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Zusammenfassung

Viele Halbleitermaterialien weisen Bandlücken von einigen wenigen Elektronenvolt auf, was
ihnen die Absorption oder Emission von sichtbarem Licht ermöglicht. Diese Eigenschaft
bildet die Grundlage für zahlreiche technische Anwendungen, zu denen Solarzellen, LEDs und
Laserdioden als Beispiele von besonderer wirtschaftlicher Bedeutung gehören. Doch auch in der
Grundlagenforschung bedienen sich Physiker häufig optischer Experimente, um die Eigenschaf-
ten wechselwirkender Vielteilchensysteme in Halbleiterstrukturen zu untersuchen. Hierbei wird
ausgenutzt, dass sowohl die Elektron-Elektron- als auch die Elektron-Phonon-Wechselwirkung
Form und Dynamik der optischen Spektren beeinflussen. Um aus den experimentellen Er-
gebnisse auf den quantenmechanischen Zustand des Vielteilchensystems schließen zu können,
benötigt man eine mikroskopische Theorie der gekoppelten Ladungsträger, Gitterschwingungen
und Lichtfelder. Bei der kohärenten Spektroskopie erweist sich in der Regel eine semi-klassische
Beschreibung der Licht-Materie-Wechselwirkung [1] als angemessen. Photolumineszenz wird
hingegen häufig im inkohärenten Regime untersucht, wo das klassische Strahlungsfeld bereits
verschwunden und die Polarisation des Materials zerfallen ist. Unter diesen Bedingungen
stellt die Emission von Licht einen rein quantenmechanischen Prozess dar, dessen theoretische
Beschreibung die Quantisierung des Lichtfeldes erfordert. Eine Möglichkeit, die verschiedenen
Wechselwirkungen zwischen Elektronen, Phononen und Photonen einheitlich zu behandeln,
ist die Heisenbergschen Bewegungsgleichungen für die relevanten Erwartungswerte zu lösen.
Hierbei werden die auftretenden Operatorkombinationen über die Wechselwirkungsterme an
immer kompliziertere Kombinationen gekoppelt, was auf das bekannte Hierarchie-Problem
der Vielteilchenphysik führt. Eine konsistente Abbruchbedingung für die Gleichungshierarchie
lässt sich z.B. mit Hilfe der sogenannten Cluster-Entwicklung [2–7] formulieren, bei der
N -Teilchen-Erwartungswerte in unabhängige Einteilchengrößen, korrelierte Paare, korrelierte
Drei-Teilchen-Cluster usw. bis hin zu den korrelierten N -Teilchen-Clustern faktorisiert werden.
Man erhält dann ein geschlossenes System von Differentialgleichungen, indem man nur Cluster
bis zu einer bestimmten Ordnung berücksichtigt. Mit dieser Methode konnten in jüngerer Zeit
bereits Vielteilchenkorrelationen in ein- und zweidimensionalen Halbleitersystemen erfolgreich
berechnet werden [7–9]. In der vorliegenden Arbeit wenden wir den allgemeinen theoretischen
Rahmen auf zwei verschiedene Arten von Systemen an. Der erste Teil beschäftigt sich mit
der Absorption und Emission in Halbleiter-Quantenpunkten, während im zweiten Teil pho-
nonenassistierte Resonanzen in den Lumineszenzspektren polarer Halbleiter untersucht werden.

Als Quantenpunkte bezeichnet man mesoskopische Heterostrukturen, in denen die Elektro-
nen in allen drei räumlichen Richtungen in ihrer Bewegung eingeschränkt sind, was zu ei-
ner Diskretisierung ihrer Einteilchenenergien führt. In vielfacher Hinsicht lässt sich solch ein
quasi nulldimensionales System als eine Art künstliches Atom betrachten. Ein Reihe kürzlich
durchgeführter Experimente [10–15] hat eindrucksvoll gezeigt, dass Quantenpunkte Licht mit
ausgeprägt nicht-klassischen Eigenschaften emittieren können. Bereits bei Dauerstrichanre-
gung können sogenannte Photon-Antibunching-Effekte zu Abweichungen von der Poisson-
Statistik führen [14]. Im Fall gepulster Anregung wurde sogar die Emission eines einzelnen
Photons [11–13] oder eines Paares stark korrelierter Photonen [15] pro Periode beobachtet.
Solch ein fundamental quantenmechanisches Verhalten macht Quantenpunkte zu vielverspre-
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chenden Kandidaten für zukünftige Anwendungen in der Quantenkryptografie [16], in Quan-
tencomputern [17,18] oder bei der Datenspeicherung [19]. Bereits ohne Kopplung an ein Licht-
feld stellt die theoretische Beschreibung des Ladungsträgersystems in einem Quantenpunkt
ein anspruchsvolles Vielteilchenproblem dar [20–33]. Die eingeschränkte Dimensionalität des
Systems führt im Allgemeinen zu einer beträchtlichen Verstärkung der Coulomb-Korrelationen
zwischen den Elektronen und Löchern. Der Einfluss dieser Korrelationen auf die optischen Re-
sonanzen des Systems wurden in früheren Veröffentlichungen mit Hilfe von Diagonalisierungs-
methoden [20–27] und Konfigurations-Wechselwirkungs-Rechnungen [28–30] studiert. Die Ei-
genschaften eines isolierten Quantenpunktes lassen sich auf diese Weise sehr genau berechnen.
Allerdings steigt der rechnerische Aufwand beträchtlich, wenn die Wechselwirkung mit meh-
reren quantisierten Lichtmoden berücksichtigt werden muss. Darüberhinaus sind Halbleiter-
Quantenpunkte in der Regel in eine Festkörperumgebung eingebettet, so dass die eingesperr-
ten Elektronen und Löcher sowohl mit propagierenden Ladungsträgern [34–37] als auch mit
Gitterschwingungen [38–41] wechselwirken können.

Zur Modellierung all dieser Kopplungseffekte bietet sich die Cluster-Entwicklungs-Methode
an, da sie sich in ähnlichen Situationen bei Systemen höherer Dimension bewährt hat. Wir
bedienen uns dieses Verfahrens, um eine vollständig mikroskopische Theorie wechselwirkender
Elektronen, Löcher und Photonen in einem Halbleiter-Quantenpunkt zu entwickeln. Die Glei-
chungshierarchie wird in zweiter Ordnung der Cluster-Entwicklung abgebrochen, was eine kon-
sistente Berechnung der Dynamik von Teilchendichten, Polarisationen, klassischen Lichtfeldern
sowie allen Coulomb- und quantenoptischen Zweiteilchenkorrelationen ermöglicht. Bei der Be-
handlung der internen Freiheitsgrade des Quantenpunktes muss sich unsere Herangehensweise
an den oben erwähnten Methoden messen lassen, mit deren Hilfe die Eigenenergien des wech-
selwirkenden Ladungsträgersystems in vielen Fällen sogar exakt berechnet werden können.
Unsere numerischen Ergebnisse zeigen, dass die Kenntnis der Ein- und Zweiteilchenkorrela-
tionen ausreicht, um stabile Konfigurationen des Ladungsträgersystems zu beschreiben, die
wohl-definierte optischen Resonanzen aufweisen. Wie in homogenen Systemen können auch in
Quantenpunkten gebundene Elektron-Loch-Paare, d.h. Exzitonen, und Elektron-Loch-Plasma
anhand der Coulomb-Korrelationen charakterisiert werden. Es stellt sich heraus, dass in einem
schwach angeregten Quantenpunkt stabile Vielteilchenkonfigurationen von reinem Plasma bis
zu vollständig korrelierten Elektron-Loch-Paaren auftreten können.

In Abhängigkeit von den zu untersuchenden Phänomenen müssen zwei verschiedene Sätze
von Bewegungsgleichungen gelöst werden. Die Halbleiter-Bloch-Gleichungen (SBE) beschrei-
ben die kohärente Anregung des Ladungsträgersystems durch ein klassisches Lichtfeld, während
die Photoemission im inkohärenten Regime aus den Halbleiter-Lumineszenzgleichungen (SLE)
berechnet werden kann. Mit Hilfe einer geeigneten Basistransformation lassen sich analytische
Näherungsformeln sowohl für die lineare Absorption als auch für das stationäre Lumineszenz-
spektrum aufstellen. Aus der Struktur der SLE lässt sich erkennen, dass sowohl exzitonische
Korrelationen als auch unkorreliertes Plasma Beiträge zur Photoemission liefern, die in einem
gewöhnlichen Lumineszenz-Experiment nicht unterschieden werden können.

Die besondere Stärke des Cluster-Entwicklungs-Zugangs zur Beschreibung von Halbleiter-
Quantenpunkten besteht darin, dass der Einfluss der Umgebung auf einfache Weise
berücksichtigt werden kann. Zu diesem Zweck brauchen die Bewegungsgleichungen nicht neu
formuliert, sondern lediglich durch zusätzliche Terme ergänzt zu werden. Als konkretes Beispiel
betrachten wir die Kopplung an ein Reservoir von akustischen Gitterschwingungen. Nach einer
resonanten optischen Anregung des Quantenpunktes führen phononenassistierte Prozesse zur
Dephasierung kohärenter Größen wie der Polarisation, zur Bildung exzitonischer Populationen
und zur Thermalisierung der Ladungsträger. Unsere Berechnungen machen deutlich, dass all
diese Prozesse im Prinzip ähnlich wie in Quantenfilmen ablaufen, die betreffenden Zeitskalen
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jedoch stark abweichen können.
Die in dieser Arbeit vorgestellte Theorie lässt sich in verschiedene Richtungen erweitern.

Zum einen könnte der Einfluss der Festkörperumgebung des Quantenpunktes genauer un-
tersucht werden, indem auch die Kopplung an propagierende Ladungsträger berücksichtigt
wird. Auf der anderen Seite könnte man quantenoptische Korrelationen höherer Ordnung
berechnen mit dem Ziel, die Quantenstatistik der Emission zu analysieren. Um das oben
erwähnte Photon-Antibunching zu beschreiben, müsste man z.B. bedingte Detektionswahr-
scheinlichkeiten auswerten, bei denen es sich in der Sprache der Cluster-Entwicklung um
Vierteilchengrößen handelt.

Im zweiten Teil dieser Arbeit spielt die Elektron-Phonon-Wechselwirkung eine zentrale
Rolle. Longitudinale optische (LO) Phononen in Halbleitern tragen nicht nur zur Ladungs-
trägerstreuung bei, sondern können sich auch direkt an der Rekombination von Elektron-Loch-
Paaren beteiligen, was zu einer Folge zusätzlicher Resonanzen im Lumineszenzspektrum führt.
Bei hinreichend starker Kopplung lassen sich diese Resonanzen als Repliken der Exzitonlinie
beobachten, die auch unter dem Namen Phononen-Seitenbanden bekannt sind, während die
Exzitonlinie in diesem Zusammenhang häufig als Nullphononlinie bezeichnet wird [42–48].

Es existiert eine allgemein anerkannte störungstheoretische Behandlung der phononenassis-
tierten Lumineszenz [49], die bereits in den Siebzigerjahren entwickelt worden ist und die bis
in die Gegenwart in zahlreichen Veröffentlichungen verwendet wird. Diese Theorie basiert auf
dem sogenannten Exziton-Bild, in dem der angeregte Zustand des Halbleiters ausschließlich als
System von gebundenen Elektron-Loch-Paaren, d.h. Exzitonen, beschrieben wird. Theoretische
und experimentelle Studien jüngeren Datums haben gewisse Schwächen eines solchen Zugangs
aufgedeckt. Insbesondere kann, wie oben bereits erwähnt, Lumineszenz an der exzitonischen
Resonanz nicht als Nachweis gewertet werden, dass sich tatsächlich Exzitonen in dem System
gebildet haben, da unkorrelierte Elektron-Loch-Paare bei der selben Wellenlänge rekombinie-
ren. Dieser überraschende Befund wurde zum ersten Mal in Ref. [50] dargelegt und konnte
anschließend in einer Reihe von Experimenten bestätigt werden [51–53]. Eine der zentralen
Fragen dieser Arbeit lautet daher, ob unkorreliertes Plasma auch zur phononenassistierten
Lumineszenz beitragen kann. Um dieser Frage nachzugehen, verallgemeinern wir die SLE aus
Ref. [50, 54], so dass spontane Emission an der ersten Exziton-Phonon-Resonanz berechnet
werden kann. In der Tat zeigen unsere Ergebnisse, dass sowohl Plasma als auch gebundene
Elektron-Loch-Paare zum Seitenband beitragen können. Dabei sind zumindest bei niedrigen
Temperaturen die Linienformen und relativen Intensitäten so ähnlich, dass sich die beiden
Quellen der Emission in einem gewöhnlichen Photolumineszenz-Experiment nicht auseinander
halten lassen.

Es gibt jedoch noch weitere Gründe, einen neuen Blick auf das Phononen-Seitenband-
Problem zu werfen. Kürzlich veröffentlichte Arbeiten haben gezeigt, dass die Seitenbandin-
tensitäten vergleichbar zur Nullphononlinie oder sogar deutlich stärker werden können. Zu den
eindrucksvollsten Beispielen gehören an ZnO-Nanodrähten gemessene Spektren, die zahlrei-
che Repliken mit einem weit von der Nullphononlinie entfernten Intensitätsmaximum aufwei-
sen [55]. Derartige Experimente haben das Interesse an einer theoretischen Beschreibung von
Phononen-Seitenbanden höherer Ordnung neu aufleben lassen. Die etablierte Theorie der pho-
nonenassistierten Lumineszenz gründet sich auf einer störungstheoretischen Behandlung der
Elektron-Phonon-Wechselwirkung, wobei der n-te Summand der Störungsreihe die n-te Pho-
nonenreplik liefert. Die Eigenschaften der ersten beiden Seitenbanden lassen sich mit einem sol-
chen Ansatz akkurat berechnen [49,56–58]. Allerdings wird die Auswertung der Störungsreihe
für große n sehr aufwendig. Um Repliken höherer Ordnung zu untersuchen, verwenden wir
deshalb das sogenannte Polaron-Bild, in dem propagierende Kristallelektronen mit den von ih-

iii



nen hervorgerufenen Gitterverzerrungen zu neuen Quasiteilchen vereinigt werden. Formal wird
dies mit Hilfe einer unitären Transformation erreicht, die den Hamiltonoperator der Elektron-
Phonon-Wechselwirkung eliminiert, während Phononoperator-Kombinationen beliebiger Ord-
nung Eingang in den Hamiltonoperator der Licht-Materie-Wechselwirkung finden [59]. Die-
se neue Struktur hat zur Folge, dass die phononenassistierten SLE im Polaron-Bild für alle
Phononen-Seitenbanden getrennt ausgewertet werden können. Im stationären Limes erhalten
wir eine kompakte Lumineszenzformel für Seitenbanden beliebiger Ordnung, in der Plasma
und Exzitonen additiv zur Gesamtintensität beitragen.

Für einen direkten Vergleich mit der störungstheoretischen Behandlung führen wir die
Cluster-Entwicklung auch im Exziton-Bild durch, wo nicht die Elektron-Phonon-, dafür aber
die Coulomb-Wechselwirkung eliminiert ist. Da auf diese Weise das Hierarchie-Problem be-
trächtlich entschärft wird, lassen sich die phononenassistierten SLE im Exziton-Bild im sta-
tionären Limes rekursiv lösen, um Seitenbanden beliebiger Ordnung zu berechnen. Allerdings
werden bei diesem Zugang nur die korrelierten Quellen der Emission berücksichtigt. Es stellt
sich heraus, dass die Cluster-Entwicklungs-Methode für diese Beiträge sehr ähnliche Ergebnisse
produziert wie der störungstheoretische Ansatz. Eine Weiterentwicklung der etablierten Theo-
rie erreichen wir dadurch, dass wir unsere verschiedenen Ansätze miteinander kombinieren.
Durch einen Vergleich der Lumineszenzformeln im Polaron- und im Exziton-Bild finden wir
ein einfaches Verfahren, mit dem sich beliebige Repliken analytisch auswerten lassen.

Der kurzreichweitige Anteil der Elektron-Phonon-Wechselwirkung kann mit Hilfe von De-
formationspotentialen modelliert werden. Eine LO Gitterschwingung in einem polaren Medi-
um erzeugt ein oszillierendes, makroskopisches elektrisches Feld, dem die Kristallelektronen
als geladene Teilchen ausgesetzt sind. Dieser Effekt liefert einen weiteren, langreichweitigen
Beitrag zur Elektron-Phonon-Wechselwirkung, der unter dem Namen Fröhlich-Kopplung be-
kannt ist. Streuprozesse innerhalb eines Energiebandes werden für gewöhnlich von der Fröhlich-
Wechselwirkung dominiert. Im Gegensatz hierzu legen unsere Berechnungen den Schluss nahe,
dass der kurzreichweitige Anteil der Wechselwirkung selbst in stark polaren Halbleitern den
Hauptbeitrag zu den Phononenrepliken liefern kann. Für dreidimensionale Halbleiterstruktu-
ren sollte sich sowohl anhand der Amplitude als auch anhand der Temperaturabhängigkeit des
Intensitätsverhältnisses der ersten beiden Repliken erkennen lassen, ob die Seitenbandemission
von Fröhlich- oder Deformationspotential-Wechselwirkung herrührt.

Um unsere Theorie auszuwerten und zu prüfen, führen wir eine Reihe numerischer Fallstudien
durch. Unsere Ergebnisse zeigen, dass oberhalb einer gewissen kritischen Temperatur die Pho-
nonenrepliken in einem Volumenhalbleiter stärker ausgeprägt sind als in einem Quantenfilm aus
dem gleichen Material. Seitenbanden aufgrund von freien und an Störstellen gebundenen Exzi-
tonen lassen sich anhand ihrer Linienformen und ihrer Temperaturabhängigkeit unterscheiden.
Das Entstehen der außerordentlich starken Phononenrepliken in den erwähnten Nanodrähten
lässt sich im Rahmen unserer Theorie deuten.

Die in dieser Arbeit vorgestellten Untersuchungen werfen eine Reihe von Fragen an
zukünftige Experimente auf. So steht ein experimenteller Nachweis von Seitenbandemissi-
on aus unkorreliertem Plasma noch aus. Der Beitrag der optischen Deformationspotential-
Wechselwirkung zu den Phononenrepliken in polaren Materialien ist in der Literatur bislang
kaum diskutiert worden. Eine denkbare technische Anwendung der Seitenbandemission besteht
in der Konstruktion eines Lasers, der an der Exzitonresonanz gepumpt wird, aber beim ersten
Seitenband emittiert. Da phononenassistierte Absorption vornehmlich auf der Hochenergiesei-
te der Exzitonlinie stattfindet, die Emission dagegen auf der Niedrigenergieseite, würde sich
ein solcher Aufbau durch eine extrem niedrige Laserschwelle auszeichnen. Zur theoretischen
Beschreibung der Eigenschaften eines Seitenbandlasers müssten die phononenassistierten Lu-
mineszenzgleichungen an die Halbleiter-Bloch-Gleichungen gekoppelt werden.
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Original contributions

The first project in the framework of my Ph.D. thesis concerned the quantum dynamics of
interacting charge carriers in a semiconductor quantum dot. L. Schneebeli1 and I adopted the
cluster-expansion based equation-of-motion approach that was used earlier in this group to an-
alyze quantum wells and quantum wires. The central idea was to check the convergency of the
cluster-expansion scheme for an isolated dot and to generalize the theory to open dot systems
that are coupled to quantized light modes, phonons, or wetting-layer states. The underlying
quantum-dot model was previously analyzed by F. Jahnke and coworkers (University of Bre-
men) with whom we discussed the single-particle wave functions and matrix elements. We
developed a microscopic theory of spontaneous emission and characterized the generic phase
space of the quantum-dot carriers in the incoherent regime. This analysis is summarized in
Ref. [I] and was presented as a poster at the CLEO/QELS conference 2007.

Afterwards, L. Schneebeli and I worked on different aspects of quantum-dot theory. I ex-
tended the equations of motion to include coupling of the dot carriers to a phonon bath. The
aim was to model processes like phonon-induced dephasing and build-up of excitonic correla-
tions after coherent optical excitation with a classical light field. While my approach recovered
a number of phenomena that are well known from higher-dimensional hetero structures, re-
cent works on the polaron problem in quantum dots have shown that alternative approaches
are necessary to describe the role of optical phonons quantitatively. Moreover, it turned out
that the quantum-dot equations are more sensitive to numerical errors than the corresponding
quantum-well dynamics. Thus, I finally switched the focus of my research to a different topic.

1Unless otherwise stated, all scientists mentioned in this section were members of the theoretical semiconductor
physics group at the Phillips University in Marburg at the time of our collaboration.
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Starting in summer 2007, I analyzed LO-phonon assisted emission in polar semiconduc-
tors that can lead to phonon sidebands, i.e. replica of the exciton peak, in the luminescence
spectrum. Well-established perturbational theories that can successfully describe the first few
sidebands had already been developed in the seventies. However, previous works in this group
had shown that both excitonic populations and uncorrelated electron-hole plasma can lead to
luminescence at the excitonic resonance and that these contributions cannot be distinguished
by a standard luminescence experiment. It was therefore interesting to investigate whether
plasma can also participate in phonon-assisted emission. Moreover, recent publications had
reported on strong sideband emission from ZnO systems where numerous replica could be
detected. To analyze these spectra, a compact theoretical description of higher-order phonon-
assisted recombination would be desirable.

My first approach to the phonon-sideband problem was based on a unitary-transformation
method that had been employed previously by K. Hannewald and P. A. Bobbert (Eindhoven
University of Technology) to calculate exciton-phonon resonances in the absorption spectrum.
I used the semiconductor Hamiltonian in the polaron picture to derive phonon-assisted lumi-
nescence equations. W. Hoyer and I arrived independently and in different ways at a closed
steady-state luminescence formula for arbitrary-order replica where plasma and excitons con-
tribute additively to the total intensity like for the exciton peak. Because prominent phonon
sidebands are only observed with polar semiconductors, the LO-phonon assisted emission is
almost always related to Fröhlich interaction in the literature. It turned out that the polaron-
picture formula clearly underestimated the role of this coupling mechanism.

To shed some light on this problem, I also tried a different approach and generalized the
well-known semiconductor luminescence equations to compute the first phonon replicum in the
stationary limit. Similar results had been obtained earlier by A. Moskalenko, but I was able
to find a more consistent truncation scheme. While the new results also took Fröhlich inter-
action into account, they surprisingly indicated that even in strongly polar media, the optical
deformation-potential interaction can yield the dominant contribution to the sideband emis-
sion. This assumption is supported by two recent publications that report on the observation of
extraordinarily strong phonon replica assigned to non-polar optical modes in ZnO nanowires.
Having elaborated the relation between my two approaches, I presented the polaron-picture
analysis as a poster at the NOEKS 9 workshop in 2008 and published it in Ref. [II]. The
corresponding steady-state luminescence formula will be presented in Ref. [III].

To gain further insight into the relation between perturbative, polaron-picture, and cluster-
expansion results, I also derived phonon-assisted luminescence equations in the exciton picture
that could be solved in steady state for arbitrary-order replica. I was able to identify the limit-
ing cases in which all three treatments produce comparable results for the excitonic contribution
to the sideband luminescence. In a number of numerical case studies, I concentrated on the
questions how plasma and exciton emission could be identified experimentally and whether
Fröhlich and optical deformation-potential interaction lead to different temperature depen-
dencies of the luminescence spectra. Furthermore, I considered free versus impurity-bound
excitons and qualitatively compared emission from bulk and quantum-well systems. For the
theory-experiment comparison, I was provided InGaN quantum-well spectra by OSRAM Opto
Semiconductors (Regensburg). In view of the results of my case studies, the sideband lumi-
nescence in these systems could be traced back to bound excitons. I obtained quantitative
agreement with ZnO bulk spectra found in the literature and could interpret the extraordinar-
ily strong sideband emission observed with ZnO nanowires. In an ongoing collaboration with
A. Chernikov and S. Horst from the experimental semiconductor physics group in Marburg,
we seek to detect signatures of plasma emission in the transients of ZnO bulk spectra. Based
on my generalized semiconductor luminescence equations, C. Böttge develops a microscopic
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theory of lasing at the first exciton-phonon resonance.
Shortly before finishing this thesis, I collaborated with L. Schneebeli in another quantum-

dot project. Using an elementary model of the exciton-to-biexciton transition in CdSe-based
quantum dots, we proposed a device design for Zeno-based optoelectronics. This work will be
summarized in Ref. [V].
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1 Introduction

Many semiconductor materials have band gaps of a few electron Volts, which enables them to
absorb or emit light in the visible range. On the one hand, this opens the door to a multitude
of technical applications such as photovoltaic cells, LEDs, and lasers diodes. On the other
hand, optical experiments with semiconductors are of fundamental interest for solid-state
physicists as they provide a means to scan the properties of an interacting many-particle
system. This is possible because the temporal evolution of the optical spectra as well as the
positions and line shapes of the optical resonances are influenced by both the electron-electron
and the electron-phonon interaction in the active material. In order to relate the experimental
results to the quantum dynamics of the many-particle system, a microscopic theory of coupled
charge carriers, lattice vibrations, and light field is needed. For coherent spectroscopy, a
semi-classical description of the light-matter interaction constitutes an appropriate theoretical
background [1]. Photoluminescence experiments, however, are often performed in the
incoherent regime where the classical radiation field and the material polarization vanish.
Under these conditions, the emission becomes a genuinely quantum-mechanical process such
that the theoretical analysis requires a quantization of the light field. One possibility to treat
electrons, phonons, and photons consistently on the same level of approximation is given by
the Heisenberg equation-of-motion approach together with a cluster-expansion scheme that
truncates the hierarchy of coupled differential equations [2–7]. Previously, this approach
was successfully used to calculate many-body correlations in one- and two-dimensional
semiconductor structures [7–9]. In the present thesis, we apply this theoretical framework
to two different kinds of systems. The first part concerns the absorption and emission of
semiconductor quantum dots while in the second part, phonon-assisted resonances in the
luminescence spectra of polar semiconductors are investigated.

Quantum dots are mesoscopic hetero structures where the band-gap mismatch at the inter-
faces confines the electron movement in all three spatial directions, which results in a discrete
single-particle spectrum for the charge carriers. In many aspects, this makes a quantum dot
comparable to an artificial atom. A number of recent experiments [10–15] have demonstrated
that the light emission from such a quasi zero-dimensional system can feature strikingly non-
classical signatures. Already for continuous-wave excitation, so-called photon-antibunching
effects can lead to sub-Poissonian emission statistics [14]. In case of a pulsed excitation,
emission of a single photon [11–13] or one pair of strongly correlated photons [15] per pulse
have been observed. This truly quantum-mechanical behavior makes quantum dots promising
candidates for future applications in quantum cryptography [16] as well as quantum comput-
ing [17, 18] and data storing [19]. Already in the absence of transverse electromagnetic fields,
the theoretical description of the quantum-dot carrier system is a sophisticated many-body
problem [20–33]. As a general tendency, the three-dimensional confinement strongly enhances
the Coulomb correlations between the dot electrons and holes. To investigate the properties
of these correlations and their effect on the optical resonances of the system, both partial and
full diagonalization techniques [20–27] as well as configuration-interaction calculations [28–30]
have been applied. These methods can successfully solve the specific details of an isolated
dot. For instance, one can accurately describe emission and absorption lines. However, the
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1 Introduction

computations become rather involved when the interaction with a quantized multi-mode light
field is included. Moreover—and here the analogy to atomic systems ends—semiconductor
quantum dots are usually embedded in a solid-state environment such that the dot carriers
become coupled to wetting-layer carriers [34–37] and phonons [38–41].

In view of its successful application to higher-dimensional systems, the cluster-expansion
method lends itself to the consistent description of all these coupling effects. We therefore
adopt that approach to develop a fully microscopical theory of Coulomb-interacting charge
carriers in a quantum dot that are coupled to a light field. The backbone of our theory will
be formed by the semiconductor Bloch equations (SBE) and the semiconductor luminescence
equations (SLE) for the quantum dot. The SBE describe the excitation of the carrier system
when it is driven by a coherent light field [60] whereas the SLE describe the emission from the
dot under incoherent conditions [50, 54]. While we concentrate here on the internal electronic
interaction, our theory can straightforwardly be extended to include all kinds of phenomena
related to open quantum-dot systems. In order to demonstrate the potential of our approach,
we implement the interaction with a generic reservoir of lattice vibrations to study phonon-
assisted phenomena such as dephasing of polarization and thermalization of the carrier system.

The electron-phonon interaction plays a central role in the second part of this thesis. Longi-
tudinal optical (LO) phonons not only provide scattering for electrons and holes in semiconduc-
tors but they can also participate in electron-hole recombination, which gives rise to additional
resonances in the luminescence spectrum of a semiconductor. Provided that the coupling is
sufficiently strong, these resonances can be observed as replica of the excitonic peak that are
commonly referred to as phonon sidebands while the exciton peak is called zero-phonon line
in this context [42–48].

There exists a well-established perturbational treatment of phonon-assisted luminescence
[49] that was already developed in the seventies and is widely used in the literature till the
present day. This theory describes the excited states of the semiconductor purely in terms of
bound electron-hole pairs called excitons. More recent theoretical and experimental studies
have revealed certain shortcomings of such an approach. In particular, luminescence at the
excitonic resonance may not be considered as unique evidence that excitons are present in
the system because uncorrelated electron-hole plasma emits at the same wave lengths. This
surprising result was first pointed out in Ref. [50] and subsequently confirmed in a number of
experiments [51–53]. One of the main goals of this work is to investigate whether uncorrelated
plasma can also contribute to phonon-assisted luminescence. To this end, we generalize the
SLE from Refs. [50, 54] such that spontaneous emission at the first exciton-phonon resonance
can be calculated.

However, there are further reasons why we reconsider the phonon-sideband problem. Recent
experimental publications report that the sideband intensities can be of the same order of
magnitude or even larger than the intensity of the zero-phonon line. Among the most striking
examples are ZnO nanorod spectra featuring numerous replica with the intensity maximum
far away from the exciton peak [55]. Experiments like these have renewed the interest in the
theoretical description of higher-order sideband emission. The existing theory of LO-phonon
assisted luminescence is based on a perturbative treatment of the electron-phonon interaction
where the n-th term of the perturbation series yields the n-th replicum. The specific details of
the first few phonon sidebands can accurately be resolved with such an approach [49, 56–58].
However, the evaluation of the perturbation series becomes very laborious with increasing
n. For the analysis of higher-order replica, we therefore prefer a unitary-transformation
method [59] that allows us to treat the electron-phonon interaction non-perturbatively. With
the phonon-assisted SLE in the new picture, arbitrary-order recombination processes can thus

2



be evaluated separately.

The thesis is organized as follows. In Chap. 2, we define the many-body Hamiltonian for
interacting electrons, phonons, and photons in bulk and confined semiconductor systems, and
outline the cluster-expansion approach. The quantum-dot analysis is presented in Chap. 3,
and the phonon-sideband problem is treated in Chap. 4. The results of our studies will be
summarized in Chap. 5. For the readers convenience, lengthy calculations and formal aspects
of the derivations that do not contribute to the understanding of the physical content are
generally moved to the appendix.
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2 Theoretical description of bulk and

confined semiconductor systems

This chapter is organized as follows. In Sec. 2.1, we define the semiconductor Bloch basis for
bulk and confined carrier systems. Lattice vibrations are introduced in Sec. 2.2. The carrier-
phonon coupling is discussed in considerable detail to provide an appropriate background for
the study of phonon-assisted processes in quantum dots and polar semiconductors. Electron-
electron and electron-photon interaction are contained in the quantum-electrodynamical Hamil-
tonian presented in Sec. 2.3. Because this part of the theory has been thoroughly developed
in Refs. [7, 61], we concentrate here on the modifications that are necessary to analyze zero-
and three-dimensional semiconductor structures. Finally, we give a brief description of the
cluster-expansion approach in Sec. 2.4.

2.1 Single-particle wave functions

For practical computations in second quantization, the electronic field operator Ψ̂(r) is usually
expanded into an appropriate single-particle basis. A useful choice that accounts for the discrete
translational symmetry of the ionic equilibrium potential is provided by the semiconductor
Bloch basis. Before explicitly defining the wave functions, we must briefly introduce some
basic notations regarding the periodicity of the crystal. In crystalline solids, the equilibrium
positions of the ions are arranged periodically in three linearly independent spatial directions.
A minimal building block that fills the crystal volume completely when stacked is called unit
cell. Lattice vectors R translate one unit cell of an infinite crystal onto another. After fixing the
origin of the coordinate system, these vectors define the crystal lattice. The reciprocal lattice
is the set of all wave vectors G with the property that eiG·R = 1 for an arbitrary lattice vector
R. The shape of the unit cell is not uniquely determined by the above definition. Because it
displays all the symmetries of the crystal, one often uses the so-called Wigner-Seitz cell that is
defined as the set of points in space which are closer to a given lattice point than to any other
lattice point. The (first) Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice that is
centered at the origin. High-symmetry points in the Brillouin zone are marked by capital Greek
or Latin letters. In particular, the zone center is always referred to as Γ point, irrespective of
the crystal symmetry.

When the ions are at their equilibrium positions, they provide a lattice-periodic potential
V 0

ion(r) = V 0
ion(r + R). According to the Bloch theorem, non-interacting electrons moving

through such a potential can be described by single-particle wave functions

ψλ,k(r) =
eik·r
√

L 3
uλ,k(r) (2.1)

that separate into a plane-wave part with wave vector k and a lattice-periodic Bloch function
uλ,k(r) = uλ,k(r+R) that is specified by an additional quantum number λ. The wave functions
are normalized with respect to a cube of side length L . Periodic boundary conditions restrict
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2 Theoretical description of bulk and confined semiconductor systems

the allowed values of the components of k to integer multiples of 2π/L . Surface effects can
be eliminated by considering the limit L → ∞ under the assumption of a constant electron
density.1 One can show that ψλ,k+G(r) = ψλ,k(r) for every reciprocal lattice vector G. The
wave vectors k may thus be restricted to the Brillouin zone. With this choice, Eq. (2.1) defines
a complete orthogonal set. The Brillouin zone contains as many wave vectors as there are unit
cells in the quantization volume. In the remainder of this thesis, the letters k, p, q will always
denote Brillouin-zone vectors unless otherwise stated. When electrons and other elementary
excitations such as phonons or photons that are characterized by a wave vector k participate
in a scattering process, the total wave vector is conserved up to a reciprocal lattice vector G.
This conservation law is a consequence of the discrete translational symmetry of the system
and motivates to call ~k the crystal momentum. A scattering process is called normal process
for G = 0 and umklapp process for G 6= 0. In this work, we exclusively consider electrons with
small momenta that interact with photons in the optical regime and long-wavelength phonons.
It is then justified to neglect umklapp processes completely. A fixed quantum number λ defines
an electronic energy band. For our purposes, it will mostly be sufficient to include only one
valence band λ = v and one conduction band λ = c in the analysis. The ground state of the
electron system is characterized by a completely filled valence band and an empty conduction
band. All materials that we will investigate are direct semiconductors where both the upper
valence-band edge and the lower conduction-band edge are located at k = 0. The energy
spacing between the bands is the gap energy Eg. In lowest non-vanishing order, the single-
particle energies ελ,k have parabolic dispersions in the vicinity of the Γ point,

εv,k =
~

2k2

2mv
, (2.2)

εc,k = Eg +
~

2k2

2mc
, (2.3)

where we assume that ελ,k only depends on k = |k|. The Bloch electrons then behave like
quasi-free particles with effective masses

mλ ≡ ~
2

(

d2ελ,k

dk2

∣

∣

∣

∣

k=0

)−1

. (2.4)

As usual in semiconductor physics, we will often refer to conduction-band electrons and missing
valence-band electrons as electrons and holes, respectively. Holes are positively charged and
have a positive effective mass mh ≡ −mv in direct semiconductors while the electron effective
mass is written as me ≡ mc. One can assign positive single-particle energies εek ≡ εc,k and
εhk ≡ −εv,k to the electrons and holes, respectively.

Besides the bulk case where the electron system is genuinely three-dimensional, we will
also consider confined systems in this work. Here, the movement of the charge carriers is
restricted in one, two or all three spatial directions. The corresponding systems are referred to
as quantum wells (QW), quantum wires (QWI), and quantum dots (QD), respectively. These
geometries can be realized as semiconductor hetero structures that are composed of regions of
different semiconductor materials the band gaps of which do not match. Hence, the valence-
and conduction-band edges of the two materials do not align with each other at the interfaces.
The energy spacing of the band edges defines the band offset and produces the potential that
is responsible for the carrier confinement. We will exclusively consider hetero structures where

1The quantization volume is usually chosen to have the same proportions as the unit cell. Nevertheless, we
will stick to the cube so as not to overburden the notation.
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2.1 Single-particle wave functions

electrons and holes are confined at the same side of the interface (type-I structures) although
the opposite case can also occur.

Typically, the confined systems are mesoscopic in the sense that the lateral extensions of
the hetero structure are small compared to the length scales of the bulk crystal, but still large
compared to the unit cell. A simple and intuitive approach to calculating the single-particle
states and energies for such a mesoscopic structure is provided by the so-called envelope-
function approximation [1, 62, 63]. This approach is based on the assumption that the wave
functions of the confined carriers can still be written as the product of a lattice-periodic Bloch
function and an envelope function. Deviating from the bulk case, the plane-wave parts for
the motion perpendicular to the hetero structure are replaced by the eigenfunctions of a single
valence- or conduction-band electron exposed to a confinement potential V conf . The bulk case
would be recovered for vanishing V conf when these eigenfunctions were plane waves again.

For the description of d-dimensional structures, it is useful to decompose three-dimensional
vectors x = (x‖, x⊥) into their components x‖ and x⊥ parallel and perpendicular to the hetero
structure, respectively. Hence, x‖ is a d-dimensional and x⊥ a (3−d)-dimensional vector where
d = 0, 1, 2 for QD, QWI and QW. With this notation, the single-particle wave functions in
envelope-function approximation can be written as

ψλ,β,k‖(r) =
eik‖·r‖
√

L d
ζλ,β(r⊥)uλ,k‖(r) (2.5)

with the Bloch functions from the bulk case uλ,k(r) = uλ,(k‖,k⊥)(r) where we use the abbre-
viation uλ,k‖(r) ≡ uλ,(k‖,k⊥≃0)(r). Due to the broken translational symmetry perpendicularly
to the hetero structure, only the parallel component ~k‖ of the crystal momentum ~k has to
be conserved in scattering processes. The confinement functions ζλ,β(r⊥) are determined from
the stationary Schrödinger equations

[

− ~
2

2mλ

∂2

∂r2⊥
+ V conf

λ (r⊥)

]

ζλ,β(r⊥) = Econf
λ,β ζλ,β(r⊥), (2.6)

that is, the envelope-function approximation relies on the assumption that the Bloch electrons
can be treated as quasi-free particle with effective masses mλ as described above. The ad-
ditional quantum numbers introduced by the confinement define the sub-band index β. An
electron with crystal momentum ~k‖ in sub-band β of band λ has the single-particle energy

ελ,β,k‖ ≡ ελ,(k‖,k⊥≃0) + Econf
λ,β . (2.7)

Owing to the approximative character of the ansatz, the V conf
λ (r‖) do not reflect the actual

potential landscape in the hetero structure but describe the confinement phenomenologically.
Quantum wells, for instance, can often be modeled as infinite potential wells where the well
width L is a fit parameter that can be quite different from the diameter of the hetero structure.

Equations (2.1) and (2.5) define the semiconductor Bloch basis for bulk and confined systems,
respectively. Expanding the electronic field operator into this basis leads to

Ψ̂(r) =
∑

λ,k,σ

ψλ,k(r) |σ〉 âλ,k,σ (2.8)

for bulk and

Ψ̂(r) =
∑

λ,β,k‖,σ

ψλ,β,k‖(r) |σ〉 âλ,β,k‖,σ (2.9)
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2 Theoretical description of bulk and confined semiconductor systems

for confined systems where σ denotes the spin quantum number. The fermionic annihilation
operators âλ,k and creation operators â†λ,k obey fermionic commutation relations

[âλ,k,σ, â
†
λ′,k′,σ′ ]+ = δλ,λ′δk,k′δσ,σ′ , (2.10a)

[âλ,k,σ, âλ′,k′,σ′ ]+ = 0 = [â†λ,k,σ, â
†
λ′,k′,σ′ ]+. (2.10b)

For confined electrons, the corresponding relations read

[âλ,β,k‖,σ, â
†
λ′,β′,k′

‖,σ′ ]+ = δλ,λ′δβ,β′δk‖,k′
‖
δσ,σ′ , (2.11a)

[âλ,β,k‖,σ, âλ′,β′,k′
‖,σ′ ]+ = 0 = [â†λ,β,k‖,σ, â

†
λ′,β′,k′

‖,σ′ ]+. (2.11b)

2.2 Dynamics of the crystal lattice

The following information is condensed from a number of textbooks and original papers and
supplemented with our own considerations. Since the material is not presented in a coherent
fashion throughout the different sources, we organize this section such that it is self-contained.
Still, we only derive relations and properties that are explicitly referred to in later parts of this
work.

The Hamiltonian of the interacting electron-ion system can be written in the form

Ĥmat = Ĥel + Ĥion + Ĥel−ion (2.12)

where Ĥel and Ĥion denote the kinetic energy plus the interaction energy of the electrons
and ions, respectively, while Ĥel−ion describes the electron-ion interaction. In general, the
corresponding Schrödinger equation can neither be solved analytically nor numerically with the
exact form of the material Hamiltonian Ĥmat. The so-called Born-Oppenheimer approximation
[64–67] makes use of the fact that the ion masses exceed the electron masses by three or four
orders of magnitude such that the motions of electrons and ions take place on different time
scales. The electrons are affected by the instantaneous potential of the ions and quickly adjust
themselves to the new positions of the ions whereas the ions only feel the potential of a time-
averaged electron distribution. This allows an adiabatic decoupling of electron and ion degrees
of freedom. More explicitly, the electron dynamics follows from the Schrödinger equation

(

Ĥel + Ĥel−ion

)

Φel

(

{r̂(i)
el }; {r̂

(j)
ion}

)

= Eel

(

{r̂(j)
ion}

)

Φel

(

{r̂(i)
el }; {r̂

(j)
ion}

)

(2.13)

where r̂
(i)
el is the position operator of the ith electron. The wave function Φel and the eigen

energy Eel parametrically depend on the ion positions r̂
(j)
ion. The Schrödinger equation for the

ion subsystem then takes the form

[

Ĥion + Eel

(

{r̂(j)
ion}

)]

Φion

(

{r̂(j)
ion}

)

= EionΦion

(

{r̂(j)
ion}

)

. (2.14)

Because the electronic potential is expressed in terms of ion coordinates, the electron degrees
of freedom do not enter the ion dynamics anymore. Thus, the total wave function of the
interacting electron-phonon system can partially be separated,

Φmat

(

{r̂(i)
el }, {r̂

(j)
ion}

)

= Φel

(

{r̂(i)
el }; {r̂

(j)
ion}

)

Φion

(

{r̂(j)
ion}

)

. (2.15)

8



2.2 Dynamics of the crystal lattice

For small deviations from the periodically arranged equilibrium positions, the ions can be
treated as a system of coupled harmonic oscillators. We present the canonically quantized form
of the lattice-vibration Hamiltonian

Ĥvib ≡ Ĥion + Eel

(

{r̂(j)
ion}

)

(2.16)

in Sec. 2.2.1. The vibration field can be expanded into normal modes that describe collective
oscillations of the ions. In a quantized theory, the normal modes become elementary excitations
called phonons that are introduced in Sec. 2.2.2. We discuss some important properties of the
phonon spectrum in Sec. 2.2.3. Finally, in Sec. 2.2.4, the interaction Hamiltonian Ĥel−ion is
expressed in terms of phonons and Bloch electrons. The introductory material summarized in
Secs. 2.2.1–2.2.3 is mainly extracted from Refs. [65, 68, 69].

2.2.1 Quantization of the lattice-vibration field

The position of a unit cell relative to the origin of the coordinate system cell can be identified
by a lattice vector R. We assume that each unit cell contains Z atoms. Individual ions can
then be labeled by R and an index j = 1, . . . , Z. The position vector Sj(R) = R + ξj(R)

of the jth ion in the unit cell at R can uniquely be decomposed into R and a position vector
ξj(R) relative to the unit cell. The equilibrium position is denoted as S0

j (R) = R+ξ0
j . For the

description of the lattice vibrations, the displacements Qj(R) = Sj(R)− S0
j(R) = ξj(R)− ξ0

j

and their conjugate momenta will serve as dynamical variables. In the following, Cartesian
coordinates are always labeled by subscripts µ, µ′, . . .

Both the ion-ion and the ion-electron interaction contribute to the potential energy U of the
lattice. Within the Born-Oppenheimer approximation, U can be written as function of the ion
positions alone. A Taylor expansion around the equilibrium configuration of the crystal results
in U = U0 + Uharm + · · ·where U0 denotes the equilibrium energy that can be set to zero by
means of a renormalization of the energy scale. Since the linear terms in Qj(R) vanish, the
lowest-order contribution to the potential energy is given by the harmonic term

Uharm =
1

2

∑

R,R′

∑

j,µ
j′,µ′

Qj,µ(R)W(j,µ),(j′,µ′)(R − R′)Qj′,µ′(R′) (2.17)

where the Hessian matrix

W(j,µ),(j′,µ′)(R − R′) =
∂2U

∂Qj,µ(R)∂Qj′,µ′(R′)

∣

∣

∣

∣

Q=0

(2.18)

only depends on the difference vector R − R′ owing to the translational symmetry of the
crystal. Moreover,

∑

R

W(j,µ),(j′,µ′)(R) = 0 (2.19)

since a translation of the entire crystal, i.e. Qj(R) = const, does not change the potential
energy of the ions. We restrict the analysis to lattice temperatures far away from the melting
point of the crystal such that only small displacements Qj(R) occur. The Taylor expansion
of the potential energy can thus be truncated after the quadratic term which characterizes the
harmonic approximation. With this approach, the ions are treated as a set of coupled harmonic

9



2 Theoretical description of bulk and confined semiconductor systems

oscillators. The interaction forces are conservative such that the Hamiltonian Hvib = T+Uharm

of the lattice-vibration field is just the sum of the kinetic energy T and the potential energy
Uharm of the ions. When we use Cartesian coordinates, the canonical momenta are given
by Pj(R) = MjQ̇j(R) where Mj denotes the mass of the jth ion in each unit cell, and the
Hamiltonian takes the form

Hvib =
∑

R

∑

j

P2
j(R)

2Mj
+ Uharm

(

{Qj(R)}
)

. (2.20)

Eliminating the momenta from the Hamilton equations of motion produces the Newton equa-
tion for the jth ion in the unit cell at R

MjQ̈j,µ(R) = −
∑

R′

∑

j′,µ′

W(j,µ),(j′,µ′)(R − R′)Qj′,µ′(R′). (2.21)

The quantization procedure turns the lattice displacements and momenta into field operators
Q̂j(R), P̂j(R) that obey canonical commutation relations

[

Q̂j,µ(R), P̂j′,µ′(R′)
]

−
= i~δR,R′δj,j′δµ,µ′ , (2.22a)

[

Q̂j,µ(R), Q̂j′,µ′(R′)
]

−
= 0 =

[

P̂j,µ(R), P̂j′,µ′(R′)
]

−
. (2.22b)

2.2.2 Phonon operators

It is often useful in practical computations to express the lattice-vibration field in terms of
phonon operators. To this end, we observe that the equation of motion (2.21) allows plane-
wave solutions

Qj(R) =
ε

α,p
j

√

Mj

ei(p·R−Ωα,pt) (2.23)

with wave vector p and polarization α. In general, the frequency Ωα,p and the direction ε
α,p
j

of the amplitude vector can depend on both the wave vector and the polarization of the wave.
The explicit separation of a mass-dependent factor will prove useful in the following. Inserting
this ansatz into Eq. (2.21) leads to

Ω2
α,pε

α,p
j,µ =

∑

j′,µ′

D(j,µ),(j′,µ′)(p)εα,p
j′,µ′ (2.24)

where we have defined the dynamical matrix

D(j,µ),(j′,µ′)(p) ≡ 1
√

MjMj′

∑

R

W(j,µ),(j′,µ′)(R)e−ip·R. (2.25)

Equation (2.24) constitutes a 3Z-dimensional eigenvalue problem for each wave vector p in the
Brillouin zone. The dispersion relation can be determined via the secular equation

det
[

D(j,µ),(j′,µ′)(p) − δj,j′δµ,µ′Ω2
α,p

]

= 0. (2.26)

It follows from the symmetry of the Hessian matrix W(j,µ),(j′,µ′)(R) that the dynamical matrix
is Hermitian. Consequently, Ω2

α,p must be a real number, and the normalized amplitude vectors

10



2.2 Dynamics of the crystal lattice

ε
α,p
j fulfill the orthogonality relation

∑

j,µ

(

εα,p
j,µ

)∗
εα′,p

j,µ = δα,α′ (2.27)

and the completeness relation

∑

α

(

εα,p
j,µ

)∗
εα,p

j′,µ′ = δj,j′δµ,µ′ . (2.28)

Since W(j,µ),(j′,µ′)(R) is real-valued, the same frequencies belong to p and −p, i.e. Ω2
α,p =

Ω2
α,−p, and we may impose the symmetry (εα,p

j,µ )∗ = −εα,−p
j,µ without loss of generality. Finally,

Ω2
α,p must be positive since the equilibrium configuration of the crystal corresponds to a local

minimum of the potential energy. We choose Ωα,p as the positive root of Ω2
α,p.

Phonons can now be introduced by expanding the field variables Q̂j(R), P̂j(R) in terms

of the polarization vectors ε
α,p
j . Explicitly, we obtain Q̂j(R) =

∑

α,p Q̂
α,p
j (R) and P̂j(R) =

∑

α,p P̂
α,p
j (R) with

Q̂
α,p
j (R) ≡ −i

√

~

2NMjΩα,p

(

D̂†
α,−p + D̂α,p

)

eip·Rε
α,p
j , (2.29)

P̂
α,p
j (R) ≡

√

~Ωα,pMj

2N
(

D̂†
α,−p − D̂α,p

)

eip·Rε
α,p
j , (2.30)

where N denotes the number of unit cells contained in the quantization volume L 3. The con-
stant factors appearing on the right-hand sides are chosen such that the canonical commutation
relations for Q̂j(R) and P̂j(R) lead to bosonic commutation relations

[D̂α,p, D̂
†
α′,p′ ]− = δα,α′δp,p′ , [D̂α,p, D̂α′,p′ ]− = 0 = [D̂†

α,p, D̂
†
α′,p′ ]− (2.31)

for the phonon operators. With the help of these relations, the Hamiltonian of the lattice-
vibration field can be cast into form

Ĥvib =
∑

α,p

~Ωα,p

(

D̂†
α,pD̂α,p +

1

2

)

(2.32)

which formally corresponds to a set of independent harmonic oscillators. The quantized normal
modes (α,p) are called phonons, and the energy quanta ~Ωα,p are referred to as phonon
energies. Similarly, ~p can be regarded as the crystal momentum of the phonon. A fixed value
of α defines a so-called phonon branch. In view of Eqs. (2.31) and (2.32), D̂†

α,p and D̂α,p are
interpreted as bosonic creation and annihilation operators, respectively, for a phonon with wave
vector p and polarization α.

2.2.3 Acoustic and optical phonons

If the unit cell contains more than one atom, the phonon spectrum can be divided into acoustic
and optical branches. By definition, acoustic branches have vanishing frequency Ωα,p in the
limit p → 0. When we insert this condition into the eigenvalue equation (2.24), we find in
view of definition (2.25) and the symmetry relation (2.19) that the vectors ε

α,p
j /

√

Mj must be

11



2 Theoretical description of bulk and confined semiconductor systems

independent of j for p = 0. Long-wavelength acoustic phonons are thus characterized by all
ions in a unit cell oscillating with the same phase and same amplitude. Hence, they correspond
to the elastic waves of a continuous medium. The common direction of the vibration can be
described by the unit vector

εα,p ≡
√

M

Mj
ε

α,p
j (2.33)

where M ≡∑j Mj is the total ion mass per unit cell. The contribution of an acoustic phonon

(α,p) to the displacement Q̂(R) of an ion in the unit cell at R can thus be written as

Q̂α,p(R) = −i

√

~

2̺L 3Ωα,p

(

D̂†
α,−p + D̂α,p

)

eip·Rεα,p (2.34)

where ̺ = NM/L 3 denotes the mass density of the crystal. Since the vectors εα,p are
orthogonal for different modes, the phonon spectrum always contains three acoustic branches,
irrespective of the number of ions per unit cell. When the crystal lattice has cubic symmetry,
εα,p is parallel to p for one of the branches and perpendicular to p for the others in the vicinity
of the Γ point. The corresponding branches are called longitudinal acoustic (LA) and transverse
acoustic (TA), respectively, although the geometry is usually more complicated away from the
symmetry points of the Brillouin zone. In the long-wavelength limit, LA modes correspond
to sound waves while TA modes correspond to shear waves. Acoustic branches have linear
dispersion relations close to the Γ point,

Ωα,p = cα|p|. (2.35)

LA modes typically have about twice as large phase velocities cα as the TA modes.

Besides the three acoustic branches, the phonon spectrum contains 3(Z−1) optical branches
with non-vanishing frequencies Ωα,p for p → 0. Evaluating the orthogonality relation (2.27)

between an acoustic branch α and an optical branch α′, we find that εα,p ·∑j

√

Mjε
α′p
j = 0

for each of the three independent directions εα,p. Consequently,

∑

j

MjQ̂
α′,p
j (R) = 0. (2.36)

In long-wavelength optical vibrations, the ions in a unit cell thus move in different directions
such that their center of mass remains at rest. For a diatomic basis, i.e. Z = 2, the operator of

the relative displacement ∆Q̂α′,p(R) = Q̂
α′,p
2 (R) − Q̂

α′,p
1 (R) in mode (α′,p) can be written

as

∆Q̂α′,p(R) = i

√

~

2̺L 3Ωα′,p

M1 +M2√
M1M2

(

D̂†
α′,−p + D̂α′,p

)

eip·Rεα′,p. (2.37)

The 3(Z − 1) = 3 linearly independent directions of the relative displacement are specified by
the pairwise orthogonal unit vectors

εα′,p ≡
√

M

M2
ε

α′,p
1 = −

√

M

M1
ε

α′,p
2 . (2.38)
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2.2 Dynamics of the crystal lattice

Analogously to the acoustic case, optical modes can be divided into longitudinal optical (LO)
and transverse optical (TO) branches. Close to the Γ point, the optical phonon frequencies
can be approximated by the Einstein dispersion

Ωα′,p ≃ Ωα′
= const. (2.39)

LO modes in ionic crystals have higher frequencies than the TO modes because they induce
macroscopic polarizations that generate additional restoring forces on the moving ions. These
oscillating polarizations also lead to strong electron-phonon interaction as discussed in Sec.
2.2.4.2.

In this work, we will exclusively consider binary compound semiconductors with either
zincblende or wurtzite structure. The former structure has a cubic symmetry and contains
one atom of each type in its unit cell while the latter has a hexagonal symmetry and contains
two atoms of each type in its unit cell. The corresponding Brillouin zones are shown in the right
column of Fig. 1. The III-V compound GaN ranks among the semiconductor materials that
can crystallize in either of these structures. It is therefore interesting to compare the phonon
spectra in both cases. Due to the higher number of atoms per unit cell and the reduced sym-
metry of the lattice, the wurtzite structure yields the more complicated spectrum, as can be
seen in the left column of Fig. 1. Contrary to the cubic case, the TO modes have non-vanishing
longitudinal components at the Γ point [45], and both TO and LO branches split into different
frequencies. Moreover, the hexagonal structure allows non-polar optical modes (NPO) that
can be assigned to vibrations of either the Ga sublattice or the N sublattice alone [70]. As we
will see in Sec. 2.2.4.2, the electron-phonon interaction with polar and with non-polar optical
modes is based on fundamentally different mechanisms. One important consequence of this
fact will be discussed in Sec. 4.4.3.3.

2.2.4 Electron-phonon interaction

Lattice vibrations destroy the periodicity of the crystal, which perturbs the quasi-free move-
ment of the Bloch electrons. As a consequence, scattering between electrons and phonons may
occur. This interaction has important physical consequences such as dephasing of polarization,
thermalization of the charge-carrier system, and phonon-assisted luminescence. Each of these
processes will be analyzed in later parts of this work.

In first quantization, the electron-ion interaction Hamiltonian appearing in the Schrödinger
equation (2.13) for the electron subsystem can be written as

Ĥel−ion =
∑

i

Vion

(

r̂
(i)
el

)

(2.40)

where the ionic potential Vion(r) = Vion

(

r, {Sj(R)}
)

depends on the instantaneous positions
of the ions. While the equilibrium configuration of the ions provides the lattice-periodic
potential V 0

ion(r), the electron-phonon coupling follows from the change of the potential
∆Vion(r) ≡ Vion(r) − V 0

ion(r) due to lattice vibrations. The aim of this section is to estab-
lish the corresponding interaction Hamiltonian

Ĥel−vib =
∑

i

∆Vion

(

r̂
(i)
el

)

=

∫

Ψ̂†(r)∆Vion(r)Ψ(r) d3r (2.41)

in second quantization. In the first subsection, the explicit form of ∆Vion(r) is derived micro-
scopically. This part generalizes the treatment from Ref. [73] to the case of more than one ion
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2 Theoretical description of bulk and confined semiconductor systems

Figure 1: Phonon spectra of cubic (upper row) and hexagonal (lower row) GaN. The corresponding
Brillouin zones are shown on the right-hand side where points of high symmetry are labeled by capital
Greek or Latin letters. For the horizontal axes of the spectra, the wave vector coordinates are swept in
high-symmetry directions of the Brillouin zone. The different types of phonon branches are indicated
by the respective acronyms as defined in the text.
The upper curves are taken from Ref. [71] , the lower curves from Ref. [72].

per unit cell. While such an analysis is helpful for the discussion of some fundamental issues,
it is very difficult to determine the matrix elements from first principles. However, additional
physical insight can be applied to parametrize the interaction, as shown in the second part of
this section.

2.2.4.1 Microscopic derivation

The so-called rigid-ion approximation [74] assumes that the ions are displaced without distor-
tion. In this case, the ions carry their individual potentials rigidly with themselves when they
vibrate around their equilibrium positions. The total potential Vion of the ions can thus be
written as

Vion

(

r, {Sj(R)}
)

=
∑

R

∑

j

Vj

(

r − Sj(R)
)

(2.42)
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2.2 Dynamics of the crystal lattice

where Vj(r) denotes the potential of a single ion of type j that is located at r = 0. In lowest
non-vanishing order with respect to the ion displacements Qj(R), the instantaneous change of
the ionic potential due to lattice vibrations is given by

∆Vion =
∑

R

∑

j

∂Vion

∂Sj(R)

∣

∣

∣

∣

Sj(R)=S0
j
(R)

·
[

Sj(R) − S0
j(R)

]

=
∑

R

∑

j

∇Vj

(

r− S0
j (R)

)

· Qj(R). (2.43)

The following derivation simultaneously applies to bulk and confined systems. Strictly speak-
ing, not only the charge carriers but also the phonons are affected by the confinement. However,
confinement energies are generally proportional to the inverse mass of the confined particle.
Owing to the large ratio of ion mass and electron mass, the discrete structure of the confined
phonon modes cannot be resolved on the scale of the electronic energies [75]. We may thus
model the material system in terms of propagating bulk phonons interacting with an electron
gas of reduced dimensionality [76,77]. With this approach, confinement effects exclusively en-
ter via the electronic field operator (2.9). The electron-phonon interaction Hamiltonian from
Eq. (2.41) thus takes the form

Ĥel−vib =
∑

λ,β,k‖
λ′,β′,k′

‖

∑

σ

∑

R,j

I
λ, β, k‖
λ′,β′,k′

‖
(j,R) ·Qj(R)â†λ,β,k‖,σâλ′,β′,k′

‖,σ (2.44)

with the vectorial matrix element

I
λ, β, k‖
λ′,β′,k′

‖
(j,R) ≡

∫

ψ∗
λ,β,k‖(r)∇Vj

(

r − S0
j(R)

)

ψλ,β,k‖(r) d3r. (2.45)

The integral over the entire quantization volume can be expressed as sum over unit-cell (u.c.)
integrals,

I
λ, β, k‖
λ′,β′,k′

‖
(j,R) =

∑

R′

∫

u.c.

ψ∗
λ,β,k‖(R

′ + ξ)∇Vj

(

R′ + ξ − ξ0
j −R

)

ψλ,β,k‖(R
′ + ξ) d3ξ. (2.46)

Because the Bloch functions are lattice-periodic, i.e. uλ,k‖(R
′ + ξ) = uλ,k‖(ξ), while the con-

finement functions barely change within a unit cell, i.e. ζλ,β(R′
⊥ + ξ⊥) ≃ ζλ,β(R′

⊥), we can
rewrite this sum as

I
λ, β, k‖
λ′,β′,k′

‖
(j,R) ≃ 1

L d

∑

R′
‖,R′

⊥

ζ∗λ,β(R′
⊥)ζλ′,β′(R′

⊥)ei(k′
‖−k‖)R′

‖

×
∫

u.c.

u∗λ,k‖(ξ)∇Vj

(

R′ − R + ξ − ξ0
j

)

uλ′,k′
‖
(ξ)ei(k′

‖−k‖)ξ‖ d3ξ. (2.47)

Such an approximation is often referred to as separation of length scales. To complete this
procedure, we also separate the ionic potentials Vj(R + ξ) into microscopic and mesoscopic
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2 Theoretical description of bulk and confined semiconductor systems

parts by means of the Fourier transform on the lattice2

Vj,q(ξ) =
∑

R

Vj(R + ξ)e−iq·R, (2.48a)

Vj(R + ξ) =
1

N
∑

q

Vj,q(ξ)eiq·R. (2.48b)

In view of ∇Vj(ξ + R) = iq
∑

q Vj,q(ξ)eiq·R/N , we thus obtain

I
λ, β, k‖
λ′,β′,k′

‖
(j,R) =

i

N
∑

q

A
λ, k‖
λ′,k′

‖
(j,q)B

λ, β, k‖
λ′,β′,k′

‖
(q)e−iq·Rq (2.49)

with the unit-cell integral

A
λ, k‖
λ′,k′

‖
(j,q) ≡ 1

Vuc

∫

u.c.

u∗λ,k‖(ξ)Vj,q(ξ − ξ0
j )uλ′,k′

‖
(ξ)ei(k′

‖−k‖)ξ‖ d3ξ (2.50)

where Vuc = L 3/N denotes the volume of the unit cell. The confinement functions enter the
quantity

B
λ, β, k‖
λ′,β′,k′

‖
(q) ≡ Vuc

L d

∑

R′
‖

ei(k′
‖−k‖+q‖)R′

‖
∑

R′
⊥

ζ∗λ,β(R′
⊥)ζλ′,β′(R′

⊥)eiq⊥R′
⊥ . (2.51)

When umklapp processes are neglected, the R′
‖ sum vanishes unless k′‖ = k‖ − q‖. Given that

the lattice constant can be considered infinitesimal on the mesoscopic length scale, we may
convert the R′

⊥ sum into an integral. Thus, the above expression simplifies to

B
λ, β, k‖
λ′,β′,k′

‖
(q) = δk′

‖,k‖−q‖γ
λ, β
λ′,β′(q⊥) (2.52)

where we have introduced the form factor

γ λ, β
λ′,β′(q⊥) ≡

∫

ζ∗λ,β(r⊥)ζλ′,β′(r⊥)eiq⊥r⊥ d3−dr⊥. (2.53)

With these results, Eq. (2.44) becomes

Ĥel−vib =
i

N
∑

λ,β
λ′,β′

∑

k‖,σ,q

∑

R,j

F λ
λ′(j,q)γ λ, β

λ′,β′(q⊥)q · Q̂j(R)e−iq·Râ†λ,β,k‖,σâλ′,β′,k′
‖,σ. (2.54)

One can show that the unit-cell integral

F λ
λ′(j,q) ≡ 1

Vuc

∫

u.c.

u∗λ,k‖(ξ)Vj,q(ξ − ξ0
j )uλ′,k‖−q‖(ξ)e−iq‖ξ‖ d3ξ (2.55)

barely changes with the electron wave vector k‖ and decreases when |q| gets larger [67]. By in-

serting the normal-mode expansion (2.29) of the displacement operator Q̂j(R), we can express
the interaction Hamiltonian in terms of electron and phonon operators,

Ĥel−vib =
∑

λ,β
λ′,β′

∑

α,p,k‖,σ

G λ, β
λ′,β′(p)

(

D̂†
α,−p + D̂α,p

)

â†λ,β,k‖,σâλ′,β′,k′
‖,σ, (2.56)

2On the textbook level, most authors use the Fourier transform on the quantization volume instead of the
mesoscopic version. When umklapp processes are neglected, such an approach yields the qualitatively wrong
result that the electron-phonon matrix elements cannot be band-dependent.
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2.2 Dynamics of the crystal lattice

where again, we exclusively consider normal scattering processes that conserve the crystal
momentum. The matrix element

G λ, β
λ′,β′(p) ≡

∑

j

√

~

2NMjΩα,p
F λ

λ′(j,p)γ λ, β
λ′,β′(p⊥)p · εα,p

j (2.57)

only depends on the phonon but not on the electron momentum. If |p| is small, the polarization
vector ε

α,p
j is parallel to p for longitudinal and perpendicular to p for transverse modes. The

explicit form of the matrix element shows that in the long-wavelength limit, electrons can
only be scattered by longitudinal phonons.3 All information about the confinement of the
electrons is contained in the form factor γ λ, β

λ′,β′(p⊥). The bulk case is recovered from the
general formulas (2.56), (2.57) when we eliminate the subband indices β, β′ and set k‖ = k,

p‖ = p, and γ λ, β
λ′,β′(p⊥) = 1. We find that under the assumption that the confinement effects

on the phonon spectrum can be neglected, the interaction matrix elements in the bulk and in
the confined case are related via

Gconf
λ, β
λ′,β′(p) = γ λ, β

λ′,β′(p⊥)Gbulk
λ
λ′(p). (2.58)

2.2.4.2 Semi-phenomenological treatment

The microscopic derivation from the previous section yields the generic structure how bulk elec-
trons and confined electrons couple to long-wavelength phonons. However, the ionic potentials
Vj(r) are very difficult to determine in general. For practical purposes, one usually applies semi-
heuristic arguments to obtain physically meaningful approximations for the change ∆Vion(r)
of the total ionic potential. This approach enables to express the electron-phonon interaction
in terms of a small number of parameters that can either be fitted to experimental data or
related to directly measurable macroscopic quantities. In the main part of this thesis, we will
analyze optical experiments where only carriers close to the band edge have to be considered.
We may therefore restrict the following derivations to the long-wavelength limit where the ion
displacements Q̂j(R) can be treated as continuous fields Q̂j(r). Moreover, we will exclusively
discuss the bulk case. The interaction matrix elements for low-dimensional electron systems
can then be calculated via Eq. (2.58).

Interaction with acoustic phonons

The propagation of long-wavelength LA phonons periodically deforms the crystal. The ion
displacement breaks the local charge neutrality, which induces local variations of the electron
density. This charge redistribution leads to an additional potential ∆Vion(r) for the electrons
that is called acoustic deformation potential [78, 79] in this context. In a lowest-order approx-
imation, ∆Vion(r) is proportional to the local volume dilation, i.e. to the fractional volume
change δ ≡ ∆V/V at position r. In general, the proportionality constant dλ

ac will depend on
the band index λ, resulting in band-dependent potentials ∆V λ

ion(r) = dλ
acδ(r). In order to relate

the volume dilation to the displacement field Q(r) =
∑

p QLA,p(r) as defined in Eq. (2.34), we
consider a small cube with edge length a that lies parallel to the coordinate axes at position
r. Under deformation, the cube volume V = a3 is changed to

V + ∆V = [a+Qx(rx + a, ry , rz) −Qx(rx, ry, rz)]

× [a+Qy(rx, ry + a, rz) −Qy(rx, ry, rz)]

× [a+Qz(rx, ry, rz + a) −Qz(rx, ry , rz)] . (2.59)

3As mentioned in Sec. 2.2.3, the TO modes in wurtzite-structure crystals provide a notable exception to this
rule.

17



2 Theoretical description of bulk and confined semiconductor systems

If a is very small compared to the length scale on which the displacement field varies, we
can replace [Qµ(rµ + a)−Qµ(rµ)]/a by ∂Qµ/∂rµ. Neglecting higher-order terms in ∂Qµ/∂rµ,
we find δ(r) = ∇ · Q(r). Hence, the additional potential ∆V λ

ion(r) is proportional to the
divergence of the ion-displacement field. The deformation-potential coupling to LA phonons
must be calculated separately for valence- and conduction-band electrons,

Ĥ
LA(def)
el−vib = Ĥ

LA(def),v
el−vib + Ĥ

LA(def),c
el−vib (2.60)

with

Ĥ
LA(def),λ
el−vib ≡

∫

Ψ̂†
λ(r)∆V λ

ion(r)Ψ̂λ(r) d3r (2.61)

where Ψ̂λ(r) denotes the field operator for electrons in band λ. A calculation similar to the
general derivation presented in the previous section finally leads to

Ĥ
LA(def)
el−vib =

∑

λ,k,σ,p

Gac.def
λ,p

(

D̂†
LA,−p + D̂LA,p

)

â†λ,k,σâλ,k−p,σ. (2.62)

The matrix element

Gac.def
λ,p ≡ dλ

ac

√

~|p|
2̺L 3cLA

(2.63)

depends on the mass density ̺ and the sound speed cLA of the material. In the limit p → 0,
the coupling vanishes because zero-wavelength LA phonons correspond to uniform translations
of the lattice that do not deform the crystal. Acoustic deformation-potential coupling can be
considered short-ranged as the coupling strength is not reduced for large phonon momenta. The
deformation-potential constants dλ

ac can be determined experimentally by measuring the shift
of the electronic energies induced by hydrostatic pressure [80]. For typical binary compound
semiconductors, dc

ac has a value of a few eV and exceeds dv
ac by one order of magnitude [81].

When the crystal lattice lacks an inversion center, a macroscopic electric field can be gen-
erated by squeezing the crystal. This phenomenon is known as piezoelectric effect. Acoustic
vibrations are then accompanied by oscillating macroscopic fields that act on the electrons,
which provides an additional mechanism for the electron-phonon interaction [79, 82]. In this
work, phenomena related to acoustic phonons will only be investigated for GaAs-based struc-
tures where the piezoelectric effect is particularly weak. We therefore do not need to determine
the corresponding interaction matrix elements.

Interaction with optical phonons

For simplicity, we restrict the following derivations to the diatomic case. Long-wavelength LO
phonons are then characterized by a relative displacement field ∆Q̂(r) =

∑

p Q̂LO,p(r) with
the single-mode contributions defined in Eq. (2.37).

Longitudinal optical vibrations in ionic crystals shift the oppositely charged ions in a unit
cell against each other. As illustrated in the left frame of Fig. 2, such a relative displace-
ment generates a macroscopic polarization field P̂(r) that affects the motion of the electrons.
This coupling mechanism is known as Fröhlich interaction [83] and can be compared to the
piezoelectric interaction with acoustic modes. For small deviations of the ions from their equi-
librium positions, the induced polarization can be considered proportional to ∆Q̂(r). In the
long-wavelength limit, we thus have

P̂(r) = iF
∑

p

(

D̂†
LO,−p + D̂LO,p

)

eip·r p

|p| (2.64)
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2.2 Dynamics of the crystal lattice

where the proportionality constant F must be a real number so that P̂(r) is Hermitian. Here,
we have used that εLO,p = ±p/|p|. The sign of F thus depends on how the direction of

∆Q̂(r) has been defined. In the absence of free charges, the divergence of the displacement

field D̂(r) = ǫ0Ê(r) + P̂(r) vanishes. Since the induced polarization field is longitudinal (i.e.

irrotational), the macroscopic electric field Ê(r) = −∇[∆V̂ion(r)]/e to which the electrons are

exposed follows from Ê(r) = −P̂(r)/ǫ0. The corresponding potential reads

∆V̂ion(r) = −eF
ǫ0

∑

p

(

D̂†
LO,−p + D̂LO,p

) eip·r

|p| . (2.65)

With this result, the Fröhlich interaction Hamiltonian can be cast into form

Ĥ
LO(Fr)
el−vib =

∑

λ,k,σ,p

GFr
p

(

D̂†
LO,−p + D̂LO,p

)

â†λ,k,σâλ,k−p,σ. (2.66)

Because the potential energy of a particle in an electric field only depends on the charge of the
particle but not, for instance, on its effective mass, the matrix element

GFr
p =

eF

ǫ0

1

|p| (2.67)

is identical for valence- and conduction-band electrons. The Fröhlich interaction can be con-
sidered long-ranged since the coupling strength decreases rapidly for large wave vectors. To
fully determine the interaction strength, the proportionality constant F has to be fixed. This
can be achieved by examining quantitatively how the medium is polarized [78, 83, 84]. Al-
ternatively, we can anticipate the so-called polaron transformation that will be introduced
explicitly in Sec. 4.4.2. There, the lattice distortion induced by an electron moving through
the crystal is incorporated into the electron movement to create a new quasi-particle called
polaron. This is formally accomplished by means of a unitary transformation that eliminates
the electron-phonon interaction Hamiltonian. As a further consequence, the strength of the
electron-electron interaction is modified. The Coulomb matrix elements V̄p after the transfor-
mation follow from the original matrix elements Vp via

V̄p = Vp − 2|GFr
p |2

~Ω
. (2.68)

In view of the momentum dependence of the Fröhlich matrix elements, this modification can
be interpreted as statical screening due to LO phonons. The effective matrix element in
the dielectric medium is related to the vacuum matrix element V vac

q = e2/(ǫ0L
3|q|2) via

V̄p = V vac
p /ǫ(0). In ionic crystals, not only the orbital polarization of the individual atoms but

also the polarization owing to the relative displacement of oppositely charged ions contribute
to the dielectric function ǫ(ω). Because the latter contribution is consistently included in the
polaron picture, we must choose Vp = V vac

p /ǫ̃(0) in the original Hamiltonian where ǫ̃(0) denotes
the static permittivity of a fictitious system without lattice vibrations. At high frequencies,
the ions cannot follow the exciting fields anymore due to their large inertia. The permittivity
in this limit is identical to the phonon-free case. Consequently, ǫ̃(0) = ǫ(∞). By inserting
these relations into Eq. (2.68), we find an explicit form for the Fröhlich matrix element that
agrees with the result from the literature:

|GFr
p |2 =

~ΩV vac
p

2

[

1

ǫ(∞)
− 1

ǫ(0)

]

. (2.69)
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2 Theoretical description of bulk and confined semiconductor systems

Figure 2: Longitudinal optical phonons in ionic crystals generate macroscopic polarization fields (left
picture). Large balls indicate the anions and small balls the cations. The induced polarization in the
unit cell at R is thus parallel to the relative displacement Q(R).
In both polar and non-polar crystals, optical vibrations change bond lengths and bond angles (right
picture). The resulting change of the ionic potential is linear in Q(R) for small displacements.
In both pictures, the equilibrium positions of the atoms are marked by gray balls, and the unit cell at
R by a gray square. (Strictly speaking, the two-dimensional lattice on the right-hand side would have
a smaller unit cell than indicated.)

The coupling strength of the electron-phonon interaction can thus be calculated from easily
measurable macroscopic quantities.

It it obvious from the above discussion that there is no Fröhlich interaction in non-polar
crystals such as covalent elementary semiconductors. Still, LO phonons distort the lattice,
thus changing the electronic energies, which effectively gives rise to electron-phonon interaction.
This mechanism can be modeled through deformation potentials [78, 79, 85, 86]. Contrary to
the acoustic case, optical vibrations do not compress or stretch the unit cell but change the
bond lengths and bond angles, as illustrated in the right frame of Fig. 2. In lowest order, the
corresponding change of the ionic potential is proportional to the relative displacement vector
∆Q̂(r). More explicitly, the optical deformation potential can be written as [85]

∆V̂ λ
ion(r) = dλ

optn · ∆Q̂(r)

a0
(2.70)

with band-dependent proportionality constants dλ
opt where a0 denotes the lattice constant.

The direction of the unit vector n is determined by the symmetry of the crystal. In the
zincblende structure, for instance, n is parallel to the [111] body diagonal of the cubic unit
cell [79, 81, 85]. Relative displacements in this direction do not change the cubic symmetry of
the lattice and are often referred to as internal strain. The optical deformation potentials are
strongly band dependent. In particular, one can show that for symmetry reasons, there is no
deformation-potential interaction between conduction-band electrons and optical phonons in
direct semiconductors [79,87]. For convenience, we further use the generic form (2.70) and set
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2.3 Quantum electrodynamical Hamiltonian

dc
opt = 0. The electron-phonon interaction Hamiltonian can thus be written as

Ĥ
LO(def)
el−vib =

∑

λ,k,σ,p

Gopt.def
λ,p

(

D̂†
LO,−p + D̂LO,p

)

â†λ,k,σâλ,k−p,σ (2.71)

with the matrix element

Gopt.def
λ,p = ±i

√

~

2̺L 3ΩLO

M1 +M2√
M1M2

dλ
opt

a0

n · p
|p| . (2.72)

Since Gopt.def
λ,p is independent of the absolute value of the phonon momentum, the optical

deformation-potential interaction is short-ranged. Contrary to the acoustic case, the opti-
cal deformation-potential constants cannot be measured directly. Depending on the material
system, d0 ≡ dv

opt can be estimated, e.g., from the line shapes of Raman spectra [88], the
temperature dependence of hole mobilities or phonon-assisted exciton-to-exciton transition
rates [89, 90]. Alternatively, the coupling constant can be calculated with the help of the
pseudo-potential method [91]. However, experimental and theoretical values often diverge con-
siderably. As a general rule, d0 is of the order of some 10 eV in most tetrahedrally coordinated
semiconductors.

In ionic crystals, both Fröhlich coupling and optical deformation-potential coupling can
contribute to the interaction between electrons and LO phonons. The total interaction strength
is then determined by the matrix element [92]

GLO
λ,p = GFr

p +Gopt.def
λ,p . (2.73)

Physically relevant quantities like scattering rates or phonon-sideband intensities depend on
the absolute values squared of the matrix elements. Because GFr

p is a real and Gopt.def
λ,p an

imaginary number, no mixed terms appear but

∣

∣GLO
λ,p

∣

∣

2
=
∣

∣GFr
p

∣

∣

2
+
∣

∣Gopt.def
λ,p

∣

∣

2
. (2.74)

The contributions due to the two different coupling mechanisms can thus be evaluated inde-
pendently. One should keep in mind, however, that GFr

p and Gopt.def
λ,p are the long-range and

the short-range limits, respectively, of the same matrix element (2.57). To compensate for the
possible double counting of the interaction, we assume that the optical deformation-potential
constants d0 for polar modes must be somewhat reduced in comparison with the calculated or
measured values for non-polar modes.

In strongly polar media, one usually finds that the Fröhlich interaction clearly dominates
the scattering. As will be discussed in Sec. 4.3.3.1, the situation is more complicated when
phonon-assisted luminescence is considered. In practical computations, the angle dependence
of the optical deformation-potential matrix element is often neglected. Instead of the accurate
form of |Gopt.def

λ,p |2, we will use the angle averaged quantity

|Gopt.def
v |2 =

~

2̺L 3ΩLO

(M1 +M2)
2

2M1M2

|d0|2
a2
0

. (2.75)

2.3 Quantum electrodynamical Hamiltonian

We show in this section how interacting electrons coupled to an electromagnetic field can be
treated fully quantum mechanically. In Sec. 2.3.1, we present the quantum electrodynamical
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2 Theoretical description of bulk and confined semiconductor systems

Hamiltonian in first quantization for the electrons. A detailed derivation of the explicit form
of the Hamiltonian can be found in Ref. [61]. Second quantization in the semiconductor Bloch
basis defined in Sec. 2.1 will then be performed in Sec. 2.3.2.

2.3.1 Quantization of the electromagnetic field

In this work, we will exclusively consider absorption or emission close to the semiconductor
band gap. Processes such as light absorption by core electrons or transverse optical phonons
can be neglected in this spectral region. However, the ions are polarizable due to their internal
degrees of freedom, which results in a background permittivity ǫ > 1. In polar crystals, also
the macroscopic lattice polarizations induced by LO phonons can contribute to the dielectric
constant. It follows from the Poisson equation that ǫ(0) enters the Coulomb matrix elements
whereas ǫ(∞) must be used in connection with transverse electric fields. We will exclusively
consider non-magnetic semiconductors with permeability µ = 1. The coupling of the electron
spins to the magnetic field is neglected in our analysis because for radiation in the optical
domain, this interaction would yield corrections of less than 1 % to the total energy. Includ-
ing only the light field and the electronic degrees of freedom, the quantum electrodynamical
Hamiltonian can be written in the form

ĤQED = Ĥkin + Ĥel−el + Ĥem + Ĥel−em + Ĥdip (2.76)

with the kinetic energy of the electrons

Ĥkin =
∑

i

1

2m0

∣

∣

∣
p̂

(i)
el

∣

∣

∣

2

(2.77)

where m0 denotes the bare electron mass and p̂
(i)
el the momentum of the i-th electron. We use

the Coulomb gauge where the vector potential A(r) is purely transverse, i.e. ∇ · A(r) = 0.

The crucial advantage of this choice lies in the fact that the longitudinal electric field ÊL(r)

can be expressed in terms of the electron positions r̂
(i)
el and that the contribution of ÊL(r) to

the electromagnetic field energy yields the instantaneous Coulomb interaction,

Ĥel−el =
ǫ0ǫ

2

∫

Ê2
L(r) d3r =

e2

4πǫ0ǫ

1

2

∑

i,j
(i6=j)

V
(

r̂
(i)
el − r̂

(j)
el

)

, (2.78)

with the unscreened Coulomb potential V (r) = e2/4πǫ0ǫ(0)|r|. In view of this separation,
material properties like band structures or excitonic eigenenergies can be calculated without
the need to include electromagnetic field variables. The transverse electric field ÊT(r) and

magnetic field B̂(r) = B̂T(r) can be expanded into stationary eigen modes Uκ,q(r) with wave
vector q and polarization κ. These eigen modes solve the Helmholtz equation

[

∇
2 + n2(r)q2

]

Uκ,q(r) = 0 (2.79)

with the background refractive index n(r) =
√

ǫ(r). They can be orthonormalized to fulfill the
orthogonality relation

∫

U∗
κ,q(r) · Uκ′,q′(r)n2(r)d3r = δκ,κ′δq,q′, (2.80)
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2.3 Quantum electrodynamical Hamiltonian

and the completeness relation

∑

κ,q

n(r)Uκ,q,µ(r)U∗
κ,q,µ′(r′)n(r′) = δTµ,µ′(r − r′) (2.81)

with the transverse delta function δTµ,µ′(r) where µ and µ′ label the Cartesian components of
the mode functions. The expansion of the field operators yields

ÊT(r) =
∑

κ,q

Eq

[

iUκ,q(r)B̂κ,q − iU∗
κ,q(r)B̂†

κ,q

]

, (2.82)

B̂(r) =
∑

κ,q

Eq

ωq

∇ ×
[

Uκ,q(r)B̂κ,q + U∗
κ,q(r)B̂†

κ,q

]

(2.83)

with the vacuum field amplitude Eq =
√

~ωq/2ǫ0. The frequencies ωq are defined via the
dispersion relation ωq = c0|q| where c0 is the vacuum speed of light. The quantization scheme
imposes bosonic commutation relations

[B̂κ,q, B̂
†
κ′,q′ ]− = δκ,κ′δq,q′, [B̂κ,q, B̂κ′,q′ ]− = 0 = [B̂†

κ,q, B̂
†
κ′,q′ ]−. (2.84)

on the photon operators B̂κ,q, B̂†
κ,q while the electron operators in first quantization obey

canonical commutation relations
[

r̂
(i)
el,µ, p̂

(i′)
el,µ′

]

−
= i~δi,i′δµ,µ′ ,

[

r̂
(i)
el,µ, r̂

(i′)
el,µ′

]

−
= 0 =

[

p̂
(i)
el,µ, p̂

(i′)
el,µ′

]

−
. (2.85)

In the absence of the carrier system, the energy of the transverse fields is given by

Ĥem =
ǫ0
2

∫

[

n2(r)Ê2
T(r) + c20B̂

2(r)
]

d3r =
∑

κ,q

~ωq

(

B̂†
κ,qB̂κ,q +

1

2

)

. (2.86)

As for the lattice-vibration field, the free-field Hamiltonian corresponds to a set of independent
harmonic oscillators. Here, the quantized eigen modes (κ,q) are called photons and have
energies ~ωq and momenta ~q. The light-matter coupling follows from the dipole Hamiltonian

Ĥel−em = −e
∑

i

r̂
(i)
el · ÊT

(

r̂
(i)
el

)

(2.87)

where e = −|e| < 0 denotes the electron charge. This form of the interaction defines the
so-called r · E picture. Our Hamiltonian is related to the fundamental minimal-substitution
Hamiltonian that defines the so-called p · A picture via a local gauge transformation [93].
For classical electromagnetic fields, the corresponding change of gauge is known as Göppert-
Mayer transformation [94] and was originally applied to atomic systems. This approach can
be generalized to spatially extended semiconductor structures when the light field changes
slowly on the length scale of a unit cell. This assumption characterizes the so-called dipole
approximation and is well justified when optical experiments are considered. Contrary to
the minimal-substitution Hamiltonian, no interaction terms that are quadratic in the field
variables appear in ĤQED. Strictly speaking, the right-hand side of Eq. (2.82) should not

be interpreted as electric field ÊT(r) but as electric displacement field D̂T(r)/ǫ0 after the

Göppert-Mayer transformation such that D̂T instead of ÊT enters the dipole Hamiltonian.
Additionally, ĤQED contains a dipole self-energy Ĥdip which is a two-particle operator like
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2 Theoretical description of bulk and confined semiconductor systems

the Coulomb Hamiltonian Ĥel−el. This self-energy must in principle be included to ensure
consistent operator equations for the electron-photon coupling. On the other hand, Ĥdip only
leads to small shifts of the optical resonances for materials with large background refractive
index n. We will neglect this effect by omitting Ĥdip in the following analysis. When the dipole

self-energy is not included, one actually has to use ÊT instead of D̂T in the dipole Hamiltonian
so as to find the correct semi-classical limit of the operator equations [61]. It has been verified
in Ref. [7] that also quantum-optical phenomena in semiconductors can be described accurately
with the quantum electrodynamical Hamiltonian used in this work.

2.3.2 Second quantization of the electron system

With the results from Secs. 2.2 and 2.3.1, the total system Hamiltonian for interacting electrons,
ions, and light modes takes the form

Ĥ = ĤQED + Ĥ0
el−ion + Ĥvib + Ĥel−vib

= Ĥkin + Ĥ0
el−ion + Ĥel−el + Ĥem + Ĥel−em + Ĥvib + Ĥel−vib (2.88)

where Ĥ0
el−ion =

∑

i V
0
ion

(

r̂
(i)
el

)

is the part of the Hamiltonian (2.40) that contains the lattice-

periodic equilibrium potential. We have derived in Secs. 2.2.2 and 2.2.4, respectively, how Ĥvib

and Ĥel−vib can be expressed in terms of fermionic electron operators and bosonic phonon
operators. The aim of this section is to give the second-quantized forms of the remaining parts
of the total Hamiltonian. The electronic field operator Ψ̂(r) in the semiconductor Bloch basis
is defined in Eq. (2.8) for the bulk case and in Eq. (2.9) for confined systems.

By definition, the Bloch basis diagonalizes the Hamiltonian Ĥel ≡ Ĥkin + Ĥ0
el−ion of non-

interacting Bloch electrons. In second quantization, we thus obtain

Ĥel =
∑

λ,k,σ

ελ,kâ
†
λ,k,σâλ,k,σ (2.89)

for the bulk case. For hetero structures, an additional term Ĥconf describing the confinement
enters the total Hamiltonian, and Ĥel ≡ Ĥkin + Ĥ0

el−ion + Ĥconf becomes

Ĥel =
∑

λ,β,k‖,σ

ελ,β,k‖ â
†
λ,β,k‖,σâλ,β,k‖,σ. (2.90)

Since the Coulomb Hamiltonian Ĥel−el from Eq. (2.78) is a two-particle operator, the second
quantization is performed according to

Ĥel−el =
1

2

∫∫

Ψ̂†(r)Ψ̂†(r′)V (r − r′)Ψ̂(r′)Ψ̂(r) d3r. (2.91)

In the Bloch basis for the bulk case, the Coulomb Hamiltonian can be written as Ref. [1, 66]

Ĥel−el =
1

2

∑

λ,λ′

σ,σ′

∑

k,k′,q

Vqâ
†
λ,k,σâ

†
λ′,k′,σ′ âλ′,k′+q,σâλ,k−q,σ′ (2.92)

with the unscreened Coulomb matrix element

Vq ≡ 1

L 3

∫

V (r)e−iq·r d3r =
e2

ǫ0ǫL 3

1

|q|2 (2.93)
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2.3 Quantum electrodynamical Hamiltonian

The textbook derivation of this result can straightforwardly be generalized to confined systems.
This procedure yields

Ĥel−el =
1

2

∑

λ,λ′

σ,σ′

∑

k‖,k′
‖,q‖

∑

β,β′,β′′,β′′′

Vλ,λ′
β β′

β′′β′′′(q‖)

× â†λ,β,k‖,σâ
†
λ′,β′,k′

‖,σ′ âλ′,β′′,k′
‖+q‖,σâλ,β′′′,k‖−q‖,σ′ (2.94)

with the matrix element

Vλ,λ′
β β′

β′′β′′′(q‖) ≡
1

L 3

∫

V eff
λ,λ′

β β′

β′′β′′′(r‖)e
−iq‖·r‖ ddr‖ (2.95)

where we introduce an effective d-dimensional Coulomb potential

V eff
λ,λ′

β β′

β′′β′′′(r‖ − r′‖) ≡
∫∫

ζ∗λ,β(r⊥)ζ∗λ′,β′(r′⊥)V (r − r′)ζλ′,β′′(r⊥)ζλ′,β′′′(r⊥) d3−dr⊥ d3−dr′⊥. (2.96)

A close inspection of the Coulomb self-energy of the interacting electron-ion system shows that
the formally infinite terms for q = 0 have to be removed from the Hamiltonians (2.92) and
(2.94).

Because the dipole Hamiltonian Ĥel−em is a single-particle operator with respect to the
electronic degrees of freedom, the second quantization starts from

Ĥel−em = −e
∫

Ψ̂†(r)r · ÊT(r)Ψ̂(r) d3r. (2.97)

First, we consider confined systems. In dipole approximation, we can use separation of length
scales as explained in Sec. 2.2.4.1 to obtain

Ĥel−em = − e

L 3

∑

λ,β,k‖
λ′,β′,k′

‖

∑

σ

∑

κ,q

Eq

∑

R

[

iUκ,q(R)B̂κ,q − iU∗
κ,q(R)B̂†

κ,q

]

× ζ∗λ,β(R⊥)ζλ′,β′(R⊥)ei(k′
‖−k‖)R‖

×
∫

u.c.

u∗λ,k‖(ξ)(R + ξ)uλ′,k′
‖
(ξ)ei(k′

‖−k‖)ξ‖ d3ξ

× â†λ,β,k‖,σâλ′,β′,k′
‖,σ (2.98)

When optical experiments are analyzed, only interband transitions where λ 6= λ′ have to be
included. For these contributions, the part of the unit-cell (u.c.) integral that is proportional
to R vanishes due to symmetry reasons. To simplify Eq. (2.98), we assume that the refractive
index n(r) is constant in each part of the hetero structure and only changes in r⊥ direction.
When the in-plane extension of the structure is large compared to the wave length of the light
field, an r‖-dependent plane-wave part can be separated from the mode functions,

Uκ,q(r) =
eiq‖·r‖
√

L d
Ũκ,q(r⊥). (2.99)

The R‖ sum in Eq. (2.98) can thus be evaluated analytically. After some further steps analo-
gously to the derivation of the electron-phonon Hamiltonian in Sec. 2.2.4.1 the dipole Hamil-
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2 Theoretical description of bulk and confined semiconductor systems

tonian can finally be written as

Ĥel−em = −
∑

k‖,β,β′,σ

∑

κ,q

iEq

{

Ũc,v(β, β
′, κ,q) · dc,v(k‖, q‖)â

†
c,β,k‖+q‖,σâv,β′,k‖,σ

+
[

Ũc,v(β
′, β, κ,−q) · dc,v(k‖,−q‖)

]∗
â†v,β,k‖,σâc,β′,k‖−q‖,σ

}

B̂κ,q

+ H.C. (2.100)

with the overlap integral

Ũλ,λ′(β, β′, κ,q) ≡
∫

ζ∗λ,β(r⊥)Ũκ,q(r⊥)ζλ′,β′(r⊥) d3−dr⊥ (2.101)

and the dipole matrix element

dλ,λ′(k‖, q‖) ≡
1

Vuc

∫

u.c.

u∗λ,k‖+q‖(ξ)eξuλ′,k‖(ξ)e−iq‖·ξ‖ d3ξ. (2.102)

In the vicinity of the band edge, the wave-vector dependence of dλ,λ′ can usually be neglected.
The bulk case with constant n demands a special treatment because here, the refractive index
enters the plane-wave part of the mode functions

Uκ,q(r) =
einq·r

n
√

L 3
εκ,q. (2.103)

Hence, the photon momenta must be rescaled to cast the bulk Hamiltonian into a form that
is similar to Eq. (2.100),

Ĥel−em = −
∑

k,σ

∑

κ,q

i
Eq√
L 3

{

εκ,q · dc,v(k,q)â†c,k+q,σâv,k,σ

+
[

εκ,−q · dc,v(k,−q)
]∗
â†v,k,σâc,k−q,σ

}

B̂κ,q + H.C. (2.104)

2.4 Equations-of-motion approach

In the Heisenberg picture, wave functions are stationary while the operators Ô evolve in time.
The operator dynamics follows from the Heisenberg equation of motion

i~
d

dt
Ô = [Ô, Ĥ]−. (2.105)

In second quantization, all relevant operators can be expressed in terms of electron, phonon,
and photon operators. The operator combinations can be classified with respect to the number
of fermion or boson operators they contain. An N -particle operator has the generic form

ÔN = â†iN
· · · â†i1 âi′1

· · · âi′
N
. (2.106)

Both the electron-phonon and the electron-photon interaction Hamiltonian contain operator
combinations of the form (Â†

−q+Âq)â†kâk−q where Aq is either a phonon or a photon operator.
We find that whenever a boson is created or annihilated, an electron changes its state. Boson
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2.4 Equations-of-motion approach

operators thus correspond to pairs of fermion operators. The Heisenberg equations of motion
have the structure

d

dt
ÔN = T [ÔN ] + V [ÔN+1] , (2.107)

where the functional T mainly results from the non-interacting part Ĥel + Ĥvib + Ĥem of the
Hamiltonian while the functional V originates from the interacting part Ĥel−el + Ĥel−vib +
Ĥel−em. Hence, N -particle operators are coupled to (N + 1)-particle operators via V , which
leads to the well-known hierarchy problem of many-body physics [1, 95].

One successful approach to deal with the hierarchy problem is provided by the so-called
cluster expansion [2–7]. Here, one factorizes N -particle expectation values in terms of inde-
pendent single particles (singlets), correlated pairs (doublets), correlated three-particle clusters
(triplets) and so on up to correlated N -particle clusters. The hierarchy problem can then be
treated consistently by truncating the right-hand side of Eq. (2.107) such that one includes all
clusters up to a desired order. In practice, the cluster expansion is performed according to the
recursion scheme

〈Ô2〉 = 〈Ô2〉S + ∆〈Ô2〉, (2.108a)

〈Ô3〉 = 〈Ô3〉S + 〈Ô1〉∆〈Ô2〉 + ∆〈Ô3〉, (2.108b)

...

〈ÔN 〉 = 〈ÔN 〉S + 〈ÔN−2〉S∆〈Ô2〉 + 〈ÔN−4〉S∆〈Ô2〉∆〈Ô2〉 + · · ·
+ 〈ÔN−3〉S∆〈Ô3〉 + 〈ÔN−5〉S∆〈Ô2〉∆〈Ô3〉 + · · · + ∆〈ÔN 〉 (2.108c)

where ∆〈ÔN 〉 denotes the purely correlated part of the N -particle cluster. Each term on the
right-hand sides of Eq. (2.108) represents the fully antisymmetrized (for fermionic operators)
or symmetrized (for bosonic operators) sum over all possibilities to distribute the N creation
and N annihilation operators among the different clusters. As a starting point of the recursion
scheme, the singlet part 〈ÔN 〉S leads to the Hartree-Fock factorization for the carrier operators
while for the photon and phonon operators, it produces the classical factorization for the light
field and the lattice-vibration field, respectively. For instance, the cluster expansion for a
two-particle expectation value explicitly reads

〈â†i2 â
†
i1
âj1 âj2〉 = 〈â†i2 âj2〉〈â

†
i1
âj1〉 − 〈â†i2 âj1〉〈â

†
i1
âj2〉 + ∆〈â†i2 â

†
i1
âj1 âj2〉 (2.109)

while for a three-particle expectation value, we obtain

〈â†i3 â
†
i2
â†i1 âj1 âj2 âj3〉 = 〈â†i3 âj3〉〈â

†
i2
âj2〉〈â

†
i1
âj1〉 − 〈â†i3 âj3〉〈â

†
i2
âj1〉〈â

†
i1
âj2〉

+ 〈â†i3 âj2〉〈â
†
i2
âj1〉〈â

†
i1
âj3〉 − 〈â†i3 âj2〉〈â

†
i2
âj3〉〈â

†
i1
âj1〉

+ 〈â†i3 âj1〉〈â
†
i2
âj3〉〈â

†
i1
âj2〉 − 〈â†i3 âj1〉〈â

†
i2
âj2〉〈â

†
i1
âj3〉

+ 〈â†i3 âj3〉∆〈â†i2 â
†
i1
âj1 âj2〉 − 〈â†i3 âj2〉∆〈â†i2 â

†
i1
âj1 âj3〉

+ 〈â†i3 âj1〉∆〈â†i2 â
†
i1
âj2 âj3〉 − 〈â†i2 âj3〉∆〈â†i3 â

†
i1
âj1 âj2〉

+ 〈â†i2 âj2〉∆〈â†i3 â
†
i1
âj1 âj3〉 − 〈â†i2 âj1〉∆〈â†i3 â

†
i1
âj2 âj3〉

+ 〈â†i1 âj3〉∆〈â†i3 â
†
i2
âj1 âj2〉 − 〈â†i1 âj2〉∆〈â†i3 â

†
i2
âj1 âj3〉

+ 〈â†i1 âj1〉∆〈â†i3 â
†
i2
âj2 âj3〉

+ ∆〈â†i3 â
†
i2
â†i1 âj1 âj2 âj3〉. (2.110)
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2 Theoretical description of bulk and confined semiconductor systems

Within this scheme, â†im
âjn

either corresponds to a pair of fermion operators or to a single

boson operator.4 Carrier-carrier, carrier-phonon, and carrier-photon correlations can thus be
treated consistently on the same level of approximation.

One advantage of the cluster expansion is that the factorization often allows a direct physical
interpretation. For instance, when there is no classical light field, the singlet part of any
expectation value that involves photon operators vanishes. The remaining correlated parts
may thus be interpreted as the quantum-mechanical corrections to the light-matter coupling.
To give just one further example, the exciton operators X̂ν,Q, X̂†

ν,Q defined in Appendix A
do not fulfill bosonic commutation relations due to the fermionic substructure of an exciton.
Consequently, X̂†

ν,QX̂ν,Q does not have the properties of a number operator. However, one

can show that the correlated part ∆〈X̂†
ν,QX̂ν,Q〉 of the expectation value 〈X̂†

ν,QX̂ν,Q〉 may be
interpreted as population of the exciton state (ν,Q) with quantum number ν and center-of-
mass momentum ~Q provided that a dominant amount of excitons have formed in the carrier
system.

4When the expansion scheme is applied to a operator combination ÔN that contains a bosonic operator Âq, we

formally replace that operator by â
†
i âj and omit all terms where â

†
i and âj are distributed among different

factors.
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3 Optics with semiconductor quantum

dots

This chapter is organized as follows. In Sec. 3.1, we define the model system that we use
for our studies and relate it to the properties of realistic semiconductor quantum dots. The
semiconductor Bloch equations (SBE) are presented in Sec. 3.2. We use the exciton basis
for the quantum dot to derive an analytical formula for the linear absorption spectrum. The
incoherent regime is considered in Sec. 3.3. We explore the generic phase space for the excited
states of the dot by means of a phenomenological pumping model. Semiconductor luminescence
equations (SLE) are derived and solved in the stationary limit to calculate steady-state emission
from stable dot states. In Sec. 3.4, the SBE are extended to describe coupling of the carrier
system to a bath of lattice vibrations. The electron-phonon scattering leads to dephasing of
polarization and build-up of excitonic populations after coherent optical pumping of the carrier
system. Finally, we sketch a possible technical application of semiconductor quantum dots in
Sec. 3.5. We propose a device design for the field of Zeno-based optoelectronics that enables
conditional absorption of a signal field at the exciton-to-biexciton transition in a dot.

The majority of the material in Secs. 3.1, 3.2.1–3.2.3, and 3.3 has been published in Ref. [I]
of the author’s publications list.

3.1 Model system

Semiconductor quantum dots can be produced in a number of fundamentally different ways.
Colloidal synthesis yields very small dots with diameters of a few nanometers that are evenly
dispersed in a liquid medium [96]. Individual or periodically arranged dots with lateral ex-
tensions of about 100 nm can be fabricated through lithographic methods [97]. In this work,
we consider so-called self-assembled dots (SAD) that form automatically under suitable con-
ditions during the epitaxial growth of thin films on a substrate [98–100]. When the adsorbate
is deposited from the vapor phase, the resulting film geometry follows from the force balance
of surface tensions and contact angles and thus critically depends on the interaction strength
between the adatoms and the substrate surface [101]. Strong interaction favors the build-up of
atomically smooth epilayers (Frank-van der Merwe growth) while in the opposite case, three-
dimensional adatom clusters form on the substrate surface (Volmer-Weber growth). SAD
emerge from an intermediary process where nanoscale islands nucleate on the wetting layer
(Stranski-Krastanov growth) [102]. For hetero structures, the lattice constants of substrate
and adsorbate do not match such that a misfit strain is induced at the interface. When the
wetting layer has reached a critical thickness, lattice defects and surface undulations can occur
that increase the dislocation and elastic deformation energy, respectively, at the expense of the
strain energy. In the latter case, dislocation-free so called coherent islands are created that
can subsequently be buried under a cap layer to form the quantum dots. The shapes and the
sizes of the SAD depend on both the material parameters and the growth conditions. Usual
dot diameters lie in the range of 10 nm to 50 nm. The Stranski-Krastanov growth often yields
lens-shaped islands that can roughly be described as spherical caps sitting on on a planar wet-
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3 Optics with semiconductor quantum dots

Figure 3: Geometry of a lens-shaped InGaAs/GaAs self-assembled quantum dot. Typical values for
the wetting-layer thickness d, the dot height h, and the dot radius R are taken from Ref. [103].

ting layer. Individual samples are characterized by a fixed aspect ratio h : R of cap height h
and cap radius R and sharp distributions of the dot size with standard deviations below 10%
of the average size. Typical dot densities are of the order of 1010 cm−2.

For the following analysis, we assume that the substrate and the film material are GaAs
and InxGa1−xAs, respectively. A representative dot geometry for an Indium concentration of
x = 0.5 is shown in Fig. 3. The narrow wetting layer with diameter d ≃ 1.6 nm acts as a
quantum well that confines the electrons and holes to the well plane. Due to the increased
layer thickness, the charge carriers are further localized inside the dot. The single-particle
energies of the confined carriers can be calculated within the effective-mass approximation.
The electronic energy spectrum as function of the lens radius is shown in Fig. 4 where for
the numerical evaluation, a conduction-band offset of ∆Vc = 350 meV and an aspect ratio of
h : R = 0.24 as in Fig. 3 have been assumed. One observes that with increasing dot size, one
discrete level after another steps out of the continuum of the wetting-layer states. A closer
inspection reveals that for smaller dots, neighboring discrete energies are equally spaced and
the k-th energy from below is k-fold degenerate. This behavior can accurately be modeled by
a parabolic in-plane confinement with a dissociation threshold where the discrete dot states
merge into the wetting-layer continuum. Since strained InGaAs is characterized by a small
mixing between light holes and heavy holes, the hole spectrum can be modeled analogously.
In the following section, we explicitly define the phenomenological confinement potentials and
corresponding envelope functions.

3.1.1 Single-particle wave functions

We choose the coordinate system such that the wetting-layer plane is defined by z = 0. Thus,
the in-plane and perpendicular components of the position vector r are r‖ = (x, y) and r⊥ =
z, respectively. The dots lie in the half space z > 0. We consider an individual dot that
is symmetric with respect to the z axis. The parabolic in-plane confinement potentials for
electrons and holes can then be written as

V λ
QD(r‖) =

1

2
mλω

2
λ|r‖|2 (λ = e, h), (3.1)

where me and mh denote the effective electron and hole mass, respectively. The interlevel
spacings are given by ~ωλ. For the z-confinement perpendicular to the quantum well, we
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3.1 Model system

Figure 4: Dependence of the electronic energy spectrum of a lens-shaped InGaAs/GaAs self-
assembled quantum dot on the dot radius R. The results are taken from Ref. [104] where the
single-particle energies are calculated through numerical diagonalization for a conduction-band off-
set of 350 meV and an aspect ratio h : R = 0.24 of dot height and dot radius. The labeling of the
energy levels refers to the principal quantum numbers introduced in Sec. 3.1.1.

assume an infinite potential well

VQW(z) =

{

0 for |z| < L
2 ,

∞ for |z| ≥ L
2 .

(3.2)

In envelope-function approximation (see Sec. 2.1), the single-particle wavefunctions take the
form

ψλ,β(r) = ζλ,β(r)uλ,k≃0(r) (3.3)

where uλ,k(r) is the bulk Bloch function with band index λ = e, h and crystal momentum
~k while the subband index β includes all quantum numbers that originate from the confine-
ment. The envelope function ζλ,β(r) follows from the Schrödinger equation for a single particle
exposed to the confinement potential,

[

−~
2∇2

2mλ
+ V λ

QD(r‖) + VQW(z)

]

ζλ,β(r) = Eλ,βζλ,β(r). (3.4)

Separation of variables decomposes ζλ,β(r) = ξ(z)φ(r‖) into eigenfunctions ξ(z) and φ(r‖) of
the z-confinement and the in-plane confinement, respectively, that means

[

− ~
2

2mλ

∂2

∂z2
+ VQW(z)

]

ξ(z) = EQWξ(z), (3.5)

[

− ~
2

2mλ

(

∂2

∂x2
+

∂2

∂y2

)

+ V λ
QD(r‖)

]

φ(r‖) = EQDφ(r‖). (3.6)
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3 Optics with semiconductor quantum dots

Both eigenvalue problems are standard textbook examples. The well confinement is solved by

EQW = EQW
λ,j =

~
2π2j2

2mλL2
, (3.7)

ξ(z) = ξj(z) = Θ

(

L

2
− |z|

)







√

2
L cos π

L (2j + 1)z if j is even,
√

2
L sin π

L2jz if j is odd,
(3.8)

with quantum numbers j = 0, 1, 2, . . . where

Θ(x) =

{

0 for x < 0,

1 for x ≥ 0
(3.9)

denotes the Heaviside step function. For an infinite potential well, the wave functions ξj(z)

do not depend on the band index λ. Since the spacing EQW
λ,j=1 − EQW

λ,j=0 between the first two
eigenenergies is of the order of 100 meV for both bands, the carriers are strongly confined to the
lowest subband j = 0. Equation (3.6) describes a two-dimensional harmonic oscillator. Due to
the azimuthal symmetry of the parabolic confinement potential V λ

QD(r‖), the wave functions

φ(r‖) can be chosen as eigenfunctions of the angular momentum in z direction L̂z = −i~ ∂
∂ϕ .

In polar coordinates (ρ, ϕ), this choice leads to

φ(r‖) = φλ,n,m(ρ, ϕ) = c0e
imϕe−ηρ2

ρ|m|L|m|
l−
(

2ηρ2
)

, (3.10)

where l± ≡ (n ± |m|)/2, c0 ≡
√

l−!/l+! (2η)
1
2 (1+|m|)/

√
π, η ≡ mλωλ/2~, and L

|m|
l− denotes

the generalized Laguerre polynomial [105]. By the choice meωe = mhωh, we obtain identical
wavefunctions for electrons and holes. This characterizes the so-called symmetric case that is
often employed in the literature. The principal quantum number n and the angular-momentum
quantum number m can assume the values n = 0, 1, 2, . . . and m = −n,−n+ 2, . . . , n − 2, n,
respectively. The corresponding eigen energies are

EQD
λ,n,m = ~ωλ(n+ 1). (3.11)

The level scheme of the quantum dot is shown schematically in Fig. 5. For a principal
quantum number n > nmax, the corresponding energy level lies in the wetting-layer continuum.
Analogously to the atomic case, the shells are often labeled as s, p, d, . . . with increasing n.
Maximal principal quantum numbers nmax = 0, 1, 2, . . . characterize an s dot, s-p dot, s-p-d
dot, and so on.

3.1.2 System Hamiltonian

Having defined the single-particle basis for the quantum dot, we can now determine the explicit
form of the system Hamiltonian in second quantization. To simplify the notation, we include
the electron-spin quantum number σ in the subband index β. For the time being, we restrict
the analysis to the carrier-photon system that is described by the quantum-electrodynamical
Hamiltonian

ĤQED = Ĥel + Ĥel−el + Ĥem + Ĥel−em. (3.12)

Electron-phonon interaction will be considered in Sec. 3.4.2. After the preparatory work per-
formed in Sec. 2.3, it merely remains to evaluate the matrix elements.
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3.1 Model system

Figure 5: Energy-level scheme of the s-p-d quantum dot. The principal quantum number and the
angular-momentum quantum number are denoted as n and m, respectively. States with different m
but same n are degenerate. The sketch is not to scale—the gap energy is of the order of 1 eV while
the interlevel spacings ~ωe/h are of the order of 10 meV. The gray shaded areas indicate the continua
of wetting-layer states.

The pure carrier part of the Hamiltonian can be written as

Ĥel =
∑

λ,β

ελ,β â
†
λ,β âλ,β, (3.13)

Ĥel−el =
∑

λ,λ′

∑

β,β′,β′′,β′′′

V β β′

β′′β′′′ â
†
λ,β â

†
λ′,β′ âλ′,β′′ âλ,β′′′ (3.14)

with λ, λ′ = c, v and the single-particle energies εc,β = Eg + EQD
e,β , εv,β = −EQD

h,β . The real-

valued Coulomb matrix elements V β β′

β′′β′′′ are calculated in Appendix C.1.1. For the following
derivations, only the selection rules

V β β′

β′′β′′′ = δm+m′,m′′+m′′′δσ,σ′′′δσ′,σ′′V β β′

β′′β′′′ (3.15)

and the symmetry relations

V β β′

β′′β′′′ = V β′′β′′′

β β′ , V β β′

β′′β′′′ = V β′ β
β′′′β′′ (3.16)

are explicitly needed. We notice that the matrix elements are not band-dependent in the
symmetric case but do depend on the electron spins now that σ is absorbed by the label β.

The Hamiltonian Ĥem of the free radiation field is defined in Eq. (2.86). When evaluating the
matrix element in the dipole Hamiltonian Ĥel−em from Eq. (2.100), we use that the diameters

33



3 Optics with semiconductor quantum dots

of the considered quantum dots are more than one order of magnitude smaller than optical
wave lengths. It is therefore justified to replace the mode function in the overlap integral
(2.101) by its value at the position of the dot r = 0. This approximation leads to

Ĥel−em = −
∑

β,q

iEqUq(0) ·
(

dc,vâ
†
c,βâv,β + d∗

c,vâ
†
v,βâc,β

)

B̂q + H.C. (3.17)

which can be rewritten as Ĥel−em = −P̂ · ÊT(0) where

P̂ =
∑

β

(

d∗
c,vâ

†
v,β âc,β + H.C.

)

(3.18)

denotes the polarization operator of the dot. In the following, the subscript T will be omitted
since E will always denote the transverse light field.

We observe that the system Hamiltonian exclusively contains operator combinations where
the total angular momentum of the involved carriers remains unchanged. Consequently, all
factorization terms in the equation of motion for an “anisotropic”N -particle expectation value,
that is 〈â†λN ,βN

· · · â†λ1,β1
âλ′

1,β′
1
· · · âλ′

N
,β′

N
〉 with m1 + · · · + mN 6= m′

1 + · · · + m′
N , contain at

least one “anisotropic” factor. If all “anisotropic” quantities vanish initially, they thus remain
zero during the evolution of the system. This condition considerably reduces the number of
equations of motion to be solved.

3.2 Singlet properties

Many basic features of the coherent excitation dynamics with a classical light field can already
be described on the singlet level of cluster expansion, i.e. in Hartree-Fock approximation. The
central equations of motion in this regime are the semiconductor Bloch equations (SBE) derived
in Sec. 3.2.1. The eigen solutions of the homogeneous parts of the SBE define the exciton basis
introduced explicitly in Sec. 3.2.2. As shown in Sec. 3.2.3, this basis can be used to solve the
SBE analytically, which yields the Elliott formula for the linear absorption spectrum. The
calculated optical spectra contain only a subset of the excitonic resonances that arise from
the diagonalization procedure. The symmetries and density dependencies of the “bright” and
“dark” excitons are analyzed numerically in Sec. 3.2.4.

3.2.1 Semiconductor Bloch equations

The proper single-particle quantities can be distinguished into interband expectation values

p β
β′ ≡ 〈â†v,β âc,β′〉 (3.19)

and intraband expectation values

fe
β
β′ ≡ 〈â†c,βâc,β′〉, fh

β
β′ ≡ δβ,β′ − 〈â†v,βâv,β′〉. (3.20)

Since the expectation value P = 〈P̂〉 of the polarization operator (3.18) can be written as

P =
∑

β

[

d∗
c,vp

β
β + dc,v

(

p β
β

)∗]
, (3.21)
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3.2 Singlet properties

the diagonal interband quantities p β
β can be interpreted as the microscopic polarizations of the

quantum dot. For convenience, we also call the off-diagonal p β
β′ with β 6= β′ “polarizations”.

Similarly, we always refer to fe
β
β′ and fh

β
β′ as electron and hole densities, respectively, although

only the diagonal expectation values f e
β ≡ fe

β
β and fh

β ≡ fh
β
β are proper occupation numbers.

The coupled equations of motion for polarizations and densities form the semiconductor
Bloch equations (SBE) of the quantum dot:

i~
d

dt
p β

β′ =
∑

β1

(

Ee
β′,β1

p β
β1

+ Eh
β1,βp

β1

β′

)

−
∑

β1,β2

ΩR
β1,β2

(

δβ,β2δβ1,β′ − δβ,β2fe
β1

β′ − δβ1,β′fh
β
β2

)

+Dp
β
β′ , (3.22)

i~
d

dt
fe

β
β′ =

∑

β1

(

Ee
β′,β1

fe
β
β1

− Ee
β1,βfe

β1

β′

)

+
∑

β1

[

(

ΩR
β,β1

)∗
p β1

β′ − ΩR
β′,β1

(

p β1

β

)∗]
+De

β
β′ , (3.23)

i~
d

dt
fh

β
β′ = −

∑

β1

(

Eh
β′,β1

fh
β
β1

− Eh
β1,βfh

β1

β′

)

+
∑

β1

[

(

ΩR
β1,β′

)∗
p β

β1
− ΩR

β1,β

(

p β′

β1

)∗]
+Dh

β
β′ . (3.24)

The first terms on the right-hand sides of these equations always contain the mean-field energies

Ee
β,β′ ≡ δβ,β′εc,β −

∑

β1,β2

V β β1

β′β2
fe

β1

β2
+
∑

β1,β2

V β β1

β2β′ (fe
β1

β2
− fh

β1

β2
), (3.25a)

Eh
β,β′ ≡ −δβ,β′εv,β −

∑

β1,β2

V β β1

β′β2
fh

β1

β2
−
∑

β1β2

V β β1

β2β′ (fe
β1

β2
− fh

β1

β2
). (3.25b)

Formally, E
e(h)
β,β′ also includes terms such as Uβ

β′ ≡∑β1
V β β1

β′β1
which lead to a divergence when

the summation over β1 runs over all states of the system including the extended wetting layer
states. However, the completeness relation of the envelope functions and the explicit form of
V β β1

β′β1
shown in Eq. (C.12) provideUβ

β′ = δβ,β′U where U does not depend on β. These formally
infinite terms can thus be included in the band-gap energy so that they do not appear in Eqs.
(3.25a), (3.25b). The second terms on the right-hand sides of Eqs. (3.22)–(3.24) contain the

classical electric field E = 〈Ê〉 that drives the polarization and thus contributes to the creation
of electron and hole densities. Often, dc,v ·E/~ is referred to as Rabi frequency. The Coulomb
interaction leads to the renormalized Rabi frequencies

ΩR
β,β′ ≡ δβ,β′dc,v ·E +

∑

β1,β2

V β β1

β′β2
p β1

β2
. (3.26)

For a quantum-dot system, these renormalizations are somewhat more complicated than the
corresponding terms for quantum wells [61]. We observe that the proper polarizations p β

β have

a driving term dc,v · E(1 − f e
β − fh

β ) that is always present even for the unexcited dot. On
the contrary, the densities are only driven after the system has been polarized. In optical

35



3 Optics with semiconductor quantum dots

experiments with a semiconductor material, the relevant photons have an energy ~ωq that

is close to the band gap. Consequently, the phase of 〈B̂q〉 roughly rotates like that of a
microscopic polarization. We can thus replace E in the SBE by its co-rotating part

E(+) ≡ i
∑

q

EqUq(0)〈B̂q〉 (3.27)

because the counter-rotating part E(−) =
[

E(+)
]∗

leads to fast rotating source terms that
do not contribute to the build-up of polarizations and densities. This approach is often called
rotating-wave approximation (RWA) in the literature. When we introduce the effective coupling
constant Fq ≡ EqUq(0) ·dc,v and the collective photon operator B̂Σ ≡∑q FqB̂q, we can write

the Rabi frequency in RWA as dc,v · E(+) = i〈B̂Σ〉.
We see from the SBE that the singlet dynamics couples to pure doublet terms indicated

by Dp
β
β′ , De

β
β′ , and Dh

β
β′ . They originate from Coulombic and quantum-optical correlations.

Explicitly, these terms can be written as

Dp
β
β′ = −

∑

β1,β2,β3

[

V β′ β1

β2β3

∑

λ

C
(

vλ
λc

∣

∣

∣

β β1

β2β3

)

− V β β1

β2β3

∑

λ

C
(

vλ
λc

∣

∣

∣

β3β2

β1β′

)

]

+ i
[

∆〈B̂Σâ
†
c,βâc,β′〉 − ∆〈B̂Σâ

†
v,βâv,β′〉

]

, (3.28)

De
β
β′ = −

∑

β1,β2,β3

[

V β′ β1

β2β3

∑

λ

C
(

cλ
λc

∣

∣

∣

β β1

β2β3

)

− V β β1

β2β3

∑

λ

C
(

cλ

λc

∣

∣

∣

β3β2

β1β′

)

]

+ i
[

∆〈B̂†
Σâ

†
v,βâc,β′〉 + ∆〈B̂†

Σâ
†
v,β′ âc,β〉∗

]

, (3.29)

Dh
β
β′ =

∑

β1,β2,β3

[

V β′ β1

β2β3

∑

λ

C
(

λv
vλ

∣

∣

∣

β1β
β3β2

)

− V β β1

β2β3

∑

λ

C
(

λv
vλ

∣

∣

∣

β2β3

β′ β1

)

]

+ i
[

∆〈B̂†
Σâ

†
v,βâc,β′〉 + ∆〈B̂†

Σâ
†
v,β′ âc,β〉∗

]

(3.30)

where we have identified the genuine two-particle correlations

C
(

λ λ′

λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

≡ ∆〈â†λβ â
†
λ′β′ âλ′′′β′′′ âλ′′β′′〉. (3.31)

The Coulomb correlations describe a variety of phenomena such as dephasing, energy renormal-
ization, and scattering contributions that are well known from the quantum-well case [7]. Our
numerical calculations show that the dephasing is much smaller in isolated quantum dots than
in spatially homogeneous systems. The two-particle correlations that include photon operators
provide quantum-optical corrections to the SBE. For example, De and Dh lead to spontaneous
recombination of electron-hole pairs which is observed as reduction of carrier densities. A more
detailed discussion will be given in Sec. 3.3. In RWA, the photon correlation terms can also be
expressed with the help of the collective operator B̂Σ defined above that describes the operator
form of the Rabi frequency.

For further analytical considerations, it will prove useful to rewrite Eq. (3.22) such that the
homogeneous contributions are isolated. This procedure yields

i~
d

dt
p β

β′ =
∑

β1,β2

A(β,β′),(β1,β2)p
β1

β2
− dc,v ·E(+)

(

δβ,β′ − fe
β
β′ − fh

β
β′

)

+Dp
β
β′ (3.32)
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with the matrix

A(β,β′),(β′′,β′′′) ≡ δβ,β′′Ee
β′,β′′′ + δβ′,β′′′Eh

β′′,β

−
∑

β1,β2

V β1β′′

β2β′′′

(

δβ,β2δβ1,β′ − δβ,β2fe
β1

β′ − δβ1,β′fh
β
β2

)

. (3.33)

The homogeneous part of the equation of motion for the polarizations can be diagonalized by
means of the generalized exciton basis introduced in the next section.

3.2.2 Exciton basis

Because electrons and holes are oppositely charged, they can form bound states that are called
excitons. As discussed in Appendix A, the relative motion of electron and hole is described
by excitonic wave functions. These wave functions are solutions of the Wannier equation
that corresponds to the Schrödinger equation for the hydrogen problem where the electron
and proton masses are replaced by the effective electron and hole masses, respectively, and
a dielectric background constant is introduced. As a consequence, excitons have much larger
Bohr radii aB and much smaller binding energies EB than a hydrogen atom. So long as the
lateral extensions of a hetero structure exceed aB, the electron-hole pair states of the confined
system do not deviate much from the bulk case but their center-of-mass movement is restricted.
With the material parameters for strained InGaAs, we find EB = 3.4 meV and aB = 15.4 nm.
The considered quantum-dot confinement is therefore strong in the sense that bulk excitons
cannot exist anymore. Hence, the concept of an exciton must be adjusted to describe electron-
hole pair states in the dot system. We show in this section how the more formal definition
of the excitonic wave functions as eigen solutions of the homogeneous Bloch equations for the
microscopic polarizations (cf. Appendix A) can be adopted for the quantum-dot case.

To avoid cumbersome index book-keeping, we employ a bra-ket notation for double-indexed
quantities such as p β

β′ or φβ,β′ . The column vector with components xβ,β′ is written as “ket”

|||x〉〉〉 = (xβ,β′). Accordingly, the “bra” 〈〈〈x||| = (x∗β,β′)T denotes the row vector with components
x∗β,β′ . Here, we use bold delimiters |||x〉〉〉 instead of |x〉 to prevent confusion with quantum-
mechanical state vectors. A scalar product can be defined as 〈〈〈x|||y〉〉〉 =

∑

β,β′ x∗β,β′yβ,β′ . The

entries of a matrix M =
(

M(β,β′),(β′′,β′′′)

)

are labeled by pairs of double indices. The product of
a matrix M and a column vector |||x〉〉〉 yields a new column vector |||y〉〉〉 = M|||x〉〉〉 with components
yβ,β′ =

∑

β1,β2
M(β,β′),(β1,β2)xβ1,β2 . Consistently, 〈〈〈y||| = 〈〈〈x|||M is a row vector with components

y∗β,β′ =
∑

β1,β2
x∗β1,β2

M(β1,β2),(β,β′).

We notice that in case of vanishing densities fe/h
β
β′ = 0, the matrix A from Eq. (3.33) that

defines the homogeneous part of the SBE is Hermitian and thus has a complete orthogonal
set of eigen vectors with real eigen values Ei. For non-vanishing fe/h

β
β′ , however, A becomes

non-Hermitian such that eigen vectors with different eigenvalues are not necessarily orthogonal
anymore. Then, it is useful to introduce right- and left-handed eigen vectors that obey gen-
eralized orthogonality and completeness relations. More explicitly, the right-handed solutions
|||φi,R〉〉〉 of the excitonic eigenvalue problem for the quantum dot are defined by

A|||φi,R〉〉〉 = Ei|||φi,R〉〉〉. (3.34)

It turns out that A remains diagonalizable and the excitonic eigenvalues Ei remain real-valued
for finite densities. With respect to an arbitrary orthonormal basis {|||ψi〉〉〉 = (ψi

ββ′)}, we define
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3 Optics with semiconductor quantum dots

the matrix1 Φ by Φi,j ≡ 〈〈〈ψi|||φj,R〉〉〉. Since A can be diagonalized, Φ corresponds to a basis
transformation and can be inverted. This allows us to define another basis {|||φi,L〉〉〉} via the
condition 〈〈〈φj,L|||ψi〉〉〉 ≡ (Φ−1)j,i. It can easily be seen that {|||φi,L〉〉〉} and {|||φi,R〉〉〉} are reciprocal,
that means they fulfill the generalized orthogonality and completeness relations

〈〈〈φi,L|||φj,R〉〉〉 = δi,j , (3.35)
∑

j

|||φj,R〉〉〉〈〈〈φj,L||| = I (3.36)

with the unity matrix I. Consequently,

〈〈〈φi,L|||A =
∑

j

〈〈〈φi,L|||A|||φj,R〉〉〉〈〈〈φj,L||| =
∑

j

Ej〈〈〈φi,L|||φj,R〉〉〉〈〈〈φj,L||| = Ei〈〈〈φi,L|||, (3.37)

which shows that the |||φi,L〉〉〉 are nothing else but the left-handed eigen vectors of A. In compo-
nents, Eqs. (3.36), (3.35) take the forms

∑

β,β′

φi,L
β,β′φ

j,R
β,β′ = δi,j , (3.38)

∑

i

φi,R
β,β′

(

φi,L
β′′,β′′′

)∗
= δβ,β′′δβ′,β′′′ . (3.39)

In view of the generalized orthogonality and completeness relations, we can introduce excitonic
creation and annihilation operators

X̂†
i =

∑

ββ′

φi,L
ββ′ â

†
c,β′ âv,β, (3.40a)

X̂i =
∑

ββ′

(

φi,L
ββ′

)∗
â†v,βâc,β′ (3.40b)

The inverse relations read

â†c,β′ âv,β =
∑

i

(

φi,R
ββ′

)∗
X̂†

i , (3.41a)

â†v,βâc,β′ =
∑

i

φi,R
ββ′X̂i. (3.41b)

Equations (3.40), (3.41) enable us to transform back and forth between the exciton basis and
the single-particle (Bloch) basis.

In analogy to higher-dimensional systems (cf. Appendix A), we refer to the two-particle
correlation

∆Ni ≡ ∆〈X̂†
i X̂i〉 (3.42)

as population of the i-th exciton state. Moreover, we call configurations of the carrier system
with finite densities but vanishing excitonic correlations ∆〈X̂†

i X̂j〉 uncorrelated electron-hole
plasma. The physical meaning of such a distinction will be analyzed in the following sections.

1This is not a matrix in the same sense as A—it cannot act on a ket vector |||x〉〉〉, and its rows and columns are
denoted by integer indices i, j instead of double indices (β, β′), (β′′, β′′′).
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3.2 Singlet properties

3.2.3 Elliott formula for the linear absorption spectrum

The semiconductor Bloch equations (3.22)–(3.24) can be solved numerically to describe the
coherent and classical excitation dynamics of the quantum dot. It turns out that the precise
inclusion of the two-particle correlations (3.28)–(3.30) is computationally rather demanding.
The analysis becomes particularly involved when also the scattering from the wetting layer is
fully included [34–37]. To gain some fundamental insight into the excitation dynamics, we first
simplify these contributions by including only their generic properties. The full singlet-doublet
analysis is then performed later in Secs. 3.3 and 3.4.

If we assume that the two-particle correlations Dp, De, and Dh only lead to dephasing

for the polarization when dot states are considered, we may replace Dp
β
β′ in Eq. (3.22) by a

phenomenological dephasing term −iγp β
β′ . If we further assume that the densities are quasi-

stationary, Eqs. (3.23), (3.24) can adiabatically be decoupled from Eq. (3.22). As a result, we
find the frequency-domain version of Eq. (3.32),

(~ω + iγ) p β
β′(ω) =

∑

β1,β2

A(β,β′),(β1,β2)p
β1

β2
(ω) − dc,vE(ω)

(

δβ,β′ − fe
β
β′ − fh

β
β′

)

, (3.43)

with the matrix A as defined in Eq. (3.33). This linear system of equations can be solved

analytically such that p β
β′ is expressed in terms of the exciting light field. This result then

yields the macroscopic polarization of the quantum dot

P(ω) =
∑

β

{

d∗
c,vp

β
β(ω) + dc,v

[

p β
β(−ω)

]∗}
(3.44)

in the frequency domain as material response to an external, transverse electric field E(ω). For
weak probe fields, the relation between P and E is linear and can be written as

P(ω) = χ(ω)E(ω) (3.45)

with the linear susceptibility χ(ω) that is a tensorial quantity in general. We assume for
simplicity that E is parallel to the dipole matrix-element dc,v such that the susceptibility
becomes a scalar function

χ(ω) =
P (ω)

E(ω)
. (3.46)

By using the exciton basis introduced in the previous section, we can diagonalize and invert
Eq. (3.43). This procedure finally leads to the Elliott formula [106]

χ(ω) = |dc,v|2
∑

i

〈〈〈1|||φi,R〉〉〉〈〈〈φi,L|||1 − fe − fh〉〉〉
Ei − ~ω − iγ

(3.47)

where |||1〉〉〉 and |||fe/h〉〉〉 denote the vectors with components δβ,β′ and fe/h
β
β′ , respectively, and

|||1−fe−fh〉〉〉 = |||1〉〉〉−|||fe〉〉〉−|||fh〉〉〉. In components, the scalar products appearing in the nominator
thus read

〈〈〈1|||φi,R〉〉〉 =
∑

β

φi,R
β,β, (3.48)

〈〈〈φi,L|||1 − fe − fh〉〉〉 =
∑

β,β′

(

φi,L
β′β

)∗ (
δβ,β′ − fe

β
β′ − fh

β
β′

)

. (3.49)
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3 Optics with semiconductor quantum dots

Figure 6: Linear absorption spectra for initially unexcited dots with maximum principal quantum
numbers nmax = 1 (a) and nmax = 2 (b).

In Eq. (3.47), we have omitted the non-resonant terms proportional to (Ei + ~ω + iγ)−1 that
have a negligible contribution for positive frequencies ω and a small dephasing constant γ.

Owing to the oscillating macroscopic polarization of the dot, the material systems radiates
classical light. The wave equation for E must thus be solved simultaneously with the SBE
when the material response is to be calculated self-consistently. Such an approach introduces
additional broadening of the optical spectra since the emission leads to decay of the polar-
ization.2 However, for a single dot or a wetting layer with a small dot density, the radiative
broadening can often be neglected. The linear absorption spectrum α(ω) is then proportional
to ωImχ(ω) [7]. The excitonic eigenenergies Ei appearing in the denominator of the Elliott
formula clearly define the spectral positions of the absorption resonances. When the Coulomb
correlations are fully included in the analysis, they provide density-dependent energy renormal-
izations as well as excitation induced dephasing [34,35,37] which also varies with the resonance
index i. All these effects are well known from quasi two-dimensional systems [51, 107].

2This point will be discussed in more detail in Sec. 3.5.
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3.2 Singlet properties

Figure 7: Influence of the electron spin on the optical resonances of the quantum dot. The shaded
areas represent the absorption spectra for spinless carriers. When the spin is included (solid lines), the
spectra are multiplied by 0.5 to compensate for the larger phase space. Frame (a) shows the results
for the unexcited dot, frame (b) for initial densities fe

(0,0,↑) = fh
(0,0,↑) = 0.4 (otherwise zero), and frame

(c) for fe
(0,0,↓) = fh

(0,0,↑) = 0.4 (otherwise zero).

41



3 Optics with semiconductor quantum dots

Elliott absorption spectra for the unexcited dot are shown in Fig. 6. We use material
parameters for InGaAs/GaAs systems and truncate the discrete spectrum of single-particle
states at principal quantum numbers nmax = 1 (a) or nmax = 2 (b). In the absence of Coulomb
interaction, the optical resonances would coincide with the unrenormalized vertical transition
energies Es = Eg, Ep = Eg + ~(ωe + ωh), Ed = Eg + 2~(ωe + ωh), and so on. Contrary to
the quantum-well case, the lowest resonance does not dominate the spectrum. The discussion
of the energy spectra of lens-shaped quantum dots in Sec. 3.1.1 has shown that the interlevel
spacings ~ωe/h and the dissociation threshold nmax cannot be varied independently since all
these quantities depend on the dot size. However, we conclude from a comparison of the
absorption spectra in Fig. 6 that decreasing nmax basically restricts the spectrum to a subset
of the original resonances where the remaining peaks do not change significantly. For the
numerical examples in the remainder of this chapter, we will always assume an s-p dot, i.e.
nmax = 1.

We can also analyze the influence of the electron spin on the optical resonances. In Fig.
7, Elliott spectra for electrons with spin (solid lines) and hypothetical electrons without spin
(shaded areas) are compared. For the unexcited dot (a), inclusion of the spin just enhances
the absorption by a factor of two owing to the larger phase space. The situation is more
complicated when electrons and holes are initially present in the dot. For an elementary
discussion, we neglect that the excitons always mix s- and p-shell densities to a certain degree
as shown in the following section. In frame (b) and frame (c) of Fig. 7, an initial s-shell
density of 0.4 is assumed for both electrons and holes. The conduction-band electron and the
missing valence-band electron have equal spins in the former case. When further electron-hole
pairs are excited in the p shells, they can have either the same or the opposite spin as the
s-shell carriers. Because exchange interaction only occurs between carriers with equal spin,
the degeneracy of the second resonance is lifted when the electron spin is included in the
calculation. This effect cannot be observed for the first resonance since the build-up of further
s-shell density with the same spin as the initial carriers is inhibited by the Pauli exclusion
principle. For frame (c), the carriers are assumed to have opposite spin. Such a dot state
cannot be achieved by optical excitation but may result from carrier capture from the wetting
layer. Here, the absorbed amount of energy is identical if electron-hole pairs with spin up
or spin down are created. Consequently, the degeneracy of the second resonance is not lifted
in this case. Having identified the role of the electron spin, we will restrict the following
analysis to the spin-selective case where only one of the spin species is considered such that
the dot states in each band are uniquely specified by the principal quantum number n and the
angular-momentum quantum number m.

3.2.4 Bright and dark excitons

We have found in the previous section that only two resonances are visible in the optical
spectra of an s-p quantum dot although the corresponding excitonic eigenvalue problem is nine-
dimensional. To shed some light on the underlying symmetries and their physical consequences,
we now have a closer look on the exciton spectrum for nmax = 1. In this case, there are only
six different excitonic eigenenergies Ei out of which three are two-fold degenerate. We label
the exciton states such that for the unexcited dot,

E1 < E2 = E3 < E4 = E5 < E6 < E7 = E8 < E9. (3.50)
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i s, s p+, p+ p−, p− s, p+ s, p− p+, s p−, s p+, p− p−, p+

1 • ◦ ◦
2 ◦ ◦ • •
3 ◦ ◦ • •
4 • • ◦ ◦
5 • • ◦ ◦
6 ◦ • •
7 •
8 •
9 • •

Table 1: Components φ
i,R/L

β,β′ of the excitonic eigen functions |||φi,R/L〉〉〉. Circles indicate the non-
vanishing components where the dominant ones are marked by filled circles.

The explicit analysis shows that all six eigenenergies are continuous functions of the carrier
densities. When f e

p± = fh
p± > 1

2 , the order becomes

E1 < E2 = E3 < E4 = E5 < E9 < E7 = E8 < E6. (3.51)

Here and in the following, we label the individual dot states in each band by s ≡ (n = 0,m = 0)
and p± ≡ (n = 1,m = ±1). As discussed at the end of Sec. 3.1.2, only proper densities

f
e/h
β = fe/h

β
β

have to be considered for the s-p dot.

Table 1 gives an overview over the components of the excitonic eigenfunctions. For the

degenerate exciton states i = 2, 3, 4, 5, 7, 8, the “diagonal” components φ
i,R/L
β,β are zero. Conse-

quently, the factor 〈〈〈1|||φi,R〉〉〉 =
∑

β φ
i,R
β,β that appears in the nominators of both the absorption

formula (3.47) and the luminescence formula (3.72) vanishes for those i such that the corre-
sponding eigen energies do not show up in the optical spectra. The degenerate states thus

represent dark excitons. On the other hand, the “off-diagonal” components φ
i,R/L
β,β′ with β 6= β′

vanish for the non-degenerate exciton states i = 1, 6, 9 where

φ
i,R/L
β,β′ ≡ δβ,β′φ

i,R/L
β . (3.52)

The first and the sixth exciton are the bright excitons that define the optical resonances of the
quantum dot. In the following, we will refer to the first and the second bright exciton as A and

B exciton, respectively. Finally, the ninth exciton is dark since φ
9,R/L
p+ = −φ9,R/L

p− .
The excitonic eigen functions |||φi,R/L〉〉〉 do not depend on the carrier densities for i = 7, 8, 9.

For the remaining quantum numbers, the dominant components are plotted in Fig. 8 as function
of s- and p-shell densities. The analysis is restricted to symmetrical excitations where f e

s =
fh

s ≡ fs and f e
p± = fh

p± ≡ fp± . We define the quantities

̺i
β,β′ ≡

(

φi,L
β,β′
)∗
φi,R

β,β′ (3.53)

that can be interpreted as probability distributions when the dot is unexcited. In the non-
Hermitian case for finite densities, ̺i

β,β′ is not necessarily restricted to the interval [0, 1] any-

more. However, we always find
∑

β,β′ ̺i
β,β′ = 1 due to the generalized orthogonality relation

(3.39). In view of the symmetries

̺1
s,s = ̺6

p+,p+
+ ̺6

p−,p− ≡ ̺bright, (3.54)

̺2/3
p+,s + ̺2/3

p−,s = ̺4/5
s,p+

+ ̺4/5
s,p− ≡ ̺dark, (3.55)
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Figure 8: Density dependence of the excitonic eigen functions. See the text for the definitions of
̺bright and ̺dark.

it is sufficient to scan the functional dependence of ̺bright for the bright and ̺dark for the dark
excitons. We see from Fig. 8 that both quantities remain close to unity and barely change
with the carrier densities. The lines of constant ̺dark are defined by fs + fp± = const, which
implies that ̺dark only depends on the sum of the s-shell density and half the p-shell density.
The fact that ̺bright is not exactly 1 proves that both the A and the B exciton mix s- and
p-shell carriers to a certain degree. However, the mixing is so weak that the A and B exciton
mainly involve electron-hole pairs in the s and in the p shell, respectively.

Figure 9 shows the functional dependence of the the excitonic eigen energies on the carrier
densities. We find that the eigen energies corresponding to dark excitons can roughly be
written as function of fs + fp± such that they redshift whenever the s- or p-shell density
increases. On the contrary, the position of the first (second) optical resonance shifts only
moderately for s-shell (p-shell) pumping while it redshifts for p-shell (s-shell) pumping. This
observation indicates that no higher-order correlations are needed to obtain a spectrally stable
peak position when the dot is excited resonantly with one of the bright excitons. Apparently,
this result does not hold for the off-resonant case where the exciton energies may well be
influenced by higher-order clusters where also wetting-layer states have to be considered. We
will therefore concentrate in Secs. 3.3 and 3.4 on situations where either the A or theB exciton is
predominantly excited. The singlet-doublet analysis can then be expected to provide sufficient
accuracy.

As a general result, pronounced excitonic effects turn out to be present even for high densities
where the Pauli blocking becomes considerably strong. This feature clearly distinguishes the
quantum dot from the quantum-well case [8]. We will therefore investigate in Sec. 3.3 how
electron-hole pairs become correlated or uncorrelated when the density is increased. While
quantum-well excitons eventually become ionized [108], quantum-dot excitons may still show
large correlations even for elevated densities.

3.3 Incoherent regime

In typical experimental situations, the electron-electron and the electron-phonon scattering lead
to dephasing of the polarization such that the quantum dot reaches the so-called incoherent
regime on a picosecond time scale after excitation. In this regime, all singlets, except densities,
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3.3 Incoherent regime

Figure 9: Density dependence of the excitonic eigen energies Ei that are given relative to the band
gap Eg. The bright excitons are marked by “A” and “B”.
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3 Optics with semiconductor quantum dots

remain zero during the evolution of the system. Furthermore, the quantum corrections and
the Coulomb correlations in the equations of motion (3.23), (3.24) for the densities become
dominant once the coherent quantities disappear. Hence, it is crucial to consider the full set
of equations of motion at the singlet-doublet level.

Under incoherent conditions, the equations of motion for the densities reduce to

i~
d

dt
fe

β
β′ =

∑

β1
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β′,β1
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For the excitonic correlations

CX
β β′

β′′β′′′ ≡ C
(
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∣
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∣

β β′
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, (3.58)

we obtain
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Although quite complicated, this equation can be interpreted straightforwardly. The first line
on the right-hand side would be diagonal in the exciton basis, which characterizes CX as an
“excitonic” correlation. The Coulomb sum beginning in the second line constitutes the singlet
source term that has the form of a generalized Boltzmann equation. The last two lines are

responsible for the radiative decay of the excitonic correlations. Finally, Dexc
X

β β′

β′′β′′′ denotes
all terms originating from the fermionic exchange which are explicitly given in Appendix C.2

where also the correlated triplets TX
β β′

β′′β′′′ can be found. The latter are omitted within the pure
singlet-doublet analysis performed in this section. The equations of motion for the electron-
electron and hole-hole correlations

Cee
β β′

β′′β′′′ ≡ C
(

cc

cc

∣

∣

∣

β β′

β′′β′′′

)

, (3.60)
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(

vv

vv

∣

∣

∣

β β′

β′′β′′′

)

(3.61)
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3.3 Incoherent regime

have similar structures. For the explicit forms, see Appendix C.2.
In Sec. 3.3.1, we investigate the stable configurations of the dot system in the incoherent

regime which are defined by the stationary solutions of the above set of equations. Inclusion
of quantum-optical correlations leads to the semiconductor luminescence equations presented
in Sec. 3.3.2. With the help of these equations, we calculate the quantum emission from stable
dot states in Sec. 3.3.3.

3.3.1 Stable quantum-dot states

A quantum dot can be excited in several different ways. One possibility involves pumping
by means of an optically resonant coherent light field. Other methods include non-resonant
optical excitation as well as optical or electronic pumping of the wetting-layer where the last
two cases imply carrier-capture dynamics between wetting-layer and quantum-dot states [36].
For all indirect excitations, one can anticipate a significant Coulomb- and phonon-induced
relaxation. To define the form of the excitation, one must, in principle, describe the dynamics
of all relevant quantities microscopically. We will outline in Sec. 3.4 how this can be performed
for coherent optical excitation in the presence of electron-phonon coupling. Here, we simplify
the discussion by using a phenomenological description of the excitation process. For this
purpose, we assume a generic form for the pumping of singlets and doublets, demanding that a
steady-state configuration is reached after excitation. As additional constraint, the fermionic
levels may only be excited to values between 0 and 1. These conditions define the generic phase
space of possible excitations.

Explicitly, we model the pumping by

Figure 10: Pumping of the s-shell density for different
switch-on times τ .

adding a term

i~
d

dt

∣

∣

∣

∣

pump

Y = Y0ṠY (t) , (3.62)

with Y0 as the pumping amplitude, to
the dynamics of the quantity Y that can
either be a density or a genuine two-
particle correlation. Pumping the exci-
ton and plasma densities separately will
later allow us us to study the influence
of the different population contributions
on the emission characteristics. The
switch-on function SY (t) vanishes in
the beginning and approaches unity for
large t while its derivative approaches
zero. For all examples throughout this
section, we have chosen a common func-
tion SY (t) ≡ 1/(1 + e−t/τ ) for all Y . So long as the the switch-on time τ is not too short,
the final value of Y does not depend on τ . In order to estimate the shortest admissible τ , we

consider the simplest case, where only the s-shell densities f
e/h
s = fe/h

(0,0)
(0,0) are pumped with

amplitude Y0 = 1. The results for three different switch-on times are shown in Fig. 10. Pump-
ing with τ larger than 30 fs leads to a well-defined final density while τ = 10 fs constitutes a too
fast switch-on such that no stable configuration is reached. As a consequence, all expectation
values exhibit periodic oscillations which is most pronounced for an immediate switch on, i.e.,
τ → 0.
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3 Optics with semiconductor quantum dots

Moreover, we observe that for a reasonably slow switch-on, the density terminates a little
below the value of the pumping amplitude, which expresses the fact that during the excitation,
a certain amount of density is transferred to the p-shell. This effect can be traced back to the
Coulomb correlations between the shells and is related to the non-vanishing φ1,R

p,p component
of the first excitonic wave function (see Fig. 8). Since the comparatively slow radiative decay
analyzed below is the only process in our model that changes the number of carriers per band,
the density transfer from s- to p-shell does not change the total density. Because we will
exclusively consider situations where electrons and holes are pumped symmetrically, the total
number of electron-hole pairs Neh will be a well-defined quantity in the following.

Next, we analyze how the reached steady state depends on the pumping amplitude. Here,
we exclusively treat excitation of the s-shell density. To be assured that the switch-on process
is sufficiently slow in all cases, we choose a large switch-on time τ = 270 fs. As a well-defined
way to quantify what kind of excitation is present in the quantum dot, we consider the energy
per particle. The total energy of the carrier system

〈Ĥtot
el 〉 ≡ 〈Ĥel〉 + 〈Ĥel−el〉 (3.63)

decomposes into the singlet contribution
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(3.64)

where for the Coulomb part, we have taken into account the renormalizations discussed in Sec.
3.2.1 directly after Eqs. (3.25a)–(3.25b), and the contribution of the two-particle correlations

∆〈Ĥtot
el 〉 =

1

2

∑

β1,...,β4

V β1β2

β3β4

(

Chh
β1β2

β4β3
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β4β3
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β1β2

β3β4

)

. (3.65)

In frame (a) of Fig. 11, both the total energy (thick solid line) and its singlet contribution
(thin solid line), each normalized with respect to the number Neh of excited electron-hole
pairs, are plotted as function of Neh. For low densities, the energy per particle is close to
the gap which means that the system is in an electron-hole plasma state where electrons and
holes are independent and uncorrelated entities such that the density matrix ρ of the carrier
system approximately has the product form ρ = ρe ⊗ ρh. For elevated densities, however,
the total energy per particle approaches the lowest resonance, i.e., the excitonic eigen energy
E1 (dashed line). Moreover, the absolute value of the doublet contribution to the energy per
particle becomes larger, indicating that the stable electron-hole states become truly correlated.

In the next step, we additionally allow for pumping of the A-exciton population ∆N1 ≡
∆〈X̂†

1X̂1〉. It turns out that stable excitation states are thus reached for an almost arbitrary
pumping amplitude where as a general tendency, the energy per particle decreases with increas-
ing strength of the population pumping. Physically, however, the phenomenological excitation
of the lowest exciton population has to be limited such that the total energy per particle does
not go below the excitonic eigen energy E1 of the unexcited dot because this is the minimal
energy that a single-pair state of the system can assume, see Appendix A. Hence, the shaded
area in Fig. 11 (a) designates the physically allowed stable states. From below, it is limited
by the excitonic eigen energy that defines the population-saturation line of the system, and
the upper limit is given by the plasma line that yields the total energy per particle in the
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3.3 Incoherent regime

Figure 11: (a) Total energy Etot = 〈Ĥtot
el 〉 per electron-hole pair reached by pumping of the s-shell

density as function of the number of pairs Neh (thick solid line). The thin solid line gives the singlet
contribution to the total energy, while the saturation line is defined by the first excitonic resonance.
(b) First-exciton population ∆N1 per electron-hole pair reached for density pumping alone (solid line)
and maximum allowed exciton-population pumping (dashed line).

absence of population pumping. Frame (b) of Fig. 11 shows the amount of generated excitonic
population per particle for both the saturation regime (dashed line) and the plasma regime
(solid line). The shaded area in between indicates the physically allowed phase space for the
exciton pumping. We notice that the population per particle assumes values between 0 to 1
and is largest for dilute densities. We conclude that, depending on the excitation conditions,
a quantum dot in the low-density regime can have a stable many-body configuration ranging
from pure plasma (∆N/Neh ≃ 0) up to fully correlated electron-hole pairs (∆N/Neh ≃ 1).

3.3.2 Semiconductor luminescence equations

Under quasi-stationary conditions, the photoluminescence spectrum follows from the photon
flux [61]

IPL(ωq) ≡ d

dt
〈B̂†

qB̂q〉 . (3.66)

The equations of motion for the photon-number-like expectation values in the incoherent regime
are given by

[

i~
d

dt
+ ~(ωq − ωq′)

]

∆〈B̂†
qB̂q′〉 = i

∑

β

{

F∗
q′Π

β
β(q) + Fq

[

Πβ
β(q′)

]∗}
(3.67)

where we have defined the photon-assisted polarization

Πβ
β′(q) ≡ ∆〈B̂†

qâ
†
v,βâc,β′〉 (3.68)

that contains the correlated part of the process where a photon is emitted via the recombination
of an electron-hole pair. The corresponding dynamics follows from
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(
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+ ~ωq
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with the matrix A as defined in Eq. (3.33). In the following, we will approximate the full

three-particle scattering term T β
β′ (q) by a phenomenological dephasing term −iγΠβ

β′(q). The
last line of Eq. (3.69) contains the source terms, of which the second one gives the contribution
by the stimulated emission which would only be important if the system were positioned inside
a cavity. Hence, we will completely neglect this effect, thus decoupling Eq. (3.69) from Eq.
(3.67). The source term

Sβ
β′ (q) ≡ Fq

∑

β1

(

fh
β
β1
fe

β1

β′ + CX
β1β
β1β′

)

(3.70)

is due to spontaneous emission from either the plasma or correlated electron-hole pairs. Equa-
tions (3.67) and (3.69) constitute the semiconductor luminescence equations (SLE) for the
quantum dot.

3.3.3 Steady-state luminescence

Now that we have the SLE at our disposal, we can calculate the luminescence spectra for
some exemplary stable states out of the allowed phase space determined in Sec. 3.3.1. The
justification to concentrate on stable states of the material system is provided by the fact that
radiative decay of excitation typically takes place on a comparatively large time scale—radiative
lifetimes of less than 1 ns are usually only reached when the spontaneous emission of the dot is
drastically enhanced with help of a microcavity [109] or a photonic-crystal environment [110].
We may thus assume that the quantum-dot carrier system remains stationary sufficiently long
such that steady-state luminescence can be determined. Under these conditions, the carrier
system acts as a constant source for the photoemission, and the recombination correlations,
the densities, and the excitonic correlations are quasi-stationary quantities. In this case, Eq.
(3.69) leads to

(~ωq + iγ)Πβ
β′(q) =

∑

β1,β2

A(β,β′),(β1,β2)Π
β1

β2
(q) + iSβ

β′ (q). (3.71)

This equation has the same structure as the Bloch equation (3.43) for the microscopic polar-

ization p β
β′ in the frequency domain. Hence, we can again diagonalize the problem by means

of the exciton basis from Sec. 3.2.2. This procedure finally leads to

IPL(ωq) =
2 |Fq|2

~
Im
∑

i,j

〈〈〈φi,R|||1〉〉〉〈X̂†
i X̂j〉〈〈〈1|||φj,R〉〉〉

Ej − ~ωq − iγ
(3.72)

with the scalar products 〈〈〈φi,R|||1〉〉〉 as given explicitly in Eq. (3.48). The doublet part ∆〈X̂†
i X̂j〉

of the expectation value 〈X̂†
i X̂j〉 describes excitonic correlations while the singlet part 〈X̂†

i X̂j〉S

50



3.3 Incoherent regime

Figure 12: Recombination rate Γ as function of the number of electron-hole pairs Neh for plasma
(solid line) and population-saturation (dashed line) regime. The bold dots mark the three cases shown
in frame (a) of Fig. 13.

is also present for an uncorrelated electron-hole plasma. We thus find that, similarly to higher-
dimensional semiconductor structures, both sources provide contributions to the spectrum that
cannot be distinguished by a standard photoluminescence experiment [111].

From Eq. (3.67) and Eqs. (3.56), (3.57), it follows that the total number of recombined
electron-hole pairs per unit time,

−dNeh

dt
= − d

dt

∣

∣

∣

∣

Ĥel−em

∑

β

fe/h
β
β
, (3.73)

equals the total number of emitted photons per unit time,

d

dt

∑

q

∆〈B̂†
qB̂q〉 = 2i

d

dt
Re
∑

β

∆〈B̂†
Σp

β
β〉. (3.74)

In frame (b) of Fig. 12, the recombination rate

Γ ≡ − 1

Neh

dNeh

dt
(3.75)

is plotted for both the plasma (solid line) and the population-saturation (dashed line) regime.
While Γ has a high constant value along the saturation line, it decreases linearly along the
plasma line as the density is decreased. This behavior can be understood in view of the den-
sity dependencies of the different source terms contributing to the steady-state luminescence.
Plasma versus exciton luminescence can thus be distinguished via their respective decay dy-
namics. In general, the system can decay along any curve through the shaded area in Fig. 12.
The dynamics then allows one to draw conclusions about the nature of the decaying quasi-
stationary states. Microscopically, this is determined by a number of effects such as relaxation,
carrier capture, phonon coupling, etc. Only for constant Γ, Eq. (3.75) describes an exponential
decay. Our analysis indicates that the radiative decay in a quantum dot does not necessarily
show an exponential behavior.
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3 Optics with semiconductor quantum dots

Figure 13: (a) First luminescence peak in case of weak density pumping (Neh = 0.1) for maxi-
mum ∆N1 pumping (solid line), half-as-strong ∆N1 pumping (dashed line), and no ∆N1 pumping
at all (shaded area). (b) Luminescence spectrum for a high density of Neh = 0.95. For the singlet
approximation, only the fefh source term has been considered.

Representative emission spectra are shown in Fig. 13. Frame (a) displays the luminescence
at the first excitonic resonance when the s-shell density is weakly pumped with the amplitude
0.1. The dashed and solid curves are obtained by additional pumping of the A exciton. We
find that the magnitude of the luminescence increases strongly for higher exciton densities.
However, its spectral shape and position are not affected by the population, i.e., luminescence
is observed at the excitonic resonance regardless of whether the system is in the plasma or in
the population-saturation regime. This behavior can directly be deduced from the explicit form
of the steady-state luminescence formula (3.72) which shows that the emission frequencies are
independent of the population source. For the luminescence spectrum in frame (b), we have
pumped the s-shell density with a high amplitude of 0.95 without any exciton-population
pumping. The solid line gives the result of the full computation. We find that even with a
high excitation, light is still emitted at the excitonic resonance. While the spectral position
of the peak remains almost unchanged compared with the low-density spectra in frame (a),
the height of the peak is enlarged by more than one order of magnitude. The shaded area is
calculated from the steady-state formula (3.72) within a singlet approximation where only the
fefh source term from Eq. (3.70) is considered in the luminescence equation (3.69). Formally,
this corresponds to describing the carrier system by single-particle densities alone, assuming
that this would constitute a stable state of the system. This case has already been studied
in Fig. 10 with the immediate switch-on. From that analysis, we see that such a state can
actually not be stationary, since the densities are strongly oscillating. Nevertheless, it turns
out that the singlet source term alone produces the luminescence at the first resonance rather
accurately. On the other hand, an artifact of negative emission is observed at the second
excitonic resonance which is a consequence of the instability of the corresponding singlet state.
This clearly demonstrates that doublets are necessary to provide a stable state of the system
with a physically meaningful steady-state luminescence spectrum. For the given pumping
conditions, the singlet approximation underestimates the recombination rate Γ from the full
computation by a factor of about 0.74.

A close inspection of the second optical resonance shows that for every s-shell-pumping
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3.3 Incoherent regime

amplitude from 0 to 1, one can find a pumping strength of the A exciton such that the
luminescence at the B-exciton resonance turns negative. Although for all physically allowed
∆N1-pumping amplitudes the absolute height of the negative peak remains several orders
of magnitude smaller than for the artifact from the singlet approximation discussed above,
this would definitely be an unphysical feature of a steady-state luminescence spectrum. To
understand the origin of this, we remember the comment to Fig. 10 that pumping of the s-
shell density always affects the p-shell densities, too. This was traced back to the Coulomb
correlations between the shells. In a similar manner, pumping of the A exciton is always
accompanied by a change of the population of the B-exciton state. The fact that this influence
can lead to negative luminescence is a clear evidence that in certain cases, population of the A
exciton without population of the B exciton constitutes an unphysical situation. However, it
turns out that this can easily be cured by exciting the second bright excitonic state very weakly.
Within the phase space determined in Fig. 11, the ∆N6-pumping amplitude that is required
for the luminescence at the second resonance to become positive is always smaller than 10−3.
This additional constraint upon the physically accessible phase space has practically no effect
on the emission of light at the first excitonic resonance and on the recombination rate. The
fully microscopic study in the following section will reveal which processes give rise to such
a B-exciton pumping when the system is excited optically at the first optical resonance. In
order to prepare for that discussion, we now identify the source terms that can formally lead
to negative luminescence.

The steady-state luminescence formula

IPL(ωq) =
2|Fq|2

~
Im
∑

j

Θdia(j) + Θoff(j)

Ej − ~ωq − iγ
(3.76)

contains contributions

Θdia(j) ≡
∣
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∣

∣

2 〈X̂†
j X̂j〉, (3.77a)

Θoff(j) ≡
∑

i6=j

〈〈〈φi,R|||1〉〉〉〈X̂†
i X̂j〉〈〈〈1|||φj,R〉〉〉 (3.77b)

from diagonal and off-diagonal excitonic correlations, respectively. Obviously, Θdia(j) cannot
be negative. To determine the off-diagonal parts, we transform Eq. (3.59) for the CX into the
exciton basis,

i~
d

dt
∆〈X̂†

i X̂j〉 = (Ej − Ei − iγX)
(

∆〈X̂†
i X̂j〉 + 〈X̂†

i X̂j〉S
)

+Dexc
i,j + ξi,j . (3.78)

Because we consider the luminescence source terms on a time scale that is small compared to
the radiative decay times, we have neglected the quantum-optical correlations from the last
two lines of Eq. (3.59). The triplet-scattering contributions are replaced by a phenomenological
damping term with constant γX > 0. The contributions

Dexc
i,j ≡

∑

β,β′,β′′,β′′′
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β′′,β

(
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)∗
Dexc β β′
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originate from the exchange terms Dexc
X in the CX equations while
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)∗]
(3.80)
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is due to the dynamics of the excitonic eigen functions which are implicitly time-dependent via
the densities appearing in the generalized eigen-value equations (3.34), (3.37). For i 6= j, we
find the steady-state solution

〈X̂†
i X̂j〉 = 〈X̂†

i X̂j〉S + ∆〈X̂†
i X̂j〉 = −

Dxch
i,j

Ej − Ei − iγX
. (3.81)

Without the exchange terms, the off-diagonal contributions would vanish in the stationary limit
such that no negative luminescence could occur. However, the numerical results discussed in
the following section show that Θoff(j) can become negative when the system is pumped at the
other optical resonance j′ 6= j. This observation shows that we must describe the dynamics of
the exchange terms carefully to ensure that our theory always yields non-negative steady-state
luminescence.

3.4 Optical excitation

Having defined the generic phase space of the stable quantum-dot states, we now investigate
resonant optical pumping as a concrete example for the excitation process. In order to describe
the build-up of excitonic correlations consistently, the doublets have to be included. This leads
to the extension of the SBE presented in Sec. 3.4.1. Which parts of the phase space can actually
be reached via optical excitation depends on the dephasing scheme for the coherent quantities.
We must therefore improve the simple phenomenological damping model used so far to find the
microscopically correct symmetries. To this end, we consider the effect of the electron-phonon
coupling in Sec. 3.4.2. It turns out that the interaction with lattice vibrations does not only
yield dephasing of coherent quantities but also thermalization of the carrier system as well as
strictly positive steady-state luminescence.

3.4.1 Dynamics of the two-particle correlations

Except for the phonon-related terms derived in the following section, the dynamics of the sin-
glets is completely described by the equations of motion (3.22)–(3.24). However, in order to
close the SBE, the dynamics of the two-particle correlations must be solved simultaneously.
When coherent excitation with a classical light field is considered, a number of coherent con-
tributions have to be added to the equation of motion (3.59) for the excitonic correlations in
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the incoherent regime. These terms explicitly read
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∣

∣

∣

coh.

=
∑

β1

[

(

ΩR
β,β1

)∗
Chp

β1 β′

β′′β′′′ + ΩR
β1,β′

(

Cep
β′′′β′′

β1 β

)∗

−
(

ΩR
β1,β′′

)∗
Cep

β β′

β1β′′′ − ΩR
β′′′,β1

(

Chp
β1β′′

β′ β

)∗]

+
∑

β1,β2,β3,β4

V β1β3

β4β2

{[(

p β2

β

)∗
δβ1,β′′ − δβ,β2

(

p β′′

β1

)∗] (
Cep

β3β′

β4β′′′ + Chp
β3β′

β4β′′′

)

+
[

p β′

β2
δβ1,β′′′ − δβ′,β2p

β1

β′′′

] (

Cep
β4β′′

β3β + Chp
β4β′′

β3β

)∗}

−
∑

β1,β3,β2,β4

V β1β2

β4β3

[(

p β2

β

)∗
δβ1,β′′′Chp

β3 β′

β′′β4
− δβ,β2p

β1

β′′′

(

Chp
β4β′′

β′ β3

)∗

−
(

p β′′

β1

)∗
δβ′,β2Cep

β β3

β4β′′′ + δβ1,β′′p β′

β2

(

Cep
β′′′β4

β3 β

)∗

+
(

p β2

β

)∗
δβ1,β′′Chp

β3β′

β4β′′′ − δβ,β2

(

p β′′

β1

)∗
Cep

β3β′

β4β′′′

−p β1

β′′′δβ′,β2

(

Chp
β4β′′

β3β

)∗
+ δβ1,β′′′p β′

β2

(

Cep
β4β′′

β3β

)∗]

+
∑

β1,β2,β3,β4

V β1β2

β4β3

[(

p β1

β

)∗
δβ′,β2Chp

β3 β4

β′′β′′′ + δβ,β1p
β′

β2

(

Cep
β′′′β′′

β4 β3

)∗

−
(

p β′′

β1

)∗
δβ2,β′′′Cep

β β′

β3β4
− δβ1,β′′p β2

β′′′

(

Chp
β4β3

β′ β

)∗]

+
∑

β1,β2,β3,β4

V β1β2

β4β3

[(

p β1

β

)∗
p β′

β2

(

fh
β3

β′′δβ4,β′′′ − δβ3,β′′fe
β4

β′′′

)

+
(

p β′

β3

)∗
p β4

β′′′

(

fe
β
β1
δβ′,β2 − δβ,β1fh

β′

β2

)]

+
∑

β1,β2,β3,β4

(

V β1β2

β4β3
− V β1β2

β3β4

) [

p β′

β2

(

p β′′

β3

)∗ (
fe

β4

β′′′δβ,β1 − δβ4,β′′′fe
β
β1

)

+p β4

β′′′

(

p β1

β

)∗ (
fh

β′

β2
δβ3,β′′ − δβ′,β2fh

β3

β′′

)]

. (3.82)

Thus, CX
β β′

β′′β′′′ also couples to the electric field E via the renormalized Rabi frequencies ΩR
β,β′

defined in Eq. (3.26) and to the microscopic polarizations p β
β′ . The two-particle correlations

Cep
β β′

β′′β′′′ ≡ C
(

cv
cc

∣

∣

∣

β β′

β′′β′′′

)

= ∆〈â†c,βâ
†
v,β′ âc,β′′′ âc,β′′〉, (3.83)

Chp
β β′

β′′β′′′ ≡ C
(

vv

vc

∣

∣

∣

β β′

β′′β′′′

)

= ∆〈â†v,β â
†
v,β′ âc,β′′′ âv,β′′〉 (3.84)

are coherent quantities in the sense that their phases rotate with roughly the gap frequency,

similarly to the microscopic polarizations. Both Cep
β β′

β′′β′′′ and Chp
β β′

β′′β′′′ couple to biexcitonic
correlations

CbiX
β β′

β′′β′′′ ≡ C
(

vv

cc

∣

∣

∣

β β′

β′′β′′′

)

= ∆〈â†v,β â
†
v,β′ âc,β′′′ âc,β′′〉 (3.85)

that roughly oscillate with twice the gap frequency. The equations of motions for Cee
β β′

β′′β′′′ ,

Chh
β β′

β′′β′′′ , Cep
β β′

β′′β′′′ , Chp
β β′

β′′β′′′ , and CbiX
β β′

β′′β′′′ can be found in Appendix C.2. Quantum-
optical corrections can usually be neglected on the time scale where the optical excitation
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3 Optics with semiconductor quantum dots

takes place since they describe the comparatively slow radiative decay due to spontaneous
emission. The electric field E can be treated as an external field so long as individual dots or
small dot densities are considered.3 With these approximations, the singlet-doublet dynamics
for polarizations, densities, and the two-particle correlations CX, Cee, Chh, Cep, Chp, and CbiX

form a closed set of equations of motion.

For the following numerical examples, we assume that the light-field is resonant with the A
exciton such that its co-rotating part (3.27) can be written as

E(+)(t) = E0(t)e
−iE1t/~. (3.86)

We consider excitation with a Gaussian pulse of width ∆t = 0.5 ps that arrives at t0 = 2 ps.
The envelope E0(t) of the light pulse then takes the form

E0(t) = Emax exp

(

−1

2

[

t− t0
∆t

]2
)

. (3.87)

Before we calculate the full singlet-doublet dynamics in the next section, we solve the singlet
equations alone to analyze how the total excited density depends on the amplitude Emax of
the light pulse. As shown in Fig. 14, the quantum dot features Rabi flopping [112, 113] when
Emax is increased because the system periodically absorbs light energy and re-emits it through
stimulated emission. Without Coulomb interaction and without polarization dephasing (gray
shaded area), the total density oscillates between 0 and 1, which corresponds to the behavior
of a simple two-level system [114,115]. As is well-known from quantum-well systems [116,117],
the oscillation period decreases and no full population inversion is reached anymore when the
Coulomb interaction is switched on (dashed line). Moreover, the Rabi flopping does not fully
lead the system back to the ground state some if polarization dephasing is included (solid line).

3.4.2 Physical relevance of electron-phonon scattering

The SBE also yield polarization dephasing due to electron-electron scattering via the Coulomb
correlations from Eq. (3.28) that enter Eq. (3.22). However, the excitation-induced dephasing
is very weak in an isolated dot owing to the small number of degrees of freedom of the carrier
system. Efficient dephasing of polarizations and thermalization of densities is found when
scattering with delocalized electrons is included such that energy can be transferred between
the quantum dot and the wetting layer [36]. For low carrier densities in the layer, the electron-
phonon interaction becomes the dominant scattering mechanism. When optical phonons are
considered, Fermi’s golden rule predicts vanishing scattering rates for the case that the phonon
energy does not match the transition energies of the carrier system [118]. By contrast, it
has been shown experimentally [38] that the Fröhlich interaction enables coherent coupling
of localized electrons and LO phonons, which can be described in terms of so-called exciton-
polarons and leads to considerable carrier-phonon scattering at elevated temperatures [40, 41,
119]. Moreover, the interlevel spacing ~ωe = 40.2 meV in the conduction band of the considered
quantum dot is close to the optical phonon energy ~Ω ≃ 37 meV in GaAs. Second-order
processes involving a combination of an optical and an acoustic phonon become important in
that case [120–122]. Since a microscopic theory of these processes would be beyond the scope
of this work, we restrict the analysis to deformation-potential scattering with longitudinal
acoustic phonons. As derived in Sec. 2.2.4.2, the corresponding interaction Hamiltonian can

3The self-consistent calculation of E is outlined in Sec. 3.5.1.
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3.4 Optical excitation

Figure 14: Rabi flopping for the quantum dot. The number Neh of excited electron-hole pairs is
plotted as function of the electric field amplitude for non-interacting carriers without polarization
dephasing (shaded area), interacting carriers without polarization dephasing (dashed line), and a full
solution of the Bloch equations on the singlet level (solid line).

be written as

Ĥel−vib =
∑

λ,β,β′,p

Gλ,β,β′,p

(

D̂†
−p + D̂p

)

â†λ,β âλ,β′ (3.88)

where the p sum only extends over the LA modes. The explicit form of the matrix elements
Gλ,β,β′,p is given in Appendix C.1.2. Neglecting the mixing with LO phonons will generally
produce too long dephasing times. Additionally, the calculated thermalization rates will be
too low since the interaction matrix elements are already very small at phonon momenta for
which the phonon energy ~Ωp = cLA|p| is of the order of the interlevel spacing. Still, our
approach defines a consistent dephasing model with the physically correct symmetries. One
can then study phenomena such as dephasing, thermalization, and phonon-induced build-up
of excitonic population by adjusting the model parameters to experimental data.

We treat the phonon subsystem as a reservoir in thermal equilibrium that is described by
the reduced density operator

ρ̂phon =
∏

p

[

1 − exp

(

− ~Ωp

kBTphon

)]

exp

(

−~ΩpD̂
†
pD̂p

kBTphon

)

(3.89)

where kB denotes the Boltzmann constant and Tphon the lattice temperature. Expectation

values of pure phonon-operator combinations Ô can be calculated from 〈Ô〉 = tr(ρ̂phonÔ). In
particular, we find

〈D̂p〉 = 0 = 〈D̂†
p〉, (3.90a)

∆〈D̂pD̂p′〉 = 0 = ∆〈D̂†
pD̂

†
p′〉, (3.90b)

∆〈D̂†
pD̂p′〉 = δp,p′nphon

p , (3.90c)

∆〈D̂pD̂
†
p′〉 = δp,p′

(

nphon
p + 1

)

(3.90d)

57



3 Optics with semiconductor quantum dots

with the Bose-Einstein distribution for the phonon numbers

nphon
p =

1

e~Ωp/kBTphon − 1
. (3.91)

The electron-phonon interaction produces additional terms in the SBE. For the phonon-related
dynamics of densities and polarizations, we obtain

i~
d

dt
〈â†λ,β âλ′,β′〉

∣

∣

∣

∣

Ĥel−vib

=
∑

β1

(

∆〈Dλ′,β′,β1

Σ â†λ,βâλ′,β1
〉 − ∆〈Dλ,β1,β

Σ â†λ,β1
âλ′,β′〉

)

(3.92)

where we have used Eq. (3.90a) and introduced the collective phonon operator

Dλ,β,β′

Σ =
∑

p

Gλ,β,β′,p
(

D̂†
−p + D̂p

)

. (3.93)

The equations of motion for the carrier-carrier correlations

i~
d

dt
C
(

λ λ′

λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

∣

∣

∣

∣

Ĥel−vib

=

∑

β1

(

〈â†λ,β âλ′′,β1
〉∆〈Dλ′′,β′′,β1

Σ â†λ′,β′ âλ′′′,β′′′〉 − 〈â†λ,β âλ′′′,β1
〉∆〈Dλ′′′,β′′′,β1

Σ â†λ′,β′ âλ′′,β′′〉

+ 〈â†λ′,β′ âλ′′′,β1
〉∆〈Dλ′′′,β′′′,β1

Σ â†λ,βâλ′′,β′′〉 − 〈â†λ′,β′ âλ′′,β1
〉∆〈Dλ′′,β′′,β1

Σ â†λ,β âλ′′′,β′′′〉
+ 〈â†λ′,β1

âλ′′,β′′〉∆〈Dλ′,β1,β′

Σ â†λ,β âλ′′′,β′′′〉 − 〈â†λ,β1
âλ′′,β′′〉∆〈Dλ,β1,β

Σ â†λ′,β′ âλ′′′,β′′′〉

+ 〈â†λ,β1
âλ′′′,β′′′〉∆〈Dλ,β1,β

Σ â†λ′,β′ âλ′′,β′′〉 − 〈â†λ′,β1
âλ′′′,β′′′〉∆〈Dλ′,β1,β′

Σ â†λ,βâλ′′,β′′〉
)

+ Tphon

(

λ λ′

λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

(3.94)

contain both phonon-assisted two-particle correlations ∆〈D̂Σâ
†â〉 and triplet contributions

Tphon

(

λ λ′

λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

≡
∑

β1

(

−∆〈Dλ,β1,β
Σ â†λ,β1

â†λ′,β′ âλ′′′,β′′′ âλ′′,β′′〉

− ∆〈Dλ′,β1,β′

Σ â†λ,β â
†
λ′,β1

âλ′′′,β′′′ âλ′′,β′′〉
+ ∆〈Dλ′′,β′′,β1

Σ â†λ,β â
†
λ′,β′ âλ′′′,β′′′ âλ′′,β1

〉

+ ∆〈Dλ′′′,β′′′,β1

Σ â†λ,β â
†
λ′,β′ âλ′′′,β1

âλ′′,β′′〉
)

(3.95)

The dynamics of ∆〈D̂â†â〉 and ∆〈D̂â†â†ââ〉 is solved in Markov approximation as defined in
Appendix B where we only consider kinetic terms and true source terms in the equations of
motion. For the correlations between phonons and single carriers, we thus get

∆〈D̂pâ
†
λ,β âλ′,β′〉 ≃ nphon

p

∑

β1

G∗
λ,β,β1,p〈â†λ,β1

âλ′,β′〉gη1

(

~Ωp − ελ,β + ελ,β1

)

−
(

nphon
p + 1

)

∑

β1

G∗
λ′,β1,β′,p〈â†λ,β âλ′,β1

〉gη1

(

~Ωp − ελ′,β1 + ελ′,β′
)

+
∑

λ1,β1,β2

G∗
λ1,β2,β1,p

[

〈â†λ,β âλ1,β2
〉〈â†λ1,β1

âλ′,β′〉 + C
(

λ1λ
λ′ λ1

∣

∣

∣

β1β
β′ β2

)]

× gη1

(

~Ωp − ελ1,β2 + ελ1,β1

)

(3.96)
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with gη(E) ≡ 1/(E − iη) where η1 is a phenomenological dephasing constant for ∆〈D̂â†â〉.
The energy denominators fulfill the Dirac identity limη→0 gη(E) = P(1/E) + iπδ(E) where
P denotes the principal value. Instead of considering the full singlet-doublet-triplet equations
for ∆〈D̂â†â†ââ〉, we only expand the occurring four-particle expectation values up to the
singlet-doublet level. With this approach, we concentrate on the scattering processes involving
singlets and two-particle correlations while we neglect the coupling to genuine three-particle
correlations. The Markov approximation then results in

∆〈D̂pâ
†
λ,β â

†
λ′,β′ âλ′′′,β′′′ âλ′′,β′′〉 ≃

nphon
p

∑

β1

G∗
λ,β,β1,pC

(

λ λ′

λ′′λ′′′

∣

∣

∣

β1 β′

β′′β′′′

)

gη2

(

~Ωp − ελ,β + ελ,β1

)

+ nphon
p

∑

β1

G∗
λ′,β′,β1,pC

(

λ λ′

λ′′λ′′′

∣

∣

∣

β β1

β′′β′′′

)

gη2

(

~Ωp − ελ′,β′ + ελ′,β1

)

−
(

nphon
p + 1

)

∑

β1

G∗
λ′′,β1,β′′,pC

(

λ λ′

λ′′λ′′′

∣

∣

∣

β β′

β1β′′′

)

gη2

(

~Ωp − ελ′′,β1 + ελ′′,β′′
)

−
(

nphon
p + 1

)

∑

β1

G∗
λ′′′,β1,β′′′,pC

(

λ λ′

λ′′λ′′′

∣

∣

∣

β β′

β′′β1

)

gη2

(

~Ωp − ελ′′′,β1 + ελ′′′,β′′′
)

+
∑

λ1,β1,β2

G∗
λ1,β2,β1,p

[

〈â†λ,β âλ1,β2
〉C
(

λ1 λ′

λ′′λ′′′

∣

∣

∣

β1 β′

β′′β′′′

)

+ 〈â†λ′,β′ âλ1,β2
〉C
(

λ λ1

λ′′λ′′′

∣

∣

∣

β β1

β′′β′′′

)

+〈â†λ1,β1
âλ′′,β′′〉C

(

λ λ′

λ1λ′′′

∣

∣

∣

β β′

β2β′′′

)

+ 〈â†λ1,β1
âλ′′′,β′′′〉C

(

λ λ′

λ′′λ1

∣

∣

∣

β β′

β′′β2

)]

× gη2

(

~Ωp − ελ1,β2 + ελ1,β1

)

(3.97)

where η2 is a phenomenological dephasing constant for ∆〈D̂â†â†ââ〉.
When inserting the Markov solutions into Eqs. (3.92), (3.94), we can distinguish two physi-

cally different classes of contributions. Class I contains all terms proportional to gη(~Ωp) while
the terms proportional to gη(~Ωp±∆E) with ∆E > 0 define class II. The former contributions
originate from microscopic processes where no energy is transferred between the electrons and
the phonons. Hence, these terms can only describe dephasing of coherent quantities where
the total energy of the interacting electrons is conserved. On the other hand, the terms from
class II can lead to thermalization of the carrier subsystem where the phonon bath acts as a
heat reservoir. We will exclusively consider the dissipative terms that are proportional to the
imaginary part of gη(E) because our numerical results do not change qualitatively when the
real part of gη(E) is also included. In the following, the different phonon-induced phenomena
are discussed in separate subsections.

3.4.2.1 Dephasing and build-up of excitonic population

The class-I terms in the equations of motion for the coherent quantities can be written as

d

dt
p β

β′

∣

∣

∣

∣

I

= −1

~

∑

β1

[

(γc,c − γc,v) p
β
β1

+ (γv,v − γv,c) p
β1

β′

]

, (3.98)

d

dt
Cep

β β′

β′′β′′′

∣

∣

∣

∣

I

= −
∑

β1

[

(γc,v − γc,c)Cep
β1 β′

β′′β′′′ + (γv,v − γv,c)Cep
β β1

β′′β′′′

+ (γc,c − γc,v)Cep
β β′

β1β′′′ + (γc,c − γc,v)Cep
β β′

β′′β1

]

, (3.99)
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d

dt
Chp

β β′

β′′β′′′

∣

∣

∣

∣

I

= −
∑

β1

[

(γv,v − γv,c)Chp
β1 β′

β′′β′′′ + (γv,v − γv,c)Chp
β β1

β′′β′′′

+ (γv,c − γv,v)Chp
β β′

β1β′′′ + (γc,c − γc,v)Chp
β β′

β′′β1

]

, (3.100)

d

dt
CbiX

β β′

β′′β′′′

∣

∣

∣

∣

I

= −2
∑

β1

[

(γv,v − γv,c)CbiX
β1 β′

β′′β′′′ + (γv,v − γv,c)CbiX
β β1

β′′β′′′

+ (γc,c − γc,v)CbiX
β β′

β1β′′′ + (γc,c − γc,v)CbiX
β β′

β′′β1

]

. (3.101)

Because the occurring momentum sums

Γ λ β1β2

λ′β′
1β′

2
≡
∑

p

(

2nphon
p + 1

)

G∗
λ,β1,β2,pGλ′,β′

1,β′
2,p Imgη1

(

~Ωp

)

> 0 (3.102)

change by no more than a few percent when only the subband indices β1, β2, β
′
1, β

′
2 are varied,

we have replaced these quantities by constants γλ,λ′ that only depend on the band indices.
Because the conduction band has a one order of magnitude larger deformation potential than
the valence band, the dominant contributions are provided by γc,c. Hence, the diagonal terms in
Eqs. (3.98)–(3.101) lead to exponential decay of the polarization and the coherent two-particle
correlations. The densities fe, fh and the intraband correlations Cee, Chh are not subject to
dephasing while for the excitonic correlations CX, we find

d

dt
CX

β β′

β′′β′′′

∣

∣

∣

∣

I

=
1

~

∑

β1

{(

p β′′

β

)∗ [
p β′

β1
(γc,c − γc,v) + p β1

β′′′ (γv,v − γv,c)
]

+p β′

β′′′

[(

p β1

β

)∗
(γv,v − γv,c) +

(

p β′′

β1

)∗
(γc,c − γc,v)

]}

. (3.103)

The energy 〈Ĥtot
el 〉 = 〈Ĥel〉 + 〈Ĥel−el〉 of the interacting carrier system can be expressed in

terms of singlets and incoherent correlations. In the general case where the polarization does
not vanish, Eqs. (3.64), (3.65) must be generalized to

〈Ĥtot
el 〉 =

∑

β

(

εeβfe
β
β + εhβfh

β
β

)

+
1

2

∑

β1,...,β4

V β1β2

β3β4

[

fh
β1

β4
fh

β2

β3
− fh

β1

β3
fh

β2

β4
+ fe

β1

β4
fe

β2

β3
− fe

β1

β3
fe

β2

β4
− 2fe

β1

β4
fh

β2

β3

−p β1

β3

(

p β4

β2

)∗ − Cee
β1β2

β3β4
− Chh

β1β2

β3β4
− 2CX

β1β2

β3β4

]

. (3.104)

It is straightforward to prove that the dynamics due to class-I terms conserves 〈Ĥtot
el 〉. We

conclude that Eqs. (3.98), (3.103) describe energy transfer from coherent polarizations to in-
coherent excitonic correlations. The analogous process is well-known from the quantum-well
case [7].

For the s-p dot, the above equations simplify considerably because then, p β
β′ = δβ,β, and

all correlations C
(

λ λ′

λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

either have the form C
(

λ λ′

λ′′λ′′′

∣

∣

∣

ββ′

ββ′

)

(type a) or C
(

λ λ′

λ′′λ′′′

∣

∣

∣

β β′

β′β

)

with β 6= β′(type b), as follows from the discussion at the end of Sec. 3.1.2.4 We then have

4In principle, correlations of the form C
“

λ λ′
λ′′λ′′′

˛

˛

˛

s s
p±p∓

”

(type c) do not have to vanish, either. However, the

explicit solution of the SBE leads to configurations of the carrier system where type-c correlations are several
orders of magnitude smaller than type-a or type-b correlations.
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d

dt
pβ

∣

∣

∣

∣

deph

= −γ
~
pβ , (3.105)

d

dt
CX

ββ′

ββ′

∣

∣

∣

∣

deph

=
2γ

~
pβp

∗
β′ ,

d

dt
CX

β β′

β′β

∣

∣

∣

∣

deph

= 0, (3.106)

d

dt
Cee

β β′

β′′β′′′

∣

∣

∣

∣

deph

= 0,
d

dt
Chh

β β′

β′′β′′′

∣

∣

∣

∣

deph

= 0, (3.107)

d

dt
Cep

β β′

β′′β′′′

∣

∣

∣

∣

deph

= −γ
~
Cep

β β′

β′′β′′′ ,
d

dt
Chp

β β′

β′′β′′′

∣

∣

∣

∣

deph

= −γ
~
Chp

β β′

β′′β′′′ , (3.108)

d

dt
CbiX

β β′

β′′β′′′

∣

∣

∣

∣

deph

= −4γ

~
CbiX

β β′

β′′β′′′ , (3.109)

i.e., the dephasing model can be defined by specifying a single, positive dephasing constant
γ ≡ γc,c + γv,v − γv,c − γc,v. For the reason mentioned in the introduction to this section, the
parameter γ should be fitted to the experiment rather than calculated from the deformation-
potential matrix elements Gλ,β,β′,p.

Type-a and type-b excitonic correlations can be related to the bright and dark excitons,
respectively. In view of the symmetries of the excitonic wave functions as discussed in Sec.
3.2.4, we find that

∆〈X̂†
i X̂i′〉 =

∑

β 6=β′

φi,L
β′β

(

φi,,L
β′β

)∗
CX

β β′

β′β , (3.110)

∆〈X̂†
j X̂j′〉 =

∑

ββ′

φj,L
β

(

φj′,L
β′

)∗
CX

ββ′

ββ′ , (3.111)

∆〈X̂†
i X̂j〉 = 0 (3.112)

if i, i′ ∈ {2, 3, 4, 5, 7, 8} label degenerate and j, j′ ∈ {1, 6, 9} non-degenerate excitonic eigen
energies. It turns out that type-a correlations correspond to non-degenerate and type-b cor-
relations to degenerate excitons. According to Eq. (3.106), degenerate excitons are not build
up via phonon-induced dephasing. The case j = 9 plays a special role as the type-a contribu-
tions to ∆N9 = ∆〈X̂†

9X̂9〉 nearly cancel each other since φ9,L
p+

= −φ9,L
p− . We conclude that the

phonon-induced energy transfer from coherent to incoherent quantities leads to configurations
of the carrier system where the bright exciton states A (j = 1) and B (j = 6) are much stronger
populated than the dark exciton states.

Having derived the dephasing model, we can now analyze numerically how efficiently the
bright excitons are actually build up during the excitation process. We assume optical pumping
where the light field is resonant with the A exciton as in the Rabi-flopping analysis performed
above. Figure 15 shows the final values of the energy per electron-hole pair (a) and the
population ∆N1 of the A exciton (b) as function of the number of electron-hole pairs Neh.
The shaded areas indicate the generic phase space for the stable quantum-dot states as defined
in Sec. 3.3.1. A simple phenomenological dephasing for the coherent singlets and two-particle
correlations where Eq. (3.106) is not implemented (solid lines) produces no significant amount of
excitonic population such that the system remains close to the plasma line of the allowed region
where electrons and holes are basically uncorrelated. On the other hand, the full inclusion of
the microscopically consistent dephasing model (3.105)–(3.109) (dashed lines) leads the system
close to the maximally correlated case that defines the saturation line of the phase space. Here,
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3 Optics with semiconductor quantum dots

Figure 15: (a) Total energy Etot = 〈Ĥtot
el 〉 per electron-hole pair as function of the number of

pairs Neh (thick solid line). The thin solid line gives the singlet contribution to the total energy,
while the saturation line is defined by the first excitonic resonance. (b) First-exciton population ∆N1

per electron-hole pair reached for density pumping alone (solid line) and maximum allowed exciton-
population pumping (dashed line).

the amplitude of the constant γ determines the time scale on which the polarization decays
but does not influence the final configuration of the carrier system after the incoherent regime
has been reached. A closer look at frame (a) shows that for low densities, the energy per
particle can even exceed the gap energy when no excitonic correlations are build up. We
conclude that the actual coherent excitation dynamics yields a slightly higher amount of p-
shell population than the phenomenological pumping studied in Sec. 3.3. As a consequence, the
coherent optical pumping can lead to a slightly higher A-exciton population before the energy
per particle reaches the lowest excitonic eigen energy. Aside from these minor modifications, we
find that resonant optical excitation in the presence of phonon-induced dephasing reproduces
the population-saturation limit of our generic phase-space analysis.

3.4.2.2 Thermalization

Thermalization of the excited carrier system can only be due to the class-II terms that describe
electron-phonon scattering processes where the energy of the involved electron changes. In
order to gain some analytical insight how the thermalization works, we explicitly write down the

phonon-induced dynamics of the proper densities f
e/h
β = fe/h

β
β
. By neglecting the correlated

terms in the Markov solution (3.96), we find

d

dt
fλ

β

∣

∣

∣

∣

Ĥel−vib

= −2π

~

∑

p

∑

β1

∑

±
|Gλ,β,β1,p|2δ(ελ

β − ελ
β1

∓ ~Ωp)

×
[

fλ
β (1 − fλ

β1
)
(

nphon
p +

1 ± 1

2

)

− (1 − fλ
β )fλ

β1

(

nphon
p +

1 ∓ 1

2

)

]

. (3.113)

This result agrees with the Boltzmann limit of the quantum-kinetical collision integral [1,123]

62



3.4 Optical excitation

and can be interpreted straightforwardly. The density f
e/h
β changes whenever an electron is

scattered from another state β1 into β or from β into another state β1 under the emission
or absorption of a phonon. The probability of scattering from a state β into a state β′ is

proportional to f
e/h
β (1 − f

e/h
β′ ), and the probability that a phonon is annihilated or created

is proportional to nphon
p and nphon

p + 1, respectively. In the limit η → 0 where Img(E) ap-

proaches the delta function πδ(E), the collision integral vanishes if f
e/h
β and nphon

p obey Fermi
and Bose distributions, respectively, at a common temperature Tphon. This result is inde-
pendent of the concrete form of the interaction matrix element Gλ,β,β′,p and thus remains
valid when the delocalized wetting-layer states are included in the analysis. We notice that
the acoustic deformation-potential matrix elements Gλ,β,β′,p as calculated in Appendix C.1.2
have almost completely decayed when the phonon energy ~Ωp = cLA|p| comes close to the
interlevel spacings. This observation emphasizes that in general, the scattering with acoustic
phonons does not yield the main contribution to the thermalization. As for the dephasing,
the physically correct time scale for the intraband relaxation must thus be determined by a
theory-experiment comparison. When Coulomb interaction and two-particle correlations are
included, the steady-state densities do not obey the Fermi-Dirac statistics anymore. Relax-
ation of the excitonic populations is described by the three-particle correlations ∆〈D̂†â†â†ââ〉.
The complicated thermalization dynamics of an interacting, highly correlated carrier system
will be solved numerically as part of the switch-on analysis that concludes Sec. 3.4.2.

3.4.2.3 Strictly positive steady-state luminescence

The generic phase-space analysis from Sec. 3.3 has shown that resonant pumping of the A
exciton can produce an artifact of negative steady-state luminescence at the B resonance.
At the end of Sec. 3.3.3, we have related this unphysical possibility to the non-vanishing
exchange terms in the equations of motion for excitonic correlations. The dephasing model
Eqs. (3.106), (3.107) leads to steady-state configurations of the dot where CX

sp±
sp± provides the

dominant contribution to the off-diagonal contributions Θoff(j = 2) defined in Eq. (3.77b).
Dephasing of CX

sp±
sp± can thus be expected to turn the luminescence at the second excitonic

resonance positive. When we neglect the subband dependence of the dephasing constants
Γ λ β1β2

λ′β′
1β′

2
from Eq. (3.102), the class-I contributions to the triplet scattering terms ∆〈D̂†â†â†ââ〉

in the equations of motion for the excitonic correlations cancel each other. However, when the
subband dependence is evaluated accurately, we find that all type-a excitonic correlations with

non-vanishing kinetic terms in their equations of motion, i.e. all CX
ββ′

ββ′ with β 6= β′, are very
weakly damped. With the matrix elements Gλ,β,β′p from Appendix C.1.2, these correlations
would decay on a time scale that is three orders of magnitude larger than for the coherent
quantities. Our numerical calculations indicate that this is sufficient to turn the marginally
negative luminescence at the B resonance positive while barely changing the luminescence
at the A resonance. This result shows that only a fully consistent dephasing scheme ensures
strictly positive steady-state luminescence.
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3 Optics with semiconductor quantum dots

Figure 16: Switch-on analysis for the phonon-related processes in a quantum dot. The shaded areas
indicate the envelope of the exciting light pulse. See the text at the end of Sec. 3.4.2 for a detailed
discussion.
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3.5 Exciton-biexciton pumping

We conclude the discussion with a numerical switch-on analysis that clearly demonstrates the
influence of the different phonon-related phenomena on the excitation level of the quantum-
dot system. Deviating from the previous examples, we now assume optical pumping of the
initially unexcited dot resonantly with the B exciton. Starting from the phonon-free case,
we successively implement (a) the phonon-induced build-up of excitonic population, (b) the
thermalization of densities, (c) the thermalization of excitonic populations, and (d) the damping
of the exchange terms by switching on the corresponding terms in the equations of motion as
identified above. In each row of Fig. 16, black and red curves represent the situation before and
after the switch-on, respectively. The time scales for dephasing and thermalization are chosen
so as to emphasize the considered phenomena. Without electron-phonon coupling, the excited
polarization is only subject to dipole radiation but not to dephasing (except for the very weak
excitation-induced dephasing). As a result, the energy that the light pulse has pumped into
the carrier system is completely emitted again such that the system returns to its ground state.
For the present analysis, we have added the classical radiative decay phenomenologically. The
wave equation for the E field would have to be solved simultaneously with the SBE to calculate
the dipole emission self-consistently.5 When the dephasing model (3.105)–(3.109) is included,
there is an additional decay channel for the polarization such that incoherent quantities do not
decay completely anymore, see frame (a1). The energy transfer from the coherent polarization
leads to a considerable build-up of B-exciton population (a2). Luminescence is observed at
the B resonance (a3). After switching on the collision integral (3.113), the densities (b1)
but not the excitonic populations (b2) thermalize. Some luminescence at the first excitonic
resonance is observed while the emission at the B resonance slightly decreases (b3). With the
class-II contributions to the triplet scattering terms ∆〈D̂â†â†ââ〉 (row (c)), also the excitonic
populations thermalize (c2). This results in a strong luminescence signal at the A resonance
while the emission at the B resonance becomes slightly negative (c3). Finally, the damping
of excitonic correlations with non-vanishing kinetic terms leads to a certain redistribution of
densities (d1) and populations (d2) from the major to the minor resonance. Consequently, the
luminescence at the B resonance becomes positive again (d3).

The full inclusion of the electron-phonon scattering is computationally rather demanding.
As a general tendency, the small number of degrees of freedom in a dot system makes the
cluster-expansion analysis more sensitive to numerical errors and analytical approximations.
For the examples in Fig. 16, we have chosen equal electron and hole masses to achieve better
convergence of the numerical solutions.

3.5 Exciton-biexciton pumping

Conceptually, the exciton can be introduced as a single-pair state with minimum energy. For
two electron-hole pairs, such an approach defines the biexciton that can roughly be interpreted
as an exciton molecule. The energy of a biexciton is reduced with respect to the sum of the
two exciton energies by the biexciton binding energy ∆E . In this section, we present a possible
technical application of that energy mismatch. The aim is to develop a practical material
system where the presence of a control field at a certain wavelength induces strong absorption
of a signal field at another wavelength. Such a system could be used as basic component of a
wide range of all-optical devices that are covered by the term Zeno-based optoelectronics [124].
We propose a design where the signal field is resonant with the exciton-to-biexciton transition
while the control field is resonant with the transition from the ground state to the exciton state
of a semiconductor quantum dot. Provided that the spectral overlap between the two fields is

5A simplified treatment of this coupled system of differential equations will be outlined in Sec. 3.5.1.
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3 Optics with semiconductor quantum dots

small, we expect that the signal field can only be absorbed efficiently if also the control field is
switched on.

To model the properties of our device, we use a slightly different theoretical approach than
in the previous sections. We assume that the dot contains at most two electron-hole pairs.
One can then employ a matrix-diagonalization method [20, 125] to express the quantum-dot
Hamiltonian in terms of projection operators on the ground state, the exciton states, and the
biexciton states. In that basis, the semi-classical optical Bloch equations are closed on the
singlet level. The model system is introduced explicitly in Sec. 3.5.1. We then define a figure
of merit for the operation of the device and calculate how it depends on the system parameters
in Sec. 3.5.2.

3.5.1 Physical realization

We consider an ensemble of identical quantum dots with sheet density nQD on a planar wetting
layer. For simplicity, we restrict the analysis to the lowest exciton and biexciton states. In other
words, each dot is treated as a three-level system with ground state |0〉, exciton state |1〉, and
biexciton state |2〉 that are normalized and pairwise orthogonal. The total Hamiltonian [20,125]
has the form

Ĥ = Ĥ0 + ĤD. (3.114)

The material Hamiltonian reads

Ĥ0 =

2
∑

ν=0

εν |ν〉〈ν| (3.115)

where ε0 = 0 while the exciton and biexciton energies are ε1 = E1 and ε2 = 2E1 − ∆E ,
respectively. Coupling to the classical light field is described by the dipole Hamiltonian ĤD =
−P̂E with the total polarization operator6

P̂ = nQD

(

d1|0〉〈1| + d2|1〉〈2| + H.C.
)

. (3.116)

The classical light field

E(t) = ES(t) + EC(t) + Emat(t) (3.117)

contains the signal field ES(t) ∝ cos(ε2 − ε1)t/~, the control field EC(t) ∝ cos ε1t/~, and the
material response Emat(t). If the analysis is not restricted to low dot densities, Emat has to
be included. For a self-consistent calculation, the equations of motion for the dot system must
be solved simultaneously with the wave equation for the electric field. Under the simplifying
assumption of a constant background refractive index n, one can show [126] that

Emat(t) = −µ0c

2n
Ṗ (t) (3.118)

with the expectation value of the total polarization P (t) = 〈P̂ (t)〉.
To determine the dynamics of the three-level system, we derive the Heisenberg equations of

motion for the single-particle operators

p̂ν,ν′ ≡ |ν〉〈ν′|. (3.119)

6Contrary to Eq. (3.116), the polarization operator (3.18) does not contain the dot density because such a
definition makes no sense for a single dot.
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3.5 Exciton-biexciton pumping

The corresponding expectation values are densities fν ≡ 〈p̂ν,ν〉 for ν = ν′ and microscopic
polarizations pν,ν′ ≡ 〈p̂ν,ν′〉 for ν 6= ν′. The optical Bloch equations take the form

i~
d

dt
f0 = −2i Im

[

d1E
(+)p∗1,0

]

, (3.120)

i~
d

dt
f1 = 2i Im

[

d1E
(+)p∗1,0 − d2E

(+)p∗2,1

]

, (3.121)

i~
d

dt
f2 = 2i Im

[

d2E
(+)p∗2,1

]

, (3.122)

i~
d

dt
p1,0 = −

(

ε1 + iγ1,0

)

p1,0 − d1E
(+)
(

f1 − f0
)

+ d2

[

E(+)
]∗
p2,0, (3.123)

i~
d

dt
p2,1 = −

(

ε2 − ε1 + iγ2,1

)

p2,1 − d2E
(+)
(

f2 − f1
)

− d1

[

E(+)
]∗
p2,0, (3.124)

i~
d

dt
p2,0 = −

(

ε2 + iγ2,0

)

p2,0 − d1E
(+)p2,1 + d2E

(+)p1,0 (3.125)

where we have added phenomenological dephasing terms with positive constants γν,ν′ . In
rotating-wave approximation, only the co-rotating part E(+) of the electric field enters the

equations of motion, see Sec. 3.2.1. More explicitly, E(+) = E
(+)
S +E

(+)
C +E

(+)
mat where E

(+)
S ∝

ei(ε2−ε1)t/~, E
(+)
C ∝ eiε1t/~, and E

(+)
mat ∝ Ṗ (+). The macroscopic polarization P can be expressed

in terms of the microscopic polarizations pν,ν′ via

P (+)(t) = 2nQD

[

d∗1p1,0(t) + d∗2p2,1(t)
]

. (3.126)

As a further simplification, we replace ṗ1,0 by iε1p1,0/~ and ṗ2,1 by and i(ε2 − ε1)p2,1/~ when

evaluating the time derivative Ṗ (+).

3.5.2 Figure of merit

The proposed scheme is tested using a quasi continuous-wave signal that is switched on adi-
abatically and a Gaussian pulsed control with a 1 MHz repetition rate. The spectral width
of the control pulses is four orders of magnitudes smaller than the detuning between control
and signal such that there is practically no spectral overlap between the two pump fields. We
use material parameters that are typical for CdSe-based quantum dots, see Tab. 2. Frame (a)
of Fig. 17 shows the dynamics of the generated biexciton population f2 for a signal intensity
of 4.1µW/µm2 and a cycle-averaged control intensity of 0.038µW/µm2. These values are
within the specifications given in Ref. [124]. The bright and the dark shaded areas represent
the envelopes of signal and control, respectively. We find that the signal field alone does not
lead to an appreciable excitation level (dashed line). Signal and control together produce large
biexciton population (solid line).

As a figure of merit for the device, we suggest to use the signal contrast, i.e. the ratio of the
material absorption at the exciton-to-biexciton transition with and without control pulse. We
show in the following how this quantity can be calculated from the numerical solution of the
equations of motion. In the wetting-layer plane, the reflected and transmitted fields are given
by

ER(t) = Emat(t), (3.127)

ET(t) = ES(t) + EC(t) + Emat(t), (3.128)
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Quantity Symbol Value Source

Dipole moments d1 5.6 Åe [127]
d2 5.6 Åe [127]

Dephasing constants γ1,0 1.0 meV [128]
γ2,1 1.0 meV [128]
γ2,0 2.0 meV [128]

Exciton energy E1 2.3 eV [129]
Biexciton binding energy ∆E 20.0 meV [129]
Dot density nQD 1012 cm−2

Table 2: Material parameters for CdSe-based quantum dots

Figure 17: Operation of the Zeno device. Frame (a) shows the dynamics of the biexciton population
f2 with (solid line) and without (dashed line) control pulse. The signal contrast C(t) is plotted in
frame (b) (solid line). The bright and dark shaded areas indicate the envelopes of signal and control,
respectively.
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3.5 Exciton-biexciton pumping

Figure 18: Dependence of the maximal signal contrast of the Zeno device on (a) the dephasing
constant for the exciton-biexciton transition, (b) the dot density, and (c) the control-pulse intensity.
The solid lines represent the results from the full numerical calculation. For the shaded areas, we have
used the heuristic formula (3.139) with a constant correction factor.

respectively. We use the incomplete Fourier transform

F (ω, t) ≡
∫ t

−∞
F (t′)e−iωt′ dt′ (3.129)

to define time-dependent reflection, transmission, and absorption coefficients

R(ω, t) ≡ ER(ω, t)

E0(ω, t)
, (3.130)

T (ω, t) ≡ ET(ω, t)

E0(ω, t)
, (3.131)

α(ω, t) ≡ 1 − |R(ω, t)|2 − |T (ω, t)|2, (3.132)

respectively. In order to quantify the absorption at the exciton-biexciton transition, we intro-
duce α̃(t) ≡ α(ω = ωS, t) where ωS ≡ (E2 − E1)/~ denotes the central frequency of the signal
pulse. We can now define the signal contrast as

C(t) ≡ α̃on(t)

α̃off(t)
(3.133)

where α̃on(t) and α̃off(t) are the absorption coefficients in the presence and in the absence of
the control pulse, respectively. For the parameters given above, the dynamics of C(t) is shown
in the right frame of Fig. 17. The signal contrast reaches a maximum value Cmax of roughly 50.
We can use Cmax to characterize the operation of the device by a single figure of merit. Fig. 18
shows how the maximum signal contrast depends on the system parameters (solid lines). For
each frame, one of the parameters is swept while the others are kept constant as given in Tab.
2. Based on these results, we propose the following device design: The dephasing constant for
the exciton-to-biexciton transition should be smaller than 1 meV (a). The dot density should
be below 1012 cm−2 (b). The control-field intensity should exceed 0.02µW/µm2 (c). Moreover,
we find that the device should work equally well for a large range of control-pulse durations.

We conclude the analysis by deriving a simple analytical result that relates the signal contrast
to the population inversion at the exciton-to-biexciton transition. We start by observing that
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|p2,0| ≪ |p1,0|, |p2,1| during the optical excitation. When p2,0 is neglected completely, the
optical Bloch equations for p1,0 and p2,1 can easily be solved analytically in the frequency
domain under the assumption that the densities are stationary. Analogously to Sec. 3.2.1, this
procedure finally yields the linear susceptibility of the dot ensemble

χ(ω) ≡ P (ω)

ǫ0E(ω)
=
nQD

ǫ0

[

(f0 − f1)|d1|2
E1 − ~ω − iγ1,0

+
(f1 − f2)|d2|2

E2 − E1 − ~ω − iγ2,1

]

. (3.134)

As mentioned in Sec. 3.2.3, α(ω) ∝ ωImχ(ω) when the radiative polarization dephasing can be
neglected. In the present analysis, however, the material response and thus the dipole radiation
are evaluated self-consistently. The absorption spectrum can then be calculated from [7]

α(ω) =
2Imξ(ω)

1 + |ξ(ω)|2 + 2Imξ(ω)
(3.135)

where ξ(ω) ≡ ωχ(ω)/2nc. Before the control pulse arrives, we have f0 ≃ 1 and f1 ≃ 0 ≃ f2
such that the absorption at the signal frequency is given by

αoff(ωS) ≃ 2γ1,0Γrad

(E1 − ~ωS)2 + (γ1,0 + Γrad)2
(3.136)

with the radiative coupling constant

Γrad ≡ 1

2

|d1|2
ǫ0

ωS

nc
nQD. (3.137)

In the presence of the control, the phase-space filling factor f1 − f2 becomes considerable.
Here, we can neglect the first term in Eq. (3.134) because the biexcitonic binding energy
∆E = E1 − ~ωS exceeds the dephasing constants γ1,0, γ2,1 by one order of magnitude. Thus,
the absorption at ω = ωS becomes

αon(ωS) ≃
2γ2,1Γrad

∣

∣

∣

d2

d1

∣

∣

∣

2

(f1 − f2)
[

γ2,1 + Γrad

∣

∣

∣

d2

d1

∣

∣

∣

2

(f1 − f2)
]2 . (3.138)

Combining these two results, we obtain

C̃ ≡ αon(ωS)

αoff(ωS)
≃ ∆E2 + (γ1,0 + Γrad)2

(γ1,0 +QΓrad)
2 Q (3.139)

with

Q ≡ γ1,0

γ2,1

∣

∣

∣

∣

d2

d1

∣

∣

∣

∣

2

(f1 − f2) (3.140)

where f1 and f2 are the exciton and biexciton population, respectively, after the control pulse
has been absorbed.

This simplified analysis treats the densities after the arrival of the control pulse as stationary
quantities, which is not confirmed by the full numerical solution. It turns out, however, that
we can compensate for this fact by introducing a correction factor η between the actual figure
of merit Cmax and the heuristic signal contrast C̃ such that Cmax = ηC̃. As demonstrated
by the shaded areas in Fig. 18, we achieve quantitative agreement with the numerical results
throughout the entire parameter space for the choice η = 0.66 if we take f1 and f2 at the time
when C(t) reaches Cmax.
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4 Phonon sidebands in the luminescence

spectrum

This chapter is organized as follows. In Sec. 4.1, we qualitatively discuss the microscopic
processes that lead to phonon-assisted photoemission. The existing theory is briefly reviewed
in Sec. 4.2. We present our cluster-expansion analysis of the first replicum in Sec. 4.3. Finally,
higher-order sidebands are considered in Sec. 4.4.

The majority of the material in Secs. 4.3.3.3, 4.4.2, 4.4.3.2, and 4.4.3.3 has been published
in Refs. [II] and [III] of the author’s publications list.

4.1 Generic features of sideband emission

Phonon-assisted luminescence is based on microscopic processes where electron-hole pairs re-
combine under the emission of a photon and the simultaneous emission or absorption of a
number of phonons. The participation of long-wavelength optical phonons that have constant
dispersion gives rise to a series of additional resonances in the luminescence spectrum that are
detuned from the excitonic resonance by an integer multiple of the optical phonon energy ~Ω.
When the electron-phonon interaction is sufficiently strong, these resonances can be observed
as replica of the exciton peak that are commonly referred to as phonon sidebands while the ex-
citon peak is called zero-phonon line in this context. More explicitly, it follows from the energy
conservation that recombination processes involving the creation of n and the annihilation ofm
optical phonons contribute to the replicum at detuning ∆ω = (m− n)Ω from the zero-phonon
line. In the minimal-order processes that yield the main contribution to the n-th sideband
on the low-(high-)energy side of the exciton peak, exactly n phonons are emitted (absorbed).
Because ~Ω is usually large on the scale of thermal energies, only few optical phonons will be
present even at higher temperatures. Hence, pronounced phonon sidebands can only be found
on the low-frequency side of the zero-phonon line in most luminescence experiments. This sit-
uation is illustrated in Fig. 19 where a blue and a gray ball represent an electron-hole pair and
yellow and magenta lines indicate photon and phonon energies, respectively. The acronyms
ZPL for the zero-phonon line and PSBn for the n-th phonon sideband are commonly used in the
literature. Typically, the intensity decreases rapidly with increasing sideband index n although
a non-monotonous behavior might occur for very strong electron-phonon coupling as consid-
ered, e.g., in Sec. 4.4.3.3. The zero-phonon line mainly involves processes without phonons
such that the photons receive directly the center-of-mass momenta of the electron-hole pairs.
When a photon has energy ~ωq, the absolute value of its wave vector q is also fixed via the
dispersion relation ωq = c0|q|. For photon energies of the order of the band gap, |q| is very
small. Consequently, only electron-hole pairs with nearly vanishing center-of-mass momenta
contribute to the zero-phonon line. On the other hand, the phonons may carry arbitrary mo-
menta. The center-of-mass energy of the electron-hole pairs can thus vary considerably when
they contribute to the sideband luminescence. This can be observed as asymmetric broadening
of sideband peaks for elevated temperatures, as indicated by the yellow shaded peaks in Fig. 19.
We will discuss in the following sections how these generic features of sideband luminescence
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4 Phonon sidebands in the luminescence spectrum

Figure 19: Schematic picture of LO-phonon assisted luminescence. The zero-phonon line (ZPL) is
located at the excitonic resonance E1s. Participation of n LO phonons with energy ~Ω each leads to
emission at photon energy ~ω = E1s − n~Ω when an electron-hole pair with vanishing center-of-mass
momentum ~Q recombines. In case Q 6= 0, the recombination process contributes to the high-energy
tail of the n-th phonon sideband (PSBn).

emerge from the microscopic description of LO-phonon assisted luminescence.

4.2 Perturbational approach to the phonon-sideband problem

There exists a well-established perturbational treatment of the phonon-sideband problem that
was already developed in the 1970s [49] and is widely used in the literature till the present
day. This theory describes the excited states of the carrier system purely in terms of excitons.1

Emission processes contributing to the n-th sideband are viewed as series of n consecutive
exciton-phonon scattering processes followed by recombination from inside the radiative cone.
With this approach, the n-th term of the perturbation series yields the n-th replicum.

When we translate the results from Ref. [49] into our notation, the luminescence intensity
of the n-th sideband of the excitonic resonance ν takes the form

I
(n)
PL,ν(ω) ∝

∑

Q

W (n)
ν (Q)∆Nν(Q)δ

(

Eν(Q) − n~Ω − ~ω
)

. (4.1)

Here, Eν(Q) and ∆Nν(Q) denote the energy and the population, respectively, of the exci-

ton state (ν,Q) with quantum number ν and center-of-mass momentum ~Q while W
(n)
ν (Q)

stands for the probability that such an exciton recombines radiatively under the assistance
of n phonons. More explicitly, the perturbational approach assumes that the exciton (ν,Q)
is phonon-scattered through a series of intermediate states (ν1,Q1), . . . , (νn−1,Qn−1) until it

1We will introduce the corresponding Hamiltonian later in Sec. 4.4.1.
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4.3 First phonon sideband

reaches a state (νn,Qn ≃ 0) within the radiative cone from which it recombines. The proba-

bility W
(n)
ν (Q) thus follows from the scattering cross-section

W (n)
ν (Q) =

∑

Q1,...,Qn−1

|A(n)
ν (Q1, . . . ,Qn−1;Q)|2 (4.2)

where

A(n)
ν (Q1, . . . ,Qn−1;Q) =

∑

ν1,...,νn−1,νn

fνn

Gν,ν1

Q−Q1

Eν(Q) − ~Ω − Eν1(Q1)

× · · · ×
G

νn−2,νn−1

Qn−2−Qn−1

Eν(Q) − (n− 1)~Ω − Eνn−1(Qn−1)

G
νn−1,νn

Qn−1

Eν(Q) − n~Ω − Eνn
(0)

. (4.3)

In this formula, |fν |2 denotes the oscillator strength for the radiative annihilation of exciton
(ν,Q ≃ 0), that is |fν |2 = |Fφν(r = 0)|2 with the excitonic wave function φν(r) and the light-

matter interaction matrix element F defined below. The scattering matrix elements Gν,ν′

Q

determine the strength of the electron-phonon coupling. They are related to the electron-
phonon coupling parameters Gc,Q, Gv,Q via [130]

Gν,ν′

Q =
1

L 3

∫

φ∗ν(r)φν′ (r)
(

Gc,Qe−iQh·r −Gv,QeiQe·r) d3r (4.4)

where Qe/h ≡ me/hQ/M with the exciton mass M ≡ me + mh.2 Usually, only the Fröhlich
part of Gλ,Q is taken into account. In typical photoluminescence experiments, only the replica
of the lowest excitonic resonance ν = 1s can be detected. Due to the high oscillator strength
|f1s|2, the excitons (1s,Q) mainly recombine through the final exciton state (1s,0) such that
the νn sum in Eq. (4.3) can often be restricted to νn = 1s.

In this work, we will reconsider and generalize the existing theory in several aspects, as
already mentioned in the introductory chapter. In particular, we will analyze whether also
uncorrelated electron-hole plasma can participate in LO-phonon-assisted luminescence, we will
have a closer look at the carrier-phonon interaction, and we will discuss a practical way to
evaluate arbitrary-order phonon sidebands.

4.3 First phonon sideband

Interacting electrons, photons, and phonons in a semiconductor material can be treated fully
quantum mechanically with the general system Hamiltonian

Ĥ = Ĥel + Ĥvib + Ĥem + Ĥel−el + Ĥel−vib + Ĥel−em (4.5)

as derived in Secs. 2.2 and 2.3. For notational convenience, we first restrict the analysis to
the bulk case. The corresponding results for confined systems will then be given in Appendix
F.4. The contributions Ĥel, Ĥvib, and Ĥem from free Bloch electrons, phonons, and photons
are defined in Eqs. (2.89), (2.32), and (2.86), respectively. Coulomb interaction, electron-
phonon interaction and light-matter coupling follow from the Hamiltonians Ĥel−el, Ĥel−vib,
and Ĥel−em, respectively, as defined in Eqs. (2.92), (2.66)+(2.71), and (2.104). We exclusively

2These matrix elements will be explicitly evaluated in Sec. 4.4.1.2 and Appendix E.3.
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4 Phonon sidebands in the luminescence spectrum

consider optical phonons since acoustic modes can lead to broadening of the exciton peak
but do not create well-defined phonon replica. It will prove useful to introduce dimensionless
matrix elements gλ,p ≡ Gλ,p/~Ω. The interaction Hamiltonian then takes the form

Ĥel−phon =
∑

λ,k,p

~Ωgλ,pâ
†
λ,k−p

âλ,k

(

D̂−p + D̂†
p

)

(4.6)

where the p sum extends over all LO modes and gλ,p can follow from both Fröhlich and optical
deformation-potential coupling. Here and in the following, we use an implicit notation where
the phonon branch α, the photon polarization κ, and the electron spin σ are absorbed in the
phonon wave-vector p, the photon wave-vector q, and the band index λ, respectively.

As discussed in Sec. 4.1, luminescence at the excitonic resonance is mainly due to radiative
recombination of electron-hole pairs without phonon participation. Such processes are related
to photon-assisted polarizations, that is to two-particle correlations of the form ∆〈B̂†â†vâc〉.
In order to evaluate these quantities, it is sufficient to perform the cluster expansion up to
the singlet-doublet level. A full numerical solution is feasible in this case for semiconductor
hetero structures of reduced spatial dimensionality [7]. However, in order to calculate the
emission at the n-th phonon replicum on the low-energy side of the zero-phonon line, at least
the (n + 2)-particle correlations ∆〈B̂†D̂† · · · D̂†â†vâc〉 including n phonon creators have to be
evaluated. Already for the first phonon sideband, clusters up to the triplet level are thus
required. The inclusion of all terms emerging from the cluster-expansion scheme would then
exceed the resources of current supercomputers when realistic model systems are considered.
We therefore have to simplify our approach by additional approximations. In this section, we
include only a physically relevant subset of the factorization terms. Truncation on the triplet
level then allows to calculate the first replicum. Higher-order sidebands will be considered in
Sec. 4.4.

4.3.1 Phonon-assisted semiconductor luminescence equations

The luminescence spectrum in the incoherent regime has already been defined in Sec. 3.3.2 as

IPL(ωq) =
d

dt
∆〈B̂†

qB̂q〉. (4.7)

In the bulk case, the photon flux follows from

d

dt
∆〈B̂†

qB̂q〉 =
2

~
Re
[

F∗
q

∑

k

Π(0)(k;q)
]

(4.8)

where we have introduced the abbreviation Fq ≡ Eqεq · dc,v/
√

L 3. The equations of motion

for the photon-assisted polarizations Π(0)(k;q) ≡ ∆〈B̂†
qâ

†
v,k−qh

âc,k+qe
〉 read

(

i~
d

dt
+ ~ωq

)

Π(0)(k;q) =
∑

k′

Ak,k′(q)Π(0)(k′;q)

+ iFq

(

f e
k+qe

fh
k−qh

+
∑

k′

∆〈â†c,k′+qe
â†v,k−qh

âc,k+qe
âv,k′−qh

〉
)

+ ~Ω
∑

p

[

gc,p∆〈B̂†
q(D̂−p + D̂†

p)â†v,(k+ph)−(q+p)h
âc,(k+ph)+(q+p)e

〉
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4.3 First phonon sideband

− gv,p∆〈B̂†
q(D̂−p + D̂†

p)â†v,(k−pe)−(q+p)h
âc,(k−pe)+(q+p)e

〉
]

+ Θ
(0)
st (k;q) + Θ(0)

sc (k;q) (4.9)

with electron densities f e
k ≡ 〈â†c,kâc,k〉 and hole densities fh

k ≡ 1 − 〈â†v,kâv,k〉. The matrix

Ak,k′(q) ≡ δk,k′
(

ε̃ek+qe
+ ε̃hk−qh

)

−
(

1 − f e
k+qe

− fh
k−qh

)

Vk−k′ (4.10)

contains kinetic terms with mean-field energies ε̃ek = εc,k −∑k′ Vk−k′f e
k′ and ε̃hk = −εv,k −

∑

k′ Vk−k′fh
k′ as well as excitonic signatures due to Coulomb interaction. The terms in the

second line of Eq. (4.9) give rise to spontaneous emission from both uncorrelated plasma and
excitonic correlations. Stimulated emission due to re-absorbed photons is described by terms

of the form Θ
(0)
st = −(1 − f e − fh)i

∑F∆〈B̂†B̂〉 + i
∑F∆〈B̂†B̂â†λâλ〉 where pairs of photon

operators are involved. Typically, these contributions can be neglected so long as the sam-
ple is not placed inside a microcavity. Coulomb scattering for photon-assisted polarizations

is mainly described by terms of the form Θ
(0)
sc =

∑

V∆〈B̂†â†vâ
†
λâλâc〉. Since a microscopic

evaluation of these contributions would go beyond the scope of the present work, we replace

the scattering terms by a phenomenological damping term Θ
(0)
sc (k;q) = −iγ0Π

(0)(k;q). When
the calculated spectra are to be compared to the experiment, the parameter γ0 has to be fitted
to the measured line width of the exciton peak. Without the phonon degrees of freedom, Eq.
(4.9) would agree with the usual semiconductor luminescence equations [50, 54]. The third
and fourth line of Eq. (4.9), however, contain the coupling to three-particle correlations that
describe radiative recombination assisted by a single phonon. Phonon absorption (emission)
processes correspond to correlations of the form ∆〈B̂D̂â†vâc〉 (∆〈B̂D̂†â†vâc〉) and create addi-
tional resonances in the luminescence spectrum on the high-(low-)energy side of the exciton
peak. Since the optical-phonon energies in most semiconductor materials are of the order of 10
to 100meV, very few optical phonons are excited in typical experimental situations such that
phonon absorption can be neglected. We will therefore exclusively consider phonon-emission
contributions Π(1)(k;q;p) ≡ ∆〈B̂†

qD̂
†
pâ

†
v,k−(q+p)h

âc,k+(q+p)e
〉 that lead to the first sideband

below the zero-phonon line. The corresponding equations of motion read

(

i~
d

dt
+ ~ωq + ~Ω

)

Π(1)(k;q;p) =
∑

k′

Ak,k′(q + p)Π(1)(k′;q;p)

+ iFq

[

fh
k−(q+p)h

∆〈D̂†
pâ

†
c,(k+qe)−ph

âc,(k+qe)+pe
〉

− f e
k+(q+p)e

∆〈D̂†
pâ

†
v,(k−qh)−ph

âv,(k−qh)+pe
〉

+
∑

k′

∆〈D̂†
pâ

†
c,k′+qe

â†v,k−(q+p)h
âc,k+(q+p)e

âv,k′−qh
〉
]

+ Θ
(1)
st (k;q;p) + Θ(1)

sc (k;q;p) + Θ(1)
nu (k;q;p) + Θ

(1)
0 (k;q;p) + Θ(1)

co (k;q;p). (4.11)

The structure of all contributions that follow from the carrier-photon part of the total
Hamiltonian is very similar to Eq. (4.9) for the photon-assisted polarizations. In detail, we
again have kinetic terms and excitonic correlations in the first line on the right-hand side,
spontaneous-emission terms in the next three lines, stimulated-emission terms of the form

Θ
(1)
st = −(1−f e−fh)i

∑F∆〈B̂†B̂D̂†〉+i
∑F∆〈B̂†B̂D̂†â†λâλ〉, and Coulomb-scattering terms

of the form Θ
(1)
sc =

∑

V∆〈B̂†D̂†â†vâ
†
λâλâc〉. Analogously to Eq. (4.9), we account for the scat-
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4 Phonon sidebands in the luminescence spectrum

tering contributions by a phenomenological damping term Θ
(1)
sc (k;q;p) = −iγ1Π

(1)(k;q;p)
where γ1 is fitted to the line shape of the first phonon sideband. Terms of the form

Θ
(1)
nu = ~Ω

∑

g nphonΠ(0) will be neglected in the following because they contain phonon
numbers. Since the numerical evaluation of the full set of singlet-doublet-triplet equations
for a realistic semiconductor system would exceed the available computer resources, we make
use of an additional truncation criterion. From the leading source terms in the correspond-
ing equations of motion, one finds how each source term in Eq. (4.11) scales with the car-
rier densities. We assume sufficiently low densities such that only contributions up to sec-
ond order in f e and fh need to be considered. Thus, we neglect all terms contained in

Θ
(1)
0 =

∑

V∆〈D̂†â†λâλ〉Π(0) + ~Ω
∑

gλf
λΠ(0) + ~Ω

∑

gλ∆〈B̂†â†vâ
†
λâλâc〉 in the further anal-

ysis. Finally, terms of the form Θ
(1)
co = ~Ω

∑

g(∆〈B̂†D̂†D̂†â†vâc〉 + ∆〈B̂†D̂†D̂â†vâc〉) describe
coupling to four-particle correlations that are related to radiative recombination assisted by
two phonons. While the ∆〈B̂†D̂†D̂â†vâc〉 terms yield corrections to the zero-phonon line, the
∆〈B̂†D̂†D̂†â†vâc〉 terms produce the second phonon replicum. Here, we truncate the equation
hierarchy at the triplet level such that only the first sideband can be evaluated. This proce-
dure is consistent with a perturbative treatment of the electron-phonon interaction as the main
contributions to the second sideband are of second order in |gc|2 and |gv|2 while the present
analysis only includes first-order terms. Higher-order sidebands will be discussed in Sec. 4.4.

4.3.2 Steady-state luminescence formula for the first sideband

In typical experimental situations, the spontaneous-emission sources become quasi-stationary
shortly after excitation when they are only subject to the relatively slow radiative decay.
Luminescence in this regime can be calculated from a steady-state solution of Eqs. (4.9), (4.11).
More explicitly, we assume thermal distributions for densities and excitonic correlations and
insert steady-state solutions for the phonon-assisted carrier correlations into the spontaneous-
emission source terms in Eq. (4.11). Details of this procedure are given in Appendix D. The
matrix (4.10) can be diagonalized with the help of the exciton basis introduced explicitly in
Appendix A. Because the analysis is restricted to weak excitation levels, we may use the low-
density version φν of the excitonic wave functions in the definition (A.9) of the exciton operators

X̂ν,Q, X̂†
ν,Q. The exciton energy Eν(Q) = Eν +~

2|Q|2/2M decomposes into the excitonic eigen
energy Eν and the center-of-mass energy of the electron-hole pair. See Appendix A for further
properties of the exciton basis.

After diagonalization of the homogeneous parts of the phonon-assisted semiconductor lu-
minescence equations (4.9), (4.11), the steady-state luminescence can be calculated analyti-
cally. We exclusively consider the dominant exciton peak for ν = 1s and its replicum. Off-
diagonal expectation values 〈X̂†

1s,QX̂ν,Q〉 with ν 6= 1s are neglected with respect to diagonal

ones 〈X†
1s,QX1s,Q〉 [7]. Moreover, we set the small photon momenta to zero in the following cal-

culations and neglect the weak momentum dependence of the light-matter interaction matrix
elements by writing F instead of Fq. Thus, we finally obtain the luminescence formula

IPL(ω) = I
(0)
PL (ω) + I

(1)
PL (ω) (4.12)

where the contributions to the zero-phonon line and to the first phonon sideband can be written
as

I
(0)
PL (ω) =

2

~
|Fφ1s(r = 0)|2Im

[

N
(0)
1s (0) −∑QN

(1)
1s (Q)

E1s(0) − ~ω − iγ0

]

, (4.13)
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I
(1)
PL (ω) =

2

~
|Fφ1s(r = 0)|2Im





∑

Q

N
(1)
1s (Q)

E1s(Q) − ~Ω − ~ω − iγ1



, (4.14)

respectively. The source term N
(n)
1s (Q) defines the luminescence from electron-hole pairs with

center-of-mass momentum Q. In accordance with the qualitative discussion from Sec. 4.1,
we find that pairs with arbitrary center-of-mass momentum can contribute to the sideband
emission. For both resonances in the luminescence spectrum,

N
(n)
1s (Q) = ∆N

(n)
1s (Q) +N

eh(n)
1s (Q) (4.15)

decomposes into a correlated and a singlet contribution. The former contains true exciton
populations,

∆N
(0)
1s (Q) ≡ ∆〈X̂†

1s,QX̂1s,Q〉, (4.16)

∆N
(1)
1s (Q) ≡

∣

∣

∣

∣

∣

~Ωg1s,1s
Q

~Ω − ~2|Q|2
2M

∣

∣

∣

∣

∣

2

∆〈X̂†
1s,QX̂1s,Q〉, (4.17)

where

gν,ν′

Q =
∑

k

φ∗ν(k) [gc,Qφν′(k + Qh) − gv,Qφν′ (k − Qe)] (4.18)

is just another way of writing the exciton-phonon matrix element Gν,ν′

Q /~Ω according to Eq.
(4.4). The excitonic contribution (4.17) agrees with the perturbative treatment summarized in

Sec. 4.2. Our work generalizes that approach to include the singlet contributions N
eh(n)
1s (Q).

Explicitly, we obtain

N
eh(0)
1s (Q) ≡ 〈X̂†

1s,QX̂1s,Q〉S =
∑

k

|φ1s(k)|2f e
k+Qe

fh
k−Qh

, (4.19)

N
eh(1)
1s (Q) ≡

~Ωg1s,1s
Q

~Ω − ~2|Q|2
2M

∑

k

|φ1s(k)|2f e
k+Qe

fh
k−Qh

×
(

~Ωg∗c,Q

~Ω − εek+Qe
+ εek−Qh

−
~Ωg∗v,Q

~Ω + εhk+Qe
− εhk−Qh

)

. (4.20)

This result indicates that for both the zero-phonon line and the phonon sideband, uncorrelated
electron-hole plasma can lead to luminescence at the same resonances as the excitons. In Sec.
4.3.3.2, this statement will be verified numerically.

According to Eq. (4.13), the phonon-assisted recombination processes also affect the intensity
of the zero-phonon line. In many materials, the first replicum is two or more orders of magni-
tude weaker than the exciton peak such that the correction to the ZPL can be neglected. For
very strong electron-phonon coupling, the intensities of the sidebands can become considerable.
In that case, we would also have to consider higher-order corrections to the ZPL and the PSB1

that are not contained in the singlet-doublet-triplet analysis. The non-perturbative treatment
of the carrier-phonon interaction presented in Sec. 4.4.2 indicates that the combined effect of
all these corrections reduces to an overall renormalization of the luminescence spectrum.
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4 Phonon sidebands in the luminescence spectrum

For the analytical discussion of certain properties of the sideband emission, it will prove
useful to consider the low-temperature limit where only exciton states with small center-of-
mass momenta are populated. We may then use a small-|Q| approximation for the source terms

N
(1)
1s (Q) in Eq. (4.14). More explicitly, we take the limit Q → 0 in the energy denominators in

Eqs. (4.17), (4.20) and neglect Qe, Qh with respect to k in Eq. (4.18) such that the exciton-
phonon matrix element becomes

g1s,1s
Q ≃ gc,Q − gv,Q. (4.21)

The luminescence formula (4.14) for the first phonon sideband thus reduces to

I
(1)
PL (ω) ≃ 2

~
|Fφ1s(r = 0)|2Im

∑

Q

|∆gQ|2
[

∆N
(0)
1s (Q) +N

eh(0)
1s (Q)

]

E1s(Q) − ~Ω − ~ω − iγ1
(4.22)

with ∆gQ ≡ gv,Q − gc,Q. This approximate result suggests that the intensity of the replicum
will be very weak in case of band-independent electron-phonon matrix elements gv,Q = gc,Q.

Moreover, because excitonic populations ∆N
(0)
1s (Q) and electron-hole plasma N

eh(0)
1s (Q) enter

the sideband-emission formula additively, it appears impossible to distinguish the different
contributions in a standard luminescence experiment. In the following section, both these
statements will be checked numerically with the help of the exact sideband formula (4.14).

4.3.3 Numerical case studies

Having derived the steady-state result (4.14), we can now study the properties of single-phonon
assisted luminescence numerically. In Sec. 4.3.3.1, we compare sideband emission due to
Fröhlich and optical deformation-potential coupling. Exciton and plasma luminescence are
analyzed in Sec. 4.3.3.2. Finally, we discuss the generic differences between bulk and quantum-
well emission in Sec. 4.3.3.3. Further case studies that involve higher-order sidebands can only
be performed later in Sec. 4.4.3.

4.3.3.1 Fröhlich and optical deformation-potential coupling

In most polar crystals, the long-ranged Fröhlich coupling usually contributes much more
strongly to the carrier-phonon scattering than the short-ranged optical deformation-potential
coupling. Usually, the latter interaction mechanism only dominates in inter-valley scatter-
ing where zone-edge phonons are involved [131] or in situations where the Fröhlich coupling
is symmetry-forbidden [89, 90]. Phonon replica in III-V and II-VI compound semiconduc-
tors are automatically assigned to Fröhlich interaction in the majority of publications. How-
ever, the low-temperature approximation (4.22) suggests that the intensity of the replicum
not only depends on the overall amplitude but also on the difference ∆gp = gv,p − gc,p of
the electron-phonon matrix elements gv,p and gc,p. To quantify this statement, we assume
artificial matrix elements where gλ,p has the p dependence of the Fröhlich matrix element gFr

p ,

fix |gv,p|2 + |gc,p|2 = 2|gFr
p |2, and sweep ∆gp from −2gFr

p to +2gFr
p . The solid lines in Fig. 20

show the intensity ratio of PSB1 and ZPL as function of x(p) ≡ ∆gp/2g
Fr
q for GaN parameters

at two different carrier temperatures T . In both cases, the strength of the replicum becomes
maximal for x(p) = ±1 where gv,p = −gc,p. For T = 10 K (a), the sideband luminescence
becomes minimal when gc,p and gv,p are the band-independent Fröhlich matrix elements, i.e.
for x(p) = 0. The relative intensity of the replicum is then three orders of magnitude smaller
than for an opposite sign of the matrix elements. For T = 50 K, the position of the minimum
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4.3 First phonon sideband

Figure 20: Dependence of the relative intensity of the first phonon sideband on the electron-phonon
matrix elements gv,p, gc,p for two different carrier temperatures. For the solid lines, we assume
that gλ,p ∝ |p|−1 as for the Fröhlich matrix element gFr

p but sweep ∆gp = gv,p − gc,p while leaving
|gv,p|

2+|gc,p|
2 = 2|gFr

p |2 unchanged. The dashed and the dash-dotted vertical lines represent the result
for optical deformation-potential interaction with coupling constant d0 = 21.3 eV and d0 = 53.8 eV,
respectively.

is slightly shifted and the difference between the limiting cases is slightly less pronounced.
Nevertheless, this analysis clearly shows that strong intraband electron-phonon scattering does
not imply pronounced sideband luminescence.

The two horizontal lines in Fig. 20 represent results for optical deformation-potential in-
teraction. The value d0 = 53.8 eV (dash-dotted line) of the coupling constant is taken from
Ref. [91]. As discussed in Sec. 2.2.4.2, the optical deformation-potential constant is effectively
reduced for polar optical modes. The choice d0 = 21.3 eV (dashed line) corresponds to the
fit result presented later in Fig. 26. It turns out that for the given temperature and material
parameters, the short-range part of the electron-phonon interaction actually provides the dom-
inant contribution to the sideband luminescence, irrespective of the strongly polar nature of
GaN. We will return to this point and examine it further in Sec. 4.4.3.1 where we will analyze
the second phonon sideband.

4.3.3.2 Exciton and plasma contributions

Because not only excitonic populations but also uncorrelated plasma contribute to the source

term N
(0)
1s (Q) for the ZPL, luminescence at the excitonic resonance does not provide unique

evidence that bound electron-hole pairs have formed in the material. This somewhat counter-
intuitive result was first pointed out in Ref. [50] and was subsequently confirmed in a number
of experiments [51–53]. However, the question whether plasma can also participate in phonon-
assisted luminescence has not yet been addressed quantitatively in the literature. The pertur-
bative treatment summarized in Sec. 4.2, for example, describes sideband emission as series
of exciton-phonon scattering events followed by recombination from within the radiative cone.
It is not obvious whether this kind of microscopic processes could also involve uncorrelated
electron-hole pairs. In this section, we therefore analyze the effect of the plasma source term
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4 Phonon sidebands in the luminescence spectrum

Figure 21: Calculated sideband emission from excitonic populations (solid lines) and uncorrelated
plasma (dashed lines) for GaN parameters with an electron-hole pair density neh = 1012 cm−3 at three
different carrier temperatures. The same small homogeneous broadening was assumed for the exciton
peak and its replicum. For the shaded areas, the plasma contribution has been scaled such that the
zero-phonon lines coincide.

N
eh(1)
1s (Q) on the sideband emission quantitatively.

Figure 21 shows the numerical results for GaN parameters with d0 = 21.3 eV and an electron-
hole pair density neh = 1012 cm−3 at three different carrier temperatures. The solid lines
correspond to the fully correlated case where all electron-hole pairs form excitons while the
dashed lines represent the fully uncorrelated case where only the plasma source term contributes
to the sideband luminescence. For the given density, the exciton emission clearly dominates
the plasma emission. However, the position of the exciton-phonon resonance is identical for
both contributions, and the line shape of the sideband and its intensity relative to the zero-
phonon line are very similar (shaded areas), as already indicated by the low-temperature
approximation (4.22). Only at elevated temperatures (right frame), small deviations can be
detected. We conclude that the correlated and the singlet sources of the sideband emission
cannot be distinguished by means of a standard luminescence experiment.

As explained in Sec. 3.3.3 for the quantum-dot case, excitons and uncorrelated plasma have
different radiative decay dynamics because the former source term is proportional to neh while
the latter source term is proportional to n2

eh. The corresponding transients are sketched
schematically in frame (a) of Fig. 22. Strictly exponential decay is a signature of excitonic
luminescence while the decay rate decreases in time for plasma emission. Experimental re-
sults [132] for the first three sidebands in ZnO bulk spectra at T = 210 K are shown as dashed
line in frame (b). For comparison, the solid line represents the dynamics of the exciton peak.3

It was found that even at high excitation power and elevated temperatures, all transients re-
tained their exponential behavior, where the small deviations that are visible in the figure can

3We will see in Sec. 4.4.3.2 that the sidebands can be assigned to free excitons while the zero-phonon line
originates from impurity-bound excitons.
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4.3 First phonon sideband

Figure 22: Radiative decay dynamics. Frame (a) shows schematically the generic difference between
exciton and plasma emission. For a better comparison, identical decay rates are assumed at time t = 0.
Frame (b) shows experimental results [132] for the zero-phonon line due to impurity-bound excitons
(BX) and the first three sidebands due to free electron-hole pairs (FX) as measured with a ZnO bulk
sample at temperature T = 210 K.

be ascribed to non-radiative decay channels that lead to multi-exponential transients even in
the fully correlated case. To interpret this observation, we notice that prominent sideband
emission requires strong electron-phonon coupling. At the same time, this strong electron-
phonon interaction favors the formation of excitons [7]. Because the large exciton binding
energy of about 60 meV inhibits thermal ionization of the excitons, one can expect a high
amount of excitons in ZnO systems even after non-resonant excitation, in striking contrast

to GaAs systems. Still, the singlet source term N
eh(1)
1s (Q) is always present even in the fully

correlated case. At sufficiently high densities, the plasma emission should eventually become
noticeable. However, no higher excitation levels could be reached in the above experiments
without damaging the sample. Thus, sideband emission due to uncorrelated plasma has not
yet been verified experimentally at the time of writing this thesis.

4.3.3.3 Sideband emission from quantum wells

In materials with strong electron-phonon interaction, phonon replica can appear in both bulk
and quantum-well luminescence spectra. In order to discuss the generic differences between
emission from three- and two-dimensional carrier systems, we now study the temperature
dependence of the sideband intensities in both cases. It is shown in Appendix F.4 how the
luminescence formula has to be modified for confined carrier systems. For the purposes of
the present analysis, it is sufficient to consider the respective low-temperature approximations

(4.22) and (F.38).4 The integrated intensities J(n) ≡
∫

I
(n)
PL (ω) d(~ω) for n = 1 thus take the

4Actually, Eq. (F.38) is derived within the polaron-picture analysis from Sec. 4.4.2. However, we will see that
this approach reproduces the low-temperature approximation to the cluster-expansion formula for the first
sideband.
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4 Phonon sidebands in the luminescence spectrum

forms

Jbulk(1) ∝
∑

Q

|∆gQ|2N1s(Q), (4.23)

JQW(1) ∝
∑

Q‖

|∆g̃Q‖ |2N1s(Q‖) (4.24)

for bulk and well emission, respectively. For simplicity, we only consider optical deformation-
potential interaction where the matrix elements in the long-wavelength limit have the form
gc,Q = 0 and gv,Q ≃ g = const. Hence, the above relations reduce to

Jbulk(1) ∝ |g|2
∑

Qz

∑

Q‖

N1s(Q‖, Qz), (4.25)

JQW(1) ∝ |g|2
∑

Qz

|γ(Qz)|2
∑

Q‖

N1s(Q‖) (4.26)

with the form factor γ(Qz) as defined in Eq. (F.39) that originates from the carrier confinement.
In the bulk case, the Q-dependent integrand decays in all three directions like the thermal
distribution function for the excitons while in the quantum-well case, the integrand decays
like the form factor in Qz direction. Since the exciton distribution broadens with increasing
temperature, there is a critical temperature Tc below which the relative intensity of the first
sideband is weaker in the bulk case than in the quantum-well case. Above Tc, the situation
is reversed. This critical temperature obviously depends on both the material parameters and
the confinement width L.

A concrete numerical example for

Figure 23: Integrated intensity of the first phonon side-
band relative to the zero-phonon line as function of the
carrier temperature for GaN bulk (solid line) and a GaN
quantum well where the carriers are confined to a width
of half a Bohr radius (dashed line).

GaN parameters with d0 = 21.3 eV and
L = 0.5aB where aB denotes the ex-
citon Bohr radius is shown in Fig. 23.
For both bulk and well, the integrated
intensity of the first sideband relative
to the zero-phonon line obeys a power-
law dependence on the temperature, as
discussed in more detail later in Sec.
4.4.3.1. The exponents are different,
however, such that the curves cross at
Tc ≃ 4 K.

When theoretical results for confined
systems are quantitatively compared
to experimental data, the explicit form
of γ(Qz) often plays a minor role,
and the width L can be treated as a
fitting parameter. Such an approach
has to be refined when an accurate
value for the critical temperature Tc

is to be calculated. Nevertheless, the
simplified analysis presented in this
section already gives a hint why identi-

cal materials can feature very different sideband spectra in bulk and quantum-well experiments.
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4.4 Higher-order sidebands

4.4 Higher-order sidebands

We have discussed at the beginning of Sec. 4.3 how phonon replica emerge within the cluster-
expansion scheme. For the n-th sideband, at least (n + 2)-particle correlations of the form
∆〈B̂†D̂† · · · D̂†â†vâc〉 that involve n phonon creation operators have to be calculated. In general,
the number of correlations grows exponentially with the level of cluster expansion. Physical
insight often allows to drastically reduce the number of equations of motion that are to be
solved. When only the correlated contribution to the sideband emission is to be evaluated,
the analysis may be performed in the exciton picture. Here, the exciton basis defined in
Appendix A diagonalizes the purely electronic part of the Hamiltonian such that the equation
hierarchy due to Coulomb interaction is eliminated. We use this approximation in Sec. 4.4.1
to calculate arbitrary-order sidebands analytically. However, when the fermionic substructure
of the electron-hole pairs is taken into account, the analysis becomes very involved already
for the second phonon replicum. A different approach is preferred in Sec. 4.4.2 where the
electron-electron interaction is fully included while the electron-phonon interaction is treated
non-perturbatively by means of a unitary transformation. That way, we find a much more
compact luminescence formula than with the exciton-picture analysis.

4.4.1 Exciton-picture analysis

When we restrict the analysis to sufficiently low excitation levels, the parts of the system
Hamiltonian (4.5) that contain carrier operators can be expressed in terms of the low-density

exciton operators X̂ν,Q, X̂†
ν,Q. This procedure is explicitly performed in Appendix E.1 and

casts the system Hamiltonian into form

Ĥ = ĤX + Ĥvib + Ĥem + ĤX−vib + ĤX−em (4.27)

where

ĤX =
∑

ν,Q

Eν(Q)X̂†
ν,QX̂ν,Q (4.28)

gives the contribution from non-interacting excitons. The exciton-phonon and exciton-photon
interaction are described by

ĤX−vib =
∑

ν,ν′

∑

Q,p

~Ωgν,ν′
p X̂†

ν,Q−pX̂ν′,Q

(

D̂−p + D̂†
p

)

, (4.29)

ĤX−em = −
∑

ν,q

i
[

Fqφ
∗
ν(r = 0)X̂†

ν,q + F∗
qφν(r = 0)X̂ν,q

]

B̂q + H.C., (4.30)

respectively, while the Hamiltonians Ĥvib for the free lattice-vibration field and Ĥem for the
free electromagnetic fields remain unchanged. Generally, it does not facilitate the microscopic
treatment of the interacting carrier system when the system Hamiltonian is transformed into
the exciton basis. The downside of such an approach is that due to the fermionic substructure
of the electron-hole pairs, the exciton operators have complicated commutation relations. For
the purposes of the present analysis, however, it is justified to treat the excitons as proper
bosons such that X̂ν,Q, X̂†

ν,Q fulfill bosonic commutation relations

[X̂ν,Q, X̂
†
ν′,Q′ ]− = δν,ν′δQ,Q′ , [X̂ν,Q, X̂ν′,Q′ ]− = 0 = [X̂†

ν,Q, X̂
†
ν′,Q′ ]−. (4.31)
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4 Phonon sidebands in the luminescence spectrum

We motivate in Appendix E.2 why this approach should describe the sideband emission cor-
rectly in the low-density limit.

In Sec. 4.4.1.1, we present the phonon-assisted luminescence equations in the exciton picture
and solve them analytically in steady state for arbitrary-order phonon replica. To identify the
dominant contributions to the resulting luminescence formula, we have a closer look at the
exciton-phonon matrix elements gν,ν′

p in Sec. 4.4.1.2.

4.4.1.1 Steady-state luminescence formula for arbitrary-order sidebands

In the exciton picture, the incoherent photon flux (4.7) follows from

d

dt
∆〈B̂†

qB̂q〉 =
2

~
Re
[

F∗
q

∑

ν

φν(r = 0)Π(0)
ν (q)

]

. (4.32)

Together with Eq. (4.32), the equations of motion for the photon-assisted polar-

ization Π
(0)
ν (q) ≡ ∆〈B̂†

qX̂ν,q〉 and the phonon-assisted recombination correlations

Π
(n)
ν (q;p1, . . . ,pn) ≡ ∆〈D̂†

pn
· · · D̂†

p1
B̂†

qX̂ν,q+p1+···+pn
〉,

(

i~
d

dt
+ ~ωq + n~Ω

)

Π(n)
ν (q;p1, . . . ,pn) = Eν(q + p1 + · · · + pn)Π(n)

ν (q;p1, . . . ,pn)

+ iFq

∑

ν′

φ∗ν′ (r = 0)∆〈D̂†
pn

· · · D̂†
p1
X̂†

ν′,qX̂ν,q+p1+···+pn
〉

+ ~Ω
∑

ν′,p

gν,ν′
p Π

(n+1)
ν′ (q;p,p1, . . . ,pn)

+ Θ
(n)
st,ν(q;p1, . . . ,pn) + Θ(n)

nu,ν(q;p1, . . . ,pn), (4.33)

constitute the phonon-assisted semiconductor luminescence equations in the exciton picture.

We do not include the stimulated-emission source term Θ
(n)
st,ν = iφ∗ν(r = 0)F〈(D̂†)nB̂†B̂〉

in the following analysis. Similarly to our approach in Sec. 4.3.1, we neglect in Eq. (4.33)

all source terms that are of higher order in the exciton density than Π
(n)
ν as well as all

terms that are proportional to phonon numbers. Because the factorization of Θ
(n)
nu,ν =

−~Ω
∑

g〈(D̂†)n−1B̂†X̂†X̂X̂ 〉 exclusively produces contributions with that properties, we omit

Θ
(n)
nu,ν altogether. The steady-state solutions for the spontaneous-emission source terms in the

second line of Eq. (4.33) are derived in Appendix E.4. Analogously to Eqs. (4.9), (4.11), Π
(n)
ν

is coupled to higher-order phonon-assisted quantities via the third line of Eq. (4.33). When the
equation hierarchy is truncated on the (n+ 2)-th level of cluster expansion, the recombination

correlations Π
(n)
ν , Π

(n−1)
ν , . . . , Π

(0)
ν can be evaluated iteratively in steady state. Details of

this procedure are presented in Appendix E.4. We only include those contributions to each
replicum that are of lowest order in the absolute values squared of the exciton-phonon matrix
elements gν,ν′

p , cf. the discussion after Eq. (4.20). Thus, we finally obtain closed steady-state
luminescence formulas for the zero-phonon line,
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4.4 Higher-order sidebands

I
(0)
PL (ω) =

2

~
|Fφ1s(r = 0)|2Im

[

∆N1s(0)

E1s(0) − ~ω − iγ0

]

, (4.34)

and arbitrary-order phonon sidebands,

I
(n)
PL (ω) =

2

~
|Fφ1s(r = 0)|2 Im

∑

ν1,...,νn−1

ν′
1,...,ν′

n−1

∑

p1,...,pn

∆N1s(p1 + · · · + pn)

E1s(p1 + · · · + pn) − n~Ω − ~ω − iγn

×
∑

π

n−1
∏

j=0

[

~Ωg
νj ,νj+1
pj+1

(n− j)~Ω − E1s(p1 + · · · + pn) + Eνj
(p1 + · · · + pj)

×
~Ωg

ν′
j,ν′

j+1
pπ[j+1]

(n− j)~Ω − E1s(p1 + · · · + pn) + Eν′
j
(pπ[1] + · · · + pπ[j])

]

. (4.35)

As in Sec. 4.3.2, we restrict the analysis to the 1s peak and its replica and set the photon wave
vector q to zero. The π sum in Eq. (4.35) extends over all permutations j 7→ π[j] of the set
{1, . . . , n}. For a compact notation, we have defined ν0 = ν′0 ≡ 1s. For the zero-phonon line and
the first phonon sideband, the exciton-picture analysis reproduces the correlated contributions
to Eqs. (4.13), (4.14). Moreover, Eq. (4.35) can directly be compared to the perturbative result
(4.2), (4.3). We find that the cluster-expansion approach in the exciton picture yields a slightly
more complicated index structure than the perturbative approach. However, we will see in the
following section that the exciton-phonon matrix elements gν,ν′

p decay rapidly with |p| such that
only small phonon momenta contribute to the pj sums and only small center-of-mass kinetic
energies appear in the denominators. If the optical phonon energy ~Ω is large compared to the
energetic distance between the relevant excitonic resonances, the energy denominators in both
our and the perturbative result will only weakly depend on the phonon momenta, and both
formulas will lead to very similar steady-state luminescence. We actually find numerically for
the second phonon sidebands in ZnO and GaN that at temperatures from absolute zero to
60 K, the relative deviation remains below 1 % throughout the entire spectral range.

4.4.1.2 Exciton-phonon scattering

The perturbative approach summarized in Sec. 4.2 describes phonon-assisted luminescence as
series of exciton-phonon scattering events followed by recombination from within the radiative
cone. For the second and higher-order sidebands, these scattering sequences can contain arbi-
trary intermediate states such that each νj sum in Eq. (4.3) extends over the entire spectrum
of excitonic quantum numbers. There is a one-to-one mapping between the different scattering
contributions to the perturbative result and the corresponding terms in our exciton-picture
formula (4.35). When all possible sequences are included, the evaluation of the n-th replicum
becomes a formidable task already for n = 2. For practical computations, it is therefore
necessary to identify the dominant contributions.

The relevant exciton-phonon matrix elements gν,ν′
p are calculated analytically in Appendix

E.3, and the scattering probabilities |gν,ν′
p |2 are plotted in Fig. 24 for ν = 1s and ν′ = 1s, 2s, 2p.

While g1s,1s
p and g1s,2s

p only depend on |p|, the matrix element g1s,2p
p is proportional to the z

component of p such that |g1s,2p
p |2 can assume any value inside the shaded area. A scattering
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4 Phonon sidebands in the luminescence spectrum

Figure 24: Absolute values squared of the relevant exciton-phonon matrix elements gν,ν′
p as function of

the transferred crystal momentum ~p (measured in inverse exciton Bohr radii a−1
B ) for GaN parameters

with Fröhlich coupling (a) and optical deformation-potential coupling (b).

process with momentum transfer p is often said to have forbidden (allowed) character if the
corresponding matrix element vanishes (does not vanish) for |p| → 0. We find that in case
of Fröhlich interaction (a), the phonon-induced scattering out of an exciton state ν into an
exciton state ν′ has allowed character if ν and ν′ have opposite parities and forbidden charac-
ter, otherwise, see Eq. (E.31). Based on this observation, the author of Ref. [49] argues that
scattering sequences through intermediate states with alternating parity should give the main
contribution to the total scattering probability (4.2). This assumption is often used in the liter-
ature when the line shape of the second replicum is analyzed [56–58]. However, our numerical
calculations for GaN and ZnO systems show that even at low temperatures where the small-
|p| behavior of the matrix elements becomes more important, the 1s → 1s → 1s scattering
sequence still contributes more strongly to the second sideband than the 1s → 2p → 1s scat-
tering sequence. Scattering through higher exciton states only provides small corrections [133].
For optical deformation-potential coupling (b), the situation is very different from the Fröhlich
case. Here, g1s,1s

p approaches −∆gp = gc,p − gv,p for p → 0 while all other 1s → ν scattering
processes have forbidden character and much lower transition probabilities throughout the en-
tire phonon-momentum range, see Eq. (E.32). Hence, scattering sequences where the relative
motion of the electron-hole pair remains in the ground state 1s clearly provide the dominant
contributions to all phonon replica. We will use this property in Sec. 4.4.2.3 to simplify Eq.
(4.35) to a much more compact luminescence formula for arbitrary-order sidebands due to
optical deformation-potential interaction.

We further conclude from Fig. 24 that excitons interact more strongly with phonons via
optical deformation-potential interaction than via Fröhlich interaction although the opposite
is true for the electron-phonon scattering. The physical reason for this behavior is that an
exciton is a neutral quasi-particle and thus interacts relatively weakly with the macroscopic

86



4.4 Higher-order sidebands

electric fields that are caused by LO phonons in a polar crystal.5

4.4.2 Polaron-picture analysis

The non-perturbative treatment of the electron-phonon interaction is based on the so-called
polaron picture. Conceptually, a polaron is a quasi-particle composed of an electron and the
lattice polarization accompanying it. Such a combination is also referred to as dressed elec-
tron in the literature. Starting from the Hamiltonian (4.5), the polaron picture is formally

introduced via the unitary transformation ˆ̄H = T̂ ĤT̂ † with

T̂ ≡ exp
∑

λ,k,p

gλ,pâ
†
λ,k−paλ,k

(

D̂†
p − D̂−p

)

. (4.36)

This transformation generalizes the textbook treatment of the shifted harmonic oscillator [82]
and was previously used, e.g., in Ref. [59] to calculate phonon-assisted resonances in semicon-
ductor absorption spectra. The explicit transformation rules are given in Appendix F.1. It
is important to note that in the Coulomb Hamiltonian Ĥel−el, we have to replace the matrix
element Vq = e2/ǫ0ǫ(0)L 3|q|2 by e2/ǫ0ǫ(∞)L 3|q|2 before the transformation. After all, as
discussed in Sec. 2.2.4.2, the high-frequency permittivity ǫ(∞) equals the static permittivity
ǫ̃(0) of a fictitious system without lattice vibrations. The non-perturbative treatment of the
electron-phonon coupling includes the phonon-induced screening of the carrier-carrier interac-
tion fully microscopically. Consequently, this screening contribution must not be taken into
account via the macroscopic dielectric constant.

In the following, we use a compact matrix notation for quantities (M)k,k′ that depend on a
pair of crystal momenta. Powers (Mn)k,k′ and exponential series (eM )k,k′ ≡∑∞

n=0(M
n)k,k′/n!

are defined by means of the matrix-multiplication rule (MN)k,k′ ≡
∑

k1
(M)k,k1(N)k1,k′ . We

apply this matrix notation to both numbers and operator quantities. The polaron transforma-
tion casts the original Hamiltonian into form

ˆ̄H = ˆ̄Hpol + ˆ̄Hem + ˆ̄Hlatt + ˆ̄Hpol−pol +
ˆ̄Hpol−em (4.37)

where the different contributions can be written as

ˆ̄Hpol =
∑

λ,k,q

[

(

e−ĈλEλeĈλ
)

0,q
â†λ,kâλ,k+q − ~Ω|gλ,q|2â†λ,kâλ,k

]

(4.38)

ˆ̄Hlatt =
∑

p

~Ω

(

D̂†
pD̂p +

1

2

)

, (4.39)

ˆ̄Hem =
∑

q

~ωq

(

B̂†
qB̂q +

1

2

)

, (4.40)

ˆ̄Hpol−pol =
1

2

∑

λ,λ′

k,k′,q

V λ,λ′
q â†λ,kâ

†
λ′,k′ âλ′,k′+qâλ,k−q, (4.41)

ˆ̄Hpol−em = −
∑

k,k′,q

i
[

Fq

(

eĈ
)

k,k′ â
†
c,k+qâv,k′ + F∗

q

(

eĈ
)

k,k′ â
†
v,kâc,k′−q

]

B̂q + H.C. (4.42)

5As shown in Ref. [134], the fermionic substructure of an exciton allows for strong Fröhlich-like exciton-phonon
coupling in semiconductor quantum dots, which can be described in terms of excitonic polarons. It remains
an open question whether a similar effect might also occur in bulk systems.
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Here, we have defined the matrices (Eλ)k,k′ ≡ δk,k′ελ,k, (Ĉλ)k,k′ ≡ gλ,k′−k(D̂k−k′ − D̂†
k′−k),

and (Ĉ)k,k′ ≡ (Ĉv)k,k′ − (Ĉc)k,k′ . Details of the calculation can be found in Appendix F.1.
Following the spirit of Ref. [59] and earlier works on the polaron problem [82], we replace

all phonon-operator combinations appearing in Eq. (4.38) by their thermal averages. This
procedure yields

ˆ̄Hpol =
∑

λ,k

eλ,kâ
†
λ,kâλ,k. (4.43)

In view of this structure, ˆ̄Hpol can be interpreted as energy of free polarons. The polaron dis-
persion eλk is explicitly evaluated in Appendix F.2 for a phonon bath at temperature Tphon = 0.
The resulting band structure is characterized by a smaller band gap and larger effective masses
compared with the bare valence and conduction-band electrons. Moreover, as announced above,
the incorporation of the lattice distortion into the carrier dynamics leads to screening of the
Coulomb interaction. The renormalized Coulomb matrix elements V λ,λ′

q = Vq − 2~Ωg∗λ,qgλ′,q

can only become band-dependent when gc,q and gv,q are different. For the Fröhlich part of
the electron-phonon matrix elements gλ,q that is band-independent and proportional to |q|−1,
this renormalization reduces to an enhancement of the dielectric constant. We have used this
observation in Sec. 2.2.4.2 to determine the amplitude of the Fröhlich matrix elements. In the
literature, the optical deformation-potential interaction is usually completely neglected when
the polaron band structure and the polaron-polaron interaction are evaluated. Our numerical
calculations indeed confirm that the Fröhlich coupling provides clearly the main contribution to
the modifications imposed by the unitary transformation. This result constitutes just another
example of how phonon-related phenomena in polar semiconductors are usually dominated by
the long-range part of the electron-phonon interaction. In this respect, the phonon-assisted
luminescence appears to be a very special case.

The main advantage of the polaron transformation with bath approximation is that in the
absence of a light field, polaron and phonon degrees of freedom are not coupled anymore.

However, the light-matter interaction Hamiltonian ˆ̄Hpol−em contains phonon-operator combi-
nations of arbitrary order, provided that gc,p 6= gv,p. We will see in the following how these
terms give rise to arbitrary-order sideband emission. In Sec. 4.4.2.1, we apply the cluster-
expansion scheme to derive semiconductor luminescence equations in the polaron picture. We
solve these equations in Sec. 4.4.2.2 for arbitrary-order phonon replica and compare the result
in Sec. 4.4.2.3 to the exciton-picture analysis.

4.4.2.1 Semiconductor luminescence equations in the polaron picture

In the polaron picture, the luminescence spectrum in the incoherent regime follows from

i~
d

dt
∆〈B̂†

qB̂q〉 = 2i Re
[

F∗
q

∑

k,p

∆〈B̂†
qâ

†
v,kâc,k+q+p

(

eĈ
)

0,p
〉
]

. (4.44)

Normal ordering of the exponential matrix eĈ as performed in Sec. F.2 decomposes the expec-
tation value on the right-hand side into the (α+ β + 2)-particle correlations

Πα
β (k;q;p) ≡ ∆〈B̂†

qâ
†
v,k−qh−ph

âc,k+qe+pe
([d̂†]αd̂β)0,p〉 (4.45)

with (d̂)k,k′ ≡ ∆g∗k−k′D̂k−k′ and (d†)k,k′ ≡ [(d)k′,k]†. The quantity Πα
β (k;q;p) describes

radiative recombination of an electron-hole pair under the assistance of α+ β phonons out of

88



4.4 Higher-order sidebands

which α are emitted and β are absorbed. According to the general discussion in Sec. 4.1 such
processes contribute to the (α− β)th phonon sideband if α 6= β, and to the zero-phonon line if
α = β.

Since the full equation hierarchy on the (α+β+2)th level of cluster expansion cannot be solved
for arbitrary α and β, we need to restrict the analysis to a narrow subset of relevant correlations.
When expanding the expectation values that appear in the equations of motion for the recom-
bination correlations Πα

β(k;q;p), we treat the photon-phonon part Ôα
β (q,p) ≡ B̂†

q([d̂†]αd̂β)0,p

as a single (α + β + 1)-particle operator. In other words, we exclude factorization into terms
that separate and distribute the photon operator and the phonon operators into products of
lower-level correlations. After all, only those correlations produced by the factorization that
include Ôα

β (q,p) can describe processes involving one photon and (α+ β) phonons. We there-
fore expect that the most significant aspects of phonon-assisted radiative recombination are
included in such an analysis. The resulting luminescence equations in the polaron picture thus
take the form

[

i~
d

dt
+ ~ωq + (α− β)~Ω

]

Πα
β(k;q,p) =

∑

k′

Āk,k′(q + p)Πα
β (k′;q,p)

+ iFq

∑

k′,p′

〈â†c,k′+qe+p′
e
âv,k′−qh−p′

h
â†v,k−qh−ph

âc,k+qe+pe
(eĈ)p′,0[(d̂†)αd̂β ]0,p〉. (4.46)

Analogously to Eqs. (4.9), (4.11), the matrix

Āk,k′(q) = δk,k′
(

ẽek+qe
+ ẽhk−qh

)

−
(

1 − f e
k+qe

− fh
k−qh

)

V v,c
k−k′ (4.47)

contains kinetic terms with mean-field energies ẽek = ec,k −∑k′ V
v,c
k−k′f e

k′ and ẽhk = −ev,k −
∑

k′ V
v,c
k−k′fh

k′ as well as excitonic signatures due to Coulomb interaction. Stimulated-emission
source terms are neglected again. The last term constitutes the spontaneous-emission sources
that will be evaluated in the following section.

The coupled equations of motion (4.44), (4.46) constitute the phonon-assisted semiconductor
luminescence equations in the polaron picture. In the absence of phonons, Eq. (4.46) would
agree with the usual semiconductor luminescence equations [50, 54]. The crucial advantage of
the polaron-picture analysis is that the general structure of the luminescence equations remains
unchanged when carrier-phonon coupling is included. Contrary to the electron-picture analysis
from Sec. 4.3 and the exciton-picture analysis from Sec. 4.4.1, recombination correlations con-
taining different numbers of phonon operators are not coupled such that all phonon sidebands
can be calculated separately.

4.4.2.2 Steady-state luminescence formula in the polaron picture

The phonon-assisted semiconductor luminescence equations can be solved analytically to cal-
culate steady-state luminescence for arbitrary-order phonon sidebands. The spontaneous-
emission source terms in Eq. (4.46) consist of multiple-phonon-assisted two-carrier correla-
tions. In general, the cluster expansion of these contributions would produce a multitude of
correlations containing different numbers of phonon creation and annihilation operators. Since
the specific details of the phonon dynamics are unlikely to have a significant influence on the
sideband luminescence, we evaluate the source terms by means of a bath approximation for the
phonon subsystem. More explicitly, we factorize the phonon-assisted carrier correlations into
expectation values over the carrier and over the phonon parts. When expanding the phonon
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4 Phonon sidebands in the luminescence spectrum

part, we neglect all correlations except for phonon numbers. In this work, we only consider ma-
terials where the optical-phonon energies ~Ω are considerable larger than the thermal energies
kBT . Then, it is justified to neglect thermal phonon populations, and the phonon correlations
are evaluated as

〈vac|
(

eĈ
)

p′,0

[(

d̂†
)α
d̂β
]

0,p
|vac〉 = δβ,0δp,p′e−G/2(Qα)p,0 (4.48)

with the matrix (Q)k,k′ ≡ |∆gk−k′ |2 and G ≡ ∑

p |∆gp|2 where |vac〉 denotes the phonon
vacuum. This procedure is consistent with the calculation of the renormalized single-particle
energies as presented in Appendix F.2 and reduces the source terms to densities and excitonic
correlations. Because phonon-absorption processes are not included anymore in the analysis,
the calculated luminescence spectrum will only have phonon replica on the low-energy side of
the zero-phonon line, analogously to the results from Secs. 4.3 and 4.4.1.

In order to solve the luminescence equations analytically, we need to diagonalize the homo-
geneous part of Eq. (4.46). Again, this task can be achieved with the help of the exciton basis
from Appendix A, we only have to replace the eigen-value equations (A.5), (A.6) by

Eν(Q)φR
ν,Q(k) =

∑

k′

Āk,k′(Q)φR
ν,Q(k′), (4.49)

[

φL
ν,Q(k)

]∗
Eν(Q) =

∑

k′

[

φL
ν,Q(k′)

]∗
Āk′,k(Q). (4.50)

Because the latter equations contain Āk′,k(Q) instead of the matrix Ak′,k(Q) from Eq. (4.10),
they lead to different excitonic eigen energies. The physical reason for this modification is that
the non-perturbative treatment describes the phonon-induced shifts of the optical resonances
fully consistently, including effects that would only follow from higher-order clusters in the
electron-picture analysis.

When we assume stationary distributions for densities and electron-hole correlations, we can
use the exciton basis to derive a compact steady-state formula for arbitrary-order sidebands,

IPL(ω) =

∞
∑

n=0

∑

ν

I
(n)
PL,ν(ω). (4.51)

Luminescence at the zero-phonon line (n = 0) and the n-th replicum (n = 1, 2, . . .) of the
excitonic resonance ν follows from

I
(n)
PL,ν(ωq) =

2|Fq|2
~

e−G 1

n!

∑

Q

|φR
νQ(r = 0)|2Im

[

G(n)
Q−qNν(Q)

EνQ − n~Ω − ~ωq − iγn

]

. (4.52)

The source terms

Nν(Q) = ∆Nν(Q) +N eh
ν (Q) (4.53)

contain contributions from both excitonic population and electron-hole plasma,

∆Nν(Q) = ∆〈X̂†
ν,QX̂ν,Q〉, (4.54)

N eh
ν (Q) =

∑

k

|φL
ν,Q(k)|2f e

k+Qe
fh
k−Qh

. (4.55)
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The weight factors G(n)
Q−q are defined as iterated convolutions of the effective matrix element

∆gp = gv,p − gc,p,

G(0)
Q−q ≡ δQ,q, (4.56a)

G(1)
Q−q ≡ |∆gQ−q|2, (4.56b)

...

G(n)
Q−q ≡

∑

p1,...,pn−1

|∆gQ−pn−1|2|∆gpn−1−pn−2 |2 · · · |∆gp2−p1 |2|∆gp1−q|2. (4.56c)

The factor e−G with G =
∑

p |∆gp|2 renormalizes the whole spectrum. Thus, altering the
amplitude of ∆gQ not only changes the relative strength of the sideband emission but also
rescales the zero-phonon line, which generalizes the observation discussed after Eq. (4.20) to
higher-order processes. The phenomenological constants γn account for higher-order scattering
processes and can be fitted to the experimental line widths.

For comparison with the previous results, we consider the low-density limit, restrict the
analysis to the ground state ν = 1s, and neglect the photon momentum with respect to the
phonon momenta. The luminescence formula can then be written in a more compact form

IPL(ω) =
∑∞

n=0 I
(n)
PL (ω) with

I
(n)
PL (ω) =

2

~
|Fφ1s(r = 0)|2 e−G 1

n!
Im
∑

Q

G(n)
Q N1s(Q)

E1s(Q) − n~Ω − ~ω − iγn
. (4.57)

4.4.2.3 Relation to the exciton-picture analysis

At first glance, the steady-state luminescence formula (4.35) in the exciton picture appears to
have a very different structure than the excitonic contribution to the polaron-picture formula
(4.57). However, a close inspection reveals the conditions under which both approaches lead
to comparable sideband spectra.

We notice that Eq. (4.57) predicts vanishing phonon replica in case of band-independent
electron-phonon matrix elements gc,p = gv,p. The polaron-picture formula thus clearly un-
derestimates the phonon-assisted luminescence due to Fröhlich coupling. This can directly
be seen from the Hamiltonian in Eqs. (4.43), (4.39)–(4.42) that has the same form as the
pure electron-photon Hamiltonian Ĥel + Ĥem + Ĥel−el + Ĥel−em when gc,p = gv,p. Hence,
the artifact of vanishing sidebands is a consequence of the bath approximation for the po-
laron Hamiltonian. If the phonon operators appearing in Eq. (4.38) were fully included, the
photon-assisted polarizations ∆〈B̂†â†vâc〉 would couple to all phonon-assisted recombination

correlations ∆〈B̂†â†vâc(d̂
†)αd̂β〉. Even for gc,p = gv,p, arbitrary-order sideband emission would

thus come into play via the coupled dynamics of all these quantities. Then, the polaron-
picture analysis would not provide any advantage over the electron-picture analysis but would
actually be even more complicated. However, the numerical examples from Secs. 4.3.3.1 and
4.4.1.2 suggest that in many experimental situations, the strongly band-dependent optical
deformation-potential interaction yields the main contribution to the sideband luminescence.
The explicit evaluation of the first replicum with the exact Hamiltonian (4.38) indicates that
in that case, the bath approximation produces reasonable results.

As discussed in Sec. 4.4.1.2, only 1s-1s scattering has to be considered for optical deformation-
potential coupling. In order to compare the exciton-picture and the polaron-picture results,
we should therefore restrict all νj sums in the exciton-picture formula (4.35) to the ground
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4 Phonon sidebands in the luminescence spectrum

state νj = 1s. Contrary to the electron-phonon matrix element gλ,p = const, the exciton-
phonon matrix element g1s,1s

p decays rapidly for large |p| as shown in Fig. 24. It follows that
effectively, only small center-of-mass kinetic energies appear in the energy denominators in the
last two lines of Eq. (4.35). When we neglect these energies with respect to the optical phonon
energy ~Ω, the sideband luminescence formula in the exciton picture simplifies considerably.
Explicitly, we obtain

I
(n)
PL (ω) ≃ 2

~
|Fφ1s(r = 0)|2 1

n!
Im
∑

Q

H(n)
Q ∆N1s(Q)

E1s(Q) − n~Ω − ~ω − iγn
(4.58)

with the iterated convolutions

H(n)
Q ≡

∑

p1,...,pn−1

∣

∣

∣
g1s,1s
Q−pn−1

∣

∣

∣

2∣
∣

∣
g1s,1s
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∣

∣

∣

2

· · ·
∣

∣

∣
g1s,1s
p2−p1

∣

∣

∣

2∣
∣

∣
g1s,1s
p1

∣

∣

∣

2

(4.59)

that are defined analogously to Eq. (4.56). Apart from the renormalization factor e−G, the
only difference between Eq. (4.57) and Eq. (4.58) is that the polaron-picture formula contains
|∆gp| = |gv,p − gc,p| instead of |g1s,1s

p |. As already noticed above, ∆gp is nothing else but
the small-p limit of g1s,1s

p . We conclude that the polaron-picture analysis basically reproduces
the results from the exciton-picture analysis so long as optical deformation-potential coupling
is considered. The advantage of the non-perturbative treatment is that the analysis is not
restricted to emission from excitonic populations. The numerical examples in Sec. 4.3.3.2 show
that at least at low temperatures, uncorrelated plasma and excitonic populations contribute
additively to the sideband luminescence. Because this observation is reproduced by Eq. (4.57),
we expect that the polaron-picture approach also describes higher-order plasma emission cor-
rectly.

In spite of the formal elegance of the luminescence formula, the evaluation of higher-order
sidebands with Eq. (4.58) is still rather involved. For the n-th replicum in a d-dimensional
system, dn-dimensional integrals have to be computed. To make our theoretical results more
practical, we replace the explicit form of g1s,1s

p by an effective matrix element geff
p . At the

Γ point, geff
p=0 = ∆gp=0 = g1s,1s

p=0 , while for large p, the coupling strength decays like geff
p =

∆gp=0ϕ(|p|) where ϕ(0) = 1 and ϕ(|p|) vanishes on a certain decay length σ. The parameter σ
can be fitted such that very different explicit forms of ϕ(p) yield very similar sideband spectra.
This observation justifies our model for the matrix element in hindsight. For simplicity, we take
ϕ(p) as a Gaussian of width σ. This choice enables us to evaluate the luminescence formula
analytically for arbitrary phonon replica. From Eq. (4.58), we obtain

I
(n)
PL (ω) ≃ 2

~
|Fφ1s(r = 0)|2fn(ω)

Kn

n!
(4.60)

where

K ≡
(

L

2π

)3

|∆gp=0|2
(

σ
√

2π
)3

(4.61)

with the quantization length L and

fn(ω) ≡
∫

Φσ
√

n(|Q|) Im

[

N1s(Q)

E1s(Q) − n~Ω − ~ω − iγn

]

d3Q (4.62)
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4.4 Higher-order sidebands

Figure 25: Sideband spectra calculated with the exact formula (4.35) (shaded areas) and with the
compact formula (4.60) (solid lines) for GaN bulk at three different temperatures. We assume optical
deformation-potential interaction with coupling constant d0 = 21.3 eV. A reasonable fit is obtained
by using a decay length a0σ = 2.8 in the compact formula.

with the normalized Gaussian Φσ(Q) = (σ
√

2π)−3 exp(−Q2/2σ2). By comparison with the
exact formula (4.35), we can define a unique procedure to determine the Gaussian width σ. It
turns out that, as illustrated in Fig. 25, σ can generally be fitted such that Eqs. (4.35) and (4.60)
yield very similar results for the first two sidebands in a wide temperature range. Having fixed
σ, one can then use the much more compact formula (4.60) to compute higher-order sidebands.

4.4.3 Numerical case studies

Now that we have the luminescence formulas (4.35), (4.60) at our disposal, we can extend our
numerical case studies to higher-order replica. In Sec. 4.4.3.1, we calculate how the relative
sideband intensities depend on the carrier temperature. Phonon-assisted emission from free
and impurity-bound excitons is compared in Sec. 4.4.3.2. Finally, we analyze phonon replica
due to non-polar optical modes in Sec. 4.4.3.3.
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4 Phonon sidebands in the luminescence spectrum

Figure 26: Relative intensity of the first phonon sideband as function of temperature for a GaN
epilayer. The bold dots mark the experimental data [56]. Solid and dashed lines represent calculated
results with and without inclusion of the optical deformation-potential interaction, respectively. For
frame (a), we take the measured intensity ratios, while for frame (b), we compensate for an assumed
amount of re-absorption of light emitted at the zero-phonon line.

4.4.3.1 Temperature dependence of the sideband emission

We have found in Sec. 4.3.3.1 that even in strongly polar semiconductors where the
electron-phonon scattering rates are mainly determined by the Fröhlich coupling, the opti-
cal deformation-potential interaction might provide the dominant contribution to the sideband
emission. Because this possibility is usually not considered in the literature, we need to iden-
tify clear-cut signatures in the sideband spectra that allow to distinguish between the two
electron-phonon coupling mechanisms.

In view of Fig. 20, it appears that the intensity of the first replicum relative to the zero-
phonon line would unambiguously show whether the phonon-assisted luminescence must be
assigned to the long- or to the short-range part of the electron-phonon interaction. However,
we have already mentioned in Sec. 2.2.4.2 that the optical deformation-potential constants
d0 for polar optical modes are generally less well defined than for non-polar optical modes.
An even greater drawback is that prominent sideband emission is typically observed for bulk
systems where re-absorption in the material due to polariton-propagation effects can strongly
reduce the measured intensity of the zero-phonon line. The reduction factor is difficult to
estimate because it also depends on the geometry of the sample. For quantum-well systems,
on the other hand, the intensity ratio of PSB1 and ZPL can only be calculated when the
confinement potentials are known very accurately, see Sec. 4.3.3.3. Figure 26 illustrates these
problems. The bold dots represent measured intensity ratios for a GaN epilayer as function
of temperature [56] while the lines mark the calculated results. Quantitative agreement with
the given experimental data is obtained when we combine Fröhlich interaction with optical
deformation-potential interaction where we assume a coupling constant d0 = 21.3 eV that lies
60 % below the value for non-polar optical modes as found in the literature [91]. See the solid
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line in frame (a). We see from the dashed line that Fröhlich coupling alone would yield much
weaker sideband emission. However, the authors of Ref. [56] do not quantify the re-absorption
in the epilayer. It is well possible that the polariton-propagation effects reduce the apparent
intensity of the zero-phonon line to 5.5 % of the original intensity. In that case, we would
achieve a reasonable fit by including only the Fröhlich contributions (b). Actually, any other
combination of Fröhlich coupling and optical deformation-potential coupling between these two
limiting cases would also come into consideration. We conclude that the overall amplitude of
the sideband emission relative to the zero-phonon line is not a good criterion to distinguish
the two electron-phonon interaction mechanisms.

In order to find a better criterion, we calculate the temperature dependence of the relative
intensities of the first two sidebands. To this end, we use GaN parameters with d0 = 21.3 eV
and evaluate the accurate exciton-picture formula (4.35) where we consider 1s-1s and 1s-2p
scattering for Fröhlich coupling and only 1s-1s scattering for optical deformation-potential
interaction, as justified in Sec. 4.4.1.2. The results are shown as solid lines in Fig. 27 where
for frame (a) and frame (b), respectively, only the short-range and the long-range part of the
interaction are taken into account. The intensity ratios Fn,n′ are defined as

Fn,n′ ≡

∫

I
(n′)
PL (ω) d(~ω)

∫

I
(n)
PL (ω) d(~ω)

. (4.63)

It turns out that the intensities of the first two replica relatively to the zero-phonon line roughly
follow power laws F0,n(T ) ∝ Tα0,n (shaded areas). In case n = 2, the exponents αdef

0,2 ≃ 1.57

for optical deformation-potential coupling and αFr
0,2 ≃ 1.55 for Fröhlich interaction are too close

to be useful in a theory-experiment comparison. For the first sideband, we have αdef
0,1 ≃ 1.55

and αFr
0,1 ≃ 2.20. Figure 26 demonstrates that the difference between these two exponents can

still be too small to draw a unique conclusion about the nature of the underlying coupling
mechanism. Because αdef

0,1 and αdef
0,2 are similar, F1,2 = F0,2 : F0,1 depends only weakly on the

temperature for optical deformation-potential interaction. The situation is different for Fröhlich
interaction where F1,2 varies over more than one order of magnitude in the temperature range
from absolute zero to 60 K. Since neither the first nor the second replicum is affected by re-
absorption in the bulk material, we conclude that it should be possible to distinguish Fröhlich
and optical deformation-potential coupling experimentally via both the amplitude and the
temperature dependence of the intensity ratio of the first two sidebands.6

4.4.3.2 Free and bound excitons

Luminescence spectra can feature phonon sidebands due to both free excitons (FX) and
impurity-bound excitons (BX). Actually, strong FX emission is only observed with high-purity
samples. As a general rule, BX dominate at low and FX at elevated temperatures, which can
be ascribed to thermal ionization of the bound excitons [135]. We show in this section how
both FX and BX replica can be analyzed with our theory.

When evaluating steady-state luminescence, we may assume that the free excitons are ther-
mally distributed. More explicitly, the free-exciton populations obey a Bose-Einstein distribu-
tion fBE,

∆NFX(Q) = ∆〈X†
1s,QX1s,Q〉 = fBE

(

Ecom(Q)
)

, (4.64)

6In praxis, the analysis is often complicated by the fact that the carrier temperatures are not well known.
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4 Phonon sidebands in the luminescence spectrum

Figure 27: Calculated temperature dependences (solid lines) of the relative sideband intensities for
GaN parameters with (a) optical deformation-potential interaction and (b) Fröhlich interaction. The
ratios Fn,n′ are explicitly defined as Fn,n′ = J(n′)/J(n) with the spectrally integrated intensities

J(n) =
R

I
(n)
PL (ω) d(~ω). The shaded areas represent power-law fits F0,n(T ) ∝ T α0,n .
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4.4 Higher-order sidebands

Figure 28: Sideband emission due to free and impurity-bound excitons.
Left frame: Calculated spectra for free (shaded areas) and bound (solid lines) excitons at low tem-
perature (a) and room temperature (b). A constant homogeneous broadening γn = 2meV is used for
all resonances. The distance between neighboring vertical dashed lines corresponds to a LO-phonon
energy of 73.5 meV as in bulk ZnO. For a better comparison, the spectra are shifted and normalized
such that the zero-phonon lines (ZPL) coincide.
Right frame: Measured (shaded areas) and calculated (solid lines) spectra for a ZnO bulk system at
90K (c) and 250 K (d). The zero-phonon lines due to free and bound excitons are indicated by FX
and BX, respectively. The dash-dotted lines represent the contribution from bound excitons. As in
the left frame, vertical dashed lines mark the phonon-assisted resonances due to free excitons. The
experimental data have been extracted from Ref. [48].
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with respect to the center-of-mass kinetic energies Ecom(Q) = ~
2|Q|2/2M . Impurity-bound

excitons can form in three genuinely different ways: The electron is bound to a donor while
the hole is free, the hole is bound to an acceptor while the electron is free, or the whole exciton
is trapped. While these three cases generally lead to different excitonic resonances, we can
treat them identically by considering the limit M → ∞ of infinite exciton mass. Then, the
center-of-mass kinetic energy approaches zero and the excitons are uniformly distributed over
all momenta in the Brillouin zone. The corresponding distributions become

∆NBX(Q) = nBXVuc = const (4.65)

where nBX denotes the density of bound excitons and Vuc the unit-cell volume.
The fact that bound excitons have constant occupation numbers becomes manifest in the

line shapes of the phonon sidebands. This is demonstrated in the left frame of Fig. 28 where we
assume identical homogeneous broadening γn for the zero-phonon line (n = 0) and all replica
(n ≥ 1) and neglect the temperature dependence of γn in order to emphasize the essential
differences between the FX and the BX luminescence. Since electron-hole pairs with arbitrary
center-of-mass momentum can contribute to the sideband emission, the FX replica feature
extended high-energy tails at elevated temperatures (b) whereas the BX replica are much more
symmetric. At low temperatures (a), the asymmetry of the FX sidebands is strongly reduced
and, contrary to the bound case, the relative intensity of the phonon-assisted luminescence is
weaker because only few electron-hole pairs with large center-of-mass momentum are available.
One additionally observes that the maxima of the FX sidebands are blue-shifted with increasing
carrier temperature [136] while the BX peaks do not change their positions.

In actual experimental spectra, the situation is more complicated than in our illustrative case
study. The right frame of Fig. 28 shows experimental and numerical results for a ZnO bulk
system at two different temperatures. The shaded areas present the measured spectra which
have been extracted from Ref. [48] while the solid lines correspond to the calculated results. At
T = 90 K (c), both free and bound excitons contribute to the spectrum. Here, the dominant
peaks are the BX zero-phonon line and the FX phonon replica. The FX zero-phonon line is
strongly diminished and only appears as a small shoulder on the BX peak. This observation
can be related to re-absorption in the bulk material due to polariton-propagation effects. Our
theoretical results agree quantitatively with the measured spectra for an optical deformation
potential of d = 32.6 which lies 18 % below the value for non-polar optical scattering as found
in the literature [91]. The long-ranged Fröhlich interaction alone would yield a two orders of
magnitude smaller intensity ratio of first and second replicum. The fact that doping locally
changes the chemical composition of the crystal can be expected to influence the short-range
part of the phonon coupling for an exciton that is bound to an impurity. We can fit the
measured spectrum by assuming that the effective deformation potential for BX is reduced by
about 60 % with respect to FX.7 The corresponding BX contribution to the sideband spectrum
is represented by the dash-dotted curve. The authors of Ref. [48] have found that at tempera-
tures below 20 K, the replica of the BX peak are stronger than the FX sidebands. While 90 K
lies in the intermediate regime where both FX and BX features can be detected, we do not
need BX population anymore to reproduce the spectrum measured at T = 250 K (d). Here,
the FX phonon replica smear out completely because all spectral lines broaden with increasing
temperature.

Phonon sidebands due to free and impurity-bound excitons are particularly easy to distin-
guish when the temperature dependence of the luminescence spectrum is analyzed. Because

7Calculations of the exciton-polaron dispersion [134, 137] indicate that also the Fröhlich interaction with BX
is strongly reduced in ZnO [138].
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Figure 29: (a) Intensity of the first phonon sideband relative to the zero-phonon line for a InGaN
quantum well as function of temperature. The bold dots represent the measured data [139], the lines
show the calculated temperature dependencies for free excitons with optical deformation-potential
(solid) and Fröhlich coupling (dashed). The shaded area gives the calculated results for impurity-
bound excitons. (b) Measured photoluminescence spectra for the InGaN quantum well at two different
temperatures. The almost Gaussian line shape (shaded area) of the zero-phonon line indicates strong
inhomogeneous broadening.

BX have no center-of-mass dispersion and the zero-phonon line and all replica are equally af-
fected by thermal ionization, the intensity ratios of any two of these peaks do not depend on
the temperature, in striking contrast to the FX case considered in Sec. 4.4.3.1. For quantum-
well systems, the spectral positions of the FX and BX resonances are usually not well known
a priori. An experimental study of the sideband spectrum can therefore be a useful tool to
draw a conclusion which kind of excitons are present in the material. This is illustrated in
frame (a) of Fig. 29 where the ratio F0,1 of the integrated intensities of PSB1 and ZPL is
plotted as function of temperature for a InGaN single quantum well with 20 % In content and
a well width of about 3 nm [139]. The bold dots represent fit results for the measured photo-
luminescence spectra. Based on the weak temperature dependence, the observed emission can
unambiguously be assigned to BX (shaded area). For comparison, calculated ratios for FX with
optical deformation-potential coupling (solid line) and Fröhlich coupling (dashed line) are also
plotted where the overall amplitudes are chosen such that the calculated results coincide with
the experimental result at T = 30 K. Frame (b) of Fig. 29 shows representative spectra at two
different temperatures. In the InGaN quantum-well system, BX emission can still be detected
at room temperature (dashed line) where the peaks have not yet smeared out. Moreover, we
notice that the ZPL has an almost Gaussian line shape, as demonstrated by the shaded area
for the spectrum at T = 60 K (solid line). This observation indicates strong inhomogeneous
broadening due to disorder. Already for the ZnO spectrum presented in the right frame of Fig.
28, we had to account for a certain amount of inhomogeneous broadening in the calculations to
achieve quantitative agreement with the measured data. An elementary discussion of sideband
emission from disordered systems will be given in Appendix G.
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4 Phonon sidebands in the luminescence spectrum

Figure 30: (a) Calculated ZnO nanorod spectrum at room temperature T = 293 K for an optical
deformation-potential constant d0 = 39.8 eV. Vertical lines indicate the exciton-phonon resonances
E1s − n~Ω with the phonon energy ~Ω = 41 meV of the non-polar 2-E2 mode according to Ref. [55].
The solid vertical line marks the position of the zero-phonon line (n = 0). (b) Integrated sideband
intensities J(n) as function of the sideband label n. The solid line gives the fit result based on a
Huang-Rhys law J(n) ∝ Sn/n!.

4.4.3.3 Phonon replica due to non-polar optical modes

In typical experimental luminescence spectra, the sideband intensities decrease rapidly with
increasing order of the phonon replica. The spectrally integrated intensities J(n) ≡
∫

I
(n)
PL (ω) d(~ω) are often found to obey the so-called Huang-Rhys law [140]

J(n) ∝ Sn

n!
(4.66)

where only for very efficient electron-phonon coupling, the Huang-Rhys factor S exceeds unity.
However, a recent publication [55] reports on exceptionally strong sidebands in ZnO nanorod
spectra at room temperature that are remarkable in two different aspects: First, numerous
phonon replica were observed with a strongly non-monotonous behavior of the sideband in-
tensities. Moreover, the replica could unambiguously be assigned to non-polar optical modes
in view of the energy spacing between the resonances. Consequently, the LO-phonon assisted
luminescence in those samples can only be due to optical deformation-potential interaction.
This makes the ZnO nanorods ideal systems to test our compact luminescence formula (4.60)
that does not include Fröhlich contributions.

The diameters of the investigated nanorods were of the order of 100 nm, which is much larger
than the exciton Bohr radius in ZnO of 0.9 nm. Therefore, the carrier system in those nanorods
is essentially three-dimensional. In principle, the rod geometry can affect the phonon spectrum
[141], but for the reasons discussed in Sec. 2.2.4.1, we may assume that the confinement has
only a weak influence on the electron-phonon interaction. It is thus justified to apply the
bulk formula (4.60) also to the nanorod case. For bound excitons, a spectral integration over
the factor fn(ω) defined in Eq. (4.62) yields Fn ≡

∫

fn(ω)d(~ω) = πnBXVu.c. in view of Eq.
(4.65) such that the integrated sideband intensities follow a Huang-Rhys law with S = K. The
luminescence from Ref. [55] could be assigned to free excitons where the dependence of Fn on
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4.4 Higher-order sidebands

the sideband label n leads to small deviations from the Huang-Rhys behavior.
Frame (a) of Fig. 30 shows the analytical result for an optical deformation-potential constant

d0 = 39.8 eV [91] and a Gaussian width σ of 1.0 inverse Bohr radii as determined via the
procedure described at the end of Sec. 4.4.2.3. With these parameters, we actually obtain a
similar spectrum as in the above mentioned experiment. As can be seen in frame (b) of Fig.
30, the integrated intensities follow the Huang-Rhys law (4.66) very accurately. However, the
Huang-Rhys factor S = 10.1 is remarkably strong. Since a Poisson distribution approaches a
Gaussian distribution for large mean values, we can approximately rewrite the Huang-Rhys
formula as

J(n) ∝ eS

√
2πS

exp

(

− [n− S]2

2S

)

, (4.67)

which underlines that the intensity maximum is reached away from the zero-phonon line at the
n-th replicum with n ≃ S.

It should be noted that in the majority of luminescence experiments with ZnO nanowires,
similar spectra as in the right frame of Fig. 28 are measured where the phonon replica originate
from polar optical modes [142, 143]. While our theory reproduces the extraordinary sideband
emission observed for non-polar modes, we cannot identify the conditions that favor the par-
ticipation of polar or non-polar optical phonons in the radiative recombination of electron-hole
pairs. To answer this question, the theoretical approach would possibly have to go beyond
the semi-phenomenological treatment of the electron-phonon coupling presented in Sec. 2.2.4.2
and to account, e.g., for the anisotropy of the optical deformation-potential interaction.
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5 Conclusions and outlook

In this thesis, we have combined the Heisenberg equation-of-motion approach with a cluster
expansion scheme to describe the coupled dynamics of electron-electron, electron-photon,
and electron-phonon correlations in semiconductor materials. This general theoretical
framework has been employed to compute the optical absorption and emission of quantum-dot
systems and to analyze phonon sidebands in the luminescence spectra of polar semiconductors.

For a consistent microscopic treatment of interacting quantum-dot electrons coupled to a
quantized light field, we have followed the spirit of earlier works on quantum-well and quantum-
wire systems and have truncated the equation hierarchy on the singlet-doublet level of cluster
expansion. In other words, our theory includes densities, polarizations, classical light fields,
and all kinds of Coulombic and quantum-optical two-particle correlations. Regarding the
internal degrees of freedom of the dot, our approach competes with diagonalization methods
that can yield the exact energy spectrum of the interacting carriers if the dot contains only a
small number of discrete single-particle states. We have therefore performed a generic phase-
space analysis demonstrating that singlets and doublets are sufficient to characterize stable
configurations of the dot system with well-defined optical resonances. As in higher-dimensional
cases, bound electron-hole pairs, i.e. excitons, and electron-hole plasma can be identified by
evaluating the carrier-carrier correlations in the system. We have found that a quantum dot
in the low-density regime can have stable many-body configurations ranging from pure plasma
up to fully correlated electron-hole pairs.

Depending on the physical phenomena that are to be studied, two different sets of equations
of motion have to be solved. The semiconductor Bloch equations (SBE) describe the coherent
excitation of the carrier system when it is driven by a classical light field. The quantum emis-
sion from the dot under incoherent conditions follows from the semiconductor luminescence
equations (SLE). We have introduced an exciton basis that enables us to express analytical
approximations for both the linear absorption and the stationary luminescence spectrum. Due
to the symmetries of the excitonic eigen functions, only a small subset of the excitonic eigen
energies can be observed as optical resonances. Analogously to higher-dimensional semicon-
ductor structures, both excitonic correlations and uncorrelated plasma provide contributions to
the steady-state luminescence that cannot be distinguished by a standard photoluminescence
experiment.

The particular strength of the cluster-expansion approach lies in the fact that it can straight-
forwardly be generalized to describe the influence of the environment on the quantum dot. To
this end, the existing theory does not need to be reformulated but the new coupling effects sim-
ply lead to additional terms in the equations of motion. As a concrete example, we have studied
the interaction with a reservoir of acoustic lattice vibrations. After resonant optical excitation
of the dot, phonon-assisted processes give rise to dephasing of coherent quantities such as the
microscopic polarizations, to efficient build-up of excitonic population, and to thermalization
of the carrier system. All these effects have been studied previously for quantum-well systems.
However, recent theoretical and experimental results suggest that a quantitative analysis of
phonon-related phenomena in quantum dots requires the inclusion of optical phonons where
the strong-coupling regime must be considered to avoid the phonon-bottleneck problem.
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5 Conclusions and outlook

The quantum-dot theory presented in this thesis may be extended into several directions.
On the one hand, one could improve the treatment of the carrier-phonon interaction along the
above mentioned lines and add the coupling between dot- and wetting-layer carriers to study
all kinds of effects related to the solid-state environment of the quantum dot. On the other
hand, one could compute higher-order correlation functions to analyze the quantum statistics
of the emission. For example, in order to describe photon antibunching, conditional detection
probabilities would have to be evaluated which are four-particle quantities in the language of
the cluster expansion.

Besides the general microscopic theory of semiconductor quantum-dot systems, we have
presented a possible technical application of quantum dots in the field of Zeno-based optoelec-
tronics. More explicitly, we have proposed a device design that allows conditional absorption
of a signal field depending on the presence of a control field. The former field is resonant
with the exciton-to-biexciton transition while the latter field is resonant with the transition
from the ground state to the exciton state in an ensemble of identical quantum dots. For a
simple theoretical model, we have chosen an elementary approach where each dot is treated
as a system of three non-interacting levels. The operation of the device can then be studied
via a full numerical solution of the optical Bloch equations. For CdSe-based quantum dots,
high contrasts between the absorption with and without control are obtained in a wide range
of device parameters. In the future, our fully microscopic theory could be generalized to
higher-order Coulomb correlations in order to analyze the influence of the different coupling
effects on the function of the device.

When the cluster-expansion approach is applied to the phonon-sideband problem, one can
clearly assign phonon-assisted processes of different orders to different levels of cluster expan-
sion. For the main contribution to the n-th replicum on the low-energy side of the exciton
peak in the luminescence spectrum, recombination correlations involving n phonon creation
operators have to be evaluated. The dynamics of these (n+2)-particle correlations is described
by the LO-phonon-assisted SLE. Using the exciton basis, steady-state luminescence at the first
phonon sideband can be calculated analytically. Similarly to the zero-phonon line, both plasma
and excitonic populations lead to emission at the same wave lengths. We have found that at
least at low temperatures, the line shapes and relative sideband intensities are so similar that
the different luminescence sources cannot be distinguished by a standard photoluminescence
experiment.

For the analysis of higher-order sideband emission, we have derived phonon-assisted SLE
in the polaron picture. Here, the electron-phonon interaction is treated non-perturbatively
with the effect that the different phonon replica can be computed separately. This procedure
yields a compact luminescence formula for arbitrary-order sidebands where plasma and excitons
contribute additively. Because the polaron-picture analysis relies on a bath approximation
where a phonon reservoir at zero temperature is assumed, it reproduces the low-temperature
limit of the accurate formula for the first sideband.

In order to relate the cluster-expansion approach to existing perturbative treatments of LO-
phonon assisted luminescence, we have also considered the exciton picture as used in those
earlier works. Since the hierarchy problem arising from the Coulomb interaction is eliminated
when the excited carrier system is purely described in terms of excitons, the phonon-assisted
SLE in the exciton picture can be solved recursively to calculate steady-state luminescence for
arbitrary-order replica. However, only the correlated emission sources are taken into account
with such an approach. It turns out that the cluster-expansion analysis in the exciton picture
yields very similar spectra as the well-established perturbational theory. By comparison with
the polaron-picture formula, we have developed a practical way to investigate systems with
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very strong electron-phonon coupling where the luminescence spectrum can feature numerous
phonon sidebands.

The short-range part of the interaction between electrons and LO phonons can be modeled
with the help of optical deformation potentials. In polar media, there is also the long-ranged
Fröhlich coupling due to the oscillating macroscopic polarizations induced by longitudinal op-
tical lattice vibrations. Usually, the intra-band scattering is clearly dominated by the Fröhlich
part. By contrast, our calculations indicate that even in strongly polar semiconductors, the
short-range part can provide the main contribution to the phonon replica. For bulk systems,
sideband emission due to Fröhlich and optical deformation-potential interaction can be distin-
guished via both the amplitude and the temperature dependence of the intensity ratio of the
first two replica.

In order to evaluate and test our theory of the phonon-sideband problem, we have performed
a number of numerical case studies. We have found that above a certain critical temperature,
a bulk sample should feature stronger sideband emission than a quantum-well sample with the
same material parameters. Sidebands originating from free and impurity-bound excitons can be
identified in view of their line shapes and temperature dependences. The exceptionally strong
phonon replica due to non-polar optical modes that have been observed in recent experiments
with ZnO nanorods can be interpreted in the light of our theory.

The theoretical analysis presented in this thesis raises a couple of questions that might be
answered in future experiments. At the time of writing these lines, sideband emission from
uncorrelated electron-hole plasma has not yet been verified experimentally. The influence of the
optical deformation-potential interaction on phonon replica ascribed to polar modes is barely
discussed in the literature. A possible practical application of phonon-assisted luminescence
is the construction of a low-threshold laser that is pumped at the excitonic resonance but
emits at the first sideband. For the theoretical description of such a set-up, the phonon-
assisted luminescence equations have to be solved simultaneously with the semiconductor Bloch
equations.
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A Exciton basis

Excitons can be defined as electron-hole pair states with minimum energy. More explicitly, one
starts from a general single-pair state with a well-defined center-of-mass momentum ~Q,

|XQ〉 =
∑

β,β′

φ(k)â†c,k+Qe
âv,k−Qh|G〉, (A.1)

where Qe/h = (me/h/M)Q with the total mass M = me +mh of an electron-hole pair while

|G〉 =
∏

k â
†
v,k|vac〉 denotes the ground state of the semiconductor that is characterized by a

fully occupied valence band and an empty conduction band. The coefficients φ(k) are chosen
so as to minimize the energy of the carrier system

Eel ≡ 〈XQ|Ĥel + Ĥel−el|XQ〉 (A.2)

under the constraint that |XQ〉 is normalized. The variational principle leads to an Hermitian
eigenvalue problem for the excitonic wave functions φ(k), the so-called Wannier equation

Eν(Q)φν(k) =
(

εek+Qe
+ εhk−Qh

)

φν(k) −
∑

k′

Vk−k′φν(k′) (A.3)

where Eν(Q) = Eν +~
2|Q|2/2M decomposes into the excitonic eigen energy Eν and the center-

of-mass energy of the electron-hole pair. For parabolic bands, the Wannier equation in direct
space has the same mathematical form as the Schrödinger equation for the relative motion of a
hydrogen atom, albeit with a different reduced mass and a different background permittivity.
The energy Eel of the ν-th exciton state

|Xν,Q〉 =
∑

k

φν(k)â†c,k+Qe
âv,k−ph

|G〉 (A.4)

is then given by Eν(Q).

In case of vanishing densities f
e/h
k = 0, the excitonic wave functions φν(k) are nothing else

but the eigen solutions of the homogeneous part of the semiconductor Bloch equations. In order
to retain this useful property for finite densities, the exciton problem has to be generalized.

For non-vanishing f
e/h
k , the eigenvalue problem defined by the SBE becomes non-Hermitian

such that eigen vectors with different eigenvalues are not necessarily orthogonal anymore. In
this case, it is practical to introduce right- and left-handed eigen functions φR

ν,Q and φL
ν,Q,

respectively, that solve the eigenvalue equations

Eν(Q)φR
ν,Q(k) =

(

ε̃ek+Qe
+ ε̃hk−Qh

)

φR
ν,Q(k)

−
(

1 − f e
k+Qe

− fh
k−Qh

)

∑

k′

Vk−k′φR
ν,Q(k′), (A.5)

[

φL
ν,Q(k)

]∗
Eν(Q) =

[

φL
ν,Q(k)

]∗ (
ε̃ek+Qe

+ ε̃hk−Qh

)

−
∑

k′

[

φL
ν,Q(k′)

]∗ (
1 − f e

k′+Qe
− fh

k′−Qh

)

Vk−k′ (A.6)
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A Exciton basis

and can be shown to obey the generalized orthogonality and completeness relations

∑

k

[

φL
ν,Q(k)

]∗
φR

ν′,Q(k) = δν,ν′ , (A.7)

∑

ν

[

φL
ν,Q(k)

]∗
φR

ν,Q(k′) = δk,k′ . (A.8)

In view of Eqs. (A.7), (A.8), one can define excitonic creation and annihilation operators

X̂†
ν,Q =

∑

k

φL
ν,Q(k)â†c,k+Qe

âv,k−Qh
, (A.9a)

X̂ν,Q =
∑

k

[

φL
νQ(k)

]∗
â†v,k−Qh

âc,k+Qe
, (A.9b)

which can be inverted back into the single-particle basis via

â†c,k+Qe
âv,k−Qh

=
∑

ν

[

φR
ν,Q(k)

]∗
X̂†

ν,Q, (A.10)

â†v,k−Qh
âc,k+Qe

=
∑

ν

φR
ν,Q(k)X̂ν,Q. (A.11)

In the low-density regime, it is often justified to replace φ
L/R
ν,Q (k) by φν(k) and to use the

relations
∑

k

φν(k)∗φν′ (k) = δν,ν′ , (A.12)

∑

ν

φν(k)∗φν(k′) = δk,k′ . (A.13)

instead of Eqs. (A.7), (A.8).
Due to the fermionic substructure of the electron-hole pairs, the exciton operators do not

fulfill bosonic commutation relations such that X̂†
ν,QX̂ν,Q does not have the properties of a

number operator. However, when a dominant amount of excitons has built in the carrier
system, the correlated part

∆Nν(Q) ≡ ∆〈X̂†
ν,QX̂ν,Q〉 (A.14)

may be interpreted as population of the exciton state with quantum number ν and center-of-
mass momentum ~Q [7].

108



B Markov approximation

Because several slightly different kinds of approximations are covered by the term Markov
approximation in the literature, we briefly define our approach in this appendix.

We consider a generic equation of motion

i~
d

dt
X = (EX − iγ)X +

∑

j

Sj (B.1)

where we assume that each source term Sj has a dominant oscillation frequency Ej/~, i.e.
Sj(t) = S0

j (t)e−iEjt/~ with a slowly varying envelope S0
j (t). By separation of time scales, the

formal solution

X(t) = − i

~

∑

j

∫ t

−∞
Sj(t)e

−i(EX−iγ)(t−t′)/~ dt′ (B.2)

of Eq. (B.1) can then be rewritten as

X(t) ≃
∑

j

Sj(t)

Ej − EX + iγ
= −

∑

j

Sj(t)gγ(EX − Ej) (B.3)

where

gγ(E) ≡ 1

E − iγ

γ→0−→ P(1/E) + iπδ(E) (B.4)

with the principal value P(1/E) and the Dirac delta function δ(E). We notice that the
Markov approximation (B.3) reduces to the steady-state solution for X when all source terms
are (quasi) stationary such that Ej = 0.

109



B Markov approximation

110



C Supplement to the quantum-dot

analysis

Based on the general results from Chap. 2, the matrix elements for the lens-shaped self-
assembled quantum dot are explicitly evaluated in Sec. C.1. In order to close the SBE on
the singlet-doublet level of cluster expansion, we present the semi-classical dynamics of all
possible two-particle correlations in Sec. C.2.

C.1 Matrix elements

C.1.1 Coulomb interaction

The explicit form of the Coulomb Hamiltonian for the quantum-dot carriers is found from Eqs.
(2.94)–(2.96) by considering the case d = 0 where r‖ = 0 and r⊥ = r. For the matrix element
in Eq. (3.14), we thus obtain

V β1β2

β3β4
= δσ1,σ4δσ2,σ3V

eff β1β2

β3β4
(C.1)

where

V eff β1β2

β3β4
=

e2

4πǫ0ǫb

∫∫

ζ∗β1
(r)ζ∗β2

(r′)
1

|r − r′|ζβ3
(r′)ζβ4

(r) d3r d3r′ (C.2)

with the confinement wave functions ζβ(r) as defined in Sec. 3.1.1. In order to evaluate this
integral, we need the Fourier transform of the Coulomb potential,

1

|r| =
1

(2π)3

∫

4π

|q|2 eiq·r d3q. (C.3)

Using the decompositions r = ρ+zez and q = qρ+qzez where ez is a unit vector in z-direction
and ρ,qρ ⊥ ez, we can apply the Cauchy theorem to perform the integration over qz,

1

|r| =
4π

(2π)3

∫

ei(qρ·ρ+qzz)

q2z + |qρ|2
d2qρ dqz =

4π

(2π)3

∫

ei(qρ·ρ+qzz)

(qz + i|qρ|)(qz − i|qρ|)
d2qρ dqz

=
1

2π

∫

eiqρ·ρ

|qρ|
e−|zqρ| d2qρ. (C.4)

Inserting this result into Eq. (C.2) yields

V eff β1β2

β3β4
=

1

2π

e2

4πǫ0ǫb

∫

1

|qρ|
I0(|qρ|)Iβ1,β4(qρ)Iβ2,β3(−qρ) d2qρ (C.5)

where we have defined

I0(qρ) ≡
∫∫

|ξ(z)|2 |ξ(z′)|2 e−qρ|z−z′| dz dz′, (C.6)

Iβ,β′(qρ) ≡
∫

ψ∗
β(ρ)ψβ′(ρ)eiqρ·ρ d2ρ. (C.7)
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C Supplement to the quantum-dot analysis

The integral I0(qρ) that contains the contribution from the quantum-well confinement can be
computed analytically,

I0(qρ) =
32
(

e−πδ − 1
)

+ πδ
(

32 + 20δ2 + 3δ4
)

4δ2 (4 + δ2)2

∣

∣

∣

∣

∣

δ=qρL/π

. (C.8)

The integral Iβ1,β2(qρ) that originates from the quantum-dot confinement can be written as

Iβ1,β2(qρ) = ei(m2−m1)φ(qρ)Gβ1,β2(|qρ|) (C.9)

where φ(qρ) denotes the azimuth angle of qρ and

Gβ1,β2(qρ) ≡ 2πi(m2−m1)c0(β1)c0(β2)
∫ ∞

0

xe−2x2

x|m1|+|m2|L
|m1|
l−1

(2x2)L
|m2|
l−2

(2x2)Jm2−m1(qρx/
√
η) dx. (C.10)

Here, we have used the integral representation for the Bessel function of the first kind

Jm(x) =
1

2πim

∫ 2π

0

eix cos αeimα dα. (C.11)

The Coulomb matrix element thus takes the form

V β1β2

β3β4
= δσ1,σ4δσ2,σ3δm1+m2,m3+m4

e2

4πǫ0ǫb

∫ ∞

0

I0(qρ)Gβ1,β4(qρ)Gβ2,β3(qρ) dqρ. (C.12)

C.1.2 Electron-phonon interaction

The explicit form of the acoustic deformation-potential matrix element in Eq. (3.88) follows
from Eq. (2.63) together with Eq. (2.58). We find that

Gλ,β,β′,p = dλ
ac

√

~|p|
2̺L 3cLA

γβ,β′(p) (C.13)

with the form factor

γβ,β′(p) =

∫

ζ∗β(r)ζβ′(r)eiq·r d3r = I1(qz)Iβ,β′(qρ). (C.14)

The quantum-well confinement enters the integral

I1(qz) ≡
∫ ∞

−∞
|ξ(z)|2eiqzz dz. (C.15)

C.2 Dynamics of the two-particle correlations

Generic singlets, two-, and three-particle correlations are written as

S
(

λ
λ′

∣

∣

∣

β
β′

)

≡ 〈â†λ,β âλ′,β′〉, (C.16)

C
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

≡ ∆〈â†λ,β â
†
λ′,β′ âλ′′′,β′′′ âλ′′,β′′〉, (C.17)

C
(

λ λ′ λ′′

λ(3)λ(4)λ(5)

∣

∣

∣

β β′ β′′

β(3)β(4)β(5)

)

≡ ∆〈â†λ,β â
†
λ′,β′ â

†
λ′′,β′′ âλ(5),β(5) âλ(4),β(4) âλ(3),β(3)〉. (C.18)
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C.2 Dynamics of the two-particle correlations

The mean-field energies Ec
β,β′ = Ee

β,β′ and Ev
β,β′ = −Eh

β,β′ are defined in Eq. (3.25). For the
renormalized Rabi frequencies, we use a slightly more general notation than in Sec. 3.2.1,

Ωλ
β,β′ ≡ δβ

β′dλ,λ ·E +
∑

β1,β2

V β β1

β′β2
S
(

λ
λ

∣

∣

∣

β1

β2

)

(C.19)

where

λ ≡
{

v for λ = c,

c for λ = v.
(C.20)

Moreover, we introduce generalized phase-space filling and exchange factors

FI

(

λ
λ′

∣

∣

∣

β′′β
β′ β′′′

)

≡ δβ′′

β S
(

λ
λ′

∣

∣

∣

β
β′′′

)

− S
(

λ
λ′

∣

∣

∣

β′′

β′

)

δβ
β′′′ , (C.21)

FII

(

λ′′λ
λ′ λ′′′

∣

∣

∣

β′′β
β′ β′′′

)

≡ δλ′′
λ′ δ

β′′

β′ S
(

λ
λ′′′

∣

∣

∣

β
β′′′

)

− S
(

λ′′
λ′

∣

∣

∣

β′′

β′

)

δλ
λ′′′δ

β
β′′′ , (C.22)

FIII

(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

≡ δλ
λ′′δ

β
β′′δ

λ′
λ′′′δ

β′

β′′′ − δλ
λ′′δ

β
β′′S

(

λ′
λ′′′

∣

∣

∣

β′

β′′′

)

− S
(

λ
λ′′

∣

∣

∣

β
β′′

)

δλ′
λ′′′δ

β′

β′′′ . (C.23)

With these notations, the dynamics of the incoherent two-particle correlations (3.58), (3.60),
(3.61) and the coherent two-particle correlations (3.83), (3.84), (3.85) follows from

i~
d

dt
C
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

= M
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

+ X
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

+ S
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

+ L
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

+ T
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

. (C.24)

Here,

M
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

≡
∑

β1

[

−Eλ
β1,βC

(

λ λ′
λ′′λ′′′

∣

∣

∣

β1 β′

β′′β′′′

)

− Eλ′
β1,β′C

(

λ λ′
λ′′λ′′′

∣

∣

∣

β β1

β′′β′′′

)

+Eλ′′
β′′,β1

C
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β1β′′′

)

+ Eλ′′′
β′′′,β1

C
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β1

)]

(C.25)
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contains the mean-field terms,

X
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

≡
∑

β1,β2,β3,β4

∑

λ1,λ2

V β1β2

β4β3

[

FIII

(

λ1 λ2

λ′′λ′′′

∣

∣

∣

β1 β2

β′′β′′′

)

C
(

λ λ′
λ1λ2

∣

∣

∣

β β′

β3β4

)

−FIII

(

λ λ′
λ1λ2

∣

∣

∣

β β′

β1β2

)

C
(

λ1 λ2

λ′′λ′′′

∣

∣

∣

β3 β4

β′′β′′′

)]

+
∑

β1,β2,β3,β4

∑

λ1

V β1β3

β4β2

[

FI

(

λ′
λ′′′

∣

∣

∣

β1 β′

β′′′β2

)

C
(

λ λ1

λ′′λ1

∣

∣

∣

β β3

β′′β4

)

+FI

(

λ
λ′′

∣

∣

∣

β1 β
β′′β2

)

C
(

λ1λ′

λ1λ′′′

∣

∣

∣

β3β′

β4β′′′

)

+FI

(

λ′
λ′′

∣

∣

∣

β1 β′

β′′β2

)

C
(

λ λ1

λ1λ′′′

∣

∣

∣

β β3

β4β′′′

)

+FI

(

λ
λ′′′

∣

∣

∣

β1 β
β′′′β2

)

C
(

λ1 λ′

λ′′λ1

∣

∣

∣

β3 β′

β′′β4

)]

−
∑

β1,β2,β3,β4

∑

λ1,λ2

V β1β3

β2β4

[

FII

(

λ1 λ′

λ′′′λ2

∣

∣

∣

β1 β′

β′′′β2

)

C
(

λ λ2

λ′′λ1

∣

∣

∣

β β3

β′′β4

)

+FII

(

λ1 λ
λ′′λ2

∣

∣

∣

β1 β
β′′β2

)

C
(

λ2λ′

λ1λ′′′

∣

∣

∣

β3β′

β4β′′′

)

+FII

(

λ1 λ′

λ′′λ2

∣

∣

∣

β1 β′

β′′β2

)

C
(

λ λ2

λ1λ′′′

∣

∣

∣

β β3

β4β′′′

)

+FII

(

λ1 λ
λ′′′λ2

∣

∣

∣

β1 β
β′′′β2

)

C
(

λ2 λ′

λ′′λ1

∣

∣

∣

β3 β′

β′′β4

)]

(C.26)

the exchange terms, excitonic signatures, and coupling to other two-particle correlations,

S
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

≡
∑

β1,β2,β3,β4

∑

λ1,λ2

(

V β1β2

β4β3

{

S
(

λ
λ1

∣

∣

∣

β
β1

)

S
(

λ′
λ2

∣

∣

∣

β′

β2

) [

δλ1

λ′′δ
β3

β′′ − S
(

λ1

λ′′

∣

∣

∣

β3

β′′

)]

[

δλ2

λ′′′δ
β4

β′′′ − S
(

λ2

λ′′′

∣

∣

∣

β4

β′′′

)]

− S
(

λ1

λ′′

∣

∣

∣

β3

β′′

)

S
(

λ2

λ′′′

∣

∣

∣

β4

β′′′

) [

δλ
λ1
δβ
β1

− S
(

λ
λ1

∣

∣

∣

β
β1

)]

[

δλ′
λ2
δβ′

β2
− S

(

λ′
λ2

∣

∣

∣

β′

β2

)]

}

− V β1β2

β3β4

{

S
(

λ
λ1

∣

∣

∣

β
β1

)

S
(

λ′
λ2

∣

∣

∣

β′

β2

) [

δλ2

λ′′δ
β3

β′′ − S
(

λ2

λ′′

∣

∣

∣

β3

β′′

)]

[

δλ1

λ′′′δ
β4

β′′′ − S
(

λ1

λ′′′

∣

∣

∣

β4

β′′′

)]

− S
(

λ2

λ′′

∣

∣

∣

β3

β′′

)

S
(

λ1

λ′′′

∣

∣

∣

β4

β′′′

) [

δλ
λ1
δβ
β1

− S
(

λ
λ1

∣

∣

∣

β
β1

)]

[

δλ′
λ2
δβ′

β2
− S

(

λ′
λ2

∣

∣

∣

β′

β2

)]

}

)

(C.27)

the singlet source terms,

L
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

≡
∑

β1

[

(

Ωλ
β,β1

)∗
C
(

λ λ′
λ′′λ′′′

∣

∣

∣

β1 β′

β′′β′′′

)

+
(

Ωλ′
β′,β1

)∗
C
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β1

β′′β′

)

−Ωλ′′
β′′,β1

C
(

λ λ′

λ′′λ′′′

∣

∣

∣

β β′

β1β′′′

)

− Ωλ′′
β′′′,β1

C
(

λ λ′

λ′′λ′′′

∣

∣

∣

β β′

β′′β1

)]

(C.28)
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C.2 Dynamics of the two-particle correlations

the coupling to the light field, and

T
(

λ λ′
λ′′λ′′′

∣

∣

∣

β β′

β′′β′′′

)

≡
∑

β1,β2,β3

∑

λ1

[

−V β β2

β3β1
C
(

λ λ′ λ1

λ′′λ′′′λ1

∣

∣

∣

β1 β′ β3

β′′β′′′β2

)

− V β2β′

β1β3
C
(

λ λ′ λ1

λ′′λ′′′λ1

∣

∣

∣

β β1 β3

β′′β′′′β2

)

+V β3 β1

β′′β2
C
(

λ λ′ λ1

λ′′λ′′′λ1

∣

∣

∣

β β′ β2

β1β′′′β3

)

+ V β1β3

β2β′′′C
(

λ λ′ λ1

λ′′λ′′′λ1

∣

∣

∣

β β′ β2

β′′β1β3

)]

(C.29)

the coupling to three-particle correlations.
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D Phonon-assisted carrier correlations

In the steady-state formula (4.14), the Markov solutions for the spontaneous-emission source
terms in the phonon-assisted luminescence equation (4.11) appear in a sum over the phonon
momenta. In situations like this, the final results do not depend critically on the basis that has
been used for the Markov approximation. We may therefore restrict the equations of motion
for the phonon-assisted intraband correlations to the kinetic terms and the true source terms.
Thus, without Coulomb terms and quantum-optical correlations, we explicitly obtain

i~
d

dt
∆〈D̂†

pâ
†
c,k−ph

âc,k+pe
〉 =

(

εek+pe
− εek−ph

− ~Ω − iηe
)

∆〈D̂†
pâ

†
c,k−ph

âc,k+pe
〉

+ ~Ω
∑

k′

(

g∗v,pC
k−k′+pe,k

′,k−ph

X + g∗c,pC
k−k′+pe,k

′,k−ph
ee

)

− ~Ωg∗c,pf
e
k+pe

(

1 − f e
k−ph

)

+ ~Ωg∗c,pn
phon
p

(

f e
k−ph

− f e
k+pe

)

, (D.1)

i~
d

dt
∆〈D̂†

pâ
†
v,k−ph

âv,k+pe
〉 =

(

εhk−ph
− εhk+pe

− ~Ω − iηh
)

∆〈D̂†
pâ

†
v,k−ph

âv,k+pe
〉

+ ~Ω
∑

k′

(

g∗c,pC
k′−k−pe,k−ph,k′

X + g∗c,pC
k′−k−pe,k−ph,k′

hh

)

− ~Ωg∗v,pf
h
k−ph

(

1 − fh
k+pe

)

+ ~Ωg∗v,pn
phon
p

(

fh
k+pe

− fh
k−ph

)

(D.2)

with dephasing constants ηe, ηh where we have defined the incoherent two-particle correlations

Cq,k′,k
X ≡ ∆〈â†c,kâ

†
v,k′ âc,k′+qâv,k−q〉, (D.3)

Cq,k′,k
ee ≡ ∆〈â†c,kâ

†
c,k′ âc,k′+qâc,k−q〉, (D.4)

Cq,k′,k
hh ≡ ∆〈â†v,kâ

†
v,k′ âv,k′+qâv,k−q〉. (D.5)

The terms in the last lines of Eqs. (D.1), (D.2) can be neglected because they contain phonon
numbers nphon

p . In accordance with the additional truncation criterion introduced in Sec. 4.3.1,
we exclusively consider those source terms for the phonon-assisted correlations that are of first
order in the carrier densities since all higher-order contributions would only lead to third-order
source terms in Eq. (4.11). With this approach, the Markov solutions become

∆〈D̂†
pâ

†
c,k−ph

âc,k+pe
〉 ≃

~Ωg∗c,pf
e
k+pe

εek+pe
− εek−ph

− ~Ω − iηe
, (D.6)

∆〈D̂†
pâ

†
v,k−ph

âv,k+pe
〉 ≃

~Ωg∗v,pf
h
k−ph

εhk−ph
− εhk+pe

− ~Ω − iηh
. (D.7)

For small ηe, ηh, the final results are nearly independent of the dephasing constants because
the real parts of the denominators are far from zero in the relevant momentum range.
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D Phonon-assisted carrier correlations

For the phonon-assisted excitonic correlations ∆〈D̂†â†câ
†
vâcâv〉, the inclusion of the Coulomb

terms does not complicate the calculation because the equations of motion can be diagonalized
with the help of the exciton basis. The corresponding Markov results are presented in the
supplement to the exciton-picture analysis E.4. There, the excitons are treated as perfect
bosons. However, it can easily be seen that any additional contribution in the equations of
motion for the ∆〈D̂†â†câ

†
vâcâv〉 that originate from the fermionic substructure of the excitons

would only provide higher-order source terms that are neglected, anyway.
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E Supplement to the exciton-picture

analysis

We derive in Sec. E.1 how the system Hamiltonian (4.5) can be expressed in terms of phonon,
photon, and exciton operators. The boson approximation for the exciton operators is justified
in Sec. E.2. The relevant exciton-phonon matrix elements are evaluated analytically in Sec.
E.3. Finally, we present the Markov solution for the phonon-assisted excitonic correlations in
Sec. E.4.

E.1 Hamiltonian

For the following considerations, it is useful to introduce electron operators êk ≡ âc,k and

hole operators ĥk ≡ â†v,−k. After a renormalization of the band gap, the parts of the system
Hamiltonian (4.5) that contain carrier operators thus take the form

Ĥel =
∑

k

(

εekê
†
kêk + εhkĥ

†
kĥk

)

, (E.1)

Ĥel−el =
1

2

∑

k,k′,q

Vq

(

ê†kê
†
k′ êk′+qêk−q + ĥ†kĥ

†
k′ ĥk′+qĥk−q − 2ê†kĥ

†
k′ ĥk′+qêk−q

)

, (E.2)

Ĥel−vib =
∑

k,p

~Ω
(

gc,pê
†
k−pêk − gv,pĥ

†
k−pĥk

)(

D̂−p + D̂†
p

)

, (E.3)

Ĥel−em = −
∑

k,q

i
(

Fqê
†
k+qĥ

†
−k + F∗

qĥ−kêk−q

)

B̂q + H.C. (E.4)

With this Hamiltonian, the total electron and total hole density can only be changed via the
creation or recombination of electron-hole pairs. We may therefore assume that the carrier
system always contains as many electrons in the conduction band as it contains holes in the
valence band. When they act on states with that property, the Hamiltonians (E.1), (E.3) can
be rewritten as

Ĥel =
∑

k

[

εekê
†
k

∑

k′

(

ĥ†k′ ĥk′ − ê†k′ êk′

)

êk + εhkĥ
†
k

∑

k′

(

ê†k′ êk′ − ĥ†k′ ĥk′

)

ĥk

]

, (E.5)

Ĥel−vib =
∑

k,p

~Ω

[

gc,pê
†
k−p

∑

k′

(

ĥ†k′ ĥk′ − ê†k′ êk′

)

êk

− gv,pĥ
†
k−p

∑

k′

(

ê†k′ êk′ − ĥ†k′ ĥk′

)

ĥk

]

(

D̂−p + D̂†
p

)

(E.6)

because N̂e =
∑

k ê
†
kêk and N̂h =

∑

k ĥ
†
kĥk are the total number operators for electrons and

holes, respectively. If we restrict the analysis to the low-density limit, we may neglect all terms
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E Supplement to the exciton-picture analysis

in the total Hamiltonian that include two electron or two hole annihilation operators in a row.
Among others, we thus eliminate the intraband contributions to the Coulomb interaction. As a
result of such an approximation on the operator level, the system Hamiltonian can be expressed
in terms of e-h pair operators p̂k,k′ ≡ ĥkêk′ ,

Ĥel ≃
∑

k,k′

(

εek′ + εhk
)

p̂†k,k′ p̂k,k′ , (E.7)

Ĥel−el ≃
∑

k,k′,q

Vqp̂
†
k,k′ p̂k+q,k′−q (E.8)

Ĥel−vib ≃
∑

k,k′,p

~Ω
(

gc,pp̂
†
k,k′−pp̂k,k′ − gv,pp̂

†
k−p,k′ p̂k,k′

)(

D̂−p + D̂†
p

)

, (E.9)

Ĥel−em = −
∑

k,q

i
(

Fqp̂
†
−k,k+q + F∗

q p̂−k,k−q

)

B̂q + H.C. (E.10)

We can now use the identity

p̂k,k′ =
∑

ν

φν

(

mhk
′ −mek

me +mh

)

X̂ν,k+k′ (E.11)

to transform the Hamiltonian into the low-density exciton basis. In view of the eigenvalue
equation (A.3), we obtain

Ĥel + Ĥel−el ≃ ĤX ≡
∑

ν,Q

Eν(Q)X̂†
ν,QX̂ν,Q (E.12)

while

Ĥel−vib ≃ ĤX−phon ≡
∑

ν,ν′

∑

Q,p

~Ωgν,ν′
p X̂†

ν,Q−pX̂ν′,Q

(

D̂−p + D̂†
p

)

, (E.13)

Ĥel−em = ĤX−em ≡ −
∑

ν,q

i
[

Fqφ
∗
ν(r = 0)X̂†

ν,q + F∗
qφν(r = 0)X̂ν,−q

]

B̂q + H.C. (E.14)

with the exciton-phonon matrix element

gν,ν′
p =

∑

k

φ∗ν(k)
[

gc,pφν′(k + ph) − gv,pφν′(k − pe)
]

. (E.15)

E.2 Boson approximation

Owing to the fermionic substructure of the electron-hole pairs, the exciton operators X̂ν,Q,

X̂†
ν,Q do not obey bosonic commutation relations. While

[X̂ν,Q, X̂ν′,Q′ ]− = 0 = [X̂†
ν,Q, X̂

†
ν′,Q′ ]−, (E.16)

we have

[X̂ν,Q, X̂
†
ν′,Q′ ]− = δν,ν′δQ,Q′ + Ĉν,ν′

Q,Q′ (E.17)
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E.3 Exciton-phonon scattering

with the additional contribution

Ĉν,ν′

Q,Q′ ≡ −
∑

k

[

φ∗ν(k − Qe)φν′(k − Q′
e)ĥ

†
Q′−k

ĥQ−k

+ φ∗ν(k + Qh)φν′(k + Q′
h)ê†k+Q′ êk+Q

]

. (E.18)

For the dynamics of the exciton operators due to ĤX and ĤX−phon, we thus obtain

i~
d

dt
X̂ν,Q

∣

∣

∣

∣

ĤX

= [X̂ν,Q, ĤX]−

= Eν(Q)X̂ν,Q +
∑

ν′,Q′

Eν′(Q′)Ĉν,ν′

Q,Q′X̂ν′,Q′ , (E.19)

i~
d

dt
X̂ν,Q

∣

∣

∣

∣

ĤX−phon

= [X̂ν,Q, ĤX−phon]−

=
∑

ν′

∑

p

~Ωgν,ν′
p X̂ν′,Q+p

(

D̂−p + D̂†
p

)

+
∑

ν′,ν′′

∑

Q′,p

~Ωgν′,ν′′
p Ĉν,ν′

Q,Q′X̂ν′′,Q′+p

(

D̂−p + D̂†
p

)

. (E.20)

The first terms on the right-hand sides originate from bosonic commutation relations while
the second terms give the deviations from the perfectly bosonic behavior. In the low-density
limit, we may neglect the latter contributions because they consist of terms that contain two
electron- or two hole-annihilation operators in a row. This argument does not apply to

i~
d

dt
X̂ν,Q

∣

∣

∣

∣

ĤX−em

= [X̂ν,Q, ĤX−em]−

= iFQφ
∗
ν(r = 0)

(

B̂†
−Q + B̂Q

)

+
∑

ν′,Q′

iFQ′φ∗ν′(r = 0)Ĉν,ν′

Q,Q′

(

B̂†
−Q + B̂Q

)

. (E.21)

However, the phonon-assisted semiconductor luminescence equations in the exciton picture
describe the evolution of correlations of the form ∆〈D̂† · · · D̂†B̂†X̂〉. Here, the dynamics of
the exciton operators due to ĤX−em leads to the stimulated-emission source terms that are
neglected in the analysis. We therefore expect that the excitonic contribution to the lumines-
cence spectrum is computed correctly when the excitons are treated as genuine bosons, i.e.,

when the correction terms Ĉν,ν′

Q,Q′ are omitted.

E.3 Exciton-phonon scattering

Because the k sum in Eq. (E.15) is a convolution in momentum space, the exciton-phonon
matrix element gν,ν′

p can be written as

gν,ν′
p =

1

L 3

∫

φ∗ν(r)φν′ (r)
(

gc,pe−iph·r − gv,peipe·r) d3r (E.22)
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E Supplement to the exciton-picture analysis

in terms of the (dimensionless) low-density excitonic wave functions in position space [1]

φν(r) = −
√

(

2L

naB

)3
(n− l − 1)!

2n[(n+ l)!]3
ρle−ρ/2L2l+1

n+l (ρ)Yl,m(θ, ϕ). (E.23)

Here, (r, θ, ϕ) are the spherical coordinates of r and ρ ≡ 2r/naB with the exciton Bohr radius
aB ≡ ~

2ǫ0ǫb/e
2mred. The subscript ν = (n, l,m) includes the principal quantum number

n = 1, 2, . . . , the angular-momentum quantum number l = 0, 1, . . . , n − 1, and the magnetic
quantum number m = −l,−l + 1, . . . , l. With L2l+1

n+l (ρ), we denote the generalized Laguerre
polynomial [105].

When Fröhlich and optical deformation-potential interaction are to be compared, it is helpful
to separate the part of the exciton-phonon matrix element that vanishes for band-independent
electron-phonon matrix elements gc,p = gv,p. Explicitly, we obtain

gν,ν′
p =

gc,p + gv,p

2
χ

(+)
ν,ν′,p +

gc,p − gv,p

2
χ

(−)
ν,ν′,p (E.24)

with

χ
(±)
ν,ν′,p ≡ 1

L 3

∫

φν(r)∗φν′ (r)
(

e−iph·r ∓ eipe·r) d3r. (E.25)

If φν(r) and φν′(r) have the same parity, a Taylor expansion of e±ipe,h·r yields

χ
(+)
ν,ν′,p =

me −mh

2M
I
(2)
ν,ν′
(

p

|p|
)

|p|2 + O(|p|4), (E.26)

χ
(−)
ν,ν′,p = 2δν,ν′ − m2

e +m2
h

2M2
I
(2)
ν,ν′
(

p

|p|
)

|p|2 + O(|p|4) (E.27)

where O(|p|k) stands for terms of the order of |p|k, and

I
(k)
ν,ν′ (n) ≡ 1

L 3

∫

(n · r)kφ∗ν(r)φν′ (r) d3r. (E.28)

For opposite parities, we find

χ
(+)
νν′p = −iI

(1)
ν,ν′
(

p

|p|
)

|p| + O(|p|3), (E.29)

χ
(−)
ν,ν′,p = i

me −mh

M
I
(1)
ν,ν′
(

p

|p|
)

|p| + O(|p|3). (E.30)

In case of Fröhlich interaction where gc,p = gv,p = gFr
p ∝ |p|−1, the small-|p| behavior of the

exciton-phonon matrix elements is thus given by

∣

∣gν,ν′
p

∣

∣

2
=
∣

∣gFr
p χ

(+)
ν,ν′,p

∣

∣

2
=

{

O(|p|2) for equal parities,

const + O(|p|2) for opposite parities.
(E.31)

For optical deformation-potential interaction where gv,p, gc,p = const, we obtain

∣

∣gν,ν′
p

∣

∣

2
=











gc,p − gv,p + O(|p|2) for ν = ν′,

O(|p|4) for equal parities and ν 6= ν′,

O(|p|2) for opposite parities.

(E.32)
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E.4 Phonon-assisted excitonic correlations

It turns out that with Fröhlich coupling, only scattering between states with opposite parity
has allowed character whereas for optical deformation-potential coupling, the scattering has
forbidden character unless the phonon affects only the center-of-mass but not the relative
motion of the electron-hole pair.

Analogously to the hydrogen problem, the exciton states are often referred to as 1s ≡ (1, 0, 0),
2s ≡ (2, 0, 0), 2p ≡ (2, 1, 0), etc. As discussed in Sec. 4.4.1.2, the matrix elements appearing
in the steady-state luminescence formula for the second phonon sideband have the form g1s,ν

p .
For ν = 1s, 2s, 2p, we explicitly obtain

g1s,1s
p =

gc,p
[

1 +
(

aB|ph|
2

)2
]2 − gv,p

[

1 +
(

aB|pe|
2

)2
]2 , (E.33)

g1s,2s
p =

√
2
27

36



















gc,p(aB|ph|)2
[

1 +
(

2aB|ph|
3

)2
]3 − gv,p(aB|pe|)2

[

1 +
(

2aB|pe|
3

)2
]3



















, (E.34)

g1s,2p
p = −i

√
2
28

36
cos θ(p)



















gc,paB|ph|
[

1 +
(

2aB|ph|
3

)2
]3 +

gv,paB|pe|
[

1 +
(

2aB|pe|
3

)2
]3



















. (E.35)

Here, θ(p) denotes the angle between p and the z axis. The matrix elements are plotted for
Fröhlich and deformation-potential interaction in Fig. 24.

E.4 Phonon-assisted excitonic correlations

When the quantum-optical correlations are omitted, the equations of motion for the
spontaneous-emission source terms in the phonon-assisted luminescence equations (4.33) take
the form

i~
d

dt
〈D̂†

pn
· · · D̂†

p1
X̂†

ν′,qX̂ν,q+p1+···+pn
〉 =

[

Eν(q + p1 + · · · + pn) − Eν′(q) − n~Ω − iη
(n)
X

]

〈D̂†
pn

· · · D̂†
p1
X̂†

ν′,qX̂ν,q+p1+···+pn
〉

− ~Ω
∑

ν′′,ν′′′

∑

Q

n
∑

j=1

(

gν′′′,ν′′
pj

)∗〈
(

n
∏

i6=j

D̂†
pi

)

X̂†
ν′′,Q+pj

X̂ν′′′,QX̂
†
ν′,qX̂ν,q+p1+···+pj−1+pj+1+···+pn

〉

+ ~Ω
∑

ν′′

∑

Q

〈D̂†
pn

· · · D̂†
p1

(

D̂†
Q + D̂−Q

)[

gν,ν′′

Q X̂†
ν′,qX̂ν′′,q+Q+p1+···+pn

−
(

gν′,ν′′

−Q

)∗
X̂†

ν′,q−QX̂ν,q+p1+···+pn

]

〉 (E.36)

As mentioned in Sec. 4.4.1.1, we only consider those contributions to a given replicum that are
of lowest order in the electron-phonon coupling constants. In other words, the last line of Eq.
(E.36) is neglected in the following analysis. The cluster expansion in the incoherent regime
with vanishing expectation values for pure phonon-operator combinations yields the general
structure 〈(D̂†)nX̂†

1X̂2X̂
†
3X̂4〉 = δ2,3∆〈(D̂†)nX̂†

1X̂4〉 +
{

∆〈(D̂†)n−kX̂†X̂ 〉∆〈(D̂†)kX̂†X̂ 〉
}

+

∆〈(D̂†)nX̂†
1X̂

†
3X̂2X̂4〉 where some of the terms in the curly brackets have to be subtracted
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E Supplement to the exciton-picture analysis

when only the truly correlated part of the expectation value on the left-hand side of Eq. (E.36)
is considered. We exclusively retain the first factorization term because it will provide the con-
tribution to the sideband emission that is of lowest order in the exciton populations. Starting
from

∆〈D̂†
p1
X̂†

ν′,qX̂ν,q+p1
〉 =

~Ω
(

gν′,ν
p1

)∗
∆Nν(q + p1)

Eν(q + p1) − Eν′(q) − ~Ω − iη
(1)
X

, (E.37)

the phonon-assisted carrier correlations can be evaluated recursively, which yields

〈D̂†
pn

· · · D̂†
p1
X̂†

ν′,qX̂ν,q+p1+···+pn
〉 ≃

∑

µ1,...,µn−1

n
∑

j1=1

n
∑

j2=1
j2 6=j1

· · ·
n
∑

jn=1
jn 6=j1,...,jn−1

(~Ω)n
(

gν′,µ1
pj1

)∗(
gµ1,µ2
pj2

)∗ · · ·
(

gµn−1,ν
pjn

)∗

× ∆Nν(q + p1 + · · · + pn)

×
{

[

Eν(q + p1 + · · · + pn) − Eµn−1(q + pj1 + · · · + pjn−1) − ~Ω − iη
(1)
X

]

×
[

Eν(q + p1 + · · · + pn) − Eµn−2(q + pj1 + · · · + pjn−2) − 2~Ω− iη
(2)
X

]

...

×
[

Eν(q + p1 + · · · + pn) − Eν′(q) − n~Ω − iη
(n)
X

]

}−1

.

(E.38)

For small dephasing constants η
(n)
X , the final results barely depend on η

(n)
X because the real parts

of the energy denominators are far from zero in the relevant momentum range. In Eq. (E.37),

we have only included the population ∆Nν(Q) = ∆〈X̂†
ν,QX̂ν,Q〉 since off-diagonal expectation

values 〈X̂†
ν,QX̂ν′,Q〉 with ν 6= ν′ can usually be neglected [7] and 〈X̂†

ν,QX̂ν′,Q〉 ≃ ∆〈X̂†
ν,QX̂ν,Q〉

in the low-density regime. In order to calculate the n-th phonon sideband, the infinite hierarchy
(4.33) of luminescence equations is truncated on the (n+2)-particle level. The phonon-assisted

recombination correlation Π
(n)
ν can thus be solved in steady state after inserting the Markov

solution (E.38) for the spontaneous-emission source term. The lower-order recombination cor-

relations Π
(n−1)
ν , . . . , Π

(0)
ν can then be calculated successively where in the k-th step, the

steady-state/Markov solutions for Π
(k+1)
ν and ∆〈(D̂†)kX̂†X̂ 〉 have to be inserted. When we

perform a partial-fraction decomposition for the arising energy denominators and carefully
identify the lowest-order contributions in |gν,ν′

p |2, we finally obtain the closed luminescence
formula (4.35).
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F Polaron transformation

We show in Sec. F.1 how the polaron transformation defined in Sec. 4.4.2 acts on the electron,
phonon, and photon operators. In Sec. F.2, we derive the normal ordering of the exponential
operators appearing in the Hamiltonians (4.38) and (4.42). The results are used in Sec. F.3 to
calculate the polaron dispersion at T = 0 K. The explicit transformation rules (F.8), (F.10)
and the polaron energies (F.31) have already been presented in Ref. [59] but no proofs are
given in that paper. Finally, we demonstrate in Sec. F.4 how the polaron transformation can
be generalized to confined carrier systems.

F.1 Explicit transformation rules

We start from the electron-phonon-photon Hamiltonian (4.5). The polaron picture is intro-
duced when every operator undergoes the unitary transformation

ˆ̄x = T̂ x̂T̂ † (F.1)

where T̂ = eÛ with the anti-Hermitian (i.e. Û † = −Û) operator

Û =
∑

λ,k,p

gλ,pâ
†
λ,k−pâλkQ̂p. (F.2)

For a compact notation, we have introduced the abbreviation Q̂p ≡ D̂†
p−D̂−p. Equation (F.1)

can be evaluated by means of the Baker-Campbell-Hausdorff formula

eÛ x̂e−Û = x̂+ [Û , x̂]− +
1

2!
[Û , [Û , x̂]−]− +

1

3!
[Û , [Û , [Û , x̂]−]−]− + · · · , (F.3)

that is

ˆ̄x =

∞
∑

j=0

1

j!
ˆ̄x(j), (F.4)

ˆ̄x(0) ≡ x̂, (F.5)

ˆ̄x(j+1) ≡ [Û , ˆ̄x(j)]− (j = 0, 1, 2, . . . ). (F.6)

For the fermionic operators, we thus obtain

ˆ̄a
(0)
λ,k = âλ,k, (F.7a)

ˆ̄a
(1)
λ,k = −

∑

λ′,k′

∑

p1

gλ,p1 [âλ,k, â
†
λ′,k′−p1

]+âλ′,k′Q̂p1

= −
∑

p1

gλ,p1 âλ,k+p1Q̂p1 , (F.7b)
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F Polaron transformation

ˆ̄a
(2)
λ,k =

∑

λ′,k′

∑

p1,p2

gλ,p1gλ′,p2 [âλ,k+p1
, â†λ′,k′−p2

]+âλ′,k′Q̂p1Q̂p2

=
∑

p1,p2

gλ,p1gλ,p2 âλ,k+p1+p2Q̂p1Q̂p2 , (F.7c)

...

ˆ̄a
(j)
λ,k = (−1)j

∑

p1,...,pj

gλ,p1 · · · gλ,pj
Q̂p1 · · · Q̂pj

âλ,k+p1+···+pj

= (−1)j
∑

k1,...,kj

gλ,k1−kgλ,k2−k1 · · · gλ,kj−kj−1Q̂k1−kQ̂k2−k1 · · · Q̂kj−kj−1 âλ,kj
.

(F.7d)

In a compact notation, this can be written as

ˆ̄aλ,k =
∑

k′

(

e−Ĉλ

)

k,k′
âλ,k′ (F.8)

with the operator-valued matrix (Ĉλ)k,k′ = gλ,k′−kQ̂k′−k that has been introduced in Sec.
4.4.2. For the phonon operators, we find

ˆ̄D(0)
p = D̂p, (F.9a)

ˆ̄D(1)
p = − ∂Û

∂D̂†
p

= −
∑

λ,k

gλ,pâ
†
λ,k−pâλ,k, (F.9b)

ˆ̄D(2)
p = −

∑

k,k′,p′

gλ,pgλ′,p′ [â†λ′,k′−p′ âλ′,k′ , â
†
λ,k−pâλ,k]−Q̂p′ = 0 (F.9c)

such that

ˆ̄Dp = D̂p −
∑

λ,k

gλ,pâ
†
λ,k−pâλ,k. (F.10)

Since the photon operators commute with Û , they are not affected by the transformation,

ˆ̄Bq = eÛ B̂qe−Û = B̂q. (F.11)

If a function f(x) can be written as a power series in x, the unitary transformation of f(x̂) yields

eÛf(x̂)e−Û = f(eÛ x̂e−Û ). Consequently, the functional dependence of the transformed Hamil-

tonian ˆ̄H = eÛĤe−Û on the transformed operators coincides with the functional dependence
of the original Hamiltonian on the original operators. The new picture is established when the
new Hamiltonian is rewritten in terms of the old operators. In view of (e±Cλ)†k,k′ = (e∓Cλ)k′k

and (e±Cλ)k−p,k′ = (e±Cλ)k,k′+p, we find

ˆ̄Hel =
∑

λ,k,k′

(

eĈλEλe−Ĉλ

)

k,k′
â†λ,kâλ,k′ , (F.12)

ˆ̄Hvib =
∑

p

~Ωp

(

D̂†
pD̂p +

1

2

)

126



F.2 Normal ordering of the exponential operators

+
∑

λ,k,p

~Ωpgλ,p

(

D̂−p + D̂†
p

)

â†λ,kâλ,k+p

+
∑

λ,k,p

~Ωp|gλ,p|2â†λ,kâλ,k

+
∑

λ,λ′

k,k′,p

~Ωpg
∗
λ,pgλ′,pâ

†
λ,kâ

†
λ′,k′ âλ′,k′+pâλ,k−p, (F.13)

ˆ̄Hem = Ĥem, (F.14)

ˆ̄Hel−el = Ĥel−el, (F.15)

ˆ̄Hel−vib = −
∑

λ,k,p

~Ωpgλ,p

(

D̂−p + D̂†
p

)

â†λ,kâλ,k+p

− 2
∑

λ,k,p

~Ωp|gλ,p|2â†λ,kâλ,k

− 2
∑

λ,λ′

k,k′,p

~Ωpg
∗
λ,pgλ′,pâ

†
λ,kâ

†
λ′,k′ âλ′,k′+pâλ,k−p, (F.16)

ˆ̄Hel−em = −
∑

k,k′,q

i

[

Fq

(

eĈce−Ĉv

)

k,k′
â†c,k+qâv,v,k′ + F∗

q

(

eĈce−Ĉv

)†

k′,k
â†v,kâc,k′−q

]

B̂q

+ H.C. (F.17)

Regrouping yields the Hamiltonian (4.37).

F.2 Normal ordering of the exponential operators

The exponential operator eĈλ explicitly reads

(

eĈλ
)

k,k′ =

∞
∑

j=0

1

j!

(

Ĉj
λ

)

k,k′ (F.18)

where the j-th power of Ĉλ has the matrix elements

(

Ĉj
λ

)

k,k′ =
∑

k1,...,kj−1

(

Ĉλ

)

k,k1

(

Ĉλ

)

k1,k2
· · ·
(

Ĉλ

)

kj−1,k′

=
∑

k1,...,kj−1

gλ,k1−kgλ,k2−k1 · · · gλ,k′−kj−1Q̂k1−kQ̂k2−k1 · · · Q̂k′−kj−1 . (F.19)

For the following derivations, it proves useful to rewrite this as

(

Ĉj
λ

)

k,k′ =
∑

p1,...,pj

δPj

l=1
pl,k′−k

gλ,p1 · · · gλ,pj
Q̂p1 · · · Q̂pj

. (F.20)

For instance, in view of [D̂p, Q̂p′]− = δp,p′ , we immediately obtain

[D̂p,
(

Ĉj
λ

)

k,k′ ]− = j
(

Ĉj−1
λ

)

k,k′−p
gλ,p, (F.21)

[D̂p,
(

e±Ĉλ
)

k,k′ ]− = ±gλ,p

(

e±Ĉλ
)

k,k′−p
. (F.22)
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F Polaron transformation

In order to write (eĈλ)k,k′ as a series of normally ordered terms, we start from observing that

Q̂p1 · · · Q̂pj
=

⌊ j
2⌋
∑

m=0

j−2m
∑

n=0

(−1)m+n
∑

π

1

2mm!n!(j − 2m− n)!
δpπ(1),−pπ(2)

· · · δpπ(2m−1),−pπ(2m)

× D̂†
pπ(2m+1)

· · · D̂†
pπ(2m+n)

D̂pπ(2m+n+1)
· · · D̂pπ(j)

(F.23)

where the π sum extends over all permutations of the set {1, 2, . . . , j}. The symbols ⌊x⌋ and
⌈x⌉ denote the floor and the ceiling function, respectively, i.e. ⌊x⌋ is the largest integer number
≤ x and ⌈x⌉ the smallest integer number ≥ x. Formula (F.23) can be proven by induction.
Inserting into Eq. (F.20) yields

(

eĈλ
)

k,k′ =

∞
∑

j=0

⌊ j
2⌋
∑

m=0

j−2m
∑

n=0

(−1)m+nG̃m
λ

2mm!n!(j − 2m− n)!

(

[

d̂†λ
]j−2m−n

d̂n
λ

)

k,k′
(F.24)

where G̃λ ≡ ∑p |gλ,p|2 while (d̂λ)k,k′ ≡ g∗λ,k−k′D̂k−k′ and (d̂†λ)k,k′ = [(d̂λ)k′,k]†. The expres-
sion on the right-hand side is already normally ordered but still difficult to evaluate. By means
of the decomposition

∑∞
j=0 zj =

∑∞
i=0(z2i + z2i+1), we find a handier version of Eq. (F.24),

(

eĈλ
)

k,k′ =

∞
∑

i=0

(−1)i
i
∑

m=0

(

G̃
2

)i−m

(i−m)!

×
2m+1
∑

b=−(2m+1)

(−1)⌊ b
2⌋

(

m−
⌊

b
2

⌋)

!
(

m+
⌈

b
2

⌉)

!

(

[

d̂†λ
]m+⌈ b

2⌉d̂m−⌊ b
2⌋

λ

)

k,k′

= e−G̃/2
∞
∑

m=0

2m+1
∑

b=−(2m+1)

(−1)m−⌊ b
2⌋

(

m−
⌊

b
2

⌋)

!
(

m+
⌈

b
2

⌉)

!

(

[

d̂†λ
]m+⌈ b

2⌉d̂m−⌊ b
2⌋

λ

)

k,k′
(F.25)

where we have used Cauchy’s formula for the product of infinite series.

F.3 Polaron dispersion

In many applications of the polaron picture, it is a good approximation to replace each phonon-
operator combination Ô appearing in Eq. (4.38) by its thermal average 〈Ô〉TD. This procedure
yields

ˆ̄Hpol =
∑

λ,k

eλ,kâ
†
λ,kâλ,k (F.26)

with the polaron dispersion

eλ,k =
〈

(

eĈλEλe−Ĉλ
)

k,k

〉

TD
−
∑

q

~Ωq|gλq|2

=
∑

k′

ελ,k′

〈

(

eĈλ
)

k,k′

(

e−Ĉλ
)

k′,k

〉

TD
−
∑

q

~Ωq|gλq|2. (F.27)
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F.4 Hetero structures

This formula can explicitly be evaluated for a phonon bath at temperature T = 0 K where

〈Ô〉TD = 〈vac|Ô|vac〉. With Eq. (F.25), it is straightforward to apply eĈλ to the phonon
vacuum |vac〉. Because non-vanishing terms are only obtained for m = ⌊b/2⌋, we immediately
get

(

eĈλ
)

k′,k
|vac〉 = e−G̃/2

(

ed†
)

k′k
|vac〉 (F.28)

such that

〈vac|
(

e−Ĉλ
)

k,k′

(

eĈλ
)

k′,k
|vac〉 = e−G̃

∞
∑

n=0

(

1

n!

)2

〈vac|
(

d̂n
λ

)

k,k′

(

[d†λ]n
)

k′,k
|vac〉. (F.29)

By writing the powers of d̂λ and d̂†λ analogously to Eq. (F.20), we find that

(

d̂m
λ

)

k,k′

(

[d̂†λ]n]
)

k′′,k′′′ |vac〉 = Θ(n ≥ m)
n!

(n−m)!
(Gm

λ )k,k′
(

[d̂†λ]n−m
)

k−k′,k′′′−k′′ |vac〉 (F.30)

where (Gλ)k,k′ = |gλ,k−k′ |2 while Θ(n ≥ m) is unity for n ≥ m and vanishes otherwise. When
inserting this result into Eq. (F.29), we immediately obtain the polaron dispersion

eλ,k = e−G̃λ

∑

k′

(

eGλ
)

k,k′ελ,k′ − ~ΩG̃λ. (F.31)

F.4 Hetero structures

The polaron transformation (F.2) can be generalized to confined systems. We assume that the
energy spacing between the eigen states of the confinement potential is so large that only the
lowest eigen state in each band has to be included in the analysis. The subband index β can
thus be suppressed such that the phonon part of the Hamiltonian takes the form

Ĥvib = ~Ω
∑

p‖,p⊥

(

D̂†
p‖,p⊥D̂p‖,p⊥ +

1

2

)

, (F.32)

Ĥel−vib = ~Ω
∑

λ,k‖

∑

p‖,p⊥

gλ,p‖,p⊥ â
†
λ,k‖−p‖

âλ,k‖

(

D̂−p‖,p⊥ + D̂†
p‖,p⊥

)

(F.33)

Compared to the bulk case, the interaction matrix elements gλ,p‖,p⊥ are modified by the con-
finement as shown in Sec. 2.2.4.1. To simplify the interaction Hamiltonian from (F.33), we
further assume that the matrix element can be separated into a real-valued band-dependent and
a complex momentum-dependent part, gλ,p‖,p⊥ = αλgp‖,p⊥ . Such a separation is possible, e.g.,
for infinitely high potential wells where the confinement functions become band-independent.
We can then introduce new bosonic operators

ˆ̃Dp‖ ≡ 1

hp‖

∑

p⊥

g∗p‖,p⊥D̂p‖,p⊥ (F.34)

with hp‖ ≡
√

∑

p⊥
|gp‖,p⊥ |2 = h−p‖ . In terms of these operators, the interaction Hamiltonian

can be written as

Ĥel−vib = ~Ω
∑

λ,k‖

∑

p‖

g̃λ,p‖ â
†
λ,k‖−p‖

âλ,k‖

(

ˆ̃D−p‖ + ˆ̃D†
p‖

)

(F.35)
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F Polaron transformation

with real-valued matrix elements g̃λ,p‖ = αλhp‖ =
√

∑

pz
|gλ,p‖,pz

|2. The Hamiltonian of the

free lattice-vibration field becomes

Ĥvib = ~Ω
∑

p‖

(

ˆ̃D†
p‖

ˆ̃Dp‖ +
1

2

)

+ Ĥ ′
phon (F.36)

where the extra term Ĥ ′
phon commutes with ˆ̃Dp‖ ,

ˆ̃D†
p‖ and âλ,k‖

, â†λ,k‖
such that it does not

contribute to the dynamics of the electron-phonon system. The polaron picture can now be
introduced via the unitary transformation

T̂ = exp
∑

λ,k‖,p‖

g̃λ,p‖ â
†
λ,k‖−p‖

âλ,k‖

(

ˆ̃D†
p‖ − ˆ̃D−p‖

)

. (F.37)

Equations of motion describing phonon-sideband luminescence can then be derived analogously
to the bulk case. We can immediately write down the quantum-well luminescence formula:

I
(n)
PL (ω) =

2

~

∣

∣

∣
FφQW

1s (r = 0)
∣

∣

∣

2

e−G̃ 1

n!
Im
∑

Q‖

G̃(n)
Q‖
NQW

1s (Q‖)

EQW
1s (Q‖) − n~Ω − ~ω − iγn

. (F.38)

Here, φQW
1s and EQW

1s (Q‖) are the ground-state wave function and eigen energy, respectively,

for quasi two-dimensional quantum-well excitons, and NQW
1s (Q‖) denotes the corresponding

distributions. The constant G̃ and the weight factors G̃(n)
Q‖

are defined analogously to the

quantities G and G(n)
Q‖

in the bulk case, one only needs to replace ∆gp by the effective quantum-

well matrix element ∆g̃p‖ = g̃v,p‖ − g̃c,p‖ .
As derived in Sec. 2.2.4.1, the quantum-well matrix element gλ,p‖,pz

= γ(pz)gλ,p deviates
from the bulk case by a form factor that can be written as

γ(pz) =

∫

|ξ(rz)|2eipzrz drz (F.39)

for a band-independent confinement function ξ(rz).
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G Influence of disorder on the

phonon-sideband emission

Several of the measured spectra that we have used for the theory-experiment comparison show
considerable inhomogeneous broadening due to disorder in the sample. We outline in this
appendix how that effect can be taken into account when phonon sidebands are evaluated
numerically.

It is often a good approximation to assume that only the energies are subject to disorder.
Thus, the total luminescence signal Itot

PL (~ω) originates from an ensemble of emitters with
statistically distributed transition energies. If the emission spectrum for a fixed resonance E is
given by IPL(~ω; E), we have

Itot
PL (~ω) =

∫

IPL(~ω; E)p(E) dE (G.1)

in the disordered case where p(E) denotes the probability distribution for the energies. All the
above mentioned spectra could be fitted by assuming Gaussian distributions

p(E) = Φσ(E − E0) ≡
1

σ
√

2π
exp

(−[E − E0]
2

2σ2

)

(G.2)

with width σ and mean value E0. The simple phenomenological dephasing γ that we have
introduced in the luminescence equations leads to a homogeneously broadened, Lorentzian
line shape for the ZPL. The n-th replicum is composed of a series of shifted Lorentzians with
central positions E1s + ~

2|Q|2/2M − n~Ω. Hence, it is sufficient to consider the generic case
IPL(~Ω; E) ∝ Lγ(~ω − E) with then normalized Lorentzian

Lγ(E) ≡ 1

π

γ

E2 + γ2
. (G.3)

For this choice, Eq. (G.1) becomes the convolution of a Lorentzian and a Gaussian function,

Itot
PL (~ω) ∝

∫

Lγ(~ω − E0 − E)Φσ(E) dE = Vγ,σ(~ω − E0), (G.4)

i.e. a Voigt profile

Vγ,σ(E) ≡ Rew(z)

σ
√

2π

∣

∣

∣

∣

z= E+iγ

σ
√

2

(G.5)

where w(z) ≡ e−z2

erfc(−iz) with the complementary error function erfc(z) ≡ 2√
π

∫∞
z

e−t2 dt.

This result is illustrated in Fig. 31 for a ZnO bulk spectrum at temperature T = 30 K. The
shaded area represents the measured data [132], the lines correspond to non-linear fit results
for the ZPL. While the best fitting Lorentzian (dashed line) decays too slowly at large distances
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G Influence of disorder on the phonon-sideband emission

Figure 31: Inhomogeneous broadening due to disorder. See the text for further explanation.

from the central frequency and the best-fitting Gaussian too fast, a reasonable agreement is
achieved with a Voigt profile.

Because both the Lorentzian (G.3) and the Voigt profile (G.5) are normalized, the spectrally
integrated sideband intensities are not affected by the inhomogeneous broadening. The main
results of our theory can thus equally well be tested with disordered systems.
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Petroff, L. Zhang, and E. Hu. Nonclassical radiation from a single self-assembled
InAs quantum dot. Phys. Rev. B, 63:121312(R), 2001.

133



Bibliography

[15] E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gerard, and

I. Abram. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev.
Lett., 87:183601, 2001.

[16] C. H. Bennett and G. Brassard. Quantum cryptography: public key distribution
and coin tossing. In Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, Bangalore, India, 1984, New York, 1984. IEEE.

[17] D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots. Phys.
Rev. A, 57(1):120, 1998.

[18] F. Troiani, U. Hohenester, and E. Molinari. Quantum-information processing in
semiconductor quantum dots. Phys. Stat. Sol. (b), 224:849, 2001.

[19] E. Beham, M. Betz, S. Trumm, M. Kroutvar, Y. Ducommun, H. Krenner,

M. Bichler, A. Leitenstorfer, J. Finley, A. Zrenner, and G. Abstreiter.
Physics and applications of self-assembled quantum dots. Phys. Stat. Sol. (c), 1:2131,
2004.

[20] Y. Z. Hu, M. Lindberg, and S. W. Koch. Theory of optically excited intrinsic
semiconductor quantum dots. Phys. Rev. B, 42(3):1713, 1990.

[21] A. Barenco and M. A. Dupertuis. Quantum many-body states of excitons in a small
quantum dot. Phys. Rev. B, 52(4):2766, 1995.

[22] Y. Z. Hu, H. Gießen, N. Peyghambarian, and S. W. Koch. Microscopic theory
of optical gain in small semiconductor quantum dots. Phys. Rev. B, 53(8):4814, 1996.

[23] A. Wojs and P. Hawrylak. Theory of photoluminescence from modulation-doped
self-assembled quantum dots in a magnetic field. Phys. Rev. B, 55(19):13066, 1997.

[24] P. Hawrylak. Excitonic artificial atoms: Engineering optical properties of quantum
dots. Phys. Rev. B, 60(8):5597, 1999.

[25] E. Dekel, D. Gershoni, E. Ehrenfreund, J. M. Garcia, and P. M. Petroff.
Carrier-carrier correlations in an optically excited single semiconductor quantum dot.
Phys. Rev. B, 61(16):11009, 2000.

[26] U. Hohenester and E. Molinari. Role of coulomb correlations in the optical spectra
of semiconductor quantum dots. Phys. Stat. Sol. (b), 221(1):19, 2000.

[27] N. Baer, P. Gartner, and F. Jahnke. Coulomb effects in semiconductor quantum
dots. Eur. Phys. J. B, 42(2):231, 2004.

[28] M. Braskén, M. Lindberg, D. Sundholm, and J. Olsen. Spatial carrier-carrier
correlations in strain-induced quantum dots. Phys. Rev. B, 64(3):035312, 2001.

[29] S. Corni, M. Braskén, M. Lindberg, J. Olsen, and D. Sundholm. Size depen-
dence of the electron-hole recombination rates in semiconductor quantum dots. Phys.
Rev. B, 67(4):045313, 2003.

[30] S. Corni, M. Braskén, M. Lindberg, J. Olsen, and D. Sundholm. Electron-hole
recombination density matrices obtained from large configuration-interaction expansions.
Phys. Rev. B, 67(8):085314, 2003.

134



Bibliography

[31] L. Banyai and S. W. Koch. Semiconductor Quantum Dots. World Scientific, Singa-
pore, 1993.

[32] U. Woggon. Optical Properties of Semiconductor Quantum Dots. Springer, Berlin,
1996.

[33] L. Jacak, P. Hawrylak, and A. Wojs. Quantum Dots. Springer, Berlin, 1998.

[34] H. C. Schneider, W. W. Chow, and S. W. Koch. Many-body effects in the gain
spectra of highly excited quantum-dot lasers. Phys. Rev. B, 64(11):115315, 2001.

[35] H. C. Schneider, W. W. Chow, and S. W. Koch. Anomalous carrier-induced
dispersion in quantum-dot active media. Phys. Rev. B, 66(4):041310, 2002.

[36] T. R. Nielsen, P. Gartner, and F. Jahnke. Many-body theory of carrier capture
and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B, 69(23):235314, 2004.

[37] H. C. Schneider, W. W. Chow, and S. W. Koch. Excitation-induced dephasing in
semiconductor quantum dots. Phys. Rev. B, 70(23):235308, 2004.

[38] S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman,
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