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Zusammenfassung

Im Rahmen dieser Arbeit wurde mit Hilfe von Mikrowellenexperimenten die zeitab-
hingige Stabilitit von Quantensystemen gegen Storungen untersucht. Fiir flache
Mikrowellen-Resonatoren ist die zugehorige Wellengleichung dquivalent zur Schrodinger-
gleichung, deshalb eignen sich Messungen an so genannten Mikrowellenbillards um quan-
tenmechanische Fragestellungen experimentell zu untersuchen. Um in Quantensystemen
die Stabilitit der Zeitentwicklung gegen Storungen zu quantifizieren hat Peres [per84]
das Uberlappintegral der Zeitentwicklung des gleichen Anfangszustands unter einem
ungestorten und einem gestorten Hamiltonian eingefiihrt. Diese Grofe nennt man Fi-
delity oder Loschmidt Echo; sie lasst sich in Mikrowellenbillards unter Verwendung der
Scattering Fidelity [sch05al, die sich fiir chaotische Systeme und schwache Kopplung der
Messantennen der gewOhnliche Fidelity annédhert, bestimmen.

Im ersten Teil dieser Arbeit werden Untersuchungen des Fidelity-Abfalls in einem klas-
sisch chaotischen Mikrowellenbillard, das durch einen Stempel lokal am Rand deformiert
(gestort) werden kann, vorgestellt. Ein vorhergesagter, nicht monotoner Ubergang des
Loschmidt Echos vom Fermi-Golden-Rule- zum Escape-Rate-Regime [gou08|, der mit
der Vergroferung der lokalen Storung des Randes einhergeht, wurde experimentell
bestitigt. Des weiteren wurden im Experiment deutliche Oszillationen der Abfallrate
in Abhéngigkeit der Stempelposition gefunden, die quantitativ mit den zugehorigen the-
oretischen FErgebnissen aus semiklassischen Beschreibungen zu lokalen Randstorungen
iibereinstimmen. Die wichtigsten Ergebnisse dieses Abschnitts der Arbeit wurden bereits
in [koeb11] veroffentlicht.

Im zweiten Teil dieser Arbeit wurde der Abfall der Fidelity in einem Mikrowellen-
Resonator, bei dem die Kopplung variiert wurde, untersucht. Die als Kopplungsfidelity
bezeichnete Grofe wurde experimentell zunéchst fiir einen angeflanschten Wellenleiter
mit variabler Spaltoffnung untersucht. Dabei zeigt sich der Effekt auf die Fidelity durch
die Variation der Randbedingung als groker als der Effekt durch die Anderung der Kop-
plung. Deshalb wurde anstatt des Kanals ein Billard mit einer eingebrachten Antennen
mit, drei verschiedenen Abschliissen untersucht. Zum einen wurde die Antenne mit ein-
er Reflexion am festen und offenen Ende und mit einem 502 Abschluss versehen. Eine
quantitative Ubereinstimmung mit der theoretischen Beschreibung, die auf einer modi-
fizierten Verbaarschot, Weidenmiiller, Zirnbauer (VWZ) Theorie [ver85] beruht, wurde
gefunden. Die wichtigsten Ergebnisse dieses Teils, sowie eine detaillierte Beschreibung
des Modells in Form eines effektiven Hamiltonian mit komplexer Kopplungskonstanten,
entwickelt von D.Savin, wurde in [koebl0] veroffentlicht.






Abstract

In this work microwave experiments are used to study the time dependent stability of
quantum systems against perturbations. For flat microwave cavities the corresponding
wave equation is equivalent to the Schrédinger equation, therefore measurements with
so called microwave billiards are suitable for studying quantum-mechanical questions ex-
perimentally. To quantify the stability of quantum time evolution against perturbations
Peres [per84] introduced the overlap of the time-evolution of the same initial state under
an unperturbed and a perturbed Hamiltonian. This quantity is known as fidelity or
Loschmidt echo; it can be determined in microwave billiards using the concept of scat-
tering fidelity [sch05a], which for chaotic systems and weak coupling of the measuring
antenna approaches the ordinary fidelity.

In the first part of this work a study of the fidelity decay in classically chaotic microwave
billiard for a local, pistonlike boundary perturbation is presented. Experimentally a pre-
dicted nonmonotonic crossover from the Fermi golden rule to the escape-rate regime of
the Loschmidt echo decay with increasing local boundary perturbation [gou08] is veri-
fied. In particular, pronounced oscillations of the decay rate as a function of the piston
position have been observed in the experiments which quantitatively agree with corre-
sponding theoretical results based on a refined semiclassical approach for local boundary
perturbations. The main results presented in this part have been published in [koebl11].

In the second part of this work the scattering fidelity decay in a microwave billiard is
studied for a perturbation, where the coupling to the outside is varied. The resulting
quantity, coupling fidelity, is experimentally studied first for an attached wave guide
with variable opening of a slit. Thereby the effect on the fidelity due to the change of
boundary condition was larger than the effect of the change of coupling. Thus instead
of using a channel for the coupling an antenna was introduced and three different ter-
minations attached. Terminations of reflexion on open and closed end and an 502 load
were compared. Quantitative agreement is found with the theory, which is obtained
from a modified Verbaarschot, Weidenmiiller, Zirnbauer (VWZ) approach [ver85|. The
main results presented in this part and a more detailed model description in terms of an
effective Hamiltonian with a complex coupling constant developed by D.Savin have been
published in [koeb10].
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1 Introduction

The word chaos originally comes from the Greek ydog, it refers to the formless or void
state preceding the creation of the universe or cosmos in the Greek creation myths,
more specifically the initial “gap” created by the original separation of heaven and earth.
Nowadays we are used to an informal meaning of chaos as a state of confusion. In
mathematics and natural science chaos refers to a very specific kind of unpredictable
deterministic behaviour that is very sensitive to its initial conditions.

In 1892 JULES HENRI POINCARE published ’Les Méthodes nouvelles de la Mécanique
Célesté’ [poi92]. In this research on the three-body problem using Isaac Newton’s laws of
motion (Classical Mechanics) he became the first person to discover a chaotic determin-
istic system. In his later book ’Science et Méthode’[poi08| he describes such a system as
follows:

Une petite erreur sur les premiéres produirait une erreur énorme sur les
derniers. La prédiction devient impossible et nous avons le phénoméne for-
tuit.

which he illustrates with meteorology, an important field of studying time evolution in
physics till this day. At the same time two other fundamental theories, namely quantum
mechanics and the theory of relativity started their rapid development. Many physicists
were focused on these two theories, so the results of Poincaré lead a shadowy existence
until the second half of the last century. Chaos theory was formalized only after the mid-
century, when it first became evident for some scientists that linear theory, the prevailing
system theory at that time, simply could not explain the observed behaviour of certain
experiments (for example a double pendulum).

The main catalyst for the development of chaos theory was the electronic computer.
Much of the mathematics of chaos theory involves the repeated iteration of (simple)
mathematical formulas, which would be impractical to do by hand. Computers made
these repeated calculations practical, while figures and images made it possible to visu-
alize these systems. In the 1960’s EDWARD LORENZ an early pioneer of chaos theory
who worked on weather prediction [lor63], simulated his weather model on a computer.
He realized, that small changes in initial conditions produced large changes in the long-
term outcoming weather patterns. This sensitive dependence on initial conditions came
to be known as the “butterfly effect”. Lorenz’s discovery showed that even detailed at-
mospheric modeling cannot in general make long-term weather predictions. Weather is
usually predictable about a week ahead only! This surprising finding of Lorenz is an
example for the relevance of studies of classical chaotic systems in understanding daily
life problems. Probably this fact is the main reason why classical nonlinear dynamics



1 Introduction

enjoy high popularity among the general public. Talking to non-physicists interested
in my work, many of them had heard about the butterfly effect or have seen a double
pendulum, but simply nobody has heard something about “Quantum Chaos”, the field
where the presented work is residing. Nevertheless even if you have no idea what it is it is
“flavored” with “quantum” and “chaos”; so simply (or only) the word attracts interest.

In his scholarpedia article Martin Gutzwiller [gut07] illustrates Quantum Chaos as:
‘Building a bridge between Quantum Mechanics (QM) and Classical Mechanics (CM)’,
which provides a transition from QM to CM, as well as from CM to QM and whose
existence puts limits on CM and on QM. On this bridge one studies the quantum me-
chanics of classically chaotic systems. Because Chaos in a classical sense does not exist
in QM the more descriptive term 'quantum chaology’ was proposed by Michael Berry
[ber87|, but it was not generally accepted. Quantum Chaos simply sounds better. As
standard introduction and a detailed review on Quantum Chaos I refer to the mono-
graphs “Quantum Signatures of Chaos” by Fritz Haake [haa0l] and “Quantum Chaos -
An Introduction” by Hans-Jiirgen Stockmann [stoe99]. Talking to physicists who have
already heard something about Quantum Chaos, they always connect this field with the-
oretical physics. Doing experiments in this field using so called microwave billiards is at
least for most of these physicists completely unknown and a somehow strange field of
research.

On Quantum Chaos only two classes of experimental results had been available till
the 1990’s. From nuclear physics the spectra of compound nuclei [por65| which are
closely connected with the development of random matrix theory [wighd|, imeh63| and
from atomic physics the experiments with highly excited hydrogen and alkali atoms in
strong magnetic fields [hol86, mai86]. Then different experiments using classical waves
have been performed, starting with so called microwave billiards [stoe90]. These are
analogue experiments with microwave resonators to study the properties of quantum bil-
liards. Other classical wave experiments have been performed with water surface waves
on water vessels [blue92| or with vibrating blocks [ell95] Tob03] [gor06], lob08]. In all ex-
periments classical waves are used to study questions which are often relevant for matter
waves. That is why some authors prefer the term "wave chaos" [seb90, 5095, fan07] to
describe this experimental field of Quantum Chaos research. The basic concepts of these
experiments are recapitulated in chapter 2l For an introduction in Quantum Chaos in-
cluding billiard experiments with classical waves especially microwaves I refer to the book
[stoe99]. A short overview also can be found in the scholarpedia article: on “Microwave
billiards and Quantum Chaos” [stoel0].

Having adumbrated the field of research for the presented work I want to focus on the
main topic: Sensitivity of quantum dynamics to perturbations. This important objective
in the field of Quantum Chaos has been studied experimentally in this work. Measured
by the overlap between time-evolved perturbed and unperturbed Hamiltonians with same
initial state, as suggested by Peres [per84], stability of quantum time evolution has been
studied from various viewpoints and under different names in the past. In the following
equation

F(t) = [(a()|en())[* = [(wole /M MR o) 2 = |(ra(t) o) [ = M (t)  (1.1)




the main quantity of interest for this thesis is written explicitly. The equation can be
described by two possible interpretations either the “fidelity” F'(¢) or the “Loschmidt
echo” (LE) M (t).

The fidelity conciders the overlap of the quantum state [t/ (t)) = e 1¥/|3)) obtained
from an initial state [1)g) in the course of its evolution time ¢ under a Hamiltonian H,
with the state |0y(t)) = e2¢/"|4)y) that results from the same initial state by evolving
the latter for the same time, but under a perturbed Hamiltonian H, different from H;.
The LE compares the overlap of the initial state |1)y) and the state |112(t)) obtained by
first propagating |1g) till £ under the Hamiltonian H;, and then backwards for the same
time under H,. The considered overlap equals unity at ¢t = 0 and typically decays further
in time.

In the field of quantum information fidelity plays an important role for quantifying the
susceptibility of quantum dynamics to environmental or other external perturbations
[nie00]. Quantum information theory enables one to do things not possible by classical
means, e.g., perform quantum computation. The main obstacle in producing quantum
devices that manipulate individual quanta are errors in the evolution, either due to
unwanted coupling with the environment or due to internal imperfections. Therefore,
the goal is to build a device that is resistant to such perturbations. For this one ought
to understand the behaviour of fidelity in different situations to know how to maximize
it for the time duration of the calculation. The fidelity for this case needs to be of the
order F' ~ 0.9999 [nak06]. Using error correction maybe 0.999 might be sufficient.

In semiclassical quantum and wave mechanics the terminus LE is often used [usa9§]
especially for Hamiltonians associated with complex, in particular classically chaotic
dynamics. The terminology refers to the notion of echoes from momenta reversal in a
Hamiltonian system considered by Loschmidt [los76] in the 19th century. The sensitivity
to perturbations as measured by the LE allows for the comparison between quantum
and classical situation. For classical systems LE gives the same exponential sensitivity
to perturbations of the evolution as to perturbations of initial conditions, whereas for
quantum system the LE can behave in a very different way, displaying a rich variety
of regimes. Depending on the nature and strength of the perturbation for fully chaotic
systems there are three prominent LE/fidelity decay regime, the perturbative Gaussian,
the Fermi-golden-rule(FGR) and the Lyapunov regime [jac01], [jal01] lcer02, lcuc02]. In
all this references so called “global” perturbations have been considered, that means
that there is a total rearrangement of spectrum and eigenfunctions already for moderate
perturbation strength, or in a semiclassical picture, that the Hamiltonian perturbation
affects every trajectory of the system, and therefore all trajectories are responsible for
the decay of the LE.

Experiments with microwave cavities or elastic bodies seem to provide good options to
study the decay of fidelity [sch05al, but a difficulty arises. Fidelity implies an integra-
tion over the entire space. In two-dimensional microwave billiards the antenna always
represents a perturbation, and thus moving the antenna defeats the purpose of a fidelity
measurement, as the wave-function taken at any point is that of a slightly different
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system. In contrast to wave function measurements, in fidelity experiments we are pre-
cisely interested in such differences, and thus wave functions measured with moveable

antennas [ste92] [ste95, kuh07] or a moveable perturbation bodies [sri91] [bog06], lau07]
are not appropriate. In elastic experiments on solid blocks [lob03], [gor06] Tob08] or 3D

microwave billiards the wave function inside the volume seems to be inaccessible anyway
[doer98, [alt97]. This lead to the development of the concept of scattering fidelity [sch05al]
which tests the sensitivity of S-matrix elements to perturbations and equals the ordinary
fidelity for fully chaotic systems and weak coupling. This is also of intrinsic interest, since
the scattering matrix may be considered as the basic building block at least in the case

of quantum theory [str00, Teh55].

In former studies the scattering fidelity has been investigated in chaotic microwave bil-
liards by considering a perturbation of the billiard interior. It can be shown that in such
a case the random character of wave functions causes the scattering fidelity to represent
the usual fidelity, provided that appropriate averaging is taken [sch05al, [hoehO8]. Scars
and parabolic manifolds will obviously change that correspondence, but their effect can
be avoided in experiments [sch05al. Specifically, two different types of interior pertur-
bations were experimentally studied. In the first set of experiments a billiard wall was
shifted, realizing the so-called global perturbation |sch05al lsch05b], meaning that there
is a total rearrangement of both spectrum and eigenfunctions already for moderate per-
turbation strengths. A good agreement with predictions from random matrix theory
(RMT), expecting Gaussian or exponential decay depending on perturbation strength,
was found. A theoretical and experimental investigation of fidelity decay for a type of
“local” perturbations in the perturbative regime, where the eigenstates are not signifi-
cantly modified by the perturbation, has been done in [hoeh(08]. On the experimental
side a small scatterer was shifted inside the microwave billiard in a two-dimensional array
of point-like scatterers. Using the random plane wave conjecture, an algebraic decay 1/t
was expected theoretically and confirmed experimentally.

In the present thesis the scattering fidelity decay is studied in a chaotic microwave bil-
liard for two other types of local perturbations. In the first part of this thesis fidelity
decay is studied in classically chaotic microwave billiards for a local, piston-like bound-
ary perturbation. Experimentally a predicted non-monotonic cross-over from the Fermi
Golden Rule to the escape-rate regime of the LE decay with increasing local boundary
perturbation is verified. In particular, a pronounced oscillation of the decay rate
as a function of the piston position is observed, which quantitatively agree with corre-
sponding theoretical results based on a refined semiclassical approach for local boundary
perturbations. The presented results have been published in [koebI1]. In the second
part the fidelity decay in a microwave billiard is considered, where the coupling to an
attached antenna is varied. The resulting quantity, coupling fidelity, is experimentally
studied for three different terminators of the antenna: a hard wall reflection, an open
wall reflection, and a 50 €2 load, corresponding to a totally open channel. Quantitative
agreement is found with the theory obtained from a modified VWZ [ver85] approach.
The main results presented in this part and a more detailed model description in terms
of an effective Hamiltonian with a complex coupling constant developed by D.Savin have

been published in [koeb10].




2 Fundamental concepts

2.1 Billiard systems

Classical billiards constitute an important class of dynamical systems. In classical bil-
liard systems, a point particle is confined to a region in configuration space and collides
with the boundary of the region such that the angle of incidence equals the angle of
reflection. The systems dynamic depends on the shape of the billiard-boundary and can
be completely described by the entirety of its periodic orbits. Depending on the billiard-
shape one can distinguish different types of dynamics — so called regular dynamic, e.g.
the distance between two phase space trajectories with similar initial conditions grows at
most linear; and chaotic dynamic, where the distance between two phase space trajecto-
ries with similar initial conditions grows exponentiallly. The dynamics of most billiards
is neither completely (i.e. for all initial conditions) regular nor completely chaotic, but
is mixed.

For a quantum-mechanical treatment of billiard systems one can no longer use the classi-
cal characterisation of regular and chaotic behaviour in terms of trajectories, because of
the Heisenberg uncertainty principle. A quantum billiard is described by the stationary
Schrodinger equation of a free particle with Dirichlet boundary conditions.

Billiard systems demonstrate fundamental physical phenomena that can be observed in
laboratory settings.

2.2 Microwave experiments

Microwave experiments with flat cavities are meanwhile a well-known paradigm in the
field of Quantum Chaos [stoe99].

About 20 years ago in our group Stockmann and Stein started microwave studies on
irregular shaped metallic resonators (Fig. 2.I)) with top and bottom plate parallel to
each other [stoe90]. One can describe this systems by a two-dimensional electromag-
netic wave equation (Helmholtz equation) with Dirichlet boundary conditions. As long
as a maximum frequency vmax = ¢/(2h), where h is the height of the resonator and ¢
denotes the speed of light is not surpassed a one-to-one correspondence to QM is given.
The correspondence of the Helmholtz equation to the Schrodinger equation with same
boundary conditions allows to study prediction for quantum billiards by means of flat



2 Fundamental concepts
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Figure 2.1: Sketch of a microwave resonator in exploded view (upper figure) and sectional
drawing (lower figure). The resonator consist of a top (t), contour (c¢) and
a bottom (b) plate made of brass. The shape of the microwave billiard is
given by the contour plate, which in general is not a single plate. Antennas,
which are introduced into the cavity through small holes, are used to fed in
microwaves into the resonator. The height of the resonators, which have been
used for all presented experimental works, is A = 8 mm.

microwave resonators, which are named microwave billiards. Fortunately, the correspon-
dence named above is not restricted to closed systems, it includes the scattering situation
as well. So it is possible to verify predictions from quantum-mechanical scattering theory
by means of open microwave resonators with a number of attached open channels, either
antennas or wave guides. All experimental studies presented in this work are based on
this correspondence.

2.3 Scattering formalism

In nuclear physics much insight is gained by performing nuclear reaction experiments
using particle accelerators. The principle of these experiments can be described as a
three-step process. In a first step an accelerated particle is moving towards the reaction
target. Ideally all quantum numbers (spin, parity, momentum, etc.) are known. This set
of numbers labels the incident channel. In a second step the particle hits the target, that
means, it interacts locally with some potential which might cause some of the quantum
numbers to change. In the third and final step a particle leaves the interaction region to
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Figure 2.2: Sketch of scattering system to demonstrate the notation of incoming and
outgoing waves

be registered by some detector system that determines the new set of quantum numbers
which now labels the final channel. This whole process defines a scattering problem
where the fundamental challenge is to determine the transition probability from a given
initial channel to a given final channel.

In our experiments microwaves are fed into the resonator using antennas, which are in-
troduced into the cavity through a small hole. The reflection and transmission properties
between different antennas are described by the scattering matrix S It is defined by

b= Sa, (2.1)

where a = (aj,as,---) is the vector of amplitudes of the waves entering through the
different channels and b = (b, by, - - - ) is the amplitude vector of the outgoing waves. The
diagonal elements S;; of S correspond to the reflection amplitude at antenna ¢, whereas
the non diagonal elements S;; are related to the transmission amplitude between antenna
i and j (Fig. 2:2)). Microwave experiments allow measuring of the complete scattering
matrix including the phases in frequency space using a vector network analyser (VNA).

The following expression which gives a connection between the Hamiltonian H of the
system and the scattering matrix S was initially developed in nuclear physics [mah69,
ver85), s0k89]:
1
S(E)=1—2iW "W, 2.2
(B) = 1= 20WI 5y W, 22)
where I discribes the coupling between the internal Hamiltonian H and the scattering
channels. The coupling modifies H to become an effective Hamiltonian

Heg = H — iWWT (2.3)

in Eq. (Z2)). It should be noted that the scattering matrix is in general a complex
valued object and in nuclear physics only the cross section, that is its modulus square, is
experimentally accessible. Eq. (Z2]) provides the crucial connection between theory and
measurement. It links the information of the scattering matrix obtained in experiments to
the Hamiltonian which is of interest to theoretical considerations. For quantum systems
exhibiting chaotic dynamics the Hamiltonian can be described using Random Matrix
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Theory (RMT). The couplings W are given parameters of the problem and are often
assumed to follow a Gaussian distribution. A possible energy dependence of W is often
neglected. Using this universal description of a scattering process, Eq. (2:2)) allows for
predictions of statistical properties of the scattering matrix. This approach in Eq. (22)
has been successfully applied to study various aspects of open systems, including wave
billiards [stoe99, [fyo97, [dit00, [fyo05].

2.4 Scattering fidelity

Fidelity, as it is usually defined (Eq. (LI])), also applies to scattering systems. A wave
packet can be evolved with two slightly different scattering Hamiltonians. This would
be the standard fidelity of a scattering system. In contrast, “scattering fidelity” stands
for a quantity which can be obtained from simple scattering data, though under certain
conditions it agrees with the standard fidelity.

We now proceed with the introduction of the concept of scattering fidelity. In microwave
experiments we can measure scattering matrix elements for unperturbed (S, (v)) and
perturbed (S7,(v)) systems independently in frequency space. By taking the Fourier
transform

%@:/@ﬁM%@ (2.4)

of any scattering matrix element we obtain S, the scattering matrix in the time domain.
This leads to the definition of the scattering fidelity amplitude [sch05al:

_ (Su0) (2.5)
V{8u(0)S2,(0) (S (151 (0)

This definition ensures that f,,(0) = 1. Furthermore, an overall decay of the correlation
functions due to absorption or other open channels drops out, provided the decay is the
same for the parametric cross-correlation functions in the nominator and the autocorre-
lation functions in the denominator. The scattering fidelity itself is

F(t) = |fa(t)*. (2.6)

For chaotic systems and weak coupling of the measuring antenna the scattering fidelity
approaches the ordinary fidelity (Eq. (L)) [sch05al.

fab@) =




3 Fidelity decay for local boundary
perturbation

3.1 Introduction

In Ref. [gou07] Goussev and Richter extend the original semiclassical approach to the
Loschmidt echo (LE) [jal01], lcuc02] to strong local perturbations in coordinate space.
Analytically they found a new LE decay for chaotic billiards with a local boundary de-
formation where the LE decays exponentially in time, with a rate which equals to the
classical “escape rate” from a related open billiard. This open billiard is obtained from
the original one by removing the perturbation-affected region of its boundary. Goussev
and Richters’ numerical study was performed for a desymmetrized diamond (DD) billiard
and showed a good agreement with an analytical decay law exp(—2vt), where + is the
classical “escape rate” from the related open billiard. A generalization of this approach to
weak perturbations was published in [gou08| and predicted a non-monotonic cross-over
from the Fermi-golden-rule regime to the escape-rate regime with increasing perturba-
tion strength. For a special type of billiard’s boundary deformation, where the area of
deformation is increased by an imaginary “piston” pulled out of the billiard, the LE decay
rate is expected to show oscillations as a function of the piston position (perturbation
strength). Numerically the predicted crossover has been verified for maps [are09]. In
quantum wave packet simulations for billiards only precursors of this behaviour could be
found [gou0§]. An experimental verification of the predicted oscillations using microwave
billiards will be presented in this chapter. The main results have been already published
in [koeb11].

3.2 Theory

Here T want to give a short outline of the main theoretical results needed for the in-
terpretation of the experiments. A detailed derivation can be found in the following
articles [gou07, [gou08| koeb11]. In the semiclassical regime one can write for the LE

approximately
M(t) ~ e " (3.1)

neglecting the contribution of a diagonal part to the LE [gou08]. In the effective decay
rate kv the dimensionless x can be expressed as

k=2(1- Re(e%i“/)‘» : (3.2)
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Figure 3.1: Piston-like boundary deformation with examples of correlated trajectory
pairs, unperturbed (blue) and perturbed (red), belonging to sets € (a), Q3
(b) and 5 (c). Origin: [koebII]

In this expression for k we call u the deformation function. This deformation is given by
the difference in the length between the perturbed trajectory and the unperturbed one.
While the perturbation is introduced by the local deformation of the chaotic billiards
boundary. Dividing out the de Broglie wavelength A\ the deformation is rescaled to units
of the de Broglie wavelength. Now we look at a special type of boundary deformation,
where the area of deformation has the shape of a rectangle which can be varied at one
side by a “piston” (Fig. B]). This corresponds exactly to the experimental realisation
of the perturbation (see Sec. B3]). For a piston width w and displacement h of the
piston, the expression (3.2)) can be calculated in the limit h < w (see [gou08§]) up to the
following expression

k= 7mH;(4dwh/)\), (3.3)

where H; is the Struve H-function of first order. For arbitrary w and A this can be
generalized to

sz—%Z /da:d@cos@cos {4; (hcos @ + kwsin 6) (3.4)
k=0 Qogt1

with the integration domains {251 over incident positions x and momentum directions
0 (see Fig. B.2). Detailed calculation can be found in the appendix of [koebll]. This
expression can be evaluated numerically. Furthermore, the expression for the LE in
Eq. (B)) depends on the classical escape rate v which belongs to the corresponding open
billiard if the local piston deformation is completely removed from the boundary region.

The escape rate is given by
Do
= —, 3.5
L (3.5)
where py denotes the momentum and m denotes the mass of a classical particle, while 4
stands for the average dwell length. The later one is determined by the length of paths
in the related open chaotic billiard obtained from the original (closed) one by removing

the boundary region. For billiards, where the deformation widths (“openings”) w are

10
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w

/2

0

Figure 3.2: Schematic representation of the regions €2y, €23, and €25, see text. Further
regions, {29,171 With £ > 3, contributing to the sum on the right hand side of
Eq. (84) are not shown in the figure; they cluster as narrow stripes “to the
right” of Q5 and approach § = 7/2 in the limit & — oo. Origin: [koebl1]

much smaller than the perimeter of the closed billiard one can approximate the average
dwell length [y ~ mA/w where A is the area of the corresponding closed billiard. For
comparison with our experimental data from microwave billiards, pg/m is set to the speed
of light ¢ and therefor the corresponding escape rate can be determined as

w
~c—. 3.6
Ve~ (3.6)

The perturbation strength, as the main parameter-dependences of the Loschmidt echo,
is in semiclassical theory measured by the action change which results from the per-
turbation. So in our chaotic billiard systems with piston-like boundary deformation
the displacement h of the piston is the parameter which introduces the perturbation
strength.

For the perturbation strength it proves convenient (see Ref. [gou08]) to define the di-

mensionless quantity
X = 2m\/(u?) /A, (3.7)

depending on square-root of second moment of the deformation function v in units of the
de Broglie wavelength A\. For a piston-type deformation the dimensionless perturbation

strength reads
X = 27/ (8/3)h/ A, (3.8)
which is simply a rescaled displacement h in units of .

Depending on the perturbation strength x based on the Eqgs. (Bl B:2) one can identify
different decay regimes of the LE. For a weak local perturbations, y < 1, the LE decays
like

M(t) ~ e (x <1) (3.9)
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Figure 3.3: Sketch of the chaotic Sinai-shaped billiard (length of 472mm, width of
200mm and a quarter-circle of radius of 70mm) with a variable piston-
like local boundary deformation. The piston position can be changed from
a displacement h = 45mm to h = Omm for four different piston widths
w = 20,40,70,98 mm. At position a the measuring antenna is introduced.
The additional elements were inserted to perform ensemble averages (rotat-
able ellipse) and to reduce the influence of bouncing balls.

so the rate of the exponential decay depends on the perturbation strength y, in analogy
to the Fermi Golden Rule regime found for global perturbations. On the other hand, in
the limit of strong local perturbations, y > 1,

M(t) = e ", (x>1) (3.10)

the LE decay rate is independent of perturbation strength x. The correspondence to the
escape rate regime is presented in [gou07].

In the following section we will use Eq. (31, together with the expressions (B.3]) and
(B4) for the decay rate k, for a comparison with the experimentally determined scattering

fidelity (Eq. (2.6])).

3.3 Experiment

3.3.1 Experimental setup

Our experiment has been done with a microwave resonators of height of 8 mm which can
be treated as a two-dimensional billiard system for frequencies below 18 GHz. In Fig. 3.3
the geometry of the setup is illustrated. The basic shape is a quarter Sinai billiard,
where additional elements have been inserted to reduce the influence of bouncing-ball
resonances. This leads to a classical dynamics of the billiard which is chaotic. For
introducing the boundary deformation the straight left boundary of the unperturbed
billiard was modified. Different pistons of four widths w have been attached successively
to the billiard which allow for a variation of the escape rate v (Eq. (8.5)). Each piston

12
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Figure 3.4: Reflection |S,,| for w = 40 mm for different displacements h in a frequency
range from 17 to 18 GHz.

position can be varied horizontal in steps of 0.5 mm via a step motor from a displacement
h = 45mm to h = 0 mm, so the perturbation strength h respectively y can be controlled
changing the area of deformation. To perform ensemble averages a rotating ellipse (see
Fig. B.3) is inserted to the billiard. For measuring the reflection S-matrix element S,,
at position ¢ an antenna is fixed and connected to an Agilent 8720ES vector network
analyser (VNA). The measurement was done in a frequency range from 2 to 18 GHz
with a resolution of 0.1 MHz for four piston widths and all displacements h realizing 18
different positions of a rotating ellipse. The unperturbed system is defined as the one
with the straight wall, corresponding to h = O mm.

3.3.2 Results and Discussion

From the experimentally determined scattering matrix elements S,, the scattering fidelity
is calculated with A = Omm (billiard with straight wall) as unperturbed system and
h # O0mm (billiard with boundary deformation) as perturbed system, using Eq. (2.0).
Necessary averaging (- --) for the correlation functions in Eq. (2:6) has been performed
in all cases by an ensemble of 18 system realisations with different positions of the
rotating ellipse. The presented experimental results of the scattering fidelity decay for the
piston-like boundary perturbation will now be compared with the theoretical predictions
(Egs. (31)-(3.4)) for LE decay for this specific type of perturbation. The presentation of
our results start with exemplary chosen spectra of our measured data. Fig. 3.4 shows the

13



3 Fidelity decay for local boundary perturbation

Figure 3.5: Measured scattering fidelity decay F'(t), Eq. (28], (solid lines with symbols)
for three different piston displacements h; = 1mm (triangles, blue), hy =
5mm (circles, green), hs3 = 10 mm (squares, red), for a frequency range 17 —
18 GHz. The average frequency v=17.5 GHz corresponds to a average de
Broglie wavelength A ~ 17mm. The dashed lines show the corresponding
semiclassical prediction, Eq. (B.]), for the LE decay, with x chosen as free
parameter: k1 = 0.26; ko = 2.78; k3 = 1.09, respectively. The time is given in
units of the dwell time 1/, with  determined from experimental parameters
via Eq. (33) with w = 40 mm.

absolute value of the reflection matrix element |S,,| as a function of frequency in a range
from 17 to 18 GHz for a piston of width w = 40 mm in four different piston displacements
h =0,1,5, and 10 mm. In the chosen frequency range we are in a regime of overlapping
resonances. Thus we can not see shifts or broadening of single resonances. Comparing
the results for the measurement of the billiard with the straight wall (h = 0mm) to the
three spectra with boundary deformations (h # 0mm) we can state that over all the
differences between the black line (h = 0mm) differs most from the red line (h = 5mm).
But altogether the differences are rather small. So it is somehow surprising that we see
such a clear difference in the scattering fidelity F'(t), Eq. (2.6]), presented in Fig.[3.5] where
the scattering fidelity F'(t) is plotted as symbols and solid lines exemplary for a piston
of width w = 40 mm in three different piston displacements h =1,5, and 10 mm acting as
perturbation to the system. As dashed lines the corresponding semiclassical prediction
for the Loschmidt echo decay according to Eq. ([B.I) are added. Parameter ~ is always
calculated via Eq. (B.6) using the corresponding geometrical parameter and constants,
while  is obtained by a fit to the experimental data. Beyond a certain time, which
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passes until the perturbation is “seen” during the measuring process, a good agreement
between the expected exponential law with LE decay exponent x and the experimental
fidelity decay is found. Increasing the displacements h, illustrated in Fig. by the
successive triangle (blue), circle (green) and squares (red) traces one can get a first idea
of a non-monotonic behaviour of LE decay exponent x with h, as the decay for the smaller
perturbation (h =5mm) is faster than the decay with larger perturbation (h =10 mm).
Lets now take a closer look at the dependence of the Loschmidt decay exponent x on
the displacements h of the piston. In Figs. (i)-(iv) for all four deformation widths
w the decay rate k is plotted as a function of deformations height h of the perturbed
system. Coloured symbols in Fig. (ii) at h = 1,5 and 10 mm mark data points
k(h), obtained from fitting to the three cases of experimental fidelity decay which have
been shown in Fig. All asterisks show data points «(h) which have been obtained
using the same procedure. In all four plots one can recognize an over all oscillating
behaviour of the fidelity exponent which shows already a qualitatively good agreement
with the predicted approximative theoretical result (Eq. (3.3])) depicted as dashed curve.
But the data points do not exhibit that simple structure of monotonic decay of the
maximum amplitude predicted by the approximate function (Eq. (83)). First of all
there are obvious differences between all four widths which are not considered by the
approximative theoretical result and will be discussed later together with the improved
expression for k£ (Eq. (34)) where the width w is no longer neglected. In particular for
Fig.3.6l (i) and (ii) the experimental results around h & w (square shape of the piston-like
deformation) and also h =~ 2w in Fig. (i) show a particularly pronounced amplitude
which is not met by the dashed line at all. One can also see that for every width w there
are some small but very specific deviations from the expected simple structure which
are non generic. Having in mind that (Eq. (83)) is only valid for A~ < w, which is not
reached even for the greatest width w = 98 mm the agreement between experiment and
theory is already surprising. One can state that as expected from the approximation
condition the deviations are smaller for larger w. But the second surprise is that this
agreement was found far away from the semiclassical assumption, namely that the piston
width w, should be much larger than the de Broglie wave length .

In all cases discussed up to now the average de Broglie wavelength had been A\ ~ 17 mm
which corresponds to the average frequency 7=17.5 GHz of the chosen frequency range:
[17 — 18 GHz|. This is the smallest experimental realized de Broglie wave length and is
not much smaller than w. Now we want to increase the average de Broglie wavelength
looking for limits on the experimental side. Fig. B.7 (i)-(iv) shows the decay rate k
as a function of the dimensionless rescaled perturbation strength y (see Eq. (B.8])) for
different de Broglie wave lengths A in the three cases w > 40 mm. According to Eq. (3.3)
the number of experimental accessible oscillations of k(h) up to hpe = 45mm gets
smaller for larger A, this can be nicely seen in all plots of Fig. 3.1 (i)-(iv). Depending on
the deformation width w there is a more (w = 98 mm) or less (w =20 and 40 mm) sharp
value for A where the over all amplitudes of x(x) do not any longer achieve the expected
level. This region is achieved for w =20 and 40 mm for smaller de Broglie wave lengths
(A =~ 20 and 30 mm) and for w = 98 mm for larger de Broglie wave lengths (A ~ 60 mm).
The explanation for this behaviour is connected to the fact that the piston-like boundary
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Figure 3.6: k as a function of piston displacement h for pistons of width w = 20mm
(i), w = 40mm (ii), w = 70 (iii) and w = 98mm (iv) for a average de

Broglie wavelength A &~ 17mm [17 — 18 GHz|. The asterisks represent the
data points obtained from fitting the decay exponent of the measured scat-
tering fidelity. The three cases discussed in Fig. are marked in (ii) by
correspondingly colored symbols. The dashed curve shows the theoretical
approximation (Eq. (33)) (valid for h < w).
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k as a function of x (Eq. (8:8)) for pistons of width w = 20mm (i), w =
40mm (ii), w = 70 (iii) and w = 98 mm (iv). The asterisks (black) represent
the data points for a average de Broglie wavelength A ~ 17 mm [17 — 18 GHz|
(i)-(iv); the circles (blue) stand for A ~ 21 mm [14 — 15 GHz| (i); A =~ 29 mm
[10 — 11 GHZ] (ii); A ~ 40mm [7 — 8 GH7] (iii); A ~ 55 mm [5 — 6 GHz] (iv)
and the triangles (red) stand for A ~ 22mm [13 — 14 GHz| (i); A ~ 32mm
[9 — 10 GHz] (ii); A =~ 46mm [6 — 7 GHz| (iii); A ~ 67mm [4 — 5 GHz| (iv).
The crosses (orange) in (i) stand for A ~ 85mm [3 — 4GHz]. The dashed
curve shows the theoretical prediction (Eq. (33)).
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3 Fidelity decay for local boundary perturbation

Figure 3.8: k as a function of y (see Eq. (B.8)). The fuzzy trace depicts the overlayed
experimental data and the dashed curve the theoretical prediction (Eq. (83)).

deformation can only be seen from the waves starting inside the billiard if their wave
length A is smaller than twice the deformation width w. But also the amplitudes start
breaking down the oscillations in the remaining data points remain until A\ ~ 2w as
one can see in Fig. B (ii) (orange crosses). In the case w = 20mm (Fig. B.7 (i)) one
can see in all three experimental curves that the oscillation period does not agree with
the theoretical expected result but as the theoretical approximation is only valid if the
deformation height is small compared to the deformations width this deviation is not
surprising.

In Fig. B.8 we now superimpose all our experimental data points from x(y) curves which
lie in the region where the average de Broglie wavelength \ is in the range A < 2w,
w > 40mm and h < w. As a result we find a very convincing agreement with the
approximative theoretical prediction (Eq. (83))) in the limit h < w.

Finally, we want to demonstrate that the agreement between the experimental and theo-
retical curves can be improved but we will also arrive at certain limits if the experimental
conditions are pushed too far beyond the main limit of the semiclassical theory, A < w.
In Fig.[3.9 (i)-(iv) we plotted the same sets of experimental data as in Fig.[3.601and added
the second (exact) semiclassical results for ) resulting from the numerical evaluation
of the expression (B.4]) as solid (red) line in addition to the already plotted in Fig.
dashed approximative result (Eq. (8:3)). Comparing only the theoretical results one see
that for the approximative results the maximum amplitudes of x decay monotonic with A
while the full semiclassical results show an increase of the amplitudes of x around w = h
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Figure 3.9: k as a function of piston displacement h for a pistons of width w = 20 mm
(i), w = 40mm (ii), w = 70 (iii) and w = 98mm (iv) for a average de
Broglie wavelength A ~ 17mm [17 — 18 GHz]. The asterisks represent the
data points obtained from fitting the decay exponent of the measured scat-
tering fidelity. The three cases discussed in Fig. are marked in (b) by
correspondingly colored symbols. The dashed curve shows the theoretical
approximation (Eq. (83)) (valid for h < w), and the solid (red) curve is a

result of the numerical evaluation of the full semiclassical expression (3.4)).

19



3 Fidelity decay for local boundary perturbation

which nicely can be seen in Fig. (i) and (ii). One can state that the full theoretical
expression describes the experimental situation more convincingly in all cases, while the
difference between the full and the approximative theoretical result is pronounced in the
case of a piston width w = 20mm and gets smaller with increasing piston width. In
particular, for h & w = 40mm (square shape of the piston-like deformation) the ex-
perimental results show a particularly pronounced amplitude which is met by the solid
line. But even if there is some improvement especially for the cases w = 20mm and
w = 40 mm concerning the regime around h ~ w in Fig. (i),(ii) (square shape of the
piston-like deformation) and h ~ 2w in Fig. (i), the agreement is not really satisfying.
For piston width w = 20 mm which is of the order of A\ the experimental data points
(asterisks) even oscillate with a period that differs from the theoretical one. However,
the fact that the experimental parameters are beyond the regime of validity of the semi-
classical theory does not allow for a further reasonable comparison between experiment
and theory.

20



4 Fidelity studies by varying the coupling

4.1 Introduction

The question how a physical system is perturbed during a measuring process seems to
be one of the crucial things, that every experimentalist has to care about. In every
laboratory efforts are made to perform experiments where the measurements perturb
the original system property only as slightly as possible. Thinking about fidelity in
the context of realizing quantum computers as a quantity which describes the stability
of quantum time evolution, it seems quite natural to study fidelity under a type of
perturbation which mimics the measuring process. When one opens a system it couples
to the continuum with the consequence that the discrete energy levels transform into
unstable resonance states. Varying the coupling strength to the scattering channels one
can see rich dynamics [sok92], which have also been studied with microwave billiards
[per00]. In this chapter I want to present our studies on the so called coupling fidelity
focussing on the experimental part of the work. The main results including more detailed
theoretical considerations have been published in [koeb10].

4.2 Theory

A short outline of the main theoretical results which can be found in more detailed
derivation in [koeb10] will be given in this section.

4.2.1 The generalized VWZ approach to fidelity
The effective non-Hermitian Hamiltonian can be written as

M

Hpg=H-iY NViV{,  ke{l,-- N}; (4.1)
k=1

with H the internal Hamiltonian of the closed system and Vj the coupling vectors (M

scattering channels connected to N levels of the closed cavity) containing the information

on the coupling of the levels to the continuum. We assume the V}, to be normalized to

one, so A\ is the coupling constant of channel k. The phenomenological coupling constant

Ar. which enters the final expression Eq. (£7) via the transmission coefficients

ANy,

L= g € [0, 1] (4.2)
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are usually taken as real numbers as their imaginary part can be absorbed in the Hamil-
tonian. For a suitable description of the experiments (see Sec. 3.1l and Sec. 1.3.2)),
which have been performed for varying the coupling to the system, in general one has
to use complex numbers for the coupling constant of the varied (perturbing) channel.
So all coupling constants A, will be treated as complex numbers (Re(Ax) > 0, due to
the causality condition of the S-matrix). Rewriting Eq. (2.2) for the S-matrix at the
scattering energy E in terms of H.g with complex coupling constants \,; we get the
following expression:

Sap(E) = dap — 2in/Re(Ag)Re(Ny) VI ———V}, . (4.3)
E — Heff
The reflection amplitude Sy in an arbitrary channel can be written as [fyo05]
L= NV 5 Vi
Su(E) = e (4.4)

R WA

E—Hlg

which is more suitable for our situation. It is obtained from Eq. (@3] by single out
the contribution to Hes due to channel | writing Hpg = Hly — iNVV,| with Hl; =
H—i) M ViVil (For details see in [koebI0]). It is convenient to use representation
(Eq. (4)) to perform statistical averaging. With E = 0 this calculation leads to the
following expression for the average S-matrix [ver85 sok89]:

1-XN
= 4.5
(Su) = .y (4.5)
and the transmission coefficient,
4Re()\l)
T=1-{S))PP=—", 1=1,....,.M 4.6

which agrees with the result of Ref. [ver85]. For the case of a real coupling constant
Eq. ([@2) gives a transmission coefficient while for pure imaginary coupling constant
which corresponds to perfect reflection at a closed channel the transmission coefficient
equals zero.

4.2.2 Coupling Fidelity

We will now introduce a special type of scattering fidelity (see Eq. (2.)), where the
perturbation to the system is achieved by changing the complex coupling strength of
one (perturbing) channel. This one is different from the channels a,b, which where
used to measure the S Matrix elements for calculating the scattering fidelity. For this
scattering fidelity which will be denoted as coupling fidelity an exact RMT prediction will
be presented below. The coupling constant of the variable perturbing channels will be
denoted by X for S,(t) and X for 5% (t). Looking at the parametric correlation functions

22



4.2 Theory

(Sap(t)S%% (1)) in Eq. (23 first for the case where A = X, the so called autocorrelation
function, and apply the convolution theorem for Fourier transforms we find that it equals
the famous Verbaarschot-Weidenmiiller-Zirnbauer (VWZ) integral [ver85] and is given
by:

N

<Sab(t) A;b(t» = CAt[Saba ;b] (t) - ang(l - Ta)Ja(t) + (1 + 5ab),-z—‘ajﬁbpab(t)' (47)

Here the parametrization of Ref. [gor02] was used to write down the explicit expressions
for the functions J,(¢) and P,(t), as

2
Jalt) =42 (1 + ;;ZTTjrfo : T1- tTa(tT— r)) ] (48)
and
2
Fult) =22 [(1 —jijag;jr i g?;ggfiéi{:jg%) [1— Jgj(t_j)r()? [Ti ;b?t — 7’)]] o (49)
where ot - -
=201 dap(r) =T, Ty + (T +T)(r+1) =1

and the shorthand Z stands for the integral,

T+1—t —Tp(t—r)
/ dﬁ/ 5 II —[--].
2u+1 —r241x)? \/1+2Tkr+T

max(0,t—1)

In this chapter the time ¢ is given in units of the Heisenberg time ¢z = 27h/A, with A
being the mean level spacing. For the case of A # X the correlator (S,,(t)S% (t)) has
been calculated by D. Savin using supersymmetry techniques (The calculation can be
found in the Appendix of [koeb10]). Finally it yields

(Sab(t) S (1)) = (Seq (1) Seh™ (£). (4.10)

This means, that the parametric cross correlation function reduces to an autocorrelation
function (S (+) S (t)) given by the same VWZ expression (4.7), where the transmission
coefficient (Eq. (£.4)) of the varied channel has to be replaced by

eff 2 <)\ + )\/*)

EESVESGR (4.11)

One can interpret 7° as some effective transmission coefficient due to a parametric varia-
tion of the coupling strength in the varied channel. For A = X, the effective transmission
coefficient T becomes equal to the conventional transmission coefficient (Eq. (£6)). In
contrast to the transmission coefficient in Eq. (£6) the effective transmission coefficient
T°% is generally complex. The subsequent evaluation of the coupling fidelity cannot be
done analytically and will be performed numerically.
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Figure 4.1: Geometry of the chaotic Sinai billiard, length [ = 342 mm, width w = 237 mm
and a quarter-circle of radius r = 70 mm, with attached channel of a total
length [, = 243 mm and a width w, = 16 mm. The opening of the channel
can be varied from d = 0 — 16 mm in steps of 0.1 mm using a slit diaphragm.
At position a and ¢ two antennas were fixed and connected to the VNA. The
additional elements were inserted to reduce the influence of bouncing balls.

4.3 Experiments

Based on a chaotic microwave billiard with attached waveguide, which was used in
[per00, [stoe02] to study the resonance trapping in an open microwave cavity, we de-
signed our first experiment (SubSec. [£3.7]) for a microwave study of the coupling fidelity.
As in this experiment the variation of the coupling was mainly on the real part of the
coupling, we introduced a new setup, where predictions of the theory could be varified

(see SubSec. [4.3.2).

4.3.1 First experiment: Attached wave guide with variable
coupling

Experimental setup

In the first approach the setup shown in Fig. [4.1] was used, where the opening of the
variable slit plays the role of the fidelity parameter. The setup is based on a quarter Sinai
shaped billiard with length [ = 342 mm, width w = 237 mm, a quarter-circle of radius
r = 70 mm, and an attached channel. The channel has a total length of /. = 243 mm and
a width w, = 16 mm. At position a and ¢ two antennas were fixed and connected to the
VNA. The complete S-matrix was measured in a frequency range from 9.5 to 18.0 GHz
with a resolution of 0.1 MHz, where the wave guide only supports a single propagating
mode, i.e. it acts as a single channel. The perturbation of the system was achieved by
opening the channel from d = 0 — 16 mm in steps of 0.1 mm using a slit diaphragm at
the point of attachment. An ellipse insert with semiaxis ¢ = 70 mm and b = 40 mm was
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Figure 4.2: Ay as a function of the opening d, averaged over the frequency window 13
to 14 GHz.

rotated to get an ensemble of 20 different systems for averaging. Additional elements
were inserted into the billiard to avoid bouncing-ball resonances. The wave guide was
terminated by a perfect absorber, which, according to Eq. (4£22)), should correspond to
a purely imaginary coupling.

The coupling constant Ay, could be determined directly from a reflection measurement
at antenna c using Eq. (£8). As Fig. shows, Ay can be varied from Ay = 0 (no
coupling) to Ay = 1 (perfect coupling) by increasing the opening d of the slit.

Results and Discussion

In this section we want to discuss the experimental and theoretical results for the coupling
fidelity decay under the perturbation described before. For all results below the system
with closed slit diaphragm, corresponding to A = 0, is chosen as the reference, whereas
for the perturbed system the coupling constant is \' = Ay, # 0, depending on the opening
d of the slit.

In Fig. the coupling fidelity decay is shown for two different perturbation strengths.
The filled symbols show the experimental results. With the formulas derived in Sec. 4.2}
we calculated the expected theoretical fidelity decay assuming that the channel is totally
open, i. e. the coupling is purely imaginary (solid lines). There is obviously no agreement.
This shows that something is wrong in the argumentation. For a further check the
absorbing end and the antenna in the channel was removed and replaced by a reflecting
end thus closing the system. Fig.[4.4lshows, that we did not find any noticeable difference
to the case with the absorbing end and the antenna in the channel experimentally. So
there is only one explanation: by far the major part of the wave is reflected directly at
the slit, and only a minor part really penetrates into the channel!

The solid lines in Fig. show the resulting theoretical curves with using an imagi-
nary fitting parameter \g;. Now a perfect agreement between experiment and theory is
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Figure 4.3: Experimental coupling fidelity | f(¢)|* (filled symbols) and theoretical results
for the experimental parameter Ay (solid lines) for two openings d = 6.5 mm
(black triangles) with Ay, = 0.05, and d = 11.2mm (red circles) with Ay =
0.52. The frequency window of the Fourier transform of the measured Sy, (v)
was 13 to 14 GHz and the transmission coefficient for antenna a was T, = 0.95.
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Figure 4.4: Comparison between the experimental coupling fidelity |f(¢)|? results shown
in Fig. (filled symbols) and results from measurements where the absorb-
ing end and the antenna in the channel have been replaced by a reflecting
end thus closing the system (open symbols)
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Figure 4.5: Experimental coupling fidelity | f(¢)|* (filled symbols) and theoretical results
for the fit parameter Ag; (solid line) for two openings d = 6.5mm (black
triangles) with Agy = —0.18i, and d = 11.2mm (red circles) with Ag =
—0.55i. The frequency window of the Fourier transform of the measured

Saa(v) was 13 to 14 GHz and the transmission coefficient for antenna a was
T, = 0.95.

found.

As a resume we can state that a smooth variation of the coupling will not easily yield the
information about the effect of coupling to the continuum on the scattering fidelity. Each
geometric variation will give rise to both a change of coupling and internal scattering
properties, thus screening the purely external effect. Contrary to intuition, for this setup
the main effect of the variation of the slit does not correspond to a change of the coupling
to the outside, but to a distortion of the wave functions in the billiard, thus corresponding
more to the case of a local scattering fidelity [hoeh08, koeb11] as in chapter Bl

The perturbation that results from the wave guide with variable slit and the antenna
with absorbing end can not de described as a simple absorption, but there is always
a very significant reflecting part. As we have seen we were not able to simply change
the perturbation strength by varying the opening of the slit so we decided to go a step
back, designing a setup which allows for a separated investigation of perturbations to the
scattering fidelity in the case of absorption and reflection (open end and hard wall).

4.3.2 Second experiment: Antenna with different terminato rs

In our second experiment we remove the wave guide with slit from the experimental setup
and inserted a perturbing antenna which was terminated consecutively with three differ-
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<
c

@e

100 mm
Figure 4.6: Geometry of the chaotic Sinai billiard, length [ = 472mm, width w =
200mm and a quarter-circle of radius »r = 70mm where an antenna with
different terminations may be introduced at position c. a denotes the mea-
suring antenna. The additional elements were inserted to reduce the influence
of bouncing balls.

ent terminators from a standard calibration kit being part of our microwave equipment.
The terminators provide total absorption, open end reflection and hard wall reflection.

Experimental setup

The setup, as illustrated on Fig. [4.6] is again based on a quarter Sinai shaped bil-
liard, where additional elements were inserted into the billiard to reduce the influence
of bouncing-ball resonances. So the classical dynamics for the chosen geometry of the
billiard is dominantly chaotic. At position a one antenna is fixed and connected to an
Agilent 8720ES vector network analyser (VNA), which was used for measurements in a
frequency range from 2 to 18 GHz with a resolution of 0.1 MHz. We measured the re-
flection S-matrix element S, first for the unperturbed system, which corresponds to the
situation, where no additional antenna is inserted at position ¢. Then we perturbed the
system by inserting another antenna at position ¢ which was terminated consecutively
in three different ways:

(a) connection to the VNA (total absorption),
(b) standard open (open end reflection),
(c) standard short (hard wall reflection),

and again measured the corresponding reflection at antenna a for each case. The connec-
tion of antenna ¢ to the VNA corresponds to a termination of antenna ¢ with a 50 €2 load.
The terminators for the cases (b) and (c) have been taken from the standard calibration
kit (Agilent 85052C Precision Calibration Kit) being part of our microwave equipment.
For case (a) the reflection amplitude S.. was also measured. From this measurement
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the coupling strength of antenna ¢ can be obtained, see Eq. (&6]) above. For all four
cases we measured 18 different realizations by rotating an ellipse (see Fig.[4.6]) to perform
ensemble averages.

The effective Hamiltonian description

In this subsection we present the mapping of the experimental situation onto the more
general theoretical description presented in Sec. focussing on results and predictions
for the three cases of total absorption, open end reflection and hard wall reflection. The
calculation is very similar to the approaches that can be found in [stoe02]. To describe our
experimental situation we need two scattering channels, the measuring antenna, below
denoted by index “a” and the antenna with variable coupling (the perturbing channel)
denoted by index “¢”. The amplitudes of incoming (u) and outgoing (v) waves for this
two channels are related via the S-matrix:

S(Z):(:) (4.12)

For antenna ¢ which is connected with a terminator the connection between the ampli-
tudes u. and v, can be described by

Ue = TV, r=e (@) (4.13)

where r contains the information on the reflection properties of the antenna. For re-
flection at an antenna with open end (index “oe”) or hard wall (index “hw”) we have
no absorption a = 0 as long as the absorption in the antenna can be neglected and a
difference in total phase shift ¢, — ¢nw = 7. The termination of the antenna by a 50 2
load corresponding to total absorption is given by o — oo.

With the expression of the scattering matrix in terms of Wigner’s reaction matrix:
1 —dWIGW
L HIWIGW

G = (E — H)™! is the Green function of the closed system and matrix W = (W,, W.)
contains the information on the coupling, one can rewrite (£12) as

z’WTGW( te Ve ) = ( te ™ U ) (4.15)

ua+va Uq — Vg

(4.14)

Substituting relation (£I13) in Eq. (4I5) one can eliminate u. and v. and end up with
an equation for u, and v,,

iWJGWa(ua + Vg) = Ug — Vg (4.16)

In this equation, we have introduced the modified Green function G, with the following

matrix element 1
WIGW, = Guy — Gpo———iA7 Gy 417
aG G G 1 + Z,)\TGCCZ TG 3 ( )
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where G,,,,, = WgGWm and A7 is the coupling constant of the “terminator”,

o+
= tanh . 4.18
T+r T (4.18)

1_
Ap = — "

Eq. (£I3) is the reduced form of Eq. ({I6]) for the measuring antenna, where the vari-
ational antenna is accounted for in the modified Green function G. Using the explicit
expressions for matrix elements G,,,,,, we obtain in a number of elementary steps

. 1
G = G-GW, i\ WG
1+ i WIGW,

1
= G|1- iAW WG
1 +iAfW.WIG

1

1+ iN W WG
1
= 4.19
E—HY' (4.19)

where H% = H —iArW,W]. We can rewrite this expression, introducing the normalized
coupling vector V' = ﬁWc, where Ay = WIW., is the channel coupling strength, as

“=H—iAVV A= M\Aw. (4.20)

The quantity A is the total coupling constant, which is generally complex and takes
into account the effects of both the channel coupling (Ay) and the terminator (Ar). To
remind you A is our perturbation parameter for the coupling fidelity. Having a look at
the S-Matrix we find, that the 2 x 2 scattering matrix (Eq. (£I4)) for the measuring
antenna and the antenna with variable terminator has thus been reduced to a 1 x 1
scattering matrix for the measuring antenna only,

1—iWi—L_W,

0 B-Hg '@

R ——
T Wag—gaWa

(4.21)

This bottom up result can be directly connected to top down result of Eq. (A4]). Be-
cause in case of a single measurement antenna and one antenna with variable coupling,
Eq. (£2])) is equivalent to Eq. (£4). In Egs. (£20) and (£2I) the main result of this
section are written down. They show that the influence of the variable antenna can be
taken into account by an appropriate modification of the Hamiltonian.

Now we focus on the special cases which are not only of particular importance for our
experimental situation. In the case where the outgoing wave is completely absorbed (here
the termination of the antenna is realized with a 502 load) the corresponding limit is
a — oo as already mentioned. For this case it follows that Ay = tanhoo =1 and

G=H—idwVVT. (4.22)
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So the coupling is purely imaginary.

For the two cases, where the antenna is terminated by a reflecting hard wall or an open
end, we may assume « = 0, resulting in Ay = tanh(i¢/2) = itanp/2, and

@ — H + tan (g) A VYT (4.23)

Here the coupling is purely real and the antenna does not correspond any longer to an
open channel but only to a scattering centre. In fact this interpretation is true only as
long as the absorption in the antenna can really be neglected. It becomes questionable,
as soon as ¢ approaches 7, corresponding to the excitation of a resonance within the
antenna. For this singular situation the perturbative treatment of the antenna coupling
applied in the derivation looses its justification. The value of the total phase shift ¢
depends on the length of the antenna in units of the wave length and thus on frequency
v. But independently of frequency the difference of the phase shift ¢ for the reflection at
the open end (oe) and the hard wall (hw), respectively, is always 7, as already mentioned.
A phase difference of T means a replacement of the tangent by the cotangent in Eq. (£23),
i.e. the coupling constants Ar for the two situations are related via

AT hwAT0e = 1 (4.24)

With the above introduced total coupling constant A = ArAy, this may be alternatively
written as
Awdoe = Aoy = A (4.25)

since Ay is the coupling constant for the 50 2 load (see Eq. (£.22))). Apy and Ay denote the
total coupling constants for the hard-wall and the open-end reflections. These relations
allow for explicit tests of the theory.

Results and Discussion

In this section we want to discuss the experimental and theoretical results for the coupling
fidelity decay under the perturbations (a)-(c) described in Sec. L322l For all results
below the system without the varied antenna, corresponding to A = 0, is chosen as the
reference, whereas for the perturbed system the coupling parameter is A’ = A50q, Age, OF
Anw, depending on the terminator.

Before the fidelity results will be presented we want to look at the transmission coefficients
because this quantity gives first information on the coupling of the two antenna a and ¢
and is determined directly from the measured reflection matrix elements via Eq. (4.6]).
In Fig. the transmission coefficients T, and T, are plotted as a function of the mean
frequency v, averaged over a frequency window of 1 GHz. The values of the transmission
coefficients change as a function of frequency. This gave us the possibility to vary the
coupling strength of our perturbing antenna ¢ by choosing certain frequency windows.
The corresponding coupling constant Ay, of antenna ¢ which can be calculated directly
from the transmission coefficient 7. (Eq. (£2))) is plotted in Fig. [£.8
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the frequency window width of 1 GHz. Determined from the Transmission
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Figure 4.9: Fidelity decay |f(t)|? for perturbation Ason. Filled symbols show the experi-
mental results and the theoretical curves are dotted for experimental parame-
ter and dashed for fitting parameter. Chosen frequency ranges: 8.7—9.2 GHz
(black triangles) with Afspy = 0.24, Aito = 0.21 and 9.8 — 10.3 GHz (green
diamonds) with Afspy = 0.43, At = 0.46.

Antennawith50 2 load We start the presentation and discussion of our fidelity results
with the case of perturbation (a) (total absorption). According to Eq. (£22]) we expect a
purely imaginary coupling with Asoqo = Ay. In Fig.[L9]the fidelity introduced in Eq. (2.6)
is plotted for two frequency ranges corresponding to two different coupling strengths Ay .
Using the experimentally determined Ay here denoted as coupling parameter Ag’gg’;, one
gets already a very good agreement between experimental results (filled symbols) and
theoretical curves (dotted line) without any fit. A fit of Ay to the experimental curves
(the corresponding values are denoted by Ait)) which is plotted as dashed line shows
only a minor improvement for the correspondence between experiment and theory.

As a second example in Fig. [1.10] we present the fidelity decay for the frequency range
7.2 — 7.7 GHz. Here we find a obvious deviation between the experimental results (filled
circles) and the theoretical curve based on the experimental parameter Asyhy (dotted line).
To determine the decay of the experimental fidelity decay we tried two possible ways of
fitting Ay to the experimental data. The first way uses a real valued fitting parameter

Afte (black dashed line) while in the second way to experimental parameter &P an

imaginary part is added as fitting parameter, coming up with a complex valued )\58’;{11.

While for the fidelity decays both fitting procedure lead to a good agreement between
experiment and theory, the corresponding fidelity amplitude presented in Fig. 11l (on
the right side) is described satisfying in real fg(t) and imaginary part f;(¢) only by the
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Figure 4.10: Fidelity decay | f(t)|? for perturbation Asoq in frequency range 7.2—7.7 GHz.

Filled circles show the experimental results. The theoretical curves are dot-

ted for experimental parameter Agyny = 0.19; dashed black for real valued
fitting parameter )\gggf = 0.37 and dashed red for complex valued fitting
parameter Afog™ = 0.19 4 i0.20.
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Figure 4.11: Real part fr(¢) and imaginary part f;(¢) of the fidelity amplitude for pertur-
bation As59n. The two plots on the left correspond to the two cases presented
in Fig. and the two plots on the right correspond to the cases presented
in Fig.

red dashed curve, which is generated with the complex valued fitting parameter )\gg’ém. In
the case of total absorption one would expect the imaginary part of the fidelity amplitude
(f1(t)) to be zero because the correlation function Eq. (£I0) is real valued as long as
the coupling parameters \ entering via Eq. ({I1]) are real. For the plot on the left side
in Fig. the experimental results show only a small deviation from the theoretical
expected zero in the imaginary part of the fidelity amplitude. The significant imaginary
part in the experimental fidelity amplitude for the case of frequency range 7.2 — 7.7 GHz
means that in this frequency range the 50 () terminator does not correspond to perfect
absorption, and Eq. (£23]) does not hold. This might be due to an antenna resonance,
leading to an increased reflection from the channel c.

In Fig. we plotted the coupling constant Ay determined from the experimental
Transmission coefficient T, as A5y (black triangles) and from the fit to the experimental
fidelity decay Aft¢ (red diamonds). For frequencies from about 6 GHz up to 10 GHz
the experimental determined coupling constant and the fitting parameter does not de-
viate to much from each other apart from some significant peaks like the one around

7.5 GHz which results from system specific features, probably antenna resonances. Be-

35



4 Fidelity studies by varying the coupling

“““““““““““““““““““““““““ T
1.0[ T ]
L R 4
0.8 . o *
- * . —
— A * -
L . _
0.6— R AL —
= C A alae, ¥
— ¢ o A —
~< L QAA A s, —
0.4 5 . -

A 0’ * * ¢
L ol R _
et o . eTALL  2esaa, 4 —
0.2 AA‘Q..Q‘ onAAAA oA 3 ]
L o%a . vee _
L A“AAA |
(ON O] I Lo in Lo vy Lo vy [ [ ]

6 7/ 8 9 10 11
v/GHz

Figure 4.12: Coupling constant Ay, as a function of the mean frequency v; deter-
mined from the experimental Transmission coefficient T, (black triangles)
and as real valued fitting parameter to the experimental fidelity decay (red

diamonds).
v/GHz | Aggn | AT | Aee Abw | VAoeAhw
i) | 7.2—=7.710.19 | 0.37 | 0.65¢ | —0.042 0.16
(i) | 8.0 -85 | 0.2 | 020 | 0.19¢ | —0.232 | 0.21
(i) | 8.7 —9.2 | 0.24 | 0.21 | 0.05¢ | —0.832 | 0.20

Table 4.1: Coupling constants in the three different frequency ranges (i)-(iii). According

to Eq. [@Z5), Aiyp and A, should be compared to Ay = vAceAnw, see
Fig. 13 and main text for discussion.

yond 11 GHz the way of determing the coupling constant via a reflection measurement
at the perturbing antenna c does not lead to convincing results. This might be due to
the resonance trapping effect which was observed in microwave billiards in [per00], but
is not examined so far.

Antenna with reflecting end In Fig. .13 we present the experimental and theoretical
fidelity results for the situations open end (blue) and hard wall reflection (red) as pertur-
bation, for three frequency ranges. For each frequency range we plotted the fidelity | f(¢)|?
(large figures left) and the corresponding fidelity amplitude as real fg(t) and imaginary
part fr(t) (small figures right). We want to remind you, that for the correct descrip-
tion for this situations, where the systems are closed, is given by Eq. ([@23]). In case of
closed channels the total phase shift ¢ increases monotonically with frequency. Thus A
and A\, are oscillating in counter phase. This induces a corresponding oscillation in the
strength of the fidelity decay, which can be nicely seen in Fig. L.13(i)-(iii) for the plots
of | f(t)|* and fr(t) but also or the imaginary part f;(t) of the fidelity amplitude.
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Figure 4.13: Fidelity decay |f(¢)|? and corresponding fidelity amplitude ( fz(¢) and f;(t))
for perturbations Ap,, (red) and A, (blue) in three different frequency ranges:
(i) 7.2 — 7.7 GHz; (ii) 8.0 — 8.5 GHz; (iii) 8.7 — 9.2 GHz. The experimental
results are depicted by filled (An,) and open (\..) circles and the dashed
curves show the theoretical results. The values of corresponding coupling

parameter are listed in Tab. [4.1]
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For a more quantitative discussion we compare the experimentally determined fidelity
decay (solid lines) to the theoretical curves (dashed lines). The theoretical curves are
all results from a fit to the experimental data for the fidelity decay |f()|?, the resulting
parameter are used to plot the fidelity amplitude, so there is no second fitting for the
experimental data in the real fr(t) and imaginary part f;(¢). In Fig. [£13] one sees
that fitting the experimental results works well for | f(¢)|? in all three frequency ranges.
Using this free fitting parameter for fr(t) also leads to a satisfying agreement, apart
from smaller deviations in the case of open end reflection in Fig. AI3|(i). The agreement
between experiment and theory is also satisfying for the imaginary part f;(t) of open
end and hard wall reflection in Fig. LI3](ii) and in the case of open end reflection in
Fig. A13(i). Only in Fig. [LI3|(iii) and again for the case of open end reflection in
Fig. T3|(i) we see some deviations for f;(¢). This is not that surprising because by
calculating |f(¢)|> from the real an imaginary part of the fidelity amplitude we lose
information, so we could not expect perfect agreement while using the fitting parameter
for the real and imaginary part of fidelity amplitude, but the general tendency is always
shown by the dashed lines.

We also presented the fidelity amplitude to show that as one would expect from theory
for the case of reflecting ends one see a significant imaginary part of the fidelity amplitude
f1(t). Additionally in Fig. [LT3[ii) one can see that whenever the real part fr(¢) of the
fidelity amplitude are nearly equal, the imaginary part f;(¢) due to the difference in phase
shift between hard wall and open end reflection shows nearly a symmetric behaviour
according to the horizontal axis.

Having discussed three frequency ranges exemplary, we now look at the coupling param-
eter for the two cases of reflecting ends as a function of the frequency. From the fitting
parameters A\p, and A\, we determined the corresponding Ar dividing out Ay = Xg’ggt
and finally calculated the total phase shift ¢ using relations presented in Eq. (£23]). The
parameter ¢\, iAp, ¢ and their absolute values are plotted in Fig. The series of
plots on the right hand side gives a illustration of the oscillation in the fidelity. Over
a frequency range of ~ 6 GHz and we see a full and a half period of oscillations. As
expected the total phase shift ¢ mod 27 in the left plot at the bottom shows a satisfying
linear increasing with frequency which is more convincing in the frequency range between
7 and 9 GHz. This fact can also be seen in the top plot of Fig. where the resulting
difference in total phase shift Ay between the hard wall and open end reflection is shown
for the same frequencies. The expected phase shift Ay = 7 plotted as solid horizontal
line is only achieved in the mentioned frequency range.

Finally we perform checks on the coupling constants based on Eq. (£24) and (£25).
A first check on the the coupling constants A\r based on Eq. (£24) (bottom plotted
in Fig. £15) shows that the expected value of one (solid line) is again achieved in the
frequency range between 7 and 9 GHz. So we can state that we have confirmed exper-
imentally the theoretical prediction for the fidelity in the case of perturbation by an
antenna with reflecting ends for this frequency regime.

'In theory the correlation function Eq. (I0) is complex valued as long as the coupling parameters A
entering via Eq. (£I1) are complex.
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Figure 4.14: Parameters for the two cases of reflecting ends: Ay, (red filled circles) and
Aoe (blue open circles) as a function of mean frequency v. The three pictures
on the left show the imaginary part i\ of the total coupling parameter (top),
the imaginary part A7 of the coupling constant of the terminators (middle)
and the phase shift ¢ mod 27 (bottom). The pictures on the right show the

corresponding absolute values
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Figure 4.16: coupling constant Ay, as a function of the mean frequency v; determined
from the experimental Transmission coefficient T, (black triangles) and as

Aw = VAoeAnw (see Eq. [£.25]) (orange filled circles)

Check of the relation between the three terminations According to Eq. (£23]), the
square root of the product of the coupling constants for open end and hard wall reflection
should give Ay. Table[@Tlshows that for the frequency ranges (ii) and (iii) there is indeed
a good agreement between v/AeAnw, At and Aiyp. In the case (i) v AoeAnw agrees quite
good with the experimental parameter A;yo, but the fitting parameter is much larger.
This deviation reconfirms our arguments presented in the above discussion in paragraph:
Antenna with 50 (2 load.

Again extending our considerations looking at \/AscAnw as a function of frequency and
compare this quantity with AZ5g,. Plotting the two ways of determine the coupling con-
stant Ay in Fig.[4.16 again shows a good agreement in the whole frequency range between
7 and 9 GHz. So we checked the consistency of the theory for this regime. The reasons
for this experimental limits have not been examined so far.
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5 Conclusion

In this thesis I presented two works on scattering fidelity decay in a chaotic microwave
billiard. The first work describes the first experimental verification of the semiclassical
predictions for fidelity decay arising from a local boundary perturbation of a chaotic
quantum system and the second work, the influence of the coupling to the continuum on
the decay of fidelity was examined experimentally. This studies complements previous
experiments of our group, where the fidelity decay under the influence of various types
of geometrical perturbations was studied [sch05al, hoeh08, [sch05bl bod09] but for closed
systems exclusively.

In particular in the first work, we could confirm that the rate governing exponential fi-
delity decay exhibits oscillations as a function of the perturbation strength. The observed
non-monotonic behavior implies that for certain ranges of the perturbation strength the
fidelity decay becomes weaker (for fixed time) with increasing perturbation strength.
While the original semiclassical treatment [gou08] for a piston-type local boundary de-
formation was based on the assumption of a small piston displacement, the present mi-
crowave setting required a generalization of the semiclassical approach to arbitrary ratios
between piston displacement and width, which was performed by deriving an expression
for the decay exponent in terms of a quadrature in [koebll]. Quantitative agreement
between the measurements and this refined semiclassical theory was found despite the
fact that the microwave billiard does not really satisfy the underlying semiclassical as-
sumption, namely that the extent of the local perturbation, here the piston width w,
should be much larger than the de Broglie wave length A. On experimental side, there
remains the challenge to observe fidelity decay in the escape rate regime (for strong per-
turbations) characterized by a perturbation-independent fidelity decay rate. Naturally,
this regime is difficult to access since the expected signals are tiny.

In the second work we could confirm the prediction for the coupling fidelity in terms
of a modified VWZ (Verbaarschot, Weidenmiiller, Zirnbauer) integral [koeb10] experi-
mentally. First we found, that a smooth variation of the coupling, e.g. by varying the
coupling to an attached wave guide will not easily yield the information about the effect
of coupling to the continuum on the scattering fidelity. Each geometric variation will
give rise to both a change of coupling and internal scattering properties, thus screening
the purely external effect, as discussed in Sec. L3Il Secondly, we have included closed
channels within the description of VWZ. The speed of the fidelity decay for the open end
and hard wall reflection oscillates with frequency due to the corresponding variation of
the phase with frequency. A relation connecting the coupling parameters for the closed
channel (Aye, Anw) to those of the open channel (A50n) has been verified experimentally.
In all cases the fidelity decay for at least one of the reflecting antennas is faster than for
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5 Conclusion

the open channel, showing the strong influence of the imaginary part on the coupling
constant .
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