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ZusammenfassungIm Rahmen dieser Arbeit wurde mit Hilfe von Mikrowellenexperimenten die zeitab-hängige Stabilität von Quantensystemen gegen Störungen untersu
ht. Für �a
heMikrowellen-Resonatoren ist die zugehörige Wellenglei
hung äquivalent zur S
hrödinger-glei
hung, deshalb eignen si
h Messungen an so genannten Mikrowellenbillards um quan-tenme
hanis
he Fragestellungen experimentell zu untersu
hen. Um in Quantensystemendie Stabilität der Zeitentwi
klung gegen Störungen zu quanti�zieren hat Peres [per84℄das Überlappintegral der Zeitentwi
klung des glei
hen Anfangszustands unter einemungestörten und einem gestörten Hamiltonian eingeführt. Diese Gröÿe nennt man Fi-delity oder Los
hmidt E
ho; sie lässt si
h in Mikrowellenbillards unter Verwendung derS
attering Fidelity [s
h05a℄, die si
h für 
haotis
he Systeme und s
hwa
he Kopplung derMessantennen der gewöhnli
he Fidelity annähert, bestimmen.Im ersten Teil dieser Arbeit werden Untersu
hungen des Fidelity-Abfalls in einem klas-sis
h 
haotis
hen Mikrowellenbillard, das dur
h einen Stempel lokal am Rand deformiert(gestört) werden kann, vorgestellt. Ein vorhergesagter, ni
ht monotoner Übergang desLos
hmidt E
hos vom Fermi-Golden-Rule- zum Es
ape-Rate-Regime [gou08℄, der mitder Vergröÿerung der lokalen Störung des Randes einhergeht, wurde experimentellbestätigt. Des weiteren wurden im Experiment deutli
he Oszillationen der Abfallratein Abhängigkeit der Stempelposition gefunden, die quantitativ mit den zugehörigen the-oretis
hen Ergebnissen aus semiklassis
hen Bes
hreibungen zu lokalen Randstörungenübereinstimmen. Die wi
htigsten Ergebnisse dieses Abs
hnitts der Arbeit wurden bereitsin [koeb11℄ verö�entli
ht.Im zweiten Teil dieser Arbeit wurde der Abfall der Fidelity in einem Mikrowellen-Resonator, bei dem die Kopplung variiert wurde, untersu
ht. Die als Kopplungs�delitybezei
hnete Gröÿe wurde experimentell zunä
hst für einen ange�ans
hten Wellenleitermit variabler Spaltö�nung untersu
ht. Dabei zeigt si
h der E�ekt auf die Fidelity dur
hdie Variation der Randbedingung als gröÿer als der E�ekt dur
h die Änderung der Kop-plung. Deshalb wurde anstatt des Kanals ein Billard mit einer eingebra
hten Antennenmit drei vers
hiedenen Abs
hlüssen untersu
ht. Zum einen wurde die Antenne mit ein-er Re�exion am festen und o�enen Ende und mit einem 50Ω Abs
hluss versehen. Einequantitative Übereinstimmung mit der theoretis
hen Bes
hreibung, die auf einer modi-�zierten Verbaars
hot, Weidenmüller, Zirnbauer (VWZ) Theorie [ver85℄ beruht, wurdegefunden. Die wi
htigsten Ergebnisse dieses Teils, sowie eine detaillierte Bes
hreibungdes Modells in Form eines e�ektiven Hamiltonian mit komplexer Kopplungskonstanten,entwi
kelt von D.Savin, wurde in [koeb10℄ verö�entli
ht.





AbstractIn this work mi
rowave experiments are used to study the time dependent stability ofquantum systems against perturbations. For �at mi
rowave 
avities the 
orrespondingwave equation is equivalent to the S
hrödinger equation, therefore measurements withso 
alled mi
rowave billiards are suitable for studying quantum-me
hani
al questions ex-perimentally. To quantify the stability of quantum time evolution against perturbationsPeres [per84℄ introdu
ed the overlap of the time-evolution of the same initial state underan unperturbed and a perturbed Hamiltonian. This quantity is known as �delity orLos
hmidt e
ho; it 
an be determined in mi
rowave billiards using the 
on
ept of s
at-tering �delity [s
h05a℄, whi
h for 
haoti
 systems and weak 
oupling of the measuringantenna approa
hes the ordinary �delity.In the �rst part of this work a study of the �delity de
ay in 
lassi
ally 
haoti
 mi
rowavebilliard for a lo
al, pistonlike boundary perturbation is presented. Experimentally a pre-di
ted nonmonotoni
 
rossover from the Fermi golden rule to the es
ape-rate regime ofthe Los
hmidt e
ho de
ay with in
reasing lo
al boundary perturbation [gou08℄ is veri-�ed. In parti
ular, pronoun
ed os
illations of the de
ay rate as a fun
tion of the pistonposition have been observed in the experiments whi
h quantitatively agree with 
orre-sponding theoreti
al results based on a re�ned semi
lassi
al approa
h for lo
al boundaryperturbations. The main results presented in this part have been published in [koeb11℄.In the se
ond part of this work the s
attering �delity de
ay in a mi
rowave billiard isstudied for a perturbation, where the 
oupling to the outside is varied. The resultingquantity, 
oupling �delity, is experimentally studied �rst for an atta
hed wave guidewith variable opening of a slit. Thereby the e�e
t on the �delity due to the 
hange ofboundary 
ondition was larger than the e�e
t of the 
hange of 
oupling. Thus insteadof using a 
hannel for the 
oupling an antenna was introdu
ed and three di�erent ter-minations atta
hed. Terminations of re�exion on open and 
losed end and an 50Ω loadwere 
ompared. Quantitative agreement is found with the theory, whi
h is obtainedfrom a modi�ed Verbaars
hot, Weidenmüller, Zirnbauer (VWZ) approa
h [ver85℄. Themain results presented in this part and a more detailed model des
ription in terms of ane�e
tive Hamiltonian with a 
omplex 
oupling 
onstant developed by D.Savin have beenpublished in [koeb10℄.





Contents

1 Introduction 1

2 Fundamental concepts 52.1 Billiard systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Mi
rowave experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.3 S
attering formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.4 S
attering �delity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Fidelity decay for local boundary perturbation 93.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 123.3.2 Results and Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Fidelity studies by varying the coupling 214.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.2.1 The generalized VWZ approa
h to �delity . . . . . . . . . . . . . 214.2.2 Coupling Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.3.1 First experiment: Atta
hed wave guide with variable 
oupling . . 244.3.2 Se
ond experiment: Antenna with di�erent terminators . . . . . . 27
5 Conclusion 43

Bibliography 45

i





1 IntroductionThe word 
haos originally 
omes from the Greek χάoς, it refers to the formless or voidstate pre
eding the 
reation of the universe or 
osmos in the Greek 
reation myths,more spe
i�
ally the initial �gap� 
reated by the original separation of heaven and earth.Nowadays we are used to an informal meaning of 
haos as a state of 
onfusion. Inmathemati
s and natural s
ien
e 
haos refers to a very spe
i�
 kind of unpredi
tabledeterministi
 behaviour that is very sensitive to its initial 
onditions.In 1892 Jules Henri Poin
aré published 'Les Méthodes nouvelles de la Mé
aniqueCélesté' [poi92℄. In this resear
h on the three-body problem using Isaa
 Newton's laws ofmotion (Classi
al Me
hani
s) he be
ame the �rst person to dis
over a 
haoti
 determin-isti
 system. In his later book 'S
ien
e et Méthode'[poi08℄ he des
ribes su
h a system asfollows:Une petite erreur sur les premières produirait une erreur énorme sur lesderniers. La prédi
tion devient impossible et nous avons le phénomène for-tuit.whi
h he illustrates with meteorology, an important �eld of studying time evolution inphysi
s till this day. At the same time two other fundamental theories, namely quantumme
hani
s and the theory of relativity started their rapid development. Many physi
istswere fo
used on these two theories, so the results of Poin
aré lead a shadowy existen
euntil the se
ond half of the last 
entury. Chaos theory was formalized only after the mid-
entury, when it �rst be
ame evident for some s
ientists that linear theory, the prevailingsystem theory at that time, simply 
ould not explain the observed behaviour of 
ertainexperiments (for example a double pendulum).The main 
atalyst for the development of 
haos theory was the ele
troni
 
omputer.Mu
h of the mathemati
s of 
haos theory involves the repeated iteration of (simple)mathemati
al formulas, whi
h would be impra
ti
al to do by hand. Computers madethese repeated 
al
ulations pra
ti
al, while �gures and images made it possible to visu-alize these systems. In the 1960's Edward Lorenz an early pioneer of 
haos theorywho worked on weather predi
tion [lor63℄, simulated his weather model on a 
omputer.He realized, that small 
hanges in initial 
onditions produ
ed large 
hanges in the long-term out
oming weather patterns. This sensitive dependen
e on initial 
onditions 
ameto be known as the �butter�y e�e
t�. Lorenz's dis
overy showed that even detailed at-mospheri
 modeling 
annot in general make long-term weather predi
tions. Weather isusually predi
table about a week ahead only! This surprising �nding of Lorenz is anexample for the relevan
e of studies of 
lassi
al 
haoti
 systems in understanding dailylife problems. Probably this fa
t is the main reason why 
lassi
al nonlinear dynami
s1



1 Introdu
tionenjoy high popularity among the general publi
. Talking to non-physi
ists interestedin my work, many of them had heard about the butter�y e�e
t or have seen a doublependulum, but simply nobody has heard something about �Quantum Chaos�, the �eldwhere the presented work is residing. Nevertheless even if you have no idea what it is it is��avored� with �quantum� and �
haos�, so simply (or only) the word attra
ts interest.In his s
holarpedia arti
le Martin Gutzwiller [gut07℄ illustrates Quantum Chaos as:'Building a bridge between Quantum Me
hani
s (QM) and Classi
al Me
hani
s (CM)',whi
h provides a transition from QM to CM, as well as from CM to QM and whoseexisten
e puts limits on CM and on QM. On this bridge one studies the quantum me-
hani
s of 
lassi
ally 
haoti
 systems. Be
ause Chaos in a 
lassi
al sense does not existin QM the more des
riptive term 'quantum 
haology' was proposed by Mi
hael Berry[ber87℄, but it was not generally a

epted. Quantum Chaos simply sounds better. Asstandard introdu
tion and a detailed review on Quantum Chaos I refer to the mono-graphs �Quantum Signatures of Chaos� by Fritz Haake [haa01℄ and �Quantum Chaos -An Introdu
tion� by Hans-Jürgen Stö
kmann [stoe99℄. Talking to physi
ists who havealready heard something about Quantum Chaos, they always 
onne
t this �eld with the-oreti
al physi
s. Doing experiments in this �eld using so 
alled mi
rowave billiards is atleast for most of these physi
ists 
ompletely unknown and a somehow strange �eld ofresear
h.On Quantum Chaos only two 
lasses of experimental results had been available tillthe 1990's. From nu
lear physi
s the spe
tra of 
ompound nu
lei [por65℄ whi
h are
losely 
onne
ted with the development of random matrix theory [wig55, meh63℄ andfrom atomi
 physi
s the experiments with highly ex
ited hydrogen and alkali atoms instrong magneti
 �elds [hol86, mai86℄. Then di�erent experiments using 
lassi
al waveshave been performed, starting with so 
alled mi
rowave billiards [stoe90℄. These areanalogue experiments with mi
rowave resonators to study the properties of quantum bil-liards. Other 
lassi
al wave experiments have been performed with water surfa
e waveson water vessels [blue92℄ or with vibrating blo
ks [ell95, lob03, gor06, lob08℄. In all ex-periments 
lassi
al waves are used to study questions whi
h are often relevant for matterwaves. That is why some authors prefer the term "wave 
haos" [seb90, so95, tan07℄ todes
ribe this experimental �eld of Quantum Chaos resear
h. The basi
 
on
epts of theseexperiments are re
apitulated in 
hapter 2. For an introdu
tion in Quantum Chaos in-
luding billiard experiments with 
lassi
al waves espe
ially mi
rowaves I refer to the book[stoe99℄. A short overview also 
an be found in the s
holarpedia arti
le: on �Mi
rowavebilliards and Quantum Chaos� [stoe10℄.Having adumbrated the �eld of resear
h for the presented work I want to fo
us on themain topi
: Sensitivity of quantum dynami
s to perturbations. This important obje
tivein the �eld of Quantum Chaos has been studied experimentally in this work. Measuredby the overlap between time-evolved perturbed and unperturbed Hamiltonians with sameinitial state, as suggested by Peres [per84℄, stability of quantum time evolution has beenstudied from various viewpoints and under di�erent names in the past. In the followingequation
F (t) = |〈ψ2(t)|ψ1(t)〉|2 = |〈ψ0|eiH2t/~e−iH1t/~|ψ0〉|2 = |〈ψ12(t)|ψ0〉|2 =M(t) (1.1)2



the main quantity of interest for this thesis is written expli
itly. The equation 
an bedes
ribed by two possible interpretations either the ��delity� F (t) or the �Los
hmidte
ho� (LE) M(t).The �delity 
on
iders the overlap of the quantum state |ψ1(t)〉 = e−iH1t/~|ψ0〉 obtainedfrom an initial state |ψ0〉 in the 
ourse of its evolution time t under a Hamiltonian H ,with the state |ψ2(t)〉 = eiH2t/~|ψ0〉 that results from the same initial state by evolvingthe latter for the same time, but under a perturbed Hamiltonian H2 di�erent from H1.The LE 
ompares the overlap of the initial state |ψ0〉 and the state |ψ12(t)〉 obtained by�rst propagating |ψ0〉 till t under the Hamiltonian H1, and then ba
kwards for the sametime under H2. The 
onsidered overlap equals unity at t = 0 and typi
ally de
ays furtherin time.In the �eld of quantum information �delity plays an important role for quantifying thesus
eptibility of quantum dynami
s to environmental or other external perturbations[nie00℄. Quantum information theory enables one to do things not possible by 
lassi
almeans, e.g., perform quantum 
omputation. The main obsta
le in produ
ing quantumdevi
es that manipulate individual quanta are errors in the evolution, either due tounwanted 
oupling with the environment or due to internal imperfe
tions. Therefore,the goal is to build a devi
e that is resistant to su
h perturbations. For this one oughtto understand the behaviour of �delity in di�erent situations to know how to maximizeit for the time duration of the 
al
ulation. The �delity for this 
ase needs to be of theorder F ≈ 0.9999 [nak06℄. Using error 
orre
tion maybe 0.999 might be su�
ient.In semi
lassi
al quantum and wave me
hani
s the terminus LE is often used [usa98℄espe
ially for Hamiltonians asso
iated with 
omplex, in parti
ular 
lassi
ally 
haoti
dynami
s. The terminology refers to the notion of e
hoes from momenta reversal in aHamiltonian system 
onsidered by Los
hmidt [los76℄ in the 19th 
entury. The sensitivityto perturbations as measured by the LE allows for the 
omparison between quantumand 
lassi
al situation. For 
lassi
al systems LE gives the same exponential sensitivityto perturbations of the evolution as to perturbations of initial 
onditions, whereas forquantum system the LE 
an behave in a very di�erent way, displaying a ri
h varietyof regimes. Depending on the nature and strength of the perturbation for fully 
haoti
systems there are three prominent LE/�delity de
ay regime, the perturbative Gaussian,the Fermi-golden-rule(FGR) and the Lyapunov regime [ja
01, jal01, 
er02, 
u
02℄. Inall this referen
es so 
alled �global� perturbations have been 
onsidered, that meansthat there is a total rearrangement of spe
trum and eigenfun
tions already for moderateperturbation strength, or in a semi
lassi
al pi
ture, that the Hamiltonian perturbationa�e
ts every traje
tory of the system, and therefore all traje
tories are responsible forthe de
ay of the LE.Experiments with mi
rowave 
avities or elasti
 bodies seem to provide good options tostudy the de
ay of �delity [s
h05a℄, but a di�
ulty arises. Fidelity implies an integra-tion over the entire spa
e. In two-dimensional mi
rowave billiards the antenna alwaysrepresents a perturbation, and thus moving the antenna defeats the purpose of a �delitymeasurement, as the wave-fun
tion taken at any point is that of a slightly di�erent3



1 Introdu
tionsystem. In 
ontrast to wave fun
tion measurements, in �delity experiments we are pre-
isely interested in su
h di�eren
es, and thus wave fun
tions measured with moveableantennas [ste92, ste95, kuh07℄ or a moveable perturbation bodies [sri91, bog06, lau07℄are not appropriate. In elasti
 experiments on solid blo
ks [lob03, gor06, lob08℄ or 3Dmi
rowave billiards the wave fun
tion inside the volume seems to be ina

essible anyway[doer98, alt97℄. This lead to the development of the 
on
ept of s
attering �delity [s
h05a℄whi
h tests the sensitivity of S-matrix elements to perturbations and equals the ordinary�delity for fully 
haoti
 systems and weak 
oupling. This is also of intrinsi
 interest, sin
ethe s
attering matrix may be 
onsidered as the basi
 building blo
k at least in the 
aseof quantum theory [str00, leh55℄.In former studies the s
attering �delity has been investigated in 
haoti
 mi
rowave bil-liards by 
onsidering a perturbation of the billiard interior. It 
an be shown that in su
ha 
ase the random 
hara
ter of wave fun
tions 
auses the s
attering �delity to representthe usual �delity, provided that appropriate averaging is taken [s
h05a, hoeh08℄. S
arsand paraboli
 manifolds will obviously 
hange that 
orresponden
e, but their e�e
t 
anbe avoided in experiments [s
h05a℄. Spe
i�
ally, two di�erent types of interior pertur-bations were experimentally studied. In the �rst set of experiments a billiard wall wasshifted, realizing the so-
alled global perturbation [s
h05a, s
h05b℄, meaning that thereis a total rearrangement of both spe
trum and eigenfun
tions already for moderate per-turbation strengths. A good agreement with predi
tions from random matrix theory(RMT), expe
ting Gaussian or exponential de
ay depending on perturbation strength,was found. A theoreti
al and experimental investigation of �delity de
ay for a type of�lo
al� perturbations in the perturbative regime, where the eigenstates are not signi�-
antly modi�ed by the perturbation, has been done in [hoeh08℄. On the experimentalside a small s
atterer was shifted inside the mi
rowave billiard in a two-dimensional arrayof point-like s
atterers. Using the random plane wave 
onje
ture, an algebrai
 de
ay 1/twas expe
ted theoreti
ally and 
on�rmed experimentally.In the present thesis the s
attering �delity de
ay is studied in a 
haoti
 mi
rowave bil-liard for two other types of lo
al perturbations. In the �rst part of this thesis �delityde
ay is studied in 
lassi
ally 
haoti
 mi
rowave billiards for a lo
al, piston-like bound-ary perturbation. Experimentally a predi
ted non-monotoni
 
ross-over from the FermiGolden Rule to the es
ape-rate regime of the LE de
ay with in
reasing lo
al boundaryperturbation [gou08℄ is veri�ed. In parti
ular, a pronoun
ed os
illation of the de
ay rateas a fun
tion of the piston position is observed, whi
h quantitatively agree with 
orre-sponding theoreti
al results based on a re�ned semi
lassi
al approa
h for lo
al boundaryperturbations. The presented results have been published in [koeb11℄. In the se
ondpart the �delity de
ay in a mi
rowave billiard is 
onsidered, where the 
oupling to anatta
hed antenna is varied. The resulting quantity, 
oupling �delity, is experimentallystudied for three di�erent terminators of the antenna: a hard wall re�e
tion, an openwall re�e
tion, and a 50Ω load, 
orresponding to a totally open 
hannel. Quantitativeagreement is found with the theory obtained from a modi�ed VWZ [ver85℄ approa
h.The main results presented in this part and a more detailed model des
ription in termsof an e�e
tive Hamiltonian with a 
omplex 
oupling 
onstant developed by D.Savin havebeen published in [koeb10℄.4



2 Fundamental concepts

2.1 Billiard systemsClassi
al billiards 
onstitute an important 
lass of dynami
al systems. In 
lassi
al bil-liard systems, a point parti
le is 
on�ned to a region in 
on�guration spa
e and 
ollideswith the boundary of the region su
h that the angle of in
iden
e equals the angle ofre�e
tion. The systems dynami
 depends on the shape of the billiard-boundary and 
anbe 
ompletely des
ribed by the entirety of its periodi
 orbits. Depending on the billiard-shape one 
an distinguish di�erent types of dynami
s � so 
alled regular dynami
, e.g.the distan
e between two phase spa
e traje
tories with similar initial 
onditions grows atmost linear; and 
haoti
 dynami
, where the distan
e between two phase spa
e traje
to-ries with similar initial 
onditions grows exponentiallly. The dynami
s of most billiardsis neither 
ompletely (i.e. for all initial 
onditions) regular nor 
ompletely 
haoti
, butis mixed.For a quantum-me
hani
al treatment of billiard systems one 
an no longer use the 
lassi-
al 
hara
terisation of regular and 
haoti
 behaviour in terms of traje
tories, be
ause ofthe Heisenberg un
ertainty prin
iple. A quantum billiard is des
ribed by the stationaryS
hrödinger equation of a free parti
le with Diri
hlet boundary 
onditions.Billiard systems demonstrate fundamental physi
al phenomena that 
an be observed inlaboratory settings.
2.2 Microwave experimentsMi
rowave experiments with �at 
avities are meanwhile a well-known paradigm in the�eld of Quantum Chaos [stoe99℄.About 20 years ago in our group Stö
kmann and Stein started mi
rowave studies onirregular shaped metalli
 resonators (Fig. 2.1) with top and bottom plate parallel toea
h other [stoe90℄. One 
an des
ribe this systems by a two-dimensional ele
tromag-neti
 wave equation (Helmholtz equation) with Diri
hlet boundary 
onditions. As longas a maximum frequen
y νmax = c/(2h), where h is the height of the resonator and cdenotes the speed of light is not surpassed a one-to-one 
orresponden
e to QM is given.The 
orresponden
e of the Helmholtz equation to the S
hrödinger equation with sameboundary 
onditions allows to study predi
tion for quantum billiards by means of �at5



2 Fundamental 
on
epts

Figure 2.1: Sket
h of a mi
rowave resonator in exploded view (upper �gure) and se
tionaldrawing (lower �gure). The resonator 
onsist of a top (t), 
ontour (
) anda bottom (b) plate made of brass. The shape of the mi
rowave billiard isgiven by the 
ontour plate, whi
h in general is not a single plate. Antennas,whi
h are introdu
ed into the 
avity through small holes, are used to fed inmi
rowaves into the resonator. The height of the resonators, whi
h have beenused for all presented experimental works, is h = 8mm.mi
rowave resonators, whi
h are named mi
rowave billiards. Fortunately, the 
orrespon-den
e named above is not restri
ted to 
losed systems, it in
ludes the s
attering situationas well. So it is possible to verify predi
tions from quantum-me
hani
al s
attering theoryby means of open mi
rowave resonators with a number of atta
hed open 
hannels, eitherantennas or wave guides. All experimental studies presented in this work are based onthis 
orresponden
e.
2.3 Scattering formalismIn nu
lear physi
s mu
h insight is gained by performing nu
lear rea
tion experimentsusing parti
le a

elerators. The prin
iple of these experiments 
an be des
ribed as athree-step pro
ess. In a �rst step an a

elerated parti
le is moving towards the rea
tiontarget. Ideally all quantum numbers (spin, parity, momentum, et
.) are known. This setof numbers labels the in
ident 
hannel. In a se
ond step the parti
le hits the target, thatmeans, it intera
ts lo
ally with some potential whi
h might 
ause some of the quantumnumbers to 
hange. In the third and �nal step a parti
le leaves the intera
tion region to6



2.3 S
attering formalism

Figure 2.2: Sket
h of s
attering system to demonstrate the notation of in
oming andoutgoing wavesbe registered by some dete
tor system that determines the new set of quantum numberswhi
h now labels the �nal 
hannel. This whole pro
ess de�nes a s
attering problemwhere the fundamental 
hallenge is to determine the transition probability from a giveninitial 
hannel to a given �nal 
hannel.In our experiments mi
rowaves are fed into the resonator using antennas, whi
h are in-trodu
ed into the 
avity through a small hole. The re�e
tion and transmission propertiesbetween di�erent antennas are des
ribed by the s
attering matrix S It is de�ned by
b = Sa , (2.1)where a = (a1, a2, · · · ) is the ve
tor of amplitudes of the waves entering through thedi�erent 
hannels and b = (b1, b2, · · · ) is the amplitude ve
tor of the outgoing waves. Thediagonal elements Sii of S 
orrespond to the re�e
tion amplitude at antenna i, whereasthe non diagonal elements Sij are related to the transmission amplitude between antenna

i and j (Fig. 2.2). Mi
rowave experiments allow measuring of the 
omplete s
atteringmatrix in
luding the phases in frequen
y spa
e using a ve
tor network analyser (VNA).The following expression whi
h gives a 
onne
tion between the Hamiltonian H of thesystem and the s
attering matrix S was initially developed in nu
lear physi
s [mah69,ver85, sok89℄:
S(E) = 1− 2iW † 1

E −Heff
W, (2.2)where W dis
ribes the 
oupling between the internal Hamiltonian H and the s
attering
hannels. The 
oupling modi�es H to be
ome an e�e
tive Hamiltonian

Heff = H − iWW † (2.3)in Eq. (2.2). It should be noted that the s
attering matrix is in general a 
omplexvalued obje
t and in nu
lear physi
s only the 
ross se
tion, that is its modulus square, isexperimentally a

essible. Eq. (2.2) provides the 
ru
ial 
onne
tion between theory andmeasurement. It links the information of the s
attering matrix obtained in experiments tothe Hamiltonian whi
h is of interest to theoreti
al 
onsiderations. For quantum systemsexhibiting 
haoti
 dynami
s the Hamiltonian 
an be des
ribed using Random Matrix7



2 Fundamental 
on
eptsTheory (RMT). The 
ouplings W are given parameters of the problem and are oftenassumed to follow a Gaussian distribution. A possible energy dependen
e of W is oftennegle
ted. Using this universal des
ription of a s
attering pro
ess, Eq. (2.2) allows forpredi
tions of statisti
al properties of the s
attering matrix. This approa
h in Eq. (2.2)has been su

essfully applied to study various aspe
ts of open systems, in
luding wavebilliards [stoe99, fyo97, dit00, fyo05℄.
2.4 Scattering fidelityFidelity, as it is usually de�ned (Eq. (1.1)), also applies to s
attering systems. A wavepa
ket 
an be evolved with two slightly di�erent s
attering Hamiltonians. This wouldbe the standard �delity of a s
attering system. In 
ontrast, �s
attering �delity� standsfor a quantity whi
h 
an be obtained from simple s
attering data, though under 
ertain
onditions it agrees with the standard �delity.We now pro
eed with the introdu
tion of the 
on
ept of s
attering �delity. In mi
rowaveexperiments we 
an measure s
attering matrix elements for unperturbed (Sab(ν)) andperturbed (S ′

ab(ν)) systems independently in frequen
y spa
e. By taking the Fouriertransform
Ŝab (t) =

∫

dν e2πıνtSab(ν) (2.4)of any s
attering matrix element we obtain Ŝ, the s
attering matrix in the time domain.This leads to the de�nition of the s
attering �delity amplitude [s
h05a℄:
fab(t) =

〈Ŝab(t)Ŝ
′∗
ab(t)〉

√

〈Ŝab(t)Ŝ∗
ab(t)〉〈Ŝ ′

ab(t)Ŝ
′∗
ab(t)〉

. (2.5)This de�nition ensures that fab(0) = 1. Furthermore, an overall de
ay of the 
orrelationfun
tions due to absorption or other open 
hannels drops out, provided the de
ay is thesame for the parametri
 
ross-
orrelation fun
tions in the nominator and the auto
orre-lation fun
tions in the denominator. The s
attering �delity itself is
F (t) = |fab(t)|2 . (2.6)For 
haoti
 systems and weak 
oupling of the measuring antenna the s
attering �delityapproa
hes the ordinary �delity (Eq. (1.1)) [s
h05a℄.

8



3 Fidelity decay for local boundary
perturbation

3.1 IntroductionIn Ref. [gou07℄ Goussev and Ri
hter extend the original semi
lassi
al approa
h to theLos
hmidt e
ho (LE) [jal01, 
u
02℄ to strong lo
al perturbations in 
oordinate spa
e.Analyti
ally they found a new LE de
ay for 
haoti
 billiards with a lo
al boundary de-formation where the LE de
ays exponentially in time, with a rate whi
h equals to the
lassi
al �es
ape rate� from a related open billiard. This open billiard is obtained fromthe original one by removing the perturbation-a�e
ted region of its boundary. Goussevand Ri
hters' numeri
al study was performed for a desymmetrized diamond (DD) billiardand showed a good agreement with an analyti
al de
ay law exp(−2γt), where γ is the
lassi
al �es
ape rate� from the related open billiard. A generalization of this approa
h toweak perturbations was published in [gou08℄ and predi
ted a non-monotoni
 
ross-overfrom the Fermi-golden-rule regime to the es
ape-rate regime with in
reasing perturba-tion strength. For a spe
ial type of billiard's boundary deformation, where the area ofdeformation is in
reased by an imaginary �piston� pulled out of the billiard, the LE de
ayrate is expe
ted to show os
illations as a fun
tion of the piston position (perturbationstrength). Numeri
ally the predi
ted 
rossover has been veri�ed for maps [are09℄. Inquantum wave pa
ket simulations for billiards only pre
ursors of this behaviour 
ould befound [gou08℄. An experimental veri�
ation of the predi
ted os
illations using mi
rowavebilliards will be presented in this 
hapter. The main results have been already publishedin [koeb11℄.
3.2 TheoryHere I want to give a short outline of the main theoreti
al results needed for the in-terpretation of the experiments. A detailed derivation 
an be found in the followingarti
les [gou07, gou08, koeb11℄. In the semi
lassi
al regime one 
an write for the LEapproximately

M(t) ≈ e−κγt (3.1)negle
ting the 
ontribution of a diagonal part to the LE [gou08℄. In the e�e
tive de
ayrate κγ the dimensionless κ 
an be expressed as
κ = 2

(

1− Re〈e2πiu/λ〉
)

. (3.2)9



3 Fidelity de
ay for lo
al boundary perturbation

Figure 3.1: Piston-like boundary deformation with examples of 
orrelated traje
torypairs, unperturbed (blue) and perturbed (red), belonging to sets Ω1 (a), Ω3(b) and Ω5 (
). Origin: [koeb11℄In this expression for κ we 
all u the deformation fun
tion. This deformation is given bythe di�eren
e in the length between the perturbed traje
tory and the unperturbed one.While the perturbation is introdu
ed by the lo
al deformation of the 
haoti
 billiardsboundary. Dividing out the de Broglie wavelength λ the deformation is res
aled to unitsof the de Broglie wavelength. Now we look at a spe
ial type of boundary deformation,where the area of deformation has the shape of a re
tangle whi
h 
an be varied at oneside by a �piston� (Fig. 3.1). This 
orresponds exa
tly to the experimental realisationof the perturbation (see Se
. 3.3.1). For a piston width w and displa
ement h of thepiston, the expression (3.2) 
an be 
al
ulated in the limit h≪ w (see [gou08℄) up to thefollowing expression
κ = πH1(4πh/λ), (3.3)where H1 is the Struve H-fun
tion of �rst order. For arbitrary w and h this 
an begeneralized to

κ = 2− 2

w

∞
∑

k=0

∫

Ω2k+1

dx dθ cos θ cos [4π
λ

(h cos θ + kw sin θ)

] (3.4)with the integration domains Ω2k+1 over in
ident positions x and momentum dire
tions
θ (see Fig. 3.2). Detailed 
al
ulation 
an be found in the appendix of [koeb11℄. Thisexpression 
an be evaluated numeri
ally. Furthermore, the expression for the LE inEq. (3.1) depends on the 
lassi
al es
ape rate γ whi
h belongs to the 
orresponding openbilliard if the lo
al piston deformation is 
ompletely removed from the boundary region.The es
ape rate is given by

γ =
p0
mld

, (3.5)where p0 denotes the momentum and m denotes the mass of a 
lassi
al parti
le, while ldstands for the average dwell length. The later one is determined by the length of pathsin the related open 
haoti
 billiard obtained from the original (
losed) one by removingthe boundary region. For billiards, where the deformation widths (�openings�) w are10



3.2 Theory

Figure 3.2: S
hemati
 representation of the regions Ω1, Ω3, and Ω5, see text. Furtherregions, Ω2k+1 with k ≥ 3, 
ontributing to the sum on the right hand side ofEq. (3.4) are not shown in the �gure; they 
luster as narrow stripes �to theright� of Ω5 and approa
h θ = π/2 in the limit k → ∞. Origin: [koeb11℄mu
h smaller than the perimeter of the 
losed billiard one 
an approximate the averagedwell length ld ≈ πA/w where A is the area of the 
orresponding 
losed billiard. For
omparison with our experimental data from mi
rowave billiards, p0/m is set to the speedof light c and therefor the 
orresponding es
ape rate 
an be determined as
γ ≈ c

w

πA
. (3.6)The perturbation strength, as the main parameter-dependen
es of the Los
hmidt e
ho,is in semi
lassi
al theory measured by the a
tion 
hange whi
h results from the per-turbation. So in our 
haoti
 billiard systems with piston-like boundary deformationthe displa
ement h of the piston is the parameter whi
h introdu
es the perturbationstrength.For the perturbation strength it proves 
onvenient (see Ref. [gou08℄) to de�ne the di-mensionless quantity

χ = 2π
√

〈u2〉/λ, (3.7)depending on square-root of se
ond moment of the deformation fun
tion u in units of thede Broglie wavelength λ. For a piston-type deformation the dimensionless perturbationstrength reads
χ = 2π

√

(8/3)h/λ, (3.8)whi
h is simply a res
aled displa
ement h in units of λ.Depending on the perturbation strength χ based on the Eqs. (3.1, 3.2) one 
an identifydi�erent de
ay regimes of the LE. For a weak lo
al perturbations, χ ≤ 1, the LE de
ayslike
M(t) ≈ e−χ2γt, (χ ≤ 1) (3.9)11
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Figure 3.3: Sket
h of the 
haoti
 Sinai-shaped billiard (length of 472mm, width of200mm and a quarter-
ir
le of radius of 70mm) with a variable piston-like lo
al boundary deformation. The piston position 
an be 
hanged froma displa
ement h = 45mm to h = 0mm for four di�erent piston widths
w = 20, 40, 70, 98mm. At position a the measuring antenna is introdu
ed.The additional elements were inserted to perform ensemble averages (rotat-able ellipse) and to redu
e the in�uen
e of boun
ing balls.so the rate of the exponential de
ay depends on the perturbation strength χ, in analogyto the Fermi Golden Rule regime found for global perturbations. On the other hand, inthe limit of strong lo
al perturbations, χ≫ 1,

M(t) ≈ e−2γt, (χ≫ 1) (3.10)the LE de
ay rate is independent of perturbation strength χ. The 
orresponden
e to thees
ape rate regime is presented in [gou07℄.In the following se
tion we will use Eq. (3.1), together with the expressions (3.3) and(3.4) for the de
ay rate κ, for a 
omparison with the experimentally determined s
attering�delity (Eq. (2.6)).
3.3 Experiment

3.3.1 Experimental setupOur experiment has been done with a mi
rowave resonators of height of 8mm whi
h 
anbe treated as a two-dimensional billiard system for frequen
ies below 18GHz. In Fig. 3.3the geometry of the setup is illustrated. The basi
 shape is a quarter Sinai billiard,where additional elements have been inserted to redu
e the in�uen
e of boun
ing-ballresonan
es. This leads to a 
lassi
al dynami
s of the billiard whi
h is 
haoti
. Forintrodu
ing the boundary deformation the straight left boundary of the unperturbedbilliard was modi�ed. Di�erent pistons of four widths w have been atta
hed su

essivelyto the billiard whi
h allow for a variation of the es
ape rate γ (Eq. (3.5)). Ea
h piston12



3.3 Experiment

Figure 3.4: Re�e
tion |Saa| for w = 40mm for di�erent displa
ements h in a frequen
yrange from 17 to 18GHz.position 
an be varied horizontal in steps of 0.5mm via a step motor from a displa
ement
h = 45mm to h = 0mm, so the perturbation strength h respe
tively χ 
an be 
ontrolled
hanging the area of deformation. To perform ensemble averages a rotating ellipse (seeFig. 3.3) is inserted to the billiard. For measuring the re�e
tion S-matrix element Saaat position a an antenna is �xed and 
onne
ted to an Agilent 8720ES ve
tor networkanalyser (VNA). The measurement was done in a frequen
y range from 2 to 18GHzwith a resolution of 0.1MHz for four piston widths and all displa
ements h realizing 18di�erent positions of a rotating ellipse. The unperturbed system is de�ned as the onewith the straight wall, 
orresponding to h = 0mm.
3.3.2 Results and DiscussionFrom the experimentally determined s
attering matrix elements Saa the s
attering �delityis 
al
ulated with h = 0mm (billiard with straight wall) as unperturbed system and
h 6= 0mm (billiard with boundary deformation) as perturbed system, using Eq. (2.6).Ne
essary averaging 〈· · · 〉 for the 
orrelation fun
tions in Eq. (2.6) has been performedin all 
ases by an ensemble of 18 system realisations with di�erent positions of therotating ellipse. The presented experimental results of the s
attering �delity de
ay for thepiston-like boundary perturbation will now be 
ompared with the theoreti
al predi
tions(Eqs. (3.1)-(3.4)) for LE de
ay for this spe
i�
 type of perturbation. The presentation ofour results start with exemplary 
hosen spe
tra of our measured data. Fig. 3.4 shows the13
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Figure 3.5: Measured s
attering �delity de
ay F (t), Eq. (2.6), (solid lines with symbols)for three di�erent piston displa
ements h1 = 1mm (triangles, blue), h2 =
5mm (
ir
les, green), h3 = 10mm (squares, red), for a frequen
y range 17−
18GHz. The average frequen
y ν̄=17.5GHz 
orresponds to a average deBroglie wavelength λ̄ ≈ 17mm. The dashed lines show the 
orrespondingsemi
lassi
al predi
tion, Eq. (3.1), for the LE de
ay, with κ 
hosen as freeparameter: κ1 = 0.26; κ2 = 2.78; κ3 = 1.09, respe
tively. The time is given inunits of the dwell time 1/γ, with γ determined from experimental parametersvia Eq. (3.5) with w = 40mm.absolute value of the re�e
tion matrix element |Saa| as a fun
tion of frequen
y in a rangefrom 17 to 18GHz for a piston of width w = 40mm in four di�erent piston displa
ements

h =0,1,5, and 10mm. In the 
hosen frequen
y range we are in a regime of overlappingresonan
es. Thus we 
an not see shifts or broadening of single resonan
es. Comparingthe results for the measurement of the billiard with the straight wall (h = 0mm) to thethree spe
tra with boundary deformations (h 6= 0mm) we 
an state that over all thedi�eren
es between the bla
k line (h = 0mm) di�ers most from the red line (h = 5mm).But altogether the di�eren
es are rather small. So it is somehow surprising that we seesu
h a 
lear di�eren
e in the s
attering �delity F (t), Eq. (2.6), presented in Fig. 3.5, wherethe s
attering �delity F (t) is plotted as symbols and solid lines exemplary for a pistonof width w = 40mm in three di�erent piston displa
ements h =1,5, and 10mm a
ting asperturbation to the system. As dashed lines the 
orresponding semi
lassi
al predi
tionfor the Los
hmidt e
ho de
ay a

ording to Eq. (3.1) are added. Parameter γ is always
al
ulated via Eq. (3.6) using the 
orresponding geometri
al parameter and 
onstants,while κ is obtained by a �t to the experimental data. Beyond a 
ertain time, whi
h14



3.3 Experimentpasses until the perturbation is �seen� during the measuring pro
ess, a good agreementbetween the expe
ted exponential law with LE de
ay exponent κ and the experimental�delity de
ay is found. In
reasing the displa
ements h, illustrated in Fig. 3.5 by thesu

essive triangle (blue), 
ir
le (green) and squares (red) tra
es one 
an get a �rst ideaof a non-monotoni
 behaviour of LE de
ay exponent κ with h, as the de
ay for the smallerperturbation (h =5mm) is faster than the de
ay with larger perturbation (h =10mm).Lets now take a 
loser look at the dependen
e of the Los
hmidt de
ay exponent κ onthe displa
ements h of the piston. In Figs. 3.6 (i)-(iv) for all four deformation widths
w the de
ay rate κ is plotted as a fun
tion of deformations height h of the perturbedsystem. Coloured symbols in Fig. 3.6 (ii) at h = 1, 5 and 10mm mark data points
κ(h), obtained from �tting to the three 
ases of experimental �delity de
ay whi
h havebeen shown in Fig. 3.5. All asterisks show data points κ(h) whi
h have been obtainedusing the same pro
edure. In all four plots one 
an re
ognize an over all os
illatingbehaviour of the �delity exponent whi
h shows already a qualitatively good agreementwith the predi
ted approximative theoreti
al result (Eq. (3.3)) depi
ted as dashed 
urve.But the data points do not exhibit that simple stru
ture of monotoni
 de
ay of themaximum amplitude predi
ted by the approximate fun
tion (Eq. (3.3)). First of allthere are obvious di�eren
es between all four widths whi
h are not 
onsidered by theapproximative theoreti
al result and will be dis
ussed later together with the improvedexpression for κ (Eq. (3.4)) where the width w is no longer negle
ted. In parti
ular forFig. 3.6 (i) and (ii) the experimental results around h ≈ w (square shape of the piston-likedeformation) and also h ≈ 2w in Fig. 3.6 (i) show a parti
ularly pronoun
ed amplitudewhi
h is not met by the dashed line at all. One 
an also see that for every width w thereare some small but very spe
i�
 deviations from the expe
ted simple stru
ture whi
hare non generi
. Having in mind that (Eq. (3.3)) is only valid for h ≪ w, whi
h is notrea
hed even for the greatest width w = 98mm the agreement between experiment andtheory is already surprising. One 
an state that as expe
ted from the approximation
ondition the deviations are smaller for larger w. But the se
ond surprise is that thisagreement was found far away from the semi
lassi
al assumption, namely that the pistonwidth w, should be mu
h larger than the de Broglie wave length λ.In all 
ases dis
ussed up to now the average de Broglie wavelength had been λ̄ ≈ 17mmwhi
h 
orresponds to the average frequen
y ν̄=17.5GHz of the 
hosen frequen
y range:[17 − 18GHz℄. This is the smallest experimental realized de Broglie wave length and isnot mu
h smaller than w. Now we want to in
rease the average de Broglie wavelengthlooking for limits on the experimental side. Fig. 3.7 (i)-(iv) shows the de
ay rate κas a fun
tion of the dimensionless res
aled perturbation strength χ (see Eq. (3.8)) fordi�erent de Broglie wave lengths λ in the three 
ases w ≥ 40mm. A

ording to Eq. (3.3)the number of experimental a

essible os
illations of κ(h) up to hmax = 45mm getssmaller for larger λ, this 
an be ni
ely seen in all plots of Fig. 3.7 (i)-(iv). Depending onthe deformation width w there is a more (w = 98mm) or less (w =20 and 40mm) sharpvalue for λ where the over all amplitudes of κ(χ) do not any longer a
hieve the expe
tedlevel. This region is a
hieved for w =20 and 40mm for smaller de Broglie wave lengths(λ ≈ 20 and 30mm) and for w = 98mm for larger de Broglie wave lengths (λ ≈ 60mm).The explanation for this behaviour is 
onne
ted to the fa
t that the piston-like boundary15
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Figure 3.6: κ as a fun
tion of piston displa
ement h for pistons of width w = 20mm(i), w = 40mm (ii), w = 70 (iii) and w = 98mm (iv) for a average deBroglie wavelength λ̄ ≈ 17mm [17 − 18GHz℄. The asterisks represent thedata points obtained from �tting the de
ay exponent of the measured s
at-tering �delity. The three 
ases dis
ussed in Fig. 3.5 are marked in (ii) by
orrespondingly 
olored symbols. The dashed 
urve shows the theoreti
alapproximation (Eq. (3.3)) (valid for h≪ w).

16



3.3 Experiment

Figure 3.7: κ as a fun
tion of χ (Eq. (3.8)) for pistons of width w = 20mm (i), w =
40mm (ii), w = 70 (iii) and w = 98mm (iv). The asterisks (bla
k) representthe data points for a average de Broglie wavelength λ̄ ≈ 17mm [17−18GHz℄(i)-(iv); the 
ir
les (blue) stand for λ̄ ≈ 21mm [14− 15GHz℄ (i); λ̄ ≈ 29mm[10 − 11GHz℄ (ii); λ̄ ≈ 40mm [7 − 8GHz℄ (iii); λ̄ ≈ 55mm [5 − 6GHz℄ (iv)and the triangles (red) stand for λ̄ ≈ 22mm [13 − 14GHz℄ (i); λ̄ ≈ 32mm[9 − 10GHz℄ (ii); λ̄ ≈ 46mm [6 − 7GHz℄ (iii); λ̄ ≈ 67mm [4 − 5GHz℄ (iv).The 
rosses (orange) in (ii) stand for λ̄ ≈ 85mm [3 − 4GHz℄. The dashed
urve shows the theoreti
al predi
tion (Eq. (3.3)).

17
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Figure 3.8: κ as a fun
tion of χ (see Eq. (3.8)). The fuzzy tra
e depi
ts the overlayedexperimental data and the dashed 
urve the theoreti
al predi
tion (Eq. (3.3)).deformation 
an only be seen from the waves starting inside the billiard if their wavelength λ is smaller than twi
e the deformation width w. But also the amplitudes startbreaking down the os
illations in the remaining data points remain until λ ≈ 2w asone 
an see in Fig. 3.7 (ii) (orange 
rosses). In the 
ase w = 20mm (Fig. 3.7 (i)) one
an see in all three experimental 
urves that the os
illation period does not agree withthe theoreti
al expe
ted result but as the theoreti
al approximation is only valid if thedeformation height is small 
ompared to the deformations width this deviation is notsurprising.In Fig. 3.8 we now superimpose all our experimental data points from κ(χ) 
urves whi
hlie in the region where the average de Broglie wavelength λ̄ is in the range λ̄ < 2w,
w ≥ 40mm and h < w. As a result we �nd a very 
onvin
ing agreement with theapproximative theoreti
al predi
tion (Eq. (3.3)) in the limit h≪ w.Finally, we want to demonstrate that the agreement between the experimental and theo-reti
al 
urves 
an be improved but we will also arrive at 
ertain limits if the experimental
onditions are pushed too far beyond the main limit of the semi
lassi
al theory, λ≪ w.In Fig. 3.9 (i)-(iv) we plotted the same sets of experimental data as in Fig. 3.6 and addedthe se
ond (exa
t) semi
lassi
al results for κ) resulting from the numeri
al evaluationof the expression (3.4) as solid (red) line in addition to the already plotted in Fig. 3.6dashed approximative result (Eq. (3.3)). Comparing only the theoreti
al results one seethat for the approximative results the maximum amplitudes of κ de
ay monotoni
 with hwhile the full semi
lassi
al results show an in
rease of the amplitudes of κ around w = h18



3.3 Experiment

Figure 3.9: κ as a fun
tion of piston displa
ement h for a pistons of width w = 20mm(i), w = 40mm (ii), w = 70 (iii) and w = 98mm (iv) for a average deBroglie wavelength λ̄ ≈ 17mm [17 − 18GHz℄. The asterisks represent thedata points obtained from �tting the de
ay exponent of the measured s
at-tering �delity. The three 
ases dis
ussed in Fig. 3.5 are marked in (b) by
orrespondingly 
olored symbols. The dashed 
urve shows the theoreti
alapproximation (Eq. (3.3)) (valid for h ≪ w), and the solid (red) 
urve is aresult of the numeri
al evaluation of the full semi
lassi
al expression (3.4).
19



3 Fidelity de
ay for lo
al boundary perturbationwhi
h ni
ely 
an be seen in Fig. 3.9 (i) and (ii). One 
an state that the full theoreti
alexpression des
ribes the experimental situation more 
onvin
ingly in all 
ases, while thedi�eren
e between the full and the approximative theoreti
al result is pronoun
ed in the
ase of a piston width w = 20mm and gets smaller with in
reasing piston width. Inparti
ular, for h ≈ w = 40mm (square shape of the piston-like deformation) the ex-perimental results show a parti
ularly pronoun
ed amplitude whi
h is met by the solidline. But even if there is some improvement espe
ially for the 
ases w = 20mm and
w = 40mm 
on
erning the regime around h ≈ w in Fig. 3.9 (i),(ii) (square shape of thepiston-like deformation) and h ≈ 2w in Fig. 3.9 (i), the agreement is not really satisfying.For piston width w = 20mm whi
h is of the order of λ̄ the experimental data points(asterisks) even os
illate with a period that di�ers from the theoreti
al one. However,the fa
t that the experimental parameters are beyond the regime of validity of the semi-
lassi
al theory does not allow for a further reasonable 
omparison between experimentand theory.
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4 Fidelity studies by varying the coupling

4.1 IntroductionThe question how a physi
al system is perturbed during a measuring pro
ess seems tobe one of the 
ru
ial things, that every experimentalist has to 
are about. In everylaboratory e�orts are made to perform experiments where the measurements perturbthe original system property only as slightly as possible. Thinking about �delity inthe 
ontext of realizing quantum 
omputers as a quantity whi
h des
ribes the stabilityof quantum time evolution, it seems quite natural to study �delity under a type ofperturbation whi
h mimi
s the measuring pro
ess. When one opens a system it 
ouplesto the 
ontinuum with the 
onsequen
e that the dis
rete energy levels transform intounstable resonan
e states. Varying the 
oupling strength to the s
attering 
hannels one
an see ri
h dynami
s [sok92℄, whi
h have also been studied with mi
rowave billiards[per00℄. In this 
hapter I want to present our studies on the so 
alled 
oupling �delityfo
ussing on the experimental part of the work. The main results in
luding more detailedtheoreti
al 
onsiderations have been published in [koeb10℄.
4.2 TheoryA short outline of the main theoreti
al results whi
h 
an be found in more detailedderivation in [koeb10℄ will be given in this se
tion.
4.2.1 The generalized VWZ approach to fidelityThe e�e
tive non-Hermitian Hamiltonian 
an be written as

Heff = H − i
M
∑

k=1

λkVkV
†
k , k ∈ {1, · · · , N} ; (4.1)with H the internal Hamiltonian of the 
losed system and Vk the 
oupling ve
tors (Ms
attering 
hannels 
onne
ted to N levels of the 
losed 
avity) 
ontaining the informationon the 
oupling of the levels to the 
ontinuum. We assume the Vk to be normalized toone, so λk is the 
oupling 
onstant of 
hannel k. The phenomenologi
al 
oupling 
onstant

λk whi
h enters the �nal expression Eq. (4.7) via the transmission 
oe�
ients
Tk =

4λk
(1 + λk)2

∈ [0, 1] (4.2)21



4 Fidelity studies by varying the 
ouplingare usually taken as real numbers as their imaginary part 
an be absorbed in the Hamil-tonian. For a suitable des
ription of the experiments (see Se
. 4.3.1 and Se
. 4.3.2),whi
h have been performed for varying the 
oupling to the system, in general one hasto use 
omplex numbers for the 
oupling 
onstant of the varied (perturbing) 
hannel.So all 
oupling 
onstants λk will be treated as 
omplex numbers (Re(λk) ≥ 0, due tothe 
ausality 
ondition of the S-matrix). Rewriting Eq. (2.2) for the S-matrix at thes
attering energy E in terms of Heff with 
omplex 
oupling 
onstants λa,b we get thefollowing expression:
Sab(E) = δab − 2i

√

Re(λa)Re(λb)V
†
a

1

E −Heff

Vb . (4.3)The re�e
tion amplitude Sll in an arbitrary 
hannel 
an be written as [fyo05℄
Sll(E) =

1− iλ∗l V
†
l

1
E−Hl

eff

Vl

1 + iλlV
†
l

1
E−Hl

eff

Vl
. (4.4)whi
h is more suitable for our situation. It is obtained from Eq. (4.3) by single outthe 
ontribution to Heff due to 
hannel l writing Heff = H l

eff − iλlVlV
†
l with H l

eff =

H − i
∑

k 6=l λkVkV
†
k (For details see in [koeb10℄). It is 
onvenient to use representation(Eq. (4.4)) to perform statisti
al averaging. With E = 0 this 
al
ulation leads to thefollowing expression for the average S-matrix [ver85, sok89℄:

〈Sll〉 =
1− λ∗l
1 + λl

(4.5)and the transmission 
oe�
ient,
Tl ≡ 1− |〈Sll〉|2 =

4Re(λl)

|1 + λl|2
, l = 1, . . . ,M (4.6)whi
h agrees with the result of Ref. [ver85℄. For the 
ase of a real 
oupling 
onstantEq. (4.2) gives a transmission 
oe�
ient while for pure imaginary 
oupling 
onstantwhi
h 
orresponds to perfe
t re�e
tion at a 
losed 
hannel the transmission 
oe�
ientequals zero.

4.2.2 Coupling FidelityWe will now introdu
e a spe
ial type of s
attering �delity (see Eq. (2.5)), where theperturbation to the system is a
hieved by 
hanging the 
omplex 
oupling strength ofone (perturbing) 
hannel. This one is di�erent from the 
hannels a, b, whi
h whereused to measure the S Matrix elements for 
al
ulating the s
attering �delity. For thiss
attering �delity whi
h will be denoted as 
oupling �delity an exa
t RMT predi
tion willbe presented below. The 
oupling 
onstant of the variable perturbing 
hannels will bedenoted by λ for Ŝab(t) and λ′ for Ŝ ′∗
ab(t). Looking at the parametri
 
orrelation fun
tions22



4.2 Theory
〈Ŝab(t)Ŝ

′∗
ab(t)〉 in Eq. (2.5) �rst for the 
ase where λ = λ′, the so 
alled auto
orrelationfun
tion, and apply the 
onvolution theorem for Fourier transforms we �nd that it equalsthe famous Verbaars
hot-Weidenmüller-Zirnbauer (VWZ) integral [ver85℄ and is givenby:

〈Ŝab(t)Ŝ
∗
ab(t)〉 = Ĉ[Sab, S

∗
ab](t) = δabT

2
a (1− Ta)Ja(t) + (1 + δab)TaTbPab(t). (4.7)Here the parametrization of Ref. [gor02℄ was used to write down the expli
it expressionsfor the fun
tions Ja(t) and Pab(t), as

Ja(t) = 4I
[

(

r + Tax

1 + 2Tar + T 2
a x

+
t− r

1− Ta(t− r)

)2
] (4.8)and

Pab(t) = 2I
[

TaTbx
2 + dab(r)x+ (2r + 1)r

(1 + 2Tar + T 2
ax)(1 + 2Tbr + T 2

b x)
+

(t− r)(r + 1− t)

[1− Ta(t− r)][1− Tb(t− r)]

]

, (4.9)where
x ≡ 2r + 1

2u+ 1
u2, dab(r) ≡ TaTb + (Ta + Tb)(r + 1)− 1and the shorthand I stands for the integral,

I[· · · ] =
t

∫

max(0,t−1)

dr r
∫

0

du (t− r)(r + 1− t)

(2u+ 1)(t2 − r2 + x)2
×

M
∏

k=1

1− Tk(t− r)
√

1 + 2Tkr + T 2
kx

[· · · ] .In this 
hapter the time t is given in units of the Heisenberg time tH = 2π~/∆, with ∆being the mean level spa
ing. For the 
ase of λ 6= λ′ the 
orrelator 〈Ŝab(t)Ŝ
′∗
ab(t)〉 hasbeen 
al
ulated by D. Savin using supersymmetry te
hniques (The 
al
ulation 
an befound in the Appendix of [koeb10℄). Finally it yields

〈Ŝab(t)Ŝ
′∗
ab(t)〉 = 〈Ŝeff

ab (t)Ŝ
eff∗
ab (t)〉. (4.10)This means, that the parametri
 
ross 
orrelation fun
tion redu
es to an auto
orrelationfun
tion 〈Ŝeff

ab (t)Ŝ
eff∗
ab (t)〉 given by the same VWZ expression (4.7), where the transmission
oe�
ient (Eq. (4.6)) of the varied 
hannel has to be repla
ed by

T eff =
2 (λ+ λ′∗)

(1 + λ) (1 + λ′∗)
. (4.11)One 
an interpret T eff as some e�e
tive transmission 
oe�
ient due to a parametri
 varia-tion of the 
oupling strength in the varied 
hannel. For λ = λ′, the e�e
tive transmission
oe�
ient T eff be
omes equal to the 
onventional transmission 
oe�
ient (Eq. (4.6)). In
ontrast to the transmission 
oe�
ient in Eq. (4.6) the e�e
tive transmission 
oe�
ient

T eff is generally 
omplex. The subsequent evaluation of the 
oupling �delity 
annot bedone analyti
ally and will be performed numeri
ally. 23



4 Fidelity studies by varying the 
oupling

Figure 4.1: Geometry of the 
haoti
 Sinai billiard, length l = 342mm, width w = 237mmand a quarter-
ir
le of radius r = 70mm, with atta
hed 
hannel of a totallength lc = 243mm and a width wc = 16mm. The opening of the 
hannel
an be varied from d = 0− 16mm in steps of 0.1mm using a slit diaphragm.At position a and c two antennas were �xed and 
onne
ted to the VNA. Theadditional elements were inserted to redu
e the in�uen
e of boun
ing balls.
4.3 ExperimentsBased on a 
haoti
 mi
rowave billiard with atta
hed waveguide, whi
h was used in[per00, stoe02℄ to study the resonan
e trapping in an open mi
rowave 
avity, we de-signed our �rst experiment (SubSe
. 4.3.1) for a mi
rowave study of the 
oupling �delity.As in this experiment the variation of the 
oupling was mainly on the real part of the
oupling, we introdu
ed a new setup, where predi
tions of the theory 
ould be vari�ed(see SubSe
. 4.3.2).
4.3.1 First experiment: Attached wave guide with variable

coupling

Experimental setupIn the �rst approa
h the setup shown in Fig. 4.1 was used, where the opening of thevariable slit plays the role of the �delity parameter. The setup is based on a quarter Sinaishaped billiard with length l = 342mm, width w = 237mm, a quarter-
ir
le of radius
r = 70mm, and an atta
hed 
hannel. The 
hannel has a total length of lc = 243mm anda width wc = 16mm. At position a and c two antennas were �xed and 
onne
ted to theVNA. The 
omplete S-matrix was measured in a frequen
y range from 9.5 to 18.0GHzwith a resolution of 0.1MHz, where the wave guide only supports a single propagatingmode, i. e. it a
ts as a single 
hannel. The perturbation of the system was a
hieved byopening the 
hannel from d = 0 − 16mm in steps of 0.1mm using a slit diaphragm atthe point of atta
hment. An ellipse insert with semiaxis a = 70mm and b = 40mm was24



4.3 Experiments

Figure 4.2: λW as a fun
tion of the opening d, averaged over the frequen
y window 13to 14 GHz.rotated to get an ensemble of 20 di�erent systems for averaging. Additional elementswere inserted into the billiard to avoid boun
ing-ball resonan
es. The wave guide wasterminated by a perfe
t absorber, whi
h, a

ording to Eq. (4.22), should 
orrespond toa purely imaginary 
oupling.The 
oupling 
onstant λW 
ould be determined dire
tly from a re�e
tion measurementat antenna c using Eq. (4.6). As Fig. 4.2 shows, λW 
an be varied from λW = 0 (no
oupling) to λW = 1 (perfe
t 
oupling) by in
reasing the opening d of the slit.
Results and DiscussionIn this se
tion we want to dis
uss the experimental and theoreti
al results for the 
oupling�delity de
ay under the perturbation des
ribed before. For all results below the systemwith 
losed slit diaphragm, 
orresponding to λ = 0, is 
hosen as the referen
e, whereasfor the perturbed system the 
oupling 
onstant is λ′ = λW 6= 0, depending on the opening
d of the slit.In Fig. 4.3 the 
oupling �delity de
ay is shown for two di�erent perturbation strengths.The �lled symbols show the experimental results. With the formulas derived in Se
. 4.2,we 
al
ulated the expe
ted theoreti
al �delity de
ay assuming that the 
hannel is totallyopen, i. e. the 
oupling is purely imaginary (solid lines). There is obviously no agreement.This shows that something is wrong in the argumentation. For a further 
he
k theabsorbing end and the antenna in the 
hannel was removed and repla
ed by a re�e
tingend thus 
losing the system. Fig. 4.4 shows, that we did not �nd any noti
eable di�eren
eto the 
ase with the absorbing end and the antenna in the 
hannel experimentally. Sothere is only one explanation: by far the major part of the wave is re�e
ted dire
tly atthe slit, and only a minor part really penetrates into the 
hannel!The solid lines in Fig. 4.5 show the resulting theoreti
al 
urves with using an imagi-nary �tting parameter λfit. Now a perfe
t agreement between experiment and theory is25



4 Fidelity studies by varying the 
oupling

Figure 4.3: Experimental 
oupling �delity |f(t)|2 (�lled symbols) and theoreti
al resultsfor the experimental parameter λW (solid lines) for two openings d = 6.5mm(bla
k triangles) with λW = 0.05, and d = 11.2mm (red 
ir
les) with λW =
0.52. The frequen
y window of the Fourier transform of the measured Saa(ν)was 13 to 14GHz and the transmission 
oe�
ient for antenna a was Ta = 0.95.

Figure 4.4: Comparison between the experimental 
oupling �delity |f(t)|2 results shownin Fig. 4.3 (�lled symbols) and results from measurements where the absorb-ing end and the antenna in the 
hannel have been repla
ed by a re�e
tingend thus 
losing the system (open symbols)
26



4.3 Experiments

Figure 4.5: Experimental 
oupling �delity |f(t)|2 (�lled symbols) and theoreti
al resultsfor the �t parameter λfit (solid line) for two openings d = 6.5mm (bla
ktriangles) with λfit = −0.18i, and d = 11.2mm (red 
ir
les) with λfit =
−0.55i. The frequen
y window of the Fourier transform of the measured
Saa(ν) was 13 to 14GHz and the transmission 
oe�
ient for antenna a was
Ta = 0.95.found.As a resume we 
an state that a smooth variation of the 
oupling will not easily yield theinformation about the e�e
t of 
oupling to the 
ontinuum on the s
attering �delity. Ea
hgeometri
 variation will give rise to both a 
hange of 
oupling and internal s
atteringproperties, thus s
reening the purely external e�e
t. Contrary to intuition, for this setupthe main e�e
t of the variation of the slit does not 
orrespond to a 
hange of the 
ouplingto the outside, but to a distortion of the wave fun
tions in the billiard, thus 
orrespondingmore to the 
ase of a lo
al s
attering �delity [hoeh08, koeb11℄ as in 
hapter 3.The perturbation that results from the wave guide with variable slit and the antennawith absorbing end 
an not de des
ribed as a simple absorption, but there is alwaysa very signi�
ant re�e
ting part. As we have seen we were not able to simply 
hangethe perturbation strength by varying the opening of the slit so we de
ided to go a stepba
k, designing a setup whi
h allows for a separated investigation of perturbations to thes
attering �delity in the 
ase of absorption and re�e
tion (open end and hard wall).

4.3.2 Second experiment: Antenna with different terminato rsIn our se
ond experiment we remove the wave guide with slit from the experimental setupand inserted a perturbing antenna whi
h was terminated 
onse
utively with three di�er-27
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oupling

Figure 4.6: Geometry of the 
haoti
 Sinai billiard, length l = 472mm, width w =
200mm and a quarter-
ir
le of radius r = 70mm where an antenna withdi�erent terminations may be introdu
ed at position c. a denotes the mea-suring antenna. The additional elements were inserted to redu
e the in�uen
eof boun
ing balls.ent terminators from a standard 
alibration kit being part of our mi
rowave equipment.The terminators provide total absorption, open end re�e
tion and hard wall re�e
tion.

Experimental setupThe setup, as illustrated on Fig. 4.6, is again based on a quarter Sinai shaped bil-liard, where additional elements were inserted into the billiard to redu
e the in�uen
eof boun
ing-ball resonan
es. So the 
lassi
al dynami
s for the 
hosen geometry of thebilliard is dominantly 
haoti
. At position a one antenna is �xed and 
onne
ted to anAgilent 8720ES ve
tor network analyser (VNA), whi
h was used for measurements in afrequen
y range from 2 to 18GHz with a resolution of 0.1MHz. We measured the re-�e
tion S-matrix element Saa �rst for the unperturbed system, whi
h 
orresponds to thesituation, where no additional antenna is inserted at position c. Then we perturbed thesystem by inserting another antenna at position c whi
h was terminated 
onse
utivelyin three di�erent ways:(a) 
onne
tion to the VNA (total absorption),(b) standard open (open end re�e
tion),(
) standard short (hard wall re�e
tion),and again measured the 
orresponding re�e
tion at antenna a for ea
h 
ase. The 
onne
-tion of antenna c to the VNA 
orresponds to a termination of antenna c with a 50Ω load.The terminators for the 
ases (b) and (
) have been taken from the standard 
alibrationkit (Agilent 85052C Pre
ision Calibration Kit) being part of our mi
rowave equipment.For 
ase (a) the re�e
tion amplitude Scc was also measured. From this measurement28



4.3 Experimentsthe 
oupling strength of antenna c 
an be obtained, see Eq. (4.6) above. For all four
ases we measured 18 di�erent realizations by rotating an ellipse (see Fig. 4.6) to performensemble averages.
The effective Hamiltonian descriptionIn this subse
tion we present the mapping of the experimental situation onto the moregeneral theoreti
al des
ription presented in Se
. 4.2 fo
ussing on results and predi
tionsfor the three 
ases of total absorption, open end re�e
tion and hard wall re�e
tion. The
al
ulation is very similar to the approa
hes that 
an be found in [stoe02℄. To des
ribe ourexperimental situation we need two s
attering 
hannels, the measuring antenna, belowdenoted by index �a� and the antenna with variable 
oupling (the perturbing 
hannel)denoted by index �c�. The amplitudes of in
oming (u) and outgoing (v) waves for thistwo 
hannels are related via the S-matrix:

S

(

uc
ua

)

=

(

vc
va

)

. (4.12)For antenna c whi
h is 
onne
ted with a terminator the 
onne
tion between the ampli-tudes uc and vc 
an be des
ribed by
uc = rvc , r = e−(α−ıϕ) , (4.13)where r 
ontains the information on the re�e
tion properties of the antenna. For re-�e
tion at an antenna with open end (index �oe�) or hard wall (index �hw�) we haveno absorption α = 0 as long as the absorption in the antenna 
an be negle
ted and adi�eren
e in total phase shift ϕoe − ϕhw = π. The termination of the antenna by a 50Ωload 
orresponding to total absorption is given by α→ ∞.With the expression of the s
attering matrix in terms of Wigner's rea
tion matrix:

S =
1− iW †GW

1 + iW †GW
. (4.14)

G = (E − H)−1 is the Green fun
tion of the 
losed system and matrix W = (Wa,Wc)
ontains the information on the 
oupling, one 
an rewrite (4.12) as
iW †GW

(

uc + vc
ua + va

)

=

(

uc − vc
ua − va

)

. (4.15)Substituting relation (4.13) in Eq. (4.15) one 
an eliminate uc and vc and end up withan equation for ua and va,
iW †

a ĜWa(ua + va) = ua − va. (4.16)In this equation, we have introdu
ed the modi�ed Green fun
tion Ĝ, with the followingmatrix element
W †

a ĜWa ≡ Gaa −Gac
1

1 + iλTGcc

iλTGca , (4.17)29



4 Fidelity studies by varying the 
ouplingwhere Gnm =W †
nGWm and λT is the 
oupling 
onstant of the �terminator�,

λT =
1− r

1 + r
= tanh

α + iϕ

2
. (4.18)Eq. (4.15) is the redu
ed form of Eq. (4.16) for the measuring antenna, where the vari-ational antenna is a

ounted for in the modi�ed Green fun
tion Ĝ. Using the expli
itexpressions for matrix elements Gnm, we obtain in a number of elementary steps

Ĝ = G−GWc
1

1 + iλTW
†
cGWc

iλTW
†
cG

= G

[

1− 1

1 + iλTWcW
†
cG

iλTWcW
†
cG

]

= G
1

1 + iλTWcW
†
cG

=
1

E −Ha
eff

, (4.19)where Ha
eff = H− iλTWcW

†
c . We 
an rewrite this expression, introdu
ing the normalized
oupling ve
tor V = 1√

λW

Wc, where λW = W †
cWc is the 
hannel 
oupling strength, as

Ha
eff = H − iλV V †, λ = λTλW . (4.20)The quantity λ is the total 
oupling 
onstant, whi
h is generally 
omplex and takesinto a

ount the e�e
ts of both the 
hannel 
oupling (λW ) and the terminator (λT ). Toremind you λ is our perturbation parameter for the 
oupling �delity. Having a look atthe S-Matrix we �nd, that the 2 × 2 s
attering matrix (Eq. (4.14)) for the measuringantenna and the antenna with variable terminator has thus been redu
ed to a 1 × 1s
attering matrix for the measuring antenna only,
Saa =

1− iW †
a

1
E−Ha

eff

Wa

1 + iW †
a

1
E−Ha

eff

Wa

. (4.21)This bottom up result 
an be dire
tly 
onne
ted to top down result of Eq. (4.4). Be-
ause in 
ase of a single measurement antenna and one antenna with variable 
oupling,Eq. (4.21) is equivalent to Eq. (4.4). In Eqs. (4.20) and (4.21) the main result of thisse
tion are written down. They show that the in�uen
e of the variable antenna 
an betaken into a

ount by an appropriate modi�
ation of the Hamiltonian.Now we fo
us on the spe
ial 
ases whi
h are not only of parti
ular importan
e for ourexperimental situation. In the 
ase where the outgoing wave is 
ompletely absorbed (herethe termination of the antenna is realized with a 50Ω load) the 
orresponding limit is
α→ ∞ as already mentioned. For this 
ase it follows that λT = tanh∞ = 1 and

Ha
eff = H − iλWV V

† . (4.22)30



4.3 ExperimentsSo the 
oupling is purely imaginary.For the two 
ases, where the antenna is terminated by a re�e
ting hard wall or an openend, we may assume α = 0, resulting in λT = tanh(iϕ/2) = i tanϕ/2, and
Ha

eff = H + tan
(ϕ

2

)

λWV V
† . (4.23)Here the 
oupling is purely real and the antenna does not 
orrespond any longer to anopen 
hannel but only to a s
attering 
entre. In fa
t this interpretation is true only aslong as the absorption in the antenna 
an really be negle
ted. It be
omes questionable,as soon as ϕ approa
hes π, 
orresponding to the ex
itation of a resonan
e within theantenna. For this singular situation the perturbative treatment of the antenna 
ouplingapplied in the derivation looses its justi�
ation. The value of the total phase shift ϕdepends on the length of the antenna in units of the wave length and thus on frequen
y

ν. But independently of frequen
y the di�eren
e of the phase shift ϕ for the re�e
tion atthe open end (oe) and the hard wall (hw), respe
tively, is always π, as already mentioned.A phase di�eren
e of π means a repla
ement of the tangent by the 
otangent in Eq. (4.23),i. e. the 
oupling 
onstants λT for the two situations are related via
λT,hwλT,oe = 1 (4.24)With the above introdu
ed total 
oupling 
onstant λ = λTλW this may be alternativelywritten as

λhwλoe = λ2W = λ250Ω (4.25)sin
e λW is the 
oupling 
onstant for the 50Ω load (see Eq. (4.22)). λhw and λoe denote thetotal 
oupling 
onstants for the hard-wall and the open-end re�e
tions. These relationsallow for expli
it tests of the theory.
Results and DiscussionIn this se
tion we want to dis
uss the experimental and theoreti
al results for the 
oupling�delity de
ay under the perturbations (a)-(
) des
ribed in Se
. 4.3.2. For all resultsbelow the system without the varied antenna, 
orresponding to λ = 0, is 
hosen as thereferen
e, whereas for the perturbed system the 
oupling parameter is λ′ = λ50Ω, λoe, or
λhw, depending on the terminator.Before the �delity results will be presented we want to look at the transmission 
oe�
ientsbe
ause this quantity gives �rst information on the 
oupling of the two antenna a and cand is determined dire
tly from the measured re�e
tion matrix elements via Eq. (4.6).In Fig. 4.7 the transmission 
oe�
ients Ta and Tc are plotted as a fun
tion of the meanfrequen
y ν, averaged over a frequen
y window of 1GHz. The values of the transmission
oe�
ients 
hange as a fun
tion of frequen
y. This gave us the possibility to vary the
oupling strength of our perturbing antenna c by 
hoosing 
ertain frequen
y windows.The 
orresponding 
oupling 
onstant λW of antenna c whi
h 
an be 
al
ulated dire
tlyfrom the transmission 
oe�
ient Tc (Eq. (4.2)) is plotted in Fig. 4.8. 31
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oupling

Figure 4.7: Transmission 
oe�
ient Ta (triangles; blue) and Tc (diamonds; bla
k) asa fun
tion of the mean frequen
y ν, averaged over a frequen
y window of
1GHz.

Figure 4.8: Coupling 
onstant λW as a fun
tion of the mean frequen
y ν, averaged overthe frequen
y window width of 1GHz. Determined from the Transmission
oe�
ient Tc.
32
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Figure 4.9: Fidelity de
ay |f(t)|2 for perturbation λ50Ω. Filled symbols show the experi-mental results and the theoreti
al 
urves are dotted for experimental parame-ter and dashed for �tting parameter. Chosen frequen
y ranges: 8.7−9.2GHz(bla
k triangles) with λexpt50Ω = 0.24, λfit50Ω = 0.21 and 9.8 − 10.3GHz (greendiamonds) with λexpt50Ω = 0.43, λfit50Ω = 0.46.
Antenna with 50 Ω load We start the presentation and dis
ussion of our �delity resultswith the 
ase of perturbation (a) (total absorption). A

ording to Eq. (4.22) we expe
t apurely imaginary 
oupling with λ50Ω = λW . In Fig. 4.9 the �delity introdu
ed in Eq. (2.6)is plotted for two frequen
y ranges 
orresponding to two di�erent 
oupling strengths λW .Using the experimentally determined λW here denoted as 
oupling parameter λexpt50Ω , onegets already a very good agreement between experimental results (�lled symbols) andtheoreti
al 
urves (dotted line) without any �t. A �t of λW to the experimental 
urves(the 
orresponding values are denoted by λfit50Ω) whi
h is plotted as dashed line showsonly a minor improvement for the 
orresponden
e between experiment and theory.As a se
ond example in Fig. 4.10 we present the �delity de
ay for the frequen
y range
7.2− 7.7GHz. Here we �nd a obvious deviation between the experimental results (�lled
ir
les) and the theoreti
al 
urve based on the experimental parameter λexpt50Ω (dotted line).To determine the de
ay of the experimental �delity de
ay we tried two possible ways of�tting λW to the experimental data. The �rst way uses a real valued �tting parameter
λfit,re50Ω (bla
k dashed line) while in the se
ond way to experimental parameter λexpt50Ω animaginary part is added as �tting parameter, 
oming up with a 
omplex valued λfit,im50Ω .While for the �delity de
ays both �tting pro
edure lead to a good agreement betweenexperiment and theory, the 
orresponding �delity amplitude presented in Fig. 4.11 (onthe right side) is des
ribed satisfying in real fR(t) and imaginary part fI(t) only by the33
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Figure 4.10: Fidelity de
ay |f(t)|2 for perturbation λ50Ω in frequen
y range 7.2−7.7GHz.Filled 
ir
les show the experimental results. The theoreti
al 
urves are dot-ted for experimental parameter λexpt50Ω = 0.19; dashed bla
k for real valued�tting parameter λfit,re50Ω = 0.37 and dashed red for 
omplex valued �ttingparameter λfit,im50Ω = 0.19 + i0.20.
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4.3 Experiments

Figure 4.11: Real part fR(t) and imaginary part fI(t) of the �delity amplitude for pertur-bation λ50Ω. The two plots on the left 
orrespond to the two 
ases presentedin Fig. 4.9 and the two plots on the right 
orrespond to the 
ases presentedin Fig. 4.10red dashed 
urve, whi
h is generated with the 
omplex valued �tting parameter λfit,im50Ω . Inthe 
ase of total absorption one would expe
t the imaginary part of the �delity amplitude(fI(t)) to be zero be
ause the 
orrelation fun
tion Eq. (4.10) is real valued as long asthe 
oupling parameters λ entering via Eq. (4.11) are real. For the plot on the left sidein Fig. 4.11 the experimental results show only a small deviation from the theoreti
alexpe
ted zero in the imaginary part of the �delity amplitude. The signi�
ant imaginarypart in the experimental �delity amplitude for the 
ase of frequen
y range 7.2− 7.7GHzmeans that in this frequen
y range the 50Ω terminator does not 
orrespond to perfe
tabsorption, and Eq. (4.23) does not hold. This might be due to an antenna resonan
e,leading to an in
reased re�e
tion from the 
hannel c.In Fig. 4.12 we plotted the 
oupling 
onstant λW determined from the experimentalTransmission 
oe�
ient Tc as λexpt50Ω (bla
k triangles) and from the �t to the experimental�delity de
ay λfit,re50Ω (red diamonds). For frequen
ies from about 6GHz up to 10GHzthe experimental determined 
oupling 
onstant and the �tting parameter does not de-viate to mu
h from ea
h other apart from some signi�
ant peaks like the one around7.5GHz whi
h results from system spe
i�
 features, probably antenna resonan
es. Be-35



4 Fidelity studies by varying the 
oupling

Figure 4.12: Coupling 
onstant λW as a fun
tion of the mean frequen
y ν; deter-mined from the experimental Transmission 
oe�
ient Tc (bla
k triangles)and as real valued �tting parameter to the experimental �delity de
ay (reddiamonds).
ν/GHz λexp50Ω λfit50Ω λoe λhw

√
λoeλhw(i) 7.2− 7.7 0.19 0.37 0.65 ı −0.04 ı 0.16(ii) 8.0− 8.5 0.21 0.20 0.19 ı −0.23 ı 0.21(iii) 8.7− 9.2 0.24 0.21 0.05 ı −0.83 ı 0.20Table 4.1: Coupling 
onstants in the three di�erent frequen
y ranges (i)-(iii). A

ordingto Eq. (4.25), λexp50Ω and λfit50Ω should be 
ompared to λW =

√
λoeλhw, seeFig. 4.13 and main text for dis
ussion.yond 11GHz the way of determing the 
oupling 
onstant via a re�e
tion measurementat the perturbing antenna c does not lead to 
onvin
ing results. This might be due tothe resonan
e trapping e�e
t whi
h was observed in mi
rowave billiards in [per00℄, butis not examined so far.

Antenna with reflecting end In Fig. 4.13 we present the experimental and theoreti
al�delity results for the situations open end (blue) and hard wall re�e
tion (red) as pertur-bation, for three frequen
y ranges. For ea
h frequen
y range we plotted the �delity |f(t)|2(large �gures left) and the 
orresponding �delity amplitude as real fR(t) and imaginarypart fI(t) (small �gures right). We want to remind you, that for the 
orre
t des
rip-tion for this situations, where the systems are 
losed, is given by Eq. (4.23). In 
ase of
losed 
hannels the total phase shift ϕ in
reases monotoni
ally with frequen
y. Thus λoeand λhw are os
illating in 
ounter phase. This indu
es a 
orresponding os
illation in thestrength of the �delity de
ay, whi
h 
an be ni
ely seen in Fig. 4.13(i)-(iii) for the plotsof |f(t)|2 and fR(t) but also or the imaginary part fI(t) of the �delity amplitude.36



4.3 Experiments

Figure 4.13: Fidelity de
ay |f(t)|2 and 
orresponding �delity amplitude (fR(t) and fI(t))for perturbations λhw (red) and λoe (blue) in three di�erent frequen
y ranges:(i) 7.2 − 7.7GHz; (ii) 8.0 − 8.5GHz; (iii) 8.7 − 9.2GHz. The experimentalresults are depi
ted by �lled (λhw) and open (λoe) 
ir
les and the dashed
urves show the theoreti
al results. The values of 
orresponding 
ouplingparameter are listed in Tab. 4.1.
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4 Fidelity studies by varying the 
ouplingFor a more quantitative dis
ussion we 
ompare the experimentally determined �delityde
ay (solid lines) to the theoreti
al 
urves (dashed lines). The theoreti
al 
urves areall results from a �t to the experimental data for the �delity de
ay |f(t)|2, the resultingparameter are used to plot the �delity amplitude, so there is no se
ond �tting for theexperimental data in the real fR(t) and imaginary part fI(t). In Fig. 4.13 one seesthat �tting the experimental results works well for |f(t)|2 in all three frequen
y ranges.Using this free �tting parameter for fR(t) also leads to a satisfying agreement, apartfrom smaller deviations in the 
ase of open end re�e
tion in Fig. 4.13(i). The agreementbetween experiment and theory is also satisfying for the imaginary part fI(t) of openend and hard wall re�e
tion in Fig. 4.13(ii) and in the 
ase of open end re�e
tion inFig. 4.13(i). Only in Fig. 4.13(iii) and again for the 
ase of open end re�e
tion inFig. 4.13(i) we see some deviations for fI(t). This is not that surprising be
ause by
al
ulating |f(t)|2 from the real an imaginary part of the �delity amplitude we loseinformation, so we 
ould not expe
t perfe
t agreement while using the �tting parameterfor the real and imaginary part of �delity amplitude, but the general tenden
y is alwaysshown by the dashed lines.We also presented the �delity amplitude to show that as one would expe
t from theory 1for the 
ase of re�e
ting ends one see a signi�
ant imaginary part of the �delity amplitude
fI(t). Additionally in Fig. 4.13(ii) one 
an see that whenever the real part fR(t) of the�delity amplitude are nearly equal, the imaginary part fI(t) due to the di�eren
e in phaseshift between hard wall and open end re�e
tion shows nearly a symmetri
 behavioura

ording to the horizontal axis.Having dis
ussed three frequen
y ranges exemplary, we now look at the 
oupling param-eter for the two 
ases of re�e
ting ends as a fun
tion of the frequen
y. From the �ttingparameters λhw and λoe we determined the 
orresponding λT dividing out λW = λexpt50Ωand �nally 
al
ulated the total phase shift ϕ using relations presented in Eq. (4.23). Theparameter iλ, iλT , ϕ and their absolute values are plotted in Fig. 4.14. The series ofplots on the right hand side gives a illustration of the os
illation in the �delity. Overa frequen
y range of ≈ 6GHz and we see a full and a half period of os
illations. Asexpe
ted the total phase shift ϕ mod 2π in the left plot at the bottom shows a satisfyinglinear in
reasing with frequen
y whi
h is more 
onvin
ing in the frequen
y range between7 and 9GHz. This fa
t 
an also be seen in the top plot of Fig. 4.15 where the resultingdi�eren
e in total phase shift ∆ϕ between the hard wall and open end re�e
tion is shownfor the same frequen
ies. The expe
ted phase shift ∆ϕ = π plotted as solid horizontalline is only a
hieved in the mentioned frequen
y range.Finally we perform 
he
ks on the 
oupling 
onstants based on Eq. (4.24) and (4.25).A �rst 
he
k on the the 
oupling 
onstants λT based on Eq. (4.24) (bottom plottedin Fig. 4.15) shows that the expe
ted value of one (solid line) is again a
hieved in thefrequen
y range between 7 and 9GHz. So we 
an state that we have 
on�rmed exper-imentally the theoreti
al predi
tion for the �delity in the 
ase of perturbation by anantenna with re�e
ting ends for this frequen
y regime.1In theory the 
orrelation fun
tion Eq. (4.10) is 
omplex valued as long as the 
oupling parameters λentering via Eq. (4.11) are 
omplex.38



4.3 Experiments

Figure 4.14: Parameters for the two 
ases of re�e
ting ends: λhw (red �lled 
ir
les) and
λoe (blue open 
ir
les) as a fun
tion of mean frequen
y ν. The three pi
tureson the left show the imaginary part iλ of the total 
oupling parameter (top),the imaginary part iλT of the 
oupling 
onstant of the terminators (middle)and the phase shift ϕ mod 2π (bottom). The pi
tures on the right show the
orresponding absolute values
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4 Fidelity studies by varying the 
oupling

Figure 4.15: Di�eren
e of the phase shift ϕ between the hard wall and open end re�e
tion(top) and the relation between λT,hw and λT,oe presented in Eq. 4.24 (bottom)as a fun
tion of the mean frequen
y ν.
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4.3 Experiments

Figure 4.16: 
oupling 
onstant λW as a fun
tion of the mean frequen
y ν; determinedfrom the experimental Transmission 
oe�
ient Tc (bla
k triangles) and as
λW =

√
λoeλhw (see Eq. 4.25) (orange �lled 
ir
les)

Check of the relation between the three terminations A

ording to Eq. (4.25), thesquare root of the produ
t of the 
oupling 
onstants for open end and hard wall re�e
tionshould give λW . Table 4.1 shows that for the frequen
y ranges (ii) and (iii) there is indeeda good agreement between √
λoeλhw, λfit50Ω and λexp50Ω. In the 
ase (i) √λoeλhw agrees quitegood with the experimental parameter λexp50Ω, but the �tting parameter is mu
h larger.This deviation re
on�rms our arguments presented in the above dis
ussion in paragraph:Antenna with 50Ω load.Again extending our 
onsiderations looking at √λoeλhw as a fun
tion of frequen
y and
ompare this quantity with λexp50Ω. Plotting the two ways of determine the 
oupling 
on-stant λW in Fig. 4.16 again shows a good agreement in the whole frequen
y range between7 and 9GHz. So we 
he
ked the 
onsisten
y of the theory for this regime. The reasonsfor this experimental limits have not been examined so far.
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5 ConclusionIn this thesis I presented two works on s
attering �delity de
ay in a 
haoti
 mi
rowavebilliard. The �rst work des
ribes the �rst experimental veri�
ation of the semi
lassi
alpredi
tions for �delity de
ay arising from a lo
al boundary perturbation of a 
haoti
quantum system and the se
ond work, the in�uen
e of the 
oupling to the 
ontinuum onthe de
ay of �delity was examined experimentally. This studies 
omplements previousexperiments of our group, where the �delity de
ay under the in�uen
e of various typesof geometri
al perturbations was studied [s
h05a, hoeh08, s
h05b, bod09℄ but for 
losedsystems ex
lusively.In parti
ular in the �rst work, we 
ould 
on�rm that the rate governing exponential �-delity de
ay exhibits os
illations as a fun
tion of the perturbation strength. The observednon-monotoni
 behavior implies that for 
ertain ranges of the perturbation strength the�delity de
ay be
omes weaker (for �xed time) with in
reasing perturbation strength.While the original semi
lassi
al treatment [gou08℄ for a piston-type lo
al boundary de-formation was based on the assumption of a small piston displa
ement, the present mi-
rowave setting required a generalization of the semi
lassi
al approa
h to arbitrary ratiosbetween piston displa
ement and width, whi
h was performed by deriving an expressionfor the de
ay exponent in terms of a quadrature in [koeb11℄. Quantitative agreementbetween the measurements and this re�ned semi
lassi
al theory was found despite thefa
t that the mi
rowave billiard does not really satisfy the underlying semi
lassi
al as-sumption, namely that the extent of the lo
al perturbation, here the piston width w,should be mu
h larger than the de Broglie wave length λ. On experimental side, thereremains the 
hallenge to observe �delity de
ay in the es
ape rate regime (for strong per-turbations) 
hara
terized by a perturbation-independent �delity de
ay rate. Naturally,this regime is di�
ult to a

ess sin
e the expe
ted signals are tiny.In the se
ond work we 
ould 
on�rm the predi
tion for the 
oupling �delity in termsof a modi�ed VWZ (Verbaars
hot, Weidenmüller, Zirnbauer) integral [koeb10℄ experi-mentally. First we found, that a smooth variation of the 
oupling, e. g. by varying the
oupling to an atta
hed wave guide will not easily yield the information about the e�e
tof 
oupling to the 
ontinuum on the s
attering �delity. Ea
h geometri
 variation willgive rise to both a 
hange of 
oupling and internal s
attering properties, thus s
reeningthe purely external e�e
t, as dis
ussed in Se
. 4.3.1. Se
ondly, we have in
luded 
losed
hannels within the des
ription of VWZ. The speed of the �delity de
ay for the open endand hard wall re�e
tion os
illates with frequen
y due to the 
orresponding variation ofthe phase with frequen
y. A relation 
onne
ting the 
oupling parameters for the 
losed
hannel (λoe, λhw) to those of the open 
hannel (λ50Ω) has been veri�ed experimentally.In all 
ases the �delity de
ay for at least one of the re�e
ting antennas is faster than for43



5 Con
lusionthe open 
hannel, showing the strong in�uen
e of the imaginary part on the 
oupling
onstant λ.
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