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KURZFASSUNG 
 

 

Myxococcus xanthus ist ein Mikroorganismus mit einem komplexen Lebenszyklus, 

welcher sich durch mutizelluläres Verhalten und Zelldifferenzierung auszeichnet. 

Durch Nahrungsmangel initiiert durchlaufen die M. xanthus zellen ein 

Entwicklungsprogramm worin sie unterschiedliche Entwicklungsschicksale haben: Der 

Großteil der Zellen unterliegt programmiertem Zelltod (PCD), die übrigen Zellen 

wandern entweder in Fruchtkörper wo sie sich zu Sporen differenzieren oder 

aggregieren nicht und verbleiben als periphere Zellen. Dieses Entwicklungsprogramm 

ist von einer Kaskade positiver Entwicklungs-regulatoren kontrolliert, deren 

Expression positiver Autoregulation unterliegt. Die Untersuchungen diverser 

Histidinkinasenhomologe (HK) (espA, espC, red und todK) zeigte, dass sie für eine 

adäquate Progression durch dieses Entwicklungsprogramm erforderlich sind. Mutanten 

dieser Gene weisen verfrühte Aggregation sowie Sporulation verglichen mit dem 

Wildtyp auf, bilden unorganisierte Fruchtkörper und weisen Sporen außerhalb dieser 

Fruchtkörper auf. Diese Beobachtungen legen nahe, dass diese Kinasen als negative 

Regulatoren (NR) zur Hemmung  des Entwicklungsprogrammes wirken. Es ist jedoch 

unklar ob sie in einem oder mehreren Signaltransduktionswegen wirken und welchen 

Vorteil sie für das Entwicklungsprogramm darstellen. 

 

Mit der Hilfe von epistatischen Analysen zeigten wir, dass diese NRs in drei 

eigenständigen Signalsystemen organisiert sind, zusammengesetzt aus 1) EspA/EspC, 

2) TodK and 3) Red. Übereinstimmend zu diesen Beobachtungen weist die 

Proteinexpression diverser Entwicklungsregulatorproteine in den NR Mutanten drei 

unterschiedliche Muster auf: 1) in espA und espC Mutanten akkumulieren die meisten 

dieser Entwicklungsregulatorproteine früher als im Wildtyp, die Reihenfolge ihrer 

Produktion bleibt erhalten, 2) in red Mutanten sind die meisten Markerproteine unter 

representiert ihre Reighenfolge wird jedoch verändert, 3) in todK Mutanten werden 

gewisse Markerproteine früher produziert und die Reihenfolge der Produktion ist 

gestört. Phenotypische Analysen von Einfach, Doppelter, Dreifach und Vierfach 

Mutanten dieser NRs zeigen dass eine stark gegensätzliche Beziehung zwischen der 

Progressionsgeschwindigkeit durch das Entwicklungsprogramm und der koordinierten 

Bildung der Fruchtkörper besteht. Der Verlust der koordinierten Fruchtkörperbildung 

scheint das Resultat von Unkoordiniertheit der Subpopulationen während der 

Entwicklung zu sein.  
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Um zu verstehen ob die  Störung der geordneten Kaskade der Entwicklungs-

regulatoren in den red und todK Mutanten durch eine Missregulation der sich 

entwickelnden Subpopulationen hervorgerufen wird, definierten wir die Proportionen 

der sich entwickelnden Zell-Subpopulationen sowie die Akkumulation der Haupt-

entwicklungsregulatorproteine in diesen. Unsere Analysen zeigen, dass die 

Zellpopulation sich während der ersten 24 Stunden verdoppelt, dann jedoch einem 

schlagartigen programmierten Zelltod (PCD) unterliegt. Die aggregierenden- sowie die 

nicht aggregierenden Subpopulationen weisen unterschiedliche Akkumulationsmuster 

von Komponenten der Typ IV Pili vermittelten Zellbewegung, sowie Sporen 

spezifischer Strukturproteine auf. Die meisten der Haupt-

entwicklungsregulatorproteine zeigen erst eine allmähliche Akkumulation in der nicht 

aggregierenden Zellfraktion, wiesen später aber eine schnelle Akkumulation in der 

aggregierenden Zellfraktion auf. 

 

Mittels einer ähnlichen Herangehensweise zeigten wir, dass beide Mutanten nicht in 

der Lage sind ihre Zellzahl in ähnlicher Weise wie der Wildtyp zu erhöhen, 

wahrscheinlich weil der PCD früher induziert wird als im Wildtyp. Darüber hinaus, in 

beiden Mutanten, werden die Entwicklungsregulatorproteine verfrüht in den nicht 

aggregierenden Zellen induziert und scheitern anschließend daran in den 

aggregierenden Zellen angemessen zu akkumulieren. Folglich werden viele dieser 

Zellen sporulieren bevor sie mit der Aggregation abgeschlossen haben, wodurch eine 

koordinierte Bildung von Fruchtkörpern verhindert wird. Diese Resultate legen nahe, 

dass TodK, sowie Red die stufenweise Akkumulation von einem oder mehreren 

Entwicklungskoordinatoren während der Aggregationsphase des Entwicklungs-

programmes vermitteln. Zusätzlich legen sie nahe, dass die Koordinierung der 

Subpopulationen negative regulatorischer Signalsysteme benötigt, die positive 

autoregulatorische Schleifen dämpfen um eine Kopplung von Sporulation und 

Aggregation zu erzielen. 
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ABSTRACT 
 

 

Myxococcus xanthus is a prokaryote that has a complex life cycle distinguished by 

multicellular behaviors and cell differentiation. Upon starvation, Myxococcus xanthus cells 

enter a developmental program wherein cells have different developmental fates: the 

majority of cells undergo programmed cell death (PCD), and the remaining cells either 

migrate into fruiting bodies and then differentiate into spores or do not aggregate and 

remain as peripheral rods. This developmental program is controlled by a cascade of 

positive developmental regulators whose expression is subject to positive autoregulation.  

Several histidine kinase (HK) homologs (espA, espC, red and todK) have been described 

that are necessary for appropriate progression through the developmental program. 

Mutants in these genes aggregate and sporulate earlier than wild type, producing 

disorganized fruiting bodies and spores outside of the fruiting bodies. These observations 

suggest that these kinases act as negative regulators (NRs) to repress the developmental 

program, but it is not clear if they function in one or more signaling pathways, how they 

mediate repression of the developmental program, and what ultimate advantage they 

provide to the developmental program.    

 

Using genetic epistasis analysis, we demonstrate that these NRs are organized into three 

distinct signaling systems comprised of 1) EspA/EspC, 2) TodK and 3) Red.  Consistently, 

analysis of the accumulation patterns of several developmental regulatory proteins in each 

NR mutant demonstrated three distinct patterns: 1) in espA and espC mutants most 

developmental regulators accumulate earlier than in wild type, but the ordered cascade of 

production is maintained, 2) in red mutants most developmental marker proteins are under 

accumulated and the ordered cascade of production is not maintained, 3) in todK mutants 

certain developmental marker proteins are produced earlier than in wild type and the 

ordered cascade of production is perturbed.  Phenotypic analysis of single, double, triple 

and quadruple NR mutants demonstrated that there is a strong negative correlation 

between the rate of progression through the developmental program and coordinated 

fruiting body formation.  Loss of coordinated fruiting body formation appeared to be the 

result of uncoordinated developmental subpopulations.  

 

To determine whether the perturbation in the ordered cascade of developmental regulators 

in the red and todK mutants was due to misregulation of the developmental subpopulations, 

we first set out to define the temporal proportion of the different cell subpopulations and 

then examined the accumulation of key developmental regulator proteins in the two 

developmental subpopulations.  Our analyses indicate that the cell population doubles over 
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the course of 24 hours followed by a sudden burst programmed cell death (PCD). The 

aggregating and non-aggregating subpopulations displayed distinct accumulation patterns 

of components involved in Type IV pilus-mediated motility, and spore structural proteins. 

Most key developmental regulator proteins were shown to first gradually accumulate in 

the non-aggregating cell fraction and then to rapidly accumulate in the aggregating cell 

fraction.   

 

Using a similar approach to analyze the red and todK NR mutants, we demonstrate that 

both mutants do not increase their population to the same extent as wild type, likely 

because PCD is induced earlier than wild type. Furthermore, in both mutants, 

developmental regulatory proteins are induced inappropriately rapidly in the non-

aggregating cell fraction, and subsequently fail to accumulate appropriately in the 

aggregating cell fraction. Consequently, many cells are induced to sporulate before they 

have completed aggregation, and coordinated fruiting body formation is perturbed.  These 

results strongly suggest that TodK and Red mediate the gradual accumulation of one or 

more developmental coordinators during the aggregation phase of the developmental 

program. These results suggest that coordination of developmental subpopulations requires 

negative regulatory signaling systems that quench the positive autoregulatory loops that 

ensure coupling of sporulation and aggregation. 
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1 INTRODUCTION 
 

 

1.1 Myxobacteria 

 

The Myxobacteria are gram-negative, rod-shaped bacteria that have a complex life cycle 

and social behaviors, including fruiting body development. The Myxobacteria were 

initially thought to be fungi because of their mutilcellular behavior. In the nineteenth 

century, the Myxobacteria first described by Roland Thaxter, were distinguished from 

each other based on the shape of their fruiting bodies. Later, based on 16S rRNA 

analysis, the Myoxbacteria were classified as δ-proteobacterium (Shimkets & Woese, 

1992). In addition to their mutilcellular behavior, one major feature of the 

Myxobacteria is that they produce a number of biomedically and industrially useful 

chemicals. So far, approximately 80 different basic structures and 450 structural 

variants have been isolated and characterized as antimicrobial agents (Reichenbach, 

2001)     

1.1.1 Life cycle of Myxococcus xanthus 

 

Myxococcus xanthus is a model organism for studying prokaryotic multicellular 

development and differentiation. M. xanthus mainly inhabits the soil or herbivore dung 

and obtains nutrients by degrading organic matter or preying on other microorganisms 

(Reichenbach, 1999). Under nutrient-replete conditions, the cells swarm in groups by 

gliding motility and obtain nutrients cooperatively. This group feeding mechanism 

(known as wolf pack feeding) is advantageous, because groups of cells can secrete 

sufficient quantities of hydrolytic enzymes to digest organic compounds or other 

microorganisms (Rosenberg et al., 1977). In contrast, in a nutrient-depleted 

environment, swarms of about 100,000 cells move into aggregation centers and form 

multicellular fruiting bodies inside which cells differentiate into spherical spores 

(Shimkets, 1990b, Dworkin & Kaiser, 1993). Some cells, known as peripheral rods, do 

not enter aggregates and remain as rod-shaped cells outside of the fruiting body 

structure (O'Connor & Zusman, 1991c). When spores are exposed to a nutrient-rich 

environment, they germinate and re-enter vegetative growth phase (Figure1. 1A). It is 

presumed that formation of fruiting bodies facilitates dispersal of groups of spores to 

nutrient replete environments which then facilitates group feeding. Under laboratory 
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conditions, M. xanthus wild-type strain DZ2 development occurs over at least 72 h 

(Figure1. 1B). 

 

 

Figure 1.1 The life cycle of Myxococcus xanthus and the developmental phenotype of the wild-

type strain, DZ2. (A) Scheme of vegetative and developmental cycle of M. xanthus. (B) 10 ul spots (4 X 

109 cells ml-1) of wild-type, DZ2 were placed on nutrient limited (CF) plates and incubated at 32 °C. 

Pictures were recorded by a stereo microscope at the indicated time points. Scale bar, 1.0 mm. (C) 500 ul 

of cell culture (2 X 107 cells ml-1) of wild-type were placed in starvation media (MMC) and incubated at 

32 °C. Pictures were recorded by inverted microscope at 72 hours development. Scale bar, 50 µm. 

1.1.2 Gliding motility of Myxococcus xanthus 

 

M. xanthus gliding motility is requried in both vegetative and developmental phases of the 

life cycle (Rosenberg et al., 1977, Shimkets, 1990a). Gliding motility involves two 

mechanisms, called adventurous (A) and social (S) motility. Two models have been 

proposed to explain the mechanism of A-motility. One model is that nozzle-like 

structures secrete slime and extrusion of slime might generate the force for A-motility 

(Wolgemuth et al., 2002). Another model is that multiple force-generating adhesion 

complexes moving on cytoskeleton filaments act as the engine and generate the force 

for A-motility (Mignot, 2007). However, the exact mechanisms of A-motility are 

mysterious so far.  

 

In contrast, the S-motility system is well-known. M. xanthus cell possess type IV pili, 

and type IV pili are now widely accepted as the motor for S-motility of M. xanthus and 

twitching motility in other species (Mattick et al., 1996, Wall & Kaiser, 1999). It has 

been first observed that there is a tight association between pili and S-motility (Kaiser, 
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1979) and this observation was confirmed by the evidence that mechanically removed 

type IV pili result in loss of S-motility (Rosenbluh & Eisenbach, 1992). The pilus 

filament comprises a single protein, PilA  (Wu & Kaiser, 1997) (Figure 1. 2D). PilC is 

an inner membrane protein (Figure 1. 2D) and mutation in this gene causes both pilus 

and S-motility defects. This result suggests that M. xanthus PilC is required for pilus 

bioynthesis (Wu & Kaiser, 1997). PilQ provides a channel through the outer membrane 

(Figure 1. 2D). Mutations in this gene also result in defective pilus synthesis and S-

motility (Wall et al., 1999). Recently, Yoderian and coworkers (2006) revisited their 

random mutagenesis screen by screening a magellan4 insertion library for mutants 

deficient in S-motility. Type IV pilin biosynthesis genes containing 15 ORFs were 

mapped to 27-kb region on the M. xanthus genome. Mutations of these ORFs caused 

deficiencies in production of type IV pili, suggesting that type IV pilin biosythesis genes 

clearly play important roles in S-motility of M. xanthus (Whitworth, 2008). Moreover, 

experimental evidence suggests that type IV pili retraction provides the force for S-

motility and bacterial twitching (Nudleman & Kaiser, 2004).  

 

It has been demonstrated that exopolysaccharide (EPS) is required for S-motility. M. 

xanthus cells are covered by an extracellular matrix (ECM) which consists of 

approximately equal amounts of protein and polysaccharide (EPS) (Kim et al., 1999, 

Merroun et al., 2003). dsp mutants, which fail to produce EPS, have defects in cellular 

cohesion, S-motility, and fruiting body formation (Shimkets, 1986a, Shimkets, 1986b). 

SEM (Scanning Electron Microscopy) analysis demonstrated that dsp mutants are 

altered in their surface properties and lack ECM (Arnold & Shimkets, 1988, 

Behmlander & Dworkin, 1991).  

 

It has been revealed that all mutants lacking the ECM are defective in S-motility 

(Shimkets, 1986b, Dana & Shimkets, 1993, Yang et al., 2000). These all results not only 

suggest that M. xanthus ECM is required for cellular cohesion, social (S-) motility, and 

fruiting body formation, but also indicate that there are correlations between EPS and 

Type IV pili which are required for S-motility. The relationship between EPS and type 

IV pili has been elucidated by phenotypic analysis of mutants lacking EPS in M. 

xanthus. The EPS defective mutant produced hyperpiliated cells and failed to move by 

S-motility. However, addition of fibril material resulted in pilus retraction and rescued 

S-motility suggesting that EPS triggers Type IV pilus retraction by providing anchor for 

attachment  (Li et al., 2003) (Figure 1. 2).  

 

FibA, which is a zinc metalloprotease of the elastase family, was characterized as 

protein associated with ECM (Kearns et al., 2002, Bonner et al., 2006). It has been 
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shown that FibA is required for lipid chemotaxis, but not S-motility (Kearns et al., 

2002). fibA mutants formed elongated and irregular fruiting bodies, but a fibA pilA 

double mutant results in defect of fruiting body formation suggesting that FibA and 

PilA act cooperatively during fruiting body formation (Bonner et al., 2006).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 A model for the pili–fibril material interaction and some subunit proteins of Type IV pili. 

(A) The interaction between TFP and fibril material on the surface of wild-type cells allows TFP retraction 

and S-motility. (B) The absence of fibril material in fibril− mutants abolishes fibril–TFP interaction, resulting 

in their overpiliation phenotype and defects in S-motility. (C) The interaction between TFP and fibril 

material present in slime trails guides M. xanthus cells along these trails. This figure is adapted from (Li et 

al., 2003). (D) Some subunit proteins of Type IV pili. This cartoon is taken from Iryna Bulyha.   

1.1.3 Development of Myxococcus xanthus 

 

The M. xanthus development program is induced by starvarion and controlled by a 

series of temporally regulated extracellular and intracellular signals that must be 

coordinated and integrated to ensure proper fruiting body formation and sporulation 

(Kaiser, 2004). Starvation of nutrients such as amino acids, carbon, or phosphorus, 

which are all requried to make a complete set of amino-acylated tRNAs, induces the 

development program (Dworkin, 1962, Manoil & Kaiser, 1980b, Shimkets, 1987). It 

has been shown that in E. coli, RelA, a ribosomal-associated protein, is triggered by an 

uncharged tRNA in acceptor site of ribosome and catalyzes the synthesis of (p)ppGpp 

(Haseltine & Block, 1973, Pedersen et al., 1973, Cochran & Byrne, 1974).  

 

As in E. coli, uncharged tRNAs stimulate production of guanosine-5´-(tri)di-3´-

diphosphate [(p)ppGpp] in relA-dependent mechanism, and rising levels of (p)ppGpp 
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induce development in M. xanthus (Manoil & Kaiser, 1980a, Manoil & Kaiser, 1980b, 

Singer & Kaiser, 1995, Harris et al., 1998). Accumulation of (p)ppGp induces 

production of the A-signal which is a proposed mechanism for population-sensing 

(quorum sensing). A-signal, a mixture of amino acids and small peptides, is produced 

in proportion to the density of M. xanthus, and only if cells are present at a threshold  

density, genes necessary for development are induced and the developmental program 

continues (Figure 1. 3).  

 

One of the genes upregulated in response to the A-signal is the mrpAB locus encoding a 

cytoplasmic histidine protein kinase and an enhancer biding protein of the NtrC type 

family (Sun & Shi, 2001a, Sun & Shi, 2001b). The MrpAB proteins are neceaasry for 

mrpC transcription (Sun & Shi, 2001a, Sun & Shi, 2001b, Nariya & Inouye, 2006). 

MrpC is a transcriptional activator of the cyclic AMP receptor family which is required 

for aggregation and sporulation (Sun & Shi, 2001a). Moreover, MrpC has recently 

proposed to be an anti-toxin for MazF which mediates programmed cell death (see 

Figure 1. 4) (Nariya & Inouye, 2008).  

 

It has been shown that MrpC is phosphorylated by the Pkn14/Pkn8 Ser/Thr kinase 

cascade (Nariya & Inouye, 2005). Phosphorylation of MrpC results in decreased mrpC 

transcription. Moreover, MrpC seems to be proteolytically processed into MrpC2 in a 

manner that depends on LonD ATP-dependent protease. pkn14 and pkn8 mutants 

induce earlier accumulation of MrpC2 and FruA leading to earlier development 

suggesting that Pkn14 and Pkn8 kinases negatively regulate production of MrpC2 

protein by phosphorylation of MrpC (Nariya & Inouye, 2006).  

 

MrpC2 binds with high affinity to the fruA and mrpC promoters indicating that MrpC2 

induces fruA gene transcription and positively autoregulates its own expression (Ueki & 

Inouye, 2003) (Figure 1. 3). FruA is an orphan two component DNA-binding response 

regulator containing N-terminal receiver and C-terminal DNA binding domains and is 

essential for aggregation and sporulation  (Ogawa et al., 1996, Ellehauge et al., 1998, 

Horiuchi et al., 2002). Recently, it also has been shown that MrpC, together with FruA, 

is required for control of transcription of several genes expressed late during the 

developmental program near the onset of sporulation (Mittal & Kroos, 2009a, Mittal & 

Kroos, 2009b). It has been proposed that FruA is likely activated by phosphorylation, 

and genetic evidence suggests that FruA activation occurs in response to the C-signal 

pathway (Sogaard-Andersen & Kaiser, 1996, Ellehauge et al., 1998). Cell-surface-

associated CsgA protein (p25), encoded by csgA gene, is cleaved into C-signal protein 

(p17) by PopC protease (Rolbetzki et al., 2008). In response to end-to-end contact 
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between cells, C-signal is produced and sensed by an unidentified receptor on a 

neighbor cell and then C-signal production is further amplified by cell to cell contact 

leading to increased FruA activation (Gronewold & Kaiser, 2001).  

 

A current model suggests that FruA protein that has been activated by the C-signal 

induces two branches of M. xanthus development: aggregation and sporulation 

(Sogaard-Andersen et al., 1996). Low level of phosphorylated FruA are though to 

induce the aggregation branch by stimulating methylation of FrzCD, a methyl-

accepting chemosensory-protein which controls cell reversal frequency leading to 

aggregation during development. It has been shown that FrzCD methylation during 

development results in decreased cell reversal frequency which directs cells to 

aggregate into fruiting bodies (Blackhart & Zusman, 1985, McBride et al., 1992, 

McBride & Zusman, 1993, Shi et al., 1996, Sogaard-Andersen & Kaiser, 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Molecular events during the M. xanthus developmental program (bottom) in relation to 

aggregation and sporulation (top). The M. xanthus developmental program is induced by starvation 

and controlled by temporally ordered cascade of gene expression. See text for details.  

 

In the sporulation branch, higher levels of activated FruA, thought to be induced by 

increased cell-cell contact during aggregation, induce the sporulation branch (Sogaard-

Andersen et al., 1996, Ellehauge et al., 1998). It has been demonstrated that FruA 

induces transcription of the dev locus which is necessary for induction of sporulation 

(Viswanathan et al., 2007). FruA and MrpC both bind to the dev promoter (Mittal & 

Kroos, 2009a, Mittal & Kroos, 2009b). One of the products of the dev locus (DevT) is 

also required for stimulation of fruA transcription providing a positive feedback loop 
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on fruA expression (Boysen et al., 2002). The dev locus is necessary for Mxan_3227 

(exo) expression (Licking et al., 2000). Mutants in dev and Mxan_3227 (exo) form 

mounds, but fail to form spores suggesting that both dev and Mxan_3227 (exo) are 

required for sporulation (Thony-Meyer & Kaiser, 1993, Licking et al., 2000).   

1.1.4 Positive feedback loops of Myxococcus xanthus 

 

Positive and negative feedback (autoregulatory) loops are frequently found in 

transcription regulatory networks and signaling pathways (Banerjee & Bose, 2008, 

Mitrophanov & Groisman, 2008) and maintain homostasis during regulation of cell 

growth and differentiation in response to external stimuli (Kim et al., 2007). The 

feedback loop normally consists of genes, proteins and other molecules which are 

connected by regulatory interaction. Depending on the components and their interaction, 

feedback loops have distinct roles in diverse regulatory systems. A regulatory interaction 

is positive, when an increase of the amount or activity of one component increases the 

amount or activity of its interaction paterner (Banerjee & Bose, 2008). In contrast, a 

regulatory interaction is negative, when one component decreases the activity of its 

partner.  In general, it is known that positive feedback induce a swich-like behavior and 

biastability (Ferrell, 2002, Tyson et al., 2003) and that negative feedback represses noise 

effects (Tyson et al., 2003, Loewer & Lahav, 2006).  

 

In the M. xanthus development program, three major positive regulatory loops have been 

shown to play important roles in control of development program. First, MrpC, which is 

major developmental protein, acts as transcriptional regulator inducing own gene 

transcription (Sun & Shi, 2001b, Sun & Shi, 2001a, Nariya & Inouye, 2006). Second,  C-

signaling (CsgA p17) acummulated by increased cell-cell contact during development, 

activates csgA transcription which results in CsgA p25 accumulation (Kim & Kaiser, 

1990, Kim & Kaiser, 1991, Li & Shimkets, 1993, Gronewold & Kaiser, 2001). Fianlly, 

one of the products of the dev locus (DevT) activated by FruA protein directly or 

indirectly stimulates fruA transcription providing a positive feedback loop on fruA 

expression (Boysen et al., 2002) (see details in section 1.1.3). It has been shown that 

overexpression of C-signal during early development results in uncoupling of 

aggregation and sporulation, forming spores outside of fruiting bodies, while reduced 

synthesis of CsgA protein causes delayed aggregation forming large fruiting bodies and 

reduced sporulation (Kruse et al., 2001). Since aggregation and sporulation are induced 

at distinct low and higher threshold levels of C-signal respectively, sporulation is though 

to be coupled to completion of aggregation by C-signaling loop coupled to the positive 

feedback loop on FruA expression.  
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1.1.5 Cell fate during development 

 

In addition to the cells that aggregate and then sporulate, two other distinct cell fates 

have been observed. It was first observed that the majority of cells (approximately 80 to 

90 %) undergo obligatory cell lysis (Wireman & Dworkin, 1977). It was later 

demonstrated that some developing cells do not aggregate and becomes peripheral rods 

which remain as rod-shaped cells (O'Connor & Zusman, 1991c).  

 

It currently has been proposed that programmed cell death (PCD) is mediated by a 

toxin/antitoxin system composed of MazF/MrpC. MazF is an endoribonuclease and MrpC 

is a transcriptional regulator described above. A current model suggests that under 

vegetative conditions, non-phosphorylated MrpC forms a complex with MazF to prevent 

MazF activity. In nutrient depleted conditions, the Pkn8 and Pkn14 Ser/Thr kinase cascade 

is inactivated and MrpC is cleaved into MrpC2. MrpC2 activates both transcription of mazF 

and mrpC. Later during development, MrpC does not form a complex with MazF so that 

MazF can act as an endoribonuclease inducing programmed cell death (Figure 1. 4). 

Mutants in mazF display a delayed developmental phenotype compared to wild-type 

suggesting programmed cell death plays an important role for developmental progression 

(Nariya & Inouye, 2008, Sogaard-Andersen & Yang, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Schematic view of the programmed cell death pathway. (A) In vegetative cells, the 

interaction between MazF and non-phosphorylated MrpC prevent a MazF activity. (B) In response to 

starvation, the Pkn8–Pkn14 kinase cascade is inactivated and MrpC converted to MrpC2 by LonD 

protease.  In late starving cells (indicated in red), MazF acts as an endoribonuclease. This figure is taken 

from (Sogaard-Andersen & Yang, 2008). 
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Peripheral rods are a distinct developmental subpopulation of cells that do not aggregate 

and remain as rod-shaped cells outside of fruiting bodies. Analysis of the proteins 

expressed in peripheral rods suggest that these cells are distinct from vegetative rods 

(O'Connor & Zusman, 1991a). O’Connor and Zusman analyzed the accumulation 

patterns of several developmentally regulated proteins in the non-aggregating cell and 

aggregating cell population by immunoblot analysis. This study demonstrated that 

MbhA (myxobacterial hemagglutinin), Protein S, Protein S1 and Protein C (spore coat 

protein) are expressed in both cell types but that the expression patterns are different 

(O'Connor & Zusman, 1991c). It has been hyphothesized that peripheral rods allow 

M.xanthus to utilize low levels of nutirients that would not support spore germination 

and outgrowth of spores (O'Connor & Zusman, 1991b). Julien et al. revealed that 

aggregating cells express at least two times more CsgA protein than non-aggregating 

rods cells (Julien et al., 2000).  

1.2 Two-component signal transduction systems in M. xanthus 

 

In bacteria, two-component signal transduction systems play an important role as a 

basic stimulus-response coupling mechanism to allow organisms to sense and respond 

to changes in environmental conditions. The prototypical system consists of a histidine 

protein kinase (HPK), containing a sensing domain fused to HisKA and HATPase_C 

signal transmission domains and a reposnse regulator (RR), containing a receiver 

domain fused to an effector domain. In a simple system, extracellular stimuli are 

sensed by, and serve to modulate the activities of, the HPK. The HPK transfers a 

phosphoryl group to the RR which mediates a response (Figure 1. 5A). This paradigm 

system is termed a 1:1 paired system. However, two component signal systems can 

also comprise more complex multistep phosphorelays. Typically, a phosphorelay 

system is composed of HPK which also contains a receiver domain (hybrid). In 

response to a stimulation, the hybrid HPK autophosphorylates and transfers phosphoryl 

group to the reciever. Then, this phosphoryl group is transfered to the conserved 

histidine residue on a histidine phosphotransferase protein (Hpt) and finally to a RR 

which results in activation of a downstream effector domain to elicit a specific 

response (Stock et al., 2000) (Figure 1. 5B). Thess more complex signaling systems 

often involve orphan TCS genes (not encoded with cognate TCS partners) or TCS 

genes organized  in complex arrangments (more than two TCS genes are encoded in 

the same locos).   
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Figure 1.5 Schematic representation of the two-component signal transduction paradigm and the 

domain structures of each component. (A) A classical system. (B) A multi-component phosphorelay 

system. HisKA: dimerization domain, HATPase_c: the catalytic and ATPase domain, REC: receiver 

domain, Output: output domain, HPT: His-containing phosphotransfer domain. See text for details.  

 

The M. xanthus genome contains 272 two-component signal transduction (TCS) genes 

consisting of 118 histidine protein kinases (HPKs), 119 response regulators (RRs) and 

14 HPK like genes (Shi et al., 2008). Shi et al. classified TCS genes into three groups 

based on their genetic organization: orphans (not flanked by a cognate TCS partner in 

the genome), paired (one HPK and one RR) and complex (more than two TCS genes 

encoded in the same locus) (Figure 1. 6).    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Classification scheme of two-component signal trasduction genes. The definition of 

paired and orphan TCS genes includes information about transcription direction as indicated by the arrow 

symbols. Complex TCS gene clusters include clusters containing two or more RR genes, clusters 

containing two or more HPK or HPK-like genes, and clusters with three or more TCS genes irrespective 

of transcription direction, as indicated by the box symbols. This figure is taken from (Shi et al., 2008).  
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Of the 272 TCS genes, 71% of the TCS genes are organized either in orphan genes or in 

complex gene clusters, whereas only 29 % display the standard paired gene organization 

(Shi et al., 2008).  

 

Interestingly, atypical (cytoplasmic or hybrid) HPKs and atypical RRs (containing non-

DNA binding domain or lacking output domain) are overrepresented in orphan or 

complex gene clusters. These results suggest that the signal transduction pathways 

encoded by orphan genes and complex gene clusters are involved in complex 

phosphorelay systems (Shi et al., 2008). Moreover, experimental data through 

microarray and quantitative real-time PCR analysis have shown that a high proportion 

of orphan genes and genes encoded in clusters are transcriptionaly regulated during 

development. These results suggest that a higher proportion of orphan genes is 

developmentally regulated and may be necessary for contolling development program.  

1.3 Negative regulators (NRs) that alter developmental timing 
in M. xanthus 

 

An interesting set of genes (espA, espC, red and todK) have been identified that are 

necessary for negative regulation of developmental progression in M. xanthus. 

Interestingly, espA, espC, red and todK genes are members of the two component 

signal transduction family of proteins, but no output proteins have been identified, 

since all of these genes are encoded as orphans or together with single receiver domain 

protein.  

1.3.1 EspA 

 

The first NR, espA, was identified in a screen for abnormal developmenters using 

random plasmid insertion mutagenesis (Cho & Zusman, 1999). espA is cotranscribed 

with espB and transcription is up-regulated during development (Cho & Zusman, 1999). 

A null mutant in espA, a hybrid histidine kinase homolog, causes aggregation and 

sporulation earlier than wild type. In contrast, mutants in espB, encoding a putative 

transport protein, are delayed for aggregation and sporulation. Moreover, an espA espB 

double mutant also shows the same early development as the espA mutant suggesting 

that that they lie in same signalling pathway and that EspA acts downstream of EspB 

(Cho & Zusman, 1999).  

 

EspA is hybrid kinase that contains N-terminal forkhead associated (FHA) domain, two 

PAS/PAC redox sensing domains, and a C-terminal receiver domain (Figure 1. 7). FHA 

domains are found in many protein kinases and transcription factors in eukaryotes 
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(Hofmann & Bucher, 1995), and have been proposed to be a basic phosphopeptide 

recognition motif that plays a important role in phosphor mediated protein interaction 

processes in eukaryotes (Durocher et al., 1999). PAS/PAC domains are involved in 

many signaling proteins, where they are used as a sensor domain for energy or oxygen 

stress (Taylor & Zhulin, 1999).  

 

Based on the early developmental phenotype of an espA mutant, it was hypothesized 

that EspA acts to repress progression through the developmental program until a 

specific condition or set of conditions is met (Cho & Zusman, 1999). Moreover, it has 

been demonstrated that two Ser/Thr kinases, PktA5 and PktB8 that are encoded adjacent 

to the espAB locus, regulate developmental program by interacting with EspA and EspB 

(Stein et al., 2006). This result suggests that regulation of the developmental program 

by EspA is very complicated. However, signal output of EspA is not clear because it is 

not genetically organized together with a cognate response regulator gene.  

 

It more recently has been demonstrated that EspA autophosphorylates and transfers a 

phosphoryl group to its receiver domain. Moreover, point mutations in both the kinase 

and receiver domains phenocopy the espA deletion mutant. These results indicate that 

kinase activity is required for EspA-mediated control over developmental progression, 

and that phosphotransfer to the receiver domain is a required step in EspA-mediated 

control over the developmental program. In this research, Higgs et al. also demonstrated 

that in the espA mutant, mrpC expression was similar to that of the wild type, but espA 

mutant induces earlier accumulation of MrpC protein resulting in earlier accumulation 

of FruA. Earlier accumulation of FruA correlates with earlier aggregation and 

sporulation development of espA mutant (Higgs et al., 2008). These analyses suggest 

EspA regulates the developmental program by decreasing translational of mrpC or 

stimulating degradation of MrpC.   

1.3.2 EspC 

 

In an effort to identify signaling partners (outputs) for EspA, magellan4 mariner 

transposon mutagenesis was used to screen for early developer mutants in espB mutant 

background which shows delayed development (Lee et al., 2005). In this analysis, nine 

independent insertion mutants were identified. One of the nine insertion mutants was 

in the espA gene, itself. The rest were inserted in new genes: one in espC, five in the 

red locus (see below) and two in Mxan_4465 (Higgs ,Cho, and Zusman, unpublished 

data).  

 

 



Introduction 
 

 13 

EspC is an orphan hybrid histidine kinase that contains a receiver domain at the C-

terminal and two N-terminal sensing modules: a MASE1 module and, like EspA, a 

PAS/PAC redox sensing module (Figure 1. 7). MASE1 is a predicted integral 

membrane sensory domain found in histidine kinases, diguanylate cyclases, and other 

bacterial signaling proteins (Anantharaman & Aravind, 2003). An espC mutant also 

caused early development phenotype like espA mutant and sporulation timing of the 

espC mutant is very similar to that of the espA mutant (Lee et al., 2005). EspA and 

EspC are 49% identical in the kinase domain. espC was reported up-regulated during 

development.  

1.3.3  RedCDEF 

 

It has been shown that four additional unusual two-component signal transduction 

proteins (RedC, RedD, RedE and RedF) also modulate developmental progression 

(Higgs et al., 2005). A null mutation in redCDEF (regulation of early development) 

displays early developmental phenotype. RedC encodes a membrane-bound histidine 

kinase, RedD encodes a protein with dual receiver domains, RedE encodes a histidine 

kinase with no obvious sensing domain, and RedF encodes a single domain receiver 

protein (Figure 1. 7). Epistasis and yeast two-hybrid interaction analyses suggested that 

these four proteins are involved in a linear signal transduction system so are treated as 

one pathway (Higgs et al., 2005).  

 

Recently, in an effort to understand signal flow between the RedCDEF two-component 

signaling proteins, genetic and biochemical approaches were employed (Jagadeesan et 

al., 2009). Genetic evidence demonstrated that null mutations of either redC or redF 

aggregate and sporulate earlier than wild-type, while redD and redE mutants are 

delayed in aggregation and sporulation. Biochemical evidence suggests a novel four 

component signal transduction mechanism. In this model, early during development, 

RedC autophosphorylates and transfers its phosphoryl group to RedF which repress the 

developmental program. Later during development, in response to an unknown signal, 

RedC transfers its phosphoryl group to the first receiver domain of RedD and the 

phosphoryl group is then transferred to RedE. Finally, RedE acts as phosphatase on 

RedF, and dephosphorylated RedF allows development to proceed (Jagadeesan et al., 

2009). It is unknown how RedF modulates developmental progression.  

1.3.4 TodK 

 

By using mini-Tn5(tet) mutagenesis, the todK gene was characterized in the alternative 

DK1622 wild type strain (Rasmussen & Sogaard-Andersen, 2003). TodK is orphan 
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histidine kinase homolog that contains a PAS/PAC redox sensing module (Figure 1. 7). 

A null mutantion in todK results in early development and in increased expression of a 

subset of C-signal-dependent genes. It has been shown that TodK does not interfere 

with accumulation of CsgA protein suggesting that TodK is not involved in the 

regulation of C-signal accumulation. In a similar manner, TodK is not involved in the 

developmentally regulated transcription of fruA or in the accumulation of FruA protein 

suggesting that TodK pathway converges on the C-signal transduction pathway 

downstream of the accumulation of the FruA protein. It has been shown that the todK 

mutant does not bypass certain known developmental regulators such as csgA, fruA 

and devR suggesting that TodK depends on the known components to induce early 

aggregation and early sporulation. todK was reported transcriptionally down regulated 

during development (Rasmussen & Sogaard-Andersen, 2003). It is not clear what the 

signal output of TodK is. It has been demonstated that mutant in dotR which encodes 

response regulator located adjacent to TodK had no defect in development. This result 

suggests that TodK and DotR may not act in the same genetic pathway (Rasmussen & 

Sogaard-Andersen, 2003) 

 

 

Figure 1.7 A schematic view of genetic organization and domain architecture of espA, espC, 

redCDEF and todK. (A) Genetic organization of espA, espC, redCDEF, and todK genes. Hybrid histidine 

kinases are displayed by green and blue gradation. Histidine kinases are displayed by green. Receivers 

are displayed by blue. (B) Domain architecture of EspA, EspC, RedCDEF, and TodK. FHA 

(forkheadassociated domain). PAS (PAS/PAC sensing domain). HPK (histidine protein kinase domain). R

EC(receiv-er domain). TMS (transmembrane domain).   
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1.4 Aim of the project 

 

Based on previous research, it is hyphothesized that the espA, espC, red, and todK gene 

products are necessary for negative regulation of progression through the 

developmental program. The aim of this project was 1) to understand whether these 

NRs function together or in separate pathways to regulate developmetal progression in 

M. xanthus, and 2) to define the point(s) in the developmental program where the NRs 

signaling pathway(s) exert a function. The results of these analyses will be used to 

elucidate the advantage for the fuction of NRs in the developmental program.  
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2 RESULTS 
 

 

2.1 Genetic analysis of NRs  

2.1.1 The espA, espC, red and todK genes are regulated during development 

 

We first compared the transcriptional expression level of the espA, espC, red and todK 

genes during development by real-time PCR analysis to enable a direct comparison of 

the expression patterns in the DZ2 wild type strain during development. Consistent with 

the literature (Cho & Zusman, 1999, Lee et al., 2005), the real-time PCR results showed 

that espA and espC genes are up-regulated after onset of starvation and display nearly 

indentical expression patterns (Figure 2. 1).  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Quantitative real-time PCR analysis of NR genes transcription during development.  

Wild-type cells were developed in submerged culture and harvested at the indicated time points. RNA was 

isolated and reverse transcribed into cDNA. Primers specific for espA, espC, red and todK were used for 

real-time PCR analysis. 

 

It has been reported in the alternative DK1622 wild type strain that the todK mRNA was 

10-fold down-regulated after onset of starvation (Rasmussen & Sogaard-Andersen, 

2003). However, our result shows that todK is slightly up and then down regulated. red 

transcription is approximately 8-fold down regulated over 36 h of development. It has 

been previously demonstrated that EspA protein patterns follow the transcription 

patterns (Higgs et al., 2008), and that the Red proteins are expressed in vegetative 

constion and are down regulated after 36 h of development on CF starvation plates  

(Jagadeesan et al., 2009). TodK is also expressed during vegetative growth and is down 
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regulated after 36 h (Figure 2. 36). The protein accumulation pattern of EspC is similar 

to that of EspA (Schramm & Higgs, unpublished data).  

2.1.2 Mutants in the four NRs exhibit three distinct developmental 

phenotypes 

 

As a first step to determine whether the NR gene products function together or in 

separate pathways, ∆espA, ∆espC, ∆red, and todK::Tn5 insertion mutants were 

generated in an isogenic background and a rigorous phenotypic comparison was 

performed.  These strains were developed on nutrient-limited starvation medium (CF 

plates) and heat and sonication resistant spores were counted by hemacytometer 

(counting chamber) at each developmental time point. It should be noted that in this 

analysis, we used that todK insertion mutants, however we have shown that insertion 

and deletion mutants of todK displayed same phenotype (data not shown) and this result 

is corresponding to previous reaserch (Rasmussen & Sogaard-Andersen, 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Phenotype and sporulation assays for NR mutants used in this study. 10 ul spots (4 X 109 

cells ml-1) of wild-type (DZ2), espA (DZ4227), espC (PH1044), red (DZ4659) and todK (PH1045) mutants 

were placed on starvation plates and incubated at 32 °C. Pictures were recorded at the indicated time 

points. Sporulation efficiency was determined as number of heat and sonication resistant spores as a 

percent of wt spores at 72 h. Scale bar, 1.0 mm. 
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The wild-type strain initiates aggregation and sporulation between 32 and 48 h, and all 

NR mutants aggregate and sporulate earlier than the wild type. Development of espA 

and espC mutants is approximately 12 h earlier than wild-type, while the red mutant is 

approximately 24 h earlier than wild-type. Development of the todK mutant is earlier 

than the red mutant. Interestingly, espA and espC mutants showed very similar timing of 

development, while todK and red mutants are progressively earlier (Figure 2. 1). This 

result demonstrates that there are at least three distinct NR phenotypes, and suggests 

that EspA and EspC effect the developmental program differently from TodK and from 

Red.   
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2.1.3 EspA and EspC likely lie in the same signaling pathway 

 

The observation that the developmental phenotypes of espA and espC mutants are very 

similar each other raised the possibility that EspA and EspC likely act to repress 

developmental program at a similar point. To further understand whether these two NRs 

function in one or two distinct signaling pathways, we generated an isogenic espA espC 

double mutant and performed an epistasis analysis. Our analysis demonstrated that 

developmental phenotype of espA espC double mutant is identical to the espA and espC 

single mutants (Figure 2. 3). This result suggests that EspA and EspC function together 

to repress a distinct position in the developmental program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Epistatic analysis for espA and espC. 10 ul spots (4 X 109 cells ml-1) of wild-type (DZ2), espA 

(DZ4227), espC (PH1044), and espA espC (PH1047) mutants were placed on starvation plates and 

incubated at 32 °C. Pictures were recorded at the indicated time points. Spore efficiency was determined 

as the number of heat and sonication resistant spores as a percent of wild-type spores at 72 h. Scale bar, 

1.0 mm. 
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2.1.4 The Red TCS system does not lie in the same signaling pathway 

with EspA/EspC  

 

To understand whether Red functions in the same signaling pathway with EspA and 

EspC, we next generated espA red and espC red double mutants in isogenic 

backgrounds. red mutants develop earlier than the espA mutant (see Figure 2. 1). 

Interestingly, the espA red double mutant displayed an additive phenotype, it aggregated 

and sporulated even earlier than the red single mutant and formed more disorganized 

fruiting bodies (Figure 2. 4). The espC red double mutant also displayed an additive 

phenotype similar to espA red double mutant (data not shown). These results suggest 

that Red does not lie in same signaling pathway with EspA/EspC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Epistatic analysis for espA and red. 10 ul spots (4 X 109 cells ml-1) of wild-type (DZ2), espA 

(DZ4227), red (DZ4659), and espA red (PH1048) mutants were placed on starvation plates and incubated 

at 32 °C. Pictures were recorded at the indicated time points. Sporulation efficiency was determined as the 

number of heat and sonication resistant spores as a percent of wild-type spores at 72 h. Scale bar, 1.0 mm.  
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2.1.5 TodK does not lie in the same signaling pathway with EspA/EspC  

 

To examine the possibility that TodK is in same singling pathway with EspA and EspC, 

we next generated espA todK and espC todK double mutants in an isogenic background. 

Our analysis revealed that development of espA todK is also additively faster than either 

of the single mutants (Figure 2. 5). The espC todK mutant also displayed additive 

phenotype like espA todK double mutants (data not shown). These results suggest that 

TodK also functions in a different signaling pathway from EspA and EspC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Epistatic analysis for espA and todK. 10ul spots (4 X 109 cells ml-1) of wild-type (DZ2), espA 

(DZ4227), todK (PH1046), and espA todK (PH1049) mutants were placed on starvation plates and 

incubated at 32 °C. Pictures were recorded at the indicated time points. Sporulation efficiency was 

determined as the number of heat and sonication resistant spores as a percent of wild-type spores at 72 h. 

Scale bar, 1.0 mm. 
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2.1.6 Red and TodK are in different signaling pathways 

 

We next used a similar approach to examine the genetic relationship between red and 

todK. A red todK double mutant was generated and analyzed. Our analysis revealed that 

red todK double mutant displayed an additive phenotype which develops much earlier 

than the single mutants (Figure 2. 6). In addition to the additive phenotype, the red todK 

double mutant formed more disorganized fruiting bodies. These results suggest that Red 

and TodK also do not lie in a single linear signaling pathway. Taken together, all these 

results suggest that there are at least three distinct signaling pathways in the 

developmental program: 1) EspA/C, 2) Red, and 3) TodK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Epistatic analysis for espA and todK. 10 ul spots (4 X 109 cells ml-1) of wild-type (DZ2), red 

(DZ4659), todK (PH1046), and red todK (PH1052) mutants were placed on starvation plates and incubated 

at 32°C. Pictures were recorded at the indicated time points. Sporulation efficiency was determined as the 

number of heat and sonication resistant spores as a percent of wild-type spores at 72 h. Scale bar, 1.0 mm.  
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2.1.7 Coordinated fruiting body formation is destroyed in the absence of 

the NRs  

 

We next investigated the phenotype of mutants missing two or more of the NRs. 

Interestingly, our analysis revealed that an espA espC red todK quadruple mutant 

aggregates and sporulates earlier and at higher level than all other combinations of 

double mutants (Figure 2. 7A). Morover, this quadruple mutant failed to form distinct 

fruiting bodies. From our genetic analysis of all combinations of kinase mutants, we 

observed that while DZ2 forms well-rounded and compact fruiting bodies, single, 

double, and quadruple mutants form progressively more disorganized fruiting bodies 

(Figure 2. 7A and B) suggesting that there is a negative correlation between rate of 

development and coordinated fruiting body formation. Moreover, closer examination of 

the fruiting bodies in the various mutants revealed that the early development mutants 

formed many spores outside of fruiting bodies (Figure 2. 7C). These results all further 

suggest that kinases that control the timing of development are required for coordinated 

fruiting body formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Comparative analysis of the NR mutant combinations. (A)10 ul spots (4 X 109 cells ml-1) of 

wild-type (DZ2), espA (DZ4227), espA red (PH1048), and espA espC red todK (PH1054) quadruple 

mutants were placed on starvation plates and incubated at 32 °C. Pictures were recorded at the indicated 

time points. Sporulation efficiency was determined as the number of heat and sonication resistant spores 

as a percent of wild-type spores at 72 hours. Scale bar, 1.0 mm. (B and C) 500 ul of cell culture (2 X 107 

cells ml-1) of wild-type (DZ2), espA (DZ4227), espA red (PH1048), or espA espC red todK (PH1054) 

mutants were placed in starvation media (MMC) and incubated at 32°C. Pictures were recorded by 

inverted microscope at 72 hours development. Scale bar, (B) 100 µm, (C) 50 µm.  
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2.1.8 Peripheral rods sporulate inappropriately in the NR mutants 

 

As described above, we observed that early development correlates with disorganized 

fruiting bodies. To further understand this observation, we examined the proportions of 

lysed cells, spores and peripheral rods. For this, we adapted an assay to separate 

peripheral rods and fruiting bodies (O'Connor & Zusman, 1991c). Briefly, we first 

harvested and counted cells at 0 h of development to determine total cell number. We 

next harvested cells after 5 days of development and separated fruiting bodies from 

peripheral rods by low speed centrifugation (50 × g) and counted the total remaining 

number of cells.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Quantification of cell lysis. 500 ul cultures (2 X 107 cells ml-1) of wild-type (DZ2), espA 

(DZ4227), espA red (PH1048), or espA espC red todK (PH1054) mutants were placed in starvation media 

(MMC) and incubated at 32 °C. Cells were harvested and counted at 0 h of development and after 5 days 

of development. Lysed cells were calculated by comparing total cells harvested after 5 days of 

development with the number of cells determined at 0 h of development.  

 

After separation of these two fractions, we counted the number of rods and spores in the 

supernatant which are expected to be outside of fruiting bodies. In similar manner, we 

counted spores in the pellet which are expected to be inside of fruiting bodies. In this 

assay, we first checked the proportion of lysed cells and developing cells (peripheral 

rods and spores). Our analysis revealed that 79 % of DZ2 cells underwent programmed 

cell death and this proportion was similar in the NR mutant strains indicating that there 

is no significant difference in the amount of lysis in each strain (Figure 2. 8). 

 

Next, we focused on the proportion of peripheral rods and spores. Our assay 

demonstrated that all strains have nearly the same number of spores inside fruiting 
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bodies even though the fruiting bodies of the quadruple NR mutants are barely 

distinguishable. In the wild-type, 29 % of cells were peripheral rods and 3 % were loose 

spores. In contrast, only 18 %, 11 %, 5 % of cells were peripheral rods in espA, espA 

red, and espA espC red todK quadruple mutants respectively. Conversly, the number of 

loose spores increased from 3 % in the wild-type, to 11 %, 18 %, and 25 % in the espA, 

espA red, and quadruple NR mutants, respectively (Figure 2. 9). These results suggest 

that peripheral rods are sporulating inappropriately in the early development mutants 

and that the control mechanisms for peripheral rods are disturbed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9  Analysis of the developmental subpopulations in the NR mutants.  (A) The proportion of 

peripheral rods and spores in wild-type (DZ2), espA (DZ4227), espA red (PH1048), and espA espC red 

todK (PH1054) mutants. 500 ul culture (2 X 107 cells ml-1) of wild-type (DZ2), espA (DZ4227), espA red 

(PH1048), and espA espC red todK (PH1054) mutants were placed in starvation media (MMC) and 

incubated at 32 °C. Cells were harvested after 5 days of development. The number of cells in each 

population was counted by hemacytometer. (B) Schematic representation of the cell population at 5 days.     

2.1.9 The NR depleted mutant follows the ordered developmental 

program 

 

The observation that almost all cells sporulated in the espA espC red todK mutant raised 

the possibility that these cells were bypassing the ordered cascade of developmental 

regulator expression. To address this issue, we analyzed expression pattern of 

developmental marker genes (fruA, dev, Mxan_3227) by using real-time PCR in the 

espA espC red todK quadruple mutant. Real-time PCR analysis of fruA gene 
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transcription showed that in the quadruple mutant, fruA was highly expressed from 

between 0 to 6 h and especially fruA transcript in the quadruple mutant was 

approximately 6.5-fold higher than wild type at 6 h of development (Figure 2. 10B). 

Moreover, real-time PCR analysis of dev gene transcription showed that in the 

quadruple mutant, dev was up-regulated between 3 h and 6 h compared to between 12 h 

and 18 h in the wild type (Figure 2. 10C). In similar manner, expression of Mxan_3227 

(exo) was highly up-regulated between 12 h and 15 h in the quadruple mutant compared 

to  between 30 h and 42 h in the wild type (Figure 2. 10D). These results suggest that 

although fruA, dev and exo are expressed earlier than in the wild-type, they still follow 

ordered expression patterns and expression of these genes is not bypassed.  

 

Figure 2.10 Real time PCR analysis of developmetal marker genes. (A) The developmental phenotype 

of the espA espC red todK quadruple mutant compared to the wild type. 16 ml cell culture (2 X 107 cells ml-1) 

of wild-type (DZ2) and espA espC red todK (PH1054) mutants were induced to develop under submerged 

culture and incubated at 32 °C. Pictures were recorded at the indicated times. Scale bar, 1 mm. (B) 

Primers specific for fruA (B), dev (C), Mxan_3227 (D) were used for real-time PCR analysis. 

2.1.10 Analysis of NR double mutants with developmental genes 

 

To understand the effect of the NRs on the developmental pathway, we generated double 

mutants between NRs and certain major developmental regulator genes (asgA, fruA, csgA 

and frzCD). It has been previously shown that in the espA mutant, C-signalling can be 

partially bypassed (Higgs et al., 2008), but that the todK mutant cannot bypass C-

signaling (Rasmussen & Sogaard-Andersen, 2003). 
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Mutations in the asgA gene can not produce A-signal and the mutants do not develop. 

Double mutants with asgA in all kinase mutant backgrounds displayed same phenotype 

with the asgA mutant suggesting that A-signaling cannot be bypassed in these mutants 

(Figure 2. 11). Moreover, double mutants with fruA also displayed same phenotype as the 

fruA single mutant indicating that these NR mutants cannot bypass the requirement for 

fruA (Figure 2. 11). However, interestingly, espA csgA and espC csgA double mutants 

were able to aggregate and sporulate showing almost same level of sporulation efficiency 

with wild-type (Higgs et al., 2008) (Figure 2. 11). This result indicates that in the espA 

and espC mutants, C-signalling can be bypassed. The red csgA double mutant was able to 

aggregate and sporulate in a reduced level compared to espA csgA and espC csgA mutants 

indicating that C-signalling can be partially bypassed in the red mutant (Figure 2. 11). The 

todK csgA double mutant does not develop which corresponds to what was previously 

suggested in the alternative wild-type strain, DK1622  (Rasmussen & Sogaard-Andersen, 

2003) (Figure 2. 11). Finally, double mutants between frzCD and each of the NR mutants  

displayed a mixed phenotype: cells formed frizzy filaments instead of fruiting bodies, but 

produced spores in a higher level than the frzCD single mutant (Figure 2. 11). This result 

is consistent with a branched pathway, where the sporulation branch is induced even in 

the absence of a fully functioning aggregation branch. Taken together, these results are 

consistent with three distinct mechanisms for control of developmental progression. 

EspA/EspC can bypass C-signal, Red can partially bypass C-signal, but TodK cannot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 The developmental phenotype of key developmental genes in the wild-type, espA, espC, 

red and todK mutant backgrounds. Cells were induced to develop for 72 h on starvation media (CF) 

plates. Pictures were recorded at the indicated time points. Spore efficiency was determined as number of 

heat and sonication resistant spores as a percent of wild-type spores at 72 h. Scale bar, 1.0 mm. 
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2.2 Expression analysis of developmental marker proteins in 
the NR mutants 

 

To further understand how these kinase mutants modulate the developmental pathway at 

a molecular level, the accumulation patterns of key developmental marker proteins were 

examined in NR mutants. 

2.2.1 red and todK mutants behave differently in submerged culture 

 

In order to prepare protein samples for immunoblot analysis, wild-type, espA, espC, red 

and todK mutants were induced for development in submerged starvation cultures, since 

it allows quick and quantitative recovery of cells. In this analysis, we also examined 

phenotype and sporulation efficiency of each mutant under these condtions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12  The developmental phenotype of NR mutants. 16 ml cell cultures (2 X 107 cells ml-1) of 

wild-type (DZ2) and espA (DZ4227), espC (PH1044), red (DZ4659) and todK (PH1045) mutants were 

induced to develop under submerged culture and incubated at 32 °C. Pictures were recorded at the 

indicated time. Spore efficiency was determined as number of heat and sonication resistant spores as a 

percent of wild-type spores at 120 h Scale bar, 1 mm.  
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Our phenotypic analysis under submerged culture demonstrated that the wild-type strain 

started aggregation and sporulation between 24 h and 36 h which is slightly faster than 

during starvation on agar plates. espA and espC mutants developed earlier than wild-

type between 12 h and 24 h. Interestingly however, red and todK mutants showed an 

abnormal phenotype compared with the phenotype on starvation agar plates. Both red 

and todK mutants still sporulated faster than wild-type, but the timing of aggregation is 

similar to wild-type. Moreover, development of red and todK mutants is later than espA 

and espC mutants contrary to the phenotype on starvation plates. The todK mutant 

produced spores slightly earlier than the red mutant (Figure 2. 12). It is not clear why 

red and todK behave differently in submerged culture, but it likely correlates with the 

different nutrient levels between starvation plates and submerged culture.  

2.2.2 EspA and EspC likely act together in the repression of MrpC  

 

In this analysis, we first focused on the expression pattern of developmental marker 

proteins in espA and espC mutants, since we preciously demonstrated that EspA and 

EspC are likely lie in the same signaling pathway. Cells were harvested, resuspended in 

an equivalent volume of protein sample buffer and subjected to immunoblot analysis. 

As a control for equal loading of protein samples, we tested the accumulation of PilC 

protein, a component of the type IV pilus that is not expected to be developmentally 

regulated (Wu et al., 1997). Our analysis showed that PilC protein was constantly 

expressed in wild-type and all mutants between 0 h and 24 h (Figure 2.13 A).  

 

We next analyzed the expression pattern of MrpC, a key developmental transcriptional 

regulator. In the wild-type, MrpC and MrpC2 are expressed at low level from 0 h to 18 

h, up-regulated between 18 h and 24 h, and the levels decrease between 24 h and 30 h. 

The espA mutant induces accumulation of MrpC between 0 h and 3 h (Figure 2. 13B). 

Early accumulation of espA mutants was previously observed (Higgs et al., 2008). In a 

similar manner, the espC mutant induces earlier accumulation of MrpC between 0 h and 

6 h. We similary examined the expression pattern of FruA. FruA protein is up-regulated 

in the wild-type between 12 and 18 h. However, espA and espC mutants induce 

accumulation of FruA between 3 h and 6 h (Figure 2. 13C). Upregulation of full length 

CsgA protein (p25) was observed from early onset of starvation in the wild-type and the 

timing of CsgA accumulation is  similar in wild-type, espA and espC mutants from 0 to 24 

h (Fig. 2. 13D). We were unable to detect p17 (C-signal) which is proposed to be 

necessary for FruA activation in these assays. Current models suggest that activated FruA 

stimulates methylation of the FrzCD chemosensory protein (Sogaard-Andersen & Kaiser, 

1996). We therefore, examined the methylation patterns of FrzCD. In wild type, both 
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unmethylated and methylated forms were detected and the unmethylated from is lost 

between 24 h and 30 h. In the espA mutant, FrzCD is fully methylated between 18 h and 

24 h which correlates with earlier aggregation in the espA mutant (Figure 2. 13E). 

Interestingly, there are differences in the methylation patterns between espA and espC 

mutant, despite the similar aggregation phenotypes (see Figure 2. 12). In the espC 

mutant, the FrzCD methylation pattern is slightly faster than wild-type, but later than 

espA mutant (Figure 2.13 E). In this analysis, we also observed that there are significant 

differences in marker expression patterns at 30 h between the espA and espC mutants. 

Interestingly, while espA and espC mutants produce similar levels of heat and sonication 

resistant spores during development, espC mutant spores do not germinate as efficiently 

(data not shown) suggesting that EspC may paly an additional role independent of EspA 

in spore maturation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 Immunoblot analysis of developmental marker protein expression in the wild type, 

espA and espC mutants. Cells were grown in submerged culture and harvested at the indicated time 

points. Samples containing equal proportions of each cell culture was subject to immunoblot analysis and 

probed with anti-PilA (A), anti-MrpC (B), anti-FruA (C), anti-CsgA (D), or anti-FrzCD (E) polyclonal antisera. 

(B) Black arrows, MrpC; dotted arrows, MrpC2. (C) CsgA p25. (E) Black arrows, FrzCD unmethylated form; 

dotted arrows, FrzCD methylated forms.  
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2.2.3 red and todK mutants do not appear to induce early accumulation 

of developmental marker proteins  

 

We took a similar approach to analyze the expression patterns of developmental marker 

proteins in red and todK mutants. PilC protein was constantly expressed in wild-type, 

red and todK mutants from 0 h to 24 h suggesting that these protein samples were 

equally loaded. However, unlike in the wild-type and red mutant, the expression level 

of PilC in the todK mutants was detected at 30 h (Figure 2. 14A).  

 

Suprisingly, in the red mutants, MrpC and FruA accumulated with similar timing, but at 

lower levels than in the wild-type (Figure 2. 14B and C), while CsgA and FrzCD 

methylation patterns were only slightly perturbed (Figure 2. 14D and E). These 

expression patterns suggest an uncoupling of the ordered developmental program. In 

todK mutants, MrpC/MrpC2 were produced approximately 6 h earlier than wild-type, 

the ratio MrpC to MrpC2 was perturbed, and at 30 h, there was a dramatic accumulation 

of MrpC/MrpC2 (Figure 2. 14B). FruA and CagA were not significantly perturbed in 

this mutant (Figure 2. 14C and D), but FrzCD was still detected in the unmethylated 

form at 30 h (Figure 2. 14E). In summary, MrpC, FruA and FrzCD marker proteins are 

uncoupled. Taken together, these results confirmed that Red and TodK proteins do not 

function in one signaling pathway. We hyphothesize that the proportions of the vaious 

developmental subpopulations is likely perturbed in these mutants.   
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Figure 2.14 Immunoblot analysis of developmental marker protein expression in the wild type, red 

and todK mutants. Cells were grown in submerged culture and harvested at the indicated time points. 

Samples containing equal proportions of cell culture were subject to immunoblot analysis and probed with 

anti-PilA (A), anti-MrpC (B), anti-FruA (C), anti-CsgA (D), or anti-FrzCD (E) polyclonal antisera. (B) Black 

arrows, MrpC; dotted arrows, MrpC2. (C) CsgA p25. (E) Black arrows, FrzCD unmethylated form; dotted 

arrows, FrzCD methylated forms.  

2.3 Cell population analysis in the wild-type 

 

Our analysis of developmental maker proteins revealed that espA and espC mutants 

induce earlier and coordinated accumulation of MrpC and FruA which can explain the 

early aggregation and sporulation phenotype. However, although red and todK mutants 

aggregate only slightly but sporulate significantly earlier than wild type, they do not 

appear to induce coordinated accumulation of developmental marker proteins (see Figure 

2. 12 and Figure 2. 14). One possible interpretation is that the proportion of the various 

developmental subpopulations (PCD, sporulation, peripheral rods) is perturbed in red and 
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todK mutant. Moreover, we have shown that peripheral rods are sporulating 

inappropriately in the NR mutants and that the control mechanisms for peripheral rods are 

disturbed (see Figure 2. 9). We therefore decided to rigously define the proportions of the 

different subpopulations during development in the wild-type. We also examined the 

accumulation of developmental marker proteins in the non-aggregating and aggregating 

cell populations during developmental program.   

2.3.1 Analysis of the total cell number in the developmental subpopulations 

 

To determine the total number of cells and the mumber of cells in each developmental 

subpopulation, we adapted the peripheral rod/fruiting body separation assay used in 

section 2.1.8 (O'Connor & Zusman, 1991c). Briefely, low speed centrifugation was used 

to separate the aggregating cell (pellet) from non-aggregating cell (supernatant) fractions 

at several times during the developmental program. The number of cells in each fraction 

was then counted.  

 

The wild-type began to aggregate between 24 h and 30 h (Figure 2. 15A), but did not 

produce mature spores until 48 h (data not shown). Our cell population analysis 

revealed that the total cell population of wild-type began to increase after onset of 

starvation, peaked at 24 h and decreased from 24 h (Figure 2. 15B). The total cell 

number progressively decreased until 5 days of development such that approximately 

80 % cells underwent programmed cell death (data not shown) corresponding to 

previous research (Wireman & Dworkin, 1977). In a similar manner, the number of 

non-aggregating cells increased until 24h and then decreased, while the number of 

aggregating cells increased until 30 h and the decreased. The proportion of non-

aggregating and aggregating cell fractions during development is displayed in Figure 2. 

15C. Visible fruiting body correlates with approximately 50 % of the cells in each 

fraction.  
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Figure 2.15 Analysis of the developmental subpopulations in wild-type. (A) The developmental 

phenotype of the wild-type. 16 ml cell culture (2 X 107 cells ml-1) of wild-type were induced to develop 

under submerged culture and incubated at 32 °C. Pictures were recorded at the indicated times. Scale bar, 

1 mm. (B) The number of total cells and cells in the supernatant (non-aggregating) and pellet (aggregating) 

fractions. (C) The proportion of total cells in the non-aggregating and aggregating fractions during 

development. The average numbers from triplicate independent biological repleicates.   
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2.3.2 Cells undergo a burst of cell death during development 

 

Our cell population assay in wild-type DZ2 revealed that the total cell number 

decreased after 24 h suggesting that cells seem to undergo programmed cell death 

(PCD) around 24 h. To detect cell death during development, the LIVE/DEAD staining 

technique was applied. Cells for LIVE/DEAD staining were prepared from the same 

culture from which we performed the cell population assay (Figure 2. 16A upper panel). 

Our LIVE/DEAD staining analysis revealed that at 24 h of development, 56 % of wild-

type DZ2 cells were stained as red (dead cells) (Figure 2. 16A lower panel). This result 

suggests that big burst of cell death at 24 h leads to a decrease cell population at 

approximately 24 h in the wild-type (Figure 2. 16B and C). Approximately 15-20 % of 

the cells are stained red (dead) from 30 h to 48 h. The percent of dead cells was similar 

in the non-aggregating and aggregating populations during development (data not 

shown).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 LIVE/DEAD staining during development in the  wild-type. (A) Developmental phenotype 

and LIVE/DEAD staining of wild-type. Cells for LIVE/DEAD staining were harvested from submerged 

culture. Dead cells were displayed as percentage of the total cells counted (n > 100). (B) Total cells 

counted in the wild-type. (C) Percentage of dead cells during development. Total cells at the indicated time 

points in (A upper panel) were subjected to LIVE/DEAD staining.     
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2.3.3 Exopolysaccharide is up-regulated in the aggregating cell fraction 

 

To determine whether the non-aggregating and aggregating cell fractions were distinct, 

we first analyzed the amount of EPS in each cell fraction using a dye binding assay 

modified from (Black & Yang, 2004, Black et al., 2006). Our EPS analysis revealed that 

aggregating cells produce progressively more EPS from 24 h of development, while non-

aggregating cells do not upregulate EPS. This result suggests that EPS is regulated in only 

the aggregating cell population (Figure 2. 17B).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 Exopolysaccharide assay. (A) Developmental phenotype of cells used for the EPS assay. 

(B) Relative production of EPS in non-aggregating and aggregating cells at the indicated time points in (A).  

2.3.4 Spore coat proteins are regulated in the aggregating cell fraction  

 

It has previously been demonstrated that Protein S is detected at different levels in the 

non-aggregating and aggregating cell fractions (O'Connor & Zusman, 1991c). Protein S is 

a spore coat protein that is expressed early during the developmental program (Inouye et 

al., 1979). Our immunoblot analysis revealed that Protein S is present in both non-

aggregating cells and aggregating cells at same level until 24 hours which is the onset of 

aggregation. However, Protein S was up-regulated in aggregating cells after 24 h, but not 

in non-aggregating cells (Figure 2. 18A). This result is consistent with accumulation of 

spore coat protein in the cell population which diferentiates into spores. 

  

Similarly, the expression pattern of Protein C was analyzed in both cell types. It has been 

proposed that Protein C is a useful marker for development because it is developmentally 

regulated and spore associated (McCleary et al., 1991). It also has been shown that 

although Protein C is expressed in cell type specific pattern, it is expressed in all 

developmental cell types including non-aggregating cells and aggregating cells and spores 
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from early onset of development (O'Connor & Zusman, 1991c). However, our analysis 

revealed that Protein C was exclusive to aggregating cells (except for the 48 h time point) 

and was up-regulated after 30 h when the cells begin to sporulate (Figure 2. 18B). The 

expression of Protein C exclusively within aggregating cells even at T=0 suggests that 

certain cells are predestined to be in aggregation centers.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Protein S and Protein C expression in non-aggregating and aggregating cell fractions. 

Cells were grown in submerged culture and harvested at the indicated time points. Protein samples 

containing equal amount of cells (4.3 X 106 cells/µl) were subjected to immunoblot analysis and probed 

with anti-Protein S (A) or anti-Protein C (B). Upper panels: immunoblots. Lower panels: relative intensity of 

bands in (A).   

 

2.3.5 Type IV pili subunit proteins, PilA and PilC are differently 

accumulated in the non-aggregating and aggregating cell fractions 

 

In search of proteins which would be represented equally in both cell types, we next 

examined the expression pattern of subunit proteins of Type IV pili which are essential 

for social(S)-motility (Wu & Kaiser, 1995, Wu et al., 1997). PilA is the subunit pilin and 

PilC is an inner membrane pili biosysthesis protein (Wu & Kaiser, 1997) (Figure 1. 2D).  

Our analysis revealed that although PilA protein was constantly expressed at low level 

in non-aggregating cells, it specifically increased in aggregating cells from 0 h to 48 h 
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of development (Figure 2. 19A). In contrast, the PilC protein level decreased in both 

cell types. Interestingly, from 0 h to 18 h, PilC protein levels decreased more rapidly in 

non-aggregating cells than in aggregating cells (Figure 2. 19B). Thus, PilC was 

constantly more abundant in the non-aggregating cell fraction, while PilA was more 

abundant in the aggregating fraction.  

 

 

 

   

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 PilA and PilC expression in non-aggregating and aggregating cell fractions. Cells were 

grown in submerged culture and harvested at the indicated time points. Protein samples containing an 

equal number of cells (4.3 X 106 cells/µl) were subjected to immunoblot analysis and probed with anti-PilA 

(A) and anti-PilC (B) antibodies. Upper panels show the resulting immunoblot. Lower panels show the 

relative intensity of the bands in (A) . 

 

2.3.6 Key developmetal regulators accumulate to different levels in the 

non-aggregating and aggregating cell fractions 

 

With the exception of CsgA p25 (Julien et al., 2000), the cell type specific expression of 

proteins necessary for positively regulating the developmetal program has not been 

investigated. To investigate if these proteins are influenced by the NRs in a cell specific 

manner during development, we first analyzed the accumulation patterns of key 

developmental markers in the wild-type. This analysis revealed that MrpC was present in 



Results 
 

 39 

equivalent levels in the two cell populations at 0 h of development. However, by 12 h of 

development, MrpC had decreased in aggregating cells and remained at low levels until 

between 24 and 30 h. In contrast, in the non-aggregating cell fraction, after the first 

decrease, MrpC accumulated specifically in these cells until between 24 and 30 h. 

Between 30 and 48 h, MrpC levels then began to decrese in the non-aggregating cell 

fraction (Figure 2. 20A and B). We also examined the accumulation of MrpC2 and 

observed the same general pattern of MrpC2 production. MrpC2 levels increased first in 

non-aggregating cell fraction up to 24 h and then decreased, while in aggregating cell 

fraction, MrpC2 accumulated between 24 and 36 h. Interestingly, MrpC2 was cleared 

from aggregating cells at 48 h (Figure 2. 20 A and C) .  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 2.20 MrpC and MrpC2 accumulation in non-aggregating and aggregating cell fractions. Cells 

were grown in submerged culture and harvested at the indicated time points. Protein samples containing 

an equal number of cells (4.3 X 106 cells/µl) were subjected to immunoblot analysis with anti-MrpC 

antibody (A) Black arrows, MrpC; dotted arrows, MrpC2. B) Relative intensity of the MrpC bands (C) 

Relative intensity of the MrpC2 bands.  

 

We next examnined the production of FruA, whose expression is a target of MrpC2. In 

this analysis, we observed that FruA protein levels increased in both cell types with higher 

levels in non-aggregating cells until 30 h. However, later during development, FruA 

protein levels continue to accumulate in the aggregating cell fraction until 48 h of 

development (Figure 2. 21 A and B). This result corresponds to the timing of aggregation 

in wild-type and accumulation pattern of the MrpC protein.  
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Figure 2.21 FruA expression in non-aggregating and aggregating cell fractions. Cells were grown in 

submerged culture and harvested at the indicated time points. Protein samples containing equal numbers 

of cells (4.3 X 106 cells/µl) were subjected to immunoblot analysis with anti-FruA antibody (A). (B) Relative 

intensity of the FruA bands.  

 

Our immunoblot analysis of CsgA p25 revealed that in a similar manner to MrpC and 

FruA accumulation, CsgA p25 protein first accumulated at higher level in non-

aggregating fraction and after 30 h began to accumulate in the aggregating cell fraction 

(Figure 2. 22A and B). In contrast, CsgA p17 (C-signal) levels increased at an 

essentially linear rate in the aggregating fraction from 0 h to 48 h. In the non-

aggregating fraction CsgA p17 accumulated until 12 h and then decreased (Figure 2. 22 

A and C). This result is consistent with current model that C-signal is amplified by 

increased cell to cell contact within aggregating cells.  
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Figure 2.22 CsgA expression in non-aggregating and aggregating cell fractions. Cells were grown in 

submerged culture and harvested at the indicated time points. Protein samples containing an equal 

number of cells (4.3 X 106 cells/µl) were subjected to immunoblot analysis with anti-CsgA antibody (A). (B) 

Relative intensity of the CsgA p25 bands. (C) Relative intensity of the CsgA p17 bands.   

 

We next examined the levels and methylation pattern of the FrzCD protein in each 

fraction. Our analysis revealed that in both cell types, FrzCD levels were dramatically 

reduced between 12 h and 36 h, and were absent by 48 h. Methylated forms of FrzCD, 

which migrate more quickly in denaturing electrophoresis, are detected  in several lower 

bands. Increased FrzCD methylation was observed all aggregating cell fractions. 

Unmethylated FrzCD (highest band) was absent from both fraction after 24 h of 

development (Figure 2. 23). It should be noted that in this analysis, we could not display 

relative intensity because there are many bands.  

 

 

 

 

 

Figure 2.23 FrzCD expression in non-aggregating and aggregating cell fractions. Cells were grown in 

submerged culture and harvested at the indicated time points. Protein samples containing equal number of 

cells (4.3 X 106 cells/µl) were subjected to immunoblot analysis and probed with anti-FrzCD. Black arrows, 

FrzCD unmethylated form; dotted arrows, FrzCD methylated forms.  
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2.4 Analysis of developmental subpopulations in the red and 
todK mutants 

 

To determine whether the NR mutants (red and todK) perturbed the developmental 

program by alteration of cell type-sepcific accumulation of developmental regulatory 

proteins, we next analyzed the non-aggregating and aggregating fractions in the red and 

todK mutants compared to wild-type.  

2.4.1 red and todK mutants fail to increase cell population during 

development 

 

To examine the number of cells in total, non-aggregating and aggregating fractions and 

to prepare protein sample for analysis of developmental marker proteins in the red and 

todK mutants versus wild-type, we first induced development in submerged culture and 

performed a phenotype and sporulation assay. Our analysis showed that while the 

timing of aggregation in both mutants was only slightly earlier than wild-type, the 

sporulation rate was much faster than in wild-type (Figure 2. 24).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24 The developmental phenotype of red  and todK  mutants induced in submerged culture. 

(A) 16ml cell culture (2 X 107 cells ml-1) were induced to develop under submerged culture and incubated 

at 32°C. Pictures were recorded at the indicated times. Scale bar, 1 mm. (B) Sporulation assay during 

development. Heat and sonication spores were counted at the indicated time points by a hemacytometer. 
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Interestingly, our analysis of total cells at several developmental time points 

demonstrated that while the total cell population of wild-type doubled by 24 h, and then 

decreased, in both mutants the total cell population increased only 1.2-fold after 18 h 

(Figure 2. 25A). In the wild-type, the non-aggregating cell fraction increased by 1.8-

fold over the first 24 h and then decreased. In both mutants, this fraction remained 

constant for the first 18 h and then decreased (Figure 2. 25B). Finally, the wild-type 

aggregating cell fraction more than doubled over 30 h and then decreased, while in both 

mutants, the aggregating fraction barely doubled over 30 h and then slightly decreased 

(Figure 2. 25B). Interestingly, the time point at which 50 % of the cells were in each 

fraction was approximately 2-3 h earlier in both mutants than in wild-type.  

 

 

Figure 2.25 Analysis of the number of total cells and the number of cells in the non-aggregating 

and aggregating cell fractions of wild-type, red and todK mutants. (A) Number of cells in the total and 

the subpopulations. Cells were harvested at the indicated time points and counted by hemacytometer. (B) 

The proportion of the total cells in non-aggregating cells and aggregating cell fractions.  

2.4.2 red and todK mutants seem to undergo a burst of cell death earlier 

than wild-type 

 

Our analysis of the total cell number during development revealed that both red and 

todK mutants failed to increase significantly. To determine whether these mutants lyse 

prematurely during development, we used the LIVE/DEAD stain technique on red and 

todK mutants compared to wild-type. Our analysis revealed that 45 % of red and 34 % 

of todK cells stained dead at 24 h, while 32 % of wild-type cells were dead at 27 h 

suggesting that red and todK mutants undergo the burst of lysis earlier than wild-type 
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(Figure 2. 26A). This result suggested that premature PCD could be reason for the 

failure to increase cell number in both mutants (see Figure 2. 26B and C).  

 

 

 Figure 2.26 LIVE/DEAD staining analysis during development. (A) Fluorescent microscopy images of 

wild-type (DZ2), red (DZ4659) and todK (PH1045) mutants at the indicated time points. Cells were 

harvested from submerged culture, stained and observed by fluorescence microscopy. Red (dead) and 

green (living) cells were counted (n > 100) and the percent of dead cells is displayed below each image. 

(B) Total cells of wild-type, red and todK mutants. (C) Percentage of dead cells during development 

displayed as a fraction of time. 

2.4.3 The accumulation of MrpC and MrpC2 is perturbed in the red and 

todK mutants 

 

Our initial analyses demonstrated that red and todK mutants uncoupled the ordered 

accumulation of developmental marker proteins that driving the developmental program 

(see Figure 2. 14). However, since we observed that red and todK mutants have less 

total cells than wild-type, it is clear that when we analyzed our protein patterns using 

equal proportions of the cell culture, the mutants likely contained fewer cells than the 
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wild-type. To more accurately test the marker patterns, we instead analyzed protein 

accumulation patterns in equivalent numbers of cells in the developmental non-

aggregating and aggregating fractions. To determine the MrpC levels in the total 

population, we summed the measured intensities of the bands in each fraction. Summed 

intensities were plotted versus time of development. In the wild-type, MrpC protein  

accumulated in lower levels compared to red and todK mutants from 12 h and 

accumulation of MrpC was continuous until 48 h. Interestingly however, total MrpC 

was highly accumulated from 12 h to 30 h in both mutants, suddenly disappeared at 36 

h and reappeared at 48 h (Figure 2. 27A and B). Moreover, our analysis also revealed 

that in red and todK mutants, MrpC2 was highly accumulated at 24 and 30 h compared 

to wild-type (Figure 2. 27A and C). These results suggest that MrpC and MrpC2, which 

are essential for development, are overexpressed per cell in red and todK mutants.  

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

Figure 2.27 MrpC and MrpC2 expression in non-aggregating and aggregating cell fractions of wild-

type, red and todK mutants. Cells were grown in submerged culture and harvested at the indicated time 

points. Protein samples containing equal amount of cells (4.3 X 106 cells/µl) were subjected to immunoblot 

analysis with anti-MrpC antibody (A) Black arrows, MrpC; dotted arrows, MrpC2. (B) The sum of the MrpC 

intensity in both cell fractions at each time point.  (C) The sum of the MrpC2 intensity in both cell fractions 

at each time point. 
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 We also examined the MrpC pattern in the different subpopulations. From this analysis, 

we observed that the proportion of MrpC in the non-aggregating and aggregating cell 

fractions of red and todK mutants was perturbed compared to wild-type. As we saw 

previously, in the wild-type, MrpC first accumulated in the non-aggregating fraction 

(until 24 h) and then later highly accumulated in the aggregating cell fraction (from 24 h 

to 48 h) indicating that accumulation pattern of MrpC is switched from non-aggregating 

to aggregating cell fractions during development (Figure. 2. 28A). However, in both red 

and todK mutants, MrpC accumulated in the non-aggregating fraction rapidily and 

inappropriately highly between 0 h and 30 h. After 30 h, MrpC was absent from the 

non-aggregating fraction. Interestingly, in the aggregating cell fraction of the red and 

todK mutants, MrpC accumulates sharply between 24 h and 30 h, disappeared, and then 

was detected at 48 h (Figure 2. 28B and C).    

 

 

Figure 2.28 The relative intensity of MrpC in non-aggregating and aggregating cell fractions. 

Relative intensities were measured from immunoblot analysis. (A) wild-type. (B) red mutant. (C) todK 

mutant.  

 

On the other hand, in wild-type, MrpC2 accumulated in both non-aggregating and 

aggregating cell fractions from 12 h and 18 h, respectively, but later MrpC2 highly 

accumulated in aggregating cells, indicating that accumulation pattern of MrpC2 was 

switched to aggregating cells later during development (Figure 2. 29A). Similarly, in 

both mutants, MrpC2 accumulated after the onset of starvation in both non-aggregating 

cells and aggregating cell fractions, but the level of MrpC2 was much higher than in the 

wild-type. Furthermore, the accumulation of MrpC2 did not switch to the aggregating 

cell population later during development.  These results indicate that the proportion of 

MrpC2 as well as MrpC is perturbed in these mutants (Figure 2. 29B and C). The MrpC 

patterns in the red mutants essentially coupled the MrpC patterns in the todK mutants in 

both non-aggregating and aggregating fractions. One important difference is that MrpC2 

expression in the aggregating feaction was observed at 24 h in the todK mutant, but at 

30 h in the red mutant. 
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Figure 2.29 The relative intensity of MrpC2 in non-aggregating and aggregating cell fractions. 

Relative intensities were measured from immunoblot analysis. (A) wild-type. (B) red mutant. (C) todK 

mutant. 
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2.4.4 The accumulation of FruA is perturbed in the red and todK mutants 

We next examined the expression pattern of FruA during the developmental time course 

in which equal number of cells were analyzed. Cell fractions were separated to analyze 

the accumulation of FruA in each fraction and FruA in the total population was 

represented as the sum of both cell types. Our analysis revealed that in the wild-type, 

FruA gradually accumulated between 12 h and 36 h and then decreased at 48 h. In both 

mutants, total FruA was rapidly accumulated to inappropriately high levels between 12 h 

and 36 h and then rapidly decreased between 24 h and 30 h (Figure 2. 30A and B). Thus, 

when compared in equal numbers of cells, FruA accumulated earlier and at higher levels 

than in the wild-type. For instance, at 24 h of development, red and todK mutants 

expressed 4 times more FruA than in the wild-type. This result corresponds to the MrpC2 

accumulation patterns in red and todK mutants (see Figure 2. 27C).  

 

 

 

 

 

 

 

 

 

     

 

 

 

Figure 2.30 FruA accumulation in non-aggregating and aggregating cell fractions of wild-type, red 

and todK mutants. Cells were grown in submerged culture and harvested at the indicated time points. 

Protein samples containing an equal number of cells (4.3 X 106 cells/µl) were subjected to immunoblot 

analysis with anti-FruA antibody (A). (B) The sum of the FruA intensity in both cell fractions at each time 

point.  

 

Moreover, the accumulation of FruA in the non-aggregating and aggregating cell 

fraction was perturbed in the red and todK mutants. In the wild-type, FruA gradually 

accumulated in the non-aggregating cell fraction fron 12 h to 36 h (Figure 2. 31A). 

However, in both red and todK mutants, FruA rapidly accumulated to inappropriately 
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high levels in the non-aggregating cell fraction from 0 h to 24 h and then began to 

decrease rapidly (from 24 h to 30 h) in the red mutant, and more slowly (from 24 h to  

48 h) in the todK mutant. Interestingly, in the aggregating cell fraction, FruA was 

accumulated to a higher level in the todK mutant than in red mutant (Figure 2. 31B and 

C). Together, these results suggest that the rapid accumulation of MrpC/MrpC2 (and 

consequently FruA) in the non-aggregating cells likely causes some cells to begin to 

sporulate before they have transitioned into the aggregating cell fraction. Thus, fruiting 

bodies are disorganized and spores are formed outside of the fruiting bodies.  

 

 

Figure 2.31 The relative intensity of FruA in non-aggregating and aggregating cell fractions. 

Relative intensities were measured from immunoblot analysis. (A) wild-type. (B) red mutant. (C) todK 

mutant. 
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2.4.5 The accumulation of CsgA p25 and p17 is perturbed in the red and 

todK mutants 

 

We also examined the subpopulation specific accumulation patterns of CsgA (p25) and 

C-signal (p17) in the red and todK mutants. Our analysis showed that the total CsgA 

p25 level gradually accumulated approximately 1.5-fold from 0 h to 48 h of 

development in the wild-type. In contrast, in red and todK mutants, CsgA p25 protein 

accumulated approximately 3-fold between 0 h and 30 h, decreased at 36 h and then 

appeared at 48 h (Figure 2. 32A and B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.32 CsgA p25 expression in non-aggregating and aggregating cell fractions of wild-type, 

red and todK mutants. Cells were grown in submerged culture and harvested at the indicated time points. 

Protein samples containing equal number of cells (4.3 X 106 cells/µl) were subjected to immunoblot 

analysis with anti-CsgA antibody (A). (B) The sum of the CsgA p25 intensity in both cell fractions at each 

time point. 

 

Examination of the CsgA p25 levels in the two fractions in the red and todK mutants 

revealed that CsgA p25 protein followed the same respective accumulation patterns as 

seen for MrpC/MrpC2 and FruA (Figure 2. 33A, B and C) suggesting that accumulation 

of CsgA p25 is also perturbed in both cell types of both mutants. 
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Figure 2.33 The relative intensity of CsgA p25 in non-aggregating and aggregating cell fractions. 

Relative intensities were measured from immunoblot analysis. (A) wild-type. (B) red mutant. (C) todK 

mutant. 

 

We next examined accumulation of p17 (C-signal), the proteolytic product of CsgA that 

plays an essential role in activation of FruA during development.  Our analysis revealed 

that in the wild-type, p17 gradually accumulated 3.5 times over 0 to 36 h of 

development and increased again approximatly 3-fold between 36 h and 48 h (Figure 2. 

34). In contrast, in both mutants, p17 accumulated more rapidly between 0 h and 30 h, 

sharply decreased, and then appeared again at a low level at 48 h (Figure 2. 34).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.34 CsgA p17 expression in non-aggregating and aggregating cell fractions of wild-type, 

red and todK mutants. Cells were grown in submerged culture and harvested at the indicated time points. 

Protein samples containing equal number of cells (4.3 X 106 cells/µl) were subjected to immunoblot 

analysis with anti-CsgA antibody (A). (B) The sum of the CsgA p17 intensity in both cell fractions at each 

time point.  
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Examination of p17 accumulation in the non-aggregating versus aggregating fractions 

demonstrated that like CsgA, p17 inappropriately accumulated in the non-aggregating 

fraction, and failed to accumulate properly in the aggregating fraction (Figure 2. 35B 

and C). Interestingly, the p17 accumulation patterns were different in the red versus 

todK mutants (Figure 2. 35B and C). 

 

 

Figure 2.35 The relative intensity of CsgA p17 in non-aggregating and aggregating cell fractions. 

Relative intensities were measured from immunoblot analysis. (A) wild-type. (B) red mutant. (C) todK 

mutant. 

 

Taken together, our expression analysis of developmental marker proteins suggests that 

most developmental marker proteins are overexpressed per cell in red and todK mutants 

and that the cell-specific accumulation of developmental marker proteins is totally 

perturbed in both red and todK mutants.  
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2.5 TodK accumulations differently in non-aggregating and 
aggregating cell fractions 

 

To determine if the NRs are themselves accumulating in a cell fraction dependent 

manner, we next examined the expression of TodK in each fraction. As TodK antibodies 

were not available, we overexpressed and purified TodK (data not shown) and had 

antibodies generated (Eurogentec). These abtibodies were specific for TodK, since they 

readily detected approximately 70 kDa proteins in the wild-type, but not in the todK 

mutant (data not shown).  

 

To examine protein accumulation patterns of TodK in the non-aggregating and 

aggregating cell fractions, we carried out immunoblot analysis in both cell types of 

wild-type strain. Our immunblot analysis revealed that TodK was highly expressed in 

vegetative conditions and then down-regulated approximately 16-fold over the course of 

48 h of development. TodK was highly expressed in the both the non-aggregating and 

aggregating cell fraction under vegetative condtions (Figure 2. 36). Interestingly 

however, after induction of development, TodK was more rapidly depleted in the non-

aggregating cell fraction (Figure 2. 36).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.36 Immunoblot analysis of TodK in the wild-type. Cells were grown in submerged culture 

and harvested at the indicated time points. Protein samples containing equal amount of cells (4.3 X 106 

cells/µl) were subjected to immunoblot analysis with anti-TodK antibody (A). (B) Relative intensity of TodK 

expression in total, non-aggregating cell and aggregating cell population. 
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3 DISCUSSION 
 

 

M. xanthus has complex developmental program in which there are at least three 

developmental subpopulations that must be controlled and coordinated temporally and 

spatially. This developmental program is controlled by a temporally ordered cascade of 

gene and protein expression coupled to several positive feedback loops (Gronewold & 

Kaiser, 2001, Boysen et al., 2002, Nariya & Inouye, 2006). Most genes identified to be 

involved in control of the developmental program are positive regulators: gene 

disruptions prevent progression past various stages of the developmental program. 

However, mutants in a small number of genes have previously been described that 

instead accelerate progression through the developmental program and are thus thought 

to be negative regulators (NRs) (Cho & Zusman, 1999, Rasmussen & Sogaard-

Andersen, 2003, Higgs et al., 2005, Lee et al., 2005, Higgs et al., 2008).  

 

Interestingly, all of the NR genes investigated in this study (espA, espC, red, and todK) 

encode members of the two-component signal transduction (TCS) family. Such TCS 

systems typically consist of a sensor histidine kinase coupled to a response regulator 

and function to couple environmental signals to a intracellular response (e.g. change in 

gene transcription) via phospho-histidine aspartate relays (Stock et al., 2000). However, 

no outputs to the NR TCS systems have been identified, since these TCS proteins are 

not organized in paired arrangements with response regulators that contain obvious 

effector (output) domains. Therefore, it was unknown whether these NRs function in a 

single or multiple signaling pathways and how they mediate repression of the 

developmental program. Furthermore, it was not known what advantage the NR genes 

provide to the M. xanthus developmental program, since mutants in these genes do not 

display a defect in the ability to produce spores. We demonstrate here that these NRs 

are organized into three distinct signaling pathways that are each necessary to quench 

the accumulation of several key developmental (positive) regulator proteins. We 

demonstrate that the NRs play an important role in controlling and coordinating the 

different developmental subpopulations.   

 

To understand whether these kinases function in one or multiple distinct signaling 

pathways, we first generated each kinase mutant in an isogenic background and 

subjected the mutants to a rigorous phenotypic comparison. Our observation that 

phenotype of espA and espC mutants is identical, and that todK and red mutants 

develop progressively earlier not only indicates that there are three developmental 
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phenotypes, but also suggests that these signaling pathways effect the developmental 

program differently. Next, to further understand these distinct phenotypes, we applied 

epistasis analysis. Epistasis analysis is a foundation in the analysis of genetic networks 

and is especially used to determine if genes with related mutant phenotypes act in the 

same or different pathways (Hughes, 2005). Furthermore, genes thought to function in 

the same pathway can be ordered relative to one another based on the step in the 

pathway controlled by that gene.  

 

We could expect two results in our epistasis analysis. For example, when we created a 

double mutant missing two NR genes, if the phenotype of the double mutant displays a 

non-additive phenotype, these two genes could lie in same signaling pathway. However, 

if the phenotype of the double mutant displays an additive phenotype, we can say these 

two genes do not lie in the same signaling pathway. Our epistasis analysis revealed that 

espA espC double mutants are phenotypically identical to each single mutant. This result 

suggests that EspA and EspC act at the same point in the developmental pathway and 

may function together. In contrast to the non-additive phenotype of the espA espC 

double mutants, all other combinations of double mutants displayed an additive 

phenotype. Taken together, our genetic analyses suggested that there are at least three 

signaling pathways to repress developmental progression: EspA and EspC may act 

together in the same signaling pathway, but Red and TodK are in distinct signaling 

pathways with EspA/EspC and each other.  

 

Given the additive phenotypes of the double mutants, we became interested in the 

phenotypes of a mutant missing multiple or all NRs. Interestingly, our phenotypic 

analysis revealed that while the wild-type forms well-rounded and compact fruiting 

bodies, single, double, triple, and quadruple NR mutants form progressively more 

disorganized fruiting bodies, suggesting a negative correlation between the rate of 

progression through the developmental program and coordinated fruiting body 

formation. In particular, the observation that the quadruple mutant (missing all four NRs 

analyzed in this study) formed apparent lawns of spores raised the possibility that these 

cells could be bypassing the ordered developmental program in which sporulation is 

coupled to aggregation. Instead, these mutants could be sporulating as in the chemical-

induced sporulation pathway in which additional of certain compounds to vegetatively 

growing cultures induces rapidly, and synchronous sporulation of all cells in the culture 

(Dworkin & Gibson, 1964, Komano et al., 1980, O'Connor & Zusman, 1997). 
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Two observations suggest that the quadruple NR mutant does not sporulate 

independently of the developmental program.  First, although this mutant did not appear 

to form distinct fruiting bodies, the same number of spores could be isolated in a low 

speed centrifugation used to isolate fruiting bodies, suggesting that the quadruple NR 

mutant spores were still primarily generated inside very shallow and disorganized 

fruiting bodies. Second, quantitative RT-PCR analysis of key developmental regulator 

gene expression through the developmental program revealed that the ordered 

expression of fruA, dev, and exo is still observed although all are expressed significantly 

earlier than in the wild type.   

 

These analyses instead revealed that the NR mutants are perturbed in the production of 

peripheral rods (i.e. the peripheral rods are sporulating inappropriately). It has been first 

proposed that during fruiting body formation, largely two types of cells exist: peripheral 

rods and sporulating cells. Peripheral rods do not aggregate and remain outside of 

fruiting bodies, while cells destined to be spores first aggregate into mounds and finally 

differentiate into spores forming mature fruiting bodies (O'Connor & Zusman, 1991c). 

O'Connor et al. have demonstrated that several developmentally regulated proteins are 

expressed in cell type specific patterns suggesting that peripheral rods compose an 

independent cell type distinct from both fruiting body and vegetative cells (O'Connor & 

Zusman, 1991a, O'Connor & Zusman, 1991c). It is proposed that peripheral rods play an 

important role in the life cycle of M. xanthus by allowing the exploitation of low 

amounts of nutrients (O'Connor & Zusman, 1991b).  

 

One of our major questions in this study was how these negative regulators control 

progression through the development program. To answer this question, we used a 

similar approach as was previously used for EspA: several gene expression and protein 

production patterns of key developmental regulators were compared in the espA mutant 

versus the wild type (Higgs et al., 2008). This approach demonstrated that A-signaling 

is normal in the espA mutant, but, while mrpC gene expression is not different from 

wild type, MrpC protein accumulates earlier in the espA mutant relative to wild type, 

suggesting that EspA represses MrpC accumulation in wild type cells. Consistently, 

developmental regulators that are dependent (directly or indirectly) on MrpC expression 

were also induced early but in an otherwise ordered pattern, including fruA/FruA 

expression/production, FrzCD methylation, and expression of dev and exo. These 

analyses suggest that EspA regulates the developmental program by decreasing 

translation of mrpC or stimulating degradation of MrpC (Higgs et al., 2008). Therefore, 

this approach is useful to understand where and how these kinases mediate 

developmental program in case of no clue for signal output.  
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In this analysis, we first focused on EspC, since EspC likely functions in same signaling 

pathway with EspA based on our epistasis analysis. Therefore, we could expect that 

EspC might act to repress the developmental program in similar points with EspA. As 

expected, the espC mutant also induced earlier expression of MrpC which consequently 

induced earlier accumulation of FruA. FruA induces both aggregation and sporulation 

and therefore this result corresponds to the early aggregation and early sporulation 

phenotype of espC mutant.  

 

However, we also observed that there are some differences in the accumulation patterns 

of developmental markers between espA and espC mutants. First, while the protein level 

of developmental markers (MrpC, FruA and FrzCD) in the espA mutant was decreased 

at 30 hours of development, the expression of these marker proteins in espC mutant was 

continuous until 30 hours of development. In order to understand this pattern, we 

performed a germination assay to determine if spores produced by the espA and espC 

mutants were equally viable. Our viable spore assays indicated that the espC mutant has 

less viable spores than the espA mutant, even though heat and sonication resistant spores 

between espA and espC mutant are very similar during development. This result 

indicates that EspA and EspC likely function together early during development and 

later EspC seems to have an additional function in spore maturation. 

 

Another difference between the espA and espC mutants is that although both mutants 

induce earlier accumulation of developmental marker proteins, accumulation of MrpC 

and FruA was induced slightly earlier (approximately 6 hours) in the espA mutant than 

in the espC mutant. Moreover, the espC mutant barely induces earlier methylation of 

FrzCD compared to the espA mutant. These results raised possibility that even though 

EspA and EspC are in same signaling pathway and likely function together, EspA has 

dominant function. Recent biochemical observations in our lab support this idea.  It has 

been demonstrated that the receiver domains in both EspA and EspC hybrid histidine 

kinases must be phosphorylated to repress the developmental program (Higgs et al., 

2008) (A. Schramm and P. Higgs, unpublished data). Interestingly, EspC kinase activity 

is not necessary to repress developmental progression, and EspA phosphorylates both its 

own receiver and that of EspC (A. Schramm and P. Higgs, unpublished data).  Taken 

together, these results strongly suggest that EspA and EspC are working together in 

same signaling pathway, but that EspA acts as the core effector for EspAC mediated 

control. We postulate that in the espC mutant, EspA can still transfer a phosphoryl group 

to its own receiver domain which has a slight repressive effect and therefore, MrpC 

does not accumulate as rapidly. In the espA mutant, however, EspC’s receiver cannot be 

phosphorylated even at low levels, and a stronger derepression of MrpC is observed.   
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What is the advantage of combining EspA and EspC into a single signaling pathway? 

One possibility is that diverse signals can be integrated. EspA and EspC contain 

different signaling input domains: for instance, in EspC the signaling domain spans the 

membrane while EspA contains a phosphothreonine-specific interaction domain. An 

additional possibility is that information can be temporally disseminated to either one 

(EspA) or two (EspA and EspC) receiver domains to fine-tune control the repression of 

development dependant on environmental conditions not encountered in the laboratory 

setting.  It is still unknown how the phosphorylated receiver domains in EspAC effect 

the accumulation of MrpC.  Possibly, both receiver domains modulate the activity of 

downstream effector proteins by protein-protein interaction. To identify potential 

interaction partners, co-immuno-precipitation or a yeast two hybrid screen against a M. 

xathus library could be used.  

 

Our genetic analyses suggested that the Red and TodK NRs do not function in the same 

signaling pathways with EspA/C or with each other. Interestingly, however, Red and 

TodK share several similarities. First, unlike the esp genes, both red and todK are 

vegetatively expressed and are down-regulated during development. Second, under 

submerged culture conditions, sporulation of both red and todK mutants is still faster 

than wild-type, but later than espA and espC mutants which is contrary to their 

phenotype on nutrient-limited plates. We think there are two possibilities. One possible 

interpretation is that the different nutrient availability between starvation plates and 

submerged culture affects the phenotype of these mutants. The submerged culture is 

considered strict starvation compared to the nutrient limited plates. It has been proposed 

that the proportion of peripheral rods in a developing cell population decreases with 

decreasing levels of nutrients (O'Connor & Zusman, 1991b), so perhaps in these 

mutants, the relative proportions of the different developmental subpopulations 

influences the course of development. This may suggest that the Red and TodK systems 

function to preserve the robustness of the response to starvation.  

 

In order to understand how Red and TodK proteins modulate the developmental 

program, we analyzed the expression patterns of developmental markers in red and todK 

mutants in similar manner as we had done with espA and espC mutants.  Interestingly, 

our analysis demonstrated that the red mutant does not appear to induce earlier 

accumulation of developmental marker proteins (MrpC, FruA and CsgA) in spite of 

their early development. Moreover, protein levels of the developmental markers were 

also lower compared to wild-type. The todK mutant induced accumulation of MrpC six 

hours earlier than wild-type, but, interestingly the accumulation of FruA is similar to 

wild-type. These observations, together with the perturbation of peripheral rods 
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observed in the NR mutants, suggested that the proportions of each of these 

developmental subpopulations could be perturbed in these mutants.   

 

Little is known about the control of the developmental subpopulations throughout the 

developmental program although it has been demonstrated that MrpC influences PCD 

through interaction with the toxin MazF (Nariya & Inouye, 2008) and that CsgA (and 

presumably C-signal) is amplified to higher levels in aggregated cells (Julien et al., 

2000). Therefore, to understand the effect of the red and todK NRs on the 

developmental subpopulations, we first decided to analyze the three known 

subpopulation (cells induced for PCD, aggregating leading to sporulation, or 

pheripheral rods) through development in the wild-type. For this approach, we adapted 

a previously described assay in which aggregating cells and non-aggregating cells can 

be separated by a low speed centrifugation step (O'Connor & Zusman, 1991c). 

Unfortunately, at the early time points of development, this assay will not distinguish 

between the populations in the supernatant which could consist of cells that never 

aggregate because they are destined to become peripheral rods, and cells that are being 

stimulated to aggregate and are in the process of transitioning into the aggregation 

center (pellet).  Nevertheless, this assay provides a good starting point for temporal 

analysis of the complex subpopulations. 

 

From analysis of the total cell number during development, we observed that the total 

cells in the developing population doubled up to 24 hours, and then progressively 

decreased after 24 hours such that by 5 days of development, the surviving cell 

population is reduced to approximately 20% of the initial population. Our LIVE/DEAD 

cell stain analysis suggested that cells undergo a massive burst of cell death at 24 hours 

of development although 5-20% of cells stain dead before and after the massive burst. It 

has been reported that 80 to 90% of developing cells underwent autolysis during 

development and massive cell lysis is an integral step in the process of fruiting body 

formation (Wireman & Dworkin, 1975, Wireman & Dworkin, 1977). More recently, it 

has been proposed that cells undergo programmed cell death (PCD) mediated by toxin 

(MazF)-antitoxin (MrpC) mechanism (Nariya & Inouye, 2008). Even though our cell 

population assay was performed in different wild-type strain, our observation that the 

cells first double in number and then undergo 80% of PCD during development is 

consistent with previous research (Nariya & Inouye, 2008). An analysis of the cell 

number in the non-aggregating and aggregating cell fractions indicates that these two 

populations increase in number up to 24 hours and 30 hours, respectively.  The increase 

in number of the non-aggregating cell fraction must be due to cell division, but it is not 

clear if the aggregating cell fraction is increasing due to cell division and/or transition of 
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the non-aggregating cells into this fraction.  The proportion of cells in the two fractions 

relative to time of development is remarkably robust and the formation of visible 

aggregates corresponds to approximately 50 % of the cells in the two fractions.  

 

Our analyses confirm that the non-aggregating and aggregating cell populations are 

distinct cell types. First, exopolysaccharide (EPS) is upregulated only in aggregating cells. 

This result is not only consistent with the fact that non-aggregating cells have a defect in 

cohesive cell to cell interaction (O'Connor & Zusman, 1991b), but also consistent with 

the fact that production of EPS stimulates social (S)-motility by Type IV pilus retraction 

(Li et al., 2003). Second, the major spore coat proteins, Proteins C and S are expressed 

much more in aggregating cells, when cells start to form spores. It has been demonstrated 

that Protein C is expressed in both non-aggregating cells and aggregating cells from 

early during development in different patterns (O'Connor & Zusman, 1991c). However, 

our analysis demonstrated that Protein C was present only in the aggregating cell fraction 

and, interestingly, from the vegetative cell fraction (T = 0 development) indicating that 

Protein C can be specific marker for the aggregating cell population during development. 

However, it is unclear which gene encodes for Protein C. Protein C was previously 

isolated from spores by treatment with 0.1M NaOH or by boiling in 1% SDS and 

purified Protein C was used to generate polyclonal anti-Protein C antibodies (McCleary 

et al., 1991). Therefore, it remains to be proved which gene is encoding Protein C and 

what function of Protein C is. Third, PilA, which is the pilus subunit of Type IV pili 

(Wu & Kaiser, 1997), is expressed in both cell types, but is more abundant in the 

aggregating cell population. It is presumed that during development, highly produced 

pilin is assembled into pili and first offers the opportunity to attach to the EPS of 

adjacent cells and then EPS triggers pili retraction (Li et al., 2003). Interestingly 

however, the accumulation of PilC which is required for pilus biosynthesis (Wu & 

Kaiser, 1997) was overall decreased during the developmental program but was 

constantly higher in non-aggregating cells. The imbalance of PilA/PilC between the 

different cell types suggests that pili extension and retraction is limited in the 

aggregating cells, and hints that the accumulation of PilA in this cell type may serve a 

different function.  For instance, we might speculate that perhaps in the aggregated cells 

PilA is not retracted and instead serves to anchor cells together. 

 

Even though the non-aggregating cell and aggregating cell fractions were previously 

defined as distinct cell types by the observation that several developmentally regulated 

proteins are expressed in a cell type specific manner (O'Connor & Zusman, 1991c), it 

was unclear how most of the key developmental regulators are expressed in each 

subpopulation.  It has previously have been demonstrated that CsgA accumulates at two 
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times higher levels in the aggregating cell fraction than in non-aggregating fraction at 

24 hours (Julien et al., 2000). However, the relative CsgA, and more importantly C-

signal, production patterns over the developmental program were not examined. 

Therefore, we analyzed the production pattern of developmental markers in both cell 

types during development. It should be noted that in this analysis, we performed 

immunoblot analysis on protein samples that each contained an equal number of cells at 

each time point in order to estimate the per cell levels between both subpopulations. 

Most importantly, our analysis demonstrated that most of the developmental marker 

proteins (MrpC, FruA and CsgA) first gradually accumulate in non-aggregating cells 

and then later rapidly accumulate in the aggregating cell fraction. This result can be 

explained that the developmental maker proteins in non-aggregating cells stimulate a 

proportion of the cells in this population to aggregate, and thus these same cells 

transition into the aggregating cell fraction. Interestingly, however, cells which are 

already in the aggregating cell population do not accumulate marker proteins between 0 

and 24 hours development. One possible interpretation is that programmed cell death 

takes place more in the aggregating cell population. However, we do not favor this 

possibility, because analysis of the proportions of dead cells using the LIVE/DEAD 

stain assay revealed that there was no difference in the proportion of dead cells between 

non-aggregating and aggregating cells fractions (data not shown). An alternative 

possibility is that the system is designed so that cells in the aggregating cell population 

bypass the signaling steps that stimulate aggregation (they are already aggregated) and 

then, after 24 hours, are stimulated to sporulate in coordination with the cells which are 

entering the aggregating cell population. This possibility can be explained with current 

model that distinct low and high threshold levels of activated FruA simulate aggregation 

and sporulation, respectively (Sogaard-Andersen et al., 1996, Ellehauge et al., 1998, 

Horiuchi et al., 2002).  

 

Having defined the cell numbers, and developmental regulator accumulation patterns in 

each developmental subpopulation in the wild type, we next examined whether red and 

todK mutants are perturbed in control of these subpopulations.  We first quantified the 

numbers of cells in each subpopulation compared to wild type. Interestingly, this assay 

revealed that the number of cells in the red and todK mutants did not increase to the 

same levels as seen in the wild type.  We determined that this is likely due, at least in 

part, to the burst of cell death occurring earlier than in the wild-type. Importantly, this 

result suggests that the initial developmental marker profile of the cell cultures in these 

mutants was likely inaccurate since there were less total cells in the mutants compared 

to wild type. Therefore, to test marker production patterns in red and todK mutants, we 

instead analyzed the marker expression in equivalent numbers of cells at each time point.   
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Our expression pattern analysis of developmental markers revealed that most of the major 

developmental maker proteins (MrpC, FruA and CsgA) are significantly over produced per 

cell in the red and todK mutants.  Furthermore, the accumulation patterns of these marker 

proteins are perturbed in the aggregating and non-aggregating cell fractions relative to the 

wild type. These results explain why red and todK mutants produce spores outside of the 

fruiting bodies. Normally, M. xanthus cells sporulate within fruiting bodies implying 

that cells are sporulated after completion of aggregation. Our expression analysis 

revealed that in the wild-type, most developmental marker proteins are first expressed in 

non-aggregating cells and later highly expressed in aggregating cells. However, in red 

and todK, most developmental marker proteins were much earlier and highly expressed 

in non-aggregating cell and later accumulation of developmental marker proteins are 

perturbed in aggregating cells compared to wild-type. Therefore, it is presumed that 

highly accumulated developmental marker proteins in non-aggregating cells of red and 

todK mutants induce earlier sporulation outside of fruiting bodies resulting in uncoupled 

fruiting body formation, before non-aggregating cell finish aggregating. It is interesting 

to mention here that the timing of accumulation of developmental marker proteins in 

todK mutants is slightly faster than that of red mutants. This result corresponds to the 

early sporulation phenotype of todK mutants and supports our idea. However, it is not 

clear why protein level of most developmental marker proteins were significantly 

decreased between 30 hours and 36 hours and increased at 48 hours in red and todK 

mutants. One possible interpretation is that while red and todK mutant cells are 

sporulating, some of cells are also germinating at 48 hours. Alternatively, these cells 

may be in the very fragile “prespore” stage (O'Connor & Zusman, 1997) such that the 

cells are lysed during harvest.  This stage is likely later than 48 hours in the wild type 

strain.  

 

It still remains to be identified how TodK and Red specifically repress MrpC (the 

earliest marker that was examined in our analyses). In the espA mutant, it was shown 

that although MrpC protein accumulates early, mrpC expression is not perturbed 

suggesting that EspA regulates the accumulation of MrpC at the translational or protein 

degradation level.  Therefore, mrpC gene expression must be similarly examined in the 

red and todK mutants. If mrpC expression is earlier in these mutants, mrpAB and spi 

gene expression should be tested, since mrpC transcription is activated by MrpAB 

possibly in response to A-signal (Sun & Shi, 2001a, Sun & Shi, 2001b). Production and 

reception of the A-signal can be monitored by expression of the spi gene (Keseler & 

Kaiser, 1995). Also, our observation that red and todK mutants fail to increase cell 

population during development raises the possibility that Red and TodK might influence 

MrpC interaction with MazF, or with MazF itself. 
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An additionally interesting question is what is the accumulation pattern of the NRs 

themselves in the different developmental fractions. To date, we have examined the 

TodK accumulation profile and our results revealed that TodK protein is vegetatively 

expressed at high levels and dramatically down-regulated in both subpopulations from 

an early onset of starvation. However, interestingly TodK is constantly expressed more 

in aggregating cells suggesting TodK activity may be important in regulation of the 

developmental subpopulations.  Since, in the todK mutant, the MrpC and FruA proteins 

are not significantly differently regulated in the aggregating cell fraction compared to 

wild type, this result indicates that the function of TodK in the aggregating cell fraction 

is not to influence accumulation of MrpC and FruA. However, in the non-aggregating 

cell population, TodK may specifically allow the gradual accumulation of marker 

proteins since in the todK mutant, these proteins are vastly over accumulated in this 

fraction. Later during development, TodK is degraded and therefore no longer able to 

represses MrpC/FruA accumulation. 

 

The M. xanthus developmental program controlled by several positive feedback loops 

(e.g. mrpC transcrtiption (Nariya & Inouye, 2006), FruA activation through C-signaling 

(Ellehauge et al., 1998), and fruA expression through devT (Boysen et al., 2002)) In 

general, it is known that positive feedback loops induce a biastability known as the 

property of a determistic system to have two stable steady states. Bistable behaviors have 

been found both in prokaryotes (Maamar & Dubnau, 2005, Veening et al., 2005, Dubnau 

& Losick, 2006, Smits et al., 2006) and eukaryotes (Bagowski & Ferrell, 2001, Xiong & 

Ferrell, 2003, Weinberger et al., 2005). Specifically, it has been proposed that positive 

feedback loops play important roles in biological bistability to decide cell population 

heterogeneity of B. subtilis (Veening et al., 2005, Dubnau & Losick, 2006, Smits et al., 

2006). Only a percentage of cells of a B. subtilis population sporulate in response to 

nutrient limitation. Therefore, initiation of sporulation appears to be a regulatory process 

with a bistable outcome in B.subtilis (Smits et al., 2006, Mitrophanov & Groisman, 2008). 

The positive autostimulatory loop of spo0A is responsible for generating a bistable 

response resulting in phenotypic variation within the sporulating culture. Commitment 

to sporulation is modulated by the master regulator Spo0A which directly activates its 

own expression and participates in a complex phosphorelay that constitutes a 

multicomponent feedback loop promoting Spo0A activation, suggesting that positive 

regulation of Spo0A is necessary for coexistence of two (sporulating and 

nonsporulating) subpopulations (Veening et al., 2005). Bistability is used by eukaryotes 

as a mechanism of cell fate determination. One example is that in maturation of Xenopus 

laevis oocytes, the Mos-Mek-MAPK multicomponent positive feedback loops induce two 

subpopulations which consist of maturing subpopulation (high levels of phosphorylated 
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MAPK) and non-maturing subpopulation (non-phosphorylated MAPK)(Ferrell & 

Machleder, 1998). Biological regulation systems also contains negative feedback loops 

which generally serve to stabilize the state of the controlled system (Cinquin & 

Demongeot, 2002). Moreover, the negative feedback loops repress noise effects in 

biological systems (Stelling et al., 2004, Loewer & Lahav, 2006). Therefore, well-

balanced positive and negative systems can lead to a blend of sensitivity and stability 

(Stelling et al., 2004). 

 

It has been proposed in M. xanthus that ordered cascades of gene expression coupled to 

several positive feedback loops are required for cell fate decision and/or coupled 

fruiting body formation between aggregation and sporulation. First, it has been 

demonstrated that MrpC which activates own gene transcription (Sun & Shi, 2001b) acts 

as an anti-toxin for MazF which mediate programmed cell death (Nariya & Inouye, 2008) 

and additionally act as transcriptional regulator for fruA which induces both aggregation 

and sporulation branches of the developmental program (Sogaard-Andersen et al., 1996). 

Second, C-signal which activates csgA transcription (Gronewold & Kaiser, 2001) 

mediates spatially coordinated fruiting body  formation (Kruse et al., 2001). Third, FruA 

induces dev locus transcription (Ellehauge et al., 1998) and one of the products of the 

dev locus (DevT) stimulates FruA synthesis (Boysen et al., 2002). Depending on the C-

signal concentration, low levels of phosphorylated FruA activate the aggregation branch 

(Sogaard-Andersen & Kaiser, 1996) and high levels of phosphorylated FruA induce 

sporulation (Sogaard-Andersen et al., 1996, Ellehauge et al., 1998, Horiuchi et al., 

2002). These results all suggest that positive feedback loops may play role in 

maintaining biological bistability of subpopulations (survival or death) and coordinated 

fruiting body formation (aggregation or sporulation). Especially, it has been proposed that 

perhaps a bistable switch at the level of FruA or another transcription factor that 

precedes it in the regulatory cascade differentiates peripheral rods from cells that enter 

fruiting bodies and become spores (Kroos, 2007).  

 

Our results demonstrate that in the red and todK NR mutants, MrpC (and FruA) protein 

accumulation dramatically higher than the wild type suggesting premature activation of 

the positive autoregulatory loops.  These results strongly suggest that Red and TodK 

independently counteract at least the MrpC positive regulatory loop, suggesting that the 

NRs are necessary to quench this bistable behavior in certain cell populations at certain 

temporal positions. Thus, the NRs maintain coordination of the developmental subpopulations. 

What advantage do NR genes provide to the M. xanthus? It is presumed that 

coordinated fruiting body formation that may allow for efficient transfer of large groups 

of spores to a nutrient rich environment so that spores can germinate in groups and 
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group feeding of the new population is facilitated. However, in the certain 

environmental conditions (e.g. nutrient level is rapidly limited or cells are attacked from 

other microorganisms), M. xanthus cells need to produce spores rapidly for their 

survival by NRs that can control speed of sporulation by quenching or realising key 

developmental regulators. Therefore, NRs which maintain temporally and spatially 

organized fruiting body formation could play crucial roles for their long term survival. 

However, it is still unclear that what the signals sensed by EspA, EspC, Red and TodK 

are and identification of these signals would clarify some of these questions. 

 

In this thesis work, our interests laid in a unique group of proteins (EspA, EspC, Red, 

and TodK) that are members of two component signal transduction family and that are 

thought be negative regulators to repress developmental program. In an effort to 

understand the role of these negative regulators in developmental program, we revealed 

that there are at least three signalling pathways to repress developmental program. More 

importantly, our analysis revealed that these negative regulators control the 

developmental program by likely quenching (at least) positive feedback loops of MrpC 

to maintain coordination of the cell population that result in coordinated fruiting body 

formation. These results strongly suggest well-balanced positive and negative regulators 

lead well-organized fruiting body formation. Furthermore, these results will contribute 

to understand specific relationship between positive regulators and negative regulators 

in complex M. xanthus developmental program. 
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4 MATERIALS AND METHODS 
 

4.1 Reagents and technical equipments 

 

Reagents, enzymes, antibiotics and kits used in this work are listed in Table 4. 1.  

  

Table 4.1 Reagents, enzymes, antibiotics and kits used in this work  

Reagents Vendor 

 

Media compound, Agar-Agar 
 

Carl Roth (Karlsruhe) 
Merck (Darmstadt) 
Difco (Heidelberg) 

Pure chemicals  Carl Roth (Karlsruhe) 
Merck (Darmstadt) 

Page Ruler Prestained Protein Ladder MIE Fermentas (St. Leon-Rot) 

MassRuler DNA Ladder MIE Fermentas (St. Leon-Rot) 

Oligonucleotides Sigma-Aldrich (Taufkirchen) 

Rabbit Antisera Eurogentec (Seraing, Belgium) 

Enzymes  

Platinum
®
  Pfx DNA-polymerase

 Invitrogen (Karlsruhe) 

Taq DNA-polymerase MIE Fermentas (St. Leon-Rot) 

Restriction endonucleases  New England Biolabs (Frankfurt am Main) 
MBI Fermentas (St. Leon-Rot) 

T4 ligase  New England Biolabs (Frankfurt am Main) 

Superscript™III reverse transcriptase Invitrogen (Karlsruhe) 

DnaseI (Rnase-free) Ambion (Huntington, UK) 

Proteinase K, Lysozyme Sigma-Aldrich (Seelze) 

Antibiotic  

 

Kanamycinsulfate, Ampicillin sodiumsalt,  
Oxytetracycline dehydrate 
 

Carl Roth (Karlsruhe) 
Sigma-Aldrich (Seelze) 

Kits   

PCR purification, gel extraction, plasmid 
preparation, RNA purification 

Quiagen (Hilden) 
Zymo research (Hiss diagnostics, Freiburg) 

BigDye
®
 Terminator v. 3.1 cycle sequencing, 

Cyber
®
Green PCR master mix 

Applied Biosystems (Darmstadt) 

LIVE/DEAD® BacLightTM Bacterial Viability Kit
 

Invitrogen (Karlsruhe) 
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Technical equipments and their manufacturers are listed in Table 4.2.  

 

Table 4.2 Technical equipments used in this work  

Application Device Manufacturer 

RC 5B plus 

Ultra Pro 80 
Sorvall / Thermo Scientific(Dreieich) 

Multifuge 1 S-R 

Biofuge pico 

Centrifugation 

Biofuge fresco 

Heraeus / Thermo scientific(Dreieich) 

PCR Mastercycler personal Eppendorf (Hamburg) 

Real time PCR 7300 Real time PCR system Applied Biosystems (Darmstadt) 

Reaction incubation 
Thermomixer compact  
Thermomixer comfort 

Eppendorf (Hamburg) 

DNA sequencing 3130 Genetic analyzer Applied Biosystems (Darmstadt) 

FastPrep
®
24 cell and tissue 

homogenizer 
MP Biomedicals (Illkirch, France) 

Cell lyses 

Constant cell disruption system  Disruption system(Northants,UK) 

Sonification Branson sonifier 250 Heinemann (Schwäbisch Gmünd) 

Protein electrophoresis 
Mini-PROTEAN

®
 3 Cell 

PROTEAN
®
II XI Cell 

Bio-Rad (München) 

TE42 Protein transfer tank 
TE62 Tank transfer unit 

Hoefer (San Francicso, USA) 

Western blotting 

TE77 ECL semidry transfer unit Amersham Bioscience (München) 

Chemiluminescence 
detection 

LAS-4000 luminescent image 
Analyzer 
Fujifilm FPM-100A 

Fujifilm Europe (Düsseldorf) 

UVT_20 LE Herolab (Wiesloch) 

DNA illumination 
2 UV Transilluminator LM20E 
with BioDoc-IT-system and 
Mitsubishi P93 thermal video 
printer 

UVP (Upland, CA) 

Electroporation Gene pulser  Bio-Rad (München) 

DNA concentration  NanoDrop ND 1000 NanoDrop products (Wilmington,USA) 

Spctrophotometry Ultrospec 2100 pro Amersham Bioscience (München) 

Zeiss Axio Imager.M1 Carl Zeiss (Jena) 

DM6000B microscope 

MZ 8 stereo microscope 
Microscopy 

DME light microscope 

Leica Microsystems (Wetzlar) 

Innova 4000
®
 incubator shaker 

Innova44
®
 incubator shaker 

New Brunswick Scientific (Nürtingen) 

B6420 incubator Heraeus (Langenselbold) 
Incubation of bacteria 

9020-0075 cooled incubator Binder (Tuttlingen) 

2540E Tuttnauer (Breda, Netherlands) 

FVS MK 6,5 Fedegari Autoclavi (Albuzzano,Italy) Sterilization 

MLS-3751L SANYO (München) 
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4.2 Microbiological methods 

4.2.1 Bacterial strains  

 

The M.xanthus and E.coli strains used in this work are listed in Table 4. 3 and 4. 4, 

respectively.  

 

Table 4.3 M. xanthus strains used in this work  

Strain Genotype or characteristics Reference or source 

DZ2  Wild type (Campos & Zusman, 1975) 

DZ4227 DZ2 ∆espA (Cho & Zusman, 1999) 

PH1044 DZ2 ∆espC This study 

DZ4659 DZ2 ∆redCDEF (Higgs et al., 2005) 

SA1681 DK 1622 ∆todK 
(Rasmussen & Sogaard-Andersen, 
2003) 

PH1045 DZ2 ∆todK This study 

SA1634 DK1622 todK::mini-Tn5 (tet) 8846 
(Rasmussen & Sogaard-Andersen, 
2003) 

PH1046 DZ2 todK::mini-Tn5 (tet) 8846 This study 

PH1047 DZ2 ∆espA ∆espC This study 

PH1048 DZ2 ∆espA ∆redCDEF This study 

PH1049 DZ2 ∆espA todK::mini-Tn5 (tet) 8846 This study 

PH1050 DZ2 ∆espC ∆redCDEF This study 

PH1051 DZ2 ∆espC todK::mini-Tn5 (tet) 8846 This study 

PH1052 DZ2 ∆redCDEF todK::mini-Tn5 (tet) 8846 This study 

PH1053 DZ2 ∆espA ∆espC ∆redCDEF This study 

PH1054 
DZ2 ∆espA ∆espC ∆redCDEF todK::miniΩTn5 (tet) 
8846 

This study 

PH1010 DZ2 :: asgA km R (Higgs et al., 2008) 

DK9035 DK1622 csgA::Tn5-132ΩLS205 ∆frz(´CD-F)::Kan´ (Sogaard-Andersen et al., 1996) 

PH1014 DZ2 csgA::Tn5-132ΩLS205 (Higgs et al., 2008) 

PH1013 DZ2 :: fruA km R (Higgs et al., 2008) 

DZ4169 DZ2 :: frzCD km R (Shi et al., 1993) 

PH1011 DZ2 ∆espA :: asgA km R (Higgs et al., 2008) 

PH1015 DZ2 ∆espA csgA::Tn5-132ΩLS205 (Higgs et al., 2008) 

PH1012 DZ2 ∆espA :: fruA km R (Higgs et al., 2008) 

PH1016 DZ2 ∆espA :: frzCD km R (Higgs et al., 2008) 

PH1055 DZ2 ∆espC :: asgA km R This study 

PH1056 DZ2 ∆espC csgA::Tn5-132ΩLS205 This study 

PH1057 DZ2 ∆espC :: fruA km R This study 

PH1058 DZ2 ∆espC :: frzCD km R This study 

PH1059 DZ2 ∆redCDEF :: asgA km R This study 

PH1060 DZ2 ∆redCDEF csgA::Tn5-132ΩLS205 This study 

PH1061 DZ2 ∆redCDEF :: fruA km R This study 

PH1062 DZ2 ∆redCDEF :: frzCD km R This study 

PH1063 DZ2 ∆ todK :: asgA km R This study 

PH1064 DZ2 ∆ todK csgA::Tn5-132ΩLS205 This study 

PH1065 DZ2 ∆ todK :: fruA km R This study 

PH1066 DZ2 ∆ todK :: frzCD km R This study 
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Table 4.4 E.coli strains used in this work  

Strain Genotype or characteristics Reference or source 

 
Top10  

 
Host for cloning 
F‾ endA1 recA1 galE15 galK16 nupG rpsL 
∆lacX74 Φ80lacZ ∆M15 araD139 ∆(ara, leu)7697 
mcrA ∆(mrr-hsdRMSmcrBC) λ- 
 

Invitrogen 

BL21λDE3 
F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3) [lacI 
lacUV5-T7 gene 1 ind1 sam7 nin5] 

Novagen 

BL21λDE3/pLysS 
F- ompT gal dcm lon hsdSB(rB- mB-) λ(DE3) 
pLysS(cmR) 

Novagen 

 

4.2.2 Media and cultivation of bacteria 

 

Media and solutions were autoclaved for 20 min at 121 °C and 1 bar over pressure. Heat 

sensitive liquids solutions were filtered using 0.22 µm pore size filters (Millipore, 

Schwalbach) and added after media was cooled to 60 °C.  

 

E.coli cells were aerobically grown on Luria-Bertani (LB) media containing antibiotics, 

when necessary. To prepare broth culture, E.coli cells were inoculated and aerobically 

grown in Luria-Bertani (LB) broth supplemented with 100 µg ml-1 of ampicillin or 50 

µg ml-1 of kanamycin, when necessary (Table 4. 5) (Bertani, 1951). Antibiotics and X-

Gal were added if selection for antibiotics resistance or blue-white screening was 

intended. The E. coli cultures were incubated at 37 °C until the cultures reached the 

necessary cell density. The optical density of E. coli culture was measured at 550 nm 

with a spectrophotometer using a 1 cm path length cuvette. 

 

Table 4.5 Growth media for E. coli  

Medium Composition 

 
Luria-Bertani (LB) broth 
(Bertani, 1951) 

 
1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl 
 
If needed, 100 µg/ml Ampicillin-Sodiumsalt or 50 µg/ml kanamycin was 
added.  
 

 
LB agar  
(Bertani, 1951) 

 
LB-Medium, 1% (w/v) Agar-Agar 
 
If needed, after autoclaving and cooling to 60 °C, 100 µg/ml Ampicillin-
Sodiumsalt, kanamycin or 40 µg/ml X-gal was added.  
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The M. xanthus cells were cultivated on Casitone yeast extract (CYE) agar in the dark. To 

carry out subsequent assays for M. xanthus, cells were inoculated by using a sterile 

wooden stick and incubated in Casitone yeast extract (CYE) broth at 32 °C for overnight. 

The optical density of M. xanthus culture was measured at 550 nm with a 

spectrophotometer using a 1 cm path length cuvette. -1 

 

Table 4.6 Growth media for M. xanthus 

Medium Composition 

 
Casitone yeast extract (CYE) broth 
(Campos & Zusman, 1975) 

 
daH2O, 1 % Bacto™ Casitone, 0.5 % yeast extract, 10 mM 
morpho-linepropanesulphonic acid (MOPS) pH 7.6, 8 mM 
magnesium sulphate (MgSO4) 
 
If needed, 100 µg/ml kanamycin was added. 

 
Casitone yeast extract (CYE) agar  
(Campos & Zusman, 1975) 

 
CYE broth, 1.5 % Difco™ agar 
 
If needed, after autoclaving and cooling to 60 °C, 100 µg/ml 
kanamycin was added. 
 

 
Casitone yeast extract (CYE) top agar  
 

 
CYE broth, 1.0 % Difco™ agar 

 

4.2.3 Storage of M. xanthus and E. coli  

 

E. coli cells grown on LB agar plates were stored up to four weeks at 4 °C. For long 

term storage, 680 µl of E. coli cell suspension was mixed with 320 µl of 50 % glycerol 

in a 2 ml sterile screw cap tube. Tubes were directly stored at -80 °C freezer.  

M. xanthus cells grown on CYE agar plates were stored up to four week at 18 °C in the 

dark. For long term storage, M. xanthus cells culture were grown to 4 × 108 cells ml-1 

(0.7 A550) in 20 ml of CYE broth at 32 °C , 750 µl of DMSO (final concentration 0.5 M) 

was added to induce spores with continued incubation overnight at 32 °C. Cells were 

harvested and concentrated at 4,620 ×g at room temperature for 10 min. Cell pellets 

were resupended with 2 ml of CYE broth and 1ml of suspension was transferred to 2 ml 

sterile screw cap tube containing 250 µl of DMSO. Tubes were directly stored at -80 °C 

freezer.   

4.2.4 Analysis of M. xanthus developmental phenotypes 

 

To induce development of M. xanthus on agar plates, clone fruiting (CF) agar plates were 

used (Table 4. 7). M. xanthus cells were grown to approximately 4 × 108 cells ml-1 (0.7 

A550) at 32 °C with shaking at 240 rpm in the dark, overnight and the cell density was 

measured. Cells were harvested by centrifugation at 7.800 x g for 2 min at room 
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temperature. The cell pellet was washed with MMC starvation buffer, centrifuged again 

for 2 min and resuspended to 4 × 109 cells ml-1 in starvation buffer. 10 µl or 20 µl of the 

cell suspensions were spotted on the surface of a CF agar plate (Hagen et al., 1978). 

After drying, agar plates were incubated at 32°C in the dark. Development was 

examined with a stereomicroscope and recorded every 6 to 12 h for 5 days.  

 

For development in submerged culture, cells were grown to approximately 4 × 108 cells 

ml-1 (0.7 A550) at 32 °C with shaking at 240 rpm in dark overnight and directly diluted to 

2 × 107 cells ml-1 in fresh CYE rich medium. 500 µl of cell suspensions were placed in 

24-well tissue culture plates and incubated at 32 °C in the dark for 24 h. Rich media was 

gently and completely removed by aspiration and added equal volume of MMC 

starvation buffer (Table 4. 7). Development was induced at 32 °C in the dark and 

recorded by taking pictures every 6 to 12 h for 5 days. For large scale submerged 

cultures, 16 ml of 2 × 107 cells ml-1 was placed in 85 mm cell culture plates.  

 

Table 4.7 Starvation media for M.xanthus development 

Medium Composition 

 
Clone fruiting (CF) agar 
(Bretscher & Kaiser, 1978, Campos et 
al., 1978, Hagen et al., 1978) 
 
Prepared at least 24h before 
use 

 
daH2O, 0.015 % Bacto™ Casitone, 10 mM Morpholine- 
propanesulphonicacid (MOPS) pH 7.6, 8 mM magnesium- 
sulphate (MgSO2), 1 mM potassium dihydrogen phosphate  
(KH2PO4), 0.2 % tri-sodium citrate 2-hydrate 
(C6H5Na3O7*2H2O), 0.02 % ammonium sulphat (H8N2O4S), 
1.5 % Difco™ agar 
 
After autoclaving and cooling to 60 °C or before using the 
medium 0.1 % sodium pyruvate (C3H3NaO3) was added. 
 

 
MMC-buffer for submerged culture 
 

 
10 mM MOPS, pH 7.0, 4 mM MgSO4, 2 mM CaCl2 

 

To determine the timing and efficiency of sporulation, sporulation assay was applied. 

From agar plates, cells were scarped fro agar plates and resupended in 0.5 ml water. For 

submerged culture, cells were harvested and transferred to new 1.5 ml tubes. Cells were 

placed in heating block at 50 °C for 1 h and sonicated at output 3, 30% power and 30 

pulses. 10 µl of cells were placed onto a counting chamber suitable for bacteria 

(Hawksley, Lancing, UK) and aspherical spores were counted under light microscope. 

Three biological experiments were performed for each strain to determine the 

sporulation efficiency as number of spores as a percent of wt spores at 72 h. Spore 

viability was determined by germination assays. 100-fold serial dilutions of heat and 

sonication-treated cells were plated in CYE soft agar and incubated for 7 days. Colonies 

were counted after 5 days. Colony numbers were calculated as percent of wild-type. 
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4.2.5 Cell population analysis of M. xanthus 

 

To quantify the number of cells in each subpopulation the method of O´Connor and 

Zusman was modified (O'Connor & Zusman, 1991c). Procedures of cell population assay 

used in this work are described in Figure 4. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Procedure of cell population assay. This figure was adapted from (O'Connor & Zusman, 

1991c). See details above description. See text for details.  

 

Cells were developed under submerged culture conditions and harvested with a 20 ml 

glass pipette and transferred to a 50 ml sterile conical tube. Then, non-aggregating cells 

and aggregating cells were separated by centrifugation at 50 × g for 5 min. The 

supernatant (non-aggregating cells) was transferred to a 50 ml sterile tube, and the pellet 

(aggregating cells) was resuspended with an equal volume (~16ml) of MMC starvation 

buffer. Resuspended pellet cells were dispersed by a beadbeater (Fastprep MP24) 

without beads at 5 m/s for 45 sec. From 24 h, beadbeating was increased to 4 times, 

repectively. Each number of cells in each fraction was counted under microscope with 

counting chamber.  



Materials and Methods 
 

 73 

4.3 Molecular biological methods  

4.3.1 Oligonucleotides and plasmids  

 

Oligonucleotides used as primers to amplify gDNA and cDNA templates are listed in 

Table 4. 8.  

 

Table 4.8 Oligonucleotides used in this work  

Name Sequence (5’-3’) a Description  

M13 f b cacgacgttgtaaaacgacggccag Sequencing primer  

oPH344 (M13 r) b gcggataacaatttcacac Sequencing primer  

T7 f c taatacgactcactataggg Sequencing primer  

T7 r c gctagttattgctcagcgg Sequencing primer 

oPH355  gacgaattcgtcggttacctgacacgc Froward primer used for ∆espC screening 

oPH352 gacctcgagggctacagcatggggcggc Reverse primer used for ∆espC screening 

oPH438 cacctgtccgtgcgcagcgaagcggagc Forward primer used for ∆redCDEF screening 

oPH329 agtcacgtcctggaggtctctgcctgc Reverse primer used for ∆redCDEF screening 

oPH471 ccttccaggcaacgggggcg Forward primer used for ∆todK screening 

oPH472 ctgcagtgcgcgcgccgag Reverse primer used for ∆todK screening 

oPH369 cgacgttggatgaactcacg Forward primer used for espA real time PCR 

oPH370 gcacggtgacgtcggaac Reverse primer used for espA real time PCR 

oPH371 gggctggtcgtcgtgtacc Forward primer used for espC real time PCR 

oPH372 gacgcgcccacgaagacg Reverse primer used for espC real time PCR 

oPH242 gtcccacgctggtgatgtt Forward primer used for redB real time PCR 

oPH243 ggcttgaggaagagcacgaa Reverse primer used for redB real time PCR 

todK qPCR f ctcccggacgccttcttc Forward primer used for todK real time PCR 

todK qPCR r ggccatgtctggattacagta Reverse primer used for todK real time PCR 

oPH252 cgtcacggaaggcatcaatc Forward primer used for fruA real time PCR 

oPH253 cgagatgatttccggtgtgc Reverse primer used for fruA real time PCR 

exo qPCR f atgaacctctatccggacatcgt Forward primer used for exo real time PCR 

exo qPCR r agctcgaaggccgtctca Reverse primer used for exo real time PCR 

devR qPCR f aaacatcaccagcctccagaa Forward primer used for exo real time PCR 

devR qPCR r tgcatggctcctgctcatt Reverse primer used for exo real time PCR 

oPH601 d gacgaattcatgccccccacccccgcc 
Forward primer used for todK overexpression 
palsmid 

oPH604 d gcggtcgacttagtcgcgcgggttcc 
Reverse primer used for todK overexpression 
palsmid 

a Underlined sequences indicate restriction sites used for cloning. 

b M13-for and oPH344 are primers for sequencing of the in-frame deletion fragments in pBJ114 and for checking the insertion  

  after first homologous recombination. 

c T7 f and T7 r primers for sequencing of wild type gene fragment in pET 24, 28, 32 system.  

d Primers used to generate todK protein over-expression constructs.  
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The Plasmids used in this study are listed in Table 4. 9. 

 

Table 4.9 Plasmids used in this work  

Plasmids Description Reference/Source 

pBJ114 
pUC119 with Kmr and galK; derived 
from pKG2 

(Julien et al., 2000) 

pBS109 pKY480 ∆espC (Lee et al., 2005) 

pBS131 pBJ114 ∆espC This study 

pKY573 pBJ114 ∆espA (Cho & Zusman, 1999, Higgs et al., 2008) 

pPH127 pBJ114 :: asgA (Higgs et al., 2008) 

pPH128 pBJ114 :: fruA (Higgs et al., 2008) 

pAAR138 pBJ113 ∆todK (Rasmussen & Sogaard-Andersen, 2003) 

pET32+ 

Expression plasmid, T7-Promotor, 
His6-Tag (N- andC-terminal), 
Thioredoxin-Tag and S-tag 
(Nterminal), Amp R 

Novagen 

pBS134 pET32+ todK This study 

 

4.3.2 Construction of plasmids  

 

For DNA fragment amplification, purified chromosomal DNA from M. xanthus wild-

type strain DZ2 was used as a template.  

 

pBS 131 

 

This plasmid is a pBJ114 derivative and was generated for regenerating espC deletion 

mutants in an isogenic background. espC DNA fragments were digested from pBS109 

with EcoRI and BamHI and cloned into EcoRI and BamHI sites of pBJ114.  

 

pBS134  

 

This plasmid was constructed to overexpress full length TodK protein under control of 

T7 promoter of pET32+ plasmids. todK gene was amplified by PCR using oPH601 and 

oPH604 primers and cloned into EcoRI and SalI sites of pET32+ plasmids. This 

construction was transformed into E, coli top 10 strains and selected on LB agar 

containing Ampicilin and Kanamycin. Plasmids were sequenced to confirm the error 

and error-free plasmids were transformed into E.coil BL21λDE3 and BL21λDE3/pLysS, 

respectively to induce overexpression of TodK protein.   
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4.3.3 Generation of M. xanthus insertion mutants 

 

To generate double mutants between histidine kinases and asgA, pPH127 plasmid was 

introdued into espC (PH1044), red (DZ4659) and todK (PH1045) deletion mutants, 

respectively and plasmids integration was selected by Kanamycin resistance. In similar 

manner,  fruA mutant was generated by producing pPH128 (Higgs et al., 2008) into 

espC, red and todK deletion mutants, respectively (Figure 4. 2). To generate mutants in 

csgA, genomic DNA isolated from strain PH1014 (DZ2::csgA) was electroporated into 

espC (PH1044), red (DZ4659) and todK (PH1045), and the resulting double 

homologous recombination events were selected by oxytetracycline resistance. In a 

similar manner, genomic DNA isolated from strain DZ4169 (DZ2::frzCD) was 

electroporated into espC (PH1044), red (DZ4659) and todK (PH1045) and double 

homologous events were selected by Kanamycin resistance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Generation of insertion mutants. Target gene of approximately 500 bp length was amplified 

by PCR. The purified PCR product was cloned into the pBJ114 plasmid. The plasmid was electroporated 

into M. xanthus where homologous recombination leads to disruption of the target gene. 

4.3.4 Generation of M. xanthus in-frame deletion mutants 

 

In-frame deletion mutants of specific genomic regions were generated by two-step 

homologous recombination modified from a previously reported method (Ueki et al., 

1996). Approximately 500 bp upstream and downstream of the target gene were 

amplified by PCR and fused together by overlap extension PCR. The fused PCR 

fragments were then cloned into pBJ114 which contains the Kanamycin resistance gene 

and the galK gene for counter selection. These plasmids were sequenced to confirm 
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error. The plasmids were introduced into M. xanthus cells by electroportation and 

integrated into either upstream or downstream of the target region by homologous 

recombination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Scheme of in-frame deletion mutagenesis. (A) a and b regions and e and f regions are 

amplified by PCR and fused together by overlap extension PCR. (B and C) plasmids are cloned into 

pBJ114 and the first homologous recombination leads to plasmid integration up- or downstream of the 

genomic region to be deleted. (D) The second recombination event eliminates either only the vector 

(reconstitution) or the vector with the target region (in-frame deletion).  
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Recombination was selected for by resistance to kanamycin, since pBJ114 cannot 

replicate in M. xanthus but provides for kanamycin resistance. Each 5’ integration and 

3’ integration were checked by PCR using either M13 forward primer and upstream 

primer of target gene or M13 reverse primer (oPH344) and downstream primer of target 

gene. To select for plasmid loss, the insertion mutants were grown in CYE medium to 

0.5A550 and 100 µl of this culture were added to 3 ml CYE 50°C prewarmed soft agar 

and plated on CYE agar containing 2.5 % galactose. Loss of the integrated plasmid 

(excision) via a second homologous recombination event was screened by galK- 

mediated counterselection on CYE plates containing 2.5 % galactose for 7 days, since 

excision of plasmids containing deleted target gene result in kanamycin-sensitive (KanS) 

and galactose-resistant (GalR). Finally, KanS and GalR colonies were checked by PCR 

using up- and downstream primers of the target genes.  

4.3.5 Isolation of genomic DNA from M. xanthus 

 

The M. xanthus cells were grown to 0.7 A550 in 20 ml of CYE broth at 32 °C overnight. 

The cells were harvested by centrifugation at 4,620 × g for 10 min. The cell pellet was 

resuspended to 7 A550 in TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) and transferred 

to fresh 2 ml tubes. 5 % (w/v) sodium dodecyl sulfate (SDS), 100 µg ml-1 proteinase K 

and 50 µg ml-1 DNAse-free RNase A were directly added to cell suspension and 

incubated at 37 °C for 1 h. Subsequently, 5M NaCl and 12.15 % (w/v) CTAB/NaCl 

solution (50 ml ddH2O, 5 gcetyl trimethylammonium bromide, 2.05 g NaCl) were added 

to solution and incubated at 65 °C for 10 min. Then the solution was mixed with 975 µl 

of a phenol: chloroform: isoamyl alcohol mixture (25:24:1 ratio). Each tube was 

centrifuged at maximum speed using a micro centrifuge for 3 min. The top aqueous 

layer was transferred to a fresh 2 ml tube and directly mixed with equal volume of 

chloroform: Isoamyl alcohol mixture (24:1 ratio). The mixture was centrifuged at 

maximum speed in micro centrifuge for 3 min and the top aqueous layer was transferred 

into a fresh tube. Then 0.6 volume of isopropanol were added to tube containing 

aqueous and solution was mixed by inverting until genomic DNA was visible and 

precipitated. Precipitated genomic DNA was picked by sterile tip, transferred into fresh 

tube containing 70 % ethanol (EtOH), and centrifuged at maximum speed for 5 min. 

The supernatant was discarded and 1 ml of 70 % ethanol (EtOH) was added to wash. 

The solution containing genomic DNA was centrifuged and the supernatant was 

discarded. Finally, the genomic DNA was resuspended in 50 µl elution buffer (10 mM 

Tris pH 8.0). Concentration of the genomic was measured by using a Nano-drop and 

diluted to100 ng/µl. This genomic DNA was used either as template for PCR or 

genomic DNA for transformation of insertion mutagenesis.   
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4.3.6 Isolation of plasmid DNA from E. coli 

 

Plasmid DNA for transformation was isolated by using the QIAprep Spin Miniprep-Kit 

(Qiagen) from E. coli. Concentration of the plasmid was measured by using Nano-drop. 

Plasmid DNA for checking transformants was isolated by using alkaline lysis method 

(Birnboim & Doly, 1979).  

4.3.7 Polymerase chain reaction (PCR) 

 

Amplification of specific DNA for cloning was performed by polymerase chain reaction 

(PCR) using Platinum® Pfx DNA polymerase (Invitrogen) in an Eppendorf ® MasterMix 

cycler (Eppendorf). A standard PCR reaction mix is shown in Table 4. 10. DNA 

amplifications for confirming plasmid integration or deletion mutants was carried out 

using Taq DNA polymerase.  

 

Table 4. 10 PCR reaction mix 

Component Amount 

genomic DNA 100 ng 

Forward primer (50 µM stock) 0.25 µl 

Reverse primer (50 µM stock) 0.25 µl 

2 x FailSafe™ PCR PreMix J 12.5 µl 

Platinum®  Pfx (0.625 units) 0.25 µl 

daH2O add to 25 µl 

 

A standard PCR program is shown in Table 4.11. The reaction conditions were 

modified based on predicted primer annealing temperature, expected product sizes and 

DNA polymerase (see Table 4.11). The PCR products were purified using a QIAquick® 

PCR Purification Kit (Qiagen) or extracted from agarose gels using QIAquick® Gel 

Extraction Kit. 
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Table 4.11 Standard PCR program 

Step Temperature Time 

Initial denaturation 95°C 3 min 

Denaturation* 95°C 30 s 

Primer annealing* 

 
62°C (5 to 8°C below predicted 
melting temperature) 

15 s 

Polymerization* 68°C 2 min per kb 

Final elongation 68°C 5 min 

Hold 4°C Keep at 4°C 

* = 25 cycles 

 

4.3.8 Determination of nucleic acid concentration  

 

The concentration and purity of DNA/RNA was determined by Nano drop ND-1000 

spectrophotometer.  

4.3.9 Agarose gel electrophoresis  

 

DNA fragments and plasmid DNA were separated by size with agarose gel 

electrophoresis in 0.5 X TAE (40 mM Tris, 1 mM EDTA, pH 8.0 with acetic acid) 

buffer. To detect nucleic acid, ethidiumbromide was added to agarose in a final 

concentration of 0.01 % (v/v). 6 × sample loading buffer (0.2 % Bromophenolblue, 

0.2 % Xylencyanol, dissolved in 50 % glycerol) was mix with samples to 1 x final 

concentration. The samples were loaded in 0.8 % to 1 % gels and the gels were run for 

30 min at 120V. After electrophoresis, agarose gel images were visualized using a 2UV-

Transilluminator (UVP-Bio-Doc-IT-System, UniEquip) at 365 nm wavelength and 

documented with an electronic P93E thermoprinter (Mitsubishi). DNA fragments were 

isolated from agarose gels by cutting out and purification with the QIAquick® Gel 

Extraction Kit. 

4.3.10 Digestion and ligation of DNA fragments 

 

Endonucleases were used for DNA digestion. 0.5 to 1 µg of purified PCR product and 

plasmid DNA were mixed with appropriate buffers and concentration of the 

endonucleases and the mixture was incubated as recommended by the supplier (New 

England biolabs). Restriction enzyme treated DNA samples were cleaned up and 
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purified with the QIAquick® PCR Purification Kit (Qiagen) and the fragment size was 

determined by agarose gel electrophoresis.  

 

T4 DNA ligase was used to ligate inserts into vectors. Inserts and vectors were mixed in 

a 1:3 ratio and T4 ligase buffer was added. The mixture was incubated for 2 h at room 

temperature. Alternatively, the mixture was incubated overnight at 16 °C. Ligation 

products were purified with the QIAquick® PCR Purification Kit (Qiagen) and used for 

transformation.  

4.3.11 Preparation and transformation of electro competent E. coli cells  

 

To prepare electro competent E.coli cells (E.coli Top10), an overnight E.coli cell culture 

was used to subculture. 2 ml of a overnight culture was inoculated to 200 ml LB-

medium. Cells were grown to log phase (approximately 0.6 A550) at 37 °C shaking at 

240 rpm and directly harvested by centrifugation at 5.000 × g for 20 min at 4 °C. To 

remove media components and salts, the cell pellet was resuspended in 400 ml ice cold 

sterile 10% (v/v) glycerol and centrifuged again. The washing steps were repeated with 

200 ml, 100 ml, 50 ml and 10 ml volume of 10 % glycerol. Finally, the pellet was 

resuspended in 1 ml ice cold sterile 10 % (v/v) glycerol and 50 µl aliquots were stored 

at -80°C. 

 

For E, coli transformation, 1-5 µl purified ligation reaction or plasmids were gently 

mixed with ice-cold 50 µl electrocompetent E. coli cells. The suspension was 

immediately transferred into a 0.1 cm ice cold electroporation cuvettes and pulsed with 

1.5 kV, 25 µF and 200 Ω. 1 ml LB medium were immediately added to the cuvettes and 

the suspension was gently mixed and transferred into fresh 2 ml tube. The samples were 

incubated for 1 h at 37 °C shaking at 240 rpm. 100 µl and 200 µl aliquots were then 

plated on LB agar containing appropriate antibiotics. The plates were incubated at 37 °C 

over night, colonies transferred onto fresh agar plates and screened for the presence of 

the plasmid and insert by PCR or enzyme digestion.  

4.3.12 Preparation and transformation of chemical competent E. coli cells 

 

To prepare chemical competent cells, E. coli strains were grown in 5 ml LB-medium. 

1/100 overnight culture was inoculated into 5 ml ml LB-medium and grown to log 

phase (0.6 A550) at 37°C shaking at 240 rpm. The cell culture was immediately cooled 

on ice and harvested by centrifugation at 5,000 x g for 10 min at 4°C. The cell pellet 

was resuspended in 500 µl ice cold sterile TSS (1% tryptone, 0.5% yeast extract, 1 % 

NaCl, 10 % PEG (MW 3350 or 8000), 5 % DMSO, and 50 mM MgCl2 or MgSO4, pH 
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6.5) (Chung et al., 1989). 100 µl aliquots were stored at -80°C. 

 

For transformation of E. coli, 1-5 µl purified plasmids were gently mixed with 100 µl of 

ice-cold chemical competent E. coli cells and incubated on ice for 30 min. The cells 

were then heat shocked at 37 °C for 2 min. After addition of 0.5 ml LB, the cells were 

incubated at 37 °C shaking at 240 rpm for 1 h. After incubation, 100 µl and 200 µl were 

plated on LB plates containing appropriate antibiotic and incubated overnight at 37°C. 

Colonies were transferred onto a fresh LB agar plate and screened for the presence of 

the plasmid by PCR. 

4.3.13 Transformation of M. xanthus cells 

 

To prepare electro competent M. xanthus, cells were grown to approximately 0.4 A550 in 

100 ml CYE at 32 °C shaking at 240 rpm. The cell culture was harvested in two 50 ml 

sterile tubes by centrifugation at 4.620 × g for 10 min at room temperature. Each cell 

pellet was resuspended in 50 ml of ddH2O and centrifuged as above. The washing steps 

were repeated with 25 ml, 15 ml, and 10 ml volume of ddH2O. Finally, each cell pellet 

was resuspended in 100 µl of ddH2O and two tubes were combined in a fresh tube. The 

suspension was divided into 50 µl aliquots and used directly for electroporation.  

 

For the transformation, 1 µg plasmid DNA or 5 µg genomic DNA was gently mixed 

with 50 µl electro competent M. xanthus cells. The suspension was immediately 

transferred into 0.1 cm ice cold electroporation cuvettes and pulsed with 650 V, 25 µF 

and 400 Ω. Then, 1 ml CYE medium were immediately added to the cuvettes and the 

suspension was gently mixed and transferred into fresh 2 ml tube. The samples were 

incubated for 1 h at 32 °C shaking at 240 rpm. After incubation, 50 µl, 100 µl, 200 µl, 

650 µl cells were added to 3 ml molten CYE top agar, vortexed brifely and plated on 

CYE agar plates containing appropriate antibiotics. The plates were incubated in sealed 

plastic container at 32°C for 5 to 7 days and colonies were transferred to fresh CYE 

agar plates. These colonies were subjected for confirmation of plasmid integration by 

PCR.  

4.3.14  DNA sequencing  

 

After generation of recombinant plasmids, DNA sequencing was performed to check 

internal error in DNA fragments. Recombinant plasmid DNA was used as template for 

the chain termination method. For sequencing reactions, Big Dye® Terminator™ Cycle 

Sequencing Kit (Applied Biosystems, Darmstadt) was applied according to the 

instructions of the manufacturer and reaction was carried out as shown in Table 4.12.  
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The reaction products were purified by DNA precipitation. 10 µl 125 mM EDTA, 9 µl 3 

M sodium acetate (pH 4,6), 80 µl HPLC-H2O and 400 µl 96% ethanol were directly 

added to the reaction solution and incubated for 30 min at room temperature. The 

reaction solution was centrifuged at 15,000 x g for 30 min at 20 °C and the supernatant 

was discarded. The pellet was washed twice with 1ml fresh 70 % EtOH. Finally, the 

supernatant was removed and the pellet was air dried. For sequencing, the pellet was 

resupended in 20 µl formamide. DNA sequencing was performed using 3130 Genetic 

Analyser (Applied Biosystems, Darmstadt) and DNA sequences were analysed with the 

Vector NTI software.  

 

Table 4.12 Incubation times and temperatures for DNA sequencing reactions 

Step Temperature Time 

Initial denaturation 96°C 1 min 

Denaturation* 96°C 10 s 

Primer annealing and elongation* 60°C 4 min 

Hold 4°C Keep at 4°C 

* = 25 cycles 

 

4.3.15 Quantitative real time polymerase chain reaction (RT-PCR) 

 

To isolate total RNA, the hot-phenol method was applied (Sambrook, 1989). M. xanthus 

cells were developed in 16 ml of submerged culture as described above. Developed cells 

from submerged culture were harvested by centrifugation at 4.620 × g for 10 min 

according to desired time points. The cell pellet was directly resuspended in 1ml 

solution 1 (0.3M sucrose; 0.01M NaAc, pH 4.5) and transfer into a 15 ml conical 

centrifugation tube containing 1ml of 65 °C solution 2 (2% SDS; 0.01M NaAc, pH 4.5). 

The samples were mixed gently by inversion 5 times. 2 ml of 65 °C hot phenol was 

added to the sample tubes, mixed gently by inversion and the sample was incubated at 

65°C for 5 min. After incubation, the bottom of the sample tubes was chilled by liquid 

nitrogen for 5 s and centrifuged at 4.620 ×g for 5min at 4 °C. The aqueous top layer was 

transferred to a fresh 15 ml centrifugation tube containing 2 ml of hot phenol and 

sample tubes were chilled and centrifuged as described above. The cell extraction step 

was peformed by Phenol:chloroform:isoamyl alcohol (25:24:1, pH 6.6) and chloroform:

isoa-myl alcohol (24:1). After centrifugation, the aqueous top layer was subsequently 

transferred to a fresh 15ml centrifugation tube containing 2 ml of Phenol:chloroform:iso

-amyl alcohol (25:24:1, pH 6.6) and 2 ml of chloroform:isoamyl alcohol (24:1). To 
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precipitate RNA, the aqueous top layer (approximately 1 ml) was transferred to a fresh 

15ml centrifugation tube containing 100 µl of 3M NaAc (pH 4.5) and 2.5 ml of 96 % 

EtOH. Samples were incubated at -80°C for 30 min. or at -20°C overnight. After 

incubation, sample tubes were centifuged at 4.620 ×g for 30 min at 4 °C and the 

supernatant was carefully removed. To wash RNA solution, 5 ml of ice-cold 75% EtOH 

was added and centrifuged at 4.620 ×g for 5 min at 4 °C. The washing step was repeated. 

Finally, supernatant was removed and pellet was air dried and dissolved in 100 ul of 

RNase-free water. Concentarion and purity of RNA was measured by Nano-drop.  

 

Purified 10 µg of total RNA was incubated in the presence of RNase-free DNase I and 

incubated at 37 °C for 1 h. DNase I treatment mix is shown in Table 4. 13. After 

incubation, 4 ul of 25 mM EDTA was added and incubated at 65 °C for 10 min. RNA 

was cleaned up and purified using Qiagen RNeasy Mini Kit according to the 

manufacturer´s instruction. 1.0 µg of DNA-free total RNA was used as the template to 

synthesize cDNA using the Superscript 3 kit (Invitrogen). The reccommended reverse 

transcription protocol is shown in Table 4. 14.  

 

Table 4. 13 DNase I treatment mix 

Component Amount 

RNA 10 µg 

Reaction buffer 10 µl 

RNase free water add to 90 µl 

DNase I   10 µl 

 

Table 4. 14 Reverse transcription reaction mix and steps 

Component Amount 

1 ug of total RNA 10 µl 

100 ng of random primer 2 µl 

10 mM dNTP 1 µl 

Incubate at 65 °C for 5 min. and snap cool on ice 

5 × reverse transcription buffer 4 µl 

RNase inhibitor 1 µl 

Reverse transcriptase 1 µl 

0.1M DTT 1 µl 

 
Incubate the reaction mix at  
 
25 °C for 5min,  
 
55 °C for 50min   
 
70℃ for 15min 
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The qauntitative real time PCR (RT-PCR) was performed by applying SYBR GREEN 

PCR Master Mix kit (Applied Biosystem) in total 26 µl. Reactions was performed in 

triplicate and with 1:50 diluted cDNA. Control reactions contained no cDNA (no 

reverse transcriptase) and H2O (no template) as negative controls and gDNA as positive 

control. Real time PCR reaction mix and program used in this work are shown in Table 

4. 15 and 4. 16, respectively. Data were analyzed by the average of the Ct values of each 

triplecate sample. Then, the ∆Ct values were determined by subtraction of the Ct value 

for each time point from the Ct value of the t = 0 h sample. 

 

Table 4.15 Real time PCR reaction mix (26 µl) 

Component Volume Final concentration 

SYBR® Green PCR Master Mix 13 µl 1 X 

5 µM oligonucleotide f 1 µl 0.2 µM 

5 µM oligonucleotide r  1 µl 0.2 µM 

Template (cDNA or gDNA) 2 µl  0,4 ng – 0,4 pg 

daH2O 9 µl - 

 

Table 4.16 Real time PCR program 

Step Temperature Time 

Initial denaturation 95 °C 10 min 

Denaturation 95 °C 15 s 

Primer annealing and elongation* 60 °C 1 min 

Denaturation* 95 °C 15 s 

Recording of dissociation curve 
60 °C 
95 °C 

30 s 
15 s 

Hold 10 °C Keep at 4 °C 

= 40 cycles   

 

4.4 Biochemical methods 

4.4.1 Heterologous overexpression and purification of TodK in E. coli  

 

To express and purify TodK protein, pET32a+ which are optimized for inducible 

overexpression protein in E. coli and provides fusion tags to facilitate for protein 

purification were used. Full length gene encoding TodK protein was amplified by PCR 

and cloned into pET32a+, repectively. The plasmids were comfirmed by sequencing 

and error free plasmids were transformed into E. coli BL21λDE3 and E. coli 

BL21λDE3/pLysS strains by chemical transformation method. Tranformants were 
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selected by antibiotics and various conditions were tested to optimize the yield in 

soluble protein. Overnight E.coli cells culture was used as first culture and 10 ml of 

overnight culture was inoculated to 1 litter LB-medium supplemented with either 

ampicillin (100 µg ml-1 for BL21λDE3) or ampicillin and chloramphenicol (100 µg ml-1 

for BL21λDE3/pLysS) and incubated at 37 °C shaking at 240 rpm. Cells were grown to 

0.8 A550 and 1 ml of cell culture was harvested by centrifugation and resuspended in 2 x 

LSB. TodK protein overespression was induced by adding 0.5 mM isopropyl-1-thio-

Dgalactopyranoside (IPTG) and incubation at 18°C for overnight shaking at 240 rpm. 

After incubation, 1 ml of cell culture was harvested by centrifugation and resuspended 

in 2 x LSB. The remaining cell culture was harvested by centrifugation at 5.000 × g for 

20 min at 4°C. 1 ml of cell culture prepared before induction and after induction was 

used for solubility test of TodK proteins.    

4.4.2 Protein purification  

 

Overexpressed TodK protein was purified by affinity chromatography. Cell pellets were 

resuspended in 50 ml binding buffer (10 mM HEPES, 150 mM NaCl, 10 mM imidazole, 

pH 7.4) on ice and disrupted by Constant cell disruption system (Northants, UK). The 

cell debris and membranes were removed by ultracentrifugation at 100.000 × g for 1 h 

at 4°C and supernatant fraction containing the soluble protein was purified by affinity 

chromatography via FPLC equipment (Amersham Biosciences, Munchen) using a 1 ml 

of Amersham HisFF1 trap nickel affinity column (Amersham Bioscience, Munchen). 

The column was washed, equilibrated with 5ml of binding buffer and supernatant 

fraction was loaded to allow binding of proteins to through nickel affinity column at 

4 °C for with flow rate of 1 ml min-1. The column was washed with 25 ml of binding 

buffer and the target fusion protein was eluted gradiently using 20 to 500 mM imidazole 

in 30 ml of elution buffer (10 mM HEPES, 0.5 M NaCl, pH 7.4). The elution was 

collected in 1 ml fraction and subjected to SDS-PAGE for monitoring the purity of 

proteins. The concentration of purified fusion proteins was measured and dialyzed 

against 10 mM HEPES, 150 mM NaCl, pH 7.4. 

4.4.3 SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 

To examine heterologous protein expression under denaturing conditions, SDS-PAGE 

(Laemmli, 1970, Schagger & von Jagow, 1987) was applied. Protein samples were mixed 

with equal volumes of 2 x Laemmli sample buffer (LSB; 0.125 M Tris-HCl pH 6.8, 

20 % glycerol, 4 % SDS, 10 % 2 β-mercaptoethanol, 0.02 % bromophenol blue) and 

heated at 96°C for 5 min. PageRuler™ prestained protein ladder (Fermentas) was used 

to estimate the molecular weight of proteins. Electrophoresis was performed in Bio-Rad 
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electrophoresis chambers (Bio-Rad, München) at 150 V in 1 X Tris-glycine-SDS 

running buffer (25 mM Tris; 190 mM Glycine; 0, 1% SDS). Proteins were visualized by 

soaking the gel in staining solution (70 % methanol, 7 %  acetic acid, 0.25 % Coomassie 

brilliant blue R250) for 30 min and in destaining solution (70 % methanol, 7 % acetic 

acid) until protein bands became clearly visible. 

 

Table 4.17 Composition of a 8% resolving and a 5 % stacking gel 

 Resolving gel (10 ml) Stacking gel (5 ml) 

 Volume 
Final 
concentration 

Volume 
Final 
concentration 

daH2O 4.8 ml - 2.8 ml  

4X resolving buffer a 2.5 ml 375 mM - - 

4X stacking buffer b - - 1.25 ml 125 mM 

30 % acrylamide 2.6 ml 8 % 825 µl 5 % 

TEMED 6 µl 0.06 % 3.75 µl 0.75 % 

10% (w/v) APS 80 µl 0.08 % 50 µl 0.1 % 

  a 4X resolving buffer (1.5 M Tris-HCl pH 8.8, 0.4 % SDS) 

b 4X stacking buffer (0.5 M Tris-HCl pH 6.8, 0.4 % SDS) 

4.5 Immunoblot analysis  

4.5.1 TodK antibody generation  

 

Purified TodK protein was divided into 50 µg aliquots and lyophilised. 1.6 mg of 

Lyophilised TodK protein sent to Eurogentec (Seraing, Belgium) for the generation of 

polyclonal antibodies in rabbit based on super speedy program.   

4.5.2 Preparation of protein samples for immunoblot analysis 

 

To perform immunoblot analysis, protein samples were prepared with three different 

methods such as equal protein concentration, equal proportion of cell culture or equal cell 

number. Cells were developed in 16 ml of submerged culture and harvested by centrigution 

at 4.620 ×g for 10 min at the desired time points.  

 

Protein sample as equal protein concentraion 

 

Cell pellets were resuspended in 500 µl starvation buffer (MMC) containing 1:20 protease 

inhibitor and transferred to 1 ml microcentrifuge tube. Samples were sonicated at 3 x output, 
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30 % power and 15 pulses and put on ice. This step was repeated. Alternatively, samples 

were transferred into 2 ml screw cap tubes filled with 0.5 g 0.1 mm zirconia/silica beads 

(BioSpec, Bartlesville). Cells were mechanically disintegrated using a FastPrep®-24 tissue 

and cell homogenizer (MP Biomedicals, Illkirch, France) six times for 45 s each at 6.5 m/s 

speed. Protein samples were prepared to 0.5 µg µl-1 by adding appropriate Lamelli sample 

buffer and boiled at 99 °C for 5 min.    

 

Protein sample as equal proportion of cell culture 

 

After cell lysis as decribed above, the cell lysates were mixed with an equivalent volume 

of 2 x Laemmli sample buffer and the mixture was boiled at 99 °C for 5 min. 

 

Protein sample as equal cell number 

 

Cells were harvested from 16 ml of submerged culture by using a 20 ml glass pippet and 

transferred to fresh 50 ml cuntifuge tubes. To determine the cell number, the cells were 

dispersed by bead beater without bead at 5 m/s speed for 45 s. Cell numbers were counted 

by using counting chamber under light microscop and directly resuspended to 4.3 × 106 

cells ul-1 in Lamelli sample buffer containing 1:20 mammalian protease inhibitor cocktail. 

Samples were boiled at 99 °C for 10 min. To lyse remaining cells, 200 µl of samples were 

transferred into 2 ml screw cap tubes filled with 0.2 g, 0.1 mm zirconia/silica beads. Cells 

were mechanically disintegrated using a FastPrep®-24 tissue and cell homogenizer (MP 

Biomedicals, Illkirch, France) six times for 45 s each at 6.5 m/s speed. Samples were 

boiled at 99°C for 5 min before use.  

4.5.3 Determination of protein concentration 

 

Protein concentrations were determined based on Bradford assay (Bradford, 1976) 

using the Bio-Rad protein assay kit (Bio-Rad, Munchen) according to the instructions 

of the manufacturer. Standard curves were obtained using series of dilutions of a 

protein standard (bovine serum albumin). The absorbance was measured at 595 nm 

with an Ultrospec 2100 pro spectrophotometer (Amersham). The protein 

concentrations were calculated based on the slope value of the standard curve. 

Alternatively, protein concentrations were determined by BCATM Protein Assay Kit 

(Pierce, Rockford) according to the instructions of the manufacturer. Absorbance was 

measured at 562 nm. 
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4.5.4 Immunoblot analysis  

 

Protein samples were prepared as described in section 4.5.2. 4.3 × 107 to 8.6 × 107 cells 

µl-1 of cell lysates were loaded on SDS-PAGE gels. Depending on the molecular mass, 8 

to 13 % gels were prepared. To detect protein modification such as phosphorylation or 

methylation, large electrophoresis chambers (Bio-Rad, München) were used. After 

electrophoresis, proteins present in gels were blotted into polyvinylidene fluoride (PVDF) 

membranes using a tank transfer system (Hoeffer) in transfer buffer (25 mM Tris, 192 

mM glycine, 10 % methanol, 0.1% SDS, pH 8.3). Alternatively, proteins were transferred 

into PVDF membrane using semi-dry system (Amersham Bioscience). After blotting, 

membrane was briefly soaked in methanol, washed with ddH2O and incubated in 

blocking buffer (PBS, 137 mM NaCl, 10 mM phosphate, 2.7 mM KCl, 5% non-fat milk 

powder, 0.1% tween-20, pH 7.4) for 1 h at room temperature. Primary antibodies were 

added to membrane in blocking buffer according to appropriate dilution and incubated for 

1 h at room temperature. Primary antibodies were transferred to fresh bottle and 

membrane was washed 3 times with skim milk buffer for 10 min. Then, 1:20.000 diluted 

secondary anti-rabbit IgG was added to membatane in blocking buffer and incubated for 1 

h at room temperature. After incubation, secondary antibodies were removed and 

membrane was washed 3 times with PBS buffer (137 mM NaCl, 10 mM phosphate, 2.7 

mM KCl pH 7.4) for 10 min. After washing step in PBS buffer, chemiluminescence 

substrate (Pierce) was added to membrane and signals were detected by exposure to CL-

Xposure Film (Pierce) or using the LAS-4000 luminescent image analyzer (Fuji). The 

relative intensity of proteins was quantified by MultiGauge software (Fuji). 

 

Table 4.18 Dilutions of primary antibodies used for immunoblotting.  

Antibody MrpC FruA CsgA FrzCD 
Protein 
C 

Protein 
S 

PilA PilC EspA TodK 

Dilultion 1:1,000 1:5,000 1:5,000 1:5,000 1:5,000 1:5,000 1:10,000 1:5,000 1:1,000 1:2,000 

 

4.6 LIVE/DEAD staining analysis 

 

The timing and proportion of cell death was determined by employing a live dead stain 

kit (LIVE/DEAD® BacLightTM Bacterial Viability Kit, Invitrogen) according to 

instructions of the manufacturer. The cells were developed in 16 ml of submerged 

culture and harvested at the desired time points. Cell numbers were counted by counting 

chamber under light microscope and cells were centrifuged at 4.620 ×g for 10 min. The 

pellets were resuspended in 1ml MMC buffer and transferred to 2 ml bead beating tubes. 
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The cells were dispersed by bead beating without bead at 5 m/s speed for 45 s and 

diluted to approximately 1.5 X 108 cells ml-1 in MMC buffer. Equal volumes of 

component A (SYTO® 9, green-fluorescent nucleic acid stain) and component B 

(propidium iodide, red-fluorescent nucleic acid stain) in a 1.5ml tubes were combined 

and 3 µl of the dye mixture were added to 1 ml of cell suspension. After mixing 

thoroughly, the samples were incubated at room temperature in the dark for 15min. For 

fluorescence microscopy, 5 µl of cells were spotted on Agar pads [(1% agarose in A50 

starvation buffer (10 mM MOPS, pH 7.2, 1 mM CaCl2, 1 mM MgCl2, 50 mM NaCl)] 

and covered with a cover slip. Live and dead cells were observed under fluorescence 

microscope equipped with green (at 500 nm) and red (at 550 nm) channel. After 

recording pricture, images were analyzed by Metamorph ver 7.5 and relative dead cells 

were calculated.   

4.7 Exopolysaccharide (EPS) analysis 

 

To verify difference between non-aggregating cells and aggregating cell, 

Exopolysaccharide (EPS) assay was applied (Black & Yang, 2004, Black et al., 2006). 

Cell samples were prepared as described in section 4.2.5. Each cell population was 

centrifuged at at 4.620 ×g for 10 min. The pellets were resuspended in 1ml MMC buffer 

and transferred to 2ml bead beating tubes. The cells were dispersed by bead beating 

without bead at 5 m/s speed for 45 s and diluted to approximately 2.0 X 108 cells ml-1 in 

3.5 ml of MMC buffer. 10 µl of trypan blue buffer (10 mM MPOS, 1mM NaCl, 1 mg 

ml-1 trypan blue) were added to triplicate 990 ul of cell suspension and control 

containing buffer to make final concentration 10 µg ml-1 of trypan blue. The samples 

were mixed briefly and incubated in the dark for 30 min. After incubation, the samples 

were centrifuged at 16.200 ×g for 5 min at room temperature. Then, absorbance of 

supernatants was measured at 585 nm for trypan blue and fraction of dye bound per 

relative proportion of cells was calculated in non-aggregating cells and aggregating cells.
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