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Preface 
 
This dissertation was carried out at the Department of Conservation Biology at the Philipps-

University of Marburg from January 2005 to February 2009 under the supervision of Prof. Dr. 

Birgit Ziegenhagen. It was accomplished within the interdisciplinary project ‚Untersuchungen 

zur Co-Dynamik der genetischen Diversität von Tanne (Abies alba Mill.) und mit ihr 

vergesellschafteter Ektomykorrhiza-Pilze nach Großstörungsereignissen (Süddeutsche 

Windwurfflächen)’, funded by the ‚Deutsche Forschungsgesellschaft’ (DFG; 

project: Zi698 5/1-2). 

Within this project, two PhD positions were appointed focusing on the ectomycorrhizal fungi 

of silver fir (department ‘Mycology’) and focusing on the population genetics of silver fir 

(department ‘Conservation Biology’). Combined manuscripts and publications were 

developed according to manifold interferences of the common subject. This challenged us 

(my dear colleague Kathrin Donges and me) not to exploit the data received by the other and 

to focus largely on the respective single topic within our dissertations (‘population genetics of 

silver fir’ and ‘ectomycorrhizal fungi of silver fir’, respectively). I therefore tried to discuss 

discretely on silver fir as main focus integrating the ectomycorrhizal aspect only additionally. 

An extensive discussion of the ectomycorrhizal fungi is given within the dissertation of 

Kathrin Donges.   

 

Marburg, in February 2009 
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Abstract 

Abstract  

Facing climate change, we expect an increasing frequency of extreme weather events such 

as storms that affect forest ecosystems. In the last decades, several storm events in Central 

Europe have damaged huge areas of forest stands that have to be recolonized. Symbiotic 

systems between trees and ectomycorrhizal (ECM) fungi play a decisive role for the stability 

and the vitality of trees. In the context of promoting the rare, but ‘stabilizing’ tree species 

silver fir in mountain forests and facing the recolonization of windthrow areas, three fir 

populations were genetically investigated in the Northern Black Forest, Germany. For this 

purpose, in a first step nuclear microsatellite (nSSR) markers were developed for silver fir. Fir 

trees of different ontogenetic stages (adults, saplings, seedlings) were genotyped at six 

nSSR loci and analysed in terms of diversity and abundance of the associated ECM fungi.  

The results demonstrate that silver fir populations in the Black Forest maintain a suitable 

genetic potential with high diversity within and less differentiation among populations. The 

remaining natural fir regeneration on the windthrow area did not show a reduced genetic 

diversity in comparison to the adjacent forest stands which include different generations. In 

addition, dispersal characteristics (gene flow) of firs revealed a sufficient seed and pollen 

flow of at least a few hundred meters from the mother trees. A high number of mother trees 

contributed to the seed dispersal and led to a multifaceted seed entry, even into the 

windthrow areas. Beyond, the analysis of the associated ECM fungi exhibited an identical 

spectrum of ECM fungi on the windthrow area and in the forest stand. We did not find 

evidence that the age of the trees can be regarded as driving factor for associated ECM 

communities on the population level. Based on the individual tree, adults host a higher 

number of ECM fungi than juveniles. Since the pre-windthrow offspring exhibited a well-

balanced ECM profile they serve as ‘reservoir hosts’ for post-windthrow offspring promoting 

their vitality. Finally, we examined the data with respect to a possible correlation between 

host genotypes and associated ECM fungi. It became evident that the genomic background 

of silver fir as represented by single-locus variation has an effect on the composition of the 

associated ECM community. Consequently, ECM communities may be considered as 

extended phenotypes of the host populations. Protecting silver fir as a means of forest gene 

conservation therefore implies not only the tree species, but as well the interacting ECM 

community as part of the ecosystem. 

Based on the overall findings including tree genetic, dispersal and mycological aspects, silver 

fir populations in the Black Forest provide an appropriate basis for natural regeneration 

processes within the forest stand as well as for the recolonization of windthrow areas. 

Natural regeneration is an appropriate method for the reintroduction of larger proportions of 

silver fir in the Black Forest. 
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Zusammenfassung 

Zusammenfassung  

Im Zuge des Klimawandels ist von einer zunehmenden Häufigkeit extremer Wetterlagen 

auszugehen, die die Waldökosysteme beeinflussen. In den letzten Jahrzehnten haben 

zahlreiche Sturmereignisse mitteleuropäische Waldbestände großflächig geworfen. Die 

entstandenen Windwurfflächen müssen nun wiederverjüngt werden. Lebensgemeinschaften 

von Bäumen mit Ektomykorrhizapilzen (ECM) spielen hierbei eine entscheidende Rolle für 

die Stabilität und Vitalität von Waldökosystemen. 

 

Da die Weißtanne (Abies alba Mill.) eine starke Reduktion in ihrem natürlichen 

Verbreitungsgebiet in Deutschland erfahren hat, ist eine Erhöhung ihres Anteils aufgrund der 

stabilisierenden Eigenschaften waldbaulich vorgesehen. Angesichts der Zunahme von 

Sturmereignissen wurden drei Tannenbestände im Nordschwarzwald genetisch und 

mykologisch untersucht, um das Wiederbesiedlungspotential der Tanne abzuschätzen. Zu 

diesem Zweck wurden in einem ersten Schritt Kern-Mikrosatellitenmarker (nSSR) für die 

Tanne entwickelt. Anschließend wurden Tannenkollektive verschiedener Altersklassen 

(Altbäume, Jungbäume, Sämlinge) an sechs nSSR-Orten genotypisiert sowie hinsichtlich 

Vorkommen und Diversität der mit ihr vergesellschafteten ECM untersucht. 

 

Die Ergebnisse zeigen, dass die Weißtannen über ein ausreichendes genetisches Potential 

mit einer hohen Diversität innerhalb und einer geringen Differenzierung zwischen den 

Beständen verfügen. Die Naturverjüngung der Tanne auf den angrenzenden Freiflächen 

wies keine reduzierte genetische Diversität auf im Vergleich zu den ungleichaltrigen 

Beständen. Die Untersuchungen zum Genfluss bei der Tanne lassen zudem auf eine 

ausreichende Samen- und Pollenausbreitung schließen, zumindest im Abstand von wenigen 

hundert Metern vom Mutterbaum. Eine Vielzahl von Mutterbäumen trug zur 

Samenverbreitung bei und führte zu einem vielfältigen Sameneintrag sowohl innerhalb der 

Bestände als auch in die Windwurfflächen hinein. Die Analyse der ECM zeigte im Altbestand 

und auf der Freifläche ein vergleichbares Spektrum hinsichtlich Artenzahl und Häufigkeit. Es 

gab keine Anhaltspunkte dafür, dass das Alter der Bäume in einer Population die 

Artzusammensetzung der ECM beeinflusst. Auf der Ebene des Einzelbaumes zeigten jedoch 

ältere Tannen eine höhere Anzahl verschiedener ECM als jüngere. Die auf den 

Windwurfflächen bereits vorhandene Verjüngung zeichnet sich durch ein ausgewogenes 

ECM-Profil aus. Sie besitzt damit eine ‚Reservoir-Funktion’ für die später ankommende 

Tannen-Verjüngung. Darüber hinaus wurde geprüft, ob das Tannen-Genom, d.h. die nSSR-

Genotypen, einen Einfluss auf die Besiedlung mit ECM hat. Es zeigte sich, dass bestimmte 

nSSR-Genotypen  mit der  ECM-Artzusammensetzung signifikant korreliert sind. Daher kann 
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die ECM-Gesellschaft als so genannter ‚erweiterter Phänotyp’ (extended phenotype) der 

Tannen betrachtet werden.  

 

Der Schutz und die Förderung der Weißtanne als Maßnahme im Rahmen der forstlichen 

Generhaltung bezieht daher nicht nur die Baumart selbst ein, sondern ebenfalls die mit ihr 

assoziierten ECM-Gesellschaften als Teil des Ökosystems. Aus genetischer, 

verbreitungsbiologischer und mykologischer Sicht bieten Weißtannenpopulationen im 

Nordschwarzwald geeignete Voraussetzungen für eine natürliche Verjüngung sowohl im 

Bestand als auch zur Wiederbesiedlung von Freiflächen.  
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 Introduction 

1. Introduction 

Forest ecosystems occupy about 30 % of the Earth's surface (FAO, 2007). They are 

characterized by a predominance of trees and are more productive and have a greater 

biodiversity than other types of terrestrial vegetation forms. There is a variety of forest types 

resulting from a complex of factors, including species, frequency and type of disturbances, 

seed sources, soils, slope and aspect, climate as well as history of human influence. 

Thereby, indigenous, site-adapted and adaptable species and communities are decisive 

basic requirements for the performance, stability and productivity of forest ecosystems. This 

means, in turn, that any changes of the genetically determined adaptedness and any 

restriction of the adaptability increase the risk of destabilization. Like all natural systems, 

forests are vulnerable to the impact of climate change that is expressed among other things 

in global warming (IPCC, 2007). This may lead to changes in tree species ranges, in forest 

growth, in phenology (e.g. leaf unfolding), and/or in increasing extreme events like the 

occurrence of fire and storms. Extreme climate events such as the storms in 1999 and 2002 

dramatically affect forest ecosystems, especially those where the management practice does 

not facilitate rapid repair. Although there is converging evidence that climate change is 

increasing the frequency and severity of storm events (Tebaldi et al., 2006), their quantitative 

impacts and their long-term effects are not well understood. Storm events resulting in 

windthrow of forest trees can cause a decline in population size of forest tree populations 

and a reduction in gene flow through fragmentation, respectively. This, again, can lead to a 

reduced genetic diversity (bottleneck) especially in the new regeneration within the disturbed 

habitats (windthrow areas). Seed dispersal as part of gene flow plays an essential role in the 

recolonization of habitats and must be sufficient to maintain the level of diversity in the future 

generations. 

Besides, forest tree species are an example of foundation species for various associated 

organisms stabilizing fundamental forest ecosystem processes. In forests, mutualistic 

systems with fungi play a decisive role for the stability and the viability of the trees. About 

one third of the fungi that are associated with forest trees are mycorrhizal symbionts (Egli 

and Brunner, 2002), most of them are ectomycorrhizal (ECM) fungi. Both, fungal and plant 

partners, can benefit from this association (Smith and Read, 1997). A detailed knowledge of 

ecosystem processes and community structure becomes more and more important, since 

stabilizing mutualistic systems might be especially advantageous in terms of climate change. 

 

A frequent species composition in the mixed mountain forests of Central Europe consists of 

beech (Fagus sylvatica L.), spruce (Picea abies (L.) H. Karst) and silver fir (Abies alba Mill.) 

as the natural components of the forest ecosystem. Such forests are generally characterized  
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by high stability and productivity. Thereby, silver fir exhibits a specific role as a stabilizing 

element due to its pronounced and deep seated root system and due to its ability to 

regenerate and survive long periods (up to 100 years) under shade (Schütt, 1994). It belongs 

to the family Pinaceae and is a characteristic tree species of the montane and submontane 

regions. Its natural range extends from 52 °N in northern Germany to 38 °N in the southern 

part of Italy and from 22 °E in eastern Romania to 03 °W in the western Pyrenees in France 

(Liu, 1971). In Germany, silver fir occurs with a proportion of 2 % of the total forest area 

(Schütt, 1994). It is a monoecious and wind-pollinated conifer species and its seeds are 

dispersed mainly through wind. 

Silver fir has suffered serious reduction in its range over the last centuries as a consequence 

of silvicultural preferences for monocultures of Norway spruce and environmental stress 

factors within the natural distribution in Germany. For instance, the proportion of silver fir was 

reduced by one-half in the Black Forest within the last 100 years (Horndasch, 1993). As a 

consequence and due to its important ecological and economic role, a reintroduction of 

larger proportions of silver fir into the mountainous forests has been promoted by forest 

management plans. The genetic status in silver fir is thereby a decisive aspect since it forms 

the basics for all processes of life as well as for adaptability and adaptedness. Generally, 

genetic diversity as one of the three fundamentals of biodiversity has gained new importance 

through the Convention on Biological Diversity (CBD) that has been prepared within the 

Conference on Environment and Development in Rio de Janeiro (UNCED, 1992).  

Genetic desoxyribonucleic acid (DNA) markers enable us to determine genetic structures 

and its underlying processes in tree populations such as silver fir populations. Currently, 

neutral genetic markers predominate in conservation and management applications of 

population genetics in forest trees. According to their origin (nuclear or organelle) different 

types of information can be supplied with DNA markers. While nuclear markers are 

codominant and thus more informative, organelle markers are uniparental and reflects 

paternal (chloroplast) or maternal (mitochondria) structures in conifers. Especially 

microsatellite markers (also known as simple sequence repeats (SSRs)), both organelle and 

nuclear, are the markers of choice for diversity and differentiation studies as well as for 

studies of contemporary gene flow as mediated by pollen and seeds (Gomez et al., 2004). 

 

Against the background of promoting silver fir in the mountain forests and facing the increase 

of storm events, fir populations of the Northern Black Forest were studied with SSR markers 

to gain information about the genetic status of silver fir in this region. Genetic structures of 

the fir trees are considered in relation to associated ECM fungi and furthermore are used for 

the study of seed dispersal characteristics.  
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On that account, the following main objectives have been focused on in this thesis: 

I) Genetic diversity and differentiation  

In order to genetically characterize three silver fir populations (in terms of diversity and 

differentiation), a comprehensive nuclear microsatellite (nSSR) analysis was conducted. For 

this, appropriate and specific nSSR markers had to be developed and validated in a first 

step, since they were not available. The genetic diversity and differentiation analysis on the 

regional and population scale was necessary to answer the questions: Is the extent of 

genetic variation of silver fir in the Northern Black Forest sufficient for the natural 

regeneration especially on disturbed sites caused by windthrow? Are there any indications of 

drift or fragmentation effects on the genetic structure of the fir populations? And can the three 

different fir populations (study sites) be treated as one reproductive community for true 

repetitions with regard to the following analysis with associated ECM fungi? 

II) Gene flow processes  

Gene flow is a key determinant of genetic structures and patterns within forest populations. 

Thereby seed dispersal plays a decisive role for recolonization of disturbed habitats since 

seed is the only movable stage within the life cycle of trees. Silver fir proved to be an 

interesting model species for dispersal characteristics as it is characterized by one of the 

largest pollen and seed grain among indigenous species. Thus, direct estimates of seed and 

pollen dispersal processes were derived from genetic analysis of adults and progeny in silver 

fir. The analysis was conducted to answer the questions: Are the dispersal qualities in silver 

fir sufficient for recolonization purposes? Can a genetic bottleneck be expected in the natural 

regeneration of the recolonized site? And can morphological features of the seeds be 

regarded as driving factors of seed dispersal?  

III) Associated ectomycorrhizal communities 

Mutualistic interactions play a decisive role for the stabilization and functioning of forest 

ecosystems. So far, little is known about the impacts of intraspecific variation of the host on 

the associated fungal community. However, recent analyses demonstrate first insights of the 

impact of host or foundation species such as forest trees through their `extended phenotype´ 

(Whitham et al., 2003; Bailey et al., 2004). Thus, the relationship between silver fir trees and 

the associated ECM community is of high interest in the scope of ‘community genetics’.  
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First, we re-visited the early-late-stage hypothesis within ECM fungi (Izzo et al., 2005) and 

analysed the effects of ontogenetic stages of the host trees (adults, saplings) on the ECM 

community including site effects (windthrow area vs. closed forest stand). Thereby, the 

following question was focused on: Can the age of the firs be regarded as driving factor for 

colonization of ECM fungi?  

In a final step we analysed whether the ECM community could be considered as the 

extended phenotype of the host using an individual-based genetic approach to answer the 

question: Is there a verifiable relationship between distinct single-locus genotypes in the firs 

as characterized by neutral DNA markers and the associated ECM fungi?  

 

Subsequently, these objectives are comprehensively discussed with regard to the questions 

‘Which preconditions does silver fir bring along for natural regeneration processes and 

recolonization of windthrow areas in the Black Forest?’  
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2. Population genetic analysis 

So far, levels of diversity in forest trees and especially in the genus Abies have been 

assessed using different kind of genetic markers such as isozymes (e.g. Hussendörfer et al., 

1995), amplified fragment length polymorphisms (AFLPs) (Tang et al., 2008) and chloroplast 

microsatellites (cpSSR) (Vendramin and Ziegenhagen, 1997; Ziegenhagen et al., 1998). 

Although most cpDNA regions exhibit low within-population polymorphism, cpSSR markers 

often have sufficient polymorphisms for paternal lineage identification within a population in 

conifers (Ziegenhagen et al., 1998). They are useful for paternity analysis and were applied 

for estimating pollen flow within the present study (see chapter 3). 

Due to their high levels of polymorphism and co-dominant inheritance, nSSR markers 

provide a powerful tool for addressing genetic questions such as genetic diversity within 

populations and differentiation among populations. They have become the genetic markers 

of choice in forest trees (Vendramin et al., 2004). Since nSSR markers were not available for 

the species Abies alba they have been developed in order to investigate genetic structures 

(paper III), to conduct identity assignment of mother trees (paper II) and parentage analysis 

(chapter 3) as well as to perform association genetics (paper III) within the fir population in 

the present study. 

2.1. Nuclear microsatellite markers 

Development of nuclear microsatellites for Abies alba 

Microsatellites or SSRs are tandem repeats of short sequence motifs with a repeat unit of 

one to six nucleotides and are distributed across the nuclear and organelle genome. They 

typically show a high number of alleles per locus while the alleles differ in the number of 

repetitions and thus in length (Tautz, 1989).Their high degree of variability is due to a high 

mutation rate caused by the repetitive structure. Thus, they usually exhibit a high degree of 

discrimination and can be used to determine genetic differences between individuals 

(Vendramin et al., 2004). Generally, SSRs are species specific markers and must therefore 

be developed for each species separately. In some cases, however, they can be transferred 

to other species within the genus (Hansen et al., 2005). 

For the development of nSSR markers in Abies alba, an enriched genomic library for di- (GA, 

GT, AT, GC), tri- (CAA, ATT, GCC) and tetranucleotide (GATA, CATA, ATAG) motifs was 

constructed according to Edwards et al. (1996). Afterwards these fragments were cloned into 

a common plasmid vector. A total of 170 randomly chosen clones were sequenced and more 

than 90 % of the clones contained a SSR stretch.  
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Since in several cases the stretches were too close to the vector, too long or compound-

interrupted, they were excluded. However, for 44 clones it was possible to design primer 

pairs for polymerase chain reaction (PCR) amplification of the loci. Fourteen of the 44 nSSR 

loci yielded distinct and analysable PCR products. The variability test including 17 to 24 fir 

individuals from Bulgaria, France, Germany and Switzerland resulted in eleven polymorphic 

loci that are useful for population genetic analysis (paper I). 

 

The nSSR locus SF78 exhibiting 35 alleles (within 1200 fir samples) reveals a long range of 

fragment sizes from 158 bp to 276 bp and was thus investigated in more detail. A short and a 

long allele were sequenced to guarantee that it is from the same locus. The alignment of 

both sequences shows that the two fragments originate from the same locus, because the 

flanking regions are largely identical (Figure 1). The large allele contains two compounding 

SSRs ((CAG)(CA)) and the short allele only one SSR (CA). It is difficult to explain the 

development of this compound SSR fragment. Possible explanations are a slippage event at 

the flanking region of the first SSR or a recombination event at the level of the SSR, but the 

latter is less probable. As a consequence of the extreme allele size range, this nSSR locus 

should not be applied in software analysis that is based on step-wise mutation models. 

 

 

 
 
Figure 1 DNA sequence of two variants within the region of the nSSR locus SF78. The longer 
fragment consists of 245 bp and the shorter fragment of 158 bp (due to the fragment length analysis 
using the Amersham MegaBACE1000). 
 

Application of nuclear microsatellite loci 

For the further analysis of the fir populations and individuals those nSSR loci were chosen 

that consist of dinucleotide repeats (SFb4, SFb5, SF331, SF333), have many alleles (SF78) 

and / or show very clear banding patterns (SF1), respectively. Using 360 fir samples of the 

study site EY, the SSR data were analyzed by the software Micro-Checker (Van Oosterhout 

et al., 2004) for detecting null alleles, scoring error due to stuttering and large allele dropout. 

Neither evidence for scoring error due to stuttering nor evidence for large allele dropout was 

detected for the six nSSR loci. Evidence for null alleles that is based on the excess of 

homozygotes (as deviation from Hardy-Weinberg-equilibrium) could be found for the locus 

SFb4.  
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Such deviation can either be a result of population genetic processes (genetic drift, 

inbreeding, absence of natural outcrossing mating system), a small sample size effect or a 

subpopulation structure in the sample design (Wahlund effect) and can thus be 

misinterpreted as null alleles (Chakraborty et al., 1992). Since microsatellite null alleles might 

introduce biases on average exclusion probabilities within parentage analysis (Dakin and 

Avise, 2004) the locus SFb4 was excluded for the pollen and seed dispersal analysis. 

However, the population genetic analysis was calculated using both, the six-loci combination 

in comparison to the five-loci combination excluding the locus SFb4 in a first approach. 

Since, adding the locus SFb4 did not change the interpretation of the results (concerning 

mean number of alleles per locus, heterozygosity, differentiation and genetic distance) and, 

yet, increases the diversity parameters, it was included for the further population genetic 

analysis. Moreover, the probability of identity (PID) (Paetkau et al., 1998) was obviously 

decreased for the six-locus combination with PID = 4 x 10-5 in comparison to the PID = 7 x 10-4 

for the five-loci combination. According to Waits et al. (2001) a PID of less than 1 x 10-3 is 

acceptable low and sufficient for forensic applications in natural populations. Therefore, the 

six-locus combination is appropriate to distinguish individuals accurately and to answer 

population genetic questions properly. 

 

The newly developed nSSR markers have been proved to be an appropriate tool for diverse 

applications in the present study that allowed us to analyse the fir trees under different 

aspects. They facilitate an analysis on different scales and could be successfully applied for 

following purposes: 

i) diversity and differentiation analysis of silver fir populations on the regional and on 

the population scale (paper III), 

ii) discrimination and / or identification analysis of single fir individuals to detect seed 

source trees (‘mothers’) (paper II), 

iii) comparative analysis between fir single-locus genotypes and ECM diversity on 

the individual scale of the fir trees (paper III). 

 

Actually, markers such as nSSRs are supposed to reveal neutral genetic variation and are 

useful for characterizing patterns of variation, but are generally not instructive for adaptive 

patterns of genetic variation (Avise, 1994; Porcher et al., 2006). However, we used them for 

association genetics since candidate genes governing symbiotic interactions are not yet 

identified or described for silver fir. With that approach, a unique opportunity arose, as it was 

possible to screen for single-locus variations of the fir which could be linked to certain 

genomic regions that are relevant for interactions with symbiotic partners (paper III).  
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Several nSSR loci offer evidence to be located close to regulatory DNA-regions with 

functional relevance related to the production of molecules that are controlling the interaction 

between symbionts. Congruently, Neale and Ingvarsson (2008) analysed natural selection 

processes and its effects on the genome of cottonwood and assumed that it should be 

possible to move away from using strictly neutral models as sequence data sets of tree 

species are becoming more and more available. 

2.2. Genetic diversity and differentiation  

Genetic differentiation analysis on the regional scale as initial step for further analysis 

In previous studies using different genetic markers such as isozymes (Konnert and 

Bergmann, 1995), cpSSRs (Vendramin et al., 1999) and mtDNA markers (Liepelt et al., 

2002; Gomöry et al., 2004) silver fir has revealed highly differentiated genetic patterns on a 

large geographical scale throughout Europe depending on glacial refugia and postglacial 

migration pathways (Liepelt et al., 2008). In comparison to other European tree species silver 

fir reveals some specific characteristics such as geographical clines in allele frequencies at 

several allozyme gene-loci, area-specific alleles and a clinal variation in population diversity 

over the whole distribution range (Konnert and Bergmann, 1995). The genetic structure and 

differentiation on a regional scale was analysed by Sagnard et al. (2002). Neither on the 

basis of allozyme data nor on the basis of quantitative traits could the different silver fir 

populations from the south-western Alps (France) be grouped geographically.  

 

Using the newly developed nSSR markers, the differentiation of silver fir populations on the 

regional scale was analysed in the present study as an initial step (paper III). For this, three 

fir populations were genetically investigated which are located on the same geological 

substrate (middle red sandstone) in the Black Forest. Each of the study sites includes adult 

fir trees as well as juveniles trees (seedlings and saplings) and furthermore consists of a 

closed forest stand with an adjacent open area as a result of windthrow caused by the storm 

event ‘Lothar’ in 1999. Sampled trees were evenly distributed within the stand and along four 

transects (50 m and 100 m, respectively) into the adjacent windthrow areas (Figure 2). 

Ontogenetic stages of the trees were defined as follows: seedlings = 1 to 3 year old trees 

assumed to be younger than the storm event; saplings = juvenile trees up to a height of 

1.5 m and adult trees = firs in the fructification age (> 60 years).  

 

 

 



13 

Population genetic analysis 

 

 
 

Figure 2 The location of the three silver fir study sites (BW, EY, SR) in the Black Forest, Germany, 
and sample design of each study plot, showing the sampled fir trees within the forest stand (marked in 
green) and on the windthrow area (marked on red).  
 

Based on the six nSSR markers no distinct differentiation among the three fir populations 

could be detected as indicated by global FST values close to zero (FST = 0.008). A Bayesian 

model assigned them to a most likely number of ‘one’ group. Moreover, the ‘Analysis of 

Molecular Variance’ (AMOVA) that allows the partitioning of variation among and within 

populations indicated that variance was much lower among populations (1 %) than within 

(99 %) (Figure 3). Influences such as isolation or strong fragmentation events that can affect 

the balance between drift and gene flow and can increase genetic differentiation due to a 

loss of gene flow (Templeton et al., 2001) can thus be excluded.  
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Interestingly, the reduction of silver firs in the Black Forest in the last decades, i.e. the current 

fragmentation, is not imprinted in the genetic structure. Thus, silver fir is characterized as 

having uniform genetic structures within the research area of the Black Forest with a spatial 

maximum distance of about 100 km. These results verify the starting hypothesis that the fir 

populations within the Black Forest behave genetically like a single population or a 

reproductive community, respectively. They can therefore be treated as independent 

replicates in this study and are suitable for further interaction analysis with the associated 

ECM fungi (chapter 4 and paper III). A bias caused by genetic differentiation on the 

population scale can be eliminated.  

 

Percentages of Molecular Variance

Among Pops
1%

Within Pops
99%

 
 
Figure 3 Results of AMOVA considering the fir trees within and among the three fir population in the 
Black Forest. 
 

Using the same nSSR markers Donges et al. (unpublished) have observed clear 

differentiations between divers silver fir provenances (from Germany, Macedonia and 

Romania) evidencing the potential of the used marker system for detecting genetic 

differentiation or unity, respectively (Figure 4). 
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Figure 4 Genetic assignments of silver firs to populations, based on Bayesian modelling. a) Bar plot, 
illustrating the allocation of individual fir samples to the provenances (1) Macedonia, (2) Black Forest 
and (3) Romania. b) Simulation of most probable number of populations (K), in a range of K = 1 to 
K = 6. Red circle indicates the most probable result (out of Donges et al., unpublished). 
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In summary, our findings agree with those of Sagnard et al. (2002) showing less variation 

within silver fir populations on a regional scale which originate from the same glacial refugia 

(Liepelt et al., 2008). At the same time it is possible to detect pronounced genetic 

differentiation between Black Forest silver fir provenances and Romanian and Macedonian 

provenances (Donges et al., unpublished) using the same markers. This, in turn, reflects the 

findings of Konnert und Bergmann (1995), Vendramin et al. (1999), Liepelt et al. (2002), 

Gomöry et al. (2004) using other genetic markers (see above). Generally and as 

demonstrated in the present study, conifers are featured by higher levels of genetic variation 

within populations and lower levels of genetic differentiation among populations (Hamrick et 

al., 1992; Tang et al., 2008). Thus, the extinction of a relatively large proportion of a conifer 

species’ population would result in relatively little overall loss of genetic diversity. Due to their 

life-history strategies such as wind pollination, efficient seed dispersal via wind and/or 

animals and the longevity of conifers they are thought to be less vulnerable to landscape 

fragmentation (Williams et al., 2007). 

 

Characterization of genetic diversity on the population scale 

The genetic variation within each of the three analysed fir populations can be assessed as 

relatively high with a total mean heterozygosity (He) of 57.1 % in study site BW, of 56.0 % in 

study site EY and of 57.4 % in study site SR, respectively (Table 1). So far, most genetic 

studies in conifers, especially in Abies alba have not been conducted using nSSR loci, but 

they are mostly based on isozyme or cpSSR markers. Thus, there are only a few 

comparative studies. However, in a recent study the mean genetic diversity of He = 33.7 % 

was detected in an Abies ziyuanensis population with eight nSSR loci which is comparatively 

low (Tang et al., 2008). In comparison, a He-value of 85.5 % could be detected in an Abies 

sachalinensis population analyzed with five nSSR loci (Lian et al., 2008). In the latter case, 

the variability of the used nSSR loci was very high with an average number of alleles per 

locus of 19.5. Compared with these studies and with population genetic analyses of related 

conifer species analysed with nSSR markers (e.g. Picea abies (Achere et al., 2005), Pinus 

pinaster (Mariette et al., 2001)) it can be assumed that the genetic diversity parameters 

found for the silver fir populations within the present study are comparatively high.  

 

Focusing on the subpopulation in dependence of the ontogenetic stage (adults, saplings and 

seedlings), genetic diversity parameters were compared in order to assess the transfer of 

genetic information over various generations. Genetic diversity statistics averaged over the 

six nSSR loci in the different ontogenetic stages are shown in Table 1.  
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The genetic parameters describing genetic variation (A, Ar, Ne, Ho, He) were similar in all 

stages and although they vary slightly there was no consistent trend detectable over all three 

populations. That means, small differences within the genetic structure could not be 

explained by ontogenetic stages and genetic information is transferred over generations. 

Congruently, by means of 12 isozyme markers no significant differences in the genetic 

structure of the fir trees in the study site BW could be found by comparing fir individuals of 

four different ontogenetic stages (over-, middle-, under-storey and regeneration) (Ernst, 

2006). 

 
Table 1 Genetic parameters for the subpopulations adults, saplings and seedlings, each in the forest 
stand and on the windthrow area, of the three study sites in the Black Forest (EY; BW SR) analysed 
with six nSSR loci: mean number of alleles (A), number of effective alleles (Ne), allelic richness (Ar), 
observed heterozygoty (Ho), expected heterozygoty (He). 
 

Population N A Ar Ne Ho He 

EY – adult 
stand 

54 6.7 27.9 2.97 0.440 0.558 

EY – saplings 
stand 

104 7.7 28.8 3.20 0.480 0.586 

EY – saplings 
windthrow area 

100 7.5 25.8 3.11 0.466 0.548 

EY – seedlings 
stand 

53 6.3 25.3 3.10 0.492 0.558 

EY – seedlings 
windthrow area 

50 6.0 22.9 3.07 0.466 0.548 

BW - adults 
stand 200 10 32.5 2.99 0.474 0.565 

BW – saplings 
stand 

100 7.8 30.7 3.32 0.459 0.577 

BW - saplings 
windthrow area 

100 8.8 33.7 2.80 0.474 0.571 

SR -adults 
stand 200 9.2 31.2 3.24 0.492 0.578 

SR - saplings 
stand 

200 9.2 30.7 3.3 0.482 0.578 

SR - saplings 
windthrow area 200 10.2 31.8 3.1 0.459 0.565 

 
 
In order to check for a possible genetic difference between fir saplings that grow within the 

forest stand and those growing on the windthrow area, Nei’s genetic distance was calculated 

for the respective pairs (Figure 5). For this, only the saplings as fir regeneration were 

considered, since seedlings could not be found for the study sites BW and SR in a statistical 

usable sample size. With this approach, only those juvenile fir individuals were included in 

the calculations that were regenerated before the storm in 1999 and thus were established 

under forest cover.  
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As displayed in Figure 5, the genetic distances between fir saplings of the windthrow area 

and saplings as well as adults of the forest stand were small in the study sites EY and SR 

with values up to 0.014 and were not significantly different (Fisher’s exact test, p > 0.001). 

The adults and the saplings of the forest stand in the study site BW also revealed small 

genetic distances of 0.008 while the distance increased up to 0.031 when the adults and 

saplings of the stands were compared to the saplings of the windthrow area. In the latter 

case the allelic and genotypic structure between the subpopulations were statistically 

significant for two nSSR loci (Fisher’s exact test, p < 0.001). This slight increase of the 

genetic distance can be explained by the differences in the allele structure. This, in turn, 

might be a result of the location of the respective windthrow area in relation to the forest 

stand (Figure 5). Considering that the main wind direction in the Black Forest is from west to 

east, less seeds are probably dispersed against the wind into the western positioned 

windthrow area of the study site BW. Different situations are given in the case of study site 

EY and SR. Here, the windthrow areas are located eastward of the forest stand leading to 

higher seed dispersal into the open area. Thus, these findings verify the role that wind plays 

in the dispersal of seeds and subsequently in the genetic structure of the established 

regeneration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Schematical illustration of the three study sites showing the location of the windthrow area in 
comparison to the forest stand and results of pairwise Nei’s genetic distances. 
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The genetic diversity in all three fir populations is comparatively high, combined with the fact 

that there is no reduction of allelic richness or diversity, respectively, in the juvenile 

generations. This leads to the conclusion that the genetic diversity has so far not been 

reduced and that there are no genetic bottleneck effects within the analysed fir trees in the 

Black Forest. Thus, the analysed fir stands are an appropriate basis for future natural 

regeneration from the genetic point of view and in terms of recolonization of disturbed 

habitats. Our findings verify forest management practices in terms of natural regeneration 

methods which consider respective wind situations as well as the location of the open area in 

relation to the forest stand including the seed source trees.  
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3. Gene flow – dispersal of seeds and pollen  

Gene flow is defined as the proportion of immigrant genes that either move into a given 

population (interpopulation gene flow) or move within a given population (intrapopulation 

gene flow) (Endler, 1977). It can take place in two ways. The first involves the dispersal of 

pollen, successful fertilization of an ovule by this pollen, and finally establishment of the 

resulting seed. Gene flow can also occur by dispersal of seed, and the successful 

establishment of the dispersed seed within a new habitat or population. Studying gene flow 

implies the detection of sources and sinks for pollen and seeds. Thereby, the incorporation of 

landscape information can help to understand whether populations are sources or sinks. 

Here, we focus on forest windthrow areas that display a sink for dispersed seeds while the 

surrounding reproductive trees might be a source. Since forest trees such as silver fir are 

sedentary organisms, the dispersal of diasporas states the only movable part and is thus, 

essential for the genetic structure of future generations. New habitats can only be colonized 

by diasporas. Thereby, an essential differentiation between seed and pollen movement is 

that only seed flow can colonize open habitats and provide a biological foundation for 

subsequent pollen flow. 

In two different case studies we analysed seed dispersal and pollen dispersal, respectively. 

Since repetitions are missing they cannot be used for generalised statements about gene 

flow in silver fir. Rather, these analyses provide initial insights mainly into local seed and 

pollen movement for the estimation of the recolonization potential of silver fir within a few 

hundred meters from the forest margin. They also offer valuable perspectives for continuative 

studies.  

 

Estimating seed dispersal 

Knowledge on seed dispersal distances of firs plays a major role in assessing the potential 

for natural regeneration in fir populations – in forest stands as well as on open areas as 

exemplified here. Seed dispersal is also essential for migration processes as response to 

climate change. Despite the importance of seed dispersal, quantitative information on seed 

dispersal distances has been scarce. This has been mainly due to methodological difficulties 

in quantifying seed dispersal. The recent innovation of using genotypes derived from purely 

maternal tissue of seeds made it possible to identify the source or mother tree of the 

dispersed seeds directly and thus, efficiently (Godoy and Jordano, 2001; Grivet et al., 2005). 

Using this method and applying nSSR markers, seed dispersal in silver fir was exemplarily 

analysed in the study site SR. Here, seed traps were set up in the forest stand as well as on 

the adjacent windthrow area to collect the fir seeds.  
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The analysis gave the following results (paper II): 

In total, 674 seeds were found in the seed traps. Seed entry into the windthrow area was 

reduced in comparison to the forest stand but nevertheless was sufficient within short 

distances of a few hundred meters from the source trees. 

The morphological features of the fir seeds (seed weight and length of wing) as well as 

the condition of the seeds (empty or filled) do not appear to have a significant influence 

on the dispersal distance. 

Fourteen percent of the fir seeds could be assigned to a mother tree within the sampled 

trees of the forest stand. The remaining 86 % could not be identified because their 

maternal tree had not been genotyped or were outside the sampled area.  

A mean dispersal distance of 98 m and a maximum dispersal of 275 m were detected. 

Shorter dispersal distances were observed for the seeds collected in the stands than for 

those collected in the windthrow area due to fewer barriers and higher wind velocity.  

The long dispersal period – from September to the end of the collection period in 

January – led to seed dispersal under various weather conditions and wind directions and 

therewith, promotes multifaceted dissemination. 

Longer distance dispersal events of more than 150 m, detected by the exclusion of all 

reproductive trees in the sampled population, accounted for up to 31 % of the seeds 

trapped. Besides, 477 different multilocus genotypes among the total of the 661 

genotyped seeds show the high number of contributing mother trees. This implies a high 

level of genetic diversity in the seed population. 

 

Summing up, our results indicate sufficient local-distance seed delivery combined with some 

long distance dispersal events and a marked mosaic of multiple mother trees for the seeds 

found. Seed dispersal appears to be independent of seed morphology and is efficient within 

the closed forest stand as well as in the windthrow area close to the forest margin. These 

dispersal characteristics should enable the fir population to maintain genetic diversity from 

the dispersal point of view. This leads to the final conclusion that the available potential of 

seed for dispersal should not result in any genetic bottleneck of fir regeneration even within 

windthrow areas if the distance does not exceed a few hundred meters from the source 

trees.  
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In addition to dispersal, realized gene flow requires successful fertilization, germination and 

survival from competition (Savolainen et al., 2007). The method used considers all seeds 

that are dispersed – even those that have not led to successful establishment of propagules. 

Factors influencing the establishment of seeds are not considered here and the actual 

success of fir establishment can hardly be estimated. However, very few seedlings that have 

established themselves after the storm event could be found on the windthrow areas in 

general (e.g. Budde, unpublished). This indicates that environmental site conditions of the 

windthrow area may negatively influence the establishment of seeds even though enough 

seeds seem to be dispersed. 

 

Estimating pollen flow 

Pollen dispersal is a major component of gene flow (Ennos, 1994; Oddou-Muratorio et al., 

2001). It is an essential factor influencing genetic structure of wind pollinated forest trees 

facilitating interconnection between individuals or populations. Although it lacks the 

colonization function of seeds, the potential for long-distance transport of male gametes 

greatly influences genetic processes that have central effects, such as gene exchange 

among spatially isolated populations (Ennos, 1994). Assessing gene flow by indirect 

methods such as models of population differentiation with data on population genetic 

structure has the drawback that they do not readily distinguish between seed and pollen flow 

(Slatkin, 1985). A more direct approach for estimating pollen dispersal is provided by 

paternity analysis using uniparental cytoplasmatic markers. Paternity analysis methods 

(Marshall et al., 1998) attempt to detect, for each offspring, if paternity can be attributed to 

one of the firs present in the study site. Generally, parentage analysis is an appropriate tool 

for the assignment of parent trees to offspring, especially if the maternal side has to be 

determined prior to paternity analysis. Here, a combined approach of parentage and 

paternity analysis was applied in order to detect mothers and fathers out of the sampled adult 

trees for the fir saplings of the stand and on the windthrow area of the study site BW 

(Figure 6) (for detailed approach and methods, see appendix). Using the highly variable 

nSSR markers in combination with isozyme markers enables us to specify the parent pairs 

effectively. In addition, paternally inherited chloroplast DNA markers (cpDNA) provide direct 

information for the determination of the gender in parental analysis (Latta et al., 1998; Lian et 

al., 2003; Ziegenhagen et al., 1998). Subsequently, for the subset of saplings for which a 

parent pair has been clearly found, including information about the gender, the spatial 

position of mothers and fathers could be used to assess pollen dispersal distances. 
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Figure 6 Spatial locations of the 400 silver fir individuals in the study site BW, given are pollen and 
seed donors for the 34 assigned saplings. 
 

Thirty-four fir saplings could be assigned to a parent pair with a clear identification of father 

and mother, respectively. For these data, the average effective pollen dispersal distance was 

calculated and a pollen dispersal function was generated (Figure 7 and appendix, Table A). 

Unexpectedly, the estimated rates of pollen dispersal with a mean distance of 90 m and a 

maximum dispersal of 233 m were smaller than the rates of seed dispersal that were 

detected by means of 94 dispersed seeds in the study site SR (paper II). Indeed, 30 % of the 

effective pollen was dispersed less than 40 m (and 62 % of the pollen less than 100 m) with 

scattered longer distance dispersal events up to 230 m. Thus, pollen dispersal was partly 

restricted favouring mating with neighbouring individuals. These findings are congruent to the 

general assumption that Abies species are featured by limited pollen dispersal ability (Arista 

and Talavera, 1996). Based on their findings, Koenig and Ashley (2003) stated the 

hypotheses that, contrary to previous assumptions, dispersal of pollen in wind-pollinated 

trees might be very short and even less than dispersal distances of larger seeds.  
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Similar findings have been reported frequently for other wind-pollinated tree species 

(Quercus robur and Quercus petraea (Streiff et al., 1999); Pinus densiflora (Lian et al., 

2001)). Especially in small and isolated populations, the occurrence of pollen sources 

impacts the effective pollen movement significantly (Robledo-Arnuncio and Gil, 2005; 

Burczyk et al., 2004). 
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Figure 7 Pollen dispersal function based on 34 mating events of firs within the study site BW. 

 
 

Long-distance pollen dispersal can be estimated for 18 % of the saplings for which no father 

was assigned based on the cpSSR haplotypes within the 200 adult firs. Thus, pollen entry 

from outside the stand with a dispersal of more than a few hundred meters is most likely for 

the non-assigned saplings since nearly all adult fir trees within the stand were sampled. 

 

Generally, several factors may affect the pollen flow estimation process such as the degree 

of isolation, the number of trees within the population and the degree of self-fertilization 

(selfing). Our method, which does not account for the effect of selfing, would thus provide an 

increased biased estimate of the pollen dispersal distance. Such processes should therefore 

be considered in future studies which rely best on sampling of mother trees along with a 

sample of their offspring. 

The combined approach of parentage and paternity analysis using biparental and paternal 

inherited markers offers a unique possibility to detect the male and the female parent of 

saplings in monoecious species. It can be applied to individuals of any ontogenetic stage and  



24 

Gene flow – dispersal of seeds and pollen 

 

is thus, independent of maternal tissue that is only existent in the seed stage and is analysed 

within maternal tissue analysis (Grivet et al., 2005). Of course, the accuracy of the estimates 

will increase with the amount of data available. Since the present data is limited, consisting of 

34 detected mating events, we must be cautious with generalized interpretations. Due to the 

storm event in 1999, larger parts of the adult trees within the study site were blow down after 

the regeneration process and could not be sampled any more. This might be a reason for the 

low amount of assigned parents even though most adult firs within the remaining forest stand 

were sampled. 

 

Contemporary versus past gene flow 

By using the direct approach to monitor gene flow as conducted in the present study for 

pollen and seed dispersal it is possible to estimate ongoing or contemporary gene 

movement. Indirect methods enable the estimation of gene movement that is averaged over 

time and space (past or historical gene flow). Levels of gene flow have traditionally been 

assessed through indirect methods that infer average historical values from the distribution of 

genetic variation within adult populations (Sork et al., 1999). In particular, seed dispersal 

patterns should directly impact the spatial genetic structure (SGS) of populations. Species 

whose seeds are dispersed near the mother plant should have more obvious fine-scale 

genetic structure than species whose seeds are dispersed in a large spatial scale by animals 

or wind (Hamrick et al., 1993). Thus, indirect methods of assessing gene flow, in particular 

seed dispersal, use the observed spatial genetic structure within adult populations as for 

example was conducted in studies of Aldrich et al. (1998) or Ueno et al. (2000). An essential 

feature is thereby a significant autocorrelation value over short distances caused by a strong 

clumping of dispersed seeds. 

Since SGS reflects past gene flow processes, an analysis of fine-scale genetic structure was 

conducted to compare past to contemporary gene flow. The SGS analysis was based on a 

correlation coefficient that is closely related to Moran’s Index (Smouse and Peakall, 1999) 

and was performed within the adult trees of the three silver fir populations. As demonstrated 

in Figure 8, no significant SGS at any distances was found within the three adult fir 

populations. Positive autocorrelation indicates that genetically similar individuals cluster 

together spatially, for which one explanation is limited gene flow. In contrast, our findings let 

us assume a high and balanced level of past gene flow that have led to the present, non-

significant SGS. Although past gene flow events include complex influencing parameters 

such as selection these results are in agreement with the results of the direct measurement 

revealing sufficient seed dispersal.  
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Figure 8 Correlograms of the genetic correlation coefficient (r) plotted by spatial distance classes 
(in m) for adult trees in the three study sites BW, EY and SR. A significant (95 %) observed correlation 
is indicated if the blue line is located above or below the confidence limits.  
 

 

The extent of geographic variation results from a balance of forces tending to produce local 

genetic differentiation (such as selection and fragmentation) and forces tending to produce 

genetic homogeneity such as gene flow (Slatkin, 1987). Thus, genetic differentiation among 

populations offers additional insights of past gene flow processes on a larger spatial scale 

resulting from possibly restricted gene flow by pollen and seeds. The three analysed fir 

populations reveal hardly any genetic differentiation as demonstrated in chapter 2. This fact 

provides additional evidence that silver populations in the Northern Black Forest are 

characterized by balanced gene flow processes. 
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As consequence, silver fir trees and populations appear to be characterized by non-

restricted, past and contemporary gene flow processes and do not seem to be influenced by 

strong historical events, e.g. major bottleneck (cp. chapter 2). As in the present study for 

silver fir, seed and pollen movement has been analysed in several tree species, but little is 

known about the combined effect. If seed dispersal creates bottlenecks at the time of 

colonization, subsequent high pollen flow might eventually mitigate the low genetic diversity, 

if the number of available pollen sources is not constrained. If pollen flow is extensive and 

results in seed and seedlings, then seed dispersal from only a few source trees will not 

create a genetic bottleneck in the seedling pool (Sork and Smouse, 2006). 
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4. Associated ectomycorrhizal communities 

Ectomycorrhizal diversity in relation to the age of the fir and to the site type  

Mutualistic interactions such as mycorrhizal symbioses are important for the stability and the 

viability of forest ecosystems. Mycorrhizae are fungus-root associations that comprise the 

fine roots of most forest trees. Mycorrhizal fungi provide the plant with soil nutrients and 

water and, in turn, receive photosynthetically derived plant carbohydrate. About one third of 

the fungi that are associated with forest trees in Central Europe are mycorrhizal fungi (Egli 

and Brunner, 2002). Most of them are ectomycorrhizal (ECM) fungi. They usually form a 

mantle enclosing the tree rootlet from which hyphae radiate outward into the soil as well as 

inward between the root cells to form a hyphal network called the ‘Hartig net’ (Wiensczyk et 

al., 2002). ECM fungi play a fundamental role in temperate forest ecosystems as they can 

improve the uptake of nutrients from the soil, enabling better growth of the forest trees under 

non-optimal environmental conditions. Both fungal and plant partners benefit from this 

association (Smith and Read, 1997). 

Colonization and species composition of ECM communities can be strongly influenced by 

various aspects (Koide et al., 2005). Distinct ECM fungi are known as early- or late-stage 

ECM depending on the age of the host (introduced by Mason et al., 1982; Izzo et al., 2005; 

Redecker et al., 2001; Smith and Read, 1997). For silver fir as host, we re-visited this 

phenomenon and analysed the effects of ontogenetic stages of the host on the ECM 

community (paper III). In addition, the diversity of distinct ECM fungi was considered. 

Focusing on ten ECM fungi that could be clearly determined on the species or genus level 

(= ‘operational taxonomic units’, OTUs), the ECM profile was examined for 753 firs within the 

two study sites EY and SR. These ten ECM OTUs associated with silver fir roots belong to 

the basidiomycetes, being members of the family Russulaceae (comprising the genera 

Lactarius and Russula), of the genera Laccaria, Tomentella and Cortinarius as well as 

including distinct species Amphinema byssoides (Pers.) J. Erikss., Clavulina cristata 

(Holmsk.) J. Schrot., Xerocomus pruinatus (Fr. and Hok) Quel. and the asexual ascomycete 

Cenococcum geophilum Fr. All of them are generalists in that they are associated with 

several host species including conifers (Krieglsteiner, 1977; Rexer et al., 1995; Kõljalg, 1996; 

Dahlberg et al., 1997; Fiore-Donno and Martin, 2001; Redecker et al., 2001; Koide et al., 

2005; di Pietro et al., 2007; Peter et al., 2008). Generally, the ten OTUs were found within 

both study sites, in the stand as well on the windthrow area and throughout all ontogenetic 

stages of the firs except for three OTUs that were absent in the seedlings (Laccaria 

amethystine, Russula species II and Lactarius spp.). Thus, the former hypothesis of a clear 

distinction between early- and late-stage ECM fungi could not be verified by our results.  
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Shannon-Index and evenness revealed similar diversity values for the respective subsets of 

the OTUs due to the age of the host and due to the site type. Summing up, there was not a 

large decrease of ECM species richness on the windthrow areas compared to the forest 

stands at the fungal population scale. Additionally, Donges et al. (unpublished) did not find 

an abnormally high abundance of single species in the disturbed windthrow areas within the 

Black Forest. However, the number of OTUs was significantly dependent on the ontogenetic 

stage of the firs based on the individual tree. Adult fir trees on average host a higher amount 

of different ECM fungi than juveniles indicating a significant increase of the ECM richness on 

the individual scale over time. Other observations confirm that ECM species are usually 

added to the fungal community, but that they do not necessarily replace the earlier ones 

(Visser, 1995; Bradburry et al., 1998). It appears that the individual tree with increasing age 

increases its ECM community by allowing for multi-mycorrhization of the expanding root 

systems. Interestingly, focusing on the population scale the ECM diversity is not so much 

dependent on the ontogenetic stage of the host as driving factor or on effects of site type like 

closed forest stands or windthrow areas. Similarly to the fir offspring within the forest stand, 

the pre-windthrow offspring exhibit a well-balanced ECM profile and thus, serves as an 

adequate inoculum (i.e. material that is the source of fungal cells) for the post-windthrow 

offspring. This emphasises the reservoir function of existing fir saplings on the windthrow 

area for newly arising fir seedlings. 

A high diversity of ECM species with balanced abundance is desirable in order to stabilize 

the individual tree and therewith the forest ecosystem. Egli et al. (2002) have shown that a 

windthrow event can reduce the number of ECM fungi significantly if no ‘reservoir trees’ are 

left. The number of ECM species should, be kept as high as possible after a windthrow 

event. A feasible way to achieve this goal is to protect as well as possible those young trees 

and seedlings that have survived a windthrow. Rexer et al. (1998) showed that tree seedlings 

on windthrow areas had obtained their mycorrhizal symbionts from the species spectrum 

present on the roots of the surviving young trees. Hagerman et al. (2001) have detected that 

even ECM plant hosts that persist following disturbances can successfully serve as sources 

for ECM fungal inocula for regenerating tree species as in the case of bearberry 

(Arctostaphylos uva-ursi) and Douglas fir (Pseudotsuga menziesii). ECM fungi generally 

cannot survive in the soil for long periods without a host, so hyphae are typically attached to 

living roots and the recovery of ECM fungi following a disturbance takes time, usually 

decades (Visser, 1995). In case of a ‘total loss’ situation, when no fir tree exists on the open 

area which is to be colonized, other tree species that are available on the open area might 

serve as sources for ECM hyphae.  
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This appears feasible for beech and spruce that often coexists with silver fir in the Black 

Forest region, since the ECM profile of these three tree species within European forests 

show a broad overlap (Donges et al., unpublished). Moreover, the majority of the ECM fungi 

associated with the analysed fir trees was represented by unspecific generalists.  

 

Genetic structure of the firs in correlation to the associated ectomycorrhizal community 

If it is just the number of OTUs which is driven by ontogenesis of the host what about drivers 

that select for distinct OTUs or OTU communities? Is there evidence for driving factors which 

are to be found in the genetic background of tree individuals? 

Genetic structures of the foundation species such as forest trees may affect levels higher 

than the population and therewith, may influence community structure (Witham et al., 2003). 

Recent studies in the field of ‘community genetics’ introduced the importance of the 

‘extended phenotype’ of foundation species and ‘interspecific indirect genetic effects’ (IIGEs) 

that affect a multitude of associated organisms and, thus, species communities (Witham et 

al., 2003; 2006; Shuster et al., 2006). 

 

With silver fir as a model we analysed the tree-fungus relationship in order to obtain deeper 

insights into the symbiotic interaction with its associated ECM fungi community (paper III). 

Focusing on nSSR genotypes of the firs in association with the ten analysed OTUs, a 

significant relationship between a distinct single-locus genotype of the host and the ECM 

OTUs could be revealed. Thereby, the observed frequencies of 38 % of the single-locus fir 

genotypes deviated significantly in association with the OTUs. Thus, the genetic structure of 

silver fir seems to have an effect on the composition of the associated ECM community. In a 

previous transplant experiment Donges et al. (unpublished) found evidence for an 

interspecific indirect genetic effect between firs and associated ECM species acting at the 

provenance level and using the same genetic marker system. A direct gene-to-gene 

correlation between nSSR loci of the firs and ECM associations cannot be expected since 

nuclear SSR markers are considered to mark neutral genetic variation without coding for any 

phenotype (Porcher et al., 2006). Rather a `chromosomal vicinity´ between the nSSR loci 

and genomic regions that have an influence on the mycorrhization can be assumed. SSR loci 

are dispersed throughout the genome, and thus might be located close to regulatory DNA-

loci with functional relevance related to ECM colonization. Two of the six SSR loci do not 

exhibit significant relationships to the ECM OTUs analysed indicating that not all of the 

analysed loci seems to be located close to regulatory regions.  
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Several studies demonstrated that host plants produce essential metabolites – as a product 

of genetic information - which are able to affect fungal partners (Fries et al., 1987; Horan and 

Chilvers, 1990; Ditengou and Lapeyrie, 2000; Martin et al., 2001; Langenheim, 1994).  

 

Using selectively neutral markers we cannot provide direct information about candidate 

genes that might have an impact on the mycorrhization. Nonetheless, our data show that 

there is strong evidence for variable genomic regions of the host which can be regarded as 

driving factors of community structure and dynamics of its associated ECM fungi. 

Sequencing programmes in forest trees (such as http://dendrome.ucdavis.edu/crsp) should 

be enlarged to provide more detailed insights into species genetic diversity in relation to 

gene-expressive DNA-loci. This leads to a deeper understanding of the genetic basis of 

phenotypic differentiation such as ECM diversity that can be considered as ‘extended 

phenotype’. 

 

In conclusion, the diversity of community structure appears to be dependent on the genetic 

diversity of the foundation species such as forest tree species. Against this background, the 

principle of genetic sustainability within forest ecosystems gains even more significance. The 

conservation of a high genetic variation within tree populations is not only of high importance 

in terms of adaptability to environmental changes, but also to ensure generally a multiple 

community structure, e.g. with associated ECM fungi, that support the vitality of forest trees. 

Especially under non-optimal environmental conditions such as on windthrow areas, a well-

balanced mycorrhization is desired to stabilize individual trees. This indirectly contributes to 

the ecological and economic success of forest stands and should be considered within 

sustainable forest management plans.  
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5. Conclusion and perspective 

In the Black Forest, a decline of silver fir has occurred in the last decades as a consequence 

of environmental stress factors and silvicultural preferences for other conifers. Due to its 

important ecological and economic role, a reintroduction of greater proportions of silver fir 

into the mountain forests of the Black Forest has been promoted by forest management 

plans. The following general conclusions are derived from the present findings in 

consideration of the question ‘Which preconditions does silver fir bring along for natural 

regeneration and recolonization of windthrow areas in the Black Forest?’ 

 

Silver fir populations in the Northern Black Forest maintain a suitable genetic potential with 

high diversity within and less differentiation among populations. The decrease of silver fir 

within the Black Forest in the last decades does not seem to have influenced the genetic 

structures seriously. Strong fragmentation effects such as an interruption of gene flow 

leading to drift and increasing genetic differentiation among populations could not be 

detected. Thus, the silver fir populations provide an appropriate basis for natural 

regeneration processes within the forest stand as well as in terms of recolonizing open 

habitats due to windthrow. 

 

Fir seedlings representing the post-windthrow offspring could largely not be found on the 

windthrow areas. The actual recolonization potential of silver fir and the preliminary 

hypothesis of a possible reduced genetic diversity within the post-windthrow offspring could, 

thus, not be sufficiently incorporated within the present study. However, based on the 

remaining silver fir regeneration on the windthrow area that was already established before 

the storm event, a reduced genetic diversity was not visible in comparison to the adjacent 

forest stand including different generations. Additionally, fir saplings in the forest stand and 

on the windthrow area reveal an identical spectrum of associated ECM fungi that is 

comparable to the ECM profile of the adult firs on the population scale. Thus, the pre-

windthrow fir saplings can be an effective source of inocula and can serve as important 

reservoir hosts for subsequent fir regeneration on the windthrow area – similar to remaining 

mature trees. Both, from a tree genetic and from a mycological point of view, windthrow 

areas should be left as untouched as possible if pre-windthrow offspring is available in order 

to guarantee a well-balanced diversity of ECM fungi and a sufficient genetic diversity within 

post-windthrow fir seedlings. Furthermore, pre-windthrow fir regeneration on the windthrow 

area supports the establishment of incoming seedlings due to the characteristics of silver fir 

as a climax tree species.  
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Additionally, first hints are given that the dispersal characteristics of silver fir are sufficiently 

high to colonize at least those windthrow areas that do not exceed a few hundred meters 

from the remaining stand. From the dispersal point of view, it can therefore be assumed that 

fir populations in the Black Forest maintain genetic diversity in recolonized habitats such as 

windthrow areas.  

 

As part of global efforts to preserve biodiversity and to assure sustainability, the conservation 

of genetic resources within forest management plans integrating intraspecific genetic 

diversity are of important interest. Generally, knowledge of genetic diversity maintained in 

natural forest populations plays a central role in conservation programmes, particularly in 

threatened or disturbed habitats. So far, this has been considered mainly on the single-

species level. As a consequence of ECM associations that can be regarded as extended 

phenotypes of the host trees, conservation programmes of forest genetic resources should 

consider the impact of genetic diversity of host species on associated species communities 

within forest ecosystems. Thus, the ‘minimum viable interacting population size’ (MVIP) 

better reflects the goals to conserve genetic diversity at levels required by interacting species 

instead of the conventional used ‘minimum viable populations size’ (MVP) (Whitham et al., 

2003). 

 

Based on the overall findings of the present study, natural regeneration within forest stands 

as well as recolonization of windthrow areas in silver fir can be assumed to be an appropriate 

and promising method for the reintroduction of larger proportions of silver fir in the Black 

Forest. Our results are preliminarily data for the estimation of the regeneration potential of 

windthrow areas in silver fir. They mainly focus on the close-up-range of the forest stand as 

well as on short distance dispersal and represent only a short view. Long-term and large-

scale studies that may lead to insights into colonization processes on a larger temporal and 

spatial scale will be necessary, particularly in terms of climate change. As gene flow might be 

the key to maintaining genetic diversity and adaptability of forest trees, the combined 

knowledge of short- and long-distance gene flow events could provide more information 

about the effects of ‘total loss’ scenarios on recolonization processes. This would contribute 

to a better reconstruction of colonization history of tree species after the last glaciation and to 

predict future colonization processes of new sites due to climatic shifts. As the Black Forest 

represents the northern edge of the natural distribution area of silver fir, these fir populations 

could possibly form the future colonization front expanding towards the north. 
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Abstract 

Seed dispersal as part of gene flow is one of the most important factors influencing the 

genetic structure of forest trees. It plays an essential role in recolonizing habitats and must 

be sufficient to maintain the level of genetic diversity in future generations. We investigated 

local seed dispersal by estimating the spatial dispersal distances of silver fir seeds (Abies 

alba Mill.). Furthermore, the effect of morphological seed parameters on the dispersal was 

analysed and the level of immigration seeds from longer distances was estimated. For this, a 

grid of 37 seed traps was set up within a forest area in the Black Forest, Germany, on a 

windthrow area as well as within the adjacent forest stand. By comparing the microsatellite 

genotypes of the maternal tissue of the fir seeds with the genotypes of reproductive fir trees 

in the forest stand, we aimed to identify source trees (‘mothers’) of the seeds.  

Ninety-four out of 674 trapped seeds could be assigned to a mother tree. For those, a mean 

dispersal distance of 98 m was calculated. Shorter dispersal distances were observed for the 

seeds collected in the stands than for those collected in the windthrow area. There was no 

significant impact of morphological parameters of fir seeds on the dispersal distances. Seed 

entry into the windthrow area was slightly reduced in comparison to the forest stand but 

nevertheless sufficient within short distances of approximately 150 m. The high number of 

contributing mother trees implies a high level of genetic diversity in the seed population. The 

implications of local seed dispersal events are briefly discussed with regard to recolonization 

of open habitats and silvicultural management practices. 
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Keywords: Abies alba Mill., seed movement, dispersal distances, recolonization, windthrow 

areas, nuclear microsatellite markers, source trees 

Introduction 

Forest ecosystems are characterized by high levels of genetic diversity within the tree 

species. Due to their long generation times the mechanisms for maintaining genetic diversity 

are difficult to study. In natural plant populations such as forest tree populations, the spatial-

temporal dynamics of genetic diversity are shaped by gene flow as a key determinant 

(Loveless and Hamrick, 1984). Gene flow, in turn, depends on the seed and pollen dispersal 

capacity of the tree species. Explicit information about seed dispersal is scarce for the 

majority of the species. Indeed it is a driving factor for a variety of characteristics in plant 

populations and their genetic structure (Hamrick et al., 1992). Seeds provide the vital genetic 

link and dispersal agent between successive generations of plants. In tree species, seeds 

are the only mobile stage within the life-cycle of plants. Their dispersal determines the 

chances of establishment and survival away from the parent trees and thus, the distribution 

of the next generation and displays an essential aspect for the colonization of new sites. 

The state of the art on seed-mediated gene movement lags far behind that for pollen 

movement, because it has been more difficult to study. Using parentage analysis it is 

possible to obtain information about the parent pairs, but the mother and the father cannot be 

distinguished (analysing monoecious species with codominant markers and without using 

uniparentally inherited cytoplasmatic markers). However, the recent innovation of using 

genotypes derived from purely maternal tissue of seeds made it possible to identify the 

source or mother tree of the dispersed seeds directly (Godoy and Jordano, 2001; 

Ziegenhagen et al., 2003) and thus, overcame the problem of parentage analysis. Thereby, 

molecular markers offer a useful tool to effectively study seed movement (Ouborg et al., 

1999; Sork et al., 1999; Grivet et al., 2005). Especially nuclear microsatellites (simple 

sequence repeats = SSR) have proved to be the marker of choice for identification and 

parentage analysis (reviewed in: Jones and Arden, 2003; Luikart and England, 1999). 

 

The dispersal of seeds plays a decisive role in seedling recruitment, migration among 

populations and colonization of new sites (Sork and Smouse, 2006). Thus, in terms of 

increasing disturbance events as a consequence of climate change, understanding the 

process of dispersal in natural regeneration of tree species is an essential factor for 

achieving sustainable forest management. Storm events may lead to extensive windthrow 

areas in forest ecosystems that should be reforested under natural and stand stabilizing 

aspects using either natural or planted regeneration.  
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Natural forest regeneration might be critical due to the lack of a sufficient number of parent 

trees in the adjacent forest stands and limited seed movement when windthrow areas are 

large. 

However, the dispersal of seeds generally depends on different factors such as the height of 

the trees which release the seeds and the wind speed as well as morphological features of 

the seeds, like weight, shape and size (Rohmeder, 1972). Moreover, the morphological 

features of silver fir cones and seeds exhibit substantial heritable variation (Tracz and 

Barzdajn, 2007). The traits of fir seeds (e.g. cone size, seed length and length of seed wings) 

are therefore used for provenance identification (Ballian and Cabaravdic, 2005) and can 

characterize single trees and populations significantly (Tracz and Barzdajn, 2007). 

 

In a case study, we estimated local seed dispersal in a forest stand and in an adjacent open 

area due to windthrow in the tree species Abies alba (Mill.) – a wind dispersed conifer. Its 

comparatively large seeds are winged and wind is the main agent for dispersal. By 

comparing the SSR genotypes of the maternal tissue of the fir seeds (seed coat and wing) 

with the SSR genotypes of reproductive fir trees in the forest stand, we aimed to identify 

source trees (‘mothers’) of the seeds that were collected in the seed traps. Besides 

measuring explicit seed dispersal, morphological parameters of the seeds were considered 

as driving factors of dispersal processes. Thereby we focused on following questions:  

(i) Do morphological properties of fir seeds and temporal aspects of seed movement 

influence the process of dispersal? 

(ii) How far are fir seeds dispersed within a closed forest stand and an adjacent 

windthrow area? 

(iii) Based on the genetic findings, what can we infer about the number of contributing 

mothers? 
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Materials and Methods 

Study Site  

This work was conducted on a study site in the Black Forest, a low mountain range in the 

south-western part of Germany. This forest region is characterized by a mixture of silver fir 

(Abiea alba Mill.) with Norway spruce (Picea abies (L.) H. Karst) and beech (Fagus sylvatica 

L.) – a typical forest composition in the submontane regions. The study site containing silver 

fir as the main tree species (with an amount of 50 %) is characterized by a natural forest 

stand and an adjacent windthrow area with a size of about 45 hectares due to the storm 

event ‘Lothar’ in 1999. 

Study species 

For the present study silver fir has been chosen as a model species. It is suitable as a model 

species for seed dispersal in wind-pollinated trees since its life history traits do not support 

very high rates of gene flow. For instance, silver fir is characterized by having one of the 

largest pollen grains of wind-pollinated trees (Stanley and Linskens, 1974) and comparatively 

large seeds, as well as a long generation time and a long life period. Silver fir has suffered 

serious range reduction over the last centuries as a consequence of environmental stress 

factors and silvicultural preferences for other conifers, mostly Norway spruce. Due to its 

important ecological role as a ‘stabilizing’ tree species (Schütt, 1994), a reintroduction of 

larger proportions of silver fir into the mountain forests has been promoted by forest 

management plans. 

Like most conifers, silver fir produces monoecious flowers that are wind pollinated in the 

spring (May to June) and seeds maturing in fall (September). Fruit ripening and seed 

dispersal occur in the same fall and involves separation of cone scales and seeds, leaving 

only the cone spindle on the tree. Wind is the major agent for the dispersal of the winged fir 

seeds. Although most seed is usually disseminated in fall (September – October) seedfall 

may continue into winter (Young and Young, 1992). 

Seed collection and sampling of plant material 

A grid of 37 seed traps with a size of 1 m² each was set up within an area of about one 

hectare. Twenty-five seed traps were located on the windthrow area (up to a distance of 

100 m into the open area from the forest margin) and twelve seed traps were positioned 

within the adjacent forest stand (Figure 1a and 1b). Over a period of 14 weeks (from 

September 2006 to January 2007), 674 seeds were collected between September 2006 and 

January 2007 in two week intervals. The seeds were recorded and removed during each 

visit. They were stored at 4°C until analysed. 
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In the forest stand needles of 203 adult trees were randomly sampled within a distinct area of 

about six hectare which represent about 50 % of the entire adult trees. Sampled firs were 

geo-referenced by GPS (using a GS5, Leica Geosystems, Heerbrugg, Switzerland) as 

indicated in Figure 1a. The needles of the adult trees were kept in cold storage (-20°C) until 

analysed. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Aerial view of the study plot ‘Sauriss’ in the Black Forest with sampled fir trees marked in 
green and seed traps marked in red (a) having a size of 1m2 (b). 
 

Seed characterization and microsatellite genotyping 

After collecting the seeds, morphological and quantitative parameters of each seed were 

recorded including the weight of the seeds and the length of the seed wings. The seeds were 

cut with a scalpel to determine the condition of the seeds, i.e. whether they contained a 

viable embryo (filled) or not (empty). 

Total DNA was extracted from frozen needles as well as from the seed coats and wings 

adopting an alkyltrimethyl ammonium bromide (ATMAB) method described by Dumolin et al. 

(1995). All samples were genotyped with five nuclear microsatellite (nSSR) loci (SF1i, SFb5, 

SF78, SF331, SF333) using PCR conditions as described in Cremer et al. (2006). For the 

nSSR locus SF333 the PCR program had to be optimized for the amplification of the seed 

coats and wings as follows: 4 min at 94 °C, 35 cycles of 30 s at 94 °C, 30 s at 54 °C, 30 s at 

72 °C and a final extension at 72 °C for 7 min. Forward primers carried a fluorescent label 

(Hex, Fam or Tamra). The DNA was amplified in a thermal cycler (T1, Biometra) and the 

PCR products were separated by capillary electrophoresis using the MegaBACE automated 

sequencer (GE Healthcare, Freiburg, Germany).  

b) 

 

a) 
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Alleles were sized using the size standard MegaBACE ET400-R (GE Healthcare) and the 

MegaBACE fragment profiler version 1.2 (GE Healthcare). A cross-validation check for 

reproducibility was conducted by re-analysing 20 randomly chosen samples. 

Statistical analysis 

A linear regression analysis was performed using the statistical software SPSS 14 (SPSS 

Inc., Chicago, Il, USA) to analyse whether the morphological parameters seed weight and 

length of seed wings are correlated to each other. A further question was, whether these 

parameters influence the dispersal distance of the seeds. 

Using a one-way ANOVA it was tested if the condition of the seeds (filled or empty) have an 

impact on the parameters seed weight, length of seed wings and dispersal distance by 

means of the statistical software SPSS 14 (SPSS Inc., Chicago, Il, USA). With the condition 

of seeds as explanatory factor containing the levels ‘filled’ and ‘empty’ (k=2) we have tested 

the following null hypothesis: the mean of seed weight, the mean of length of wings and the 

mean of dispersal distances, respectively, is the same for both conditions of seeds. Thereby, 

the morphological parameters are the response variables. 

The software GENEPOP (Raymond and Rousset, 1995) was used to test for linkage 

disequilibrium between the analysed microsatellite loci.  

In order to get statistical confidence for the differentiation potential of individual trees and the 

potential of individual assignment with the used marker system, the probability of identity (PID 

and PIDsibs) was calculated using GenAlEx (Peakall and Smouse, 2006). PID is the probability 

that two randomly drawn (unrelated) individuals exhibit by chance identical multilocus 

genotypes (Paetkau et al., 1998). Thereby, PIDsibs takes into account the genetic similarity 

among siblings. 

Since the pericarp and the wing of the fir seeds is maternal tissue (Liu, 1971; Strasburger et 

al., 1998), a direct identification of the mother trees is possible by means of molecular 

markers. On the basis of the multilocus genotypes of the seeds and those of the adult trees 

as characterized at the five high variable nSSR loci, an identity analysis with matching 

multilocus genotypes was conducted using the software CERVUS 3.0.3 (Marshall et al., 

1998; Kalinowski et al., 2007). Within this procedure mismatch was excluded and a minimum 

number of four matching loci was chosen as settings. In case that a seed was assigned to 

two adult trees based on matching multilocus genotypes, the average distance between the 

seed and each of the two possible mother trees was calculated and considered for further 

analysis. 
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Results 

In total, 674 seeds were collected in the 37 seed traps within a time period of 14 weeks. 

Thereby, 395 seeds were found in the twelve traps which were located within the stand and 

279 seeds were found in the 25 traps on the windthrow area. With increasing spatial distance 

from the forest stand less seeds were dispersed into the windthrow area (Figure 2a). Those 

seed traps that contained most of the seeds (with 65 to 75 each) were located within the 

stand or at the forest margin, respectively. Three of the four seed traps that did not contain 

any seeds during the collection period were located on the windthrow area. These findings 

indicate that obviously more seeds are dispersed locally within the forest stand than into the 

windthrow area. 

Considering the temporal aspect, more than 50 % of the seeds (358 seeds) were distributed 

during the last two weeks of October (Figure 2b). Thus, the main seed dispersal took place 

two to six weeks after the fruit ripening in September and beginning of October. The seed 

dispersal shows a main peak around the end of October, but slight dispersal continues until 

the end of the collection period. As displayed in Figure 2b the proportion of filled seeds 

ranges from 100 % (September) to 27 % (October) and decreases even more in the seeds 

that are dispersed later in fall and winter. 
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Figure 2 Spatial distribution of the 674 seeds within the 37 seed traps and number of seeds found in 
each trap (traps located within the forest stand are coloured green, traps in the windthrow area are 
coloured yellow) (a) and temporal distribution of seeds, divided into number of filled seeds (blue) and 
number of empty seeds (yellow) (b). 
 

percentage of filled seeds 

100%   31%    19%      27%     8%      8%       9%     13% 
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Morphological seed parameters and their effects on seed dispersal 

By means of a regression analysis we tested whether there is a linear relation (i) between the 

weight of the seeds and the length of the seed wings, (ii) between the dispersal distance and 

the length of the seed wings and (iii) between the dispersal distance and the weight of the 

seeds. As expected, the weight of the seeds was significantly correlated to the length of the 

seed wings with a correlation coefficient of R2 = 0.597 (Figure 3a). In contrast, the 

parameters length of seed wings and weight of the seeds were not linearly correlated to the 

seed dispersal distance (Figure 3b and 3c). 
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Figure 3 Scatter plot containing a linear regression line displaying accordance between length of seed 
wings and weight of seeds (a), length of seed wings and seed dispersal distance (b) and weight of 
seeds and seed dispersal distance (c). 
 

 
The results of the ANOVA revealed that the seed weight and the length of the seeds were 

significantly dependent on whether they were filled or empty (Figure 4). Thereby, filled seeds 

were heavier and featured longer wings than empty seeds. Against that, the condition of 

seeds had statistically no significant effect on the flight distance of the seeds. Generally, the 

total amount of empty seeds was quite high with 75.8 % (510 seeds).  

R2 = 0.597 R2 = 0.008 R2 = 0.000 
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Figure 4 Mean values of length of seed wings (in mm), seed weight (in mg) and dispersal distance 
(in m) for the two seed conditions ‘filled’ (blue) and ‘empty’ (yellow); given are the significance levels 
as results of the ANOVA. 
 

Molecular analysis for assigning seeds to mother trees 

No significant linkage disequilibrium was detected among the five analysed nSSR loci. On 

average 10.8 alleles per locus were observed in the 674 seed wings and in the 203 adult 

trees with the number of alleles per locus ranging from seven (SF1 and SF333) to 23 (SF78). 

In order to estimate the identification potential of the marker system used, the PID was 

computed. Based on the five nSSR loci the PID for the adult trees and the seeds revealed a 

value of 4.1 x 10-4 (PIDsibs = 4,1 x 10-2) indicating that in four of 10,000 cases two samples 

drawn at random from a population cannot be distinguished from each other. Alternatively, 

this value shows sufficient identification potential based on the multilocus genotype for the 

assignment of seeds to mother trees.  

 

Out of the 674 seeds that were collected in the seed traps, 661 seeds could be genetically 

characterized. Thereby, we detected 477 different multilocus genotypes among the total 

sample of 661 seeds. Comparing the multilocus genotypes of the seeds that are derived from 

the maternal tissue with those of the 203 adult trees, 61 seeds could be clearly assigned to a 

mother tree based on four and five matching loci. Thirty-three seeds could be assigned to 

two possible mother trees. For those, the average dispersal distance was calculated as the 

distance between the seed trap and the two possible mother trees. Thus, a total of 94 seeds 

(that means 14.2 %) could be included for the estimation of seed dispersal which originates 

from one of the 203 adult fir trees within the stand. Only 23 seeds originate from traps of the 

windthrow area, mostly from traps located close to the forest margin.  

significance level 

    p < 0.001***                  p < 0.001***                   p = 0.211 
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The 61 seeds that could clearly be assigned to a mother tree originated from 28 different 

mother trees (Figure 5). The allocation of the identified mother trees shows that most of them 

are located close to the forest margin and therewith, close to the seed traps. Unexpectedly, 

none of the assigned seeds could be identified as offspring from the three remaining adult 

trees on the windthrow area (hold-over trees) although cones were visible. 

 

 

 
Figure 5 Position of genotyped silver fir trees and of the seed traps within the study site; successfully 
assigned mother trees of the trapped seeds are indicated with red symbols. 
 
Additional twelve seeds could be assigned to more than two mother trees. They had to be 

excluded for the further analysis due to the multiple assignments. Using four to five SSR loci 

we detected 477 different multilocus-genotypes among the total sample of the genotyped fir 

seeds. The 94 assigned seeds revealed 37 different multilocus genotypes while the twelve 

seeds that resulted in a multiple assignment show an additional multilocus-genotype. That 

means we found 439 different multilocus-genotypes within the maternal tissue of the seeds 

that do not match with any multilocus-genotype of the sampled adult fir trees. Thus, at least 

439 trees that were not sampled dispersed seeds into the traps. 
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By quantifying the spatial distances between the traps of the 94 assigned seeds and their 

identified mother trees, it was possible to determine the seed dispersal distance of the fir 

seeds and to construct a seed dispersal curve (Figure 6). A minimum of 7 m and a maximum 

dispersal distance of 275 m were observed with a mean dispersal distance of 98 m (median: 

92 m). Sixty-five percent of the fir seeds dispersed within 120 m of their mother trees. 

Focusing on the seeds found in the stand and those found in the open area separately, 

shorter dispersal distances were observed for the seeds collected in the stands with a mean 

dispersal distance of 96 m and a maximum of 252 m. In contrast, seeds trapped in the 

windthrow area exhibited an average dispersal distance of 103 m with a maximum distance 

of 276 m. 
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Figure 6 Seed dispersal function of silver fir seeds based on 94 seeds. 

Discussion 

This study contributes to a better understanding of local seed movement in wind-mediated 

tree species silver fir under the spatial aspect and the impact of morphological characteristics 

of seeds.  

The present case study displays the seed dispersal with an average cone crop in silver fir 

showing a comparatively low yield of filled seeds as occurred for the Black Forest in 2006 

(T. Ebinger, pers. communication). Larger crops usually occur at a 2- to 4-year interval 

(Young and Young, 1992). In another study the genetic structure of the adult trees within the 

study plot had been intensively analysed in comparison to two other fir stands in the Black 

Forest (Cremer et al., unpublished). The results demonstrate that the adult tree genotypes 

(including the mother trees) are representative for the Black Forest region concerning genetic 

diversity and allelic structure.  
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Morphological characteristics of seeds and temporal aspects of seed dispersal 

The morphological parameters seed weight and length of the wings do not appear to have an 

influence on the dispersal distance of the seed while both parameters are not mutually 

independent. These findings are congruent with those of Tracz and Barzdajn (2007) who 

also detected a significant correlation between length of the wings and other main features of 

seeds and cones such as length of seed and scale length of cone. Empty seeds are 

significantly lighter and have smaller wings than filled ones. Focusing on the mean value of 

the dispersal distance they disperse over larger distances whereas this result was 

statistically not significant. Since lighter seeds should disperse over larger distances and in 

contrast smaller wings might lead to less dispersal, both observations partly counterbalance 

each other. These considerations might result in a non-significant relationship between the 

condition of seeds and the dispersal distance. Due to the reduced weight and length of the 

wing of empty seeds, a deficit within development of the seeds can be assumed. However, 

many agents can cause a formation of empty seeds and with it a reduced seed yield. 

Typically, a large percentage of mature Abies seeds are empty, between 40 % and 70 % 

(Rohmeder, 1972; T. Ebinger, pers. communication). The responsible factors have not been 

completely identified yet, but lack of pollination, selfing or genetic irregularities have been 

suggested (Young and Young, 1992). The reproductive success is also reduced when the 

flowering periods of the individuals do not overlap (Austerlitz et al., 2004) or by adverse 

weather conditions, e.g. by late spring frost, rain and summer drought.  

Eighty percent of the seeds collected in the traps were dispersed by the end of October. 

Dispersal events occur slightly delayed after fruit ripening, usually September and October in 

silver fir (Young and Young, 1992) due to the drying processes of the cones before releasing 

the seeds. Although most fir seeds are usually disseminated in fall, seed fall sometimes 

continues well into the winter (Young and Young, 1992). Congruently, a long dispersal period 

of the fir seeds until the end of the collection period in January was observed. The long 

dispersal period leads to a seed dispersal under various weather conditions and wind 

directions and therewith, promotes multifaceted dissemination. Overall the amount of empty 

seeds was comparably high with 75 %, but especially within the second half of the dispersal 

period an even higher amount of empty seeds of up to 90 % was observed. This can be a 

result of the location of the empty seeds within the cone since they are mainly located at the 

bottom of the cone (Young and Young, 1992). Therefore, those seeds might be loosened 

from the disintegrating cone at a later date. 
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Spatial scale of seed movement  

The accumulation of the seed entry was especially high close to the forest margin and within 

the forest stand. However, seeds were also found in the seed traps of the windthrow area 

with the largest distance from the forest margin. Congruently, Kohlermann (1950), detected 

that 50 % of spruce and pine seeds that would have been deposited within the stand are 

dispersed in the open area within a distance that correspond to the double adult tree height. 

In a distance that corresponds to the fourfold tree height, only 10 % of the seed density in the 

forest stand was estimated. 

 

Analysing maternal tissue of seeds such as coats and wings offers the unique possibility to 

identify mother trees of dispersed seeds when their genotypes are compared with those of 

the adult trees in a population. Conducting the direct maternity approach such as Godoy and 

Jordano (2001) and Grivet et al. (2005) we could localize maternal trees for 14 % of the fir 

seeds found in the traps. The remaining 86 % could not be identified because their maternal 

tree had not been genotyped or was outside the sampled area. Most seeds were dispersed 

at a distance of 40 m to 60 m from the maternal tree which was probably due to the fact that 

winged seeds are blown with the wind and usually do not fall directly to the ground. Similar 

results were found in the Bavarian Forest by analysing seed dispersal in spruce where the 

maximum number of seeds was found at a distance of 45 m to 60 m (Schirmer and Konnert, 

unpublished). 

As the seed traps were set up to an extent of about 100 m into the windthrow area, a 

maximum dispersal range between mother tree and seed deposition of 350 m was covered 

in the study site. Thus, we mainly focused on local seed dispersal. Seeds trapped in the 

windthrow area exhibited a higher dispersal distance probably due to fewer barriers during 

seed fall and higher wind velocity. Lian et al. (2008) detected distances between Abies 

sachalinensis recruits and their presumed mother trees ranging from 1.7 m to 236.9 m which 

is congruent with our findings in silver fir. Indeed, the mean distribution of the A. 

sachalinensis was smaller with 23.7 m and showed that 81.6 % of the recruits established 

within 30 m of their mother trees. Godoy and Jordano (2001) found evidence for a 

distribution of seeds primarily in the neighbourhood of the maternal tree for the animal-

dispersed species Prunus mahaleb, a Mediterranean shrub. Our findings could not 

completely support the previous results in A. sachalinensis and P. mahaleb since only 20 % 

of the assigned seeds were dispersed within a 40 m radius of the mother tree.  
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Contributing mother trees 

Our estimates of dispersal distances do not include the long seed dispersal from other parts 

of the forest area (immigrant seeds). When potential mother trees are too widely distributed 

to locate, maternity analysis is also not practical, despite good genetic resolution of the 

markers used. Nonetheless, a genetic analysis can provide valuable information about the 

genetic consequences of seed dispersal, even when a maternity analysis is not feasible 

(Grivet et al. 2005). About 86 % of the seeds were not assignable to any analysed adult tree. 

However, the estimation of the fraction of immigrant seeds within the seed deposition can be 

derived as follows.  

According to the yield table for silver fir of Hausser (1956), a quantity of 243 firs per hectare 

is assumed for a fir stand at the age of 130 years. Thus, a total number of 437 adult firs can 

be expected within the investigated stand that is characterized by a size of about six hectare, 

an amount of 50 % firs and a stocking density of 0.6. Subtracting the 203 sampled adult fir 

trees, there are about 234 adult firs left within the investigated stand that has not been 

sampled and thus, not been genotyped. Taking into account that 439 different multilocus 

genotypes of the maternal tissue of the seeds could not be matched to any sampled adult fir, 

at least 205 fir trees which provide seeds to the seed traps must be located outside of the 

study plot. Consequently, these trees dispersed their seeds at least 150 m which is in 

accordance to the minimum distance between adult firs located outside of the sampled area 

and the nearest seed trap. However, 205 seeds with unique multilocus genotypes in the 

maternal tissue correspond to 205 different mother trees that must be located outside of the 

sampled area due to the described considerations above. Thus, 205 of the 661 genotyped 

seeds found in the traps (31 %) must have been dispersed from mother trees outside the 

sampled area with a minimum dispersal distance of 150 m. These findings let us assume 

moderate to high levels of seed inflow. As a consequence of the high number of contributing 

mother trees, a recolonization of disturbed areas is unlikely to cause genetic drift. 

 

Although seeds can fly over few hundred meters, most actually fall within one or two tree 

heights of the mother trees. Similar findings were detected for noble fir (Franklin, 1983). In 

the present case study, we detected efficient seed dispersal within the closed forest stand as 

well as in the windthrow area close to the forest margin enabling the tree population to 

maintain genetic diversity. In particular, seed dispersal patterns should directly impact the 

genetic structure of populations. Species whose seeds are dispersed near the mother plant 

should have more obvious fine-scale genetic structure than species whose seeds are 

dispersed singly by animals or wind (Hamrick et al., 1993).  
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The present dispersal distance estimations support evidence to our previous findings of less 

spatial autocorrelations among adults and saplings in the investigated stand and in two other 

fir populations which are not included in this study (Cremer et al., unpublished). 

 

Beside tree- and seed-specific features, the dispersal of seeds is heavily dependent on the 

wind as a decisive determinant, especially on the wind speed. The efficiency of the wind for 

seed dispersal is thereby correlated to the sinking rate of the seeds. Based on a starting 

height of 14 m (= tree height) Kohlermann (1950) exemplarily calculated an increased mean 

dispersal distance for increasing wind speed in silver fir: 26 m at a wind speed of 1.7 m/sec, 

34 m at a wind speed of 2.7 m/sec and 72 m at a wind of 5.9 m/sec. Hence, in the present 

study the dispersal probably occurred largely under moderate wind conditions since seeds 

dispersed on average 98 m while most seeds dispersed within the distance class of 40 m to 

60 m. The study of Kohlermann (1950) also shows that fir seeds are blown some distances 

even at lower wind velocities. This might explain the course of the dispersal function for fir 

seeds revealing that only few seeds were dispersed underneath the mother tree. 

Forest management practices 

Generally, conifers that grow at a high density and show wind-mediated seed dispersal are 

expected to extensively disperse seeds and have overlapping seed fall (Knowles, 1991). 

Focusing on the question ‘How much of the seeds do actually disperse into a windthrow area 

in terms of recolonization or reforestation purposes?’ we detected efficient local seed 

dispersal within the forest stand as well as in the windthrow area within a 100 m range from 

the forest margin. As a consequence for silvicultural management an additional planting of 

silver firs within the local neighbourhood of the forest stand on the windthrow area does not 

seem to be necessary from the dispersal point of view. Factors such as increased game and 

frost damage on open areas that might lead to a hindered growth of fir saplings are not 

considered here, but should be also taken into account for silvicultural management 

activities. Moreover, it must be considered that the amount of empty seeds trapped (75 %) 

was comparatively high. Most of the seeds would not have resulted in seedling 

establishment. The amount of empty seeds varies considerably from year to year (Kormutak 

and Lindgren, 1996). Therefore the present result of only one-year mast can not be 

generalized. 

 

For silvicultural purposes in terms of natural regeneration methods it is important to know at 

which distance a sufficient seed deposition can be expected based on the seed bearing adult 

trees.  
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With the present results of the genetic investigations of seed dispersal into open areas, the 

most acceptable size of regenerative cuttings (e.g. strip system) can be derived to guarantee 

sufficient seed deposition. Consequently to our findings, regenerative cuttings of up to 150 m 

in size should not lead to a genetic bottleneck effect within the natural regeneration of silver 

fir. This verifies the long term practice of strip cutting in width of one to two tree lengths 

(Smith, 1962). 

Conclusion 

This study presents a genetic approach to estimate local seed dispersal in silver fir. The 

analysis of maternal seed tissue using nSSRs provides a suitable tool for seed dispersal 

studies. The results demonstrate that there is no significant impact of morphological 

parameters of fir seeds on the dispersal distance. Seed entry on the adjacent open area is 

slightly lower than in the forest stand but sufficient within shorter distances of a few hundred 

meters. The high number of contributing mother trees let us assume a high level of genetic 

diversity in the seed population. Thus, for small windthrow areas no genetic risk can be 

expected due to the efficient and multifaceted seed distribution, especially against the 

background of continuous seed entry over multiple generations. 

Our results give only first insights into the seed movement of silver fir. As our sample size 

was limited, further research is necessary in order to get more detailed information about the 

natural recolonization potential of silver fir for large windthrow areas.  
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Abstract  

Tree - mycorrhiza interactions are essential components for forest ecosystem functioning. 

Using silver fir (Abies alba MILL.) as a model species, we revisited an old question whether 

the age of the host drives the community structure of its ectomycorrhizal (ECM) fungi. In a 

second step we asked if the ECM community could be regarded as the `extended 

phenotype´ of the host population. Silver fir trees and their associated ECM fungi were 

studied in three forest stands in the Black Forest. While the host populations were analyzed 

at DNA microsatellite loci, the associated ECM community was characterized by operational 

taxonomic units (OTUs). Morphotyping and internal transcribed spacer region (ITS) analyses 

revealed 33 different OTUs with ten of them identified to the species or genus level. 

No differentiation could be detected for the silver fir populations and a Bayesian model 

assigned them to a most likely number of just one group. Thus, the studied stands of A. alba 

can be considered as parts of one population most probably connected through extensive 

gene flow. The hypothesis of early vs. late stage fungi could not be supported by our study. 

Instead, as revealed by ANOVA, adult trees hosted a higher number of different ECM OTUs 

than juveniles. The correlation between fir genotypes and associated ECM fungi was 

displayed by a PCA biplot. It became evident that the genomic background of silver fir as 

represented by single-locus variation has an effect on the composition of the associated 

ECM. ECM communities therefore may be considered as extended phenotypes of the host 

populations which has inferences for conservation genetic measures.  

 

Keywords: silver fir (Abies alba Mill.), ectomycorrhizal fungi, nuclear microsatellite markers, 

ITS, single-locus-genotype-effect, extended phenotype 
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Introduction 

Organismic interactions are pre-requisites for ecosystem functioning since species do not 

evolve in isolation, but rather live and co-evolve with other species in the respective 

environments. It is generally assumed that relatively few species are responsible for 

community structure within ecosystems. Such species are called foundation species 

(Whitham et al., 2006). They structure a community by creating adequate conditions for other 

species. In case their impact on the ecosystem community is disproportionally large those 

species are also termed keystone species (Power et al., 1996). More recent analyses 

demonstrate the impact of keystone species through their `extended phenotype´ (Whitham et 

al., 2003; Bailey et al., 2004). `Extended phenotype´ is defined by Whitham et al. (2003) as 

an effect of genes at levels higher than the population which can determine species 

interactions. The genetic composition of the foundation species may influence the community 

structure leading to ‘interspecific indirect genetic effects’ (Shuster et al., 2006). Such 

hypotheses are baselines of the new discipline of `Community Genetics´ which is 

investigating ‘the role of intraspecific variation in affecting community organization and 

ecosystem dynamics’ (Whitham et al., 2003). Facing global change it has become evident 

that knowledge about possible impacts of intraspecific variation of the foundation species on 

community properties, e.g. community composition or multitrophic interactions (Agrawal, 

2003) is still scarce and should be urgently enlarged. This may hold true for trees in 

particular. 

Large parts of terrestric ecosystems consist of tree species, many of them being foundation 

species for various associated organisms. In forests, symbiotic interactions with fungi play a 

decisive role for tree vitality in general and particularly for the viability of trees under 

suboptimal conditions. About one third of the fungi in our forests are mycorrhizal fungi (Egli 

and Brunner, 2002). In temperate forests ectomycorrhizal (ECM) fungi play a major role as 

compared to other mycorrhizal life forms (Smith and Read, 1997). 

The present study focuses on the tree species silver fir (Abies alba Mill.). It is known for its 

important ecological function in montane European forest ecosystems as a so-called 

‘stabilizing’ tree species (Pfeil, 1842; Gayer, 1898; Ellenberg, 1996). Thus, it can be 

considered as a keystone or foundation species. Here, a novel approach was used which is 

based on an individual-oriented investigation of fir as a foundation species and its associated 

ECM fungi. Each of the studied firs has been genotyped using nuclear microsatellites (or 

simple sequence repeats (SSRs)) and at the same time diversity and abundance of the 

associated ECM were studied.  
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Three natural forest sites were investigated which are located on the same geological 

substrate (middle-red sandstone) in the Black Forest, Germany. Each of the study sites 

includes adult firs as well as juvenile firs and, furthermore consists of a closed forest stand 

with an adjacent open area as a result of windthrow. In order to use these sites as replicates 

from a genetic point of view we investigated the genetic structure. Thus, we attempted to 

verify that the studied silver fir populations are not completely different with regard to 

genotypic composition and distribution. Subsequently, we elaborated on putative drivers of 

the associated ECM community: 

i) We re-visited the early-late-stage ECM hypothesis (Izzo et al., 2005; Redecker et 

al., 2001; Smith and Read, 1997) and analysed the effects of ontogenetic stages 

of the host trees (adults, saplings) on the ECM community. 

ii) Next, we explored the data for a possible correlation between fir genotypes and 

associated ECM taxa which may indicate the existence of an extended 

phenotype. Since candidate genes governing symbiotic interactions are not yet 

identified or described, we used the same microsatellite markers as applied for 

population genetic purposes. The idea was that the variation at certain 

microsatellite marker loci could be linked to certain genomic regions of the host 

which are involved in such symbiotic interactions.  

The present study aims at deepening our understanding of tree – ECM interaction in 

temperate forest ecosystems. It is a comprehensive analysis of fir genotypes and associated 

ECM which furthermore provides a data base for future modelling community responses 

under disturbance regimes.  

Materials and Methods 

Sites and sampling 

This work was conducted at three study sites in the Black Forest, a low mountain range in 

the south-western part of Germany. Two research sites are located in the middle part of the 

Black Forest (‘Bannwald Grosse Tannen’ (BW) and ‘Sauriss’ (SR)) while the third site is 

located in the northern part of the Black Forest (‘Eyachtal’ (EY)). The elevation of the three 

sites is quite similar ranging from 700 m to 780 m. All three study sites are naturally mixed 

forest stands with silver fir as the main tree species located on the geological substrate 

‘middle-red sandstone’ and are characterized by an adjacent open area due to the windthrow 

in 1999. The research area, i.e. the Black Forest, is located at the north-western border of 

silver fir’s natural range. 
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We sampled 1360 adult and juvenile silver fir trees from all three sites for genotyping. From 

these, a total of 753 provided mycorrhizal samples. One site, BW, completely failed for 

mycorrhizal analysis (see Table 1). At this site the rust fungus Pucciniastrum epilobii and the 

aphid Dreyfusia nordmannianae caused an infection of the firs which led to a reduced and 

deficient development of the ECM. Needles of the trees were sampled during winter and 

spring 2005 while the ECM samples were collected in the summer 2005 from the same trees. 

We needed to wait until the ECM hyphae were well developed (Buée et al., 2005). For 

sampling of ECM on adult silver firs, the upper soil layer was broken up around the stem and 

lateral roots were cut off (as described by Ritter, 1990). Several roots per tree were collected 

and in case of seedlings the entire plants were extracted. 

 

The position of each tree was mapped by attributing geo-coordinates (using GS5, Leica 

Geosystems, Heerbrugg, Switzerland). Within the stands, sample trees were evenly 

distributed and in the adjacent windthrow areas saplings were sampled along four transects 

of 50 m or 100 m length. We defined two site types, ‘closed forest stand’ and ‘windthrow 

area’. Ontogenetic stages of the trees were defined as follows: seedlings = 1 to 3 year old 

trees assumed to be younger than the storm event; saplings = juvenile trees up to a height of 

1.5 m and adult trees = firs at fructification age (> 60 years). The saplings in the windthrow 

areas regenerated before the storm event. This is important to know for a correct 

interpretation of the data. 

 
Table 1 Sample statistics related to study sites, ontogenetic stages and site type.  

Study sites 
 

Closed forest stand Windthrow area 

Adults Saplings Seedlings Saplings Seedlings Codes Full names, 

Geocoordinates fir ECM fir ECM fir ECM fir ECM fir ECM 

BW 
Bannwald 

48°46’41.75’’N 

8°30’56.46’’E 
200 - 100 - - - 100 - - - 

EY 
Eyachtal 

48°46’41.75’’N 

8°29’34.02’’E 
54 54 104 98 51 50 100 89 52 51 

SR 
Sauriss 

48°31’16.14’’N 

8°28’56.31’’E 
200 100 200 124 - - 200 187 - - 

‘-‘ no samples available, in bold types: samples used for ANOVA  
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Microsatellite genotyping and genetic data analysis of silver fir  

Total DNA was extracted from frozen needles or dried wood adopting an alkyltrimethyl 

ammonium bromide (ATMAB) method described by Dumolin et al. (1995). The DNA was 

stored at -30°C until use. All samples were genotyped using six nuclear microsatellites (SF1i, 

SFb4, SFb5, SF78, SF331, SF333) and polymerase chain reaction (PCR) conditions were 

applied as described in Cremer et al. (2006). Forward primers carried a fluorescent label 

(Hex, Fam or Tamra). The DNA was amplified in a thermal cycler (T1, Biometra, Göttingen, 

Germany) and the PCR products were separated by capillary electrophoresis using the 

MegaBACE automated sequencer (GE Healthcare, Freiburg, Germany). Alleles were sized 

using the size standard MegaBACE ET400-R (GE Healthcare) and the MegaBACE fragment 

profiler version 1.2 (GE Healthcare). After all runs were completed a reproducibility check 

was conducted by re-analysing 20 to 50 randomly chosen samples. 

 

The software GENEPOP (Raymond and Rousset, 1995) was used to test for linkage 

disequilibrium. Genetic diversity within and among populations or subsets, respectively, was 

estimated by mean number (A) and effective number of alleles per locus (Ne), allelic richness 

(Ar), and heterozygosity (observed Ho and expected He). Global FST according to Weir and 

Cockerham (1984) was calculated. Genetic distance according to Nei (1972) was computed 

between pairs of populations and ontogenetic stages. Genetic diversity and genetic 

distances were computed with the help of GenAlEx 6.0 (Peakall and Smouse, 2006). 

Population differentiation occurs when a large proportion of the total genetic variation is 

found among populations. To detect and test for such a differentiation, we used an Analysis 

of Molecular Variance (AMOVA) with 9,999 random permutations (Excoffier et al., 1992; 

Peakall et al., 1995; Michalakis and Excoffier, 1996). Additionally, an a posteriori assignment 

of genotypes to a maximum number of possible populations was conducted with the help of 

Bayesian modelling. This procedure is implemented in the computer program Structure 2.2 

(Pritchard et al., 2000). We computed such an assignment to a possible number of K=1 to K= 

6 populations (at least twice as much as the number of sampled populations) with 10,000 

simulations while the ‘admixture model’ and the ‘correlated frequency model’ were chosen as 

settings. For investigating fine-scale spatial genetic patterns of each ontogenetic stage within 

the three fir populations spatial autocorrelation analysis was performed using the spatial 

autocorrelation option in GenAlex (Smouse and Peakall, 1999; Peakall and Smouse, 2006) 

for even distance classes of 20 m. Statistical significance was tested by 1,000 random 

permutations with a 95 % confidence level. 
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Morphotyping and molecular taxonomic diagnosis of ectomycorrhizal fungi  

The morphotyping of the mycorrhizal samples of the 753 silver fir trees was based on 

macroscopical features in a first step. Mycorrhized root tips were washed, analysed under a 

dissecting microscope and classified into morphotypes following Agerer (1987-98). The ECM 

tips which had been subjected to morphotyping before were stored in a fixation solution 

containing NaCl and ATMAB at room temperature until DNA extraction. Immediately before 

DNA extraction the samples were frozen and ground with a shaking mill. Extraction 

procedure followed the protocol of Dumolin et al. (1995). 

For species identification the fungal internal transcribed spacer region (ITS) was amplified, 

using the primer pairs ITS1 and ITS4, ITS1F and ITS4B (Gardes and Bruns, 1993) or Nsa3 

and Nlc2 (Martin and Rygiewicz, 2005), respectively. ITS analysis was generally based on 

the primer pair ITS1/ITS4. If this did not result in PCR products, in a second step the primer 

pair Nsa3/Nlc2 and in a third step ITS1F/ITS4B was applied. The PCR was carried out in a 

20 µl standard volume containing 1.5 mM MgCl2, 6 % DMSO, 0.2 mM dNTP-Mix, 1x NH4-

PCR buffer, 0.8 U MangoTaqTM (Bioline, London, UK), 0.6 pM of each primer and 20-40 ng 

template DNA. The DNA was amplified in a Hybaid Px2 Gradient Cycler (Thermo Fisher 

Scientific Inc., Waltham, Massachusetts, USA) under the following general framework: initial 

denaturation for 5 min at 95°C, followed by 30-35 cycles with 30 sec at 95°C (denaturation) 

30 sec at the primer dependent annealing temperature (55 or 58°C), 45-60 sec at 72°C 

(elongation), and final elongation for 10 min at 72°C.  

A representative number of ECM morphotype samples were sequenced in both directions. 

For this, the ITS region of the respective sample was amplified in a 50 µl volume, purified 

with QIAGEN MinElute 96 UF PCR Purification Kit (QIAGEN GmbH, Hilden, Germany), 

applied to the Amersham Dye Terminator Sequencing Kit (Amersham Biosciences, 

Piscataway, New Jersey, USA) and sequenced using the MegaBACE automated sequencer 

(GE Healthcare). The obtained sequences were edited with the software BioEdit (Ibis 

Biosciences, Carlsbad, California, USA). Aligned sequences then were subjected to a blast 

analysis in the data bases UNITE (Kõljalg et al., 2005) and NCBI Blast (NCBI, Bethesda, 

Maryland, USA). The results of the diagnostic procedure were treated as OTUs (operational 

taxonomic units). These included four categories. Following a decreasing degree of 

specificity there are i) unambiguously identified ECM species, ii) genus-specific OTUs in the 

cases where different con-genus species matched as a result of the BLAST procedure, 

iii) OTUs which were macroscopically identified by morphological features in case of 

sequence failure and finally iv) ‘unidentified’ OTUs if morphological features of ECM root tips 

were not assignable. 
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Analysis of ECM diversity 

In order to quantify the diversity of the ECM partners found at the fir trees, Shannon’s 

Diversity Index and evenness were calculated within each ontogenetic stage of the two study 

sites. Only for OTUs of the categories `i´ and `ii´, were frequencies scored and a presence-

absence matrix was composed. The latter served as an input matrix for univariate statistics. 

The effects of different ontogenetic stages of the firs on the number of OTUs that colonize a 

fir tree were analysed by ANOVA using the software SPSS 14 (SPSS Inc., Chicago, Il, USA). 

Data was previously inspected for homogeneity of variance and normal distribution. We 

could only include two sites due to missing ECM data at the site BW. The ontogenetic stage 

`seedling´ could not be analysed within the ANOVA since data was only obtained for just one 

of the three study sites (Table 1). 

 

Correlation between fir genotypes and ECM  

In order to analyse the correlation between single-locus genotypes of firs and the occurrence 

of associated OTUs, a Principle Component Analysis (PCA) was conducted using the biplot-

analysis option of the software CANOCO version 4.5 (Ter Braak and Smilauer, 2002). The 

analysis was based on frequencies of fir single-locus-genotypes occurring for each of the ten 

OTUs (appendix Table A-1, A-2). Only genotypes with a frequency > 2 % were included. 

Genotypes with less frequency provoke a complex biplot with irresolvable background noise. 

Subsequently, a Chi2-test was performed in order to discover those genotypes that are 

significantly related to OTUs in general, but not to specific single OTUs. This procedure 

checks for deviations between observed and expected frequencies and was conducted for 

those single-locus-genotypes that revealed PCA vector values of > 0.5 or < -0.5, 

respectively. 
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Results 

Genetic diversity and differentiation of silver fir 

Mistyping errors of microsatellites were neglectable and we did not find any significant 

linkage disequilibrium among the six microsatellite loci. A total of 81 alleles was observed 

with a number of alleles per locus ranging from 6 (SF1 and SF333) to 35 (SF78). Genetic 

distances between the three fir populations were small. They ranged from 0.7 % between SR 

and BW to 1.9 % between EY and BW (Table 2). According to AMOVA only 1 % of the total 

variation was distributed among the populations, and thus 99 % within the populations. 

Additionally, global FST revealed low differentiation among the three fir populations (FST = 

0.008).  

Genetic assignment based on a Bayesian approach did not illustrate any grouping of the 

three different fir stands within the Black Forest. Simulations of the most probable number of 

populations resulted in K = 1 (Figure 1). Thus, the three study sites are not represented by 

genetically distinct populations and behave rather like a single population which constitutes a 

reproductive community. 
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Figure 1 Simulation of the most probable number of populations (K), within a range of K = 1 to K = 6. 
Red circle indicates the most probable number of K = 1.  
 

Focusing on the within-population scale, genetic diversity parameters were estimated for 

each ontogenetic stage (adults, saplings and seedlings). Mean number of alleles (A) ranged 

as follows: from 6.7 (adults) to 9.0 (saplings) at the site EY, from 10 (adults) to 10.2 

(saplings) at the site BW and from 9.2 (adults) to 11.0 (saplings) at the site SR. Mean 

effective number of alleles (Ne) ranged from 2.9 to 3.2 for EY, from 3.0 to 3.1 for BW and was 

consistently with 3.2 for SR. Mean observed heterozygosity (Ho) varied from 44.0 % to 

47.9 % at site EY, from 46.7 % to 47.4 % at site BW and from 47.1 % to 49.2 % at site SR.  
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Although heterozygosity was varying there was no consistent trend, meaning that differences 

within the sites could not be explained by ontogenetic stages. Nei's pairwise genetic distance 

between ontogenetic stages were low in general and varied from 0.4 % between adults and 

saplings at site SR and to 2.0 % between adults and seedlings at site EY (Table 3). 

 
Table 2 Pairwise Nei's genetic distance between the three fir populations. 

 

Pairs of populations Genetic distance 

EY - SR 0.009 
EY - BW 0.017 
SR - BW 0.007 

 

 
Table 3 Pairwise Nei’s genetic distances between ontogenetic stages. 

 

Genetic distance 
Pairs of ontogenetic stages 

EY SR BW 

adult – sapling* 0.011 0.004 0.013 

adult – seedling* 0.020 - - 
sapling – seedling* 0.011 - - 

 * fir individuals of windthrow area and forest stand are combined for the saplings and seedlings 

 

Absence of genetic differentiation and genetic distances at a regional scale does not 

necessarily imply the absence of genetic structure at the smaller scale within the populations. 

According to spatial autocorrelation no spatial genetic structure was detected for the adult 

trees at sites BW and EY, nor for the seedlings at site EY (data not shown). Only marginal 

positive autocorrelation at very short distances was found for the adult trees and for the 

saplings at the site SR (distance class of 0 – 20 m). The same holds true for the saplings at 

sites BW and EY (data not shown). 

Associated ECM fungi 

By morphotyping and sequence analysis of the ECM fungi we obtained a total number of 33 

OTUs of different taxonomic specificity. Considering all 33 OTUs, Shannon’s diversity index 

revealed similar values for the different ontogenetic stages, while the highest diversity was 

obtained for the saplings in the windthrow area at site SR (Table 4). Similar results were 

obtained for evenness, the values ranging from 1.12 to 1.45 with the highest value of 1.84 in 

the saplings at site SR. Thus, the frequency distributions of the OTUs seem to be similar. 



72 

Paper III 

 
Table 4 ECM species diversity (Shannon’s diversity index and evenness) within the ontogenetic  
stages of each study site. 
 

 Shannon-Index evenness 

Study site EY   
   adults  4.72 1.45 
   saplings (stand) 3.86 1.12 
   saplings (windthrow area) 4.16 1.26 
   seedlings (stand) 4.56 1.40 
   seedlings (windthrow area) 4.16 1.33 
Study site SR   
   adults  5.70 1.22 
   saplings (stand) 4.94 1.44 
   saplings (windthrow area) 6.43 1.84 

 
 
Ten of the 33 OTUs could be clearly identified at the species and genus level (categories i 

and ii). These ten OTUs are response variables in the ANOVA and in the PCA (see below). 

The frequencies of these OTUs are given in Table 5. Generally these fungi were detected 

within both study sites, in the stand as well as in the windthrow area and throughout all 

ontogenetic stages of the firs except for Laccaria amethystina, Russula species II and 

Lactarius spp. which are absent in the seedlings. There is a clear differentiation between 

common and less abundant OTUs, with Tomentella stuposa and Cenococcum geophillum as 

the most frequent ones followed by Russula ochroleuca and Lactarius spp.  

 
Table 5 Frequencies of the 10 identified ECM OTUs [%]. 
1: Tomentella stuposa, 2: Cenococcum geophilum, 3: Laccaria amethystine, 4: Russula species II, 5: 
Russula ochroleuca, 6: Clavulina cristata, 7: Xerocomus pruinatus, 8: Cortinarius spp., 9: Amphinema 
byssoides, 10: Lactarius spp 
 

 OTU 

 1 2 3 4 5 6 7 8 9 10 

Total 24.2 22.1 7.1 1.5 11.9 5.3 2.9 4.9 3.4 16.6 
Study site 
SR 23.0 20.3 10.1 1.2 11.4 5.4 1.5 5.1 4.2 17.9 
EY 26.0 25.1 2.3 2.1 12.9 5.2 5.2 4.7 2.1 14.5 
Ontogenetic stage 
adults 24.2 19.1 5.6 1.3 14.9 6.9 2.0 6.6 2.3 16.8 
saplings 23.5 20.9 8.7 1.8 10.9 4.3 3.5 4.1 3.9 18.5 
seedlings 28.7 42.5 0.0 0.0 10.3 8.0 1.1 5.7 3.4 0.0 
Site type 
stand 27.6 20.5 6.6 1.9 10.7 7.7 4.4 3.6 1.6 15.6 
windthrow area 21.2 25.5 8.6 1.4 11.0 2.3 2.3 5.0 5.6 17.3 
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ANOVA revealed that the number of OTUs was significantly dependent on the ontogenetic 

stage of the firs (Table 6). The highest number of OTUs was detected on the roots of adult 

trees (Figure 2) documenting an increase of the ECM diversity due to the age of the host. 

 
Table 6 Results of ANOVA showing the effect of ontogenetic stage on the number of OTUs colonizing 
a fir tree; *** = p < 0.001. 
 

Source of variation d.f. MS Number of OTUs F 

ontogenetic stage 1 9.61 11.23*** 
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Figure 2 Mean values of the number of OTUs for the two ontogenetic stages ‘adult’ and ‘saplings’. 

Correlation between single-locus-genotypes and ECM fungi 

With the help of the PCA, a biplot was obtained in which the first coordinate explains 44.3 % 

and the second coordinate 20.9 % of the total variation (Figure 3). Overall, 60 single-locus 

genotypes were included in the analysis with frequencies > 2 %. Forty of these single-locus 

genotypes are displayed whose vector load was > 0.5 or < -0.5, respectively. Thus, they 

were included in a Chi2-test for statistic validation (appendix, Table B-1, B-2). The observed 

frequencies of 15 single-locus-genotypes in association with the respective OTUs deviated 

significantly from the expected (Figure 3, genotypes in red circles). These single-locus 

genotypes are affiliated to four of the six SSR loci (SFb4, SF 78, SF 331, SF333). The locus 

SFb4 exhibited a maximum number of eight single-locus-genotypes significantly correlated 

with OTUs. 



74 

Paper III 

 

 
Figure 3 Biplot of Principal Component Analysis (PCA). Single-locus-genotypes of firs as explanatory 
variables are displayed as vectors while the 10 OTUs as response variables are displayed as points 
(1: Tomentella Stuposa, 2: Cenococcum geophilum, 3: Laccaria amethystine, 4: Russula species II, 5: 
Russula ochroleuca, 6: Clavulina cristata, 7: Xerocomus pruinatus, 8: Cortinarius spp., 9: Amphinema 
byssoides, 10: Lactarius spp.). The six numbers characterising the single-locus-genotypes reflect the 
sizes of the SSR alleles, e.g. 164180 codes two alleles, one with 164 bp and the other with 180 bp in 
length; the letter correspond to the SSR locus (A: SF1, B: SFb5, C: SF78, D: SF331, E: SF333, F: 
SFb4). Significant single-locus-genotypes are circled with a red line.  

Discussion  

This study contributes to a better understanding of the relationship between trees and ECM 

fungi as symbiotic partners in temperate forest ecosystems. With silver fir as model species, 

it revisits an old question as to whether there is an age-dependent structure of the associated 

ECM community. Moreover, the study profits from a comprehensive individual-orientated tree 

by fungi approach in which each host individual is genotyped and at the same time analysed 

for its ECM community. Here, a unique opportunity arose by the microsatellite DNA markers 

used. On the one hand it could be assured that the populations under study did not differ in 

their genetic structure. On the other hand, the association of single-locus genotypes and 

certain ECM provided first evidence for the ECM community representing an extended 

phenotype of the fir population. 
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Silver fir of the Black Forest had been suffering from severe decrease since the beginning of 

the 19th century when the formerly mixed forest stands with beech, Norway spruce and silver 

fir had largely been replaced by monocultures of Norway spruce (Günther Groß, pers. 

communication). As a consequence we may expect fragmentation effects such as 

interruption of gene flow leading to drift and increasing genetic differentiation (Templeton et 

al., 2001). If so we would risk introducing a `population genetic bias´ into our ecological 

genetic investigation which was based on three fir sites. These were meant as independent 

replicates for statistical tests. A different level of fir genetic diversity could also -per se- drive 

the diversity of the associated ECM community. Schweitzer et al. (2008) demonstrated that 

different levels of host tree genetic diversity can be positively correlated with the diversity of 

the associated species community. Based on the six nuclear SSR markers of our study 

neither different levels of diversity nor distinct differentiation among the three populations and 

between the ontogenetic stages could be detected. Interestingly, the current fragmentation of 

silver fir populations is not imprinted in the genetic structure. In this respect, our study 

supports conclusions that in long-lived plants with effective gene flow through wind-dispersed 

pollen, genetic effects of fragmentation can be less pronounced than in others with 

contrasting life history traits (e.g. Young et al., 1996; Williams et al., 2007). Is there a 

possibility that the markers used, mask differentiation which is really present? In another 

study using exactly the same six markers we found a pronounced genetic differentiation 

between Black Forest silver fir provenances on the one hand and Romanian and 

Macedonian provenances on the other hand (unpublished data). Here, the differentiation at 

the nuclear microsatellite loci reflected the distinct differentiation at a mitochondrial DNA 

locus (Liepelt et al., 2002; 2008). 

Besides, among-population differences, within-populations genetic diversity may not be 

distributed homogeneously resulting in spatial genetic structures (SGS, Jump and Penuelas, 

2007; Vekemanns and Hardy, 2004). In the present study, slight positive spatial-genetic 

correlations at very short distances could be observed in only a sub-set of the sample 

populations. Conifers which grow at high density and show wind-mediated seed dispersal are 

generally expected to extensively disperse seeds and have overlapping seed shadows, 

eliminating obvious genetic structure within populations (Knowles, 1991; Lian et al., 2008). 

Congruently, from a population genetic point of view, the three study sites were considered 

to be legitimate replicates. 

We therefore explored the ECM fungal communities for statistical significance of the 

postulated drivers such as ontogenetic stages and single-locus-genotypes.  



76 

Paper III 

 

ECM communities are known to be highly diverse, even in stands dominated by a single 

plant species (Visser, 1995; Dahlberg et al., 1997; Horton et al., 1999; Jonsson et al., 1999a, 

b; Byrd et al., 2000). We found a total of 33 ECM OTUs. With all 33 OTUs included, the 

observed differences of Shannon´s diversity indices and evenness could not be explained by 

the different sites and/or ontogenetic stages. Thus, we decided to only include those ten 

OTUs in our statistical tests which had been clearly identified as species or genera, 

respectively. By including all OTU categories the analyses could suffer from taxonomic 

uncertainties, e.g. redundancy. 

All ten OTU species or genera are supposed to be generalists in the way that they are 

associated with numerous host species including conifers. They are indicators for acidic and 

nutrient poor soils (Krieglsteiner, 1977; Rexer et al., 1995; Kõljalg, 1996; Dahlberg et al., 

1997; Fiore-Donno and Martin, 2001; Redecker et al., 2001; Koide et al., 2005; di Pietro et 

al., 2007; Peter et al., 2008). At both study sites a clear differentiation between common and 

less frequent OTUs occurred. Besides the most frequent species T. stuposa and C. 

geophilum well known as common species in various forests (Horton and Burns, 2001), 

Russula ochroleuca and members of the genus Lactarius were frequently found as well. 

Wiensczyk et al. (2002) state that different ECM fungal communities generally change with 

different ages of trees. More specifically, L. amethystina is known as early stage ECM with 

transient mycelia, high fructification rates and dispersal by meiospores (Deacon and Fleming, 

1992; Smith and Read, 1997). In contrast, the genus Xerocomus is classified as late stage 

ECM, with widespread, long-lasting mycelia and low fructification ratios (Fiore-Donno and 

Martin, 2001). However, we did not find any such distinct differentiation. Rather, a significant 

difference in the number of OTUs between the ontogenetic stages was found. Adult trees are 

colonized by a higher number of different OTUs than younger trees indicating a significant 

increase of the ECM diversity on the individual level. One may argue that this could be due to 

a sampling effect. However, the same sample size per tree was taken independently from 

the ontogenetic stage, meaning from the size of the root system. ECM richness obviously 

increases over time with increasing ages of trees. Other observations confirm that ECM 

species are usually added to the fungal community, but that they do not necessarily replace 

the earlier ones (Visser, 1995; Bradburry et al., 1998). Horton and Bruns (2001) concluded 

on a higher ECM diversity in elder forest stands than in younger ones by compiling the 

results of different studies. If it is just the number of OTUs which is driven by ontogenesis 

what about drivers that select for distinct OTUs or OTU communities? Is there evidence for 

drivers which are to be found in the genetic background of tree individuals? 

It is generally well known that the genetic composition of a host species can have impacts on 

the colonization of distinct pathogens like pathogenic fungi.  
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For example, in crop cultures there is a risk of monocultures or clones, respectively, 

provoking severe pests due to gene-to-gene interactions (Bishop and Cook, 1981; Oldfield, 

1984). Recent studies have shown that there are genetic components within the host plants 

that may determine the structure of the dependent community (Bailey et al., 2006; Wimp et 

al., 2004; Johnson and Agrawal, 2005). Bailey et al. (2006) demonstrated on cottonwood that 

direct and indirect interaction among species result in distinct community composition that is 

predictable by genotype. Effects of genetically based interactions between organisms are 

currently analysed within the new and emerging field of community genetics. Such studies 

refer to plant-plant species communities (Booth and Grime, 2003; Vellend, 2006), plant-

insect communities (Crutsinger et al., 2006; Johnson, 2006; Johnson and Agrawal, 2005) 

and plant-microbial communities (Schweitzer et al., 2008).  

We have chosen Abies alba as model for obtaining deeper insights into the symbiotic 

interaction with its ECM fungi. In a previous transplant experiment of ours we found evidence 

for an interspecific indirect genetic effect (IIGE; Whitham et al., 2003, 2006; Wilson and 

Swenson, 2003; Shuster et al., 2006) acting at the provenance level. We found that local 

silver fir provenance performed better than far-distant provenances originating from a 

different refugial gene pool. After correlating genetic variability and ECM variability we 

concluded that the local provenance made better use of the local ECM variability 

(unpublished data). 

The results of the present study reveal a significant relationship between single-locus 

genotypes of the host and ECM OTUs as associated organisms. The Chi2-test showed that 

distinct genotypes determine parts of the OTU community, but it is still to be proven if they 

determine the association of explicit OTUs. 

Two loci of the six microsatellite loci do not exhibit any significant relationship with OTUs 

(SFb5, SF1), while one locus is disproportionately frequently involved in significant 

correlations. Since this locus, SFb4, revealed tendencies of harbouring null alleles we were 

concerned about a possible statistical bias. However, we can exclude a bias due to the high 

number of five heterozygote genotypes at this locus that reveal significant correlations. 

Since the fir trees have been characterized at nuclear SSR loci which are considered to be 

neutral without coding for any phenotype (Avise, 1994; Porcher et al., 2006), a direct gene-

to-gene correlation between SSR loci and ECM associations are excluded. Rather a 

`chromosomal vicinity´ between the SSR loci and genomic regions that have an influence on 

mycorrhization can be assumed. Since SSR loci are dispersed throughout the genome, they 

might be located close to gene-expressive and/or regulatory DNA-regions with functional 

relevance. In the case of trees and mycorrhiza this may relate to the expression of proteins 

which control the interaction between the symbionts. Several studies demonstrate that host 

plants produce essential metabolites which are able to affect fungal partners.  
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These metabolites are released into the rhizosphere to cause basidiospore germination 

(Fries et al., 1987), to affect the growth of hyphae towards the root (Horan and Chilvers, 

1990) or to influence the early developmental steps of mycorrhiza formation (Ditengou and 

Lapeyrie, 2000; Martin et al., 2001; Langenheim, 1994). Using selectively neutral markers we 

cannot provide direct information about candidate genes that might have an impact on 

mycorrhization. Candidate genes controlling interactive processes between mycorrhizal fungi 

and host root are therefore of high interest (Martin et al., 2001). 

Symbiotic interactions are assumed to be controlled by the genomes of both partners. In the 

present study, we focused on the tree as driver for the ECM abundance and diversity. In 

contrast, Martin et al. (2001) describes a first analysis of the nature of signals released by the 

ECM symbionts, how these signals are transduced within the partners, and the impact on the 

formation of symbiotic tissues. The feedback effect by the fungi should not be disregarded. 

Trees forming a diverse array of ectomycorrhizae are thought to be better suited to survive 

under variable climatic conditions than trees forming ECM with only few fungal species 

(Hagermann et al., 1999b). 

Conclusion and perspectives 

Our data demonstrate that ECM diversity is not so much dependent on different ages of the 

host or on site conditions like closed forest stands or windthrow areas. However, it seems 

that the individual tree with increasing age increases its ECM community. 

Our study also reveals that there is strong evidence for variable genomic regions of the host 

which can be regarded as driving factors of community structure and dynamics of its 

associated ECM fungi. Overall these findings support the general hypothesis that plant 

genomic traits can have strong organizational effects on the community level. 

 

As part of global efforts to preserve biodiversity and to assure sustainability, the conservation 

of genetic resources of forest trees has implemented in situ management of genetic diversity 

(Cavers et al., 2005; Lowe et al., 2005). As a consequence of the extended phenotype, 

conservation programmes of forest genetic resources must consider the impact of genetic 

diversity of host species on associated species within forest ecosystems. Therefore, 

Whitham et al. (2003) suggest a minimum viable interacting population size (MVIP) that 

better reflects the goals to conserve genetic diversity at levels required by interacting species 

instead of minimum viable populations size (MVP).  
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To come up with distinct conservation measures, further research is necessary in order to 

understand the cross-talking between signalling networks of the symbiotic partners by 

expression of symbiosis-regulated genes. First steps which are directly related to our results 

could be i) analysis of the DNA adjacent to the mentioned SSR loci by large-fragment-

sequencing, ii) looking for genes that are functionally related to the loci that influence the 

mycorrhization of a tree by checking common gene banks, and iii) conducting association 

genomics to verify the functional relationship between genotype and phenotype.  
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Appendix 
 
Table A-1 Genotype frequencies within the different OTU groups at the nSSR loci SF1, SFb5, SF78, 
SF331 and SF333 serving as basic matrix for the PCA (1: Tomentella stuposa, 2:Cenococcum 
geophilum, 3: Laccaria amethystine, 4: Russula species II, 5: Russula ochroleuca, 6: Clavulina 
cristata, 7: Xerocomus pruinatus, 8: Cortinarius spp., 9: Amphinema byssoides, 10: Lactarius spp). 
 

OTU nSSR 
locus 

genotype 
1 2 3 4 5 6 7 8 9 10 

SF1 220220 3,30 3,23 0,00 7,69 4,50 0,00 0,00 0,00 0,00 4,35 
 220223 25,94 25,80 21,31 38,46 29,73 30,61 42,31 27,91 35,71 26,81 
 223223 43,87 41,93 44,26 38,46 34,23 40,82 34,62 46,51 32,14 34,78 
 220226 6,13 4,84 6,56 0,00 6,31 4,08 0,00 9,30 14,29 5,07 
 223226 18,87 21,50 21,31 15,38 22,52 18,37 7,69 11,63 10,71 24,64 
 226226 0,00 0,00 3,28 0,00 0,00 4,08 0,00 0,00 0,00 2,90 
SFb5 143143 44,81 48,92 50,82 30,77 52,25 53,06 50,00 48,84 39,29 48,55 
 143149 4,25 5,38 0,00 0,00 7,21 10,20 0,00 9,30 0,00 6,52 
 143151 19,34 16,13 24,59 46,15 19,82 6,12 19,23 13,95 17,86 16,67 
 151151 0,00 0,00 0,00 0,00 0,00 6,12 0,00 0,00 0,00 2,17 
 143153 8,96 6,45 11,48 15,38 8,11 12,24 7,69 13,95 7,14 6,52 
 151153 0,00 2,69 0,00 0,00 0,00 0,00 0,00 0,00 0,00 2,90 
 143155 10,85 8,06 4,92 7,69 7,21 6,12 11,54 13,95 10,71 9,42 
SF78 174174 3,77 4,84 6,56 0,00 6,31 4,08 0,00 6,98 0,00 0,00 
 174206 4,25 9,14 8,20 7,69 7,21 10,20 7,69 6,98 0,00 6,52 
 206206 4,25 3,76 3,28 0,00 0,00 0,00 0,00 4,65 0,00 0,00 
 174233 10,38 7,53 0,00 0,00 13,51 8,16 0,00 6,98 0,00 13,04 
 206233 8,02 8,06 16,39 15,38 7,21 8,16 0,00 6,98 7,14 9,42 
 233233 9,43 9,14 9,84 15,38 7,21 14,29 7,69 6,98 10,71 7,97 
 174239 3,77 6,99 0,00 7,69 6,31 6,12 0,00 6,98 0,00 3,62 
 206239 3,30 2,69 4,92 0,00 2,70 6,12 0,00 0,00 0,00 4,35 
 233239 6,13 8,06 9,84 15,38 3,60 4,08 15,38 6,98 0,00 0,00 
 174245 2,83 4,30 3,28 0,00 3,60 10,20 11,54 9,30 7,14 4,35 
 206245 3,30 0,00 3,28 7,69 2,70 0,00 0,00 4,65 0,00 4,35 
 233245 7,08 9,68 3,28 0,00 6,31 0,00 7,69 11,63 0,00 5,80 
 245245 0,00 2,69 0,00 0,00 3,60 0,00 0,00 4,65 7,14 0,00 
 174259 0,00 0,00 0,00 7,69 2,70 0,00 7,69 0,00 0,00 0,00 
 233259 0,00 0,00 3,28 0,00 0,00 0,00 0,00 0,00 7,14 0,00 
SF331 103107 2,83 0,00 4,92 7,69 2,70 0,00 0,00 0,00 7,14 0,00 
 107107 87,74 91,39 86,88 84,62 87,39 93,88 92,31 88,37 92,86 86,23 
 107109 7,08 3,23 6,56 7,69 5,41 6,12 7,69 6,98 0,00 7,97 
SF333 169169 21,70 20,97 31,15 30,77 23,42 26,53 26,92 13,95 28,57 23,19 
 169171 18,40 18,82 16,39 15,38 16,22 18,37 38,46 23,26 21,43 18,84 
 171171 18,40 17,74 13,11 15,38 17,12 16,33 11,54 16,28 14,29 13,77 
 169173 5,19 4,84 3,28 0,00 7,21 10,20 0,00 9,30 0,00 3,62 
 171173 0,00 0,00 0,00 7,69 0,00 0,00 0,00 4,65 0,00 3,62 
 173173 3,30 2,69 0,00 0,00 2,70 0,00 0,00 0,00 0,00 3,62 
 169175 2,83 0,00 6,56 15,38 3,60 4,08 0,00 0,00 0,00 0,00 
 171175 2,36 0,00 0,00 7,69 2,70 0,00 11,54 0,00 0,00 0,00 
 175175 0,00 0,00 0,00 0,00 0,00 0,00 0,00 4,65 7,14 0,00 
 169179 8,49 9,68 6,56 0,00 9,91 8,16 0,00 6,98 0,00 11,59 
 171179 7,55 8,60 4,92 0,00 5,41 0,00 0,00 9,30 0,00 6,52 
 173179 2,83 0,00 3,28 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
 179179 4,72 3,76 3,28 7,69 7,21 6,12 0,00 4,65 0,00 7,97 
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Table A-2 Genotype frequencies within the different OTU groups at the nSSR locus SFb4 serving as 
basic matrix for the PCA (1: Tomentella stuposa, 2:Cenococcum geophilum, 3: Laccaria amethystine, 
4: Russula species II, 5: Russula ochroleuca, 6: Clavulina cristata, 7: Xerocomus pruinatus, 8: 
Cortinarius spp., 9: Amphinema byssoides, 10: Lactarius spp). 
 

OTU SSR 
locus 

genotype 
1 2 3 4 5 6 7 8 9 10 

SFb4 164164 15,09 16,67 13,11 7,69 10,81 8,16 19,23 9,30 17,86 15,94 
 164166 7,08 4,84 18,03 7,69 8,11 0,00 0,00 6,98 0,00 10,87 
 166166 21,70 19,89 21,31 53,85 23,42 10,20 30,77 20,93 32,14 19,56 
 164168 3,30 5,91 0,00 0,00 6,31 4,08 0,00 6,98 0,00 3,62 
 166168 2,36 0,00 4,92 0,00 0,00 4,08 0,00 4,65 0,00 4,35 
 168168 8,02 6,99 6,56 0,00 10,81 20,41 0,00 13,95 7,14 10,87 
 164172 0,00 2,69 3,28 0,00 2,70 0,00 0,00 0,00 0,00 0,00 
 166172 0,00 0,00 0,00 0,00 2,70 4,08 0,00 0,00 0,00 0,00 
 172172 2,83 0,00 0,00 0,00 2,70 6,12 7,69 0,00 0,00 2,90 
 164180 2,83 0,00 0,00 0,00 2,70 6,12 0,00 4,65 0,00 0,00 
 166180 4,25 3,23 0,00 7,69 6,31 0,00 0,00 0,00 0,00 0,00 
 168180 3,77 4,30 0,00 0,00 0,00 6,12 0,00 0,00 0,00 2,90 
 180180 4,72 5,38 8,20 7,69 3,60 6,12 0,00 4,65 0,00 3,62 
 168188 0,00 2,69 0,00 0,00 0,00 6,12 0,00 4,65 0,00 3,62 
 188188 0,00 4,30 0,00 7,69 2,70 0,00 0,00 0,00 0,00 0,00 
 164196 0,00 0,00 3,28 7,69 0,00 0,00 0,00 0,00 0,00 0,00 
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Table B-1 Results of the Chi2-test conducted subsequent to PCA to test for statistic significance between distinct fir genotypes and ECM OTUs; considered are those fir 
genotypes that are related to the first coordinate of the PCA biplot; (for OTU designation see Table A-1). 

           OTUs            
  

  

 1 2 3 4 5 6 7 8 9 10 Chi- fir genotype 

  

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

 Quadrat 

first coordinate of PCA                                  

SF 78 - 174233 22.00 18.69 14 16,4 0 5,34 0 1,14 15 9,77 4 4,35 0 2,29 3 3,81 0 2,44 18 12,13 19,82* 

f: 12,5 % 

no. of 
OTUs 

present 0,59 3.31 0,35 -2,4 5,34 -5,34 1,14 -1,14 2,8 5,23 0,03 -0,35 2,29 -2,29 0,17 -0,81 2,44 -2,44 2,84 5,87   

vl -0.6932 190.00 193.72 172 170 61 55,34 13 11,86 96 101,21 45 45,07 26 23,72 40 39,54 28 25,3 120 125,72   

  

no. of 
OTUs 

not present 0.07  -3.72 0,02 2 0,58 5,66 0,11 1,14 0,27 -5,21 0,0001 -0,07 0,22 2,28 0,01 0,46 0,29 2,7 0,26 -5,7   

SFb4 - 168168 17 18,9 13 16,59 4 5,4 0 1,16 12 9,88 10 4,4 0 2,31 6 3,86 0 2,47 15 12,27 18,44* 

f: 9,6 % 

no. of 
OTUs 

present 0,19 -1,9 0,78 -3,59 0,36 -1,4 1,16 -1,16 0,45 2,12 7,13 5,6 2,31 2,31 1,19 2,14 2,47 -2,47 0,61 2,73   

vl -0.8420 195 193,51 173 169,81 57 55,29 13 11,85 99 101,1 39 45,02 26 23,7 37 39,49 28 25,27 123 125,58   

  

no. of 
OTUs 

not present 0,01 1,49 0,06 3,19 0,05 1,71 0,11 1,15 0,04 -2,1 0,8 -6,02 0,22 2,3 0,16 -2,49 0,29 2,73 0,05 -2,6   

SFb4 -164180 6 3,4 0 2,98 0 0,97 0 0,21 3 1,78 3 0,79 0 0,42 2 0,69 0 0,44 0 2,21 19,25* 

f: 1,7 % 

no. of 
OTUs 

present 2,14 2,7 2,98 -2,98 0,97 -0,97 0,21 -0,21 0,82 1,21 6,18 2,21 0,42 -0,42 2,49 1,31 0,44 -0,44 2,21 -2,21   

vl -0.6387 206 209,02 186 183,42 61 59,72 13 12,8 108 109,2 46 48,63 26 25,59 41 42,66 28 27,3 138 135,65   

  

no. of 
OTUs 

not present 0,04 -3,02 0,04 2,58 0,03 1,28 0,003 0,2 0,01 -1,2 0,14 -2,63 0,01 0,41 0,06 -1,66 0,02 0,7 0,04 2,3   

SFb4 - 168188 0 3,19 5 2,8 0 0,91 0 0,2 0 1,66 3 0,74 0 0,39 0 0,65 0 0,42 5 2,07 20,58* 

f: 2,5 % 

no. of 
OTUs 

present 3,19 -3,19 1,73 2,2 0,91 -0,91 0,2 -0,2 1,66 -1,66 6,9 2,26 0,39 -0,39 0,65 -0,65 0,42 -0,42 4,15 2,93   

vl   -0.6912 212 209,23 181 183,61 61 59,78 13 12,81 111 109,31 46 48,68 26 25,62 43 42,7 28 27,33 133 135,79   

  

no. of 
OTUs 

not present 0,04 2,77 0,04 -2,61 0,02 1,22 0,003 0,19 0,03 1,69 0,15 -2,68 0,01 0,38 0,002 0,3 0,02 0,67 0,06 -2,8   

SF78 - 233 239 13 12,11 15 10,63 6 3,46 2 0,74 4 6,33 2 2,82 4 1,48 3 2,47 0 1,58 0 7,86 22,13** 

f: 5,1 % 

no. of 
OTUs 

present 0,07 0,89 1,8 4,37 1,86 2,54 2,15 1,26 0,86 -2,33 0,24 -0,82 4,29 2,52 0,11 0,53 1,58 -1,58 7,86 -7,86   

vl +0.6309 199 200,31 171 175,78 55 57,23 11 12,26 107 104,65 47 46,6 22 24,53 40 40,88 28 26,16 138 130   

  

no. of 
OTUs 

not present 0,01 -1,31 0,13 -4,78 0,09 -2,23 0,13 -1,26 0,05 2,35 0,003 0,4 0,26 -2,53 0,02 -0,88 0,13 1,84 0,49 -8   

SF78 - 174 259 0 1,49 0 1,3 0 0,42 1 0,09 3 0,78 0 0,35 2 0,18 0 0,3 0 0,19 0 0,96 39,21*** 

f: 1,9 % 

no. of 
OTUs 

present 1,49 -1,49 1,3 -1,3 0,42 -0,42 9,2 0,91 6,32 2,22 0,35 0,35 18,4 1,82 0,3 -0,3 0,19 -0,19 0,96 -0,96   

vl +0.7639 212 210,93 186 185,1 61 60,27 12 12,91 108 110,2 49 49,07 24 25,83 43 43,05 28 27,55 138 136,89   

  

no. of 
OTUs 

not present 0,01 1,07 0,01 -1,1 0,01 0,73 0,06 -0,91 0,04 -2,2 0 -0,07 0,13 1,83 0 -0,05 0,01 0,45 0,01 1,11   

SF331 - 103 107 6 3,61 0 3,17 3 1,03 1 0,22 3 1,89 0 0,84 0 0,44 0 0,74 2 0,47 0 2,34 21,58* 

f: 1,3 % 

no. of 
OTUs 

present 1,58 2,39 3,17 -3,17 3,77 1,97 2,77 0,78 0,65 1,11 0,84 -0,84 0,44 -0,44 0,74 -0,74 4,98 1,53 2,34 -2,34   

vl +0.6937 206 208,8 186 183,24 58 59,66 12 12,78 108 109,09 49 48,58 26 25,57 43 42,61 26 27,27 138 135,51   

  

no. of 
OTUs 

not present 0,02 -2,2 0,04 2,76 0,05 -1,66 0,05 -0,78 0,01 -1,09 0,004 0,42 0,01 0,43 0,004 0,39 0,06 -1,27 0,05 2,49   

SF333 - 171 173    0 1,91 0 1,68 0 0,55 1 0,12 0 1 0 0,44 0 0,23 2 0,39 0 0,25 5 1,24 25,16** 

f: 1,8 % 

no. of 
OTUs 

present 1,91 -1,91 1,68 -1,68 0,55 -0,55 6,45 0,88 1 -1 0,44 -0,44 0,23 -0,23 0,95 0,61 0,25 -0,25 11,4 3,76   

vl  + 0.5758 212 210,5 186 184,73 61 60,14 12 12,89 111 109,98 49 48,97 26 25,78 41 42,96 28 27,49 133 136,61   

  

no. of 
OTUs 

not present 0,01 1,5 0,01 1,27 0,01 0,86 0,06 -0,89 0,01 1,02 0 0,03 0,002 0,22 0,09 -1,96 0,01 0,51 0,1 -3,61   

f: frequency, vl: vector loading, No: number of observed OTU, Ne: number of expected OTU, No-Ne: difference of observed and expected number of OTU  
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Table B-2 Results of the Chi2-test conducted subsequent to PCA to test for statistic significance between distinct fir genotypes and ECM OTUs; considered are those fir 
genotypes that are related to the first and the second coordinate of the PCA biplot; (for OTU designation see Table A-1). 

           OTUs               

 1 2 3 4 5 6 7 8 9 10 Chi- fir genotype 

  

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  

Ne 
No - 
Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

No 
Chi2  Ne 

No - Ne 

Quadrat 

first coordinate of PCA                                  

SF333 - 169 175    6 4,46 0 3,91 4 1,27 2 0,27 4 2,33 2 1,04 0 0,55 0 0,91 0 0,58 0 2,89 29,01*** 

f: 2,5 % 

no. of 
OTUspres

ent 0,53 1,54 3,91 -3,91 5,87 2,73 11,08 1,73 1,2 1,67 0,89 0,96 0,55 -0,55 0,91 -0,91 0,58 -0,58 2,89 -2,89   

vl   +0.7470 206 207,74 186 182,3 57 59,35 11 12,72 107 108,53 47 48,33 26 25,44 43 42,4 28 27,13 138 134,82   

  

no. of 
OTUs 

not present 0,01 -1,74 0,08 3,7 0,09 -2,35 0,23 -1,72 0,02 -1,53 0,04 -1,33 0,01 0,56 0,01 0,6 0,03 0,87 0,08 3,18   

SF333 - 171 175    5 2,97 0 2,61 0 0,85 1 0,18 3 1,55 0 0,69 3 0,36 0 0,61 0 0,39 0 1,93 33,39*** 

f: 1,7 % 

no. of 
OTUs 

present 1,39 2,03 2,61 -2,61 0,85 -0,85 3,74 0,82 1,36 1,45 0,69 -0,69 19,36 2,64 0,61 -0,61 0,39 -0,39 1,93 -1,93   

vl   +0.6439 207 209,44 186 183,8 61 59,84 12 12,82 108 109,42 49 48,73 23 25,65 43 42,74 28 27,36 138 135,92   

  

no. of 
OTUs 

not present 0,03 -2,44 0,03 2,2 0,02 1,16 0,05 -0,82 0,02 -1,42 0,001 0,27 0,27 -2,65 0,002 0,26 0,01 0,64 0,03 2,08   

SFb4 - 166 180    9 5,74 6 5,03 0 1,64 1 0,35 7 3 0 1,33 0 0,7 0 1,17 0 0,75 0 3,72 18,42* 

f: 3,6% 

no. of 
OTUs 

present 1,85 3,26 0,19 0,97 1,64 -1,64 1,21 0,65 5,33 4 1,33 -1,33 0,7 -0,7 1,17 -1,17 0,75 -0,75 3,72 -3,72   

vl   +0.5337 203 206,68 180 181,37 61 59,05 12 12,65 104 107,98 49 48,08 26 25,31 43 42,18 28 26,99 138 134,13   

  

no. of 
OTUs 

not present 0,07 -3,68 0,01 -1,37 0,06 1,95 0,03 -0,65 0,15 -3,98 0,02 0,92 0,02 0,69 0,02 0,82 0,04 1,01 0,11 3,87   

SFb4 -  188 188    0 2,97 8 2,61 0 0,85 1 0,18 3 1,55 0 0,69 0 0,36 0 0,61 0 0,39 0 1,93 24,29** 

f: 1,8 % 

no. of 
OTUs 

present 2,97 -2,97 11,13 5,39 0,85 -0,85 3,65 0,81 1,36 1,45 0,69 -0,69 0,36 -0,36 0,61 -0,61 0,39 -0,39 1,93 -1,93   

vl +0.6969 212 209,44 178 183,8 61 59,84 12 12,82 108 109,42 49 48,73 26 25,65 43 42,74 28 27,36 138 135,92   

  

no. of 
OTUs 

not present 0,03 2,56 0,18 -5,8 0,02 1,16 0,05 -0,82 0,02 -1,42 0,001 0,27 0,005 0,35 0,002 0,26 0,01 0,64 0,03 2,08   

SFb4 -  164 196    0 0,64 0 0,56 2 0,18 1 0,04 0 0,33 0 0,15 0 0,08 0 0,13 0 0,08 0 0,41 44,11*** 

f: 1,1 % 

no. of 
OTUs 

present 0,64 -0,64 0,56 -0,56 18,4 1,82 23,04 0,96 0,33 -0,33 0,15 -0,15 0,08 -0,08 0,13 -0,13 0,08 -0,08 0,41 -0,41   

vl +0.8904 212 206,04 186 185,85 59 60,51 12 12,97 111 110,64 49 49,27 26 25,93 43 43,22 28 27,66 138 137,44   

  

no. of 
OTUs 

not present 0,17 5,96 0 0,15 0,04 -1,51 0,07 -0,97 0,001 0,36 0,001 -0,27 0 0,07 0,001 -0,22 0,004 0,34 0,002 0,56   

second coordinate of PCA                                   

SFb4 - 172 172    6 4,25 0 3,73 0 1,21 0 0,26 3 2,22 3 0,99 2 0,52 0 0,87 0 0,55 4 2,58 23,26** 

f: 2,4 % 

no. of 
OTUs 

present 0,72 1,75 3,73 -3,73 1,21 -1,21 0,26 -0,26 0,27 0,78 4,08 2,01 4,21 1,48 0,87 -0,87 0,55 -0,55 0,78 1,42   

vl +0.6993 206 208,17 186 182,68 61 59,48 13 12,74 108 108,76 46 48,43 24 25,49 43 42,48 28 27,19 134 135,1   

  

no. of 
OTUs 

not present 0,02 -2,17 0,06 3,32 0,04 1,52 0,01 0,26 0,01 -0,76 0,12 -2,43 0,09 -1,49 0,01 0,52 0,02 0,81 0,01 -1,1   

SFb4 - 164 166    15 14,87 9 13,05 11 4,25 1 0,91 9 7,77 0 3,46 0 1,82 3 3,03 0 1,94 15 9,65 23,94** 

f: 6,8 % 

no. of 
OTUs 

present 0,001 0,13 1,26 -4,05 10,72 6,75 0,01 0,09 0,19 1,23 3,46 -3,46 1,82 -1,82 0 -0,03 1,94 -1,94 2,97 5,35   

vl -0.7189 197 197,55 177 173,36 50 56,44 12 12,09 102 103,21 49 45,96 26 24,19 40 40,32 28 25,8 123 128,2   

  

no. of 
OTUs 

not present 0,002 -0,55 0,08 3,64 0,73 -6,44 0,001 -0,09 0,01 -1,21 0,2 3,04 0,14 1,81 0,003 -0,32 0,19 2,2 0,21 -5,2   

f: frequency, vl: vector loading, No: number of observed OTU, Ne: number of expected OTU, No-Ne: difference of observed and expected number of OTU 
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Methods of assessing pollen dispersal  

Using the parentage model in combination with the paternity analysis, we assessed the 

pollinating males and the respective females as parent pair for fir saplings in the study site 

BW out of 200 sampled adult trees.  

A total exclusion battery comprising the five nSSRs SF1i, SFb5, SF78, SF331, SF333 

described in Cremer et al. (2006) and twelve isozyme loci (AAT-A, -B, -C, IDH-A, -B, MDH-A, 

MNR-B, NDH-A, PGDH-A, PGDH-B, PGM-A, -B) according to Hussendörfer et al. (1995) 

were used to assign parentage to the 200 fir saplings. The genetic marker system used 

provides an exclusionary power of 98.4 % (paternity exclusion) and 99.9 % (pair parent 

exclusion). Additionally, four paternally inherited cpSSRs were applied for paternity analysis 

of the saplings in order to detect the male of the parent pair (Pt30141, Pt30249 (Liepelt et al., 

2001), Pt71936 (Vendramin et al., 1996) and aacptrnCD (Mayland-Quellhorst, pers. 

communication)). 

The combined procedure of parentage and paternity analysis for the estimation of pollen 

dispersal distances included following steps: 

 

I. Parentage analysis on the basis of five nSSR and twelve isozyme loci 

Parentage analysis was applied by a maximum-likelihood assignment using the 

software Cervus 3.0 (Kalinowski et al., 2007) in a first step. Proceeding the parentage 

analysis, the computer simulations were based on ‘logarithm of the odds (LOD) score’ 

and were conducted 10,000 times with 1 % as mistyped rate, 95  as strict and 80 % as 

relaxed confidence level and 220 individuals as probable candidate parents. Only those 

adult trees have been taken into account as ‘true’ parents that were assigned to a 

sapling with a positive LOD score and showing no mismatch. In doing so, possible 

complementary parent pairs were chosen for the further analysis. Non-complementary 

parent candidates were excluded. Besides, a clear assignment of saplings to only one 

parent tree was not detected and, thus, self-fertilization could not be considered. 

 

II. Paternity analysis on the basis of the four cpSSR loci 

Paternity assignment was conducted by a simple identity matching procedure based on 

the cpSSR multilocus haplotype profiles. By means of the ‘identity analysis function’ of 

the software Cervus 3.0 (Kalinowski et al., 2007) cpSSR haplotypes of possible parent 

pairs were compared with those of the given offspring (saplings) assigned by parentage 

analysis. For the identity analysis the ‘minimum number of matching loci’ of four and ‘no 

fuzzy match’ were chosen as settings.  
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The gender of each parent could not be identified if both adults had the same cpSSR 

haplotype profile as that of the sapling or if both adults had different cpSSR haplotype 

profiles from that of the sapling. However, parent pairs were considered for further 

analysis if one adult had the same cpSSR haplotype profile as the sapling (pollen 

parent = father) and the other one had a different cpSSR haplotype profile (seed parent 

= mother). 

 

III. Measurement of spatial inter-parent distances 

For those saplings for which a credible parent pair was found and the pollen parent 

could be distinguished from the mother, the position of the fathers and mothers were 

used to calculated the pollen dispersal distances. In total, 34 of the 200 saplings could 

be clearly assigned to a parent pair as well as to a male parent (Table A).  
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Table A Results of pollen dispersal estimations (in m): fir saplings that could be assigned to a male 
and a female parent by the combined approach of identity matching (using cpSSR haplotype profiles) 
and parentage analysis; given are also the geographical coordinates of the assigned parent trees. 
 

sapling 
(tree no.) 

potential 
male 

parent 
(tree no.) 

Gauß-Krüger coordinates 
of male parent 

potential 
female 
parent 

(tree no.) 

Gauß-Krüger coordinates 
of female parent 

 

pollen dispersal 
distance 

(in m) 

  X Y  x Y  
V100 199 3462600.5 5378319.78 130 3462695.79 5378216.66 140.41 
V101 163 3462485.54 5378224.01 167 3462480,38 5378223,85 5.16 
V106 168 3462476.01 5378209,28 23 3462678.79 5378213.75 202.82 
V113 71 3462588,33 5378276,6 67 3462579.77 5378259.64 19.00 
V126 180 3462468,31 5378265,36 109 3462489,05 5378274,24 22.56 
V128 42 3462621,49 5378194,87 177 3462425,63 5378236,58 200.25 
V136 49 3462606,17 5378275,93 169 3462472,07 5378210,01 149.43 
V137 107 3462469,25 5378272,52 26 3462593,14 5378178,79 155.35 
V138 131 3462606,62 5378167,95 200 3462608,48 5378314,84 146.90 
V141 189 3462540,25 5378308,51 165 3462484,39 5378241,69 87.10 
V150 151 3462551,92 5378227,54 75 3462581,36 5378322,98 99.88 
V153 107 3462469,25 5378272.52 137 3462598.56 5378193.29 151.65 
V155 94 3462502.1 5378229.72 169 3462472.07 5378210.01 35.93 
V161 134 3462590.42 5378188.44 153 3462575.52 5378232.02 46.05 
V17 57 3462564.92 5378211.45 22 3462680.7 5378207.74 115.84 
V171 189 3462540.25 5378308.51 106 3462465.11 5378270.41 84.26 
V175 107 3462469.25 5378272.52 188 3462524.72 5378296.02 60.24 
V179 67 3462579.77 5378259.64 93 3462520.45 5378221.51 70.52 
V184 105 3462475.21 5378262.39 107 3462469.25 5378272.52 11.75 
V20 161 3462501.75 5378224.88 67 3462579.77 5378259.64 85.42 
V200 42 3462621.49 5378194.87 133 3462590.19 5378185.98 32.54 
V28 42 3462621.49 5378194.87 92 3462540.41 5378217.72 84.25 
V30 66 3462587.42 5378237.95 139 3462596.12 5378208.35 30.86 
V39 22 3462680.7 5378207.74 65 3462573.1 5378235.18 111.04 
V46 155 3462571.21 5378221.44 67 3462579.77 5378259.64 39.15 
V48 151 3462551.92 5378227.54 119 3462486.93 5378288.12 88.85 
V53 149 3462550.47 5378206.99 74 3462586.08 5378321.23 119.66 
V54 194 3462584.8 5378322.65 108 3462487.03 5378267.2 112.40 
V59 194 3462584.8 5378322.65 198 3462596.78 5378311.78 16.18 
V62 160 3462519.81 5378216.17 84 3462549.97 5378239.23 37.97 
V69 95 3462495.44 5378227.91 185 3462515.98 5378292.05 67.35 
V90 130 3462695.79 5378216.66 180 3462468.31 5378265.36 232.64 
V91 191 3462563.37 5378304.16 149 3462550.47 5378206.99 98.026 
V93 149 3462550.47 5378206.99 120 3462483.93 5378300.18 114.51 
      
Mean     90.5 
Median     86.3 
Min     5.2 
Max     232.6 
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