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Summary 

Nonribosomal peptides (NRPs) constitute a class of structurally and functionally diverse 

natural products, which are synthesized by nonribosomal peptide synthetases (NRPSs). 

NRPs exhibit a wide range of bioactivities, including antimicrobial, antifungal, antiviral, 

immunosuppressive and antitumor properties. Numerous of these compounds have 

been discovered via screening of microbial extracts. In recent years, increasing 

knowledge of the biosynthesis of natural products and development of new sequencing 

techniques lead to the identification of gene clusters, which are putatively involved in 

the biosynthesis of nonribosomal peptides. 

Based on the sequencing result of the genome of Lysobacter sp. ATCC 53042 and the 

former work from Bernhard et al.[1] on the gene fragment involved in the biosynthesis of 

lysobactin, the entire biosynthetic gene cluster of lysobactin was identified and 

characterized. The cluster encodes two multimodular nonribosomal peptide synthetases 

(LybA and LybB). Due to the correlation of the number of modules found within the 

lysobactin gene cluster and the primary sequence of lysobactin, the biosynthesis of 

lysobactin follows the colinearity principle. Investigation of the adenylation domain 

substrate specificities confirmed the direct association between the synthetases and 

lysobactin biosynthesis. 

Furthermore, an unusual tandem thioesterase domain architecture (PCP-TE1-TE2) of the 

LybB termination module was identified. Biochemical characterization of the individual 

thioesterases in vitro proved that the first thioesterase is responsible for the cyclization 

and the release of the final product, while the second thioesterase showed a type II TE 

activity, which is responsible for the regeneration of the mis-primed peptide carrier 

protein during the biosynthesis of lysobactin. Together with the observation of the 

proteolytic degradation during the heterologous production of LybB-PCP-TE1-TE2 giving 

rise of LybB-PCP-TE1, we have proposed that the LybB is also cleaved to generate 

lone-standing LybB-TE2 prior to lysobactin synthesis in the native strain. The resulting 

lone-standing TE2 serves as external type II TE to regenerate mis-primed peptide carrier 

protein via hydrolytic cleavage of the PCP-bound noncognate substrates. 

Additionally, the sequence of the genome of Lysobacter sp. ATCC 53042 was 

bioinformatically analyzed. The analysis result delivered further potential NRPS and 

PKS-NRPS hybrid gene clusters. Based on the proposed substrate specificities of the 

adenylation domains, the chemical structures of the products were proposed. However, 

further experiments are needed to confirm the production of these compounds. 
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Zusammenfassung 

Nichtribosomale Peptide (NRP) konstituieren eine Klasse strukturell und funktionell 

diverser Naturstoffe, welche durch nichtribosomale Peptidsynthetasen (NRPS) 

synthetisiert werden. Nichtribosomale Peptide weisen eine Vielfalt biologischer 

Aktivitäten auf, sowie antimikrobielle, antifungielle, antivirale, immunsuppressive und 

antitumore Eigenschaften. Durch Screening mikrobieller Extrakte wurden zahlreiche 

solcher Verbindungen entdeckt. In den letzten Jahren ermöglichten die Kenntnisse über 

die Biosynthese von Naturstoffen und die Entwicklung der Sequenzierungstechnologien 

Identifikation von Genclustern, die vermutlich an der Biosynthese von nichtribosomalen 

Peptiden beteiligt sind. 

Basierend auf der Sequenzierung des Genoms von Lysobacter sp. ATCC 53042 und der 

früheren Arbeit von Bernhard et al.[1] an dem Gen-Fragment, das an der Biosynthese von 

Lysobactin beteiligt ist, wurde der gesamte Gencluster der Lysobactinbiosynthese 

identifiziert und charakterisiert. Der Gencluster kodiert zwei multimodulare 

nichtribosomale Peptidsynthetasen (LybA und LybB). Wegen der Korrelation zwischen 

der Anzahl der Module innerhalb des Genclusters und der primären Struktur von 

Lysobactin wurde festgelegt, dass die Biosynthese von Lysobactin dem 

Kolinearität-Prinzip folgt. Die Untersuchung der Spezifitäten der Adenylierungsdomäne 

bestätigte den direkten Zusammenhang zwischen den Synthetasen und der Biosynthese 

von Lysobactin. 

Darüber hinaus wurde eine ungewöhnliche Tandemthioesterase-Architektur im 

Terminationsmodul von LybB identifiziert. Die biochemische Charakterisierung der 

einzelnen Thioesterasen in vitro bewies, dass die erste Thioesterase für die Zyklisierung 

und Freisetzung des Endproduktes zuständig ist, während die zweite Thioesterase eine 

Typ II TE Aktivität zeigte, die für die Regeneration des Peptide-Carrier-Proteins 

verantwortlich ist. Zusammen mit der Beobachtung des proteolytischen Abbaus, der 

während der heterologen Produktion von LybB-PCP-TE1-TE2 die Produktion von 

LybB-PCP-TE1 verursacht, haben wir vorgeschlagen, dass die LybB auch im nativen 

Stamm gespalten wird. Somit wird die dadurch erzeugte allein stehende TE2 produziert, 

die als externer Typ II TE dient. 

Zusätzlich wurde die Sequenz des Genoms von Lysobacter sp. ATCC 53042 

bioinformatisch analysiert. Die Analyse lieferte weitere potenzielle NRPS und PKS-NRPS 

Hybridgencluster. Basierend auf den vorhergesagten Spezifitäten der 

Adenylierungsdomänen wurden Strukturvorschläge für die putativen Produkte gemacht. 

Es sind jedoch weitere Untersuchungen nötig, um die Produktion dieser putativen 

sekundären Metaboliten zu bestätigen und um die vorgeschlagenen Strukturen zu 

verifizieren. 
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Abbreviation 

3',5'-ADP  3',5'-adenosinediphosphate 

A-domain adenylation domain 

AcOH  acetic acid 

ACP   acyl carrier protein 

AL   acyl- CoA ligase 

AMT  amino transferase 

AT   acyltransferase 

ATL   loading AT domain 

ATP   adenosine 5’-triphosphate 

BLAST  Basic Local Alignment Search Tool 

bp   base pair 

C-domain condensation domain 

CDA   calcium-dependent antibiotic 

CDS   coding sequence 

CHS   chalcone synthase 

CMA  coronamic acid 

CoA   coenzyme A 

Cy-domain cyclization domain 

DCM  dichlormethane 

DEBS  6-deoxyerythronolide synthase 

DH   dydratase 

DIPEA  diisopropylethylamine 

DMF  dimethylformamide 

DMSO  dimethyl sulfoxide 

dsDNA  double-stranded DNA 

EDTA  ethylenediaminetetraacetic acid 

ER   enolreductase 

ESI   electrospray ionization 

EtBr   ethidium bromide 

F-domain formylation domain 

FAS   fatty acid synthase 

fH4F   formyltetrahydrofolate 

FMN  flavine-mononucleotide 

Fmoc  9-fluorenylmethyloxycarbonyl 

Fmoc-Cl  fluorenylmethyloxycarbonyl chloride 

FT   Fourier transformation 

E-domain epimerization domain 

Gtf   glycosyltransferase 

HBTU  O-(Benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate 
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HEPES  4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

HOBt  1-Hydroxybenzotriazole hydrate 

HPLC  high-performance liquid chromatography  

HyPhe  L-threo-3-phenylserine 

IC50   half maximal inhibitory concentration 

IPTG   isopropyl-β-D-thiogalactopyranoside 

KR   ketoreductase 

KS   keto-synthase 

LC-MS  liquid chromatography-mass spectrometry 

LDD   loading didomain 

LTQ   linear trap quadrupole 

MALDI  Matrix Assisted Laser Desorption Ionization  
MCoA  malonyl-CoA 

MeOH  methanol 

MIC   minimum inhibitory concentration 

mMCoA  methylmalonyl-CoA 

MRSA  methicillin-resistant Staphylococcus aureus 

MT   methyltransferase 

Ni-NTA  Ni-nitriloacetic acid 

NRP   non-ribosomal peptide 

NRPS  non-ribosomal peptide synthetases 

OD   optical density 

Ox-domain oxidation domain 

PCP   peptide carrier protein 

PCR   polymerase chain reaction 

Ppan  phosphopantetheine 

PPtase:  phosphopantetheinyl-transferase 

R-domain: reduction domain 

RT   room temperature 

SAM   S-adenosylmethionine 

SDS   sodium dodecyl sulfate 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SFF   standard flowgram format 

Sfp   4’-phosphopantetheine transferase involved in surfactin production 

SNAC  N-acetylcysteamine 

SPPS  solid phase peptide synthesis 

T-domain  thiolation domain 

TCA   trichloroacetic acid 

TE   thioesterase 

TEA   triethylamine 
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TFA   trifluoroacetic acid 

TFE   2,2,2-trifluoroethanol 

TIPS   triisopropylsilane 

TOF   time of flight 

Tris   tris(hydroxymethyl)aminomethane 

VRE   vancomycin-resistant enterococcus 

 

 

 

 

 

Table of amino acid abbreviations 

 

Amino acid 1-letter-abbreviation 3-letter-abbreviation 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid Asp D 

Cysteine Cys C 

Glumatic acid Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Trp W 

Tyrosine Tyr Y 

Valine Val V 
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1. Introduction 

Since ancient times people have learned to prepare traditional medicine from flora and 

fauna to protect themselves against diseases. From these “crude drugs”, different 

medicines were discovered and isolated exemplified by artemisinin and quinine. These 

natural products with complex structures are considered to play a highly significant role 

in the drug discovery and development process.[2] Microorganisms such as bacterial or 

fungi are rich sources for discovering new drugs or lead compounds. Under selection 

pressure, these microorganisms evolved the ability to produce natural products which 

are optimized for chemical defense or communication and show a broad bioactivity 

spectrum. Natural products discovered from microorganisms show a broad structural 

diversity and comprise peptides, polyketides, steroids, glycosphingolipids, terpenes etc. 

In the following chapter, natural product assemblies such as nonribosomal peptide 

synthetase (NRPS) and polyketide synthetase (PKS) will be discussed in detail. 

1.1 Non-ribosomal peptide synthetase 

Discovery of penicillin from fungal host organism Penicillium notatum by Sir Alexander 

Fleming marks a new epoch in research into biologically active natural products. 

Numerous compounds with antimicrobial, antifungal, antiviral, immunosuppressive and 

antitumor activities were discovered via screening of microbial extracts.[3-5] Moreover, 

knowledge about gene clusters encoding enzymes for biosynthesis of natural products 

has greatly increased, which suggests greatly underestimating of natural product 

biosynthetic capacity by detecting products in fermentations.[6] Many of these 

compounds are produced by polyketide synthases or nonribosomal peptide synthetases. 

NRPSs are large, multi-modular enzyme complexes that catalyze the biosynthesis of 

NRPs. In contrast to ribosomally synthesized peptides, NRPs are synthesized 

independent of messenger RNA template and following the multienzyme thiotemplate 
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mechanism.[4] NRPs exhibit unique structural features such as heterocyclic element, 

non-proteingenic and D-amino acids, glycosylation and N-methylation (Figure 1.1). A 

common feature of many NRPs is their cyclic structure, which is achieved normally via 

oxidative cross-linking like vancomycin, or heterocyclization, exemplified by β-lactam 

antibiotics, or macrocyclization such as Daptomycin.[3] Their structures are strictly 

connected with their biological activities and specific interaction with the corresponding 

molecular targets in the cell. 

1.1.1 Essential domains 

NRPSs are large, multi-modular enzyme complexes. Each module is responsible for the 

incorporation of one building block into the growing peptide chain and could be further 

subdivided into different domains responsible for substrate recognition and activation, 

binding, condensation, modification and product release.[4] These domains can be 

 

Figure 1.1: Structural diversity of the NRPs. 
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identified by analyzing their highly conserved amino acid sequence motifs. Domains 

required for incorporating of building blocks into the peptide chain are considered 

essential and named as essential domains or core catalytic domains. These domains are 

adenylation (A)-domain, condensation (C)-domain and peptidyl-carrier-protein (PCP, also 

named as thiolation (T)-domain). This chapter gives detailed information of these 

essential domains. 

1.1.1.1 Adenylation (A)-domain 

Adenylation domain recognizes, activates and loads the corresponding building block 

(amino acid or organic acid) onto the sulfhydryl-group of the phosphopantetheine 

cofactor (ppan) of the downstream neighboring PCP. Substrate activation is 

accomplished in a 2-step-reaction. Firstly, A-domain recognizes specifically the amino 

acid and catalyzes the formation of an aminoacyl adenylate intermediate in the presence 

of Mg2+ and with consumption of ATP. Secondly, the carbonyl group of the oxo-ester of 

aminoacyl-O-AMP is converted to a thioester by the nucleophilic attack of the 

sulfhydryl-group of the ppan residue of the downstream neighboring PCP and thus 

covalently attached to the downstream PCP. Although the reaction shares the same 

mechanism with aminoacyl-tRNA synthesis catalyzed by aminoacyl-tRNA synthetase, the 

two enzyme families share neither sequence nor structural similarities.[7] 

A-domains separated from the original NRPS assembly show a high degree of substrate 

specificity, thus, A-domain acts as the gatekeeper for incorporating monomeric building 

blocks. Due to the lack of proof-reading-mechanisms, A-domain shows in general a lower 

specificity comparing to aminoacyl-synthetases.[8] Some A-domains, such as TycA-A1[9] 

and LybA-A1[10], are reported to have a relaxed substrate tolerance. This substrate 

tolerance could lead to misincorporation of non-cognate building blocks and results in 

synthesis of differing NRPs by the same NRPS machinery.  

A-domains usually consist of about 550 amino acids and can be subdivided into an 

N-terminal core domain consisting of about 450 amino acids and a C-terminal 
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subdomain of about 100 amino acids. Crystallization study of phenylalanine activating 

subunit of gramicidin synthetase I (PheA) in complex with AMP and phenylalanine 

(Figure 1.2) shed light on the enzyme-substrate-interaction and the residues responsible 

for substrate recognition.[11] Combined with biochemical and bioinformatic analysis of a 

large number of adenylation domains, the specificity-conferring code of A-domains was 

established.[12] This code contains ten amino acids responsible for substrate binding 

within the active-site and allows the prediction of A-domain specificities and primary 

sequences of NRPs synthesized by newly found NRPS-clusters. 

1.1.1.2 Condensation (C)-domain 

The condensation (C)-domain is a further essential domain in NRPS machinery 

comprising about 450 amino acids and catalyzes peptide bond formation. C-domains 

contain an acceptor site and a donor site, which accepts downstream aminoacyl-S-PCP 

and upstream peptidyl-S-PCP (aminoacyl-S-PCP for first C-domains in NRPS assembly, 

acyl-S-PCP for initial C-domains in NRPS producing lipopeptides) as substrates. The 

peptide bond formation is initiated by the nucleophilic attack of the α-amino group of 

the acceptor site substrate onto the carbonyl group of the thioester of the donor site 

substrate. Therefore, the upstream peptide chain is transferred onto the downstream 

PCP-domain and the elongated peptide chain serves as donor site substrate for the next 

 
Figure 1.2: Structure of the phenylalanine activating subunit of gramicidin synthetase I (PheA) in complex 

with AMP and Phenylalanine (PDB 1AMU). AMP is shown in sticks form, phenylalanine is shown in sphere 

form, the green ball represents the Mg2+ ion in the complex. 



Introduction                                                                            

- 5 - 

C-domain. 

The structural and bioinformatic analysis of C-domains identified a highly conserved 

catalytic histidine residue in the core-motif MHHxxxDG(WV)S. Although exact 

mechanism remains to be elucidated, mutational studies suggested that the second 

histidine residue may catalyze the deprotonation of α-amino group of the acceptor site 

substrate and thus enhance the nucleophilicity of the amino group to ease the 

nucleophilic attack onto the thioester of the donor site substrate[13]. A Crystal structure 

study of the lone-standing C-domain VibH from the vibriobactin synthetase (Figure 1.3) 

revealed the V-shaped form of the C-domain, which enables the substrates tethered on 

the up- and downstream neighbouring PCP-domains to reach the highly catalytic 

histidine in the active site.[14] PCP-misloading experiments showed that the acceptor and 

donor site have different substrate specificities. The C-domain has restricted substrate 

specificity at its acceptor site. Neither enantiomeric substrate nor different aminoacyl 

side chain length are accepted, while the donor site accepted different side chains.[13, 15]  

Various functional subtypes of C-domains were reported, including LCL-domains 

catalyzing peptide bond formation between an upstream peptide with a C-terminal 

L-amino acid and a downstream L-amino acid; DCL-domains catalyzing peptide bond 

 
Figure 1.3: Structure of alone-standing C-domain VibH from vibriobactin synthetase shows the typical 

V-form of the condensation domains from NRPS (PDB 1L5A). The highly conserved histidine residue in 

active site in highlighted in red. 
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formation between upstream peptide with a C-terminal D-amino acid and a downstream 

L-amino acid; starter C-domains acylating the first amino acid activated by the 

downstream A-domain with a fatty acid[16]; heterocyclization Cy-domains catalyzing both 

peptide bond formation and subsequent heterocyclization of cysteine, serine or 

threonine residues[17]; and C/E dual domains catalyzing epimerization of the Cα-atom of 

the C-terminal amino acid of the donor site substrate and peptide bond formation 

between the donor site and acceptor site substrates[18].  

1.1.1.3 Peptidyl-carrier-protein (PCP) 

The Peptidyl-carrier-protein (PCP) or thiolation domain (T-domain) has a size of about 80 

amino acids and is responsible for covalent tethering of monomeric building blocks or 

growing peptidyl intermediates and transportation of elongating peptide chain towards 

the C-terminus of the synthetase. Thus, PCP domains play a supreme role in NRPS 

system. PCPs are posttranslationally modified by phosphopantetheinyl-transferases 

(PPtases) by attaching the phosphopantetheine cofactor to the highly conserved serine 

residue of the core-motif GGxS. PPtases catalyze the nucleophilic attack of the 

hydroxyl-group of the highly conserved serine residue onto the β-phosphate group of 

coenzyme A, releasing 3',5'-adenosinediphosphate (3',5'-ADP). The substrate or 

intermediate is covalently attached on the sulfhydryl-group of the ppant cofactor of 

holo-PCP as thioesters. NMR studies of TycC3-PCP (Figure 1.4) revealed three different 

conformations, namely apo (A), holo (H) and A/H states of the PCP. A and A/H coexist 

when the PCP is in apo-state; while H and A/H coexist as the PCP is in holo-state. The 

study also showed that the sulfhydryl group of the ppant cofactor could move 

approximately 16 Å, which enables the delivery of tethered acyl/peptidyl-substrates to 

the catalytic site of neighbouring NRPS domains, for peptide bond formation, 

modification or cyclization.[19]  
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1.1.2 Non-proteinogenic building block synthesis 

A significant hallmark of NRPs comparing to the ribosomally produced peptides is that 

NRPs contain a large number of non-proteinogenic building blocks, which are essential 

for their conformation and biological activities. Many of these unique structural features, 

such as D-amino acids, N-methylation, heterocyclic rings etc, are derived from 

proteinogenic amino acids. Different mechanisms were reported for introduction of 

these structural features. Considering the time of the modification event during the 

biosynthesis process of the NRPs, these modifications could be classified into three types: 

non-proteinogenic building block precursor synthesis, tailoring on PCP-bound substrates 

and post-assembly modification. In this chapter, these mechanisms are discussed in 

detail with concrete examples. 

1.1.2.1 Non-proteinogenic building block precusor synthesis 

In some NRPs, α-keto and α-hydroxy acids are incorporated beside α-amino acids 

exemplified by cyclodepsipeptides such as PF1022A produced by Rosellinia sp. PF1022[20] 

and enniatin found in Fusarium
[21, 22], [23]. The α-hydroxy acids in these depsipeptides are 

produced by certain pathways prior to activation by the corresponding NRPS 

A-domain[20]. 

         

             A                 H                  A/H 

Figure 1.4: Structure of TycC3-PCP domain in different states. (PDB-codes: A: 2GDY; H: 2GDX; A/H: 2GDW) 
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β-Hydroxy or β-amino acids are also frequently observed in NRPs. In the biosynthesis of 

calcium-dependent antibiotic (CDA), a non-heme Fe2+/α-ketoglutarate-dependent 

oxygenase, AsnO, is responsible for direct hydroxylation of L-asparagine to 

L-β-OH-asparagine, which is subsequently activated by the corresponding A-domain and 

incorporated into CDA.[24], [25] In lipopeptide antibiotic friulimicin produced by 

Actinoplanes friuliensis, two 2,3-diaminobutyric acids are observed. Gene disruption and 

feeding compensation experiments showed that DabA similar to cysteine synthase and 

DabB similar to a fusion protein containing a putative ligase and an argininosuccinate 

lyase should be involved in biosynthesis of 2,3-diaminobutyric acid prior to activation by 

the NRPS A-domain.[26]  

Methylation is also a common modification observed in NRPs. A SAM-dependent 

catechol 4'-O-methyltransferase (SafC) is involved in synthesis of a 4'-O-methyl-L-dopa 

precursor in the biosynthesis of the antitumor agent saframycin.[27] There is also a 

number of C-methylations observed in NRPs exemplified by a glutamate mutase 

delivering β-methylaspartate in friulimicin biosynthesis.[28]  

Some NRPs contain allo-threonine or allo-isoleucine, which has an altered chirality at 

β-carbon, exemplified by enduracidin and Coronatine. Studies of the corresponding 

A-domain specificities suggested that these amino acids are epimerized prior to 

incorporation into the final product[29], [30]. It was also reported that certain NRPSs utilize 

external racemase to provide a D-monomer prior to activation by the corresponding 

A-domain in NRPS exemplified by cyclosporin biosynthesis.[31] 

1.1.2.2 Tailoring enzyme acting on PCP-bound substrates 

Additional to the precursor synthesis, modifications are also observed occuring on 

PCP-tethered intermediates catalyzed by catalytic domains embedded in NRPS assembly 

or additional enzymes acting in trans. The former is exemplified by well studied 

N-methylation domains and epimerization domains, the latter is observed in case of 

some hydroxylations, halogenations and α-β-desaturations. 



Introduction                                                                            

- 9 - 

Epimerization. D-amino acids are found in many NRPs and are not only important for 

the conformational stability and biological activity of NRPs, but also contribute to the 

protection of the peptide against proteolytic degradation. Addition to the C/E-dual 

domain and external Racemase described above, a more common strategy to generate 

D-amino acids is utilizing an in NRPS assembly embedded epimerization (E)-domain 

located downstream after the adjacent PCP precisely in the module responsible for 

incorporating D-isomer into the growing peptide chain. E-domains show similarity with 

C-domains with a size of 450 amino acids.[4] E-domains in initial modules catalyze the 

racemization and produce rapidly an equilibrium mixture of PCP-S-L,D-monomer. The 

specific incorporation of the D-isomer is established by the D-specific selectivity of the 

donor site of the downstream C-domain.[32] For E-domains embedded in elongation 

modules, it was shown that the epimerization does not occur at the L-monomer-S-PCP 

stage before condensation with the upstream peptidyl-S-PCP, but rather at the 

peptidyl-S-PCP stage before the condensation with downstream monomer-S-PCP. The 

adjacent downstream C-domains are expected to have a D-specific selectivity for donor 

site peptide chirality.[15]  

Methylation. Methylated amino acids can be found in many NRPs, most of them are 

introduced by methyltransferases (MT), which catalyze the transfer of a methyl group 

from S-adenosylmethionine (SAM) on carbon, nitrogen or oxygen atoms on backbone of 

NRPs. Therefore, MTs are subclassified into C-MT, N-MT and O-MT depending on the site 

of methylation. Studies showed that N-MT is typically 450 amino acids long, while C- and 

O-MT normally have a size of 300 amino acids. Generally, MT show a bidomain structure 

with the N-terminal domain responsible for methyl-donor (SAM) binding and the 

C-terminal domain responsible for methyl-acceptor binding. Normally, MT-domains 

embed in the C-terminal region of an A-domain and contain three highly conserved 

motifs.[33, 34] An outstanding example of N-methylated NRP is cyclosporin, a cyclic 

peptide consisting of 11 amino acids, 7 of which are N-methylated. The corresponding 
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seven modules of cyclosporin synthetase show typical order of C-A(MT)-PCP. 

N-methylation occurs on the aminoacyl-S-PCP intermediate prior to condensation.[35] 

O-methylation is observed in the biosynthesis of kutznerides and perthamide.[36, 37] 

C-methylation was reported in the biosynthesis of yersiniabactin and melithiazol.[38, 39] 

Formylation. Formylation of NRPs was reported in linear gramicidin produced by Bacillus 

brevis ATCC 8185[40] and anabaenopeptilides produced by Anabaena strain 90 [41]. 

Formylation of the N-terminal amino group is catalyzed by a formylation (F)-domain 

located at the N-terminus of the corresponding synthetase with a size of about 200 

amino acids. F-domains catalyze the transfer of a formyl group from 

formyltetrahydrofolate (fH4F) on the α-amino group of the amino acids using both 

cofactors N10- and N5-fH4F. It was reported, that the F-domain of linear gramicidin 

synthetase LgrA catalyzes the α-N-formylation of PCP-bound L-Val or L-Ile. It was also 

observed that the formylation of the starter unit is necessary for initiation of gramicidin 

biosynthesis.[40]  

Heterocyclization. In some NRPs, heterocycles such as thiazoline, oxazoline or 

methyloxazoline are observed. These structural features result from the 

heterocyclization of cysteine, serine or threonine side chains catalyzed by cyclization 

(Cy)-domains, which are structurally and mechanistically related to C-domains.[4] The 

Cy-domain conducts in the first step a nucleophilic attack of the amino group of the 

acceptor site aminoacyl-S-PCP onto the thioester of the donor site peptidyl- or 

aminoacyl-S-PCP, respectively, resulting in peptide bond formation. Subsequently, the 

Cy-domain catalyzes in the second step the nucleophilic attack of the sulfhydryl group of 

cysteine or the hydroxyl group of serine or threonine onto the carbonyl group of the 

peptide bond and delivers a thiohemiaminal or hemiaminal intermediate, which is then 

dehydrated to yield the thiazoline or oxazoline ring.[17] These heterocycles improve the 

structural diversity and backbone rigidity of NRPs and are important for chelating metals 

or interaction with proteins, DNA or RNA.[42]  
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Oxidation and Reduction. The oxidation state of heterocycles can be altered in NRPSs 

using oxidation or reduction domains. In bleomycin, epothilone or myxothiazol 

synthetases, oxidation (Ox)-domains comprising approximately 250 amino acids were 

observed.[43-45] Ox-domains were found located within A-domains or after PCP-domains 

as observed in myxothiazol synthetase.[45] Studies showed that the Ox-domain needs 

flavine-mononucleotide (FMN) as cofactor and molecular oxygen to reoxidize reduced 

FMN.[43] NADPH-dependent reduction (R)-domains were observed in yersiniabactin and 

pyochelin synthetase, which are responsible for reduction of heterocycles.[46]  

Hydroxylation in trans. In addition to the hydroxylation occurring on free monomers 

described above, hydroxylation on PCP-tethered substrates was also observed. A family 

of heme protein hydroxylases exemplified by NovI and NikQ catalyzing hydroxylation of 

PCP-tethered Tyr and His residues were observed. KtzO and KtzP in the family of 

non-heme iron dioxygenases involved in Kutznerides biosynthesis catalyze hydroxylation 

of PCP-tethered L-Glu substrates and generate threo- and erythro-diastereomers of 

β-hydroxy-glutamate respectively.[47]  

Halogenation in trans. Several NRPs contain halogenated residues, whereas chlorination 

is most prevalent. In biosynthesis of syringomycin (Pseudomonas syringaea), the 

nonheme Fe(II)/α-KG-dependent halogenase SyrB2 catalyzes the γ-chlorination of 

L-Thr-S-PCP intermediate.[48] The non-heme Fe(II)-dependent halogenase KtzD catalyzes 

the γ-chlorination of L-Ile-S-PCP intermediate and delivers PCP-bound γ-chloroisoleucyl 

intermediate.[49]  

1.1.2.3 Post assembly tailoring 

Post assembly tailoring refers to modifications of the NRPs after release from the 

assembly line such as glycosylation and oxidative cross-linking. Antibiotics in the 

vancomycin group undergo oxidative cross-linking, which are probably catalyzed by 

cytochrome-450-type heme proteins. In vancomycin and chloroeremomycin, three 

cross-links are formed, while a fourth cross-link is formed in the biosynthesis of 
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taicoplanin.[50] Through these covalent connections, the flexible peptides are converted 

into rigid aglycone scaffolds which enables the five-hydrogen-bond network to 

N-acyl-D-Ala-D-Ala termini of peptidoglycan strands.[51] Recent research showed that the 

cross-linking takes place on the peptide tethered on the last PCP-domain of the 

assembly.[52]  

Glycosylation belongs to group transfer modifications. The addition of a monosaccharide 

and its iterative elongation to an oligosaccharide increases significantly the diversity of 

natural products and their water solubility.[52] Occasionally, common hexoses such as 

glucose and mannose are added to the peptide. More often deoxy- and 

deoxyaminosugars are attached to the peptides providing sites for hydrogen bond or 

further tailoring of the hydroxyl or amino groups.[53, 54] Two examples are the 

glycosyltransferases GtfD and GtfE, which construct the L-vancosaminyl-1,2-D-glucosyl 

disaccharide attached to the phenolic hydroxyl of residue 4 of the cross-linked 

heptapeptide aglycone core in the biosynthesis of vancomycin.[50]  

1.1.3 Mechanisms of peptide release 

The essential domains discussed above are repeating units contributing to linear peptide 

synthesis by adding monomer after monomer to the growing peptide chain tethered to 

the enzyme. The mature peptide has to be released to regenerate the synthetase. In 

most cases the peptide release is conducted by a thioesterase (TE)-domain located at 

C-terminus of NRPS.[55] TE-domains contain approximately 250 amino acids and show 

high degree of sequential and structural homology to α/β-hydrolases. Structural studies 

of the TE-domain in the surfactin synthetase, SrfC-TE, revealed the formation of the 

active site consisting of a catalytic triad Ser-His-Asp, which leads to deprotonation of the 

active site serine in the core motif GxSxG (Figure 1.5).[56] Nucleophilic attack of the 

resulting serine oxyanion onto the peptidyl thioester tethered to the upstream PCP 

generates a peptidyl-O-TE oxoester intermediate.[4] Following nucleophilic attack of 

water or of intramolecular nucleophile results in hydrolysis or in the generation of a 
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cyclic peptide.[57] In the case of formation of a cyclic peptide, it was suggested that an 

α-helical lid region shields the peptide binding pocket from solvent to prevent hydrolysis. 

An open conformation of lid region allows access to the active site, while in a closed 

conformation the substrate is cyclized.[58], [59] Another model (edge-on binding 

mechanism) suggested that the substrate itself shield the active serine from solvent 

molecule and thus prevent the hydrolysis.[59]  

TE-domains are catalytically independent subunits. Cyclization of chemically synthesized 

peptidyl-S-N-acetylcysteamines[60], which mimic the peptidyl-S-Ppant-PCP substrate, and 

peptidyl-S-thiophenols, which offer a reactive leaving group due to delocalization of the 

thiolate electrons throughout the aromatic ring[61], using excised TE-domains was 

employed to study their substrate specificities. Studies showed that the nucleophile and 

electrophile positions are most critical for substrate recognition.[62], [63] There are also 

TE-domains showing relaxed substrate specificities exemplified by the TE-domain from 

tyrocidin synthetase TycC TE, that showed tolerance to substitution of the nucleophile 

and peptide chain length.[64], [65] These relaxed substrate specificities of TE-domains offer 

a possible access to new structurally diverse NRPs.  

In several NRPSs, unusual tandem-TE architecture was reported to be observed at the 

C-terminal end of the synthetases, including Arthrofactin-, Massetolide A- and 

    

       Fen-TE              Srf-TE 

Figure 1.5: Structure of the Fen-TE and Srf-TE. (PDB-codes: Fen-TE: 2CB9; Srf-TE: 1JMK) The catalytic triads 

are presented in stick form. 
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Lysobactin-synthetase[66], [67]. It was reported that inactivation of the first TE-domain 

could totally abolish the production of NRP, while inactivation of the second TE-domain 

decreased the production significantly.[66] 

In addition to the TE-domain, some NRPSs employ R-domain or C-domain for product 

release. The NADPH-dependent R-domains at the C-terminus in LgrD and MxcG for the 

biosynthesis of linear gramicidin and myxochelin were reported to reduce the peptide 

chain tethered to the adjacent PCP to an alcohol and through that release the product 

from the synthetase.[68], [69] In cyclosporine synthetase it was reported that a C-terminal 

C-domain conducts a head-to-tail cyclization of the mature peptide tethered on the 

upstream PCP to release the final product[70]. 

1.1.4 Related enzymes (Sfp and TE II) 

In addition to the described essential and modifying subunit of NRPS and the modifying 

enzymes acting in trans, there are still enzymes playing a central role in the biosynthesis 

of NRPs. In this chapter, these enzymes are discussed in detail. 

1.1.4.1 Ppant transferase 

All acyl-carrier or peptidyl-carrier proteins in PKS or NRPS systems contain an essential 

cofactor 4'-phosphopentetheine to bind the growing peptide chain or monomeric 

building block covalently.[71] Phosphopantetheinyl transferases catalyze 

posttranslationally the transfer of this cofactor from Coenzyme A onto the highly 

conserved serine residue in ACP or PCP and thus activate these enzymes. PPTases can be 

classified into two groups, namely acyl carrier protein synthase type PPTases and Sfp 

type PPTases, which activate ACPs from PKSs and NRPS/PKS multienzymes 

respectively[71]. Sfp type PPTase is named after the PPTase Sfp in surfactin biosynthesis in 

Bacillus subtilis, which exhibits extraordinarily broad substrate specificity [72]. The crystal 

structure of Sfp in complex with CoA and Mg2+ showed that the pantetheinyl part of CoA 

does not interact with the Sfp (Figure 1.6), which could explain the broad substrate 
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specificity of Sfp.[71] Sfp was shown to be able to activate a wide set of PCPs and accepts 

many different CoA-derivatives, ranging from acyl- or aminoacyl-CoA to bulky peptidyl- 

or fluoresceinyl-CoA. This property was widely used to generate artificial loading of PCPs. 

This method was applicated in many works to misprime PCPs intentionally for evaluation 

of C-domains, on-line tailoring enzymes etc.[73-76] 

1.1.4.2 Type II thioesterase 

In addition to the TE-domain at C-terminus of synthetases discussed above responsible 

for product release, a second type of TE-domain (TE II) was found in PKS or NRPS 

systems encoded normally by a distinct gene. Gene disruption experiments showed that 

these TE-domains are important for efficient production of the natural products.[76] 

Further studies showed that TE II could efficiently regenerate misacylated thiol groups of 

Ppant cofactor tethered on PCPs or ACPs.[76, 77] This editing function is vital, because ca. 

80% of CoA is acetylated in bacteria, which could lead to possible misacylation of the 

ACPs and PCPs and block the synthetase. Figure 1.7 shows the structure of surfactin TE II 

exhibiting a typical α/β-hydrolase fold. The active site residues of the TE II (Ser86, Asp189 

and His216) are found on the surface of the enzyme and are more accessible comparing 

to that of the TE-domain. This explains the relaxed substrate specificity of TE II. 

 

 
Figure 1.6: Crystal structure of Sfp in complex with Mg

2+
 and CoA. (PDB-code: 1QR0) CoA is shown in 

stick form and Mg2+ ion is represented with the green ball. 
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1.2 Lysobactin 

Antibiotic resistance caused by misuse or overprescription of antibiotics has become a 

serious threat to public health. The rise of multiresistant pathogens like 

methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant 

enterococci (VRE) emphasizes the urgent requirement for the development of new 

antibiotics to ensure therapeutic efficiency against multiresistant pathogens in the 

future.[10, 78-81] 

Lysobactin, also known as katanosin B, is one of the recently discovered potential 

antibiotics. This depsipeptide is produced by Lysobacter sp. ATCC 53042, which was first 

isolated at the Squibb Institute of Medical Research.[82, 83] This chapter gives detailed 

information of lysobactin, including its structure, biosynthesis and mode of action. 

1.2.1 Structure and activity 

Lysobactin is a branched cyclic depsipeptide consisting of 11 amino acid residues and 

features a 9-membered macrolactone ring with two N-terminal exocyclic residues.[84] 

The peptide core is composed of a set of non-proteinogenic amino acids including three 

β-hydroxylated amino acids (hyPhe3, hyLeu4 and hyAsn10), two D-configured amino acids 

 
Figure 1.7: Crystal structure of the type II thioesterase surfactin TE II. (PDB-code: 2RON) The catalytic 

triad is shown in stick form. 
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(D-Leu1 and D-Arg6), and allo-Thr8, that are shown in green and red in Figure 1.8, 

respectively. The macrolactone ring is constructed by forming an ester bond between 

the nucleophile β-hydroxyl group of hyPhe3 and C-terminal carboxyl group of Ser11, 

which is highlighted in orange. 

Lysobactin shows a very strong activity against gram-positive bacteria as MRSA and VRE, 

with minimum inhibitory concentrations (MIC) of 0.39 and 0.78 μg/mL respectively, 

which are obviously lower (2 to 50-fold for different strains) than that of vancomycin.[85] 

It was shown that lysobactin inhibits the incorporation of N-acetylglucosamine into 

peptidoglycan of Staphylococcus aureus at concentration comparable to its MIC-value. In 

vitro studies showed that lysobactin inhibits the formation of lipid intermediates and 

nascent peptidoglycans with IC50s of 2.2 and 0.8 μg/mL, respectively.[85] Vancomycin, a 

transglycosylation inhibitor widely used in the treatment of infections caused by 

Gram-positive bacteria, does inhibit the formation of nascent peptidoglycan but not the 

formation of lipid intermediates. Acetyl-Lys-D-Ala-D-Ala, an analog of the terminus of the 

lipid intermediates, was shown to suppress the inhibition of transglycosylation by 

vancomycin effectively, while no obvious suppress of that by lysobactin was observed. 

These observations suggest that lysobactin differs in the mode of action from 

 
Figure 1.8: Structure and primary sequence of lysobactin. The β-hydroxylated amino acids in the structure 

are highlighted in green, the chiral Cα-atom of the D-configured amino acids are labelled in red, the ester 

bond catalyzed by the C-terminal TE for the macrocyclization is highlighted with an orange rectangle. 
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vancomycin and is considered as a high potential agent for the treatment of bacterial 

infections caused by resistant pathogens.[86]  

1.2.2 Biosynthesis and organic synthesis of lysobactin and its derivatives 

The macrocyclic structure and non-proteinogenic residues of lysobactin suggest that it 

could be a NRPS-product. In 1996 it was first confirmed that a NRPS is involved in the 

biosynthesis of lysobactin using hybridization of genomic libraries of Lysobacter sp. ATCC 

53042 with oligonucleotides derived from core-motifs of ACV synthetases and the 

gramicidin S synthetase (Bacillus brevis).[1] Lysobactin non-producing mutants were 

generated via marker-exchange mutagenesis employing a 4.6 kbp NPRS-encoding 

DNA-fragment. This confirmed the identified DNA fragment to be part of the lysobactin 

synthetase. Further bioinformatic analysis of the 4.6 kbp DNA fragment revealed that it 

codes a truncated tetradomain NRPS with C-A-PCP-C organization.[1]  

The main drawbacks of lysobactin are its higher toxicity compared to vancomycin[87] and 

lability in basic or neutral aqueous solution due to hydrolysis of ester bond in 

macrolactone structure.[88] Various synthetic pathways were elaborated trying to 

generate lysobactin derivatives with improved pharmaceutical properties. Some of them 

employed an altered macrocyclization strategy,[84-86] such as the macrolactam derivative 

of lysobactin, which has a much higher stability under neutral or basic pH-value.[88]  

1.3 Polyketide synthase 

Polyketide is one of the most remarkable classes of natural products showing a wide 

range of structural and functional diversity (Figure 1.9).[89] Polyketides obtain broad 

spectrum of medicinally important activities including antibacterial (tetracycline[90], 

rifamycin[91]), antifungal (amphotericin b[92], monensin[93]), antitumor (bleomycin[94, 95]), 

antiparasitic (avermectin[96]), immunosuppressant (rapamycin[97]) and cholesterol- 

lowering (lovastatin[98]). From a structural point of view, polyketides have structurally 

interesting carbon skeletons comprising polyphenols, macrolides, polyenes, enediynes, 
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and polyethers.[99] The development of understanding the polyketide-biosynthesis began 

with Collie’s pioneering work[100] in late 19th century and improved by Robinson with his 

“acetogenin” hypothesis.[89] The first widely accepted biosynthesis pathway was raised 

by Birch and Donovan in 1953.[101] Closely related to fatty acid biosynthesis (s. Figure 

1.10[99]), polyketides are synthesized by repeated Claisen thioester condensations of an 

activated acyl starter unit with malonyl-CoA-derived extender units.[99] The biosynthese 

of fatty acids and polyketides show striking homology not only in the chemical 

mechanism of chain elongation, but also through utilizing simple precursors for the 

synthesis of complicated structure. However, the biosynthesis of polyketides differs in 

many ways from that of fatty acids. The major difference is that after the condensation 

of the extender unit, the fatty acid synthase catalyzes the full reduction of the β-keto 

group in the carbon chain, while the reduction in polyketide biosynthesis is optional and 

could be fully or partially omitted, resulting in a highly functionalized chain (s. Figure 

1.10). Additionally , the broader range of utilized building blocks and the resulting highly 

 
Figure 1.9: Structural diversity of polykeitde. Structural features found in polyketides are highlighted in 

different colours. 
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diverse structures of the mature product are also obvious differences between fatty acid 

and polyketide biosynthesis.[99]  

The biosynthesis of polyketides can be divided into 3 steps: starting, elongation and 

termination. In the starting step, the AT-domain in the starter module catalyzes the 

loading of the starter group, usually acetyl-CoA or malonyl-CoA, onto the ACP-domain in 

the starter module. In the elongation step, the acetyl or malonyl group on the starter 

ACP-domain or the polyketide chain on the ACP-domain of the previous module is 

transferred onto the KS-domain of the current module, where the transfer is catalyzed 

by the KS-domain itself. Then the current AT-domain catalyzes the loading of the next 

 
Figure 1.10: Mechanisms of fatty acid and polyketide biosynthesis. A: biosynthesis of fatty acids. B: 

biosynthesis of polyketides. KS: Ketosynthase, AT: Acyltransferase, ACP: Acyl carrier protein, KR: 

Ketoreductase, DH: Dehydratase, ER: Enoylreductase, Enz: Enzyme. 
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building block onto the current ACP-domain. After that, the ACP-bound building block 

reacts with the KS-bound polyketide chain in a Claisen condensation reaction releasing 

one molecule of CO2. This makes the elongated polyketide chain move one step forward 

and set the KS-domain in the current module for the next round of elongation free. After 

the condensation, the polyketide chain undergoes optional modifications: reduction of 

the β-keto group to a β-hydroxy group catalyzed by the KR-domain, subsequent 

dehydration catalyzed by the DH-domain resulting an α,β-unsaturated intermediate, and 

reduction of the double bond to a single bond catalyzed by the ER-domain. After these 

optional modifications, the polyketide chain is ready for the next elongation cycle. In the 

termination step, the polyketide chain is released from the ACP-domain via 

macrocyclization or hydrolysis catalyzed by the TE-domain after reaching the appropriate 

chain length.[6] Based on the organization and mode of action of the enzymes, PKSs are 

classified into different types:[102] PKS-type I, II and III, which will be discussed in detail in 

the following section. (s. Table 1.1).  

Table 1.1: Classification of PKS-types.
[99]

 

PKS type Iterative or non-iterative Organisms 

Type I Non-iterative Bacteria 

 Iterative Mainly fungi, some bacteria 

Type II Iterative Bacteria 

Type III Iterative Mainly plants, some fungi and bacteria 

PKS/NRPS hybrid Non-iterative Bacteria 

 Iterative Fungi 

 

Type I PKS. Type I PKSs are large enzyme complexes consisting of linearly arranged 

catalytic domains, which are covalently fused together. As shown in Table 1.1, type I PKSs 

can be subdivided into two classes, namely iterative and non-iterative type I PKSs. 

Non-iterative type I PKS are mainly found in bacteria and iterative type I PKS are mainly 
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found in fungi.[99] Non-iterative PKSs can be exemplified by 6-deoxyerythronolide 

synthase (DEBS) shown in Figure 1.11, which is mainly found in prokaryotes.[103] The 

loading didomain (LDD) contains one AT-domain and one ACP domain and is responsible 

for initiating the biosynthesis by using propioyl-CoA for the loading reaction. Other 

modules are comprised of essential KS, AT and ACP domains and the optional β-keto 

processing enzymes DH, ER and KR domains located between the AT and ACP domains, 

that determine the reduction degree of the β-keto groups. The TE-domain at the 

C-terminal end of the last synthase is responsible for macrocyclization and product 

release. Generally, each module is responsible for the incorporation of only one building 

 
Figure 1.11: The 6-deoxyerythronolide-B-synthase (DEBS) responsible for erythromycin biosynthesis 

exemplifies non-iterative type I PKSs. 

 
Figure 1.12: The lovastatin synthase LovB and LovC responsible for lovastatin biosynthesis in Aspergillus 

terreus. MCoA: malonyl-CoA, SAM: S-adenosylmethionone. 
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block and thus the number of modules found in the synthases correlates with the 

number of elongation cycles. This one-to-one correlation between the number of PKS 

modules and structure of the natural product is known as the colinearity principal,[104] 

which allows the prediction of metabolite structure from the enzyme organization and 

vice versa.[99] 

Iterative type I PKSs are mainly found in fungi exemplified by the anticholesteremic 

agent lovastatin isolated from a strain of Aspergillus terreus.[98, 105] As shown in Figure 

1.12,[99] lovastatin synthase has a covalent architecture, which is characteristic for type I 

 
Figure 1.13: The gene cluster and predicted pathway of actinorhodin biosynthesis. A. Organisation of the 

act genes in Streptomyces coelicolor. B. The proposed biosynthesis pathway of actinorhodin.[89] 
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PKS. However, the catalytic domains are used repeatedly to incorporate the building 

blocks into the final product. Thus, the iterative PKSs do not obey the colinearity 

principal. The molecular basis of this complex programming is largely unknown. 

Type II PKS. In contrast to type I PKSs, type II PKSs refer to dissociated enzyme complexes 

of monofunctional, discrete enzymes.[99] These monofunctional enzymes are encoded by 

discrete genes and organized into a multifunctional complex in their active state.[89] Type 

II PKSs are observed exclusively in bacteria and mainly in the actinomycetes. One 

example is actinorhordin, the biosynthetic gene cluster of which was identified in 

1984.[106] As shown in Figure 1.13, three distinct genes orf 1-3 located in the region actI 

encode KSα, KSβ and ACP. Genes (or region) actVII, actIV and actVB are located on the 

downstream side of actI. Genes (or region) actIII, actII, actVA and actVI are located on 

the upstream side of actI. ActII is the so-called central regulatory region, the gene 

products of which were characterized to be responsible for antibiotic export and 

regulatory mechanism for the biosynthetic genes. The KSα, KSβ and ACP encoded by orf 

1-3 in region actI assemble the minimal PKS in the actinorhodin biosynthesis. Together 

with the discrete KR encoded by actIII, these enzymes are predicted to synthesize the 

polyketide backbone from 1 unit of acetyl-CoA and 7 units of extender malonyl-CoA. 

Gene products of actIV, actVA, actVB, actVI and actVII are predicted tailoring enzymes 

involved in actinorhodin biosynthesis.[107] 

 

Type III PKS. The first discovered type III PKS was chalcone synthase (CHS), which is 

responsible for the biosynthesis of chalcone, a central core of many important biological 

compounds, from p-coumaroyl-CoA and three malonyl-CoA.[99] In contrast to type I and II 

PKSs, type III PKSs maintain a much less complicated architecture exemplified by the 

homodimeric structure of CHS containing two identical KS monomeric domains. It was 

shown that these homodimeric enzymes could catalyze acyltransferase, decarboxylation, 

condensation, cyclization and aromatization reactions in the two independent active 
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sites.[108] The relatively simple structure makes them amenable to in vitro examination 

and structural analysis.[109] Type III PKSs have long been discovered in plants, but in the 

last decade many type III PKS were also found in bacteria[110, 111] and fungi.[112] An 

interesting feature is that the type III PKSs from plants show high identity (60-95%) to 

each other, while the bacterial type III PKSs show only 25-50% identity to each other or 

to those from plants.[109]  

 

Figure 1.14: Type III PKSs using non-acetate starter units. M-CoA: malonyl-CoA, eM-CoA: 

ethyl-malonyl-CoA. Red: unusual building blocks in Polyketides with their non-acetate precursors. Blue: 

unusual malonyl-derived building blocks in polyketides. 
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Alternative building blocks  

PKSs utilize routinely acetate/propionate as starter units and malonate/methylmalonate 

as extender units. However, unusual starter and extender units are observed in many 

cases. In some modular PKS systems, loading of unusual starter molecules is 

accomplished via a loading AT domain (ATL). For example, isovaleryl-CoA is utilized as the 

starter in the biosynthesis of avermectin in Streptomyces avermitilits
[113] and 

cyclohexanoyl-CoA is used as the starter in the biosynthesis of phoslactomycin.[114] If the 

starter is used as a free acid rather than a CoA thioester, a strategy similar to that of 

adenylation domains in NRPS, is utilized. In the biosynthesis of rapamycin, the starter 

unit, dihydroxycyclohexene carboxylic acid, is activated via an A-domain and loaded onto 

the adjacent downstream ACP domain.[115] The same strategy is observed in the 

biosynthesis of rifamycin and candicidin, which use 3-amino-5-hydroxybenzoic acid and 

p-aminobenzoate as starter units, respectively.[116, 117] 

Type III PKSs also utilize a broad range of non-acetate starter units such as cinnamoyl 

derivatives (p-coumaroyl, caffeoyl and feruloyl in chalcone biosynthesis), benzoyl 

(biphenyl synthase) and fatty acids (unsaturated e.g. anacardic acid,[118] branched e.g. 

germicidin[119]).[99, 109] Transfer of building blocks from FAS to type III PKS was also 

reported exemplified by the biosynthesis of differentiation-inducing factor, DIF-1, via a 

type I FAS/type III PKS hybrid system in Dictyostelium discoideum,[120] and the 

biosynthesis of alkylresorcinols via “crosstalk” between an unusual type I FAS and a type 

III PKS,[121] as shown in Figure 1.14.[99] 

In bacterial modular PKSs, MCoA or mMCoA are usually utilized as extender units. Other 

extender units are only rarely observed in bacterial PKS biosynthesis. 

2-ethylmalonyl-CoA is used as an extender unit in the biosynthesis of the niddamycin,[122] 

concanamycin and kirromycin.[123] In the biosynthesis of FK506, 2-propenylmalonate is 

observed to be utilized as an extender unit. Other than alkylated malonylate extender 

units described above, heterosubstituted malonyl derivatives are observed in 
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polyketides such as hydroxyl and methoxy substitutions in soraphen,[124] FK520[125] and 

concanamycin[126] and aminomalonate in zwittermycin[127]. A halogenated extender unit 

was also observed exemplified by the incorporation of chloroethylmalonate into 

salinosporamide.[128] 

1.4 PKS/NRPS hybrid 

By combination of the NRPS and PKS assembly lines, nature has developed a further 

strategy to synthesize complicated molecules. Some examples of PKS/NRPS hybrid 

assembly and the corresponding products are discussed in this chapter. The hybrid 

assemblies consist of different portion of NRPS and PKS machinery. Some assemblies 

consist of mostly PKS machinery, which is exemplified by FK520. FK520 is a macrolide 

produced by Streptomyces hygroscopicus var. ascomyceticus (ATCC 14981) that has 

immunosuppressive, neurotrophic and antifungal activities.[129] As shown in Figure 

1.15[129], the FK520 assembly consists of 4 proteins: FkbB, FkbC, FkbA and FkbP. The first 

 

Figure 1.15: Structure and biosynthesis of the macrolide FK520.  
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Figure 1.16: Structure and assembly of antitumor agent Bleomycin A2. A.: Structure and biosynthesis of 

Bleomycin A2. B.: The proposed mechanism of formation of the unusual β-aminoalaninamide moiety. 

PKS FkbB starts with a loading module which specifies a shikimate-derived starter 

units[130] followed by four extender modules. The second and the third PKS FkbC and 

FkbA consist of two and four extender units, respectively. The fourth protein in the 

assembly is FkbP, a NRPS, which activates pipecolic acid and catalyses the condensation 

of the intermediate synthesized by PKSs with the nitrogen of the pipecolic acid. After 

release from FkbP, the PK-NRP hybrid chain undergoes further hydroxylation catalyzed by 

FkbD, oxidation catalyzed by FkbO and methylation catalyzed by FkbM.[129]  

In contrast to FK520, the assembly of bleomycin consists of 10 NRPS modules distributed 

over 7 proteins (BlmIII, IV, V, VI, VII, IX and X) and 1 PKS module (BlmVIII) (s. Figure 

1.16).[95, 131] Bleomycin is a natural hybrid peptide-polyketide metabolite produced by 

Streptomyces verticillus ATCC15003 and shows antitumor activity.[95] An unique feature 

observed in the bleomycin assembly is that BlmVI is a NPRS equipped with N-terminal 
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acyl CoA ligase domain (AL) followed by ACP-like domain. It was proposed that this AL in 

the starter module catalyzes the aminolysis of the acyl-S-PCP-BlmVI intermediate and 

delivers an unusual β-aminoalaninamide moiety (shown in Figure 1.16).[95] 

 

Yersiniabactin is a siderophore produced by different Yersinia species. Yersiniabactin 

synthetase comprises four proteins, YbtE, HMWP1, HMWP2 and YbtU, which can be 

subdivided into seventeen domains (s. Figure 1.17).[132] One molecule of salicylate, three 

cysteines and one malonyl moiety are activated and incorporated to build the final 

product.[132] YbtE is suggested to activate salicylate and load it onto the first PCP-domain 

of the NRPS HMWP2. HMWP2 is responsible for elongating the growing chain with two 

cysteines and cyclizes the two cysteines to two thiazoline rings. HMWP1 is a PKS/NRPS 

hybrid protein and contains 5 PKS-domains followed by 4 NRPS-domains. The PKS-part of 

HMWP1 is responsible for incorporating a further C2-unit to the elongating chain using 

malonyl-CoA and and catalyzing the two methylation on the Cα-position. The NRPS-part 

of HMWP1 is responsible for incorporating a Cys buildingblock to the growing chain 

followed by methylation on the Cα-position.[132-134] The Cys residue is cyclized to 

thiazoline ring catalyzed by the upstream Cy. The middle thiazoling ring is then reduced 

by the NADPH-dependent reductase YbtU in trans to a saturated thiazolidine ring. In the 

last step, the mature product is released from the assembly line via hydrolysis catalyzed 

by the C-terminal TE-domain.  

 

 

Figure 1.17: Structure and assembly of the siderophore yersiniabactin. 
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2. Objectives of this study 

Different NRPSs were reported to employ tandem TE-domain for release of the final 

product. In vivo study of the tandem TE-domain in arthrofactin biosynthesis machinery 

showed that inactivation of the first TE-domain totally abolished the production of 

arthrofactin, while inactivation of the second TE-domain reduced the production 

remarkably. It was suggested that the second TE-domain could be added during the 

evolution in order to improve the macrocyclization efficiency. However direct proof of 

this inference was still absent. In this study, genomic DNA of Lysobacter sp. ATCC 53042 

was sequenced and the entire biosynthetic gene cluster of lysobactin was identified and 

characterized, which also employs tandem TE-domain architecture for the cyclization 

and release of the final product. In vitro characterization of the individual thioesterases 

revealed the role of both TE-domains in lysobactin biosynthesis. 

Bioinformatically analyze of genomic DNA of Lysobacter sp. ATCC 53042 delivered several 

other NRPS or PKS/NRPS gene clusters. These genes were bioinformatically analyzed and 

their potential natural products were predicted. 
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3. Materials 

3.1 Chemicals, enzymes and consumables 

Chemicals that are not listed below in the table were purchased from other 

manufacturers as standard compound in p.a. quality. 

 

Table 3.1: Microorganisms, chemicals, enzymes and general materials 

Chemical Product Manufacture 

[1-14C]-acetyl-CoA Amersham 

2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate 

Sigma-Aldrich 

2-chlorotritylchlorideresin Novabiochem 

2,5-dihydroxybenzoic acid Agilent Technologies 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid Roth 
32P-Na4P2O7 Perkin-Elmer 

Agar Roth 2266.2 Roth 

Adenosine triphosphate Applichem 

Ampicillin AppliChem 

BBL™ Trypticase™ soy broth BD211768 BD 

Chloroform Roth 

Coomassie Brilliant Blue R250 GE Healthcare 

Dimethyl sulfoxide Merck 

Dimethylformamide Acros 

Ethidium bromide Roth 

Ethylenediaminetetraacetic acid Serva Feinbiochemica 

Endonucleases NEB 

Hi-Trap desalting column GE-Healthcare 

Hydroxybenzotriazole Iris biotech GmbH 

Isopropyl β-D-1-thiogalactopyranoside GE-Healthcare 

Isopropanol Roth 

Kanamycin AppliChem 

L-threo-3-phenylserine Bachem 

Liquid scintillation fluid Roth 

Methanol (HPLC-Grade) Fisher Scientific 

Ni-NTA Qiagen 

N-Fmoc-protected amino acids Novabiochem 

Oligonucleotides Sigma-Aldrich 
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Perchloric acid Riedel-Häen 

Phusion polymerase Finnzymes 

Piperidine Merck 

Protein size markers Fermentas 

QIAquick gel extraction kit Qiagen 

T4 DNA ligase NEB 

Triisopropylsilane Acros 

amicon® Ultra centrifugal filter Millipore 

 

3.2 Equipments 

Table 3.2: Equipment used in this thesis 

Equipment Manufacturer and type 

Autoclave Fedegari Autoclavi SPA 

Cell density meter Amersham Biosciences Ultrospec 10  

Centrifuges Thermo Scientific Sorvall RC5B Plus; 

Heraeus Biofuge pico; 

Heraeus Megafuge 1.0R 

Clean Bench Antair BSK 

Fluidizer Avestin EmulsiFlex-C5 

FPLC Pharmacia FPLC system 

French-press SLM Aminco French pressure cell press 

HRMS system Thermo Fischer Scientific LTQ-FT/Agilent 1100 HPLC system 

Incubator Infors HT Multiron 

LC-MS system Agilent series 1100 HPLC-system 

Liquid scintillation counter PerkinElmer 

Lyophilization Christ Alpha 2-4 LSC 

MALDI-TOF Bruker BiFlex III 

NMR Bruker AV 600 

Peptide synthesizer Advanced ChemTech Apex 396 synthesizer 
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pH meter KOBE Seveneasy Mettler Toledo 

Photometer PEQLab Nanodrop ND-1000; 

Pharmacia Ultrospec 3000 

Pipettes Eppendorf Reference 

Speedvac Eppendorf concentrator 5301 

Thermal cycler Eppendorf Mastercycler Personal 

Thermomixer Eppendorf Thermomixer comfort 

Vortexer Neolab vortex mixer 

Water deionizer Seral seralpur pro 90 CN 

 

3.3 Plasmid vectors 

3.3.1 pET-28a(+) 

The pET-28a(+) vector (Novagen) is used as a 

general expression vector for heterologous 

production of recombinant proteins. 

Transcription of the gene of interest is carried 

out by T7 RNA-polymersase and induced by 

IPTG. The pET-28a(+) vector provides the 

possibility to introduce N- or C-terminal His6-tag 

upon in-frame ligation of the cloned genes, which enables the purification of 

recombinant protein using Ni-NTA affinity chromatography. 

 

 

 

 

Figure 3.1 Physical map of pET28a(+) 
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3.3.2 pCR®-XL-TOPO® 

Topo® XL (Invitrogen) is a cloning vector 

supplied in linearized form bearing single 3’-T 

overhang and covalently bound 

topoisomerase. It offers a quick, ligase-free 

cloning of PCR-product bearing 3’-A overhang 

with high efficiency. 

 

 

3.4 Oligonucleotides 

Primers used for vector construction were purchased from Sigma-Aldrich and are list 

below in Table 3.3. 

Table 3.3 Primers used in this study  

Gene of interest Primer name Sequence Restriction site 

LybA-A1 LybA-A1 FP AAAAAACCATGGtgagaacggaccaccaccgt NcoI 

 LybA-A1 RP AAAAAACTCGAGgtccggcgccggcaag XhoI 

LybB-A6 LybB-A6 FP AAAAAACCATGGtcgattacttcaaggcgctgctg NcoI 

 LybB-A6 RP AAAAAACTCGAGgaaattgcgctgcgcgtagg XhoI 

LybB-A9 LybB-A9 FP AAAAAACCATGGcgcaacgccacgagcaattg NcoI 

 LybB-A9 RP AAAAAAAAGCTTctcgtagccgcgctgcgcata HindIII 

LybB-PCP-TE1 LybB-PCP FP AAAAAACATATGTATGCGCAGCGTCCGTTC NdeI 

 LybB-TE1 RP AAAAAAGGATCCgttcaacagcccggcgatgg BamHI 

LybB-PCP-TE1-TE2 LybB-PCP FP AAAAAACATATGTATGCGCAGCGTCCGTTC NdeI 

 LybB-TE2 RP AAAAAAGGATCCtcatggcgactcggcttgggt BamHI 

 

Figure 3.2 Physical map of Topo® XL 
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LybB-TE1 LybB-TE1 FP AAAAAACATATGcatctggtgccgatccgctt NdeI 

 LybB-TE1 RP AAAAAAGGATCCgttcaacagcccggcgatgg BamHI 

LybB-TE2 LybB-TE2 FP AAAAAACATATGaccgccgcgatcaccgtgca NdeI 

 LybB-TE2 RP AAAAAAGGATCCtcatggcgactcggcttgggt BamHI 

LybB-C-A-PCP8 LybB-E FP AAAAAACCATGGctgagccgcaagtcgcgtcc NcoI 

 LybB-PCP8 RP AAAAAAAAGCTTcaggaaccacaggcgcagctg HindIII 

pstD-PCP-TE Friu-PCP-TE FP AAAAAACATATGCAGTCGGCGGAGGGCCGG NdeI 

 Friu-PCP-TE RP AAAAAAGGATCCTCAAACGCGGCCGCTGCGCAG BamHI 

pstD-TE Friu-TE FP AAAAAACATATGGTCCTGCCCCTGCGGACC NdeI 

 Friu-TE RP AAAAAAGGATCCTCAAACGCGGCCGCTGCGCAG BamHI 

 

3.5 Microorganisms 

3.5.1 One Shot® TOP10 Electrocomp™ E coli  

One Shot® TOP10 Electrocomp™ E coli is a generally used host for cloning and plasmid 

propagation with transformation efficiency of 1X109 cfu/μg supercoiled DNA, allowing 

stable replication of high-copy number plasmids. The genotype of TOP10 cells is F- mcrA 

Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu) 7697 galU galK 

rpsL (StrR) endA1 nupG λ-. 

3.5.2 E. coli BL21 (DE3) 

E. coli BL21 (DE3) (Novagen) is one of the most widely used host for expression of 

plasmide DNA. This strain has the genotype F- ompT hsdSB (rB
-, mB

-) gal [dcm] [lon] λ(DE3) 

and is deficient both in lon protease and ompT outermembrane protease, which reduces 

the proteolytic degradation and thus increases the expression level of the target protein. 

Furthermore this strain contains IPTG inducible T7 RNA polymerase gene, which is 

essential for the IPTG induction of genes under T7-promotor control. 
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3.5.3 E. coli Rosetta 1 DE 3 

E. coli Rosetta 1 DE 3 strain (Novagen) is also used for expression of plasmid DNA. Like 

BL21, this Rosetta strain is also deficient both in lon and ompT proteases. Moreover, this 

strain supplies tRNAs for the rare codons AUA, AGG, AGA, CUA, CCC and GGA on a 

compatible chloramphenicol-resistant plasmid, which makes this strain capable of 

expression of DNA containing these rare codons, which would be otherwise limited by 

codon usage of E. coli. The genotype of this strain is F- ompT hsdSB(rB
-mB

-) gal dcm(DE3) 

pRARE. 

3.5.4 Lysobacter sp. ATCC 53042 

Lysobacter sp. (ATCC 53042), a Gram-negative bacterium, is the lysobactin producing 

strain. It was cultivated for the subsequent preparation of genomic DNA. 

3.6 Culture media 

The media listed below were used for cultivation of microorganisms. Culture plate 

medium was prepared by adding 1.2% (by LB Medium plate) or 1.5% (by ATCC broth #18) 

to the medium followed by heating at 121°C and 1.5 bar for 30 min. After cooling down 

to 55°C, antibiotics in the following standard concentrations were added. 

  Kanamycin:        30 μg/mL 

  Chloramphenicol:      34 μg/mL 

3.6.1 LB-medium 

LB-medium was used for cultivation of E. coli strains. 

Yeast-extract:       5 g/L 

Bactotrypton:       10 g/L 

NaCl:         5 g/L 
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3.6.2 ATCC #18 soy broth 

ATCC #18 broth was used for cultivation of Lysobacter sp. ATCC 53042 strain. 

  Trypticase Soy Broth (BD 211825):   30 g/L
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4. Methods 

4.1 Molecular biology techniques 

4.1.1 Cultivation of lysobacter sp. ATCC 53042, fermentation and isolation of lysobactin 

Lysobacter sp. ATCC 53042 was purchased from LGC standards as freeze-dried culture 

sample. It was revived by resuspending little amount freeze-dried powder in 50 μL ATCC 

#18 soy broth, which was subsequently transferred to an ATCC #18 soy broth agar slant 

followed by incubation at 30°C for 2-3 days. The colonies were transferred to ATCC #18 

soy broth and grown at 30°C for 48 hours. ATCC #18 soy broth was inoculated with the 

starter culture with a ratio of 1:100 and incubated at 30°C for 40 hours. After 

centrifugation of the culture at 7,000 rpm for 30 min, the supernatant was separated 

and extracted 3 times with butanol after adjusting the pH-value to 7.0. The solvent was 

removed using rotary evaporator after combination of the extracts to yield a yellow solid. 

Lysobactin was purified and separated via HPLC (Agilent 1100 system, Macharey-Nagel, 

VP 250/21 Nucleodur C18 HTec) with the following gradient: solvent A: water (0.1% TFA), 

solvent B: acetonitrile (0.1% TFA), 0 min, 10% B; 30 min, 60% B; 33 min, 95% B; 35 min, 

95% B; 38 min, 10% B; 45 min, 10% B.  

4.1.2 Genomic DNA preparation 

2 mL cell culture of lysobacter sp. ATCC 53042 was centrifugated at 13,000 rpm for 3 min. 

The cell pellet was washed once with water and resuspended in 500 µL lysis buffer. Glass 

beads were added to the resuspension to reach a final volume of 1.25 mL. The mixture 

was vortexed for 2 min and the liquid was separated. After adding 275 µL 7 M 

ammonium acetate solution (pH 7.0), the mixture was incubated at 65°C for 5 min and 

subsequently 5 min on ice. After adding 500 µL chloroform, the mixture was centrifuged 

at 13,000 rpm for 5 min. The aqueous phase was transferred to a new reaction tube. 
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Genomic DNA was precipitated by adding 1 mL isopropanol. After incubating at RT for 5 

min, the mixture was centrifuged at 13,000 rpm for 5 min. The pellet was washed with 

200 µL 70% ethanol and dried at RT. The genomic DNA was dissolved in 50 µL H2O and 

stored at 4°C. 

 

Lysis buffer: 

  Tris:          100 mM 

  EDTA:         50 mM 

  SDS:          1% 

  pH 8.0 

4.1.3 Plasmid preparation 

2 mL liquid cell culture of E. coli was centrifuged at 13,000 rpm for 3 min. After 

resuspension of the cell pellet in 300 µL resuspension buffer, 300 µL lysis buffer was 

added. The mixture was gently inverted 6 to 8 times and incubated for 5 min at RT. The 

cell debris was precipitated by adding 300 μL neutralization buffer. The mixture was 

gently inverted 6 to 8 times and incubated for 10 min on ice subsequently. After 

centrifugation at 13,000 rpm for 10 min, the supernatant was transferred to a new 

reaction tube and mixed with 600 μL isopropanol. After centrifugation at 4°C, 13,000 

rpm for 30 min, the resulted plasmid DNA pellet was washed with 200 μL 70% ethanol 

and dried at 37°C for 30 min. The plasmid DNA was solubilized in 50 μL H2O and stored at 

-20°C. 

4.1.4 Construction of expression plasmids 

Amplification of the interested genes from genomic DNA was performed by polymerase 

chain reaction (PCR) using Phusion™ High-Fidelity DNA Polymerase (Finnzymes) 

according to the protocol for GC-rich templates from manufacturer. The PCR products 

were purified via agarose gel electrophoresis and recovered using QIAquick gel 
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extraction kit (Qiagen) following the manufacturer’s protocol. Digestion of the PCR 

products and corresponding plasmids was performed using restriction endonucleases 

(NEB). Subcloning was performed using T4 DNA ligase (NEB) following the 

manufacturer’s protocol. Ligations were transformed into One Shot® TOP10 

Electrocomp™ E. coli cells via electroporation. Transformants were plated on LB-agar 

slants containing the corresponding antibiotic(s). The plasmids were isolated as 

described in section 4.1.3 and verified by restriction mapping and dideoxy sequencing 

(GATC-biotech). Detailed information of the expression plasmids used in this study is 

listed in the following table. 

 

Table 4.1 Plasmids used in this study 

Plasmid Gene Primers Restriction sites Protein 

LybA-A1 FP pET28a(+)(lybA-A1) lybA-A1 

LybA-A1 RP 

NcoI/XhoI lybA-A1 (C-Histag) 

LybB-A6 FP pET28a(+)(lybB-A6) lybB-A6 

LybB-A6 RP 

NcoI/XhoI lybB-A6 (C-Histag) 

LybB-A9 FP pET28a(+)(lybB-A9) lybB-A9 

LybB-A9 RP 

NcoI/HindIII lybB-A9 (C-Histag) 

LybB-TE1 FP pET28a(+)(lybB-TE1) lybB-TE1 

LybB-TE1 RP 

NdeI/BamHI lybB-TE1 (N-Histag) 

LybB-TE2 FP pET28a(+)(lybB-TE2) lybB-TE2 

LybB-TE2 RP 

NdeI/BamHI lybB-TE2 (N-Histag) 

LybB-PCP FP pET28a(+)(lybB-PCP-

TE1) 

lybB-PCP-TE1 

LybB-TE1 RP 

NdeI/BamHI lybB-PCP-TE1 

(N-Histag) 

LybB-PCP FP pET28a(+)(lybB-PCP-

TE1-TE2) 

lybB-PCP-TE1-TE2 

LybB-TE2 RP 

NdeI/BamHI lybB-PCP-TE1-TE2 

(N-Histag) 

LybB-E FP pET28a(+)(lybB-E-A-

PCP8) 

lybB-E-A-PCP8 

LybB-PCP8 RP 

NcoI/HindIII lybB-E-A-PCP8 

(C-Histag) 

Friu-PCP-TE FP pET28a(+)(pstD-PCP-

TE) 

pstD-PCP-TE 

Friu-PCP-TE RP 

NdeI/BamHI Friu-PCP-TE 

(N-Histag) 

Friu-TE FP pET28a(+)(pstD-TE) pstD-TE 

Friu-TE RP 

NdeI/BamHI Friu-TE (N-Histag) 
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4.1.5 Genome Pysosequencing 

Genomic dsDNA was column purified and nebulized to fragments in a size of 

approximately 700 bp. The A- and B-adapters for sequencing with the Roche technology 

were ligated to the ends of the nebulized DNA fragments. The samples were run on a 2% 

agarose gel with TAE buffer and the band in a size range of 700 to 900 bp was excised 

and column purified. After concentration measurement the resulting library was 

immobilized onto DNA capture beads and the amplicon-beads obtained were amplified 

through emPCR according to the manufacturer's recommendations. Following 

amplification, the emulsion was chemically broken and the beads carrying the amplified 

DNA library were recovered and washed by filtration. The sample was sequenced on a 

GS FLX Pico-Titer plate device. The GS FLX produced sequence data as Standard 

Flowgram Format (SFF) file containing flowgrams for each read with basecalls and 

per-base quality scores. 

4.2 Biochemical techniques 

4.2.1 Protein expression 

In this study, the proteins were expressed with the pET28a(+) system. 500 mL 

prewarmed (37°C) LB-medium containing corresponding antibiotics (30 μg/mL 

kanamycin, and additional 34 μg/mL chloramphenicol if Rosetta 1 DE3 cell was used) 

was inoculated with 5 mL overnight culture. The culture was incubated at 37°C and 220 

rpm till the optical density (OD) reachs 0.6 (λ = 600 nm). After inducing with 0.1 mM 

IPTG, the culture was further cultivated for additional 16 h (or overnight) at 18°C. The 

cells were harvested by centrifugation (6,000 rpm, 4°C, 20 min), resuspended in 10 mL 

buffer (50 mM HEPES, 300 mM NaCl, pH 8.0) and either directly processed or stored at 

-20°C. 
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4.2.2 Protein purification 

For purification of His6-tagged recombinant protein, the cells were disrupted by the use 

of an EmulsiFlex®-C5 High Pressure Homogenizer (Avestin). Cell debris and insoluble 

components were precipitated through centrifugation (13,000 rpm, 4°C, 30 min). The 

supernatant was separated and the protein was purified via Ni2+-NTA affinity 

chromatography using a FPLC system (Amersham Pharmacia Biotech). After equilibration 

of the column with the buffer HEPES A, the supernatant was applied onto the column 

with a flow-rate of 1 mL/min. The column was then washed with mixed buffer (90% 

HEPES A and 10% HEPES B) till the absorption of flowthrough at 280 nm reached 

baseline level. The His6-tagged protein was then eluted by applying the following 

gradient of buffer HEPES A and B (0 min, 10% HEPS B; 30 min, 50% HEPES B; 40 min, 

100% HEPES B) with a flow rate of 1 mL/min. Fractions containing the recombinant 

protein were monitored by SDS-PAGE, pooled together and concentrated using 

centrifugal filter (Millipore). After the concentrated protein was dialyzed against dialysis 

buffer using Hi-Trap™ desalting columns (Amersham Biosciences), the fractions were 

pooled and concentrated again with centrifugal filter. The recombinant protein can be 

either directly applied or stored at -80°C. 

4.2.3 Protein concentration determination 

The concentrations of the recombinant proteins were determined 

spectrophotometrically via NanoDrop using molar extinction coefficients which were 

calculated with the program “Protean” (DNAStar). The molar extinction coefficients of 

the recombinant proteins are listed below in Table 4.2. 
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Table 4.2 Calculated molar extinction coefficient of recombinant proteins used in this study 

Protein Molar extinction coefficient (λ=280 nm) 

lybA-A1 (C-Histag) 1.02 mg/mL 

lybB-A6 (C-Histag) 1.00 mg/mL 

lybB-A9 (C-Histag) 0.98 mg/mL 

lybB-TE1 (N-Histag) 0.91 mg/mL 

lybB-TE2 (N-Histag) 1.51 mg/mL 

lybB-PCP-TE1 (N-Histag) 1.03 mg/mL 

lybB-PCP-TE1-TE2 (N-Histag) 1.14 mg/mL 

lybB-E-A-PCP8 (C-Histag) 1.13 mg/mL 

Friu-PCP-TE (N-Histag) 1.57 mg/mL 

Friu-TE (N-Histag) 1.27 mg/mL 

 

4.3 Chemical synthesis 

4.3.1 Synthesis of Nα-Fmoc-protected amino acids 

L-threo-3-phenylserine hydrate (HyPhe) was purchased from Bachem. The primary 

amino group was protected with 9-fluorenylmethyloxycarbonyl (Fmoc) for subsequent 

solid phase peptide synthesis. 1 mmol L-threo-3-phenylserine (0.181g) was added to a 

vigorously stirred Na2CO3 solution (0.263 g in 5.7 mL H2O) at 0°C. 2.76 mL 1,4-dioxane 

was added to the reaction mixture, forming an opaque mobile mixture. 1.05 mmol 

Fmoc-Cl (0.27 g) was dissolved in 3 mL 1,4-dioxane and dropped into the stirred solution 

over 40 min. Then the mixture was allowed to warm to ambient temperature followed 

by adding 26 mL H2O. The reaction mixture was washed twice with 20 mL CHCl3. The 

aqueous phase was acidified with HCl to pH = 2, providing a thick opaque mixture. After 

extraction with CHCl3, the organic phase was combined, dried over Na2SO4 and 

evaporated in vacuo to yield a pale yellow solid residue (yield = 63%).  
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4.3.2 Solid phase peptide synthesis (SPPS) 

The oligo peptide substrates used in this study were synthesized following a standard 

Fmoc-based solid phase peptide synthesis (SPPS) protocol. The synthesis was initialized 

by immobilizing the C-terminal building block of the peptide onto an insoluble polymer 

(2-chlorotritylchloride resin). Subsequently, the building blocks with protected α-amino 

group and side-chain were assembled to the immobilized initial building block. During 

the synthesis, the excess reagent and by-product could be easily separated via filtration. 

The peptide synthesis was carried out on an automated peptide synthesizer (APEX 396, 

Advanced ChemTech). 

4.3.2.1 Intitiation 

The initial step of the SPPS is to immobilize the C-terminal amino acid on resin. This step 

is essential for the final yield and purity of the peptide because unoccupied binding sites 

on the surface of resin at this step can be acylated in following steps and thus lead to 

truncated peptide products. Therefore excess amount of the initial building block is 

applied in order to saturate the binding sites on resin. After swelling of the 

2-chlorotritylchloride resin in DCM, 2 eq. of C-terminal amino acid with protected 

α-amino group and side chain and 8 eq. DIPEA were added. The carboxyl functional 

group of the amino acid was deprotonated by the non-nucleophilic base and 

subsequently attacked the 2-chlorotritylcation, through which the first amino acid is 

attached to the resin (Figure 4.1). The reaction mixture was shaked at room temperature 

(2 h, 450 rpm). The solvents were removed by filtration and the resin was washed 3 

times with DCM followed by incubation in MeOH to seal the remained active sites on the 

resin. 
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4.3.2.2 Elogation 

Before coupling with the next amino acid, the N-terminal Fmoc group was removed via 

incubation in 15%-20% piperidine in DMF for 20 min. The resulting aromatic 

cyclopentadiene-type intermediate rapidly eliminates to form the dibenzofulvene and 

carbon dioxide (Figure 4.2). The solid phase was washed with DMF to remove the excess 

of reagent and the by-products. 

 

In the next step, the Nα-Fmoc protected amino acid, HBTU, HOBt and DIPEA were added 

to the resin. The carboxyl group of the amino acid is deprotonated by the 10-fold excess 

of DIPEA and then attacked electrophilic carbenium ion of HBTU to generate a highly 

reactive tetramethylurea intermediate, which is converted into reactive benzotriazole 

ester in the presence of HOBt. The N-terminal amino group of the amino acid or peptide 

 
Figure 4.1 Initiation of SPPS. The C-terminal amino acid is loaded onto the 2-chlorotritylchloride 

resin. 

 

Figure 4.2 Deprotection of the Nα-Fmoc group. 
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tethered on resin attacks this benzotriazole ester to generate the elongated peptide 

chain. 3-fold excess of the Nα-Fmoc protected amino acid was applied to ensure a 

quantitative reaction. Excess of reagent and by-products were removed by washing the 

resin with DMF. The N-terminal Fmoc-group of the elongated peptide bound on resin 

can be deprotected again and couple with the next building block. The elongation 

reaction is repeated till the desired peptide is generated. As the N-terminal building 

block, Nα-Boc protected amino acids are normally used instead of Nα-Fmoc protected 

amino acids. Boc-group is acid-labile and can be deprotected together with the 

deprotection groups of the side chain in the subsequent reaction. 

4.3.2.3 Termination 

The mature peptide was cleaved off from the resin by incubation in the cleavage mixture 

DCM/TFE/AcOH (7:2:1) for 2 hours at 450 rpm. Under the applied mild reaction 

condition, the protection groups of the side chain are stable. The released peptide was 

separated from the resin via filtration and precipitated in n-Hexane. After removal of the 

solvents via rotary evaporator, the resulted white residue was stored at -20°C. 

 

Figure 4.3 Peptide bond formation. 
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4.3.3 Synthesis of peptidyl thioester 

1 eq. of side chain protected peptide, 2 eq. of HBTU and HOBt were dissolved in DCM. 

After addition of 10 eq. of N-acetylcysteamine or thiophenol, the reaction mixture was 

stirred at room temperature for 30 min. Catalytic amount of K2CO3 was added to the 

reaction mixture followed by further stirring for 2.5 hours at room temperature. After 

removal of the solvent via rotary evaporator, the white solid was dissolved in 

TFA/H2O/TIPS (95:2.5:2.5) and stirred at room temperature for 2 hours to remove the 

side chain protection groups. The reaction mixture was then added to 30 mL ice-cold 

diethyl ether forming white precipitation. The precipitate was separated via 

centrifugation (4,000 rpm, 20 min), dissolved in DMSO and subsequently purified via 

semipreparative HPLC (Agilent 1100 system) with a reversed-phase column Macherey 

and Nagel, VP 250/21 Nucleodur C18 HTec) applying the following elution gradient: 

solvent A: H2O (0.1% TFA), solvent B: MeCN (0.1% TFA), 0 min, 30% B; 30 min, 60% B; 33 

min, 95% B; 40 min, 95% B; 42 min, 30% B; 50 min, 30% B.  

4.4 Analytical methods 

4.4.1 MALDI-TOF-MS 

A Matrix Assisted Laser Desorption Ionization (MALDI) combined with a time-of-flight 

mass spectrometer (TOF) was applied to determine the molecular mass of peptides and 

proteins. 2,5-dihydroxybenzoic acid was employed as matrix. Sample preparing was 

achieved by pipetting 0.3 μL of peptide solution and 0.3 μL of matrix solution on certain 

position of a metallic probe target, the solution was well mixed and dried. The 

cocrystallized samples were then analyzed using a “Bruker FLEX III” (Bruker Daltronic). 

4.4.2 HPLC-MS 

High-performance liquid chromatography was used as a standard method to 

characterize substrate by retention time and mass. Reversed-phase column was mostly 
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applied, which bases on interaction between analyte and non-polar stationary phase. 

The non-polar stationary phase of reversed-phase column consists of carbon or alkyl 

chains (C4, C8 or C18) immobilized on silica gel. Elution of compounds was performed 

with H2O-MeOH or H2O-MeCN containing 0.1% TFA or 0.05% formic acid (positive mode) 

or 0.1% TEA (negative mode). The relative unpolar organic solvents compete with 

analyte for binding positions, the acids or base added in the mobile phase were used as 

ion pair and enabled the ionization. The elution of compound was monitored with 

UV-detection. The HPLC was performed on an agilent 1100 system which is coupled with 

an eletrospray ionization mass detector which allows ionization and mass detection at 

atmospheric pressure. 

4.4.3 HRMS and MS/MS-fragmentation analysis 

High resolution mass spectroscopy and MS/MS-fragmentation were employed to analyze 

extracted natural products or products of enzymatic reactions. The compounds were 

purified via an Agilent 1100 HPLC system which was conneted with an LTQ-FT instrument 

(Thermo Fisher Scientific), allowing HRMS and MS/MS fragmentation analysis. 

4.4.4 Protein mass fingerprinting 

Protein mass fingerprinting was used to validate the recombinant proteins. The 

recombinant protein was analyzed via SDS-PAGE followed by excising of the protein band 

showing correct size. The excised gel was treated with 200 μL wash solution for 30 min at 

56°C. After removing the supernatant, the gel was dried at 56°C for 30 min. In-band 

tryptic digestion was carried out by adding 20 μL trypsin solution to the dry gel. After 

initial incubation at 37°C for 45 min, the excess of trypsin solution was removed. The 

mixture was further incubated at 37°C overnight. Proteolytic cleaved peptide fragments 

were achieved by adding 25 μL diffusion solution and subsequent sonification for 45 min. 

The sample was analyzed using spray-HPLC-QTOF-MS system. Comparison with MASCOT 

database allows the identification of the protein. 
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Wash solution 

  NH4HCO3        200 mM  

  MeCN          50% v/v  

 

Trypsin solution 

  trypsin          0.02 μL/μL  

  NH4HCO3        10%  

  MeCN          10%  

  pH 8.1 

 

Diffusion solution 

  TFA          1% v/v  

  MeCN          10% v/v  

  pH 8.1 

4.5 Spectroscopic methods 

4.5.1 NMR-spectroscopy 

1H-NMR-spectroscopy was utilized for verifying the product of organic synthesis. 10 mg 

sample was dissolved in 0.7 mL CDCl3. The 1H one-dimensional spectrum was recorded 

at room temperature on Bruker AV 600 and processed with Bruker Topspin 2.1. 

4.6 Biochemical assays 

4.6.1 ATP/
32

PPi-exchange assay 

Analysis of the recombinant adenylation domains was carried out using 

ATP/32PPi-exchange assay based on reversible aminoacyl-AMP formation catalyzed by 

certain A-domains. The reaction mixture with final volume of 200 μL containing 50 mM 

Tris, 10 mM MgCl2, 5 μM recombinant enzyme, 5 mM amino acid, 2.5 mM Na4P2O7 and 
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32P-Na4P2O7 was incubated at 30°C for 10 min. The reaction was initiated by addition of 

ATP to a final concentration of 2.5 mM. After incubation at 30°C for 30 min the reaction 

was quenched by adding 0.75 mL stop solution (100 mM Na4P2O7, 35 mM HClO4, 0.15 

g/L activated charcoal). The activated charcoal was pelleted via centrifugation (13,000 

rpm for 3 min), washed twice with 0.8 mL water and resuspended in 0.8 mL water. The 

resuspended mixture was added to 3.5 mL liquid scintillation fluid (Roth, Rotiszint® eco 

plus). The radioactivity was measured via liquid scintillation counting (Packard, Tri-carb 

2100TR Liquid Scintillation Analyzer). Assays were performed in triplicate and the 

activities are given relative to the highest measured activity. 

4.6.2 Thioesterase catalyzed macrocyclization assay 

The reaction mixture with final volume of 50 μL containing 25 mM HEPES, 50 mM NaCl, 

10 - 400 μM peptidyl-SPh, 2 μL DMSO and 1 μM enzyme was incubated at 25°C for a 

certain period of time (2 h for activity analysis, 30 s for determination of kinetic 

parameters). The reaction was quenched by adding 50 μL MeOH to precipitate the 

enzyme. After centrifugation at 13,000 rpm for 10 min, the resulting supernatant was 

analyzed via LC-MS (Agilent/HP 1100 series, column: Macherey-Nagel cc125/2 Nucleodur 

100-3 c18 ec, column temperature: 45°C) with the following gradient: solvent A: water 

(0.1% trifluoroacetic acid), solvent B: acetonitrile (0.1% trifluoroacetic acid), flow rate: 

0.3 mL/min, gradient: 0 min, 30% B; 20 min, 50% B; 23 min, 95% B; 30 min, 95% B; 33 

min, 30% B; 40 min, 30% B). Experiments were performed in triplicate for the 

determination of kinetic parameters. 

4.6.3 Fluoresceinyl-CoA phosphopentetheinylation assay 

Apo-PCP is converted to active holo-PCP by transfer of the ppan group from coenzyme A 

onto the conserved serine under catalysis by PPtases. It was shown that PPtase from 

Bacillus subtilis (Sfp) exhibits a high degree of substrate tolerance which makes Sfp 

capable of catalyzing the transfer of CoA-derivatized substrates onto PCPs in vitro. 
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Fluoresceinyl-CoA phosphopentetheinylation assay was employed to validate the ability 

of PCP-domains to be loaded with CoA-substrates in vitro.  

Fluoresceinyl-CoA phosphopentetheinylation assay was carried out by incubation of the 

reaction mixture with a final volume of 50 μL containing 50 μM recombinant PCP, 300 

μM fluoresceinyl-CoA, 5 μM recombinant Sfp and 50 μM MgCl2 in Tris buffer (20 mM Tris, 

100 mM NaCl, pH 7.0) at 25°C for 30 min. The labeled protein was separated via 

SDS-PAGE and visualized under UV-light (λ = 312 nm). A subsequent staining with 

Coomassie Brilliant Blue R250 enabled the comparison of the labeled and unlabeled 

samples. 

4.6.4 [
14

C]-acetyl-CoA phosphopentetheinylation assay 

Similar to the fluoresceinyl-CoA phosphopentetheinylation assay, [14C]-acetyl-CoA 

phosphopentetheinylation assay also uses the high substrate tolerance of Sfp to 

radio-label PCP-domains. SrfA-A PCP1 was heterologously produced and purified as 

described earlier[16]. The phosphopentetheinylation assay was carried out by incubating 

80 μM PCP with 8 μM Sfp and 2 μM [1-14C]-acetyl-CoA (Amersham) in assay buffer (50 

mM Tris/HCl, 10 mM MgCl2, pH 7.5) for 45 min at 37°C. The final volume was 50 μL. The 

reaction mixture was directly used in following deacylation assay or treated with 1 mL 

10% TFA and incubated on ice for 30 min. After 30 min centrifugation at 13,000 rpm, the 

protein pellet was then washed twice with 10% TFA and dissolved in 500 μL acetic acid. 

The radio activity was measured via liquid scintillation counting (Packard, Tri-carb 

2100TR Liquid Scintillation Analyzer). 

4.6.5 TE II mediated deacylation assay 

Different recombinant thioesterases were added to the reaction mixture of 

[14C]-acetyl-CoA phosphopentetheinylation reaction mixture with final concentration of 

2 μM followed by incubation at 37°C for 1h. The reactions were quenched and the 

proteins were pelleted by adding 1 mL 10% TFA. The mixture was incubated on ice for 30 



Methods                                                                               

52 

min and centrifuged at 13,000 rpm for 30 min. The protein pellet was washed twice with 

10% TFA and dissolved in 500 μL acetic acid. The radioactivity was measured via liquid 

scintillation counting (Packard, Tri-carb 2100TR Liquid Scintillation Analyzer). 

4.6.6 Deacylation study 

Deacylation studies were based on the cleavage of the [1-14C]-acetyl group from the 

stand-alone SrfA-A PCP1 via LybB TE-mediated hydrolysis. SrfA-A PCP1 was 

heterologously produced and purified as described earlier.[135] Loading of the PCP with  

[1-14C]-acetyl-CoA (Amersham) was accomplished by incubating 80 µM PCP with 8 µM 

Sfp and 2 µM [1-14C]-acetyl-CoA in assay buffer (50 mM Tris/HCl, 10 mM MgCl2, pH 7.5) 

for 45 min at 37°C. The final reaction volume was 50 µL. Deacylation reactions were 

initiated by addition of 2 µM LybB-PCP-TE1, LybB-TE1 or LybB-TE2 to the reaction mixture. 

The reactions were incubated at 37°C for 1 h. After the reactions were stopped, the PCP 

was precipitated by addition of 1 mL TCA (10 % v/v). The mixture was incubated on ice 

for 30 min and centrifuged at 13,000 rpm for 30 min. The protein pellet was washed 

twice with 1 mL TCA (10% v/v) and dissolved in 500 μL formic acid. The radioactivity was 

measured via liquid scintillation counting (Packard, Tri-carb 2100TR Liquid Scintillation 

Analyzer). Control reactions included measurement of holo-PCP directly after the loading 

procedure and after 1h incubation at 37°C lacking thioesterases to investigate 

non-enzymatic hydrolysis. 

4.7 Natural product isolation 

Lysobacter sp. ATCC 53042 was purchased from LGC Standards GmbH as freeze dried 

powder. The microorganism was revived by plating on soy agar slants (15 g BBL™ 

Trypticase™ soy broth BD21176, 7.5 g Agar Roth 2266.2 in 500 mL water) following the 

manufacturer’s protocol. Fermentations were carried out as described earlier.[82, 83] After 

centrifugation of the culture at 7,000 rpm for 30 min, the resulted supernatant was 

extracted with butanol. After combination of the extracts, the organic solvents were 

removed using rotary evaporator to yield a yellow solid, which was then triturated in 

methanol. The soluble portion was separated and analyzed via LC-MS (Agilent/HP 1100 



Methods                                                                               

53 

series, column: Macherey-Nagel cc125/2 Nucleodur 100-3 c18 ec) with the following 

gradient: solvent A: water (0.1% TFA), solvent B: acetonitrile (0.1% TFA), flow rate : 0.3 

mL/min, gradient: 0 min, 10% B; 30 min, 60% B; 33 min, 95% B; 38 min, 10% B; 45 min, 

10% B). HRMS-analysis of lysobactin was performed via high resolution mass 

spectrometry on an LTQ-FT instrument (Thermo Fisher Scientific).
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5. Results 

5.1 Genome sequencing of Lysobacter sp. and bioinformatic identification of NRPS/PKS 

coding gene clusters 

The genomic DNA of Lysobacter sp. ATCC 53042 was isolated and sequenced using 

pyroseqeuncing methods on a GS FLX instrument. This genome sequencing was carried 

out by GATC-biotech, delivering 418 contigs ranging from 553 to 150,063 bp. To simplify 

the analysis, all contigs were connected head-to-tail, resulting in a sequence with a size 

of 6,011,895 bp. The order of the contigs and sequencing gaps were neglected. Analysis 

 

Figure 5.1: Contigs from sequencing result of genome of Lysobacter sp. ATCC 53042 containing NRPS/PKS 

coding genes. Red: PKS-coding genes. Blue: NRPS-coding genes, purple: hybrid NRPS/PKS coding genes. 
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of this sequence using GeneMark 2.4 annotation yielded 5,588 CDSs. The coding 

sequences crossing the contig borders (where two contigs were connected with each 

other) were treated carefully by deleting the part over the contig borders. CDSs 

containing the core motif of a PCP domain (GG(DH)SL)[136] were further analyzed using 

PKS/NRPS Analysis[137] resulting in the identification of NRPS or PKS/NRPS hybrid coding 

sequences. This analysis delivered 14 contigs containing NRPS or PKS/NRPS hybrid 

coding genes shown in Figure 5.1. Using the 4.6 kbp gene fragment reported by 

Bernhard, et al.[1], contig 93 covering a region of 150,063 bp with an average GC-content 

of 70.7% was identified to contain the full lysobactin biosynthesis machinery, which will 

be further discussed in chapter 5.2. Further analysis of the modular organization of the 

NRPS or PKS/NRPS hybrid CDSs in the other 13 contigs delivered 4 NRPS or PKS/NRPS 

CDSs showing logical organization. Other candidates are either illogical due to absence 

 
Figure 5.2: Potential hybrid NRPS/PKS encoding genes in contig 40 and the proposed corresponding 

product. Orf 5 encodes a tetramodular NRPS. Orf 6 encodes a monomodular PKS. The starting module is 

missing. 
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of essential domains, which is exemplified by NRPS/PKS hybrid CDSs in contig 294 lacking 

essential AT-domains, or small gene fragments possibly resulting from incomplete 

sequencing, which is exemplified by the short NRPS gene fragment found in contig 370. 

In the following chapters, these four NRPS and NRPS/PKS hybrid CDSs will be discussed 

in detail. 

Contig 40 

In contig 40, one NRPS coding gene with the size of 15,495 bp (orf 5) and one PKS coding 

gene with the size of 5,460 bp (orf 6) showing the same transcription direction were 

identified. The two orfs showed an overlapping region of 1,533 bp. The gene product of 

orf 5 displays 47% identity to arthrofactin synthetase from Bradyrhizobium sp. BTAi1 

(accession number: YP 001242609.1) with an E-value of 0.0, while the gene product of 

orf 6 shows 46% identity to the polyketide synthase PksE from Paenibacillus 

mucilaginosus KNP414 (accession number: YP 004642886.1) with an E-value of 0.0. As 

shown in Figure 5.2, further analysis using PKS/NRPS analysis showed that orf 6 encodes 

a PKS containing 5 domains, including one keto-synthase, one acyltransferase, one 

dehydratase, one ketoreductase and one acyl carrier protein domain. A necessary 

starting module containing one AT- and one ACP-domain is missing. Orf 5 codes for a 

NRPS containing 4 modules (module 2 to 5), which can be further subdivided into 14 

domains. Module 3 and 4 display a regular C-A-PCP organization. Module 2 contains an 

extra N-terminal unknown domain consisting of 554 amino acids, which could not be 

classified using PKS/NRPS analysis. Significant similarity could not be found via BLAST 

analysis. Module 5 contains at the C-terminus one thioesterase domain, which should be 

responsible for release of the final product via cyclization or hydrolysis. Comparison of 

the active-site residues determining the A-domain specificities with that of known 

A-domains[12, 138] suggested that the A-domain in module 2 activates L-Ser or L-Thr, the 

A-domain in module 3 L-Ser or L-His, the A-domain in module 4 L-Ser, and the A-domain 

in module 5 L-Ser or L-Asp. The hydroxyl groups in R2, R3 and R4 could be used as 
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nucleophilic groups for the cyclization to build the final product. One of the possible 

structures of the final product is shown in Figure 5.2. The comparison of active-site 

residues is shown in Table 5.1.  

Contig 233 

In contig 233, three consecutive NRPS coding sequences (orf 32, 31 and 30 in Figure 5.3) 

were found sharing the same direction of transcription. The gene product of orf 32 has a 

size of 9,822 bp and displays 51% identity to a non-ribosomal peptide synthetase 

module from Burkholderia rhizoxinica HKI 454 (accession number: YP 004021982.1) with 

an E-value of 0.0. Further analysis with PKS/NRPS analysis revealed that orf 32 consists 

of three NRPS modules. The first module consists of one A-domain and one PCP-domain. 

The second module displays a C-A-PCP tridomain structure. The third module has a 

C-A-PCP-R tetradomain architecture. Comparison of the active-site residues determining 

A-domain specificities with known A-domains suggested that the three A-domains 

activate L-Val, L-Pro and L-Phe, respectively. The comparison result is shown in Table 5.1. 

 
Figure 5.3: Potential NRPS encoding genes in contig 233 and the proposed corresponding products. Orf 

32 encodes a trimodular NRPS. Orf 31 encodes a dimodular NRPS. Orf 32 encodes a monomodular NRPS 

with an unknown N-terminal domain 
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The C-terminal R-domain displays 44% identity to MxaA from Stigmatella aurantiaca 

(accession number: AAK57184.1) with an E-value of 7e-70. MxaA encodes a tetradomain 

NRPS (C-A-PCP-Re) involved in the biosynthesis of myxalamid S, in which the C-terminal 

R-domain is responsible for NADPH-dependent reduction and release of the final 

product.[139] 

Orf 31 covers a 5,094-bp region and orf 30 covers a 7,005-bp region. The two orfs show 

an overlapping region of 2,409 bp. The gene product of orf 31 displays 47% identity to 

syringopeptin synthetase C from Photorhabdus asymbiotica (accession number: 

CAQ84313.1) with an E-value of 0.0 and consists of 2 modules, which can be subdivided 

into 5 domains. The first module consists of one A-domain and one PCP-domain. The 

second module displays a C-A-PCP tridomain structure. Analysis of the active-site 

residues of the A-domains found in orf 31 suggests that the two A-domains activate 

L-Pro and L-Gln in turn. 

Orf 30 consists of one module containing 5 domains. The three domains in middle 

(C-A-PCP) displays 50% identity to arthrofactin synthetase from Burkholderia gladioli 

(accession number: YP_004349031.1) with an E-value of 0.0. The N-terminal domain 

contains 849 amino acids and displays no significant identity to known protein (BLAST). 

The C-terminal R-domain displays 40% identity to polyketide synthase from Nostoc sp. 

PCC 7120 (accession number: NP 484397) with an E-value of 6e-71 and 36% identity to 

MxaA from Stigmatella aurantiaca (accession number: AAK57184.1) with an E-value of 

1e-55. Analysis of the active-site residues of A-domain determining A-domain 

specificities suggests that the A-domain in orf 30 activate L-Pro. 

Contig 306 

In contig 306, 1 PKS coding gene and 3 NRPS coding genes were identified (Figure 5.4). 

Orf 49 encodes a type I PKS lacking the essential AT-domains 

(KS-?-KR-ACP-KS-KR-ACP-KS-DH). Orf 4 encodes a distinct thioesterase. Orf 1 and 2 have 

the same transcription direction opposite to that of orf 4. Orf 2 has a size of 6,708 bp 
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and its gene product shows 40% identity to a NRPS from Nitrococcus mobilis NB-231 

(accession number: ZP 01127432.1) with an E-value of 0.0. Further analysis of orf 2 

revealed that this NRPS consists of 2 modules. The first module displays a C-A-PCP-PCP 

tetradomain structure, where an extra PCP domain is found. The latter module shows a 

regular C-A-PCP tridomain organization. Comparison of the extracted active-site residues 

of the 2 A-domains with known A-domains suggests that the first A-domain activates 

L-Asp, while the second activates L-Val or L-Leu. 

Orf 1 has a size of 10,386 bp and its gene product shows 32% identity to an amino acid 

adenylation domain containing protein from Nostoc punctiforme PCC 73102 (accession 

number: YP 001866468.1) and 30% identity to a NRPS from gamma proteobacterium 

HdN1 (accession number: YP 003810749.1) with both E-values of 0.0. Further analysis 

using PKS/NRPS analysis revealed that orf 1 contains 2 complete NRPS modules and 1 

additional incomplete NRPS module. The first module represents C-A-PCP organization 

followed by an unknown domain containing 474 amino acids. The N-terminal part of this 

 

Figure 5.4: Potential NRPS encoding genes in contig 306 and the proposed corresponding substrates of 

the A-domains. Both Orf 1 and 2 encode NRPS consisting of 2 modules. Orf 4 encodes an alone-standing 

thioesterase. R: fatty acid chain. 
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unknown domain (about 200 amino acids) contains conserved motifs of enzymes in the 

condensation superfamily, while the C-terminal part of this unknown domain contains 

conserved motifs of NRPS-para261 superfamily. The second module shows a C-A-PCP-E 

organization. And the third incomplete module contains only the 388 N-terminal amino 

acids of a C-domain. Orf 1 is not fully known because of the incomplete sequencing. 

Thus, orf 1 contains only the N-terminal part of a NRPS coding gene. Comparison of the 

active-site residues extracted from the A-domains in orf 1 with known A-domains 

suggests that these two A-domains to activate L-Arg and L-Asp in turn. 

Contig 350 

In contig 350, 2 NRPS coding genes were identified (Figure 5.5). Orf 1 covers a region of 

10,080 bp and its gene product shows 35% identity to an amino acid adenylation protein 

(accession number: YP 322129.1) from Anabaena variabilis ATCC 29413 with an E-value 

 

Figure 5.5: NRPS encoding genes in contig 350 and the proposed corresponding intermediates. Orf 1 

encodes an N-terminal incomplete trimodular NRPS. Orf 3 encodes a C-terminal incomplete dimodular 

NRPS. 
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of 0.0. Further analysis revealed that orf 1 contains 3 complete NRPS modules, which 

could be further subdivided into 9 domains. Each module consists of three NRPS 

domains: C-A-PCP. At the N-terminal end of orf 1 there is one truncated domain because 

of the incomplete genome sequencing. The missing N-terminal part of orf 1 could be 

located in sequencing gaps or at the end of other contigs. Comparison of extracted 

active-site residues of A-domains found in orf 1 with known A-domains suggests that 

these A-domains activate L-Lys, L-Pro and L-Lys in turn. Orf 3 covers a region of 7,476 bp 

and its gene product displays 39% identity to linear gramicidin synthase subunit B 

(accession number: ADR59299.1) from Pseudomonas putida BIRD-1 with an E-value of 

0.0. Further analysis of the amino acid sequence with PKS/NRPS analysis revealed that 

orf 3 encodes a NRPS containing one complete NRPS module (C-A-PCP-E) with an extra 

N-terminal unknown domain and an additional C-terminal incomplete C-domain. The 

C-terminal C-domain is truncated because of the incomplete genome sequencing and 

the missing part could be found in sequencing gaps or at the beginning of other contigs. 

Analysis of the N-terminal unknown domain via BLAST revealed no significant similarity 

to known proteins. Analysis of the extracted active-site residues of the A-domain found 

in orf 3 suggests that this A-domain activates L-Asp. 

 

Table 5.1 Comparison of the extracted active-site residues determining the adenylation domain 

specificities of NRPSs found in contigs of the sequencing results of the Lysobacter sp. genome with 

known adenylation domains. Variations in the residue pattern are highlighted in red. The substrate 

prediction for each A-domain as well as the product of the NRPS is given. (The analysis was carried out 

using NRPSpredictor using comparison of 10 active-site residues. The comparison marked with * was done 

using PKS/NRPS analysis delivering comparison of 8 active-site residues) 

A-domain Active-site residues Substrate Product 

Contig 40, orf 5 

A1 D V W H V S L V D K   

BlmVI-A1
[95] D V W H V S L V D K L-Ser bleomycin 

A2 D S A L I A E V W K   
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BacC-A3[140] D S E L T A E V C K L-His bacitracin 

A3 D L W H I G L L D K   

SyrE-A1
[141] D L W H L S L I D K L-Ser syringomycin 

A4 D M W M L G V V I K   

ArfA-A2 D S W K L G V V D K L-Asp arthrofactin 

Contig 233, orf 32    

A1 D A L L I G A V C K   

Q8NJX1-A14 D A A L I G A V F K L-Val - 

A2 D V Q H V A H V A K   

SypA-A2
[142] D V Q Y I A H V V K L-Pro syringopeptin 

A3 D A F T L G A V C K   

BacC-A2
[140] D A F T V A A V C K L-Phe bacitracin 

Contig 233, orf 31 

A1 D V Q H V A H V V K   

SypA-A2
[142] D V Q Y I A H V V K L-Pro syringopeptin 

A2 D A I Y L G V V L K   

LicA-A1
[143] D A Q D L G V V D K L-Gln lichenysin 

Contig 233, orf 30    

A1 D V Q H A A H V A K   

SnbDE-A1
[144] D V Q Y A A H V M K L-Pro pristinamycin 

Contig 306, orf 2    

A1 D L T K V G H V G K   

LchAB-A2
[145] D L T K V G H I G K L-Asp lichenysin A 

A2 D M L V L G G V I K   

Tex1-A4
[146] D M G F L G G V C K L-Leu or L-Val peptaibol 

Contig 306, orf 1    

A1 D T E D V G A I S K   
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SyrE-A5
[141] D V A D V G A I D K L-Arg syringomycin 

A2 D L T K V G H V G K   

LchAB-A2
[145] D L T K V G H I G K L-Asp lichenysin A 

Contig 350, orf 1    

*A1 D I E S L G T V   

BacB-A1
[140] D A E S I G S V L-Lys bacitracin 

A2 D V Q F A A H V V K   

ItuB-A4
[147] D V Q F I A H V V K L-Pro iturin A 

A3 D I E S V G T V V K   

NpsA-A1 D T E V V G T L V K L-Lys nourseothricin 

Contig 350, orf 3    

A1 D L T K V G H V G K   

LchAB-A2
[145] D L T K V G H I G K L-Asp lichenysin A 

 

5.2 Identification and characterization of lysobactin biosynthesis gene cluster 

5.2.1 Confirmation of lysobactin production 

To ensure that the Lysobacter sp. ATCC 53042 strain used in this study is a lysobactin 

producing strain, LC-MS analysis of culture extract was carried out. Under the conditions 

applied, lysobactin showed a retention time of tR = 19.5 min (m/z = 1276.8 [M+H]+ 

observed, m/z = 1276.7 [M+H]+ calculated, Figure 5.6). Further analysis of the extracted 

compound using high-resolution MS (m/z = 1276.7278 [M+H]+ observed, m/z = 

1276.7260 [M+H]+ calculated, Figure 5.6) confirmed the production of lysobactin under 

the fermentation conditions applied. 
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5.2.2 Identification and sequential study of the lysobactin biosynthetic gene cluster 

(lyb) 

In the sequencing result, one contig (contig 93) was identified to contain the reported 

4.6 kbp gene fragment.[1] This contig, covering a region of 150,063 bp with an average 

GC-content of 70.7%, was further analysed using GeneMark 2.4 annotation[148] and has 

been submitted to GeneBank (accession number JF412274). A detailed overview of the 

annotated genes, deduced protein functions and similarities to homologous is found in 

Table S1. The predicted lysobactin biosynthetic gene cluster encodes the two NRPSs 

LybA and LybB, three proteins conferring resistance to antibiotics (orf 78, 80 and 82) and 

one ABC-transporter permease/ATP-binding component (orf 79) putatively involved in 

the secretion of lysobactin (Figure 5.7). 

The synthetase LybA displays 50% identity and 64% similarity with E-value of 0.0 to an 

NRPS from Pseudomonas syringae pv. Syringae B728a, while LybB shows 39% identity 

 
Figure 5.6: Extraction of native lysobactin. A. HPLC profile of a culture extract of Lysobacter sp. ATCC 

53042. The red trace corresponds to the UV-signal at 215 nm. The green trace represents the 

extracted-ion-current using m/z = 1276.7 as query. Under the conditions applied, lysobactin shows a 

retention time of tR = 19.5 min (m/z = 1276.8 [M+H]+ observed, m/z = 1276.7 [M+H]+ calculated). B. HRMS 

spectrum of lysobactin isolated from cultures of Lysobacter sp. ATCC 53042. The red signal corresponds to 

the observed ions. The spectrum accentuated in blue corresponds to the calculated spectrum for lysobactin 

(m/z = 1276.7278 [M+H]+ observed, m/z = 1276.7670 [M+H]+ calculated). 
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and 59% similarity with E-value of 0.0 to a multimodular NRPS from Herpetosiphon 

aurantiacus ATCC 23779. Further bioinformatic analysis of the two synthetases using 

PKS/NRPS analysis revealed a multimodular organization (Figure 5.8)[137]. LybA consists 

of four modules and 11 domains, whereas LybB is constituted of 7 modules and 24 

domains. Because the number of A-domains found within LybA and LybB directly 

correlates with the primary sequence of lysobactin, a linear logic of lysobactin assembly 

is suggested. The reported 4.6 kbp gene fragment was found in lybB and codes for a 

(C-A-PCP)10-C11 tetradomain-region. The specificities of A-domains found in LybA and 

LybB were analysed using NRPSpredictor[138]. The predicted specificities of the 

A-domains nicely correlate with the primary sequence of lysobactin. 

According to the prediction results, LybA-A3 should activate L-Phe. The specificity 

determining residues of LybA-A3 show only 80% identity comparing to BacC-A2. This 

suggests activation of structurally similar building block[140]. Two further hydroxylated 

 

Figure 5.7: Schematic overview of the lysobactin biosynthetic gene cluster and the corresponding 

upstream and downstream regions. Functions of the proteins encoded within this region are based on 

BLAST-analysis and are given in the figure. Apart from the core components for the nonribosomal assembly 

of lysobactin by the synthetases LybA and LybB, genes coding for transporters and resistance-conferring 

proteins are found. 
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amino acids could be found in lysobactin, namely β-OH-Leu4 and β-OH-Asn10. In contrast 

to LybA-A3, the specificity conferring residues of LybA-A4 are identical to those found in 

Leu-activating A-domain SrfA-A-A3, involved in surfactin biosynthesis.[149] The extracted 

active-site residues of LybB-A10 are identical to those found in Asn-activating A-domain 

NosC-A3 responsible for activating and incorporating L-Asn into nostopeptolide A[150].  

Lysobactin contains two D-configured amino acids, namely D-Leu1 and D-Arg6. The 

corresponding modules 1 and 6 are not equipped with epimerization domains 

(E-domain), which are normally required for stereoinversion of the α-stereocenter. 

Further examination of the downstream C-domains (C2 and C7) revealed that these two 

C-domains contain additional N-terminal sequences with the additional core-motif 

HHI/LXXXXGD. About 110 amino acids downstream of this additional core-motif, the 

histidine core-motif HHXXXD is observed. 

Another unusual building block in lysobactin is the allo-Thr at position 8. The 

corresponding module contains an additional C-domain and shows a unique C-C-A-PCP 

organization. The incorporation of the allo-Thr will be further discussed in chapter 5.3. 

The termination module of LybB harbors an unusual tandem TE-domain architecture, 

similar to that of the arthrofactin synthetase ArfC[66]. Further analysis and discussion will 

be presented in detail in the next chapters. 

 

 

Figure 5.8: Modular organization of the lysobactin synthetase LybA and LybB. LybA consists of four 

modules and 11 domains respectively. LybB is constituted of 7 modules and 24 individual domains. The 

termination module contains two distinct thioesterase domains, responsible for the release of the 

PCP-bound intermediate via macrolactonization. 
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The upstream flanking region of the lyb gene cluster is defined by orfs 75-77 which 

encode hypothetical proteins and a RNA-directed RNA polymerase in the reverse 

direction. The downstream region of the lyb gene cluster comprises orf 78, encoding a 

β-lactamase-type protein, orf 80 and orf 82, encoding RND-family acriflavin resistance 

proteins, and orf 79, encoding an ABC transporter permease/ATP-binding component. 

The direction of transcription for lybA, lybB  and orfs 78-82 is identical. 

5.2.3 Substrate specificity studies of the A-domains 

Overproduction of LybA-A1, LybB-A6 and LybB-A9 

The gene fragments LybA-A1, LybB-A6 and LybB-A9 were cloned in the expression vector 

pET28a (Novagen) and overexpressed in E. coli Rosetta 1 DE 3 / E. coli BL21 as described 

in the Methods section. The recombinant His-tagged proteins were purified by Ni2+-NTA 

affinity chromatography. The fractions were analysed using SDS-PAGE and visualized by 

Coomassie stain (Figure 5.9). Concentration using centrifugal filter (Millipore) afforded 

1.44 (LybA-A1), 0.85 (LybB-A6) and 2.09 (LybB-A9) mg/L media of recombinant protein. 

 

Figure 5.9: Plasmid maps and Coomassie-stained SDS-PAGE of purified recombinant A-domains of 

lysobactin synthetase LybA-A1 (56.9 kDa), LybB-A6 (60.4 kDa) and LybB-A9 (58.2 kDa). Lane M: Protein 

Marker, Broad Range (2-212 kDa) P7702 (NEB) 



Results                                                                                

68 

In vitro characterization of A-domain specificities 

The specificities of recombinant A-domains were studied via ATP/PPi-exchange assays. 

The assays were carried out as described in the methods section. Different amino acids 

were used for the characterization of LybA-A1. A negative control was carried out using 

the same assay in the absence of substrate. As shown in Figure 5.10, D-Leu showed the 

highest activity. The predicted preferred substrate L-Leu showed a reduced activity of 

0.94 compared to that of D-Leu. Structurally related amino acids such as Ala, Ile and Val 

showed reduced activities compared to D-Leu ranging from 0.11 (D-Val) to 0.76 (L-Ile). 

Other studied amino acids such L-Phe, L-Ser and L-Lys showed reduced activities 

compared to that of D-Leu ranging from 0.24 (L-Lys) to 0.56 (L-Ser). The negative control 

showed a background activity of 0.002 compared to D-Leu. 

In the study of LybB-A6, the predicted preferred substrate L-Arg showed the highest 

activity. The negative control without substrate showed a background activity of 0.003 

compared to that of L-Arg. D-Arg showed reduced activity related to that of L-Arg of 0.73. 

Activities of other studied amino acids such as Gly, L-Phe and L-Tyr did not exceed 0.006. 

In the study of LybB-A9, the predicted preferred substrate Gly showed the highest activity. 

 
Figure 5.10: Analysis of the recombinant A-domains from lysobactin synthetase via ATP/PPi-exchange 

assay. 
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The negative control in the absence of substrate showed a background activity of 0.02. 

Activities of other tested substrates such as L-Ala, L-Phe and L-Tyr did not exceed 0.04. 

 

 
Figure 5.11: Phylogenetic analysis of TE domains derived from various microorganisms. LybB-TE1 and TE2 

are accentuated in red. The TE domains employed are: FenE-TE from Bacillus amyloliquefaciens DSM7, 

TycC-TEand TycF-TE II from Bacillus brevis, Grs-TE from Bacillus subtilis, SrfA-C-TE and SrfAD-TE II from 

Bacillus amyloliquefaciens FZB 42, MycC-TE from Bacillus subtilis subsp. Spizizenii str. W23, PcbAB-TE from 

Aspergillus flavus NRRL 3357, EpoE-TE from Sorangium cellulosum, ScoT-TE II from Photorhabdus 

asymbiotica, PikA-TE II from Streptomyces venezuelae, MassC-TE1 and MassC-TE2 from Pseudomonas 

fluorescens, ArfC-TE1 and ArfC-TE2 from Pseudomonas sp. MIS38, LybB-TE1 and LybB-TE2 from Lysobacter 

sp. ATCC 53042, SypC-TE1 and TE2 from Pseudomonas syringae, EntF-TE from Escherichia coli, TioS-TE from 

Micromonospora sp. ML1, BspC-TE from Amycolatopsis balhimycina, StaD-TE from Streptomyces 

toyocaensis, ComD-TE from Streptomyces lavendulae, LptD-TE from Streptomyces fradiae, PstD-TE from 

Actinoplanes friuliensis, CDA-PS3-TE from Streptomyces coelicolor A3(2), DptD-TE from Streptomyces 

roseosporus NRRL 11379, SnbDE-TE from Streptomyces pristinaespiralis, DnbF-TE from Bacillus subtilis. 
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5.2.4 Characterization of the LybB thioesterases 

Bioinformatic analysis of the TE-domains in LybB 

Phylogenetic analysis of LybB-TE1 and LybB-TE2 compared to thioesterases from NRPSs or 

PKSs was carried out. The results shown in Figure 5.11 revealed the LybB-TEs to cluster 

with several other tandem TEs. LybB-TE1 clusters with the TE1 domains found in other 

tandem TE systems as arthrofactin (ArfC-TE1), massetolide (MassC-TE1) and 

syringopeptin (SypC-TE1) biosynthetic systems, while LybB-TE2 clusters with TE2 domains 

from these biosynthetic systems. 

 
Figure 5.12: Multiple sequence alignment of tandem TE domains. Proteins are LybB-PCP-TE1-TE2, 

ArfC-PCP-TE1-TE2 and SypC-PCP-TE1-TE2. The degree of conservation is indicated by color: Red indicates 

complete and blue no agreement. The GXSXG core motif of both TEs is displayed in orange, α-helices are 

accentuated in green and β-sheets are given in yellow. 



Results                                                                                

71 

Further sequential analysis of LybB-TE1 and TE2 based on core motifs, secondary 

structure elements and multiple sequence alignments with tandem TE-domains, under 

application of ClustalW algorithm, JPred3 and XtalPred servers, were carried out (Figure 

5.12). Both LybB-TEs share sequence homology to α/β hydrolase fold proteins and 

contain a catalytic triad consisting of Ser-His-Asp and the core-motif GXSXG. A region 

between α6 of TE1 and β1 of TE2 lacking a secondary structure was observed. 

Overproduction of LybB-TE1, LybB-TE2, LybB-PCP-TE1 and LybB-PCP-TE1-TE2 

The gene fragments LybB-TE1, LybB-TE2, LybB-PCP-TE1 and LybB-PCP-TE1-TE2 were cloned 

in the expression vector pET28a (Novagen) and overexpressed in E. coli BL21 as 

described in the methods section. The recombinant His-tagged proteins were purified by 

 

 

Figure 5.13: Coomassie-stained SDS-PAGE of purified recombinant thioesterases of lysobactin 

synthetase. Protein Marker (M) was Broad Range Protein Marker P7702 (NEB). A. LybB-TE1 (34.4 kDa), B. 

LybB-TE2 (34.3 kDa), C. LybB-PCP-TE1 (46.1 kDa), D. LybB-PCP-TE1-TE2 (76.7 kDa), E. SDS-PAGE analysis of 

LybB-PCP-TE1-TE2 purified in the presence and absence of protease inhibitors (lane 1: Purification without 

inhibitors; lane 2: Purification with 1-fold concentration of protease inhibitors; lane 3: Purification with 

8-fold concentration of protease inhibitors). 
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Ni2+-NTA affinity chromatography. The fractions were analysed using SDS-PAGE and 

visualized by Coomassie stain (Figure 5.13). Concentration using centrifugal filter 

(Millipore) afforded 7.4 (LybB-PCP-TE1-TE2), 3.0 (LybB-PCP-TE1), 1.6 (LybB-TE1) and 6.4 

(LybB-TE2) mg/L media of recombinant proteins. Purification of heterologous produced 

LybB-PCP-TE1-TE2 showed a co-eluted protein band with a size of approximately 42 kDa. 

The two protein bands were excised from the gel and analysed via peptide mass 

fingerprinting. Peptide fragments obtained from tryptic digestion were identified via 

HRMS-analysis and are shown in Figure 5.14. To investigate if the cleavage of the full 

length peptide is an autocatalytic event, the mixture of PCP-TE1-TE2 and PCP-TE1 was 

incubated for two days at various pH-values. Subsequent SDS-PAGE analysis of the 

reactions did not reveal an increased formation of LybB-PCP-TE1. LybB-PCP-TE1-TE2 was 

also purified in the presence of protease inhibitors to investigate the influence of 

 
Figure 5.14: Peptide mass fingerprinting analysis of the two bands in heterologous production of 

LybB-PCP-TE1-TE2. The fragments observed in peptide mass fingerprinting analysis are accentuated in red. 
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protease inhibition on protein cleavage. Addition of inhibitors (EDTA, AEBST, leupeptin, 

bestatin, aprotinin and E-64 for the inhibition of serine, cysteine and metalloproteases) 

did not reduce the cleavage of LybB-PCP-TE1-TE2
[10] (Figure 5.14). 

In vitro cyclization/hydrolyzation activity of LybB thioesterases 

For biochemical characterization of LybB thioesterases, a linear peptide substrate was 

synthesized via solid phase peptide synthesis (as described in the methods section) and 

C-terminally activated with thiophenol (SPh). The chemical structure of the synthesized 

substrate and the linear cognate lysobactin precursor are shown in Figure 5.15. For 

synthetic reasons, hyLeu4 and hyAsn10 were replaced with L-Leu and L-Asn, which is why 

the substrate shows minor modifications of the peptide backbone. In vitro 

macrocyclization assays (as described in the methods section) were carried out to 

characterize the recombinant thioesterases. All reactions were monitored via liquid 

chromatography-mass spectrometry (LC-MS) and the results are shown in Figure 5.16. In 

the control reaction in absence of the enzymes, slight hydrolysis (tR = 4.2 min) and 

 
Figure 5.15: Chemical structures of linear lysobactin and corresponding artificial analog. A. Chemical 

structure of the linear, cognate lysobactin precursor as a PCP-bound substrate for TE-mediated 

macrolactonization in vivo. B: Chemical structure of the substrate employed in macrocyclization studies. 

The C-terminal thiophenol activation (blue) mimics the naturally occurring Ppant-cofactor of the PCP-bound 

substrate. Conservative substitutions of the commercially non-available building blocks are accentuated in 

red. 
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non-enzymatic cyclization (Cy, Cy’ and Cy’’, tR = 7.5, 9.4 and 9.9 min) were observed. The 

macrocyclization assay with LybB-PCP-TE1-TE2/PCP-TE1 (black trace in Figure 5.16) 

resulted in the complete conversion of the undecapeptidyl-thioester to the macrocyclic 

product (Cy, tR = 8.28 min) and the hydrolyzed linear peptide (Hy, tR = 5.27 min). In the 

negative control reaction the other two cyclization products Cy’ and Cy’’ were not 

detected. To confirm that Cy is the expected cyclization product, in which the β-hydroxyl 

group of hyPhe3 is used as nucleophlic group, additional MS2-analysis of Cy was carried 

out. The analysis revealed the formation of b-series fragment ions carrying a 

dehydro-phenylalanine species, which resulted from a loss of one molecule of water and 

is characteristic for the fragmentation of lactones[151]. The fragment ions of the y- and 

b-series are shown in Figure 5.17. Determination of kinetic parameters for 

LybB-PCP-TE1-TE2- / LybB-PCP-TE1-mediated macrocyclization revealed the enzymes to 

follow Michaelis-Menten-kinetics. LybB-PCP-TE1-TE2 showed KM = 1.03 mM, kcat = 11.1 s-1 

and kcat/KM = 10.8 s-1·mM-1, while LybB-PCP-TE1 showed KM = 0.86 mM, kcat = 15.8 s-1 and 

 
Figure 5.16: Cyclization of the peptidyl-SPh substrate Lyso(Leu)4(Asn)10-SPh (B in Figure 5.15) by LybB 

thioesterases, monitored by LC-MS. The red trace shows the result of the negative control reaction in 

absence of enzyme. The blue trace shows the result of the assay using LybB-TE1. The green trace 

corresponds to the result of the assay using LybB-PCP-TE1. The black trace shows the result of the assay 

using LybB-PCP-TE1-TE2/PCP-TE1. 
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kcat/KM = 18.4 s-1·mM-1. LybB-TE1 was also investigated for its macrocyclization 

capabilities and proofed to be able to catalyze the predominant formation of the 

macrolactone (blue trace in Figure 5.16). The reactions catalyzed by LybB-PCP-TE1-TE2, 

 
Figure 5.17: MS

2
-spectra of the macrocyclic product Cy. A. The observerd y-series fragment ions (red). 

B. The observed b-series fragment ions (blue). The formation of dehydrophenylalanine species strongly 

supports the identity of Cy to be the expected macrolactone, cyclized via the hydroxyl group of hyPhe3. 
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LybB-PCP-TE1 and LybB-TE1 showed cyclization-to-hydrolysis ratios of 5.7, 4.6 and 4.9 

after 2h incubation at 25°C. To identify the building blocks in the lysobactin peptide 

sequence that are important for substrate recognition, several substrates based on 

Lyso(Leu)4(Asn)10-SPh (shown in Figure 5.15) were synthesized via SPPS. In each 

substrate, one single amino acid with polar sidechain at positions 6, 8, 10 and 11 was 

substituted by L-alanine (Figure 5.18). In vitro macrocyclization assays catalyzed by 

LybB-PCP-TE1 showed that all substrates were cyclized with reduced yields and 

cyclization-to-hydrolysis ratios of about 1. 

 

Figure 5.18: Chemical structures of peptide substrates used in alanine-scan experiment. Conservative 

substitutions of the commercially non-available building blocks are accentuated in red. The C-terminal 

thiophenol activation (blue) mimics the naturally occurring Ppant-cofactor of the PCP-bound substrate. 

Amino acid substitutions by L-alanine are highlighted in orange. 
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The role of LybB-TE2 was also investigated in vitro by incubating the recombinant enzyme 

with the substrate Lyso(Leu)4(Asn)10-SPh (Figure 5.15). A substantial conversion of the 

peptidyl-thioester to the corresponding hydrolysis product (Hy, tR = 4.2 min, Figure 5.19) 

was observed. In addition, the three cyclization products (Cy, Cy’ and Cy’’) were detected 

in comparable ratios. LybB-TE2 displayed a cyclization-to-hydrolysis ratio of 0.04. To 

further study the function of LybB-TE2, deacylation studies employing LybB-TEs and the 

stand-alone SrfA-A-PCP1 were carried out.[16] SrfA-A-PCP1 was artificially misprimed 

in vitro utilizing Sfp and 14C-acetyl-CoA. Hydrolytic cleavage of the acetyl-group was 

achieved by incubation of holo-PCP1 with recombinant LybB-TEs and residual 

radioactivity was quantified after precipitation of the enzymes. 

 
Figure 5.19: Hydrolysis of the thiophenol-activated substrate Lyso(Leu)4(Asn)10-SPh mediated by 

LybB-TE2. A. The blue HPLC trace corresponds to the incubation of the substrate with the recombinant 

enzyme. The red HPLC trace corresponds to the negative control lacking the enzyme. The formation of 

non-enzymatically cyclized peptides Cy’ and Cy’’ is observed in the absence and presence of the 

thioesterase. Enzymatic conversion of the substrate (Su) leads to the predominant formation of the 

hydrolyzed peptide Hy at tR = 4.2 min. B. Results of the deacylation studies for LybB-TEs on the stand-alone 

holo-PCP SrfA-A PCP1. 
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5.3 Initial study of the putative Cβ-epimerase 

Bioinformatic analysis of the C-domains in module 8 of LybB 

Phylogenetic analysis of the two C-domains in module 8 of LybB compared to other 

C-domains, E-domain and C/E-dual domains from NRPSs was carried out in order to get a 

first insight into the possible biological functions of the two C-domains. As shown in 

Figure 5.20, domains with epimerization activity (E-domains, C/E-dual domains) cluster 

together, while domains without epimerization activity (normal C-domains) cluster 

together. LybB-C8-1 and LybB-C8-2 locate between the two groups. 

 
Figure 5.20: Phylogenetic analysis of LybB-C8-1 and LybB-C8-2 compared to other C-domains, E-domains 

and C/E-dual domains from NRPSs. SrfA-A, SrfA-B: surfactin synthetase, GrsA: gramicidin synthetase, ArfA, 

ArfB, ArfC: arthrofactin synthetase, LybA, LybB: lysobactin synthetase. 
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Overproduction of LybB-A8, and LybB-C-A-PCP8 

The gene fragments lybB-A8 and lybB-C-A-PCP8 were cloned in the expression vector 

pET28a (Novagen) and overexpressed in E. coli Rosetta 1 DE3 as described in the 

methods section. The recombinant His-tagged proteins were purified by Ni2+-NTA affinity 

chromatography. The fractions were analysed using SDS-PAGE and visualized by 

Coomassie stain (Figure 5.21). Concentration using centrifugal filter (Millipore) afforded 

0.9 (LybB-A8) and 1.4 (LybB-C-A-PCP8) mg/L media of recombinant protein. 

In vitro characterization of LybB-A8 and LybB-C-A-PCP8 

The activity and substrate specificity of LybB-A8 was characterized via ATP/32PPi exchange 

assay (as described in the methodes section) using both recombinant LybB-A8 and 

LybB-C-A-PCP8. For characterization of LybB-C-A-PCP8, different amino acids were used, 

including L-Thr, D-Thr, allo-Thr and L-Ser. The negative control was carried out using the 

same assay in absence of substrate. As shown in Figure 5.22, L-Thr showed the highest 

activity. The structurally similar amino acids D-Thr, aThr and Ser showed only reduced 

activities of 0.03, 0.04 and 0.11 compared to L-Thr. The negative control without 

 

 

Figure 5.21: Coomassie-stained SDS-PAGE of recombinant LybB-C-A-PCP8 and LybB-A8. Lane M: Protein 

Marker, Broad Range (2-212 kDa) P7702 (NEB). 
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substrate showed a background activity of 0.03 compared to L-Thr. In the experiment of 

recombinant LybB-A8, no activity was observed. 

To confirm that the PCP-domain in the construct LybB-C-A-PCP8 was active, a 

fluoresceinyl-CoA phosphopentetheinylation assay was carried out as described in the 

methods section. After incubating with Sfp and fluoresceinyl-CoA, the reaction mixture 

was analyzed with SDS-PAGE. The fluorescence labeled LybB-C-A-PCP8 was visualized 

under UV-light (λ = 312 nm) and compared with subsequent Coomassie blue staining 

results. Figure 5.23 clearly shows that LybB-C-A-PCP8 was able to be labeled after 

treatment with Sfp and fluoresceinyl-CoA. 

Epimerization experiment of LybB-C-A-PCP8 

To study if the second C-domain in module 8 has the supposed Cβ-epimerization activity, 

the following experiment was carried out. In the first step, the purified LybB-C-A-PCP8 

was incubated with Sfp and CoA at 25°C for 30 min followed by addition of ATP and 

[14C]-Thr. The control reaction was carried out by adding [14C]-acetyl-CoA instead of ATP 

and [14C]-Thr. The reactions were either quenched by adding 10% TFA and the 

radioactivity of precipitated protein was analyzed via liquid scintillation counting 

(Packard, Tri-carb 2100TR Liquid Scintillation Analyzer), or further treated with LybB-TE2 

or KOH to cleave the amino acid tethered to the PCP-domain, of which the chirality was 

 

Figure 5.22: Substrate specificity analysis of recombinant LybB-C-A-PCP8 
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further analyzed via chiral TLC to reveal, if the chirality of β-C-atom of Thr was changed. 

The liquid scintillation counting showed that [14C]-Thr was not able to be loaded onto 

the PCP-domain, although the apo-LybB-C-A-PCP8 was converted to holo form 

efficiently. 

 

 

 

 

Figure 5.23: Fluoresceinyl-CoA loading assay of LybB-C-A-PCP8. A. SDS-PAGE gel of LybB-C-A-PCP8 after 

fluoresceinyl-CoA labelling assay under UV-light (λ = 312 nm). B. SDS-PAGE gel of LybB-C-A-PCP8 after 

Coomassie blue staining. Lane 1: Protein Marker Broad Range P7702 (NEB). Lane 2: LybB-C-A-PCP8. Lane 3: 

LybB-C-A-PCP8 after fluoresceinyl-CoA labelling assay. 
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6. Discussion 

6.1 Genome sequencing of Lysobacter sp. ATCC 53042 and bioinformatic identification 

of NRPS/PKS gene clusters. 

Based on the DNA-sequence of the contigs resulted from the genome sequencing of 

Lysobacter sp. ATCC 53042, searching of the potential NRP producing gene cluster was 

carried out. NRPS- and PKS/NRPS hybrid CDSs were discovered in 14 contigs. 4 groups of 

the NRPS- and PKS/NRPS CDSs seem logical and were further analysed. 

6.1.1 PKS/NRPS hybrid coding genes in contig 40 

In contig 40, two overlapping genes encoding one PKS and one NRPS were identified. 

The PKS encoded by orf 6 consists of 5 domains (KS, AT, DH, KR and ACP). According to its 

organization, this module is supposed to be responsible for incorporating an 

α-β-unsaturated building block. A necessary starting module, normally consisting of one 

AT-domain and one ACP-domain responsible for initiating the polyketide synthesis, is 

missing. No genes encoding a starting module could be found in the flanking area. This 

could be compensated by a distant gene encoding starting module located in another 

contig or in the sequencing gaps. Another possibility is, that the AT and ACP domain in 

the first module could be responsible for inititation of the polyketide synthesis. The 

α-β-unsaturated building block tethered on the ACP-domain is supposed to condense 

with the amino acid activated by the A-domain in module 2 and therefore the elongating 

chain is transferred from PKS to NRPS encoded by orf 5. The NRPS features an N-terminal 

domain with a size of 554 amino acids, which shows no similiarity to known protein. 

Although it could be predicted that one function of this domain could be involved in the 

communication between the PKS and NRPS, enabling the transfer of the growing chain 

from PKS to NRPS, the exact function of the domain could not be proposed, unless the 

structure of the natural product is resolved. The rest part of the NPRS (orf 5) consists of 

four regular modules, responsible for incorporating four further building blocks. 
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Bioinformatic analysis of the extracted residues of the A-domains determining the 

A-domain specificity suggested the primary sequence of the NRP to be 

L-(Thr/Ser)-L-(His/Ser)-L-Ser-L-(Ser/Asp). The C-terminal TE-domain should be 

responsible for release of the final product in a macrocyclized or hydrolysed form. Using 

these A-domain specificity predictions, product structure of this PKS/NRPS hybrid 

biosynthetic machinery could be predicted and is shown in Figure 5.2. In the presented 

structure, the hydroxyl group in the second building block was used as the nucleophile 

group for the macrocyclization catalyzed by C-terminal TE-domain. The hydroxyl groups 

in R3 and R4 are also possible nucleophile groups for the macrocyclization. 

6.1.2 PKS/NRPS hybrid coding genes in contig 233 

In contig 233, three NRPS-encoding genes (orf 30-32) showing the same direction of 

transcription were identified. Orf 32 encodes a NRPS containing 3 modules and 9 

domains. The modules in orf 32 exhibit regular organization (C-A-PCP in the extending 

module, A-PCP in the initial module). Instead of a TE-domain, an R-domain was found at 

the C-terminal end of the synthetase. Generally, R-domains are known to catalyse either 

reduction of heterocyclen derived from Thr/Ser/Cys, or reductive release of the final 

product in form of an aldehyde or a primary alcohol. Due to the absence of Thr/Ser/Cys 

in the predicted primary structure of the natural product, the C-terminal R-domain could 

rather be responsible for NADPH-dependent reduction of the C-termnal carboxylic 

thioester to an alcohol or aldehyde and the release of the final product. The R-domain 

showed 44% identity to the C-terminal R-domain in MxaA from Stigmatella aurantiaca 

(accession number: AAK57184.1) with E-value of 7e-70. MxaA is a tetradomain NRPS 

(C-A-PCP-Re) involved in the biosynthesis of myxalamid S, in which the C-terminal 

R-domain is responsible of NADPH-dependent reduction and release of the final 

product.[139] This BLAST result supports also the prediction, that the orf 32 could be 

responsible for biosynthesis of a primary alcohol or aldehyde originated from a 

tripeptide L-Val-L-Pro-L-Phe. 
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Orf 31 consists of 2 modules and 5 domains, while orf 30 consists of 1 module and 5 

domains. The first module in orf 32 is an initial module (A-PCP). The absence of an 

N-terminal C-domain excludes the possibility that orf 32 and 31 belong to the same 

NRPS system. The tripeptide synthesized by orf 32 could not be handed over to orf 31 

and undergoes further extension steps. Orf 30 exhibits at N-terminal an unknown 

domain and a C-terminal R-domain instead of a TE-domain. The biological function of 

the N-terminal unknown domain can be only predicted after the structure of the natural 

product is solved. Due to the absence of Thr/Ser/Cys in the predicted primary structure 

of the natual product and the high similarity of the C-terminal R-domain to the 

C-terminal R-domain in MxaA, the C-terminal R-domain in orf 30 could be also 

responsible for NADPH-dependent reduction of the C-terminal carboxylic thioester of 

the peptide chain tethered on the upstream neighbouring PCP-domain to aldehyde or 

primary alcohol and the release of the final product. 

By summarizing the information of all three CDSs, the following suggestion could be 

made. Orf 32 encodes a NRPS, producing a primary alcohol derived from a tripeptide 

(Trp-Pro-Trp), while orf 31 and 30 encode two NRPSs, producing another primary alcohol 

originated from a tripeptide (Pro-Val-Pro). The predicted structures are shown in 

Figure 5.3.  

6.1.3 NRPS coding genes in contig 306 

In contig 306, one PKS coding gene (orf 49) and 3 NRPS coding genes (orf 1, 2 and 4) 

were identified. Analysis via PKS/NRPS analysis showed that orf 49 encodes a type I PKS 

lacking the essential AT-domains. This PKS could be an inactive gene and will not be 

further discussed. Orf 4 encodes a distinct TE-domain, which could serve as an editing 

typ II TE for PKS- or NRPS systems. Orf 2 encodes a NRPS with 2 modules and 7 domains. 

The first module starts with a C-domain, suggesting condensation of an N-terminal acyl 

chain resulting in a lipo-peptide-like final product. An additional PCP-domain was 

observed in the first module. Which PCP-domain is essential for the biosynthesis and the 
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roll of the other PCP-domain is entirely unknown. After the incorporation of the second 

amino acid, the peptide chain is supposed to be transfered to the NRPS encoded by orf 

1. After the first PCP-domain in orf 1 is an unknown domain, which shows no similarity 

to known protein. The biological function of this unknown domain can only be predicted 

after the structure of the natural product is solved. The next module contains an 

E-domain after the PCP-domain, suggesting incorporation of a D-configured amino acid. 

In the next module, only the sequence information of the N-terminal part of a C-domain 

(388 amino acids) is known. The sequence of the rest of the synthetase was missing 

because of the incomplete sequencing. The missing part could locate in the sequencing 

gaps or on the beginning of other contigs. One possibility is orf 2 in contig 294, which 

encodes a PCP-TE didomain. The N-terminus of this didomain is not fully known because 

of incomplete sequencing. PCR experiment could be carried out to verify if the orf 2 in 

contig 294 and orf 1 and 2 in contig 306 belong to the same NRPS assembly. 

In summary, the orf 1 and 2 in contig 306 could encode a part of an NRPS machinery 

producing a lipo-peptide-like product. From the known DNA-sequence, only the 

N-terminal part of the primary structure of this lipo peptide could be proposed to be 

R-Asp1-Val/Leu2-Arg3-Asp4-, in which R stands for a fatty acid. 

6.1.4 NRPS coding genes in contig 350 

In contig 350, two NRPS coding genes (orf 1 and 3) were identified. These two orf 

encode part of an NRPS machinery. A part of the primary structure of this peptide can be 

proposed from the known NRPS sequence and could be -L-Lys-L-Pro-L-Lys-D-Asp-.  

To verify if these 4 NRPS or PKS-NRPS hybrid assemblies discussed above are active, 

radioactive precursor feeding and gene inactivation/compensation could be performed. 

To study the structure of the products of these NRPS assemblies, natural product 

isolation and NMR studies could be carried out. A-domain specificity test in vitro could 

be also carried out to verify the correlation between the NRPS assembly and the 

natural product.  
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6.2 Identification and characterization of lysobactin biosynthesis gene cluster 

Lysobactin, first isolated at Squibb Institute of Medical Research from Lysobacter sp. 

ATCC 53042[82, 83], is a potential antibiotic agent with high activity against MRSA and VRE. 

Efforts have been made for derivatization of this compound.[84, 86, 88] In 1996, Bernhard et 

al. have reported the identification of a 4.6 kb gene segment involved in the biosynthesis 

of lysobactin in Lysobacter sp..
[1] In this work, we have sequenced the chromosome of 

the lysobactin producing strain Lysobacter sp. ATCC 53042 and used the reported 4.6 kbp 

gene fragment to identify the biosynthetic machinery of lysobactin.  

6.2.1 Characterization of A-domains in lysobactin synthetase. 

In the primary sequence of lysobactin, there are 3 β-hydroxylated amino acids, hyPhe3, 

hyLeu4 and hyAsn10. The extracted specificities determining residues of lybA-A3, which is 

responsible of incorporation of the hyPhe3 in the final product, showed 80% identity 

comparing to BacC-A2. This variation in the specificity determining motif might indicate 

the direct activation and incorporaton of β-OH-Phe into lysobactin instead of the 

activation of L-Phe followed by hydroxylation in trans as reported in kutzneride 

biosynthesis.[47] The suggested model for lysobactin biosynthesis would require 

hydroxylation of free amino acid substrate, as reported in the viomycin biosynthesis.[152] 

In contrast to LybA-A3, the specificity conferring residues of LybA-A4 and LybB-A10 are 

identical to those found in Leu-activating A-domain SrfA-A-A3 and Asn-activating 

A-domain NosC-A3, which are involved in biosynthesis of surfactin[149] and 

nostopeptolide A.[150]. 

Based on the sequence information of lybA and lybB, several A-domains (A1, A6 and A9) 

were expressed and purified. The characterization was carried out using the ATP/32PPi 

exchange assay with different amino acids as substrates. As shown in Figure 5.10, 

LybA-A1 showed highest activity towards L-Leu and D-Leu. Besides the proposed cognate 

substrate, LybA-A1 showed also activities against other structurally related amino acids 
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such as L-/D-Ile or even structurally distinct amino acids such as L-Ser and L-Phe. This 

relaxed substrate specificity was also reported by TycA-A1, involved in tyrocidine 

biosynthesis.[9] Generally, the substrate specificity of A-domains are considered to be the 

gate-keeper ensuring the incorporation of correct building blocks into the final 

product.[10] The flexibility in the substrate recognition of the A-domain could facilitate 

the production of derivatized natural product[9]. In contrast, LybB-A6 showed strict 

substrate specificity towards L-Arg and D-Arg, which is consistent with the prediction 

that L-Arg is the cognate substrate for LybB-A6. The result of LybB-A9 showed clearly that 

sorely Gly is accepted by LybB-A9 in vitro, which is consistent with the predicted 

biosynthesis model. Analysis of A-domain specificities matchs the prediction in full 

agreement and confirms that LybA and LybB to mediate the biosynthesis of lysobactin 

following a linear logic. Intriguingly, both LybA-A1 and LybB-A9 showed almost equal 

activities towards L- and D-configured substrates. The incorporation of correct 

L-enantiomer could be ensured due to the relative low cytoplasmic abundance of 

D-configured substrates. The acceptor site specificity of the upstream C-domain could 

also contribute in preventing the incorrect incorporation of D-configured building 

block.[15] 

6.2.2 Characterization of LybB thioesterase activities 

In contrast to the well-studied thioesterases of the type I and II introduced above, an 

unusual type of tandem thioesterase architecture locating at the C-terminal end of the 

assembly line was found in the lysobactin synthetase, which was only reported in other 

few systems such as arthrofactin, massetolide and syringopeptin.[67, 142, 153] In vivo studies 

of arthrofactin tandem TE showed that the inactivation of the first TE-domain via Ser/Ala 

mutation led to total abolishment of the arthrofactin production, while inactivation or 

deletion of the ArfC-TE2 drastically decreased the arthrofactin production.[66] These 

results confirmed both TEs in arthrofactin assembly to be directly involved in the 

efficient production of the natural product. 
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The phylogenetic study of LybB-TE1 and LybB-TE2 compared with other thioesterases 

from NRPSs revealed the TEs from tandem TE organizations (synthetases of arthrofactin, 

massetolide, syringopeptin and lysobactin) cluster together. It was speculated that the 

TE1s from these tandem TEs represents a novel subclass of thioesterase as the natural 

products of these group are all macrolactones. The TE2s from these tandem TEs 

constitute another discrete subclass other than that of TE II. This leds to the suggestion 

that the TE2 should be not a variant of external TE II. As the TEs from the tandem TE 

organizations cluster together, it was suggested that the tandem TEs could share a 

common mode of action. Further secondary structure prediction of LybB-TE1 and 

LybB-TE2 suggested that both TEs represent the typical α-β-hydrolase fold and contain 

the core motif GXSXG and the catalytic triad Ser-His-Asp. These bioinformatic analysis 

results suggested that both LybB-TEs to exhibit either cyclization or hydrolyzation 

activity. 

To investigate the role of the two TEs in the cyclization process of lysobactin 

biosynthesis, LybB-TE1, LybB-TE2, LybB-PCP-TE1-TE2 and LybB-PCP-TE1 were 

heterologously produced in E. coli BL21. The heterologous production of 

LybB-PCP-TE1-TE2 gave rise to a protein with size of about 46 kD. Peptide mass 

fingerprinting analysis confirmed this protein to be LybB-PCP-TE1
*. The primary sequence 

of the protein is longer than that of the constructed LybB-PCP-TE1 in the C-terminal. So 

that the contamination from the constructed LybB-PCP-TE1 can be excluded. This 

observed LybB-PCP-TE1
* is supposed to be resulted from degradation of 

LybB-PCP-TE1-TE2. The protein mixture of LybB-PCP-TE1-TE2 and LybB-PCP-TE1
* was 

incubated at room temperature at different pH-value for two days. Subsequent 

SDS-PAGE did not reveal increase of degradation product. Thus, an autocatalytic 

degradation could be ruled out. Purification of LybB-PCP-TE1-TE2 in presence of various 

protease inhibitors (EDTA, AEBSF, leupeptin, bestatin, aprotinin and E-64 for the 

inhibition of serine proteases, cysteine proteases and metalloproteases) was carried out, 
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which did not reduce the cleavage of the LybB-PCP-TE1
*. Taking these results together, it 

could be suggested that an intracellular E. coli protease could be involved in the 

posttranslational cleavage of the enzyme during the heterologous production. Further 

suggestion could be made that the LybB-TE2 is also cleaved off posttranslationally from 

the native LybB prior to the biosynthesis of lysobactin. The resulted stand-alone LybB-TE2 

works as a TE II and is responsible for regenerating the mis-primed PCP-domains on the 

lysobactin assembly, although it could be only speculated which specific protease is 

involved in this cleavage process. This suggestion is further supported by the result that 

LybB-TE2 could cleave acetyl groups from the stand-alone holo-PCP in vitro, which will be 

discussed in detail in the next chapter. A sequential anaylsis of both LybB-TEs, secondary 

structure elements and multiple sequence alignments with other tandem TEs revealed a 

proline-rich region between α6 of TE1 and β1 of TE2 lacking secondary structure motifs. 

This region is considered to be the linker between TE1 and TE2 and could contain a 

putative protease site, although it can only be speculated if a specific cleavage site is 

involved in the cleavage process. The conserved proline residue which was considered to 

be the N-terminus of ArfC TE2 is also located within this region.[10, 66] 

To study the function of the individual thioesterases in lysobactin assembly, the four 

heterologously produced LybB thioesterases (LybB-PCP-TE1-TE2, LybB-PCP-TE1, LybB-TE1 

and LybB-TE2) were biochemically characterized in vitro using the artificial peptidyl 

substrate Lyso(Leu)4(Asn)10-SPh (Figure 5.15). This in vitro characterization bases on the 

fact that excised TE-domains remain catalytically active and can be incubated with 

synthetic substrates for the evaluation of their inherent catalytic potential.[62] The 

substrate was synthesized via SPPS and C-terminally activated with thiophenol to imitate 

the naturally occurring PCP-ppant-bound substrate.[154] Due to synthetic reasons, minor 

changes were made on the undecapeptide backbone by omitting the β-hydroxygroup at 

building blocks 4 and 10. The stereochemistry was conserved throughout the peptide. To 

our knowledge, these minor modifications can influence the in vitro characterization of 
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thioesterases only slightly. 

In the control reaction without enzyme, slight hydrolysis (Hy, tR = 4.2 min) and three 

different peaks showing the mass of cyclization products (Cy, Cy’ and Cy’’ with tR = 7.5, 

9.4, 9.9 min) were observed, suggesting three different cyclization products were 

formed. In the structure of the applied substrate Lyso(Leu)4(Asn)10-SPh (Figure 5.15), 

three potential nucleophile groups are present, namely the primary amino group of 

D-Leu1 and the secondary hydroxyl groups of hyPhe3 and aThr8. The three different 

cyclization products could be formed via non-catalytic intramolecular nucleophilic attack 

of these nucleophile groups onto the C-terminal thioester of the substrate. 

Incubating of the substrate with recombinante enzyme mixture LybB-PCP-TE1-TE2/ 

LybB-PCP-TE1
* resulted in completely conversion of peptidyl-thioester substrate into 

primary cyclization product Cy and minor hydrolysis product Hy. The other two 

cyclzation products Cy’ and Cy’’ observed in the control reaction were not at present, 

indicating that Cy is the expected cyclization product catalyzed by thioesterase with the 

secondary hydroxyl group of hyPhe3 as nucleophile group. This was further confirmed by 

the MS2-analysis of the cyclization product Cy. Analogously, the incubation of the same 

substrate with the other two recombinant enzymes LybB-PCP-TE1 and LybB-TE1 also 

resulted in fully conversion of the substrate into primary cyclization product Cy and 

minor hydrolysis product Hy. In contrast, the incubation of the substrate with 

recombinant enzyme LybB-TE2 resulted in primary hydrolysis product Hy, all the three 

cyclization products (Cy, Cy’ and Cy’’) were also observed. This suggests that LybB-TE2 

mainly catalyzes the hydrolysis of the substrate. However the reaction is much slower 

than the cyclization reaction catalyzed by LybB-TE1, due to the fact that the non-catalytic 

reactions were not totally oppressed. 

In the further kinetic studies of the macrocyclization reaction catalyzed by 

LybB-PCP-TE1-TE2 and LybB-PCP-TE1, both recombinant enzymes were found to follow 

the Michaelis-Menton-kinetics. The kinetic parameters of both enzymes showed only 
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minimal differences (the data are shown in section 5.2.4). The in vitro cyclization assay 

mediated by these two recombinant enzymes discussed above did not show noteworthy 

difference either. These results suggest that the additional internal thioesterase domain 

LybB-TE2 does not influence the product formation. The comparison of the kinetic 

parameters of LybB-PCP-TE1-TE2 and LybB-PCP-TE1 with that of recombinant thioesterase 

derived from other NRPS systems (DptD-PCP-TE involved in daptomycin biosynthesis and 

A54145-PCP-TE involved in A54145 biosynthesis) revealed that the lysobactin 

thioesterases display lower substrate affinity and higher turnover numbers (s. Table 6.1). 

 

Table 6.1: The kinetic parameters of recombinant thioesterases 

 LybB-PCP-TE1-TE2 LybB-PCP-TE1 DptD-PCP-TE
[155] 

A54145-PCP-TE
[156]

 

KM 1.03 mM 0.86 mM 50.1 μM 80.2 μM 

kcat 11.1 s-1 15.8 s-1 0.003 s-1 0.0036 s-1 

 

In this study, the function of LybB-TE2 was investigated in vitro. Incubation of 

recombinant LybB-TE2 with the substrate Lyso(Leu)4(Asn)10-SPh led to substantial 

hydrolysis. In addition, all the three cyclization products (Cy, Cy’ and Cy’’) were also 

observed with comparable ratio as observed in the negative control reaction without 

enzyme. The cyclization-to-hydrolysis ratio of the reaction catalyzed by TE2 was 0.04. 

Therefore, LybB-TE2 is considered to catalyze solely hydrolysis of the linear lysobactin 

precursor. We have suggested that the LybB-TE2 could be posttranslationally cleaved and 

act as a TE II editing domain. The deacylation study (s. section 5.2.4) revealed that 

LybB-TE2 hydrolyzes the PCP-bound acetyl group efficiently. In contrast, LybB-TE1 and 

LybB-PCP-TE1 did not result in substantial formation of deacylated PCP. The results of this 

deacylation study contradicts the postulated mechanism of ArfC thioesterase reported 

by Roongsawang et al., which suggests that the peptidyl chain is transferred onto the 

active serine of ArfC-TE1 and then onto the active serine of ArfC-TE2, before it undergoes 
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an intramolecular nucleophilic attack catalyzed by ArfC-TE2, which leads to 

macrolactonization and release of the final product.  

The results achieved in this study assign different functions to the individual LybB 

thioesterases. The in vitro characterization of excised LybB-TE1 confirmed clearly that the 

first thioesterase of LybB conducts solely the cyclization and the subsequent release of 

the product. The presence of TE2 did not influence the yield or the 

cyclization-to-hydrolysis ratio of the macrocyclization reaction. This suggests the 

macrocyclization to be the preferred reaction. In contrast to that of LybB-TE1, LybB-TE2 

mediated exclusively the hydrolysis of the peptidyl thioester substrate and the 

mis-primed PCP domain in vitro. Combined with the proteolytic cleavage of 

LybB-PCP-TE1-TE2 observed in the heterologous production, we suggested that the 

LybB-TE2 could be posttranslationally cleaved and acts as a stand-alone TE II. This 

hypothesis could also explain the observation that inactivation of ArfC-TE2 drastically 

decrease the production yield of arthrofactin, as disruption of TE II-encoding genes in 

NRPS- or PKS-gene clusters commonly leads to drastically decrease of the corresponding 

natural product, which can be complemented by a heterologous TE II.[157, 158] Taking the 

results together, it is concluded that LybB-TE1 mediates the macrocyclization and release 

of the final product, while LybB-TE2 deacylates the mis-primed PCPs in cis or in trans, 

ensuring a continuous production. 

6.2.3 Initial study of the putative Cβ-epimerase 

Besides the D-configured and β-hydroxylated amino acids, lysobactin contains a further 

unusual building block, allo-Thr, at position 8. Allo-configured amino acids were 

observed in several NRPs exemplified by enduracidin A and coronatine. Enduracidin A, 

produced by Streptomyces fungicidicus ATCC 21013, is active against Gram-positive 

bacteria such as MRSA and VRE. This branched cyclic peptide disrupts the biosynthesis of 

the bacteria cell wall by blocking the elongation step of peptidoglycan biosynthesis.[159, 

160] Enduracidine contains one D-allo-Thr and one L-allo-Thr at position 5 and 8. The 
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corresponding A-domains of which were reported to activate allo-configured amino 

acids specifically.[29] Phytotoxin coronatine is produced by phytopathogenic bacterium 

Pseudomonas syringae containing in the structure one coronamic acid building block, 

which is derived from L-allo-Thr. An allo-Thr activating A-domain was reported to be 

involved in the biosynthesis of coronatine.[30] The source of allo-configured amino acids 

in the biosynthesis of these natural products is so far unknown.  

Module 8 in the lysobactin biosynthesis machinery, which is responsible for 

incorporating allo-Thr into the final product, contains an additional C-domain. The in 

vitro ATP/32PPi exchange assay revealed the A-domain in this module to activate L-Thr 

specifically. The activities of allo-Thr and D-Thr relative to that of L-Thr did not exceed 

0.04. This result clearly suggests that the chirality conversion of the β-carbon of the 

threonine should occur after Thr is activated and loaded onto the corresponding 

PCP-domain. Interestingly, it was observed that among the three recombinant proteins 

produced heterologously, namely LybB-C-A-PCP8, LybB-A-PCP8 and LybB-A8, only the 

activity of LybB-C-A-PCP8 could be observed in the ATP/32PPi exchange assay in vitro. A 

possible reason for this could be that the neighbouring flanking domains ensure the 

expression of intact A-domain with proper folding. 

Because of the similarity between E- and C-domains, it was postulated that one 

C-domain in module 8 could mediate the epimerization of the Cβ-carbon, while the other 

C-domain catalyzes the peptide bond formation and meanwhile transfers the growing 

peptide chain from the upstream PCP- onto the PCP-domain in the current module. A 

phylogenetic analysis of the both C-domains in module 8 compared with C-domains, 

E-domains and C/E dual domains from other NRPS systems was carried out, trying to 

distinguish the both C-domains observed in module 8. As shown in Figure 5.20, the 

C-domains from different NRPS systems cluster together in the lower part, whereas the 

proteins with epimerization activity, including E-domains and C/E dual domains, cluster 

together in the upper part of the phylogenetic tree. The two C-domains from module 8 
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of LybB locate between these two groups. This phylogenetic study did not indicate which 

C-domain could mediate the epimerization of the β-carbon of the PCP-tethered 

threonine. 

To investigate which C-domain has the epimerization activity, an in vitro epimerization 

assay was planed using organically synthesized Thr-SNAC as substrate. Heterologous 

expression of the both C-domains was carried out in E. coli strains (BL21 and Rosetta 1). 

The overexpression of LybB-C8-1 was not detectable, while recombinant LybB-C8-2 was 

achieved in good yield. The recombinant LybB-C8-2 was incubated with Thr-SNAC and 

analysed via HPLC-MS and compared with the standard Thr-SNAC/aThr-SNAC 

synthesized organically. It was not very surprising, that the analysis result did not give 

any evidence of epimerization. It was reported, that in vitro epimerization assay of 

E-domains incubated with corresponding substrate C-terminally activated with SNAC did 

not yield any epimerization product.[161] One possible reason of the negative result 

achieved in this study could be that the SNAC-activated substrata could be not accepted 

by the LybB-C8-2 because SNAC only mimics a short part of the natural substrate. It could 

not be ruled out that LybB-C8-2 does not have an epimerization activity. 

The C-domains in module 8 was further investigated. After the apo-LybB-C-A-PCP8 was 

pre-treated with MgCl2, CoA and Sfp, the resulted holo-LybB-C-A-PCP8 was then 

incubated in situ with [14C]-Thr and ATP, the enzyme was precipitated by adding 10% 

TCA. The resulted enzyme pellet was treated with KOH followed by centrifugation. The 

supernatant was analyzed with chiral-TLC. It was expected that the [14C]-Thr could be 

activated and loaded onto the PCP-domain. The β-carbon of PCP-tethered [14C]-Thr could 

be epimerized by the C-domain and detected with chiral-TLC after KOH-cleavage. But the 

chiral-TLC result did not show any trace of radioactive substance despite considerable 

efforts. This result indicates that Thr could not be loaded onto the PCP-domain under the 

conditions applied, although it could be activated by the A-domain in the LybB-C-A-PCP8 

construct, which was proved by the ATP/PPi-exchange assay. 
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To circumvent the loading step catalyzed by the A-domain, which could be the main 

obstacle of the experiment discussed above, it was attempted to load the recombinant 

LybB-C-A-PCP8 with synthesized Thr-CoA and Sfp. The Thr was subsequently cleaved by 

KOH or LybB-TE2 and analyzed via LC-MS. One possible hindrance of this experiment is 

that the turnover number of this reaction is limited to one, which could make the 

subsequent detection via HPLC-MS difficult. Parallel reactions were pooled together and 

screened via HPLC-MS. No formation of aThr could be observed.  

In the initial study of the putative β-carbon epimerization domain, we have proved that 

the A-domain in module 8 accepts specifically L-Thr, which indicates an on-line 

epimerization of the β-carbon. Different epimerization possibilities could be put forth 

based on the well-known epimerization mechanismen of the Cα-carbon. The β-carbon of 

Thr could be epimerized before or after the condensation with the upstream 

peptidyl-chain.[74] Despite considerable efforts, no epimerization could be observed in 

this study. Further study with synthesized peptidyl-CoA could be applied to test if the 

epimerization occurs after condensation with the upstream peptide chain.  
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8. Supplementry section 

Table S1. Bioinformatic analysis of the contig harboring the lysobactin synthetase genes lybA and lybB, 

responsible for lysobactin biosynthesis. The length of each gene is given in basepairs, whereas the length 

of the gene product is given in the number of amino acids. Lysobactin synthetases are accentuated in red. 

The contig, covering a region of 150063 bp with an average GC-content of 70.7%, encompasses 91 CDSs 

based on GeneMark2.4 annotation. The proposed functions of the encoded proteins and the 

corresponding homology to related proteins are based on BLAST-analysis. 

gene length (bp) length (aa) proposed function similar protein, organism 
identity / 

similarity (%) 
E-value 

orf1 1083 361 alkaline phosphatase ZP-02241451.1, Xanthomonas oryzae pv. oryzae PXO99A 71/78 2e
-141 

orf2 510 170 no significant similarity found / / / 

orf3 225 75 no significant similarity found / / / 

orf4 1317 439 RND family efflux transporter MFP subunit YP_001684934.1, Caulobacter sp. K31 55/70 3e-107 

orf5 3105 1035 acriflavin resistance protein YP_001684933.1, Caulobacter sp. K31 72/83 0.0 

orf6 3198 1066 acriflavin resistance protein YP_549641.1, Polaromonas sp. JS666 64/79 0.0 

orf7 372 124 putative exported protein CBW26876.1, Bacteriovorax marinus SJ 27/40 0.38 

orf8 330 110 hypothetical protein ZP_03228483.1, Bacillus coahuilensis m4-4 32/64 6.9 

orf9 1131 377 peptidase YP_002129213.1, Phenylobacterium zucineum HLK1 40/52 2e-47 

orf10 1335 445 hypothetical protein YP_001851229.1, Mycobacterium marinum M 35/49 2e-42 

orf11 123 41 no significant similarity found / / / 

orf12 1017 339 Mg2+ transporter protein CorA family protein ZP_06464109.1, Burkholderia sp. CCGE1003 51/72 3e-98 

orf13 315 105 no significant similarity found / / / 

orf14 1230 410 benzoate transporter YP_003167664.1, Candidatus Accumulibacter phosphatis clade IIA str. UW-1 64/80 4e-134 

orf15 231 77 No significant similarity / / / 

orf16 1503 501 transcriptional regulator ZP_01052708.1, Polaribacter sp. MED152 21/40 0.44 

orf17 1224 408 hypothetical protein NP_821723.1, Streptomyces avermitilis MA-4680 26/40 5e
-15 

orf18 624 208 HupE / UreJ protein ZP_05112692.1, Labrenzia alexandrii DFL-11 50/64 3e-38 

orf19 489 163 no significant similarity found / / / 

orf20 837 279 hypothetical protein/Co2+ ABC-type transporter system ZP_04715208.1, Alteromonas macleodii ATCC 27126 34/51 3e-35 

orf21 450 150 hypothetical protein ZP_07044210.1, Comamonas testosteroni S44 67/79 5e-22 

orf22 555 185 putative transmembrane protein YP_001974093.1, Stenotrophomonas maltophilia K279a 47/67 1e-36 

orf23 63 21 multi-sensor hybrid histidine kinase YP_003444812.1, Allochromatium vinosum DSM 180 73/86 9.0 

orf24 924 308 glycerophosphoryl diester phosphodiesterase family protein ZP_02364269.1, Burkholderia oklahomensis C6786 56/67 8e
-72

 

orf25 891 297 endonuclease ZP_06490315.1, Xanthomonas campestris pv. musacearum NCPPB4381 44/60 4e
-51 

orf26 1203 401 glycoside hydrolase family protein YP_001269345.1, Pseudomonas putida F1 65/75 3e-144 

orf27 459 153 transcriptional regulator, BadM/Rrf2 family YP_003693117.1, Starkeya novella DSM 506 71/85 5e-51 

orf28 369 123 sec-independent protein translocase protein TatC YP_001260172.1, Sphingomonas wittichii RW1 50/65 9e-26 

orf29 1227 409 oxidoreductase FAD/NAD(P)-binding domain protein YP_001682485.1, Caulobacter sp. K31 59/71 1e-133 

orf30 1224 408 OmpA family outer membrane lipoprotein YP_001905001.1, Xanthomonas campestris pv. campestris str. B100 70/81 2e-135 

orf31 405 135 hypothetical protein YP_917345.1, Paracoccus denitrificans PD1222 36/50 6e-6 

orf32 2184 728 glycosyl hydrolase family 3 N terminal domain protein ZP_05135635.1, Stenotrophomonas sp. SKA14 64/77 0.0 

orf33 2208 736 putative ferric siderophore receptor protein YP_001971588.1, Stenotrophomonas maltophilia K279a 68/80 0.0 

orf34 930 310 possible beta-lactamase type II ZP_00946799.1, Ralstonia solanacearum IPO1609 70/81 1e
-115 

orf35 1806 602 YvcC, ABC transporter YP_001422767.1, Bacillus amyloliquefaciens FZB42 42/62 2e-136 

orf36 297 99 hypothetical protein YP_002433262.1, Desulfatibacillum alkenivorans AK-01 28/45 6.2 

orf37 168 56 no significant similarity found / / / 
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orf38 1695 565 malate:quinone oxidoreductase YP_002027471.1, Stenotrophomonas maltophilia R551-3 79/87 0.0 

orf39 54 18 no significant similarity found / / / 

orf40 906 302 hypothetical protein, fatty acid hydroxylase YP_001350148.1, Pseudomonas aeruginosa PA7 61/70 2e-87 

orf41 684 228 AraC family transcriptional regulator YP_001669525.1, Pseudomonas putida GB-1 40/55 3e-30 

orf42 1290 430 cytochrome-c peroxidase ZP_03657868.1, Helicobacter cinaedi CCUG 18818 52/68 1e
-105 

orf43 2556 852 TonB-dependent outer membrane receptor ZP_06702903.1, Xanthomonas fuscans subsp. aurantifolii str. ICPB 11122 53/70 0.0 

orf44 1410 470 putative oxidoreductase/FAD-dependent YP_001974019.1, Stenotrophomonas maltophilia K279a 67/78 8e-144 

orf45 630 210 nucleoside-diphosphate-sugar epimerase-like protein YP_001764517.1, Burkholderia cenocepacia MC0-3 66/77 4e-73 

orf46 897 299 putative transcriptional regulator YP_002638715.1, Salmonella enterica subsp. enterica serovar RKS4594 52/70 1e-78 

orf47 1395 465 major facilitator family transporter ZP_03572459.1, Burkholderia multivorans CGD2M 62/71 2e-108 

orf48 711 237 alpha/beta hydrolase fold protein YP_002501846.1, Methylobacterium nodulans ORS 2060 62/71 2e-65 

orf49 462 154 hypothetical protein ZP_01450738.1, alpha proteobacterium HTCC2255 47/59 5e-19 

orf50 447 149 conserved hypothetical protein ZP_06705519.1, Xanthomonas fuscans subsp. aurantifolii str. ICPB 11122 64/72 9e
-45 

orf51 504 168 putative Mg(2+) transporter YP_001972661.1, Stenotrophomonas maltophilia K279a 44/66 4e
-24 

orf52 1062 354 putative DNA topoisomerase YP_001901445.1, Xanthomonas campestris pv. campestris str. B100 61/74 5e
-111 

orf53 2298 766 TonB-dependent receptor ZP_05136801.1, Stenotrophomonas sp. SKA14 71/82 0.0 

orf54 111 37 no significant similarity found / / / 

orf55 180 90 hypothetical protein ZP_05136538.1, Stenotrophomonas sp. SKA14 56/69 2e-13 

orf56 303 101 hypothetical protein YP_739616.1, Shewanella sp. MR-7 51/67 3e-16 

orf57 1620 540 PepSY-associated TM helix ZP_05134261.1, Stenotrophomonas sp. SKA14 65/76 0.0 

orf58 1023 341 putative esterase YP_001972145.1, Stenotrophomonas maltophilia K279a 50/62 6e-65 

orf59 984 328 beta-lactamase domain-containing protein YP_001672104.1, Caulobacter sp. K31 50/65 2e
-75 

orf60 468 156 hypothetical protein ZP_06704248.1, Xanthomonas fuscans subsp. aurantifolii str. ICPB 11122 62/79 4e
-43 

orf61 945 315 hypothetical protein YP_366148.1, Xanthomonas campestris pv. vesicatoria str. 85-10 70/80 1e
-124 

orf62 375 125 hypothetical protein YP_002029693.1, Stenotrophomonas maltophilia R551-3 81/88 4e-51 

orf63 750 250 heme oxygenase ZP_05135978.1, Stenotrophomonas sp. SKA14 70/77 5e-67 

orf64 258 86 hypothetical protein YP_002029695.1, Stenotrophomonas maltophilia R551-3 71/78 1e-26 

orf65 153 51 no significant similarity found / / / 

orf66 1275 425 membrane fusion protein ZP_05137116.1, Stenotrophomonas sp. SKA14 75/87 6e-150 

orf67 3321 1107 acriflavin resistance protein YP_002030072.1, Stenotrophomonas maltophilia R551-3 87/93 0.0 

orf68 3327 1109 acriflavin resistance protein YP_002030073.1, Stenotrophomonas maltophilia R551-3 46/65 0.0 

orf69 369 123 hypothetical protein, NIPSNAP family protein YP_003211797, Cronobacter turicensis z3032 42/64 3e
-18 

orf70 204 68 no significant similarity found / / / 

orf71 213 71 no significant similarity found / / / 

orf72 984 328 TesB-like acyl-CoA thioesterase II YP_003275253.1, Gordonia bronchialis DSM 43247 48/61 5e-52 

orf73 186 62 hypothetical protein YP_003766914.1, Amycolatopsis mediterranei U32 37/58 0.026 

orf74 2868 956 lanthionine synthetase C-like protein ZP_05136619, Stenotrophomonas sp. SKA14 57/69 0.0 

orf75 306 102 hypothetical protein YP_003382479.1, Kribbella flavida DSM 17836 29/44 1.9 

orf76 93 31 RNA-directed RNA polymerase Q3KSM3.1, Pieris rapae virus 66/66 2.0 

orf77 192 64 no significant similarity found / / / 

lybA 11490 3830 amino acid adenylation/NRPS YP_236792.1, Pseudomonas syringae pv. syringae B728a 50/64 0.0 

lybB 25611 8537 amino acid adenylation domain-containing protein/NRPS YP_001546733.1, Herpetosiphon aurantiacus ATCC 23779 39/53 0.0 

orf78 1593 531 lactamase B YP_003375569.1, Xanthomonas albilineans 60/73 0.0 

orf79 1809 603 ABC transporter, permease/ATP-binding protein ZP_03109194.1, Bacillus cereus NVH0597-99 41/62 6e
-128 

orf80 3222 1074 RND superfamily protein, acriflavin resistance protein ZP_06729535, Xanthomonas fuscans subsp. aurantifolii str. ICPB 10535 47/64 0.0 

orf81 1278 426 membrane fusion protein precursor ZP_0672953, Xanthomonas fuscans subsp. aurantifolii str. ICPB 10535 62/77 6e-114 

orf82 3225 1075 RND superfamily protein, acriflavin resistance protein YP_365697.1, Xanthomonas campestris pv. vesicatoria str. 85-10 74/86 0.0 

orf83 1377 459 hypothetical protein, alpha/beta fold family hydrolase YP_001265258.1, Sphingomonas wittichii RW1 54/66 3e-112 

orf84 153 51 no significant similarity found / / / 

orf85 159 53 no significant similarity found / / / 
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orf86 11271 3757 keto-hydroxyglutarate-aldolase/polyketide synthase ZP_02164195.1, Kordia algicida OT-1 48/65 0.0 

orf87 3693 1231 polyketide synthase of type I ZP_02163855.1, Kordia algicida OT-1 38/55 0.0 

orf88 2607 869 exporters of the RND superfamily-like protein ZP_02163857.1Kordia algicida OT-1 43/66 0.0 

orf89 915 305 hypothetical protein GB_ACX30634.1, uncultured bacterium ARCTIC96BD-19 38/60 2e-55 
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