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Mosaic-forest landscapes 

Mosaic-forest landscapes 

Land-use change and agricultural intensification are responsible for a global decline of forest 

cover entailing the continuous fragmentation of forests (Saunders et al. 1991; Fahrig 2003; 

Green et al. 2005). Forest fragments are characterized by reduced habitat size and exhibit 

strong edge effects, which cause changes in abiotic factors, such as higher light intensity on 

the forest floor or altered air temperature and thereby potentially affect their habitat quality 

(Murcia 1995; Laurance et al. 2002). Several studies have illustrated that forest fragmentation 

is one of the main drivers of biodiversity loss and consequently alters key ecological 

processes, e.g. seed predation, seedling establishment and herbivory (Donoso et al. 2003; 

Benítez-Malvido & Martínez-Ramos 2003a; Benítez-Malvido & Lemus-Albor 2005). 

Nevertheless, forest fragments can contribute to landscape connectivity, provide habitat for 

numerous animal species and are thus important stepping-stones for maintaining ecological 

processes (Estrada & Coates-Estrada 2002; Bodin et al. 2006; Fischer & Lindenmayer 2007). 

Especially in areas that now lack continuous natural forests, fragments enhance the diversity 

of the landscape and increase chances of species survival (Turner & Corlett 1996).  

 Traditionally matrices surrounding fragments have been perceived as inhospitable 

oceans of no value to species conservation. This included a binary view of landscapes 

distinguishing between habitat and non-habitat (e.g. Murphy & Lovett-Doust 2004 and 

references therein). In fact, matrices surrounding forest fragments vary in structure and 

permeability for different species (Kupfer et al. 2006; Brockerhoff et al. 2008 and references 

therein). High-contrast matrices differing strongly in structure from the original habitat might 

hinder species movement and plant-animal interactions (Prevedello & Vieira 2010; Herrera et 

al. 2011). Contrarily, low-contrast matrices that are structurally similar to the natural habitat 

might facilitate species and propagule dispersal and thereby contribute to the stability of 

human-modified fragmented landscapes (Tewksbury et al. 2002; Herrera & García 2009).  

Overall, forest fragmentation involves the creation of a ‘mosaic’ landscape with 

remnants of natural habitat within variable matrix habitat (Fahrig 2003). Inspired by two 

well-established ecological theories—island biogeography and metapopulation theory—it 

was believed that the conservation of many species could only be accomplished in large 

habitat patches as species richness is likely to increase with habitat area and connectivity 
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(MacArthur & Wilson 1967; Hanski & Ovaskainen 2000). Nowadays, an integrated 

perspective of landscapes is favoured by many conservation scientists highlighting the great 

potential of human-modified mosaic-forest landscapes comprising both small forest 

fragments as well as matrix habitat for biodiversity conservation and for maintaining 

ecological processes (Daily 2001; Jules & Shahani 2003). 

 

FOREST REGENERATION IN MOSAIC LANDSCAPES. Forest regeneration is a complex process of 

subsequent transitions from one stage of establishment to the next (Wang & Smith 2002). 

Thus, it forms the template for all processes that enforce plant recruitment. For instance, 

animal-mediated seed dispersal enables the transportation of seeds away from the mother 

plant, where density-dependent mortality of seeds and seedlings is high (Janzen 1970; 

Connell 1971). Once dispersed, seeds are exposed to seed predators, e.g. rodents or insects or 

are secondarily dispersed by scatter-hoarding animals (e.g. Forget 1996). The subsequent 

establishment of seedlings is not only affected by biotic factors, i.e. seed dispersal, predation 

and vegetational characteristics, it is also determined by abiotic factors, such as light 

availability (Sork 1987). Lastly, survival to the sapling stage and long-term establishment are 

strongly influenced by herbivore and pathogen pressure (Wang & Smith 2002).  

Ongoing forest fragmentation involving the formation of matrix habitat has been 

shown to alter communities of seed dispersers, seed predators, herbivores and plants (e.g. 

Cordeiro & Howe 2001; Donoso et al. 2003; Benítez-Malvido & Lemus-Albor 2005). Further, 

abiotic conditions may lead to unfavourable conditions in fragmented forests and their 

matrix habitat may vary in permeability for different species (Laurance et al. 2002; Prevedello 

& Vieira 2010). This in turn may crucially affect the complex processes of forest regeneration. 

Therefore, it is pivotal to identify the consequences of human-induced forest fragmentation 

for biodiversity and ecological processes involved in forest regeneration. 

Rodent seed predation in mosaic-forest landscapes 

Rodent seed  predation in mosaic-fore st land scapes 

Seed predation is a fundamental antagonistic plant-animal interaction, once seeds have 

reached the ground. It has consequences for seed survival, seedling establishment and 

eventually forest regeneration (Stoner et al. 2007; Farwig et al. 2008a). Especially in (sub-) 

tropical forests seeds suffer high predation rates and seed predation has been described as a 
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bottleneck between seed production and seedling recruitment (Wenny 2000). Seed predators 

can be insects, birds and mammals (Janzen 1971). Particularly rodents are important drivers 

of seed predation with predation rates exceeding those of insects (Cole 2009). Accordingly, 

high rodent abundance has proven to entail elevated seed predation pressure in forest 

ecosystems (Tallmon et al. 2003).  

 Human activities, leading to forest fragmentation and the formation of matrix habitat, 

have been shown to affect seed predator communities and seed predation (Donoso et al. 

2003; Umetsu & Pardini 2007). For instance, edge effects in forest fragments cause a high 

light intensity on the forest floor entailing an increase of herbal ground vegetation cover, 

which might enhance forest fragement quality for rodent communities (Hay & Fuller 1981; 

Mortelliti & Boitani 2006). Resulting increased rodent abundances have been shown to cause 

elevated seed predation in small forest fragments (Santos & Tellería 1994; García & Chacoff 

2007), thereby ultimately influencing seedling establishment (Asquith et al. 1997).  

 Moreover, the surrounding matrix habitat might directly or indirectly influence 

rodent communities. Dispersal of rodents as well as that of their predators might be 

facilitated or impeded depending on the species-specific permeability of the matrix (Ricketts 

2001; Kupfer et al. 2006). For example, many studies have shown that rodents might become 

ecologically released due to a decline of their top predators in fragmented landscapes (e.g. 

Terborgh et al. 2008). Furthermore, the matrix might hamper seed disperser movement 

among forest fragments, which might cause the accumulation of seeds underneath the parent 

plant and in this way indirectly favour seed predators (Janzen 1970; Connell 1971). 

Consequently, forest fragmentation and matrix habitat may create beneficial conditions for 

rodents, which are important determinants of seed predation, and may thereby have the 

potential to modify seedling establishment and forest regeneration.  

Establishment of woody seedlings and saplings in mosaic-forest 

landscapes 

Tree recruitment in mosaic-fore st land scapes 

Forest regeneration hinges on the availability of seeds and their ability to survive and 

establish (Benítez-Malvido & Martínez-Ramos 2003a). The presence of seeds is strongly 

determined by seed dispersal and predation. As forest fragmentation may alter seed 
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disperser and predator communities, this might in turn limit the availability of seeds and 

accordingly also negatively affect seedling diversity and abundance (Sizer & Tanner 1999; 

Benítez-Malvido & Martínez-Ramos 2003a). Consequently, maintaining tree diversity might 

be impeded in fragmented tree communities (Wright & Duber 2001).  

 Several studies have investigated the influence of forest fragmentation on forest 

regeneration processes, such as seedling and sapling establishment (Benítez-Malvido 1998; 

Benítez-Malvido & Martínez-Ramos 2003a). Most of them revealed diminished seedling 

species richness and abundance, often due to changes in abiotic factors, e.g. edge effects with 

negative consequences for forest fragment quality (Saunders et al. 1991; Sizer & Tanner 1999; 

Benítez-Malvido & Martínez-Ramos 2003b). Moreover, biotic interactions may be altered in 

fragmented forests. For example, the decline of top predators in forest fragments might lead 

to the release of seed predators or herbivores with negative consequences for seedling 

establishment (Terborgh et al. 2008). Yet, not only species richness and abundance, but also 

species composition of tree recruits might be affected by forest fragmentation (Tabarelli et al. 

2004; Laurance et al. 2006). Numerous studies have detected a compositional shift in 

successional status with an increase of early-successional species in fragments at the expense 

of late-successional species, presumably caused by higher light intensity near forest edges 

(Benítez-Malvido & Martínez-Ramos 2003b; Farwig et al. 2008b; Kirika et al. 2010).  

 In addition to abiotic and biotic modifications within forest fragments the role of the 

matrix habitat for forest regeneration has been acknowledged (Nascimento et al. 2006). 

Depending on its permeability, it might permit or obstruct the movement of, e.g. seed 

dispersers and thus mediate seed influx (Estrada & Coates-Estrada 2001; Melo et al. 2010). In 

this regard, structurally complex landscapes might contribute to the functional connectivity 

of forest fragments (Tewksbury et al. 2002). Therefore, the study of tree diversity and 

seedling and sapling establishment, considering the role of different matrices enclosing 

forest fragments, provides crucial information on human impact on forest regeneration. 
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Leaf damage of woody seedlings and saplings in mosaic-forest 

landscapes 

Leaf damage in mosaic fore st land scapes 

Successful establishment of woody seedlings and saplings can be strongly hampered by 

insect herbivory and leaf pathogen infestation. As herbivores and pathogens can impact 

survival, growth and productivity of plant individuals, they also have the potential to affect 

the structure and regeneration dynamics of forests (Burdon 1993; Maron & Crone 2006).  

 Forest fragmentation may modify patterns of herbivory and pathogen infestation 

(Krüss & Tscharntke 1994; Santos & Benítez-Malvido 2012). For instance, the structural quality 

of forest fragments may be influential for arthropods, especially predators, and might thus also 

affect insect herbivory (Langellotto & Denno 2004; Janssen et al. 2007). This can partly be 

attributed to a decline of tree diversity in disturbed forests (e.g. Jactel & Brockerhoff 2007; Haas 

et al. 2011). Diverse communities have been shown to be less susceptible to insect herbivory, 

which is referred to as ‘associational resistance’. This has been elucidated with two well-

established concepts: the ‘resource concentration hypothesis’ and the ‘enemies hypothesis’. 

The first one predicts a decrease in herbivory with increasing tree diversity because specialist 

herbivores fail to detect their hosts as diversity increases (Tahvanai & Root 1972; Root 1973). 

The second hypothesis presumes that higher diversity entails the increase of structural and 

resource diversity. Such additional shelter and food for natural enemies might lead to top-

down control of herbivores, which in turn potentially lessens herbivory (Root 1973; Terborgh et 

al. 2001). Contrary effects of enhanced vulnerability of diverse plant communities to insect 

herbivory have been reported as a result of higher dietary choice or spillover of generalist 

herbivores to non-host plants, named ‘associational susceptibility’ (White & Whitham 2000; 

Unsicker et al. 2008). Diversity effects on pathogen infestation are similarly variable. In most 

studies pathogen transmission declined in diverse systems due to higher competition and 

reduced densities of host species (e.g. Mitchell et al. 2002; Roscher et al. 2007). However, 

diversity might also amplify pathogen infestation as high plant diversity might involve a wide 

host range for pathogens (Keesing et al. 2010). Fragmentation effects on pathogen infestation 

have rarely been studied (but see Benítez-Malvido et al. 1999; Holdenrieder et al. 2004). One 

reason for this is that pathogens largely depend on their hosts, which might be more 

susceptible to diseases in fragmented landscapes. Further, pathogen transmission might also 

be obstructed by fragmentation (Jules et al. 2002; Holdenrieder et al. 2004). 
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 In addition to the quality of forest fragments the matrix habitat may be relevant to 

insect herbivory and leaf pathogen infestation. The matrix may permit or impede the 

movement of insectivorous vertebrate predators and thereby enhance or reduce herbivore 

control (e.g. Kalka et al. 2008). Moreover, the matrix may offer complementary resources for 

both arthropod predators and herbivores (Haynes et al. 2007). In consequence, assessing the 

impact of forest fragment quality and matrix habitat on arthropod predator and herbivore 

abundance, insect herbivory and leaf fungal pathogen infestation might contribute to a better 

understanding of plant-herbivore and plant-pathogen interactions in fragmented forests. 

Aims and outline of the thesis 

Aims and outline of the thesis 

In the present thesis, I investigated biodiversity and different ecological processes involved 

in forest regeneration. For this purpose, I conducted three studies in a fragmented mosaic-

forest landscape in KwaZulu-Natal, South Africa. In particular, I compared seed predation 

by rodents, establishment of woody seedlings and saplings, and leaf damage of woody 

seedlings and saplings by insects and pathogens between scarp forest fragments embedded 

in variable matrix habitat. 

 The mosaic landscape of southeast KwaZulu-Natal is especially suitable for such 

comparisons, as it was characterized by scarp forest fragments within natural grassland 

matrix before the expansion of agricultural land (Cooper 1985). Due to ongoing 

deforestation, the scarp forest cover has significantly declined (Eeley et al. 2001). Nowadays, 

undisturbed fragments are confined to nature reserves, whereas fragments that endured 

human land-use changes remained within modified agricultural surroundings, such as 

sugarcane fields and eucalypt plantations. Remaining fragments are of high conservation 

value as a result of their high biodiversity and degree of endemism (Eeley et al. 2001; von 

Maltitz et al. 2003). In this landscape mosaic, I established 24 study plots within selected 

scarp forest fragments that were surrounded by four different matrix habitat types. Study 

plots within large forest fragments featuring natural forest matrix and small forest fragments 

enclosed by natural grassland matrix habitat were located within Vernon Crookes and Oribi 

Gorge nature reserves. Small fragments with modified matrix habitat were in close distance 

to these nature reserves and situated within sugarcane fields and eucalypt plantations. 
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 The aims of my thesis were to quantify the impact of structural forest fragment 

quality and variable matrix habitat surrounding forest fragments on 1) rodent seed predators 

and seed predation, on 2) tree diversity and establishment of woody seedlings and saplings, 

and on 3) arthropod herbivore and predator abundances as well as on insect herbivory and 

leaf fungal pathogen infestation of woody seedlings and saplings. Consistent with these 

aims, my thesis is composed of three major chapters (2, 3, 4). They are framed by a general 

introduction (chapter 1) at the beginning as well as general conclusions (chapter 5) and 

future challenges (chapter 6) at the end. A German summary can be found at the very end 

(chapter 7). The three main chapters are structured like scientific journal publications starting 

with an abstract, followed by an introduction, a methods section, the presentation of results, 

their discussion and deductible conclusions. They can therefore be read as independent 

units. Please, note that this has led to redundancy of some of the content. 

 Chapter 2 is concerned with the influence of forest fragment quality and matrix 

habitat on the rodent seed predator community and the process of seed predation. Therefore, 

I assessed ground vegetation cover as an important structural characteristic for rodents, 

rodent abundance, species richness and community composition as well as seed predation in 

scarp forest fragments surrounded by variable matrix habitat. 

 In chapter 3, I investigated the impact of forest fragment quality and matrix habitat 

on woody seedling and sapling establishment. To do so, I considered canopy cover, light 

intensity and vegetation complexity for species richness, abundance and community 

composition of trees, seedlings and saplings in scarp forest fragments surrounded by 

variable matrix habitat. Moreover, I differentiated between early- and late-successional 

species and separately analyzed tree recruits originated from external seed influx between 

forest fragments with variable matrix habitat. 

 Chapter 4 deals with the consequences of forest fragment quality and matrix habitat for 

arthropods as well as for leaf damage of woody seedlings and saplings. I quantified the effect 

of structural components of fragments, i.e. tree diversity, vegetation complexity and canopy 

cover as well as of matrix habitat on the arthropod predator and herbivore community as well 

as on insect herbivory and leaf fungal pathogen infestation of tree recruits. 
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Abstract. Anthropogenic forest fragmentation has been hypothesized to increase levels of 

seed predation via elevated rodent abundances, thus affecting forest regeneration. We tested 

this prediction by investigating the consequences of forest fragment quality in terms of 

structural characteristics and matrix habitat on rodent communities and seed predation in 

KwaZulu-Natal, South Africa. We estimated herbal ground vegetation cover as a measure of 

forest fragment quality relevant for rodents. We compared rodent abundance, species 

richness and community composition as well as seed predation between large scarp forest 

fragments with natural forest matrix and three small forest fragments surrounded by natural 

grassland, eucalypt plantations and sugarcane agriculture. We assessed rodent communities 

using pitfall traps, drift fences and live traps. We quantified seed predation by placing 

peanuts inside and outside rodent exclosures. Rodents were important seed predators in all 

small fragments. Rodent abundance and species richness as well as seed predation were 

higher in small forest fragments than in large fragments, but significantly higher only in 

fragments surrounded by agriculture. Forest fragment quality by means of higher ground 

vegetation cover enhanced rodent abundance and richness as well as seed predation 

pressure in small forest fragments. Possibly, the high-contrast sugarcane matrix posed a 

barrier to top predators resulting in the ecological release of rodents in these forest 

fragments. Additional studies are needed to determine whether increased seed predation in 

small forest fragments reduces seed survival and consequently regeneration. 

 

Key words. Bottom-up processes, forest fragmentation, forest regeneration, habitat quality, human 

impact, KwaZulu-Natal, plant-animal interactions, rodents, scarp forest. 
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Introduction 

Introduction  

Seed predation is a critical determinant of seed survival, seedling establishment and 

ultimately forest regeneration (Stoner et al. 2007; Farwig et al. 2008a). Particularly rodents 

have been shown to play an important role in the complex multi-step process of forest 

regeneration (Wang & Smith 2002; Jansen et al. 2004). For instance, Cole (2009) has shown 

that rodents are main seed predators in forest fragments exceeding predation rates of insects 

or fungal pathogens. Furthermore, Tallmon et al. (2003) reported a clear relationship between 

forest fragmentation, elevated rodent abundances and seed predation. Thus, it has been 

hypothesized that forest fragmentation increases the levels of seed predation by rodents to 

the point that the regeneration potential is affected (Asquith et al. 1997).  

 Forest fragmentation causes altered microclimatic and light conditions, which can 

affect bottom-up processes (Hunter & Price 1992) and might entail changes of vegetation 

structure (Saunders et al. 1991). This can in turn enhance forest the fragment quality for 

rodents by creating more favourable conditions, as they prefer well-developed understory 

vegetation with a complex selection of microhabitats and protection from predators (Hay & 

Fuller 1981; Hagenah et al. 2009). Accordingly, a decrease in ground vegetation cover has 

been shown to lead to a decline in rodent species diversity in intensively logged forests in 

Kenya (Mortelliti & Boitani 2006). In addition, top-down processes can be affected through 

forest fragmentation (Terborgh et al. 2008) and the loss of rodent predators might in turn lead 

to the ecological release of rodent communities (Hunter & Price 1992). Elevated rodent 

abundances often result in increased seed predation pressure in small forest fragments 

(Donoso et al. 2003; García & Chacoff 2007) and consequently influence seedling 

establishment (Asquith et al. 1997).  

 Not only changes in rodent abundance, but also in rodent species richness and 

community composition might influence seed predation patterns in fragmented forests. 

Rodent species differ in their preferential nutrient sources (Wirminghaus & Perrin 1992) and 

therefore also in their effect on overall seed predation. Thus, the impact of forest fragmentation 

on rodent seed predation might strongly depend on the community composition of seed 

predators. Despite these ambiguous patterns, rodent community responses and seed predation 

have only rarely been studied simultaneously in the face of forest fragmentation (but see 
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Lambert et al. 2005; Farwig et al. 2008a; Cordeiro et al. 2009). Especially in Africa, where an 

extensive human population growth is expected (Wright & Muller-Landau 2006) and human 

impact on forests is already severe, the influence of fragmentation on seed predation and 

ultimately regeneration processes is poorly understood.  

 Forest fragmentation is largely driven by conversion of natural forests to cultivated 

land including agriculture, such as cereals or sugarcane and plantations, e.g. eucalypt for 

timber (MEA 2005). Thus, cultivated matrices play an important part in fragmented landscapes 

and are of high relevance for biodiversity and interspecific interactions (Prevedello & Vieira 

2010). The effects of matrices surrounding forest fragments might even prevail over isolation 

and exceed fragmentation effects, such as reduced area and creation of edges (Kupfer et al. 

2006). The matrix type surrounding fragments of remaining forest and its permeability matter 

in the context of landscape connectivity, corridors and stepping stones (Ricketts 2001; Haila 

2002; Kupfer et al. 2006). This can have consequences for rodents, for which different matrices 

of high or low contrast to the remaining forests might be more or less beneficial in terms of 

resources or shelter. Additionally, this might also be true for rodent predators and might 

therefore via top-down control influence rodent communities (Hunter & Price 1992).  

 In view of that, these possible matrix effects on rodents can in turn affect seed 

predation (Farwig et al. 2009). Herrera et al. (2011) for example found that seed predation can 

be higher in unconnected patches than in fragments that are connected by forested areas. 

Consequently, the need to take the matrix into account when studying forest fragmentation 

and consider the entire landscape mosaic has been expressed widely (e.g. Daily et al. 2003; 

Bennett et al. 2006; Vandermeer & Perfecto 2007). However, none of the few studies 

investigating rodent communities and seed predation has focused on effects of both forest 

fragment quality and the matrix habitat surrounding remaining forest fragments. 

 We studied the influence of fragment quality and matrix habitat on rodent 

communities and on seed predation. We compared abundance, species richness and 

community composition of rodents as well as seed predation between large natural scarp 

forest fragments with forest matrix and three small scarp forest fragment types surrounded 

by natural grassland, eucalypt plantations and sugarcane agriculture in KwaZulu-Natal, 

South Africa. We hypothesized (1) rodents to be the main drivers of seed predation and 

accordingly that an increase of rodents leads to higher seed predation and (2) rodent 

abundance, species richness and community composition as well as seed predation to be 
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differently affected by forest fragment quality and matrix habitat. This might be due to 

changes in ground vegetation cover and the varying permeability and resource availability 

of surrounding matrices for rodents as well as rodent predators. Specifically, we predicted 

rodent abundance, species richness and seed predation to be lowest in large natural forest 

fragments with forest matrix, low in forest fragments surrounded by natural grassland, 

intermediate in fragments surrounded by eucalypt plantations and highest in fragments 

surrounded by sugarcane agriculture. 

Methods 

Methods  

STUDY AREA AND DESIGN. Field work was conducted between November 2008 and mid 

February 2009 in coastal scarp forest of KwaZulu-Natal (KZN), South Africa, within and 

close to Vernon Crookes (VC; 30°15′S–30°18′S, 30°32′E–30°37′) and Oribi Gorge (OG; 30°41′S–

30°45′S, 30°10′E–30°18.5′E) nature reserves (Fig. 2.1a). Scarp forest forms a transition zone 

between Afromontane forest and Indian Ocean coastal belt forest. It is located on south- and 

southeast-facing slopes or in deep gorges (Eeley et al. 1999). These moist and sheltered 

microclimatic and topographic conditions have certainly contributed to the essential role of 

scarp forests as refugia during the last glacial maximum. Thus, scarp forests contain much of 

the region’s biodiversity (Lawes 1990; Eeley et al. 1999). They belong to the summer rainfall 

(October–March) subtropical climate zone and feature seasonal differences with an annual 

temperature range from 4 to 32°C and a rainfall range from 440 to 1400 mm (von Maltitz et al. 

2003). The rainy season in 2008 started in November. Hence, during our study period food 

resources were low on the ground for the rodents in all forest fragments as most fruits were 

still in the trees. 
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 We studied scarp forest fragments surrounded by four variable matrix habitat types, 

i.e. two natural heterogenous matrices within the two nature reserves and two modified 

homogenous matrix habitat types located outside the nature reserves. Forest fragments in 

natural matrix habitat were: (1) large natural forest fragments with forest matrix (ForFra; 

within two forest blocks) and (2) small forest fragments surrounded by natural grassland 

containing isolated trees and bushes (GraFra) kept open due to microclimatic conditions, 

grazing pressure and fire events. Small fragments in modified matrix habitat comprised: (1) 

forest fragments enclosed by plantations (PlaFra) consisting of small remnant stretches of 

native forest as buffer zones of nearby streams within eucalypt plantations (major timber of 

the region) and (2) forest fragments surrounded by sugarcane agriculture (AgrFra; major 

crop of the region). All forest fragment types enclosed by variable matrix habitat differed in 
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Figure 2.1. Study area and research design. (a) Map of South Africa (black) and detailed map of study 
area. Landscapes around (b)Vernon Crookes and (c) Oribi Gorge nature reserves showing the 24 study 
plots with six each in large natural forest fragments with forest matrix (ForFra; circles) and three small 
forest fragment types surrounded by natural grassland (GraFra; triangles), plantation (PlaFra; squares) 
and agriculture (AgrFra; stars) matrix habitat. (d) Research design for assessing rodent communities 
and seed predation illustrating the arrangement of pitfall traps (circles) and drift fences (lines between 
circles), live traps (rectangles) and seed stations (circles). 
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environmental characteristics, such as size, canopy cover, ground vegetation cover and 

altitudinal range (Table 2.1). 

 

 

 

 We established a total of 24 study plots, i.e. six replicates of 50  50-m plots per 

fragment type (Fig. 2.1b, c). Minimal distance between plots was 500 m except for PlaFra, 

which were at least 200 m apart. Because the different fragment types were not evenly 

distributed throughout the two study regions, replicates of most fragment types were 

spatially clustered (Fig. 2.1b, c). However, both regions lie within the natural distribution 

range of scarp forest and thus experience very comparable topographic, soil and climatic 

conditions, such as sandstone, orographic rainfall and strong winds (von Maltitz et al. 2003). 

Moreover, they feature a similar tree species composition. The most dominant tree species in 

ForFra, i.e. Baphia racemosa, Englerophytum natalense and Millettia grandis are equally abundant 

in both regions (see Appendix 2). Additionally, both regions are exposed to comparable 

land-use modifications (sugarcane fields, timber plantations).  

 

RODENT SAMPLING. To assess rodent communities we set up five pitfall traps connected by 

drift fences (Umetsu et al. 2006) in all fragment types. Pitfall traps (plastic buckets of 25-L 

volume, 42-cm diameter at the top, 45-cm depth with small holes at the bottom to provide 

drainage) were located at five points within the plot: one in the centre of the 50  50-m plot 

and four in the middle of four 25  25-m subsquares of the plot (Fig. 2.1d, circles). Drift 

fences (80% dark-green shade cloth, 50 cm high) were spanned diagonally from the outer 

Table 2.1. Forest fragment type characteristics. Given are means ± 1SE except for sizes of large 
forest fragments with forest matrix (ForFra), which are the total forest block sizes. GraFra = small 
fragments surrounded by natural grassland; PlaFra = small fragments surrounded by plantations; 
AgrFra = small fragments surrounded by agriculture; VC = Vernon Crookes nature reserve; 
OG = Oribi Gorge nature reserve; veg. = vegetation; asl = above sea level. 

Forest fragment 

type 

Mean size 

(ha) 

Mean canopy 

cover (%) 

Mean ground 

veg. cover (%) 

Altitudinal 

range (m asl) 

ForFra 
VC: 130 

OG: 822 
92.5 ± 4.2 6.7 ± 3.3 220–390 

GraFra 2.3 ± 0.9 77.5 ± 10.6 24.2 ± 11.3 340–480 

PlaFra 0.6 ± 0.3 82.5 ± 5.6 55.0 ± 9.1 480–510 

AgrFra 3.2 ± 0.7 91.7 ± 8.3 62.5 ± 5.0 390–580 
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traps towards the central pitfall trap (15–20 m length) and were tightly attached to the 

ground. Further, 15 non-folding Sherman live traps (25.4  7.6  7.6 cm) were set up in rows 

of five traps each with a minimum distance of 10 m separating them (Fig. 2.1d). We used a 

mixture of peanut butter and oats as bait. Trapping was conducted for three consecutive 

days on three plots of different fragment types that were chosen randomly. We checked 

traps in the early morning and late afternoon to account for diurnal animals as well. To avoid 

double counting, we semi-permanently marked rodents inconspicuously with dark-green 

spray colour (Aerolak, Plascon) on their lower side to prevent increased detectability by 

predators. We identified captured animals with two field guides (Smithers 2000; Stuart & 

Stuart 2007) and weighed and measured them using a calliper and spring balance. 

Afterwards we released them directly on site. We determined: (1) abundance as mean 

number of individuals per plot, (2) species richness as mean number of species per plot, and 

(3) α-, β1- and β2-diversity, whereby β-diversity was used as a proxy for differences in 

community composition (see data analyses for details). One replicate of GraFra was lost due 

to flooding leaving 23 plots for analyses. 

 

SEED PREDATION. To quantify seed predation pressure, we placed non-germinable half 

peanuts (one cotyledon) on paper dishes (diameter 18 cm) at five stations per plot (same 

locations as pitfall traps, Fig. 2.1d, circles). We are aware of possible problems fraught with 

offering non-naturally occurring seeds. For instance, there might be differences in the 

behaviour of different rodent species when offered a novel food source. However, as we 

applied the same experimental design to all study plots, comparisons among the forest 

fragment types are valid in a relative sense. Moreover, as no natural seeds were available, we 

can exclude the effect of potential dietary preferences of different rodent species. Time of 

sampling was randomized among fragment types. To be able to separate vertebrate from 

invertebrate seed predation, we offered ten seeds on open dishes (= open treatment), 

accessible to all predators as well as ten seeds within cubic, closed-topped mesh wire 

exclosures (20  20  20 cm, 1.2-cm mesh width), which excluded vertebrate predators 

(= exclosure treatment). Seeds were placed in the late afternoon and checked the following 

three mornings. We counted depredated seeds (= removed or more than half eaten) and 

replaced them on each plate. Rodents are known to often scatter-hoard rather than depredate 

seeds that they remove in other forest systems (Jansen et al. 2006; Forget & Cuiljpers 2008). 
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However, we found no evidence for secondary seed dispersal in our study sites. There was 

no proof of scatter-hoarding and the few recorded dispersal events were of extremely short 

distance (i.e. < 1 m; data not shown). We thus assumed that seed removal equalled seed 

predation in our trials. Our estimate for rodent seed predation pressure was the mean 

difference of depredated seeds per day and plot between open and exclosure treatments 

(hereafter seed predation). Seed stations were lost for one replicate of AgrFra due to 

disturbance by monkeys leaving 23 plots for analyses.  

 

FOREST FRAGMENT QUALITY. At each site, we assessed herbaceous ground vegetation cover 

at the height of 20 cm as a measure of forest fragment quality for rodents. We estimated the 

percentage of ground cover at five 5  5-m squares in each plot approximately where pitfall 

traps and seed stations had been located and calculated means per plot (Table 2.1). 

 

DATA ANALYSES. We used EstimateS (Colwell 2009) to estimate overall rodent species 

richness of the pooled samples of the different fragment types after 100 randomizations of 

sample order (Gotelli & Colwell 2001). We used three non-parametric species richness 

estimators: the abundance-based coverage estimator ACE, the Chao 2 estimator, and the 

second-order Jackknife estimator Jack 2. The latter two are based on presence/absence data of 

species occurring in only one or two samples (Chao 2005). We chose Chao 2 and Jack 2 as 

they are the least-biased estimators for small sample sizes (Colwell & Coddington 1994). We 

further used the abundance-based estimator ACE because for most captured species, we 

encountered fewer than ten individuals.  

 To analyse diversity of rodents we followed an additive partitioning approach and 

used the total number of rodent species obtained in the three days of sampling. Additive 

partitioning has been described as a straightforward method that allows a direct comparison 

of the single diversity components (α and β) that contribute to total observed diversity (γobs) 

over several spatial scales, as they all have the same unit (Crist et al. 2003; Clough et al. 2007). 

We additively partitioned rodent diversity for each fragment type as: 

 

21  obs  
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where α is the mean number of species of each fragment type, i.e. it is the same as our species 

richness and thus will be discussed as that separately; β1 is the species turnover between 

replicates of one fragment type and is obtained by subtracting α from γ1, the total number of 

species of that fragment type; and β2 is the species turnover among the different fragment 

types and results from subtracting γ1 from γ2, the total number of species of all samples 

(Crist et al. 2003; Clough et al. 2007). We used β1 as a measure for variability of rodent 

community composition within replicates of one fragment type and β2 as a proxy for 

differences in community composition among fragment types. β is a measure of 

dissimilarity: the higher β, the less species were shared between the different replicates of 

one fragment type or among the different fragment types. 

 We used analyses of covariance (ANCOVA) to test for effects of forest fragment 

quality (i.e. ground vegetation cover) and the four forest fragment types surrounded by 

variable matrix habitat (ForFra, GraFra, PlaFra, AgrFra) on rodent abundance and species 

richness as well as on seed predation. Rodent abundance and species richness were square 

root-transformed to reach homogeneity of variances and normality of residuals. Rodent 

abundance was included into the model testing for effects of fragment type on species 

richness as species richness might increase with abundance (Gotelli & Colwell 2001). We also 

included rodent abundance as a covariate into the model testing for effects of fragment type 

on seed predation to control for differences in numbers of rodent individuals. Moreover, we 

incorporated altitude as a covariate into the models to control for altitudinal differences 

between fragment types as well as location (VC or OG) to control for clustering of fragment 

types within study regions. Independent variables were excluded from the models through 

stepwise deletion starting with the least significant term (P > 0.05), which is why the number 

of degrees of freedom is variable. We tested for differences between ForFra and the small 

forest fragments using contrasts implemented in Dunnet’s post hoc test (P < 0.05). All analyses 

were performed with R version 2.12.0 (R Development Core Team 2010). 
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Results 

Results  

RODENT COMMUNITY. During a total of 1380 trap nights we caught 25 rodent individuals 

and seven species (Appendix 1). Trapping success was low with 1.8%. The most commonly 

captured species was the multimammate mouse Mastomys sp. (M. coucha and M. natalensis 

cannot be separated in the field (Smithers 2000)) with 14 individuals, whereas the other 

species were captured with one or two individuals each. None of the seven species was 

found in all fragment types and four species were found exclusively in one fragment type. 

No rodents were caught in ForFra (Appendix 1). Most individuals and species were captured 

in AgrFra (17 individuals, 4 species; Fig. 2.2a, b, α-diversity). Total observed species richness 

represented between 55 and 84% of the species richness estimated by the three applied 

estimators (ACE = 8.33, Chao 2 = 8.91 ± 2.78 SD, Jack 2 = 12.74). 

 

 

 

 Rodent abundance significantly increased with increasing ground vegetation cover 

(Table 2.2). It differed significantly between forest fragments with variable matrix habitat 

(Fig. 2.2a, Table 2.2). Rodent abundance was higher in all small forest fragment types 

compared to ForFra, but differed significantly only between ForFra and AgrFra (Dunnett’s 

P = 0.031). In ForFra we captured no rodent individuals, rodent abundance was low in GraFra 

(0.80 ± 0.58; all reported means are back-transformed if necessary ± 1SE) and PlaFra 

(0.67 ± 0.42) and highest in AgrFra (2.83 ± 1.40; Appendix 1). Rodent abundance was neither 

Table 2.2. ANCOVA models testing the effects of forest fragment quality matrix habitat on rodent 
abundance, species richness (both sqrt-transformed) and on seed predation (all n = 23) including 
rodent abundance as a covariate into the species richness model. Given are df-, R²-, F- and P-
values for full models after stepwise deletion of non-significant (ns) terms and of all model 
parameters (values just before deletion); * P < 0.05, ** P < 0.01. 

 Rodent abundance (sqrt) Species richness (sqrt) Seed predation 

Parameter df R² F P df R² F P df R² F P 

Full model 4,18 0.38 4.39 * 5,17 0.45 4.65 ** 3,19 0.29 3.96 * 

Ground 

vegetation 
1 - 7.08 * 1 - 7.23 * 1 - 1.23 ns 

Rodent 

abundance 
- - - - 1 - 6.06 - 1 - 0.41 ns 

Matrix habitat 3 - 3.50 * 3 - 3.32 * 3 - 3.96 * 
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Figure 2.2. Rodent abundance, species richness and composition in forest fragments with variable 
matrix habitat. (a) Mean (± SE) rodent abundance per plot (shown are square root-transformed 
data). (b) Relative contribution of additively partitioned α- (alpha = species richness), β1- (beta 1), 
and β2-diversity (beta 2). ForFra = large natural forest fragments with forest matrix; GraFra = small 
natural forest fragments surrounded by grassland; PlaFra = small modified forest fragments 
surrounded by plantations; AgrFra = small modified forest fragments surrounded by agriculture; 
different letters indicate significant differences between ForFra and small forest fragments according 
to Dunnet’s post hoc test, P < 0.05. 

affected by altitude nor location of the different fragment types indicating that clustering of 

replicates within one fragment type and differences in altitude were unimportant (data not 

shown). 

 

 Rodent species richness significantly increased with ground vegetation cover 

(Table 2.2). It also differed significantly between forest fragments surrounded by variable 

matrices (Fig. 2.2b, α-diversity, Table 2.2). All small forest fragments had a higher rodent 

species richness than ForFra, but merely in AgrFra richness tended to be higher than in 

ForFra (Dunnett’s P = 0.058). In ForFra we found no species, in GraFra and PlaFra species 

numbers were low (0.60 ± 0.40, α = 8.6%; 0.50 ± 0.34, α = 7.1%) and in AgrFra we found 

comparatively the highest number (1.0 ± 0.89, α = 14.3%; Appendix 1). Furthermore, species 
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Figure 2.3. Seed predation in forest fragments with 
variable matrix habitat. Mean (± SE) percentage of seed 
predation. ForFra = large natural forest fragments with 
forest matrix; GraFra = small natural forest fragments 
surrounded by grassland; PlaFra = small modified forest 
fragments surrounded by plantations; AgrFra = small 
modified forest fragments surrounded by agriculture; 
different letters indicate significant differences between 
ForFra and small forest fragments according to 
Dunnet’s post hoc test, P < 0.05. 

richness significantly increased with rodent abundance (Table 2.2), but was neither affected 

by location nor altitude of the fragment types (data not shown). 

 Partitioned diversity revealed a similar species turnover, i.e. composition between 

replicates (β1) within all small forest fragment types (range: 34.3–42.9%; Fig. 2.2b, β1-

diversity). Species turnover among small forest fragments (β2) ranged from 42.9 to 57.1%, 

indicating a relatively low share of species and accordingly a diverging community 

composition among forest fragments surrounded by variable matrix habitat (Fig. 2.2b, β2-

diversity). However, these differences in rodent community composition were mainly owing 

to the dominance of one species, Mastomys sp. 

 

SEED PREDATION. Rodent feeding scars and droppings in the open seed stations indicated 

that rodents were important vertebrate seed predators in forest fragments. We also observed 

slugs and snails as well as insects, such as beetles, ants and flies feeding on the seeds in both 

treatments in all fragment types. We did not detect bird droppings on the seed stations. 

 Seed predation, i.e. the mean difference of depredated seeds between open and 

enclosed treatments was not 

significantly affected by ground 

vegetation cover (Table 2.2). It varied 

significantly among forest fragments 

with variable matrix habitat (Fig. 2.3, 

Table 2.2). Seed predation was 

significantly higher in AgrFra than in 

ForFra (Dunnett’s P = 0.020). It was 

lowest in ForFra (18.6 % ± 3.3) and 

PlaFra (17.8 % ± 6.9), intermediate in 

GraFra (25.8% ± 7.1) and high in 

AgrFra (44.3% ± 5.0; Fig 2.3; Appendix 

1). Seed predation was not affected by 

rodent abundance, altitude or region 

(Table 2.2, data partly shown). 
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Discussion 

Discussion  

Our study shows that rodents were seemingly responsible for seed predation in small forest 

fragments. The combined effects of forest fragment quality and matrix habitat resulted in 

increased rodent abundance and species richness, possibly entailing elevated seed predation 

in small forest fragments compared to ForFra with significant differences between ForFra 

and forest fragments surrounded by the high-contrast matrix of sugarcane agriculture. 

 

RODENT COMMUNITY. Overall, abundance of rodents was relatively low compared to other 

tropical and subtropical forests with only a mean number of 1.1 individuals per plot. The 

number of seven captured species on the other hand was similar to that obtained by others 

(Wirminghaus & Perrin 1993; Farwig et al. 2008a) and represented a high percentage of the 

estimated richness assessed by two of the three applied richness estimators. Another study 

on small mammals in Afromontane forests in KZN recorded a slightly higher species 

richness, but a much higher abundance (Wirminghaus & Perrin 1993). This contrast might be 

explained by the shorter period of sampling in our study (1380 trap nights vs. 7056 trap 

nights). However, seed predation experiments were straightforward and showed similar or 

higher predation rates than shown during comparable experimental time frames in other 

studies (see below; Donoso et al. 2003; Farwig et al. 2008a). As rodent trapping data coincided 

with seed predation data in response to the different fragment types, we are convinced that 

our rodent community data are of informative value, nonetheless. Even though rodent 

abundance did not significantly influence seed predation pressure, rodents were important 

seed predators in small forest fragments, as we expected and as has been reported in other 

studies (Hammond 1995; Notman & Gorchov 2001). 

 There was considerable variability in community composition among small forest 

fragments (Appendix 1). However, we captured no rodents in ForFra and therefore cannot 

make a statement regarding differences between these and small forest fragments. Moreover, 

differences in community composition were masked by the dominance in abundance of one 

species, the multimammate mouse, a pattern well-observed in other rodent studies in 

tropical forests (e.g. DeMattia et al. 2004; Farwig et al. 2008a). Accordingly, rodent abundance 
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in general was more decisive than community composition for shaping seed predation 

patterns in small forest fragments. 

 

SEED PREDATION. In line with our hypothesis, we could show increased rodent abundance, 

species richness and seed predation in small forest fragments compared to ForFra. These 

findings are in accordance with the results of other studies that also found significantly more 

rodents and seed predation in modified compared to natural forests (Donoso et al. 2003; 

Farwig et al. 2008a; Pardini et al. 2009). For instance, Hulme (1998) claimed that the spatial 

distribution of seed predation can be attributed to the presence of rodents, which is 

positively influenced by vegetation cover. Furthermore, Gubista et al. (1999) found a higher 

rodent abundance and richness in secondary forest compared to primary forest owing to the 

structurally diverse understory and mudstone of this forest. In our study AgrFra showed the 

highest rodent abundance and seed predation and differences to ForFra were most 

pronounced. In this fragment type ground vegetation was dominated by Isoglossa woodii, a 

herbaceous to semi-woody plant that grows up to 3 m in height (Griffiths et al. 2007; Tsvuura 

et al. 2007) creating perfect protection for rodents from predators. We thus assume a 

cascading effect in AgrFra: increased ground vegetation cover favoured rodents, which 

presumably caused elevated seed predation. The other two small fragment types, GraFra 

and PlaFra, showed a similar tendency, which is supported by percentages of ground 

vegetation cover resembling both rodent abundances as well as seed predation rates in all 

fragment types (Appendix 1). However, ground vegetation cover neither had a direct 

influence on seed predation, nor was seed predation significantly affected by rodent 

abundance in all fragment types. Presumably, this mismatch can mainly be ascribed to the 

contrasting patterns of rodents (none) and seed predation (intermediate) in ForFra. There, 

possibly other vertebrate seed predators, too large for the traps, caused the seed predation 

rates. As squirrels do not occur in our study region, these might have been greater cane-rats 

(Thryonomys swinderianus) or porcupines (Hystrix africaeaustralis). Furthermore, due to the 

lack of undergrowth in ForFra, rodents might have been able to avoid traps. We therefore 

argue that in small forest fragments the causality that involves ground vegetation cover, 

rodents and seed predation was direct, whereas in ForFra this was not the case. Thus, rodent 

communities and seed predation seem to be affected by forest fragment quality causing 

changes in bottom-up processes, such as biomass production on the ground.  
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 In addition, matrix effects were highly variable, but particularly pronounced for the 

high-contrast matrix of sugarcane agriculture, as we expected. In this small forest fragment 

type rodent abundance, species richness and seed predation were significantly higher than in 

ForFra. This has also been found in fallow agricultural areas compared to mature forest in 

Peru (Notman & Gorchov 2001). In addition, the agricultural matrix might be avoided by 

carnivore mammals due to the high frequency of human activities in the fields. The matrix of 

sugarcane did, however, seemingly not present an obstruction to rodents. Instead, sugarcane 

rather might have offered an additional food source for rodents. Mastomys sp., our most 

abundant rodent species, even plays an important role as a crop pest in Africa (Stenseth et al. 

2003). Sugarcane might have also served as a habitat as has been reported by Takele et al. 

(2011) in India who found a high rodent abundance in sugarcane fields.  

 On the contrary, natural forests and heterogenous grasslands within nature reserves 

as well as eucalypt plantations might have provided connectivity through low-contrast 

matrices. Consequently, top predators might have prevented rodents to become overly 

abundant leading to low seed predation rates there (Terborgh et al. 2008). For instance, 

caracals (Caracal caracal) or genets (Genetta tigrina) might make use of forests, natural 

grassland and plantations and thereby control rodent communities (Perrin 2002; Brockerhoff 

et al. 2008; Tofoli et al. 2009). Moreover, the fauna in eucalypt plantations might be generally 

depauperate. Such findings have been shown for a number of taxa in a review on Australian 

eucalypt plantations (Lindenmayer & Hobbs 2004). Furthermore, a study on bird 

communities in the same study area also showed low species richness in PlaFra compared to 

the other forest fragments types (Neuschulz et al. 2011). Thus, in spite of the structural 

similarity to natural forests in terms of canopy cover, eucalypt plantations seem to act as a 

barrier for the dispersal of rodents and possibly other taxa due to a lack of undergrowth and 

resources (Bernard et al. 2009; Wilson et al. 2010). The low percentage of undergrowth might 

have been an additional reason for the low numbers of rodents in GraFra as these were 

structurally very similar to ForFra. 

Conclusions 

Conclusions 

In consequence, our study shows that forest fragment quality in terms of ground vegetation 

cover and matrix habitat influenced rodent communities and seed predation. In small scarp 
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forest fragments with high ground vegetation cover and high-contrast matrices rodents 

might be favoured by bottom-up processes regarding resources and shelter as well as 

seemingly by top-down processes, such as the absence of predators. Consequently, elevated 

seed predation pressure might impede seed survival, lead to a decline in seedling 

establishment and ultimately affect regeneration within these scarp forest fragments. 

However, further studies need to verify whether establishment of seedlings and saplings is 

considerably hampered in small scarp forest fragments. 
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Abstract 

Abstract. Conversion of natural ecosystems has increased the proportion of fragmented 

forests worldwide. Long-term regeneration dynamics of forest fragments depend on the 

availability of seeds, seedlings and saplings. We therefore assessed the influence of forest 

fragment quality regarding structural characteristics and matrix habitat on natural 

recruitment in KwaZulu-Natal, South Africa. We determined forest fragment quality in 

terms of canopy cover, relative light intensity and vegetation complexity, which are crucial 

parameters for tree recruitment. We compared species richness, abundance and composition 

of trees, woody seedlings and saplings between scarp forest fragments with variable matrix 

habitat, i.e. two natural heterogenous and two modified homogenous matrices. Forest 

fragments within natural matrices included large fragments with forest matrix and small 

fragments surrounded by grassland; small forest fragments with modified matrices were 

embedded in eucalypt plantations and sugarcane agriculture. We categorized all stage 

classes according to their successional status as either early- or late-successional. Recruitment 

was further differentiated as originating from external seed influx if no conspecific adult tree 

was present within the plot. Tree communities were impacted in fragments surrounded by 

plantations, which comprised lower richness and abundance of late-successional species. In 

fragments enclosed by modified matrices both richness and abundance of early-successional 

seedlings and saplings proliferated at the expense of late-successional species, which was 

confirmed by community composition analysis. These compositional changes in fragments 

with modified matrices might have been caused by decreased forest fragment quality, such 

as lower canopy cover and higher light intensity. Matrices presumably did not act as strong 

barriers for animal-mediated seed influx as external recruitment occurred in all fragment 

types. These findings demonstrate that regeneration seems to be hampered by joint effects of 

forest fragment quality and matrix habitat. Yet, existing seed influx across the structurally 

complex landscape highlights the importance of forest fragments as stepping-stones.  

 

Key words. Forest fragmentation, forest regeneration, habitat quality, human impact, KwaZulu-Natal, 

saplings, seed influx, seedling establishment, successional status. 
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Introduction 

Introduction  

Anthropogenic activities entailing an annual deforestation rate of 13 million ha (FAO 2010) 

have led to a growing interest in the regeneration dynamics of fragmented forests. Successful 

forest regeneration is based on several ecosystem processes along different stages in the life-

cycle of trees (Wang & Smith 2002). For instance, most tropical and subtropical tree species 

depend on pollination and active seed dispersal by animals to permit seedling and sapling 

establishment and consequently forest regeneration (Howe & Smallwood 1982; Stoner et al. 

2007). Seed dispersal ensures the transportation of seeds away from the mother plant where 

seedling establishment is more likely to be successful (Janzen 1970; Connell 1971). In forest 

fragments seed disperser communities might be impoverished (Cordeiro & Howe 2001). This 

might result in an increase of seedling establishment near adult conspecifics where 

competition among siblings is high and the offspring is more susceptible to species-specific 

herbivores and pathogens (Janzen 1970; Connell 1971). In the long term this may reduce tree 

diversity (Wright & Duber 2001) as regeneration relies on the availability of recruits and their 

ability to survive and establish (Martínez-Ramos & Soto-Castro 1993; Benítez-Malvido & 

Martínez-Ramos 2003a). Assessing seedling and sapling establishment reveals insights into 

the regeneration potential of fragmented forests (Babaasa et al. 2004). 

 Forest fragmentation changes abiotic factors leading to edge effects, such as modified 

canopy cover, light intensity and vegetation structure (Saunders et al. 1991; Murcia 1995; 

Montgomery & Chazdon 2001; Harvey et al. 2006). These alterations of forest fragment 

quality can have negative consequences, e.g. diminished seedling species richness, loss of 

rare species and reduced seedling abundance in small forest fragments with many edges 

(Benítez-Malvido 1998; Benítez-Malvido & Martínez-Ramos 2003b). In addition to abiotic 

factors, biotic interactions can influence recruitment indirectly. For instance, gaps in the 

canopy that favour dominant species in the understory of forests have been shown to hinder 

seedling establishment through interspecific competition (Griffiths et al. 2007). Their cover 

increases herbivory on seedlings by providing shelter and habitat to herbivores on the 

ground (Lei et al. 2002). Furthermore, predator movement is potentially hampered in 

fragmented forests, which can result in enlarged seed predator and herbivore communities 

diminishing seed availability and seedling establishment (Terborgh et al. 2008).  
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 Conclusions on the impact of forest fragmentation on regeneration processes are not 

simple. Even though changes may not be susceptible at the species richness and abundance 

level species composition may be strongly impacted in fragmented forests (Chazdon 2003). 

Accordingly, species richness and abundance are not always the most suitable indicators for 

changes in forest regeneration dynamics. Several studies have found a compositional shift in 

successional status, such as early- and late-successional species in forest fragments (Cordeiro 

& Howe 2001; Benítez-Malvido & Martínez-Ramos 2003a; Farwig et al. 2008b). One 

explanation is that higher light intensity near edges favours early-successional species and 

results in a decline of late-successional species (Laurance et al. 2006). It is therefore necessary 

to consider changes of community composition and successional status to understand 

fragmentation effects on forest regeneration dynamics.  

 Besides abiotic and biotic changes within forest fragments also the surrounding 

matrix influences tree communities (Nascimento et al. 2006). Depending on structure and 

permeability, matrices can on the one hand complement natural habitat, facilitate dispersal 

among habitat remnants and buffer negative effects of forest fragmentation. On the other 

hand they might as well function as ecological species traps or source of invasive species 

(Kupfer et al. 2006; Brockerhoff et al. 2008 and references therein). Thus, low-contrast 

matrices composed of diverse, structurally complex landscapes that resemble the natural 

habitat, might aid regeneration (Herrera & García 2009). They might permit movement of 

seed dispersers and thereby contribute to the stability of anthropogenically modified 

landscapes (Tewksbury et al. 2002). For instance, Estrada and Coates-Estrada (2001) showed 

a higher abundance of seed-dispersing bats in forest fragments surrounded by cacao or 

coffee plantations than in fragments surrounded by pastures. On the contrary, high-contrast 

matrices comprising homogenous, structurally poor elements might have the opposite effect 

and hamper species movement and plant-animal interactions (Tewksbury et al. 2002). In this 

regard, external recruitment originating from seed influx can be used as an indicator of seed 

dispersal in forest fragments (Martínez-Ramos & Soto-Castro 1993; Melo et al. 2010) and can 

thus be useful to evaluate matrix quality and permeability for seed-dispersing animals. To 

our knowledge, previous studies regarding human impact on establishment of tree recruits 

have rarely considered the role of matrix habitat of fragmented forests (but see Nascimento 

et al. 2006). 
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 We studied the effects of forest fragment quality and matrix habitat on tree 

communities and natural recruitment in KwaZulu-Natal, South Africa. We quantified the 

role of forest fragment quality considering canopy cover, relative light intensity and vertical 

vegetation complexity for trees and woody seedlings and saplings. We further compared 

species richness, abundance and community composition of the three stage classes between 

forest fragments with variable matrices: two fragment types with natural heterogenous 

matrices as well as two fragment types with modified homogenous matrices. We classified 

species according to their successional status as either early- or late-successional. 

Additionally, we considered seedlings and saplings as external recruits if respective adults 

were missing within the same plot. We expected (1) richness and abundance of early-

successional species of all stage classes to be higher in forests fragments with modified 

matrix habitat and of late-successional species to be higher in fragments with natural 

matrices, (2) a compositional shift towards more early-successional species in fragments with 

modified matrices, and (3) abundance of external recruits of animal-dispersed species to be 

lower in forest fragments with modified matrices due to their possibly reduced permeability 

for seed dispersers.  

Methods 

Methods  
Methods  

STUDY AREA AND DESIGN. We collected our data from January to April 2010 in coastal scarp 

forest in KwaZulu-Natal (KZN), South Africa within and close to Vernon Crookes (VC; 

30°15′S–30°18′S, 30°32′E–30°37′E) and Oribi Gorge (OG; 30°41′S–30°45′S, 30°10′E–30°18.5′E) 

nature reserves (Fig. 3.1a). Scarp forest forms a transition zone between Afromontane forest 

and Indian Ocean coastal belt forest. It is located on the south- and southeast-facing slopes or 

in deep gorges (Eeley et al. 1999). These moist and sheltered microclimatic and topographic 

conditions have certainly contributed to the essential role of scarp forests as refugia during the 

last glacial maximum. As a consequence, scarp forests contain much of the region’s 

biodiversity (Lawes 1990; Eeley et al. 1999). They belong to the summer rainfall (October–

March) subtropical climate zone and feature seasonal differences with an annual temperature 

range from 4 to 32°C and a rainfall range from 440 to 1400 mm (von Maltitz et al. 2003).  

 We studied scarp forest fragments surrounded by four variable matrix habitat types, i.e. 

two heterogenous natural matrices within the two nature reserves and two homogenous 
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modified matrix habitat types located outside the nature reserves. Forest fragments in natural 

matrix habitat were: (1) large natural forest fragments with forest matrix (ForFra) within two 

forest blocks (total size: VC 130 ha, OG 822 ha, altitudinal range: 220–390 m asl) and (2) small 

forest fragments surrounded by natural grassland containing isolated trees and bushes 

(GraFra) kept open due to microclimatic conditions, grazing pressure and fire events (size: 

2.3 ± 0.9 ha, all reported means are ± 1 SE; altitudinal range: 340–480 m asl). Small fragments in 

modified matrix habitat comprised: (1) forest fragments embedded in plantations (PlaFra) 

consisting of small remnant stretches of native forest as buffer zones of nearby streams within 

eucalypt plantations (major timber of the region, size: 0.6 ± 0.3 ha, altitudinal range: 480–510 m 

asl) and (2) forest fragments enclosed by agriculture (AgrFra), i.e. large sugarcane fields 

(predominant crop of the region, size: 3.2 ± 0.7 ha, altitudinal range: 390–580 m asl). 

 

 

(c)

 ForFra GraFra PlaFra AgrFra30 m

1
0

 m

Trees

Vegetation

Saplings
Seedlings

4 km
 

 
Figure 3.1. Study area and research design. (a) Map of South Africa (black) and detailed map of study 
area. Landscapes around (b)Vernon Crookes and (c) Oribi Gorge nature reserves showing the 24 study 
plots with six each in large natural forest fragments with forest matrix (ForFra; circles) and in three 
small forest fragment types surrounded by natural grassland (GraFra; triangles), plantation (PlaFra; 
squares) and agriculture (AgrFra; stars) matrix habitat. (d) Research design for assessing tree, seedling 
and sapling communities as well as vegetation parameters. 
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 We established a total of 24 study plots, i.e. six plots per fragment type surrounded by 

variable matrix habitat (Fig. 3.1b, c). Minimal distance between plots was 500 m except for 

PlaFra, which were at least 200 m apart. Because the different fragment types were not 

evenly distributed throughout the two study regions, replicates of most fragment types were 

spatially clustered (Fig. 3.1b, c). However, both regions lie within the natural distribution 

range of scarp forest and thus experience very comparable topographic, soil and climatic 

conditions, such as sandstone, orographic rainfall and strong winds (von Maltitz et al. 2003). 

Moreover, they feature a similar tree species composition. The most dominant tree species in 

ForFra, i.e. Baphia racemosa, Englerophytum natalense and Millettia grandis are equally abundant 

in both regions (see Appendix 2). Additionally, both regions are exposed to comparable 

land-use modifications (sugarcane fields, timber plantations).  

 

TREE, SEEDLING AND SAPLING MAPPING. We identified all adult trees with a diameter at 

breast height (dbh) of > 5 cm or > 400 cm high on a cross of two 30  10-m transects (500 m2) 

per plot. This transect was divided into 20 5  5-m subplots (Fig. 3.1d). In every second of 

these subplots we established ten 5-m² sapling plots (50 m²) to sample all saplings with a 

diameter of < 5 cm at their base or > 75 cm high. In the centre of these sapling plots we 

mapped all seedlings with a diameter of < 1 cm at their base or < 75 cm high on ten 1-m2 

seedling plots (10 m2). Species were identified using Boon (2010), van Wyk and van Wyk 

(2007) and Coates Palgrave (2005; Appendix 2); species nomenclature follows Coates 

Palgrave (2005). Species were classified according to their successional status as early- (ES) or 

late-successional (LS) species depending on their ability to cope with shade following two 

expert botanists from KZN, Tony Abbott and David Johnson (pers. comm.; Appendix 2). 

Species that occurred in open woodland or at river margins as well as invasive species were 

classified as ES.  

 

FOREST FRAGMENT QUALITY. As parameters of forest fragment quality relevant for the 

establishment of tree recruits, we quantified canopy cover, relative light intensity on the 

forest floor and vertical vegetation complexity. In the same alternating ten 5  5-m subplots 

within the cross transect described above we estimated percentage of canopy cover at two 

points directly adjacent to the ten sapling plots using a sighting tube (4  10 cm) and 

averaged estimations across plots. We also measured light intensity always at noon on the 
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forest floor at the centre of each of the ten 1-m2 seedling plots applying a luxmeter (ATP, LX-

332). We additionally measured a reference light intensity at an unshaded spot nearby and 

calculated mean relative light intensity (hereafter light intensity) per plot. Furthermore, we 

estimated the vertical vegetation complexity (vegetation complexity) to characterize plots 

according to their vegetation structure (Fig. 3.1d, vegetation). For this purpose, we 

determined the percentage cover of living biomass consisting of woody and herbaceous 

vegetation at seven horizontal layers: 0 m, 0.5 m, 1 m, 2 m, 4 m, 8 m and 16 m. We used the 

Shannon index H, to calculate vegetation complexity as suggested by Bibby et al. (2000) at 

each of the ten subplots and averaged values per plot. 

 

RECRUITMENT WITH EXTERNAL ORIGIN. Based on the above-mentioned literature we classified 

seedlings and saplings according to their dispersal mode as either animal-, wind- or gravity-

dispersed. As we were interested in the permeability of different matrices for animals we 

excluded wind- and gravity-dispersed species. We further classified seedlings and saplings as 

recruitment with local or external origin. We considered seedlings and saplings as external 

recruits if no conspecific adult trees were present within the plot. We additionally checked the 

canopy directly above seedling and sapling plots for conspecifics as tree crowns can be 

protruding. We are aware of the methodological constraints of this method. For instance, it can 

lead to an underestimation of seed dispersal as we did not distinguish between male and 

female dioecious trees. Alternatively, it can cause an overestimation of seed dispersal if 

recruitment stems from adult trees that have died or been logged. Nevertheless, the method 

has been shown to provide valuable results on the importance of seed dispersal in tropical 

forests (Martínez-Ramos & Soto-Castro 1993; Melo et al. 2010).  

 

DATA ANALYSES. All analyses were performed with R version 2.12.0 (R Development Core 

Team 2010). We used analyses of covariance (ANCOVA) to test effects of fragment quality 

measures as well as of the four forest fragment types surrounded by variable matrix habitat 

(ForFra, GraFra, PlaFra, AgrFra) on species richness and abundance of trees, seedlings and 

saplings separately for ES and LS species. We included the number of individuals as a 

covariate in the ANCOVAs for species richness as richness might increase with abundance 

(Gotelli & Colwell 2001). Tree species richness as well as seedling and sapling abundance data 

were ln(x + 0.5)-transformed prior to analyses to reach homogeneity of variances and normality 
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of residuals. Canopy cover and vegetation complexity were included as covariates in all 

models; light intensity only into seedlings and saplings models. Effects of covariates were 

corrected for each other using type II SS. Independent variables were excluded from the 

models through stepwise deletion starting with the least significant term (P > 0.1). We checked 

for differences in canopy cover, light intensity and vegetation complexity of the forest 

fragments using analyses of variance (ANOVAs). Differences between fragment types were 

analysed using Tukey’s Honestly Significant Difference (Tukey’s HSD) multiple pairwise 

comparison post hoc test (P < 0.1). 

 We applied non-metric multidimensional scaling (NMDS) using Bray-Curtis 

dissimilarity implemented in R package vegan version 2.0-1 (Oksanen et al. 2011) based on 

abundance data to detect differences between species composition among different forest 

fragment types. NMDS displays dissimilarities in community composition nonlinearly onto 

ordination space, can cope with nonlinear species responses and is not constrained by 

predictors (Oksanen 2011). We pooled tree, seedling and sapling species as community 

compositions of the three stage classes were not independent. We excluded rare species that 

only occurred once (singletons) and that were merely present in one plot (uniques) leaving 88 

species (54 ES, 34 LS). Forest fragment quality measures and variable matrix habitat were fitted 

post hoc to the ordination; their effects were tested via random permutations (1000 iterations). 

 We moreover tested the effect of matrix habitat on the relative proportion of external 

recruitment of seedling and sapling individuals using ANOVAs. We did not consider 

fragment forest fragment quality in these analyses as we believed it to be of low relevance to 

possible seed influx into forest fragments. Only animal-dispersed species were used as 

reference for percentages of total recruitment present per plot. Proportions were arcsine square 

root-transformed prior to analyses to reach model assumptions. We combined ES and LS 

individuals as we were interested in overall external recruitment. In two AgrFra plots no 

animal-dispersed seedlings occurred leaving 22 plots for analyses. 

Results 

Resu lts 

TREES. We identified 121 tree species (70 ES, 51 LS) and 1440 tree individuals (902 ES, 538 LS; 

Appendix 2). ES tree species richness was neither significantly affected by forest fragment 

quality nor by matrix habitat (Table 3.1). It ranged from 8.3 (+ 1.8/− 1.5) in ForFra to 12.7 
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Figure 3.2. Species richness of early- (light bars) and late-successional (dark bars) trees, seedlings 
and saplings in forest fragments with variable matrix habitat. (a) Trees, (b) seedlings and (c) saplings 
in large natural forest fragments with forest matrix (ForFra) and in small forest fragments surrounded 

by natural grassland (GraFra), plantations (PlaFra) and agriculture (AgrFra). Shown are means  SE 
(back-transformed for trees), different letters (upper case = early-, lower case = late-successional 
species) indicate significant differences (P < 0.1) according to Tukey’s HSD multiple pairwise 
comparison post hoc test.  

(+ 1.4/− 1.2) in PlaFra (for back-transformed means positive/negative SEs stated separately; Fig. 

3.2a). ES species richness highly significantly increased with increasing abundance of ES trees 

(Table 3.1). LS tree species richness significantly increased with higher canopy cover and 

tended to increase with enhanced vegetation complexity (Table 3.1). LS tree species richness 

was significantly affected by matrix habitat (post hoc comparisons: all vs. PlaFra P < 0.001). It 

was highest in ForFra (8.6 + 1.8/− 1.5) and lowest in PlaFra (1.0 + 0.7/− 0.5; Fig. 3.2a).  
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ES tree abundance decreased significantly with increasing canopy cover and 

increased significantly with higher vegetation complexity (Table 3.1). ES tree abundance was 

not significantly affected by matrix habitat (Table 3.1). It was similarly high in all fragment 

types (range: 29.3 ± 5.3–32.8 ± 7.0) but much higher in PlaFra (58.0 ± 6.2; Fig. 3.3a). LS tree 

abundance increased with higher canopy cover and was marginally significantly affected by 

matrix habitat (Table 3.1). LS tree abundance showed the opposite pattern of ES tree 

abundance with similar values in all fragment types (range: 18.5 ± 2.6–39.0 ± 7.0) but much 

lower abundance in PlaFra (3.5 ± 1.5; Fig. 3.3a).  

 

SEEDLINGS. The total seedling community consisted of 61 species (33 ES, 28 LS) and 692 

individuals (294 ES, 398 LS; Appendix 2). All measures of forest fragment quality 

significantly affected ES seedling species richness: it increased with decreasing canopy cover 

and with increasing light intensity and vegetation complexity (Table 3.1). ES seedling species 

richness varied significantly between fragment types with variable matrix habitat (post hoc 

comparisons: ForFra vs. GraFra P = 0.085, GraFra vs. AgrFra P = 0.024, PlaFra vs. AgrFra 

P = 0.052). ES seedling species richness was high in GraFra (6.0 ± 1.2) and PlaFra (5.5 ± 0.9) 

and low in ForFra (2.5 ± 0.8) and AgrFra (1.7 ± 1.0; Fig. 3.2b). It increased with increasing ES 

seedling abundance. LS seedling species richness increased significantly with increasing 

relative light intensity (Table 3.1). It showed significant differences between fragment types 

with natural and modified matrix habitat (post hoc comparisons: ForFra vs. PlaFra P = 0.037, 

ForFra vs. AgrFra P = 0.053, GraFra vs. PlaFra P = 0.002, GraFra vs. AgrFra P = 0.003). LS 

seedling species richness was highest in ForFra (4.2 ± 0.2) and GraFra (5.3 ± 0.8) and lowest in 

PlaFra (1.5 ± 0.8) and AgrFra (1.7 ± 0.7; Fig. 3.2b). 

 ES seedling abundance increased significantly with increasing vegetation complexity 

(Table 3.1). It differed significantly between fragment types (post hoc comparisons: ForFra vs. 

PlaFra P = 0.067, GraFra vs. AgrFra P = 0.070, PlaFra vs. AgrFra P = 0.015) and showed a 

similar picture as species richness with highest numbers of individuals in PlaFra 

(16.2 + 11.8/− 6.9) and GraFra (9.5 + 4.2/− 3.0) and lowest numbers in ForFra (2.1 + 1.3/− 0.9) 

and AgrFra (1.1 + 1.4/− 0.8; Fig. 3.3b). LS seedling abundance was not significantly affected 

by forest fragment quality (Table 3.1) It showed significant differences among fragment 

types with natural and modified matrix habitat (post hoc comparisons: ForFra vs. PlaFra 

P = 0.002, GraFra vs. AgrFra P = 0.004, GraFra vs. PlaFra P < 0.001, GraFra vs. AgrFra 
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P = 0.002). LS seedling abundance was highest in ForFra (21.7 + 7.4/− 5.6) and GraFra 

(26.9 + 9.6/− 7.1) and lowest in PlaFra (1.2 + 1.1/− 0.7) and AgrFra (1.7 + 1.5/− 0.9; Fig. 3.3b).  
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Figure 3.3. Abundance of early- (light bars) and late-successional (dark bars) trees, seedlings and 
saplings in forest fragments with variable matrix habitat. (a) Trees, (b) seedlings and (c) saplings in 
large natural forest fragments with forest matrix (ForFra) and in small forest fragments surrounded by 

natural grassland (GraFra), plantations (PlaFra) and agriculture (AgrFra). Shown are means  SE 
(back-transformed for trees), different letters (upper case = early-, lower case = late-successional 
species) indicate significant differences (P < 0.1) according to Tukey’s HSD multiple pairwise 
comparison post hoc test.  
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SAPLINGS. The total sapling community comprised 81 species (47 ES, 34 LS) and 614 

individuals (308 ES, 306 LS). ES sapling species richness was neither affected by forest 

fragment quality nor by matrix habitat (Table 3.1). ES sapling species richness ranged from 

1.8 ± 0.5 in ForFra to 6.8 ± 1.3 in PlaFra (Fig. 3.2c) and increased significantly with higher ES 

sapling abundance (Table 3.1). LS sapling species richness was not significantly affected by 

forest fragment quality (Table 3.1). It differed significantly between fragment types (post hoc 

comparisons: ForFra vs. PlaFra P = 0.042, GraFra vs. PlaFra P = 0.055). LS sapling species 

richness showed a similar pattern as observed for trees and varied little between all fragment 

types (range: 4.3 ± 1.0 – 5.3 ± 1.2) but PlaFra, where richness was much lower (1.7 ± 0.4; 

Fig. 3.2c). 

 ES sapling abundance increased significantly with higher vegetation complexity (Table 

3.1). It showed similar results as ES sapling richness and was significantly affected by matrix 

habitat (post hoc comparisons: ForFra vs. PlaFra P = 0.012, PlaFra vs. AgrFra P = 0.093). 

Abundances ranged from 2.2 (+ 1.0/− 0.7) to 7.4 (+ 3.9/− 2.6) in all fragment types but PlaFra 

where abundance was much higher (21.9 + 8.8/− 6.3; Fig. 3.3c). LS sapling abundance tended to 

increase with higher canopy cover (Table 3.1). It varied significantly between fragment types 

(post hoc comparisons: ForFra vs. PlaFra P < 0.001, GraFra vs. PlaFra P < 0.001, PlaFra vs. AgrFra 

P = 0.027). Abundance was highest in ForFra (16.5 + 2.2/− 2.0) and GraFra (16.7 + 7.0/− 5.0), 

intermediate in AgrFra (7.9 + 1.9/− 1.5) and lowest in PlaFra (1.9 + 1.2/− 0.8; Fig. 3.3c).  

 

FOREST FRAGMENT QUALITY. Canopy cover varied significantly between fragment types with 

variable matrix habitat (F3,20 = 8.0, P = 0.001; post hoc comparisons all vs. PlaFra: ForFra 

P < 0.001, GraFra P = 0.021, AgrFra P = 0.008). Canopy cover was highest in ForFra 

(89.8%  2.4), intermediate in GraFra (83.8% ± 2.4) and AgrFra (85.7% ± 2.1) and lowest in 

PlaFra (70.2%  4.5). Light intensity did not differ significantly between fragment types 

(F3,20 = 1.35, P = 0.29). It was lowest in AgrFra (0.22%  0.04), intermediate in ForFra and 

GraFra (1.01%  0.45; 1.27%  0.68) and highest in PlaFra (1.66%  0.64). Vegetation 

complexity did not vary significantly between fragment types with variable matrix habitat 

(F3,20 = 0.09, P = 0.96). It gradually increased from 1.91  0.06 in PlaFra to 1.97  0.06 in ForFra.  

 

COMMUNITY COMPOSITION. NMDS significantly separated the community composition of 

cumulative tree, seedling and sapling species by fragment types with variable matrix habitat 
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(two convergent solutions, two dimensions, stress = 0.15, R² = 0.72, P < 0.001; Fig. 3.4). ForFra 

and GraFra communities were located close together with overlapping 95% confidence 

interval ellipses of their class centroids. PlaFra and AgrFra formed completely disconnected 

groups without overlapping of class centroid ellipses. Forest fragment types with natural 

matrices were arranged along a gradient of increasing canopy cover towards ForFra 

(R² = 0.55, P < 0.001). PlaFra was located in the opposite direction of this gradient. ES and LS 

species were equally distributed in ForFra, GraFra and AgrFra, but in PlaFra no LS species 

occurred. Light intensity and vegetation complexity had no significant influence on 

community composition (R² = 0.01, P = 0.86; R² = 0.03, P = 0.75).  

 

 

 

RECRUITMENT WITH EXTERNAL ORIGIN. Animal-dispersed species included 88% of total 

species richness of all stage classes found (Appendix 2). Relative external recruitment of 

seedling individuals did not vary significantly between fragment types with variable matrix 
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Figure 3.4. NMDS biplot of cumulative tree, seedling and sapling species scores (n = 88) showing 
community composition separated by successional status as early- (light triangles) and late-
successional (dark triangles) species in large natural forest fragments with forest matrix (ForFra) and 
in small forest fragments surrounded by natural grassland (GraFra), plantations (PlaFra) and 
agriculture (AgrFra). Fitted fragment types are shown with 95% confidence interval ellipses of their 
class centroids, the arrow points along the gradient of increasing canopy cover. 
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habitat (F3,18 = 0.27, P = 0.85). It ranged from 20.6% (+ 10.2/− 8.6) in ForFra to 28.4% (+ 9.7/− 8.8) 

in PlaFra. Relative external recruitment of sapling individuals was not significantly affected 

by matrix habitat (F3,20 = 0.58, P = 0.68). It showed similar values for all fragment types and 

ranged from 22.2% in PlaFra (+ 6.3/− 5.7) to 37.0% (+ 13.6/− 12.6) in AgrFra.  

Discussion 

Discu ssion  

Tree species richness and abundance were rather impacted by forest fragment quality than 

by matrix habitat. LS tree species were strongly diminished in PlaFra, where canopy cover 

was significantly lower. Effects of forest fragment quality and matrix habitat were more 

pronounced in the young stages. Species richness and abundance of tree recruits showed a 

general decline in fragments with modified matrices regardless of their successional status, 

which was corroborated in the NMDS. Matrices did seemingly not act as an impenetrable 

barrier to seed dispersal as seed influx occurred in all fragment types. 

 

TREES. Tree species richness and abundance were affected by high canopy cover decreasing 

ES and increasing LS trees. Tree communities did not respond to variable matrix habitat in 

all fragment types but PlaFra where ES species richness and abundance were strongly 

elevated while LS species were diminished. Findings are similar to those of others who also 

barely found effects of forest fragmentation on the adult tree community (Lawes et al. 2007; 

Farwig et al. 2008b). One possible explanation might be that trees are long-lived and effects of 

human impact, rapidly increasing only in the last decades, might not be visible yet.  

 In PlaFra the prevalence of ES at the expense of LS species was in line with our 

expectations and has been reported by others who also found a decline in LS trees in 

fragmented forests (Laurance et al. 1998; Laurance et al. 2006; Kirika et al. 2010). This pattern 

was seemingly caused by changes of forest fragment quality in terms of abiotic conditions. 

Canopy cover was significantly reduced and light availability was highest in PlaFra 

compared to all other fragment types, which thus seemingly supplied the most beneficial 

conditions for ES species. Moreover, PlaFra might still be in the process of succession. Since 

the time of plantation establishment (before 1972) buffer zones have only gradually been 

increased in size between 1972 and 1998 (Edwards & Roberts 2006). Yet, if local sources of 

propagules and seed dispersers are present and plantation management in the understory is 
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moderate, plantations are able to aid forest succession (Brockerhoff et al. 2008 and references 

therein). However, the lack of LS adult trees in PlaFra remains alarming as it might impede 

further succession.  

 

RECRUITMENT. Recruitment was generally higher in forest fragments with natural matrices 

compared to fragments with modified matrices. Moreover, fragments with natural matrix 

habitat had a much higher richness and abundance of LS species than fragments with 

modified surroundings. This is in line with results of others reporting a general decline of 

seedlings and particularly LS species in forest fragments (Cordeiro & Howe 2001; Benítez-

Malvido & Martínez-Ramos 2003a; Farwig et al. 2008b; Kirika et al. 2010).  

 Decreasing species richness and abundance of recruits can be a consequence of 

alterations of abiotic or of biotic conditions in modified forests (Ramírez-Marcial 2003). For 

example, light availability is regarded the most important regulator of seedlings 

performance (Pacala et al. 1996). Yet, in our study light intensity on the forest floor did not 

significantly differ between fragment types. Nevertheless, it was by trend lowest in AgrFra. 

This was presumably caused by interspecific competition of a dominant, large, semi-woody 

herb (Isoglossa woodi) shading out the forest floor (Griffiths et al. 2007). In PlaFra on the other 

hand canopy cover was significantly reduced reflecting the lack of LS tree density there, 

which might also be responsible for their lacking recruitment. 

 Furthermore, changes in biotic interactions appear possible. For instance, Farwig et al. 

(2008b) argued that the reduction in relative seedling species richness due to fragmentation 

might have been caused by diminished frugivore abundance as no differences in light 

intensity occurred between main forest and fragments. However, we consider this unlikely 

in our case: in previous studies in the same scarp forest fragments we could demonstrate that 

frugivore abundance and fruit removal were not negatively affected in forest fragments with 

modified matrices (Neuschulz et al. 2011). Moreover, antagonistic processes, such as seed 

predation and seedling herbivory may increase in fragmented forests with negative impact 

on recruitment (Donoso et al. 2003; Benítez-Malvido & Lemus-Albor 2005). In line with these 

findings, we could also prove elevated seed predator densities as well as increased seed 

predation in scarp forest fragments with modified matrix habitat in further studies (see 

chapter 2). Presumably, modified matrices, especially sugarcane, acted as a barrier for large 
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predators leading to an ecological release of seed predators (Terborgh et al. 2008), which in 

turn diminished recruitment (Asquith et al. 1997). 

 In consequence, altered forest fragment quality in combination with modified 

matrices seems to affect abiotic as well as biotic conditions in forest fragments. Thereby, 

general seedling and sapling recruitment is hampered, particularly recruitment of LS species. 

This suggests that tree regeneration might be at stake in the long term. 

 

COMMUNITY COMPOSITION. Cumulative community composition of all three stage classes 

was affected by forest fragment quality and by matrix habitat. Fragment types with natural 

matrix habitat were very similar in composition, whereas fragment types with modified 

matrices formed separate groups indicating compositional shifts. This shift comprised the 

increase of ES at the expense of LS species.  

 These changes in community composition can presumably be related to differences in 

canopy cover between fragment types with natural and modified matrix habitat. This was 

corroborated by the significant gradient of increasing canopy cover pointing towards 

fragment types with natural matrices and away from those with modified matrix habitat. As 

canopy openings have been demonstrated to be quickly colonized by ES species (Kariuki & 

Kooyman 2005) this might also explain their predominance in fragment types with modified 

matrix habitat. The proliferation of ES species can have severe consequences for nutrient 

cycling, carbon storage and forest regeneration dynamics. For instance, less carbon is stored 

in ES species and nutrient cycles are accelerated due to their shorter life time compared to LS 

species (Laurance et al. 2006; Laurance et al. 2011). As a result, this calls for the necessity of 

large natural forests in order to provide connectivity and serve as source of propagules to 

maintain community composition and equal proportions of ES and LS species.  

 

RECRUITMENT WITH EXTERNAL ORIGIN. Modified matrices did presumably not act as sharp 

barriers for seed dispersers. Recruitment originating from animal-mediated seed influx was 

similarly high in all fragment types. This contrasts with our expectation of higher external 

recruitment in fragments with natural matrix habitat.  

 Our definition of external recruitment is rather conservative: recruits classified as 

local might have originated from adult trees within the plot but also from adults elsewhere 

(Melo et al. 2010). We thus might have underestimated external recruitment in fragments 
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with natural matrix habitat because of the higher density of many adult tree species 

compared to fragments with modified matrices.  

 Nevertheless, our findings are in line with Herrera et al. (2011) who also did not find 

negative effects of the matrix on seed dispersal into fragments. In addition, we could show 

that bird frugivores were present in all fragment types in the same study region (Neuschulz 

et al. 2011) indicating frequent movements of birds among patches (García & Chacoff 2007). 

In consequence, plant-frugivore interactions, such as seed dispersal can be maintained to a 

certain degree even if matrix and remaining habitat patches greatly differ (Bender & Fahrig 

2005). Some matrix components, such as isolated trees serving as focal points, corridors or 

the matrix quality itself may contribute to buffering negative matrix effects by facilitating 

seed disperser movement and thereby enhance landscape connectivity (García & Bañuelos 

2003; Herrera & García 2009). This underlines the important role of structurally diverse 

landscapes including forest fragments as stepping-stones for seed dispersers. 

Conclusions 

Conclusions 

Our study demonstrates that forest fragment quality and matrix habitat only slightly 

impacted trees as merely in PlaFra ES predominated at the expense of LS species. Yet, 

seedling and sapling establishment of particularly LS species were hampered in fragments 

with modified matrices in comparison to fragments with natural matrix habitat, which was 

supported by the clear separation of these groups in the NMDS. This shift in community 

composition might have been caused by reduced canopy cover and increased light intensity 

in fragments with modified matrix habitat. External recruitment was present in all fragments 

indicating permeability of the structurally diverse landscape for seed dispersers. To 

conclude, alterations of forest fragment quality and modified matrix habitat showed negative 

consequences for the young stages during regeneration highlighting their important role as 

indicators of human impact. The structurally complex landscape comprising fragments with 

both natural and modified matrix habitat seems to buffer negative effects of forest 

fragmentation. Such landscapes contribute to connectivity by providing stepping stones for 

seed dispersers, yet cannot replace natural forests. These natural forest fragments are 

essential sources of propagules to ensure forest regeneration through, e.g. seed influx into 
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modified habitats. Thus, conservation management needs to consider connectivity across 

remaining natural habitat patches.  
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Abstract 

Abstract. Deforestation and fragmentation alter antagonistic interactions, such as herbivory 

on tree recruits with possible consequences for regeneration. Here, we assessed the impact of 

forest fragment quality in terms of structural characteristics and matrix habitat on 

arthropods and leaf damage on tree seedlings and saplings in KwaZulu-Natal, South Africa. 

We quantified forest fragment quality regarding tree diversity, vertical vegetation 

complexity and canopy cover. We compared arthropod predator and herbivore abundances, 

insect herbivory and pathogen infestation among scarp forest fragments with variable matrix 

habitat: two fragment types with natural heterogenous matrices, i.e. large fragments with 

forest matrix and small fragments surrounded by grassland as well as two small fragment 

types with modified homogenous matrices, i.e. eucalypt plantations and sugarcane 

agriculture. Forest fragment quality increased arthropod predator and decreased arthropod 

herbivore abundance. Herbivory responses to fragment quality were diverging with tree 

diversity decreasing seedling, but increasing sapling herbivory while canopy cover increased 

herbivory of tree recruits generally. Fragment quality had no effect on pathogen infestation. 

In general, matrix habitat showed no pronounced effects on arthropods and leaf damage. 

Merely, seedling pathogen infestation and sapling herbivory tended to vary with matrix 

habitat. Trophic interactions between arthropod predators, herbivores and herbivory seemed 

to be weak and diffuse in scarp forest fragments. We assume differences in herbivore species 

compositions and plant palatability to be responsible for contrasting effects on arthropods 

and herbivory. Overall, herbivory on tree recruits seemed to be mediated by forest fragment 

quality rather than by matrix habitat, but interactions between arthropod predators and 

herbivores appeared to be highly complex. 

 

Key words. Diversity-herbivory relationships, habitat quality, KwaZulu-Natal, leaf damage, pathogen 

infestation, plant-animal-interactions, saplings, scarp forest, seedlings. 
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Introduction 

Introduction  

Worldwide human activities, such as deforestation, habitat fragmentation and agricultural 

intensification pose a threat to biodiversity (Sala et al. 2000; Tylianakis et al. 2008). This is 

particularly severe in forests, which provide habitat for more than half of the known 

terrestrial plant and animal species (MEA 2005). The consequences of this biodiversity 

decline for ecological processes are far from being understood (Balvanera et al. 2006). 

Accordingly, antagonistic interactions, such as insect herbivory and leaf fungal pathogen 

infestation might be subject to changes with potentially critical outcomes for forest 

regeneration. 

 Herbivory by insects is the predominant form of leaf damage in (sub-) tropical 

forests, often accompanied by pathogen infestation and far exceeding mammalian herbivory 

(García-Guzmán & Dirzo 2001; Ruiz-Guerra et al. 2010). Herbivores and pathogens play an 

important role in plant species coexistence as they either directly influence plants through 

consumption/infestation or indirectly affect their competitiveness, which can have 

consequences for plant diversity (Hulme 1996). Consequently, such forms of leaf damage on 

tree seedlings and saplings do not only affect the survival, growth and productivity of 

individual plants, but also have the potential to alter dynamics and structure of (sub-) 

tropical forests (Burdon 1993; Hoshizaki et al. 1997; Maron & Crone 2006). 

 Insect herbivory and leaf fungal pathogen infestation of woody seedlings and 

saplings have shown to be affected by forest fragmentation (Krüss & Tscharntke 1994; Santos 

& Benítez-Malvido 2012). This could be ascribed to modifications of structural characteristics 

in forest fragments (e.g. Saunders et al. 1991; Montgomery & Chazdon 2001; Harvey et al. 

2006). For instance, a decline of tree diversity in forest fragments has been found to increase 

herbivory and pathogen infestation and vice versa (Jactel et al. 2006; Jactel & Brockerhoff 2007; 

Kaitaniemi et al. 2007; Haas et al. 2011). The reduced susceptibility of diverse plant 

communities to insect herbivory has been explained by the concept of ‘associational 

resistance’ comprising two hypotheses: (1) specialist herbivores are assumed to find fewer 

resources in more diverse plant communities as non-host plant abundance increases 

('resource concentration hypothesis', Tahvanai & Root 1972; Root 1973); (2) higher diversity 

is believed to involve an increase in structural and resource diversity, such as alternative 
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prey, shelter and additional food for natural enemies like arthropod predators and 

parasitoids. This should entail a reduction of herbivores and thereby also decrease herbivory 

('enemies hypothesis', Root 1973). In line with the second hypothesis, some authors found an 

increase of insect herbivory in small fragments caused by lower enemy abundance (e.g. 

Terborgh et al. 2001). The decline of pathogen transmission in diverse systems has been 

explained by increased competition and problems in host-finding (Mitchell et al. 2002; 

Roscher et al. 2007), similar to the ‘resource concentration hypothesis’. In contrast, some 

studies also found an amplification of insect herbivory and pathogen infestation with 

increases in tree species richness (Vehviläinen et al. 2007; Scherber et al. 2010). Such positive 

diversity-herbivory and diversity-disease relationships have been attributed to spillover 

effects of generalist herbivores ('associational susceptibility', White & Whitham 2000) or by a 

wide host range for pathogens (Keesing et al. 2010). Fragmentation effects on pathogen 

infestation have rarely been investigated (but see Benítez-Malvido et al. 1999; Holdenrieder et 

al. 2004). Yet, as many fungal pathogens depend on insect wounds to infect plants (García-

Guzmán & Dirzo 2001), similar responses of pathogens and insect herbivores are expected in 

relation to fragmentation (Benítez-Malvido et al. 1999). 

 Numerous studies have recently stressed that considering not only forest fragments 

and their quality, but also the matrix surrounding these fragments, may be equally 

important for conservation (Kupfer et al. 2006; Vandermeer & Perfecto 2007; Perfecto & 

Vandermeer 2010). Depending on structure and permeability, matrices can on the one hand 

complement natural habitat, facilitate dispersal among habitat remnants or buffer negative 

effects of forest fragmentation. On the other hand they might as well function as ecological 

traps for native species (Kupfer et al. 2006; Brockerhoff et al. 2008 and references therein). 

Thus, low-contrast matrices composed of diverse, structurally complex landscapes that 

resemble the natural habitat might facilitate the movement of insectivorous vertebrates 

(Tscharntke et al. 2005). Several studies have shown that insectivorous vertebrates 

significantly reduce the abundance of herbivores and thereby enhance plant performance 

(e.g. Greenberg et al. 2000; Kalka et al. 2008). In addition, the matrix may offer additional or 

complementary resources for both predators and herbivores or even link together different 

required habitat elements for many species in order to complete their life cycles (Haynes et 

al. 2007; Diekötter et al. 2007). Contrarily, high-contrast matrices comprising homogenous, 

structurally poor elements might hamper the movement of arthropod predators or 
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insectivorous vertebrate predators leading to a release of herbivores and thereby increase 

herbivory (e.g. Kalka et al. 2008). In sum, matrix habitat may play an essential role in shaping 

leaf damage on tree recruits. Studies on insect herbivory and leaf fungal pathogen infestation 

have investigated fragmentation and edge effects (e.g. Benítez-Malvido & Lemus-Albor 2005; 

Faveri et al. 2008; Ruiz-Guerra et al. 2010). Yet, to our knowledge, no study on leaf damage of 

the naturally grown woody seedling and sapling community in subtropical forest fragments 

has jointly assessed the effects of fragment quality and matrix habitat.  

 In this study we examined the impact of forest fragment quality and matrix habitat 

on the arthropod predator (hereafter predators, other predators are specified) and insect 

herbivore (herbivore) community and on leaf damage of woody seedlings and saplings in 

scarp forest fragments in KwaZulu-Natal, South Africa. We assessed the influence of forest 

fragment quality in terms of tree diversity, vertical vegetation complexity and canopy cover 

on arthropods, herbivory and pathogens. We further compared arthropod abundance, insect 

herbivory and leaf pathogen infestation among forest fragments with variable matrix habitat: 

two fragment types with natural heterogenous matrices, i.e. large fragments with forest 

matrix and small fragments surrounded by grassland as well as two fragment types with 

modified homogenous matrices, i.e. eucalypt plantations and sugarcane agriculture. We 

expected (1) forest fragment quality to enhance predator abundance and thereby reduce 

herbivore abundance and herbivory. Further, we hypothesized (2) that natural matrix habitat 

increases predator abundance due to higher structural diversity and thereby controls 

herbivores and herbivory in fragment surrounded by natural matrices. We accordingly 

anticipated (3) that modified matrix habitat hampers predator movement and leads to 

increased herbivore abundance and consequently herbivory as well as concurrent leaf fungal 

pathogen infestation in fragments with modified matrices.  

Methods 

Methods 

STUDY AREA AND DESIGN. We collected our data from January to April 2010 in coastal scarp 

forest in KwaZulu-Natal (KZN), South Africa within and close to Vernon Crookes (VC; 

30°15′S–30°18′S, 30°32′E–30°37′E) and Oribi Gorge (OG; 30°41′S–30°45′S, 30°10′E–30°18.5′E) 

nature reserves. Scarp forest forms a transition zone between Afromontane forest and Indian 

Ocean coastal belt forest. It is located on south- and southeast-facing slopes or in deep gorges 
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(Eeley et al. 1999). These moist and sheltered microclimatic and topographic conditions have 

certainly contributed to the essential role of scarp forests as refugia during the last glacial 

maximum. Thus, scarp forests contain much of the region’s biodiversity (Lawes 1990; Eeley 

et al. 1999). They belong to the summer rainfall (October–March) subtropical climate zone 

and feature seasonal differences with an annual temperature range from 4 to 32°C and a 

rainfall range from 440 to 1400 mm (von Maltitz et al. 2003).  

 We studied scarp forest fragments surrounded by four different matrix habitat types, 

i.e. two natural heterogenous matrices within the two nature reserves and two modified 

homogenous matrix habitat types located outside the nature reserves. Forest fragments in 

natural matrix habitat were: (1) large natural forest fragments with forest matrix (ForFra) 

within two forest blocks (total size: VC 130 ha, OG 822 ha [henceforth we always report 

means  1 SE], canopy cover: 89.8 ± 2.2%, altitudinal range: 220–390 m asl) and (2) small 

forest fragments surrounded by natural grassland containing isolated trees and bushes 

(GraFra), kept open due to microclimatic conditions, grazing pressure and fire events (size: 

2.3 ± 0.9 ha, canopy cover: 83.8 ± 2.2%, altitudinal range: 340–480 m asl). Small fragments in 

modified matrix habitat comprised: (1) forest fragments surrounded by plantations (PlaFra) 

consisting of small remnant stretches of native forest as buffer zones of nearby streams 

within eucalypt plantations (major timber of the region, size: 0.6 ± 0.3 ha, canopy cover: 

70.2 ± 4.1%, altitudinal range: 480–510 m asl) and (2) forest fragments surrounded by 

agriculture (AgrFra), i.e. large sugarcane fields (predominant crop of the region, size: 3.2 ± 0.7 

ha, canopy cover: 85.7 ± 1.9%, altitudinal range: 390–580 m asl). 

 We established a total of 24 study plots, i.e. six replicates per forest fragment type 

surrounded by variable matrix habitat. Minimal distance between plots was 500 m except for 

PlaFra, which were at least 200 m apart. The replicates of fragment types per different matrix 

habitat were spatially clustered. However, both regions experience highly comparable 

abiotic conditions, e.g. topography, soil (sandstone) and climate (orographic rainfall, strong 

winds; von Maltitz et al. 2003). Moreover, they feature a similar tree species composition (see 

Appendix 2) and are exposed to comparable land-use modifications (sugarcane fields, timber 

plantations).  

 

ARTHROPOD COMMUNITY. Plots were established as a cross of two 30  10-m transects 

(500 m2). This cross was divided into 20 5  5-m subplots (25 m²). We collected one beating 
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sample in every second of these subplots (n = 10) to assess the arthropod fauna in each study 

plot. We used a wooden club and a fabric funnel connected to a collecting bottle filled with 

70% ethyl alcohol. Each beating sample consisted of ten standardized beats on randomly 

selected seedlings and saplings within the subplots. Arthropods were separated from plant 

material and debris, preserved in 70% ethyl alcohol, identified to order level and grouped 

into the feeding guilds predators (including parasitoids) and herbivores (Scholtz & Holm 

1985; Picker et al. 2004). All other arthropods not belonging to these two categories were used 

to calculate relative abundances of predators and herbivores (hereafter arthropod or 

predator/herbivore abundance). Slugs and snails were not included in the assessment.  

 

LEAF DAMAGE ON SEEDLINGS AND SAPLINGS. In the same alternating ten 5  5-m subplots 

described above we established ten 1-m2 seedling plots (10 m2) as well as ten 5-m² sapling 

plots (50 m²) that included the seedling plots. We assessed leaf damage on all seedlings with 

a diameter of < 1 cm at their base or < 75 cm high and all saplings with a diameter of < 5 cm 

at their base or > 75 cm high. Furthermore, we recorded the number of leaves of seedlings 

and saplings. Leaves of all seedlings and saplings were examined for two categories of leaf 

damage: insect herbivory and pathogen infestation. We defined herbivory as the removal of 

photosynthetic tissue (Schuldt et al. 2010) including damage caused by leaf chewing, galling, 

mining and leaf sucking. We classified leaf areas showing blight, chlorotic or necrotic spots 

and mouldy covering as leaf fungal pathogen infestation (Benítez-Malvido & Lemus-Albor 

2005). Visual estimation of the percentages of both damage categories was conducted by one 

person only (L. Fischer) to avoid estimation bias. Damage rates were calculated per seedling 

and sapling individual by summing up the percentages for each leaf. The sum was divided 

by the number of inspected leaves per plant individual. We randomly sampled 30 leaves per 

plant. We randomly selected additional seedlings and saplings within the 5  5-m subplots to 

achieve a minimum sampling effort of ten seedlings and saplings, respectively.  

 

FOREST FRAGMENT QUALITY. To be able to evaluate forest fragment quality we assessed three 

environmental parameters, i.e. tree diversity, vertical vegetation complexity (henceforth 

vegetation complexity) and canopy cover. We assessed tree diversity by mapping all adult 

trees with a diameter at breast height of > 5 cm or > 400 cm high on the whole cross transect 

described above (500 m²). Species were identified using Boon (2010), van Wyk and van Wyk 



4 — Leaf damage in mosaic-forest landscapes 

 
54 

 

(2007) and Coates Palgrave (2005); species nomenclature follows Coates Palgrave (2005; see 

Appendix 2). Diversity of trees was calculated using Shannon index H. In the same 

alternating ten 5  5-m subplots described above we assessed vegetation complexity. For this 

purpose, we determined the percentage cover of living biomass, consisting of woody and 

herbaceous vegetation, at seven horizontal layers: 0 m, 0.5 m, 1 m, 2 m, 4 m, 8 m and 16 m. 

We used the Shannon index H, to calculate vegetation complexity as suggested by Bibby et al. 

(2000) at each of the ten subplots and then averaged values for each plot. We estimated the 

percentage of canopy cover at two points directly adjacent to the ten sapling plots (n = 20) 

using a sighting tube (4  10 cm) and averaged estimations across plots.  

 

DATA ANALYSES. All analyses were performed with R 2.14.1 (R Development Core Team 

2011). We tested the three forest fragment quality measures (tree diversity, vegetation 

complexity, canopy cover) for bicollinearity using Spearman’s rank correlation. Tree 

diversity and vegetation complexity were slightly correlated (Spearman’s ρ = 0.41, P = 0.045), 

whereas tree diversity and canopy cover (ρ = −0.16, P = 0.46) as well as vegetation complexity 

and canopy cover (ρ = −0.15, P = 0.48) did not correlate. We used analyses of covariance 

(ANCOVA) to examine effects of fragment quality measures as well as of the four forest 

fragment types surrounded by variable matrix habitat (ForFra, GraFra, PlaFra, AgrFra) on 

abundance of arthropod predators and herbivores. Further, we tested effects of fragment 

quality, matrix habitat, and number of seedling/sapling leaves as a proxy for recruit age on 

percentages of herbivory and pathogen infestation of seedlings and saplings. We included 

arthropod predator and herbivore abundances into herbivory models. We checked model 

residuals for normality to reach model assumptions. Effects of covariates were corrected for 

each other using type II SS. Independent variables were excluded from the models through 

stepwise deletion starting with the least significant term (P > 0.1) and thus attaining 

minimum adequate models. Differences between forest fragments with variable matrix 

habitat were analysed using Tukey’s Honestly Significant Difference (Tukey’s HSD) multiple 

pairwise comparison post hoc test (P < 0.1). We furthermore used Spearman’s rank 

correlations to test relationships between predator and herbivore abundances, seedling and 

sapling herbivory, seedling and sapling pathogen infestation as well as herbivory and 

pathogen infestation of seedlings and saplings.  
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Results 

Resu lts 

ARTHROPOD COMMUNITY. We recorded a total of 3,385 arthropods mainly consisting of 

insects, spiders, crustaceans and myriapods. Predators, the most abundant feeding guild, 

were primarily represented by spiders; herbivores by Coleoptera and Hemiptera. Other 

arthropods, not included in these two guilds, were predominantly decomposers, such as 

Collembola, crustaceans and myriapods. 

 

 

 

 Abundance of predators was not significantly affected by tree diversity and canopy 

cover, but increased significantly with increasing vegetation complexity (Fig. 4.1a–c; 

Table 4.1). Predator abundance was not affected by matrix habitat (Fig. 4.2a; Table 4.1). 

Abundance of predators ranged from 34.3  4.0% (PlaFra) to 60.7  4.6% (GraFra; Fig. 4.2a). 

Herbivore abundance was not affected by tree diversity and vegetation complexity but 

decreased with increasing canopy cover. (Fig. 4.1d–f; Table 4.1). Matrix habitat showed no 

effect (Fig. 4.2a; Table 4.1). Abundance of herbivores ranged from 23.2  4.8% (GraFra) to 

34.3  4.9% (AgrFra; Fig. 4.2a). Predator and herbivore abundances were not correlated 

(Spearman’s ρ = −0.18, P = 0.39). 

Table 4.1. ANCOVA models testing the effects of forest fragment quality (tree diversity, canopy cover, 
vegetation complexity) and matrix habitat on relative arthropod abundances (predators, herbivores) and 
on herbivory and pathogen infestation of seedlings and saplings, respectively. Given are df-, R²-, F- and 
P-values for full models after stepwise deletion of non-significant terms (ns); path. = pathogen; veg. 
complex. = vegetation complexity; − not applicable; ° P < 0.1, * P < 0.05, ** P < 0.01. 
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Figure 4.1. Arthropods and herbivory in response to forest fragment quality. Residual relative predator 
(a–c) and herbivore abundance (d–f) and residual herbivory of seedlings (g–i) and saplings (j–l) in 
relation to residual tree diversity, vegetation complexity and canopy cover. Resid. = residual, 
rel. = relative, veg. = vegetation. 
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INSECT HERBIVORY ON TREE RECRUITS. We examined a total of 9,009 leaves of 897 seedling 

individuals belonging to 71 species and 22,686 leaves of 876 sapling individuals of 91 sapling 

species. We further identified 1,440 individuals of 121 tree species (Appendix 2).  

 Average seedling herbivory was 10.8% (range: 0–70%). Seedling herbivory decreased 

significantly with increasing tree diversity, increased significantly with higher canopy cover 

and was not affected by vegetation complexity (Fig. 4.1g–i; Table 4.1). Matrix habitat had no 

effect (Fig. 4.2b; Table 4.1). Seedling herbivory ranged from 9.2  1.2% (ForFra) to 10.4  1.2% 

(AgrFra; Fig. 2b).  

 Average sapling herbivory was 12.5% (range: 0–80%). Sapling herbivory increased 

significantly with increasing tree diversity and canopy cover, while vegetation complexity 

had no effect (Fig. 4.1j−l; Table 4.1). Sapling herbivory tended to vary with matrix habitat 

(Fig. 4.2b; Table 4.1), but no specific differences were revealed by Tukey’s HSD post hoc test. 

Herbivory on saplings ranged from 10.4  1.3% (AgrFra) to 17.4  1.6% (PlaFra; Fig. 4.2b). 

Seedling and sapling herbivory were not correlated (Spearman’s ρ = −0.014, P = 0.95).  

 

PATHOGEN INFESTATION OF TREE RECRUITS. Average pathogen infestation of seedlings was 

5.7% (range: 0–80%). Pathogen infestation of seedlings was not affected by fragment quality 

(Table 1). Seedling pathogen infestation increased significantly with number of leaves 

(Table 1). Matrix habitat marginally significantly affected seedling pathogen infestation 

(Fig. 2c), but post hoc comparisons revealed no specific differences between forest fragments 

surrounded by variable matrix habitat. Seedling pathogen infestation ranged from 3.2  0.8% 

(PlaFra) to 6.3  0.9% (GraFra; Fig. 2c). Seedling pathogen infestation and seedling herbivory 

did not correlate (Spearman’s ρ = 0.075, P = 0.73). 

 Average pathogen infestation of saplings was 6.7% (range: 0–55.5%). Pathogen 

infestation of saplings was neither affected by fragment quality nor by matrix habitat 

(Table 1). Sapling pathogen infestation ranged from 3.6  0.6% (AgrFra) to 7.7  2.3% (ForFra; 

Fig. 2c). Sapling pathogen infestation was not correlated with sapling herbivory (Spearman’s 

ρ = 0.021, P = 0.92). Pathogen infestation of saplings correlated with that of seedlings 

(Spearman’s ρ = 0.48, P = 0.018). 
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Figure 4.2. Arthropods and leaf damage in response to matrix habitat. Mean percentages ( SE) of 
(a) relative abundances of arthropod predators and herbivores, (b) herbivory on seedlings and 
saplings and (c) pathogen infestation on seedlings and saplings in large natural forest fragments 
with forest matrix (ForFra), small natural forest fragments surrounded by grassland (GraFra) and in 
small modified forest fragments surrounded by plantations (PlaFra) and agriculture (AgrFra). Light 
bars = arthropod predators, seedlings; dark bars = arthropod herbivores, saplings. 
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Discussion 

Discussion  

Forest fragment quality strongly affected arthropod communities with vegetation complexity 

increasing predator and canopy cover decreasing herbivore abundance. Furthermore, 

herbivory of tree recruits showed contrasting responses to forest fragment quality. Seedling 

herbivory decreased with tree diversity, while sapling herbivory increased. In contrast, 

canopy cover intensified both, seedling and sapling herbivory. Pathogens were not affected 

by forest fragment quality. Generally, matrix habitat showed no strong effects on arthropods 

and leaf damage. Merely, seedling pathogen infestation and sapling herbivory slightly 

varied with matrix habitat.  

 

FOREST FRAGMENT QUALITY. As expected, forest fragment quality enhanced predator and 

reduced herbivore abundance. This response, however, was not caused by tree diversity, 

which would have been in accordance with the ‘enemies hypothesis’ (Root 1973). The 

hypothesis predicts an increase of predators with higher tree diversity as a result of the 

concurrently higher structural complexity in diverse systems. Yet, in forests, diversity-

predator relationships have been reported to be diverging or to depend on tree species 

identity (Kaitaniemi et al. 2007; Sobek et al. 2009; Schuldt et al. 2011). In our case, vegetation 

complexity increased predator and canopy cover decreased herbivore abundance. As tree 

diversity and vegetation cover were slightly correlated, the structural complexity argument 

of the ‘enemies hypothesis’ might not be contradicted. The increase of predator abundance 

with higher habitat complexity is in line with a meta-analytical synthesis by Langellotto and 

Denno (2004). Thus, in our community-wide approach, structural components of the habitat, 

such as vegetation complexity and canopy cover, seem to be more important for arthropod 

abundances than tree diversity per se. Moreover, predator-herbivore interactions are difficult 

to disentangle in diverse, structurally complex habitats as, e.g. cover or food may be equally 

provided or reduced for both (Schmidt & Rypstra 2010). 

 Responses of herbivory on tree recruits were contrasting with tree diversity 

decreasing seedling, but increasing sapling herbivory and canopy cover increasing herbivory 

in both recruitment stages. Matching our expectation as well as arthropod responses to forest 

fragment quality, seedling herbivory decreased in response to increasing tree diversity. The 
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result is in line with the concept of ‘associational resistance’ expecting a reduction of 

herbivory in diverse systems (Tahvanai & Root 1972; Root 1973) and corresponds to findings 

of many others (e.g. Massey et al. 2006; Unsicker et al. 2006; Jactel & Brockerhoff 2007). Yet, 

resource concentration (diversity inhibits host-finding) might be inappropriate to explain 

responses of seedling herbivory to tree diversity. Firstly, host-specificity might not play a 

pivotal role for such young seedlings as plant tissue is still soft and might be equally 

palatable and attractive for many herbivores. Secondly, sapling herbivory increased with 

higher tree diversity, in contrast to herbivory on seedlings. Such a positive diversity-

herbivory relationship has been attributed to higher dietary choice for generalist herbivores 

and thus a spillover from preferred host plants to adjacent non-host plants ('associational 

susceptibility', White & Whitham 2000). This supports the idea that our herbivore 

community consisted of generalist herbivores rather than specialists and that herbivory on 

tree recruits was not shaped by resource concentration or host-specificity, which refers to 

specialists.  

 One possible reason for contrasting responses of arthropods and herbivory to forest 

fragment quality might be rather weak trophic relationships in forest fragments between 

arthropod predators and herbivores. These scarp forest fragments have existed since the last 

glacial maximum (Eeley et al. 1999; Lawes et al. 2005). In such natural systems species with 

stronger defence against predators/herbivores might have become more dominant over time 

and species interactions might be weak and diffuse (Leibold et al. 1997; Polis et al. 2000). Top-

down regulation is thus believed to be much stronger in simple systems (Polis et al. 2000), 

whereas in complex systems it might be constrained due to higher stability and redundancy 

(McCann et al. 1998; Polis et al. 2000). Another possible explanation for no herbivore-

herbivory effect might be altered herbivore species compositions and functional diversity, 

which we did not consider with our abundance data. For instance, modified proportions of 

generalist and specialist herbivores leading to the increase of key herbivores might 

considerably impact herbivory (Haynes & Crist 2009). Moreover, changes in plant species 

composition appear possible. There has been evidence that plant palatability is higher in 

light-demanding than in shade-tolerant species (Ruiz-Guerra et al. 2010). Supporting this, 

sapling herbivory was by trend highest in PlaFra. This fragment type has been shown to 

consist of a higher proportion of light-demanding tree species compared to the other 

fragment types in further studies (see chapter 3). Alternatively, other herbivores, not 
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assessed in the study, such as mammals, appear possible as their abundance might have 

been connected to closed canopy cover where herbivory on tree recruits was highest. 

 None of the forest fragment quality measures affected pathogen infestation of 

seedlings and saplings. This could be explained by the fact that pathogens are highly host-

specific making their responses to forest fragment quality difficult to predict (Burdon 1993). 

Yet, pathogen infestation of seedlings and saplings correlated and were therefore possibly 

shaped by similar parameters. Seedling pathogen infestation slightly increased with the 

number of seedling leaves. Young seedlings with fewer leaves seem to be less likely to be 

infested, while older seedlings with more leaves might have a higher chance of being 

infested. This might simply be a time effect as it was absent for saplings. As saplings all tend 

to have more leaves, pathogens might have enough time for infestation. Plant-pathogen 

interactions, however, seem to be complex and require further studies elucidating their 

response to forest fragment quality. 

 

MATRIX HABITAT. In accordance with our expectation, we found a slight trend of higher 

predator abundance in forest fragments within natural heterogeneous surroundings than in 

fragments with modified homogenous matrix habitat. Similarly, Steffan-Dewenter (2003) 

also found an increase of predator species with landscape diversity in the matrix. This is in 

line with the ‘trophic rank hypothesis’ predicting that higher trophic levels are more 

susceptible to disturbances (Krüss & Tscharntke 1994; Holt et al. 1999). Matrix habitat had no 

effect on herbivores and sapling herbivory only slightly varied with matrix habitat. This 

agrees with findings of a recent meta-analysis, in which Chaplin-Kramer et al. (2011) came to 

the conclusion that although predators clearly respond positively to landscape complexity, 

this does not implicitly mean a reduction in herbivores and hence herbivory. Likewise, 

Haynes and Crist (2009) reported neither an effect of matrix composition, nor of 

fragmentation on insect herbivory.  

 As the effect of the matrix habitat on predators was considerably weak, we assume 

that neither predator, nor herbivore dispersal were strongly hampered by matrices 

surrounding forest fragments. This suggests that the arthropod communities rather consisted 

of generalist species that may benefit from a diverse matrix with a higher dietary mixture 

(Unsicker et al. 2008; Haynes & Crist 2009). Therefore, even structurally homogenous 
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matrices might provide exchange of generalist arthropods among scarp forest fragments 

causing similar herbivory on tree recruits.  

 Pathogen infestation of seedlings slightly varied with matrix habitat, while pathogen 

infestation of saplings showed no response. As pathogens are mainly influenced by the 

spatial pattern of their host and vector species, pathogen responses to variable matrix habitat 

are difficult to predict (Holdenrieder et al. 2004). On one hand changed environmental 

conditions can increase host tree susceptibility to disease, but on the other hand 

fragmentation might also hinder pathogen dispersal at a landscape scale (Jules et al. 2002; 

Perkins & Matlack 2002). Consequently, further research should focus on specific interactions 

between host, vector and pathogen species as all of them might differ in their sensitivity to 

fragmented landscapes. 

Conclusions 

Conclusions 

In sum, abundances of arthropod predators and herbivores as well as insect herbivory on 

tree recruits appeared to be rather shaped by forest fragment quality than by matrix habitat. 

In accordance with our expectations, forest fragment quality increased predator and 

decreased herbivore abundance. Responses of herbivory to forest fragment quality were 

variable: closed canopy cover enhanced both seedling and sapling herbivory, whereas higher 

tree diversity revealed contrasting results, i.e. reduced seedling and amplified sapling 

herbivory. Generally, matrix habitat effects were negligible. Therefore, we assume trophic 

interactions between arthropod predators, herbivores and herbivory to be weak and diffuse 

in scarp forest fragments. We suspect differences in herbivore species compositions and 

plant palatability to be responsible for contrasting effects of forest fragment quality on 

arthropods and herbivory. Possibly, in-depth studies focussing on species identities and 

functional roles of arthropods might help explain this mismatch. Pathogen infestation 

patterns were not affected by any of the measured variables and seemed to be complex and 

unpredictable. Further research applying elaborate enclosure experiments might clarify the 

complex interactions of arthropods for seedling and sapling herbivory in forest fragments. 
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Human-induced land-use change and agricultural intensification entail the formation of 

mosaic landscapes with fragmented forest embedded in matrix habitat. This in turn may 

cause fundamental changes in forest regeneration processes, such as seed predation, 

establishment of woody seedlings and saplings and herbivory. In my thesis, I investigated 

the influence of forest fragment quality and matrix habitat on biodiversity and ecological 

processes involved in forest regeneration in a mosaic-forest landscape in KwaZulu-Natal, 

South Africa.  

Elevated seed predation in small forest fragments embedded in high-

contrast matrices 

In a first approach, I assessed the influence of forest fragment quality and matrix habitat on 

rodent seed predators and the process of seed predation. As a measure of fragment quality, I 

estimated herbal ground vegetation cover, which has been shown to affect rodents and seed 

predation. I compared rodent abundance, species richness and community composition as 

well as seed predation between large scarp forest fragments with natural forest matrix and 

three small forest fragments surrounded by natural grassland, eucalypt plantations and 

sugarcane agriculture. To do so, I trapped rodents with pitfall traps, drift fences and baited 

Sherman-live traps and conducted seed predation experiments with peanuts inside and 

outside rodent exclosures. My findings suggest that rodents were important drivers of seed 

predation in small fragments. This could be explained by increased ground vegetation cover 

in small forest fragments providing shelter and resources for rodents. Rodent abundance and 

species richness as well as seed predation were higher in small forest fragments than in large 

forest fragments. Yet, significant differences only occurred between large natural forest 

fragments and modified fragments surrounded by sugarcane agriculture. To conclude, I 

argue that rodents were primarily regulated bottom-up through higher ground vegetation 

cover creating beneficial conditions in small forest fragments, which in turn led to enhanced 

seed predation. However, a lack of top-down control of rodents in fragments surrounded by 

sugarcane due to low matrix permeability for predators appears possible. Consequently, 

seed survival might be hampered in small scarp forest fragments with possible consequences 

for forest regeneration. 
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Late-successional tree recruits decrease in forest fragments with 

modified matrices 

Tree recruitment in mosaic-fore st land scapes 

In a second approach, I investigated the effects of scarp forest fragment quality and matrix 

habitat on natural tree recruitment. I considered three measures of forest fragment quality 

that might affect the establishment of woody seedlings and saplings, i.e. canopy cover, light 

intensity on the forest floor and vegetation complexity. I determined species richness, 

abundance and community composition of trees and woody seedlings and saplings in two 

forest fragment types with natural heterogenous surroundings (forest, grassland) as well as 

in two forest fragment types with modified homogenous matrix habitat (eucalypt 

plantations, sugarcane agriculture). To be able to detect shifts in the proportion of early- and 

late-successional species, I categorized all three stage classes according to their successional 

status. Moreover, I distinguished between recruitment originating from local and external 

seed influx depending on the presence of conspecific adult trees within the study plot. Tree 

communities exhibited reduced species richness and abundance of late-successional species 

in modified forest fragments surrounded by plantations. Early-successional seedling and 

sapling species richness and abundance were enlarged at the expense of late-successional 

species in fragment types with modified matrix habitat, which was supported by 

multivariate community composition analysis. This shift in successional status in forest 

fragments with modified matrices was seemingly due to changes in forest fragment quality, 

such as reduced canopy cover as well as higher light intensity. The decline of late-

successional tree recruits in forest fragments surrounded by modified homogenous matrix 

habitat might indicate impeded forest regeneration potential in these fragments. However, 

recruitment from external seed influx occurred in all forest fragments suggesting a 

comparably high permeability of all matrix habitat types for seed dispersers. To conclude, 

the forest mosaic landscape seemed to sustain connectivity via present external seed influx. 

Yet, shifts in community composition indicated the high value of natural forests, which can 

serve as a pool for late-successional species. In consequence, conservation management 

needs to place the focus on facilitating connectivity across remnant natural forest habitat. 
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Forest fragment quality rather than matrix habitat shapes herbivory on 

tree recruits 

In a third approach, I quantified the impact of forest fragment quality as well as of matrix 

habitat on arthropods and leaf damage on tree recruits. Therefore, I assessed forest fragment 

quality in terms of tree diversity, vertical vegetation complexity and canopy cover. I compared 

arthropod predator and herbivore abundances, insect herbivory and pathogen infestation on 

woody seedlings and saplings between forest fragments with two natural heterogenous 

(forest, grassland) and two modified homogenous (eucalypt plantations, sugarcane 

agriculture) matrix habitat types. Forest fragment quality affected arthropods as vegetation 

complexity increased predator and canopy cover decreased herbivore abundance. Influence of 

fragment quality on herbivory was contrasting. Tree diversity reduced seedling, but intensified 

sapling herbivory. Canopy cover amplified herbivory of both woody seedlings and saplings. 

Diverging responses of arthropods and herbivory to forest fragment quality might be 

explained by weak trophic interactions. Moreover, differing herbivore species compositions 

and plant palatability in forest fragments appear possible. Pathogen infestation was not 

impacted by forest fragment quality. In general, matrix habitat did not show strong effects on 

arthropods and leaf damage, as only seedling pathogen infestation and sapling herbivory 

tended to vary with matrix habitat. This suggests similarly high matrix permeability for 

arthropods. Concluding, arthropods and insect herbivory on tree recruits seemed to be 

influenced by forest fragment quality rather than by matrix habitat while pathogen responses 

to forest fragmentation seemed to be complex and difficult to predict. Further research, 

possibly by means of enclosure experiments, might help to disentangle the effects of 

fragmentation on trophic interactions among arthropods and plants. 

 

Synthesis 

Synthesis  

Overall, my results illustrate that forest fragment quality as well as matrix habitat have the 

potential to alter biodiversity and ecological processes involved in forest regeneration. 

However, the different communities and processes I studied reacted variably to forest 

fragment quality and matrix habitat. This variability might be caused by diverging traits 
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inherent to the different species groups involved, e.g. different habitat requirements, biotic 

interactions with other species or dispersal abilities. For instance, higher ground vegetation 

cover favoured rodents by providing resources and shelter. Moreover, rodents were 

potentially ecologically released from top-down control of predators in small fragments. This 

indicates that rodent seed predators might be strongly affected by both vegetation and 

trophic interactions. In contrast, woody seedlings and saplings appeared to be rather 

influenced by abiotic factors, such as canopy cover and light intensity. Further, arthropod 

communities were seemingly shaped by vegetation characteristics whereas trophic 

interactions appeared to be of minor relevance. In conclusion, this highlights the importance 

of investigating not only exemplary processes, but also the complex interplay of several 

processes to really fully understand the consequences of forest fragmentation and matrix 

habitat for regeneration. 

 In sum, the effects of forest fragment quality and matrix habitat on the ecological 

processes of seed predation, establishment of woody seedlings and saplings as well as on 

herbivory differed in strength. Yet, I generally found that forest fragment quality appears to 

be of high relevance for regeneration, indicating its potential for conservation management 

of the remaining fragments. Further, the rather weak overall effects of matrix habitat indicate 

a comparable and generally high permeability for the investigated groups of species. This 

emphasizes the significant value of forest fragments for the connectivity of remaining forests 

and the conservation of biodiversity and ecological processes at a landscape scale. 

Nevertheless, conclusions have to be treated with care. Due to the historical natural 

fragmentation of scarp forests in KwaZulu-Natal, which might have caused a higher 

resistance of species towards human-induced fragmentation, my findings might not be 

transferable to other regions. The scarp forest fragments are indeed characterized by high 

habitat quality for the different species groups. However, potential shifts in the plant 

community from late- to early-successional species in fragments enclosed by modified 

matrices might entail unforeseen cascading effects and negative feedback loops within the 

ecosystem that still need to be examined. Thus, the value of natural forest as a source of 

propagules and as habitat for forest specialists remains indisputable.  
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FURTHER RESEARCH OPTIONS. My studies showed that forest regeneration processes in 

human-modified landscapes seem to be highly complex. All three studies were of exemplary 

character and effect sizes were rather weak, thus making it difficult to draw strong 

conclusions. In part, this might be attributed to the historical fragmentation of the landscape 

since the last glacial maximum. Further research has to clarify if historical confrontation with 

natural disturbances entails higher resistance of ecosystems when exposed to human impact 

(e.g. Lawes et al. 2005). Furthermore, investigations of species-specific matrix permeability 

and landscape connectivity are scarce. Future studies should combine sampling of different 

taxa within natural forest, forest fragments, at forest edges and—most frequently ignored—

within matrices themselves. Moreover, species occurrence data often reflect only a ’snapshot’ 

of actual population dynamics. This emphasizes the need for long-term monitoring to assess 

population viability in modified landscapes (e.g. Sekercioglu et al. 2007). In this context, 

movement data, e.g. from transmitters fitted onto birds or even propagules, such as seeds 

may provide a deeper understanding of species behavioural responses to landscape 

modification (e.g. Jansen et al. 2004; Lenz et al. 2011). 

 Lastly, determining species identities and functions is essential for linking 

biodiversity directly to ecological processes. This might be achieved through e.g. the use of 

camera traps, which could be valuable to identify seed predators (e.g. Iob & Vieira 2008). 

Additionally, a link between species and their function could be acquired through 

experimental studies, such as feeding experiments with e.g. rodents and seeds (e.g. Farwig et 

al. 2008a) or enclosure experiments with arthropod predators, herbivores and plants (e.g. 

Böhm et al. 2011). Further, genetic parentage analyses may assist in tracing back seeds to 

adult trees allowing estimates on dispersal distances and the origin of seed influx (e.g. Grivet 

et al. 2005). Moreover, extending investigations from the species-level to a community 

perspective, e.g. through the investigation of community-wide interaction networks (e.g. 

Bascompte & Jordano 2007), could reveal a more comprehensive understanding of the 

functioning of modified ecosystems. Overall, applying these approaches may be valuable to 

further elucidate the persistence of biodiversity and related ecosystem processes in human-

modified and fragmented forest landscapes. 
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6  Future challenges for conservation 
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My study shows that non-protected small forest fragments within human-modified matrices 

can to a certain degree assist to maintain biodiversity and ecological processes at a landscape 

scale. This is a contribution to the currently pressing question on how to succeed in 

conserving biodiversity in a human-modified world. The continuously growing human 

population and its need for food has led to a heated debate on how to globally integrate food 

production and biodiversity conservation as both compete for space (Fischer et al. 2011; 

Phalan et al. 2011). One concept—‘land sparing’—is to separate strictly protected areas for 

conservation from intensive high-yield agriculture for food production (Phalan et al. 2011). 

The other idea—called ‘land sharing’—favours uniting both approaches on the same land by 

using farming techniques that contribute to biodiversity conservation, such as agroforestry 

(e.g. Perfecto & Vandermeer 2010). While Phalan et al. (2011) recently demonstrated that land 

sparing seems to be the better option for most investigated bird and tree species both in 

Ghana and India, others argue that high agricultural yield and high biodiversity are not 

mutually exclusive (e.g. Clough et al. 2011). 

 As about 40% of the land surface is already used for agriculture or pasture, the 

concept of purely natural systems has potentially become obsolete in most regions of the 

world (Foley et al. 2005). Moreover, the long-term viability of protected areas might be 

questionable as they are often isolated within modified landscapes and highly exposed to 

human activities in their adjacency (Wittemyer et al. 2008). Of course, protected areas and 

old-growth forests are undoubtedly necessary for habitat specialists, e.g. for late-successional 

tree species or for animals with large home ranges (Gibson et al. 2011). However, biodiversity 

conservation in our human-modified world cannot only rely on protected areas (e.g. 

Rodrigues et al. 2004). Therefore, one of the biggest challenges for today’s conservation 

scientists is to develop an integrated conservation management approach that involves both 

human and ecological factors across the entire landscape mosaic (Gardner et al. 2009; 

Perfecto & Vandermeer 2010; Fischer et al. 2011).  

 To take up this challenge, we need to discover to what extent species can persist in 

modified landscapes, identify their individual habitat requirements and their dispersal 

limitations (Gardner et al. 2009). It is therefore essential to estimate the value of modified 

landscapes for different taxa. My results demonstrate that either structural characteristics, 

e.g. forest fragment quality or the matrix habitat might determine the persistence of different 

groups of species and ecological processes. Thus, taking into account that human-modified 
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landscapes are often spatially heterogenous, i.e. contain a high variety of forest cover types, 

the question above calls for applicable measures of landscape heterogeneity to quantify a 

landscape’s suitability for ecosystem conservation. As an example, the measure of ‘functional 

landscape heterogeneity’ seems to be a promising tool to integrate highly variable species 

requirements at a landscape scale (Fahrig et al. 2011). Thereby, specific heterogeneity criteria 

for different species groups, e.g. floristic composition for insects or nesting sites for birds are 

considered (Fahrig et al. 2011). Moreover, as the persistence of populations in human-

modified landscapes has been shown to depend on their ability to move across the entire 

mosaic (Tewksbury et al. 2002), we need to develop and evaluate strategies that aim at 

providing connectivity for different species through, e.g. corridors or live fences. Most likely, 

the combination of both land-sparing for protected areas and land-sharing along with 

improving the quality of the landscape for many taxa will yield the highest conservation 

success. 

 Lastly, modified landscapes are characterized by social-ecological dynamics that 

often determine success or failure of conservation strategies (Liu et al. 2007). This emphasizes 

the need to follow context-dependent multidisciplinary or even transdisciplinary and 

participatory approaches in collaborative research projects that involve all relevant 

stakeholders (Barlow et al. 2011). These could be ecologists, social scientists, conservationists, 

indigenous peoples, rural social movements, farmers, land owners, tourists, politicians, land 

managers as well as representatives from different administrative boards, i.e. agriculture, 

water management and forestry (Chazdon et al. 2009). Only then, we might succeed in 

developing a holistic perspective on land use and landscape management that will help to 

create sustainable conservation strategies and policies. 
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Weltweit werden Wälder in alarmierender Geschwindigkeit zerstört und fragmentiert. 

Landschaften bestehen zunehmend aus Mosaiken mit Waldfragmenten in variablem 

Matrixhabitat. Es ist daher essentiell zu verstehen, inwiefern diese Habitatveränderungen 

die Funktion und Stabilität von Waldökosystemen beeinflussen. Die komplexen 

Zusammenhänge zwischen anthropogener Störung von Wäldern, dem dadurch bedingten 

Artenverlust und den betroffenen Ökosystemfunktionen sind jedoch nach wie vor nicht 

hinreichend geklärt.  

 In der vorliegenden Arbeit untersuchte ich die Einflüsse von Waldfragmentqualität 

und Matrixhabitat auf Biodiversität und ökologische Prozesse der Waldregeneration. Zu 

diesem Zweck führte ich drei exemplarische Feldstudien in einer fragmentierten 

Waldlandschaft in KwaZulu-Natal, Südafrika durch. Ich erfasste 1) Samenprädation durch 

Nager, 2) Etablierung von Baumkeimlingen und -schösslingen sowie 3) Blattschäden an 

Baumkeimlingen und -schösslingen durch Insekten und Pathogene auf 24 

Untersuchungsflächen in Fragmenten so genannter Hangwälder („scarp forests“). Diese 

Waldfragmente waren von vier verschiedenen Matrixhabitaten umgeben. Fragmente 

innerhalb der Naturreservate Vernon Crookes und Oribi Gorge wiesen natürliche und 

strukturell heterogene Matrices auf (Wald, Grassland); Fragmente in direkter Nachbarschaft 

der Naturreservate waren von modifizierten und strukturell homogenen Matrices umgeben 

(Eukalyptus-Plantagen, Zuckerrohrfelder).  

 Für die erste Studie nahm ich die Nagerdiversität mithilfe von Eimerfallen und 

beköderten Lebendfallen über drei Tage hin auf. Ferner führte ich 

Samenprädationsexperimente durch, indem ich Erdnüsse innerhalb und außerhalb von 

Nager-Ausschlusskäfigen platzierte und ebenfalls über drei Tage die Fraßrate ermittelte. 

Zudem schätzte ich als Maß für die Waldfragmentqualität die Bodenbedeckung durch 

krautige Pflanzen, da diese für Nager eine wichtige Rolle spielt. Für die zweite Studie 

bestimmte ich die Baumdiversität aller adulten Bäume auf 500 m² pro Untersuchungsfläche, 

die Keimlingsdiversität auf 10 m² und die Schösslingsdiversität auf 50 m². Um 

Veränderungen in der Artenzusammensetzung feststellen zu können, unterteilte ich Bäume, 

Keimlinge und Schösslinge nach ihrem Sukzessionsstatus in Pionier- und Klimaxarten. Des 

Weiteren differenzierte ich zwischen Keimlingen und Schösslingen mit externer und lokaler 

Herkunft, abhängig von der Präsenz artgleicher adulter Bäume im Fragment, um so auf 

eventuellen Sameneintrag durch Samenausbreiter rückschließen zu können. Außerdem 
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nahm ich Kronenbedeckung, Lichtintensität und Vegetationskomplexität als für die 

Etablierung von Keimlingen relevante Parameter der Waldfragmentqualität auf. Für die 

dritte Studie ermittelte ich mithilfe eines Klopfschirms die Arthropoden-Prädatoren- und 

Arthropoden-Herbivoren-Gemeinschaft in den Waldfragmenten. Zusätzlich schätzte ich den 

prozentualen Blattschaden durch Insektenherbivorie und Pathogenbefall an 

Baumkeimlingen und -schösslingen. Bezüglich der Fragmentqualität nahm ich die Diversität 

adulter Bäume, Kronenbedeckung und Vegetationskomplexität auf.  

 Meine Untersuchungen deuteten auf ein erhöhtes Nagervorkommen und dadurch 

verstärkte Samenprädation in kleinen Waldfragmenten hin, was vermutlich mit der höheren 

Bodenbedeckung an krautigen Pflanzen zusammenhing. Speziell in Fragmenten im 

Zuckerrohr waren Nagervorkommen und Samenprädation signifikant höher als in 

Fragmenten mit Waldmatrix. Ferner konnte ich eine reduzierte Keimlings- und 

Schösslingsetablierung in den Waldfragmenten mit modifizierten homogenen Matrices 

feststellen. Im Besonderen kam es zu einer Verringerung von Klimaxarten in diesen 

Fragmenten. Dies wurde hauptsächlich durch abnehmende Kronenbedeckung mit 

einhergehender erhöhter Lichtintensität bedingt. Jedoch fand externer Sameneintrag in allen 

Waldfragmenten statt, was auf die Durchlässigkeit der Matrix für Samenausbreiter 

hindeutete. Des Weiteren kam es zu einem Anstieg an Arhtropoden-Prädatoren und einem 

Rückgang an Arhtropoden-Herbivoren mit zunehmender Fragmentqualität. Der Einfluss der 

Waldfragmentqualität auf Herbivorie war variabel. Diese Abweichungen könnten mit 

schwachen trophischen Interaktionen zusammenhängen. Ferner waren möglicherweise 

Unterschiede in der Artenzusammensetzung der Herbivoren oder in der Annehmbarkeit der 

Pflanzen für Herbivoren verantwortlich für konträre Effekte der Fragmentqualität auf 

Arthropoden und Herbivorie. Das Matrixhabitat hatte nur marginale Effekte auf die 

untersuchten Faktoren. 

 Insgesamt zeigen meine Ergebnisse, dass Waldfragmentqualität und Matrixhabitat 

Biodiversität und ökologische Prozesse der Waldregeneration beeinflussen. Die Effekte auf 

Samenprädation, Keimlings- und Schösslingsetablierung sowie Herbivorie waren dabei 

unterschiedlich. Generell schien die Fragmentqualität jedoch eine wichtige Bedeutung für 

die Waldregeneration zu haben, was ihr Potential für Naturschutzmaßnahmen in den 

Fragmenten hervorhebt. Ferner lassen die schwachen Effekte der variablen Matrices in 

unserem Untersuchungsgebiet eine vergleichbar hohe Durchlässigkeit für die untersuchten 
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Artengruppen erkennen. Das unterstreicht den Wert der Waldfragmente als Habitatinseln in 

modifizierten Landschaften und für den Erhalt von Biodiversität und ökologischen 

Prozessen auf der Landschaftsebene. Nichtsdestotrotz ist bei der Verallgemeinerung der 

Aussagen Vorsicht angebracht. Aufgrund der historisch bedingten natürlichen 

Fragmentierung der Hangwälder in KwaZulu-Natal, die zu einer hohen Resistenz der 

Artengruppen gegenüber menschlich verursachter Waldfragmentierung beigetragen haben 

könnte, sind die Ergebnisse nur eingeschränkt auf andere Regionen übertragbar. Die 

Fragmente zeichnen sich zwar durch ihre hohe Habitatqualität für verschiedene 

Artengruppen aus, jedoch könnten die Verschiebungen in den Pflanzengemeinschaften von 

Klimax- zu Pionierarten in Waldfragmenten mit modifizierten Matrices unvorhersehbare 

Kaskadeneffekte mit sich bringen. Das macht den Erhalt von großen zusammenhängenden 

Wäldern als Quelle für Klimaxarten und Habitat für spezialisierte Arten unerlässlich. 
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Appendix chapter 2 

Appendix chapter 2  

 

 

Appendix 1. Number of rodents per species, percentage of ground vegetation cover and seed 
predation per plot and study site in large natural forest fragments with forest matrix (ForFra) and in small 
forest fragments surrounded by natural grassland (GraFra), plantations (PlaFra) and agriculture 
(AgrFra). VC = Vernon Crookes nature reserve; OG = Oribi Gorge nature reserve; NA = not applicable. 
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F
o
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ra

 (
36

0)
 

VC 1 – – – – – – – 10 27.3 

VC 2 – – – – – – – 20 27.3 

OG 3 – – – – – – – 0 6.7 

OG 4 – – – – – – – 0 18.7 

OG 5 – – – – – – – 10 18.7 

OG 6 – – – – – – – 0 12.7 

G
ra

F
ra

 (
30

0)
 

VC 1 NA NA NA NA NA NA NA 60 14.7 

VC 2 – – – – – – – 0 22.7 

VC 3 – – – – – – – 0 22.0 

VC 4 – – – – 1 2 – 35 54.7 

VC 5 – – – – – – – 0 35.3 

VC 6 – 1 – – – – – 50 5.3 

P
la

F
ra

 (
36

0)
 

VC 1 – – – – – – – 50 7.3 

VC 2 – – – – – – – 20 45.3 

VC 3 – – – – – – – 40 10.7 

VC 4 – 1 1 – – – – 70 31.3 

VC 5 – – – – – – – 75 10.7 

VC 6 – – – – – – 2 75 1.3 

A
g

rF
ra

 (
36

0)
 

VC 1 1 – – – 3 – – 55 48.0 

VC 2 – – – – – – – 65 58.7 

VC 3 – – – – 9 – – 85 51.3 

VC 4 – – – – – – – 60 NA 

VC 5 – – – – – – 1 60 34.7 

OG 6 – – – 2 1 – – 50 28.7 
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Appendix 2. Successional status (Suc: ES = early-, LS = late-successional), dispersal mode (DM: 
G = gravity, W = wind, Z = zoochorous) and presence (+) or absence (-) of tree (Tr), seedling (Se) and 
sapling (Sa) species in large natural forest fragments with forest matrix (ForFra) and in small forest 
fragments surrounded by natural grassland (GraFra), plantations (PlaFra) and agriculture (AgrFra). 

  ForFra  GraFra  PlaFra  AgrFra 

Species (family) Suc DM Tr Se Sa  Tr Se Sa  Tr Se Sa  Tr Se Sa 

Acacia caffra (Thunb.) Willd. 

(Fabaceae) 

LS Z - - -  + - -  - - -  - - - 

Acacia mearnsii De Wild. 

(Fabaceae) 

ES Z - - -  - - -  - + +  - - - 

Acalypha glabrata Thunb. var. 

glabrata (Euphorbiaceae) 

ES Z + + +  - - +  - - -  + - - 

Acokanthera oppositifolia 

(Lam.) Codd (Apocynaceae) 

LS Z - - +  - - -  - - -  + - + 

Acridocarpus natalitius A.Juss. 

var. natalitius 

(Malpighiaceae) 

LS W - - +  - - -  - - -  - - - 

Albizia adianthifolia 

(Schumach.) W.Wight var. 

adianthifolia (Fabaceae) 

ES Z + - -  - - -  - - -  + - + 

Allophylus africanus P.Beauv. 

var. africanus (Sapindaceae) 

ES Z + - -  - + -  - + -  + - + 

Allophylus dregeanus (Sond.) 

De Winter (Sapindaceae) 

ES Z - - -  + + +  + + -  + - - 

Antidesma venosum E.Mey. ex 

Tul. (Euphorbiaceae) 

ES Z + - -  - - -  - - -  + - - 

Apodytes dimidiata E.Mey. ex 

Arn. subsp. dimidiata 

(Icacinaceae) 

ES Z - - -  + + -  + - -  + + + 

Bachmannia woodii (Oliv.) 

Gilg (Capparaceae) 

LS Z - - +  - - -  - - -  - - - 

Baphia racemosa (Hochst.) 

Baker (Fabaceae) 

LS G + + +  - - -  - - -  - - - 

Bersama swinnyi E.Phillips 

(Melianthaceae) 

LS Z - - -  - - -  - - -  + - - 

Bersama tysoniana Oliv. 

(Melianthaceae) 

LS Z + - -  + - +  - - -  + + - 

Brachylaena discolor DC. 

(Asteraceae) 

LS W - - -  + - -  - - -  + - - 



9 — Appendix 

 
106 

 

Brachylaena elliptica (Thunb.) 

DC. (Asteraceae) 

LS W + - -  - - -  - - -  - - - 

Brachylaena uniflora Harv. 

(Asteraceae) 

LS W + - -  - - -  - - -  - - - 

Bridelia micrantha (Hochst.) 

Baill. (Euphorbiaceae) 

LS Z + - -  + - -  - - -  + - - 

Burchellia bubalina (L.f.) Sim 

(Rubiaceae) 

LS Z - - -  - - -  - - -  - - + 

Calodendrum capense (L.f.) 

Thunb. (Rutaceae) 

LS Z - - -  - - -  - - -  + - - 

Calpurnia aurea (Aiton) Benth. 

subsp. aurea (Fabaceae) 

ES Z - - -  - + -  - - -  - - - 

Canthium ciliatum (Klotzsch 

ex Eckl. & Zeyh) Kuntze 

(Rubiaceae) 

LS Z - - -  + + +  - + +  + + + 

Canthium inerme (L.f.) Kuntze 

(Rubiaceae) 

LS Z + - -  - + -  - - -  + - + 

Canthium spinosum (Klotzsch 

ex Eckl. & Zeyh) Kuntze 

(Rubiaceae) 

ES Z + - -  + - +  + - +  + - + 

Canthium suberosum Codd 

(Rubiaceae) 

LS Z + - -  - - -  - - -  - - - 

Carissa macrocarpa (Eckl.) 

A.DC. (Apocynaceae) 

ES Z - - -  - - -  - - -  + - - 

Cassine peragua L. subsp. 

peragua (Celastraceae) 

ES Z - - -  - - -  - - -  + - - 

Cassipourea gummiflua Tul. 

var. Verticillata 

(Rhizophoraceae) 

LS Z + + -  + + +  - - -  - - - 

Cassipourea malosana (Baker) 

Alston (Rhizophoraceae) 

LS Z + - +  + + +  - - -  + - - 

Caturanegam obovata (Hochst.) 

A.E.Gonç. (Rubiaceae) 

ES Z - - -  + + +  - - -  - - - 

Celtis africana Burm.f. 

(Celtidaceae) 

ES Z + + -  + + +  + + +  + - - 

Cestrum laevigatum Schltr. 

(Solanaceae) 

ES Z - - -  - - -  + + +  - - - 

Chaetachme aristata Planch. 

(Celtidaceae) 

LS Z + - -  + + -  - - -  - - - 

Clausena anisata (Willd.) 

Hook.f. ex Benth. (Rutaceae) 

ES Z + + -  - - -  - - -  + - + 

Clerodendrum glabrum E.Mey. 

var. glabrum (Lamiaceae) 

ES Z + - -  + - -  + - +  + - - 
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Cnestis polyphylla Lam. 

(Connaraceae) 

LS Z - - -  - - -  - + +  - - + 

Combretum erythrophyllum 

(Burch.) Sond. 

(Combretaceae) 

ES Z + - -  + + -  + + +  + + + 

Combretum kraussii Hochst. 

(Combretaceae) 

LS W + + +  + + +  + + +  + + + 

Commiphora harveyi (Engl.) 

Engl. (Burseraceae) 

LS W - - -  - - -  - - -  - - - 

Commiphora woodii Engl. 

(Burseraceae) 

LS Z - - -  - + -  - - -  - - - 

Croton sylvaticus Hochst. ex 

C.Krauss (Euphorbiaceae)  

ES Z + - -  + - -  + - -  + - - 

Cryptocaria myrtifolia Stapf 

(Lauraceae) 

LS Z - - -  - - +  - - -  - - - 

Cryptocaria woodii Engl. 

(Lauraceae) 

LS Z - - -  - - -  - - -  + - + 

Cryptocaria wyliei Stapf 

(Lauraceae) 

ES Z - - -  - - -  - - -  + - + 

Cunonia capensis L. 

(Cunoniaceae) 

ES Z - - -  + - -  - - -  + - - 

Cussonia sphaerocephala Strey 

(Araliaceae) 

LS Z + - -  + - -  - - -  + - - 

Cussonia spicata Thunb. 

(Araliaceae) 

ES Z + - -  - - -  - - -  + - - 

Deinbollia oblongifolia (E.Mey. 

ex Arn.) Radlk. (Sapindaceae) 

ES Z + - -  - - -  - - -  - - - 

Diospyros lycioides Desf. 

subsp. sericea (Ebenaceae) 

ES Z + + +  - - +  + - +  + - - 

Diospyros villosa (L.) De 

Winter var. villosa 

(Ebenaceae) 

ES Z - - -  - - -  + - -  - - - 

Dombeya burgessiae Gerrard 

ex Harv. (Sterculiaceae) 

ES G + - -  - - -  - - -  + - - 

Dombeya tiliaceae (Endl.) 

Planch. (Sterculiaceae) 

ES G - - -  - - -  - - +  - - - 

Dovyalis lucida Sim 

(Flacourtiaceae) 

ES Z - - -  + - -  - - -  - - - 

Dovyalis rhamnoides (Burch. 

ex DC.) Burch. & Harv. 

(Flacourtiaceae) 

ES Z - - -  - - -  + + +  + - - 

Dracaena aletriformis (Haw.) 

Bos (Dracaenaceae) 

ES Z + - -  + - -  + + +  + - + 



9 — Appendix 

 
108 

 

Drypetes arguta (Müll.Arg.) 

Hutch. (Euphorbiaceae) 

LS Z + + +  - - +  - - -  - - + 

Drypetes gerrardii Hutch. var. 

gerrardii (Euphorbiaceae) 

LS Z + + -  + - +  + - -  + + + 

Ekebergia capensis Sparrm. 

(Meliaceae) 

ES Z - - -  - - -  - - -  + - - 

Elaeodendron croceum 

(Thunb.) DC. (Celastraceae) 

ES Z + + +  + - -  - - -  + - + 

Englerophytum natalense 

(Sond.) T.D.Penn 

(Sapotaceae) 

LS Z + + +  + + +  - - -  + - - 

Erythrina caffra Thunb. 

(Fabaceae) 

ES Z - - -  + - -  - - -  - - - 

Erythrina lysistemon Hutch. 

(Fabaceae) 

ES Z - - -  - - -  - - +  - - - 

Erythrococca sp. nov. 

(Euphorbiaceae) 

LS Z - - -  - - -  - - -  + - - 

Eucalyptus grandis W.Hill ex 

Maiden (Myrtaceae) 

ES G - - -  - - -  + - -  - - - 

Euclea natalensis A.DC. subsp. 

natalensis (Ebenaceae) 

LS Z - - -  - - -  - - -  + - + 

Eugenia natalitia Sond. 

(Myrtaceae) 

LS Z - - -  + + +  + - +  + - + 

Eugenia umtamvunensis 

A.E.von Wyk (Myrtaceae) 

LS Z + + +  - - -  - + -  - - - 

Eugenia woodii Dummer 

(Myrtaceae) 

ES Z + - -  - - -  - - -  - - - 

Faurea saligna Harv. 

(Proteaceae) 

ES W - - -  - - -  - - +  - - - 

Ficus burkei (Miq.) Miq. 

(Moraceae) 

ES Z + - -  + - -  - - -  - - - 

Ficus burtt-davyi Hutch. 

(Moraceae) 

ES Z + - -  - - -  - - -  - - - 

Ficus craterostoma Warb. ex 

Mildbr. & Burret (Moraceae) 

LS Z - - -  + - -  + - -  + - - 

Ficus natalensis Hochst. 

subsp. natalensis (Moraceae) 

ES Z + - -  - - -  - - -  + - - 

Ficus sur Forssk. (Moraceae) ES Z - - -  + - -  + - -  + - - 

Gardenia thunbergia L.f. 

(Rubiaceae) 

LS Z + - -  - - -  - - -  - - - 

Grewia lasiocarpa E.Mey. ex 

Harv. (Tiliaceae) 

LS Z - - -  + + +  + + +  + - + 

Grewia occidentalis L. var. ES Z - - -  + - -  + - -  + - - 



Appendix chapters 3 and 4 

 

 
109 

occidentalis (Tiliaceae) 

Gymnosporia buxifolia (L.) 

Szyszyl. (Celastraceae) 

ES Z - - -  - - +  - - -  + - - 

Gymnosporia harveyana Loes. 

(Celastraceae) 

LS Z + - -  - + +  - - -  + + + 

Gymnosporia nemorosa (Eckl. 

& Zeyh.) Szyszyl. 

(Celastraceae) 

ES Z + - -  - - -  - - -  - - - 

Halleria lucida L. 

(Scrophulariaceae) 

ES Z - - -  - - -  + - +  + - + 

Harpephyllum caffrum Bernh. 

ex C.Krauss (Anarcardiaceae) 

LS Z - - -  - - -  - - -  + - - 

Heywoodia lucens Sim 

(Euphorbiaceae) 

ES G + - -  - - -  - - -  - - - 

Hippobromus pauciflorus (L.f.) 

Radlk. (Sapindaceae) 

ES Z - - -  - + -  - - -  - - - 

Hyperacanthus amoenus (Sims) 

Bridson (Rubiaceae) 

LS Z + - -  - - -  - - -  - - - 

Kiggelaria africana L. 

(Flacourtiaceae) 

ES Z - - -  - - -  + - +  - - - 

Macaranga capensis (Baill.) 

Benth. ex Sim 

(Euphorbiaceae) 

ES Z - - -  + - -  - - -  - - - 

Maerua cafra (DC.) Pax 

(Capparaceae) 

ES Z - - -  - - -  - - -  + - + 

Maesa lanceolata Forssk. 

(Maesaceae) 

ES Z + - -  - - -  + + +  + - + 

Margaritaria discoidea (Baill.) 

G.L.Webster var. fagifolia 

(Pax) Radcl.-Sm. 

(Euphorbiaceae) 

LS Z + - -  - - -  - - -  - - - 

Maytenus abbottii A.E.von 

Wyk (Celestraceae) 

ES Z - - -  - - -  - - -  + - + 

Maytenus acuminata (L.f.) 

Loes. (Celestraceae) 

ES Z - - -  - - -  - + -  - - - 

Maytenus peduncularis (Sond.) 

Loes. (Celastraceae) 

LS Z - - -  - - -  - - -  + - - 

Maytenus undata (Thunb.) 

Blakelock (Celastraceae) 

ES Z - - -  - - -  + - -  - - - 

Memecylon natalense Markgr. 

(Melastomataceae) 

LS Z - + -  + - -  - - -  - - - 

Millettia grandis (E.Mey.) 

Skeels (Fabaceae) 

ES G + + +  + - -  - - -  - - - 
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Mimusops obovata Sond. 

(Sapotaceae) 

LS Z + - -  - - -  - - -  + - - 

Nectaropetalum capense 

(Bolus) Stapf & Boodle 

(Erythroxylaceae) 

LS Z + - +  - - -  - - -  - - - 

Obetia tenax (N.E.Br.) Friis 

(Urticceae) 

ES G + - +  - - -  - - -  + - - 

Ochna arborea Burch. ex DC. 

var. arborea (Ochnaceae) 

LS Z + + +  - + -  - - -  - - - 

Ochna serrulata (Hochst.) 

Walp. (Ochnaceae) 

ES Z - - +  - + +  - + -  - + - 

Olea capensis L. subsp. 

macrocarpa (C.H.Wright) 

I.Verd. (Oleaceae) 

LS Z - - +  - - -  - - -  - - - 

Oricia bachmannii (Engl.) 

I.Verd. (Rutaceae) 

LS Z + - +  - - -  - - -  - - - 

Pavetta bowkeri Harv. 

(Rubiaceae) 

LS Z - - -  - - -  - + -  - - + 

Pavetta lanceolata Eckl. 

(Rubiaceae) 

ES Z - - -  - - -  + + +  + - - 

Peddiea africana Harv. 

(Thymelaeaceae) 

LS Z + + -  + + +  + + +  - + + 

Phoenix reclinata Jacq. 

(Arecaceae) 

ES Z + + +  + + +  - + +  - - - 

Pittosporum viridiflorum Sims 

(Pittosporaceae) 

ES Z + - -  + - -  - - -  + - + 

Pleurostylia capensis (Turcz.) 

Loes. (Celastraceae) 

LS Z + - +  + + +  + - -  + - + 

Podocarpus latifolius (Thunb.) 

R.Br. ex Mirb. 

(Anacardiaceae) 

LS Z - - -  - - -  - + +  - - - 

Protorhus longifolia (Bernh.) 

Engl. (Celastraceae) 

ES Z + + -  + + +  + + +  + +  

Pseudoscolopia polyantha Gilg 

(Flacourtiaceae) 

ES G - - -  - - -  - - +  - - - 

Psychotria capensis (Eckl.) 

Vatke subsp. capensis var. 

Capensis (Rubiaceae) 

ES Z + - +  + + +  + + +  + + + 

Rapanea melanophloeos (L.) 

Mez (Myrsinaceae) 

ES Z + - +  + + +  - - -  + + + 

Rauvolfia caffra Sond. 

(Apocynaceae) 

ES Z + + -  - + -  - - -  - - - 

Rawsonia lucida Harv. & 

Sond. (Flacourtiaceae) 

LS G - - -  + + +  - - -  - - - 
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Searsia chiridensis (Baker f.) 

Moffett (Anarcardiaceae) 

ES Z + - -  + - +  + - -  + - + 

Searsia dentata Thunb. 

(Anarcardiaceae) 

ES Z - - -  - - -  - - -  + - + 

Rothmannia globosa (Hochst.) 

Keay (Rubiaceae) 

LS Z + - -  - + -  - - -  + + + 

Schrebera alata (Hochst.) 

Welw. (Oleaceae) 

ES W + - -  - - -  - - -  - - - 

Scolopia zeyheri (Nees) Harv. 

(Flacourtiaceae) 

ES Z - - -  + - -  - - -  - - - 

Strelitzia nicolai Regel & 

Körn. (Strelitziaceae) 

ES Z + - +  + + +  + - +  - - - 

Strychnos decussata (Pappe) 

Gilg (Strychnaceae) 

LS Z + - -  - - -  - - -  - - - 

Strychnos henningsii Gilg 

(Strychnaceae) 

LS Z + - -  - - -  - - -  - - - 

Strychnos usambarensis Gilg 

(Strychnaceae) 

LS Z + + +  - - -  - - -  - - - 

Syzygium cordatum Hochst. ex 

C.Krauss (Myrtaceae) 

ES Z + - -  + - -  + - +  + - - 

Vangueria parviflora Sond. 

(Rubiaceae) 

ES Z - - -  - - -  - - +  - - - 

Tarenna pavettoides (Harv.) 

Sim subsp. pavettoides 

(Rubiaceae) 

ES Z + + -  - - -  - - -  - - - 

Teclea gerrardii I.Verd. 

(Rutaceae) 

LS Z + - -  - - -  - - -  - - - 

Teclea natalensis (Sond.) Engl. 

(Rutaceae) 

LS Z + + -  + - -  - - -  - - - 

Trema orientalis (L.) Blume 

(Celtidaceae) 

ES Z - - -  + - -  + + -  + - - 

Tricalysia capensis (Meisn. ex 

Hochst) var. capensis 

(Rubiaceae) 

ES Z - - -  - - -  - - -  + - + 

Tricalysia sonderiana Hiern 

(Rubiaceae) 

ES Z + - -  - - -  - - -  - - - 

Trichilia dregeana Sond. 

(Meliaceae) 

ES Z - - -  + - -  - - -  - - - 

Vangueria infausta Burch. 

(Rubiaceae) 

ES Z - - -  - + -  - - +  + - - 

Vepris lanceolata (Lam.) 

G.Don. (Rutaceae) 

ES Z - - -  + - +  + - -  + + + 

Xylotheca kraussiana Hochst. ES Z + - -  - - -  - - -  - - - 
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(Flacourtiaceae) 

Xymalos monospora (Harv.) 

Baill (Monimiaceae) 

LS Z - - -  + + -  - - -  - - - 

Zanthoxylum capense (Thunb.) 

Harv. (Rutaceae) 

ES Z - - -  + + -  + - +  + - - 

Zanthoxylum davyi (I.Verd.) 

P.G.Waterman (Rutaceae) 

LS Z - - -  + - -  - - -  - - + 
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