion  of  the higher  levels is not  
sensitive to the charge distr ibution because we 
observe  the same subband  popula t ion  for  the 
i = 1, i = 2 and i = 3 levels in samples with the 
dop ing  ei ther  distr ibuted over  two doping  layers 
or  with one  central  doping  spike. Con t ra ry  to the 
subband  popula t ion  the subband  quan tum 
mobil i ty  in i = 2 and i = 3 is dependen t  on the 
dis tr ibut ion of  the ionized donors .  

b e c o m e  degenera te .  The  qua n t um  mobili ty in 
the  i = 2 and to some extent  (not very accurate) 
also the i = 3 subband  shows a decreasing mobili- 
ty when  the doping  layers are separated.  

In  fig. 4(B)  the mobili ty as a funct ion of  the 
thickness of  the doping  layer  is shown. It is 
evident  that  the mobil i ty in all subbands  rapidly 
decreases  to the i = 0 value for  all the subbands.  
In  the samples with the thickest  doping profile 
the q u a n t u m  mobil i ty is the same in all sub- 
bands.  

C o m p a r i n g  again the results on  the single ~- 
d o p e d  and double  ~-doped structure we see that  
in the doub le -doped  structure the mobil i ty in the 
i = 0 and i = 1 subbands  decreases comparab le  to 
the mobil i ty in the annealed single ~-doped 
structures.  But  the mobil i ty in the i = 2 and i = 3 
subbands  does not  show such a rapid decrease as 
the annea led  samples.  This compar i son  shows 
that  cont ra ry  to the subband  popula t ion  o f  the 

Acknowledgements 

We kindly thank M.R .  Leys and W.C. van der  
Vleu ten  for  the sample growth,  I. Barsony  of  the 
Univers i ty  o f  Twente  for  anneal ing the samples,  
and  P. Nouwens  for  the sample preparat ion.  

References 

[1] G. Kido, S. Yamada and T. Makimoto, Physica B 177 
(1992) 433. 

[2] P.M. Koenraad, F.A.P. Blom, C.J.G.M. Langerak, M.R. 
Leys, J.A.A.J. Perenboom, J. Singleton, S.J.R.M. Sper- 
men, W.C. van der Vleuten, A.P.J. Voncken and J.H. 
Welter, Semicond. Sci. Technol. 5 (1990) 861. 

[3] E. Merzbacher, Quantum Mechanics (Wiley, New York, 
1961) p. 65. 

[4] P.M. Koenraad, B.F.A. van Hest, F.A.P. Blom, R. van 
Dalen, M. Leys, J.A,A.J. Perenboom and J.H. Welter, 
Physica B 177 (1992) 485. 


