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General introduction 

 

Biology of lower termites 

Termites are terrestrial, social insects that have gained attention both ecologically 

and commercially owing to their high abundance and pest nature (Collins, 1989; 

Lax and Osbrink, 2003). Termites (order: Isoptera) are phylogenetically closely 

related to cockroaches (Deitz et al., 2003; Inward et al., 2007) and are divided into 

seven families (Fig. 1) (Abe et al., 2000). Depending on the presence/absence of 

cellulolytic flagellate protozoa in the hindgut, termites are further distinguished into 

phylogenetically lower and higher termites, respectively. While higher termites can 

be fungus-cultivating, wood-feeding or soil-feeding (Abe et al., 2000), lower 

termites are strictly wood-feeding and depend on their flagellate symbionts for the 

degradation of lignocellulose (Cleveland, 1926). 

 

 

 

 

 

 

 

 

 

 

Figure 1. A simplified scheme of the phylogeny of different termite families and closely 

related cockroaches (modified from Abe et al., 2000). The lower termites harbor flagellates. 

The numbers on the lines represent the number of genera/species in the different families. 

 

The relationship between the lower termites and their gut flagellates is a textbook 

example of symbiosis. Given the high diversity of lower termites, hardly any 

species of these termites are thoroughly studied. Notably, termite species of the 

family Kalotermitidae are very ill studied. Kalotermitidae—found mainly in the 

tropics—colloquially known as “dry-wood termites” and “primitive termites of 
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warm region”—live entirely within the single piece of dry wood, and obtain water 

adsorbed onto wood fibers and by metabolic processes (Noirot, 1970; Abe et al., 

2000). Despite being primitive and unique, only a few studies have been performed 

on the behavioral biology and gut microbial ecology of Kalotermitidae (Fuchs et 

al., 2003; Korb and Lenz, 2004; Pester and Brune, 2006; Pester and Brune, 2007). 

 

Termite hindgut: a structured environment 

The gut of lower termite consists of foregut, midgut and hindgut (Escherich, 

1909). The enlarged hindgut, also known as paunch, is considered as the 

“hotspot” of the microbial activity (Breznak, 2000; Brune, 2005, and references 

therein). In the hindgut, the symbiotic microbiota polymerizes cellulose and 

hemicellulose, which are further fermented to short-chain fatty acids; these short-

chain fatty acids are then used as the main energy source by the host termite 

(Breznak and Brune, 1994). While other studies assumed the termite hindgut to be 

a completely anoxic fermenter, microelectrode measurements showed steep 

gradients of oxygen and hydrogen in the hindgut periphery (Fig. 2) (Brune et al., 

1995; Ebert and Brune, 1997). 

 

                        
Figure 2. Oxygen and hydrogen profiles in the hindgut of the lower termite Reticulitermes 

flavipes. Employing the microsensor electrodes, both the gases were measured radially in 

an agarose-embedded hindgut. Oxygen (blue) penetrating into the gut periphery is rapidly 

consumed by the respiratory activity of the gut microbiota. Hydrogen (red) concentration is 

the highest at the centre of the gut. (Figure from Brune and Friedrich, 2000). 
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The rapid removal of oxygen by the respiratory activity of the bacteria creates a 

microoxic periphery (50-200 µm) around the anoxic centre (Fig. 2). Since termite 

guts have a high surface area per unit volume, it seems that more than 40% of the 

paunch is oxic; this clearly makes oxygen an important electron acceptor in the 

paunch (Brune, 1998). Hydrogen, produced by the anaerobic parabasalid flagellates, 

is another important metabolite in the paunch. Depending on the termite species, 

hydrogen concentration can reach up to 70 kPa (Pester and Brune, 2007). The 

concentration curve of hydrogen shows a steep gradient (Fig. 2). Altogether, the 

structured environment in the microliter-scaled paunch contains several 

microhabitats (Brune, 1998). 

 

Flagellate symbionts: diversity and functions 

The hindgut of lower termites is filled with numerous species of oxygen-sensitive 

flagellates (numbers up to 600,000 per gut), which make up to 33% of the total 

fresh weight of a termite (Hungate, 1955). 430 described species of flagellates 

unique to lower termites and wood-feeding cockroach Cryptocercus were listed by 

Yamin (1979). Electron microscope studies have improved the previously reported 

classifications of flagellates (Radek, 1992; Brugerolle, 2000 and references therein). 

Additionally, construction of molecular phylogenies of flagellates from several 

marker genes has helped to better understand their classification and evolution. 

(Ohkuma et al., 2000, 2005, 2007; Stingl and Brune, 2003; Gerbod et al., 2004). 

These flagellates belong to the phylum Parabasalia or the order Oxymonadida 

(phylum: Preaxostyla) and are believed to be specific to host termites (Kirby, 1937; 

Kirby, 1949; Honigberg, 1970; Kitade, 2004). 

 The reason behind the host-specificity of flagellates is their supposed vertical 

transmission, which occurs by the process of proctodeal trophallaxis (Kitade, 2004). 

Molecular phylogenetic congruence between rhinotermitid termites and their 

Psuedotrichonympha flagellates supported the notion of vertical transmission (Noda 

et al. 2007). Furthermore, a recent study showed that the common ancestor of 

termites and cockroaches acquired flagellate symbionts, and flagellates 

codiversified with their host termites and cockroaches (Ohkuma et al., 2008). 
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Figure 3. Scanning electron microscope image of a parabasalid flagellate (Devescovina 

glabra) from the gut of the dry-wood termite Cryptotermes dudleyi. Laterally attached 

filamentous bacteria (arrow) cover the posterior part of the flagellate cell. Scale bar 10 

µm. (Figure from Radek et al., 1996). 

 

These primitive associations between the cellulolytic flagellates and termites 

underscore the importance of flagellates in the cellulose degradation by host insects. 

Defaunation of termites made it clear that termites depend on flagellates for the 

digestion of the lignocellulose (Yamin, 1926). Degradation of lignocellulose by 

termites demands a dual cellulase system, comprising cellulases of both termite and 

flagellate origin (Nakashima et al., 2002; Tokuda et al., 2007). The amorphous 

cellulose is degraded by the endogenous endoglucanase (termite origin). The 

product of this degradation (crystalline cellulose) is then depolymerized by 

flagellates, which possess several endo- and exo-type cellulases belonging to 

glycosyl hydrolase families (GHFs) 7, 45 and 5 as well as b-glucosidase and 

hemicellulases (Watanabe et al., 2002; Watanabe et al., 2006; Inoue et al., 2007; 

Todaka et al., 2007; Tokuda and Watanabe, 2007). 

The other important feature of the flagellates is the production of molecular 

hydrogen. Hydrogen is known to be the principal metabolic intermediate in the gut 

of lower termites (Pester and Brune, 2007). Parabasalid flagellates (e.g., Fig. 3) lack 

mitochondria and instead possess anaerobic energy- and hydrogen-generating 

organelles called hydrogenosomes (Müller, 1993), where stoichiometric amounts of 
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acetate, CO2 and H2 are formed (Hungate, 1943; Yamin, 1980; Odelson and 

Breznak, 1985a, 1985b). Nothing, however, is known about the physiology of the 

oxymonad flagellates, which are believed not to possess hydrogenosome-like 

organelles (Brugerolle and Radek, 2006). Physiological studies on termite gut 

flagellates are hindered, as none of the flagellates are in permanent culture. Termite 

gut flagellates Trichomitopsis termopsidis and Trichonympha sphaerica were 

temporarily cultured (Yamin and Trager, 1979; Yamin, 1980; Yamin, 1981; 

Odelson and Breznak, 1985a, 1985b). The closest cultivated representative of the 

(termite gut) parabasalid flagellates is the human pathogen Trichomonas vaginalis 

(Steinbüchel and Müller, 1986). 

 

Bacterial symbionts of flagellates: diversity and functions 

Lower termites harbor a high number of morphologically distinct bacterial 

symbionts in their hindguts (Breznak, 1975). This morphological diversity is 

supported by the presence of more than three hundred 16S rRNA gene phylotypes 

in the termite Reticulitermes speratus (Hongoh et al., 2003a; Hongoh et al., 2003b; 

Hongoh et al., 2005). The long-held notion that the majority of these bacteria are 

associated with flagellates (Ball, 1969) was experimentally supported in the termite 

Mastotermes darwiniensis, as 90% of the bacteria present in the hindgut were 

shown to be symbionts of flagellates (Berchtold et al., 1999). 

 Despite their high diversity and abundance, none of the bacterial symbionts of 

the flagellates have been cultured (Breznak, 2000; Brune and Stingl, 2005). On the 

other hand, phylogenetic positions of bacterial symbionts can be determined using 

culture-independent techniques (Stingl et al., 2005; Ohkuma et al., 2007). The full-

cycle-rRNA approach has proven to be a useful to localize bacterial symbionts (Fig. 

4) (Noda et al., 2003; Stingl et al., 2004; Stingl et al., 2005). The majority of 

ectosymbionts of flagellates are affiliated with numerous lineages of Spirochaetes 

and Bacteroidales (Noda et al., 2003; Noda et al., 2006). “Endomicrobia” (phylum: 

Termite group 1) represent most of the endosymbionts of flagellates (Stingl et al., 

2005). 
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Figure. 4. Fluorescence microscopic image of flagellates Trichonympha species from the 

termite Zootermopsis nevadensis. The cell surface and cytoplasm are colonized by 

symbiotic bacteria. The epibionts (green) and the endobionts (pink) were hybridized with 

specific oligonucleotide probes. Endobionts are “Endomicrobia”. Scale bar 100 µm. 

(Franckenberg and Brune, cover page, Microbiology, 2007). 

 

These ecto- and endosymbionts are believed to be specific to their host flagellates, 

which was confirmed for numerous of host-symbiont pairs (for review, see Ohkuma 

2008). The cospeciation resulting from the host-specificity (Hafner and Page, 1995; 

Wade, 2007) was demonstrated for the Bacteroidales endosymbionts and 

Psuedotrichonympha flagellates (Noda et al., 2007), and “Endomicrobia” and 

Trichonympha flagellates (Ikeda-Ohtsubo and Brune, in press). In contrast, 

symbiotic spirochetes appear to be multiply acquired by their host flagellates (Noda 

et al., 2003), displaying the complexity of flagellate-bacteria symbioses in the 

termite gut. 

 The physiological basis of symbioses between flagellates and bacteria is not 

well known. The possible physiological roles of bacterial symbionts are mentioned 

in the following. Recently, Hongoh et al. (2008) sequenced the complete genome of 

the “Endomicrobia”. The reduced genome (1.1 Mbp) contains genes which encode 

15 amino acids and several cofactors. Based on these data, “Endomicrobia” were 

suggested to provide nitrogenous compounds to their host flagellates. Since several 

members of the Bacteroidales are involved in the polysaccharide degradation, it is 

tempting to speculate that the symbiotic Bacteroidales play similar roles in the 

termite gut (Stingl et al., 2004). Moreover, endosymbiotic Bacteroidales were 

shown to rapidly consume the hydrogen produced by host flagellates (Inoue et al., 
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2008). As suggested by Inoue et al. the rapid removal of hydrogen could enhance 

the fermentation by flagellates; the electron acceptor in this reaction is unknown. 

Spirochetes were shown to help host flagellates in motility (Cleveland and 

Grimstone, 1964; Wenzel et al., 2003). Furthermore, pure cultures of termite gut 

spirochetes perform reductive acetogenesis (Leadbetter et al., 1999; Graber et al., 

2004) and nitrogen fixation (Lilburn et al., 2001). Expression profiles of the genes 

encoding formyltetrahydrofolate synthetase, a key enzyme for reductive 

acetogenesis, showed that spirochetes perform reductive acetogenesis also in the 

termite gut (Pester and Brune, 2006). However, both reductive acetogenesis and 

nitrogen fixation by spirochetal symbionts of flagellates remain to be elucidated. 

 

Nitrogen fixation: a crucial process in the termite gut 

Since termites can live on a diet of cellulose-filter paper, which has an extremely 

high C/N ratio, Cleveland (1925) suggested that termite gut bacteria fix dinitrogen. 

The first experimental proof for the nitrogen fixation by termites was provided by 

two independent studies using the sensitive acetylene reduction (AR) assay 

(Benemann, 1973; Breznak et al., 1973), which showed high rates of nitrogen 

fixation in several phylogenetically distinct termites. Live termites were incubated 

with acetylene for defined amounts of time. The production of ethylene was 

measured with the gas chromatograph as described by Postgate (1972) and Hardy 

(1973) e.g., the dry-wood termite Cryptotermes brevis formed 1.705 nmol C2H4 per 

hour per g termites. (Breznak et al., 1973). By treating termites with antibiotics, 

Brezank et al. (1973) demonstrated that the nitrogen fixation activity is associated 

with bacteria. In a later study (Bentley, 1984), incorporation of the fixed nitrogen in 

the termite tissue was demonstrated, confirming the symbiotic nature of nitrogen 

fixation. Moreover, stable isotope analysis showed that the wood-feeding termite 

Neotermes koshunensis (Kalotermitidae) obtains 30-50% of its nitrogen from the 

atmosphere (Tayasu et al., 1998). 

 Rates of nitrogen fixation vary among termite species and castes (Breznak 

1982; Collins 1983; Hewitt et al., 1987; Curtis and Waller, 1998). Several factors 

influence nitrogen fixation by termite gut bacteria. High oxygen partial pressure and 

low pH of the diet decrease nitrogenase activity. Seasonal variation in the nitrogen 
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fixation activity has also been observed (Curtis and Waller, 1998). After isolation 

from the nest, some termites lose nitrogenase activity within hours (Prestwich et al., 

1981; Lovelock et al., 1985). When termites are fed with nitrogen-rich diet, 

nitrogen fixation activity vanishes (Breznak et al., 1973; Noda et al., 1999). Rates 

of nitrogen fixation are higher for dry-wood termites (Breznak et al., 1973; Ohkuma 

et al., 1999). As pointed out by Breznak (2000), large differences in the rates of 

nitrogen fixation for different species of termites could be owing to the lack of 

standard acetylene reduction assay protocol, which would closely mimic conditions 

existing in the termite nest. Another reason for different rates of nitrogen fixation 

could be the presence of different types of nitrogen-fixing bacteria in the gut of 

different termite species. 

 Several nitrogen-fixing bacteria were isolated from termite guts. Two strains of 

Enterobacter (Pantoea) from the termite Coptotermes formosanus (Potrikus and 

Breznak, 1997), and Citrobacter freundii from termites Coptotermes lacteus and 

Mastotermes darwiniensis (French et al., 1976) were isolated. Moreover, Lilburn et 

al. (2002) isolated spirochetes (Treponema spp.) and showed that spirochetes fix 

nitrogen. All the isolates mentioned here fixed nitrogen in vitro. However, it is not 

clear whether these bacteria are responsible for the nitrogen fixation in vivo. 

 



General introduction 9

Aims of this study 

1. Evolutionary history of devescovinid flagellates and their bacterial 

symbionts 

Devescovinid flagellates are the dominant flagellates in the gut of dry-wood 

termites (Kalotermitidae) (Kirby, 1941, 1942, 1945). Kirby described 12 

genera of devescovinid flagellates; among these genera, the highest species 

diversity was documented for the genus Devescovina (total 20 species, in 

more than 60 termite species). All species of this genus possess filamentous 

ectosymbiotic bacteria (Kirby, 1941). Recently, Noda et al. (2006) showed 

that the filamentous ectosymbionts form a deep-branching novel lineage in 

the order Bacteroidales. These findings raised several interesting questions: 

(i) Do filamentous bacteria present on the surface of all Devescovina species 

belong to the Bacteroidales, and share a common ancestor? (ii) What are the 

other bacterial symbionts associated with Devescovina species? (iii) Are 

different species of Devescovina described by Kirby also different at the 

molecular level? (iv) Do all Devescovina species had a common ancestor? 

(v) What are the bacterial symbionts of other devescovinid flagellates (e.g., 

Metadevescovina species)? In order to understand the evolutionary histories 

of the devescovinid flagellates (Devescovina and Metadevescovina species) 

and their bacterial symbionts, I used the full-cycle-rRNA approach, and 

investigated the small-subunit ribosomal RNA (SSU rRNA) gene 

phylogenies of capillary-picked flagellates and their bacterial symbionts 

from several Kalotermitidae. Phylogenies of the Bacteroidales 

ectosymbionts of numerous Oxymonas species were also studied. 

 

2. Nitrogen-fixing bacteria in the gut of Kalotermitidae 

Kalotermitidae are known to fix high amounts of nitrogen (Breznak et al., 

1973; Noda et al., 1999), however, identities of the nitrogen-fixing bacteria 

in these termites are unknown. Therefore, the possibility of nitrogen fixation 

by the symbionts of flagellates in the gut of Kalotermitidae was examined. 

Nitrogen fixation genes (homologs of nifH), were cloned from the capillary-

picked flagellate suspensions, and whole guts of four species of 
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Kalotermitidae. The expression of nitrogen fixation genes was studied with 

the DNA- and mRNA-based terminal restriction fragment length 

polymorphism (T-RFLP) analysis. 

 

3. Hydrogen microsensor measurements in the gut of Kalotermitidae 

The lower termites accumulate high amounts of hydrogen (Brune et al., 

1995; Ebert and Brune, 1997; Pester and Brune, 2007). Hydrogen is known 

to be a competitive inhibitor of nitrogen reduction by nitrogenase (Guth and 

Burris, 1983; Rasche and Arp, 1989). Therefore, to analyze the possible 

implications of hydrogen accumulation on the nitrogen fixation in the 

termite gut, I measured hydrogen in three species of Kalotermitidae using 

the hydrogen microsensor. 
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Abstract 

More than 40 years ago, ten species of devescovinid flagellates were described in the 

gut content of the termite Incisitermes marginipennis. Based on light microscopic 

examinations, the flagellates were then classified into the two genera Devescovina 

and Metadevescovina. Here, we combined molecular phylogenetic analysis of the 

small subunit rRNA genes of the gut flagellates with the first ultrastructural 

investigation of the genus Metadevescovina. Our results show that I. marginipennis 

contains only one species of devescovinid flagellates, Metadevescovina modica, 

which comprises three closely related phylotypes (sequence similarity >99.4%). 

Monophyly of the cluster and the dense colonization with spirochetal epibionts 

corroborate the validity of the genus Metadevescovina and allow its differentiation 

from other devescovinid flagellates. 
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Introduction 

The guts of lower termites constitute a habitat for a diverse microbiota essential for 

the digestion of cellulosic food of their hosts (Brune and Stingl 2005; Inoue et al. 

2000; Radek 1999). The microbiota comprises numerous species of flagellates, 

bacteria, archaea, and yeasts. Yamin (1979) listed more than 430 species of 

flagellates in 205 investigated termite species, and it is generally assumed that each 

termite species harbors a typical assemblage of flagellate species (Honigberg 1970). 

Termite gut flagellates, all of them amitochondriate anaerobic protists, can be 

classified into two groups: (i) the parabasalids, characterized by the possession of 

parabasal filaments connected with dictyosomes (parabasal bodies) and anaerobic 

ATP- and molecular-hydrogen-generating organelles (hydrogenosomes); and (ii) the 

oxymonads, which lack such organelles. The two groups are phylogenetically distinct 

(Parabasalia and Preaxostyla; Adl et al. 2005). Based on rRNA gene sequence 

analyses and other molecular markers, the Parabasalia are subdivided into four major 

taxa: Trichomonadida, Cristamonadida, Trichonymphida, and Spirotrichonymphida 

(Adl et al. 2005; Brugerolle and Radek 2006), although the exact phylogeny of 

parabasalids remains under discussion (e.g., Gerbod et al. 2004; Hampl et al. 2004, 

2006, 2007; Keeling 2002; Noël et al. 2007; Ohkuma et al. 2005). 

Since most termite gut flagellates were described more than 40 years ago solely 

by using light microscopy (Brugerolle and Radek 2006), it is not astonishing that 

individual species have been classified or identified erroneously. For example, 

different species or genera were classified as stadiums of a life cycle, as with the 

genera Pyrsonympha and Dinenympha (see Brugerolle and Lee 2000a). A particularly 

interesting example is the classification of devescovinid flagellates (Devescovinidae). 

After the original description of the genus Devescovina (Foà 1905), several other 

devescovinid genera such as Foaina, Caduceia, and Metadevescovina were 

established (see Brugerolle and Lee 2000b). However, especially the creation of the 

genus Metadevescovina by Light (1926) remained controversial. While the 

justification for the establishment of a separate genus is supported by De Mello 

(1941) and Kirby (1945), Metadevescovina is considered as a synonym for 

Devescovina by Grassé (1952). 

Additional controversy concerns the number of species of devescovinid flagellates 

present within the gut of a given species of termites. There are several examples for a 

discrepancy between the number of species reported by individual researchers (see 
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Kirby 1941, 1942, 1945). The most prominent case is that of Incisitermes 

marginipennis. In his light-microscopic investigations, Kirby (1945) found only two 

species of Metadevescovina (M. modica, M. magna), whereas Pérez-Reyes and 

López-Ochoterena (1965) described as many as ten species in the two genera 

Devescovina and Metadevescovina (D. foliacea, D. piriformis, D. vestitiformis, M. 

cicis, M. difficilis, M. grandis, M. modica, M. ovoidea, M. pavicula, M. sphaerica). 

This again contradicts Kirby (1945), who postulated that Devescovina and 

Metadevescovina do not occur simultaneously in one termite (with the exception of 

Glyptotermes angustus). 

A clarification of such questions based purely on morphological features is 

difficult. However, molecular-based studies allow the clarification of the number of 

phylotypes and their assignment to their respective morphotypes. In the case of 

Pyrsonympha and Dinenympha (see above), small subunit (SSU) rRNA gene 

sequence analysis combined with fluorescent in situ hybridization not only showed 

that both species are phylogenetically distinct, but also resolved different phylotypes 

within a single morphotype (Stingl and Brune 2003). 

Therefore, we decided to combine molecular and morphological techniques to 

investigate the true diversity of devescovinid flagellates in Incisitermes 

marginipennis. Besides phylogenetic and light microscopy analyses, we present also 

the first ultrastructural study of the devescovinid symbionts of this termite. 

 

Results 

Phylogenetic diversity of devescovinids 

A clone library of SSU rRNA genes (34 clones) from the hindgut homogenate of I. 

marginipennis contained six different phylotypes, representing four different genera 

of flagellates (Table 1). All sequences are most closely related to sequences of 

flagellates previously obtained from other dry-wood termites and are in agreement 

with previous reports on the presence of Trichonympha, Metadevescovina, 

Tricercomitus, and Oxymonas species in this termite (Kirby 1945; Pérez-Reyes and 

López-Ochoterena 1965). The results were corroborated by microscopic observations, 

which confirmed the presence of the above genera on the basis of their typical 

morphological characteristics. The presence of two phylotypes of Trichonympha 
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species (98.4% sequence similarity) is in agreement with the results of W. Ikeda-

Ohtsubo and A. Brune (submitted for publication). 

 

Table 1. Flagellate phylotypes from the hindgut of Incisitermes marginipennis, their proportion 

in the clone library, and their closest relatives in public databases. 

Flagellate 

phylotypes 

(accession number) 

Proportion 

in library 

(%) 

Closest BLAST hit (accession 

number) 

Sequence 

similarity (%)a 

GhImp07 

(AB434791)b 

14.3 Trichonympha magna from 

Porotermes adamsoni (AF052712) 

97.1 

GhImp19 

(AB434792)b 

17.9 Trichonympha magna from 

Porotermes adamsoni (AF052712) 

97.1 

GhImp22 

(FM160643)c 

10.7 Metadevescovina polyspira from 

Pterotermes occidentis (U17506) 

95.5 

GhImp43 

(FM160644) 

3.6 Metadevescovina polyspira from 

Pterotermes occidentis (U17506) 

95.6 

GhImp44 

(FM160646) 

7.1 Uncultured parabasalid from 

Incisitermes minor (AB183887)d 

97.7 

GhImp29 

(FM160647)e 

46.4 Oxymonas sp. NcOxA from 

Neotermes castaneus (AB326383) 

90.2 

 

a Calculated based on the aligned and unfiltered dataset using ARB. 

b Accession numbers are for the sequence-identical phylotypes ImrTcA and ImrTcB from 

picked flagellates (W. Ikeda-Ohtsubo and A. Brune, in press). 

c Accession number is for the sequence-identical phylotype ImDev12 from picked flagellates 

(this study). 

d Sequence tentatively assigned to Tricercomitus or Macrotrichomonas (Ohkuma et al. 2005). 

e Partial sequence, 954 bp (sequenced with only one M13 primer). 

 

However, the apparent absence of a Devescovina sequence and the presence of only 

two phylotypes (99.5% sequence similarity) of Metadevescovina are in clear 

contradiction to the report of Pérez-Reyes and López-Ochoterena (1965), who 

described the simultaneous presence of ten species of Devescovina and 

Metadevescovina in this termite. Therefore, we obtained a second clone library (36 
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clones) from a suspension of more than 200 capillary-picked flagellates with 

devescovinid morphology. All clones showed the same two RFLP patterns, indicating 

that only one ribotype was present. Five clones each were sequenced, resulting in a 

set of highly similar sequences (99.4% sequence similarity). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Phylogenetic position of the devescovinid phylotypes obtained from Incisitermes 

marginipennis (marked in bold), which were assigned to Metadevescovina modica (see 

Discussion). The SSU rRNA gene tree contains the sequences of all devescovinids and 

selected other parabasalid taxa. It is based on maximum-likelihood analysis of 1312 

unambiguously aligned nucleotide positions. Tree topology was tested by neighbor-joining 

and parsimony analysis with bootstrapping (DNAPARS, 1000 replicates). Marked nodes have 

bootstrap values of >90% (●) and >80% (○). Multifurcations are introduced for the nodes not 

supported in all analyses. Names of host termites are given in parentheses. Tentative 

identifications of unidentified flagellate sequences are indicated with question marks. 

Signature analysis of the variable sequence positions revealed the presence of two 

major phylotypes (Table 2), diverging only in individual positions from the consensus 

(<0.3% divergence). One of the phylotypes had been already recovered from the 

clone library obtained from hindgut homogenates. Combined with the gut 

homogenate clone library we found a total of three major phylotypes of devescovinid 

flagellates. Phylogenetic analysis (Fig. 1) showed that the sequences are most closely 

related to the SSU rRNA gene sequence of Metadevescovina polyspira (Gunderson et 

0.01

Metadevescovina polyspira (Pterotermes occidentis) U17506
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al. 1995) and two other sequences from gut homogenates of Incisitermes minor 

(Ohkuma et al. 2005), a termite that reportedly contains Metadevescovina sp. (Kirby 

1945). 

 

Table 2. Signature analysis of the devescovinid small subunit rRNA genes obtained from 

Incisitermes marginipennis. Base positions that were identical in all sequences were omitted; 

bases that deviate from the consensus are given in bold. Signature positions of the three 

major phylotypes are highlighted; GhImp: clone obtained from the gut homogenate. ImDev: 

clone obtained from picked devescovinid flagellates. 

 GTCTTTGCCTCTTGAATCTAImDev 17

GTCTTTGCTCCCCGAACTTAImDev 16

GTCTTTGCTTCTTGAATTTAImDev 14

GTCTCTGCTTCTTGAATTTAImDev 11

GTCTTTGCTTCTTGAATTTAImDev 06

GTCTTTGCTTCTTGATTTTAImDev 05

GTCTTTGCTTCTTGAATTTAImDev 04

GTCTTTACTTCTTGAATTTAImDev 03

AGTTTTGTTTTTTAAATTTAImDev 12

AGTTTTGTTTTTTAAATTTGImDev 07

AGTTTCGTTTTTTAGATTTAGhImp 23

AGTTTCGTTTTTTAGATTTAGhImp 22

AGTTTTGTTTTTTAAATTCAGhImp 12

GGCCTTGTTTCTTGAATTTAGhImp 43

148414821478146914681350133011711071869863731701616544489404374300214

Position (bp)aClone

GTCTTTGCCTCTTGAATCTAImDev 17

GTCTTTGCTCCCCGAACTTAImDev 16

GTCTTTGCTTCTTGAATTTAImDev 14

GTCTCTGCTTCTTGAATTTAImDev 11

GTCTTTGCTTCTTGAATTTAImDev 06

GTCTTTGCTTCTTGATTTTAImDev 05

GTCTTTGCTTCTTGAATTTAImDev 04

GTCTTTACTTCTTGAATTTAImDev 03

AGTTTTGTTTTTTAAATTTAImDev 12

AGTTTTGTTTTTTAAATTTGImDev 07

AGTTTCGTTTTTTAGATTTAGhImp 23

AGTTTCGTTTTTTAGATTTAGhImp 22

AGTTTTGTTTTTTAAATTCAGhImp 12

GGCCTTGTTTCTTGAATTTAGhImp 43

148414821478146914681350133011711071869863731701616544489404374300214

Position (bp)aClone

 
a Position relative to 5' end of amplicon. 
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Morphological diversity of devescovinids 

The devescovinid flagellates in the hindgut of I. marginipennis were not 

morphologically distinguishable. All devescovinids have a spindle-shaped body, 

which measures 28 to 52 µm (mean value 41 µm; n = 78) in length and 11 to 25 µm 

(mean value 17 µm; n = 78) in width (Figs 2A–C). They all show four flagella arising 

at an anterior papilla. Three flagella are directed anteriorly and measure about 1/2 to a 

full body length. The fourth, so-called recurrent flagellum is  

 

                              

Figure 2. Morphology of Metadevescovina modica. A: View of a living cell. Differential 

interference contrast. B: Protargol-stained cell. pb – parabasal body. C: Scanning electron 

micrograph. The whole surface of the cell is covered by spirochetes (arrows; A, C). In 

addition to the three slender anterior flagella (fl; C) a thicker, recurrent flagellum could be 

observed (flr; B, C). Scale bars: 10 µm (A–C). 

 

directed posteriorly without being attached to the cell body. It is nearly twice as thick 

as and longer than the anterior flagella (Figs 2B–C). Its length often measures 

somewhat more than the body length. 

 

Structure of the karyomastigont system 

In fixed and DAPI-stained smears, the nucleus of the devescovinids appears either 

elongated or rounded. The elongated nucleus is 5.7 ± 0.9 µm long and 3.9 ± 0.7 µm 

wide (n = 23) and lies perpendicularly or obliquely to the long axis of the cell. When 

the cells are viewed from the lateral side, the nucleus appears kidney-shaped, with a 

large furrow at its posterior end (Figs 3A, C). In rounded nuclei (4.3 ± 0.8 µm; n = 

20) a furrow could not be seen (Fig. 3B). However, three-dimensional analyses with a 

digital fluorescence microscope (data not shown) revealed that the appearance of 

rounded or elongated nuclei was just a matter of orientation relative to the observer. 
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Seen from dorsal or ventral, the nuclei of the flagellates appears rounded without a 

furrow, but when the stack of images is turned 90°, the nuclei are elongated with a 

furrow. Therefore, a division of the devescovinids into two or more groups according 

to different nucleus shapes, as proposed by Pérez-Reyes and López-Ochoterena 

(1965), is not justified. Transmission electron microscopy showed that the chromatin 

mass extends up to the nuclear membrane; thus, there is no clear zone between the 

central chromatin mass and the membrane in all investigated devescovinids (Figs 3A, 

F–G). 

 

    

Figure 3. Structure of the nucleus and the pelta-axostyle complex. A–C: Transmission 

electron microscopy (A) and DAPI-staining (B, C) revealed a notched (arrow) or rounded 

(arrowhead) nucleus (n). ca – capitulum, pb – parabasal body. D, E: Protargol staining (D) 

and differential interference contrast microscopy (E) showed the axostyle (ax) that projects at 

the posterior cell pole. sp – spirochetes. F, G: Transmission electron microscopy. Below the 

nucleus (n) the transition of the axostyle (ax) into a capitulum (ca) is visible. More anteriorly, a 

pelta (pe) arises (arrows). fl – flagella, pb – parabasal body. F; inset: The axostyle (ax) is 
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composed of microtubular lamellae. G; inset: At the origin of the pelta (pe), its microtubules 

overlap with those of the capitulum (ca). H–K: Double-labeling with an anti-tubulin antibody 

(H, J) and DAPI (I, K) revealed that the axostyle (ax) widens into a conspicuously developed 

(H) or a narrow and short (J) capitulum (ca). The flagella were also labeled with the anti-

tubulin antibody but are not in focus. I: The nucleus (n) appears notched. K: The nucleus (n) 

appears roundish. Scale bars: 1 µm (A), 5 µm (B–E), 2 µm (F, G), 0.5 µm (F, G; insets), 5 µm 

(H–K). 

 

Another criterion that was used by Kirby (1945), and Pérez-Reyes and López-

Ochoterena (1965) to differentiate the devescovinids of I. marginipennis is the 

construction of the axostyle. Generally, the axostyle does not protrude at the posterior 

cell pole. Only in a few cases was a projection visible, but it differed greatly in 

length. In these cases, the body appears more spherical (Figs 3D–E). It is conspicuous 

that protruding axostyles were rarely present in freshly prepared flagellates but 

increased in frequency already after a few minutes, and that they were present in 

protargol-stained smears but were rarely observed by scanning electron microscopy. 

Transmission electron microscopy revealed that the axostyles of all devescovinids 

resemble each other closely. Cross-sections showed that an axostyle consists of one to 

three lamellae of spirally rolled up microtubules (Fig. 3F inset). 

Below the nucleus, the axostyle widens into a capitulum that encases the nucleus 

(Figs 3F–H, J). Ultra-thin sections showed that the capitulum consists of only one 

lamella of microtubules. A microtubular pelta arising from the inside of the capitulum 

supports the anterior cell pole (Fig. 3G inset). Also the capitulum–pelta architecture is 

a trait used by Kirby (1945) and Pérez-Reyes and López-Ochoterena (1965) to 

differentiate the devescovinids of I. marginipennis. Again, three-dimensional 

analyses (data not shown) of preparations double-labeled with anti-tubulin antibodies 

and DAPI revealed that the variants of the capitulum–pelta architecture were merely 

caused by different aspects of the flagellate cells. When the cells are viewed from the 

lateral side, where the nucleus appears elongated and furrowed (see above), the 

capitulum seems long and extends in an almost right angle towards the axostyle (Figs 

3H–I). In a frontal view, when the nucleus appears small and roundish (see above), 

the capitulum seems short and inconspicuous (Figs 3J–K). 
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Figure 4. Transmission electron micrographs of the anterior cell pole. A: The basal bodies (1, 

2, 3) of the anterior flagella and the recurrent flagellum (R) are visible. Sigmoid fibers (fsig) 

arise at basal body 2. A comb-like structure (cb) arises below basal body R. fl – flagellum, n – 

nucleus, pb – parabasal body. B: Micrograph showing the parabasal body (pb) attached 

alongside the primary parabasal fiber (pfp). Above the nucleus (n), a second parabasal fiber 

(pfs) arises between basal body 2 and basal body 3. ax – axostyle. Scale bars: 1 µm (A), 2 

µm (B). 

 

An important trait for the classification of parabasalids is the characteristics of the 

basal bodies and their associated structures (see Brugerolle 1975/76, Brugerolle and 

Lee 2000b). In all ultra-thin sections investigated, the basal bodies 1, 2, and 3 of the 

anterior flagella are parallel to each other, whereas basal body R of the recurrent 

flagellum is positioned at a slight angle to it (Fig. 4A). Sigmoid fibers arise at the 

basal body 2 and form a fan (Fig. 4A). Next to basal body 3, a primary parabasal fiber 

arises. Alongside this fiber, the parabasal body (dictyosome) is attached. It is 

composed of about 30 Golgi cisterns (Figs 4A–B). Between the basal bodies 2 and 3, 

a second parabasal fiber arises and runs ventrally along the nucleus (Fig. 4B). Under 

basal body R, there is a comb-like structure (Fig. 4A) linked to a thin fiber, 

resembling a structure in Devescovina striata reported by Joyon et al. (1969). 

Nevertheless, the possibility that this structure represents a longitudinal section of a 

parabasal fiber cannot be excluded. 

 



Devescovinids of I. marginipennis 
 

28

           

Figure 5. Protargol-stained cells showing the course of the parabasal body. A–H: The great 

variability of shape and length of the parabasal body (pb) is conspicuous. n – nucleus. Scale 

bar: 5 µm. 

 

Together with the primary parabasal fiber, the parabasal body is typically wound 

around the nucleus and the axostyle in 1.5 to 2.5 circles on its course towards the 

posterior cell pole. However, protargol stained cells show a great variability in length, 

course, or shape of the parabasal body. In some cells, the turns are loosely wound 

around the axostyle (Figs 5A–B), whereas in other cells the windings of the parabasal 

body are closer (Figs 5C, E). There were also cells in which the parabasal bodies 

describe a circle not around but beside the axostyle. Here the end of the parabasal 

body points towards the anterior cell pole (Fig. 5F). Furthermore Z- or J-shaped 

parabasal bodies (Fig. 5G) were noticeable and even mazy forms appeared (Figs 5D, 

H). However, there were transitions between all described types of parabasal body. 

 

Prokaryotic symbionts 

The devescovinid flagellates in the hindgut of I. marginipennis were indistinguishable 

also based on the morphology of their prokaryotic symbionts. The entire surface of all 

devescovinid cells is densely covered with spiral-shaped bacteria (Figs 2A, C), 

identified as spirochetes by the presence of an axial filament in ultra-thin sections 

(not shown). Scanning electron microscopy showed that two morphotypes are 

present, which can be distinguished by their dimensions. The larger morphotype has a 

diameter of 0.4 µm and varies in length from 10 to 20 µm (n = 21) and is located 

specifically at the posterior cell pole (Fig. 6A). 
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Figure 6. Bacterial symbionts of Metadevescovina modica. A–D: Scanning electron 

micrographs. A: Slender (arrows) and thicker (arrowheads) spirochetes at the posterior cell 

pole. White arrowheads: Spirochetes showing a rough surface. Black arrowheads: 

Spirochetes showing a smooth surface. B: Thin spirochetes encased by the flagellates’ 

plasma membrane at their anterior cell poles (arrows). C, D: Straight (C) and slightly curved 

(D) rod-like prokaryotes at the cell surface. E–G: Transmission electron micrographs. E: 

Spirochetes (sp) encased by the flagellates’ plasma membrane. An electron dense layer 

(arrows) supports the flagellate’s plasma membrane. F: Encased parts of the spirochetes 

orientated in the same direction (arrows). G: Cross section of a rod-like prokaryote (r) located 

at the flagellates’ surface. Scale bars: 2.5 µm (A, B), 1 µm (C, D), 0.4 µm (E), 1.5 µm (F), 1 

µm (G). 

 

Some of these large spirochetes have a rough surface, others a smooth surface (Fig. 

6A). The shorter morphotype is considerably thinner, with a diameter of 0.2 µm and a 

length varying from 4 to 9 µm (n = 42). This morphotype is distributed over the 

whole surface of the flagellate and is attached to a special structure. One end of the 

spirochetal cell is inserted into a deep pouch formed by the plasma membrane of the 

flagellate, adding another 0.6 to 1.8 µm to the total length of the spirochete (Figs 6B, 
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E–F). At the base and the tip of this pouch, the flagellates’ plasma membrane is 

underlain by an electron dense layer (Fig. 6E). All spirochetes are orientated in the 

same direction, i.e., the encased parts slant to the anterior cell pole of the flagellate 

(Fig. 6F). 

Occasionally, two types of rod-shaped bacteria were present among the 

spirochetes, but only in very low numbers (1–2 per flagellate). One is slightly curved 

and measures about 0.8 µm × 4.0 µm; the other is straight and measures about 0.6 µm 

× 2.7 µm (Figs 6C–D). Occasional cross sections of such bacteria showed no special 

attachment structures; an assignment of these cells to one of the morphotypes was not 

possible (Fig. 6G). 

 

Discussion 

The results of this study suggest that the devescovinid flagellates in I. marginipennis 

belong exclusively to the genus Metadevescovina. There are three closely related SSU 

rRNA phylotypes (sequence similarity >99.4%) of Metadevescovina, but a thorough 

analysis of numerous ultrastructural traits indicates that only one morphotype is 

present. The presence of ten different devescovinid species, as proposed by Pérez-

Reyes and López-Ochoterena (1965), can be excluded. 

The validity of the three different devescovinid phylotypes (obtained in this 

study) is clearly documented by the signature analysis. Although Taq polymerase has 

an error rate of about 1.1 × 10-4 errors / base pair (Tindall and Kunkel 1988), it can 

not be assumed that random errors came up at the same position in all clones of the 

two clone libraries. Therefore, we exclude the possibility that the different bases at 

the signature positions are caused by PCR errors. Nevertheless, the sequence 

similarity (>99.4%) of the phylotypes combined with our morphological analyses 

indicates only one devescovinid species in I. marginipennis. 

There are several, partially contradictory studies of the devescovinid flagellates of 

I. marginipennis. An early study by Light (1933) reported the presence of a single 

species of Metadevescovina, but the significance of this result is dubious, because he 

also reported the presence of a Staurojoenina species and did not find any 

Trichonympha species — two statements that are in contradiction to any other study 

of this termite species. 

The first reliable report of devescovinids in I. marginipennis was published by Kirby 

(1945), who described two devescovinid species, Metadevescovina modica and 
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Metadevescovina magna. The morphotype reported in our study resembles Kirby’s 

description of M. modica. We could not find any flagellates with a spirally rolled-up 

capitulum, which Kirby described as M. magna. It is possible that the description of 

M. magna is based on an artifact caused by the staining procedure. Also other features 

distinguishing M. magna from M. modica such as the length of the ectobiotic 

spirochetes or the shape of the nucleus were not found in our study, indicating that M. 

modica is the only species of Metadevescovina present, at least in the batch of I. 

marginipennis used in this study. Although generally the species composition of 

symbiotic flagellates is specific for a termite species (Honigberg 1970), differences in 

composition including loss of flagellates are documented. For example, different 

geographical positions as well as changes in experimental conditions (temperature, 

cellulose sources) can have an impact on the gut community (see Cook and Gold 

2000; Kitade and Matsumoto 1993). Therefore, we cannot safely exclude the 

possibility that a second devescovinid species, M. magna, can be found in a different 

batch of I. marginipennis. 

The subject of gut flagellates in I. marginipennis was picked up again by Pérez-

Reyes and López-Ochoterena (1965). Based on light-microscopic observations, they 

described a total of ten different species of both Devescovina and Metadevescovina. 

However, the results of our study document that the morphological features used as 

criteria to create new species are either based on obvious artifacts or simply represent 

different aspects of the same structure. For instance, devescovinids resembling 

Metadevescovina pavicula were only found when the axostyles protruded at the 

posterior cell pole, a characteristic that was identified as an artifact. Other 

distinguishing traits, such as the presence of different ectobionts, different shapes of 

nuclei, different length of flagella, etc., were simply not supported by our 

observations and may just be morphological variations within a single species. 

Completely unjustified is the differentiation of the genera Devescovina and 

Metadevescovina based on smallest differences in the orientation of the anterior part 

of the parabasal body relative to the body axis of the flagellate, a criterion so far 

unprecedented in the literature. 

The validity of Metadevescovina as a separate genus has been discussed 

controversially since the genus was established by Light (1926), who found a 

devescovinid flagellate in Kalotermes hubbardi that differed from Devescovina spp. 

by the presence of 12 additional flagella at the anterior cell pole. Grassé (1938) and 
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Kirby (1945) pointed out that these flagella are in fact spirochetes. Nevertheless, 

Kirby (1945) justified the validity of the genus Metadevescovina by a distinct 

posterior projection of the axostyle absent from Devescovina. However, a study of the 

illustrations of Devescovina and Metadevescovina species made by Kirby (1941, 

1945) reveal that this classification was ignored several times by Kirby himself. 

Therefore, Grassé (1952) considered Metadevescovina as a synonym for 

Devescovina. 

Clearly, the highly similar features of devescovinid flagellates do not allow the 

distinction of the genera Devescovina and Metadevescovina solely based on 

morphological data. Also our ultrastructural investigations could not reveal any 

differences between these two genera. However, the validity of the two genera is 

strongly supported by the results of the phylogenetic analysis of the SSU rRNA 

genes, where the two genera form distinct lineages in the radiation of devescovinid 

flagellates. The Metadevescovina species from I. marginipennis and Pterotermes 

occidentis form a monophyletic group together with the unidentified sequences from 

Incisitermes minor, which most likely originated from Metadevescovina cuspidata 

present in this termite (Kirby 1945). The only exception is Metadevescovina extranea 

from Mastotermes darwiniensis, which clusters among the Calonymphidae, as 

already pointed out by Noël et al. (2007). In this context, the phylogenetic basal 

position of that termite is remarkable. M. darwiniensis is the most primitive termite 

representing symbiotic flagellates of the genera Deltotrichonympha, Koruga, and 

Mixotricha that can be found in no other termite species (Brugerolle and Lee 2000b). 

In the same way, an early separation of M. extranea could be responsible for the 

unexpected phylogenetic position of this flagellate. 

Another feature that corroborates the distinct position of the flagellates in the 

genus Metadevescovina is the colonization with bacterial epibionts. At this, most 

probably the epibionts represent the only distinguishing feature between Devescovina 

and Metadevescovina based on morphological characteristics. Whereas Devescovina 

species are generally colonized by rod-shaped bacteria (e.g., Kirby 1941; Noda et al. 

2006; Radek et al. 1996; Tamm 1982), the cell surface of Metadevescovina species is 

covered by spirochetes (Kirby 1945; this study), suggesting that also the nature of the 

bacterial symbionts is of evolutionary relevance. 
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Experimental procedures 

Termites 

False workers (pseudergates) of Incisitermes marginipennis were obtained from the 

Federal Institute for Materials Research and Testing (BAM) in Berlin, where they are 

in culture. Termites were maintained in polyethylene containers on a diet of 

pinewood at 25°C. 

 

DNA extraction, PCR amplification, cloning; and sequencing 

Hindguts of four termites were carefully removed with fine forceps and suspended in 

solution U (Trager 1934). DNA from whole hindguts was extracted as previously 

described (Ikeda-Ohtsubo et al. 2007). DNA was extracted with the NucleoSpin kit 

(Macherey-Nagel; following the manufacture’s instructions) from approx. 200 

flagellates with devescovinid morphology collected by micropipetting using an 

inverted microscope (see Ikeda-Ohtsubo et al. 2007). They could be easily 

differentiated from the other genera present in I. marginipennis since Trichonympha 

is larger and multiflagellate, Tricercomitus is much smaller and has a long trailing 

flagellum, and Oxymonas possesses an anterior rostellum. 

SSU rRNA genes of devescovinid flagellates were amplified using Taq DNA 

Polymerase (Invitrogen). The PCR condition was 5 min at 94°C (initial denaturation), 

34 cycles 1 min at 94°C, 1 min at 50°C, 1.5 min at 72°C, and 7 min at 72°C (final 

extension). The SSU rRNA genes were amplified with universal eukaryotic primers 

(Ohkuma et al. 1998). PCR products were purified with the MinElute PCR 

Purification Kit (Manufacturer) and were eluted in 10 µl elution buffer. PCR products 

were ligated into plasmid pCR2.1-TOPO and introduced into E. coli TOP10F’ by 

transformation using the TOPO TA cloning kit (Invitrogen). White colonies 

(transformants) were checked by direct PCR with M13 primers, and clones with 

correct-sized inserts were sorted into ribotypes by RFLP analysis using the restriction 

enzymes MSpI and HhaI. Due to these two enzymes, each single ribotype is 

represented by two RFLP patterns. For each ribotype, representative clones were 

sequenced with M13 primers. With exception of the two Trichonympha phylotypes 

(see Table 1), for each phylotype one representative SSU rRNA gene sequence was 

selected for submission. Sequences have been submitted to GenBank under accession 

numbers FM160643–FM160647. 
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Phylogenetic analyses 

SSU rRNA gene sequences were imported into the Silva database (http://www.arb-

silva.de/download) using the ARB software package (Ludwig et al. 2004). Sequences 

were automatically aligned with closely related SSU rRNA sequences using the ARB 

Fast Aligner tool, followed by manual refinement. Phylogenetic trees were calculated 

with almost-full-length sequences (>1300 bases) using the maximum-likelihood 

method (AxML) implemented in ARB. The tree topology was also tested in ARB 

using neighbor-joining and maximum-parsimony methods. 

 

Light microscopy 

To extract the flagellates, the hindgut of members of the functional worker cast was 

pulled out. For live observations, the hindgut was opened in 0.6% NaCl. Protargol 

staining was done according to Foissner (1991) after fixation with OsO4 vapor. The 

nuclei of the flagellates and the prokaryotic symbionts were stained by incubation for 

15 min in 2.5 µg/ml DAPI after a previous fixation for 15 min in 4% formaldehyde in 

100 mM Soerensen phosphate buffer (SPB; pH 7.2). The preparations were rinsed 

three times for 5 min in 100 mM SPB before and after the incubation of the 

flagellates in DAPI. For tubulin immunofluorescence staining, the gut content was 

fixed 15 min in 4% formaldehyde in 20 mM SPB. After two 15-min washes in 20 

mM SPB, the sample was incubated for 1 h in 400 mM glycine in double-distilled 

water. The flagellates were then washed twice for 15 min in 0.25% Triton X-100 in 

20 mM SBP to permeabilize the flagellate membranes. The flagellates were then 

washed 15 min in 0.25% bovine serum albumin (BSA) in 20 mM SPB and incubated 

overnight with monoclonal mouse anti-bovine brain β-tubulin antibodies (Manfred 

Schliwa, Ludwig-Maximilians-Universität München). For this purpose, the antibodies 

were diluted 1:30 with 0.1% sodium azide, 0.25% BSA in 20 mM SPB. After three 

30-min washes in 20 mM SPB and one 30-min wash in 0.25% BSA in 20 mM SPB, 

the flagellates were incubated with polyclonal fluorescein isothiocyanate (FITC)-

labeled goat anti-mouse antibodies (Sigma) for 2 h. The polyclonal antibodies were 

diluted in the same way as the monoclonal antibodies. Thereafter the flagellates were 

washed three times for 10 min in 20 mM SPB. Prior to fluorescence microscopy, the 

flagellates were mixed with a drop of DABCO-glycerol solution (250 mg DABCO in 

10 ml SPB plus 90 ml glycerol) to reduce fading. Some flagellates were double-

labeled with DAPI by adding one to two drops of a DAPI solution (5 µg/ml). 
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In addition to standard light microscopic investigations with a Zeiss Axiophot, three-

dimensional, digital fluorescence microscopic analyses of the nucleus and the 

axostyle with its capitulum were made with a Keyence BZ-8000. During a 

presentation of this microscope, we had the chance to investigate our double-labeled 

flagellates. Results were unequivocal, but since videos of electronically turned picture 

staples were produced, we cannot show single images in the present paper. 

 

Scanning electron microscopy 

Cells were fixed 30 min in 2.5% glutaraldehyde in 100 mM SPB, washed three times 

in the same buffer and fixed in 1% OsO4 in 100 mM SPB on ice for 1 h. The 

specimens were washed again three times and transferred into small cups covered 

with planktonic gauze. After dehydration in a graded series of ethanol, the cells were 

dried with a Balzer CPD 030 and coated with gold in a Balzer SCD 040. The cells 

were examined using a FEI Quanta 200 ESEM. 

 

Transmission electron microscopy 

Flagellates were fixed 1 h in 2.5% glutaraldehyde in 50 mM SPB. The cells were 

rinsed three times in 50 mM cacodylate buffer (pH 7.2) and postfixed for 2 h in a 1:1 

solution of 2% OsO4 and 3% K4[Fe(CN)6] according to Karnovsky (1971). After three 

further rinses in 50 mM cacodylate buffer, the cells were dehydrated in a graded 

series of ethanol and embedded in Spurr’s resin. Sections were stained with saturated 

uranyl acetate and lead citrate (Reynolds 1963) and examined with a Philips EM 208.  
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Abstract 

Although the majority of termite gut flagellates are associated with diverse 

ectosymbionts of the order Bacteroidales, little is known about their evolutionary 

relationship with their host flagellates. In this study, we investigated the molecular 

phylogenies of devescovinid flagellates (Devescovina spp.) and their symbionts in 

the gut of dry-wood termites (Kalotermitidae). Species-pure suspensions of 

flagellates were isolated with micropipettes from a wide range of termites. 

Employing the full-circle-rRNA approach, we obtained SSU rRNA gene 

sequences of numerous phylotypes of the host flagellates and their bacterial 

symbionts. Phylogenetic analysis confirmed that the Devescovina species present 

in many species of Kalotermitidae form a monophyletic group. They were 

consistently associated with a distinct lineage of ectosymbionts, which formed a 

monophyletic group among the Bacteroidales. The well-supported congruence of 

their phylogenies document that the ectosymbionts are co-speciating with their 

specific hosts. In contrast, the endosymbionts that were simultaneously present in  
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all Devescovina flagellates investigated and belong to the so-called 

“Endomicrobia” (TG-1 phylum) are clearly polyphyletic and must have been 

acquired independently by different Devescovina species. The same was true for  

the Bacteroidales ectosymbionts of Oxymonas flagellates present in several 

Kalotermitidae, which formed several distantly related lineages in the 

phylogenetic tree, underscoring the notion that the evolutionary history of 

flagellate–bacteria symbioses in termite guts is quite complex. 

 

Introduction 

Termites are suitable examples to study the symbiosis (Brune, 2005). The 

cellulolytic flagellates in the hindgut of lower termites presumably play an 

important role in the digestion of the lignocellulose (Yamin, 1980; Odelson and 

Breznak, 1985). Although termite gut flagellates are difficult to cultivate, their 

phylogenetic identity can be determined by using the full-cycle-rRNA approach 

(Gerbod et al., 2004; Moriya et al., 2003; Stingl and Brune, 2003). Molecular 

phylogenies of flagellates have improved the knowledge about the classification 

and evolution of many flagellate genera (Ohkuma et al., 2000, 2005, 2007; Stingl 

and Brune, 2003; Gerbod et al., 2004).  

Little is known about the molecular evolution of the devescovinid flagellates 

(Devescovinidae), which are present mainly in the gut of dry-wood termites 

(Kalotermitidae), and were thoroughly described on the basis of the 

morphological characteristics (Kirby, 1941, 1942, 1945). Among the devescovinid 

flagellates, the genus Devescovina comprises the highest number of species 

(Kirby, 1941). Since the small-subunit ribosomal RNA (SSU rRNA) gene 

sequence of the devescovinid flagellate Caduceia versatilis clustered within the 

members of the genus Devescovina (Noël et al., 2007), the monophyly of the 

genus Devescovina is under question. 

All the described species of Devescovina harbor filamentous ectosymbiotic 

bacteria, which is the major criterion used by Kirby (1941) to describe this genus. 

Recently, Noda et al. (2006a) showed that the SSU rRNA gene sequences of the 

filamentous ectosymbionts of two Devescovina species from two different 

Kalotermitidae clustered together (~7% sequence divergence), forming a deep-
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branching novel lineage in the order Bacteroidales. Most of the ectosymbionts of 

termite gut flagellates represent several novel lineages in the order Bacteroidales 

(Wenzel et al., 2003; Stingl et al., 2004; Noda et al., 2006a). Interestingly, the 

SSU rRNA gene sequence of the filamentous ectosymbionts of C. versatilis 

formed a sister lineage of the ectosymbionts of the Devescovina species (Hongoh 

et al., 2007), suggesting that the association between the devescovinid flagellates 

and the filamentous ectosymbionts is quite old. 

Devescovina species harbor yet another bacterial symbiont affiliated with the 

“Endomicrobia” (phylum: Termite group 1) (Ikeda-Ohtsubo et al., 2007; Ohkuma 

et al., 2007). “Endomicrobia” are cytoplasmic symbionts (endosymbionts) of 

termite gut flagellates (Stingl et al., 2005). Recently, Hongoh et al. (2008) 

sequenced the complete genome of the representatives of the “Endomicrobia”. 

The reduced genome (1.1 Mbp) contained genes, which encode 15 amino acids 

and several cofactors. Based on these data, “Endomicrobia” were suggested to 

provide nitrogenous compounds to their host flagellates. 

Unlike Bacteroidales ectosymbionts, “Endomicrobia” sequences of two 

Devescovina species (Ikeda-Ohtsubo et al., 2007; Ohkuma et al., 2007) do not 

cluster together in the SSU rRNA gene phylogenetic tree. Moreover, 

“Endomicrobia” from several phylogenetically distinct flagellates cluster together, 

with the exception of the “Endomicrobia” of Trichonympha species (see below). 

Altogether, these data provide weaker indications that the “Endomicrobia” may 

not represent an old association with different Devescovina species, and on the 

contrary, the filamentous Bacteroidales might have codiverged with the host 

devescovinid flagellates. 

Codivergence, also known as cospeciation, is joint speciation of host and 

symbiont, which results from intimate and long-standing association. The test of 

cospeciation involves congruence analysis between the molecular phylogenies of 

hosts and symbionts. Cospeciation is believed to exist if the molecular 

phylogenies are significantly more similar than would be expected due to chance 

alone, e.g., cospeciation between insects and their bacterial symbionts, birds and 

their ectoparasites, etc., (Baumann et al., 1997; Peek et al., 1998; Hughes et al., 

2007; Hosokawa et al., 2007). In contrast, hosts can randomly acquire symbionts, 
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leading to the incongruence in the host and symbiont phylogenies (van Hoek et 

al., 2000). 

Cospeciation in the triplex symbiosis involving termites (Isoptera, 

Rhinotermitidae), their symbiotic flagellate protists (Pseudotrichonympha spp.), 

and the Bacteroidales endosymbionts of flagellates was recently studied (Noda et 

al., 2007). Another example of cospeciation was provided by Ikeda-Ohtsubo and 

Brune (2008), which showed significant congruence between the phylogenies of 

Trichonympha species and “Endomicrobia”. These two studies collectively 

suggest that the  flagellates and their bacterial symbionts have evolved together in 

the termite gut. 

In the present study, we investigated the molecular phylogenies of several 

Devescovina species and their bacterial symbionts. Species-pure suspensions of 

Devescovina species from a wide range of termite species in the family 

Kalotermitidae were isolated with micropipettes. SSU rRNA gene sequences of 

the host flagellates and their bacterial symbionts were obtained using the full-

cycle-rRNA approach. Phylogenies of the host Devescovina flagellates and their 

bacterial symbionts were built and compared with each other. Molecular 

phylogenies of the Bacteroidales ectosymbionts of Oxymonas species (phylum: 

Preaxostyla) were also investigated from two species of Kalotermitidae. 
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Results 

Phylogeny of Devescovina spp. 

With the exception of Neotermes castaneus, all dry-wood termites, 

(Kalotermitidae) investigated in this study (Table 1), harbored only one 

morphotype of Devescovina flagellates. The measurement of Devescovina 

flagellates’ sizes in N. castaneus showed a bimodal distribution, and thus the 

presence of two morphotypes (Fig. 1). Based on the previously described 

morphological features (Kirby, 1941), these morphotypes were assigned to 

Devescovina lepida and Devescovina arta. Separate flagellate suspensions 

prepared by capillary picking of each morphotype, including also the two 

morphotypes present in N. castaneus, yielded only a single major phylotype of 

SSU rRNA genes (> 99.8% sequence similarity). Two minor phylotypes were 

obtained from the flagellate suspension of Devescovina lepida. Similar minor 

phylotypes of Devescovina lepida were recovered in two independent clone 

libraries (details not shown). Phylogenetic analysis revealed that all phylotypes 

clustered together with the previously published sequences of flagellates assigned 

to the genus Devescovina (Fig. 2A). Similar tree topologies (with high bootstrap 

support) were observed in all the phylogenetic methods. The previously analyzed 

devescovinid flagellate Caduceia versatilis from the termite C. cavifrons (Noël et 

al., 2007) formed a sister lineage of all Devescovina species. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Bimodal distribution of sizes of Devescovina flagellates in the gut of termite 

Neotermes castaneus. These two morphotypes were assigned to Devescovina lepida 

and Devescovina arta; the latter is smaller in width. 
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Phylogeny of Bacteroidales ectosymbionts of Devescovina spp. 

16S rRNA gene clone libraries for each picked flagellate suspension (flagellate 

phylotype) yielded one phylotype (> 99.8% sequence similarity) (Fig. 2B) of 

Bacteroidales. Two minor phylotypes of Bacteroidales were obtained from the 

flagellate suspension of Devescovina lepida. Phylogenetic analysis showed that 

the Bacteroidales ectosymbionts of all Devescovina spp. clustered together in the 

phylogenetic tree (Fig. 4). Previously studied Bacteroidales ectosymbionts of 

Caduceia versatilis (Hongoh et al., 2007) formed a sister lineage of Bacteroidales 

ectosymbionts of Devescovina spp. (Fig. 2B). 

 

 

 

 

 

 

 

 

 

 

Figure 2. Tangled phylogenetic trees (maximum likelihood) of devescovinid flagellates 

(A) and their Bacteroidales ectosymbionts (B). The phylogeny of devescovinid flagellates 

is based on the 18S rRNA gene sequences (1408 unambiguously aligned nucleotide 

sites). The tree was rooted with Trichomonas vaginalis (AY338474) and Tritrichomonas 

foetus (AY055799). For simplicity, branch length of outgroups has been reduced to 50%. 

Phylogeny of Bacteroidales ectosymbionts of devescovinid flagellates is based on the 

16S rRNA gene sequences (1363 unambiguously aligned nucleotide sites). The tree was 

rooted with Bacteroides fragilis (M11656) and Tannerella forsythensis (X73962). Solid 

circles are cospeciation events inferred from reconciliation analysis in Treemap (Page, 

1994; Page, 1998). For reconciliation analysis only one of the phylotypes was considered 

in case of minor phylotypes of Devescovina lepida, and their Bacteroidales 

ectosymbionts. Sequence of the nodal support is Bayesian/Maximum 

parsimony/Maximum likelihood. 
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Table 1. Termites, flagellates and ecto- and endosymbiotic bacteria of flagellates 

Termite (origin) Flagellate 

suspension 

 

Flagellate 

phylotype  

Ectosymbiotic 

Bacteroidales 

phylotype  

Endosymbiotic 

“Endomicrobia”  

Neotermes 

castaneus 

(Cuba) 

Devescovina 

lepidaa 

Devescovina arta  

Oxymonas sp. 

NcDvL11  

NcDvL20  

NcDvA25b 

NcOxAc 

 

NcDvLB13 

NcDvLB23  

NcDvA05  

NcOxAB12 

NcOxAB26 

NcDv-1c 

 

NcDvAE10 

NcOx-1c 

 

Cryptotermes 

longicollis 

(Mexico) 

Devescovina sp. CLDv14  CLDvB13  CLDvE07 

Cryptotermes 

secundus  

(Australia) 

Devescovina sp. 

Oxymonas sp.d 

CsDv11 

Not determined 

CsDvB04  

CsOxB27  

CsOxB40  

CsDvE04  

Not obtainede 

Cryptotermes 

brevis (Brazil) 

Devescovina sp. CbDv02  CbDvB11  CbDvE07 

Cryptotermes 

dudleyi (Kenya) 

Devescovina sp.f CdDv09  CdDvB38  CdDvE17 

Cryptotermes 

havilandi 

(Ghana) 

Devescovina sp. ChDv22  ChDvB35  ChDvE11 

Cryptotermes 

cavifrons (USA)g 

Caduceia versatilis CcCvh  CcCv-03  Not obtainedi 

 

a. Kirby (1941) also described D. lepida in C. longicollis. However, Devescovina phylotype obtained from 

C. longicollis is different than in N. castaneus. Therefore, we have named Devescovina in C. 

longicollis as Devescovina sp. 

b. Sequence is identical with the sequence in the Genbank (X97974) which was reportedly obtained 

from N. jouteli (J. Branke, unpublished, 1996). Nevertheless, it should be noted that N. jouteli 

(obtained from Florida, USA) does not contain Devescovina flagellates (details not shown). Therefore, 

it is highly likely that the flagellate sequence present in the public database (X97974) originated from 

N. castaneus. This observation is supported by the fact that Kirby (1941) did not describe any 

Devescovina species in Neotermes jouteli. 

c. Sequences were submitted as a part of another manuscript (Ikeda-Ohtsubo et al., 2007). 

d. Although individuals of C. secundus were collected at the same time and place (Darwin, Australia), 

Oxymonas flagellates were not observed in all the batches stored in separate containers. 

e. The clone library did not contain any “Endomicrobia” sequences. 

f. Cryptotermes dudleyi from Australia presumably has a different phylotype of Devescovina sp. 

(AF052696) than obtained in this study (Keeling et al., 1998). 

g. All the data for this termite was used from previous studies (Noël et al., 2007; Hongoh et al., 2007).  

h. Since this sequence in the Genbank has no phylotype name, we named it for its use in this 

manuscript. 

i. Hongoh et al. (2007) did not find any “Endomicrobia” associated with Caduceia versatilis. 
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Cospeciation analysis of devescovinids and their Bacteroidales ectosymbionts 

Reconciliation analysis (Treemap) of the phylogenetic trees of devescovinid 

flagellates and their Bacteroidales ectosymbionts showed that the host and 

symbiont trees perfectly mirror each other (Fig. 2). Cospeciation test (Page, 1994; 

Page, 1998) produced seven major cospeciation events, which are indicated by 

bold circles (Fig. 2). P value was 0.0008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Phylogenetic tree of “Endomicrobia”. The tree is based on the SSU rRNA gene 

sequences. “Endomicrobia” of Devescovina flagellates are shown in the bold. The tree 

topology was tested with neighbor joining and parsimony methods. Nodes that were not 

supported in all analyses are shown as multifurcations. Open and closed circles indicate 

bootstrap values of >70% and >90%, respectively. 

 

 

ChDvE11 symbiont of Devescovina sp. (C. havilandi)

Symbiont of Macrotrichomonas sp. (G. fuscus) AB282960
Symbiont of Calonympha sp. (N. castaneus) AB298075 

Symbiont of Deltotrichonympha sp. (M. darwiniensis), AB298061 
Symbiont of Dinenympha sp. (H. sjoestedti) AB298011

Clone from termite gut (R. speratus) AB089049
Symbiont of Trichonympha sp. (H. sjoestedti) AB297984

Clone from termite gut (Reticulitermes sp.) AB192271
Clone from termite gut, (R. flavipis) DQ009707

Symbiont of Metadevescovina cuspidata (I. minor) AB282963
Clone from termite gut (Reticulitermes sp.) AB192272

Symbiont of Joenia sp. (K. flavicollis) AB298077
Symbiont of Pyrsonympha vertens (R. santonensis) AY572025
Symbiont of Pyrsonympha vertens (R. santonensis) AY572023
Symbiont of Pyrsonympha vertens (R. santonensis) AY572022

CbDvE07 symbiont of Devescovina sp. (C. brevis)
Symbiont of Oxymonas sp. (N. castaneus) AB298081

Clone from termite gut (R. speratus) AB089050
Clone from termite gut (Reticulitermes sp.) AB192274

Symbiont of Eucomonympha sp. (H. sjoestedti) AB298005
Symbiont of Devescovina sp. (C. domesticus) AB282961

Symbiont of Unclassified parabasalid (C. secundus) AB298053
Symbiont of Stephanonympha sp. (C. domesticus) AB282962

CdDvE17 symbiont Devescovina sp. (C. dudleyi)
NcDv-1 symbiont of Devescovina lepida (N. castaneus) AB298058
Clone from termite gut (C. cavifrons) AB299540

Clone from termite gut (C. cavifrons) AB299537
NcDvAE10 symbiont of Devescovina arta (N. castaneus)
CLDvE07 symbiont of Devescovina sp. (C. longicollis)
Clone from termite gut (H. mossambicus) AB282964

0.10

ChDvE04 symbiont of Devescovina sp. (C. secundus)
ChDvE11 symbiont of Devescovina sp. (C. havilandi)

Symbiont of Macrotrichomonas sp. (G. fuscus) AB282960
Symbiont of Calonympha sp. (N. castaneus) AB298075 

Symbiont of Deltotrichonympha sp. (M. darwiniensis), AB298061 
Symbiont of Dinenympha sp. (H. sjoestedti) AB298011

Clone from termite gut (R. speratus) AB089049
Symbiont of Trichonympha sp. (H. sjoestedti) AB297984

Clone from termite gut (Reticulitermes sp.) AB192271
Clone from termite gut, (R. flavipis) DQ009707

Symbiont of Metadevescovina cuspidata (I. minor) AB282963
Clone from termite gut (Reticulitermes sp.) AB192272

Symbiont of Joenia sp. (K. flavicollis) AB298077
Symbiont of Pyrsonympha vertens (R. santonensis) AY572025
Symbiont of Pyrsonympha vertens (R. santonensis) AY572023
Symbiont of Pyrsonympha vertens (R. santonensis) AY572022

CbDvE07 symbiont of Devescovina sp. (C. brevis)
Symbiont of Oxymonas sp. (N. castaneus) AB298081

Clone from termite gut (R. speratus) AB089050
Clone from termite gut (Reticulitermes sp.) AB192274

Symbiont of Eucomonympha sp. (H. sjoestedti) AB298005
Symbiont of Devescovina sp. (C. domesticus) AB282961

Symbiont of Unclassified parabasalid (C. secundus) AB298053
Symbiont of Stephanonympha sp. (C. domesticus) AB282962

CdDvE17 symbiont Devescovina sp. (C. dudleyi)
NcDv-1 symbiont of Devescovina lepida (N. castaneus) AB298058
Clone from termite gut (C. cavifrons) AB299540

Clone from termite gut (C. cavifrons) AB299537
NcDvAE10 symbiont of Devescovina arta (N. castaneus)
CLDvE07 symbiont of Devescovina sp. (C. longicollis)
Clone from termite gut (H. mossambicus) AB282964

0.10

ChDvE04 symbiont of Devescovina sp. (C. secundus)



Devescovinid-Bacteroidales cospeciation 47

Phylogeny of “Endomicrobia” 

In addition to the Bacteroidales ectosymbionts, all investigated Devescovina 

species from several Kalotermitidae also contained the so-called “Endomicrobia” 

(Termite group 1) endosymbionts. Each Devescovina suspension (phylotype) 

possessed a unique 16S rRNA gene phylotype (> 99.8% sequence similarity) 

belonging to the “Endomicrobia”. Phylogenetic analysis of these sequences 

showed that the “Endomicrobia” from majority of the Devescovina species are 

distantly related with each other (Fig. 3). Each “Endomicrobia” phylotype from 

several Devescovina species clustered together with “Endomicrobia” of numerous 

phylogenetically distinct flagellates (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Phylogenetic relationships of the ectosymbiotic Bacteroidales of Oxymonas 

species. The tree is based on the 16S rRNA gene sequences (maximum-likelihood tree 

based on 1273 unambiguously aligned nucleotide sites). Names of termite species are 

given in parentheses. Previously named clusters (Ohkuma et al., 2002) are shown. A new 

cluster (VI) was named in this study. Bacteroidales ectosymbionts of devescovinid 

flagellates formed a monophyletic group with a high bootstrap support. Previously 

published sequences of Bacteroidales ectosymbionts of two Devescovina flagellates are 

also included in the group (accession numbers: AB194939 and AB194938). 

Bacteroidales ectosymbionts of Oxymonas sp. from N. koshunensis are also shown in 

11

4

3

4

Symbionts of devescovinid flagellates

V

IV

III

I

II

VI

0.10

Oxymonas sp. symbiont (Neotermes koshunensis) AB231289

NcOxAB12 Oxymonas sp. symbiont (Neotermes castaneus)

Clone from termite gut (Neotermes koshunensis) AB231054

Y18530, AY571441, AB100457 

Clone from termite gut (Cryptotermes cavifrons) AB299525
Clone from termite gut (Nasutitermes takasagoensis) AB255912

Clone from termite gut (Neotermes koshunensis) AB231047
Oxymonas sp. symbiont (Neotermes koshunensis) AB231290

Clone from termite gut (Nasutitermes takasagoensis) AB255905
Bacteroides fragilis M11656

AY540335, AB200972, AJ488195, X73962 

NcOxAB26 Oxymonas sp. symbiont (Neotermes castaneus)
Clone from termite gut (Cryptotermes cavifrons) AB299529
Clone from termite gut (Nasutitermes sp.) EF453914

CsOxB40 Oxymonas sp. symbiont (Cryptotermes secundus)
Clone from termite gut (Neotermes koshunensis) AB231050

Clone from termite gut (Macrotermes gilvus) AB234417
Clone from contaminated acquifer AF050544

Clone from termite gut (Nasutitermes sp.) EF454492
Clone from termite gut (Microcerotermes sp.) AB191984
Clone from termite gut (Reticulitermes sp.) AB192262

CsOxB27 Oxymonas sp. symbiont (Cryptotermes secundus)
Clone from termite gut (Reticulitermes speratus) AB192205

Clone from termite gut (Coptotermes formosanus) AB062847

EF404328, AB088945, AB234421, AB192263 
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bold. Filled and closed circles indicate bootstrap values of >90% and >70%, respectively. 

Tree was rooted with outgroups of the suitable taxa. 

 

Phylogeny of Bacteroidales ectosymbionts of Oxymonas spp. 

16S rRNA gene clone libraries were made from picked suspensions of Oxymonas 

spp., which originated from two different species of termites (N. castaneus and 

Cryptotermes secundus). 26 and 27 clones were analyzed for Oxymonas from N. 

castaneus and C. secundus, respectively. The clone libraries yielded several 

bacterial phylotypes (details not shown). In both the clone libraries, two major 

phylotypes belonging to the Bacteroidales were obtained. Bacteroidales 

phylotypes NcOxAB12, NcOxAB26, CsOxB27 and CsOxB40 (Table 1) were 

30.80%, 23.10%, 37.0 and 14.8% abundant, respectively. Since electron 

microscopy (Fig. 6) showed the presence of two morphotypes of rod shaped 

bacteria on the surface of Oxymonas sp., and Noda et al., (2006b) also found two 

types of Bacteroidales ectosymbionts associated with the Oxymonas sp. in N. 

koshunensis, phylotypes NcOxAB12, NcOxAB26, CsOxB27 and CsOxB40 were 

considered as ectosymbionts. Phylogenetic analysis showed that the Bacteroidales 

ectosymbionts of Oxymonas flagellates clustered together with the previously 

published sequences from different species of termites (Fig. 4). All the four 

Bacteroidales sequences originating from two Oxymonas suspensions formed 

novel lineages in the earlier described termite gut specific clusters (Ohkuma et al., 

2002). Collectively, these data show that the Bacteroidales ectosymbionts of 

Oxymonas species from several Kalotermitidae are polyphyletic. 

 

Localization of Bacteroidales ectosymbionts by FISH 

In order to confirm that the Bacteroidales present in the flagellates suspensions 

are specific symbionts of Devescovina spp., in situ hybridization was carried out 

with phylotype- and group-specific probes. A probe (DVB178) was designed for 

the Bacteroidales ectosymbionts of Devescovina spp. in N. castaneus. DVB178 

had two strong mismatches with all the database sequences. DVB178 hybridized 

with the filamentous ectosymbionts of Devescovina lepida and Devescovina arta 

in the termite N. castaneus (Fig. 5). It did not hybridize with symbionts of the 

other flagellates and also with the free-living bacteria in the termite gut. 20% 
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formamide was found to be the optimum for the probe DVB178. Additionally, 

FISH with a general Bacteroidales probe BAC319a showed that all Devescovina 

species from several Kalotermitidae harbor filamentous ectosymbionts 

(Bacteroidales). Moreover, FISH with the probe BAC319a confirmed that all 

Devescovina cells present in the termite gut possess filamentous ectosymbionts 

(Bacteroidales). Taken together, results of FISH convincingly show that the 

Bacteroidales obtained in the Devescovina flagellate suspensions come from the 

filamentous ectosymbionts of Devescovina spp. In our previous study (Ikeda-

Ohtsubo et al., 2007), “Endomicrobia” of one of the Devescovina sp. (D. lepida) 

were in situ localized with a phylotype-specific probe.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. In situ identification of ectosymbiotic Bacteroidales of the flagellate 

Devescovina lepida in the termite N. castaneus. A and B: different magnifications. A, 

specific Cy3-labeled probe (DVB178) for the ectosymbiotic Bacteroidales of Devescovina 

spp. hybridized with the ectosymbionts. The filamentous ectosymbionts (B) cover the 

entire surface of the flagellate cell. Probe also hybridized with the symbionts of 

Devescovina arta (not shown). Scale bars, 10 µm. 

 

Electron microscopy 

Scanning electron microscopy (SEM) of the Devescovina sp. (present in 

Neotermes sp.) revealed the spindle-shaped body, three anterior flagella, and a 

BA BA
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thicker, ribbon-shaped recurrent flagellum typical for all members of the genus 

Devescovina (Fig. 6A). The whole body of each cell of Devescovina sp. is densely  

 

Figure 6. Scanning electron micrographs of Devescovina sp. (A) and Oxymonas sp. (C) 

and their ectosymbiotic bacteria (B, D) in Neotermes sp., exemplifying the two major 

groups of flagellates investigated in this study. Devescovina species possess three 

anterior flagella (fla) and one recurrent flagellum (flr). In N. castaneus, the entire flagellate 

is covered by a layer of uniform, filamentous bacteria; the arrows indicate beginning and 

end of a single cell. The Oxymonas species possess a rostellum (ro); in Neotermes sp., 

the flagellate is colonized by two types of ectosymbiotic bacteria: long, slender rods with 

tapered ends (white arrows) and short, thick rods with rounded ends (black arrows), 

sometimes in division (arrowhead). Scale bars: 20 µm (A, C), 3 µm (B, D). 

 

Table 2. Measurements of flagellates (Devescovina sp. and Oxymonas sp. from 

Neotermes sp.) and their ectosymbiotic bacteria. 

Flagellate Length (µm),  

width (µm) 

Morphology of 

the attached 

bacteria 

Mean size of the 

attached bacteria  

(number of bacterial 

cells investigated) 

(µm) 

Mean number of the 

attached bacteria/225 

µm2 (number of 

measurements) 

Devescovina sp. 40—60  

13—27 

Thin long rods 10.9 x 0.3 (20) 65 (8) 

Oxymonas sp. 46—150  

20—60 

Rods with 

rounded ends 

Rods with 

tapered ends 

1.4 x 0.4 (30)                

 

2.9 x 0.3 (30) 

28—67 (4)                        

 

34—83 (4) 
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covered by laterally attached long, thin rods (Fig. 6A–B). They are arranged in the 

same orientation, i.e., their longitudinal axes lie parallel to the longitudinal axis of  

the host flagellate. Spirochetes were never found attached to the flagellates’ 

membrane. The dimensions and morphology of Devescovina flagellates and their 

ectosymbiotic bacteria are summarized in Table 2. 

The Oxymonas sp. (present in Neotermes sp.) had the typical club-shaped 

body with the so-called rostellum at the anterior cell pole, a holdfast serving as 

anchor to the termite gut wall (Fig. 6C). The surface of the flagellates was covered 

with two morphotypes of irregularly attached rods. Since the rods seem to be 

orientated randomly and some of them are lying on each other, their numbers 

were estimated. Many specimens were also covered with spirochetes, albeit at 

different numbers. When spirochetes were abundant, the density of rod-shaped 

ectosymbionts was markedly reduced (not shown). The dimensions and 

morphology of Oxymonas flagellate and their ectosymbiotic bacteria are 

summarized in Table 2. 

 

Discussion 

This is the first report of strict cospeciation of an ectosymbiotic bacterium 

(present on the body surface) with its host. The SSU rRNA gene phylogenies of 

devescovinid flagellates (Devescovina species and Caduceia versatilis), and their 

Bacteroidales ectosymbionts exactly mirror each other. The most parsimonious 

explanation for the congruent phylogenetic trees is the common ancestor of 

devescovinids acquired Bacteroidales ectosymbionts, and the Bacteroidales then 

cospeciated with the host flagellates into different species. In contrast, the 

endosymbiotic bacteria (“Endomicrobia”) of several Devescovina species were 

found to be polyphyletic. The polyphyletic nature of “Endomicrobia” suggests 

their multiple acquisitions by Devescovina species during the course of evolution. 

The same was true for the Bacteroidales ectosymbionts of Oxymonas species, 

which formed several novel lineages in the phylogenetic tree, rejecting the 

possibility of cospeciation with the host flagellates. 

The family Devescovinidae comprises 12 genera of flagellates (Kirby, 1941, 

1942, 1944), found mainly in the gut of dry-wood termites (Kalotermitidae), and 
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defined mostly on the basis of the morphological characteristics. The highest 

species diversity was documented for the genus Devescovina (Kirby, 1941). Kirby 

described 20 species of Devescovina in several Kalotermtidae (Kirby, 1941). In a 

previous study, we showed the phylogenetic position of the devescovinid 

flagellate Metadevescovina sp., and also demonstrated that Metadevescovina 

species and Devescovina species form two distinct lineages (Strassert et al., in 

revision), which supports differentiation of these two genera based on the 

morphological descriptions of Kirby. Another devescovinid flagellate C. versatilis 

from the termite Cryptotermes cavifrons, however, clustered within the group of 

Devescovina species (Noël et al., 2007). In contrast, in this study, the 

phylogenetic analysis with a larger dataset of Devescovina species showed that 

Caduceia versatilis forms a sister group of Devescovina species. It is possible that 

the Caduceia versatilis belongs to the genus Devescovina, since the 

morphological features which allow a separation of Caduceia from Devescovina 

are weak (Kirby 1942). Even though Grassé supported the existence of the genus 

Caduceia in 1937, a synonymy of these two genera, as suggested by Duboscq and 

Grassé (1927), can not be declined. 

The synonymy of these two genera is well supported by the presence of 

filamentous bacteria on the surface of C. versatilis and Devescovina species 

(Kirby, 1941, 1942, 1944; Tamm, 1982). Since the filamentous bacteria present 

on the surface of all the investigated Devescovina species (in this study) were 

Bacteroidales, we propose that the filamentous ectosymbionts of all other 

Devescovina species described by Kirby also belong to the presently studied 

lineage of Bacteroidales. Moreover, since filamentous Bacteroidales are not 

present as symbionts of devescovinid flagellates other than Devescovina and C. 

versatilis, it is clear that the common ancestor of all Devescovina species, and 

Caduceia versatilis acquired filamentous Bacteroidales at one point in time. Since 

their acquisition, Bacteroidales have been strictly cospeciating with their host 

flagellates. 

The strict cospeciation between devescovinids and Bacteroidales indicate 

host–symbiont coadaptation (Woolhouse et al., 2002). The filamentous 

ectosymbionts of devescovinid flagellates represent a special case because 
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Bacteroidales ectosymbionts of other flagellates (e.g., Oxymonas species) do not 

show cospeciation with their host flagellates. Therefore, it is tempting to speculate 

that during the evolution a physiological interaction might have developed 

between Devescovina flagellates and their Bacteroidales ectosymbionts. As 

suggested by several other authors (Stingl et al., 2004; Noda et al., 2006a), the 

Bacteroidales could be involved in several physiological roles such as reduction 

of oxygen or the provision of nutrients to the host flagellates. Previous studies 

showed that the Devescovina sp. in C. dudleyi, Devescovina sp. in N. koshunensis 

and Staurojoenina sp. in N. cubanus phagocytose their Bacteroidales 

ectosymbionts (Radek et al., 1996; Stingl et al., 2004; Noda et al., 2006). As 

discussed by Stingl et al. (2004), it suggests that the flagellates use their 

ectosymbionts as the energy source. Since parabasalid flagellates make lactate and 

hydrogen as their fermentation products (Steinbüchel and Müller, 1986), 

Bacteroidales could be feeding on the fermentation products of the flagellates. 

In contrast to the Bacteroidales, devescovinid flagellates must have acquired 

the endosymbiotic “Endomicrobia” several times, independently from other 

flagellates. This hypothesis is supported by the fact that the close relatives of 

“Endomicrobia” from Devescovina flagellates are from several other 

phylogenetically unrelated flagellates. Another less parsimonious hypothesis 

would be that “Endomicrobia” were acquired relatively late during the evolution. 

This is less likely since “Endomicrobia” were present in the common ancestor of 

termites and the cockroach Cryptocercus punctulatus (Stingl et al., 2005). Unlike 

devescovinid flagellates, Oxymonas flagellates acquired their Bacteroidales 

ectosymbionts several times from the enormous diversity of the free-living 

Bacteroidales in the termite gut. The loss and acquisition of different 

Bacteroidales by several Oxymonas species indicate week/no interaction of host 

and symbionts. Furthermore, since some of the Oxymonas cells harbored very few 

Bacteroidales ectosymbionts (results of the electron microscopy), ectosymbionts 

may not be necessary for the survival of the host cell. 

The results of the present study collectively document that the flagellate–

bacteria symbioses in the termite gut are quite complex, and therefore, 

challenging to study the physiological basis of these symbioses. 
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Description of “Candidatus Armantifilum devescovinae” 

Ar.man.ti.fi' lum. L. part. adj. armans arming; L. neut. n. filum filament; N.L. 

neut. n. armantifilum, an arming filament. de.ves.co.vi' nae. N.L. n. Devescovina, 

a genus of parabasalid flagellates; N.L. gen. n. devescovinae, of Devescovina 

(referring to the host genus). 

Basis of assignment: filamentous rods, laterally attached on the surface of all 

Devescovina species, originally referred to as “Fusiformis-like rods” by Kirby 

(1941). So far uncultured, but form a monophyletic group based on 16S rRNA 

gene sequence analysis. 

 

Experimental procedures 

Termites  

Termites originating from a broad geographic range were used (Table 1). 

Neotermes castaneus, Cryptotermes brevis, Cryptotermes dudleyi, Cryptotermes 

havilandi and Cryptotermes longicollis were obtained from cultures maintained at 

Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany. 

Cryptotermes secundus was collected in a mangrove forest near Darwin, Australia 

(provided by Judith Korb, Regensberg). Termites were maintained in 

polyethylene containers on a diet of pinewood at 25 0C. Only Pseudergates were 

used in the experiments. Morphological identification of termites was further 

confirmed by sequencing their cytochrome oxidase II genes as described 

elsewhere (Pester and Brune, 2006). 

 

Flagellate picking and DNA extraction from flagellates 

The contents of one to three termites were suspended in Solution U (Trager, 

1934). Unambiguously identified (50–200) flagellate cells were collected by 

micropipette (for methodological details see Ikeda-Ohtsubo et al., 2007). Picked 

flagellates were then boiled for about 10 minutes at 95 °C. This boiled sample was 

directly used for PCR amplification of the SSU rRNA genes of flagellates and 

bacteria. Alternatively, from the gut homogenate of the same termite, flagellates 

were picked twice. One batch was treated as mentioned above, with the exception 

that SSU rRNA genes of only bacteria were amplified. Another batch was 
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subjected to DNA extraction by Nucleospin kit (according to manufacturer’s 

instructions). Extracted DNA was then used for amplification of SSU rRNA genes 

from flagellates. The explanation for this is as follows. When we prepared 16S 

rRNA gene clone library from the DNA extracted by Nucleospin kit (Macherey 

Nagel), we obtained a high number of clones belonging to a novel phylotype of 

alpha-proteobacteria. This phylotype was also obtained in the clone library 

prepared from boiled flagellates, however, occasionally and was under-

represented in the clone library. Details of this phylotype are not shown (Desai 

and Brune, in preparation).  

 

PCR amplification and cloning 

SSU rRNA genes of flagellates were amplified using the eukaryotic primers 

(Ohkuma et al., 1998). PCR products were purified using minelute purification kit 

and were eluted in 10 µl elution buffer. Bacterial SSU rRNA genes were obtained 

with bacterial universal primers 27f (Edwards et al., 1989) and 1492 (Weisburg et 

al., 1991). PCR products were ligated into a plasmid pCR2.1-TOPO and 

transformed into E. coli TOP10F’ using the TOPO TA cloning kit (Invitrogen, 

USA) following manufacturer’s instructions. White colonies (transformants) were 

checked for the correct-sized inserts by direct PCR using M13 primers. Correct-

sized PCR products were subjected to ARDRA. For 18S rRNA gene clone 

libraries, 10–15 clones with the insert of right sizes were selected for ARDRA. 4–

5 representatives of each ARDRA pattern were sequenced. For 16S rRNA gene 

clone libraries, 15–20 clones of correct insert were subjected to ARDRA. 4–5 

representatives of each ARDRA pattern were sequenced. The inserts of clones 

were sequenced using M13 primer sets. For Oxymonas sp. from N. castaneus 26 

clones were subjected to ARDRA. For Oxymonas spp. from C. secundus 27 

clones were subjected to ARDRA. 

 

Phylogenetic analysis 

The SSU rRNA gene sequences obtained in this study were imported into the 

Silva database implemented in the ARB software package (Ludwig et al., 2004). 

The automatic alignment of sequences was followed by the manual refinement. 
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The phylogenetic trees were calculated with the almost full-length SSU rRNA 

gene sequences (>1300 bases) using a maximum-likelihood method 

(AXML+fastDNAml). Phylogenetic trees were constructed using maximum-

parsimony (in ARB) and maximum-likelihood methods (in PAUP version 4.0b10; 

Swofford, 2000). Gaps in the alignment were treated as missing data. An 

appropriate model of nucleotide substitution for ML analysis selected by the 

program MODELTEST (version 3.7; Posada and Crandall; 1998) was GTR+I+Γ. 

ML trees were inferred from heuristic searches under the Akaike information 

criterion (AIC) and a starting tree was generated by stepwise addition with ten 

random replicates with TBR branch swapping. The nodal supports were assessed 

by bootstrap analysis consisting of 100 bootstrap replicates, using the same 

heuristic search options. Bayesian analyses were conducted using MrBayes 

version 3.1.2 (Ronquist and Huelsenbeck, 2003). The substitution model for each 

alignment selected by MrModeltest (version 2.2; Nylander, 2002) was GTR+I+Γ 

for both Bacteroidales and devescovinid alignments. For the 50% majority rule 

consensus trees, four Markov chains were simultaneously run for 1,000,000 

generations, and parameters and trees were sampled every 100 generations. The 

consensus tree calculated from the 10,001 trees sampled after the initial burn-in 

period provided estimation of posterior probabilities. The randomization test 

(1000 replicates) implemented in TreeMap (version 1.0a; Page, 1994) was used 

for testing whether the number of cospeciation events observed in the host and 

symbiont trees is significant (p < 0.01). 

 

Whole-cell in situ hybridization 

Hindgut contents of N. castaneus were fixed by incubating for 2 h at 4 °C in 3% 

(w/v) paraformaldehyde. The cells were washed three times with ice-cold 

phosphate-buffered saline (PBS: 0.13 M NaCl, 7 mM Na2HPO4 and 3 mM 

NaH2PO4, pH 7.4), resuspended in PBS with an equal volume of ethanol, and 

stored at –21 °C. Oligonucleotide probes were designed using the probe design 

functions of the ARB software (Ludwig et al., 2004) and checked using the Probe 

Match function of Ribosomal Database Project II (http://rdp.cme.msu.edu/). The 

newly designed probe Cy-3 labeled DVB178 and general Bacteroidales probe 



Devescovinid-Bacteroidales cospeciation 57

319a were used. The newly designed probe had at two strong mismatches (in the 

middle) with all the database sequences. Optimal hybridization stringency was 

determined by varying formamide concentrations in the hybridization buffer over 

a range of 0 to 40% in 5% intervals at a fixed temperature of 46 °C. The 

hybridization was performed as described previously (Stingl and Brune, 2003), 

except that the ethanol series was omitted to minimize the distortion of flagellate 

cells. After hybridization and washing, the slides were quickly dried with 

compressed air and stained with 1 µg/ml 4’,6-diamidino-2-phenylindole (DAPI), 

washed with ice-cold 80% ethanol, air-dried, and covered with Citifluor (Citifluor 

Ltd., London, UK). Samples were inspected by epifluorescence microscopy using 

an Axiophot microscope (Zeiss, Jena, Germany). Unspecific probe binding was 

checked by simultaneous hybridization with a fluorescein-labeled EUB338 probe 

(Amann et al., 1990) and a Cy3-labeled NON338 probe (Wallner et al., 1993). 

 

Scanning electron microscopy 

The gut contents of four individuals of Neotermes sp. were fixed for 30 min in 

2.5% glutaraldehyde in 0.1 M Soerensen phosphate buffer (PB; pH 7.2). After 

three washes for 15 min in PB the samples were fixed in 1% OsO4 in 0.1 M SPB 

on ice for 1 h. The samples were washed again three times for 15 min and were 

pipetted into small caps covered with planktonic gauze. After dehydration in a 

graded series of ethanol, cells were dried with a Balzer’s CPD 030, and coated 

with gold in a Balzer’s SCD 040. Flagellates were examined using a FEI Quanta 

200 ESEM. 
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Are symbionts of flagellates responsible for nitrogen fixation 

in the gut of dry-wood termites (Kalotermitidae)? 

 

Abstract 

Nitrogen-poor diet of wood-feeding termites calls for a high nitrogen fixation activity 

by their gut bacteria, which had been demonstrated with the acetylene reduction assay. 

Nevertheless, identities of the nitrogen fixers have remained unknown in majority of the 

termite families. We studied expression of nitrogenase genes (nifH homologs) in four 

species of dry-wood termites (Kalotermitidae: Neotermes castaneus, Cryptotermes 

longicollis, Kalotermes flavicollis and Incisitermes marginipennis) – a group of termites 

known to possess the highest rates of nitrogenase activity. Terminal restriction fragment 

length polymorphism (T-RFLP), cloning, sequencing and phylogenetic analyses of nifH 

homologs and their mRNA transcripts demonstrated that despite a high diversity of 

nitrogenase genes, only a core set of four homologs is expressed, and the pattern of 

gene expression is specific to the species of the host termite. Based on phylogeny, two 

of the expressed genes belonged to Treponema and Bacteroidales. Other two genes 

were affiliated with the previously studied, termite-gut specific anfH gene and an 

unknown gene belonging to the Proteobacteria-Cyanobacteria group. Since anfH genes 

were obtained from the capillary picked flagellate suspensions of Devescovina arta and 

of Snyderella tabogae, it is strongly suggestive that the anfH genes belong to a 

symbiont of these flagellates. Finally, our data convincingly show that the active 

nitrogen fixers have coevolved with the host dry-wood termites.  

 

Introduction 

The 1-ul-scale hindgut of wood-feeding, phylogenetically lower termites is a structured 

and an efficient bioreactor with steep gradients of oxygen and hydrogen in the hindgut 

periphery (Brune, 1998). The hindgut is densely filled with highly diverse, anaerobic 

cellulolytic flagellates (Cleveland, 1923; Hungate, 1955). Nearly 90% of the 

phylogenetically distinct bacteria in the hindgut are associated with flagellates as ecto- 
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and endosymbionts, but the exact physiological roles of bacterial symbionts are largely 

unknown (for a review, see Stingl and Brune, 2006).  

Since the diet of wood-feeding termites contains <0.05% nitrogen, the possibility of 

nitrogen fixation by the gut bacteria was suggested decades ago (Cleveland, 1925) and 

was later proven with the acetylene reduction assay (Benemann, 1973; Breznak et al., 

1973). Numerous diazotrophs were subsequently isolated from termite guts (for a 

review, see Breznak, 2000). Of the bacterial isolates capable of fixing nitrogen, only 

Treponema spp. are abundant enough in the hindgut to be of significance for the 

process (Lilburn et al. 2002). However, in situ nitrogen fixation by Treponema spp. has 

not been reported thus far. In other habitats, in situ nitrogen fixation is routinely 

documented by quantifying nitrogenase-encoding mRNA, which is considered as a 

direct index of the enzyme activity (for a review, see Dixon and Kahn, 2004).   

High diversity of homologs of nifH, a marker gene for the enzyme nitrogenase (for 

a review, see Zehr et al., 2004), has been reported in termite guts; the sequences of nifH 

homologs from termite guts form novel lineages and are distantly related to those of 

any cultured organisms (Yamada et al., 2007). Clustering of nifH homologs from the 

gut of several termite species, also including the sequences from the last common 

ancestor of termites — the wood-feeding cockroach Cryptocercus punctulatus — 

strongly indicates that nitrogen-fixing symbionts in termite guts represent a very old 

association of bacteria coevolving with their host insects (Yamada et al., 2007).    

Despite a high diversity of nifH homologs in the gut of a dry-wood termite 

(Kalotermitidae) Neotermes koshunensis, only an alternative nitrogenase (anfH) is 

actively expressed (Noda et al., 1999); the closely related anfH genes have been found 

only in the gut of dry-wood termites and the roach C. punctulatus, suggesting that the 

unknown bacterium possessing the expressed anfH gene is specific to the gut of these 

insects (Yamada et al., 2007). Although in several bacteria, anfH – a paralogue of nifH 

– is differentially expressed in the absence of the molybdenum cofactor (Kessler et al., 

1997), the anfH gene found in the termite gut is not inhibited by the presence of 

molybdenum. 

A recent study reported the genome sequence of the “Candidatus Azobacteroides 

pseudotrichonymphae” – a member of the order Bacteroidales and an endosymbiont of 

a flagellate in a rhinotermitid termite – and the presence and expression of a nifH gene 
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(Hongoh et al., 2008). Closely related nifH genes are found in termites from several 

other families and the roach C. punctulatus (Fig. 3). Nevertheless, expression of these 

nifH genes in other termites is questionable, since a different gene is expressed in the 

gut of the termite N. koshunensis (Noda et al., 1999). These two studies (Noda et al., 

1999; Hongoh et al., 2008), collectively indicate that phylogenetically distinct bacteria 

might be responsible for nitrogen fixation in different species of termites. 

In the present study, we tried to answer the following questions: (i) Which organism 

possesses the anfH gene in Kalotermitidae? (ii) Are anfH genes expressed in all 

Kalotermitidae? (iii) Are symbionts of flagellates responsible for nitrogen fixation in 

the gut of Kalotermitidae? and (iv) Which bacteria fix nitrogen in Kalotermitidae? We 

studied the nitrogenase gene diversity (nifH homologs) and expression in the gut of four 

species of dry-wood termites (Neotermes castaneus, Cryptotermes longicollis, 

Kalotermes flavicollis and Incisitermes marginipennis). Additionally, in order to 

investigate whether symbionts of flagellates are responsible for nitrogen fixation, 

nitrogenase genes from the capillary-picked flagellate suspensions Devescovina arta 

and Snyderella tabogae were also examined. 

 

Results 

Clone libraries for nitrogenase genes from the flagellate suspensions 

Clone libraries were prepared for the nitrogenase genes (homologs of nifH) genes in the 

capillary-picked flagellate suspensions of Devescovina arta and Snyderella taboage 

from the termites Neotermes castaneus and Cryptotermes longicollis, respectively. S. 

taboage is a calonymphid flagellate, which is abundantly represented in the gut of C. 

longicollis (Fig. 1). The deduced amino acid sequences of all the previously published 

sequences of nifH homologs from different termite species as well as major cultivated 

organisms were aligned against each other. nifH homologs from different termites fell  

in the previously named anf-methano, proteo-cyano (Proteobacteria-Cyanobacteria), 

termite anaerobe 1, termite anaerobe 2, termite anaerobe 3 and pseudo-nif groups (Fig. 

2) (Ohkuma et al., 1999). The similar tree topology (as shown in Fig. 2) was shown in 

other studies (Ohkuma et al., 1999; Zehr et al., 2003, Yamada et al., 2007). Moreover, 

for these major groups, tree topology did not change in different phylogenetic methods 
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(neighbor joining, maximum parsimony, and different algorithms of maximum 

likelihood). 

 

 

 

 

 

 

 

 

 

 

Figure 1. Differential intereference contrast micrograph of the flagellate Snyderella tabogae 

from the gut of the termite Cryptotermes longicollis. Scale bar, 30 µm. 

 

PCR with universal nif primers (Ohkuma et al., 1999) for the DNA extracted from 

flagellate suspensions of D. arta and S. tabogae resulted in products of expected length 

(~470 bp). Clone libraries for both the PCR products yielded clones showing two RFLP 

patterns. For D. arta and S. tabogae 11 and 41 clones were screened in the RFLP 

analysis, respectively. 4–7 clones belonging to each RFLP pattern were sequenced 

(Table 1). Phylogenetic analysis showed that one of the phylotypes from both the 

flagellate suspension was virtually identical (99.3% sequence similarity at amino acid 

level) to the previously documented (Noda et al., 1999) anfH gene from the hindgut of 

the termite Neotermes koshunensis, and clustered in the previously entitled (Noda et al., 

1999) anf-methano cluster (cluster I) (Fig. 2). The anf-methano group contains anfH 

genes from several bacteria (e.g., Clostridium pasteurianum, Azotobacter vinelandii and 

Rhodobacter capsulatus), and nifH genes from some methanogens (Fig. 2). The anf-

methano cluster I contains sequences only from Kalotermitidae and the wood-feeding 

roach Cryptocercus punctulatus. Their assignment to anfH genes was corroborated by 

the culture-independent characterization of the nif operon by Noda et al. (1999). As 

already pointed out by Noda et al. (1999), it is not possible to assign these anfH genes 

to any known organism owing to the difficulty in determining the closest cultivated 

organism in the phylogenetic tree of nif genes. The anfH genes obtained from two 
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flagellate suspensions were about 10% different at the nucleotide level, but were 

>99.3% identical at the amino acid level. 

 

Table 1. Different nitrogen fixation genes present in the clone libraries 

Source Clones  

analyzed 

anf- 

methano 

Proteo-

cyano 

Termite  

anaerobe 3 

Termite  

anaerobe 2 

Termite  

anaerobe 1 

Pseudo

-nif  

Devescovina arta  

flagellate suspension 

10 6 (1)  - 4 (1) - - - 

Snyderella tabogae 

flagellate suspension 

11 7 (1) - 4 (1) - - - 

Neotermes castaneus 

whole gut DNA 

23 5 (4) - 2 (1) 7 (3) 3 (2) 6 (5) 

Cryptotermes longicollis 

whole gut DNA 

20 14 (1)  3 (2) 2 (1) - 1 

Kalotermes flavicollis 

whole gut DNA 

21 2 (2) - 9 (1) 6 (1) 2 (1) 2 (1) 

Incisitermes  

marginipennis 

whole gut DNA 

22 - 2 (1) - 10 (1) - 10 (1) 

Numbers in the bracket represent number of phylotypes in the particular group 

 
The second phylotype from both the flagellate suspensions clustered (termite 

anaerobe group 3) (Fig. 2) with the nifH gene belonging to the Bacteroidales 

endosymbiont (CfPt1-2) of Pseudotrichonympha flagellate from the termite 

Coptotermes formosanus (Hongoh et al., 2008). Termite anaerobe group 3 contains 

sequences from only termite guts (Yamada et al., 2007). The identity (>99.3%, at 

amino acid level) of the nifH genes obtained from the flagellate suspensions with the 

nifH gene of CfPt1-2 clearly documents the origin of these genes from the symbiotic 

Bacteroidales of D. arta and S. tabogae.  

 

Clone libraries of nitrogenase genes (homologs of nifH) from the whole gut 

To check whether other termite species belonging to different genera also harbor anfH 

genes, nitrogenase gene clone libraries were prepared for the gut homogenates of K. 

flavicollis and I. marginipennis. Moreover, since the presence of the nitrogenase genes 

does necessarily mean that the nitrogenase activity is present, it was necessary to study 

the expression of anfH genes. Therefore, DNA-based and mRNA-based T-RFLP 

analysis was carried out in four different termite species N. castaneus, C. longicollis, K. 
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flavicollis and I. marginipennis (see next point for the results of T-RFLP). The selection 

of these termite species was based on the fact that these genera of termites represent 

most of the species in the termite family Kalotermitidae. In order to assign individual T-

RFs to the specific genes in the DNA-based and m-RNA based T-RFLP analysis, the 

diversity of nitrogen fixation genes was investigated also in the hindgut of N. castaneus 

and C. longicollis. 

Nucleic acid extracts from hindgut contents of termites were used to amply nif 

genes with the earlier mentioned primer set (Ohkuma et al., 1999). PCR products (~470 

bp) were cloned and randomly selected 20–25 clones with the inserts of right sizes were 

sequenced for each termite species (Table 1). Clone libraries for all termite species 

showed several phylotypes of nif genes (Table 1). Phylogenetic analysis revealed that 

nif genes obtained from all termite species were widespread in the phylogenetic tree 

(Fig. 2). Sequences clustered in the previously designated (Yamada et al., 2007) anf-

methano, proteo-cyano, termite anaerobe 1, termite anaerobe 2, termite anaerobe 3 and 

pseudo-nif groups. The anfH gene was obtained from the termites K. flavicollis and C. 

longicollis. anfH genes were not present in the clone libraries for termites N. castaneus 

and I. marginipennis. However, anfH gene was present in the flagellate suspension of 

D. arta from the termite N. castaneus. The absence of anfH genes in the whole gut 

library for this termite can be easily explained by the less sample size. The same could 

be true for the termite I. marginipennis. 

Proteo-cyano group contains nifH sequences from many proteobacteria (e.g., all the 

members of Rhizobiales, Rhodobacter spp., etc.) and nifH genes from all the 

cyanobacteria (Fig. 2). Genes belonging to the proteo-cyano group were present only in 

the termite I. marginipennis. These genes were closely related to the nifH genes of 

Azotobacter vinelandii and Klebsiella pneumoniae, suggesting their origin from the 

proteobacteria. The highest diversity of nif genes was observed in termite anaerobe 

groups. Termite anaerobe group 3 contains sequences only from the termite gut. Some 

of the genes in the termite anaerobe group 3 clustered with the nif genes of termite gut 

isolates Treponema primitia and Treponema azotonutricum and showed high amino 

acid identity to the nif genes of these spirochetes (>99%). Therefore, it is clear that  

these nif genes come from the spirochetes in the termite gut. Genes belonging to the  
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Figure 2. Maximum-likelihood tree showing phylogenetic relationships of the nitrogenase genes 

(homologs of nifH) (135 unambiguously aligned amino acids). Genes for Chlorophyll iron 

proteins were used as outgroup (not shown). Nomenclature of the several phylogenetic clusters 
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follows that of Yamada et al., 2007. Colors indicate nitrogen fixation genes from the whole gut 

homogenate and flagellate suspensions of Cryptotermes longicollis (blue), Neotermes 

castaneus (red) Kalotermes flavicollis (brown) and Incisitermes marginipennis (green). 

Nitrogenase genes that are expressed in the mRNA based T-RFLP profiles (Figure 4) are 

boxed. Numbers in the bracket correspond to the peaks in the DNA-based and mRNA-based T-

RFLP profiles (Figure 4). anfH genes obtained from flagellate suspensions of Devescovina arta 

and Snyderella tabogae clustered in the anf-methano cluster I. The bar indicates 10% 

sequence divergence. Pseudo-nif genes clustered outside all the other groups mentioned 

above (not shown). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Terminal restriction fragment length polymorphism (T-RFLP) profiles of the 

fluorescently-labeled 16S rRNA genes amplified from the whole gut DNA of termites Neotermes 

castaneus, Cryptotermes longicollis, Kalotermes flavicollis and Incisitermes marginipennis. PCR 

products were digested with the enzyme MspI.  
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Bacteroidales were obtained in K. flavicollis. Termite anaerobe group 2 and 1 contains  

sequences from Clostridium spp. These two groups also contain sequences from sulfate 

reducers (delta-proteobacteria) and methanogenic archaea (not shown in the present 

tree). Except pseudo-nif group, all the sequences used in the phylogenetic tree (Fig. 2), 

including sequences obtained in this study showed conserved cysteine and arginine 

residues in the NifH protein, confirming their role in the process of nitrogen fixation  

(Dean and Jacobson, 1992). Pseudo-nif group, which is considered to function in some 

process other than nitrogen fixation is not shown in the phylogenetic tree. These genes 

are known to be present in the methanogenic archaea. Pseudo-nif genes were present in 

all four termite species (Table 1) and clustered outside the phylogenetic tree (Fig. 2). 

Genes belonging to the Pseudo-nif formed four clusters, as was shown in the previous 

study (Yamada et al., 2007). The high diversity of nifH homologs is well correlated 

with the high diversity of 16S rRNA genes in these termites (Fig. 3). 

 

Acetylene reduction assay 

Since nitrogenase genes are regulated at the transcriptional and the post-translational 

level, before studying gene expression of nitrogen fixation genes in the four different 

termite species, it was necessary to examine the nitrogenase activity by the acetylene 

reduction assay. Gas chromatographic measurements showed production of ethylene for 

all termite species, confirming the presence of nitrogenase activity in the hindgut. The 

amount of ethylene produced by each species is listed in the Table 2. 

 

Table 2. Rates of ethylene formation in the acetylene reduction assay determined for four 

species of Kalotermitidae 

Termite species nmol C2H4 formed per 12  

hours per 50 termites 

Neotermes castaneus              0.012 

Cryptotermes longicollis              0.015 

Kalotermes flavicollis              0.010 

Incisitermes marginipennis              0.026 
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Terminal restriction fragment length polymorphism analysis of nitrogen fixation 

genes and their transcripts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. DNA based and mRNA-based T-RFLP profiles of nitrogen fixation genes (~470 bp) 

from the hindgut of termites. Four different colors indicate profiles from four different termite 

species: red (Neotermes castaneus), blue (Cryptotermes longicollis), brown (Kalotermes 

flavicollis) and green (Incisitermes marginipennis). Fluorescently-labeled PCR products were 

digested with the enzyme HhaI. Numbers in the bracket correspond to the phylogenetic 

positions (Figure 2) of the nitrogenase genes. The highly expressed nitrogen fixation genes 

which were obtained from the flagellate suspensions of Devescovina arta and Snyderella 

tabogae, and were identified as anfH genes (Noda et al., 1999) in the phylogenetic analysis 

(Figure 2) are shown as anfH (1) and anfH (2), respectively. These anfH genes are circled in 

the DNA-based T-RFLP profiles. Nitrogenase genes, which clustered in the phylogenetic tree 

with the previously published genes from Treponema spp. (Lilburn et al., 2002), were named as 
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Treponema. The expressed genes in termites N. castaneus and K. flavicollis, which could not 

be assigned to any phylotype are shown as unknown (Unkn). 

 

Nucleic acid extracts from the hindguts of four termite species N. castaneus, C. 

longicollis, K. flavicollis and I. marginipennis were used for PCR and reverse 

transcription (RT)-PCR. In both the reactions, products of the expected length (~470 

bp) were obtained for all termite species. These PCR products were digested with HhaI 

enzyme and were used for the T-RFLP (Fig. 2). 

For N. castaneus, several peaks were observed in the DNA-based profiles. Based on 

the amino acid identity with the previously published Treponema sequences (Lilburn et 

al., 2002), the most abundant peak was assigned to Treponema. The abundance of 

Treponema is in good agreement with the abundance of this phylotype in the clone 

library. The peak for the anfH gene obtained from the flagellate suspension of D. arta 

was very small (Fig. 2, circled), suggesting that the organism carrying this gene is less 

abundant in the gut. In the mRNA-based profiles, three major peaks belonging to  

Treponema, anfH gene, and an unknown organism were observed. Interestingly, despite 

its less abundance in the DNA-based profile, the peak belonging to the anfH gene was 

the most abundant peak in the mRNA-based profile. 

Several peaks were observed in the DNA-based profiles of C. longicollis. Peak 

belonging to the anfH gene obtained from the suspension of S. tabogae was very small 

(Fig. 2, circled), which again means that the organism carrying this gene is scarce in the 

gut. Like in the gut of N. castaneus, this anfH gene was highly expressed. In fact, this 

was the only expressed gene in the gut of C. longicollis. 

DNA-based profiles of K. flavicollis were more complex than those of N. castaneus 

and C. longicollis. From about 10-12 peaks, 2 major peaks were assigned to Treponema 

and Bacteroidales. The abundance of these two peaks is well supported by the 

abundance of phylotypes representing these two peaks in the clone library, suggesting 

high abundance of nitrogen-fixing Treponema and Bacteroidales in the termite gut. The 

peak belonging to the Treponema was the most abundant in the mRNA-based profile of 

this termite. This peak was followed by the peak arising from the Bacteroidales. The 

peak for the anfH gene was not observed in both DNA-based and mRNA-based 

profiles. 
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Two dominant peaks were observed in the DNA-based profiles for I. marginipennis. 

These peaks were assigned to Treponema and a sequence in the proteo-cyano group. 

The abundance of Treponema is well supported by their abundance in the the clone 

libraries. Phylotype from the prote-cyano group was less abundant in the clone library. 

mRNA-based profiles showed that both the genes are highly expressed. No other peak 

was observed in the mRNA-based profiles. 

Altogether, these data convincingly show that the anfH genes arising from the 

flagellate suspensions are highly expressed. anfH genes were not expressed in the gut of 

K. flavicollis and I. marginipennis. Expression of nitrogenase genes from the 

Treponema spp. provides the first evidence for the in vivo nitrogen fixation by 

spirochetes. Nitrogenase genes of spirochetes are highly expressed in N. castaneus, K. 

flavicollis and I. marginipennis. A nifH gene belonging to the Bacteroidales was 

expressed only in the gut of K. flavicollis. Finally, expression of a nifH gene from the 

proteo-cyano group in I. marginipennis suggests that a proteobacterium is also 

responsible for the nitrogen fixation in the gut of I. marginipennis. 

 

Discussion 

Since many species of termites feed on a nitrogen-poor diet, nitrogen fixation is an 

important process in the termite gut (Breznak et al., 1973). Despite high rates of 

nitrogen fixation in dry-wood termites (Kalotermitidae) (Breznak, 1973; Ohkuma et al., 

1999), identities of the nitrogen-fixing bacteria had been unknown. In the present study, 

we studied nitrogenase gene (nifH homologs) diversity and expression in the gut of four 

species of dry-wood termites (Neotermes castaneus, Cryptotermes longicollis, 

Kalotermes flavicollis and Incisitermes marginipennis). Despite a high diversity of nifH 

homologs in all the four species of termites, only a set of four homologs was expressed. 

These genes belonged to Treponema, Bacteroidales, anfH and a gene belonging to the 

Proteobacteria-Cyanobacteria group. The pattern of gene expression is specific to the 

species of the host termite.  

The nitrogen fixation gene (homologs of nifH) clone libraries for the picked 

flagellate suspensions of Devescovina arta and Snyderella tabogae yielded nifH genes 

belonging to the Bacteroidales (Hongoh et al., 2008) and anfH genes (Noda et al., 

1999). The anfH gene originating from flagellate suspensions can be assigned to the 
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Bacteroidales ectosymbionts of these flagellates because (i) the “Endomicrobia” 

genome does not contain any nitrogen fixation genes (Hongoh et al. 2008), (ii) all the 

investigated Devescovina species did not harbor any other bacterial endosymbiont (iii) 

The nif operon structure of the genes (Noda et al., 1999) suggests that the anfH gene 

originate from a eubacterium, since archaea have a different operon structure, and (iv) 

Both nifH and anfH genes were present in roughly equal proportion, suggesting that 

they originate from the same organism.  

The presence of several closely related nitrogen fixation genes in all four species of 

Kalotermitidae indicates coevolution of several organisms carrying these genes with the 

host termites. The nitrogen-fixing endosymbiont of Pseudotrichonympha flagellates 

belong to the cluster V Bacteroidales (Hongoh et al., 2008). Cluster V Bacteroidales 

are present in all species of termites and the wood-feeding cockroach Cryptocercus 

punctulatus (Noda et al., 2006). The closest cultivated representative of the cluster V 

Bacteroidales (Noda et al., 2005), Bacteroides fragilis, does not possess nifH genes. 

Therefore, nifH genes must have been acquired by the last common ancestor of the 

cluster V Bacteroidales in the common ancestor of termites and the roach C. 

punctulatus.  

Similarly, spirochetal nifH and anfH genes must have been present in the common 

ancestor of termites and the cockroach C. punctulatus. At the same time, the absence of 

anfH genes in the termites of other families (Yamada et al., 2007), indicates loss of 

anfH genes during the termite evolution. Genes belonging to the proteo-cyano group 

were detected only in the gut of the termite Incisitermes marginipennis, which means 

that the organism carrying this gene was acquired later on by the termite I. 

marginipennis. Majority of the nitrogen fixation genes are present in the termite 

anaerobe groups 1 and 2. Clostridium spp. are the major cultivated members present in 

these group. However, the high sequence divergence between the nifH genes of 

Clostridium spp. and termite nifH genes (anaerobe groups 1 and 2) indicates that the 

bacteria other than Clostridium spp. possess these nifH genes. 

A nifH gene belonging to the Bacteroidales was expressed in the gut of the termite 

Kalotermes flavicollis. Since this gene was very abundant at the DNA level, and 

ectosymbiotic Bacteroidales of the Joenia spp. (J. Strassert, personal communication) 

in this termite are also abundant in the gut, the expressed nifH gene can be assigned to 
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the ectosymbiotic Bacteroidales of the flagellates Joenia spp. Similarly, the 

endosymbiotic Desulfovibrio of flagellates Trichonympha spp. (Wienemann, 2008) are 

the putative carriers of the nifH gene expressed from the proteo-cyano group in the gut 

of I. marginipennis. Finally, the expressed gene of the Treponema spp. was assigned to 

the free-living Treponema in the termite gut because free-living Treponema are the 

most numerous groups of bacteria in the hindguts of wood-feeding lower termites 

(Paster et al., 1996). 

The argument of the symbiotic nitrogen fixation is supported by the fact that if rates 

of nitrogen fixation (and the produced ammonia) are high for a non-symbiotic 

bacterium, the nitrogen fixation is stopped because of the post-translational 

modification (Dixon and Kahn, 2004). The process of nitrogen fixation consumes 

enormous amounts of energy (Dixon and Kahn, 2004). Therefore, it is highly probable 

that the symbiotic nitrogen-fixers of flagellates must be getting energy-rich compounds 

from the host flagellate.  Finally, since 30–50% of the atmospheric nitrogen is 

incorporated in the termite (Neotermes koshunensis) tissue, it is clear that termites are 

also benefited by the nitrogen-fixing symbionts (Tayasu et al., 1998). 

The results of the present study collectively suggest that the nitrogen fixation is the 

major physiological basis of the flagellate–bacteria symbiosis in the termite gut. 

Assuming that these symbiotic nitrogen-fixers will be difficult to isolate, simultaneous 

in situ localization (Pernthaler and Pernthaler, 2005; Amann and Fuchs, 2008) of the 

nifH mRNA and the SSU rRNA genes of the corresponding organisms seem necessary 

to corroborate the results of nitrogen fixation gene assignment to several symbionts of 

flagellates. 

 

Experimental procedures 

Termites 

Termite species originating from a broad geographic range were used. Most of the 

termites are maintained as cultures at Bundesanstalt für Materialforschung und -prüfung 

(BAM), Berlin, Germany. Cryptotermes secundus was collected in a mangrove forest 

near Darwin, Australia. Termites were maintained in polyethylene containers on a diet 

of pinewood at 25 0C. Only mature termite workers were used in the experiments. 
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Morphological identification of termites was further confirmed by sequencing their 

cytochrome oxidase II genes as described elsewhere (Pester and Brune, 2006). 

 

Acetylene reduction assay 

30–70 live termites of Neotermes castaneus, Cryptotermes longicollis, Kalotermes 

flavicollis and Incisitermes marginipennis were used for determination of the 

nitrogenase activity. Termites were incubated for 12 hours in 16.8% acetylene in 10 ml 

serum bottles (Breznak et al., 1973). 0.1 ml gas sample was assayed for the production 

of Ethylene on the Gas Chromatograph equipped with the Flame Ionization detector.  

 

Flagellate picking and DNA extraction from flagellates 

The contents of one to three termites were suspended in Solution U. Unambiguously 

identified (50–200) flagellate cells were collected by micropipette (For methodological 

details see Ikeda-Ohtsubo et al., 2007). Picked flagellates were subjected to freeze-

thawing and were then boiled for about 10 minutes. DNA extraction was performed as 

described previously (Stingl et al., 2005). DNA samples were directly used for PCR 

amplification of SSU rRNA genes of bacteria. Extracted DNA was also used for the 

amplification of SSU rRNA genes from flagellates. 

 

Phylogenetic analysis of the nitrogenase genes 

Amplified nifH gene fragments were cloned into Escherichia coli cells using the TA 

cloning kit (Invitrogen). Clones were analyzed by RFLP using the restriction enzymes 

MspI and HhaI (5 U each, Promega) and grouped according to their restriction pattern. 

Representatives of each group were sequenced from both strands. Sequences were 

checked for chimera as described elsewhere (Pester and Brune, 2006) and aligned 

within the ARB software package (http://www.arbhome.de). A phylogenetic tree was 

reconstructed based on a distance matrix of deduced amino acid sequences inferred 

from the Dayhoff PAM 001 matrix as amino acid replacement model (Dayhoff et al., 

1978). The tree was inferred from the distance matrix using the Fitch algorithm 

(Kimura, 1983) with global rearrangement and randomized input order of sequences, as 

implemented in ARB. Tree reconstruction, using the distance-based neighbour joining 

(Saitou and Nei, 1987) or the maximum-likelihood algorithm based on Dayhoff and 
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colleagues (1978) as implemented in ARB, resulted in dendrograms with similar 

topology. 

 

Reverse transcriptase PCR of the nitrogenase mRNA 

RNA extracts were digested with RQ1 RNase free DNase (1 U, Promega) according to 

the manufacturer’s instructions. RT-PCR was performed using the Access RT-PCR 

System kit (Promega) in 50 µl reactions. Each reaction contained 1× reaction buffer, 1 

mM MgSO4, 200 µM of each dNTP, 0.6 µM of fluorescently labeled forward nifH 

primer (Ohkuma et al., 1999), 0.6 µM of reverse nifH primer (Ohkuma et al., 1999), 5 

U of AMV reverse transcriptase, 5 U of Tfl DNA Polymerase and 1 µl of the RNA 

extract. Thermal cycling started with reverse transcription for 45 min at 48°C, 

immediately followed by an initial denaturation for 2 min at 94°C, and proceeded in 

two phases: nine cycles of a touchdown program (30 s at 94°C, 1 min at 63°C, 

decreasing 1°C per cycle and 2 min at 68°C), followed by 17 cycles of a standard 

program (annealing temperature at 55°C). The final extension step was 7 min at 68°C. 

In all cases, parallel assays without AMV reverse transcriptase did not result in a PCR 

product, showing that the template was free of contaminating DNA. RT-PCR products 

were checked for the specificity of the PCR reaction by standard agarose gel 

electrophoresis and were further analyzed by T-RFLP. 

 

Terminal restriction fragment length polymorphism analysis 

Terminal-restriction fragment length polymorphism analysis was performed as 

described previously (Pester and Brune, 2006), using the nucleic acid extraction method 

and PCR conditions as described above, except that the forward primer was labeled 

with a fluorescent dye (Cy55; Operon). PCR products were digested with the restriction 

endonuclease HhaI (3 U each; Fermentas), which gave the best resolution among the 

different clone groups. Great care was taken to avoid over-saturated T-RF signals, 

which would affect relative peak heights. If necessary, samples of the restriction 

digestion were diluted and analyzed again. Lengths of T-RFs were calculated by 

comparison with molecular size markers (50–700 bp, LI-COR) and with selected nifH 

clones representing the major T-RFs, using the Gel-Pro Analyzer software (version 4.5, 
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MediaCybernetics). The same clones were also analyzed for pseudo-T-RF formation 

(Egert and Friedrich, 2003). 
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Hydrogen partial pressures in the gut of dry-wood termites 

(Kalotermitidae) 

 

Abstract 

A previous study had shown that the (phylogenetically) lower termite Reticulitermes 

flavipes accumulates high amounts of hydrogen in its hindgut. It is generally assumed 

that anaerobic flagellate protozoa in the hindgut of lower termites produce hydrogen. 

However, a recently studied lower termite Cryptotermes secundus (Kalotermitidae) 

accumulated very little (~1 kPa) hydrogen. The reason behind the less hydrogen 

accumulation in this termite is unknown. We asked whether all the termite species of 

the family Kalotermitidae accumulate less hydrogen. To answer this question, 

hydrogen was measured in three species of Kalotermitidae Neotermes castaneus, 

Kalotermes flavicollis and Incisitermes marginipennis. Hydrogen concentration was 

determined both axially and radially across the termite gut with a hydrogen 

microsensor. The measurements revealed that K. flavicollis and I. marginipennis 

accumulated high amounts of hydrogen (40–50 kPa). On the other hand, N. castaneus 

accumulated much lower hydrogen (<1 kPa). High hydrogen accumulation was 

observed at the centre of the paunch—a region of the hindgut completely filled with 

flagellates. Finally, we discuss possible reasons for less hydrogen accumulation in the 

termite N. castaneus, and hypothesize that the termites harbouring large 

hypermastigid flagellates accumulate high amounts of hydrogen. 

 

Introduction 

Several decades ago Cleveland (1926) recognized that the digestion of lignocellulose 

in the gut of lower wood-feeding termites is carried out by the flagellate protozoa. 

These flagellates are harboured in a voluminous dilatation of the anterior hindgut 

known as paunch together with the several symbiotic bacteria. Hungate (1943) 

recognized that the H2 is a major fermentation product of the symbiotic flagellates. 

Oldenson and Breznak (1985) later on demonstrated that axenic cultures of 

Trichomitopsis termopsidis fermented cellulose to hydrogen and acetate as the only 

detectable fermentation products. Ebert and Brune (1995) measured the H2 and O2 

concentration in the hindgut of the termite Reticulitermes flavipes and showed the 

existence of steep H2 gradients from the gut centre towards the epithelium. The same 
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study also showed that the termites treated with hyperbaric oxygen for several hours 

lost their flagellates and showed no H2 accumulation. Recently, Inoue et al. (2007) 

showed that the hydrogenosome-enriched fraction of the flagellate 

Pseudotrichonympha produced hydrogen. Altogether, it is clear that symbiotic 

flagellates produce H2 in the hindgut of lower termites. 

Recently, Pester and Brune (2007) measured hydrogen in the hindgut of three 

species of lower termites Reticulitermes santonensis (Rhinotermitidae), Zootermopsis 

nevadensis (Termopsidae) and Cryptotermes secundus (Kalotermitidae). R. 

Santonensis and Z. Nevadensis accumulated high amounts of hydrogen (25 kPa and 

70 kPa, respectively). However, C. secundus accumulated very little hydrogen (~1 

kPa). Considering that all three species contain parabasalid flagellates, which, in 

principle, should make hydrogen, accumulation of little hydrogen in the gut of C. 

secundus is surprising.  

What could be the reason for less hydrogen accumulation in the gut of C. 

secundus? Most likely, flagellates in the gut of C. secundus make less hydrogen as 

compared to flagellates from other two species of termites. Another less parsimonious 

hypothesis would be rate of hydrogen production by flagellates in C. secundus is 

higher, but rate of consumption by bacteria (homoacetogens) is extremely high as 

compared to other two species. To test these hypotheses, we measured hydrogen in 

the gut of three species of Kalotermitidae (Neotermes castaneus, Incisitermes 

marginipennis and Kalotermes flavicollis). The microsensor was used to measure 

hydrogen in the agarose-solidified Ringer’s solution (Brune et al., 1995). 

 

Results and discussion 

Hydrogen microsensor measurements showed significant differences among the 

hydrogen partial pressures of three different termite species (Fig. 1). I. marginipennis 

showed the highest accumulation of hydrogen followed by K. flavicollis. Hydrogen 

partial pressures in the gut of N. castaneus were much lower (<1 kPa). For all the 

three termite species, highest hydrogen accumulation was observed at the centre of 

the hindgut paunch. The other gut regions named Crop, Midgut, Colon and Rectum 

accumulated very less hydrogen. 

Despite harbouring anaerobic flagellates in its gut, it is an interesting question 

why N. castaneus accumulates very less hydrogen. The most parsimonious 

explanation is that the net amount of hydrogen production is much lower in N. 
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castaneus. Less hydrogen accumulation was also observed in the gut of 

Kalotermitidae Cryptotermes secundus (Pester and Brune, 2007). The same study 

showed that the rates of reductive acetogenesis were relatively higher in this termite, 

making it clear that some of the hydrogen is being rapidly consumed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Axial and radial hydrogen concentration profiles (microsensor measurements) of 

agarose-embedded guts of Kalotermitidae Neotermes castaneus, Incisitermes marginipennis, 

and Kalotermes flavicollis. (A) Schematic diagram of the gut of lower termites (B) Typical 

axial profiles of the three termite species, (C) Typical radial profiles across the paunch of the 

three species. Arrows denote the position of the hindgut wall. 
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The rates of production and consumption in C. secundus were more balanced, 

resulting only in moderate accumulation of H2. The generally accepted hypothesis of 

molecular H2 as a key intermediate of lignocellulose degradation in lower termites 

was well supported by the recent study (Pester and Brune, 2007). The same study 

showed that the hydrogen is the most important electron donor in (phylogenetically) 

lower termites.  

The H2 accumulation might be directly correlated with the type of flagellates 

present in the gut of these termites. Both the termites which did not accumulate 

hydrogen, N. castaneus (this study) and C. secundus (Pester and Brune, 2007) do not 

harbor large hypermastigid flagellates (Ohkuma et al., 2000). In addition to two 

species from this study (I. marginipennis and K. flavicollis), all the other termites 

which have been reported to accumulate hydrogen harbour large hypermastigid 

flagellates. I. marginipennis harbours Trichonympha spp. (Ikeda-Ohtsubo and Brune, 

2008) and K. flavicollis harbours Joenia spp. (Radek et al., 1992). Thus, it is 

suggestive that the hypermastigid flagellates make enormous amounts of hydrogen. 

This hypothesis needs to be tested by measuring the rates of hydrogen production by 

different types of flagellates. 

 

Experimental procedures 

Termites 

Termites Neotermes castaneus, Kalotermes flavicollis and Incisitermes marginipennis 

were obtained from Bundesanstalt für Materialforchung (BAM) in Berlin, and were 

maintained in polyethylene containers on a diet of pinewood and water, except that no 

water was given to I. marginipennis. Termites were maintained in the humidity and 

temperature controlled chambers. Only worker termites were used for the 

experiments. Molecular identification of termites was carried out as described 

previously (Pester and Brune, 2006). 

 

Hydrogen microsensor measurements 

Hydrogen microsensor with a tip diameter of 10 m was used. The electrode was 

calibrated and tested according to the Unisense manual. The experimental setup used 

for the hydrogen by microsensor measurement was the same as described previously 

(Ebert and Brune, 1997). 
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General discussion 

 

The present thesis opens up several interesting questions. In this chapter, general 

aspects of the evolutionary histories of termite–flagellate symbioses, flagellate–

bacteria symbioses, and nitrogen fixation in the gut of dry-wood termites 

(Kalotermitidae) are discussed. Specific results are discussed in the respective 

chapters. 

 

Kalotermitidae and devescovinid flagellates: cospeciation or host switching? 

The dependence of lower wood-feeding termites on their cellulolytic gut 

flagellates for the digestion of lignocellulose is a classical example of mutualistic 

symbiosis (Cleveland, 1926; for review, see Breznak, 2000). Termite gut 

flagellates are believed to be vertically transmitted by the process of proctodeal 

trophallaxis—the transfer of hindgut fluids containing symbiotic flagellates 

(Kirby, 1937; Kirby, 1949; Honigberg, 1970; Inoue et al., 2000). Kitade (2004) 

showed that termites of a particular family contain morphologically similar 

flagellates, and suggested that flagellates could have been horizontal transferred 

among termites of the same family. The argument of horizontal transfer was 

already pointed out by Andrew (1930), who stated that since flagellates can be 

easily transferred between termite species by mere physical contact, strict vertical 

transmission of flagellates is doubtful. 

Recently, Noda et al. (2007) addressed the issue of vertical transmission of 

flagellates by studying the molecular phylogenies of rhinotermitid termites and 

their Psuedotrichonympha flagellates. The comparison of phylogenies revealed 

phylogenetic congruence between rhinotermitids and Psuedotrichonympha, 

supporting the notion of vertical transmission. On the other hand, Ikeda-Ohtsubo 

and Brune (2008) showed that phylogenetically unrelated Trichonympha species 

were present in the same termite, suggesting their horizontal transfer between 

different termite species. It is difficult to derive a conclusion about the vertical 

transmission of flagellates based on the contradictory results of these studies. 

Based on the presence of devescovinid flagellates (morphological 

identification) in several termite species, Kitade (2004) showed that species of 

6
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Kalotermitidae cluster together. This clearly means that devescovinid flagellates 

are specific to the termite family Kalotermitidae, which implies that the last 

common ancestor of all Kalotermitidae possessed the common ancestor of all 

devescovinid flagellates. Nevertheless, it is not clear whether devescovinid 

flagellates strictly cospeciate with their kalotermitid hosts. Their strict 

cospeciation is unlikely, since two different genera like Devescovina and 

Metadevescovina are reported to occur in the same termite (Yamin, 1979). The 

present study showed that the SSU rRNA gene phylogeny of devescovinid 

flagellates (Devescovina spp., Caduceia sp. and Metadevescovina spp.) is largely 

incongruent with the cytochrome oxidase II gene phylogenies of host termites 

(Fig. 1), displaying the horizontal transfer of flagellates between termite species. 

At the same time, the presence of devescovinid flagellates mainly in the gut of 

kalotermitid termites (Yamin, 1979) suggests their specificity to the termite 

family Kalotermitidae. The reason for this specificity could be a unique 

physiological relationship of these flagellates with the host Kalotermitidae. 

Devescovinid flagellates are abundantly represented in the gut of 

Kalotermitidae (Kirby, 1941, 1942, 1945). Twelve genera of devescovinid 

flagellates were reported by Kirby, which are classified mainly based on the 

presence of ectosymbiotic bacteria on these flagellates. To better understand the 

evolutionary history of Kalotermitidae and devescovinids, molecular phylogenies 

of several other Kalotermitidae and devescovinid flagellates need to be examined. 

 

 

 

 

 

 

 

Figure 1. A tanglegram of the maximum-likelihood trees of kalotermitid termites (based 

on the deduced amino acid sequences of cytochrome oxidase II genes) and their 

devescovinid flagellates (based on SSU rRNA genes). Phylogenetic trees of termite hosts 

and flagellate symbionts are largely incongruent. Sequences for species with an asterisk 
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are from previous studies. Arrows in the termite phylogeny indicate monophyletic groups 

of Cryptotermes and Neotermes species. Arrow in the flagellate phylogeny indicates point 

of acquisition of Bacteroidales ectosymbionts by flagellates. 

 

Coevolutionary history of devescovinids and Bacteroidales ectosymbionts 

Coevolution is the process of reciprocal adaptive genetic change in two or more 

species (Woolhouse et al., 2002), which occurs due to strong “selective pressure” 

that each species exerts on the other (Thompson J. N., 1994). On the other hand, 

cospeciation is joint speciation of host and symbiont, which results from intimate 

and long-standing association (Baumann et al., 1997; Peek et al., 1998; Hughes et 

al., 2007; Hosokawa et al., 2007). Taken together, coevolution can lead to 

cospeciation. 

Does cospeciation between devescovinid flagellates and Bacteroidales 

ectosymbionts indicate coevolution? Since endosymbionts (“Endomicrobia”) of 

devescovinid flagellates and ectosymbionts (Bacteroidales) of Oxymonas 

flagellates do not show phylogenetic congruence with their host flagellates, 

cospeciation between devescovinids and Bacteroidales can be considered as a 

special case. Although devescovinids were transferred between different termite 

species, Bacteroidales ectosymbionts were not lost. Therefore, cospeciation 

between devescovinids and their Bacteroidales ectosymbionts strongly indicates 

the existence of a “selective pressure”, which could be a result of host–symbiont 

coevolution owing to the physiological interaction. Most likely, the physiological 

interaction started in the last common ancestor of Devescovina spp. and Caduceia 

versatilis and the common ancestor of Bacteroidales ectosymbionts. Since the 

similar type of Bacteroidales ectosymbionts are absent on Metadevescovina 

species, and other parabasalid flagellates, the point of acquisition of Bacteroidales 

by the common ancestor of Devescovina and C. versatilis was estimated (Fig. 1). 

Based on the approximate rates of evolution of SSU rRNA genes (Moran et al., 

1993), the age of this symbiosis was calculated as about 50–100 million years. 

During such a long time, devescovinids and Bacteroidales could have become 

interdependent. Radek et al. (1996) showed that antibiotic treated Devescovina 

flagellates lose their original shape owing to the loss of ectosymbionts. This could 
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mean that the ectosymbionts help their host flagellates to maintain the cytoskeletal 

structure (missile-like shape). This observation is supported by the fact that 

closely related Metadevescovina does not show a similar shape owing to the 

absence of the filamentous Bacteroidales ectosymbionts. The missile-like shape 

of Devescovina could be beneficial for the movement in the gut. In this context, 

another important observation is the filamentous nature of the ectosymbionts. 

Bacteroidales endosymbionts of Pseudotrichonympha flagellates (Noda et al., 

2005), which belong to the same phylogenetic cluster (V) as Bacteroidales 

ectosymbionts of devescovinid flagellates (Noda et al., 2006), are short rods. This 

could mean that the Bacteroidales gained filamentous form after they became 

ectosymbionts of devescovinid flagellates. As discussed above, the rationale 

behind such a change in the shape could also be to help the flagellate maintain its 

cytoskeletal structure. 

Recently, Hongoh et al. (2008) published the genome of the Bacteroidales 

endosymbionts (CfPt1-2) of Pseudotrichonympha flagellates. Interestingly, CfPt1-

2 possesses genes encoding nitrogenase (NifHDK), Mo-Fe cofactor biosynthesis 

proteins, nif-operon regulator NifA, all of which are involved in the nitrogen 

fixation. Using RT-PCR, these genes were shown to be highly expressed. CfPt1-2 

also possessed genes for ammonium transporter, urease and urea transporter, 

suggesting their role in recycling of nitrogenous waste products of flagellates. On 

the other hand, expression profiles for nitrogen fixation genes in this study 

showed no expression of such genes in the gut of Neotermes castaneus and 

Cryptotermes longicollis, which contain Bacteroidales (as ectosymbionts of 

devescovinid flagellates). Therefore, it is clear that the nifH gene sof 

Bacteroidales ectosymbionts of devescovinid flagellates are not involved in the 

nitrogen fixation. However, like Bacteroidales endosymbionts (CfPt1-2), role of 

ectosymbionts in the biosynthesis of diverse cofactors and amino acids is highly 

likely. Since flagellates are oxygen sensitive, another important role of 

ectosymbionts could be consumption of little amounts of oxygen penetrating in 

the hindgut. This hypothesis is partially supported by the consumption of 

nanomolar amounts of oxygen by the strictly anaerobic bacterium Bacteroides 

fragilis (Baughn and Malamy, 2004). Moreover, CfPt1-2 showed high 
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consumption of molecular hydrogen produced by the host Pseudotrichonympha 

(Inoue et al., 2007), which suggests the similar role of ectosymbionts of 

devescovinids. Ectosymbionts could also be benefiting from the fermentation 

products (e.g., lactate) of the flagellates. 

To better understand the physiological basis of the symbiosis between the 

devescovinids and Bacteroidales, fermentation products of the species-pure 

flagellate suspensions need to be measured with a high-sensitivity method like 

capillary electrophoresis. Similar suspensions of flagellates can be treated with 

antibiotics, and change in the fermentation products can be monitored. 

Additionally, a cDNA library for devescovinid flagellates and Bacteroidales 

ectosymbionts could help to construct the basic metabolic network in this 

symbiosis. Finally, sequencing the genome of Bacteroidales ectosymbionts, and 

comparing with the genome of CfPt1-2 could help to find the additional genes 

involved in the symbiosis with flagellates. 

 

Why are nitrogenase gene expression profiles species specific? 

The presence of very little nitrogen in the diet of Kalotermitidae necessitates high 

activity of nitrogen-fixing bacteria in their gut. Breznak et al. (1973) provided the 

first experimental proof for the high rates of nitrogen fixation in the gut of 

Kalotermitidae. Using culture independent methods, Noda et al., (1999) showed 

that only one nitrogen fixation gene (anfH) is expressed in the gut of kalotermitid 

termite Neotermes koshunensis, despite the presence of several nitrogen fixation 

genes. anfH genes are supposedly present only in the gut of Kalotermitidae, and 

the wood-feeding cockroach Cryptocercus punctulatus (Yamada et al., 2007). 

The interesting questions are (i) which organism is carrying these genes? and  

(ii) are these genes also expressed in all species of Kalotermitidae In the present 

study, anfH genes were putatively assigned to the Bacteroidales ectosymbionts of 

Devescovina flagellates. Expression profiles for nitrogen fixation genes in four 

species of Kalotermitidae (Neotermes castaneus, Cryptotermes longicollis, 

Kalotermes flavicollis, and Incisitermes marginipennis) revealed a unique pattern 

of gene expression for each Kalotermitidae, indicating nitrogen fixation activity of 

phylogenetically different bacteria in different species. anfH genes were expressed 
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only in the gut of N. castaneus and C. longicollis, whereas nifH genes of 

Treponema were expressed in N. castaneus, K. flavicollis, and I. marginipennis, 

and nifH genes of Bacteroidales were expressed only in K. flavicollis. Despite 

feeding on the same diet, and harboring nearly the same set of bacteria, why are 

nitrogen fixation genes of different bacteria expressed in different species of 

Kalotermitidae? Which factors control the expression of different genes in 

different species of termites? 

Intriguingly, anfH genes were expressed only in those termites (N. castaneus 

and C. longicollis), which accumulated very little hydrogen (<1 kPa, hydrogen 

microsensor measurements). Termites that accumulated high amounts of 

hydrogen  (K. flavicollis and I. marginipennis, >35 kPa) showed no expression of 

anfH genes. It is suggestive that K. flavicollis and I. marginipennis accumulate 

high amounts of hydrogen owing to the presence of hypermastigid flagellates. 

Hydrogen is known to be a competitive inhibitor of nitrogen reduction by 

nitrogenase; depending on the organism, the inhibitory constant of hydrogen 

typically ranges from 0.03 to 0.2 atm (Guth and Burris, 1983; Rasche and Arp, 

1989). Therefore, it is tempting to hypothesize that the anfH genes in the termite 

gut are inhibited by the high amounts of hydrogen. This hypothesis can be tested 

by incubating N. castaneus and C. longicollis under high hydrogen partial 

pressure, and studying the gene expression. 

Expression of nifH genes belonging to the Treponema group provided the first 

evidence for in vivo nitrogen fixation by this group of bacteria. However, no 

expression of Treponema genes in the gut of C. longicollis (this study), and N. 

koshunesnsis (previous study, Noda et al., 1999) is enigmatic. When Noda et al. 

(1999) added molybdenum in the diet of N. koshunensis, expression of two more 

genes was observed. These genes were predicted to belong to the Treponema 

phylogenetic cluster. This means that the addition of molybdenum in the diet 

activated the nitrogen fixation by Treponema. The reason behind such a change in 

the gene expression is difficult to explain, since Treponema genes are expressed 

in other Kalotermitidae (this study) without the addition of molybdenum. 

The endosymbiotic Bacteroidales (CfPt1-2) fix nitrogen in the gut of 

subterranean termite Coptotermes formosanus (Hongoh et al., 2008). Moreover, 
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CfPt1-2 consumes hydrogen (Inoue et al., 2007), although its genome does not 

contain any typical hydrogenase gene (Hongoh et al., 2008). In the present study, 

nitrogen fixation genes belonging to the Bacteroidales were expressed in the gut 

of K. flavicollis. However, despite the presence of high number of Bacteroidales 

in N. castaneus and C. longicollis, their nifH genes were not expressed. Results of 

the present and previous studies collectively suggest that the hydrogen 

consumption by Bacteroidales could be a prerequisite for their nitrogenase 

activity. This means that the nitrogen fixation by Bacteroidales demands the 

presence of high amounts of hydrogen, which is present in K. flavicollis, but not 

in N. castaneus and C. longicollis. If this argument is valid, incubation of N. 

castaneus and C. longicollis under high hydrogen partial pressure (as mentioned 

above) would activate the gene expression by Bacteroidales. 

A nifH gene belonging to the proteo-cyano group was expressed in the gut of 

I. marginipennis. Trichonympha flagellates in this termite contain endosymbionts 

affiliated with Desulfovibrio, which are highly abundant (Wienemann, 2008). 

DNA-based T-RFLP profiles showed that the expressed nifH gene from the 

proteo-cyano group is the most abundant nifH gene in I. marginipennis. 

Therefore, it would not be illogical to assign the expressed gene from the proteo-

cyano group to the endosymbiotic Desulfovibrio. This assignment needs to be 

confirmed with a method like CARD-FISH (Pernthaler and Pernthaler, 2005). 
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Summary 

 
The subject of this thesis is the symbiosis between flagellates and bacteria in the gut 

of dry-wood termites (Kalotermitidae). In a series of studies, the evolution of 

devescovinid flagellates and their bacterial symbionts was elucidated, and the 

physiological basis of the symbiosis was investigated, with a focus on nitrogen 

fixation. 

Devescovinid flagellates are the dominant flagellates in the gut of Kalotermitidae. 

Species-pure suspensions of devescovinid flagellates (Devescovina and 

Metadevescovina species) from a wide range of termite species in the family 

Kalotermitidae were isolated with micropipettes. Ribosomal RNA gene sequences of 

the host flagellates and their bacterial symbionts were obtained using a full-cycle-

rRNA approach. 

Phylogenetic analysis showed that Devescovina spp. present in many species of 

Kalotermitidae form a monophyletic group. They were consistently associated with a 

distinct lineage of ectosymbionts, which form a monophyletic group among the 

Bacteroidales. The well-supported congruence of their phylogenies documented strict 

cospeciation of flagellates and their ectosymbionts, which were temporarily classified 

as “Candidatus Armantifilum devescovinae”. Nevertheless, the complete 

incongruence between the phylogenies of devescovinid flagellates and Kalotermitidae 

(COII genes) demonstrated horizontal transfer of flagellates among several species of 

Kalotermitidae.  

The presence of filamentous “A. devescovinae” on the surface of Devescovina 

spp. was corroborated with scanning electron microscopy and fluorescent in situ 

hybridization.  However, several Metadevescovina species, which form a sister group 

of Devescovina spp., did not possess Bacteroidales ectosymbionts. Moreover, a 

combination of molecular analysis and electron microscopy led to a correction of the 

previously overestimated diversity of Metadevescovina species in the gut of termite 

Incisitermes marginipennis. 

In contrast to the Bacteroidales ectosymbionts, the endosymbionts of 

Devescovina spp., which belong to the so-called “Endomicrobia” (TG-1 phylum) and 

consistently colonized the cytoplasm of all flagellates of this group, were clearly 

polyphyletic. This suggested that they were acquired independently by each host 

species. The same seems to be true for the Bacteroidales ectosymbionts of the 
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Oxymonas flagellates present in several Kalotermitidae. These ectosymbionts form 

several distantly related novel lineages in the phylogenetic tree, underscoring the 

notion that evolutionary histories of flagellate–bacteria symbioses in the termite gut 

are complex. 

Kalotermitidae are known to fix large amounts of atmospheric nitrogen, and 

acetylene reduction assay showed the presence of nitrogenase activity in the gut of 

these termites. Community fingerprinting of the nitrogenase genes (homologs of 

nifH) by T-RFLP analysis revealed that a gene encoding an alternative nitrogenase 

(anfH) of unknown origin was most highly expressed homolog in mRNA-based 

profiles. Cloning of the nifH homologs from capillary-picked suspensions of 

Devescovina arta and Snyderella tabogae gave strong evidence that the “A. 

devescovinae” are the putative carriers of the anfH gene and therefore responsible for 

most of the nitrogen-fixing activity in the guts of Neotermes castaneus and 

Cryptotermes longicollis.  

Despite a high diversity of nifH homologs in gut homogenates, the only other 

homologs that were expressed belonged to Treponema, Bacteroidales (nifH), and the 

proteo-cyano group. The gene expression profiles were specific for the termites. The 

anfH genes were not expressed in termite species that accumulated large amounts of 

hydrogen (35–45 kPa, microsensor measurements), suggesting a repression of gene 

expression by high hydrogen partial pressure. 



Zusammenfassung 

 
Der Fokus dieser Arbeit beruht auf der Symbiose zwischen Flagellaten und Bakterien 

im Darm von Trockenholztermiten (Kalotermitidae). In einer Reihe von Versuchen 

konnte über molekulare Phylogenien die Evolution von devescoviniden Flagellaten 

und deren bakteriellen Symbionten etabliert werden. Die physiologische Grundlage 

der Symbiose wurde speziell hinsichtlich der Stickstofffixierung untersucht. 

Devescovinide Flagellaten dominieren die Flagellatenpopulation im Darm der 

Kalotermitidae. Mittels Mikropipetten wurden devescovinide Flagellaten 

(Devescovina- und Metadevescovina-Arten) von einer Vielzahl von Termitenarten der 

Familie Kalotermitidae artspezifisch isoliert. Die Sequenzen der ribosomalen RNA 

von Wirtsflagellaten und deren bakteriellen Symbionten wurden mittels „full-cycle-

rRNA“-Methode analysiert. 

Phylogenetische Analysen zeigten, dass Devescovina-Arten, die in vielen 

Vertretern der Kalotermitidae vorkommen, eine monophyletische Gruppe bilden. 

Zudem waren Devescovina-Arten stets mit einer bestimmten Linie von 

Ektosymbionten assoziiert, die eine monophyletische Gruppe innerhalb der 

Bacteroidales bilden. Die von verschiedenen Algorithmen gut gestützte Kongruenz 

der Stammbäume dokumentiert eine strikte Kospeziation der Flagellaten und deren 

Ektosymbionten, die als Candidatus „Armantifilum devescovinae“ vorläufig  

klassifiziert wurden. Dennoch demonstriert die Inkongruenz zwischen den 

Phylogenien der devescoviniden Flagellaten und Kalotermitidae (COII-Gene) den 

horizontalen Transfer von Flagellaten innerhalb vieler Spezies der Kalotermitidae. 

Die Identität von „A. devescovinae“ mit den filamentösen Bacteroidales auf der 

Zelloberfläche von Devescovina-Arten konnte mittels Rasterelektronenmikroskopie 

und Fluoreszenz-in-situ-Hybridisierung bestätigt werden. Dabei stellte sich heraus, 

dass einige Metadevescovina-Arten, welche eine Schwesterngruppe zu den 

Devescovina-Arten bilden, keine ektosymbiontischen Bacteroidales besitzen. Weitere 

molekulare Analysen und elektronenmikroskopische Untersuchungen führten zu einer 

Revision der vormals überschätzten Diversität von Metadevescovina-Arten im Darm 

der Termite Incisitermes marginipennis. 

Neben den Bacteroidales-Ektosymbionten besitzen Flagellaten der Gattung 

Devescovina auch Endosymbionten. Diese gehören zu den “Endomicrobia” (TG1-

Phylum) und konnten im Zytoplasma aller Arten dieser Gruppe nachgewiesen 
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werden. Im Gegensatz zu den Ektosymbionten sind die “Endomicrobia” 

polyphyletisch, was vermuten lässt, dass sie von den jeweiligen Wirtsarten 

unabhängig erworben wurden. Dasselbe Szenario scheint auch für die Bacteroidales-

Ektosymbionten der Oxymonas-Flagellaten zu gelten, die in vielen Kalotermitidae 

vorkommen. Diese Ektosymbionten bilden mehrere entfernt verwandte 

Entwicklungslinien im Stammbaum der Bacteriodales, was die Ansicht bestärkt, dass 

die Flagellaten–Bakteriensymbiosen im Termitendarm entwicklungsgeschichtlich 

komplex sind. 

Trockenholztermiten fixieren in großen Mengen Luftstickstoff, und mittels 

Acetylenreduktionstest konnte Nitrogenaseaktivität im Darm dieser Termiten 

nachgewiesen werden. Fingerprint-Analysen der Nitrogenase-Gene (nifH-Homologe) 

mittels T-RFLP-Methode zeigten, dass ein für eine alternative Nitrogenase 

kodierendes Gen (anfH) unbekannten Ursprungs das am stärksten exprimierte 

Homolog in mRNA-basierten Profilen darstellte. Eine Klonierung der nifH-

Homologe aus mittels Mikropipetten gesammelten Suspensionen von Devescovina 

arta und S. tabogae brachte deutliche Hinweise, dass „A. devescovinae“ der Träger 

dieser anfH-Gene ist und somit für den Großteil der Stickstoff fixierenden Aktivität 

im Darm von Neotermes castaneus und  Cryptotermes longicollis verantwortlich ist.  

Obwohl die Darmhomogenate eine hohe Diversität von nifH-Homologen 

beherbergen, wurden neben den erwähnten anfH-Genen nur wenige weitere 

Homologe exprimiert. Phylogenetische Analyse ergab eine Zugehörigkeit zu 

Treponema, Bacteroidales (nifH) und der Proteo-Cyano-Gruppe. Die 

Genexpressions-Profile waren charakteristisch für die jeweilige Termitenart. Die 

anfH-Gene wurden nicht in Termiten exprimiert, die große Mengen an Wasserstoff 

akkumulierten (35–45 kPa, Mikrosensorenmessungen), was auf eine Repression der 

Genexpression durch hohe Wasserstoff-Partialdrücke hindeutet. 
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‘Endomicrobia’, a distinct and diverse group of uncultivated bacteria in the candidate phylum

Termite Group I (TG-1), have been found exclusively in the gut of lower termites and wood-

feeding cockroaches. In a previous study, we had demonstrated that the ‘Endomicrobia’ clones

retrieved from Reticulitermes santonensis represent intracellular symbionts of the two major gut

flagellates of this termite. Here, we document that ‘Endomicrobia’ are present also in many

other gut flagellates of lower termites. Phylogeny and host specificity of ‘Endomicrobia’ were

investigated by cloning and sequencing of the small subunit rRNA genes of the flagellate and the

symbionts, which originated from suspensions of individual flagellates isolated by micropipette.

Each flagellate harboured a distinct phylogenetic lineage of ‘Endomicrobia’. The results of

fluorescent in situ hybridization with ‘Endomicrobia’-specific oligonucleotide probes corroborated

that ‘Endomicrobia’ are intracellular symbionts specifically affiliated with their flagellate hosts.

Interestingly, the ‘Endomicrobia’ sequences obtained from flagellates belonging to the genus

Trichonympha formed a monophyletic group, suggesting co-speciation between symbiont and

host.

INTRODUCTION

‘Endomicrobia’ are a distinct and diverse group of
uncultivated bacteria in the candidate phylum Termite
Group I (TG-1) (Hugenholtz et al., 1998; Stingl et al.,
2005). Originally discovered as members of the hindgut
community of Reticulitermes speratus (Ohkuma & Kudo,
1996; Hongoh et al., 2003), their occurrence seems to be
restricted to the guts of phylogenetically lower termites and
wood-feeding cockroaches (Cryptocercus punctulatus)
(Hongoh et al., 2005; Stingl et al., 2005; Yang et al.,
2005). We have demonstrated previously that the
‘Endomicrobia’ clones retrieved from Reticulitermes santo-
nensis represent intracellular symbionts of flagellate protists
(as previously proposed by Ohkuma et al., 2001), and
documented that the two major gut flagellates of this
termite, Trichonympha agilis and Pyrsonympha vertens, each
harbour a phylogenetically distinct lineage of ‘Endo-
microbia’ (Stingl et al., 2005).

Termite gut flagellates are a unique group of protists
consisting of more than 430 species, which have been

described mostly on a morphological basis (Brugerolle &
Lee, 2000; Yamin, 1979). Phylogenetic studies using small-
subunit (SSU) rRNA and other molecular markers have
confirmed the presence of two distinct phylogenetic
lineages, i.e. Oxymonadida and Parabasalidea (Dacks
et al., 2001; Gerbod et al., 2002; Stingl & Brune, 2003;
Ohkuma et al., 2005). Although little is known about the
metabolic functions of termite gut flagellates (Brune &
Stingl, 2005) – the majority of which are uncultivated –
they are generally considered to play a major role in the
cellulose metabolism of the hindgut (Yamin, 1980; Odelson
& Breznak, 1985).

Most termite gut flagellates are associated with prokaryotic
symbionts, which colonize the cell surface, the cytoplasm
or sometimes the nucleus of their hosts (Kirby, 1941;
Berchtold et al., 1999; Brune & Stingl, 2005; Brune, 2006).
The high frequency of such associations and an apparent
specificity of the symbionts for their host flagellate (Noda
et al., 2005, 2006; Stingl et al., 2004) are indicative of a
functional significance of such symbioses for the termite
gut ecosystem.

The symbiosis between ‘Endomicrobia’ and termite gut
flagellates might also represent such an intimate relation-
ship, which has been supported by evidence that some
‘Endomicrobia’ form host-specific associations with their
host flagellate (Stingl et al., 2005). Furthermore, the wide
distribution and phylogenetic heterogeneity of ‘Endo-
microbia’ among lower termites harbouring various gut

Abbreviations: FISH, fluorescence in situ hybridization; SSU, small
subunit.

3Present address: Oregon State University, Department of Microbiology,
Nash Hall 220, Corvallis, OR 97331, USA.

The GenBank/EMBL/DDBJ accession numbers for the nucleotide
sequence data reported in this paper are AB297984–AB298082,
AB326107, AB326370–AB326383, AM747388 and AM747389.
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flagellates (Stingl et al., 2005) collectively suggest a strong
connection between the phylogenetic diversity of the
symbionts and their flagellate hosts. We hypothesize here
that the phylogenetic diversity of ‘Endomicrobia’ in the gut
of lower termites reflects the diversity of their flagellate
hosts. To test this hypothesis, we phylogenetically analysed
SSU rRNA genes of the major flagellates and their
symbionts in the termite Hodotermopsis sjoestedti and in
selected flagellates of five other termite species.

METHODS

Termites. Hodotermopsis sjoestedti was collected on Yakushima

Island, Japan. Zootermopsis nevadensis was collected on Mt Pinos,

Los Padres National Forest, California, USA. Cryptotermes secundus

came from a mangrove forest near Darwin, Australia. Mastotermes

darwiniensis, Kalotermes flavicollis and Neotermes castaneus were from

cultures maintained at the Bundesanstalt für Materialforschung und

-prüfung (BAM), Germany. In the laboratory, colonies were

maintained in polyethylene containers at 25 uC on a diet of

pinewood. Only termite workers/pseudergates were used in the

experiments.

DNA extraction from whole hindguts. Ten hindguts were dissected

using sterile forceps and pooled in 750 ml filter-sterilized sodium

phosphate buffer (pH 8.0) in a polyethylene tube. The entire content of

the tube was transferred into a polyethylene screw-cap tube containing

250 ml TNS solution (500 mM Tris/HCl, 100 mM NaCl, 10 % SDS,

pH 8.0) and 0.7 g zirconium beads, and then homogenized in a

FastPrep FP120 (Bio 101, Savant Instruments) for 45 s at 6.5 m s–1. The

homogenates were centrifuged, and DNA in the supernatant was

purified by phenol/chloroform extraction and ethanol precipitation.

DNA extraction from flagellates. The contents of three to seven

hindguts were suspended in Solution U (Trager, 1934) and diluted to

a density of approximately 10 flagellate cells ml–1. Aliquots (20 ml) of

the diluted suspension were placed in the wells of a 10-well Teflon-

coated glass slide (Erie Scientific Company). Flagellate cells were

sorted by morphology (Radek et al., 1992; Tamm, 1999; Brugerolle &

Bordereau, 2004), and 150–200 flagellate cells of each morphotype

were collected by micropipette using an inverted microscope. The

cells were collected into a well containing 15 ml sterile PBS and

washed by at least three transfers into fresh PBS-containing wells.

Approximately 100 cells were finally resuspended in 200 ml sterile

PBS. Cells were disrupted by three cycles of freeze–thawing, and DNA

was extracted from each sample using the NucleoSpin kit (Macherey-

Nagel), following the manufacturer’s instructions. The extracted DNA

was finally eluted with 30 ml distilled water and used as a template for

PCR reactions.

PCR amplification. Flagellate SSU rRNA genes were amplified using

universal eukaryotic primers as described by Keeling et al. (1998).

Bacterial SSU rRNA genes were amplified using 27F (Edwards et al.,

1989) and 1492R (Weisburg et al., 1991) as described by Henckel et al.

(1999). ‘Endomicrobia’ SSU rRNA genes were amplified as previously

described, using the forward primer TG1-209F (Stingl et al., 2005)

and a slightly modified reverse primer TG1-1325R9 (59-

GATTCCTACTTCATGTG-39).

Cloning and sequencing. PCR products were ligated into plasmid

pCR2.1-TOPO and introduced into E. coli TOP10F9 by transforma-

tion using the TOPO TA cloning kit (Invitrogen), following the

manufacturer’s instructions. Clones with a flagellate SSU rRNA gene

insert and clones with an ‘Endomicrobia’ SSU rRNA gene insert

(~1070 bp) were screened by direct PCR using M13 primers. To
obtain the almost-full-length ‘Endomicrobia’ SSU rRNA genes,
bacterial SSU rRNA gene libraries (~1500 bp) were screened with
‘Endomicrobia’-specific primers (see above). PCR products of the
expected size were digested separately with the restriction enzymes
MspI and AluI, and subjected to electrophoresis on a 3 % agarose gel.
The clones were sorted according to their restriction patterns, and
two to ten representatives of each ribotype were sequenced using M13
primer sets. For each phylotype (sequence clusters with more than
1 % sequence divergence) obtained in this study, several represent-
ative SSU rRNA gene sequences have been submitted to GenBank
under accession numbers AB297984–AB298082, AB326107,
AB326370–AB326383 and AM747388–AM747389.

Phylogenetic analysis. The SSU rRNA gene sequences were
imported into the database implemented in the ARB software package
(Ludwig et al., 2004). The sequences were automatically aligned with
the other closely related SSU rRNA sequences using the ARB

Fast_Aligner, followed by manual refinement. Phylogenetic trees
were constructed using almost-full-length SSU rRNA sequences
(.1300 bases) by maximum-likelihood methods (AxML and
fastDNAml), and the stability of the tree topology was tested by the
neighbour-joining and maximum-parsimony methods implemented
in ARB. Shorter sequences were added using the ARB parsimony tool.
Chimaeric sequences were identified using the Bellerophon server
(Huber et al., 2004; http://foo.maths.uq.edu.au/~huber/bellerophon.
pl) and by carefully checking for signature sequences in the
alignment, and were subsequently removed from the dataset.

Whole-cell in situ hybridization. Fixed gut contents were prepared
and in situ hybridization was performed as described previously (Stingl
& Brune, 2003). Probe EUB338 (Amann et al., 1990) and the nonsense
probe NON338 (Wallner et al., 1993) were used to identify bacterial
cells and to distinguish non-specific probe binding in the same
suspension. For each probe, hybridization stringency was optimized by
testing formamide concentrations over a range of 0–50 %.

RESULTS

Host affiliation of ‘Endomicrobia’ in H. sjoestedti

Clone libraries of SSU rRNA genes amplified from H.
sjoestedti whole-gut DNA extract with ‘Endomicrobia’-
specific primers contained more than 10 distinct mono-
phyletic lineages of ‘Endomicrobia’. To test whether
individual phylotypes can be assigned to their host
flagellates, suspensions were prepared by carefully picking
individual flagellate cells according to their characteristic
morphotypes. The major populations among the flagellate
community were formed by species of the genus
Dinenympha (Oxymonadida; Fig. 1a), Trichonympha and
Eucomonympha (both Parabasalidea; Fig. 1b, c). DNA
extracted from the respective suspensions yielded PCR
products of the expected length with eukaryotic (1500–
1800 bp), bacterial (~1500 bp) and ‘Endomicrobia’-spe-
cific (~1100 bp) SSU rRNA primers.

The eukaryotic SSU rRNA gene libraries prepared from the
Eucomonympha and Dinenympha suspensions each con-
tained a single phylotype (Table 1). In the library from the
Eucomonympha suspension, the obtained sequence was
virtually identical to that of clone HsL3 recovered in a
clone library of a mixed flagellate population of H.

Diversity and host specificity of ‘Endomicrobia’
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sjoestedti (Ohkuma et al., 2000), corroborating the tentative
assignment of this clone to the genus Eucomonympha. In
the case of the Dinenympha suspension, the sequence

showed 94 % identity to that of a Dinenympha species from
Reticulitermes hesperus (Moriya et al., 2003) and probably
represents a new, hitherto unrecognized species of

Fig. 1. Light micrographs of ten flagellate species used in this study: Dinenympha sp. (a), Trichonympha sp. (b) and
Eucomonympha sp. (c) from H. sjoestedti; Trichonympha sp. (d) from Z. nevadensis; Deltotrichonympha sp. (e) from
M. darwiniensis; Joenia sp. (f) from K. flavicollis; Devescovina sp. (g), Calonympha sp. (h) and Oxymonas sp. (i) from
N. castaneus; and an unclassified parabasalid (j) from C. secundus. Bars, 50 mm.

Table 1. Phylotypes of flagellates recovered in the flagellate suspensions prepared from hindgut contents of different termite species
and their closest relatives in public databases

Termite species (family) Flagellate suspension (Order*) Flagellate

phylotype

(accession no.)

Closest relatives (accession no.) Sequence

similarity

(%)D

Hodotermopsis sjoestedti

(Termopsidae)

Trichonympha

(Trichonymphida)

HsTcA

(AB326107)

Trichonympha sp. HsL5 from H. sjoestedti

(AB032233)

99.9

HsTcB

(AB326371)

Trichonympha sp. Hs8 from H. sjoestedti

(AB032229)

99.5

HsTcC

(AB326373)

Trichonympha sp. HsS9 from H. sjoestedti

(AB032239)

99.6

Eucomonympha

(Trichonymphida)

HsEcA

(AB326375)

Eucomonympha sp. HsL3 from H. sjoestedti

(AB032231)

99.0

Dinenympha (Oxymonadida) HsDnA

(AB326376)

Dinenympha sp. OS1 from R. hesperus

(AB092933)

94.0

Zootermopsis nevadensis

(Termopsidae)

Trichonympha

(Trichonymphida)

ZnTcA

(AB326378)

Trichonympha cf. collaris from Z. angusticollis

(AF023622)

95.2

Mastotermes darwiniensis

(Mastotermitidae)

Deltotrichonympha

(Christamonadida)

MdDtA

(AB326380)

Deltotrichonympha operculata from

M. darwiniensis (AJ583379)

99.5

Kalotermes flavicollis

(Kalotermitidae)

Joenia (Cristamonadida) KfJeA

(AB326381)

Gut symbiont Kf5 from K. flavicollis (AF215857) 98.7

Neotermes castaneus

(Kalotermitidae)

Devescovina (Cristamonadida) NcDvA

(AM747389)

Devescovina sp. D16 from N. jouteli (X97974) 98.9

Calonympha (Cristamonadida) NcClA

(AM747388)

Calonympha sp. B14 from N. jouteli (X97976) 98.5

Oxymonas (Oxymonadida) NcOxA

(AB326383)

Oxymonas sp. Nk_U08 from N. koshunensis

(AB092931)

94.5

Cryptotermes secundus

(Kalotermitidae)

Unclassified parabasalid

(Cristamonadida)

CsSnA Unclassified parabasalid from C. brevis

(AF052699)

96.1

*Affiliation is based on Ohkuma et al. (2005).

DCalculated based on the aligned dataset using ARB.
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Dinenympha. The Trichonympha suspension yielded three
different phylotypes of eukaryotic SSU rRNA genes, whose
sequences were virtually identical to those of the three
Trichonympha phylotypes previously obtained from this
termite by Ohkuma et al. (2000).

SSU rRNA gene libraries were constructed from the same
flagellate suspensions using Bacteria-specific or ‘Endo-
microbia’-specific primers. With either primer set, only a
single phylotype of ‘Endomicrobia’ was recovered from the
Dinenympha (‘Endomicrobia’ phylotype HsDn-1) and
Eucomonympha (HsEc-1) suspensions, whereas two dis-
tinct phylotypes (HsTc-1 and HsTc-2) were identified in
the Trichonympha suspension. Each of the phylotypes
formed a distinct, host-specific cluster (Fig. 2). Additional
clusters consisting only of clones from whole-gut prepara-
tions were present (WG1–WG9, Fig. 2), suggesting that
‘Endomicrobia’ might be present also in other flagellate
species in H. sjoestedti other than those investigated.
However, we do not completely preclude the possibility
that these unidentified clones are derived from free-living
‘Endomicrobia’ species.

‘Endomicrobia’ in representative flagellates from
other termites

Using the same strategy, we phylogenetically analysed the
host flagellates and ‘Endomicrobia’ in the flagellate
suspensions prepared from five other termites, which
represent seven additional flagellate genera of parabasalids
and oxymonadids (Table 1). Again, we were able to assign
the eukaryotic SSU rRNA gene sequences obtained from
each flagellate suspension to the identical or similar
respective genera, whose SSU rRNA gene sequences have
been published. A notable exception was the SSU rRNA
gene recovered from the suspension of Joenia sp. of K.
flavicollis, which showed the highest identity (98 %) to
clone Kf5 (AF215857) obtained from a clone library of the
same termite and assigned to the flagellate genus Foaina by
other authors (Gerbod et al., 2000).

Each of the flagellate suspensions yielded a single and
unique host-specific phylotype of ‘Endomicrobia’ in the
corresponding SSU rRNA libraries. The phylogenetic tree
of all almost-full-length (.1400 bp) SSU rRNA gene
sequences obtained in this and previous studies clearly

Fig. 2. Phylogenetic tree of ‘Endomicrobia’ and selected environmental clones in the TG-1 phylum, based on SSU rRNA gene
sequences. The core tree (maximum-likelihood) was constructed from almost-full-length sequences (.1300 bp). Tree topology
was tested by neighbour-joining and parsimony analysis with bootstrapping (DNAPARS, 1000 replicates). Marked nodes have
bootstrap values of .95 % ($) and .50 % (#), nodes not supported by all analyses are shown as multifurcations. WG1–
WG9: clusters formed by shorter (~1070 bp) ‘Endomicrobia’ sequences originating from whole-gut contents added using the
ARB parsimony tool. Sequences obtained in this study are marked in bold.
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showed that the ‘Endomicrobia’ sequences from each
flagellate host always represent distinct phylotypes (Fig. 2).
The ‘Endomicrobia’ of flagellates originating from the
same termite did not cluster with each other. Instead, the
‘Endomicrobia’ from the Trichonympha species of H.
sjoestedti and Z. nevadensis clustered together with those
previously obtained from the Trichonympha species of R.
santonensis and R. speratus, and collectively constitute a
monophyletic cluster that forms a sister group of the
‘Endomicrobia’ clones recovered from all other flagellates.

Localization of ‘Endomicrobia’ by fluorescence in
situ hybridization (FISH)

For selected termites, we conducted FISH to confirm the
intracellular location of the ‘Endomicrobia’ phylotypes
obtained from the respective flagellate suspensions by the
specific PCR amplification. It was not possible to design a
specific probe for all ‘Endomicrobia’. Moreover, the
limited number of variable regions among different
‘Endomicrobia’ did not allow the design of specific probes
covering each phylotype. Therefore, we designed a set of
oligonucleotide probes that covered the phylotypes in
question (Table 2).

Simultaneous FISH was conducted with a fluorescein-
labelled bacterial probe and a Cy3-labelled ‘Endomicrobia’
probe. Fig. 3 shows representative examples in which the
‘Endomicrobia’-specific signal is exclusively localized
within the corresponding host cells, whereas the Bacteria-
specific probe also stained bacteria associated with the
surface or content of these and other flagellate species
(Fig. 3). In no case did we see evidence for the location of
‘Endomicrobia’ on the cell surface or within the nucleus of
the host.

Since the morphotypes of certain flagellates (Dinenympha
spp. in H. sjoestedti and Joenia sp. in K. flavicollis) were
difficult to distinguish in the fixed samples, the presence of
‘Endomicrobia’ in the host cells was also confirmed by

double hybridization with the respective combination of
host and symbiont probes (Table 2; details not shown). In
the case of Eucomonympha cells, it was not possible to
visualize single cells of ‘Endomicrobia’ because of a high
affinity of both the Bacteria-specific and nonsense probe to
the dense cell content of the host flagellate. Fluorescence
signals outside of the flagellate cells observed in dry-wood
termites (see Fig. 3f) were present also in non-stained
preparations and were caused by autofluorescence of wood
particles in the gut content.

DISCUSSION

The results of this study corroborate that ‘Endomicrobia’
are host-specific intracellular symbionts of termite gut
flagellates. Each of the flagellates investigated harboured a
unique phylotype of ‘Endomicrobia’, which supports our
hypothesis that the diversity of ‘Endomicrobia’ in each
termite gut reflects the diversity of their flagellate hosts.
Potential co-speciation between endosymbiont and host is
suggested by the ‘Endomicrobia’ phylotypes associated
with flagellates of the genus Trichonympha constituting a
monophyletic group.

Each of the termite gut flagellates analysed in this study
invariably harboured ‘Endomicrobia’. Together with the
phylotypes that remain to be assigned to a particular host,
‘Endomicrobia’ represent the symbionts of up to 24
parabasalid and oxymonadid species, and probably more
in view of the presence of ‘Endomicrobia’ phylotypes
retrieved from whole-gut homogenates of H. sjoestedti in
addition to those retrieved from the flagellate suspensions.
The wide host range and their consistent occurrence within
the host indicate a broad host spectrum of ‘Endomicrobia’
as symbionts of termite gut flagellates.

The ‘Endomicrobia’ of each flagellate species form a unique
phylogenetic lineage. The case of H. sjoestedti, in which the
Trichonympha suspension contained three phylotypes of

Table 2. Oligonucleotide probes newly designed for whole-cell hybridization of ‘Endomicrobia’ and their host flagellates

Probe name Target* Sequence (5§–3§)D Formamide concn (%)

TG1End1023T1 ‘Endomicrobia’ phylotypes ZnTc-1, HsTc-1, RsTG1 GCTGACTCCCTTGCGGGTCA 20–50

TG1End1027 Most ‘Endomicrobia’ lineages (including HsDn-1) CTCTGCTAACTCCCTTGCGG 40

TG1End1023 Some ‘Endomicrobia’ lineages (including HsEc-1) ACTAACTCCCTTGCGGGTCA 20d

TG1-TriG1-Hsj Symbiont HsTc-1 of Trichonympha sp. HsTcA TTGGTCCAGAAGACTGCTT 20

TG1-Joe-Kf Symbiont KfJe-1 of Joenia sp. KfJeA GCTAACTCTCTTGCGAGTCA 20

TG1-Dev-Nca Symbiont NcDv-1 of Devescovina sp. NcDvA GCATAGGACCACAGTTTGGC 20

Flg-Dine-Hsj Dinenympha sp. HsDnA of H. sjoestedti GCTTTTTGAGGCGGCTAT 35

Flg-Tricho1-Hsj Trichonympha sp. HsTcA of H. sjoestedti GCTAGATTTCAAGATAGTCT 10

Flg-Euc-Hsj Eucomonympha sp. HsEcA of H. sjoestedti AAACCTCCAGACCACGCT 10d

Flg-Joe-Kfl Joenia sp. KfJeA of K. flavicollis GCTAGGTTGCACACTAGTGG 35

*All ‘Endomicrobia’ probes had at least two mismatches against any other bacterial phylotype in public databases previously detected in termite guts.

DThe oligonucleotide probe sequences have been submitted to probeBase (Loy et al., 2003; www.microbial-ecology.net/probebase/).

dNot optimized.
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Trichonympha, but from which only two distinct phylo-
types of ‘Endomicrobia’ were recovered, does not neces-
sarily contradict the proposed host specificity. It is possible
that the third phylotype of ‘Endomicrobia’ was missed in
this study because it had been under-represented in the
sample, or that one of the three phylotypes of
Trichonympha in H. sjoestedti lacks ‘Endomicrobia’. The
first explanation is supported by the presence of another
‘Endomicrobia’ lineage (WG1) recovered from total-gut
DNA that clusters with the two other lineages from the
Trichonympha suspension (Fig. 2).

All ‘Endomicrobia’ phylotypes associated with Trichonym-
pha species collectively constitute a monophyletic group
that is phylogenetically distinct from the phylotypes
recovered from all other flagellates. The evidence that
host-specificity is present also at the species level is
indicative of co-speciation between the partners (Page &
Charleston, 1998). This would imply that each of the extant
Trichonympha flagellates harbours a specific lineage of
‘Endomicrobia’ inherited by vertical transmission from
their common ancestor – an issue that cannot be resolved
based on the current dataset. Conversely, it is possible that
at one point in time ‘Endomicrobia’ have been horizontally
transferred from one flagellate species to another within the
same termite gut. This would explain why oxymonads
(Dinenympha, Oxymonas) harbour ‘Endomicrobia’ that are

relatively closely related to the symbionts of parabasalids,
i.e. flagellates of a different phylum.

This study corroborates that ‘Endomicrobia’ form a
separate line of descent in the bacterial tree (Stingl et al.,
2005). They are part of the TG-1 phylum, which consists
of numerous diverse and deep-branching lineages
(Herlemann et al., 2007). While ‘Endomicrobia’ seem to
be restricted to termites and wood-feeding cockroaches,
other representatives of the TG-1 phylum occur in a wide
range of chemically and geographically distinct habitats,
including soils, sediment and intestinal tracts.

Although nothing is known about the metabolic function
of ‘Endomicrobia’, their constant occurrence as intracel-
lular symbionts with a broad host range suggests that their
nutritional requirements may be met by substances
commonly available in the cytoplasm of gut flagellates.
The host flagellates may also benefit from their endosym-
bionts, e.g. by the provision of nutrients otherwise lacking
in the diet of the termites (see also: Stingl et al., 2005).
Although certain termite gut flagellates have been shown to
ferment cellulose to hydrogen and acetate (Hungate, 1955;
Yamin, 1980, 1981; Odelson & Breznak, 1985), the
physiology of most termite gut flagellates is still completely
unknown. This makes elucidation of the biology of
‘Endomicrobia’ and their function in the symbiosis a most
intriguing, but very challenging subject.

Fig. 3. Epifluorescence micrographs of hind-
gut preparations of Z. nevadensis (a, b), H.

sjoestedti (c, d) and Devescovina from N.

castaneus (e, f). The preparations were stained
with DAPI (a, c, e) and simultaneously hybri-
dized with the fluorescein-labelled (green)
probe EUB338 and the Cy3-labelled (orange)
probes TG1End1023T1 (b), TG1End1027
(d), or TG1-Dev-Nca (f). Bacteria hybridizing
with both probes appear yellow. Arrows (in f)
indicate autofluorescence of wood particles.
Bars, 50 mm.
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Gerbod, D., Edgcomb, V. P., Noël, C., Delgado-Viscogliosi, P. &
Viscogliosi, E. (2000). Phylogenetic position of parabasalid symbionts

from the termite Calotermes flavicollis based on small subunit rRNA

sequences. Int Microbiol 3, 165–172.
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