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1.  Summary 

Members of the CHD family (Chromodomain-Helicase-DNA binding) of ATP-dependent 

chromatin remodelers play key roles at different steps of the transcription cycle. They are 

essential in regulation of developmental and differentiation programs in multicellular 

organisms. However, the complexity of these remodelers makes it difficult to study them 

in higher eukaryotes. In this study, advantage was taken of Drosophila melanogaster as a 

model organism, which possesses only four CHD family members.  

In the first part of this study, a novel chromatin remodeler, dCHD3, has been characterized 

biochemically and functionally. dCHD3 is highly similar to dMi-2 and consequently it 

possesses similar enzymatic activities in vitro. dCHD3 is a highly active, nucleosome 

stimulated ATP-dependent chromatin remodeler which slides mononucleosomes in vitro. 

The chromodomains of dCHD3 seem to be important for substrate recognition and for the 

remodeling activity of this enzyme. Despite the similarities, dCHD3 and dMi-2 differ 

significantly in other aspects. In contrast to dMi-2, dCHD3 exists as a monomer in vivo 

and it is not associated with deacetylase activity. Moreover, dCHD3 expression is 

restricted to early developmental stages and certain tissues. Finally, dCHD3 cannot 

compensate for the loss of dMi-2 which suggests that they are not functionally redundant.  

In the second part of this work, a role of dMi-2 in active transcription has been studied. 

dMi-2 has been implicated in transcriptional repression as a part of dNuRD or dMec 

complexes. This study shows that dMi-2 colocalizes with active regions on polytene 

chromosomes and it is recruited to heat shock genes. Both, reduction of dMi-2 expression 

in flies or ectopic expression of a catalytically inactive mutant, impair heat shock gene 

response. Interestingly, 3‟ end processing and splicing of some of these genes is affected. 

In agreement with this, dMi-2 binds to nascent hsp gene transcripts upon heat shock 

induction. Consequently, these results suggest a role of dMi-2 catalytic activity in co-

transcriptional RNA processing. Study of the recruitment mechanism of dMi-2 to heat 

shock genes suggests that it occurs in a poly(ADP-ribose) dependent manner. Several 

results support this hypothesis. First, dMi-2 recruitment to hsp70 gene is reduced upon 

PARP inhibition. Second, dMi-2 binds PAR polymers directly in vitro and several dMi-2 

regions, which bind PAR independently in vitro, have been identified. Third, a dMi-2 

mutant unable to bind PAR does not localise to active heat shock loci in vivo. Moreover, 
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RNA and PAR compete for dMi-2 binding in vitro suggesting a two-step process for dMi-2 

association with active heat shock genes. First, dMi-2 is recruited to the locus via PAR 

binding followed by association with nascent RNA transcripts. Collectively, these studies 

suggest, that stress-induced chromatin modification by PARP serves as a scaffold for rapid 

recruitment of factors that are required for quick and efficient transcriptional response. 
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Zusammenfassung 

Mitglieder der CHD Familie (Chromodomain-Helicase-DNA binding) chromatin-

modifizierender Proteine spielen eine zentrale Rolle in unterschiedlichen Schritten des 

Transkriptionszyklus. Sie sind für die Regulation von Entwicklungs- und 

Differenzierungsprogrammen in mehrzelligen Organismen essentiell. Die Komplexität 

dieser Proteine erschwert allerdings ihre genauere Untersuchung in höheren Eukaryoten. In 

der vorliegenden Arbeit wurde daher auf den Modellorganismus Drosophila melanogaster 

zurückgegriffen, der lediglich über vier Mitglieder der CHD Familie verfügt. 

Im ersten Teil der Arbeit wurde dCHD3, ein neuentdecktes Mitglied der CHD Familie, 

biochemisch und funktionell charakterisiert. dCHD3 ist dMi-2, einem anderen CHD 

Familienmitglied, sehr ähnlich und besitzt folglich ähnliche enzymatische Aktivitäten in 

vitro. dCHD3 ist ein hochgradig aktives, durch Nukleosomen stimuliertes ATP-abhängiges 

Chromatin-modifizeirendes Enzym, das Mononukleosomen in vitro verschiebt. Die 

Chromo-Domänen von dCHD3 scheinen für Substraterkennung und die Aktivität dieses 

Enzyms wichtig zu sein. Trotz der Ähnlichkeiten in diesen Belangen, unterscheiden sich 

dCHD3 und dMi-2 in anderer Hinsicht deutlich. Im Gegensatz zu dMi-2 liegt dCHD3 in 

vivo als Monomer vor und ist mit keiner Deazetylierungsaktivität assoziiert. 

Darüberhinaus ist die Expression von dCHD3 auf frühe Entwicklungsstadien und 

bestimmte Gewebe beschränkt. dCHD3 ist zudem nicht in der Lage, einen Verlust von 

dMi-2 zu kompensieren, was dafür spricht, dass beide Proteine funktionell nicht redundant 

sind. 

Im zweiten Teil dieser Arbeit wurde die Beteiligung von dMi-2 in aktiver Transkription 

untersucht. dMi-2 spielt als Bestandteil der dNuRD und dMec-Komplexe bekanntermaßen 

bei der transkriptionellen Repression von Genen eine Rolle. Diese Arbeit zeigt hingegen, 

dass dMi-2 mit transkriptionell-aktiven Bereichen auf Polytänchromosomen kolokalisiert 

und zu Hitzeschock-Genen rekrutiert wird. Sowohl die Verringerung der Expression von 

dMi-2 als auch Überexpression einer katalytisch-inaktiven Mutante verringern die 

Hitzeschockantwort in Fliegen. Interessanterweise ist bei einigen dieser Gene die 3„-

Prozessierung und das Spleissen beeinträchtigt. In Übereinstimmung mit diesen 

Beobachtungen bindet dMi-2 im Verlauf der Hitzeschockinduktion an hsp Transkripte, die 

im Entstehen begriffen sind. Insgesamt deuten diese Resultate auf eine Funktion von dMi-
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2 bei der kotranskriptionellen RNA-Prozessierung hin. Die Untersuchung der Rekrutierung 

von dMi-2 zu Hitzeschock-Genen deutet darauf hin, dass sie in einer Poly-(ADP-Ribose)-

abhängigen Weise stattfindet. Mehrere Ergebnisse unterstützen diese Hypothese. Erstens 

ist die Rekrutierung von dMi-2 zum hsp70 Gen verringert, wenn PARP inhibiert wird. 

Zweitens bindet dMi-2 PAR Polymere in vitro und mehrere Regionen, die PAR in vitro 

unabhängig binden, wurden identifiziert. Drittens ist eine dMi-2 Mutante, deren PAR-

Binderegionen entfernt wurden, nicht in der Lage, in vivo zu aktiven Hitzeschockloci zu 

lokalisieren. Weiterhin konkurrieren RNA und PAR um Bindung an dMi-2. Insgesamt 

deuten die Ergebnisse auf einen zweischrittigen Mechanismus hin, der zur Assoziierung 

von dMi-2 mit aktiven Hitzeschock-Genen führt. Zuerst wird dMi-2 mittels Bindung an 

PAR zum Locus rekrutiert, bindet daraufhin aber an neuentstandene Transkripte. 

Insgesamt deuten die vorliegenden Ergebnisse daraufhin, dass die stress-induzierte 

Modifikation von Chromatin durch PARP als Gerüst für die Rekrutierung von Faktoren 

dient, die ihrerseits für eine schnelle und effiziente transkriptionelle Antwort notwendig 

sind. 
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2.  Introduction 

2.1  General aspects of chromatin structure regulation 

The genetic information is encoded in a long, negatively charged DNA polymer. 

Eukaryotic DNA is hundred thousands times longer than the diameter of a typical cell 

nucleus, making it difficult to fit within the small dimension of this sub-cellular 

compartment. A solution to this has evolved in the form of highly basic histone proteins 

that bind tightly to the acidic DNA and provide the electrostatic surface that allows for the 

hierarchical folding of DNA. A complex of DNA, histones, and nonhistone proteins called 

chromatin comprises a sophisticated system of genome packaging. Core histones form 

octamers wrapped with DNA constituting the fundamental unit of chromatin, named 

nucleosomes. Furthermore, nucleosomes are arranged as a linear array along the DNA as 

'beads on a string'. This structure can be further compacted by histone H1 into higher-order 

30 nm fibers. This allows the DNA to be folded to a greater extent of DNA compaction 

eventually creating metaphase chromosomes. Thus, DNA can be compacted by as much as 

a factor of 10,000 (reviewed in (Woodcock 2006)). The packaging of DNA into chromatin 

allows the cell to overcome the nuclear space constraints, however, it creates major 

obstacles for all DNA based processes, such as transcription, DNA repair, replication, and 

recombination. Chromatin has to be, therefore, a stable but yet highly dynamic structure 

which provides the condensed state of DNA and also permits its accessibility for different 

factors regulating chromosomal processes. Eukaryotic cells overcome this problem by 

utilizing a number of enzymatic activities, which control the access to DNA.  

 

2.1.1  The nucleosome structure 

The fundamental repeating unit and building block of chromatin is the nucleosome. Over 

35 years ago the first electron microscopic images of the eukaryotic genome that clearly 

showed the existence of a uniformly sized particles along DNA were published (Olins and 

Wright 1973; Kornberg 1974; Oudet et al. 1975). A detailed structure of a nucleosome core 

particle was provided by X-ray crystallography in 1997 (Luger et al. 1997) (Fig. 2.1). The 

structure revealed that the nucleosome core particle consists of 147 bp of DNA wrapped 

1.65 times around the histone octamer in a left-handed toroid (Luger et al. 1997). The 

histone core comprises two copies each of the histone proteins H2A, H2B, H3 and H4. 
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Each histone contains a three helix core domain, the histone fold. These domains form 

“handshake” arrangements to give rise to H2A-H2B and H3-H4 dimers (Arents and 

Moudrianakis 1995; Khorasanizadeh 2004). Apart from the structured histone fold core, 

each histone forms extensions consisting of unstructured N-terminal and C-terminal tails 

that protrude from the nucleosome. The tails provide surfaces for covalent post-

translational modifications by different histone modifying enzymes and are important for 

higher order chromatin structure formation (Fischle et al. 2003). 

Positively charged residues in the histones contact the phosphate backbone of the DNA 

every 10.4 bp, providing 14 histone-DNA contacts in the nucleosome, called superhelical 

locations (SHL) (Fig. 2.1). The central base pair, where the major groove faces the octamer 

at the particle pseudo-twofold axis (dyad), is labeled as SHL0. For each successive DNA 

turn, the location number increases up to SHL 7, and decreases down to SHL -7. In 

addition, each minor groove facing histone core is denoted as SHL 0,5, SHL 1,5, etc. 

(Luger et al. 1997; Luger and Richmond 1998). 

 

Figure 2.1 Structure of the nucleosome core particle 

DNA depicted in black, eight histone protein main chains shown as ribbons (blue: H3, green: H4, 

orange: H2A, magenta: H2B). The axis of the histone core aligns with the major groove at the 

middle of the DNA fragment, and this region is called the dyad. DNA-histone interactions occur 

approximately every 10 bp on each DNA strand and they are called superhelical regions (SHL). 

The histone-DNA contact at the dyad is named SHL0 (not shown). Traveling along the DNA away 

from the SHL0 position, each minor groove facing histone core is denoted as SHL 0,5, SHL 1,5, 

etc. Note, for clarity, the SHLs at only one half of the DNA superhelix are labelled. The figure was 

prepared in PyMol, PDB code 1AOI using data from (Luger et al. 1997). 
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2.1.2  Enzymes that regulate chromatin structure 

Eukaryotic cells utilize numerous enzymatic activities to regulate the access of DNA for 

factors involved in transcription, replication, repair or recombination. In general the 

enzymes belong to three main groups: histone modifying enzymes, DNA 

methyltransferases and ATP-dependent chromatin remodelers. The main substrates for 

these enzymes constitute histone tails, DNA and nucleosomes, respectively.  

Histone tails are extensively posttranslationally modified. The most common modifications 

reported so far include lysine acetylation, serine or threonine phosphorylation, lysine 

methylation (mono-, di- and tri-) and arginine methylation (mono-, asymmetrical- and 

symmetrical dimethylation), lysine monoubiquitination, sumoylation, and ADP-

ribosylation (Workman and Kingston 1998; Shilatifard 2006; Berger 2007; Bernstein et al. 

2007; Kouzarides 2007; Weake and Workman 2008; Campos and Reinberg 2009). Histone 

modifications possess a variety of functions. They change the charge of a residue to 

modulate protein-DNA, protein-protein and nucleosome-nucleosome interactions. Some 

histone modifications are only transient, for example, histone H2B monoubiquitination is 

added and then quickly removed during the process of gene activation (Henry et al. 2003). 

Others, like H3K9me3 is part of the process of stable maintenance of heterochromatic 

silencing (Li et al. 2002; Krauss 2008).  

Enzymes responsible for the removal of certain histone marks have also evolved. For 

instance, histone acetylation is removed by various histone deacetylases (HDACs) (Li et al. 

2002). Histone lysine methylation considered for many years to be a stable mark, recently 

turned out to be also reversible, and it is removed by two families of enzymes, amine 

oxidases such as LSD1 and hydroxylases of the JmjC family (Klose et al. 2006; Shi 2007).  

Other enzymes regulating chromatin structure belong to the family of DNA 

methyltransferases (DNMTs). In higher eukaryotes, DNA methylation takes place at the 5-

carbon position of cytosine in CpG dinucleotides (Bird 2002; Fatemi et al. 2002). The 

catalytic reaction involves the transfer of a methylgroup from S-adenosyl-L-methionine to 

the C5 position of cytosine. DNA methylation is the most prevalent epigenetic 

modification of DNA in mammalian genomes and it is associated with transcriptional 

repression. Discrete regions in the genome, including most repetitive DNA and promoters 

of inactive genes are hypermethylated. By contrast, CpG islands often associated with the 

regulatory regions of housekeeping genes are hypomethylated (Yoder et al. 1997). CpG 
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methylation functions in many processes, including transcriptional regulation, genomic 

stability, chromatin structure modulation, X chromosome inactivation, and the silencing of 

parasitic DNA elements (Jones and Laird 1999; Baylin et al. 2001; Robertson 2001). In 

these contexts, DNA methylation promotes genomic integrity and ensures proper temporal 

and spatial gene expression during development. 

The third family of enzymes which regulate chromatin structure are ATP-dependent 

chromatin remodelers. These enzymes utilize energy from ATP hydrolysis to alter histone-

DNA interactions within the nucleosome. All known ATP-dependent chromatin 

remodeling enzymes belong to the helicase superfamily 2 (SF2), so named because their 

ATPase domain harbors motifs that are characteristic of helicases (Eisen et al. 1995) (for 

details see chapter 2.2).  

All these different enzymes very often work in concert to trigger the proper chromatin 

structure changes and thus regulate the temporal access for DNA acting factors. Moreover, 

a multitude of non-enzymatic activities, such as histone chaperones, histone variants and  

noncoding RNAs, are involved in chromatin structure maintenance (for recent reviews see 

(Talbert and Henikoff 2010; Avvakumov et al. 2011; Beisel and Paro 2011)).   

 

2.2  ATP-dependent chromatin remodelers 

2.2.1  Families of chromatin remodelers 

The pioneering work originally identified an ATP-dependent chromatin remodeler, Snf2 in 

yeast, after which the SNF2 family of ATP-dependent chromatin remodelers has been 

named (Carlson et al. 1984; Eisen et al. 1995). The common feature of all SNF2 family 

members is a region of sequence similarity that includes seven helicase-related sequence 

motifs that are also found in DExx box helicases. Helicase-related proteins are classified 

into several superfamilies with respect to the sequence similarity and spacing of these 

motifs. Based on these criteria, SNF2 family members have been assigned to the SF2 

superfamily of helicases (Eisen et al. 1995).  

A phylogenetic analysis of a subset of proteins similar to yeast Snf2 revealed several 

functionally and evolutionally distinct groups of SNF2 proteins. Additional motifs 

characteristic for each subfamily were also identified (Eisen, 1995). The most common  

classification of ATP-dependent chromatin remodelers distinguishes four distinct families: 

SWI/SNF (switch/sucrose-non-fermenting), ISWI (imitation switch), CHD 
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(chromodomain-helicase-DNA binding) and INO80 (inositol requiring 80). All remodeler 

families contain a SNF2-family ATPase domain which is split in two parts: DExx and 

HELICc. Remodelers of the SWI/SNF, ISWI, and CHD families possess a short insertion 

within the ATPase domain, whereas remodelers of the INO80 family contain a long 

insertion (Fig. 2.2). The unique domains reside adjacent to the ATPase domain. SWI/SNF 

remodelers contain bromodomains; ISWI remodelers - SANT-SLIDE modules; CHD 

remodelers - tandem chromodomains and INO80 family members possess HAS (helicase-

SANT) domains (Fig. 2.2). Each of these domains play roles in remodeler recruitment to 

chromatin or binding to certain histone modifications and/or they are involved in the 

regulation of the ATPase activity of the remodeler (Clapier and Cairns 2009).  

 

Figure 2.2 ATP-dependent chromatin remodeler families 

Schematic representation of ATP-dependent chromatin remodeler families. The two conserved 

parts of the ATPase domain are shown as light blue (Dexx) and dark blue (HELICc) boxes. Bromo, 

bromodomain; Chromo, chromodomains; SANT, SANT domain; SLIDE, SLIDE domain, HSA, 

helicase-SANT domain. Modified after (Clapier and Cairns 2009).  

 

There are other helicases that share homology with SNF2 through their ATPase domain, 

but lack these additional signature motifs. A recent comprehensive analysis of SNF2 

proteins identified over 1300 family members which can be divided into 24 distinct 

subfamilies based on the alignments of helicase-related regions. This analysis also revealed 

a good correlation between biological and biochemical functions of these proteins, 

suggesting that SNF2 family ATPase domains are adapted for specific tasks (Flaus et al. 

2006).  
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2.2.2  SWI/SNF 

The yeast SWI/SNF complex was the first ATP-dependent chromatin remodeler to be 

described. The genes encoding various subunits of SWI/SNF complex were found in two 

independent genetic screens for altered gene expression involved in regulating mating type 

switching (SWI) and sucrose fermentation in yeast (Sucrose Non-Fermenting) (Carlson et 

al. 1984; Stern et al. 1984). The function of these genes was initially linked to chromatin 

structure by isolation of suppressors of swi/snf  mutations in genes encoding histones and 

other putative chromatin components (Sudarsanam and Winston 2000). Biochemical 

purification of SWI/SNF complexes revealed that they are large, multi-subunit complexes 

containing eight or more proteins (Peterson and Herskowitz 1992). SWI/SNF ATPases 

possess a bromodomain which might target them to acetylated histone tails (Marmorstein 

and Berger 2001). Another characteristic of SWI/SNF complexes is the presence of actin 

and/or actin related proteins (Arps). It has been proposed that actin and Arps modulate 

binding of the remodeling complex to chromatin, stimulate the DNA-dependent ATPase 

activity, promote complex assembly and stability, histone binding, or remodeling and 

translocation (Olave et al. 2002; Rando et al. 2002; Shen et al. 2003; Szerlong et al. 2003).  

In yeast there are two SWI/SNF ATPases, Swi2/Snf2 and Sth1, which are part of two 

complexes, ySWI/SNF and RSC, respectively. They share two identical and at least four 

similar subunits (Cairns et al. 1994; Cairns et al. 1999). Despite these similarities, only 

RSC is essential for yeast viability (Cairns et al. 1996). Drosophila contains only a single 

protein corresponding to yeast Swi2/Snf2, called Brahma (BRM), which is found in two 

complexes – BAP and PBAP (Dingwall et al. 1995; Crosby et al. 1999). Human cells 

contain two distinct Swi2/Snf2-like ATPase subunits, named hBRM (human Brahma) and 

BRG1 (Brahma-Related Gene 1), which constitute subunits of BAF and PBAF complexes 

(Kwon et al. 1994; Wang et al. 1996). Human SWI/SNF complexes have been found in 

many different cell lines from a wide range of tissues, and the complexes containing them 

might have slightly different subunit composition (Mohrmann and Verrijzer 2005). 

Mammalian BAF complexes have been found recently to possess unique compositions in 

embryonic stem cells, and during developmental transitions which suggests that they help 

guide cell fate decisions (Ho and Crabtree 2010). 

SWI/SNF-like complexes possess diverse functions. Many studies have shown a positive 

role for SWI/SNF complexes in transcriptional regulation via its interaction with activator 
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proteins. In addition, ySWI/SNF often cooperates with histone acetytransferase complexes 

to activate transcription (Roberts and Winston 1997; Krebs et al. 1999). However, some 

studies also suggested a role of the SWI/SNF complexes in gene repression (Trouche et al. 

1997). Mammalian BAF complexes can both activate and repress the transcription of a 

single gene depending on the developmental context (Chi et al. 2002; Wan et al. 2009). 

In Drosophila BRM was shown to be involved in transcription regulation of most genes. 

BRM marks nearly all transcriptionally active sites on polytene chromosomes which 

suggests that it could be required for most gene activation in salivary gland nuclei. 

However, BRM is absent from activated heat-shock genes and their expression is not 

affected by brm gene loss-of-function (Armstrong et al. 2002).   

Although, most of SWI/SNF-family functions are related to transcription, they also have a 

direct role in other processes such as DNA replication or DNA repair. ySWI/SNF was 

shown to promote replication initiation in a minichromosome assay in yeast (Flanagan and 

Peterson 1999). ySWI/SNF complex can stimulate the nucleotide excision repair on 

reconstituted nucleosomal substrates in vitro (Hara and Sancar 2002; Gaillard et al. 2003). 

Moreover, mammalian SWI/SNF complexes facilitate double strand brake (DSB) repair, at 

least in part, by promoting H2AX phosphorylation by directly acting on chromatin (Park et 

al. 2006). 

yRSC is implicated in chromosome segregation. It was shown to be constitutively present 

at the centromeres and promote proper kinetochore function. Although the molecular 

mechanisms remain unclear, recent genetic studies suggest that RSC is required for the 

loading of cohesin onto chromosomes (Hsu et al. 2003; Baetz et al. 2004; Huang et al. 

2004).  

Mammalian SWI/SNF complexes play a role in cell cycle progression (Khavari et al. 1993; 

Cao et al. 1997). hBRG1 was shown to interact with Retinoblastoma (Rb), inducing the 

formation of growth-arrested cells in an Rb-dependent manner (Dunaief et al. 1994).  

 

2.2.3  ISWI 

The gene coding for ISWI ATPase was first identified in Drosophila as a gene with 

homology to yeast Swi2/Snf2 exclusively over the region of the ATPase domain and thus it 

was called imitation switch (ISWI) (Elfring et al. 1994). Chromatin remodeling complexes 

containing the ISWI ATPase were first identified using in vitro biochemical assays for 
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nucleosome-remodeling activities in Drosophila embryo extracts (Tsukiyama et al. 1995; 

Tsukiyama and Wu 1995; Ito et al. 1997; Varga-Weisz et al. 1997). ISWI-containing 

complexes were subsequently identified in many other organisms, including yeast, C. 

elegans, Xenopus and humans, highlighting the conserved function of this ATPase in 

chromatin remodeling. In contrast to SWI/SNF remodelers, ISWI complexes are relatively 

small and they possess between two and four subunits. All of these complexes contain the 

nucleosome-dependent ATPase ISWI. Yeast possess two ISWI ATPases – Isw1 and Isw2, 

which exist in four different complexes. Drosophila has only one ISWI ATPase, which is a 

component of three complexes: dNURF (Nucleosome Remodeling Factor), dACF (ATP-

utilizing chromatin assembly and remodeling factor) and dCHRAC (chromatin 

accessibility complex) (Tsukiyama et al. 1995; Ito et al. 1997; Varga-Weisz et al. 1997). In 

mammals there are two ISWI ATPases: SNF2H and SNF2L which reside in at least eight 

different complexes (for precise complex composition see (Yadon and Tsukiyama 2011)).  

The hallmark of ISWI complexes is the presence of a SANT domain (structurally related to 

the c-Myb DNA-binding domains) which binds unmodified histone tails, a SLIDE (SANT-

like ISWI domain) domain which binds nucleosomal DNA near the dyad axis, and a 

HAND domain implicated in both histone and DNA binding/recognition (Clapier and 

Cairns 2009). Specialized subunits deliver additional domains to the complexes, including 

DNA-binding histone fold motifs (in hCHRAC), plant homeodomain zinc fingers (PHD 

fingers), bromodomains (hBPTF and hACF1), and additional DNA-binding motifs 

(HMGI(Y), for dNURF301) (Clapier and Cairns 2009).  

Many ISWI family complexes optimize nucleosome spacing to promote chromatin 

assembly and the repression of transcription. However, certain complexes randomize 

spacing, and thus they can assist RNAP II activation. One of the first evidence of ISWI´s 

role in transcription activation came from an experiment that showed that dNURF directly 

facilitated GAL4-mediated transcription from chromatin templates in vitro (Mizuguchi et 

al. 1997). Subsequently, it was shown to interact with many sequence-specific 

transcriptional regulators, including dGAF and dHSF in vivo, helping to drive gene 

expression (Badenhorst et al. 2002).  

Insights into the repressive role of ISWI remodelers in transcription come from studies on 

yeast, which showed that Isw2 represses transcription of yeast meiotic genes during mitotic 

growth. Isw2 complex establishes nuclease-inaccessible chromatin structure near the 

promoters of these genes as judged by nuclease digestion analysis (Goldmark et al. 2000). 
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Interestingly, recent nucleosome mapping on a genome wide scale in Isw2 mutants 

showed, that Isw2 helps prevent antisense transcription from intergenic region and from 

cryptic initiation sites (Whitehouse et al. 2007).  

In line with ISWI´s role in nucleosome assembly, ISWI containing complexes are involved 

in the maintenance of higher order chromatin structure. Perhaps one of the most striking 

examples comes from studies on polytene chromosomes from 3
rd

 instar Drosophila larvae. 

The loss of zygotic ISWI function in larval salivary glands leads to broad decondensation 

of the X chromosome (Deuring et al. 2000). Moreover, human hSNF2h complex was 

shown to interact with cohesins (Hakimi et al. 2002). Human ISWI complexes were also 

implicated in nucleosome positioning over several kilobases and thus regulate chromatin 

folding into loop domains (Yasui et al. 2002).  

ISWI remodelers have also extensive connections to replication initiation timing and firing. 

For example, Isw2 is enriched at the sites of active replication and helps promote 

replication fork progression (Vincent et al. 2008). In human cells, hSNF2h, in concert with 

ACF1, is required for facilitating DNA replication through highly condensed 

heterochromatin (Collins et al. 2002). 

 

2.2.4  INO80 

The INO80 family was named by the yeast ino80 gene product which is responsible for 

regulation of inositol-responsive gene expression (Ebbert et al. 1999). ATPase orthologues 

and homologues of INO80 have been identified subsequently in flies, plants and mammals. 

The chromatin remodeling enzymes of the INO80 family are: Ino80 and Swr1 in S. 

cerevisiae; INO80, and p400 in Drosophila melanogaster and Snf2-related CBP activator 

protein (SRCAP) and p400 in mammals. The complexes contain 14 to 15 subunits and the 

composition of individual complexes is highly conserved. They all possess Arps and actin 

components, similarly to SWI-SNF complexes (Clapier and Cairns 2009). Proteins, which 

are unique for INO80 and SWR1 complexes, are RuvB-like helicases. They are 

functionally related to the bacterial RuvB helicase, which has a role in DNA repair (Qiu et 

al. 1998; Kanemaki et al. 1999). Drosophila and mammalian INO80 complexes have been 

shown to contain a YY1 subunit, which is a zinc finger containing Polycomb group 

transcription factor involved in regulation of genes essential for growth and development 

(Klymenko et al. 2006; Cai et al. 2007; Wu et al. 2007).  
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The ATPase subunits of the INO80 family are distinguished from other ATPases in the 

SNF2 helicases by the presence of a long spacer region that splits the conserved ATPase 

domain. This region was shown to be bound by RuVB-like subunits and Arps (Jónsson et 

al. 2004). The motor subunits of INO80 protein also contain a HAS domain (Helicase-Sant 

domain) which is required for Arps and actin components binding (Szerlong et al. 2008).  

Interestingly, complexes of the INO80 family possess a striking and specific affinity for 

histone variants H2AZ and the phosphorylated form of H2AX (γ-H2AX) (Krogan et al. 

2003; Kobor et al. 2004; Mizuguchi et al. 2004). In vivo INO80 complex influences 

nucleosome eviction, whereas SWR1 complex catalyses the replacement of a canonical 

H2A-H2B dimer with an H2AZ-H2B variant dimer (Krogan et al. 2003; Mizuguchi et al. 

2004; Tsukuda et al. 2005; van Attikum et al. 2007). The substitution of core histones by 

the corresponding histone variants can generate a structurally and functionally distinct 

nucleosome.  

INO80 complexes are involved both in transcription activation and repression (Mizuguchi 

et al. 2004). SWR1 complex deposits H2A.Z which flanks nucleosome free regions around 

the transcription start sites (Raisner et al. 2005). This may change both nucleosome 

stability and dynamics near transcription start sites and facilitate or inhibit recruitment of 

other factors. Hence, the incorporation of H2A.Z may regulate transcription both positively 

and negatively. In addition, SWR1 complex deposits H2A.Z at the boundary of 

euchromatin and heterochromatin which can prevent heterochromatin spreading 

(Meneghini et al. 2003; Zhou et al. 2010).  

The presence of RuvB-like helicases in INO80 complexes suggested an involvement in 

DNA repair. Indeed, INO80 complex associates with γ-H2AX at sites of DSB and 

participates in eviction of nucleosomes surrounding DSBs (Morrison et al. 2004; van 

Attikum et al. 2004; Tsukuda et al. 2005). Conversely, it was suggested that SWR1 

complex can exchange γ-H2AX for H2A.Z around DSBs (Papamichos-Chronakis et al. 

2006). Ultimately, deletion of histone H2A.Z (HTZ1) in yeast, results in changes in 

chromatin structure at DSBs which consequently leads to reduced association of DNA 

repair and check point factors (Kalocsay et al. 2009). It has been proposed, that both 

complexes function antagonistically at chromatin surrounding a DSB, and that they 

regulate the incorporation of different histone H2A variants that subsequently can either 

promote or block cell cycle checkpoint adaptation (Papamichos-Chronakis et al. 2006). 
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In addition, both complexes have been shown in genetic screens in yeast to be involved in 

telomere regulation and proper chromosome segregation (Krogan et al. 2004; Yu et al. 

2007).  

 

2.2.5  CHD 

The CHD family (Chromodomain - Helicase - DNA binding) is characterized by the 

presence of two signature sequence motifs: tandem chromodomains located in the N-

terminal region, and the SNF2-like ATPase domain located in the central region of the 

protein (Fig. 2.2). The cloning of the first chromodomain helicase DNA binding protein, 

mouse CHD1, was reported in 1993 (Delmas et al. 1993). Subsequently, many proteins 

belonging to this highly conserved family have been identified in Drosophila, yeast and 

other species (Stokes et al. 1996; Woodage et al. 1997). Currently, the CHD family 

constitutes a large group of ATP-dependent chromatin remodelers which can be divided 

into three subfamilies according to the presence or absence of additional domains. As the 

CHD chromatin remodelers comprise the main objective of this PhD thesis, a detailed 

description of this family can be found in a separate chapter (chapter 2.5).   

 

2.3  Mechanisms of chromatin remodeling 

2.3.1  ATPase domain structure 

As mentioned in chapter 2.2.1 the common feature of all ATP-dependent chromatin 

remodelers is the presence of a highly conserved SNF2-like helicase domain that is 

responsible for ATP hydrolysis required for nucleosome remodeling. The ATPase domain 

includes seven helicase-related sequence motifs also found in DExx box helicases. 

However, SNF2 family enzymes do not show the DNA unwinding activity specific for 

helicases. A number of biochemical and structural analyses suggest that instead of duplex 

unwinding, SNF2 family enzymes utilize the energy of ATP-hydrolysis to translocate on 

duplex DNA by a mechanism that does not require strand separation (Ristic et al. 2001; 

Saha et al. 2002; Whitehouse et al. 2003; Lia et al. 2006).  

The first insights into the structure of SNF2 like ATPase domain came from two 

crystallographic structures of the ATPase domains of zebrafish Rad54 and archeal 

Sulfolobus solfataricus SSO1653, both in the complex with dsDNA. These structures 
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revealed that the SNF2-like ATPase domain possess two N- and C-terminal lobes, often 

referred to as DExx and HELICc domains (Figures 2.2 and 2.3). These two modules form a 

cleft that binds and hydrolyses ATP and drives translocation of the protein on DNA (Dürr 

et al. 2005; Thomä et al. 2005). Only very recently the first structure of the ATPase 

domain of ATP-dependent chromatin remodeler, yChd1, has been resolved (Fig. 2.3). The 

structure of yChd1 ATPase domain together with tandem chromodomains revealed the 

regulatory role of the latter domains in the motor activity (Hauk et al. 2010).  

The conserved ATPase domain of ATP-dependent chromatin remodelers is not just a 

generic motor that hydrolyses ATP to obtain energy but it also can determine how to 

convert this energy into specific remodeling function. One of the most stunning 

observations comes from a domain swapping experiment, where the ATPase domain of 

human SNF2h (ISWI) and BRG1 (SWI/SNF) were exchanged. The resulting chimeric 

SNF2h exhibited BRG1 remodeling properties in vitro. Conversely, chimeric BRG1 

behaved like SNF2h in the same set of experiments (Fan et al. 2005). These experiments 

suggest that the region containing the ATPase domain can specify the outcome of the 

remodeling reaction.    

 

Figure 2.3 Crystal structure of the ATPase domain of yChd1  

Upper panel: schematic of yChd1 domain organization. Chromo, chromodomains; lobe 1 and 2 

represent two parts of the ATPase domain. Lower panel: crystal structure of the ATPase domain of 

yChd1. Two ATPase lobes are coloured with red and blue, yellow represents a linker from 

chromodomain, green is the extended C-terminal region of the ATPase domain. The bound ATP 
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analog (ATPγS) is represented as gray spheres, the Cα positions of two arginine residues important 

for ATP hydrolysis are shown as magenta spheres. The figure was prepared in PyMol, PDB code 

3MWY. Picture colouring and representation adapted from (Hauk et al. 2010).  

 

2.3.2  Different outcomes of chromatin remodeling 

Although all chromatin remodelers share common properties, they are highly specialized 

for particular tasks. Consequently, the outcome of chromatin remodeling can be very 

different. Remodelers can slide or evict nucleosomes, thus transiently exposing the 

regulatory elements on DNA. Others assist in chromatin assembly by moving already 

deposited histone octamers to evenly spaced nucleosomal arrays and generating room for 

additional deposition. Finally, some specialized remodelers are involved in histone variant 

exchange (see Table 2.1 and Fig. 2.4) (Clapier and Cairns 2009). In the following chapter 

different outcomes of chromatin remodeling identified mostly by in vitro studies are 

described.  

 

Figure 2.4 Outcomes of ATP-dependent chromatin remodeling 

An ATP-dependent remodeler (green oval) action on nucleosomal arrays results in various 

products. The remodeler activity can result in generation of regularly spaced nucleosomes often 

associated with additional nucleosome assembly by assembly factors, nucleosome sliding, eviction 

of the whole histone octamer or histone variant exchange (for details see text).  
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2.3.2.1  Nucleosome sliding 

Most of the remodelers are able to induce the movement of intact histone octamers on 

DNA fragments, which is often referred to as nucleosome sliding. The ATP-dependent 

sliding of nucleosomes over distances of up to 100 bp in nucleosomal arrays was first 

observed during characterization of in vitro reconstituted chromatin in Drosophila embryo 

extracts (Varga-Weisz et al. 1995). Most of the current view of nucleosome sliding comes 

from in vitro nucleosome mobility assays, where mononucleosomes assembled at different 

positions on different DNA fragments were used and the migration of remodeling products 

was analysed on native polyacrylamide gels (Hamiche et al. 1999; Längst et al. 1999; 

Brehm et al. 2000; Guschin et al. 2000; Jaskelioff et al. 2000). These type of studies 

showed that different remodelers can create different products of the remodeling reaction. 

For instance, ISWI ATPase alone preferentially slides mononucleosomes positioned in the 

centre of the DNA fragment, towards the end. By contrast, the same ATPase in dCHRAC 

and dACF complexes moves octamers that are positioned at the end, towards the centre 

(Längst et al. 1999). SWI/SNF complex generates numerous nucleosome products in these 

types of assays (Whitehouse et al. 1999). However, a most prominent nucleosome product 

is a nucleosome particle where histone octamer is moved up to 50 bp beyond the DNA 

end, creating a corresponding bare histone surface (Kassabov et al. 2003). It has been also 

suggested that the underlying DNA sequence may influence the outcome of the remodeling 

reaction (Rippe et al. 2007). Although it is not clear how the results of such experiments 

correlate with the in vivo situation, where mononucleosomes do not exist, they undeniably 

contributed to the current knowledge of the mechanism of chromatin remodeling (chapter 

2.3.3).   

 

2.3.2.2  Nucleosome spacing 

ISWI complexes have been implicated in equal spacing of DNA between each nucleosome 

on the DNA template (Ito et al. 1997; Varga-Weisz et al. 1997). Such evenly spaced 

nucleosomal arrays correlate with condensed chromatin and gene silencing which is in 

agreement with the biological functions of ISWI complexes. The mechanism of generation 

of such arrays has emerged from studies, which showed that ACF complex generates a 

dynamic equilibrium in which nucleosomes with equal flanking DNA on either site 

accumulate. It has been suggested, that the dynamic equilibrium is achieved by constant 

sampling by ACF either side of nucleosomes by moving them back and forth. Indeed, ACF 
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was shown to sense the length of the flanking DNA by moving the nucleosome towards 

longer flanking DNA (Yang et al. 2006; Narlikar 2010). In line with this model, previous 

studies showed that shortening the flanking DNA reduces the activity but not the 

nucleosome binding of ISWI complexes (Zofall et al. 2004; Dang et al. 2006; Stockdale et 

al. 2006; Yang et al. 2006). Recently, the explanation for moving nucleosomes back and 

forth between two sides of the nucleosome was given. ACF remodeler functions as a dimer 

in which the two ATPases work in a coordinated manner, taking turns to engage either side 

of a nucleosome, consequently allowing processive bidirectional movement (Racki et al. 

2009). It remains to be determined, whether bidirectional movement via dimerization of 

the motor ATPase is a general feature of enzymes that space nucleosomes.  

 

2.3.2.3  Histone octamer eviction 

Apart from nucleosome sliding, the access to DNA can be obtained by histone octamer 

eviction. Indeed, the SWI/SNF remodelers have been implicated in ejection of histone 

octamers at promoters of several genes (Owen-Hughes et al. 1996; Lorch et al. 1999). RSC 

complex efficiently disassembles histone octamers from nucleosomes in the presence of a 

histone chaperone Nap1 (Lorch et al. 2006). Histone octamer removal by SWI/SNF was 

demonstrated to be enhanced by the chimeric transcription factor Gal4-VP6 and is 

dependent on the presence of the activation domain of the transcription factor (Gutiérrez et 

al. 2007). SWI/SNF is also displacing H2A-H2B dimer from the nucleosome and it has 

been suggested that dimer removal maybe the first step in octamer eviction (Bruno et al. 

2003; Flaus and Owen-Hughes 2003). The H2A-H2B dimer removal by SWI/SNF can 

explain why the depletion of H2A and H2B is capable to suppress the requirement for the 

SWI/SNF complex at the SUC2 promoter in vivo (Hirschhorn et al. 1992). Screens for 

supressors of SWI/SNF function have identified a number of SWI/SNF-independent (sin) 

mutations in the genes encoding yeast histones. Several of them would be expected to 

reduce the stability of H2A-H2B dimers (Hirschhorn et al. 1995; Flaus and Owen-Hughes 

2003; Muthurajan et al. 2003).  

 

2.3.2.4  Histone variant replacement 

The most specialized function of chromatin remodelers involves a histone variant 

exchange. So far only SWR1 complex was shown to replace H2A-H2B dimer with H2A.Z-

H2B in vitro (Mizuguchi et al. 2004). Recently the replacement reaction by SWR1 has 
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been characterized in detail. It was shown, that the ATPase activity of SWR1 is 

specifically stimulated by canonical nucleosomes without histone H2A eviction. 

Interestingly, addition of free H2A.Z-H2B dimer to the reaction leads to hyperstimulation 

of ATPase activity, eviction of nucleosomal H2A-H2B, and deposition of H2A.Z-H2B 

(Luk et al. 2010). These results indicate that the combination of H2A-containing 

nucleosome and free H2A.Z-H2B dimer determines the specificity and outcome of the 

replacement reaction. 

 

Table 2.1 Summary of ATPase activation and outcome of the remodeling of different 

families of ATP-dependent chromatin remodelers 

Chromatin 

remodeler 

Activation of ATPase Outcome of 

remodeling 

References 

SWI/SNF DNA nucleosome sliding, 

octamer eviction, 

octamer transfer from 

donor to acceptor 

DNA 

(Lorch et al. 1999; Whitehouse 

et al. 1999; Reinke et al. 2001; 

Saha et al. 2002; Lorch et al. 

2006; Zofall et al. 2006) 

ISWI nucleosomes, histone H4 tails 

required 

nucleosome sliding, 

equal nucleosome 

spacing (CHRAC, 

ACF) 

(Hamiche et al. 1999; Clapier 

et al. 2001; Clapier et al. 2002; 

Gangaraju et al. 2009)  

INO80 INO80 - nucleosomes, DNA 

SWR1- canonical nucleosomes, 

hyperactivation in the presence 

of H2A.Z-H2B dimers and 

canonical nucleosomes 

nucleosome sliding 

(INO80), H2A-H2B 

dimmer replacement 

with H2A.Z-H2B 

dimmer (SWR1) 

(Mizuguchi et al. 2004; Jin et 

al. 2005; Papamichos-

Chronakis et al. 2006; Luk et 

al. 2010)   

CHD nucleosomes, histone tails not 

important (dMi-2), nucleosomes 

histone H4 tails important 

(yChd1) 

nucleosome sliding, 

nucleosome spacing 

(dCHD1) 

(Brehm et al. 2000; Bouazoune 

et al. 2002; Lusser et al. 2005; 

Ferreira et al. 2007) 

 

2.3.3  Mechanisms underlying nucleosome remodeling 

2.3.3.1  Substrate recognition and activation of the ATPase 

Although all ATP-dependent chromatin remodelers utilize nucleosomes as substrates of 

their reactions, they require different chromatin components for the stimulation of their 

ATPase activity. For example, SWI/SNF remodelers are activated in the presence of DNA, 

whereas others need nucleosomes for their ATPase activity. Moreover, remodelers, like 

ISWI or yChd1, need the histone H4 tails for full ATPase activation (for details and 

references see table 2.1). These differences might reflect, at least in some cases, the way in 

which chromatin remodelers recognize their substrates.  
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It has been shown that the presence of additional domains in the ATPase motor subunit can 

affect substrate specificity. This view comes from the recent crystal structure of the yChd1 

chromodomains and ATPase domain (Hauk et al. 2010). The structure revealed that the 

double chromodomains lie across the central cleft of the ATPase motor. The two lobes of 

the ATPase domain are arranged in a way that the arginine residues, critical for ATP 

hydrolysis (Fig. 2.3) are too far from the bound nucleotide, thus, the ATPase domain is 

kept in inactive state. yChd1 ATPase activity is stimulated by nucleosomes but only very 

little with DNA. Mutations in the interface between the chromodomains and the ATPase 

domain or removal of the chromodomains impaired nucleosome recognition and 

consequently DNA was stimulating ATPase activity to the level of nucleosome 

stimulation. Furthermore, the same mutations brought about yChd1 DNA binding ability. 

Moreover, chromodomains are important for efficient nucleosome sliding by yChd1 as the 

deletion of chromodomains strongly impaired nucleosome remodeling. These experiments 

suggest that chromodomains of yChd1 bias this remodeler towards nucleosomes by 

inhibiting DNA binding and blocking ATPase activity in the context of inappropriate 

substrate (Hauk et al. 2010). The structure also suggests that some conformational 

rearrangements have to occur upon nucleosome binding in order to bring the ATPase 

domain to an active state.  

Studies on another CHD family remodeler, dMi-2, have suggested that the C-terminus of 

this protein may regulate substrate recognition. The mutant lacking the entire C-terminal 

domain is stimulated by free DNA as well as by nucleosomes, in striking contrast to the 

wild-type protein, which is stimulated only by nucleosomes. In the case of dMi-2, 

chromodomains were shown to be important for ATP-dependent nucleosome mobilization, 

and binding the nucleosome via interactions with nucleosomal DNA. A chromodomain 

deletion mutant that no longer interacts with the nucleosome is compromised for ATPase 

activity and fails to mobilize mononucleosomes. It has been suggested that the dMi-2 

chromodomains function at an early step of the chromatin remodeling process by 

mediating the interaction between the enzyme and its nucleosome substrate (Bouazoune et 

al. 2002).  

The results of the studies described above indicate that different domains of the ATPase 

subunit of chromatin remodeling complexes may influence substrate determination and 

thus regulate the ATPase activity of the enzyme in the presence of the correct substrate. 

More crystallographic and biochemical studies will be required in the future to elucidate 



INTRODUCTION 

22 

 

whether substrate determination by additional SNF2 ATPase domains is a more broad 

phenomenon.  

ATPase activity of a chromatin remodeler can be also activated by specific histone tails. A 

basic patch on the histone H4 tail is important for the catalytic activity of ISWI (Clapier et 

al. 2001). Removal of this histone part significantly decreases ATPase activity of ISWI 

without affecting the nucleosome binding of the remodeler, which indicates that the H4 tail 

is critical for a step subsequent to substrate binding (Clapier et al. 2001; Clapier et al. 

2002; Gangaraju et al. 2009).  

Non-enzymatic subunits of chromatin remodeling complexes can be also involved in the 

ATPase regulation of the motor. For instance, the presence of Arps in the INO80 complex 

is critical for the complex ATPase activity. The deletion of Arps revealed that although the 

complex remains intact, it is compromised for ATPase activity, DNA binding and 

nucleosome mobility (Wu C. Mol Cell, 2003). Collectively, these results indicate that 

chromatin remodelers utilize a wide range of modes to activate the ATPase in the presence 

of the correct nucleosomal substrate.  

 

2.3.3.2  Role of histone-DNA contacts in the nucleosome remodeling process 

In order to remodel chromatin, ATP-dependent chromatin remodelers have to disturb 

histone-DNA contacts within the nucleosome. Recent single molecule experiments have 

revealed that histone-DNA contacts vary greatly in strength. The strongest contacts locate 

around the dyad of the nucleosome (SHL0) (Hall et al. 2009) (Fig. 2.1.). Several studies 

have mapped the region on the nucleosome, from which the remodeler initiates the 

remodeling reaction. The presence of DNA gaps at different position in the nucleosomes 

inhibited the sliding reaction only when the gap was located at position SHL2, close to the 

dyad (Schwanbeck et al. 2004; Saha et al. 2005; Zofall et al. 2006). Crosslinking 

experiments have revealed that several ATP-dependent chromatin remodelers contact the 

nucleosome at this position (Dang and Bartholomew 2007; Dechassa et al. 2008). 

Interestingly, this side is flanked by an energetically weak histone-DNA contact and 

suggests that the ATPase motor could disrupt this contact at an early step of the 

remodeling reaction (Bowman 2010). Despite the fact, that not all histone-DNA contacts 

are energetically equivalent, it is conceivable that disruption of only some histone-DNA 

contacts is sufficient to generate a force required for nucleosome remodeling. Indeed, the 

force measurements by single molecule experiments showed that remodelers impart 
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sufficient force to disrupt several histone-DNA contacts, but not a “rip force” that can 

disrupt all the contacts at once (Lia et al. 2006). In agreement with this, in the current 

models for nucleosome mobility not all histone-DNA interactions are broken 

simultaneously (see below).  

 

2.3.3.3  Current model for ATP-dependent nuclesome remodeling 

One of the biggest challenges in the field of chromatin remodeling is to gain a mechanistic 

view of how ATP hydrolysis is coupled to disruption of histone-DNA contacts and 

subsequent nucleosome redeposition. Nucleosome sliding was first explained by the “twist 

diffusion model” which suggested that thermal energy fluctuations would be sufficient to 

twist the DNA helix at the edge of the nucleosomes, replacing histone-DNA interactions 

by neighboring DNA base pairs. Propagation of this twist around the histone octamer 

surface would change the translational position of the nucleosome (Widom 2001; Längst 

and Becker 2004). An alternative model, called “loop recapture” was also proposed 

(Studitsky et al. 1994; Widom 1998; Schiessel et al. 2001). Thermal energy would lead to 

the detachment of a segment of DNA at the entry site of the nucleosome and would lead to 

the formation of a DNA loop on the histone octamer (Brower-Toland et al. 2002; Li et al. 

2005). Subsequent propagation of the DNA loop over the histone octamer would change 

the position of the nucleosome, corresponding to the size of the DNA loop. Initial studies 

on chromatin remodeling have shown that remodeling complexes can introduce 

superhelical torsion into nucleosomal DNA, suggesting a twisting mechanism (Havas et al. 

2000). However, nicked nucleosomal DNA or DNA extrusions, which should inhibit 

nucleosome mobility according to the DNA twisting mechanism, did not affect the 

chromatin remodeling enzymes (Längst and Becker 2001; Aoyagi and Hayes 2002; 

Schwanbeck et al. 2004). Moreover, other studies indicate that different classes of 

ATPases move nucleosomes in steps that are multiples of around 10 bp (Flaus and Owen-

Hughes 2003; Kassabov et al. 2003). In these experiments nucleosome movements in 

single base pair steps were not observed, which would be expected for a mechanism that 

involves DNA twisting. These observations suggest that remodeling occurs via 

propagation of a loop of detached DNA.  

A main change in the view of the mechanism of chromatin remodelers came from studies 

which showed that ATP-dependent chromatin remodelers can translocate on DNA (Ristic 

et al. 2001; Saha et al. 2002; Whitehouse et al. 2003; Lia et al. 2006). A model for 
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nucleosome remodeling, based on a number of biochemical and single molecule 

experiments on chromatin remodelers as well as the structural insights from the DNA 

translocase field, has been suggested. According to this, the ATPase motor of the 

remodeler binds nucleosome in two positions: a DNA binding domain contacts the linker 

DNA, whereas the ATPase domain (translocation domain) binds to SHL2 on the 

nucleosomal DNA. DNA is pumped into the nucleosome by coordinated, ATP-dependent 

conformational changes between the translocation domain and the DNA binding domain of 

the motor protein. This conformational change would result in a helicase-typical typical 

“inch–worm” like movement of the remodeler and it would facilitate the disruption of 

histone-DNA contacts and the formation of a loop (Fig. 2.5). Indeed, recent footprinting 

and crosslinking experiments have revealed large changes in the interactions of Isw2 with 

nucleosomal DNA that occur upon ATP hydrolysis and a channel-like organization of the 

protein around the nucleosomal DNA (Gangaraju et al. 2009). DNA release by the 

translocation domain would enable the passage and subsequent propagation of the loop 

resulting in the change of the nucleosome position around 10 bp away from the initial one. 

This model was based on studies made mostly on the ISWI ATPase, which was shown to 

contact two sites of the nucleosome, but it could be probably adjusted with some changes 

to other chromatin remodelers (Cairns 2007; Gangaraju et al. 2009).  

 

 

Figure 2.5 Model for nucleosome remodeling 

The model for nucleosome sliding by ISWI. A DNA loop is formed on the nucleosome surface by 

the coordinated action of a DNA translocase (Tr) domain located at SHL2 position and a DNA 

binding domain (D) located close to the linker DNA. Top view of the nucleosome is shown (grey 

circle), DNA is depicted in black, nucleosome dyad is shown as dashed line. For details see text. 

The model is based on (Cairns 2007; Gangaraju et al. 2009). 
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2.4  Recruitment mechanisms of chromatin remodelers 

In order to regulate chromatin structure in vivo, ATP-dependent chromatin remodelers 

have to be targeted to their sites of action in the nucleus. Studies on recruitment 

mechanisms of these complexes strongly contributed to our current knowledge on 

functions of chromatin remodelers in vivo. Various recruitment mechanisms include 

binding to sequence specific transcription factors, recognition of specific histone marks, 

binding to methylated DNA and interaction with poly(ADP-ribose) or noncoding RNAs 

(Fig. 2.6). In the following chapter I will summarize mechanisms which are utilized by 

chromatin remodelers for their targeting to chromatin.  

 

Figure 2.6 Mechanisms of recruitment of chromatin remodeling complexes to chromatin 

Different targeting mechanisms are summarized (for detail see text). (A) Chromatin remodeling 

complexes can be targeted to chromatin by sequence specific transcription factors (activator or 

repressors). (B) SUMOylation of some transcription factors targets repressor complexes. (C) 

Various histone tail modifications are recognized by specific structural modules within remodeling 

complexes. (D) DNA methylation is recognized by methyl-binding proteins which constitute 

subunits of certain remodeling complexes. (E) Poly(ADP-ribosylation) of chromatin associated 

proteins (for example histones) is recognized by CHD4 remodeler at sites of DNA damage. (F) 

ncRNA (pRNA) targets NoRC complex to the promoter of rDNA genes.  

 



INTRODUCTION 

26 

 

2.4.1  Sequence specific transcription factors 

Chromatin remodeling complexes bind DNA and nucleosomes in a sequence independent 

manner. Still, they regulate expression of only a subset of genes genome wide (Holstege et 

al. 1998). Early studies on SWI/SNF in yeast revealed that the complex can interact with 

the mammalian glucocorticoid receptor in yeast whole-cell extracts (Yoshinaga et al. 

1992).  

These initial observations led to the hypothesis that SWI/SNF activity must be targeted to 

specific loci in vivo. One way to recruit a complex to specific genes would be an 

interaction with sequence specific transcription regulators. Indeed, a number of studies 

have shown that SWI/SNF associates with a plethora of sequence specific transcription 

factors in yeast, Drosophila and human. Moreover, this mechanism is utilized by other 

families of chromatin remodelers, such as ISWI, CHD and INO80 which were shown to 

bind to various transcriptional activators or repressors (for examples and references see 

table 2.2).  

Studies on SWI/SNF have revealed that the recruitment of the complex to promoters 

requires the activation domain of various transcriptional activators (Neely et al. 1999; 

Yudkovsky et al. 1999). These interactions seem to be functional, as the association of 

SWI/SNF with activators recruits the complex to nucleosomal arrays in vitro and 

consequently stimulates RNAP II transcription from these templates (Neely et al. 1999; 

Yudkovsky et al. 1999).  

Often, the enzymatic activity of one chromatin remodeling enzyme is required for the 

subsequent, activator-dependent targeting of a second type of enzymatic activities. One 

prominent example of such orchestrated events is the Swi5 activator, which potentiates 

transcription of the yeast HO gene by recruitment of ySWI/SNF (Cosma et al. 1999). 

Chromatin remodeling by ySWI/SNF is required for subsequent recruitment of Gcn5 

histone acetyltransferase (HAT) complex, called SAGA. Acetylation of the nucleosomes 

upstream of the transcription start site is required for binding of a second gene-specific 

activator, SBF, which in turn drives expression of the HO gene in late mitosis by recruiting 

components of the general transcription machinery (Cosma et al. 1999; Krebs et al. 1999). 

These studies indicate that not only transcription factors recruit chromatin remodelers, but 

also the binding of some transcription factors can be facilitated by the activity of chromatin 

remodelers. It has been suggested that this can depend on the context of specific promoters. 
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For example, activators whose binding sites are not occluded by nucleosomes (for example 

Swi5) can recruit ySWI/SNF complex. Conversely, activators that have difficulty 

accessing a nucleosomal site (for example SBF) may require SWI/SNF and HATs 

activities for binding (Cosma et al. 1999; Krebs et al. 1999; Peterson and Workman 2000). 

 

Table 2.2 Chromatin remodeling complex recruitment by transcription factors and 

the influence on gene activity 

Remodeler Recruiting 

factor 

Remarks References 

ySwi-Snf Swi5 

 

 

Gal4 

 

 

Gcn4p  

 

 

 

Hir1/Hir2 

H0 gene activation in late mitosis 

 

 

Activation of Gal genes upon 

galactose induction  

 

Activation of amino acid biosynthetic 

genes in response to amino acid 

starvation 

 

Recruitment by transcriptional 

repressors, required for histone gene 

locus activation 

(Cosma et al. 1999; Krebs et 

al. 1999) 

 

(Bryant et al. 2008) 

 

 

(Natarajan et al. 1999) 

 

 

 

(Dimova et al. 1999) 

dBrm Zeste Zeste binding to specific Brahma 

complex subunits, Moira (MOR) and 

OSA recruits the complex for active 

chromatin state inheritance at Fab-7 

region 

(Kal et al. 2000) 

BRG1, Brm 

(mammalian) 

ER (estrogen 

receptor) 

 

GR 

(glucocorticoid 

receptor) 

 

c-Myc 

 

 

 

C/EBP  

 

MyoD 

 

EKLF 

 

HSF1 

 

-catenin 

 

Rest 

Ligand dependent interaction, 

enhancement of transcription by the 

ER  

Ligand dependent interaction, 

enhancement of transcription by the 

GR  

 

c-Myc interaction with hSNF5 

subunit of hSWI-SNF complex 

required for c-Myc transactivation 

functions 

Myeloid gene activation 

 

Muscle-specific gene expression 

 

-globin gene expression 

 

Heat shock gene activation 

 

-catenin responsive gene activation 

 

Rest-mediated gene repression 

(Ichinose et al. 1997; DiRenzo 

et al. 2000) 

 

(Ostlund Farrants et al. 1997; 

Fryer and Archer 1998) 

 

 

(Cheng et al. 1999) 

 

 

 

(Kowenz-Leutz and Leutz 

1999) 

(de la Serna et al. 2005) 

 

(Armstrong et al. 1998) 

 

(Corey et al. 2003) 

 

(Barker et al. 2001) 

 

(Ooi et al. 2006) 

Isw2 Ume6 Repression of early meiotic genes 

during mitotic growth in yeast 

(Goldmark et al. 2000) 

dNURF 

 

EcR (ecdysone 

receptor) 

Ligand dependent interaction, 

required for ecdysone regulated gene 

(Badenhorst et al. 2002) 
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GAF factor and 

HSF (heat shock 

factor) 

expression 

 

Interaction with Nurf301, suggests 

role in recruitment, though not 

formally shown  

 

 

(Badenhorst et al. 2005) 

 

dNuRD 

 

Ttk69 

 

 

Hunchback 

Repression of neuronal specific 

genes 

 

Repression of HOX genes 

(Murawsky et al. 2001; Reddy 

et al. 2010) 

 

(Kehle et al. 1998) 

NuRD 

(mammalian) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ikaros 

 

 

FOG-1 

 

 

KAP-1 

 

 

 

ER (estrogen 

receptor) 

 

 

 

Oct1 

 

 

 

EKLF  

 

 

 

BCL11B 

 

Gene repression during lymphocyte 

differentiation 

 

Gene repression in lineage 

commitment during erythropoiesis 

 

KAP-1 co-repressor interacts with 

Mi-2α and targets NuRD complex for 

gene repression 

 

ER interacts with MTA1 subunit of 

NuRD and mediates NuRD 

recruitment to pS2 and c-myc 

promoters 

 

NuRD recruitment to the Il2 

promoter in naive CD4 T cells to 

mediate gene repression 

 

SUMO-dependent interaction with 

Mi-2β mediates transcriptional 

repression during erythropoiesis 

 

Recruitment of NuRD for repression 

of HIV-1 long terminal repeats in T 

cells 

(Kim et al. 1999; Koipally et 

al. 1999) 

 

(Gao et al. 2010; Gregory et 

al. 2010) 

 

(Schultz et al. 2001b) 

 

 

 

(Mazumdar et al. 2001) 

 

 

 

 

(Shakya et al. 2011) 

 

 

 

(Siatecka et al. 2007) 

 

 

 

(Cismasiu et al. 2008) 

INO80 

(human) 

YY1 (Yin-Yang-

1) 

YY1-dependent gene activation (Cai et al. 2007) 

 

2.4.2  SUMOylation of transcription regulators 

An additional layer of regulation of chromatin remodeling complexes recruitment 

comprises SUMOylation of certain transcription factors. Small ubiquitin-like modifiers 

(SUMOs) are attached postranslationally to lysine residues of a myriad of proteins through 

a series of enzymatic reactions (for review see (Gill 2004; Johnson 2004; Hay 2005)). 

Transcriptional regulators constitute a large group of SUMO-modified proteins. These 

include transcription factors, cofactors and chromatin modifying enzymes. SUMOylation 

has mostly been linked to transcriptional repression. It has been suggested that SUMO-

modified transcriptional regulators can recruit corepressors to promote transcriptional 

repression (Nishida and Yasuda 2002; Holmstrom et al. 2003). Several studies have 
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recently linked recruitment of chromatin remodelers via SUMOylated transcription factors 

(Ivanov et al. 2007; Stielow et al. 2008; Ogawa et al. 2009). A high-throughput screen 

performed in Drosophila cells to identify factors required for SUMO-dependent repression 

by transcription factor Sp3, revealed a number of chromatin regulators. Among them, a 

CHD family member of ATP-dependent chromatin remodelers, dMi-2, was found. dMi-2 

is a catalytic subunit of at least two repressive chromatin remodeling complexes in 

Drosophila, called dNuRD and dMec (for details see chapter 2.5.3). dMi-2 was shown to 

bind SUMO and SUMOylated Sp3 in vitro. Moreover, dMi-2 knockdown relieved 

transcriptional suppression by SUMO-modified Sp3. Finally, dMi-2 was shown to be 

recruited to the promoter of a reporter gene in a SUMO dependent manner. In addition, the 

recruitment of mouse Mi-2 to DHFR promoter was abrogated in Sp3 deficient MEFs 

(Stielow et al. 2008).  

Another study revealed that KAP1, a well characterized transcriptional co-repressor 

recruited to target genes by the KRAB-zinc finger sequence specific transcription factors, 

is also SUMOylated (Ivanov et al. 2007). Previous studies showed that Kap1 recruits 

CHD3 (Mi-2α) complex for repression of target genes (Schultz et al. 2001). SUMOylation 

of the Kap1 bromodomain has been subsequently shown to be critical for this recruitment 

event (Ivanov et al. 2007). Altogether these results suggest that recruitment via 

SUMOylated transcription factors may be a more general mechanism for Mi-2-like 

chromatin remodeling complexes.  

There is also some evidence showing that SUMOylated transcription factors can stimulate 

ATPase activity of certain chromatin remodelers (Ogawa et al. 2009). Thus, it is plausible 

that in addition to recruitment, SUMOylation of transcription factors can play a regulatory 

role by enhancing the repressive activity of recruited chromatin remodeling complexes. 

 

2.4.3  Histone modifications 

Recognition of specific histone modifications has been also shown to play a role in 

chromatin remodeler recruitment. Several ATP-dependent chromatin remodelers have been 

reported to interact with H3K4me2/3. This modification is associated with transcription 

start sites of active genes and can be recognized by certain proteins resulting in recruitment 

of downstream effectors (Kouzarides 2007, Sims et al. 2007). It has been shown that 

H3K4me3 can recruit ISWI containing complexes (human NURF complex) via a PHD 
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finger of its largest subunit, BPTF. Histone peptide pulldown assays demonstrated that 

NURF preferentially associates with H3K4me3 tails. The crystal structure revealed the 

molecular basis of this specific recognition. BPTF interacts with the methyllysine through 

an anti-parallel beta-sheet formation on the surface of the PHD finger, with the side chains 

of R2 and K4me3 fitting in adjacent surface pockets, and bracketing an invariant 

tryptophan (Li et al. 2006). This binding seems to play a role in NURF complex 

recruitment in vivo. Depletion of H3K4me3 causes partial release of BPTF from chromatin 

and as a result, defective recruitment of the associated ATPase, SNF2L, to the Hox8 gene 

promoter. Moreover, loss of BPTF in Xenopus embryos impairs Hox gene expression 

patterns during development (Wysocka et al. 2006). Collectively, these results suggest a 

role of H3K4me3 in direct recruitment of NURF complex to target genes. Another ISWI 

ATPase, yeast Isw1, was shown to require H3K4me2/3 for chromatin association in vivo, 

although the molecular basis of this interaction is not known (Santos-Rosa et al. 2003). 

Altogether, these experiments suggest that recruitment of some ISWI containing 

complexes via H3K4me3 binding is conserved throughout the evolution.  

However, recognition of H3K4me3 by some chromatin remodelers seems to play a role 

only in higher eukaryotes. Human, but not yeast, CHD1 was shown to bind H3K4me2/3 

via its chromodomains. The crystal structure revealed that hCHD1 requires tandem 

chromodomains, but the methyllysine is exclusively caged by the first chromodomain by 

two aromatic tryptophan residues (Flanagan et al. 2005). It has been suggested that hCHD1 

recognition of H3K4me3 functions to recruit factors involved in pre-mRNA splicing (Sims 

et al. 2007). In concert with studies which showed hCHD1 binding to H3K4me2/3 

peptides, it is plausible that this modification plays a role in hCHD1 recruitment to 

transcribed genes but it is also possible that it stabilizes hCHD1 on chromatin. Further 

experiments need to be done in order to distinguish between these two possibilities.  

Studies on Drosophila CHD1 revealed that deletion of chromodomains of this remodeler 

had no impact on its localization to polytene chromosomes in vivo (Morettini et al. 2011). 

Moreover, though chromodomains of dCHD1 possess conserved aromatic residues, they 

were shown to bind H3K4 peptides independent of their methylation status (Morettini et al. 

2011). Thus, it is currently unknown whether dCHD1 recognizes H3K4me3 in vivo and 

what is the chromatin recruitment mechanism of this remodeler. Chromodomains of yChd1 

lack one of the conserved residues which can explain why they do not bind H3K4me3 

(Sims et al. 2005). It has been suggested, that yChd1 can be recruited to transcribed genes 
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via its interaction with transcription machinery. Indeed, it was shown that yChd1 binds to 

PAF complex that associates with RNAP II and regulates transcription elongation (Simic et 

al. 2003).  

The H3K4me3 mark might also block binding of certain chromatin remodelers to 

chromatin. For instance, it has been demonstrated that H3K4 methylation by Set9 reduces 

the association of the NuRD complex with H3 tail (Nishioka et al. 2002; Zegerman et al. 

2002). Thus, by displacing this repressive chromatin remodeling complex, H3K4me3 

might help to stimulate transcriptional activation. 

Another prominent histone modification, which has been shown to play a role in chromatin 

remodeler recruitment, is histone acetylation. This modification can be recognized by 

bromodomains, and SWI/SNF and several subunits of other remodeling complexes possess 

this structural module. A number of studies in yeast and mammals demonstrated that 

histone acetylation facilitates SWI/SNF binding to different promoters in vivo (Reinke et 

al. 2001; Huang et al. 2003; Geng and Laurent 2004; Henderson et al. 2004). In some cases 

recruitment of SWI/SNF coincides with binding of histone acetyltransferases. For example 

Gcn5 is recruited simultaneously with SWI/SNF to the SUC2 promoter in yeast (Geng and 

Laurent 2004). In other cases, histone acetylation precedes SWI/SNF binding. In the 

human system it was shown that transcriptional activation of interferon beta gene (IFN-β) 

begins with histone acetylation which in turn facilitates SWI/SNF recruitment and 

nucleosome remodeling at the promoter of this gene (Agalioti et al. 2002). Using an in 

vitro system with reconstituted nucleosomal arrays, it was demonstrated that H4K8 

acetylation was required for BRG1 recruitment in a bromodomain dependent manner. It 

was suggested that at this promoter, histone acetylation by Gcn5 is followed by SWI/SNF 

recruitment during IFN-β gene activation (Agalioti et al. 2002).  

As discussed above (chapter 2.4.1), binding to transcription activators constitutes the main 

mode of SWI/SNF recruitment to promoters and subsequent chromatin remodeling may 

facilitate binding of histone acetyltransferases (Cosma et al. 1999; Krebs et al. 1999). 

However, it was also suggested that histone acetylation may be involved in stabilization of 

the remodeler interaction with chromatin upon recruitment by transcription factor. This 

assumption comes from chromatin immunoprecipitation experiments which showed 

SWI/SNF binding to the HO promoter while the activator, Swi5, was not longer detected 

(Cosma et al. 1999). Subsequent in vitro studies have revealed that SWI/SNF retention on 

nucleosomal arrays was stabilized by acetylation after dissociation of the activator from the 
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template (Hassan et al. 2001). These studies clearly show that SWI-SNF chromatin 

remodelers work in concert with histone acetyltransferases, and often they rely on their 

enzymatic activities for recruitment and/or stabilization on the promoters of target genes.  

Finally, histone modifications have been also implied in recruitment of ATP-dependent 

chromatin remodelers during DNA damage response. One of the first events in DNA DSB 

repair is phosphorylation of histone H2A in yeast and H2AX variant in mammals by PI3K 

kinases, like ATM and ATR (Burma et al. 2001). This phosphorylation functions to recruit 

a number of protein complexes involved in DNA repair. Several studies have shown that 

recruitment of INO80 chromatin remodeling complex relies on histone H2A 

phosphorylation. First, recruitment of INO80 is impaired in yeast strains lacking ATM and 

ATR homologs as well as in a H2A phospho-acceptor mutant (van Attikum et al. 2004). 

Secondly, Arp4 and Nhp10, subunits of INO80 complex were shown to bind to phospho-

H2A peptide and contribute to INO80 recruitment in vivo (Downs et al. 2004; Morrison et 

al. 2004). Altogether, these experiments strongly suggest a role of H2A phosphorylation in 

INO80 recruitment to sites of DNA damage. 

 

2.4.4  DNA methylation 

Methylation of cytosine of CpG islands is an epigenetic modification implicated in 

transcriptional silencing (chapter 2.1.2). A number of studies indicated that methyl-CpG-

binding proteins (MBPs) recruit corepressor complexes to silence gene expression (Nan et 

al. 1998; Wade 2001; Yoon et al. 2003; Sarraf and Stancheva 2004). One of the ATP-

dependent chromatin remodeling complexes, which was shown to be targeted to chromatin 

via a methyl-CpG-binding protein, is the NuRD complex. The vertebrate NuRD complexes 

constitute a heterogeneous group of complexes which harbour both nucleosome 

remodeling and histone deacetylase activities, due to the presence of CHD3/4 (Mi-2) 

ATPases and HDAC1/2 deacetylases, respectively (for details see table 2.3). Various 

biochemical purification strategies revealed that NuRD complexes contain subunits which 

belong to the methyl-CpG-binding family of proteins, such as MBD2 or MBD3 (Zhang et 

al. 1999; Feng and Zhang 2001; Le Guezennec et al. 2006). While MBD3 cannot bind 

methylated DNA, MBD2 was shown to tether NuRD complex to free methylated DNA as 

well as nucleosomal arrays assembled on methylated DNA in vitro (Zhang et al. 1998; 

Zhang et al. 1999; Feng and Zhang 2001). Moreover, overexpression of Mi-2 enhanced 
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MBD2-dependent transcriptional repression in a luciferase assay (Feng and Zhang 2001). 

Collectively, these results strongly suggest that MBD2 recruits NuRD complex to 

methylated promoters contributing to their transcriptional repression.  

In Drosophila, a functional link between dMi-2 and MBD2/3 has also been suggested. 

dMi-2 and MBD2/3 cofractionate in SL2 cells and interact genetically in flies (Ballestar et 

al. 2001; Marhold et al. 2004b). Moreover, both proteins partially colocalize in embryo 

nuclei and a fraction of dMi-2 is displaced from nuclear foci in MBD mutants (Marhold et 

al. 2004b). These results suggest that MBD2/3 might target some dMi-2 molecules to 

methylated DNA. However, given the low and transient levels of DNA methylation in 

Drosophila, this is unlikely to be a major recruitment mechanism for the dMi-2 complexes. 

 

2.4.5  Poly(ADP-ribosylation) 

Recently, a novel mode of recruitment of a chromatin remodeler to sites of DNA-damage 

has emerged. In response to DNA damage, poly(ADP-ribose) polymerase (PARP) 

enzymes are activated. PARP modifies itself and target proteins with poly(ADP-ribose) 

chains (PAR) at DNA damage sites. This modification has been linked to regulation of 

activity of various DNA repair factors, regulation of protein interactions with other 

proteins or nucleic acids as well as recruitment events to damaged chromatin (for review 

see (Malanga and Althaus 2005; Hakmé et al. 2008)). The connection between chromatin 

remodeler recruitment and poly(ADP-ribosylation) has been shown for the NuRD 

complex, which in addition to its role in transcription repression, plays a role in DNA 

damage response (chapter 2.5.5.2). The ATPase subunit of the complex, CHD4 has been 

shown to be recruited to laser-induced DNA damage sites in various human cells (Chou et 

al. 2010; Larsen et al. 2010; Polo et al. 2010; Smeenk et al. 2010). The measurement of 

recruitment kinetics revealed that CHD4 recruitment was rapid (it occurred within a few 

minutes), but transient (it declined within 30 minutes upon DNA damage induction). Other 

components of the complex, MTA2 and HDAC1, have been shown to be recruited in a 

CHD4 dependent manner. Interestingly, CHD4 recruitment was not impaired in H2AX or 

ATM deficient cells which indicates that phosphorylation of H2AX does not play a role in 

CHD4 targeting. By contrast, pharmacological inhibition of PARP1/2 enzymatic activity as 

well as PARP1/2 depletion by RNA interference, abrogated CHD4 recruitment to DNA 

damage sites. Biochemical experiments revealed direct CHD4 binding to PAR and the N-
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terminal part of CHD4 was shown to bind PAR in vitro and to be important for CHD4 

targeting in vivo (Polo et al. 2010). Altogether, these results suggest that CHD4 recruitment 

to chromatin at sites of DNA damage likely involves its binding to PARylated proteins 

present at these sites. Currently it is not known whether automodified PARP itself, histones 

or other PARylated factors are responsible for CHD4 targeting.  

 

2.4.6  Noncoding RNA 

Recent transcriptome analysis of many organisms has revealed that a large part of the 

genomes are transcribed into noncoding RNAs (ncRNAs). Several ncRNAs have been 

implicated in recruitment of chromatin modifying complexes, such as polycomb complex, 

PCR2 (Khalil et al. 2009; Tsai et al. 2010). A specific ncRNA has been also shown to be 

important for recruitment of ISWI containing chromatin remodeling complex, called 

NoRC (nucleolar remodeling complex) (Strohner et al. 2001). This complex silences a 

fraction of ribosomal RNA genes (rDNA) by nucleosome remodeling and recruitment of 

histone-modifying enzymes and DNA methyltransferases (Strohner et al. 2001; Santoro et 

al. 2002; Zhou et al. 2002). Two factors were shown to be involved in targeting of NoRC 

complex to the promoter of rDNA genes. First, TTF-I, a transcription termination factor 

bound to the promoter-proximal terminator T0, recruits NoRC to rDNA genes (Németh et 

al. 2004; Strohner et al. 2004; Santoro and Grummt 2005). Secondly, ncRNA called 

pRNA, which originates from the promoter located in the intergenic spacer separating 

rDNA genes, has been involved in NoRC recruitment and rDNA gene silencing (Moss et 

al. 1980; Mayer et al. 2006). Several experiments suggest a role of pRNA in NoRC 

targeting to chromatin. First, treatment of permeabilised cells with RNAse A abolished 

localization of NoRC to nucleoli. Secondly, pRNA was mapped to bind to TIP5, the large 

subunit of NoRC. Third, mutations in TIP5 which abrogate its binding to pRNA impaired 

NoRC binding to chromatin and prevented heterochromatin formation. Moreover, specific 

depletion of pRNA led to displacement of NoRC from nucleoli (Mayer et al. 2006). pRNA 

was shown to fold into a conserved stem-loop structure and mutations which disrupted this 

structure also impaired NoRC targeting to rDNA genes. Thus, it has been suggested that 

NoRC recognizes a secondary or tertiary RNA structure rather than a specific sequence 

within pRNA (Mayer et al. 2008). This is in line with recent studies on long ncRNAs 

which suggest that complex targeting may not necessarily imply linear base pairing with 
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target sequences, but instead the tertiary structure of the RNA may be key to specific target 

gene recognition (Margueron and Reinberg 2011). It remains to be determined whether 

other chromatin remodeling complexes utilize ncRNA for gene targeting.  

 

2.5  CHD family of chromatin remodelers 

Since the characterization of members of the CHD family of ATP-dependent chromatin 

remodelers in Drosophila constitutes the main aim of this PhD thesis, below, I will 

summarize the current knowledge on CHD proteins emphasizing their domain structure, 

complex composition and biological functions.  

 

2.5.1  Family of CHD remodelers 

As mentioned in chapter 2.2.5, the CHD family of ATP-dependent chromatin remodelers is 

characterized by the presence of tandem chromodomains located in the N-terminal region, 

and the SNF2-like ATPase domain located in the middle of the protein. The CHD family is 

further divided into three subfamilies according to the presence of additional structural 

modules (reviewed in (Woodage et al. 1997; Hall and Georgel 2007; Marfella and 

Imbalzano 2007)) (Fig. 2.7). 

 

Figure 2.7 CHD family of ATP-dependent chromatin remodelers 

Schematic representation of protein domains found in different subfamilies of CHD remodelers. 

CD, chromodomains; Dexx, HELICc, ATPase domain; DBD, DNA binding domain; PHD, Plant 
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Homeo Domain Zn-fingers; BRK, Brahma and Kismet domain. Protein examples are listed on the 

right. Note that the protein and domain sizes are not in scale.    

 

The first subfamily contains yeast Chd1 (yChd1) which is the only CHD family member 

present in S. cerevisiae, Hrp1 and Hrp3 in S. pombe and the Chd1 and Chd2 proteins from 

higher eukaryotes. The Chd1 and Chd2 proteins contain a DNA-binding domain located in 

the C-terminal region. The DNA-binding domain preferentially binds to AT-rich DNA 

motifs in vitro, however the function of this interaction in vivo is elusive (Delmas et al. 

1993; Stokes and Perry 1995).  

The second subfamily includes CHD3 and CHD4 (called also Mi-2α and Mi-2β 

respectively) proteins from higher eukaryotes. They lack the standard DNA binding 

domain in the C-terminus but they harbour a pair of PHD Zn-finger-like domains at the N-

terminal part.  

The third subfamily contains proteins numbered from CHD6 to CHD9. This subfamily is 

most variable as it is defined by additional functional motifs in the C-terminal region, like 

SANT domain or BRK domains (Hall and Georgel 2007; Marfella and Imbalzano 2007). 

There is a discrepancy concerning CHD5 protein classification. The presence of both PHD 

fingers and a SANT domain places CHD5 between subfamily II and III.  

 

2.5.2  Structural motifs of CHD family 

2.5.2.1  Tandem chromodomains 

Tandem chromodomains are the signature motifs that define CHD family. The 

chromodomain initially was named for its function as a chromatin organization modifier 

(Eissenberg 2001). It was originally characterized in Drosophila HP1 and Polycomb 

proteins, in which it contributes to binding to methylated histone marks, H3K9me3 and 

H3K27me3, respectively (Paro and Hogness 1991; Pearce et al. 1992; Brehm et al. 2004). 

The standard chromodomain module was refined to encompass ~50 amino acids and it 

folds into 3-stranded anti-parallel β-sheets and one α-helice (Ball et al. 1997). 

Chromodomains of CHD family members have been implicated in recognition of 

methylated histone tails, DNA binding as well as in regulation of the ATPase activity of 

the enzymes. As already discussed in chapter 2.4.3, chromodomains of human, but not 

yeast, CHD1 have been shown to bind H3K4me2/3 (Flanagan et al. 2005). Whether other 

CHD remodelers can bind to H3K4me2/3 or other histone modifications remains to be 
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determined. By contrast, dMi-2 chromodomains have been shown to be a DNA binding 

module (Bouazoune et al. 2002). Both chromodomains of yChd1 and dMi-2 have been 

implicated in regulation of the remodeling activity of these enzymes (chapter 2.3.3.1, 

(Bouazoune et al. 2002; Hauk et al. 2010). Altogether, the analysis of sequences of various 

CHD chromodomains in concert with available biochemical and structural data strongly 

suggest the evolutionary functional specialization of CHD double chromodomains 

(Flanagan et al. 2005).  

 

2.5.2.2  PHD fingers 

The PHD Zn-finger-like domains are ~50-residue modules characterized by a conserved 

Cys4HisCys3 motif that coordinates two zinc ions. They are found in a number of nuclear 

proteins involved in chromatin-based transcriptional regulation (reviewed in (Mellor 2006; 

Champagne and Kutateladze 2009)). The precise function of PHD fingers in CHD proteins 

is so far unknown. It has been described that PHD fingers of CHD3 and CHD4 interact 

with histone deacetylase HDAC1 within NuRD (Xue et al. 1998b). It was also shown that 

second PHD finger of CHD4 recognizes the N-terminus of histone H3 and that this 

interaction is facilitated by acetylation or methylation of Lys9 (H3K9ac and H3K9me 

respectively) but is inhibited by methylation of Lys4 (H3K4me) (Musselman et al. 2009; 

Mansfield et al. 2011). Interestingly, this suggests a possible regulation of CHD3/4 

association with chromatin. Indeed, it was previously shown, that methylation of histone 

H3K4 by Set9 displaces the association of NuRD with the histone H3 tail (Nishioka et al. 

2002; Zegerman et al. 2002). However, functional link between PHD fingers for these 

interactions has not been addressed.  

 

2.5.2.3  Other domains 

Additional domains were mapped in the sequences of CHD remodelers. SANT domains, 

involved in histone tail binding, were found in several CHD subfamily III members (for 

example CHD5). The BRK domain (Brahma and Kismet domain) present in several 

SWI/SNF complexes, was found in Kismet, CHD7, CHD8 and CHD9. However, their 

exact function remains unknown (Daubresse et al. 1999; Hall and Georgel 2007; Marfella 

and Imbalzano 2007).  
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2.5.3  CHD complexes in Drosophila 

The CHD family is a highly heterogeneous group of ATP-dependent chromatin 

remodelers. Some members exist as monomers in vivo, whereas others are subunits of 

multiprotein complexes. Many of the complexes have not yet been purified or 

characterized well. There are also discrepancies in the literature concerning subunits 

composition of some complexes that likely reflect the heterogeneity of these complexes or 

the differences in purification procedures (Table 2.3). In this chapter I will describe the 

composition of Drosophila CHD complexes. CHD complexes from other species are 

included in Table 2.3.  

In Drosophila there are four CHD remodelers, dCHD1, dMi-2, Kismet and dCHD3. 

Glycerol gradient fractionation experiment from Drosophila embryo nuclear extract 

revealed that dCHD1 is a monomer in vivo (Lusser et al. 2005). This is reminiscent of 

yeast where yChd1 has been shown to exist mainly in a monomeric state (Tran et al. 2000). 

The best characterized member of the Drosophila CHD family is dMi-2. Mi-2 was initially 

identified in human as a dermatomyositis-specific antigen recognized by the patient 

Mitchell autoimmune antibodies (Seelig et al. 1995). Subsequently several groups purified 

Mi-2 complexes from Xenopus and human cells (Wade et al. 1998; Zhang et al. 1998; 

Wade et al. 1999; Zhang et al. 1999; Feng and Zhang 2001). Despite of some variability in 

subunit composition, these complexes are unique in coupling nucleosome remodeling with 

histone deacetylase activity, therefore they were named NuRD (nucleosome remodeling 

and histone deacetylation) (Xue et al. 1998b; Zhang et al. 1998). Several studies indicated 

that Drosophila Mi-2 exists in a similar NuRD complex. dMi-2 immunoprecipitates from a 

cell line with the histone deacetylase dRPD3, CAF1/p55 (homolog of human RbAp46/48), 

dMTA (metastasis associated protein), MBD2/3 (DNA-methyl binding) and dp66 

(Bouazoune and Brehm unpublished and (Reddy et al. 2010)). The precise roles of 

different non enzymatic subunits within the complex are not known. The CAF1/p55 

protein is a common subunit of many chromatin modifying complexes (Smith and Stillman 

1989; Tyler et al. 1996; Verreault et al. 1996). It comprises seven WD repeat motifs and 

was shown to bind to histones (Verreault et al. 1998). Based on its structure, it has been 

suggested that CAF1/p55 may serve as a multifunctional protein interaction platform for 

the complexes (Song et al. 2008). MTA proteins have been shown to be highly expressed 

in metastatic tumour cell lines (Toh et al. 1994). It was reported that MTA directs 
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assembly of an active histone deacetylase within NuRD complex in vitro, however its 

exact function is unknown (Zhang et al. 1999). DNA-methyl binding protein, MBD2/3, is 

present in Drosophila as a long and a short isoform and both of them have been shown to 

be associated with dNuRD complex via dMi-2 and CAF1/p55 (Marhold et al. 2004a). 

Given that DNA methylation in Drosophila is restricted temporally during development 

and occurs at a significantly lower frequency than in mammals, it is conceivable that 

MBD2/3 plays different role in flies. Indeed, dMBD2/3 was shown to be unable to bind 

methylated DNA (Ballestar et al. 2001). However, dMBD2/3 has been suggested to 

function as a transcriptional corepressor through recruitment of histone deacetylase activity 

within dNuRD complex (Ballestar et al. 2001). Finally, the dp66 subunit is a highly 

conserved nuclear zinc-finger protein that is required for fly development (Kon et al. 

2005). In the human system, dp66 homologs were shown to interact with MBD2 and 

histones (Brackertz et al. 2002; Brackertz et al. 2006). In addition, SUMOylation of human 

p66α/  was shown to be important for interactions with HDAC1 and RbAp46 and to 

enhance the repressive activity of NuRD complex (Gong et al. 2006). It is currently not 

known whether the same applies to the Drosophila NuRD complex.   

Recently, a novel dMi-2 containing complex, called dMec (Drosophila Mep-1 containing 

complex) was purified from the Kc cell line (Kunert et al. 2009). This complex comprises 

only two subunits, dMi-2 and dMep1 and turned out to be the major dMi-2 complex in 

Drosophila cell line. dMec seems to be distinct from dNuRD, as dMep1 was shown not to 

precipitate with dRPD3 or dp66 in Kc nuclear extracts (Kunert et al. 2009). dMep1 is a 

zinc finger protein, previously shown to interact with the C. elegans Mi-2 homolog, Let-

418 and be required for maintenance of somatic differentiation in C. elegans 

(Unhavaithaya et al. 2002). The dMec complex was shown, similarly to dNuRD complex, 

to be a nucleosome stimulated ATPase (Kunert et al. 2009).  

It has been also suggested that dMep1 can be a subunit of dNuRD complex as 

immunoaffinity precipitation of dMep1 from embryo nuclear extracts revealed association 

of all dNuRD subunits (Reddy et al. 2010). These discrepancies could be due to the 

differences in purification procedures or due to the different material used for the complex 

purification (embryo nuclear extract versus cell line nuclear extract). 

Another Drosophila CHD family member, Kismet (KisL) has been shown to exist in a 

large complex in embryo nuclear extracts, however the associated subunits have not been 
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identified so far (Srinivasan et al. 2005). dCHD3 is the only member of CHD family in 

Drosophila that has not been studied to date (chapter 5.1).  

 

Table 2.3 Composition of CHD complexes in different species 

ATPase 

(Complex) 

Complex subunits Method of purification References 

yChd1 monomer or dimmer Myc-tagged yChd1 purification by 

anion exchange and size-exlusion 

chromatography  

(Tran et al. 2000) 

yChd1, subunits of 

SLIK (Saga like) and 

Saga (Spt-ada-Gcn5 

acetyltransferase) 

complexes 

Tap-tagged yChd1 IP followed by 

anion exchange and size-exlusion 

chromatography 

(Pray-Grant et al. 2005) 

Hrp1 

 

Hrp1, Hrp3, Nap1 

(nucleosome assembly 

factor 1), CkII kinase 

Fllag-tagged Hrp1 IP, followed by 

mass spectrometry (MS) analysis 

(Walfridsson et al. 2007) 

Med15 (component of 

Mediator complex) 

Flag-Med15 IP, followed by MS 

analysis 

(Khorosjutina et al. 

2010)  

dCHD1 monomer Glycerol gradient sedimentation 

from crude Drosophila embryo 

nuclear extracts  

(Lusser et al. 2005) 

hCHD1 

 

hCHD1, SSRP1 

(subunit of FACT 

complex) 

Yeast 2 hybrid, size-exclusion 

chromatography in HeLa cells   

(Kelley et al. 1999) 

hCHD1, PAF complex 

subunits, SNF2h, SF3A 

(subcomplex of the U2-

snRNP) 

Ion exchange chromatography 

from HeLa nuclear extracts, 

followed by size-exclusion 

chromatography and 

immunoprecipitation with CHD1 

specific antibodies 

(Sims et al. 2007) 

xMi-2 

(NuRD) 

Mi-2, HDAC1/2, 

RbAp46/48, MTA1, 

p66/68, MBD3 

Ion exchange chromatography and 

sucrose gradient sedimentation 

from Xenopus egg extracts 

(Wade et al. 1998; Wade 

et al. 1999) 

Mi-2β 

(NuRD) 

Mi-2β, HDAC1/2, 

RpAp46/48, MTA1/2, 

MBD3 

Immunoaffinity purification from 

HeLa nuclear extracts followed by 

MS, also conventional ion 

exchange chromatography  

(Zhang et al. 1998; 

Zhang et al. 1999) 

Mi-2 

(MeCP1) 

 

Mi-2, HDAC1/2, 

RbAp46/48, MTA2, 

p66/p68, MBD2and 

MBD3 

Ion exchange chromatography 

from HeLa nuclear extracts 

(Feng and Zhang 2001) 

Mi2α/β 

(MBD2/NuRD) 

 

 

 

(MBD3/NuRD) 

Mi-2 α/β, HDAC1/2, 

RpAp46/48, MTA1/2 

MBD2, PRMT5, 

MEP50, DOC1, 

importin or 

Mi-2 α/β, HDAC1/2, 

RpAp46/48, MTA1/2 

MBD3, DOC1  

HEK 293 cell (human embryonic 

cells) lines stably expressing Tap-

tagged MBD2 or MBD3, Tap-

purification followed by MS 

(Le Guezennec et al. 

2006) 

Mi2α/β 

(NuRD) 

Mi-2 α/β, HDAC1/2, 

RpAp46/48, MTA2, 

MBD2, MBD3, LSD1, 

BRCA2 

Immunoaffinity purification of  

Flag-tagged MTA2 from HeLa 

cells, followed by MS analysis 

(Wang et al. 2009) 
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dMi-2 

(dNuRD) 

dMi-2, dRPD3, 

CAF1/p55, dMBD2/3, 

dMTA, p66 

Immunoaffinity purification from 

Drosophila SL2 cell line 

(Brehm et al. 2000; 

Ballestar et al. 2001; 

Bouazoune et al. 2002; 

Marhold et al. 2004a) 

and unpublished data 

(Bouazoune, Brehm) 

dMi-2 

(dMec) 

dMi-2, dMep1 Drosophila Kc cell nuclear extract 

fractionation by ion exchange 

chromatography, followed by 

immunoaffinity purification and 

MS analysis 

(Kunert et al. 2009) 

dMi-2 

(dNuRD) 

dMi-2, dMep1, dRPD3, 

CAF1/p55, dMBD2/3, 

dMTA, p66, DOC1, 

Ttk69 

Immunoaffinity purification from 

0-12 hr embryo nuclear extracts 

with dMi-2 or dMep1 antibodies, 

followed by MS analysis 

(Reddy et al. 2010) 

Let-418 

 

 

 

 

 

CHD3 

Let-418 (CHD4), HDA-

1 (HDAC1), Mep1 

 

Let-418, HDA-1, Lin53 

(RpAp46/48), Lin40 

(MTA1) 

CHD3, HDA-1, Lin53, 

Lin40 

Various immunoprecipitations 

from protein extracts from mixed-

staged C. elegans worms (Tap-tag 

and GFP-tag purifications), 

followed by Western blot analysis 

(Passannante et al. 2010) 

Kismet  High molecular complex 

(1 MDa) 

Size-exclusion chromatography of 

Drosophila embryo nuclear extract, 

complex composition not 

determined 

(Srinivasan et al. 2005) 

CHD7 

 

CHD7, BAF/PBAF 

subunits, PARP1 

Immunopurification with CHD7 

antibodies from hNCLCs cells 

(human neuronal crest cells) 

followed by MS analysis 

(Bajpai et al. 2010) 

CHD7, SETDB1, 

PPARγ, NLK 

Immunaffinity purification of Flag-

tagged NLK followed by MS 

analysis 

Takada (Takada et al. 

2007) 

CHD8 CHD8, WDR5, Ash2L, 

RbBP5 

Ion exchange chromatography 

from HeLa nuclear extracts 

followed by MS, complex 

reconstitution by subunit 

coexpression in SF9 cells 

(Thompson et al. 2008; 

Yates et al. 2010) 

 

2.5.4  Functions of CHD chromatin remodelers in transcription 

Most of the CHD chromatin remodelers have been implicated in transcriptional regulation, 

both repression and activation. It is especially noticeable that different CHD chromatin 

remodelers play roles in different stages of the transcriptional cycle, such as transcription 

initiation, elongation and termination (Fig. 2.9). Moreover, they have been also reported to 

participate in cotranscriptional events, such as pre-mRNA splicing. In the following 

chapter, transcriptional functions of the CHD family will be described. 
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2.5.4.1  Transcription repression 

NuRD is the only so far purified chromatin remodeling complex which couples ATP-

dependent nucleosome remodeling with histone deacetylation. These two activities of the 

complex have been shown to be involved in transcriptional repression of various genes 

during differentiation and development in C. elegans, D. melanogaster and mammals 

(reviewed in (Ahringer 2000; Ramírez and Hagman 2009)). NuRD can accomplish these 

tasks by being recruited to the promoters of target genes via interaction with a plethora of 

transcription factors and co-regulators (Table 2.2). Despite of all these studies, relatively 

little is known about the mechanism of gene repression by NuRD. It has been suggested 

that the net result of the combined enzymatic activities of ATP-dependent nucleosome 

remodeling and histone deacetylation would be the generation of densely packed, 

hypoacetylated nucleosomes (Denslow and Wade 2007). Purified NuRD disrupts 

nucleosomes and recombinant Mi-2 slides mononucleosomes in vitro in the presence of 

ATP (Xue et al. 1998b; Zhang et al. 1998; Brehm et al. 2000). It has been demonstrated 

that inhibition of histone deacetylase activity of NuRD complex has no effect on its 

nucleosome remodeling activity. By contrast, ATP was shown to stimulate the histone 

deacetylase activity of NuRD on nucleosomal arrays (Tong et al. 1998; Xue et al. 1998; 

Zhang et al. 1998). Thus, it has been suggested, that ATP-dependent nucleosome 

remodeling may help a histone deacetylase to get access to the histone substrate. In 

addition, RbAp46 and RbAp48, histone binding subunits of the NuRD complex, are not 

able to bind to nucleosomes and may require the remodeled nucleosome structure to get 

access to histones (Verreault et al. 1996; Zhang et al. 1998). Based on these results a model 

for NuRD transcriptional repression was suggested (Fig. 2.8). According to it, NuRD is 

recruited to the promoters of target genes via interaction with various sequence specific 

transcription factors or cofactors (chapter 2.4.1). Upon recruitment, the complex remodels 

adjacent nucleosomes, allowing histone tails to be accessible for deacetylation. 

Consequently, a more compacted chromatin structure is generated, leading to gene 

repression (Zhang et al. 1998). The formation of the compacted, less accessible chromatin 

is regulated by a series of coordinated enzymatic activities. For example, SUMOylated 

Kap1 (chapter 2.4.2) was shown to recruit not only NuRD, but also Lys9 specific histone 

methyltransferase, SETDB1, leading to subsequent HP1 binding to a regulated transgene 

locus in mammalian cells. Increased DNA-methylation was also detected in this silenced 

chromatin region and it has been suggested that NuRD binding to methylated DNA via 
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MBD2 subunit can maintain the HDAC activity at the locus (Schultz et al. 2001a; 

Ayyanathan et al. 2003). Given that NuRD interacts with a growing number of 

transcription factors and cofactors in different cell and developmental contexts, it is 

plausible that gene repression by this complex might be promoter or gene specific. 

Certainly, more detailed studies remain to be done to elucidate the mechanism of gene 

repression by NuRD complex.  

 

Figure 2.8 Models for gene repression by dNuRD and dMec complexes  

Repression of a putative target gene by dNuRD or dMec is represented. As an example Drosophila 

NuRD is shown but the same model applies to vertebrate NuRD complex. See text for details. 

 

In addition to the NuRD complex, the presence of dMec repressive complex, which lacks 

histone deacetylase activity, raises the question about its role in transcriptional repression. 

It was shown that depletion of dMep1 from SL2 cells results in derepression of a set of 

proneuronal genes in HDAC independent manner (Kunert et al. 2009). In the RNAi screen 

performed to identify factors required for SUMO-dependent repression by a transcription 

factor Sp3 (chapter 2.4.2), in addition to dMi-2, dMep1 was found. Depletion of dMep1 

but not other subunits of the dNuRD complex resulted in derepression of SUMOylated Sp3 

target gene and dMep1 was shown to bind SUMO directly (Stielow et al. 2008). These 

results suggest that dMec might be recruited via SUMOylated transcription factors to its 
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target genes and use its ATPase activity to promote gene repression (Kunert and Brehm 

2009). This model has to be tested but there are several pieces of evidence which are in 

agreement with it. First, SUMOylation of Lin1 transcription factor in C. elegans was 

shown to promote Mep1 association and repression of genes involved in vulval cell fate 

(Leight et al. 2005). Second, a SUMOylated transcription factor, tramtrack69 (Ttk69), was 

shown to associate with dMi-2 and dMep1 biochemically and genetically. Third, dMi-2 

and Ttk69 co-localize at a number of discrete sites on polytene chromosomes, showing that 

they bind common target loci. Indeed, recent genome-wide expression analysis has 

revealed that they share an overlapping set of target genes (Murawsky et al. 2001; Reddy et 

al. 2010). Hence, dMi-2 may mediate SUMO-dependent transcriptional repression as part 

of the dMec complex. However, in the human system, SUMO-dependent repression by the 

NuRD complex has been shown in the context of several transcription cofactors, like Kap-

1 or EKLF (Ivanov et al. 2007; Siatecka et al. 2007) (chapter 2.4.2). Therefore, it is 

currently unknown how the specificity of dMec complex towards SUMOylated 

transcription factors would be achieved. Also, nothing is known about the mechanism of 

gene repression and repressive chromatin formation by dMec. More experiments have to 

be done in order to clarify these issues.  

 

2.5.4.2  Transcription initiation 

The role of ATP-dependent chromatin remodelers at promoters has been extensively 

studied in the context of SWI/SNF complexes, which help to generate an open chromatin 

providing access to transcription factors and subsequent transcription machinery assembly 

and transcription initiation (chapter 2.4.1). However, far less is known about possible 

functions of CHD remodelers in transcription initiation. Recent genome-wide studies on S. 

pombe homologs of CHD1, Hpr1 and Hpr3, have revealed their function in nucleosome 

disassembly at gene promoters (Walfridsson et al. 2007). Both ATPases have been shown 

to copurify with a histone chaperone Nap1, which was previously linked to nucleosome 

assembly and disassembly in concert with remodeling complexes (Lusser et al. 2005; 

Lorch et al. 2006). Hpr1 and Hpr3 localize at the promoters and to a lesser extent in the 

ORFs of many S. pombe genes. Moreover, Hpr1/3 display a clear preference to 

nucleosome dense promoters. Depletion of these remodelers results in a genome-wide 

increase in histone H3 density at the promoters suggesting a role in nucleosome 
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disassembly, which in turn may facilitate transcription of these genes. In agreement with 

this, many genes are downregulated in hpr1/3 double mutant (Walfridsson et al. 2007). 

In addition to regulation of chromatin structure at the promoters, transcription activation in 

vivo is influenced by more distal sequences, called enhancers. Binding of an activator to an 

enhancer is thought to influence transcription via nucleosome displacement and 

recruitment of histone-modifying enzymes that generate a local access to chromatin and 

subsequent targeting of the basal transcription machinery to the core promoter. The 

interaction between promoter and activator bound enhancer is mediated by loop formation 

(reviewed in (Szutorisz et al. 2005)). Several studies have implicated CHD remodelers in 

facilitating transcription activation via binding to enhancers. Recently, human CHD7 has 

been shown to occupy enhancer elements genome-wide. It was found to bind to DNAse I 

hypersensitive sites enriched in H3K4me1, a hallmark of enhancers. CHD7 was shown to 

bind H3K4me1/2/3 peptides via its chromodomains which may stabilize its binding at 

enhancers. Moreover, CHD7 binding strongly correlates with active transcription, which 

suggests its role in gene activation (Schnetz et al. 2009). Indeed, another study showed that 

CHD7 directly regulates transcription of core neural crest transcription factors in Xenopus. 

In addition, it was shown to interact with BRG1-like complexes, BAF/PBAF and both 

CHD7 and BRG1 occupy distal regulatory elements of their target genes (Bajpai et al. 

2010). Currently it is not known, what is the mechanism of gene activation by CHD7. 

Weak signals of CHD7 are also detected nearby promoters, thus a looping mechanism has 

been suggested (Schnetz et al. 2009).  

CHD8 was shown to bind to an enhancer element of an androgen receptor (AR) responsive 

gene in prostate cancer cells, in an induction independent manner. CHD8 might be 

involved in the remodeling of chromatin structure at this enhancer as recruitment of AR 

and consequently the gene activation were strongly abrogated upon CHD8 knockdown 

(Menon et al. 2010).  

Mi-2β (CHD4) was also implicated in enhancer element binding at the CD4 gene during T-

cell development. Interestingly, Mi-2β was shown to facilitate recruitment of transcription 

factor HEB and a histone acetyltransferase, p300, to the CD4 enhancer element, leading to 

open chromatin formation and transcription activation. Mi-2β was shown to interact with 

both factors in an HDAC independent manner, which suggests that this remodeler may be 

involved in active transcription outside of the NuRD complex (Naito et al. 2007).  
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2.5.4.3  Transcription elongation 

A growing number of recent studies indicate that chromatin structure is highly controlled 

during transcription elongation. Nucleosomes ahead of RNAP II are partially disassembled 

or displaced and then reassembled behind the passage of RNAP II (reviewed in 

(Armstrong 2007)). To a large extent, the phosphorylation status of the C-terminal domain 

of the largest subunit of RNAP II (CTD) defines the state of transcription elongation 

(reviewed in (Phatnani and Greenleaf 2006)). The CTD of RNAP II has a heptapeptide 

repeat that is conserved from yeast to humans and contains the consensus amino acid 

sequence YSPTSPS. The second and fifth serines of each repeated unit are major sites of 

phosphorylation. Hypophosporylated form of RNAP II is recruited to the promoters. Next, 

at 5‟ of genes, CTD is phosphorylated at Ser5 by the Cdk7 subunit of TFIIH. RNAP II 

becomes phosphorylated at Ser2 in the body and towards the end of genes by the Cdk9 

subunit of P-TEFb. This modification serves as a platform for recruitment of various 

transcription elongation and RNA processing factors (Saunders et al. 2006).  

One CHD remodeler suggested to be involved in an early elongation step is Kismet (KisL). 

It was originally identified in a genetic screen for supressors of polycomb (Pc) repressors 

in Drosophila suggesting that it antagonizes Pc to activate homeotic gene expression 

(Kennison et al. 1998; Daubresse et al. 1999). It was shown that KisL localizes to 

transcriptionally active sites on polytetene chromosomes as its binding pattern highly 

overalapped with RNAP II phosphorylated at Ser5 and Ser2, Brahma and dCHD1. 

However, no interaction with any of these factors was detected in coimmunoprecipitation 

experiments. Interestingly, the levels of elongating RNAP II (Ser2) in kis mutants were 

strongly reduced, whereas RNAP II phosphorylation at Ser5 was not affected. 

Accordingly, chromatin association of other elongation factors Spt6 and dCHD1 was 

significantly reduced (Srinivasan et al. 2005). The reduction of CTD Ser2 phosphorylation 

in kis mutants suggested that P-TEFb recruitment could be affected. However, polytene 

chromosome staining with P-TEFb subunit, Cdk9, was not affected in these flies, which 

suggests that KisL acts downstream of P-TEFb recruitment to stimulate elongation by 

RNAP II. Further investigations have revealed that association of H3K4 

methyltransferases, ASH1 and TRX, with chromosomes was decreased in kis mutants. In 

addition, H3K27me3 methylation, a modification required for Pc function, was 

significantly increased both in kis as well as ash1 and trx mutants (Srinivasan et al. 2008). 

These results suggest that KisL counteracts Pc repression by facilitating recruitment of 
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ASH1 and TRX to chromatin. In agreement with this, the human homolog of KisL, CHD8, 

has been found to be associated with subunits of MLL, a histone H3K4 methyltransferase 

Ash2L containing complex. CHD8 was implicated in ASH2 recruitment to the promoter of 

the HOXA2 gene, however the role of CHD8 in early transcription elongation at this gene 

is not clear as depletion of CHD8 was shown to enhance HOXA2 expression under 

activating conditions (Yates et al. 2010). Another study on CHD8 has revealed its function 

in early transcription elongation or activation of cyclin E2 gene in G1/S cell cycle 

transition. CHD8 was shown to be associated with promoter and 5‟ end of this gene during 

the entire cell cycle and to interact with elongating forms of RNAP II. It is noteworthy that 

CHD8 depleted cells displayed sensitivity to transcription elongation inhibitors, like DRB 

and flavopiridol. Thus, it has been suggested that CHD8 might act in the same process that 

is affected by these drugs (Rodríguez-Paredes et al. 2009). More studies have to be done in 

order to elucidate the precise functions of CHD8-like remodelers in transcription 

elongation.  

CHD1 remodeler has also been implicated in transcription elongation. Initial studies in 

flies showed that dCHD1 is located in active sites of transcription on polytene 

chromosomes (Stokes et al. 1996). Subsequent studies in yeast revealed that yChd1 

interacts with Spt4-Spt5 and Spt16-Pob3 (FACT) and PAF complexes involved in 

transcription elongation (Krogan et al. 2002; Simic et al. 2003; Warner et al. 2007). 

Chromatin immunoprecipitation experiments revealed yChd1 association with transcribed 

regions but not promoters of active genes. Moreover, this association was decreased in 

Rtf1 mutants (a subunit of the PAF complex), which suggests a mode of recruitment of 

yChd1 to active genes (Simic et al. 2003). Several studies suggested that yChd1 might be 

involved in establishment and maintenance of chromatin structure over transcribed regions. 

First, in chd1 mutants, processivity or elongation of RNAP II were not affected. Secondly, 

the same mutants displayed internal transcription initiation from a reporter gene and weak 

cryptic initiation defect from an endogenous gene. The cryptic transcription initiation was 

much stronger in chd1 and isw1 double mutants, as these two remodelers may act 

redundantly (Cheung et al. 2008; Quan and Hartzog 2010). Third, chd1 mutant strains 

displayed alterations in the chromatin structure and nucleosome spacing in the coding and 

termination regions of the ADH2 gene (Xella et al. 2006). Finally, yeast extracts made 

from chd1 mutant strains failed to assemble chromatin in vitro (Robinson and Schultz 

2003). In addition to this, dCHD1 was shown to assemble and generate regularly spaced 
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nucleosomes in vitro and deposit histone variant H3.3 into chromatin in vivo (Lusser et al. 

2005). Altogether, these experiments suggest a role of CHD1 in reassembly of 

nucleosomes in the wake of elongating RNAP II and in re-establishing of a repressive 

chromatin structure. However, given that in chd1 mutant strains expression of only a small 

fraction of genes is affected, and given that chd1 deletion has only a minor effect on 

cryptic initiation (Tran et al. 2000; Cheung et al. 2008), the role of CHD1 in chromatin 

assembly might be gene specific or it might be redundant with other chromatin remodelers 

and histone chaperones. Thus, the function of CHD1 in transcription dependent chromatin 

assembly demands further investigation.  

 

2.5.4.4  Transcription termination 

The last step of the transcription cycle is transcription termination, which involves release 

of the RNA transcript and the dissociation of the transcription complex from the DNA 

template (reviewed in (Buratowski 2005)). A genetic screen designed to isolate factors 

involved in transcription termination by RNAP II in S. pombe, identified Hrp1, a homolog 

of yChd1 (Alén et al. 2002). Both hrp1 and chd1 deletion strains have been shown to fail 

to terminate transcription of several genes in run on assays, giving high levels of 

transcription reading through the 3‟ gene end. Analysis of chromatin structure of these 

genes revealed alterations in their termination region, which spanned around 800 bp region 

extending beyond the 3‟ end of the gene (Alén et al. 2002). These changes were detected in 

both induced and uninduced gene states which suggests a role of yChd1 in establishment of 

chromatin structure in the termination regions of yeast ORFs. The function of yChd1 in 

some gene termination might be redundant with other remodelers, like Isw1 and Isw2. It 

has been suggested that chromatin structure at 3‟ end of the gene may enhance RNAP II 

pausing in order to allow to switch its mode from elongation to termination (Alén et al. 

2002). Furthermore, yChd1 together with Isw1/2 was also shown to be important for 

transcription termination of RNA Pol I at rDNA genes (Jones et al. 2007). Importantly, the 

steady-state levels of ribosomal RNA was not affected in these mutants, which indicates 

that the observed termination defects were not due to transcription elongation defects 

(Jones et al. 2007). These results suggest that yChd1 function in transcription termination 

might be more general and not restricted to RNAP II genes.  
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2.5.4.5  pre-mRNA splicing 

A number of recent studies have revealed that transcription, co-transcriptional RNA 

processing and modulation of chromatin structure are tightly interlinked processes 

(reviewed in (Luco and Misteli 2011)). Noteworthy, CHD1 has been linked to regulation 

of splicing in human cells (Tai et al. 2003). In an H3K4me3 pulldown experiment designed 

to identify factors binding to this modification, CHD1 was copurified with elongation 

factors (FACT, PAF) and SF3A, a subunit of spliceosomal U2snRNP complex. Partial 

purification of the complex revealed that CHD1 exists in a complex with U2snRNP 

subunits but not U1snRNP components. Moreover, this association is functionally 

significant, as depletion of CHD1 decreased splicing rate in vitro and in vivo and led to the 

impaired SF3A recruitment to the transcribed genes. Collectively, these results suggest, 

that CHD1 regulates pre-mRNA splicing by recruiting components of the splicing 

machinery to the transcribed RNA via recognition of the H3K4me3 mark (Fig. 2.9) (Sims 

et al. 2007). Currently it is not known whether the ATPase activity of CHD1 is involved in 

splicing regulation.   

 

Fig. 2.9 CHD remodelers at various steps of transcription cycle 
Involvement of CHD remodelers at different stages of active transcription (initiation, elongation, 

termination). Grey ovals represent additional subunits of CHD complexes or spliceosome subunits. 

TSS, transcription start site; Stop; transcription stop signal (see text for details).   
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2.5.5  CHD chromatin remodeler roles outside of transcription 

In addition to their role in transcription regulation, recent studies have revealed that CHD 

chromatin remodelers are also involved in other cellular processes, such as histone variant 

deposition, DNA repair and global chromatin maintenance.  

 

2.5.5.1  Histone variant deposition 

Histone proteins exist in different variants providing specialized functions in addition to 

their fundamental role in DNA packaging, such as DNA repair, sperm chromatin 

regulation and the definition of centromer identity (reviewed in (Talbert and Henikoff 

2010)). The metazoan histone H3.3 has been mostly associated with active transcription 

and it has been suggested that H3.3 variant deposition and nucleosome assembly during 

transcription elongation might be accomplished by CHD1 (chapter 2.5.4.3). However, 

recently H3.3 deposition has been shown to also occur outside of transcription, during 

early Drosophila development. Upon fertilization and sperm nuclear envelop breakdown, 

the compacted sperm chromatin is decondensed leading to replacement of sperm 

protamines with maternal histones in early Drosophila embryogenesis. During sperm 

decondensation, histone variant H3.3 is deposited in the paternal pronucleus in a 

replication independent manner (Loppin et al. 2005). In this respect, dCHD1 has been 

shown to be involved in histone variant H3.3 deposition in the paternal pronucleus at early 

stages of Drosophila embryo development (Konev et al. 2007). In dCHD1 mutant embryos 

H3.3 histone variant deposition was heavily impaired, leading eventually to the loss of 

paternal DNA and embryo haploidy. In addition, a fraction of dCHD1 was associated with 

a histone H3.3 chaperone HIRA, which suggests that they might cooperate in H3.3 

deposition (Konev et al. 2007). 

Another function of CHD remodelers associated with histone variant deposition is linked 

to centromere identity. Despite differences in the structure, centromeres contain a highly 

conserved histone H3 variant, called CENP-A (also known as CID, Cnp1, Cse4). In S. 

pombe hpr1 mutant strains display silencing defects of the centromeric region, increased 

H4 acetylation levels at centromeres and defects in chromosome segregation. Moreover, 

Hpr1 is enriched at centromeric chromatin regions in early S-phase, when centromers are 

replicated. Thus, Hpr1 plays a role in Cnp1 deposition in fission yeast (Walfridsson et al. 

2007).  
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Similarly, CHD1 has been suggested to be involved in centromere function in mammalian 

cell lines. CHD1 has been shown to associate with centromeres throughout the cell cycle 

and this association seems to depend on FACT complex. Furthermore, CHD1 knockdown 

resulted in significant decrease of CENP-A binding to centromers, which suggests that 

CHD1 can be involved in centromeric histone variant deposition also in higher eukaryotes 

(Okada et al. 2009). However, this function of CHD1 is not necessarily conserved, as in 

Drosophila this remodeler is not required for CENP-A deposition (Podhraski et al. 2010).  

 

2.5.5.2  DNA repair 

Despite a well established role of INO80 complexes in DNA break repair in yeast (chapter 

2.2.4), much less is known about ATP-dependent chromatin remodeling at damaged sites 

in the human genome. CHD4 has been previously shown to interact with ATR kinase and 

it was found to be a target of the ATM/ATR pathway in a proteomic screen, which 

suggested its possible role in DNA repair (Schmidt and Schreiber 1999; Matsuoka et al. 

2007). Notably, several recent studies have revealed a link between DNA repair and CHD4 

remodeler in human cells (Chou et al. 2010; Larsen et al. 2010; Polo et al. 2010; Smeenk et 

al. 2010). CHD4 and some other NuRD subunits have been shown to be recruited to laser 

induced DNA-damage sites in a PARP dependent manner (chapter 2.4.5). The role of 

CHD4 phosporylation by ATM is not clear at the moment but it does not seem to be 

important for the recruitment step. The function of CHD4 remodeler at sites of DNA-

damage has also been investigated. Despite some differences in the results of these studies, 

they clearly show that CHD4 depleted cells are hypersensitive to ionizing radiation, 

deficient in DSB repair and they display prolonged persistence of the phosphorylated form 

of H2AX histone variant (γH2AX) (Larsen et al. 2010; Smeenk et al. 2010). Moreover, 

CHD4 knockdown results in cell cycle delays and activation of apoptosis via the p53/p21 

pathway. It has been suggested, that CHD4 might play a role in regulating p53 

deacetylation status and thus controlling G1/S cell cycle transition (Polo et al. 2010). The 

association of NuRD complex with p53 deacetylation has been proposed previously (Luo 

et al. 2000).  

The effect of CHD4 on chromatin at DNA breaks is far less understood. The lack of 

nascent transcripts and elongating RNAP II at sites of DSB has suggested that NuRD 

complex could be involved in inhibition of transcription at sites of DNA breaks (Chou et 

al. 2010). However, currently there is no direct evidence for this. Interestingly, two studies 
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have shown decreased accumulation of ubiquitination at the DSB sites in CHD4 depleted 

cells. Histone ubiquitination by ubiquitin ligases, RNF8 and RNF168, is an important step 

in recruitment of downstream repair and check point factors, such as BRCA1, 53BP1 and 

RAD18 (reviewed in (van Attikum and Gasser 2005)). Notably, CHD4 knockdown leads 

to a significant decrease in RNF168 and BRCA1 accumulation at the DSB sites (Larsen et 

al. 2010; Smeenk et al. 2010). Thus, chromatin remodeling by CHD4 might help ubiquitin 

ligases to get substrate access at DNA-damage sites. Altogether, these results indicate 

complex and probably mutually dependent roles of CHD4 in DNA damage response and 

cell cycle progression. Further studies are needed to elucidate the function of CHD4 in 

DNA repair.  

  

2.5.5.3  Global chromatin maintenance 

Several recent studies have suggested a role of CHD remodelers in global chromatin 

regulation. It has been proposed that the local events at the DSB sites cannot account for 

the complex defects in chromatin and cell cycle observed in CHD4 depleted cells (Larsen 

et al. 2010). Consequently, a more widespread role of CHD4 in chromatin maintenance has 

been suggested. Several observations support this idea. First, CHD4 depleted cells display 

increased levels of spontaneous DNA breaks (Larsen et al. 2010). Second, ATM/ATR 

signalling in these cells is elevated, leading to increased levels of γH2AX, which indicates 

permanent DNA breaks (Larsen et al. 2010). Finally, the loss of NuRD subunits has been 

recently linked to increased DNA damage and a decrease of heterochromatin marks, like 

H3K9me3 and HP1, in a premature aging disorder and physiological aging (Pegoraro et al. 

2009). These results, argue that CHD4 might contribute to genome maintenance by 

protecting heterochromatic regions from susceptibility to DNA damage.  

Another study has suggested that CHD1 might also have a broader role in chromatin 

maintenance at least in mouse embryonic stem cells (ES). One hallmark of ES cells is a 

more open chromatin status, which is believed to be important for keeping the pluripotent 

state of these cells. It has been demonstrated that CHD1 knockdown increases the number 

of heterochromatic foci, monitored by the elevated levels of H3K9me3 and HP1 (Gaspar-

Maia et al. 2009). Moreover, CHD1 is associated with euchromatin in ES cells and it is 

required for pluripotency of these cells (Gaspar-Maia et al. 2009). The authors have argued 

that CHD1 may act to counter heterochromatin spreading in pluripotent cells. To this end, 

CHD1 could mediate incorporation of the H3.3 variant, which is specifically enriched 
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within actively transcribed genes and is less prone to H3K9 methylation (Ahmad and 

Henikoff 2002; Schwartz and Ahmad 2005). Whether CHD1 maintains the euchromatin 

state of ES cells by this mode remains to be determined.  

 

2.6  Drosophila melanogaster as a model organism to study the role of 

chromatin remodeling in transcription 

Drosophila melanogaster constitutes a well established model organism that provides 

many unique tools to study chromatin regulation and transcription. In the following 

chapter, two major systems, polytene chromosome and heat shock genes, will be presented 

as they are utilized extensively in many experiments of this doctoral thesis 

 

2.6.1  Polytene chromosomes 

Drosophila 3
rd

 instar larvae offer an unusual possibility to study the in vivo distribution of 

chromatin associated proteins by indirect immunofluorescence (Schwartz et al. 2004). 

During development of 3
rd

 instar larvae the genome of salivary gland cells undergoes 

repeated rounds of endoreplication. As a result, polytene chromosomes that consist of one 

thousand synapsed sister chromatids are produced. The centromeric regions remain 

underreplicated, bundle together and form the so called chromocentre.  Staining of 

polytene chromosomes with DNA-binding dyes allows the visualisation of 

heterochromatin and euchromatin. Heterochromatin is concentrated at the chromocentre, 

the telomeres and covers most of the fourth chromosome. In addition, densely stained 

(heterochromatic) bands are clearly visible along the chromosome arms. Heterochromatic 

bands are divided by weakly stained (euchromatic) interbands which contain actively 

transcribed genes (Murawska M. and Brehm A., Methods Mol Biol, submitted). Indirect 

immunofluorescence staining of polytene chromosomes with factor specific antibodies 

may therefore deliver important information about its chromatin localization. Since the 

1960s, imaging of polytene chromosomes has provided a plethora of data for gene and 

chromatin regulation in vivo (Lis 2007). For instance, using specific antibodies it has been 

shown that HP1 binds to heterochromatin in the chromocentre (James and Elgin 1986). By 

contrast, RNAP II staining gives many bands in euchromatic regions, consistent with 

ongoing transcription (Jamrich et al. 1977). Colocalization with RNAP II delivers an 

important view into possible role of a chromatin associated protein in transcription. Many 
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factors involved in active transcription, like elongation factors (for instance Spt5, Spt6, 

ELL) highly colocalize with RNAP II (Kaplan et al. 2000; Gerber et al. 2001). In addition, 

many proteins, like exosome or nucleoporins, previously not associated with transcription, 

have been revealed to be involved in gene regulation by RNAP II polytene colocalization 

studies (Andrulis et al. 2002; Capelson et al. 2010). Moreover, chromosomal colocalization 

of two factors, which interact with each other in solution, provides additional information 

about their functional interactions on chromatin and regulation of common target genes 

(Reddy et al. 2010).  

In addition, polytene chromosome staining combined with pharmacological treatment with 

different inhibitors or RNAse A may shed light onto chromatin recruitment mechanism or 

the binding mechanism of a given factor. In this regard, it has been shown that a fraction of 

HP1 is binding to euchromatic regions in an RNA dependent manner (Piacentini et al. 

2003). 

Finally, ectopic expression of tagged variants of proteins allows to combine structural and 

functional analysis, for example by mapping factor domains important for chromatin 

binding (Bao et al. 2008; Morettini et al. 2011).  

 

2.6.2  Inducible heat shock genes 

Heat shock genes comprise a well established system to investigate gene activation and the 

accompanying chromatin alterations. Upon environmental stimuli, such as elevated 

temperature, heat shock genes are rapidly activated which results in chromatin 

decondensation and formation of so-called transcriptional puffs. These puffs provide a 

cytological landmark of actively transcribed genes. The most prominent heat shock loci, 

87A and 87C, constitute a cluster of two and four hsp70 genes, respectively, easily visible 

on polytene chromosomes as puffs (Fig. 2.10). These genes code for protein chaperones, 

which assist protein folding processes preventing their denaturation and aggregation during 

cellular stress (reviewed in (Mayer and Bukau 2005)).  

Initial polytene chromosome staining with RNAP II antibodies revealed a rapid 

relocalization of the enzyme to only few sites on polytene chromosomes which represent 

primarily heat shock loci (Jamrich et al. 1977) (Fig. 2.10). Much has been learnt about 

active transcription regulation based on hsp70 genes. Briefly, before heat shock a 

transcription factor, called GAF (GAGA factor) and RNAP II are bound to the promoter of 
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hsp70. The Cdk7 subunit of TFIIH phosphorylates the CTD of RNAP II at Ser5 which 

leads RNAP II to initiate transcription into the first 20-40 bases of the gene, where it 

pauses. RNAP II is held there by the negative elongation factor (NELF) and DRB 

sensitivity-inducing factor (DSIF). Upon heat shock, heat shock factor (HSF) trimerises 

and binds to heat shock elements (HSE) in the promoter. In turn, HSF recruits additional 

co-activators and mediator, that lead to PTEFb kinase recruitment, which causes 

phosphorylation and dissociation of NELF complex, Ser2 phosphorylation at CTD and 

subsequent release of paused RNAP II into  productive elongation (reviewed in (Lis 2007; 

Weake and Workman 2010)).  

In addition to transcription regulation, heat shock genes provide an excellent system to 

investigate chromatin alterations associated with active transcription. Rapid heat shock 

gene induction is accompanied by a dramatic change in the chromatin structure upon gene 

activation. It has been recently shown that nucleosomes are rapidly removed from the 

hsp70 locus in a transcription independent manner and this removal requires HSF, GAF 

and PARP activity. It has been suggested that poly(ADP-ribosylation) of histones might 

destabilize nucleosomes resulting in their removal from DNA at heat shock genes (Petesch 

and Lis 2008). However, much less is known about roles of ATP-dependent chromatin 

remodelers in regulation of heat shock gene transcription. It has been demonstrated, that 

ISWI containing complex, NURF, is important for heat shock gene activation. In the 

mutants of NURF301, the biggest subunit of the NURF complex, HSF binding to hsp70 

loci was heavily impaired. Consequently, expression of these genes was strongly reduced 

(Badenhorst et al. 2002). These results suggest that nucleosome remodeling by NURF 

might provide the access to DNA for HSF. Indeed, it has been shown that NURF 

cooperates with the GAF factor to mobilize nucleosomes on the promoter of the heat shock 

genes, establishing a nucleosome-free domain over the promoter (Tsukiyama et al. 1994). 

A second chromatin remodeler important for maximal expression of heat shock genes is 

dCHD1. It has been shown to be recruited to heat shock puffs on polytene chromosomes 

and depletion of dCHD1 significantly decreases heat shock gene activation. The function 

of dCHD1 in the context of heat shock genes it not well understood, however it has been 

suggested that it might be involved in the remodeling of the first positioned nucleosome 

downstream of the transcription start site (Morettini et al. 2011).  
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Figure 2.10 Relocalization of RNAP II on polytene chromosomes upon heat shock 

Immunofluorescence staining of polytene chromosomes with RNAP II (pol IIser2) antibodies and 

as indicated. Polytene chromosomes were isolated from 3
rd

 instar larvae which were heat shocked 

at 37 C for 20 min. Arrows indicate the hsp70 loci 87A and 87C.  
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3.  Material and Methods 

3.1  Material 

3.1.1  Material sources 

All common material, chemicals, reagents and instruments used in this study, were ordered 

from the following companies: Abcam, Alexis Biochemicals, AppliChem, Amersham 

Bioscience/GE Healthcare, Beckmann, BioRad, Calbiochem, Camag, Eppendorf, 

Fermentas, Fisher Scientific, Fugifilm, Gibco, Gilson, Greiner, Hareus, Invitrogen, Kobe, 

Leica, Millipore, Merc, PAA, MWG Biotech, New England Bioloabs, PeqLab, 

Polysciences, Promega, Qiagen, Roche, Roth, Santa Cruz Biotechnology, Sarstedt, Sigma, 

Stratagene, Whatman, Zeiss. Radioactive material was ordered from Amersham 

Bioscience/GE Healthcare and PerkinElmer. 

 

3.1.1.1  Enzymes 

Restriction endonucleases Fermentas, New England Biolabs, Promega                 

Klenow enzyme Fermentas 

T4 DNA ligase Fermentas 

Calf intestine alkaline phospatase (CIAP) Fermentas 

DNAse I (RNAse-free) Fermentas, Peqlab 

Benzonase  

RNAse A (DNAse-free) Qiagen 

Proteinase K Roth 

Trypsin Sigma 

Micrococcal nuclease (MNase) Roche 

Taq DNA polymerase Fermentas 

M-MLV Reverse Transcriptase Invitrogen 

 

3.1.1.2  Enzyme inhibitors 

RNAsin Promega, Fermentas 

Trypsin Inhibitor (Soybean) Sigma 

PMSF (phenylmethanesulfonylfluoride) Roth 

Leupeptin Roth 

Pepstatin Roth 

Aprotinin Roth 

DRB (5,6-Dichloro-1-β-D-

ribofuranosylbenzimidazole) 

Sigma 
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PJ34 (N-(5,6-Dihydro-6-oxo-2-phenanthridi- 

nyl)-2-acetamide hydrochloride) 

 

 

Alexis Biochemicals 

3.1.1.3 Chromatographic material 

Hydroxyl apatite resin BioRad 

Gelfiltration column (Superose 6) Amersham 

Chromatography system (ÄKTA, FPLC & 

HPLC) 

Amersham 

TLC PEI Cellulose F25 20x20 Merc 

StrataClean Resin Stratagene 

 

3.1.1.4  Affinity purification material 

Protein A Sepharose 4 FF Amersham 

Protein G Sepharose 4 FF Amersham 

M2 Agarose (Flag-beads) Sigma 

SulfoLink Coupling Gel Pierce 

 

3.1.1.5  Dialysis and filtration material 

Centriprep YM-10 Millipore 

Dialysis membranes Spectra/Por 

Sterile syringe filters VWR 

 

3.1.1.6  Consumable material 

6x DNA Loading Dye Fermentas 

GeneRuler 1 kb DNA Ladder Plus Fermentas 

PageRuler Prestained Protein Ladder Fermentas 

Roti Load1 Roth 

PageBlue Fermentas 

NuPAGE Novex 4-12% Bis-Tris Gels Invitrogen 

NuPAGE MES-running buffer Invitrogen 

Roti-PVDF   Roth 

Whatman-3MM Paper Whatman 

Nitrocelulose  Whatman 

Rotilabo-Blottingpaper Roth 

Protein Assay (Bradford solution) Bio-Rad 

Super RX (Fuji Medical X-Ray Film) Fujifilm 

Fluoromount - G SouthernBiotech 



MATERIAL AND METHODS 

59 

 

SlowFade antifade Kit Invitrogen 

DAPI (4',6-diamidino-2-phenylindole) Invitrogen 

Normal Goat Serum  Sigma 

Liquid scintillation cocktail PerkinElmer 

 

3.1.1.7 Kits 

 

Table 3.1 Kits with corresponding application and company 

Kit name Application Company 

QIAquick Gel Extraction Kit Extraction of DNA from agarose 

gels after restriction digestion 

Qiagen              

Qiagen Plasmid Midi Kit DNA isolation for cell 

transfection and cloning 

Qiagen 

peqGOLD Cycle-Pure Kit DNA isolation after ChIP Peqlab 

DNAzol Reagent Genomic DNA isolation Invitrogen 

peqGOLD Total RNA Kit RNA isolation from cell lines 

and larvae 

Peqlab 

Megascript T7 Kit In vitro transcription Ambion 

ABsolute SybrGreen Mix QPCR Thermo Fisher 

QuickChange Site-directed 

Mutagenesis Kit 

Site directed mutagenesis Agilent Technologies 

Expand High FidelityPLUS 

PCR System 

PCR for cloning Roche 

Bac-N-Blue Transfection Kit SF9 cells transfection for 

baculovirus generation 

Invitrogen 

Immobilon Western HRP 

Chemiluminescent Substrate 

Western blot detection system Millipore 

 

3.1.2  Standard solutions 

Stock solutions and buffers were prepared according to standard protocols (Sambrook and 

Russel 2001). The most standard solutions are listed below. 

Phosphate Buffered Saline (PBS) 140 mM NaCl 

2,7 mM KCl 

8,1 mM Na2HP 

1,5 mM KH2PO4  

pH adjusted to 7,4 with HCl 

 

TAE Buffer                                        

 

40 mM Tris-Acetate 

1 mM EDTA 
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TBE Buffer                                         90 mM Tris 

90 mM Boric Acid 

2 mM EDTA 

 

SDS-PAGE Running buffer               

 

192 mM Glycin 

25 mM Tris 

0,1% (w/v) SDS 

 

Stacking buffer (4x) 

 

0,5 M Tris-HCl, pH 6,8 

0,4% (w/v) SDS 

 

Resolving buffer (4x) 

 

1,5 M Tris-HCl, pH 8,8 

0,4% (w/v) SDS 

 

5x SDS-Page loading buffer             

 

250 mM Tris-HCl, pH 6,8 

10% (w/v) SDS 

50% (v/v) Glicerol 

0,5% (w/v) Bromophenol blue 

500 mM Dithiothreitol (DTT) 

 

 

Additional buffers are described in the individual method sections. 

 

3.1.3  Antibodies 

3.1.3.1  Primary antibodies  

 

Table 3.2 Primary antibodies with corresponding dilutions or amounts used  

Antibody Species and 

type 

Dilution or 

amount 

Type of experiment Source 

-dCHD3(#5)  Rabbit, 

polyclonal 

1:10000 

1 μl 

 

Western blot 

IP 

Peptide 

Speciality 

Laboratories 

(PSL), 

Heidelberg 

-

dCHD3(7A11) 

Rat,  

Monoclonal  

1:10 

1:2 

Western blot 

Immunofluorescence 

E. Kremmer 

-dMi-2(N) Rabbit, 

polyclonal 

1:10000 

1:200 

2 μl  

Western blot 

Immunofluorescence 

RIP 

Kehle et al, 

1998 

-dMi-2(C) Rabbit, 

polyclonal 

2 μl 

2 μl  

ChIP 

RIP 

Kehle et al, 

1998 

-Pol 

II(8WG16) 

Mouse, 

monoclonal 

8 μl  ChIP Santa Cruz 
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-Pol II (H5) Mouse, 

monoclonal 

1:50 Immunofluorescence Covance 

-Pol II (H14) Mouse, 

monoclonal 

1:50 Immunofluorescence Covance 

-Spt5 Guinea pig 1:250 Immunofluorescence F. Winston 

-Mep1 Guinea pig 1:20 

4 μl  

Immunofluorescence 

ChIP 

P. Verrijzer 

-RPD3 Rabbit, 

plyclonal 

1:1000 Western Blot J. Müller 

-PARP1 Rabbit, 

polyclonal 

1:20000 Western Blot A. Ladurner 

-PAR (10H) Mouse, 

monoclonal 

1:500 Western Blot A. Ladurner 

-tubulin Mouse, 

monoclonal 

1:15000 Western Blot Millipore 

-H3 Rabbit, 

polyclonal 

1 μg ChIP Abcam 

-ISWI Rabbit, 

polyclonal 

1:200 Immunofluorescence C. Wu 

-Brahma Rabbit, 

polyclonal 

1:200 Immunofluorescence C. Wu 

-HSF Rabbit, 

polyclonal 

2 μl  ChIP J. Tamkun 

-IgG Rabbit, 

polyclonal 

1 μg  ChIP Cell signaling 

-Flag Mouse, 

monoclonal 

1:4000 Western Blot Sigma 

 

3.1.3.2  Secondary antibodies 

 

Table 3.3 Secondary antibodies with corresponding dilutions  

Antibody Species and 

type 

Dilution Experiment Source 

-rabbit HRP  Donkey, 

polyclonal 

1:25000 Western blot GE Healthcare 

-mouse HRP Sheep, 

monoclonal 

1:20000 Western blot GE Healthcare 

-rat HRP Goat, polyclonal 1:10000 Western blot Jackson Immuno-

Research 

-guinea pig 

HRP 

Donkey, 

polyclonal 

1:20000 Western blot Santa Cruz 

- rabbit 

Alexa488 

Goat, polyclonal 1:200 Immunofluorescence Invitrogen 

-mouse 

Alexa546 

Goat, polyclonal 1:200 Immunofluorescence Invitrogen 
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-mouse 

Alexa488 

Goat, polyclonal 1:200 Immunofluorescence Invitrogen 

-guinea pig 

Alexa546 

Goat, polyclonal 1:200 Immunofluorescence Invitrogen 

-rat Alexa546 Goat, polyclonal 1:200 Immunofluorescence Invitrogen 

 

3.1.4  Plasmids 

 

Table 3.4 Plasmids used for baculovirus generation and protein expression in SF9 

cells 

Construct name Description Source 
pVL1392-

dCHD3FlagWT 

cDNA encoding for full length dCHD3 with C-terminal Flag-

tag, PCR-cloned via NotI and EcoRI with primer pairs: 

dCHD3_NotI_f, dCHD3_BamHI_r. 

This 

study 

pVL1392- PHD-

dCHD3Flag 

cDNA encoding for a short dCHD3 form (81-892 aa) with C-

terminal Flag-tag, PCR-cloned via NotI and EcoRI with primer 

pairs: dCHD3 PHD_NotI_f, dCHD3_EcoRI_r. 

This 

study 

pVL1393-

PHD/Chromo-

dCHD3Flag 

cDNA encoding for a short dCHD3 form (241-892 aa) with C-

terminal Flag-tag, PCR-cloned via NotI and EcoRI with primer 

pairs: dCHD3 PHD/Chromo_NotI_f, dCHD3_EcoRI_r. 

This 

study 

pVL1392- C-

dCHD3Flag 

cDNA encoding for a short dCHD3 form (1-800 aa) with C-

terminal Flag-tag, PCR-cloned via NotI and EcoRI with primer 

pairs: dCHD3_NotI_f, dCHD3 C_EcoRI_r. 

This 

study 

pVL1392-

dCHD3_K298RFlag   

cDNA encoding for a catalytically inactive mutant of dCHD3 

carrying a point mutation changing lysine 298 to arginine. This 

mutant was generated using a site directed mutagenesis with an 

appropriate primer and pBlueScriptII-SK(+)dCHD3Flag as a 

template, followed by subcloning with EcoRI and NotI into 

pVL1392 vector.  

This 

study 

pVL1392-dMi-

2_K761RFlag 

cDNA encoding for a catalytically inactive mutant of dMi-2 

carrying a point mutation changing lysine 761 to arginine. This 

mutant was generated using a site directed mutagenesis with an 

appropriate primer and pBlueScriptII-SK(+)dM-2SacI as a 

template, followed by subcloning dMi-2SacI fragment into 

pVL1392-dMi-2FlagWT_ SacI vector. 

This 

study 

pVL1392-dMi-2N cDNA encoding for a short dMi-2 form (1-691 aa) with C-

terminal Flag-tag, PCR-cloned via NotI and XbaI with primer 

pairs: dMi-2_NotI_f,  dMi-2N_XbaI_r 

This 

study 

pVL1392-dMi-2(1-485) cDNA encoding for a short dMi-2 form (1-485 aa) with C-

terminal Flag-tag, PCR-cloned via NotI and XbaI with primer 

pairs: dMi-2_NotI_f, dMi-2(1-485)_XbaI_r 

This 

study 

 

Table 3.5 Plasmids used for protein overexpression in bacteria 

Construct name Description Source 
pGEX4T1GST-

hCHD1_CD1+2 

cDNA encoding for hCHD1 chromodomains (250-467 aa) fused 

with GST, PCR-cloned via EcoRI and NotI using HeLa cell 

This 

study 

http://www.fruitfly.org/homepage/OneWorld.aspx?CurrentReferrer=%2fHOMEPAGE%2fNOTFOUND.ASPX%3f404%3bHTTP%3a%2f%2fWWW.STRATAGENE.COM%3a80%2fVECTORS%2fCLONING%2fPBLUESCRIPT2.HTM
http://www.fruitfly.org/homepage/OneWorld.aspx?CurrentReferrer=%2fHOMEPAGE%2fNOTFOUND.ASPX%3f404%3bHTTP%3a%2f%2fWWW.STRATAGENE.COM%3a80%2fVECTORS%2fCLONING%2fPBLUESCRIPT2.HTM
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cDNA as a template, with primer pairs: hCHD1CDs_EcoRI_f, 

hCHD1CDs_NotI_r. 

pGEX4T1GST-

dCHD3_CD1+2 

cDNA encoding for dCHD3 chromodomains (50-254 aa) fused 

with GST, PCR-cloned via EcoRI and NotI using pVL1392-

dCHD3FlagWT as a template, with primer pairs: 

dCHD3CDs_EcoRI_f, dCHD3CDs_NotI_r. 

This 

study 

pGEX4t1GST-dMi-

2_CD1+2 

cDNA encoding for dMi-2 chromodomains (452-716 aa) fused 

with GST, PCR-cloned via EcoRI and NotI using pVL1392-dMi-

2FlagWT as a template, with primer pairs: dMi-2CDs_EcoRI_f, 

dMi-2CDs_NotI_r. 

This 

study 

pGEX4t1GST-dMi-

2_(2-690) 

cDNA encoding for dMi-2 fragment (2-690 aa) fused with GST, 

PCR-cloned via SalI and NotI using pVL1392-dMi-2FlagWT as a 

template, with primer pairs: (2-690)_f and (2-690)_r 

This 

study 

pGEX4t1GST-dMi-

2_(2-483) 

cDNA encoding for dMi-2 fragment (2-483 aa) fused with GST, 

PCR-cloned via SalI and NotI with primer pairs: (2-690)_f and 

(2-483)_r 

This 

study 

pGEX4t1GST-dMi-

2_(2-376) 

cDNA encoding for dMi-2 fragment (2-376 aa) fused with GST, 

PCR-cloned via SalI and NotI with primer pairs: (2-690)_f and 

(2-376)_r 

This 

study 

pGEX4t1GST-dMi-

2_(2-117) 

cDNA encoding for dMi-2 fragment (2-117 aa) fused with GST, 

PCR-cloned via SalI and NotI with primer pairs: (2-690)_f and 

(2-117)_r 

This 

study 

pGEX4t1GST-dMi-

2_(118-238) 

cDNA encoding for dMi-2 fragment (118-238 aa) fused with 

GST, PCR-cloned via SalI and NotI with primer pairs: (118-

238)_f and (118-238)_r 

This 

study 

pGEX4t1GST-dMi-

2_(239-376) 

cDNA encoding for dMi-2 fragment (239-376 aa) fused with 

GST, PCR-cloned via SalI and NotI with primer pairs: (239-

376)_f and (2-376)_r 

This 

study 

pGEX4t1GST-dMi-

2_(2-50) 

cDNA encoding for dMi-2 fragment (2-50 aa) fused with GST, 

PCR-cloned via SalI and NotI with primer pairs: (2-690)_f and 

(2-50)_r 

This 

study 

pGEX4t1GST-dMi-

2_(46-76) 

cDNA encoding for dMi-2 fragment (46-76 aa) fused with GST, 

PCR-cloned via SalI and NotI with primer pairs: (46-76)_f and 

(46-76)_r 

This 

study 

pGEX4t1GST-dMi-

2_(77-98) 

cDNA encoding for dMi-2 fragment (77-98 aa) fused with GST, 

PCR-cloned via SalII and NotI with primer pairs: (77-98)_f and 

(77-98)_r 

This 

study 

pGEX4t1GST-dMi-

2_(99-117) 

cDNA encoding for dMi-2 fragment (99-117 aa) fused with GST, 

PCR-cloned via SalI and NotI with primer pairs: (99-117)_f and 

(2-117)_r 

This 

study 

pGEX4t1GST-dMi-

2_(249-282) 

cDNA encoding for dMi-2 fragment (249-282 aa) fused with 

GST, PCR-cloned via SalI and NotI with primer pairs: (249-

282)_f and (249-282)_r 

This 

study 

pGEX4t1GST-dMi-

2_(283-342) 

cDNA encoding for dMi-2 fragment (283-342 aa) fused with 

GST, PCR-cloned via SalI and NotI with primer pairs: (283-

342)_f and (283-342)_r 

This 

study 

pGEX4t1GST-dMi-

2_(343-376) 

cDNA encoding for dMi-2 fragment (343-376 aa) fused with 

GST, PCR-cloned via SalI and NotI with primer pairs: (343-

376)_f and (2-376)_r 

This 

study 
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Table 3.6 Plasmids used for generation of transgenic flies 

Construct name Description Source 
pUASTattB-

dCHD3FlagWT 

cDNA encoding for full length dCHD3 with C-terminal Flag-

tag in pUASTattB vector, subcloned from pVL1392-

dCHD3FlagWT with XbaI and NotI restriction sites. 

This 

study 

 pUASTattB-

dCHD3_K298RFlag   

cDNA encoding for a catalytically inactive mutant of dCHD3 

with C-terminal Flag-tag, subcloned from pVL1392-

dCHD3_K298RFlag with XbaI and NotI restriction sites. 

This 

study 

pUASTattB-dMi-2 

FlagWT 

cDNA encoding for a full length dMi-2 with C-terminal Flag-

tag in pUASTattB vector, subcloned from pVL1392-dMi-

2FlagWT with XbaI and NotI restriction sites. 

This 

study 

pUASTattB-dMi-

2_K761RFlag 

cDNA encoding for a catalytically inactive mutant of dMi-2 

with C-terminal Flag-tag, subcloned from pVL1392-dMi-

2_K761RFlag with XbaI and NotI restriction sites. 

This 

study 

pUASTattBeGFP eGFP cDNA with NLS in pUASTattB vector, PCR-cloned via 

EcoRI and XhoI using pNLS-eGFP-C1 as a template, with 

primer pairs: eGFP_EcoRI_f, eGFP(+NotI)_ XhoI _r. 

This 

study 

pUASTattBeGFP-dMi-

2WT 

cDNA encoding for a full length dMi-2 with N-terminal 

eGFP-tag, PCR-cloned via NotI and XbaI using pVL1392-

dMi-2WTFlag as a template, with primer pairs: eGFPdMi-

2WT_NotI_f, eGFPdMi2WT_XbaI_r. 

This 

study 

pUASTattBeGFP-

dMi2 N 

cDNA encoding for a short dMi-2 form (691-1982 aa) with N-

terminal eGFP-tag, PCR-cloned via NotI and XbaI using 

pVL1392-dMi-2WTFlag as a template, with primer pairs: 

eGFPdMi-2 N_NotI_f, eGFPdMi2WT_XbaI_r. 

This 

study 

pUASTattBeGFP-

dMi2 CD 

cDNA encoding for a short dMi-2 form ( 485-690 aa) with N-

terminal eGFP-tag and C-terminal Flag-tag, subcloned from 

pVL1392-dMi-2 CD with NotI and XbaI restriction sites. 

This 

study 

 

Table 3.7 Plasmids described previously 

Construct 

name 

Description Source 

pFLCI-

dCHD3cDNA  

cDNA encoding for dCHD3. The pFLC-I vector is a 

derivative of the ampicillin-resistant plasmid pBlueScriptII-

SK(+). cDNA sequences were inserted into the vector with 

the XhoI the BamHI sites. A premature stop codon was 

repaired by PCR with primer pairs: dCHD3_BamHI_f, 

dCHD3_BamHIr_r. 

BDGP (Berkeley 

Drosohila Genome 

Project), clone no. 

RE55932 

pUASTattB An integration vector for Gal4/UAS mediated expressing of 

transgenes. Contains an attachment attB site which is 

recognized by the φC31 integrase, which integrates the 

construct into the attP site in a transgenic fly genome. It is 

a pUAST plasmid derivate which carries a lacZ reporter 

and a white
+
 marker gene and ampicillin resistance. 

H. Jäckle, 

Generated by 

Basler lab (Bischof 

et al. 2007) 

pNLS-eGFP-C1 A pEGFP-C1 (Clontech) derivate which encodes a red-

shifted variant of wild-type GFP which has been optimized 

for brighter fluorescence and higher expression in 

mammalian cells. It contains N-terminal Nuclear 

Localization Signal (NLS) and kanamycin resistance. 

H. Leonhardt 

pVL1392 A baculovirus transfer vector. Contains recombination Invitrogen 

http://www.fruitfly.org/homepage/OneWorld.aspx?CurrentReferrer=%2fHOMEPAGE%2fNOTFOUND.ASPX%3f404%3bHTTP%3a%2f%2fWWW.STRATAGENE.COM%3a80%2fVECTORS%2fCLONING%2fPBLUESCRIPT2.HTM
http://www.fruitfly.org/homepage/OneWorld.aspx?CurrentReferrer=%2fHOMEPAGE%2fNOTFOUND.ASPX%3f404%3bHTTP%3a%2f%2fWWW.STRATAGENE.COM%3a80%2fVECTORS%2fCLONING%2fPBLUESCRIPT2.HTM
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sequences which are homologous to sequences in the 

baculovirus genome, AcMNPV polyhedrin enhancer-

promoter sequences to drive high protein expression and 

ampicillin resistance. 

pVL1392-dMi-

2FlagWT 

cDNA encoding for full length dM-2 with C-terminal Flag-

tag, used as a template for PCR for generation of following 

constructs: pUASTattB-dMi-2FlagWT, pUASTattBeGFP-

dMi-2WT, pUASTattBeGFP-dMi2 N. 

(Bouazoune et al. 

2002) 

pVL1392-dMi-

2 CDFlag 

cDNA encoding for a short dMi-2 form ( 485-690 aa) with 

C-terminal Flag-tag, used as a template for PCR for 

generation of a following construct: pUASTattBeGFP-

dMi2 CD. 

(Bouazoune et al. 

2002) 

pUC12x601 A vector containing 12 nucleosome positioning sequences 

(601). Used for assembly of mononucleosomes for a 

nucleosome sliding assay. 

G. Längst 

 

3.1.5  Oligonucleotides 

All oligonucleotides were purchased from Eurofins MWG Operon and diluted to a final 

solution of 100 µM with MilliQ-water.  

3.1.5.1  Primers for cloning 

 

Table 3.8 Primers used for cloning of constructs listed in chapter 3.1.4 

Oligoname Sequence (from 5’ to 3’) 
dCHD3_BamHI_f CGGGATCCTGAGCAAGTACCGCATCG   

dCHD3_BamHI_r CGGGATCCTCACATTAATACTATACTGC 

dCHD3_NotI_f AAAGCGGCCGCTTATGTCGTCTAAGAGAG   

dCHD3_EcoRI_r CCGGAATTCCTACTTGTCATCGTCGTCCTTGTAGTCCATTAAT

ACTATACTG  

dCHD3 PHD_NotI_f AAAGCGGCCGCTTATGCCCTTGCCCGGAAAAG 

dCHD3 PHD/Chromo_

NotI_f 

AAAGCGGCCGCTTATGGATAGACCTGCACCCAC 

dCHD3 C_EcoRI_r CCGGAATTCCTACTTGTCATCGTCCTTGTAGTCCTTAAAGGAC

GAAAG 

dMi-2_NotI_f   AAAGCGGCCGCATGGCATCGGAGGAAGAG 

dMi-2N_XbaI_r CCGTCTAGACTACTTGTCATCGTCGTCCTTGTAGTCGCAGCTG

CAACGAGGACAG 

dMi-2(1-485)_XbaI_r CCGTCTAGACTACTTGTCATCGTCGTCCTTGTAGTCGACCTTG

AGCTTGGACTTG 

eGFP_EcoRI_f AGCGAATTCATGGCACCAAAGAAGAAG3´ 

eGFP(+NotI)_ XhoI_ r     ATTCTCGAGCTAGCGGCCGCTGAGTCCGGACTTGTACAG 

eGFPdMi2WT_NotI_f ATAGCGGCCGCGCATCGGAGGAAGAGAATG 

eGFPdMi2WT_XbaI_r AGGTCTAGACTAGACGCCGGAATTATTCG 

eGFPdMi-2 N_NotI_f ATAGCGGCCGCGAGGACGACGAGGATCG 

dCHD3CDs_EcoRI_f TGAGAATTCGATTCCTGCCCTTCCGTTTAC 

dCHD3CDs_NotI_r ATAGCGGCCGCCTAGTACTTCTTATTCAGGTC 
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dMi-2CDs_EcoRI_f TGTGAATTCGACTCATGTCCCTCCGCCTATC 

dMi-2CDs_NotI_r ATAGCGGCCGCCTAATACTTCTTCTTCAGATC 

hCHD1CDs_EcoRI_f CGGGAATTCGATTCTGATGACCTACTGG 

hCHD1CDs_NotI_r ATAGCGGCCGCCTACTTCAGGGCTACAAACC 

(2-690)_f ATAGTCGACTTGCATCGGAGGAAGAGAATG 

(2-690)_r ATAGCGGCCGCCTAGACCTTGAGCTTGGACTTGC 

(2-483)_r ATAGCGGCCGCCTAGCAGCTGCAACGAGGACAG 

(2-376)_r ATAGCGGCCGCCTAGTGCTCATGCTCGCCATC 

(2-117)_f ATAGCGGCCGCCTATGCCGACTCCTTCTCCTTG 

(118-238)_f ATAGTCGACTTTCATCCGGAATGCCATCTG 

(118-238)_r ATAGCGGCCGCCTAGACGGCCTCCTCGTAAATG 

(239-376)_f ATAGCGGCCGCCTAGACGGCCTCCTCGTAAATG 

 

3.1.5.2  Primers for QPCR for transcript expression analysis 

 

Table 3.9 Primers for gene expression analysis 

Oligoname Sequence (from 5’ to 3’) References 
rp49_f    CGGATCGATATGCTAAGCTG (Beisel et al. 2007) 

rp49_r      GAACGCAGGCGACCGTTGGGG 

actin5C_f AAGTTGCTGCTCTGGTTGTCG (Marcillac et al. 2005)  

actin5C_r GCCACACGCAGCTCATTGTAG 

GAPDH_f GAGCAAGGACTAAACTAGCCAAA (Kunert et al. 2009) 

GAPDH_r CAACAGTGATTCCCGACCA 

hsp70_f ATATCTGGGCGAGAGCATCACA (Boehm et al. 2003) 

hsp70_r      GTAGCCTGGCGCTGGGAGTC  

hsp70total_f            TTGGGCGGCGAGGACTTTG  (Kopytova et al. 2010) 

 hsp70total_r           GCTGTTCTGAGGCGTCGTAGG 

hsp70-3end_f     GTTGGCATCCCTATTAAACAGC 

hsp70-3end_r     CAGGACTCACTTAGCGGGG  

hsp26_f             CACCGTCAGTATTCCCAAGC This study 

hsp26_r            GTTCTCCTTGCCCTTCACC This study 

hsp26-3end_f   TACCCGCTGGAGCTTTTCTA This study 

hsp26-3end_r   TCTCTACTCTTTCCTTTTTCTGTCA This study 

hsp83_f              TCTGTGAATAGAACGAAAAATACA This study 

hsp83_r            TGATGATCAGGGACATCAGC This study 

hsp83total_f   GGGTTTCTACTCCGCCTACC This study 

hsp83total_r   CACGTACTGCTCGTCATCGT This study 

hsp83-3end_f   GATGACCCGATCGATGATAAA This study 

hsp83-3end_r   CCCCCAATAAATACTCGCTCA This study 

hsp83-intr_f   TCCTTAGTGTTGAACCCACAGA This study 

hsp83-intr_r TCTCTGCTTCTTCTGGCATC This study 

 

Random hexamer primers were purchased from Invitrogen, and oligo-dT primers were 

purchased from Eurofins MWG/Operon 
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3.1.5.3  Primers for QPCR for ChIP analysis  

 

Table 3.10 Primers for ChIP analysis 

Numbers in primer names indicate the position where the amplicons were centred. 

Oligoname Sequence (from 5’ to 3’) References or source 
hsp70-350_f TGGGTGTCTACCAACATGGCAA (Petesch and Lis 2008) 

hsp70-350_r ATGAGGCGTTCCGAATCTGTGA 

hsp70-154_f TGCCAGAAAGAAAACTCGAGAAA (Boehm et al. 2003) 

hsp70-154_r GACAGAGTGAGAGAGCAATAGTACAGAGA 

hsp70+58_f CAATTCAAACAAGCAAAGTGAACAC 

hsp70+58_r TGATTCACTTTAACTTGCACTTTA 

hsp70+681_f CACCACGCCGTCCTACGT 

hsp70+681_r      GGTTCATGGCCACCTGGTT 

hsp70+1427_f CTGTGCAGGCCGCTATCC 

hsp70+1427_r GCGCTCGATCAGCTTGGT 

hsp70+1702_f GGGTGTGCCCCAGATAGAAG 

hsp70+1702_f TGTCGTTCTTGATCGTGATGTTC 

hsp70+2065_f AGGAGCTCACCCGCCACT (Petesch and Lis 2008) 

hsp70+2065_r CTGCTGGCCGCAGTTTGCT 

hsp70+2549_f     GTTGGCATCCCTATTAAACAGC (Kopytova et al. 2010) 

hsp70+2549_r     CAGGACTCACTTAGCGGGG 

intergenic_f TGCTGACTGCCATCAAATTC Karin Meier 

intergenic_r TACTGCTGTGACGGCTTTG  

 

3.1.5.4  Primers for site-directed mutagenesis 

 

Table 3.11 Primers used for site-directed mutagenesis 

The mutated DNA base is highlighted in bold. Numbers in the primer name indicate the 

mutated amino acid position. 

Oligoname Sequence (from 5’ to 3’) 
dCHD3_K298R_f GATGGGTCTGGGCAGGACCATTCAGACCG  

dCHD3_K298R_r CGGTCTGAATGGTCCTGCCCAGACCCATC  

dMi2_K761R_f GATGGGTCTGGGTAGGACCATTCAGACGG  

dMi2_K761R_r CCGTCTGAATGGTCCTACCCAGACCCATC  

 

3.1.5.5  Primers for dsRNA and ssRNA generation by in vitro transcription 

 

Table 3.12 Primers for in vitro transcription 

Sequence in lowercase letters indicates T7 promoter. 

Oligoname Sequence (from 5’ to 3’) Source 
T7-dCHD3_f (a)   taatacgactcactatagggGATTTACGTCAGAAGGCCATTGAC This study 

T7-dCHD3_r (a)   taatacgactcactatagggAGCGACCTTAAAGGACGAAAGAC 

T7-dCHD3_f (b)   taatacgactcactatagggAGTTGTCTTATAACGATAGCAG 

T7-dCHD3_r (b)   taatacgactcactatagggGTTTTCGCGCATGGTTTTG 

T7-dMi-2_f(a) taatacgactcactatagggACCCATTCGCAATGCCAG GenomeRNAi 

(HFA11222) T7-dMi-2_r(a) taatacgactcactatagggCGGAGGGCGAAGATGG 
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T7-dMi-2_f(b) taatacgactcactatagggTTAACTCGCTGACCAAGGCT G. Suske 

T7-dMi-2_r(b) taatacgactcactatagggATATCGTTGTGGGGATTCCA 

T7-Luc_f taatacgactcactatagggGGAAGAACGCCAAAAAC G. Suske 

T7-Luc_r taatacgactcactatagggCTCTGGCACAAAATCG 

T7-EGFP_f taatacgactcactatagggGAGCTGGACGGCGACGTAA G. Suske 

T7-EGFP_r taatacgactcactatagggACTTGTACAGCTCGTCCATG 

T7-hsp70_f taatacgactcactatagggCCTACGGACTGGACAAGAAC This study 

hsp70_r AGGGTTGGAGCGCAGATCCTTCTTGTAC 

 

3.1.6  Baculoviruses 

Table 3.13 Baculoviruses used for protein expression in SF9 cells 

Name Expressed protein Source 
dCHD3WT Full length Flag-tagged dCHD3 This study 

dCHD3 PHD Flag-tagged dCHD3 (81-892 aa) This study 

dCHD3 PHD/ 

Chromo 

Flag-tagged dCHD3 (241-892 aa) This study 

dCHD3 C Flag-tagged dCHD3 (1-800 aa) This study 

dCHD3K298R   Flag-tagged catalytically inactive mutant 

of dCHD3 

This study 

dMi-2K761R Flag-tagged catalytically inactive mutant 

of dMi-2 

This study 

dMi-2WT Full length Flag-tagged dMi-2 (Bouazoune et al. 2002) 

 dMi-2 CD Flag-tagged dMi-2 ( 485-690 aa) 

dMi-2 N Flag-tagged dMi-2 (691-1982 aa) 

dMi-2 C Flag-tagged dMi-2 (1-1271 aa) 

dMi-2-CD+ATPase Flag-tagged dMi-2 (484-1271 aa) 

dMi-2-ATPase Flag-tagged dMi-2 (691-1271 aa) 

dMi-2N Flag-tagged dMi-2 (1-691 aa) This study 

dMi-2(1-485) Flag-tagged dMi-2 (1-485 aa) This study 

 

3.1.7  Bacteria strains and culture media 

Chemical competent E. coli strain XL1-Blue was used for plasmid DNA amplification and 

cloning. E. coli strain BL21 was used for GST-fusion protein expression. 

XL1-Blue   supE44 hsdR17 recA1 endA1 gyrA46 thi relA1 lac
-
 F‟ [proAB

+
 lacI

q
 lacZ 

M15 Tn10 (tet
r
)] 

BL21          hsdS gal (λcIts857 ind1 Sam7 nin5 lacUV5-T7 gene 1) 
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LB-Medium (Luria-Bertani-Medium) 1% (w/v) Tryptone 

0,5% (w/v) Yeast extract 

171 mM NaCl 

 

LB-Agarplates  

 

1,5% (w/v) Agar 

LB-Medium  

100 μg/ml Ampicillin or  

30 μg/ml Kanamycin 

 

3.1.8  Cell lines and tissue culture media 

3.1.8.1  Insect cell lines 

Kc167 - Drosophila melanogaster embryonic cell line isolated from 6-12 hr old Drosophila 

embryos (Echalier and Ohanessian 1970). 

SL2 - Drosophila melanogaster cell line derived from a primary culture of late stage (20-

24 hours old) embryos (Schneider 1972). 

SL2-dRPD3Flag - SL2 cells stably transfected with a plasmid constitutively expressing 

Flag-tagged full length dRPD3 (Czermin et al. 2001). 

SF9 - a clonal isolate, derived from Spodoptera frugiperda (Fall Armyworm), used for 

transient or stable expression of recombinant proteins in Baculovirus system (Vaughn et al. 

1977). 

3.1.8.2  Tissue culture media 

Schneider’s Drosophila Medium: medium (with L-Glutamine) for Drosophila cell 

culture, supplemented with 10% Fetal Bovine Serum and 1% Penicilin/Streptomycin. 

Sf-900 II SFM: medium for SF9 cells, supplemented with 10% Fetal Bovine Serum and 

0,1% Gentamycin. 

Cell culture material Company 

Schneider‟s Drosophila Medium Gibco 

Sf-900 II SFM Gibco 

Fetal Bovine Serum (FBS) HyClone 

Penicilin/ Streptomycin (10 mg/ml) PAA 

Gentamycin  (10 mg/ml) PAA 
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3.1.9  Fly strains 

All fly stocks were maintained at room temperature and all crosses were kept at 26 C in a 

fly incubator. Fly stocks were sustained on standard food as described in (Kunert and 

Brehm 2008).  

 

Table 3.14 Fly strains used in this study 

Name Description and Genotype Source 

OrR Oregon R wild-type fly strain  P. Becker 

w[1118] isogenic w[1118] isogenic fly strain, isogenized 

chromosomes 1,2,3 

Bloomington 

(BL#5905) 

J5 attP-zh86Fb/vas-phi-zh102D, microingection fly 

strain, integration site at 3
rd

 chromosome 

K. Basler 

daughterless-

Gal4  

P{da-Gal4}, expresses Gal4 in da pattern R. Renkawitz-

Pohl 

sgs-58AB-Gal4 Gal4 driver strain, salivary gland specific R. Renkawitz-

Pohl 

14.2-Gal4 Strong Gal4 driver, salivary gland specific H. Saumweber 

eyeless-Gal4 P{eye-Gal4}, expresses Gal4 in eye pattern R. Renkawitz 

GMR-Gal4 P{GMR-Gal4}, expresses Gal4 in GMR pattern R. Renkawitz 

dMi-2 RNAi 

strain  

Transgenic line carrying UAS –RNAi construct 

against dMi-2, inserted at 2
nd

 chromosome 

VDRC library,  

ID #107204 

dCHD3 RNAi 

strain 

Transgenic line carrying UAS –RNAi construct 

against dCHD3, inserted at 2
nd

 chromosome 

VDRC library,  

ID # 102689 

dMi-2WT Transgenic line carrying UAS dMi-2FlagWT, 

inserted at 3
rd

 chromosome 

This study 

dMi-2K761R Transgenic line carrying UAS dMi-2FlagK761R, 

inserted at 3
rd

 chromosome 

This study 

dCHD3WT Transgenic line carrying UAS dCHD3FlagWT, 

inserted at 3
rd

 chromosome 

This study 

dCHD3K298R Transgenic line carrying UAS dCHD3FlagK298R, 

inserted at 3
rd

 chromosome 

This study 

eGFP Transgenic line carrying UAS eGFP, 

inserted at 3
rd

 chromosome 

This study 

eGFPMi2WT Transgenic line carrying UAS eGFPMi2WT 

inserted at 3
rd

 chromosome 

This study 

eGFPMi-2 N Transgenic line carrying UAS eGFPMi-2 N, 

inserted at 3
rd

 chromosome 

This study 

eGFPdMi-2 CD Transgenic line carrying UAS eGFPdMi-2 CD,  

inserted at 3
rd

 chromosome 

This study 
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3.2  Methods 

3.2.1  Analysis of DNA 

3.2.1.1  Basic molecular biology methods 

Standard procedures in molecular biology, including preparation of chemically-competent 

bacteria, transformation of chemically-competent bacteria with plasmid DNA, 

amplification of plasmid DNA in bacteria, DNA purification from bacteria, determination 

of DNA concentration, restriction enzyme digestion, ligation of DNA fragments, analysis 

of DNA on agarose gels and amplification of DNA by polymerase chain reaction (PCR), 

were performed according to standard protocols (Sambrook and Russel 2001). 

Site-directed mutagenesis was done using QuickChange Site-directed Mutagenesis Kit 

(Agilent Technologies) according to the manufacturer‟s instructions. Primers used for 

mutagenesis were designed with PrimerX tool and are listed in Table 3.11.   

Plasmid DNA was routinely prepared with plasmid purification kits (Qiagen). Isolation of 

DNA fragments from agarose gels was done with Qiagen Gel Extraction Kit according to 

the manufacturer‟s instructions.  

 

3.2.1.2  Genomic DNA isolation from flies 

Fly genomic DNA was isolated from 50 g of wild type flies with DNAzol Reagent 

(Invitrogen) following the manufacturer‟s instructions. For checking the transgene 

presence in generated transgenic flies, single fly was homogenized in 50 μl of Squishing 

buffer with a pipette tip followed by 30 min Proteinase K (0,2 mg/ml) digestion at 37 C. 

The enzyme was stopped by 10 min incubation at 85 C. Solution was spun down at 13000 

rpm (Haraeus Biofuge Pico) at RT, supernatant was transferred to a fresh tube. Genomic 

DNA was stored at -20 C.  

Squishing buffer 10 mM Tris-HCl, pH 8,0 

25 mM NaCl 

1 mM EDTA  
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3.2.2  Analysis of RNA 

3.2.2.1  RNA isolation from cells and larvae 

RNA was isolated using the peqGOLD Total RNA Kit, according to the manufacturer‟s 

instructions. RNA was isolated from approximately 1x10
7
 Kc cells. For RNA isolation 

from Drosophila larvae, 10-20 third instar larvae were collected, heat shock treated (as 

described in chapter 3.2.9.1) or directly frozen down in liquid nitrogen and then pestled in 

cell lysis buffer (TRK) provided by the manufacturer. A DNAse I digestion step on the 

RNA binding column was included as suggested by the manual. RNA was eluted with 50 

μl of nuclease free water, and RNA concentrations were determined by 260 nm absorption 

measurements using NanoDrop spectrophotometer. RNA was aliquoted and stored at -

20 C for several months.  

 

3.2.2.2  Reverse transcription for cDNA synthesis 

For the analysis of gene expression levels, RNA was transcribed to cDNA (complementary 

DNA) using either unspecific oligo-dT primers or random primers, and recombinant 

Moloney Murine Leukemia Virus Reverse Transcriptase (MMLV-RT). cDNA synthesis 

was performed with M-MLV Reverse Transcriptase Kit (Invitrogen) with 1 μg of isolated 

total RNA according to the manufacturer‟s instructions. 1 μl of 50 μM oligo-dT or 0,5 μl of 

0,3 μg/μl random primers (Invitrogen) were used for 20 μl cDNA reaction. For QPCR 

analysis cDNA was diluted 1:20 or 1:50 when oligo-dT or random primers were used, 

respectively. 

 

3.2.2.3  Quantitative real-time PCR (QPCR) 

Quantitative real-time PCR was used to analyse gene expression levels and to determine 

the genome binding sites in ChIP experiments (chapter 3.2.5.3). 

Quantitative real-time PCR combines the DNA amplification of a common PCR reaction 

with the detection of a fluorescent dye after each amplification cycle, to monitor the 

accumulation of PCR product in “real-time”. When an amplification reaction is in the log 

phase, the fluorescence is directly proportional to the amount of the PCR product. 

For all experiments SYBR Green dye was used. It intercalates to the double stranded, but 

not single stranded DNA. The fluorescence is strongly increased when intercalated and 

therefore allows a quantification of the PCR product. When a certain amount of DNA has 
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been synthesized, the fluorescence is strong enough to be distinguished from the 

background signals. For each sample the software measures the cycle number at which the 

fluorescence crosses the arbitrary line, the threshold. This crossing point is the Ct (cycle 

threshold) value. Hence, the lowest Ct values, the highest amount of DNA starting 

material.  

For comparison of the relative amount of cDNA in two different samples, ΔΔCt 

quantification method was used (Livak and Schmittgen 2001). This method involves 

comparing the Ct values of the samples of interest with a calibrator such as a non-treated 

sample or RNA from normal tissue. The Ct values of both the calibrator and the samples of 

interest are normalized to an appropriate endogenous reference gene with constant 

expression levels under different experimental conditions. All experiments were calculated 

with rp49 as a reference, which is a housekeeping gene encoding a ribosomal protein.  

First, a Ct value for both, the sample of interest and the calibrator was calculated: 

ΔCtsample= Ctsample- Ctrp49   and   ΔCtcalibrator= Ctcalibrator - Ctrp49 

The comparison of the two samples results in a ΔΔCt value: 

ΔΔCt = ΔCtsample – ΔCtcalibrator 

As the DNA amount per amplification cycle increases exponentially, the difference in 

expression levels was calculated as x = 2
- ΔΔCt

. For gene induction analysis, the x -value was 

set to 1 for the calibrator and all other samples were normalized and displayed as fold 

induction. All samples were measured in technical triplicates and standard deviations s 

were determined, resulting in a standard deviation for ΔCt value of: 

 

and a standard deviation for the normalized fold expression of : 

 

For QPCR calculations for chromatin immunoprecipitation (ChIP) see chapter 3.2.5.3. 

QPCR was performed in 96 well plates using ABsolute SybrGreen Mix (Theromo Fisher), 

which contains the enzyme, nucleotides, buffer and the SYBR Green dye. For each QPCR 

reaction, 6 μl of DNA solution were used. 1 μl of 10 μM primer mix (including forward 

and reverse primer), 8 μl of nuclease free H2O and 12 μl of SYBR Green master mix were 

combined and 19 μl were added to the DNA in each well, resulting in the reaction volume 
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of 25 μl. QPCR was run using Mx300P QPCR System (Agilent) and the data was collected 

with MxPro software.  

 

All QPCR runs were performed using the same PCR program:  

Initial denaturation 

and enzyme activation 

95 C, 15 min  

Denaturation 95 C, 15 sec  

Primer annealing  55 C, 30 sec       45 cycles 

Elongation 72 C, 30sec  

 

Dissociation curve 

 

95 C, 1 min 

55 C, 30s 

95 C, 30s 

 

 

 

3.2.2.4  dsRNA and ssRNA synthesis and purification 

dsRNA (double stranded DNA) for knockdown experiments was synthesized using in vitro 

transcription. For this, Megascript T7 Kit (Ambion) was applied. T7-promoter containing 

DNA template was amplified on appropriate plasmid templates by PCR with primers listed 

in Table 3.12. For each reaction, 1 μg of DNA template was used, 8 μl of NTPs mix (30 

mM final concentration) and 2 μl of reaction buffer (10x) in a volume of 20 μl. The in vitro 

transcription reaction was conducted for 16 hrs at 37 C. Template DNA was then removed 

by incubation of the sample with 1 μl of Turbo DNAse (Ambion) for 15 min at 37 C. For 

RNA precipitation, 20 μl of 5M NH4OAc and 100 μl of 100% ethanol were added and 

sample was incubated for 30 min at -20 C followed by centrifugation for 5 min at 13000 

rpm at RT (Haraeus Biofuge Pico). RNA pellet was washed in 70% ethanol, dried in a 

speed vac for 2 min and dissolved in 40 μl of nuclease free H2O followed by incubation for 

50 min at 37 C. In order to obtain dsRNA, the complementary RNA strands were 

hybridized by incubation of the sample for 30 min at 65 C followed by slow cooling down 

to room temperature for about 1 hr. Concentration of dsRNA was determined by 260 nm 

absorption measurements using NanoDrop spectrophotometer and analysed on 1% agarose 

gel.  

ssRNA for electrophoretic mobility shift assays was synthesized by the same method with 

the difference that the hybridization step was omitted.  
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3.2.3  Protein biochemistry methods 

Protein analysis was performed according to standard protocols. In general, proteins were 

kept on ice (4 C), in the presence of proteinase inhibitors – a mix of Leupeptin, Pepstatin, 

Aprotinin (each at 1μg/ml), PMSF (0,2 mM), and the reducing reagent DTT (1 mM), 

which were added freshly to the buffers. 

3.2.3.1  Nuclear extracts from Kc or SL2 cells 

Cells from one 6 well plate, 10 cm plate or 75 cm
3
 flask were spun down at 1000 rpm for 5 

min at 4 C (Heraeus Laborfuge 400R). Cells were washed twice with ice cold PBS and 

resuspended in 50 μl (6 well plate), 100 μl (10 cm plate) or 500 μl (75 cm
3
 flask ) of 

hypotonic Buffer B and incubated on ice for 10 min. Cells were spun down at 13000 rpm 

for 1 min at RT (Heraeus Biofuge Pico) and the supernatant (cytoplasmic fraction) was 

discarded. Pellet was resuspended in 250 μl of high salt Buffer C and incubated on ice for 

20 min. Then cells were spun down at 13000 rpm for 10 min at 4 C (Heraeus Biofuge 

Pico), supernatant (nuclear extract) was transferred to a fresh tube and protein 

concentration was measured by Bradford assay. Extracts were frozen down in liquid 

nitrogen and stored at - 80 C.  

Buffer B 10 mM Hepes/KOH,  pH 7,9 

10 mM KCl 

1,5 mM MgCl2  

0,1 mM DTT 

proteinase inhibitors added freshly 

 

Buffer C 

 

20 mM Hepes/KOH,  pH 7,9  

420 mM NaCl 

1,5 mM MgCl2  

0,2 mM EDTA  

25% (v/v) glycerol 

0,1 mM DTT 

proteinase inhibitors added freshly 

 

3.2.3.2  Whole cell extracts from Drosophila brains 

Whole cell extract was prepared from Drosophila 3
rd

 instar larvae brains for checking 

ectopic expression of Gal4-driven transgenes. 20 brains from 3
rd

 instar larvae were 

dissected in PBS and collected in 20 μl of IP Buffer. Roti Load1 SDS-Page loading buffer 
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was added, brains were boiled for 5 min at 95 C and directly loaded on SDS-Page gel. 

Expression of proteins was analysed by Western blot using appropriate antibodies. 

 

IP Buffer  50 mM Tris,  pH 8,0 

150 mM NaCl  

2,5 mM EDTA 

2,5 mM EGTA  

1% (v/v) NP-40  

protease inhibitors added freshly 

 

3.2.3.3  Drosophila stage-specific whole cell extracts 

Different developmental stages of Drosophila melanogaster were collected from small 

chambers, washed or dechorionized, dried, weighted, froze down at liquid nitrogen and 

kept at -80 C. For each gram of material, 1 ml of Homogenising Buffer was added and 

material was disrupted with a mini glass dounce homogenizer for 3 minutes on ice. The 

homogenate was passed through a single layer of miracloth to remove debris and spun 

down at 2000 rpm for 3 min at 4 C (Heraeus Biofuge Pico). The supernatant was carefully 

transferred to a fresh tube and spun down at 13000 rpm for 30 min at 4 C (Heraeus 

Biofuge Pico). Supernatant was transferred again to a fresh tube and protein concentration 

was measured by Bradford assay. Extracts were frozen down in liquid nitrogen and stored 

at - 80 C.  

 

Homogenizing Buffer 50 mM Hepes,  pH 7,4 

100 mM NaCl 

0,5 mM EDTA 

0,05% (v/v) NP-40 

protease inhibitors added freshly 

 

3.2.3.4  Determination of protein concentration 

Protein concentration in extracts was determined using the colorimetric assay described by 

Bradford (Bradford 1976). The concentration of purified recombinant proteins was 

estimated according to a protein standard with a known concentration (BSA) run on the 

same SDS-PAGE gel, followed by Coomassie blue staining.  
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3.2.3.5  Co-immunoprecipitation 

Protein G beads were equilibrated by washing 3 times in PBS. For one IP, appropriate 

antibodies (Table 3.2) were coupled to protein G beads by incubation with 10 μl of protein 

G beads in 300 μl of PBS for 30 min on a rotating wheel at RT. Subsequently the beads 

were washed 3 times with PBS and once with HEMG-100 KCl buffer. Proper amount of 

protein nuclear extracts (usually 50-100 μl) were added, filled up with 100 KCl/HEMG up 

to 350 μl and incubated for 3 hrs at 4 C on a rotating wheel. Beads were washed once with 

HEMG-100 KCl and two times with HEMG-100 NaCl, resuspended in 2xSDS-Page 

loading buffer and analysed by Western blot.             

Alternatively, co-immunoprecipitations were carried out in PBS. For this, protein G beads 

were equilibrated by washing 3 times in PBS. Nuclear extracts were filled up with PBS up 

to 350 μl and incubated with the appropriate antibody for 2 hrs at 4 C on a rotating wheel 

and after addition of 10 μl of Protein G beads (1:1 slurry) for an additional hour. The beads 

were washed three times with PBS, resuspended in 2xSDS-Page loading buffer and 

analysed by Western blot.             

For each IP, samples without antibody and without extract were included as background 

controls. 10-20% of nuclear extracts were taken as an input control.  

 

HEMG-X buffer 25 mM Hepes,  pH 7,6 

X mM KCl or NaCl 

12,5 mM MgCl2  

0,1 mM EDTA pH 8,0 

10% (v/v) glycerol 

0,1 mM DTT 

proteinase inhibitors added freshly 

 

 

3.2.3.6  SDS-polyacrylamide gel electrophoresis 

Pouring and electrophoresis of SDS-polyacrylamide gels was performed using the Novex 

system (pre-assembled gel cassettes). Resolving and stacking gels were prepared according 

to standard protocols (chapter 3.1.2) using ready-to-use polyacrylamide solutions from 

Roth (Rotiphorese Gel 30; 37.5:1). Gels were run using standard SDS-PAGE Running 

buffer. For PARP/PAR pulldowns gradient NuPAGE Novex 4-12% Bis-Tris Gels were 

used. These gels were run in NuPAGE MES-running buffer. 
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For electrophoresis protein samples were mixed with SDS-Page Loading buffer, heat-

denatured for 5 min at 95 C and directly loaded onto the gel. Electrophoresis was run 

initially at 100V until the dye front had reached the resolving gel and then at 160V until 

the dye front had reached the end of the gel. The molecular weight of proteins was 

estimated by running pre-stained protein ladder. Following electrophoresis, proteins were 

either stained with PageBlue according to the manufacturer‟s instructions, Coomassie 

Briliant Blue or subjected to Western blotting.    

    

3.2.3.7  Coomassie Blue staining of protein gels 

Polyacrylamid gels were stained overnight on a horizontal shaker with a ready-to-use 

PageBlue Protein Stain Solution (Fermentas) according to the manufacturer‟s instructions. 

For histone visualization gels were stained with a traditional Coomassie blue staining 

solution for 60 min to overnight and then destained in a destaining solution. After 

documentation, gels were dried on a Whatman paper at 80 C for 2 hrs using a gel drier 

(BioRad).  

Coomassie blue staining solution 10% (v/v) acetic acid 

50% (v/v) methanol 

0,025% (w/v) Coomassie 

Brilliant Blue R250 

 

Destaining solution 

 

10% (v/v) acetic acid 

50% (v/v) methanol 

 

3.2.3.8  Western blot analysis 

Protein were separated by SDS-Page and transferred to polyvinylidene fluoride (PVDF) 

membrane. Before blotting, PVDF membrane was activated shortly in methanol. The gel 

was placed onto the membrane and sandwiched between four gel-sized Whatman-3MM 

Paper soaked in the transfer buffer. Proteins were transferred onto the membrane for 1 hour 

at 400 mA constant current using the  BioRad Wet Blotting System. The blotting chamber 

was cooled with an ice block and kept on ice. After transfer, to reduce a non-specific 

antibody binding, membranes were incubated in a blocking solution for 1 hr at RT. Then, 

membranes were incubated with an appropriate dilution of the primary antibody (Table 

3.2) diluted in the blocking solution for 2 hours at RT, on a horizontal shaker. 

Alternatively, membranes were incubated overnight in the coldroom. To remove unbound 
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antibodies, membranes were washed three times with PBST for 5 minutes and incubated 

for one additional hour with horseradish peroxidase-coupled secondary antibody diluted in  

blocking solution, at RT. After three washes (with PBST, 5 minutes each), antigen-

antibody bound complexes were detected using Immobilon Western HRP 

Chemiluminescent Substrate and autoradiography according to the manufacturer‟s 

instructions. Different exposure times were chosen for different antibodies.  

For stripping, membranes were incubated in a stripping buffer for 30 minutes at 65 C in a 

water bath. This strips the bound antibodies from the membrane, thus it can be re-probed 

with different primary antibodies. After stripping, membranes were washed three times for 

10 minutes with PBST and then blocked and immunoblotted as described above.  

 

Transfer buffer 192 mM Glycin 

24 mM Tris 

20% methanol 

0,02% SDS 

 

PBST 

 

PBS with 0,1% Tween-20 

 

Blocking solution 

 

PBST with 5% dried milk 

 

Stripping buffer 

 

62,5 mM Tris-HCl,  pH 6,8 

10% -Mercaptoethanol 

2% SDS 

 

3.2.3.9  Antibody generation 

Monoclonal antibodies against dCHD3 were generously generated by Elisabeth Kremmer. 

Briefly, Lou/C rats were immunized with a KLH-coupled (Keyhole Limpet Hemocyanin) 

peptide (CGKRIRKEIDYSNQYPSPNRAT, Peptide Speciality Laboratories) that is 

specific for the dCHD3protein. After an 8-week interval, a final boost was given three days 

before fusion of the rat spleen cells with the murine myeloma cell line P3X63-Ag8.653. 

Hybridoma supernatants were tested in ELISA using the same peptide coupled to 

ovalbumin. The specificity of antibodies was confirmed by monitoring the disappearance 

of protein signals on Western blot after protein knockdown with RNAi (Fig. 5.14). 

Antibodies were also tested for potential cross-reactivity with recombinant dMi-2 (Fig. 

3.1). Lack of signal for dMi-2 in Western blot probed with -dCHD3 antibodies, validated 
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their specificity. Based on these experiments hybridoma supernatant dCHD3 #7A11 

(IgG1) was used for further experiments. Polyclonal dCHD3 antibody (#5) was generated 

by injecting rabbits with three dCHD3 derived peptides (Peptide Speciality Laboratories, 

KDKRPKTNAKKQKFRDEEYC, SQPKLPKKQKKQSQQSC, CGKRIRKEIDYSNQY 

PSPNRAT).  

 

Figure 3.1 Specificity of dMi-2 and dCHD3 antibodies  
Different amounts of recombinant dMi-2 and dCHD3 were subjected to Western blot analysis 

using dMi-2 (upper panel; polyclonal rabbit, -dMi-2(N)) and dCHD3 (lower panel; rat 

monoclonal, (7A11)) antibodies. Lanes 1 and 4: 18 and 36 picomol; lanes 2 and 5: 4,5 and 9 

picomol; lanes 3 and 6: 0,9  and 1,8 picomol recombinant protein. Molecular weights are indicated 

on the left, the position of dMi-2 and dCHD3 is shown by arrows on the right. 

 

3.2.3.10 Antibody concentration 

Cell culture supernatant containing monoclonal antibodies was concentrated on Protein G 

Sepharose FF beads. Protein G beads were equilibrated in 100 mM Tris/HCl, pH8.0. pH of 

the serum was adjusted by adding 1/10 volume of 1 M Tris/HCl, pH 8.0. For one 

concentration step, 8 ml of cell culture supernatant was incubated with 0,5 ml of Protein G 

beads on the wheel for 2 hrs at 4 C. Beads were applied on a small gravity flow column 
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and washed once with 5 ml of 100 mM Tris/HCl, pH 8.0, and once with 5 ml of 10 mM 

Tris/HCl, pH 8.0. Antibodies were eluted with 50 mM glycine pH 3.0, 10-12 fractions of 

250 μl volume were collected and immediately neutralized with 50 μl of 1 M Tris/HCl to 

adjust pH to 8.0. All fractions were separated on 10% SDS-PAGE gel and analysed by 

Coomassie staining. Fractions containing most concentrated antibodies were pooled and 

stored at 4 C.  

 

3.2.3.11  Baculovirus generation and protein expression in SF9 cells 

Baculovirus generation 

All protein-expressing vectors were cloned into pVL1392 vector (Table 3.7). SF9 cells 

were transfected using Bac-N-Blue Transfection Kit. 2x10
6
 of SF9 cells were split onto a 

60 mm plate. For one transfection mixture, following reagents were used: 

 

Bac-N-Blue DNA (0,5 μg)              10 μl        

Recombinant transfer plasmid (1 μg/μl)          4 μl  

Sf-900 II SFM medium (without supplements or FCS)          1 ml 

Cellfectin Reagent          20 μl  

 

The trasfection mixture was gently mixed for 10 sec and incubated for 15 min at RT. In the 

meantime the medium was carefully removed from cells and cells were washed with 2 ml 

of Sf-900 II SFM medium (without supplements or FCS). The medium was removed and 

the entire transfection mix was added dropwise onto the 60 mm dish. Cells were incubated 

for 4 hrs at RT on a side-to-side rocking platform with a lowest speed (  2 side to side 

motions per minute) followed by adding 1 ml of complete Sf-900 II SFM medium. Dishes 

were sealed and incubated for 6 days at 26 C in the incubator.  

For second round of virus amplification, 6 days after transfection, SF9 cells were harvested 

by centrifugation at 800 rpm for 5 min at RT (Heraeus Megafuge 1.0), supernatant was 

collected. 7,5 x10
6 

fresh SF9 cells were split onto a 10 cm plate. After cells settled down, 

medium was removed and 2,5 ml of fresh, complete Sf-900 II SFM medium were added. 1 

ml of cell supernatant from first cell infection was added to the cells and plates were 

incubated for 1 hr at RT on a side-to-side rocking platform with a lowest speed. After that, 

10 ml of complete Sf-900 II SFM medium were added to the cells. Cells were incubated 

for another 5-7 days at 26 C in the incubator. For third round of virus amplification, 12 

x10
6 

fresh SF9 cells were split onto a 15 cm plate. After cells settled down, medium was 
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removed and 5 ml of fresh, complete Sf-900 II SFM medium were added. 1 ml of cell 

supernatant from second amplification was added to the cells and plates were incubated for 

1 hr on a side-to-side rocking platform as before followed by adding 15 ml of complete Sf-

900 II SFM medium. Cells were incubated for another 5-7 days for 3
rd

 amplification or for 

48 hrs for test expression. The supernatant from 3
rd

 virus amplification was collected as 

before and stored at 4 C.  

 

Protein expression in SF9 cells 

48 hours after virus infection, cells were scraped from a 15 cm plate and spun down at 800 

rpm for 10 min at 4 C (Heraeus Laborfuge 400R). The supernatant was discarded and cells 

were resuspended in 5 ml of PBS and spun down again. Cell pellet was resuspended in 2 

ml of Lybu 200 buffer, froze down in liquid nitrogen and slowly thawed at 26 C in a water 

bath. Freezing/thawing procedure was repeated two times. The extract was sonified twice 

with a big tip, for 15 sec with setting 30% output and 30 sec brake on ice. Extract was 

cleared by pelleting debris at 4500 rpm at 4 C. Protein extract was analysed by Western 

blot or used for Flag affinity purification.  

 

Lybu 200 20 mM Hepes,  pH 7,6 

200 mM KCl 

10% (v/v) glycerol 

0,1% (v/v) NP-40 

0,1 mM DTT 

proteinase inhibitors added freshly 

 

Protein purification from baculovirus-infected SF9 cells 

-Flag M2 agarose beads were equilibrated in Lybu 200 buffer. Different amounts of 

whole cell extracts were used depending on the expression level of a particular protein. 

Typically, 150 μl beads (1:1 slurry) were added to 10 ml SF9 whole cell extract and 

incubated on the rotating wheel for 2-3 hrs at 4 C. Beads were spun down at 1000 rpm for 

4 min at 4 C (Heraeus Laborfuge 400R) and washed 2 times for 5 min with 10 ml of Lybu 

200 buffer, one time with 10 ml of Lybu 500 buffer. Then beads were transferred to a 

siliconized tube and washed once with 1 ml of Lybu 200. Proteins were eluted twice with 

100 μl of Elution Buffer containing Flag peptide for 2 hrs and then overnight on the 

rotating wheel at 4 C. Eluted fractions were froze down in liquid nitrogen and stored at -
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80 C. 7-15 μl of aliquots were taken and analysed on SDS-Page gels stained with 

Coomassie.  

 

Lybu 500 20 mM Hepes,  pH 7,6 

500 mM KCl 

10% (v/v) glycerol 

0,1% (v/v) NP-40 

0,1 mM DTT 

proteinase inhibitors added freshly 

 

Flag Elution Buffer 

 

20 mM Hepes,  pH 7,6 

100 mM KCl 

10% (v/v) glycerol 

0,05% (v/v) NP-40 

0,1 mM DTT 

proteinase inhibitors added freshly 

 

 

3.2.3.12  Protein expression in bacteria 

For GST-tag protein fusion expression a starter culture of 100 ml was inoculated with 

freshly transformed BL21 bacteria and incubated overnight at 37 C at 200 rpm in a 

bacteria shaker (Inforst HT). The overnight culture was diluted with 800 ml of fresh LB-

medium to the optical density (OD600) of 0,07 and incubated for 1-2 hrs at 37 C until 

OD600 reached about 0,6-0,8. At this point protein expression was induced with 0,1 mM 

IPTG and cells were incubated overnight at 18°C at 200 rpm in a bacteria shaker.   

Bacterial cells were pelleted at 4000 rpm (Haraeus Cryofuge 5000) for 30 min at 4 C. 

Cells were washed once in PBS, pelleted as before and resuspended in 15 ml of PBS/1% 

(v/v) Triton-X and the extract was sonified with a big tip, 6 times for 20 sec with setting 

30% output and 1 min brake on ice. Extract was cleared by pelleting debris at 13000 rpm 

for 30 min at 4 C (Sorvall RC-5B).  

300 μl of Glutathione Sepharose 4B Fastflow-Beads were equilibrated in PBS/1% (v/v) 

Triton-X, added to 15 ml of protein extract and incubated for 2 hrs on a rotating wheel at 

4 C. Beads were spun down for 4 min at 2000 rpm at 4 C (Haraeus Labofuge 400R) and 

washed 2 times for 5 min with 10 ml of PBS/1% (v/v) Triton-X and twice with PBS. For 

PARP pulldown experiments, protein bound beads were resuspended in 80% (v/v) glycerol 

and stored at -20°C. For histone peptide pulldown experiments, beads were applied on a 

small gravity flow column in the cold room and bound proteins were eluted with fresh 
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GST elution buffer. Eight fractions of 350 μl volume were collected, all fractions were 

analysed on Coomassie stained SDS-PAGE gels.   

 

GST elution buffer 50 mM Tris,  pH 8,0 

150 mM KCl 

20 mM reduced Glutathione 

 

3.2.3.13 Superose 6 filtration 

200 μl of embryo or Kc cell nuclear extract or 0,5-1 μg of recombinant protein were 

applied to a Superose 6 HR 10/30 gel filtration column and resolved in EX-300 buffer on 

an Äkta purifier system according to the manufacturer's instructions. Eluted fractions (500 

μl each) were subsequently precipitated by using StrataClean Resin, resuspended in 1x 

SDS-Page loading buffer and analysed by Western blot.  

 

EX-300 buffer 10 mM Hepes,  pH 7,6 

300 mM KCl 

1,5 mM MgCl2 

0,5 mM EGTA 

10% (v/v) glycerol 

0,1 mM DTT 

0,2 mM PMSF  

 

 

3.2.4  Chromatin specific methods 

3.2.4.1  Histone octamer isolation from embryos 

0-12 hr embryos were collected, dechorionized, rinsed in sieves, dried and weighted. For 

one histone preparation around 100 g of dechorionated embryos were used. Embryos were 

resuspended in 150 ml of Glycine Buffer and homogenized with Yamato homogenisator (6 

strokes, 1000 rpm at 4 C). The homogenate was then centrifuged in a Sorvall RC-5B 

centrifuge for 15 min at 8000 rpm at 4 C. Supernatant was discarded and nuclei phase was 

resuspended in 50 ml of Suc Buffer and spun down again at 8000 rpm for 10 min at 4 C. 

Nuclei were washed once more in Suc Buffer and spun down as before. Finally, nuclei 

were resuspended in 30 ml of Suc Buffer, CaCl2 was adjusted to 3 mM with 1M CaCl2 and 

solution was warm up to 26 C for 10 min in a water bath. 125 μl of MNase (50u/μl) was 

added to the nuclei and incubated for 10 min in a water bath at 26 C to digest the 
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internucleosomal DNA. Reaction was stopped by adding 600 μl of 0,5 M EDTA and spun 

immediately at 8000 rpm for 10 min at 4 C (Sorvall RC-5B). To extract nucleosomal 

particles, pellet was resuspended in TE buffer supplemented with DTT, PMSF and 

proteinase inhibitors and the sample was rotated on the wheel for 45 min at 4 C followed 

by centrifugation at 11 000 rpm for 35 min at 4 C (Sorvall RC-5B). Supernatant containing 

released nucleosomal particles was kept overnight on ice in the coldroom.  

Histone octamer purification was performed using Chromatography Systems from 

Amersham (ÄKTA, FPLC & HPLC) on a hydroxylapatite column. The column material 

was washed several times with 0,63 M KCl/100 mM K-PO4 to remove fines and the 

column was prepared according to the manufacturer‟s instructions. Before the sample was 

loaded on the column, salt was adjusted to 0,63 M KCl with the 2 M KCl/100 mM K-PO4 

solution, spun down at 13000 rpm for 15 min at 4 C (Heraeus Biofuge Pico), filtered with 

0,45 μm and then 0,22 μm sterile filter. Histones were loaded on the 30 ml hydroxylapatite 

column, flowthrough (histone H1) was collected and the column was washed with 10 

column volume (300 ml) with 0,63 M KCl/100 mM K-PO4. Histones were eluted with 2 M 

KCl/100 mM K-PO4. Presence of histones was monitored by OD at 215 nm, and fractions 

containing histone peak were concentrated with Centriprep YM-10 according to the 

manufacturer‟s instructions. Equal volume of glycerol was added to each concentrated 

fraction and histones were stored at -20 C for few months.  

10-15 μl of glycerol diluted histones were separated on 15% SDS-Page gel and analysed 

by Coomassie blue staining (Fig. 3.2).  
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Figure 3.2 Core histone octamers from Drosophila embryos  

Core histone octamers were isolated from Drosophila embryos (0-12 hr). Histones were resolved 

on 15% SDS-PAGE and stained with Coomassie blue. Different amounts of histones were loaded 

on the gel - lane 1: 5 μl, lane 2: 2 μl, lane 3: 1 μl. Lane 1: molecular weight standard. Different 

histone types are marked on the right.  

 

 

Glycine Buffer  15 mM Hepes/KOH,  pH 7,6 

10 mM KCl 

5 mM MgCl2  

0,05 mM EDTA 

0,25 mM EGTA 

10% (v/v) glycerol 

1 mM DTT  

0,2 mM PMSF  

 

Suc Buffer  

 

15 mM Hepes/KOH,  pH 7,6  

10 mM KCl 

5 mM MgCl2  

0,05 mM EDTA 

0,25 mM EGTA 

30 mM Sucrose 

1 mM DTT  

0,2 mM PMSF  

 

100 mM K-PO4 (200 ml) 

 

0,2 M KH2PO4 (28 ml) 

0,2 M K2HPO4 (72 ml) 
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3.2.4.2  Polynucleosome reconstitution by salt dialysis 

Nucleosomes were assembled on the lid of siliconized 1,5 ml eppendorf tubes. The bottom 

of the tube was cut and a big hole was made into the lid with a heated metal scalpel. The 

dialysis membrane (1,5x1,5 cm/3,5 kDa, Spectra/Por) was equilibrated  in Hi Buffer for 30 

min, cut and fixed on the lid of the siliconized tube. Such prepared tubes were put into a 

Styrofoam floater and placed on 300 ml of Hi buffer in a beaker with a magnetic stirrer. 

Air bubbles below the membrane were removed with a bent Pasteur pipette. The assembly 

reaction was pipetted onto the dialysis membrane. 

A typical test assembly reaction contained 4,4 μg of plasmid DNA with varying amounts 

of histone octamer in a 50 μl volume. To estimate the optimal histone to DNA ratio 

increasing amounts of histones were mixed with a fixed amount of DNA. The assembly 

was done in Hi Buffer, supplemented with BSA (200 ng/μl).  

A big assembly reaction was done as the test assembly in a 400 μl volume. The final DNA 

concentration was increased to 150 ng/μl and the calculated histone amount was reduced 

by around 15%.  

The salt gradient dialysis was done by continuous addition of Lo Buffer (3 liters in total) 

into the beaker with 300 ml of Hi Buffer with a peristaltic pomp over 30 hour period in the 

cold room. Polynucleosomes were checked then by MNase assay.  

 

Hi Buffer 10 mM Tris/HCl,  pH 7,6 

2 M NaCl 

1 mM EDTA 

1 mM -mercaptoethanol 

0,05% (v/v) NP-40 

 

Lo Buffer  

 

10 mM Tris/HCl,  pH 7,6 

50 mM NaCl 

1 mM EDTA 

1 mM -mercaptoethanol 

0,05% (v/v) NP-40 

 

 

3.2.4.3  Partial trypsinization of nucleosomes 

To remove histone tails, polynucleosomes were partially digested by trypsin as described 

previously (Guyon et al. 1999). Polynucleosomes (0,05 μg/μl) were digested with trypsin 

(0,27 ng/μl, Sigma) in a final volume of 40 μl in buffer V for 10-30 min at RT. The 
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trypsinization reaction was stopped with 20-fold excess (w/w) of a soybean trypsin 

inhibitor (Sigma) and the reaction was monitored by SDS-PAGE electrophoresis and 

Coomassie staining.  

 

Buffer V 10 mM Tris/HCl,  pH 8,0 

25 mM NaCl 

1 mM EDTA 

 

3.2.4.4  Micrococcal nuclease (MNase) assay  

Polynucleosomes were analysed with a Micrococcal nuclease (MNase) digest. MNase 

induces double-strand breaks within nucleosome linker regions, but only single-strand 

nicks within the nucleosome itself. Therefore, at limiting concentrations it leads to 

generation of a characteristic nucleosomal ladder which can be used for the assessment of 

the quality of nucleosomal arrays (Axel 1975).  

Polynucleosomes were partially digested with MNase. A new batch of MNase was always 

titrated as the activity of the enzyme is variable. Typically, 1 μg of assembled 

polynucleosomes was incubated with 5-200U of MNase in EX80 buffer (supplemented 

with 5 mM CaCl2 and 200 ng/μl BSA) in a final volume of 37 μl. 12 μl of the reaction 

were transferred to a new tube after 10 sec, 40 sec and 4 min and the reaction was stopped 

with 6 μl of MNase stop mix. Proteinase K digestion was continued for 2 hrs at 45 C. For 

DNA precipitation, 45 μl of 100% ethanol, 9 μl of 7,5M NH4Ac were added, samples were 

incubated on ice for 10 min spun down for 20 min at 13000 rpm at 4 C (Haraeus Biofuge 

Pico). Supernatant was discarded and pellets were washed once with 70% ethanol, air-

dried and dissolved in 10 μl of TE buffer. Samples were analysed on 1,3% agarose gel.  

 

MNase stop mix 4% (w/v) SDS 

0,1 M EDTA 

Glycogen (3,6 μg/μl) 

Protenase K (0,85 μg/μl)  

 

3.2.4.5  Nucleosome mobility assay 

Mononucleosomes were assembled on 200 bp fragments containing the „601‟ positioning 

sequence at different positions. The „601‟ sequence was identified in a screen which sought 

to find a DNA sequence that binds the histone octamer with high affinity and with a unique 
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position (Lowary and Widom 1998). 200 bp DNA fragments were obtained by digestion 

with specific restriction enzymes from pUC12x601 vector. NotI digestion results in DNA 

fragments with „601‟ sequence at the edge for end positioned nucleosomes and AvaI 

digestion results in DNA fragments with „601‟ sequence at the centre for middle positioned 

nucleosomes. Digested DNA was used for mononucleosome assembly by salt gradient 

dialysis. Assembly was carried out in the presence of 5 μg of digested DNA with different 

amounts of histones in a final volume of 40 μl in Hi buffer, as for polynucleosome 

assembly (chapter 3.2.4.2). Assembly was verified by native gel electrophoresis in 6 % 

PAA and ethidium bromide staining (Fig. 3.3). Faster migrating mononucleosomes are 

positioned at the periphery of the DNA fragment, whereas slowly migrated 

mononucleosomes are located at the centre of the DNA fragment. Samples with best 

positioned nucleosomes were combined (usually histone:DNA ratio -1,2 and 1,4) and 

stored at 4 C for few weeks.  

 

Figure 3.3 Mononucleosome assembly test for the mobilization assay 

Mononucleosomes were assembled on a „601‟ positioning sequence. Different histone:DNA 

ratios were tested, as indicated. Lines: 1-4, middle positioned nucleosomes, lines: 5-8, end 

positioned nucleosomes. Positions of free DNA and vector bone are indicated on the right.  

 

Standard nucleosome mobilisation reactions (10 μl) contained 200 ng of mononucleosomes 

in EX-40 buffer in the presence or absence of 1 mM ATP and different amounts of Flag-

eluted baculovirus purified remodelers. Reactions were incubated at 26 C for 75 min and 

stopped by adding 1 μg of competitor DNA (pUC18). Products were analysed on 6 % 

native PAA gel and visualized with ethidium bromide (EtBr) staining. 
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EX-X buffer 10 mM Tris/HCl,  pH 7,6 

X mM KCl 

1,5 mM MgCl2 

0,5 mM EGTA  

10% (v/v) glycerol 

BSA (200 ng/μl) 

1 mM DTT 

 

3.2.4.6  ATPase assay 

ATPase assay was performed in the presence of [γ-
32

P]-ATP (3000 Ci/mmol, 10 mCi/ml) 

using different substrates to analyse the specific activity of a chromatin remodeling 

enzyme. A typical reaction (14 μl) contained 100 ng of plasmid DNA or polynucleosomes 

in EX40 buffer in the presence of 10 μM cold ATP and 0,1 μl of [γ-
32

P]-ATP. Different 

amounts of proteins were added and the reactions were incubated for 30 min at 26 C. 

Reactions were stopped by putting them on ice and 1 μl of each sample was spotted on a 

half-cut thin layer chromatography cellulose plate (PEI Cellulose F25) and air-dried. The 

hydrolysed phosphate was separated from unconsumed ATP in 0,5 M LiCl/1M formic acid 

buffer using thing layer chromatography. Samples were separated until the buffer reached 

one cm to the plate end. Plate was dried for 5 min at 60 C and exposed on X-ray film or 

Phosphorimager (Fugifilm FLA-3000) for quantification of ATP hydrolysis. ATP and 

hydrolyzed phosphate were quantified using Fugifilm Image Reader software. The 

percentage of hydrolysed ATP was determined using the following calculation: 

                             (γ-
32

Phydrolyzed)/( γ-
32

Phydrolyzed + γ-
32

Punhydrolyzed) 

 

3.2.4.7  Histone deacetylase (HDAC) assay 

HDAC assay was done as described previously (Brehm et al. 2000). 50 μl of Kc nuclear 

extract were used for IPs with different antibodies. IPs were performed in PBS and after 

extensive washes (4x5 min) beads were subjected for HDAC assay. 

Beads were incubated in 30 μl of HDAC buffer in the presence of 2 μl of 
3
H-labelled 

Drosophila histones (kindly provided by Alexander Brehm) at 30 C for 1 hr in a 

thermomixer. Reactions were stopped by adding 65 μl of 1M HCl/0,16 M HAc and 220 μl 

of water followed by vortexing. 700 μl of ethylacetylate was added, samples were vortexed 

for 15 sec and cleared by centrifugation for 2 min at 13000 rpm at RT (Haraeus Biofuge 

Pico). 500 μl of upper water phase were transferred to a scintillation vial containing 5 ml of 
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scintillation cocktail and vortexed for 10 sec. Released 
3
H was counted in a liquid 

scintillation counter.  

 

HDAC buffer 10 mM Tris,  pH 8,0 

50 mM NaCl 

1 mM MgCl2 

BSA (100 ng/μl) 

 

3.2.4.8  Chromatin fractionation 

Chromatin fractionation was carried out as described in (Wang et al. 2004) with few 

modifications. 150x10
6
 Kc cells were collected, washed twice in ice cold PBS and spun 

down at 1000 rpm (Heraeus Megafuge 1.0) for 5 min at RT. Cells were resuspended in 1 

ml of hypotonic buffer and incubated on ice for 5 min followed by centrifugation at 4000 

rpm for 5 min at 4 C (Heraeus Biofuge Pico). Supernatant (cytoplasmic) fraction was 

collected and kept on ice. The nuclear pellet was washed in isotonic sucrose buffer (STM) 

and spun down as before. The nuclear envelope was removed by addition of 1 ml of LS-

buffer supplemented with 1% (v/v) Triton X-100. At this step, RNAse A (0,5 μg/μl) was 

added to cells and samples were incubated 10 min at 26 C in a thermomixer. The nuclear 

pellet was washed then twice with LS-buffer and further extracted with increasing 

concentrations of NaCl (0,3M and 0,5M) in the same buffer. For each extraction, cells 

were resuspended in 100 μl of the buffer and incubated on ice for 5 min followed by 

centrifugation at 13000 rpm for 5 min at 4 C (Hereus Biofuge Pico). The resulting 

supernatants were kept on ice, protein concentration was measured with Bradford assay 

and samples were loaded on SDS-PAGE gel and analysed by Western blot.  

 

Hypotonic buffer 10 mM Hepes,  pH 7,6  

10 mM KCl 

1,5 mM MgCl2 

Proteinase inhibitors (added freshly) 

 

STM-buffer 

 

50 mM Tris-HCl,  pH 7,6 

5 mM MgCl2 

0,25 M Sucrose 

Proteinase inhibitors (added freshly)  
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SL-buffer 

 

10 mM Tris-HCl,  pH 7,6 

0,2 mM MgCl2 

 

3.2.4.9  Histone peptide pulldowns 

SulfoLink Coupling Resin is porous, crosslinked, 6% beaded agarose that has been 

activated with iodoacetyl groups. When incubated with a solution of peptide that contains 

reduced cysteine residues, the iodoacetyl groups react specifically and efficiently with the 

exposed sulfhydryls (-SH) to form covalent and irreversible thioether bonds that 

permanently attach the peptide to the resin. 

Histone peptides were chemically synthesized by Peptide Speciality Labolatories 

(Heidelberg) and coupled to sulfolink-coupling gel (Pierce). All pulldown steps were done 

in siliconized tubes. Sulfolink-coupling gel was equilibrated in coupling buffer. 50 μg of 

peptide were added to 100 μl of 1:1 bead slurry of sulfolink-coupling gel. Coupling 

peptides to the beads took place at RT for 30 min with extensive shaking (14000 rpm) in a 

thermomixer followed by 1 hr incubation at RT without shaking. Beads were washed 4 

times with 1 ml of coupling buffer. Then 50 mM L-cysteine in coupling buffer was added 

to the beads and they were incubated as before. During this step L-cysteine binds to all free 

iodoacetyl groups. Unbound L-cysteine was removed by washing 8 times with 1M NaCl 

and 4 times with dH2O at RT. Beads were stored as 1:1 slurry in dH2O (final peptide 

concentration - 0,5 μg/μl) for 2-3 months at 4 C.  

 

Table 3.15 Histone peptide sequences  

All histone peptides contain sulfhydryl groups at C-terminus which couple peptides to the 

Sulfolink beads. Numbers in parenthesis indicate amino acids at H3 N-terminal tail. 

Peptide Sequence 

H3(1-15) ARTKQTARKSTGGKA-C 

H3K4me3 (1-15) ART(Kme3)QRARKSTGGKA-C 

H3 (1-30) ARTKQTARKSTGGKAPRKQLATKAARKSAP-C 

H3 (22-44) TKAARKSAPATGGVKKPHRYRPG-C 

H3K36me3 (22-44) TKAARKSAPATGGV(Kme3)KPHRYRPG-C 

 

For each pulldown 0,5 μg of peptide and 0,25 μg of recombinant protein were applied. To 

use this amount of peptide, 10 μl of bead-bound peptide was diluted with 90 μl of empty, 

L-cysteine blocked beads and 10 μl of this solution (1:1 bead slurry) were used for each 
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pulldown. Beads were washed 2 times with binding buffer and blocked with BSA (1 μg/μl) 

for 1 hr on a rotating wheel at 4 C. Then the blocking solution was removed and beads 

were incubated with recombinant proteins in binding buffer for 2 hrs. Beads were washed 

4 times in binding buffer, resuspended in 15 μl of 2x SDS loading buffer and protein 

binding to the peptides was detected by Western blot.  

 

Coupling buffer 50 mM Tris-HCl,  pH 8,5 

5 mM EDTA 

 

Binding buffer 

 

25 mM Tris-HCl,  pH 8,0 

150 mM NaCl 

2 mM EDTA 

0,5%(v/v) NP-40 

 

3.2.5 Protein - nucleic acid interaction analysis 

3.2.5.1  Electrophoretic mobility shift assay 

A typical DNA or RNA binding reaction (25 μl) was performed in the presence of 0.2 g 

of dMi-2F and 80 ng of nucleic acid (DNA or ssRNA) in 40 mM KCl, 20 mM Tris pH 7.6, 

1.5 mM MgCl2, 0.5 mM EGTA, 10 % glycerol, BSA (200 ng/ l), 1 mM DTT 

(supplemented with 0.4 units of RNAsin). For competition assays, samples were 

preincubated for 15 min at 26 C before the different amounts of competitor (PAR or DNA 

or RNA) were added. Reactions were further incubated at 26 C for 75 min. Products were 

analysed on 6 % native PAA gel and visualized with ethidium bromide (EtBr) staining. 

ssRNA was synthesized by in vitro transcription using a fragment of hsp70 DNA as a 

template. This template (also used for the DNA EMSA assays) was produced by PCR 

amplification of cDNA derived from heat shocked Kc cells using the following primers: 

T7-hsp70_f and hsp70_r (Table 3.12).   

 

3.2.5.2  Native gel electrophoresis 

For analysis of mononucleosome mobilization assay or EMSA products, native gel 

electrophoresis was conducted using the Novex system. Samples were separated on 6% 

native polyacrylamide gel in 0,4 TBE buffer (chapter 3.1.2). The gel was pre-run at 

constant current of 80V for 45 min before samples were loaded and then the 
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electrophoresis was continued for 2 hrs at RT. Samples were run without a dye in 10% 

glycerol. After electrophoresis, the gel was stained with ethidium bromide (0,5 μg/ml) in 

distilled water for 15 min on a horizontal rotating shaker at RT followed destaining by 

washing twice in water for 10 min. Gels were documented with the gel documentation 

system.  

3.2.5.3  Chromatin immunoprecipitation (ChIP) 

Method principle 

Chromatin immunoprecipitation assay (ChIP) was developed to determine whether a 

protein of interest binds to a specific DNA sequence in vivo (Solomon et al. 1988; Dedon 

et al. 1991; Orlando et al. 1997). Proteins are reversibly crosslinked to target DNA with 

formaldehyde. Chromatin is subsequently fragmented by sonication to short fragments, 

with an average of 500 bp. Subsequently protein-DNA complexes are precipitated using 

antibodies specific to the protein of interest. After extensive washing, crosslinking reversal 

and protein removal, DNA associated with the precipitated protein can be identified by 

conventional PCR, QPCR, by labelling and hybridization to DNA microarrays (ChIP-

chip), or by direct high-throughput deep sequencing (ChIP-seq) (Collas 2010). 

 

ChIP in cell culture 

Kc cells were grown to 4-7x10
6
 cells/ml in Schneider‟s Drosophila medium, 1x10

8
 cells 

were usually processed for ChIP. Heat shock treatment was performed as described in 

chapter 3.2.8.4. In order to obtain temperature comparable to untreated cells for the 

crosslinking  reaction, heat shock was stopped by adding 1/3 volume of 4°C medium. Cells 

were immediately crosslinked with 1% formaldehyde for 10 min at RT with slow agitation 

on a horizontal shaker. Crosslinking was quenched by adding 2 M Glycine to a final 

concentration of 240 mM. Cells were pelleted by centrifugation (1000 rpm, 10 min, 4 C, 

Heraeus Biofuge Pico) and washed once with 10 ml of cold PBS. Cell pellet was 

resuspended in 1 ml of SDS-Lysis Buffer and incubated on ice for 10 min. Cells were 

sonicated for 18 minutes (30 sec on/off) at the high intensity setting with a Bioruptor 

sonication device (Diagenode). To keep the temperature constant, ice was added to the 

ultrasound water bath after 9 minutes of sonication. Average length of sonified DNA was 

below 500 bp. Chromatin was spun down at 13000 rpm for 10 min at 4 C (Heraeus 

Biofuge Pico) and the lysate was diluted 1:10 in Chip Dilution Buffer. To remove DNA 
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and proteins which unspecifically bind to beads, chromatin was precleared with 80 μl of 

50% protein G-sepharose beads (in 10 mM Tris-HCl pH 8.0, 1 mM EDTA, 1 mg/ml BSA) 

and rotated on the wheel in the coldroom for 30 min.  

1% of the diluted, precleared chromatin was taken as input sample. For each precipitation 

1,3 ml of precleared chromatin was used and appropriate amounts of antibodies (Table 3.2) 

were added. As a negative control, -IgG were added to chromatin. Immunoprecipitation 

was carried out in siliconized tubes, overnight at 4°C on the rotating wheel. For each IP, 35 

μl of 50% protein G-sepharose beads were added and incubated for 2 hours at 4°C. The 

immunoprecipitates were washed 3 times with Low Salt Wash buffer, 3 times with High 

Salt Wash Buffer, once with LiCl Wash Buffer and twice with TE buffer. Before the last 

wash with TE buffer, beads were transferred to fresh siliconized tubes. Each washing step 

was carried out on a rotating wheel for 10 min at 4 C and samples were spun down at 2000 

rpm for 3 min at 4 C (Heraeus Biofuge Pico).  

Protein-DNA complexes were eluted from the beads with 250 l of freshly prepared 

Elution Buffer for 30 minutes at RT on a rotating wheel. Beads were spun down and the 

supernatant was collected to a fresh tube. Elution was repeated and both supernatants were 

pooled. Appropriate amount of elution buffer was added to the input samples to adjust the 

volume to 500 μl. 20 μl of 5M NaCl were added to the eluates and input samples and 

decrosslinking was carried out at 65°C overnight in a thermomixer.  

Proteins were removed from the samples by proteolytic digestion with Proteinase K. For 

this, 20 μl of 1M Tris-HCl pH 6.5, 10 μl of 0,5M EDTA and 2 μl of Proteinase K (10 

mg/ml) were added and samples were incubated at 45 C for 1 hour. DNA was purified 

using PeqGold Cycle Pure DNA isolation kit according to the manufacturer's instructions. 

DNA was eluted from columns with 30 μl PeqLab elution buffer. The relative amount of 

DNA compared to the IP input was determined via QPCR, using 1 μl DNA per reaction 

and specific primer pairs (Table 3.10 and chapter 3.2.2.3).  

 

SDS-Lysis Buffer 50 mM Tris-HCl,  pH 8,0 

1% (w/v) SDS 

10 mM EDTA 

Proteinase inhibitors  

 

Chip Dilution Buffer 

 

16,7 mM Tris-HCl,  pH 8,0 

16,7 M NaCl 
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QPCR calculations for ChIP 

For ChIPs, all samples were referenced to the respective IP-input: 
 

 ΔCt sample = Ct input - Ct sample and displayed as a percentage of input: %input = 2
 ΔCt sample

 

Standard deviations s from triplicate technical measurements were used to determine the 

error for input percentages:  

 

 

 

1,2 mM EDTA 

1,1% (v/v)Triton X-100 

0,01% (v/w) SDS 

Proteinase inhibitors  

 

Low Salt Wash Buffer 

 

20 mM Tris-HCl,  pH 8,0 

150 mM NaCl 

2 mM EDTA 

1% (v/v) Trion X-100 

0,1% (w/v) SDS 

 

High Salt Wash Buffer 

 

20 mM Tris-HCl,  pH 8,0 

500 mM NaCl 

2 mM EDTA 

1% (v/v) Trion X-100 

0,1% (w/v) SDS 

 

LiCl Wash Buffer 

 

10 mM Tris-HCl,  pH 8,0 

0,25M LiCl 

1 mM EDTA 

1% (v/v) NP-40 

1% (w/v) Sodium 

Deoxycholate 

 

TE Buffer 

 

10 mM Tris-HCl,  pH 8,0 

1 mM EDTA 

 

Elution Buffer  

 

0,1 M NaHCO3 

1% (w/v) SDS 
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3.2.5.4  RNA immunoprecipitation (RIP) 

RNA immunoprecipitation method (RIP) is used to identify RNA-protein interactions 

which occur in vivo. In the immunoprecipitation methodology, an RNA binding protein is 

immunoprecipitated from a cell lysate, followed by reverse transcription of the 

immunoprecipitated RNA and PCR with primers targeting the interacting RNA (Peritz et 

al. 2006). 

RNA immunoprecipitation was performed as described in (Gilbert and Svejstrup 2006). Kc 

cells were heat shocked and crosslinked as for ChIP with 1% formaldehyde for 10 min. 

Crosslinking was quenched by adding 2 M Glycine to a final concentration of 240 mM. 

Cells were pelleted by centrifugation (1000 rpm, 10 min, 4 C, Heraeus Megafuge 1.0) and 

washed once with 10 ml of cold PBS. 75x10
6
 cells were resuspended in 800 μl of FA 

Buffer and lysed on ice for 15 min. Cells were sonicated as for ChIP, spun down and 

chromatin was digested with DNAse I. For this, chromatin solution was adjusted to 25 mM 

MgCl2 and 5 mM CaCl2, 1 μl of DNAse I (Fermentas) was added and reaction was 

incubated for 10 min at RT and then stopped with 20 mM EDTA. Chromatin was spun 

down at 13000 rpm for 10 min at 4 C (Heraeus Biofuge Pico). 100 μl of chromatin were 

taken as input and froze down at -20 C. 300 μl of chromatin were used for each 

precipitation, filled up to 500 μl with FA buffer. Appropriate amounts of antibodies were 

added, in addition 2 μl of rabbit pre-immunoserum from unrelated antibody were used as a 

negative control. Samples were incubated in siliconized tubes overnight at 4°C on the 

rotating wheel. 

RNA-protein complexes were precipitated with 30 μl of 50% protein G-sepharose beads 

(equilibrated in FA buffer and 1 mg/ml BSA) for 2 hrs at 4°C. IPs were washed 5 times in 

FA buffer and twice with TE buffer. Before the last wash with TE buffer, beads were 

transferred to fresh siliconized tubes. Each washing step was carried out on a rotating 

wheel for 10 min at 4 C and samples were spun down at 2000 rpm for 3 min at 4 C 

(Heraeus Biofuge Pico).  

RNA-protein complexes were eluted twice with 100 μl of RIP Elution Buffer - first by 

incubation on the rotating wheel for 10 min at RT and second by incubation in a 

thermomixer at 1000 rpm at 65°C for 10 min.  

100 μl of elution buffer were added to the input samples to adjust the volume to 200 μl. 

Eluates and input samples were digested with proteinase K (10 mg/ml) for 1 hr at 42°C and 

decrosslinking was performed at 65°C overnight. Immunoprecipitated RNA was purified 
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using PeqGold Total RNA Kit (PeqLab) according to the manufacturer's instructions. All 

samples were additionally digested with DNAse I on the columns and eluted with 30 μl of 

RNAse free dH20. cDNA was synthesized with 10 μl of eluted RNA and 2 μl of input 

RNA with random hexamers and analysed by QPCR with appropriate primer pairs. 

Amount of precipitated RNA was calculated as for ChIP. For IP specificity, abundant 

transcripts of rp49 and actin5c were detected. 

 

FA Buffer 50 mM Hepes-KOH,  pH 7,6  

140 mM NaCl 

1% (v/v) Triton X-100 

0,1% (w/v) Sodium Deoxycholate 

RNAsin (100 U/ml) 

Proteinase inhibitors (added freshly) 

 

RIP Elution Buffer 

 

100 mM Tris-HCl,  pH 8,0 

10 mM EDTA 

1% (w/v) SDS 

RNAsin (40 U/ml) 

 

3.2.6  Poly(ADP-ribose) binding analysis 

3.2.6.1  PARP pulldowns 

PARP reaction 

Non-radioactive PARP reaction was performed according to the standard protocol (Karras 

et al. 2005). PARP reactions were set up in a final volume of 0,5 ml: 2 µg of recombinant 

Parp1, 100 mM Tris-HCl, pH 7.5, 50 mM NaCl, 10 mM MgCl2, 2 µg/ml DNA 

oligonucleotides , 1 mM NAD+, 1 mM DTT. 

Reactions were incubated in a thermomixer at 500 rpm for 25 min at 37°C. All reactions 

were stopped with 5 μM PJ34. Subsequently, reactions were used for PARP pulldowns or 

for PAR polymer isolation. 

 

PARP pulldown 

For pulldowns, bead bound proteins (dMi-2WT and dMi-2 mutants or GST-fusions) were 

titrated on Coomassie stained SDS-Page gels. Control beads and beads with bound proteins 

(dMi-2, dMi-2 mutants and mH2A1.1 or GST fusions) were equilibrated in binding buffer. 

10 μl of bead-bound proteins were used for each pulldown. Pulldowns were performed 
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with the whole PARP reaction (0,5 ml) and 500 μl of binding buffer (for baculovirus 

expressed proteins) or in 250 μl of PARP reaction and 250 μl of binding buffer (for GST 

fusions) for 1 hr at 4°C. The beads were extensively washed 5 times with 1 ml of Pulldown 

Binding Buffer, resuspended in 2xSDS-Page loading buffer, boiled, resolved on 4-12% 

gradient SDS-Page gel and analysed by Western Blot. For Western blot -PAR and -

PARP1 antibodies were used. mH2A1.1 V5-tagged was used as a positive control for 

PAR/PARP binding (Kustatscher et al. 2005). 

Radioactive pulldown reactions were performed in the same way, in addition 2 μl of 

radioactive NAD+ (PerkinElmer) was added to each PAR reaction. After washing, samples 

were resuspended in 30 μl of SDS-loading buffer and 10 μl were loaded on the gel. The gel 

was dried and exposed overnight on the X-Ray film. 

 

Pulldown Binding Buffer 50 mM Tris,  pH 8,0 

200 mM NaCl 

4 mM MgCl2   

0,1% (v/v) NP-40 

0,2 mM DTT  

 

3.2.6.2  Poly(ADP-ribose) purification 

For PAR purification, ten PARP reactions were set up and the reactions were allowed to 

proceed in a thermomixer at 500 rpm for 25 min at 37°C. The reaction product was then 

precipitated with 0,5 ml of ice-cold 20% (w/v) TCA and incubated on ice for 30 minutes. 

The polymer was pelleted by centrifugation at 11000 rpm for 10 minutes at 4 °C (Heraeus 

Biofuge Pico). The supernatant was removed and the pellet was resuspended in 1 ml of ice-

cold 100% ethanol and incubated on ice for 10 minutes. After centrifugation at 11000 rpm 

for 10 minutes at 4 °C (Heraeus Biofuge Pico), the supernatant was removed and the pellet 

was once again washed in 1 ml of ice-cold 100% ethanol, incubated on ice for another 10 

minutes and centrifuged again as previously. After complete removal of the ethanol, the 

poly(ADP-ribose) pellet was air-dried and dissolved in 400 μl of 500 mM KOH/NaOH to 

detach polymer from proteins, and incubated in a thermomixer at 500 rpm for 30 min at 50 

°C. 50 µl of 1 M Tris-HCl, pH 8.0 were added resulting in a final concentration of approx. 

100 mM, and the alkaline conditions were carefully adjusted to pH 7.5 with 37% HCl. For 

DNA degradation, MgCl2 to final concentration of 10 mM and 50 U of Benzonase were 
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added. Samples were incubated at 550 rpm in a thermomixer for 1 hour at 37°C. Protein 

degradation was accomplished by adding 5 μl of proteinase K (10 mg/ml) and 10 µl of 100 

mM CaCl2 and incubating samples for 2 hours at 37°C in a thermomixer. 300 µl 

phenol:chloroform:isoamyl alcohol (25:24:1 (v/v/v)) were added and samples were 

vortexed and centrifuged at 13000 rpm for 10 minutes at RT (Heraeus Biofuge Pico) to 

separate the aqueous from the organic phase. The aqueous (upper) phase was transferred to 

a new reaction tube and extraction was repeated. 300 µl of chloroform:isoamyl alcohol 

were added and samples were centrifuged again. Upper phase was transferred to a new 

tube. For ethanol precipitation, 100% ethanol was added to a final concentration of 70% 

(v/v). Samples were incubated overnight at -20 °C before precipitated polymers were 

pelleted by centrifugation for at 11000 rpm for 30 minutes at 4 °C (Heraeus Biofuge Pico). 

Pellets were air-dried and dissolved in 100 µl of Milli-Q water and the concentration was 

determined by measuring the absorbance at 258 nm. Concentrations were calculated 

according to Lambert-Beer with a relative spectral absorption coefficient of 13,500 M-

1cm-1 for mono(ADP-ribose). 

 

3.2.6.3  PAR binding assay  

Recombinant Flag-tagged proteins were purified from SF9 cells and eluted with Flag 

peptide. Nitrocellulose membrane was equilibrated in TBS-T buffer. 0,2 μg of dMi-2WT 

or BSA were spotted on the membrane and air-dried. P
32

-PAR (approx. 400 μl) was 

diluted in 10 ml TBS-T and the membrane was incubated with P
32

-PAR for 2,5 hrs at RT 

with gentle agitation. The membrane was washed several times with TBS-T, air-dried and 

visualized with a phosphorimager after 2 hour exposure. 

 

TBS-T buffer 10 mM Tris,  pH 7,4  

150 mM NaCl 

0,05% (v/v) Tween20 

 

3.2.7  Generation of transgenic flies 

For fly transgenesis, a site-specific φC31 integrase system was used (Bischof et al. 2007). 

This system is based on the site-specific φC31 integrase ectopically expressed in germ-line 

cells. The integrase mediates sequence-directed recombination between a bacterial 

attachment site (attB) flanking the construct on the integration vector and a phage 



MATERIAL AND METHODS 

101 

 

attachment site (attP) in a transgenic fly genome. As a result all generated flies carry a 

transgene integrated at the same genomic site which circumvents many problems 

associated with traditional, random transgenesis and allows precise in vivo 

structure/function analysis of multiple transgenes.  

All constructs used for transgenic flies generation are listed in Table 3.6. For injections, the 

J5 strain (attP-zh86Fb/vas-phi-zh102D) with an attP landing site on the third chromosome 

was used. This strain was shown to have the highest frequency of transgenesis (Bischof et 

al. 2007). Injection of embryos was performed with the collaboration of the laboratory of 

Prof. Renate Renkawitz-Pohl.  

After injection with pUASTattB constructs, F0 flies were crossed to the w1118 isogenic 

strain (BL # 5905) and the F1 generation was screened for orange eyes and then crossed 

against each other to obtain homozygotic UAS strains. Transgene integration was 

confirmed by PCR on genomic DNA and transgene expression was verified by Western 

blot analysis.  

All fly strains used in this study, their genotypes and sources are listed in Table 3.14.  

 

3.2.8  Tissue cell culture methods 

Tissue cell culture work was done under sterile conditions under the hood and according to 

S1 laboratory safety rules. 

3.2.8.1  General cell culture conditions 

Kc and SL2 cells were cultured at 26 C in the incubator in Schneider‟s Drosophila 

Medium. SF9 cells were cultured at 26 C in the incubator in Sf-900 II SFM medium. 

Drosophila Kc cells were grown in the suspension in 75 cm
2
 flasks and they were split by 

diluting with fresh medium to the density of 2-3x10
6
 cells/ml every 3-4 days. SF9 cells 

were grown adherently in 75 cm
2
 flasks and they were removed from them by pipetting or 

with a cell scraper. SF9 cells were split as Kc cells. Cell number was determined using a 

hemacytometer.  

 

3.2.8.2  Cell freezing and thawing 

For freezing, Kc cells were growing to a density of 3-5x10
6
 cells/ml. Cells were spun down 

for 5 min at 1000 rpm at RT (Haraeus Megafuge 1.0). Cell pellet was resuspended in 

Schneider‟s Drosophila Medium (with 10% FBS) to a final cell concentration 1x10
7 
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cells/ml. An equal volume of Schneider‟s Drosophila Medium supplemented with 10% 

FBS and 20% DMSO was added to the cells. 1 ml of cells was aliquoted to cryo-tubes and 

they were frozen for 1 hr at -20 C, followed by 24-48 hrs at -80 C, before they were stored 

in liquid nitrogen.  

For thawing, the frozen cells were slowly resuspended in 10 ml of fresh, supplemented  

Schneider‟s Drosophila Medium, spun down routinely, medium contaning DMSO was 

removed and cells were resuspended in fresh medium (Kc cells). Alternatively, cells after 

thawing were resuspended in 15 ml of Sf-900 II SFM medium and 24 hours later the 

medium was exchanged (SF9 cells). 

 

3.2.8.3  Cell transfection with dsRNA 

For protein knockdown experiments, Kc cells were transfected with dsRNA. For this, 

exponentially growing Kc cells were spun down and resuspended in serum free 

Schneider‟s Drosophila Medium (supplemented with 1% Penicilin/Streptomycin) to the 

density of 1x10
6 

cells/ml. 15 μg of dsRNA per well were spotted to a 6 well plate followed 

by adding 1x10
6 

cells. Cells were mixed gently and incubated with dsRNA for 40 min at 

26 C. 1 ml of medium (20% FCS, 1% Penicilin/Streptomycin) was added to the cells and 

they were incubated for 3-6 days before the knockdown of protein was analysed by 

Western blot.  

 

3.2.8.4  Heat shock treatment of Drosophila cells 

Cells for heat shock were treated as previously described (Boehm et al. 2003). An equal 

volume of preheated medium (48°C) was added to cells, cells were incubated at 37°C for 

20 min or shorter time and immediately processed for either RNA isolation or ChIP. In the 

latter case, heat shock was stopped by adding 1/3 volume of 4°C medium prior to 

formaldehyde crosslinking.  

 

3.2.8.5  Pharmacological treatment of Drosophila cells 

Transcription elongation inhibitor, DRB (5,6-dichloro-1-beta-D-ribofuranosyl-benz- 

imidazole) was added to the cell culture to the final concentration of 125 μM. PARP1 

inhibitor, PJ34 (N-(5,6-Dihydro-6-oxo-2-phenanthridinyl)-2-acetamide hydrochloride, 

Alexis) was added to the cell culture to the final concentration of 5 μM. Cells were 

incubated with the drugs for 20 min at RT before processing for ChIP or RNA isolation. 
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3.2.9  Immunocytochemistry methods 

3.2.9.1  Immunofluorescence of polytene chromosomes 

Drosophila larvae were cultured under standard conditions at 26 C. 3
rd

 instar wandering 

larvae were selected for dissection. Larvae were washed and salivary glands were dissected 

in PBS. For heat shock experiment, 3
rd

 instar larvae were washed in PBS and transferred 

into eppendorfs (5-6 larvae). The lids of the eppendorfs were pierced with a needle to 

ensure oxygen supply during heat shock. Larvae were incubated for 30 min in a water bath 

at 37°C. Next, larvae were taken out and immediately dissected in a drop of PBS. 

Dissected glands were fixed for 5 minutes in Polytene Fixing Solution on a siliconized 

cover slip. A cover slip was taken up by a glass microscope slide and glands were broken 

by tapping with the eraser side of a pencil. While tapping, the coverslip was gently moved 

back and forth to squash chromosomes. The squashed chromosomes were quickly checked 

under the light microscope (phase contrast) at 40x magnification. Sufficiently spread-out 

chromosomes were flattened by applying strong pressure with the thumb onto the 

coverslip. Each glass slide was immediately frozen in liquid nitrogen, the coverslip was 

removed with a scalpel and the glass slide was collected into a Coplin jar with PBS.  

Collected glass slides were washed with PBS for 10 min while rotating. PBS was replaced 

by blocking solution (5% milk in PBS) and gentle rotation was continued for 30 min. 

Subsequently, the slides were rinsed in PBS, placed in a humid chamber and the squashed 

polytene chromosomes were covered with 40 μl of primary antibodies dilution and a fresh 

cover slip. All antibodies were diluted in 5% milk in PBS and 2% normal goat serum 

(NGS) to reduce unspecific binding of antibodies. Primary antibodies were incubated 

overnight at 4 C.  

Then, cover slips were removed, glass slides were rinsed in PBS and washed three times in 

5% milk in PBS for 5 min. Polytene chromosomes were incubated with the appropriate 

secondary antibodies (Table 3.3) diluted in 5% milk/PBS /2% NGS for 1 hr at RT in the 

dark. Slides were washed twice for 10 min with Buffer A and B, rinsed in PBS and DNA 

was stained with DAPI (0,2 μg/ml in PBS) for 4-5 min. Slides were washed once for 10 

min in PBS, mounted with Fluoromount, sailed with nail polish and kept at 4 C in the 

dark.  
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Polytene Fixing Solution 45% acetic acid 

1% formaldehyde 

 

Wash Buffer A 

 

PBS 

300 mM NaCl  

0,2% (v/v) NP-40 

0,2% (v/v) Tween20 

 

Wash Buffer B 

 

PBS 

400 mM NaCl 

0,2% (v/v) NP-40 

0,2% (v/v) Tween20 

 

3.2.9.2  Immunofluorescence of Drosophila embryos 

Embryos were collected, washed and dechorionized by incubation for 3 min a bleaching 

solution (3% sodium-hypochlorite). After extensive washing with tap water, embryos were 

transferred to 2-ml eppendorf tubes and 750 μl n-heptane/750 μl fixative (3,5 % 

paraformaldefyde in PBS) were added. Embryos were rotated on the wheel for 20 min at 

RT. The fixative was taken off (bottom phase) and 750 μl of methanol was added. 

Embryos were shaken vigorously for 30 sec to devitellinize them. Devitellinized embryos 

should sink down. The top phase, interphase embryos and most of the methanol layer were 

removed. Embryos were washed 3 times with methanol and 3 times in PBS-Tx.  

Before staining, embryos were blocked in PBS-Tx/2% NGS for 1 hr on the wheel at RT. 

Embryos were then incubated with the appropriate primary antibodies diluted in PBS-

Tx/2% NGS overnight on the wheel at 4 C. Subsequently, embryos were rinsed 2 times, 

then washed 2 times for 30 min in PBS-Tx. Embryos were incubated with the appropriate 

secondary antibodies diluted in PBS-Tx/2% NGS for 2 hrs on the wheel at RT in the dark. 

Embryos were again washed as after primary antibodies, stained with DAPI (0,05 μg/ ml) 

for 10 min and washed 2 times for 5 min in PBS-Tx. Embryos were mounted with 

SlowFade antifade Kit according to the manufacturer's instructions, sealed with nail polish 

and kept at 4 C in the dark.  

  

PBS-Tx PBS 

0,1% (v/v) Triton-X 
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3.2.9.3  Immunofluorescence of Drosophila ovaries 

Wild type OrR virgins were collected, mated with males and kept under standard 

conditions at 26 C for 2-3 days. Females were collected and kept on ice while ovaries were 

dissected. Ovaries were dissected in PBS-Tx and ovarioles were separated with a needle. 

Ovaries were fixed in a fixing solution (1:1 mixture of n-heptane and 5 % 

paraformaldefyde in PBS) for 15 min on the wheel at RT. Ovaries were washed 3 times for 

5 min in PBS-Tx and blocked in PBS-Tx/2% NGS for 1 hr on the wheel at RT. Ovaries 

were then incubated with the appropriate primary antibodies diluted in PBS-Tx/2% NGS 

overnight on the wheel at 4 C. Subsequently, ovaries were washed 4 times for 30 min in 

PBS-Tx followed by incubation with the appropriate secondary antibodies diluted in PBS-

Tx/2% NGS for 2-4 hrs on the wheel at RT in the dark. Ovaries were washed 2 times for 

10 min in PBS-Tx, then they were washed for 1 hr with RNAse A (20 μg/ml) in PBS-Tx. 

Ovaries were stained with DAPI in PBS-Tx for 10 min, rinsed and washed for 15 min in 

PBS-Tx. Ovaries were mounted with SlowFade antifade Kit according to the 

manufacturer's instructions, sealed with nail polish and kept at 4 C in the dark.  

 

3.2.10  Bioinformatics tools and methods 

DNA and protein sequences were obtained from Flybase (http://flybase.org), NCBI 

(http://www.ncbi.nlm.nih.gov) or Expasy Proteomics Server (http://www.expasy.ch). 

DNA sequence analysis was performed using The Basic Local Alignment Search Tool 

(BLAST).  

For multiple protein sequence alignments and phylogenetic tree generation ClustaW 

(http://www.ebi.ac.uk) was used, sequences were subsequently displayed using a multiple 

sequence alignment editor Jalview (Waterhouse et al. 2009). Protein domains were 

analysed using different family and domain databases like ScanProsite, Pfam or Smart 

(http://www.expasy.ch). 

Protein structures were retrieved from PDB (http://www.rcsb.org/pdb/home) and protein 

figures were performed with PyMOL (http://www.pymol.org).   

For cloning and site directed mutagenesis, primers were designed with the help of 

EnzymeX and tools from Sequence Manipulation Suit (http://www.bioinformatics. 

org/sms2). Primer3 (http://frodo.wi.mit.edu/primer3) was used for primer design for Chips. 

Primers for QPCR assays for gene expression analysis were designed with The 

http://www.bioinformatics/
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ProbeFinder software (Roche Universal Probe Library). Primers for knockdown 

experiments for dsRNA synthesis were obtained from GenomeRNAi (http://ranai.dkfz.de). 
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4.  Objectives 

Two main research objectives of this doctoral work have been defined: 

I. Biochemical and functional characterization of a novel ATP-dependent chromatin 

remodeler, dCHD3. 

II. Investigation of a potential role of dMi-2 in active gene transcription. 

 

4.1  Biochemical and functional characterization of dCHD3 

Drosophila melanogaster comprises four members of CHD remodelers: dMi-2, dCHD3, 

dCHD1 and Kismet. All CHD proteins in Drosophila studied to date have been implicated 

in transcription regulation. If and how they differ in their chromatin remodeling activities 

is not well understood. One objective of this PhD thesis is to characterize a novel 

chromatin remodeler, dCHD3, which has not been studied to date. Although, dCHD3 is 

highly similar to dMi-2, it lacks several domains important for regulation of dMi-2 enzyme 

activity. Given these differences, it is plausible that dCHD3 and dMi-2 differ in their 

mechanisms of nucleosome remodeling. To address this issue, both remodelers will be 

compared in various biochemical assays in vitro. Substrate recognition, ATPase activation 

and nucleosome remodeling by dCHD3 and dMi-2 will be analysed thoroughly. 

Furthermore, biological functions of dCHD3 will be investigated.  Given the similarity of 

dCHD3 to dMi-2, it is possible that it exists in a similar, dNuRD-like complex. Thus, it 

will be tested whether dCHD3 is a part of dMi-2-like complexes or whether it exists in a 

new complex or alternatively, as a monomer in vivo. To this end, new antibodies against 

dCHD3 have been obtained which will be applied for various biochemical and cell biology 

assays in cell culture and in different tissues and developmental stages of D. melanogaster.  

A systematic comparison of dCHD3 and dMi-2 in biochemical and functional studies 

constitutes a first attempt of comprehensive analysis of CHD remodelers in a model 

organism, D. melanogaster.  

 

4.2  dMi-2 in active gene transcription 

The second main objective of this thesis is to investigate a possible novel role of dMi-2 in 

active transcription. Initial indirect immunofluorescence staining of dMi-2 at sites of 

euchromatin on polytene chromosomes has suggested that dMi-2 might be involved in 
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active transcription (Murawsky et al. 2001). In order to study dMi-2 role in active genes, 

heat shock genes will be applied as a model. Binding of dMi-2 to active genes will be 

analysed by using both immunofluorescence and chromatin immunoprecipitation methods. 

Another objective within this project is to determine a possible function of dMi-2 in 

transcription. To this end, RNAi technology as well as ectopic expression of dMi-2 

catalytically inactive mutant will be applied in flies. Finally, a mechanism of recruitment 

of dMi-2 to active genes will be studied in detail using biochemical, genetic and 

pharmacological assays.  

Given that dMi-2 has been mostly implicated in transcriptional repression, investigation of 

dMi-2 role on active genes could bring novel and exciting insights into our current 

knowledge about this remodeler. 
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5.  Results 

5.1  Biochemical characterization of Drosophila CHD3 

The Drosophila genome encodes four CHD family members: dMi-2, dCHD1, Kismet and 

dCHD3. dCHD3 is the only member of this family which has not been studied to date. 

dCHD3 and dMi-2 possess the highest amino acid sequence similarity within the family 

(67% identity and 77% similarity) (Fig. 5.1 A). dCHD3 comprises one PHD finger, two 

chromodomains, an ATPase/helicase domain and a short C-terminal domain. In 

comparison to dMi-2, dCHD3 lacks several important domains: two N - terminal domains - 

a CHDNT domain with unknown function and one PHD finger. In addition, dCHD3 lacks 

most of the C-terminus which modulates the ATPase activity of dMi-2 (Fig. 5.1 A) 

(Bouazoune et al. 2002). The differences suggest that these two proteins may differ in their 

DNA/nucleosome binding, ATP-dependent remodeling and nucleosome-positioning 

activities. Given that dCHD3 and dMi-2 differ in protein domains known to regulate 

ATPase and nucleosome positioning activities, we were prompted to characterize for the 

first time dCHD3 enzyme both biochemically and functionally. Comparison of dCHD3 to 

the highly related dMi-2 allowed to gain insights into dCHD3‟s mechanism of action and 

contributed to our current knowledge of CHD enzymes.  

 

5.1.1  Sequence analysis of dCHD3 

The dCHD3 gene is referred to in FlyBase by the symbol Chd3 (CG9594, FBgn0023395) 

and based on sequence similarity it encodes a putative ATP-dependent chromatin 

remodeler. It has one annotated transcript and one annotated polypeptide. Protein sequence 

alignment revealed highest sequence similarity to dMi-2 (Fig 5.1 A). dMi-2 is a highly 

conserved remodeler, found in all invertebrate and vertebrate species. To check whether 

the same applies to dCHD3, Drosophila genomes of all twelve sequenced species were 

search for the presence of dMi-2 and dCHD3 coding genes. As expected, dMi-2 was found 

in all genomes examined. Genes encoding dCHD3 protein were identified in D. simulans, 

D. sechellia, D. yakuba, and D. erecta (D. melanogaster subgroup). By contrast, no 

dCHD3 sequences were found in D. ananassae (D. melanogaster group) or in more 

distantly related Drosophila species (Fig. 5.1 B). The evolutionary relationship suggests 

that the dCHD3 gene originated more than 10 million years ago most likely by a gene 

http://flybase.org/cgi-bin/uniq.html?FBgn0023395%3Efbtr
http://flybase.org/cgi-bin/uniq.html?FBgn0023395%3Efbpp
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duplication event (Fig. 5.1 B). The dCHD3 coding gene was not found in any other 

species. This indicates that it is specific for the Drosophila melanogaster subgroup.   

As dCHD3 possesses a putative ATPase activity, it was important to determine whether it 

is an active enzyme. To address this issue, the protein sequences of the ATPase/helicase 

domains of dCHD3, dMi-2, dCHD1, Kismet, ISWI, and Brahma were aligned. This 

revealed the conservation of all important ATPase domain motifs in dCHD3 (Fig 5.1 C). 

Accordingly, this result indicates that the enzymatic activity of the putative ATP-

dependent chromatin remodeler has been maintained through evolution. 

 

Figure 5.1 Sequence analysis of dMi-2 and dCHD3 
(A) Schematic representation of dMi-2 and dCHD3. CHDNT; domain found in PHD/RING finger 

and chromo domain-associated helicases, belongs to HMG box-like domains (Pfam number: 

PF08073); PHD, PHD finger; Chromo, chromodomain; aa, amino acids. (B) Phylogenetic tree of 

Drosophilae (based on http://insects.eugenes.org/species/). Species with dCHD3 genes are boxed. 

(C) Multiple sequence alignment of the ATPase/helicase domains of D.melanogaster CHD, 

Brahma and ISWI chromatin remodelers. Conserved regions are shaded in dark grey (strongly 

conserved) or light grey (moderately conserved). Helicase specific motifs are indicated with boxes. 

Figure taken from (Murawska et al. 2008). 

 

 

A B 

C 
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5.1.2  Characterization of dCHD3 ATPase activity 

Multiple sequence alignment of the ATPase/helicase domain of dCHD3 and other 

chromatin remodelers (Fig. 5.1 C) strongly suggests that dCHD3 possesses ATPase 

activity. In order to confirm this, a baculovirus expressing recombinant Flag-tagged 

dCHD3 was generated. dCHD3Flag and dMi-2Flag were affinity purified from extracts of 

baculovirus-infected SF9 cells (Fig. 5.2 A). The ATPase activity of both proteins was 

determined in the absence and in the presence of naked DNA or polynucleosomes 

assembled with native Drosophila histone octamers. dMi-2 had very low basic activity in 

the absence of any effector and in the presence of DNA. However, it displayed a strong 

activation in the presence of nucleosomes. These results are in agreement with previously 

published work (Brehm et al. 2000). dCHD3 had low basic ATPase activity. However, in 

the presence of DNA, it clearly displayed a modest activity (twofold) and a robust 

nucleosome stimulated ATPase activity (fivefold) (Fig. 5.2 B). Incubation of the reaction 

in the presence of increasing DNA amounts did not significantly change the stimulation of 

dMi-2 and dCHD3 ATPase activity, indicating that DNA was not limiting (Fig. 5.2 C). The 

ATPase assays clearly showed that dCHD3 is an ATPase which is stimulated preferentially 

by nucleosomes and to a lesser extent by DNA. 

Figure 5.2 dCHD3 has DNA and nucleosome-stimulated ATPase activity in vitro 
(A) Coomassie-stained gel showing recombinant proteins used for ATPase assays. Lane 1, 

molecular weight standard; lanes 2 and 3, Flag-tagged dCHD3 (36 and 9 pmol); lanes 4 and 5, 

Flag-tagged dMi-2 (36 and 9 pmol). (B) ATPase assay. 2.7 pmol of dMi-2 and dCHD3 were 

incubated in the absence or presence of 100 ng DNA or nucleosomes and [γ-
32

P]ATP as indicated. 

(C) ATPase assay. 2.7 picomol of dMi-2 and dCHD3 were incubated in the absence or presence of 

increasing concentrations of DNA and [ -
32

P]ATP as indicated. Percentage of hydrolysed ATP was 

A C B 
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determined by thin layer chromatography and quantified by phosphorimager analysis (B and C). 

Figure taken from (Murawska et al. 2008). 

 

To investigate the ATPase activity of dCHD3 in more detail, the role of histone tails was 

investigated. The activity of some ATPases, like ISWI, depends on the presence of histone 

N-terminal tails (Clapier et al. 2001). By contrast, other remodelers, like dMi-2 or 

SWI/SNF, do not require histone tails for their activation (Whitehouse et al. 1999; Brehm 

et al. 2000). To examine the role of histone tails for dCHD3 ATPase stimulation, 

nucleosomes were subjected to a limited trypsin digestion. This treatment removed histone 

tails leading to faster migration of histones in an SDS-PAGE gel (Fig. 5.3 A). Incubation 

of dCHD3 with nucleosomes treated with trypsin did not impair the ATPase activity of the 

enzyme (Fig 5.3 B). This indicates that, similarly to dMi-2, activation of the dCHD3 

ATPase does not require histone tails.  

 

Figure 5.3 dCHD3 ATPase does not require histone tails  

(A) Polynucleosomes were digested with trypsin for 10 (lane 3) or 30 min (lane 4) as indicated. 

Histones were visualized by Coomassie staining following SDS-PAGE gel electrophoresis. 

Positions of bovine serum albumin (BSA) and histones are indicated on the right. The presence or 

absence of trypsin is indicated on the top of the gel. (B) 50 and 100 ng of trypsinized nucleosomes 

were incubated with dCHD3 as indicated. Percentage of hydrolysed ATP was determined by thin 

layer chromatography and quantified by phosphorimager analysis. Figure taken from (Murawska et 

al. 2008). 
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5.1.3  dCHD3 binds DNA and mononucleosomes in vitro 

The activation of dCHD3 by DNA and nucleosomes suggests that the remodeler could be 

able to recognize and bind to nucleosomal DNA. To test this possibility, dCHD3 and dMi-

2 were compared in DNA and nucleosome binding mobility shift assays. Both remodelers 

displayed DNA binding to 200 bp DNA fragments. dCHD3 formed distinct complexes 

with DNA that were stable during electrophoresis through native polyacrylamide gels (Fig. 

5.4 A, left panel, lanes 3 to 8). Increasing concentrations of dCHD3 led to the formation of 

up to four complexes with decreased mobility. This suggests that several dCHD3 

molecules can simultaneously bind the DNA probe. As reported previously (Bouazoune et 

al. 2002), dMi-2/DNA complexes had a low mobility and did not enter the gel (Fig. 5.4 A, 

right panel, lanes 9 to 14). 

To monitor nucleosome binding properties of dCHD3, two mononucleosomes that differ in 

the position of the octamer relative to the end of a 200 bp DNA fragment were used (Fig. 

3.3). dCHD3 was binding to both types of mononucleosomes and again formed distinct 

complexes when the remodeler concentration was increased (Fig 5.4 B, left panel, lines 3 

to 8). dMi-2 binding to mononucleosomes led to the formation of complexes with high 

molecular masses of low mobility (Fig 5.3 B, right panel, lines 9 to 14).  

 

Figure 5.4 dCHD3 binds DNA and mononucleosomes in vitro 

A 

B 
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(A) Decreasing amounts of dCHD3 (lane 3, 18 pmol; lane 4, 9 pmol; lane 5, 3.6 pmol; lane 6, 1.8 

pmol; lane 7, 0.9 pmol; and lane 8, 0.36 pmol) and dMi-2 (lane 9, 18 pmol; lane 10, 9 pmol; lane 

11, 3.6 pmol; lane 12, 1.8 pmol; lane 13, 0.9 pmol; and lane 14, 0.36 pmol) were incubated with a 

200 bp DNA fragment, and complexes were resolved by native agarose gel electrophoresis. The 

positions of DNA/protein complexes and unbound DNA are indicated on the right. (B) Decreasing 

amounts of dCHD3 (lanes 2 and 6, 18 pmol; lanes 3 and 7, 9 pmol; and lanes 4 and 8, 3.6 pmol) 

and dMi-2 (lanes 9 and 12, 18 pmol; lanes 10 and 13, 9 pmol; and lanes 11 and 14, 3.6 pmol) were 

incubated with centrally (lanes 2 to 5 and 9 to 11) or distally positioned (lanes 6 to 8 and 12 to 15) 

mononucleosomes. Complexes were resolved by native polyacrylamide gel electrophoresis. The 

positions of complexes are indicated on the right, and the positions of unbound mononucleosomes 

are indicated on the left. Asterisks denote assembled plasmid backbone that remains in the well. 

Nucl., nucleosome. Figure taken from (Murawska et al. 2008). 

 

5.1.4  dCHD3 mobilizes mononucleosomes in vitro  

It is conceivable that the nucleosome stimulated ATPase activity of dCHD3 as well as its 

ability to bind to mononucleosomes results in nucleosome remodeling. In order to address 

this issue directly, a mononucleosome mobilization assay was performed. Two 200 bp 

DNA fragments bearing the „601‟ nucleosome positioning sequence either in the centre or 

near the end were used for the assembly (Fig. 3.3). Assembly onto these DNA fragments 

produced two mononucleosomes that differ in the relative position of the histone octamer 

and in electrophoretic mobility on a native polyacrylamide gel (middle- and end-positioned 

nucleosomes) (Fig. 5.5, compare lanes 2 and 9).  

As shown previously, dMi-2 mobilized mononucleosomes in an ATP-dependent manner. 

Furthermore, both types of nucleosomes were remodeled to the same extent (Fig 5.5 upper 

panels). Like dMi-2, dCHD3 also displayed nucleosome mobilization activities on both 

substrates (Fig 5.5 lower panels). In some reactions several bands were visible which 

probably reflects differently positioned nucleosomes (Fig. 5.5, upper panel, lane 5, and 

lower panel, lane 8). In some cases, a slightly faster migrating product than the end-

positioned nucleosomes was generated (Fig. 5.5, lower left panel, compare lanes 8 and 9). 

This suggests that the histone octamer has been pushed over the edge and is no longer 

making contact with all 146 bp of DNA, consequently the migration of this particle is 

faster (Gutiérrez et al. 2007). 

Despite of many similarities that dCHD3 and dMi-2 share in the remodeling activities, also 

some striking differences were observed. First, lower concentrations of dCHD3 than dMi-2 

were required to show a nucleosome mobilization effect (compare upper with lower 

panels, line 8), which implies higher activity of dCHD3 enzyme. Second, dCHD3 

produced a significant amount of free DNA when the centrally positioned 
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mononucleosome was used as a substrate (Fig. 5.5, left lower panel, lanes 5 and 6), 

suggesting that dCHD3 is capable of removing octamers from DNA.   

 

Figure 5.5 dCHD3 and dMi-2 remodel mononucleosomes in vitro.  

dMi-2 (upper panels) and dCHD3 (lower panels) were incubated with positioned 

mononucleosomes (left panels -incubation with centrally positioned mononucleosomes, and right 

panels-incubation with distally positioned mononucleosomes) as indicated on top. Lanes 3 to 5 and 

12 to 14, 9 pmol protein; lane 6, 4.5 pmol; lane 15, 0.9 pmol; lane 7, 0.45 pmol; lane 16, 0.18 pmol; 

lanes 8 and 17, 0.09 pmol; lanes 2, 9, 11, and 18, no protein. Nucleosome mobilization was 

visualized by ethidium bromide staining following native polyacrylamide gel electrophoresis. 

Positions of free DNA (straight line) and mononucleosomes (ovals) are indicated on the right. 

Comp. DNA, competitor DNA used to stop the reaction. Figure taken from (Murawska et al. 2008). 

 

To assess possible differences in the mechanism of nucleosome remodeling by dCHD3 and 

dMi-2, a kinetic analysis using the middle positioned mononucleosome was performed. 

Remodeling reactions were stopped after various time points and the reaction products 

were analysed on native gels (Fig. 5.6). The analysis revealed that within 10 min, 

approximately 50% of nucleosomes have been mobilized by dMi-2 (Fig. 5.6, left panel). 

Longer incubation of the reaction did not change the position of nucleosomes significantly 

(Fig. 5.6, compare left panel, lines 8 and 9). By contrast, dCHD3 was capable to move 

50% of middle positioned nucleosomes in as short a time as 5 seconds. dCHD3 continued 

to mobilize nucleosomes for 30 min, as at this time point most of them were repositioned 

(Fig. 5.6, right panel, compare lane 13 and 19). In addition, an increase in the amount of 
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free DNA became detectable only after 10 min. These results suggest that dMi-2 and 

dCHD3 differ in their reaction kinetics in vitro. Moreover, nucleosome mobilization and 

octamer removal by dCHD3 seem to be consecutive events, with nucleosome movement 

occurring earlier than octamer removal. 

 

Figure 5.6 Kinetics analysis of mononucleosome remodeling by dMi-2 and dCHD3 

dMi-2 (9 pmol; left panel) and dCHD3 (9 pmol; right panel) were incubated with centrally 

positioned mononucleosomes. Reactions were stopped at the times indicated at the top of the 

panels and directly analysed by native polyacrylamide gel electrophoresis. Figure taken from 

(Murawska et al. 2008). 

 

5.1.5  Chromodomains are essential for dCHD3 remodeling activities 

dCHD3 contains several protein domains that are potentially involved in the regulation of 

the remodeling reaction by the ATPase and/or the binding of the enzyme to the substrate. 

As reported previously, dMi-2 chromodomains are important for the remodeling activities 

(Bouazoune et al. 2002). In order to get insight into dCHD3 domain function, several 

truncated mutants of dCHD3 were generated and affinity purified from extracts of 

baculovirus-infected SF9 cells (Fig. 5.7). 
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Figure 5.7 dCHD3 deletion mutants 

Left panel, schematic representation of dCHD3 deletion mutants. Domains are indicated on top. 

PHD, PHD finger; Chromo, Chromodomains. Right panel, Coomassie Blue-stained gel showing 

recombinant Flag-tagged dCHD3 wild type (WT) (line 2) and indicated mutants (lines 3-5). 500 ng 

of each protein were loaded on the gel. Lane 1, molecular weight standard. Figure taken from 

(Murawska et al. 2008). 

 

First, dCHD3 mutants were tested for ATPase activity in the absence and in the presence 

of DNA or nucleosomes. The deletion of the PHD finger ( PHD) did not abrogate ATPase 

activity and the enzyme was stimulated with DNA and nucleosomes to the similar extent as 

wild type dCHD3 (Fig. 5.8 A). However, the deletion of the C-terminus ( C) led to a 

noticeable increase of DNA-stimulated ATPase activity (from twofold to fourfold) (Fig. 

5.8 A, compare samples with 100 ng of DNA). The activation by nucleosomes was 

modestly decreased in this mutant. The mutant lacking both PHD finger and 

chromodomains ( PHD/Chromo) retained basal ATPase activity but was no longer 

stimulated by DNA or nucleosomes.  

Next, the same mutants were tested in DNA and nucleosome binding assays (Fig. 5.8 B).  

The deletion of the PHD finger or the C-terminus did not abrogate DNA or nucleosome 

binding. However, the mutant lacking both PHD finger and chromodomains failed to bind 

DNA and nucleosomes (Fig 5.8 B upper and lower panel). These results indicate that 

dCHD3 chromodomains are essential for nucleosome-stimulated ATPase activity and 

DNA and nucleosome binding of dCHD3. Thus, it was plausible to test whether 

chromodomains have a role in nucleosome remodeling by dCHD3.  

 

 

 

 

A 
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Figure 5.8 dCHD3 chromodomains are essential for ATPase, DNA and nucleosome binding    

activities of the remodeler 

(A) Analysis of ATPase activity of dCHD3 mutants. Recombinant dCHD3 proteins (2.7 pmol) 

were incubated in the absence or presence of DNA or nucleosomes (nucl.) and [γ-32P]ATP as 

indicated. Percentage of hydrolysed ATP was determined by thin layer chromatography and 

quantified by phosphorimager analysis. Error bars indicate standard error of the mean (SEM) 

from 2-3 independent experiments.  

(B) Eighteen picomoles (lanes 3, 6, 9 and 12), 9 pmol (lanes 4, 7, 10 and 13), or 1.8 pmol (lanes 5, 

8, 11 and 14) of protein were incubated with DNA and middle-positioned mononucleosomes as 

indicated. Complexes were resolved by native polyacrylamide gel electrophoresis and visualized by 

ethidium bromide staining. Lanes 1, molecular weight marker; lanes 2, DNA (upper panel) and 

nucleosome (lower panel) binding. Figure taken from (Murawska et al. 2008). 

 

dCHD3 mutants were subjected to mononucleosome mobilization assays with middle 

positioned nucleosomes as a substrate (Fig. 5.9). The activity of mutants retaining the 

chromodomains ( PHD and C) was comparable to that of the wild type (compare left and 

right panel of Fig. 5.9 with Fig. 5.5, lower left panel). In addition, in reactions containing 

the C-terminal domain mutant ( C) less free DNA was detected which suggests that 

octamer removal may be slightly impaired in this mutant. This agrees with the ATPase 

assay (Fig. 5.8 A) where nucleosome stimulated ATPase activity of this mutant was also 

modestly decreased. By contrast, the mutant lacking the chromodomains ( PHD/Chromo) 

displayed no detectable nucleosome mobilization activities (Fig. 5.9, middle panel).  

B 
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Figure 5.9 dCHD3 chromodomains are essential for nucleosome remodeling in vitro 

Recombinant dCHD3 deletion mutants were incubated with centrally positioned mononucleosomes 

as indicated. Nucleosome mobilization was visualized by ethidium bromide staining following 

native acrylamide gel electrophoresis. Positions of free DNA (straight line) and mononucleosomes 

(ovals) are indicated on the left. Lanes 3 to 5, 10 to 12, and 18 to 20, 9 pmol of recombinant 

protein; lanes 6, 13, and 21, 4.5 pmol; lanes 7, 14, and 22, 2.25 pmol; lanes 15 and 23, 0.45 pmol; 

lanes 2, 9, 17, centrally positioned nucleosome; lanes 8, 16, and 24, distally positioned nucleosome. 

-ATP, ATP was omitted; -comp., no competitor DNA was used to stop the reaction. Figure taken 

from (Murawska et al. 2008). 

 

Taken together, these results are in agreement with the view that the chromodomains of 

dCHD3 are essential for nucleosome stimulated ATPase, DNA/nucleosome binding and 

ATP-dependent nucleosome mobilization activities of this remodeler. In addition, the C-

terminus seems to modulate the stimulation of ATP activity by DNA.  

 

5.2  In vivo analysis of dCHD3 

Biochemical characterization of dCHD3 revealed that it is a novel and potent ATPase in 

vitro. Despite of many similarities, dCHD3 differs from dMi-2 with regard to higher 

ATPase activity, stimulation by DNA and octamer removal from mononucleosomes. This 

raised the question whether and to which extent these remodelers differ in their functions 

in vivo.  

5.2.1  Expression analysis of dCHD3 and dMi-2 

In order to gain the first insight into the temporal expression profile of dCHD3, whole cell 

extracts were prepared from different developmental stages of Drosophila. Extracts were 

immunoprecipitated with specific antibodies raised against dCHD3 and dMi-2 followed by 

Western blot analysis (for antibody specificity tests see Fig. 3.1).  
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Anti-dCHD3 antibodies recognized a single band with an apparent molecular weight of 

above 100 kDa. This signal is consistent with the predicted molecular weight of dCHD3, 

which contains 892 amino acids and with the migration of recombinant dCHD3 (Fig. 5.2 

A). In addition, this band disappeared after dCHD3 knockdown in a Drosophila cell line 

(Fig. 5.14 A) which strongly indicated that the observed band corresponds to endogenous 

dCHD3.  

Analysis of extracts from different developmental stages revealed that dCHD3 was most 

strongly expressed in early embryos (0-3 hrs after egg deposition) (Fig. 5.10 A, lower 

panel, lane 1). Afterwards expression became weaker, until it dropped down in older 

embryos (9-24 hrs after egg deposition) (Fig. 5.10 A, lower panel, lanes 2-4). No dCHD3 

was detected in larval and pupal stages (Fig. 5.10 A, lower panel, lanes 5-8). By contrast, 

dMi-2 was detected in all embryonic stages tested, with a peak around 6 to 9 hrs after egg 

deposition (Fig. 5.10 A, upper panel, lanes 1-4). dMi-2 levels declined sharply and became 

undetectable at larval stage, then weak dMi-2 expression was observed again at pupal 

stages (Fig. 5.10 A, upper panel, lanes 5-8). 

Larvae extracts usually contain a lot of fat from fat tissue, which may interfere with 

immunoprecipitation or Western blot analysis. To exclude that this has adversely affected 

detection of dMi-2 and dCHD3, extracts as a control, were probed with an antibody 

recognizing an unrelated protein, RBF1. In agreement with published work, RBF1 levels 

remain relatively constant throughout embryonic and larval development (Stevaux et al. 

2005) (Fig. 5.10 A).  

dCHD3 and dMi-2 expression was also tested in adult flies. Female and male adult flies 

showed strong differences in dMi-2 and dCHD3 expression. No dCHD3 and only very 

little dMi-2 was detectable in extracts prepared from male flies, whereas strong expression 

of both proteins was apparent in extracts from female flies. This finding suggests that both 

remodelers are expressed in ovaries. To test this, ovaries dissected from adult female flies 

were stained with antibodies against dCHD3 and dMi-2 and indirect immunofluorescence 

was performed. As expected, both remodelers were detected in the nucleus of the oocyte as 

well as in the nuclei of follicle and nurse cells in ovaries (Fig. 5.10 B).  

These results demonstrate that dMi-2 and dCHD3 expression is tightly regulated during 

development, is sex specific in adult flies, and suggest a significant maternal deposition of 

dMi-2 and dCHD3. 
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Figure 5.10 dCHD3 expression pattern in different developmental stages and ovaries 

(A) Extracts derived from different developmental stages were immunoprecipitated and subjected 

to Western blot analysis as indicated using the following antibodies: for dMi-2, anti-dMi-2(N); for 

dCHD3, #5; and for RBF1, DX3. Antibodies used for immunoprecipitation were, for lanes 1 to 8, 

anti-dMi-2 (4D8, upper panel), anti-dCHD3 (7A11, middle panel), and anti-RBF1 (DX3, bottom 

panel); for lanes 9 and 10, anti-dCHD3 (7A11); and for lanes 11 and 12, anti-dMi-2 (4D8). Figure 

taken from (Murawska et al. 2008). 

(B) Indirect immunofluorscence of Drosophila ovaries. Ovaries were stained with the following 

antibodies: anti-dCHD3 (7A11) and anti-dMi-2(N). DNA was counterstained with DAPI. Ovaries 

were analysed under confocal microscopy. White arrow: oocyte nucleus, green arrow: follicle cell 

nucleus, yellow arrow: nurse cell nucleus. 

 

 

 

 

B 

A 
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5.2.2  Subcellular localization analysis of dCHD3 and dMi-2 during Drosophila 

embryogenesis 

As the analysis of dCHD3 expression showed the highest level of this protein in early 

embryos, it was possible to investigate its subcellular localization by direct comparison to 

dMi-2.  

Drosophila embryo development provides a particularly useful system to study factor 

subcellular localization. The initial nuclear divisions in embryos are rapid, synchronous, 

and syncytial which allows to follow the protein behaviour during cell cycle progression. 

The embryo carries out 13 cycles of nuclear division and DNA replication until 

cellularization of the blastoderm. Between nuclear cycles four and ten, the majority of the 

nuclei migrate to the cortex where they form a syncytial blastoderm that undergoes four 

more rounds of nearly synchronous mitotic cycles. At this point, a large number of nuclei 

are clearly visible, and can be followed simultaneously. In addition, zygotic transcription 

commences (Sullivan et al. 2000). 

To get insight into subcellular localization of dCHD3 and dMi-2 during embryogenesis, 

embryos at different stages were stained by indirect immunofluorescence with antibodies 

against dCHD3 and dMi-2 and analysed with a confocal microscope. Expression of dMi-2 

and dCHD3 was detected in nuclei before their migration to the cortex of the 

preblastoderm embryo (Fig. 5.11 A) and both proteins remained nuclear after migration 

(Fig. 5.11 B). Interestingly, dCHD3 staining of mitotic nuclei resembled DNA staining 

with DAPI (Fig. 5.11 C). This indicates that dCHD3 stayed associated with condensed 

chromosomes in mitotic nuclei where dMi-2 displayed a more diffuse nuclear staining. 

Consequently, these two remodelers may differ in their affinity for condensed chromatin 

and perhaps play different roles in chromatin regulation in early embryogenesis. 

At later stages, dMi-2 was still detectable in nuclei of the epidermis (Fig. 5.11 D). 

However, dCHD3 signals declined to background levels at this time point. These findings 

are consistent with the results of developmental Western blot, which showed a rapid drop 

of dCHD3 signal in postgastrulation embryos where dMi-2 was still present (Fig. 5.10 A).  

Taken together, these results revealed that both, dCHD3 and dMi-2, localize to the nuclei 

of embryos, however dCHD3 stays associated with mitotic chromosomes during cell cycle 

progression. A sharp decrease of dCHD3 in later embryos suggests that the protein level of 
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dCHD3 remains under stringent control and points towards a role of this remodeler in early 

embryo development.  

 

Figure 5.11 dCHD3 and dMi-2 expression in embryos 

(A) Early preblastoderm; (B, C) late preblastoderm; (D) postgastrulation embryos were 

counterstained with DAPI (white; left panels), anti-dMi-2(N) (green; middle panels), and anti-

dCHD3(7A11) antibody (red; right panels). Scale bars, 5 μm. Pictures were taken with confocal 

microscopy. Figure modified from (Murawska et al. 2008). 

 

 

 

 

B 

A 
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5.2.3  dCHD3 exists as a monomer in vivo 

Most ATP-dependent chromatin remodelers exist in multiprotein complexes. Additional 

subunits could play a role in complex targeting to chromatin, regulation of enzymatic 

activity of the ATPase or carry additional enzymatic activities. Given the similarity 

between dCHD3 and dMi-2, it was conceivable that dCHD3 would interact with dNuRD 

complex subunits. To test this possibility, first dCHD3 was checked for 

immunoprecipitation with the histone deacetylase dRPD3, which is a hallmark of dNuRD 

complex. Immunoprecipitations were performed from nuclear extracts of a cell line stably 

expressing Flag-tagged dRPD3. As expected, immunoprecipitation of dMi-2 coprecipitated 

dRpd3 (Fig. 5.12 A, left panel, line 2). By contrast, no dRPD3 was detected in dCHD3 

immunoprecipitates, although the dCHD3 specific antibody precipitates dCHD3 with good 

efficiency (Fig. 5.12 A, right panel, line 6). Moreover, in contrast to dMi-2, dCHD3 was 

not detectable in dRPD3 immunoprecipitates obtained from cells overexpressing Flag-

tagged dRPD3 (data not shown).  

Furthermore, to test whether dCHD3 interacts with a different histone deacetylase, an 

HDAC assay was carried out. dMi-2 and dCHD3 were precipitated from Kc cell nuclear 

extracts and the associated proteins were tested for histone deacetylase activity (Fig. 5.12 

B). As shown previously, dMi-2 precipitates displayed robust HDAC activity. In contrast, 

dCHD3 was associated with low HDAC levels, comparable to background in a 

precipitation with control anti-GST antibodies. These results further strength the 

observation that dCHD3 is not associated with dRPD3 and thus is not associated with a 

dNuRD-like complex.  

dMi-2 interacts also with dMep1 within the novel dMec complex (Kunert et al. 2009). 

However, the minimal region of dMi-2 (1308-1513 aa) required to bind dMep1, is not 

present in dCHD3, making it unlikely that these two proteins interact with each other (H. 

Klinker, unpublished data). In agreement with this, no interaction between recombinant 

dCHD3 and dMep1 overexpressed in baculovirus-infected SF9 cells was detected (data not 

shown).  
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Figure 5.12 dCHD3 does not interact with dRPD3 
(A) SL2 nuclear extracts from cells stably expressing Flag-tagged dRPD3 were 

immunoprecipitated with dMi-2(4D8) (left panels) and dCHD3(7A11) (right panels) antibodies, as 

indicated. Immunoprecipitates were analysed by Western blot using antibodies against dMi-2 

(upper, left), dCHD3 (upper, right), and dRPD3 (lower panels). Lanes 1 and 5, 5% of input 

material; lines 2 and 6, immunoprecipitates (IP) with anti-dMi-2 and anti-dCHD3 antibodies, 

respectively; lanes 3 and 7, control immunoprecipitates without extracts (-NE); lanes 4 and 8, 

control mock precipitates without antibodies (-Abs). (B) Kc nuclear extracts were 

immunoprecipitated with dMi-2(4D8), dCHD3(7A11), and glutathione S- transferase (GST) 

antibodies, as indicated. Immunoprecipitates were subjected to histone deacetylase (HDAC) assay 

by using 
3
H-labeled Drosophila histone octamers. Released 

3
H was counted in a liquid scintillation 

counter. CPM, counts per minute. Figure taken from (Murawska et al. 2008).  

 

Taken together, these results imply that dCHD3 does not interact with dNuRD or dMec 

subunits, suggesting that it may exist in a novel chromatin remodeling complex or it may 

act as a monomer in vivo. In order to distinguish between these possibilities, embryonic 

nuclear extracts were fractionated by size-exclusion chromatography on a Superpose 6 

column and the fractions were assayed for the presence of dMi-2 and dCHD3. dMi-2 

eluted with an apparent peak at the molecular mass of 670 kDa, confirming that dMi-2 

A 
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exists in multisubunit complexes (Fig. 5.13, upper panel). By contrast, dCHD3 eluted with 

an apparent molecular mass of 120 kDa (Fig. 5.13, middle panel). dCHD3 eluted in similar 

fractions when Kc nuclear extracts were applied to the column (data not shown). 

Moreover, recombinant dCHD3, purified from SF9 cells, eluted in the same fractions as 

endogenous dCHD3 (Fig. 5.13, lower panel). As the size of 120 kDa corresponds to the 

predicted molecular mass of monomeric dCHD3, these data strongly suggest that, unlike 

dMi-2, dCHD3 exists as a monomer in vivo.  

 

Figure 5.13 dCHD3 is a monomer in vivo 

Embryo nuclear extracts (upper and middle panels) or recombinant Flag-tagged dCHD3 (bottom 

panel) were applied to a Superose 6 column. Odd fractions were analysed by Western blotting 

using appropriate antibodies as indicated. Gel filtration size markers are shown below (arrows); 

positions of dMi-2 and dCHD3 are shown on the right. Figure taken from (Murawska et al. 2008). 

 

5.2.4  Nonredundant functions of dCHD3 and dMi-2 in embryonic cells 

Coimmunoprecipitation experiments and gel filtration analysis revealed that in contrast to 

dMi-2, dCHD3 is a monomer in embryo cells and it does not interact with subunits of 

dNuRD or dMec complexes. Thus, it seemed plausible that these remodelers play different 

roles in early stages of Drosophila development and that their functions are not redundant.  

It was reported previously, that dMi-2 is essential for the viability of germ cells (Kehle et 

al. 1998). Thus, it was tempting to determine whether this requirement also applied to 

embryonic Kc cells and to test for functional redundancy between dMi-2 and dCHD3. To 

do this, RNAi technology was applied and dMi-2 and dCHD3 were depleted from Kc cells. 

As judged by Western blot analysis (Fig. 5.14 A), the depletion of dMi-2 was specific and 

did not affect dCHD3 protein levels (Fig. 5.14 A, lines 3 and 4). The same applied to 

dCHD3 knockdown (Fig. 5.14 A, lines 5 and 6). Kc cells were then treated with dsRNA 
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against dMi-2 or dCHD3, and cell growth was monitored by counting cell number three, 

five, seven and nine days after dsRNA transfection. The depletion of dMi-2 had a 

significant effect on cell growth and viability, suggesting that dMi-2 is essential for Kc cell 

survival (Fig. 5.14 B). By contrast, the depletion of dCHD3 had no significant effect on 

cell growth.  

If dMi-2 and dCHD3 function partially redundantly to regulate cell growth, then the co-

depletion of both proteins would produce a more severe cell growth phenotype. However, 

the co-depletion of both factors affected cell growth to a degree similar to that of the 

depletion of dMi-2 alone. This result indicates that dCHD3 cannot substitute for the loss of 

dMi-2, and that dMi-2 and dCHD3 perform nonredundant functions in Kc cells. 

 

Figure 5.14 dCHD3 and dMi-2 are nonredundant in vivo 

(A) Kc cells were treated with double-stranded RNAs (dsRNA ) directed against enhanced green 

fluorescent protein (EGFP), two different dsRNA against dMi-2 [dMi-2(a) and dMi-2(b)], and 

dCHD3 [dCHD3(a) and dCHD3(b)]. Nuclear extracts were prepared 6 days after dsRNA treatment 

and 40 μg of protein from each extract were subjected to Western blot analysis using dMi-2 (upper 

panel) and dCHD3 antibodies (lower panel). Mock, nuclear extract derived from mock-treated 

cells. Positions of dMi-2 and dCHD3 are indicated on the right. (B) Kc cells were treated with 
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dsRNA directed against dCHD3, dMi-2, or a combination of the two. Cell numbers were 

determined after 3, 5, 7, and 9 days. Mock, treatment omitting dsRNA. Figure taken from 

(Murawska et al. 2008). 

 

5.2.5  dCHD3 and dMi-2 colocalize on polytene chromosomes 

Analysis of dCHD3 and dMi-2 in early embryos and embryonic cells revealed that they 

differ with respect to their spatial and temporal localization and expression. Moreover, they 

do not share binding partners and consequently have nonredundant functions at early 

stages of Drosophila development. In the light of these findings, dCHD3 and dMi-2 

localization to genomic loci was compared and correlated to transcriptional activity. To do 

this, polytene chromosome staining from 3
rd

 instar larvae was carried out. Although 

analysis of dCHD3 expression by Western blot (Fig. 5.10 A) showed no signals for this 

remodeler in whole cell extracts from larvae, it is still possible that it is expressed in 

certain larval tissues at low level. The same applies to dMi-2 which was previously shown 

to localize to many sites on polytene chromosomes (Murawsky et al. 2001). In accordance 

with this, dCHD3 expression in salivary glands from 3
rd

 instar larvae was confirmed by 

Western blot analysis (data not shown, (Murawska et al. 2008)). 

Next, polytene chromosomes from 3
rd

 instar larvae were stained with dCHD3 and dMi-2 

specific antibodies (Fig. 5.15). In agreement with previous work, dMi-2 localized to 

multiple bands on all chromosomes. dMi-2 staining was weak at the highly condensed 

chromocenter and the fourth chromosome (Fig. 5.15 A, middle panel). The dCHD3 

antibody likewise revealed multiple bands and low staining of the chromocenter and the 

fourth chromosome (Fig. 5.15 A, right panel). Comparison of dCHD3 staining with DAPI 

showed that it localized mostly to interbands and was largely excluded from DAPI-dense 

regions (Fig. 5.15 B). This suggests that dCHD3 may be involved in active gene 

transcription in 3
rd

 instar larvae.  

Surprisingly, costaining with dMi-2 and dCHD3 antibodies revealed a remarkable overlap 

of their binding sites (Fig. 5.15 C, right panel). These data suggest that dMi-2 and dCHD3 

are recruited to the same chromosomal regions on polytene chromosomes. Whether they 

play overlapping or distinct functions on these regions remains to be determined in the 

future. 
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Moreover, the unexpected observation of dMi-2 presence at interbands indicates that it 

may be involved not solely in gene repression but also play an unexplored role in active 

gene transcription. 

 

Figure 5.15 dCHD3 and dMi-2 colocalize on polytene chromosomes.  
(A) Polytene chromosome squashes (right panels) were stained with DAPI (white; top), dMi-2(N) 

(green; middle), and dCHD3(7A11) antibody (red; bottom). Arrows indicate the chromocenter and 

the fourth chromosome. (B) Close-up of polytene chromosome stained with DAPI (green; left) and 

dCHD3 antibody (red; middle). An overlay of both signals is shown on the right. Arrows indicate 

bands of strong dCHD3 and weak DAPI staining. (C) Polytene chromosomes were stained with 

DAPI (white; top), dMi-2 (green; middle), and dCHD3 antibody (red; middle). An overlay of dMi-

2 and dCHD3 signals is shown on the bottom. Arrows indicate overlapping dMi-2 and dCHD3 

bands. Figure taken from (Murawska et al. 2008).   
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5.3  dMi-2 function in active gene transcription 

5.3.1  dMi-2 localizes to active genes on polytene chromosomes 

The unexpected staining of euchromatic regions on polytene chromosomes by dMi-2 

antibody raises an intriguing possibility that besides its repressive functions, dMi-2 may be 

involved in regulation of active gene transcription.  

To determine whether dMi-2 binding sites correspond to sites of active transcription, 

polytene chromosomes were costained with antibodies against dMi-2 and active forms of 

RNA polymerase II (RNAP II). As mentioned in the introduction, the hypophosphorylated 

form of RNAP II enters the preinitiation complex, whereas the hyperphosphorylated form 

is actively engaged in transcription elongation (Lu et al. 1991; Dahmus 1994). The C-

terminal domain (CTD) of RNAP II is differentially phosphorylated as RNAP II progresses 

through the transcription cycle. Phosphorylation of Ser5 residues predominates near the 5' 

end of genes and correlates with transcription initiation and early elongation, whereas Ser2 

residues are extensively phosphorylated towards the 3' end of the genes (Komarnitsky et al. 

2000; Kim et al. 2010). Polytene chromosome staining with antibodies which specifically 

recognize elongating forms of RNAP II, clearly showed that dMi-2 colocalized on many 

sites with transcriptionally active forms of RNAP II (Fig. 5.16 A). Analysis of individual 

chromosome arms at higher magnification revealed that the binding pattern of dMi-2 was 

overlapping at many sites with both Ser5 and Ser2 phosphorylated RNAP II, suggesting 

that dMi-2 may be enriched throughout entire gene coding regions (Fig. 5.16 B, left and 

middle panel). Furthermore, dMi-2 and RNAP II binding was very similar but not 

identical, which implies that dMi-2 is recruited to only a subset of active genes. The 

regions stained by dMi-2 which do not overlap with RNAP II may represent genomic sites 

where dMi-2 plays a repressive role. A significant overlap with transcription elongation 

factor Spt5, further strengthened the idea that dMi-2 occupies actively transcribed genes 

(Fig. 5.16 B, right panel).  
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Figure 5.16 dMi-2 colocalizes with active genes  

Immunofluorescence staining of polytene chromosomes with anti-dMi-2 (dMi-2(N)), anti-RNAP II 

(pol IIser2 and pol IIser5), anti-Spt5 antibodies and DAPI as indicated. (A) Whole chromosome 

squash.  Arrows show prominent sites of colocalization between dMi-2 and elongating RNAP II. 

(B) Magnified sections of individual chromosome arms stained with antibodies as indicated.  

 

To verify that dMi-2 is recruited to active sites of transcription, the recruitment of dMi-2 to 

induced heat shock genes was examined (Fig 5.17). Heat shock genes constitute one of the 

best known model system to study active gene transcription (chapter 2.6.2). Thus, it was 

plausible to test whether dMi-2 is recruited to these chromosomal loci. Polytene 

chromosome staining with dMi-2 antibodies after 20 min heat shock, showed clear 

localization of dMi-2 to the most prominent heat shock loci, 87A and 87C, which contain 

multiple copies of the hsp70 gene. Similar binding to heat shock puffs was observed when 

independent polyclonal antibodies raised against dMi-2 were used (data not shown). These 

results further support a potential link between dMi-2 and active transcription. 

RNAP II is rapidly recruited to heat shock loci upon heat shock and it disappears from 

other genes, which in turn are shut down (Fig. 2.10) (Jamrich et al. 1977). By contrast, 

dMi-2 was not significantly relocalized from other genomic sites (compare Fig. 5.16 A and 
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Fig. 5.17). This suggests that only a fraction of dMi-2 is recruited to induced heat shock 

genes.  

 

Figure 5.17 dMi-2 is recruited to heat shock genes.  
Immunofluorescence staining of polytene chromosomes with anti-dMi-2 antibodies and DAPI as 

indicated. Polytene chromosomes were isolated from 3
rd

 instar larvae which were heat shocked at 

37 C for 20 min. Upper panels show magnified section containing the hsp70 loci 87A and 87C 

(arrows). 

 

The robust expression of heat hock genes results in dramatic changes of chromatin 

structure and nucleosome depletion (Petesch and Lis 2008). This raises the possibility that 

many chromatin remodelers are recruited there to facilitate transcription. To test this, 

polytene chromosomes were stained upon heat shock with antibodies against two different 

ATP-dependent chromatin remodelers, Brahma (SWI/SNF subfamily) and ISWI (ISWI 

subfamily). The staining of heat shock loci showed that Brahma signals were not above the 

background levels (Fig. 5.18, upper panel). This is in agreement with published work, 

which showed that Brahma is not recruited to heat shock loci, although it is generally 

involved in global transcription regulation by RNAP II (Armstrong et al. 2002). Polytene 

chromosome staining with ISWI antibodies also did not show any staining of hsp70 loci, 

which points out that this remodeler is not recruited to heat shock genes (Fig. 5.18, lower 
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panel). However, ISWI containing complexes were shown to be important for heat shock 

gene transcription (Badenhorst et al. 2002). These results indicate that recruitment to heat 

shock loci is specific for dMi-2 and is not shared by other remodelers, like SWI/SNF or 

ISWI. Recruitment to HS puffs was demonstrated previously also for Drosophila CHD1 

(Stokes et al. 1996; Morettini et al. 2011), which raises the possibility that members of 

CHD family of chromatin remodelers may play specific roles on these genomic loci.  

 

Figure 5.18 Brahma and ISWI are not recruited to hsp loci 

Immunofluorescence staining of polytene chromosomes with anti-Brahma and anti-ISWI 

antibodies and DAPI as indicated. Polytene chromosomes were isolated from 3
rd

 instar larvae 

which were heat shocked at 37 C for 20 min. Pictures show magnified chromosome sections 

containing the hsp70 loci 87A and 87C (arrows). 

 

5.3.2  dMi-2 is recruited to the transcribed region of hsp70 

The indirect immunofluorescence staining of polytene chromosomes suggests that dMi-2 is 

recruited to heat shock genes upon their activation. However, polytene chromosome 

staining does not allow to determine the exact sites of factor binding, as this method 

provides only a view of genomic loci at low resolution. In order to define dMi-2 bound 

regions more accurately and confirm the polytene chromosome staining, chromatin 

immunoprecipitation (ChIP) in Drosophila cell culture was performed.  

First, a chromatin immunoprecipitation protocol was established in Kc cells using heat 

shock factor (HSF) and RNA polymerase II as positive controls. Cells were treated for 20 
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min with heat shock, followed by immediate cell fixation and chromatin preparation. 

Binding of HSF and RNAP II was monitored with primer pairs designed to amplify heat 

shock elements (HSE) located in the promoter region of hsp70 and downstream transcribed 

region respectively (Fig. 5.19 B). Transcript analysis of hsp70 gene revealed that heat 

shock genes were rapidly and strongly activated in this system (Fig. 5.19 A). Analysis of 

HSF binding to the hsp70 gene showed that low levels of HSF were associated with the 

hsp70 promoter and transcribed region prior to heat shock (NHS). In agreement with 

previously published work, HSF levels increased significantly at the promoter upon heat 

shock (HS) with little change within the coding region (Fig. 5.19 B) (Boehm et al. 2003). 

By contrast, RNAP II ChIP with antibodies directed against phosphorylated Ser5, 

displayed heat shock-induced enrichment of the enzyme at both promoter and transcribed 

region, which correlates with RNAP II recruitment and its movement into the gene (Fig. 

5.19 B). Altogether these results indicate that ChIP performed in Kc cells upon heat shock 

distinguishes between rapid recruitment of HSF to the promoter and RNAP II to both 

promoter and transcribed regions of the gene and can be used to follow the recruitment of 

other factors.  

 

 

 

Figure 5.19 Induction of heat shock response in Kc cells 

(A) RT-QPCR analysis of hsp70 expression in Kc cells. Cells were incubated at 37 C for 20 min to 

induce heat shock response. Values are expressed relative to the value in NHS control cells. Error 

bars denote standard deviation. (B) ChIP analysis of heat shock factor (HSF) and RNAP II (Ser5P) 

recruitment to hsp70 gene. Upper panel: hsp70 gene and position of amplimers analysed (1: centred 

at -154, 2: +681). Lower panel: ChIP on control (NHS) and heat shocked treated Kc cells (HS). 

Cells were incubated at 37 C for 20 min followed by chromatin isolation and precipitation with 

indicated antibodies. Graphs represent enrichment of each amplimer shown as percentage input. 

Error bars denote standard deviation.    
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Next, the association of dMi-2 with the hsp70 gene was investigated. As many antibodies 

tend to crosslink unspecifically to chromatin, protein knockdown by RNAi was applied to 

determine the specificity of dMi-2 antibodies used in this assay. As a negative control, 

cells were treated with dsRNA against lucyferase (Fig. 5.20 B). Surprisingly, ChIP analysis 

of dMi-2 revealed enrichment of the remodeler in the transcribed region upon heat shock, 

but not at the promoter. Upon efficient dMi-2 knockdown, the ChIP signal in the 

transcribed region of hsp70 decreased significantly (Fig. 5.20 A). Similar results were 

obtained when independent polyclonal antibodies raised against dMi-2 were used (data not 

shown). 

This result strongly indicates that dMi-2 is recruited to the transcribed region of hsp70 

upon gene activation.  Moreover, this finding differs from a previous ChIP analysis of 

dMi-2 which showed recruitment to the promoters of genes repressed by dMi-2 (Kunert et 

al. 2009) and suggests that dMi-2 function and targeting may differ depending on the 

transcriptional status of the gene.  

 

 

Figure 5.20 ChIP analysis of dMi-2 binding to the hsp70 gene in Kc cells  
(A) Upper panel: hsp70 gene and position of amplimers analysed (1: centred at -154, 2: +681). 

Lower panel: dMi-2 ChIP from cells treated with dsRNA against luciferase or dMi-2 as indicated. 

prom (amplimer 1): promoter; ORF (amplimer 2): open reading frame; NHS: non heat shock; HS: 

heat shock. (B) Verification of RNAi knockdown by Western blot. 40 μg of Kc nuclear extracts 

were loaded on SDS-PAGE gel and analysed by Western blot with indicated antibodies.  

 

5.3.3  dMi-2 is enriched over the entire transcribed region of hsp70 

Factors associated with active genes can display differential accumulation over the 

transcribed regions. For instance, transcription elongation factor Spt5 was shown to be 
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enriched at 5' of hsp70 gene, which is in agreement with its role in regulation of RNAP II 

stalling and elongation early in the transcription cycle and with its role in stimulating the 

5'-capping machinery. By contrast, FACT and Spt6 were shown to accumulate towards the 

3' end of hsp70, which reflects their role in controlling transcription elongation and 

modulation of chromatin structure upon RNAP II passage (Saunders et al. 2003).  

To get more precise insight into the spatial distribution of dMi-2 on hsp genes, ChIP 

analysis was performed using primer pairs covering the entire transcribed region of hsp70. 

dMi-2 showed background binding to the gene before heat shock. However, upon gene 

activation, it was enriched over the entire transcribed region of hsp70 (Fig. 5.21). 

Interestingly, dMi-2 was still detected at the very end of the gene, where the 3‟ end 

cleavage and processing occurs (Fig. 5.21, amplimer number 7). Overall, this result 

suggests that dMi-2 may be involved in regulation of heat shock genes transcription and 

point towards its role in co-transcriptional events such as chromatin structure modulation, 

elongation or RNA processing.  

 

Figure 5.21 ChIP analysis of dMi-2 binding to the hsp70 gene  
Upper panel: hsp70 gene and positions of analysed amplimers (1: centred at -350; 2: -154; 3: +58; 

4: +681; 5: +1702; 6: +2065; 7: +2549). The intergenic region represents background binding of 

the antibody. Lower panel: dMi-2 ChIP from NHS (black graph) and HS (grey graph) Kc cells. 

ChIP was performed with anti-dMi-2(C) antibodies. Graph represents enrichment of each amplimer 

shown as percentage input. Error bars denote standard deviation.    
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5.3.4  dMi-2 is important for efficient hsp gene expression 

Given that dMi-2 colocalizes with elongating forms of RNAP II on polytene chromosomes 

and given that dMi-2 is recruited to and enriched in the transcribed region of the hsp70 

gene, it was reasonable to test whether it contributes to heat shock gene transcription. 

To investigate this, transgenic flies carrying an inducible UAS-RNAi construct targeting 

dMi-2 were used. In this system, expression of the transgene is controlled by the presence 

of the UAS element containing optimized GAL4 binding sites. To activate transgene 

transcription, flies that carry the transgene are mated to flies which express GAL4 in a 

particular pattern (driver strain). The resulting progeny express the transgene in a 

transcriptional pattern that reflects the GAL4 pattern of the respective driver (Duffy 2002). 

To obtain dMi-2 depletion, a ubiquitous daughterless Gal4-driver was utilized. Due to 

significant maternal deposition of dMi-2 (Kehle et al. 1998), knockdown of the remodeler 

was obtained only at late 3
rd

 instar larvae. Western blot analysis of whole cell extracts from 

larval brains confirmed efficient depletion of dMi-2 in these animals (Fig. 5.22 A). dMi-2 

depleted animals arrested their development as 3
rd

 instar larvae and they failed to develop 

to the pupal stage. This result confirmed that dMi-2 is indispensable for Drosophila 

development (Kehle et al. 1998).  

To investigate the role of dMi-2 in heat shock gene transcription, dMi-2 depleted larvae 

were treated with heat shock at 37 C for 20 min. Heat shock gene response of dMi-2 

depleted larvae was compared to control, wild type flies crossed with the same Gal4-diver 

strain. Several hsp genes were selected for RT-QPCR analysis. hsp70, hsp26 and hsp83 

genes were all activated upon heat shock treatment in control flies. However, transcript 

levels of all hsp genes tested were severely reduced in dMi-2 depleted larvae compared to 

controls (Fig. 5.22 B). Importantly, transcription of a housekeeping gene (actin5c) was not 

significantly affected arguing that the observed effect on heat shock genes was specific. In 

conclusion, transcriptional analysis of the heat shock gene response in dMi-2 depleted 

larvae suggests that dMi-2 makes a positive contribution to transcription and is essential 

for full hsp gene activation in larvae. 
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Figure 5.22 Heat shock gene expression is impaired in dMi-2 depleted larvae  

(A) Verification of dMi-2 knockdown in control and dMi-2 RNAi larvae. Control flies and flies 

carrying a dMi-2 RNAi transgene under UAS control were crossed with a da-GAL4 driver strain. 

Extracts from third instar larvae were subjected to Western Blot. Antibodies used are indicated on 

the right. Tubulin was used as a loading control. (B) RT-QPCR analysis of hsp70, hsp26, hsp83 

and actin5c expression in control and dMi-2 RNAi larvae. Values are expressed relative to the 

value in NHS control larvae. Errors bars denote standard deviation. All graphs show representative 

of at least three independent fly crosses. NHS, no heat shock treatment; HS, heat shock treatment. 

 

5.3.5  dMi2 catalytic activity is required for efficient hsp gene expression 

Although, dMi-2 knockdown in larvae leads to inefficient expression of hsp genes, the 

RNAi approach can lead to effects which are indirectly associated with the observed 

phenotype. In addition, it was not clear whether enzymatic activity of dMi-2 is involved in 

hsp gene transcription regulation. To address this issue directly, an alternative approach to 

study dMi-2 function was utilized and a catalytically inactive mutant of dMi-2 was 

generated.  

As previously reported, mutations in the ATP-binding site of ATP-dependent chromatin 

remodeling enzymes eliminate their activity without affecting their ability to interact with 

other proteins and thus the mutant proteins have dominant-negative effects on transcription 

when expressed in cells (Khavari et al. 1993; Côté et al. 1994; Armstrong et al. 2002).  

First, a site-directed mutagenesis was carried out to create a mutation that replaces the 

conserved lysine (K761) in the ATP-binding site of the dMi-2 protein with an arginine 

(Fig. 5.23 A, upper panel). Second, the mutant dMi-2 was expressed and affinity purified 
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from SF9 cells (Fig. 5.23 A, lower panel). Both, dMi-2 mutant (dMi-2 K761R) and dMi-2 

wild type (dMi-2WT) were then applied to ATPase assay in the presence of nucleosomes. 

In comparison to the wild type protein, dMi-2 mutant was completely inactive, confirming 

that the mutated residue is important for ATP binding and subsequent ATP hydrolysis (Fig. 

5.23 B).  

 

Figure 5.23 dMi-2 K761R mutant is catalytically inactive  
(A) Upper panel: protein multiple alignment of a fragment of ATPase domain of D. melanogaster 

CHD, Brahma and ISWI chromatin remodelers. The mutated lysine is indicated by a black star. 

Conserved regions are shaded in dark blue (strongly conserved) or light blue (moderately 

conserved). 

Lower panel: a Coomassie gel with dMi-2WT and dMi-2K761R mutant. 2 μg of protein (lanes 1 

and 3) and 1 μg of protein (lanes 2 and 4) were loaded on the gel. (B) ATPase assay with wild type 

and mutant form of dMi-2 in the presence of nucleosomes. Percentage of hydrolysed ATP was 

determined by thin layer chromatography and quantified with phosphorimager. 

 

Finally, flies carrying Flag-tagged dMi-2WT or dMi-2K761R transgenes under the control 

of the UAS promoter were generated.  For this purpose, the site-specific φC31 integrase 

system was applied (for details see chapter 3.2.7). Hence, both transgenes were integrated 

at the same genomic site. To obtain dMi-2 expression, again a daughterless Gal4-driver 

was used. Western blot analysis of whole cell extracts from 3
rd

 instar larval brains 

confirmed ectopic expression of both dMi-2WT and dMi-2K761R proteins (Fig. 5.24 A). 

Moreover, the expression of both transgenes was similar which allowed the direct 

comparison of their effect on hsp gene transcription. Animals expressing wild type dMi-2 

did not show any apparent phenotype. However, expression of catalytically inactive dMi-2 

mutant led to impaired animal development. These animals arrested at 3
rd

 instar larvae and 

similarly to dMi-2 depleted larvae, failed to develop further to the pupal stage. This result 
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suggests that ectopic expression of catalytically inactive mutant of dMi-2 efficiently 

replaces the endogenous enzyme and results in a dominant-negative phenotype.  

To determine effects on hsp gene transcription, 3
rd

 instar larvae were subjected to heat 

shock as before. RT-QPCR analysis of hsp70, hsp26 and hsp83 genes revealed that 

whereas overexpression of wild type dMi-2 had little effect, levels of hsp gene transcripts 

were greatly reduced in larvae overexpressing the enzymatically inactive dMi-2 (Fig. 5.24 

B). Expression of a housekeeping gene (gapdh) was not significantly affected in this 

system. 

To assess possible effects on puff formation, polytene chromosome squashes from flies 

overexpressing a dominant-negative mutant of dMi-2, were prepared. Staining with 

antibodies specific for elongating RNAP II revealed that heat shock puffs were smaller, 

which is in line with the observed impaired transcription of hsp genes in these flies (Fig. 

5.24 C). Altogether these results demonstrate that the enzymatic activity of dMi-2 is 

essential for full heat shock gene activation.  

 

Figure 5.24 Catalytic activity of dMi-2 is important for full hsp gene expression 

(A) Verification of dMi-2 transgene expression in larvae by anti-Flag Western blot. Control flies 

and flies carrying a dMi-2WT and dMi-2K761R transgene under UAS control were crossed with a 

da-GAL4 driver strain. (B) RT-QPCR analysis of hsp70, hsp26, hsp83 and gapdh expression in 

control and transgenic larvae. Values are expressed relative to the value in NHS control larvae. 

A 

B

\

B 

C 



RESULTS 

141 

 

Errors bars denote standard deviation. All graphs show representative of at least three independent 

fly crosses. NHS, no heat shock treatment; HS, heat shock treatment. (C) Immunofluorescence 

staining of polytene chromosomes with RNAP II (Ser2P) and DAPI as indicated. Polytene 

chromosomes were isolated from control or dMi-2K761R mutant overexpressing 3
rd

 instar larvae 

crossed to da-Gal4 driver. Larvae were heat shocked for 20 min at 37 C prior to polytene 

chromosome squashes preparation. Pictures show magnified chromosome sections containing the 

hsp70 loci 87A and 87C (arrows). 

 

5.3.6  dMi-2 catalytic activity is required for proper RNA processing and splicing of 

hsp genes 

The inefficient expression of hsp genes may be a consequence of affecting several co-

transcriptional processes in dMi-2 depleted or dMi-2 mutant overexpressing transgenic 

larvae. Heat shock genes undergo dramatic chromatin changes upon activation that are 

reflected by rapid nucleosome disruption across the entire gene (Petesch and Lis 2008). As 

dMi-2 is recruited to the entire transcribed region of hsp70, an attractive hypothesis was 

that dMi-2 could be involved in the regulation of nucleosome levels at hsp genes. In this 

context, dMi-2 would help to open the locus and thus alleviate the restrictive properties of 

chromatin to RNAP II. However, this seems not to be the case as no significant changes in 

histone H3 removal on hsp genes in dMi-2 knockdown flies were observed (data not 

shown). Another intriguing possibility is that dMi-2 can play a more direct role in 

transcription, for example by regulating co-transcriptional 3‟ end formation or splicing.  

To test whether RNA 3‟ end processing is affected upon dMi-2 removal, the ratio of 3‟ 

unprocessed transcripts and total hsp70 RNA in wild type and dMi-2 depleted or dMi-2 

K761R mutant overexpressing larvae were determined (Fig. 5.25 A). For this, primer pairs 

were designed to distinguish between unprocessed and total transcripts. Primer pair 1 

detected all hsp70 transcripts whereas primer pair 2 detected only unprocessed hsp70 

transcripts with uncleaved 3‟ end (Fig. 5.25 A, upper panel). The ratio of 3‟ unprocessed 

transcripts to total hsp70 RNA for the control cross was set to one and other ratios were 

displayed relative to this. 

RT-QPCR analysis revealed a substantially higher ratio of unprocessed to total hsp70 

transcipts in dMi-2 depleted animals (4-fold, Fig. 5.25 A). Moreover, the observed defects 

were even more pronounced in flies overexpressing mutant form of dMi-2 (11-fold), 

whereas overexpression of wild type dMi-2 had little effect (2-fold). Similar defects were 

observed on the hsp83 gene. The ratio of unprocessed to total hsp83 transcripts in dMi-2 
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depleted animals was 2,7-fold with higher (3,5-fold) ratio in dMi-2K761R expressing flies 

and no changes in wild type dMi-2 expressing animals (Fig. 5.25 B, left graph). 

Hsp83 is one of the few heat shock genes possessing an intron. In order to test whether 

splicing of this gene is impaired in transgenic larvae, primer pairs detecting unspliced and 

total hsp83 transcripts were used (Fig. 5.25 B, amplimer 3 and 4, respectively) and the 

ratio of unspliced to total hsp83 transcripts was determined. Again, a significant increase in 

the relative proportion of unspliced RNA in dMi-2-depleted larvae (2,8 fold) and in larvae 

overexpressing inactive enzyme (3,3 fold) in comparison to control and wild type dMi-2 

expressing larvae, were observed. Altogether, these results suggest that dMi-2 activity is 

required for the efficient 3‟ end processing and splicing of heat shock genes. 

 

 

Figure 5.25 dMi-2 is required for efficient RNA processing.  
(A) Upper panel: schematic representation of the hsp70 gene. RT-QPCR amplimers, hsp70 

cleavage site, and transcriptional start site (TSS) are shown. Lower panel: RT-QPCR from control 

and transgenic larvae. The ratio between 3‟ unprocessed and total hsp70 RNA was determined 

(amplimer 2 / amplimer 1). The ratio obtained for control larvae was set to 1, other ratios were 

expressed relative to this. (B) Upper panel: schematic representation of the hsp83 gene. RT-QPCR 

amplimers, hsp83 intron, and transcriptional start site (TSS) are shown. Lower panel: The ratio 

between unprocessed and total hsp83 RNA (right graph, amplimer 5 / amplimer 4) or  unspliced 

and total hsp83 RNA (left graph, amplimer 3 / amplimer 4) were determined and plotted as in (A).  

 

5.3.7  dMi-2 interacts with nascent hsp gene transcripts 

Several chromatin factors involved in RNA processing were shown to interact with pre-

mRNA directly. For instance, BRG1 and BRM are associated with pre-RNPs (Tyagi et al. 

2009), the same applies to ENY2, THO and Xmas-2, proteins engaged in 3‟ end processing 

(Kopytova et al. 2010).  
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The involvement of dMi-2 in regulation of co-transcriptional RNA processing and splicing 

suggests that the remodeler may also bind to nascent transcripts. To address this issue, 

RNA immunoprecipitation from heat shocked Kc cells with two different antibodies 

against dMi-2 was performed. Upon extensive washes, RNA was recovered from 

immunoprecipitates and the presence of nascent transcripts was monitored by RT-QPCR 

with primer pairs designed to detect unprocessed or unspliced hsp70 and hsp83 transcripts, 

respectively. This analysis revealed an enrichment of nascent hsp70 and hsp83 transcripts 

in dMi-2 precipitates with two independent antibodies. In addition low presence of 

unrelated transcripts, like actin5c or rp49, in dMi-2 immunoprecipitates, demonstrates a 

specificity of this interaction (Fig. 5.26 A). To further support the hypothesis of dMi-2 

binding to nascent RNA, cells were treated with RNase A followed by chromatin 

fractionation with increasing salt concentration. dMi-2 presence in different fractions was 

then determined by Western blot analysis (Fig. 5.26 B). This experiment showed that more 

dMi-2 was released from chromatin when cells were pretreated with RNAse A in 

comparison to the control (Fig. 5.26 B, right panel, compare lines 1 and 3). No changes 

upon RNAse A treatment of an unrelated nuclear protein, lamin, was observed, arguing for 

the specificity of this assay (Fig. 5.26 B, right panel). Accordingly, this demonstrates that 

at least a fraction of dMi-2 in cells is associated with chromatin in an RNA dependent 

manner.  

Finally, to show a physical dMi-2/RNA interaction, an RNA electrophoretic mobility shift 

assay was carried out. A single-stranded, 250 bp fragment of hsp70 RNA was generated by 

in vitro transcription. Then, recombinant dMi-2 was incubated with RNA followed by 

native gel electrophoresis. dMi-2 formed a distinct, slowly migrating protein-RNA 

complex that was stable during electrophoresis through the native polyacrylamide gel (Fig. 

5.26 C). This result confirmed that dMi-2 binds single stranded RNA directly.  

Altogether, these data suggest that dMi-2 interacts with heat shock pre-mRNA transcripts 

and further strength the evidence that it is involved in transcription regulation, at least in 

part, via RNA processing and splicing control.  
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Figure 5.26 dMi-2 interacts with RNA in vivo and in vitro 

(A) RNA immunoprecipitation (RIP) of hsp70 and hsp83 unprocessed transcripts from heat 

shocked Kc cells. RIP was performed with two independent dMi-2 antibodies (dMi-2(N) and dMi-

2(C)), IgG, pre-immune serum and protein G beads as indicated. IgG, pre-immune serum and 

protein G beads were used as negative controls. Primer pairs that specifically amplify actin5c, rp49 

and unprocessed hsp70 and hsp83 transcripts (see Fig. 4.24) were used for RT-QPCR. (B) 

Chromatin fractionation. Left panel: experimental scheme. Right panel: Western blot analysis of 

protein fractions extracted with 0,3M (lanes 1, 3) and 0,5M NaCl (lanes 2, 4), treated (+) or not 

treated (-) with RNAse A, as indicated. Western blot was probed with anti-dMi-2 and anti-lamin 

antibodies as indicated on the left. The experiment was performed by Matthias Groh.  

(C) RNA electrophoretic mobility shift assay. Single stranded hsp70 RNA (80 ng) was incubated 

with recombinant dMi-2. Lane 2: 0,2 µg dMi-2, lane 3: 0,5 µg, lane 1: no protein. RNA and RNA-

protein complexes were resolved by electrophoresis and visualized with ethidium bromide. Position 

of unbound RNA probe is indicated on the left.  
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5.4  Recruitment mechanism of dMi-2 to active heat shock genes 

The main recruitment mechanism of dMi-2 to the promoters of repressed genes involves 

interactions with several DNA binding transcription factors (chapter 2.4.1, Table 2.2). In 

addition, SUMOylation of transcription factors can increase their affinity for dMi-2 

complexes (chapter 2.4.2). However, given that dMi-2 is recruited to the entire transcribed 

region of the hsp70 gene but not to the promoter (Fig. 5.20 and 5.21), it is plausible that a 

different recruitment mode of dMi-2 to active genes exists.  

5.4.1  dMi-2 does not bind to histone marks associated with active transcription 

Chromatin carries numerous histone modifications which have been shown to be 

associated with transcription. The hallmarks of histone tail modifications on active genes 

comprise tri-methylation of lysine four on histone H3 (H3K4me3) and tri-methylation of 

lysine 36 on histone H3 (H3K36me3). The first modification is enriched near the 

transcription start sites of active genes, whereas the latter one increases towards the 3‟ end 

of the genes. These modifications serve as a recognition platform for chromatin 

remodeling and modifying factors, including human CHD1 and the yeast histone 

deacetylase containing complex Rpd3S (Carrozza et al. 2005; Sims et al. 2007), which are 

targeted to transcribed genes via binding to H3K4me3 and H3K36me3, respectively. 

Binding to methylated histone tails occurs via specific protein domains, such as 

chromodomains or PHD fingers. The tandem chromodomains of CHD1 have been shown 

to bind to H3K4me3, whereas Rpd3S recognizes H3K36me3 via the chromodomain of 

Eaf3, a specific subunit of the complex (Carrozza et al. 2005).  

The involvement of chromodomains in recognizing histone methylation marks, raised the 

possibility that dMi-2 could be recruited to active genes in a similar manner. To test this 

hypothesis, the tandem chromodomains of dMi-2 (aa 452-716) were expressed as GST-

fusion proteins in bacteria (Fig. 5.27 A) and their binding to modified histone tail-peptides, 

was determined. As a positive control, the human CHD1 chromodomains (aa 250-467) 

were purified from bacteria and used in the same assay. Protein binding to differentially 

modified histone tails was monitored by Western blot analysis (Fig. 5.27 B). This 

experiment confirmed that CHD1 was binding specifically to H3K4me3, but not to 

unmodified H3 or H3K36me3 (Fig. 5.27 B, upper panel). However, dMi-2 chromodomains 

were bound to all histone peptide used irrespective of their lysine methylation state (Fig. 
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5.27 B, lower panel). This result suggests that dMi-2 chromodomains do not possess any 

specificity towards methylated histone tails. The most probable explanation for this is the 

lack of an aromatic tryptophan residue (Fig. 5.27 C), which is indispensable for CHD1 

chromodomain binding to H3K4me3 (Flanagan et al. 2005). It cannot be excluded that the 

substantial binding of dMi-2 chromodomains to all histone peptides is due to incorrect 

protein folding or aggregation. Similar problems were reported before for dCHD1 

chromodomains (Morettini et al. 2011). This experiment does not eliminate the possibility 

that other domains of dMi-2 may recognize specific active histone marks. However, the 

full length dMi-2 displayed no specificity for methylated histone tails in histone peptide 

pulldowns (P. Steffen, unpublished data).   

Altogether, these data strongly suggest that recognition of active histone marks, H3K4me3 

and H3K36me3, is unlikely to be responsible for dMi-2 recruitment to active heat shock 

genes. 

 

Figure 5.27 Chromodomains of dMi-2 do not possess specificity towards methylated histone 

tails in vitro.  

(A) Coomassie-stained SDS-Page gel showing recombinant GST-tagged chromodomains of dMi-2 

and hCHD1. Lanes 1 to 3, dMi-2 chromodomains (2, 1, and 0,5 μg), lanes 4 to 6, hCHD1 

chromodomains (2, 1, and 0,5 μg). (B) Histone peptide pulldown. 0,25 μg of recombinant GST-

tagged dMi-2 or hCHD1 chromodomains were incubated with different histone H3 peptides, as 

indicated. Binding was monitored by Western blot analysis with anti-GST antibodies. Bound 

proteins are labeled on the right. 5% of protein input was loaded on the gel. H3K4me3 peptide 

comprised 1-15 aa, H3K36me3 peptide comprised 22-44 aa of histone H3. H3, unmodified histone 

H3. Aminoacids of unmodified histone H3 are shown in parentheses.  

(C) Multiple sequence alignment of the chromodomains of CHD remodelers from different species. 

Conserved regions are shaded in dark blue (strongly conserved) or light blue (moderately 
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conserved). Tryptophan residue responsible for hCHD1 binding to H3K4me3 is indicated with 

black star. dCHD1 (Drosophila CHD1), hCHD1 (human CHD1), yChd1 (yeast Chd1).  

 

5.4.2  dMi-2 recruitment to hsp genes is independent of  RNAP II interaction 

Recruitment of different proteins to transcribed genes often involves interaction with 

RNAP II. Factors participating in transcription initiation, like the general transcription 

factor TBP and the multi-subunit Mediator complex, bind RNAP II through 

unphosphorylated CTD (Usheva et al. 1992; Myers et al. 1998). A number of elongation 

and RNA processing factors have been shown to be recruited to transcribed regions via 

binding to hyperphosphorylated CTD domain of RNAP II (Komarnitsky et al. 2000; 

Phatnani and Greenleaf 2006). Others, like PSF (Protein-associated Splicing Factor), 

recognize CTD independent of its phosphorylation status (Emili et al. 2002).  

Given that dMi-2 is recruited to the entire transcribed region of hsp70 (Fig. 5.21), it was 

conceivable that it could bind and travel with RNAP II or transcription elongation factors. 

To address this possibility, immunoprecipitation experiments from Kc cell nuclear extracts 

were performed. Immunoprecipitation of dMi-2 did not show any significant association 

with RNAP II, although the dMi-2 specific antibody precipitated dMi-2 with good 

efficiency (Fig. 5.28, upper left panels). The faint RNAP II signal in the dMi-2 

immunoprecipitation was not stronger that the signal in the control precipitation, where 

antibodies were omitted (Fig. 5.28, upper left panels, compare line 2 and 3). In addition, 

immunoprecipitation with anti-RNAP II antibodies was carried out and the association of 

dMi-2 was tested. Again, no association of dMi-2 with RNAP II was observed (Fig. 5.28, 

upper right panels). The anti-RNAP II antibody (8WG16) used for precipitation recognizes 

mostly the hypophosphorylated form of RNAP II. It cannot be formally excluded that dMi-

2 binds to hyperphosphorylated and thus transcriptionally engaged RNAP II. However, 

immunoprecipitation of dMi-2 followed by Western blot analysis with antibodies 

recognizing phosphorylated forms of RNAP II (Ser5 or Ser2), did not show any association 

with these RNAP II species (Fig. 5.28 lower left and right panels). Moreover, no 

interaction with transcription elongation factors Spt5 and Spt6 was detected (data no 

shown). The lack of association of dMi-2 with RNAP II or elongation factors, suggests that 

binding to the transcription machinery is not responsible for dMi-2 recruitment to active 

heat shock genes.  
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Figure 5.28 dMi-2 does not interact with RNAP II 

Kc nuclear extracts were immunoprecipitated with dMi-2(4D8) (upper, left panels), dMi-2(N) 

(lower, left and right panels), and RNAP II (8WG16) (upper, right panels) antibodies, as indicated. 

Immunoprecipitates were analysed by Western blot using antibodies against dMi-2 and different 

forms of RNAP II, as indicated on the right. 8WG16 antibody recognizes hypophosphorylated 

forms of RNAP II, H14 antibody - Ser5 phosphorylated RNAP II, H5 antibody - Ser2 

phosphorylated RNAP II. Lanes 1, 4, 7 and 10, 5% of input material; lines 2, 5, 8 and 11, 

immunoprecipitates (IP); lanes 3, 6, 9 and 12, control precipitates without antibodies (-Abs).  

 

Recruitment of dMi-2 could precede, coincide or follow RNAP II binding to heat shock 

genes. It was not clear when dMi-2 is recruited to heat shock genes, as all ChIP 

experiments were carried out after 20 min of heat shock when transcription was already 

going on. To assess the kinetics of dMi-2 recruitment to heat shock genes, Kc cells were 

treated with heat shock for one, two, five and 20 minutes, followed by ChIP analysis with 

dMi-2 and RNAP II antibodies (Fig. 5.29). RNAP II was detected near the start site of 

transcription prior to heat shock, in agreement with previous studies showing that 

promoter-paused RNAP II is hypophosphorylated (Fig. 5.29, NHS, left graph). 

Recruitment of RNAP II near the start site was detected after 1 min, with the peak signal 

after 5 minutes, followed by small decrease after 20 min of the heat shock. Similar kinetics 

for RNAP II recruitment was reported previously (Boehm et al. 2003). As the anti-RNAP 

II antibody used for ChIP (8WG16) recognizes mostly hypophosphorylated forms of 
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RNAP II, the signal in the body of the gene detected with this antibody was low but above 

the signal before heat shock, which is in agreement with the observation that this antibody 

can still recognize RNAP II molecules that have some level of phosphorylation (Boehm et 

al. 2003). Conversely, dMi-2 ChIP showed that the remodeler was binding to the 

transcribed region of hsp70 later than RNAP II, as it was detected earliest at 2 min after 

heat shock (Fig. 5.29, right graph). dMi-2 signal progressively increased with time, with 

the highest level reached at 20 min after heat shock. As observed previously (Fig. 5.21), 

dMi-2 was recruited to the entire transcribed region of hsp70. A significant signal for dMi-

2 was still detected at the 3‟ prime end of the gene, suggesting that it extends beyond the 

transcribed region. Altogether, the time course ChIP revealed that dMi-2 differs from 

RNAP II with regard to its temporal patterns on transcribed hsp70 gene. In addition, 

previously published ChIP patterns of different forms of RNAP II, with preferential 

detection of the enzyme at the 5‟ end of the transcribed hsp70 gene, differ from the dMi-2 

profile (Boehm et al. 2003). This further strengthens the hypothesis that dMi-2 is not 

recruited by the transcription machinery to heat shock genes.  

 

Figure 5.29 Kinetics analysis of RNAP II and dMi-2 binding to the hsp70 gene  
Upper panel: hsp70 gene and position of amplimers analysed (1: centred at -154; 2: +58; 3: +681; 

4: +1426; 5: +2549). Lower panel, left: RNAP II ChIP from non heat shocked and heat shocked Kc 

cells, as indicated. RNAP II ChIP was performed with 8WG16 antibodies. Lower panel, right: dMi-

2 ChIP from Kc cells, as in left panel. ChIP was performed anti-dMi-2(C) antibodies. Graphs 

represent enrichment of each amplimer shown as percentage input. Error bars denote standard 

deviation.    
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5.4.3  dMi-2 recruitment to hsp genes is transcription independent 

As dMi-2 binding to the hsp70 gene takes place after RNAP II recruitment (Fig. 5.29), it is 

conceivable that dMi-2 recruitment depends on transcription elongation, rather than on 

transcription initiation. Although, in the light of the experiments described above, a direct 

association of dMi-2 with elongating RNAP II is rather improbable, it is still plausible that 

dMi-2 might be recruited to active genes via binding to nascent transcript during 

transcription elongation. To address this issue, a small molecule inhibitor DRB was used.  

DRB (5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole) is a purine nucleoside analogue 

which inhibits transcriptional elongation, via specifically targeting P-TEFb kinase and thus 

blocking CTD phosphorylation at serine 2 (Bentley 1995; Yamaguchi et al. 1999). Kc cells 

were incubated with DRB for 20 min at RT, followed by heat shock treatment. RT-QPCR 

analysis revealed that hsp70 transcript levels in cells treated with DRB were decreased to 

the basal levels, which confirmed the efficient inhibition of hsp70 transcription in this 

system (Fig. 5.30 A). Next, dMi-2 ChIP was performed in the presence or absence of DRB. 

dMi-2 was recruited to the transcribed region of the hsp70 in control, heat shock-treated 

cells, as shown previously. Surprisingly, in cells treated with DRB, the signal for dMi-2 

binding was not significantly reduced, although transcription was completely abolished 

(Fig. 5.30 B). Consequently, this result demonstrates that dMi-2 recruitment to the active 

hsp70 gene is transcription independent and strongly indicates that the remodeler recruiting 

signal is brought about by another mechanism.    
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RESULTS 

151 

 

Figure 5.30 Transcription elongation inhibition by DRB has no effect on dMi-2 recruitment 

to the hsp70 gene 
(A) RT-QPCR analysis of hsp70 expression in Kc cells. Cells were incubated in the presence or in 

the absence of DRB (125 μM) for 20 min followed by heat shock at 37 C for 20 min, as indicated. 

Values are expressed relative to the value in NHS control cells. Error bars denote standard 

deviation. (B) Upper panel: hsp70 gene and position of amplimers analysed (1: centred +58; 2: 

+681; 3: +1426; 4: +2549). The intergenic region represents background binding of the antibody. 

Lower panel: dMi-2 ChIP from Kc cells was performed under non heat shock (NHS), heat shock 

(HS) or DRB treatment and heat shock conditions, as in (A). Graph represents enrichment of each 

amplimer shown as percentage input. Error bars denote standard deviation.    

 

5.4.4  Inhibition of PARP impairs dMi-2 recruitment to hsp genes 

It was reported previously, that formation of heat shock puffs on polytene chromosomes 

still occurs when transcription is blocked by actinomycin or by mutation of target gene 

promoters (Korge et al. 1990). This suggests that puff generation can be separated from 

transcription and that there must be a different cause of heat shock puff formation. Indeed, 

it was shown that heat shock genes are subjected to extensive poly(ADP-ribosylation) 

(PARylation) upon gene activation and it was suggested that this modification occurs 

independently of transcription (Tulin and Spradling 2003; Petesch and Lis 2008). 

Poly(ADP-ribosylation) is catalyzed by poly(ADP-ribose) polymerase (PARP), which 

utilizes nicotinamide adenine dinucleotide (NAD+) to add long chains of adenosine 

diphosphate-ribose residues to target proteins. Strikingly, in the presence of PARP 

mutations or an inhibitor of PARP activity, puffing does not occur and transcription of heat 

shock genes in response to a heat shock stimulus is strongly reduced in 3
rd

 instar larvae 

(Tulin and Spradling 2003). Moreover, it has been recently reported, that the initial, rapid 

nucleosome loss from activated hsp genes requires PARP activity (Petesch and Lis 2008). 

Hence, one intriguing possibility was that dMi-2 could be recruited to heat shock genes in 

a PARP dependent manner.  

To test this possibility, first the inhibition of PARP enzymatic activity was achieved by a 

specific PARP inhibitor, PJ34. Kc cells were treated with PJ34 for different time periods 

and subjected to Western blot analysis with anti-PAR antibodies. These antibodies 

recognize a specific epitope associated with
 
poly(ADP-ribose) (PAR) polymer that is 

associated with numerous proteins within the cell. Thus, many Western blot signals were 

detected (Fig. 5.31 A, line 1). Upon PJ34 treatment, some of these signals disappeared or 

become reduced, which suggested partial PARP inhibition by PJ34 (Fig. 5.31 A, line 2). A 

substantial decrease of PAR signals was achieved already after 20 minutes of cell 
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treatment. As prolonged cell treatment with PJ34 did not result in stronger PAR signal 

decrease (data not shown), a 20 min treatment was chosen for a subsequent ChIP 

experiment. In addition, heat shock gene transcription was monitored after PJ34 treatment. 

RT-QPCR analysis revealed that transcription of the hsp70 gene was not significantly 

affected upon PJ34 treatment (Fig. 5.31 B). Although it was reported that PARP is 

important for heat shock gene transcription in 3
rd

 instar larvae, it is conceivable that the 

incomplete inhibition of PARP activity did not impair heat shock gene activation. 

Next, dMi-2 ChIP was performed in the presence or absence of PJ34 and dMi-2 

recruitment was followed through the entire hsp70 transcribed region. As expected, dMi-2 

was recruited to the activated hsp70 gene in control, heat shock-treated cells. By contrast, 

in cells treated with PJ34, the signal for dMi-2 binding was significantly reduced despite 

the incomplete PARP inhibition (Fig. 5.31 C). Importantly, dMi-2 signal was not changed 

in the control, intergenic region, upon PJ34 treatment. Similar results were obtained for 

hsp83 gene (data not shown). Thus, this experiment suggests that dMi-2 recruitment to 

heat shock genes depends on PARP enzymatic activity.  

 

Figure 5.31 Inhibition of PARP activity decrease dMi-2 recruitment to the hsp70 gene 
(A) Western blot analysis for PARP inhibition efficiency. Kc cells were incubated without (-) or 

with (+) PJ34 (5 μM) for 20 min, followed by nuclear extract preparation and Western blot analysis 

with anti-PAR antibodies. 50 μg of protein were loaded on the gel, tubulin staining was used as a 

loading control. (B) RT-QPCR analysis of hsp70 expression in Kc cells. Cells were incubated in 

the presence or in the absence of PJ34 (5 μM) for 20 min followed by heat shock at 37 C for 20 

min, as indicated. Values are expressed relative to the value in NHS control cells. Error bars denote 

standard deviation. (C) dMi-2 ChIP from Kc cells was performed under non heat shock (NHS), 

heat shock (HS) or PJ34 treatment and heat shock conditions. Graph represents enrichment of each 

amplimer shown as percentage input (amplimer 1: centred +58; 2: +681; 3: +1426; 4: +2549). The 
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intergenic region represents background binding of the antibody. Error bars denote standard 

deviation.    

 

5.4.5  dMi-2 binds to PAR polymers 

As reported recently, the human homolog of dMi-2, CHD4 is recruited to laser induced 

DNA-damage sites in a PARP-dependent manner via binding to PAR chains (Polo et al. 

2010). Given the conservation between CHD4 and dMi-2, it was conceivable that dMi-2 

could bind to PAR polymers directly in the context of heat shock gene transcription. In 

order to test this idea, binding to auto-PARylated PARP1 in vitro was determined using 

PARP pulldown assays. First a PARP reaction was set up, where recombinant PARP1 

enzyme was incubated with its substrate NAD+, to synthesize PAR chains. In this reaction 

PARP1 is the main substrate and is auto-PARylated. This results in a smear on Western 

blot which corresponds to PARP1 modified with PAR chains of different length (Fig. 5.32 

A, lane 1). Purified and immobilised dMi-2 was subsequently incubated with PARP 

reactions and auto-modified PARP binding was detected by Western blot with anti-PAR 

antibodies (Fig. 5.32 A). In addition, mH2A1.1 which contains a macrodomain, known to 

interact with PAR, was used as a positive control in this assay. Western blot analysis 

revealed that dMi-2, like mH2A1.1, bound PARylated PARP1 efficiently (Fig. 5.32 A, 

lines 3 and 4).  

To confirm that the observed Western blot signals correspond to auto-modified PARP1 and 

to exclude any unspecificity of antibodies, the same pulldown assay was carried out with 

radioactively labeled PARylated PARP1 and binding was detected by the exposure to X-

ray film (5.32 B). This experiment verified dMi-2 binding to auto-PARylated PARP1. 

Interestingly, radioactive signals in mH2A1.1 were smeared until the end on the gel, 

whereas in dMi-2 pulldown they were detected in higher molecular weight range (Fig. 5.32 

B). This suggests that dMi-2 may display some specificity towards longer PAR chains. 

Indeed, a role of PAR chain length for regulating PAR-protein interactions was reported 

previously (Fahrer et al. 2007).  

As PARP pulldown assays are performed in the presence of auto-modified PARP1, it 

cannot be excluded that the interaction between dMi-2 and PAR is mediated, at least to 

some extent, via PARP1. To test whether dMi-2 binds PAR polymers directly, radioactive 

PAR was decoupled from PARP1 and purified. Next, recombinant dMi-2 was spotted on a 

nitrocellulose membrane, followed by incubation with radioactive PAR. After extensive 
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washing, the membrane was exposed to phosphorimager analysis. This revealed a 

significant radioactive PAR signal bound to dMi-2 but not to BSA spotted on the 

membrane which argues for the specificity of this assay (Fig. 5.32 C). Thus, similarly to 

human CHD4, dMi-2 displays PAR binding ability.  

 

Fig. 5.32 dMi-2 binds PAR  
(A) PAR was synthesized in vitro by recombinant PARP1. Reactions were incubated with control 

anti-Flag beads (beads) and beads with immobilized dMi-2 or mH2A1.1 as indicated on top. Bound 

material was analysed by Western blot using and anti-PAR antibodies. Lane1: input (3,5%). 

Molecular weight is depicted on the left. (B) Pulldown in the presence of radioactive auto-

PARylated PARP1. Experiment was performed as in (A) with a difference that radioactive NAD+ 

was used for PAR synthesis. Samples were run on the gel, gel was dried and exposed overnight on 

the X-ray film. The gel well and free NAD+ are depicted with arrows. (C) PAR binding assay. Slot 

blot with radioactively labelled purified PAR. 0,2 μg of BSA or recombinant dMi-2 were spotted 

on the nitrocellulose and incubated with radioactive PAR. Upon extensive washes, membrane was 

dried and analysed by phosphorimager. 

 

To get a better insight into the mode of dMi-2 binding to PAR, the pulldown assay was 

performed in the presence of the excess of free ADP-ribose (ADPr) followed by Western 

blot analysis. The macrodomain of mH2A1.1 was shown to bind free ADPr, thus its 

association with auto-PARylated PARP1 was abolished when the excess of ADPr was 

present in the pulldown reaction (Fig. 5.33, compare lines 4 and 5). By contrast, dMi-2 

binding to auto-PARylated PARP1 was not abrogated in the presence of ADPr (Fig. 5.33, 

compare lines 2 and 3). This result suggests that in contrast to mH2A1.1, dMi-2 is not able 
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to bind free ADPr, it rather binds longer poly(ADP-ribose) chains. This also indicates that 

dMi-2 recognizes PAR polymers in a different manner that mH2A1.1, as it does not 

possess a macrodomain. As PAR polymer is negatively charged similarly to nucleic acids, 

it is plausible that PAR binding to dMi-2 reflects its general affinity for nucleic acids.  

 

Fig. 5.33 Free ADPr does not compete with PAR for binding to dMi-2 
(A) PAR was synthesized in vitro by recombinant PARP1 as in Fig. 5.32. Reactions were incubated 

with control anti-Flag beads (beads) and beads loaded with dMi-2 or mH2a1.1 in the absence or in 

the presence of free ADPr (final concentration: 200 μM), as indicated on top. Lane 1: input (3,5%). 

Bound material was analysed by Western blot using anti-PAR antibodies. Molecular weight is 

depicted on the left. 

 

5.4.6  N-terminal domain of dMi-2 is responsible for PAR binding in vitro and   

recruitment to hsp loci in vivo 

Several protein domains, such as the macrodomain and the PBZ domain, have been shown 

to interact with poly(ADP-ribose) specifically and directly (Karras et al. 2005; Ahel et al. 

2008). However, dMi-2 lacks both of these domains. To map the dMi-2 part, which binds 

to PAR, pulldown assays with PARylated PARP1 were performed with a panel of dMi-2 

truncation mutants (Fig. 5.34 A). dMi-2 mutants were purified from SF9 baculovirus-

infected cells. All mutants were immobilized on the beads, titrated on a Coomassie stained 

SDS-Page gel and the same protein amount was used for each pulldown (Fig. 5.34 B, 

lower panel). Western blot analysis revealed strong binding of dMi-2WT, dMi-2 CD, 

dMi-2 C, dMi-2N and dMi-2(1-485) and weaker binding of the dMi-2-CD+ATPase 

mutant (Fig. 5.34 B, upper panel, lanes 3, 4, 6, 7, 9 and 10). However, the PAR binding of 

mutants lacking the N-terminal part or the isolated ATPase domain (dMi-2 N and dMi-

2ATPase), was completely abolished (Fig. 5.34 B, upper panel, lanes 5 and 8). This 
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indicates that the N-terminal region of dMi-2 has a high affinity for PAR. Within this part 

of dMi-2, both the PHD finger containing region N-terminal of the chromodomains (aa 1-

485) and (to a lesser extent) the chromodomains were independently capable of PAR 

binding. This suggests that dMi-2 possesses at least two PAR binding regions that can 

function independently from each other.  

 

Figure 5.34 N-terminal region of dMi-2 binds PAR in vitro.  

(A) Scheme of dMi-2WT and mutants used for PARP pulldown assay. PHD, PHD fingers; CD, 

chromodomains; ATPase, ATPase domain. (B) PAR was synthesised in vitro by recombinant 

PARP1 as in Fig. 5.32. Reactions were incubated with control anti-Flag beads (beads) and beads 

loaded with different dMi-2 mutants. Upper panel: Western blot analysis of PARP pulldowns 

performed with anti-PAR antibodies, as indicated. Lane 1 input (2%). dMi-2 mutants are shown on 
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top. Lower panel: Coomassie stained SDS-Page gel showing the dMi-2 constructs used, 1 μg of 

protein was loaded on each gel well.  

 

Next the fine mapping of the PAR binding regions in the N-terminus of dMi-2 was 

performed. The N-terminal region of dMi-2 contains two highly conserved domains, a pair 

of PHD fingers (residues 377 to 484) and a tandem chromodomains (residues 488 to 673). 

The PARP pulldown experiment performed with baculovirus expressed proteins (Fig. 5.34) 

suggests that chromodomains might bind PAR. However, it was not clear whether PHD 

fingers bind this polymer as well. To resolve this issue, GST-fusions containing these 

domains were generated and tested for their ability to bind PAR in dot blot assays (data not 

shown). This confirmed that the chromomodomains bind PAR independently. However, 

the PHD fingers did not display PAR binding activity. Thus, other PAR binding regions 

close to the N-terminus of dMi-2 are responsible for PAR binding.  

The N-terminal 375 residues of dMi-2 are characterized by a high content in charged 

residues (24% D/E, 21% R/K), a property that is conserved between dMi-2 and 

mammalian CHD4 proteins (Figure 5.35 A). In addition, these proteins share a region with 

high sequence similarity, the CHDNT domain (Pfam family PF08073) of unknown 

function. Several of diverse PAR binding motifs have been identified in number of 

proteins. A common feature of these motifs is that they all contain K/R rich motifs 

interspersed with residues with hydrophobic side chains (Pleschke J.M., JBC 2000, Gagne 

J.P. NAR 2008). To identify PAR binding regions, different dMi-2 fragments were 

expressed as GST-fusions, titrated and subjected to a PARP binding assay (Fig. 5.35 B). 

This analysis revealed strong PAR binding activity for three of the four K/R-rich fragments 

(K/R I, K/R III and K/R IV; Figure 5.35 B, lanes 10, 13 and 15). By contrast, K/R-rich 

fragment II and a fragment encompassing the CHDNT domain failed to interact with PAR 

(Fig. 5.35 B, lanes 6 and 12).  

Altogether, these results suggest that dMi-2 contains multiple PAR binding regions in its 

N-terminus: three are characterised by a high content of basic amino acid residues (K/R I, 

K/R III and K/R IV) and one region containing the tandem chromodomains.  
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Figure 5.35 PAR binding regions of dMi-2.  
(A) Multiple sequence alignment of N-terminus of dMi-2 and human and mouse CHD4. All K and 

R amino acid residues are coloured in red. Red lines indicate the four K/R rich regions. The black 

line indicates the CHDNT domain. (B) Mapping of PAR binding regions in the N-terminal part of 

dMi-2. Upper panel: Schematic representation of dMi-2 constructs used. Numbers indicate the 

amino acid borders of the constructs. (+) and (-) indicate binding to PAR. Middle panel: Coomassie 

stained SDS-Page gels with purified GST-dMi-2 fragments used for PARP pulldown assays.  

Lower panel: PAR binding assays with GST-dMi-2 fragments were performed as in Figure 5.34. 

Bound material was analysed by anti-PAR Western blot. Lanes 1 and 8: inputs.  

 

As in vitro binding analysis revealed that the N-terminal region of dMi-2 contains several 

regions important for PAR binding, it was plausible that this part plays also a role in dMi-2 

recruitment to heat shock genes in vivo. If this is the case, the dMi-2 mutant lacking the 

entire N-terminus should not be recruited to heat shock puffs. To monitor dMi-2 binding to 

heat shock loci in vivo, transgenic fly lines carried GFP-tagged dMi-2WT and dMi-2 N 

variant were generated. As the predicted nuclear localization signal of dMi-2 localizes to 

the N-terminal part of the protein, to assure correct nuclear localization of the dMi-2 N 

mutant, a GFP tag with an independent NLS was utilized. GFP fluorescence in the whole 

salivary glands confirmed proper nuclear localization of both constructs (Fig. 5.36, lower 

left panel). In addition, Western blot analysis of whole cell extracts from larval brains 

confirmed equal expression of both proteins (Fig. 5.36 lower right panel).  

 

Figure 5.36 Verification of transgene expression in GFP-dMi-2WT and GFP-dMi-2 N flies 
Upper panel: Scheme of GFP-tagged dMi-2 variants used for transgenic flies generation. PHD, 

PHD fingers; CD, chromodomains; ATPase, ATPase domain. Lower panel, left: GFP fluorescence 

in whole salivary glands in GFP-dMi-2WT and GFP-dMi-2 N expressing flies. To induce 
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transgene expression, flies were crossed with a salivary gland specific Gal4-driver, 58AB-Gal4. 

Lower panel,  right: verification of dMi-2 transgene expression in larvae. Control flies and flies 

carrying a GFP-dMi-2WT and GFP-dMi-2 N transgenes were crossed with a da-GAL4 driver 

strain. Whole cell larval brain extract were subjected to Western blot analysis with anti-GFP 

antibodies, as indicated. 

 

To assess the localization of GFP-tagged dMi-2 transgenes on polytene chromosomes, a 

58ABGal4-driver, which specifically drives transgene expression in salivary glands, was 

used. Polytene chromosomes were isolated upon heat shock and the localization of dMi-

2WT and dMi-2 N was monitored by indirect immunofluorescence with anti-GFP 

antibody. The staining revealed a strong signal for GFP-dMi-2WT on heat shock puffs, 

which suggests that the tagged, full length protein is recruited correctly to the hsp70 loci. 

By contrast, the N-terminal mutant failed to stain the hsp70 puffs (Fig. 5.37). This result 

demonstrates that the PAR binding, N-terminal part of dMi-2 is important for the 

remodeler recruitment to heat shock genes in vivo. Interestingly, dMi-2 mutant with 

internal deletion of chromodomains was still binding to the heat shock loci (data not 

shown). This indicates that the region containing chromodomains is dispensable or 

redundant with the N-terminal (1-485 aa) region for the recruitment of dMi-2 to activated 

heat shock genes. Altogether, these results support the notion that dMi-2 binding to PAR 

makes an important contribution to the recruitment of this chromatin remodeler to stress-

activated hsp70 genes. 

 

Figure 5.37 N-terminal region of dMi-2 is essential for dMi-2 recruitment to hsp70 loci 

Polytene chromosomes from transgenic larvae expressing GFP-dMi-2 transgenes (dMi-2WT and 

dMi-2 N) were analysed by immunofluorescence using anti-GFP antibody (green) and DAPI 

(grey). To induce transgene expression, flies were crossed with a salivary gland specific 58AB-

Gal4 driver. 3
rd

 instar larvae were heat shocked at 37 C for 20 min before squash preparation. 
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Pictures show magnified chromosome sections with the hsp70 87A and 87C loci indicated by 

arrows. 

 

5.4.7  Comparison of dMi-2 binding to PAR and nucleic acids 

dMi-2 recruitment to hsp70 loci by interaction with  PAR and its subsequent binding to 

RNA of heat shock genes, suggests that dMi-2 switches binding from negatively charged 

PAR polymer to nascent RNA, once it is recruited to the activated genes. This also 

suggests that dMi-2 should possess different affinities to different nucleic acids and the 

PAR polymer. To gain insight into the relative affinities of dMi-2 for DNA, RNA and 

PAR, and to determine if dMi-2 can bind to several types of nucleic acid simultaneously or 

if binding is competitive, several competition assays have been performed. First, dMi-2 

binding to RNA and DNA was tested in the presence of increasing amounts of PAR (mass 

ratios 1:1, 1:2 and 1:4) in electrophoretic mobility shift assays (Fig. 5.38 A). In this assay, 

PAR was able to compete with RNA and DNA for dMi-2 binding. However, whereas dMi-

2 no longer bound to DNA at a DNA:PAR mass ratio of 1:2, residual dMi-2/RNA 

complexes were still detectable at an RNA:PAR mass ratio of 1:4. This suggests that dMi-

2 has a higher binding affinity for RNA than for DNA. To test his hypothesis, dMi-2 was 

incubated with different mass ratios of RNA and DNA (Fig. 5.38 B). This experiment 

showed that, at a DNA:RNA mass ratio of 1:1, dMi-2/RNA complexes formed readily but 

dMi-2/DNA complexes were not detected (Fig. 5.38 B, left and right panel, line 3). 

Moreover, dMi-2/RNA complexes formed even at DNA:RNA mass ratios of 4:1, while 

dMi-2/DNA complexes were still not detected (Fig. 5.38 B, left panel, line 5).  

To test if RNA or DNA can compete with dMi-2 for binding to the PAR polymer, a dot 

blot assay was performed. dMi-2 was preincubated with increasing amount of RNA or 

DNA, followed by incubation with PAR. In this system, RNA competed with immobilised 

PAR for binding to dMi-2 whereas DNA failed to do so (data not shown). 

Taken together, the competition assays suggest that dMi-2 has a higher affinity for binding 

to RNA and PAR than for binding to DNA. In addition, dMi-2 appears to bind RNA and 

PAR in a mutually exclusive manner. Thus, these results are consistent with the hypothesis 

that dMi-2 is first recruited to HS loci by interaction with PAR (which is produced prior to 

and independent of transcription) and, once RNA synthesis has been strongly activated, the 

remodeler switches to binding the nascent RNA. 
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Figure 5.38 dMi-2 binding to PAR, RNA and DNA  

 (A) Competition mobility shift assays. Left panel: 80 ng of single stranded hsp70 RNA was 

incubated with 0,2 g of recombinant dMi-2 in the absence or in the presence of increasing 

amounts of PAR polymer, as indicated. Right panel:  80 ng of hsp70 DNA was incubated with 0,2 

g of recombinant dMi-2 in the absence or in the presence of increasing amounts of PAR polymer, 

as indicated. The following mass ratios of RNA to PAR or DNA to PAR were used: lane 3 - 1:1, 

lane 4 -1:2, lane 5 -1:4. Positions of unbound RNA and DNA probes are indicated on the left. 

(B) Left panel: 80 ng of single stranded hsp70 RNA was incubated with 0,2 g of recombinant 

dMi-2 in the absence or in the presence of increasing amounts of DNA, as indicated. Right panel: 

80 ng of hsp70 DNA was incubated with 0,2 g of recombinant dMi-2 in the absence or in the 

presence of increasing amounts of RNA, as indicated. The following weight ratios of RNA to DNA 

or DNA to RNA were used: line 3 - 1:1, lane 4 -1:2, lane 5 -1:4. Positions of unbound RNA and 

DNA probes and dMi-2/DNA and dMi-2/RNA complexes are shown on the right. 

 

A 

B 
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6.  Discussion 

This doctoral thesis consists of two major parts. In the first part, a novel CHD chromatin 

remodeler, dCHD3 has been characterized biochemically and functionally. These results 

contribute to the current knowledge of ATP-dependent chromatin remodeling by the CHD 

family of remodelers. In the second part, a role of dMi-2 in active heat shock gene 

expression and its recruitment mechanism therein have been investigated. The results from 

this part revealed a novel function of this remodeler in transcription and the recruitment 

mechanism of dMi-2 to a set of inducible genes. These results constitute foundations to 

study dMi-2 in a broader context of active transcription.   

 

6.1  dCHD3 is a novel nucleosome stimulated ATPase 

dCHD3 is the only member of the CHD family in Drosophila which has not been studied 

to date. Phylogenetic analysis of the dChd3 gene has revealed that it is present not in all 

Drosophila species but only in the D. melanogaster subgroup (Fig. 5.1). The similarity to 

dMi-2 suggests that the dChd3 gene originated from integration of a truncated, reverse-

transcribed dMi-2 mRNA. This hypothesis is supported by the fact that the dCHD3 gene 

lacks introns.  

In order to characterize dCHD3, I have cloned it and studied enzymatic activities of the 

recombinant protein. These experiments showed that, similarly to dMi-2, dCHD3 is a 

nucleosome stimulated ATPase and it does not require histone tails for this activity (Fig. 

5.2 and Fig. 5.3). Nucleosome stimulation of dCHD3 activity is shared by other members 

of CHD family, such as Mi-2 and CHD1. Remodelers belonging to the same family may 

differ in the ATPase activation. This might be the consequence of differences in their 

substrate recognition, domain structure or the presence of other subunits in the complex. 

For instance, it has been shown that yeast Chd1 requires the H4 tail for efficient ATPase 

activation, whereas removal of histone tails has no effect on dCHD3 and dMi-2 ATPase 

activity (Fig. 5.3) (Brehm et al. 2000; Ferreira et al. 2007). In this regard, partial activation 

of dCHD3 by naked DNA seems to be a specific feature of this remodeler (Fig. 5.2). 

Interestingly, it has been demonstrated that a dMi-2 mutant lacking the entire C-terminal 

domain is stimulated by free DNA as well as by nucleosomes (Bouazoune et al. 2002). 

This suggests that the C-terminal domain of dMi-2 might play a regulatory role in the 

ATPase activity by defining substrate recognition. As dCHD3 lacks most of the C-terminal 
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domain, consequently it becomes more prone for activation by free DNA. The C-terminal 

domain of dMi-2 and to a lesser extent, dCHD3, might inhibit stimulation of the ATPase 

activity in the presence of the wrong substrate. In agreement with this, removal of the last 

92 aa from dCHD3 activates its ATPase even more in the presence of DNA without 

changing its DNA and nucleosome binding (Fig. 5.8). These results are reminiscent of the 

studies on yChd1 which have revealed that yChd1 tandem chromodomains inhibit 

activation of this remodeler by DNA (Hauk et al. 2010). Crystallographic studies showed 

that this is due to a special positioning of chromodomains which block the ATPase domain 

in the absence of nucleosomes (chapter 2.3.3.1) (Hauk et al. 2010). Hence, it is plausible 

that the C-terminus of dCHD3 and especially of dMi-2 acquires a similar position. 

Crystallographic studies will be required to test this hypothesis.  

 

6.2  Substrate binding and nucleosome remodeling by dCHD3 

dCHD3 binds both nucleosomes and DNA in vitro and its chromodomains are important 

for this (Fig. 5.8). In contrast to dMi-2, dCHD3 creates up to four products on the gel in 

nucleosome and DNA binding assays (Fig. 5.4). This indicates that more than one dCHD3 

molecule is binding to these substrates and could be due to more than one binding sites on 

the substrates. However, this also suggests a possibility of a cooperative binding of dCHD3 

to the substrates. Indeed, it has been demonstrated that some helicases dimerize on DNA 

substrate (Maluf et al. 2003a; Maluf et al. 2003b). Moreover, it has been shown recently, 

that ACF dimerizes upon nucleosome binding and works as a dimeric ATPase (Racki et al. 

2009). It would be interesting to test whether the same applies to dCHD3. Interestingly, 

truncated dMi-2 mutants also generate several products in band shift assays and this 

requires the presence of chromodomains (Bouazoune et al. 2002). Thus, it is plausible that 

chromodomains of dMi-2 and dCHD3 might play a role in cooperative binding to the 

substrate.  

It has been shown previously, that dMi-2 binds to mononucleosomes assembled on 146 bp 

and 248 bp DNA fragments, which indicates that it does not require flanking DNA for 

binding (Brehm et al. 2000). In the experiments made in the course of this thesis, 

mononucleosomes assembled on 200 bp DNA fragments containing a positioning sequence 

have been used. Thus, it cannot be excluded that dCHD3 needs free DNA ends for 

nucleosome binding. However, one result speaks against this. dCHD3 remodels both end 
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positioned and middle positioned nucleosomes equally well (Fig. 5.5). This suggests that 

dCHD3 does not require free DNA on both sides of the nucleosome and it is plausible that 

dCHD3 acts primarily through contacts with the nucleosomal DNA.  

Mononucleosome mobilization assays have revealed that dCHD3 is a potent nucleosome 

remodeling enzyme. In the remodeling reactions used in these studies, both dMi-2 and 

dCHD3 mobilize end- and middle-positioned mononucleosomes (Fig. 5.5 and Fig. 6.1). 

This is in contrast to previous studies on dMi-2 which showed that it remodels 

preferentially nucleosomes from the end to the middle (Brehm et al. 2000). This 

discrepancy may come from different DNA fragments used for mononucleosome 

assembly. In the studies mentioned above, a 248 bp mouse 5S rDNA promoter was used 

for nucleosome assembly, whereas in the assay used in this thesis, a 200 bp DNA fragment 

containing a high nucleosome affinity „601‟ positioning sequence was utilized (Lowary 

and Widom 1998). Indeed, it has been demonstrated that DNA sequence might determine 

the nucleosome translocation direction and controls nucleosome destination. For instance, 

the nucleosome positions after enzymatic remodeling have been changed by inserting 

DNA fragments into the „601‟ positioning element (van Vugt et al. 2009). This 

demonstrates that direction preference is not an invariant property of the remodeling 

machine but is influenced by the underlying DNA sequence (Murawska et al. 2008). 

dCHD3, similarly to dMi-2, moves end positioned mononucleosomes to the middle (Fig. 

5.5).  However, lower concentrations of dCHD3 than dMi-2 are required to show a 

nucleosome mobilization effect, which suggests that dCHD3 is more active remodeler than 

dMi-2 in vitro. It would be interesting to make more quantitative ATPase assays in order to 

determine and compare the enzymatic parameters of dMi-2 and dCHD3. 

Strikingly, dCHD3 seems to differ from dMi-2 when middle positioned nucleosomes are 

used as a substrate. In this reaction, free DNA accumulates which likely reflects 

nucleosome disassembly. Moreover, dCHD3 generates a nucleosome product that migrates 

quicker than the end-positioned nucleosome (Fig. 5.5, lower panel). This reflects probably 

the movement of the histone octamer beyond the DNA ends, a phenomenon previously 

observed for SWI/SNF remodeling complexes (Jaskelioff et al. 2000; Flaus and Owen-

Hughes 2003; Kassabov et al. 2003; Fan et al. 2005; Gutiérrez et al. 2007). It has been 

demonstrated that sliding beyond the DNA ends on mononucleosome templates leads to 

nucleosome destabilization and histone displacement (Flaus and Owen-Hughes 2003). The 

kinetics of the mobilization reaction by dCHD3 are in agreement with this view as 
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mobilized nucleosomes are produced within five seconds, whereas free DNA becomes 

detectable only after 10 min, when most nucleosomes have already been relocalized (Fig. 

5.6).  

However, this result also raises the question, whether dCHD3 is capable of nucleosome 

disassembly. This activity has been described for the SWI/SNF and RSC complexes and it 

has been suggested that the nucleosome disassembly is accompanied by histone octamer 

transfer to DNA in trans. Interestingly, the RSC complex cooperates with histone 

chaperone Nap1 for this activity, whereas the SWI/SNF complex needs the activation 

domain of a transcription factor (Lorch et al. 1999; Gutiérrez et al. 2007). In the case of 

SWI/SNF the presence of an oligonucleosome probe is required for mononucleosome 

dissociation, suggesting that evicted histones are transferred in trans to this 

oligonucleosome probe (Walter et al. 1995; Owen-Hughes and Workman 1996; Gutiérrez 

et al. 2007). In fact, in the remodeling experiments used in this thesis, in addition to the 

mononucleosomes, a nucleosomal array derived from the plasmid backbone is still present 

(Fig. 3.3). In order to test whether observed nucleosome disassembly in dCHD3 reaction 

requires histone octamer transfer, the remodeling assay should be performed in the 

presence of mononucleosomes only. The plasmid backbone should be therefore removed 

before mononucleosome assembly is set up.  

There is also another possibility of nucleosome disassembly. The generation of a quicker 

migrating nucleosomal particle by movement of the histone octamer beyond the DNA 

ends, potentially creates an opportunity to disassemble nucleosome by invading the region 

of DNA inhabited by a neighbor nucleosome. Indeed, such mechanism of nucleosome 

disassembly has been suggested (Engeholm et al. 2009). To address this question a di- or 

trinucleosome templates should be utilized for the remodeling reaction.  Recently, a 

quantitative double-label technique has been used to demonstrate the nucleosome 

disassembly reaction by SWI/SNF from di- and trinucleosomes (Dechassa et al. 2010). 

Using this method, it has been shown that SWI/SNF remodels the nucleosome and 

translocates in one direction along the DNA. Upon encountering the downstream 

nucleosome, an H2A dimer is first displaced, followed by eviction of the entire 

neighboring nucleosome from the DNA template. Notably, in this experimental set up, 

histone displacement occurs in the absence of histone chaperones or naked DNA as 

acceptors (Dechassa et al. 2010). In the light of these experiments, in order to figure out 
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whether dCHD3 activity can disassemble nucleosomes, more elaborate experimental 

approaches than mononucleosome mobility assays, are needed.  

Noteworthy, free DNA accumulation in the remodeling reaction was previously observed 

also for dMi-2, but only when it was added in huge excess to the end positioned 

mononucleosomes (Bouazoune and Brehm 2005). The nucleosome destabilization was 

more pronounce upon dMi-2 dephosphorylation and it has been suggested that dMi-2 

phosphorylation by the CK2 kinase plays a role in regulation of dMi-2 enzymatic activity 

(Bouazoune et al. 2002; Bouazoune and Brehm 2005). Thus it is plausible, that also dMi-2 

possesses nucleosome dissociation activity under certain conditions.  

In addition to mononucleosome mobilization assays, the ability of recombinant dCHD3 

and dMi-2 to remodel polynucleosomal substrates in vitro followed by restriction enzyme 

digestion has been tested (data not shown). Both remodelers increased the accessibility of 

nucleosomal restriction sites. Interestingly, this effect was observed when the restriction 

enzyme was present during the remodeling reaction as well as when it was added after 

remodeling took place. This result demonstrates that both factors can create stably 

remodeled polynucleosomes in vitro (Murawska et al. 2008).  

 

Figure 6.1 Model of mononucleosome remodeling by dCHD3 

End positioned or middle positioned nucleosome substrate is depicted on the left and the 

remodeling products are depicted on the right. Grey oval represents histone octamer, red line 

indicates „601‟ positioning sequence, black line indicates flanking DNA, green oval represents 

dCHD3. Dashed arrow points towards nucleosome disassembly which can occur either by passive 
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destabilization caused by the movement of the histone octamer beyond the DNA ends or 

alternatively dCHD3 can evict nucleosomes in the course of the remodeling reaction (see text for 

details).  

 

6.3  Chromodomains of dCHD3 as DNA binding modules 

Studies on dCHD3 truncation mutants have revealed that the chromodomains of dCHD3 

are critical for the ATP-dependent nucleosome mobilization. Removal of the part 

containing chromodomains and PHD finger, impairs the nucleosome remodeling, as well 

as nucleosome and DNA binding of dCHD3 (Fig. 5.8 and 5.9).  By contrast, removal of 

PHD finger has no effect on substrate binding and remodeling by dCHD3 (Fig. 5.8 and 

5.9). These results suggest that chromodomains of dCHD3 are involved in nucleosome 

remodeling by providing an interaction surface for nucleosomal DNA. However, because 

the dCHD3 truncation mutant impaired in nucleosome mobility lacks both the PHD finger 

and chromodomains, it cannot be formally excluded that PHD finger and chromodomains 

of dCHD3 carry out redundant functions. To address this issue, a mutant with an internal 

deletion of chromodomains should be tested for nucleosome remodeling activity. 

Nevertheless, the findings that chromodomains are involved in nucleosome remodeling are 

in agreement with the results previously reported for the chromodomains of dMi-2 

(Bouazoune et al. 2002). It has been suggested that the dMi-2 chromodomains mediate the 

interaction between the enzyme and its nucleosomal DNA and thus they function at an 

early step of the chromatin remodeling reaction. Hence, it is plausible that chromodomains 

of both dMi-2 and dCHD3 have evolved as DNA rather than modified histone binding 

modules. Based on sequence differences between chromodomains of CHD3/CHD4 and 

CHD1, it has been suggested that CHD3/CHD4-type chromodomains do not bind 

methylated histone tails (Okuda et al. 2007). Indeed, histone peptide pulldowns as well as 

histone peptide arrays performed in our laboratory with dMi-2 chromodomains have not 

identified any specific histone modification to which these chromodomains bind (P. 

Steffen, diploma thesis, and this study, unpublished data). However, it still remains 

possible that a specific tail modification not tested so far is recognized by chromodomains 

or PHD fingers of these chromatin remodelers. 
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6.4  dCHD3 and dMi-2 differ in vivo 

Despite a significant sequence similarity between dCHD3 and dMi-2, in vivo analysis 

revealed that both factors differ from each other significantly. Whereas dMi-2 is present 

throughout embryogenesis, dCHD3 is strongly detected in early embryos and then dCHD3 

levels decrease until it becomes undetectable at late embryo stages (Fig. 5.10 A). 

Differences are also observed in adult flies, as dMi-2 is detected in both male and female 

animals, whereas dCHD3 is detected only in female flies. However, it cannot be excluded 

that due to the Western blot detection limitations, dCHD3 expression in the tested 

developmental stages is underestimated. Indeed, although there is no dCHD3 detected at 

larval stages by Western blot, dCHD3 is clearly detectable in salivary glands of 3
rd

 instar 

larvae with indirect immunofluorescence (Fig. 5.15). In addition, dCHD3 seems to be at 

least five times less abundant in cells than dMi-2 as revealed by quantitative Western blot 

(M. Groh, data not shown). This strongly suggests that the level and expression of dCHD3 

are restricted to early developmental stages and perhaps certain tissues at later stages of 

development. Thus, dCHD3 might play specific roles on chromatin rather than be involved 

in global chromatin remodeling or maintenance.  

Apart from expression and abundance differences, dCHD3 differs from dMi-2 significantly 

with respect to interactions with other proteins. It does not interact with histone deacetylase 

dRPD3 or dMep1 (Fig. 5.12 and data no shown) which makes it unlikely to be a 

component of the dNuRD or dMec-like complexes. Moreover, in contrast to most known 

chromatin remodelers, dCHD3 does not form a stable multiprotein complex in vivo but it 

rather exists as a monomer in cells and embryos (Fig. 5.13). Thus, dCHD3 resembles S. 

cerevisiae or D. melanogaster CHD1 which were also shown to predominantly exist as 

monomers (Tran et al. 2000; Lusser et al. 2005). This finding does not exclude the 

possibility that dCHD3 forms transient interactions with other factors or that it is a part of 

larger complexes at later developmental stages. To test this possibility, it would be 

interesting to perform immunopurification of dCHD3 from cells and different 

developmentally staged extracts and try to identify the interacting proteins by Mass 

Spectrometry.  

Another striking difference between dCHD3 and dMi-2 concerns their requirement for cell 

viability. The depletion of dMi-2 has a significant effect on cell growth and viability, 

suggesting that dMi-2 is essential for cell survival (Fig. 5.14 B). In line with this, dMi-2-
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deficient flies are generally nonviable and die during larval stages (Kehle et al. 1998). 

Their survival to larval stage is probably due to the maternal contribution of dMi-2. Indeed, 

Western blot analysis and indirect immunofluorescence show a high level of dMi-2 protein 

in embryos prior to the onset of zygotic transcription (Fig. 5.10 and 5.11). By contrast, the 

depletion of dCHD3 has no significant effect on cell growth and viability. This is in 

agreement with a recent report on dCHD3 mutant flies which has shown that dCHD3 is not 

essential for adult fly viability and fertility (Cooper et al. 2010). These results also suggest 

that dCHD3 and dMi-2 are not fully redundant and that dCHD3 is not able to compensate 

for the loss of dMi-2.  

Further evidence for in vivo differences between dCHD3 and dMi-2 comes from 

overexpression studies in flies (data not shown). Overexpression of a catalytically inactive 

mutant of dMi-2 impairs larvae development as they arrest as 3
rd

 instar larvae and fail to 

develop further to the pupal stage. This phenotype is similar to the dMi-2 null mutant flies 

suggesting that ectopic expression of catalytically inactive mutant of dMi-2 efficiently 

replaces the endogenous enzyme and results in a dominant-negative phenotype.  

Overexpression of a catalytically inactive mutant of dCHD3 in whole animals has no 

apparent effect on their survival or development. Remarkably, overexpression of wild type 

dCHD3 with the same Gal4 driver causes lethality at the first and second instar larvae 

stage. This phenotype could result from the overexpression effect of dCHD3. It has been 

shown that high overexpression of certain proteins causes lethality. For instance, 

overexpression of CP190, a component of chromatin insulator complexes, leads to lethality 

and severe developmental defects. It has been demonstated that this is due to high 

expression levels obtained with UAS Gal4 system. Decreasing expression levels of CP190 

by using the Ubi-63E promoter, which can drive the expression of transgenes in many 

tissues at low levels, allowed to avoid the lethality problems (Akbari et al. 2009). 

Therefore, it might be necessary to change the expression system of dCHD3 transgene in 

order to prevent dCHD3 overexpression. However, expression levels of wild type and 

mutant dCHD3 are comparable due to the same chromosome integration site of the two 

transgenes. This strongly suggests that the phenotypes observed in wild type dCHD3 

expressing animals cannot be explained solely by protein levels but they rather depend on 

the catalytic activity of the enzyme. Given that the dCHD3 abundance is very low in 

comparison to dMi-2, and given that dCHD3 is a more active remodeler than dMi-2 in 

vitro, it is plausible that dCHD3 has to be kept at low levels in order to prevent undesirable 
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chromatin alterations. To test this hypothesis, a polytene chromosome structure analysis in 

a transgenic line overexpressing dCHD3 to tolerable levels, could be performed.    

Finally, there is also evidence that dCHD3 and dMi-2 could be regulated in a different 

way. It has been shown that dMi-2 is constitutively phosphorylated in vivo by dCK2. 

Dephosphorylation of recombinant dMi-2 plays a regulatory role as it increases its affinity 

for the nucleosomes, nucleosome-stimulated ATPase, and ATP-dependent nucleosome 

mobilization activities (Bouazoune and Brehm 2005). In vitro kinase experiment 

performed with SL2 whole cell extracts has revealed that in contrast to dMi-2, dCHD3 is 

not phosphorylated in vitro (data not shown). Although several phosphorylation sites are 

predicted in the dCHD3 sequence, dCHD3 lacks the N-terminal domain which is the main 

part of dMi-2 that is phosphorylated in vivo. This result suggests that phosphorylation by 

dCK2 is not a common regulatory mechanism for CHD chromatin remodelers. It is 

plausible that phosphorylation might play a role in a tight control of ATPase activity 

regulation of highly expressed remodelers. In this regard, a constitutive phosphorylation of 

an abundant dMi-2 would ensure its proper activity at its genomic targets, whereas much 

less abundant dCHD3 might not need to be regulated by phosphorylation. It is possible that 

dCHD3 is phosphorylated only under certain conditions or at specific cell cycle stages. It 

also remains to be determined if and how dCHD3 activity is regulated in vivo.   

 

6.5  dCHD3 associates with mitotic chromosomes 

Indirect immunofluorescence on Drosophila embryos has revealed that dCHD3 associates 

with condensed chromosomes in mitotic nuclei whereas dMi-2 displays a more diffuse 

nuclear staining (Fig. 5.11). Binding of dCHD3 to mitotic chromosomes is unusual as 

many transcription factors, RNAP II, histone modifying enzymes and cofactors are 

displaced from chromosomes at the onset of mitosis (reviewed in (Zaidi et al. 2010)). The 

proteins that remain associated with mitotic chromosomes include chromosome scaffold 

proteins (Hagstrom and Meyer 2003), the chromosomal passenger proteins (Adams et al. 

2001), nuclear matrix proteins (Bérubé et al. 2000) and components of the basal 

transcription machinery (Michelotti et al. 1997; Chen et al. 2002; Christova and 

Oelgeschläger 2002). Proteins associated with mitotic chromosomes are thought to be 

either structural components of condensed chromosomes or they mark genes for specific 

gene expression pattern reestablishment upon mitosis exit. Therefore any potential dCHD3 
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function on mitotic chromosomes has to be further investigated. It would be important to 

determine the exact localization of dCHD3 at different stages of mitosis. For this, one 

could express GFP-tagged dCHD3 in Drosophila SL2 cells and analyse its chromosomal 

distribution by confocal microscopy. This approach has been used before to determine 

protein distribution during cell cycle in Drosophila cells (Clarke et al. 2005). In addition, it 

is important to confirm the staining with antibodies against endogenous dCHD3 with 

second independent antibodies to exclude any immunofluorescence staining artefacts.  

What could be the function of an ATP-dependent chromatin remodeler in mitosis? Some 

chromatin remodelers, as human Brahma and BRG1, are excluded from mitotic 

chromosomes due to their phosphorylation. It has been suggested that this contributes to 

mitotic silencing (Muchardt et al. 1996). Not much is known about functions of chromatin 

remodelers during mitosis. For instance, ATRX, a human SWI/SNF remodeler, is enriched 

at condensed chromosomes during mitosis and plays a role in chromosome cohesion and 

segregation (Bérubé et al. 2000; Ritchie et al. 2008). A recent study on the ISWI remodeler 

has revealed its role in spindle microtubule stabilization during anaphase in Xenopus and 

Drosophila (Yokoyama et al. 2009). Thus, chromatin remodelers can have transcription 

independent functions during mitosis and contribute to proper chromosome segregation. 

Whether similar functions are acquired by dCHD3 remains to be determined.  

A second interesting possibility is an involvement of dCHD3 in gene bookmarking during 

mitosis. It has been demonstrated that promoters of genes, which expression has to be 

inherited in daughter cells upon cell division, are bound by specific transcription factors 

during mitosis (Zaidi et al. 2010). This includes Myc and Hsp70i promoters, promoters of 

genes involved in cell growth or lineage commitment (Martínez-Balbás et al. 1995; 

Michelotti et al. 1997; Xin et al. 2007). Moreover, a recent genome wide study on human 

mitotic chromosomes has shown a mitotic shift of histone H2A.Z containing +1 

nucleosome of active genes, resulting in the nucleosome occupancy at transcription start 

sites (Kelly et al. 2010). It remains to be determined whether a similar gene marking 

mechanism occurs in Drosophila. Nevertheless, it is tempting to speculate that ATP-

dependent chromatin remodeling activities might be involved in regulation of this 

nucleosome shift. Thus, dCHD3 could be a candidate remodeler for gene bookmarking 

during mitosis.   
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6.6  Potential role of dCHD3 in transcription 

Despite all the differences between dCHD3 and dMi-2, strikingly, they stain the same 

regions on polytene chromosomes of 3
rd

 instar larvae (Fig. 5.15). The test for antibody 

specificity (Fig. 3.1) clearly showed that the antibodies against dCHD3 and dMi-2 do not 

cross-react which gives a strong indication that the observed staining pattern is specific for 

dCHD3. However, to exclude any cross-reactivity within the cell, one should use different 

antibodies against dCHD3 or ectopically express a tagged-version of dCHD3 at a very low 

level in order to observe the chromosomal binding sites of this remodeler.  

The identical binding pattern of dCHD3 and dMi-2 suggests a common recruitment 

mechanism for both factors. Several targeting mechanisms have been proposed before for 

dMi-2. First, dMi-2 binds to DNA bound transcriptional repressors via a C-terminal 

domain (Kehle et al. 1998; Murawsky et al. 2001; Reddy et al. 2010). Second, dNuRD 

complexes could be guided to regions of methylated DNA via MBD-domain-containing 

subunits (Marhold et al. 2004b). However, the targeting mechanisms that have been 

proposed for dMi-2 do not seem to be applicable to dCHD3 as it lacks the C-terminal 

domain and does not interact with subunits of the dNuRD complex. Given that dCHD3 

binds to interbands and given that it colocalizes with dMi-2, it most likely similarly to 

dMi-2, also localizes with actively transcribed genes (Fig. 5.16 and data not shown). This 

raises the possibility that dCHD3 could be recruited to active genes via binding to the 

transcription machinery. Indeed, coimmunoprecipitation experiments revealed a weak but 

significant association of dCHD3 with hypophosphorylated RNAP II (data not shown). 

Whether this interaction plays a role in recruitment mechanism, remains to be determined. 

Polytene chromosome staining upon heat shock has also revealed a strong recruitment of 

dCHD3 to hsp70 loci (data not shown). However, no recruitment has been observed when 

the same antibodies have been used for ChIP (data not shown). By contrast, ChIP with 

polyclonal antibodies against dCHD3 has shown a promoter-associated peak which 

disappeared upon heat shock and no recruitment to the transcribed region of hsp70 gene. 

Due to these discrepancies between immunofluorescence staining and ChIP analysis, to 

determine, if dCHD3 indeed is recruited to heat shock genes, it would be necessary to 

generate new polyclonal antibodies. Analysis of dCHD3´s role in hsp70 gene transcription 

has been also performed. dCHD3 knockdown in flies had no effect on heat shock gene 

transcription (data not shown). However, it cannot be excluded that this is due to the 
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inefficient depletion of dCHD3 from larvae. Altogether, although polytene chromosome 

staining suggests a role of dCHD3 in active gene transcription, it is too early at this point to 

speculate on its possible functions therein. One possibility to address this question would 

be to perform transcriptome analysis upon dCHD3 knockdown or genome wide ChIP 

analysis in order to determine dCHD3 binding sites and correlate them to RNAP II 

binding, transcription factors and histone marks associated with transcription. In order to 

do this it would be necessary to generate new, ChIP grade antibodies for dCHD3.   

 

6.7  dCHD3 – perspectives and further experiments 

The lack of any obvious phenotype upon dCHD3 knockdown in cells, dCHD3 deletion or 

overexpression of catalytically inactive mutant in flies, suggests that perhaps this 

remodeler is specialized for very specific functions and further detailed analysis of these 

mutants will be required. One possibility would be to study dCHD3 using the eye as a 

model organ. The fly eye provides a useful system for studying cell proliferation and 

differentiation, cell cycle progression and it is dispensable for viability (Huang et al. 1999; 

Hirose et al. 2001). An eye-specific GMR-Gal4 driver induces transgene expression in the 

eye imaginal disc in differentiated cells. Interestingly, overexpression of dCHD3 wild type 

but not the catalytic mutant with this driver causes a rough eye phenotype (data not 

shown). This suggests that cells overexpressing dCHD3 undergo apoptosis. To test 

whether the rough eye phenotype is caused by cell apoptosis, it would be necessary to 

suppress this phenotype by coexpressing a baculovirus protein p35 or DIAP1 (p35 

homolog in Drosophila). These proteins are caspase inhibitors, thus their overexpression 

blocks apoptosis. This strategy is commonly used to demonstrate apoptosis in the 

differentiated cells of the eye (Hirose et al. 2001). In addition, staining with acridine 

orange for apoptotic cells in the eye discs should also indicate whether the cells 

overexpressing dCHD3 undergo apoptosis. These experiments should clarify any potential 

link of dCHD3 to apoptosis. 

Overexpression of dCHD3 with the ey-Gal4 driver, which first induces transgene 

expression in the eye and antenna anlagen in the embryo and then in proliferating cells in 

the eye imaginal disc, causes severe abnormalities, for instance: lack of eye or the whole 

head, antenna-like structures, ectopic antennas (data not shown). Similar phenotypes have 

been observed with ectopic eye expression of dACF1, a subunit of the ISWI complex 
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(Chioda et al. 2010). The defects in eye morphogenesis upon ectopic expression of dCHD3 

might be caused by an altered cell cycle progression. To test this, a number of experiments 

should be performed. For instance, cell cycle could be observed by monitoring S-phase 

progression by BrdU incorporation in imaginal discs of larvae overexpressing dCHD3.   

Finally, the presence of rough eye phenotype upon dCHD3 overexpression in the eye by 

the GMR-Gal4 driver, allows to design a genetic screen for enhancers or suppressors of 

this phenotype and thus, to identify factors which genetically interact with dCHD3. This 

approach has been used extensively to identify downstream transcriptional targets or 

potential factor binding partners for number of proteins (Therrien et al. 2000; Hirose et al. 

2001; Park and Song 2008). Hence, this approach might shed light on in vivo functions of 

dCHD3.  

 

6.8  dMi-2 in active transcription 

Mi-2 is strongly linked to transcriptional repression in both vertebrate and invertebrate 

organisms (chapter 2.5.4.1). Many reports have shown that it contributes to the repression 

of lineage-specific genes as a subunit of the NuRD or dMec complexes (Kim et al. 1999; 

Fujita et al. 2004; Kunert et al. 2009; Reddy et al. 2010). Thus, significant colocalization of 

dMi-2 with active forms of RNAP II and elongation factors on polytene chromosomes 

(Fig. 5.16) is surprising and suggests that dMi-2 might be involved in active transcription. 

Indeed, several studies have implicated Mi-2 in gene activation before. First, Mi-2  

contributes to the CD4 gene expression via recruitment of transcription factor HEB and 

histone acetyltransferase p300 to the gene enhancer element during T-cell development 

(Naito et al. 2007). Second, NuRD is present at active FOG-1-regulated genes in erythroid 

cells and is directly required for transcriptional activation of GATA-1/FOG-1-dependent 

genes (Gregory et al. 2010). Third, Mi-2α enhances c-Myb-dependent reporter activation 

in a helicase-independent fashion (Saether et al. 2007). Finally, one report has suggested 

that Mi-2  is involved in rDNA activation in the nucleolus (Shimono et al. 2005). 

Altogether these results suggest that at least in some gene contexts, Mi-2 might be 

involved in gene activation. Currently it is unclear whether activating Mi-2 exists within 

the NuRD complex or whether it is a part of different complexes. It also remains to be 

determined how Mi-2 influences gene activation.  
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The results obtained in this study clearly demonstrate that dMi-2 is involved in 

transcription of induced heat shock genes. This is the first example in Drosophila that this 

remodeler has been shown to play a role in active transcription. Several pieces of evidence 

support this hypothesis. First, dMi-2 is rapidly recruited to the hsp70 locus on polytene 

chromosomes upon heat shock (Fig. 5.17). Second, chromatin immunoprecipitation 

experiments show enrichment of dMi-2 in the transcribed regions of hsp genes upon heat 

shock (Fig. 5.20 and data not shown). Finally, both depletion and overexpression of a 

catalytically inactive mutant of dMi-2 significantly impair expression of hsp70, hsp26 and 

hsp83 (Fig. 5.22 and 5.24).     

Interestingly, SWI/SNF and ISWI remodelers seem not to be recruited to heat shock genes. 

For instance, Brahma (BRM) is not enriched at hsp70 puffs and heat shock gene activation 

is independent of BRM function (Fig. 5.18) (Armstrong et al. 2002). Notably, this differs 

from the human system, where the Brahma homolog, BRG1, is recruited to the hsp70 gene 

promoter and transcribed regions and contributes to transcription elongation of this gene 

(Corey et al. 2003). Moreover, although the Drosophila ISWI complex, dNURF, is 

important for hsp gene transcription, ISWI does not accumulate at active hsp70 loci (Fig. 

5.18) (Badenhorst et al. 2002). Conversely, recruitment to heat shock puffs has previously 

been reported for Drosophila CHD1 (Kelley et al. 1999; Morettini et al. 2011). Thus, 

association with active hsp genes is shared by at least two members of the CHD family of 

nucleosome remodelers, dMi-2 and dCHD1, but not by SWI/SNF and ISWI proteins.  

It has to be mentioned, that depletion of dMi-2 does not significantly perturb hsp gene 

transcription in Kc cells and, therefore, dMi-2 is dispensable for heat shock gene activation 

in this system (data not shown). It is believed that many factors contributing to hsp gene 

activation, for instance, FACT and Spt6, are highly abundant or redundant in Kc cells but 

more limiting in other contexts (Saunders et al. 2003).  

 

6.9  dMi-2 plays a role in RNA processing and splicing of hsp genes 

Expression of several hsp genes is strongly abrogated in flies with depleted levels of dMi-2 

or flies expressing its inactive form. This raises the possibility that dMi-2 might be 

involved in chromatin remodeling on these genes and thus facilitate their expression. 

However, several results do not support this hypothesis. First, heat shock genes undergo 

rapid nucleosome disruption across the entire locus within two minutes after gene 
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activation and this requires at least three factors: HSF1, GAF factor and PARP1 enzyme 

(Petesch and Lis 2008). However, the first signal for dMi-2 is observed earliest at two 

minutes of heat shock and it increases in time (Fig. 5.29). Second, no significant 

differences in histone H3 removal on hsp genes in dMi-2 knockdown flies were observed 

(data not shown). Thus, it is unlikely that dMi-2 plays a role in nucleosome removal at heat 

shock loci. 

The low transcript levels of hsp genes in dMi-2 depleted or mutant overexpressing flies 

may reflect disturbances in RNA processing. Indeed, the ratio of unprocessed or unspliced 

forms of hsp70 and hsp83 to total RNA levels of these transcripts are significantly 

increased in both, dMi-2 depleted and catalytic mutant overexpressing flies (Fig. 5.25). 

Similar defects have been reported previously for several factors involved in RNA 

processing. For instance, depletion of THO complex subunits in SL2 cells increases the 

ratio of unprocessed transcripts to total hsp70 RNA while decreasing the heat shock gene 

response (Rehwinkel et al. 2004; Kopytova et al. 2010). Another report has shown that 

pharmacological inhibition of P-TEFb, a kinase that phosphorylates CTD of RNAP II at 

Ser2, leads to reduction of hsp transcripts and significant increase of unprocessed hsp RNA 

species. The authors postulated that inhibition of CTD phosphorylation at Ser2 abrogates 

recruitment of RNA processing factors which in turn leads to inefficient RNA processing 

and rapid degradation of hsp transcripts (Ni et al. 2004).  

Several other experiments suggest dMi-2´s role in mRNA 3‟end processing. First, it 

crosslinks throughout the entire transcribed hsp70 gene and it is associated with the 3‟ end 

of the gene, where the cleavage and polyadenylation site is present (Fig. 5.21). Second, a 

recent ChIP deep sequencing on heat shocked cells performed in our laboratory has 

confirmed the binding of dMi-2 downstream of the transcription termination sites at most 

of hsp genes (Eve-Lyne. Mathieu, data not published). It has been reported that factors 

involved in transcription elongation and RNA processing display different crosslinking 

patterns at coding regions and downstream of the polyadenylation site. Some of them bind 

through the entire transcribed regions, others drop downstream of the polyadenylation site 

or conversely crosslink just downstream of the polyadenylation site (Kim et al. 2004; 

Mayer et al. 2010). Thus, there is an evidence for a transition of the elongation and 

processing factors at 3‟ ends of transcribed genes. Finally, dMi-2 interacts with nascent 

unprocessed hsp70 and hsp83 transcripts, which suggests that it can be involved in RNA 

processing more directly (Fig. 5.26). For example, dMi-2 might facilitate proper substrate 
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formation or access of processing factors to pre-mRNA 3‟ end. In this context, it would be 

important to determine whether any interactions between processing factors and dMi-2 

occur in vivo.  

mRNA 3‟ end processing is functionally coupled to transcription termination downstream 

of protein coding genes. This interplay between mRNA 3‟ end processing and transcription 

termination, makes it difficult to distinguish in which of these two processes dMi-2 plays a 

direct role. Despite extensive studies, still little is known about the mechanism of 

transcription termination and mRNA 3‟ end processing. There are currently two models 

which explain how transcription is terminated. The first model, known as the “anti-

terminator model”, suggests that the appearance of the polyadenylation sequence on the 

mRNA triggers an exchange in factors associated with elongating RNAP II which would 

decrease its processivity and eventually lead to transcription termination. The second 

scenario, called the “torpedo model” proposes that the mRNA cleavage at polyadenylation 

site could act as an entry point for an enzyme (helicase or exonuclease) that would track 

along the RNA and dissociate the RNAP II. Recent discoveries provide a support for both 

models (reviewed in (Buratowski 2005; Kuehner et al. 2011)). In addition, pausing of 

RNAP II downstream of the polyadenylation site facilitates transcription termination 

(Gromak et al. 2006).  

Studies in yeast suggest a link between chromatin remodeling and transcription 

termination. yChd1 and Hrp1 have been implicated in transcription termination regulation 

at several genes via regulation of the chromatin structure at the 3‟ end of these genes. It has 

been proposed that chromatin structure at 3‟ end of the gene may enhance RNAP II 

pausing and thus facilitate the switch of RNAP II mode from elongation to termination 

(chapter 2.5.4.4) (Alén et al. 2002). In order to determine the role of dMi-2 in transcription 

termination, it would be interesting to test how far RNAP II transcribes beyond the 

polyadenylation site at the hsp70 gene upon dMi-2 depletion. This question can be 

addressed by performing RNAP II ChIP experiments and compare its association with 

downstream regions of the polyadenylation site between dMi-2 depleted and wild type 

flies. Additionally, analysis of the transcription readthrough at the 3‟ end of hsp70 gene 

could be also performed in wild type and mutant flies. Moreover, it would be interesting to 

monitor the chromatin structure at the 3‟ end of heat shock genes upon dMi-2 depletion by 

histone H3 and micrococcal nuclease accessibility assay. It has been reported that there is a 

nucleosomal free region at the 3‟ end of hsp70 (Petesch and Lis 2008). Thus, it is plausible 
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that chromatin remodeling activities are involved in proper chromatin structure 

maintenance at the 3‟ end and consequently proper transcription termination.  

Finally, it has been reported that defective transcription termination at the 3‟ end of a gene 

leads to decreased splicing and is required for optimal gene transcription (West and 

Proudfoot 2009). In this respect, the transcription and splicing defects of hsp genes could 

be an indirect effect of affected transcription termination. It has been shown that 

transcription termination involves protein components that bind to DNA and/or RNA 

polymerase and employ ATPase activity to dissociate polymerase complexes from the 

DNA template (Deng and Shuman 1998; Liu et al. 1998). Thus, it is plausible that ATPase 

activity of dMi-2 contributes to coupling ATP hydrolysis to transcription termination. 

Undoubtedly, the fascinating link between chromatin remodeling and RNA processing has 

to be elucidated in future experiments.  

Recent years have also revealed interplay between splicing and chromatin remodeling. 

Two chromatin remodelers, hCHD1 and Brahma, have been implicated in pre-mRNA 

splicing, although the role of their ATPase activity is not clear in this context. First, 

hCHD1 is involved in regulation of pre-mRNA splicing by recruiting components of the 

splicing machinery to the transcribed RNA via recognition of the H3K4me3 mark (chapter 

2.5.4.5) (Sims et al. 2007). Second, human Brahma associates with components of the 

spliceosome and favours inclusion of variant exons in the mRNA of several genes 

independent of its enzymatic activity. It has been found that Brahma decreases RNAP II 

elongation rate and thus facilitates recruitment of the splicing machinery to variant exons 

with suboptimal splice sites (Batsché et al. 2006). Moreover, Brahma is incorporated into 

nascent pre-mRNPs co-transcriptionally in Chironomus tentans. Depletion of SWI/SNF 

complex subunits in Drosophila SL2 cells changes the relative abundance of alternative 

transcripts from a subset of genes (Tyagi et al. 2009). Altogether, these results suggest that 

Brahma is involved in splicing regulation in different species. However, the molecular 

mechanism still remains to be determined.  

The role of dMi-2 in splicing also has to be elucidated in further studies. It would be 

important to figure out whether dMi-2 plays a direct role in this process. One possibility 

would be to test if dMi-2 interacts with splicing machinery by making 

immunoprecipitation experiments followed by mass spectrometry. Although dMi-2 

complex purification with classic chromatography did not show association of any splicing 



DISCUSSION 

180 

 

factors, it is plausible that such associations exist in only substoichiometric amounts or are 

transient and become lost during traditional purification steps. Therefore it would be worth 

to try to perform coimmunoprecipitation experiments directly from crude nuclear extracts 

using milder purification conditions. Interestingly, in the recent release of The Drosophila 

Protein Interaction Mapping (DPiM) project that applied purification of transiently 

expressed tagged proteins followed by identification of associated peptides by mass 

spectrometry, an association of a splicing factor U2af50 with dMi-2 has been identified 

(https://interfly.med.harvard.edu). It would be interesting to test whether this interaction 

occurs between endogenous proteins. Another experiment, which would allow to study 

dMi-2 involvement in splicing, could be in vitro splicing assay in the presence of extracts 

containing or depleted of dMi-2. Similar experiments have been applied to test hCHD1 

role in splicing (Sims et al. 2007). In addition a splice reporter minigene could be also 

adapted to Drosophila cell lines in order to study dMi-2 function in splicing in vivo 

(Lallena et al. 2002; Batsché et al. 2006).     

Hsp genes usually do not possess introns, but hsp83 is an exception. The role of dMi-2 in 

splicing regulation of this gene raises the question whether dMi-2 is involved in splicing 

regulation on a more global, genome wide scale. Currently there is no microarray platform 

designed for splicing analysis in Drosophila, thus in order to address this question other 

methods should be utilized. For instance, a recent development of next-generation deep 

sequencing technology is extensively used to study splicing events on a genome wide scale 

(Pan et al. 2008; Fox et al. 2009; Filichkin et al. 2010). Comparison of transcriptomes at 

high resolution between wild type and dMi-2 depleted cells or flies, could shed light onto 

its potential role in splicing genome-wide.  

What could be the role of dMi-2 in splicing? dMi-2 might similarly to hCHD1 link or 

recruit splicing machinery to RNA via binding to nascent transcripts. However, the role of 

the enzymatic activity of dMi-2 for splicing suggests a more active role of this remodeler. 

In one possible scenario, dMi-2 might function as an RNP remodeling factor to modulate 

interactions between RNA splicing factors and their target RNA. It is also plausible that 

dMi-2 influences splicing less directly, for instance by remodeling chromatin structure 

during transcription. Indeed, recently, chromatin structure and histone modifications have 

been linked to splicing regulation. Mapping nucleosome positions at a genome-wide scale 

from various organisms has shown that nucleosomes are particularly enriched at intron-

exon junctions (Andersson et al. 2009; Nahkuri et al. 2009; Schwartz et al. 2009; Dhami et 

https://interfly.med.harvard.edu/
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al. 2010). Nucleosomes can act as barriers that modulate RNAP II density by inducing its 

pausing (Hodges et al. 2009). Thus, nucleosome positioning might affect splicing 

efficiency. It is possible that chromatin remodelers, like dMi-2, might influence splicing by 

remodeling nucleosomes in the way of RNAP II. Although nucleosomes are severely 

disrupted at hsp genes upon gene induction there are still some histones left, besides 

histone variant H3.3 is deposited in the body of hsp genes which indicates that chromatin 

remodeling might occur to some extent on these genes upon their activation (Schwartz and 

Ahmad 2005). Whether dMi-2 plays any of these roles in splicing, remains to be 

determined in the future. 

Finally, one reason for inefficient transcription of hsp genes in dMi-2 depleted flies could 

be that transcription elongation by RNAP II is affected. This possibility cannot be formally 

excluded and demands further investigation. Western blot analysis revealed no differences 

in the level of RNAP II phosphorylation at Ser2 in wild type and dominant negative mutant 

overexpressing flies (data not shown). This suggests that at least at the global scale dMi-2 

depletion does not affect RNAP II elongation. One experiment to test this more directly on 

hsp genes would be to probe for elongating RNAP II occupancy at hsp genes upon gene 

induction by ChIP in dMi-2 depleted flies. 

To sum up, the results presented in this doctoral thesis provide a first link of a catalytic 

activity of the ATP dependent chromatin remodeler in RNA processing and splicing. Many 

experiments remain to be done in order to clarify the function of dMi-2 in this context.  

 

6.10  Recruitment mechanism of dMi-2 to hsp genes  

6.10.1  Recruitment mechanism of dMi-2 to hsp genes is PAR dependent  

One of the goals of this PhD thesis was to determine the recruitment mechanism of dMi-2 

to activated heat shock genes. The binding of dMi-2 to the entire transcribed regions of hsp 

genes raised the possibility that dMi-2 is recruited by the transcription machinery. 

However, several lines of evidence do not agree with this hypothesis. First, dMi-2 binding 

profile and kinetics differ from RNAP II (Fig. 5.29). dMi-2 is detected at two minutes at 

hsp70 gene whereas RNAP II is detected as early as one minute after gene activation. The 

highest level of RNAP II is detected at hsp70 after five minutes of heat shock, by contrast 

dMi-2 signal increases significantly until the 20 minutes time point. Second, dMi-2 is not 

interacting with elongating forms of RNAP II or elongation factors (Fig. 5.28 and data not 
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shown). Finally, dMi-2 recruitment is transcription independent as blocking transcription 

by DRB treatment has no effect on dMi-2 binding to the hsp70 gene (Fig. 5.30). Another 

possibility is that dMi-2 is recruited to induced heat shock genes via recognition of specific 

histone marks associated with active transcription. However, peptide pulldown 

experiments performed with isolated chromodomains or the full length dMi-2 show that 

the remodeler displays no specificity for H3K4me3 or H3K36me3 histone tails (Fig. 5.27 

and P. Steffen, unpublished data). Thus, it is unlikely that dMi-2 is recruited to hsp genes 

via binding to these histone marks.    

It has been shown that heat shock genes are extensively poly(ADP-ribosylated) 

(PARylated) upon gene activation in a transcription independent mode (Tulin and 

Spradling 2003; Petesch and Lis 2008). Moreover, recently a number of papers have 

reported PAR dependent recruitment of a human homolog of dMi-2, CHD4, to the sites of 

DSBs (Chou et al. 2010; Larsen et al. 2010; Polo et al. 2010; Smeenk et al. 2010). Hence, 

it is plausible that dMi-2 recruitment to hsp genes is PAR dependent. Indeed, 

pharmacological inhibition of PARP by PJ34 treatment strongly decreases dMi-2 

recruitment to heat shock genes. Notably, the reduction of dMi-2 recruitment is significant 

even though the inhibition of PARP is not complete (Fig. 5.31). Several other experiments 

support the idea that PARP activity and PAR binding play a role in dMi-2 recruitment to 

hsp genes. First, the broad distribution of dMi-2 over the entire transcribed region 

correlates with the distribution of PAR polymer (Tulin and Spradling 2003). Second, dMi-

2 binds to PARylated PARP and PAR polymers in vitro (Fig. 5.32 and 5.33). Third, 

deletion of the N-terminal region, which binds to PAR, abolishes dMi-2 recruitment to 

hsp70 locus in vivo (5.34 and 5.37). Finally, dMi-2, ectopically expressed in human cells, 

similarly to CHD4 is recruited to laser induced DSBs (data not shown). Thus, there is a 

strong evidence that dMi-2 is recruited to activated hsp genes via PAR binding.  

How might PAR polymers contribute to dMi-2 recruitment? During cellular stress, such as 

DNA strand breaks or heat shock, the cell has to respond quickly and efficiently. A number 

of factors are rapidly recruited to coordinate the DNA repair or immense transcription 

activation upon heat shock. Rapid PARP activation and synthesis of PAR at sites of DNA 

damage or heat shock genes transcription might provide an efficient mechanism to recruit 

chromatin remodelers and other factors involved in response to these processes.  
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6.10.2  PAR binding domains of dMi-2 

Mapping experiments suggest that dMi-2 harbours several PAR-binding motifs in its N-

terminal region (Fig. 5.34 and 5.35). To date, two structural protein modules directly and 

specifically interacting with PAR have been described: the macrodomain and the PAR-

binding zinc finger domain (PBZ) (Karras et al. 2005; Ahel et al. 2008; Timinszky et al. 

2009; Eustermann et al. 2010). In addition, motifs that contain several basic residues 

interspersed with hydrophobic residues have been identified in many proteins that bind the 

PAR polymer. These motifs share amino acid composition but they do not show extensive 

sequence homology (Pleschke et al. 2000; Gagné et al. 2008). 

In this study, PARP pulldown assays have identified three K/R-rich regions with PAR 

binding activity near the N-terminus of dMi-2. Two of these three K/R-rich regions (III 

and IV) in dMi-2 consist of interspersed basic and hydrophobic residues and are thus 

reminiscent of the previously described PAR binding motifs (Figure 5.35 A) (Pleschke et 

al. 2000; Gagné et al. 2008). However, the first K/R motif lacks hydrophobic residues. 

Moreover, none of the three K/R regions matches the consensus PAR binding motifs 

reported previously. It is plausible that a high content of positively charged K and R-

residues in these regions is sufficient to provide PAR binding activity in vitro. Moreover, 

mammalian CHD4 proteins also contain N-terminal K/R regions but they do not share 

sequence similarity with those of dMi-2 (Fig. 5.35 A).  

Currently, the way how PAR interacts with PAR motifs is not clear. An alanine scan in the 

PAR binding motif showed that hydrophobic amino acids are important for PAR binding 

(Pleschke et al. 2000). However, there are also reports showing that positively charged K 

residues are important for binding to the PAR polymer (Zhang et al. 2011). Further 

characterization of the K/R regions in dMi-2 will be required to resolve this issue. Also, it 

remains to be determined whether all PAR binding regions mapped in vitro, are required 

for dMi-2 targeting to hsp loci in vivo. In addition to the K/R regions, the tandem 

chromodomains of dMi-2 bind PAR in vitro (Figure 5.34 and data not shown). It has been 

previously demonstrated that the chromodomains of dMi-2 are required for interacting 

with nucleosomal DNA in vitro (Bouazoune et al. 2002). Thus, these chromodomains can 

interact with different nucleic acids. Interestingly, dMi-2 chromodomains do not possess 

K/R reach motifs which suggests that the interaction with PAR might occur in a different 

manner.  
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6.10.3  Model of dMi-2 recruitment to hsp genes 

The results obtained in this thesis support the following, two-step model of dMi-2 

recruitment to hsp genes (Fig. 6.2). Upon heat shock, PARP1 is activated and PARylates 

the hsp locus. This activity leads to rapid nucleosome disruption, caused probably by 

PARylation of histones within the first two minutes of heat shock (Petesch and Lis 2008). 

In addition, PARylation serves as a scaffold for recruitment of factors with strong nucleic 

acid affinity, like dMi-2. dMi-2 is targeted to hsp genes via binding to PAR polymers. 

Finally, once transcription has been strongly activated, dMi-2 switches to transcribed 

nascent transcripts and contributes to efficient hsp gene processing (Figure 6.2).   

This model is consistent with the in vitro competition assays, which suggest that RNA, but 

not DNA can compete for PAR binding to dMi-2 (Fig. 5.38 A). Thus, in the physiological 

situation, during robust transcription, RNA might be bound by dMi-2 in the presence of 

PAR.  Interestingly, direct comparison of dMi-2 binding to DNA and RNA, has revealed 

that dMi-2 binds RNA much better than DNA (Fig. 5.38 B). This suggests that at least at 

some gene context, like strongly transcribed heat shock genes, the favourable substrate for 

dMi-2 might be RNA not the nucleosomal DNA. Consequently, dMi-2 might preferentially 

play a role in RNA on these genes. More quantitative experiments should be performed in 

order to characterize dMi-2 binding to RNA and DNA.  
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Figure 6.3 Model of dMi-2 recruitment to heat shock genes 

Upon heat shock (HS), PARylation of the locus by PARP1 creates binding sites for PAR-sensing 

regions of dMi-2. dMi-2 is recruited and, subsequently, interacts with nascent transcripts to support 

transcription and processing, possibly by direct involvement in RNA processing events. See text 

for details. GAF: GAGA Factor, HSE: HS elements, yellow ovals: Heat Shock Factor.  

 

Several issues concerning dMi-2 recruitment remain to be determined. It is not known 

whether dMi-2 binds to PARylated histones, PARP1 itself or other PARylated proteins at 

hsp locus. Although nucleosomes are disrupted upon heat shock, FRAP experiments on 

salivary glands have shown that histone H2B remains associated with hsp70 locus (Zobeck 

et al. 2010). Thus, PARylation of histones might not only disrupt nucleosomes but also 

contribute to histone retention in the close proximity of transcribed genes. Consequently, 

PARylated histones might serve as a recruitment platform for factors such as dMi-2. It 

would be interesting to see whether PARylation of nucleosomes has any effect on the 

binding affinity of dMi-2. Secondly, it is currently unknown whether this mechanism of 

dMi-2 recruitment is applied outside of the heat shock gene context. Polytene chromosome 

staining suggests that dMi-2 also binds to ecdysone regulated puffs. Based on 

immunofluorescence staining, it has been reported that these genes are also PARylated in 
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vivo (Tulin and Spradling 2003). Thus it is plausible that dMi-2 recruitment to ecdysone 

regulated genes is also PAR dependent. Other genes, which expression seems to be PARP 

dependent, are immune response genes (Tulin and Spradling 2003). Further analysis is 

required to resolve whether dMi-2 is recruited to these genes and whether it plays any role 

in their transcriptional regulation. 

 

6.10.4  Novel role of poly(ADP-ribosylation) in hsp gene transcription 

So far, several molecular functions of PARylation at hsp genes have been proposed. First, 

PARP enzymatic activity is required for rapid, transcription independent nucleosomal loss 

at hsp70 within the first two minutes after heat shock (Petesch and Lis 2008). Second, 

PARP has been shown to be important for establishment of a transcription compartment, 

which constrains the diffusion of RNAP II and elongation factors, thus promoting their 

efficient recycling during transcription. This function of PARP was observed at later stages 

of the heat shock response, 20-60 minutes after heat shock (Zobeck et al. 2010). The 

results of this thesis suggest a third function of PARP at activated hsp genes. PAR 

polymers might serve as a recruiting platform for factors which have affinity to nucleic 

acids, like dMi-2. The earliest time point when dMi-2 binding to hsp70 is detected is 

between two and five minutes after heat shock (Fig. 5.29). This places dMi-2 recruitment 

between the early PARP dependent nucleosome removal (first two minutes after heat 

shock) and transcription compartment formation (20-60 minutes after heat shock). This 

also suggests a PARP dependent order of events that follow after each other on hsp genes 

after heat shock. First, at early time point nucleosomes are disassembled before RNAP II 

initiates transcription. Next, the accumulation of PAR polymers allows for recruitment of 

factors which are not recruited via transcription machinery and which possess nucleic acid 

binding affinity (like dMi-2). Finally, increasing concentration of PAR polymers creates a 

transcription compartment that facilitates transcription by spacial factor retention.  

Rapid synthesis of PAR polymers might be used as an efficient mechanism for factor 

recruitment not only in the context of transcriptional stress response, but also at DNA 

strand brakes. Indeed, it has recently been shown that PARylation at DNA breaks is 

instrumental in recruiting chromatin remodelers, including mammalian ALC1 and dMi-2 

homologs, to damaged sites (Ahel et al. 2009; Gottschalk et al. 2009; Polo et al. 2010). The 

high local concentration of PAR polymers at DNA breaks and hsp genes might exploit the 
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general affinity of some factors for nucleic acids. In this manner, PAR polymers might act 

as a scaffold to redirect chromatin remodelers to chromatin regions where they are 

required, thus acting as a stress-dependent, transient affinity site for chromatin remodeling 

and probably RNA processing activities.  

 

6.11  dMi-2 on active genes – outlook 

Apart from experiments described in the previous chapters, there are some additional 

questions which remind to be addressed in the future studies. The finding that dMi-2 is 

recruited to hsp genes by binding to PAR polymer raises the question whether there is any 

regulatory effect of PARP on the enzymatic activity of dMi-2. Indeed, it has been reported 

that poly(ADP-ribosylation) of nucleosomes can stimulate the ATPase activity of the 

ALC1 remodeler, which is recruited to sites of DSBs (Ahel et al. 2009). Whether the same 

applies to dMi-2 could be tested in an ATPase assay. The assays could be performed in the 

presence of PARP and/or PARylated nucleosomes. Another chromatin remodeler shown to 

be affected by PARP is ISWI. In this case PARylation of ISWI itself inhibits its enzymatic 

activity by reducing the affinity of ISWI for its nucleosomal substrate. The authors argue 

that PARylation of ISWI might serve as a mechanism to dissociate ISWI from chromatin. 

Indeed, ISWI and PAR occupy different chromatin domains on polytene chromosomes 

(Sala et al. 2008). Thus, PARP activity might have different consequences for different 

chromatin remodeling enzymes. 

One issue, also not addressed in this study, concerns the dMi-2 complex, which is involved 

in the regulation of heat shock genes. Polytene chromosome staining with dMep1 and dp66 

antibodies suggests that both subunits of the dMec and dNuRD complexes can be recruited 

to hsp70 loci (data not shown). However, lack of good antibodies for these proteins does 

not allow to perform ChIP experiments on hsp genes. Moreover, it is not clear whether the 

same complexes, as the one purified from Kc cells, exist at larvae stages. The differences 

with complex composition between different material source might suggest that chromatin 

remodeling complexes change their composition during animal development (Kunert et al. 

2009; Reddy et al. 2010). Thus, it should be determined which dMi-2 complex is involved 

in the regulation of heat shock genes.  

Mi-2-like chromatin remodelers have been shown to play an essential role in the 

transcriptional repression programs of different organisms. This study, for the first time, 
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implicates the role of dMi-2 in active gene regulation and suggests its possible role in RNA 

processing. Further studies will be important to dissect the mechanism of dMi-2 activity on 

transcribed genes. Moreover, the recruitment of dMi-2 via PAR, suggests that other 

mechanisms than transcription factor binding, are employed by this remodeler to reach the 

proper chromosomal sites. Finally, this study also highlights the role of PARP and 

PARylation in the integration and coordination of stress-dependent nuclear activities.   
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8.  Appendix 

List of abbreviations and acronyms 

 anti    

A alanine 

aa amino acid 

Abs antibodies 

ac acetyl 

ACF ATP-utilizing chromatin assembly and remodeling factor 

AcMNPV Autographa californica nucleopolyhedrovirus 

ADP adenosindiphosphate 

ADPr ADP-ribose 

ALC1 amplified in cancer 1 

Arp actin related protein 

Ash absent, small, or homeotic discs 1 

ATM ataxia telangiectasia mutated 

ATP adenosintriphosphate 

ATR ataxia telangiectasia and Rad3-related protein 

ATRX alpha thalassemia/mental retardation syndrome X-linked 

BAF BRG1-associated factors 

BAP Brahma-associated proteins 

BLAST basic local alignment search tool 

bp base pair 

BPTF bromodomain PHD finger transcription factor 

BRG1 Brahma-associated gene 1 

BRK Brahma and Kismet domain 

BRM brahma 

BSA bovine serum albumine 

C- carboxy- 

C/EBP CCAAT/Enhancer-Binding Protein-β 

CAF1 chromatin assembly factor 1 

CBP CREB binding protein 

cdk cyclin dependent kinase 

cDNA complementary DNA 

CENP-A centromere protein-A 

CHD chromodomain-helicase-DNA binding 

ChIP chromatin immunoprecipitation 

CHRAC chromatin assembly complex 

CK2 casein kinase 2 

CP190 centrosomal protein 190 

CpG cytosine-phospatidyl-guanosine 
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Cpm counts per minute 

Ct cycle threshold  

CTD carboxy terminal domain 

da daughterless 

Da dalton 

DAPI 4',6-diamidino-2-phenylindole 

dATP desoxyadenosintriphosphate 

dCTP desoxycytosinosintriphosphate 

dGTP desoxyguanidintriphosphate 

dMec drosophila MEP-1-containing complex 

DMSO dimethyl suloxide 

DNA desoxyribonucleic acid 

DNMT DNA methyltransferase 

dNTP desoxyribonucleotidetriphosphate 

DOC1 deleted in oral cancer 1 

DRB 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole 

DSB double strand break 

dsRNA double stranded RNA 

DTT dithiotreithol 

dTTP desoxythyminidintriphosphate 

EcR ecdyson receptor 

EDTA ethylenedioxy-diethylene-dinitrilo-tetraacetic acid 

EGTA ethylene glycol-bis-(2-aminoethyl)-N,N,N', N'-tetraacetic acid 

EKLF erythroid krüppel-like factor 

ELL eleven-nineteen lysine-rich leukemia protein 

EMSA electrophoretic mobility shift assay 

ER estrogen receptor 

EtBr ethidiumbromide 

ey eyless 

FACT facilitates chromatin transcription 

FCS fetal calf serum 

FOG-1 cofactor friend of GATA-1 

for forward 

FPLC fast protein liquid chromatography 

FRAP fluorescence recovery after photobleaching 

g gram 

G1 gap phase 1 

GAF GAGA tactor 

GFP  green fluorescent protein 

GMR glass multimer reporter 

GR glucocorticoid receptor 

GST glutathione-S-transferase 

H histone 
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HAS helicase-sant domain 

HAT histone acetyltransferase 

HDAC histone deacetylase 

HEPES N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) 

HMG high mobility group 

HP1 heterochromatin protein 1 

HPLC high performance liquid chromatography 

HRP horseradish peroxidase 

HS heat shock 

HSE heat shock element 

HSF heat shock factor 

hsp heat shock protein 

Ig immunoglobuline 

INO80 inositol requiring 80 

IP immunoprecipitation 

IPTG sopropyl β-D-1-thiogalactopyranoside 

Isw1 imitation SWitch subfamily 1 

ISWI imitation switch 

K lysine 

KAP-1 krüppel-associated box (KRAB) domain–associated protein 1 

kDA kilodalton 

Kis kismet 

LB Luria-Bertani 

Lys lysine 

M molar 

MBP methyl-CpG-binding protein 

MDa mega dalton 

me methyl 

MEF mouse embryonic fibroblast 

Mep1 mog interacting ectopic P granulocytes 1 

MEP50 methylosome protein 50 

min minute 

MLL mixed lineage leukemia 

MNase micrococcal nuclease 

mRNA messenger RNA 

MS mass spectrometry 

MTA metastasis associated protein 

N- amino- 

NAD nicotinamide adenine dinucleotide 

Nap1 nucleosome assembly protein 1 

ncRNA non coding RNA 

NELF negative elongation factor 

NLK nemo like kinase 
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NHS no heat shock 

NoRC nucleolar remodeling complex 

NuRD nucleosome remodeling and histone deacetylation 

NURF nucleosome remodeling factor 

OD optical density 

PAA polyacrylamide 

PAGE polyacrylamide gel electrophoresis 

PAR poly(ADP-ribose) 

PARP poly(ADP-robose) polymerase 

PBAF polybromo-associated BAF 

PBAP polybromo-associated BAP 

PBS phosphate buffered saline 

PBZ PAR-binding zinc finger 

Pc polycomb 

PCR polymerase chain reaction 

PHD plant homeo domain 

PMSF phenylmethane sulfonyl fluoride 

PPAR peroxisome proliferator-activated receptor 

P-TEFb positive transcription elongation factor b 

PVDF polyvinylidine difluoride 

QPCR quantitative PCR 

R arginine 

RBF retinoblastoma like factor 

rDNA ribosomal DNA 

rev reverse 

RNA ribonucleic acid 

RNAi RNA interference  

RNAP II RNA polymerase II 

rp49 ribosomal protein 49 

RpAp retinoblastoma associated protein 

RPD3 reduced potassium dependency 3 

rpm revoltations per minute 

RSC remodels the structure of chromatin 

RT room temperature 

S DNA synthesis phase 

SAGA Spt-Ada-Gcn5 

SANT ySWI3, yADA2, hNCoR, hTFIIIB 

SCRAP Snf2-related CBP activator protein 

SDS sodium dodecyl sulphate 

sec second 

Ser serine 

SF2 superfamily 2 

sgs salivary gland specific 
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SHL superhelical location 

SLIDE SANT-like ISWI domain 

SLIK SAGA like 

Snf2 sucrose non-fermenting protein 2 homolog 

snRNP small nuclear ribonucleoprotein 

Sp3 specificity protein 3 

ssRNA single stranded RNA 

Sth1 SNF2 (Two) Homolog 1 

suc sucrose 

SUMO small ubiquitin-like modifier 

SWI/SNF switch/sucrose non-fermenting 

Swr1 Swi2/Snf2-related 1 

Tap tandem affinity purification 

Temed N,N,N′,N′-Tetramethylethylenediamine 

TFIIH transcription factor II H 

TIP5 TTF-I interacting protein 5 

Tris tris(hydroxymethyl)aminomethane 

TRX trithorax 

TTF-I transcription termination factor I 

Ttk69 tramtrack69 

v/v volume per volume 

w/v weight per volume 

WT wild type 

YY1 Yin-Yang-1 

Zn zinc 
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