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1 Introduction 

1.1 Chronic inflammatory airway disorders 

Airway inflammation is a common characteristic feature of chronic airway diseases like 

asthma and chronic obstructive pulmonary disease (COPD). Both inflammatory 

conditions are associated with structural remodelling of the airways, which is 

inappropriate to the maintenance of normal lung function. Asthma and COPD are not 

very well defined disease entities but rather non-specific clinical terms describing two 

different patterns of obstructive airway disease with respect to reversibility, 

spontaneously or under therapy. The ERS and ATS guidelines (1985; 1995) define 

COPD as ‘a disorder characterized by reduced maximum expiratory flow and slow 

forced emptying of the lungs, features which do not change markedly over several 

months’, whereas ‘asthma is a clinical syndrome characterized by increased 

tracheobronchial responsiveness to a variety of stimuli, manifest as variable airway 

obstruction’. These definitions point out that both asthma and COPD are not disease 

entities per se, but rather each is a complex of conditions that contribute to airflow 

obstruction. In asthma the airflow limitation is usually variable over short periods of 

time and is reversible, albeit an underlying irreversible component may develop upon 

exposure to noxious agents, particularly cigarette smoke (Thomson et al. 2004), or when 

inflammation persists in association with repeated allergen or occupational exposure 

(Lange et al. 1998). In COPD, the limitation, particularly of the expiratory flow, is 

usually persistent and typically shows a more rapid advance with age than is normal. 

Although the underlying inflammation of these two diseases is very different in most 

cases, some patients with COPD may have features of asthma resulting in a mixed 

inflammatory pattern with increased eosinophils and partial reversibility of the airflow 

obstruction under anti-inflammatory therapy (Chanez et al. 1997). This evidence led to 

the conclusion that in reality asthma and COPD are not single entities; instead each 

seems to have a spectrum of reversibility and there is overlap, most likely associated 

with the varying extent and the mix of both structural and inflammatory changes and the 

predominant anatomic site within the lung at which these occur (Jeffery 2004). 

In atopic and non-atopic asthma activated (CD25+) T-helper (CD4+) lymphocytes and 

activated (EG2+) eosinophils are increased in the inflammatory infiltrate of the 

subepithelial layer of the airways (Azzawi et al. 1990; Bradley et al. 1991; Robinson et 
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al. 1992). Nevertheless, in non-atopic severe asthma a significant neutrophilia was 

noticed (Wenzel et al. 1999). In contrast, the chronic inflammation in smokers with 

COPD is characterized by increased numbers of total leucocytes (CD45+), T-

lymphocytes (CD3+), the subset of suppressor/cytotoxic T-lymphocytes (CD8+) and 

macrophages (CD68+) (Lacoste et al. 1993; Saetta et al. 1993; Di Stefano et al. 2004). 

However, Saetta et al. (1994; 1996) found that the numbers of tissue eosinophils are 

markedly and significantly increased when there is an exacerbation of bronchitis, 

similar to those reported in stable asthma. Interestingly the increase of the CD8+ T-cell 

subset correlates with the decline in lung function as quantified by FEV1 

(O'Shaughnessy et al. 1997; Saetta et al. 1998). These findings describing the 

inflammatory pattern are not only relevant for understanding the pathophysiology of the 

chronic disease but also in elucidating its aetiology. As only 15% of life-long smokers 

develop emphysema (Pauwels and Rabe 2004), constitutional factors are likely to be of 

importance besides cigarette smoke, air pollution resulting from burning of biomass 

fuels and cadmium exposure. O’Shaughnessy et al. (1997) suggested that the lung 

susceptibility to the effects of cigarette smoke would be greater in individuals with a 

genetically determined low CD4+/CD8+ T-cell ratio in the peripheral blood (Amadori et 

al. 1995). 

The structural changes that accompany the chronic inflammation are collectively 

referred to as ‘remodelling’. It may be appropriate, as in normal lung development in 

utero or during acute reaction to injury, or ‘inappropriate’ when it is chronic and results 

in abnormally altered tissue structure and function, as for example in asthma and 

COPD. The anatomic site at which the remodelling occurs differs between the two 

clinical forms of chronic airway inflammation. In COPD it is mainly destruction of (or 

failure to repair) the lung parenchyma with loss of alveolar attachments to the outer wall 

of small airways and permanent enlargement of the airspaces distal to the terminal 

bronchiolus – characteristic of emphysema. In chronic bronchitis, another clinical 

condition of COPD, there is hyperplasia and hypertrophy of the tracheobronchial 

submucosal glands with a disproportionate increase in mucous acini, goblet cell 

hyperplasia and mucus hypersecretion in the proximal bronchi. The small airways show 

a chronic obstructive bronchiolitis with mucous metaplasia and hyperplasia, increased 

intraluminal mucus, bronchiolar smooth muscle hypertrophy, bronchiolar fibrosis and 

stenosis (Saetta et al. 1998). In asthma, large and small airways are structurally altered 
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but there is no parenchymal destruction in the asthmatic non-smoker. The airway walls 

show a marked smooth muscle hypertrophy of all airway generations, especially in 

severe and fatal asthma (Saetta et al. 1991; Carroll et al. 1993). Marked thickening of 

the reticular basement membrane (RBM) represents subepithelial fibrosis of the 

asthmatic airway and is a key feature of asthma not noticed in COPD (Jeffery 1992). 

Hyperplasia and hypertrophy of the mucous bronchial glands, as well as mucous 

metaplasia and hyperplasia with consecutive mucus hypersecretion are similar to 

COPD, although in asthma the normal proportion between mucous and serous glandular 

acini appears to be retained (Glynn and Michales 1960). Epithelial fragility is also a 

controversial specific feature of asthma, although recent evidence puts more emphasis 

on the dysfunctionality of the respiratory epithelium as a key factor in the homeostasis 

of the airway wall (Fixman et al. 2007; Holgate 2008). Following injury, normal 

epithelium reacts by increased proliferation mediated through ligands acting on 

epidermal growth factor receptors (EGFR) or transactivation of the receptors (Holgate 

et al. 1999; Tang et al. 2006). The epithelial response to such stimulation appears to be 

impaired in asthma, despite upregulation of EGFR and CD44, which is capable of 

enhancing the presentation of EGF ligands to EGFR (Lackie et al. 1997; Puddicombe et 

al. 2000). Consequently the epithelium is held in a repair phenotype and becomes a 

continuous source of proinflammatory and growth factors. Both pathophysiological and 

morphopathological changes of asthma are thought to be dependent on these impaired 

inflammatory and humoral functions of the epithelial cells (Hackett and Knight 2007; 

Holgate 2008). For instance the RBM thickening was shown to be a consequence of 

increased collagen type III and V deposition by the myofibroblasts under the 

stimulatory influence of the epithelial cells, involving TGF-β2 and PDGF among other 

mediators (Brewster et al. 1990; Vignola et al. 1997; Puddicombe et al. 2000). The 

smooth muscle hypertrophy is also thought to be the result of an increased release of 

endothelins by epithelial cells and a phenotypic alteration of the myofibroblasts (Polito 

and Proud 1998; Fixman et al. 2007). 

As none of the clinical variables used to diagnose chronic inflammatory airway diseases 

can give precise and specific information about the inflammatory and remodelling 

processes responsible for the pathophysiology, a more direct assessment involving 

histopathological examination of the airway wall and/or cytology of airway secretions is 

necessary. 
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1.2 Bronchial biopsies and airway inflammation 

Studies aiming at unravelling the pathophysiological mechanisms of asthma and COPD, 

while being able to differentiate between or at least specifically recognize the two 

entities, and at the clinical evaluation of drugs with disease-modifying activity require 

the implementation of techniques for a reliable quantification of the inflammatory 

and/or inappropriate remodelling processes of the airways (Jeffery 2001; Jeffery et al. 

2003; Jeffery 2004). For this purpose a variety of investigative methods were developed 

and employed in previous research on these topics: endobronchial biopsy, 

bronchoalveolar lavage (BAL), induced sputum, analyses of blood, urine and exhaled 

air. During the last decade there has been an increasing interest in the results obtained 

by examination of biopsies of the airway lining, which, whilst invasive, is safe provided 

it is performed by experienced staff adhering to the published recommendations 

(NHLBI/NIAID/AAAI/ACCP/ATS 1991). The sampled bronchial mucosa comprises 

the respiratory epithelium and its supportive subepithelial tissue, the lamina propria. 

The epithelial layer forms the barrier between the external and internal environments 

and is the site of first interaction between environmental pathogens or allergens and the 

host tissue, resulting in the response initiation. In clinical studies, endobronchial 

biopsies offer a suitable gateway to the assessment and quantification of such airway 

mucosa related processes. They have provided novel information about changes which 

persist in the stable phase of inflammatory airway disease, changes associated with 

exacerbations, alterations associated with the response to allergen or to occupational 

pollutant exposure and reversibility of the inflammatory process following therapy or 

removal of the triggering environmental or occupational agent. Studies in healthy 

volunteers provided an invaluable baseline for comparison with disease and for 

differentiating normal repair processes and technical artefactual changes from real 

pathology (Soderberg et al. 1990; Ordonez et al. 2000). Biopsies can also be prepared as 

explant cultures to enable epithelial outgrowths to be studied in vitro for their response 

to chemical, immunological and mechanical damage and for their capacity to produce 

cytokines and chemokines, lipid and peptide mediators, reactive oxygen species, 

enzymes and enzyme inhibitors (Wang et al. 1996).  

Whilst bronchial biopsies were much used to research the basic cellular, immunological 

and molecular abnormalities of airway disease, their clinical application for more 
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accurate diagnosis and monitoring of more specific therapy in the management of 

airway inflammatory conditions like asthma, chronic bronchitis, COPD and cystic 

fibrosis remains a major goal (Jeffery 1996). It is also probable that distinct therapy 

forms are required to separately target the inflammatory and remodelling processes 

(Barnes et al. 2000; Jeffery 2004). Since the clinical parameters used to diagnose and 

monitor such conditions cannot give precise information about the disease-related 

inflammation and structural alterations, a more direct assessment is necessary. By 

measuring changes in selected specific markers associated with the long-term clinical 

outcome, the underlying disease process can be monitored. Such biopsy markers include 

the number and activation of T-lymphocytes, mast cells, eosinophils and neutrophils, the 

structure of the airway epithelium, the RBM thickness, the number and ultrastructure of 

contractile and exocrine cells (Jeffery 1998; Jeffery et al. 2000).  

There are now sufficient data available for biopsies to act as the basis for the validation 

of less invasive techniques such as BAL, spontaneous or induced sputum and bronchial 

brush biopsies. Nevertheless, the inflammatory phenotype may differ between the 

lumen of the airways (sampled by BAL), the epithelium and the lamina propria 

(sampled by biopsy), so that the quantitative morphologic study of endobronchial 

biopsies provides valuable data that cannot be obtained from BAL, sputum analysis, or 

exhaled breath condensates, in spite of its limitation to the relatively large airways. For 

example, the high numbers of neutrophils and their product, myeloperoxidase, reported 

in BAL from COPD subjects (Thompson et al. 1989) are in contrast with the scarcity of 

this cell type in the lamina propria, the zone usually quantified in endobronchial 

biopsies (Lacoste et al. 1993; O'Shaughnessy et al. 1997). However, upon application of 

an antibody against neutrophil elastase an intense positivity was noticed within the 

surface epithelium, a biopsy site not often quantified (Jeffery 1996; O'Shaughnessy et 

al. 1997). Then again, in a clinical setting the disease-associated structural remodelling 

of the airway wall can only be studied by endobronchial biopsy. 

To simplify interpretation of future biopsy studies and facilitate greater opportunities for 

meta-analyses, many attempts have been made to standardise all steps, including 

sampling of the airway tree, excision, processing and sampling of the specimen and 

analysing the histology (NHLBI/NIAID/AAAI/ACCP/ATS 1991; Bousquet 2000; 

Poulter et al. 2000; Jeffery et al. 2000; Jeffery et al. 2003). For the remodelling 

assessment most previous publications employed methods based on image analysis of 
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one or several arbitrarily chosen sections of the investigated biopsies. Similarly, the 

standard practice of counting the cut cell profiles of interest in a tissue section and 

normalising these counts to the submucosal area or the length of the epithelial RBM, 

i.e., a 2D design, continues to be a popular quantitative approach of the inflammatory 

infiltrate of the lamina propria. These approaches failed to fully comply with the 

recommendations for a rigorous study design, adequate sampling and unbiased 

quantification imposed by the large variability between and within patients. The 

distribution of the cells and the morphological changes may not be uniform and 

sampling only one region of the specimens will not deliver data representative of the 

whole biopsy (Sont et al. 1997; Sullivan et al. 1998; Laprise et al. 1999). On 

bidimensional tissue sections, 3D structures are recognizable as transects or boundaries. 

Direct measurement of lengths on sections of an arbitrary orientation and interpretation 

of these data in terms of surface area or mean height of 3D structures are prone to 

serious geometrical and statistical errors leading to invalidation of the data (Howard and 

Reed 1998). For similar theoretical reasons the probability of visible cells being counted 

in a 2D section is not only proportional to their density, the variable of interest, but also 

to the size and the orientation of the cells relative to the sectioning plane, as well as to 

the thickness of the tissue section (Abercrombie 1946), thus introducing a bias in favour 

of larger cells. However, design-based stereological tools are available in microscopy 

for morphometrical studies to count particles (i.e., cells or alveoli) or measure length, 

area and volume without the need for any bias-prone assumptions about the geometry, 

orientation and distribution of the structures, i.e., a 3D design (Ochs 2006). To the best 

of my knowledge only one other study compared data obtained by design-based 

stereologic and assumption-based ‘area profile’ counting techniques (Carroll et al. 

2006). The correlation analysis employed in this study to test the agreement between the 

two approaches is insufficient, as it only demonstrates more or less linear variation of 

the data, but not their ‘equality’ (Altman and Bland 1983; Gallagher 1996). Another 

study proposed a stereological method based on orthogonal intercepts and correction for 

tangential cuts for measuring the RBM thickness in healthy and asthmatic subjects and 

compared the obtained values with previous reports, which employed uncorrected point-

to-point measurements in arbitrary sections (Ferrando et al. 2003). 
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1.3 What is morphometry? 

1.3.1 Classical geometry 

The basic geometrical principles were first used by ancient Egyptians. About 6000 years 

ago they employed surface area measurements to calculate their land areas. They did 

this by marking the land boundaries with ropes, whose length, an indirect measure of 

the enclosed area, was measured. They were the first humans to use geometrical 

approaches to solve practical problems. A broader usage of geometry was promoted by 

the Greeks, who used geometrical principles in architecture, road, wagon and ship 

building and in gymnasiums. After Pythagoras (582 – 500 B.C.) and his well known 

theorem, Euclid (330 – 275 B.C.), another famous Greek mathematician, made 

important contributions to the use of geometry: his work Elementa deals with planar and 

spatial geometry and number theory. The classical Euclidean geometry enables the 

construction of regular geometric objects and the understanding of the mathematical 

relationships governing their shape. These approaches, however, are not valid for 

biological structures since they do not fit in the models of classically shaped objects and 

also show a large variation. Therefore, applying classical geometrical principles and 

formulae to biological elements will introduce a bias due to this variability. 

 

1.3.2 Stochastic geometry and probability theory 

Starting in the 15th century several contributions established the theoretical foundations 

of morphometry. The term morphometry is derived from the Greek and means 

‘measurement of form’. 

In the Habsburg Empire, today Italy, the mathematician Bonaventura Francesco 

Cavalieri (1598 – 1647), a student of Galileo Galilei in Florence during the height of the 

Italian Renaissance, became inspired by the works of Euclid and started applying 

classical geometrical principles to practical problems. In 1635 his discovery made him 

famous in morphometrical science. Cavalieri then showed that the volume of a 

randomly shaped object can be estimated in an unbiased manner from the sum of areas 

and the thickness of sections cut though the object. This deviation from classical 

geometry is today the most common stereological method for estimating the reference 

volume of biological structures from their areas on tissue sections. 
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The French mathematician Georges-Louis Leclerc, Comte de Buffon (1707 – 1788) 

studied probability, geometry, number theory and differential and integral calculations. 

His most famous mathematical experiment, the Needle Problem, presented in 1777 to 

the Royal Academy of Sciences in Paris, France is his most important contribution to 

morphometry. He noticed that a needle tossed at random onto a grid of lines intersects 

one of the lines with a probability directly proportional to the length of the needle. This 

experiment inaugurated a new mathematical domain, today known as the theory of 

geometrical probability. This theory supplies the basis for current approaches to 

estimate length and surface area of non-classically shaped objects in an unbiased 

manner. 

Auguste Delesse (1817 – 1881), a French geologist and mining engineer, discovered a 

method to measure the amount of a particular mineral in a rock. He demonstrated that 

the profile area of a phase per unit area of a random section cut though the rock is 

proportional to the expected value for the volume of that phase per unit volume of the 

specimen. Delesse’s unbiased principle was further refined by the geologist Thompson, 

who showed that for a randomly positioned point grid the number of points hitting the 

phase of interest divided by the number hitting the whole section gave an unbiased 

estimate of volume fraction. Today the Delesse principle provides the basis for 

accurately estimating the volume fraction of non-classically shaped objects from their 

profile area fraction on random sections. 

S. D. Wicksell, a Swedish mathematician, demonstrated in the early 20th century 

(Wicksell 1925) what became known as the Corpuscle Problem: the number of profiles 

per unit area noted in 2D on histological sections does not equal the number of objects 

per unit volume in 3D. The Corpuscle Problem arises from the fact that not all arbitrary-

shaped 3D objects have the same probability of being sampled by a 2D sampling probe 

(knife blade). Larger objects, objects with more complex shapes and objects with their 

long axis perpendicular to the plane of sectioning have a higher probability of being 

sampled / hit by the knife blade, mounted onto a glass slide, stained and counted, an 

aspect today referred to as ‘size-bias’. Wicksell himself and many other scientists tried 

to develop assumption- and model-based correction factors, in an attempt to ‘fit’ 

biological objects into classical Euclidean formulae. These attempts have only added 

further systematic error (bias), since the models and assumptions used were not true for 

biological objects with random shapes. These approaches failed to overcome the 



Introduction 

 9 

Corpuscle Problem and the conclusion was that accurate estimates of the number of 

biological objects with arbitrary sizes and shapes cannot be obtained from histological 

sections using assumption-based morphometry. 

 

1.3.3 Unbiased stereology 

By the early 1980s, the Corpuscle Problem remained a significant test for the credibility 

of the newly emerging field of unbiased stereology. Stereology literally translates from 

the Greek as ‘the study of objects in 3D’. It is actually a science dealing with the 

geometrical relationships between three-dimensional objects and images or sections of 

these visualised in 2D (Howard and Reed 1998). Stereological approaches primarily 

developed for material sciences and geological sections are also valid for histological 

sections and even sections obtained non-invasively by computerized tomography, 

ultrasound, magnetic resonance imaging or confocal microscopy and their associated 

questions (e.g., how many cells are there in a volume unit? how many cells are there in 

an organ? how much connective / muscular tissue does an organ contain? what is the 

volume of an organ?). Thus stereology is concerned with making quantitative estimates 

of the ‘amount’ of a geometrical feature (e.g., number, length, area, volume) within an 

object of interest. If the feature is associated with a population, then the average per 

item can be estimated. 

Mathematicians, also known as theoretical stereologists, recognized the fault in the 

traditional approaches to biological morphometry based on modelling biologic 

structures as classical shapes. They also rejected ‘correction factors’ based on non-

verifiable assumptions intended to force biological objects into Euclidean models. 

Instead, they proposed that stochastic geometry and probability theory provided the 

correct foundation for quantification of arbitrary non-classically shaped biological 

objects. Furthermore they developed efficient unbiased sampling strategies for the 

analysis of biological tissue at different magnifications. 

The solution to the Corpuscle Problem came in a Journal of Microscopy report in 1984 

by D. C. Sterio, the one-time pseudonym of a well-known Danish stereologist (Sterio 

1984). The solution, known as the disector principle, was the first truly unbiased method 

for the estimation of the number of particles in a specified tissue volume (NV), without 

the need for further assumptions about the size, shape or orientation of the particles in 
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the given tissue region. The disector is a 3D probe that consists of two serial sections a 

known distance apart (disector height), with an unbiased counting frame (Gundersen 

1978) of known area superimposed onto one section. This counting frame avoids the 

bias (i.e., double counts) arising from objects at the edges of the field of view (edge 

effects). The number of objects whose ‘tops’ fall within the disector volume provides an 

unbiased estimate of the numerical density. The invention of the disector principle was a 

breakthrough in quantitative morphometrical analysis. This approach could overcome 

the most severe forms of bias introduced by cutting three-dimensional objects into two-

dimensional sections. By this point it became obvious that making an unbiased estimate 

of any stereological parameter required choosing the correct probe. This can be ensured 

when the total dimensions of the parameter of interest and the probe equal at least 3: 

parameterdim + probedim ≥ 3 (Howard and Reed 1998; Ochs 2006). 

Today a number of unbiased stereological methods are available for estimating average 

or total quantities such as number, volume, particle volume, length, surface area. 

 

1.4 Principles of unbiased stereology 

1.4.1 Estimation and bias 

Especially in microscopical analyses of macroscopical objects the amount of interest 

usually far exceeds the possibility to exhaustively examine and quantify a certain 

feature (i.e., identity), so that it is often necessary to take a sample of the material and 

make an estimate of the required quantity. Because an estimate must be valid for the 

entire object, although only parts of it were contained in the sample examined, the 

nature of the sampling is of crucial importance. Besides that, the estimator (i.e., the well 

specified numerical method describing how to calculate the estimate of a parameter 

from a sample) should not make any restrictive assumptions, approximations or 

modelling of the quantity to be measured and its spatial distribution. By repeating the 

sampling and performing the quantification on different samples, a series of estimates 

called sampling distribution is generated. If the mean of the sampling distribution is 

equal to the true number, then the estimator is unbiased (Stuart 1984). Otherwise the 

difference between the mean of the sampling distribution and the real value represents 

the bias (i.e., systematic error) of the employed sampling scheme and estimator. As the 
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true number is usually unknown, a potential bias and its magnitude are totally invisible 

at the end of an experiment so that they cannot be corrected or removed. Even obtaining 

very similar values upon repeating the measurement does not say anything about the 

bias – a narrow sampling distribution of an estimator implies high efficiency (precision) 

and must not be confused with unbiasedness (accuracy). Precision is therefore 

characterized by the spread of the sampling distribution, i.e., its standard deviation 

and/or variance. The standard deviation (SD) of the sampling distribution is generally 

referred to as standard error (SE) of the estimator. Dividing it by the mean of the 

distribution will yield a relative measure known as coefficient of error (CE). An 

overview of basic stereological terms is given in table 1.1. 

 

Table 1.1 Stereological terms and their meaning 
Terms Meaning 

Sample Collection of individuals / units taken from a population 

Parameter Population distribution value estimated in a sample 

Expected value Value expected to be true for a parameter 

Estimate Numerical approximation of a parameter, calculated from a 

sample 

Estimator Well specified numerical method describing how to calculate 

an estimate in a sample 

Sampling distribution Series of estimates of a parameter from repeated sampling 

Reference space Anatomical region defined by natural borders, which 

contains the objects of interest 

 

The bias encountered in microscopy can be stereological or non-stereological (Peterson 

1999). Non-stereological bias is introduced by: 

• incomplete / defective staining 

• improper calibration of the instruments / observer bias 

• incorrect mathematical computation of the results / ascertainment bias. 

Stereological bias can be divided into: 

• sampling bias 
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• methodological bias (faulty corrections, incorrect assumptions, unsuitable 

probes). 

 

1.4.2 Random sampling 

To avoid a sampling bias the collected sample has to be uniform random (UR) – i.e., 

every part of the original object must have the same probability of being selected 

(uniform selection) and it must be impossible in advance to predict which parts will be 

sampled (randomness). The uniform random sampling must be employed at every 

sampling level, e.g., tissue blocks, sections, fields of view. Under no circumstances 

should anything within the defined reference space be ‘chosen’. Stereology is 

fundamentally statistical and its methods rely upon a careful sampling design and a 

robust sampling theory. The methods cannot be applied unless a uniform random sample 

has been taken throughout the reference space. 

Genuinely uniform random spatial samples tend to cluster together, thereby 

unpredictably sampling some regions more heavily than others. As this can lead to some 

redundancy, a far more efficient approach is to use a systematic uniform random 

sampling (SURS) scheme. It consists of a uniform random component and a systematic 

component. First the spacing of the units to be collected has to be defined. The first unit 

to sample from an object or population has to be randomized in an interval equal to this 

spacing distance from one end of the object. All other units are collected at integer 

multiples of this interval from the first sampling unit. Although the sampled units will 

not be random with respect to each other (systematic component), if any one of them is 

uniformly randomized with respect to the object then all of them are (uniform random 

component). SURS is both easier to apply in practice and yields estimates with a lower 

variability, i.e., a lower SE of the estimator (Gundersen and Jensen 1987), which 

increases repeatability.  

 

1.4.3 Geometrical probes and random geometry 

The only way to avoid a methodological bias is to use a ‘measurement tool’ that is 

inherently imbued with unbiasedness. Accuracy cannot be adjusted during the 

experiment by increasing the work load, either when sampling or quantifying. In 
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stereology, accuracy is guaranteed by the application of a set of unbiased ‘geometrical 

questions’ in 3D which are called probes. The geometrical properties of features in 3D 

space can be quantified by randomizing a test system of various dimensions (e.g., 

points, lines, planes or volumes) and known properties in the space containing the 

specimen and counting the number of times the feature is intersected by the probes of 

the test system. There is a certain relationship between the feature being quantified and 

the dimensionality of the geometrical probes to be used – the total dimensions in the 

parameter of interest and the probe must equal at least 3: parameterdim + probedim ≥ 3 – 

Table 1.2 (Howard and Reed 1998; Ochs 2006; Hyde et al. 2006). 

 

Table 1.2 Parameters and probes in stereological designs 

Structure Parameter 
Parameter 

dimensions 
Probe 

Probe 

dimensions 

Sum of 

dimensions 

Volume Volume 3 Point 0 3 

Surface Area 2 Line 1 3 

Linear Length 1 Plane 2 3 

Cardinality Number 0 Disector 3 3 

 

Randomizing a geometrical probe with respect to a set of features is very similar to the 

SURS of an object as described above. Stereological application of geometrical probes 

in 3D is usually achieved in microscopy by physically cutting the object into thin 

sections and then using a 2D grid on the section. However, in order to stay consistent 

with 3D perceptions it is important to acknowledge a peculiar and marked problem 

caused by the act of sectioning: the dimensionality of the geometrical information that 

one obtains from a thin section through an object is not the same as in the real 3D 

environment (Hyde et al. 2006). Nevertheless, stereological designs (i.e., the 

combination of a sampling scheme and an unbiased estimator) are able to derive real 3D 

quantitative data for irregular objects from measurements made on 2D sections. 

 

1.4.3.1 Points probe volume 

For very small objects, like biopsies, or objects completely enclosed within another 

object or matrix, traditional volumetry by weighing or water immersion (Scherle 1970) 
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is not practicable. The most direct stereological approach for estimating volume is the 

Cavalieri method (Cavalieri 1635; Gundersen et al. 1999). This estimator requires a 

series of parallel sectioning planes a fixed distance, T units, apart to exhaustively cut the 

study object, giving rise to a series of slabs. For the volume estimator to be unbiased, it 

is necessary that the first sectioning plane be uniform random in an interval 0–T from 

one end of the object in the sectioning direction. The resulting slabs are to be laid the 

same way up and the cross-sectional area of each slab is measured or estimated. The 

object volume is estimated by summing the areas and multiplying by the slab thickness, 

T: 

Formula 1.1 

∑
=

×=
m

i
iATV

1

ˆ  

V̂ = estimated volume 

T = slab thickness 

iA = cross-sectional area of the object transect seen on the i-th slab 

 

The cross-sectional areas do not need to be precisely measured; for practical purposes 

they can be estimated with a suitable precision using a UR translated point grid with a 

known area ( pa ) assigned to each point of the test system. Then an unbiased estimate 

of the cross-sectional area is given by: 

Formula 1.2 
PpaA ×=ˆ  

Â= estimated area 

P = the number of points hitting the object transect 

Then Formula 1.1 becomes 

Formula 1.3 

∑
=

××=
m

i
iPpaTV

1

ˆ  

iP = the number of points hitting the object transect on the i-th slab 
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At this point it should be noted that using a UR translated point grid on UR translated 

serial sections amounts to a UR translated 3D point test system, where each point is 

associated with a volume element of Tpa × . 

Sectioning a small object into 10-15 relatively thick slabs can be cumbersome and 

render further processing and analyses of the object impracticable. Since only the ‘top 

side’ of the slabs is taken into consideration, an alternative approach would be to 

exhaustively cut the object into thin microscopical sections and sample all sections 

situated a T distance apart, i.e., the ‘tops of the slabs’, with a random start between 0 

and T from one end of the object. 

 

1.4.3.2 Lines probe surface 

An appropriate probe for the estimation of total surface area or area fractions is a line 

(Howard and Reed 1998; Hyde et al. 2006). In analogy with SURS, it is more efficient 

to employ a systematic uniform random grid of lines, instead of simply randomizing 

each line probe. Since a line has a certain spatial orientation, both translational and 

directional randomness are required in order to randomize a systematic test grid of lines 

with respect to an object. Translational randomness is achieved by randomizing any one 

line in an interval equal to the spacing distance of the grid and perpendicular to it. The 

direction of the line grid is described by the direction the lines of the grid have with 

respect to an arbitrary but fixed direction in space. The directional equivalent of uniform 

randomness is known as isotropy – therefore a random direction is called isotropic 

direction. A grid of lines that is both isotropic in direction and uniform random in 

position is known as an isotropic uniform random (IUR) line grid. If an IUR line grid is 

placed over an object, the number of intersections between the grid and the surface of 

the object will be proportional to the surface area. The estimators of surface area will 

only be unbiased if either the analysed surface is isotropic, the line grid is isotropic or 

both are isotropic in 3D. 
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1.4.3.3 Volumes probe number 

1.4.3.3.1 The unbiased counting frame 

In microscopy, the number of cell transects to be counted often far exceeds the ability to 

enumerate them exhaustively. Thus it becomes necessary to be able to relate any 

particular count to a given sampling area, in the 2D case. An obvious problem is 

represented by the objects that cut the edges of the given sampling area, e.g., the 

microscopical field of view. The solution in general use in microscopy was proposed by 

Gundersen (1978) and addresses the ‘edge effect’. It consists of an unbiased counting 

frame of known area with an acceptance line and infinite exclusion line (for an example 

see Figure 2.4, pg. 38). Any transect that is cut anywhere, i.e., even outside the area of 

the frame, by the infinite exclusion line is not counted. Cell transects falling fully inside 

the counting frame or those that cut the acceptance line without also cutting the 

exclusion line are counted. To implement this rule it is necessary to leave a ‘guard area’ 

around the counting frame. Therefore, it cannot be applied to a complete microscopical 

field of view. The application of the unbiased counting rule associates a definite count 

with the area of the counting frame, leading to an unbiased estimate of the number of 

cell transects per unit area. 

If a SURS scheme is applied, then in practice it is found that some fields of view and 

the contained unbiased counting frames actually cross the edge of the object. The 

simplest solution is to allocate a point to each counting frame, e.g., the upper right 

frame corner. For each position of the counting frame, the allocated point is judged to be 

either ‘inside’ or ‘outside’ of the reference space. A cumulative count is recorded for the 

number of counting frame points that hit the reference space, for each section. This 

count, multiplied by the area of a single counting frame, is an unbiased estimate of the 

total sampled tissue area. Independently of whether a frames-associated point is counted 

or not, profile counts must be performed on all parts of counting frames hitting the 

reference compartment. 

 

1.4.3.3.2 The physical disector 

For 3D counting, the physical disector (Sterio 1984; Howard and Reed 1998) is the 

ultimate minimalist approach to a 3D probe. It consists of a pair of serial sections a 

known distance apart. The method relies upon the principle that, if the transect of a 
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particle is seen in one section (reference section) and not the next (look-up section), it is 

counted. Thus the disector counts the ‘tops’ of the particles, ensuring that each particle 

is counted only once. The disector is in effect an approximation to the continuous scan 

through a volume (Howard et al. 1985). It is not known for sure what happens between 

the two disector planes, but if the planes are closely spaced, i.e., about 30% of the 

average height in the cutting direction of the smallest cell to be counted, a reasonable 

deduction can be made.  

For 3D counting it is necessary to extend the unbiased 2D counting rule to a directional 

unbiased 3D cell counting rule. This is done by superimposing an unbiased counting 

frame onto the reference section of a physical disector. For each transect correctly 

sampled by the unbiased counting frame, i.e., associated with its area, in the reference 

section, a corresponding transect is sought in the look-up section. If no corresponding 

transect is found anywhere in the look-up section, then this cell is counted in 3D (see 

Figure 2.4, pg. 38 for an applied example). The count is associated with a volume of 

tissue equal to the area of the unbiased counting frame multiplied by the disector height, 

i.e., the distance between the two sections. This counting rule is an unbiased estimator 

of numerical density, i.e., number of cells per unit volume. The combination of the 

disector principle and the 2D unbiased counting frame is the disector (Sterio 1984). 

As the disector is a directional counting rule, its efficiency can be nearly doubled by 

making separate counts in both directions, that is, by going up and down between the 

two sections. This is achieved for a pair of sections by first using one as the reference 

section and the other as the look-up section and then interchanging the roles played by 

the two sections. 

A field sampling regime must be adopted, in which each part of each section pair has 

the same chance of appearing in the fields of view. To calculate the volume, which the 

disector count must be related to, the volume of the disector must be multiplied by the 

number of disectors that ‘hit’ the reference space. The same point-allocation solution is 

applied, as for counting frames in the 2D approach. This count, multiplied by the area of 

a single counting frame and the disector height, is an unbiased estimate of the total 

sampled tissue volume. Independently of whether a frames-associated point is counted 

or not, disector counts of cells must be performed on all parts of counting frames hitting 

the reference space. 
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1.5 Aim of the study 

The aim of this study was to propound several stereological designs for the quantitative 

histopathological analysis of human endobronchial biopsies with respect to reliable 

markers of the inflammation and remodelling occurring in chronic inflammatory airway 

diseases. 

The present study was designed to empirically address the issue of agreement between 

the data delivered by the simultaneous application of a stereological numerical density 

estimator – the physical disector – and the classical approach of area profile counting. 

For this, the extent and the variation of a potential size-bias had to be assessed by 

examining macrophages and T-lymphocytes, two cell populations with clearly different 

mean sizes and of great interest to the research on chronic airway diseases. To address 

the question of dependency of the agreement between the two methods on the study 

sample, two groups of human subjects, i.e. non-smokers and smokers, were separately 

analysed. 

A stereological estimator was also proposed for the assessment of the epithelial integrity 

in the bronchial biopsies of the same groups – the first stereological attempt at this 

matter – and the outcome was related to already available data obtained by image 

analysis of bronchial biopsies or BAL examination from healthy volunteers and 

asthmatics. In addition, the association between the integrity of the epithelium and the 

biopsy volume was investigated. 

For the appraisal of the airway wall remodelling a stereological estimator of membrane 

mean thickness was adapted for the bronchial RBM in the groups of healthy non-

smokers and non-asthmatic smokers and the results were compared with previously 

published data of another stereological method and non-stereological approaches. 



Material and methods 

 19 

2 Material and methods 

2.1 Material 

All chemicals in highest available purity and quality, unless otherwise stated, were 

provided by: Merck AG (Darmstadt, Germany), Sigma (Deisenhofen, Germany), 

Fluka/Sigma-Aldrich Chemie GmbH (Steinheim, Germany), Carl Roth GmbH 

(Karlsruhe, Germany), Riedel de Haën (Seelze, Germany), Chroma (Münster, 

Germany), B Braun Melsungen (Melsungen, Germany), PAA Laboratories GmbH 

(Pasching, Austria) and Vogel Medizinische Technik und Elektronik (Gießen, 

Germany). 

 

2.1.1 Subjects and bioptic material 

In this study endobronchial biopsies from 7 healthy non-smokers and 7 smokers were 

examined. All subjects were volunteers who gave their written consent after being fully 

informed about the purpose and nature of the study, which was approved by the ethics 

committee of Hannover Medical School (Hannover, Germany). None of the included 

subjects suffered from acute respiratory illness within 4 weeks before the bronchoscopic 

investigations. 

The subjects’ demographic and clinical data are shown in Table 2.1. In the non-smoker 

group 6 subjects were never-smokers, whereas 1 was an ex-smoker with a history of 0.9 

pack years, who had quit more than 1 year before the onset of the study. The smokers 

had a significantly longer smoking history (23.4 - 54.4 pack years) and were actively 

smoking at the time of enrolment. 

All non-smokers had normal relative FEV1 (i.e., larger than 70% of the FVC), no signs 

of obstructive pulmonary disease and were therefore designated as ‘healthy’. In the 

smoker group, 3 subjects (2 males, 1 female) had normal relative FEV1; the other 4 

subjects (2 males, 2 females) had relative FEV1 below 70% (58.1% – 66.8%) and were 

diagnosed with COPD stage 1 according to the GOLD criteria (Global Initiative for 

Chronic Obstructive Lung Disease ; Pauwels et al. 2001). 
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Table 2.1 Subject demographics 

Group Non-smokers Smokers 

No. of subjects 7 7 

Sex (M/F) 4/3 4/3 

Age (years)   

 Mean ± SD 30.9 ± 6.96 46.7 ± 7.91 

 Range 25-42 40-61 

FEV1 (L)   

 Mean ± SD 4.6 ± 0.59 3.4 ± 0.96 

 Range 3.80-5.43 2.35-4.69 

FEV1/FVC (%)   

 Mean ± SD 81.7 ± 2.61 68.5 ± 9.2 

 Range 78.8-86.3 58.1-80.2 

Healthy / Obstruction 7/0 3/4 

Packyears   

 Median 0 33 

 Range 0.0-0.9 23.4-54.4 

 

2.1.2 Equipment and software 

AKITA® inhalation system (Activaero GmbH, Gemünden/Wohra, Germany) 

Fenestrated cup Radial Jaw® biopsy forceps (Boston Scientific Medizintechnik GmbH, 

Ratingen, Germany) 

Automated embedder Tissue-Tek VIP (Sakura Finetek BV, Zoeterwoude, Netherlands) 

Tissue embedding console system Tissue-Tek TEC (Sakura Finetek BV, Netherlands) 

Motorized rotary microtome HM355S with Cool Cut and STS (Microm International 

GmbH, Walldorf, Germany) 

Computer linked Olympus BX 51 light microscope (Olympus, Ballerup, Denmark) with 

a motorized stage (Prior Scientific Instruments Ltd., Cambridge, UK) 

 

CAST-Grid 2.01 (Olympus, Ballerup, Denmark) 

SigmaStat 3.1 (Jandel Scientific, Erkrath, Germany) 

SigmaPlot 9.0 (Jandel Scientific, Erkrath, Germany) 
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2.1.3 Specimen collection 

10% (v/v) formalin: 

100 ml formaldehyde solution min. 37% stabilised with approx. 10% methanol 

(Merck) 

90 ml PBS (Dulbecco’s Phosphate Buffered Saline 10x, PAA Laboratories) 

810 ml Ampuwa (Aqua ad iniectabilia, Braun) 

 

Alcoholic eosin solution (Sigma) 

 

2% (w/w) Agar-Agar: 

2 g Agar-Agar granulate (Merck) 

100 ml tap water 

Boil in the microwave at 450 W 

2.1.4 Paraffin embedding, deparaffination, hydration, 

dehydration and mounting 

Embedding medium / paraffin wax (Vogel) 

 

Xylene (Merck) 

 

100% (v/v) alcohol: ethanol absolute (Riedel de Haën) 

 

96% (v/v) alcohol: 

96 ml ethanol absolute (Riedel de Haën) 

4 ml aqua dest. 

 

70% (v/v) alcohol: 

70 ml ethanol absolute (Riedel de Haën) 

30 ml aqua dest. 

 

10% (v/v) neutral buffered formalin (Sigma-Aldrich) 
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Entellan rapid embedding agent (Merck) 

2.1.5 Histochemical staining procedures 

PAS (periodic acid Schiff) 

1% (w/w) periodic acid: 

1g periodic acid (Merck) 

100 ml aqua dest. 

 

Schiff reagent (Merck) 

 

Mayer’s haematoxylin: 

50 ml Mayer’s haemalum solution (Merck) 

250 ml aqua dest. 

2.1.6 Immunohistochemical staining procedures (ABC-

Method) 

2.1.6.1 Solutions and buffers 

PBS 0.15M (2 l stock solution 10x): 

160 g NaCl (Merck) 

4 g KCl (Roth) 

23.3 g Na2HPO4 * 2H2O (Merck) 

4 g KH2PO4 (Merck) 

ad 2 l aqua dest.; pH 7.4 with 1N HCl (Merck) 

 

TBS (TRIS Buffered Saline) (1 l stock solution 10x): 

53 g NaCl (Merck) 

12 g TRIS (Roth) 

ad 1 l aqua dest.; pH 7.4 with 1N HCl (Merck) 
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Citrate buffer 0.01M (1 l stock solution 10x): 

29.41 g Tri-Sodium citrate dihydrate (Roth) 

ad 1 l aqua dest.; pH 6.0 with 1N HCl (Merck) 

 

TRIS-HCl-Buffer 0.05M (1.5 l stock solution 10x): 

60.57 g TRIS (Roth) 

ad 1.5 l aqua dest.; pH 7.4 with 1N HCl (Merck) 

 

Blocking solution for the endogenous peroxidase: 

6 ml H2O2 30% (Merck) 

200 ml methanol (Merck) 

 

2% skim milk powder solution: 

4 g skim milk powder (Merck) 

200 ml PBS 

 

DAB solution: 

0.4 g DAB (Sigma) 

400 ml TRIS-HCl-Buffer 

 

2.1.6.2 Primary antibodies 

Polyclonal rabbit anti-human CD3 antibody (DakoCytomation, Golstrup, Denmark) 

Diluted in skim milk solution 1:100 

 

Monoclonal mouse anti-human CD68 antibody, clone PG-M1 (DakoCytomation) 

Diluted in skim milk solution 1:100 

 

2.1.6.3 Secondary antibodies 

Biotinylated anti-rabbit IgG (H+L), made in goat (Vector BA-1000) 

Diluted in skim milk solution 1:100 

(against anti-CD3-antibody) 
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Biotinylated anti-mouse IgG (H+L), made in horse (Vector BA-2000) 

Diluted in skim milk solution 1:100 

(against anti-CD68-antibody) 

 

2.1.6.4 Immunohistochemical kits 

Vectastain Elite ABC Kit (Vector Laboratories, Burlingame CA, USA) 

2 ml reagent A (avidin DH) 

2 ml reagent B (horseradish peroxidase H) 

 

AB-complex preparation: 

60 µl reagent A and 60 µl reagent B added to 3 ml PBS, mixed and incubated for 30 min 

at room temperature 

 

2.1.6.5 Normal serum 

Normal goat serum (Vector S-1000) 

Diluted in skim milk solution 1:10 

(for secondary antibodies anti-rabbit) 

 

Normal horse serum (Vector S-2000) 

Diluted in skim milk solution 1:10 

(for secondary antibodies anti-mouse) 

 

2.1.6.6 Counterstaining 

Mayer’s haematoxylin: 

50 ml Mayer’s haemalum solution (Merck) 

250 ml aqua dest. 

 



Material and methods 

 25 

2.2 Methods 

2.2.1 Flexible bronchoscopy and biopsy 

Bronchoscopy and biopsy were performed by staff members of the Department of 

Clinical Airway Research of Fraunhofer ITEM (Hannover, Germany) under the 

supervision of Prof. Dr. N. Krug and Prof. Dr. J. Hohlfeld. 

The subjects received premedication according to the routine protocols: 0.2 mg 

aerosolized salbutamol and fractionated intravenous midazolam (0.05 mg/kg). In 

addition, smokers received 3 ml nasal nebulized lidocaine 4%, whereas healthy non-

smokers underwent inhalative anaesthesia with 2.5 ml lidocaine 4% by electronically 

controlled and regulated inhalation using the AKITA® inhalation system. This device 

enables controlled mechanical ventilation with a predefined breathing rate, inspiratory 

flow and tidal volume. Subsequently, local anaesthesia of the bronchial mucosa was 

performed during bronchoscopy using lidocaine 2% up to a maximal dose of 6 mg/kg, 

as previously described (Erpenbeck et al. 2004). The subjects were continuously 

monitored by pulsoxymetry and one channel ECG. Oxygen was continuously applied 

through a nasal canula. 

Per subject, two or three biopsies from the segmental branches of the right lower 

pulmonary lobe were collected during flexible bronchoscopy performed according to 

the international guidelines (American Thoracic Society 1987; 

NHLBI/NIAID/AAAI/ACCP/ATS 1991). Using the fenestrated cup Radial Jaw® 

biopsy forceps in total 24 endobronchial biopsies, 12 per group, were obtained from the 

two subject groups. The collected biopsies underwent overnight fixation in 10% 

phosphate-buffered formalin to preserve tissue architecture and cell morphology. They 

were shipped by overnight express mail to Marburg where further processing and 

analysis of the tissue was carried out in the Clinical Research Group “Chronic Airway 

Diseases” of Philipps University (Marburg, Germany) as described below. 

 

2.2.2 Paraffin-embedding of the biopsies 

Prior to paraffin embedding the biopsies were embedded in agar. For this the biopsies 

were aspirated with a plastic Pasteur pipette and deposited on a small sieve. To ease 

macroscopical identification of the small specimens, they were reversibly stained with 
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one drop of alcoholic eosin solution and rinsed in PBS. After placing the sieves on a flat 

surface, melted 2% aqueous agar-agar at 60 °C was poured onto each sieve until it 

covered the specimen. After a hardening time of 20 min the biopsies, surrounded by 

agar, were cut out, wrapped in filter paper and laid in embedding cassettes (Engelbrecht 

Medizin und Labortechnik GmbH, Edermünde, Germany). The embedding cassettes 

were deposited in 10% formalin until further processing. 

Paraffin embedding took place in the automated embedder Tissue-Tek VIP in the 

Institute of Pathology of University Hospital Marburg and Gießen (Marburg, Germany). 

First, the specimens were incubated for 1 hour in 10% neutral buffered formalin at 

40 °C. Then they were incubated three times for each 1 hour in 96% alcohol, four times 

for each 1 hour in 100% alcohol and two times for each 1 hour in xylene at 40 °C. After 

this, the actual paraffin embedding began by transferring the probes into melted paraffin 

for 45 min at 60 °C. This step was repeated three times for each 1 hour, until the tissue 

was saturated with paraffin. 

Further processing was performed at the tissue embedding console system Tissue-Tek 

TEC. Thereto, melted paraffin at 60 °C was filled in a base mould (Engelbrecht) and the 

paraffin saturated sample in the embedding cassette was inverted over it. The base 

mould was placed on a cold plate, for the paraffin to cool off and harden, which allows 

for the paraffin block comprising the biopsy to be removed from the mould. 

 

2.2.3 Sectioning and sampling of the paraffin blocks 

The paraffin tissue blocks were exhaustively sectioned using the motorized rotary 

microtome HM355S equipped with a 4 °C cooled object clamp (Cool Cut), a section 

transfer system and a 42 °C heated water bath (STS). The sections were obtained with a 

2 µm average block advance (BA), calibrated by means of a digital calliper measuring 

the block height before and after cutting 500 sections at a given microtome setting. 

Beginning with the first section, every three consecutive sections were collected on 

numbered StarFrost adhesion glass slides (76 x 26 mm, Engelbrecht). They were 

allowed to air dry for 30 min and were baked in a 37-40 ºC oven over night. 

According to the SURS principles (Gundersen and Jensen 1987; Howard and Reed 

1998) every 9th or 20th slide, depending on the size of the biopsy, was sampled in a slide 

series with a random outset between the 1st and the 9th or the 20th slide of a biopsy, 
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respectively (Figure 2.1). This resulted in a section-sampling fraction (i.e., the fraction 

of the total number of sections sampled by SURS in a series) of 1/9 or 1/20, 

respectively. By this algorithm nine samples of 5-11 glass slides per biopsy were 

collected for histology and indirect immunohistochemistry. Each slide sample was 

randomly assigned a different histochemical or immunohistochemical (IHC) staining. 

 

 

Figure 2.1 Schematic SURS of the sections of a biopsy 
After exhaustive sectioning every three sections were mounted on numbered glass slides 
(1 to 28 in this example). With a random outset between the 1st and the 9th slide, nine 
slide samples, each consisting of every 9th glass slide, were collected and stained. 
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2.2.4 Histochemical staining 

2.2.4.1 Deparaffination and hydration 

Before the actual staining, the sections were deparaffinated 30 min in xylene. 

Subsequently they were hydrated in graded alcohol solutions beginning with 10 min in 

100% alcohol, 5 min in 96% alcohol and 10 min in 70% alcohol, as the employed stains 

are only water-soluble. Finally the slides were thoroughly rinsed in tap water. 

 

2.2.4.2 PAS staining 

By this staining the glycol groups of carbohydrates are selectively oxidised with 

periodic acid to aldehyde groups. The aldehydes are subsequently condensed with the 

Schiff reagent (fuchsin-sulfurous acid) to produce a purple-magenta colour. The basal 

laminae, mucin, glycogen and fungi will be stained purple. 

 

After deparaffination and hydration the sections were oxidised 10 min in 1% periodic 

acid and rinsed in tap water. Subsequently, they were placed in Schiff reagent for 15 min 

and washed under running tap water for another 15 min. Counterstaining of the nuclei 

was achieved in Mayer’s haematoxylin for 5 min. Finally, the sections were washed in 

lukewarm running tap water for 5 min (blueing), dehydrated and mounted (see below). 

 

2.2.4.3 Dehydration and mounting 

The dehydration of histochemically (or immunohistochemically) stained sections took 

place in graded alcohol solutions. The glass slides were first placed in 70% alcohol for 

10 min, then transferred into 96% alcohol for 5 min and into 100% alcohol for another 

10 min. Finally, they were cleared in xylene for 15 min before being mounted with 

Entellan rapid embedding agent and a coverslip (Engelbrecht). The mounting medium 

was allowed to dry for 20 min at room temperature. 
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2.2.5 Immunohistochemical staining by the indirect Avidin-

Biotin-Complex method 

The indirect ABC-method is an immunohistochemical detection assay involving 

incubation of the tissue sections with a specific unlabeled primary antibody against the 

antigen of interest. In the next step, a secondary antibody is added to the antigen-

antibody complex. The secondary antibody must be labeled with biotin and directed 

against the IgG of the animal species in which the primary antibody has been raised. 

These biotinylated antibodies can be bound by a preformed avidin-biotinylated-

peroxidase-complex. Avidin is a glycoprotein with 4 binding sites for biotin. Because 

avidin has such an extraordinarily high affinity for biotin (over one million times higher 

than antibody for most antigens), the binding of avidin to biotin is essentially 

irreversible. Most proteins, including enzymes, can be conjugated with several 

molecules of biotin. These properties allow macromolecular complexes (ABC’s) to be 

formed between avidin and biotinylated enzymes. In the preformed ABC only three 

binding sites of avidin are occupied by biotin, so that the fourth binding site can affix to 

the biotinylated secondary antibody. Finally, the horseradish peroxidase in this complex 

can be histochemically identified with DAB, a chromogen which in the presence of a 

peroxidase enzyme produces a brown precipitate that is insoluble in alcohol. This 

method is more sensitive than direct IHC, due to the signal amplification through 

several secondary antibody reactions with different antigenic sites on the primary 

antibody and avidin cross-linking of several biotinylated enzyme molecules, all of 

which increase the peroxidase concentration attached to an antigen. 

 

2.2.5.1 Deparaffination 

To dewax, the sections were placed for 30 min in xylene and for 10 min in 100% 

alcohol. 

 

2.2.5.2 Endogenous peroxidase blocking 

The endogenous peroxidase activity was blocked with 200 ml H2O2 1% in methanol. 

After incubating 30 min at room temperature, the slides were rinsed several times in tap 

water. 
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2.2.5.3 Heat-induced epitope retrieval 

Although aldehyde-based fixatives are excellent for preserving cellular morphology, 

they also cause protein cross-linking, thereby masking the antigenic sites, resulting in 

the inability of some protein epitopes to bind complementary antibodies. The 

demonstration of many antigens can be significantly improved by a pretreatment 

procedure, in this case the exposure of slide-mounted specimen material to a heated 

buffer solution that breaks the protein cross-links formed by formalin fixation and 

thereby uncovers hidden antigenic sites. 

The glass slides were placed in plastic cuvettes (Sigma), which were filled to the brim 

with sodium citrate buffer (pH 6.0). The cuvettes were heated three times for each 5 min 

at 450 Watt in a microwave oven. Each time citrate buffer was refilled. In the end, the 

cuvettes were removed to room temperature and the slides were allowed to cool for 15 

min. The citrate buffer was poured away and the slides were rinsed in TBS for 5 min. 

 

2.2.5.4 Staining by the indirect ABC-method using the ABC kit 

For this staining, the Vectastain Elite ABC kit and a special system of Coverplates™ 

(Thermo Shandon, Waltham MA, USA) and Sequenza® slide racks (Thermo Shandon) 

were used. The glass slides and a negative control were laid on Coverplates™, with the 

tissue sections inwards and avoiding the entrapment of air bubbles. The Coverplates™ 

were placed in slide racks where the following steps were carried out. 

The Coverplates™ were filled with PBS to rinse the sections for 5 min. To block non-

specific protein binding reactions, the sections were incubated for 20 min with normal 

serum diluted 1:10 in skim milk solution. The normal serum originated form the same 

species as the secondary antibody. In each Coverplate™, including the negative control, 

100 µl normal serum solution was added. Subsequently 100 µl of the preliminarily 

diluted primary antibody were pipetted in each Coverplate™, except for the negative 

control; instead 100 µl skim milk solution were added to this Coverplate™. All slides 

were incubated for 1 hour at 37 °C. Thereupon, the sections were rinsed for 5 min in 

skim milk solution. Then 100 µl diluted biotinylated secondary antibody were added. 

The slides were incubated again for 30 min at room temperature. After that, the sections 

were rinsed in PBS for 5 min. Subsequently, 100 µl ABC-peroxidase were pipetted in 

each Coverplate™ and they were incubated for another 30 min at room temperature. 
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The sections were rinsed again in PBS for 5 min before removing the slides from the 

Coverplates™. They were placed in cuvettes with 200 ml DAB solution. 100 µl H2O2 

30% were pipetted into the cuvettes, thoroughly mixed and allowed to develop a 

reaction for 10 min. Finally, the sections were thoroughly rinsed in running tap water, 

counterstained, dehydrated and mounted (see below). 

 

2.2.5.5 Counterstaining 

After IHC all sections were counterstained to identify the rest of the tissue. Thereto the 

slides were quickly immersed into a cuvette with Mayer’s haematoxylin six times in a 

row and then washed in lukewarm tap water (blueing). Mayer’s haematoxylin stains the 

nuclei dark blue and the rest of the tissue light blue. 

 

2.2.5.6 Dehydration and mounting 

The dehydration of immunohistochemically stained sections took place in graded 

alcohol solutions. The glass slides were first placed in 70% alcohol for 10 min, then 

transferred into 96% alcohol for 5 min and into 100% alcohol for another 10 min. 

Finally, they were cleared in xylene for 15 min before being mounted with Entellan 

rapid embedding agent and a coverslip (Engelbrecht). The mounting medium was 

allowed to dry for 20 min at room temperature. 

 

2.2.6 Microscopical analyses 

All quantitative analyses were conducted on a computer linked Olympus BX 51 light 

microscope equipped with a motorized stage and the CAST-Grid 2.01 software. 

 

2.2.6.1 Biopsy volume 

The Cavalieri method (Cavalieri 1635; Gundersen et al. 1999) was employed to directly 

estimate the biopsy volume. For each biopsy, one of the nine slide series resulted at 

2.2.3 was randomly chosen for the assessment. From the three sections mounted on each 

slide the middle section was analysed. The sections were examined using dry lenses 

with a magnification of 10x and a numerical aperture of 0.4, at a final magnification of 

425x. In order to depict the whole biopsy transect contained in a section, the area 
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sampling fraction, i.e., the fraction of the area of interest to be sampled by SUR 

positioned fields of view, was set to 100%. A test system consisting of 16, 25 or 36 

points, depending on the biopsy size, with an area-per-point ( pa ) of 18724, 11983 or 

8322 µm2 respectively was superimposed onto the fields of view. The size of the point 

grid was chosen so that 100 - 200 points were counted per biopsy (Gundersen and 

Jensen 1987; Gundersen et al. 1999). A cumulative count of the number of points 

landing within the biopsy transect was recorded for each section. The distance between 

the sections (T) was dictated by the block advance of 2 µm and therefore T = 54 or 120 

µm, depending on the biopsy size and the sampling scheme adopted at 2.2.3. The 

volume of each biopsy was calculated using Formula 1.3. 

 

2.2.6.2 Epithelial integrity 

Endobronchial biopsy tissue tends to curl after collection because of inherent tissue 

elasticity, which leads to an isotropic orientation of the contained tissue structures 

(Jeffery et al. 2003). The biopsies floating in fixative solution were deposited on sieves 

and embedded in agar without being touched and thereby potentially preferentially 

orientated. Thus the isotropy was preserved during subsequent embedding and 

sectioning. This rendered the randomization of the line probes unnecessary, so that a test 

system of arbitrarily oriented lines could be used. 

This analysis was performed on the PAS stained sections, which allow an easy 

identification of the RBM as a purple-magenta band between the respiratory epithelium 

and the lamina propria of the airway mucosa. The sections were examined using dry 

lenses with a magnification of 20x and a numerical aperture of 0.7, at a final 

magnification of 850x. As there are no data available about the contribution of the 

different sampling levels to the overall between–subject variability, the results of all 

available biopsies for each subject were averaged to yield a mean value. 

For each biopsy, all slides of the PAS stained series were used for quantification. From 

the three sections mounted on each slide the middle section was analysed. On each 

section, the fields of view were selected by a SURS scheme. Thereto, the microscope 

objective was randomly positioned outside the tissue section at its upper left corner. 

This way a starting point was set, which was located independently of the features to be 

analysed (Howard and Reed 1998; Fehrenbach and Ochs 1998). Then the motorised 
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stage of the microscope was systematically shifted in the x and/or y direction by the 

preset sampling distance of 350 µm. The sampling distance was chosen so that roughly 

100 - 200 counting events were obtained for each examined feature (Gundersen and 

Jensen 1987; Gundersen et al. 1999). To comply with the requirement of uniform 

sampling probability, a constant x / y sampling distance was used throughout all sections 

of the same biopsy. This regular pattern led to a SURS of the fields of view. All 

specimen parts that appeared in the field of view were accepted for analysis. 

 

 

Figure 2.2 Assessment of the epithelial integrity by fraction of the RBM area 
Red triangles mark RBM covered by intact respiratory epithelium; green circles mark 
RBM covered by a single layer of epithelial basal cells; yellow squares mark RBM 
denuded of the epithelial layer. 
 

To quantify the proportion of RBM surface denuded or covered by intact or fragmented 

epithelium, a test system consisting of 20 parallel horizontal lines of 316.14 µm length 

(total grid length = 6322.81 µm) was superimposed onto the fields of view. As already 

discussed, further steps to achieve 3D isotropy of the test system were not necessary in 

this case. Each intersection of the line probes with the RBM was assessed as being 
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covered by intact or fragmented epithelium or denuded of the epithelial layer. This 

assessment was based upon the height of the epithelium along the perpendicular to the 

tangent to the RBM at the intersection point. RBM covered by goblet cells or several 

layers of ciliated epithelial cells (the cilia not necessarily always visible in light 

microscopy, partly because of tangential sectioning) represented the category of intact 

epithelium. RBM covered by a single layer of basal cells with no intact ciliated or 

goblet cells was classified as fragmented respiratory epithelium. RBM with a complete 

loss of epithelial cells, including basal cells, was classified as denuded (Figure2.2). 

A cumulative count of the number of intersections between the RBM and the linear 

probes was recorded for each category (i.e., denuded, covered by intact or fragmented 

epithelium) and section. Each area fraction of the RBM was calculated according to the 

equation: 

Formula 2.1 

∑ ∑ ∑

∑

++
=

III
I

SS
denudedfragmentedintact

denuded / fragmentedintact / ˆ  

 

SS
ˆ = estimated surface area fraction of the RBM 

I intact= number of intersections between the line grid and RBM covered by intact 

epithelium 

I fragmented= number of intersections between the line grid and RBM covered by 

fragmented epithelium 

I denuded= number of intersections between the line grid and denuded RBM 

 

2.2.6.3 Mean thickness of the reticular basement membrane 

As already discussed, the tissue elasticity and the consequent curling of the biopsy 

specimens after their collection result in an isotropy of the contained structures, 

including the RBM (Jeffery et al. 2003). Therefore, arbitrarily cut serial sections will 

display RBM transects at all angles from 0° to 90° between the section plane and the 

RBM. Intuitively, transects at angles lower than 90° will have a higher thickness than 

the real thickness measurable in a section perpendicular to the RBM at that point. 
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Measuring the thickness of these transects perpendicularly to their boundaries and 

averaging it over several fields and sections will clearly overestimate the mean RBM 

thickness. 

The arithmetic mean thickness can be assimilated to the mean height of the RBM. This 

can be defined as the ratio of the volume to the area of the RBM. Since the RBM is 

continuously covering the lamina propria of the airways, it is not possible to calculate 

either its total volume or surface area from biopsy samples. However, the volume and 

surface density (i.e., the volume or surface area of the phase of interest per unit volume 

of the reference space) of the RBM can be easily determined for a biopsy specimen. If 

related to the same reference space, e.g., the biopsy itself, then the mean arithmetic 

thickness of the RBM can be rewritten as the ratio of the volume density to the surface 

density (Weibel and Knight 1964; Weibel 1990). These can be estimated simultaneously 

using a coherent test system of points and disconnected line segments on SURS 

sampled fields of view. A coherent test system is a set of test points (PT) and test lines 

(LT) designed in such a way that the number of points and the length of the lines are in a 

precisely defined relation to each other (Weibel 1990; Weibel et al. 2007). 

The assessment was performed on the PAS stained sections that allow an easy 

recognition of the RBM. The sections were examined using oil immersion lenses with a 

magnification of 100x and a numerical aperture of 1.4, at a final magnification of 

4270x. As previous data revealed a high intra-subject between-biopsy variability 

(Ferrando et al. 2003), the results of all available biopsies for each subject were 

averaged to yield a mean value. 

For each biopsy, all slides of the PAS stained series were used for quantification. From 

the three sections mounted on each slide the middle section was analysed. On each 

section, the fields of view were selected by a SURS scheme, as already described above. 

The sampling distance in the x and y direction was chosen between 100 and 130 µm, 

depending on the size of the biopsy. The aim was to obtain between 100 and 200 

counting events for each examined feature (Gundersen and Jensen 1987; Gundersen et 

al. 1999). All specimen parts that appeared in the fields of view were accepted for 

analysis. 
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Figure 2.3 Coherent test system for the estimation of the arithmetic mean 
thickness of the RBM 
Red triangles mark the intersections of the line segments with the apical RBM border; 
green circles mark the points falling onto the RBM. 
 

The coherent test system used for quantification was made up of 16 disconnected line 

segments of 7.85 µm length (total length = 125.62 µm) and their end points as test 

points, resulting in 32 test points with a length-per-point ( pL ) of 3.93 µm. For the 

estimation of the surface density, each intersection of the line segments with the apical 

surface of the RBM was counted. The volume density was estimated by counting the 

test points that hit the RBM (Figure 2.3). A cumulative count of the number of 

intersections and points was recorded for each section. The arithmetic mean thickness of 

the RBM was calculated according to the following equation adapted from Weibel 

(1990): 

Formula 2.2 

apI

pLP
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τ  [µm] 
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τ = arithmetic mean thickness 

P = number of points hitting the RBM 

apI = number of intersections of the segments with the apical surface of the RBM 

pL = length-per-point 

 

2.2.6.4 Cell counting and cell density estimation 

Due to the very low contribution of the within-airway between-biopsy variation to the 

total inter-subject variability of inflammatory cell counts (Gamble et al. 2006), only the 

biopsy yielding the most sections / slides was selected for cell counting from each 

subject. The IHC stained sections were analysed using oil immersion lenses with a 

magnification of 40x (CD68 series) and 60x (CD3 series). The final magnifications 

were 1400x (CD68) and 2100x (CD3), with a numerical aperture setting of 1.00 and 

1.40 respectively, in order to minimize the depth of field. 

The reference compartment for cell counting was confined to the lamina propria of the 

airway mucosa for both cell types. The stained T-lymphocytes and macrophages were 

quantified over the entire IHC staining series by performing the 2D and 3D counting 

simultaneously. 

 

2.2.6.4.1 2D Counting – The ‘Area Profile’ Approach 

The 2D profile counting was performed on one of the two sections and its same fields of 

view sampled for 3D counting (see below). The counting criterion used for the small T-

lymphocytes with poorly developed cytoplasm was the stained transect itself. For 

quantifying macrophages two 2D approaches were used, by counting: 1) all stained cell 

transects (with or without nucleus) and 2) only stained transects containing a nuclear 

profile – in order to reduce the influence of differing cell size, while assuming that 

nuclear size varies less (Jeffery et al. 2003). The results were recorded as cumulative 

counts for each section. The number of profiles per unit area (NA) was estimated for 

each biopsy and cell type according to: 

Formula 2.3 
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N A
ˆ = estimated number of cell profiles per unit area 

 

2.2.6.4.2 3D Counting – The Physical Disector 

Two consecutive sections were selected for the physical disector on each slide. The 

choice of the disector pair from the three sections mounted on each microscope slide 

was based on the technical quality of the specimens. Due to the high numerical 

apertures of the objectives allowing a sufficiently low depth of field, the image was 

focused on the top side of each section. Thereby the disector height was equal to the 

mean section thickness represented by the BA of the microtome of 2 µm. Although the 

final mean section thickness is likely to differ from the BA, the physical disector is 

insensitive to any form of tissue shrinkage – differential, non-uniform or anisotropic 

(Dorph-Petersen et al. 2001). By focusing only on the upper side of the sections the rest 

of the section thickness serves as a guard area. Registration of the sections was achieved 

semi-automatically with the CAST-Grid 2.01 software, after outlining the specimens 

and identifying and marking the same anatomical features, e.g., several larger glands or 

blood vessels, in both sections. The fields of view were determined by a meander SURS 

scheme with a random start within the outlined specimen, as defined by the software. 

The sampling distance to step in x and y was automatically chosen by CAST-Grid 2.01 

after manually pre-setting a certain area sampling fraction, i.e., the fraction of the area 

of interest to be sampled by SUR positioned unbiased counting frames. All sections of a 

given biopsy were analysed using the same area sampling fraction in order to ensure a 

uniform sampling probability within the biopsy. 

The registered pairs of SUR fields were sequentially presented on the high-resolution 

monitor and positively stained cell transects within a single focal plane were sampled by 

an unbiased counting frame (Gundersen 1978; Howard and Reed 1998) with an area of 

30% of the displayed field of view. The cell counting was performed according to the 

directional unbiased counting rule of the physical disector (Figure 2.4). 



Material and methods 

 39 

 
Figure 2.4 Physical disector (3D) and profile counting (2D) within a consecutive 

reference and look-up section 
Red triangles mark cell profiles seen in the reference section which are not present in 
the look-up section (bidirectional counting); green circles mark all cell profiles seen in 
the right section; yellow squares mark each assessed counting frame/field of view. The 
cell profile cutting the lower exclusion (red) line is not counted either in 3D or 2D. 
 

In order to increase efficiency, the counting was performed bidirectionally by 

interchanging the reference and the look-up sections once the fields were registered, as 

generally recommended (Howard and Reed 1998). The results were recorded as 

cumulative counts for each section. Area-sampling fractions ranging 4-16% for the CD3 

and 9-25% for the CD68 stained sections yielded sufficiently high counts per biopsy to 

achieve appropriate CE (Gundersen and Jensen 1987; Gundersen et al. 1999). The 

numerical density (NV) was estimated for each biopsy and cell type according to: 

Formula 2.4 
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NV
ˆ = estimated number of cells per unit volume 

Reference section Look-up section 
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2.2.7 Statistical analyses 

2.2.7.1 Descriptive statistics 

The biopsy volume was reported as median and value range in each group. For each 

subject and epithelial desquamation pattern, the results of the 1-3 analysed biopsies 

were averaged to yield the data on the integrity of the epithelial layer. Each group was 

characterized by the mean value, SD and coefficient of variation (CV) for every 

morphological category of the epithelium. Similarly, the arithmetic mean thickness of 

the RBM for each subject was calculated as the average value of 1-3 analysed biopsies. 

In each group the mean, median, SD and range of values were reported. 

For each subject and selected biopsy, NV [mm-3] and NA [mm-2] were calculated as 

discrete values accompanied by the CE calculated with the quadratic approximation 

formula, which takes into account the nugget effect due to complete random distribution 

of the cells {Gundersen, 1999 92 /id;West, 1991 122 /id;West, 1996 121 /id}. Mean 

values are accompanied by the mean CE calculated as the quadratic mean of the 

individual CEs. 

The observed coefficients of variation (OCV) of the study samples were obtained by 

dividing the observed standard deviations by the sample means. The observed variance 

(OV) of the estimates, calculated as the mean square deviation of the 7 individual values 

characterising each subject, has two contributions: (i) the inherent variation between 

specimens (biological variability) and (ii) the variation introduced by the employed 

sampling scheme, which is depicted by the mean CE. To ensure that OV mainly 

depends on the biological variability, the design has to be tuned so that the variation 

introduced by the sampling is smaller than the biological variability. Taking into account 

the following relationship: 

Formula 2.5 
222 CECVOCV +=  

OCV= observed coefficient of variation 

CV = true biological coefficient of variation 

CE= mean coefficient of error of the estimator 
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and that the true biological variance is not directly available in an estimation design, the 

previous requirement is fulfilled if the variance due to the sampling is less than half of 

OV, or rewritten 222
OCVCE <  {Miller, 1997 11 /id;West, 1991 122 /id}. 

The two cell counting methods deliver results with different dimensions and very 

different magnitudes. To enable a direct comparison of the 3D and 2D approaches, zero-

dimensional ratios between the macrophages and the T-lymphocytes were calculated for 

NV, as well as for NA. The mean ratio values are reported for each group. The CEs of 

the ratios were calculated as the square root of the sum of squared CEs of the ratio 

terms. Mean ratios are accompanied by mean CEs, calculated as the quadratic mean of 

the ratio CEs. 

 

2.2.7.2 Inferential statistics and exploratory data analysis 

All statistical analyses were performed using SigmaStat 3.1, charts were created with 

SigmaPlot 9.0. 

The Kolmogorov-Smirnov test was used to test sample data for normality of the 

underlying populations. The equality of population variances was tested by the variance 

ratio test (F-test). Parametric testing was then applied to data drawn from normally 

distributed populations with equal variances. Otherwise non-parametric tests were 

employed. 

Mann-Whitney’s non-parametric rank sum test was used to test the biopsy volumes and 

the extent of epithelial desquamation for significant differences between the smoker and 

the non-smoker group. The association between biopsy volume or arithmetic mean 

RBM thickness and the extent of the different patterns of epithelial disruption was 

investigated by Spearmann’s rank correlation coefficient. The arithmetic mean thickness 

of the RBM was tested for a significant difference between the two groups by Student’s 

unpaired two-tailed t-test. 

Pearson’s correlation coefficient (r) was used to test the relationship between 3D and 2D 

density estimates. For each group of subjects, each of the 2D approaches and the 

physical disector design were tested for differences of the mean CD68+/CD3+ ratios 

using Wilcoxon’s signed rank test. The mean CD68+/CD3+ ratios obtained by 2D cell 

profile counting were tested for differences between the two groups by Mann-Whitney’s 
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non-parametric rank sum test, after standardisation by dividing them by the 

corresponding 3D mean ratio. P values <0.05 were considered to be significant. 

 

The method agreement was tested for interchangeability of the results using the Bland-

Altman analysis (Gallagher 1996; Bland and Altman 1999). Usually both established 

and alternative methods include substantial error. Comparisons under such 

circumstances evaluate the agreement between the techniques, not the absolute errors 

associated with each measurement method. Besides the inherent random measurement 

error of each method (a gauge of precision), a systematic error, i.e. bias, of one or both 

methods (a gauge of accuracy) can lead to discrepancies in the results. The bias can be 

either constant (on offset) or proportional to magnitude of the measurement. The Bland-

Altman analysis quantifies these two types of measurement error of the tested method 

relative to another method, usually a standard. This facilitates a comparison of the so 

calculated bias and variation of the random error with a priori defined acceptable 

ranges. The definition of these acceptance intervals depends on the use to which the 

result is put and is a matter of biological and medical judgement – statistics alone 

cannot answer such a question. 

For each pair of measurements, the difference between the alternative and the standard 

method ( id ) has to be calculated. The mean of these differences (d ) is an estimate of 

the relative bias between the two methods; the standard deviation of the differences 

( ds ) measures random fluctuations around this mean and approximates the variation of 

the random measurement error. If the differences are normally distributed, 95% of the 

differences are expected to lie between dsd 96.1−  and dsd 96.1+ , which are called 

95% limits of agreement – the approximation dsd 2±  can be used with minimal loss of 

accuracy. Such differences are actually likely to follow a normal distribution because 

most of the variation between subjects (the biological variability) has been removed and 

only the random measurement errors are left, which are likely to be normal. The 

estimates of bias and random error are meaningful only if the mean difference and the 

standard deviation are reasonably uniform throughout the range of measurement, in 

other words independent of the magnitude of the measurements. These assumptions can 

be checked graphically. Ideally, the differences between the two methods would have to 

be plotted against the true value. As this is usually unknown, the best estimate available 
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is the mean measurement magnitude (im ), i.e., the mean of the values delivered by the 

two methods for the same subject. Plotting the differences against the values of either 

the standard or the alternative method is prone to a statistical artefact, which will 

eventually lead to entirely false conclusions about the agreement of these methods 

(Bland and Altman 1995). Any possible relationship between the discrepancies of the 

methods and the true values can be investigated visually, when a relationship is obvious, 

or formally by calculating the rank correlation. If there is an association between the 

differences and the size of the measurements, then the mean difference will tend to rise 

or fall with increasing magnitude. In this case the analysis will still give limits of 

agreement which will include most differences, but they will be wider apart than 

necessary for small magnitudes and rather narrower than they should be for large 

magnitudes. Such deviations from the assumptions of uniformity of the mean and 

standard deviation of the differences can be dealt with by a suitable transformation of 

the raw data, e.g., logarithmic (Bland and Altman 1986; Bland and Altman 1996), or, if 

this fails, by modelling these parameters as a function of the magnitude of the 

measurement, using a linear regression approach. The limits of agreement are then 

obtained by combining the two regression equations in a manner similar to the 

definition of the 95% limits of agreement mentioned above (Altman 1993; Bland and 

Altman 1999). 

Based on theoretical reasons, the physical disector was regarded as the standard method 

and the area profile approach as the alternative method. To be acceptable, the 95% 

limits of agreement had to lie within ± 2CE  of the mean ratios for each group. This 

takes into account the precision of the ratio estimators, as quantified by the mean CE, 

and follows the definition of the 95% coefficient of repeatability proposed by the British 

Standards Institution (1979) - it cannot be reasonably expected for the agreement 

between two methods to be better than the precision of each estimator. Spearmann’s 

rank correlation coefficient was used to assess the relation between the ratio differences 

of the two designs and their mean values. Routinely recommended logarithmic 

transformations of the data usually cannot solve the problem when the differences tend 

to be in one direction (e.g., negative) for low magnitudes and in the other direction (e.g., 

positive) for high values. Therefore, model fitting of the relation between the relative 

bias of the 2D design and the magnitude was performed by linear regression: 
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Formula 2.6 

ibmaid +=ˆ  

 

id̂ = regression estimate of the difference for the i-th pair (describes a proportional bias) 

a= intercept 

b = slope / regression coefficient 

im = mean magnitude for the i-th pair. 

 

The model fitting was quantified by the coefficient of determination (r2), which for a 

simple linear regression is equal to the squared Pearson’s correlation coefficient and 

designates the proportion of the total variation of the differences that is explained by the 

variation of the magnitudes. The Kolmogorov-Smirnov test was used to test the data for 

normality of the underlying population about the regression line. The Breusch-Pagan 

test was used to test the regression residuals ( idid ˆ− ) for homoscedasticity. Assuming 

normality about the regression line, a critical assumption for the simple linear 

regression, the 95% regression based limits of agreement were calculated as 

mdsid |2ˆ ± , or using formula 2.6 rewritten as: 

Formula 2.7 

mdsibma |2±+  

 

mds | = standard error of the regression estimates = standard deviation of the residuals, 

which is given by: 

Formula 2.8 

2
1

2)ˆ(

| −
=

−

=
∑

n

n

i
idid

mds  

 

The regression coefficients and the intercepts of the two groups were tested for 

differences by Student’s t test. 

P values <0.05 were considered to be significant. For this threshold of type I error, the 

desired statistical power was > 80%. 
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3 Results 

3.1 Biopsy volume 

The median biopsy volumes were 0.125 (0.059 – 0.530) ml in the non-smoker group 

and 0.197 (0.058 – 0.491) ml in the smoker group (Figure 3.1). 
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Figure 3.1 Biopsy volumes of the two subject groups 
The boundary of the box closest to zero indicates the 25th percentile, the line within the 
box marks the median and the boundary of the box farthest from zero indicates the 75th 
percentile. Whiskers (error bars) above and below the box indicate the 95th and 5th 
percentiles. 
 

Although the value ranges were similar and Mann-Whitney’s rank sum test did not 

detect a significant difference between the medians of the non-smoker and smoker 

group, there was a clear trend for most non-smoker specimens to cluster around smaller 

volumes, as shown by the much lower 75th percentile of the non-smoker group: 0.168 

ml versus 0.317 ml in the smoker group. 
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3.2 Epithelial integrity 

The epithelial lining of the bronchial mucosa displayed a heterogeneous morphology. 

This ranged from a normal histological appearance of the respiratory epithelium to areas 

completely lacking this layer, although the RBM was fully preserved (Figure 3.2). 

 

  

 

Figure 3.2 Heterogeneous morphology of the respiratory epithelium (20x) 
(a) Intact epithelial layer with basal cells (BC), several nuclear rows and visible cilia 
(C) at the luminal border of the cells. Interspersed goblet cells (GC) with PAS positive 
(magenta) mucin-filled secretory granules. (b) Continuous monolayer of basal cells 
(BC) with no cilia, no columnar or goblet cells. Completely disrupted epithelium with 
no cells covering the RBM (←) at the lower image border. (c) Intact RBM not covered 
by epithelial cells (←) following total desquamation of the epithelium. A further closed 
RBM boundary (∗) displays mostly a monolayer of basal cells. 
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GC 

RBM 

BC 

BC 
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In both groups only a small fraction of the epithelium was intact, i.e., more than only 

one layer of basal cells preserved. Two patterns of epithelial damage were noted. The 

most frequent one was the RBM being covered by a single layer of basal cells with no 

intact ciliated or goblet cells. Less commonly observed was the complete denudation of 

all epithelial cells with a bare RBM. The percentage of RBM covered by a single layer 

of basal cells or no epithelial cells was similar in the endobronchial biopsies of both 

groups (Table 3.1 and Figure 3.3). 

 

Table 3.1 Epithelial morphology by pattern and subject group 

non-smoker (n=7)  smoker (n=7) 
RBM area 

mean SD CV  mean SD CV 

Intact 

epithelium 
17.5% 9.7% 0.55  20.0% 12.3% 0.61 

Fragmented 

epithelium 
47.8% 10.4% 0.22  56.3% 12.9% 0.23 

Denuded 34.7% 6.3% 0.18  23.7% 15.5% 0.65 

Total 

disrupted 

epithelium 

82.5% 9.7% 0.12  80.0% 12.3% 0.15 

Definition of abbreviations: SD = standard deviation of the sample, CV = coefficient of 
variation of the sample 
 

The spread of the individual values about the mean was large, especially for the RBM 

covered by intact epithelium. 
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Figure 3.3 Epithelial integrity by pattern and subject group – comparison with 
published data 
Horizontal bars represent sample mean values, error bars represent 2 SD. 
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When examining the relation between the epithelial integrity of each biopsy and its 

volume, there was a trend for the largest areas of denuded RBM and smallest areas of 

intact epithelium to be encountered in small biopsies with a volume up to 0.1 ml. The 

largest areas of intact epithelium in the smoker group were noticed in the largest 

biopsies, with a volume over 0.4 ml, though a similar behaviour could not be identified 

in the non-smoker group (Figure 3.4).  
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Figure 3.4 Correlation of the epithelial morphology with the biopsy volume 
(a) intact respiratory epithelium, (b) fragmented epithelium, (c) epithelium denuded 
RBM and (d) total disrupted epithelium (fragmented and absent). Regression lines 
depict very strong correlations between RBM area fraction and biopsy volume in the 
smoker group. No significant correlations were found in non-smokers. 
 

A very strong and significant correlation between the biopsy volume and the epithelial 

morphology could be noticed for intact epithelium (rs = 0.73, Pr = 0.005), denuded RBM 

(rs = -0.78, Pr = 0.001) and total disrupted epithelium (rs = -0.73, Pr = 0.005) only in the 
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smoker group. The RBM area covered by fragmented respiratory epithelium mostly 

ranged between approx. 40% and 70%, without a noticeable dependence on the biopsy 

volume in any group. 

Mann-Whitney’s rank sum test did not detect any significant differences between the 

non-smoker and the smoker group with regard to the RBM area fractions covered by 

fragmented epithelium or completely denuded of respiratory epithelium, respectively. 

Furthermore no significant difference could be detected for the total RBM area fraction 

of disrupted epithelium (fragmented and absent) between the two groups. 
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3.3 Thickness of the reticular basement membrane 

The reticular basement membrane appeared as a homogenous PAS positive band of 

various width between the lamina propria and the epithelium, where preserved (Figure 

3.2). 

The arithmetic mean thickness of RBM showed a high within-group variability but no 

significant difference between the non-smoker and the smoker group, as assessed by 

Student’s unpaired t-test: 3.28 ± 0.97 µm versus 4.36 ± 1.20 µm respectively, P = 0.1 

(Figure 3.5). Median values and ranges were 2.97 (2.33 – 5.13) µm and 3.73 (3.54 – 

6.83) µm. 
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Figure 3.5 Arithmetic mean thickness of the RBM 
Horizontal bars represent average values, errors bars represent 2 SD. 
 

As there were no significant differences between the two groups either in the RBM area 

fractions of epithelial damage or in the arithmetic mean thickness of the RBM, the 

results of all 24 biopsies were pooled for a correlation analysis between the arithmetic 

mean thickness of the RBM and the amount of epithelial disruption. No significant 

correlation between the arithmetic mean thickness of the RBM and the extent of the 

different patterns of epithelial damage (i.e., fragmented or completely absent) could be 

found using Spearmann’s rank order correlation coefficient. Similarly, no significant 

correlation could be found between the arithmetic mean thickness of the RBM and the 

total extent of the epithelial disruption (fragmented and absent). 
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3.4 2D and 3D inflammatory cell counts 

On the IHC sections, the cells of interest appeared dark brown stained against the pale 

blue background. The nuclei of all cells, IHC-positively stained or not, appeared dark 

blue (Figure 3.6 and 3.7). Low levels of non-specific positive staining were displayed 

by the nuclei of epithelial cells on anti-CD3 stained sections; however, this 

compartment was not subject to the quantitative analyses of inflammatory cells, so that 

false positive results were avoided. The anti-CD68 stained sections did not display any 

non-specific positive reaction. 

 

  

Figure 3.6 Anti-CD68 stained sections of endobronchial biopsies (40x) 
Macrophage profiles stained brown in a non-smoker (a) and a smoker (b) subject. Pale 
blue counterstaining of the background. Nuclei stained blue. 
 

  

Figure 3.7 Anti-CD3 stained sections of endobronchial biopsies (60x) 
T-lymphocyte profiles stained brown in a non-smoker (a) and a smoker (b) subject. 
Non-specific positive staining of epithelial nuclei (∗). 

a b 

a b 

∗∗∗∗ 

∗∗∗∗ 

∗∗∗∗ 
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Table 3.2 summarises the mean counts per unit for each group, cell population and 

counting method. 

 

Table 3.2 Quantitative morphological data by group and cell type 

NV (mm-3)  NA nucleus (mm-2)  NA cell (mm-2) 
Group 

Cell 

Type mean CE  mean CE  mean CE 

CD68+ 85987 9.7%  350 10.1%  569 7.6% non-

smokers CD3+ 228612 9.3%  N. A. N. A.  931 9.3% 

CD68+ 46025 11.5%  163 12.4%  534 6.6% 
smokers 

CD3+ 91870 10.4%  N. A. N. A.  322 11.2% 

Definition of abbreviations: NV = numerical density, NA nucleus = nuclear profile per unit 
area, NA cell = cell profile per unit area, CE = coefficient of error of the mean estimate, 
N. A. = not analysed 
 

The area profile number was considerably higher when counting all cell profiles instead 

of only nuclear profiles in both groups. Because in the 2D approach the data were 

recorded as cell or nuclear profile counts per unit area (NA), whereas in the 3D approach 

cell numbers per unit volume (NV) were obtained, the completely different scale units 

precluded a direct statistical testing for differences or agreement between these 

methods. The OCV of the 2D and 3D densities ranged from 29% to 51%. Although 

counting was performed on the same sampled fields of view, the variation between 

subjects tended to be lower in the 3D as compared with the 2D approach, reflected in 

lower OCVs (Figure 3.8). The mean CEs were fairly constant: 7.6 to 12.4 %, regardless 

of the approach used, the cell population under investigation or the study group. They 

represented 1.7 - 10.9% of the OV, in accordance with the recommendation for the 

sampling variance (i.e., counting noise) to be less than half of the OV {Miller, 1997 11 

/id;West, 1991 122 /id}. 



Results 

 54 

a)
CD3+ CD68+

m
m

-3

0

400

800

1200

100000

200000

300000

m
m

-2

0

400

800

1200

100000

200000

300000
NV

NA nucleus

NA cell

non-smoker group

 

b)
CD3+ CD68+

m
m

-3

0

300

600

900

50000

100000

150000

m
m

-2

0

300

600

900

50000

100000

150000
NV

NA nucleus

NA cell

smoker group

 

Figure 3.8 Mean counts per unit volume and area (mean + SD) by group and 
cell population 
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In both groups, NA and NV were very strongly (Kühnel and Krebs 2004) and 

significantly correlated, as shown by Pearson’s product-moment correlation coefficient 

for both T-lymphocytes (Figures 3.9 a and b) and macrophages (Figures 3.9 c and d). 

However, the calculated slopes of the regression lines ranged 0.0029 to 0.0123. 
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Figure 3.9 2D profiles per unit area versus 3D numerical density 
(a) T-lymphocytes, non-smokers, r = 0.84, p < 0.05; (b) T-lymphocytes, smokers, r = 
0.96, p < 0.001; (c) macrophages, non-smokers, rnucleus = 0.95, p < 0.005; rcell = 0.76, p 
< 0.05; (d) macrophages, smokers, rnucleus = 0.98, p < 0.0005; rcell = 0.89, p < 0.01 
 

In order to enable direct statistical comparisons of the two methods, the dimensionless 

ratio between CD68+ and CD3+ counts was calculated. The trend for the OCV to be 

higher in the 2D than the 3D approach was also present and even more pronounced for 

the CD68+/CD3+ cell ratios. The CE of the mean ratios ranged from 12 to 16.7% 

(Table 3.3). 
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Table 3.3 CD68+/CD3+ cell ratios by group and counting design 

CD68+/CD3+ 

3D 

 CD68+/CD3+ 

2D nucleus 

 CD68+/CD3+ 

2D cell Group 

Mean CE  Mean CE  Mean CE 

non-

smokers 
0.39 13.4% 

 
0.43 13.7% 

 
0.68 12.0% 

smokers 0.49 15.5% 
 

0.50 16.7% 
 

1.68 12.9% 

Definition of abbreviations: 3D = physical disector, 2D nucleus = counts of nuclear 
profiles, 2D cell = counts of cell profiles (with and without nucleus), CE = coefficient of 
error of the mean ratio estimate 
 

In each study group, the mean CD68+/CD3+ ratios obtained from 3D and 2D cell profile 

counts showed statistically significant differences (P < 0.05), with the 2D values being 

on average 1.7 (non-smokers) to 3.4 (smokers) times higher. This difference in the 

relative amplitude of the 2D estimator across the two subject groups was also 

statistically significant (Mann-Whitney’s non-parametric rank sum test, P < 0.005). 

When counting only CD68+ cell profiles containing a nucleus, the mean results of the 

3D and 2D nuclear profile approaches were almost identical and the hypothesis of the 

difference being due to chance could not be rejected (Table 3.4 and Figure 3.10). 

 

Table 3.4 Hypothesis testing and correlation of the CD68+/CD3+ cell ratios 
between the 3D and 2D counting designs 

Group Counting designs W PW r Pr 

3D 2D nucleus 2 NS 0.970 < 0.0005 non-

smokers 3D 2D cell 28 < 0.05 0.955 < 0.001 

3D 2D nucleus 6 NS 0.772 < 0.05 
smokers 

3D 2D cell 28 < 0.05 0.665 NS 

Definition of abbreviations: W = Wilcoxon’s test statistic, r = Pearson’s correlation 
coefficient, 3D = physical disector, 2D nucleus = counts of nuclear profiles, 2D cell = 
counts of cell profiles (with and without nucleus), NS = nonsignificant 
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Figure 3.10 Mean CD68+/CD3+ cell density ratios (mean ± SE) for each design 
and study group 
 

Nevertheless, after plotting the ratios calculated from the 2D nucleus and 3D design 

against each other it was fairly obvious that most measurement pairs were not in good 

agreement, i.e. they were widely scattered around the line of equality y = x (Figure 

3.11). 
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Figure 3.11 CD68+/CD3+ cell density ratios by the 2D (nucleus) and 3D design 
(a) non-smoker and (b) smoker group with the line of equality (y = x) 
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In order to quantitatively assess the agreement, the difference between the ratios by the 

two methods was plotted against their mean, for each subject (Figure 3.12). 
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Figure 3.12 Bland-Altman plots of the CD68+/CD3+ cell density ratios by both 
designs (2D;3D) 
Dashed line y = 0 represents the line of equality, which stands for perfect agreement. 

 

A striking relation between the differences and the magnitude (mean of ratios) could be 

noticed and formally examined by assessing the rank order correlation: Spearmann’s 

correlation coefficient rs was 0.89 for the non-smoker group and 0.79 for the smoker 

group, both statistically significant (Pr < 0.05). 

In the non-smoker group, the ratio means reflected 91% of the variability in the ratio 

differences, as measured by the coefficient of determination r2. The regression of the 

differences ( id ) on the means (im ) according to formula 2.6 gave: 

Formula 3.1 

11
744.0273.0ˆ imid ×+−=  

 

which represents the proportional bias of the 2D ratios compared to the 3D approach 

(Figure 3.13a). The constant variance test was passed, indicating homoscedasticity of 

the differences. Therefore, instead of regressing the residuals on the means, the standard 

deviation of the residuals (0.053) was used to calculate the regression based 95% limits 

of agreement, as given by formula 2.7: 

106.0744.0273.0053.02744.0273.0
11

±×+−=×±×+− imim  
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This fell under the criteria of acceptance for the 95% limits of agreement set to ± 2SE, 

respectively ± 0.12 less bias. When constructing such a parametric reference range for 

the predicted variable, the assumption of normality for the distribution of the source 

population about the regression line is critical (Altman 1993; Zar 1999). The normality 

test of the residuals was passed. Finally, the power of the performed regression was 

97.6% indicating a high appropriateness in describing the relationship between the 

differences and the magnitude. 
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Figure 3.13 Regression based Bland-Altman plots of the CD68+/CD3+ density 
ratios 
(a) Regression based mean difference (bias) and 95% limits of agreement for the 
differences of the CD68+/CD3+ cell density ratios as determined by the 2D nucleus and 
3D approaches in the non-smoker group. All values lie within the interval between the 
calculated 95% limits of agreement; (b) Regression based mean difference (bias) with 
95% C.I. of the regression line (dotted) for the differences of the CD68+/CD3+ cell 
density ratios in the smoker group. The 95 % C.I. includes several horizontal lines 
(slope = 0) so that the fitted linear model does not achieve the desired statistical 
significance. 
 

In the smoker group fitting a linear regression model showed that the ratio means 

account for only 41.4% of the variability of the ratio differences, as measured by the 

coefficient of determination r2. The regression equation of id  on im  (Formula 2.6) 

gave: 

Formula 3.2 

22
662.0321.0ˆ imid ×+−=  
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which represents the proportional bias of the 2D ratios compared to the 3D approach. 

The chosen level of significance was not reached for either the slope (regression 

coefficient) or the F-statistic (P = 0.07) (Figure 3.13b). The statistical power of the 

performed regression for the sample size n = 7 and α = 0.05 was 43.4%. A subsequent 

polynomial regression showed no fitting improvement for higher order equations, so the 

linear model was further elaborated. By examining the plot of the ratio differences 

against the means, two large outliers could be easily identified (Figure 3.12b). As these 

two subjects appeared to have very low CD68+ and CD3+ NV (the lowest in the sample), 

the counting results were very low and therefore the CE quite high for both CD68+ and 

CD3+ cells in both designs. This also led to high CE (up to 25%) of the calculated ratios. 

Because this very high measurement error was likely to be a strong confounder in a 

sample of n = 7, these two subjects were excluded and then the regression analysis of 

the differences on the means was repeated. This led to a remarkable improvement, with 

the mean ratios reflecting 98.3% of the variability in the ratio differences. The 

regression equation of id  on im  became: 

Formula 3.3 

33
690.0332.0ˆ imid ×+−=  

 

which represents the proportional bias of the 2D ratios compared to the 3D approach 

(Figure 3.14). The constant variance test was passed, indicating homoscedasticity of the 

differences. Therefore, instead of regressing the residuals on the means, the standard 

deviation of the residuals (0.011) was used to calculate the regression based 95% limits 

of agreement, as given by formula 2.7: 

022.0690.0332.0011.02690.0332.0
33

±×+−=×±×+− imim  

Because of the decrease in the mean relative error of the ratio estimator (mean CE) to 

approx. 11%, acceptable agreement had to be redefined as ± 0.11 less bias. The 

recalculated regression based limits of agreement fully complied with this new 

definition. The statistical power of the regression increased considerably to 98.1% (for α 

= 0.05). 
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Figure 3.14 Regression based Bland-Altman plot for smokers without outliers 
Regression based mean difference (bias) and 95% limits of agreement for the 
differences of the CD68+/CD3+ cell density ratios as determined by the 2D nucleus and 
3D approaches in the smoker group after removing the two large outliers. 
 

The regression coefficients of formula 3.1 and 3.3 were tested for a significant 

difference using Student’s t test (Zar 1999). This yielded a value smaller than the critical 

one at α = 0.05, which led to the conclusion that the difference of the two slopes was not 

statistically significant. Its 95% confidence interval (-0.396; 0.504) included the 0 value. 

Therefore, an estimate of the population regression coefficient (β) underlying the 

regression coefficients of both samples, which is called the common (or weighted) 

regression coefficient, could be computed: bc = 0.736. A Student’s t test, which 

compared the two intercepts of formula 3.1 and 3.3, yielded a value larger than the 

critical one, indicating a statistically significant difference (P < 0.01). Thus the 

regression equations 3.1 and 3.3 became: 

Formula 3.4 

11
736.0273.0ˆ

imid ×+−=  

Formula 3.5 

33
736.0332.0ˆ imid ×+−=  

 

Summarizing, even though the differences between the mean ratios of NV and those of 

NA nucleus were not statistically significant and they showed a consistent correlation 

(Table 3.4), the Bland-Altman analysis identified a non-uniform bias of the 2D profile 

number estimator (Figure 3.13 and 3.14). Nevertheless, the random error about the bias 
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was low enough for the regression based 95% limits of agreement to be acceptable in 

both groups. 
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4 Discussion 

4.1 Epithelial integrity 

Recent publications increasingly stress the putative central pathophysiological role of 

the respiratory epithelium in the initiation of the chronic inflammation, its maintenance 

and the inappropriate remodelling of the airways in asthma (Holgate et al. 1999; 

Holgate et al. 2003; Hackett and Knight 2007; Holgate 2008; Folli et al. 2008). The 

function of the epithelium as a physical barrier between the environmental air in the 

lumen of the airways and the organism was amended by its humoral autocrine and 

paracrine functions (Davies and Devalia 1992; Polito and Proud 1998; Puddicombe et 

al. 2000). Both the structural and humoral properties contribute to the homeostasis of 

the airways and are intuitively thought to be at least in part dependent on the 

morphological integrity of the epithelial layer. Consequently and following some early 

reports of epithelial damage in mild to fatal asthma (Dunnill 1960; Naylor 1962; Cutz et 

al. 1978; Laitinen et al. 1985) the morphology of the airway lining became an appealing 

topic in pulmonary research. During the past two decades many studies examined the 

integrity of the respiratory epithelium by different approaches and the results were 

somehow equivocal. The post-mortem findings of shed epithelial cells in the asthmatic 

airway lumen (Dunnill 1960) could not be confirmed as significantly increased by a 

later comparative necroptic study (Carroll et al. 1993). Similarly, discrepant results were 

obtained in induced sputum analyses. Fahy et al. (1995) could not confirm the increased 

shedding of epithelial cells previously noticed in asthmatic sputa (Naylor 1962). BAL 

examinations claiming more extensive epithelium damage and sloughing in asthma 

(Beasley et al. 1989; Montefort et al. 1992; Chanez et al. 1999) were not supported by 

others (Kirby et al. 1987; Foresi et al. 1990; Redington et al. 1995). Whereas some 

bioptic studies sustain the hypothesis of increased epithelial desquamation being a 

pathologic feature of asthma (Laitinen et al. 1985; Jeffery et al. 1989; Montefort et al. 

1993b; Laprise et al. 1999), later publications based on larger numbers of subjects and 

homogenous clinical characteristics of the study groups failed to detect a significant 

difference (Lozewicz et al. 1990; Boulet et al. 1997; Ordonez et al. 2000; Fahy 2001). 

Similarly, findings of a correlation between epithelial disruption and airway 

hyperresponsiveness (AHR) in asthmatics (Jeffery et al. 1989; Beasley et al. 1989; 

Laprise et al. 1999) were not confirmed by other studies (Laitinen et al. 1985; Boulet et 
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al. 1997; Ordonez et al. 2000). In addition, extensive epithelial damage was documented 

in endobronchial biopsies of healthy volunteers (Soderberg et al. 1990), highlighting the 

potential for artefactual damage during biopsy sampling and processing, which should 

be considered before attributing all epithelial alterations to pulmonary disease. This 

hypothesis is supported by the findings of Aleva et al. (1998) that biopsy morphology 

and size largely vary with the size and shape of the biopsy forceps. Therefore, the 

potentially artefactual nature of the specimen morphology due to bronchoscopist skills, 

forceps type and sharpness, tissue properties and further processing has to be 

acknowledged. 

Another interesting in vitro observation argues against the complete denudation of RBM 

seen in endobronchial biopsies being a true morphopathological feature. The remaining 

basal cells in adjacent regions of experimentally denuded areas were seen to flatten and 

spread to cover the denuded RBM within 20 minutes (Erjefalt et al. 1997; Polito and 

Proud 1998). If asthma were to cause complete denudation of the epithelial lining of the 

RBM, this alteration would be repaired by the remaining neighbouring basal cells very 

quickly, so that epithelium denuded areas of the RBM should barely be distinguishable 

in biopsy specimens. 

 

In spite of the high variability of the available data on the epithelial integrity in 

endobronchial biopsies, a common finding of all reports is the most frequent pattern of 

disruption in both healthy and asthmatic subjects being the RBM covered by a single 

layer of basal cells with no intact ciliated or goblet cells. In the present study this was 

also true for both groups (Figure 3.3). This pattern represented approx. 50% (35-65%) 

of the RBM area in both non-smokers and smokers and is in excellent agreement with 

the results of Ordoñez et al. (2000), who also found it to be approx. 50% (35-60%) in 

both healthy and asthmatic subjects. Similar results were reported by Boulet et al. 

(1997) for healthy controls: approx. 30% ( 20-60%), with an even higher variability in 

chronic bronchitics: approx. 60% (5-80%). Notably, Laprise et al. (1999) studying a 

group of mild asthmatic patients and a group of asymptomatic subjects with AHR found 

mean values of 54.4 ± 3.7% and 54.7 ± 4.6%, respectively (Figure 3.3). This points out 

that the extent of the desquamation appears to be independent of the presence or the 

type of an airway disorder. 
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Less commonly observed was a completely denuded RBM, in this study amounting to 

an area fraction of approx. 30% (15-55%). This is more extensive than in the 

observations of Ordoñez et al. (2000), but with a similar spread: approx. 15 % (0-40%). 

The large spread of the values around the mean, noticed for all categories, is in 

accordance with some previous reports (Lozewicz et al. 1990; Montefort et al. 1993b; 

Ordonez et al. 2000). 

These findings further support the theory that the plane of cleavage of the respiratory 

epithelium is usually located between the suprabasal and the basal cell layers (Montefort 

et al. 1992) and strengthen the belief that the bronchial epithelium is a truly stratified 

structure with the ciliated columnar cells entirely depending on the underlying basal 

cells for anchorage to the RBM (Evans and Plopper 1988; Roche et al. 1993; Montefort 

et al. 1993a). When considering the total extent of epithelial disruption, this amounted 

to approx. 80% (55-95%) in both groups of the present study and appeared to be higher 

than previous data (Ordonez et al. 2000). Conversely, the amount of RBM covered by 

intact ciliated epithelium was approx. 20% (5-45%), very similar to the data previously 

reported by Montefort et al. (1993b) for asthmatics: 15% (3-36%). This high variability 

of the results of the present and previous studies makes the reliability of the epithelial 

desquamation in endobronchial biopsies, as an indicator and quantifier of airway 

pathology, questionable. 

As expected, there were no significant differences in the extent and the patterns of 

epithelial disruption between the non-smoker and the smoker groups. Moreover, the 

quantitative results were in accordance with those of previous studies, which found no 

significant differences between an asthmatic and a healthy control group (Boulet et al. 

1997; Ordonez et al. 2000). This confirms and reinforces the validity of these data and 

the conclusion that the morphological changes noticed in endobronchial biopsies are 

largely an artefact of tissue sampling and not associated with airway disease. 

Interestingly, the value ranges were similar although different histological techniques 

(i.e., fixation, embedding, staining) and quantitative approaches (i.e., stereology in the 

present study and image analysis in previous work) were employed. This argues against 

a significant influence of the biopsy processing and analysis on the epithelial integrity in 

endobronchial biopsies and underlines the robustness of the data. 

The influence of bronchoscopy and biopsy procedures on the epithelial morphology of 

endobronchial biopsies was already postulated (Jeffery 1996; Jeffery 2001). The size 
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and type of biopsy forceps was shown to have an influence on specimen size and the 

preservation of tissue architecture (Aleva et al. 1998). The stereologic design of this 

study allowed implementing the Cavalieri method for direct estimation of the biopsy 

volume. Subsequently, the hypothesis that the epithelial integrity depends on the biopsy 

size, i.e., volume, was examined. In accordance with the findings that suggested a 

significant procedural influence on the biopsy morphology, the largest areas of denuded 

RBM and total areas of disrupted epithelium, hence the least preserved epithelium, were 

encountered in the smallest biopsies, whereas the largest biopsies predominantly 

exhibited fully preserved epithelium and little disruption. The area fraction of RBM 

covered by intact ciliated epithelium displayed a very strong positive correlation with 

the biopsy volume in the smoker group. In the same group the area fraction of 

completely denuded RBM and that of total disrupted epithelium showed a very strong 

negative correlation with the volume of the biopsies (Figure 3.4). This leaves room to 

speculate that smaller biopsies encounter a higher mechanical force per area unit during 

extraction, which leads to a higher proportion of complete desquamation of the 

epithelial layer from the RBM. Conversely, with larger biopsy volume and therefore 

lower mechanical force per area unit more intact epithelium is preserved. No similar 

correlations could be identified in the non-smoker group. This might be explained by 

the tight clustering of most biopsy volumes in the non-smoker group around lower 

values, as shown by the much lower 75th percentile (Figure 3.1). It can be further 

speculated that in this volume range the mechanical forces acting on the unit area of 

RBM were probably so high that a threshold-effect, ‘overriding’ a gradual synchronous 

variation of the two variables, might have been encountered. A higher tissue consistency 

of the non-smokers, as reported by the bronchoscopist, could have also led to higher 

mechanical forces being applied during biopsy collection. A similar explanation could 

be imagined for the lack of a significant correlation between the RBM area covered by 

fragmented epithelium and the biopsy volume in both study groups. As already stated, 

the preferential cleavage plane of the epithelial layer is situated suprabasally. This was 

attributed to the weaker resistance of the desmosomes between the ciliated and the basal 

cells, as compared to the hemidesmosomes attaching the basal cells to the RBM 

(Montefort et al. 1992; Montefort et al. 1993b). Possibly, strong mechanical forces 

above a certain threshold, as during the biopsy extraction, exert further damage rather 
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by an increasing disruption of the more stable hemidesmosomes after most desmosomal 

attachments have already been split. 

 

The present findings do not rule out the possibility of weaker than normal intercellular 

adhesion in the asthmatic epithelium. This possible alteration of the epithelial fragility 

rather than integrity could explain the higher epithelial cell numbers in BAL fluid from 

asthmatics by an increased susceptibility to the trauma of the lavage procedure in 

asthma patients. However, since biopsy extraction is far more traumatic than BAL this 

increased fragility and susceptibility to disruption of the asthmatic epithelium probably 

dwindles within the far larger artefactual damage, which apparently affects both normal 

and asthmatic epithelium equally (Ordonez et al. 2000). 

The present evidence together with the lack of epithelial desquamation in murine 

models of allergic asthma (Blyth et al. 1996; Trifilieff et al. 2000) are likely to weaken 

the hypothesis that the epithelial desquamation and loss of the physical barrier lead to 

the functional abnormalities of asthma like AHR and consecutive airway narrowing. 

Newer concepts about asthma pathogenesis focusing on the inflammatory and 

immunological properties of a dysfunctional epithelium in airway remodelling are 

gaining more support (Holgate et al. 2000; Holgate et al. 2003; Hackett and Knight 

2007; Holgate 2008). 

 

4.2 Thickness of the reticular basement membrane 

Conditions such as asthma, cystic fibrosis and chronic bronchitis are associated with 

chronic endobronchial inflammation and structural airway remodelling inappropriate to 

the maintenance of normal lung function. Although for a long time the structural 

remodelling was thought to be a direct consequence of chronic inflammation (Bousquet 

et al. 2000), recently emerged evidence sustains different mechanisms and distinct 

pathways for the inflammatory process and the structural alterations as responses to 

chronic injury (Jeffery 2001; Fixman et al. 2007). This would have very important 

implications for the identification of disease-modifying drugs: effective anti-

inflammatory treatment may not necessarily prevent, attenuate or reverse the structural 

alterations. 
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Thickening of the RBM was clearly identified as a remodelling feature highly 

characteristic and usually pathognomonic of asthma (Roche et al. 1989; Jeffery 1999), 

distinguishing it from the other chronic inflammatory airway disorders (Jeffery 2001; 

Fabbri et al. 2003; Bourdin et al. 2007). In some studies, this thickening was shown to 

correlate with the AHR, as quantified by metacholine PC20 (Jeffery et al. 1989; Boulet et 

al. 1997), whereas others could not confirm this association (Kim et al. 2007). While 

most reports did not find a relation between the RBM thickness and age, disease 

duration and severity (Chu et al. 1998; Payne et al. 2003; Payne et al. 2004; Kim et al. 

2007), a recent study proved the RBM thickness to be suitable to differentiate between 

severe asthma, mild asthma, COPD and healthy controls (Bourdin et al. 2007). 

Although the correlations between the RBM thickness and the inflammation extent, 

clinical disease severity and respiratory physiology are somehow controversial, the 

thickness of the RBM is the most favoured variable for the assessment of the airway 

remodelling in asthma and has even been propounded as surrogate marker for other 

changes of the cartilaginous airway wall, like smooth muscle and submucosal mucous 

gland volume fraction (Jeffery et al. 2000; James et al. 2002). This is understandable 

since the RBM thickening was shown to occur even at very young ages and early in the 

course or even before the onset of the disease (Payne et al. 2003; Payne et al. 2004; 

Pohunek et al. 2005), being present even in atopic individuals with asymptomatic AHR 

prior to the development of asthma (Jeffery et al. 1989; Sohn et al. 2008). The increase 

of the RBM thickness persisted even in mild and therapeutically controlled asthma 

(Jeffery et al. 1992; O'Shaughnessy et al. 1996), which supports the hypothesis of a 

different pathophysiology underlying the inflammatory and remodelling processes. In 

contrast, a recent study showed a significant decrease of the RBM thickness of 1.9 µm 

after 12 months in an asthmatic group receiving inhaled fluticasone propionate, as 

compared to a placebo treated asthmatic group (Ward et al. 2002). 

Despite the constant finding of significantly thickened RBM in asthma as compared to 

healthy subjects, many quantitative investigations of airway remodelling reported very 

different ranges for the two populations, sometimes even overlapping (Lundgren et al. 

1988; Jeffery et al. 1989; Roche et al. 1989; Soderberg et al. 1990; Brewster et al. 1990; 

Jeffery et al. 1992; Wilson and Li 1997; Sullivan et al. 1998; Ferrando et al. 2003; Ward 

et al. 2005; Kim et al. 2007). Since all but one of these studies used direct point-to-point 

measurements or image analysis to estimate the RBM thickness, a bias due to the 
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orientation of the RBM and tangential cutting is inherent. Stereology provides methods 

emphasizing sampling and sources of bias and is therefore particularly valuable for 

measurements of length and surface area. A stereological approach for the measurement 

of the RBM thickness in endobronchial biopsies was already proposed (Ferrando et al. 

2003). The results for both asthmatic and healthy subjects were substantially lower than 

previously reported, supporting the hypothesis of an orientation bias in earlier data. 

This study presents another stereological method for estimating the RBM thickness, 

which was originally developed for measuring the thickness of the pulmonary air-blood 

barrier (Weibel and Knight 1964; Weibel 1990). Appropriate sampling is of paramount 

importance to the unbiased stereological approaches. This was also stressed by former 

investigations revealing considerable between and within biopsy variability for 

measurements of the RBM thickness in both stereologic and non-stereologic designs 

(Sullivan et al. 1998; Ferrando et al. 2003). Therefore, 1-3 biopsies per subject were 

evaluated and a SUR sampling design was adopted at biopsy and section level. 

The unpaired two-tailed t-test did not detect a significant difference between the average 

values of the arithmetic mean thickness of the RBM in the non-smoker and smoker 

group, which is consistent with earlier findings (O'Shaughnessy et al. 1996; Chanez et 

al. 1997; Jeffery 2001). The noted trend for the RBM thickness to be higher in the 

smoker group, without reaching the level of significance, is also supported by other 

reports (O'Shaughnessy et al. 1996; Boulet et al. 1997). However, a recent study 

comprising larger subject groups found a significant RBM thickening in COPD patients 

in comparison with healthy controls and similar to mild asthmatics (Bourdin et al. 

2007), although this is in contrast with the prevalent concepts (Jeffery 1999; Jeffery 

2004). 

The mean values for each group were considerably lower than some former reports for 

healthy subjects, which found a mean RBM thickness of approx. 8 µm, as shown in 

figure 3.5 (Roche et al. 1989; Soderberg et al. 1990; Ward et al. 2005). A study 

employing image analysis based on the principle of Weibel (1990) applied on 2D 

sections cut perpendicular to the epithelial layer, i.e., area by length ratio, reported a 

much lower mean value: 3.19 ± 0.55 µm (Wilson and Li 1997), which is very similar to 

my results of the same principle in a stereological design. They are further supported by 

the findings of Bourdin et al. (2007) using the image analysis method of Wilson and Li: 

4.16 ± 0.66 µm for healthy subjects and 4.8 ± 2.12 µm for COPD patients (Figure 3.5). 
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However, because of the isotropy of the RBM in endobronchial biopsies (Jeffery et al. 

2003), the stereologic approach can be applied to any sections, without the need for 

cumbersome sectioning perpendicular to the RBM. 

As shown in figure 3.5, the mean value for non-smokers in the present study was also 

very similar to that of Ferrando et al. (2003): 3.2 ± 0.4 µm, supporting the validity of the 

stereologic data. Even with lower medians, the ranges of values resembled those of 

Lundgren et al. (1988): 4.8 (2.9 – 6.7) µm, and Payne et al. (2003): 4.4 (3.2 – 6.3) µm, 

emphasizing once again the high within-group data variability reported by Ward et al. 

(2002; 2005) and Bourdin et al. (2007) – Figure 3.5. Therefore, further attempts to 

quantify the RBM thickness in a stereologic approach should use multiple biopsies per 

subject and larger subject samples in order to obtain stable average data. This will also 

lead to an increase in statistical power, facilitating the substantiation of a possible slight 

thickening of the RBM in COPD patients as compared to healthy controls. Ultimately, 

the proposed stereologic design involving point counting is quick and easy to apply, 

without the need to outline the RBM or to orientate the specimen for strictly 

perpendicular sectioning, nonetheless avoiding the bias of tangential sectioning. 

Since a pronounced epithelial desquamation was noticed in the biopsies of the (non-

asthmatic) non-smokers and smokers, the correlation between the RBM thickness and 

the extent of the epithelial disruption was examined. The lack of a significant 

association is in contradiction with the results of Boulet et al. (1997), who found a 

medium correlation between RBM thickness and the percent desquamation of the 

bronchial epithelium in a group of patients with chronic bronchitis, allergic rhinitis and 

healthy controls with airway normoresponsiveness. The heterogeneity of that 

normoresponsive group probably led to an increase in parameter variances, which 

strengthened correlation. 

 

4.3 Comparison of 2D and 3D inflammatory cell counts 

Endobronchial biopsies have been widely used for quantitative assessments of 

inflammation and the related structural changes in chronic inflammatory airway 

diseases (Silva et al. 1989; Bradley et al. 1991; Holgate et al. 1992; Keatings et al. 1996; 

ten Hacken et al. 1998; Jeffery 1998; Faul et al. 1999; Bousquet 2000; Poulter et al. 

2000; Barnes et al. 2000; Jeffery et al. 2000; Gamble et al. 2006; Carroll et al. 2006). 
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Up to the present day, most studies rely on 2D counting of inflammatory cells (Jeffery et 

al. 2003), although 3D approaches have been readily available for more than 20 years 

(DC Sterio, 1984). Design-based stereology represents the state of the art in other 

biomedical research areas, such as neurosciences and nephrology (Saper 1996; Madsen 

1999), whereas its implementation in pulmonary research as a standard quantitative 

technique has been approached only recently (Hsia et al. 2008). The present study 

addressed the issue of agreement between the data supplied by the widely used 2D cell 

or nuclear profile counting and those relying on 3D cell counts. The main focus was on 

the size-bias and its variation, as an answer to previously formulated concerns on this 

subject {Jeffery, 2003 16594 /id;Fehrenbach, 2006 16568 /id}. For this purpose, two 

cell populations with clearly different mean sizes (‘small’ T-lymphocytes and ‘large’ 

macrophages) were quantified in human endobronchial biopsies using both approaches 

in parallel on two study groups comprising seven subjects each. It has to be emphasized 

once again that the study was not designed to pursue any comparison between the two 

subject groups. The rationale for including a group of smokers and a group of non-

smokers was to gather some information on the robustness of the results and the 

behaviour of the theoretically expected differences between the two designs, when 

applied on samples from various source populations. 

This thesis is, for a large part, based on stereology, which requires the observation of the 

naturally bounded reference space and the report of total quantities related to this 

reference space (Howard and Reed 1998). However, the usage of biopsy specimens 

from living subjects, who wish to remain so, precludes relating the estimated variables 

to a reference space, usually the whole organ or organism, in terms of total quantities 

(Hunziker and Cruz-Orive 1986). Therfore in this study, as in virtually all studies 

carried out on living subjects, the usage of stereological ratios and densities is the only 

available method (Cruz-Orive and Weibel 1981; Wulfsohn et al. 2004). 

 

Prior to establishing the accuracy of a measurement method, quantified by the 

systematic error or bias, one should demonstrate adequate precision, quantified by the 

random measurement error. The estimated CE (inherent counting noise) for the 2D and 

3D densities were acceptable with regard to the biological variability of the samples, 

i.e., the sampling variance represented less than half of the OV {Miller, 1997 11 

/id;West, 1991 122 /id}. They were also very similar to previously published results on 
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the precision of 2D counting for different cell populations, which quoted CV of repeated 

counts in the range of 2-11% (Bradley et al. 1991; Bentley et al. 1992; O'Shaughnessy 

et al. 1997). However, the interpretation of results from bronchial biopsies poses 

challenges and their advantages are offset by the large variability between and within 

patients, which may reduce the reliability of the estimates. The large observed 

coefficients of variation in this study were consistent with the rather scarce previous 

findings in 2D counting designs (Jeffery et al. 2003; Gamble et al. 2006; Carroll et al. 

2006). This variability can be addressed through a rigorous study and sampling design 

(Bousquet 2000). The adopted SUR sampling, which included 5-11 section pairs per 

biopsy and many fields per section, efficiently controls the within biopsy variability, 

adhering to the recommendations of previous 2D counting studies (Sont et al. 1997; 

Sullivan et al. 1998). 

The two designs delivered results with very different orders of magnitude (mostly 102 

for 2D and 104-105 for 3D counts) and expressed in different scale units: mm-2 and  

mm-3, respectively. Moreover, the investigated entities were bidimensional cell transects 

in the first case and tridimensional cells in the second case. Therefore, it is obvious that 

the two data sets cannot substitute each other, although paired 2D and 3D data sets 

displayed very strong positive correlations (Figure 3.9), similar to previously published 

biopsy data for other inflammatory cells of the airways (Carroll et al. 2006). This is not 

surprising, as scale units do not affect correlation and it would be quite amazing if two 

methods designed to measure the same underlying quantity were not related. In this 

case, the relationship between NA and NV is described by the mean cell height 

perpendicular to the section plane (Hedreen 1998a; Kalisnik et al. 2001; Mouton 2002; 

Carroll et al. 2006). Another factor facilitating high correlation yields was the low 

measurement error (i.e., high precision) compared to the biological variation between 

individuals (
2

CE  < 10% 2OCV ). Nonetheless, this does not imply good agreement, as 

correlation lacks sensitivity to bias {Altman, 1983 16588 /id;LaMantia, 1990 16587 

/id}. Besides that, the agreement of two methods would require the slope of the 

regression line as plotted in figure 3.9 to be approximately 1, taking into account the 

random measurement error of both methods (Bland and Altman 2003). Although all four 

graphs demonstrated good to very good correlation, the slopes were 0.0029 to 0.0123, 

which was far from a line of equality (slope = 1). In an attempt to prevent further usage 
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of this approach in method comparison studies biostatisticians repeatedly emphasized 

the pitfall of correlation analysis (Altman and Bland 1983; Bland and Altman 1986; 

Gallagher 1996). 

Although regression was proposed as a tool for the evaluation of agreement when two 

methods of measurement have different units (Bland and Altman 2003), it is more a 

calibration approach, i.e., one would try to predict the value of the standard method 

(NV) from the value obtained by the alternative method (NA). While regression analysis 

allows calculating a 95% prediction interval, something akin to the limits of agreement 

of the Bland-Altman analysis, it is still ‘blind’ to a systematic error i.e., bias (Altman 

and Bland 1983). Moreover, a regression asymmetrically depicts the relationship 

between a dependent and an independent variable. In this case, NV would have to be 

assumed being dependent on NA, which is not true: NA is indeed a function of NV and 

the cell height, but NV cannot be logically regarded as a function of NA, although they 

are clearly correlated (Figure 3.9). 

Thus, there is no way that would allow directly comparing the outcomes of the two 

designs for a single cell population. 

 

4.3.1 Counts of all cell profiles 

Because the two approaches deliver data with different dimensions, the measuring units 

had to be eliminated by calculating a relative variable, which would be zero-

dimensional and allow a direct comparison of both methods. This was represented by 

the ratio of CD68+ to CD3+ counts for each approach. As the counting was performed 

simultaneously, i.e., on the same fields of view for both designs, one would expect the 

zero-dimensional index of macrophages to T-lymphocytes to be similar (accounting for 

the inherent random measurement error), no matter which approach was used, if no bias 

were present. This would be regarded as the null hypothesis of a statistical analysis 

based on hypothesis testing. However, a great measurement error of one or both 

methods would be an important confounder reducing the chance of a significant 

difference, without being a proof of ‘equality’ of the results. Although this approach, 

much like correlation analysis, is inappropriate to method comparison studies (Altman 

and Bland 1983; Bland and Altman 1999), it was performed for demonstrative purposes. 

The null hypothesis was tested by Wilcoxon’s non-parametric signed rank test, which 
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was chosen because of the non-uniformity of variance that will be discussed in more 

detail below. The ratios showed statistically significant differences between the 2D and 

the 3D design when counting all stained cell profiles, with the 2D approach 

overestimating larger cells (CD68+ macrophages) by the factor 1.7 to 3.4 in the two 

study groups, as compared to the 3D design (Figure 3.10 and Table 3.3). Apart from 

being very pronounced, the discrepancy of the two designs was also subject to a large 

(in this example twofold) and significant variation (Mann-Whitney’s non-parametric 

rank sum test, P < 0.005) between the different study groups. This precludes any 

approach to define a general conversion factor or correlation formula to transform the 

results of a 2D approach into a real 3D quantity. 

At this point, it has to be noted that for the non-smoker group there was even a very 

strong correlation between the CD68+/CD3+ ratios calculated from the two counting 

designs (Table 3.4) in spite of the large difference between them, as an additional 

argument that the correlation coefficient cannot be regarded as a measure of equality of 

two measurement methods. 

 

4.3.2 Counts of nuclear profiles 

Assuming that nuclear size varies less than overall cell size, opting to count only cells 

whose nucleus appears in the plane of the tissue section theoretically reduces the size-

bias (Jeffery et al. 2003). When counting only macrophage profiles showing a nucleus, 

i.e., counting nuclear profiles, the differences of the ratios were not large enough in 

either group to achieve statistical significance (Wilcoxon’s non-parametric signed rank 

test). However, the inability to reject the null hypothesis does not imply equality of 

results – it merely says that the difference is not large enough for significance to be 

reached, based on the size of the investigated samples. Thus it could not be concluded 

that the individual ratios of the cases by each design were ‘equal’ (within tolerance for 

the measurement error). 

A simple and robust solution for the comparison of different methods was proposed by 

D.G. Altman and J.M. Bland more than two decades ago (Altman and Bland 1983; 

Bland and Altman 1986); subsequently, the Bland-Altman analysis was amended for the 

instances of non-uniformity or/and heteroscedasticity of the differences (Bland and 

Altman 1999). The data collected using both methods were plotted against each other; 
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one could then easily notice that they were widely scattered around the line of equality  

y = x (Figure 3.11). Although it could be already concluded that, based on the relatively 

small samples, agreement of the methods was not very good, it is necessary to look at 

this in more detail: how large are the random differences and how acceptable is that for 

our purpose? Is there a systematic difference (i.e., bias) when counting nuclear profiles 

compared to the 3D counting using the physical disector? And if any bias is present, is it 

constant or proportional to the magnitude of the measurement? If no systematic error 

were present, the results should be alike, within the achieved precision of the 

measurements. In contrast to hypothesis testing, agreement is not something, which is 

present or absent (i.e., true or false), but something, which must be quantified – the 

decision about what is acceptable agreement is a biological one, statistics alone cannot 

answer such a question. For that, it is necessary to define satisfactory agreement in 

advance and then verify whether most differences are smaller than the a priori set limits. 

In this case, the acceptance limits for the agreement were already set at approx. ± 2CE , 

i.e. 30%, of the mean ratios: ± 0.12 for the non-smoker group and ± 0.15 for the smoker 

group. 

Plotting the difference of the ratios by the two methods against their mean (Altman and 

Bland 1983; Bland and Altman 1995), as shown in figure 3.12, revealed a striking 

correlation between the differences and the magnitude: Spearmann’s correlation 

coefficient was rs = 0.89 for the non-smoker group and rs = 0.79 for the smoker group, 

both with a significance Pr < 0.05. This is equivalent to a test of equality of the observed 

variances of the ratios obtained by two methods: equal variances would yield a very low 

correlation (Bland and Altman 1995). Inequality of variances was already noted when a 

non-parametric test was chosen for hypothesis testing earlier on; indeed the OV for the 

disector measurements was half of that of the 2D approach in both groups, which 

explains the high correlation between the differences and the magnitude.  

As already mentioned, I opted for fitting a linear model to the data in the Bland-

Altmann analysis. For the non-smoker group, the regression of the differences (id ) on 

the means ( im ) gave formula 3.1, which represents the proportional bias of the 2D 

ratios compared to the 3D ratios. The slope was significantly different from zero, 

confirming the contribution of the independent variable im  to predicting the dependent 

variable id . This conclusion was also supported by the analysis of variance, which 
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yielded a high F-statistic (regression variation much higher than the residual variation 

about the regression line). The high statistic power of the performed regression 

indicated a high appropriateness in describing the relationship between the differences 

and the magnitude. 

In the smoker group, the fitted linear regression model did not reach the chosen level of 

significance of α = 0.05 for either the slope or the F-statistic (P = 0.07). For this reason 

one should decide not to reject the null hypothesis; hence it could not be concluded that 

the ratio differences of the smoker sample follow the linear distribution described by 

formula 3.2. This could also be visualized by drawing the 95% confidence interval of 

the regression line – between the two curves several horizontal lines could also be fitted, 

which would contradict a relation between the dependent variable id  and the 

independent one im . The statistical power of the performed regression for the sample 

size n = 7 and α = 0.05 was 43.4%, less than the desired level of 80%. Thus it is more 

likely to decide that formula 3.2 does not fit the data, when the relationship described by 

it actually exists, than to accept it. Therefore, the fitted model could be neither relied 

upon, nor rejected without doubt. In order to achieve a power of at least 80% with α = 

0.05 and r = 0.715, I suggest to increase the sample size to n = 13 in any future study. 

This is necessary because of the weaker correlation between the ratio differences and 

the ratio means in the smoker group. In turn, this correlation is conditional on the 

correlation between the two methods and the difference in their variances (Bland and 

Altman 1995). In the smoker group, the OV of the ratios was much smaller for both 

approaches, hence a smaller difference of the variances. A lower variability means the 

range of values is narrower, which will produce a weaker correlation. Since the OV was 

smaller, the CE (i.e., measurement error) was larger relative to the biological variability, 

which also weakens correlation. A further reduction of the CE would have required 

more counting events, which would have led to an enormous increase in the sampling 

and workload due to the much lower NV of both cell types in this group. Increasing the 

sample size instead of improving the precision of the estimates per subject would also 

be in accordance with the already famous dogma of stereology ‘do more less well!’ 

(Gundersen and Osterby 1981). 

The lack of statistical significance and power can also be entailed by outliers. Especially 

in small groups with a low variance it is advisable to assess the impact of such outliers 
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by eliminating them and repeating the statistical analysis (Bland and Altman 1999). The 

removal of the two large outliers visible in figure 3.12b led to a remarkable 

improvement: the slope became significantly different from zero, confirming the 

contribution of the independent variable im  to predicting the dependent variable id . 

This conclusion was also supported by the analysis of variance, which yielded a very 

high F-statistic. Even though acceptable agreement had to be redefined and the range 

became narrower, the recalculated regression based limits of agreement fully complied 

with this new definition. 

In an eye-gauge attempt to assess the behaviour of the 2D bias in different source 

populations, it could be noticed that the coefficients of formulae 3.1 and 3.3 appear to 

be somehow similar. Then, it may be asked whether the slopes of the two regression 

lines are significantly different or merely estimating the same population value of the 

regression coefficient (β). Student’s t test did not reach statistical significance for the 

difference of the slopes (Zar 1999) and its calculated 95% confidence interval included 

the 0 value. Therefore, an estimate of the population regression coefficient (β) 

underlying the regression coefficients of both samples, which is called the common (or 

weighted) regression coefficient, could be computed: bc = 0.736. A Student’s t test to 

compare the two intercepts of formulae 3.1 and 3.3 yielded a value larger than the 

critical one thus indicating statistically significant difference (P < 0.01). This means that 

the two regression lines in figures 3.13a and 3.14 are parallel but not identical. The 

regression equations 3.1 and 3.3 can be re-written using the newly calculated common 

regression coefficient bc, as already shown. 

By looking at the absolute NV data, it could be noticed that those cases displaying 

negative differences of the ratios had lower CD68+ NV than those showing positive 

differences. The latter also had lower CE than the former ones. With respect to the CD3+ 

NV such a trend could not be identified. Even for the same 3D ratio value, the difference 

of the ratios was negative for the case with lower NV and positive for the case with 

higher NV of both cell populations. In conclusion, the 2D approach showed a bias, 

which seemed to overestimate the macrophage density at high NV while 

underestimating it at low NV – amongst other reasons probably due to higher counting 

noise (CE) in specimens with lower NV, which automatically yielded lower counts in 

the sampling process. Since such counting events follow a Poisson distribution, their 
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relative error, i.e. CE, will be inversely proportional to the square root of the counts 

(West et al. 1996). Another possible cause might be the ‘lost caps’ effect (Hedreen 

1998a; Hedreen 1998b). The lost caps are small pieces of cells that are barely within or 

have fallen out of the section surface, which are not recognised and counted. This leads 

to a number underestimation in a method prone to the ‘lost caps’ bias. 2D counting in a 

histological section is inherently prone to this kind of bias – physically lost or 

unrecognisable cell fragments are omitted from the count and there is no practical 

method to compensate for this, since the lost caps are invisible and their number is 

unknown. Changes in cell number are likely to vary the amount of lost caps, especially 

by affecting recognisability of small fragments at the edge of the section. 3D counting is 

more robust to the problem of lost caps. The physical disector is insensitive to the fallen 

out cell fragments. Since it counts cell ‘tops’ without any influence of cell size, shape 

and orientation, a truly lost cap will solely ‘shift’ the top of that cell into the next 

section; in a rigorous sampling design this will have no effect on the counting result. 

Although barely contained and unrecognised cell caps have been shown to introduce a 

bias in physical disector counting, there are some ways to overcome this problem 

(Hedreen 1998b). When counting in adjacent sections, the bias arises from the 

asymmetry of the reference section serving as a guard space for the look-up section, 

without a guard space of its own. This will affect the recognisability of small caps in the 

reference and look-up section to a different extent. Counting bidirectionally is expected 

to partially reduce this effect by at least counting ‘the other top’ of a missed cell. The 

best solution would be having a similar guard space for the reference section as well. 

The high numerical aperture of the oil immersion objectives used in this study ensured a 

very shallow depth of field, which allowed focusing only on the top of the sections. 

Thereby, the rest of the section thickness could serve as a guard space for the analysed 

optical plane of the reference section. This and the bidirectional counting are thought to 

have rendered the 3D counting free from the ‘lost caps’ bias. In conclusion, it is possible 

that lost caps overrode the size-bias in the 2D approach in biopsies with a low CD68+ 

NV, whereas the 3D design was not affected; this resulted in negative differences of the 

CD68+/CD3+ ratios between the two methods. 

For agreement between two methods to be sufficient, one should be able to use 

measurements by these two methods interchangeably, i.e., the method by which the 

measurement was made can be ignored. This is clearly not the case when using 2D or 
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3D approaches, since the 2D estimator shows a bias, which varies with the magnitude of 

the true cell density value. This emphasises once again the inappropriateness of 

hypothesis testing, which did not show a significant difference, for the investigation of 

method agreement. Presumably, the ‘positive’ and ‘negative’ deviations, i.e., bias, of the 

2D design cancelled each other out to a large extent when calculating the mean value, in 

this example. Whether the bias really follows a different model in various subject 

populations and/or cell types should be addressed in future studies. 

 

In summary, it can be concluded that 2D counting designs are not appropriate for 

quantifying inflammatory cells in the airway mucosa. Counting of all cell profiles 

clearly overestimates larger cells, thereby distorting the differential inflammatory 

profile of various conditions to a variable extent in different populations and/or clinical 

states. 2D counting of nuclear profiles failed to be reliable as well. The bias introduced 

by this approach is not constant throughout the measurement range and a ‘general 

correction’ cannot be applied. The direction of variation appears to depend on the 

density of the cells assessed. Therefore, we recommend using a 3D counting design in 

studies that aim at determining numerical densities or absolute cell numbers. 
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Summary / Zusammenfassung 

Summary 

Endobronchial biopsies collected by fiberoptic bronchoscopy have been increasingly 

used in biomedical research on disease mechanisms and clinical therapy studies of 

chronic inflammatory airway disorders. Although less invasive techniques are available 

for the investigation of the inflammatory infiltrate of the bronchial tree, a 

standardization of their results with respect to the extent or level of the sampled airway 

proved impracticable. Moreover in a clinical setting the structural alterations of the 

airway mucosa can only be assessed by histopathological biopsy analysis, which makes 

this approach indispensable to airway research. 

More and more quantitative approaches in biopsy studies have been reported. The high 

variability of their results points out the need for reliable and robust quantitative 

methods and sampling designs in order to allow for an easier interpretation and 

corroboration of the outcomes of different studies. It is unclear whether classical 2D 

approaches and unbiased stereological 3D designs for counting inflammatory cells, 

measuring area fraction or layer thickness on histological sections are equally well-

suited for these purposes. The aim of this study was to characterise the agreement 

between 2D and 3D approaches for inflammatory cell counting by simultaneously 

applying them on bioptic material. Furthermore, stereological designs were proposed for 

quantifying the extent of epithelial desquamation and the mean thickness of the reticular 

basement membrane, and the results were related to previously published data gained by 

2D tissue analyses. The hypotheses that the epithelial integrity depends on biopsy size 

or mean basement membrane thickness were also verified. 

Biopsies from the segmental bronchi were collected by fiberoptic bronchoscopy in a 

group of smokers (n=7) and a group of healthy non-smokers (n=7), embedded in 

paraffin and exhaustively sectioned. Systematic uniform random samples of sections 

were stained histochemically (PAS) or immunohistochemically for macrophages 

(CD68) and T-lymphocytes (CD3), respectively. On the same systematic uniform 

random samples of fields of view, cell numbers per unit volume were assessed using the 

physical disector and cell and nuclear profiles were counted and related to the 

subepithelial layer area. To obtain a zero-dimensional index allowing for a direct 

comparison of the two methods, the CD68+/CD3+ ratio was calculated for each 
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approach. The extent of epithelial desquamation was assessed as area fraction of the 

basement membrane by counting the intersections of a line grid with the basement 

membrane on PAS stained sections. On the same sections the arithmetic mean thickness 

of the reticular basement membrane was estimated using a coherent test system of 

points and line segments. 

Counting cell profiles per unit area severely overestimated the number of larger cells 

(macrophages) relative to smaller cells (T-lymphocytes). Counting of nuclear profiles 

delivered average values similar to the physical disector but a bias proportional to the 

magnitude of the CD68+/CD3+ ratios was identified. 

The extent of epithelial desquamation was similar between the two groups and in 

accordance with previous studies in healthy volunteers and asthmatics. The lack of a 

difference between the (non-asthmatic) subjects of this study and published data on 

asthma patients confirms earlier similar findings. This strengthens the doubt about the 

morphopathological significance of the epithelial disruption, suggesting an artefactual 

cause. 

The arithmetic mean thickness of the reticular basement membrane, an important 

marker of airway remodelling in biopsy studies of asthma, showed no significant 

difference between healthy non-smokers and smokers in the small studied groups. The 

average values were very similar to the results of another published stereological design 

and to those obtained by image analysis of perpendicular sections. At the same time 

they were conspicuously lower than the data reported by studies employing direct point-

to-point measurements on sections. This underlines the overestimation of the mean 

thickness introduced by tangential cutting of the basement membrane when relying on 

2D measurements of this three-dimensional structure. 
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Zusammenfassung 

In klinisch-therapeutischen Studien chronisch-entzündlicher Atemwegserkrankungen 

und in der biomedizinischen Erforschung ihrer Pathomechanismen werden fiberoptisch-

bronchoskopisch entnommene endobronchiale Biopsien zunehmend häufig verwendet. 

Obgleich auch weniger invasive Untersuchungsmethoden der entzündlichen 

Veränderungen des Bronchialsystems zur Verfügung stehen, hat sich eine 

Standardisierung dieser alternativen Methoden bezüglich Ausmaß und Generation der 

untersuchten Atemwege bislang als undurchführbar erwiesen. Darüberhinaus können 

die strukturellen Veränderungen der Atemwegsmukosa in einem klinischen Kontext 

lediglich durch histopathologische Analysen von Biopsien beurteilt werden. Aus diesen 

Gründen erscheint die Analyse endobronchialer Biopsien für die Atemwegsforschung 

unabdingbar zu sein. 

Immer häufiger wird auch über quantitative Ansätze in Biopsiestudien berichtet. Die 

hohe Variabilität ihrer Ergebnisse betont die Notwendigkeit verlässlicher und robuster 

quantitativer Methoden und Designs der Stichprobenerhebung, um eine einfachere 

Interpretation und Untermauerung der Ergebnisse unterschiedlicher Studien zu 

ermöglichen. Es ist unklar, ob konventionelle 2D Ansätze und bias-freie stereologische 

3D Designs zum Zählen der Entzündungszellen, Messen der Flächenanteile oder der 

Schichtdicke auf histologischen Schnitten dafür gleich gut geeignet sind. Das Ziel dieser 

Arbeit war, die Übereinstimmung der 2D und 3D Zellzählansätze durch ihre 

gleichzeitige Anwendung zur Zählung der Entzündungszellen in bioptischem Material 

zu überprüfen. Darüber hinaus wurden stereologische Methoden zur Quantifizierung der 

Epitheldesquamation und der mittleren arithmetischen Dicke der Basalmembran 

vorgestellt und ihre Ergebnisse mit bereits veröffentlichten, durch 2D histologische 

Untersuchungen gewonnenen Daten verglichen. Die Hypothesen, dass die 

Epithelintegrität von dem Biopsievolumen oder der mittleren arithmetischen Dicke der 

Basalmembran abhängig ist, wurden ebenfalls überprüft. 

Biopsien aus den Segmentbronchien wurden in einer Gruppe von Rauchern (n=7) und 

einer Gruppe von gesunden Nichtrauchern (n=7) durch fiberoptische Bronchoskopie 

entnommen, anschließend in Paraffin eingebettet und erschöpfend geschnitten. 

Systematische, proportional geschichtete Zufallsstichproben von histologischen 

Schnitten wurden histochemisch (PAS) oder immunohistochemisch für Makrophagen 
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(CD68) bzw. T-Lymphozyten (CD3) gefärbt. In denselben systematischen, proportional 

geschichteten Zufallsstichproben von mikroskopischen Sichtfeldern wurden die 

Zellzahlen per Volumeneinheit mit dem physical Disector ermittelt und die Zell- und 

Kernprofile gezählt und auf die Fläche der Lamina propria bezogen. Um eine 

nulldimensionale Größe für den direkten Vergleich der zwei Methoden zu erhalten, 

wurde der CD68+/CD3+ Quotient für jeden Ansatz berechnet. Das Ausmaß der 

Epitheldesquamation wurde als Flächenanteil der Basalmembran bewertet. Dies 

geschah durch das Zählen der Schnittpunkte eines Linienrasters mit der Basalmembran 

auf den PAS gefärbten Schnitten. Auf denselben Schnitten wurde die mittlere 

arithmetische Dicke der Basalmembran mittels eines kohärenten Testsystems aus 

Punkten und Segmenten ermittelt. 

Im Ergebnis überschätzte das Zählen der Zellprofile pro Flächeneinheit die Zahl der 

größeren Zellen (Makrophagen) relativ zu kleineren Zellen (T-Lymphozyten). Das 

Zählen der Kernprofile ergab ähnliche Gruppenmittelwerte zum Physical Disector, aber 

ein systematischer Fehler proportional zum Wert des CD68+/CD3+ Quotientes wurde 

identifiziert. 

Das Ausmaß der Epitheldesquamation war in beiden Gruppen ähnlich und stimmte mit 

früheren Studien mit gesunden Freiwilligen und Asthmatikern überein. Der fehlende 

Unterschied zwischen den (nicht-asthmatischen) Probanden dieser Studie und 

veröffentlichten Ergebnissen von Asthma-Patienten bestätigt vorherige ähnliche 

Erkenntnisse, bekräftigt den Zweifel an der pathologischen Bedeutung der 

Epithelabschilferung und deutet auf eine artifizielle Ursache hin. 

Die arithmetische mittlere Dicke der Basalmembran, eine wichtige Kenngröße des 

strukturellen Umbaus der Atemwege in Asthmabiopsiestudien, zeigte keinen 

signifikanten Unterschied zwischen gesunden Nichtrauchern und Rauchern. Die 

Mittelwerte waren den Ergebnissen eines anderen publizierten stereologischen Designs 

und den durch Bildanalyse von Perpendikularschnitten gemessenen Werten sehr 

ähnlich. Zugleich waren sie deutlich niedriger als die Werte, die von Punkt-zu-Punkt 

Messungen an histologischen Schnitten berichtet wurden. Dies weist auf eine 

Überschätzung der mittleren Dicke durch Tangentialanschnitte der Basalmembran hin, 

wenn diese dreidimensionale Struktur mittels 2D Ansätze quantifiziert wird. 
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Sumar (Romanian) 

Biopsiile endobronhiale colectate prin fibrobronhoscopie au fost utilizate din ce în ce 

mai frecvent în cercetarea biomedicală a mecanismelor fiziopatologice şi în studiile 

clinice terapeutice ale bolilor inflamatorii cronice ale căilor respiratorii. Deşi tehnici mai 

puŃin invazive sunt disponibile pentru investigaŃiile infiltratului inflamator al arborelui 

bronşic, standardizarea rezultatelor acestora referitor la întinderea şi nivelul căilor 

respiratorii sondate s-a dovedit impracticabilă. De altfel, într-un scenariu clinic, 

alterările structurale ale mucoasei bronşice pot fi evaluate doar printr-o analiză 

histopatologică bioptică, ceea ce face aceasta abordare indispensabilă pentru cercetarea 

în domeniul căilor respiratorii. 

Din ce în ce mai multe abordări cantitative au fost raportate în studiile bioptice. 

Variabilitatea mare a rezultatelor lor evidenŃiază necesitatea unor metode cantitative şi a 

unor designuri de sondaj sigure şi robuste, pentru a facilita interpretarea şi coroborarea 

consecinŃelor diferitelor studii. Momentan nu este clar, dacă abordările clasice 2D şi 

designurile stereologice imparŃiale pentru numărarea celulelor, măsurarea fracŃiilor de 

arie sau a grosimii unui strat pe secŃiuni histologice sunt la fel de adecvate pentru aceste 

scopuri. łelul acestui studiu a fost caracterizarea acordului dintre abordările 2D şi 3D 

pentru numărarea celulelor inflamatorii prin aplicarea lor simultană pe un material 

bioptic. Totodată au fost propuse designuri stereologice pentru cuantificarea 

descuamării epiteliale şi a grosimii medii a membranei bazale, iar rezultatele au fost 

relaŃionate cu date publicate anterior, obŃinute prin analize histologice 2D. Ipotezele 

conform cărora integritatea epiteliului depinde de volumul biopsiei sau de grosimea 

medie a membranei bazale au fost de asemenea verificate. 

Într-un grup de fumători (n=7) şi unul de nefumători clinic sănătoşi (n=7) au fost 

colectate biopsii din bronhiile segmentale prin fibrobronhoscopie. Acestea au fost 

incluzionate în parafină şi secŃionate exhaustiv. Eşantioane aleatorii sistematic-

proporŃional stratificate au fost colorate histochimic (PAS) sau imunohistochimic pentru 

macrofage (CD68), respectiv limfocite T (CD3). Pe eşantioane identice de câmpuri 

microscopice, aleatorii şi sistematic-propoŃional stratificate, numărul de celule pe 

unitatea de volum a fost determinat folosind disectorul fizic, iar profilurile celulare şi 

nucleare au fost numărate şi relaŃionate la suprafaŃa corionului. Pentru a obŃine un index 

zero-dimensional, care permite compararea directă a celor două metode, raportul 
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CD68+/CD3+ a fost calculat prin fiecare metodă în parte. Amploarea descuamării 

epiteliului a fost evaluată ca fracŃie din aria membranei bazale prin numărarea 

intersecŃiilor unui raster de linii cu membrana bazală pe secŃiunile colorate PAS. Pe 

aceleaşi secŃiuni, grosimea medie aritmetică a membranei bazale a fost estimată folosind 

un sistem coerent de puncte si segmente. 

Numărarea profilurilor celulare pe unitatea de suprafaŃă a supraestimat sever numărul 

celulelor mari (macrofage) relativ la celulele mici (limfocite T). Numărarea profilurilor 

nucleare a furnizat valori medii similare celor obŃinute prin disectorul fizic, însă o 

deplasare proporŃională cu magnitudinea raporturilor CD68+/CD3+ a fost identificată. 

Amploarea descuamării epiteliale a fost similară în cele două grupe şi în concordanŃă cu 

rezultatele unor studii anterioare pe voluntari sănătoşi şi pe astmatici. Lipsa unei 

diferenŃe între subiecŃii non-astmatici ai acestui studiu şi datele publicate despre pacienŃi 

asmatici confirmă constatările precedente similare şi consolidează dubiile asupra 

semnificaŃiei morfopatologice a dezagregării epiteliale, sugerând o cauză artefactuală. 

În cazul grosimii medii aritmetice a membranei bazale, un marker important al 

remodelării căilor respiratorii în studiile bioptice despre astm, nu au fost identificate 

diferenŃe semnificative între nefumătorii sănătoşi şi fumători, pe baza grupurilor mici 

examinate. Valorile medii obŃinute au fost foarte similare cu rezultatele unui alt design 

stereologic publicat şi cu cele obŃinute prin analiza de imagine pe secŃiuni 

perpendiculare. Totodată, ele au fost remarcabil mai mici decât datele raportate în studii 

ce au efectuat măsurători directe point-to-point pe secŃiuni. Acest lucru subliniază 

supraestimarea grosimii medii introdusă prin secŃionarea tangenŃială a membranei 

bazale în cazul efectuării de măsurători 2D ale acestei structuri tridimensionale. 
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