
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/112742

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16197187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/112742

Using Boltzmann Machines for probability estimation:
A general framework for neural network learning
Hilbert J. Kappen1

Department of Medical Physics and Biophysics, University of Nijmegen, Geert Grooteplein
21, 6525 EZ Nijmegen, The Netherlands

In this paper, efficient learning rules are developed for a large class of neural network
archictectures within the Boltzmann Machine framework. The advantage of this appoach
is that a unified view is created, in which supervised feed-forward learning, unsupervised
learning and clustering appear as special cases. It is shown that temperature dependent
spontaneous symmetry breaking occurs in the hidden layer of these networks. This opens
the possibility to study the generalization performance of the network as a function of
temperature instead of the number of hidden units.

1. INTRODUCTION

In this paper, I introduce Boltzmann Machines as a general computational framework for
neural network modeling. There are several reasons why this is an attractive approach.

In most neural network applications, the generic idea is to find some complex non
linear mapping between an input domain and an output domain. This mapping can be
deterministic but is in general probabilistic. Such a probabilistic map is formally described
by the conditional probability p(Yli') to observe an output if given an input i'. Examples
of deterministic mappings are Multi-Layered Perceptrons (MLPs) [1], which minimize a
quadratic error between the output of the network and the desired output. The output of
such a network has in general no clear interpretation in terms of conditional probability.

A description of probabilistic mappings in terms of conditional probabilities can be
obtained by deriving learning rules from a Log-likelihood or Kulback-Leibler error rate
[2]. In the context of neural networks, this has been done by Solla et al. [3] and Baum
and Wilczek (4] for MLPs, and by Hopfield [5] and Kappen [6] for BMs. In [6] also a
comparison of these methods was given.

There are many important applications for which the marginal probability for oc
curence of data points is needed in addition to the conditional probability. Some generic
examples are:

Classification with confidence. One of the well known attractive features of neural
networks is that they generalize well to data that were not part of the training set.
Nevertheless, when data are presented that are far from the training set in the input

lThis work was partly sponsored by the Dutch Foundation for Neural Networks (SNN) and the
Japanese Real World Computing Program

1

domain, the network is unlikely to give correct classifications. Thus, what is needed is an
indication of the confidence of the output that the network produces. Such a confidence
measure depends on w hether the input pattern belongs to a part of the input space that
\vas \ve11 sampled during training, and, if so, whether for that part of the input space

a clear distinction between classes can be made. The former is given by the marginal
probability and the latter by the conditional probability. Both probabilities should be
learned by the neural network to perform reliable classification with confidence.

Inverse modeling. After a network has been succesfully trained, the question often
arises to find the set of inputs that maximizes the output of the netlNork, or that corre

sponds to another desired output value. Applications exist in for instance direct mailing,
where a company wants to reach a group of potential customers with the largest expected
interest in their products, or process control, where one '>vants to know all possible com

binations of machine set points and ra-v material characteristics that will yield a product
with the desired specificat.ions. .A good model of the marginal probabilities is needed to
const.rain this search task to probable input values.

As we will see below', by a simple modificat.ion of the cost function, one can easily
choose in the Boltzmann lVIachine framework, whether to incorporate the modeling of

marginal probabilities.

Neural network theory has been \vell established to describe the learning and execution

of singlc nctworks. This holds equally well for Multi-layered perceptrons, topological maps
and associat.ive memories. However, no neural network paradigm currently exist.s in which
combinat.ions of these strategies can be modeled and analysed. A particular difficulty is

to assess the global learning performance of the network, when different modules use

different. learning rules (each possibly minimizing different cost crit.eria).

The need for hybrid and modular architectures comes from the fact that for large
problems, the complexity of finding t.he set of ,>veights that will solve the problem becomes
prohibitively large. By splitting the neural network into several modules, or by combining
different. t.ypes of architectures, one may reduce the complexity of the learning task. It is,

however, not obvious how such a modularizatioll should be done.
In this paper: I propose to use the Boltzmann NIachine [7] formalism to provide a

unified framework for studying combinations of different neural network architeciures.
For a general Boltzmann Machine, the execut.ion of t.he learning rule is very slow.

This is because t.he total weight vector defines a probabilit.y distribution over the neuron

states (Gibbs distribution), and a change in the weights must ensure that this probability
distribution remains normalized. Thus the normalisation, i.e. the partition function, of
the probability distribution must. be calculated at each learning step, which consists of
a sum over all 2'" states of the network, where n is the number of unclamped neurons.
The partition function can also be calculated by simulation of the equilibrium state of the
network using Glauber dynamics. In either case, the execution of the learning rules is very
time-consuming. Using a mean field approximation [8], the equilibrium distribution of the
neurons can be approximated, which leads to significa. nt speed-up of the learning process.

However, a coupled sct of non-linear mean field equations must be solved iterat.ively during

each learning step, which reduces the charm of this learning procedure considerably. It.
can also be shown, that the mean field solution is incompatible with many probabilit.y
est.imation problems [6].

2

By introducing lateral inhibition in the network, the number of permissible states of the
network can be strongly reduced. As a result, for a variety of neural network architectures,
the partition function can be easily calculated, resulting in very fast learning rules.

In Section 2, I will introduce the general concept. In Section 3, I will briefly sketch
how to apply this idea to solve a feed-forward task by introducing lateral inhibition in
the output layer of the network. Following [9], these networks will be called Boltzmann
Perceptrons. It can be proven, that BPs are universal classifiers, i.e. they can classify
any classification problem given enough hidden units [6]. In Section 4, we consider a
joint probability estimation task. Here, lateral inhibition is introduced in the hidden
layer of the network. In both cases, the resulting architecture is such, that analytic
expressions for the learning rules can be obtained. This makes time consuming simulation
of the Glauber dynamics unnecessary. The similarity and differences of these networks
with MLPs and Radial Basis networks is described in [6]. With lateral inhibition in the
hidden layer, temperature dependent spontaneous symmetry breaking occurs. This opens
the possibility to study the generalization performance of the network as a function of
temperature instead of the number of hidden units.

2. BOLTZMANN MACHINES WITH RESTRICTED STATE SPACE

Let a vector (x, Y) denote the values of the visible units of the Boltzmann Machine:
x = (Xl, . .. , xn) and y = (Yl,' .. , Ym)' The Boltzmann Machine can be used to estimate
joint probabilities or conditional probabilities. The latter is also known as feed-forward
mappings. For feed-forward mapping, x and ywill denote the values of the input nodes and
output nodes, respectively. For joint probability estimation, x and y have no individual
significance and (x, Y) is simply a data vector.

Let for each training pattern (x, y), the probability for occurence be q(x, Y). Let
S = (SI, ... ,Sh) denote the values of the hidden units of the Boltzmann Machine. Then
the total neuron state of the network may be written as § = (x, s, Y) with components
SI, 1= 1, . . . , n + h + m. The generic architecture is given in Fig. 1. For given symmetric
weights W[J, the equilibrium distribution of the Boltzmann Machine is given by a Gibbs
distribution:

1 peS) z
exp(fJ L WIJSISJ)

(IJ)

z = L exp(fJ L W[JSISJ)
§ (IJ)

The observed probabilities on the visible units are:

p(x, y) = LP(x, s, Y)
5

(1)

(2)

For joint probability estimation (JPE), the Boltzmann Machine minimizes the Kull
back divergence between q and p on the visible units:

dJPE(p, q) = L q(x, Y) log (q��, ��) .
X,Y P X, Y

3

Figure 1: The architecture of a generic Boltzmann Machine with visible units i and fJ
and hidden units s. The weigths between units are symmetric.

-> (q(i») � -> (q(fJli))
= 21q(x)lOg p(i) + f.gq(x,y) log

p(fJli) . (3)

The first. term attempts to make p(i) of the Boltzmann IVIachine equal to the a priori
probability q(i). The second term attempts t.o make t.he conditional probability p(fJli)
equal to the conditional probability q(fJli), averaged over x. For feed-fonvard mappings
only the last term is minimized [10]:

d () � (-> -) 1 (q(Y1i»)
FF p, q = f.g q x, y og p (fJI i) . (4)

When a patt.ern i is clamped to the input nodes, the conditional probability pCV!i) should
have the desired value q(fJli). The probability' to observe i is then not rnodeled by the
network.

In both cases the learning rules are given by gradient descent on d [7]. The result for
joint probability estimation is:

"W 8dJPE(p, q) (�(- -) SS SS)
L..l IJ = -'I] 8WIJ = rJ � q x,y < I J >x,y - < I J >

X,Y

and for feed-forward mapping:

(5)

where < SISJ > A denotes the t,vo point correlations between neurons SI and S" when
the units specified by .4. are clamped:

< SISJ >.4= L SISJP(S)
SEA

4

(7)

x w s v y

Figure 2: The architecture of a Boltzmann Perceptron for feed-forward mapping as pro
posed by Hopfield. Lateral inhibition in the output layer is an example of how fast learning
rules can be obtained for this architecture.

So we see, that for instance for a weight between two hidden units i and j, < SiSj >x,y,
< SiSj >x and < SiSj > contain 2\ 2h+m and 2h+m+n terms, respectively. Instead of
calculating this exponential number of terms, it is usually faster to simulate the network
dynamics. Using Glauber dynamics, the network will visit only the most probable states,
which make up the largest contributions to the sum in Eq (7). Nevertheless, whether
simulated or calculated, the resulting Boltzmann Machine learning rule is extremely slow.

The main idea of this paper is that by introducing lateral inhibition, various specialized
architectures and hybrid architectures can be constructed. In addition, the number of
states in A can be reduced from an exponential to a linear or polynomial number. As a
result, fast learning rules can be obtained for these architectures, which makes it possible
to study their behaviour on simple sequential machines. I will illustrate this idea on
a Multi-layered Boltzmann Perceptron for feed-forward mapping and on a Radial Basis
Boltzmann Machine for probability estimation.

3. THE BOLTZMANN PERCEPTRON

The Boltzmann Perceptron (BP) architecture is sketched in Fig. 2a.
We will use this architecture for feed-forward mappings, i.e. we will use it to generate

the conditional probability p(y!i') in Eq. (4). We use Xi E Rand Sj, Yk = ±1. Usually,
one takes Xi = ±1 as well. However, in the BP the input neurons are clamped during
training as well as during execution, so that this constraint can be relaxed. Thresholds at
hidden and output neurons are included in Wij and Uik respectively, by adding an input
neuron i = 0 with Xo = 1 . The BP differs from the fully connected Boltzmann Machine
in several ways:

• There are no connections between the neurons of the input layer. This is not nec
essary for feed-forward tasks, because the inputs are always clamped .

• There are no connections between the neurons in the hidden layer, because that
would prevent us to calculate the learning rule explicitly. I will show, that the

5

architecture without these connections is rich enough to be able to perform any
classification task.

• There are no learnable connections between units in the output layer. These could

be added without excessive computational costs and may lead to interesting appli
cations. They are not considered here.

For a given input X, the states (y, S) will reach the equilibrium distribution

p(y, S1x)

p(x)

p(x, s, Y)

p(x)
LP(i,s,y)
ij,S
1 n m n h h m m

p(x, s, Y) =

Z
exp{L L UikXiYk + L L WijXiSj + L L VjkSjYk - J(L Yk' - 1)2}

i=O k=] i=O j=l j=l,:;",l k'#k

with Z a normalization constant such that Lx,y,sP(x, s, fj) = 1 . Learning consists of
gradient descent on dpp.

The last term in Eq. (8) is the contribution from the lateral inhibition in the output

layer [6J. "\Then J is large, only those states with tot.al activity on output equal to 1 are
probable. This reduces the number of possible output. states from 2m to m. This will be
of direct benefit for the efficiency fo the learning rules. In [6], a generalization to the case

v,�here mo output. units can be simultaneously 'on' is given.
We are interested in the conditional probability p(y!x) to observe an output y given

an input i. Define the effective field at output neuron k due to stimulus x as

n h
Hk (i) = L UikXi + L log cosh(hj + Vjk) , k = 1 , m

i=O j=l

Let fA denote the permissible output state with unit k 'on', i.e. (Yk)l = Okl'
Then

with m
Z'(x) = L exp(Hk (X))

k=l

(8)

< Yk >x denotes the expectation value of t.he k-th output neuron averaged over the
ensemble of permissible states, in the presence of stimulus x. Note that for large weights,

Eq. (8) implements a winner-t.ake-an mechanism: for the neuron for which Hh is maximal,

the probability of firing is one, and for t.he others zero .
Let training pattern x belong to class 0:(£) = 1, . . . , m. The Kullback divergence is

then

dFF = - L q(x) log (P(Ya(x) Ix)). (9)
x

6

The learning rules for Uik, Vjk and Wij are now given by gradient descent on dFF:
D..Uik 17 2: q(X)Xi ((fh(x»)k- < Yk >x)

x
D..Vjk 17 2: q(x) tanh(hj + Vjk) ((Ya(x)h- < Yk >x)

x
D..Wij 17 2:q(X)Xi (tanh(hj + Vja(x»)- < tanh(hj + 9j) >x).

x
The expectation value < Yk >x is given by Eq. (8) and

m

< tanh(hj + gj) >x= 2: tanh(hj + Vjk)P(Yk!X)
k=l

and involves a sum over m terms only.

3.1. Some numerical results

A numerical study was performed to compare the performance of the MLP and the BP
[l1J. The data consisted of 48.000 handwritten digits. The data were collected on data
entry forms and were preprocessed (segmentation, filtering, normalization and compres
sion). The resulting digits were represented by 64 real numbers. Both MLP1 and BP
with 64 inputs and 10 outputs were trained on 4 0.000 digits and tested on 8.000 digits.
After extensive search for the optimal number of hidden units, the best results for the
MLP1 gave 97.0 % correct on the test set with two layers of hidden units with 42 and 24
units per layer. The best result for the BP gave 97.8 % correct on the test set with 2 0
hidden units. The improvement of almost 1 % is a significant improvement in the context
of this application.

4. JOINT PROB ABILITY ESTIM ATION

In this section, we consider the task of joint probability estimation with Boltzmann Ma
chines. In this case there is no distinction between input and output vectors. x and Y will
denote real valued and binary valued external values, respectively. Let the probability
to observe (x, Y) be given by q(x,i/). Given the weights of the network, the BM will
implement a probability density p(x, Y). We will train a Boltzmann Machine such that P
approximates q as close as possible, by minimizing Eq. (3). Once p is known, any marginal
probability, such as p(x) = I:gp(x, Y) or conditional probability, such as p(y!x) = P;f;,f
can be easily calculated.

Let us consider a network with h hidden units: Sj = 0 or 1, j = 1, ... , h. For the
architecture in F ig. 3, the Boltzmann distribution becomes

1 n h h m h
p(x, Y, S) =

Z
exp{2: 2: WijXiSj + 2: 2: VjkSjYk - J(2: Sj - ho?} (1 0)

i=O j=l j=l k=O j=l

The last term in Eq. (10) is the result of the lateral inhibition in the hidden layer, which
for hidden unit j is given by -J(I:J'iej Sj' - 2ho + 1).

7

\�-- o

w v
x s y

Figure 3: Boltzmann Machine for probability density estimation. There is no distinction
between input and output neurons. The activity of the real-valued neurons are collectively

denoted x and the activity of the binary-valued neurons are collectively denoted ij. The

hidden layer has fully connected lateral inhibition of strength -J.

The use of real-valued neurons poses two problems at this point: The probability
p(:i, y, s) is not normalizable with respect to x. Although we used real-valued neurons

in the previous section, this problem was not encountered there , because no probability

estimation on the x space was performed: only conditional probability estimation was
done. given i. Secondly, what kind of stochastic dynamics should be used, such that the
abOlre equation correctly describes the equilibrium probability?

The way to solve the first problem is to observe that the simplest exponential function

of i which is normalizable is the Gaussian. We therefore propose to change the local field

contribution from i to unit S{
n

L WijXi -+ --;3JJwj - iW, (11)
;=0

where CWj)i = Wij. Note, that we have reintroduced temperature, because with this

change it can no longer be scaled a.way.
This substitution solves the second problem as well. Note that the Boltzmann distri

bution is related to the energy as p ex exp(- E) . Therefore, the suggested change implies
a change in energy cont.ribution

n h h
- L L WijXifJj -7 ;3 L JJWj - iJJ2Sj.

i=O j=1 j=1
(12)

The old energy term is not bounded from below in i. Therefore, any stochastic process

that has a mean tendency to minimize energy will give run away solutions in i. The new

energy term is bounded from below. The Boltzmann distribution becomes

1 h h m h
p(i, fj, ,5) = Z exp{ -8 L ilWj - ill2 Sj + L L VjkSjYk -- J(L Sj - hO)2} (13)

j=l j=1k=0 j=1
A stochastic process that has Eq. (13) as equilibrium distribution can be simply con

structed using Glauber dynamics for the neurons sand fj, and Metropolis dynamics for

i [12, 6J.

8

We will study the behaviour of this network for the case ho = 1. The probabilities on
the visible units become:

p(i, iJ)

with

z

1 h m

Z E exp{ -/3 IIWj - ill2 + E Vjkyd
�1 k�

� t exp{ Hj(i, iJ)}
j=1

h m / diE E exp{ -/3IIWj - il12 + E VjkYk}
if j=1 k=O

(�) n/2
� exp(viol ll:;'", 2 cosh(Vj')

Note that Z is independent of Wj.

(14)

(15)

(16)

In the presence of continuous valued neurons (n > 0), this architecture is similar to
the well known Radial Basis Networks (RBNs) (see for instance [13]). We will refer to
this architecture as a Radial Basis Boltzmann Machine (RBBM). The main advantages of
RBBM are: 1) The 'output' p(iJli) of the RBBM naturally encodes a probability, whereas
the output of the RBN encodes some continuous number; 2) The joint probability p(i, iJ)
is modeled in the RBBM, whereas in the RBN only a feed-forward mapping is modeled.
For instance, the distribution of 'inputs' that correspond to a particular 'output' is given
by p(iliJ); 3) The optimal values of the weights of the RBBM minimize the Kullback
divergence which has a firm information theoretic basis. Instead, for the RBN different
criteria are used to find the cluster centers and their relative weights. Thus, the solutions
of different RBBM architectures (and other architectures derived in the BM framework)
can be compared objectively on the basis of their Kullback divergence; 4) Situations where
both 'input' and 'output' consists of a combination of continuous and binary values can
be naturally handled. (Variables that take values in a finite alphabet can also be included
in the BM framework, but require an extension of the RBBM);

It is easy to calculate the learning rules for Wij, Vjk and VjO by minimizing Eq. (3)
[6]. Their computational complexity is O(h(n + m)) for single pattern presentation. This
allows this BM to be used for practical applications.

4.1. Clustering and symmetry breaking

An interesting symmetry breaking phenomenon occurs in the hidden layer of the RBBM.
Consider the network Fig. 3 with one continuous valued neuron, 16 hidden neurons and no
discrete neurons. The network performs unsupervised learning on the data set depicted in
Fig. 4a. Learning starts from random weights at a high temperature (small /3). After the
weights are converged the values of the weights are plotted and temperature is lowered.

The Boltzmann Machine finds qualitatively different solutions for different values of /3.
For high temperature (low j3) the solution after learning is such that all weight values are
identical. The hidden units simply copy each others behaviour. At lower temperatures,
a number of symmetry breakings occurs, during which neurons specialize to particular

9

i
1 •. Cl,'---, -�- ---:--"--�---:---�

1---- 'i\ 'L· . ---)! �l _Juv __ . ____ kJJUv-�
I I
L�J� ____ �.�
I I

�'h--��"'-

-;---�---,-. -----:-----:ll ���

r I "�'r
i ""'1

,0-02 ,

---- ---- . . . -- - · ··· ·· · ·· · 1

Figure 4: a) Unsupervi.sed clustering. Top. One dimensional data set consisting of 240
points. Data were generated with probability 0.5 from one of 2 overlapping distributions
Bottom. Optimal \veight configuration vs. 10g(.8) for RBBM with one continuous neuron
and 20 hidden neurons. Optima! weights for consecutive values of ,8 are connected by
lines. b) Supervised dustering. Top. As in a) but class labels of the t\VO distributions
wore also provided. The network consists of one continuous neuron , one discrete neuron
(class label) and 20 hidden neurons. Circles and squares indicate specialization of hidden
units to a specific class.

10

sub regions of the input space. At some temperature, the number of clusters is correctly
identified. At lower temperature, further specialization occurs in order to better fit the
shape of the probability distribution of the individual clusters and finally specializes on
individual data points. Thus the effective number of neurons in the hidden layer, that
participate in the task at a given (J can be dynamically adjusted by varying (3, without
the need to physically add or remove neurons.

This symmetry breaking mechanism has a close resemblance to the statistical mechan
ics approach to clustering, discussed by Rose et al. [14]. In fact, the Kullback divergence
for the RBBM, with only continuous valued neurons in the absense of the thresholds
VjO, is identical to the free energy minimized in [14]. The temperature at which the first
symmetry breaking occurs can be calculated analytically [14].

In the RBBM in its general form, the symmetry breaking phenomena will persist as
long as continuous valued neurons are present. The specialization with respect to y is
roughly independent of (3 and the specialization with respect to x is similar as in the
unsupervised case.

For simplicity, the weights VjO were not included in these simulations. As can be seen
from Eq. (14), the role of VjO is to determine the relative weight of the different Gaussian
kernels. Their presence will not alter the observed symmetry breaking phenomenon but
may improve the solutions.

For the RBBM with many external units and with ho > 1 active units in the hidden
layer, a similar symmetry breaking pattern will occur. The specialization as a function of
temperature will then occur at the level of cell assemblies. The role of individual neurons
will be much less obvious, since each neuron will participate in many assemblies. At high
(low) noise level, cell assemblies will describe course (detailed) features of the data. Thus,
by adjusting the level of noise in the Glauber dynamics, the optimal weights can be made
to represent global or detailed features of the dynamics.

In standard RBNs, it is a problem to determine the optimal number of Gaussian ker
nels. This problem is partly due to the fact that the number of clusters in the data is
unknown, and is partly a question of optimal generalization. In the RBBN, the effective
number of hidden units is controlled by (3. Therefore, it becomes the problem of finding
the optimal (3. A practical approach is to start with low (3 and calculate the optimal
Kullback divergence on a training set and on a test set. Increase (3 as above and continue
until the Kullback divergence on the test set starts to increase. This approach was simu
lated for the 80X problem. The training cost decreases as a function of (3, indicating that
increased specialization of the hidden units leads to improved training set performance.
However, the test cost has an optimal value for (J = 0.916. Inspection of the receptive
fields of the hidden units shows a specialization in 15 hidden units. 5. DISCUSSION

It was shown that by introducing lateral inhibition, hybrid architecture involving different
computational principles such as feed-forward mapping, unsupervised learning and asso
ciative memory, can be modeled and analysed in the Boltzmann Machine framework. This
is of great advantage for getting a better understanding of the capability of the Boltzmann
Machine, and for the study of hybrid architectures in the context of neuro-biology as well
as in engineering.

The analytic learning rules that can be derived for these networks allow for fast sim-

11

ulation on sequential machines. It should be emphasized that these learning rules are
identical to the original BM learning rule,. in t.he sense that for identical architectures the
same weights are found after learning (except for local minima). The advantage is that
for networks with restricted number of permissible states, the Glauber dynamics need not
be invoked to calculate the learning rule: it can be done analytically. This makes fast
simulations of these networks on cOIlventional workstations possible.

An attractive feature of the Ackley learning rule is that it only requires locally available
information. Because of the locality property, it allows for hardware realizations that scale

well with problem size. This opens the possibility to design and simulate small Boltzmann
Machines in software, using the approach outlined in this paper, and then to implement
large reai world application:; in hardware, using the learning rules proposed by Ackley et

al..
In this paper, we saw two examples how inhibitory connections lead to interesting

architectures for which fast learning rules can be derived. For Boltzmann Perceptrons, it
was shown that these architectures can solve complex real-world applications.

The Radial Basis Boltzmann Machine is an example of how different computational
principles, such as feed-forward mapping and unsupervised learning , can be combined
and analysed in a unified way. The possibility to include associative memory in this same
net.work \\'as mentioned but not further explored. The important advantage of this ap
proach is that only onc criterion (Kullback divergence) is minimized during learning. This
gives a firm theoretical foundation to the issue how a hybrid architecture must allocate
it.s resources to simultaneously implement different, possibly competing, functions.

From the construction of the Boltzmann distribution for the examples discussed in
this paper it should be clear, how to construct modular architectures. For instance, for
a modular architecture consisting of \vinner-take-all modules , the appropriate terms in

Eq. (8) must be repeated for each module, and terms describing connections between
modules must be added. Learning rules are immediately obtained by inserting the Boltz
mann dist.ribution in the Kullback divergence and taking the derivatives with respect to
all the adapt.ive weights. The complexity of t.hese learning rules is O(hm): where h is the
number of permissible states per module, and m is the number of modules.

For Radial Basis Boltzmann l\Iachines, wc discovered a symmetry breaking phe
nomenon that is reminiscent of statistical mechanics. Thus generalization can be studied
as a function of f3 for these networks. The shape of the Kullback divergence after training
as a function of /3 can be calculated for simple data distributions. Comparison with the
actual data may give some insight in the distribution of clusters, and thus on optimal
generalization.

ACKNOWLEDGEMENTS

I would like to t.hank Marcel Nijman and Pierre van del' Laar for providing some of the
numerical results of this paper.

REFERENCES

[11 D. Rumelhart, G. Hinton, and R. Williarns. Learning representations by back-propagating

errors. Nature, 323:533---536, 1986.

12

[2] S. Kullback. Information theory and statistics. Wiley, New York, 1959.

[3] S. A. Solla, E. Levin, and M. F leisher. Accelerated learning in layered neural networks.

Complex Systems, 2:625-640, 1988.

[4] E. B. Baum and F. Wilczek. Supervised learning of probability distributions by neural

networks. In D.Z. Anderson, editor, Neural Information Processing Systems, pages 52-61,
New York, 1987. American Institute of Physics.

[5] J.J. Hopfield. Learning algorithms and probability distributions in feed-forward and feed

back networks. Proc. Natl. Acad. Sci. USA, 84:8429-8433, 1987.

[6] H.J. Kappen. Deterministic learning rules for boltzrnann machines. Neural Networks, 1994.
Accepted for publication.

[7] D. Ackley, G. Hinton, and T . Sejnowski. A learning algorithm for Boltzmann machines.

Cognitive Science, 9:147-169, 1985.

[8] C. Peterson and E. Hartrnan. Explorations of the mean field theory learning algorithm.

Neural Networks, Vol. 2, pages 475-494, 1989.

[9] E. Yair and A. Gersho. T he boltzmann perceptron network: A soft classifier. Neural

Networks, 3:203-221, 1990.

[10] J. Hertz, A. Krogh, and R. Palmer. Introduction to the theory of neural computation,

volume 1 of Santa Fe Institute. Addison-Wesley, Redwood City, 1991.

[11] V. Lopez. Handwritten character recognition: Benchmark test for neural network engineer

ing. Summary of talk presented at ICANN'93, 1993.

[12] M. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state

calculations by fast computing machines. Journal of Chemical Physics, 21:1087-·1091, 1953.

[13] J. Moody and C. Darken. Fast learning in networks of locally-tuned processing units. Ne'uml

Computation, 1:281--294, 1989.

[14] K. Rose, E. Gurewitz, and G. Fox. Statistical mechanics of phase transitions in clustering.

Physical Review Letters, 65:945-948, 1990.

13

