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SUMMARY 

Methanotrophic bacteria perform a central function in our climate system 

representing the only biogenic sink for the greenhouse gas methane. In wetland rice 

fields, they function as bio-filters preventing methane produced in anoxic layers 

escaping into the atmosphere, attenuating the potential methane emission by up to 

90%. Despite intensive studies in the past, molecular approaches have barely started to 

explore the full diversity of methanotrophs. Furthermore, only little is known on 

their ecological niche differentiation and the factors influencing their community 

structure. This thesis focuses on the aerobic methanotrophic communities in the 

wetland rice ecosystem using the pmoA gene as a functional and phylogenetic marker 

to detect these bacteria in the environment. A high diversity could be recorded 

dominated by Methylocystis and Methylosinus species (type II) and yet uncultivated 

bacteria grouping within type Ib methanotrophs. The rice paddy cluster 1 (RPC-1) 

forms the largest cluster consisting entirely of sequences obtained from paddy fields 

located around the world. It is only distantly related to cultivated species and might 

form a new genus of methanotrophs specifically adapted to wetland rice fields.  

Methanotrophic communities showed no large scale horizontal distribution 

patterns within an Italian paddy field; thus, a reduced sampling effort is sufficient to 

extrapolate to the field scale. However, different methanotrophic communities were 

detected on the rice roots compared to the field soil and the communities in different 

fields differed significantly. The rice roots were characterized by a high abundance of 

type I methanotrophs and different rice cultivars were shown to have an effect on 

these communities. This effect could be correlated to the plant genotype and enables 

to select specific cultivars for in-depth studies.  

Re-evaluating the pmoA gene as a phylogenetic marker for methanotrophs 

revealed a good correlation of the pmoA to the 16S rRNA phylogeny. Nevertheless, 

some exceptions suggests that methanotrophy might be evolutionary more 

complicated having been even exchanged between species. Furthermore, a meta-

analysis of pmoA sequences from various environments revealed distinct correlations 

of genotypes and habitats. 
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ZUSAMMENFASSUNG 

Methanotrophe Bakterien nehmen eine zentrale Funktion innerhalb unseres 

Klimasystems ein, indem sie die einzige biogene Senke für das Treibhausgas Methan 

darstellen. In gefluteten Reisfeldern fungieren sie als Biofilter und oxidieren bis zu 

90% des in den anoxischen Bereichen produzierten Methans. Trotz intensiver Studien 

ist die Diversität dieser Mikroorganismen in der Umwelt noch nicht annähernd 

erfasst. Des Weiteren ist nur wenig über ihre ökologischen Nischen sowie den 

Einfluss abiotischer und biotischer Faktoren auf ihre Populationsstruktur bekannt. 

Die vorliegende Arbeit befasst sich mit den aeroben methanotrophen 

Bakteriengemeinschaften in gefluteten Reisfeldern. Das pmoA Gen wurde als 

funktioneller und phylogenetischer Marker verwendet, um methanotrophe Bakterien 

in Umweltproben zu detektieren. Die untersuchten Habitate wiesen eine hohe 

Diversität auf, wobei Methylosinus und Methylocystis (Typ II) und bisher nicht-

kultivierte Methanotrophe des Typ Ib dominierten. Das größte Cluster repräsentierte 

das Reis-Paddy-Cluster 1 (RPC-1), dessen Sequenzen in Reisfeldern weltweit 

detektiert wurden. Es weist nur eine geringe Sequenzähnlichkeit zu bisher 

kultivierten Vertretern auf und stellt vermutlich eine neue Gattung innerhalb der 

methanotrophen Bakterien dar, die eventuell spezifisch an geflutete Reisfelder 

adaptiert ist. 

Methanotrophe Bakterien wiesen keine großflächige Strukturierung in ihrer 

räumlichen Verteilung auf. Es konnte gezeigt werden, dass eine geringe Probenanzahl 

ausreicht, um repräsentative Aussagen über das Gesamtsystem zu treffen. Jedoch 

zeigten sich deutliche Unterschiede in der Zusammensetzung der methanotrophen 

Bakteriengemeinschaft an der Reiswurzel und im Reisfeldboden. Das Habitat Wurzel 

war von einer hohen Dominanz an Typ I geprägt. Außerdem konnte ein Einfluß des 

Reiskultivars auf die Zusammensetzung der Methanotrophen Bakterien gezeigt 

werden. Dieser Effekt korrelierte mit dem Genotyp der Reispflanze.  

Die Re-Evaluierung des pmoA Gens als phylogenetischer Marker zeigte eine 

gute Korrelation zwischen der pmoA und der 16S rRNA Phylogenie. Einige 

Ausnahmen lassen jedoch vermuten, dass das Gen horizontal zwischen Arten 
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ausgetauscht wurde und die Evolution der Methanotrophie sich komplizierter 

darstellt als bisher angenommen. Eine Meta-Analyse mit pmoA Sequenzen aus 

verschiedenen Habitaten ergab weiterhin eine deutliche Korrelation zwischen dem 

pmoA Genotyp und dem Habitat. 
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1 INTRODUCTION 

1.1 Methane in the atmosphere 

Methane is one of the most important greenhouse gases playing an essential role in 

atmospheric chemistry. Its mixing ratio changed from a pre-industrial value of 

715 ppb in 1750 to a concentration of 1,774 ppb in 2005, resulting in the second 

largest contribution to global warming after carbon dioxide (Intergovernmental Panel 

on Climate Change, 2007). Ice core studies have indicated that consistently lower 

concentrations were present in the atmosphere over the last 650,000 years, varying 

between 400 ppb and 770 ppb (Spahni et al., 2005). Although the total concentration 

more than doubled during the industrial era, the annual growth rates decreased 

substantially from about 1% to nearly zero since 1999 (Blake and Rowland, 1988; 

Dlugokencky et al., 1998; Dlugokencky et al., 2003). Several controversial theories 

have been proposed to explain the decreased growth rates and the contribution of 

human activities to it (Bekki et al., 1994; Bousquet et al., 2006; Hansen et al., 2000; 

Lelieveld et al., 1998; Lowe et al., 1997; Worthy et al., 2009). Nevertheless, a very 

recent study from Rigby and colleagues indicates a renewed growth of methane in the 

atmosphere (Rigby et al., 2008).  

Over 70% of atmospheric methane originates from biogenic sources including 

natural wetlands, rice agriculture, livestock, landfills, termites and oceans. Natural 

wetlands represent the largest single source accounting for about 35% of total 

emissions. Non-biogenic sources include burning and mining of fossil fuel, waste 

treatment, biomass burning and geological sources such as geothermal or volcanic 

methane (Intergovernmental Panel on Climate Change, 2007). About 60% of the total 

emission is ascribed to anthropogenic activities. Recently, an additional new source 

for methane was described by Keppler and co-workers (Keppler et al., 2006). They 
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reported methane emission from living vegetation and estimated a contribution of 10-

30% to the global budget. However, this finding was not supported by other studies 

and its evidence remains uncertain. 

The major sink for atmospheric methane, accounting for 90% of the total, is 

the reaction with hydroxyl radicals in the troposphere. A small part is also lost to the 

stratosphere. Biological methane oxidation in soils represents an additional important 

sink (Intergovernmental Panel on Climate Change, 2007).  

Biogenic methane is produced by methanogenic archaea as the final step in 

anaerobic degradation of organic matter. These strictly anaerobic Euryarchaeota 

mainly use carbon dioxide and hydrogen or acetate as substrates for methane 

formation (Conrad, 1997; Thauer et al., 2008). Roughly 1% of the primary 

productivity is estimated to result in methane production (Reeburgh, 2003). However, 

only about half of the produced methane is emitted to the atmosphere, while the 

remainder is oxidized. The proportion of oxidized methane varies depending on the 

environment (Reeburgh, 2003). Biological methane oxidation is performed by a 

diverse group of bacteria referred to as methane oxidizing or methanotrophic bacteria.  

 

1.2 Methanotrophic microorganisms 

Methylotrophic prokaryotes are able to use reduced carbon substrates without carbon-

carbon bonds as their sole carbon and energy source (Lidstrom, 1992). 

Methanotrophic bacteria and archaea form a subgroup of the methylotrophs and are 

capable of growth with methane as one-carbon compound. For a long time, only 

aerobic methanotrophic bacteria were known to exist, however, anaerobic 

methanotrophs have been characterized more recently. Ammonia oxidizers are also 

able to convert methane to methanol by an enzyme homologous to the methane 

monooxygenase of methanotrophs. It seems, however, that they cannot use this 

process for growth (Hyman and Wood, 1983; Jones and Morita, 1983).  
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AEROBIC METHANOTROPHS 

The process of aerobic methane oxidation by bacteria is known for a long time. The 

first isolates were described already beginning of the 20th century (Kaserer, 1905; 

Kaserer, 1906; Söhngen, 1906, Söhngen, 1910). However, interest in these 

microorganisms decreased and most cultures were apparently lost (Trotsenko and 

Murrell, 2008). It was not before the 1970s that an increasing number of studies 

focused on methanotrophic bacteria again. Their biotechnological potential for 

production of single cell protein or the use as biocatalysts was explored (Higgins et al., 

1980; Higgins et al., 1981). Since then, many new isolates belonging to different 

genera were obtained and described (Bodrossy et al., 1997; Bowman et al., 1993; 

Bowman et al., 1997; Dedysh et al., 2002; Dedysh et al., 2007; Dunfield et al., 2003; 

Heyer et al., 1984; Heyer et al., 2002; Whittenbury et al., 1970). Recently, increasing 

interest focuses on the ecology of methanotrophs and is driven by their significant 

role in controlling the methane cycle and influencing global climate change.  

To date, methanotrophic bacteria belonging to 16 genera within the α- and γ-

proteobacteria are described (Table 1). In addition, three obligate methanotrophs of 

the phylum Verrucomicrobia were discovered recently (Dunfield et al., 2007b; Islam 

et al., 2008; Pol et al., 2007). However, the latter seem to be restricted to extreme 

environments growing at pH values of approximately 1 and temperatures of over 

50°C. Complete genome sequencing of one isolate indicated the acquirement of genes 

essential for methanotrophy by horizontal gene transfer from the proteobacteria (Hou 

et al., 2008).  



 

 

Table 1 | Phylogenetic, morphological and physiological characteristics of aerobic methanotrophs. Facultative and putative facultative methanotrophs are 
highlighted in bold. The pictures of intercytoplasmatic membrane arrangements were adopted from the following publications: A: Wartiainen et al., 2006; 
B: Dalton 2005; C: Dedysh et al., 2002. PLFAs - Phospholipid fatty acids; RuMP pathway - Ribulose monophosphate pathway; p.d. - poorly developed. 

 
γ-PROTEOBACTERIA 
          (TYPE I) 

α-PROTEOBACTERIA   
(TYPE II) 

VERRUCOMICROBIA 

FAMILY Methylococcaceae Methylocystaceae Beijerinckiaceae Verrucomicrobiaceae 

GENERA Methylomonas    

 Methylobacter Methylosinus Methylocapsa Methylacidiphilum 

 Methylomicrobium Methylocystis Methylocella  

 Methylosarcina    

 Methylosphaera    

 Methylosoma    

 Methylococcus    

 Methylocaldum    

 Methylothermus    

 Methylohalobium 
Crenothrix 
Clonothrix 

   

RESTING STAGES Azotobacter-type 
cysts/none 

Cysts/Exospores Exospores/Azotobacter-
type cysts 

 

INTRACYTOPLASMIC MEMBRANES Type I (A) Type II (B) Type III (C)/p.d. different 

MAJOR PLFAS C16:1ω7c, C16:1ω8c, 
C16:0, C14:0 

C18:1ω8c, C18:1ω7c, 
C18:2ω7c,12c 

C18:1ω7c C18:0, C16:0, aC15:0, 
C14:0, 

ACTIVITY OF 
sMMO 
pMMO 

 
Yes/No 
Yes 

 
Yes/No 
Yes 

 
Yes/No 
Yes/No 

 
No 
Yes 

CARBON ASSIMILATION PATHWAY RuMP pathway Serine cycle Serine cycle Alternative serine cycle 

 

4
 

1
 | Introduction 

INTRACYTOPLASMIC 
MEMBRANE ARRANGEMENTS 

A 

Methylocapsa acidiphila 

C 

B 

0.5 µm 

0.2 µm 

Type II methanotroph 

Methylobacter tundripaludum 

0.5 µm 
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Proteobacterial methanotrophs were classified into two groups, type I and type II 

methanotrophs. This classification proposed by Whittenbury in the 70s (Whittenbury 

et al., 1975) was based on morphological, physiological and phylogenetical 

characteristics. While providing a meaningful system in the past, an increasing 

number of exceptions indicate that this classification might no longer be valid. The 

genera Methylocapsa and Methylocella share several characteristics with type II 

methanotrophs; however, they differ in their major phospholipid fatty acids (PLFA) 

and Methylocapsa possesses a different intracytoplasmic membrane arrangement 

referred to as membrane type III (Table 1; Dedysh et al., 2000; Dedysh et al., 2002). 

Another exception is the type II methanotroph Methylocystis heyeri sharing the 

PLFA profile of classical type I methanotrophs (Dedysh et al., 2007). Furthermore, 

nitrogen fixation was for a long time thought to be a specific trait of type II. However, 

a number of recent studies could demonstrate this function also in type I species. In 

addition, the number of environmental sequences without any cultured representative 

increases constantly in public databases. They cannot be assigned to type I or type II 

as no further information about the species is available. For these reasons, the type I 

and type II classification in this work refers only to phylogenetic inferences and does 

not allow conclusions on physiology or morphology. Type I methanotrophs are 

furthermore divided into type Ia and type Ib. Type Ib includes besides clusters of 

uncultivated methanotrophs the genera Methylococcus and Methylocaldum which 

were described as type X in earlier publications (Bowman, 2000; Hanson and Hanson, 

1996). These genera do not only possess enzymes catalyzing the RuMP pathway 

reactions of formaldehyde fixation (characteristic for type I), but also enzymes of the 

serine pathway (characteristic for type II) (Trotsenko and Murrell, 2008).  

Besides the verrucomicrobial methanotrophs, species belonging to the 

Proteobacteria are also known to be adapted to extreme environments. 

Methylococcus, Methylocaldum and Methylothermus form the group of 

thermotolerant or moderately thermophilic proteobacterial methanotrophs 

(Trotsenko et al., 2009). They are able to grow at temperatures up to 65°C.  
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Methanotrophs adapted to cold environments (growth in temperature range of 

0-30°C) were also described and include Methylobacter psychrophilus, Methylobacter 

tundripaludum, as well as Methylocella and Methylocapsa species (Trotsenko and 

Khmelenina, 2005; Wartiainen et al., 2006). Methylohalobius crimeensis represents a 

halophilic methanotroph obtaining a growth optimum at salt concentrations of 0.2-

2.5 M (Heyer et al., 2005). Some Methylomicrobium species are furthermore known 

to be halotolerant (Kalyuzhnaya et al., 2008; Khmelenina et al., 1997). Methylocapsa 

and Methylocella are acidophilic methanotrophs able to grow at pH values down to 

pH 4 (Dedysh et al., 2000; Dedysh et al., 2002).  

Methanotrophs are generally defined as obligate methylotrophs restricted to 

the utilization of methane, methanol and a narrow range of C1 compounds (e.g. 

Bowman, 2000). Discussions about the existence of facultative methanotrophs have a 

long history; however, it was only recently that Dedysh and colleagues provided the 

first proof with the characterization of the facultative Methylocella species (Dedysh et 

al., 2005). Nevertheless, the sheathed γ-proteobacteria Crenothrix polyspora might 

present a further facultative methanotroph (Stoecker et al., 2006). Together with 

Clonothrix fusca, it was only recently found to utilize methane (Stoecker et al., 2006; 

Vigliotta et al., 2007) although its morphology and complex life cycle is well known 

since more than one century (Cohn, 1870). Beside these rather unusual 

methanotrophs, Methylocystis species seem also capable of using multi-carbon 

substrates such as ethanol and acetate (Dedysh, personal communication). These 

findings indicate that facultative methanotrophy might be more common than 

previously thought.  
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In aerobic methanotrophs, methane is oxidized to carbon dioxide via the 

intermediates methanol, formaldehyde and formate (Figure 1). 

 

 

Figure 1 | Pathway for methane oxidation and assimilation of formaldehyde. Abbreviations: 
CytC = cytochrome c; PQQ = pyrroloquinoline quinine; X = NADP+ or cytochrome linked; 
RuMP Pathway = Ribulose monophosphate Pathway. Modified from Hanson and Hanson, 
1996. 

 

The first step, the oxidation of methane to methanol, is catalyzed by the methane 

monooxygenase (MMO). Two forms of this enzyme are described: the membrane-

bound or particulate MMO (pMMO) and the soluble enzyme (sMMO). All known 

methanotrophs except Methylocella possess the pMMO (Dedysh et al., 2000) whereas 

the sMMO is only present in some species. In bacteria holding both enzymes, 

expression is controlled by copper concentrations in the growth medium (Nielsen et 

al., 1996; Prior and Dalton, 1985; Stanley et al., 1983).  
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The two enzymes are distinct and present the result of two evolutionary 

independent processes. The sMMO is characterized by a wide substrate spectrum 

including a variety of alkanes, alkenes and aromatics, whereas the pMMO is only able 

to oxidize methane and short-chained alkanes and alkenes up to five carbons in length 

(Burrows et al., 1984; Colby et al., 1977). Although the pMMO is prevalent in nature, 

more is known about the biochemistry of the soluble enzyme, a fact that can be 

attributed to the difficulties of working with an integral membrane protein. Great 

progress has been made lately by obtaining the first crystal structure of the pMMO 

(Lieberman and Rosenzweig, 2005). Nevertheless, the active site has not been 

identified yet and is still actively discussed (Hakemian and Rosenzweig, 2007; Himes 

and Karlin, 2009). However, most data support a copper-mediated catalytic 

mechanism (Himes and Karlin, 2009).  

In various upland soils, methane oxidation kinetics were measured holding an 

unexpected high apparent affinity for methane compared to pure cultures of 

methanotrophs or wetland soils (Bender and Conrad, 1992; Bender and Conrad, 1993; 

Benstead and King, 1997; Gulledge et al., 1998). These soils act as sinks for 

atmospheric methane and high-affinity methanotrophs were assumed to be 

responsible for methane oxidation at trace concentrations (Bender and Conrad, 1992). 

However, the mechanism and the organisms involved are still unknown (Dunfield, 

2007a). Some uncultured methanotrophs were found abundant and active in these 

soils and are therefore proposed as the promising candidates (Holmes et al., 1999; 

Knief et al., 2003). Very recently, Baani and Liesack could furthermore show that a 

second pMMO isoenzyme found in several type II methanotrophs enabled growth at 

atmospheric methane concentrations for over three months (Baani and Liesack, 2008).   
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ANAEROBIC METHANOTROPHS 

The first geochemical evidence for anaerobic oxidation of methane was found already 

30 years ago, when observing the removal of methane from deeper marine sediments 

before any contact to oxygen (Barnes and Goldberg, 1976; Martens and Berner, 1974; 

Reeburgh, 1976). It is estimated to account for removing up to 90% of the methane 

produced in oceans thereby reducing ocean contribution to 2% of the global methane 

sources. However, the process involved remained unknown until Hoehler and 

colleagues proposed a reverse methanogenesis mediated by a consortium of 

methanogenic archeaea and sulfate reducing bacteria (Hoehler et al., 1994). Detecting 

archeal lipids highly depleted in 13C carbon provided the first evidence for anaerobic 

methane consumption by archaea (Hinrichs et al., 1999). To date, three distinct 

clusters of methanotrophic archaea (ANME-1, ANME-2 and ANME-3) are described, 

all related to Methanosarcinales and Methanomicrobiales, two orders of methanogens 

with many cultivated representatives. They were mostly found in cell aggregates 

together with sulfate reducing bacteria belonging to the δ-proteobacteria (Knittel and 

Boetius, 2009). However, none of them could be cultivated so far. ANME organisms 

seem to be globally distributed and were not only detected in marine environments, 

but also in limnic water columns and sediments, landfills, soils and aquifers (Cadillo-

Quiroz et al., 2008; Castro et al., 2004; Eller et al., 2005b; Grossman et al., 2002; 

Maclean et al., 2007). The presence of the methyl-coenzyme M reductase (MCR) 

catalyzing the last step in methanogenesis suggests that anaerobic methane oxidation 

is indeed performed by reverse methanogenesis in ANME organisms (Krüger et al., 

2003). Furthermore, fosmid libraries of ANME enrichment cultures revealed the 

presence of nearly all genes associated with methanogenenis (Hallam et al., 2003). 

However, the detailed mechanism is still under discussion. 

Theoretically, anaerobic methane oxidation could be also coupled to other 

electron acceptors such as iron (Fe3+), manganese (Mn4+) and nitrate (NO3-). All these 

processes are energetically more favorable than reduction of sulfate, however, 



1 | Introduction 

10 

experimental evidence was only found very recently. Raghoebarsing and co-workers 

obtained an enrichment culture from anoxic sediments of the Twentekanaal that 

coupled methane oxidation to denitrification (Raghoebarsing et al., 2006). 

Approximately 80% of the consortium was composed of bacteria belonging to the 

candidate division ‘NC 10’ whereas approximately 10% consisted of archaea closely 

related to the ANME-2. Labeled methane was incorporated into bacterial and archaeal 

biomarkers indicating the involvement of both groups. However, the physiological 

process remains unknown as MCR inhibition had no influence on methane 

consumption and the bacteria were also able to perform the reaction in absence of the 

archaea (Ettwig et al., 2008). Beal and colleagues found anaerobic oxidation of 

methane coupled to manganese and iron in marine sediments (Beal et al., 2009). 

However, although energetically more favorable, both processes were shown to occur 

at much smaller rates. If the microorganisms involved consists of an archaeal and 

bacterial consortium, or if bacteria alone are responsible, remains unknown. 

 

AMMONIA OXIDIZING BACTERIA 

The lithoautotrophic ammonia oxidizing bacteria (AOB) use ammonia as sole energy 

source and are able to fix carbon dioxide using the Calvin Benson cycle (Bock and 

Koops, 1999). Three main genera are described to date: the Nitrosomonas and 

Nitrosospira belonging to the β-proteobacteria and Nitrosococcus clustering 

phylogenetically within the γ-proteobacteria (Koops et al., 2006). The first step, the 

oxidation of ammonia to hydroxylamine is catalyzed by the ammonia monooxygenase. 

This enzyme is evolutionary related to the pMMO, the membrane bound methane 

monooxygenase (Holmes et al., 1995). The ammonia monooxygenase is not highly 

substrate specific and is able to oxidize several apolar compounds such as carbon 

monoxide and some hydrocarbons (Hooper et al., 1997). It is also able to oxidize 

methane, however, at much lower rates than the methane monooxygenase (Bedard 

and Knowles, 1989). It was furthermore shown that ammonia oxidizers probably play 



                                                                                                                      Introduction |1 

11 

no significant role in global methane oxidation (Bender and Conrad, 1994; Bodelier 

and Frenzel, 1999; Bosse et al., 1993; Jiang and Bakken, 1999).  

 

1.3 The wetland rice ecosystem 

Wetland soils are seasonally or permanently water saturated and form the largest 

single source of atmospheric methane (Intergovernmental Panel on Climate Change, 

2007). Rice paddies represent a unique form of wetland characterized by the 

dominance of one plant species. The three main types of wetland rice agriculture 

include (i) deep water rice which is permanently flooded, (ii) rain-fed rice which is 

only flooded after heavy rainfall and (iii) irrigated rice which is artificially flooded 

during the season and lays fallow during the winter (Neue and Roger, 2003). Wetland 

rice was estimated to account for approximately 15% of the global methane emission 

(Intergovernmental Panel on Climate Change, 2007) and its influence on the methane 

budget will even increase in future in correlation with the food demands of the 

growing human world population. 

The biogeochemistry in rice paddies is mainly controlled by the input of 

organic carbon and oxygen and by the availability of alternative electron acceptors 

such as Fe3+, nitrate, Mn4+, and sulfate (Conrad and Frenzel, 2002). Besides soil organic 

matter, the organic carbon originates from decay of plant material or is released from 

the plant through root exudation (Hartmann et al., 2009). Addition of rice straw 

represents a common fertilization practice resulting in a strong increase of methane 

production (Denier van der Gon and Neue, 1995; Sass et al., 1991). Oxygen is a 

limiting factor in flooded paddy fields. It only penetrates the first millimeters of the 

soil where it is rapidly consumed (Frenzel et al., 1992). Furthermore, rice plants act as 

conduit for oxygen transport through the intercellular aerenchyma system thereby 

providing oxygen to deeper anoxic soil compartments (Armstrong, 1979; Frenzel et 

al., 1992; Große and Bauch, 1991). As result, three major habitats for microorganisms 
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in paddy fields can be specified: (i) the anoxic bulk soil, (ii) the oxic surface soil, and 

(iii) the partially oxic rhizosphere with increased substrate concentration (Figure 2). 

 

 

 

 

Figure 2 | Scheme of the main habitats for biogeochemical active microorganism in a 
flooded rice field. 1= anoxic bulk soil; 2= oxic surface soil; 3= rhizosphere. Furthermore, the 
simplified redox cycling taking place at the oxic-anoxic interface and the emission pathway 
for methane are depicted. Modified from: Conrad, 2007; Conrad and Frenzel, 2002. 

 

In the presence of oxidants, the organic carbon is completely oxidized to carbon 

dioxide. If oxygen is not available, alternative electron acceptors are reduced 

according to their redox potential: nitrate is thermodynamically preferred over Mn4+, 

followed by Fe3+ and sulfate (Patrick, Jr. and Reddy, 1978; Ponnamperuma, 1972). Fe3+ 

represents the most abundant electron acceptor in paddy fields (Yao et al., 1999). 

Whereas oxygen and nitrate are rapidly consumed after flooding, the following Fe3+ 
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reduction can persists for several weeks (Patrick, Jr. and Reddy, 1978; 

Ponnamperuma, 1972). At the oxic-anoxic interfaces prevalent at the rhizosphere and 

surface soil, electron acceptors can be regenerated and a redox cycling of N, Fe, and S 

takes place (Figure 2; Conrad and Frenzel, 2002).  

In the absence of oxygen or alternative electron acceptors, organic carbon is 

disproportionated to carbon dioxide and methane. Methane as the end product of 

organic matter degradation serves as substrate for methanotrophic bacteria (see 1.2). 

Methanotrophs can be found in habitats where methane and oxygen gradients 

overlap, in particular the surface of the paddy soil and the rhizosphere (Bosse and 

Frenzel, 1997; Eller and Frenzel, 2001; Gilbert and Frenzel, 1995; Henckel et al., 

2001). However, a large amount of methanotrophs can be detected in the anoxic bulk 

soil (Eller et al., 2005a; Eller and Frenzel, 2001). Both, type I and type II 

methanotrophs were found in paddy fields, attenuating the potential CH4 emission by 

up to 90% (Frenzel et al., 1992; Frenzel, 2000; Gilbert and Frenzel, 1998). Uncultured 

methanotrophs assumed being responsible for methane oxidation at atmospheric 

levels and verrucomicrobial methanotrophs were not detected in rice fields until now.  

 

1.4 Marker genes for studying methanotroph diversity 

The 16S rRNA gene is by far the most frequently used phylogenetic marker for 

studying microbial ecology and diversity in the environment. An additional approach 

includes the sequencing of functional genes that are unique to the physiology of the 

studied group of microorganisms. The enzyme unique to methanotrophs is the 

methane monooxygenase. The pmoA and mmoX gene encoding a subunit of the 

pMMO and the sMMO, respectively, are the most frequent targets for methanotroph 

diversity studies (Dumont and Murrell, 2005; McDonald et al., 2008). As the pMMO is 

present in nearly all methanotrophs (see 1.2), the current pmoA sequence database is 

by far larger than the amount of public available mmoX sequences. The pMMO gene 
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cluster in type I and type II methanotrophs contains three open reading frames 

arranged as pmoCAB with a putative transcriptional start upstream of the pmoC gene 

(Gilbert et al., 2000; Semrau et al., 1995; Stolyar et al., 1999). In these organisms, two 

nearly identical copies of pmoCAB have been found. However, several type II 

methanotrophs were shown to harbor an additional different pmoA copy referred to 

as pmoA-2 (Dunfield et al., 2002; Tchawa Yimga et al., 2003). In Methylocystis strain 

SC2, pmoA-2 was shown to be part of a complete gene cluster that is responsible for 

oxidation of methane at atmospheric concentrations (Baani and Liesack, 2008; Ricke 

et al., 2004).  

The active site of the pMMO enzyme has not been identified yet; however, 

four sites containing highly conserved amino acids are currently discussed as potential 

candidates (Hakemian and Rosenzweig, 2007). Two of these sites include residues 

located within the pmoA gene. Furthermore, the pmoA phylogeny is largely 

congruent to the 16S rRNA gene phylogeny (Kolb, 2003) making pmoA a suitable 

phylogenetic marker gene for methanotrophs.  
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1.5 Aims of this study 

Methanotrophic bacteria perform a key function in the global carbon cycle by 

controlling the methane emissions released to the atmosphere. They have been 

studied intensively in the past; however, molecular approaches have barely started to 

explore their full diversity. Furthermore, the biotic and abiotic factors determining 

the niche differentiation of different species are only poorly understood. 

Verrucomicrobia, Methylothermus and Methylohalobius species seem to be only 

found in extreme environments whereas the uncultured ‘upland soil methanotrophs’ 

might be adapted to methane oxidation at atmospheric concentrations. However, the 

ecology of the mesophilic and neutrophilic type I and type II methanotrophs 

coexisting in many environments is largely unknown.  

In this PhD work, the pmoA gene was used as a functional and phylogenetic 

marker for studying methanotrophic communities in wetland rice fields. This 

ecosystem represents a well studied environment and an important source of 

atmospheric methane. The following questions were addressed to gain further insights 

into the ecology of methanotrophs: 

CHAPTER 2 | SPATIAL HETEROGENEITY OF METHANOTROPHS 

Microorganisms are not homogeneously distributed in nature. Communities might 

occur in patches according to physiological properties or they might be structured 

along environment gradients. These patterns have strong influence on the sampling 

strategy and the data interpretation. Are methanotrophic communities spatially 

structured within a paddy field? 

CHAPTER 3 | BIOGEOGRAPHY OF WETLAND RICE METHANOTROPHS 

First molecular studies already revealed the presence of type I and type II 

methanotrophs in wetland rice fields. Which species can be detected in detail? Are 



1 | Introduction 

16 

there different species on the plant roots than in the soil? And are there different 

communities in different paddy fields? 

CHAPTER 4 | METHANOTROPHS ASSOCIATED TO RICE ROOTS 

The rhizosphere represents a major habitat for methanotrophs in a paddy field. Are 

there different communities on the roots of different rice cultivars? And do different 

molecular techniques (T-RFLP and microarray) lead to the same results?  

CHAPTER 5 | THE PMOA GENE AS PHYLOGENETIC MARKER  

The pmoA gene is widely used as a marker in diversity studies of methanotrophs. 

Recently, new methanotrophic species only distantly related to canonical 

methanotrophs have been described. Does the pmoA phylogeny still correspond to the 

16S rRNA phylogeny? Are pmoA genotypes correlated to specific environments? 
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2 SPATIAL HETEROGENEITY OF 
METHANOTROPHS: 
A GEOSTATISTICAL ANALYSIS OF PMOA-BASED T-RFLP 
PATTERNS IN A PADDY SOIL 

SASCHA KRAUSE, CLAUDIA LÜKE, AND PETER FRENZEL. 

ENVIRONMENTAL MICROBIOLOGY REPORTS (2009) 1(5), 393–397. 

2.1 Abstract 

Despite numerous studies on methanotrophs, virtually nothing is known about their 

spatial heterogeneity in nature. These patterns, however, have strong influences on 

the interpretations made from analyzing microbial processes and community 

structure. Here we report the first use of geostatistics to analyze the spatial 

heterogeneity of methanotrophs in a rice field soil (Vercelli, Italy). We used the gene 

encoding the particulate methane monooxygenase, pmoA, for terminal restriction 

fragment length polymorphism (T-RFLP) analysis. The profiles obtained were 

compared using a pseudo-variogram analysis to study autocorrelation as a function of 

distance. We demonstrated that there was no large-scale spatial structure at this study 

site, but a micro-scale spatial structure could not be excluded. A species accumulation 

curve with all TRFs revealed that even 75 samples were insufficient to cover the 

diversity of methanotrophs in a rice field. However, a species accumulation curve of 

methanotrophs defined as operational taxonomic units validated from a clone library 

with 90 % coverage demonstrated saturation after approximately 15 samples. The 

results of this study have consequences for studying the diversity and function of 

methanotrophs. In this agroecosystem no environmental gradients were found 

indicating that the sample size is of minor importance. 
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2.2 Introduction 

Methanotrophs are a physiologically unique group of bacteria that utilize methane as 

sole carbon and energy source. They belong to the Gammaproteobacteria (type I 

methanotrophs) and Alphaproteobacteria (type II methanotrophs). Both groups 

oxidize methane via methanol and formaldehyde to carbon dioxide (Hanson and 

Hanson, 1996; Bowman, 2006; McDonald et al., 2008; Trotsenko and Murrell, 2008). 

A key enzyme in this pathway is the particulate methane monooxygenase (pMMO), 

which is present in all known methanotrophs except the acidophilic Methylocella spp. 

(Theisen et al., 2005). Hence, the pmoA gene, which encodes the α subunit, can be 

used as a molecular marker for the identification of methanotrophs in environmental 

samples (McDonald and Murrell, 1997).  

In wetland rice fields, methanotrophs can reduce the potential methane 

emissions up to 80 % (Conrad and Rothfuss, 1991) and thus play an important role in 

the global methane budget. Consequently, the physiology, diversity, and ecology of 

methanotrophs have been studied in detail (Hanson and Hanson, 1996; Conrad, 2007; 

McDonald et al., 2008). However, information on their spatial heterogeneity in nature 

is lacking and has been rather neglected when studying methanotrophs. 

The distribution of microorganisms in the environment is heterogeneous 

(Franklin and Mills, 2003). Bacterial communities are structured not only by the 

physiology and ecological properties of the members, but also by environmental 

parameters. These gradients have to be evaluated when designing field studies of 

bacterial diversity and function. 

A powerful tool for gaining insight into the spatial structure is geostatistics. 

Geostatistics originate from soil science and are widely used for quantifying spatial 

patterns (Legendre and Legendre, 1998; Ettema and Wardle, 2002). It is based on the 

assumption that spatial variability is autocorrelated, i.e., locations close to each other 

are more similar than those further apart. A method to identify the spatial structures 

is variogram analysis. Generally, semi-variances between samples are calculated and 
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plotted against their spatial separation; the slope indicates whether a spatial structure 

is present (Ettema and Wardle, 2002). 

In microbial ecology, so far, only a few studies have used geostatistics, e.g., 

Franklin et al. (2002), Mummey and Stahl (2003), Nicol et al. (2003), Ritz et al. (2004) 

and Bengtson (2007). For example, the use of geostatistics has shown that the spatial 

structure of microbial communities in agricultural soils can greatly differ from site to 

site. Grundmann and Debouzie (2000) demonstrated with a pure culture experiment 

of ammonia and nitrite oxidizers using an agricultural soil cultivated with maize that 

they aggregate at a millimeter scale. In a field study, Franklin and Mills (2003) applied 

amplified fragment length polymorphism (AFLP) to the total bacterial community and 

pointed out that the bacterial distribution can be highly structured over a distance of 

30 cm to more than 6 m in a wheat field. In sharp contrast to both of these studies, 

Robertson et al. (1997) observed no spatial variability in the culturable bacterial 

population in a monospecific crop field, even though soil properties varied. Hence, the 

possible spatial variability has to be evaluated when microbial processes are analyzed 

(Robertson et al., 1997).  

Our study was performed to address the general need for more information 

about the spatial heterogeneity of bacterial populations in agricultural systems. We 

used methanotrophs from a rice field as a model system. We measured pmoA based 

terminal restriction fragment length polymorphism (T-RFLP) and applied geostatistics 

to provide insights in the spatial structure. Moreover, this work could be applied to 

develop an optimal sampling strategy for diversity studies in rice fields. 



2 | Spatial heterogeneity of methanotrophs 

30 

2.3 Results and discussion 

Spatial structure 

The applied sampling scheme ensured that a representative data set was recorded 

(Figure 1). Our geostatistical analyses resulted in a pseudo-variogram depicting the 

spatial organization of methanotrophs (Figure 2). The Jaccard dissimilarities of pmoA-

based T-RFLP patterns averaged 0.64. There were no trends towards a change in 

dissimilarities with increasing separation distance, which implied no spatial structure 

at the study site sampled.  

 

 

 
Figure 1 | Sampling design, illustrating the location of the sampling points. Filled circles 
represent grid cells and samples spaced further apart; open circles show samples of the 
random-walk transects. Soil samples were collected from a paddy rice field of the C.R.A. 
Unità di Ricerca per la Risicoltura (Vercelli, Italy) in autumn 2006 after drainage and 
harvest. A 6060 m area of a rice field was sampled. In this area, 25 points were marked 
with 4 m between each point, forming a regular grid. Five points were chosen at random as 
the starting points of independent random-walk transects, as described elsewhere (Ritz et 
al., 2004). In addition, five samples, 30 m apart, were taken. In total, 75 samples were 
collected. Each sample consisted of a 64 mm core taken from the rice field surface to a 
depth of approximately 6 cm.  
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Considering the history of the study site, we can postulate a possible explanation for 

this result. The site has been planted with rice for more than 100 years (Lupotto, 

personal communication). Plowing and puddling of the flooded soil has effectively 

homogenized the topsoil, and when flooded this soil lacks horizontal gradients, i.e., 

the soil properties are fairly constant. If the plant root system and rhizosphere affects 

the distribution of microorganisms, as suggested by a study in a grassland (Mummey 

and Stahl, 2003), these effects would be even more similar throughout the site in the 

monospecific rice culture. Hence, the methanotrophic community would not be 

spatially structured. A second factor may be similarly important: by volume, the 

largest fraction of the flooded soil is anoxic enabling aerobic methane oxidation only 

at the soil surface layer and in the rhizosphere. Methanotrophs can form drought-

resistant cysts and exospores (Whittenbury et al., 1970; Bowman et al., 1993) that are 

assumed to make up the largest fraction of the population (Eller and Frenzel, 2001). 

Methanotrophs have been reported to survive unfavorable conditions for up to 170 

years (Rothfuss et al., 1997). Hence, this long persistence in the environment will 

level out actual population changes, particularly if not the active but the total 

population is analyzed. 

In contrast, the medians of the boxes in the pseudo-variogram were 

significantly different at small distance classes (2.7 m to 5.4 m, Figure 2) and at large 

distance classes (18.9 m to 32.5 m, Figure 2). No significant differences for 

intermediate distance classes were observed. Differences at short distances pointed 

towards a slight spatial structure (Figure 2), which is also underlined by the results of 

a local regression analysis (Figure S1). Previous work has shown that on the micro-

scale, e.g., comparing roots to the surrounding soil, the population structures can 

differ (Eller and Frenzel, 2001). However, an additional pseudo-variogram analysis on 

a small scale (< 10 m) did not reveal any spatial structure (data not shown). Hence, we 

assume that the scales at which spatial heterogeneity might occur are mainly smaller 

than those measured. We cannot exclude a spatial structure at the millimeter scale, as 

shown for instance by Grundmann and Debouzie (2000). 
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Figure 2 | Spatial heterogeneity, shown as a pseudo-variogram. Since T-RFLP analysis 
generates multivariate data, we followed the approach of Franklin et al. (2002) using the 
Jaccard coefficient as a measure of dissimilarity. Dissimilarities are shown as a series of 
box and whisker plots binned to distance classes. The horizontal lines in the boxes indicate 
the median. The bottom and top of each box indicate the 25 and 75 percentiles, 
respectively. Whiskers are 1.5 times the interquartile range of the data, and points outside 
this range are classified as outliers. Notches are shown around each median. If the notches 
do not overlap, the medians are roughly significantly different at about a 95 % confidence 
level (McGill et al., 1978). The numbers above the distance classes indicate the sample 
size. DNA was extracted following the protocol of Stralis-Pavese et al. (2004). Amplification 
of the pmoA gene was carried out in triplicates per sample and pooled afterwards followed 
by a pmoA-based T-RFLP analysis (Horz et al., 2001). T-RFLP data were standardized using 
the relative abundances of TRF peak heights (Lüdemann et al., 2000).  
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Species (OTU) coverage 

The assignment is based on a pmoA database containing more than 4000 sequences. 

From these sequences, 500 were obtained from Vercelli rice fields and a rarefaction 

analysis, an estimation of the total diversity based on a sub sample, indicated a good 

coverage of methanotrophic diversity in this agroecosystem (data not shown). TRFs 

could be affiliated to the following operational taxonomic units (OTUs): pmoA/amoA-

like RA21 cluster (58 bp) Methylococcus/Methylocaldum (80 bp), Methylosinus 

trichosporium OB3B (146 bp), Methylosinus/Methylocystis (245 bp), 

Methylomicrobium album (350 bp). In addition, the 47 and 113 bp TRFs were 

affiliated to the amoA gene, which is partially covered with the applied primers. This 

assignment is consistent with previous work (Holmes et al., 1999; Horz et al., 2001; 

Reay et al., 2001; Shrestha et al., 2008). With this information, an additional pseudo-

variogram analysis was performed using only the assigned OTUs. The pseudo-

variogram was the same as that shown in Fig. 2, with a mean Jaccard dissimilarity of 

0.59. Although there was no obvious spatial structure, we identified some indications 

of species interactions between type I and type II methanotrophs (Table S1). Henckel 

(2000) found that type II methanotrophs are usually present or most active when 

environmental conditions in a rice field have become fairly constant, whereas type I 

methanotrophs are more active when environmental conditions are more variable, 

e.g., during drainage or flooding. They suggested that generally type I and II 

methanotrophs occupy different niches and coexist. Additionally, the impact of 

protistan grazing might have an effect on the distribution and abundance of 

methanotrophs, as shown by Murase et al. (2006).  

 

Species accumulation curve 

The results of our study have general implications for the study of diversity and 

function of methanotrophs. Demonstrating that a small sample size can 

representatively cover the pmoA-based TRFs in a rice field would simplify sampling 



2 | Spatial heterogeneity of methanotrophs 

34 

effort and save costs and time. In our first analysis, all fragments were included and 

the curve did not flatten, which indicated that 75 samples are insufficient to cover all 

TRFs (data not shown). Along these lines, Schloss and Handelsmann (2004) illustrated 

that even approximately 56,000 partial 16S rRNA gene sequences did not cover the 

microbial census and are far from complete, as shown by a sharp slope of the 

rarefaction curve, which is similar in application to the species accumulation curve. 

Hence, we limited the analysis to the previously assigned OTUs. This species 

accumulation curve flattened, i.e., indicated that the curve was saturated at a sample 

size of approximately 60 (Fig. S2), and a manageable sampling unit of approximately 

15 was found when a limit was set at 90 % OTU coverage. We believe that it is 

currently not feasible to cover an entire ecosystem, even for just a single functional 

group like the methanotrophs. Hence, the focus should be more on different 

community patterns, or on species and their ecological relevance than on covering 

every single species in an ecosystem. There are consequences for the sampling effort.  

In ecosystems with gradients the sampling strategy is of major importance, because all 

gradients have to be considered and a high number of samples are required. However, 

in systems, without gradients the samplings strategy seems to be irrelevant and a small 

sample size can representatively cover the study site. 

In summary, our results demonstrate that the methanotrophic community in 

the rice field studied had no obvious spatial structure. A structure on the millimeter 

scale is possible, but this still needs to be investigated. We were able to limit the 

sample size without losing important fragments. Although no spatial structure was 

found at the level of T-RFLP patterns, we demonstrated that there is a noteworthy 

difference in the occurrence of distinct methanotrophic phylogenetic groups. The 

pseudo-variogram analysis in connection with T-RFLP analysis is a suitable method 

for the identification of spatial structures. Hence, this method can be adapted to every 

kind of environment. Since this study is based on DNA, i.e., on the presence of gene 

copies, the results do not necessarily reflect the active community. Future analyses 
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should concentrate on active methanotrophs since remarkable differences in the 

community structure based on the activity of single species are expected. 
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2.5 Supplementary material 

 

 

 

Figure S1 | Local regression fit of Jaccard dissimilarities plotted against spatial distance. 
The nearest neighbor bandwidth (α = 0.3; proportion of data used in each fit) was used. 
Dashed lines represent approximate 95 % point-wise confidence intervals for the mean. 
Local regression was performed using the local regression software LOCFIT as 
implemented in the statistical software R (R Development Core Team, 2008; Loader, 
1999). 
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Figure S2 | Species accumulation curves of all OTUs using random accumulation of sites 
and a 95 % confidence interval (shaded area). A randomization approach was used where 
the average species richness is calculated for a series of randomly pooled sites (Kindt and 
Coe, 2005). Each TRF was considered as an operational taxonomic unit (OTU).  
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Table S1 | Spearman's rank correlation coefficients between TRFs using relative 
abundances; TRF affiliation: 47 bp, Nitrosomonas / Nitrosospira; 80 bp, Methylococcus / 
Methylocaldum; 113 bp, Nitrosospira; 245 bp, Methylosinus / Methylocystis; 350 bp, 
Methlyomicrobium album; 58 bp, pmoA/amoA-like RA21 cluster; and 146 bp, 
Methylosinus trichosporium OB3B.  

TRFS 47 58 80 113 146 245 350 

47        

58 -0.06       

80 -0.12 -0.15      

113 0.02 0.02 .-0.24     

146 *-0.34 **0.39 -0.21 ***0.62    

245 0.18 *-0.32 -0.01 ***-0.50 0.60   

350 0.12 .0.26 0.09 -0.18 -0.04 0.20  

531 *-0.30 -0.21 -0.04 0.21 0.21 **-0.36 -0.16 

Signif. codes:  '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 
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3.1 Abstract 

We focused on the functional guild of methane oxidizing bacteria (MOB) as model 

organisms to get deeper insights into microbial biogeography. The pmoA gene was 

used as a functional and phylogenetic marker for MOB in two approaches: (i) a pmoA 

database (>4000 sequences) was evaluated to obtain insights into MOB diversity in 

Italian rice paddies, and paddy fields world-wide. The results show a wide 

geographical distribution of pmoA genotypes that seem to be specifically adapted to 

paddy fields (e.g. Rice Paddy Cluster 1 and Rice Paddy Cluster 2). (ii) On the smaller 

geographical scale, we designed a factorial experiment including three different 

locations, two rice varieties and two habitats (soil and roots) within each of three rice 

fields. Multivariate analysis of T-RFLP profiles revealed different community patterns 

at the three field sites, located 10 to 20 kilometres apart. Root samples were 

characterized by high abundance of type I MOB whereas the rice variety had no 

effect. With the agronomical practice being nearly identical, historical contingencies 

might be responsible for the field site differences. Considering a large reservoir of 

viable yet inactive MOB cells acting as a microbial seed-bank, environmental 

conditions might have selected and activated a different subset at a time thereby 

shaping the community.  

3
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3.2 Introduction 

Next to CO2, methane is the most important greenhouse gas contributing substantially 

to radiative forcing (Intergovernmental Panel on Climate Change, 2007). Natural 

wetlands and rice fields belong to the major sources of atmospheric CH4 

(Intergovernmental Panel on Climate Change, 2007). In contrast, upland soils 

function as a sink to atmospheric CH4 due to the uptake by methane oxidising bacteria 

(MOB) (Conrad, 1996; Knief et al., 2003). On a global scale, however, MOB are even 

more important in wetlands, where they function as a bio-filter preventing CH4 

produced in anoxic layers escaping into the atmosphere. MOB in natural wetlands and 

rice paddies attenuate the potential CH4 emission by up to 40% (Frenzel, 2000; 

Reeburgh et al., 1993). In particular situations, e.g. at the oxic-anoxic boundary near 

the very surface of sediments or water-saturated soils, an attenuation of more than 

90% may be achieved (Frenzel et al., 1990; Gilbert and Frenzel, 1998). Another oxic-

anoxic boundary is formed in the rhizosphere of wetland plants, where O2 diffusing 

through the aerenchyma may be released from the roots supporting root-associated 

CH4 oxidation (Armstrong, 1971; Conrad and Frenzel, 2002). In rice fields, root-

associated CH4 oxidation is the most important CH4 sink. A couple of case studies in 

wetland rice fields have reported on CH4 oxidation rates of 10 to 30% per season 

(Denier van der Gon and Neue, 1996; Eller et al., 2005; Krüger et al., 2002). However, 

considerable differences emerge comparing studies on different rice cultivars (Bilek et 

al., 1999; Bosse and Frenzel, 1998; Denier van der Gon and Neue, 1996; Eller et al., 

2005; Marik et al., 2002; Tyler et al., 1997): CH4 oxidation may occur more or less 

throughout the season, decline with the onset of the reproductive period, but 

sometimes become re-established at the very end of the season. Only part of this 

pattern can be attributed to agricultural practice like fertilisation with mineral 

nitrogen (Bodelier et al., 2000a; Bodelier et al., 2000b): this effect tends to be transient 

(Krüger et al., 2002) becoming unimportant late in the season (Dan et al., 2001). How 
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the populations of MOB growing on and in rice roots are affected by cultivars, and 

how in turn they may affect emissions, is largely unknown.  

Basically, two types of MOB are distinguished: type I and type II 

corresponding to the families Methylococcaceae (type I, γ-proteobacteria), 

Methylocystaceae and Bejerinckiaceae (type II, α-proteobacteria) (Bowman, 2000). 

This classification was originally based on phenotypical traits, but corresponds well to 

the phylogeny of the pmoA gene encoding the α-subunit of the particulate methane 

monooxygenase. Type I MOB can be further divided into type Ia comprising the 

genera Methylomonas, Methylobacter, Methylosoma, Methylosarcina and 

Methylomicrobium, and type Ib characterized by Methylococcus and Methylocaldum. 

Type Ib was previously also referred to as type X. Recently, MOB belonging to the 

phylum Verrucomicrobia were isolated, however, they seem to be restricted to 

extreme environments (e.g. Dunfield et al., 2007). pmoA was found to be an excellent 

functional marker (McDonald and Murrell, 1997) becoming the most frequently used 

target in molecular ecology studies of MOB (Dumont and Murrell, 2005). Moreover, 

all MOB known so far except the acidophilic Methylocella (Dedysh et al., 2000) 

possess the pmoA gene and the phylogeny corresponds largely to the 16S rRNA gene 

phylogeny (Kolb et al., 2003).  

Due to a large number of sequences available from various habitats world-

wide, the pmoA gene is an excellent proxy to study the correlation between MOB, 

environmental factors, and geographical regions. Microbes are often perceived as 

opportunistic, fast-growing organisms responding quickly to environmental changes. 

This may be a misconception: because microbes are excellent survivors when 

conditions become unfavourable, the imprint of past events may be preserved in 

contemporary communities. A variety of MOB are known to form cysts or exospores 

(Whittenbury et al., 1970), making them candidates for studying microbial 

biogeography.  
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We used a database-driven approach for analysing the pmoA genotypes found in 

Italian rice paddies compared to other rice growing areas. We constructed clone 

libraries to expand our knowledge on pmoA diversity in the Italian paddy fields. We 

studied large-scale geographical patterns by compiling meta-information about 

geographical origins of paddies fields world-wide and combined it to the phylogenetic 

analysis of the respective pmoA sequences. On the smaller scale, we designed a 

factorial experiment to get deeper insights into the correlation of MOB with habitat 

and sites: within each of three Italian rice fields, 11-21 km apart, experimental plots 

were planted with the cultivars ROMA and KORAL. Fertilisation and water 

management were similar in all three fields. This design aimed to distinguish between 

actual effects, e.g. the cultivar planted, and contingencies due to the different pre-

experimental histories of the different fields, if any. The choice of cultivars was 

motivated by previous work showing both cultivars supporting MOB and CH4 

oxidation (Bosse and Frenzel, 1998; Eller et al., 2005).   

MOB populations are fully developed at late tillering/panicle initiation (Eller et 

al., 2005; Eller and Frenzel, 2001). Hence, we sampled at that growth stage rice roots 

and paddy soil. Because our focus was on population structures, we extracted DNA 

and used pmoA as a functional marker gene. Fingerprints from terminal restriction 

fragment analysis (T-RFLP) were used to explore the association between 

methanotrophic communities and cultivars, microhabitats, and/or fields by 

multivariate analyses. 
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3.3 Results 

An existing pmoA nucleotide sequence database with approximately 600 sequences 

(Knief et al., 2006) was extended with publicly available and new sequences from this 

study (n  4000). It comprises pmoA sequences from various environments also 

covering part of the amoA diversity (about 6% of the total database). The amoA gene 

(encoding the ammonia monooxygenase subunit A) is homologous to the pmoA gene 

and is often co-amplified with pmoA primers (Holmes et al., 1995). This database was 

the backbone for the following analyses. Phylogenetic clusters referred to below are 

defined and named according to cultured MOB or, for environmental clusters without 

cultured representatives, in relation to the nomenclature of microarray probes 

targeting the respective groups (Bodrossy et al., 2003; Stralis-Pavese 2004; 

Vishwakarma et al., 2009). 

 

MOB in Italian wetland rice: comparative sequence analysis 

To get deeper insights into pmoA diversity in Vercelli rice fields, we combined 292 

clone sequences obtained in this study with about 200 sequences from previous work 

(Henckel et al., 1999; Henckel et al., 2000a; Henckel et al., 2001; Horz et al., 2001; 

Shrestha et al., 2008). Phylogenetic analysis showed a wide distribution of Vercelli-

sequences throughout the entire pmoA diversity (Figure 1). However, sequences 

belonging to upland soil clusters that are assumed to be responsible for the 

consumption of atmospheric methane, for example USC-α, USC-γ (Knief et al., 2003) 

and the clusters JR-1, JR-2 and JR-3 (Horz et al., 2005), were not detected. One 

exception might be a tropical upland soil cluster (TUSC) in which one sequence from 

Vercelli is so far the only representative from a high-methane environment. This 

cluster together with the environmental clusters RA21, M84-P22 and M84-P105 are 

phylogenetically positioned between pmoA and amoA. Within type II MOB, the 

sequences from Vercelli showed a close relationship to Methylocystis while 
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Methylosinus-related sequences were not detected. Furthermore, one sequence fell 

within the MO3 cluster consisting of sequences obtained from various low and high-

methane environments. Most Vercelli sequences affiliated to type Ib were related to 

Methylocaldum, or fell into an environmental cluster showing no close relationship to 

any cultivated MOB. This cluster is composed entirely of rice field sequences from 

various geographical origins. We therefore refer to it as RPC-1 (Rice Paddy Cluster 1; 

Figure 1). Most of the sequences affiliated to type Ia grouped with Methylomonas. 

Further sequences showed a close relationship to Methylobacter species or grouped 

within a second environmental cluster dominated by pmoA sequences from rice 

paddies (Rice Paddy Cluster 2, RPC-2; Figure 1). Like RPC-1, these sequences 

originate from various geographical regions: Uruguay (Ferrando and Tarlera, 2009), 

China (Zheng et al., 2008) and Italy.  
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Figure 1 | Phylogenetic relationship of partial pmoA sequences based on deduced amino 
acid residues. Only sequences containing at least 140 amino acid positions were included 
in the analysis. A. Neighbor Joining tree showing the distribution of pmoA sequences 
retrieved from Vercelli rice paddies compared to public database sequences from various 
environments: Clusters containing Vercelli clone sequences are shown in green. 
Environmental clusters were named according to representative clones and/or in relation 
to the denotation of pmoA microarray probes. GenBank accession numbers of 
representative clones are given in brackets. Closed circles mark nodes that were verified by 
a Maximum likelihood tree. The scale bar represents 0.1 changes per amino acid position. 
B. Detailed view on the Rice Paddy Cluster 1 (RPC-1) which is composed entirely of rice 
paddy sequences from various geographical origins C. Geographical origins of the RPC-1 
sequences.  
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MOB in Italian wetland rice: fingerprint analysis 

T-RFs were binned according to phylogenetic affiliations into a total of 10 operational 

taxonomical units (OTUs; Table 1). After binning and standardization, two to eight 

OTUs per individual sample were retained. Constrained correspondence analysis 

(CCA) showed two clusters separating soil and root samples (Figure 2). OTUs affiliated 

to Methylocaldum, Methylomonas and Methylobacter (type I MOB) were almost 

exclusively detected in root samples, whereas soil samples were characterized by a 

higher abundance of type II MOB, the RA21 group and ammonia oxidizers. Soil 

samples from different locations were clearly separated, while different rice cultivars 

were not. This basic pattern was also preserved in NMDS analysis (supplementary 

material, Figure S1). 

Table 1 | Affiliation of operational taxonomic units (OTUs) to phylogenetic groups of 
methanotrophs (Type I and Type II) or ammonium oxidizing bacteria (AOB). Binning was 
based on an in-silico analysis and cross-checked by T-RFLP analysis of clones. Clusters are 
defined in Figure 1. 

OTU GENUS/CLUSTER 
SUBDEVISION OF 

PROTEOBACTERIA 
TYPE 

46 Nitrosospira beta AOB 

58 RA21 group  Others* 

79 Methylocaldum related, 
RPC-1 

gamma Ib  
            

114 Nitrosospira,  
M84-P22 group, TUSC 

beta 

 

AOB 
Others* 

241,349, 
505,531 

Methylobacter / Methylomicrobium, 
LP20 group, RPC-2                         

gamma Ia 
                   

244 Methylocystis  alpha II 

437 Methylomonas   gamma Ia 

* These sequences cluster between methanotroph pmoA sequences and amoA sequences from 
ammonium oxidizers and lack cultivated representatives. 
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Figure 2 | Constrained correspondence analysis (CCA) calculated from standardized T-RFLP 
data. Constraints used: Micro-niche (Roots vs. Soil), Geographical location (Ronsecco vs. 
Vercelli vs. Villarboit), and rice variety (Roma vs. Koral). Explained variance: 58% of total 
inertia (p=0.005). OTUs are affiliated to MOB in Table 1. 

 

The hierarchy of factors explaining the variation of MOB communities was 

explored with a multivariate regression tree (MRT) (De'Ath, 2002). An MRT explains 

the variation of a multivariate response (the relative abundance of OTUs) using 

numeric or categorial explanatory variables (e.g. different locations or cultivars). The 

binary splits are produced by minimizing the impurity within, and maximizing the 

heterogeneity between groups.  

The primary split separated soil and root samples (Figure 3) consistent with the 

separation in ordination analysis (Figure 2). This split is mainly characterized by the 

presence (on roots) or absence (in soil) of type I related OTUs, and of Nitrosospira 

which was present in soil, but not on roots. Soils were further separated according to 

sites, while only the fourth-level split indicated a slight effect of cultivars on the 
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methanotrophic community (Figure 3). Hence, in spite of different algorithms, all 

analyses produced very similar results. 

 

 

 

Figure 3 | Multivariate regression tree calculated from standardized T-RFLP data. The tree 
is based on the sums of squares in one group about the group mean. The bar plots show 
the multivariate species mean at each leaf and n depicts the numbers of sites at each leaf. 
OTUs are affiliated to MOB in Table 1. 
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3.4 Discussion 

Previous studies on MOB diversity in specific environments are based on comparably 

small clone libraries. We combined data from several studies comprising about 500 

pmoA sequences in total to obtain a more detailed view on MOB in Vercelli rice 

fields. The results indicate the presence of a highly diverse, but distinct community. 

They furthermore show a wide geographical distribution of pmoA genotypes that 

seem to be adapted to paddy fields. However, focusing on a smaller geographical scale, 

differences in the MOB communities were detected even at fields located only a few 

kilometers apart. Soil and root samples were characterized by different MOB 

communities, whereas the rice variety had no effect.   

 

MOB in wetland rice: Biogeography at the global scale 

The MOB population in Vercelli rice fields shares some components that are common 

to wetland rice fields around the world. Within the type Ia MOB, a large amount of 

pmoA sequences retrieved from paddy fields show high identity (91-92%) to 

Methylomonas methanica. Furthermore, several environmental pmoA clusters consist 

entirely of, or are dominated by rice field sequences. The RPC-1 represents the largest 

cluster comprising pmoA clones from rice fields distributed over all Eurasia (this 

study, Horz et al., 2001; Jia et al., 2007; Qiu et al., 2008; Shrestha et al., 2008; Zheng et 

al., 2008; Vishwakarma, unpublished) and might reflect the spread of O. sativa 

japonica from its native area in East Asia throughout the tropics and subtropics. RPC-

2 is dominated by paddy field sequences from Italy, Asia and South America, whereas 

cluster JRC-3 consists of pmoA sequences retrieved so far only from Japanese and 

Chinese rice paddies (Jia et al., 2007; Qiu et al., 2008; Zheng et al., 2008). For the JRC-

4 comprising sequences from Asia and South America, an isolate could be obtained 

very recently from Uruguayan rice fields (Ferrando and Tarlera, 2009). It showed 

congruent phylogeny of pmoA and 16S rRNA with Methylococcus capsulatus and 
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Methylocaldum szegediense as closest cultivated relatives (92 and 91% 16S rRNA gene 

identity, respectively) and might be the first representative of a new MOB genus. A 

lot of sequences from nearly all studied paddy field sites cluster near Methylocaldum. 

All of these rice clusters, apart from the RPC-2, could be affiliated to type Ib MOB 

based on pmoA phylogeny. RPC-2 shows an ambiguous relation to either type Ia or 

type Ib, depending on the method used for tree construction.  

 

Figure 4 | Rarefaction analysis of collected pmoA/amoA sequences from Vercelli rice 
fields. The analysis is based on sequences retrieved with both primer pairs (A189f/mb661 
and A189f/A682r). Nucleotide sequences were grouped as OTUs using the distance levels 
10% and 17%. These pmoA distances correspond to the 3% and 5% 16S rRNA distance 
assuming a 3.5 times higher nucleotide substitution rate (Heyer et al. 2002).  

 

All rice clusters combine sequences from at least three geographically separated paddy 

fields suggesting a certain adaptation to the rice field environment. The studies are 

based on clone libraries of very different sizes ranging from 30-40 clones (Zheng et al., 

2008; Vishwakarma et al., 2009; Jia et al., 2007; Ferrando et al., 2009) to approximately 

500 in this work. Even for the Italian clone library, rarefaction curves did not level off 

(Figure 2), indicating a still incomplete picture of total MOB diversity and a 
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considerable contribution of the ‘rare biosphere’. Hence, an increasing sampling effort 

might detect some clusters in other geographical regions or in environments others 

then paddy fields. However, in-depth studies using the recently developed high 

resolution pmoA microarray (Bodrossy et al., 2003; Stralis-Pavese et al., 2004) did not 

detect these clusters in peat, landfill and gleyic soil (Chen et al., 2008; Héry et al., 

2008; Cebron et al., 2007), whereas they were detected in an Indian rice paddy 

(Vishwakarma et al., 2009). These studies strongly support our view of a rice-specific 

methanotrophic community.  

The primer choice has a large impact on the detectable diversity. A189f/A682r 

(Holmes et al., 1995) and A189f/mb661r (Costello and Lidstrom, 1999) are the 

predominant primers used for studying pmoA diversity. Whereas A682r was widely 

used in earlier studies (Kalyuzhnaya et al., 2002; Radajewski et al., 2002; Reay et al., 

2001), more recent publications show a preference for mb661 (Chen et al., 2008; 

Ferrando and Tarlera, 2009; Zheng et al., 2008). One reason for this change is the 

discrimination of mb661r against the homologous amoA of ammonia oxidizers. 

However, mb661r also discriminates against the clusters USC-α and RA21 (Bourne et 

al., 2001). For the Vercelli sequence pool, several other clusters located in-between 

the MOB and AOB (TUSC, M84-P22, and M84-P105) have only been retrieved using 

A682r (Table S1, supplementary material). However, clusters within the type Ia 

methanotrophs, such as the RPC-2 and Methylobacter related genotypes, seem to be 

preferentially amplified by the mb661 primer. Therefore, the combined use of both 

primer sets will reveal the most complete picture of methanotrophic diversity 

(McDonald et al., 2008). 

That no sequences belonging to any of the upland soil clusters were obtained 

might seem trivial, but crop rotation between wetland rice and other cereals is quite 

common, and the Italian fields lay fallow during winter. Hence, rice field MOB may 

at least temporarily be exposed to low methane concentrations. Indeed, re-analyzing 

the phylogenetic position of sequences retrieved from a Chinese paddy field (Zheng et 

al., 2008) revealed two sequences grouping within USC-γ.  
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MOB in Italian wetland rice: biogeography at the small geographical scale 

Besides considering the large geographical scale, we compared the MOB communities 

in three very closely located paddy fields within Northern Italy. This comparison was 

carried out by T-RFLP analysis resulting in similar T-RFs found in all soils. However, 

in spite of a nearly identical agricultural treatment, the three sites showed 

significantly different community patterns based on the relative abundance of specific 

T-RFs (Figure 2&3). The reason for these differences might be found related to the 

history of the soils. A variety of MOB are able to form cysts or exospores (Bowman et 

al., 1993; Whittenbury et al., 1970) and are believed to remain viable for more than a 

century (Rothfuss et al., 1997). Rice soils contain a large yet inactive population of 

MOB acting as a seed bank (Eller et al., 2005; Eller and Frenzel, 2001). From this seed 

bank, past events might have activated different sub-populations from time to time. 

These events could be of different nature and we can only speculate about it. Different 

agricultural practices in the past might be of importance as well as natural variability 

at the three sites. A combination of all effects might have resulted in different 

community compositions at each site which were conserved in the seed bank. 

Changes in this seed bank may be slow, but once established, they might persist for 

quite a time providing a complex community from which the actual environment 

selects a subset.  

 

MOB at the field scale: Influence of habitat and rice variety 

The T-RFLP profiles did not indicate an effect of the rice varieties on MOB 

communities. However, both cultivars studied belong to O. sativa ssp. japonica. The 

Italian germplasm in particular has recently been found to be genetically quite 

homogeneous (Lupotto, unpublished). Analysing more distantly related cultivars may 

give further insights into the potential role of rice varieties shaping MOB 

communities.  
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Ordination methods as well as multivariate regression analysis all resulted in a 

clear separation of soil and root samples. Growth proliferation of type I MOB on rice 

roots has been reported previously (Bodelier et al., 2000b; Eller and Frenzel, 2001; 

Horz et al., 2001; Shrestha et al., 2008). The rhizosphere is a dynamic environment 

providing highly variable concentrations of oxygen and methane (Gilbert and Frenzel, 

1998). In soil microcosms, type I methanotrophs respond most rapidly to different 

O2/CH4 ratios, whereas type II are apparently less responsive becoming active only 

with time (Henckel et al., 2000b). Considering the transient nature of rhizosphere 

oxygenation (Flessa and Fischer, 1992), type I may be pre-adapted to this ephemeral 

microenvironment. 
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Conclusions 

At the large geographical scale, a number of environmental clusters could be observed 

that were predominantly found in paddy fields around the world. Remarkably, nearly 

all clusters could be assigned to type Ib MOB. This suggests the existence of MOB 

diversity patterns not only for low-methane environments – characterised by the 

predominance of upland soil clusters – but also for a high-methane environment.  

At the small geographical scale, we found different MOB community 

compositions at three closely located sites. Considering the ability of many MOB to 

survive adverse conditions for decennia, we suggest that historical contingencies are 

of major importance shaping a particular population (Ge et al., 2008; Martiny et al., 

2006). With the current agronomical practice being nearly identical, these forces may 

act even at the scale of some kilometres. The concept of a microbial seed-bank 

describes best the co-existence of an active population on rice roots with a large soil-

borne reservoir of viable yet inactive cells (Eller et al., 2005; Lliros et al., 2008; 

Pedros-Alio, 2006). This case suggests that changing conditions may select in the 

future other MOB from the seed bank. Nevertheless, each paddy field stays unique 

holding its specific and characteristic MOB fingerprint. 
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3.5 Experimental Procedures 

Sampling site 

The samples were collected from rice fields situated on alluvial soils in the lowlands of 

the rivers Po and Sesia (Vercelli, Italy). Three locations, located 11-21 km apart and 

characterized by similar soil textures (Table 2), were chosen.  

 

Table 2 | Location and soil parameters of sampling sites.  

TEXTURE [%] SOIL ANALYSES 

LOCATION 
GEOGRAPHIC 

COORDINATES 
SAND SILT CLAY ORGANIC 

CARBON 
C/N PH 

Vercelli  
08°22'25.89''E 

45°19'26.98''N 

67 30 3 2.5 9.0 6.2 

Ronsecco  
08°15'16.13''E 

45°16'37.48''N 

61 36 3 2.4 9.6 5.9 

Villarboit  
08°19'19.94''E 

45°27'27.07''N 

61 35 4 2.6 13.1 5.7 

 

 
Sampling procedure 

All fields have been planted to wetland rice since the beginning of last century at 

least. It was sampled in July 2006. In that year, fields were flooded in April with rice 

being sowed at end of April/beginning of May. In each field, two plots were laid out 

planted to cultivars Roma and Koral, respectively. Plot width was 1.2-1.5 m, while 

length varied from 8 to 35 m. MOB in Italian rice fields have no spatial structure 

(Krause et al., 2009). Hence, a simple transect sampling was used taking core and root 

samples along the main axis of the plots with a sample-to-sample distance of 1-3 m. 
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Depending on the size of the plot, 4 to 5 samples were taken. Soil was sampled with a 

corer (inner diameter 6.5 cm) down to a depth of 10 cm and divided into two layers 

equally deep, the upper and lower representing the rooted and the bulk soil, 

respectively. Soil was transferred into plastic bags, kneaded to homogenize, and sub-

sampled (1.5 ml). Roots from two rice plants were cut with scissors into pieces 2 cm 

long, mixed and packed in plastic bags. Samples were frozen on site with dry ice. 

Before handling the next samples, all instruments were cleaned with ethanol. Samples 

were kept on dry ice during transport and stored at -20°C later on till processing. 

 

DNA extraction 

DNA extraction from root samples 

Total DNA from roots was isolated using the DNAeasy® Plant Maxi Kit (Qiagen). It 

was followed the manufacturers’ instructions for manual plant tissue disruption under 

liquid nitrogen. DNA was purified afterwards using the Wizard® DNA Clean Up 

System (Promega) according to the manufacturers’ instructions.   

 

DNA extraction from soil samples 

DNA isolation from soil samples was performed as previously described by Stralis-

Pavese and colleagues (Stralis-Pavese et al., 2004). Briefly, 0.3 g soil was re-suspended 

in sodium phosphate buffer (pH 7.0) supplemented with CTAB and lysozyme. Cells 

were disrupted by beat beating followed by proteinase K treatment. DNA was further 

purified by phenol-chlorophorm-isoamyl alcohol and chlorophorm-isoamyl alcohol 

extraction. Potassium acetate was added for humic acids precipitation. DNA was 

bound to a silica matrix (FastDNA spin kit for soil, QBiogene) and washed with 

ethanol. Elution of DNA was performed in EB buffer (Qiagen). 
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Cloning, sequencing and phylogenetic analysis of pmoA genes 

pmoA clone libraries were generated from field samples (soil and roots from different 

locations) and amended by clones retrieved from greenhouse experiments including 

rice field soil from Vercelli. In total, 292 clones were randomly selected for 

comparative sequence analysis. pmoA genes were amplified using the forward primer 

A189f (5’-GGN GAC TGG GAC TTC TGG) and the reverse primers A682r (5’-GAA 

SGC NGA GAA GAA SGC) (Holmes 1995) or mb661 (5’-CCG GMG CAA CGT CYT 

TAC C) (Costello 1999). Three reactions of 50 μl were carried out per sample. 100 ng 

template DNA was mixed with 2.5 U of Taq Polymerase (Invitrogen), 66 pmol of each 

primer, 0.02 mg bovine serum albumine (Roche), 5 % (v/v) DMSO, 25 μl Masteramp 

2x PCR Premix F (Epicentre Biotechnologies) and filled up with molecular grade 

water (Sigma). The touchdown PCR was carried out with an initial denaturing step at 

94°C for 5 min, followed by 11 cycles of 1 min at 94°C, 1 min at 62°C (touchdown 1°C 

per cycle) and 1 min at 72°C. Further 24 cycles were carried out for 1 min at 94°C, 

1 min at 52°C and 1 min at 72°C. Final elongation was performed for 10 min at 72°C. 

PCR products were analysed by 1% agarose gel electrophoresis and visualized by 

staining with ethidium bromide. PCR products of parallel samples were pooled and 

purified using the GenElute PCR clean up Kit by Sigma. Purified PCR products were 

cloned into the vector pGEM-T (Promega) and transferred into competent cells of E. 

coli JM109. Transformants were selected by blue-white screening and analyzed by 

colony PCR using the primers T7 (5’-TAA TAC GAC TCA CTA TAG GG) and 

M13rev_29 (5’-CAG GAA ACA GCT ATG ACC) (MWG Biotech).  

PCR products of the appropriate size were sequenced at ADIS, MPI for Plant 

Breeding Research (Cologne, Germany). Sequencing was carried out in both 

directions. Sequences were assembled and vector sequence was deleted using the 

SeqMan software (DNA-Star software package, Lasergene). Sequences were compared 

to the GenBank database using the NCBI BLAST.  
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Phylogenetic tree construction was based on 140 deduced amino acid residues. The 

analysis was performed using the Neighbor Joining method implemented in the ARB 

software package (Ludwig et al., 2004). The overall tree topology was compared to a 

tree calculated using Maximum Likelihood and nodes verified by both methods were 

marked.  

The pmoA and amoA sequences obtained in this study were deposited at the 

EMBL nucleotide sequence database under the accession numbers FN599861-

FN600113, and FN600122-FN600155. 

 

T-RFLP analysis of pmoA genes 

pmoA genes were amplified using the FAM-labeled forward primer A189f_FAM and 

the reverse primer A682r as described for the clone library. 100 ng PCR product was 

digested by mixing with 10 U of MspI enzyme (Fermentas) and 1 μl Tango buffer + 

BSA (Fermentas) filled up to 10 μl with molecular grade water (Sigma) and incubated 

at 37°C for 3 hours. The enzyme was inactivated at 65°C for 20 min. The following 

purification was performed using the AutoSeq G-50 columns (Amersham Biosciences). 

1 μl of each purified sample was mixed with 0.2 μl of DNA fragment length standard 

(MapMarker 1000; Bioventures) and 11 μl Hi-Di Formamid (Applied Biosystems). The 

samples were denatured for 3 min at 94°C and T-RFLP analysis was carried out using 

the GeneScan ABIPrism 310 (Applied Biosystems). Analysis of the T-RF patterns was 

carried out using the appropriate analysis software (GeneScan Analysis Version 2.1, 

Applied Biosystems).  

 

Statistical analysis of T-RFLP profiles 

Statistical analysis was performed using the R software environment for statistical 

computing and graphics (version 2.8.1) (R Development Core Team, 2008). The 

terminal restriction fragments (T-RF) were binned to OTUs based on an in-silico 
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analysis of ca. 500 sequences from field and greenhouse experiments with soil from 

Vercelli. After binning, a data set was generated consisting of T-RF sizes in bp and 

peak heights in fluorescence units for each sample. T-RF profiles were quality-

checked as described before (Krause et al., 2009) and standardized (Dunbar et al., 

2000).  

Non-metric multidimensional scaling (NMDS) and constrained correspondence 

analysis (CCA) was performed using metaMDS and cca provided by the vegan package 

(version 1.15-1) (Oksanen, 2008). In NMDS analysis, the Bray-Curtis distance was 

chosen for creating the dissimilarity matrix. The multivariate regression tree (MRT) 

was constructed using the mvpart package (version 1.2-6) (De'Ath, 2007). 

Rarefaction curves were computed using DOTUR (version 1.3) and the furthest 

neighbour algorithm (Schloss and Handelsman, 2005). 
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3.6 Supplementary Material 

 

 

 

Figure S1 | Non-metric multidimensional scaling (NMDS) plot calculated from 
standardized T-RFLP data. The calculation is based on the Bray-Curtis distance (Plot 
stress=0.14). 
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Table S1 | Phylogenetic distribution of pmoA/amoA sequences from Vercelli rice fields 
detected by the different reverse primers A682r and mb661. Clusters are defined in 
Figure 1.  

GENUS/CLUSTER TYPE REVERSE PRIMER 

  
      mb661   A682r 

Methylomonas Ia 55 13 

Methylobacter LW12/BB5.1 Ia 11 0 

Methylobacter LW1/LW14 Ia 22 0 

LP20  Ia 0 4 

RPC-2 Ia 1 0 

Methylocaldum Ib 4 1 

Methylocaldum related Ib 36 22 

RPC-1 Ib 10 24 

LW21 Ib 1 0 

Methylocystis II 93 151 

MO3  II 0 1 

pmoA-2 II 0 1 

TUSC Others* 0 1 

RA21  Others* 0 6 

M84-P22  Others* 0 2 

M84-P105  Others* 0 2 

Ammonia oxidizers AOB 0 42 

Total  233 270 

* These sequences cluster between methanotroph pmoA sequences and amoA sequences from 
ammonium oxidizers 
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METHANOTROPHIC BACTERIA 
ASSOCIATED TO RICE ROOTS: 
THE RICE CULTIVAR EFFECT ASSESSED BY T-RFLP AND 
MICROARRAY ANALYSIS 

CLAUDIA LÜKE, LEVENTE BODROSSY, ELISABETTA LUPOTTO, AND PETER FRENZEL. 

IN PREPARATION. 

4.1 Abstract 

Rice plants play a key role in regulating methane emissions from paddy fields by 

affecting both underlying processes: methane production and oxidation. Cultivar 

specific differences were reported for methane oxidation rates; however, studies on 

the bacterial communities involved are rare. Here, we analyzed the methanotrophic 

community on the roots of 18 different rice cultivars by pmoA based T-RFLP and 

microarray analysis. Both techniques showed comparable and consistent results 

revealing a high diversity dominated by type II and type Ib methanotrophs. The 

microarray has been successfully used to study MOB in various environments; still, its 

full phylogenetic resolution potential has not been exploited in data analysis yet. 

Here, we provide an example on how to include this information into multivariate 

statistics. The analysis revealed a rice cultivar effect on the methanotroph community 

composition that could be affiliated to the plant genotype. This effect became only 

pronounced using the high resolution analysis. 

4
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4.2 Introduction 

Wetland rice agriculture accounts for a major proportion of global methane emission, 

one of the most important greenhouse gases contributing substantially to radiative 

forcing (Intergovernmental Panel on Climate Change, 2007). Estimates of annual 

emission from rice fields are ranging from 30-112 Tg including seasonal variations 

largely correlated to plant growth (Bosse and Frenzel, 1998; Holzapfel-Pschorn and 

Seiler, 1986; Krüger et al., 2001; Schütz et al., 1989). Emissions were furthermore 

shown to be influenced by agricultural practice such as fertilization and land 

management (Bodelier et al., 2000; Wassmann et al., 2000). 

Rice plants (Oryza ssp.) play a key role in regulating CH4 emission. They affect 

CH4 production by releasing carbon compounds from roots being used as substrate for 

methanogenesis (Dannenberg and Conrad, 1999). They further act as a conduit for 

CH4 transport through the intercellular aerenchyma system thereby providing the 

main path for CH4 release to the atmosphere (Holzapfel-Pschorn et al., 1986; Seiler et 

al., 1984). Consequently, studies comparing emission from planted and unplanted rice 

soils revealed higher CH4 emissions from vegetated soils (Bosse and Frenzel, 1998; 

Dannenberg and Conrad, 1999; Holzapfel-Pschorn et al., 1986). However, rice plants 

also deliver O2 to the flooded and anoxic soil compartments by aerenchyma transport 

to the rhizosphere resulting in stimulation of CH4 oxidation. This reduces the amount 

of CH4 released to the atmosphere up to 90% (Frenzel et al., 1992).  

The genus Oryza is highly diverse comprising about 80,000 cultivars that are 

characterized by various morphological and physiological traits (Wassmann and 

Aulakh, 2000). Plant traits might have a large impact on CH4 emission, e.g. significant 

differences were found between cultivars characterized by varying aerenchyma and 

root morphologies or showing differences in root exudation (Aulakh et al., 2002; 

Butterbach-Bahl et al., 1997; Wang et al., 1997). Cultivar specific differences were also 

reported for the process of CH4 oxidation in particular (Bilek et al., 1999; Denier van 

der Gon and Neue, 1996). However, studies of the bacteria involved are rare.  



                                                                        Methanotrophs associated to rice roots | 4 

 75 

Methane oxidizing bacteria (MOB) can be divided into two major groups, type 

I and type II, corresponding to the families Methylococcaceae (type I, γ-

proteobacteria), Methylocystaceae and Bejerinckiaceae (type II, α-proteobacteria) 

(Bowman, 2000). Type I MOB can be further divided into type Ia comprising the 

genera Methylomonas, Methylobacter, Methylosoma, Methylosarcina and 

Methylomicrobium, and type Ib (also referred to as type X) characterized by 

Methylococcus and Methylocaldum. Recently, MOB belonging to the phylum 

Verrucomicrobia were isolated, however, they seem to be restricted to extreme 

environments (Dunfield et al., 2007; Islam et al., 2008; Pol et al., 2007).  

Early work on MOB in rice paddies based on MPN counts indicate a high 

number of MOB associated with rice roots that increase in correlation to plant growth 

(Bosse and Frenzel, 1997; Gilbert and Frenzel, 1995). First studies using culture 

independent methods focused on phylogeny of the 16S rRNA gene as well as marker 

genes such as pmoA showing the presence of type I and type II MOB in rice field soil 

(Eller and Frenzel, 2001; Henckel et al., 1999). The pmoA gene encoding a subunit of 

the particulate methane monooxygenase is present in virtually all MOB and was 

found to be an excellent functional marker for studying MOB in the environment 

(McDonald and Murrell, 1997).  

After establishing the terminal restriction fragment length polymorphism (T-

RFLP) analysis for the pmoA gene (Horz et al., 2001), this technique became one of 

the most widely used fingerprinting methods for microbial ecology studies of MOB. 

T-RFLP based studies showed amongst others the preference of type I MOB associated 

with the roots of rice plants (Horz et al., 2001; Wu et al., 2009a; Lüke et al., 2010). 

More recently, a microbial diagnostic microarray targeting the pmoA gene was 

developed and further optimized (Bodrossy et al., 2003; Stralis-Pavese et al., 2004). 

This method allowing for specific detection of MOB down to the species level has 

been successful used to study MOB in various environments (Cebron et al., 2007; 

Chen et al., 2008; Hery et al., 2008). Nevertheless, the full phylogenetic resolution 

potential of this technique has not been exploited in data analysis yet. 
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Here, we studied MOB communities on the roots of 18 Italian rice cultivars 

belonging to Oryza sativa japonica. The cultivars were grown in an one field 

experimental plot. Rice roots were harvested at late tillering/panicle initiation as MOB 

populations are fully developed at this time (Eller et al., 2005; Eller and Frenzel, 

2001). MOB populations in rice fields were shown to have no spatial structure (Krause 

et al., 2009); therefore, the sampling strategy was of minor importance. The pmoA 

gene was used as a phylogenetic marker for MOB in T-RFLP and microarray analysis. 

The results of the two techniques were compared. Furthermore, microarray data 

analysis was improved attaining the full phylogenetic resolution power in multivariate 

statistics. 
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4.3 Results 

MOB detected by T-RFLP and microarray 

Microarray and T-RFLP analysis revealed a high diversity of MOB associated with the 

roots of Italian rice varieties. However, the microarray provided a clearly higher 

resolution (Figure 1). One of the main fragments detected in T-RFLP analysis is the T-

RF of 79 bp (Figure S1, supplementary material) representing the entire type Ib MOB. 

The microarray enables a more specific differentiation. It showed hybridization only 

to a subset of type Ib probes targeting Methylocaldum related clusters, the Rice Paddy 

Cluster 1 (RPC-1; Lüke et al., 2010) and the cluster LW21 comprising sequences 

mainly from lake sediments (Nercessian et al., 2005; Pester et al., 2004). No 

Methylococcus was detected. Within type II MOB, highest hybridization was 

observed for probes targeting Methylocystis whereas Methylosinus was only detected 

in low amounts (Figure S2, supplementary material). The T-RFLP analysis does not 

differentiate between these genera as they possess the same MspI restriction site (244 

bp). A high variety of detected T-RFs could be affiliated to type Ia. However, most of 

these T-RFs do not reflect the MOB phylogeny and therefore do not allow the 

affiliation to specific species or environmental clusters. The microarray showed 

hybridization mainly against one specific group of type Ia: Methylobacter 

LW1/LW14. Furthermore, the tropical upland soil cluster (TUSC) and the RA21 

cluster were detected by microarray analysis. These clusters are phylogenetically 

located between the pmoA and the homologous amoA gene of AOB. The 

corresponding T-RFs of 58 bp (RA21) and 33 bp (TUSC) were also detected in T-RFLP 

analysis. However, the fragments are not restricted to the two groups: the 33 bp 

fragment in particular can also be assigned to a variety of type II environmental 

clusters such as the cluster MO3 upland soil clusters USC-α and JR-1.  
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Figure 1 | Phylogenetic relationship of partial pmoA sequences based on deduced amino 
acid residues. Only sequences containing at least 140 amino acid positions were included 
in the analysis. Clusters targeted by microarray probes showing positive signals for the rice 
root samples are highlighted. Only the probes selected for statistical analysis (Table S2) are 
shown. Corresponding T-RFs detected in T-RFLP analysis are depicted on the right. 
Environmental clusters were named according to representative clones and/or in relation 
to the denotation of the microarray probes. GenBank accession numbers of representative 
clones are given in brackets. Closed circles mark nodes that were verified by a Maximum 
likelihood tree. The scale bar represents 0.1 changes per amino acid position.  
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Comparison of relative species abundances detected by the two different methods 

revealed similar proportions: type II were found to be most abundant, followed by 

type Ib MOB (Figure 2). Type Ia, AOB and environmental clusters located between 

the MOB and AOB were detected in minor amounts. For the dominant species, 

relative abundances detected by T-RFLP and microarray showed a positive linear 

correlation (Figure 2).    
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Figure 2 | Relation of relative species abundances detected in T-RFLP and microarray 
analysis. The following microarray probes were included in the analysis: Ia575 (type Ia), 
Ib453 (type Ib), II509 (type II), NMsiT.271 (pmoA-2), TUSC409/TUSC502 (TUSC), gp2.581 
(RA21), NsNv363 (AOB). For T-RFLP, the relative abundance of the following T-RFs were 
combined: 208 bp, 241 bp, 349 bp, 437 bp, 505 bp and 531 bp ( type Ia), 79 bp and 226 
bp (type Ib), 244 bp (type II), 278 bp (pmoA-2), 33 bp (TUSC), 58 bp (RA21), 46 bp and 114 
bp (AOB). Pearson correlation coefficients: Type Ib: 0.638; Type II: 0.70.  
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The effect of rice cultivars on MOB communities 

MOB communities on the roots of the different rice varieties were analyzed by 

multivariate statistics. Constrained correspondence analysis (CCA) using the 

microarray data was at first calculated for probes reflecting a low species resolution 

comparable to the resolution provided by the T-RFLP method (Figure 3). Out of the 

four tested parameters characterizing the rice varieties (Table S1, supplementary 

material), only the rice genotype revealed a significant result in CCA (p=0.1). The 

ordination resulted in a cluster tendency for varieties of the same genotype alongside 

a gradient mainly formed by the first axis (explaining 12.6% of total inertia). CCA 

calculated for the T-RFLP data showed a similar result (Figure S3, supplementary 

material). 

 

 
Figure 3 | Constrained correspondence analysis calculated from standardized microarray 
data. The probes included in the analysis correspond to the low resolution of the T-RFLP 
method. Probes used: Ia575 (type Ia), Ib453 (type Ib), II509 (type II), NMsiT.271 (pmoA-2), 
TUSC409/TUSC502 (TUSC), gp2.581 (RA21), NsNv363 (AOB). The genotype was used as a 
constraint explaining 18.7% of the total inertia (p=0.1).  
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In a second step, the high resolution of the microarray was exploited, allowing for 

differentiation of MOB down to the species/environmental cluster level. Probes for 

the analysis were selected according to the following criteria: (i) they should target a 

very specific species/cluster and cover nearly all sequences within that cluster. (ii) 

They should have a low tendency to give false positive results. It was tried to find a 

single probe for each cluster. However, where two probes provided the same coverage 

and low tendency to false hybridization, the average value of the two probes was used 

(Table S2). The probe coverage was evaluated using a pmoA database comprising over 

4000 sequences from various environments including 500 sequences from Italian rice 

fields (Lüke et al., 2010). The phylogenetic resolution was adjusted to the pmoA 

diversity found in Italian rice field based on pmoA genotypes in the database and 

positive hybridization in microarray analysis. 

CCA calculated from the standardized data of the selected probes showed a 

highly significant result for the genotype as constraint (Figure 4). In comparison to the 

ordination performed at low phylogenetic resolution (Figure 3), the clustering was 

clear and three separated groups could be observed. To identify the MOB species 

characteristic for each genotype, indicator species were determined. These are species 

that should be ideally found on plants from only one genotype and on all plants 

within this genotype (Dufrene and Legendre, 1997). Determination of indicator 

species resulted mainly in type Ib MOB being indicative for the different genotypes 

(Figure 4). The pmoA-2 of type II MOB was found to be an indicator species for the 

genotype IIa.  
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Figure 4 | Constrained correspondence analysis (CCA) calculated from standardized 
microarray data. The probes included in the analysis are listed in Table S2. The rice 
genotype was used as a constraint explaining 27.7% of the total inertia (p=0.005). Left: 
CCA ordination plot. Right: Indicator values for MOB species associated with the three rice 
genotypes. Grey=genotype IIe, white= genotype IIa, black= genotype IIf. Indicator species 
are marked in bold (* p≤0.05; ** p≤0.001; iteration=10,000).   
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4.4 Discussion 

MOB detected by T-RFLP and microarray 

T-RFLP and microarray analysis showed comparable and consistent results for MOB 

communities detected on the rice roots. T-RFLP analysis has been widely used in 

microbial ecology and was shown to be a highly reproducible and robust method for 

profiling microbial communities (Blackwood et al., 2003; Hartmann and Widmer, 

2008; Osborn et al., 2000). Establishing the method for the pmoA gene enabled a 

reasonable differentiation and characterization of MOB communities in 

environmental samples (Horz et al., 2001). However, the assignment of T-RFs to 

phylogenetic groups of MOB can be ambiguous: the growing number of sequences in 

public databases revealed T-RFs that could not be clearly affiliated to one specific 

group of MOB, but are characteristic for a wide range of even distantly related MOB 

(e.g. T-RFs 33 and 79). This attaches great importance to a representative clone library 

for an accurate assignment. Furthermore, T-RFLP analysis represents a rather rough 

method providing only limited phylogenetic resolution and differentiating between 

species or distinct environmental clusters is mostly not possible. In contrast, the pmoA 

microarray allows a very precise distinction of MOB down to the species level. 

Therefore, a clone library might be not as essential as for T-RFLP analysis. 

Nevertheless, with growing number of environmental sequences, some microarray 

probes might become less specific. The pmoA clone library from Italian rice fields 

showed unspecific matching of the type II MOB probes MsT343 and MM_MsT343 to 

a variety of type Ib MOB including the RPC-1, RPC-3 and RPC-4. Furthermore, the 

two probes targeting the lake Washington sediment cluster LW21 (LW21_474 and 

LW21_391) also partly cover the RPC-1.  

T-RFLP and microarray provide no absolute quantitative data on species 

abundances; however, they are often rated as semi-quantitative methods. Comparing 

relative abundances of the species detected by both methods showed a large 

consistence (Figure 2). This indicates robustness and reliability of the methods and 
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allows the comparison of results obtained by both techniques. Nevertheless, both 

methods are PCR-based and subject to the same biases such as the primer bias. In this 

study, we used the A189f/A682r primer set that is known to discriminate against a 

variety of type Ia MOB (Bourne et al., 2001; McDonald et al., 2008; Lüke et al., 2010). 

Consequently, we detected only a low type Ia diversity and abundance (Figure S1&S2, 

supplementary material).  

The species detected by the fingerprinting methods are in large agreement 

with the clone library described previously (Lüke et al., 2010). The microarray 

showed hybridization to few more clusters without any representative clones from 

Italian rice fields (Figure 1). However, this is not surprising as the clone library does 

not completely cover the pmoA diversity in this environment (Lüke et al., 2010). The 

true diversity might be even higher as the detection limit of the microarray approach 

is 2-5% of the total MOB community, therefore excluding the ‘rare biosphere’.  

 

The effect of rice cultivars on MOB communities 

Statistical analysis of the microarray data at low species resolution level suggests 

differences in MOB communities at the roots of the different rice genotypes 

(Figure 3). This result is comparable with T-RFLP analysis. However, it accounts for 

hardly any of the microarray resolution power. The pmoA microarray probes are 

designed as a nested set meaning not all probes provide the same resolution and many 

probes overlap to a high extent. This is mandatory for the detection of false positive 

hybridization events. However, it will strongly bias multivariate statistics based on 

relative abundances and will complicate the estimation of single species importance. 

Here, we selected a subset of probes that seem best suitable for statistical analysis. 

Nevertheless, we have to be aware that this procedure might also introduce a certain 

bias. We detected a high diversity of type Ib MOB on the rice roots that could be 

assigned very specifically. Type II MOB were detected in even higher amounts. 

However, only Methylocystis and Methylosinus contributed to the high abundance 
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and thus, only two probes for type II affected the final result. In comparison, type Ib 

were represented by ten probes (Figure 1). Combining all relative abundance of type 

Ib probes results in a slightly higher overall abundance than combining the 

abundance of the two type II probes. Thus, the procedure inverted the true 

abundances of these MOB groups. However, the all samples were subject to the same 

methodological bias which is therefore considered of minor importance.  

Considering the full species resolution power of the microarray, constrained 

correspondence analysis resulted in a distinct clustering of root samples from the 

different rice genotypes (Figure 4). Previous studies of microbial communities 

associated with rice cultivars showed different results: A cultivar effect was observed 

for diazotrophic communities (Tan et al., 2003; Wu et al., 2009b), also shown on the 

transcriptional level based on T-RFLP analysis of nifH mRNA (Knauth et al., 2005). 

Furthermore, microbial communities of ammonia oxidizing bacteria were different on 

roots of modern and traditional rice varieties, shown by DGGE and FISH analysis 

(Briones et al., 2002). This could be linked to different O2 concentrations on the root 

surface of the different cultivars. However, methanogenic archaea were not 

influenced by cultivated or wild rice (Conrad et al., 2009). Also for MOB, no cultivar 

effect could be observed in a Chinese study including an Indica, a Japonica and a 

hybrid rice variety as well as a wild rice (Wu et al., 2009a). The latter studies were 

again based on T-RFLP analysis.   

In this study, differences of MOB communities could be detected even for 

cultivars belonging to the closely related Italian germplasm. However, they were only 

pronounced using the high resolution microarray technique whereas T-RFLP was 

inefficient for observing a significant pattern. Compared to diazotrophs, for which a 

variety effect could be shown at T-RFLP level, MOB might show a less pronounced 

effect to different cultivars. On the other hand, T-RFLP resolution for the nifH gene 

might be also more efficient in unraveling community patterns.  

Of the recorded physiological or morphological plant traits, only the genotype 

showed a significant influence on MOB. The stem morphology that might be 
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correlated with aerenchyma size and O2 transport did not show an effect. Aromatic 

varieties, known to produce about 100 volatile flavor compounds from which 2-

acetyl-1-pyrroline (2-ACP) was identified as the main compound (Buttery et al., 1983; 

Lorieux et al., 1996), did also not select for specific MOB. However, these substances 

were found in the entire plant, but could not be detected in root exudates (Sood and 

Siddiq, 1978). Roots exudates largely influence the ambient soil environment and 

might play a crucial role in selection for different MOB communities. Large 

differences in exudates composition were shown for different rice cultivars 

(Wassmann and Aulakh, 2000). This includes a variety of compounds such as carbon 

compounds, amino acids, phytohormones or ectoenzymes (Hartmann et al., 2009). To 

which extent the exudation of the tested genotypes resemble or differ from each 

other, and which effect they have on MOB communities, we don’t know. However, 

plant-microbe interactions are highly complex and a lot of yet unknown factors might 

play a role. Therefore, the importance of the MOB indicator species is also hard to 

assess. Nevertheless, it is remarkable that two of the clusters (RPC-1 and JRC-3) were 

exclusively found in rice paddies so far suggesting that they might play an important 

role in this specific environment.    

 

Conclusions 

As shown before only for diazotrophs and ammonia oxidizers, we could detect an 

influence of different rice cultivars on the MOB community associated to their roots. 

This effect could be affiliated to the plant genotype. However, it became only 

pronounced by using the high resolution microarray technique. About the 

phenotypical traits associated with the rice genotypes, we can only speculate. 

Nevertheless, our study enables to select for specific cultivars holding the most 

different MOB communities and study them in detail, such as recording and 

comparing the root exudation.  
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We used the pmoA microarray as an advanced high resolution technique to 

study MOB communities and provided an example on how to exploit its full 

resolution power. The physiological group of MOB is highly diverse and knowledge 

on their ecology is still rare. Molecular studies on the high resolution level might give 

more insights into the ecology of specific species and/or clusters and might result in a 

deeper understanding on why their diversity is so redundant and high.  
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4.5  Experimental procedure 

Sampling 

The samples were collected from a paddy rice field situated in the lowlands of the 

rivers Po and Sesia (Vercelli, Italy; 08°22’25.89’’E45°19’26.98’’N). It was sampled in 

July 2006. In that year, fields were flooded in April with rice being sowed at end of 

April/beginning of May. The 18 different rice cultivars (Oryza sativa japonica) were 

planted to one field following a randomized block design. Roots from two-three rice 

plants of the same cultivar were cut with scissors into pieces of 2 cm length, mixed 

and packed in plastic bags. Samples were frozen on site with dry ice. Before handling 

the next samples, all instruments were cleaned with ethanol. Samples were kept on 

dry ice during transport and stored at -20°C later on till processing. 

 

DNA extraction and T-RFLP analysis 

1 g of root biomass was ground to a powder under liquid nitrogen using mortar and 

pistil. The powder was transferred into a beat beating vial filled with Zirconium beats 

and it was followed the protocol described by Lueders and colleagues (Lueders et al., 

2004). The replicate extractions were performed for each rice cultivar. For T-RFLP 

analysis, the pmoA gene was amplified using the primers A189f/A682r (Holmes et al., 

1995) and MspI digested as described before (Lüke et al., 2010). 

 

Microarray analysis 

Microarray and target preparation was performed as described by Stralis-Pavese and 

co-workers (Stralis-Pavese et al., 2004) using the primers A189f/A682r (Holmes et al., 

1995). The hybridization was performed over night in a hybridization oven 

containing a shaking platform (Thermo Scientific). The washing steps and the 
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scanning of the hybridized slides were again carried out as by Stralis-Pavese et al., 

2004.  

 

Phylogenetic and statistical analysis 

Phylogenetic tree construction was based on 140 deduced amino acid residues. The 

analysis was performed using the Neighbor Joining method implemented in the ARB 

software package (Ludwig et al., 2004). The overall tree topology was compared to a 

tree calculated using Maximum Likelihood and nodes verified by both methods were 

marked.  

The results of the T-RFLP and microarray analysis were analysed using the R 

software environment for statistical computing and graphics (version 2.8.1) (R 

Development Core Team, 2008). The terminal restriction fragments (T-RF) were 

binned to OTUs based on an in-silico analysis of ca. 500 sequences from field and 

greenhouse experiments with soil from Vercelli. After binning, a data set was 

generated consisting of T-RF sizes in bp and peak heights in fluorescence units for 

each sample. T-RF profiles were quality-checked as described before (Krause et al., 

2009) and standardized (Dunbar et al., 2000). The values of the microarray analysis 

were first standardized against the mean of the overall array intensities and in a 

second standardization against an experimentally determined reference value of 

positive detection (Bodrossy et al., 2003). Constrained correspondence analysis (CCA) 

was performed using cca provided by the vegan package (version 1.15-1) (Oksanen, 

2008) and the heatmaps were constructed using heatmap2 provided by the gplots 

package (Venables, 2009). Indicator species were determined using duleg (Dufrene 

and Legendre, 1997) provided by the labdsv package. 
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4.6   Supplementary Material 

 

Figure S1 | T-RFLP analysis of MOB communities associated with the roots of different rice 
cultivars. T-RFLP results were standardized (Dunbar 2000) and relative fractions were 
calculated. The rice cultivars were grouped according to their genotype (IIa, IIe and IIf, 
respectively). 
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Figure S2 | Microarray analysis of MOB communities associated with the roots of different 
rice cultivars. Microarray results were normalized against reference values determined for 
each probe individually (Bodrossy 2003) and relative fractions were calculated. Only the 
probes selected for constraint Correspondence analysis (Table S2) were included in the 
heatmap. The rice cultivars were grouped according to their genotype (IIa, IIe and IIf, 
respectively). 
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Figure S3 | Constrained correspondence analysis calculated from standardized T-RFLP 
data. The T-RFs were combined as described in Figure 2. The genotype was used as a 
constraint explaining 14.6% of the total inertia (p=0.26). 
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Table S1 | Characteristic traits of the rice varieties.  

CULTIVAR GENOTYPE GRAIN STEM AROMATIC 

Frangrance Iia Long B Medium Yes 

Gladio Iia Long B Thin No 

Gange Iia Long B Medium Yes 

Giano Iia Long B Thin Yes 

Asia Iia Long B Medium Yes 

Thaibonnet Iia Long B Medium No 

Aiace Iia Long A Thin No 

Apollo Iia Long B Medium Yes 

Augusto Iie Long A Medium No 

Koral Iie Long A Medium No 

Roma Iie Long A Medium No 

Selenio Iif Round Thin No 

Arpa Iif Round Medium No 

Loto Iif Long A Thick Yes 

Ballila Iif Round Thick No 

Scirocco Iif Long A Medium No 

Creso Iif Long A Medium No 

Centauro Iif Round Medium No 
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* average of both probe values was used 

Table S2 | Microarray probes selected for statistical analysis. MOB species / genera / 
clusters targeted by the individual probes are defined in Figure 1. 

SPECIES/GENUS/CLUSTER PROBES USED 

Type Ia  

Methylomonas Mm275 

Methylobacter sp. BB5.1 MbA557 

Methylobacter sp. LW12 Mb271 

Methylobacter sp. LW1/LW14 Mmb562 

Methylobacter LW12 related Mb_SL#3-300 

Methylomicrobium japanense Mb_SL-299 

Methylomicrobium pelagicum Mm_pel467 

DS-1 DS1_401 

EST Est514 

LP20 LP20-644 

PS-80 PS80-291 

Peat Peat_1_3-287 

JPN Jpn284 

Type Ib  

Methylococcus capsulatus Mc396 

Methylocaldum gracile MclG281 

Methylocaldum tepidum MclT272 

Methylocaldum szegediense MclS402 

Methylocaldum sp. E10a MclE302 

Methylothermus Mth413 

Methylocaldum related 501-375 

RPC-1a M90-253  

RPC-1b JRC2-447 

OSC OSC220, OSC300 )* 

LW21 LW21-391 

FW1 fw1-641 

USC-3 USC3-305 

JRC-3 JRC3-535 

JRC-4 JRC4-432 

LK LK580 

Type Ic  

Nitrosococcus oceani Nc_oce426 

JR-2 JR2-409, JR2-468 )* 

JR-3 JR3-505, JR3-593 )* 

USC-γ USCG-225, USCG-225b )* 

DS-3 DS3-446 
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Continuation Table S2 | Microarray probes selected for statistical analysis. 

SPECIES/GENUS/CLUSTER PROBES USED 

Type II  

Methylocystis Mcy413 

Methylosinus Msi294 

Methylocapsa B2-400 

LOPA B2rel251 

MO3 pmoAMO3-400 

pmoA-2 NmsiT-271 

USC-α RA14-594, RA14-591 )* 

JR-1a Wsh1-566 

JR-1b Wsh2-491 

Others  

TUSC TUSC409, TUSC502 )* 

M84-P22 ESR-579 

M84-P105 M84-P105 

Gp23 gp23-454 

RA21 gp2-581 

MR1 MR1-348 

AOB related Nit_rel351 

Crenothrix Nit_rel304 

AOB NsNv363 

* average of both probe values was used 
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THE PMOA GENE AS FUNCTIONAL AND 
PHYLOGENETIC MARKER FOR 
METHANOTROPHIC BACTERIA 
A SEQUENCE DATABASE ANALYSIS 

CLAUDIA LÜKE AND PETER FRENZEL. IN PREPARATION. 

5.1 Abstract 

The pmoA gene encoding a subunit of the methane monooxygenase is widely used as 

marker for studying methane oxidizing bacteria (MOB) in the environment. We re-

evaluated its value for phylogenetic inferences of MOB. We analysed the correlation 

of the 16S rRNA gene sequence distance and the corresponding pmoA sequence 

distance of cultivated MOB including the only recently described pmoA sequences of 

Crenothrix polyspora and Verrucomicrobia species. The distance comparison revealed 

overall a good correlation indicating that pmoA represents a suitable functional and 

phylogenetic marker gene. However, the pmoA of Burkholderia sp. and C. polyspora 

showed no correlation to 16S rRNA suggesting earlier lateral gene transfer events. In 

the second part of this study, we analysed the environmental distribution patterns of 

pmoA genotypes from uncultivated MOB. We included approximately 3400 pmoA 

sequences from public databases showing a distinct clustering of upland soil sequences 

and sequences retrieved from halophilic environments, respectively. Furthermore, 

wetland rice and freshwater sequences dominate different type Ib clusters that offer 

only a distant relationship to any cultivated MOB. This analysis emphasises the need 

for increasing cultivation efforts as the characterized isolates seem to only poorly 

represent the known MOB diversity. 

5
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5.2 Introduction 

Methane (CH4) is one of the most important greenhouse gases contributing 

substantially to global warming (Intergovernmental Panel on Climate Change, 2007). 

However, Shindell and co-workers (2009) reported an even higher impact when 

including gas-aerosol interactions into the calculations. Methane oxidizing bacteria 

(MOB) are able to use CH4 as their sole source for carbon and energy metabolism 

(Bowman, 2000; Trotsenko and Murrell, 2008). They thereby function as a biofilter in 

various environments reducing CH4 emission up to 90% (Reeburgh, 2003). They 

furthermore act as a sink in various upland soils by taking up CH4 from the 

atmosphere (Dunfield, 2007a). MOB can be divided into two major phylogenetic 

groups belonging to the γ-proteobacteria (Methylococcaceae; type I), and α-

proteobacteria (Methylocystaceae and Beijerinckiaceae; type II) (Bowman, 2000). 

Type I MOB can be further divided into type Ia comprising the genera Methylomonas, 

Methylobacter, Methylosoma, Methylosarcina and Methylomicrobium, and type Ib 

characterized by Methylococcus and Methylocaldum.  

The most important tool for studying microbial diversity in the environment is 

the comparative analysis of 16S rRNA genes (Fox et al., 1980; Maidak et al., 1999; 

Pruesse et al., 2007). However, the phylogenetic relationship of microorganisms does 

not allow conclusion on their physiology. Targeting functional marker genes that are 

indicative for important biogeochemical processes enables the focus on bacteria 

carrying out a specific function. The pmoA gene is widely used as marker to detect 

methanotrophic bacteria in the environment (Dumont and Murrell, 2005; McDonald 

and Murrell, 1997). It encodes a subunit of the particulate methane monooxygenase 

(pMMO) catalyzing the first step in methane oxidation. This enzyme is specific for 

methanotrophs and can be found in all species except Methylocella which only 

possesses an alternative, soluble methane monooxygenase (Dedysh et al., 2000).  

Many genes encoding metabolic key functions such as nitrogen fixation, 

denitrification, ammonia oxidation, methanogenesis, and sulphate reduction were 
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approved for diversity studies (Braker et al., 2000; Friedrich, 2005; Perez-Jimenez et 

al., 2001; Rotthauwe et al., 1997). They were in general shown to be congruent to the 

16S rRNA gene phylogeny, thus, allowing the use not only as a functional, but also as 

a phylogenetic marker. Nevertheless, some of these genes such as the nitrogenase 

encoding nifH gene (Zehr et al., 2003) and the dissimilatory sulphate reductase genes 

dsrAB (Klein et al., 2001) are also mobile across species thereby preventing a reliable 

phylogenetic assignment. The pmoA gene was shown to reflect well the 16S rRNA 

gene phylogeny of MOB for 31 pure cultures (Kolb, 2003). However, a large number 

of new species were isolated recently including some unusual MOB. Three isolates of 

the phylum Verrucomicrobia represent the first non-proteobacterial MOB (Islam et 

al., 2008; Pol et al. 2009; Dunfield et al., 2007b). They possess pmoA copies that are 

phylogenetically distinct from the proteobacterial pmoA genes. Furthermore, 

Crenothrix polyspora and Clonothrix fusca were found to utilize methane (Stoecker et 

al., 2006; Vigliotta et al., 2007). These sheathed γ-proteobacteria are well known since 

more than one century and their morphology and complex life cycle have been 

studied in detail (Cohn, 1870; Volker et al., 1977). Whereas Clonothrix harbors a 

conventional pmoA gene, the pmoA of Crenothrix was shown to be unusual and more 

related to the amoA of ammonia oxidizers than to the pmoA of other methanotrophs.  

In this study, we re-evaluated the value of the pmoA gene as phylogenetic 

marker for MOB by analysing the correlation of 16S rRNA phylogeny and pmoA 

phylogeny including newly described MOB species. Furthermore, the vast majority of 

pmoA sequences in public databases belong to uncultivated bacteria and knowledge 

about their function and ecological niche differentiation is rare. We performed a 

phylogenetic analysis of approximately 3400 publicly available pmoA sequences from 

various environments to gain deeper insight into the overall diversity. We then 

compared the phylogeny to the environmental origin of the sequences to learn more 

about possible environmental distribution patterns and ecological niches of 

uncultivated methanotrophs.  
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5.3 Results 

This study is based on a pmoA database containing more than 3400 sequences that 

have a sequences length of more than 140 amino acids. 6% of the sequences belong to 

cultivated MOB species whereas the vast majority represents to-date uncultivated 

species found in various environments. The pmoA of most cultivated MOB (69%) 

cluster within the type II Methylosinus and Methylocystis group, 17% represent type 

Ia and 8% belong to type Ib. Furthermore, Methylocapsa acidiphila B2 (Dedysh et al., 

2002), Methylothermus species (Bodrossy et al., 1995; Tsubota et al., 2005), 

Methylohalobium species (Heyer et al., 2005; Hirayama et al., 2007), Crenothrix 

polyspora (Stoecker et al., 2006), Burkholderia sp. TS2 (Islam, unpublished) and the 

verrucomicrobial MOB (Dunfield et al., 2007; Islam et al., 2008; Pol et al., 2007) are 

comprised in the database.  

 

Cultivated methanotrophic bacteria 

Out of all cultivated species in the database, 79 isolates covering the known MOB 

diversity were chosen for comparative sequence analysis of the 16S rRNA and the 

pmoA gene. Furthermore, two ammonia oxidizers, Nitrosococcus oceani (U96611; 

pmoA) and Nitrosospira multiformis (DQ228454; pmoA), were included in the 

analysis. Nitrosococcus represents a γ-proteobacterium whereas Nitrosospira belongs 

to the β-proteobacteria. For the selected species, the corresponding 16S rRNA gene 

sequence was downloaded from the SILVA database (Pruesse et al., 2007; release 100) 

and distance matrices were calculated based on the 16S rRNA and the pmoA 

sequence. 

To get insights into the correlation between the 16S rRNA gene phylogeny and 

the corresponding pmoA/PmoA phylogeny, the pairwise sequence distances were 

plotted. The distance comparison revealed a good correlation (Figure 1). Nevertheless, 

within the type I and type II MOB, the PmoA protein is more conserved between the 
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species than the pmoA gene: the sequence distances for the protein are much smaller 

than the corresponding distances on the nucleotide level (marked boxes in Figure 1).  

Furthermore, the protein sequences offer a stronger linear relationship with the 16S 

rRNA gene phylogeny (r²=0.93). The linear regression line shows a slope of 1.88 

indicating an approximately two times higher average distance of the PmoA compared 

to the 16S rRNA (Figure 1b).  

 

     
Figure 1 | Correlation between pairwise 16S rRNA gene distances and pmoA/PmoA 
distances of cultivated MOB and selected ammonia oxidizers. A. Comparison based on 
pmoA nucleotide sequences. B. Comparison based on PmoA protein sequences (regression 
line: r²=0.93).The boxes mark the distance results within the subgroup of type Ia, type Ib 
and type II, respectively. =pairwise distance comparison within type I&2 and 
verrucomicrobial methanotrophs.  =pairwise distance comparison of Crenothrix polyspora 
to all others.   =pairwise distance comparison of Burkholderia sp. to all others.    =pairwise 
distance comparison of Nitrosococcus oceanus to all others.  =pairwise distance 
comparison of Nitrosospira multiformis to all others.  

 

However, the pairwise sequence comparisons of three species did not fit into the 

regression. Crenothrix polyspora is closely related to type I MOB based on 16S rRNA 

gene identity. Yet, it possesses an unusual pmoA different from all known MOB, but 

similar to the amoA of Nitrosospira multiformis (Stoecker et al., 2006). Remarkably, 

the sequence distance of both species to the other MOB is higher on the amino acid 



5 | The pmoA gene as phylogenetic marker 

106 

level than on the nucleotide level (Figure 1). This observation does not apply to the γ-

proteobacterial ammonia oxidizer Nitrosococcus oceanus.  

Furthermore, Burkholderia sp. TS2 represents a β-proteobacterium distantly 

related to the α- and γ-proteobacterial MOB on the 16S rRNA level, but possessing a 

pmoA nearly identical to Methylococcus capsulatus (Islam, unpublished).  

 

Environmental distribution patterns of MOB 

The vast majority of pmoA sequences in the database belong to uncultivated MOB 

obtained from various environments. The studied habitats and corresponding 

references included in this meta-analysis are summarized in Table S1. We classified 

available habitat information into 11 environmental categories (Table S1). 

Phylogenetic analysis of the total dataset resulted in a high diversity of pmoA 

genotypes (Figure 2). Assigning the sequences to the environment they were obtained 

from, the most prominent pattern was the grouping of upland soil sequences within 

seven distinct clusters (Figure 2). Moreover, the sequences from arid soils are low in 

diversity and could be assigned to only three of the upland soil clusters: JR-3, USC-γ 

and TUSC (Angel and Conrad, 2009; Xhou, unpublished).  

The remaining type I and type II MOB consist nearly entirely of sequences 

from high-methane environments. The Methylocapsa and the MO3 cluster (type II) 

comprise only a small amount of sequences originating mostly from peatland 

(Methylocapsa) and landfill soil (MO3). The Methylosinus/ Methylocystis group and 

type Ib MOB are overall dominated by wetland rice sequences. Within type Ia, 

sequences obtained from aquatic environments contribute the largest proportion. 

Nevertheless, wetland rice sequences are also represented in high amounts.  
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Figure 2 | Phylogenetic relationship of partial pmoA sequences based on deduced amino 
acid residues. The neighbor joining tree was calculated from a representative subset of the 
database containing approximately 3400 pmoA sequences. The ARB software package was 
used for tree construction (Ludwig et al., 2004). Only sequences over 140 amino acid 
positions in length were included in the analysis. Clusters comprising isolated species or 
highly enriched methanotrophs (Crenothrix) are depicted in grey, in case of the 
Methylosinus and Methylocystis group in blue. ‘Upland soil clusters’ are shown in orange. 
The pie charts illustrate the environmental distribution patterns within the type I and type II 
methanotrophs and the upland soil clusters.  

 

Comparing the composition of sequence origins within type I MOB in more detail, 

some distinct distribution patterns can be observed (Figure 3). Nearly all type Ia 

clusters without cultivated representatives are dominated by sequences obtained from 

marine or limnic environments. The same applies to the clusters Methylobacter sp. 

BB5.1, M. psychrophilus, M. tundripaludum and Methylomicrobium japanense. 

Limnic environments can be furthermore divided into freshwater and soda lake 

habitats. Sequences retrieved from soda lakes often group with sequences from marine 
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origins. The M. japanense group exclusively consists of sequences from these saline 

environments. The pmoA sequences from wetland rice concentrate within the known 

MOB belonging to Methylomonas or Methylosarcina. Furthermore, landfill cover soil 

sequences seem to occur predominately within type Ia, also dominating one separate 

cluster (Landfill Cluster-1).  

 

 

Figure 3 | Environmental distribution patterns of type Ia (A) and type Ib (B) methanotrophs. 
Left: clusters without cultivated representatives; the cluster JRC-4 contains one isolate; 
however, this strain is not further described to date. Right: clusters containing cultivated 
methanotrophs.  

 

Type Ib MOB comprise only a few isolates. Whereas the Methylococcus group 

forms the only cluster dominated by sequences retrieved from low-methane 

environments (Bourne et al., 2001; Singh et al., 2007; Singh and Tate, 2007), the 

Methylocaldum clade is characterized primary by landfill or wetland rice origin (e.g. 

Bodrossy et al., 2003; Lin et al., 2009; Shrestha et al., 2008). The type Ib clusters 
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without isolates are strongly dominated by wetland rice sequences from various 

geographical sites (Lüke et al, 2010). Four clusters are furthermore characterized by 

sequences nearly exclusively obtained from freshwater lakes (e.g. Bussmann et al., 

2006; Kim et al., 2006; Pester et al., 2004).  

 

5.4 Discussion 

Cultivated Methanotrophic bacteria 

The pairwise sequence comparison of cultivated MOB revealed a good correlation 

between the 16S rRNA gene and the pmoA gene. This analysis has been done before 

for type II MOB resulting in a better correlation of pmoA nucleotide sequences than 

PmoA amino acid sequences to the 16S rRNA (Heyer et al., 2002). However, type II 

MOB are closely related and thus, the higher resolution of the nucleotide sequences 

leads to a more reliable phylogeny (Heyer et al., 2002). Here, we show a stronger 

correlation on the amino acid level including more distantly related type I and type II 

MOB. The result supports the use of deduced amino acid sequences for phylogenetic 

tree inferences spanning a wider range of MOB.  

Nevertheless, Crenothrix polyspora and Burkholderia sp. TS2 represent clear 

exceptions to the correlation (Figure 1). An interspecies gene transfer can be a possible 

explanation for such a non-correlation. The Burkholderia strain isolated by Islam and 

coworkers possesses a pmoA gene nearly identical to Methylococcus capsulatus (99% 

sequence identity); however, it belongs to the β-proteobacteria and is only distantly 

related to Methylococcus based on 16S rRNA phylogeny. This suggests the acquisition 

of the pmoA gene due to lateral gene transfer (LGT) between these species. The pmoA 

gene is part of the pmoCAB operon that is transcribed into a single polycistronic 

mRNA encoding the pMMO (Nielsen et al., 1997). Furthermore, genes involved in 

formaldehyde oxidation were shown to be organized in clusters (Boucher et al., 2003). 

The clustering of genes required for a function clearly facilitates LGT and might be 
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seen as an indirect evidence of such an event (Boucher et al., 2003; Lawrence and 

Roth, 1996). Hence, methanotrophy might be far more widespread among prokaryotes 

than assumed. Nevertheless, for Burkholderia sp. TS2, the presence and phylogeny of 

the pmoB and pmoC genes remains to be investigated as well as the synthesis of a 

functional methane monooxygenase protein.  

Crenothrix harbors an unusual pmoA more related to the amoA of ammonia 

oxidizers than to the pmoA of type I and type II MOB. However, Crenothrix was 

shown to oxidize and incorporate methane and methanol confirming the enzyme as a 

methane monooxygenase (Stoecker et al., 2006). Yet, comparing the sequence 

distances to the other MOB on the nucleotide and amino acid level showed - similar 

to Nitrosospira multiformis - increased distances on the amino acid level. This might 

suggests a positive selection pressure acting on both proteins and leading apart from 

the other methane monooxygenases. It is interesting to speculate if the unusual pmoA 

of Crenothrix has been once retrieved from ammonia oxidizing bacteria by LGT. 

The observation of the Crenothrix’s pmoA grouping close to amoA genotypes 

and the Nitrosococcus’ amoA grouping within pmoA genotypes suggests that sequence 

comparison might not allow conclusive interpretations on the function of the 

monooxygenase. Early studies on the pMMO showed a labeling of the pmoA encoded 

subunit using 14C-acetylene as suicide substrate (DiSpirito et al., 1992). Thus, this 

subunit was thought to harbor the active site of the protein. However, great progress 

has been made lately obtaining the first crystal structure of the pMMO (Lieberman 

and Rosenzweig, 2005). Four metal sites are currently discussed as potential active 

sites with two sites that seem most promising (Hakemian and Rosenzweig, 2007). One 

site is located within the PmoB subunit and the other site is formed by three PmoC 

amino acids and only one glutamic acid from PmoA. Thus, the pmoA gene might be 

not the ideal target for function-related interpretations.  

The verrucomicrobial methanotrophs were suggested to have acquired the genes 

essential for methane oxidation by LGT from proteobacteria (Hou et al., 2008). 

However, the comparison of 16S rRNA sequence distances and corresponding pmoA 
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sequence distances matches the overall regression (Figure 1). It suggests that a possible 

LGT event has occurred, if at all, very early in evolutionary history of these bacteria. 

 

Uncultivated methanotrophic bacteria 

The pmoA gene has been widely used as functional and phylogenetic marker for 

methanotrophs resulting in a large number of clusters without any cultivated 

representatives. Some clusters contain few isolates whereas the only two clusters 

dominated by cultivated strains are formed by Methylosinus sporium (96% are 

isolates) and Methylosinus trichosporium (50% are isolates). They were isolated from 

various environments including rice fields e.g. (Ferrando and Tarlera, 2009; Heyer et 

al., 2002), marine environments and lakes (Heyer et al., 2002); however, pmoA clones 

from these environments were only retrieved in low numbers. This suggests a method 

depending bias that might underestimate the true number of Methylosinus revealed in 

cultivation-independent approaches.  

The clone libraries obtained from the different environments do not show the 

same coverage. MOB in rice fields have been studied in detail whereas rather few 

sequences are available for Northern wetlands and permafrost soils. These habitats 

represent the largest single CH4 source and deeper knowledge about MOB diversity in 

these soils would be desirable. However, despite the unequal representation of the 

studied habitats, some distinct distribution patterns could be observed. Nearly all 

sequences retrieved from upland soils group within a few clusters and only a small 

amount cluster within the pmoA-2 involved in atmospheric CH4 oxidation (Baani and 

Liesack, 2008). This suggests that the pmoA-2 might only play a minor role for 

atmospheric CH4 oxidation in upland soils. In these habitats, uncultivated MOB 

grouping within the upland soil clusters seem to be responsible. It was suggested that 

soil pH might play a role in selection of these atmospheric MOB as USC-α seem to 

occur more frequently in acidic soils (Knief et al., 2003; Knief et al., 2005). Comparing 

the origin of the upland soil cluster sequencing in the database, it furthermore shows 



5 | The pmoA gene as phylogenetic marker 

112 

the concentration of the arid or semi-arid soil sequences within a few clusters. None 

of these sequences group within the type II related clusters USC-α and JR-1. Thus, 

besides the pH, the soil moisture might also affect these atmospheric MOB.  

Evaluating the high-methane environments, sequences retrieved from paddy 

fields concentrate within the Methylosinus and Methylocystis group (type II) and the 

type Ib MOB. They dominate in particular the clusters without any cultivated MOB 

(Figure 5). Only few isolates exist for type Ib MOB despite this very high number and 

diversity of pmoA genotypes retrieved from environmental samples. The 

Methylococcus group is dominated by grassland sequences whereas the 

Methylocaldum group contains a high number of landfill sequences that could not be 

found in any of the remaining type Ib clusters. Thus, the known isolates seem to only 

poorly represent the to-date uncultivated species hidden behind this large diversity. 

The type Ia MOB are characterized by a high abundance of sequences retrieved 

from aquatic environments. In particular, marine and soda lake sequences were found 

in high numbers. A variety of Methylomicrobium species have been isolated from 

saline environments e.g. (Kalyuzhnaya et al., 2008) and some details on their 

adaptation to high salt concentrations have already been described (Trotsenko and 

Khmelenina, 2002). The only further known halophilic MOB is Methylohalobius 

crimeensis (Heyer et al., 2005). It forms together with the halotolerant 

Methylothermus thermalis (Tsubota et al., 2005) a monophyletic group that consists 

nearly entirely of environmental sequences retrieved from marine environments and 

soda lakes e.g. (Lin et al., 2004; Nercessian et al., 2003). The meta-analysis of the 

pmoA database confirms this low diversity of halophilic MOB. They group in only a 

few clusters and seem to be already well characterized by the known 

Methylomicrobium and Methylohalobius isolates. Only one group moderately related 

to the USC-γ contains no associated cultivated representative.  

Furthermore, most pmoA clones obtained from landfill soils grouped within 

the type Ia MOB. In particular the Methylosarcina group consists of a high number of 

sequences retrieved from various landfill studies e.g. (Bodrossy et al., 2003; Cebron et 
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al., 2007a; Hery et al., 2008a). The type species Methylosarcina fibrata and the species 

M. quisquilarium were also isolated from landfill cover soil confirming that they 

indeed seem to play an important role in this environment.  

 

Conclusions 

To date, a large amount of pmoA genotypes are deposited at public databases from 

which the vast majority belongs to yet uncultivated MOB. Phylogenetic inferences in 

MOB diversity studies are often based on the pmoA sequence taking for granted that 

it reflects the 16S rRNA gene phylogeny. We re-evaluated the phylogenetic 

information derived from pmoA analyses showing that it still remains a suitable 

marker for studying MOB in the environment. Nevertheless, methanotrophy might be 

evolutionary more complicated than assumed and this function might have been even 

exchanged between species.  

The comparative sequence analysis of uncultivated MOB revealed a high 

diversity of pmoA genotypes. Environmental distribution patterns indicate an 

adaptation of specific genotypes to low-methane concentration or high salinity, 

respectively. Furthermore, a high number of environmental type Ib clusters, most 

only distantly related to cultivated species, are nearly exclusively composed of 

sequences retrieved from wetland rice and freshwater lakes suggesting a certain 

adaptation to these high-methane environments. Our meta-analysis clearly 

demonstrates the need for increasing isolation efforts as to date cultivated MOB seem 

to only poorly represent the pmoA genotypes retrieved from the environment. 
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5.6 Supplementary material 

Table S1 | Summary of environmental pmoA studies included in the meta-analysis.  

PROPORTION OF 
SEUENCES IN 
DATABASE 

COMBINED HABITAT IN 
META-ANALYSIS 

STUDIED HABITAT REFERENCE 

5% Subsurface water Aquifer Fru, 2008 
Erwin et al., 2005 
Newby et al., 2004 
Baker et al., 2001 

  Contaminated groundwater Yan, unpublished 
Urmann et al., 2008) 

  Movile cave Hutchens et al., 2004 

  Artesian well Vigliotta et al., 2007 

4% Marine Marine sediment 
 
 
 
 

Estuarine sediment 

Hydrocarbon seeps 
 

Hydrothermal environment 
 

Sediment-water interface 

Oxygen minimum zone 

Hydrothermal shrimp 

Mussel 

Nold et al., 2000  
Wasmund et al., 2009 
Jensen et al., 2008  
Tavormina et al., 2008 
Hayashi et al., 2007a 

McDonald et al., 2005 

Inagaki et al., 2004 
Yan et al., 2006 

Nercessian et al., 2005a 
Kato et al., 2009 

Kim et al., 2008 

Hayashi et al., 2007b 

Zbinden et al., 2008 

Duperron et al., 2007 
Spiridonova et al., 2006 

15% Limnic Soda lake sediment and water 
column 
 

Freshwater lake sediment and 
water column 

Lin et al., 2004 
Lin et al., 2005 
Bodrossy et al., 2003 

Rahalkar and Schink, 2007 
Costello and Lidstrom, 1999 
Bussmann et al., 2004 
Bussmann et al., 2006 
Pester et al., 2004 
Kim et al., 2008 
Nercessian et al., 2005b 
Tavormina et al., 2008 
Junier, unpublished 

37% Wetland rice Rice field soil and rice roots Henckel et al., 1999 
Henckel et al., 2000b 
Henckel et al., 2001 
Horz et al., 2001 
Shrestha et al., 2008 
Lüke et al., 2010 
Ferrando and Tarlera, 2009 
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Continuation Table S1 | Summary of environmental pmoA studies included in the meta-
analysis.  

PROPORTION OF 
SEUENCES IN 
DATABASE 

COMBINED HABITAT IN 
META-ANALYSIS 

STUDIED HABITAT REFERENCE 

37% Wetland rice Rice field soil and rice roots Zheng et al., 2008 
Jia et al., 2007 
Qiu et al., 2008 

5% Landfill Landfill cover soil Cebron et al., 2007b 
Nevin, unpublished 
Tseng, unpublished 
Stralis-Pavese, unpublished 
Lin et al., 2009 
Hery et al., 2008b 
Bodrossy et al., 2003 
Chen et al., 2007 

4% Mire Peatland soil 
 
 

Raised mire soil 

Permafrost soil 

Chen et al., 2008 
Morris et al., 2002 
Dedysh et al., 2001 

Jaatinen et al., 2005 

Pacheco-Oliver et al., 2002 

7% Forest Forest soil Jaatinen et al., 2004 
Tsutsumi 
Singh and Tate, 2007 
Kolb et al., 2005b 
Knief et al., 2005 
Knief et al., 2003 
Holmes et al., 1999 
Henckel et al., 2000a 
Jensen et al., 2000 
King and Nanba, 2008 

16% Grassland Grassland soil Knief et al., 2005 
Knief et al., 2003 
Knief et al., 2006  
Kolb et al., 2005a 
Ogram et al., 2006 
Horz et al., 2005 
Levine, unpublished 
Singh et al., 2007 
Bourne et al., 2001 
Vasara, unpublished 

0.7% Sludge Activated sludge Osaka et al., 2008 

0.8% Cereals Agricultural soil 
Knief et al., 2005 
Dubey, unpublished 

3% Desert/Steppe Desert soil Angel and Conrad, 2009 

  Steppe soil Zhou, unpublished 
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6 GENERAL DISCUSSION AND OUTLOOK 

Methanotrophic bacteria perform a central function in our climate system 

representing the only biogenic sink for the greenhouse gas methane. Even though 

they have been studied intensively in the past, only little is known about their 

ecological niche differentiation and the factors influencing their community 

structure. New molecular techniques based on cultivation independent approaches 

allow a constantly deeper analysis of microbial populations in the environment. 

However, we have just started to explore their full diversity and to understand the 

complex interaction between these bacteria and their biotic and abiotic environment.  

This PhD thesis focused on the microbial ecology of methanotrophic bacteria 

in the wetland rice ecosystem. Rice agriculture represents a major source for 

atmospheric methane and will even increase in importance in order to fulfill the food 

demands of the growing human world population. In the first part of this thesis, the 

diversity and distribution patterns of methanotrophs were investigated within an 

Italian paddy field and compared to paddy fields worldwide (Chapters 2&3). 

Furthermore, the community fingerprints of three closely located Italian rice fields 

were studied. The second part concentrated on the influence of different rice cultivars 

on the methanotrophic community composition by using two different fingerprinting 

techniques: the low-resolution T-RFLP analysis and the high-resolution microarray 

(Chapter 4). Finally, the value of the pmoA gene as phylogenetic marker for 

methanotroph was re-evaluated and environmental distribution patterns of publicly 

available pmoA sequences from various habitats were investigated (Chapter 5).  
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6.1 Diversity of methanotrophs in the wetland rice ecosystem 

Rice paddies are characterized by a high diversity of aerobic methanotrophs 

(Chapter 3). However, despite intensive studies over nearly two decades, 

extremophilic species such as the methanotrophic Verrucomicrobia, Methylohalobius 

or Methylothermus have not been detected so far. The pmoA gene of the 

Verrucomicrobia species is only distantly related to the common pmoA and cannot be 

amplified using the standard PCR conditions (Dunfield et al., 2007; Pol et al., 2007). 

Therefore, the commonly used primers might have just failed to detect these species 

in moderate environments. However, for the Italian paddy soil, a PCR performed with 

Verrucomicrobia-specific pmoA primers confirmed the absence of these 

methanotrophs (data not shown).  

Furthermore, environmental clusters pre-dominantly found in upland soils 

(e.g. USC-α and USC-γ) seem to play no important role in the wetland rice ecosystem. 

These uncultivated methanotrophs are assumed to be responsible for oxidation of 

methane at atmospheric trace level concentrations. Irrigated rice fields are dry and 

aerated during the winter and can even act as sink for atmospheric methane during 

this time (Singh et al., 1998). As upland soil cluster methanotrophs seem to be 

virtually absent in paddy fields, other species might be responsible for atmospheric 

methane oxidation in these environments. Type II methanotrophs belonging to the 

Methylosinus and Methylocystis group were detected in high abundance. Several of 

these species harbor a second pmoA (pmoA-2) encoding for a subunit of a pMMO 

isoenzyme (Tchawa Yimga et al., 2003). For Methylocystis sp. SC2, this second 

isoenzyme has been shown to have a different apparent Km (Km(app)) comparable to 

values determined for soils consuming atmospheric methane. It furthermore enables 

growth on atmospheric methane for over three month (Baani and Liesack, 2008). The 

pmoA-2 genotype was retrieved in culture-independent studies of Italian rice field 

samples (Horz et al., 2001; Tchawa Yimga et al., 2003) and was also detected in high 

amounts in rice root samples using the pmoA microarray (Chapter 4). Methanotrophs 
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harboring both isoenzymes offer an optimal adaptation to the wetland rice ecosystem 

which shows great changes of in situ methane concentrations over the seasons. They 

seem to be promising candidates responsible for the observed methane uptake in rice 

paddies. 

In addition to type II, type Ib methanotrophs were found to be highly 

abundant in paddy fields. This group is characterized by a high diversity of 

environmental pmoA sequences for which only few isolates are available (Chapter 5). 

Nearly all type Ib clusters are dominated by sequences obtained from rice fields 

worldwide indicating a specific adaptation to this environment. The rice paddy 

cluster 1 (RPC-1) forms the largest cluster and consists entirely of sequences obtained 

from paddy fields so far (Chapter 3). It is only distantly related to the cultivated 

species Methylocaldum and Methylococcus (10-16% amino acid sequence identity). 

Assuming an approximately two times higher average distance of the PmoA protein 

compared to the 16S rRNA (Chapter 5) results in a corresponding 16S rRNA sequence 

difference of 5-8% of RPC-1 to the next cultivated methanotrophs. Thus, RPC-1 

might represent a new genus harboring specific traits that enable an optimal 

adaptation to the environmental conditions found in the wetland rice ecosystem.  

Within type Ia methanotrophs, Methylomonas and Methylosarcina species 

seem to be dominant. However, sequences clustering with Methylobacter 

tundripaludum and M. psychrophilus, isolated from artic soil (Omelchenko et al., 

1996; Wartiainen et al., 2006), were also found in paddy fields. Thus, these species 

seem to be more widespread and not restricted to cold environments. Halophilic 

species of the genus Methylomicrobium were not detected in rice fields so far. Only 

Methylomicrobium album-like sequences were retrieved. However, M. album 

represents a non-halophilic species clustering close to Methylosarcina lacus based on 

16S rRNA gene phylogeny and a reclassification of the type Ia taxonomy was already 

suggested (Kalyuzhnaya et al., 2008).  

Furthermore, a variety of sequences were found that group phylogenetically 

between the pmoA gene of methanotrophs and the amoA gene of ammonia oxidizers. 
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These clusters include the RA21, M84-P22 and the M84-P105 group (Chapter 2). 

They share conserved amino acid residues with the pmoA as well as the amoA and 

could therefore not be affiliated to any of the two corresponding functions (e.g. 

Holmes et al., 1999). Clone libraries of the pmoB gene might allow more function 

related insights as the active site of the pMMO might be located in this subunit 

(Hakemian and Rosenzweig, 2007; Chapter 5).  

 

6.2 Niche differentiation of wetland rice methanotrophs 

Rice fields are characterized by the dominance of one plant species and regular 

plowing and puddling of the soil surface. Thus, they represent a comparably 

homogeneous environment. Consistent to this, the methanotrophic community 

showed no horizontal distribution patterns within an Italian paddy field (Chapter 2). 

Therefore, large scale environmental gradients can be neglected for the sampling 

strategy and a reduced sampling effort is sufficient to extrapolate to the field scale. 

However, the methanotrophic communities in defined micro-habitats differ from 

each other (Chapter 3). Type II methanotrophs of the Methylosinus and Methylocystis 

group were found in high abundances in all three major habitats that can be defined 

in paddy fields: the anoxic bulk soil, the oxic surface soil and the partially oxic 

rhizosphere (see Figure 2 in Introduction). This finding is consistent with previous 

studies of methanotrophs within a paddy field (Eller et al., 2005; Eller and Frenzel, 

2001). Type II methanotrophs form a phylogenetically closely related group 

performing the serine cycle for primary C1 assimilation. Many type II species possess 

the second pMMO isoenzyme enabling growth at atmospheric methane 

concentrations (Baani and Liesack, 2008). Furthermore, some strains are able to grow 

with other carbon sources than methane (Dedysh, personal communication). These 

traits might allow the bacteria to remain physiologically active during the winter 

season when the fields are aerated and methane concentrations might be close to 



  General discussion and outlook | 6 

 129 

atmospheric levels. In contrast, type I methanotrophs seem to be restricted to higher 

methane concentrations and thus, the activity might be limited during the winter. A 

variety of methanotroph are able to form resting stages that might even stay viable for 

more than a century in the anoxic sediment (Rothfuss et al., 1997). Methylosinus 

species (type II) are able to form exospores surviving at least 18 month in the dried 

state (Whittenbury et al., 1970). On the contrary, the cysts of Methylosarcina and 

Methylomonas species, which seem to be the most dominant type Ia methanotrophs 

in rice fields, were shown to be sensitive to desiccation (Whittenbury et al., 1970; 

Wise et al., 2001). Hence, only a subset of the type I population might survive the 

winter season. Increasing methane concentrations upon flooding in spring might 

support a renewed growth at the oxic-anoxic interfaces such as the plant roots. 

Microorganisms are phylogenetically and physiologically considerably more 

diverse than plants and animals and microbial interactions with their biotic and 

abiotic environment are more complex. Thus, understanding microbial ecology and 

interpreting experimental observations in the context of ecological concepts is 

challenging (Jessup et al., 2005; Martiny et al., 2006; Prosser et al., 2007). However, 

the concept of differentiating between generalists and specialists might be partly 

applicable to methanotrophic bacteria. With their adaptation to consume methane at 

elevated and atmospheric concentrations and the capability to survive on other 

substrates than methane, type II methanotrophs are adapted to a wider range of 

substrate conditions than the very specialised type I methanotrophs. Beside the 

substrate range, this relationship can be further observed for other abiotic factors. The 

halophilic Methylomicrobium species, the psychrophlilic (psychrotolerant) 

Methylobacter tundripaludum and the termophilic Methylococcus and 

Methylocaldum species belong exclusively to type I methanotrophs. The yet 

uncultivated species of the RPC-1, clustering within the type Ib methanotrophs, 

demonstrate furthermore a specific adaptation to the wetland rice environment.  
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Hence, within the physiological distinct group of methanotrophs, type I 

species might be classified as specialists whereas type II methanotrophs might 

represent the generalists.  

Furthermore, a growing number of studies provide evidence for the existence 

of biogeographical patterns for microorganisms (Papke and Ward, 2004; Whitaker et 

al., 2003). This indicates that ‘everything’ might not just be found ‘everywhere’; but 

instead, certain dispersion limitations might also exist for bacteria (Martiny et al., 

2006). Studying the methanotrophic community in three different Italian rice paddies 

revealed a distinct fingerprint for each field (Chapter 2). However, these distinct 

patterns were the result of different species abundances, not of different species 

present in the fields. Nevertheless, comparing the pmoA genotypes within the RPC-1 

(Figure 1b in Chapter 3), a large group of sequences originating from Japanese paddy 

fields cluster separately from the group of the Italian paddy field sequences. This 

might suggest a partly independent evolution of these methanotrophs at both 

geographical locations.  

 

6.3 Factors influencing methanotrophs in wetland rice fields 

Nitrogen fertilization plays an important role in the rice field environment. It has 

been shown to directly affect the methanotrophic community by selectively 

stimulating type I methanotrophs (Bodelier et al., 2000; Mohanty et al., 2006). In 

contrast, type II species seem to be inhibited. Furthermore, the effect of temperature 

on methanotrophs was investigated in rice field and forest soil (Mohanty et al., 2006) 

as well as in a gradient system using soil from a contaminated aquifer (Urmann et al., 

2008). Whereas Urmann and co-workers found no significant effect, the pmoA T-

RFLP patterns for the rice field and forest soil changed depending on the incubation 

temperature. However, both soils showed different responses. In addition, protists 

were shown to selectively graze on different methanotrophs. Whereas Methylocystis 
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species (type II) seem to be rejected, Methylobacter species (type I) seem to be 

particularly preferred (Murase and Frenzel, 2008). Furthermore, a significant effect of 

the rice genotype on methanotrophs could be demonstrated (Chapter 4). Type Ib 

methanotrophs showed the largest changes in response to the rice genotype. In 

general, changing environmental factors seem to greater influence type I populations 

whereas type II populations seem to remain comparably resistant.  

 

6.4 Outlook 

Comparative sequence analysis of the pmoA gene revealed a great diversity of 

methanotrophs. Adaptation to specific environmental parameters has been described 

for some isolated species, and distinct environmental distribution patterns could be 

observed for several pmoA genotypes. The pmoA microarray (Bodrossy et al., 2003) 

represents a high resolution technique detecting methanotrophs down to the species 

or cluster level. Furthermore, next generation sequencing techniques allow the 

acquisition of gigabases of sequence information within one single run (MacLean et 

al., 2009). These methods allow in-depth studies of methanotrophic populations in the 

environment and might give further insights into ecological niche adaptation of 

distinct species or clusters.  

This PhD work focused on the methanotrophic community that is present in 

paddy fields. Only a subset of this community might be metabolically active and 

responsible for observed methane oxidation rates. Stable isotope probing (SIP) of 

DNA/RNA or phospholipid fatty acids (PLFA) represent techniques enabling to link 

the metabolic activity with the identity of the corresponding microorganisms 

(Radajewski et al., 2000). They were successfully used to investigate the active 

population of methanotrophs in various environments (Hery et al., 2008; Hutchens et 

al., 2004; Murase et al., 2007) and indicates a dominant activity of type I 

methanotrophs in a Chinese paddy field (Qiu et al., 2008). Furthermore, studying 
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pmoA transcripts retrieved from environmental samples might allow conclusions on 

the metabolic activity of methanotrophs (Chen et al., 2008; Kolb et al., 2005). 

However, cultivation-independent studies using the 16S rRNA and functional 

marker genes have also limitations. These approaches enable great insights into the 

vast diversity of bacteria, yet fundamental conclusions on their genetic and metabolic 

versatility are not possible. In case of the pmoA/amoA gene, the sequence information 

seems not to be even indicative for the specific function of the corresponding 

monooxygenase: no sites could be identified that are clearly linked to the function of 

methane oxidation, atmospheric methane oxidation or ammonia oxidation, 

respectively. Such conclusions on the physiology of the bacteria can only be drawn 

from pure culture studies. The vast majority of the pmoA diversity is dominated by 

clusters without any cultured representative clearly demonstrating the need for 

increasing isolation efforts. The meta-analysis in Chapter 5 has identified those 

habitats that are not well represented by the existing pure cultures so far. In rice 

fields, type Ib methanotrophs seem to play an important role, but only few type Ib 

isolates are described. Moreover, these isolates might only poorly represent the 

environmental clusters found in paddy fields. The RPC-1 in particular might be even 

a new genus with special adaptation to rice fields.  

Summarized, we have only started to get insights into the diversity and 

ecology of this environmentally important group of bacteria. It is not known to what 

extend this great diversity affects the resilience and resistance of the methane 

oxidation process. This function is essential for our climate system and deeper 

understanding of methanotrophic diversity, activity and their reaction to 

perturbations is therefore needed. 
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