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Cumulus

Introduction

Even though �everyone knows what attention is�, it has been studied widely since William 

James wrote these famous words, up to the present day. Here the focus is on visual attention: 

selecting some visual location(s) over others for prioritized processing. Most of the work on this 

topic has been done with laboratory experiments. The method of choice has often been eye-

tracking where the direction of gaze is used as a proxy for visual attention. Though studies of 

visual attention in laboratory settings have been valuable, the external validity or real-world 

applicability of this work has not been tested often. With modern, wearable eye-trackers we can 

now assess visual attention in the real world. This allows validation of laboratory-generated 

theories and models, as well as measurements made in �setups� that are impossible � or at least 

very hard � to mimic in the laboratory. Two of the four studies described here are among the first 

to do this.

First, a feature-based model for the prediction of attention, and one of its mechanistic 

assumptions, is tested with naturalistic stimuli. Second, a comparison is made between 

laboratory- and real-world visual attention using virtually identical visual stimulation. Third, the 

effect of an implicit task on visual attention in the very common real-world activity of walking 

on a street is measured. Fourth, the effect of making hand movements on visual perception is 

studied. The first two studies focus more on the properties of the visual input, whereas the 

second two studies focus on the interaction between action and perception. These four studies 

cover several topics in real-world visual attention and show both the feasibility and necessity of 

studying perception and action under naturalistic conditions.
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Overt visual attention

Since the human eye has a fovea containing a local high density of photo receptors, we can 

inspect only a part of the visual field in high detail at any time. Consequently, the direction of 

gaze has to be changed if another point is to be inspected in high detail. As in most primates 

humans usually accomplish this through eye and head movements. Aside from the resolution 

distribution of the retina, there may be other �bottlenecks� in the visual hierarchy, which restrict 

the processing of visual input. 

Since the number of locations that can be looked at in a given amount of time is limited, 

choosing the right locations to inspect is essential for gathering the information necessary to 

complete any task that depends on visual input. The direction of gaze and the processes 

underlying its choice may both be called visual attention, or more precisely: overt visual 

attention. Though covert (cognitive) attention can be separated from the direction of gaze with 

some effort (Posner, 1980), the two are usually coupled and appear to share a common neural 

basis (Rizzolatti et al., 1987). In any case, by manipulating the task, its demands or the visual 

input, overt visual attention can be directed elsewhere. Hence, by measuring the direction of 

gaze the processes underlying visual attention can be studied.

Studies using the direction of gaze to assess visual attention have been done for decades 

(Buswell, 1935; Yarbus 1967). Participants in these studies usually have their heads restrained 

while they watch pictures. Here the study of visual attention is extended to more life-like 

situations. Several different issues in visual perception are investigated, which cover a wide 

range of topics. First, in the remainder of this introduction, some background on the different 

themes is provided and the four studies are briefly described, followed by a set of overarching 

conclusions and a discussion of some open questions. The next four chapters each deal with one 

of the studies. Finally, a summary in German, English and Dutch are provided.
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External validity

The purpose of vision � and indeed all sensory perception � is not to optimally represent stimuli, 

but to allow an organism to behave adequately given the situation it is in (Einhäuser & König, 

2010). However, most of the research on visual attention to date has been performed with 

artificial stimuli in laboratory conditions. Real-world perception on the other hand usually 

involves multi-modal sensory input, and the information from the different senses may be 

converging or diverging, and occurs in a dynamically changing context and task-set. All the 

potential sources of differences between visual attention in traditional laboratory studies and in 

real life lead to two good reasons to perform real-life experiments.

First, there is the issue of external or ecological validity. Predictions from laboratory 

experiments (and models) should be validated in real-life situations (Einhäuser & König, 2010). 

Well-defined laboratory tasks may provide clear and repeatable results, but still be of little value 

in real-world situations because of low ecological validity. For example, a standard assessment 

test for cashiers produced performance rankings that were systematically different from rankings 

of actual productivity (Sackett et al., 1988). Optimum performance did not prove to be a good 

estimate of typical performance. In general, the desirability of (ecological) validity should be 

self-evident for any kind of science. Especially when studying something as complex as the 

human brain, the applicability of results depends on how well real-world situations are captured 

by experiments. Technological developments in wearable eye-tracking devices (e.g. Schneider et 

al., 2009; see Figure 3.1) now allow validation of laboratory studies on visual attention in real 

life.

Second, by carefully and systematically studying real-life behavior, new behavioral 

observations may be made, leading to new hypotheses to be tested in more readily controllable 

laboratory experiments. This approach has recently been dubbed �cognitive ethology� (Kingston 
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et al., 2008). Since behavior measured in laboratory tasks will be stereotypical for the task and 

context, the only way it may lead to the discovery of new paradigms is by accident or by a long 

and arduous search through all possible tasks (�task-space�). Observing naturalistic behavior in 

moderately free tasks can be seen as a heuristic which cuts the search through task-space short 

and thereby enables a faster development of the field.

These two reasons are complementary. Validation of laboratory results can be seen as 

moving research out of the laboratory into the world. Cognitive ethology can be seen as bringing 

real-world observations back to the laboratory. The experiments described here all fall in the 

category of testing laboratory results or models in more complex, even real-life, situations. 

Early visual processing

Preceding the visual perception of whole objects or scenes there are many brain areas that 

process visual information. The way visual information is processed at each stage determines 

what information is available for the next stage of processing. All stages of processing of visual 

information therefore may shape the visual world we perceive and hence what we may or may 

not pay attention to. This implies that although the selection of locations in visual space to attend 

may be cognitive, it still relies on the earlier stages of visual processing.

The distribution of rods and cones on the retina already results in a higher resolution at 

the fovea (Østerberg, 1935), implying a lower resolution in the periphery. In the retina the visual 

�input� is processed and condensed by several types of retinal ganglion cells such as on- and off-

center cells and color-opponency cells (e.g. Derrington et al., 1984). These cells� firing rates 

code for a contrast in luminance or color of one small area of visual space against its 

surroundings. This �preprocessing� is continued after the output of the retina has been relayed 

over the lateral geniculate nucleus (LGN) to the primary visual cortex (V1) by so called �simple 

cells� and �complex cells�, which code for oriented luminance contrasts of specific width (Hubel 
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& Wiesel, 1962). Similarly, other features of the visual input are coded in other areas. For 

example, perceived motion is coded in medial temporal area (V5/MT) (Tootell et al., 1995) and 

in the immediately anterior medial superior temporal area MST, visual flow-fields are coded for 

(Saito et al., 1986). MT and MST are areas in what is called the �parietal stream� or �dorsal 

stream� (Mishkin & Ungerleider, 1982; Goodale & Milner, 1992), which consists of many 

parietal areas up to somatosensory cortex. The dorsal stream supposedly plays a role in the 

visual guidance or planning of actions. The so-called �temporal stream� or �ventral stream�, 

[leading to/consisting of] inferior temporal cortex, is supposedly involved in object recognition 

and the formation of long-term memory. A common hypothesis is that as activation spreads from 

early to late visual areas more and more complex features are extracted, or redundancy is 

reduced (Barlow, 1961) until the activity of a single cell codes for the presence of complete 

objects instead of low-level features (e.g.: Booth & Rolls, 1998, for recordings in humans; Quian 

Quiroga et al., 2005). This does not only require different kinds of visual features (such as shape 

and color) to be bound into coherent wholes, but needs to be robust against transformations of 

objects that do not change its identity, such as rotation. Beyond visual processing, 

representations of objects may encompass information from other sensory modalities as well 

(e.g. Amedi et al., 2005; Schall et al., 2009). Sensory perception is not a purely feedforward 

process, though. Activity in macaque V4 and in human V1, V2 and V3 is modulated by spatial 

attention (Moran & Desimone, 1985; Munneke et al., 2008). In healthy adults, the world that is 

perceived appears to be seamlessly integrated across modalities, even though the sensory organs 

relay very simple features to the brain in separate streams.

Bottom-up models of visual attention

A model of visual attention is Feature Integration Theory (FIT; Treisman & Gelade, 1980). In 

this model, there are several more or less retinotopic feature maps that encode where there are 
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interesting locations in the visual field, for that feature. Color is an example of a feature 

dimension. If a location has a different color from its surroundings that location stands out, and 

there is a high value in the feature map there. All feature maps are then combined into a single 

master map of locations. The highest peak in this map then receives attention via a winner-take-

all mechanism. This model is based on physiological data on the processing of features as well 

as behavioral data from feature and conjunction search experiments. �Guided Search� (Wolfe et 

al., 1989) extends the notions of FIT to explain behavior when searching for triple conjunctions 

and allows top-down modulation of behavior. A later, computational variation on such a model, 

the Saliency Map model (Itti & Koch, 2000; see also: Koch & Ullman, 1985) was used to predict 

fixation locations (see Figure 1.1). With proper adjustments predictions can reach levels of more 

than 80% correct (Betz et al., 2010). Though these predictions are far from perfect, they are 

consistently above chance, demonstrating that low-level features, such as luminance contrast, 

color contrast and orientation contrast have elevated levels at the visual locations selected for 

fixations, even in real life (Schumann et al., 2008).

Figure 1.1. Saliency Map Model with example. 

For each of the three features color, intensity and orientation the center-surround contrast is  
calculated at different scales. After competition within each scale, the different scales are 
combined into a conspicuity map, which are in turn linearly combined to generate a saliency 
map (the brightness of the pixels codes for saliency). In the example, the model would predict 
more attention for the house in the foreground.

The Saliency Map model has been augmented with additional features of various kinds 

(Einhäuser et al., 2009; Betz et al., 2010). Features that appear particularly good at predicting 
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fixations are based on motion (Carmi & Itti, 2006), and hence require dynamic stimuli. This 

implies that salient movements induce high inter-observer consistency in attracting gaze. The 

high predictive value of perceived motion as a low-level feature, already suggests it may be 

relevant for real-life situations. Large-field motion is indeed used in walking (Callow & Lappe, 

2008) and affects hand-trajectory in reaching movements (Saijo et al., 2005). Bodily movements 

affect the visual input in both tasks. In reaching, the position of the hand is continuously changed 

and this visual information may be used to correct the reaching trajectory. In walking a large 

expanding flow-field indicates speed and heading direction and can therefore also be used to 

verify the efficacy of movements or to adjust motor planning. Both types of tasks show that 

action and perception continuously interact, as is usually the case in real life.

Top-down models of visual attention

Actions are usually embedded in a task, and this task may then also affect attention. The 

relevance of the task in determining attention is not a new notion. As early as 1935, Buswell 

used an elaborate setup for measuring gaze direction and with tedious data processing in the pre-

computer era, found that the kind of task an observer is engaged in affects which parts of a scene 

are inspected and in which way. In this study an observer could freely view a photograph of a 

street scene with the Tribune Tower in Chicago or the same observer was asked to find a person 

standing behind one of the windows of the tower. A widely cited, and perhaps more thorough 

study by Yarbus (1967) confirmed this finding by asking an observer to answer several questions 

about Ilja Repin�s painting �The Unexpected Visitor�. Questions were for example �Give the 

ages of the people�, �estimate how long the visitor had been away from the family� or 

�remember the positions of people and objects in the room�, aside from a free-viewing 

condition. These different assignments resulted in distinctly different patterns of eye movements 

(see Figure 1.2). Both Buswell and Yarbus� experiments demonstrated that with a different task, 
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observers inspect different objects in the scene and perhaps in a different way. This work has 

already shown that cognition, or �top-down� processing plays a large role in determining the 

direction of gaze.

Search provides a well-controllable task in terms of the target and its features and is thus 

widely used. When searching natural scenes, context provides priors to restrict gaze to areas 

likely to contain the target (Torralba, 2003) and the effect of task can completely override the 

effects of manipulations of low-level features (Henderson et al. 2007; Einhäuser et al., 2008a). 

Most task-oriented work in real-life settings has investigated direction of gaze in tasks such as 
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sports (Hayhoe et al., 2005; Land & McLeod, 2000) food preparation (Land et al., 1999; Hayhoe 

& Ballard, 2005) or driving a car (Land, 1992; Land & Tatler, 2001; Kandil et al., 2009). Taken 

together these studies show that task is a better predictor of gaze than visual input by itself.

Apart from the problem that it is hard to model task or its effects in a generic way, (but 

see: Ballard & Hayhoe, 2009), it has also been shown in laboratory experiments (Posner, 1980) 

that some types of salient events of which participants know they contain no information, may 

nevertheless not be ignored. Salient, but non-predictive cues (non-predictive in terms of the 

laboratory task the participants are engaged in) still affect spatial attention. This means that 

given the right circumstances, top-down effects can surely override bottom-up effects, however 

the reverse may also occur.

If search targets are defined by their low-level features, the task may recruit bottom-up 

processing however to speed up performance. The �Guided Search� model tries to captures this 

(Wolfe et al., 1989; Wolfe, 2007) by adjusting the influence of features depending on task 

demands (see also: Navalpakkam & Itti, 2005; Peters & Itti, 2007). Regardless of whether these 

models are veridical or not, the integration of bottom-up and top-down influences on attention 

may capture real-world visual attention better than either alone.

Overview

Here, the effects of low-level features and the task of walking on visual attention as well as the 

effect of making movements on perceptual interpretation of stimuli is studied in four separate 

experiments. These will be briefly discussed below.

Study I: Color- and luminance-contrast effects add linearly

Laboratory tasks show effects of low-level features on attention (Shiffrin & Schneider, 1977; 

Schneider & Shiffrin, 1977; Treisman & Gelade, 1980). Typically, if a search target among 
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homogeneous distractors differs on a single feature dimension, such as orientation or color, the 

number of distractors does not affect the time needed to find it. This phenomenon is called �pop-

out� and indicates that visual information in the periphery is processed and can even affect 

attention quite strongly. On the other hand, if two or more features define the search target, 

observers engage in serial search, indicated by search time increasing with the number of 

distractors. This shows that there is some kind of �bottleneck� for processing visual stimuli, and 

that this has to be after the processing of low-level features. Several models intended to explain 

these behavioral results using physiologically plausible mechanisms have been proposed 

(Treisman & Gelade, 1980; Wolfe et al., 1989).

One classical model, the so-called �Saliency Map� (Koch & Ullman, 1985; Itti & Koch, 2000) 

that aims to explain sequential shifts of attention, assumes a linear addition (or an equivalent 

weighed averaging) of the effects of features on attention. More recently, however an alternative 

has been suggested that the maximum activity across several feature-based, retinotopically 

organized maps determines what location in visual space attracts most attention (Li, 2002), even 

in natural scenes (Lewis & Zhaoping, 2005). Both may be implemented in the brain. However, 

physiological evidence on functional connectivity on the level of single cells is hard to obtain.

A correlation between low-level features and visual attention has already been 

demonstrated in a real-world setting using a free-exploration task (Schuman et al., 2008). The 

theoretical merit of additive models has been discussed (Vincent et al., 2007) and the predictions 

of an optimal Bayesian and maximum model of human behavior have been compared (Vincent 

et al., 2009). A question that has remained open is whether maximum or additive models predict 

human behavior better.

In Study I of this thesis, eye-movements are measured while observers watch 
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photographs of scenes where the contrast of two low-level features are manipulated 

independently along horizontal gradients. That is, color contrast and luminance contrast could 

increase to the right or to the left of the scene, or could stay at the original level. This means 

there was a 3 x 3 design, with one neutral condition with no changes made to the image, 4 

conditions with single feature manipulations (color-contrast increasing to the right or to the left, 

as well luminance-contrast increasing to the right or to the left) and 4 conditions with combined 

feature manipulations (color-contrast and luminance contrast both increasing to the left or right, 

or increasing in opposite directions). Observers� eye-position was tracked in a free-viewing task. 

The horizontal eye-position in scenes with only a single feature manipulated was used to predict 

behavior in scenes with two gradients changed using an additive and maximum model. The 

predictive performance of the additive and maximum model were then compared.

In all stimuli, a viewing strategy could be observed: observers first look to the left of the image 

and then to the right. On top of these generic, task- or scene-induced effects, the individual 

feature-contrast gradients exerted a bottom-up influence as both models would predict. 

Observers directed gaze more to the side of the image with increased feature contrast, and this 

effect was stronger for luminance contrast than for color contrast.

The behavior in the four single feature conditions was used to predict the behavior in the 

four conditions with combined feature manipulations. In the additive model the prediction 

consists of the added effects found in the two single feature conditions that were combined in the 

double feature condition. Similarly, the maximum model used only the feature eliciting the 

strongest response across observers and images. Both models were used to predict the horizontal 

eye-position in the first five fixations. The additive model differed significantly only from the 

first fixations in two conditions, but did not differ significantly from the other 18 conditions 
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(indicating good performance of the model). Using luminance contrast (which elicited the 

strongest effect in single feature conditions) to predict behavior in combined feature conditions 

results in a prediction of 4 of 20 fixations that do not differ significantly from the measured data, 

and using only color contrast results in the prediction of 8 of 20 fixations that does not differ 

significantly from the measured data. If horizontal eye-position is averaged over the first five 

fixations, the additive model does not differ from any of the 4 averages, while each single 

feature does.

The key result of Study I, better prediction of human behavior by additivity of features 

then by a maximum model, suggests that attention � insofar as it is based on visual input � may 

also employ additivity of features. Regardless of one�s stance on whether attention is ultimately 

feature-based or task-based, models predicting attention or gaze under free-viewing conditions 

are constrained by these findings.

Study II: Free exploration versus �free� viewing

Direct comparisons of overt visual attention in laboratory settings and real-world settings are 

scarce even though the assumption that laboratory conditions are a good model for natural vision 

has gone largely untested. Some first indication that the laboratory setup itself, with restrained 

head and stimulus presentation on a screen, can bias visual attention has been found previously 

(Tatler, 2007).

In a first attempt to directly compare laboratory- with real-life conditions, previous recordings of 

subjects freely exploring various environments are used in two laboratory tasks. These 

recordings consist of eye-in-head tracking data, as well as a first-person perspective movie. They 

provide a real-world �free exploration� condition. In one laboratory condition �continuous 

replay�, the movies recorded with the head-centered camera are shown to observers. In another 
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laboratory condition (�1s frame replay�), slide shows of equal duration to the movies are shown 

to the observers. The slide shows for the 1s frame replay condition are created by taking the first 

frame from each second of each movie and shuffling these frames so that each new slide show 

has an equal number of frames from each original movie in a random order. In both laboratory 

conditions, eye-in-head position is recorded, allowing a direct comparison with real-world eye-

tracking data.

There are several differences between a laboratory and real setting that may cause 

differences in perception or behavior. First, participants remain immobile in the lab, since head 

movements are prevented with a forehead- and chin rest. Second, aside from visual stimuli, no 

other sensory input is given, though normally auditory, olfactory and perhaps tactile or other 

information would be integrated with the visual modality. Third, no interaction with the 

environment is possible in the laboratory. Some interaction with a visual environment may be 

provided in virtual reality laboratories, though this will usually affect the �realism� of the visual 

input and the mode of interaction will not be the same as in real life (though see Ballard & 

Hayhoe, 2009). These differences with real life all apply to the continuous replay condition and 

may affect visual attention and hence the direction of gaze and eye-movements.

The 1s frame replay condition is a further step away from real-world visual input, even 

though showing static images for a short duration has been a common method to investigate 

�real-life� visual attention. There are two further differences with the video replay condition. 

First, there is no motion left in the scenes, and second, all temporal context is removed. Even 

though one moves about through the world, the changes this induces in the visual input are small 

in comparison to the changes induced by the sudden onset of a new image. All these differences 

between real-life and laboratory situations may affect visual attention. By measuring eye-

movements with equal visual input, the extent of the effect of these differences can be assessed.
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The distribution of eye-in-head position over all observers has a different shape for each 

condition. Most notably, in the 1s frame replay condition, eye-positions are centered much more. 

This may have two causes. First, in the free exploration condition and the continuous replay 

condition, observers are confronted with a mostly expanding flow field. When observers foveate 

objects or other locations in such stimuli, tracking movements away from the center have to be 

made. These types of eye-movements are necessarily absent in the 1s frame replay condition. A 

second difference can be observed in the data; the onset of a new frame in the 1s frame replay 

condition triggers eye-movements back towards the center of the distribution. These movements 

could indicate that observers in this condition need to reorient themselves to the suddenly 

appearing scene. Such behavior would be absent in real life where sudden scene changes are 

rare. This already indicates that using suddenly presented, static images induces behavior that is 

qualitatively different from its natural counterpart.

A measure for similarity of behavior evoked by the different conditions, is to what degree 

the observers direct gaze at similar locations, or how �consistent� the direction of gaze is between 

two observers. Consistency between two observers is defined here as 1 � d/m, where d is the 

euclidean distance between the two points the observers� gaze is directed at and m is the length 

of the diagonal of the movie frames. Pairs of observers in the same laboratory condition have a 

higher inter-observer consistency than pairs of observers from different laboratory conditions. 

However, the inter-observer consistency within continuous replay is lower than within 1s frame 

replay. Additionally, when all participants in the free exploration condition are treated as one 

observer, the direction of gaze in free exploration is more consistent with the direction of gaze in 

continuous replay than the direction of gaze in 1s frame replay. This is a second indication that 

continuous replay may be a better model of real-world visual input for use in laboratory 

experiments.
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The higher inter-observer consistency in 1s frame replay may be explained by the larger 

central bias found in this condition. This is confirmed by an analysis of Kullback-Leibler 

divergence within conditions, showing that the distributions of gaze are more similar in 

continuous replay compared to 1s frame replay, even when accounting for the 1 second 

periodicity in 1s frame replay. However, since Kullback-Leibler divergence cannot evaluate 

single gaze directions, measures based on euclidean distance remain best suited for estimating 

instantaneous inter-observer consistency, which is artificially high in 1s frame replay.

Artificially high inter-observer consistency may be problematic for real-world validity of 

results. This also raises the question of what the maximum inter-observer consistency is, which 

should be the upper limit for computational models for predicting gaze. Since inter-observer 

consistency will never reflect a perfect prediction of one observer by the other, its actual level 

should serve as the goal for the consistency between model predictions and human behavior 

when testing a model�s validity. A rate of correct predictions higher than the inter-observer 

consistency may even be indicative of over-fitted models. Validation of models should ideally 

occur with behavioral data describing real-world behavior, and these results show that setting 

and context of data acquisition have an impact on what is measured. The same problem also 

affects models of other types of behavior, but here predictions of gaze made by the Saliency Map 

model are investigated.

If gaze direction is dependent on visual input, saliency should be elevated at the center of 

gaze relative to other locations in the visual world. Average saliency indeed shows a peak at the 

center of the frames recorded with the gaze camera, as compared to what is recorded with the 

head-centered camera. The shape of the �peak� region in the head-centered saliency deviates as 

well: it is a horizontal streak above the mid line of the frames. The question is if this relationship 

between saliency and gaze is different in the laboratory conditions. Gaze-centered saliency maps 
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were constructed for all three conditions using the frames of the head camera. As a baseline for 

comparison, shuffled gaze directions have been used as well. These have the same distribution, 

and should hence show how strong saliency is elevated at gaze if the two are unrelated. All three 

conditions show a stronger peak of saliency at gaze than baseline. Furthermore, in 1s frame 

replay it can be observed that at the onset of the 1 second interval, the relationship between gaze 

and saliency is about as strong as baseline which changes after about 400 ms. In other words, 

luminance contrast, color contrast and orientation contrast are higher at the direction of gaze, 

indicating a correlation between gaze and saliency.

How strong is this relationship? Discrimination of real from shuffled gaze directions by 

saliency is slightly better in continuous replay, compared both to 1s frame replay and free 

exploration. In a few movies however, the predictions are below chance level (50% correct) and 

never reach levels higher than 60%, If real fixations from free exploration have to be 

discriminated from shuffled ones, fixations from continuous replay do better than both model 

saliency and fixations from 1s frame replay. This again shows that continuous replay is a better 

stimulation mode for capturing life-like behavior than briefly displaying static images.

All these results indicate that real-world gaze is better captured by the continuous replay 

condition than by the 1s frame replay condition. This has implications for laboratory 

experiments studying natural gaze under free-viewing conditions: more lifelike stimuli than 

static images may improve results of laboratory work. Furthermore, the implicit task of walking 

on (uneven) terrain seems to have influenced the direction of gaze in the free exploration 

condition. Most studies on the role of task on visual attention have thus far explored the effects 

of explicit tasks. Study III will focus on the implicit task of negotiating uneven terrain instead. 
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Study III: Eye- and head movements in real-life terrain negotiation

In real life, the effects of visual input on movements and vice versa are both present 

continuously. Visual attention is used to gather information in order to perform adequate actions, 

and movements one makes or plans to make similarly affect the direction of gaze. In Study II it 

was observed that participants that actually walk through the environment make much more 

downward eye-movements, presumably to coordinate walking to negotiate the terrain. 

Participants in the lab were immobile and a qualitative interpretation of the data suggests that 

they paid little attention to the path. It seems very likely that the terrain shown in the videos and 

slide shows is largely irrelevant for the task of watching pictures on a screen.

To test this explicitly, we had participants negotiate two paths of distinct regularity in the same 

visual environment. The paths used are in a local street (�Hirschberg�) where a metal railing 

separates a continuously inclining cobbled road (the �road� condition) from a sidewalk with 

irregularly placed steps (�steps� condition). Participants were asked to walk closely to either side 

of the metal railing both up and down. During these four walks, eye movements and a head-

centered video were recorded. By determining the position of a reference point (�vanishing 

point�) in the head-centered video, the orientation of the head in space can be calculated. When 

adding the eye-in-head orientation signal from the eye-tracker to this, a gaze-in-world signal is 

obtained.

A distribution of gaze-in-world direction, head-in-world orientation and eye-in-head 

orientation can then be analyzed. The horizontal and vertical coordinate of the averages are 

analyzed, as well as the horizontal and vertical spread, for the effect of the terrain and walking 

direction. If the interpretation of the distributions seen in the second experiment is true, there 

should be a difference in gaze-in-world direction between the two terrains. That is, on the more 
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irregular path, participants should look downward more, or fixations on the path are closer to the 

participants� feet. Both options are not mutually exclusive, and both should affect the vertical 

coordinate of the average gaze direction. Several combinations of eye-in-head and head-in-world 

movements could be used to redirect gaze as needed for immediate terrain negotiation. These 

components are measured separately, and their contributions to direction of gaze can be 

investigated individually.

The distribution of gaze is indeed different on both terrains. There is a peak around the 

0°,0° coordinate, which represents the direction of the vanishing point. Directly below this peak, 

is a second peak on both terrains, presumably indicating gaze used for attending the terrain being 

negotiated. This second peak is about 20° lower in steps as compared to road, which is 

accompanied by a higher vertical spread as well. This indicates that direction of gaze is changed 

to meet demands posed by terrain. The contributions of head-in-world orientation and eye-in-

head orientation to the direction of gaze will be investigated next.

The shape distribution of head-in-world orientation as described by its vertical and 

horizontal spread does not significantly differ between the terrains, indicating a similar pattern of 

movements. On both terrains, the average head-in-world orientation indicates that people point 

their head a bit downward relative to the horizon, which has been found before (Guitton & Volle, 

1987). However, the average head-in-world orientation is lower in steps than in road. This shows 

that head orientation is used to direct attention to the path by adjusting it in a constant manner, 

but not by making more or different movements.

Eye-in-head orientation is distributed more vertically on both terrains, contrary to what is 

found in the free exploration condition described in study 2. This suggests an effect of the visual 

environment or of the inclination of the path, which is equal in both conditions. Additionally, in 

the steps condition, the vertical spread of eye-in-head is larger than in road, and the average eye-
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in-head orientation is also lower in steps as compared to road. This shows that gaze is directed to 

the path more on steps by a general re-orientation of the eye as well as by a different pattern of 

eye movements.

Similar experiments have been conducted before, but these either used laboratory setups 

with highly impoverished visual environments (Patla & Vickers, 2003; Marigold & Patla, 2007), 

which may affect gaze, or the terrain types tested were located in different environments (Pelz & 

Rothkopf, 2007). To my knowledge, this is the first study of changes in visual attention induced 

by an implicit task performed in a constant real-world setting. The results show that attention 

and gaze are directed at locations in the world that are relevant for the task at hand, or, more 

precisely, to visual information that is useful for motor planning in walking. This visuomotor 

routine (Hollands & Marple-Horvat, 1996; Guitton & Volle, 1987) is a common example of an 

action-perception loop. In this case, the intended action determines what visual information is 

necessary, which determines where gaze is directed. The visual information gathered from the 

perceived scene is then used to optimize performance in the task at hand. That is, action is 

shaped by perception. The last study investigates if and when perception is shaped by action.

Study IV: Action-to-perception transfer

Visual input naturally has a strong influence on actions. The high spatial resolution of vision 

makes visual information highly suitable for guiding goal-directed actions. For example, large 

lateral flow-fields induce changes in the reaching trajectory, which is called the manual 

following response (e.g. Saijo et al., 2005). A theoretical framework for the integration of action 

and perception is presented by the Theory of Event Coding (TEC; Hommel et al., 2001; Prinz, 

1997). The theory states that the last stages of perception � perception events � and the first 

stages of motor planning � (intended) action events � share representations. All sensory input 

may affect action this way, and the theory also predicts that action events can in turn influence 
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perception directly. An effect of motor-learning on later perception has already been shown 

(Casile & Giese, 2006; Hecht et al., 2001). Some first evidence that a concurrent effect of action 

on perception exists as well has also been found. However, either the visual stimuli were shaped 

by (previous) actions (Maruya et al., 2007) or hand-movements determined when the stimulus 

would be presented (Wohlschläger, 2000). This confounding effect of the participants� actions on 

the stimulus may have affected both studies� results. Additionally, the effects of prolonged 

stimulation and movements are still unknown.

A perceptual rivalry paradigm is used to investigate action-to-perception transfer (APT). 

Rivalry is a process where one of two or more alternative interpretations (�percepts�) of a 

constant, but ambiguous stimulus is perceived at any one moment. Which percept is dominant 

keeps alternating over time (Blake & Logothetis, 2002). Previous work indicates that movements 

affect a visually perceived rivalrous stimulus similarly (Maruya et al., 2007; Wohlschläger, 

2000). This would imply that movement signals (either proprioceptive signals, efference copies 

or motor plans) play a similar role as a sensory modality in integrating information.

The rivalrous stimulus used here consisted of moving dots that can be perceived as a 

cylinder rotating clockwise or a cylinder rotating counter-clockwise. While viewing this 

stimulus, participants simultaneously made unseen clockwise or counter-clockwise rotating 

movements with their right hand. These movements could be used to report the percept, either 

by making a movement congruent with the percept or incongruent with the percept. The 

movements could also be continuous, pre-defined movements (e.g. a block of clockwise 

movements). Percept was then reported by key-presses which allows for splitting the percepts in 

congruent and incongruent with the ongoing hand movement. The behavior from these four 

blocks can be analyzed in a 2 x 2 design, using movement type (motor instructed vs. motor 

report) and action-perception congruency (movements congruent vs. incongruent with the 
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percept) as factors. Control conditions include catch blocks that used a disambiguated stimulus 

to test motor responses to changes in perception, as well as blocks where an unrelated (vertical) 

movement is made and blocks where no movements are made.

As dependent variable, the median length of the dominance durations of congruent and 

incongruent percepts is used. If hand movements have a similar effect on the resolution of 

ambiguity as sensory input from other modalities, the percepts congruent with the movement 

should be longer than the percepts incongruent with the movement. The dependency of any 

congruency effect on the type of movements (pre-defined or task-relevant) can also be 

investigated in this paradigm.

The data show an interaction between movement type and action-perception congruency. 

Within pre-defined movements, the dominance durations of percepts congruent with the 

movements did not differ from the dominance durations of percepts incongruent with the 

movements. However, when movements were used to report the current percept, the dominance 

durations of percepts congruent with the current movement were longer than dominance 

durations of percepts incongruent with the current movement.

These data confirm earlier findings demonstrating that action affects perception (Maruya 

et al., 2007; Wohlschläger, 2000). In addition, it is shown that actions have to be task-relevant to 

induce any effect on perception (Hommel, 2004). A model of rivalry proposes that two 

populations each code for one of the two percepts. These populations inhibit each other and the 

most active population determines the percept. Because of adaptation in the active population the 

percept eventually switches when the other population can take over (e.g. Lankheet, 2006). If the 

movements would have increased adaptation of the congruent percept, dominance duration in 

congruent percept tracking would be lower than those in incongruent percept tracking, which is 

the opposite of what we find. If this arguably simple model of rivalry is still correct, this would 
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imply that the movements increase the inhibition of the percept incongruent with the movement. 

Cross-modal rivalry experiments find a similar congruency effect of non-ambiguous stimuli in 

one modality on the perception of ambiguous stimuli in another modality (Blake et al., 2004; van 

Ee et al., 2009). That actions influence perceptual rivalry in a way alike to other sensory 

modalities in cross-modal rivalry, confirms the proposed equivalence of perceptual and action 

events in TEC. Resolving ambiguity in one modality by using information from another 

modality, or in this case from the motor system, will most likely result in more stable perception 

in complex and noisy, real-world situations. Using only task-relevant action information to 

resolve ambiguity may be the most adaptive strategy for human behavior.

Discussion

In a series of experiments attention and perception in more life-like situations have been studied. 

First, it has been shown that manipulations of low-level features direct attention in natural 

images, and that the effects of single features add linearly, as predicted by the Saliency Map 

model. Second, differences between laboratory and real-world attention have been quantified in 

a free exploration task. Third, it has been shown that naturally occurring implicit tasks guide 

visual attention. Lastly, self-produced, but unseen movements affect perception when perception 

is relevant for action.

In these four studies different influences on attention and perception have been 

investigated using stimuli and tasks that allow for, or explicitly study the interaction of several 

processes. Natural scenes have been combined with feature gradients, a first-person perspective 

on free exploration has been used in real-world settings and in the laboratory, walking a path has 

been combined with negotiating terrain and the perception of an ambiguous stimulus with the 

execution of several types of movements. Taken together, these studies provide insight into 

many interlocking subprocesses in human vision.
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The first study shows that certain bottom-up models and their assumptions hold in 

viewing natural scenes. However, the second study demonstrates an effect of picture onset on the 

relationship between gaze direction and low-level features. The fourth study even shows that the 

perceptual interpretation of the same set of features is altered by making unseen hand 

movements. This could be seen as a top-down effect, not on attention in this case, but directly on 

perception. Furthermore, the third study demonstrates that even implicit tasks exert a top-down 

influence on attention. It appears that depending on context, the visual input may exert a stronger 

or weaker influence over attention, or perhaps context allows for exploratory behavior. In any 

case, the extreme positions in the bottom-up vs. top-down debate; completely ignoring 

peculiarities in the visual input and ignoring task demands altogether, are likely both suboptimal 

strategies in real life. If gaze is controlled by a mixture of bottom-up and top-down processes 

(Wolfe et al., 1989; Navalpakkam & Itti, 2005), it follows that in semi-constrained tasks, a part 

of all fixations is directed at salient locations not relevant for the task. An example could be the 

time spent waiting for water to boil while making tea. Many stimuli usually present in real-life 

would be more interesting to look at than the kettle. In the first study it has been shown that even 

in a free-viewing experiment there seem to be consistent top-down effects in the form of an 

image scanning strategy.

Since walking on a street presumably did not require the full attention of the participants 

in the third study, it could be expected that some fixations were used to explore the environment. 

If the horizontal spread of the gaze distribution (Figure 4.2) is used as an indicator for how much 

time the participants spent exploring the environment, there seems to be no appreciable 

difference between walking on the steps or on the road. However, if we interpret the gaze 

distribution as consisting of a lower, task-related part indicating how much the terrain was 

attended and an upper, exploration part, there may be a difference. In the group data, the peak of 
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the upper part of the gaze distribution is about as high as the peak in the lower task-related part 

when walking on the road, but on the steps the upper peak is lower than the lower peak. This 

could indicate that participants explore the environment more when walking on the road. 

However, an alternative explanation is that attention is both given to the path as well as the end 

of the path and that the ratio of attention for both task-relevant locations is shifted. On the other 

hand the end of the path should be only a small part of the visual space, much smaller than the 

upper part of the gaze distribution. In any case, the data presented here is certainly not at odds 

with a view of visual attention being determined by an interplay of bottom-up and top-down 

processes. The eye-movement patterns in the first study seem to indicate that both types of 

processes are simultaneously active and the fourth study even indicates modulation of perceptual 

processes by motor signals. 

The second study demonstrates that highly similar visual stimulation evokes dissimilar 

patterns of gaze, depending on the mode of presenting the visual information. The fourth study 

even demonstrates that the perceptual processes underlying the interpretation of a constant visual 

stimulus can be altered by concurrent actions. Both studies underline that despite the hierarchical 

nature of the visual system, coupling between areas is usually bidirectional. Consequently, in the 

dynamic, multi-modal situations encountered in real life, visual attention will rarely be 

controlled by a single process. It may be that effects found in laboratory experiments do not 

simply add up to accurately predict behavior. Instead, hitherto unmeasured interaction between 

many processes may guide real-world visual attention. Although this notion is not new, the 

experiments described here may lend it some credibility and underline the importance to study 

visual attention in the real-world as well as in laboratory setups.

The first study shows that feature-contrast gradients applied to natural stimuli affect direction of 
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gaze in the direction predicted by classic computational models, such as the Saliency Map model 

(Koch & Ullman, 1985; Itti & Koch, 2000). In contrast to an effect equal to the maximum of the 

features (Lewis & Zhaoping, 2005), this model predicts linear addition of the effects of each 

feature, which has been confirmed by the data. This finding guides the construction of models 

that make use of multiple feature-based representations of the visual input. 

The fact that the manipulation of features leads to a shift in attention may suggest a 

causal effect of features on attention. This is, however, not necessarily the case. Other work 

shows for example that manipulations of features have no effect on the direction of gaze when 

participants engage in a search task (Henderson et al., 2007; Einhäuser et al., 2008a) and that 

objects explain away the effects of features on attention (Einhäuser et al, 2008b). Objects can be 

perceived by their features, so that the correlation between gaze and features may depend fully 

on visual attention being directed at objects (but see, Naber et al., 2011). The stimuli used in the 

study presented here did not contain man-made objects, but the manipulation of the features may 

also have affected the perception or visibility of the natural objects (stones, trees, leaves, etc.) 

that were present in the stimuli. In other words, the effects that both objects and features have on 

attention raises the question if there is an interaction between these two effects, or whether 

objects override the effects of features.

Studying object-directed attention may also help shaping task-based models for 

predicting gaze. Object detection and classification can already be automated to some degree 

(face detection: Viola & Jones 2001; Dakin & Watt 2010) and gaze is likely to be directed at 

objects relevant for the task. Gaze may not only be directed at stationary objects � like steps on a 

path � but may also be directed at locations where task relevant objects are going to be, such as 

the point in space where a ball and racket will hit (Hayhoe et al., 2005) or the area around the 

tangent point of a curve in a road, which is relevant for controlling the trajectory of a car while 
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driving it (Land, 1992; Kandil et al., 2009). Detecting task-relevant objects or predicting their 

location based on dynamic visual input, may be a first step in generating task-based predictions 

of gaze which can be verified against actual, measured gaze.

Such approaches to visual attention in explicit tasks require recording gaze in dynamic 

situations. As has been shown in the second study presented here, the effects that laboratory 

setups have on visual attention (see also: Tatler, 2007) can be a potentially confounding factor. 

Both of these arguments for doing real-world recordings stem from an intended or desirable 

validity of research for real-life situations. In the second study, visual attention in two laboratory 

paradigms have been compared with each other and with real-world recordings. The results 

clearly indicate that using dynamic, real-world movies instead of static images evokes behavior 

that is more alike to what is recorded in real-world environments.

If the effects of features and objects on real-world visual attention is to be studied, as has 

been argued above, the requirement of real-world stimuli and recording suggest two approaches 

for future research. First, applying gradients of luminance- and color-contrast to dynamic 

stimuli, recorded in the real world, can reveal the effect low-level features have on attention in 

more natural stimuli than static images. Second, using a wearable eye-tracker, interactions with 

objects can be recorded in real environments. By keeping the objects constant, and by varying 

task, environment or other contextual factors, the role that objects play in directing gaze in 

various natural settings can be quantified. Such paradigms will shed further light on real-world 

attention and behavior and may reveal further differences with laboratory situations. They may 

also lead to better models for predicting real-world gaze, as they combine bottom-up as well as 

top-down influences.
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The assumption underlying the view of task as the main determinant of gaze, is that sensory 

perception serves to gather information necessary for adequate performance of the task at hand. 

Even when this task is only given implicitly, it has a distinct effect on gaze, as is shown in the 

third study. The steps may be considered objects relevant for the task of walking. The area of the 

visual field where the steps are, receives more visual attention compared to walking on terrain 

without steps (the road). This by itself suggests that humans engage in many tasks 

simultaneously, as walking and talking are usually easily combined by most people. During free 

exploration of various environments in the second study, a large amount of visual attention is 

still directed at the environment. In the third study, however, gaze is mostly directed at the 

terrain or at the end of the path. This suggests first that free exploration of the environment may 

be an implicit task that humans engage in to gather information to enhance performance in the 

future. Second, it suggests the possibility that when the amount of visual information needed for 

negotiating terrain decreases, gaze can be used for free exploration more. One way to reduce the 

amount of visual information needed for negotiating terrain may be to memorize or learn the 

terrain. If walking the same irregular path several times results in gaze being directed at the path 

less, this would be a further indication that real-life gaze serves to gather information for 

adequate performance of tasks. However, if practice does not result in gaze being directed 

upward, away from path more, but instead remains equally fixed on the irregular path, this does 

not mean that the terrain is not learned. It may instead indicate that visual exploration of the 

environment is not an alternative to the task of negotiating terrain, or that the environment is 

learned just as much as the path. Learning the environment could remove the necessity to 

explore it visually so that attention can be directed at safely negotiating terrain in the present. In 

short, learning seems to be a good candidate paradigm to further clarify the effects of tasks in 

real-world situations and may shed light on the functional role, if there is any, of free exploration 
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of the environment.

The possibility that learning the environment may free up attention for path negotiation is 

hard to distinguish from not learning the terrain, but both learning the terrain and learning the 

environment imply a role of long-term memory in directing gaze in real-world situations. Short-

term memory effects have already been shown, in so called �deictic pointers� (Ballard et al., 

1995; Ballard et al., 1997) used in a simple construction task. Deictic pointers supposedly make 

it easier to look at a point in visual space repeatedly. This contrasts with so-called �inhibition of 

return�, observed in search tasks in the laboratory, where participants are less likely to revisit the 

same point in visual space than random other locations. Given that the objects don�t move, this 

makes sense in a single search. However, in a real life search, we may often inspect the same 

locations as experience may have taught us that we are likely to have misplaced items in these 

locations. In general, real-life- or laboratory tasks where rewards are more likely to appear at 

certain locations than at others, should demonstrate long-term memory effects that may be 

labeled �facilitation of return�. Such learning effects could be seen as more specific versions of 

priors (Torralba, 2003). Studying visual search in real-life would reveal if behavior in agreement 

with facilitation of return does or does not occur. This would clarify if inhibition of return is a 

general principle of the visual system or if it is only engaged in within very specific laboratory 

search tasks.

The third experiment assumes that task guides attention and that what is then perceived affects 

performance of the task. This process keeps repeating itself, forming a perception-action loop. 

What has been shown in the fourth study is that self-produced, unseen movements affect the 

perceptual interpretation of constant visual stimuli directly. That is, the visual stimulus is not 

changed by movements made by the participants, and nevertheless these movements affect how 
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the stimulus is perceived. The disambiguation of constant but ambiguous stimuli is similarly 

affected by what is perceived in other sensory modalities. This is in accordance with the Theory 

of Event Coding (TEC; Hommel et al., 2001; Prinz, 1997) that states that perceived visual events 

are represented in areas closely related to intended motor events. Motor intentions can affect 

perceived visual events according to TEC. In the experiment presented here, the movements 

were not only intended, but actually executed simultaneously with reporting perception. 

Consequently, efference copies and proprioceptive feedback as well as motor intentions were 

available continuously in all conditions with hand movements and the experiment cannot 

dissociate which of these signals caused the effects. An interesting follow-up study would be to 

investigate the perception of ambiguous stimuli during the planning of a movement. If a motor 

intention by itself suffices to alter the perception of a visual stimulus, this implies a role for 

intended motor events, but this would still have to be contrasted with simultaneously executed 

movements to quantify if there is a role for efference copies or proprioceptive feedback as well. 

In any case, the effect found in the fourth study shows that for interpreting noisy or unclear 

information in a certain modality, the brain does not only use information from other modalities, 

but signals from the motor system too.

Buswell (1935) used a search task to compare to a free-viewing �task� which demonstrated an 

effect of instruction on visual attention. Interestingly, behavior observed in tasks such as feature 

search and conjunction search have led to �bottom-up� models of attention. The validity of these 

models is now under heavy debate and task is suggested as the prime or even sole cause of shifts 

in visual attention (Ballard & Hayhoe, 2009). Although it is unlikely that features play a causal 

role in directing attention in all tasks, they may be used in real-life search tasks. An ecologically 

valid example would be search for berries or other natural objects defined by relatively simple 
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features. To the best of my knowledge, no data on real-life search experiments has been 

published to date. Hence, real-life search would be a potentially fruitful paradigm for future 

studies.

With these experiments a wide range of topics in visual attention in naturalistic situations is 

covered. By using natural stimuli and tasks, and conducting experiments out of the lab, results 

obtained with laboratory tasks have been tested for external and ecological validity. Some 

behavior, such as walking through a street, is impossible, or at least very hard to investigate in 

the lab. Hence, measurements performed in the actual environment are very useful to study 

psychological constructs, such as attention. Though the range of topics does not cover all aspect 

of visual attention by far, this thesis makes clear that doing experiments in more natural settings 

is not only feasible but even necessary if the implications of experiments are to reach beyond the 

walls of the laboratory.
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Saliency on a natural-scene background: Effects of color- 

and luminance-contrast add linearly

Abstract

In natural vision, shifts in spatial attention are associated with shifts of gaze. Computational 

models of such �overt� attention typically use the concept of a �saliency map�: normalized maps 

of center-surround differences are computed for individual stimulus features and added linearly 

to obtain the saliency map. While the predictions of such models correlate with fixated locations 

better than chance, their mechanistic assumptions are less well investigated. Here we test one 

key assumption: do effects of different features add linearly or according to a max-type of 

interaction? We measure the eye-position of observers viewing natural stimuli, whose 

luminance-contrast and/or color-contrast (saturation) increase gradually towards one side. We 

find that these �feature gradients� bias fixations towards regions of high contrasts. When two 

contrast gradients (color and luminance) are superimposed, linear summation of their individual 

effects predicts their combined effect. This demonstrates that the interaction of color- and 

luminance-contrast with respect to human overt attention is � irrespective of the precise model � 

consistent with the assumption of linearity, but not with a max-type interaction of these features.

Introduction

While inspecting complex natural scenes, human observers sequentially allocate attention to 

subsets of the stimulus (James, 1890). Under natural conditions, shifts in attention are typically 

associated with shifts of gaze (Rizzolatti, Raggio, Dascola & Umilta, 1987). Several factors 

guide this �overt� attention (Buswell, 1935; Yarbus, 1967), such as the task, the observer�s 

experience, and the features of the stimulus. Models of the latter, �bottom-up�, factors are often 
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based on the concept of a so-called saliency map (Koch & Ullman, 1985): various feature 

channels (luminance, color, orientation, etc.) are analyzed independently, local center-surround 

filters yield maps of differences (�contrasts�) in these features, and these maps are added up. 

Following the saliency-map literature, such maps in a single feature are referred to as 

�conspicuity� maps. These conspicuity maps are then added linearly across features to obtain the 

saliency map, which represents the likelihood of a location to be attended. Various studies have 

demonstrated that implementations of this model predict human fixations in natural scenes at 

levels above chance (Itti & Koch, 2000; Parkhurst, Law & Niebur, 2002; Peters, Iyer, Itti & 

Koch, 2005; Tatler, Baddeley & Gilchrist, 2005). In addition, luminance-contrast is significantly 

elevated at fixation points (Krieger, Rentschler, Hauske, Schill & Zetzsche, 2000; Mannan, 

Ruddock & Wooding, 1997; Reinagel & Zador, 1999). This correlative effect of contrast 

depends, however, on spatial frequency (Mannan et al., 1997, Tatler et al., 2005) and acts mostly 

indirectly through correlations to higher order scene structure (Einhäuser & König, 2003), which 

may include texture contrast (Parkhurst & Niebur, 2004), edge density (Baddeley & Tatler, 2006) 

or objects (Elazary & Itti, 2008; Einhäuser, Spain, & Perona, 2008) and faces (Cerf, Harel, 

Einhäuser, & Koch, 2008). In sum, while some correlative prediction performance of saliency 

map models for humans freely viewing natural scenes under laboratory conditions and without a 

specific search task stands mostly undisputed (Parkhurst et al., 2002; Peters et al., 2005), recent 

evidence has substantially undermined their causal and mechanistic implications.

Despite a large body of data on the neural representation of saliency (Gottlieb, Kusunoki 

& Goldberg, 1998; Horwitz & Newsome, 1999; Mazer & Gallant, 2003; Kustov & Robinson, 

1996; McPeek & Keller, 2002; Posner & Petersen, 1990; Thompson, Bichot & Schall, 1997), the 

mechanistic principles underlying its computation are less well understood. Koch and Ullman�s 

(1985) model is founded on neural principles, but does not make any explicit reference to the 
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nature of interactions between feature-channels. In contrast, most later saliency-map 

implementations (Itti, 2005; Itti & Koch, 2000; Peters et al., 2005) make the critical assumption 

that feature effects add linearly. First, the conspicuity maps for each feature are linearly summed, 

and second, possible dependencies between features are neglected when obtaining the final 

saliency map. In addition, most models of visual attention that are not based on the saliency map 

still implicitly share the assumption of linearity (Wolfe, Butcher, Lee & Hyle, 2003). Several 

studies test this assumption using well controlled, albeit artificial, stimuli. Using grids of bars in 

a matching task, Nothdurft (2000) finds that different features are additive, though their 

interaction may be sub-linear. Along these lines, for the features of color and orientation, Li 

(2002) contradicts the assumption of linearity and instead proposes the overall saliency of an 

item to be defined by the most salient feature alone. This implies a maximum operation rather 

than a linear summation across features to compute saliency. Recently, research from the same 

lab has suggested that this maximum operation might also apply to human overt attention in 

natural scenes (Lewis & Zhaoping, 2005) and suggested a computation of saliency as early in the 

visual hierarchy as V1. In contrast, Navalpakkam & Itti (2005) have argued that linear 

summation is more compatible with performance in conjunction search experiments. 

Complementary to the question under which conditions low-level features influence fixations at 

all, it has remained open how the effects of different features interact. Irrespective of whether the 

features' effects are causal or correlative, the answer will constrain models of attention.

Besides linearity, the independence of different feature channels comprises the second 

major assumption of most saliency models. In a discrimination task on grating stimuli, Morrone, 

Denti and Spinelli (2002) find that the features of color and luminance recruit independent 

attention channels. However, the extent to which such results can be transferred to natural 

stimuli � where higher order dependencies between features not only exist, but are also exploited 
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by the visual system (Golz & MacLeod, 2002) � remains to be investigated. When it comes to 

natural scenes, stimulus features are not independent, but highly correlated. In the context of 

overt attention, Baddeley & Tatler (2006) show that conditioned on edge-density, other feature 

maps have little predictive power, that is, one feature can �explain away� the effect of others. 

Consequently, when measuring attention in natural scenes directly, such stimulus-inherent 

correlations need to be considered. 

Here we combine the usage of natural scenes, with modifications that are independent 

along the two stimulus dimensions under investigation (color and luminance). We adopt a 

previously proposed paradigm (Einhäuser, Rutishauser, Frady, Nadler, König, & Koch, 2006) to 

bias attention by increasing contrast towards one side of the stimulus (�feature gradients�). We 

compare effects on fixated locations of gradients in color contrast, which is modulated by 

varying saturation, and in luminance contrast to the effect of the feature gradients applied 

simultaneously. This allows us to test directly how well a linear interaction of color and 

luminance contrast predicts their combined effect against a natural scene background.

Methods

Participants

Eight students of the Philipps University Marburg (3 female, 5 male, age: 20-27, mean: 22.3) 

participated in the study. All participants had normal or corrected-to-normal vision and normal 

color vision as assessed by the Ishihara 16-plate color blindness test. They were naïve to the 

purpose of the study and had not previously viewed the stimuli used. All procedures conformed 

to national and institutional guidelines for experiments on human observers, and to the 

Declaration of Helsinki. All participants gave informed written consent for participation in this 

study and were paid as compensation.
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Experimental Setup

Experiments were conducted in a dark room with negligible ambient light levels. Stimuli were 

presented using a 19.7-inch EIZO FlexScan F77S CRT monitor located at 85 cm distance from 

the participant, and the stimulus subtended an angle of 26°x18°. The display resolution was set 

to 1280 x 1024 pixels and its refresh rate to 100 Hz. The monitor was characterized 

(�calibrated�) using a PR-650 spectrometer (Photo Research, Chatsworth, CA) and � for low 

luminance values � a S370 photometer (UDT instruments, San Diego, CA). Gun CIE 

coordinates of the monitor were at x=0.610, y=0.339 (red), x=0.282, y=0.601 (green), and 

x=0.151, y=0.065 (blue), maximum luminance at 36.9 cd/m2; luminance of the dark screen 

(black) was at 0.001 cd/m2. 

During the experiment, observers� eye position was recorded at 2000Hz using an 

infrared, non-invasive Eyelink-2000 eye tracking system (SR Research Ltd., Mississauga, 

Ontario, Canada). Standard procedures, as recommended by the manufacturer, were used to 

calibrate the eye tracker, and to validate the eye position. In brief, 13 fixation points were 

presented before each experimental block to compute the mapping from eye-tracker signal to 

screen coordinates. The calibration was then verified with a similar display and was 0.4° RMS 

on average and never larger than 1°. Before each trial observers were asked to fixate a fixation 

point in the center of the screen for at least 300 ms. If they failed to do so within 5 s, the eye 

tracker was recalibrated.

All stimulus presentation and eye position recording was programmed in Matlab 

(MathWorks, Natick, MA, USA), using its psychophysics and eyelink toolbox extensions 

(Brainard, 1997; Cornelissen, Peters, & Palmer, 2002, http://psychtoolbox.org; Pelli, 1997). The 

data was preprocessed in Python 2.5 (http://www.python.org) and statistical analysis was 

performed in R 2.5.1 (http://www.R-project.org).
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Stimulus Database

All stimuli were based on a set of 90 photographs of natural scenes selected from the Zurich 

Natural Image database (Einhäuser, Kruse, Hoffmann & König, 2006), which are available from 

the authors at http://www.klab.caltech.edu/~wet/ZurichNatDB.tar.gz. The images depict natural 
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Figure 2.1 Stimuli. 

A) The 90 stimuli of the Zürich Natural Image Database used for the 
experiment. B) Schematic representation of the DKL color space. C) 
Columns: modification of luminance contrast; increase to left, none, to 
right; rows: modification of color-contrast; increase to left, none, to  
right. Letters denote condition abbreviation (gradient increasing to Left,  
Right or Neutral, first letter color, second luminance contrast).
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outdoor scenes, which only rarely contain isolated nameable objects or man-made artifacts 

(figure 2.1A). The images were captured using a digital camera (3.3 Mega pixel color mosaic 

CCD, Nikon Coolpix 995, Tokyo, Japan) with high quality settings. The stimuli were stored at a 

resolution of 2048 x 1536 pixels and color-depth of 24 bits in RGB format. To fit the screen 

resolution, images were down-sampled to 1280 x 960 pixels using bicubic interpolation in 

Matlab, and presented at the center of the 1280 x 1024 pixel screen.

Color Space

Stimuli were characterized and modified in the DKL color space (Derrington, Krauskopf, & 

Lennie, 1984; figure 2.1B). This space is defined physiologically using the relative excitations of 

the 3 types of retinal cones. It is spanned by the orthogonal axes luminance, �constant blue� (cb, 

the difference between L and M cone excitations) and �tritanopic confusion� (tc, L + M - S cone 

excitations). Hue in DKL space is given by the azimuth, luminance by the respective axis and 

saturation by the projection on an isoluminant plane.

In DKL space, we defined luminance-contrast (LC) as variation along the space's 

luminance axis. Color contrast (CC) � as used in saliency map models � is inspired by the 

excitation of color-opponent cells in retina and thalamus. Hence it scales linearly with saturation 

and we modified CC by varying saturation. The mapping from DKL space uses the known 

parameters of the screen�s guns, in particular correcting for their non-linearities (�gamma�). 

Since the camera parameters were unknown, they were assumed to be the inverse of the screen. 

This guaranteed that an unmodified stimulus looks natural and all stimuli fit within the gamut of 

the screen. 
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Stimulus Modification: Feature Gradients

To modify the stimulus features of interest (LC and CC) without introducing novel local image 

structure, we adapted the feature gradient technique introduced in Einhäuser, Rutishauser et al. 

(2006). Here, images were first converted into DKL-color space. To modify luminance contrast, 

we first subtracted the mean image luminance <I0> from the luminance values I0(x,y) of the 

original image. We then multiplied the luminance with a value depending on the horizontal 

position (�gradient�). For contrast increase to the right (�R�), this factor ranged linearly from 0 

on the left to 1 on the right, and the converse held for contrast increase to the left (�L�). Finally, 

the original mean value was added:

Modification �R�: I(x,y) = x/w (I0(x,y)-<I0>) + <I0>

Modification �L�: I(x,y) = (1-x/w) (I0(x,y)-<I0>) + <I0>

where w denotes the image width (w=1280 pixels). Intuitively, the low-end of the gradient 

reduces the contrast to 0 as it clamps all luminance values to the mean image luminance 

(I(x,y)=<I0>) at the high-end the image, and thus the contrast, remains unaffected (I(x,y)= 

I0(x,y)). Both is most easily exemplified by an image only consisting of an equal number of 

black and white pixels. In the appendix we provide a detailed analysis as to how the gradient 

definition relates to common definitions of luminance contrast. As a consequence of the 

orthogonality of the DKL space, this modification did not affect physical color at any point 

(neither hue nor saturation). 

To modify color-contrast, we similarly subtracted the means along the tc and cb axes, 

multiplied the result by the gradient from 0 to 1 (�R�) or 1 to 0 (�L�), and shifted back to the 

original mean:

Modification �R�: 

T(x,y) = x/w (T0(x,y)-<T0>) + <T0>
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C(x,y) = x/w (C0(x,y)-<C0>) + <C0>

Modification �L�:

T(x,y) = (1-x/w) (T0(x,y)-<T0>) + <T0>

C(x,y) = (1-x/w) (C0(x,y)-<C0>) + <C0>

where C and T denote the values along the cb and tc axis respectively, superscript 0 the original 

image and <.> the image mean as above. This varied the saturation of each pixel from 0 to its 

original value across the image. Intuitively, the usage of saturation as proxy for color contrast 

can be understood by considering an isoluminant red-green grating, which at 0 saturation would 

be a mere gray patch (0 color-contrast) and would take maximum color contrast whenever 

saturation is at 100%. To formalize this, we demonstrate in the appendix that this modification 

affects color conspicuity in the expected way.

Taking advantage of the orthogonality of DKL space, both gradients could be combined 

without interaction on the physical stimulus. The modified stimuli were converted back to RGB-

space using the screen�s gun�s specifications (figure 2.1C).

Notation for modifications

As shorthand notation, we denote conditions by two-letter abbreviations, where the first 

characterizes the color modification, the second the luminance modification, with �L� implying 

contrast increase to the left, �R� to the right and �N� no modification. For example, LN denotes 

a stimulus solely modified in color with gradient increasing to the left and no changes in 

luminance, while NN denotes an unmodified stimulus (figure 2.1C). Where there is no risk of 

ambiguity, the same abbreviations are also used to denote the corresponding effect sizes. We will 

refer to the conditions, in which a single gradient is applied (LN, NL, RN, NR) as �single-feature 

conditions�, to the conditions, in which two gradients are superimposed (LL, RR, LR, RL) as 

�dual-feature conditions�. For part of the analysis, we consider the effects of each modification 
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relative to the modulation of eye position in the unmodified condition (NN). As short-hand 

notation, we used brackets [.] to denote subtraction of NN (e.g., [LN] := LN-NN).

Paradigm

For all observers, each of the 90 images was presented in each of the 9 conditions exactly once. 

The experiment was split in 9 blocks of 90 trials. Trials were balanced such that per block each 

image appeared once and each condition 10 times. Since pilot experiments demonstrated little 

change in effect after 2 s, each stimulus was presented for 2 s. A trial started with fixation cue at 

the center of the screen. As soon as the participant�s gaze was steady on this cue for at least 

300 ms, stimulus presentation was triggered. Observers were instructed to �study the images 

carefully�, be �free to move [their] eyes naturally�, and to �reduce head movements as much as 

possible�. None of our previous studies, which used the same instruction of �studying images 

carefully�, showed any evidence that this induced a top-down bias. To the contrary, eye 

movement patterns are indistinguishable from an explicit instruction of �free viewing� 

(Steinwender & König, unpublished observations).

Data analysis

Fixations 

The main body of the analysis was based on periods of fixation, which accounted for 77.3% of 

total data. Fixations were defined by the default algorithm implemented in the Eyelink system as 

periods between saccades. Saccades were therefore defined as movements that exceed an 

acceleration threshold (9500 deg/s2) and a velocity threshold (35 deg/s). Although no explicit 

lower limit for the duration of a fixation was used, 96.1% of fixations lasted longer than 100 ms. 

The initial central fixation for each stimulus originated from the fixation cue and was not used 
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for any analysis. 

Statistical analysis

Since in 64.5% of the 2-s trials there were at least 5 fixations, but 6 or more fixations were only 

reached in 35.2%, we restricted fixation analysis to the first 5. For each observer the average 

horizontal coordinate of each of the first five fixations was calculated. A linear model ANOVA 

was performed with this dependent variable using fixation number (1 - 5), color contrast 

condition (L,N,R) and luminance contrast condition (L,N,R) as factors. Linear model ANOVA�s 

are also performed over the two sets of single feature data where the data with manipulations in 

the other feature is left out (only using the data from LN, NN and RN or from NL, NN and NR). 

To see how the effect of the single feature manipulations develop over time, post-hoc t-tests 

were done on the average horizontal coordinate for each fixation, comparing LN with RN and 

NL with NR.

Results

Number of fixations

We recorded eye-movements in 8 observers while they were viewing natural scenes upon which 

a gradient in luminance-contrast (LC), color-contrast (CC), or both was superimposed. For each 

of the 9 conditions defined by the directions of those gradients we recorded 90 trials in each 

observer. On average, observers made 5.2 fixations on each stimulus. We did not find evidence 

that this number was dependent on the luminance condition, the color condition, nor their 

interaction (all p > 0.07). Consequently, we could directly compare different conditions on the 

basis of fixation locations. 
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Fixation maps
In the image of figure 2.2A color contrast increased to the right (condition: �RN�). In this 

example, the observers� fixations exhibited a bias towards the right, the side of increased color 

contrast. To visualize this effect across all observers and images, we computed an average 

fixation map for each condition. That is, we histogrammed fixated locations and aggregated the 

histograms over all fixations (excluding the initial, central one), observers and images (figure 

2.2B). In all conditions the center of mass of these maps was slightly (1.2° to 1.5°) above the 

midline. That is, the horizontal gradient had little effect on vertical eye position. In contrast, the 

horizontal location depended on the condition: for unmodified images, there was a slight (0.3°) 

bias to the left. If both gradients pointed to the left (LL), however, the center of mass was shifted 

2.5° to the left, if both gradients pointed to the right (RR), the shift was 2.7° to the right. For 

single-feature gradients (LN, RN, NL, NR) the center-of-mass shifts were smaller, but always to 

the higher (color- or luminance) contrast side (0.5°, 0.9°, 1.5° and 1.7°, respectively). The 

incongruent gradients showed a slight bias towards the higher luminance-contrast, consistent 

with the somewhat larger effect of this feature as compared to color. This first qualitative and 

aggregate analysis of horizontal eye position was suggestive of a superposition between the 

effects of color and luminance-contrast gradients on horizontal eye-position, on which the 

further quantitative analysis is based.

Overall effect of gradients
We performed a 3-way ANOVA to characterize the dependence of average horizontal fixation 

location on fixation number (1-5), luminance contrast condition (L,N,R) and color contrast 

condition (L,N,R). Each factor had a significant effect (all p<0.0001; F(4,315)=33.3; 

F(2,315)=78.0; F(2,315)=20.5, respectively). There were no two-way interactions between 
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Figure 2.2 Effect of modifications. 

A) Example stimulus with color contrast increase to the right 
(RN), fixations of all observers superimposed, color identifies 
observer. B) Average fixations maps (spatial distribution of  
fixated location) for each condition, sorted as in figure 1C. For 
display, maps are smoothed with a 27 pixel (0.5 deg at the 
center) wide Gaussian kernel; extension of each map 
corresponds to the full image size, dashed lines indicate mid-
lines, cyan crosses center-of-mass location.
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luminance- and color contrast (F(4,315)=0.18, p=0.95), between color contrast and fixation 

number (F(8,315)=0.38, p=0.93) or between luminance contrast and fixation number 

(F(8,315)=1.31, p=0.24). There was no three-way interaction between all three factors 

(F(16,315)=0.063, p=1.00). Hence we could analyze the effects separately.

Single-feature conditions

Color contrast

First we analyzed the effect of single-feature modifications, whether color- and luminance 

contrast gradients alone induce biases in fixated locations. To quantify this bias, we compared 

the average horizontal eye position at each fixation in condition RN to LN (figure 2.3A). Taking 

the conditions NN, RN and LN into account, there were main effects of color (F(2,105)=5.38, 

p=0.006) and of fixation number (F(4,105)=17.30, p<0.0001), but there was no interaction 

(F(8,105)=0.21, p=0.99). Post-hoc paired t-tests comparing the effects of gradients to the left 

(LN) and gradients to the right (RN) by individual showed a significant effect for all fixations

tested (1st fixation: t(7)=3.24, p=0.01; 2nd: t(7)=6.61, p=0.0003; 3rd: t(7)=3.75, p=0.007; 4th: 

t(7)=4.68, p=0.002; 5th: t(7)=3.00, p=0.02). This demonstrated a robust and prolonged effect of 

the color contrast gradient on fixation location.

Luminance contrast

For the gradients in luminance contrast we observed a similar pattern as for color contrast 

modifications (figure 2.3B). Considering conditions NL, NN and NR, there was a main effect of 

luminance contrast (F(2,105)=24.29, p<0.0001) and of fixation number (F(4,105)=9.04, 

p<0.0001), and no interaction (F(8,105)=0.50, p=0.86). Post-hoc paired t-tests showed a 
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Figure 2.3 Single-feature gradients. 

A) Effect of color-contrast gradients. Mean +/- SEM over subjects of horizontal  
fixation location, positive values to the right, negative values to the left of screen  
center. Black: condition RN; gray: condition LN. The 0th (initial) fixation, which  
starts before stimulus onset is central by instruction, was not used for analysis.  
Note that all statistics are based on paired tests, while the standard errors of  
unnormalized locations include differences in general observer biases. Overlap in  
errorbars thus does not contradict a significant effect in paired tests. B) Effects of  
luminance-contrast gradients; black: NR; gray solid: NL; gray dashed: general  
bias without modification (NN) for comparison (omitted in panel A). C)  
Normalized effect of color-contrast gradients, black: [RN]=RN-NN; gray:  
[LN]=LN-NN. D) Normalized effect of luminance-contrast gradients, black:  
[NR]=NR-NN; gray: [NL]=NL-NN
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significant effect starting at the first fixation (1st: t(7)=2.49, p=0.042; 2nd: t(7)=2.70, p=0.03; 3rd: 

t(7)=2.99, p=0.02; 4th: t(7)=4.38, p=0.003; 5th: t(7)=5.76, p=0.0007). This showed � consistent 

with our earlier results (Einhäuser, Rutishauser, et al., 2006) - that gradients in luminance 

contrast induce robust biases in fixated locations.

Normalized analysis

The condition NN showed a modulation with fixation number (figure 2.3B). To measure the 

effects that gradients have on top of this general bias, we normalized horizontal fixation 

locations by subtracting the respective values of the NN condition. The normalized data showed 

the reported effects even more pronounced, both for color (figure 2.3C) and luminance-contrast 

(figure 2.3D). In all cases and for all fixations, single-feature gradients biased the condition in 

the direction of higher (color- or luminance-) contrasts relative to the general bias, which is 

revealed by condition NN.

Average position

So far we had analyzed the data separated by fixation number. The mean positions exhibit the 

biases in the direction consistent with the gradient (rightmost data points in each panel of figure 

2.3), whose significance had already been quantified by the aforementioned 2-way-ANOVA 

main effects of color and luminance-contrast, respectively. Other averaging schemes, e.g. 

weighing fixations with their duration or using all data including periods of saccades, yielded the 

same result. 

In sum, the single-feature gradients induced robust biases, especially relative to a neutral 

(NN) condition, which held for the average eye-position but also for individual fixations.
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Dual-feature conditions

The dual-feature conditions examined the interaction between the effects of color contrast and 

luminance contrast. If the effects of luminance and color contrast added linearly, there are the 

following predictions as to how the effects of superimposed gradients can be computed from the 

single-feature gradients with a correction for the unmodified (NN) condition:

(1) LL ~ LN+NL-NN

(2) RR ~ RN+NR-NN

(3) RL ~ RN+NL-NN

(4) LR ~ LN+NR-NN

Linearity now predicts that the left-hand sides (�data�) are statistically indistinguishable from the 

right-hand sides (�model�). The difference between model and data was tested by means of a 

two-sided paired t-test over observers; first considering the average effect over all images, but 

separated by fixation number. The right hand sides of all relations were indistinguishable from 

the respective left-hand sides for any of fixations 2 to 5 (pmin=0.25, table 1, gray shaded rows). 

Furthermore, for relations 1 and 4 this also held for the first fixation (p=0.81 and p=0.55, 

respectively). Hence the dual-feature data is consistent with linear summation of single-feature 

effects � both for congruent (figure 2.4A) and incongruent (figure 2.4B) gradients.

When considering the average fixation location rather than individual fixations 

(rightmost data point in each panel of figure 2.4), even the remaining deviations from a linear 

model vanished: for all conditions, the linear models� predictions were indistinguishable from 

the corresponding data (pmin=0.20, table 1 rightmost column). An alternative representation of 

these data again considered them subtractively normalized with respect to the unmodified 

condition. With the shorthand notation [.] for NN subtraction, relations (1) to (4) could be 

rewritten as
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(1') [LL] ~ [LN]+[NL],

(2') [RR] ~ [RN]+[NR],

(3') [RL] ~ [RN]+[NL], and

(4') [LR] ~ [LN]+[NR],

respectively. Plotting the thus normalized data and model more evidently visualized their time-

course over fixations relative to the general bias (figure 2.4C,D). Since the representations were 

mathematically equivalent (which is seen by subtracting NN from each side of the latter 

equations), the statistics (table 1) were unaffected. 

To evaluate our statistical power, we tested the individual right-hand side summands as 

alternative models (white rows in table 1). For these controls, the average fixation location was 

always statistically different from the left-hand sides. This indicates that we had sufficient 

statistical power to find a deviation of model from data, if there were any. For the analysis of 

individual fixations, the results are less clear, especially in case of incongruent gradients. 

Nonetheless, with few exceptions, the linear model was in general more constistent with the 

dual-feature data than any individual single-feature effect even for individual fixations (table 1). 

Hence the compatibility between linear-summation model and dual-feature data cannot be 

attributed to a lack of statistical power.

Alternative model: Max norm

So far we have merely argued that a linear model is consistent with our data and that we would 

have sufficient power to discriminate linearity from each feature alone. A maximum operation 

presents a frequently proposed alternative model. It predicts that the combined effect of two 

features corresponds to the larger individual effect. That is, the combined effect is predicted to 

have the magnitude of the larger individual effect and to also point in the direction of the effect 

with larger magnitude. Let a and b be the individual normalized effects (e.g., a=[LN], b=[NL]), 
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Figure 2.4 Dual-feature gradients. 

A) Mean +/- SEM for dual-feature conditions with same direction of gradients 
("congruent gradients"); solid black: RR; solid gray: LL. Dashed lines denote 
predictions from single-feature trials, dashed black: RN+NR-NN; dashed gray:  
LN+NL-NN. B) Mean +/- SEM for dual-feature conditions with opposing 
directions of gradients ("incongruent gradients"); solid black: LR; solid gray:  
LR. Dashed lines denote predictions from single-feature trials, dashed black: 
LN+NR-NN; dashed gray: LN+NR-NN. C-D) Analogous to A and B, using 
normalized data instead.
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then the predicted combined normalized effect f (e.g., f prediction for [LL]) is given by

(5a) f(a,b) = max(|a|,|b|) sign(a) if |a|>|b|

(5b) f(a,b) = max(|a|,|b|) sign(b) if |b|>|a|

Where sign(x) = 1 f. x>0 and sign(x)=-1 f. x<0. For ease of notation, we denote f(a,b) as defined 

in equation (5) as smax(a,b) (for signed maximum).

As for the linear model we tested whether the mean fixation location in the dual-feature 

gradients was distinguishable from this max-norm prediction using paired t-tests across 

observers:

(6) [LL] ~ smax([LN],[NL])

(7) [RR] ~ smax([RN],[NR])

(8) [RL] ~ smax([RN],[NL])

(9) [LR] ~ smax([LN],[NR])

In all but one case, we found significant differences between the model and the data 

([LL]: t(7)=6.53, p=0.0003; [RR]: t(7)=2.71, p=0.03; [RL]: t(7)=1.36, p=0.22; [RL]: t(7)=6.56, 

p=0.0003). In conclusion, whereas the linear combination of single-feature effects was 

indistinguishable from the dual-feature data in all four cases, the maximum norm was 

significantly different in 3 out of 4. This confirmed not only that our statistical power sufficed to 

exclude alternative models, but also clearly demonstrated that a linear addition of single feature 

effects better explained the data than a max-norm model.

Image-by-image results

Up to here, we have considered aggregate data across images. This was motivated by the fact 

that the images primarily serve as �background� and image structure by itself probably had a 

substantial effect on fixation allocation. To quantify this, we analyzed data averaged over 

subjects and fixations for each image individually. For the congruent gradients 85/90 (LL) and 
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89/90 (RR) images showed a bias to the left and right (relative to NN), respectively. For the 

single-feature conditions, this bias to the higher contrast side was slightly less pronounced (LN: 

60/90, RN: 60/90, NL:75/90, NR: 82/90), but the fraction was still significantly above chance 

(all p < 0.003, sign-tests). Consequently, the biases were robust across images. Finally, we tested 

the prediction of the two models (linear addition and max-norm) on these image-wise data. In all 

cases, the linear model was indistinguishable from the data ([LL]: t(89)=1.65, p=0.10; 

[RR]: t(89)=1.02, p=0.31; [RL]: t(89)=0.77, p=0.45; [LR]: t(89)=0.89, p=0.38), while the max-

norm model showed significant differences for the congruent dual-feature gradients ([LL]: 

t(89)=6.08, p=3x10-8; [RR]: t(89)=5.70, p=1x10-7; [RL]: t(89)=0.05, p=0.96; [LR]: t(89)=0.67, 

p=0.51). Hence the image-by-image analysis confirmed the main finding: dual-feature effects 

were consistent with a linear addition of single-feature effects in all conditions. In contrast, a 
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Data Model 1st fixation 2nd fixation 3rd fixation 4th fixation 5th fixation Mean

[LL]
[LN]+[NL] 0.81 0.27 0.53 0.85 0.51 0.20
[LN] 0.07 0.08 0.04 0.003 0.006 0.004
[NL] 0.005 0.002 0.007 0.66 0.25 0.0003

[RR]
[RN]+[NR] 0.006 0.94 0.57 0.56 0.27 0.46
[RN] 0.01 0.009 0.02 0.01 0.004 0.006
[NR] 0.0007 0.16 0.15 0.02 0.046 0.02

[RL]
[RN]+[NL] 0.005 0.94 0.55 0.70 0.71 0.48
[RN] 0.75 0.41 0.16 0.001 0.007 0.03
[NL] 0.005 0.055 0.056 0.001 0.043 0.001

[LR]
[LN]+[NR] 0.55 0.25 0.9997 0.51 0.71 0.74
[LN] 0.02 0.02 0.01 0.02 0.002 0.005
[NR] 0.04 0.0004 0.02 0.23 0.994 0.0003

Table 1. 

Analysis as to how well the linear �model� from the single feature conditions deviates from the 
�data� obtained in the respective dual feature condition. Each entry denotes the p-value of a  
paired t-test. Linearity predicts that there is no evidence for differences of data from model in the 
gray shaded rows. Significant effects in the other rows (�control models�) show that we would 
have sufficient power to recognize a deviation if it would occur. Note that there two equivalent  
ways of testing, using either the normalized or the raw positions. For example, the distance 
between [LL] and [LN]+[NL] is equivalent to the distance between LL and LN+NL-NN, as is  
directly seen by adding NN on each side of the latter relation.
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max-norm was only consistent with the data when individual effects were too small to clearly 

distinguish between the models. Our results therefore provided clear evidence that the 

interaction of color and luminance contrast on a natural-scene background is more consistent 

with linear summation than with a maximum operation.

Discussion 

The present study investigates human overt attention on natural-scene background. We 

demonstrate that luminance- and color-contrast gradients that are superimposed over a scene 

affect the selection of fixation points: fixations are biased towards regions of high contrasts. 

Most notably the combined effects of luminance- and color-contrast gradients are consistent with 

a linear summation of feature effects, but not with a maximum operation. 

The effects of gradients operate on top of a general bias in viewing direction when 

inspecting unmodified stimuli (condition NN), which starts to the left and then rebounds to the 

right of the midline. Although this is not the aim of the present study, it might be interesting to 

speculate whether this bias reflects a general strategy, possibly related to reading direction, as 

observed for other attentional phenomena, such as inhibition-of-return (Spalek & Hammad, 

2005).

In order to encourage subjects to pay attention to the stimuli, we asked them only to 

�study the images carefully�. We had used this instruction in earlier studies and expect it to bias 

fixation allocation in a �bottom-up� driven mode, and to operate in sharp contrast to explicit top-

down tasks, such as search (Henderson, Brockmole, Castelhano, & Mack, 2007; Einhäuser, 

Rutishauser & Koch, 2008). A recent experiment (Steinwender & König, unpublished 

observations) indeed shows that �study carefully� yields the same result with respect to low-

level features as the explicit instruction of �free-viewing�, whereas for example �subjective 

assessment� yields distinct fixation behavior. Although, we cannot exclude that the size of the 
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effects for single-feature conditions depends on the particular choice of instruction, we clearly 

see a bottom-up (i.e., feature-driven) component. In the present context, we build on this 

observation of a systematic shift of fixation locations induced by single-feature gradients. The 

prediction of linear interaction of different features is tested by comparing these measured shifts 

to those measured in dual-feature conditions. This test is therefore independent of the size of 

single-feature effects, as long as they are different from 0 and sufficiently small to avoid the 

image-boundaries to come into play for the combined effects. In particular, it does not depend on 

whether or not the effect of LC and/or CC modification itself is linear in gradient strength, 

although we observed linearity at least for LC earlier (Einhäuser, Rutishauser, et al., 2006). 

Consequently, as long as the instruction allows for shifts in the single-feature conditions that are 

sufficiently robust for the comparison to dual-feature effects, their precise size is not critical, nor 

is the exact choice of instruction.

Since Koch and Ullman�s (1985) original proposal, the saliency map model has 

repeatedly been used to predict fixation behavior in natural scenes (Itti & Koch, 2000; Parkhurst 

et al., 2002; Peters et al., 2005; Tatler et al., 2005). In all these studies, however, prediction 

remains well below the optimum for any bottom-up model: the optimal prediction a bottom-up 

model (i.e., a model taking into account only the current stimulus� features) can be expected to 

achieve is the level of mutual inter-observer prediction (Peters et al., 2005). Furthermore, the 

reasonable success of predictions on the system level neither implies causality nor does it 

provide support for the model�s mechanistic assumptions. This raises the question of the extent 

to which individual features are indeed correlated to overt attention. With respect to luminance-

contrast, various studies (Reinagel & Zador, 1999; Krieger et al., 2000) have found this feature 

to be elevated at fixation points. Depending on presentation conditions, however, the correlative 

effect of luminance-contrast is only observed after correcting for general biases in fixation 
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pattern, depends on spatial frequency (Mannan, Ruddock & Wooding, 1996, 1997; Einhäuser & 

König, 2003; Tatler et al., 2005) and its size depends on the image material used (Privitera & 

Stark, 2000; Parkhurst et al., 2002). In addition, the effect of luminance-contrast is often small 

compared to other luminance-related features, such as �edge density� (Mannan et al., 1996), 

texture contrast (Einhäuser & König, 2003; Parkhurst & Niebur, 2004), higher order geometric 

kernels (Priviterra, Fujita, Chernyak & Stark, 2005) and image-category specific features 

(Privitera & Stark, 2000). With respect to the relative effects of the features under investigation 

here, Tatler et al. (2005) find luminance-contrast and �edge-content� to contribute consistently 

more strongly to human fixation than �chromaticity� and luminance itself. Since measuring the 

additivity of features is the main aim of the present study, our single-features had to fulfill two 

conditions: they had to be sufficiently large and robust to allow statistical analysis of their 

interaction (in the limit of no effect, all summation schemes are equally valid), but to be 

sufficiently small that image boundaries do not artificially cut the dual-feature effect. Therefore 

we chose gradients that induce a robust effect for single-feature conditions. The fact that at least 

the effect of luminance gradients is linear in gradient slope (Einhäuser, Rutishauser et al., 2006) 

renders it likely that our results on linearity can be generalized to weaker contrast changes, as 

found in natural contrast variations. 

Most of the aforementioned studies measure the influence of each feature in its natural 

context. This, however, does not allow the isolation of the effects of each feature. If a feature 

were correlated with higher-order structure in natural scenes, increased fixation probability 

might result from higher-order structure or from correlation to other features, rather than from 

the feature itself (Baddeley & Tatler, 2006). To overcome this confound, Einhäuser and König 

(2003) locally increase or decrease luminance-contrast in natural scenes. They find that the 

effect of reduced local contrast attracts human attention, and conclude that this is inconsistent 
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with saliency-map model predictions. Although Parkhurst & Niebur (2004) reconcile this 

particular finding with saliency map models by incorporating higher order contrasts, local 

modifications are suboptimal in the present experimental context. 

Strong local modifications introduce local deviations from global context, which are 

likely to attract attention. This is most evidently seen in the phenomenon of pop-out (Treisman 

& Gelade, 1980) and has recently entered the saliency map literature as the notion of �surprise�, 

an information-theoretic measure of deviations from the temporal context (Itti & Baldi, 2005). 

This issue of local deviations from context becomes especially prominent when the applied 

modifications extend beyond the naturally occurring range of the feature. To avoid this potential 

confound in analyzing the interaction between features, we use large-scale gradients rather than 

local modifications. This procedure neither introduces local deviations, nor does it modify 

higher-order contrasts locally. 

Obviously, the contrast gradient does not leave higher-order structures unaffected, e.g. 

reducing contrast will also reduce edge density (if there is zero contrast, there are also no edges) 

and affect texture contrast. In any case, as we compare the effects of LC and CC in isolation to 

their combined effects, correlations to higher order structure within a feature channel would not 

confound our findings. One needs to ensure, however, that modifying LC does not affect CC and 

vice versa. By using definitions of LC and CC that are orthogonal in DKL-space this 

requirement is fulfilled, although it is conceivable that perceived LC varies with CC and vice 

versa. Although our gradients may affect higher order structure to some extent, their large scale, 

as well as the physical independence of the modified features, mean that the linearity of LC and 

CC effects is also likely to hold in the natural context. 

The rationale for using natural scenes quasi as a �background� for the observed effects is 

two-fold. First, the effect of the gradients is independent as to whether the scene is perceived as 
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natural, at least as long as the amplitude spectrum is conserved (Einhäuser, Rutishauser, et al., 

2006). Second, if we would use a noise background instead, it could be argued that the 

interaction would be different if objects distract from the superimposed low-level effects. Hence 

observing a linear interaction of color and luminance contrast on � or maybe despite � the 

natural scene background, strengthens our argument. Our data do, however, not address the issue 

of whether or not feature biases that are inherent in a scene affect fixated locations. Tatler (2007) 

has argued that those biases do not influence fixation. Similarly, our data are agnostic with 

respect as to whether features like color and luminance naturally occurring in natural scenes 

drive attention causally, and thus do not contradict the large body of recent work that fails to find 

a causal effect under realistic conditions (see below).

Any model of attention that incorporates different features needs a mechanism to 

appropriately combine those features. Contemporary implementations of saliency maps usually 

solve this issue by using a sophisticated normalization scheme to achieve comparable saliency 

measures for each individual feature (see Itti & Koch (2000) for a thorough discussion of 

normalization schemes). Subsequently these models linearly combine the resulting �conspicuity 

maps� into the final saliency map. Here we directly measure the individual effects 

(�conspicuities�) of each feature by using single-feature conditions and then test whether 

linearity between these effects holds. We find that color- and luminance-contrast interact 

linearly. Using a model based on psychophysical and physiological data, Li (2002) proposed that 

the saliency of an item is given by �the saliency of its most salient component�. This implies a 

maximum operation. Lewis and Zhaoping (2005) suggested that this model might also be 

applicable to the interaction of color and orientation in human overt attention for natural scenes. 

Provided the different features and different methodology, our data does not contradict these 

findings directly. Instead, it will be an interesting issue for future research, whether our results 
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can be extended to other features, such as color and orientation, on a natural scene background. 

For the case of color and luminance-contrast, however, our data clearly falsifies the max-norm 

hypothesis. 

Since the saliency map model was originally designed as a purely bottom-up model of 

attention, by construction it does not capture top-down influences such as the observer�s 

experience or the task. The task plays a decisive role for human overt attention in inspecting 

pictures (Buswell, 1935; Yarbus, 1967) or search displays (Bacon & Egeth, 1997) or in everyday 

activities (Land & Hayhoe, 2001). When memorizing objects, for example, observers tend to 

replicate their own scan-paths, a feature not adequately captured by bottom-up saliency alone 

(Foulsham & Underwood, 2008). 

Visual search constitutes a task frequently used to quantify the performance of attention 

models. Predictive performance of the original bottom-up saliency map model reduces or 

vanishes in search tasks (Einhäuser, Rutishauser & Koch, 2008; Henderson, Brockmole, 

Castelhano, & Mack, 2007), but inclusion of contextual or task-dependent information can 

improve saliency-map algorithms (Navalpakkam & Itti, 2005; Oliva, Torralba, Castelhano & 

Henderson, 2003; Torralba, 2003). For evaluating the performance of saliency-map-type models 

in predicting search in natural scenes, the intuitive strategy to fixate the point of highest saliency 

is usually suboptimal; instead the discriminability between target and distractor on the basis of 

the full map should be utilized (Vincent, Troscianko & Gilchrist, 2007; Gao, Mahadevan, & 

Vasconcelos, 2008). For specific search tasks, such as searching a pedestrian in a street scene, 

the task-modulated prior alone may predict search patterns better than bottom-up signals 

(Torralba, Oliva, Castelhano & Henderson, 2006). This approach, however, requires the prior 

distribution of potential target locations to be non-uniform and known. Such knowledge may be 

learned from scene statistics, and joint learning of bottom-up and top-down saliency in a 
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Bayesian framework seems a promising approach (Zhang, Tong, Marks, Shan, & Cottrell, 2008). 

Visual search models often use the selective up-regulation of target features (Wolfe, 

Cave, & Franzel, 1989; Pomplun, 2006), of the corresponding visual filters (Rao, Zelinsky, 

Hayhoe, & Ballard, 2002) or statistical knowledge of target location (Najemnik & Geisler, 2005) 

to predict human performance. Rao et al.�s (2002) model bears some similarity to Itti & Koch�s 

(2000) saliency map, but instead of adding different feature maps linearly, it computes a single 

map, which is modulated based on the distance to the target template, rather than treating 

features individually. As Navalpakkam & Itti (2005) have pointed out, this approach predicts that 

search for targets differing in one feature (pop-out) should be as efficient as conjunction search, 

contrary to experimental evidence (Treisman & Gelade, 1980). While not contesting the 

approach of Rao et al. (2002) per se, this argues in favor of different feature channels that need 

to be appropriately integrated. 

We are well aware that the seeming mechanistic implications of the saliency map model 

have to be interpreted with care. In fact, we consider it likely that its predictive power for 

fixations stems entirely from correlations of its constituents to higher-order structure inherent in 

natural scenes, such as �interesting objects� (Elazary & Itti, 2008; Einhäuser, Spain & Perona, 

2008). Furthermore, we are just beginning to understand how context and top-down information 

can be integrated in computational models of attention. Nevertheless, the original, purely 

bottom-up model is widely used and � up to now � other models that reach similar correlations 

to fixation probability (under the constraints of free-viewing, laboratory setup, etc.) are rare. 

Independent of the precise model and its prediction on a systems� level, a sound understanding 

of human attention on a mechanistic level, will always require a rigorous test of its assumptions. 

Irrespective of the exact nature of a future model that finally supersedes the saliency map for 

scene prediction, it will be constrained by the present finding: effects of color and luminance � 
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under laboratory conditions and on a natural scene background � add linearly. The extent to 

which this finding transfers to other low-level features and to spatial distributions of higher-

order scene structures thus remains an exciting issue for future research, no matter one�s hold on 

the original saliency map.
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Appendix A: Effects of modifications on luminance-contrast, saliency, and color 

conspicuity

Here we address the relation of our proposed modifications to common definitions of contrast, 

feature conspicuity, and saliency. There are plenty of possible ways to define LC (Peli, 1997). 

Most definitions are originally based on the comparison of a single foreground intensity with a 

single background intensity, such as Weber contrast (the difference of foreground and 

background divided by the background) or Michelson contrast (the difference of foreground and 

background divided by their sum; Michelson, 1927) and have been extended to account for 

arbitrary stimuli. Amongst the possible variants, we here focus on those that are of common use 

in the context of eye-tracking and attention studies:

(1) The standard-deviation of luminance in a local patch divided by the image mean (e.g., 

Reinagel & Zador, 1999)

(2) The standard-deviation of intensity in a local patch divided by the patch mean (also sug-

gested � and dismissed as suboptimal in the present context � by Reinagel & Zador, 

1999)

(3) The difference of maximum and minimum in a local patch divided by their sum in the 

same local patch. This is a definition most closely related to Michelson contrast. Note 

that Mannan et al.�s (1996) usage of the mean of intensity in a local patch as foreground 

and the mean of the image as background in their calculation of Michelson contrast is a 

measure of luminance rather than of luminance-contrast in the present context. The de-

nominator is also commonly scaled or replaced by the mean (akin to Weber contrast) or 

by the maximum alone.

We compute all these contrasts for the luminance channel of our images in DKL space, 

which we shift and scale to range from 0 to 1 (rather than from -1 to 1), and for squared patches 
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of width 24 pixels (corresponding to 0.5° at the screen center). Comparing the conditions in 

which luminance-contrast increases to left, right or remains unmodified for a single image (the 

one of figure 2.2A) and averaging over rows, we see the intended effect of modification clearly, 

and the differences between the various contrast definitions are minute (figure 2.5A to C). Note, 

that � by definition � the luminance-contrast profile is not affected by modifications to the color-

contrast, e.g., the conditions LL, NL and NR have the same luminance-contrast profile. The 

example profiles show that highly noticeable structures, such as the tree on the left-hand side of 

the example image, are still visible, although the modification dominates this contrast profile. 

To quantify how �unnatural� the contrast modifications were, we assessed the additional 

variation of contrast introduced by the gradients, using the contrast-definition (1) of above. In 

the unmodified condition, the mean contrast within an image amounts to 0.61±0.13 (mean±sd 

across images). As one would expect by construction, this value is about halved for 

modifications, no matter whether the increase is to the left (LL,NL,RL) or to the right 

(LR,NR,RR) with values of 0.30±0.07 in both cases. It should be noted, however, that a large-

scale single-feature modification of contrast always biases towards the higher contrast side, no 

matter if the gradient decreases or increases the contrast relative to unmodified (Einhäuser, 

Rutishauser et al., 2006), which is different from local modifications (Einhäuser & König, 2003). 

More importantly, the gradients lower the variation of contrast within each image, quantified as 

standard-deviation of contrast values, only by about 25% (0.33±0.10 for unmodified, for 

0.25±0.06 for gradients to the right and 0.25±0.07 for gradients to the left). This indicates that a 

sufficient amount of image-inherent variability remains in the low-level features, which could � 

in principle � drive attention. The fact that the gradient nonetheless dominates the fixation 

allocation is consistent with a minute (or absent) effect of image-inherent low-level features.

Next we consider the effect of our LC modifications on the Itti & Koch (2000) model for 
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Figure 2.5 Effect of gradients on common definitions of  
contrast, conspicuity and saliency. 

A-C) Effect of luminance-contrast gradient on different  
definitions of LC along horizontal scanline for the 
example image of figure 2A, averaged over image rows. 
A) standard-deviation of luminance in a 1°x1° patch 
divided by image mean, B) standard-deviation of  
luminance in a patch divided by patch mean, C)  
difference between maximum and minimum luminance in  
a patch divided by their sum. D) saliency according to  
Itti & Koch (2000), maps linearly normalized to unit  
integral E) color conspicuity according to Itti & Koch 
(2000), maps linearly normalized to unit integral. Note 
that maps in panels D and E have a lower resolution and 
additional cut-off at the image boundary.
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visual saliency. For the model we use the implementation provided at http://ilab.usc.edu with no 

normalization, but otherwise default parameter settings. To be closer to the typical scenario for 

the application of these algorithms, we here use the image in the RGB version sent to the screen 

rather than the original DKL-definition, i.e. luminance is non-linearly scaled. By performing the 

same analysis as for the contrast definitions, we find that our LC modifications strongly 

modulate model saliency in the expected direction: saliency increased to the right in the NR 

condition and increases to the left in the NL condition (figure 2.4D).

Finally, we address the effect of our color modification on the color channel of the 

saliency map model with the same settings as above. As expected we find color conspicuity to 

increase to the right in the RN condition and to the left in the LN condition (figure 2.5E). The 

original image structure, however, is more conserved than in the luminance case, and the 

luminance-conspicuity dominates the overall saliency map with default weighing (not shown). 

That is, the effect of color modification on image structure is weaker, consistent with the slightly 

weaker bias induced by color. While this bias-difference is worth investigating, in particular with 

respect to feature-weighing schemes for saliency maps, it is not of relevance for the present 

paper. When both gradients induce a robust fixation bias (figure 2.3), we can compare their 

effects (figure 2.4). In this appendix we verified that the modifications leading to these effects 

are indeed consistent with common definitions of luminance-contrast and color conspicuity.
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Appendix B: Raw eye position

In order to be independent of the fixation definition, we repeated our main analysis, using 1-ms 

bins instead of individual fixations. Since subsequent time-points fell on the same fixation and 

were thus not independent, we cannot perform the equivalent statistical analysis. Instead we used 

paired t-tests to test for the significance of difference, but adjusted the alpha level to match an 

expected false discovery rate (FDR) of 5%, using the procedure proposed by Benjamini and 

Hochberg (1995). A result was called significant if it fell below this adjusted level (denoted 

asFDR0.05). For color-only gradients, we found a significant difference between LN and RN (p < 

0.019 = FDR0.05) on 773 sample points between 364 ms and 1198 ms. Similarly, for luminance-

contrast-only gradients, there was a significant difference between NL and NR (p <0.036 = 

FDR0.05) on 1435 sample points between 117 ms and 2000 ms. This confirmed that during the 

majority of the presentation time gradients affect eye position. At an expected false-discovery 

rate of 0.05, LL was at no time point different from LN+NL–NN (figure 2.6A, gray). Subtracting 

the NN condition on both sides by construction did not alter the results, i.e. [LL] was not 

different from [LN]+[NL] (figure 2.6C). Neither was [RR] different from [RN]+[NR] anywhere 

(figure 6A,C black). Similarly, the incongruent gradient data did not exhibit significant 

differences from their respective models at any time point, [LR] was indistinguishable from [NR]

+[LN] (figure 6B,D black) and [RL] from [NL]+[RN] (figure 6B,D, gray). In sum, the analysis 

of the raw eye position data confirmed the fixation analysis, ruling out that the observed effects 

depend on the definition or timing of fixations. 
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Figure 2.6 Analysis over time. 

Analogous to figure 2.4, using time into trial rather than fixation number as 
parameter, shaded areas denote SEM of data.
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Gaze allocation in natural stimuli: comparing free 

exploration to head-fixed viewing conditions

Abstract

�Natural�  gaze  is  typically  measured by tracking  eye  positions  during  scene presentation in 

laboratory settings. How informative are such investigations for real-world conditions? Using a 

mobile eye-tracking setup (�EyeSeeCam�), we measure gaze during free exploration of various 

in- and outdoor environments, while simultaneously recording head-centered videos. Here, we 

replay these videos in  a  laboratory setup. Half of the laboratory observers view the movies 

continuously, half as sequences of static 1-second frames. We find a bias of eye position to the 

stimulus center, which is strongest in the 1-s-frame replay condition. As a consequence, inter-

observer consistency is highest in this condition, though not fully explained by spatial bias alone. 

This leaves room for image-specific bottom-up models to predict gaze beyond generic biases. 

Indeed, the �saliency map� predicts eye position in all conditions, and best for continuous replay. 

Continuous replay predicts real-world gaze better  than 1-s-frame replay does.  In conclusion, 

experiments and models benefit from preserving the spatial statistics and temporal continuity of 

natural stimuli to improve their validity for real-world gaze behavior. 

Introduction

The question as to  which factors guide human eye  movements under natural conditions has 

puzzled  researchers  for  decades.  Many  have  approached  this  issue  by  showing  observers 

complex  natural  photographs  or  pictures,  while  tracking  their  eye  position (Buswell,  1935; 

Yarbus,  1967;  Mannan,  Ruddock,  &  Wooding,  1996;  Reinagel  &  Zador,  1999;  Krieger, 

Rentschler, Hauske, Schill & Zetsche, 2000; Privitera & Stark, 2000; Parkhurst, Law, & Niebur, 
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2002; Peters, Iyer, Itti, & Koch, 2005; Tatler, Baddeley, & Gilchrist, 2005; Baddeley & Tatler, 

2006).  Such passive-viewing  approaches  were  extended  to  showing  systematically  modified 

photographs (Einhäuser & König, 2003; Kayser, Nielsen, & Logothetis, 2006) or movies (Tosi, 

Meccacci, Pasquali, 1997; Itti, 2005; Carmi & Itti, 2006), and combined with computer-game, 

simulator or virtual environment settings (Hayhoe, Ballard, Triesch, Shinoda, Alvar, & Sullivan, 

2002; Peters & Itti, 2008). To what extent such laboratory data are informative for unrestrained 

gaze allocation during natural behavior has, however, remained largely unaddressed. 

Eye-tracking  in  natural  scenes  has  motivated stimulus-driven  (�bottom-up�)  attention 

models. Most are rooted in the concept of the saliency map (Koch & Ullman, 1985; Itti, Koch, & 

Niebur,  1998): the stimulus is  filtered in  different  channels (color,  luminance, orientation) to 

obtain maps of feature contrasts. These are added across spatial scales to a saliency map, the 

peak of which is predicted to draw most attention. Although not originally designed for fixation 

prediction or to operate on natural scenes, a location�s saliency and its probability to be fixated 

are  (weakly)  correlated  (Parkhurst  et  al.,  2002;  Peters  et  al.,  2005).  However,  the  model�s 

features do not necessarily drive gaze causally (Einhäuser & König, 2003), but rather act through 

mutual correlations to higher  level scene content  (Elazary & Itti,  2008; Einhäuser,  Spain,  & 

Perona, 2008a). Furthermore, if observers search for a template, the correlation vanishes entirely 

(Henderson, Brockmole, Castelhano, & Mack, 2006) and immediately (Einhäuser, Rutishauser, 

& Koch, 2008b). In a virtual reality setting top-down signals supersede bottom-up saliency for 

gaze allocation (Rothkopf,  Ballard, & Hayhoe, 2007).  Consequently,  recent  extensions of the 

saliency map include task-specific information (Navalpakkam & Itti, 2005). The saliency map�s 

lack of causality and its breakdown for specific tasks has spurred another question: Can  any 

purely bottom-up model have predictive power for gaze allocation during real-world behavior?

Despite the advantages of well-controlled settings and stimuli, eye-movement studies in 
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the  laboratory typically  suffer  from several  constraints.  First,  stimuli  must  be  chosen to  be 

adequate for the natural situation. In particular, biases already present  in the stimuli,  such as 

preference for  specific  features at  the center  of gaze (Tatler,  2007),  must  be matched to the 

natural setting under investigation. Second, laboratory recordings typically restrain the observer, 

suppressing head-movement components of gaze allocation, which are particularly relevant for 

large gaze-shifts (Stahl, 1999) and a major source of inter-individual differences (Fuller, 1992). 

Third,  vestibular  stimuli are typically  not  matched to  the visual input.  Finally,  the display�s 

limited  resolution  and  extent  provide  an  artificial  frame  of  reference.  These  constraints 

necessitate a quantification of differences between laboratory and natural settings.

Several studies measured real-world eye-movement behavior for specific tasks, including 

driving (Land & Lee, 1994; Land & Tatler, 2001), food preparation (Land, Mennie & Rusted, 

1999;  Land  & Hayhoe,  2001),  and  a  variety  of  sports  (Land  & McLeod,  2000;  Fairchild, 

Johnson, Babcock, & Pelz, 2001; Hayhoe, Mannie, Sullivan & Gorgos, 2005; Chajka, Hayhoe, 

Sullivan, Pelz, Mennie, & Droll,  2006). In contrast, gaze allocation during free exploration of 

natural settings has rarely been addressed, although its laboratory homologue, �free-viewing�, 

provides the typical test-bed for bottom-up models. 

Virtual  reality  presents  a  step  towards  real-world  scenarios  that  preserves  the 

controllability of laboratory settings.  Jovancevic,  Sullivan and Hayhoe (2006) measured eye-

movement  patterns evoked by surprisingly occurring colliders (other pedestrians) during task 

performance,  and established the scheduling scheme between the bottom-up (collider events) 

and the top-down (task) signals.  Their results were in remarkable agreement with an optimal 

scheme  for  such scheduling  proposed in  earlier  theoretical work (Sprague & Ballard,  2003; 

Sprague, Ballard,  & Robinson, 2007): observers minimize the expected cost of not making a 

specific  eye movement.  Unlike static  displays,  virtual-environment  settings readily allow for 
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naturalistic tasks. In contrast to truly real-world experiments, the same trial can be replicated and 

the environment can be controlled, allowing quantitative manipulations and thus assessment of 

the interaction between task, stimulus and context (Rothkopf et al., 2007). Since the statistics of 

a truly natural environment may influence gaze and in turn gaze-shifts affect the selected subset 

of  stimuli  to  operate  upon,  the  controllability  of  the  environment  is,  however,  virtue  and 

challenge. Nonetheless, virtual reality complements truly real-world experiments and will help 

bridging the gap between laboratory and actual reality. 

In earlier work, we used a mobile setup (�EyeSeeCam�, Schneider, Bartl, Bardins, Dera, 

Boning & Brandt, 2005; Schneider et al., in press) to record large amounts of gaze-centered and 

head-centered  movies  during  free  exploration.  Eye-head-coordination  analysis  suggested  a 

profound  influence  of  non-saccadic  eye  movements  to  gaze-centered  stimulus  statistics 

(Einhäuser et al., 2007; Einhäuser, Moeller et al., in press), and the spatial statistics of features at 

the center of gaze transferred the concept  of feature saliency from the laboratory to the real 

world  (Schumann  et  al.,  2008;  Einhäuser,  Schumann  et  al.  in  press).  A direct  comparison 

between free-exploration and laboratory data with the same visual input has, however, yet to be 

performed. 

Here we compare gaze-allocation behavior during free exploration and during replay of 

videos in a standard head-fixed setup. Laboratory stimuli are taken from head-centered movies 

recorded  simultaneously  with  the  free-exploration  data.  This  ensures  that  eye-in-head 

movements operate on the same visual stimuli in all conditions. We dissociate effects on eye 

movements arising from the visual stimulus alone from effects specific to either free exploration 

(e.g., resulting from vestibular input) or the laboratory (e.g., resulting from head restraints). To 

dissociate effects of stimulus continuity, we show static frames from the videos to a second set of 

laboratory observers.  By using data from these three conditions,  free-exploration, continuous 
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replay and 1-s-frame replay, we address three topics. First, does the spatial distribution of gaze 

relative to the head differ in active free exploration and head-restrained free viewing? Second, 

are  stimulus  locations  that  are  preferentially  fixated,  consistent  within  and  between  the 

laboratory and real-world conditions? Finally,  does the correlation of fixation probability with 

saliency map values, which here exemplifies a typical bottom-up model of attention, transfer 

from static images, to movies and to the real world?

Methods

Free Exploration

Gaze-centered and head-centered videos were recorded using the �EyeSeeCam� setup, which is 

described in detail elsewhere (Schneider et al., 2005; Schneider, Bartl, Dera, Boning, Wagner & 

Brandt 2006; Brandt, Glasauer & Schneider, 2006; Vockeroth, Bardins, Bartl, Dera, Schneider, 

2007), as is the recording procedure and the stimulus material (Schumann et al., 2008). In brief, 

an eye-tracking system attached to swimming goggles controls a gaze-centered camera, while an 

identical  camera  (head  camera)  is  fixed  to  the  observer�s  forehead.  Both  cameras  had  a 

resolution of 752x432 pixels, covered a visual angle of 60° x 41° and recorded digital video at 

25Hz.  In the present  study,  fifteen 90-s excerpts from the head-centered movies recorded in 

Schumann et al. (2008) were selected as stimuli for the laboratory experiments (Fig.3.1A). These 

data were recorded in different environments - German residential areas (4), Munich downtown 

(3),  hospital indoor, forest,  open field,  scientific  conference indoor,  park,  university building 

indoor,  Californian desert  and beach.  Movies were recorded in  color  through an IEEE-1394 

(�firewire�) interface using Bayer-encoding with no compression. The total number of observers 

for recording all used movies was 6, but each movie stemmed from a continuous recording in 

one particular observer. All observers were accustomed to wearing the setup and instructed to 
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�behave naturally�. The eye-position data were reconstructed from the motor-control signals of 

the gaze-centered camera. These data defined the gaze relative to the head-centered stimuli for 

the free-exploration condition. 

The EyeSeeCam records eye-movements at 192 Hz. By interpolating and subsampling 

the signal to 25Hz we obtain one sample per frame. We conservatively defined a saccade as any 

fast  movement  (velocity>35  deg/s,  acceleration>4000deg/s2).  By  this  definition  7.2%±2.1% 

(mean and sd across movies) of samples contained saccades. Excluding all frames for which at 

least 10% of samples in the frame or adjacent frames were saccades, has no qualitative effect on 

results.
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Figure 3.1

(A) Frames appearing at t=20s of each of the 90s movie clips. Markers 
denote eye positions during presentation of the frame, black star: free 
exploration, black circles: continuous replay (median eye position during 
40ms of frame presentation); white circles: 1-s-frame replay (median eye 
position 280ms-320ms after stimulus onset). Note that the videos were 
recorded and displayed in color. All video material is available from the 
authors.(B) Saliency maps for the frames shown in panel A.
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Setup

In the laboratory experiments stimuli were presented in a dark room on a FlexScan F77S (EIZO, 

Hakusan, Ishikawa, Japan) 19.7' CRT monitor at 48cm distance. Four-pixel wide fringes were 

cropped from the stimuli at each side, resulting in a resolution of 744x424 pixels. Stimuli were 

scaled using bilinear interpolation to the central 1280x730 pixels of the 1280x1024 pixels wide 

screen, thus covering a visual angle of 45° x 26°. This is smaller than the cameras� field-of-view, 

being  the  maximum within  equipment�s constraints  at  the time  of recording.  The monitor�s 

frame rate was 100Hz, an integer multiplier of the 25Hz at which movies were recorded and 

presented. Maximum luminance of the monitor was 37cd/m2, the minimum below 0.01 cd/m2. 

Since the precise characteristics of the cameras were unknown, screen settings were chosen such 

that  the  color  movies  appeared  natural.  In  particular,  the  mapping  from  pixel-values  to 

luminance was non-linear (gamma of 2.9),  and no attempt  was made to match the displayed 

colors  physically  to  the  real-world  (x/y CIE-coordinates  of the  screen�s  guns:  0.610/0.339, 

0.282/0.601,  0.151/0.065).  Since  most  measures  used  in  the  context  of  saliency  maps  are 

insensitive to monotonic scaling, this restriction should not substantially affect our results.

Throughout  the laboratory experiments  each observer�s  eye  position was recorded at 

2000Hz using an Eyelink-2000 device (SR Research, Mississauga, Ontario, Canada). Calibration 

and validation procedures followed manufacturer�s recommendation, using a 13-point grid on 

the effective display area. Eye positions outside the stimulus and blinks were discarded (2.5% of 

data).  To avoid confounds by different dynamics of fixations and eye movements among the 

conditions, we did not explicitly analyze fixations. Instead, the median eye position during each 

40ms frame or � for the 1-s frame conditions and all temporally resolved analyses � the eye 

position  at  each  sample  point  was  used.  In  4.6%±1.1%  of  the  frames  saccades  occurred. 

Excluding these data has virtually no effect on the results. 
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All  presentation,  eye-movement  recording  and  analysis  used  Matlab  (MathWorks, 

Nattick,  MA) with its  psychophysics  and Eyelink  toolbox extensions (Brainard,  1997; Pelli, 

1997; Cornelissen, Peters, & Palmer, 2002;  http://pyschtoolbox.org). All observers had normal 

or corrected-to-normal vision and normal color vision, as assessed by a 16�plate Ishihara test 

and gave written informed consent to participation. All procedures conformed with national and 

institutional guidelines and the Declaration of Helsinki.

Continuous replay condition

In the continuous-replay condition 4 male observers (age: 21-26) watched a total of fifteen 90-s 

excerpts of the head-centered free-exploration videos. The observers� heads were stabilized with 

the  chin-rest  and  forehead rest  of the  Eyelink  system.  Each observer  viewed  all  movies  in 

random order. Between the movies, observers could rest and the eye tracker was recalibrated. 

Observers received written instructions prior to the experiment that they were to �watch short 

video clips�, that they should keep their heads �as still as possible�, and that they were allowed 

and  encouraged  to  �move  their  eyes  naturally�.  The  latter  was  added  in  distinction  to  the 

calibration phases, in which points and crosses had to be fixated. 

1-s-frame replay condition

Four additional observers (2 male,  2 female; age: 21-27) participated in  the 1-s-frame replay 

condition. To create stimuli for this condition, the first frame of each second in each movie was 

selected, yielding 90 frames per movie and 15x90=1350 frames in total. These were randomly 

rearranged to 15 new 90-s sequences of 1-s still frames, such that each sequence contained 6 

frames from each original  movie.  The same  sequences were used for  all  observers,  but  the 

presentation order of sequences was randomized. All presentation- and setup parameters as well 

as instructions were otherwise identical to the continuous replay condition. 
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Taken together,  we obtained for each video eye-position data of 9 different observers, 

four from each laboratory condition and one from the free-exploration data. Although the free-

exploration videos were recorded by different observers, we will refer to them as a single �free-

exploration observer�.

Model Saliency Maps

As a prototypical model of bottom-up guidance of eye movements, we used Itti & Koch�s (2000) 

saliency  map  (http://ilab.usc.edu).  Parameters  were  unchanged,  except  that  max-norm 

normalization of the saliency map and randomness were switched off. For analysis the saliency 

map of each frame was normalized to range from 0 to 1 (Fig.3.1B).

Eye-position maps

Average maps of eye positions relative to the image were computed by binning the eye position 

at  each time-point  at  the  image�s  resolution  (744x424)  and  adding  the  resulting  maps.  For 

display purposes (Fig.3.2A-C), the maps were smoothed by averaging the 49x49pixel (3.1°x3.1° 

in the lab, 4.8°x4.8° in free exploration) neighborhood of each pixel and truncated with 24 pixels 

to each side.  The binning (kernel size for smoothing) was thus matched in image coordinates 

(pixels) rather than in world-coordinates (degrees),  and was uncritical for the location of the 

maxima. For each observer and movie,  the spatial spread in horizontal direction and vertical 

direction (σx and σy, respectively) was computed as the standard deviation of the respective eye-

position coordinate,  either  pooling  all  2000  data  points  per  second,  or  �  for  time-resolved 

analysis of the 1-s-frame condition � for each of the 2000 time-points separately.
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Figure 3.2

(A)-(C) Density of gaze allocations 
averaged over all movies and observers,  
binned at image resolution and 
smoothed with a mean-filter of 49 pixels 
width. Maps show the full valid field of  
view. (FoV of the camera of 744x424 
pixels cropped by 25 pixels half filter 
size at each end). Note that the colormap 
is brightened compared to the standard 
matlab gray colormap (e.g., figure 1) for 
better reproduction of low values. (A) 
free exploration, (B) continuous replay,  
(C) 1-s-frame replay. (D) Standard 
deviation of eye position in each movie 
averaged over 1-s-frame replay 
observers (y-axis) and continuous replay 
observers (x-axis) respectively. Each 
data point represents one movie clip.  
Left: horizontal eye position, right:  
vertical eye position. (E) Time-course of  
eye-position's standard deviation during 
1-s-frame replay (black), continuous 
replay (gray) as reference. Data 
averaged over observers; lines denote 
mean ± s.e.m. over movies. Left:  
horizontal eye position, right: vertical  
eye position. 
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Spatial Consistency

Spatial  consistency  between  each  pair  of  observers� eye  positions  was  measured  by  their 

Euclidian distance at each time-point. As display size differed from the camera field-of-view for 

free exploration, we obtain a dimensionless measure by dividing the Euclidian distance by the 

image diagonal. This value is subtracted from 1 to obtain a consistency measure, which is zero 

for maximally inconsistent observers, and 1 for identical observers. Since the spatial distribution 

of eye positions is a priori unknown, there is no analytic expression for the spatial consistency to 

be expected at random. To estimate the part of the consistency that is stimulus-independent and 

caused  by  generic  spatial  biases,  we  computed  a  random-reassignment  baseline  for  each 

observer as follows: the eye-positions of each one-second interval in each movie were randomly 

attributed  to  another  randomly  chosen  one-second  interval  from the  same  movie.  Shuffling 

across rather than within movies slightly lowers the baseline, as it is less likely to hit the same or 

a nearby frame, but qualitatively the observed effects are independent of the baseline choice. 

Comparing fixation distributions

If there are some equally salient or relevant items spread through the scene, which are visited by 

all  observers  but  in  different  order,  the  Euclidian  measure  would  report  low  degrees  of 

consistency. �Consistency� in an image-related interpretation might therefore be underestimated, 

especially for static displays. Kullback-Leibler (KL) divergence is an alternative measure of the 

generic  similarity between fixation distributions of different  observers and its  variation over 

time. Following Tatler et al. (2005), we binned the display in squares (here: 16x16 pixels) and 

defined the probability P(x,y) of fixation from this histogram F(x,y) as

P (x.y)= (F ( x , y)+�)
�x' , y '

(F ( x ' , y ' )+�)

with ε=10
−3

. The KL divergence is then given by
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KL=�Pa( x , y) log Pb(x , y )+Pa( x , y) log Pa( x , y)=Palog (
Pa (x , y )
Pb (x , y )

)

where Pa is the eye-position distribution of a given observer, and Pb the eye-position distribution 

of all other observers in the same condition. This measure cannot be used for the instantaneous 

comparison of fixated locations in any given frame, as the distribution cannot be estimated from 

a  small  number  of eye  positions;  here Euclidian  distance  remains  the  most  straightforward 

measure complementing the KL analysis.

Signal-detection analysis (ROC)

For the analysis of saliency, we use the same baseline as for spatial consistency. This avoids any 

confound from shared spatial biases of stimuli and observer  (e.g., Tatler, et  al.,  2005; Tatler, 

2007) as the baseline and the actual data share condition, setup and observer biases. Hence any 

differences between the distribution of saliency at actual gaze and at baseline locations are then 

guaranteed  to  result  from  stimulus-specific  effects.  Using  signal-detection  analysis,  we 

quantified  how  well  saliency  map  values  discriminate  actual  eye  position  from  baseline 

locations.  For  a  given  detection  threshold,  we  obtained  the  rate  of  hits  (true  values  above 

threshold divided by number of all true values) and false alarms (baseline values above threshold 

divided by number of all baseline values). By varying the threshold from the minimum to the 

maximum of the values, we obtained the receiver operator characteristic (ROC) curve of hit rate 

versus  false  alarm  rate.  The  area  under  this  curve  (AUC)  quantifies  how  well  saliency 

discriminates  eye  positions  from  baseline  locations.  Note  that  this  usage  of  the  ROC  is 

somewhat  different  from earlier eye tracking studies (Peters et al.,  2005; Tatler et al.,  2005), 

where in an individual image it  is asked how well saliency can discriminate fixated from non-

fixated locations. Here, with only one or two fixations per subject and frame in free exploration 

and continuous replay, the AUC estimate from this frame-based measure would be inaccurate. 
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Instead, we here measured how well saliency discriminates eye positions from baseline locations 

within observers, movies and conditions to allow a comparison of the quality of model saliency 

map predictions between different  experimental conditions.  As this procedure does not  allow 

tailoring parameters of the decision process to  individual images,  it  returns lower numerical 

values and is the more conservative measure.

Empirical Saliency Maps

To test how well laboratory data predicts free-exploration data, we defined empirical saliency 

maps: For each data sample, we created a map by placing a Gaussian of 2° standard-deviation 

centered at the eye position. These maps were added for all data samples and observers to get 

two empirical saliency maps for both laboratory conditions in each 40ms period of each movie 

(one frame in the continuous replay condition). The empirical maps were then normalized to 

range from 0 to 1, and the same signal-detection-theory analysis as for the model saliency maps 

was used.

Gaze-centered Average Saliency Maps

To  visualize  the  relationship  between  gaze  allocation  and  saliency,  we  computed  average 

saliency maps that  were centered at  gaze.  For each observer,  each model saliency map  was 

shifted to align the gaze location with the center of the to-be-created average saliency map. The 

saliency values of all pixels in the same new pixel were added. To obtain the mean map for each 

observer, each coordinate of the map was divided by the number of pixels that went into it after 

all frames were summed. Finally, we averaged maps over observers. For display, the results were 

cropped to the central part corresponding to the size of the original map. For this analysis, the 

median  gaze position in  a  40ms time  window (corresponding  to  1  frame  in  the  continuous 

condition)  was  used.  Again,  the  same  analysis  was  performed  for  a  random-reassignment 
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baseline that paired frames and gaze at random. Depending on the strength of the relationship 

between gaze and saliency one predicts a peak at the center of the new average saliency maps. If 

image-specific saliency contributes to gaze allocation, this peak should be more pronounced for 

the actual than for the baseline data. Unlike other analysis techniques, the average maps do not 

only use  the  peak  or  specific  statistics,  but  consider  the  entire  map�s  values.  This  has  the 

advantage that  if  several points  have  similar  salience  but  only one attracts  attention this  is 

reflected in the map. As all analyses that use the saliency values,  rather than the position of 

peaks, the measure is, however, sensitive to non-linear scaling of individual maps. Hence we use 

it  for visualization and to verify the analysis qualitatively,  whereas quantification is  based on 

signal-detection-theory measures, which are insensitive to any strictly monotonic scaling of the 

saliency value.

Results

We  compare  human  gaze  allocation  during  three  different  conditions;  free  exploration, 

continuous  replay  and  1-s-frame  replay  of  head-centered  movies.  In  laboratory conditions, 

fixations (periods not containing saccades or blinks) account for 93.2%±1.1% of time (1-s-frame 

replay)  and  92.4%±2.9%  (continuous  replay),  respectively,  with  no  significant  difference 

between the two conditions (t-test, t(6)=0.53, p=0.61). In free exploration, such periods account 

for 94.8%± 0.9% of samples, and 72.3% ± 4.7% of frames correspond entirely to a fixation or 

slow (i.e., non-saccadic) movement. 

Spatial distribution of eye positions

We measure the spatial distribution of eye positions in the head-centered coordinate frame. In all 

three conditions gaze-allocations show a spatial bias towards the upper center of the visual field. 

The peak is above the vertical midline,  3.5° in free exploration (Fig.3.2A), 2.7° in continuous 
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replay (Fig.3.2B), and 3.0° in 1-s-frame replay (Fig.3.2C). Horizontally,  the peak is displaced 

slightly to the left in free exploration (0.3°) and continuous replay (1.1°), and virtually at the 

center for 1-s-frame replay (0.1°). In sum, in all conditions the eyes direct gaze about 3° upward 

on average, but show little bias sideward. 

As display sizes were matched in the two laboratory conditions, the height of the peaks 

can be compared directly to measure how pronounced a spatial bias is. With 5.6x10-5 of data in 

the maximum bin (Fig.3.2C), the maximum in 1-s-frame replay is more than twice as high as in 

continuous replay (Fig.3.2B, 2.5x10-5). This is a first indication that the spatial bias is enhanced 

by the  discontinuous  presentation  in  1-s-frame  replay.  The  spatial  spread  in  horizontal  and 

vertical direction in both conditions for each movie quantifies this further. In all 15 movies the 

standard deviation of horizontal eye position is  larger in continuous replay than in  1-s-frame 

replay (Fig.3.2D, left). A sign-test shows that this fraction of movies is significant (p=6.1x10 -5). 

Similarly, the spread in vertical direction is larger in continuous replay in 12 out of 15 movies 

(Fig.3.2D, right), also a significant fraction (p=0.04, sign-test). Consequently, gaze allocation is 

spatially more constrained for static than for continuous presentation. 

We analyze the time-course of spatial spread from the onset of each new stimulus in the 

1-s-frame condition. We find a dip at 283ms (horizontal) and 338ms (vertical) after the onset of a 

new frame (Fig.3.2E, black). As baseline, the same spatial spread for the continuous replay, for 

which the time-point relative to the 1-s intervals has no particular meaning, shows little variation 

and is above the value for 1-s-frame replay (Fig.3.2E, gray). This shows that the spatial bias in 

1-s-frame replay is most pronounced about 300ms after stimulus onset, even though there is no 

blank or enforced fixation between subsequent frames. These 300ms may reflect the time needed 

for processing new visual information and making an according eye movement. We interpret the 

stronger spatial bias during discontinuous presentation along with its time-course as evidence 
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that the central bias often observed in laboratory experiments is to a large degree a consequence 

of �resetting� eyes to the stimulus center when new information is onset. 

Consistency between observers

Consistency between individuals is a necessary � though not sufficient - prerequisite for bottom-

up models to predict gaze allocation from stimulus statistics alone. Hence we test how consistent 

different observers are in their eye position, and to what degree this consistency is explained by 

common  spatial  biases.  Measuring  consistency  by  the  average  pair-wise  Euclidian  distance 

between two observers (Fig.3.3A), we find the highest consistency within the 1-s-frame replay 

observers with 86.7%±1.0% (mean±sd across the 6 pairs),  which is  significantly larger  than 

within the continuous-replay observers, who reach 82.6%±1.4% (t(10)=5.97, p=1.4x10-4, t-test), 

and  across  the  laboratory  conditions  of  81.1%±2.3%  (t(20)=5.63,p=1.7x10-5).  The  free-

exploration observer is  slightly more consistent  with the continuous-replay observers (82.6%

±1.6%) than with the 1-s-frame replay observers (81.9%±1.0%), but this difference fails to reach 

significance (t(6)=0.76, p=0.48). In summary, observers in 1-s-frame replay are more consistent 

among each other than with observers in other conditions or observers within and across other 

conditions. 

Given  the  stronger  spatial  bias  in  1-s-frame  replay,  is  the  larger  consistency in  this 

condition an effect of spatial bias alone? We compare the within-condition consistencies to a 

random-reassignment  baseline,  which randomly shuffles  seconds of presentation within each 

observer and movie.  This baseline reflects the image-independent contribution to consistency, 

i.e.  the  contribution  of  the  spatial  bias.  In  both  laboratory  conditions,  the  mean  baseline 

consistency remains  significantly  below the  values  obtained  on the actual data,  with 83.4%

±1.2% (t(10)=-5.25, p=3.8x10-4) for 1-s-frame replay and 77.9%±2.3% (t(10)=-4.38, p=0.001) 
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for continuous replay. The baseline consistency significantly depends on condition (t(10)=5.22, 

p=3.9x10-4), suggesting that the difference between consistency in the two conditions is - at least 

in part - a consequence of the different strength of spatial bias. Furthermore, the baseline values 

are smaller than the actual values for all pairs of observers in both conditions, a fraction (6/6) 

that  is  significant  even  without  taking  the  absolute  values  into  account  (p=0.03,  sign-test). 

Hence,  inter-observer  consistency by itself  is  not  a  consequence  of  spatial  bias  alone,  but 

contains a stimulus-specific component. There is a stimulus-driven component to gaze allocation 

that is shared among observers. This effect, however, operates only in addition to consistencies 

imposed by generic spatial biases, which are consequences of shared preferred heading direction, 

setup and presentation mode. 

As the spatial bias exhibits a pronounced time-course during a 1-s-frame presentation, we 

complemented our analysis of spatial consistency time resolved. We find that consistency peaks 

at around the same time (at 89.9%, 342ms after stimulus onset, Fig.3.3B black) as the spatial 

bias.  The  baseline,  which  reflects the  consistency imposed by spatial biases,  peaks  slightly 

earlier  (282ms,  Fig.3.3B gray)  and stays  consistently  below the actual curve.  Analyzing  the 

continuous-replay  conditions  analogously  does  not  show  any  pronounced  peak,  neither  in 

baseline nor in actual data. 

From the Euclidian consistency measure alone it is unclear to what extent the seemingly 

increased consistency in 1-s-frame replay results from the smaller spatial spread (Fig.3.2E). To 

directly compare the spatial distributions of eye positions we measure KL-divergence between 

an observer�s distribution and the distribution of all other observers in the same condition. The 

time-course averaged over the four 1-s-frame observers is  very similar to the results from the 

Euclidian distance:  consistency increases first  during viewing but  quickly returns to baseline 

(Fig.3.3C,  black).  Since the time-locking  is  arbitrary in  the continuous-replay condition,  we 
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Figure 3.3

A) Pairwise consistency measure of eye 
position for continuous replay (left 4 
bins), 1-s-frame replay (middle bins) and 
free exploration. Data averaged over 
observers and movies; diagonal at 100% 
by definition. (B) Consistency measure 
over presentation time for 1-s-frame 
replay condition (upper black trace).  
Continuous replay (lower black trace)  
depicted for comparison. Stimulus-
independent effects (random-
reassignment baseline) presented in 
gray. All data averaged over subjects,  
mean ± s.e.m over movies depicted. (C)  
KL-divergence as alternative measure of  
consistency of fixation distributions.  
Black: mean±sem KL-divergence for the 
four 1-s-frame observers; gray:  
continuous-replay observers. Note that  
lower KL implies higher consistency and 
absolute values are irrelevant in the 
present context as they depend on 
discretization.
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again see a flat line. Remarkably,  the consistency in the continuous-replay condition is higher 

(lower KL) on average and 1-s replay reaches comparable levels only between about 300 and 

400ms  after  stimulus  onset.  This  implies  that  the  difference  in  Euclidian  distance  is  fully 

explained by the larger spatial spread during continuous replay. 

Average Saliency Maps
As prototypical bottom-up model, we use Itti & Koch�s (2000) saliency map. To take the entire 

map�s values into account, we average the model saliency maps in a gaze-centered reference 

frame.  The  stimuli  themselves  (in  the  head-centered  reference  frame)  do  not  exhibit  a 

pronounced central peak (Fig.3.4, upper left), rather a stripe of highest saliency 91 pixels (9.0° in 

free exploration) above the midline. In gaze-centered coordinates, the peak is centered and found 

9 pixels below the center of gaze by the gaze-camera�s image (Fig.3.4, top-row, 2nd panel from 

left), and 14 pixels below, when using the motor commands and the images of the head-centered 

camera as in the remainder of the analysis (3rd panel). These values correspond to 0.9° and 1.4° 

in free-exploration, respectively.  Although the peaks are rather broad with the 90th percentile 

spanning about half the camera�s visual field (Fig.3.4), they are substantially narrower than in 

the baseline condition (3rd from right, Fig.3.4 top row). The continuous-replay result (top right 

panels) is qualitatively similar to free exploration: a peak centered at the center of gaze that is 

wide, but substantially narrower than baseline. Averaged over the full 1-s presentation the peak 

in 1-s-frame replay (middle row, left) is wider than in continuous replay, but narrower than the 

baseline (bottom row, left). Time-resolved analysis shows little variation for the baseline over 

presentation time (bottom row), which is similar in shape and peak position for all presentation 

conditions. In contrast, the peak for the actual data in 1-s-frame replay starts narrowing in the 

200ms-400ms interval and remains at an about constant width for the remainder (Fig.3.4, middle 

row). This is  a first indication, that saliency becomes more predictive of eye positions in the 
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Visual attention in the real world

course of the presentation. In summary, this first qualitative analysis suggests that mode saliency 

is  best  centered  at  gaze  for  continuous  replay,  and  has  a  distinct  time-course  for  static 

presentations.

Predicting fixations by model saliency

To quantify  how saliency relates  to  eye  positions  in  the  different  conditions  we use model 

saliency map values to discriminate eye positions from baseline locations, i.e. to �predict� eye 

positions. �Prediction� here does not imply causality, and it is well conceivable that correlations 

to other - hidden - scene properties explain away the effects. The area under the curve (AUC) of 

the receiver operator characteristics (ROC) serves as measure. It reaches 50% if saliency cannot 

discriminate eye positions from baseline locations and 100% for perfect discrimination. In free 

exploration, 12/15 movies have AUCs above chance, a significant fraction (p=0.04, sign-test), 

with the mean AUC 53.2%±3.4% also significantly exceeding chance (t(14)=3.64, p=0.003). In 

the laboratory conditions,  there are  60 pairs of observers  and  movies,  of which 56 in  each 

condition exceed  chance  (p=9.1x10-13,  sign-test).  When  averaging  across  observers,  13  (1-s 

replay) and 14 (continuous replay) movies exceed chance, and the means across movies are also 

significantly larger than chance in both conditions with 53.1%±2.0% (t(14)=6.12, p=2.7x10-5) 

and  55.2%±2.7%  (t(14)=7.58,p=2.6x10-6),  respectively.  Comparing  the  conditions,  saliency 

predicts eye positions better in continuous replay than in 1-s-frame replay (t(14)=4.00,p=0.001, 

paired  t-test,  Fig.3.5A),  and  slightly  better  in  continuous  replay  than  in  free  exploration 

(t(14)=2.29, p=0.04, Fig.3.5B), while there is no difference between the prediction by saliency in 

1-s-frame replay as compared to free exploration (t(14)=0.09, p=0.93).  In summary, saliency 

predicts eye positions to some extent in all conditions, and best for continuous replay.

A possible reason why saliency�s prediction is  worse in 1-s frame presentation than in 
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Figure 3.5

(A) Area under curve (AUC) for saliency 
map discriminating fixated from baseline 
locations ("prediction" of fixated 
locations); each data point corresponds to  
one movie and depicts mean AUC and 
s.e.m. over the 4 observers; x-axis 
continuous replay condition, y-axis 1-s-
frame replay. (B) As panel A, with results of  
free exploration on y-axis. (C) Time-course 
of AUC for saliency predicting fixated 
locations over the 1-s presentation duration 
in the 1-s-frame replay condition. Mean 
and s.e.m. over movies. (Note that the curve 
does not need to level off to 0.5 at t=1s, as 
there is a sharp transition of stimuli, and 
the saliency map of the current stimulus can 
still be predictive in the subsequent frame).  
(D) Prediction of 1-s replay by continuous 
replay, using the empirical map recorded in  
continuous replay at the time the respective 
frame is shown. (E) Prediction of free 
exploration by maps generated from 1-s-
frame replay condition, mean and s.e.m. 
over movies. The frame corresponding to 
the 1-s-replay frame is shown from 0 to  
40ms (shaded area), but predicts best about  
240-280ms afterwards. (F) Prediction of  
continuous replay by maps generated from 
1-s-frame replay condition, analogous to 
panel E. (G) Prediction of free exploration 
data by 1-s-frame replay and by continuous 
replay. Each movie corresponds to one data 
point. For 1-s-frame replay, the maximum 
AUC over all time-points is used for each 
movie, nevertheless the continuous replay 
condition predicts free exploration fixations 
better in all but one movie. Thumbnails 
identify selected movies. (H) Comparison of  
prediction of free exploration eye position 
between empirical saliency map from 
continuous replay (y-axis, same data as 
panel G's y-axis) and saliency (x-axis, same 
data as panel B's y-axis). 
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continuous presentation is the time it  takes until saliency gets effective. Subsequent frames are 

highly correlated in  movies (temporal continuity),  but  independent  in  1-s-frame presentation. 

Saliency can thus only be expected to predict eye position after the visual system has processed 

the new stimulus and initiated an eye movement. To analyze how long it  takes for saliency�s 

prediction to become effective, we compute the AUC separately for each time-point during the 

1-s presentation. As expected, the prediction starts at chance level (50%) because the present 

frame is unrelated to the preceding one and generic effects are accounted for by baseline. After 

about 200ms the prediction by saliency starts to become effective. The mean across movies starts 

to differ significantly from chance (at an alpha level of 0.036 corresponding to an expected false 

discovery rate of 0.05) for the first  time after 256ms and reaches its maximum after 624ms 

(Fig.3.5C).  This  characterizes  the  time  it  takes  until  a  bottom-up  signal  related  to  a  novel 

stimulus affects eye position, and accounts in part for the worse average prediction of 1-s replay 

by saliency. 

Predicting fixations across conditions

To test the mutual prediction between different conditions, we use the empirical saliency maps 

for  the laboratory conditions to  predict  the other  conditions.  Within the same  condition the 

prediction of the empirical saliency map, thanks to the small number of observers is always near 

ceiling, with 97.9%±1.0% for continuous replay and 79.4%±3.1% for 1-s replay (maps pooled 

over the full second). The eye positions on the respective frame in continuous replay condition 

predicts 1-s-frame  replay with a  similar  time-course as model saliency and reaches an only 

slightly higher maximum of 56.2% (Fig.5D) compared to the 55.3% of saliency�s prediction 

(Fig.5C). In turn,  we test how well empirical saliency maps generated from 1-s-frame replay 

predict gaze allocation. Prediction is best 280ms after the stimulus corresponding to the shown 

frame was encountered in the real world (Fig.5E) or the frame was shown in the continuous-
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replay condition (Fig.3.5F). The peak AUC reaches about the same height in the free exploration 

(54.8%±5.4%)  as  in  the  continuous-replay  condition  (54.2%±3.2%),  values  that  are  not 

significantly different (t(14)=0.57, p=0.58, paired t-test). 

As  an  upper  bound  for  the  prediction  of  free-exploration  by  1-s-frame  replay,  we 

compute the best prediction by 1-s-frame replay for each movie, reaching a mean AUC of 58.4%

±3.5%. Note that this number is different from the maximum of the mean curve, resulting from 

the fact that the maximum prediction is reached at different times for different movies. Even in 

this measure that is beneficial for 1-s-frame replay, the eye positions in continuous presentation 

predict  real-world  gaze  allocation  better  (AUC  62.5%±2.7%)  than  the  individual  frame 

(t(14)=5.20, p=1x10-4, paired t-test). This advantage for predicting the real-world by continuous 

replay holds for all but one individual movie (14/15, Fig.3.5G), which constitutes a significant 

fraction of movies (Fig.3.5G; p=9.8x10-4, sign-test). Both predictions are, however, correlated 

(r=0.60, p=0.03),  and exceed chance for all movies.  Qualitatively,  both laboratory conditions 

predict eye positions during free exploration well, when the scene contains man-made structures 

with plenty of isolated objects (residential areas, indoor environments). In contrast, prediction is 

worse for natural outdoor sceneries (e.g., desert, open field).  The continuous replay condition 

seems to have particular  benefits  in  situations  of highly dynamic  character,  such as passing 

uneven terrain or climbing a flight of stairs (Fig.3.5G). 

Empirical  saliency  maps  from  continuous  replay  predict  eye  positions  during  free 

exploration  better  than  the  model  saliency  maps  for  all  movies  (15/15,  Fig.3.5H)  and 

significantly better on average (paired t-test, t(14)=9.50,p=1.8x10-7). If the peak prediction in 

each movie is considered (as in Fig.3.5G), this also hold for the empirical maps from 1-s replay 

(better in 13/15 movies, t(14)=4.8, p=2.6x10-4). However, there is no individual time-point (0, 

40ms, 80ms, etc.) for which the mean prediction of this empirical map exceeds the prediction of 
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the model map significantly, and for the first 160ms the prediction is even significantly worse. 

Hence  only  the  data  from continuous  replay  is  a  better  predictor  of  free-exploration  eye 

movements than model saliency. This shows that the eye position in the laboratory has some 

predictive value for eye positions in the real-world,  but replicating the dynamic aspect of the 

scene,  especially  its  temporal  continuity,  is  of  importance.  In  all,  our  results  render  the 

development  of  models  based  on  laboratory data  useful,  but  also  stress  the  importance  of 

spatially and temporally realistic stimuli, and validation in the real world.

Discussion

We compare laboratory measurements of eye position to free exploration data. Observers� 

eye positions are more consistent when static frames are presented than for movies, but most of 

this surplus consistency is explained by spatial biases that are independent of the specific visual 

stimulus shown. A prototypical bottom-up model of attention, the saliency map, exhibits a weak 

but significant correlation with eye position inside and outside the laboratory. There is a slight 

advantage for saliency in continuous input over 1-s-frame replay. This may be explained by the 

time a bottom-up signal needs to be processed and to trigger an eye movement when a novel 

stimulus is onset. This is,  the benefit  is a result of temporal continuity in the real world and 

continuous  replay.  Finally,  we  show  that  gaze  recorded  in  the  laboratory  possesses  some 

predictive power for gaze allocation in the real-world, which is improved if the full dynamics of 

the stimulus is maintained. 

Spatial biases on visual attention and gaze direction have received increasing interest. 

Mannan et al.  (1996) stress that most of their features� effect  on eye position vanishes when 

correcting analysis for shared spatial biases in stimuli and eye position. Similarly,  Tatler et al. 

(2005) demonstrate that a varying spatial bias fully explains the changing effect of low-level 

features  over  prolonged  viewing  (Parkhurst  et  al.,  2002).  In  turn,  spatial  biases  �  or  prior 
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knowledge  on the  likely locations  of  search  targets  �  complement  saliency  in  guiding  eye 

movements in search (Torralba, Oliva, Castelhano, & Henderson, 2006). A probabilistic model 

that learns a saliency representation from natural scene statistics � combining bottom-up saliency 

and generic top-down biases - also outperforms image-specific saliency models for free-viewing 

(Zhang,  Tong,  Marks,  Shan,  & Cottrell,  2008).  A systematic  study on spatial biases  in  free 

viewing of natural scenes found that  � at least  under laboratory conditions � central fixation 

biases prevail irrespective of known biases in stimulus features (Tatler, 2007). This suggested 

either a role of the artificially limited setup that makes it more effective to look at the center or a 

general bias to look straight  ahead. Recently,  we have used the relation of gaze-centered and 

head-centered feature statistics to argue against the latter alternative (Schumann et al., 2008). 

Individual  features,  as  saliency  does  here,  typically  show  an  environment-dependent  bias 

towards the upper  half  of the head-centered visual field.  Gaze centers and refines this  bias, 

which argues against a pure centering of eyes in their orbit. By using the camera-control signals 

relative to the head, we here do find a weak bias in viewing direction for free exploration. This 

bias is,  however, not entirely central in the vertical, although the size of its upward deviation 

compared to the full oculomotor range still may justify a dubbing as �central�. More importantly, 

however,  the  bias  is  strongest  in  the  1-s-frame  replay  condition,  especially  compared  to 

continuous replay. It exhibits a time-course that suggests that new information arriving triggers 

this reset to the center. This suggests that central bias indeed serves to select an optimal starting 

location for early scene processing on a limited screen when no other prior is available, the first 

hypothesis proposed by Tatler (2007). Provided the results on spatial priors in search (Torralba et 

al.,  2006),  it  is  likely that  task and  presentation conditions influence spatial biases.  In free-

exploration, the spatial distribution of gaze suggests a bias towards the open path to be walked 

on, which is  weaker  in  the laboratory conditions.  This  might  be interpreted as prior for the 
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implicit task of actually navigating the terrain. To what extent such motor planning and action 

contribute to  the  difference between �free-exploration�  and  �free-viewing�  remains  an open 

issue,  for  which virtual-reality experiments may provide interesting complementary data (cf. 

Jovancevic et al., 2006).

Inter-observer consistency is a necessary condition for a purely bottom-up model to make 

any predictions (causal or correlative) on gaze allocation. If �bottom-up� is  restricted to  the 

presently presented stimulus, a successful prediction needs to exceed that of generic biases. In 

our  small  set  of laboratory observers,  inter-observer  consistency exceeds  the  baseline  from 

generic  biases  alone in  all  conditions  and  observer  pairs.  Remarkably,  the  stimulus-specific 

consistency in  1-s  frame  replay persists  longer than the generic  component.  This  suggests a 

prolonged effect of bottom-up signals for static stimuli and shows that bottom-up models can be 

useful for gaze prediction. Yet, our results stress that � even in the absence of an explicit task - a 

good part of inter-observer consistency is  determined by setup, presentation conditions and � 

through spatial biases in head-centered videos � the stimuli. 

As example for a bottom-up model, we tested Itti & Koch�s (2000) saliency map, using 

its original version rather than its more recent developments (Itti, 2005; Itti & Baldi, 2006; Cerf, 

Harel,  Einhäuser,  &  Koch,  2008).  The  correlation  between  model  saliency  and  fixation 

probability is weak, but exceeding chance. It is, however, remarkable that even this static model 

achieves better predictions for  the continuous replay condition,  at  least  when compared to a 

baseline that takes generic biases into account. This stresses the importance to faithfully match 

not only the spatial but also the temporal statistics of stimuli to the real world. The importance of 

temporal dynamics is  supported by the fact that empirical saliency derived from continuously 

presented stimuli predicts real-world gaze better than 1-s replay does, even when the latter is 

used at the optimal latency from stimulus presentation to its prediction. These results highlight 
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that temporal continuity is a key principle not only for object recognition (Wallis & Rolls, 1997; 

Einhäuser,  Hipp,  Eggert,  Körner  &  König,  2005),  but  also  for  attention  deployment  under 

natural conditions. It thus might be used to learn attention models from natural stimulus statistics 

(Zhang et al., 2008). 

One reason for the worse �prediction� in and by 1-s replay is the time needed to deploy 

bottom-up attention after stimulus onset. The minimal time needed for a bottom-up effect of a 

newly onset image that is unrelated to a previous one is the time to process this stimulus by the 

visual system and to execute one volitional eye movement. Although fast saccades are possible 

in response to natural scene categorization (Kirchner & Thorpe, 2006), even the fastest express 

saccades require at least 100ms (Crouzet, Kirchner, & Thorpe, 2008). Hence, a delay of bottom-

up responses till 150ms-200ms after stimulus onset is in line with physiological constraints and 

� by itself - does not argue against the �pre-attentive� nature of target selection, suggested by the 

saliency  map.  Furthermore  it  is  notable  that  there  is  no  substantial  decline  of  saliency�s 

prediction over  the 1-s period. Our data furthermore confirm earlier  findings of a decline of 

inter-observer consistency after an initial increase when the starting eye position is random or � 

in our case � determined by an unrelated stimulus (Tatler et al., 2005). 

Provided the task�s importance for eye movements (Buswell,  1935; Yarbus, 1967) and 

saliency map predictions (Henderson et al., 2006), its effect on the comparability of eye tracking 

in  the  real-world  to  laboratory  settings  remains  an  interesting  issue.  It  is  likely  that  eye 

movements in highly-trained, stereotypic motor tasks that are tied to specific settings (driving, 

sports,  etc.)  cannot  be  reproduced  by visual  display alone.  Hence  eye  movements  obtained 

during real-world tasks provide the opportunity to improve and test computational models with 

data from natural tasks that are difficult  to elicit  in the laboratory. It is  conceivable that such 

models may then even excel empirical data from the laboratory with respect to gaze prediction in 
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real-world scenarios.

In  any  case,  the  comparison  between  laboratory  and  real-world  data  can  help  in 

uncovering the role of a specific modality (e.g., vision) in attention allocation during everyday 

implicit tasks, such as walking on uneven terrain, stair climbing or navigating. As a first step in 

this direction, we here followed this approach for the arguably most naïve tasks possible, free-

viewing and free exploration. 

In conclusion, we here quantified for the first time the differences between laboratory and 

real-world settings. The potential sources of the observed differences are manifold: First, it  is 

unclear  whether  �free-viewing�  really  represents  a  laboratory version of �free  exploration�. 

Second, there is the limited display in the laboratory, third, the effect of the restriction of head 

movements,  and  forth  the  absence  of  vestibular  and  other  cross-modal  information.  Future 

experiments, that systematically modify task, display size and location, head position and input 

from modalities other than vision, and finally a larger number of observers performing multiple 

conditions, will allow a detailed investigation of all of these issues. Here, we delivered the proof 

of concept  that  our  novel recording  setup allows addressing  these  topics  and provided  first 

quantitative results.
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Mind the step: complementary roles for eye-in-head and 

head-in-world orientation when negotiating a real-life path

Abstract

Gaze in real-world scenarios is controlled by a huge variety of parameters, such as stimulus� 

features, instructions, or context, all of which have been studied systematically in laboratory 

studies. It is, however, unclear how these results transfer to real-world situations, when 

participants are largely unconstrained in their behavior. Here we measure eye and head 

orientation and gaze in two conditions, in which environment (i.e., context and features) and 

instruction are identical, while the effect of implicit task set is varied by terrain regularity. We 

show that terrain regularity causes specific differences in head orientation and gaze behavior, 

which are restricted to the vertical direction. Participants direct their head and eyes lower when 

terrain difficulty increases, but only the eyes compensate partially for this by spreading eye-in-

head orientation more in the vertical direction. Our results quantify the importance of task set for 

gaze allocation in the real world, and imply qualitatively distinct contributions of eyes and head 

in gaze allocation. This underlines the care that needs to be taken when inferring real-world 

behavior from constrained laboratory data.

Introduction

Sensory systems provide an organism with the information needed for skilled behavior, adapted 

to a changing environment. In the case of human vision, high spatial resolution is limited to the 

fovea, demanding shifts of gaze for detailed visual sampling of the environment. For several 

decades research on gaze-shifts for natural stimuli has focused on eye movements (Buswell, 

1935; Yarbus, 1967), although in real-world situations humans shift gaze by coordinated 
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movements of head and eyes. To what extent do behavioral constraints influence eye-in-head 

and head-in-world movements, respectively, to select the relevant information from sensory 

stimuli?

When viewing natural scenes, allocation of gaze can be partly explained by stimulus-

driven factors. The most abundantly used concept is that of a saliency map: originally developed 

to explain shifts in covert attention using simple stimuli (Koch & Ullman, 1985), it predicts gaze 

allocation in natural scenes exclusively based on low-level stimulus features (Itti & Koch, 2000). 

However, the model can be seen as a predictor of characteristic objects in a scene (Carmi & Itti, 

2006) and those objects � when known � explain away the effect of low-level features 

(Einhäuser et al., 2008b). Consequently, the saliency map may not be understood as causal 

model of gaze allocation and analysis of their performance is often confounded by common 

factors to gaze and saliency (e.g., central bias, Tatler, 2007). Nevertheless, for free exploration of 

an outside environment, saliency maps still have some predictive power, albeit lower than for 

�free-viewing� in typical laboratory conditions (�t Hart et al., 2009). This underlines the need for 

experiments under truly natural conditions.

Besides features of the current stimulus, contextual or prior knowledge about expected 

stimulus statistics drives attention to a considerable extent. For example, when looking for a 

pedestrian in a street scene, fixations are better predicted by a model that weighs lower locations 

of the stimulus more strongly (Torralba, 2003). Furthermore, pre-attentive knowledge of scene 

layout biases fixation distributions (Ehinger et al., 2009). In parallel to the usage of such spatial 

priors on fixation behavior, several models predict attention (and thus gaze) capture by 

deviations from (learnt) prior expectations on feature (Itti & Baldi, 2006) or scene (Zhang et al., 

2008; Bruce & Tsotsos, 2009) statistics. All these approaches model attention allocation based 

on stimulus statistics, but � in contrast to the basic saliency-map approaches � relate to more 
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stimuli than just the one available at the very moment.

While all the aforementioned approaches are stimulus-driven (either by the current 

stimulus, its relation to the sequence or the stimulus ensemble), so called �top-down� factors 

control the deployment of attention and thus shifts of gaze as well. Besides memory (Droll & 

Eckstein, 2009) and other idiosyncratic factors (Hidalgo-Sotelo & Oliva, 2010), the task is 

arguably the best studied of those top-down factors. Classically studied in search displays 

(Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977; Treisman & Gelade, 1980; Wolfe et al., 

1989), in natural scenes, search overrides stimulus-driven saliency completely (Henderson et al., 

2007) and immediately (Einhäuser et al., 2008a). Sophisticated models, such as Guided Search 

(Wolfe et al., 1989; for the latest version see Wolfe, 2007) explain search in visual displays, 

incorporating top-down information. Recently, such quantitative analysis has been extended to 

template search in static natural scenes (Navalpakkam & Itti, 2005; Pomplun, 2006; Zhang et al., 

2008). Search is a great starting point for quantitative analysis of task-dependent gaze allocation. 

However, even if we have to search for misplaced items or well-defined signposts more often 

than we might like to, in daily living, template search is hardly the most common or �natural� 

mode of human behavior. In the present paper we therefore aim at considering more natural task 

sets, which are not given explicitly by instruction, but implicitly by constraints of the 

environment.

Unlike in most laboratory situations, in real life the organism itself decides in part what 

the actual �task� is and this task may change from moment to moment. A participant�s intentions 

indeed affect not only change detection (Triesch et al., 2003) and the processing of specific 

object-features (Hannus et al., 2005), but also gaze distributions directly (Castelhano et al., 2009; 

Rothkopf & Ballard, 2009). As predicting the trajectory of a bouncing ball by making eye-

movements to upcoming relevant locations exemplifies (Hayhoe et al., 2005), gaze behavior 
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adapts to increasing knowledge of the environment�s physical properties. With the recent advent 

of wearable eye-trackers, studying the allocation of gaze in real-life scenarios has become 

feasible. However, most research in this area has restricted itself largely to either free exploration 

(Cristino & Baddeley, 2009; �t Hart et al., 2009; Schumann et al., 2008) or to specific � thus 

experimentally readily controllable - domains such as driving, sandwich making or sports 

(Hayhoe & Ballard 2005; Kandil et al., 2009; Land et al., 1999; Land & McLeod, 2000). In free 

exploration, there is no explicit instruction and the participant implicitly selects their task. In the 

other scenarios, the task (sandwich making, driving, tea making, cricket) typically specifies the 

full range of actions to be taken and does not leave - or in the case of driving, should not leave � 

much room for other actions, such as exploring the visual environment. In contrast, walking 

outdoors � at least in healthy adults � is a natural task that leaves considerable room for visual 

exploration (Calow & Lappe 2008; �t Hart et al., 2009). The visual environment, context and 

instruction can be held constant by constraining the path to be walked on, while at the same time 

the experimenter can control the implicit part of the task (e.g., not tripping) by varying the 

terrain regularity. Here we therefore use walking on terrain of varying regularity as a paradigm 

that constrains parts of the task, but does not fully occupy participants, such that they still may 

decide on their behavior in a naturalistic way.

In most laboratory settings, gaze direction is changed by movements of the eyes alone, 

whereas in real-world settings movements of the body and head are available as well. Fixing 

head and body not only ignores the possibility of orienting head or body to allocate gaze, but 

also neglects reflexive eye movements that accompany head and body movements in the real 

world. The orientation of the eye is offset against changes of the orientation of the head via the 

vestibulooccular reflex (VOR), and similarly the vestibolocollic reflex (VCR) stabilizes head-in-

world orientation during larger body movements while VOR is suspended (Guitton & Volle, 
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1987). The way these movements interact to direct gaze has for example been investigated in the 

real-life tasks of making tea (Land et al., 1999) and driving (Land, 1992). In both tasks, large 

gaze changes were accompanied by head movements proportional to the gaze change, but head 

movements were smaller when body movements were made as well (Land, 2004). Similar 

patterns of interaction between these three types of movements have been found in a walking 

task in a laboratory setting on even terrain (Imai et al., 2001). With respect to terrain regularity, 

the relative importance of the lower visual field for negotiating irregular terrain has been shown 

by blocking downward viewing (Marigold & Patla 2008) and by tracking gaze while participants 

walked a short, irregular path in the laboratory (Marigold & Patla 2007; Patla & Vickers 2003). 

Here we combine the measurement of gaze direction during walking outdoors with the variation 

of terrain regularity. We quantify two contributions to gaze, eye-in-head and head-in-world 

orientation, where the latter comprises head and body movements.

Besides the relative contributions of eye, head and body to gaze during largely 

unconstrained walking, the question as to where to optimally direct gaze to is of crucial 

importance when walking more complex environments, with the avoidance of collisions being a 

central issue. When walking on an obstacle course or in traffic, gaze is usually directed at 

obstacles (Ballard & Hayhoe, 2009), at locations where cars are likely to appear (Geruschat et 

al., 2003) or at pedestrians that are more likely to collide with the participant than others 

(Jovansevic-Misic & Hayhoe, 2009). In all these cases, items that have to be dealt with 

(obstacles, cars, pedestrians) attract gaze. It is conceivable that this generalizes to walking on 

terrain, where terrain irregularities have to be negotiated and thus may also attract gaze. If true, 

varying terrain regularity should affect gaze.

Even in the absence of obstacles or other road users, walking is a complex task 

(Hausdorff et al., 2005), which uses depth cues (Hayhoe et al., 2009), motion parallax or optic 
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flow (Bardy et al., 1996; Callow & Lappe, 2008; Warren et al., 2001), and vestibular information 

(Fitzpatrick et al., 1999; Jahn et al., 2000). Walking has an effect on gaze allocation, as there is 

an abundance of downward directed eye movements during walking as compared to the same 

visual stimulation with fixed body and head (�t Hart et al., 2009). This �T-shaped� distribution of 

eye-in-head orientation during walking has also been described earlier (Callow & Lappe, 2008) 

and emphasizes the importance of the lower visual field in real-life walking (Marigold & Patla, 

2008; Timmis et al., 2009). Visual information is indeed used during walking: when depriving 

participants of all visual input during specific segments of each step, foot placement precision 

drops (Chapman & Hollands, 2006; Hollands & Marple-Horvat, 1996). This furthermore 

demonstrates a link between the sampling of visual information on the terrain and phases of the 

step cycle, and suggests there are specific visuomotor routines organizing walking (Imai et al., 

2001). The role of these routines becomes evident when they operate under strict constraints or 

are disturbed, such as in the elderly (Cavanagh & Higginson, 2002; Chapman & Hollands, 2006; 

Jahn et al., 2010; Startzell et al., 2000) or patients suffering from Parkinsonian syndromes 

(Pinkhardt et al., 2008). In analogy to restrictions imposed by bodily or sensory impairments, 

variation of terrain regularity should then affect the sampling of visual information in healthy 

participants. This again yields the hypothesis that terrain regularity affects gaze.

Laboratory studies have shown that terrain regularity correlates with look-ahead distance 

on the path (Marigold & Patla, 2007; Patla & Vickers, 2003). In an artificially sparse laboratory 

environment, however, looking at the surroundings serves little purpose. Therefore gaze 

behavior may differ in this restricted situation as compared to real-world behavior. One study 

that investigated gaze on path in a real-world setting (Pelz & Rothkopf, 2007) manipulated path 

difficulty together with changing the environment, such that it cannot be excluded that this 

change in surroundings accounts for the effects found. To the best of our knowledge, no study to 

124



Visual attention in the real world

date has addressed the relation between real-life gaze allocation and terrain difficulty without 

changes to the visual environment.

In the present study, we use walking to investigate the role of implicit task set on gaze 

during natural behavior. Participants are asked to walk up and down an inclined street, while 

their eye-in-head movements and head-in-world orientation are tracked with a novel, wearable 

eye-tracking device (�EyeSeeCam�; Schneider et al., 2009). In the two experimental conditions, 

instructions and environment are identical, but terrain regularity is varied by once using 

irregularly placed steps, once the comparably smooth road running in parallel to the steps. This 

procedure allows us for the first time to quantitatively assess in a realistic scenario, how different 

contributions to gaze direction depend on an implicit task set (safely negotiating terrain) with all 

other parameters (environment, instruction, etc.) held constant.

Materials and Methods

Participants

Eight volunteers (4 male, 4 female; mean age ± SD: 30.3 ± 7.1 years) with normal or corrected 

to normal vision and no walking deficits participated in this experiment. All participants gave 

written informed consent before the experiment. The experiment conformed to institutional and 

national regulations and the Declaration of Helsinki.

Conditions

The main experiment took place in a local street (�Hirschberg�) that has a sidewalk with 

irregularly placed steps on one side (Figure 4.1A). The main street is an inclined cobbled road. 

The sidewalk and main street are separated by a metal railing. Participants walked on the road as 

well as on the steps, close to this railing. Since this was repeated for walking up and down, each 
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participant walked through the street a total of four times. To counter any effects of order on 

behavior, the order of the four walks was randomized. The path that was to be taken was 

explained to the participants right before the walk and the instruction for each of the four walks 

was to �walk as you normally would�. That is, with the exception of whether to use steps or road, 

instructions were exactly identical in all conditions. As the environment remains unchanged as 

well, the only difference between conditions, which we will refer to as �road� (Figure 4.1C,E) 

and �steps� (Figure 4.1D,F), is the implicit task set of negotiating terrain of distinct difficulty.

To verify that other environments induce qualitatively similar eye movements, six of the 

eight volunteers participated in two additional conditions, referred to as �stairs� and �alley�. In 

the �stairs� condition, they walked up and down a continuous flight of stairs, which is 

considerably more regular than the �steps� condition. In the �alley� condition, they walked a 

path with negligible incline compared to the �road� condition. 

Since the alley and stairs were considerably shorter than the inclined road and steps, 

recording time in the main conditions �steps� and �road� were longer than in the conditions 
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�alley� and �stairs�. On average participants took 59.81s ± 3.00s (mean ± SD) for �steps�, 

51.87s ± 7.76s for �road�, 11.56s ± 1.91s for �alley� and 12.67s ± 2.14s for �stairs�.

Setup

In all conditions, eye-movements were recorded during the walk with a mobile, wearable eye-

tracker (�EyeSeeCam�; Schneider et al., 2009; Figure 4.1B). The eye tracker recorded the eye-

in-head signal at 305 Hz for both eyes, and � if signals from both eyes were available � the 

average of the eyes was used for further analysis. In addition a camera fixed to the forehead 

recorded a movie of the environment with a wide angled lens (�head-cam�) and a camera 

moving with the direction of gaze recorded a gaze-centered movie. In the present study, we used 

this gaze-centered video to verify the eye-in-head measurements and the head-centered video to 

determine head-in-world orientation.

The EyeSeeCam software defines the origin for eye-in-head orientation as a straight-

ahead direction relative to the device, such that there is some variability (up to a few degrees) 

between individuals. Similarly the head-in-world orientation (see below) is defined relative to 

device-centered reference frame (the head-cam). Since the camera is not removed from the 

participant throughout the experiment and there is only little slippage of the goggles to which the 

device is mounted, the definition of the origin is consistent across all conditions. Hence none of 

the differential effects between conditions can be confounded by the choice of reference frame. 

In addition, for the determination of gaze (eye-in-world) the offsets of the two device-centered 

origins compensate each other, such that the gaze coordinate systems of different individuals are 

identical.

Eye-in-head orientation

To analyze eye-in-head orientation, the eye-tracker data was separated in a horizontal and a 
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vertical component. For each component, we determined the mean and the standard deviation of 

the eye-in-head orientation. We quantified the dependence of these parameters on terrain 

(road/steps) and walking direction (up/down) by a 2-factor ANOVA.

Head-in-world orientation

As a proxy for head-in-world orientation we determined the position of a point at ground level 

beyond the end of the walking track in frame coordinates in the head-centered movies. In loose 

analogy to descriptive geometry, we refer to this point as the vanishing point. The definition of 

this point depends on environment and necessarily on walking direction (up/down). Since 

environment is identical for �steps� and �road� and the line of sight is much longer than the 

width of the used path (steps and road combined), the vanishing point is virtually independent of 

terrain. Consequently, any effect of terrain cannot be attributed to the vanishing-point definition, 

while the effects of walking direction may. However, since we are interested in the factor terrain, 

the effect of walking direction will remain irrelevant, unless we would observe an interaction 

between walking direction and terrain.

To determine the vanishing point, we used the following manual procedure. First a pixel 

was selected by clicking on the frame with a mouse pointer in every 30th frame. A square section 

around the selected pixel was used as a template. In the preceding and succeeding frames this 

template was used for 2D convolution to determine the location of the vanishing point in all 

frames of the movie during all walks (Figure 4.1C-F). Using the Camera Calibration Toolbox for 

Matlab (Bouguet 2010), we characterized the lens of the head-fixed camera and calculated 

normalized coordinates for all vanishing point locations. Since the extent of the camera was 

known (120° x 70°) an angular signal for head-in-world orientation could be estimated using the 

same metric as the eye-in-head signal (degrees of visual angle). By analyzing the distribution of 

the vanishing point�s position in the head-centered movies, we can assess the contribution of 
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head-in-world orientation to terrain induced changes of gaze direction.

Gaze-in-world

For each head-in-world sample, eye-in-head orientation and head-in-world orientation signals 

were added to obtain a gaze-in-world signal (cf. Land & Tatler, 2001). Both the vertical and 

horizontal component of this signal were tested for their dependence on walking direction 

(up/down) and terrain (road/steps) using a 2-factor ANOVA.

Results

Gaze-in-world

To investigate the effect of implicit task sets on gaze allocation, we asked participants to 

negotiate different real-world terrains, while eye-in-head and head-in-world orientation was 

recorded. Before addressing the separate contributions of head-in-world movements and eye-in-

head movements to gaze, we will analyze the combined signal; that is, the distribution of gaze. 

Visually inspecting the raw distributions of gaze one observes two distinct peaks on both types 

of terrain (road/steps). In the road condition (Figure 4.2A), one peak is centered near the 

vanishing point and one peak falls about 20° below that, presumably on the path itself. In the 

steps condition (Figure 4.2B) this second peak is more pronounced and located about 10° lower 

than in the road condition, while the central peak remains virtually at the same location. 

Horizontally, all peaks are close to the midline. The difference between both conditions is a first 

qualitative indication that effects of terrain act mostly along the vertical axis.

To quantify the effects of terrain on gaze, four ANOVAs were performed, all used the 

factors terrain (road vs. steps) and walking direction (up vs. down). In the horizontal, mean gaze 
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direction depends on walking direction (F(1,28) = 117.28, p = .005, Figure 4.3A-C), but not on 

terrain (F(1,28) = 8.81, p = .408). There is no interaction between the two factors (F(1,28) = 

15.92, p = .268). In contrast, the mean vertical gaze direction is affected by terrain only (F(1,28) 

= 1134.51, p < .001), whereas the effect of walking direction (F(1,28) = 3.59, p = .794) and the 

interaction (F(1,28) = 113.04, p = .151) are not significant. 

In addition to the mean direction of gaze, the aggregate data (Figure 4.2A,B) suggests a 

wider spread of gaze in the vertical for the steps condition. To quantify this, we compute the 

standard deviation of the horizontal and vertical gaze component (Figure 4.3D-F). In the 

horizontal, there is no significant main effect of terrain or walking and no interaction (all p > .

180). In contrast, the vertical component shows an effect of terrain (F(1,28) = 112.32, p < .001) 

but no effect of walking direction (F(1,28) = .01, p = .967) or interaction between the two factors 

(F(1,28) = 2.29, p = .535). 

Taken together, the data on mean and standard deviation show that terrain affects gaze in 
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Figure 4.2: Gaze-in-world histograms. 

Histograms of gaze-in-world relative to the vanishing point (2.5° x 2.5° bins, interpolated for 
display) Note the logarithmic scale for individual panels. Vertical and horizontal axes 
correspond to real space, measurement range is 70° from the center in all directions. Height  
lines correspond to colorbar ticks. Data are first averaged per participant, such that each 
individual contributes equal amounts of data independent of walking speed. A) road B) steps.
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the vertical direction. The more difficult terrain (�steps�) induces lower and more spread gaze 

than the easier terrain. It is important to note, that visual environment and instructions are 

identical in both cases, such that all effects result from the interaction of the implicit task set of 

negotiating terrain with terrain difficulty. The effect of walking direction on horizontal gaze 

direction, however, might be a consequence of the necessarily different choice of vanishing 

points for determining head-in-world orientation, which factors into the measure of gaze 

direction. Both effects raise the question to what extent eye-in-head as compared to head-in-

world movements contribute to the observed differences.
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Figure 4.3: Gaze-in-world mean and standard deviation. 

A-B) Mean horizontal and vertical gaze-in-world for each individual (circles), and average 
(dotted lines) A) road B) steps. C) Comparison of the road and step data of panel A and B. 
Errorbars denote standard errors of the mean. D-E) Standard deviation over horizontal and 
vertical gaze-in-head orientation. D) road E) steps. Note the consistently larger spread in the 
vertical. F) Comparison of the data of panels D and E, further split up for walking up and down  
the path. Errorbars denote standard errors of the mean.
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Eye-in-head orientation

As one contribution to gaze, we analyze eye-in-head orientation. Visual inspection of the raw 

distributions shows that the peak of the eye-in-head orientation distribution is higher in the 

�road� (figure 4.4A) than in �steps� (figure 4.4B) condition. Quantitative analysis shows that the 

mean horizontal eye-in-head orientation (Figure 4.5A-C) does not depend on terrain or direction, 

nor is there an interaction between these factors (all p > .402). In contrast, the mean vertical eye-

in-head orientation does depend on terrain (F(1,28) = 458.25, p < .001, Figure 4.5C) and walking 
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Figure 4.4: Eye-in-head orientation histograms. 

Histograms of eye-in-head orientation (2.5° x 2.5° bins, interpolated for display) Note the  
logarithmic scale for individual panels. Vertical and horizontal axes correspond to real space,  
measurement range is 35° from the midline towards the top, 50° towards all other directions.  
Height lines correspond to colorbar ticks. Data are first averaged per participant, such that  
each individual contributes equal amounts of data independent of walking speed. A) road B)  
steps C) alley D) stairs. 
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direction (F(1,28) = 181.16, p = .016). There is no interaction between terrain and walking 

direction (F(1,28) = 19.69, p = .403). While the mean eye-in-head orientation on average is 

almost on the midline for the road (Figure 4.5A), it falls clearly below for steps (Figure 4.5B). 

This is a first indication that terrain difficulty affects vertical eye orientation in that the more 

irregular terrain (�steps�) demands eye position to be directed more towards the ground.

To quantify the spread of eye-in-head orientation, we calculate the standard deviation 

over the vertical and horizontal components of eye-in-head orientation. For all conditions, we 

find that for the majority of participants the standard deviation over the vertical eye-in-head 
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Figure 4.5: Eye-in-head orientation mean and standard deviation. 

A-B) Mean horizontal and vertical eye-in-head orientation for each individual (circles), and 
average (dotted lines) A) road B) steps. C) Comparison of the road and step data of panel A and 
B. Errorbars denote standard errors of the mean. D-E) Standard deviation over horizontal and 
vertical eye-in-head orientation. D) road E) steps. Note the consistently larger spread in the 
vertical. F) Comparison of the data of panels D and E, further split up for walking up and down  
the path. Errorbars denote standard errors of the mean.
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orientation is larger than the horizontal one (road: 6/8 participants, steps: 7/8 participants, Figure 

4.5D, E). This shows that eye orientations are more spread in the vertical than in the horizontal 

direction. The standard deviation over the horizontal eye-in-head orientation does not depend on 

terrain or walking direction, nor is there an interaction between these factors (all p > .663; Figure 

4.5F). The standard deviation over the vertical coordinates does depend on terrain (F(1,28) = 

48.08, p < .001) and is larger for �steps� than for �road�. Walking direction does not have an 

effect on the standard deviation over the vertical eye-in-head orientation (F(1,28) = 0.05, p = .

90)2 and there is no interaction between terrain and walking direction (F(1,28) = 3.64, p = .301). 

Hence eye-in-head orientation is more spread vertically if terrain gets more irregular. This may 

imply that there are more or larger eye movements for the irregular terrain, but may also result 

from longer fixations in the lower visual field. It should be noted, however, that � unlike in 

viewing static images in the lab � not only saccades contribute to eye-in-head orientation, but 

also stabilizing and tracking eye movements, which yields a highly dynamic situation that 

renders a

precise categorization of eye movements at each point in time difficult. In sum, we find robust 

effects of terrain irregularity on eye-in-head orientation, which are restricted to the vertical 

direction. This suggests that with increasingly irregular (i.e., more �difficult�) terrain eye 

movements increasingly direct gaze to the path.

Effect of environment

Unlike head-in-world orientation and gaze, eye-in-head orientation is independent from the 

definition of the vanishing point. This allows the comparison to other visual environments. We 

chose two environments (�alley�, �stairs�), which are similar in terrain regularity to the main 

conditions (road/steps), but present a different visual environment. Visual inspection of raw 

distributions of eye-in-head orientations (Figure 4.4) indicates that the distribution for steps is 
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more similar to stairs and alley more similar to road than main and control conditions are relative 

to each other. Since the visual environment and the path inclination change between main 

conditions and control conditions (and among these), quantitative isolation of terrain�s effect is 

not possible, which is the key rationale of locating the main conditions in the same environment. 

Qualitatively, however, the observation that the (visual) environments of alley and stairs are 

more similar to each other than to the road/steps environment (e.g., with respect to openness), 

make the data suggest that the effect of terrain may at least partially supersede the effect of 

environment. In any case, the predominant elongation of eye-in-head orientation distributions 

along the vertical as compared to the horizontal is present for all environments tested.

Head-in-world orientation

To test if head-in-world movements are also affected by demands posed by the terrain, we 

analyzed the position of the vanishing point within the head-centered movie frames. From the 

vanishing point�s position we determine the head-in-world orientation by inverting the transfer 

function of the camera. This yields a representation of head orientation in visual angle relative to 

the vanishing point. 

Visual inspection of the raw distributions (Figure 4.6) shows that they are shifted more upward 

for the �steps� as compared to the �road� condition. Since these data are given from the 

perspective of the head, not the point in the movie frame, they imply that the head points 

downwards in both conditions, but more downward in the steps condition. Abstracting from the 

way the data are obtained, we hereafter follow the more intuitive convention for �head-in-world 

orientation�, such that �downward� implies the head pointing lower, etc. As for the eye-in-head 

orientation, we quantify the distribution by the mean head-in-world orientation (Figure 4.7A-C) 

and the standard deviation over the vertical and horizontal components (Figure 4.7D-F). In both 

conditions the standard deviation over the horizontal component is larger than the vertical one in 
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the majority of participants (Figure 4.7D,E), which is the opposite result as compared to the 

mean eye-in-head orientation (Figure 4.5 D,E). Thus � for the environment tested � eye-in-head 

movements mainly subserve the vertical spread of gaze, while head-in-world movements mainly 

subserve its horizontal spread.

For quantification of the effect of terrain on head orientation, four ANOVAs with the 

factors terrain and walking direction were performed. We find a main effect of walking direction 

(F(1,28) = 96.05, p < .001, Figure 4.7A-C) on the mean horizontal head-in-world orientation. 

There is no effect of terrain and no interaction (all p > .17). For the mean vertical head-in-world 

orientation there is an effect of terrain (F(1,28) = 242.02, p = .001, Figure 4.7A-C) and of 

walking direction (F(1,28) = 185.22, p = .004). There is no interaction between the two factors 

(F(1,28) = 19.19, p = .323). For standard deviations over the vertical and horizontal head-in-

world orientation there are neither main effects nor interactions for any factor (horizontal: all p > 

.271; vertical: all p > .128; Figure 4.7D-F), showing that the head position is kept equally stable 

in both conditions. The effects of walking direction on mean horizontal head-in-world 

orientation can likely be attributed to the necessarily different choice of the vanishing point. In 
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Figure 4.6: Vanishing point distributions for head-in-world orientation. 

Histograms of the vanishing point positions from the perspective of the head for A) road and B) 
steps (2.5° x 2.5° bins, interpolated for display) Data are first averaged per participant, such 
that each individual contributes equal amounts of data independent of walking speed. Note that  
in these raw representation of the data a bin more upward means that the vanishing point is  
higher and thus the head is pointing lower, etc.
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contrast, since the environments (and thus the vanishing point choice) are identical for both 

terrains (within a walking direction), the effect on the vertical component is striking. Head-in-

world orientation is lower when walking on the irregular steps than when walking on the more 

regular road. 

In sum, eye-in-head orientation and head-in-world orientation are pointed more towards the 

ground when the terrain is more irregular (and thus more difficult). Only for eye-in-head 

orientation, the vertical spread is increased for the more difficult terrain. This suggests that both 
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Figure 4.7: Head-in-world orientation mean and standard deviation. 

A-B) Mean horizontal and vertical head-in-world orientation for each individual (circles), and 
average (dotted lines) A) road B) steps. C) Comparison of the road and step data of panel A and 
B. Errorbars denote standard errors of the mean. D-E) Spread measured as standard deviation 
over horizontal and vertical head-in-world orientation. D) road E) steps. Note the consistently  
larger spread in the horizontal, in contrast to figure 3D,E. F) Comparison of the data of panels 
D and E, further split up for walking up and down the path. Errorbars denote standard errors of  
the mean. In all panels data refer to the head in the world, that is, downward implies the head 
pointing lower, etc.
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eye and head subserve the adjustment of gaze for terrain negotiation. However, while eyes and 

head are oriented more downward for more difficult terrain, only the eyes partially compensate 

for this through more or larger vertical movements. Hence, head orientation presumably 

generically adjusts gaze according to global task-set, while the eyes still ensure a gaze 

component for exploration and/or path planning.

Discussion

Our study shows distinct effects of terrain on real-world eye and head movements, when all 

other factors (environment, instructions) are kept constant. Most likely as an adjustment to 

terrain regularity, gaze is distributed differently on the two types of terrain. The contributions of 

eye-in-head movements as compared to head-in-world movements to gaze appear 

complementary. Both serve to point gaze lower when terrain gets more irregular (i.e., difficult), 

while only eye movements are adjusted to maintain some exploratory gaze to the upper part of 

the visual field. 

Interestingly, a strong predominance of head movements to allocate gaze to task-relevant 

points is observed in driving, when a highly experienced driver  is negotiating a familiar track 

(Land & Tatler, 2001). In this situation, eye movements get decoupled from head movements 

and  only  head  movements  are  strongly  coupled  to  a  specific  task-relevant  variable.  This 

decoupling seems to be a consequence of experience as it is not observed in a non-professional 

driver on a non-overtrained road (Land, 1992). Given that our observers as healthy adults have a 

life-time  of experience  with walking  (though  not  on the  particular  track  used),  the  relative 

flexibility of the eyes relative to the head is in line with these data. If decoupling between eye 

and head is a general pattern of experience there are two predictions, first, head position should 

be predictive of a task relevant variable (e.g., aspects of the terrain) over time, and second, the 

decoupling should get stronger, when a difficult terrain is negotiated repeatedly. While clearly 
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beyond the scope of the present study, both � relating gaze and the actual walking pattern as well 

as training the same path � remain issues for further research.

Although eye-movement behavior on natural pictures or photographs has been extensively 

studied for nearly a century (Buswell, 1935; Yarbus, 1967), observations during real-life 

behavior are rare. Pioneering work in this direction typically dealt with specified tasks that 

occupied participants in full (Hayhoe & Ballard, 2005; Jovancevic-Misic & Hayhoe, 2009; 

Kandil et al., 2009; Land et al., 1999; Land & McLeod, 2000;) or had no control over the task 

(Schumann et al., 2008). Here we vary a single parameter (terrain regularity) in a common task 

(walking), thus transferring some of the controllability of laboratory experiments to a natural 

activity and setting.

One of the few studies that have investigated the relation between bodily orientation and 

eye-in-head movements on gaze allocation in a naturalistic task found that both the onsets and 

offsets of whole body movements precede those visual fixations of the task-relevant object, 

which in turn precede those of manipulation of the object (Land et al., 1999). This contrasts with 

data obtained in a more artificial, visually reduced setting, where eye movements can precede 

head- and body movements, although an equally tight link between these movements is observed 

(Hollands et al., 2004). Highlighting the importance of naturalistic settings, our finding that 

humans orient themselves in a generic way to the terrain by adjusting their head orientation is in 

line with Land et al.�s (1999) data. Depending on instantaneous terrain demands, such as the 

steps in this task, eye-in-head orientation is spread out to gather specific information necessary 

for immediate action. Hence, the role of head movements is limited to infrequent and coarse 

reorientations � which were apparently largely absent in this task � whereas eye-movements 

serve to refine gaze for immediate informational demands. In this respect, our data are a first 
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step to transfer the data obtained under rather constrained conditions (sports, food preparation, 

laboratory walking tasks) to a (nearly) unconstrained environment with a real-world activity.

As the relationship between step cycle and eye-movements indicates (Hollands & 

Marple-Horvat, 1996; Chapman & Hollands, 2006) it is likely that eye-movements are an 

integral part of skilled behavior, probably embedded in visuomotor routines established over 

many years of experience with walking on streets. By combining our approach of unconstrained, 

natural behavior with systematically varied terrain difficulty and enforced or instructed eye-

movement behaviors (e.g., by dynamically blocking certain parts of the visual field), it is well 

conceivable that adaptation of task set specific eye-movement behavior to experience can be 

assessed also under natural conditions and for prolonged periods. Combining our current setup 

with measurements of footfalls may add a temporal component to our results as shifts of gaze � 

by eye, head and body � then can be determined relative to the phases of the step cycle.

Besides varying the difficulty of terrain as we do here, the demands walking imposes on 

gaze direction may also be affected by various neurological conditions. Parkinson�s disease and 

related syndromes, in which walking is severely impaired and performance in eye-movement 

tasks serves as clinically relevant maker (Corin et al., 1972; Van Koningsbruggen et al., 2009; 

Pinkhardt et al., 2008), exemplify this relation of concurrent impairment of gaze and gait. 

Treating oculomotor symptomps, in turn, can lead to improvements in walking during daily 

living, at least in a Parkinsonian syndrome associated with severe oculomotor impairment 

(Zampieri & Di Fabio, 2008). A better understanding of the roles of eye, head and body for the 

allocation of gaze during walking under conditions of varying difficulty may thus also 

eventually be of relevance for clinical applications.

Task affects eye movements (Buswell, 1935; Yarbus, 1967) and can override stimulus-related 
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signals robustly (Henderson et al., 2007) and immediately (Einhäuser et al., 2008a). Similarly, 

context and environment influence gaze allocation (Torralba, 2003; Ehinger et al., 2009). In our 

main conditions (�road�, �steps�), we held all these variables constant and only had the implicit 

task set given by terrain negotiation varied. Our finding of specific differences shows that 

parameters that are virtually impossible to mimic in the laboratory have a profound influence on 

gaze behavior. This underlines the importance of experiments in the real world, to quantify the 

extent to which psychophysical data and models remain applicable outside very constrained 

laboratory settings.
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Online action-to-perception transfer: only percept-

dependent action affects perception 

Abstract

Perception self-evidently affects action, but under which conditions does action in turn influence 

perception? To answer this question we ask observers to view an ambiguous stimulus that is 

alternatingly perceived as rotating clockwise or counterclockwise. When observers report the 

perceived direction by rotating a manipulandum, opposing directions between report and percept 

(�incongruent�) destabilize the percept, whereas equal directions (�congruent�) stabilize it. In 

contrast, when observers report their percept by key presses while performing a predefined 

movement, we find no effect of congruency. Consequently, our findings suggest that only 

percept-dependent action directly influences perceptual experience.

Introduction

The integration between action and perception makes up one of the most important facets of 

everyday life. The common coding theory (Prinz, 1997) and the theory of event coding 

(Hommel, Müsseler, Ascherleben and Prinz, 2001) posit that the final stages of perception and 

the initial stages of motor control share common representations, in which planned actions are 

represented in the same format as perceived events. Many studies support the idea that 

perception affects action (Hecht, Vogt and Prinz, 2001; McCullagh, Weiss and Ross, 1989). In 

addition, visual stimuli tend to dominate over perception in other modalities, even when the 

visual modality has no task-relevant information (e.g., Colavita, 1974; Posner, 1980; Posner, 

Nissen and Klein, 1976; Sinnett, Spence and Soto-Faraco, 2007). On the other hand, if 

perception and action share the same representation, changes due to action should lead to 
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corresponding changes in perception (Hecht et al., 2001; Prinz, 1997; Schütz-Bosbach & Prinz, 

2007 for review). 

Some studies demonstrated an influence of action on perception. Previously learned 

movements improve visual discrimination of the same movement (Beets, Rösler and Fiehler, 

2010; Casile & Giese, 2006; Hecht et al., 2001) and lead to increased cortical activity of the 

motor-related brain areas when observing that movement (Calvo-Merino, Glaser, Grèzes, 

Passingham and Haggard, 2005; Engel, Burke, Fiehler, Bien and Rösler, 2008; Reithler, van 

Mier, Peters and Goebel, 2007). This is not restricted to motor learning, but also applies to 

online interactions between the motor system and visual perception (for review, Müsseler, 1999; 

Schütz-Bosbach & Prinz, 2007). For example, when reaching to grasp a bar with a certain 

orientation, the mere motor preparation suffices to facilitate responses to a congruent visual 

stimulus (Craighero, Fadiga, Rizzolatti and Umiltà, 1999). Hence on various time scales � 

learning or online � an action can facilitate perception of a related visual stimulus. 

Direct and online influence of action on the corresponding perceptual representations so 

far has mainly been investigated in the oculomotor system. For example, smooth pursuit eye 

movements can induce a distorted perception of image velocity (e.g., Freeman, Champion and 

Warren, 2010; Souman, Hooge and Wertheim, 2006). Moreover, eye movements necessarily 

change a visual stimulus in either retino- or craniocentric coordinates. Limb movements, in 

contrast, allow a visual stimulus to be stationary in both reference frames. It is less well 

understood how limb movements directly incluence motion perception.

Here we use a dynamic ambiguous stimulus, so called �perceptual rivalry�, to test 

action-to-motion perception transfer without changing the visual input. Rivalry refers to a 

situation in which a constant stimulus evokes multiple perceptual interpretations that alternate 
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over time (e.g., Leopold & Logothetis, 1999). Frequently, rivalry is induced by presenting 

distinct stimuli to either eye (�binocular rivalry�, Blake & Logothetis, 2002 for review). 

Alternatively, an ambiguous figure, such as the Necker Cube (Necker, 1832) or Rubin�s vase-

faces image (Rubin, 1915), can be applied (�perceptual rivalry�). Besides in vision, rivalry has 

been observed in other modalities such as touch (Carter, Konkle, Wang, Hayward and Moore, 

2008), audition (van Noorden, 1975), and olfaction (Zhou & Chen, 2009). Thus, rivalry seems 

to be a ubiquitous phenomenon covering many modalities. Rivalry is also subject to cross-

modal interactions: for instance, the direction of tactile stimulation biases the perceived 

direction of an ambiguous visual stimulus (Blake, Sobel and James, 2004). Yet, research on how 

the motor system affects the perception of visual ambiguity is sparse. Since in rivalry the 

stimulus remains unchanged, action planning and execution cannot operate on the stimulus 

itself but can affect its perceptual representation. Hence, such ambiguous stimuli are ideal to test 

the direct effects of action on perceptual representations of motion.

In binocular rivalry, movement has indeed been found to relate to perceptual changes, in 

particular in the realm of oculomotor effects. On the one hand reflexive eye movements, like 

optokinetic nystagmus (OKN), have been used to monitor dominance in binocular rivalry 

(Logothetis & Schall, 1990; Sun, Tong, Yang, Tian and Hung, 2002) and are modulated by the 

perception of ambiguous motion (Laubrock, Engbert and Kliegl, 2008). Whether or not eye 

movements in turn have an influence on perceptual dominance has been a subject of debate for 

over a century (Necker, 1832; Einhäuser, Martin & König, 2004; Wheatstone, 1838). While the 

coupling between oculomotor behavior and rivalry has been studied extensively, little is known 

about the role of other effectors in rivalry. In one of the few studies on the effect of other 

effector movements on rivalry perception, Maruya, Yang and Blake (2007) used a binocular 

rivalry paradigm. Observers were trained to make sinusoidal hand movements when the percept 
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of either a rotating sphere or an unrelated stimulus was dominant. The self-produced 

movements (which determined the speed of the stimulus motion) led to prolonged durations in 

the perception of the same movement and shorter stimulus suppression rates. It is possible that 

this visuo-motor coupling as well as intensive training may have affected these results. 

Furthermore, it is unknown how these findings generalize to perceptual rivalry, which shares 

most but not all the characteristics of binocular rivalry (van Ee, 2009).

Wohlschläger (2000) investigated the effect of manual action on perceptual rivalry 

presenting dots which could be perceived to be rotating clockwise or counterclockwise. In 

different task conditions, observers either rotated a knob by hand, or pressed a button, or planned 

to press a button. The frequency of the perceived movement direction was determined for each 

condition. Observers were more likely to perceive the stimulus move in the same direction as 

their planned or executed movement than in any other direction or plane. Importantly, observers� 

hand movements started and ended presentation of the visual stimulus, causing a confounding 

effect of action on perception. This pioneering study leaves the question open as to how action 

needs to be coupled to perception in order to exert an effect on perception. 

The present study addresses this question by asking whether concurrent action influences 

the visual perception of a constant (ambiguous) stimulus and to what degree the motor output 

needs to be related to the perception in order to trigger action-to-perception transfer. Specifically, 

we ask whether a mere generation of actions in a predefined direction will shape perception, or 

whether the action needs to be functionally coupled with the current percept. Therefore, a 

structure-from-motion cylinder which may be perceived as rotating either clockwise (CW) or 

counterclockwise (CCW), is presented. We carefully distinguish between conditions in which 

action, the rotation of a manipulandum, is used to report the current perceptual experience from 

conditions in which observers perform the same movements, but unrelated to their current 
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perceptual state. In other words, in contrast to previous studies, we present observers with a 

visual stimulus whose motion is independent of the observers� actions. That is, our findings are 

not confounded by a direct influence of action on the stimulus. While viewing this stimulus, the 

observers either perform predefined actions which are independent of the current percept, or 

actions which depend upon the current perceptual state. To investigate the effects of action, we 

determine the duration that one percept dominates, i.e., percept stability. 

The main experimental conditions in the present experiment follow a 2*2 design with the 

factors movement type (percept-dependent movements vs. percept-independent, predefined 

movements), and congruency (percept-congruent movements vs. percept-incongruent 

movements). We measure how long observers stay in one perceptual state (�dominance 

durations�). If movements per se affect the perceptual state, we hypothesize changes in 

dominance durations for predefined movements, perception-dependent movements and even for 

unrelated vertical movements. If, however, action must depend upon perception to trigger action-

to-perception transfer, there should be no or little effect of congruency on dominance durations 

during predefined movements. Dominance durations during during movements depending on the 

perceptual state should then be the only ones affected by congruency. 

Materials and Methods

Observers

Seventeen naïve observers participated in the study. Data from three observers was excluded due 

to technical reasons: one observer aborted the experiment; in another, the movement data were 

not usable due to a technical problem; and another failed to comply with task instructions. 

Before analysing the data, we tested observers� ability to perform the task using congruent and 

incongruent tracking of an unambiguous stimulus in the �catch blocks� (see Procedure). Out of 
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the fourteen observers that provided a usable dataset, three were excluded due to low 

performance in these catch blocks (see Results). Data from the remaining eleven observers 

between the ages of 20 and 27 years (mean age: 23.5 ± 2.5 years; 4 male / 7 female) was used 

for analysis. These observers had normal or corrected-to-normal vision, were right-handed as 

assessed by a German translation of the Edinburgh Handedness Inventory (mean ± standard 

deviation: 89.1 ± 12.5) (Oldfield, 1971), and had no history of psychiatric or neurological 

disorders. All observers were recruited from the Philipps-University Marburg, and were 

compensated with course-credits or money (�6 per hour) for their participation. Written 

informed consent was obtained, and the procedure was in accordance with the ethical standard 

laid down in the Declaration of Helsinki (2000) as well as with departmental guidelines. 

Stimuli

Four-hundred white dots of ~0.065° * ~0.065° were presented within an aperture of ~2.86° * 

~6.53° on a 1024*768 pixel, 16� black screen (refresh rate 75Hz) to perceptually induce the 

shape of a rotating cylinder (structure-from-motion) (fig. 5.1a). The cylinder made one full 

revolution every 3.6s. Dot life-time was set at 0.3s. This ambiguous structure-from-motion 

stimulus produced a percept of a cylinder, switching between CW and CCW rotation.

For some conditions, we created an unambiguous version of the stimulus. A red bar of 

~0.16° * ~8.16° was drawn over and rotated along with the cylinder. When moving along the 

�back� of the cylinder, the bar was partially occluded. To enhance disambiguation, the dots at the 

back were fully occluded.

Apparatus 

Stimuli were viewed through a black cardboard tunnel with a length of 110 cm to prevent 

interference from other visual input (fig. 5.1b). Observers� distance to the monitor was ~ 110 
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cm. A black cloth covered the back of the head and part of the tunnel to prevent observers from 

watching their own movements. Observers were instructed to direct their gaze toward the centre 

of the stimulus and to try seeing the stimulus as a whole. A manipulandum with a turntable on 

the horizontal plane was used to perform actions during perception of the ambiguous cylinder 

(fig. 5.1b). Observers rotated the turntable using the attached vertical handle with an effective 

radius of 5 cm. In the motor conditions (see procedure), observers sat facing the screen and 

grasped the vertical handle of the manipulandum with a precision grip using their thumb, index 

and middle finger of the right hand (fig. 5.1b). The perception of the direction of motion of the 

visual stimulus was indicated by either moving the manipulandum or by pressing one of two 

arrow keys (left arrow key for CW; right arrow key for CCW) with the left hand (see 

procedure). For the unrelated movement condition (see Procedure), a freely movable stylus was 

used to execute straight vertical trajectories. The stylus was 78 mm long and had a diameter of 

15 mm and was held between the thumb and fingers with the same precision grip as used for the 

manipulandum handle and was moved between an upper and a lower stopper mounted on the 

right side of the tunnel. A chinrest was used to keep a stable head position throughout the 

experiment. The chair and chinrest were adjusted individually to assure a comfortable position.

Movement trajectories were recorded with an ultrasound motion recording device 

(ZEBRIS CMS20, Zebris Medical GmbH, Isny im Allgäu, Germany). To measure hand 

movements, a sensor was attached to the top of the vertical handle of the turntable or to the top 

of the stylus. The movement data was sampled with 100 Hz and analyzed offline. 
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Procedure

The unambiguous stimulus (fig. 5.1a, right) was used only for a control condition (�catch 

blocks�, fig. 5.1c, blue frame) to investigate motor behavior, whereas the ambiguous stimulus 

(fig. 5.1a, left) served to investigate the durations of the dominating percept (CW or CCW 
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rotation) in all other conditions. There were two kinds of report modes: a key press and the 

rotation of the manipulandum. In the case of key presses, observers held the key corresponding 

to the percept, until it switched. In all conditions that involved moving the manipulandum (fig. 

5.1c, blue and purple frames), observers were asked to match their velocity with that of the 

cylinder. When observers were not sure about the rotational direction of the ambiguous stimulus, 

they were asked to press no key in case of keyboard report, and not to move in case of 

manipulandum report.

The experiment consisted of eight conditions (fig. 5.1c). The main experimental 

conditions of interest used the ambiguous stimulus (fig. 5.1a) and were organized into a 2*2 

design. In these conditions the effects of movement type (instructed vs. percept dependent 

movements) and congruency (actions and perceived motion in equal vs. opposite direction) were 

investigated. The first two conditions of interest were the �motor instruction� blocks in which 

observers rotated the manipulandum either CW or CCW throughout the block regardless of 

percept, resulting in �motor instruction CW� and �motor instruction CCW� blocks (fig. 5.1c, 

purple frame, first two conditions). The action performed was thus independent of the perceptual 

interpretation of the visual stimulus. Concurrently, observers indicated using the keyboard with 

the left hand, which percept was currently dominating. The effect of congruency was later 

investigated by splitting dominance durations into percepts that were congruent with the 

instructed movement and percepts that were incongruent with the instructed movement (when 

active movements were CCW but cylinder perception was CW, or vice versa). The other two 

conditions of interest were the �motor report� blocks in which the manipulandum was rotated 

either CW or CCW, depending upon the current perceptual interpretation of the visual stimulus 

(fig. 5.1c, last two conditions in the purple frame). Instead of using the keys to report the 

percept, the percept was reported by rotating the manipulandum in the same direction as the 
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visually perceived rotation in the �congruent motor report� condition (fig. 5.1c, purple frame, 4th 

condition), or in the opposite direction from the visually perceived rotation in the �incongruent 

motor report� condition (fig. 5.1c, purple frame, 5th condition). The performed action was thus 

dependent upon the perceptual interpretation of the visual stimulus. In a fifth experimental 

condition (fig. 5.1c, purple frame, middle condition), the effect of movement per se was 

investigated by executing movements unrelated to the stimulus (�motor instruction unrelated�). 

Here, ongoing vertical movements (i.e., unrelated to the rotational axis of the visual stimulus) 

were made along the vertical axis of the tunnel using the stylus. Simultaneously, key presses 

were used to indicate rotation direction of the ambiguous stimulus.

The other conditions served as control conditions to obtain a baseline measurement of 

perceptual dominance durations (�classical control�) and to test if observers were able to perform 

the task equally well when reporting a percept by using congruent or incongruent rotation of the 

manipulandum (�catch blocks�). In the classical control condition (fig. 5.1c, red frame), the 

ambiguous cylinder stimulus was viewed while the observer indicated by key presses in which 

direction the ambiguous stimulus rotated. During the catch blocks (fig. 5.1c, blue frame), 

observers viewed an unambiguous cylinder stimulus and were instructed to rotate the 

manipulandum; either along with the stimulus in the congruent catch blocks or to rotate in the 

opposite direction from the stimulus in the incongruent catch blocks. The rotational direction of 

the red bar and the cylinder changed repeatedly within each block. To make the task, and the 

experience of switches in the cylinder comparable to the �motor report� blocks, the durations per 

rotation direction were determined by the observers� own shuffled dominance durations from the 

preceding �classical control� block (with all dominance durations shorter than 500ms removed). 

No key presses were made. Since the timing of �switches� was known in these blocks, they were 

suitable as a baseline measure of the ability to report switches of percept equally well for 
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congruent and incongruent blocks. 

Before starting the experiment, observers were familiarized with the procedure and the 

stimulus by performing each of the eight different conditions for one minute. The experiment 

consisted of 19 blocks lasting 5 minutes each. In between blocks, there was an opportunity to 

take a break. The order of the blocks was as follows (see fig. 5.1c): the experiment started with 

the classical control after which the unambiguous catch blocks were performed. The order of 

congruent and incongruent catch blocks (fig. 5.1c, blue frame) was counterbalanced over 

observers. Then, all five experimental conditions (fig 5.1c, purple frame) were performed in a 

randomized order. Finally, this sequence was repeated and a second repetition of classical 

control and unambiguous catch blocks was performed at the end of the experiment. Thus, the 

experiment consisted of two sets of experimental blocks surrounded by three sets of control 

blocks at the beginning, in the middle, and at the end of the procedure. The three sets of control 

blocks allowed the effect of time-on-task on dominance durations to be quantified. Within each 

colored frame in figure 5.1c, the order was randomized (the order in the figure serves as an 

example) but held constant for repetitions within observer. 

Movement data pre-processing

Since observers� movement trajectories were constrained by the manipulandum to a circular 

movement with a constant radius, we have a one-dimensional movement given by the angle as a 

function of time. The direction of this movement (counterclockwise or clockwise) corresponds 

to the reported percept in the catch blocks and the two motor report conditions. In order to 

extract motion direction and velocity from the raw manipulandum position data, the data was 

pre-processed in Python (Version 2.6.5) using Numpy (Oliphant, 2007) and SciPy (Jones et al., 

2001). Due to measurement noise, some samples fell out of the radius, which could be 

misinterpreted as a perceptual switch. Therefore, we discarded samples whose Euclidian 
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distance deviated more than 3 standard deviations from the mean with respect to the previous 

sample. Cubic splines on the remaining data were used to interpolate the discarded samples. A 

circle was fitted to the samples which allowed converting the position data to angles. This 

signal was smoothed using a 5-sample median filter before conversion to an angular velocity 

signal and extracting the perceptual states indicated by the observers.

Data analyses

Dominance durations for CW and CCW percepts were extracted from the keyboard data in the 

classical control and motor instruction blocks. The dominance duration was the period of time 

that exactly one key was held down. Periods in which no key or two keys were simultaneously 

pressed were discarded. When one percept was interrupted by a short period in which both keys 

were pressed, the percept was separated and thus resulted in two dominance durations (plus the 

short period of discarded data). In 2.4% of the time across blocks in which the task was 

executed, either no key or two keys were pressed. These intervals were discarded from analysis 

as the dominant percept could not be determined. Dominance durations were extracted from the 

manipulandum movement data for the unambiguous catch blocks and the motor report blocks. 

Velocities below a threshold of 1°/s were counted as no movement. From the classical control 

condition, we defined for each observer a threshold as the first half percentile of dominance 

durations; we discarded values below this threshold to remove jitter in the motor report 

conditions. Due to these differences in extracting dominance durations from key press and 

manipulandum data, any direct comparisons between key-press report and manipulandum-report 

data should be interpreted with caution. 

Besides dominance durations in the ambiguous stimulus blocks, movement 

characteristics were investigated in the catch blocks and the motor report blocks. In the catch 

blocks, we determined root mean-squared error (RMSE) from the required speed to check 
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whether congruent and incongruent reports were comparable. In the motor report blocks, the 

acceleration was compared at the moment of direction change between congruent and 

incongruent movements.

Statistical tests

Since dominance durations in rivalry typically follow leptokurtic (heavy-tailed) distributions 

(e.g., Logothetis, 1998), we use medians (rather than means) to characterize the distribution of 

dominance durations per observer and block. Across observers, however, the median dominance 

durations can safely be assumed to follow a Gaussian distribution such that statistics could be 

performed with standard parametric tests. First, we conduct a 2*2 ANOVA to investigate the 

effect of movement type (motor instruction vs. motor report) and action-perception congruency 

(congruent vs. incongruent). For testing effects directly between conditions, pairwise t-tests and 

repeated measures ANOVA (for testing effects over multiple blocks in the classical control 

condition) were conducted. All statistics were computed using R (Version 2.10.1; R 

Development Core Team, 2009) maintaining a critical alpha level of 0.05. Results

The question addressed in our study was to what extent action needs to be coupled to perception 

to cause perceptual changes. More specifically, we investigated how concurrent actions, 

congruent or incongruent with perception, influence processes underlying perceptual rivalry in 

ambiguous structure-from-motion stimuli.

Results

Catch blocks 

To test whether observers could veridically report their percepts by rotating the manipulandum, 

we used a disambiguated version of the rotating cylinder. To obtain an accuracy measure, we 
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calculated the mean response time (RT) to a switch of rotation direction. This was done by 

dividing the total time observers rotate opposite from the required direction by the number of 

direction switches given by the stimulus. Most observers� average RT�s were in the range 0.28s � 

0.51s for congruent catch blocks, although one subject had an average RT of 2.34s. In the 

incongruent catch blocks most observers had an average RT in the range of 0.17s � 0.91s, 

whereas two had an average RT of 2.99s and 8.72s. The three observers with very high RT�s 

were excluded from all further analyses as the reliability of their reports in the motor report 

condition cannot be guaranteed (see Table 1 in Appendix A for their median dominance 

durations). For the remaining 11 observers the RTs were 0.40s ± 0.15s (mean ± SD over 

observers) for incongruent catch blocks and 0.36s ± 0.05s for congruent catch blocks. These did 

not differ significantly (t(10) = 1.170, p = 0.269) and represent a typical response time. Speed 

accuracy as measured by RMSE from the goal angular velocity was 62.4 °/s ± 26.1°/s in the 

congruent and 64.7°/s ± 19.4°/s in the incongruent catch blocks, which did not differ 

significantly (t(10) = 0.489, p = 0.636). Both RT and RMSE show that the 11 remaining 

observers performed the task correctly and reported movement directions with the 

manipulandum equally well for congruent and incongruent movements in the catch blocks. This 

strongly suggests that observers also performed equally well in the congruent and incongruent 

motor report conditions.

Experimental conditions

To investigate the effect of movement type and congruency, a 2*2 ANOVA was conducted. The 

main effects of movement type and congruency were not significant (F(1,10) = 0.161, p = 0.697; 

F(1,10) = 4.247, p = 0.066, respectively), suggesting that dominance durations did not differ 

between motor instruction and motor report conditions nor between congruent and incongruent 

movements in general. The borderline significant main effect of congruency is probably due to 
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the effect of congruency on motor report dominance durations. Indeed, the two factors interacted 

significantly (F(1,10) = 7.801, p = 0.019), showing a differential effect of congruency between 

both movement types (fig. 5.2, right). To explore this interaction more closely, we examined the 

results of both the motor instruction and motor report conditions in more detail.

In the motor report conditions, observers were asked to report their percept with the 

movement of the manipulandum. In one condition observers were instructed to move the 

manipulandum in the same direction as their percept (�congruent motor report�), and in the 

opposite direction in the other condition (�incongruent motor report�). In these conditions (fig. 

5.2, dashed line) percept durations were significantly shorter for incongruent movements than 

for congruent movements (t(10) = -2.522, p = 0.030). This shows that percept-related action 

affects the perceived direction of ambiguous stimuli.

When observers rotated the manipulandum irrespective of the perceived motion, they 

reported their percept by key presses. We separated the data according to times when 
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manipulandum movement and perceived motion were in the same (�congruent motor 

instruction�) or in the opposite (�incongruent motor instruction�) direction (fig 5.2, solid line). 

Dominance durations did not differ significantly between incongruent and congruent movements 

in these conditions (t(10) = 0.509, p = 0.621; table 1 in Appendix A). These dominance durations 

also did not differ from a condition in which observers performed an unrelated movement 

perpendicular to the table (comparison to congruent movements: t(10) = -1.023, p = 0.331; 

comparison to incongruent movements: t(10) = -1.189, p = 0.262). Nor did the motor instruction 

conditions differ from a condition in which no manipulandum movement was required 

(congruent vs. classical control: t(10) = 1.295, p = 0.224; incongruent vs. classical control: t(10) 

= 0.927, p = 0.376; unrelated vs. classical control: t(10) = -1.684, p = 0.123). In summary, none 

of the movements that were conducted irrespective of the current perceptual state exerted an 

influence on the percept duration. 

These results show that the dominance durations are not affected by congruency in the 

motor instruction condition, that is, when predefined movements are executed independent of the 

perceptual experience. In the motor report condition, however, dominance durations are affected 

by congruency suggesting that only actions which are dependent on the current percept can 

influence visual perception.

Classical control condition

The median dominance duration in the �classical control� blocks (where no movements except 

for key presses are executed) was 6.49s ± 4.99s. In line with earlier findings (Nawrot & Blake, 

1991; Blake et al., 2004), none of the observers showed a significant bias toward CW (48.5% ± 

5.7%) or CCW (51.4% ± 5.7%) percepts. When the longer median dominance durations of all 

observers were taken and tested against all shorter median dominance durations, no significant 
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difference was found (t(10) = 1.476, p = 0.170). Furthermore, dominance durations were stable 

across repetitions (F(2,10) = 2.271, p = 0.129). This verifies that pooling dominance durations 

from both percepts and across repetitions for all other analyses is justified.Direction transitions 

in motor report conditions

To verify whether transitions were similar for reporting percept by congruent and by incongruent 

movements using the manipulandum, we investigated the change in direction of the movement 

data in the motor-report conditions. To this end, we aligned all movement traces to the time of 

transition between the two rotation directions (fig. 5.3). Visual inspection of the velocity traces 

(fig. 5.3a, b) suggest that the velocity profile is smooth and is comparable between conditions. 
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To quantify this, we investigated the acceleration (i.e., the derivative of speed) on the moment of 

the transition, and compared this between conditions (fig. 5.3c, d). We found that acceleration 

did not differ between congruent and incongruent motor report conditions (F(1,36) = 1.316, p = 

0.259), nor between transition types (i.e., from CW to CCW and from CCW to CW) (F(1,36) = 

0.658, p = 0.422), nor was there an interaction between transition type and condition (F(1,36) = 

0.070, p = 0.792). Hence, our findings that dominance durations were shorter in the incongruent 

motor report condition than in the congruent one cannot be explained by a difference in motor 

performance in the two conditions.

Discussion

Our results show that action shapes perception, but only when the action is dependent on the 

current percept. When observers use rotational movements to indicate their percept of an 

ambiguous stimulus, percept durations change significantly. In contrast, rotating in a predefined 

direction does not lead to changes in percept durations in the same visual stimuli. 

In previous studies (Maruya et al., 2007; Wohlschläger, 2000), it has been shown that 

predefined movements influence the visual interpretation of ambiguous stimuli. In these 

experiments, however, observers� movements initiated and terminated the movement of the 

stimulus. Furthermore, in Maruya et al. (2007), observers were trained to make movements in 

order to drive the speed of the visual stimulus. Thus, in these studies action had a direct effect 

on the perceptual form of the stimulus which may have led to a tight interplay of action and 

perception through stimulus manipulation, rather than a direct effect of action on perceptual 

representations. Here, in contrast, stimulus presentation was always independent of observers� 

actions, allowing us to compare task conditions in which the executed movements were 

independent of or dependent on percept. Our results clearly show that a direct effect of action 

on perception requires the action to be percept-related. The stability of percept is affected by 
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congruency only in percept-related actions, in which congruent movements stabilize the percept 

and incongruent movements destabilize the percept.

Recent studies have demonstrated that rivalry elicited in one sensory modality can be 

altered by other sensory modalities. In these cases the perception of the ambiguous stimulus is 

biased towards the percept consistent with the non-ambiguous modality (Blake et al., 2004; van 

Ee, van Boxtel, Parker and Alais, 2009). Here we confirm that not only other modalities but also 

action influences rivalry (Maruya et al., 2007, Wohlschläger, 2000). Beyond these earlier studies, 

our findings demonstrate that motor effects on rivalry are specific to movements that relate to 

the percept. The similarity between the effect of other modalities and action may provide a link 

between two seemingly distinct fields: common coding theory (Prinz, 1997) or the theory of 

event coding (Hommel et al., 2001) on the one hand and multisensory processing (e.g., Alais & 

Burr, 2004; Ichikawa & Masakura, 2006; Repp & Knoblich, 2007; Sekuler, Sekuler and Lau, 

1997; Shimojo & Shams, 2001; Witten & Knudsen, 2005) on the other hand. In cross-modal 

rivalry, it seems that if the unambiguous modality provides a signal converging with the 

ambiguous modality this stabilizes the interpretation of the visual input, whereas two diverging 

signals destabilize it. One of the signals accompanying movement execution is somatosensory 

(re)afferences, which may have the same function. For example, passive motor training, which 

in large part relies on reafferent information, can lead to the acquisition of new motor skills 

(Beets et al., 2010). The sensory information accompanying active movement execution could 

thus have contributed to the effects on visual perception. To what extent efferent vs. afferent 

information contributes to action-to-perception transfer remains an interesting topic for future 

research.

While there has been little research on the effect of hand movements on rivalry, many 

studies have addressed the relationship between eye movements and rivalry. Over 175 years after 
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Necker�s (Necker, 1832) original proposal that perceptual switches of his eponymous cube were 

a consequence of �the adjustment of the eye for obtaining distinct vision� (Necker, 1832, p 336-

337), a wide consensus on a coupling between eye movements and perceptual dominance seems 

to exist (e.g., Brouwer & van Ee, 2006; Laubrock et al., 2008; Toppino, 2003; van Dam & van 

Ee, 2005), although the direction of causality is still in debate (Ellis & Stark, 1978; Eure, 

Hamilton and Pheiffer, 1956; Kawabata, Yamagami and Noaki, 1978; Zimmer, 1913) and is 

likely to be bi-directional (Einhäuser et al., 2004). In the context of (visual) rivalry, oculomotor 

behavior brings two additional challenges: first, any eye movement has a direct impact on the 

retinal stimulus; second, eye movements are coupled to shifts in focal attention, which itself 

influences switch rates (Paffen, Alais and Verstraten, 2006). Despite all the advantages of the 

oculomotor system acting as the interface between input and output (i.e., between perception and 

action) to test how action influences perceptual representations while minimizing other factors 

(stimulus, focal attention), manual movements, as used here, circumvent these potential 

confounds.

Since attention speeds up rivalry (Paffen et al., 2006) and this increase in speed is not 

restricted to one modality (Alais, van Boxtel, Parker and van Ee, 2010), we have to ask whether 

our results can be explained by attention alone. One may argue that reporting by incongruent 

tracking is more difficult and thus requires more attentional resources which would consequently 

speed up switching between percepts. We consider this explanation unlikely for several reasons. 

First, one can also argue for the opposite with equal justification: incongruent action requires 

more attention, thus less attention is available for perception and thus rivalry should slow down, 

contrary to our findings. Second, we failed to find any differences in dominance durations 

between classical control and unrelated movements on the one hand, and between dominance 

durations in predefined incongruent or congruent movements (i.e., percept unrelated) on the 
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other hand. This implies that movement per se is not an attentionally challenging task. Third, for 

unambiguous stimuli, movement characteristics and errors between congruent and incongruent 

tracking were very similar, again arguing against a different attentional effect on both. However, 

it is undisputable that attention plays a key role in rivalry. We argue, however, that there is no 

differential effect of attention on incongruent and congruent movements, and consequently, our 

main finding cannot be explained solely by differences in attentional demand. As binding diverse 

representations is a main function of attention in the sensory domain (Wolfe & Bennett, 1997), it 

seems conceivable that attention is a key ingredient to bind sensory and motor representations. 

This implies that in certain cases, the common coding framework only applies when additional 

attention is given to corresponding movements of an effector. Beyond a potential impact of 

attentional processes, our findings provide support for the common coding concept and refine 

this model by demonstrating that action-to-perception transfer requires the action to be directly 

coupled to motion perception. 

The common coding theory (Prinz, 1997) and the theory of event coding (Hommel et al., 

2001) state that action and perception share common representational domains. Therefore action 

and perception reciprocally influence each other. Although this theory has been supported by 

empirical data that demonstrate a bidirectional link between action and perception (Hecht et al., 

2001) and direct effects of action on perception (e.g., Beets et al., 2010; Casile & Giese, 2006; 

Craighero et al., 1999; Wohlschläger, 2000), it is unknown to what extent action-to-perception 

transfer is dependent on percept-related action. Our results show that action can only influence 

perception when it acts on the perceptual representations, i.e., a mere generation of an action is 

insufficient to trigger a transfer from action to perception. Action planning in relation to the 

stimulus thus seems to be crucial to induce binding between action and perception (Hommel, 

2004). When an action does not need to be integrated with a visual stimulus in order to perform 
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the task, this effect is absent. In summary, common coding of a stimulus and an action seems to 

occur only when they are directly relevant to each other and the predicted effects of action on 

perception can only occur when this is the case. This fits with the prediction that perception and 

action planning can only interact when they refer to the same feature of the motor system 

(Hommel et al., 2001).

Future research will determine to what extent action-to-perception transfer can still occur 

when for example, the axes involving action and perception are at odds (e.g., diagonal vs. 

vertical). In summary, this study demonstrates for the first time that action and perception need 

to be functionally coupled in order to affect each other. Given that people make movements 

within a continuously changing and moving environment, the notion that only actions that are 

relevant for the perceived events can influence the perception of these events, is likely the most 

efficient strategy for human behavior.
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Appendix A

To illustrate the large inter-observer differences in dominance duration and to provide a 

condensed version of the data to the interested reader, all median dominance durations and their 

standard deviations in the experimental conditions and the classical control conditon are listed in 

Table 1.

Table 1. Dominance durations per observer.

Observer Classical 

control

Motor report Motor instruction

congruent incongruent congruent incongruent unrelated

1 4.92 ± 8.07 3.58 ± 6.03 6.26 ± 6.22 5.98 ± 8.07 6.09 ± 6.81 6.97 ± 5.41

2 4.22 ± 7.08 7.34 ± 13.97 3.00 ± 4.64 4.36 ± 7.64 5.08 ± 5.86 4.56 ± 5.53

3 14.31 ± 33.61 14.90 ± 16.16 7.23 ± 12.21 8.04 ± 26.63 6.12 ± 12.87 5.20 ± 11.99

4 7.46 ± 7.19 7.41 ± 8.06 4.79 ± 6.20 6.38 ± 8.63 6.93 ± 9.20 7.14 ± 3.76

5 0.92 ± 16.38 2.61 ± 10.84 1.53 ± 7.87 2.26 ± 18.22 3.85 ± 19.42 1.91 ± 15.72

6 10.08 ± 12.40 7.97 ± 18.81 6.27 ± 18.02 8.40 ± 15.07 10.28 ± 11.44 6.25 ± 7.10

7 4.22 ± 15.92 2.72 ± 3.67 2.83 ± 5.26 6.35 ± 9.55 5.15 ± 9.65 5.25 ± 21.20

8 2.01 ± 2.76 2.01 ± 5.68 2.04 ± 1.92 1.67 ± 4.54 1.55 ± 2.07 1.76 ± 2.71

9 16.93 ± 18.74 9.06 ± 10.36 2.54 ± 5.24 9.88 ± 16.36 9.91 ± 14.77 12.61 ± 16.52

10 7.85 ± 31.71 6.31 ± 10.25 2.82 ± 6.17 8.17 ± 35.23 21.74 ± 18.30 9.30 ± 20.40

11 4.01 ± 5.02 4.50 ± 5.39 2.92 ± 3.45 4.53 ± 4.31 4.50 ± 3.86 3.83 ± 3.73

12 3.97 ± 6.23 5.48 ± 5.78 3.49 ± 3.60 4.59 ± 4.26 4.03 ± 4.68 4.01 ± 4.67

13 5.18 ± 8.94 4.62 ± 4.91 4.70 ± 4.24 3.84 ± 4.43 3.31 ± 3.46 2.57 ± 2.59

14 5.52 ± 4.86 5.68 ± 5.79 4.04 ± 4.17 5.71 ± 8.77 6.42 ± 4.10 4.32 ± 4.06

Values are median dominance duration in seconds. ± SD gives the standard deviation within 

each observer. Observers marked in gray did not perform well in the catch blocks and their 

data were left out of the analyses, but are included here for the interested reader.
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Zusammenfassung

Menschen richten üblicherweise ihren Blick und ihre Aufmerksamkeit auf Stellen, die wichtig 

sind für die Tätigkeit, mit der sie sich momentan befassen. Mittels Blickrichtungsmessungen 

kann man die relative Wichtigkeit jeder Stelle abschätzen. Dies lässt Rückschlüsse auf die 

grundlegenden kognitiven Prozesse zu, denen die Auswahl der Blickrichtung unterliegt. Seit 

Jahrzehnten wird dies unter Laborbedingungen gemacht, mit dem großen Vorteil, gut 

kontrollierbar zu sein. In dieser Arbeit wird visuelle Aufmerksamkeit in natürlicheren 

Umgebungen untersucht, damit sowohl Laborergebnisse auf Realitätsnähe getestet , als auch 

Experimente unter realeren Bedingungen durchgeführt werden können, die im Labor nur 

schwierig nachzuahmen sind. Alle vier Studien in dieser Arbeit tragen zum Verständnis von 

visueller Aufmerksamkeit und Wahrnehmung unter komplizierteren Umständen, als man sie in 

herkömmlichen Laborexperimenten auffindet, bei.

Bottom-up-Modelle für Aufmerksamkeit verwenden lediglich die optischen Reize zur 

Vorhersage von Aufmerksamkeit oder sogar der Blickrichtung. Solche Modelle verarbeiten ein 

Bild zuerst getrennt nach den unterschiedlichen Merkmalen. Das klassische Saliency Map Model 

benützt die Merkmale Farbkontrast, Luminanzkontrast und Orientierungskontrast. Pro Merkmal 

wird die �Interessantheit� aller Stellen im Bild in einer sogenannten �conspicuity map� 

(�Auffälligkeitskarte�) wiedergegeben. Diese Karten werden linear addiert zu einer Salienzkarte 

und diese Additivität wurde in letzter Zeit in Frage gestellt. Eine Alternative wäre, jeweils für 

jede Stelle das Maximum aller Karten zu verwenden. In der ersten Studie wurden die Merkmale 

Farbkontrast und Luminanzkontrast an Bildern von natürlichen Szenen bearbeitet, um zu testen, 

welcher der beiden Mechanismen das menschliche Verhalten besser vorhersagt. Es konnte 
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gezeigt werden, dass lineare Additivität, so wie im ursprünglichen Modell, am besten mit dem 

menschlichen Verhalten übereinstimmt. Weil alle Annahmen vom Modell der Salienzkarte bis 

zur Addition der Karten auf Ergebnissen physiologischer Experimente beruhen, ist dieser Befund 

eine Einschränkung für zukünftige Modelle.

Wenn Modelle für visuelle Aufmerksamkeit realitätsnah sein sollten, ist ein Vergleich 

zwischen natürlichen Bedingungen und Laborbedingungen erforderlich, und dies wurde in der 

zweiten Studie gemacht. In der ersten Bedingung wurden kopfzentrierte Filme aus der 

Eigenperspektive aufgenommen und simultan die Augenbewegungen gemessen, während die 

Teilnehmer 15 natürliche Umgebungen erkundeten (�free exploration�). Abschnitte aus diesen 

Filmen wurden Teilnehmern in zwei Laborversuchen gezeigt. Im ersten wurden die Abschnitte, 

so wie sie aufgenommen wurden, (�video replay�) und im zweiten wurden daraus ausgewählte 

Einzelbilder jeweils für eine Sekunde in willkürlicher Reihenfolge (�1s frame replay�) gezeigt. 

Dabei gemessene Augenspuren weisen vor, dass im Vergleich zur 1s-frame-replay-Bedingung 

die Blickwinkelverteilung der video-replay-Bedingung qualitativ ähnlicher zur free-exploration-

Bedingung ist und dass die Modellsalienz die Blickwinkel während der free-exploration-

Bedingung quantitativ am besten vorhersagt. Ausserdem ruft das Zeigen eines neuen Einzelbilds 

bei der 1s-frame-replay-Bedingung eine Neuorientierung der Blickwinkel zur Mitte hervor. Das 

heisst, die Darstellung von einem Reiz unter Laborbedingungen beeinflusst Aufmerksamkeit auf 

eine Weise, die im echten Leben nur sehr unwahrscheinlich vorkommen wird. Die video-replay-

Bedingung modelliert schlußfolglich natürliche visuelle Reize am besten.

Die Hypothese, ob Laufen auf unregelmäßigem Terrain verlangt, dass die 

Aufmerksamkeit mehr auf den Weg gerichtet wird, wurde auf einer örtlichen Straße in Marburg 

(�Hirschberg�) in der dritten Studie geprüft. Die Teilnehmer haben dabei Strecken auf beiden 

Seiten dieser geneigten Straße zurückgelegt; die gepflasterte Straße und der anliegende, 
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unregelmäßig gestufte Fußweg. Die Umgebung und die Anweisungen an die Teilnehmer wurden 

gleich gehalten. Der Blick wurde häufiger auf den Weg gerichtet, wenn die Teilnehmer auf dem 

Fußweg gelaufen sind, als auf der Straße. Dabei waren sowohl der Kopf als auch die Augen auf 

dem gestuften Fußweg mehr nach unten orientiert als auf der Straße, während die Orientierung 

von Auge im Kopf auf dem gestuften Fußweg vertikal weiter verteilt war, was auf häufigere oder 

größere Augenbewegungen deutet. Diese Ergebnisse untermauern frühere Befunde, dass Auge 

und Kopf bei der Blickausrichtung in der realen Welt unterschiedliche Rollen spielen. Darüber 

hinaus zeigen sie, dass eine implizite Aufgabe (nämlich nicht zu stürzen, in diesem Fall,) 

visuelle Aufmerksamkeit ebenso bestimmt, wie eine explizite Aufgabe.

In der letzten Studie wurde die Frage untersucht, ob Wahrnehmung durch Handlung 

beeinflusst wird. Dazu wurde ein zweideutiger Reiz benutzt, der entweder als im, oder als gegen 

den Uhrzeigersinn drehend (das �Perzept�) wahrgenommen wird. In Bedingungen, wo die 

Teilnehmer fortlaufend ein Manipulandum in eine vorgegebene Richtung drehen mussten � 

entweder im oder gegen den Uhrzeigersinn � und gleichzeitig das Perzept über eine Tastatur 

angegeben haben, wurden die Perzepte nicht von den Handlungen beeinflusst. Wenn die 

Teilnehmer das Manipulandum benutzt haben, um das Perzept anzugeben � entweder durch 

Rotieren in die gleiche oder in die entgegengesetzte Richtung, als das Perzept � wurde 

Wahrnehmung von der Handlung beeinflusst. Das Ergebnis zeigt, dass die Auflösung von 

Ambiguität in visuellen Reizen auf Motorsignalen beruht, aber nur wenn diese relevant für die 

momentane Aufgabe sind.

Sowohl durch die Verwendung von natürlichen Stimuli, durch den Vergleich von Verhalten im 

Labor mit dem Verhalten in der realen Welt, durch die Durchführung von einem Experiment auf 

der Straße als auch durch das Studieren der Integration zweier verschiedenartiger aber 
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alltäglicher Informationsquellen wurde das Sehfähigkeit in realitätsnahen Umständen untersucht. 

Die Stichhaltigkeit einiger Laborergebnisse wurde überprüft und bestätigt und einige erste 

Schritte zur Durchführung von Experimenten unter realitätsnahen Umständen wurden getan. 

Beide Ansätze scheinen vielversprechend zu sein für zukünftige Forschungen.

Summary
Humans typically direct their gaze and attention at locations important for the tasks they are 

engaged in. By measuring the direction of gaze, the relative importance of each location can be 

estimated which can reveal how cognitive processes choose where gaze is to be directed. For 

decades, this has been done in laboratory setups, which have the advantage of being well-

controlled. Here, visual attention is studied in more life-like situations, which allows testing 

ecological validity of laboratory results and allows the use of real-life setups that are hard to 

mimic in a laboratory. All four studies in this thesis contribute to our understanding of visual 

attention and perception in more complex situations than are found in the traditional laboratory 

experiments.

Bottom-up models of attention use the visual input to predict attention or even the direction of 

gaze. In such models the input image is analyzed for each of several features first. In the classic 

Saliency Map model, these features are color contrast, luminance contrast and orientation 

contrast. The �interestingness� of each location in the image is represented in a �conspicuity 

maps�, one for each feature. The Saliency Map model then combines these conspicuity maps by 

linear addition, and this additivity has recently been challenged. The alternative is to use the 

maxima across all conspicuity maps. In the first study, the features color contrast and luminance 

contrast were manipulated in photographs of natural scenes to test which of these mechanisms is 

the best predictor of human behavior. It was shown that a linear addition, as in the original 
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model, matches human behavior best. As all the assumptions of the Saliency Map model on the 

processes preceding the linear addition of the conspicuity maps are based on physiological 

research, this result constrains future models in their mechanistic assumption.

If models of visual attention are to have ecological validity, comparing visual attention in 

laboratory and real-world conditions is necessary, and this is done in the second study. In the 

first condition, eye movements and head-centered, first-person perspective movies were 

recorded while participants explored 15 real-world environments (�free exploration�). Clips 

from these movies were shown to participants in two laboratory tasks. First, the movies were 

replayed as they were recorded (�video replay�), and second, a shuffled selection of frames was 

shown for 1 second each (�1s frame replay�). Eye-movement recordings from all three 

conditions revealed that in comparison to 1s frame replay, the video replay condition was 

qualitatively more alike to the free exploration condition with respect to the distribution of gaze 

and the relationship between gaze and model saliency and was quantitatively better able to 

predict free exploration gaze. Furthermore, the onset of a new frame in 1s frame replay evoked a 

reorientation of gaze towards the center. That is, the event of presenting a stimulus in a 

laboratory setup affects attention in a way unlikely to occur in real life. In conclusion, video 

replay is a better model for real-world visual input.

The hypothesis that walking on more irregular terrain requires visual attention to be 

directed at the path more was tested on a local street (�Hirschberg�) in the third study. 

Participants walked on both sides of this inclined street; a cobbled road and the immediately 

adjacent, irregular steps. The environment and instructions were kept constant. Gaze was 

directed at the path more when participants walked on the steps as compared to the road. This 

was accomplished by pointing both the head and the eyes lower on the steps than on the road, 

while only eye-in-head orientation was spread out along the vertical more on the steps, 
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indicating more or large eye movements on the more irregular steps. These results confirm 

earlier findings that eye and head movements play distinct roles in directing gaze in real-world 

situations. Furthermore, they show that implicit tasks (not falling, in this case) affect visual 

attention as much as explicit tasks do.

In the last study it is asked if actions affect perception. An ambiguous stimulus that is 

alternatively perceived as rotating clockwise or counterclockwise (the �percept�) was used. 

When participants had to rotate a manipulandum continuously in a pre-defined direction � either 

clockwise or counterclockwise � and reported their concurrent percept with a keyboard, percepts 

weren�t affected by movements. If participants had to use the manipulandum to indicate their 

percept � by rotating either congruently or incongruently with the percept � the movements did 

affect perception. This shows that ambiguity in visual input is resolved by relying on motor 

signals, but only when they are relevant for the task at hand.

Either by using natural stimuli, by comparing behavior in the laboratory with behavior in the real 

world, by performing an experiment on the street, or by testing how two diverse but everyday 

sources of information are integrated, the faculty of vision was studied in more life like 

situations. The validity of some laboratory work has been examined and confirmed and some 

first steps in doing experiments in real-world situations have been made. Both seem to be 

promising approaches for future research.

Samenvatting
Mensen richting hun blik en aandacht gewoonlijk op locaties die belangrijk zijn voor hetgeen 

waar ze zich mee bezig houden. Door blikrichting te meten kan het relatieve belang van elke 

locatie worden bepaald, waardoor bloot gelegd kan worden hoe cognitieve processen bepalen 

waar de blik op gericht wordt. Tientallen jaren lang is dit gedaan in laboratoria, met goede 
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beheersbaarheid als voordeel. Hier wordt visuele aandacht bestudeerd in meer levensechte 

situaties, wat het testen van ecologische validiteit van laboratorium resultaten toestaat en het 

gebruik van echte omgevingen die moeilijk na te bootsen zijn in het laboratorium. Alle vier de 

studies in deze dissertatie dragen bij aan ons begrip van visuele aandacht en perceptie in 

complexere situaties dan wat men in een traditioneel laboratorium experiment tegenkomt.

Bottom-up modellen van aandacht gebruiken het visuele signaal om aandacht of zelfs 

blikrichting te voorspellen. Dergelijke modellen analyseren een beeld eerst op verschillende 

eigenschappen. In het klassieke Saliency Map model zijn deze eigenschappen color contrast, 

luminance contrast en orientation contrast. De �bemerkenswaardigheid� van elke locatie in het 

beeld wordt weergegeven in een zgn. �conspicuity map�, één voor elke eigenschap. Het Saliency 

Map model combineert deze conspicuity maps additief door een lineaire sommatie, en deze 

additiviteit is recent ter discussie gesteld. Het alternatief is om maxima over alle conspicuity 

maps te gebruiken. In de eerste studie, werden de eigenschappen color contrast en luminance 

contrast bewerkt in fotos van natuurlijke scenes om te testen welke van de mechanismen de 

beste voorspelling van menselijk gedrag levert. Het werd aangetoond dat additiviteit, zoals in het 

oorspronkelijke model de beste voorspelling voor menselijk gedrag oplevert. Aangezien alle 

aannames van het Saliency Map model die voorafgaan aan de sommatie van de conspicuity 

maps zijn gebaseerd op fysiologisch onderzoek, is dit resultaat een restrictie voor de 

mechanistische aannames van toekomstige modellen.

Wanneer modellen voor visuele aandacht ecologisch valide moeten zijn, dan is een 

vergelijking tussen visuele aandacht in een laboratorium omgeving en echte omgeving 

noodzakelijk, en dit werd in de tweede studie gedaan. In de eerste conditie werden 

oogbewegingen en een film vanuit het eerste-persoons perspectief opgenomen terwijl de 
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deelnemers 15 natuurlijke omgevingen verkenden (�free exploration�). Fragmenten uit deze 

films werden vertoond aan proefpersonen in twee laboratorium taken. Ten eerste werden de 

fragmenten zo vertoond als ze opgenomen waren (�video replay�), en ten tweede werd een 

selectie van frames in willekeurige volgorde elk 1 seconde lang getoond (�1s frame replay�). 

Opnames van oogbewegingen uit alle drie de condities toonden dat in vergelijking met 1s frame 

replay, de video replay conditie kwalitatief meer lijkt op free exploration wanneer gekeken wordt 

naar de verdeling van blikrichtingen en de samenhang tussen blikrichting en gemodelleerde 

saliency, en de blikrichting in free exploration kwalitatief beter voorspelt. Tevens gaf het tonen 

van het volgende frame in de 1s frame replay conditie aanleiding tot een heroriëntatie van 

blikrichting naar het midden. Oftewel, het feit dat er een stimulus getoond wordt in een 

laboratorium omgeving beïnvloedt aandacht op een manier die in het echte leven 

onwaarschijnlijk is. Kortom, video replay is een beter model voor natuurlijke visuele stimulatie.

De hypothese dat lopen op een meer onregelmatige ondergrond vereist dat visuele 

aandacht in toenemende mate op het traject gericht moet worden, werd op de proef gesteld op 

een plaatselijke weg (�Hirschberg�) in de derde studie. De deelnemers liepen aan beide zijden 

van deze oplopende weg; een klinkerstraat (�straat�) en de direct aangrenzende stoep met 

onregelmatig geplaatste treden (�treden�). De omgeving en de instructies werden gelijk 

gehouden. In vergelijking met straat richten de deelnemers hun blik meer op het traject wanneer 

ze op de treden liepen. Dit werd bereikt door zowel het hoofd als de ogen lager te richten op de 

treden dan op de straat, terwijl slechts de oriëntatie van het oog in het hoofd verticaal een grotere 

spreiding had op de treden, wat er op duidt dat mensen meer of grotere oogbewegingen maakten 

op de meer onregelmatige treden. Deze resultaten bevestigen eerdere bevindingen die uitwezen 

dat oog- en hoofdbewegingen verschillende rollen spelen in het bepalen van blikrichting in 

natuurlijke situaties. Tevens laten de resultaten zien dat impliciete taken (niet struikelen, in dit 
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geval) visuele aandacht net zo goed beïnvloeden als expliciete taken.

In de laatste studie wordt getest of handelen de waarneming beïnvloedt. Een ambigue 

stimulus die afwisselend waargenomen wordt als met de klok mee of tegen de klok in roterend 

(het �percept�) werd hiervoor gebruikt. Wanneer de deelnemers een manipulandum continu in 

een voorgeschreven richting moesten roteren � ofwel met de klok mee ofwel tegen de klok in � 

en tegelijkertijd het percept rapporteerden via een toetsenbord, werden de percepten niet 

beïnvloed door handbewegingen. Wanneer de deelnemers de manipulandum moesten gebruiken 

om het percept te rapporteren � door met het percept mee of tegen het percept in te draaien � 

beïnvloeden de bewegingen de waarneming. Dit toont aan dat ambiguïteit in visuele stimuli 

opgelost wordt met behulp van motorische informatie, maar slechts dan wanneer die relevant 

zijn voor de taak die uitgevoerd wordt.

Door het gebruik van natuurlijke stimuli, het vergelijken van gedrag in het laboratorium met 

gedrag in de echte wereld, het uitvoeren van een experiment op straat, of door te testen hoe twee 

verschillende maar alledaagse bronnen van informatie worden geïntegreerd, werd het 

gezichtsvermogen onder meer natuurlijke omstandigheden bestudeerd. De validiteit van enkele 

laboratorium resultaten is onderzocht en bevestigd en enige eerste stappen in het doen van 

experimenten in een natuurlijke omgeving zijn gemaakt. Beide benaderingswijzen lijken 

veelbelovend voor toekomstig onderzoek.
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