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domains of the cardiac Myosin Binding Protein C by 

the 5’-AMP-activated Protein Kinase 
 

Inaugural-Dissertation zur Erlangung des Doktorgrades der gesamten 
Humanmedizin aus dem Fachbereich Medizin der Philipps-Universität 

Marburg vorgelegt von 
 

Bernhard Willibald Renz  
aus Kronach 

Marburg, 2009 
 

The existence of MyBP-C in striated muscle has been known for over 35 years and 

about 150 mutations in the gene encoding cMyBP-C have been found to be a common 

cause of hypertrophic cardiomyopathy. Despite this, the structure and function of 

MyBP-C remains less well understood than most other sarcomeric proteins, with roles 

in both regulation of contraction and thick filament formation/stability being 

proposed. In addition to the well known interactions of MyBP-C with other proteins 

of the sarcomeric apparatus (LMM, titin, actin) and with PKA, CaMKK and PKC at 

the N-terminal end of the protein, the aim of this study was to investigate interactions 

of MyBP-C’s C-terminus with the 5’-AMP-activated protein kinase. This enzyme 

came in the focus of research during the last decade as it appears to function in a 

plethora of cell processes. Further, it has been elucidated that mutations in PRKAG2, 

encoding for the γ2 subunit of AMPK, causes left ventricular hypertrophy associated 

with conduction system diseases (e.g. Wolf-Parkinson-White syndrome). Important 

questions that have to be answered for a better understanding of this issue are, beside 

others, the identification of the full repertoire of cardiac protein targets.  

 

My project aimed at identifying the site or sites of AMPK phosphorylation within the 

C-terminal three domains of cMyBP-C as suggested by earlier yeast-two-hybrid- 

screen data and biochemical work. The latter hinted that the C8 domain was most 

likely the target, and it is this fragment that my work began with. Having optimised 

the expression and purification of recombinant wild type MyBP-C C8 domain and a 
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number of mutated C8 domains as discussed in Chapter 3, it was possible to disprove 

the hypothesis of phosphorylatable residues being in this domain. In contrast, it was 

revealed that a phosphorylatable serine moiety was present in the N-terminal leader of 

the recombinant protein, encoded by the vector pET-28a. This serine lies in the 

thrombin recognition sequence itself and its phosphorylation inhibits cleavage.  

However, it was shown in vitro that a phosphorylatable serine residue is located in the 

C10 domain of the protein and this further confirms the association of the C8-C10 

fragment of MyBP-C with AMPK, first observed in the yeast two-hybrid assay. The 

hypotheses that arise from these results will be discussed in this chapter. Additionally, 

I showed that the N-terminal domains of cMyBP-C (C0-C2), which contain the well 

characterized PKA and CaMII sites, are not a good substrate for AMPK in vitro. 
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Zusammenfassung 

Investigation of the Phosphorylation of the C-terminal 
domains of the cardiac Myosin Binding Protein C by 

the 5’-AMP-activated Protein Kinase 
 

Inaugural-Dissertation zur Erlangung des Doktorgrades der gesamten 
Humanmedizin aus dem Fachbereich Medizin der Philipps-Universität 

Marburg vorgelegt von 
 

Bernhard Willibald Renz  
aus Kronach 

Marburg, 2009 
 

Seit mehr als 35 Jahren kennt man das Myosin-Bindungs-Protein-C (MyBP-C). In 

dieser Zeit  wurden in dem Gen, welches für die kardiale Isoform dieses Proteins 

kodiert (MYBPC3) mehr als 150 Mutationen gefunden, die zur hypertrophischen 

Kardiomyopathie (HCM) führen. Damit sind Mutationen in diesem Gen für mehr als 

ein Drittel aller HCM-Fälle verantwortlich.  

Es werden für dieses Protein sowohl eine Rolle in der Regulation der Kontraktion, als 

auch strukturstabilisierende Aufgaben in der Filamentformation postuliert. Trotz all 

dieser Tatsachen ist die Funktion des MyBP-C, im Vergleich zu den meisten anderen 

Proteinen des sarkomerischen Apparates, nicht ausreichend verstanden. 

Zusätzlich zu den direkten Interaktionen zwischen MyBP-C und den sarkomerischen 

Proteinen Titin, der leichten Meromyosinkette und Aktin, sind Interaktionen mit der 
cAMP-abhängigen Protein Kinase (PKA), der Ca2+/Calmodulin-abhängigen Protein 
Kinase II (CaMKII) und der Protein Kinase C (PKC) am N-terminalen Ende des 

Proteins bekannt. 

Die Absicht dieser Abeit war es, die C-terminalen Interaktionen des Proteins mit der 

AMP-aktivierten Proteinkinase (AMPK) zu untersuchen. Dieses Enzym wurde in den 

letzten 10 Jahren Gegenstand umfassender Forschungen. Es werden der Kinase die 

Beteiligung an zahlreichen regulierenden Prozessen in der Zelle zugeschrieben. 

Ausserdem wurden Mutationen im PRKAG2-Gen, welches für die γ2-Untereinheit der 

Kinase kodiert, gefunden. Diese zur Hypertrophie des linken Ventrikels führenden 

Mutationen sind zudem noch mit Reizleitungsabnormalien (z.B.: Wolf-Parkinson-
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White-Syndrom) vergesellschaftet. Die wichtigen Fragestellungen, die es in diesem 

Zusammenhang, neben anderen, für ein umfassenderes Verständnis zu beantworten 

gilt, betreffen die Identifikation weiterer kardialer Proteine, die mit dieser Kinase in 

Interaktion treten. 

Durch meine Arbeit sollten die Aminosäure oder die Aminosäuren des C-terminalen 

Endes des kardialen Myosin-Bindungs-Protein-C (cMyBP-C) identifiziert werden, die 

von der AMPK in vitro phosphoryliert werden können. Eine Interaktion zwischen 

dem C-terminalen Ende (C8-C10) und der Kinase wurde von Professor David Carling 

und seinen Mitarbeitern am Imperial College in London mittels Yeast-two-hybrid-

assay und weiteren biochemischen Untersuchungen postuliert. Die letzt genannten 

machten die C8-Domäne des cMyBP-C zum wahrscheinlichsten Ziel der Kinase. Aus 

diesem Grund habe ich bei meinen Arbeiten mit der Untersuchung dieser Domäne 

begonnen. Nach Optimierung sowohl der Expressions- und Purifikationsmethoden zur 

Herstellung der rekombinanten Wildtyp Domäne, als auch einer Reihe mutierter C8-

Domänen, war es möglich die Hypothese zu widerlegen, dass sich in der C8-Domäne 

des cMyBP-C eine durch die AMPK phosphorylierbare Aminosäure befindet. Es 

zeigte sich vielmehr, dass sich in der N-terminalen leader Sequenz des rekombinanten 

Proteins ein phosphorylierbarer Serinrest befindet, der von dem Vektor pET-28a 

kodiert wird. Dieses Serin liegt in der Thrombinerkennungssquenz und seine 

Phosphorylierung verhindert die Abspaltung dieser Sequenz.  

Des Weiteren wurde in vitro gezeigt, dass ein von der AMPK phosphorylierbares 

Serin in der C10-Domäne lokalisiert ist, und dies bestätigt die ursprünglich 

angenommene  Interaktion des C-terminalen Fragmentes (C8-C10) mit der Kinase. 

Zusätzlich konnte gezeigt werden, dass die N-terminalen Domänen des Proteins (C0-

C2), die die gut charakterisierten Phosphorylierungsstellen der PKA and CaMII 

enthalten, in vitro kein Substrat für die AMPK sind. 

Die C-terminale Phosphorylierungsstelle des cMyBP-C könnte zum einen die 

Formation des Proteins um das Myosinfilament beeinflussen, andererseits wäre auch 

denkbar, dass durch eine Mutation im PRKAG2 Gen und der daraus resultierenden 

Änderung des Phosphorylierungsstatusses des MyBP-C, die postulierte Funktion in 

der Regulation des kardialen Querbrücken-Zyklusses beeinträchtigt wird.
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1 Chapter Introduction 
 

1.1 Cardiovascular Disease 

1.1.1 General 

Heart failure is a world-wide public health problem. Usually, it is the common end-

stage of most primary cardiovascular diseases, comprising coronary artery disease, 

hypertension, cardiomyopathy, myocarditis, diabetes, valvular disease and congenital 

heart malformations. Heart failure is a complex pathophysiological condition 

occurring as the myocardial performance being unable to adequately supply blood to 

other organs.  

It is one of the most common diseases in internal medicine with estimated more than 

10 million affected people in Europe and 1.5 million in Germany. Furthermore, there 

are another 10 million suffering from a cardiac insuffiency without symptoms. 

Prevalence and incidence are age-related. In the population of people between 45 and 

55 years of age less than 1% are suffering from heart failure. In the class of 65 and 75 

2- 5% are affected already, whereas in the group of people older than 80 years of age 

heart failure is present in almost 10% (Herold, 2005). 

In Germany in a gender relation of 1.5 : 1, men are more affected than women with 

the same years of age. Particularly the proportion of diastolic heart failure increases in 

older women and accounts for more than 40% in contrast to 30% in men.   

In the United States it accounts for about 40% of all postnatal deaths, totalling more 

than 750.000 individuals annually and nearly twice the number of deaths caused by all 

forms of cancer combined (Robbins & Cotran, 2006). 

Although the proteins that are addressed in this study deal with a hereditary form of 

cardiomyopathy, it is important to keep in mind that ischemic heart disease is 

responsible for 80% to 90% of cardiovascular deaths in the developed world. 

Additionally, it is the predominant cause of disability and death in the industrialized 

nations. 

The annual burden of heart failure in Germany is estimated to be about 3.000 million 

€ (knhi.de/Kompetenznetz/Veranstaltungen/Symposien/2006-Essen/KNHISym2006 

Essen-13.pdf). That is more than 50 % of the yearly cost of the entire health system. 
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Most treatments slow down the process of progression but cannot abolish it. As a 

result an increasing proportion of the population is living with heart disease and is at 

risk of heart failure.   

Five categories of diseases account for almost all cardiac mortality: 

• Congenital heart disease 

• Ischemic heart disease 

• Hypertensive heart disease (systemic and pulmonary) 

• Valvular heart disease 

• Nonischemic (primary) myocardial disease 

 

The failing human heart is distinguishable from the normal heart in structure as well 

as in its function. The exquisitely designed muscle of the heart serves in physiologic 

conditions as a pressure-and-suction-pump integrating two independent vascular 

systems, the pulmonary and the systemic circulation.  Subsequently to the initiation of 

cardiovascular disease, the heart most often remodels along one of two pathways, 

hypertrophy or dilation (Seidman & Seidman, 2001). The process of remodelling may 

be a compensatory mechanism to adjust the function of the organ in the disease state. 

In response to systemic hypertension, aortic valve disease or congenital 

malformations, the heart develops hypertrophy, which is defined as an increase in the 

muscle mass in order to maintain the blood supply under these conditions. Myocardial 

hypertrophy as a compensatory mechanism takes place through increase of cardiac 

muscle cell mass not through increase of cell number (hyperplasia). Hypertrophy 

often occurs with a rise in cardiac fibrosis. Consequently there is an increase in the 

extracellular matrix and an increase in the interstitial fibrosis of the affected heart. 

This may impair the elasticity of the myocardium and therefore ventricular relaxation. 

The increased stiffness of the cardiac wall can alter the function of the organ in a 

broader sense. Due to impaired relaxation, blood emptying from the atrium is not 

complete, which causes stretching of the atrial walls and secondary a dilation of these 

thin walled chambers. Unsurprisingly, atrial dilation is a commonly seen feature of 

the hypertrophied heart.  

The remodelling mechanism occurring in response to diminished contractile function 

produces a dilated ventricular chamber, which results from myocyte death (apoptosis). 

Dilation is always associated with mild increase in myocyte hypertrophy as well as 

increase in interstitial fibrosis. The extension of the intraventricular volume reflecting 
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predominantly a physiological adjustment mechanism, stretches the myocytes and 

improves the pressure-volume relationship within the heart as well as it augments the 

cardiac output (Frank-Starling-mechanism). 

One has to keep in mind that compensatory remodelling mechanisms of the heart 

initially are beneficial to the cardiac function, although they eventually become 

maladaptive. 

Ultimately, the cardiac remodelling may cause a failing heart. Hypertrophy as well as 

dilation of the heart increase the stiffness of the myocardium triggering an impeded 

ventricular relaxation, which worsens the coronary artery blood flow, because private 

blood supply of the heart tissue occurs predominantly during the diastole (cardiac 

relaxation).  Furthermore, it will cause an increasing energy demand.  

Unlike the gross anatomical and pathohistological findings in remodelled hearts, the 

cellular, molecular and triggering mechanisms are largely unknown (Seidman & 

Seidman, 2001). 

 

1.2 Primary Cardiomyopathies 

The term cardiomyopathy (literally, heart muscle disease) is used for describing heart 

diseases resulting primarily from the myocardium (Richardson et al., 1996). In many 

cases cardiomyopathies are idiopathic.  

In contrast to the situation described above, there has been significant progress in 

understanding the pathomechanism of primary cardiomyopathies. These diseases 

cause also cardiac remodelling, but in absence of other underlying cardiovascular 

pathologies. 

A major advance in our understanding in myocardial diseases, previously considered 

as idiopathic, has been the identification of specific genetic mutations in structural or 

contractile proteins, but also in proteins involved in the cardiac energy metabolism of 

the cardiomyocyte, which are responsible for myocardial dysfunction in many 

patients. 

The clinical approach is largely determined by one of the following clinical, 

functional and pathological patterns: 
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• Hypertrophic cardiomyopathy (HCM) 

• Dilated cardiomyopathy (DCM) 

• Restrictive cardiomyopathy  

• Arrhythmogenic right ventricular dysplasia (ARVD, also known as 

arrhythmogenic right ventricular cardiomyopathy or ARVC) 

• Non-compaction cardiomyopathy (NCC) 

 

DCM is the most common disease among these five categories, followed by HCM 

and the others. 

The gene MYBPC3 encoding for the Myosin binding protein-C is causing about 30-

35% of all HCM cases (Watkins et al., 1995) meaning it is one of the most common 

affected sarcomeric genes. But as discussed further down in this study, HCM reveals 

to be a much more complex disease, most likely also emerging from mutations 

concerning the energy metabolism of the cell, e.g. mutations in the PRKAG2-Gene, 

which encodes for the AMP-activated proteinkinase. 

 

1.3 Hypertrophic cardiomyopathy 

1.3.1 Disease Phenotype 

The British pathologist Donald Teare presented the first description of hypertrophic 

cardiomyopathy in detail in 1958 (Teare, 1958). According to the current available 

textbooks it is inherited in a mendelian autosomal dominant pattern caused by 

mutations in any of 9 sarcomeric genes. Epidemiological studies have pointed out a 

prevalence of phenotypically expressed HCM of one in 500, and therefore, the most 

common genetic cardiovascular disorder (Maron et al., 1995). 

It is characterised at the gross anatomical and clinical level by hypertrophy of the left 

ventricular myocardium in the absence of any other diagnosed etiology.  

The overall clinical phenotype of patients suffering from HCM is broad, ranging from 

a complete lack of cardiovascular symptoms to exertional dyspnea, angina pectoris 

and cardiac death often due to arrhythmias. However, the most devastating 

component is the sudden cardiac death (SCD), often in the absence of precedent 
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symptoms (Spirito et al., 1997). It is the most common cause of SCD death in young 

athletics. 

The mechanism of heart failure is an impairment of compliance, which causes a 

diastolic dysfunction.  

 

1.4 Molecular Genetics of Hypertrophic Cardiomyopathy 

1.4.1 HCM- a Sarcomeric Disease? 

HCM has become to be considered as a “disease of the cardiac sarcomere” (Richard et 

al., 2003). Until today, 9 gene loci encoding for proteins of the sarcomeric apparatus, 

with more than 400 mainly missense mutations have been identified predominantly by 

positional cloning. Despite this knowledge, in only about 60% of patients suffering 

from HCM a sarcomeric gene mutation is detected. This raised the hypothesis that 

some mutations may have been missed by the indirect sequencing techniques used, 

but such a significant proportion suggests also other causative genes leading to HCM 

remain to be identified (Ashrafian et al., 2003; Ashrafian & Watkins, 2007). 

Studying the genetic findings led to the proposal that incorporation of mutant 

sarcomeric proteins is not capable to permit normal myocyte contractility, triggering 

compensatory mechanisms that cause muscular hypertrophy (Lankford et al., 1995; 

Watkins et al., 1996; Marian, 2000). However, in vitro protein assays revealed 

divergent results: the majority of known mutations in sarcomeric proteins enhance 

contractility (Redwood et al., 1999). Therefore, the compensatory theory was 

consequently refuted.   

More recently, in patients with a hypertrophied myocardium a couple of genetic 

missense mutations were detected, encoding for proteins linked to the energy 

metabolism in the cell (e.g. PRAKG2, CSRP3) (Blair et al., 2001; Geier et al., 2003). 
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Table 1-1: HCM and phenotypically similar syndromes: Genes, chromosomal loci, gene product and 
mode of inheritance; AD, autosomal dominant; AR, autosomal recessive; AMPK, AMP-activated 
protein kinase; (Ashrafian & Watkins, 2007) 
 

Further, it is well known that diseases causing defects in cardiac energy metabolism, 

such as Friedreich’s ataxia and Senger’s syndrome exhibit HCM-like phenotypes. 

These data arose the widely accepted theory that HCM is a disease of energy 

deficiency (Ashrafian et al., 2003; Ashrafian & Watkins, 2007). Mutations in 

sarcomeric proteins are a potent source of energy deficiency subsequently to 

inefficient ATP usage (Sweeney et al., 1998; Ashrafian et al., 2003).  

 
Figure 1–1: As indicated in red, the phenotype of hypertrophic cardiomyopathy (HCM) can arise 
from: 1) excessive energy use (e.g., by aberrant sarcomeres); 2) inadequate energy production (e.g., 
from poorly functioning mitochondria), inadequate metabolic substrates, or a failure to transfer energy 
across cellular compartments owing to cytoarchitectural defects as exemplified by muscle LIM protein 
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(MLP) mutations; or 3) aberrant signaling of energy deficiency (e.g., with AMP-activated protein 
kinase [AMPK] mutations). The final common path for these diverse defects is energy deficiency and 
ensuing hypertrophy. ADP, adenosine diphosphate; AMP, adenosine monophosphate; ATP, adenosine 
triphospate; Cr, creatine; FAM, fatty acid metabolism; VLCAD, Very long chain fatty acid 
dehydrogenase. Modified from Ashrafian & Watkins, 2007. 
 

Taken together, HCM has revealed to be more complex than anticipated and the 

mutual feature of left ventricular hypertrophy of the mentioned genetic disorders 

seems to emerge from energy deficiency, caused by ineffective use (e.g. sarcomeric 

protein mutations), inadequate production (e.g. Friedreich’s ataxia) or inappropriate 

response of energy generating pathways (e.g. PRKAG2 mutations). 
 

1.5 The Myosin Binding Protein C  

The myosin binding protein-C (MyBP-C) is a thick filament-associated protein, which 

is localized to the crossbridge containing C-zones of the sarcomere. 35 years after its 

discovery, the precise function remains still obscure. Via interaction at its C-terminus 

with the light meromyosin proportion of myosin and the giant protein titin, MyBP-C 

contributes to the structure of the sarcomeric apparatus. On the other hand, the N-

terminal region seems to play a regulatory role for the actomyosin ATPase, and 

therefore for the rate of crossbridge cycling. Additionally, evidence has recently 

emerged that alteration of the phosphorylation status of the MyBP-C may contribute to 

cardiac ischemia-reperfusion injury (Sadayappan et al., 2006; Yuan et al., 2006). 

The C-terminal domains of MyBP-C are the subject of this study. Hence, the properties 

and functions of this protein will be described in detail. 

1.5.1 Characterisation of MyBP-C 

1.5.1.1 Initial Isolation as a Novel Myosin-Binding Protein 
Early X-ray diffraction and electron microscopy studies on vertebrate skeletal muscle 

revealed the presence of meridional reflections solely located in the A-band. In 1971, 

Offer and co-workers were interested in these reflections, which were unlikely 

thought to originate from myosin itself, due to their specific localisation. Separation 

of myosin preparations by SDS-polyacrylamide electrophoresis consistently revealed 

a series of unidentified thick filament associated proteins (Starr & Offer, 1971). 

Further fractionation of these led to the identification of MyBP-C (originally termed 
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C-protein from impurifying band C) as a myosin associated protein (Offer et al., 

1973). It occurs as a single polypeptide with a molecular weight of 135± 15 kDa. 

1.5.1.2 Localisation to the A-Band of the Sarcomere     
Determination of the localisation of the MyBP-C took place via antibody staining of 

skeletal muscle fibers (Pepe & Drucker, 1975; Craig & Offer, 1976). On each 

filament in the C-zone of the A-band, 11 stripes appear, irrespective of the filament 

lengths (Craig & Offer, 1976), 7-9 of which are thought being caused by the MyBP-

C; the precise number seems to be dependent on muscle type and has not been 

reported for cardiac muscle. Each stripe is 43 ± 0.2nm apart (see also refs. Rome et 

al., 1973; Bennett et al., 1986).  Due to the fact that myosin cross-bridges have a 

periodicity of 42.9 nm (Huxley & Brown, 1967), it is possible that the spacing of both 

proteins is in register, but alternative studies by Squire and co-workers (Squire et al., 

1982) proposed that there are in fact two slightly different axial repeats in the C-zone: 

42.9 nm repeats assigned to myosin cross-bridges, and 43.4 nm repeats which may 

correspond to MyBP-C.  The fact that MyBP-C can be labeled with antibody indicates 

that it lies on the surface of the myosin filaments, and transverse sections of stained 

muscle also suggest that it wraps around the circumference of the thick filament 

(Craig & Offer, 1976). 

 
Figure 1–2: Location of MyBP-C in the sarcomere. It is seen as 7-9 transverse stripes 43nm apart in 
the C- zone. (Oakley et al., 2007) 

1.5.1.3 Early Structural Characterisation of MyBP- C 
The purified skeletal C-protein occurs as a single polypeptide chain primarily as β- 

sheet with a very low α-helical fraction, as its high proline content suggests (Offer et 

al., 1973; Furst et al., 1992). At low (physiological) ionic strength, the sedimentation 



 

 9 

coefficient indicates a dimerisation of the protein (Offer et al., 1973). This has been 

supported by further work carried out by Hartzell & Sale, 1985. The full length of the 

extended bovine skeletal isoform is about 50nm (Furst et al., 1992). In contrast, 

investigations on cardiac and skeletal chicken MyBP-C has been delineated that a 

large proportion of the molecules occurs in a V-shape with one arm consistently 

longer than the other. The vertex of the V- shape seems to have a globular form 

(Hartzell & Sale, 1985; Swan & Fischman, 1986). 

1.5.1.4 Isoforms of MyBP C and other Myosin Binding Proteins 
MyBP-C is present not only in cardiac muscle, but also in fast skeletal and slow 

skeletal (originally described as MyBP-X) muscle. The genes encoding for the human 

fast (MYBPC2) and slow skeletal (MYBPC1) isoform are on chromosomes 19q13.33 

and 12q23.3, respectively (Weber et al., 1993) and the gene for the cardiac isoform 

(MYBPC3) is found on chromosome 11p11.2 (Gautel et al., 1995). These data 

demonstrate that the isoforms are not products of alternative splicing. In 1980, 

Jeacocke and England identified the cardiac isoform via phosphorylation studies of 

heart muscle extract (Jeacocke & England, 1980). Immunohistochemistry studies 

revealed that the fast and the skeletal isoform can be seen together in some muscle 

types (Reinach et al., 1983; Dhoot et al., 1985), and one year later they were seen 

even to coexist within the same sarcomere (Reinach et al., 1983). Yet in early studies, 

was reported the cardiac isoform being larger than the skeletal ones (Yamamoto & 

Moos, 1983). 

 

 
Figure 1–3: Sequence structure of MyBP-C isoforms. (Flashman et al., 2004) 
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Furthermore, Starr and Offer detected a related protein, MyBP- H (Starr & Offer, 

1971) consisting of 4 domains that has a 50% identity to the four C terminal domains 

of MyBP-C (Vaughan et al., 1993a; Vaughan et al., 1993b). It has been localized to 

the third stripe of the 11 seen in the C-zone (Bennett et al., 1986; Starr et al., 1985). 

 
Figure 1–4: EM photograph of isolated chicken heart muscle cell (own micrograph; magnification 
x2500) 

1.5.1.5 MyBP-C Expression Patterns 
In the mammalian heart, MyBP-C is expressed along with myosin and titin at an early 

stage (gestation day 8 for mice and week 11 for the human foetus). At no point is 

either of the skeletal isoforms expressed in the heart. In the skeletal muscle 

development, the skeletal MyBP-C isoforms are seen later, after myosin and titin 

expression. Gautel et al. have also reported an embryonic isoform (Gautel et al., 

1998), which is believed to be the cardiac isoform at least in chicken and axolotl 

(Ambystoma mexicanum) (Bahler et al., 1985; Kawashima et al., 1986; Ward et al., 

1996), unlike in mice, where the cardiac isoform is not transcribed at all during 

skeletal muscle development (Kurasawa et al., 1999). 

1.5.1.6 Structure of MyBP- C 
All three isoforms share a common structure of 10 globular domains numbered C1- 

C10, 7 of which are IgI-like domains with the remaining three being Fn3 domains. 

Domains C1 and C2 are separated by a conserved linker, called MyBP-C motif 

(Gautel et al., 1995) consisting of approximately 100 amino acids. The N-terminus of 

C1 is extended by a short proline/alanine-rich sequence.  

There are three specific characteristics occurring just in the cardiac isoform: an 

additional N-terminal Ig-I like domain termed C0 (Carrier et al., 1997), a nine amino 
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acid insertion (LAGGGRRIS) within the MyBP-C motif (Gautel et al., 1995) and a 

28-amino acid insertion within the C5 domain (Gautel et al., 1995).  

Additionally, there are three phosphorylation sites within the MyBP-C motif (A, B 

and C), one of which being on the LAGGGRRIS insertion (B). These cardiac specific  

features are conserved across species and have been shown in the sequence of mouse 

and chicken cardiac MyBP-C (Carrier et al., 1997).  

 
Figure 1–5: Structure of cMyBP-C; (Moolman-Smook et al., 2002) 

1.5.2 Biological Function 

1.5.2.1 Sarcomere Assembly and Stability 

1.5.2.1.1 Binding to the Light Meromyosin Portion of the Myosin Rod 
Studies performed by Okagaki et al. (Okagaki et al., 1993) confirmed the expectation 

that MyBP-C binds to the light meromyosin (LMM) portion of the myosin rod, 

forming the backbone of the thick filament. 
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Figure 1–6: Structural elements of the myosin molecule; (Gruen & Gautel, 1999) 
 
The domain involved in this interaction could be narrowed to the C-terminal domain 

C10 of MyBP-C (Okagaki et al., 1993; Alyonycheva et al., 1997) for all isoforms and 

the homologous H4 domain of MyBP-H. By using a range of N-terminally truncated 

LMM fragments, Flashman et al. have shown the cMyBP-C site on LMM lying 

between the residues 1554 and 1581 in vitro (Flashman et al., 2007). 

1.5.2.1.2 Binding to Titin 
Another interaction of the C-terminal region of MyBP-C occurs with the giant protein 

titin (Furst et al., 1992; Labeit et al., 1992; Koretz et al., 1993; Soteriou A, 1993). 

Titin lies most likely as three pairs along the length of the filament (Squire et al., 

1998; Liversage et al., 2001). Furthermore, C9 or C10 of MyBP-C has been shown 

being the binding domain, due to the fact that C8-C10 fragment binds to titin, whereas 

C5-C10 does not (Freiburg & Gautel, 1996). 

The precise localisation of the MyBP-C is thought being defined by its interaction 

with titin. This hypothesis is supported by the facts that the 11 super-repeats only 

occur in the C-zone and each 11-domain repeat has a periodicity of 43 nm like the 

MyBP-C rich stripes (Flashman et al., 2004). It is important to keep in mind that 

MyBP-C does not appear in stripes 1 and 2, therefore it seems reasonable to assume 

that additional factors must be present to direct MyBP-C in its particular position.  

Interactions of MyBP-C with LMM and titin are considered to stabilise the sarcomeric 

structure at least in vitro. This suggestion emerged from studies carried out by Moos 

et al., 1975  as in the presence of MyBP-C recombinant myosin filaments displayed 

an increased length, improved structure and compactness of the bulk (Flashman et al., 

2004). Furthermore, a disordered sarcomeric structure has been shown, if binding 
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sites of the MyBP-C and/or titin are missing (Winegrad, 1999). Therefore, MyBP-C 

might act as a molecular regulator for length of the thick filament due to assembly of 

the sarcomere. 

Two different MyBP-C knock out mouse models have been established (Harris et al., 

2002; Carrier et al., 2004). Surprisingly, both models were viable, suggesting that 

MyBP-C acts in a modulatory way rather than in an essential one. As one would 

expect, these models exhibited severe cardiac hypertrophy, myocyte disarray and 

increased amounts of interstitial fibrosis.  

In summary, the in vitro and in vivo data suggest that beside the MyBP-C other 

factors must be responsible for correct sarcomeric assembly. 

1.5.2.2 Contribution of the Regulation of Contraction 
As mentioned above, the second role of the MyBP-C is characterized by its 

contribution to the regulation of muscle contraction, which is exerted by N-terminal 

binding to the subfragment-2 (S2) of myosin. 

Gruen & Gautel, 1999 have shown this interaction is mediated by C1-C2, the N-

terminal fragment that can incorporate in the A-band of the sarcomere without 

disrupting myofibrillar integrity. This interaction occurs in a phosphorylated state of 

the protein and is abolished following dephosphorylation (Gruen et al., 1999; 

Flashman et al., 2004). 

In the cardiac isoform, three phosphorylation sites Ser273, Ser282 and Ser302 (A-C), 

have been reported. The order in which these sites are phosphorylated seems to be 

hierarchical, and it has been shown that kinases can modify these residues in vitro. 

Like the other two sarcomeric proteins, phospholamban and troponin I, cMyBP-C can 

be phosphorylated in response to β-adrenergic stimulation via cAMP-dependent 

protein kinase (PKA) (Jeacocke & England, 1980; Hartzell & Titus, 1982; Lim & 

Walsh, 1986; Garvey et al., 1988; Venema & Kuo, 1993). In vitro studies also 

revealed a phosphorylation of all three sites by the tightly associated 

calcium/calmodulin-dependent kinase II (CaMII) (Hartzell & Sale, 1985; Schlender & 

Bean, 1991). A further kinase, the calcium/phospholipid dependent kinase (PKC), 

seems to phosphorylate only site A and C (Mohamed et al., 1998; Winegrad, 1999; 

Flashman et al., 2004; Sadayappan et al., 2005). McClellan et al., 2001 suggested 

phosphorylation of site B by PKA or CaMII lying on the cardiac specific 

LAGGGRRIS insertion as indispensable, before sites A and C could become 
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sterically available for phosphorylation by PKA. These results raised the presumption 

that site B may play an important role in modulation of the phosphorylation level of 

cMyBP-C. In response to cholinergic stimulation, cMyBP-C is dephosphorylated by 

phosphatase 1 or 2A (Schlender et al., 1987).  

Regarding the aims of this study is also worthwhile to mention that in the chicken 

sequence of cMyBP-C Ser1169, located closed to the C-terminus, could 

phosphotrylated by PKC (Mohamed et al., 1998). 

The precise role of cMyBP-C is still under investigation; a current model is shown in  

Figure 1–7. 

 
Figure 1–7: Cardiac MyBP-C phosphorylation. (i) When dephosphorylated MyBP-C binds to myosin-
S2 via some part of the C1–C2 region, Myosin heads appear disordered. (ii) The endogenous CaM-II-
like kinase adds the first phosphate to site B (this serine can also be phosphorylated in vitro by PKA). 
Myosin heads appear to be lying on the backbone. It is unclear whether C1–C2 is still binding. (iii) The 
second and third phosphates are added to site A and site C by PKA, or in vitro by PKC or CaM-II 
kinase. C1–C2 no longer binds to myosin-S2 and the myosin heads appear ordered and extended. 
There is also a decrease in ATPase activity and an increase in Fmax and Ca2+ sensitivity. MyBPC is 
dephosphorylated by phosphatase 2A in vivo and phosphatase 2A or phosphatase 1 in vitro.(Oakley et 
al., 2007) 
 

Upon MyBP-C phosphorylation, an alteration in thick filament structure seems to 

occur. Levine et al. described an increased optical diffraction and filament thickness 

after phosphorylation of MyBP-C by PKA (Levine et al., 2001).  

Following phosphorylation of all three sites, myosin heads appear extended from the 

myosin rod (Weisberg & Winegrad, 1996). Furthermore, there was an increase in 
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order of the myosin heads and they took up a position that was more favourable for 

actin binding analogous to the pre-force generation “weak-binding” state of 

crossbridge cycle (Levine et al., 2001). Additionally, McClellan and co-workers also 

found a positive correlation of force and Ca2+-sensitivity with MyBP-C 

phosphorylation (McClellan et al., 2001). An increase in the phosphorylation level 

revealed an increase in time to half-relaxation, maximum Ca2+-activated force and 

also in Ca2+-sensitivity leading to stimulation of contraction at a lower Ca2+ level 

(McClellan et al., 2001). When the three phosphorylatable serine residues were 

replaced by nonphosphorylatable alanines in a transgenic mouse model, a depressed 

cardiac contractility was also observed (Sadayappan et al., 2005). These data raised 

the view that phosphorylation of MyBP-C abolish the interaction of C1-C2 with the 

S2 fragment of the myosin molecule. 

Furthermore, a report by Herron et al., 2006 is notable. They presented for the first 

time data, showing that N-terminal fragments (C0C1 and C0C2) of cMyBP-C could 

affect force production and crossbridge activity in skinned myocyte fibers from rodent 

and human ventricles in a previously unknown way. These results indicate that 

cMyBP-C could switch on crossbridge cycling in the virtually absence of Ca2+. In 

previous studies, as N-terminal fragments of cMyBP-C either containing C0 

(Kulikovskaya et al., 2003) or C1C2 (Wolff et al., 1995) were used, this phenomenon 

was not seen. 

Taken together, MyBP-C contributes to myosin thick filament structure, but the 

importance of this issue is not well understood. However, the abolished interaction of 

MyBP-C and subfragment 2 increases the actomyosin ATPase activity (Flashman et 

al., 2004) and MyBP-C acts, therefore, with other proteins as a regulator of 

contraction. 

1.5.2.3 Models of the Arrangement of cMyBP-C on the Thick Filament 
Early publications about MyBP-C suggested a multimerization of this protein (Offer 

et al., 1973; Hartzell & Sale, 1985), and subsequently several models of MyBP-C’s 

arrangement in the sarcomere have been proposed. In 1999, Winegrad suggested a 

model, whereby three MyBP-C molecules form a collar around the myosin rod, with 

the three C-terminal domains of one molecule binding to the three N-terminal 

domains of the next one (Winegrad, 1999). Based on the observation of an increase in 

thick filament diameter on cMyBP-C phosphorylation of this group (Weisberg & 
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Winegrad, 1998; Winegrad, 1999; Levine et al., 2001), it has also been speculated 

that the postulated interaction between C1-C2 and C8-C9 would be disrupted on 

phosphorylation of the MyBP-C motif. Thus, the interacting domains would shift, and 

binding would instead occur between domains C0 and C10, resulting in an expansion 

of the collar sufficient to still encircle the myosin filament. Another model for the 

binding of MyBP-C to the thick filament incorporating a potential interaction of 

MyBP-C to the thin filament has been hypothesized recently (Squire et al., 2003). In 

this model, the C-terminal domains of MyBP-C lie along the thick filament, and the 

N-terminal region is extending perpendicularly in the interfilamental space toward the 

actin filament. This arrangement respects the fact that C8-C10 is involved in titin 

binding (Freiburg & Gautel, 1996). 

Based on work carried out in the laboratory of Prof. H. Watkins, pointing an 

interaction of C5:C8 and C7:C10 (Moolman-Smook et al., 2002), Flashman et al. 

proposed a trimeric collar model, which is the most favoured one in the literature 

today (Flashman et al., 2004). More recently new support regarding this model arose 

from yeast-two-hybrid- and in vitro binding-assays (Flashman et al., 2008). In this 

model intermolecular interactions between staggered parallel cMyBP-C molecules 

encircle the thick filament. The C-terminal domains C5-C10 are believed to form the 

collar, whereas the N-terminal C0-C4 veer toward the interfilamental space, thereby 

interacting with subfragment S2 of the myosin molecule and very likely with the actin 

filament. This hypothesis is based on data suggesting an interaction between MyBP-C 

and actin via its proline/alanine rich region that is located at the N-terminus between 

C0 and C1 (Kulikovskaya et al., 2003; Squire et al., 2003).  

 
Figure 1–8: (A) Proposed trimeric collar of MyBP-C molecules around the myosin backbone. 
Domains C5-C10 of each molecule overlap in staggered parallel arrangement, stabilized by 
interactions between domains C5-C8 and C7-C10. (B) Arrangement of MyBP-C in the structure of 
sarcomeric apparatus. (Moolman-Smook et al., 2002) 



 

 17 

This model is consistent with early characterisation of MyBP-C (Moos et al., 1975; 

Hartzell & Sale, 1985). The collar would have the circumference of the length of nine 

domains. Assuming that domains C5-C10 are equivalent to the long arm of a V-

shaped structure seen by Hartzell & Sale, 1985, which is reported to be about 26 nm, 

and that these would account for about two thirds of the thick filament circumference, 

the collar dimensions would fit with the calculated backbone diameter of about 13-15 

nm (Squire et al., 1998; Flashman et al., 2004). Furthermore, it seems very likely that 

the collar represents the ring of mass, seen by Eakins et al. at every third crown of the 

myosin head (Eakins et al., 2002; Squire et al., 2005).  

1.5.3 Medical Implications 

1.5.3.1 Hypertrophic Cardiomyopathy 
As described earlier in this chapter familial hypertrophic cardiomyopathy (FHCM) is 

an autosomal dominant inherited disease that affects people with mutations in genes 

encoding for proteins in the contractile apparatus.  

Mutations in MYBPC3, encoding for the cardiac myosin binding protein-C, is 

responsible for more than one third of all cases. Since the report of the first mutation 

in this gene in 1995 (Watkins et al., 1995) until today nearly 150 mutations have been 

discovered (Richard 2006)(see also http://genetics.med.harvard.edu/%7eseidman/cg3/ 

muts/MYBPC3_mutations_TOC.html for a full list). Approximately two thirds of 

them cause generation of truncated protein products either by mutation of a splice 

donor or acceptor site leading to irregular splicing or deletion mutations that cause a 

shift in the reading frame leading to translation of a nonsense protein or giving a 

premature stop codon. Furthermore, a few single-base mutations resulting directly in a 

premature stop codon have also been published. It is worthy of mention that for the 

remaining missense mutations, particular hot spots have not been reported. Due to the 

fact that patients with mutations in MYBPC3 usually have a mild phenotype with a 

delayed onset of symptoms and a good prognosis (Arad et al., 2002b), it is 

hypothesized that mutations in MYBPC3 are the most common cause of HCM and the 

prevalence is underestimated (Richard et al., 2003). 

1.5.3.2 Ischemia-Reperfusion Injury 
Recent reports have suggested that changes in MyBP-C phosphorylation are linked to 

cardiac ischemia reperfusion injury. 
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As mentioned above, Sadayappan et al. have shown a significant decrease of MyBP-C 

phosphorylation during the development of heart failure or pathologic hypertrophy 

(Sadayappan et al., 2005). These findings are consistent with results obtained by 

Decker et al., 2005, showing decreased phosphorylation of MyBP-C and accelerated 

degradation of the protein during low-flow ischemia. 

Sadayappan’s group generated a transgenic mouse model, which had phosphorylation 

sites A-C mutated to alanine residues. These animals revealed depressed contractility, 

altered sarcomeric structure and upregulation of mRNA-transcripts associated with 

hypertrophic response.  

Taken together, these data suggest an essential role of MyBP-C phosphorylation for 

normal heart function.  

One year after Sadayappan’s report, a model has been constructed where the known 

three phosphorylation sites were mutated to aspartic acid, mimicking constitutive 

phosphorylation of cMyBP-C. Changes in sarcomeric ultrastructure, characterized by 

increased distances of thick filaments, as well as yeast two-hybrid- and 

cosedimentations-assays confirmed the presumption that charged residues in these 

positions sufficiently prevent interactions between MyBP-C and the myosin heavy 

chain. Furthermore, their data indicate a role of cMyBP-C in protection of the 

myocardium from ischemic injury (Sadayappan et al., 2006). 

In 2006, evidence was raised for novel phosphorylation sites that were detected in 

experiments during myocardial stunning, a period following episodes of ischemia and 

reperfusion (Yuan et al., 2006). The finding of previously unknown phosphorylation 

sites demonstrates once more the essential role of MyBP-C phosphorylation 

associated with various stages of heart pathology. 

 

1.6 The 5’-AMP- Activated Protein Kinase in the Heart 

1.6.1 Characterization of the AMPK 

The AMP-activated protein kinase (AMPK) is the central component of a highly 

conserved serine/threonine protein kinase cascade that exists in most mammalian 

tissues including heart muscle. This cascade plays a key role in the regulation of ATP 

levels in all tissues. The kinase, often referred to as a “fuel gauge” of cell energetic 

status, monitors the AMP/ATP ratio, making critical and continuous adjustments to 
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the relative balance of ATP-consuming and generating metabolic processes. Once 

activated, AMPK switches-on ATP-generating pathways, such as fatty acid oxidation 

and glycolysis, and switches–off many nonessential ATP-consuming anabolic 

pathways, such as fatty acid and protein synthesis, thus restores the energetic balance 

(Hardie & Carling, 1997; Hardie & Hawley, 2001; Hardie et al., 2006).  

Further, recent data have demonstrated that AMPK is also involved in the regulation 

of energy balance at the whole-body level (Kahn et al., 2005; Towler & Hardie, 

2007). 

For a long time, the roles of AMPK were underestimated, but the past decade has 

revealed an exponential increase in interest in the function of this protein during 

health and disease. Nevertheless, the AMPK is far away from being completely 

understood.  

 
Figure 1–9: Key processes of energy metabolism regulated by AMPK. (Hardie et al., 2006) 

1.6.1.1 The Structure of the Mammalian AMPK  
AMPK is a heterotrimeric enzyme complex, consisting of one catalytic subunit (α) 

and two regulatory subunits (β and γ). Two isoforms of α and β subunit and three 

isoforms of the γ subunit are encoded in the mammalian genome (α1, α2, β1, β2, γ1, 

γ2, γ3) (Hardie & Carling, 1997; Hardie & Hawley, 2001), each being encoded by a 

different gene (PRKAA1, PRKAA2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, 

PRKAG3). In humans, there have been two different γ2 mRNA transcripts reported, 

resulting from alternative promoters within PRKAG2. One encodes a 569 amino acid 

protein (here termed AMPK γ2 long) (Cheung et al., 2000) and the other a shorter 328 

amino acid protein, lacking the N-terminal extension (here termed AMPK γ2 short) 

(Lang et al., 2000). Therefore, 16 heterotrimeric complex combinations are possible. 
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Figure 1–10: Schematic representation of the structure of the known subunit isoforms of AMPK; Myr, 
myristoylation; CBS, cystathione β-synthase domain 
 

α1, β1 and γ1 are expressed in virtually every tissue and are described as 

housekeeping genes, therefore, they account for the majority of AMPK activity in the 

cell (Cheung et al., 2000). In humans α2 and β2 are strongly expressed in skeletal and 

heart muscle and are thought to account for particular AMPK functions. The γ2 

subunit has the highest sensitivity to AMP and is significantly expressed in several 

tissues including heart muscle. It is less abundant in skeletal muscle, where γ3 is 

expressed. In heart muscle predominantly appears a complex, consisting of α 2, β 2 

and γ2 subunits (Arad et al., 2007). 

Each α subunit contains a phosphorylation site (Thr172) that plays a critical role in 

regulating AMPK activity. The β subunit has not only structural maintaining 

properties, but also myristoylation, phosphorylation and glycogen binding sites 

(Warden et al., 2001; Hudson et al., 2003; Polekhina et al., 2003). One γ subunit is 

built out of four CBS motifs, named after cystathione β-synthase, which is found in a 

wide variety of proteins. A pair of CBS sequences forms a nucleotide-binding module 

called the Bateman domain. These modules can bind adenosyl compounds. Each γ 

subunit contains two of these nucleotide-binding-pockets, which are capable of a 

cooperative binding of two molecules either AMP or ATP, thereby regulating the 

interaction between γ and α subunits (Bateman, 1997; Hudson et al., 2003; Kemp, 

2004). At high levels of ATP, as occurs at rest, the enzyme is inhibited due to binding 

of ATP to the γ subunit (Frederich & Balschi, 2002).  In contrast, AMP binding to the 
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γ subunit, activates the enzyme by three different mechanisms: allosteric activation, 

conformational changes that enables phosphorylation of Thr172 by upstream kinases 

(AMPKK) and the prevention of dephosphorylation of the α subunit (Hardie, 2003). 

 
Figure 1–11: (A) under resting conditions, the enzyme is inhibited by ATP and possibly glycogen*. (B) 
During energetic stress, the γ subunit binds AMP causing a conformational change thereby allowing 
phosphorylation of the α subunit at Thr172 by upstream kinase, leading to activation of the enzyme. 
KD indicates the kinase domain of the enzyme complex. (Arad et al., 2007) 

1.6.2 Biological Functions 

1.6.2.1 AMPK in Cardiac Metabolism 
As mentioned above, AMPK is thought to act as a regulator of the energy status of the 

cell metabolism (Figure 1–12). Nevertheless, the precise role played by AMPK in the 

cardiac metabolism is not well understood. 

Questions that have to be answered in this context affect (i) particular functions of 

specific isoforms, (ii) identification of downstream targets and (iii) definition of 

activating stimuli as are known of AMP/ATP ratio. 
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Figure 1–12: AMPK increases ATP production in response to increased energy demand via several 
mechanisms. CaMKK, calmodulin-dependent protein kinase kinase; Glut4, glucose 4 transporter; 
PFK, phosphofructokinase; ACC, acetyl-CoA carboxylase. Modified from Arad et al., 2007  
 

Until today, two upstream kinases have been yet identified. LKB1, a kinase that 

appears to play a role in several cell processes including AMPK activation and the 

calcium/calmodulin-dependent kinase kinase (CaMKK) (Hawley et al., 2003; Hawley 

et al., 2005) that is activated in endothelial cells by nucleotides released from 

damaged tissue. Further, activation of AMPK via CaMKK occurs independently of 

AMP/ATP ratio (da Silva et al., 2006).  

1.6.2.2 AMPK in Cardiac Fatty Acid Metabolism 
AMPK impairs fatty acid metabolism by regulating fatty acid uptake as well as 

oxidative phosphorylation (Dyck & Lopaschuk, 2006). Enhancing of the oxidative 

phosphorylation is mediated by inhibition via phosphorylation of the actetyl-CoA 

carboxylase. Subsequently, the concentration of malonyl-CoA decreases and 

disinhibition of carnitin palmitoyl transferase (CPT1) occurs. CPT1 is the key enzyme 

of oxidative phosphorylation and is located at the outer membrane of the 

mitochondria. Disinhibition of CPT1 means cardiac mitochondria are provided with 

the preferred substrate for energy production: alcyl carnitine.  

Further, AMPK affects fatty acid metabolism by an increase of fatty acid uptake to 

cardiomyocytes by stimulation of protein expression and plasmalemma content of 

fatty acid transporter  (FAT/CD36) and membrane-associated binding protein 

(FABPm) (Chabowski et al., 2006). However, the exact mechanisms of stimulation 

are not yet known. 
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Figure 1–13: (A) Inhibition of the carnitine palmitoyl transferase via malonyl-CoA. (B) Disinhibition, 
if ACC is phosphorylated and, therefore, concentration of malonyl-CoA decreases. 

1.6.2.3 AMPK in Cardiac Glucose Metabolism 
Although the role of AMPK in glucose metabolism is incompletely understood, 

stimulation of glucose uptake is a broadly accepted mechanism (Luiken et al., 2004). 

Different studies have shown an increased expression of GLUT 1 and GLUT4 

transporters, whereby data about the involved targets are not uniform (Holmes et al., 

1999; Fryer et al., 2002; Nishino et al., 2004; Russell et al., 2004; Li et al., 2005; 

Yang & Holman, 2005).  

 
A 

 
B 
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However, an inactivation of AMPK via Akt as well as inhibition of the enzyme by 

insulin was reported.  Surprisingly, there are data that suggest a potentialisation of 

insulin signalling downstream target B under pharmacological stimulation. This might 

be an approach to explain the properties of oral anti-diabetics of the biguanide type. 

Further, glycolysis is stimulated by AMPK activating the key enzyme in the 

glycolytic pathway, phosphofructokinase (PFK1), indirectly by phosphorylation of 

PFK2, which converts fructose-6-phosphate to fructose-2,6-bisphosphate, an allosteric 

stimulator of PFK1 (Marsin et al., 2000) (Figure 1–14). Due to this fact, AMPK 

seems to play an essential role in the response to cellular stresses like anaerobic 

exercise and hypoxia (Arad et al., 2007).  

 
Figure 1–14: Impact of AMPK in the glycolytic pathway 

1.6.2.4 AMPK in the Glycogen Metabolism 
There is plenty of evidence that primary glycogen storage diseases (e.g., Pompe 

disease, McArdle disease) increase AMPK activity while decreasing glycogen 

synthase activity (GS) (Nielsen et al., 2002). However, the Seidman group has clearly 

shown impairment of glycogen metabolism by AMPK mutations (Arad et al., 2002a). 

It is far from being well defined, whether it is due to the altered phosphorylation 

status of glycogen metabolism (e.g. glycogen synthase, phosphorylase kinase) 

enzymes or caused by an increased glucose uptake (Carling & Hardie, 1989; Halse et 

al., 2003; Arad et al., 2007). 

Further, the mediation of transcription of genes involved in lipid and glucose 

metabolism is worthwhile to mention (Jorgensen et al., 2006).  
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To date the only known disease causing mutations in AMPK occur in the human 

PRKAG2 gene encoding for the γ2 subunit, and in the porcine PRKAG3 gene 

encoding for the γ3 subunit.  

In 1995 the Seidman group reported an association between WPW pattern and left 

ventricular hypertrophy in a large family. It was described as an autosomal dominant 

inheritance being located on the long arm of chromosome 7 (MacRae et al., 1995). 

The molecular pathogenesis remained unclear until 2001 as 2 groups (Blair et al., 

2001; Gollob et al., 2001a; Gollob et al., 2001b) reported four mutations in the 

PRKAG2 in five different families. Further, Arad et al., 2002a published three 

mutations responsible for disease in six families, including the Asn488Ile mutation in 

the family in which this syndrome was originally defined (MacRae et al., 1995).  

The clinical features associated with PRKAG2 missense mutations are summarized in 

the table below. 
 

Table 1-2: Mutations in AMPK γ subunit; Clinical cardiac features associated with PRKAG2 missense 
mutations; J, juvenile; A, adult; P, paediatric; Neo, neonatal; Pos, possible; Com, common; LVH, left 
ventricular hypertrophy; LV, left ventricle; CSD/PPM, conduction system disease requiring pacemaker 

Mutation 
Fam. 

# 

Pat. 

# 

Age of 

Onset 

LVH 

 

LV 
(Dysfunction/

Dilatation) 

Pre-

excitation 

CSD 

/PPM 
SCD SVT AFib Reference 

Arg302Gln 8 78 J-A Y Pos Y Y Y Y Y 
(Gollob et al., 

2001a; Arad et 

al., 2002a) 

Leu351ins 1 5 A Y Y Y Y Com - Y 
(Blair et al., 

2001) 

His383Arg 1 3 P Y Y Y - - Y - (Blair et al., 

2001) 

Thr400Asn 1 1 A Y - Y Y - - - 
(Arad et al., 

2002a) 

Asn488Ile 1 40 J-A Y Pos Y Y Rare Rare - 
(Arad et al., 

2002a; Murphy 

et al., 2005) 

Tyr487His 1 2 J Y - Y - - - - (Arad et al., 

2005) 

Glu506Lys 1 8 A 
Massive 

+RVH - Y - - - Pos 
(Bayrak et al., 

2006) 

Arg531Gly 1 4 P N N Y Y Pos Pos -- (Gollob et al., 

2001b) 

Arg531Gln 3 3 Neo Y - Y - - -  (Burwinkel et 

al., 2005) 

Ser548Pro 1 1 A  - - Y - -  
(Laforet et al., 

2006) 
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implantation, SCD, sudden cardiac death; AFib, atrial fibrillation; SVT, supraventricular tachycardia 
including atrioventricular reentry tachycardia; RVH; right ventricular hypertrophy; Y, yes; N, not 
reported; -, not reported but sample size and clinical data are sufficient to exclude; modified from Arad 
et al., 2007 
 
Left ventricular hypertrophy represents the most common cardiac manifestation (in 

80% of genetically affected patients). The principal electrophysiological abnormality 

in young individuals is ventricular preexcitation, found in approximately two thirds of 

patients harbouring a PRKAG2 missense mutation. Conduction system disorders 

occur in approximately 50% of affected people, often necessitating pacemaker 

implantation (Arad et al., 2007). Sudden cardiac death is not uncommon. Further, 

extra cardiac manifestations are usually less pronounced exceptional in neonatal 

disease (Burwinkel et al., 2005) but may include seizures, skeletal myopathy (Murphy 

et al., 2005; Laforet et al., 2006) and hypertension (Gollob et al., 2001b). 

Currently two different theories about the mechanism by which PRKAG2 mutations 

cause cardiac hypertrophy exist. The first one was mentioned in this chapter above 

suggesting a failure in enzyme activity leading to energy deficiency of the myocyte 

(Ashrafian & Watkins, 2007). Other researchers propose PRKAG2 cardiomyopathy 

being a unique type of glycogen storage disease primarily involving the heart (Arad et 

al., 2002a). The last one is supported by the known association between WPW and 

cardiomyopathy as seen in other glycogenoses (e.g. Danon disease, Pompe disease) 

1.6.2.5 Effects of PRKAG2 Mutations on AMPK Activity 
Several approaches have been taken to define the molecular mechanism of human 

mutations on AMPK function. These investigations are complicated by the fact that γ2 

containing enzyme complexes account for the minority of AMPK in the heart and 

elsewhere (Cheung et al., 2000; Li et al., 2006). Different   mutations were studied in 

yeasts and mammalian cell culture models (Jiang & Carlson, 1996; Hamilton et al., 

2001; Arad et al., 2002a; Daniel & Carling, 2002; Hawley et al., 2003; Barnes et al., 

2004; Scott et al., 2004; Burwinkel et al., 2005). These data raised the current 

consensus that in presence of adequate upstream kinases (LKB1, CaMKK), human 

mutations increase the basal activity of AMPK and reduce the sensitivity of the 

protein to AMP (Arad et al., 2007) 

 

 

 



 

 27 

1.7 Aims of the Study 

Both the Redwood/Watkins laboratory and their collaborators, the Carling laboratory 

in London, have been performing yeast-two-hybrid screens to identify novel binding 

partners of AMPK. A screen of a human cardiac library using the unique N-terminal 

region of AMPK γ2 as bait identified cardiac troponin I as a putative interactor; 

biochemical experiments confirmed that this protein was a good in vitro AMPK 

substrate and furthermore it was shown that AMPK phosphorylation altered 

contractile regulation mediated by troponin I (Oliveira et al., 2007). Another screen of 

the same library using the catalytic α1 subunit of AMPK revealed an interaction with 

the five C-terminal domains of cardiac MyBP-C. Prior to the start of my project, it 

was shown that AMPK was able to phosphorylate the C8- C10 fragment of cMyBP-C 

in vitro, and, based on the knowledge of AMPK phosphorylation sequences, the 

Carling laboratory suggested that the likely phosphorylation sites were residues 

Ser1024 and/ or Thr1026 in the C8 domain. The result of the α1 yeast two-hybrid 

screen and the subsequent preliminary phosphorylation studies formed the starting 

point for my studies described in this thesis. 

It was decided to test the hypothesis that the suggested residues constituted an AMPK 

site by phosphorylating recombinant C8 domain fragment in vitro with AMPK, and to 

produce C8 with the putative phosphorylation sites mutated. Primers were designed to 

mutate serine 1024 and threonine 1026 simultaneously to two aspartic acid residues. 

These cannot be phosphorylated by AMPK and the aspartic acid residues also mimic 

phosphorylated serine and threonine, making that the domain appears constitutively 

phosphorylated, which may be useful for subsequent functional experiments (see 

(Gautel et al., 1995).  

All the experimental work was performed in the laboratory of Dr. Redwood and Prof. 

Watkins at Wellcome Trust Center for Human Genetics in Oxford UK, an institution 

of the University of Oxford, UK. 
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2 Chapter  Material and Methods 
 

2.1 Enzymes, Chemicals and Equipment 

Chemicals were purchased from Sigma-Aldrich Inc., BDH Biochemicals or ICN 

Biomedicals Ltd.  Restriction enzymes were obtained from New England Biolabs 

(UK) Ltd.  DNA polymerases were purchased from Invitrogen Ltd. (Pfu DNA 

polymerase) or Bioline UK Ltd. (Taq DNA polymerase).  Other DNA modifying 

enzymes were purchased from New England Biolabs and Promega (UK) Ltd.   

Primers were synthesised by MWG Biotech AG and provided lyophilised.  They were 

resuspended in sterile distilled water to 100 pmol/µl and stored at –20°C. 

Polymerase chain reactions were carried out on a MJ Research PTC- 200 

thermocycler.  Centrifuges used were typically a bench top Biofuge (Heraeus® 

Instruments) for volumes up to 1.5 mls, a Jouan CR-4-22 (Jouan Inc.) for volumes  2-

6 mls, and a Sorvall® RC-5B (Kendro Laboratory Products) for volumes greater than    

6  mls. Chromatography columns were purchased from Amersham Pharmacia Biotech 

Ltd. 

 

2.2 Cloning of cMyBP-C- Encoding DNA Sequences 

2.2.1 Amplification of DNA Sequence using PCR 

T7-promoter and T7- terminator primers flanking the sequence of interest were used. 

The templates used for amplification had been previously cloned in our laboratory and 

were either a λZapII human cardiac cDNA library (Clontech, USA), or the full length 

MYBPC3 construct. The high fidelity, proofreading Pfu DNA Polymerase was used to 

help prevent the misincorporation of nucleotides into the final sequence.  A typical 

PCR was set up as follows: 
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µl 

Template (100-700ng/µl)  0.5 

Forward Primer (10 pmol/µl)  5 

Reverse Primer (10 pmol/µl)  5 

dNTP (2mM)    5 

10× Cloned Pfu buffer  5 

sterile, deionised H2O   28.5 

Cloned Pfu DNA Polymerase  1 

 

The PCR mix was heated to 94°C for 10 minutes to allow full denaturation of the 

DNA, followed by thermal cycling for 30-35 cycles, where one cycle was typically as 

below: 

94°C 40 seconds   (denaturation) 

55°C  40 seconds   (annealing) 

72°C 2 minutes per kb DNA (extension) 

A final extension time of 10 minutes at 72°C occurred before the PCR mix was 

cooled to 12°C. 

2.2.2 Site-directed Mutagenesis 

Plasmids containing the C0-C2, C8 and the C8-C10 fragments had previously been 

cloned in our laboratory.  To introduce missense mutations into the wild type 

sequences, site-directed mutagenesis was used.  Briefly, complementary primers 

incorporating the mutation were used in conjunction with the flanking vector primers 

to amplify two halves of the sequence by PCR.  These can be used to self-prime and 

form the full-length sequence.  Further PCR rounds with the flanking vector primers 

then amplified the product, which was digested with restriction enzyme sites for 

further cloning.  

2.2.3 Agarose Gel Electrophoresis 

Agarose gel electrophoresis was used to visualise PCR products alongside a marker 

(2-log DNA ladder, New England Biolabs® Inc.).  Typically, a 1.5% agarose gel was 

made by boiling 0.75 g agarose in 50 ml 1× TBE (National Diagnostics (UK) Ltd), 

then allowing it to cool to ~60°C.  Ethidium bromide was added to 0.2 µg/ml, and the 

gel poured and allowed to set for 30 minutes.  Gels were run in 1× TBE at 70-100V.  
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Ethidium bromide intercalating into the DNA allows the product to be visualised 

under UV illumination.  Slices of gel containing the desired DNA fragment were 

removed and the DNA extracted from the gel using the GeneClean II Kit (Qbiogene 

UK), following the manufacturer’s protocol. 

2.2.4 Restriction Enzyme Digest 

DNA fragments were digested simultaneously with Nde I and Hind III in buffer #2 

(New England Biolabs® Inc.) for 2 hours at 37°C, then cooled to 4°C.  The DNA was 

purified from the digest mix using the GeneClean II kit.  Vectors pET-28a 

(Novagen®) and pMW172(Way et al., 1989) were similarly digested with Nde I and 

Hind III.  In order to prevent religation of the vector, the 5’ phosphate groups were 

removed by incubating with calf intestine alkaline phosphatase for 60 minutes at 

37°C.  Digested vector was purified using agarose gel electrophoresis and the gel slice 

containing the desired DNA removed and purified using the GeneClean II kit. DNA 

insert and vector were ligated in a mix of volume 10 µl containing 1 µl T4 ligase (3 

units/µl) at either 25°C for 4 hours, or 15°C for 16 hours. 

2.2.5 Preperation of Competent Cells 

DH10β E.coli cells were streaked onto an L-agar plate and colonies grown at 37°C 

overnight.  One colony was used to inoculate 100 ml sterile Miller’s LB medium 

(Sigma-Aldrich, Inc.) which was grown in a shaking incubator (220 rpm) at 37°C 

overnight.  800 µl of this starter culture was used to inoculate 400 ml LB, which was 

grown shaking at 37°C until the visible light absorbance at 600 nm (A600) was 0.6-0.8.  

Cells were centrifuged at 750 ×g, 4°C for 5 minutes, and resuspended in 200 ml 

sterile 100 mM CaCl2/ 20%glycerol.  After incubation on ice for 20 minutes, the cells 

were centrifuged as before and resuspended in 8 mls 100 mM CaCl2/ 20%glycerol.  

Aliquots (200 µl) in sterile eppendorfs were stored at –80°C.  Other strains of E.coli 

used were made calcium competent using the same method. 

2.2.6 Transformation 

Ligation mix (10 µl), cooled to 4°C, was added to 100 µl competent DH10β E.coli 

cells and left on ice for 20 minutes.  This mixture was heat shocked for 45 seconds at 

42°C, and returned to ice for 1 minute.  To allow the cells to recover, 700-800 µl 

blank LB medium was added to the cells and they were allowed to grow at 37°C for 
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1hour before being plated on L-agar plates containing antibiotics (kanamycin at 30 

µg/ml or ampicillin at 100 µg/ml).  Plates were incubated at 37°C overnight 

2.2.7 Plasmid Purification 

Colonies resulting from transformation were used to inoculate 5 mls LB medium 

containing appropriate antibiotics, which were grown at 37°C, shaking at 220 rpm for 

~8 hours.  Plasmid DNA was purified from this culture using the QIAprep Spin 

Miniprep Kit (Qiagen (UK) Ltd) following the manufacturer’s protocol.  To check 

that the insert had been properly cloned, 10 µl of each plasmid miniprep were 

restriction digested with Nde I and Hind III, and 1 µl was used as template in a small 

scale PCR.  Agarose gel electrophoresis was used to check that digest and PCR 

products were of the correct size.  Culture containing a correct clone was used to 

inoculate 400 ml LB medium with appropriate antibiotics, which was grown shaking 

overnight at 37°C.  This culture was used to extract a large amount of plasmid DNA, 

using the QIAprep Maxi Prep Kit (Qiagen (UK) Ltd), following the manufacturer’s 

protocol. 

2.2.8 Sequence Verification 

Samples of all clones were sent for sequencing to the DNA Sequencing Facility, 

Department of Biochemistry, University of Oxford.  Results were compared to 

published sequence to ensure the clone sequence was accurate and in the correct 

reading frame with respect to the start codon and histidine tag.  This was done using 

Megalign™ (DNASTAR Inc). 

 

2.3 Protein Expression and Purification 

2.3.1 Protein Expression 

Two protein expression vectors were used during the course of this study.  pMW172 

was kindly donated by Dr. M. Way.  pET-28a, purchased from Novagen®, was 

chosen because there was an N-terminal histidine tag and restriction enzyme sites that 

allowed easy subcloning from the pMW172 vector when necessary. 

Constructs were transformed into BL21(DE3)pLysS cells (Novagen®) and colonies 

grown on L-agar plates inoculated with appropriate antibiotics (chloramphenicol at 25 
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µg/ml and ampicillin at 100 µg/ml or kanamycin at 30 µg/ml) at 37ºC overnight.  

Single colonies were used to inoculate 100 ml LB media, which was grown overnight 

at 37ºC on a shaking platform at 200-250 rpm.  15 ml of starter culture was used to 

inoculate typically six flasks of 800 ml of LB media which were then grown at 37ºC 

on the shaking platform until the cells reached the mid-log phase of growth where 

A600 = 0.6-0.8 (typically 2.5 hours).  IPTG was then added to a concentration of 400 

µM to induce protein expression, which continued under conditions most favourable 

for the production of soluble protein (typically 37ºC for 3 hours).  At the end of 

protein expression, cells were harvested by centrifugation at 10,000 ×g, 4ºC for 6 

minutes.  The cell pellet was stored at –80ºC before protein was extracted and 

purified. 

2.3.2 Extraction of Soluble protein 

Cell pellets were thawed and resuspended in denaturing lysis buffer (10 ml 

buffer/pellet from 800 ml cell culture), plus TAME and TLCK.  Once the cells had 

been resuspended, PMSF was added and the lysate kept on ice for at least 15 minutes.  

DNAse I, MgCl2 and MnCl2 were then added and the lysate kept on ice for a further 

15 minutes, before being spun at 20,000 ×g for 20 minutes at 4°C.  The supernatant 

was retained for purification of protein. 

2.3.3 Extraction of Insoluble Protein 

Cell pellets were thawed and resuspended in 10 ml native lysis buffer per pellet from 

800 ml culture (see 2.6 for a list of all buffers), plus protease inhibitors: 10 µg/ml 

TAME, 5 µg/ml TLCK and 0.5 mM PMSF.  Approximately 10 mg/pellet lysozyme 

was added to the lysate, which was then placed on ice for at least 15 minutes, 

followed by sonication with a microtip at 25-30% amplitude for 6 × 30 seconds. 2 mg 

DNAse I, 10 mM MgCl2 and 2 mM MnCl2 were added to the lysate, which was again 

left on ice for 15 minutes, before being spun at 20,000 ×g for 20 minutes at 4°C.  The 

supernatant was retained for purification of soluble protein. 

2.3.4 Purification of Soluble His-tagged Protein 

4-6 ml Ni2+-NTA resin (Qiagen (UK) Ltd.) was added to the soluble cell extract and 

left mixing at 4°C for 1 hour.  The extract/Ni2+-NTA mix was then passed through a 

filter column, whereby Ni2+-NTA resin and bound protein was retained, and unbound 
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protein passed through the filter by gravity (retained for SDS-PAGE analysis).  The 

Ni2+-NTA resin was then washed with 3× 8 ml native wash solution (retained for 

SDS-PAGE analysis), and eluted with 7× 1 ml native elution buffer (with a high 

imidazole content: see 2.6).   Samples were taken of each elution fraction for SDS-

PAGE analysis, and those containing protein were either mixed with an equal volume 

of cyro-protecting glycerol and stored at -80°C (if purity was high), or retained for 

further purification. 

2.3.5 Purification of Insoluble His-tagged Protein 

An equal volume of His-Trap chelating buffer A was added to the cell extract, which 

was then loaded onto a superloop (150 ml), attached to an ÄKTAFPLC® (Amersham 

Pharmacia Biotech Ltd.).  Two column volumes of water were passed through a 1ml 

or 5ml chelating column, followed by two column volumes of NiSO4.  Excess NiSO4 

was removed with further 2 column volumes of water, and the column was attached to 

the FPLC.  The system was equilibrated with His-Trap chelating buffer A, and the cell 

extract passed over the column. Flow through was retained for SDS-PAGE analysis.  

Protein was then eluted from the column with an increasing gradient of His-Trap 

chelating buffer B (with a high imidazole content).  Samples were taken of each 

elution fraction for SDS-PAGE analysis, and those containing protein were either 

stored at -80°C (if purity was high), or retained for further purification. 

2.3.6 Ion Exchange Chromatography 

Proteins could be further purified on the basis of a charge interaction.  Positively 

charged proteins bind to cations in a Q column and negatively charged proteins bind 

to anions in an S column.  Proteins were either dialyzed, buffer exchanged or diluted 

into the appropriate buffer A (low salt concentration: see 2.6) and passed over an 

appropriately sized column attached to the FPLC by injection from a 2 ml loop or the 

superloop.  Flow through was retained for SDS-PAGE analysis, and the protein was 

eluted with an increasing gradient of buffer B (high salt).  Samples were taken of each 

elution fraction for SDS-PAGE analysis, and those containing protein were either 

stored at  -80°C (if purity was high), or retained for further purification. 
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2.3.7 Size Exclusion Chromatography 

A size exclusion (gel filtration) column was attached to the FPLC and equilibrated in 

the appropriate buffer (e.g. that in which the protein is dissolved).  Buffer was passed 

over the column at a speed of 0.3-0.5 ml/min.  Proteins were loaded onto the 2 ml 

loop and injected onto the column, passing through it in order of decreasing size.  

Elution fractions were collected and analysed by SDS-PAGE.  Those fractions 

containing pure protein were stored at -80°C, mixed with an equal volume of glycerol, 

if they were not denatured with urea-containing buffer. 

2.3.8 SDS Polyacrylamide Gel Electrophoresis 

Sodium dodecyl sulphate (SDS) is an anionic detergent that, when in the presence of a 

reducing agent and heat, binds to denatured protein stoichiometrically and in a non-

sequence dependent manner.  SDS-polypeptides can be separated on a gel as they 

migrate according to their molecular weight, thus when run alongside standard 

markers, the approximate molecular weight of a protein can be determined or 

confirmed.  Gels are run in a reservoir buffer that differs in pH and ionic strength to 

the gel such that the negatively charged SDS-polypeptide migrates through a highly 

porous stacking gel, followed by a separating gel with higher acrylamide content to 

increase the resolution of the samples.  In this study the Mini-PROTEAN II gel 

apparatus system (Bio-Rad Laboratories (UK) Ltd) was used, with ultra pure 

ProtoGel® (National Diagnostics (UK) Ltd) to pour gels. 

Protein samples were typically 15 µl protein added to 5 µl 4 × SDS loading buffer.  

For cell samples, 90 µl cells were spun at 16,000 ×g for 1 minute then the pellet 

resuspended in 30 µl 4 × SDS loading buffer.  Gel samples were boiled at 95°C for 5 

minutes, and 5 µl (typically) loaded onto the gel which was run at 200 V for 50 

minutes.  The gel plates were separated and the gel stained with Coomassie stain for 5 

minutes before being destained in a mix of 10% methanol and 10% acetic acid.  When 

fully destained, gels were scanned using an Epson Perfection 1260 scanner. 

2.3.9 Quantification of Protein 

Protein quantification was accomplished by using BCA™
 Protein Assay Kit (Pierce 

Biotechnology Inc.). This assay allows colorimetric detection and quantification of 

total protein by combining the well-known reduction of Cu2+
 to Cu1+

 caused by the 
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reaction of Cu2+
 with peptide bonds in alkaline conditions (the biuret reaction) with 

the reaction of Cu1+
 with bicinchoninic acid (BCA) in which two molecules of BCA 

chelate with one Cu1+
 and form a complex that is purple in colour. Such complex is 

soluble in water and absorbs light at 562 nm in a nearly linear way with increasing 

protein concentrations. The following briefly describes the procedure undertaken to 

quantify a certain protein. 

Typically, a series of bovine serum albumin (BSA) samples of known concentration 

(standards) were prepared in 1.5 mL microcentrifuge tubes. Protein samples to be 

quantified were prepared in triplicate by mixing 10 µl of protein with 40 µl of 

deionized water. BCA™
 Working reagent was then prepared by mixing 10 ml of 

BCA™ Reagent A (which contains BCA in an alkaline environment) with 200 ml of 

BCA™
 Reagent B (which contains cupricsulphate) (50:1 ratio of Reagent A to B).      

1 ml of BCA™ Working Reagent was added to each tube and each reaction was 

mixed well. The reactions were then incubated at 37ºC, for 30 minutes and, after this, 

the absorbance of all the samples was measured at 562 nm. Finally, a BSA standard 

curve was prepared by plotting the absorbance measurements of the BSA standards 

against their respective concentrations and the concentration of the protein was 

determined out of this standard curve. 

2.3.10 Western Blotting 

Western Blotting is a technique that allows immunological detection of proteins 
following electrophoresis. It relies on the fact that most epitopes (sites recognized by 
antibodies, generally comprising several amino acids) are still recognizable following 
denaturing of the protein and binding to the surface of a membrane. Its high degree of 
sensitivity and specificity makes it, in general, an excellent tool for protein analysis even 
in situations of complex mixtures containing only traces of the desired protein. In this 
study, Western Blotting was carried out as described below. 
In general, protein samples to be analyzed were prepared and separated by SDS-PAGE 
as described in section 2.3.8. Following this, and using the Mini Trans-Blot 
Electrophoretic Transfer Cell (Bio-Rad Laboratories Ltd.) system, the gel was 
sandwiched with an Immuno-Blot PVDF membrane (Bio-Rad Laboratories Ltd.) as 
shown in Figure 2.1 and the cassette was then placed in the transfer tank (inside the 
electrode module) filled with Western Blotting Transfer Buffer (see section 2.6 for 
composition). Electrophoretic transfer was performed at 200 mA, 4ºC, for ~4 hours, 
with stirring. The membrane (blot) was then blocked with Western Blotting Blocking 
Buffer (see section 2.6 for composition) for 1 hour, at room temperature, on a shaking 
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platform, in order to prevent unoccupied protein binding sites from non-specifically 
immobilizing antibodies in the following steps. After this, the blot was incubated with an 
appropriate primary antibody (diluted in Western Blotting Blocking Buffer) at 4ºC, 
overnight. After extensive washing in Western Blotting Washing Buffer (see section 2.6 
for composition), the blot was incubated for 1 hour at room temperature with an 
appropriate horseradish peroxidase (HRP)-conjugated secondary antibody diluted in 
Western Blotting Blocking Buffer. Finally, after further extensive washing in Western 
Blotting Washing Buffer, the blot was developed using SuperSignal West Pico 
Chemiluminescent Substrate (Pierce Biotechnology Inc.) according to the 
manufacturer’s instructions. 

 

Figure 2–1: Diagram of the preparation of the transfer “sandwich” 

 

2.4 Protein Modifications 

2.4.1 Protein Concentration 

If necessary, proteins were concentrated using the Vivaspin 6 or 20 ml ultrafiltration 

device (Vivascience (UK) Ltd.), with a 5000 Da molecular weight cut-off.  Protein 

was placed in the concentrator and centrifuged in a swing-bucket centrifuge at a 

maximum of 3000 ×g until the desired volume of protein remained. 

2.4.2 Refolding of Denatured Protein 

Dialysis was used to change the buffer of protein in denaturing solutions into 

phosphorylation assay buffer without urea. The dialysis procedure took place with a 

narrow dialysis tube, knotted at one end and closed with a clamp under gentle 

pressure at the other end. The tube was put in 1000 ml beaker containing the desired 

buffer and stirred using a magnetic bar at 4°C for more than 3 hours. 
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2.4.3 Cleavage of His-tag 

When removing of the histidine tag from the N-terminus of a protein was necessary, it 

was possible to cleave the tag using the Thrombin Cleavage Capture kit (Novagen®).  

Protein was dialyzed into thrombin cleavage buffer, and the concentration measured 

so the correct quantity of thrombin could be added (1 unit per mg protein).  The 

thrombin/protein mix was left at 4°C overnight, then 32 µl streptavidin-agarose slurry 

was added per unit of thrombin.  This was allowed to mix at 4°C for 1 hour for the 

streptavidin to capture the biotinylated thrombin, and was then passed through a 

gravity flow column.  Cleaved protein (flow through) was retained and checked by 

SDS-PAGE against uncleaved protein.  Cleaved tag was removed by size exclusion 

chromatography or incubation with Ni2+-NTA resin (Qiagen (UK) Ltd.). 

2.4.4 In vitro Phosphorylation Assay using 5’-AMP-Activated Kinase 
The AMPKK (recombinant CaMKKb)-activated recombinant AMPK complexes used 
in this study [a1b1 2Long, a1b1 2short] were a kind gift from Dr. Joanna Davies and 
Professor David Carling (MRC Clinical Sciences Centre, Imperial College London). 
In general, phosphorylation reactions of 30 µl or 20 µl were set up using a desired 

amount of substrate in phosphorylation assay buffer, 125 µM AMP, 1 µL activated 

AMPK and, finally, 5 µl of a solution of ATP/MgCl2 (for example, a 50 µl solution 

would contain 1 µl 32P-ATP, 0.5 µl 100 mM ATP, 1.25 µl 1 M MgCl2 and 47.25 µl 
H2O). Following this, reactions were incubated at 37ºC for ~1 hour. Samples were 
analyzed for substrate phosphorylation by SDS-PAGE, followed by autoradiography 
and/or phospho imaging. 

2.4.5 2-Dimensional Phosphoamino Acid Analysis 

After phosphorylation reaction as described earlier 2 µl 10 mg/ml BSA (carrier 

protein) and 250 µl 100% TCA were added to 25 µl phosphorylated protein. This mix 

was incubated on ice for 1 hour. Following centrifugation at 13,000 rpm for 10 

minutes, supernatant was carefully removed because it contains unincorporated 32P-

ATP. The pellet was washed with 500 µl 100% ethanol and centrifuged at 13,000 rpm 

for 5 minutes. After removing as most as possible of ethanol, the pellet was air- dried 

and resuspended in 100 µl 5.7M HCl for chopping the protein fragment in single 

amino acids and incubated at 100°C for 30 minutes. 
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After removing HCl by drying in a Speedvac the pellet was resuspended in 5 µl        

pH 1.9 buffer with phosphoamino acid standards (Serine, Threonine, Tyrosine). This 

mix was applied to a cellulose plate. In the next step, the plate was wetted and 

electrophoresis in pH 1.9 buffer at 1500 V for 20 minutes was performed using the 

HTLE-7002, Hunter thin layer electrophoresis system (C.B.S Scientific company, 

INC.). After drying of the plate via hair dryer it was rewetted in pH 3.5 buffer. The 

following electrophoresis was performed in pH 3.5 buffer at 1300 V for 16 minutes in 

the HTLE-7002, Hunter thin layer electrophoresis system (C.B.S Scientific company, 

INC.) at the orthogonal direction of the first electrophoresis. After complete drying of 

the cellulose plate it was sprayed with ninhydrin for visualization of the amino acid 

standards. Following another drying step an autoradiography was performed and 

compared with amino acid standards on the cellulose plate. 

 

2.5 Primers 

T7 Promoter (pET-28a) 
5’ -TAA TAC GAC TCA CTA TAG GG - 3’ 
T7 Terminator (pET-28a) 
3’ -GCT AGT TAT TGC TCA GCG GT- 5’ 
T7 forward (pMW-172) 
5’ -GAC TCA CTA TAG GGA GAC C- 3’ 
T7 reverse (pMW-172) 
3’ -CGG GCT TTG TTA GCA GCC G- 5’ 
cMyBP-C WT C8- F 
5’ -GCA GAA AAG CAT ATG CTG CCC AGG CAC CTG CGC CAG- 3’ 
cMyBP-C WT C8- R 
3’ -GCA GAA AAG CTT CTA TGG CTT GTC AAC AAC CTG CAG- 5’ 
Mutant A C8- S1020A- F 
5’-GCA GGC GAG GAG GTG GCC ATC CGC AAC AGC CCC- 3’ 
Mutant A C8- S1020A- R 
3’ -CGT CCG  CTC  CTC CAC CGG TAG GCG TTG TCG GGG- 5’ 
Mutant B C8- S1040A- F 
5’ -GCT CGC CGC  GTG CAT GCA GGC ACT TAC CAG GTG- 3’ 
Mutant B C8- S1040A- R 
3’ -CGA GCG GCG CAC GTA CGT CCG TGA ATG GTC CAC- 5’ 
Mutant C C8- S1020A; S1024A- F 
5’ -GCA GGC GAG GAG GTG GCC ATC CGC AAC GCC CCC ACA GAC ACC 
ATC -3’ 
Mutant C C8- S1020A; S1024A- R 
3’-CGT CCG  CTC  CTC CAC CGG TAG GCG TTG CGG GGG TGT  CTG TGG 
TAG -5’ 
Mutant F C8- S1024D; T1026D- F 
5’- AGC ATC CGC AAC GAC CCC GAT GAC ACC ATC CTG – 3’ 



 

 39 

Mutant F C8- S1024D; T1026D- R 
3’- CAG GAT GGT GTC ATC GGG GTC GTT GCG GAT GCA- 5’ 
cMyBP- C WT C9 F  
5’- ACT GCA GAA CAT ATG CCA AGT CCT CCC CAG GAT CTC- 3’ 
cMyBP- C WT C9 R 
3’- GCA GAA AAG CTT CTA TGG GGC CTC GGA GAA GTC CAG- 5’ 
HexHis Forward 
5’- TAT GCA TCA TCA TCA TCA TCA- 3’ 
HexHis Reverse 
3’- TAT GAT GAT GAT GAT  GAT GCA- 5’ 
 

2.6 List of buffers 
DNA Loading Buffer     40% Glycerol 

0.5mL EDTA pH8.0 
a minute amount of Bromophenol Blue 

 
Native lysis buffer  50mM sodium phosphate pH8.0 
  300mM sodium chloride 
  10mM imidazole 

 
Native washing buffer  50mM sodium phosphate pH8.0 

  300mM sodium chloride 
  20mM imidazole 

 
Native elution buffer  50mM sodium phosphate pH8.0 

  300mM sodium chloride 
  250mM imidazole 
 

Denaturing lysis buffer  50mM sodium phosphate pH8.0 
  300mM sodium chloride 

  10mM imidazole 
  6M Urea 

 
Denaturing washing buffer  50mM sodium phosphate pH8.0 

  300mM sodium chloride 
  20mM imidazole 
  6M Urea 
 

Denaturing elution buffer  50mM sodium phosphate pH8.0 
  300mM sodium chloride 

  250mM imidazole 
  6M Urea 

 
New improved lysis buffer 25mM Tris-HCl pH7.5 

 20% sucrose 
 1mM EDTA pH8.0 
 200mM NaCl 
 5M urea 

0.1% Triton x100 
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MyBP- C reconstitution buffer 3M 50mM NaPO4   

 300mM NaCl 
 3M Urea 
  

MyBP- C reconstitution buffer 1.5M 50mM NaPO4 

 300mM NaCl 
 1.5M Urea 
 

Phosphorylation assay buffer 50mM Hepes pH 7.4 

 150mM KCl 
 5mM MgCl2 
 0.5mM DTT 
 

SDS-PAGE stacking gel buffer  125mM tris hydrochloride pH6.8 
 0.2% SDS 

  
SDS-PAGE separating gel buffer  375mM tris hydrochloride pH8.8 

 0.2% SDS 
  

SDS-PAGE running buffer 25mM tris-base pH8.8 
 19.2mM glycine 
 1% SDS 
 

SDS-PAGE stacking gel buffer for low  30% acrylamide/0.8% bisacrylamide  
Molecular weight 3M Tris-HC 

 Glycerol 
 Water 
 25% APS 
 TEMED 

 
SDS-PAGE resolving gel buffer for low 30% acrylamide/0.8% bisacrylamide  
Molecular weight 3M Tris-HC 

 Glycerol 
 Water 
 25% APS 
 TEMED 

 
SDS-PAGE protein loading buffer 50mM tris hydrochloride pH6.8 

 40% glycerol 
 2% SDS 
 10% β-mercaptoethanol 
 spatula bromophenol blue 

 
Western Blotting Blocking Buffer  0.05M Tris-HCl pH7.5 
 0.15M NaCl 
 0.05% Tween 20 
 2% (w/v) Low Fat Milk Powder 
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Western Blotting Transfer Buffer  0.05M Tris Base 
 0.4M Glycine 
 0.05% SDS 
 20% Methanol 
 
Western Blotting Washing Buffer  0.05M Tris-HCl pH7.5 
 0.15M NaCl 
 0.05% Tween 20 
 
Coomassie stain 0.5% coomassie blue 
 50% methanol 
 10% acetic acid 

 
Destain  10% Methanol 
 10% Acetic Acid 
   
Thrombin cleavage buffer   200mM tris hydrochloride pH8.4 
 1.5M sodium chloride 
 25mM calcium chloride 
 
HIS-trap chelating buffer A    20mM tris hydrochloride pH8.0  
        500mM sodium chloride  
              6M urea  
              1mM β-mercaptoethanol  
   
HIS- trap chelating buffer B    20mM tris hydrochloride pH8.0  
        500mM sodium chloride  
              1mM β-mercaptoethanol  
              500mM imidazole  
   
Q buffer A          50mM tris hydrochloride pH8.0  
        1mM EDTA pH8.0  
             1mM β-mercaptoethanol  
              6M urea  
  
Q buffer B       50mM tris hydrochloride pH8.0  
              1mM EDTA pH8.0  
              1mM β-mercaptoethanol  
              6M urea  
              2M sodium chloride  
   
S buffer A          20mM MOPS pH6.5  
              1mM EDTA pH8.0  
              1mM β-mercaptoethanol  
              6M urea  
  
 S buffer B          20mM MOPS pH6.5  
              1mM EDTA pH8.0  
              1mM β-mercaptoethanol  
              6M urea  
              2M sodium chloride  
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3 Results 
 

3.1 Introduction 

Work carried out in this study required the expression and purification of a variety of 

single cMyBP-C domains or groups of domains. Just a few of them had previously 

been expressed and purified in our laboratory, hence procedures had to be established 

to obtain a sufficient yield for each protein needed. This chapter describes the 

processes whereby favourable conditions for expression and purification of soluble 

protein were determined. Expression of some of the domains did not yield high levels 

of soluble protein. However, the experiments performed for the detection of 

phosphorylatable residues do not require a huge amount of soluble protein. 

Optimisation of the methods and protein refolding is also described. 

 

3.2 Expression and Purification of Recombinant cMyBP-C 

Domains 

3.2.1 Choice of Expression Vector 

The construct of C8 wildtype domain had previously been cloned in the (Novagen®) 

pET-28a vector in our laboratory.  

Previous attempts at expression and purification of this domain in the pMW172 vector 

with and without a hexahistidine-tag inserted as a linker at the NdeI site were not 

successful. The pET series of vectors (Novagen®), based on the initial vectors 

described by Studier et al., 1990, have a wide range of options regarding fusion tags 

and multiple cloning sites. In our laboratory, the pET-28a has been chosen, as it 

contains an intrinsic N-terminal histidine-tag that can specifically bind to a Ni2+-resin, 

from which the expressed protein could be eluted by an imidazole gradient. There was 

also a thrombin cleavage site C-terminal of the His-tag allowing removal of the tag 

from the recombinant protein if necessary. Additionally, the restriction enzyme sites 

in the multiple cloning region allowed easy transfer of sequences from pMW172 

using the NdeI and HindIII sites with which they were originally cloned. Although the 

protein expression levels were typically reduced using this vector in previous 

experiments carried out in our group, the protein purification was much facilitated. 



 

 43 

Therefore, the majority of MyBP-C domains used in this study were expressed from 

this vector and purified initially using Ni2+-histidine affinity techniques. 

3.2.2 Choice of Protein Extraction  

Once E.coli expressing the desired protein have been grown and harvested, they need 

to be lysed so that the protein can become solubilised for purification. There are two 

ways of doing this: Lysis under native or under denaturing conditions.  

Resuspension under denaturing conditions (e.g. in the presence of urea) ensures that 

all protein in the cell is solubilised to give the highest possible yield. However, urea 

has to be removed by dialysis for correct refolding of the protein, as it is required in 

its native state for the further experiments.  

Attempts to purify the C8 domains under native conditions failed and I decided to 

switch to the denaturing procedure in presence of 6 M urea.  

 
Figure 3–1: SDS-PAGE gel after purification of C8 wildtype domain of cMyBP- C in pET28a under 
native conditions and after gravity Ni2+ column; many impurities; M, marker; E, eluate fraction; F, 
flowthrough fraction; W, washing fraction; 1,2,…, protein fractions eluted from the column by 250 mM 
imidazole  
 

 



 

 44 

 
Figure 3–2: SDS-PAGE gel after purification of C8 domain of cMyBP- C in pET28a under denaturing 
conditions, after gravity Ni2+column; relatively pure 
 

The first step of purification of proteins expressed in the pET-28a vector was a Ni2+- 

NTA resin column (Qiagen UK Ltd.) as described in chapter 2, followed by a gel 

filtration column on the FPLC machine. 

 
Figure 3–3: SDS-PAGE gel after purification C8 domain of cMyBP- C in pET28a under denaturing 
conditions, after Gel filtration  column; fractions 5-8 pure; Co, control 
 

After pooling the pure fractions (e.g. 5-8 in the figure above) and performing a protein 

assay for quantification of the yield, the protein was either stored at -80°C or kept at 

4°C for further work. Since the protein was purified in presence of urea it was not 

necessary to add glycerol for storing at -80°C. 
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It is essential for the phosphorylation experiments to dialyse the protein into the 

appropriate buffer while ensuring correct refolding of the domain. The standard 

protocol for removing urea uses a gradient dialysis, three hours in MyBP-C 

reconstitution buffer containing 3 M urea, three hours in MyBP-C reconstitution 

buffer containing 1.5 M urea and eventually in the phosphorylation assay buffer, 

which contains no urea. This approach was unsuccessful, however, as a considerable 

amount of precipitation occurred during dialysis, indicating insoluble protein and of 

course reduces the amount of the protein desired.  

After a couple of unsuccessful attempts to remove urea with gradient dialysis, I 

decided to dialyse immediately in phosphorylation assay buffer. For unknown reasons 

this protocol was sufficient to yield a proper amount of protein. 

After assessing the quantity of protein and running a sample on a SDS-PAGE gel, a  

phosphorylation reaction was performed. It was carried out using γ 32P-ATP and 

AMP-activated kinase (AMPK) set up as described in the previous chapter.  

As shown in the figure above and as we had expected from the results 

obtained by Carling and co-workers, the C8 domain is a good in vitro 

substrate for AMPK. The amount of 32P incorporated and the time 

course of incorporation was similar to troponin I, an established 

substrate (data not shown). Therefore, the first part of the hypothesis, 

that C8 was an AMPK substrate, was apparently proven and the C8 

(Ser1024D;Thr1026D) mutant was then generated. 
 
 
 
 
 

Figure 3–4: Autoradiography of MyBP-C C8 domain after phosphorylation by AMPK  
 

3.2.3 Mutation of Phosphorylation Sites S1024 and T1026 

After performing the first step of double mutagenesis PCR, the products I and II were 

run on an agarose gel and cut out. In the second step, a PCR reaction was set up 

containing the purified fragments. For obtaining a higher yield of the desired DNA 

fragment a third PCR step was done. This reaction was also run on a gel, cut out and 

Gene-cleaned. Following digestion of both the plasmid and the fragment, the plasmid 

was treated with calf intestine phosphatase to prevent a recircularization. The enzyme 
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removes the 3’-phosphate group so that the ligase is unable to connect both ends of 

the plasmid. In order to remove this enzyme from the subsequent ligation step, a 

Gene-clean procedure without the TBE-modifier was performed. 

For successful ligation it is necessary to mix the cut plasmid and the cut fragment at 

approximately 1:3 ratio. Therefore, I ran an aliquot of the plasmid and the fragment 

on a 1.5% agarose gel to estimate the concentration of each. The ligation reaction (10 

µl) was then set up for at least 4 hours at room temperature.  

Then DH10β E.coli cells were transformed with the ligation mix and spread onto a L- 

agar plate containing kanamycin at 30 µg/ml. Plates were incubated at 37°C 

overnight. 

Colonies resulting from the transformation were screened by PCR with T7- promoter 

and T7- terminator primers. Positive clones, detected by agarose gel electrophoresis, 

were used to inoculate 5 ml LB medium containing kanamycin at 30 µg/ml, which 

was grown at 37°C overnight with shaking. One ml was used to inoculate 400 ml LB 

medium containing kanamycin at 30 µg/ml, which were incubated overnight on a 

shaking platform at 37°C.  

The harvested pellet was used to purify the desired plasmid with the QIAprep Spin 

Maxiprep Kit (Quiagen UK Ltd).  

The sequence of the plasmid was compared using MegalignTM (DNASTAR Inc.) to 

the published sequence to ensure both that the engineered mutations were present and 

that no errors have been incorporated during the PCR mutagenesis procedure. 

The verified plasmid was used to transform BL21(DE3)pLysS cells and these were 

plated on L-agar plates containing appropriate antibiotics (chloramphenicol 25 µg/ml; 

kanamycin 30 µg/ml) and incubated overnight at 37°C. 

One colony was used to inoculate 100 ml LB medium containing appropriate 

antibiotics, which were incubated at 37°C on a shaking platform overnight. From that 

culture 15 ml were used to inoculate 800 ml LB medium containing appropriate 

antibiotics. After adding IPTG to a concentration of 0.4mM the protein was 

expressed. Cells were harvested usually after 3 hours protein expression and the pellet 

stored at -80°C.  

The C8 mutant was purified using the same protocol as for the wild type protein. 
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Figure 3–5: purification mutant C8 (S1024D;T1026D) domain of cMyBP- C in pET28a under 
denaturing conditions, after Gel filtration  column; fractions 4-9 pure 
 

Now the mutant domain was dialyzed overnight in phosphorylation assay buffer, 

which did not contain urea. After assessing the quantity of protein and running a 

sample on a SDS-PAGE gel, the phosphorylation reaction was performed. It was 

carried out using γ 32P-ATP and AMP-activated kinase (AMPK). Based on the 

prediction of Carling and co-workers, we expected a significant reduction of 

phosphorylation of the mutated domain compared with wild type. However, as shown 

in Figure 3–6 the mutant protein is still phosphorylated to a similar level as wild type. 

This experiment disproves the hypothesis that either S1024 or T1026 serves as a 

substrate for AMPK in vitro. 
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Figure 3–6: Autoradiography of C8 WT and C8mt (S1024D;T1026D) still phosphorylated in a similar 
intensity as the WT domain; C8mt (S1024D;T1026D) is later labelled in this chapter mt F 
 

Relying on the data that I got from the phosphorylation experiment of the C8 WT, the 

most logical step to do at this stage was performing a phosphoamino acid analysis to 

show whether it was serine and/or threonine residues that were modified. The basic 

principle of this assay is the two dimensional separation of the amino acids of a 32P-

labelled protein after acid hydrolysis.  

 

 
 
 
 
Figure 3–7: Phosphoamino acid analysis C8 WT domain  
 

pH 3.5 

pH 1.9 
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This experiment showed conclusively that the only phosphorylated amino acid in the 

labelled C8 domain was serine. The next consequent step had to be the identification 

of the other serines and the mutation of these to unphosphorylatable alanine residues. 

Two additional serines were identified: Ser1020 and Ser1040. 

 
   L   P   R   H   L   R   Q   T   I   Q   K   K   V   G  
975 CTG CCC AGG CAC CTG CGC CAG ACC ATT CAG AAG AAG GTC GGG  

     GAC GGG TCC GTG GAC GCG GTC TGG TAA GTC TTC TTC CAG CCC  
 
   E   P   V   N   L   L   I   F   Q   G   K   P   R   P 
989 GAG CCT GTG AAC CTT CTC ATC CCT TTC CAG GGC AAG CCC CGG 
 CTC GGA CAC TTG GAA GAG TAG GGA AAG GTC CCG TTC GGG GCC 
 
   Q   V   T   W   T   K   E   G   Q   P   L   A   G   E    
1003 CCT CAG GTG ACC TGG ACC AAA GAG GGG CAG CCC CTG GCA GGC  
 GGA GTC CAC TGG ACC TGG TTT CTC CCC GTC GGG GAC CGT CCG 
 
   E   V   P   S   I   R   N   S   P   T   D   T   I   L 
1017 GAG GAG GTG AGC ATC CGC AAC AGC CCC ACA GAC ACC ATC CTG 
 CTC CTC CAC TCG TAG GCG TTG TCG GGG TGT CTG TGG TAG GAC 
 
   F   I   R   A   A   R   R   V   H   S   G   T   Y   Q    
1031 TTC ATC CGG GCC GCT CGC CGC GTG CAT TCA GGC ACT TAC CAG  
 AAG TAG GCC CGG CGA GCG GCG CAC GTA AGT CCG TGA ATG GTC  
  
   V   T   V   R   I   E   N   M   E   D   K   A   T   L 
1045  GTG ACG GTG CGC ATT GAG AAC ATG GAG GAC AAG GCC ACG CTG 
 CAC TGC CAC GCG TAA CTC TTG TAC CTC CTG TTC CGG TGC GAC 
 
  V   L   Q   V   V   D   K   P           
1059 GTG CTG CAG GTT GTT GAC AAG CCA  
 CAC GAC GTC CAA CAA CTG TTC GGT      

Figure 3–8: MyBP-C domain C8 sequence showing the serine residues highlighted in red. 

 

3.2.4 Cloning, Expression and Purification of other C8 Mutant 

Domains 

A  [S1020A] 

B  [S1040A] 

C  [S1020A;S1024A] 

D  [S1024D;T1026D;S1040A] 

E  [S1020A;S1024A;S1040A] 

F  [S1024D;T1026D] 

Table 3-1 shows the labelling of the created mutant domains 
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Cloning, expression and purification of the mutant domains took place in the same 

manner as the Ser1024Asp;Thr1026Asp double mutant described above. Each was 

obtained at a similar yield and purity as wild type (Figure 3–9 below). 

 

 
Figure 3–9: SDS-PAGE gel of C8 WT and all generated mutants after dialysis 
 

At this stage a Western blot was performed to check for presence of the his-tag in all 

the expressed and purified mutant domains (Figure 3–10 below). 

 

 
Figure 3–10: Western-blot of all engineered C8 mutant domains using an antibody against the N-
terminal Histidine-tag 
 

A phosphorylation assay was performed using all the created mutant domains. 

Surprisingly, this revealed that all the C8 mutants showed significant levels of 32P 
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incorporation, even mutant E, in which every serine was mutated to 

unphosphorylatable alanine residues  (Figure 3–11 below). 

 
Figure 3–11: Autoradiography after phosphorylation assay of cMyBP-C C8 WT and created mutant 
C8 domains 
 

This absolutely unexpected result raised the possibility, previously considered 

unlikely, that a serine residue in the non-cMyBP-C leader sequence encoded by the 

plasmid was phosphorylated. As shown in Figure 3–12 there are five serine residues 

present in this sequence, four of which can be cleaved off by thrombin treatment. In 

order to test the involvement of these extra serine residues, I decided to perform 

proteolytic digests with thrombin. 

 
 
 
 
Figure 3–12: Section from pET 28a including His-tag, Thrombin cleavage site and NdeI cutting site 
(MW:1899Da) 

 

3.2.5 Cleavage of the Backbone  

In order to optimise the conditions for the thrombin cleavage reaction I performed a 

thrombin time course and separated the products by SDS- PAGE ( Figure 3–13). 

...CATG GGC AGC AGC CATCATCATCATCATCAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT   ATG GCT AGC 
       Met   Gly    Ser   Ser    His  His   His  His   His   His     Ser    Ser    Gly   Leu  Val   Pro   Arg   Gly    Ser    His     Met   Ala    Ser 

 

Nde I 

His tag Thrombin cleavage site 
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 Figure 3–13: SDS-PAGE gel of thrombin cleavage time course 
 

This experiment revealed a sufficient thrombin cleavage time of 120min. As 

mentioned above there is still one serine, which might be phosphorylated, even after 

the leading sequence is cleaved from the domain. My presumption was that the kinase 

is unable to recognize this residue as a phosphorylatable amino acid after thrombin 

cleavage due to it being the second amino acid from the N-terminus. Therefore I 

performed two experiments: 

First: Phosphorylation of the C8 domain and afterwards a digest with thrombin 

(Figure 3–14).  

Second: Treatment with thrombin and then a phosphorylation assay (Figure 3–15). 
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Figure 3–14: First step phosphorylation reaction and second step thrombin cleavage(A) shows the 
stained SDS- PAGE gel after phospho reaction; (B) shows autoradiography. WT, C8 wildtype domain; 
E, C8 mutants as described in Table 3-1; Th, thrombin treated; M, marker 
 

 
Figure 3–15:  First step thrombin cleavage and second step phosphorylation reaction; (A) shows the 
stained SDS- PAGE gel after phosphorylation reaction; (B) shows autoradiography, the encircled band 
shows the cleaved C8 domain containing the unphosphorylatable serine; WT, C8 wildtype domain; E 
and D, C8 mutants as described in Table 3-1; C4, cMyBP-C C4 domain; Th, thrombin treated; M, 
marker 
 
 

The stained SDS-PAGE gel in Figure 3–14 shows that the protein with the N-

terminal tag removed migrates approx. 2000 Da lower than the uncleaved peptide and 

that the thrombin digest of both wildtype domain and mutant E are  >80% complete. 

The autoradiograph shows that the incorporated 32P is not present in the digested C8 

domain and taken together with the failure of this fragment to be phosphorylated after 

cleavage (Figure 3–15), this shows conclusively that the 32P is incorporated into one 
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of the five non-cMyBP-C serine residues encoded by the plasmid. If it was one of the 

serines that was removed by thrombin digestion, then the short leader sequence 

(calculated MW: 1899 Da) would be expected to contain the bulk of the 32P in Figure 

3–14. However, only a very small proportion is found in this fragment, thus 

suggesting that the chief phosphorylation site is the serine present in the LVPR’ GS 

thrombin recognition site. This residue is the second amino acid in the cleaved C8 

fragment – so why is the 32P incorporation in the cleaved band in Figure 3–14? This 

is because phosphorylation at this serine must inhibit thrombin cleavage; hence the 

cleaved C8 domain observed is unphosphorylated and the upper band contains 

phosphorylated undigested fusion protein. This serine is unable to be phosphorylated 

in the cleaved C8 as in this protein it is the second amino acid and some of the 

flanking residues necessary for kinase recognition are lost. 

 

3.2.6 Phosphorylation of C8-C10 

Upon completing the above experiments in which I had refuted the hypothesis that the 

C8 domain of cMyBP-C contains AMPK phosphorylation sites, I decided to repeat 

exactly the experiment that was done by Carling and co-workers in London. 

C8-C10 has been cloned in the pMW172 vector containing the additional 

hexahistidine-tag in our laboratory previously. Unexpectedly, I had problems to purify 

the expressed protein. 

It was not possible starting the purification procedure with the previously used 

“Denaturing lysis buffer” and a Ni2+-NTA resin column as the first step, because the 

yield obtained was very low. 
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Figure 3–16: SDS-PAGE gel of pMW-172 C8-C10 after gravity Ni2+ column under denaturing 
conditions; t0-t3, samples taken at point in time during protein expression after induction with IPTG (0, 
1hour etc.) M, marker; E, eluate fraction; F, flowthrough fraction; W, washing fraction; 1,2,…, protein 
fractions eluted from the column by 250 mM imidazole  
 

After a couple of unsuccessful attempts purifying the fragment I tried a different lysis 

buffer (labelled “New improved lysis buffer”) that contains 5 M urea and 1mM 

EDTA. 

As C8-10 has a pI of 8.66 and hence predicted to be basic at neutral pH, I chose for 

the first step in the purification procedure a negatively charged S-cation exchange 

column. The protocol is the same as that one for the Ni2+-NTA column except for 

adding some lysozyme before sonication.  The lysate is diluted in a 1:1 ratio in buffer 

A (low salt concentration) and loaded into the Super-loop of the FPLC machine. Then 

the protein is eluted by a NaCl gradient (no picture). As the second purification step a 

FPLC His-column run by an imidazole gradient seems to be a possible alternative to 

do. For that reason it was necessary to remove EDTA from the collected sample by 

dialysis overnight in “Denaturing lysis buffer”. Then the Super-loop was loaded with 

the sample and injected onto the His-column. The protein is eluted by running an 

imidazole gradient from lysis buffer (10 mM) to elution buffer that contains 250 mM 

imidazole (Figure 3–17). 

 



 

 56 

 
Figure 3–17: SDS-PAGE gel of fragment C8-C10 after FPLC his-tag column eluted with imidazole 
gradient; 1,2,…, protein fractions eluted from the column; Fractions 6-11 were pooled for FPLC gel 
filtration column; M, marker 
 

As the last purification step of this fragment I performed a FPLC gel filtration column 

as previously described in this chapter.  

 
Figure 3–18: SDS-PAGE gel of fragment C8-C10 after FPLC gel filtration column; 1,2,…, protein 
fractions eluted from the column; M, marker 
 
 

Despite the fact that the gel filtration column did not separate very nicely I worked 

further on, because for the phosphorylation experiments it has not to be absolutely 

pure. 

As expected, autoradiography after phosphorylation of the C8-C10 with the AMP-

activated protein kinase was positive. The sarcomeric protein troponin C is known not 
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be a target of the AMPK and was used as a negative control in this experiment. As 

positive control I applied the C8 mutant D. Loading different concentrations of the 

two proteins causes the difference between C8 intensity in comparison to C8-C10 in 

this picture. 

 
Figure 3–19: Autoradiography of C8- C10 fragment after phosphorylation by AMPK; Troponin C is 
used as a negative control; C8 mt D is used as a positive control; difference between the 
phosphorylation intensity of the C8 mt D fragment in comparison to C8-C10 in this picture is caused 
by loading different concentrations of  the two proteins. 
 

3.2.7 Expression of pMW 172 C9 WT and pMW C10 WT 

The next consequent experiment was to screen the two remaining domains for 

phosphorylation by AMPK. 

Firstly, I decided to engineer the C9 WT domain in pMW172 vector containing a 

hexahistidine-tag. This domain was never expressed before, and, therefore, I had to 

generate the C9 sequence by using pMW172 C8-C10 WT and suitable primers. 

Next steps were performed as described in chapter 2. After transformation of DH10β 

E.coli and subsequent inoculation of 400 ml LB-medium containing proper antibiotics 

a Maxi-Prep was done. In the following step the hexahistidine-tag was inserted and a 

DH10β E.coli strain was transformed. As sequencing results of the plasmid received 

by Maxi-Prep were positive, BL21(DE3)pLysS E.coli cells were transformed for 

expressing the fragment. 
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After harvesting cells by centrifugation and resuspension in the 6 M urea containing 

“Denaturing buffer”, I chose a Ni2+- NTA resin column as the first purification step of 

this domain. 

 
Figure 3–20: SDS-PAGE gel of pMW-172 C9 after gravity Ni2+ column under denaturing conditions; 
t0-t3, samples taken at point in time during protein expression after induction with IPTG (0, 1hour etc.) 
M, marker; E, eluate fraction; F, flowthrough fraction; W, washing fraction; 1,2,…, protein fractions 
eluted from the column by 250 mM imidazole  
 

Running a size exclusion column on the FPLC machine was performed as the second 

purification step. 

 
Figure 3–21: SDS-PAGE gel of of pMW-172 C9 after FPLC gel filtration column; 1,2,…, protein 
fractions eluted from the column; M, marker 
 

Refolding of the denatured domain took place using urea gradient buffers.  For three 

hours the sample stored in 6 M elution buffers was put in 3 M reconstitution buffer 
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followed by an overnight dialysis in 1.5 M reconstitution buffer. Dialysis in urea free 

phosphorylation assay buffer was done for further three hours. After measuring the 

protein concentration via a protein assay and double-checking by running a SDS-

PAGE gel, the fragment was prepared for phosphorylation experiments. 

The plasmid pMW172 containing C10 domain and hexahistidine-tag was generated in 

our laboratory previously. BL21(DE3)pLysS cells were transformed, cells harvested 

by centrifugation and resuspended under denaturing conditions. After performing a 

run on a Ni2+- NTA resin column, I decided straight to dialyse in urea free 

phosphorylation assay buffer in the hope that the very high molecular impurities may 

be removed by precipitation. 

 
Figure 3–22: SDS-PAGE gel of pMW-172 C10 after gravity Ni2+ column under denaturing conditions; 
t0-t3, samples taken at point in time during protein expression after induction with IPTG (0, 1hour etc.) 
M, marker; E, eluate fraction; F, flowthrough fraction; W, washing fraction; 1,2,…, protein fractions 
eluted from the column by 250 mM imidazole  
 

Removing the very high molecular impurities by precipitation is proved by Figure 3–

23 although the yield of C10 was reduced. 
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Figure 3–23: SDS-PAGE gel of pMW-172 C10 after gravity Ni2+ column and the lane on the right 
shows a C10 fragment after dialysis 
 

3.2.8 Phosphorylation of pMW172 C9WT and pMW172 C10WT 

The last section but one describes the phosphorylation results of the two C-terminal 

domains of cMyBP-C. 

Due to the fact that the fragments under investigation are different in molecular 

weight, it is necessary to work with equimolar amounts rather than with same absolute 

amounts of protein. Therefore, 10 µmol of each sample were loaded in each lane. The 

sarcomeric protein Troponin T was chosen to act as a negative control as it is known 

to be not a substrate of the AMPK. In the next three lanes fragments (C8-C10, C10, 

C9) were run that are expressed in the pMW172 vector. As described earlier in this 

chapter this vector itself is known not to contain any phosphorylatable moiety. The 

last two cMyBP-C fragments investigated in this experiment are the N-terminal C0-

C2WT fragment containing three known phosphorylatable residues at Ser273, Ser282 

and Ser302. These serine moieties can be phosphorylated in response to β-adrenergic 

agonists via cAMP-dependent protein kinase (PKA)(Jeacocke & England, 1980; 

Hartzell & Titus, 1982; Lim & Walsh, 1986; Garvey et al., 1988; Venema & Kuo, 

1993). It has also been reported to be phosphorylated by an endogenous 

calcium/calmodulin-dependent kinase that is associated with cMyBP-C(Hartzell & 

Glass, 1984; Schlender & Bean, 1991). Protein kinase C has also been described to 
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phosphorylate MyBP-C in vitro (Lim et al., 1985; Venema & Kuo, 1993). Regarding 

these known facts, I wanted to investigate, whether the N-terminal residues already 

reported are also a substrate of the AMPK. Fragment C0-C2WT was expressed in 

pET-28a previously in our laboratory. Additionally, I used fragment C8WT expressed 

also in pET-28a. This vector itself, as described earlier in this chapter, contains a 

serine residue that acts as a substrate of the AMPK. The only way to get rid of this 

moiety is to cleave the fragment with thrombin before performing the phosphorylation 

experiment. On the other hand, it is a helpful tool to use it uncleaved as a positive 

control. 

 
Figure 3–24: SDS-PAGE gel after phosphorylation reaction; Troponin T is used as a negative control; 
cMyBP-C fragments C8-C10, C9 and C10 are expressed in the not phosphorylatable plasmid 
pMW172; cMyBP-C fragments C0-C2, C8 are expressed in the a phosphorylable serine residue 
containing pET-28a;  
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Figure 3–25: Autoradiography; Troponin T is used as a negative control; cMyBP-C fragments C8-
C10, C9 and C10 are expressed in the not phosphorylatable plasmid pMW172; cMyBP-C fragments 
C0-C2, C8 are expressed in the a phosphorylable serine residue containing pET-28a;  
 

As shown in the pictures above, the C10 fragment expressed in pMW172 is a 

substrate of AMPK. The intensity of phosphorylation matches with that of C8-C10 

domains suggesting C10 is the solely C-terminal domain of cMyBP-C, which is a 

substrate of 5’-AMP-activated protein kinase. 

Furthermore, the figure shows that the N-terminal serine residues cannot be 

phosphorylated by AMPK. The autoradiography film clearly indicates that a thrombin 

treatment before phosphorylation experiment abolishes the backbone of the plasmid 

containing a phosphorylatable serine. After thrombin cleavage no phosphorylation is 

detectable neither in C0-C2WT fragment nor in C8WT domain. 

3.2.9 Phospho amino acid analysis pMW172 C10WT 

In the last experiment of this study I tried to figure out if a serine, threonine or 

tyrosine amino acid acts as substrate of AMPK.  

The most suitable method for this purpose is phospho amino acid analysis as 

described in chapter 2 and already used earlier in this study. 
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Figure 3–26: Autoradiography after phospho amino acid analysis of C10 
 
As shown in autoradiography film it seems to be a serine moiety that serves as a 

substrate of the AMP-activated protein kinase. 

There are 5 serine residues in the C10 domain (Ser 1182, Ser1191, Ser1207, Ser1213, 

Ser 1213) (Gautel et al., 1995).  
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4 Chapter Discussion 
 

4.1 Summary of Results 

The existence of MyBP-C in striated muscle has been known for over 35 years and 

about 150 mutations in the gene encoding cMyBP-C have been found to be a common 

cause of hypertrophic cardiomyopathy. Despite this, the structure and function of 

MyBP-C remains less well understood than most other sarcomeric proteins, with roles 

in both regulation of contraction and thick filament formation/stability being 

proposed. In addition to the well known interactions of MyBP-C with other proteins 

of the sarcomeric apparatus (LMM, titin, actin) and with PKA, CaMKK and PKC at 

the N-terminal end of the protein, the aim of this study was to investigate interactions 

of MyBP-C’s C-terminus with the 5’-AMP-activated protein kinase. This enzyme 

came in the focus of research during the last decade as it appears to function in a 

plethora of cell processes. Further, it has been elucidated that mutations in PRKAG2, 

encoding for the γ2 subunit of AMPK, causes left ventricular hypertrophy associated 

with conduction system diseases (e.g. Wolf-Parkinson-White syndrome). Important 

questions that have to be answered for a better understanding of this issue are, beside 

others, the identification of the full repertoire of cardiac protein targets.  

 

My project aimed at identifying the site or sites of AMPK phosphorylation within the 

C-terminal three domains of cMyBP-C as suggested by earlier yeast-two-hybrid- 

screen data and biochemical work. The latter hinted that the C8 domain was most 

likely the target, and it is this fragment that my work began with. Having optimised 

the expression and purification of recombinant wild type MyBP-C C8 domain and a 

number of mutated C8 domains as discussed in Chapter 3, it was possible to disprove 

the hypothesis of phosphorylatable residues being in this domain. In contrast, it was 

revealed that a phosphorylatable serine moiety was present in the N-terminal leader of 

the recombinant protein, encoded by the vector pET-28a. This serine lies in the 

thrombin recognition sequence itself and its phosphorylation inhibits cleavage.  

However, it was shown in vitro that a phosphorylatable serine residue is located in the 

C10 domain of the protein and this further confirms the association of the C8-C10 

fragment of MyBP-C with AMPK, first observed in the yeast two-hybrid assay. The 

hypotheses that arise from these results will be discussed in this chapter. Additionally, 
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I showed that the N-terminal domains of cMyBP-C (C0-C2), which contain the well 

characterized PKA and CaMII sites, are not a good substrate for AMPK in vitro. 

 

4.2 Possible Targeted Residues of C10 for the AMP-Activated 

Kinase 

As mentioned in the previous chapter, five serine residues could serve as 

phosphorylatable residues for AMPK. 

After comparing positions of serine residues with the published recognition motif of 

AMPK (Dale et al., 1995) Hyd-(X,Bas)-x-x-Ser/Thr-x-x-x-Hyd it is most likely that 

Ser1213 is at least one of the phosphorylatable residues, because it is the only one that 

fits with the recognition motif. However, it is important to note that this motif has a 

very broad range of recognition. 

For a residue of C10 to be easily phosphorylated, it would have to lie on an exposed 

position in the structure. Although the exact structure of C10 has yet to be solved, the 

domain is a member of the IgI protein family, which shows a high degree of structural 

conservation. A number of structures of IgI- like domains have been elucidated, all of 

which display characteristic β-sheet sandwich. The Redwood/Watkins laboratory with 

collaborators at Imperial College, London have solved the structure of the C1 domain 

of cMyBP-C (Govada et al., 2008) (Figure 4–1). Alignment of the two domain 

sequences shows that Ser1213 in C10 is equivalent to Ser217 in C1; this latter residue 

lies on a β-sheet turn and hence fulfils the criteria for accessibility. 
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Figure 4–1: The structure of the C1 domain showing the position of Ser217 in red, equivalent to 
Ser1213 in the C10 domain. 
 

Regarding these facts my presumption has to be proven by further mutagenesis 

studies in our laboratory. 

 

4.3 How could Phosphorylation of C10 Affect the Arrangement of 

the Collar? 

As mentioned in chapter 1, our favoured model of the arrangement of MyBP-C 

around the thick filament involves multimerisation of the protein to form a trimeric 

collar (McClellan et al., 2001; Flashman et al., 2004). In this model, three cMyBP-C 

molecules consecutively dimerize, in a staggered and parallel fashion, with the C5-

C10 regions, incorporating C5:C8 and C7:C10 binding, forming a collar- like 

structure around the thick filament, while the N-terminus extends into the 

interfilament space, allowing for its interaction with the S2 region of myosin.  This is 

again illustrated in the figure below. 
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Figure 4–2: The proposed trimeric collar arrangement of cMyBP-C around the thick filament.  
cMyBP-C molecules are arranged in a staggered parallel fashion, with domains C5-C10 encircling 
myosin, and domains C0-C4 extending into the interfilament space. (Flashman et al., 2004)   
 

This trimeric collar model of arrangement of the cMyBP-C got more support very 

recently by using yeast two-hybrid and in vitro protein binding assays (Flashman et 

al., 2008). 

4.3.1 Regarding C7:C10 Interaction 

The fact that two HCM-causing mutations, Arg654His and Asn755Lys, when 

introduced into the C5 domain could decrease the affinity of its interaction with C8, 

was one of the most important arguments for the trimeric collar model (Moolman-

Smook et al., 2002). Thereby, a pathophysiological explanation for the left ventricular 

hypertrophy is proposed in which ultrastructural alterations in the arrangement of 

MyBP-C leads ultimately to hypertrophy. Interestingly, the extent to which binding of 

the C5:C8 domains was modified, correlated with the severity of the described 

phenotype associated with the mutation. Further, there is evidence for another 

interaction between C7:10, detected in yeast two-hybrid assay. It was postulated that 

these interactions might be dynamically formed and released, thereby functioning as a 

modulator of cross-bridge formation (Moolman-Smook et al., 2002).  

Assuming that the arrangement of the trimeric collar is indeed dynamically formed 

and released, it seems possible that phosphorylation of C10 acts like a switcher of the 

C7:C10 interaction. Whether phosphorylation allows or abolishes interactions remains 

an open question, but both possibilities are feasible. If phosphorylation along with the 
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situation at the N-terminus of MyBP-C allows/enhances interaction, it would maintain 

a tight sarcomeric structure, thereby ensuring an optimal transmission of power at the 

crossbridges.  

An interruption of the C7:C10 interaction caused by phosphorylation of C10 might 

lead to looser formation of the collar. This would reposition the shorter arm of the V-

shape structure in a way disable to interact with the S2 subunit of the myosin rod.  

As described in chapter 1, AMPK is stimulated by an increased AMP/ATP ratio 

caused by cellular stresses. Assuming, interaction C7:C10 is diminished subsequently 

to phosphorylation, the abolished interaction of C0-C2:S2 would result in an 

increased actomyosin ATPase activity.  

 
Figure 4–3: (A) Proposed arrangement of cMyBP-C around the myosin filament. (B) Hypothesized 
reposition subsequent to phosphorylation of C10 
 

4.3.2 Regarding C10:LMM Interaction 

C10 interacts with LMM region of β-myosin heavy chain between residues 1554 and 

1581 (Flashman et al., 2007). It is feasible that C10 phosphorylation may regulate this 

interaction, and hence affect the arrangement of collar as discussed above for C7:C10 

binding.  

In summary I propose that the detected phosphorylatable residue in chapter 3.2.8 in 

C10 acts for the C7:C10 and/ or the C10:LMM interaction like the three 

phosphorylation sites Ser273, Ser282 and Ser302 (A-C) in the N-terminus of the 

cMyBP-C for its interaction with the S2 region of the myosin filament. The N-

terminal phosphorylation sites function as an “on and off-swichter” of cMyBP-C 

interaction with the S2 region of the thick filament and therefore as a regulator of 

contraction.  
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My hypothesis has to be proven by further in vitro protein- protein interaction studies, 

of course, but as known for a long time it is very common that the status of 

phosphorylation of a protein operates as a possibility to allow or abolish protein 

interactions. 

  

4.4 Medical implications 

4.4.1 How would PRKAG2 Mutations Affect the Proposed  

Modulation? 

As mentioned in chapter 1 it appears to be the current consensus that PRKAG2 

mutations in the presence of adequate upstream kinases increase the basal activity of 

AMPK, albeit they reduce the sensitivity of the enzyme to AMP (Arad et al., 2007). 

Increased basal activity would probably cause phosphorylation of C10 during resting 

conditions. In case phosphorylation functions as an “off-switcher” of the C7:C10 

interaction, it would result ultimately in an increased activity of the actomyosin 

ATPase. This is consistent with the “energy deficiency” theory saying that the final 

pathway of diseases caused by genes involved in energetic metabolism and leading to 

left ventricular hypertrophy is a lack of high energy phosphates (Ashrafian et al., 

2003; Ashrafian & Watkins, 2007). 

Assuming phosphorylation of C10 would cause enhancement of the C7:C10 

interaction, the tightly packed collar could not be regulated in any way. Therefore 

these interactions could not act as a modulator of cross-bridge formation, due to the 

fact that they are not dynamically formed and released. 

Similar effects would be expected for the C10:LMM interaction, meaning, if the 

interaction is abolished subsequently to phosphorylation, a disordered structure of the 

sarcomeric apparatus would result.  

A constitutive interaction C10:LMM that can not be altered, would be the 

consequence of an increased AMPK activity in case the phosphorylation promote this 

protein-protein interaction.  

4.4.2 Mutations in MYBP3 

Until today no single amino acid mutation of one of the potential phosphorylation 

sites in C10 (Ser1182; Ser1191; Ser1207; Ser1213; Ser1231) is reported. But it is not 
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impossible that a mutation will be found within the next years. A study from 2003 

proposed mutations in the MYBPC3 gene in fact, due to its association with an often 

benign phenotype, as the most common cause for HCM. Therefore, the prevalence 

might be underestimated (Richard et al., 2003) and mutation being still undiscovered. 

4.4.3 Cardioprotection During Low Flow Ischemia 

As mentioned in chapter 1, Yuan et al., 2006 identified five phosphorylation sites of 

canine cMyBP-C in a study by extensive phosphorylation mapping, including three 

novel sites in the regulatory C1-C2 linker region. Further, this group and others have 

shown an altered phosphorylation status in pathological hearts particularly 

during/after periods of hypoxia (Sadayappan et al., 2005; Sadayappan et al., 2006). 

These groups proposed a cardioprotective role of cMyBP-C for the heart during low-

flow ischemia, albeit the mechanism is not understood. Taken together this newly 

detected phosphorylation site in the C10 domain might contribute to the property of 

cardioprotection.  

A feasible explanation could be for the case as phosphorylation allows interaction 

between C7 and C10. Then, during phosphorylation (AMPK being activated in 

response to cellular stresses) cMyBP-C would take the position capable to interact 

with the myosin S2 subunit and therefore reduces the actomyosin ATPase activity as 

discussed above. Reduced ATPase activity would act to decrease energy demand of 

the cell and thereby preventing it from further cellular stresses.  

 

4.5 Future Prospects 

Due to my performed experiments, it was possible to disprove the hypothesis of a 

substrate of AMPK being in the domain of a protein of the sarcomeric apparatus and 

at the same time to identify an undescribed substrate of AMPK in the same protein 

but in a different domain in vitro. However, there are a couple of questions, which I 

was not able to answer in this study.  

The most crucial one concerns the detected phosphorylatable serine residue in the C10 

domain of the cMyBP-C. In further site-directed-mutagenesis studies and subsequent 

phosphorylation assays, as I described for the C8 domain in chapter 2.2.2 and chapter 

2.4.4, has to be elucidated which of the five described serine residues in C10 

(Ser1182; Ser1191; Ser1207; Ser1213; Ser1231) is the targeted amino acid of AMPK. 
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As discussed earlier in this chapter, the most likely one being Ser1213 due its fitting 

in the reported AMPK recognition sequence. 

In protein binding studies the question should be addressed, whether phosphorylation 

of a serine residue in C10 influences either the C7:C10 interaction or the C10:LMM 

or both. These experiments might be carried out with BIAcore X biosensor (Biacore 

AB) as it has already been described in the literature for the C5:C8-C10 interaction 

(Moolman-Smook et al., 2002). Furthermore, this tool would allow investigating if 

the phosphorylation status enhances or abolish interaction of these proteins.  

For a better understanding of the pathophysiology how AMPK-mutations cause left 

ventricular hypertrophy and, whether phosphorylation of the C10 domain of cMyBP-

C may be involved or not, accomplishment of phosphorylation experiments with 

different, recombinant produced, AMPK-mutations are inevitable to prove the 

hypothesis that AMPK- mutations change the phosphorylation status of C10.  

As described in chapter 1.6.2.5 mutations of the PRKAG2 gene encoding for the γ2 

subunit of AMPK increase the basal activity of this enzyme. According to my 

hypothesis explained earlier in this chapter, an increased basal activity of AMPK 

would cause the phosphorylation of a larger fraction of C10 and therefore a looser 

formation of the collar of cMyBP-C around the thick filament. This might be result in 

an abolishment of the S2:C1-C2 interaction and cause an increase of actomyosin 

ATPase activity as described by Yang et al., 2001. Ultimately, this fact would 

contribute to the energy deficiency hypothesis, a well accepted theory of the role how 

AMPK mutations lead to HCM as discussed in chapter 1.4.1. 
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