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’But I don’t want to go among mad people,’ said Alice. ’Oh, you can’t
help that,’ said the cat. ’We’re all mad here.’ . . .

Charles Lutwidge Dodgson alias Lewis Carroll

Dodgson condensation is a method of computing the determinants of square matrices,
named after its inventor.
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for two values of β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Isolines of the map X = Fα(u, v) with u, v ∈ (0, 1) for decreasing values of
α. The regions with increasingly divergent gradient (upper corners) is not
shown beyond |x| > 600. Note that the orientation of the isolines flips over
with decreasing values of α at exactly α = 1. . . . . . . . . . . . . . . . . . 69

4.8 Intuitive, coarsely tiled, example of the tiling in the u-v square for sampling
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Zusammenfassung

Diese Arbeit enthält einen Themenkomplex. Bei genauerer Betrachtung ergeben
sich starke Zusammenhänge entweder durch physikalische Analogie, numerische
Analogie oder Verwendung der gleichen Methodik oder Analyse bei unter-
schiedlicher Fragestellung. Desweiteren sind auch einige Teile der vorgestell-
ten Ergebnisse oder neuen Methoden Bausteine innerhalb von anderen. Die
übergeordneten Themen sind: Anomale Diffusion, Modellierung stilisierter Fak-
ten1 mittels eines random walk basierten Diffusionsmodells, Null-Hypothesentests
in der Datenanalyse unter Verwendung des selbigen Diffusionsmodells und Korre-
lationsmatrizen ungekoppelter random walks. Es wird gezeigt, dass das Diffusion-
smodell mathematisch rigoros die Zeit- und Raum-fraktionale Diffusionsgleichung
löst. Letzteres ist ein neues Resultat aus der mathematischen Literatur. Mittels
der vorgestellten Methode wird die Monte-Carlo-Lösung um ein Vielhundertfaches
im Vergleich zu bisherigen Methoden beschleunigt. Die darauf folgende Behand-
lung rotationsinvarianter Zufallsfelder ist ein Baustein auf dem Weg zu Korrela-
tionsmatrizen, die aus eben jenen random walks gewonnen werden. In diesem
Zusammenhang wird ein analytisches Ergebnis aus der Literatur numerisch va-
lidiert. Innerhalb dieser Themen befindet sich ein Kapitel über die Erzeugung
von Zufallszahlen. Darin werden zwei neue Methoden vorgestellt, eine davon zur
schnellen Erzeugung univariater reeller Zufallszahlen mit fast beliebiger Dichte.
Die Behandlung von Zufallszahlen ergibt sich aus dem Bedarf, millionenfach syn-
thetische Diffusionsprozesse zu simulieren. Eine weitere dritte Methode aus dem
Zufallszahlenbereich und ebenso neu, erzeugt rotationsinvariante Matrizen, und
spart Matrixrotationen und Summationen ein. Rotationsinvariante Matrizen wer-
den hundertfach für die obig erwähnte Validierung gebraucht.

Es wird dargelegt, dass das Diffusionsmodell geeignet ist zur Modellierung em-
pirischer Zeitreihen mit ggf. asynchronen Datenpaaren. Die random walk Prozesse
sind in einer Dimension interpretierbar als synthetische Zeitreihen. Unter gewis-
sen steuerbaren Voraussetzungen stellen diese eine Null-Hypothese dar, das heisst
insbesondere hier, dass das Null-Hypothesen-Eigenwertspektrum der zugehörigen
Korrelationsmatrix statistisch genau durch Mittelung über viele Realisierungen
berechnet werden kann. Die zwei darauf folgenden Kapitel untersuchen den Ein-
fluss der Wartezeiten des random walkers wie auch zwei Korrelationsschätzer,
deren einer, eine neue mathematische Entwicklung, direkt auf asynchronen Daten-
paaren funktioniert. Bis zum Schluss finden sich die Eigenwertspektren wieder.
Ein Kapitel untersucht im Detail die Eigenschaften der Korrelationsmatrizen aus
Zeitreihen wie auch der Spektren unter kontrolliert eingeführten Korrelationen.
Gewisse Eigenschaften werden anscheinend bislang nicht beachtet, insbesondere in
der Klassifizierung über relle Abstandsmasse. Ein Szenario sind microarray-Daten
zur Aufdeckung funktioneller genetischer Gruppen. Im letzten Kapitel erweist sich
das Eigenwert- und Eigenvektorspektrum ebenso nützlich in der Analyse diesmal
nicht korrelierter, aber synchroner oszillatorischer Zeitreihen. Die Datenquelle sind
hier elektroenzephalographische Aufnahmen aus dem Schlaflabor und die Matrix
enthält Synchronisationskoeffizienten.

1Engl: stylised facts. Bislang scheint es keine andere deutsche Übersetzung zu geben als die
wörtliche.



Chapter 1

Overview

Just the place for a Snark! I have said it twice:
That alone should encourage the crew.
Just the place for a Snark! I have said it thrice:
What I tell you three times is true.
L.C.

1.1 Complex system eclecticism

If the reader is really interested in certain parts and topics of this document a
direct answer to the point can save a lot of time. I did not get many.

This document contains more than one topic, but they are all connected in ei-
ther physical analogy, analytic/numerical resemblance or because one is a building
block of another. The topics are anomalous diffusion, modelling of stylised facts
based on an empirical random walker diffusion model and null-hypothesis tests in
time series data-analysis reusing the same diffusion model. Inbetween these topics
are interrupted by an introduction of new methods for fast production of random
numbers and matrices of certain types. This interruption constitutes the entire
chapter on random numbers that is purely algorithmic and was inspired by the
need of fast random numbers of special types. The sequence of chapters is chrono-
logically meaningful in the sense that fast random numbers are needed in the first
topic dealing with continuous-time random walks (CTRWs) and their connection
to fractional diffusion. The contents of the last four chapters were indeed produced
in this sequence, but with some temporal overlap.

While the fast Monte Carlo solution of the time and space fractional diffusion
equation is a nice application that sped-up hugely with our new method we were
also interested in CTRWs as a model for certain stylised facts. Without knowing
economists [80] reinvented what physicists had subconsciously used for decades
already. It is the so called stylised fact for which another word can be empirical
truth. A simple example: The diffusion equation gives a probability at a certain
time to find a certain diffusive particle in some position or indicates concentration
of a dye. It is debatable if probability is physical reality. Most importantly, it
does not describe the physical system completely. Instead, the equation describes
only a certain expectation value of interest, where it does not matter if it is of

2
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grains, prices or people which diffuse away. Reality is coded and “averaged” in the
diffusion constant.

Interpreting a CTRW as an abstract microscopic particle motion model it
can solve the time and space fractional diffusion equation. This type of diffusion
equation mimics some types of anomalous diffusion, a name usually given to effects
that cannot be explained by classic stochastic models. In particular not by the
classic diffusion equation. It was recognised only recently, ca. in the mid 1990s, that
the random walk model used here is the abstract particle based counterpart for the
macroscopic time- and space-fractional diffusion equation, just like the “classic”
random walk with regular jumps ±∆x solves the classic diffusion equation. Both
equations can be solved in a Monte Carlo fashion with many realisations of walks.
Interpreting the CTRW as a time series model it can serve as a possible null-
hypothesis scenario in applications with measurements that behave similarly. It
may be necessary to simulate many null-hypothesis realisations of the system to
give a (probabilistic) answer to what the “outcome” is under the assumption that
the particles, stocks, etc. are not correlated.

Another topic is (random) correlation matrices. These are partly built on the
previously introduced continuous-time random walks and are important in null-
hypothesis testing, data analysis and filtering. The main objects encountered in
dealing with these matrices are eigenvalues and eigenvectors. The latter are car-
ried over to the following topic of mode analysis and application in clustering. The
presented properties of correlation matrices of correlated measurements seem to
be wasted in contemporary methods of clustering with (dis-)similarity measures
from time series. Most applications of spectral clustering ignores information and
is not able to distinguish between certain cases. The suggested procedure is sup-
posed to identify and separate out clusters by using additional information coded
in the eigenvectors. In addition, random matrix theory can also serve to analyse
microarray data for the extraction of functional genetic groups and it also suggests
an error model. Finally, the last topic on synchronisation analysis of electroen-
cephalogram (EEG) data resurrects the eigenvalues and eigenvectors as well as the
mode analysis, but this time of matrices made of synchronisation coefficients of
neurological activity.

Momentarily riding on the fashion wave the “topic” Complex Systems might
soon be as outdated as chaos theory, the designated explanation for everything
ca. 15 years ago. Surprisingly it was not the explanation for everything, while
the surprise manifested in a many year long decay of attention due to persistent
refusal of the theory to give answers. So far, research and in particular modelling
is very data-driven while some recent models are said to produce some stylised
facts. Or rather: stylised results. The content presented here is conservative. It
is a collection of results and numerical methods which are partly spin-offs and
came up while working on other issues related to the main project. Actually,
the title is almost misleading and stems from the fact that some data treated
here comes from such a complex system while the definition of the latter is quite
open. One attempt could be: A complex system cannot be adequately described
in terms of one or a few simple types of interacting objects, neither can we find
a finite set of sensible variables to define a statistical macroscopic limit. In other
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words, it provides new effects across many different scales of time, space, number,
energy, colour, money, etc.. This statement intentionally contradicts the intuitive
definition of some contemporaries who

a) associate two things with complexity: chaos and a large number of “objects”
or better degrees of freedom, and

b) associate (just) a large number of “steps” as a prerequisite of a suitable
statistical description of a complex system.

In fact, a more or less ideal gas is the prime example of a non-chaotic, non-
complex system with many degrees of freedom. Moreover, chaos in (as) many
system degrees of freedom is contradictory by the definition of chaos, the latter
defined for good reason as a low dimensional effect in far less than all available
degrees of freedom, actually O(1).

The adequate description of complex systems mentioned above, however, is a
rather gloomy concept. In fact it is exactly the loop-hole that allows us to do at
least some calculation and define stylised facts as we please. The realism in dealing
with such topics hindered the people involved in the work summed up here to come
up with the explanation of everything. There are other researchers who are not
as resignative. Instead we used, improved, developed or just explained down-to-
earth scientific methods and mathematical objects and applied some to real world
data in a conservative manner. This real world data can be considered “physical”.
Unfortunately, or maybe fortunately, the complex systems are not friendlier than
the not so complex ones and also produce the same kind of files with columns of
numbers as in many other physical systems, at best.

To underline the scientific respectability the chapters start with a suitable
quotation. Despite being abused many times in such cases I truly think that
C. L. Dodgson is not really understood. It is worse with Kafka, although he would
fit in many ways, too.

1.2 Papers and logistics

Some chapters correspond to the following published, submitted, drafted and hope-
fully to be published papers. They can be recognised by the title:

D. Fulger, E. Scalas, G. Germano, Monte Carlo simulation of uncoupled
continuous-time random walks yielding a stochastic solution of the space-time
fractional diffusion equation, Physical Review E, 77, 021122 (2008)

D. Fulger, E. Scalas, G. Germano, Efficient generation of Lévy alpha-stable
random numbers from the density tails, submitted to Mathematics of Computing
(2009)

D. Fulger, G. Germano, Automatic generation of non-uniform random variates
for arbitrary pointwise computable probability densities by tiling, submitted to
Mathematics of Computing (2009)
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M. Politi, E. Scalas, D. Fulger, G. Germano, Spectral densities of Wishart-Lévy
free stable random matrices, submitted to European Physical Journal B (2008)

U. Welling, G. Germano, F. Demmel, D. Fulger, W.-C. Pilgrim, Collective dy-
namics in molten alkali halides, to be submitted to Physical Review B

The last paper is missing in this document. The remaining ca. 50% of the
pages consists of newer material that did not go through any review process in
many ways. The material was also presented at some conferences, either as talks
or just posters:

D. Fulger, Random matrix analysis of an artificial stock market modelled with
continuous-time random walks, START Workshop Stochastic Analysis and Related
Topics, Fachbereich Mathematik und Informatik, Philipps-Universität Marburg,
July 2006

D. Fulger, E. Scalas, G. Germano, Correlation Matrices of Continuous-time
Random Walks, Jahrestagung der Deutschen Physikalischen Gesellschaft (DPG),
Regensburg, March 2007

D. Fulger, E. Scalas, G. Germano, Correlation matrices of synthetic continuous-
time random walks, CEF 2007, 13th International Conference on Computing in
Economics and Finance of the Society of Computational Economics, Montréal,
March 2007

G. Germano, D. Fulger, E. Scalas, Efficient Monte Carlo simulation of high-
frequency financial time series modelled with anomalous diffusion, CEF 2007, 13th
International Conference on Computing in Economics and Finance of the Society
of Computational Economics, Montreal, March 2007

D. Fulger, Correlation matrices of continuous-time random walks, Institute for
Scientific Interchange, July 2007, Torino, Italy (invited talk)

D. Fulger, E. Scalas, G. Germano, Efficient Monte Carlo simulation of high-
frequency financial time series and correlation matrix analysis, ECCS 07 (Euro-
pean Conference on Complex Systems), Dresden, October 2007

D. Fulger, Data analysis and modeling paradigms, DAPHNet consortium re-
view meeting, Bruxelles, February 2008 (invited talk)

G. Germano, D. Fulger, E. Scalas, Monte Carlo simulation of uncoupled
continuous-time random walks yielding a stochastic solution of the space-time frac-
tional diffusion equation, workshop “Modelling anomalous diffusion and relaxation:
From single molecules to the flight of albatrosses.”, Jerusalem, March 2008

D. Fulger, Lotka-Volterra equations for stylised fact modelling in physiological
measurements, DAPHNet consortium ATR review, Madrid, May 2008



CHAPTER 1. OVERVIEW 6

G. Germano, D. Fulger, E. Scalas, Monte Carlo simulation of uncoupled
continuous-time random walks yielding a stochastic solution of the space-time frac-
tional diffusion equation, Materialforschungstag Mittelhessen 2008, Marburg, June
2008 (poster)

U. Welling, F. Demmel, W.-C. Pilgrim, D. Fulger, G. Germano, Collective
dynamics in molten alkali halides, Materialforschungstag Mittelhessen 2008, Mar-
burg, June 2008 (poster)

G. Germano, D. Fulger, M. Politi, E. Scalas, Synthetic high-frequency financial
time series: Monte Carlo simulation with uncoupled CTRWs or GARCH-ACD
processes, pricing of short to maturity options, and correlation analysis with ran-
dom matrix theory, CEF 2008, 14th International Conference on Computing in
Economics and Finance of the Society of Computational Economics, Paris, June
2008

G. Germano, D. Fulger, E. Scalas, Monte Carlo simulation of uncoupled
continuous-time random walks yielding a stochastic solution of the space-time frac-
tional diffusion equation, 3rd Rhein-Main Modelling Meeting (R3M), Frankfurt,
July 2008 (poster)

U. Welling, F. Demmel, W.-C. Pilgrim, D. Fulger, G. Germano, Collective
dynamics in molten alkali halides, 3rd Rhein-Main Modelling Meeting (R3M),
Frankfurt, July 2008 (poster)

G. Germano, D. Fulger, E. Scalas, Monte Carlo simulation of uncoupled
continuous-time random walks yielding a stochastic solution of the space-time frac-
tional diffusion equation, 1st Annual Conference of the EPSRC Network “Mathe-
matical Challenges of Molecular Dynamics”, Warwick, July 2008 (poster)

U. Welling, F. Demmel, W.-C. Pilgrim, D. Fulger, G. Germano, Collective dy-
namics in molten alkali halides, 1st Annual Conference of the EPSRC Network
“Mathematical Challenges of Molecular Dynamics”, Warwick, July 2008 (poster)

D. Fulger, Synchronisation networks of EEG signals, Racach Institute of
Physics, Hebrew University of Jerusalem, August 2008 (invited talk)

E. Scalas, G. Germano, M. Politi, D. Fulger, Synthetic high-frequency financial
time series: Numerical study of free random Wishart-Lévy matrices, Econophysics
Colloquium 2008, Kiel, August 2008

D. Fulger, Networks of synchronisation EEG activity, DAPHNet consortium
meeting, Berlin, January 2008

D. Fulger, E. Scalas, G. Iori, M. Politi, G. Germano, A numerical analysis of
eigenvalues and eigenvectors of covariance matrices, Jahrestagung der Deutschen
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Physikalischen Gesellschaft (DPG), Dresden, March 2009

The work involved several people, mostly the coauthors of the papers created
on the way listed above. Also directly involved in addition to these are (in random
order):

• Dr. Ronny Bartsch from the Department of Physics at the Bar-Ilan Univer-
sity in Tel Aviv (within DAPHNet),

• Prof. Jan Kantelhardt from the Department of Physics at the Martin-Luther
University Halle (within DAPHNet),

• Prof. emeritus David Breé from the Department of Computer Science at the
University of Manchester and from the Institute for Scientific Interchange in
Torino (within DAPHNet),

• Prof. Giulia Iori from the Department of Economics at the City University
London (within a British Council Researcher Exchange Program grant).

Fig. 1.1 gives a satellite overview of the places where the pieces of work where
done.

Turin
Alessandria

Marburg Halle

Tel Aviv

Figure 1.1: Where the work was done. On a logarithmic scale the font size is an
estimate of the respective amount.

The contributions of this document and related papers to make the world a better
place are:

• The introduced method for the Monte Carlo solution of the time- and space-
fractional diffusion equation speeds up the existing methods by at least a
factor of 500. The bold inquiry by the author at the local stochastic mathe-
maticians gave us the right hint. Scream and you get all.
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• The two methods on non-uniform uni-variate random number production
are new as well as the interpretation of transforms as maps that can be used
for tail sampling in the Ziggurat method.

• The proposed method to generate directly rotationally invariant (free in the
limit of large size) matrices for power-tailed distribution of elements with
the potential of saving orders of magnitudes of time.

• A comparison of the Pearson and Fourier correlation estimators in the con-
text of spectra of correlation matrices of continuous-time random walks was
not available up to now.

• We are not aware of some other published reasoning leading to Eq. (7.9) and
to the statements on the influence of CTRW-waiting-times on the correlation
matrix spectrum.

• The numerical validation of the analytic spectrum of the free Wishart-Lévy
ensemble.

• There is by far no such didactic explanation of the main elements of free
probability theory around the Wishart matrix ensemble.

• In the context of correlation matrix analysis of time series we show that the
random bulk of eigenvalues is less random than usually claimed. Further-
more, the example with empirical data questions the assumptions on the
market mode.

• The properties of the Wishart and sample correlation matrix ensemble pre-
sented here seem to have gone unnoticed and question certain results in the
existing field of genetic profiling with microarrays.

• Synchronisation analysis of electroencephalographic activity using eigenval-
ues and eigenvectors of the matrix of synchronisation coefficients for principal
component selection seems a new idea and we do find sleep stage significant
structures.



Chapter 2

Continuous-time random walks

and anomalous diffusion – two

birds with one stone

But I was thinking of a way To multiply by ten, And always, in the
answer, get The question back again.

L.C.

This chapter presents a numerical method for the Monte Carlo simulation of
uncoupled continuous-time random walks with a Lévy α-stable distribution of
jumps in space and a Mittag-Leffler distribution of waiting-times. We apply it to
the stochastic solution of the Cauchy problem for a partial differential equation
with fractional derivatives both in space and time. The one-parameter Mittag-
Leffler function is the natural survival probability leading to time-fractional diffu-
sion equations. Transformation methods for Mittag-Leffler random variables were
found later than the well-known transformation method by Chambers, Mallows
and Stuck for Lévy α-stable random variables and so far have not received as
much attention, nor have they been used together with the latter in spite of their
mathematical relationship due to the geometric stability of the Mittag-Leffler dis-
tribution. Combining the two methods, we obtain an accurate approximation of
space- and time-fractional diffusion processes almost as easy and fast to compute
as for standard diffusion processes.

2.1 From random walks to the macroscopic diffusion

equation

The well-known standard diffusion equation

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t), (2.1)

u(x, 0+) = δ(x), x ∈ R, t ∈ R+,

9
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can be used to mimic the change of concentration of a substance or other physi-
cally meaningful variables, for example like heat diffusing in some medium. The
interpretation in the particle diffusion context in particular allows u to be inter-
preted as probability density. This equation can be arrived at as a consequence
of mass conservation and is analogous to the conservation and flux of probability.
The assumption that the one-dimensional flux of a medium is proportional to its
space gradient is stated equivalently as:

J = −D∂u
∂x
, (2.2)

with a real positive constant of proportionality D. The change of concentration in
time must also be proportional to the change of flux in space. In terms of equations
this means:

∂u

∂t
= −∂J

∂x
. (2.3)

Put together this gives:

∂u

∂t
= D

∂2u

∂x2
. (2.4)

In three dimensions the derivative operators are replaced by their respective gen-
eralisations giving with ~J = −D∇u the equation:

∂u

∂t
= D∇2u. (2.5)

The following examples are nevertheless already sufficiently complicated in one di-
mension. The complete formulation of the “task” includes the initial or boundary
condition in time and space. In the example above the initial situation consists of
an infinitely narrow conglomeration of all mass in one point at x = 0. Likewise,
the probability to find the particle there at t = 0 is one. Note that time is not
symmetric and not reversible. This is a typical asymmetry where the underlying,
possibly Newtonian, mechanics of a diffusing particle is reversible but not so the
macroscopic substitute equation. The judgement whether such a model is mean-
ingful must always be based on human understanding and cannot be replaced by
purely mathematical reasoning.

Continuous-time random walks (CTRWs) and fractional diffusion equations
(FDEs), or fractional Fokker-Planck equations respectively are generalised con-
cepts of the regular-time random walk and the classical diffusion equation. The
relevance of fractional calculus in the phenomenological description of anoma-
lous diffusion has been discussed within applications of statistical mechanics
in physics, chemistry and biology [12, 19, 44, 50, 51, 138, 163] as well as fi-
nance [35, 36, 107, 108, 156]; even human travel and the spreading of epi-
demics were modelled with fractional diffusion [23]. Likewise, it is not uncom-
mon that a good part of the anomalous diffusion community is situated in de-
partments of Chemistry or Sociology. Metzler and Klafter reviewed analytic
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2.1. FROM RANDOM WALKS TO THE MACROSCOPIC DIFFUSION

EQUATION

and numerical methods to solve fractional equations of diffusive type [123]. In
Refs. [8, 57, 90, 120, 124, 154, 164, 181, 182] applications and enhancements of
these techniques were presented. It is only in the past 20 years that non-Gaussian
statistics has received increasing attention. This may be due to a change in the
scientific community that began to accept that not everything is Gaussian. The
“Gaussian attitude” or better the determination that everything has finite mo-
ments keeps things much more simple and was a natural assumption just like the
Euclidean space had to be the right one. But the louder knocking and rising num-
ber of phenomena that could not be described by Gaussian statistics could not be
overheard anymore. It might be of interest that the first theoretical treatment of
processes with jumps and trapping times that did not fit Gaussian statistics was
produced by Montroll and Scher working partly for Xerox [158]. The problem were
electrons in the photoconductor plate being trapped in “holes” for a certain time
until released again. Before their work these phenomena were more or less ignored
and considered as something “complicated”, too difficult to be treated in terms of
probability models. Of particular nuisance are processes whose characteristic sta-
tistical measurements diverge, typically called super-diffusive. The variables are
usually a function of position of moving or scattered objects. Super-diffusion in
materials, for example, was observed only very recently in an artificial liquid [10]
where the scattering statistics of light could be tuned in such a way that the mean
squared displacement with scattering event number n grows as

〈x2(n)〉 = 〈|x(N + n)− x(n)|2〉N = 2dDnh (2.6)

with exponent 1 < h ≤ 2 while for Brownian motion we have h = 1. The sub-
script N at the brackets indicates the average over many starting points which is
in principle equivalent to the average over time. Eq. (2.6) is valid for all structure
functions. The constant d depends on the dimensionality of the system and D is
the diffusion constant with a fractional dimension that depends on h. Sub-diffusion
is given if h < 1. It becomes apparent that the underlying diffusion model is a
step or jump process where the distribution of jumps determines whether we have
sub- or super-diffusion. We will see soon that random walk models are equivalent
to macroscopic diffusion models in the continuum limit and that a direct Monte
Carlo approach to fractional Fokker-Planck dynamics (one of several continuum-
limit models for fractional dynamics) via a random walk model requires random
waiting-times drawn from the Mittag-Leffler distribution. Since sampling the lat-
ter was considered troublesome, different schemes to avoid it were proposed. One
possibility consists in replacing it with the Pareto distribution, i.e. its asymptotic
power-law approximation for t → ∞ [72]; however, this is limited to long times
and the distribution index β not close to 1. A more general alternative is based
on subordination [69, 105, 106]. On the contrary, we present a straightforward
Monte Carlo method for the efficient simulation of uncoupled CTRWs using an
inversion formula for the Mittag-Leffler distribution, and apply it to compute ap-
proximate solutions of the Cauchy problem for a generalised diffusion equation
that has fractional space and time derivatives.

The most simple step process in one dimension: A point moving back and
forth at regular times i a constant distance with equal chance has the following
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probability to be at position j at the next time step i+ 1:

p(j, i+ 1) = 1/2p(j − 1, i) + 1/2p(j + 1, i). (2.7)

This equation is even intuitive, it controls probability in time and is sometimes
called the master equation, though a very simple example. Note that this process
is abstract and dimension free. Once we associate i with real time t (i+1 ≡ t+∆t)
and position j with space x (j+1 ≡ x+∆x) in some unit of choice we can describe
something real. Only then a diffusion constant makes sense to be introduced. The
factors 1/2 are only to normalise both jump directions to probability one overall,
that the object will move, and that the direction is fifty-fifty. In the limit of small
jumps and short waiting-times between the jumps we can expand p in Taylor
manner around x and t:

p(x±∆x, t) = p(x, t)±∆x
∂p(x, t)
∂x

+
(∆x)2

2
∂2p(x, t)
∂x2

+ higher orders,

(2.8)

p(x, t+ ∆t) = p(x, t) + ∆t
∂p(x, t)
∂t

+ higher orders. (2.9)

The series end at the powers that are needed to show that once the above equations
are equated we obtain

∂

∂t
p(x, t) =

(∆x)2

2∆t
∂2

∂x2
p(x, t), (2.10)

the classical diffusion equation. In the continuum limit we can abbreviate the
constant

D = lim
∆t→0,∆x→0

(∆x)2

2∆t
, (2.11)

and call it diffusion constant with the unit [D] = m2/s. This can also be argued
from the “other end”: The central limit theorem ensures that a sufficient number
of jumps (actually, it is around 12, a number to reappear as well as the central
limit theorem in a different context) makes the resulting distribution of particles
indistinguishable from a Gaussian if they start all at x = 0. The solution in time
of Eq. (2.10) is the Gaussian:

p(x, t) =
1

2
√
πDt

exp
(
− x2

4Dt

)
. (2.12)

Fourier was the first to solve the (equivalent) heat diffusion equation more generally
for non-periodic boundary conditions while having in mind the expansion of non-
periodic functions in orthogonal harmonics. Up to then, only solutions for simple
cases like annuli with sine or cosine initial conditions were known. It is helpful to
note that the characteristic function of Eq. (2.12)

p̂(k, t) = e−Dk
2t (2.13)
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is an eigenfunction of the time derivative operator in Fourier space:

∂

∂t
p̂(k, t) = −Dk2p̂(k, t). (2.14)

The most straight forward choice of jump lengths is a Gaussian probability density.
This is a choice in so far as the convergence of a random walk diffusion model to
the solution of Eq. (2.10) is fastest in the sense that the smallest number of jumps
is needed. Any choice of distribution with finite moments produces an equivalent
result in the hydrodynamic limit. The situation is different if the moments are
not finite. A typical distribution with (some) non-existent moments, i.e. diverging
variance due to the divergence of the respective integrals, is the symmetric Lévy
distribution whose characteristic function is given by

λ̂(k) = e−(γx|k|)α ≈ 1− (γx|k|)α (2.15)

corresponding to the asymptotic power-tail behaviour in real space:

λ(x) ≈ γαx
|x|1+α

. (2.16)

A scaling factor γx alows to adapt the distribution to the physical situation and
the scaling consequentially appears in the diffusion constant. The distribution
contains the Gaussian distribution as a special case with α = 2. The focus on
the tails is at the same time a statement that assigns a lower importance to the
body of the distribution. The outcome in the hydrodynamic limit in time and
space is entirely determined by the tail behaviour, an issue that is repeated in
other contexts in later chapters. However, the choice of Lévy alpha-stable random
numbers is less random than it appears because the Lévy distribution defines the
most general stable law. Details follow in subsequent chapters. A good impression
of some of the properties of a random walk with this distribution of jumps can
be achieved in two dimensions. Fig. 2.1 shows a realisation of a Brownian motion
with Gaussian jumps compared to a realisation of a Lévy flight, as the process
with instantaneous jumps would then be called. The Brownian particle needs a
finite time to paint any region completely black, whereas the Lévy particle cannot
guarantee this even after an infinite time. With an increasing number of jumps
the appearance does not change. All processes are self-similar, while the fractal
dimension α of the Brownian motion is 2 in accordance with area, the dimension of
the Lévy flight is lower, in this case α = 1.5. The random walk in two dimensions
was first described 1905 by Pearson as a model for mosquito infestation [142].

The first order approximation in Eq. (2.15) becomes useful if we notice through
it that the Fourier transformation seems to provide a vehicle to define a fractional
order derivative in terms of known mathematical objects. We can write

dα

d|x|α
f(x) = F−1

x

[
−|k|αf̂(k)

]
(k), 1 < α ≤ 2, (2.17)
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where F−1
x denotes the inverse Fourier transformation

Fx[f(x)](k) =
∫ +∞

−∞
f(x)eikx dx = f̂(k). (2.18)

It is a matter of definition whether to use the direct or the inverse Fourier transfor-
mation. This definition of a fractional derivative is somewhat empirical but leads
to a suggestive version of the diffusion equation which may model the Lévy flight
in the hydrodynamic limit:

∂

∂t
p(x, t) = D

∂α

∂|x|α
p(x, t) (2.19)

with D = γαx /1 where 1 corresponds to the abstract time index. The dimension
is [D] = mα/s if the distribution of jumps is chosen with physical meaning, i.e.
if the jumps are measured in units of time. The above fractional space derivative
operator is called the Riesz-Feller derivative. For α = 2 this reduces to the usual
second order derivative. For α < 2 the following equation holds:

dα

d|x|α
f(x) =

Γ(α+1)
π

sin
απ

2

∫ ∞
0

f(x+ξ)−2f(x)+f(x−ξ)
ξα+1

dξ. (2.20)

The symmetric derivative with respect to |x| and α 6= 1 is generally given by

dα

d|x|α
g(x) = − 1

2 cos(πα/2)

([
dα

dxα

]
+

+
[

dα

dxα

]
−

)
g(x). (2.21)

For the special case α = 1 the space-fractional derivative is given via the Hilbert
transform:

dα

d|x|α
g(x) = − d

dx
H[g(x)], where H[g(x)] =

1
π

∫ ∞
−∞

g(t)
x− t

dt. (2.22)

The Hilbert transform reappears in the last chapter on the synchronisation analysis
of signals. We can also check backwards that we recover the stable law Eq. (2.15)
we used as an ansatz: Transforming Eq. (2.19) via Fourier yields

∂

∂t
p̂(k, t) = −|k|αD p̂(k, t), (2.23)

and then integrated in time gives

p̂(k, t) = exp(−|k|αDt), (2.24)

which is the characteristic function of the Lévy stable distribution. Note again
that any distribution would be fine if the hydrodynamic limit is taken sufficiently
far. The above choice, however, simplifies the reasoning.
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Figure 2.1: Brownian motion (left) and a Lévy flight (right) of a particle with
α = 1.5 whose position for each time index is connected to the previous with a
straight line. The realisations are shown for 1000, 5000, 1000 and 20000 jumps.
The difference between A and B is small. During the 5000 jumps the walker spent
its time in the upper cluster and behaved Brownian. This alteration of domains is
typical for Lévy flights.



CHAPTER 2. CONTINUOUS-TIME RANDOM WALKS AND ANOMALOUS
DIFFUSION – TWO BIRDS WITH ONE STONE 16

2.2 Continuous-time random walks

So far, time is still meaningless and the diffusion constant unit is somewhat un-
defined. If a jump occurs instantly then time is still only an index i. The real
world process under consideration may exhibit jumps (possibly fast but with fi-
nite speed) at regular times or according to some other distribution. If the latter
has finite moments with scaling factors that are physically meaningful the result
is equivalent to Brownian motion. A typical distribution of waiting-times is the
exponential distribution, possibly scaled with a factor γt to fit reality:

ψ(t) =
1
γt

exp(t/γt). (2.25)

Now the diffusion constant is D = γαx /γt such that [D] = [γαx /γt] = cmα/s. Ex-
ponentially distributed waiting-times define a Poisson process in which the prob-
ability of n events within a fixed period is given by the Poisson distribution. This
defines the Normal Compound Poisson Process (NCPP). The exponential density
has, by definition, an exponential tail, i.e. the moments are finite, and the dimen-
sion of the time unit is still one. Below we will see that a power-tailed waiting-time
distribution gives rise to a fractional unit of time.

Prior to the proper introduction of waiting-times the CTRW should be defined
properly. A CTRW [128] is a pure jump process; it consists of a sequence of
independent identically distributed (iid) random jumps (events) ξi separated by
iid random waiting-times τi,

tn =
n∑
i=1

τi , τi ∈ R+, (2.26)

so that the position at time t ∈ [tn, tn+1) is given by

x(t) =
n∑
i=1

ξi, ξi ∈ R. (2.27)

A realisation of the process is a piecewise constant function resulting from a se-
quence of up or down steps with different height and depth; see Fig. 2.2 for a
schematic picture and Fig. 2.3 for example realisations. Jumps are assumed to
happen instantaneously or at least within negligible time. In general, jumps and
waiting-times depend on each other and they can be described by a joint proba-
bility density ϕ(ξ, τ). The latter appears in the integral equation giving the prob-
ability density p(x, t) for the process being in position x at time t, conditioned on
the fact that it was in position x = 0 at time t = 0:

p(x, t) = δ(x) Ψ(t) +
∫ +∞

−∞
dξ
∫ t

0
dτ ϕ(ξ, τ) p(x− ξ, t− τ). (2.28)

Here the initial condition x(0) = 0 is contained implicitly in the first term δ(x)Ψ(t),
where we find the complementary cumulative distribution function (survival func-



17 2.3. THE TIME AND SPACE FRACTIONAL DIFFUSION EQUATION

tion)

Ψ(t) = 1−
∫ +∞

−∞
dξ
∫ t

0
dτ ϕ(ξ, τ). (2.29)

Recently, Enrico Scalas, one of the authors of the respective paper in which this
material was presented, found an analytic solution of the integral equation in the
uncoupled case, i.e. when ϕ(ξ, τ) = λ(ξ)ψ(τ), where λ(ξ) is the jump marginal
density and ψ(τ) is the waiting time marginal density [157]. The master equation
then reads

p(x, t) = δ(x)Ψ(t) +
∫ t

0
dτ ψ(τ)

∫ +∞

−∞
dξ λ(ξ)p(x− ξ, t− τ). (2.30)

It might be instructive to compare Eq. (2.28) and Eq. (2.7). The latter is the
most simple version of the master equation for the lattice walk model introduced
there. Both equations take all necessary history and surrounding space to give
the desired probability for a particular location. While the simple lattice model
includes only the neighbouring sites, the integral equation Eq. (2.28) requires the
entire space. This provoked some criticism when used as a macroscopic model
since it is non-causal or at least non-local. However, one point of view can be that
such “microscopic details” are irrelevant if the required stylised fact is represented
well, in which case this fact is the probability density of the particle.

t

x(t)

τi ∼ ψ(τ) ξi ∼ λ(x)

Figure 2.2: Schematic picture of a continuous-time random walk. Waiting-times
and jumps are distributed according to the densities ψ(τ) and λ(x) functions.

2.3 The time and space fractional diffusion equation

In the previous section we deduced the “right” jump density to solve the space-
fractional derivative in the diffusion equation via an analogy in Fourier space. In
this section we deduce the “right” waiting-time density to solve the time-fractional
part via an analogy in Laplace space.

The classical diffusion equation can be generalised to the space-time-fractional
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Figure 2.3: Sample paths of CTRWs with scale parameters γt = 0.001, γx = γ
β/α
t

and different choices of α and β. With smaller α the jumps become larger; with
smaller β the waiting times become longer.

diffusion equation

∂β

∂tβ
u(x, t) = D

∂α

∂|x|α
u(x, t) (2.31)

u(x, 0+) = δ(x), x ∈ R, t ∈ R+.

The time and space dependent variable is now again u(x, t) to make clear that it
does not necessarily refer to probability. For 0 < α ≤ 2, ∂α/∂|x|α denotes the
symmetric Riesz-Feller operator. For 0 < β ≤ 1, ∂β/∂tβ is the time-fractional
Caputo derivative:

dβ

dtβ
f(t) = L−1

s

[
sβ f̃(s)− sβ−1f(0+)

]
(t). (2.32)

L denotes the Laplace transform:

f̃(s) = Lt[f(t)](s) =
∫ ∞

0
f(t)e−st dt, s ∈ C. (2.33)

The Laplace transform is suggestive as a vehicle to implement the fractional time
derivative because time is not symmetric as compared to space. The presence
of the initial condition in Eq. (2.32) originates from this reasoning. For more
information on the fractional derivatives see Refs. [34, 68, 144, 153, 157]. For
β = 1 this reduces to the usual first order derivative. For β < 1 the following
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equation holds:

dβ

dtβ
f(t) =

1
Γ(1− β)

[
d
dt

∫ t

0

f(τ)
(t− τ)β

dτ − f(0+)
tβ

]
, (2.34)

where f(0+) is the initial condition. For α = 2 and β = 1, the standard diffusion
equation, Eq. (2.1), is recovered. Without loss of generality, we assume D = 1; a
different value would just mean a scale transformation of space and/or time units.
u(x, t) ≥ 0 is the Green function of the FDE, that has the general form

u(x, t) = t−β/αW (x/tβ/α; α, β), (2.35)

with the scaling function

W (ξ; α, β) = F−1
k [Eβ(−|k|α)] (ξ). (2.36)

Eβ(z) is the one-parameter Mittag-Leffler function [74],

Eβ(z) =
∞∑
n=0

zn

Γ(βn+ 1)
, z ∈ C, (2.37)

with

Eβ(−tβ) = L−1
s

[
sβ−1

1 + sβ

]
(t), t ∈ R+. (2.38)

The Mittag-Leffler function naturally appears once we note that the survival prob-
ability distribution function satisfies the ordinary relaxation equation:

d
dt

Ψ(t) = −Ψ(t), t > 0, Ψ(0+) = 1. (2.39)

Eq. (2.32) represents the fractional generalisation of Eq. (2.39) by writing dβ/dtβ.
Taking the Laplace transform of the Caputo derivative

Lt
[

dβ

dtβ
f(t)

]
(s) = sβ f̃(s)− sβ−1f(0+) (2.40)

and the latter applied to equation (2.39) gives

Ψ̃(s) =
sβ−1

1 + sβ
(2.41)

which turns out to be the Laplace image of the Mittag-Leffler function. The
transform back from Laplace space yields indeed the solution

Ψ(t) = Eβ(−tβ) (2.42)

in terms of the Mittag-Leffler function Eβ(z).
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For t ∈ R and β = 1, the Mittag-Leffler function with argument −tβ reduces
to a standard exponential decay, e−t; when 0 < β < 1, the Mittag-Leffler function
is approximated for small values of t by a stretched exponential decay (Weibull
function), exp(−tβ/a), where a = Γ(β + 1), and for large values of t by a power
law, bt−β, where b = Γ(β) sin(βπ)/π; see Fig. 2.5. The Mittag-Leffler distribution
is an important example of fat-tailed waiting-times that arises as the natural sur-
vival probability leading to time-fractional diffusion equations. There is increasing
evidence for physical phenomena [122, 160, 177] and human activities [7, 150, 155]
that do not follow neither exponential nor, equivalently, Poissonian statistics. The
analytic solution of the fractional diffusion equation for uncoupled CTRWs is de-
rived in Ref. [108] and also shown in Fig. 2.6.

Together with power-tailed waiting-times the diffusion constant obtains the
unit [D] = mα/sβ. The exponent of anomalous diffusion h in Eq. (2.6) controls
in this model of CTRWs whether we have sub- or super-diffusion as a function of
the two fractional derivative orders and is given by:

h =
2β
α
. (2.43)

Fig. 2.4 shows the range and diffusion types.
It is inevitable to numerically solve a FDE in the most general case, also known

as fractional Fokker-Planck equation, that may include space- and time-dependent
diffusion and drift terms. Possible approaches are the direct calculation of the
integrals in Equations (2.20) and (2.34) [58], finite difference methods [43, 121, 167]
and stochastic methods [72, 105, 106, 120, 182]. All of them are complicated, the
latter ones mainly because of the supposedly cumbersome generation of Mittag-
Leffler random numbers. While this problem has been often worked around in the
past, we show how to overcome it, obtaining a fast and accurate method for the
Monte Carlo solution of FDEs via uncoupled CTRWs. As a benchmark we focus
our attention on the Cauchy problem defined in Eq. (2.31), for which an analytic
solution given by Equations (2.35) and (2.36) is available.

2.4 Monte Carlo solution of the fractional diffusion

equation

The link between CTRWs and time-fractional diffusion was discussed rigorously
in Ref. [73] in terms of the generalised Mittag-Leffler function Eβ,β(−τβ).

In order to approximate the Green function in Eq. (2.35), it is sufficient to
simulate CTRWs whose jumps are distributed according to the symmetric Lévy
α-stable probability density (that reduces to a Gaussian for α = 2)

Lα(ξ) = F−1
k [exp (−|γxk|α)] (ξ) (2.44)

and whose waiting-times have the probability density

ψβ(τ) = − d
dτ
Eβ

(
−(τ/γt)β

)
, (2.45)



21 2.5. ISOTROPIC RANDOM WALKS

where Eβ(z) is the one-parameter Mittag-Leffler function given by Eq. (2.37).
Then a weak-limit approximation of the Green function is obtained by rescaling
waiting-times by a constant γt and jumps by a constant γx = γ

β/α
t , letting γt

(and as a consequence γx) vanish, and plotting the histogram for the probability
density pγx,γt(x, t; α, β) of finding position x at time t for the rescaled process.
This probability density weakly converges to the Green function u(x, t; α, β). Weak
convergence means that for x = 0 a singularity is always present in pγx,γt(x, t; α, β)
at x = 0 for any finite value of γt and γx. This singularity is the term δ(x)Ψ(t)
in Eq. (2.28) with Ψ(t) = Eβ(−tβ). In the case α = 2 and β = 1 the CTRWs
are an NCPP and, in the diffusive limit, one recovers the Green function for the
standard diffusion equation, Eq. (2.1), i.e. the Wiener process. This procedure
is justified in Refs. [154] and [157]. In the latter reference, one can also find a
theoretical justification for the Monte Carlo procedure where waiting-times are
generated according to a power-law distribution; a more complete treatment has
been given in Ref. [69].

2.5 Isotropic random walks

Fig. 2.1 shows a random walker who chooses a random direction for each jump.
It is a well known technique how to choose a direction at random, or equivalently,
random points on a circle, sphere or hyper-sphere. Nevertheless, it should be men-
tioned here, because we will learn in Chap. 3 that random vectors with Gaussian
distribution of elements are isotropically distributed. This concept will be gener-
alised to matrices and be called rotational invariance. Vectors whose elements are
independent but do not have a finite variance do not form an isotropic ensemble.

The Matlab code for producing pictures like in Fig. 2.1 is very short:

x=[0 ;0];

for i=1:N

rx = randn(2,1); % vector of normal random numbers

rx = rx/sqrt(sum(rx.^2)); %normalise to the unit circle

xp1 = x + levyrnd(alpha,beta,1,0,1,1)* rx; %multiply unit vector with Levy variate

plot([x(1) xp1(1)],[x(2) xp1(2)],’k’); hold on

x = xp1;

end

The method to produce Lévy alpha-stable random numbers is described later in
this chapter and can also be downloaded as piece of Matlab code [64].
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Figure 2.4: The exponent of the time dependent mean squared displacement con-
trols two types of anomalous diffusion. For h = 1 we get normal diffusion. In the
range 0 < h < 1 it is sub-diffusion, in the range 1 < h < 2 super-diffusion. Bigger
values h ≥ 2 are not in the realm of diffusion anymore.
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Figure 2.6: Analytic solution of the fractional diffusion equation. Top: α = 1.7,
β = 0.9. Bottom: α = 1.0, β = 0.9.
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2.6 Transformation formulas for non-uniform random

numbers

The usual methods for generating random numbers with a specific probability
density are transformation, also called inversion because it requires the inverse
cumulative distribution function, [56] and von Neumann rejection [176]. While
the latter is more general, the former is usually faster when it is available.

2.6.1 Symmetric Lévy α-stable probability distribution

The symmetric Lévy α-stable probability density Lα(ξ) for the jumps, Eq. (2.44),
can be calculated by series expansion, that we do not report here, by direct inte-
gration [135, 136] or by numerical Fourier transform [126]. A practical guide to do
the latter is given in Appendix A. The exact definition of the general Lévy α-stable
probability density is given in Sec. 4.2.2 These methods produce a pointwise rep-
resentation of the density on a finite interval that can be used for rejection, most
efficiently with a look-up table and interpolation. Most convenient is the following
transformation method by Chambers, Mallows and Stuck [37]:

ξα = γx

(
− log u cosφ

cos((1− α)φ)

)1− 1
α sin(αφ)

cosφ
, (2.46)

where φ = π(v − 1/2), u, v ∈ (0, 1) are independent uniform random numbers, γx
is the scale parameter, and ξα is a symmetric Lévy α-stable random number. For
α = 2 Eq. (2.46) reduces to ξ2 = 2γx

√
− log u sinφ, i.e. the Box-Muller method for

Gaussian deviates. The other two notable limit cases are the Cauchy distribution,
with α = 1 and ξ1 = γx tanφ, and the Lévy distribution, with α = 1/2 and
ξ1/2 = −γx tanφ/(2 log u cosφ).

2.6.2 One-parameter Mittag-Leffler probability distribution

The probability density ψβ(τ) for the waiting-times, Eq. (2.45), can be computed
as a power series from the definition of the one-parameter Mittag-Leffler func-
tion, Eq. (2.37), leading to a pointwise representation on a finite interval; ran-
dom numbers can then be produced by rejection, again with a look-up table and
interpolation. Though CTRW sample paths with a Mittag-Leffler waiting time
distribution have appeared in the literature [69, 70, 106, 105], so far it has not
been recognized in this context that inversion formulas analogous to Eq. (2.46) are
available [46, 139, 84, 87, 85, 86, 79, 63]. The most convenient expression is due
to Kozubowski and Rachev [87]:

τβ = −γt log u
(

sin(βπ)
tan(βπv)

− cos(βπ)
) 1
β

, (2.47)

where u, v ∈ (0, 1) are independent uniform random numbers, γt is the scale pa-
rameter, and τβ is a Mittag-Leffler random number. For β = 1, Eq. (2.47) reduces
to the inversion formula for the exponential distribution: τ1 = −γt log u. Eq. (2.47)
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and equivalent forms stem from mixture representations of a Mittag-Leffler ran-
dom variable through an exponential and a stable random variable. The oldest
representation is [46, 79]

τβ = τ
1/β
1 ξβ,1, (2.48)

where ξβ,1 is a skew Lévy α-stable random number independent of τ1, with in-
dex α = β, skewness parameter 1 and scale factor γx = 1/8. A more recent
representation is [139, 84]

τβ = τ1 ξ
±1/β
1+ , (2.49)

where ξ1+ is a positive random number distributed according to a Cauchy distribu-
tion L1+(ξ) with scale parameter γx = sin(βπ), location parameter δ = − cos(βπ)
and normalization on R+: L1+(ξ) = L1(ξ)/β for ξ > 0.

The connection of Mittag-Leffler to stable random variables can be obtained in
the framework of the theory of geometric stable distributions. A random variable ξ
is stable if and only if, for all n ∈ N iid copies of it, ξ1, . . . , ξn, there exist constants
an ∈ R+ and bn ∈ R such that the scaled and shifted sum an(ξ1 + . . . + ξn) + bn
has the same distribution as ξ. A Mittag-Leffler random variable is not stable, but
it is geometric stable [83], i.e. it is the weak limit for p → 0 of the appropriately
scaled and shifted geometric random sum a(p)[τ1 + . . . + τν(p)] + b(p) of suitable
iid random variables τi, where ν(p) is a geometric random variable independent of
each τi, with mean 1/p, p ∈ (0, 1), and a geometric probability distribution

P (ν(p) = n) = p(1− p)n−1, n ∈ N. (2.50)

A random variable is geometric stable if and only if its characteristic function ψ̂(k)
is related to the characteristic function λ̂(k) of a stable random variable by the
equation [127]

ψ̂(k) =
1

1− log λ̂(k)
. (2.51)

With this one-to-one correspondence, a parametrization of a geometric stable prob-
ability density ψ(x) can be established from a parametrization of the corresponding
stable probability density λ(x). Geometric random sums of symmetric τi yield the
class of Linnik distributions (a generalisation of the Laplace distribution 1

2e
−|t|),

while positive τi yield the class of Mittag-Leffler distributions (as already seen,
a generalisation of the exponential distribution e−t, t ≥ 0). In particular, the
Mittag-Leffler distribution can be written as a mixture of exponential distribu-
tions [68, 86]:

Eβ(−tβ) =
∫ ∞

0
exp(−µt)g(µ) dµ, (2.52)
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with a weight

g(µ) =
1
π

sin(βπ)
µ1+β + 2 cos(βπ)µ+ µ1−β (2.53)

given by g(µ)dµ = L1+(µβ)dµβ, where L1+(ξ) is the probability density of ξ1+ in
Eq. (2.49) introduced before. Equations (2.52–2.53) express Eq. (2.49) in terms
of density functions. The inverse cumulative distribution of L1+(ξ) yields the
transformation formula for ξ1+ appearing as the argument of the power function
in Eq. (2.47) [85, 87]. Alternatively, the inversion formula ξ1 = γx tanφ + δ for
L1(ξ), see Eq. (2.46), can be substituted into Eq. (2.49), provided negative values
of ξ1 are discarded.

An older equivalent form of Eq. (2.47) was obtained substituting an inversion
formula for ξβ,1 [81] into Eq. (2.48) [46, 79]. A similar result can be reached using
a general transformation formula for skew Lévy α-stable random numbers [37], of
which Eq. (2.46) is a special case with skewness parameter 0. Both ways require
three independent uniform random numbers and more transcendent functions than
Eq. (2.47), making the latter slightly more appealing from a numerical point of
view.

2.7 Numerical results

Examples of CTRWs generated according to the described procedure, i.e. Equa-
tions (2.26), (2.27), (2.46) and (2.47), are shown in Fig. 2.3. The complementary
cumulative distribution function (survival function) of random numbers obtained
through Eq. (2.47) is checked against its analytic value [145] and its approxima-
tions for t → 0 and t → ∞ in Fig. 2.5, where a log-log scale and logarithmic
binning [132] is used. Timings are reported in Table 2.1 and Ref. [63].

The advantage of Eq. (2.47) is that Mittag-Leffler deviates are generated with
a simple and elegant procedure and no accuracy losses due to truncation of the
power series in Eq. (2.37) or truncation of the density function to a finite interval
as necessary in the rejection method. The effects of the truncation of the jump
density in Lévy flights are analyzed in Ref. [110], whereas no study is available for
truncation effects on Mittag-Leffler deviates. Together with Eq. (2.46), a scheme
is obtained that yields sample paths for a CTRW with a Lévy jump marginal
density and a Mittag-Leffler waiting time marginal density at a speed comparable
to that of a NCPP: Though each point for a generic CTRW takes about 3.6 times
more than for a NCPP, fewer points are necessary (see n̄ in Table 2.1) because
the waiting-times are longer. The latter reference reports also that if Lévy and
Mittag-Leffler random numbers are produced by rejection, computing the values
of the probability density functions simple-mindedly with a series expansion every
time they are needed, rather than just once at the beginning to set up a look-up
table, for Lévy deviates the procedure takes 400 times longer than with Eq. (2.46),
and for Mittag-Leffler deviates it takes 5000 times longer than with Eq. (2.47).
Because of the slow convergence of the power series in Eq. (2.37), up to 200 terms
are necessary to achieve an acceptable accuracy, and each term is computationally
expensive because of the Γ function. Of course these are extreme figures on the



27 2.7. NUMERICAL RESULTS

α β γt n̄ tCPU/sec
2.0 1.0 0.010 200 337
2.0 1.0 0.001 2000 3362
1.7 0.8 0.010 74 437
1.7 0.8 0.001 470 2895

Table 2.1: Average number n̄ of jumps per run and total CPU time tCPU in
seconds for 107 runs with t ∈ [0, 2] on a 2.2 GHz AMD Athlon 64 X2 Dual-Core
with Fedora Core 4 Linux, using the ran1 uniform random number generator [148]
and the Intel C++ compiler version 9.1 with the -O3 -static optimization options.

other end of the efficiency scale meant to show how wide the latter can be; there are
smarter ways to compute both the Lévy and Mittag-Leffler [144, 145] probability
densities.

Using many CTRW realisations, histograms can be built that give the evolution
of p(x, t) with initial condition p(x, 0) = δ(x), as displayed in Fig. 2.7. According
to Eq. (2.28), the initial condition evolves as δ(x)Ψ(t), i.e. it is visible as a spike
at x = 0 that decays as t evolves. The mass of the spike is Ψ(t) = Eβ

(
−(t/γt)β

)
.

In Fig. 2.7 this feature appears as a crest. Fig. 2.9 shows how histograms built
with CTRWs converge to the Green function, Eq. (2.35), of the FDE for decreasing
values of the scale parameters γt and γx = γ

β/α
t . To evaluate the scaling function in

Eq. (2.36) needed for Eq. (2.35), we used standard FFT methods and algorithms for
Eβ(−tβ) [144, 150, 145]. In Fig. 2.8 we plot maxx 6=0 |pγx,γt(x, t; α, β)−u(x, t; α, β)|
as a function of vanishing γt with γx = γ

β/α
t . A rigorous analysis of convergence

bounds is beyond the scope and resources.
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Figure 2.7: Decay of the probability density pγx,γt(x, t; α, β) with α = 1.7, β =
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shown in a time-independent way as scaling plots, and appear in the same order
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when the ratio t/γt becomes larger, as is evident in Fig. 2.7.
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2.8 Conclusions

The use of Mittag-Leffler random numbers generated according to Eq. (2.47) in
combination with Lévy random numbers generated according to Eq. (2.46) is very
useful in the Monte Carlo simulation of uncoupled continuous-time random walks.
In the hydrodynamic limit, appropriately rescaled uncoupled continuous-time ran-
dom walks with a one-parameter Mittag-Leffler distribution of waiting-times and
a symmetric Lévy α-stable distribution of jumps in space yield the Green function
of the Cauchy problem for a space-time fractional diffusion equation; we verified
this for Eq. (2.31), that has an analytic solution, Eq. (2.35), as a benchmark for
more difficult cases where the diffusion and drift terms depend on space and time.
We have shown that the computational effort for a fractional diffusion process is
almost as small as for a standard diffusion process. It is true that in the same
fluid limit the Green function can be obtained too by Monte Carlo sampling of
just the asymptotic power-law tail approximations of the Lévy and Mittag-Leffler
probability distributions, at least when the indices α and β are not close to 2 and 1
respectively. However, the neat transformation formulas given by Equations (2.46)
and (2.47) are numerically so convenient that there is no good reason for resort-
ing to the asymptotic approximations. Moreover we think that, in applications,
continuous-time random walks are seen as a more fundamental model than frac-
tional diffusion equations, and sample paths will be generated without taking the
scale parameters γx and γt to the diffusive limit, by using the approach presented
here.

Special acknowledgments

We thank Björn Böttcher and René Schilling for help with the literature search,
Rudolf Gorenflo and Francesco Mainardi for illuminating discussions, and Tom
Kozubowski for useful comments.



Chapter 3

Spectral densities of

Wishart-Lévy free stable

random matrices

’Can you do Addition?’ the White Queen said. ’What’s
one and one and one and one and one and one and one and one and
one and one?’ ’I don’t know’, said Alice. ’I lost count’. ’She can’t do
Addition’, the Red Queen interrupted.

L.C.

In correlation analysis the theory of random matrices is used to assess the signifi-
cance of weak correlations. The theory is well established for Gaussian statistics.
However, many complex systems, with stock markets as a prominent example,
exhibit statistics with power-law tails, that can be modeled with Lévy stable dis-
tributions. We review comprehensively the derivation of an analytic expression for
the spectra of covariance matrices approximated by free Lévy stable random vari-
ables and validate it by Monte Carlo simulation. It remains to be seen how useful
free Lévy stable random variables are in this context since the realistic situation
cannot be characterised by a single value of the Lévy parameter α or power-tail of
the data increments.

3.1 Introduction

The classical ensembles of random matrices play an important role in the mod-
elling of physical systems, in time series analysis and in other fields. The first
notion of a matrix ensemble in statistics was given in the 1920s by Wishart for the
purpose of correlation analysis [180]. Physicists began to be interested in random
matrices in the 1950s when Wigner presented a model of nuclear energy levels as
eigenvalues of symmetric random matrices with Gaussian entries and also with
equi-probable ±1 elements [179]. In 1998 Guhr et al. wrote a review on the ap-
plication of random matrix theory in physics with more than 800 references [71].

31
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Random matrices are used in other fields too, e.g. operations research, for as diverse
problems as bandwidth efficiency in wireless communication [59, 129] or optimal
aircraft boarding [5, 166]. In correlation analysis the theory of random matrices
can be used to assess whether weak correlations are significant or just noise. The
mathematical link between correlation matrices of time series and random matri-
ces is the Wishart matrix ensemble, that, together with the Wigner ensemble, is
one of the standard tools in the theory of random matrices. The Wigner ensem-
ble also goes under the label Gaussian Orthogonal Ensemble (GOE) that forms
together with the Gaussian Hermitian Ensemble (GUE), the Gaussian Symplectic
Ensemble (GSE) and the Wishart ensemble the four classical matrix ensembles.
A recent introduction and overview including numerical aspects can be found in
Ref. [53]. Since the 1990s econophysicists have employed random matrix theory for
the analysis of correlation in financial time series [18, 21, 41, 88, 143, 171], with
portfolio theory [111, 159] as one of the motivations. Recently, random matrix
theory was also used for a correlation analysis of macroeconomic time series [137].

Consider i = 1, . . . , N stochastic time series xij observed at synchronous times
tj , j = 0, . . . , T . The data can be arranged in a N × T matrix M of increments
∆xij = xij − xi,j−1, where each row corresponds to a time series and each column
to a sampling time. Assuming that the average of the increments is zero, the
Pearson estimator for the covariance of two time series i and j is

cij =
1
T

T∑
k=1

∆xik∆xjk. (3.1)

The covariances of all pairs can be collected in a N ×N symmetric matrix

C =
1
T

MMT. (3.2)

The covariance matrix C is also called Wishart matrix as it was studied by him.
One is often interested in testing the hypothesis that there are no significant cor-
relations. This can be done comparing the eigenvalue spectrum of an empirical
correlation matrix with the spectrum of a reference matrix built with synthetic
uncorrelated time series. If the matrix rows are random walks whose increments
are independent and identically distributed (iid) normal deviates with standard
deviation σ, the spectrum describing the above null hypothesis in the limit for
N,T →∞ with m = N/T is given analytically by the Marčenko-Pastur law [118]:

ρC(λ) =

√
(λ+ − λ)(λ− λ−)

2πmσ2λ
, (3.3)

λ± = σ2
(
1±
√
m
)2
.

This result has been rediscovered a few times [6, 52, 53]. Indeed, for a sufficiently
large matrix the exact distribution of mit becomes less and less relevant, and the
Marčenko-Pastur law can be obtained for iid increments drawn from any distribu-
tion with a finite second moment. This effect was also evident in Wigner’s studies
of matrices whose entries are binary random variables assuming the values ±1
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with equal probability. In both the Wigner and Wishart ensembles the spectra of
large matrices converge to that of an infinite matrix (respectively the semi-circle
law and the Marčenko-Pastur law) as a consequence of a generalised central limit
theorem.

A practical use of Eq. (3.3) is that if the empirical spectrum of data shows sig-
nificant differences from the theoretical curve, then it may be justified to reject the
null hypothesis of no true correlations. The details of the latter are then a separate
issue. In principle it is possible to test not only the absence of true correlations,
but also any kind of suitable assumption leading to a given shape of the expected
spectrum, both theoretically or numerically. Depending on the specific case one
chooses a suitable null hypothesis. For example, if the considered time series are
the log-prices of traded stocks, in a first approximation it is reasonable to test
the absence of true correlation with normally distributed log-returns [88, 143, 39].
Another powerful approach requiring less knowledge of the distribution of the in-
crements is a bootstrap scheme that consists in re-sampling the covariance matrix
after random permutations of the empirical time series. Since the reshuffling of the
rows of M destroys any possible correlation, an absence of correlation among the
original time series requires that the eigenvalue spectrum of C does not change [31].

So far, the result given by Eq. (3.3) lies within classical random matrix the-
ory and requires iid matrix elements with finite moments. In this work we are
concerned with the Wishart-Lévy ensemble as a natural extension of the Wishart-
Gaussian ensemble treated by the Marčenko-Pastur theory. The situation becomes
more complicated if the elements of M are distributed with power-law tails, as hap-
pens in numerous physical, biological and economic data [39]. Stock markets as
well as many other complex systems exhibit a dynamics that results in power-
law tailed statistics. The Marčenko-Pastur theory is not valid any more when
the second moment is not finite, and the corresponding spectral densities cannot
be obtained from a simple extension of Gaussian random matrix theory. As a
consequence of the central limit theorem for scale-free processes the distribution
of many of the above phenomena is usually assumed to be a symmetric Lévy α-
stable distribution, whose pdf is given most suitably as the inverse Fourier (cosine)
transform of its characteristic function:

Lα(x) = F−1
k

[
e−γ|k|

α
]

(x) =
1
π

∫ ∞
0

e−(γk)α cos(xk) dk. (3.4)

The second and higher moments of Lα(x) diverge for α < 2, and for α ≤ 1 even
the first moment does not exist any more. If α = 2 Eq. (3.4) gives a Gaussian.
However, we shall see that the functional representation of this distribution is not
required in the derivation of the spectrum.

A matrix whose elements are iid samples from a stable density is called a Lévy
matrix. A square and symmetric Lévy matrix is called a Wigner-Lévy matrix.
Sampling the elements from the probability density function

fX(x) = N2/αLα(N2/αx), (3.5)

the limiting spectrum becomes independent of the matrix size N [38]. It turns out
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that the spectrum has no longer a finite support as in the Marčenko-Pastur case
and is dominated by the behaviour of its power-law tail.

It was proposed to use the theory of free probability with its convenient
machinery leading to analytic results that could be obtained otherwise only
by means of a painful use of combinatorics. A free Lévy stable random ma-
trix has a spectrum belonging to the class of free stable laws. The con-
temporary physical and mathematical literature on correlation matrix analysis
with power-law tailed uncorrelated noise is very active also in the context of
free probability. Limiting the list to physics journals, the reader can consult
Refs. [15, 16, 20, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 172]. For a review of free
probability theory see Ref. [134]. The Marčenko-Pastur spectrum can be obtained
as a special case of this more general theory.

Our aim in this chapter is to review comprehensively the analytic derivation of
the spectral density of free stable Wishart-Lévy random matrices already solved by
Burda et al. [24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and, as a further step, to validate
numerically the analytic result by Monte Carlo simulation. The rest of this chapter
is organised as follows. Sec. 3.2 introduces the mathematical background of free
probability theory, whose objects are elements of an algebra, usually an operator
algebra, and may enjoy the property of freeness. Sec. 3.3 explains free stability and
presents an approximation for the Wishart-Lèvy covariance matrix of time series
using free stable random variables. An explanation of free stability is provided
too. Sec. 3.4 derives in detail a transcendental equation, due to Burda et al.,
whose solution gives the spectral density for the approximated covariance matrix.
Sec. 3.5 shows numerically the validity of this equation comparing analytic and
Monte Carlo results. A summary and an Appendix with computer code conclude
this material.

3.2 Mathematical background

A symmetric N×N matrix X has real eigenvalues λ1, . . . , λN . The spectral density
of X can be written as

ρX(λ) =
1
N

N∑
i=1

δ(λ− λi), (3.6)

where it is assumed that the weight of each eigenvalue is the same and each eigen-
value is counted as many times as its multiplicity. The resolvent matrix [42] is
defined as

GX(z) = (z1−X)−1, z ∈ C, (3.7)

where 1 is the N ×N identity matrix. The Green function is defined as

GX(z) =
1
N

tr GX(z), (3.8)
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where the trace tr of a square matrix is defined as the sum of its diagonal ele-
ments. If X is a random matrix, the above definition is generalised including an
expectation operator E:

GX(z) =
1
N

E[tr GX(z)]. (3.9)

The Green function contains the same information as the eigenvalues and the
eigenvalue density of X [17]. The Green function can be written in terms of the
eigenvalues of X:

GX(z) =
1
N

N∑
i=1

1
z − λi

. (3.10)

This is a special case of the definition through the Cauchy transform of a generic
spectral density:

GX(z) =
∫ +∞

−∞

1
z − λ

ρX(λ) dλ. (3.11)

By using the following representation of Dirac’s δ-function,

1
x± iε

= PV
(

1
x

)
∓ iπδ(x), (3.12)

where PV denotes the principal value, the spectral density can be obtained from
the Green function:

ρA(λ) = lim
ε→0+

1
π

Im[GX(λ− iε)]. (3.13)

This means that the eigenvalues follow from the discontinuities of GX(z) on the
real axis.

Non-commutativity of matrices and, in general, of operators makes it diffi-
cult to extend standard probability theory to matrix as well as operators spaces.
Among the possible extensions of probability theory to operator spaces the so-
called free probability theory has the advantage that many results can be deduced
from well-known theorems on analytic functions [25].

In order to explain the framework of free probability, let us start from con-
ventional classical probability. A probability space (Ω,F ,P) is a measure space,
where Ω is the sample space, F is a σ-algebra on Ω, and P : F → [0, 1] ∈ R is a
non-negative measure on sets in F obeying Kolmogorov’s axioms; ω ∈ Ω is called
an elementary event, A ∈ F is called an event. A random variable X : Ω → R
is a measurable function that maps elements from the sample space to the real
numbers, and thus elements from F to a Borel σ-algebra Σ on R. The probability
distribution of X with respect to P is described by a measure µX on (R,Σ) defined
as the image measure of P: µX(B) = P[X−1(B)], where B is any Borel set and
X−1(B) ⊂ F is the counter-image of B. The cumulative distribution function of
X is FX(x) = µX(X ≤ x). The expectation value for any bounded Borel function
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g : R→ R is

E[g(X)] =
∫

R
g(x)µX(dx) =

∫
R
g(x) dFX(x). (3.14)

If FX(s) is differentiable, the probability density function (pdf) of X is fX(x) =
dFX(x)/dx.

This construction can be extended to non-commutative variables, e.g. matrices
or more in general operators. Let A denote a unital algebra over a field F, i.e. a
vector space equipped with a bilinear product ◦ : A×A → A that has an identity
element I. A tracial state on A is a positive linear function τ : A → F with the
properties τ(I) = 1 and τ(XY) = τ(YX) for every X,Y ∈ A. The couple (A, τ)
is called a non-commutative probability space.

For our purposes A = B(H), where B(H) denotes the Banach algebra of linear
operators on a real separable Hilbert space H. This is a ∗-algebra, as it is equipped
with an involution (the adjoint operation) X 7→ X∗ : B(H)→ B(H). Considering a
self-adjoint operator X ∈ B(H), it is possible to associate a (spectral) distribution
to X as in classical probability. Thanks to the Riesz representation theorem and
the Stone-Weierstrass theorem, there is a unique measure µX on (R,Σ) satisfying∫

R
g(x)µX(dx) = τ(g(X)) (3.15)

where g : R → R is any bounded Borel function [134]. Therefore we say that the
distribution of X is described by the measure µX. For our purposes this measure
is equal to the spectral density ρX defined in Eq. (3.13).

Classically, independence between two random variables X and Y can be de-
fined requiring that for any couple of bounded Borel functions f, g

E[(f(X)− E[f(X)])(g(Y )− E[g(Y )])] = 0. (3.16)

Analogously, two elements X and Y in a non-commutative probability space are
defined as free (of freely) independent with respect to τ , if for any couple of
bounded Borel functions f, g

τ [(f(X)− τ [f(X)])(g(Y)− τ [g(Y)])] = 0. (3.17)

Defining freeness between more than two elements is a non-trivial extension [9].
Generally, square N × N random matrices X are non-commutative variables

with respect to the function τ(X) = (1/N) E[tr X], see Eq. (3.9), but for any given
N no pair of random matrices is free. Nevertheless two random matrices X,Y can
reach freeness asymptotically if for any integer n > 0 and any set of non-negative
integers (γ1, . . . , γn) and (β1, . . . , βn) for which in the limit N →∞

τ(Xγ1) = . . . = τ(Xγn) = τ(Yβ1) = . . . = τ(Yβn) = 0 (3.18)
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we have

τ(Xγ1 Yβ1 . . . Xγn Yβn) = 0. (3.19)

This means that large random matrices can be good approximations of free non-
commutative variables.

Given an operator X ∈ B(H), the following functions are useful in deriving its
spectral distribution µX:

1. Moment generating function, defined as

wX(z) = zGX(z)− 1. (3.20)

The name stems from the fact that, if the distribution of X has finite mo-
ments mX,k = τ [Xk],

wX(z) =
∞∑
k=1

mX,k

zk
. (3.21)

2. R-transform. In classical probability the pdf of the sum of two independent
random variables X + Y is equal to the convolution of the individual pdfs,
i.e.

fX+Y (x) = (fX ∗ fY )(x). (3.22)

The convolution is done conveniently in Fourier space, where it becomes a
multiplication: the characteristic function

f̂X+Y (k) =
∫

R
fX+Y (x)eikx dx (3.23)

of X + Y is the product of the characteristic functions of X and Y ,

f̂X+Y (k) = f̂X(k)f̂Y (k), (3.24)

and the cumulant generating function of X + Y is the sum of the cumulant
generating functions of X and Y :

log f̂X+Y (k) = log f̂X(k) + log f̂Y (k). (3.25)

The free analogue of the cumulant generating function is the R-transform
invented by Voiculescu [14, 134, 173] as part of the functional inverse of the
Green function:

GX

(
RX(z) +

1
z

)
= z. (3.26)

The R-transform for the sum of two free operators is the sum of their R-
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transforms:

RX+Y(z) = RX(z) +RY(z). (3.27)

The free analogue of convolution is indicated with the symbol �:

µX+Y = µX � µY. (3.28)

This is computed through RX, given the connection between the Green
function GX and the spectral distribution µX. Other definitions of the R-
transform were proposed later.

3. Blue function. It is convenient to introduce also an inverse of the Green
function GX(z), called Blue function as a pun [78]:

GX(BX(z)) = BX(GX(z)) = z. (3.29)

The Blue function is related to the R-transform by

BX(z) = RX(z) +
1
z
. (3.30)

4. S-transform. In the same fashion as the R-transform for the sum, another
transform allows to compute the spectral distribution of the product of two
operators from their individual spectral distributions:

SX(z) =
1 + z

z
χX(z), (3.31)

where χX(z) is defined through

χX(zGX(z)− 1) =
1
z
. (3.32)

For X 6= Y the S-transform of the product is the product of the individual
S-transforms:

SXY(z) = SX(z)SY(z). (3.33)

3.3 Free stable random variables and the Wishart-

Lévy ensemble

Let P be the matrix projector of size T × T , with N ones in arbitrary positions
on the diagonal and all the other elements zero, e.g.:

P = diag(. . . , 1, 1, . . . , 0, 1, 0, 0, 1, . . . , 1, 0, . . . ). (3.34)

Let Λ be a (large) T×T matrix with a free stable spectral distribution. This prop-
erty is the analogue of classical stability. The sum of two free non-commutative
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µ-distributed variables results in a new µ-distributed variable. The Wishart ma-
trix ensemble of size N × N defined in Eq. (3.2) can be approximated using
the N × T matrix M obtained from PΛ if only the non-zero entries are con-
sidered [26, 27, 28, 29, 30, 31, 32, 33]. Indicating this operation with curly braces,
the approximation reads

C =
1

T 2/α
MMT ' {PΛ}{ΛTP}. (3.35)

Notice that the normalisation factor has been generalised with respect to Eq. (3.2)
to take into account Lévy α-stable statistics. The former equation is justified by
very good results in a similar approach for Wigner-Lévy matrices [33]. In what
follows, W will denote a generic Wigner-Lévy matrix.

Once we know the domain of attraction for one specific classical stable distri-
bution, we can expect that a sum of iid random numbers, e.g. Z = (1/Nn)

∑n
i=1 Zi

with some suitable normalisation Nn, converges to their attractor for large n. If Zi
are independent elements of random matrices, as in Ref. [88], each of them tends
to a stable law under matrix addition. However, for free stability we must consider
random matrices as a whole, and a different procedure is needed. A fundamental
point is the property discussed extensively by Bercovici and Pata [13], that can
be summarized as follows. If Dc(µc) and Df(µf) are the domains of attraction of
the stable laws µc and µf in classical and free probability respectively, a distri-
bution ν ∈ Dc(µc) ⇔ ν ∈ Df(µf). In other words, if we are able to recognise
the classical attractor Dc of a distribution ν, we also know its free attractor Df .
Moreover, one and only one free stable distribution corresponds to any set of pa-
rameter values characterising a classically stable distribution. The spectrum of W
is symmetric with the same tail index α of its entries, i.e. it belongs to the domain
of attraction of a well-recognised classical stable law. This means that the sum of
sufficiently many free non-commutative variables with this spectrum converges to
a non-commutative variable with a stable distribution.

Another property largely discussed in Refs. [141, 134, 165] can be summarised
for our purpose as follows. Considering two N×N matrices Wi and Wj with i 6= j
and two independent random orthogonal N ×N matrices Oi and Oj , the matrices
OiWiOT

i and OjWjOT
j are free in the limit N → ∞. These properties together

with the observation that Wi and OiWiOT
i have the same spectrum justify the

equation

Λ ' 1
(TR)1/α

R∑
i=1

OiWiOT
i . (3.36)

This means that a free stable non-commutative variable can be approximated by
adding randomly rotated classical Lévy random matrices.

To generate Lévy matrices we use the Chambers-Mallows-Stuck algorithm [37,
119]: a random number X drawn from the symmetric Lévy α-stable pdf, Eq. (3.4),
can be obtained from two independent uniform random numbers U, V ∈ (0, 1)
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through the transformation

X = γ

(
− logU cos Φ
cos((1− α)Φ)

)1− 1
α sin(αΦ)

cos Φ
, (3.37)

where Φ = π(V − 1/2). For α = 2 Eq. (3.37) reduces to X = 2γx
√
− logU sin Φ,

i.e. the Box-Muller method for Gaussian deviates.
The QR-decomposition of a T × T matrix H with random Gaussian entries

allows to write

H = O U, (3.38)

where O is random orthogonal and U is upper (or right) triangular. For alternative
methods to obtain a random orthogonal matrix see Ref. [47] and references therein.

3.4 The analytic spectrum

The moment generating function of the T × T matrix D = ΛPΛT satisfies the
transcendental equation [24, 25, 26, 30]

− exp
(
i
2π
α

)
wD(z)2/α z = (wD(z) + 1)(wD(z) +m), (3.39)

which can be solved analytically for a few special values of α = 1/4, 1/3, 1/2, 2/3,
3/4, 1, 4/3, 3/2, 2; the solution was published for α = 1 [26]. The equation can be
solved numerically for other values, see Sec. 3.7. Actually, we are interested in the
spectrum of the approximation of C provided by the rhs of Eq. (3.35), but the
Green functions of the matrices D and C are related by the equation [25]

GD(z) = mGC(z) +
1−m
z

, (3.40)

whence

wD(z) = z GD(z)− 1 = mzGC(z)−m = mwC(z). (3.41)

In the following we will explain in detail the route that leads to Eq. (3.39) and
then to the desired spectral density ρC(λ).

As in classical probability stable laws have an analytic form for their Fourier
transform, free stable laws have an analytic form for their Blue transform [9, 13,
33, 174]:

BΛ(z;α) = a+ bzα−1 +
1
z
. (3.42)

The parameter a accounts for a horizontal shift in the distribution of the matrix
elements and can be set to zero without loss of generality. The parameter b depends
on the distribution; for the symmetric Lévy α-stable pdf, Eq. (3.4), it has the
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value [24]

b = eiπ(α/2−1). (3.43)

As discussed in the previous subsection, given an index α ∈ (0, 2], BΛ(z;α) in-
directly but precisely defines the attractor law for the sum of free variables with
α-tailed spectral distribution. Since free probability theory is exact only in the
large size limit T,N →∞, N/T = m, the only variables that define the model are
α and m.

Rewriting Eq. (3.42) with GΛ(z) in place of z and using Eq. (3.29) yields

bGα−1
Λ (z) +G−1

Λ (z) = z, (3.44)

which is equivalent to

bGαΛ(z) + zGΛ(z) + 1 = 0, GΛ(z) 6= 0. (3.45)

In Sec. 3.2 we established calculation rules with the help of which the solution
of our specific problem can be put together piece by piece. First notice that thanks
to Eq. (3.33), if for simplicity Λ = ΛT,

SΛPΛ = SΛSPΛ = SΛSΛP = SΛΛP = SΛ2P. (3.46)

For the S-transform of the matrix product Λ2 we also require the resolvent. The
desired relation is a consequence of the fact that the spectral measure for free Lévy
α-stable operators in the Wigner ensemble is symmetric [78]:

ρΛ(λ) = ρΛ(−λ) (3.47)
GΛ(z) = G−Λ(z). (3.48)

Via the Cauchy transform representation of the resolvent and exploiting the pre-
vious symmetry we can express the Green function of Λ2 in terms of the Green
function of Λ:

GΛ2(z) =
∫ +∞

−∞

1
z − λ2

ρ(λ) dλ

=
∫ +∞

−∞

[
1

2
√
z

(
1√
z − λ

+
1√
z + λ

)]
ρ(λ) dλ

=
1

2
√
z

(
GΛ(
√
z) +G−Λ(

√
z)
)

=
1√
z
GΛ(
√
z). (3.49)

The next piece in the composition of the solution is the S-transform of the
projector P, which requires its Green function too. Inserting the spectral density
of P,

ρP(λ) = mδ(λ− 1) + (1−m)δ(λ), (3.50)
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RANDOM MATRICES 42

into the definition of the Green function of P as a Cauchy transform yields

GP(z) =
∫

1
z − λ

ρP(λ) dλ

=
∫

1
z − λ

[mδ(λ− 1) + (1−m)δ(λ)] dλ

=
m

z − 1
+

1−m
z

. (3.51)

The moment generating function wP(z) = zGP(z) − 1 and the definition of the
S-transform finally give

SP(z) =
z + 1
z +m

. (3.52)

Rewriting Eq. (3.45) with
√
z in place of z,

bGαΛ(
√
z)−

√
zG2

Λ(
√
z) + 1 = 0, (3.53)

and inserting Eq. (3.49) yields

b zα/2GαΛ2(z)− zGΛ2(z) + 1 = 0. (3.54)

Observing that from Eq. (3.32)

z =
1

χΛ2(zGΛ2(z)− 1)
≡ 1
χΛ2

, (3.55)

Eq. (3.54) becomes

b χ−α/2GαΛ2

(
1
χΛ2

)
− 1
χΛ2

GΛ2

(
1
χΛ2

)
+ 1 = 0. (3.56)

Because from Eq. (3.31) it follows that

1
χΛ2

GΛ2

(
1
χΛ2

)
− 1 = z, (3.57)

Eq. (3.56) can be simplified to

bχ
−α/2
Λ2 GαΛ2

(
1
χΛ2

)
= z. (3.58)

Multiplying both sides by χ−α/2
Λ2 /b yields

χ−α
Λ2G

α
Λ2

(
1
χΛ2

)
=
z

b
χ
−α/2
Λ2 ; (3.59)
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then subtracting and adding 1,(
1
χΛ2

GΛ2

(
1
χΛ2

)
− 1 + 1

)α
=
z

b
χ
−α/2
Λ2 , (3.60)

and inserting again Eq. (3.57) gives

(z + 1)α =
z

b
χ
−α/2
Λ2 , (3.61)

which can be written as

χΛ2 =
1

(z + 1)2

(z
b

)2/α
. (3.62)

Now, using the definition of the S-transform and the result

SΛ2 =
1 + z

z
χΛ2 =

1
z(1 + z)

(z
b

)2/α
, (3.63)

which can be used to write SD, the S-transform of the Wishart matrix on the rhs
of Eq. (3.35) is

SPΛ2 = SPSΛ2 =
1

z(m+ z)

(z
b

)2/α
. (3.64)

This result is the starting point for the way back. Re-applying the definition
of the S-transform we can write

χΛ2P =
z

z + 1
SΛ2P =

1
(z + 1)(z +m)

(z
b

)2/α
(3.65)

and

χ−1
Λ2P

= (z + 1)(z +m)
(z
b

)−2/α
. (3.66)

Together with wD(z) = z GD(z) − 1 this allows to substitute χD(wD(z)) = 1/z
and wD(1/χD(z)) = z. Notice that we changed the index Λ2P to D to emphasise
our goal. So we can finally write

z = (wD(z) + 1)(wD(z) +m)
(
wD(z)
b

)−2/α

. (3.67)

Inserting Eq. (3.41) yields the corresponding equation for C:

z = (mwC(z) + 1)(mwC(z) +m)
(
mwC(z)

b

)−2/α

; (3.68)
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gathering m:

z = m2−2/α(wC(z) + 1/m)(wC(z) + 1)
(
wC(z)
b

)−2/α

. (3.69)

From Eq. (3.20) and from the relation between the resolvent and the spectrum we
finally obtain

ρC(λ) =
1
πλ

Im[wC(λ+ i0+)]. (3.70)

Inserting b from Eq. (3.43) and rearranging, Eq. (3.67) takes the form anticipated
in Eq. (3.39). Returning to the motivation of the topic, the result described by
Eq. (3.69) must be considered an approximation of the curve corresponding to the
null hypothesis of absence of correlation in time series with fat-tailed increments.

3.5 Monte Carlo validation
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Figure 3.1: Spectral densities from the numerical solution of the analytic equation
(solid lines) and from Monte Carlo simulation (stairs). N = mT = 100 for m =
1/3, 1/4, 1/6 and N = mT = 400 for m = 1. In each case 19 200 eigenvalues have
been considered.
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It has already been shown numerically that the theory works in the Wigner-
Lévy case [33]. For the Wishart-Lévy case we produce free stable T × T random
matrices via Eq. (3.36). An N × N Wishart matrix with the desired asymmetry
ratio m = N/T ≤ 1 can be obtained taking a principal minor C of size N × N
from Λ. This is achieved by the projector P in Eq. (3.35). This projection can
be repeated, as there are n = bT/Nc non-overlapping principal minors. To obtain
the minors it is computationally favourable to execute directly Eq. (3.35), i.e. the
matrix multiplications {PiΛ}{PiΛ}T where i = 1, . . . , n labels the projectors that
give all non-overlapping N × T rectangular sub-matrices of Λ with rows 1 to N
for i = 1, with rows N + 1 to 2N for i = 2, etc.. This is particularly useful
if m is small. The averaging procedure can be repeated producing additional
realisations of matrices C until the desired statistical accuracy is reached. The
eigenvalue histograms for these minors can be calculated and averaged to give the
final spectrum. All plots in Fig. 3.1 have been produced using an equal number of
eigenvalues for the sake of comparability.

Free stable laws as defined by the Blue function in Eq. (3.42) and the empir-
ical spectra have different normalisations. For the purpose of a comparison as in
Fig. 3.1, this can be corrected dividing M by a factor Γ(1 + α)1/α.

This procedure implements directly the definition of the Wishart correlation
matrix based on a real random rectangular data matrix M. In this chapter free
probability theory has been presented for self-adjoint operators on the right hand
side of Eq. (3.35) to provide an analytic equation for the spectrum of a Wishart
matrix. Therefore, ΛPΛT = ΛPΛ. But if Λ is symmetric, the left largest square
minor of M will be symmetric too, which is not necessary in the definition of the
Wishart ensemble. However, by following the pairwise correlation of rows of M el-
ement by element one can see that the properties of MMT remains unchanged. In
other words, the symmetrisation introduced for simplicity in the analytic deriva-
tion does not change the original numerical problem by introducing correlations.
Actually, our Monte Carlo scheme does not use symmetric matrices W and Λ in
Eq. (3.36).

Sec. 3.7 gives the code for the calculation of the spectral density by Monte
Carlo as just described.

3.6 Summary and discussion

We have explained the mathematical basis as well as the justification with which
free probability theory enters random matrix theory, in particular in the context
of the Wishart matrix ensemble. Since the derivation of the analytic solution
for the spectra of free stable random matrices has not been published in a self-
contained way yet, we recollected it in detail. Then we validated numerically with
Monte Carlo calculations the analytic prediction of the eigenvalue spectrum for
free stable Wishart-Lévy matrices given in Refs. [24, 25, 26, 30, 33]. Overall we
find an excellent consistency between theory and simulation.

We must be aware however, that a realistic situation in financial data analysis
is not as homogeneous as assumed above, not to speak of the required rotational
invariance. It might well be that the null-hypothesis to be used in practice will
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still be a numerical Monte Carlo calculation using more realistic assumptions. We
present a simple version of such a toy market in Sec.6.

Special acknowledgments
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explanations.

3.7 Computer codes

The numerical solution of Eqs. (3.69–3.70) can be computed with Mathemat-
ica [1] in almost one line. The constant SOL is a positive integer that indicates
which of the possible solutions to pick. A value of α not expressed as a fraction of
integers causes a dramatic increase in running time.

α = 3/2;
m = 1/3;
width = 0.01;
lmax = 5;
SOL := 2;
ρ = Table[l, N[Im[w/.NSolve[-Exp[I2π/α]w2/αl == m2−2/α

(w+1)(w+1/m),w]][[SOL]]/(πl)], l, width, lmax, width];
ListPlot[Abs[ρ]]

The Monte Carlo approximation of a free stable random matrix described in
Sec. 3.3, the statistical averaging described in Sec. 3.5, and the numerical compu-
tation of the eigenvalue spectrum were carried out with Matlab [2].

alpha = 3/2; % index of Levy stable distribution

gam = 1; % scale parameter of Levy stable distribution

width = 0.1; % bin width of eigenvalue histogram

N = 200; % number of time series

T = 600; % points in each time series; must be >= N.

R = 20; % random rotations

S = 19200; % number of sampled eigenvalues

psi = (T*R*gamma(1+alpha))^(2/alpha); % normalisation factor

rho = []; % set up array of eigenvalues

iS = 0; % initialise normalisation counter

while (iS < S)

% approximation of a free stable matrix

L = stabrnd(alpha,0,gam,0,T,T);

for iR = 2:R

[O,U] = qr(randn(T,T)); % O is a random orthogonal matrix

L = L + O*stabrnd(alpha,0,gam,0,T,T)*O’;

end

% average over covariance matrices

for i = 1:N:T-N+1

Li = L(i:i+N-1,:); % choose N out of T rows from M

Ci = Mi*Mi’/psi; % normalisation

rho = [rho eig(Ci)’]; % collect the eigenvalues
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iS = iS + N;

if (iS >= S)

break;

end

end

end

[histrho lrho] = hist(rho,0:width:100); % build the histrogram

histrho = histrho/(length(rho)*width) % normalisation

% lrho contains the abscissa and histrho the ordinate



Chapter 4

Random numbers

”Begin at the beginning,”, the King said, very gravely, ”and go on till
you come to the end: then stop

L.C.

We present a rejection method based on recursive covering of the probability den-
sity function with equal tiles. The concept works for any probability density func-
tion that is pointwise computable or representable by tabular data. By the implicit
construction of piecewise constant majorizing and minorizing functions that are
arbitrarily close to the density function the production of random variates is ar-
bitrarily independent of the computation of the density function and extremely
fast. The method works unattended for probability densities with discontinuities
(jumps, poles, cusps). The setup time is short, marginally independent of the
shape of the probability density and linear in table size. Recently formulated re-
quirements to a general and automatic non-uniform random number generator are
topped. We give benchmarks together with a similar rejection method and with a
transformation method.

The speed of many one-line transform methods and their contemporary imple-
mentations for the production of, for example, Lévy alpha-stable random numbers
(Chambers, Mallows and Stuck) and Mittag-Leffler random numbers (Kozubowski
and Rachev) is very high and satisfactory for most purposes. However, for the class
of strictly decreasing probability densities fast rejection methods like the Ziggurat
implementation by Marsaglia and Tsang promise a significant speed-up if it is pos-
sible to find a sampling method that handles the tails of the infinite support. This
requires the fast generation of random numbers greater or smaller than a certain
value. This chapter presents a method to achieve this, and also to generate random
numbers within any arbitrary interval. We demonstrate the method showing the
properties of the transform maps of the above mentioned distributions as examples
of stable and geometric stable random numbers used for the stochastic solution of
the space-time fractional diffusion equation.

48
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FINITE SUPPORT

4.1 Non-uniform variates for arbitrary densities with

finite support

4.1.1 Introduction and background

This article introduces a setup method for a rejection algorithm for the produc-
tion of random numbers with an arbitrary probability density functions (PDF)
with finite support and that is at least pointwise computable. The key feature
is fast production of random variates in computational applications and simple
applicability to any probability density with any number of modes. The principle
consists of covering the surface under the PDF with equal tiles for which no a pri-
ori information is required. The speed of random number production is arbitrarily
independent of the shape and computational cost to evaluate the PDF. Prior to
the introduction of the method we give a brief review of the subject, some existing
methods and terminology.

The two topics, uniform and non-uniform random number generation, are
rather disjoint. The literature and associated communities do not overlap a lot.
This is not surprising as the respective problems are quite distinct. The gener-
ation of non-uniform random numbers can often be considered as a subsequent
task, i.e. it requires a uniform generator, usually employed as a black box. The
quality of non-uniform numbers depends strongly on the quality of the uniform
numbers. Contrary to expectations, the past twenty years have seen a consider-
able development of uniform random number generators. Well into the eighties
simple linear congruential uniform random number generators were standard. Due
to imprecision in mathematical definition and programming language, hardware
requirements, pitfalls but mostly due to the questionable results the efforts to pro-
duce the “perfect” random uniform numbers did not cease. As a result of this
development we can say that some types of uniform generators are not only out-
dated but so flawed that one has to advise strongly against their use. This advice
points mainly to all (multiplicative) linear congruential generators. Finally, and
as a general rule, any trade-off with respect to the quality of random numbers
is not acceptable if the computation time of random variates is insignificant to
the overall application. Thorough reviews are given in Refs. [45, 92, 93, 149] and
references therein.

Fast generation of non-uniform random numbers is important in e.g. Monte
Carlo simulations [3, 45, 75, 77, 93, 100, 101, 116]. Statistical theory shows how
one can produce random variates for any meaningful distribution. Nevertheless,
intelligent mathematical but also purely computational methodology was devel-
oped to achieve speed for well known analytic and invertible distributions, for
non-analytic but transformable distributions and also for empirical PDFs that
only exist as tabular data. In the earlier days of computing any progress was
taken very seriously [112, 113, 114, 115] in applied mathematics but also more
recently new perspectives on seemingly converged methodology on, for example,
Gaussian distributed random numbers can be found [96, 152, 170].

A plethora of mathematically involved publications was inspired by the prac-
titioner’s need to increase the speed and quality of non-uniform random number
production in applications of statistical computing. Another big driving force is
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simplicity of application. Special requirements of initialisation for example are
a nuisance. Each context and application provides different and often opposite
challenges. For example the famous Ziggurat method by Marsaglia [116] and its
implementation by Marsaglia and Tsang [117] is a non-truncating method within
the narrow class of symmetric, strictly decreasing, analytic and invertible densi-
ties. Other algorithms existed long before, but the method’s appeal is that the
specific implementation is even faster than any other that is specialized entirely
on exponential or normal distributed numbers. The required initial data struc-
ture setup depends on parameters that so far have been published only for the
exponential and normal distributions [117] and are difficult to derive automati-
cally [152]. A more general approach is taken by Ahrens [3]. This well-known
method is able to process any tabular data that fulfills few restrictions on smooth-
ness, but the setup and production of random numbers is slower. The latter two
methods are related to more general strip or slice methods — already existing for
a long time [45, 114, 115, 131, 140] — but are of much higher importance in com-
putational applications. It should be kept in mind that information on the speed
of a method is only meaningful with respect to a particular implementation and
hardware. Some famous methods are actually specialized implementations that
rely on the cache memory of contemporary processors.

There are many collections of specialized non-uniform random number genera-
tors, usually more than one for a particular class of PDFs, each of them consisting
of tailored code. The generators can be categorized into two classes: a) A setup of
some data structure is carried out before the first random variate is drawn, and b) a
setup is not needed, e.g. with PDFs for which inversion methods exist. Clearly, any
“universal” method will need a setup, as explained well for instance in Ref. [102].
In statistical computing the user taps from these collections of software choosing
a particular generator. Ideally one can also choose gradually between large setup
time and fast generation of random numbers or fast setup and slow generation.
The drawbacks of such collections can be huge codes, each bug prone, and the in-
creasingly intractable specialties of the requirements for the setup. Furthermore,
the classes of available distributions are limited in the end. The ultimate goal is a
universal, easy to use and also fast black box generator [102]. The definition and
limitations of a universal random number generator, however, is often imprecise
in many publications. For example, it does not have any built-in knowledge of the
PDF, except that a meaningful PDF can be known only in as much as the number
of modes is not infinite [4] and that the modes are not infinitely thin, i.e. mean-
ingless delta-like functions. For universal applicability all transformation methods
drop out because they cannot be found automatically by a general algorithm.
Therefore, in the general case only some approximation like pointwise data will
be available to represent the PDF, implying that the support of the distribution
cannot be infinite either. Any computational approach subdues to this restriction.
If the PDF can only be evaluated at horrendous costs and no inversion method
exists, then no procedure will be able to produce usefully random numbers. Thus,
we can assume that the evaluation cost of the PDF for the appropriate number of
points is within a similar order of magnitude as the overall task within which the
random numbers are used, e.g. a Monte Carlo calculation.

In some cases of PDFs with infinite support truncation of the probability den-
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sity can be justified with statistical negligibility of the tails. In few cases of distri-
butions with infinite support and where the PDF is at best pointwise computable
as with the Lévy distribution [135, 136], which we use as a benchmark, transfor-
mation methods that do sample the infinite range were found [37], at least within
overflow limitations. Such heavy-tailed distributions deserve attention if truncated
early unless justified (or required) by the application [35, 36, 110]; however, this
aspect is largely left un-discussed in the literature. State of the art methods, e.g.
Refs. [45, 75, 77, 93, 100, 101], construct in the setup phase a majorizing (or enve-
lope or comparison) function and usually also a minorizing (or squeeze) function
(see Sec. 4.1.2.2 for an introduction) with secants or other segmentations to be
used within a rejection technique with look-up tables. In addition to truncation,
in many methods it is often also required to know the approximate or even exact
location of the mode (of which mostly only one is allowed), while the method is
still declared to be suitable for “arbitrary PDFs” [54, 98]. More limitations to
“general methods” are explained in Ref. [54], where it is argued that the modes
of the PDF must be known beforehand for certain techniques to be suitable for
“arbitrary densities”. The same authors also construct “general algorithms” that
depend on concavity properties and analyticity of the density. It is common in
several methods, e.g. adaptive procedures for log-concave distributions to use the
value of maximum density explicitly in the setup of the approximation of the com-
parison function [45]. Another example is the transformed density method [99],
that employs a strictly monotonically increasing differentiable transform such that
the transformed PDF is concave. This method is also considered universal. In the
improved ratio of uniforms method [98] the setup is restricted to certain classes of
distributions if the required transform of variables must yield a region that can be
sampled efficiently. In some cases one often resorts to a rejection technique and
the concept of squeeze functions, as also employed in the methods presented here,
to improve the situation. Yet another general and adaptive approach constructs
a polynomial approximation of the inverse distribution function in X = F−1(U)
that is stored in tables to be used for interpolation during production [76]. For
the class of log-concave distributions Ref. [65] introduces piecewise exponentials
for the approximation of the majorizing and minorizing functions using previously
sampled points of the density function. This method however is dedicated to
the context of Gibbs sampling where each variate is usually drawn from differ-
ent densities. Finally, closing the topic of piecewise approximation, we mention
the approximation of arbitrary densities via a mixture of simpler densities. An
interesting example is the triangular approximation giving a piecewise linear ap-
proximation of the target density via many overlapping triangle densities, which
recently was also implemented in hardware [169]. The most generally applicable
method published so far that is also fast is due to Ahrens [3, 4]. It can deal with
more than one mode without a priori information on the modes.

Overall we find inevitably that methods titled “universal”, “automatic”, “black
box”, “out of the box” and combinations thereof clearly cannot sample an infinite
support of the PDF, are restricted to certain classes of density functions or are
not automatic out of the box. But this verdict is much less restrictive in realistic
applications of statistical computing where the requested distributions can always
be represented for example in terms of (interpolated) pointwise data or other
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approximations to any computationally sensible accuracy and finite support limits.
We stress that approximations of the density function via previous sampling of
points or the approximation of the inverse distribution function F−1 as mentioned
above are like other similar concepts a common approach in the field of non-
uniform random numbers [45, 76]. It is accepted to truncate the originally infinite
support, if statistically justified. Moreover, if the PDF is given as an arbitrarily
accurate approximation, the location of extrema can always be determined within
any required accuracy in finite time. Our method is applicable in this context and
belongs to the type of rejection and segmentation methods as the ones by Ahrens [3]
and Marsaglia [117]. In this context and for our claim we can therefore continue
to speak of arbitrary PDFs since this nomenclature is widely accepted within the
literature. Therefore, in the quest for a universal random number generator, a
method can be called universal if it can process arbitrary finite density function
data without any further information. Techniques that take finite samples of the
desired distribution and then try to match this distribution [98] are not discussed
here.

Lately easy applicability has become more important. The initial motivation
for this work was to overcome the setup difficulty of the Ziggurat method for the
general symmetric monotonic decreasing case. Eventually, we developed a simpler
method for a significantly more general class of PDFs, at the cost of a moderate
performance penalty due to larger memory requirement as compared to the original
Ziggurat implementation of Ref. [117] and to specialized transformation methods,
were available.

With the intention to provide a quintessence of recent research and demands
of statistical computing a wish-list of requirements to a universal random number
generator was presented in Ref. [102], which we quote here:

1. Only one piece of code, debugged only once.

2. By a simple parameter choose between fast setup and slow generation or
long setup time and fast generation.

3. It can sample from truncated distributions.

4. The rejection rate can be made as close to zero as desired, i.e. as close to
inversion as one wants.

5. The setup time is independent of the density function and is faster than
many specialized generators.

6. The quality of the non-uniform random numbers is as good as the underlying
uniform random numbers.

Point 5 should be made more precise. It refers to the independence of the shape
of the density function, but a density with complicated shape usually requires more
information, in particular in regions of high curvature. If the input size increases,
the setup time is indeed allowed to grow. There is no obvious universal measure
that gives the minimum input size required for the suitable representation of a
function. This is responsibility of the scientist. Several of the methods mentioned
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in the above overview are considered to meet these requirements. This is also the
case with the method presented here plus additional relaxations with respect to
the properties of the PDF.

In Sec. 4.1.2 the tiling is introduced along with some numerical considerations,
an explanation of the role of the squeeze function, and a proof of correctness.
Sec. 4.1.3 shows that the tiling procedure is capable of dealing unattended with
poles and other discontinuities. Sec. 4.1.4 gives benchmarks of typical and a-
typical situations. Sec. 4.4 summarizes and provides a short discussion. We chose
for comparison well-known methods for specialized distributions (Gaussian and
exponential) but also a difficult non-analytic distribution (Appendix) for which
a transformation method is available. We explain computational issues that are
usually ignored but are decisive for performance. This serves in placing the tiling
method into the right context among other methods with respect to speed and
applicability.

4.1.2 The tiling and numerical considerations

4.1.2.1 The tiling procedure

For any computational task a PDF with finite support, even one with a non-
invertible distribution for which no specialized method exists, can be represented
either as a) a sufficiently good approximation that can be evaluated sufficiently
fast, e.g. by series expansion or polynomials, or b) as tabular data for interpo-
lation. Any feature of a meaningful PDF f(x) can be represented in the latter
case by varying the sampling density of the tabular data that represents the PDF
in the form (x1, f(x1)), (x2, f(x2)), . . . [3]. However, since the tiling is completely
independent of such considerations, we will simply speak of “evaluating f(x)”.
Furthermore, it can safely be assumed that the PDF can be evaluated in a finite
time comparable to the duration of the application within which the random vari-
ates are to be used. With these prerequisites the determination of local extrema
is achievable in O(N) where N is the number of data points.

For the following considerations the integral over the density function is re-
quired only up to a constant factor C =

∫ b
a f(x)dx. The rejection method does

not require C = 1. The tiling concept is simple, see Fig. 4.1: The area under the
PDF f(x), x ∈ [a, b], is covered with rectangular tiles of equal area. The procedure
starts from one single tile b− a wide and max(f(x)) high. Choosing an initial tile
larger than required by the support and the maximum did not show significant
influence on the outcome in all cases we tested. The initial tile is split into four
equal tiles, and so on recursively. At each refinement cycle all tiles are split. Those
that lie entirely above the PDF are discarded in each cycle. The splitting can be
stopped once a given accuracy of the covering is reached; Sec. 4.1.2.2 explains
the details of the calculation of this condition. Fig. 4.1 shows a truncated asym-
metric Lévy PDF with parameters α = 1, β = 0.7, γ = 1, δ = 0 according to the
S0-parametrization convention [135, 136]. We use this distribution as an arbitrary
example for comparisons that provides fat tails and for which a fast transformation
method is available; for details see Sec. 4.2.2. The support is chosen small to pro-
duce deliberately a visible truncation. Fig. 4.2 shows the tiling of a bimodal PDF.
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Figure 4.1: For the intuitive introduction of the tiling procedure the plot shows
an early refinement stage in the tiling of a truncated asymmetric Lévy PDF with
parameters used as an arbitrary example.

The above recursive procedure may be considered the most elegant and simple
way to construct the tiling. For the subsequent production stage it is irrelevant
however if the tiling was constructed, for example, by plastering, i.e. starting from
a small initial tile somewhere within the support.

Thus, the tiling constructs a piecewise constant majorizing function g(x) of the
PDF f(x), with g(x) ≥ f(x) ∀x ∈ [a, b]. The closer g(x) to f(x), the better. The
universal von Neumann rejection method has two main steps:

a) Generate a random X ∈ [a, b] ∼ g(x) and a random uniform Y ∈ [0, g(X)].

b) Accept X if Y < f(X), otherwise reject it and repeat the procedure.

The rejection rate is given by the ratio R of the areas under the PDF and the
comparison function:

R = 1−
∫ b
a f(x)dx∫ b
a g(x)dx

= 1− 1
NS

∫ b

a
f(x)dx. (4.1)

The denominators correspond to the sum over all N tile surfaces S which are equal.
At this point one could think that an adaptive scheme would be more appro-

priate, e.g. only tiles intersected by the PDF are split or even deformed to fit the
boundary better, or tiles lying below the PDF are merged. Indeed this is common
practice in computer graphics and some approximation methods. However, this
measure to save memory is not recommended here; actually, it is to be avoided for
the sake of simplicity and speed. In the production stage the probability of random
selection of a tile would have to be proportional to its area to guarantee uniform
probing. This is more complicated and slower especially if the area ratios are not
integer. Moreover, a uniform random coordinate is more expensive to produce
in shapes other than rectangles. Additional details to why the segmentation into
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Figure 4.2: Tiling of a bimodal probability density function. f(x) is composed of
two Lévy density functions with parameters α = 1, β = 0.7, γ = 1 (left part)
and α = 2, β = 1, γ = 1 (right part); the heights are adjusted to fit the curves
seamlessly at x = 10.

equal areas is crucial are given in numerous publications [3, 45, 116, 117]. Instead
of using strips of different height and width or even different shape as in other
methods, here we suggest equal tiles as the clearly simplest and fastest approach.
This is the key idea in this work.

Now the von Neumann rejection can be implemented with a modified step a:

a) Generate a random tile index i = 1, . . . , N ; generate a random coordinate
(X,Y ) within tile i.

b) Accept X if Y < f(X), otherwise reject it and repeat the procedure.

This way we are able to sample efficiently the majorizing function g(x). More-
over, the evaluation of the condition in b) is hugely sped up using the implic-
itly constructed minorizing function as explained in more detail in the following
Sec. 4.1.2.2.

Although the sampling with tiles seems sufficiently intuitive and equivalent to
analogous methods of this kind [116, 117] we give nevertheless a reasoning on the
correctness.

theorem The introduced sampling of the comparison function is equivalent
to the standard von Neumann sampling, i.e. g(x) is sampled uniformly within all
tiles generated on the support x ∈ [a, b].

proof Define I = {i1, i2, i3, . . . , iN} the set of tile indices and Ij ⊂ I the sub-
set of all indices ij1, i

j
2, . . . corresponding to a particular tile column j with width

∆x = (b − a)/r, where r is the number of columns. Thus
⋃
j Ij = I. Construct

an bijective mapping ijk → njl with nl < nl+1. The mapping is purely a renaming
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of indices in column j. So we have njl = 1, . . . , njmax, njmax = g(x)/∆y where ∆y
is the height of the tile. Note that within column j the function g(x) is constant.
Now define a random number Y j = njl u ∆y with uniform random u ∈ [0, 1).
The index njl is random by the random choice of ijk and the subsequent mapping.
Then Y j ∈ [0, g(x)) is a uniform random number in column j and we arrive at the
standard situation of the rejection method for the interval x ∈ ∆xj : Generate a
uniform coordinate (Xj , Y j) with uniform Xj ∈ ∆xj and reject Xj if Y j > f(x).
The sampling of j is implicitly proportional to the size of Ij , i.e. the height of col-
umn j, due to the uniform sampling of tile indices i ∈ I and

⋃
j IJ = I. Therefore

Xj is sampled as desired according to g(x) and the sampling of pairs (X,Y ) is
achieved with X ∈

⋃
j{Xj} ∼ g(x). 2

The correctness of the standard rejection method can be taken for granted
since the seminal paper by John von Neumann [176].

4.1.2.2 Implicit squeeze function

The tiling also constructs implicitly a so-called squeeze function q(x) that fulfills
the condition q(x) ≤ f(x) ≤ g(x) ≤ g(x) within the required interval [a, b]. This
is the usual definition of the squeeze and comparison functions, see for example
Ref. [93]. q(x) is the upper edge of the top tiles lying completely underneath
f(x), or equivalently the bottom edge of the tiles intersected by f(x). The role
of the squeeze function is to reduce the number of evaluations of f(x) if q(x)
can be evaluated faster: In the setup all tiles below f(x) are labelled and the test
Y ≤ q(X) involves no computation — just one label look-up. Actually Y must not
be generated at all for tiles that are not intersected by f(x). The latter is the key
advantage of the squeeze function. Thus the following modified steps implement
the von Neumann rejection:

a) Generate a random tile with index i = 1, . . . , N ; generate a random X within
tile i.

b) Look up if tile i is labelled as “< f(x)”. If yes, accept X. Otherwise generate
Y within tile i and compare Y < f(X). If yes, accept X. Otherwise reject
it and repeat the procedure.

With dense tiling most X are accepted in b) by one table look-up only without the
generation of a second real coordinate Y . The PDF itself is hardly ever evaluated.
The relative number of evaluations of f(x) per non-uniform variate is given by

E = 1− 1
NS

∫ b

a
q(x)dx. (4.2)

The integral over the squeeze function is given by the sum of all tile surfaces
not intersected by f(x). Thus, the number of evaluations of f(x) can be greatly
reduced and is equal to the area fraction of the border tiles. Both numbers R
and E are cheaply calculated on the fly, so that the resulting rejection rate can
be pre-imposed as a condition for the tile refinement. The latter results will be
reconsidered in Sec. 4.1.2.3 on the distribution cutoff.
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To have a better measure of the “quality” of g(x) and q(x) we estimate an
upper limit for the probability density pE that f(x) must be evaluated for one
non-uniform random number. Define ∆x := (b − a)/n where n is the number
of columns, so ∆x is simply the final width of the tiles. For ∆x � b − a, i.e n
sufficiently high, f(x) can be assumed linear in the interval ∆x. Then

pE(x,∆x) ∝ b− a
r

d log f(x)
dx

. (4.3)

This expression is deduced from the ratio of areas contained in a tile column
corresponding to Y ≤ q(x) and q(x) < Y ≤ g(x) respectively.

4.1.2.3 Distribution cutoffs

In the introduction and thereafter we explained that all procedures that are not
specialized to particular analytic and thus invertible distributions will never sample
an infinite support. Considerations on the appropriate cutoff apply only to special
distributions [45]. If the support of the PDF f(x) is infinite, a general algorithm
will inevitably reduce it to a reasonable finite interval x ∈ [a, b]. It is the scientist’s
responsibility to control appropriately these support limits.

However, the period length L of the [0, 1]-uniform generator used in the sam-
pling along the abscissa must satisfy the condition f(x) < 1/L at both limits
a, b [4]. This situation appears for example in the standard rejection method or
the Ziggurat method. In the latter, the [0, 1]-uniform generator must sample the
whole bottom strip. The sampling procedure in our method lifts this limitation
by the number of columns n = 2r−1, where r = 1, 2, . . . is the refinement level:
A random integer is generated to sample a tile and a subsequent uniform X is
generated within the tile. In practically relevant cases the number of tiles will al-
ways be exceedingly smaller than the period length of any sensible random integer
generator. Fat (or somehow long) tailed distributions deserve attention for the
above reason.

4.1.3 Discontinuous probability densities

The literature also considers density functions which contain a pole (which numeri-
cally is indistinguishable from a cusp) [4], i.e. f(x)→∞ as x→ c+ or x→ c− in the
range of interest [a, b]. Within the standard von Neumann rejection method [176]
a pole is dealt with as follows: Choose ε� 1 and assign the cumulative probability

Pc =
∫ c+ε

c−ε
f(x)dx (4.4)

to the interval [c− ε, c+ ε], a so-called mass point. If the [0,1]-uniform deviate is
smaller than Pc return c. Otherwise sample from [a, b]\[c− ε, c+ ε]. If c and c± ε
have the same numerical representation then no better method exists to sample
from f(x). Usually this situation must be treated computationally as a special
case in the setup and production phases.
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The tiling procedure and subsequent production works unchanged with an ap-
propriately approximated (or modified) density function as follows. Fig. 4.3 shows
the situation of a density function with a pole at x = c. Figure dimensions, espe-
cially the vertical scale, are exaggerated to convey intuitively the geometry. Choose
[c − ε, c + ε] and modify f(x) yielding f̄(x) such that the cumulative probability
Pc according to Eq. (4.4) is preserved (hatched area in Fig. 4.3):∫ c+ε

c−ε
f(x)dx =

∫ c+ε

c−ε
f̄(x)dx (4.5)

which gives the implicit condition for max(f̄(x)):

max(f̄(x)) =
1
2ε

∫ c+ε

c−ε
f(x)dx. (4.6)

This is the minimum value of the height of the initial tile. If ε is chosen sufficiently
small with numerical or/and statistical reasoning, the result will be identical to
the procedure in the standard von Neumann rejection described above.

One has to be aware that the choice of ε as the smallest representable “distance”
from the position of the pole is unnecessarily restrictive. Any statistical verification
requires a significant number of deviates to fall in the region of the pole to reveal
a possibly too large value for ε. Depending on the error norm and test method
it is likely to turn out that ε can safely be chosen magnitudes larger than the
initial numerical consideration. The statistical needs of the application must be
considered in any case. Thus, there is no generally obvious upper limit for ε.

An example application is the scaled symmetric modified Bessel function of
the second kind K0(|x|)/π, which is the density of the product XY , where X
and Y are independent normal distributed random numbers. K0(|x|) diverges at
x = 0. A possible setting could be the following. Restricting the support to
x ∈ [−15, 15] accounts for over 99.99999% of all mass. With ε = 0.00001 we get a
fraction of 8.03978× 10−5 of the mass contained in the interval [0− ε, 0 + ε]. The
number of recursive refinements is given by dlog2(30/(2ε))e = 21. About 235000
tiles are retained to cover the density function, corresponding to two megabytes
memory in our data format. Benchmarks on the setup are presented in the next
section. Although it is quicker to multiply directly normal random variates, this
example demonstrates the applicability of the method to densities with no simple
alternative.

PDFs with first order discontinuities or jumps are implicitly contained in the
above case. With a suitable interpolation scheme one can simply use tabular data
to model the jump from one data point (xi, f(xi)) to the next (xi+1, f(xi+1))
and fix (xi+1 − xi) ≈ ε as close as possible. There will be no deviates falling in
[xi, xi+1]. This situation is contained schematically in Fig. 4.3 as well, showing
two consecutive but very near data points for the left flank of a jump.
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Figure 4.3: Probability density containing a pole at x = c (schematic). The
returned deviates are numerically correct if the modified density function f̄(x)
fulfills the condition of equal area (hatched region) for x ∈ [c− ε, c+ ε] and ε� 1
sufficiently small. The initial tile is chosen max(f̄(x)) high. The true or modified
PDF can be approximated via data points as shown or by any other method that
implements this condition. The mathematical jumps in the modified PDF can be
modeled numerically via two very close consecutive data points along x.

4.1.4 Measurements and comparisons

In general, speed comparisons are not obvious to do and interpret and only mean-
ingful with respect to a particular software and hardware implementation. With
increasing optimization of code, the mathematical description of a method and its
implementation become inseparable. We must stress this and point to technical
aspects that are responsible for a speed difference of two orders of magnitude, even
though the mathematical/algorithmic description is identical. The focus of this
material is not pure speed, but portability and easy applicability in compromise
with speed.

All measurements were performed on a desktop PC with a 2.4 GHz Intel Pen-
tium 4 processor using the GNU C++ compiler version 3.2.2 on Red Hat Linux.
We explain below the importance of using a multi-tasking operating system in
its standard operation mode with a typical process time slice during the mea-
surements. This will almost always be the case with applications in statistical
computing.

4.1.4.1 Memory requirements

At the start the graph of the PDF is embedded in one tile. The memory re-
quirements for a Gaussian-like density function and rejection rate below 0.02 [117]
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Refinement
level r

Number of
tiles N

Rejection
rate R

Evaluation
rate E

1 1 0.813 1
2 3 0.750 1
3 8 0.627 1
4 24 0.502 0.910
5 70 0.317 0.650
6 238 0.196 0.390
7 857 0.108 0.220
8 3 246 0.058 0.110
9 12 609 0.029 0.058

10 49 685 0.015 0.029
11 197 233 0.007 0.013
12 785 936 0.002 0.005

Table 4.1: Number of tiles, rejection rate and evaluation rate for the uni-modal
PDF shown in Fig. 4.1, but with a larger cutoff at x = ±64. Refinement level 5 is
shown in Fig. 4.1. The memory needed to store 49 685 tiles (refinement level 10)
is ca. 0.4 megabytes. The evaluation rate tells how often f(x) must be evaluated
per non-uniform random number.

is never more than a few megabytes. For details on a uni-modal example as in
Fig. 4.1 see Table 4.1, for the bimodal case in Fig. 4.2 see Table 4.2. Only obnox-
ious density functions with fat tails and many sharp peaks require more memory.
In the tested variations of such extreme cases using multiple peaks and the sup-
port truncated very far out the memory needed to achieve a rejection rate below
0.02 did not exceed 10 megabytes (about one million tiles). This happens using
two numbers to store the coordinates of one tile and is more than acceptable for
contemporary desktop computers. We skipped entirely memory optimization and
removal of redundancy since we preferred a clear class structure and simple data
management. Setup time can be reduced via speed optimized data structures,
but that typically increases computation time and storage. Just a decade ago the
above memory requirements were large for a standard desktop computer with a
few megabytes memory. This may explain why this fairly straightforward method
has not been proposed before.

4.1.4.2 Speed of random variate production

With the SHR3 uniform RNG [117] on the above mentioned configuration our
method produces 2.6 million non-uniform random numbers per second indepen-
dently of all tested PDFs. In the following we discuss a few pitfalls of speed
measurement and code execution, and we compare to other methods. The bench-
marks refer to methods and implementations that appear most similar or useful
in judging the tiling method. In any case, the comparisons cannot be entirely fair
since each method has different specialities.

In rejection methods the speed of random variate production is arbitrarily in-
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Refinement
level r

Number of
tiles N

Rejection
rate R

Evaluation
rate E

1 1 0.858 1
2 4 0.858 1
3 9 0.747 1
4 23 0.605 0.956
5 70 0.481 0.871
6 213 0.317 0.582
7 718 0.189 0.356
8 2 602 0.106 0.195
9 9 859 0.056 0.104

10 38 324 0.029 0.053
11 151 068 0.014 0.025
12 599 819 0.007 0.011

Table 4.2: Statistics for the bimodal PDF shown in Fig. 4.2, where refinement
level 6 is plotted. The memory needed to store 151 068 tiles for refinement level
11 is ca. 1.2 megabytes.

dependent of the PDF and its representation, whether by data points or a closed
formula. The speed depends only on the properties of the comparison and squeeze
functions. In all our tested examples with tabular data or simple explicit density
functions the evaluations representing f(x) are negligible at a rejection rate be-
low 0.02. Since interpolation or evaluation of density functions is not the topic
here, we only give as a rule of thumb that evaluations for 1% of the produced
random numbers is sufficiently low for almost all practically relevant densities.
The production of one random variate with the desired distribution requires at
least two uniform random variates as in most methods. Recently a method was
published that can provide non-uniform variates with 1 + s, s ∈ [0, 1], uniform
variates where s can be made arbitrarily small [102]. However, it turns out that
in almost all applications the generation of uniform random numbers is not the
major sink of computer time. It is up to the scientist to evaluate the trade-off
between a few percent gain in overall speed and quality of the obtained variates.
The use of less than two uniform random variates per non-uniform variates in
the context of a rejection technique but also the importance of uniform random
number quality, in particular in the Ziggurat implementation by Marsaglia and
Tsang, is commented in Refs. [22, 49, 95, 140]. Some constructive remarks on the
Ziggurat implementation in Ref. [117] can be found in Ref. [130].

We chose as one of the benchmarks the symmetric Lévy α-stable distribution.
It is a generalisation of the Gaussian distribution, that is recovered for α = 2; see
Appendix. The transformation method by Chambers et al. [37] is the contempo-
rary method of choice. As opposed to other published methods, it has no accuracy
deficiency, it does not truncate the support and is sufficiently fast for most appli-
cations. Moreover, it is applicable to asymmetric Lévy α-stable deviates too. We
use an implementation in C++ for the purpose of this comparison. It is about 3
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times faster than our method on the above mentioned test configuration.
We also compared to the most efficient implementation of the Ziggurat

method [117] for exp(−x) and exp(−x2) distributed variates. This implementation
is considered the fastest for these two distributions. The exponential and normal
densities could be wired into the code exploiting their mathematical properties
and using inline coding. In the limit of a negligible rejection rate, this Ziggurat
implementation could produce 232 million variates per second. This means one
variate per 10 CPU clock cycles! It is important to note that this number could
only be achieved if executed alone without any other code, for example within a
Monte Carlo application. This speed may be surprising at first sight since the re-
jection principle is quite similar to the tiling method. Actually there are profound
differences. First and most obviously, the number of tiles is not a power of two.
Choosing randomly between exactly 28 or 27 objects is faster if one uses 8 bits of
the 32 bit XOR shift RNG as in Ref. [117]. Secondly, it is stated self-evidently
in Ref. [117] that small code is important. This purely technical issue is hardly
ever explained in the literature on random numbers despite being highly technical
on several occasions. Numerical literature [148, Chap. 7] finally picks up this
issue and also more recently in Ref. [152], but only briefly say why small code is
important. We outline the situation.

CPUs use hierarchical memory to speed up computation. The access to the
internal cache memory is magnitudes faster than to the external main memory.
However, the code and data fitting into this cache is not the only condition for
faster execution. An algorithm hard-wired in the CPU transfers repeatedly and
frequently used sections of memory into the cache and also considers the size
and distribution of the data over the memory banks. A good implementation (and
compiler) therefore tries to minimize cache misses by arranging data of subsequent
memory accesses into the same cache line. The latter are sequences of bytes
transferred into the cache with each memory access. This statistics is disrupted
by cache misses that are also provoked by a process switch of the operating system
at built-in time intervals or other events. Small code might therefore end up in
the cache for a significant time. Very large code that accesses its data in random
fashion as it is the case in the sampling with tiles will not be able to exploit
properly cache memory. We can therefore say that the execution of code is subject
to decisive factors of hardware, compilation and operating system that can usually
not be controlled entirely. It is also known that CPU-specific compilers are able
to produce code that can be several times faster than a more generic compiler.

On our typical configuration of operating system and compiler the execution
of the Ziggurat code [117] is the fastest by far. The speed factor of ca. 100 to
our code is in fact consistent to the latency of low-level memory as compared to
second-level cache of contemporary hardware. This speed difference is leveled out
considerably if the code and tables of the Ziggurat implementation is forced to leave
the cache by executing some arbitrary and larger code alternatingly with calls to
the Ziggurat generator. This measure creates a more realistic use case and reduces
the execution speed of the Ziggurat code by a factor of ca. 50. A more rigorous
analysis of code and hardware interplay would require the exact reproduction of
the original test environment which is not readily available anymore.

Finally we make a few more technical remarks and comparisons. The im-
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plementation of the tiling method is only moderately optimized, but completely
portable and uses throughout Standard Template Library arrays. The period of
the XOR shift RNG is considered short with 32 bit arithmetic but modification
to higher models is possible. Following the results in Refs. [49, 130, 140] on qual-
ity, resolution and portability we recommend a slower and also portable uniform
RNG. Refs [22, 49, 95, 130, 140] also comment other problems of the XOR shift
RNG in conjunction with the Ziggurat method. The Ziggurat method requires for
the decision whether to evaluate the density function one coordinate comparison
for each attempt to draw a non-uniform number. Our method requires one table
look-up only. But this advantage is not enough to compensate the disadvantage
of a large table and resulting slow memory access.

For accelerated production of random variates to make sense, their part must
take up a significant proportion of the overall CPU time. But there is hardly
anything do-able within the order of 10 clock cycles. Moreover, fast production of
variates imply that enormous amounts are required. This poses very high demands
on their quality. The findings above as well as the critical publications on the
Ziggurat implementation Ref. [117] encourage to analyse the appropriateness of
extremely fast but medium quality variates. A detailed analysis of this issue can
be found in Ref. [170].

4.1.4.3 Speed measurements of the setup

The setup part in our implementation is not speed-optimized but turned out to
be sufficiently fast for the production of ca. one million variates and above. This
includes the extreme examples with more than one mode and a very large sup-
port. To provide a meaningful time measurement for the setup we subtract the
cumulative time for the evaluations of f(x). For the presented examples we used
a standard polynomial interpolation with 7 data points. The setup for a typical
uni-modal PDF (Gaussian or Lévy, the latter with sufficiently wide support) with
215 data points takes ca. 0.2 seconds plus cumulative 2.1 seconds for all evaluations
of f(x). The calculation time of the Lévy PDF via fast Fourier transform for 215

points is negligible with only 0.2 seconds. Thus, as a rule of thumb, the overall
total speed of the setup depends almost entirely on the number of evaluations of
f(x). With a constant number of data points the total speed of the setup increases
noticeably only for very unusual multi-modal PDFs with many sharp peaks and
long tails.

The setup of the Ziggurat for general symmetric, strictly decreasing, non-
analytic and safely truncatable PDFs was attempted in Ref. [91]. This setup,
our C++ version of the Matlab code from Ref. [91] as well as our own generalised
iterative C++ code along the original Ziggurat setup formula [117] is sensitive
and computationally expensive. For example, a numerical error in the flat regions
of the tail or in the inversion of the PDF can cause a disturbance which often
causes a breakdown of the procedure. Precautions to mend this are possible but
complicate the code further and do not guarantee unattended functionality. The
empirical parameters needed for the setup of the Ziggurat method are an addi-
tional difficulty for making the method truly automatic. The setup time depends
strongly on the given data and the above mentioned empirical parameters, and is
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p(x)

x
DENSITY BODY

(fast method)

TAIL REGION
(slow method)

TRANSITION

Figure 4.4: Schematic illustration of using two methods for sampling a distribution.
A fast method may available only for the body while the tails can be sampled with
a slow but accurate method.

at least one order of magnitude slower than the tiling.

4.2 Random numbers from the distribution tails using

the transformation and the tiling methods

4.2.1 Introduction

Many numerical methods for the generation of random numbers represent the
main body of the probability density using a fast method and the tails using an
alternative method. A famous example is the Ziggurat method by Marsaglia and
Tsang [116]. Fig. 4.4 depicts the situation schematically. A reason for this appar-
ent complication is that the method for the main body works best and fastest on
a finite support or is specially designed for the main body in terms of accuracy
or speed. Handling the tails efficiently is often more involved, especially with dif-
ficult non-invertible densities with infinite support. Since rarely needed, variates
from the tail can safely be generated by a slower method [45, 116, 117]. Overall,
a significant speed-up can be achieved. In this chapter we show how to sample
directly and efficiently via a rejection technique a random number X such that
X > x or X < x where x ∈ (−∞,+∞) at least within the limits of the numerical
representation. This is achieved by using properties of the transform representa-
tion of the distributions. The examples we use for demonstration are the Lévy
α-stable [97, 135, 136] and the Mittag-Leffler one-parameter probability densi-
ties [74]. A transform formula for the former is well known [37, 178], while the
transform representation of the latter was discovered [46, 79, 84, 85, 86, 87, 139]
and applied [62, 63, 64] only recently. The two distributions are generalisations of
the Gaussian and exponential distribution respectively and play an important role
together for the solution of the space-time fractional diffusion equation.

Our rejection concept is general for any distribution that provides a transform
representation. It can sample efficiently from arbitrary finite or infinite intervals
as opposed to other existing methods that are designed especially for certain den-
sities. In this work we do not consider the technical details of a speed-optimized
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implementation, but explain the basis of the algorithm and show example applica-
tions. The method is based on properties of the two-dimensional transform maps
that seem unnoticed yet.

The assumption for using the method introduced here is that the tail region
requires high accuracy due to high demands on statistics as well as speed. The
transformation formula by Chambers, Mallows and Stuck [37] for example is exact
and for most applications the recommended method for the production of Lévy
α-stable random numbers [178]. The replacement of the tails by a simple invertible
Pareto function is not totally appropriate because this is only an asymptotic ap-
proximation; moreover it introduces a transition region. The more sophisticated
and smooth this transition, the more complicated and slower the overall proce-
dure. Such a replacement of the tail contrasts the initial goal of speed. But the
most demanding contemporary applications of random numbers [120, 178], as of
the two suitable examples we treat here, will require large amounts and therefore
fast production. The tails should be accurate without an approximated transition
region from the density body to its tails. In some cases fast series expansion meth-
ods can be used but with a compromise in accuracy [45]. A more detailed analysis
of such considerations can be found in Ref. [170], where most known algorithms
for the Gaussian distribution (as a simple and special case of the Lévy α-stable
distribution) are analyzed in the context of contemporary statistical applications
as well as expectations of future demands. It is argued extensively how speed of
production implies the demand for very many random numbers, which in turn
requires greater accuracy of the resulting distribution.

Consider the Ziggurat rejection method by Marsaglia et al. [114, 115, 116]
that was introduced to produce Gaussian and exponential random numbers. It
is an exact method up to the numerical limits of floating point representation.
In principle it is applicable to all decreasing or symmetric densities, provided a
suitable tail sampling method is available [113]. In particular the implementation
by Marsaglia and Tsang [117] and a recent version by Rubin and Johnson [152]
are about two orders of magnitude faster on contemporary processors than other
dedicated methods for Gaussian and exponential random variates; therefore it is
likely to outrun any non-trivial transformation method by at least the same factor.
The hurdles to apply the Ziggurat method to other densities with infinite support,
with additional parameters and for which no closed form or simple transform exist
are: a) the costly setup of the look-up table, b) the necessity of equal areas of
the rectangles covering the density as well as the area under the tail and finally
c) a reasonably fast and accurate tail sampling method. Difficulty a) must be
evaluated in relation to the required number of variates if it is possible to predict
the setup costs as a function of the density parameters. The meaning of “fast”
in c) is defined by the ratio of tail variates versus body variates and the speed
of the body sampling method. A slow tail sampling can always be balanced by
sufficiently infrequent calls to the latter.

Provided the complementary cumulative density function
∫∞
x f(x′) dx′ can be

computed sufficiently exact on demand, then any required value of the tail surface,
and thus any relative frequency of calls to the tail sampling function, can be
achieved in the setup of the Ziggurat by an iterative process. For the details of the
setup refer to Ref. [117] and for alternative concepts to Ref. [152]. Independently of
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such considerations the production of Lévy α-stable random numbers in the tails,
but also in arbitrary finite intervals, are themselves examples where the method
introduced in this paper is suitable. Of course the Ziggurat method is applicable
to non-symmetric decreasing densities by representing two halves with separate
generators which have to be called alternatingly in a ratio that corresponds to the
ratio of respective areas covered by each halves.

In Sec. 4.2.2 we introduce the Lévy α-stable probability density on the basis of
which Sec. 4.2.3 explains our method. In Sec. 4.2.4 the Mittag-Leffler distribution,
its transform representation and transform map are presented.

4.2.2 The Lévy α-stable probability density and its transform map

A convenient representation of the Lévy probability density function in its most
popular parametrization [135, 136, 178] is via the inverse Fourier transform of its
characteristic function:

Lαβγδ(x) =
1

2π

∫ ∞
−∞

φαβγδ(k) exp(−ikx) dk (4.7)

where

log φαβγδ(k) =


−γα|k|α

(
1− iβsign(k) tan( 2

πα)
)

+ iδk for α 6= 1,

−γ|k|
(
1 + iβsign(k) 2

π log |k|
)

+ iδk for α = 1.
(4.8)

The index or order α ∈ (0, 2] determines the exponent of the power-law tail. The
parameter β ∈ [−1, 1] governs the skewness, γ ∈ (0,∞) the horizontal scale and
δ ∈ (−∞,∞) the location. The advantage of this parametrization is that the
density and the distribution function are jointly continuous in all four parameters,
the same applies to the convergence to the power-law tail. The last two parameters
can safely be set to 1 and 0 without loss of generality. Other values can be obtained
through

Xαβγδ = γXαβ10 + δ. (4.9)

We therefore omit γ and δ in the subscripts and also β if equal to zero. The
symmetric case with β = 0 has the simpler form of an inverse cosine transformation

Lα(x) =
1
π

∫ ∞
0

exp(−kα) cos(kx) dk. (4.10)

Rejection methods for Lévy α-stable random numbers that use asymptotic series
representations of the density function are sometimes used if speed has highest
priority [45]. However, the known types of series expansions for the Lévy density
tend to become inaccurate especially in the tails and also account for a certain
fraction of uniform random numbers to be lost (rejected) in the sampling. To
achieve best performance (minimum rejection rate and maximum accuracy) one
must use different versions of the algorithms and expansions depending on the
combination of parameter values and their range. This is in particular the case for
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β 6= 0. A review on these methods and their deficiencies can be found in Ref. [45].
A transformation method for Lévy α-stable random numbers by Chambers,

Mallows and Stuck has been available for over 30 years [37]. Two independent
uniform random numbers U, V ∈ (0, 1) are mapped via a transform Fαβ(U, V ) such
that X = Fαβ(U, V ) is distributed correctly according to Lαβ(x). The general case
for α 6= 1 is given by

X = Fαβ(U, V ) =
sin(α(Φ + Φ0))

cos Φ

(
− logU cos Φ

cos(Φ− α(Φ + Φ0))

)1−1/α

, (4.11)

where Φ = π
(
V − 1

2

)
and Φ0 = 1

2πβ
1− |1− α|

α , while for α = 1

X = Fαβ(U, V ) =
(

1 +
2
π
βΦ
)

tan Φ− 2
π
β log

(
− logU cos Φ
1 + 2βΦ/π

)
. (4.12)

The symmetric case with β = 0 simplifies to

X = Fα(U, V ) =
sin(αΦ)

cos Φ

(
− logU cos Φ
cos((1− α)Φ)

)1−1/α

. (4.13)

The variables X1, . . . , XN are stable as well as their normalized sum

X =
1

N1/α

N∑
i=1

Xi. (4.14)

This transform representation is a mixture of the form g(V )W 1−1/α where g(V )
is a real valued function, V is a uniform random number and W is exponentially
distributed. Figs. 4.5 and 4.6 show symmetric and asymmetric examples of the
mapping of the random number plane (U, V ) to “quantiles” of the probability
density via the map X = Fαβ(U, V ). Colors are used to designate the respective
regions x1 < X < xi+1 separated by isolines defined by dFαβ(U, V ) = 0. The
pictures show isolines as borders between colors for xi = 0,±0.5,±1,±1.5, . . . .
The colors in the map and in the respective histogram correspond to each other
and all points (U, V ) on the same isoline are mapped onto exactly one unique
number. Fig. 4.7 shows the behaviour of the isolines only with further decreasing
α. Notable is the analytic Cauchy case α = 1 whose inversion formula depends
only on one variable. This is expressed by perfectly vertical isolines. For values of
α < 1 the overall behaviour turns over and the slopes change sign in each half of
the unit square. The pictures showing isolines are produced with Matlab’s [2]
contourf function on a grid of size 800×800.

We would like to remark that different solutions are thinkable of how to sample
uniform random points in a specific region in the (U, V )-plane. A differential
equation for the isolines can be obtained via the implicit function theorem by
Ulisse Dini [48]:

0 = dF (u, v) =
∂F (u, v)
∂u

du+
∂F (u, v)
∂v

dv ; (4.15)
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Figure 4.5: The map X = Fα(U, V ) with U, V ∈ (0, 1) giving the symmetric Lévy
distribution Lα(x) for different values of α. For α = 2 the picture corresponds
to the Box-Muller map for the generation of Gaussian random numbers. The
bottom part of each map shows the respective histogram. Areas with equal colors
correspond to each other. Note that the transition from α = 2 to α < 2 is
discontinuous for u = 0 and u = 1 and the points (0,1) and (1,1) develop a
singularity.
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Figure 4.6: The map X = Fαβ(u, v) giving the asymmetric Lévy distribution
Lαβ(x) for two values of β.

1

1
u

v

! = 1.20, "= 0.00

 

 

0
0

Student Version of MATLAB

1

1
u

v

! = 1.00, "= 0.00

 

 

0
0

Student Version of MATLAB

1

1
u

v

! = 0.80, "= 0.00

0
0

Student Version of MATLAB

1

1

1

1

1

1

Figure 4.7: Isolines of the map X = Fα(u, v) with u, v ∈ (0, 1) for decreasing
values of α. The regions with increasingly divergent gradient (upper corners) is
not shown beyond |x| > 600. Note that the orientation of the isolines flips over
with decreasing values of α at exactly α = 1.
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rearranging

dv(u)
du

= −
(
∂F (u, v)
∂v

)−1 ∂F (u, v)
∂u

. (4.16)

With an appropriate initial condition this differential equation defines the isoline
v(u) in the coordinate square spanned by u, v. The alternative representation of u
as a function of v is equally appropriate from the mathematical point of view, but
is less convenient in this case for symmetry reasons. We skip additional consid-
erations on singularities and limiting behaviour. For α = 2 and β = 0 Eq. (4.13)
reduces to X = F2(U, V ) = 2

√
− logU sin(π(V − 1/2)), which is the Box-Muller

method for Gaussian deviates with standard deviation σ =
√

2. The correspond-
ing map is shown in the upper left of Fig. 4.5. The value x in the condition X > x
determines the initial condition for Eq. (4.16) that determines the isoline, i.e. x
in the condition X > x, and for α = 2 it can be chosen on the boundary of the
square U, V ∈ (0, 1). Two other analytic limit cases for β = 0, where Lα(x) can be
written in terms of elementary functions, are the Cauchy distribution, with α = 1
and X = F1(U) = tan(π(U − 1/2)), and the Lévy distribution, with α = 1/2
and X = F1/2(U, V ) = − tan(π(V − 1/2))/(2 logU cos(π(V − 1/2))). Note that
for values of α 6= 2 the map F is singular in the points (0, 1) and (1, 1). In such
cases the initial condition cannot be chosen on the boundary, which considerably
complicates the situation numerically.

Starting from the simplest case, insertion of F2(u, v) into Eq. (4.16) yields

dv(u)
du

=
cot(πv(u))
2πu log(u)

. (4.17)

Insertion of Fα(u, v) into Eq. (4.16) yields

dv(u)
du

= (α− 1)
{

1
πu log(u)

[
tan

(
π

(
v(u)− 1

2

)
(1− α)

)
(α− 1)2

+ cot(πv(u))− α2 cot
(
π

(
v(u)− 1

2

)
α

)]}−1

. (4.18)

One way to sample directly and uniformly from the area under v(u) would be an
area-preserving map of a square domain spanned by two uniform random numbers,
e.g. U, V ∈ (0, 1), or any other suitable two dimensional domain onto this area. To
our knowledge this solution is not available yet. Alternatively, the function v(u)
can be obtained numerically via integration or by appropriate algorithms for the
generation of isolines. Once data points for v(u) are obtained, any method that
samples uniformly the region X < x or X > x is suitable in principle. With this,
the generation of a tail variable constitutes in itself a standard non-uniform variate
generation task. It is the initial scenario of sampling uniformly under a curve, but
with the great simplification of a finite support. However, this is not the route we
propose for three reasons. First, the numerical solution of Eq. (4.18) is cumber-
some. Second, the initial condition has to be found within the u-v square due to
the above mentioned singularities. The subsequent integration in two directions
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Figure 4.8: Intuitive, coarsely tiled, example of the tiling in the u-v square for sam-
pling symmetric Lévy α-stable random variates with the condition X = F (u, v) <
−1 and α = 1.8, β = 0. The tiled area can be sampled efficiently while only points
in the red shaded region are rejected. Tiles with direct acceptance do not require
the acceptance comparison X = F (u, v) < −1.

must be guaranteed to work unattended and automatically as a black box with
α and β as the only parameters. Third, the outcome is not exact in the sense
that the sampled random tail variates are distributed with respect to an approxi-
mated probability density function based on the data point representation of the
isoline. As it will turn out a numerical or analytic representation of the isoline is
not a required piece of information and its calculation can be avoided. It can also
be shown that the isolines are monotonic in u in the regions Fαβ(u, v) < 0 and
Fαβ(u, v) > 0 which is a useful property in Sec. 4.2.3. Although the approximation
of density functions is commonly accepted as a reasonable compromise in several
applications we introduce in the next section a simple graphical method without
this disadvantage.

4.2.3 Sampling method and example application

We introduce the method using simple intuitive examples. The production al-
gorithm relies on the rejection method whose invention dates back to von Neu-
mann [176] and which we do not rehearse here. Fig. 4.8 demonstrates a computa-
tionally efficient concept for uniform sampling in a certain two-dimensional region.
In the first example we aim at producing Lévy α-stable random variates with pa-
rameters α = 1.8, β = 0 and the condition X < −1. The map F1.8(u, v) for this
choice of parameters is also shown in Fig. 4.5. It corresponds to a relatively large
region in the left part of the square. We performed a straightforward and simple
tiling of this region using square tiles that can be refined, for example, iteratively
maintaining complete coverage while minimizing the excess area of the tiles that
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Figure 4.9: Two different tiling refinements of the region corresponding to the
condition X < −12 which is a narrow strip along the left and bottom of the unit
square. Only the lower left corner is shown on a scale that magnifies the tiling to
a visible size. The row of tiles on the bottom samples a narrow strip below the
isoline. In the right panel the rejection rate is significantly lower. It may help
intuition that the colored dots are the uniformly distributed pairs (u, v).

stick out of the region defined by F1.8(u, v) < x. Uniform sampling of the tiled area
accepting all X = F1.8(u, v) < x and rejection of all other samples achieves the
desired tail sampling. The size of the tiles can be chosen to achieve an arbitrarily
low rejection rate. In the example shown in Fig. 4.8 the tiling is refined only mod-
erately to convey the situation. For tiles that lie completely underneath the isoline
the test F1.8(u, v) < x must not be executed. With dense tiling this comparison
is therefore hardly needed and indeed must be avoided to yield a speed-up with
respect to the transformation method. The production loop of random variates
follows the steps:
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TRANSFORMATION AND THE TILING METHODS

Algorithm Input: x ∈ R.

0 Setup:
Tiling of the region F (u, v) < x using a method of choice.
Label tiles with an integer index.
Label tiles that are intersected by the isoline F (u, v) = x.

1 Draw a random integer tile index with uniform probability.

2 Draw a random coordinate (u, v) with uniform probability within this tile.

3 Test if the tile is intersected by the isoline (table look-up).
If yes, go to 4. If no, accept X = F (u, v) and go to 1 (direct acceptance).

4 Test if (u, v) satisfies X = F (u, v) < x.
If yes, accept X, otherwise reject and go to 1.

Note that for monotonic isolines the position of a tile with respect to an isoline, i.e.
whether underneath, above or intersected, can be determined by evaluating the
map for at most two corners. Step 4 is unlikely to be carried out if the coverage
is dense, giving nearly a zero rejection rate. Overall, this procedure is efficient
in setup and production for a sufficiently dense tiling. Furthermore, with small
modifications of the above acceptance and rejection conditions in the pseudo code,
the tiling and production of random numbers on a finite interval X ∈ [x1, x2] is
geometrically and algorithmically equivalent to generating numbers from the tail.
This requires the tiling of a region in the u-v square between two isolines with the
condition x1 < X < x2.

Fig. 4.9 shows the map for the left tail regions of the u-v square with X < −12,
which is more realistic for the purpose of tail sampling. This condition corresponds
to sampling a narrow strip at the bottom and left sides of the unit square. The
figure only shows the corner at the origin. The bottom strip of tiles samples an
extremely narrow strip than is not visible on this scale. The iterative tile refinement
in the setup stage is acceptably fast, below a second in our non-optimized code,
down to the level on the right panel of Fig. 4.9 to achieve a rejection rate below
1%. Different values of α > 0.1 as well as not too extreme values of x have no
significant influence on the setup performance achieving a rejection rate of 1%.
Note that the speed of random number production is independent of the number
of tiles. In our case it amounts to 2.3 million tail variates per second on a PC with
a 2.4 GHz Intel Pentium 4 processor using the GNU C++ compiler version 3.2.2
and optimization level -O3. As the uniform random number generator we used
the XOR shift SHR3 by Marsaglia [117].

The colouring of the acceptance and rejection regions in Figs. 4.8 and 4.9
are produced by green and red coloured dots representing the random uniform
coordinates (u, v).

We would like to stress that the method of tiling as well as the form of the tiles
is in principle arbitrary. Equal size and shape is computationally advantageous,
but this issue is not the focus of the present work. Of course any tiling technique
that produces a similar result is suitable, using either square or rectangular tiles.
However, the choice of square equal tiles is algorithmically very simple and likely to
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outrun an adaptive scheme with more complex shapes in setup and also production.
The iterative tiling refinement, as performed in the above examples, is robust and
fast also for large values of |x|. The rejection scheme is in principle similar to the
Ziggurat implementation of Ref. [117]. It also needs the setup of a data structure
that covers a region by equal area rectangles. The details of the tiling method
that is more general and applicable to random number production directly via the
probability density are described in the previous section [61].

4.2.4 The Mittag-Leffler probability distribution

Our second example density is less know in scientific applications, even less so
its transform. The Mittag-Leffler probability distribution appears in the ana-
lytic solution of the time-fractional Fokker-Planck equation [73]. The generalised
Mittag-Leffler function is defined as [67, 74]

Eαβ(z) =
∞∑
n=0

zn

Γ(αn+ β)
, z ∈ C. (4.19)

For our purposes it is sufficient to restrict the example to the one-parameter
Mittag-Leffler function which plays an important role in the stochastic solution
of the time-fractional diffusion equation, see Eq. (2.37), leading to a pointwise
representation on a finite interval. Fig. 4.10, top left plot, shows examples with
two selected values of β. More details are given in Sec. 2.6. In many applications
Mittag-Leffler random numbers where produced by rejection with a look-up table
and interpolation of a pointwise representation obtained via Eq. (2.37) in a very
cumbersome manner leading to a truncated distribution. Fig. 4.10 shows the map
Mα(U, V ) of the transform representation Eq. (2.47) as borders between inter-
vals corresponding to t = 0,±0.5,±1,±1.5, . . . The exponential case with α = 1
depends on only one random variable in the u-v square which is expressed by
perfectly horizontal isolines. For α < 1 the left and right edges develop singu-
larities. It is not recommended to use Eq. (2.37) and summation of many terms
for the computation of Eα(−tα). A more elegant and accurate method is pre-
sented in Ref. [67, 74, 145]. For the generation of random numbers we use the
implementation in Ref. [64].

4.3 Fast generation of rotationally invariant random

matrices

As an extra topping we present a method that produces rotationally invariant ma-
trices in one single step without the summation of rotated matrices as in Eq. (3.36).
For the definition of such matrices, their properties and use within the theory of
free probability refer to Chap. 3. Random rotationally invariant matrices are char-
acterized by the following alternative pieces of information:

1) The distribution of the matrix entries
2) The distribution of the eigenvalues
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Figure 4.10: The Mittag-Leffler function Eα(−tα) in a log-log plot (top left) and
the transformation map X = Mα(U, V ), Eq. (2.47), in terms of isolines for five
values of α. The case α = 1 corresponds to the standard exponential function.
The regions on the left side of the maps is not shown beyond t > 600 due to an
increasingly divergent gradient. The two plots at the bottom repeat the case with
α = 0.9 using colors and showing the corresponding histogram.
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So, everything is characterised by distributions only. If we choose one set of eigen-
values according to the desired distribution, the corresponding eigenvectors must
obey a certain distribution, and vice versa. There is nothing that determines single
numbers. Of course everything has to be seen in the limit of large matrices. We
can write

D = XAX−1 (4.20)

withD = diag(d1, . . . , dn) the diagonal matrix of eigenvalues andX the eigenvector
matrix. Then rearrange by multiplication with X from the right side and choose
D according to the desired distribution and pug into

DX = B = XA where DX = [d1x1, d2x2, . . . , dnxn]. (4.21)

The eigenvectors columns in the matrix X = [x1, . . . , xn] can easily be chosen
isotropic according to Porter-Thomas Eq. (8.13) or any other suitable isotropic
distribution, which are all Gaussian in the end. Resolve B = XA for A.

4.4 Discussion and conclusion

In this chapter we presented a fast method for automatic generation of random
variates with arbitrary probability density functions independent of symmetry,
number of modes, and discontinuities. The only prerequisites are pointwise com-
putability and finite support. We also explained that the most general thinkable
or universal method will require no less but also no more than these two require-
ments. In the introductory overview on some representative methods it is shown
that many less powerful methods exist that truncate the infinite support for ana-
lytic density functions with only one mode. The accuracy of our method is exact
up to the computation of the probability density function and meets any numerical
demand which includes density functions with poles or cusps without additional
attention.

The generation of one non-uniform random variate requires only one random
integer, one random uniform real, two additions, one multiplication and one table
look-up (no float comparison) most of the time. This is close to the minimum of
principally required operations, so that additional speed can only come from hard-
ware exploitation or specialized methods. Even for complicated density functions
the memory requirements are suitable for any contemporary desktop computer.

These properties are not available in other methods of this kind. We can extend
the wish list from Sec. 4.1.2 to a random number generator by additional items:

8. No need for a priori knowledge about the location of any number of modes
or discontinuities within the density function.

9. Only pointwise computability and representability of the density function is
necessary.

10. Fast setup time and fast generation of random variates.
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11. The discretisation and therefore sampling efficiency is asymptotically exact
and can be pre-imposed.

An extension to the multivariate case is simple in principle. It means to sub-
stitute a two-dimensional tile with a cube or hypercube. The required storage for
data however increases with a power of the dimension.

We have also demonstrated some properties of the Chambers-Mallows-Stuck
and Kozubowski-Rachev transform maps exemplifying the production of random
numbers with the former. The interpretation as a two-dimensional map from
the unit square to the real numbers allows to associate arbitrary intervals on
the support of the density with well defined finite regions of the map domain.
The uniform sampling of such regions produces directly random numbers exactly
within the respective intervals. We have also introduced an efficient concept for the
automatic setup of a random number generator that makes use of this property.
The resulting generator can in principle produce random numbers in intervals
which can be disconnected and any combination of the kind (−∞, x1] ∪ [x2, x3] ∪
. . . ∪ [xn,+∞), xi ∈ R. Most importantly, the sampling of tails as shown here
can be used as a tail handling method in fast implementations of random number
generators for which a candidate is the Ziggurat method implementation that was
proven to greatly outrun simple inversion methods. The present work opens the
route for the speedup of many known random number generators that rely on
transform representations.

While the application of rotationally invariant Lévy random matrices and in
particular of realisations is still very seldom we are convinced that the realisation
via summation of rotated matrices will soon be replaced by direct generation.
Since the generation takes up significant CPU-time and freeness is approximated
in the large size limit the compromises between matrix size and computer time
will be less difficult to find with this new direct method.

4.5 Outlook

The connoisseur of random number generation will have realised by now that the
method introduced in the last section is just the right one to perform fast sampling
in the ratio of uniforms method for densities that are not a simple teardrop shape.
The principle of this method is to use the ratio of two uniform variates and sample
within a certain region of the unit square [82], see Fig. 4.11. Suppose p is a (not
necessarily normalised) density and U, V are uniform on 0 ≤ u ≤

√
p(v/u) then

X = V/U has the density (proportional to) p. The procedure to set up a generator
is:

a) Construct in the unit square (u, v) a plane bounded by 0 ≤ u ≤
√
p(v/u).

b) Draw uniform (U, V ) in this bounded plane.
c) Return V/U as the deviate which then will obey p.

Depending on the desired density and concavity properties the tiling of more com-
plicated shapes is a field on its own. For concave or piecewise concave densities
it is trivial and the sampling reaches the full infinite support. Radially concave
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Figure 4.11: Acceptance region in the ratio of uniforms method for normal random
variables. The picture is taken from Ref. [149]

shapes, i.e. regions that can be defined via a functional relation p(θ, r) from an
origin, are also simple to tile and encompass a large class of density functions.



Chapter 5

Comparison of the Fourier and

Pearson correlation estimators

If you want to inspire confidence, give plenty of statistics.
It does not matter that they should be accurate, or even intelligible, as
long as there is enough of them.
L.C.

The work in this chapter was supported by the British Council Researcher Ex-
change Programme 2008 for stays of D.F. at the Department of Economics at the
City University London. This part mainly compiles results and arguments but
also states a few conclusions that came up in the attempt to settle certain issues
that caused debates as well as persistent disagreements between the researchers
involved in this topic. The focus of research are the Pearson and Fourier corre-
lation estimators, the latter of which is very new and hardly known. The bench-
mark using artificial continuous-time random walks creates a scenario very close to
high-frequency financial data. So far, the influence of a power-tailed distribution
of waiting-times seems to be negligible in the context of correlation matrix analysis
with meaningful time series, i.e. not too extreme distributions. It turns out that
the Fourier estimator cannot cope better with waiting times, at least in recon-
structing the Marčenko-Pastur spectrum for the matrix of correlation coefficients.
The influence of power-tailed jumps, however, is clearly visible in the spectrum
as well as in the distribution of the largest eigenvalue. In particular the latter is
of importance since confidence tests are based on the Tracy-Widom theory of the
distribution of the largest eigenvalue in the uncorrelated case. This theory asso-
ciates a probability for the largest eigenvalue in de-trended correlated real world
data. The Tracy-Widom theory, however, is grounded entirely in the Gaussian
world of finite jump moments and synchronous (or equi-spaced and equivalently
exponential) updates.

79
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5.1 Introduction

The notion of correlation is mathematically well defined with respect to its esti-
mator. For time series or other pairs of real valued data that are synchronous the
measurements can be interpreted as realisations of random variables. The Pearson
correlation estimator for two real random variables X,Y ∈ R with zero mean, unit
variance and realisations Xi, Yi, i = 1, . . . , N is given by

1
N − 1

N∑
i=1

XiYi (5.1)

and is the most common estimator for the calculation of correlation. Usually N is
exceedingly large and the subtraction of 1 is omitted. The resulting value is math-
ematically well defined while the value obtained from real world data may only be
considered as an approximation of correlation. The estimation is asymptotically
unbiased only for those discrete processes that can be produced by a thinning of
a continuous Wiener process. Asynchronously updated continuous-time random
walks (CTRWs) are discrete processes that take new values at arbitrary continu-
ous times and the term correlation becomes ambiguous. Refer to Sec. 2.2 for the
definition of CTRWs. In data analysis the procedures to extract, at least, a similar
information via the Pearson correlation estimator must consider the application
and model assumptions about the system. Typical procedures are several types
of interpolation to obtain synchronous values between the data pairs. The most
common is previous tick interpolation usually carried out on an equi-distant grid
of sampling times: The sampled increments ∆xij = xij −xi,j−1 ≡ xi(tj)−xi(tj−1)
are defined as the difference taken between two consecutive sampling times tj
and tj−1. Assuming that the averages and means of the increments are zero, the
Pearson estimator for the covariance of two CTRWs i and k with unit variance is

cik =
1
T

T∑
j=1

∆xij∆xkj . (5.2)

In the hydrodynamic limit of large time scales and finite moments the result may
approach the Wiener process situation. However, this limit is often not a reason-
able assumption as, for example, in high-frequency financial data analysis. It is
clear that the mechanism and system state between the updates of stock prices is
not expected to be sufficiently characterised by any kind of interpolation of the
values. In fact, interpolation even makes assumptions on the system state where
no information is available, and where the state refers to a model system. Cor-
relation estimators that rely on interpolated values are expected to give different
results. Whether this can be called a bias is unclear before the true correlation is
mathematically well defined.

An alternative to methods which explicitly interpolate is the Fourier estimator
by Malliavin and Mancino [11, 109, 151] that does not require equi-spaced pairs
of data. If a process xi(t), t ∈ R is given at non-evenly spaced times t1, . . . , tN
the correlation coefficient can be calculated via the Fourier coefficients that are
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obtained with the following formulas:

aki =
xi(2π)− xi(0)

π
+

1
π

N∑
n=1

xi(tn−1)(cos(ktn−1)− cos(ktn)), (5.3)

bki =
1
π

N∑
n=1

xi(tn)(sin(ktn−1)− sin(ktn)). (5.4)

The data is assumed to be rescaled to 2π. The Fourier coefficient of the pointwise
covariance matrix is given by

aij =
πτ

T

T/2τ∑
k=1

(akiakj + bkibkj). (5.5)

Since we potentially have infinitely short waiting-times the coefficient above is only
exact in the limit τ → 0. In reality we have a finite τ and T/2τ is the highest
meaningful wave harmonic. The desired correlation matrix elements for the entire
data

cij =
σ2
ij

σiiσjj
(5.6)

contain the integrated value of the pointwise covariance matrix

σ2
ij = 2πaij . (5.7)

The Fourier method is hoped to give under certain circumstances a less noisy or
less biased estimation of the same coefficient value as compared to the Person
estimator. While the latter is meaningful only on the basis of the (correlation)
model assumption, i.e. the specific mechanism of price interaction, it is necessary
to study the properties of the Pearson and Fourier estimators quantitatively also
under realistic circumstances since correlation analysis is a common tool in many
types of data analysis. Such analysis was presented in [146, 147] for pairs of
stock market data and we are going to study the spectral properties of, and in
particular, the differences between correlation matrices build with the Pearson and
Fourier estimators. If the Fourier estimator gives systematically different results
in the analysis of certain types of data, then in such a case the choice between
the two will have to be made on grounds of purpose, on the model assumption
and on the degree to which the relevant features are captured best. Note that the
Fourier estimator also interpolates, i.e. it makes assumptions on the behaviour of
a postulated price correlation system in the regions between the data points.

5.2 The context of correlation matrices

In the context of correlation matrix analysis it is often the spectrum of the uncor-
related situation that is considered the null-hypothesis benchmark. The distribu-
tion of jumps and waiting-times of the benchmark time series have finite moments.
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Whether this assumption is realistic is a different issue. In any case, the Pearson
estimator is used also for high-frequency financial data where power-tails can be
observed in the log-price changes. For the above finite moment null-hypothesis as-
sumption and the Pearson correlation estimator the Marčenko-Pastur theory [118]
delivers an analytic eigenvalue density of the correlation matrix in the large size
limit. In a comparison of the Pearson and Fourier estimators two questions arise:
a) How does the Fourier estimator reproduce the Marčenko-Pastur law? b) How
are correlations captured in terms of large eigenvalues and respective eigenvectors?
These two questions can be considered first in a more general and clean context
of CTRWs with different distributions of jumps and waiting-times. Our choice
of Lévy α-stable distributed jumps and Mittag-Leffler distributed waiting-times is
motivated by empirical studies of high-frequency financial data [150] and by the
possibly convenient connection to the Monte Carlo solution of the space-time frac-
tional diffusion equation [62, 73]. The Wiener process and the standard diffusion
equation are recovered as a limiting case. Furthermore, it is necessary to analyse
how true correlations are captured in terms of eigenvalues and eigenvectors of the
correlation matrix. Both estimators treated here are not well defined and are at
least biased for processes other than thinnings of a Wiener process. The justifica-
tion for comparing the estimators on processes that are more general is simply the
contemporary common practice [137] due to the lack of alternatives. Secondly, it
is only the outcome in a particular application, e.g. portfolio optimisation, that de-
termines the choice of an algorithm for the respective data analysis and prediction
models. The latter is a different issue as well.

Overall, we are confronted with a situation that requires at least a hundred
time series to provide a histogram of eigenvalues with sufficient accuracy to con-
stitute a spectrum. A meaningful correlation matrix analysis requires data of a
minimum length and information content. We have explained above at length, the
number of data pairs and information content are not synonymous in the context
of CTRWs. A correlation matrix that does not have full rank because of spurious
correlation due to missing values caused by large waiting-times is not obvious to
interpret and not in the realm of the Marčenko-Pastur theory either. Some sus-
pect the summation of many zeros in the estimator Eq. (5.2) for the correlation
coefficients as a source of differences or bias. These zeros are produced by previ-
ous tick interpolation which gives a zero increment if no update occurred within
∆t = tj − tj−1. In statistics, this situation is known as one of the many so called
“missing values” scenarios in covariance matrix estimation [104, 168]. As long as
these values are missing in a random manner, the estimator for the covariance
(thus, the correlation) is unbiased and we should expect the same result, possibly
with some increased statistical error. This assumption, however, is only true for
the null-hypothesis. We could therefore expect that the uncorrelated test case
with completely decoupled jumps and waiting-times is less likely to show a true
difference between the Pearson and Fourier spectrum. In the previous section it
was explained that the distribution of coefficients and spectra of correlation ma-
trices are nearly independent of the jump density if it has finite moments. It is
only the density’s power-tail that is relevant; also see Ref. [16]. In other words,
any meaningful distribution of jumps and waiting-times that has finite moments
yields the same result in terms of the spectrum of the respective correlation ma-
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trix. Therefore we expect the Pearson and Fourier correlation matrices to be less
sensitive to missing values if the data has finite moments as compared to data
with power-tails. This statement is even stronger for increasingly larger waiting-
times which only provoke more missing values. On the other hand, large jumps in
data are the typical nuisance for a Fourier transformation which requires at least
a linear de-trending between the end points of a time series. In some cases this
measure severely distorts the data. Indeed, we observe differences between the
Pearson and Fourier spectra with the introduction of power-tailed jumps. Refer to
formula Eq. (5.3) in which the first term contains an assumption on the behaviour
of the data between the first and the last data point.

For artificially correlated benchmark cases we could expect stronger differences
between the Pearson and Fourier estimators possibly also with the introduction
of (power-tailed) long waiting-times. An open question is how to introduce test-
correlations since it is unknown how prices are correlated due to a lack of a rea-
sonable model. For other generic real world data there will be no model anyway.
However, this question is obsolete if one cannot distinguish a real and artificial
situation on the basis of quantified stylised facts of the time series. This quan-
tification is often rather open in the respective community and we can introduce
simple correlation that mimic stock prices for example. The latter case is par-
ticularly simple because the correlation is typically very weak and here we only
consider equal time correlation. Stylised facts like volatility clustering require more
sophisticated faking of data.

Since there is no generic correlated or uncorrelated case, several scenarios can
be considered in the attempt to provide information on the behaviour of the Pear-
son and Fourier estimators in realistic applications. The most associative scenario
is possibly, again, high-frequency stock market data:

• Uncorrelated CTRWs with equal distribution of jumps and waiting-times.

• Uncorrelated CTRWs with inhomogeneous distribution of jumps and waiting-
times and also scaling factors.

• One equally correlated set of CTRWs in a sea of uncorrelated CTRWs. The
correlated set is updated synchronously but not equi-spaced.

• As above but the correlated set is updated asynchronously. In this case the
correlation must be introduced in a reasonable way which is not necessarily
mathematically well defined.

• The last two items can be repeated with inhomogeneous distribution of
jumps, waiting-times and scaling factors.

The above items are carried out in one way or another in different chapters of this
document, not necessarily for comparing estimators. It can be questioned whether
the introduction of inhomogeneous distribution of jumps and waiting-times and
also scaling factors just smoothes out differences between the two estimators or if
this is actually the key issue that provokes the differences. In finite sets of data it
is not necessarily obvious to recover a posteriori the scale factor and the power-tail
parameter from the data points for each individual time series. The correlation
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matrix spectrum would be the most insensitive tool to test for a mixture of scales
and power-tails. We also have to set restrictions on the distribution of waiting-
times. It turns out that a too fat tailed density too often produces waiting-times
that are longer than the entire length of the CTRW, see Fig. 5.7. This situation
would be of limited meaning.

A realistic inhomogeneity of scales and power-tails as found in financial data
is achieved by applying specific distributions of the parameters α, β, γx, γt which
were measured [150, 155] before.

5.3 Preliminary numerical results

The data model presented in Sec. 2.2 gives four degrees of freedom to vary the
characteristics of the time series. It is important to study the influence of each
parameter separately. The initial situation from which parameters are varied is
the unscaled Normal Compound Poisson Process (NCPP) that is given with the
parameters α = 2, β = 1, γt = γx = 1.

Alpha variations with uncorrelated CTRWs

The most promising parameter to start with that might provoke a difference be-
tween the two estimators is α which governs the power-tail of the jump density.
Fig. 5.1 shows the averaged realised spectrum of the correlation matrix of uncorre-
lated CTRWs produced with α = 1.4. We can observe a developing discrepancy at
the left end and around the middle of the spectrum. A more pronounced situation
with α = 1.0 in Fig. 5.2 clarifies the trend: The tails are essentially unchanged
while the peak at λ = 1 is more pronounced for the Pearson estimator. Since the
cumulation of eigenvalues at λ = 1 is the limiting situation for long uncorrelated
time series one could conclude that the Pearson estimator reflects the uncorrelated
situation better. This conclusion, however, is shortsighted because it is the left
and, most importantly, the right tails of the spectrum that are usually indicators
of correlation, whether random or not. In this example we are confronted with
a more subtle effect that leaves the right tail seemingly unchanged and is most
expressed in the bulk.

Since it is of more importance in correlation analysis we investigate the right
tail more thoroughly for the test case with α = 1.4. Figs. 5.3 and 5.4 show the
histogram of the largest eigenvalue unscaled and in a log-log plot respectively. The
difference we observe here must be considered in the specific context and are not
necessarily significant. The log-log plot shows that both estimators reproduce a
power-tail in the density of the largest eigenvalue but with slightly different tail
index.

Beta variations with uncorrelated CTRWs

In previous studies we already investigated the spectrum of correlation matrices
of uncorrelated CTRWs with power-tailed waiting-times. We observed a very
small deviation almost entirely at the right side of the Marčenko-Pastur law in
form of a small decaying tail instead of a hard edge. For the same set of CTRW
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Figure 5.1: Averaged spectra of 9400 correlation matrices of size N = 100, T =
500, α = 1.4, β = 1.0.
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Figure 5.2: Averaged spectra of 2600 correlation matrices of size N = 100, T =
500, α = 1.0, β = 1.0.
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Figure 5.3: Histogram of the largest eigenvalues of 19410 correlation matrices of
size N = 100, T = 500, α = 1.4, β = 1.0.
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Figure 5.4: Histogram of the largest eigenvalues of 19410 correlation matrices of
size N = 100, T = 500, α = 1.4, β = 1.0. The logarithmic scale indicates that
both estimators reproduce a power law distribution for the tails but with a different
index.
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Figure 5.5: Averaged spectra of 900 correlation matrices of size N = 100, T = 500,
α = 2.0, β = 0.9.

parameters the Fourier estimator gives the same result as the Pearson estimator,
see Fig. 5.5. The respective CTRWs are shown in Fig. 5.6 to give an impression of
the situation. The choice of β = 0.9 is also close to the lower limit of a meaningful
distribution of waiting-times. Lower values are likely to produce waiting-times
that are longer than the entire CTRW and in some cases no update occurs. A
frequent a posteriori removal of such cases would bias the statistics. It remains
to be seen if an inhomogeneous distribution of power-tail indices as well as scale
factors provokes a stronger difference than just one choice of β (and α).
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Figure 5.6: Samples of CTRWs of length T = 500, with parameters α = 2.0 and
β = 0.9.
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Figure 5.7: Samples of CTRWs of length T = 1000, with parameters α = 2.0 and
β = 0.8. It can be seen that the probability for updates is so low that in many
cases no update falls within 1000 average waiting-times of an NCPP.
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Eigenvalue spectrum of a correlation matrix of artificial uncorrelated

CTRWs
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Figure 5.8: Spectrum of a correlation matrix from uncorrelated CTRWs with
Gaussian distribution of jumps and Mittag-Leffler distribution of waiting-times
(β = 0.9). The sampling rate for the Pearson correlation estimator is 1 in units
of the average waiting-time for the exponential function defined by β = 1. The
number of CTRWs is chosen large to exclude any finite size effect or coincidental
large waiting-time within only few time series. Furthermore, the spectrum is
averaged over 10 realisations to ensure statistical accuracy.

5.4 Matlab code for the Fourier correlation estimator

The following function pre-calculates along with the CTRWs all Fourier coeffi-
cients. With these the subsequent pair-wise correlation speeds up dramatically by
avoiding redundant Fourier transformations.

function [M,XI,TAU,X,TIME,aa,bb] = makectrws(T,N,delta_t,alpha,beta,gamma_x,gamma_t,den)

M=inf(N,floor(T/delta_t)); % PTI increment matrix

XI=[]; X=[]; TAU=[]; TIME=[]; aa=[]; bb=[];

k_max=floor(2*pi/den);

im_unit=sqrt(-1);

for n=1:N

x=[]; xi=[]; t=[]; tau=[];

%Must avoid too few increments leading to singular matrices:

while (length(tau)<4)

[x,xi,t,tau]=ctrw(T,beta,gamma_t,alpha,gamma_x); %return continuous-time random walk

end

XI(n).xi=xi;

X(n).x=x;

TAU(n).tau=tau;

TIME(n).t=t;

[tpti,xipti,xpti] = pti(t,x,delta_t,T); %previous tick interpolation for re-use in main

M(n,:)= xipti;
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times=2*pi*TIME(n).t/T;

co=cos(times’*(1:k_max)/2);

si=sin(times’*(1:k_max)/2);

a = (XI(n).xi*co)/pi;

b = (XI(n).xi*si)/pi;

a=[ flipdim(a,1) 0 a]; %positive and negative frequencies

b=[-flipdim(b,1) 0 b];

aa(n).a=a;

bb(n).b=b;

end

%-- end of function makectrws

------------ main Program:

....

den=gamma_t*2*pi/T; % wave length limit

[M,XI,TAU,X,TIME,aa,bb] = makectrws(T,N,delta_t,alpha,beta,gamma_x,gamma_t,den);

disp(’C Fourier..’)

for i=1:N

for j=i:N

corre=aa(i).a*aa(j).a’+bb(i).b*bb(j).b’;

c=2*pi*pi*corre/(2*k_max+1);

CFourier(i,j) = c;

CFourier(j,i) = CFourier(i,j);

end

end

for i=1:N

dia=sqrt(CFourier(i,i));

CFourier(i,:) = CFourier(i,:)/dia;

CFourier(:,i) = CFourier(:,i)/dia;

end

....

Thanks to Mauro without whom this code would have taken longer to produce.

5.5 Conclusion

For the scenario of spectral correlation matrix analysis with uncorrelated date the
Pearson and Fourier correlation estimators are equivalent for data with finite mo-
ment jump distributions and fat-tailed asynchronous waiting-times. With jumps
of power-tailed distribution differences appear but mostly in the bulk rather than
in the tails of the spectrum. It is the tails that are considered as sensitive for sig-
natures of departure from the random uncorrelated case. This makes comparisons
in real world situations with only one realisation or data set difficult since only
one realisation of the empirical spectrum is available.



Chapter 6

Correlation matrices of

artificial continuous

time-random walks and

empirical data

The principle of correlation measurement with time series data exhibiting stylised
facts as introduced in Sec. 2.2 has been described in Chap. 5, in particular the
previous tick interpolation. Here we show how CTRWs appear to be a candidate
for high-frequency stock market data at least with respect to the reproduction
of the theoretical Marčenko-Pastur spectrum for uncorrelated noise (jumps) with
finite moments. Along with this uncorrelated test-case an artificial correlation
experiment provides some insight into the behaviour of the eigenvectors which
seems not to have been recognised yet.

6.1 Eigenvectors of correlation matrices

Fig. 6.1 compares the spectrum of the correlation matrix built from CTRWs con-
taining exponential waiting-times to the Marčenko-Pastur theory for uncorrelated
noise with finite moments. The noise (increments) is Gaussian. Exponential
waiting-times are expected to give the equivalent result as equi-spaced random
walks on a grid of size 1 in units of the mean waiting time. The mean waiting-
time in the exponential case is indeed 1. Finite size effects are negligible in this
example with 500 CTRWs. The arbitrary choice of length T is measured units of
the sampling grid which in turn is chosen equivalent to the expectation value of
the mean waiting-time distribution, E[ξ ∼ exp(−t)] = 1. It will be elaborated to a
great detail in Chap. 7 that the waiting-time distribution plays no significant role
with this choice of scales and sizes. In other words, in this section and generally in
the context of correlation matrix analysis we are in the hydrodynamic limit. The
results do not change with increasing size parameters N and T .
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Figure 6.1: The Marčenko-Pastur spectrum for uncorrelated noise with finite mo-
ments is reproduced perfectly with CTRWs containing exponential waiting-times.
The empirical spectrum is averaged over 60 matrices of size 500×500.

Of particular interest in our setting of time series analysis are the eigenvectors
of the correlation matrix which code information about the contained “modes”.
This term is not uniquely defined and its meaning depends on the measurement
instrument or “sensor” with which the coefficients in the coefficient matrix are
calculated. With the Pearson correlation coefficient a mode can often be recognized
by eye as a co-movement of the time series. We will use this for a simple toy
example:

Toy data model with controlled artificial correlations

• N = 500 CTRWs with exponential waiting-times with average 1

• One artificial correlated homogeneous group of 50 CTRWs

• x∗(t) is a prefixed CTRW where max(t) = T .

• Type of correlation:

xn(t) = xn(t)(1− c) + x∗(t)c, n = 1, . . . , 50, t ∈ R (6.1)

and c ∈ [0, 1] is a correlation coefficient.

• c = 0.4

This scenario uses an arbitrary method to correlate a group of CTRWs. Anything
that somehow simulates an attractive force among CTRWs is completely sufficient
for this type of study. It is not necessary to associate the parameter c with the
mathematical correlation coefficient. In this case it is the integrated values of the
random variables (jumps) that is correlated. This leads to a group of CTRWs
staying together indefinitely. In a later chapter toy examples are shown where the



93 6.1. EIGENVECTORS OF CORRELATION MATRICES

jumps are correlated. Both methods are equivalent with respect to the respective
effects and objects of interest.

Fig. 6.2 shows at a glance in one figure the main features of the result. Panel
A shows the correlated group of CTRWs in red within a background of green
uncorrelated CTRWs. The group of 50 correlated CTRWs are correctly reflected in
a small heap of large correlation coefficients around 0.4. The correlation strength
is chosen such that the group produces an eigenvalue of the order of a typical
market mode eigenvalue. Panels B to F mark single selected eigenvalues whose
eigenvector is shown graphically below.

Panel B starts with the (largest) eigenvalue provoked by the correlated group.
As expected, the first 50 elements of the eigenvector are equally large while the
other elements are essentially zero. Panel C: We elaborate in greater detail in
Chap. 8 that the smallest eigenvalue’s vector also contains nonrandom structure.
The first 50 elements clearly stick out by high variance but are seemingly still
Gaussian as all other elements in the indices of uncorrelated CTRWs. Panel C:
Moving to the right, just inside the Marčenko-Pastur spectrum no structure can be
observed. D & E: Closer to the right edge we recover again non-random structure,
i.e. low variance in the indices of the correlated CTRWs. This finding is particularly
interesting in C because the common sense in literature does not mention this but
states that everything inside the Marčenko-Pastur part does not carry information.
This is of relevance in publications like Ref. [171] where the Marčenko-Pastur part
is used to filter out the noise part from a data set of stock price time series to
extract the relevant dynamics. Here we show that the subtraction of the entire
noise-part can be harmful. The procedure of mode reconstruction is rehearsed in
detailed in Chap. 8 and promises a way out.

This issue of the meaning of eigenvectors and filtering with their help is also
criticised in the following analysis of real-world data. Fig. 6.3 shows the result
using one month of 1000 stocks from the New York Stock exchange. The largest
eigenvalue and shape reproduces a typical spectrum for this type of analysis [88].
The sampling is ∆t = 100 seconds such that possible power-tails do not show
up due to the inherent truncation of price jumps in the trading mechanism. The
market mode coded in the largest eigenvalue can be recognised by eye in Fig. 6.4.
The overall downtrend is very faint but since most stocks take part the resulting
eigenvalue is large. The market mode is commonly understood to be some em-
pirically observed co-movement of the entire market. At least it is thought so.
Fig. 6.5 shows in addition to the eigenvector of the largest eigenvalue also the
eigenvector of the second largest eigenvalue. It is obvious that there is a “mode”
that is more common to all stocks than the market mode. The fact that the signs
are opposed indicate that the modes are anti-correlated. This result proves that
the subtraction of the apparently informationless market mode by removing the
mode coded in the largest eigenvalue’s eigenvector is possibly incorrect as well as
the assumption that the market mode is the most common co-movement.

It is important to note that the size of the largest eigenvalue is determined
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by the number of participating time series and the strength of the correlation. It
is therefore not clear what the market mode is. Chap. 8 suggests a measure to
improve the situation. In any case, the stylised fact: “There is a co-movement of
stocks that does not carry information.” is vague.

6.2 Toy example: artificial stock market data

The realistic situation in financial data is composed of time series with different
volatility and liquidity. Both of these properties are modeled within the CTRW
model with two parameters each which determine the scale (multiplicative factor)
and the power-tail of the respective distribution: α, β, γx, γt; refer to the respective
section. This is a rather primitive approach but produces reasonable fake data that
can hardly be distinguished from real data. To recreate realism each stock will
have his own combination of such parameters. Studies have produced empirical
results on the distribution of the above scale factors and power-tails. We draw
1000 independent combinations of the 4-tuple (α, β, γx, γt). These parameters
are all taken from truncated Gaussians, which are parametrised according to a a
reasonable and realistic choice. Fig. 6.6 shows the cloud of 4-tuples (at least in a 3
dimensional sub-space) and the resulting spectrum of the correlation matrix. The
sampled length in terms of data pairs is 28800 reflecting the seconds of cumulated
trading in one months. The distribution of γt is indeed chosen such that t =
1, 2, 3, . . . is empirically meaningful to denote seconds. At a glance:

Parametric null-hypothesis high frequency stock market model

• N = 1000 individual CTRWs with parameters (α, β, γx, γt)

• T = 28800 reflecting tick-by-tick data of one month

• Sampling grid: ∆x = 1 corresponding to one second or tick

• Parameters (α, β, γx, γt) are drawn independently according to a
Gaussian distribution N(µ, σ;m,M) where m,M are cut-offs. These
numbers are chosen such that the unit of time is one second.

• The Gaussians are parametrised according to Table 6.1.

µ σ m M

α 1.6 0.20 1.2 2.0
β 0.95 0.05 0.9 1.0
γx 0.0003 0.00005 0.0002 0.0004
γt 10.0 5 1.0 20.0

Table 6.1: Parameters of the Gaussian distributions N(µ, σ;m,M) truncated at
m, M used to generate the parameters α, β, γx, γt of the artificial market.
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In Fig. 6.6 the eigenvalues that leak out both ways of the spectrum indicate
spurious correlation evoked mostly by power-tailed jumps and to a small extent
by power-tailed waiting-times. The mechanism with the latter is totally different,
however, and this issue is picked up in Chap. 5. In an application one would have
to compare a spectrum taken from one set of data to the respective null-hypothesis.
Only confidence statements on single eigenvalues are possible for the purpose of
which the null-hypothesis is also required to provide empirical information on
the dynamics of the outer eigenvalues. The latter requires statistics on single
eigenvalues, i.e. repeated simulations of the artificial market. This task is of the
order of several hours on contemporary desktop computers.

What was condonely ignored so far is the normalisation in the Pearson correla-
tion estimator. It needs the variances of the sampled increments whose expectation
values do not exist in the case of power-tailed jumps, i.e. α < 2. However, in this
example we average over realisations of fixed length. The realised averaged distri-
bution of variances does converge and so the spectrum of the correlation matrix. It
should be mentioned that the normalisation is a choice that depends on the theory
one likes to recover. For example, the theory by Burda et al. [24, 25, 26, 30, 33]
requires an α-dependent normalisation and the covariance estimator Eq. (3.35).
Consequentially the resulting spectrum is different to the one in Fig. 6.7. It shows
example spectra for five values of α calculated from CTRWs with Gaussian waiting-
times and Lévy distributed jumps. Each spectrum corresponds to one α and all
CTRWs for one spectrum are parametrised with the same value. We can see that
the realised spectrum Fig. 6.6 is quite similar (up to statistical uncertainties) to
the spectrum with α = 1.7. This indicates that a mixture of αs produces a situa-
tion that corresponds roughly to the mean/median of αs. This can be seen as an
amendment to the previous chapter on the comparison of the Pearson and Fourier
correlation estimators.

Chap. 3 presented a theory that is not capable to deal with a distribution of
αs. The realistic null-hypothesis will therefore still be a numerical Monte Carlo
calculation.
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Figure 6.2: Eigenvector study on a correlation matrix of CTRWs with a correlated
group. A: 50 red correlated CTRWs embedded in the 450 uncorrelated CTRWs.
The histogram reveals the correlated group as a pile of high coefficients at 0.4. B:
Eigenvector of the largest eigenvalue. C: Eigenvector of the smallest eigenvalue.
D: Eigenvector of an eigenvalue just inside the Marčenko-Pastur spectrum. E:
Eigenvector of an eigenvalue close to the right edge of the Marčenko-Pastur spec-
trum. F: Eigenvector of an eigenvalue at the right edge of the Marčenko-Pastur
spectrum.
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Figure 2: Eigenvalue spectrum of a correlation ma-
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α, β, γx, γt drawn from Gaussian distributions
N(µ,σ) truncated at m, M as listed in Table 1.
These numbers are empirical and reflect a typical
behaviour of a stock market.

µ σ m M

α 1.6 0.20 1.2 2.0
β 0.95 0.05 0.9 1.0
γx 0.0003 0.00005 0.0002 0.0004
γt 10.0 5 1.0 20.0

Table 1: Parameters of the Gaussian distributions N(µ,σ) truncated at m, M used to generate the
parameters α, β γx, γt of the artificial market.
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Figure 6.6: Parametrisation and spectrum of an artificial null-hypothesis test mar-
ket with a realistic content of scale factors and more or less power-tailed jumps
and waiting-times.

Figure 6.7: Spectra of correlation matrices of CTRWs produced with the Pearson
correlation estimator. The increments of the CTRWs contain power-tailed jumps
according to the Lévy distribution with the above list of parameters α. Despite
the diverging variance of increments or sampled increments (∆t = 1, γt = 1) the
spectra converge. Each spectrum is averaged over 50 realisations.



Chapter 7

On the relevance of the

sampling of continuous-time

random walks in correlation

matrix analysis

’What
is the use of a book’, thought Alice, ’without pictures or conversations?’

L.C.

7.1 Introduction

For the Pearson correlation estimator a time series is most meaningfully sampled
at equi-distant times with previous tick interpolation to achieve a uniform weight-
ing of time. This assumption requires homogeneity and stationarity of the data.
Moreover, it requires a justification of equal weighting of time, which is usually
part of the model assumption and implied by the questions asked. This cannot
be stressed too often. Here we deal with time series of the kind continuous-time
random walk as a model for financial time series. Considering the completely
uncoupled case for all random variables the arising questions are:

1. How are the correlation coefficients distributed and do the distributions of
waiting-times and increments influence the correlation coefficient’s distribu-
tion?

2. Does the spectrum of a correlation matrix change with the distribution of
waiting-times and increments? Or equivalently, does the joint probability
change?

100
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While the answer to 1 might be negative, it is the joint probability density that
drives the spectrum. Likewise, two different distributions of matrix elements can
give the same spectrum. The following reasoning is situated in the Gaussian
regime, i.e. with distributions of finite moments, and starts with a theoretical con-
sideration of the distribution of increments as a function of the sampling frequency,
or better: as a function of the ratio of sampling frequency and mean exponential
waiting-time. A glimpse ahead: The result is that the distribution is rather insen-
sitive to variations of the sampling frequency. Then we argue that the distribution
of correlation coefficients is bound to converge very quickly towards a Gaussian.
The answer to question 1 is that all distributions of jumps and waiting-times with
finite moments give indistinguishable results for situations that are meaningful in
the context of correlation matrix analysis and random matrices in the realm of the
Marčenko-Pastur theory where the number of samples (or better sampled incre-
ments) is of the order or greater than the number of time series. The answer to
question 2 is that in the uncorrelated case equally uncorrelated waiting-times do
not truly change the joint probability distribution of covariances. Any changes in
the spectrum due to the latter are statistical and similar to the finite size effect.

7.2 The distribution of sampled increments ∆x

The curtosis of the distribution of increments sampled at equi-distant times
∆x(t) = x(t)− x(t−∆t) is a function of the sampling interval:

β2 = 3
τ0

∆t
, (7.1)

where τ0 is mean waiting-time in x(t) and ∆t is the sampling interval. Traditionally
the curtosis is denoted by the symbol β2 with the classification: β2 > 3: leptocurtic,
β2 = 3: mesocurtic, β2 < 3: platycurtic. Since β2 is a function of ∆t one might
also expect a dependence of the distribution of correlation coefficients on ∆t. For
a CTRW as introduced in the previous chapter and position definition according
to Eq. (2.27) the solution of the master equation (the probability to be in position
x at time t) is given by [154]

p(x, t) =
∞∑
n=0

P (n, t)λ∗n(x), (7.2)

where

λ∗n(x) =
∫ +∞

−∞
. . .

∫ +∞

−∞
dξn−1 . . . dξ1 λ(x− ξn−1) . . . λ(ξ1) (7.3)
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is the n-fold convolution of the distribution of jumps λ(ξ) and P (n, t) is the cu-
mulative density of n jumps up to time t

P (n, t) =
∫ t

0
ψ∗n(t− τ)Ψ(τ)dτ, (7.4)

with Ψ the cumulative waiting-time density. And finally

ψ∗n(t) =
∫ t

0
. . .

∫ τ1

0
dτn−1 . . . dτ1 ψ(t− τn−1) . . . ψ(τ1) (7.5)

is the n-fold convolution of the waiting-time density. For analytically not nicely
behaved functions the objects above are unlikely to have an analytic solution.
For a normal compound Poisson process (NCPP) with exponential waiting-times
ψ(τ) = exp(−τ/τ0)/τ0 and mean τ0 and Gaussian jumps with variance σ2

ξ we can
get at least a closed form for the cumulative density:

P (n, t) =
(∆t/τ0)(∆t/τ0)

(∆t/τ0)!
, (7.6)

and the multiple convolution of a Gaussian is again a Gaussian with variance nσ2
ξ :

λ∗n(x) = N
(
0,
√
nσξ

)
=

1√
2πnσ2

ξ

exp

(
− x2

2nσ2
ξ

)
. (7.7)

Because of the stationarity and homogeneity of the process the distribution density
of sampled increments at intervals ∆t is then given by [154]:

p(∆x) = P (x,∆t) = e−∆t/τ0

∞∑
n=0

(∆t/τ0)n

n!
N
(
0,
√
nσξ

)
, (7.8)

which is clearly not Gaussian, but a sum of many different Gaussians. However,
Eq. (7.8) is approximated well with

p(∆x) ≈ Ke−∆t/τ0

(
(∆t/τ0)(∆t/τ0)

(∆t/τ0)!

)
N

(
0,
√

∆t
τ0
σξ

)
, (7.9)

because the factor

an

n!
(7.10)

has one sharp maximum at n = a, see Fig. 7.1. The added constant K accounts
for neighbouring Gaussian’s probability mass that is not included in the approx-
imation. The sum in Eq. (7.8) is dominated by few terms in a narrow interval
where n ≈ ∆t/τ0, in other words, a sum of a few but similar Gaussians. This sum
essentially gives a Gaussian if the sampling frequency is sufficiently low compared
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Figure 7.1: The plot of 100n/n! shows a shape with one sharp maximum at n = 100.

to the mean exponential waiting-time so that the curtosis of the distribution of
increments is negligible.

The above reasoning is valid for all jump densities with finite moments. Due
to the central limit theorem the sum of sufficiently many jumps becomes normally
distributed very quickly. For uniform jumps the summation of only 12 already
gives a good approximation. The latter is well known as the method of the 12s
for the production of normal random numbers from the early days of computing.
If the sampling frequency allows for sufficiently many summations of jumps, we
get essentially indistinguishable results for moderate variations of the sampling
frequency.

7.3 The distribution of correlation coefficients with

missing data

The next issue in answering the questions on the influence of the sampling is the
distribution of correlation coefficients. If random numbers X and Y are inde-
pendent and follow a Gaussian distribution then this means that they are also
jointly Gaussian distributed. Consequentially, the pair (X,Y ) follows a bivariate
Gaussian distribution:

f(x, y) =
1

2πσXσY
√

1− r2
exp

(
− 1

2(1− r2)

(
x2

σ2
X

− y2

σ2
Y

− 2rxy
σXσY

))
, (7.11)

where r is the correlation between X and Y . For N realisations (or samples) of
the uncorrelated pair (X,Y ) the distribution of correlation coefficients is given by

p(r) =
(N − 2)Γ

(
N−1

2

)
2
√
πΓ
(
N
2

) (1− r2)(N−4)/2 =
1√
π

Γ
(
ν+1

2

)
Γ
(
ν
2

) (1− r2)(ν−2)/2, (7.12)

where ν ≡ N − 2 are the degrees of freedom. Note that with N = 2 samples
there are zero degrees of freedom which indeed makes little sense if talking about
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a matrix of correlations. Eq. (7.12) is derived from the Student-t distribution and
if N grows large it quickly approaches the normal distribution, see Fig. 7.3. It is
a variant of the definition of the Student-t distribution also with respect to the
definition of the degrees of freedom. In the case of correlation coefficients the
(sensible) minimum number of measurements is N = 4 whereas in general it is
N = 2 and the degrees of freedom are defined as ν ≡ N − 1.
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0

0.5

1

1.5

2

2.5

z

 

 

p(Z)
1/! Bessel K

0

p("10

1
 Z/10)

Gaussian

Student Version of MATLAB

Figure 7.2: The product of two Gaussian random variables Z = XY is distributed
according to K0(z), the modified Bessel function of the second kind with index
zero. The sum of only 10 random Z is already close to a Gaussian. The continuous
lines are histograms.

The above reasoning can be regarded as stemming from the large size limit.
This also works from the perspective of summing single random variables. The
limiting distribution of the sum of products

∑
XY , where X and Y are Gaussian

random variables in reference to the distribution of increments from above can be
calculated analytically via the folding of the two respective densities according to
a special case of the Mellin integral [66]:

pZ(z) =
∫ ∞
−∞

fX,Y (x, z/x)
1
|x|

dx. (7.13)

In this example the joint probability density fX,Y factorises and the product Z =
XY is distributed according to the density function

pZ(z) =
1

πσXσY
K0

(
|z|

σXσY

)
, (7.14)

where K0() is the modified Bessel function of the second kind with index zero and
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Figure 7.3: Empirical distribution of correlation coefficients and comparison to
theory. The plot shows two empirical histograms from correlation coefficients
(blue and green) calculated between CTRWs with Gaussian jumps (NCPPs) and
CTRWs with uniform distribution of increments ξ ∈ [−1/2, 1/2]. The waiting-
times in both are exponential and the sampling rate is ∆t = 10τ0 in units of the
mean waiting-time. The number of CTRWs is N = 500 with a length of 2500∆t.
The Gaussian fit to the latter (σ = 0.0200388 ± 1.418 × 10−5) shows that both
histograms are indistinguishable from a Gaussian. Imposed onto the fit is the
Student-t density function with ν = N − 2 = 2498.

is given by

K0(z) =
∫ ∞

0

cos(zt)√
t2 + 1

dt. (7.15)

This function, interpreted as a density, has finite moments. The asymptotic be-
haviour is [182]

Kn(z) =
√

π

2z
e−z

(
1 +O

(
1
z

))
, (7.16)

which exhibits exponential decay. With this we find ourselves in the realm of
the Marčenko-Pastur theory and the Pearson correlation coefficient converges to
a Gaussian. Fig. 7.2 shows in terms of histograms that the (normalised) sum of
only 10 scaled Bessel distributed variables produces a Gaussian distribution. The
message of Figs. 7.2 and 7.3 is to show that the distribution of jumps has negligible
influence on the distribution of correlation coefficients as long as its moments
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are finite. A sampling grid of ∆t = τ0 in the data for Fig. 7.3 gives exactly
the same picture which supports the conjecture that the random introduction of
missing values, e.g. by randomly picking out jumps, has no or little influence on
the distribution of increments, especially so if the moments of the jumps are finite.
This also demonstrates that the curtosis of increments is generally of negligible
influence in meaningful examples of correlation matrix analysis with CTRWs. We
can even repeat the same scenario with the distribution of jumps λ(x) = 1/2(δ(x−
σ) + δ(x+ σ)), which is the most un-Gaussian density whose moments are all σ.

As an answer to question 2 we can adopt the reasoning from literature on how
to deal with missing variables of which there is not many, however [104, 168]:

For covariance matrix estimation with randomly and independently miss-
ing values the pair-wise estimation of covariances is un-biased if the data
is stationary.

We expect from this:

The deletion of values from the covariance estimator via independent
and uncorrelated waiting-times across all time series does not truly influ-
ence the joint probability density of correlation matrices of uncorrelated
CTRWs.

The above “truly” allows for differences which are of a more subtle nature but are
entirely caused by statistical uncertainty that is introduced by random deletion of
values. This type of influence we regard as similar to the finite size effect in small
correlation matrices that does contradict the Marčenko-Pastur theory.

See Fig. 5.8 for an example with uncorrelated CTRWs using Gaussian jumps
and power-tailed waiting-times. It is noteworthy that by keeping Q = T/N con-
stant the shape of the empirical spectrum does not change for different values of
T . This indicates a universal behaviour introduced by systematic removal of in-
formation from the Pearson covariance estimator. In the following Section 5 we
demonstrate that the Fourier estimator gives statistically the same result up to
negligible fluctuations.

When performing the analysis above on real data and observing a significant
deviation from the blue curve presented in Fig. 5.8 we can suspect non-stationarity
as one of the reasons of the data or that some parts, even single data points, carry
important information. This is a particularly important implication.

7.4 Conclusion

The main statements of this chapter are given in boxes where they come up nat-
urally during the course of the reasoning. The “real world” question we sought to
answer was on the role of waiting times in the context of correlation matrix anal-
ysis in scenarios similar to financial stock market data. It seems that equal-time
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correlation analysis is hardly influenced if the stocks have some kind of “minimum
liquidity” to provide at least a little information for the correlation estimator. In
the Chap. 8 we will see that equal time correlation is not the end of the story
and that the disposal of time, as the Pearson estimator does, is sometimes not
appropriate. Moreover, it also seems that the correlation matrix spectrum is a
rather insensitive tool to the information that is contained in time series data.



Chapter 8

Spectral properties of

correlation matrices – towards

enhanced spectral clustering

As far as the laws of mathematics refer to reality, they are not
certain, and as far as they are certain, they do not refer to reality.

A. Einstein (This time not by L.C. because it fits very nicely.)

This chapter compiles some properties of eigenvalues and eigenvectors of correla-
tion and other matrices constructed from uncorrelated as well as systematically
correlated Gaussian noise. The situations depicted in this setting are found in time
series analysis as one extreme variant and in gene profile analysis with microarrays
as the other extreme variant of the possible scenarios for correlation analysis and
clustering where random matrix theory might contribute. The main difference be-
tween both is the number of variables versus the number of observations. To what
extent results can be transferred remains to be seen. The origin for this material
was a project on microarray data and clustering at the University of Alessandria
with the goal to cluster data of differential expressions via random matrix theory.
While random matrix theory as such makes statements about the statistical prop-
erties of eigenvalues and eigenvectors, the expectation is that these statements, if
used in a proper way, will improve the clustering of genes for the detection of func-
tional groups. In the course of the scenarios the relation and interchangeability
between the concepts of time, experiment and realisations of random variables will
play an important role. The mapping between a classical random matrix ensemble
and the microarray scenario is not yet obvious. It was also necessary to analyse
the spectral properties of correlation matrices from the bottom up starting from
the opposite end of the spectrum of scenarios.

108
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8.1 Introduction

We review spectral properties of correlation-like matrices from a general point of
view. One question to answer: What meaning do the eigenvalues and eigenvectors
exactly have, what information can be extracted that can be used to improve
clustering, for example? The established association of the large eigenvalue and
respective eigenvector with some kind of “dominant” mode [89] in the underlying
data seems to be just half of the story.

From a mathematically abstract point of view the situation and task is, or
likes, to be interpreted as the following: We are presented with stochastic variables
ξn, n = 1, . . . , N . The values taken by these variables are indexed by t = 1, . . . , T
by writing ξn(t) to allow the association with time series while this labeling may
refer to the experiment number or any other label that expresses meaningfully that
variables ξ1(t), . . . , ξN (t) belong to “one measurement”. This pedantry is necessary
because the interpretation and the choice of methods crucially depend on the
mappability between the mathematical object and the real world. In the former
there is no concept of time and its introduction must be well defined and justified.
The entire data can be arranged in a matrix M of dimension N×T . Assuming that
the average is zero, the Pearson estimator for the covariance matrix (Cij) is given
by Eq. (3.2). The covariance or correlation matrix C is often associated with the
Wishart matrix for which Marčenko and Pastur derived an analytic spectrum in
the large size limit if the variables ξn(t) are independent and identically distributed
with the condition of finite moments [118]. In previous chapters the equivalence
between the correlation matrix and the Wishart matrix was taken for granted.

A typical task is to extract sets of variables that form correlated groups, or
rather groups that have something in common. The above mentioned correlation
coefficient is just one of many possible “linkages” between (real valued) random
variables or even other random objects. It is to view clustering as a special case of
spectral reconstruction (approximation) of matrices or related networks [40]. The
notion of correlation can be extended to any coefficient that measures a link be-
tween two random objects in terms of a real number for which a suitable pair-wise
distance can be defined. The definition of a correlated group is therefore somewhat
arbitrary, likewise is the resulting clustering of different methods more or less dif-
ferent. In real world data there will usually be no correlation in the mathematical
sense but possibly something very similar and interpretable as correlation. Many
methods act on matrix C to extract information. Specialised methods make model
assumptions on the type of correlation (or link value) and are thus empirically op-
timised to cluster the random variables that work best for the given source of the
random variables.

Additionally, the mathematically abstract context of realisations of random
variables at equal times to which correlation measurement is often mapped to is
not justified in some cases. It does not hold, for example, if not all random variables
provide a realised value for each time index. This is the case in high-frequency fi-
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Figure 8.1: Schematic time series. In panel A both show a peak at the same
time. In B the peaks are still identical while Red seemingly fluctuates at random.
The correlation coefficients calculated from both situations are identical if the
increments lie on the same grid. The coefficients are likely to be very similar even
with continuous-time random walks and meaningful interpolation schemes.

nancial data where waiting-times produce zero returns between samplings. Neither
are the (differential) expression values extracted from microarrays easily justified
to be interpreted as random variables since for equal experimental settings equal
values must be expected. Consider the situation shown schematically in Fig. 8.1.
The time series change only once and at the same time in panel A. In panel B
time series Red fluctuates a lot and has, by coincidence or not, an identical spike
together with Blue. A correlation measurement combined with some typical in-
terpolation technique would produce identical or at least very similar correlation
coefficients for both situations. It depends strongly on the system, application
and questions asked if it is appropriate to call either situation correlated or not.
It is most likely A that depicts a significant connection between the two time se-
ries. Note that this likelihood increases with the total duration or number of data
points! We must therefore realise that the regions in time having zero increments
do contain information, in particular if their time scale is of the similar order of
magnitude as other time scales in the respective situation, for example the total
duration of the measurement. Ergo:

Any post-processing that only considers the correlation coefficients dis-
regards time and produces in such a case a joint probability density in
the (dis-)similarity matrix that does not correctly reflect the connection
between the time series.

It will be demonstrated later on that with time series with behaviour as described
in Fig. 8.1, or respective stylised facts, the data cannot be disregarded but should
be used in the reconstruction of “modes” and separation of correlated clusters that
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are otherwise not separable. Note, that the term “mode” is not mathematical and
mostly intuitive if used in real world data measurement.

Clustering with matrices and their eigenvalues and vectors is well established in
graph theory for a long time under the term “spectral clustering”. A good tutorial
is Ref. [175]. In short, it is based on a certain dissimilarity measure matrix L,
while definitions sometimes disagree, and it uses the eigenvectors of the smallest
k eigenvalues. This value has the same meaning as in k-means clustering, i.e. the
a priori estimate on the number of clusters. L is symmetric and called Laplacian
and one frequent definition is

L = diag(di)−C, (8.1)

where C is the unweighted (positive) adjacency matrix and diag(di) is the diagonal
matrix of vertex degree:

di =
N∑
j=1

Cij . (8.2)

One can consider L to contain a dissimilarity measure via the negated C which in
turn is analogous to the absolute value |C| sometimes used in a distance measure.
For example, the comparison of clustering methods in Ref. [125] uses a dissimi-
larity measure that is close to the one used later. In the end it is unlikely that
mathematical reasoning leads to the best choice of distance measure, as explained
above. In the following examples and figures it is demonstrated that with some
(dis-)similarity measure it makes sense to consider also other eigenvectors than the
large eigenvalues’s eigenvectors. In spectral clustering one is free to choose a suit-
able clustering method, for example k-means, which then performs the clustering
using these eigenvectors. This also means that the number of clusters must be
guessed beforehand. The motivation to consider here also a dissimilarity measure
is to keep track of what type of matrix other non-spectral methods as k-means or
PAM use.

The idea for an improved spectral clustering uses the correlation matrix as
a similarity measure since it contains no less information than any dissimilarity
matrix. Moreover, a theory exists on its random case spectrum. It seems that
the use of the Laplacian matrix L in standard spectral clustering is mostly to
achieve plausibility since it matches with a mathematical construction in graph
theory, i.e. just for plausibility. Furthermore, for a “mode” carrying a correlation
information we also have small eigenvalues leaking out of the Marčenko-Pastur law
of uncorrelated data. This is true for the similarity (correlation) matrix and, in an
analogous way, also for the dissimilarity matrix used here and defined later. Since
we assume that we are faced with a “noisy” situation we must use all information
we can extract. Since these small eigenvalues and associated eigenvectors are
likely to contain redundant information about the correlated cluster it is appealing
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not to ignore this information. The naive mapping of a real world situation to
simultaneous realisations of random variables is often not easy to be justified and
is mostly argued for because of reasonable results. An example are liquid together
with illiquid stocks. There the data itself can be used in the reconstruction of the
correlations.

The following sections construct artificial situations that are “extreme” for
didactic purposes in the sense that they are not realistic but allow to recognise
features in the eigenvalue and eigenvector spectra that could be used in the better
exploitation of the information content given in a more noisy and more realistic
data set.

8.2 Scenario 1 – Correlated noise with many variables

and many measurements per variable

8.2.1 One correlated cluster

The scenario demonstrated here mimics synchronous financial data analysis, i.e.
at least as many measurements as variables:

• T = 200 number of realisations per random variable

• N = 200 number of random variables

• Nc = 1 number of independently correlated groups of variables

• N1 = 20 number of correlated variables in group 1 (only one here)

• ξn(t) Gaussian noise data set n where t = 1, . . . , T .

• Type of correlation within group i:

ξn(t) = ξn(1− c) + Ξ(t)c (8.3)

Ξ is a prefixed “parent” noise vector specific for the correlated group.
c ∈ [0, 1] is a correlation coefficient.

• c = 0.93 (very high correlation)

The choice of Q = T/N = 1 is to avoid any factor Q if it appears in some
normalisation. The mathematical/numerical construction of the artificial corre-
lation is not so relevant since the realistic case will not provide a mathematical
correlation coefficient either. Fig. 8.2 shows the correlation matrix created from
the series ξ1 to ξN . For identification the first 20 are correlated. Also shown is
the more realistic disordered situation if the correlated data sets are unknown, i.e.
shuffled. Fig. 8.3 shows the respective random walks (RWs) xi(t), t ∈ N+, that
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are created from the realisation of the random variables in the same manner as in
the previous sections with the exception that these are equal-time random walks
on a regular grid. For the purposes of this chapter this is entirely sufficient and
the data points x(t1), x(t2), . . . are connected with straight lines. In Fig. 8.3 the
correlated group is drawn red.
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Figure 8.2: Correlation matrix of uncorrelated noise with one cluster of 20 arti-
ficially correlated variables. The right panel is reshuffled to imitate the standard
disordered situation in reality, where the red dots of high coefficients are randomly
distributed.

In addition to the correlation matrix C the following figures also show the
results using a dissimilarity matrix D. The definition of a dissimilarity is a bit
arbitrary. The measure used here is

D = 1− |C|. (8.4)

Fig. 8.4 shows the main part of the eigenvalue spectra of both matrices. The
numbering of eigenvalues is by size, i.e.:

λ1 < . . . < λN . (8.5)

Some features are outside the plot range. Note that λC− denotes the lower bound
of the Marčenko-Pastur domain which is zero in this case with Q = 1. In the
finite size situation with low correlation parameter the classification of eigenvalues
as belonging to the correlated group is not unique due to the overlap of the dis-
tributions with the informationless bulk of the spectrum. Likewise, the expected
size of eigenvalues fluctuates. We therefore use the order notation with O(·) to
indicate that an eigenvalue is expected to have the value O(x) or the number of
eigenvalues in a distinct group is expected to be O(N). This is not to be confused
with the usual meaning of order notation. For larger values of Q, N and correla-
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Figure 8.3: Random walks created from the noise in vectors ξ1 to ξN . The corre-
lated group is in red.

tion coefficient the groups of, e.g., zero eigenvalues, can be distinguished very well,
see Fig. 8.5. The histograms in the eigenvalue figures are again deliberately not
normalised to convey the absolute counts. The Laplacian’s L smallest eigenvalue
is always λL1 = 0 by construction [40].

Fig. 8.6 shows the eigenvector matrices of the correlation matrix as well as
of the dissimilarity matrix D. The realistic (shuffled) situation is also shown.
Columns are eigenvectors with column number corresponding to eigenvalue index.
The ordering is entirely arbitrary as long as the pairs of eigenvalue and eigenvector
are maintained well.

In the situation created here with one correlated cluster we find the following
(partly empirical) properties.
A) Properties of the eigenvalues and vectors of similarity (correlation) matrix C:

1. The spectrum is strictly positive definite with a lower Marčenko-Pastur
bound λC−.

2. Conservation law in the limit of high correlation:

λCN −N1 = 0. (8.6)

This not only holds if 1� N1 � N but as long as N � T and c ≈ 1.

3. One large eigenvalue λCN = O(N1).

4. The eigenvector V C belonging to the only large eigenvalue λCN contains N1
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The spectrum is
positive definite.

O(N1−1) small positive
eigenvalues λC1...N1−1 =
O(0) below λC−

One eigenvalue
λCN = O(N1)

The spectrum
is not definite.

One eigenvalue
λD1 = −O(N1)

One eigenvalue
λDN = O(N−N1)

O(N1 − 1) small eigenval-
ues asymptotically close
to zero

Figure 8.4: The features of the spectra of the similarity matrix and dissimilarity
matrix are similar in their content of information on the number of correlated data
sets. Due to “conservation of weight” we have the above (approximate) relations
for the extreme values and number of eigenvalues that are close to zero. In the
limit of high correlation and T � N these become equalities. In this example we
have N1 = 20 correlated among N = 200 random variables. For the dissimilarity
matrix we find λDN = 186.15 and λD1 = −17.57 only approximately correspond to
200 and 19 respectively. λDN + λD1 − N ≈ 0 holds well, however. The histograms
are not normalised on purpose to convey the absolute counts.
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Figure 8.5: Spectrum of similarity and dissimilarity matrix doing the same exper-
iment as in Fig. 8.4 but with larger numbers N = 1500 and T = 4500. Here the
group of N1 − 1 = 19 near zero eigenvalues can be identified easily.

relevant large elements in the indices of the correlated cluster proportional
to their contribution to the respective “mode”.

5. A group of O(N1−1) small positive eigenvalues λC1 to λCN1−1 below λC−. This
group is well distinguishable due to a clear gap to the bulk above λC−. See
Fig. 8.5.

6. The eigenvectors vC1 , . . . , v
C
N1−1 belonging to this group of small eigenvalues

are well distinguishable by N1 elements of higher variance in the element
indices that belong to the correlated cluster. See Figs. 8.7. With increasing
cluster correlation and matrix size the other elements of these vectors get
asymptotically close to zero.

7. Due to conservation of weight and with increasing cluster correlation and
matrix size all other eigenvectors vCN1

, . . . , vCN−1 are asymptotically close to
zero in the indices that do not belong to the correlated cluster. These small
elements fluctuate below the variance of the random majority of the eigen-
vector matrix. Again see Fig. 8.7.

8. The random bulk of the eigenvector matrix may indeed fluctuate beyond the
magnitude of the elements in V C . This can be observed in Fig. 8.7.

B) Properties of the eigenvalues and vectors of diss-similarity matrix D:

1. The uncorrelated spectrum is not definite due to one large positive eigen-
value. However, all other eigenvalues have a strictly negative upper bound
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λD+ < 0.

2. Empirical conservation law in the limit of high correlation:

λN + λ1 −N = 0. (8.7)

This not only holds if 1� N1 � N but as long as N � T and c ≈ 1.

3. One left large eigenvalue λD1 = −O(N1).

4. The eigenvector V D
left belonging to the left large eigenvalue λD1 = −O(N1)

contains N1 large elements in the indices of the correlated variables.

5. A group of O(N1− 1) small eigenvalues λD1 to λDN1−1 asymptotically close to
zero with increasing cluster correlation. This group is well distinguishable in
the large size limit due to a clear gap to the bulk below λD− . See Fig. 8.5.

6. The eigenvectors vD1 , . . . , v
D
N1−1 belonging to this group of small eigenval-

ues are well distinguishable by elements of high variance in the indices that
belong to the correlated cluster and low variance below the random bulk vari-
ance. With increasing cluster correlation and matrix size the other elements
are asymptotically close to zero. See Fig. 8.7.

7. One right large eigenvalue λDN = O(N −N1)

8. The eigenvector V D
right belonging to the right large eigenvalue λDN = O(N −

N1) is (1, . . . , 1)/
√
N plus some partly systematic fluctuation due to finite

size.

9. As opposed to the similarity matrix, the eigenvectors with large fluctuations
in the group indices are not situated at the far left end opposite to the vector
V D

right but a few columns closer. This property has no explanation yet.

10. The gap between the informationless bulk of the eigenvalues and the group of
small eigenvalues around zero is wider than in the spectrum of the similarity
matrix. See Fig. 8.5. It remains to be seen if this property is an advantage.

11. The random bulk of the eigenvector matrix may indeed fluctuate beyond the
magnitude of the elements in V C . This can be observed in Fig. 8.7.

The list of properties is not finished with the above items. Of particular interest
is the linear combination of RWs created from the correlated noise and eigenvector
information since the resulting “modes” allow recognition of similarities by eye that
otherwise remain hidden in the series of increments. The artificially correlated
cluster is produced via a fixed set of increments, called parent noise, that is re-
used for the production of all members of the cluster by adding more or less noise
depending on the correlation parameter c, see Eq. (8.3). Fig. 8.8 shows in black
the RW obtained by this “parent” noise that lies within the correlated cluster. The
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Figure 8.6: Colour coded eigenvector column matrix of the correlation matrix C
and of the dissimilarity matrix D. Shown are the magnified left and right corners.
The N1−1 eigenvectors belonging to the small group of eigenvalues evoked by the
correlated cluster can be identified as a square of N1×N1− 1 strongly fluctuating
elements as compared to the informationless part of the eigenvectors. Due to
the normalisation to length 1 the remaining elements in these vectors are close
to zero (column of uniform green area). Also note that all other eigenvectors are
essentially zero in the first N1−1 rows as well. The shuffled situation is also shown
below.
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Figure 8.7: Impressionistic view of the eigenvector matrix of the similarity matrix
C from Fig. 8.6. This perspective gives an impression of the overall structure
and magnitude of the eigenvectors. Vector V C can be recognised by the ridge of
equally large positive elements at the right upper corner.
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following notation, that is maintained later, assumes for simplicity’s sake vectors
if the entire range t = 1, . . . , T is referenced, i.e. x = (x(1), . . . , x(T )). We start
with the similarity matrix C and its two main objects of interest:

• The linear combination of RWs using the (in this case first) N1 relevant large
elements of eigenvector V C as coefficients:

xV C =
N1∑
n=1

V C
(n)xn, (8.8)

where V C
(n) denotes vector element n which is also the index of the random

variable. xn is the RW-vector constructed from the respective increments:

xn(t) =
t∑

τ=1

ξn(τ). (8.9)

Even though the sum runs over the first N1 vector elements of V C the corre-
lated mode is reproduced well. Fig. 8.8 shows the curve obtained via Eq. (8.8)
as blue circles.

• The linear combination of RWs using the N1 relevant elements of the N1− 1
eigenvectors vCn belonging to the small group of eigenvalues:

xvCn =
N1∑
i=1

vCn(i)xi, n = 1, . . . , N1 − 1 (8.10)

This gives N1 − 1 different “modes”. Fig. 8.8 shows these as several blue
lines. Even though the sum uses only the first N1 vector elements and RWs,
the modes are reproduced well.

• Of possibly greatest interest could be the sum of all modes according to
Eq. (8.8) and Eq. (8.10):

N1−1∑
n=1

xvCn blue squares in Fig. 8.8 (8.11)

and also the sum of all modes according to Eq. (8.10) plus Eq. (8.8)

N1−1∑
n=1

xvCn + xV C blue squares in Fig. 8.9. (8.12)

It is not clear yet which of the last two curves and with which factor or sign comes
to sit exactly on the parent mode, or if there is any predictability at all. The
difference between these two examples in Figs. 8.8 and 8.9 is only different seeds
in the random numbers, i.e. they are different realisations. There are four possible
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outcomes:

a) Example realisation Fig. 8.8 requires Eq. (8.11).
b) Example realisation Fig. 8.9 requires Eq. (8.12). The match in the latter is
better in this example, actually so good that it appears very unlikely that any
other choice could be correct and that this is merely a coincidence.
c) In some other realisations it is a sign change that makes either Eq. (8.11) or
Eq. (8.12) sit on the parent mode.
d) Other examples do not make it obvious which sign or factor is missing.

In any case, there do not seem to be intermediate cases in between. Overall, the
modes are still the same up to a factor. Apart from that, it seems that the mode
obtained by the elements of V C does not play any special role within the modes
obtained via each vCn , n = 1, . . . , N1 − 1.

• Finally, it appears that one of the modes vCn , n = 1, . . . , N1 contains the
“zero-mode”. Empirical examples indicate that up to some fluctuation that
is decreasing with increasing T one possibly special vCn is essentially zero on
the entire axis.

The entire exercise on linear combination of modes can be repeated with the
eigenvectors of the dissimilarity matrix, but this has to be skipped for now since
a detailed comparison requires a good amount of resources and has to be left to
future work.

8.2.2 Two correlated clusters

Figs. 8.11 and 8.12 demonstrate how the situation of two correlated clusters shown
in Fig. 8.10 is coded in the eigenvectors of the respective correlation matrix. With
two clusters an additional feature appears: both eigenvectors belonging to the two
large eigenvalues code the mode within their elements. The clusters are chosen
such that the first (1–20) and the last (180–200) noise vectors are correlated to
simplify identification by eye. First observe the following characteristics of this
particular realisation of the respective RWs in Fig. 8.12:

1. We have two eigenvectors that code the two modes. As expected they are
located at the right of the eigenvector matrix because they belong to two
large eigenvalues of essentially equal value up to some noise due to the finite
size of the situation.

2. Both eigenvectors are non-zero in the indices of both of the correlated clusters.

3. The sign of these non-zero elements is either entirely positive or entirely
negative. The sign depends on the realisation, yet not all combinations are
possible. Two signs in one group, e.g. 1–20, must be equal, the other in
180–200 two are then opposed.
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parent mode

= xvCn =
∑N1

i=1 v
C
n(i)xi

n = 1, . . . , N1 − 1

= xV C =
∑N1

i=1 V
C

(i)xi =
∑N1−1

n=1 xvCn

t

Figure 8.8: From the coefficients of eigenvectors that belong to eigenvalues outside
the random bulk of the spectrum several “modes” can be reconstructed that are
identical up to some statistical fluctuations. The parent mode is created with
one pre-fixed set of noise used for generation of the correlated bunch (red), see
Eq. (8.3). The legend gives the respective summation formulas. The notation uses
the short cut x = (x(1), ..., x(T )) the subscript (i) denotes the ith vector element.
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= xV C +
∑N1−1

n=1 xvCn

t

Figure 8.9: In this example the summation giving the blue squares includes the
mode xV C in contrast to Fig. 8.8; the legend is the same. The result lies even
closer to the parent mode. They match so well that one should assume that this
construction is the right choice. The legend provides its summation formula. The
notation uses the short cut x = (x(1), . . . , x(T )), the subscript (i) denotes the ith
vector element.
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Figure 8.10: RWs with two independent correlated groups of random walks whose
increments are correlated with the correlation coefficient c1 = c2 = 0.8 .

Fig. 8.13 demonstrates in detail which eigenvector matrix elements recover the
mode. The matrix elements are used for linear combinations of the correspond-
ing RWs according to Eq. (8.11) or Eq. (8.12). The elements are marked in the
schematic overview Fig. 8.14 and can be recognised in Fig. 8.12 as columns. It is
apparent that the respective recovered modes are cluster-wise numerically identical
up to an overall factor. The reconstructions approximate the parent cluster mode
Eq. (8.3). With correlation coefficient c1 = c2 = 0.8, i.e. equal for both clusters,
we do not expect a perfect recovery of the parent mode.

8.3 On the distribution of eigenvector elements

In the random uncorrelated case the elements of eigenvectors u(i) taken from the
correlation matrix follow the Porter-Thomas law which is essentially a Gaussian
with variance σ2 = 1:

P (u) =
1√
2π
eu

2/2. (8.13)

The figures in Sec. 6 provide examples of how eigenvectors that carry information
deviate from this law. It has been said that the comparison of the distribution
of vector elements with Eq. (8.13) alone does not suffice to reveal informative
structure. The cumulated information of a histogram easily hides non-random
structure, i.e. some information content.
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Figure 8.11: Colour coded eigenvector column matrix of the correlation matrix C
and of the dissimilarity matrix D.
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Figure 8.12: Colour coded eigenvector matrix of the correlation matrix C. This
perspective shows that the two eigenvectors belonging to the two large eigenvalues
are non-zero in the indices of both correlated random variables. The regions at
the “other end” of the matrix also “code” the respective modes.
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Figure 8.13: The two “parent” modes used for construction of two artificial clusters
and the reconstructed modes are shown as red and green continuous lines. The
notation MODE V[i − j, k − l] denotes the eigenvector matrix elements used in
the mode reconstruction by linear combination of the respective RWs according
to Eq. (8.11) or Eq. (8.12). The factors are empirical. In this example we have
20 possibilities to reconstruct exactly the same mode up to a linear factor. These
reconstructions are identical but only approximate the parent mode.
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Figure 8.14: In the case of two correlated clusters of random variables in the indices
(1–20) and (180–200) the regions in the eigenvector matrix of the correlation matrix
whose elements code the respective mode are known beforehand up to an arbitrary
ordering of clusters 1 and 2. All eigenvectors that stem from a large eigenvalue
contain all modes. In the realistic, or shuffled, situation all rows would be re-
ordered in a random way but the overall order within the columns remains.

8.4 Improved spectral clustering

We make use of the fact that the small eigenvalues belonging to a mode also
code the mode up to a factor. In contrast to, for example, k-means the following
procedure has the advantage of estimating the number of clusters and it also allows
for cluster overlaps.
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Algorithm:

1. Decide on the number of significant modes (or clusters) by counting
the number k of “large” eigenvalues, number of significant eigenvec-
tors, etc. using a criterion of choice.

2. Take the corresponding k eigenvectors. For all k vectors and do:

3. “Plot” the mode coded in Vk via Eq. (8.8).

4. Decide for Vk which ηk largest elements are significant, e.g. by com-
paring with the Porter-Thomas law or via contribution to the result-
ing mode, etc..

5. Find among all vectors the corresponding set {vki} of size ηk − 1
(region A, B, etc.) There are different ways: E.g. try to recover the
mode coded in Vk doing many fits with linear combinations as in
Eq. (8.10).

6. Test if a different number than ηk − 1 gives the best fit by repeating
5 trying an additional v∗ki (consequently also an additional vector
element in all vki as well as v∗ki ). Then ηk, the number of significant
elements in the large eigenvalue’s eigenvector, can be adjusted.

7. Remember these eigenvector element indices as the cluster {Nk}.

8. Repeat at 2).

9. We are left with k sets of numbers. Some may overlap.

The first, main, improvement is located in steps 5 and 6. We use ηk eigenvec-
tors to determine the number of correlated random variables in cluster k instead of
only the one eigenvector Vk belonging to the kth-largest eigenvalue. Furthermore,
random matrix theory suggests a threshold and other criteria above which eigen-
values are significant, thus giving an estimate of the contained clusters. Third, the
above classification allows overlapping clusters which is meaningful.

Remark on step 1) One can also select different complementary criteria. For
example, a measure that tells how significant an eigenvector that belongs to a
potentially large significant eigenvalue departs from the Porter-Thomas law.
Another criterion checks for any structure in the eigenvector even though
the distribution of elements is Porter-Thomas. That this criterion is not
redundant has been shown in Sec. 6. Furthermore, we have seen there that
within the Marčenko-Pastur bound close to the right edge the eigenvectors
are not necessarily informationless.
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Remark on step 5) There are two pieces of information in the eigenvector ma-
trix that help in this task:
a) We can use the ηk significant elements determined above of each vector
vki (of which there are ηk − 1). Of great help is the fact that the relevant
elements of all the to-be-found vki are located in the same index, i.e. row, of
the relevant (=large) elements in Vk. This fact can be observed also in reality
as ridges of high (color) variance in the reshuffled version of the eigenvector
matrices in Fig. 8.6. As shown in examples with more clusters there is no
ambiguity. So, in the end, the found vki arranged next to each other form
a rectangle of size ηk × (ηk − 1) of high (colour) variance. The remainder is
made up of only small elements.
b) The number ηk of relevant (not necessarily large!) elements in the regions
A, B, E, F, etc. is equal to the number of significant vectors ηk minus one!
The best fit must be in accordance with this, otherwise the algorithm has to
switch to step 6 again.

Remark on step 6) In other words: Try to add an additional vector element
to the set of relevant vector elements in Vk, then see what happens. This
implies that an additional vector v∗ki has to be selected as well as an addi-
tional relevant vector element in all other vki so far selected. (This of course
includes the additional v∗ki). So we use an increased rectangle A, B, etc..
If the fit of all coded modes does not improve then the best clustering was
reached. Furthermore, a “quality” value can be chosen that associates the
best clustering with the smallest overlap between the clusters or anything
else that is suitable for the application.

With the above procedure the accidental clustering of the three time series in
Fig. 8.1 does not happen. The red time series in panel B is not included in the
cluster with the other two.

Note that in this field the widely used Kernighan-Lin algorithm [103] is the
best example of a purely empirical clustering method that is justified by achieving
satisfactory results in practice.

8.5 Scenario 2 – Un-correlated noise with more vari-

ables than measurements per variable

The Marčenko-Pastur theory for uncorrelated independent Gaussian noise in the
Wishart matrix ensemble was developed for T > N in the large size limit, i.e.
more realisations per random variable than variables. It has been recognised only
recently by Lehmann [94] that for T < N the theory persists essentially unchanged.
In particular, for T � N the limiting distribution is the Wigner semi-circle law.
The difference is a shift of variables and a delta-contribution of zero eigenvalues.
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Figure 8.15: Spectrum averaged from 12000 Wishart matrices AAT where A
is N × T = 900 × 3 with uncorrelated Gaussian noise. In the limit N → ∞
the histogram approaches the shifted and rescaled GOE spectral density of 3× 3
matrices, i.e. the Wigner semi-circle. The single data point at λ = 0 marks the
delta-function in Eq. (8.14) representing many zero eigenvalues.

With m = N/T the eigenvalue density can be expressed as

ρ(λ) =
1

2πλ

√
4m− (1 +m−mλ)2 + δ(λ)(1−m), λ ∈ (λ−, λ+), (8.14)

λ± = (1±
√
m)2/m. (8.15)

This law is intuitively understandable since the number of non-zero eigenvalues in
the product of two iid random matrices is the rank given by min(T,N). The non-
zero eigenvalues resulting from the matrix products ATA or AAT with rectangular
A made of independent random variables are even numerically identical up to a
global normalisation factor. Eq. (8.14) contains a delta-function that represents
the zero eigenvalues. Since the eigenvalue density of a GOE random matrix is
independent of the matrix size beyond ca. N,T > 50, the matrix products ATA
and AAT are equivalent in the non-zero part of the spectrum.

Formula (8.14) is independent of N and T and in this section we deal with
T � N . To minimise finite size effects in obtaining the Marčenko-Pastur density
in the non-zero part of the spectrum N has to be chosen quite large to allow
T to be sufficiently large to achieve T � N . Eq. (8.14) can be reconstructed
in numerical experiments, the spectra are shown in Fig. 8.15 with T = 3 and
N = 900. The logarithmic y-scale allows the Delta-function at λ = 0 to be
observable together with the non-zero part of the spectrum. In the linear plot
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Figure 8.16: Non-zero part of the spectrum averaged from 12000 sample correlation
coefficient matrices with uncorrelated noise; N = 900, T = 3.

the shape of the Marčenko-Pastur law can be recognised but it lies very far out
as compared to the standard case with T ≥ N . In the following most examples
are based on the choice m = N/T = 900/3 according to the example presented in
Lehmann [94]. Larger values for T are better calculated on a parallel machine or
with a lot of time because many realisations are necessary to obtain a reasonable
accuracy in the histograms.

In respective literature several fundamental results in random matrix theory
are presented as candidates for a correspondence with some real world situation or
some mathematical/statistical object that cannot easily be calculated. The same
is the case with the above result by Lehmann. The point of view is simply carried
over from applications in finance where the Wishart matrix ensemble is considered
to be sufficiently close to the respective correlation matrix. However:

The matrix of sample correlation coefficients is an inappropriate approx-
imation of the Wishart matrix ensemble if T is small such that the true
and realised mean and variance of iid noise differ significantly.

The statement above can be restated as follows: Assume ξ1(t), . . . , ξN (t) to be iid
and uncorrelated random variables with zero mean and standard deviation σ = 1
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Figure 8.17: Non-zero part of the spectrum averaged from 6000 sample correlation
coefficient matrices with uncorrelated noise; N = 1200, T = 4.
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Figure 8.18: Non-zero part of the spectrum averaged from 15000 sample correlation
coefficient matrices with uncorrelated noise; N = 1500, T = 5. The data points
are connected with lines to make the series of maxima more apparent.
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and realisation index t. Then the matrix of sample correlation coefficients

Cij =
∑

t(ξi(t)− ξ̄i)(ξj(t)− ξ̄j)
(T − 1)sd(ξi)sd(ξj)

(8.16)

with sample standard deviation sd(ξ) and sample mean ξ̄ is significantly different
from the Wishart ensemble

C =
1
T

MMT (8.17)

according to the definition of M as in Eq. (3.2). This is simply due to the insuffi-
cient number of realisations to obtain a good estimate of mean and variance. The
spectrum produced via the sample correlations for the same data as in Fig. 8.15
is shown in Fig. 8.16. The differences are peculiar:
1) The approximate middle spectrum is shifted to a higher value of λ = 300 →
λ = 450.
2) The spectrum consists of two disconnected parts.
One can show, at least empirically by analysing the eigenvalues directly, that there
is no eigenvalue falling into the point region between the two supports of the halves
in this example.

How can this be explained? We first observe that for N ↗ T up to N = T the
matrix rank of the sample correlation coefficient matrix is not full but exactly one
less than the number of independent rows or columns in the Wishart ensemble.
Looking at the list of eigenvalues we discover one numerically zero eigenvalue be-
low the (empirical) Marčenko-Pastur spectrum, which is strictly positive definite.
We get in increasing order:

from sample corr. matrix from Wishart ensemble

5.392423500457690e-17 1.176099194760301e-06

1.345617510432624e-06 6.217387115086680e-06

1.261396309228272e-05 2.086802587513426e-05

2.459788786131458e-05 2.636339685910131e-05

2.985884814656815e-05 4.599760096704007e-05

5.245327169211368e-05 8.182996374009664e-05

1.371004860632502e-04 1.405440978395324e-04

1.538041928161666e-04 1.640231118492298e-04

... ...

The lists above are the sorted eigenvalue outputs with N = T = 900. The strict
positivity in the Wishart ensemble is empirically expressed in very small but clearly
numerically non-zero eigenvalues down to 10−7. A zero eigenvalue is as unlikely as
it is unlikely to find a perfectly uncorrelated series of length T , i.e. with realised
covariance equal to zero. With N = 900, T = 901 the zero eigenvalue in the
column for the sample correlation matrix disappears. We can also measure the
rank against the number of random variable realisations T . See Table 8.1. The
last three rows of the table correspond to Figs. 8.15, 8.17, and 8.18. These three
spectra are calculated for fixed m = N/T = 900/3 = 1200/4 = 1500/5. The
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THAN MEASUREMENTS PER VARIABLE

N T rank sample correlation matrix rank C = 1
T MMT

900 902 900 900
900 901 900 900
900 900 899 900
900 899 898 899
900 898 897 898
1500 5 4 5
1200 4 3 4
900 3 2 3

Table 8.1: With the transition T > N to T ≤ N the rank of the sample correlation
matrix drops earlier and persistently by one than the rank of the Wishart matrix.

rank of the matrix is reflected in the number of independent rows and columns
as the QR-decomposition used for these calculations is numerically able to tell.
The output is consistent with the observed eigenvalues. With increasing T and
constant m the number of maxima increases and we can expect the spectrum to
converge against the analytic prediction for the Wishart ensemble because the
position of the spectrum wanders closer to the position of the analytic curve and
the number of maxima increases.

So far, these are empirical facts that seem to be relevant. The explanation
of why exactly the maxima and the shift appear is still elusive. A guess about
the shift is that the normalisation by realised means and variances introduces
correlation, on the average, in all pairs of variables.

Whether microarray experiments with many more genes than expression values
can benefit from the results of random matrix theory has to be seen. Since we have
at best a few microarrays, each giving about 10 expression values we get very few
non-zero eigenvalues for comparison with the null-hypothesis spectrum above. The
nuisances of microarray experiments and data analysis is an epic in itself. What
can be claimed already is that no single experiment with two orders of magnitude
more genes than experiments can contain the information to separate more than
very few functional groups. And even if the data was perfect in the sense of no
technical and biological variance and with only 3–4 functional groups that reveal
themselves perfectly in significant up (and down?) of the genes, which would be
biologically quite a luxury, then the groups could be identified by eye in the data
already.

8.6 Scenario 3 – Correlated noise with more variables

than measurements per variable

The time series data from Fig. 8.10 can be used as a starting point for making
T smaller than N . First we prune the data by exactly one data point, i.e. T =
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Figure 8.19: Exactly the same data as in Fig. 8.13 except that the last data point
is cut off, i.e. T = 199. Despite this small change, all factors on the reconstructed
mode do not fit anymore. This is caused by reordering of nearby eigenvalues and
their eigenvectors.

200 ↘ 199. The procedure for the reconstruction of modes as well as the factors
from Fig. 8.13 are kept identical. The result can be seen in Fig. 8.19, all factors
are not in the right place anymore. Despite the small change in T and despite
all eigenvectors being normalised to unit length, all factors on the reconstructed
mode do not fit anymore. Indeed, we have no influence on the ordering of the two
large eigenvalues or which mode the nth eigenvector happens to capture. This is
the usual problem of unique identification of eigenvalues very similar to electronic
band structure calculation, where band crossings are not distinguishable from small
band gaps [60].

The next demonstration is more extreme with T = 100, keeping N = 200.
We now show the eigenvector matrix of the correlation (similarity) matrix and
of the dissimilarity matrix D = 1 − |C|, see Fig. 8.20 showing both from the
same perspective. First note one eigenvector (1, . . . , 1)/

√
N in the highest index

of the dissimilarity matrix. The explanation is analogous to why the Laplacian
also always has (1, . . . , 1) as an eigenvector, see Ref. [133]. At this point it also
becomes apparent that for T < N the behaviour of the two matrices departs more
significantly and the detailed analysis of the vectors is left open for future work.

8.7 Intermediate discussion

Usually the matrix rank is equal to the number of non-zero eigenvalues and is con-
sidered an integer number. For some purposes or applications this view is possibly
too restrictive. What happens in the above scenario when two out of many time
series are correlated? We get a large and two small eigenvalues growing out of the
Marčenko-Pastur spectrum of eigenvalues that represent uncorrelated noise. The
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Figure 8.20: Eigenvector matrices of the similarity (correlation) matrix C (left)
and the dissimilarity matrix 1 − |C| (right). With N = 200 and T = 100 the
two correlated clusters cannot be easily recovered in the vectors anymore. The
behaviour of both eigenvectors is rather different, too. In the right picture the
clusters are not even expressed symmetrically.

two small eigenvalues move towards zero with increasing correlation. With perfect
correlation they are zero and the matrix rank suddenly drops by two. On the way
however, the continuous transition can be regarded as a continuous reduction of
matrix rank of the associated Wishart matrix by correlation or “similarisation”.
The details of this process do not not matter as long as it is continuous and we
reach equality, i.e. perfect correlation, at the end.

Whether the equality T = N is a special barrier, at least in the Wishart en-
semble, depends on the questions asked. We have seen in the previous section
that sudden changes occur in certain measures like the matrix rank. The less
information with decreasing T , the less eigenvalues and eigenvectors are able to
capture the behaviour. With T � N the data can hardly be distinguished from
randomness. We saw in Fig. 8.20 that the “disturbance” of randomness caused
by correlations spreads out to more eigenvectors than originally contained in the
artificial clusters. This can also be observed with T = N and more so in the
dissimilarity matrix: A closer look at the eigenvector matrices in the regions A,
B, E, F as defined in Fig. 8.14 reveals that the fluctuations decay slowly towards
increasing column index. This is coincidental misinterpretation by the correlation
estimator of a random walk as correlated with a cluster or vice versa. Neither are
the edges of the Marčenko-Pastur spectrum hard. The dissimilarity matrix seems
less prone to such false-positive and false-negative measurement because it disre-
gards information due to the equal treatment of correlation and anti-correlation.
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8.8 Genetic profile scenario of microarray data on dif-

ferential expressions

In the previous sections the problem of extracting clusters from correlation matri-
ces was discussed. In microarray experiments it is common to deal with values of
differential expressions

xi = log
(
Ired

Igreen

)
(8.18)

for each gene i. The values Icolour are dye intensities on the array wafer that
code the number of detected RNA molecules. One of the two usually contains the
“control experiment” as a reference base. Any deviation from zero indicates that
the gene is differentially expressed with respect to the reference value. This is the
extremely idealised situation that is actually far from reality. Such is the point of
view of random matrix theory, though. Likewise, we assume that the deviations
around zero are linear and symmetric, etc. It is common in practice to work only
on a subset of approximately 300–500 genes that are expected to contain one or
more functionally related genes that are “provoked” to express differentially, i.e. to
change expression levels, under certain possibly changing experimental conditions.
The term “experiment” is in this case used on a more general level and can refer
to different spots on the wafer or different wavers containing replicas or data from
different biological conditions. In both cases the types of systematic errors are
different. Commonly, the number of experiments under different experimental
conditions is often restricted below 10, mostly due to financial limits. There are
three scenarios that can be considered:

0) The true null-situation. All Icolour, where colour ∈ {red, green}, contain
the same experimental condition. Any extracted pattern is some systematic
error. This test is non-trivial since the different dyes behave differently.
The house-keeping genes in particular, which inadvertently could also be
regulated, must pass the test.

1) We are given the values xi(t) where t = 1, . . . , T indexes the experiments
with the same experimental condition, i.e. replicas. One may assume that the
values fluctuate randomly and independently around the same (expectation? )
value due to technical or biological variance. This scenario can be considered
as a measure to extract at least some possible systematic errors that are
introduced technically or biologically and influence the measurement within
the same experiment index t. This situation should correspond to the null-
hypothesis of uncorrelated random variables. A grand un-provable theory of
experimental physics states that in a chain of errors the resulting final error
is most likely Gaussian. Therefore, we have a good chance that this will
also be the case here and the scenario of Bessel distributed random numbers
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from Sec. 7 is repeated if X,Y ∼ N(0, σ) and we deal with one of the above
null-situations.

2) We are given the values xi(t) where t = 1, . . . , T indexes the experiment
with different experimental condition, for example increasing cell stress or
anything biologically sensible that is hoped to provoke expression changes
in certain functional groups. One may assume that the expression values
do carry the expected information if they are biologically expected to do so
by the experimentalists. The abstractional step from microarrays to reali-
sations of random variables is debatable in this case. We expect the differ-
ential expression xi(t) to have a functional relationship with t. If t indexes
the experiment number with increasing cell stress level or any other mean-
ingful condition, then subsequent values x(tj), x(tj+1) are highly dependent,
probably monotonic and possibly even nearly linear in t if the cell stress is
increased slowly. The latter would implicate that ∆x(t) = const, leading to
scenario 1) after normalisation to 〈∆x(t)〉 = 0. This experimental setting of
“small” changes is likely to achieve the initial goal of controlled differential
expression of the same set of functional groups best. Yet since this ideal sit-
uation is not to be expected this second scenario is probably still a distinct
case.

In the light of the previous section but also by considering scenario 2 it can be
questioned in how far it might be sensible to normalise the variance and the means
of the expressions for one gene with the sample values or any other value. In
addition, it is debatable whether to take the increase of the differential expression
level as the to-be-correlated variable or maybe xi(t) directly. As we have seen, the
realised variance, mean and probably other statistical measures of interest, loose
their meaning with extremely small number of realisations. The ideal genetic
profiling draws no information from additional experiments (e.g. increased cell
stress) if the relation between xi(tj) and xi(tj+1) is (ideally) nearly linear. This
poses a paradox since the microarray business considers many experiments as
beneficial. This line of reasoning however, leads to fundamental debates about
the current view on microarray experiments and the information they can contain
and well as which statistical prerequisites/algorithms to use. The information
contained in the data set xi(tj = 1, . . . , T ) is then essentially the slope independent
of T . Thus, the information contained in the data set can be coded entirely into
one matrix element.

Random matrix theory only accounts for equal-time or “equal-experiment-
index” correlation. This statement clearly points to the previous section on the
reconstruction of modes while it is yet unclear how to deal with the situation of
reduced matrix rank. The following statement may arise from the reasoning above:
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Scenario 2 provides highly dependent realisations, possibly even linear,
of variable xi(t) with index tj → tj+1. As opposed to time, the differ-
ence tj+1 − tj , e.g. coding cell stress level, is not meaningless. For such
a highly systematic situation the ordering sequence t1, . . . , tT cannot be
disregarded. It would be inappropriate for any analysis to ignore this
dependency, thus to stick to the random matrix point of view alone.

Nevertheless, for the null-situations depicted above we can still perform some sand
box simulations with the luxury of nearly infinite sand in order to be able to cal-
culate densities for the sample correlation matrix ensemble. The spectral density
for the null-situation with six experiments is shown in Fig. 8.21 with unknown
variances and means, i.e. we are dealing with the sample correlation matrix en-
semble. Note that this density is obtained from averaging over many histograms.
If variances and means are known (somehow) we get the Wishart ensemble back.
Fig. 8.22 shows an artificial experiment to create a possible scenario in microarray
data analysis with differential expression of a subset of replicas with high correla-
tion:

• T = 6 number of realisations per random variable

• N = 300 number of random variables

• Nc = 1 number of independently correlated groups of variables

• N1 = 20 number of correlated variables

• ξn(t) Gaussian noise data set n where t = 1, . . . , T , n = 1, . . . , N .

• Type of correlation within group the group:

ξn(t) = ξn(1− c) + Ξ(t)c (8.19)

Ξ is a prefixed “parent” noise vector specific for the correlated group.
c ∈ [0, 1] is a correlation coefficient. Ξ is identical for all realisations!

• c = 0.9 (very high correlation)

The correlated cluster induces a bump of eigenvalues on the right of the null-
hypothesis spectrum. Despite the extremely high correlation coefficient the addi-
tional bump does not lie far outside the uncorrelated null-spectrum. We conclude
from this that the correlation measurement, whether via Wishart or sample corre-
lation matrix ensemble, is rather insensitive. In practice we would have only one
single eigenvalue that has to be judged by its position with respect to the null-
spectrum. And since it turned out to be a non-trivial extension of one correlated
cluster Fig. 8.23 shows the following scenario with two independent and equally
correlated clusters:
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• T = 6 number of realisations per random variable

• N = 300 number of random variables

• Nc = 2 number of independently correlated groups of variables

• N1 = 20, N2 = 20 numbers of correlated variables in each group

• ξn(t) Gaussian noise data set n where t = 1, . . . , T .

• Type of correlation within group i:

ξn(t) = ξn(1− ci) + Ξi(t)ci (8.20)

Ξi is a prefixed “parent” noise vector specific for group i and
ci ∈ [0, 1] is a correlation coefficient. Ξ1 and Ξ2 are identical for
all realisations!

• c1 = c2 = 0.9 (equal and very high correlation)

In spite of equal number of variables and magnitude of correlation in both
groups we get two maxima in the distribution of eigenvalues that are pushed out
of the null-spectrum. The explanation for this is elusive as well.

Note again that the histograms are produced by averaging over many realisa-
tions, thus we cannot compare two curves in the application but can do a confidence
test using the previously calculated expected hypothesis density. In reality we only
have six eigenvalues that have to be judged by their likelihood of appearance with
respect to the informationless bulk of the spectrum. Furthermore, the data for the
above toy examples is perfect in the sense that there are

1. no outliers,

2. no (systematic) measurement problems,

3. no technical variance (usually also systematic).

Such errors have to be modeled and obtained from experiments. The null-
hypothesis will require the a priori calculation of the null-hypothesis density by
averaging over many realisations. The data must contain the above error model
in a parametrised fashion.
This is not a sort of nit-picking since the impact of some error or outlier within the
series of only six experiments for a gene on the resulting six non-zero eigenvalues
is very large. There are articles devoted entirely to error modelling and treatment
in microarray experiments and data analysis [55].
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The creation of the null-hypothesis spectrum would have to include these
problems under the assumption that they are stationary and reproducible
during the experiment in a parametrisable fashion.

Note that in principle this is the same procedure as in the null-hypothesis toy
market from Chap. 6.

8.9 Summary and conclusion

We have shown so far to what extent the information content in the eigenvalues
and eigenvectors of a correlation matrix is redundant as long as we have more
measurements than variables. Spectral clustering ignores this redundancy which is
justified as long as the data is perfect. Moreover, clustering methods that disregard
the data and only consider the correlation matrix make errors due to ambiguity. In
case of having far less measurements than variables we have demonstrated how the
correlation matrix spectrum differs, using either the sample mean and covariance or
the expectation values. In the scenario of microarrays the application of correlation
matrix analysis for the extraction of functional groups turns out to be questionable.
It can serve, however, in the analysis and modelling of errors.
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Figure 8.21: Non-zero part of the spectrum averaged from 250000 sample corre-
lation coefficient matrices with uncorrelated noise; N = 300, T = 6. The nor-
malisation in this pictures is to the total number of non-zero eigenvalues. Also
shown is the scaled and shifted analytic prediction for the Wishart ensemble to
allow comparison of the shapes.
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Figure 8.22: Non-zero part of the spectrum averaged from 50000 sample correla-
tion coefficient matrices; N = 300, T = 6. The first 20 variables are artificially
correlated with each other with a coefficient c = 0.9 according to Eq. (8.19). The
normalisation in this pictures is to the total number of non-zero eigenvalues which
is the only significant part of the spectrum.



CHAPTER 8. SPECTRAL PROPERTIES OF CORRELATION MATRICES –
TOWARDS ENHANCED SPECTRAL CLUSTERING 144

30 40 50 60 70 80 90

0.
00

0.
01

0.
02

0.
03

0.
04

λ

ρ(
λ)

Figure 8.23: Non-zero part of the spectrum averaged from 80000 sample correlation
coefficient matrices; N = 300, T = 6. The first 20 and the second 20 variables
are artificially correlated clusters independently of each other with a coefficient
c = 0.9 according to Eq. (8.19). The normalisation in this picture is to the total
number of non-zero eigenvalues which is the only significant part of the spectrum.



Chapter 9

Networks of synchronisation in

electroencephalographic

activity

It’s a poor sort of memory that only works backwards.

L.C.

This section presents the very recent and preliminary results of synchronisa-
tion analysis of electroencephalographic activity (EEG) measurements that where
recorded during the Siesta project some years ago. The data analysed here com-
prises 6 channels giving 36 signals after band pass filtering into the typical fre-
quency bands of brain waves. Data sets for two nights of three people were avail-
able. These results were produced in joint work with the group of Prof. Jan
Kantelhardt, Department of Physics at the Martin-Luther Universität in Halle
and with Dr. Ronny Bartsch at the Department of Physics, Bar-Ilan University
in Tel Aviv within the EU-project DAPHNet (http://www.daphnet.eu) between
June and November 2008. In particular the data pre-processing was carried out
during the foregoing years by other workers at different locations after the original
measurement campaign. This material is also incorporated into the final DAPHNet
scientific report D3.2-2009 and represents, among other material, the contribution
by the Institute for Scientific Interchange (ISI), Torino (for which D.F. did this
work). At the time of writing the ISI’s part to bridge the gap between pure fact
finding in data and “modelling of everything” is still under construction and will
probably not be completed before the end of the project or this millennium.

In brief: We find that the measure of synchronisation as done in this work is
surprisingly sensitive to the sleep stages or changes of sleep stage and can possibly
detect additional characteristics in comparison to the typical inspection by eye
performed for sleep stage classification.

145
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9.1 Definition and measure of synchronisation

Correlation and synchronisation are concepts that provide a measure to describe
two types of mutual behaviour of two signals or time series that are sufficiently
continuous in time. While correlation is concerned with the amplitudes of the
signals, a synchronisation measure is completely independent of the local amplitude
and considers the phases only. The numerical execution may be seen as a black
box while the meaning of synchronisation is explained best on an intuitive level.
The mathematical definition including data pre-processing and interpretation of
the result is a field where the bigger errors can be made. For completeness the
definitions are introduced as well as one way among several for the calculation of
the phases of the signal. Some methods for synchronisation analysis do not possess
mathematical justification or correspondence to a mathematical concept but can
be equally meaningful in the context of the questions that are asked. Likewise, it
might be meaningless to try interpret the “instantaneous” frequency even though
the variant via the Hilbert transform explained below also gives numerical values
untouched by the fact that a signal may contain several distinct frequencies and
might not even be periodic at all. In both cases the notion of “phase” is unclear.

For simplicity we start with the assumption that the signals under consideration
have no negative frequencies. This is an issue which is not of practical concern as
explained below. A (complex) signal can then be represented as

z(t) =
1

2π

∫ ∞
0

Z(ω)eiωtdω, (9.1)

where Z(ω) is the complex Fourier transform. Any sinusoidal function K cos(ωt+
φ) can be converted into a complex periodic sinusoidal function K exp(i(ωt+ φ))
with positive frequency by adding to the original signal the same but phase shifted
and complex conjugated signal:

K exp(i(ωt+ φ)) = K cos(ωt+ φ) + iK sin(ωt+ φ). (9.2)

A multiplication by the imaginary unit can be interpreted as a rotation of the
complex pointer by π/2. This is an example the mapping of a sinusoidal function
onto a circle on the complex plane has a simple analytic representation and we
can easily identify a phase in the resulting complex signal. Real data may contain
more than one frequency and the above procedure is not obvious to carry out. One
possible method is to use a Hilbert transform filter denoted by H[x(t)] = H(t) that
shifts each component by the above −π/2 for a positive frequency and +π/2 for a
negative frequency. The new complex signal can then be constructed by using the
Hilbert transform as the imaginary part:

z(t) = x(t) + iH(t). (9.3)

The cancellation of negative frequencies can be demonstrated using a classical ex-



147 9.1. DEFINITION AND MEASURE OF SYNCHRONISATION

ample: Be x(t) = 2 cos(ωt) = exp(iωt)+exp(−iωt) such that the Hilbert transform
is exp(iωt− iπ/2) + exp(−iωt+ iπ/2) = 2 sin(ωt).

In practice similar considerations are necessary as with the Fourier transfor-
mation. Usually we deal with finite non-periodic and discrete data using a method
made for infinite and periodic data. Note that the Hilbert transformation is a way
to get rid of problems occurring in situations where the meaning of a phase is not
obvious due to a broad-banded signal. The transformation always gives a number
regardless of the signals. In fact, one possibility to calculate the Hilbert transform
is via the Fourier transformation which is connected to the Hilbert transformation
in the following way:

F [H(x(t))](ω) = −i sgn(ω) F [x(t)](ω). (9.4)

It is obvious from this mathematical connection that the true Hilbert transfor-
mation is not causal, in particular if t is time. Forget for the moment about the
numerical details of the Fourier transformation, data pre-processing and smoothed
windowing, etc. to obtain the Hilbert transform. The instantaneous amplitude and
phase of the signal can be calculated by

A(t) =
√
x(t)2 +H(t)2, (9.5)

φ(t) = tan−1(H(t)/x(t)). (9.6)

Some people discuss the meaning of the local frequency f = φ̇/2π which is some-
times a pseudo-discussion since the meaning depends on the application and ques-
tions asked as it is always the case. Only pure mathematics does not require any
discussion. With two data-sets containing the phase information of two signals
φ1(t) and φ2(t), t = 1, . . . , T a measure of synchronisation can be defined as the
average over all phase differences:

sij =
1
T

T∑
t=1

exp(iπ(φ1(t)− φ2(t))). (9.7)

This measure accounts for two signals whose frequencies are potentially integer
multiples of each other and should be considered as synchronised. Note that
by dealing with narrow banded signals radio technicians implemented the Hilbert
transformation long ago using circuits that extract the approximate local frequency
and then only shift the signal by 90◦. Thus the detection of synchronisation in
practice is not only different from paper-work but cannot implement in any case the
above mathematical definition of phase precisely since the Hilbert transformation
is, most of all, non-causal in the case of temporal variables. A quick reference for
this topic is Ref. [162].

Technical remark The pre-processing and filtering into six bands is a totally
different issue and described in any textbook on neurological measurements. The
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amounted CPU-time for the calculation of the phases of the amplitudes of the 36
EGG signals for one night is several hours using an optimised C-code by Fabian
Gans from the Martin-Luther Universit”at Halle. This includes the two-fold exe-
cution of the described procedure for the calculation of phase on each of the six
frequency bands to extract the phase of the amplitudes of the original EEG signals.
The results presented here provide the phase information at a rate of 40 Hz.

9.2 Non-mathematical comments

There is at least one strong reason for the choice of the amplitudes of EEG activity
as the signal of interest with respect to their synchronisation properties:

The amplitudes of envelopes are meaningful to compare between measure-
ments of very different frequency contents, amplitude dynamics and even
different meaning.

This can be put differently: As opposed to correlation, the synchronisation mea-
sure is meaningful between signals that have “oscillating” character, i.e. a relatively
narrow band in the frequency spectrum as well as with different locations of the
bands. The term “different meaning” refers to either physiologically “distant” sig-
nals as EEG voltage and blood pressure or to the units of measure as pressure and
voltage and with strong individuality. We believe that a network expresses “con-
nections” between entities subject to a meaningful definition of such connections
that must be based on some a priori model. As long as there is no satisfactory
stylise fact model of the body or “just” the brain yet, and most likely will not be
in the intermediate future, we must start with the simpler approach of using one
kind of data and one kind of measure of this connection. We are convinced that
this does not lead to under-challenge, though.

The results presented here provide two kinds of information: a) The dynamics
of eigenvalues and eigenvectors of the matrix of synchronisation coefficients. b) The
dynamics (empirical change) of the network structure that can be extracted from
this matrix. Matrix and network are different interpretations or graphical ways
to display the information content in the set of synchronisation coefficients. The
calculation of eigenvalues and eigenvectors is one possibility for data reduction.
Whether it is complementary and not just redundant can be judged only on the
basis of the data and a posteriori whether distinct “patterns” are detectable. This
is indeed the case here. The interpretation of such patterns is a second step based
on model assumptions.

All networks and matrices are calculated for suitable time slices and one may
try to observe correspondences with the actual sleep stage. To handle the amount
of data we produced a crude graphical interface that can cycle through either time
or eigenvalues displaying the respective graphs in a convenient way. Fig. 9.2 is
a screen shot of this interface running in time cycle mode and displaying time
markers. In this mode network and matrix are displayed on the fly.
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9.3 Procedure and results

We show results from one night out of three available sleep data sets obtained from
different persons. The data shown here represents healthy sleep. The classification
and numbering of sleep stages is given in Table 9.1. Fig. 9.1 shows an example of a
matrix of synchronisation coefficients. This picture colour-codes the magnitude of
the coefficient. The matrix is symmetric, i.e. there shall be no distinction between
positive and negative synchronisation, while this depends on the direction of view
in time. Furthermore, the matrices and respective networks are calculated for

 1 2 3 4 5 6 7 8 9102527293632342628111230313335192123242022131514161718

0.1

0.2

0.3

0.4

0.5

0.6

NODE INDEX

SYNCHRONISATION COEFFICIENTS

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Student Version of MATLAB

Figure 9.1: Typical matrix of synchronisation coefficients of EEG signals measured
during wake.

time slices of 100 seconds. Since we have to assume that the synchronisation
pattern is sufficiently stable during this period, the distinction between positive
and negative synchronisation is not necessarily important. This information may
be displayed separately. However, so far we have found much less negative than
positive synchronisation and, have no opinion on the significance of the distinction.

As with any symmetric matrix we obtain a set of real eigenvalues and eigen-
vectors for each time slice. The top graph Fig. 9.2 shows the time dependent
eigenvalues for the entire sleep. The overall procedure and characteristics of the
data analysis can be described quickly:

The time slices in this example are windows of 100 seconds width. The win-
dow is moved along time in steps of 40 seconds, i.e. the windows overlap. Each
data point on the time axis in the eigenvalue plot or a colour column in the eigen-
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stage number description
0 wake
1 non-REM 1
2 non-REM 2
3 non-REM 3
4 non-REM 4
5 REM
6 artifact

Table 9.1: Typical classification of sleep stages. The non-REM stages are not
clearly distinct and continuous in transition as opposed to REM and wake which
in turn are similar with respect to typical classification criteria.

frequency band [Hz] band name
8–13 α
14–30 β
4–7 θ

0.5–3 γ
0–3 δ

Table 9.2: Classification of brain waves into frequency bands (in this order). There
are different definitions in neurology and the number of bands differs between 4 to
7 with flexible ranges or overlap.

vector plot represents (the middle of) such a time slice. Each time slice gives a
synchronisation matrix, a network, a set of 36 eigenvalues and 36 eigenvectors.

The choice of the above numbers seems appropriate for the time scales of
consideration. Remember, we deal with sleep (stage) dynamics that take place
on the scale of few seconds to a minute. Higher time resolution is prohibited
by statistical uncertainty in the measured quantity, but may be increased with
more sophisticated methodology. Fig 9.2, center plot, shows the eigenvector of
the largest eigenvalue as a column in colour-code. The colour range is normalised
to the min and max of the entire picture. The bottom plot indicates the sleep
stages. The time axis for all three plots correspond. We chose the eigenvector of
the largest eigenvalue (numbered 36) for this demonstration. The other 35 are also
partially significant but are too many to display at once.

Figures 9.3 to 9.10 show the networks at the labelled (green lines) times in
Fig 9.2. The names of the nodes correspond to the usual nomenclature in sleep-
ology (posh: somnology). Of course the arrangement is arbitrary. This choice
puts left-right next to each other because we observe almost constant, thus possi-
bly meaningless, synchronisation. Deviations from this may be subject to higher
order interpretations.
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Figure 9.2: Analysis of one night sleep of a healthy subject. BOTTOM: The sleep
stages as found by inspection by medical doctors. TOP: Eigenvalues sorted by
size. The red curve marks the larges eigenvalue whose eigenvector (MIDDLE plot)
is shown colour coded as columns with the width of the time slice. The green lines
and labels indicate selected points whose network interpretations are shown in the
remaining pictures below.
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Figure 9.3: Network representation at A
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Figure 9.4: Network representation at B
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Figure 9.5: Network representation at C. This pattern appeared for a brief moment
just at the transition to wake. This sudden emergence of connectivity occurs quite
regularly at changes between states, mostly towards wake.
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Figure 9.6: Network representation at D. The three triangles are very typical for
wake.
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Figure 9.7: Network representation at E. We often observe a short burst of con-
nectivity just after the drop from REM.
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Figure 9.8: Network representations at F and G. Examples of a more connected
REM.
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Figure 9.9: Network representation at H. Example for a less connected REM which
is more persistent as opposed to F and G.
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Figure 9.10: Network representation at I. This situation occurred just after the
drop from REM to wake. The features are the seemingly wake-typical triangular
connections around 16:30 and 18:30, speaking in terms of the clock dial. We also
observe the sudden overall connectivity which often occurs just after the drop from
one higher sleep stage to wake. This connectivity disappears quickly and concurs
with the peak in the largest eigenvalue.
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9.4 Some remarks on eigenvalues of coefficient matri-

ces

This topic is a field of study of its own as we have seen in previous capters. To
enable the reader to glance into possible interpretations we make a few remarks,
nevertheless you may revisit previous chapters in this document.

The calculation of eigenvalues and eigenvectors is a data reduction technique
that has a similar motivation as the principle component analysis with singular
value decomposition. The information that is condensed or “reduced out” of the
data is different and the choice of method depends on the expectation and educated
guess of the scientist. In the case of eigenvalues form synchronisation coefficients
(being a more general measure but similar to correlation under certain conditions)
we extract or measure so called modes. A mode could be, for example, a common
behaviour of a sub-group of time series (if this is where the coefficients come from)
that is detected by the instrument of choice. This instrument is, for example,
the correlation estimator or the synchronisation coefficient as defined in Eq. (5.2).
The influence of such modes onto the (realised) eigenvalue spectrum is non-trivial.
Most studies in literature take unexpectedly large eigenvalues as an indicator for a
strong mode. This can be some parallel co-movement of a few time series or a loose
correlated behaviour of a large sub set. So far, it seems to have gone unnoticed
that such modes produce large and small eigenvalues leaking out of the spectrum
for the null-situation. These small eigenvalues carry similar, partly redundant,
information. At least this is the case for correlation measurement for which a
mathematically clean theory exists. For example, it is also unclear why the matrix
of synchronisation coefficients must always be positive definite.

Furthermore, one must always compare the results with the null-hypothesis
because the random or no-information-case produces eigenvalues and vectors that
do posses a structure. But what is the null-hypothesis situation? Indeed, the issue
of surrogate data is not trivial. As rehearsed also elsewhere in several places in
this document, the mere test on some random artificial wiggles does not prove
insensitivity for false positive results, i.e. apparent correspondence to sleep stages.
Neither is the combination of signals from 36 sleepers a suitable null-hypothesis
because it is obvious to the trained eye already that the channels cannot fit to-
gether. This issue has to be picked up once the research goal is an improved sleep
stage finder.

The magnitude of the eigenvector elements, usually, indicate the time series
that contribute to the mode that is “detected” by the respective eigenvalue. Since
eigenvalues can only be referenced by their size, the mode cannot always be traced
across time if the eigenvalues cross. Then more sophisticated methods are needed.
This situation is very similar to electronic band structure calculation, where band
crossings are not distinguishable from small band gaps [60]. It cannot be over-
stressed: This also requires a model assumption about the system. Here we just
show the eigenvector for the largest eigenvalue. Thus one must not expect to
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get a sleep stage finder by classifying the patterns of colours. Also note that
measurement errors affecting all cables for example (electric machine running on
50Hz somewhere) might induce a mode in the spectrum that is not visible in the
data directly, not even via a power spectrum analysis.

9.5 Patterns in data and remarks on the significance

The common knowledge that REM sleep goes together with an active visual cortex
is not expected to be observed in our results and with this type of data analysis: 1)
There are only two electrodes in the relevant region. 2) Activity is not necessarily
expressed in stronger synchronisation, in particular not necessarily with other
regions of the brain.

REM may directly affect the read-out of the electrodes. To what extent this
poses a problem or can be seen in the plots is not yet analysed and non-trivial.
However, eye movement or any other activity of the sleeper is most likely not
the cause of most of the detected patterns because seemingly sleep stage typical
patterns persist for a long time or occur quite regularly at certain transitions
between stages.

Some of the selected data refers to peaks of the largest eigenvalue. During
REM the analysis of the available other person’s sleep shows stronger than in this
example a plateau in the largest eigenvalue.

The reader may observe different patterns in REM. The conclusion is that
REM or any other state is not the only relevant state variable of the brain during
sleep. If unrelated measurement errors are excluded, like technical problems or
movement of the sleeper, the analysis algorithm is not corruptible. We cannot
comment or judge on the accuracy of the sleep stage classification. Overall it
seems that more is going on beyond fluctuation around some stationary state.

We are inclined to observe in the eigenvector of the largest eigenvalue that
during REM only few nodes contribute to the dynamics of this eigenvalue. Overall
the intervals of REM are visible by inspection. However, a thorough quantification
is needed before significance is proven or even some automatic classification is
thinkable. So far these pictures may assist the standard procedure by medical
doctors.

At this point one more result may be appropriate to discuss. The whole point
about eigenvector and eigenvalue analysis is principle component selection. In the
data presented here it appears that only one eigenvalue significantly departs from
the (seemingly) informationless bulk. We may now average the main contributing
channels as given by the eigenvector of eigenvalue 36 in a sleep stage specific colour-
coded manner. The result is shown in Fig. 9.11. Note that relatively few lines per
sleep stage appear. This means that they are repetitive. All stages are therefore
rather distinct, at least in the inspection by eye. What this plot does not reveal
is the frequency of modes which requires an additional visual variable.
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Figure 9.11: The lines connect all nodes contributing to the mode coded in eigen-
vector 36 which represents the most dominant mode by eigenvalue 36. The node
labels are clipped off in order to enhance the details. The colours are: red–REM,
blue–deep-sleep, green–wake. Blue lines are only seen on the right hemisphere.

9.6 Summary

We showed preliminary results from the time series analysis of EEG data using
the synchronisation measure to detect patterns. These patterns, for example the
network, are extracted from the matrix of synchronisation coefficients of the am-
plitudes of the signals and the eigenvalues and -vectors. In doing so, we can also
compare between different bands and detect synchronised behaviour in the activity.

Already in this preliminary stage of the analysis the extracted patterns react
very sensitively to the sleep stage and the patterns seem sufficiently reproducible
for sleep stages to attempt a sleep stage finder on this basis in future work with
additional data from other measurements. We conclude that the synchronicity of
activity in EGG data is significant. To elaborate more on this one must take many
nights of the same individual and analyse the individuality of the patterns. This
requires additional algorithms for pattern recognition as well as more scientific
insight.

We also need high resolution data to be able to filter non-physiological corre-
lation and to calculate network properties that are independent of the arbitrary
reduced display that mostly pleases the human eye.



Chapter 10

Some quintessence

Instead of one single topic this document contains a chain of topics with overlap.
The contributions to science are explicitly listed at the beginning in chapter 1 along
with a summary at the end of the respective chapter or section. Nevertheless, there
are some global conclusions and lessons learned for the author of this document
mostly in dealing with representatives of the community, literally.

Lesson one is reflected in the quotation by Albert Einstein in Chap. 8. It has to
be understood in the context of its time and needs to be enhanced. He talks about
certainty which is possibly misunderstandable as problems with the accuracy of
certain laws, but this is not what it is about. Since the advent of the so called
complex systems science (some) people have become more sensitised to questions of
“meaning”. The first sign of it being a bigger issue was probably Max Born’s Nobel
Prize for the interpretation of the wave function which piqued experimentalists
like Aharonov and Bohm plus Ehrenberg and Siday to test whether the wave
function and the probability cloud are really a physical entity. So it seemed at
least, and people saw no problem because nothing seemed to be missing in the
model. Schrödinger’s equation still describes all (stylised) facts of the world, if we
were able solve it for slightly larger system than a few atoms. With the attempt to
model systems that under no circumstances could be described bottom-up one had
to decide on which aspect to model and what the equations (or the computer code)
actually mean. The reproduction of a stylised fact could not be traced back to the
microscopic structure of the system anymore as opposed to the diffusion equation
for example that, in the limit of scales, is rigorously connected to the diffusing
random walk particle which in turn is a limiting case of the most accurate atomistic
model one can set up. It is at this point where things fall apart. People truly
think that rough model equations for a certain stylised fact of a mass-psychological
system have to be consistent with physical laws. And the most infuriating proposed
example is the conservation of some quantity in a social model that looks like the
Ising Hamiltonian. This issue and the definition or meaning of a “model” is truly
not understood and typical debates can be held and observed with many people.
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[..] Most important is the ability to understand the underlying dynam-
ics of a complex system. These insights are needed to assess whether
the assumptions of a model are correct and complete. The modeler must
be able to recognize whether a model reflects reality, and to identify and
deal with divergences between theory and data.

From William Silvert, Modelling as a discipline (2001), Ref. [161]

This guideline can hardly be stated clearer but is often disregarded in well-financed
international projects.

Lesson two is a bit more methodological and in extension of the above quo-
tation. It refers to the often encountered fixation on the number of sigmas in
confidence testing of model predictions where three sigma, or a sufficiently high
number, is considered enough to discriminate between chance and the prediction
of a model. First of all, statistical testing must be possible and sensible. Along
with this misunderstanding goes the neglect of null-hypothesis testing which often
reveals that the most stupid random “model” can be as good as three sigma. And
it often turns out that a reasonable null-model is the biggest problem. One can
often observe refusal to realise this because of the following attitude: The problem
is the problem and not how to simulate the random system. At this point we can
refer back to the previous lesson. A not so fictitious example: We claim to have
a model of the brain. Proof: 95% of the times the model correctly predicts the
direction of walking ∆t = five seconds later of any randomly chosen person in the
world that can more or less be considered to be walking. One does not have to
play devil’s advocate to find that most people do not tend to do a random walk.
So if someone goes somewhere it is usually rather straightforward. This might be
enforced by the street layout in Manhatten or simply by the fact that the shortest
connection between two points is a straight line. Now which is the appropriate
city in the world to test our model? The most appropriate answer to this question
is not enough since we miss other parameters as how long do we test, and how
large must be ∆t. In Manhatten ∆t must be longer than the time to cross a typ-
ical block. Then we might be able to observe a random walk on a grid. Thus no
textbook gives us the test on how to decide how “good” a model is. Any testing
is based on the model and our understanding of its connection to reality. This
guideline is often disregarded in well-financed international projects.

Number three, what about the non-local and non-causal integrals of the frac-
tional diffusion equation? Non-locality is usually disliked because of the limited
speed of light. This is a physical issue. We have learned, however, that in complex
systems we are satisfied with the reproduction of stylised facts regardless of the
justification of the microscopic parts of the model. In this case we must be content
with the Ptolemaeic planetary model as shown in Fig. 10.1. It reproduces the loops
of the planets in the sky but are we unnecessarily pedantic in having a problem with
this model? Assuming we had not Kepler’s analytic solution of the orbits, then we
would need numeric integration to calculate the orbits. As with all such methods
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they produce errors of different types. Which is the right integrator? A symplectic
one that turns around the axis of the orbit ellipse but conserves energy, or a high-
order Runge-Kutta scheme that traces the true orbit longer but lets the planet fall

Figure 10.1: The Ptolemaeic solar
system with the line of sight from us
to a planet.

into the sun after a while. Unless some-
body checks if there are hinges with disks
on the edges of which the planets turn there
is no proper way to decide if Ptolemaeus
or Gallileo is right. Meanwhile, both mod-
els can be used to predict the lights in the
sky and the non-local integral in the frac-
tional diffusion equation predicts the prob-
ability density for a continuous-time ran-
dom walker.

Number four is a case for one of the
previous general lessons on modelling and
situated in the context of financial time se-
ries analysis. As usual, data analysis goes hand in hand with model assumptions
on the source of the data and also the questions asked. Therefore we often en-
counter statements about the underlying system in treatises that are entirely fo-
cused on measurement and analysis. A statement that is simply wrong is that
high-frequency financial time series are irregular observations of a continuous pro-
cess. To contradict such statements is not yet part of the lesson. But it is an
example of where methodologists tweak reality to argue for (their) nice theories
and methods. Another example in the financial context is the notion of noise. It
is is very tempting to introduce noise and the continuous process postulated above
because we can apply smoothing models and then argue for methods and models
that are proven to work best on smooth continuous processes with noise that is
possibly Gaussian and independent. Likewise, at a microscopic level the partial
differential equation of diffusion does not work anymore for several applications
and questions asked. This is physically obvious. In the field of so-called complex
systems the physical normative often does not exist or is simple to talk away. And
again, data analysis makes assumptions on the behaviour of the data and on the
important feature that has to be extracted. The latter decides on which analysis
method is appropriate and is connected to model assumptions. This guideline is
often disregarded in well-financed international projects.

And finally, for the geeks: The future belongs to high level programming with
all thinkable methods and algorithms already implemented. Even if the language
is primitive like Matlab without strict typing the size of the code is so small that
it makes up for the strict typology in a language like C++ where it takes a page of
code to do what 4 lines of Matlab can do. Furthermore, the inclusion of libraries
costs enormous time which no speed-up of the resulting code can recover, not to
speak of the errors which have more room to thrive and spread than in the 4 lines
above. Secondly, a low level language like C++ can not easily guess what the
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programmer wants to do. Specialised pre-fabricated functions that are part of the
language package can, thus making better use of the hardware. This is particularly
useful with multi-core processors.



Appendix A

Numerical calculation of the

Lévy probability density

Prior to the calculation we give a short remark on two alternative ways to ex-
press the Fourier transform: the frequency and pulsation variants (using angular
speed ω). Physicists tend to use ω and all related nuisance factors. Practitioners
however, like engineers, use the frequency variant for good reasons and nearly all
implementations of the FT perform the latter. In Formulas:

H(ω) = FT [h(z)] (ω) =
∫
h(z)eiωzdz (A.1)

h(z) = FT−1 [H(ω)] (z) =
1

2π

∫
H(ω)e−iωzdω. (A.2)

With

ω = 2πf (A.3)

we get the frequency variant

H(f) = FT [h(z)] (f) =
∫
h(z)e2πifzdz (A.4)

h(z) = FT−1 [H(f)] (z) =
∫
H(f)e−2πifzdf. (A.5)

Furthermore, implementations provide the FT of an array that the scientist has
to fill. This input is assumed to comprise the right sight of a symmetric function.
This means data symmetry is assumed. If anything else is the case, this must be
accounted for in a post processing or in the interpretation of the resulting Fourier
coefficients. The above mentioned nuisance factors come in due to the different
worlds the implementation on one side and the theories on the other usually live
in. Since the algorithm in the FT expects values H(f) but gets H(ω) the argument
values have to be divided by 2π or alternatively the x-axis in the resulting plot
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has to be multiplied by 2π. Below in Eq. (A.8) we choose the latter.
The Lévy α-stable distribution is a prime example of a non-analytic density

function. It does not possess any moments above the second due to the divergence
of the respective integrals except for α = 2 (Gaussian case). For α ≤ 2 the
mean diverges also. Values for L(x), Eq. (4.10), can be computed directly as
in Ref. [135, 136] or using the Fourier Transform (FT). Ref. [126] presented an
FT-based procedure and report that with 213 data points and more than 100
required samples of L(x) the setup overhead of doing a Fast FT (FFT) is more
advantageous. We consider 100 required samples or less as a rarely occurring small
amount in applications of stable distributions. For our purposes 213 data points
turn out to be unnecessarily restrictive since the FFT is sufficiently fast to make
up a negligible part of the total setup time. Therefore we employ the FFT.

Too keep it simple for didactic purposes: the characteristic function for the
symmetric case

φ(q) = exp(−qα) (A.6)

is evaluated at N points at intervals ∆q giving tabular values (qi, φ(qi)), i =
1, . . . , N . Both parameters must be specified according to Eq. (A.8) to fit the
required tails. Due to the even symmetry only positive arguments of the charac-
teristic function and the real part of the resulting transform are required:

L(x) = Re
{

1
π∆x

FFT−1 [(qi, φ(qi))]
}
. (A.7)

Despite the arbitrary choice of sign for the exponent in the Fourier integral FFT−1

denotes the inverse Fourier transform for consistency with the FFT algorithm and
sign convention taken from [149, Chap. 13]. The spacing of the abscissa for the
resulting plot is calculated by

∆x = 4π
fNyquist

N
=

2π
N∆q

, (A.8)

where N is the number of samples and fNyquist = 1/(2∆q). The time on our
machine for the FFT part within the setup using N = 216 data points is 0.08
seconds. The resulting tabular values for x and L(x) are used within the inter-
polation routine to provide a smooth curve for the tiling algorithm. The drawn
random number is multiplied by the scaling factor γ.

Special attention is required if the resulting tabular values are used in the
general Ziggurat implementation attempt by [91]. Since the iterative setup of the
Ziggurat requires strictly decreasing L(x), the tabular data (xi, L(xi)) must be
truncated where numerical fluctuations from the FFT start to accumulate to sig-
nificant flutter effects in the tail. These effects disturb the monotonicity, i.e. a sign
change in ∆L = L(xi)−L(xi−1), and a breakdown of the procedure. Also of con-
cern is the interpolation as such. Typically, few surrounding values of x are chosen
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to interpolate for L(x). i.e. if x ∈ [xi, xi+1] we use data points i = i− 3, . . . , i+ 4.
Due to the sudden shifting of these data points for very close subsequent values
x and x + ε, i.e. xi, · · · , xi+1 becomes xi+1, · · · , xi+2, significant jumps might oc-
cur between L(x) and L(x+ ε). Since these fluctuations are exceedingly small on
the absolute scale they can be ignored in the tiling method which is inherently
resistant to such errors.
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Appendix B

Serious research

The following piece of A4 paper was produced at the Martin-Luther University
Halle on the 15th of November 2008 together with Prof. emeritus David Breé in the
attempt to think of possible scenarios for DAPHNet follow-ups and the partners
involved. Please appreciate the representation of the Middle East together with
Europe inspired by pre-medieval Mediterranean cartography.



Appendix C

Future research, seriously

The presented work opened up more ideas and produced more half-finished results
than could be included here. The following list can be a direct continuation:

1. Direct generation of rotationally invariant matrices without summations.

2. Extended synchronisation analysis on EEG data. Systematic pattern analy-
sis and subsequent null-hypothesis tests.

3. Detailed analysis of eigenvectors from similarity and dissimilarity matrices
in the case of less measurements than variables.

4. Spectral clustering on financial and microarray data.

5. Mode reconstruction experiments on singular correlation matrices as in mi-
croarray experiments.

6. A working implementation and benchmarking of the suggested clustering
method with eigenvectors is pending.
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financial covariances. Acta Phys. Polon. B, 34:4747, Aug. 2003. [33, 34, 39]

[32] Z. Burda, J. Jurkiewicz, M. A. Nowak, G. Papp, and I. Zahed. Free Lévy matrices
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dom walk with general Lévy jump distribution functions. Phys. Rev. E, 76:041105,
2007. [10, 51]

[37] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable
random variables. J. Amer. Statist. Assoc., 71:340–344, 1976. [24, 26, 39, 51, 61,
64, 65, 67]

[38] P. Cizeau and J.-P. Bouchaud. Theory of Lévy matrices. Phys. Rev. E, 50:1810–1822,
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[101] J. Leydold, G. Derflinger, W. Hörmann, and G. Tirler. An automatic code generator
for non-uniform random variate generation. Math. Comput. Simulation, 62:405–412,
2003. [49, 51]



BIBLIOGRAPHY 176

[102] J. Leydold and G. Tirler. Automatic non-uniform random variate generation
in R. In K. Hornik, F. Leisch, and A. Zeileis, editors, Proceedings of the 3rd
International Workshop on Distributed Statistical Computing, pages 1–6, 2003.
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/. [50, 52, 61]

[103] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Res., 21:498–516, 1973. [130]

[104] R. J. Little and D. B. Rubin. Statistical analysis with missing data. John Wiley and
Sons, 1987. [82, 106]

[105] M. Magdziarz and A. Weron. Competition between subdiffusion and Lévy flights:
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