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Abstract

This thesis is composed of three big parts. In the first two chapters we provide the basic
definitions and facts which are needed in the subsequent chapters. Chapter 1 is concerned
with basic algebraic principles whereas in the second chapter we treat simplicial complexes.
The actual results of this thesis are presented in Chapter 3 through 5. In particular, we
dedicate Chapters 3 and 4 to the g-conjecture, the g-theorem, further related results as well
as the Lefschetz property for barycentric subdivisions of shellable simplicial complexes.
In Chapter 5, which constitutes the second main topic, we consider the symmetric and
the exterior depth of finitely generated modules as well as the symmetric and the exterior
annihilator numbers. In the following we dwell on the two main topics in more detail.

One of the most classical and most studied problems in combinatorial commutative alge-
bra and discrete geometry is the characterization of f -vectors of special classes of simplicial
complexes. Kruskal [Kru60] and Katona [Kat68] succeeded to describe all possible vectors
which can occur as the f -vector of a simplicial complex. Based on this classification one
might ask if in addition it is possible to extract those vectors which belong to specific classes
of simplicial complexes, such as Gorenstein∗ complexes, boundary complexes of simplicial
polytopes or simplicial spheres. In 1971 McMullen [McM71] formulated the so-called g-
conjecture for precisely this latter class of simplicial complexes. This conjecture, which he
originally proposed only for boundary complexes of simplicial polytopes, was proven by
Stanley and Billera/Lee in 1979, respectively. The result is widely known as the g-theorem.

Theorem. [BL81, Sta80](g-theorem)
Let h = (h0, . . . ,hd)∈Nd+1 and let g = (1,h1−h0, . . . ,hb d

2 c
−hb d

2 c−1). Then h is the h-vector
of the boundary complex of a simplicial d-polytope if and only if g is an M-sequence.

Accessorily to the classical g-theorem there is a multitude of results showing a Lef-
schetz property for special classes of simplicial complexes or investigating the behavior
of this property when performing a certain operation on the simplicial complex. In order to
mention just some of those results we want to cite the results of Swartz for independence
complexes of matroids and for simplicial complexes featuring a convex ear decomposition
[Swa03, Swa06]. There are further achievements by Nevo and Babson [Nev07, NB08] for
the join, the union, the connected sum and stellar subdivisions of simplicial complexes as
well as results by Murai for strongly edge decomposable simplicial complexes [Mur07].
Additionally, there are algebraic results characterizing the Lefschetz property or providing
equivalent conditions, see e.g. [HW07], [CP07] and [Wie04].
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The main result of this thesis which was compassed in joint work with Eran Nevo shows
the (so-called) almost strong Lefschetz property not only for barycentric subdivisions of
shellable simplicial complexes but also for barycentric subdivisions of shellable polytopal
complexes. The motivation for studying barycentric subdivisions of shellable simplicial
complexes originates from results by Brenti and Welker [BW06]. They showed amongst
other things that the h-vector of the barycentric subdivision of a Cohen-Macaulay complex
is unimodal. This can also be deduced if a simplicial complex exhibits the almost strong
Lefschetz property. Brenti and Welker therefore conjectured that this is the case for the
barycentric subdivision of a Cohen-Macaulay simplicial complex. In collaboration with
Eran Nevo the following result could be proven.

Theorem 0.0.1. Let ∆ be a shellable (d− 1)-dimensional simplicial complex and let k be
an infinite field. Let further sd(∆) be the barycentric subdivision of ∆. Then sd(∆) is almost
strong Lefschetz over k.
If ∆ is a shellable polytopal complex, then sd(∆) is almost strong Lefschetz over R.

The above result in particular implies that the h-vectors of barycentric subdivisions of
Cohen-Macaulay simplicial complexes are M-sequences. We want to emphasize at this
point that it is quite remarkable that the numerical result is true in the greater generality of
Cohen-Macaulay complexes, even though the algebraic result does only hold for shellable
simplicial complexes. The crucial fact which is used for proving this result is that Cohen-
Macaulay complexes and shellable simplicial complexes possess the same set of h-vectors
[Sta96]. Note that Theorem 0.0.1 in particular shows the g-conjecture for barycentric sub-
divisions of simplicial spheres, Gorenstein∗ complexes and 2-Cohen-Macaulay complexes.
Furthermore, Brenti and Welker show in [BW06] that the entries of the h-vector of the
barycentric subdivision of a simplicial complex can be expressed as positive linear combi-
nations of the entries of the h-vector of the original complex. The coefficients emerging in
this transformation are a certain refinement of the usual Eulerian statistics on permutations,
see e.g. [FS70]. More precisely, permutations are grouped according to their number of
descents and the image of 1.
Using the results for barycentric subdivisions of shellable simplicial complexes – the alge-
braic as well as the numerical ones – we are able to analyze those numbers in great detail.
We first study their behavior when increasing the number of descents while keeping the im-
age of 1 fixed. By dint of those results we can deduce further inequalities for those numbers
when changing the image of 1 while fixing the number of descents.

In a second big group of topics of this thesis we compare algebraic invariants over the
polynomial ring with their counterparts over the exterior algebra. The main focus here lies
on the symmetric and the exterior depth as well as on the symmetric and the exterior anni-
hilator numbers. It is used that there exists an equivalence of categories between squarefree
modules over S and squarefree modules over E, see [AAH00] and [Röm01]. Here S :=
k[x1, . . . ,xn] denotes the polynomial ring in n variables over a field k and E := k〈e1, . . . ,en〉
denotes the exterior algebra. By means of the mentioned equivalence we can associate to
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every squarefree S-module a squarefree E-module, e.g., the exterior Stanley-Reisner ring
of a simplicial complex is assigned to the (symmetric) Stanley-Reisner ring of the same
complex. This correspondence allows the comparison of corresponding invariants.

Aramova, Avramov and Herzog introduced in [AAH00] the notion of the exterior depth of
an E-module which is defined analogously as the symmetric depth of an S-module. In col-
laboration with Gesa Kämpf, we could show, amongst other things, that the symmetric depth
of an S-module can never be smaller than the exterior depth of the associated E-module.
Moreover, we are able to characterize simplicial complexes whose exterior Stanley-Reisner
ring exhibits a specified exterior depth in terms of their exterior shifting.

The so-called symmetric annihilator numbers of an S-module with respect to a sequence
of linear forms were originally defined by Trung in [Tru87]. Those numbers can be con-
sidered as an iteration of the concept of the symmetric depth. It can be shown that they
are independent of the particular chosen sequence if the latter one originates from a certain
non-empty Zariski-open set. This gives rise to the definition of the symmetric generic anni-
hilator numbers. Those are strongly related to the graded Betti numbers over S. Indeed, as
was proven by Conca, Herzog and Hibi in [CHH04], the symmetric graded Betti numbers
of an S-module of the form S/I, where I ⊆ S is a graded ideal, are bounded from above by
positive linear combinations of the symmetric generic annihilator numbers. This bound is
tight if and only if I is a componentwise linear ideal.
We carry over the concept of the symmetric annihilator numbers with respect to a sequence
to the situation in the exterior algebra. Bearing in mind that each element of an E-module
is a zero-divisor we introduce the exterior annihilator numbers with respect to a sequence
of linear forms. Our aim is to translate some properties of the symmetric annihilator num-
bers into properties of the exterior annihilator numbers. In doing so it emerges that, as in
the symmetric case, the exterior annihilator numbers with respect to different sequences
coincide if the latter ones stem from a certain non-empty Zariski-open set. In the following
we therefore only examine the so-called exterior generic annihilator numbers. Along the
lines of the situation over the polynomial ring, it can be shown that positive linear combi-
nations of those numbers serve as upper bounds for the graded Cartan-Betti numbers of an
E-module of the form E/J, where J ⊆ E is a graded ideal. This in particular provides us
with an upper bound for the ordinary graded Betti numbers over E. As in the symmetric
case, equality is attained only for componentwise linear ideals.
Besides the mere conferment of the results over the polynomial ring to the exterior alge-
bra, additional results can be achieved. For E-modules of the form E/J it turns out that
the exterior generic annihilator numbers count certain generators of the generic initial ideal
of J with respect to the reverse lexicographic order. In the special case of simplicial com-
plexes this result can be used in order to demonstrate that the exterior generic annihilator
numbers equal the numbers of certain minimal generators of the symmetric and the exterior
Stanley-Reisner ideal.

Looking at the generic annihilator numbers in more detail, at the symmetric as well as at
the exterior ones, the question occurs if those numbers stand out due to something compared
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to the annihilator numbers with respect to a particular sequence. Herzog predicted that they
are the minimal ones under all annihilator numbers with respect to a sequence. We construct
for the symmetric as well as for the exterior annihilator numbers a counterexample to this
conjecture.

iv



Zusammenfassung

Diese Arbeit gliedert sich in drei große Teile. Bei den ersten beiden Kapiteln handelt es sich
um Grundlagenkapitel. Wir behandeln im ersten Kapitel algebraische Grundlagen, während
sich das zweite mit simplizialen Komplexen befasst. Kapitel 3 bis 5 stellen den eigent-
lichen Ergebnisteil dieser Arbeit da. Dabei sind Kapitel 3 und 4 der g-Vermutung, dem
g-Theorem, damit verwandten Ergebnissen, sowie der Lefschetz-Eigenschaft für baryzen-
trische Unterteilungen schälbarer simplizialer Komplexe gewidmet. Kapitel 5, als zweiter
Themenkomplex, behandelt die symmetrische und äußere Tiefe von endlich erzeugten Mo-
duln, sowie symmetrische und äußere Annulatorzahlen. Wir gehen im Folgenden genauer
auf die beiden Ergebnisteile ein und fassen die erhaltenen Resultate kurz zusammen.

Wohl eines der klassischsten und meist untersuchten Probleme im Bereich der kombina-
torischen kommutativen Algebra und der diskreten Geometrie ist die Charakterisierung von
f -Vektoren spezieller Klassen simplizialer Komplexe. Kruskal [Kru60] und Katona [Kat68]
gelang es, alle Vektoren zu beschreiben, die als f -Vektoren simplizialer Komplexe auftre-
ten können. Ausgehend von dieser Klassifizierung stellt sich die Frage, ob es möglich ist,
noch einmal die Vektoren zu extrahieren, die zu bestimmten Klassen simplizialer Kom-
plexe gehören, wie z. B. Gorenstein∗ Komplexen, Randkomplexen simplizialer Polytopen
oder simplizialen Sphären. Für letztere Klasse simplizialer Komplexe formulierte McMul-
len [McM71] 1971 die sog. g-Vermutung. Diese ursprünglich nur für Randkomplexe sim-
plizialer Polytope aufgestellte Vermutung wurde 1979 von Stanley [Sta80] bzw. Billera und
Lee [BL81] bewiesen. Das Resultat ist als g-Theorem bekannt.

Theorem. [BL81], [Sta80](g-Theorem)
Sei h = (h0, . . . ,hd) ∈ Nd+1 und sei g = (1,h1− h0, . . . ,hb d

2 c
− hb d

2 c−1). Dann ist h genau
dann der h-Vektor des Randkomplexes eines simplizialen d-Polytops wenn g eine M-Sequenz
ist.

Zusätzlich zu dem klassischen g-Theorem gibt es eine Vielzahl von Ergebnissen, die eine
Lefschetz-Eigenschaft für spezielle Klassen simplizialer Komplexe zeigen oder das Verhal-
ten dieser Eigenschaft bei Durchführung bestimmter Operationen untersuchen. Hierbei sind
z. B. die Ergebnisse von Swartz für Matroid-Komplexe und Komplexe mit einer konvexen
Ohrenzerlegung [Swa03, Swa06] oder die Ergebnisse von Nevo und Babson [Nev07, NB08]
für den Join, die Vereinigung, die zusammenhängende Summe und stellare Unterteilun-
gen simplizialer Komplexe, sowie die Ergebnisse von Murai für stark Kanten-zerlegbare
Komplexe [Mur07] zu nennen. Zusätzlich gibt es noch algebraische Ergebnisse, die die

v



Lefschetz-Eigenschaft charakterisieren oder zu ihr äquivalente Bedingungen liefern, siehe
z. B. [HW07], [CP07] und [Wie04].

Das in Zusammenarbeit mit Eran Nevo erzielte Hauptergebnis dieser Arbeit zeigt die sog.
fast starke Lefschetz-Eigenschaft sowohl für baryzentrische Unterteilungen schälbarer sim-
plizialer Komplexe als auch für baryzentrische Unterteilungen schälbarer polytopaler Kom-
plexe. Die Motivation, baryzentrische Unterteilungen von schälbaren simplizialen Komple-
xen zu betrachten, stammt von Ergebnissen von Brenti und Welker in [BW06]. Diese zeigen
u. a., dass der h-Vektor der baryzentrischen Unterteilung eines Cohen-Macaulay Komple-
xes unimodal ist. Dies kann auch gefolgert werden, wenn ein simplizialer Komplex die
fast starke Lefschetz-Eigenschaft besitzt. Brenti und Welker vermuteten daher, dass dies für
die baryzentrische Unterteilung eines Cohen-Macaulay Komplexes der Fall ist. Es gelang
folgendes Ergebnis zu zeigen.

Theorem 0.0.2. Sei ∆ ein schälbarer (d− 1)-dimensionaler simplizialer Komplex und sei
k ein unendlicher Körper. Sei sd(∆) die baryzentrische Unterteilung von ∆. Dann ist sd(∆)
fast stark Lefschetz über k.
Ist ∆ ein schälbarer polytopaler Komplex, so ist sd(∆) fast stark Lefschetz über R.

Daraus folgt insbesondere, dass es sich bei den h-Vektoren baryzentrischer Unterteilun-
gen von Cohen-Macaulay Komplexen um M-Sequenzen handelt. Bemerkenswert ist, dass
– auch wenn das algebraische Resultat nur für schälbare Komplexe gilt – das numerische
Resultat für die größere Klasse von Cohen-Macaulay Komplexen gezeigt werden kann.
Dabei wird verwendet, dass Cohen-Macaulay Komplexe und schälbare Komplexe die glei-
che Menge an h-Vektoren besitzen, siehe [Sta96]. Theorem 0.0.2 zeigt insbesondere die g-
Vermutung für baryzentrische Unterteilungen von simplizialen Sphären, Gorenstein∗ Kom-
plexen und 2-Cohen-Macaulay Komplexen.
In [BW06] zeigen Brenti und Welker des Weiteren, dass sich die Einträge des h-Vektors der
baryzentrischen Unterteilung eines simplizialen Komplexes als positive Linearkombinatio-
nen der ursprünglichen h-Vektor-Einträge schreiben lassen. Bei den in dieser Transformati-
on auftretenden Koeffizienten handelt es sich um eine Verfeinerung der Eulerschen Statistik
auf Permutationen, siehe z. B. [FS70]. Genauer zählen die Koeffizienten die Anzahl der
Permutationen der Sn mit einer gewissen Anzahl an Abstiegen und vorgegebenem Bild von
1.
Unter Verwendung der Ergebnisse für baryzentrische Unterteilungen schälbarer Komplexe
– sowohl der algebraischen als auch der numerischen – sind wir in der Lage diese Anzah-
len genauer zu analysieren. Es wird zunächst ihr Verhalten bei Erhöhung der Anzahl von
Abstiegen und festem Bild von 1 untersucht. Mit Hilfe dieser Ergebnisse können weitere
Ungleichungen für diese Anzahlen gezeigt werden, wenn bei gleichbleibender Anzahl von
Abstiegen das Bild von 1 verändert wird.

In einem zweiten großen Themenkomplex dieser Arbeit werden algebraische Invarian-
ten über dem Polynomring mit ihren Entsprechungen über der äußeren Algebra verglichen.
Der Schwerpunkt liegt hierbei auf der symmetrischen und der äußeren Tiefe, sowie auf
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den symmetrischen und äußeren Annulatorzahlen. Es wird dabei verwendet, dass es eine
Äquivalenz zwischen den Kategorien quadratfreier S-Moduln und quadratfreier E-Moduln
gibt, siehe [AAH00] und [Röm01]. Hierbei ist S := k[x1, . . . ,xn] der Polynomring in n Varia-
blen über einem Körper k und E := k〈e1, . . . ,en〉 bezeichnet die äußere Algebra. Mittels der
genannten Äquivalenz lässt sich zu einem quadratfreien S-Modul ein quadratfreies E-Modul
assoziieren. So wird beispielsweise dem (symmetrischen) Stanley-Reisner-Ring eines sim-
plizialen Komplexes dessen äußerer Stanley-Reisner-Ring zugewiesen. Dies ermöglicht den
Vergleich entsprechender Invarianten.

Aramova, Avramov und Herzog führten in [AAH00] in Analogie zur (symmetrischen)
Tiefe den Begriff der äußeren Tiefe ein. In Zusammenarbeit mit Gesa Kämpf gelang es u. a.
zu zeigen, dass die symmetrische Tiefe eines S-Moduls niemals kleiner als die äußere Tiefe
des entsprechenden E-Moduls ist. Ferner sind wir in der Lage, simpliziale Komplexe, de-
ren äußerer Stanley-Reisner-Ring eine vorgegebene äußere Tiefe hat, mittels ihres äußeren
Shiftings zu charakterisieren.

In [Tru87] führte Trung die sog. symmetrischen Annulatorzahlen eines S-Moduls bzgl.
einer Sequenz von Linearformen ein. Diese können als eine Art Iteration des Konzepts
der symmetrischen Tiefe betrachtet werden. Es kann gezeigt werden, dass diese Anzahlen
unabhängig von der betrachteten Sequenz sind, wenn letztere aus einer gewissen Zariski-
offenen Menge gewählt wird. Dies führt zur Definition der symmetrischen generischen An-
nulatorzahlen. Diese stehen in engem Zusammenhang zu den graduierten Betti-Zahlen über
S. Wie von Conca, Herzog und Hibi in [CHH04] gezeigt, sind die symmetrischen graduier-
ten Betti-Zahlen eines S-Moduls der Form S/I, wobei I ⊆ S ein graduiertes Ideal ist, durch
positive Linearkombinationen der symmetrischen generischen Annulatorzahlen nach oben
beschränkt. Dabei gilt Gleichheit genau dann, wenn I ein komponentenweise lineares Ideal
ist.
Wir übertragen das Konzept der symmetrischen Annulatorzahlen bzgl. einer Sequenz auf
die Situation in der äußeren Algebra. Unter Berücksichtigung der Tatsache, dass jedes Ele-
ment eines E-Moduls ein Nullteiler ist, führen wir äußere Annulatorzahlen bzgl. einer Se-
quenz von Linearformen ein. Das Ziel ist es, Eigenschaften der symmetrischen Annulator-
zahlen auch auf die äußeren Annulatorzahlen zu übertragen. Es stellt sich dabei heraus, dass
– wie im symmetrischen Fall – die äußeren Annulatorzahlen bzgl. verschiedener Sequen-
zen übereinstimmen, wenn letztere aus einer gewissen nicht-leeren Zariski-offenen Menge
stammen. Im Folgenden werden daher nur noch die sog. äußeren generischen Annulator-
zahlen betrachtet. Analog zu der Situation über dem Polynomring kann gezeigt werden,
dass positive Linearkombinationen dieser Zahlen als obere Schranken für die graduierten
Cartan-Betti-Zahlen eines E-Moduls der Form E/J dienen. Hierbei ist J ⊆ E ein graduier-
tes Ideal. Dies liefert insbesondere eine obere Schranke für die gewöhnlichen graduierten
Betti-Zahlen über E. Gleichheit wird, wie im symmetrischen Fall, nur für komponenten-
weise lineare Ideale erreicht.
Neben der bloßen Übertragung der Ergebnisse über dem Polynomring auf die äußere Al-
gebra können für die äußeren generischen Annulatorzahlen noch weitere Resultate erzielt
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werden. Betrachtet man E-Moduln der Form E/J, so ergeben sich die äußeren generischen
Annulatorzahlen als gewisse Anzahlen von Erzeugern des generischen Initialideals von J
bzgl. der umgekehrt lexikographischen Ordnung. Speziell für simpliziale Komplexe lässt
sich damit zeigen, dass die äußeren generischen Annulatorzahlen bestimmte minimale Er-
zeuger des symmetrischen bzw. äußeren Stanley-Reisner-Ideals zählen.

Bei der Definition und näheren Betrachtung der generischen Annulatorzahlen – sowohl
der symmetrischen als auch der äußeren – stellt sich die Frage, ob diese sich gegenüber den
Annulatorzahlen bzgl. einer bestimmten Sequenz in irgendeiner Form auszeichnen. Herzog
vermutete, dass sie die minimalen Annulatorzahlen unter allen Annulatorzahlen bzgl. einer
beliebigen Sequenz sind. Wir konstruieren sowohl für die Annulatorzahlen über dem Poly-
nomring als auch für die Annulatorzahlen über der äußeren Algebra ein Gegenbeispiel zu
dieser Vermutung.
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1 Basic algebraic definitions and
constructions

In this chapter our aim is to present the algebraic background which is needed in the sub-
sequent parts of this thesis. Even though some familiarity with notion from commutative
and homological algebra is assumed we try to give a brief but preferably complete exposure
of the theory required for the understanding of the following chapters. We also mention
references which can be used for a deeper study of certain topics.
Algebraic notions which are not defined in this chapter but which are needed at some point
in one of the following chapters are given in the context of use.
The first section of this chapter is devoted to some homological algebra. We first recall the
notion of complexes, some theory about the homology and the cohomology of a complex
and then go on to considering exact complexes, i.e., resolutions. After having treated both
free and injective resolutions we look at special resolutions in more detail – including the
Eliahou-Kervaire resolution for stable ideals and the Cartan resolution, which is the exterior
analogue of the Koszul resolution.
The second section focuses on the construction of the generic initial ideal over the polyno-
mial ring and its basic properties. We start with a short recapitulation of some background
about initial ideals. Without giving the proofs we then state the behavior of certain algebraic
invariants when passing from an ideal to its generic initial ideal. We conclude this section
with the construction of the generic initial ideal over the exterior algebra. The presentation
in this part is rather skarce since most facts can be carried over literally from the situation
over the polynomial ring. Our main purpose of this part therefore lies in emphasizing the
differences between the situations over the polynomial ring and the exterior algebra.

1.1 Some homological algebra

1.1.1 Free resolutions

Throughout this section let R be a graded k-algebra where k is an arbitrary field. For
our purposes we usually have R = k[x1, . . . ,xn], the polynomial ring in n variables, or
R = k〈e1, . . . ,en〉, the exterior algebra. Since all definitions and constructions are valid
over an arbitrary graded algebra and since we will use them for the polynomial ring as well
as for the exterior algebra we do not want to restrict ourselves to one of the cases in general.
Nevertheless, we want to fix some notation. Throughout this and the following sections let
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1 Basic algebraic definitions and constructions

S := k[x1, . . . ,xn] denote the polynomial ring in n variables over k and let E := k〈e1, . . . ,en〉
denote the exterior algebra over V , where V is an n-dimensional k-vector space with basis
e1, . . . ,en.

Definition 1.1.1. A complex is a collection of finitely generated R-modules (Fi)i∈Z and
homogeneous R-linear maps ∂i : Fi→ Fi−1 of degree 0 such that ∂i ◦∂i+1 = 0 for i ∈ Z. We
denote it by (F ,∂ ).

To each complex

F : . . .
∂i+2→ Fi+1

∂i+1→ Fi
∂i→ Fi−1

∂i−1→ . . .

one can assign its homology groups Hi(F ) := Ker(∂i)/ Im(∂i+1) for i ∈ Z.
A complex (F ,∂ ) is called exact if Hi(F ) = 0 for all i ∈ Z, i.e., Ker(∂i) = Im(∂i+1) for all
i ∈ Z.
Note that the condition ∂i◦∂i+1 = 0 is equivalent to Im(∂i+1)⊆Ker(∂i). Thus, for a complex
to be exact we only have to require Im(∂i+1)⊇ Ker(∂i) for i ∈ Z.

Definition 1.1.2. Let M be a finitely generated graded R-module. A complex

F : . . .→ Fi→ Fi−1→ . . .→ F1→ F0→ 0

is called a graded free (respectively projective) resolution of M if Hi(F ) = 0 for i > 0 and
H0(F ) = M and the Fi are free (respectively projective) R-modules.

Note that for the polynomial ring the notion of free and projective resolutions coincide
since in this situation every finitely generated projective S-module is a free module, as was
shown by Quillen and Suslin [Lam06, Theorem V.2.9]. Since in general it also holds that
every projective R-module is free, the finitely generated free S-modules are exactly the
finitely generated projective S-modules. Often, we are interested in resolutions featuring
special properties.

Definition 1.1.3. A graded free resolution (F ,∂ ) of a finitely generated graded R-module
M is called minimal if ∂i+1(Fi+1) ⊆ mFi for all i ≥ 0. Here m denotes the graded maximal
ideal of R. Equivalently, the matrices of the maps in the resolution do not contain any
element of the field k.

It can be shown that up to an isomorphism of complexes the minimal free resolution of
a finitely generated R-module M is unique [Eis95, Theorem 20.2]. Since the modules in a
minimal free resolution (F ,∂ ) of a finitely generated R-module are free modules they can
be written as a direct sum Fi =

⊕
j∈Z R(− j)β R

i, j(M). From the uniqueness of the minimal free
resolution we get that the numbers β R

i, j(M) are uniquely determined. They are called the
graded Betti numbers of M over R.
The numbers β R

i (M) := ∑ j∈Z β R
i,i+ j(M) are called the total Betti numbers of M over R. It

follows directly from the definition that β R
i (M) = rank(Fi) for i ∈ Z.

Depending on the range of the shifts of the graded Betti numbers it is customary to
distinguish different types of resolutions.
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1.1 Some homological algebra

Definition 1.1.4. Let M be a finitely generated graded R-module and let β R
i,i+ j(M) be the

graded Betti numbers of M.

(i) The minimal free resolution of M is called linear if there exists r ∈ Z such that
β R

i,i+ j(M) = 0 for i ≥ 0 and j 6= r. In this case, in order to emphasize where the
shift occurs, the resolution is also called r-linear.

(ii) M is called componentwise linear if for all j ∈ Z the module M〈 j〉 has a linear reso-
lution. Here M〈 j〉 denotes the submodule of M which is generated by the elements of
degree j.

Several invariants of an R-module M are encoded by its minimal graded free resolution
and can be directly derived from it.

Definition 1.1.5. Let M be a finitely generated graded R-module.

(i) projdimR(M) := sup{i | β R
i, j(M) 6= 0 for some j ∈ Z} is called the projective dimen-

sion of M over R.

(ii) regR(M) = sup{ j | β R
i,i+ j(M) 6= 0 for some i ∈ Z} is called the (Castelnuovo-Mum-

ford) regularity of M over R.

It is well-known that the minimal free resolution of an E-module is infinite except for the
case of a free E-module. Thus, even though it makes sense to define the projective dimen-
sion for E-modules this notion is almost meaningless in this case. Note that those modules
are included in the definition.
On the contrary, for finitely generated graded S-modules over the polynomial ring, it is a
classical result (Hilbert Syzygy Theorem) that the minimal free resolution has length at
most n, see e.g., [Eis95, Theorem 1.13]. In this case, we additionally have the well-known
Auslander-Buchsbaum formula (Theorem 1.1.6) which relates the projective dimension of
an S-module with its depth and which provides an explicit formula for the projective dimen-
sion. Although this formula holds in greater generality than for S-modules we only state the
special version for S-modules since this one suffices for our purposes.

Theorem 1.1.6. [Eis95, Theorem 19.9] (Auslander-Buchsbaum)
Let S = k[x1, . . . ,xn] and let M be a finitely generated S-module. Then

projdimS(M) = n−depthS(M),

where depthS(M) denotes the depth of M over S.

Although the result is rather standard we have included it since we give an exterior ana-
logue of it in Chapter 5. For more details on free and projective resolutions see e.g., [Eis95]
and [BH98].
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1 Basic algebraic definitions and constructions

1.1.2 Cochain complexes and injective resolutions

Dualizing the concept of chain complexes and projective and free resolutions, respectively,
we obtain the concept of cochain complexes and injective resolutions. We now give the most
important definitions and facts concerning this construction. We mostly restrict ourselves
to those notion which differ from the projective situation. For more details on cochain
complexes and injective resolutions see e.g., [Eis95] and [BH98].

Definition 1.1.7. Let (F i)i∈Z be a family of finitely generated graded R-modules and let
(∂ i : F i→ F i+1)i∈Z be a family of R-linear homogeneous maps of degree 0. If ∂ i+1 ◦∂ i = 0
for i ∈ Z then (F i,∂ i)i∈Z is called a cochain complex.

To each cochain complex

F : . . .
∂ i−2

→ F i−1 ∂ i−1

→ F i ∂ i

→ F i+1 ∂ i+1

→ . . .

one can associate its cohomology groups H i(F ) := Ker(∂ i)/ Im(∂ i−1) for i ∈ Z.
The notion of exactness and resolution are defined in exactly the same way as for chain

complexes. We therefore skip those definitions but directly state what is understood by an
injective resolution.

Definition 1.1.8. Let M be a finitely generated graded R-module. A cochain complex

I : 0→ I0→ I1→ . . .→ Ii→ Ii+1→ . . .

is called a graded injective resolution of M if H i(I ) = 0 for i > 0 and H0(I ) = M and the
Ii are injective R-modules.

As for projective resolutions it can be shown that for each R-module M there exists an
injective resolution. Crucial in proving this fact is that every R-module can be embedded in
an injective R-module [BH98, Theorem 3.1.8]. Furthermore, under all injective resolutions
of an R-module one can distinguish the minimal ones. Those are, as for free resolutions,
unique up to an isomorphism of complexes, see e.g., [BH98, Proposition 3.2.4]. This gives
rise to the definition of the graded Bass numbers of an R-module, which are the dual of the
graded Betti numbers. We state the exact definition only for the special case of E-modules.
If M is an E-module and (I ,∂ ) is the minimal injective resolution of M then we can write
the injective modules appearing in the resolution as Ii =

⊕
j∈Z E(n− j)µE

i, j(M) for i≥ 0. The
numbers µE

i, j(M) are uniquely determined and depend only on the module M. They are
called the graded Bass numbers of M over E, see e.g., [BH98, Chapter 3.2].
As for free resolutions we call the minimal injective resolution of M linear if there exists
r ∈ Z such that µE

i,i+ j(M) = 0 for i≥ 0 and j 6= r. There exist several equivalent conditions
for an injective resolution to be linear. One of those will be important for us in Chapter 5
and will be provided there.
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1.1 Some homological algebra

1.1.3 Tor- and Ext-groups

In this section we recall some basic facts concerning the Tor- and the Ext-functor. A more
detailed treatment of those functors can be found in [Eis95].

Definition 1.1.9. Let M be an R-module.

(i) The left-derived functor of the functor M⊗R · is called TorR
i (M, ·).

(ii) The right-derived functor of the functor HomR(M, ·) is called ExtRi (M, ·).

Let M, N be R-modules. In order to compute TorR
i (M,N) one starts with the minimal free

resolution F of N, applies the functor M⊗R · to it and then computes the i-th homology
group. It is well-known that TorR

i (M,N) = Hi(M⊗R F ) for i ∈ Z.
Similarly, for the computation of ExtiR(M,N) we take the minimal injective resolution I
of N and apply the functor HomR(M, ·) to this exact sequence. It is a classical result from
homological algebra that the i-th cohomology group of the newly obtained sequence equals
ExtiR(M,N), i.e., ExtiR(M,N) = H i(HomR(M,I )) for i ∈ Z, see e.g., [Wei94].
We now list some properties of the Tor-functor.

Theorem 1.1.10. [Eis95] Let M, N be R-modules. Then

(i) TorR
0 (M,N) = M⊗R N

(ii) TorR
i (M,N) = 0 for i > 0 if M or N is free.

(iii) TorR
i (M,N) = TorR

i (N,M) for i≥ 0.

(iv) For any short exact sequence of R-modules M, M′ and M′′

0→M′→M→M′′→ 0

there is a long exact sequence of Tor-groups

. . .→ TorR
i (M′,N)→ TorR

i (M,N)→ TorR
i (M′′,N)

→ . . .→ TorR
1 (M′,N)→ TorR

1 (M,N)→ TorR
1 (M′′,N)

→M′⊗R N→M⊗R N→M′′⊗R N→ 0.

Since the Ext-functor is the dual functor to the Tor-functor, the analogous properties also
hold for the Ext-functor. The statement of Theorem 1.1.10 (iii) essentially follows from
the commutativity of the tensor product. In particular it tells us that we can use both, the
minimal free resolution of M and the minimal free resolution of N, for the computation
of TorR

i (M,N). Depending on the particular modules, taking advantage of this fact may
facilitate the computation of TorR

i (M,N).
We conclude this part with the relation between the graded Betti and Bass numbers of an

R-module M and the Tor- and Ext-groups of M, respectively.
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1 Basic algebraic definitions and constructions

Proposition 1.1.11. [BH98, Proposition 1.3.1, Proposition 3.2.9] Let M be a finitely gen-
erated graded R-module. Let β R

i, j(M) denote the graded Betti numbers of M. Then

(i) dimk TorR
i (M,k) j = β R

i, j(M) for i≥ 0 and j ∈ Z.

(ii) Let R := E be the exterior algebra and let µE
i, j(M) denote the graded Bass numbers

of M over E. Then dimk ExtiE(M,k) j = µE
i, j(M) for i≥ 0 and j ∈ Z.

1.1.4 The Eliahou-Kervaire resolution

In this section we explicitly construct the minimal free resolution for a special class of
S-modules. Even though there are several constructions which yield a free resolution of
an ideal, e.g., the Taylor resolution for monomial ideals, in general those constructions do
not lead to minimal resolutions. However, for special classes of ideals in the polynomial
ring as well as in the exterior algebra it is possible to write down an explicit minimal free
resolution. From this resolution the graded Betti numbers of the ideal and the corresponding
quotient ring can be directly read off. For the class of so-called stable ideals there exists
the well-known Eliahou-Kervaire resolution. From this resolution formulas for the graded
Betti numbers of the ideal can be obtained. We now give the definition of stable ideals in
the polynomial ring.

Definition 1.1.12. Let I ⊆ S be a monomial ideal.

(i) I is called stable if for all monomials u ∈ I and all i > m := min{l | xl divides u}, one
has xi

u
xm
∈ I.

(ii) I is called squarefree stable if for all squarefree monomials u ∈ I and all i > m :=
min{l | xl divides u} such that xi does not divide u, one has xi

u
xm
∈ I.

The same definition carries over literally to monomial ideals in the exterior algebra. But
note that over E the notion of stable and squarefree stable ideals coincide since all mono-
mials in E are squarefree.
One class of stable ideals in the polynomial ring are the generic initial ideals, defined in
Section 1.2, at least if the field k is of characteristic 0. The same is true for generic initial
ideals in the exterior algebra without the additional assumption on the characteristic of the
field. We now give the explicit construction of the Eliahou-Kervaire resolution.

Construction 1.1.13. [EK90, PS08]
Let I ⊆ S be a monomial ideal. We denote the minimal system of generators of I by G(I).
Note that G(I) is unique and finite. For j ≥ 0 let G(I) j denote the set of monomials in G(I)
which are of degree j. For a monomial u ∈ S we write max(u) and min(u) for the maximal
and the minimal 1≤ i≤ n such that xi divides u, respectively, i.e.,

max(u) := max{i | xi divides u} and min(u) := min{i | xi divides u}.
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1.1 Some homological algebra

Let u ∈ I be a monomial. It can be shown that u can be uniquely decomposed in the follow-
ing form:
There exists v ∈ G(I) and w ∈ S such that u = wv and min(v)≥max(w).
We denote v by e(u) and call it the ending segment of u. For fixed i≥ 0 set

Bi := {(l1, . . . , li;u) | min(u) < l1 < .. . < li ≤ n, u ∈ G(I)}

and let Fi be the free S-module with basis Bi. The modules Fi are Nn-graded by setting
deg((l1, . . . , li;u)) = ∑

i
r=1 elr + deg(u), where e j denotes the j-th unit vector in Rn for 1 ≤

j≤ n and deg(u) is the usual Nn-degree of a monomial u∈ S. Note that the set of generators
of F0 are in bijection with the elements of G(I). This gives an S-module homomorphism
∂0 : F0→ I by mapping ( /0;u) to u.
For i≥ 1 we define homomorphisms Fi→ Fi−1 of graded S-modules by

γi((l1, . . . , li;u)) :=
i

∑
r=1

(−1)rxlr(l1, . . . , l̂r, . . . , li;u)

ϑi((l1, . . . , li;u)) :=
i

∑
r=1

(−1)r uxlr

e(uxlr)
(l1, . . . , l̂r, . . . , li;e(uxlr)).

Here (l1, . . . , l̂r, . . . , li) denotes the sequence in which lr has been omitted. We set ∂i :=
γi +ϑi : Fi→ Fi−1.

In [EK90] it is shown that F = (Fi,∂i) is a complex of Nn-graded S-modules. Further-
more, Eliahou and Kervaire proved that under certain conditions on I this complex is indeed
a minimal resolution of I.

Theorem 1.1.14. [EK90] Let I ⊆ S be a stable monomial ideal. Then the complex F :=
(Fi,∂i) is a minimal free Nn-graded resolution of I over S. This resolution is called the
Eliahou-Kervaire resolution of I.

From the Eliahou-Kervaire resolution one can easily derive formulas for the graded Betti
numbers of a stable ideal. For a monomial u ∈ G(I), where I is a stable ideal, we have(n−min(u)

i

)
possibilities to choose a sequence (l1, . . . , li) such that (l1, . . . , li;u) ∈Bi. Taking

into account that (l1, . . . , li;u) has N-degree degN(u) + i where degN(u) means the total
degree of u we get the following formula

Corollary 1.1.15. Let I ⊆ S be a stable ideal. Let β S
i,i+ j(I) be the N-graded Betti numbers

of I over S. Then

β
S
i,i+ j(I) = ∑

u∈G(I) j

(
n−min(u)

i

)
.

Aramova, Herzog and Hibi considered in [AHH98] the class of squarefree stable ideals.
They showed that a construction similar to the Eliahou-Kervaire resolution works for this
class of ideals. Using their construction one obtains formulas for the graded Betti numbers
of squarefree stable ideals.
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1 Basic algebraic definitions and constructions

Corollary 1.1.16. [AHH98, Corollary 2.3] Let I ⊆ S be a squarefree stable ideal and let
β S

i,i+ j(I) be the N-graded Betti numbers of I over S. Then

β
S
i,i+ j(I) = ∑

u∈G(I) j

(
n−min(u)− j +1

i

)
.

The construction of Aramova, Herzog and Hibi can also be applied to (squarefree) stable
ideals in the exterior algebra. Thus, for those ideals the graded Betti numbers over E are
given by the formulas in Corollary 1.1.16.

1.1.5 The Cartan complex

In this section we describe the construction of the Cartan complex. It is a very helpful
complex over the exterior algebra E = k〈e1, . . . ,en〉 which plays a similar role as the Koszul
complex for the polynomial ring. A detailed description of the Cartan complex and its
properties can be found in [AH00] and [HH08]. For a sequence v := v1, . . . ,vm ∈ E of
elements of degree 1 let C.(v;E) := C.(v1, . . . ,vm;E) be the free divided power algebra
E〈x1, . . . ,xm〉. It is generated by the divided powers x( j)

i for 1 ≤ i ≤ m and j ≥ 0 which
satisfy the relations x( j)

i x(k)
i = (( j+k)!/( j!k!))x( j+k)

i . Thus Ci(v;E) is a free E-module with
basis x(a) = x(a1)

1 · . . . · x(am)
m , a ∈ Nm, |a|= i. The E-linear differential on C.(v1, . . . ,vm;E) is

∂i : Ci(v1, . . . ,vm;E)−→Ci−1(v1, . . . ,vm;E)

x(a) 7→ ∑
a j>0

v jx
(a1)
1 · . . . · x(a j−1)

j · . . . · x(am)
m .

Direct computation shows that ∂i ◦∂i+1 = 0. Therefore the above construction indeed yields
a complex.
Let M be the category of finitely generated graded left and right E-modules M satisfying
am = (−1)degadegmma for homogeneous elements a ∈ E, m ∈M. For example, if J ⊆ E is
a graded ideal, then E/J belongs to M .

Definition 1.1.17. Let M ∈M . The complex

C.(v;M) := C.(v;E)⊗E M

is called the Cartan complex of v with values in M. The corresponding homology modules

Hi(v;M) := Hi(C.(v;M))

are called the Cartan homology of v with values in M.

Cartan homology can be computed inductively as there is a long exact sequence connect-
ing the homologies of v1, . . . ,v j and v1, . . . ,v j,v j+1.
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1.1 Some homological algebra

Proposition 1.1.18. [AH00, Propositions 4.1, 4.3] Let M ∈M and let v = v1, . . . ,vm ∈ E1.
For all 1≤ j ≤ m there exists a long exact sequence of graded E-modules

. . .−→ Hi(v1, . . . ,v j;M)−→ Hi(v1, . . . ,v j+1;M)−→ Hi−1(v1, . . . ,v j+1;M)(−1)

−→ Hi−1(v1, . . . ,v j;M)−→ Hi−1(v1, . . . ,v j+1;M)−→ . . . .

Setting deg(xi) = 1 induces a grading on the complex and its homologies.
It is well-known that the Cartan complex C.(v1, . . . ,vm;E) with values in E is exact if the
linear forms v1, . . . ,vm are k-linearly independent. Hence, analogously to the results for the
Koszul complex over S, see e.g., [AH00] and [BH98], one gets the following result.

Theorem 1.1.19. Let v = v1, . . . ,vm be a sequence of linear forms in E whose elements are
k-linearly independent. Then the Cartan complex C.(v1, . . . ,vm;E) is the minimal graded
free resolution of H0(v1, . . . ,vm;E) = E/(v1, . . . ,vm) over E.

From the above theorem we immediately deduce that the Cartan complex can be used to
compute TorE

i (E/(v1, . . . ,vm), ·).

Proposition 1.1.20. [AHH97, Theorem 2.2] Let M ∈M and let v = v1, . . . ,vm ∈ E1 be
linearly independent over k. There are isomorphisms of graded E-modules

TorE
i (E/(v1, . . . ,vm),M)∼= Hi(v;M) for all i≥ 0.

Nagel, Römer and Vinai defined in [NRV08] the so-called Cartan-Betti numbers which
measure the homology of the Cartan complex with respect to a sequence of linear forms
v1, . . . ,vn.

Definition 1.1.21. Let J ⊆ E be a graded ideal and let v1, . . . ,vn be a basis of E1. We set

hi, j(r)(v1, . . . ,vn;E/J) := dimk Hi(v1, . . . ,vr;E/J) j,

where Hi(v1, . . . ,vr;E/J) denotes the i-th Cartan homology.

Nagel, Römer and Vinai remarked that there exists a non-empty Zariki-open set W such
that when choosing a basis of E1 from this set the hi, j are constant on it. Therefore they
make the following definition.

Definition 1.1.22. Let J ⊆ E be a graded ideal and let v1, . . . ,vn be a basis of E1. We set

hi, j(r)(E/J) := hi, j(r)(v1, . . . ,vn;E/J)

for (v1, . . . ,vn) ∈W as above and call these numbers the Cartan-Betti numbers of E/J.

For r = n, we obtain from Proposition 1.1.20 that the Cartan-Betti numbers of E/J are
the usual exterior graded Betti numbers of E/J, i.e., hi, j(n)(E/J) = β E

i, j(E/J).
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1 Basic algebraic definitions and constructions

1.2 The generic initial ideal

In this section we study the generic initial ideal of an ideal in S and E, respectively, and its
basic properties. In order to give the definition of the generic initial ideal we first need to
recall some background about initial ideals. We work over S and it is only in the last part of
this section where we transfer the main definitions to the situation in the exterior algebra.
For more details on generic initial ideals see e.g., [HH08].
For α := (α1, . . . ,αn) ∈ Nn we denote by xα the monomial xα1

1 · . . . · xαn
n in S. Let M (S)

denote the set of monomials of S.

1.2.1 The basic construction

Definition 1.2.1. A monomial order or term order on S is a total order ≺ on M (S) such
that the following two conditions are satisfied:

(i) 1≺ xα for all 1 6= xα ∈M (S).

(ii) If xα ,xβ ∈M (S) and xα ≺ xβ then xαxγ ≺ xβ xγ for all xγ ∈M (S).

Term orders which are considered in this thesis are the lexicographic and the reverse
lexicographic order.

Example 1.2.2. (i) The degree lexicographic order with respect to x1 < .. . < xn is de-
fined in the following way. We set xα <lex xβ if either ∑

n
i=1 αi < ∑

n
i=1 βi, or ∑

n
i=1 αi =

∑
n
i=1 βi and the left-most non-zero component of α−β is positive.

(ii) The degree reverse lexicographic order with respect to x1 < .. . < xn is defined in the
following way. We set xα <rlex xβ if either ∑

n
i=1 αi < ∑

n
i=1 βi, or ∑

n
i=1 αi = ∑

n
i=1 βi and

the right-most non-zero component of α−β is negative.

Having defined a term order on the set of monomials of S we can define the so-called
initial ideal of an ideal with respect to this particular term order.

Definition 1.2.3. Let ≺ be a term order on S.

(i) For a polynomial f := ∑α∈Nn aαxα ∈ S with aα ∈ k we set in≺( f ) := max{xα | aα 6=
0} and call in≺( f ) the initial monomial of f , i.e., in≺( f ) is the biggest monomial
appearing in f with non-zero coefficient with respect to ≺.

(ii) Let I ⊆ S be an ideal. Then in≺(I) := (in≺( f ) | f ∈ I) is called the initial ideal of I
with respect to ≺.

It is an interesting issue to ask how several algebraic invariants behave under the passage
to the initial ideal. Since in Chapter 5 our proofs use some of these behaviors, we summarize
the relations between the most common invariants in the following theorem.
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1.2 The generic initial ideal

Theorem 1.2.4. [HH08, Theorem 3.3.4] Let I ⊆ S be a graded ideal and let ≺ be a term
order on S. Let further Hilb(S/I, t) and Hilb(S/ in≺(I), t) denote the Hilbert series of S/I
and S/ in≺(I), respectively. Then

(i) Hilb(S/I, t) = Hilb(S/ in≺(I), t),

(ii) dim(S/I) = dim(S/ in≺(I)),

(iii) projdim(S/I)≤ projdim(S/ in≺(I)),

(iv) regS(S/i)≤ regS(S/ in≺(I)),

(v) depthS(S/I)≥ depthS(S/ in≺(I)).

We do not give the proof of the above theorem but we want to emphasize that in order
to show (iii), (iv) and (v) it is crucial to know that the Betti numbers of I over S can only
increase when passing to the initial ideal of I, i.e., β S

i,i+ j(I) ≤ β S
i,i+ j(in≺(I)). For more

details see for example [HH08].
Let now GLn(k) be the general linear group of kn, i.e., GLn(k) := {A∈ kn×n | det(A) 6= 0}.

For g = (γi, j)1≤i, j≤n ∈ GLn(k) we get an automorphism g : S → S which is induced by
g(x j) = ∑

n
i=1 γi, jxi for 1 ≤ j ≤ n. The result which justifies the definition of the so-called

generic initial ideal of an ideal is the following.

Theorem 1.2.5. [HH08, Theorem 4.1.1] Let I ⊆ S be a graded ideal and let ≺ be a term
order on S. Then there exists a non-empty Zariski-open subset U ⊆ GLn(k) such that
in≺(g(I)) = in≺(g′(I)) for all g,g′ ∈U.

Now the following definition makes sense.

Definition 1.2.6. The ideal in≺(g(I)) with g∈U (as in Theorem 1.2.5) is called the generic
initial ideal of I with respect to ≺. It is denoted by gin≺(I).

1.2.2 Main properties

Even though their computation is rather elaborate generic initial ideals turn out to have
nice properties. One of the most important properties certainly is that they are stable under
the action of the Borel subgroup. The Borel subgroup B of GLn(k) is the subgroup of all
invertible upper triangular matrices. An ideal I ⊆ S is called Borel-fixed if it is fixed under
the action of B, i.e., a(I) = I for all a ∈ B. The following result is due to Galligo and
Bayer/Stillman, respectively.

Theorem 1.2.7. [HH08, Theorem 4.2.1] (Galligo, Bayer-Stillman)
Let I ⊆ S be a graded ideal and let ≺ be a term order on S. Then gin≺(I) is Borel-fixed.

If we work over a field k of characteristic 0, the property of being Borel-fixed can be
characterized in a way which makes it easier to check if an ideal is Borel-fixed.
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1 Basic algebraic definitions and constructions

Definition 1.2.8. Let I ⊆ S be a monomial ideal, i.e., I is generated by monomials. Then I
is called strongly stable if for all monomials u ∈ I and all i > j such that x j divides u, one
has xi

u
x j
∈ I.

Note that if an ideal I ⊆ S is strongly stable then it is in particular stable. In general, being
Borel-fixed is a weaker condition than being strongly stable. The following proposition
gives the exact relation between those two properties and tells us some consequences and
further results for the generic initial ideal.

Proposition 1.2.9. [HH08, Proposition 4.2.3, Proposition 4.2.5] Let I ⊆ S be a graded
ideal and let ≺ be a term order on S. Then the following holds.

(i) Let I be strongly stable. Then I is Borel-fixed.

(ii) Let char(k) = 0 or |k|= in f ty. If I is Borel-fixed then it is strongly stable. In particu-
lar, gin≺(I) is strongly stable if char(k) = 0 or |k|= ∞.

(iii) (Conca) gin≺(I) = I if and only if I is Borel-fixed. In particular, gin≺(gin≺(I)) =
gin≺(I).

1.2.3 Algebraic invariants of the generic initial ideal with respect to the
reverse lexicographic order

Note that for an ideal I ⊆ S and g = (γi, j)∈GLn(k) it holds that I and g(I) are isomorphic as
S-modules. Therefore I and g(I) share several common invariants, e.g., the Hilbert series,
the Krull dimension, the projective dimension, the regularity and the depth. From this
observation we get that Theorem 1.2.4 carries over verbatim to the generic initial ideal of
I. However, if we consider the generic initial ideal with respect to the reverse lexicographic
order it turns out that those generic initial ideals behave particularly nicely. The following
classical result which is due to Bayer and Stillman describes this behavior exactly.

Theorem 1.2.10. [BS87] (Bayer, Stillman)
Let I ⊆ S be a graded ideal. Let <rlex denote the reverse lexicographic order. Then

(i) projdim(S/I) = projdim(S/gin<rlex
(I)),

(ii) depthS(S/I) = depthS(S/gin<rlex
(I)),

(iii) regS(S/I) = regS(S/gin<rlex
(I)),

(iv) S/I is Cohen-Macaulay if and only if S/gin<rlex
(I) is Cohen-Macaulay.

For arbitrary (generic) initial ideals the full statement of Theorem 1.2.10 (iv) does not
hold. But in either case, independent of the chosen term order, it is true that if S/ in≺(I)
is Cohen-Macaulay then S/I is Cohen-Macaulay also, e.g., see [HH08, Corollary 3.3.5].
Recall that an S-module M is Cohen-Macaulay if and only if dimS(M) = depthS(M).
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1.2 The generic initial ideal

1.2.4 The generic initial ideal over the exterior algebra

We conclude this chapter with some facts showing that the generic initial ideal can also be
defined for ideals in the exterior algebra and that those ideals behave even more nicely than
their counterparts in the polynomial ring.
As usual let E := k〈e1, . . . ,en〉 denote the exterior algebra over V . For F = {i1, . . . , ir} ⊆ [n]
we set eF := ei1∧ . . .∧eir . We usually assume that 1≤ i1 < .. . < ir ≤ n. The elements eF are
called monomials in E. Now the notion of term order, initial monomial and initial ideal over
the exterior algebra can be introduced verbatim as over the polynomial ring. Furthermore,
the same proof as over the polynomial ring shows the following.

Theorem 1.2.11. [HH08, Theorem 5.2.8] Let J ⊆ E be a graded ideal and let ≺ be a
term order on E. Then there exists a non-empty Zariski-open subset U ⊆ GLn(k) such that
in≺(g(J)) = in≺(g′(J)) for all g,g′ ∈ U. Furthermore, for g ∈ U the ideal in≺(g(J)) is
Borel-fixed.

The ideal in≺(g(J)) for g ∈ U (as above) is called the generic initial ideal of J. It is
denoted by gin≺(I). Similar to the situation over the polynomial ring it is possible to char-
acterize the property of being Borel-fixed for generic initial ideals over the exterior algebra.
However, although over the polynomial ring in order to get a characterization which is easy
to handle we need to require that the characteristic of the field is 0, over the exterior algebra
this is not necessary.

Proposition 1.2.12. [HH08, Proposition 5.2.10] Let J ⊆ E be a graded ideal and let ≺ be
a term order on E. Then gin≺(J) is strongly stable.
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2 Simplicial complexes

Throughout this chapter we study basic properties of simplicial complexes. In the first sec-
tion we give the basic definitions and recall some background. Besides some combinatorial
invariants as the f - and the h-vector of a simplicial complex, we introduce the Stanley-
Reisner ring (the symmetric as well as the exterior one) of a simplicial complex. Many
combinatorial invariants of a simplicial complex are encoded in the ring-theoretic invari-
ants of its Stanley-Reisner ring.
The second part of this chapter treats different classes of simplicial complexes such as
Cohen-Macaulay simplicial complexes and shellable simplicial complexes. We mainly stick
to the definitions or equivalent characterizations and do not get into too much detail.
The last part of this chapter finally focuses on operations and constructions which can be
performed on simplicial complexes. We consider such simple constructions as the join of
several complexes or the link of a face, but also more elaborate ones like the barycentric
subdivision of a simplicial complex and the exterior shifting. The latter ones are studied
in more detail accounting for their more complicated structure and their importance for the
remaining parts of this thesis.
A presentation of the most important notion and facts concerning simplicial complex can
be found in [Sta96].

2.1 Simplicial complexes – the basic definition

Definition 2.1.1. A simplicial complex ∆ on vertex set Ω is a collection of subsets of Ω

such that the following properties hold:

(i) /0 ∈ ∆

(ii) If F ∈ ∆ and G⊆ F , then G ∈ ∆.

Throughout this thesis we always assume that if ∆ is a simplicial complex on vertex set Ω

then it holds that {v} ∈ ∆ for all v∈Ω. As vertex set we usually take the set [n] := {1, . . . ,n}
for some positive integer n. The elements of a simplicial complex ∆ are called faces and
the dimension of a face F ∈ ∆ is defined to be the cardinality of the face minus one, i.e.,
dim(F) = |F | − 1. Having defined the dimension of a face of ∆, the dimension of the
simplicial complex itself is defined as

dim(∆) := max{dim(F) | F ∈ ∆},

17



2 Simplicial complexes

i.e., the dimension of ∆ is the maximal dimension of all of its faces.
The 0-dimensional faces of a simplicial complex ∆ are called vertices and 1-dimensional
faces are called edges. Moreover, faces F of ∆ which are inclusionwise maximal are called
facets of ∆. Simplicial complexes whose facets are all of the same dimension are called
pure.

Example 2.1.2. (i) Let ∆(n) := 2[n] be the set of subsets of [n]. Then ∆(n) is called the
(n−1)-simplex. ∆(n) is pure and of dimension n−1.

(ii) Let ∆ be the simplicial complex having facets {1,2,3} and {3,4,5} and an additional
vertex {6}. ∆ is a non-pure 2-dimensional simplicial complex.

Let e1, . . . ,en denote the standard basis vectors in Rn. To a set F ⊆ [n] we can associate
the following so-called geometric simplex |F | := conv{ei | i ∈ F}, where conv(S) denotes
the convex hull of a set S ⊆ Rn. Applying this construction to an arbitrary simplicial com-
plex ∆ on vertex set [n] we can define |∆| :=

⋃
F∈∆ |F |. We call |∆| a geometric realization

of ∆. There are several ways to construct a geometric realization of a simplicial complex.
However, an important fact to know is that different geometric realizations of a simplicial
complex are homeomorphic and they are combinatorially equivalent to the original simpli-
cial complex. For more details on the geometric realization of simplicial complexes, see
e.g., [Sta96].
One classical problem in combinatorics is the classification of simplicial complexes in terms
of their face numbers, i.e., one wants to know in order to be a simplicial complex what re-
strictions and conditions are there on the number of faces. For this aim one considers the
so-called f -vector f ∆ = ( f ∆

−1, f ∆
0 , . . . , f ∆

dim(∆)) of a simplicial complex ∆, where f ∆
i counts

the number of i-dimensional faces of ∆, i.e.,

f ∆
i := |{F ∈ ∆ | dim(F) = i}|

for −1 ≤ i ≤ dim(∆). In particular, f ∆
−1 = 1 counts the empty set and f ∆

0 = |Ω| by the as-

sumption that each v∈Ω is a vertex of ∆. The polynomial f ∆(t) := ∑
dim(∆)+1
i=0 f ∆

i−1tdim(∆)+1−i

is referred to as the f -polynomial of ∆. Kruskal and Katona [Kru60, Kat68] determined all
possible vectors that can occur as f -vectors of simplicial complexes. However it is still of
particular interest to determine the possible f -vectors for special classes of simplicial com-
plexes. We will treat this issue in more detail in Chapters 3 and 4.
Instead of looking at the f -vector of a simplicial complex ∆ it is often more convenient to
consider the so-called h-vector of ∆. The vector h∆ = (h∆

0 ,h∆
1 , . . . ,h∆

dim(∆)+1) defined by

dim(∆)+1

∑
i=0

h∆
i t i =

dim(∆)+1

∑
i=0

f ∆
i−1t i(1− t)dim(∆)+1−i (2.1)

is referred to as the h-vector of the simplicial complex ∆ and the polynomial h∆(t) :=
∑

dim(∆)+1
i=0 h∆

i tdim(∆)+1−i is called the h-polynomial of ∆. By straightforward computation
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2.1 Simplicial complexes – the basic definition

it follows from Equation 2.1 that the f - and the h-polynomial of a simplicial complex ∆ are
related by f ∆(t−1) = h∆(t). In particular, the f - and the h-vectors of a simplicial complex
∆ carry the same combinatorial information about ∆, and the f -vector of ∆ can be obtained
from the knowledge of the h-vector of ∆ and vice versa.

Lemma 2.1.3. [BH98, Lemma 5.1.8, Corollary 5.1.9] Let ∆ be a (d−1)-dimensional sim-
plicial complex with f -vector f ∆ = ( f ∆

−1, f ∆
0 , . . . , f ∆

d−1) and h-vector h∆ = (h∆
0 ,h∆

1 , . . . ,h∆
d ).

Then,

h∆
j =

j

∑
i=0

(−1) j−i
(

d− i
j− i

)
f ∆
i−1

and

f ∆
j−1 =

j

∑
i=0

(
d− i
j− i

)
h∆

i .

In particular, h∆
0 = 1, h∆

1 = f ∆
0 −d and ∑

d
i=0 h∆

i = f ∆
d−1.

Example 2.1.4. (i) The f -vector of the (n−1)-simplex ∆(n) is the vector
f ∆(n)

= ( f ∆(n)

0 , f ∆(n)

1 , . . . , f ∆(n)

n−1), where f ∆(n)

i =
( n

i+1

)
counts all (i + 1)-element subsets

of [n]. The h-vector of ∆(n) is h∆(n)
= (1,0 . . . ,0).

(ii) Consider the simplicial complex ∆ specified in Example 2.1.2 (ii). Its f -vector is
f ∆ = (1,6,6,2). As h-vector we obtain h∆ = (1,3,−3,1). Observe that this example
shows in particular that the entries of the h-vector of a simplicial complex need not
be positive.

Many combinatorial invariants of a simplicial complex ∆ are encoded in the Stanley-
Reisner ring or face ring of ∆ which can be defined over the polynomial ring as well as over
the exterior algebra.

Definition 2.1.5. Let ∆ be a simplicial complex on vertex set [n]. The Stanley-Reisner ideal
of ∆ is the ideal I∆ ( k[x1, . . . ,xn] generated by the monomials xF := ∏i∈F xi, where F ⊆ [n]
and F /∈ ∆.
Similarly, the ideal J∆ = (eF | F /∈ ∆) ( k〈x1, . . . ,xn〉 is called the exterior Stanley-Reisner
ideal of ∆.
The standard graded k-algebras k[∆] = k[x1, . . . ,xn]/I∆ and k{∆} = k〈x1, . . . ,xn〉/J∆ are re-
ferred to as the (symmetric) and exterior, respectively, Stanley-Reisner ring (or face ring).

Note that neither the symmetric nor the exterior Stanley-Reisner ideal contain any vari-
able since we assume that { j} ∈ ∆ for all j ∈ [n].

Example 2.1.6. (i) The (n− 1)-simplex does not feature any non-face. Thus k[∆(n)] =
k[x1, . . . ,xn], the usual polynomial ring in n variables.
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2 Simplicial complexes

(ii) The minimal non-faces of the simplicial complex defined in Example 2.1.2 (ii) are
{1,6}, {2,6}, {3,6}, {4,6}, {5,6}, {1,4}, {1,5}, {2,4} and {2,5}. Thus, the
Stanley-Reisner ideal of ∆ is I∆ = (x1x6,x2x6,x3x6,x4x6,x5x6,x1x4,x1x5,x2x4,x2x5).
As Stanley-Reisner ring of ∆ we therefore obtain k[∆] = k[x1,x2,x3,x4,x5,x6]/I∆.

In the following we recall a well-known result which clarifies the relation between the f -
and the h-vectors of a simplicial complex and its (symmetric) Stanley-Reisner ring. In fact,
the following holds

Theorem 2.1.7. [BH98, Theorem 5.1.7] Let ∆ be a (d−1)-dimensional simplicial complex
and let f ∆ = ( f ∆

−1, f ∆
0 , . . . , f ∆

d−1) denote its f -vector. Let further Hilb(k[∆], t) denote the
Hilbert series of k[∆]. Then

Hilb(k[∆], t) =
d−1

∑
i=−1

f ∆
i t i+1

(1− t)i+1 . (2.2)

Using Equation 2.1 and bringing down Equation 2.2 to the denominator (1− t)d yields
the desired relation between the h-vector of ∆ and its Stanley-Reisner ring. More precisely,

Hilb(k[∆], t) =
h∆

0 +h∆
1 t + . . .+h∆

d td

(1− t)d .

Thus, on one hand it is possible to construct the Stanley-Reisner ring of a simplicial complex
just from the knowledge of the h-vector. On the other hand the h-vector of a simplicial
complex is uniquely determined by its Stanley-Reisner ring.

2.2 Classes of simplicial complexes

There exist a lot of different classes of simplicial complexes. In this section we restrict our-
selves to the treatment of Cohen-Macaulay complexes and shellable simplicial complexes.
We do not only give the definitions but also state equivalent conditions and how these prop-
erties relate to each other. Our main results of Chapter 4 do hold for exactly those two
classes of simplicial complexes and therefore those two classes must be treated in more
detail than any other class appearing somewhere in this thesis.

2.2.1 Cohen-Macaulay complexes

We first give the definition of Cohen-Macaulay complexes and then give two topological
characterizations which enable us to check more easily whether or not a simplicial complex
is Cohen-Macaulay.

Definition 2.2.1. Let ∆ be a simplicial complex on vertex set [n] and let k be an arbitrary
field. Then ∆ is called a Cohen-Macaulay complex over k if its Stanley-Reisner ring k[∆] is
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2.2 Classes of simplicial complexes

Cohen-Macaulay over k, i.e., dim(k[∆]) = depth(k[∆]). Here, dim(k[∆]) denotes the Krull
dimension of k[∆].
The simplicial complex ∆ is called a Cohen-Macaulay complex if ∆ is Cohen-Macaulay
over some field k.

From the pure definition it is often rather difficult to tell whether a simplicial complex
is Cohen-Macaulay or not. However, it turns out that being Cohen-Macaulay is a purely
topological property which does only depend on the geometric realization of the simpli-
cial complex. More precisely, we have the following characterizations due to Reisner and
Munkres/Stanley, respectively.

Theorem 2.2.2. [BH98, Corollary 5.3.9, Corollary 5.4.6] Let ∆ be a simplicial complex on
vertex set [n] and let X be the geometric realization of ∆. For F ∈ ∆ let further lk∆(F) :=
{G ∈ ∆ | G∪F ∈ ∆, G∩F = /0} denote the link of F in ∆. Then the following conditions
are equivalent:

(i) ∆ is Cohen-Macaulay over k.

(ii) (Reisner) H̃i(lk∆(F);k) = 0 for all F ∈ ∆ and all i < dim(lk∆(F)).

(iii) (Munkres, Stanley) H̃i(X ;k) = Hi(X ,X \{p};k) = 0 for all p ∈ X and all i < dimX.

Note that the above criteria imply that the Cohen-Macaulay property might indeed depend
on the particular field, i.e., its characteristic. Using Reisner’s characterization one can show
that every Cohen-Macaulay simplicial complex is pure [BH98, Corollary 5.1.5].

Example 2.2.3. (i) The (n− 1)-simplex is a Cohen-Macaulay complex. All links of
faces of ∆(n) are lower dimensional simplices. Therefore they are simplicial balls,
thus having homology 0 in each dimension.

(ii) Consider the complex ∆ having facets {1,2,3} and {3,4,5}.
Then lk∆({3}) = {{1,2},{4,5},{1},{2},{4},{5}, /0} is the simplicial complex hav-
ing the two isolated edges {1,2} and {4,5} as facets. This complex is disconnected
and therefore it holds that H̃0(lk∆({3});k) = k, which contradicts Reisner’s criterion.
This shows that ∆ is not Cohen-Macaulay.

(iii) Let ∆ be a triangulation of the projective plane P2. Then we have

H̃1(∆;k) =

{
k, if char(k) = 2
0, otherwise

Note that ∆ = lk∆( /0). This shows that ∆ is not Cohen-Macaulay over k if k is a
field of characteristic 2. Using further arguments it can be shown that ∆ is indeed
Cohen-Macaulay over k if char(k) 6= 2. Thus the triangulation of the projective plane
provides an example of the dependency of the Cohen-Macaulay property on the char-
acteristic of the field.
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2 Simplicial complexes

2.2.2 Shellable complexes

In this section we consider shellable simplicial complexes and their basic properties. Shella-
bility is a property which is stronger than being Cohen-Macaulay and which does not depend
on the characteristic of the field k.

Definition 2.2.4. Let ∆ be a pure simplicial complex. Then ∆ is called shellable if one of
the following equivalent conditions is satisfied. There exists a linear order F1, . . . ,Fm of the
facets of ∆ such that:

(i) 〈Fi〉∩ 〈F1, . . . ,Fi−1〉 is generated by a non-empty set of maximal proper faces of 〈Fi〉
for all 2≤ i≤m. Here 〈Fi〉 and 〈F1, . . . ,Fi−1〉 denote the simplicial complexes whose
faces are subsets of Fi and F1, . . . ,Fi−1, respectively.

(ii) The set {F | F ∈ 〈F1, . . . ,Fi〉 \ 〈F1, . . . ,Fi−1〉} has a unique minimal element for all
2≤ i≤ m. This element is called the restriction face of Fi and is denoted by res(F).

(iii) For all 1 ≤ j < i ≤ m, there exists some v ∈ Fi \ Fj and some 1 ≤ k ≤ i− 1 with
Fi \Fk = {v}.

A linear order of the facets satisfying the equivalent conditions (i), (ii) and (iii) is called a
shelling of ∆.

As already mentioned shellability is a property which is independent of the field k. The
following theorem states how it relates to the Cohen-Macaulay property.

Theorem 2.2.5. [BH98, Theorem 5.1.13] Let ∆ be a shellable simplicial complex. Then ∆

is Cohen-Macaulay over every field.

The converse of Theorem 2.2.5 is not true.

Example 2.2.6. (i) Let ∆ be the simplicial complex which is determined by the facets
F1 := {1,2,5}, F2 := {2,3,5}, F3 := {3,4,5} and F4 := {1,4,5}. Then ∆ is a shellable
complex. A possible shelling of ∆ is the ordering F1, F2, F3, F4. On the contrary, no
shelling order starts with the facets F1, F3 since their intersection is only the vertex 3,
being of dimension 0. In a shelling order the intersection should be of dimension 1.

(ii) Let ∆ be a triangulation of the projective plane. Then ∆ is not Cohen-Macaulay over
k if char(k) = 2. Therefore, ∆ is not shellable by Theorem 2.2.5.

Even though there are Cohen-Macaulay simplicial complexes which are not shellable,
Stanley showed that the classes of h-vectors of Cohen-Macaulay simplicial complexes and
those of shellable simplicial complexes coincide. We will strongly take advantage of this
fact in Chapter 4 when we show that the h-vector inequalities we are able to conclude from
our algebraic result – holding only for shellable simplicial complexes – are also true for
Cohen-Macaulay complexes. We explicitly state Stanley’s result in this context.
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2.2 Classes of simplicial complexes

For shellable simplicial complexes McMullen and Walkup gave a combinatorial interpre-
tation of the h-vector in terms of a shelling of the complex which will be used later on.

Proposition 2.2.7. [BH98, Corollary 5.1.14], [MW71] Let ∆ be a (d − 1)-dimensional
shellable simplicial complex on vertex set [n] with shelling F1, . . . ,Fm. For 2≤ j≤m let r j be
the number of facets of 〈Fj〉∩〈F1, . . . ,Fj−1〉 and set r1 := 0. Let further h∆ = (h∆

0 ,h∆
1 , . . . ,h∆

d )
be the h-vector of ∆. Then

hi = |{ j | r j = i}| for 0≤ i≤ d.

In particular, up to their order, the numbers r j do not depend on the particular shelling.

Proof. For 1 ≤ j ≤ m let ∆ j := 〈F1, . . . ,Fj〉 be the simplicial complex whose faces are the
subsets of F1, . . . ,Fj. Then there is the following exact sequence of k[x1, . . . ,xn]-modules:

0→ k[∆ j]→ k[∆ j−1]⊕ k[〈Fj〉]→ k[〈Fj〉∩∆ j−1]→ 0. (2.3)

Here the injection on the left-hand side is given by α 7→ (α̃,−α̃) and the surjection on
the right-hand side by (β ,γ) 7→ β̃ + γ̃ , where ã denotes the obvious projection of a on the
appropriate quotient module. From the exact sequence (2.3) we obtain for the Hilbert series
of the occuring modules

Hilb(k[∆ j], t) = Hilb(k[∆ j−1], t)+Hilb(k[〈Fj〉], t)−Hilb(k[〈Fj〉∩∆ j−1], t). (2.4)

We set Hilb(k[∆ j], t) = Q j(t)
(1−t)d for 1 ≤ j ≤ m and Hilb(k[〈Fj〉∩∆ j−1], t) = Pj(t)

(1−t)d−1 for 1 ≤
j ≤ m. Here, Q j(t) and Pj(t), respectively, are polynomials of degree not bigger than d and
d−1, respectively. Multiplying Equation (2.4) with (1− t)d yields

Q j(t) = Q j−1(t)+1−Pj(t)(1− t). (2.5)

Straightforward computation shows that Pj(t) = 1 + t + . . . + tr j−1 . By plugging this into
Equation (2.5) we finally obtain Q j(t) = Q j−1(t) + tr j . From Q1(t) = 1 we deduce that
Qm(t) = ∑

m
j=1 tr j . The assertion now follows since the coefficient vector of Qm(t) is just the

h-vector of ∆.

Remark 2.2.8. It follows from the definition of a restriction face that r j = | res(Fj)|. In fact,
let ∆ be a shellable simplicial complex and let F1, . . . ,Fm be a shelling of ∆. Let j be fixed.
For a facet F of 〈Fj〉∩ 〈F1, . . . ,Fj−1〉 we have by definition of the restriction face of Fj that
res(Fj) * F . Since F is a facet of 〈Fj〉 it follows that F = Fj \ {v} for some v ∈ res(Fj).
From the minimality of the restriction face res(Fj) we conclude that for each v ∈ res(Fj)
the face Fj \{v} is a facet of 〈Fj〉∩ 〈F1, . . . ,Fj−1〉. Thus, r j = | res(Fj)| for 2 ≤ j ≤ m. By
setting res(F1) = /0 we also get r1 = | res(F1)|.

23



2 Simplicial complexes

2.3 Operations and constructions on simplicial complexes

2.3.1 Several standard operations

Starting with one or several simplicial complexes one can perform several operations on
those complexes in order to get new simplicial complexes. We first consider operations
which are applied to a single simplicial complex.

Definition 2.3.1. Let ∆ be a simplicial complex on vertex set Ω and let w be an additional
vertex not in Ω.

(i) For F ∈ ∆, the simplicial complex lk∆(F) := {G∈ ∆ |G∪F ∈ ∆, G∩F = /0} is called
the link of F in ∆.

(ii) For a subset W ⊆ Ω, the simplicial complex ∆W := {F ∈ ∆ | F ⊆W} is called the
restriction of ∆ to W .

(iii) For a vertex v ∈ Ω, we call the simplicial complex ∆−{v} := {F ∈ ∆ | v /∈ F} the
deletion of v from ∆.

(iv) The simplicial complex conew(∆) := {F ∪{w} | F ∈ ∆}∪∆ is called the cone of ∆

with apex w.

It can be checked that the collections of subsets defined above are indeed simplicial com-
plexes.

If we have several (more than one) simplicial complexes at our disposal there are further
constructions which can be performed.

Definition 2.3.2. (i) Let ∆1 and ∆2 be simplicial complexes on vertex sets Ω1 and Ω2,
respectively, such that Ω1∩Ω2 = /0. Then the simplicial complex

∆1 ∗∆2 := {F ∪G | F ∈ ∆1, G ∈ ∆2}

on vertex set Ω1∪Ω2 is called the join of ∆1 and ∆2.
Note that if ∆2 consists of a single vertex v then the join of ∆1 and ∆2 is the cone of
∆1 with apex v.

(ii) Let ∆1 and ∆2 be simplicial complexes intersecting in a common facet F . The sim-
plicial complex ∆1#F∆2 := (∆1∪∆2)\{F} is called the connected sum of ∆1 and ∆2
over F .

2.3.2 The barycentric subdivision

Besides the operations on simplicial complexes defined in the previous section there exist
several subdivision operations for simplicial complexes, e.g., edgewise subdivisions and
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2.3 Operations and constructions on simplicial complexes

barycentric subdivision. In this section our interests focus on the barycentric subdivision of
a simplicial complex ∆. We study this operation in more detail than the previously defined
operations and show how certain properties of simplicial complexes are preserved after
performing this operation. The treatment of this topic is rather extensive since our main
results of Chapter 4 hold for exactly this operation.

Definition 2.3.3. Let ∆ be a simplicial complex on vertex set [n]. The barycentric subdivi-
sion of ∆ is the simplicial complex on vertex set ∆\{ /0} whose faces are chains

/0 6= A0 ( A1 ( . . . ( Al,

where Ai ∈ ∆ for 0≤ i≤ l. It is denoted by sd(∆).

Note that since the dimension of a face of the barycentric subdivision of ∆ equals the
length of the corresponding chain minus one, it directly follows from the definition that
∆ and sd(∆) have the same dimension. Start with a dimension-maximal face of ∆ and
subsequently remove one vertex after the other in order to obtain a maximal chain of sd(∆).

Example 2.3.4. Let sd(∆(3)) be the barycentric subdivision of the 2-simplex. Then sd(∆(3))
is the cone over the boundary of a 6-gon, the apex being the vertex {1,2,3}. More precisely,

sd(∆(3)) = {{1}( {1,2}( {1,2,3},{2}( {1,2}( {1,2,3},
{2}( {2,3}( {1,2,3},{3}( {2,3}( {1,2,3},
{1}( {1,3}( {1,2,3},{3}( {1,3}( {1,2,3},
{1}( {1,2},{1}( {1,3},{1}( {1,2,3},
{2}( {1,2},{2}( {2,3},{2}( {1,2,3},
{3}( {1,3},{3}( {2,3},{3}( {1,2,3},
{1,2}( {1,2,3},{1,3}( {1,2,3},{2,3}( {1,2,3},
{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}, /0}.

One first thing to notice is that a simplicial complex ∆ and its barycentric subdivision
sd(∆) have homeomorphic geometric realizations, see e.g., [Bjö95]. For this reason topo-
logical properties are preserved when passing from a simplicial complex ∆ to its barycen-
tric subdivision sd(∆). One such example is the Cohen-Macaulay property. By Stanley and
Munkres’s criterion this property depends only on the geometric realization of the simplicial
complex. Thus, the following holds.

Proposition 2.3.5. [BG81, Corollary 6.3] Let ∆ be a simplicial complex and sd(∆) be its
barycentric subdivision. Then ∆ is a Cohen-Macaulay complex if and only if sd(∆) is a
Cohen-Macaulay complex.
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2 Simplicial complexes

But topological properties are not the only properties which are unaltered under barycen-
tric subdivision. Also some algebraic invariants do not change, e.g., the Krull dimension,
or at least they show a rather nice behavior, e.g., the regularity. For a detailed listing of
how the most common algebraic invariants behave under barycentric subdivision see for
example [KW08]. In Chapter 4 our proofs will strongly use the fact that the barycentric
subdivision of a shellable simplicial complex is shellable as well.
Indeed, let ∆ be a (d−1)-dimensional shellable simplicial complex and let F1, . . . ,Fm be a
shelling order of ∆. Starting with the shelling of ∆ it is possible to construct a shelling of
the barycentric subdivision sd(∆). One first has to check that the barycentric subdivision of
a standard simplex is shellable. This implies that the barycentric subdivision of each facet
Fi of ∆, 1≤ i≤m, is shellable. In order to construct a shelling of sd(∆) one takes a shelling
of sd(〈F1〉). Since F1, . . . ,Fm is a shelling of ∆ we know that F1 ∩F2 is a pure (d− 2)-
dimensional subcomplex of ∆. This subcomplex is shellable, as well. Let now G be a
facet of the barycentric subdivision of F2 such that sd(F1∩F2)∩G is a (d−2)-dimensional
subcomplex of sd(∆). It is possible to show that G can be extended to a shelling of the
barycentric subdivision of F2, in such a way that the whole sequence of facets of sd(∆) con-
structed so far is a shelling of the barycentric subdivision of F1∪F2. In order to prove this
fact it is crucial to know that sd(F1∩F2) = sd(F1)∩ sd(F2) is itself shellable, as can be as-
sumed if one proceeds by induction over the dimension of the original simplicial complex.
We do not want to give any further details of the proof. We only wanted to make clear its
main idea. To summarize we have the following.

Proposition 2.3.6. Let ∆ be a shellable simplicial complex. Then the barycentric subdivi-
sion sd(∆) is shellable as well.

2.3.3 Algebraic shifting: The exterior shifting of a simplicial complex

In this section we discuss exterior algebraic shifting which was first introduced by Kalai,
see e.g., [Kal01]. There exist two kinds of algebraic shifting for simplicial complexes:
a symmetric and an exterior version, but we stick to the latter one. We first introduce the
exterior algebraic shifting of a simplicial complex and then state some of the main properties
of the newly constructed simplicial complex.
Recall that a simplicial complex ∆ on vertex set [n] is shifted if for F ∈ ∆, j ∈ F and i < j it
holds that (F \{ j})∪{i} ∈ ∆.

Example 2.3.7. (i) The (n−1)-simplex is a shifted complex.

(ii) Let ∆ be the simplicial complex on [5] with facets {1,2,3}, {1,2,4} and {1,2,5}.
Then one can easily check that ∆ is shifted.

(iii) Let ∆ be the simplicial complex on [5] with facets {1,2,3}, {1,3,4} and {1,2,5}.
Then ∆ is not shifted since both the facet {1,2,5} and the facet {1,3,4} would force
{1,2,4} to lie in the complex.
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2.3 Operations and constructions on simplicial complexes

We now describe the construction of the exterior algebraic shifting of a simplicial com-
plex ∆ which will be denoted by ∆e. Let k be an infinite field and let ∆ be a simplicial com-
plex on vertex set [n]. Let V be an n-dimensional k-vector space and let E :=

⊕n
l=0
∧l V be

the exterior algebra of V . Let further f1, . . . , fn be a basis of E1 which is generic over k with
respect to e1, . . .en. This means if fi = ∑

n
j=1 ai, je j for 1≤ i≤ n then the coefficients ai, j are

algebraically independent over k. For A = {i1 < .. . < ir}⊆ [n] we set fA := fi1∧ . . .∧ fir ∈E
and by f̄A we denote the image of fA in k{∆}. Let further <lex denote the lexicographic or-
der on subsets of N of the same size, i.e., A <lex B if and only if min((A\B)∪ (B\A)) ∈ A.
In order to define the exterior shifting of ∆ we define the shifting of a family of sets of equal
cardinality. We set

∆
e
i :=

{
A ∈

(
[n]
i

) ∣∣∣ f̄A /∈ span{ ¯fA′ | A′ <lex A}
}

for 0 ≤ i ≤ dim∆ + 1. Finally, the exterior shifting of ∆ is the simplicial complex ∆e :=⋃dim∆+1
i=0 ∆e

i . It can be shown that the above construction is independent of the chosen matrix
(ai j)1≤i, j≤n and that ∆e is indeed a shifted simplicial complex. Using the definition of
the generic initial ideal of an ideal J ⊆ E (see Chapter 1) one can easily show that the
exterior Stanley-Reisner ideal is given by J∆e = gin<rlex

(J∆). Here <rlex denotes the reverse
lexicographic order with respect to e1 < .. . < en. We therefore get another possible method
to determine the exterior shifting of a simplicial complex just by computing the generic
initial ideal of the exterior face ideal J∆. Note in particular that the exterior face ideal of ∆e

is a strongly stable ideal. From this observation it follows that ∆e is shifted.
The exterior shifting of a simplicial complex ∆ tends to have a simpler structure than the
original complex. In fact, the exterior shifting ∆e is always homeomorphic to a wedge
of spheres. Furthermore, some combinatorial and topological properties are not altered
under exterior algebraic shifting. Without giving the proofs we now summarize the main
properties of exterior algebraic shifting which we will need in the remaining chapters of
this thesis. Further terminology and results concerning algebraic shifting can be found in
[HH08] and [Kal01].

Theorem 2.3.8. [Kal01, Theorem 2.1, Lemma 3.1], [HH08, Proposition 10.2.1] Let ∆ be a
simplicial complex on vertex set [n] and let ∆e be its exterior algebraic shifting. Then,

(i) ∆e is a shifted simplicial complex.

(ii) ∆ and ∆e have the same f -vector.

(iii) If ∆ is shifted, then it holds that ∆e = ∆. In particular, (∆e)e = ∆e.

(iv) ∆ and ∆e have isomorphic reduced simplicial homology groups.

(v) If Γ⊆ ∆ is a subcomplex of ∆, then Γe ⊆ ∆e.
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Part II

Lefschetz Properties for Classes of
Simplicial Complexes
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3 The Lefschetz property: classical and
more recent results

This chapter focuses on the classical g-theorem for boundary complexes of simplicial poly-
topes, the g-conjecture for simplicial spheres and developments in the process of attacking
this conjecture. We have divided the chapter into three main sections. In the first one we
provide necessary definitions and present the classical g-theorem which was proved by Stan-
ley and Billera/Lee in 1979. We further describe and give the necessary background of the
g-conjecture which was first raised by McMullen in 1971 for simplicial spheres [McM71]
and later generalized by Björner and Swartz to homology spheres and 2-Cohen-Macaulay
complexes [Swa06].
The second section cites the most important results which had been obtained in the last
decades and which had been steps towards solving the g-conjecture, see e.g., [Swa06],
[Swa03], [Mur07], [Nev07], [Nev05], [Kar04]. We do not want to give a complete list of
results but to illustrate how many attention this field of research has attracted and how many
progress has been made. Most results are obtained by showing a certain type of Lefschetz
property for special classes of simplicial complexes. From this property certain conditions
and restrictions for the h-vectors of those classes of simplicial complexes can be derived.
In the third section we want to give an abridgement of the algebraic progress which had
been attained in showing Lefschetz properties for certain classes of algebras. There are
some results by Wiebe [Wie04], Harima [HW07] and Cho [JMAP06], [CP07] which pro-
vide equivalent or at least sufficient or necessary conditions for being Lefschetz. On one
side those results could hint at further methods which could help to solve the g-conjecture
but on the other side they could even provide us with tools for proving the g-conjecture or
related problems.

3.1 The classical g-theorem and the g-conjecture

One classical problem in combinatorics is the characterization and classification of special
classes of simplicial complexes in terms of their numbers of faces or, equivalently, in terms
of the entries of the h-vector. Instead of considering the h-vector itself one often looks at
the differences between its entries.

Definition 3.1.1. Let ∆ be a (d− 1)-dimensional simplicial complex with h-vector h∆ =
(h∆

0 ,h∆
1 , . . . ,h∆

d ). Then the vector g∆ := (g∆
0 ,g∆

1 , . . . ,g∆

b d
2 c

), where g∆
0 := 1 and g∆

i := h∆
i −h∆

i−1
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3 The Lefschetz property: classical and more recent results

for 1≤ i≤ bd
2c, is called the g-vector of ∆.

If ∆ has a symmetric h-vector, which for instance is the case if ∆ is a Gorenstein∗ complex
or the boundary complex of a simplicial polytope [BH98, Sta96], then the h- and the f -
vectors of ∆ can be recovered from the g-vector.

Maybe, the longest outstanding conjecture in the field of face enumeration of simpli-
cial complexes is the so-called g-conjecture which was first raised by McMullen in 1971
[McM71]. This conjecture aims at giving a complete characterization of the g-vectors of
simplicial spheres. Before stating the conjecture we need to give some further definitions.

Definition 3.1.2. Let ∆ be a (d− 1)-dimensional simplicial complex. Then ∆ is called a
simplicial sphere if ∆ is homeomorphic to a (d−1)-sphere.

In order to understand the g-conjecture we additionally need to define what is understood
by an M-sequence and how this property can be characterized numerically.

Definition 3.1.3. Let a = (a0, . . . ,as) ∈ Ns+1 be a sequence of non-negative integers. Then
the sequence a is called an M-sequence if a is the Hilbert function of a standard graded
Artinian k-algebra.

Macaulay gave a characterization of an M-sequence by means of numerical conditions
on its elements. He showed that given any positive integer i every non-negative integer a
possesses a unique so-called i-binomial representation.

Lemma 3.1.4. [BH98, Lemma 4.2.6] Let i be a positive integer. Any a ∈ N can be written
uniquely in the form

a =
(

ki

i

)
+
(

ki−1

i−1

)
+ . . .+

(
ks

s

)
, (3.1)

where ki > ki−1 > .. . > ks ≥ s.

The representation from Equation 3.1 is called the i-th Macaulay representation of a. We
further need the following obstruction of the i-th Macaulay representation of an integer a.
We set

a〈i〉 :=
(

ki +1
i+1

)
+
(

ki−1 +1
i

)
+ . . .+

(
ks +1
s+1

)
and 0〈i〉 = 0. Macaulay’s characterization of an M-sequence is the following.

Theorem 3.1.5. [BH98, Theorem 4.2.10] (Macaulay)
Let a = (a0, . . . ,as) be a sequence of non-negative integers. Then the following conditions
are equivalent:

(i) a is an M-sequence.
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3.1 The classical g-theorem and the g-conjecture

(ii) a0 = 1 and ai+1 ≤ a〈i〉i for 0≤ i≤ s−1.

We are now able to state the classical g-conjecture due to McMullen.

Conjecture 3.1.6. [McM71] (g-conjecture)
Let ∆ be a simplicial sphere. Then its g-vector is an M-sequence.

Originally, McMullen formulated the g-conjecture only for boundary complexes of sim-
plicial polytopes but later extended it to simplicial spheres. He further predicted that to
every M-sequence a there exists a simplicial complex ∆ which is the boundary of a simpli-
cial polytope such that g∆ = a.
In 1979, Billera and Lee [BL81] succeeded in constructing a simplicial polytope whose
boundary has as g-vector a given M-sequence. In the same year, it was Stanley [Sta80] who
– using the Hard Lefschetz Theorem for toric varieties – further showed that the g-vector of
the boundary of a simplicial polytope is an M-sequence.

Theorem 3.1.7. [BL81, Sta80] (g-theorem)
Let h = (h0, . . . ,hd)∈Nd+1 and let g = (1,h1−h0, . . . ,hb d

2 c
−hb d

2 c−1). Then h is the h-vector
of the boundary complex of a simplicial d-polytope if and only if g is an M-sequence.

From Stanley’s proof of the necessity part of the g-theorem follows an algebraic version
of the g-theorem which holds over any field of characteristic 0. We state this version in the
next section after having provided the necessary definitions.

In 2005, Björner and Swartz generalized McMullen’s g-conjecture to Gorenstein∗ and
even to 2-Cohen-Macaulay complexes [Swa06].

Definition 3.1.8. Let ∆ be a (d− 1)-dimensional simplicial complex on vertex set [n] and
let k be some field.

(i) ∆ is called a 2-Cohen-Macaulay complex over k if ∆ is Cohen-Macaulay over k and
for every vertex v ∈ [n] the deletion ∆−{v} of v from ∆ is Cohen-Macaulay over k,
as well.

(ii) ∆ is called a Gorenstein∗ complex or a homology sphere over k if for all F ∈ ∆

H̃i(lk∆(F);k) =

{
k, if i = dim(lk∆(F))
0, otherwise

Note that a simplicial complex ∆ is Gorenstein∗ if ∆ has the homology of a sphere and
if the link of each face of ∆ has the homology of a sphere of the appropriate dimension. In
particular, all simplicial spheres are homology spheres. Furthermore, it can be shown – us-
ing the topological characterization of the Cohen-Macaulay property – that all Gorenstein∗

complexes are2-Cohen-Macaulay complexes. We close this section with the generalized
g-conjecture of Björner and Swartz.
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3 The Lefschetz property: classical and more recent results

Conjecture 3.1.9. (generalized g-conjecture)
Let ∆ be a 2-Cohen-Macaulay simplicial complex. Then its g-vector is an M-sequence.

This conjecture as well as the classical g-conjecture have attracted a lot of attention from
researchers working in different fields of mathematics. As we want to show in the following
section, lots of partial results and results in the scope of the g-conjecture have been attained
in the last decades. However, people are still far from proving those conjectures and as
a consequence there are still a lot of people working hard towards solving these conjec-
tures. The progress which is made is most often achieved for special classes of simplicial
complexes which feature useful properties. Another class of results which should be dis-
tinguished from the just mentioned ones are results which show that several constructions
preserve the so-called Lefschetz property (for more details see Section 3.2). A third class of
results are algebraic results which give equivalent formulations of the conditions of being
an M-sequence or which give methods by hand which can be used and might be helpful to
attack the g-conjecture. We will state some of these results in the next section.

3.2 More recent results

As we will explain in more detail in Chapter 4 one method for proving results which are in
the context of the g-conjecture is to show some type of Lefschetz property for the Stanley-
Reisner ring of a simplicial complex. Before we state the main results which had been at-
tained towards solving the g-conjecture we give the necessary definitions which are needed
in order to understand the results.

We first need the notion of a linear system of parameters for the face ring of a simplicial
complex.

Definition 3.2.1. Let ∆ be a (d−1)-dimensional simplicial complex on vertex set [n]. Let
further θ1, . . . ,θd be linear forms of degree 1 in k[∆]. Then {θ1, . . . ,θd} is called a max-
imal linear system of parameters of k[∆], l.s.o.p. for short, if θi is a non-zero divisor on
k[∆]/(θ1, . . . ,θi−1) for 1≤ i≤ d and k[∆]/(θ1, . . . ,θd) 6= 0.

It is a well-known fact that an l.s.o.p. is always a regular sequence (see the definition
of a regular sequence in Chapter 5). Vice versa, if a regular sequence consists of degree 1
elements such a sequence is an l.s.o.p. An l.s.o.p. is maximal in the sense that it cannot
be extended to a sequence θ1, . . . ,θd ,θd+1 satisfying the same conditions. A priori, it is
not clear that the Stanley-Reisner ring of any simplicial complex admits a maximal linear
system of parameters and in fact, this is not true. But if ∆ is Cohen-Macaulay it directly
follows from the definition that k[∆] possesses a maximal k[∆]-regular sequence. It then can
be shown that such a sequence can be chosen from elements of degree 1, see e.g., [BH98]
and [Sta75, Proposition 4.1]. By the previous remarks such a sequence is an l.s.o.p. for k[∆].
The property of being an l.s.o.p. can be reformulated in various ways, see e.g., [Swa06].
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Proposition 3.2.2. Let ∆ be a (d − 1)-dimensional simplicial complex on vertex set [n].
Let θi := θi,1x1 + . . . + θi,nxn ∈ k[∆] linear forms, 1 ≤ i ≤ d. Consider the matrix Θ :=
(θi, j)1≤i≤d

1≤ j≤n
. For each facet F in ∆ let ΘF be the set of columns of Θ corresponding to

the vertices in F. Then {θ1, . . . ,θd} is an l.s.o.p. for k[∆] if and only if ΘF is linearly
independent for all F ∈ ∆.

Using this characterization of an l.s.o.p. it can be shown that the set of maximal linear
systems of parameters of the Stanley-Reisner ring of a simplicial complex is a non-empty
Zariski-open set in (k[x1, . . . ,xn]1)d . More precisely, the following holds.

Theorem 3.2.3. [Swa06, Proposition 3.6] Let ∆ be a (d−1)-dimensional Cohen-Macaulay
complex on vertex set [n]. Then there exists a non-empty Zariski-open subset U ⊆ GLn(k)
such that {θ1,1x1 + . . . + θ1,nxn, . . . ,θd,1x1 + . . . + θd,nxn} is an l.s.o.p. for k[∆] for all
(θi, j)1≤i, j≤n ∈U.

Proof. We only want to give a short sketch of the proof.
The proof relies on the fact that a set of columns is linearly independent if and only if
there exists a submatrix having maximal rank. The latter condition can be expressed as the
non-vanishing of a certain determinant. This is a Zariski-open condition. Finally, we have
to intersect finitely many Zariski-open sets – possessing a simplicial complex only finitely
many facets – which again yields a Zariski-open set. This set is non-empty since for every
Cohen-Macaulay complex it is always possible to find an l.s.o.p.

From the definition of an l.s.o.p. {θ1, . . . ,θd} for k[∆] we deduce that the quotient ring
k[∆]/(θ1, . . . ,θd) has Krull dimension 0. In particular, it is finite-dimensional as a k-vector
space and can be written in the form k[∆]/(θ1, . . . ,θd) =

⊕s
i=0 Ai for some s. Here Ai denotes

the k-vector space which is generated by the elements of degree i in k[∆]/(θ1, . . . ,θd). The
following well-known fact gives the connection between the Hilbert series of the Stanley-
Reisner ring of a simplicial complex ∆ and the one of the quotient of the Stanley-Reisner
ring with respect to an l.s.o.p. for k[∆].

Theorem 3.2.4. [BH98, Remark 4.1.11] Let ∆ be a (d−1)-dimensional Cohen-Macaulay
complex with h-vector h∆ = (h∆

0 , . . . ,h∆
d ) and let {θ1, . . . ,θd} be an l.s.o.p. for k[∆]. Then

Hilb(k[∆]/(θ1, . . . ,θd), t) = (1− t)dHilb(k[∆], t) =
d

∑
i=0

h∆
i t i.

In particular, dimk(Ai) = h∆
i , where k[∆]/(θ1, . . . ,θd) =

⊕d
i=0 Ai.

We have now laid the required background for the definition of the weak and the strong
Lefschetz property, respectively.

Definition 3.2.5. Let ∆ be a (d− 1)-dimensional Cohen-Macaulay complex on vertex set
[n]. Let further {θ1, . . . ,θd} be an l.s.o.p. for k[∆].
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(i) A degree 1 element ω ∈ k[x1, . . . ,xn] is called a weak Lefschetz element for
k[∆]/(θ1, . . . ,θd) if the multiplication

ω : (k[∆]/(θ1, . . . ,θd))i−1→ (k[∆]/(θ1, . . . ,θd))i : m 7→ ωm

is an injection for 1≤ i≤ bd
2c.

(ii) A degree 1 element ω ∈ k[x1, . . . ,xn] is called a strong Lefschetz element for
k[∆]/(θ1, . . . ,θd) if the multiplication

ω
d−2i : (k[∆]/(θ1, . . . ,θd))i→ (k[∆]/(θ1, . . . ,θd))d−i : m 7→ ω

d−2im

is an injection for 0≤ i≤ bd
2c.

If a simplicial complex ∆ admits an l.s.o.p. {θ1, . . . ,θd} and a weak and strong Lefschetz
element for k[∆]/(θ1, . . . ,θd), then we say that ∆ (or also k[∆]) has the weak and the strong
Lefschetz property, respectively.

The following result is well-known and a proof can be found in [Swa06].

Theorem 3.2.6. [Swa06, Proposition 3.6] Let ∆ be a (d−1)-dimensional Cohen-Macaulay
complex on vertex set [n]. Let

Ω := {((θi, j)1≤i≤d
1≤ j≤n

,(ω1, . . . ,ωn)) ∈ kd×n× kn |

{θ1 = θ1,1x1 + . . .+θ1,nxn, . . . ,θd = θd,1x1 + . . .+θd,nxn} is an l.s.o.p. for k[∆]
and ω1x1 + . . .+ωnxn is a Lefschetz element for k[∆]/(θ1, . . . ,θd)}.

Then Ω is Zariski-open in kdn+n.

Thus, in order to show that a simplicial complex is weak and strong Lefschetz, respec-
tively, it is necessary and sufficient to show that the set Ω, defined in Theorem 3.2.6, is
non-empty.
We have now provided the main definitions we need in order to give the algebraic version
of the g-theorem and a summary of some results which are in the scope of the g-conjecture.
It follows from Stanley’s proof of the necessity part of the g-theorem that the following
algebraic version holds.

Theorem 3.2.7. [Sta80] (algebraic g-theorem)
Let ∆ be the boundary complex of a simplicial d-polytope and let k be a field of character-
istic 0. Then ∆ is strong Lefschetz over k.
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3.2.1 The strong Lefschetz property for matroid complexes

There exists a result due to Ed Swartz showing that the independence complex of a matroid
satisfies the strong Lefschetz property. Before stating his result we give the definition of a
matroid and its independence complex. For more details on matroids see e.g., [Oxl92].

Definition 3.2.8. [Oxl92] A matroid M is an ordered pair (E,I ) consisting of a finite set
E and a collection I of subsets of E satisfying the following three conditions:

(i) /0 ∈I .

(ii) If I ∈I and I′ ⊆ I, then I′ ∈I .

(iii) If I1 and I2 are in I and |I1| < |I2|, then there is an element e ∈ I2 \ I1 such that
I1∪{e} ∈I .

The third condition is called the independence augmentation axiom. Note that the first
two conditions imply that I is a simplicial complex on vertex set E, even though we do
not necessarily have that {e} ∈ I for all e ∈ E. The simplicial complex I is called the
independence complex of the matroid M. We denote it by ∆(M). It follows from the third
condition that ∆(M) is a pure simplicial complex. Even more is true. It is well-known
that the independence complex of a matroid is a Cohen-Macaulay simplicial complex, see
e.g., [Swa03]. Thus, it is possible to choose an l.s.o.p. for the Stanley-Reisner ring of an
independence complex of a matroid. We are now able to formulate Swartz’s result.

Theorem 3.2.9. [Swa03, Theorem 4.2] Let ∆(M) be the independence complex of a matroid
M. Then ∆(M) is strong Lefschetz.

Note that Theorem 3.2.9 does not depend on the characteristic of the field.

3.2.2 The strong Lefschetz property for simplicial complexes admitting
a convex ear decomposition

In addition to his result for independence complexes of matroids Swartz obtained a slightly
weaker result for simplicial complexes admitting a so-called convex ear decomposition. We
first give the definition of a convex ear decomposition which was originally introduced by
Chari [Cha97].

Definition 3.2.10. [Swa06] Let ∆ be a (d− 1)-dimensional simplicial complex. A con-
vex ear decomposition of ∆ is an ordered sequence ∆1, . . . ,∆m of pure (d−1)-dimensional
subcomplexes of ∆ such that:

(i) ∆1 is the boundary of a simplicial d-polytope. For each 2≤ j≤m, ∆ j is a (d−1)-ball
which is a proper subcomplex of the boundary of a simplicial d-polytope.
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(ii) For j ≥ 2, ∆ j ∩ (
⋃ j−1

i=1 ∆i) = ∂∆ j.

(iii)
⋃m

i=1 ∆i = ∆.

∆1 is called the initial subcomplex. Each ∆i for i≥ 2 is called an ear of the decomposition.

There are several types of simplicial complexes known which admit a convex ear decom-
position, e.g., order complexes of geometric lattices [NS04], finite buildings and indepen-
dence complexes of matroids [Swa06]. On the other hand, simplicial complexes admitting a
convex ear decomposition are in particular Cohen-Macaulay. They satisfy an even stronger
property, the 2-Cohen-Macaulay property [Swa06, Theorem 4.1]. Thus, for simplicial com-
plexes which have a convex ear decomposition it is always possible to find an l.s.o.p. for
their face ring. The result of Swartz is the following.

Theorem 3.2.11. [Swa06, Theorem 3.9] Let ∆ be a (d−1)-dimensional simplicial complex
and let k be a field of characteristic 0 which has a convex ear decomposition. Then k[∆] is
strong Lefschetz.

We would like to remark that in contrary to Theorem 3.2.9 the result concerning sim-
plicial complexes having a convex ear decomposition depends on the characteristic of the
field. With this additional assumption it is paid credit for that the proof of Theorem 3.2.11
uses the classical g-theorem which does only hold in characteristic 0.
As already mentioned, simplicial complexes having a convex ear decomposition are 2-
Cohen-Macaulay. So, a natural question to ask is if Theorem 3.2.11 does hold in greater
generality also for 2-Cohen-Macaulay complexes. An affirmative answer would show the
g-conjecture for Gorenstein∗ complexes since all Gorenstein∗ complexes are in particular
2-Cohen-Macaulay. There is a partial answer by Nevo [Nev08] pointing in this direction.
He shows that for a generic l.s.o.p. {θ1, . . . ,θd} and a generic degree 1 element ω multipli-
cation from the degree 1 to the degree 2 part of k[∆]/(θ1, . . . ,θd) with ω is an injection if ∆

is a 2-Cohen-Macaulay complex of dimension at least 2. From this result it follows that the
beginning sequence (g∆

0 ,g∆
1 ,g∆

2 ) of the g-vector of ∆ is an M-sequence.

3.2.3 The behavior of Lefschetz properties under join, union and
connected sum

Nevo together with Babson and Iron, respectively, showed that under certain conditions
Lefschetz properties are maintained when performing several constructions on simplicial
complexes, such as join, connected sum and gluing, see [Nev07] and [NB08].

Nevo in joint work with Babson investigated how the Lefschetz property behaves when
taking the join of two Gorenstein∗ simplicial complexes [NB08]. First note that the h-vector
of a Gorenstein∗ complex is symmetric. Thus, if a Gorenstein∗ complex has the strong
Lefschetz property then the usual injections we get by multiplying with a strong Lefschetz
element are indeed isomorphisms. Babson and Nevo obtained the following result.
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Theorem 3.2.12. [NB08, Theorem 2.2] Let ∆1 and ∆2 be two simplicial complexes on
disjoint vertex sets which are Gorenstein∗ over R and let dim∆1 = d1 and dim∆2 = d2.
Assume that both ∆1 and ∆2 have the strong Lefschetz property over R. Let further Θ1 and
Θ2 be an l.s.o.p. for ∆1 and ∆2, respectively, and let ω1 and ω2 be strong Lefschetz elements
for R[∆1]/Θ1 and R[∆2]/Θ2, respectively. Then

(i) ∆1 ∗∆2 has a symmetric h-vector and dim(∆1 ∗∆2) = d1 +d2−1.

(ii) Θ1∪Θ2 is an l.s.o.p. for R[∆1 ∗∆2].

(iii) ω1 +ω2 is a strong Lefschetz element for R[∆1 ∗∆2]/(Θ1∪Θ2).

The above theorem tells us that the strong Lefschetz property is preserved when taking
the join of two Gorenstein∗ simplicial complexes. As for Theorem 3.2.11 the proof of
Theorem 3.2.12 uses the classical g-theorem. As a consequence the result does not hold
over any field.

A natural question which arises when having obtained a result in the spirit of Theorem
3.2.12 is if there exist further constructions on simplicial complexes which do not destroy
the strong or at least the weak Lefschetz property. Nevo, in joint work with Iron, considered
the union of simplicial complexes of the same dimension. Under certain circumstances a
result similar to Theorem 3.2.12 holds.

Theorem 3.2.13. [Nev07, Proposition 4.3.1] Let ∆1 and ∆2 be (d− 1)-dimensional sim-
plicial complexes which are weak Lefschetz. If ∆1 ∩∆2 is a (d− 1)-dimensional Cohen-
Macaulay simplicial complex, then ∆1∪∆2 is weak Lefschetz.

Note that the above result does not depend on the characteristic of the field.
Even more in the spirit of Theorem 3.2.12 is the following result by Nevo which tells us how
the Lefschetz property behaves when taking the connected sum of two simplicial complexes.

Theorem 3.2.14. [NB08, Theorem 6.1] Let ∆1 and ∆2 be (d−1)-dimensional Gorenstein∗

complexes over k which intersect in a common facet F. Then

(i) ∆1#F∆2 is a (d− 1)-dimensional Gorenstein∗ complex. In particular, its h-vector is
symmetric.

(ii) ∆1#F∆2 is strong Lefschetz.

Note that the result of Theorem 3.2.14 is independent of the characteristic of the field.

3.2.4 The behavior of Lefschetz properties under stellar subdivisions of
simplicial complexes

Besides the already defined barycentric subdivision of a simplicial complex ∆ there exists
an operation called stellar subdivision which is a subdivision operation performed only on
specific faces of the simplicial complex.
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Definition 3.2.15. Let ∆ be a simplicial complex on vertex set [n] and let F ∈ ∆. The stellar
subdivision at F is the operation ∆ 7→ Stellar(∆,F), where

Stellar(∆,F) := (∆\ (F ∗ lk∆(F)))∪ ({vF}∗∂ (F)∗ lk∆(F)).

Here, vF is a vertex which is not contained in [n] and ∂ (F) denotes the boundary of the
simplex which is generated by F .

Stellar subdivisions and the barycentric subdivision of a (d− 1)-dimensional simplicial
complex ∆ are strongly related to each other. We can obtain the barycentric subdivision of
∆ by subsequently performing stellar subdivisions on all the faces of ∆, starting with the
facets, proceeding with the (d−2)-dimensional faces and eventually subdividing the edges.
Nevo, together with Babson, showed that under certain conditions the strong Lefschetz
property is preserved when taking stellar subdivisions of a Gorenstein∗ complex. This result
is independent of the characteristic of the field.

Theorem 3.2.16. [NB08, Corollary 5.4] Let ∆ be a Gorenstein∗ complex and let F ∈ ∆. If
∆ and lk∆(F) are strong Lefschetz then Stellar(∆,F) is strong Lefschetz.

3.2.5 Lefschetz properties for strongly edge decomposable complexes

Nevo introduced in [Nev07] so-called strongly edge decomposable spheres. Murai extended
this notion to arbitrary simplicial complexes. As shown by Murai in [Mur07] this class of
simplicial complexes shows nice behaviors regarding the strong Lefschetz property. Before
we state Murai’s exact result we have to introduce some notion including the one of strongly
edge decomposable simplicial complexes.

We first need to define a further operation on a simplicial complex. Let ∆ be a simplicial
complex on vertex set [n] and let 1 ≤ i < j ≤ n be integers. The contraction C∆(i j) of ∆

with respect to {i, j} is the simplicial complex on [n] \ {i} which is obtained from ∆ by
identifying the vertices i and j, i.e.,

C∆(i j) := {F ∈ ∆ | i /∈ F}∪{(F \{i})∪{ j} | i ∈ F ∈ ∆}.

Let {i, j} ∈ ∆ be an edge. We say that ∆ satisfies the link condition with respect to {i, j} if

lk∆({i})∩ lk∆({ j}) = lk∆({i, j}).

Note that it always holds that lk∆({i})∩ lk∆({ j}) ⊇ lk∆({i, j}). We have now all notion
by hand we need in order to give the definition of a strongly edge decomposable simplicial
complex. These complexes are defined inductively.

Definition 3.2.17. [Mur07, Definition 1.1] A pure simplicial complex is said to be strongly
edge decomposable if either
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(i) ∆ = { /0}, or

(ii) ∆ is the boundary of a simplex, or recursively,

(iii) there exists an edge {i, j} ∈ ∆ such that ∆ satisfies the link condition with respect to
{i, j} and both lk∆({i, j}) and C∆(i j) are strongly edge decomposable.

It is known and was proven by Murai in [Mur07, Corollary 3.5] that strongly edge de-
composable complexes are Cohen-Macaulay and that their h-vectors are symmetric. The
first statement implies that we can always find an l.s.o.p. for the Stanley-Reisner rings of
those simplicial complexes.

The following result can essentially be deduced from the proof of Theorem 3.2.16 but
was also shown by Murai using more algebraic methods.

Proposition 3.2.18. [Nev07, Theorem 4.6.5],[Mur07, Proposition 3.2] Let ∆ be a (d−1)-
dimensional simplicial complex on vertex set [n] satisfying the link condition with respect
to {i, j}, where 1 ≤ i < j ≤ n. Suppose dimC∆(i j) = d−1 and dimlk∆({i, j}) = d−3. If
C∆(i j) and lk∆({i, j}) have the strong Lefschetz property then ∆ is strong Lefschetz.

Combined with an additional inductive argument Murai’s proof in particular shows the
following property of strongly edge decomposable complexes.

Corollary 3.2.19. [Mur07, Corollary 3.5] Let ∆ be a strongly edge decomposable simplicial
complex. Then ∆ is strong Lefschetz.

3.2.6 The non-negativity of the cd-index

In this part we state a result by Karu [Kar04] which differs from the results mentioned so
far in the sense that it is not an algebraic but a numeric result. In order to state the result we
need to introduce some further definitions.
We start with some poset terminology. Let P be a finite graded poset of rank n + 1 with
minimal element 0̂ and maximal element 1̂. Let further ρ be its rank funktion. For a subset
S⊆ [n] we denote by PS the S-rank selected subposet of P, i.e.,

PS := {x ∈ P | ρ(x) ∈ S}.

We denote by αP(S) the number of maximal chains in PS. The function αP : 2[n] → N is
called the flag f -vector of P. The function βP : 2[n]→ N, which is given by

βP(S) := ∑
T⊆S

(−1)|S\T |α(T ),

is called the flag h-vector of P.
The next step is to define polynomials in non-commutative variables which encode the flag
f - and the flag h-vectors. Let k〈a,b〉 be the polynomial ring with non-commuting variables

41



3 The Lefschetz property: classical and more recent results

a and b. To a subset S⊆ [n] we assign the monomial uS := u1 · . . . ·un, where ui = a if a ∈ S
and ui = b if i /∈ S. We now consider the polynomials

ϒP(a,b) := ∑
S⊆[n]

αP(S)uS

ΨP(a,b) := ∑
S⊆[n]

βP(S)uS.

We introduce new variables c and d by setting c := a + b and d := ab + ba. Fine [BK91]
showed that if the poset is Eulerian then ΨP(a,b) can be written as a polynomial in c and
d. This polynomial is denoted by ΦP(c,d) and is called the cd-index of P. Recall that a
poset P is called Eulerian if µ(x,y) = (−1)ρ(y)−ρ(x) for all x ≤ y ∈ P, where µ denotes the
Möbius function of P.
To a poset P one can associate its order complex ∆(P) which is the simplicial complex
consisting of the chains in P. Note that the barycentric subdivision of a simplicial complex
∆ is an order complex. Just consider the poset which is induced by ∆ by ordering its faces
with respect to inclusion. A poset P with 0̂ and 1̂ is called a Gorenstein∗ poset over k – being
k an arbitrary field – if the order complex ∆(P\{0̂, 1̂}) is a Gorenstein∗ simplicial complex.
Such a poset is in particular Eulerian which means that one can associate a cd-index to it.
Stanley [Sta94] conjectured that the coefficients of the cd-index of a Gorenstein∗ poset are
non-negative. This conjecture was finally proven by Karu in [Kar04].

Theorem 3.2.20. [Kar04, Theorem 1.3] Let P be a Gorenstein* poset. Then the cd-index
ΨP(c,d) of P has non-negative integer coefficients.

From the non-negativity of the cd-index of a Gorenstein∗ poset it can be deduced that the
g-vector of the order complex of a Gorenstein∗ poset has non-negative entries. In particular
it follows that the g-vector of the barycentric subdivision of a Gorenstein∗ complex is non-
negative. If the barycentric subdivision of a Gorenstein∗ complex was strong Lefschetz then
its g-vector would be an M-sequence and in particular its entries would be non-negative. To
summarize, both – the property of having a non-negative cd-index and the property of being
strong Lefschetz – imply that the g-vector is non-negative. Thus, Karu’s result together
with the results of Brenti and Welker [BW06], which we consider in the next chapter in great
detail, give support to the conjecture that barycentric subdivisions of Gorenstein∗ complexes
are strong Lefschetz.

3.3 Algebraic methods

The aim of this section is to present some algebraic results which give methods by hand for
showing Lefschetz properties for certain k-algebras. The main idea is that certain construc-
tions on k-algebras (comparable to those performed on simplicial complexes described in
the previous subsections) maintain the Lefschetz property. In addition, we mention some
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results yielding equivalent conditions for being Lefschetz which in some situations may be
easier to prove.

We first want to generalize our definitions of the weak and the strong Lefschetz prop-
erty, respectively, to Artinian standard graded k-algebras, i.e., to standard graded k-algebras
having Krull dimension 0.

Definition 3.3.1. Let A :=
⊕s

i=0 Ai be a standard graded 0-dimensional k-algebra with As 6=
0. By standard graded we mean that A0 = k and A is generated in degree 1, AiA j ⊆ Ai+ j and
dimk Ai < ∞.

(i) An element ω ∈ A1 is called a weak Lefschetz element for A if the multiplication

ω : Ai−1→ Ai : v 7→ ωv

is an injection for 1≤ i≤ b s
2c.

(ii) An element ω ∈ A1 is called a strong Lefschetz element for A if the multiplication

ω
s−2i : Ai→ As−i : v 7→ ω

s−2iv

is an injection for 0≤ i≤ b s
2c.

There are further notion of Lefschetz type properties which can be found in the literature.
Sometimes it is required in order to be a weak and a strong Lefschetz element, respectively,
that the multiplication maps are of full rank.
Wiebe showed in [Wie04] that an m-primary homogeneous ideal in k[x1, . . . ,xn] inherits
the strong Lefschetz property from its initial ideal (with respect to any term order). Here,
m = (x1, . . . ,xn) is the unique homogeneous maximal ideal of k[x1, . . . ,xn]. Murai remarked
in [Mur07] that Wiebe’s result could be strengthened to arbitrary homogeneous ideals com-
bining Wiebe’s proof with an additional argument by Conca [Con03, Theorem 1.1].

Lemma 3.3.2. [Wie04, Proposition 2.9], [Mur07, Lemma 3.3] Let I ⊆ k[x1, . . . ,xn] be a
homogeneous ideal and let≺ be a term order. If k[x1, . . . ,x]/ in≺(I) has the strong Lefschetz
property then k[x1, . . . ,xn]/I has the strong Lefschetz property.

In general, the converse of Lemma 3.3.2 is not true. However, if we consider the generic
initial ideal with respect to the reverse lexicographic order we obtain the following result.

Theorem 3.3.3. [Wie04, Proposition 2.8] Let I ⊆ k[x1, . . . ,xn] be a homogeneous ideal,
such that k[x1, . . . ,xn]/I is an Artinian k-algebra. Let gin<rlex

(I) be the generic initial ideal
of I with respect to the reverse lexicographic order. Then k[x1, . . . ,xn]/I has the weak and
the strong Lefschetz property if and only if k[x1, . . . ,xn]/gin<rlex

(I) has the weak and the
strong Lefschetz property, respectively.
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Besides Wiebe’s result which gives a method for proving the Lefschetz property by show-
ing this property for a hopefully easier to understand k-algebra there are also results which
give characterizations of the different types of Lefschetz properties. Since it would go be-
yond the scope of this thesis we do not state all of those results but stick to one result and its
consequences. For this aim, we need the definition of an almost reverse lexicographic ideal.

Definition 3.3.4. [CP07] Let I ⊆ k[x1, . . . ,xn] be a monomial ideal and let G(I) denote the
unique minimal set of generators of I. We call I an almost reverse lexicographic ideal if for
each monomial u ∈ I and v ∈ k[x1, . . . ,xn] with deg(u) = deg(v) and v >rlex u it holds that
v ∈ I.

Harima and Wachi [HW07] showed the following.

Proposition 3.3.5. [HW07, Corollary 14] Let I ⊆ k[x1, . . . ,xn] be an almost reverse lexi-
cographic ideal such that k[x1, . . . ,xn]/I is an Artinian k-algebra. Then k[x1, . . . ,xn]/I is
strong Lefschetz and xn is a strong Lefschetz element for k[x1, . . . ,xn]/I.

It is also known [HW07, Lemma 12] that if I is an almost reverse lexicographic ideal then
I is Borel-fixed. Combining Theorem 3.3.3 and Proposition 3.3.5 it follows that in order to
show that k[x1, . . . ,xn]/I is strong Lefschetz one can also show that gin<rlex

(I) is an almost
reverse lexicographic ideal.

For ideals which are generated by generic forms, Cho and Ahn further proved a sufficient
condition such that the ideal has an almost reverse lexicographic generic initial ideal.

Theorem 3.3.6. [CP07, Theorem 2.10] Let I ⊆ k[x1, . . . ,xn] be a homogeneous ideal which
has an almost reverse lexicographic generic initial ideal (with respect to the reverse lexico-
graphic order). Let J ⊆ k[x1, . . . ,xn] be a homogeneous ideal generated by generic forms.
If Hilb(k[x1, . . . ,xn]/I, t) = Hilb(k[x1, . . . ,xn]/J, t) then the generic initial ideal of J with
respect to the reverse lexicographic order is an almost reverse lexicographic ideal.

From the proof of the above theorem it follows that the statement can be sharpened to
hold for ideals containing any (at least one) generic form in the minimal set of generators.
Thus the following holds.

Corollary 3.3.7. Let I ⊆ k[x1, . . . ,xn] be a homogeneous ideal which has an almost reverse
lexicographic generic initial ideal (with respect to the reverse lexicographic order). Let
J ⊆ k[x1, . . . ,xn] be a homogeneous ideal such that the minimal set of generators of J con-
tains at least one generic form. If Hilb(k[x1, . . . ,xn]/I, t) = Hilb(k[x1, . . . ,xn]/J, t) then the
generic initial ideal of J with respect to the reverse lexicographic order is an almost reverse
lexicographic ideal.

The above corollary could yield a method to show that the Stanley-Reisner ring of a
simplicial complex – not being the empty complex – has the strong Lefschetz property. In
this situation the ideal which is considered contains at least one generic form (under its
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minimal generators), since an l.s.o.p. consists of at least one element. Thus, by Lemma
3.3.2, Proposition 3.3.5 and Corollary 3.3.7, showing that there exists an almost reverse
lexicographic ideal such that the corresponding quotient has the same Hilbert function as
k[∆] would be sufficient for being k[∆] strong Lefschetz. However, it is not sure if this
result is applicable in many cases since being an almost reverse lexicographic ideal has
turned out to be a much stronger property than being strong Lefschetz, see [HW07]. In fact,
Harima and Wachi showed in [HW07] that being an almost reverse lexicographic ideal in
k[x1, . . . ,xn] is equivalent to being the quotient n-times strong Lefschetz.
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4 The Lefschetz property for barycentric
subdivisions of simplicial complexes

In this chapter we present our main result concerning classes of simplicial complexes which
have a certain type of Lefschetz property. To be more precise we show that the barycentric
subdivision of a shellable simplicial complex has a – what we call – almost strong Lefschetz
property.
The motivation for studying barycentric subdivisions of simplicial complexes originally
came from results obtained by Brenti and Welker [BW06] who investigated the transforma-
tion of the h-vector of a simplicial complex into the h-vector of the barycentric subdivision
of this simplicial complex. From their results inequalities for the h-vector entries of the
barycentric subdivision can be deduced – suggerating that the h-vector of the barycentric
subdivision of a shellable simplicial complex might be an M-sequence. We present Brenti
and Welker’s results in the first section of this chapter.

The following section is devoted to the proof of our main result, i.e., the almost strong
Lefschetz property for barycentric subdivisions of shellable simplicial complexes. We fur-
ther show that almost the same proof works for barycentric subdivisions of shellable poly-
topal complexes. The necessary definitions are provided within this section.

If a simplicial complex satisfies an almost strong Lefschetz property one can easily de-
duce consequences for its h-vector. We state those consequences, such as unimodality and
being an M-sequence, in the third section, with an emphasis on those results which could
not already be concluded from the results by Brenti and Welker [BW06]. Furthermore, we
show that the inequalities between the h-vector entries which are obtained do not only hold
for barycentric subdivisions of shellable simplicial complexes but in greater generality for
barycentric subdivisions of Cohen-Macaulay complexes.

In the fourth section we scrutinize the coefficients which appear in the transformation of
the h-vector of a simplicial complex into the h-vector of its barycentric subdivision. Those
coefficients are a certain refinement of the Eulerian statistics on permutations. Using not
only the inequalities between the h-vector entries but also the algebraic result of Section 4.2
we are able to prove a lot of inequalities between those numbers.

The last section of this chapter delves into open problems and conjectures concerning not
only the barycentric subdivision of a simplicial complex but also other kinds of subdivision
operations, such as edgewise subdivisions. Although we have obtained the numerical result
for the h-vector entries of the barycentric subdivision of a simplicial complex for the whole
class of Cohen-Macaulay simplicial complexes it is still an open question if the algebraic
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result can be expanded to this class as well.
Furthermore, there are several other subdivision operations, e.g., edgewise subdivisions of
a simplicial complex, for which the h-vector transformation is known [BW08] and which
exhibit similar or even the same properties as the h-vector transformation of the barycen-
tric subdivision, thus suggesting similar algebraic and numerical results as those for the
barycentric subdivision to hold.

The results which are obtained in this chapter are results of joint work with Eran Nevo
and can be found in [KN08].

4.1 The motivation for studying barycentric subdivisions of
simplicial complexes

In [BW06] Brenti and Welker studied the behavior of the f - and the h-vectors of a simplicial
complex when passing to its barycentric subdivision. Their results do not only hold for
simplicial complexes but in the greater generality of Boolean cell complexes. They showed
that the h-vector entries of the barycentric subdivision of a Boolean cell complex and in
particular those of the barycentric subdivision of a simplicial complex can be expressed as
positive linear combinations of the h-vector entries of the original complex. The coefficients
that occur in this representation are a refinement of the Eulerian statistics on permutations.
We now expound the required definitions and then state Brenti and Welker’s exact result –
providing the mentioned transformation.

For d ∈N let Sd := {σ : [d]→ [d] | σ is bijective} denote the symmetric group on [d]. We
say that a permutation σ ∈ Sd has a descent at position i for 1≤ i≤ d−1 if σ(i) > σ(i+1).
We write des(σ) := {i | i is a descent of σ} for the descent set of σ . For 0≤ i≤ d−1 and
1 ≤ j ≤ d we set A(d, i, j) := |{ σ ∈ Sd | |des(σ)| = i, σ(1) = j}| and A(d, i, j) := 0 if
i≤−1 or i≥ d. Recall that the usual Eulerian statistics on permutations count the number
of permutations in Sd having a certain number of descents. Thus the just defined numbers
are a refinement of the usual Eulerian statistics on permutations.
Before giving the explicit h-vector transformation when passing to the barycentric subdivi-
sion of a Boolean cell complex we want to recall the definition of a Boolean cell complex.

Definition 4.1.1. A regular CW-complex ∆ is called a Boolean cell complex if for each
F ∈ ∆ the lower interval [ /0,F ] := {G ∈ ∆ | /0 ≤∆ G ≤∆ F} is a Boolean lattice, where
F ≤∆ F ′ if F is contained in the closure of F ′ for F , F ′ ∈ ∆.

The barycentric subdivision of a Boolean cell complex is defined verbatim as for simpli-
cial complexes. The following theorem finally establishes the relation between the h-vector
of a Boolean cell complex ∆ and the h-vector of its barycentric subdivision sd(∆).

Theorem 4.1.2. [BW06, Theorem 2.2] Let ∆ be a (d−1)-dimensional Boolean cell complex
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4.1 The motivation for studying barycentric subdivisions of simplicial complexes

and let sd(∆) be its barycentric subdivision. Then

hsd(∆)
j =

d

∑
r=0

A(d +1, j,r +1)h∆
r

for 0≤ j ≤ d.

As mentioned in the introduction of this chapter accessorily to the h-vector transformation
Brenti and Welker showed some numerical constraints for the h-vector of the barycentric
subdivision of a simplicial complex. Imposing several restrictions on the original simplicial
complex they were able to prove that the h-vector of the barycentric subdivision of this
simplicial complex is unimodal and log-concave.
In order to show that a certain sequence is log-concave and unimodal a common method is
to look at the polynomial whose coefficients are given by the particular sequence. If this
polynomial is real-rooted then it is a well-known result, see e.g., [Bre89], that its coefficient
sequence is log-concave. Before pursuing with Brenti and Welker’s result from [BW06] we
recall the notion of unimodality and log-concavity.

Definition 4.1.3. Let (a0, . . . ,ad) be a sequence of real numbers.

(i) (a0, . . . ,ad) is called log-concave if a2
i ≥ ai−1ai+1 for 1≤ i≤ d−1.

(ii) We say that (a0, . . . ,ad) has internal zeros if there are 0 ≤ i + 1 < j ≤ d such that
ai,a j 6= 0 and ai+1 = ai+2 = . . . = a j−1 = 0.

(iii) (a0, . . . ,ad) is called unimodal if there exists 0≤ j≤ d such that a0 ≤ . . .≤ a j ≥ . . .≥
ad . We call a j a peak of this sequence and say that it is at position j.

Note that a unimodal sequence (a0, . . . ,ad) could feature several peaks if it stays constant
for a while after having attained its maximum value. Moreover, it is a classical and straight-
forward to prove result that a log-concave sequence (a0, . . . ,ad) without internal zeros is
unimodal. Besides the transformation of the h-vector of a simplicial complex when passing
to its barycentric subdivision, Brenti and Welker showed that under certain conditions on
the original simplicial complex the h-polynomial of the barycentric subdivision has only
real roots.

Theorem 4.1.4. [BW06, Theorem 3.1, Corollary 3.5] Let ∆ be a (d − 1)-dimensional
Boolean cell complex with h∆

i ≥ 0 for 0 ≤ i ≤ d− 1 and let sd(∆) be the barycentric sub-
division of ∆. Let further hsd(∆) = (hsd(∆)

0 , . . . ,hsd(∆)
d ) be the h-vector of sd(∆). Then the

h-polynomial of sd(∆)

hsd(∆)(t) =
d

∑
i=0

hsd(∆)
i td−i

has only simple and real zeros. In particular, hsd(∆) = (hsd(∆)
0 , . . . ,hsd(∆)

d ) is a log-concave
and unimodal sequence.
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4 The Lefschetz property for barycentric subdivisions of simplicial complexes

In particular, all conclusions hold for Cohen-Macaulay, Gorenstein, Gorenstein∗ simpli-
cial complexes (over some field k), for simplicial spheres and for boundary complexes of
simplicial polytopes.

The part of Theorem 4.1.4 concerning Cohen-Macaulay complexes follows from the fact
that the h-vector entries of a Cohen-Macaulay complex ∆ are non-negative. Indeed, if Θ

is an l.s.o.p. for k[∆] then it follows from Theorem 3.2.4 that dimk(k[∆]/Θ)i = h∆
i . Thus,

the h-vector entries of ∆ equal the dimensions of finite dimensional k-vector spaces which
immediately implies h∆

i ≥ 0 for 0≤ i≤ d−1.
On the one hand, it is a direct consequence of Theorem 4.1.4 that the h-vector of the

barycentric subdivision of a Cohen-Macaulay complex is unimodal. On the other hand,
this fact also follows if a simplicial complex ∆ has the strong Lefschetz property. Thus,
a natural question which arises when having obtained a result such as Theorem 4.1.4 is if
the barycentric subdivision of a Cohen-Macaulay complex is strong Lefschetz or exhibits
a similar property. One can further suspect that the g-vector of such a complex is an M-
sequence. This conjecture gets additional support from Karu’s result (see Chapter 3.2.6)
– showing the non-negativity of the cd-index for barycentric subdivisions of Gorenstein∗

complexes – which implies that the g-vector of such a complex is non-negative. We attack
those issues in the next section and answer them (mostly) in the affirmative.

4.2 The main theorem: The almost strong Lefschetz
property for barycentric subdivisions of shellable
complexes

In this section we show that the barycentric subdivision of a shellable simplicial complex
is almost strong Lefschetz. After providing some definitions we state the main result and
set out its proof. From the proof it will be clear why we were not able to show a strong
Lefschetz property, i.e., why actually this property does not hold. Ancillary, we stress this
point.
In the following we introduce polytopal complexes and explain what shellability means for
those complexes. Using the same methods as in the proof of the almost strong Lefschetz
property for barycentric subdivisions of shellable simplicial complexes we are able to obtain
an analogous result for shellable polytopal complexes. We do not give the proof in great
detail but emphasize in which points it differs from the one for barycentric subdivisions of
shellable simplicial complexes.

Definition 4.2.1. Let ∆ be a (d − 1)-dimensional simplicial complex which is Cohen-
Macaulay over some field k and let Θ = {θ1 . . . ,θd} be an l.s.o.p. for its face ring k[∆].

(i) A degree one element in the polynomial ring ω ∈ A = k[x1, . . . ,xn] is called an s-
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4.2 The almost strong Lefschetz property for shellable complexes

Lefschetz element for k[∆]/Θ if the multiplication

ω
s−2i : (k[∆]/Θ)i −→ (k[∆]/Θ)s−i

is an injection for 0≤ i≤ b s−1
2 c.

(ii) A (dim∆)-Lefschetz element is called an almost strong Lefschetz element for k[∆]/Θ.

We call ∆ and k[∆], as well, s-Lefschetz and almost strong Lefschetz if there exists an
l.s.o.p. Θ of k[∆] such that k[∆]/Θ has an s-Lefschetz and an almost strong Lefschetz ele-
ment, respectively.
Recall that from the above definition it directly follows that ∆ is strong Lefschetz if and
only if it is (dim∆+1)-Lefschetz.

Remark 4.2.2. Imitating the proof of Theorem 3.2.6 it can be shown that for a Cohen-
Macaulay complex ∆ the set

Ω
(s) := {((θi, j)1≤i≤d

1≤ j≤n
,(ω1, . . . ,ωn)) ∈ kd×n× kn |

{θ1 = θ1,1x1 + . . .+θ1,nxn, . . . ,θd = θd,1x1 + . . .+θd,nxn} is an l.s.o.p. for k[∆]
and ω1x1 + . . .+ωnxn is an s-Lefschetz element for k[∆]/(θ1, . . . ,θd)}

is Zariski-open in kdn+n. Thus, a Cohen-Macaulay complex ∆ is s-Lefschetz if Ω(s) is a
non-empty set.

We have now defined everything we need in order to give our main result.

Theorem 4.2.3. Let ∆ be a shellable (d− 1)-dimensional simplicial complex and let k be
an infinite field. Let sd(∆) be the barycentric subdivision of ∆. Then sd(∆) is almost strong
Lefschetz over k.

The proof of Theorem 4.2.3 is composed of several parts and proceeds by double induc-
tion on the dimension and the number of facets of ∆. We first show how the s-Lefschetz
property behaves when taking the cone of a simplicial complex ∆ over a new vertex v. The
next step – which provides part of the base of the induction – is to prove that Theorem 4.2.3
holds if ∆ is the (d−1)-simplex. Finally, there is the actual proof of Theorem 4.2.3 which
employs the first two steps.

We now describe the effect of coning on the s-Lefschetz property.

Lemma 4.2.4. Let ∆ be a (d−1)-dimensional simplicial complex on vertex set [n] and let
v be an additional vertex not in [n]. If ∆ is s-Lefschetz over k then the same is true for
conev(∆).

51



4 The Lefschetz property for barycentric subdivisions of simplicial complexes

Proof. Let Θ := {θ1, . . . ,θd} be an l.s.o.p. for k[∆]. Then Θ̃ := Θ∪ {xv} is an l.s.o.p.
for k[conev(∆)]. Indeed, considered as modules over k[x1, . . . ,xn,xv]∼= k[x1, . . . ,xn]⊗k k[xv]
we have the isomorphism k[conev(∆)] ∼= k[∆]⊗k k[xv]. Thus, xv is a non-zero divisor on
k[conev(∆)]/Θ∼= (k[∆]/Θ)⊗k k[xv] and the claim follows.
Furthermore, it holds that k[∆]/Θ∼= k[conev(∆)]/Θ̃ as S-modules, where S = k[x1, . . . ,xn,xv]
and xv · k[∆] = 0. Hence, for any pair (Θ,ω) such that Θ is an l.s.o.p. for k[∆] and ω is an
s-Lefschetz element for k[∆]/Θ we have that Θ̃ is an l.s.o.p. for k[conev(∆)] and ω is an
s-Lefschetz element for k[conev(∆)]/Θ. This shows the assertion of the lemma.

Note that if ∆ is strong Lefschetz, i.e., (dim∆+1)-Lefschetz, then conev(∆) is (dim∆+
1)-Lefschetz, i.e., conev(∆) is dim(conev(∆))-Lefschetz, i.e., conev(∆) is almost strong Lef-
schetz. Thus taking the cone provokes that a formerly strong Lefschetz property is weak-
ened to an almost strong Lefschetz property.

Using Lemma 4.2.4 we are able to show the next step in the proof of Theorem 4.2.3.

Theorem 4.2.5. Let ∆ be the (d−1)-simplex on vertex set [d] and let sd(∆) be its barycen-
tric subdivision. Let further k be an infinite field. Then sd(∆) is almost strong Lefschetz
over k.

Proof. Note that the boundary complex ∂ (sd(∆)) is obtained from ∂ (∆) by a sequence
of stellar subdivisions – order the faces of ∂ (∆) by decreasing dimension and perform a
stellar subdivision at each of them according to this order to obtain ∂ (sd(∆)). In partic-
ular, ∂ (sd(∆)) is strongly edge decomposable, as the inverse stellar moves when going
backwards in this sequence of complexes demonstrate. It follows from Murai’s results for
strongly edge decomposable complexes (see Corollary 3.2.19) that ∂ (sd(∆)) has the strong
Lefschetz property. It further holds that sd(∆) = cone[d](∂ (sd(∆))), where we take the cone
over the vertex of sd(∆) corresponding to the set [d]. By Lemma 4.2.4 we conclude that
sd(∆) is (d−1)-Lefschetz, i.e., almost strong Lefschetz over k.

A natural question which occurs is if the result of Theorem 4.2.5 can be improved to the
strong Lefschetz property. Indeed, this is not the case since hsd(∆)

d = 0 if ∆ is the (d− 1)-
simplex. This can be seen by straightforward computation or by looking at a shelling of
sd(∆) since no facet in a shelling has a restriction face of cardinality d. Being the barycentric
subdivision of the (d− 1)-simplex not strong Lefschetz already tells us that in general we
cannot expect the barycentric subdivision of a shellable simplicial complex to be strong
Lefschetz.
We are now in the position to give the proof of Theorem 4.2.3.

Proof of Theorem 4.2.3. The proof is by double induction, on the number of facets f ∆
dim∆

of ∆ and on the dimension of ∆. Let dim∆ ≥ 0 be arbitrary and let f ∆
dim∆

= 1, i.e., ∆ is a
(d−1)-simplex, and by Theorem 4.2.5 we are done. Let dim∆ = 0, i.e., ∆ as well as sd(∆)
consist of vertices only. Since hsd(∆)

0 = hsd(∆)
1−1−0 there is nothing to show. This provides the

base of the induction.
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4.2 The almost strong Lefschetz property for shellable complexes

For the induction step let dim∆ ≥ 1. Let n := f sd(∆)
0 and let S := k[x1, . . . ,xn] be the

polynomial ring in n variables. Let F1, . . . ,Fm be a shelling of ∆ with m ≥ 2 and let ∆̃ :=
〈F1, . . . ,Fm−1〉. Then σ := ∆̃∩ 〈Fm〉 is a pure (d− 2)-dimensional subcomplex of ∂ (Fm).
The barycentric subdivision sd(∆) of ∆ is given by sd(∆) = sd(∆̃)∪ sd(〈Fm〉) and sd(σ) =
sd(∆̃)∩ sd(〈Fm〉).

We get the following Mayer-Vietoris exact sequence of S-modules:

0→ k[sd(∆)]→ k[sd(∆̃)]⊕ k[sd(〈Fm〉)]→ k[sd(σ)]→ 0. (4.1)

Here the injection on the left-hand side is given by α 7→ (α̃,−α̃) and the surjection on
the right-hand side by (β ,γ) 7→ β̃ + γ̃ , where ã denotes the obvious projection of a on the
appropriate quotient module. (For a subcomplex Γ of ∆ and a vertex {v} ∈ ∆ \Γ it holds
that xv · k[Γ] = 0.)

Let Θ = {θ1, . . . ,θd} be an l.s.o.p. for k[sd(∆)], k[sd(∆̃)] and k[sd(Fm)], and such that
{θ1, . . . ,θd−1} is an l.s.o.p. for k[σ ]. This is possible, as the intersection of finitely many
non-empty Zariski-open sets is non-empty (for k[σ ], its set of l.s.o.p. times kn (for θd)
is a non-empty Zariski-open set in kdn). Dividing out by Θ in the short exact sequence
(4.1), which is equivalent to tensoring with −⊗S S/Θ, yields the following Tor-long exact
sequence:

. . . → Tor1(k[sd(∆)],S/Θ)→ Tor1(k[sd(∆̃)]⊕ k[sd(〈Fm〉)],S/Θ)

→ Tor1(k[sd(σ)],S/Θ) δ→ Tor0(k[sd(∆)],S/Θ)
→ Tor0(k[sd(∆̃)]⊕ k[sd(〈Fm〉)],S/Θ)→ Tor0(k[sd(σ)],S/Θ)→ 0,

where δ : Tor1(k[sd(σ)],S/Θ)→ Tor0(k[sd(∆)],S/Θ) is the connecting homomorphism.
In order to simplify notation we set

k(sd(∆)) := k[sd(∆)]/Θ, k(sd(∆̃)) := k[sd(∆̃)]/Θ,

k(sd(σ)) := k[sd(σ)]/Θ and k(sd(〈Fm〉)) := k[sd(〈Fm〉)]/Θ.

Using that for R-modules M, N and Q it holds that Tor0(M,N) ∼= M⊗R N (see Theorem
1.1.10 (ii) in Chapter 1), that (M⊕N)⊗R Q ∼= (M⊗R Q)⊕ (N ⊗R Q) and that M/IM ∼=
M⊗R R/I for an ideal I /R, we get the following exact sequence of S-modules:

Tor1(k[sd(σ)],S/Θ) δ→ k(sd(∆))→ k(sd(∆̃))⊕ k(sd(〈Fm〉))→ k(sd(σ))→ 0.

Note that all the maps in this sequence are grading preserving, where Tor1(k[sd(σ)],S/Θ)
inherits the grading from (a projective grading preserving resolution of) the sequence (4.1).
From this we deduce the following commutative diagram:

Tor1(k[sd(σ)],S/Θ)i
δ→ k(sd(∆))i → k(sd(∆̃))i⊕ k(sd(〈Fm〉))i

↓ ωd−2i−1 ↓ (ωd−2i−1,ωd−2i−1)

k(sd(∆))d−1−i → k(sd(∆̃))d−1−i⊕ k(sd(〈Fm〉))d−1−i
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4 The Lefschetz property for barycentric subdivisions of simplicial complexes

where ω is a degree one element in S. Since Fm is a (d−1)-simplex we know from the base
of the induction that the multiplication

ω
d−2i−1 : k(sd(〈Fm〉))i→ k(sd(〈Fm〉))d−1−i

is an injection for a generic degree 1 element ω in S. Note that if G is a Zariski-open
set in k[xv | v vertex of Fm]1 then G× k[xv | v ∈ ∆ \Fm vertex]1 is Zariski-open in S1. By
construction, ∆̃ is shellable and therefore by the induction hypothesis the multiplication

ω
d−2i−1 : k(sd(∆̃))i→ k(sd(∆̃))d−1−i

is an injection for generic ω . Since the intersection of two non-empty Zariski-open sets is
non-empty, the multiplication

(ωd−2i−1,ωd−2i−1) : k(sd(∆̃))i⊕ k(sd(〈Fm〉))i→ k(sd(∆̃))d−1−i⊕ k(sd(〈Fm〉))d−1−i

is an injection for a generic ω ∈ S1.
Our aim is to show that Tor1(k[sd(σ)],S/Θ)i = 0 for 0 ≤ i ≤ bd−2

2 c. As soon as this is
shown, the above commutative diagram implies that the multiplication

ω
d−2i−1 : k(sd(∆))i→ k(sd(∆))d−1−i

is injective for 0≤ i≤ bd−2
2 c and ω as above. For the computation of Tor1(k[sd(σ)],S/Θ)

we consider the following exact sequence of S-modules:

0→ΘS→ S→ S/Θ→ 0.

Since Tor0(M,N) ∼= M⊗R N and Tor1(R,M) = 0 for R-modules M and N, we get the fol-
lowing Tor-long exact sequence (see Theorem 1.1.10 in Chapter 1)

0→ Tor1(S/Θ,k[sd(σ)])→ΘS⊗S k[sd(σ)]→ k[sd(σ)]→ S/Θ⊗S k[sd(σ)]→ 0.

From the exactness of this sequence we deduce

Tor1(S/Θ,k[sd(σ)]) = Ker(ΘS⊗S k[sd(σ)]→ k[sd(σ)]).

Since we have Tor1(k[sd(σ)],S/Θ)∼= Tor1(S/Θ,k[sd(σ)]), and by the fact that the isomor-
phism is grading preserving, we finally get that

Tor1(k[sd(σ)],S/Θ)∼= Ker(ΘS⊗S k[sd(σ)]→ k[sd(σ)])

as graded S-modules. The grading of ΘS⊗S k[sd(σ)] is given by deg( f ⊗S g) = degS( f )+
degS(g), where degS refers to the grading induced by S.
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4.2 The almost strong Lefschetz property for shellable complexes

As aforementioned, for generic Θ, Θ̃ := {θ1, . . . ,θd−1} is an l.s.o.p. for k[sd(σ)]. Thus
the kernel of the map

(ΘS⊗S k[sd(σ)])i→ (k[sd(σ)])i : b⊗ f 7→ b f

is zero if and only if the kernel of the map

((θd)⊗S (k[sd(σ)]/Θ̃))i→ (k[sd(σ)]/Θ̃)i : θd⊗ f 7→ θd f

is zero, which is the case if and only if the kernel of the multiplication map

θd : (k[sd(σ)]/Θ̃)i−1→ (k[sd(σ)]/Θ̃)i : f 7→ θd f

is zero. We have a shift (−1) in the grading since the last map θd increases the degree by
one. By construction, σ is a pure subcomplex of the boundary of a (d−1)-simplex and thus
it is shellable. Since dim(σ) = d− 2 the induction hypothesis applies to sd(σ). Thus, the
multiplication

θ
d−2i−2
d : (k[sd(σ)]/Θ̃)i→ (k[sd(σ)]/Θ̃)d−i−2

is an injection for 0≤ i≤ bd−3
2 c for a generic degree one element θd ∈ S. In particular, the

multiplication

θd : (k[sd(σ)]/Θ̃)i→ (k[sd(σ)]/Θ̃)i+1

is injective as well. Thus, Tor1(k[sd(σ)],S/Θ)i = 0 for 1 ≤ i ≤ bd−3
2 c+ 1 = bd−1

2 c. In
particular, Tor1(k[sd(σ)],S/Θ)i = 0 for 1 ≤ i ≤ bd−2

2 c. Note that (ΘS⊗S k[sd(σ)])0 =
0, hence Tor1(k[sd(σ)],S/Θ)0 = 0. To summarize, Tor1(k[sd(σ)],S/Θ)i = 0 for 0 ≤ i ≤
bd−2

2 c, which completes the proof.

As we expatiate in the next section Theorem 4.2.3 has many consequences for the h-
vectors of barycentric subdivisions of shellable simplicial complexes.

Our next aim is to introduce so-called polytopal complexes and to describe how the notion
of shellability carries over to those complexes. A similar proof as the one of Theorem 4.2.3
– differing mostly in the base of the induction – can be used to show an almost strong
Lefschetz property for the barycentric subdivision of a polytopal complex as well. We now
state the necessary definitions.

Definition 4.2.6. A polytopal complex is a finite, non-empty collection C of polytopes in
some Rt that contains all the faces of its polytopes, and such that the intersection of two of
its polytopes is a face of each of them. The elements of C are called faces of C .

Along the lines of simplicial complexes we can define notion such as facets, dimension,
pureness and barycentric subdivision for polytopal complexes. Moreover, the property of
being shellable – originally defined for simplicial complexes – can be extended to polytopal
complexes in a canonical way. For more details on polytopal complexes see e.g., [Zie95].
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4 The Lefschetz property for barycentric subdivisions of simplicial complexes

Definition 4.2.7. Let C be a pure (d−1)-dimensional polytopal complex. A shelling of C
is a linear ordering F1,F2, . . . ,Fm of the facets of C such that either C is 0-dimensional, or
it satisfies the following conditions:

(i) The boundary complex C (∂F1) of the first facet F1 has a shelling.

(ii) For 1 < j≤m the intersection of the facet Fj with the previous facets is non-empty and
is the beginning segment of a shelling of the (d−2)-dimensional boundary complex
of Fj, that is,

Fj ∩

(
j−1⋃
i=1

Fi

)
= G1∪G2∪ . . .∪Gr

for some shelling G1,G2, . . . ,Gr, . . . ,Gt of C (∂Fj), and 1≤ r ≤ t.

A polytopal complex is called shellable if it is pure and has a shelling.

We can now give the analogous result to Theorem 4.2.3.

Theorem 4.2.8. Let ∆ be a shellable (d− 1)-dimensional polytopal complex. Then sd(∆)
is almost strong Lefschetz over R.

Proof. We give a sketch of the proof, indicating the needed modifications with respect to
the proof of Theorem 4.2.3.

We use double induction on the dimension of ∆ and the number of facets f ∆
d−1 of ∆. For

f ∆
d−1 = 1, note that the barycentric subdivision of a polytope is combinatorially isomorphic

to a simplicial polytope (see [ES74]). Indeed, let P be a polytope on vertex set [n]. First
we subdivide the facets of ∂ (P) by coning from their barycenters. After slightly lifting
the barycenters we assure that convexity is maintained. We then do the same with the
codimension 1 faces of ∂ (P), then with the codimension 2 faces of ∂ (P), and so on. In
the end, the boundary complex of the resulting polytope is combinatorially isomorphic to
sd(∂ (P)). Clearly it is simplicial, since it is an order complex.
Theorem 3.2.7 implies that sd(∂ (P)) is (d−1)-Lefschetz over R. By Lemma 4.2.4 the same
holds for cone[n](sd(∂ (P))) = sd(P), where we take the cone over the vertex corresponding
to the barycenter of P, i.e., corresponding to [n]. Together with the dim∆ = 0 case, this
provides the base of the induction.
The induction step works as in the proof of Theorem 4.2.3.

Note that in the above proof we really need the algebraic version of the classical g-
theorem (Theorem 3.2.7), whereas in the proof of Theorem 4.2.3 it was not required. We pay
credit for this by obtaining the almost strong Lefschetz property for barycentric subdivisions
of polytopal complexes only over R.
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4.3 Numerical consequences for the h-vector

In this section our aim is to derive inequalities for the h-vector entries of the barycentric
subdivision of a shellable simplicial complex and the ones of the barycentric subdivision
of a shellable polytopal complex. Using a result of Stanley we are able to extend those
combinatorial consequences to Cohen-Macaulay simplicial complexes.

We have seen in Theorem 2.2.5 of Chapter 2 that shellable simplicial complexes are
Cohen-Macaulay. While the converse is not true, Stanley showed that these two families of
complexes have the same set of h-vectors.

Theorem 4.3.1. [Sta96, Theorem II.3.3] Let s = (s0, . . . ,sd) be a sequence of integers. The
following conditions are equivalent.

(i) s is the h-vector of a shellable simplicial complex.

(ii) s is the h-vector of a Cohen-Macaulay simplicial complex.

(iii) s is an M-sequence.

From Theorems 4.2.3 and 4.2.8 we are able to derive the following consequences.

Corollary 4.3.2. (i) Let ∆ be a Cohen-Macaulay complex (over some field). Then the
g-vector of the barycentric subdivision of ∆ is an M-sequence. In particular, the g-
conjecture holds for barycentric subdivisions of simplicial spheres, of Gorenstein∗

complexes and of 2-Cohen-Macaulay complexes.

(ii) Let P be a shellable polytopal complex. Then the g-vector of the barycentric subdivi-
sion of P is an M-sequence.

Before we give the proof of this result note that Corollary 4.3.2 verifies the generalized
g-conjecture, suggested by Björner and Swartz (see Conjecture 3.1.9), in the special case
of barycentric subdivisions of 2-Cohen-Macaulay complexes, Gorenstein∗ complexes and
even Cohen-Macaulay complexes – the latter class of simplicial complexes being not in-
cluded in the proper conjecture. As already mentioned the non-negativity of the g-vector of
barycentric subdivisions of Gorenstein∗ complexes can also be deduced from Karu’s result
– showing the non-negativity of the cd-index for order complexes of Gorenstein∗ posets (see
Theorem 3.2.20). We now give the proof of Corollary 4.3.2.

Proof of Corollary 4.3.2. We only prove (i) since the proof of (ii) is verbatim the same.
If ∆ is a (d−1)-dimensional Cohen-Macaulay complex with h-vector h∆ = (h∆

0 , . . . ,h∆
d ) then

by Theorem 4.3.1 there exists a shellable simplicial complex Γ having the same h-vector as
∆. Using the transformation of the h-vector due to Brenti and Welker (see Theorem 4.1.2) it
directly follows that the barycentric subdivisions sd(∆) and sd(Γ) exhibit the same h-vector.
Hence, we can assume that ∆ is shellable.
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4 The Lefschetz property for barycentric subdivisions of simplicial complexes

By Theorem 4.2.3, for a generic l.s.o.p. Θ and a generic degree one element ω , the multi-
plication

ω
d−1−2i : (k[sd(∆)]/Θ)i→ (k[sd(∆)]/Θ)d−1−i

is an injection for 0≤ i≤ b d−2
2 c, hence the multiplication

ω : (k[sd(∆)]/Θ)i→ (k[sd(∆)]/Θ)i+1

is an injection as well. (This conclusion is vacuous for d ≤ 1.) Since sd(∆) is Cohen-
Macaulay it holds that hsd(∆)

i = dimk(k[sd(∆)]/Θ)i. Using the just shown injections, we
deduce that gsd(∆)

i = dimk(k[sd(∆)]/(Θ,ω))i for 0≤ i≤bd
2c. Hence gsd(∆) is an M-sequence.

Note that it directly follows from the non-negativity of the g-vector of sd(∆) that for a
(d−1)-dimensional Cohen-Macaulay complex ∆ it holds that hsd(∆)

i−1 ≤ hsd(∆)
i for 0≤ i≤ bd

2c
which yields the first half of the unimodality property of the h-vector.
Using Theorem 4.2.3 we are further able to deduce the following h-vector inequalities for
barycentric subdivisions of Cohen-Macaulay complexes.

Corollary 4.3.3. Let ∆ be a (d−1)-dimensional Cohen-Macaulay simplicial complex. Then
hsd(∆)

d−i−1 ≥ hsd(∆)
i for any 0≤ i≤ b d−2

2 c.

Proof. By the same reasoning as in the beginning of the proof of Corollary 4.3.2 we can
assume that ∆ is a shellable complex. Let Θ be an l.s.o.p. for k[sd(∆)] and let ω be a degree
one element in k[x1, . . . ,xn], where n := f sd(∆)

0 . From Theorem 4.2.3 and Remark 4.2.2 we
conclude that if Θ and ω have been chosen as generic elements, the multiplication

ω
d−1−2i : (k[sd(∆)]/Θ)i→ (k[sd(∆)]/Θ)d−1−i

is an injection for 1 ≤ i ≤ bd−2
2 c. Since hsd(∆)

i = dimk(k[sd(∆)]/Θ)i this implies hsd(∆)
i ≤

hsd(∆)
d−1−i.

4.4 Inequalities for a special refinement of the Eulerian
numbers

In this section we discuss consequences which can be deduced from Theorem 4.2.3 for the
coefficients appearing in the transformation of the h-vector of a simplicial complex into the
h-vector of its barycentric subdivision (see Theorem 4.1.2). Recall from Chapter 4.1 that
the numbers A(d, i, j) are a refinement of the Eulerian statistics on permutations, counting
permutations in Sd having i descents and being the image of 1 equal to j. In [BW06] Brenti
and Welker showed that those numbers feature the following symmetry.
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Lemma 4.4.1. [BW06, Lemma 2.5]

A(d, i, j) = A(d,d−1− i,d +1− j)

for d ≥ 1, 1≤ j ≤ d and 0≤ i≤ d−1.

The following corollary tells us how the A(d, i, j) behave when increasing the number
of descents while keeping the image of 1 fixed. Crucial in the proof of this corollary are
Theorem 4.2.3 and Lemma 4.4.1.

Corollary 4.4.2. (i)
A(d +1, j,r)≤ A(d +1,d−1− j,r)

for d ≥ 0, 1≤ r ≤ d +1 and 0≤ j ≤
⌊d−2

2

⌋
.

(ii)

A(d +1,0,r +1)≤ A(d +1,1,r +1)≤ . . .≤ A(d +1,

⌊
d
2

⌋
,r +1)

and

A(d +1,d,r +1)≤ A(d +1,d−1,r +1)≤ . . .≤ A(d +1,

⌈
d
2

⌉
,r +1)

for d ≥ 1 and 1 ≤ r ≤ d. For d odd, A(d + 1,
⌊d

2

⌋
,r + 1) may be larger or smaller

then A(d +1,dd
2e,r +1).

Proof. Let ∆ be a shellable (d− 1)-dimensional simplicial complex. Let F1, . . . ,Fm be a
shelling of ∆ with m ≥ 2 and set ∆̃ := 〈F1, . . . ,Fm−1〉, i.e., ∆̃ is the simplicial complex ob-
tained by restricting ∆ to the first m− 1 facets in the shelling. Let further n := f sd(∆)

0 and
S := k[x1, . . . ,xn]. Since sd(∆̃) is a subcomplex of sd(∆) we get the following short exact
sequence of S-modules:

0→ I→ k[sd(∆)]→ k[sd(∆̃)]→ 0,

where I denotes the kernel of the projection on the right-hand side. Let Θ := {θ1, . . . ,θd}
be an l.s.o.p. for both k[sd(∆)] and k[sd(∆̃)]. It is possible to choose such a system since
the set of l.s.o.p. for k[sd(∆)] and for k[sd(∆̃)], respectively, is a non-empty Zariski-open
set. Hence, their intersection is a non-empty Zariski-open set as well. As ∆̃ is shellable, it
is Cohen-Macaulay and therefore sd(∆̃) is Cohen-Macaulay as well. Hence dividing out by
Θ yields the following exact sequence of S-modules:

0→ I/(I∩Θ)→ k[sd(∆)]/Θ→ k[sd(∆̃)]/Θ→ 0. (4.2)

Consider the following commutative diagram
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4 The Lefschetz property for barycentric subdivisions of simplicial complexes

0 → (I/(I∩Θ))i → (k[sd(∆)]/Θ)i

↓ ωd−1−2i ↓ ωd−1−2i

0 → (I/(I∩Θ))d−1−i → (k[sd(∆)]/Θ)d−1−i

where ω is a degree one element in S. By Theorem 4.2.3 the multiplication

ω
d−2i−1 : (k[sd(∆)]/Θ)i→ (k[sd(∆)]/Θ)d−1−i

is an injection for 0≤ i≤ bd−2
2 c and generic ω . It hence follows that also the multiplication

ω
d−1−2i : (I/(I∩Θ))i→ (I/(I∩Θ))d−1−i (4.3)

is an injection for 0 ≤ i ≤ b d−2
2 c. Furthermore, we deduce from the sequence (4.2) that

dimk(I/(I ∩Θ))t = hsd(∆)
t − hsd(∆̃)

t for 0 ≤ t ≤ d. In order to compute this difference we
determine the change in the h-vector of ∆̃ when adding the last facet Fm of the shelling. Let
rm := | res(Fm)|. Proposition 2.2.7 implies that h∆

rm
= h∆̃

rm
+1 and h∆

i = h∆̃
i for i 6= rm. Using

Theorem 4.1.2 we deduce

hsd(∆)
i =

d

∑
r=0

A(d +1, i,r +1)h∆
r

=
d

∑
r=0

A(d +1, i,r +1)h∆̃
r +A(d +1, i,rm +1)

= hsd(∆̃)
i +A(d +1, i,rm +1).

Thus dimk(I/(I ∩Θ))i = A(d + 1, i,rm + 1) for 0 ≤ i ≤ bd−2
2 c. From (4.3) it follows that

A(d +1, i,rm +1)≤ A(d +1,d−1− i,rm +1). Take ∆ to be the boundary of the d-simplex.
Since in this case h∆

i ≥ 1 for 0 ≤ i ≤ d, i.e., restriction faces of all possible sizes occur in
a shelling of ∆, it follows that A(d + 1, i,r) ≤ A(d + 1,d−1− i,r) for every 1 ≤ r ≤ d + 1
and 0≤ i≤ bd−2

2 c. This shows (i).
To show (ii) we use that the injections in (4.3) induce injections

ω : (I/(I∩Θ))i→ (I/(I∩Θ))i+1

for 0≤ i≤ bd−2
2 c. Thus, A(d +1, i,rm +1)≤ A(d +1, i+1,rm +1). The same reasoning as

in (i) shows that A(d +1, i,r)≤ A(d +1, i+1,r +1) for 0≤ i≤ bd−2
2 c and 1≤ r ≤ d. The

second part of (ii) follows from the first one using Lemma 4.4.1.
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4.4 Inequalities for a special refinement of the Eulerian numbers

We want to emphasize that we were not able to find a purely combinatorial proof of
Corollary 4.4.2 which does not use Theorem 4.2.3. It would be interesting to know if there
exists such a proof.

The next example shows that we cannot say in general which of the numbers A(d +
1,bd

2c,r +1) and A(d +1,dd
2e,r +1) is the larger one.

Example 4.4.3. One computes that A(6,2,3) = 60 > 48 = A(6,3,3) while A(6,2,4) = 48 <
60 = A(6,3,4). This shows that for d odd A(d +1,bd

2c,r +1) may be larger or smaller then
A(d +1,dd

2e,r +1).

Remark 4.4.4. Let Ad,r := (A(d + 1,0,r + 1), . . . ,A(d + 1,d,r + 1)). Corollary 4.4.2 in
particular tells us that the sequence of numbers Ad,r is unimodal. This fact can already be
deduced from [BW06]. Applying the linear transformation of Theorem 4.1.2 to the (r +1)-
st unit vector of Rd yields the sequence Ad,r. It then follows from [BW06, Theorem 3.1,
Remark 3.3] (and Theorem 4.1.4) that the generating polynomial of this sequence is real-
rooted. Since A(d+1, i,r+1)≥ 1 for i≥ 1 the sequence Ad,r has no internal zeros. Together
with the real-rootedness this implies that Ad,r is unimodal. However, this argument tells us
nothing about the position of a peak. From Corollary 4.4.2 it follows that the sequence Ad,r
has a peak at position bd

2c or dd
2e. But we cannot exclude that the sequence is endowed with

several peaks, i.e., it could happen that the sequence stays constant on a stretch after having
attained its maximal value.

In the following our discussion focuses on determining a peak of the h-vector of the
barycentric subdivision of a Cohen-Macaulay complex. In Theorem 4.1.4 it is stated that
the h-vector of the barycentric subdivision of a Boolean cell complex with non-negative
h-vector entries is unimodal. What remains open is the location of its peaks. Knowing the
location of a peak of the sequence (A(d +1,0,r+1), . . . ,A(d +1,d,r+1)) (Corollary 4.4.2)
helps us to determine the location of a peak of the h-vector of the barycentric subdivision
of a Boolean cell complex, although not uniquely. Using further arguments we are finally
able to show that under certain conditions the h-vector of the barycentric subdivision of a
(d−1)-dimensional Boolean cell complex has at most two peaks.

Corollary 4.4.5. Let ∆ be a (d − 1)-dimensional Boolean cell complex with h∆
i ≥ 0 for

0≤ i≤ d. Then hsd(∆) has a peak at position d
2 if d is even and at position d−1

2 or d+1
2 if d

is odd. In both situations hsd(∆) has at most two peaks.
In particular, all assertions hold for Cohen-Macaulay complexes.

Proof. Since h∆
i ≥ 0 for 0≤ i≤ d, by Theorem 4.1.4 and Corollary 4.4.2 (ii) we deduce

hsd(∆)
j =

d

∑
r=0

A(d +1, j,r +1)h∆
r

Corollary 4.4.2(ii)
≤

d

∑
r=0

A(d +1, j +1,r +1)h∆
r = hsd(∆)

j+1 (4.4)
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4 The Lefschetz property for barycentric subdivisions of simplicial complexes

for 0≤ j ≤ b d−2
2 c. Thus hsd(∆)

0 ≤ hsd(∆)
1 ≤ . . .≤ hsd(∆)

b d
2 c

.

Similarly one shows hsd(∆)
d d

2 e
≥ hsd(∆)

d d
2 e+1
≥ . . . ≥ hsd(∆)

d , when applying Corollary 4.4.2 (ii) for

j ≥ dd
2e.

If d is even it holds that bd
2c= d

d
2e=

d
2 and hsd(∆) has a peak at position d

2 .
It remains to prove that ∆ features at most two peaks. For this aim, we show that we have

the following strict inequalities if ∆ is non-empty:

hsd(∆)
0 < hsd(∆)

1 < .. . < hsd(∆)
b d−1

2 c
and hsd(∆)

d d
2 e

> .. . > hsd(∆)
d .

If σ ∈ Sd is a permutation with σ(1) = 1 then σ has no descent at position 1. Therefore,
A(d + 1, j,1) = E(d, j), where E(d, j) is the Eulerian number equal to the number of per-
mutations on [d] with j descents. Let Ed(t) := ∑0≤ j≤d−1 E(d, j)t j be the Euler polynomial.
It is well-known that Ed(t) has a non-negative integer expansion with respect to the basis
{t i(t +1)d−1−2i}0≤i≤b d−1

2 c
, see e.g., [FS70] or [SWG83] for a combinatorial proof. Note that

the coefficient of (t +1)d−1 in this expansion equals 1 for d ≥ 1. Comparing the coefficients
in the two expansions of the Euler polynomial and using that for any non-negative integer
k the binomial coefficients

(k
l

)
strictly increase for 0 ≤ l ≤ b k

2c and strictly decrease for
d k

2e ≤ l ≤ k we conclude that the numbers A(d +1, j,1) strictly increase for 0≤ j ≤ bd−1
2 c

and strictly decrease for dd−1
2 e≤ j≤ d (note that A(d+1,d−1,1) = 1 > 0 = A(d+1,d,1)).

As ∆ is non-empty, it holds that h∆
0 = 1. Comparing the r = 0 summands on both sides of

Inequality 4.4 implies the desired strict inequalities.

Example 4.4.6. If d is odd, depending on whether hsd(∆)
b d

2 c
≤ hsd(∆)

d d
2 e

or vice versa the peak of

hsd(∆) is at position d−1
2 or d+1

2 . For example, for d = 3 let ∆ be the 2-skeleton of the 4-
simplex. Then h∆ = (1,2,3,4) and hsd(∆) = (1,22,33,4), i.e., the peak is at position 3+1

2 = 2.
If ∆ consists of 2 triangles intersecting along one edge, i.e., ∆ := 〈{1,2,3},{2,3,4}〉, then
h∆ = (1,1,0,0) and hsd(∆) = (1,8,3,0). In this case the h-vector peaks at position 3−1

2 = 1.

If d is even, taking ∆ to be a (d−1)-dimensional simplex shows that hsd(∆)
d
2−1

= hsd(∆)
d
2

may
occur.

Whereas Corollary 4.4.2 deals with the behavior of the numbers A(d, i, j) when changing
the number of descents i while keeping the image of 1 fixed, in the following we want to
analyze the behavior of those numbers when changing the image of 1 while retaining the
number of descents unchanged.

Corollary 4.4.7. (i)

A(d +1, j,1)≤ A(d +1, j,2)≤ . . .≤ A(d +1, j,d +1)

for dd+1
2 e= b

d+2
2 c ≤ j ≤ d.
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4.4 Inequalities for a special refinement of the Eulerian numbers

(ii)
A(d +1, j,1)≥ A(d +1, j,2)≥ . . .≥ A(d +1, j,d +1)

for 0≤ j ≤ b d−1
2 c.

(iii) A(d +1, d
2 ,1)≤ A(d +1, d

2 ,2)≤ . . .≤ A(d +1, d
2 , d

2 +1)≥ A(d +1, d
2 , d

2 +2)≥ . . .≥
A(d +1, d

2 ,d +1) if d is even.

(iv) A(d +1, j,1) = A(d +1, j +1,d +1) for 0≤ j ≤ d−1.

Proof. To prove (i) we need to show that A(d +1, j,r)≤ A(d +1, j,r+1) for 1≤ r≤ d and
bd+2

2 c ≤ j≤ d. For j = d this follows from { σ ∈ Sd+1 | |des(σ)|= d}= { (d +1)d . . .21 }.
Let Cd

j,r := { σ ∈ Sd+1 | |des(σ)|= j,σ(1) = r}. Consider the following map

φ d
j,r : {σ ∈Cd

j,r | σ(2) 6= r +1} → { σ ∈Cd
j,r+1 | σ(2) 6= r}

σ 7→ (r,r +1)σ .

For σ ∈ Cd
j,r, if |des(σ)| = j and σ(2) 6= r + 1 then σ and (r,r + 1)σ have the same

descent set, hence |des((r,r + 1)σ)| = j as well. As ((r,r + 1)σ)(1) = r + 1, the function
φ d

j,r is well-defined. Since (r,r +1)2 = id it follows that φ d
j,r is invertible and therefore

|{ σ ∈Cd
j,r | σ(2) 6= r +1}|= |{ σ ∈Cd

j,r+1 | σ(2) 6= r}|.

If σ ∈Cd
j,r and σ(2) = r +1, then all of the j descents must occur at position at least 2.

The sequence σ̃ = (r+1)σ(3) . . .σ(d +1) can be identified with a permutation τ in Sd with
τ(1) = r and vice versa via the order preserving map [d +1]\{r}→ [d], hence the descent
set is preserved under this identification. Therefore |{ σ ∈Cd

j,r | σ(2) = r + 1}| = |{ σ ∈
Cd−1

j,r }|= A(d, j,r). On the other hand, if σ ∈Cd
j,r+1 and σ(2) = r then σ has exactly j−1

descents at positions {2, . . . ,d}. A similar argument then implies

|{ σ ∈Cd
j,r+1 | σ(2) = r}|= |{ σ ∈Cd−1

j−1,r}|= A(d, j−1,r).

By Corollary 4.4.2 (ii) it holds that A(d, j,r)≤ A(d, j−1,r) for d−2≥ j−1≥ dd−1
2 e, i.e.,

d−1≥ j ≥ dd+1
2 e= b

d+2
2 c. Combining the above, we obtain

A(d +1, j,r)≤ A(d +1, j,r +1) for 1≤ r ≤ d and bd +2
2
c ≤ j ≤ d−1,

and (i) follows.
(ii) follows directly from (i) and Lemma 4.4.1.
For the proof of (iii) we only show

A(d +1,
d
2
,1)≤ A(d +1,

d
2
,2)≤ . . .≤ A(d +1,

d
2
,
d
2

+1).
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4 The Lefschetz property for barycentric subdivisions of simplicial complexes

The other inequalities in (iii) follow directly from this part by Lemma 4.4.1. The proof of
(i) shows that

∣∣∣{ σ ∈Cd
d
2 ,r
| σ(2) 6= r +1

}∣∣∣= ∣∣∣{ σ ∈Cd
d
2 ,r+1

| σ(2) 6= r
}∣∣∣. As in the proof

of (i), it remains to prove that A(d, d
2 ,r)≤ A(d, d

2 −1,r) for 1≤ r ≤ d
2 . By Lemma 4.4.1 it

holds that A(d, d
2 ,r) = A(d, d

2 −1,d + 1− r). For 1 ≤ r ≤ d
2 we have r ≤ d + 1− r and (ii)

then implies A(d, d
2 −1,r)≥ A(d, d

2 −1,d +1− r) which finishes the proof of (iii).
In order to show (iv) note that by Lemma 4.4.1 we have that

A(d +1, j,1) = A(d +1,d− j,d +1).

If σ = (d +1)σ(2) . . .σ(d +1)∈Cd
d− j,d+1, then the reverse permutation σ̃ := (d +1)σ(d +

1) . . .σ(2) has a descent at position 1 and whenever there is an ascent in σ(2) . . .σ(d +1).
Since σ has d− j−1 descents at positions {2, . . . ,d} this implies |des(σ̃)|= 1+(d−1)−
(d− j− 1) = j + 1, i.e., σ̃ ∈ Cd

j+1,d+1. We recover σ by repeating this construction and
hence A(d +1, j,1) = A(d +1, j +1,d +1).

We conclude this section with an alternative and more compact representation of the
results of Corollary 4.4.7.
For fixed d ∈N let A (d) := (A(d, i, j))0≤i≤d−1

1≤ j≤d
be the matrix with entries A(d, i, j) for fixed

d. For pairs (i, j),(i′, j′) we set (i, j) < (i′, j′) if either i < i′, or i = i′ and j > j′. This defines
a total order on the set of pairs (i, j). Using this ordering for the indices of the entries of the
matrix we can write the matrix A (d) as a vector A(d).

From Corollary 4.4.7 and Lemma 4.4.1 we immediately get the following.

Corollary 4.4.8. The sequence A(d) is unimodal and symmetric for d ≥ 1. In particular, a
peak of A(d) lies in the middle and there are at most two peaks.

4.5 Open problems and conjectures

This section deals with some open problems and further conjectures which come to mind
when having obtained the results of the previous sections.

The numerical results in Corollaries 4.3.2 and 4.4.5, in particular that the h-vector of
the barycentric subdivision of a simplicial complex ∆ decreases from the middle onwards,
suggest that the barycentric subdivision of a Cohen-Macaulay complex might feature the
following property which is stronger than being weak Lefschetz.

Definition 4.5.1. Let ∆ be a (d−1)-dimensional simplicial complex on vertex set [n]. Then
∆ is called Lefschetz if there exists an l.s.o.p. Θ for k[∆] and a degree one element ω ∈
k[x1, . . . ,xn] such that the multiplication maps

ω : (k[∆]/Θ)i −→ (k[∆]/Θ)i+1

have full rank for every i.
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In particular, for barycentric subdivisions of Cohen-Macaulay complexes this means that
we have injections for 0 ≤ i < d

2 , i.e., sd(∆) is weak Lefschetz, and surjections for dd
2e ≤

i≤ dim∆.

Conjecture 4.5.2. Let k be an infinite field and let ∆ be a (d − 1)-dimensional Cohen-
Macaulay complex over k. Then the barycentric subdivision of ∆ is Lefschetz over k.

It already follows from Theorem 4.2.3 that we can attain injections up to the middle
degree of k[sd(∆)]/Θ if we require ∆ not only to be Cohen-Macaulay but to be shellable.
Note that injections from the degree i-part of k[sd(∆)]/Θ to the degree (d− 1− i)-part of
k[sd(∆)]/Θ induce injections from the degree i-part of k[sd(∆)]/Θ to the degree (i + 1)-
part of k[sd(∆)]/Θ. But it is still open – even for shellable complexes – if we can choose an
l.s.o.p. Θ and a degree one element ω such that in addition to the injections up to the middle
degree of k[sd(∆)]/Θ we have surjections from the middle degree of k[sd(∆)]/Θ onwards.
Furthermore, being the numerical results of Corollary 4.3.2 valid for Cohen-Macaulay com-
plexes adumbrates that the algebraic result of Theorem 4.2.3 might be extendable to Cohen-
Macaulay complexes.

Conjecture 4.5.3. Let k be an infinite field and let ∆ be a (d − 1)-dimensional Cohen-
Macaulay complex over k. Then the barycentric subdivision of ∆ is almost strong Lefschetz
over k.

However, we do not know how the proof of this conjecture could work. An induction on
the number of facets of ∆ – similar to the one in the proof of Theorem 4.2.3 – does not seem
to be possible since in general after removing a facet from an arbitrary Cohen-Macaulay
complex the new complex does not remain Cohen-Macaulay.

Problem 4.5.4. The proofs of Corollaries 4.3.2 and 4.3.3 use the algebraic result of The-
orem 4.2.3. It would be interesting to know if there exist purely combinatorial proofs for
these results.

Besides the barycentric subdivision there exist several other subdivision operations on
simplicial complexes, one of which is the so-called r-th edgewise subdivision of a simplicial
complex, see e.g., [BR05]. This subdivision operation is strongly related to the Veronese
construction on standard graded k-algebras. More precisely, the Stanley-Reisner ideal of
the r-th edgewise subdivision of a simplicial complex ∆ is a certain initial ideal of the defin-
ing ideal of the r-th Veronese algebra of k[∆]. For more details see [BR05]. Recall, that if
A =

⊕
i≥0 Ai is a standard graded k-algebra – denoting Ai the i-th graded component of A

– then the r-th Veronese algebra of A is defined to be kA(r) =
⊕

i≥0 Air. Brenti and Welker
showed in [BW08] how the Hilbert series of a standard graded k-algebra is transformed into
the one of its r-th Veronese algebra. This also yields a transformation of the h-vector of
a simplicial complex into the h-vector of the r-th edgewise subdivision of this very com-
plex. From this transformation they were able to deduce combinatorial consequences for
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4 The Lefschetz property for barycentric subdivisions of simplicial complexes

the Hilbert series of Veronese algebras and the h-vectors of r-th edgewise subdivisions of
simplicial complexes. Those results are in the same spirit as Brenti and Welker’s results for
h-vectors of barycentric subdivisions. In particular, they showed that the h-polynomial of
the r-th edgewise subdivision of a Cohen-Macaulay simplicial complex is real-rooted for
r sufficiently large. This implies (using further arguments) log-concavity and unimodal-
ity for the h-vector of the r-th edgewise subdivision of a Cohen-Macaulay complex if r is
sufficiently large. This yields the following conjecture.

Conjecture 4.5.5. Let ∆ be a (d− 1)-dimensional Cohen-Macaulay simplicial complex.
Then its r-th edgewise subdivision is almost strong Lefschetz for r sufficiently large.

We are already working on this conjecture in the case that ∆ is shellable and that r ≥
dim∆+1. There is a paper in preparation where Conjecture 4.5.5 is proved for exactly this
situation [KWon].
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Part III

Notion of Depth and Annihilator
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5 Exterior depth and generic annihilator
numbers

This chapter is topically independent from the previous chapter. Maybe one of the most clas-
sical notion in commutative algebra is the (symmetric) depth of an S-module, where S :=
k[x1, . . . ,xn] denotes the polynomial ring in n variables over an arbitrary field k. Aramova,
Avramov and Herzog introduced in [AAH00] an exterior analogue of this classical notion,
the so-called exterior depth of an E-module, where E := k〈e1, . . . ,en〉 denotes the exterior
algebra. We study this notion and compare it to the symmetric depth of an S-module in the
case of squarefree modules. This comparison is sensible since there exists an equivalence
of categories between the category of squarefree S-modules and the one of squarefree E-
modules, as was shown by Römer [Röm01]. We use this relation between squarefree S- and
squarefree E-modules in order to contrast certain symmetric invariants with the correspond-
ing exterior ones.
To give a first example, under the equivalence of categories, just mentioned, the symmetric
Stanley-Reisner ring k[∆] of a simplicial complex ∆ corresponds to the exterior Stanley-
Reisner ring k{∆} of ∆. Several algebraic and homological invariants of k[∆] over S are
analogous to invariants of k{∆} over E.
In the first section of this chapter we cover the just contemplated topics. Besides the pure
statement of the relations between symmetric and exterior invariants, with an emphasis on
the symmetric and the exterior depth, we also try to explain why it is not always possible
or sensible to transfer a certain notion over S verbatim to the exterior algebra E. As an
example of such an invariant we mention the projective dimension of an S-module.

In the second section of this chapter we address the so-called annihilator numbers of a
module which can be considered as an iteration of the concept of depth. Conca, Herzog
and Hibi [CHH04] and Trung [Tru87] were the first ones to introduce annihilator numbers
with respect to a sequence over the polynomial ring. We extend and slightly change – in
order to get adapted to the situation over E – their definition to annihilator numbers with
respect to a sequence over the exterior algebra. Despite the differences in the definitions
those numbers share several properties, e.g., they do not depend on the particular sequence
when choosing this sequence from a certain non-empty Zariski-open set. In both situations,
this gives rise to the definition of the so-called symmetric and exterior generic annihilator
numbers, respectively.
In the sequel, we therefore restrict our studies to the generic annihilator numbers. If J ⊆
E is a graded ideal we can give a combinatorial characterization of the exterior generic
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5 Exterior depth and generic annihilator numbers

annihilator numbers. Furthermore, in both situations – in the symmetric as well as in the
exterior one – positive linear combinations of those numbers even though not the same can
be used to bound the graded Betti numbers over S and over E, respectively.

The third section is concerned with a conjecture by Herzog concerning the symmetric and
the exterior generic annihilator numbers, respectively. He conjectured that those numbers
are the minimal ones under all symmetric and exterior generic annihilator numbers with
respect to a particular sequence. We disprove this conjecture by giving a counterexample to
it. The same example including some minor differences works over the symmetric as well
as over the exterior algebra.

In the last section we consider the symmetric and the exterior Stanley-Reisner ring of a
simplicial complex. We try to convey the results concerning the symmetric and the exterior
depth and the generic annihilator numbers to this particular situation and to interpret them
for simplicial complexes. We give a characterization of simplicial complexes whose exterior
Stanley-Reisner ring has a certain exterior depth in terms of the exterior algebraic shifting of
the simplicial complex. From the combinatorial description of the exterior generic annihila-
tor numbers obtained in Section 5.2 we derive a combinatorial description of those numbers
for the special case of the exterior Stanley-Reisner ring of a simplicial complex. Using this
description we are able to express the graded symmetric Betti numbers of the symmetric
Stanley-Reisner ring of the exterior shifting of a simplicial complex as positive linear com-
binations of the exterior generic annihilator numbers of the exterior Stanley-Reisner ring of
∆.

Throughout this chapter, we use S := k[x1, . . . ,xn] to denote the polynomial ring in n
variables and we use E := k〈e1, . . . ,en〉 to denote the exterior algebra over a field k. If not
otherwise mentioned we assume throughout the whole chapter that k is infinite.
We further use M to denote the category of finitely generated graded left and right E-
modules M satisfying am = (−1)degadegmma for homogeneous elements a ∈ E, m ∈M. For
example, if J ⊆ E is a graded ideal then E/J belongs to M . Note that every left ideal is a
right ideal and vice versa. The relation am = (−1)degadegmma follows just by changing the
order of the elements of am.

The work which yielded the results of this chapter was carried out with Gesa Kämpf. All
results can be found in [KK09a] and [KK09b].

5.1 The exterior depth

The aim of this section is to compare several algebraic definitions and invariants, defined
over the symmetric algebra, with the corresponding definitions and invariants over the ex-
terior algebra. The main focus in doing so lies on the symmetric depth of a squarefree
S-module and the exterior depth of an associated squarefree E-module. In order to make
such a comparison reasonable it is essential that to each squarefree S-module we can assign
a squarefree E-module in a canonical way and that this assignment behaves in a certain
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5.1 The exterior depth

sense well. Indeed, Römer [Röm01] showed that there exists an equivalence of categories
between the categories of squarefree S-modules and the category of squarefree E-modules.
Before stating this equivalence explicitly we need to introduce the notion of squarefree
modules over S and squarefree modules over E. Squarefree S-modules were first intro-
duced by Yanagawa as a generalization of squarefree monomial ideals in [Yan00, Definition
2.1]. Römer defined in [Röm01, Definition 1.4] the corresponding notion of a squarefree
E-module.

Definition 5.1.1. (i) A finitely generated Nn-graded S-module N = ⊕a∈NnNa is called
squarefree if the multiplication map Na→ Na+εi : y 7→ xiy is bijective for any a ∈Nn

and for all i ∈ supp(a), where supp(a) = { j | a j 6= 0}.

(ii) A finitely generated Nn-graded E-module M =⊕a∈NnMa is called squarefree if it has
only squarefree non-zero components.

Example 5.1.2. Let ∆ be a simplicial complex on vertex set [n]. Then its symmetric Stanley-
Reisner ring k[∆] is a squarefree S-module whereas its exterior face ring k{∆} is a squarefree
E-module.

Aramova, Avramov and Herzog and Römer construct in [AAH00] and [Röm01], respec-
tively, a minimal free resolution of a squarefree E-module NE starting with the minimal
free resolution of a squarefree S-module N which is relate to NE . The assignment N 7→ NE

induces an equivalence between the categories of squarefree S-modules and squarefree E-
modules (where the morphisms are the Nn-graded homomorphisms). The construction is as
follows.

Construction 5.1.3. Let (F•,θ) be an acyclic complex of free Nn-graded S-modules. By
acyclic we mean, that for

F• : . . .→ Fm
θ→ Fm−1→ . . .→ F1

θ→ F0→ 0

it holds that Hi(F•) = 0 for all i > 0.
For each Fi we choose a homogeneous basis Bi such that deg( f ) is squarefree for all f ∈ Bi.
To a ∈ Nn and to f ∈ Bi we assign the symbol y(a) f and we set deg(y(a) f ) := a + deg( f ).
Let now Gl be the free Nn-graded right E-module with basis{

y(a) f
∣∣∣ a ∈ Nn, f ∈ Bi, supp(a)⊆ supp( f ), l = |a|+ i

}
.

If the differential θ at Fi in the complex (F•,θ) is given by

θ( f ) := ∑
j: f j∈Bi−1

λ jxb−b j f j with λ j ∈ k, b = deg( f ), b j = deg( f j),

we define homomorphisms Gl → Gl−1 of Nn-graded E-modules by
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5 Exterior depth and generic annihilator numbers

γ(y(a) f ) := (−1)|b| ∑
j∈supp(a)

y(a−ε j) f e j,

ϑ(y(a) f ) := (−1)|a| ∑
j: f j∈Bi−1

y(a) f jλ je−1
b j

eb.

We set δ := γ +ϑ : Gl → Gl−1.

In [AAH00, Theorem 1.3] it is proved that (G•,δ ) is a complex of free Nn-graded E-
modules in M . Furthermore, if (G

′
•,δ

′
) is the complex obtained from different homoge-

neous bases B
′
i of Fi then G• and G

′
• are isomorphic as complexes of Nn-graded modules. In

special situations, one can say even more about the complex (G•,δ ). The following theorem
was first proven by Aramova, Avramov and Herzog in [AAH00] for squarefree S-modules
of the form N = S/I. Römer noted in [Röm01] that the same proof works for the more
general case of squarefree S-modules.

Theorem 5.1.4. [Röm01, Theorem 1.2] If (F•,θ) is the minimal free Nn-graded S-resolu-
tion of a squarefree S-module N, then (G•,δ ) is the minimal free Nn-graded E-resolution
of NE := Coker(G1→ G0).

Thus, starting with the minimal free graded resolution of an S-module N we can construct
the minimal graded free resolution of an associated E-module NE . The following remark
gives an easy example of how the equivalence of categories works for the case of squarefree
monomial ideals.

Remark 5.1.5. Let I ( S be a squarefree monomial ideal, i.e., I = (xF | F ∈ A) for A⊆ 2[n].
In this case (S/I)E = E/J, where J = (eF | F ∈ A). Here, for F = {i1 < .. . < ir} ⊆ [n] we
set xF := xi1 · . . . · xir and eF := ei1 ∧ . . .∧ eir .
In particular, if ∆ is a simplicial complex on vertex set [n], then – as mentioned in the
introduction of this chapter – under the equivalence of categories we have (k[∆])E = k{∆}.

We now want to define the exterior depth of an E-module. For this aim, we need to
introduce the notion of regular elements of an E-module N. Recall, that for a graded S-
module N a linear form y ∈ S1 is called N-regular if y is not a zero-divisor on N. Note that
on the contrary, for every element v ∈ E it always holds that v2 = 0. Thus, every linear form
in E1 is a zero-divisor. It is therefore not reasonable to define regular elements over the
exterior algebra in exactly the same way as over the polynomial ring. For an element v ∈ E
to be regular we therefore demand that any annihilation vm = 0 is a consequence of v2 = 0.

Definition 5.1.6. [AAH00] Let N ∈M be an E-module. A linear form v ∈ E1 is called
N-regular if 0 :N v = vN. A sequence v1, . . . ,vr of linear forms in E1 is called an N-regular
sequence if vi is an N/(v1, . . . ,vi−1)N-regular element for 1≤ i≤ r and N/(v1, . . . ,vr)N 6= 0.
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5.1 The exterior depth

Note that a linear form v ∈ E1 is N-regular if and only if the annihilator of v in N is the
smallest possible. The following examples illustrates the notion of regular elements over S
and over E and also alludes to possible differences.

Example 5.1.7. Let ∆ be the simplicial complex on vertex set [3] whose maximal faces
are the edges {1,2} and {2,3}. Then x1 + x3 and x2 are k[∆]-regular. They even constitute
a k[∆]-regular sequence. On the contrary, e1 + e3 is not k{∆}-regular since for example
(e1 + e3)∧ e3 = e1∧ e3 ∈ J∆ = (e1∧ e3). But e2 is k{∆}-regular.

It is a classical result that for an S-module N every N-regular sequence (defined verbatim
as over E) can be extended to a maximal one and that all maximal N-regular sequences
have the same length, which is called the (symmetric) depth of N over S, see e.g., [BH98].
Aramova, Avramov and Herzog proved in [AAH00] that the analogous result is true over
the exterior algebra.

Theorem 5.1.8. [AAH00] Let N ∈M be an E-module. Every N-regular sequence can be
extended to a maximal N-regular sequence. Furthermore, all maximal N-regular sequences
have the same length.

The above theorem justifies the following definition.

Definition 5.1.9. Let N ∈M . The common length of all maximal N-regular sequences is
called the depth of N over E, or the exterior depth of N, and it is denoted by depthE N.

The symmetric and the exterior depth, respectively, behave quite similarly in many cases,
e.g., neither of them does change when passing to the generic initial ideal with respect to
the reverse lexicographic order. We make this more explicit now.
If we are working over the polynomial ring the following result can be deduced from a result
of Bayer and Stillman [BS87].

Theorem 5.1.10. [Eis95, Corollary 19.11] Let I ⊆ S be a graded ideal and let gin<rlex
(I)

be the generic initial ideal of I with respect to the reverse lexicographic order, where x1 <
.. . < xn. Then

depthS(S/I) = depthS(S/gin<rlex
(I)).

In the exterior situation Herzog and Terai showed in [HT99] that the exterior depth re-
mains the same under the passage to the generic initial ideal.

Theorem 5.1.11. [HT99, Proposition 2.3] Let J ⊆ E be a graded ideal and let gin<rlex
(J)

be the generic initial ideal of J with respect to the reverse lexicographic order, where e1 <
.. . < en. Then

depthE(E/J) = depthE(E/gin<rlex
(J)).
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5 Exterior depth and generic annihilator numbers

In the following we compare the symmetric depth of a squarefree S-module N with the
exterior depth of the corresponding E-module NE . Our aim is to show that the symmetric
depth of N is always greater or equal than the exterior depth of NE . One of the crucial
facts we need in order to prove this result is the following relation between the graded Betti
numbers of N over S and the graded Betti numbers of NE over E, which is an immediate
consequence of Construction 5.1.3, see [Röm01].

Corollary 5.1.12. [Röm01, Corollary 1.3] Let N be a squarefree S-module and let NE be
the associated squarefree E-module. Let β E and β S denote the graded Betti numbers over
E and S, respectively. Then

β
E
i,i+ j(NE) =

i

∑
k=0

(
i+ j−1
j + k−1

)
β

S
k,k+ j(N).

Remark 5.1.13. From the above Corollary it follows conductively that the graded Betti
numbers of NE over E – having a certain shift j – are determined only by those graded Betti
numbers of N over S having the same shift j. Being the coefficients in Equation 5.1.12
positive this implies

regS(N) = regE(NE).

In order to state and prove our result we still need to introduce the notion of the complex-
ity of an E-module, see e.g., [AAH00] and [KR08].

Definition 5.1.14. Let N ∈M be an E-module. Then

cxE(N) := inf
{

c ∈ Z | β E
i (N)≤ αic−1 for some α ∈ R and for all i≥ 1

}
is called the complexity of N.

The complexity gauges the polynomial growth of the exterior Betti numbers of N and is
therefore a measure for the size of a minimal free resolution of N by free E-modules. It
can thus be regarded as the exterior analogue of the projective dimension. As mentioned in
Chapter 1 even though it makes sense to define the projective dimension for E-modules –
and indeed those modules are included in the definition – this notion is almost meaningless
in this case since the minimal free resolution of an E-module is infinite (unless in the case
of free modules). Over the polynomial ring we have the classical Auslander-Buchsbaum
formula which relates the projective dimension of an S-module to its symmetric depth, see
Theorem 1.1.6. Over the exterior algebra, Aramova, Avramov and Herzog [AAH00] proved
a similiar result, correlating the complexity of an E-module and the exterior depth.

Theorem 5.1.15. [AAH00, Theorem 3.2] Let N ∈M . Then

depthE(N)+ cxE(N) = n.
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5.1 The exterior depth

We have now provided all notion and facts we need to prove the desired inequality be-
tween the symmetric depth of an S-module and the exterior depth of the associated E-
module.

Theorem 5.1.16. Let N be a finitely generated Nn-graded squarefree S-module. Then

depthE(NE)≤ depthS(N). (5.1)

Proof. From Theorem 5.1.15 it follows that

depthE(NE)+ cxE(NE) = n.

By Auslander-Buchsbaum (Theorem 1.1.6) it holds that

projdimS(N)+depthS(N) = n.

Therefore, it suffices to show projdimS(N) ≤ cxE(NE). From Corollary 5.1.12 it follows
that

β
E
i (NE) = ∑

j≥0
β

E
i,i+ j(NE)

= ∑
j≥0

i

∑
k=0

(
i+ j−1
j + k−1

)
β

S
k,k+ j(N).

Let m(i)
j := max

{
k + j

∣∣∣ β S
k,k+ j(N) 6= 0, 0≤ k ≤ i

}
. From the above formula for the Betti

numbers we conclude that β E
i,i+ j(NE) is a polynomial in i of degree m(i)

j −1. It hence follows

that β E
i (NE) is a polynomial in i of degree m(i)−1, where m(i) := max

{
m(i)

j

∣∣∣ j ≥ 0
}

. This
yields for the complexity

cxE(NE) = sup{m(i) | i≥ 0}
= sup{k + j | β S

k,k+ j(N) 6= 0, k ≥ 0, j ≥ 0}
= max{l | β S

i,l(N) 6= 0, i≥ 0, l ≥ 0}, (5.2)

where the last equality holds because N has a finite S-resolution. Let p := projdimS(N).
Then by definition of p there exists k≥ 0 such that β S

p,p+k(N) 6= 0. This implies cxE(NE)≥
p+ k ≥ p = projdimS(N). This finally shows the claim.

Remark 5.1.17. The above proof shows that in general the following inequalities hold

cxE(NE)≥ projdimS(N) (5.3)

and
depthS(N)−depthE(NE) = cxE(NE)−projdimS(N)≤ regS(N). (5.4)
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5 Exterior depth and generic annihilator numbers

It is a natural matter to ask if there are classes of squarefree modules for which equality
holds in Inequality (5.1). In general, we cannot give an answer to this issue. Nevertheless,
in Section 5.4 we identify one such class in the special case of Stanley-Reisner rings of
simplicial complexes.

We want to conclude this section with an example illustrating the results obtained in this
section.

Example 5.1.18. Let ∆ be a simplicial complex which consists of two edges intersecting
in a common vertex. Since ∆ is Cohen-Macaulay it holds that depthS(k[∆]) = 2. The only
non-zero graded Betti numbers of k[∆] are β S

0,0(k[∆]) = 1 and β S
1,2(k[∆]) = 1. Furthermore,

the minimal free resolution of k[∆] has length 1, i.e., projdimS(k[∆]) = 1. Thus,

projdimS(k[∆])+depthS(k[∆]) = 1+2 = 3,

which is exactly the equality we can deduce from Auslander-Buchsbaum.
On the other hand we have depthE(k{∆}) = 1. Note that ae1 + be2 + ce3 is a k{∆}-regular
element if and only if b 6= 0. Thus, depthS(k[∆]) = 2≥ 1 = depthE(k{∆}). From Equation
(5.2) in the proof of Theorem 5.1.16 it follows that

cxE(k{∆}) = max
{

l
∣∣∣ βi,l 6= 0, i≥ 0, l ≥ 0

}
= 2.

Hence,
cxE(k{∆})+depthE(k{∆}) = 2+1,

which also follows from Theorem 5.1.15.
Comparing the projective dimension of k[∆] with the complexity of k{∆} we obtain

cxE(k{∆}) = 2≥ 1 = projdimS(k[∆]).

This inequality already follows from Inequality (5.3) in Remark 5.1.17.

5.2 Annihilator numbers

In this section our interest lies on the symmetric and the exterior annihilator numbers of
an S- and E-module, respectively. Those numbers can be considered as an iteration of the
concept of depth.

In the first part, we consider the symmetric annihilator numbers of an S-module, origi-
nally introduced by Trung in [Tru87] and subsequently studied by Conca, Herzog and Hibi
in [CHH04]. We state the definition as well as some fundamental results for those num-
bers – including a certain genericity property giving rise to the definition of the so-called
symmetric generic annihilator numbers. We omit the proofs of these results and just want
to remark at this point that – whenever there are similar results over the exterior algebra –
those are proven in a similar way.
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In the second part we focus on the exterior annihilator numbers of an E-module with
respect to a sequence. Analogously to the symmetric annihilator numbers we are able to
show that those numbers do not depend on the particular chosen sequence when choosing
this very one from a certain non-empty Zariski-open set. This fact leads us to the definition
of the exterior generic annihilator numbers. In the following we derive a combinatorial
description of these numbers for E-modules of the form E/J, where J ⊆ E is a graded
ideal. We are further able to relate those invariants to the symmetric Betti numbers of the
corresponding S-module (via the equivalence of categories given in Section 5.1).

In the last part of this section we use almost regular sequences and annihilator numbers
in order to give a proof of the well-known fact that being a regular sequence is a non-empty
Zariski-open condition.

5.2.1 Symmetric annihilator numbers

It was Trung [Tru87] who first introduced the so-called symmetric annihilator numbers of
an S-module. They can be considered as a measure for how strongly a sequence of linear
forms fails to be regular. In addition, it turns out that those numbers are closely related to
the graded Betti numbers over S.
If y ∈ S1 is a regular element on a finitely generated graded S-module N, then the multipli-
cation by y is injective, hence 0 :N y = 0. This property is weakened if one only requires the
annihilator 0 :N y to have finite length, i.e., to be of finite k-vector space dimension.

Definition 5.2.1. Let N be a finitely generated graded S-module. A linear form y ∈ S1 is
called almost regular on N if 0 :N y, i.e., the kernel of the multiplication with y, has finite
length. A sequence y1, . . . ,yr of linear forms is called an almost regular sequence on N if yi

is an almost regular element on N/(y1, . . . ,yi−1)N for 1≤ i≤ r.

As was shown by Herzog and Hibi in [HH08, Corollary 4.3.2] it is always possible to
find a k-basis of S1 which is an almost regular sequence. In the special case of S-modules
which are quotients of Borel-fixed ideals an explicit (canonical) almost regular sequence is
known.

Lemma 5.2.2. [HH08, Proposition 4.3.3] Let I ⊆ S be a Borel-fixed ideal. Then x1, . . . ,xn

is an almost regular sequence on S/I.

The symmetric annihilator numbers of an S-module with respect to a sequence are defined
in the following way.

Definition 5.2.3. [CHH04, Tru87] Let y1, . . . ,yn be a sequence of linear forms in S1 and
let N be a finitely generated graded S-module. We denote by Ai(y1, . . . ,yn;N) the graded
module

0 :N/(y1,...,yi−1)N yi.
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We write Ai instead of Ai(y1, . . . ,yn;N) if it is clear from the context which sequence is used.
The k-vector space dimension of (Ai) j is denoted by

αi, j(y1, . . . ,yn;N) := dimK(Ai) j

for j ∈Z and 1≤ i≤ n. The numbers αi, j(y1, . . . ,yn;N) are called the symmetric annihilator
numbers of N with respect to the sequence y1, . . . ,yn.

Note that it directly follows from the definition of an almost regular sequence that for
such a sequence there exist only finitely many symmetric annihilator numbers which are
non-zero. So far, the symmetric annihilator numbers of an S-module may actually depend
on the chosen sequence. Herzog and Hibi showed in [HH08] that this is not the case if one
picks those numbers from a certain non-empty Zariski-open set.

Theorem 5.2.4. [HH08, Theorem 4.3.6] Let I ⊆ S be a graded ideal. Then there exists
a non-empty Zariski-open set U ⊆ GLn(k) such that γ(x) = (∑n

i=1 γi,1xi, . . . ,∑
n
i=1 γi,nxi) is

almost regular for all γ = (γi, j)1≤i, j≤n ∈U. Moreover,

αi, j(γ(x);S/I) = αi, j(x1, . . . ,xn;S/gin<rlex
(I))

for all γ ∈U.

Theorem 5.2.4 justifies the following definition.

Definition 5.2.5. Let I ⊆ S be a graded ideal in S. We set

αi, j(S/I) := αi, j(x1, . . . ,xn;S/gin<rlex
(I))

for j ∈ Z and 1≤ i≤ n and call these numbers the generic annihilator numbers of S/I over
S.

Herzog and Hibi [HH08] posed the question when the symmetric generic annihilator
numbers vanish.

Proposition 5.2.6. [HH08, Proposition 4.3.4] Let N be a finitely generated graded S-
module and let y1, . . . ,yn ∈ S1 be a k-basis of S1 which is almost regular on N. Let further
αi(y;N) := ∑ j∈Z αi, j(y;N) for all i. Then αi(y;N) = 0 if and only if i < depthS(N).

Remark 5.2.7. Let N be a finitely generated graded S-module and let y1, . . . ,yn be a k-basis
of S1 which is almost regular on N. From Proposition 5.2.6 it in particular follows that
y1, . . . ,yr is a regular sequence on N, where r = depthS(N).

In [CHH04] Conca, Herzog and Hibi further established a relation between the symmetric
Betti numbers of an S-module and its generic annihilator numbers over S. They showed that
the symmetric Betti numbers can be bounded from above by positive linear combinations
of certain of the annihilator numbers.
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Theorem 5.2.8. [CHH04, Corollary 1.2], [HH08, Proposition 4.3.11] Let I⊆ S be a graded
ideal and let y1, . . . ,yn be a k-basis of S1 which is almost regular on S/I. Then

β
S
i,i+ j(S/I)≤

n−i+1

∑
l=1

(
n− l
i−1

)
αl, j(y1, . . . ,yn;S/I).

For the special class of componentwise linear ideals, see Chapter 1 for the definition, and
for generic sequences of linear forms, i.e., sequences which can be used to determine the
symmetric generic annihilator numbers, the above bound is tight.

Corollary 5.2.9. [CHH04, Theorem 1.5], [HH08] Let I ⊆ S be a componentwise linear
ideal in S. Then

β
S
i,i+ j(S/I) =

n−i+1

∑
l=1

(
n− l
i−1

)
αl, j(S/I).

5.2.2 Exterior annihilator numbers

In this section we introduce the so-called exterior annihilator numbers of an E-module with
respect to a sequence. They are defined verbatim the same as over the polynomial ring.
Whenever it is possible we try to transfer the results for the symmetric annihilator numbers,
stated in Section 5.2.1, to the exterior annihilator numbers. As in the symmetric case it turns
out that the exterior annihilator numbers with respect to different sequences coincide when
taking the latter ones from a certain non-empty Zariski-open set. This helps us to get rid
of the sequence and justifies the definition of the exterior generic annihilator numbers. In
addition to the analogous results of the results in Section 5.2.1 we derive a combinatorial
description of the exterior generic annihilator numbers.

Over the polynomial ring generic annihilator numbers were defined using almost regular
sequences. Over the exterior algebra the notion of almost regular elements is superfluous.
Since the exterior algebra E has only finitely many graded components every finitely gener-
ated graded E-module is of finite k-vector space dimension. Thus, being an almost regular
sequence is no sensible condition over E. We can therefore directly give the definition of the
exterior annihilator numbers of an E-module with respect to a sequence. They are defined
in almost the same way as their symmetric counterpart. We only have to keep in mind that
every element in E1 is a zero-divisor. This issue is accounted for by dividing out the image
of the multiplication with the particular linear form.

Definition 5.2.10. Let v1, . . . ,vn be a basis of E1 and let N ∈M . The numbers

αi, j(v1, . . . ,vn;N) := dimk
((

0 :N/(v1,...,vi−1)N vi
)
/(viN/(v1, . . . ,vi−1)N)

)
j

for j ∈ Z and 1 ≤ i ≤ n are called the exterior annihilator numbers of N with respect to
v1, . . . ,vn.

79



5 Exterior depth and generic annihilator numbers

For a linear form v ∈ E1 and N ∈M we have the complex

(N,v) : . . .→ N j−1
·v→ N j

·v→ N j+1→ . . . ,

which we get by considering the multiplication with v on N. Since v2 = 0 for every element
in E this is indeed a complex. If we denote by H j(N,v) the homology modules of this
complex it follows directly from the definition of the exterior annihilator numbers that

αi, j(v1, . . . ,vn;N) = dimk H j(N/(v1, . . . ,vi−1)N,vi).

From the pure definition the exterior annihilator numbers do depend on the chosen se-
quence. However, as in the symmetric situation we are able to show that the sequence does
not matter if we take it from a certain non-empty Zariski-open set. The proof of this fact
follows exactly the same steps as the one of the corresponding result for the symmetric
annihilator numbers (see Theorem 5.2.4).

Theorem 5.2.11. Let J ⊆ E be a graded ideal. Then there exists a non-empty Zariski-open
set U ⊆ GLn(k) such that

αi, j(γ(e1, . . . ,en);E/J) = αi, j(e1, . . . ,en;E/gin<rlex
(J))

for all γ = (γi, j)1≤i, j≤n ∈U, where

γ(e1, . . . ,en) = (γ1,1e1 + . . .+ γn,1en, . . . ,γ1,ne1 + . . .+ γn,nen)

and <rlex denotes the reverse lexicographic order with respect to e1 < .. . < en.

Proof. Let
U ′ := {ϕ ∈ GLn(K) | in<rlex(ϕ(J)) = gin<rlex

(J)}

be the non-empty Zariski-open set of linear transformations that can be used to compute
the generic initial ideal of J. Set U := {ϕ−1 | ϕ ∈U ′}. Let γ := ϕ−1 ∈U and set vi :=
γ(ei) for 1 ≤ i ≤ n, i.e., ϕ(vi) = ei. As ϕ is an automorphism, E/(J +(v1, . . . ,vi)) and
E/(ϕ(J)+(e1, . . . ,ei)) have the same Hilbert function. [AH00, Proposition 5.1] implies
that

in<rlex(ϕ(J)+(e1, . . . ,ei)) = gin<rlex
(J)+(e1, . . . ,ei)

(observe that we use the reversed order on [n]). Therefore also E/(J +(v1, . . . ,vi)) and
E/
(
gin<rlex

(J)+(e1, . . . ,ei)
)

have the same Hilbert function. The sequences

0 → H j (E/(J +(v1, . . . ,vi−1)) ,vi)→ (E/(J +(v1, . . . ,vi))) j
·vi→ (E/(J +(v1, . . . ,vi−1))) j+1→ (E/(J +(v1, . . . ,vi))) j+1→ 0
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and

0 → H j (E/
(
gin<rlex

(J)+(e1, . . . ,ei−1)
)
,ei
)
→
(
E/
(
gin<rlex

(J)+(e1, . . . ,ei)
))

j
·ei→

(
E/
(
gin<rlex

(J)+(e1, . . . ,ei−1)
))

j+1→
(
E/
(
gin<rlex

(J)+(e1, . . . ,ei)
))

j+1→ 0

are exact sequences of k-vector spaces. The vector space dimensions of the three latter
vector spaces in the two sequences coincide. Hence it holds that

αi, j(v1, . . . ,vn;E/J) = dimk H j(E/(J +(v1, . . . ,vi−1)) ,vi)

= dimk H j(E/
(
gin<rlex

(J)+(e1, . . . ,ei−1)
)
,ei)

= αi, j(e1, . . . ,en;E/gin<rlex
(J)).

As mentioned beforehand, now the following definition makes sense.

Definition 5.2.12. Let J ⊆ E be a graded ideal. We set

αi, j(E/J) := αi, j(e1, . . . ,en;E/gin<rlex
(J))

for j ∈ Z and 1≤ i≤ n and call these numbers the exterior generic annihilator numbers of
E/J.

As Herzog and Hibi did for the symmetric annihilator numbers (Proposition 5.2.6) we can
give a criterion for the vanishing and the non-vanishing of the exterior generic annihilator
numbers.

Proposition 5.2.13. Let J ⊆ E be a graded ideal. Set αi(E/J) := ∑ j∈Z αi, j(E/J) and let
1≤ r ≤ n. Then αi(E/J) = 0 for all i≤ r if and only if r ≤ depthE(E/J).

Proof. By definition, it holds that

αi, j(E/J) = αi, j(E/gin<rlex
(J)).

Thus, it suffices to show the result for the generic initial ideal with respect to the reverse
lexicographic order. In Section 5.4 (see Lemma 5.4.3) we show that e1, . . . ,ei is a regular
sequence on E/gin<rlex

(J) if and only if i ≤ depthE(E/gin<rlex
(J)) = depthE(E/J). This

directly implies the claim.

Our next aim is to find a combinatorial description of the exterior generic annihilator
numbers.

Theorem 5.2.14. Let J ⊆ E be a graded ideal. Then

αi, j(E/J) =
∣∣{eF ∈ E/gin<rlex

(J) | degeF = j, minF ≥ i+1, eF 6= 0, eieF = 0}
∣∣ .

Here eF denotes the projection of eF ∈ E on E/gin<rlex
(J).
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5 Exterior depth and generic annihilator numbers

Proof. Since αi, j(E/J) = αi, j(E/gin<rlex
(J)) we may assume that J = gin<rlex

(J). Then
αi, j(E/J) can be computed using the sequence e1, . . . ,en, i.e.,

αi, j(E/J) = dimk H j(E/J +(e1, . . . ,ei−1),ei) = dimk

(
(J +(e1, . . . ,ei−1)) : ei

J +(e1, . . . ,ei)

)
j
.

Thus

αi, j(E/J) =
∣∣∣{eF

∣∣∣ degeF = j,eF ∈ (J +(e1, . . . ,ei−1)) : ei, eF 6∈ J +(e1, . . . ,ei)
}∣∣∣ .

Let eF ∈ (J +(e1, . . . ,ei−1)) : ei of degree j. Then eieF ∈ J +(e1, . . . ,ei−1). Since J is a
monomial ideal, either eieF ∈ (e1, . . . ,ei−1) or eieF ∈ J. In the first case it follows that eF ∈
(e1, . . . ,ei−1) such that we do not need to count it. In the second case, eF 6∈ J +(e1, . . . ,ei)
is equivalent to eF 6∈ J and eF 6∈ (e1, . . . ,ei) or equivalently eF 6= 0 and minF ≥ i+1.

In order to get a result similar to Theorem 5.2.8 which relates the Betti numbers over E
with the exterior generic annihilator numbers we use the Cartan-Betti numbers (see Chapter
1 for the definition).

Theorem 5.2.15. Let J ⊆ E be a graded ideal. Then

hi,i+ j(r)≤
r

∑
k=1

(
r + i− k−1

i−1

)
αk, j(E/J) i≥ 1, j ≥ 0

and equality holds for all i≥ 1 and 1≤ r ≤ n if and only if J is componentwise linear.

Proof. Let v1, . . . ,vn be a sequence of linear forms that can be used to compute the exterior
generic annihilator numbers and the Cartan-Betti numbers of E/J, as well. Such a sequence
exists as both conditions specify non-empty Zariski-open sets and the intersection of two
non-empty Zariski-open sets remains non-empty. Set αi, j := αi, j(E/J) and

Ai := Ker
(

E/(J +(v1, . . . ,vi))
·vi→ E/(J +(v1, . . . ,vi−1))

)
for 1 ≤ i ≤ n. Then Ai is a graded E-module and the k-vector space dimension of the j-th
graded piece equals αi, j(E/J). The above map occurs in the long exact sequence of Cartan
homologies (see Proposition 1.1.18) since the 0-th Cartan homology is

H0(v1, . . . ,vr;E/J) = E/(J +(v1, . . . ,vr)) .

In order to simplify notation, in the following we write Hi(r) for Hi(v1, . . . ,vr;E/J). By
the above for i = 1 and r = 1 we obtain from the long exact Cartan homology sequence the
following exact sequence

H1(1)(−1) j+1→ H1(0) j+1→ H1(1) j+1→ A1(−1) j+1→ 0.
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5.2 Annihilator numbers

Since Hi(0) = 0 for i≥ 1 this yields

h1, j+1(1) = α1, j.

For r ≥ 1 we have the exact sequence

H1(r +1)(−1) j+1→ H1(r) j+1→ H1(r +1) j+1→ Ar+1(−1) j+1→ 0.

From this sequence we conclude by induction hypothesis on r

h1, j+1(r +1)≤ αr+1, j +h1, j+1(r)

≤ αr+1, j +
r

∑
k=1

(
r− k

0

)
αk, j

=
r+1

∑
k=1

αk, j.

Now let i > 1. For r = 1 there is the exact sequence

Hi(0)i+ j→ Hi(1)i+ j→ Hi−1(1)(−1)i+ j→ Hi−1(0)i+ j.

The outer spaces in the sequence are zero, hence

hi,i+ j(1) = hi−1,i+ j−1(1)≤ α1, j

by induction hypothesis on i.
Let now r ≥ 1. There is the exact sequence

Hi(r)i+ j→ Hi(r +1)i+ j→ Hi−1(r +1)(−1)i+ j→ Hi−1(r)i+ j.

We conclude by induction hypothesis on r and i

hi,i+ j(r +1)≤ hi,i+ j(r)+hi−1,i−1+ j(r +1)

≤
r

∑
k=1

(
r + i− k−1

i−1

)
αk, j +

r+1

∑
k=1

(
r +1+ i−1− k−1

i−2

)
αk, j

=
r

∑
k=1

((
r + i− k−1

i−1

)
+
(

r + i− k−1
i−2

))
αk, j +

(
i−2
i−2

)
αr+1, j

=
r+1

∑
k=1

(
r + i− k

i−1

)
αk, j.

The inequalities in the proof are all equalities if and only if the long exact sequence is split
exact, i.e., the maps

Hi−1(r)(−1)i+ j→ Hi−1(r−1)i+ j

are the zero maps. In this case the sequence v1, . . . ,vn is called a proper sequence for E/J. In
[NRV08, Theorem 2.10] it is shown that this is the case if and only if J is a componentwise
linear ideal.
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5 Exterior depth and generic annihilator numbers

We would like to emphasize at this point that the above result is the same as [NRV08,
Theorem 2.4 (i)] which is a direct consequence of the construction of the Cartan homol-
ogy for stable ideals in [AHH97, Proposition 3.1]. To see this, one just has to substitute
the generic annihilator numbers by their description in terms of the minimal generators of
gin<rlex

(J) and to take into account that we use the reversed order on [n].

Remark 5.2.16. The above results in particular imply that the graded Betti numbers of a
componentwise linear ideal J are bounded from above by linear combinations of the anni-
hilator numbers αi, j(y1, . . . ,yn;E/J) for any k-basis y1, . . . ,yn. If in addition the sequence is
generic (in the sense that it computes the generic annihilator numbers), the graded Betti
numbers of E/J are equal to this linear combination. Here we use that for r = n the
Cartan-Betti numbers of E/J specialize to the usual graded Betti numbers of E/J, i.e.,
hi, j(n)(E/J) = β E

i, j(E/J). This shows that this linear combination is minimized by the
generic annihilator numbers. The same is true for a componentwise linear ideal in the poly-
nomial ring.

5.2.3 An application of almost regular sequences and generic annihilator
numbers

It is widely used that being a regular sequence is a Zariski-open condition over the poly-
nomial ring as well as over the exterior algebra. In [Swa06] Swartz gives a proof for the
special case of (symmetric) Stanley-Reisner rings of simplicial complexes. Nevertheless, in
the general situation we were not able to give a reference for this fact. Therefore we include
a short proof for the symmetric situation following ideas from Herzog using almost regular
sequences. For regular sequences over the exterior algebra a similar proof using exterior
generic annihilator numbers works.
We first consider regular sequences over the polynomial ring.

Proposition 5.2.17. Let N be a finitely generated graded S-module and let depthS(N) = t.
There exists a Zariski-open set U ⊆ GLn(k) such that

γ(x1, . . . ,xn) := (γ1,1x1 + . . .+ γn,1xn, . . . ,γ1,tx1 + . . .+ γn,txn)

is an N-regular sequence for all γ = (γi, j)1≤i, j≤n ∈U.

Proof. Herzog and Hibi proved in [HH08] that the set of almost regular sequences on N is
a non-empty Zariski-open set (Proposition 5.2.6). They further showed that v1, . . . ,vt is an
N-regular sequence if v1, . . . ,vn is an almost regular sequence on N and depthS(N) = t (see
Remark 5.2.7). Hence the assertion follows.

We now recall the result for regular sequences over the exterior algebra.
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5.3 A counterexample to a minimality conjecture of Herzog

Proposition 5.2.18. Let J ⊆ E be a graded ideal and let depthE E/J = t. Then there exists
a non-empty Zariski-open set U ⊆ GLn(k) such that

γ(e1, . . . ,en) := (γ1,1e1 + . . .+ γn,1en, . . . ,γ1,te1 + . . .+ γn,ten)

is an (E/J)-regular sequence for all γ = (γi, j)1≤i, j≤n ∈U.

Proof. Let U be the non-empty Zariski-open set as in Proposition 5.2.11, i.e., such that the
annihilator numbers with respect to sequences v1, . . . ,vn induced by U equal the generic an-
nihilator numbers. Following Lemma 5.4.3 e1, . . . ,et is a regular sequence on E/gin<rlex

(J)
and therefore

αi, j(v1, . . . ,vn;E/J) = αi, j(e1, . . . ,en;E/gin<rlex
(J)) = 0

for i≤ t. Thus v1, . . . ,vt is regular on E/J.

The above result can be proved directly using that a sequence of linear forms is regular
if and only if the first Cartan homology vanishes and showing that the last condition is a
non-empty Zariski-open condition. But using the generic annihilator numbers provides a
shorter proof.

5.3 A counterexample to a minimality conjecture of Herzog

A natural question to put is whether the exterior generic annihilator numbers play a special
role among the exterior annihilator numbers of E/J with respect to a certain sequence. From
Theorem 5.2.15 it follows that the exterior generic annihilator numbers minimize certain
positive linear combinations of exterior annihilator numbers with respect to a sequence (see
Remark 5.2.16). More generally, one could wonder if they are even the minimal ones among
all the annihilator numbers. Herzog posed this question and predicted it to be true. However,
in the attempt of proving this conjecture it turned out to be wrong. In order to clarify this
unexpected result we do not only give a counterexample of the conjecture but we also give a
sketch of the original idea of the proof and explain how we came up with the example. This
also gives a hint at how to construct further counterexamples. After some slight changes our
example also serves as a counterexample of the corresponding conjecture for the symmetric
generic annihilator numbers. For the sake of completeness we first state the conjecture.

Conjecture 5.3.1. Let J ⊆ E be a graded ideal. For any basis v1, . . . ,vn of E1 it holds that

αi, j(E/J)≤ αi, j(v1, . . . ,vn;E/J)

for 1≤ i≤ n and j ≥ 0.
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5 Exterior depth and generic annihilator numbers

Thus, our aim was to prove that the annihilator numbers are minimal on a non-empty
Zariski-open set. For i = 1 this is known to be true. Just take the non-empty Zariski-open
set such that the ranks of the matrices of the maps of the complex

(N,v) : . . .→ N j−1
·v→ N j

·v→ N j+1→ . . .

are maximal (note that N j = 0 for almost all j). To prove this for longer sequences we tried
to show that the sets

Ui, j :=
{

(v1, . . . ,vn)⊆ E1 basis
∣∣∣ αi, j(v1, . . . ,vn;E/J)≤ αi, j(w1, . . . ,wn;E/J)

for any basis (w1, . . . ,wn)⊆ E1

}
were non-empty Zariski-open sets for 1 ≤ i ≤ n, 0 ≤ j ≤ n. The intersection of those
sets would have been a non-empty Zariski-open set having the required property, since
only finitely many sets are intersected. In order to compute a certain annihilator number
αi, j(v1, . . . ,vn;E/J) we used the exact sequence

0→ H j(E/(J +(v1, . . . ,vi−1)),vi)→ (E/(J +(v1, . . . ,vi))) j
·vi→ (E/(J +(v1, . . . ,vi−1))) j+1→ (E/(J +(v1, . . . ,vi))) j+1→ 0,

which yields

αi, j(v1, . . . ,vn;E/J) = dimk (E/(J +(v1, . . . ,vi))) j

−(dimk (E/(J +(v1, . . . ,vi−1))) j+1−dimk (E/(J +(v1, . . . ,vi))) j+1).

The idea was to minimize dimk (E/(J +(v1, . . . ,vi))) j and to maximize the difference
(dimk (E/(J +(v1, . . . ,vi−1))) j+1−dimk (E/(J +(v1, . . . ,vi))) j+1) in order to get a minimal
annihilator number αi, j(v1, . . . ,vn;E/J).
To simplify notation in the sequel we write Di−1, j+1 for (dimk (E/(J +(v1, . . . ,vi−1))) j+1−
dimk (E/(J +(v1, . . . ,vi))) j+1).
One can show that there exists a non-empty Zariski-open subset of

{(v1, . . . ,vn)⊆ E1 | (v1, . . . ,vn) basis of E1}

such that dimk (E/(J +(v1, . . . ,vi))) j is minimal. If the property of maximizing the differ-
ence Di−1, j+1 were a non-empty Zariski-open condition on the sequence the claim would
follow. But this would mean that this very difference would be maximized whenever
dimk (E/(J +(v1, . . . ,vi−1))) j+1 and dimk (E/(J +(v1, . . . ,vi))) j+1 are minimized.
But what happens for instance if dimk (E/(J +(v1, . . . ,vi−1))) j+1 = 0? The maximal dif-
ference should be 0 in this case. The idea we came up with was to construct a sequence
such that dimk (E/(J +(v1, . . . ,vi))) j and dimk (E/(J +(v1, . . . ,vi))) j+1 = 0 are minimal
but dimk (E/(J +(v1, . . . ,vi−1))) j+1 is not. This would yield a smaller annihilator number.
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Example 5.3.2. Let 1≤ i, j ≤ n and let

J := (el1 · . . . · el j+1 | i≤ l1 < l2 < .. . < l j+1 ≤ n)⊆ E

be a graded ideal. By construction, J is strongly stable. It therefore holds that gin<rlex
(J) = J.

Then
αi, j(E/J) = αi, j(e1, . . . ,en;E/gin<rlex

(J)) = αi, j(e1, . . . ,en;E/J),

i.e., we can use the sequence e1, . . . ,en to compute the generic annihilator numbers of E/J.
From the exact sequence

0→ H j(E/(J +(e1, . . . ,ei−1)),ei)→ (E/(J +(e1, . . . ,ei))) j
·ei→ (E/(J +(e1, . . . ,ei−1))) j+1→ (E/(J +(e1, . . . ,ei))) j+1→ 0

we deduce

αi, j(E/J) = dimk (E/(J +(e1, . . . ,ei))) j

−(dimk (E/(J +(e1, . . . ,ei−1))) j+1−dimk (E/(J +(e1, . . . ,ei))) j+1).

In the following we consider the sequence e := e1, . . . ,ei−2,ei,ei−1,ei+1, . . . ,en and com-
pute the exterior annihilator numbers of E/J with respect to this sequence. As before, we
have the exact sequence

0→ H j(E/(J +(e1, . . . ,ei−2,ei)),ei−1)→ (E/(J +(e1, . . . ,ei))) j
·ei−1→ (E/(J +(e1, . . . ,ei−2,ei))) j+1→ (E/(J +(e1, . . . ,ei))) j+1→ 0,

which leads to

αi, j(e;E/J) = dimk (E/(J +(e1, . . . ,ei))) j

−(dimk (E/(J +(e1, . . . ,ei−2,ei))) j+1−dimk (E/(J +(e1, . . . ,ei))) j+1).

Our aim is to show that αi, j(E/J) > αi, j(e;E/J). We therefore need to show that

dimk (E/(J +(e1, . . . ,ei−2,ei))) j+1 > dimk (E/(J +(e1, . . . ,ei−2,ei−1))) j+1 .

Let m := el1 · . . . · el j+1 ∈ E j+1 with l1 < .. . < l j+1. If l1 ≤ i− 1, it already holds that m ∈
(e1, . . . ,ei−1) j+1⊆ (J +(e1, . . . ,ei−1)) j+1. If l1≥ i, we have i≤ l1 < .. . < l j+1 and therefore
m ∈ J j+1 ⊆ (J + (e1, . . . ,ei−1)) j+1. Thus, m ∈ (J + (e1, . . . ,ei−1)) j+1 in either case and
therefore (J +(e1, . . . ,ei−1)) j+1 = E j+1 and dimk (E/(J +(e1, . . . ,ei−1))) j+1 = 0.

Consider now m̃ := ei−1ei+1 · . . . · ei+ j ∈ E j+1. By definition, it holds that m̃ /∈ J and
m̃ /∈ (e1, . . . ,ei−2,ei). Since J is a monomial ideal this implies m̃ /∈ (J +(e1, . . . ,ei−2,ei)) j+1.
We therefore get dimk (E/(J +(e1, . . . ,ei−2,ei))) j+1 > 0. This finally shows

αi, j(E/J) > αi, j(e;E/J).
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We also compute αi−1, j(E/J) and αi−1, j(e1, . . . ,ei−2,ei,ei−1,ei+1, . . . ,en;E/J) in this
special case and show that those numbers are related to each other the other way round,
i.e., we have

αi−1, j(E/J) < αi−1, j(e;E/J). (5.5)

This suggests that, in order to have a chance to become smaller than the generic annihila-
tor numbers, the annihilator numbers with respect to e first have to become greater. Similar
to the i-th annihilator numbers of E/J we can compute the (i− 1)-st annihilator numbers
using the corresponding exact sequence. We therefore get

αi−1, j(E/J) = dimk (E/(J +(e1, . . . ,ei−1))) j

−(dimk (E/(J +(e1, . . . ,ei−2))) j+1−dimk (E/(J +(e1, . . . ,ei−1))) j+1)

for the (i−1)-st generic annihilator number of E/J in degree j. In the same way, we obtain

αi−1, j(e;E/J) = dimk (E/(J +(e1, . . . ,ei−2,ei))) j

−(dimk (E/(J +(e1, . . . ,ei−2))) j+1−dimk (E/(J +(e1, . . . ,ei−2,ei))) j+1)

for the (i−1)-st exterior annihilator number of E/J in degree j with respect to the sequence
e. Since J is generated by monomials of degree strictly larger than j it holds that

dimk (E/(J +(e1, . . . ,ei−1))) j = dimk (E/(e1, . . . ,ei−1)) j

and

dimk (E/(J +(e1, . . . ,ei−2,ei))) j = dimk (E/(e1, . . . ,ei−2,ei)) j .

Since

dimk (E/(J +(e1, . . . ,ei−1))) j = dimk (E/(J +(e1, . . . ,ei−2,ei))) j ,

in order to show (5.5) we only need to prove that

dimk (E/(J +(e1, . . . ,ei−1))) j+1 < dimk (E/(J +(e1, . . . ,ei−2,ei))) j+1 .

This follows from

(J +(e1, . . . ,ei−1)) j+1 ) (J +(e1, . . . ,ei−2,ei)) j+1 . (5.6)

To show (5.6) let m = el1 · . . . · el j+1 ∈ (J +(e1, . . . ,ei−2,ei)) j+1 with l1 < .. . < l j+1. If
l1 ≥ i it follows that m ∈ J j+1 ⊆ (J +(e1, . . . ,ei−1)) j+1. If l1 ≤ i− 1 it already holds
that el1 ∈ (e1, . . . ,ei−1) and thus m ∈ (J +(e1, . . . ,ei−1)) j+1. Since ei−1ei+1 · . . . · ei+ j ∈
(J +(e1, . . . ,ei−1)) j+1 but ei−1ei+1 · . . . · ei+ j /∈ (J +(e1, . . . ,ei−2,ei)) j+1 we obtain (5.6).
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5.3 A counterexample to a minimality conjecture of Herzog

Thus, although we have seen that the exterior generic annihilator numbers are minimal
in a certain global sense (see Remark 5.2.16) the above example shows that the single ones
are not.
We now compute Example 5.3.2 for the special case n = 5.

Example 5.3.3. Let n = 5 and i = 3. We consider the ideal J := (e3 ∧ e4,e3 ∧ e5,e4 ∧ e5)
in the exterior algebra E := k〈e1, . . . ,e5〉. We use the sequence e1,e2,e3,e4,e5 to compute
the generic annihilator numbers αi, j := αi, j(E/J). Let αi := ∑ j∈Z αi, j denote the sum over
all annihilator numbers computed in step i. Since e1 and e2 do not appear among the gener-
ators of J, these two form a regular sequence on E/J. This implies that the corresponding
annihilator numbers are zero, i.e., α1 = α2 = 0. To compute α3, j we have to compute the
vector space dimension of

((J̄ : e3)/(J̄ +(e3))) j = ((e1,e2,e3,e4,e5)/(e1,e2,e3,e4∧ e5)) j ,

where J̄ := J +(e1,e2). Therefore α3,1 = 2 and in all other degrees the annihilator number
is zero. In the next step we look at

((J̄ : e4)/(J̄ +(e4))) j = ((e1,e2,e3,e4,e5)/(e1,e2,e3,e4)) j ,

where now J̄ := J + (e1,e2,e3). Thus α4,1 = 1 and α4, j = 0 for j 6= 1. In the last step
we obtain α5 = 0. Note that the last generic annihilator number is always zero, as it is
the dimension of a quotient over J + (e1, . . . ,en) = (e1, . . . ,en). In particular, we see that
depthE E/J = 2.

Now we compute the annihilator numbers α ′i, j of E/J with respect to the sequence
e1,e3,e2,e4,e5. Again e1 is an (E/J)-regular element and thus α ′1 = 0. But α ′2 6= 0 in
contrary to α2 since

((J +(e1)) : e3)/(J +(e1,e3)) = (e1,e3,e4,e5)/(e1,e3,e4∧ e5).

Therefore α ′2,1 = 2, α ′2,2 = 2 and zero otherwise. Now e2 is still regular on E/(J +
(e1,e3)), whence α ′3 = 0 < α3. Thus in this case the generic annihilator number is the
greater one. The last two steps are the same as above, i.e., α ′4, j = α4, j which is 1 for
j = 1 and zero otherwise and α ′5 = α5 = 0. If one compares the respective sets of non-zero
annihilator numbers, one has in the first case, i.e., for the generic numbers, {2,1} and in the
second case {2,2,1}. Therefore the generic annihilator numbers seem to be minimal in a
certain global sense, meaning that when comparing the sets of non-zero annihilator numbers
the one for the generic annihilator numbers is lexicographically smaller.

Besides the minimality conjecture for the exterior generic annihilator numbers Herzog
conjectured the commensurate result to be true over the polynomial ring, i.e., that the sym-
metric generic annihilator numbers are the minimal ones among all symmetric annihilator
numbers with respect to a sequence. As already mentioned, this is not the case. In fact, after
slight modifications Example 5.3.2 serves as a counterexample.
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5 Exterior depth and generic annihilator numbers

Example 5.3.4. Let 1≤ i≤ j ≤ n and let I := (xl1 · . . . · xl j+1 | i≤ l1 ≤ . . .≤ l j+1)⊆ S be a
graded ideal. Analogously to Example 5.3.2 we can use the sequence x1, . . . ,xn to compute
the symmetric generic annihilator numbers of S/I. From the exact sequence

0→ Ai(x1, . . . ,xn;S/I) j→ (S/(I +(x1, . . . ,xi−1))) j
·xi→ (S/(I +(x1, . . . ,xi−1))) j+1→ (S/(I +(x1, . . . ,xi))) j+1→ 0

we deduce

αi, j(S/I) = dimk (S/(I +(x1, . . . ,xi−1))) j

−(dimk (S/(I +(x1, . . . ,xi−1))) j+1−dimk (S/(I +(x1, . . . ,xi))) j+1).

Using the same exact sequence for the sequence x = x1, . . . ,xi−2,xi,xi−1,xi+1, . . . ,xn we get

αi, j(x;S/I) = dimk (S/(I +(x1, . . . ,xi−2,xi))) j

−(dimk (S/(I +(x1, . . . ,xi−2,xi))) j+1−dimk (S/(I +(x1, . . . ,xi))) j+1 .

Since I is generated in degree j +1 it holds that

dimk (S/(I +(x1, . . . ,xi−1))) j = dimk (S/(x1, . . . ,xi−1)) j

= dimk (S/(x1, . . . ,xi−2,xi)) j

= dimk (S/(I +(x1, . . . ,xi−2,xi))) j .

One easily shows that (I +(x1, . . . ,xi−2,xi)) j+1 ( (I +(x1, . . . ,xi−1)) j+1. This implies

dimk (S/(I +(x1, . . . ,xi−1))) j+1 < dimk (S/(I +(x1, . . . ,xi−2,xi))) j+1 . (5.7)

As in the exterior case we thus obtain

αi, j(S/I) > αi, j(x;S/I).

We now compute the (i−1)-st annihilator number in degree j and see what happens in this
case. The same arguments as before show that

αi−1, j(S/I) = dimk (S/(I +(x1, . . . ,xi−2))) j

−(dimk (S/(I +(x1, . . . ,xi−2))) j+1−dimk (S/(I +(x1, . . . ,xi−1))) j+1)

and

αi−1, j(x;S/I) = dimk (S/(I +(x1, . . . ,xi−2))) j

−(dimk (S/(I +(x1, . . . ,xi−2))) j+1−dimk (S/(I +(x1, . . . ,xi−2,xi))) j+1).

Using Equation (5.7) we thus obtain

αi−1, j(S/I) < αi−1, j(x;S/I).

90



5.4 The exterior depth and exterior annihilator numbers for Stanley-Reisner rings

From Examples 5.3.2 and 5.3.4 it follows that the annihilator numbers with respect to a
sequence – the symmetric as well as the exterior ones – may depend on the order of the
sequence. However, we conjecture that when taking the sequence from a certain non-empty
Zariski-open set the order of the elements of the sequence does not matter. Therefore, it is
a bit surprising, that there are examples where the order plays a role when we consider the
perhaps most natural sequences e1, . . . ,en and x1, . . . ,xn for the exterior and the symmetric
annihilator numbers, respectively.

Conjecture 5.3.5. Let J ⊆ E be a graded ideal. Then there exists a non-empty Zariski-open
set V ⊆ GLn(K) such that

αi, j(E/J) = αi, j(γ(eσ(1), . . . ,eσ(n));E/J)

for all γ ∈V and all σ ∈ Sn, where Sn denotes the symmetric group on [n].

5.4 The exterior depth and exterior annihilator numbers for
Stanley-Reisner rings of simplicial complexes

The aim of this section is to transfer the results of the previous sections of this chapter to
the special class of Stanley-Reisner rings of simplicial complexes. Besides the mere confer-
ment of the results we also derive additional ones – including a characterization of simplicial
complexes whose exterior Stanley-Reisner ring has a certain exterior depth. Those simpli-
cial complexes can be characterized in terms of their exterior algebraic shifting. From this
description we obtain alternative proofs for two of the previously obtained results.

After having dealt with the exterior depth of Stanley-Reisner rings we consider the exte-
rior generic annihilator numbers for this class of rings. The combinatorial description of the
exterior generic annihilator numbers turns out to be particularly nice for exterior face rings
of simplicial complexes. Using this characterization we manage to express the graded Betti
numbers of the symmetric Stanley-Reisner ring of a simplicial complex as positive linear
combinations of certain exterior generic annihilator numbers of the Stanley-Reisner ring of
the exterior shifting of the simplicial complex.

5.4.1 The exterior depth for Stanley-Reisner rings of simplicial
complexes

In Section 5.1 we have shown that the exterior depth of an E-module is always bounded
from above by the symmetric depth of the associated S-module. An interesting issue to
examine is if there are classes of squarefree modules for which equality holds in Inequality
(5.1). In the special case of Stanley-Reisner rings of simplicial complexes we can identify
at least one such class.
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5 Exterior depth and generic annihilator numbers

Lemma 5.4.1. Let ∆ be a Cohen-Macaulay simplicial complex over k. Then

depthS(k[∆])−depthE(k{∆}) = cxE(k{∆})−projdimS(k[∆]) = regS(k[∆]).

Proof. The first equality is always true as follows from the proof of Theorem 5.1.16. Let
dim∆ = d− 1. As ∆ is Cohen-Macaulay over k, its Stanley-Reisner ring k[∆] has depth d
over S and the face ring k{∆} has a d-linear injective resolution over E. In fact, Aramova and
Herzog showed in [AH00, Corollary 7.6] that a simplicial complex ∆ is Cohen-Macaulay if
and only if the exterior Stanley-Reisner ideal of its Alexander dual ∆∗ := {F ⊆ [n] | ([n] \
F) /∈ ∆} has a linear projective resolution over E. In [KR08, Example 5.1] Kämpf and
Römer prove that k{∆} is the dual of J∆∗ . Thus, by dualizing the projective resolution of
J∆∗ we get an injective resolution of k{∆}. Being the projective resolution of J∆∗ d-linear
then implies that k{∆} has a d-linear injective resolution. Following [KR08, Theorem 5.3]
it holds that

d = depthE(k{∆})+ regE(k{∆}).

The regularity over E is the same as the regularity over S (see Remark 5.1.13), hence

regS(k[∆]) = d−depthE(k{∆}) = depthS(k[∆])−depthE(k{∆}).

The following example shows that in general the converse of Lemma 5.4.1 is not true.

Example 5.4.2. Let ∆ be the simplicial complex consisting of two isolated edges. Then ∆

is not Cohen-Macaulay since it is disconnected. But, as one easily sees, depthE(k{∆}) = 0,
depthS(k[∆]) = 1 and regS(k[∆]) = 1. Therefore,

depthS(k[∆])−depthE(k{∆}) = 1 = regS(k[∆]).

Our next aim is to characterize simplicial complexes whose exterior Stanley-Reisner ring
has a certain exterior depth. We are able to describe the exterior shifting of those complexes.
From Theorem 5.1.11 it follows that the exterior Stanley-Reisner ring of a simplicial com-
plex and the one of its exterior shifting have the same exterior depth. In order to give the
desired characterization we need to recall some further results. It is well-known that for
stable ideals an initial segment of e1, . . . ,en is a regular sequence. However, for the sake of
completeness we include a proof of it.

Lemma 5.4.3. Let J ⊆ E be a stable ideal of exterior depth t. Then e1, . . . ,et is a regular
sequence on E/J.

Proof. If t = 0 there is nothing to prove, thus we may assume t > 0. Let eA be a monomial
in J : e1. We show that eA ∈ (J +(e1)). Then the claim follows by induction on t. Note that
since J is stable, (J +(e1))/(e1) is stable in E/(e1)∼= k〈e2, . . . ,en〉, as well.
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5.4 The exterior depth and exterior annihilator numbers for Stanley-Reisner rings

Since e1eA ∈ J there exists a minimal monomial generator u ∈ G(J) such that u divides
e1eA. If u is not divisible by e1 then u divides eA and therefore it follows that eA ∈ J. If not, u
would be a minimal generator of J which is divisible by e1. Aramova, Avramov and Herzog
[AAH00, Theorem 3.2] as well as Kämpf and Römer [KR08, Proposition 3.4] described the
depth of a stable ideal in the following way

depthE E/J = n− (n−min{min(v) | v ∈ G(J)}−1) = min{min(v) | v ∈ G(J)}−1

(according to the reversed order on [n]). Thus it follows that depthE E/J = 0, a contradiction
to the assumption t > 0.

Before we can state the desired characterization we need to introduce the notion of a
non-acyclic simplicial complex.

Definition 5.4.4. Let ∆ be a simplicial complex. ∆ is called non-acyclic if there exists
0≤ i≤ dim∆ such that H̃i(∆;k) 6= 0.

It was shown by Aramova and Herzog [AH00, Lemma 3.3] that the simplicial homology of
a simplicial complex ∆ can be computed using the complex

(k{∆},v) : . . .→ k{∆} j−1
·v→ k{∆} j

·v→ k{∆} j+1→ . . . ,

where v ∈ E is a generic element of degree one. More precisely, we have H i(k{∆},v) =
H̃i(∆;k) for 0 ≤ i ≤ dim∆. Since H i(k{∆},v) = 0 for 0 ≤ i ≤ dim∆ if v is a k{∆}-regular
element, it follows that depthE(k{∆}) = 0 if and only if ∆ is non-acyclic. Using this char-
acterization of non-acyclic simplicial complexes we can prove the following.

Theorem 5.4.5. Let ∆ be a simplicial complex on vertex set [n]. Then depthE(k{∆}) = r if
and only if ∆e = 2[r]∗Γ, where Γ is a non-acyclic simplicial complex, 2[r] the (r−1)-simplex
and dimΓ = dim∆− r.

Proof. We first assume that depthE(k{∆}) = r. In order to prove the statement we need to
show that for F ∈ ∆e it holds that F ∪ [t] is a face of ∆e for any t ≤ r. We give two different
proofs, an algebraic one and a combinatorial one.
Algebraic proof:
Let F ∈ ∆e. Without loss of generality we may assume that F ∩ [t] = /0. We can take
e1, . . . ,et as a regular sequence for the exterior face ring k{∆e} = E/gin<rlex

(J∆). Suppose
F ∈ ∆e such that F ∩ [t] = /0 and F ∪ [t] /∈ ∆e. Thus, et ∧ . . .∧ e1∧ eF = 0 in k{∆e}. By the
definition of a regular sequence it follows that

et−1∧ . . .∧ e1∧ eF ∈ (et)⊆ k{∆e}.

Therefore, et−1 ∧ . . .∧ e1 ∧ eF = 0 ∈ E/(gin<rlex
(J∆)+ (et)). Inductively, we get eF = 0 ∈

E/(gin<rlex
(J∆)+ (et , . . . ,e1)). Since F ∩ [t] = /0 by assumption, we have eF ∈ gin<rlex

(J∆),
i.e., F /∈ ∆e. This is a contradiction.
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5 Exterior depth and generic annihilator numbers

Combinatorial proof:
Let { f1, . . . , fn} ⊆ E1 be a generic basis which is used in the computation of the exterior
shifting ∆e. We know that ft , . . . , f1 is a regular sequence for k{∆e}. Suppose F ∈ ∆e such
that F ∩ [t] = /0 and F ∪ [t] /∈ ∆e. Thus

f1∧ . . .∧ ft ∧ fF = ∑
T<lex[t]∪F

αT fT

= ∑
T ′<lexF

αT ′ f1∧ . . .∧ ft ∧ fT ′

= f1∧ . . .∧ ft ∧ ( ∑
T ′<lexF

αT ′ fT ′),

i.e., f1∧ . . .∧ ft ∧( fF−∑T ′<lexF αT ′ fT ′) = 0. If ft ∧( fF−∑T ′<lexF αT ′ fT ′) = 0 it follows that
fF −∑T ′<lexF αT ′ fT ′ ∈ Im( ft), i.e., fF −∑T ′<lexF αT ′ fT ′ = ft ∧ (∑G⊆[n] αG fG). This implies
fF = ∑T ′<lexF αT ′ fT ′ + ∑G⊆[n] αG( ft ∧ fG). Since F ∩ [t] = /0 it follows that G∪{t} <lex F
and therefore F /∈ ∆e. Hence, a contradiction.
If fF −∑T ′<lexF αT ′ fT ′ /∈ Ker( ft), then ft ∧ ( fF −∑T ′<lexF αT ′ fT ′) ∈ Ker( f1∧ . . .∧ ft−1) and
by induction we conclude F /∈ ∆e.

Both proofs show ∆e = 2[r] ∗ Γ for some (dim∆− r)-dimensional simplicial complex
Γ with JΓ = gin<rlex

(J∆) + (e1, . . . ,et). By definition of the exterior depth it holds that
depthE(k{Γ}) = depthE(k{∆e})− r = 0. We therefore conclude that H̃i(Γ;k) 6= 0 for some
0≤ i≤ dim(Γ), i.e., Γ is non-acyclic.

To prove the sufficiency part recall that it holds that depthE(k{∆}) = depthE(k{∆e}).
Thus, we only need to show that depthE(k{∆e}) = r. By assumption, we have that ∆e =
2[r] ∗Γ, where Γ is a non-acyclic simplicial complex. Then the sequence e1, . . . ,er is reg-
ular on k{∆e} by Lemma 5.4.3. This implies depthE(k{∆e}) ≥ r. It further holds that
k{∆e}/(e1, . . . ,er) ∼= k{Γ}. Since Γ is non-acyclic we know from the remarks preceding
this theorem that depthE(k{Γ}) = 0, i.e., there does not exist any regular element on k{Γ}.
Using that each regular sequence on k{∆e} can be extended to a maximal one, we therefore
deduce that e1, . . . ,er is already maximal and thus it follows that depthE(k{∆e}) = r.

Remark 5.4.6. The above theorem can be used to deduce two of the previous results in the
special case of simplicial complexes.

(i) Note that from the above proof the inequality

depthE(k{∆})≤ depthS(k[∆])

between the exterior and the symmetric depth can be deduced. If depthE(k{∆}) = r,
then Theorem 5.4.5 implies ∆e = 2[r] ∗Γ and therefore x1, . . . ,xr is a regular sequence
for k[∆e], i.e., depthS(k[∆

e])≥ r. Since by Theorem 1.2.10 it holds that depthS(k[∆]) =
depthS(k[∆

e]) we obtain the required inequality.
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5.4 The exterior depth and exterior annihilator numbers for Stanley-Reisner rings

(ii) Using the characterization of Theorem 5.4.5 we can give a second proof of Lemma
5.4.1. If ∆ is non-acyclic, i.e., H̃i(∆;k) 6= 0 for some 0 ≤ i ≤ dim∆, it follows
that depthE(k{∆}) = 0. Since ∆ is Cohen-Macaulay it follows from Reisner’s cri-
terion that H̃i(∆;k) = 0 for i < dim∆. Thus, H̃dim∆(∆;k) 6= 0. In [KW08, Propo-
sition 2.6] Welker and the author of this thesis showed that in this case it holds
that regS(k[∆]) = dim∆ + 1. Combining these two facts and using that ∆ is Cohen-
Macaulay, i.e., depthS(k[∆]) = dimS(k[∆]), we obtain

depthS(k[∆])−depthE(k{∆}) = depthS(k[∆])
= dimS k[∆] = dim∆+1 = regS(k[∆]).

Let us now assume that ∆ is an acyclic simplicial complex and let depthE(k{∆}) = r.
We may assume that ∆ = ∆e since the Stanley-Reisner rings of ∆ and ∆e have the same
symmetric and exterior depth, respectively, and the same regularity (see [Röm01,
Corollary 1.3]). From Theorem 5.4.5 we know that ∆e = 2[r] ∗Γ, where Γ is a non-
acyclic simplicial complex. In particular, since ∆e is Cohen-Macaulay, so is Γ. This
implies

depthS(k[Γ]) = dimS(k[Γ]) = dimS(k[∆])− r = depthS(k[∆])− r.

Using that depthE(k{Γ}) = 0 = depthE(k{∆})− r we deduce

depthS(k[∆])−depthE(k{∆}) = depthS(k[Γ])−depthE(k{Γ}).

Since Γ is a non-acyclic simplicial complex we know from the first part of our consid-
erations that depthS(k[Γ])−depthE(k{Γ}) = regS(k[Γ]). We further have that k[Γ]∼=
k[∆]/(x1, . . . ,xr) and x1, . . . ,xr is a regular sequence on k[∆]. Since reducing modulo a
regular sequence leaves the regularity unchanged it holds that regS(k[∆]) = regS(k[Γ]).
This finally shows the claim.

A natural issue which occurs is for which pairs of numbers (s ≤ t) does there exist a
simplicial complex ∆ with the property that depthE(k{∆}) = s and depthS(k[∆]) = t. We
can solve this matter by showing that all pairs of numbers are possible.

Example 5.4.7. Indeed, let (s, t) ∈ N2 with s ≤ t. Consider ∆ = 2[s] ∗ ∂ (2[t−s+2]), where
∂ (2[t−s+2]) denotes the boundary of the (t − s + 2)-simplex. Then depthE(k{∆}) = s and
since ∆ is Cohen-Macaulay depthS(k[∆]) = t, as required.

The above example in particular shows that the inequality between the symmetric depth
of an S-module and the exterior depth of the corresponding E-module cannot be improved
and that the symmetric depth cannot be bounded from above in terms of the exterior depth.
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5 Exterior depth and generic annihilator numbers

5.4.2 Annihilator numbers for Stanley-Reisner rings of simplicial
complexes

In Section 5.2.2 we have shown that the exterior generic annihilator numbers of an E-
module E/J can be expressed in terms of certain generators of the generic initial ideal of
J. Considering the special case of the exterior Stanley-Reisner ring of a simplicial complex
this description has a nice combinatorial interpretation in terms of the simplicial complex.

Corollary 5.4.8. Let ∆ be a simplicial complex and let ∆e be its exterior shifting. Then

αi, j(k{∆}) = |{F ∈ ∆
e | |F |= j, [i]∩F = /0, F ∪{i} 6∈ ∆

e}|.

From the above formula for the exterior generic annihilator numbers we can derive a sec-
ond combinatorial characterization of those numbers in terms of the minimal generators of
the symmetric and the exterior Stanley-Reisner ideal of the exterior shifting of a simplicial
complex, respectively. Using this second description we are able to couch the symmetric
Betti numbers of the Stanley-Reisner ring of the exterior shifting of a simplicial complex
as linear combinations of certain generic annihilator numbers. The proof of this formula
uses the Eliahou-Kervaire formula for the symmetric Betti numbers for stable ideals (see
Theorem 1.1.14 in Chapter 1).

Proposition 5.4.9. Let ∆ be a simplicial complex and ∆e be its exterior shifting. Then

αl, j(E/J∆) =
∣∣∣{u ∈ G(I∆e) j+1

∣∣∣ min(u) = l
}∣∣∣= ∣∣∣{u ∈ G(J∆e) j+1

∣∣∣ min(u) = l
}∣∣∣ .

In particular,

β
S
i,i+ j(k[∆

e]) =
n

∑
l=1

(
n− l− j

i−1

)
αl, j(k{∆}).

Proof. As shown in Corollary 5.4.8 the number αl, j(E/J∆) counts the cardinality of the set

A = {A ∈ ∆
e | |A|= j, [l]∩A = /0, A∪{l} 6∈ ∆

e}.
On the other hand the minimal generators of I∆e or J∆e are the monomials corresponding

to minimal non-faces of ∆e, i.e., the elements of {u ∈ G(I∆e) j+1 | min(u) = l} are the
monomials xB such that B lies in the set

B = {B 6∈ ∆
e | |B|= j +1, min(B) = l, ∂ (B)⊆ ∆

e},
where ∂ (B) = {F ⊂ B | F 6= B} denotes the boundary of B. We show that there is a one-
to-one correspondence between A and B. Let B ∈B. Then l ∈ B and A = B \ {l} is an
element in A . Conversely, if A ∈ A then B = A∪{l} ∈ B. The only non-trivial point
here is to see that the boundary of B is contained in ∆e. This holds since ∆e is shifted and
min(B) = l.

The statement about the Betti numbers then follows from the Eliahou-Kervaire formula
for squarefree stable ideals (Theorem 1.1.14).
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[Röm01] T. Römer. Generalized Alexander Duality and Applications. Osaka J. Math.,
38:469–485, 2001.

[Sta75] R.P. Stanley. The upper bound conjecture and Cohen-Macaulay rings. Studies
in Applied Math, 54:135–142, 1975.

[Sta80] R.P. Stanley. The number of faces of a simplicial convex polytope. Adv. in
Math., 35(3):236–238, 1980.

[Sta94] R.P. Stanley. Flag f -vectors and the cd-index. Mathematische Zeitschrift,
216:483–499, 1994.

[Sta96] R.P. Stanley. Combinatorics and commutative algebra, volume 41 of Progress
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