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Zusammenfassung

Inhaltsangabe und Zielrichtung der Arbeit

Während viele quantenoptische Phänomene in kalten Atomgasen gut etabliert sind,
wie der Einzelphotonenemission (’photon antibunching’) [1], dem gequetschten Licht
(’squeezed light’) [2], der Bose-Einstein Kondensation [3], und der Teleportation [4], ste-
hen die quantenoptischen Untersuchungen in Halbleitern erst noch am Anfang [5]. Die
faszinierenden Resultate, die man in den atomaren Systemen erzielt hat, inspirieren die
Physiker, auch ähnliche quantenoptische Effekte in Halbleitersystemen nachzuweisen.
Im Gegensatz zur Quantenoptik mit verdünnten Atomgasen hat man es im Halbleiter
mit einem komplizierten Vielteilchenproblem zu tun, welches durch die Coulombwechsel-
wirkung zwischen den Elektronen und Löchern und durch die Kopplung mit der Umge-
bung des Halbleitermaterials dominiert wird. Dies ist der Grund dafür, dass der ex-
perimentelle Nachweis ähnlicher quantenoptischer Effekte in Halbleitern sehr schwierig
ist. Jedoch gibt es schon Experimente welche nichtklassische Effekte in Halbleitern
nachgewiesen haben. Speziell hat man mit Halbleiter Quantenpunkten die Einpho-
tonenemission [6–8] und die Erzeugung von polarisations-verschränkten Photonenpaaren
[9–11] gemessen. In der Tat stellen atomare- und Halbleiterquantenpunkt-Systeme in-
nerhalb einer Mikrokavität geeignete Plattformen dar, in denen man systematische quan-
tenoptische Untersuchungen [12, 13] als auch Pionierarbeit hinsichtlich Anwendungen in
der Quanteninformation [14, 15] durchführen kann.

Ein anderes interessantes Gebiet ist das der starken Licht-Materie Kopplung, in welcher
die Licht-Materie stärker ist als die Dekohärenzrate des Atoms oder des Quantenpunkts
und der Kavität. Dies resultiert in eine reversible Dynamik zwischen Licht und Ma-
terieanregung. In diesem Regime der starken Licht-Materie Kopplung ist die Jaynes-
Cummings Leiter vorhergesagt [16] und zeigt eine photonenzahlabhängige Aufspaltung
der neuen Polariton-Zustände. Obwohl der halbklassische Effekt der Vakuum-Rabi-
Aufspaltung schon experimentell beobachtet wurde in Quantenpunkten [17–20], steht der
eindeutige Nachweis der quantenmechanischen Jaynes-Cummings Aufspaltung [5, 16, 21]
hauptsächlich wegen Dephasierungseffekten noch aus. Es ist klar, dass die Beobachtung
der Jaynes-Cummings Leiter in Quantenpunkten ein bedeutender Schritt wäre auf dem
Gebiet der Quantenoptik in Halbleitern. Hier ist auch wieder zu erwähnen, dass die
Anstrengungen in Quantenpunkten durch die atomaren Systeme vorangetrieben wer-
den, in denen man nicht nur die Vakuum-Rabi-Aufspaltung [22, 23], sondern auch den
Zwei-Photonen Polariton (’second rung’) [24–26] gemessen hat, z.B. mittels der direkten
Spektroskopie [25] und der Photonenkorrelationsmessungen [26].

Um besser mit dem Hauptthema dieser Dissertation vertraut zu werden, werden wir im
Folgenden kurz die grundlegenden Resultate des Jaynes-Cummings Modells [16] zusam-
menfassen. Dieses Modell beschreibt die Kopplung zwischen einer einzigen Lichtmode
einer Kavität und einem Zwei-Niveau System. Dazu ist in Fig. 0.1 die resultierende
Jaynes-Cummings Leiter des Regimes der starken Kopplung abgebildet. Ohne Licht-

iii



Figure 0.1: Jaynes-Cummings Leiter. Die Quantisierung des Lichtfeldes führt zu Fock-
Zustände |n〉 welche durch die Licht-Materie Wechselwirkung g aufspalten.
Jeder Zustand |n〉 zeigt eine individuelle Kopplung gn =

√
ng. In dieser

Dissertation konzentrieren wir uns auf den Zwei-Photonen Polariton-Zustand
(’second rung’), der durch die Schraffierung angedeutet ist.

Materie Wechselwirkung erhalten wir, wie in Fig. 0.1 dargestellt, nur die Fock-Zustände
der Kavitätsmode, welche durch |n〉 mit n = 0, 1, 2, . . . beschrieben werden. Wenn
wir nun die Licht-Materie Wechselwirkung einschalten, so spalten diese Zustände auf
und formen neue, gekoppelte Zustände |n〉|down〉 ± |n − 1〉|up〉, mit nicht angeregtem
(angeregtem) Zwei-Niveau System |down〉 (|up〉). In der Abbildung Fig. 0.1 sehen wir
deshalb, dass der Grundzustand unverändert bleibt, während die höherliegenden Leit-
ersprossen eine Aufspaltung zeigen, die von der Photonenzahl wie 2

√
ng abhängt. Da

die höherliegenden Leitersprossen von n, welches proportional zur Lichtfeldintensität
ist, abhängen, betreten wir das Regime der nichtlinearen Optik, in der, vereinfacht
gesprochen, die Anwesenheit oder Abwesenheit eines einzelnen Photons dramatische
Auswirkungen auf den Systemzustand haben kann [5]. In dieser Dissertation befassen
wir uns im Wesentlichen mit dem Zwei-Photonen Polariton, der durch die Schraffierung
hervorgehoben ist. Wir betonen, dass nur eine voll quantenmechanische Theorie die
Existenz des Zwei-Photonen Polaritons der Jaynes-Cummings Leiter erklären kann. In
einer halbklassischen Theorie, welche nur die Materie quantisiert, nicht aber das Licht
welches klassisch behandelt wird, kann man den Zwei-Photonen Polariton nicht erklären.
Deswegen ist der experimentelle Nachweis des Zwei-Photonen Polaritons eine eindeutige
Signatur des quantenmechanischen, starken Kopplungs-Regimes.

In dieser Dissertation verwenden wir extensiv die so genannte Cluster Entwicklungsmeth-
ode [27–29]. Diese Methode wurde schon erfolgreich in der Untersuchung verschiedenster
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Figure 0.2: Phasenraum-Darstellung einiger Lichtfelder. (a) Klassische Optik welche
anhand des kohärenten Zustandes (’coherent state’) verdeutlicht wird. Hier
spielen Amplitude und Phase die wesentliche Rolle. (b) Quantenoptik. Abge-
bildete Beispiele sind gequetschter Zustand (’squeezed state’), Fock-Zustand
(’Fock state’), und thermisches Licht (’thermal light’), welche alle eine nicht
verschwindende Quantenfluktuation aufweisen.

Vielteilchen- und quantenoptischen Systemen eingesetzt [30–33], wie der Exzitonbildung
in Halbleiter Heterostrukturen [34], der konsistenten Beschreibung der Wechselwirkung
zwischen Licht und Elektron-Loch Anregungen in Halbleiter Nanostrukturen [28, 35],
und der Quasiteilchen- und quantenoptischen Spektroskopie zur direkten Kontrolle und
Bildung von Exzitonenpopulation [36, 37]. Während eine Lösung der Dichtematrix
für generische Multimoden- und Vielteilchen-Systeme sehr schwierig, wenn nicht gar
unmöglich ist, stellt doch die Clusterentwicklung eine geeignete Methode dar, um konsis-
tente Näherungslösungen zu entwickeln, welche systematisch verbessert werden können.
Diese Näherungen sind meistens sehr genau, da wir oft nur an einer Teilmenge aller
Erwartungswerte interessiert sind, die das System gut beschreiben.

Es gibt auch alternative Methoden, um Vielteilcheneffekte zu beschreiben, wie z.B.
die Green-Funktions Methode [38], die Dichtefunktionaltheorie [39], und Monte-Carlo
Methoden [40]. Für jeden Problemfall muß man die geeignete Methode wählen. Wir
entscheiden uns für die Clusterentwicklung, da diese eine nützliche Methode darstellt,
mit der man die Emissionseigenschaften eines Materialsystems berechnen kann. Zudem
bietet die Cluster Entwicklungsmethode auch einen ansprechenden Formalismus, mit
dem man die wesentlichen Mechanismen eines gegebenen Phänomens herausarbeiten
kann.

Mit Hilfe dieser Theorie können wir das Lichtfeld und die Materialanregung auf
der gleichen Näherungsstufe lösen, was zu einer selbstkonsistenten Theorie führt. Die
Theorie ist auch flexibel, um verschiedene Lichtfelder zu beschreiben. Das bedeutet,
dass wir klassische als auch quantenmechanische Lichtfelder beschreiben können. Um
den Unterschied zwischen der klassischen Optik und der Quantenoptik zu wiederholen,
ist in Fig. 0.2 die Phasenraum-Darstellung einiger einmodigen Lichtfelder dargestellt.
Genauer ausgedrückt ist hier ein Schema der Wignerfunktion [41, 42] als Contour-
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Graphik skizziert. Das Symbol B̂ bedeutet hier der bosonische Photonenoperator. Die
Abbildung 0.2(a) demonstriert das Regime der klassischen Optik und zeigt als Beispiel
die Phasenraumverteilung des kohärenten Zustands. Der kohärente Zustand ist ein klas-
sisches Lichtfeld, mit einer gut definierbaren Phase, niedriger Fluktuation in der Photo-
nenzahl, und beschreibt in guter Näherung einen Laser oberhalb der Laserschwelle. Die
Abbildung 0.2(a) zeigt, dass das kohärente Lichtfeld vollständig durch Amplitude |〈B̂〉|
und Phase 〈B̂〉/|〈B̂〉| festgelegt ist.

Im Gegensatz dazu zeigt die Abbildung 0.2(b) das Regime der Quantenoptik. Die
Phasenraumverteilungen des thermischen Lichts, des Fock-Zustands, und des gequetschten
Lichts sind dargestellt. Der Fock-Zustand und der gequetschte Zustand gelten als sehr
quantenmechanische Zustände, da der Fock-Zustand keine Fluktuation in der Photonen-
zahl und der gequetschte Zustand eine Fluktuation in einer Quadraturrichtung unterhalb
der minimalen Unschärfegrenze [43] aufweist. Das thermische Licht ist ein inkohärentes
Lichtfeld ohne Amplitude und Phase, und weist eine große Fluktuation in der Photo-
nenzahl auf. Das thermische Licht beschreibt einen Laser unterhalb der Laserschwelle.
In der Abbildung 0.2(b) sehen wir, dass das thermische Licht und der Fock-Zustand
weder Amplitude noch Phase besitzen, jedoch nicht verschwindende Quantenfluktuatio-
nen aufweisen. Somit kann das Licht nicht nur eine Amplitude und Phase aufweisen,
sondern auch Quantenfluktuationen. Dies ist das Regime der Quantenoptik, welche mit-
tels Korrelationen [43] beschrieben werden kann. Als Beispiel für solch eine Korrelation
führen wir ∆〈B̂B̂〉 ≡ 〈B̂B̂〉 − 〈B̂〉〈B̂〉 auf, welches den vollen Erwartungswert abzüglich
der klassischen Faktorisierung darstellt.

Formal sind die Korrelationen durch die Notation ∆〈Ô〉 in dieser Dissertation her-
vorgehoben, wobei Ô eine allgemeine Operatorkombination sein kann. Als Beispiel zeigt
der gequetschte Zustand eine nicht verschwindende Zwei-Photonen Korrelation ∆〈B̂B̂〉
[43–46], welche den Grad der Quetschung entlang einer Richtung im Phasenraum an-
gibt. Um dies zu verdeutlichen, haben wir die Phasenraumverteilung eines gequetschten
Zustands in Abbildung 0.2(b) gezeigt. Wir sehen, dass dieses Beispiel eine Quetschung
entlang der Re[〈B̂〉] Richtung zeigt.

Wie bereits in Ref. [5] betont sind die nicht verschwindenden Korrelationen, z.B.
∆〈B̂ĉ†ĉ〉 mit Lichtfeldoperator B̂ und elektronischem Operator ĉ, wichtig für jegliche
quantenoptische Beschreibung. Hierbei stellt das Kriterium ∆〈B̂ĉ†ĉ〉 6= 0 eine ein-
deutige Unterscheidung zwischen halbklassischen und quantenoptischen Verfahren dar.
Wir erwähnen, dass die Korrelationen die volle Quantenstatistik des Lichtes darstellen
und dass diese äquivalent sind zu anderen Darstellungen mittels Erwartungswerten
[43], Dichtematrix, reduzierten Verteilungen (’marginal distributions’) [43], und mittels
Phasenraumverteilungen wie z.B. Glauber-Sudarshan-Funktion [47–49], Wignerfunktion
[41, 42], und Husimi Q Funktion [41, 50]. In dieser Dissertation verwenden wir die
Erwartungswerte und Korrelationen zur theoretischen Beschreibung der Licht-Materie
Kopplung.

In diesem theoretischen Rahmen können die Halbleiter-Blochgleichungen und Halbleiter-
Lumineszenz-Gleichungen aufgestellt werden, welche die Licht-Materie Wechselwirkung
und das reemittierte Lichtfeld beschreiben. Überdies können die Bewegungsgleichungen
zur Bildung des gequetschten Lichtes aufstellt werden. Diese Gleichungen werden auch
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in dieser Dissertation diskutiert.
Die Dissertation ist wie folgt gegliedert. Kapitel 2 führt den Modellhamiltonian

ein, welcher das starke Kopplungs-Regime beschreibt, und faßt die charakteristischen
Modellparameter für die verschiedenen, betrachteten Systeme zusammen. In Kapitel 3
leiten wir die Heisenberg Bewegungsgleichungen her, die alle Korrelationen bis zur Drei-
Teilchen Ebene enthalten. Als Nächstes wenden wir in Kapitel 4 die aufgebaute Theorie
auf Quantenpunkten als auch auf atomare Systeme an und studieren die Eigenschaften
der Emission des Zwei-Photonen Polaritons. In Kapitel 5 diskutieren wir das Konzept
der Zwei-Photonen Korrelationsmessung und heben seine Vorteile hervor. Diese Diskus-
sion wird erweitert in Kapitel 6, in dem wir auch die mikroskopische Theorie der ge-
quetschten Lichtemission behandeln.

Bedeutung der erzielten Resultate

In dieser Dissertation haben wir eine voll quantisierte Theorie entwickelt, um die Res-
onanzfluoreszenz von Halbleiter Nanostrukturen zu untersuchen. Hierbei ist das Mate-
rialsystem optisch mit einem externen Laser angeregt während das reemittierte Licht-
spektrum detektiert wird. Wir haben die Erscheinung des Zwei-Photonen Polaritons der
Jaynes-Cummings Leiter in den stark gekoppelten Halbleiter Quantenpunkten analysiert
und geeignete experimentelle Methoden zur Detektierung dieser Signaturen vorgeschla-
gen. Wir haben herausgestellt, dass der Zwei-Photonen Polariton ein wahrer quan-
tenoptischer Effekt ist. Die entwickelte Theorie haben wir auf aktuelle Quantenpunkte
angewendet, die die halbklassische Vakuum-Rabi-Aufspaltung gezeigt haben. Überdies
haben wir experimentelle Daten eines atomaren Systems, welches den Zwei-Photonen
Polariton im Intensitätsspektrum aufgezeigt hat, theoretisch untersucht und gute
Übereinstimmung zwischen Experiment und unserer Theorie gefunden. Unsere Ergeb-
nisse für die Quantenpunkte haben noch vorhersagenden Charakter, da die experi-
mentelle Arbeit noch im Prozess ist.

Um diese Ergebnisse zu erzielen, haben wir ein voll quantenmechanisches Modell
aufgestellt, welches die Wechselwirkung zwischen vielen Quantenpunkten innerhalb einer
Kavität und vielen quantisierten Lichtmoden beschreibt. Es stellt sich heraus, dass
dieses Modell sehr gut geeignet ist, da es uns erlaubt, die, z.B., Lichtpropagation und
Licht-Materie Kopplung ohne phänomenologische Parameter zu erhalten. Dazu genügt
es, für ein gegebenes Resonatormodell die Lichtmoden-Funktionen mit der Helmholtz-
Gleichung und der Transfermatrix-Methode zu lösen. Die experimentellen Parameter,
wie z.B. die Qualität der Kavität und die Vakuum-Rabi-Aufspaltung, werden dabei den
jeweiligen experimentellen Gegebenheiten angepaßt.

Als nächsten Schritt haben wir die Methode der Heisenberg Bewegungsgleichungen
verfolgt, um die relevanten Operatorkombinationen auszuwerten. Wir sind auf das
bekannte Hierarchieproblem gestoßen, das ihren Ursprung im quantisierten Wechsel-
wirkungshamiltonian hat. Um diese Hierarchie zu durchbrechen, haben wir die Clus-
ter Entwicklungsmethode angewendet, die konsistente Näherungslösungen produziert.
Diese Methode erlaubt es uns alle Korrelationen bis zu einer gewünschten Ordnung
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mitzunehmen. Wir haben sorgfältig die Genauigkeit der erhaltenen Gleichungen unter-
sucht, indem wir die dazugehörigen numerischen Resultate mit den exakten Lösungen,
für den Fall eines Quantenpunktes und einer einzelnen Lichtmode, verglichen haben.
Diese Untersuchungen sind im Anhang detailliert dargestellt. Wir haben gezeigt, dass
der Zwei-Photonen Polariton im Intensitätsspektrum in einer Dreiteilchen Theorie und
im gequetschten Spektrum in einer Zweiteilchen Theorie erhalten werden kann. Somit
haben wir gerechtfertigt, dass wir eine Theorie verwenden können, welche alle Ko-
rrelationen bis zur Drei-Teilchen Ebene beinhaltet. Die resultierenden Gleichungen
werden Maxwell-Blochgleichungen, Lumineszenz-Gleichungen, ’squeezing’-Gleichungen,
und ’triplet’-Gleichungen genannt.

Wir haben gezeigt, dass die Emission des Zwei-Photonen Polaritons bestimmt ist durch
die Besetzung des Zwei-Photonen Zustandes des anregenden Lichtpulses. In diesem
Zusammenhang haben wir die optimalen Anregungsbedingungen herausgearbeitet. Wir
haben zudem ein erst kürzlich betrachtetes atomares Experiment analysiert, das den
Zwei-Photonen Polariton direkt im Intensitätsspektrum gemessen hat. Unsere Theo-
rie stimmt gut mit den experimentellen Ergebnissen überein. Zudem finden wir, dass
derselbe Mechanismus zur Erzeugung des Zwei-Photonen Polaritons in atomaren- und
Halbleiter Quantenpunkt-Systemen angewendet werden kann.

Da die realistische Dephasierung aktueller Quantenpunktproben die wesentlichen,
interessanten Effekte im Intensitätsspektrum ausschmieren, haben wir vorgeschlagen,
die Zwei-Photonen Korrelationsmessungen zu verwenden. Im Gegensatz zum Inten-
sitätsspektrum finden wir, dass die Vakuum-Rabi Resonanzen abwesend sind im Zwei-
Photonen Korrelationsspektrum. Dies eliminiert den störenden Hintergrundbeitrag. Zu-
dem finden wir eine verstärkte Resonanz an der Emissionsfrequenz des Zwei-Photonen
Polaritons, welche wir auf den gequetschten Charakter des emittierten Lichtfeldes
zurückführen, das im Pumpprozess des Zwei-Photonen Polaritons generiert wird. Wir
haben gezeigt, dass diese verstärkte Resonanz genügend robust ist gegenüber
Dephasierung. Da diese große Resonanz der Zwei-Photonen Korrelation in einem Exper-
iment mit Atomen schon beobachtet wurde, als Nachweis des Zwei-Photonen Polaritons,
sind wir überzeugt, dass diese Methode auch anwendbar sein sollte in den Quantenpunk-
tsystemen.

Wir haben diese Diskussion erweitert und auch die Kreuzkorrelationen der Zwei-
Photonen Korrelationen untersucht. Wir haben vorgeschlagen, dass sich die exper-
imentellen Anstrengungen auf die Kreuzkorrelationen konzentrieren sollten, da diese
unter stationären Bedingungen beobachtet werden können und eine größere Resonanz
als die einfachen Autokorrelationen aufweisen. Wir haben diese Ergebnisse mittels eines
reduzierten Modells überprüft, das wir analytisch gelöst haben. Die explizite Her-
leitung der analytischen Lösung ist im Anhang detailliert dargestellt. Wir haben gezeigt,
dass das reduzierte Modell unter typischen starken Kopplungsbedingungen sehr genaue
Ergebnisse erzielt. Im Einzelnen haben wir eine sehr gute Übereinstimmung zwischen
Numerik und Analytik gefunden.

Wir haben den entwickelten Formalismus verwendet, um den physikalischen Ursprung
der gequetschten Lichtemission zu erklären. Dazu haben wir den generischen Fall der
Licht-Materie Kopplung betrachtet und geschlossen, dass die Materie eine fermionische
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Statistik aufweisen muß, um gequetschtes Licht produzieren zu können. Zum Schluss
haben wir eine exakte Beziehung zwischen dem generierten, gequetschten Licht und der
Zwei-Photonen Korrelationen präsentiert.

Als Ausblick werde ich die verbleibenden Artikel fertig stellen, welche noch in der Bear-
beitung sind, siehe ’Author’s Contributions’ am Anfang dieser Dissertation. Speziell
wird das Thema der Verschränkung (’entanglement’), der theoretische Vorschlag zur
Exziton-Biexziton Anregung in CdSe-basierenden Quantenpunkten in Zeno-Logik An-
wendungen, und die starke Kopplung in atomaren Systemen gegenüber Quantenpunkten
in verschiedenen Artikeln zusammengefasst.
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culties in the semiconductor quantum dots to observe the second rung, i.e. the first
quantum-mechanical contribution, of the Jaynes-Cummings ladder. I then investigated
the buildup of the squeezing and two-photon correlations. This lead to the concept of
the photon-statistics spectroscopy which we published in Papers [II-III]. These results
were presented by me as a talk at the DPG meeting in Darmstadt [ii] and as a poster
at the NOEKS 9 meeting in Klink/Müritz [iii]. I also gave an invited talk in the joint
group seminar of Jens Förstner and Torsten Meier at the University Paderborn [iv].

I extended the simple photon-statistics spectroscopy to analyze also the cross cor-
relations. This lead to a deep understanding of the temporal dynamics and spectral
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properties of the full two-photon emission spectrum. I developed a microscopic theory
of the squeezed-light emission and worked out the connection to the two-photon cor-
relations. These results are given in Paper [IV]. During that time, I also collaborated
with P. Michler’s group in Stuttgart and we discussed the experimental techniques to
detect the second-rung resonance with the semiconductor quantum dots. Unfortunately,
the limitation of the detection resolution prevented fast success and the experiment was
postponed.

It is interesting to note that the efforts done in atomic systems to measure the second
rung were quite at the same time when I was working on the dot problem, in 2008.
This gave me the chance to learn also about the atomic systems. I had discussions
with Gerhard Rempe’s group in Garching and I tried to explain their experimental data
which they had already published in a Nature article. The results of this comparison are
summarized in this Thesis. It is also remarkable that in the same year, Rempe’s group
confirmed in their atomic system that the photon-statistics scheme is a reliable method to
detect the second rung. I also had the possibility to give a talk about these observations
at an international conference in Baltimore [v]. Furthermore, I am working on a Paper
which treats the comparison between atomic- vs. quantum-dot strong coupling [V].

During February 2009, I worked on an elementary model which describes the exciton-
to-biexciton transition in CdSe-based quantum dots. We worked out a theoretical pro-
posal for a device design for Zeno-based optoelectronics. These results will be summa-
rized in Paper [VI].

I also worked on developing a theory which treats fundamental aspects of entangle-
ment. I learned different entanglement measures and analyzed the entanglement dy-
namics for a special class of interaction Hamiltonians. This work will be summarized in
Paper [VII].

I also had the pleasure to give an invited talk in the group seminar of Andreas Knorr
at the Technische Universität Berlin [vi].
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1 Introduction

While many quantum-optical phenomena are already well established in the atomic sys-
tems, like the photon antibunching [1], squeezing [2], Bose-Einstein condensation [3],
teleportation [4], the quantum-optical investigations in semiconductors are still at their
beginning [5]. The fascinating results observed in the atomic systems inspire physicists
to demonstrate similar quantum-optical effects also in the semiconductor systems. In
contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a com-
plicated many-body problem which is dominated by the Coulomb interaction between
the electrons and holes and by coupling with the semiconductor environment. This
makes the experimental observation of similar quantum-optical effects in semiconduc-
tors demanding. However, there are already experiments which have verified nonclassical
effects in semiconductors. In particular, experiments have demonstrated that semicon-
ductor quantum dots (QDs) can exhibit the single-photon emission [6–8] and generation
of polarization-entangled photon pairs [9–11]. In fact, both atom and QD systems, em-
bedded within a microcavity, have become versatile platforms where one can perform
systematic quantum-optics investigations [12, 13] as well as development work toward
quantum-information applications [14, 15].

Another interesting field is the strong-coupling regime in which the light-matter cou-
pling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a
reversible dynamics between light and matter excitations. In the strong-coupling regime,
the Jaynes-Cummings ladder [16] is predicted and shows a photon-number dependent
splitting of the new dressed strong-coupling states which are the polariton states of
the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi
splitting has already been observed in QDs [17–20], the verification of the quantum-
mechanical Jaynes-Cummings splitting [5, 16, 21] is still missing mainly due to the
dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs would be
a great contribution in the growing field of quantum optics in semiconductors. The ef-
forts in QD systems are again driven by the atomic systems which not only have shown
the vacuum Rabi splitting [22, 23], but also the second rung [24–26], e.g. via direct
spectroscopy [25] and via photon-correlation measurements [26].

In order to get already some insights into the main discussion of this Thesis, we
briefly review now the basic results of the Jaynes-Cummings model [16] which describes
the coupling between a single light mode and a two-level emitter. For this, we present
in Fig. 1.1 the resulting Jaynes-Cummings ladder in the strong-coupling regime. With-
out light-matter coupling, we obtain the Fock number states of the cavity light mode,
denoted as |n〉 where n can be 0, 1, 2, . . ., as depicted in Fig. 1.1. If we switch on
the light-matter coupling, these states split and form new dressed states of the format
|n〉|down〉 ± |n − 1〉|up〉 with unexcited (excited) two-level system |down〉 (|up〉). In
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1 Introduction

Figure 1.1: Jaynes-Cummings ladder. The quantized nature of light introduces the Fock
number states |n〉 which split due to the light-matter coupling g. Each state
|n〉 shows an individual coupling of gn =

√
ng. In this Thesis, we mainly

focus on the second rung which is highlighted by the shaded area.

Fig. 1.1, we thus observe that the ground state is unsplit while the higher-lying rungs
show a photon-number dependent splitting of 2

√
ng. Since the higher-lying rungs de-

pend on n which is proportional to the light-field intensity, we enter the regime of the
nonlinear optics where the presence or absence of a single photon can change the state of
the system dramatically [5]. In this Thesis, we mainly focus on the second rung which is
highlighted by the shaded area. We point out that only a fully quantized theory can ex-
plain the existence of the second rung of the Jaynes-Cummings ladder. In a semiclassical
theory which quantizes only the matter but treats the light classically, the second rung
cannot be obtained. Thus, the experimental verification of the second rung provides a
clear signature of the true strong-coupling regime.

In this Thesis, we strongly make use of the so-called cluster-expansion approach [27–
29]. This method has already been successfully applied to various phenomena in many-
body and quantum-optical systems [30–33], such as the exciton formation in semiconduc-
tor heterostructures [34], the consistent treatment of interaction of light and electron-
hole excitations in semiconductor nanostructures [28, 35], and the quasi-particle and
quantum-optical spectroscopy for the direct access and generation of exciton population
[36, 37]. While it becomes very tedious if not impossible to solve the density matrix
for genuine multi-mode and many-particle systems, the cluster expansion provides a
convenient method to generate consistent approximations which can be systematically
improved. These approximations are usually very accurate since we are interested only
in a subset of expectation values which often describe the system already very well.
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Figure 1.2: Phase-space representation of special light fields. (a) Classical optics, char-
acterized through coherent state with amplitude and phase. (b) Quantum
optics, e.g. squeezed state, Fock state, thermal light all of which exhibit
nonvanishing quantum fluctuations.

To describe many-particle effects, there are also alternative approaches, like the Green’s
function approach [38], density functional theory [39], and Monte Carlo methods [40].
One has to choose the appropriate method to solve the problem at hand. We apply the
cluster expansion because it is a very powerful tool to compute the emission properties
of a material system. Moreover, the cluster-expansion approach provides a convenient
formalism which allows us to find the relevant mechanisms of a given phenomena. This
makes the theoretical treatment of many-body quantum-optical systems very appealing.

We can describe the light field and the excitation of the matter system at the same
level of approximation, leading to a self-consistent solution. The theory is also flexible
to describe various states of the light field. That means that we can describe classical
fields as well as quantum fields. To remind of the difference between the classical and
quantum optics, Fig. 1.2 shows the phase-space representation of a few single-mode light
fields. More precisely, we have shown a schematic picture of the Wigner function [41, 42]
as a contour plot. Here, the bosonic photon operator is denoted by B̂. Figure 1.2(a)
demonstrates the regime of the classical optics and presents as an example the phase-
space distribution of the coherent state. The coherent state is closest to a classical field,
with a well-defined phase, low photon-number fluctuations, and accurately describes a
laser above threshold. Figure 1.2(a) demonstrates that the coherent light field is fully
determined by its amplitude |〈B̂〉| and phase 〈B̂〉/|〈B̂〉|.

In contrast to that, Fig. 1.2(b) demonstrates the regime of the quantum optics. The
phase-space distributions of the thermal light, Fock state, and squeezed state are shown.
The Fock state and squeezed state are considered to be very quantum in that the Fock
state has vanishing photon-number fluctuations and the squeezed state can have quadra-
ture fluctuations below the minimum uncertainty limit [43]. The thermal light is an
incoherent light field which does not have any amplitude or phase and which exhibits
large photon-number fluctuations. The thermal light describes a laser below threshold.
In Fig. 1.2(b), we can see that the thermal light and Fock state have vanishing ampli-
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tude and phase, but exhibit nonvanishing quantum fluctuations. Thus, the light can
not only have amplitude and phase, but also quantum fluctuations. This is the regime
of the quantum optics which can be described via the correlations [43]. As an example
for such a correlation, we can take ∆〈B̂B̂〉 ≡ 〈B̂B̂〉 − 〈B̂〉〈B̂〉 which describes the full
expectation value minus its classical factorization.

Formally, the correlations are highlighted in the Thesis via the notation ∆〈Ô〉 for
general operator combinations Ô. As an example, the squeezed light shows a nonvanish-
ing two-photon correlation ∆〈B̂B̂〉 [43–46] which describes the amount of the squeezing
in one quadrature direction in the phase-space distribution. To visualize this, we have
schematically shown in Fig. 1.2(b) the phase-space distribution of a squeezed state. We
observe that this example shows a squeezing along the Re[〈B̂〉] direction.

As pointed out in Ref. [5], the nonvanishing correlations, e.g. ∆〈B̂ĉ†ĉ〉 for a combined
field B̂ and electronic operator ĉ, are important for any quantum-optical description.
Especially, the criterion ∆〈B̂ĉ†ĉ〉 6= 0 clearly distinguishes between the semiclassical and
quantum-optical approaches. We note that the correlations describe the full quantum
statistics of the light and are equivalent to the alternative representations via the expec-
tation values [43], density matrix, marginal distributions [43], and via the phase-space
distributions Glauber-Sudarshan function [47–49], Wigner function [41, 42], and Husimi
Q function [41, 50]. In this Thesis, we use the expectation-value and correlation picture
for the theoretical treatment of the light-matter coupling.

Within this theoretical framework, the semiconductor Bloch and luminescence equa-
tions can be developed which describe the interaction between the light and matter and
the re-emitted light field. Moreover, the equations of motion for the generation of the
squeezing can be derived, which is also presented in this Thesis.

The Thesis is organized as follows. Chapter 2 introduces the model Hamiltonian
which describes the strong-coupling regime and summarizes the characteristic model
parameters for the various systems. In Chapter 3, we derive the Heisenberg equations of
motion which includes all correlations up to the three-particle level. Next, in Chapter 4,
we apply the developed theory to the QD as well as to the atomic systems and study
the properties of the second-rung emission. In Chapter 5, we discuss the concept of the
two-photon correlation measurement and highlight its convenience. This discussion is
expanded in Chapter 6 which also covers the microscopic theory of the squeezed-light
emission.
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2 Model Hamiltonian

In this Chapter, we discuss the basic model to describe the QD-cavity systems in the
strong-coupling regime. As a starting point, we present the fully quantized system
Hamiltonian which describes the interaction of multiple QDs inside a cavity with a
multi-mode quantized light field. This model is fundamental but also useful at the same
time. We also implement a dephasing model which enables us to study the resonance
fluorescence from the QD-cavity systems under realistic dephasing conditions. The ex-
plicit application of the model is worked out step by step in the subsequent Chapters.
Here, we focus on the model system, its simplifications and the characteristic model
parameters for the various systems.

Methodically, we use a multi-mode generalization of the original Jaynes-Cummings
Hamiltonian [16] which describes the interaction of one two-level emitter and one cavity
mode. As we aim to describe the strong-coupling experiments which always contain a
multitude of QDs inside a cavity, we have to use a generalized model. We therefore
include into the model many QDs and also many light modes. The advantage of having
a multi-mode system is that we can describe the propagation of the light field into the
cavity and the interaction between the light and QDs without additional phenomenolog-
ical parameters. The light propagation is obtained by solving the Helmholtz equation
[35, 51] for a given dielectric structure. This dielectric structure consists of distributed
Bragg reflector (DBR) mirrors which enclose a cavity region. We use the transfer-matrix
method [52, 53] to compute the light-mode functions within this structure and obtain a
Lorentzian-like cavity resonance at the position of the QDs. We can thus describe strong-
coupling situations and fix the system parameters to experimental configurations, like
the quality of the cavity and the resulting vacuum Rabi splitting.

Another ingredient of the model is that we consider strongly-confined QDs which act
as effective two-level emitters. This simplification is justified in most strong-coupling
considerations. Even though we have also considered QDs with more shells in another
context where we investigate the luminescence from stable QD states [29], we do not
repeat these results - for a review, see Ref. [54]. However, the reader can well understand
all the material presented in the following Chapters which are self-contained and include
all the necessary ingredients.

2.1 Quantum-Dot Configuration

We introduce a microscopic model which describes the interaction between QDs and
a semiconductor microcavity. The theoretical description of such a dot-cavity system
represents a complicated many-body problem [29, 55–57] since the localized dot states
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2 Model Hamiltonian

Figure 2.1: Schematic setup. The quantum dot inside the cavity is placed on a quantum
well with dephasing coupling γP to a reservoir of continuum electron states
and phonons. The light-matter coupling constant is denoted by g and the
loss rate of the cavity is given by γcav. See also Ref. [21], Fig. 1.

couple to each other and also to the continuum states of the surrounding semiconductor
material via the Coulomb interaction. Moreover, the dots couple to phonons and to the
quantized light field.

As in most strong-coupling investigations, we study strongly confined QDs where only
one discrete electron and hole level – constituting an effective two-level system – is ener-
getically close to the cavity resonance. We neglect further level-splitting effects which can
be caused by, e.g., the shape anisotropy of the QDs, such that no spectrally close other
resonances should exist in the system. We thus use a formal two-level system where all
Coulomb effects are included into the levels themselves. Since the recent strong-coupling
QD experiments [17–21] are able to realize this situation, we can demonstrate quantum-
optical effects based on the theoretical model, introduced in the following via the system
Hamiltonian (2.2), which isolates quantum-optical effects from Coulomb-correlation ef-
fects which we do not expect to be observed under these conditions. This scenario
allows us to simplify the analysis considerably because the remaining WL electrons and
the phonon interaction can be included via a dephasing model which describes coupling
of noise reservoirs to the isolated two-level system.

Figure. 2.1 visualizes this scenario in which the QDs are placed on a quantum well
with dephasing γP coupling to the semiconductor environment. The QDs are placed
within a cavity which introduces the light-matter coupling g and cavity loss γcav, as
depicted in Fig. 2.1. If the QDs are optimally placed within the cavity, one can reach
the strong-coupling regime with potential access to the introduced Jaynes-Cummings
ladder Fig. 1.1.

2.2 System Hamiltonian

As in real semiconductor cavities, we introduce a variable number of dots, labeled j,
within the cavity, with eigen energy Ec (Ev) for conduction (valence) electrons which
are described via fermionic operators ĉj (v̂j). The quantization of the light field is
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introduced via the field operators B̂q [58] which obey bosonic commutation relations

[

B̂q, B̂
†
q′

]

−
= δqq′, (2.1a)

[

B̂q, B̂q′

]

−
=

[

B̂†
q , B̂

†
q′

]

−
= 0, (2.1b)

and correspond to light modes uq(r) with free space wave vector q. The total system
Hamiltonian [28, 29] then reads

Ĥ =
∑

j

(

Ecĉ†j ĉj + Evv̂†j v̂j

)

+
∑

q

~ωq

(

B̂†
qB̂q +

1

2

)

+
∑

qj

(

F⋆
q B̂

†
q v̂

†
j ĉj + h.c.

)

. (2.2)

The photon energy is defined by ~ωq = ~|q|c and the dipole-coupling constants are given
by

Fq = −idEquq(rj), (2.3)

which contain the dipole-matrix element d, the vacuum-field amplitude

Eq ≡
√

~ωq/(2ε0), (2.4)

and the position of the dot rj. The first part in Eq. (2.2) represents the free kinetic energy
of the QDs, the second part is the free field energy of the quantized light field, and the
last part constitutes the dipole-interaction Hamiltonian of the light-matter coupling in
the rotating wave approximation. The system Hamiltonian Eq. (2.2) is the starting
point for the quantum-optical investigation.

2.3 System Parameters

It is convenient to introduce the multi-mode description of the light field in the system
Hamiltonian Eq. (2.2). This description enables us to treat light propagation effects,
coupling of external pulses to the cavity, and the finite linewidth of the cavity without
additional phenomenological parameters. For the light propagation, we have to solve
the light mode functions uq(r) which obey the Helmholtz equation [35, 51]

[

▽2 + q2n2(r)
]

uq(r) = 0, (2.5)

where n(r) denotes the position-dependent background refractive index and defines the
dielectric environment.

Figure 2.2 shows characteristic features of the cavity model used in our investigations.
Figure 2.2(a) presents the position-dependent background refractive index n(z) as grey
shaded area where the direction of the pump pulse is chosen to be the z axis. We model
the cavity via distributed Bragg reflector (DBR) mirrors on each side of the cavity
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2 Model Hamiltonian

Figure 2.2: Cavity model. (a) The quantum well (QW), indicated by the vertical line,
is placed in between distributed Bragg reflector (DBR) mirrors with varying
background refractive index (grey shaded area), as function of position z
in units of light wavelength λ. The calculated light-mode function is given
by the oscillating solid line. (b) Light-mode function at QW position zQW

shows a Lorentzian resonance with cavity frequency ωc and half width γcav.
According to Paper [IV].
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region with quantum well (QW) placed in-between (vertical line). The resulting light-
mode function uq(z) are computed via a transfer-matrix method [52, 53]. An example
is shown by the oscillating solid line in Fig. 2.2(a) while the shaded area represents the
dielectric structure. The QDs on the QW are placed at the position of the maximum
light field to guarantee strong light-matter coupling. In Fig. 2.2(b), the resulting light-
mode function |uq(zQW)|2 at the QW position is presented as function of momentum q.
We observe that the identified |Fq,j|2 in Eq. (2.3), proportional to |uq(zj)|2, displays a
Lorentzian resonance [35] having a width γcav around the cavity frequency ωc.

Even though we have specified a particular resonator system, our model is well suited
to describe different types of cavities with Lorentzian resonances. For this purpose, it is
sufficient to specify only ωc, γcav, and the so-called cavity-quality factor

Q ≡ ~ωc
2γcav

, (2.6)

for the given cavity system. Furthermore, we can also adjust the vacuum Rabi splitting
2g to the experiment since the vacuum Rabi splitting is proportional to the dipole-matrix
element d and the square of the number of dots Ndot inside the cavity, giving [59]

2g = 2dEc
√

Ndot

∑

q

|uq(rj)|2. (2.7)

In Ref. [60], we apply the developed theory to three recently published experiments
with semiconductor QDs which have shown the vacuum Rabi splitting. The QD-pillar
investigations [17, 61] have ndot = 1.3 · 109 cm−2 within DBR mirrors yielding a quality
factor of Q = 2.4 · 104 with cavity frequency ~ωc = 1.33 eV. The effective cavity area is
S = 3.0µm2 yielding Ndot = 39 and g = 20 GHz. In another QD-crystal experiment [18],
ndot = 6.0 · 109 cm−2 QDs were placed within a photonic crystal providing Q = 2.2 · 104,
~ωc = 1.0 eV, S = 10µm2, Ndot = 600, and g = 22 GHz. In the QD-disk example
[62], ndot = 1010 cm−2 QDs were positioned within a microdisk giving ~ωc = 1.0 eV,
Q = 4 · 105, S = 2.5µm2, Ndot = 250, and g = 11 GHz. The dot dipole moment is
d = 5.3 Åe in all these systems. In the Thesis, we refer to these QD-cavity systems as
QD-pillar, QD-crystal, and QD-disk system, respectively.
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3 Equation-of-Motion Approach

In Chapter 2, we have presented the model system and we have given the corresponding
system Hamiltonian (2.2). In this Chapter, we expand the theory to its practical usage.
Here, our aim is to develop a theory which provides a consistent description of the
light-matter interaction and which is also able to describe the quantum rungs of the
JC ladder. The outcome of this are resonance fluorescence equations which we solve
explicitly in the following Chapters. These equations are very powerful and allow us to
gain deep insights into the interplay between the excitation and quantum statistics of
the re-emitted light.

Technically, we apply the Heisenberg equation of motion [63] for the relevant expec-
tation values to describe the temporal dynamics of the system. The result is an infinite
hierarchy of coupled differential equations. This hierarchy has to be truncated consis-
tently in order to get a physical correct and computable solution. To reach this goal, we
apply the cluster expansion [27–29] to truncate the hierarchy and finally obtain a closed
and finite set of differential equations which we can solve.

The obtained equations are called Maxwell-Bloch equations, luminescence equations,
squeezing equations, and triplet equations. They are all coupled to each other and we
solve them numerically via the standard Runge-Kutta method [64]. In some cases, we
can solve them analytically. Especially, in Chapter 6, we solve the squeezing equations
analytically and obtain a remarkable good agreement with the full numerical calculation.

Each of these subsets of equations have a special physical meaning. Namely, the
Maxwell-Bloch equations self-consistently describe the excitation of the QDs and the
backcoupling to the light field. The luminescence equations yield the intensity spectrum
while the squeezing equations yield the amount of the squeezing present in the re-emitted
light. Finally, the triplet equations describe the dynamics of the higher-order correlations
up to the three-particle level. In Chapter 3, we explain the different terms appearing
in these equations and highlight their physical interpretation. We will learn that the
cluster expansion provides us with an intuitive picture.

3.1 Cluster Expansion

We start from the system Hamiltonian (2.2) and follow the Heisenberg equation-of-
motion technique to set up the dynamical equations for the relevant expectation values.
This approach is very suitable to solve the emission properties of a system which contains
infinitely many light modes. The Heisenberg equation of motion is given by [63]

i~
∂

∂t
Ô =

[

Ô, Ĥ
]

−
, (3.1)
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Figure 3.1: Diagrammatic presentation of the cluster expansion. The general N-particle
expectation value can be expanded into the singlets (Hartree-Fock trun-
cation), doublets (two-particle correlations), triplets (three-particle corre-
lations), up to pure N-particle correlations. In our truncation scheme, we
explicitly include all the singlets, doublets, and triplets.

where Ô is a time-dependent operator in the Heisenberg picture and Ĥ denotes the
system Hamiltonian (2.2). We have then access to the expectation values via

〈Ô〉 = Tr
[

ρ̂Ô
]

, (3.2)

where ρ̂ is the system’s density matrix.
Due to the quantum-optical light-matter coupling within Ĥ, we formally obtain an

infinite hierarchy structure of equations. We apply the cluster expansion [27–29] to
systematically truncate this hierarchy problem. At the lowest level of approximation
which is equal to the Hartree-Fock approximation, we obtain the singlet equations which
describe the time evolution of the single-particle expectation values 〈1〉 (singlets). They
are covered by the Maxwell-Bloch equations in Sec. 3.2. At the next level, we obtain
the two-particle correlations ∆〈2〉 (doublets) which are defined by

∆〈2〉 ≡ 〈2〉 − 〈1〉〈1〉, (3.3)

where 〈2〉 refers symbolically to a two-particle expectation value. The two-particle cor-
relations ∆〈2〉 are described by the luminescence and squeezing equations (Secs. 3.3
and 3.4) and are relevant for solving the emission properties of the QD-cavity system. If
we increase the truncation level further, we obtain the three-particle correlations ∆〈3〉
(triplets) which are given by

∆〈3〉 ≡ 〈3〉 − 〈1〉〈1〉〈1〉 − 〈1〉∆〈2〉, (3.4)

where 〈3〉 denotes a three-particle expectation value. In the theoretical description, we
explicitly include the three-particle correlations and present the corresponding triplet
equations in Sec. 3.5 and App. D.

Figure 3.1 is a diagrammatic presentation of the cluster expansion. Any N-particle
expectation value can be expanded into the singlets, doublets, triplets, up to pure N-
particle correlations. In order to obtain a closed set of equations, we truncate the
hierarchy of equations at the singlet-doublet-triplet level, as depicted in Fig. 3.1. In
some studies, we also include the four-particle correlations (quadrupolets) to investigate
the role of the higher-order clusters, see Apps. B and C.
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3.2 Maxwell-Bloch Equations

3.2 Maxwell-Bloch Equations

In order to self-consistently treat the interaction between the classical light field and the
dot-cavity system, we have to set up the Maxwell-Bloch equations. They describe the
time evolution of the field

〈Ê(r)〉 =
∑

q

iEquq(r)〈B̂q〉 + c.c., (3.5)

(c.c. = complex conjugate) the QD polarization Pj = 〈v̂†j ĉj〉, and the QD conduction

(valence) electron densities f cj = 〈ĉ†j ĉj〉 (f vj = 〈v̂†j v̂j〉). In this connection, it is also

convenient to introduce the QD hole densities fhj ≡ 1 − f vj and a density operator

f̂ cvj ≡ ĉ†j ĉj − v̂†j v̂j . Then, the Maxwell-Bloch equations read [28, 65]

i~
∂

∂t
Pj = (Ecv − iγP )Pj −

(

1 − f cj − fhj
)

Ωj

−
∑

q

Fq∆〈B̂qf̂
cv
j 〉, (3.6)

i~
∂

∂t
f c,hj = 2iIm

[

Ω⋆
jPj
]

−
∑

q

2iIm
[

F⋆
qΠqj

]

, (3.7)

i~
∂

∂t
〈B̂q〉 = ~ωq〈B̂q〉 +

∑

j

F⋆
qPj . (3.8)

Here, we have defined the energy difference Ecv ≡ Ec−Ev, the QD polarization operator
P̂j ≡ v̂†j ĉj and the photon-assisted polarization Πqj ≡ ∆〈B̂†

q P̂j〉 where ∆〈Ô〉 denotes

again the correlated part of the full expectation value 〈Ô〉. Furthermore, the classical
Rabi frequency at the QD position is defined by Ωj ≡ d〈Ê(rj)〉. The dissipative coupling
to the reservoir of continuum electron states and phonons introduces the dephasing γP for
all polarization-dependent quantities, included phenomenologically in the homogeneous
part of Eq. (3.6).

We observe that the classical field, which is initially outside the cavity, produces the
QD polarization Pj as soon as it enters the cavity. The QD polarization is generated
via the term

(

1 − f cj − fhj
)

Ωj in Eq. (3.6) where
(

1 − f cj − fhj
)

is called the phase-
space filling factor which originates from the fermionic nature of the QD carriers. The
generated polarization then creates densities, as can be seen in Eq. (3.7) from the term
Im
[

Ω⋆
jPj
]

. Moreover, the polarization couples back to the classical field in Eq. (3.8) via
the term

∑

j F⋆
qPj. Hence, the coupling between the light field and QD-cavity system is

self-consistently described via the Maxwell-Bloch equations.
Additional to the classical Maxwell-Bloch equations, we obtain the quantum correc-

tions in Eqs. (3.6) and (3.7) in terms of the photon-density correlations ∆〈B̂q f̂
cv
j 〉 ≡

〈B̂qf̂
cv
j 〉 − 〈B̂q〉〈f̂ cvj 〉 and photon-assisted polarization Πqj ≡ 〈B̂†

q P̂j〉 − 〈B̂†
q〉〈P̂j〉. They

represent the quantum-optical two-particle correlations and are covered by the lumines-
cence and squeezing equations which enable us to investigate the fluorescent light.
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3 Equation-of-Motion Approach

3.3 Luminescence Equations

In the resonance fluorescence setup, an external laser pump excites the QD-cavity sys-
tem while the re-emitted light in the directions different from the excitation is detected.
We can describe this scenario with the Maxwell-Bloch equations together with the lumi-
nescence equations. As the exciting pump pulse enters the cavity, the QD polarization
and densities are generated according to the Maxwell-Bloch equations. Moreover, the
quantum-optical correlations are induced and lead to the re-emission which is deter-
mined by the photon-number like correlations ∆〈B̂†

qB̂q〉. The re-emission then follows
from the luminescence equations which are given by

i~
∂

∂t
∆〈B̂†

qB̂q′〉 = ~ (ωq′ − ωq) ∆〈B̂†
qB̂q′〉

+
∑

j

(

F⋆
q′Πqj − FqΠ

⋆
q′j

)

, (3.9)

i~
∂

∂t
Πqj = (Ecv − ~ωq − iγP )Πqj

+
(

1 − f cj − fhj
)

∑

q′

Fq′∆〈B̂†
qB̂q′〉

+ Ωj∆〈B̂q f̂
cv
j 〉⋆ − Fq

(

f cj − |Pj|2
)

−
∑

q′

Fq′∆〈B̂†
qB̂q′ f̂

cv
j 〉. (3.10)

We observe from Eq. (3.9) that the emission ∆〈B̂†B̂〉 couples to the photon-assisted
polarization Πqj = ∆〈B̂†

q v̂
†
j ĉj〉 which presents the correlated creation of a photon and

destruction of an electron-hole pair. Hence, these processes are crucial for the physically
correct description of the emission. The correlations Πqj are built up spontaneously
via the source term

(

f cj − |Pj|2
)

in Eq. (3.10) and produce the nonvanishing emission
in Eq. (3.9). The created emission then couples back to Πqj via the stimulated term
∑

∆〈B̂†B̂〉 in Eq. (3.10) and eventually leads to the vacuum Rabi splitting. Equa-

tion (3.10) also contains the photon-density correlations ∆〈B̂q f̂
cv
j 〉 and the three-particle

correlations ∆〈B̂†
qB̂q′ f̂

cv
j 〉 which both contribute to the generation of the higher rungs of

the JC ladder.

3.4 Squeezing Equations

We are also interested in the generation of the squeezing which is described by the two-
photon correlations ∆〈B̂B̂〉 [43]. The squeezing in the fluorescent light then follows
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3.5 Triplet Equations

from

i~
∂

∂t
∆〈B̂qB̂q′〉 = ~ (ωq + ωq′) ∆〈B̂qB̂q′〉

+
∑

j

∆〈
(

F⋆
q′B̂q + F⋆

q B̂q′

)

P̂j〉, (3.11)

i~
∂

∂t
∆〈B̂qP̂j〉 = (~ωq + Ecv − iγP ) ∆〈B̂qP̂j〉

+
(

1 − f cj − fhj
)

∑

q′

Fq′∆〈B̂qB̂q′〉

+ Ωj ∆〈B̂qf̂
cv
j 〉 − F⋆

qP
2
j

−
∑

q′

Fq′∆〈B̂qB̂q′ f̂
cv
j 〉. (3.12)

To get a closed set of the singlet-doublet equations, we finally present the dynamical
equation for the photon-density correlations

i~
∂

∂t
∆〈B̂qf̂

cv
j 〉

= ~ωq∆〈B̂q f̂
cv
j 〉

+ 2P ⋆
j

∑

q′

Fq′∆〈B̂qB̂q′〉 − 2Pj
∑

q′

F⋆
q′∆〈B̂†

q′B̂q〉

+ 2Ω⋆
j∆〈B̂qP̂j〉 − 2ΩjΠ

⋆
qj − F⋆

q

(

f cj + fhj
)

Pj

+
∑

q′

2
(

Fq′∆〈B̂qB̂q′P̂
†
j 〉 − F⋆

q′∆〈B̂†
q′B̂qP̂j〉

)

. (3.13)

Equations (3.11),(3.12), and (3.13) constitute the squeezing equations which are very
similar to the luminescence equations. Again, we can identify the spontaneous source
terms which are proportional to the QD polarization and densities, and the stimu-
lated terms

∑

∆〈B̂(†)B̂〉 which lead to the vacuum Rabi splitting. Furthermore, like
the photon-assisted polarization Πqj in Eq. (3.10), the photon-polarization correlations

∆〈B̂P̂ 〉 in Eq. (3.12) and photon-density correlations ∆〈B̂f̂ cvj 〉 in Eq. (3.13) show the
coupling to the triplets.

To summarize the equation structure, we obtain a closed set of Maxwell-Bloch, lu-
minescence and squeezing equations which describe a consistent and physical solution
at the singlet-doublet level which includes all the one-particle expectation values and
two-particle quantum-optical correlations. They form the basis for the investigation of
the resonance fluorescence in the QD-cavity systems and yield the information about
the QD excitation and the fluorescent light.

3.5 Triplet Equations

In order to reproduce the strong-coupling rungs in the emission spectrum, discussed
in more detail in Sec. 4.1, we have to include the higher-order correlations. Formally,
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3 Equation-of-Motion Approach

the higher-order correlations are already included in the luminescence and squeezing
equations in terms of the triplet quantities. If we additionally set up the dynamical
equations for the triplets, we obtain a closed set of equations at the singlet-doublet-
triplet level. As an example, we present here the equation of motion for the photon-
number-density triplet which reads

i~
∂

∂t
∆〈B̂†

qB̂q′ f̂
cv
j 〉

= ~ (ωq′ − ωq) ∆〈B̂†
qB̂q′ f̂

cv
j 〉

+ 2
∑

q′′

[

Fq′′Π
⋆
q′j∆〈B̂†

qB̂q′′〉 − F⋆
q′′Πqj∆〈B̂†

q′′B̂q′〉

+ Fq′′∆〈B̂qP̂j〉⋆∆〈B̂q′B̂q′′〉 − F⋆
q′′∆〈B̂q′P̂j〉∆〈B̂qB̂q′′〉⋆

+ Fq′′P
⋆
j ∆〈B̂†

qB̂q′B̂q′′〉 − F⋆
q′′Pj∆〈B̂†

q′B̂qB̂q′′〉⋆
]

+ 2Ω⋆
j∆〈B̂†

qB̂q′P̂j〉 − 2Ωj∆〈B̂†
q′B̂qP̂j〉⋆

+
(

f cj + fhj
) (

FqΠ
⋆
q′j − F⋆

q′Πqj

)

− 2
∑

q′′

F⋆
q′′∆〈B̂†

q′′B̂
†
qB̂q′P̂j〉 + 2

∑

q′′

Fq′′∆〈B̂†
q′′B̂

†
q′B̂qP̂j〉⋆

+ FqP
⋆
j ∆〈B̂q′ f̂

cv
j 〉 − F⋆

q′Pj∆〈B̂qf̂
cv
j 〉⋆. (3.14)

Analogous to the luminescence and squeezing equations, Eq. (3.14) shows the sponta-
neous source and stimulated terms. Additionally, we notice that also the four-particle
correlations ∆〈B̂†

q′′B̂
†
qB̂q′P̂j〉 and ∆〈B̂†

q′′B̂
†
q′B̂qP̂j〉 enter the equation of motion. The four-

particle correlations are explicitly analyzed in Apps. B and C. We note that Eq. (3.14)
presents only one of the several triplet equations. To close the set of equations at the
singlet-doublet-triplet level, we present the remaining triplet equations in App. D. We
find that the remaining triplet equations exhibit a very similar structure.
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4 Second-Rung Emission

In Chapters 2 and 3, we have developed the theory for the resonance fluorescence of the
QD-cavity systems. In this Chapter, we apply the theory to study the second-rung emis-
sion from the strongly-coupled semiconductor QDs for different excitation conditions.
We are interested in determining the best excitation conditions with an external coher-
ent light pulse to obtain the maximum second-rung emission intensity. These results
are important for any strong-coupling experiment which tries to access the two-photon
strong-coupling states.

Methodically, we numerically solve the full coupled set of Maxwell-Bloch equations,
luminescence equations, squeezing equations, and triplet equations presented in Secs. 3.2-
3.5. We evaluate the intensity spectrum by using the photon correlations ∆〈B̂†

qB̂q〉 and
sweep the pump frequency and pump intensity of the exciting coherent light pulse. This
way, we can analyze the second-rung response as a function of the excitation properties.
Another aspect of our analysis in this Chapter addresses a more theoretical issue and
answers the question which correlations are important for the description of the second-
rung emission. For this purpose, we carry out a switch on and off analysis of the triplet
correlations.

We find that the second-rung emission is determined by the occupation of the two-
photon state |2〉 in the pump pulse. This has clear consequences on the optimum ex-
citation conditions. In particular, we obtain an optimum pump frequency and also an
optimum pump intensity for the second-rung emission intensity. For low excitation in-
tensities, the second-rung emission scales like the square of the input intensity, i.e. we
obtain an I2 dependence. This property has already been verified experimentally with
atoms in high-quality cavities [25]. We also apply our theory to this atomic experiment
and find a good agreement between the experiment and our theory. Furthermore, we
demonstrate that we obtain the same second-rung pumping mechanism in the atomic
and semiconductor QD systems. Finally, the more theoretical analysis of the role of
correlations shows that the triplet correlations are important for an accurate theoretical
description of the second rung in the intensity spectrum.

Most of the results that we discuss in this Chapter are based on Papers [II-III].

4.1 Intensity Spectrum

In this Section, we solve the full set of the singlet-doublet-triplet (sdt) equations pre-
sented in Sec. 3 and investigate the light emission from the optically excited QD-cavity
system. We restrict the analysis to the QD-disk system Ref. [62]. As an initial condition
for the fluorescence computation, we assume the QD to be unexcited. Furthermore, we
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4 Second-Rung Emission

Figure 4.1: Resonance fluorescence spectrum of the QD-disk system (∆ = 0). The
dashed line is the mode distribution of the exciting pump pulse while the
solid line is the resulting emission in the singlet-doublet-triplet (sdt) approx-
imation. The triplet contributions are given by the grey shaded area. The
emission from the second rung at (~ωq − ~ωc)/g =

√
2 ± 1 is indicated by

the vertical lines.

introduce an exciting pump pulse which is initially placed outside the cavity and which
propagates perpendicularly to the quantum well. According to the Maxwell-Bloch equa-
tions Sec. 3.2, the QD polarization and population are built up. At the same time,
the quantum-optical correlations are generated according to the luminescence equations
Sec. 3.3 and lead to the re-emission. We can determine the emission intensity by the
photon-number like two-photon correlations

I(ωq) ≡ ∆〈B̂†
qB̂q〉. (4.1)

Figure 4.1 presents the emission spectrum (solid line) for the zero dot-cavity detuning
∆ ≡ Ecv − ~ωc after the excitation with a coherent pump pulse (dashed line) which is
centered at the cavity frequency. The grey shaded area shows the triplet contributions
of Sec. 3.5. We observe two main peaks at (~ωq − ~ωc)/g = ±1 which are the usual
vacuum Rabi peaks of the strong coupling [21]. Additionally, we obtain two peaks at
(~ωq − ~ωc)/g = −(

√
2 ± 1) and another two peaks at (~ωq − ~ωc)/g = (

√
2 ± 1) which

are marked by the vertical lines. These four additional resonances are attributed to the
emission from the second rung of the Jaynes-Cummings ladder and are a clear signature
for the true quantum emission [66, 67]. For the non-zero dot-cavity detuning, the general
expression for the second-rung emission frequencies reads

~ω2nd = ~ωc + (
√

∆2 + 8g2 ±
√

∆2 + 4g2)/2. (4.2)

In Fig. 4.1, we have also shown the contributions of the triplets to the emission spectrum,
as shown by the grey shaded area. We can clearly see that the second rung in the intensity
spectrum needs a singlet-doublet-triplet description.
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4.2 Optimum Excitation Conditions

Figure 4.2: Second-rung pumping scheme. The dressed states of the strongly-coupled
dot-cavity system are shown on the right while the Fock states within the
pump field are shown on the left. The Fock-state |2〉 component within the
pump is converted into the second-rung dressed state, leading to an optimum
pumping frequency ωopt. According to Paper [III].

In Apps. B and C, we further analyze the role of the different clusters. There, we con-
firm that the second rung can be accurately described at the singlet-doublet-triplet level
in the intensity spectrum while the second rung in the squeezing spectrum is already
well reproduced at the singlet-doublet level. This is already a hint that the squeez-
ing spectrum and also the related two-photon correlation spectrum g(2), introduced in
Chapters 5 and 6, can show the second rung more clearly than the intensity spectrum.

4.2 Optimum Excitation Conditions

In the Jaynes-Cummings model [16], we obtain the second-rung wave function |ψ±〉 ∼
|1〉|up〉 ± |2〉|down〉 where |up〉 (|down〉) denotes the excited (unexcited) dot and |n〉
denotes the Fock state with the photon number n. Thus, one can reach this state either
by having an initially excited state and providing sufficient occupation of the |1〉 photon
state or having an initially unexcited state while the light has a strong occupation of
the state |2〉. Hence, as in the resonance fluorescence setup which we study here, the
second-rung state can be reached by bringing the cavity directly into the Fock state |2〉
for an initially unexcited dot (|down〉). A resonant excitation of the dot-cavity system
with a coherent laser, described by [68]

|α〉 =
∞
∑

n=0

αn/
√
n! exp

[

−|α|2/2
]

|n〉 (4.3)

with photon-number distribution

Pn = |α|2nexp[−|α|2]/n!, (4.4)
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4 Second-Rung Emission

always shows some occupation at |2〉. Especially, the |2〉 component of the external
pump is selectively converted to the second-rung state |ψ+〉 if its energy Epump = 2~ω
matches the energy of the dressed dot-cavity state Edress = 2~ωc +

√
2g, leading to the

condition ~ω = ~ωc + g√
2

for zero dot-cavity detuning ∆.
Figure 4.2 visualizes this second-rung pumping mechanism. Here, the light modes

of the uncoupled light field are shown on the left hand side (’OUT’) while the dressed
states of the coupled system are depicted on the right hand side (’IN’). When the light
propagates from the outside to inside of the cavity, the energy is essentially transferred
from the ’OUT’ modes to the dressed-states ’IN’ modes. A perfect transfer follows only
when the Fock state |2〉 in the pump is converted to the second-rung state. The transfer
of the other |n〉 states is suppressed. For non-zero ∆, the optimum pump energy is
defined by

~ωopt = ~ωc + (∆ +
√

∆2 + 8g2)/4. (4.5)

This condition guarantees the selective excitation at the second rung with a probability
determined by the two-photon state occupation

P2 =
|α|4
2

e−|α|2 (4.6)

within the external pump. We see from Fig. 4.2 that ~ωopt is resonant only with the
second rung such that we may selectively excite only that state. As a further property,
we notice that the second-rung emission energy ~ω2nd (4.2) and the optimum pump
energy ~ωopt (4.5) are generally different.

Figure 4.3 verifies the developed physical picture for the second-rung generation. Here,
we analyze numerically the second-rung emission response as function of the excitation
properties. Figure 4.3(a) presents the second-rung emission intensity I(ω2nd) as function
of the pumping frequency ω. The position of the lower second-rung emission frequency
ω2nd is indicated by the solid vertical line while the upper vacuum Rabi-peak position
is given by the dashed vertical line. Indeed, we observe a sharp resonance at one op-
timum pumping frequency which is exactly in between the lower second-rung emission
frequency and the upper vacuum Rabi peak, giving ~ω = ~ωc + g√

2
. This is in per-

fect agreement with Eq. (4.5) for ∆ = 0. Hence, we have verified the correct optimum
pumping frequency.

To verify further the basic mechanism for the second-rung generation, Fig. 4.3(b)
shows the second-rung emission intensity as function of the pumping field amplitude.
The pump is centered at the optimum pumping frequency. Here, we observe that the
second-rung emission increases with increasing pump strength, until it reaches a maxi-
mum and eventually decreases for strong excitation. In Fig. 4.3(c), we have also shown
the corresponding two-photon state occupation P2 in the pump pulse. Indeed, we ob-
serve that P2 shows a maximum at the same optimum pumping field amplitude. Hence,
the second-rung emission is directly connected to the occupation of the two-photon state
in the pump pulse.

To illustrate further the critical dependence of the second-rung emission on the two-
photon state occupation in the pump, we have shown the full photon-number distribution
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4.2 Optimum Excitation Conditions

Figure 4.3: Second-rung emission properties, showing the optimum pumping frequency
and optimum pumping intensity (QD-disk system, ∆ = 0). (a) Second-
rung emission intensity as function of the pumping frequency. The lower
second-rung emission frequency (upper vacuum Rabi peak) is indicated by a
solid (dashed) vertical line. (b) Second-rung emission intensity as function
of the pumping field amplitude. The maximum is marked by a vertical
line. (c) Two-photon state occupation P2 as function of the pumping field
amplitude. The insets show the full photon-number distribution Pn for three
representative field amplitudes which are marked by the dashed vertical lines.
The arrow indicates P2 as a guide for the eye. According to Paper [III].
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4 Second-Rung Emission

Pn for three representative field amplitudes, as shown in the insets of Fig. 4.3(c). The
arrow indicates P2 as a guide for the eye. The first inset shows Pn for a small field
amplitude, the second shows it at the optimum field amplitude, and the third inset
shows Pn for strong excitation. We observe that |2〉 is only weakly occupied in the
low intensity regime while it is maximally occupied at the optimum field amplitude.
For strong excitation, the two-photon state becomes depleted and the occupations of
the higher Fock states are dominating. Hence, it is important to match not only the
optimum pumping frequency but also the optimum pumping intensity to guarantee
a sufficient two-photon state occupation in the pump field and thus the second-rung
emission. We also notice that the second-rung emission intensity scales like the square
of the pumping intensity, as can be seen from Eq. (4.6) for I ≡ |α|2, thus

I(ω2nd) ∼ P2 ∼ I2 (4.7)

holds in the low-intensity regime. The quadratic response of the second rung versus the
input intensity Eq. (4.7) has already been verified experimentally with fixed atoms in
high-quality cavities [25]. This experiment is discussed more thoroughly in the following.

4.3 Atomic Experiment

The experimental observation of the second rung has already been reported for atoms in
high-quality cavities [24–26]. In Ref. [24], atoms were passing through a microcavity with
a weak coherent light field injected and the atomic transition rate between the unexcited
and excited state has been measured, which has shown a clear resonance at the vacuum
Rabi peak and second rung. Very recently, one could demonstrate the existence of the
second rung in an atom-cavity system via the direct spectroscopic measurement [25]. In
this experiment, an atom has been fixed inside the cavity while an external laser has
excited the coupled atom-cavity system. The transmitted emission intensity has been
measured for varying cavity frequencies while fixing the laser frequency in resonance
with the atomic transition energy. As a result, the experiment could demonstrate a
resonance in the transmitted emission intensity at the optimum second-rung detuning
frequency.

In the following, we show that we find the same second-rung pumping mechanism in
the semiconductor QD and atomic systems. We apply our theory to the atom-cavity sys-
tem studied in Ref. [25] by changing the cavity parameters and the dephasing conditions
to the atomic system. We demonstrate that we can explain the observed experimental
data.

In order to apply our developed theory to the atom-cavity system in Ref. [25], we
need to change the dephasing conditions. In the atomic systems, we have the special
dephasing conditions where a population decays twice as fast as a polarization. Hence,
we have to include a dephasing γf for the population in the equations of motion in a
self-consistent manner. Analogous to a polarization, we need to damp all quantities
which contain a population operator f̂ cvj consistently, i.e. we introduce a dephasing γf
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4.3 Atomic Experiment

Figure 4.4: Second-rung resonance in the atomic system in the experiment and theory.
The transmitted power as function of the detuning is shown. The dots with
errorbars are experimental data (Ref. [25]) and the solid line is the cluster-
expansion calculation at the singlet-doublet-triplet level. The theory curve is
shifted upwards by 3.5 fW in order to fit the experimental data. The dashed
vertical line marks the optimum second-rung detuning. The shaded area
presents the mode distribution of the exciting pump pulse for the optimum
detuning.

via

i~
∂

∂t
〈Ôf̂ cvj 〉 = −iγf〈Ôf̂ cvj 〉 + original terms, (4.8)

where Ô can be any operator which does not include a population operator f̂ cvj . Finally,
we need to set γf = 2γp for the atomic dephasing conditions with dephasing for the
polarization to be γP = 3 MHz. The remaining relevant system parameters are the
cavity half width γcav = 1.25 MHz, the cavity frequency ~ωc = 1.59 eV, and the atomic
dipole moment of d = 1.12 Åe = 5.4 D, resulting into the light-matter coupling constant
g = 11.2 MHz.

Figure 4.4 shows the transmitted emission intensity as function of the detuning
−∆atom ≡ − (Eatom − ~ωc) where Eatom denotes the atomic transition energy. The
quadratic dots with errorbars are the experimental data in Ref. [25] and the solid line
is our theoretical result. The shaded area presents the mode distribution of the excit-
ing pump pulse for the optimum detuning which is marked by a dashed vertical line.
The experiment shows a clear resonance in the spectrum of the transmitted light. This
experimentally observed resonance is the optimum frequency for the generation of the
second-rung emission and is well reproduced by our theoretical calculation. Thus, we
can indeed explain the measured results. We notice that our numerical model includes
effects up to the second rung such that the higher-rung resonances are absent in our
calculation. In the experimental data, we identify such higher-rung contributions as a
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4 Second-Rung Emission

weakly pronounced shoulder at the detuning −∆atom ≈ −8 MHz which originates from
the third rung, as also explained in Ref. [25].

Concluding, we have applied our theory to the atomic system by changing the cavity
and dephasing conditions. In this atomic system, it has been possible to experimen-
tally detect the second rung directly in the intensity spectrum which reveals a clear
resonance at the optimum second-rung detuning. This optimum detuning has already
been identified in Sec. 4.2 and is in agreement with the QD analysis. Hence, we find the
same second-rung pumping mechanism in the semiconductor QD and atomic systems.
Furthermore, our theoretical results can indeed explain the experimental results and are
in good agreement with the experimental data.
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5 Second Rung via Two-Photon

Correlations

In Chapter 4, we have identified the second-rung resonances in the intensity spectrum
and the corresponding optimum excitation conditions. We have applied idealistic de-
phasing conditions for this analysis. However, the semiconductor QD systems contain
significant dephasing originating from the QD-phonon and QD-wetting-layer coupling.
In this Chapter, we therefore analyze the QD emission with realistic dephasing. We
find that the realistic dephasing of the current samples washes out the second-rung res-
onances. In particular, the second rung is smeared out in the vacuum-Rabi background.
Thus, it is difficult to observe the second rung directly in the intensity spectrum. There-
fore, we have to follow another scheme. We follow the photon-statistics scheme for the
observation of the second rung. We analyze the auto-correlated two-photon correlation
g

(2)
ω,ω spectrum which determines the probability of detecting two photons both having

frequency ω. In this Chapter, we show that the auto-correlated two-photon correlation
g

(2)
ω,ω spectrum yields a good method to observe the second rung.
Methodically, we solve again the resonance fluorescence equations and include realistic

dephasing of the current samples. We apply the optimum excitation conditions and
compute the intensity spectrum and also the two-photon correlation spectrum.

We find that the vacuum Rabi peaks are absent in the auto-correlated two-photon
correlation g

(2)
ω,ω spectrum. Moreover, we obtain a pronounced g

(2)
ω,ω ≫ 1 resonance at

the second rung. This second-rung resonance is robust enough against dephasing. We
can explain this strongly enhanced g(2) resonance via the squeezing type field which is
produced when the Fock-state |2〉 is added to the cavity. This strong bunching g(2) ≫ 1
due to the second rung has been observed experimentally in the atomic systems [26],
demonstrating the feasibility of the proposed photon-statistics scheme.

Most of the results that we discuss in this Chapter are based on Paper [II].

5.1 Difficulties in Semiconductor QDs

In Chapter 3, we have discussed the relevant operator combinations and their time
dynamics. We have included into the theory the dephasing which is due to the scattering
processes present in the QDs. These scattering processes in QDs arise from coupling
to extended continuum states of the surrounding semiconductor material as well as to
phonons. In the following, we show that the discrete resonances of the second rung are
clearly visible in the resonance fluorescence when scattering is low. These resonances
smear out at realistic scattering levels of current QD-cavity setups. Thus, it is difficult
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5 Second Rung via Two-Photon Correlations

Figure 5.1: Influence of the dephasing on the resonance fluorescence spectrum (QD-disk
system, ∆ = 0). For the optimum second-rung pumping conditions (grey
shaded area), the emission spectrum is shown for the ideal low dephasing
γP = 0.06 GHz (solid line) and elevated dephasing γP = 0.4 GHz (dashed
line). The second-rung resonances are marked by the vertical lines. Accord-
ing to Paper [II].

to observe the second-rung signatures directly in the emitted spectrum of the fluorescent
light. However, one can overcome this difficulty using photon-statistics spectroscopy, as
demonstrated in Sec. 5.2.

Figure 5.1 shows the influence of the dephasing γP on the observability of the second
rung. In Fig. 5.1, the emission spectrum for the optimum second-rung pumping (grey
shaded area) is presented for the ideal low dephasing (solid line) and elevated dephasing
(dashed line). We observe that for the ideal case, the quantum rungs are clearly visible,
i.e., the second-rung pumping induces true strong coupling effects in the QD system.
However, the realistic dephasing of γP = 0.4 GHz washes out the most intriguing features
in the standard experiments, as can be seen from the dashed line. We notice that the
second rung is smeared out in the vacuum-Rabi background. To overcome this difficulty,
we analyze next the possibility to observe true strong-coupling effects in the photon-
correlations [69] g(2) and show that they can serve as more robust signatures.

5.2 Photon-Statistics Scheme

Following the early work of Brown and Twiss [70], the correlations between the photons
of two light beams can be measured in a setup which is depicted in Fig. 5.2. In their
original work [71], they have analyzed the properties of the coherent light from radio
stars, but the experimental method can be applied to any light source with quantum
statistics different from the coherent one. In this setup, the incident beam is converted
into two beams via a beam splitter, as shown in Fig. 5.2. The two detectors for each
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5.2 Photon-Statistics Scheme

Figure 5.2: Schematic of the Hanbury-Brown-Twiss (HBT) setup for the photon-
correlation measurement.

beam are measuring the intensity signal which is proportional to the number of the
detected photons [72]. Finally, the intensity fluctuations of both detectors are correlated
by analyzing the difference counts which yield the information about the two-photon
correlations.

We can utilize the Heisenberg equations of motion, presented in Sec. 3, to compute the
quantum statistics [43] 〈[B̂†]J [B̂]K〉, J and K integers, of the emitted light. Especially, we
evaluate the auto-correlated two-photon correlation spectrum g(2)(ωq) which is defined
by

g(2)(ωq) ≡ g(2)
ωq,ωq

≡ 〈B̂†
qB̂

†
qB̂qB̂q〉

〈B̂†
qB̂q〉2

, (5.1)

determining the probability of detecting two photons with frequency ωq at the same
time. We decompose g(2) into the different clusters and solve the full dynamics in the
singlet-doublet-triplet approximation. We note that the formal decomposition into the
clusters is discussed in more detail in Sec. 6.2 and App. B.

In order to gain some insights into the definition of the two-photon correlations, we
first discuss a few simple examples in the following. We consider the case that only
the cavity mode is relevant out of the many light modes, such that we may define the
two-photon correlation via [68]

g(2) ≡ 〈B̂†B̂†B̂B̂〉
〈B̂†B̂〉2

. (5.2)

For a better understanding of the following argumentation, we shortly review the basic
results for common light sources which yield

g(2)















< 1 antibunching
> 1 bunching
= 1 coherent state
= 2 thermal light

. (5.3)
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5 Second Rung via Two-Photon Correlations

In general, we have g(2) = 1 for the coherent state and g(2) = 2 for the thermal light.
For g(2) < 1, the light emission is antibunched while it is bunched for g(2) > 1. The
antibunching is the phenomena for which the probability to detect only one photon at
a time is enhanced and has been created in the laboratory by Ref. [1] for the first time.
Bunching, on the other hand, is the effect when the photon stream tends to come in
clusters.

Let us now consider a light field state which is close to the vacuum state but has a
finite Fock-state |1〉 occupation

|ψ〉A =
√

1 − ε2|0〉 + ε|1〉. (5.4)

Then, we obtain for the two-photon correlation g
(2)
|ψ〉A = 0. In this case, the probability

to detect two photons is zero. If we next consider the state which is close to the vacuum
state but has finite Fock-state |1〉 and |2〉 components according to

|ψ〉B =

√

1 − ε2 − ε4

2
|0〉 + ε|1〉 +

ε2

√
2
|2〉, (5.5)

we obtain g
(2)
|ψ〉B = 1

(1+ε2)2
which approaches g

(2)
|ψ〉B → 1 as ε goes to zero. This is clear

since |ψ〉B is almost a coherent state Eq. (4.3) when approaching the vacuum state.
Otherwise, if we have a state close to the vacuum state with only a minor Fock-state |2〉
occupation as can be realized in the second-rung pumping scheme (Chapter 4)

|ψ〉C =
√

1 − ε4|0〉 + ε2|2〉, (5.6)

the two-photon correlation yields g
(2)
|ψ〉C = 1

2ε4
which diverges g

(2)
|ψ〉C → ∞ when |ψ〉C

approaches the vacuum state. This simple example already shows that we can obtain
gigantic g(2) values when we try to access the two-photon strong-coupling states. In the
following, we further demonstrate and explain this phenomena.

In Figs. 5.3(a)-5.3(c), the solid line presents the computed g(2)(ωq) spectrum Eq. (5.1)
for the different QD-cavity systems after the resonant second-rung pumping (shaded
area). The energetic position of the second rung (upper vacuum-Rabi peak) is marked
by the solid (dashed) vertical line. Our results verify that all QD-cavity systems yield
g(2) resonances with gigantic values close to 103 at the second-rung energy. This strongly
enhanced g(2) follows from the fundamental properties of the resonant second-rung pump-
ing which exclusively enables the Fock-state |2〉 to interact with the QD. Since the cavity
initially is in the vacuum state, the addition of this Fock state essentially creates cavity
light into the state |0〉 +

√
P 2|2〉, similar to Eq. (5.6), which is a squeezed state with

an appreciably small P2. The same conclusion follows from Eq. (3.11) showing that the
squeezing correlations ∆〈B̂B̂〉 are created in this process. It is well-known [73] that a
squeezed state close to a vacuum produces a very large g(2) when it interacts with a
fermionic system. Hence, the resonant second-rung pumping leads to the generation of
squeezing which produces the gigantic g(2) resonance.

The large second-rung resonance in g(2) for small γP has a critical consequence for
elevated γP . We show that the g(2) resonance remains clearly visible even for elevated
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5.2 Photon-Statistics Scheme

Figure 5.3: Photon correlation spectra g(2) for (a) QD-pillar, (b) QD-crystal, and (c)
QD-disk system, at the time when the pump (shaded area) has its maximum
(∆ = 0 and γP = 0.23 GHz). (d) The corresponding g(2) at the second rung
as function of dephasing for the QD-pillar (shaded), QD-crystal (solid), and
QD-disk (dashed) systems. The horizontal line at g(2) = 3 serves as visibility
limit. (e) The pump-intensity dependence of g(2) at the second rung in the
QD-pillar system (γp = 2.3 GHz). The vertical line marks the applied pump
intensity for (a)-(d). According to Paper [II].
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5 Second Rung via Two-Photon Correlations

dephasing γP . Figure 5.3(d) presents for the three different QD-cavity systems the
computed value of g(2) at the spectral position of the second rung as function of dephasing
γP . The horizontal line at g(2) = 3 serves as a visibility limit for the observability of the
second rung. We see that for all cases, a clear resonance occurs even for dephasing values
as large as γP = 2 GHz. This is considerably larger than the natural dot dephasing of
γP = 0.3 GHz [74] and it is in the range of the broad cavity widths γcav = 5 − 6 GHz
of the QD-pillar and QD-crystal cavity. From Figs. 5.3(a)-5.3(c), we also can see that
there is no vacuum-Rabi peak in the g(2) spectrum. Thus, the g(2) spectroscopy provides
a unique resonance at the second-rung position. Since the pump and the second-rung
energies are different, the squeezing-generated g(2) feature around the pumping energy
can always be distinguished from the actual second-rung peak.

Figure 5.3(e) presents the pump-intensity dependence of g(2) at the second rung for
a large dephasing γp = 2.3 GHz. We notice that the g(2) signal remains unchanged in
the low-intensity regime [26] but decreases for too strong excitation. Since the gigantic
second-rung resonance in g(2) can be traced back to the property of a squeezed vacuum
for which g(2) diverges as the vacuum is reached, g(2) gradually decreases for strong
excitations. Thus, the resonant second-rung pumping has to be performed in the low-
intensity regime which is defined such that g(2)(ω2nd) approaches a constant value. The
calculations in Figs. 5.3(a)-5.3(d) have been performed in this stable regime for a pump
intensity which is marked by the vertical line in Fig. 5.3(e).

Hence, we could show that for the resonant second-rung pumping, the fluorescence
spectrum shows intriguing strong-coupling effects which are clearly visible for small
dephasing. For the realistic scattering levels, however, it is difficult to observe the
second rung directly in the emitted spectrum. To analyze further the observability of
the second rung, we have made use of the special structure of the Heisenberg equations
of motion derived in Sec. 3. In particular, we have computed the two-photon statistics
spectrum g(2)(ωq) which shows the second rung more clearly even at elevated dephasing
levels, which should open a way for the experimental verification of true strong-coupling
effects in the current QD-cavity systems.
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In Chapter 5, we have seen that the auto-correlated two-photon correlations yield a
more robust method than the intensity spectrum. In this Chapter, we introduce also
the cross-correlated two-photon correlations and show that they yield a larger resonance
than the auto correlations and provide a more favorable time dynamics. These insights
are important for the experimental detection of the second-rung signal in the resonance
fluorescence scheme.

We derive and present the resonance fluorescence equations for strong-coupling semi-
conductor quantum-dot systems. Even though we have already presented these equations
in Chapter 3, we again repeat and highlight the insights focusing now on the genera-
tion of the squeezing. We follow the photoluminescence and the two-photon emission
spectrum under realistic dephasing conditions.

Using the developed formalism, we also identify the origin of squeezed light in opti-
cally excited semiconductor systems. We find that the quantum statistics of matter is
crucial for obtaining squeezed light. Discussing the general case of generic light-matter
interaction, we conclude that the matter has to have fermionic statistics in order to
generate squeezed-light emission.

To obtain detailed insights, we develop a reduced model which is compared with the
full numerical calculations. We show that this simplified model yields very accurate re-
sults under typical strong-coupling conditions. We predict and analyze the appearance
of the auto- and cross-correlation resonances in the two-photon emission spectrum of the
fluorescent light. The auto- and cross-correlation resonances reveal the existence of the
one- and two-photon strong-coupling states of Jaynes-Cummings ladder. We find that
the auto-correlation resonance exists only transiently while the cross-correlation reso-
nance can exist after the optical excitation process. Furthermore, the cross-correlation
resonance is larger than the auto-correlation resonance. Hence, experimental efforts
should be focused on the cross correlations which allow for a detection under steady-
state conditions with an enhanced signal.

Most of the results that we discuss in this Chapter are based on Paper [IV].
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6.1 Resonance Fluorescence Equations

Starting from the system Hamiltonian [60] for the strong-coupling semiconductor quantum-
dot systems

Ĥ = Ecc†jcj + Evv†jvj +
∑

q

~ωq

(

B̂†
qB̂q +

1

2

)

+
∑

qj

(

iF⋆
q,jB̂

†
q P̂j − iFq,jB̂qP̂

†
j

)

, (6.1)

we set up the Heisenberg equations of motion for the relevant operator combinations
and apply the cluster-expansion approach [27–29, 43]. This way, we obtain a coupled
set of integro-differential equations which, e.g., describe the quantum statistics of the
fluorescent light from the strongly coupled system. In the following, we are mainly
interested in the generation of squeezing under resonant-pumping conditions where the
QD-cavity system is coherently excited via an external laser pump while the re-emitted
light spectrum is detected.

Thus, we must evaluate the photon-number like correlations

∆〈B̂†
qB̂q′〉 ≡ 〈B̂†

qB̂q′〉 − 〈B̂†
q〉〈B̂q′〉 (6.2)

and the correlations in the two-photon emission

∆〈B̂†
qB̂

†
q′〉 ≡ 〈B̂†

qB̂
†
q′〉 − 〈B̂†

q〉〈B̂†
q′〉. (6.3)

These correlations represent the difference between the corresponding two-photon ex-
pectation value and its classical factorization. In general, ∆〈B̂†

qB̂q′〉 determines the

intensity of incoherent resonance fluorescence while ∆〈B̂†
qB̂

†
q′〉 defines how much the

emission is squeezed. For example, a single-mode light field with quadrature operators
x̂ ≡ (B̂ + B̂†)/2 and ŷ ≡ (B̂ − B̂†)/(2i) obeying the Heisenberg uncertainty relation
∆x∆y ≥ 1/4 shows quadrature squeezing ∆X (∆Y ) [43]

∆X2 =
1

4
+

1

2
(∆〈B̂†B̂〉 + |∆〈B̂†B̂†〉|), (6.4)

∆Y 2 =
1

4
+

1

2
(∆〈B̂†B̂〉 − |∆〈B̂†B̂†〉|), (6.5)

which is given by the maximum (minimum) of the quadrature fluctuation
∆x ≡

√

〈x̂2〉 − 〈x̂〉2 (∆y). Thus, the emergent two-photon correlation ∆〈B̂†B̂†〉 is
directly related to the squeezing in one quadrature direction. These correlations are
typically built up in the resonance fluorescence configurations [44–46].

The dynamics of the intensity correlations follows from [28, 60] the luminescence
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equations

i~
∂

∂t
∆〈B̂†

qB̂q′〉 = (~ωq′ − ~ωq) ∆〈B̂†
qB̂q′〉 + iN(F⋆

q′∆〈B̂†
q P̂ 〉

+Fq∆〈B̂†
q′P̂ 〉⋆), (6.6)

i~
∂

∂t
∆〈B̂†

q P̂ 〉 = (Ecv − ~ωq − iγP )∆〈B̂†
q P̂ 〉

+ iFq

(

f e − |P |2
)

−
(

1 − f e − fh
)

i
∑

q′

Fq′∆〈B̂†
qB̂q′〉

+ d〈E(+)〉∆〈B̂†
q(c

†c− v†v)〉 + ∆〈3〉, (6.7)

while the squeezing dynamics follows from

i~
∂

∂t
∆〈B̂†

qB̂
†
q′〉 = − (~ωq + ~ωq′)∆〈B̂†

qB̂
†
q′〉

+ iN
(

Fq′∆〈B̂†
qP̂

†〉 + Fq∆〈B̂†
q′P̂

†〉
)

, (6.8)

i~
∂

∂t
∆〈B̂†

q P̂
†〉 = − (~ωq + Ecv + iγP )∆〈B̂†

q P̂
†〉

− iFqP
⋆P ⋆

−
(

1 − f e − fh
)

i
∑

q′

F⋆
q′∆〈B̂†

qB̂
†
q′〉 + ∆〈3〉

− d〈E(−)〉∆〈B̂†
q(c

†c− v†v)〉. (6.9)

We assume here that the QDs have an identical transition energy Ecv which produces
N as the number of QDs that are optically pumped via the coherent light field 〈E〉 =
〈E(−)〉 + 〈E(+)〉. Here, we applied the rotating-wave approximation such that only the
〈E(−)〉 ∼ eiωqt part of the classical field appears in Eq. (6.9) while 〈E(+)〉 ∼ e−iωqt can be
ignored due to its rapid oscillations. The appearing ∆〈3〉 symbol denotes three-particle
correlations. We omitted the specific QD index j due to our idealizing assumption
of electronically uncoupled identical dots such that the sum over the dot index j just
leads to a prefactor N . We stress that we consider the case N = 1 in the following
investigations, i.e. we describe the experimentally relevant situation in which a single
dot couples to a cavity resonance.

The resonance fluorescence equations (6.6)-(6.9) contain homogeneous parts propor-
tional to ~ωq which stem from the uncoupled light field. The coherent light 〈E〉 =

〈Ê(rj)〉 =
∑

q iEquq(rj)〈B̂q〉+c.c. excites the QDs and generates polarization P ≡ 〈v†c〉,
electron densities f e ≡ 〈c†c〉, and hole densities fh ≡ 1 − 〈v†v〉 all of which consti-
tute sources for the spontaneous emission. We note that the spontaneous source term
f e−|P |2 in the luminescence equation (6.7) can be cast into the format f efh+∆〈c†v†cv〉
where the two-particle correlation CX ≡ ∆〈c†v†cv〉 can be exactly solved for the case
of a strict two-level system, resulting into f e − |P |2. However, if electrons and holes
behave independently as in carrier-capture processes, we have to solve the two-particle
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correlations CX separately [29, 75]. In the resonance fluorescence equations (6.6)-(6.9),
the stimulated contributions

∑

q′ Fq′∆〈B̂†
qB̂q′〉 together with the photon-density corre-

lations ∆〈B̂†
qc

†c〉 and the three-particle correlations ∆〈3〉 produce the different rungs of
Jaynes-Cummings ladder.

We note that the equations of motion of the photon-density correlations ∆〈B̂†
qc

†c〉 are
structurally similar to the luminescence and squeezing equations (6.6)-(6.9). In the full
numerical calculation at the singlet-doublet-triplet level, we compute all the correlations
up to the three-particle level, i.e. the ∆〈3〉 terms are explicitly included. Furthermore,
the coupling between the light field and the QDs is evaluated self-consistently via the
Maxwell-Bloch equations. To account for the dissipative effect of the semiconductor
wetting-layer material, we include dephasing for all polarization-dependent quantities,
as can be seen from the homogeneous part of Eqs. (6.7) and (6.9) where the dephasing
constant γP enters.

As an example of our numerical evaluations, we present in Fig. 6.1 the photolumi-
nescence (PL) spectrum of the strongly-coupled system after excitation with a coherent
pump pulse. To obtain these results, we have numerically solved the full resonance
fluorescence equations (6.6)-(6.9) at the singlet-doublet-triplet level assuming a cavity-
quality factor Q = 24000, resonant conditions ~ωc = Ecv, light-matter coupling constant
g = 8.8 GHz, and dephasing constant γP = 0.6 GHz. Figure 6.1(a) presents the q, q′

dependence of the intensity correlations ∆〈B̂†
qB̂q′〉. The horizontal and vertical lines at

~ωc+(
√

2−1)g (~ωc±g) indicate the second-rung (first-rung) resonances of the Jaynes-
Cummings ladder. We assume that the coherent pump pulse is tuned to the optimum
second-rung excitation energy ~ωc+(1/

√
2)g (dashed vertical line) based on our original

prediction [60]. In Fig. 6.1(b), we clearly see the vacuum-Rabi splitting in the fluorescent
light spectrum with two main peaks at the first-rung resonances ~ωc ± g. Even though
this double-peaked spectrum is consistent with the assumption of strong-coupling con-
ditions, no additional second-rung resonances are seen in the intensity spectrum due to
the assumed realistic broadening effects.

Equations (6.8) and (6.9) describing the squeezing dynamics show that the squeezing
correlations ∆〈B̂†

qB̂
†
q′〉 couple to the photon-polarization correlations ∆〈B̂†

q P̂
†〉. These

correlations are spontaneously generated via the squeezing source term −iFqP
⋆P ⋆ in

Eq. (6.9). To investigate the origin of the squeezing source term [76], we formally
replace our composite fermionic QD-polarization operator P̂ † by a general polarization
operator denoted by P̂† and write the general light-matter interaction Hamiltonian as

Ĥint =
∑

q

(

iF⋆
q B̂

†
qP̂ − iFqB̂qP̂†

)

. (6.10)

The two-photon emission then follows from

i~
∂

∂t
∆〈B̂†

qB̂
†
q′〉

= − (~ωq + ~ωq′) ∆〈B̂†
qB̂

†
q′〉

+ iN
(

Fq′∆〈B̂†
qP̂†〉 + Fq∆〈B̂†

q′P̂†〉
)

, (6.11)
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6.1 Resonance Fluorescence Equations

Figure 6.1: Full numerical calculation of the photoluminescence (PL) spectrum

∆〈B̂†
qB̂q′〉, showing the vacuum-Rabi splitting (cavity-quality factor Q =

24000). (a) PL spectrum |∆〈B̂†
qB̂q′〉| as function of q, q′ in a contour plot.

(b) Intensity spectrum ∆〈B̂†
qB̂q〉. In all cases, the horizontal and vertical

lines at ~ωc +(
√

2− 1)g (~ωc± g) indicate the second-rung (first-rung) reso-
nances of the Jaynes-Cummings ladder. The pump is tuned to ~ωc+(1/

√
2)g

as indicated by the dashed vertical line. From Paper [IV].

35



6 Generation of Squeezing

which is formally equivalent to Eq. (6.8). To identify the source term in the photon-
polarization correlations ∆〈B̂†

qP̂†〉, we evaluate the commutator between the photon

operator B̂†
q and the general interaction Hamiltonian Ĥint, yielding

i~
∂

∂t
∆〈B̂†

qP̂†〉
∣

∣

∣

phot

int

≡ 〈
[

B̂†
q , Ĥint

]

−
P̂†〉 − 〈

[

B̂†
q , Ĥint

]

−
〉〈P̂†〉

= iFq

[

〈P̂†P̂†〉 − 〈P̂†〉〈P̂†〉
]

. (6.12)

Here, the spontaneous source term is given by iFq

[

〈P̂†P̂†〉 − 〈P̂†〉〈P̂†〉
]

regardless of the

operator properties of P̂†. If the polarization operator P̂ obeys bosonic commutation
relations, we obtain

i~
∂

∂t

[

〈P̂†P̂†〉 − 〈P̂†〉〈P̂†〉
]bos

int
= −2i

∑

q

F⋆
q∆〈B̂†

qP̂†〉. (6.13)

This yields a closed set of equations which contain only two-particle correlations. Hence,
the quantum statistics of light and bosonic matter are mapped onto another, but squeezed
light cannot be generated from bosonic matter if squeezing is not already present initially.

This situation is very different if the matter excitations exhibit fermionic properties
like the QD electrons do. As a consequence of the Pauli exclusion principle, we have

〈P̂†P̂†〉ferm = 0 (6.14)

such that the squeezing source simplifies into
[

〈P̂†P̂†〉 − 〈P̂†〉〈P̂†〉
]ferm

= −〈P̂†〉〈P̂†〉. (6.15)

The squeezing in fermionic matter systems thus follows from the nonlinear polarization
source P⋆P⋆ resulting from the fermionic character of P̂†. Hence, squeezing in fermionic
systems can be created spontaneously whenever a polarization is present in the system.

In the resonance fluorescence scheme, the light pulse, depicted in Fig. 6.2(a), excites
the matter and produces a polarization as shown in Fig. 6.2(b). Due to the fermionic
character of the polarization, we have a spontaneous source for the photon-polarization
correlations. This finally leads to the generation of squeezed light Fig. 6.2(c). In this
process, the quantum statistics of matter is crucial to obtain squeezed light. If the light-
matter interaction can be described via the general interaction Hamiltonian (6.10), the
matter has to exhibit fermionic structure in order to generate squeezed light.

6.2 Analytic Solution for Resonance Fluorescence

In App. A.1, we develop a reduced model to describe the two-photon emission spectrum.
The reduced model allows us to gain deep insights and is solved analytically in App. A.2.
In the following, we discuss the results obtained from this analysis.
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6.2 Analytic Solution for Resonance Fluorescence

Figure 6.2: Mechanism for the generation of squeezed light. The light pulse (a) excites
the matter and produces a polarization (b). The fermionic character of the
polarization is a spontaneous source term for the generation of squeezed light
(c). According to Ref. [76], Fig. 5.2.

Figure 6.3 presents the analytic solution of the two-photon emission ∆〈B̂†
qB̂

†
q′〉 in the

resonance fluorescence. Here, we used ~ωc = Ecv, the light-matter coupling constant
g = 8.8 GHz, and the dephasing constant γP = 0.6 GHz. Figure 6.3(a) shows the
generated two-photon signals (dashed, solid) after coherent excitation with a pump
pulse (shaded area). In the following, we determine the auto- as well as cross-correlation
signals that are defined from ∆〈B̂†

ωB̂
†
ω′〉 with equal (ω = ω′) and different (ω 6= ω′)

frequencies, respectively, in the correlation measurement. More specifically, we define
the auto-correlation signal (dashed, scaled) |∆〈B̂†

~ω
2nd
B̂†

~ω
2nd

〉| at the second-rung to

first-rung transition frequency

~ω2nd ≡ ~ωc + (
√

2 − 1)g. (6.16)

Additionally, we monitor the cross-correlation signal (solid) |∆〈B̂†
~ω1st

B̂†
~ω

2nd
〉| between

the ~ω2nd energy and the first rung

~ω1st ≡ ~ωc + g. (6.17)

In Fig. 6.4, the second-rung pumping scheme is shown together with a schematic presen-
tation of the introduced auto- and cross-correlation signals. Here, the |∆〈B̂†

~ω
2nd
B̂†

~ω
2nd

〉|
measures correlations between the second and first rung while |∆〈B̂†

~ω1st
B̂†

~ω
2nd

〉| defines

correlations between the second rung, first rung, and ground state.
In Fig. 6.3, we observe that both auto and cross correlations are built up via the pump.

While the auto correlation is smaller than the cross correlation and decays with time after
the pump has been gone, the cross correlation survives and reaches a steady state. Thus,
the auto correlation can be observed only transiently while the cross correlation exists
also in the long-time limit. Consequently, the auto correlation stems from modes E±

j ,
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6 Generation of Squeezing

Figure 6.3: Analytic solution of the two-photon emission ∆〈B̂†
qB̂

†
q′〉 in the resonance flu-

orescence. (a) Dynamics of auto (dashed line, scaled) and cross (solid line)
correlations after coherent excitation (shaded area). The points mark the
snapshot time for frames (b)-(d). (b) Full dependence of two-photon emis-
sion on q, q′. (c) Auto-correlation spectrum |∆〈B̂†

qB̂
†
q〉|. (d) Cross-correlation

spectrum |∆〈B̂†
~ω1st

B̂†
q〉|. In all cases, the horizontal and vertical lines at

~ωc + (
√

2 − 1)g (~ωc + g) indicate the second-rung (first-rung) resonances
of the Jaynes-Cummings ladder. The pump is tuned to ~ωc + (1/

√
2)g as

indicated by the dashed vertical line. From Paper [IV].
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6.2 Analytic Solution for Resonance Fluorescence

Figure 6.4: Schematic presentation of the auto and cross correlations in the second-rung
pumping scheme.

introduced in Eqs. (A.39)-(A.43), while the cross correlation is determined by the long-
living mode E1 (A.38). In the language of Ref. [77], we note that the auto correlation
can be identified as polarization-like quantity which decays on a time scale defined by
the dephasing γP while the cross correlation behaves density-like and can exist after the
excitation process.

Figure 6.3(b) shows the full q, q′ dependence of the two-photon emission |∆〈B̂†
qB̂

†
q′〉|

at the time t = 2.4 ns marked by a circle in Figure 6.3(a). The horizontal and verti-
cal lines at ~ω2nd (~ω1st) indicate the second-rung (first-rung) transition energies. The
coherent pump pulse excites the system at the optimum second-rung excitation energy
~ωc + (1/

√
2)g, as indicated by the dashed vertical line. The two-photon emission spec-

trum |∆〈B̂†
qB̂

†
q′〉| Fig. 6.3(b) shows that two symmetric peaks at the cross correlations

are dominating. Additionally, a contribution at the auto correlation of second-rung
transition energy can be identified.

To clarify these observations further, Fig. 6.3(c) shows the auto-correlation spectrum
|∆〈B̂†

qB̂
†
q〉| while Fig. 6.3(d) shows the cross-correlation spectrum |∆〈B̂†

~ω1st
B̂†
q〉| with

fixed energy of one photon to ~ω1st . From Fig. 6.3(c), we conclude that the auto-
correlation spectrum |∆〈B̂†

qB̂
†
q〉| demonstrates the appearance of the second-rung at

~ωq = ~ω2nd , marked by the lowest vertical line, and the pump peak. Unlike the emission

spectrum, see Fig. 6.1, ∆〈B̂†
qB̂

†
q〉 does not contain a peak at the first rung, which allows

for a direct detection of the second rung even for an appreciable dephasing [60]. However,
the second-rung resonance in the auto-correlation spectrum is visible only transiently as
shown by the dashed line in Fig. 6.3(a).

In Fig. 6.3(d), we notice that the cross-correlation spectrum indeed displays a pro-
nounced resonance at the second-rung transition energy marked by the lowest vertical
line. Thus, the correlations |∆〈B̂†

~ω1st
B̂†
q〉| produce a peak only at the second-rung energy

~ωq = ~ω2nd which makes it even a better candidate for the unambiguous detection of
the second rung with realistic QD systems. Note that the dephasing we have used is the
same dephasing as in Fig. 6.1 and yet the second-rung resonance remains distinctively

39



6 Generation of Squeezing

pronounced. The second-rung resonance in the cross-correlation spectrum builds up and
reaches a steady state as shown by the solid line in Fig. 6.3(a). Moreover, the second-
rung resonance appearing in the cross-correlation spectrum is also clearly visible in the
full q, q′ dependence of the two-photon emission spectrum |∆〈B̂†

qB̂
†
q′〉| Fig. 6.3(b). The

cross-correlation peak is also about 7 times higher than the second-rung signature in the
auto correlation such that it provides us with the most sensitive feature to demonstrate
true strong coupling in QD microcavities.

In App. A.3, we show that the cross-correlation peak is given by

|∆〈B̂†
~ω1st

B̂†
~ω

2nd
〉|(t→ ∞)

= |F~ω1st
F~ω

2nd
|N

√

√

√

√

4
(

g2

γ2
P

+ 1
)2

+ 2 g2

γ2
P

γ2
P + 4g2

s0

√
π∆T

~

× exp

[

−(
√

2 − 2Ωp)
2g

2∆T 2

4~2

]

. (6.18)

It is interesting to note that under steady-state conditions the width of the cross-
correlation peak can be controlled via the pump duration ∆T which enters the Gaussian
in Eq. (6.18). A longer pump pulse thus leads to a sharper emission pattern. Moreover,
we find that the peak height depends on the pump frequency Ωp, which identifies the
optimum pump frequency [60] Ωopt

p = 1/
√

2.

The two-photon emission spectrum ∆〈B̂†
ωB̂

†
ω′〉 can be experimentally accessed by mea-

suring the two-photon correlations [60, 69]

g
(2)
ω,ω′ ≡ 〈B̂†

ωB̂
†
ω′B̂ω′B̂ω〉

〈B̂†
ωB̂ω〉〈B̂†

ω′B̂ω′〉
. (6.19)

The correlations g
(2)
ω,ω′ determine the probability to detect two photons with frequency

ω and ω′ at the same time. Using the cluster expansion for incoherent fields, i.e. 〈B̂〉 =
0, we obtain an exact relation between the generation of the squeezed-light emission
∆〈B̂†

ωB̂
†
ω′〉 and the two-photon correlations g

(2)
ω,ω′

g
(2)
ω,ω′ = 1 +

|∆〈B̂†
ωB̂

†
ω′〉|2 + |∆〈B̂†

ωB̂ω′〉|2 + ∆〈4〉
∆〈B̂†

ωB̂ω〉∆〈B̂†
ω′B̂ω′〉

. (6.20)

For the second-rung emission, one can reach a situation where ∆〈B̂†B̂†〉 dominates over
∆〈B̂†B̂〉 and the four-photon correlations ∆〈4〉. In this case, g(2) displays a pronounced
peak at the frequency where the squeezing is observed, i.e. at the second rung [60].

6.3 Numerical Solution for Resonance Fluorescence

In order to verify the predictions of the simplified model, presented in Sec. 6.2, we numer-
ically solve the full resonance fluorescence equations (6.6)-(6.9) at the singlet-doublet-
triplet level for the cavity-quality factor Q = 1.2 · 105 and otherwise same parameters
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6.3 Numerical Solution for Resonance Fluorescence

Figure 6.5: Full numerical solution of the two-photon emission ∆〈B̂†
qB̂

†
q′〉 in the reso-

nance fluorescence (cavity-quality factor Q = 1.2 · 105). The same quantities
are plotted as in Fig. 6.3. From Paper [IV].
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used for Fig. 6.3. The solution of the two-photon emission ∆〈B̂†
qB̂

†
q′〉 under resonance

fluorescence conditions is shown in Fig. 6.5 where the same quantities are plotted as in
Fig. 6.3. We find a very good agreement between the numerical and analytical results.
In particular, Fig. 6.5 confirms all insights gained through the analytical investigations.

The detailed inspection of Fig. 6.5(a) also reveals that the decay of the auto-correlation
signal (dashed) is faster than in the analytic calculation and is almost adiabatically
following the pump. In addition, Figs. 6.5(b)-6.5(d) yield broader resonances, which
stem from the true multimode nature of the problem.

To understand the origin of these differences, we remind ourselves that the delta-
function approximation Eq. (A.12) constitutes the main simplification in the analytic
model and is well fulfilled for high-quality cavities. Consequently, we attribute the
deviations in Fig. 6.5 from the analytic solution Fig. 6.3 to the finite cavity lifetime τcav
which is given by

τcav ≡ ~/(2γcav) = 60 ps. (6.21)

Since this is much smaller than the pump duration as shown in Fig. 6.5(a) by the shaded
area, we obtain an almost adiabatic following of the auto-correlation signal. Moreover,
the finite cavity lifetime leads to broader resonances.

6.4 Conclusions

In this Chapter, we have derived the resonance fluorescence equations for strong-coupling
semiconductor quantum-dot systems, based on a fully quantized multimode theory and
a cluster-expansion approach. We have identified the origin of squeezed light in optically
excited semiconductor systems. The quantum statistics of matter is crucial for obtaining
squeezed light. Discussing the general case of generic light-matter interaction, we con-
clude that the matter has to have fermionic statistics in order to generate squeezed-light
emission.

To obtain detailed insights, we have developed a reduced model which is compared
with the full numerical calculations. We show that this simplified model yields very accu-
rate results under typical strong-coupling conditions. We have predicted and analyzed
the appearance of auto- and cross-correlation resonances in the two-photon emission
spectrum of the fluorescent light. The auto- and cross-correlation resonances reveal the
existence of the one- and two-photon strong-coupling states of Jaynes-Cummings lad-
der. We have found that the auto-correlation resonance exists only transiently while the
cross-correlation resonance can exist after the optical excitation process.

These insights should be valuable for forthcoming experiments which aim at demon-
strating the strong-coupling regime with true quantum characteristics. We have shown
that the photon-correlation measurement provides a robust method to detect the two-
photon strong-coupling states of the Jaynes-Cummings ladder in the current QD mi-
crocavities. Our results suggest that experimental efforts should be focused on the cross-
correlation measurement which shows a larger resonance than in the auto-correlation
measurement and which allows for a detection under steady-state conditions.
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7 Conclusion and Outlook

In this Thesis, we have developed a fully quantized theory to study the resonance flu-
orescence from semiconductor nanostructures. Here, the matter system is coherently
excited via an external laser pump while the re-emitted light spectrum is detected. We
have analyzed the appearance of the second rung of the Jaynes-Cummings ladder in the
strong-coupling semiconductor quantum dots (QDs) and proposed feasible experimental
schemes to detect these signatures. We have pointed out that the second rung is a truly
quantum-optical effect. We have applied the theory to the current QD systems which
have shown the semiclassical vacuum-Rabi splitting. Moreover, we have theoretically
analyzed experimental results obtained from an atomic system which has revealed the
second rung in the intensity spectrum. For the QD systems, our results are still predic-
tive because the experimental work is still in progress, while our theoretical results for
the atomic system are in good agreement with the experiment.

To obtain these results, we have set up a fully quantized model which describes the
interaction between many QDs inside a cavity and many quantized light modes. This
model turns out to be very convenient because it allows us to describe, e.g., the propa-
gation of the light and the light-matter coupling without phenomenological parameters.
For this, we solve the light-mode functions for a given resonator model by evaluating
the Helmholtz equation via a transfer-matrix method. The experimental parameters,
like the quality of the cavity and the vacuum Rabi splitting, are adjusted to the specific
experimental configurations.

As a next step, we have followed the Heisenberg equation-of-motion technique to eval-
uate the relevant operator combinations. We have encountered a hierarchy problem
which stems from the quantized interaction Hamiltonian. To truncate this hierarchy,
we have applied the cluster-expansion approach which produces consistent approxima-
tions. This approach allows us to include all correlations up to a desired order. We
have thoroughly analyzed the accuracy of the obtained equations by comparing the cor-
responding numerical results with the exact solutions for the case of one single QD and
one single light mode. These investigations are presented in more detail in the Appen-
dices. We have found that the second rung in the intensity spectrum is well described at
the three-particle level while the second rung in the squeezing spectrum is already well
described at the two-particle level. Hence, we have justified that we can use a theory
which includes all correlations up to the three-particle level. The resulting equations
are called Maxwell-Bloch equations, luminescence equations, squeezing equations, and
triplet equations.

Applying the theory, we have found that the second-rung emission is determined
by the two-photon state occupation in the pump pulse. In this connection, we have
identified the optimum excitation conditions which lead to the re-emission from the
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second rung. We have analyzed a recent atomic experiment which has demonstrated the
second rung directly in the intensity spectrum. Our theory shows good agreement with
the experimental results. Moreover, we have shown that we obtain the same second-rung
pumping mechanism in the atomic and semiconductor QD systems.

Since the realistic dephasing of the current QD samples washes out the most interesting
effects in the intensity spectrum, we have suggested to use the two-photon correlation
measurement. In contrast to the intensity spectrum, we find that the vacuum Rabi
peaks are absent in the two-photon correlation spectrum, which eliminates the large
background contributions. Moreover, we find an enhanced resonance at the second-rung
emission frequency which we trace back to the squeezing type field which is generated in
the second-rung pumping process. We have demonstrated that this enhanced resonance
is robust enough against dephasing. Since this large two-photon correlation resonance at
the second rung has already been observed in a separate atomic experiment only shortly
after our proposal, we are convinced that this method should be applicable also in the
QD systems.

Extending our discussions, we have also introduced the cross-correlated two-photon
correlations. We have suggested that the experimental efforts should be focused on the
cross correlations because they can be detected under steady-state conditions and lead
to a larger resonance than via the auto correlations. We have confirmed all insights
by a reduced model which we have solved analytically. The derivation of the analytical
solution is worked out in detail in the Appendix. We have shown that the reduced model
yields very accurate results under typical strong-coupling conditions. In particular, we
have obtained a very good agreement between the numerics and analytics.

We have used the developed formalism to explain the physical origin of the squeezed-
light emission. Following the general case of generic light-matter coupling, we have con-
cluded that the matter has to have fermionic statistics in order to produce the squeezed
light. Finally, we have also presented an exact relation between the generated squeezing
and the two-photon correlations.

As an outlook, I will finish the remaining Papers which are still in preparation, see
’Author’s Contributions’ at the beginning of the Thesis. In particular, the entanglement
analysis, the theoretical proposal for the exciton-biexciton pumping for CdSe-based QDs
in Zeno-logic applications, and the atomic vs. quantum-dot strong coupling will be
summarized in Papers.
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A Analytics for Generation of

Squeezing

In Chapter 6, we have presented the results which cover the buildup of resonances in
the two-photon emission spectrum. In App. A, we provide the corresponding analytics.
In App. A.1, we develop a reduced model which describes the two-photon emission
spectrum and which we solve analytically in App. A.2. Finally, we derive a steady-state
formula in App. A.3.

Most of the results that we discuss in App. A have been published in Ref. [78]. The
argumentation is therefore kept close to this paper.

A.1 Reduced Model

We notice that the resonance fluorescence equations (6.6)-(6.9) introduce coupling be-
tween different q-modes via the stimulated terms

∑

q′ Fq′∆〈B̂†
qB̂q′〉 and

∑

q′ F⋆
q′∆〈B̂†

qB̂
†
q′〉.

In order to treat these contributions, it is convenient to define a Boson operator for an
effective cavity mode

B̂c ≡ N
∑

q

FqB̂q. (A.1)

The norm

N−1 =

√

∑

q

|Fq|2 ≡ g1 (A.2)

ensures that the cavity mode is bosonic and properly related to the light-matter coupling
constant g1 for one QD. Here, we define the light-matter coupling constant gN for N
QDs by

gN ≡
√
Ng1 (A.3)

≡ g, (A.4)

where we also use the abbreviation g for gN . The stimulated contributions can then be
expressed in terms of the photon-cavity correlations ∆〈B̂†

qB̂
(†)
c 〉

∑

q′

Fq′∆〈B̂†
qB̂q′〉 = g1∆〈B̂†

qB̂c〉, (A.5)

∑

q′

F⋆
q′∆〈B̂†

qB̂
†
q′〉 = g1∆〈B̂†

qB̂
†
c〉. (A.6)
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We also introduce scaled photon operators b̂q which are connected to the original

photon operators B̂q via

B̂q =
F⋆
q

g1

b̂q. (A.7)

Using the transformation rules (A.1) and (A.7), the resonance fluorescence equations (6.6)-
(6.9) can be rewritten. For the luminescence equations, we obtain

i~
∂

∂t
∆〈b̂†q b̂q′〉 = (~ωq′ − ~ωq)∆〈b̂†q b̂q′〉

+ iNg1

(

∆〈b̂†qP̂ 〉 + ∆〈b̂†q′P̂ 〉⋆
)

, (A.8)

i~
∂

∂t
∆〈b̂†qP̂ 〉 = (Ecv − ~ωq − iγP ) ∆〈b̂†qP̂ 〉

− ig1

(

1 − f e − fh
)

∆〈b̂†qB̂c〉
+ ig1

(

f e − |P |2
)

+ ∆〈3〉
+ d〈E(+)〉∆〈b̂†q(c†c− v†v)〉, (A.9)

and the squeezing dynamics follow from

i~
∂

∂t
∆〈b̂†q b̂†q′〉 = − (~ωq + ~ωq′) ∆〈b̂†q b̂†q′〉

+ iNg1

(

∆〈b̂†qP̂ †〉 + ∆〈b̂†q′P̂ †〉
)

, (A.10)

i~
∂

∂t
∆〈b̂†qP̂ †〉 = − (~ωq + Ecv + iγP ) ∆〈b̂†qP̂ †〉

− ig1

(

1 − f e − fh
)

∆〈b̂†qB̂†
c〉 − ig1P

⋆P ⋆

− d〈E(−)〉∆〈b̂†q(c†c− v†v)〉 + ∆〈3〉. (A.11)

In Sec. 2, we have seen that the light-mode function proportional to |Fq|2 describes
a Lorentzian centered around the cavity frequency ωc. For high-quality cavities, this
Lorentzian essentially reduces the spectrum to the cavity mode. In the reduced model,
we thus apply the delta-function approximation

∑

q′

|Fq′|2~ωq′∆〈B̂†
qB̂

†
q′〉 ≈ ~ωc

∑

q′

|Fq′|2∆〈B̂†
qB̂

†
q′〉, (A.12)

which allows us to set up equations of motion for the photon-cavity correlations ∆〈b̂†qB̂†
c〉

that follow from

i~
∂

∂t
∆〈b̂†qB̂†

c〉 = N 2
∑

q′

|Fq′|2
[

i~
∂

∂t
∆〈b̂†q b̂†q′〉

]

. (A.13)

For instance, using the delta-function approximation (A.12) and the equation of mo-
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tion (A.8), we obtain for the homogeneous part

i~
∂

∂t
∆〈b̂†qB̂c〉|hom = N 2

∑

q′

|Fq′|2
[

i~
∂

∂t
∆〈b̂†q b̂q′〉

]

|hom

= N 2
∑

q′

|Fq′|2 (~ωq′ − ~ωq) ∆〈b̂†q b̂q′〉

≈ (~ωc − ~ωq)N 2
∑

q′

|Fq′|2∆〈b̂†q b̂q′〉

= (~ωc − ~ωq) ∆〈b̂†qB̂c〉. (A.14)

We observe that photon-cavity correlations appear again on the right hand side such
that the set of equations is closed. Similarly, the dynamics of cavity-cavity correlations
∆〈B̂†

cB̂
†
c〉 and cavity-polarization correlations ∆〈B̂†

c P̂
†〉 can be derived to become

i~
∂

∂t
∆〈B̂†

cB̂
†
c〉 = (−2~ωc) ∆〈B̂†

cB̂
†
c〉

+ 2iNg1∆〈B̂†
c P̂

†〉, (A.15)

i~
∂

∂t
∆〈B̂†

c P̂
†〉 = − (~ωc + Ecv + iγP ) ∆〈B̂†

c P̂
†〉

− ig1

(

1 − f e − fh
)

∆〈B̂†
cB̂

†
c〉 − ig1P

⋆P ⋆

− d〈E(−)〉∆〈B̂†
c

(

c†c− v†v
)

〉 + ∆〈3〉, (A.16)

where we can again make use of Eq. (A.12) and identification (A.2) multiple times.
In this reduced model, we further simplify the resonance fluorescence equations (A.8)-

(A.11) by focusing on the low-excitation regime. In this limit, only minor electron densi-
ties will be generated via optical pumping such that f e, fh ≪ 1. Moreover, spontaneous
source terms proportional to the QD polarization and the QD densities dominate in this
regime over the photon-density correlations ∆〈b̂†q(c†c− v†v)〉 which we therefore omit in
the reduced model. We also neglect the coupling to the three-particle correlations ∆〈3〉
and assume resonant conditions Ecv = ~ωc.

In the next step, we identify all correlations which couple to the two-photon emission
∆〈b̂†q b̂†q′〉 and summarize them into a squeezing vector ∆S(t) defined by

∆S(t) ≡
(

∆〈B̂†
cB̂

†
c〉,∆〈B̂†

c P̂
†〉,∆〈b̂†qB̂†

c〉,∆〈b̂†qP̂ †〉,
∆〈b̂†q′B̂†

c〉,∆〈b̂†q′P̂ †〉,∆〈b̂†q b̂†q′〉
)

(t). (A.17)

Using Eqs. (A.13), (A.15), and (A.16), we explicitly evaluate the dynamics of the squeez-
ing vector ∆S(t) to obtain

i~
∂

∂t
∆〈B̂†

cB̂
†
c〉 = 2iNg1∆〈B̂†

c P̂
†〉, (A.18)

i~
∂

∂t
∆〈B̂†

c P̂
†〉 = −iγP∆〈B̂†

c P̂
†〉 − ig1∆〈B̂†

cB̂
†
c〉

− ig1P
⋆P ⋆, (A.19)
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i~
∂

∂t
∆〈b̂†qB̂†

c〉 = − (~ωq − ~ωc) ∆〈b̂†qB̂†
c〉

+ iNg1

(

∆〈b̂†qP̂ †〉 + ∆〈B̂†
c P̂

†〉
)

, (A.20)

i~
∂

∂t
∆〈b̂†qP̂ †〉 = − (~ωq − ~ωc + iγP )∆〈b̂†qP̂ †〉

− ig1∆〈b̂†qB̂†
c〉 − ig1P

⋆P ⋆, (A.21)

i~
∂

∂t
∆〈b̂†q′B̂†

c〉 = − (~ωq′ − ~ωc) ∆〈b̂†q′B̂†
c〉

+ iNg1

(

∆〈b̂†q′P̂ †〉 + ∆〈B̂†
c P̂

†〉
)

, (A.22)

i~
∂

∂t
∆〈b̂†q′P̂ †〉 = − (~ωq′ − ~ωc + iγP ) ∆〈b̂†q′P̂ †〉

− ig1∆〈b̂†q′B̂†
c〉 − ig1P

⋆P ⋆, (A.23)

i~
∂

∂t
∆〈b̂†q b̂†q′〉 = − (~ωq + ~ωq′ − 2~ωc) ∆〈b̂†q b̂†q′〉

+ iNg1

(

∆〈b̂†qP̂ †〉 + ∆〈b̂†q′P̂ †〉
)

, (A.24)

where the rotating frame 〈E〉 ∼ e−iEcv t
~ has been used. It is convenient to define the

constant source vector

D0 ≡ (0, 1, 0, 1, 0, 1, 0) , (A.25)

the time-dependent driving term

s(t) ≡ −ig1P
⋆(t)P ⋆(t), (A.26)

and the corresponding time-dependent driving vector

D(t) ≡ D0s(t) (A.27)

to rewrite Eqs. (A.18)-(A.24). This leads to the more compact notation

i~
∂

∂t
∆Sj(t) = −

∑

k

Mjk∆Sk(t) +Dj(t). (A.28)

We notice again that the squeezing is driven by the nonlinear source term P ⋆P ⋆(t)
Eq. (A.26), as already discussed in Sec. 6.1. The homogeneous part of Eq. (A.28) is
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determined by the (static) matrix M defined as

M =



























0 −2iNg1

ig1 iγP

0 0
0 0

0 0
0 0

0
0

0 −iNg1

0 0
gNΩq −iNg1

ig1 (gNΩq + iγP )
0 0
0 0

0
0

0 −iNg1

0 0
0 0
0 0

gNΩq′ −iNg1

ig1 (gNΩq′ + iγP )
0
0

0 0 0 − iNg1 0 − iNg1 gN(Ωq + Ωq′)



























,

(A.29)
with the reduced photon energy Ωq ≡ ~(ωq−ωc)/gN . We observe that Eq. (A.28) is linear
if the source terms are treated independently from the correlations. Furthermore, we
notice that the momenta q, q′ only parametrically enter the equations of motion. Hence,
we can solve the full spectral dependence of the two-photon correlations. In analogy
to the two-photon emission, we may also rewrite the photon-number like correlations
∆〈b̂†q b̂q′〉 of Eqs. (A.8)-(A.9). These correlations determine the intensity of the incoherent
photoluminescence (PL) via the linear equation

i~
∂

∂t
PLj(t) = −

∑

k

MPL
jk PLk(t) +DPL

j (t), (A.30)

with an appropriate luminescence vector PL, homogeneous matrix MPL, and driving
vector DPL.

A.2 Analytic Solution for Resonance Fluorescence

We can analytically solve the linear set of equations (A.28) if we diagonalize the static
homogeneous matrix M . The eigenstates φλ of the homogeneous part M are given by

Mφλ = Eλφλ (A.31)

with the eigenvalues Eλ and index number λ. Since the eigenstates {φλ} form a complete
basis, we can express the source vector D0 in terms of the eigenstates

D0 =
∑

λ

Dλφλ, (A.32)

where the expansion coefficients Dλ have been introduced. We can formally integrate
Eq. (A.28) for initially vanishing correlations ∆S(t = 0) = 0 to obtain

∆S(t) =
1

i~

∫ t

0

e
i
~

M(t−u)D(u) du. (A.33)

Using D(t) = D0s(t) together with Eq. (A.32) and the relation

e
i
~
M(t−u)φλ = e

i
~
Eλ(t−u)φλ, (A.34)
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we end up with the general solution of the squeezing vector

∆S(t) =
∑

λ

Dλφλ

1

i~

∫ t

0

e
i
~
Eλ(t−u)s(u) du. (A.35)

Especially, the correlations in the two-photon emission ∆〈b̂†q b̂†q′〉(t) follow from

∆〈b̂†q b̂†q′〉(t) = ∆Sj=7(t). (A.36)

At this point, we again note that the q, q′ dependence only enters parametrically via the
static matrix M , the static eigenvectors φλ and eigenvalues Eλ, and the constant source
coefficients Dλ. Hence, we can obtain the full multimode dependence of the resonance
fluorescence.

We observe that the matrix M in Eq. (A.29) casts into the form

M =

(

M1 0

M2 M3

)

, (A.37)

i.e. it consists of four submatrices and has zero entries in the upper right corner. Since
Det(M) = Det(M1) · Det(M3) holds according to the theorem on the determinants of
block matrices, we find compact eigensolutions with eigenvalues following from

E1 = g(Ωq + Ωq′), (A.38)

E±
2 = g

(

Ωq ±
√

1 − γ2
P

4g2
+ i

γP
2g

)

(A.39)

= g(Ωq ± 1) for γP = 0, (A.40)

E±
3 = g

(

Ωq′ ±
√

1 − γ2
P

4g2
+ i

γP
2g

)

(A.41)

= g(Ωq′ ± 1) for γP = 0, (A.42)

E±
4 = g

(

±
√

2 − γ2
P

4g2
+ i

γP
2g

)

(A.43)

= g(±
√

2) for γP = 0, (A.44)

Ωq ≡ ~(ωq − ωc)/g,

where we have repeated the definition of the reduced photon energy Ωq in the last line.
Equations (A.40), (A.42), and (A.44) simplify the obtained expressions for vanishing
dephasing. However, we fully include dephasing γP in the analytic solution, i.e. we
use Eqs. (A.38), (A.39), (A.41), and (A.43). We notice that the E1 eigenmode can
exist in the long-time limit while the other modes decay with the rate γP/2 after their
generation. Thus, the E1 mode survives while E±

j are present only transiently.
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A.3 Analytic Steady-State Solution

We can derive a steady-state solution of the squeezing vector ∆S if we make use of the
general solution Eq. (A.35). The squeezing source is given by polarization P 2 which is
built up by the classical light field 〈E〉(t) for which we make the Ansatz

〈E〉(t) =
E0

2
e−

i
~
Ωpgte−

(t−t
pump
0

)2

2∆T2 (A.45)

with pump amplitude E0, pump frequency

Ωp ≡ ~(ωp − ωc)/g, (A.46)

pump duration ∆T and pump delay time tpump
0 . Since the polarization is proportional to

the classical light field P (t) ∼ 〈E〉(t) according to the Maxwell-Bloch equations [28, 65]
and the squeezing source s(t) = −ig1P

⋆P ⋆(t) is connected to the polarization, we find

s(t) = s0 e2 i
~
Ωpgte−

(t−t
pump
0 )

2

∆T2 , (A.47)

with unitless pump strength s0. In the long-time limit ∆S(t → ∞), the squeezing
generation Eq. (A.35) can be obtained from the long-living mode φλ=1

∆S(t → ∞) = Dλ=1φλ=1
s0

√
π∆T

i~
e

i
~
E1(t−tpump

0 )

× e
i
~
2Ωpgt

pump
0 e−(E1−2Ωpg)2

∆T2

4~2 , (A.48)

where we have used Eq. (A.47). Especially, we find for the cross correlation in steady
state

|∆〈B̂†
~ω1st

B̂†
~ω

2nd
〉|(t→ ∞)

= |F~ω1st
F~ω

2nd
|N

√

√

√

√

4
(

g2

γ2
P

+ 1
)2

+ 2 g2

γ2
P

γ2
P + 4g2

s0

√
π∆T

~

× exp

[

−(
√

2 − 2Ωp)
2g

2∆T 2

4~2

]

. (A.49)
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Generation

Appendix B provides very nice analytical derivations and numerical tests of our theory.
In particular, we show that the equations of motion in Chapter 3 yield good results
when we compare with the exact analytical expressions. These analytical expressions
are obtained within the original Jaynes-Cummings model which includes only one QD
and one cavity mode. We use the analytical model to study the quantum statistics of
the re-emitted light in the resonance fluorescence scheme.

Methodically, we apply the exactly solvable Jaynes-Cummings model to calculate the
quantum statistics of the fluorescent light. Here, we are mainly interested in the intensity
spectrum, squeezing spectrum, and two-photon correlations g(2) after the excitation with
a coherent light field. In App. C, we also study the excitation with a thermal light field
and investigate the role of different clusters. To compare with the numerical results, we
solve the equations of motion in Chapter 3 for one QD and one cavity mode.

We find that the second rung is well described via the cluster expansion and verify
that we obtain the same spectra in the numerics and analytics. Especially, the emis-
sion spectrum, squeezing spectrum, and also the two-photon correlations g(2) are well
described within the developed theory. We also find that the analytical model predicts
gigantic g(2) ≫ 1 values if the coherent light field contains less than one photon on
average.

B.1 Eigensolutions

We can approximate the full dot problem presented in Chapter 2 if we consider only one
dot and one strong confining cavity mode. In this situation, we can reduce the system
Hamiltonian (2.2) to the well-known Jaynes-Cummings Hamiltonian [16] which reads

ĤJC =
(

Ecĉ†ĉ+ Evv̂†v̂
)

+ ~ωc

(

B̂†B̂ +
1

2

)

+ g
(

B̂†P̂ + B̂P̂ †
)

, (B.1)

where the polarization operator is again defined by P̂ ≡ v̂†ĉ. Another representation,
often used in the atomic strong-coupling situations which are well described by the
single-mode Jaynes-Cummings Hamiltonian, is given by [16, 68]

ĤJC = Ecvσz + ~ωc(B̂
†
cB̂c + 1/2) + g(B̂†

cσ− + B̂cσ+), (B.2)
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where Ecv denotes the transition energy of the atom, σz, σ−, σ+ are the usual Pauli
sigma matrices, B̂c (B̂†

c) is the cavity photon annihilation (creation) operator with energy
~ωc, and g is the light-matter coupling constant. The σz part of Eq. (B.2) is the free
Hamiltonian of the uncoupled atom and the B̂†

cB̂c part describes the energy of the
uncoupled light field. The light-matter coupling stems from g-dependent contributions
in Eq. (B.2) where B̂†

cσ− lowers the two-level system from the excited to ground state by
emitting a photon - the opposite process B̂cσ+ excites the two-level system via photon
absorption.

This model predicts the Jaynes-Cummings ladder Fig. 1.1 where the eigen states are
explicitly given by [68, 79]

ĤJC|ψ0〉 = E0,0|ψ0〉, (B.3)

ĤJC|ψn±〉 = En±|ψn±〉, n = 1, 2, . . . , (B.4)

with eigenenergies

E0,0 = −∆/2, En± = ~ωcn±
√

∆2/4 + g2n, (B.5)

where have introduced the finite atom-cavity detuning ∆ ≡ Ecv − ~ωc. Equation (B.5)
produces the Jaynes-Cummings ladder where the excited states |ψn±〉 show a photon-
number dependent splitting of 2

√

∆2/4 + g2n. Especially, the second rung is obtained

for n = 2 with the splitting 2
√

∆2/4 + 2g2 or 2
√

2g for the zero-detuning case. We
use this exactly solvable model to set up the analytical formulae for the second-rung
generation. Furthermore, we show that we can reproduce the second rung within the
cluster-expansion approach.

B.2 Quantum Statistics

To obtain more insights into the second-rung generation, we consider an unexcited dot
(|down〉) which interacts with a generic light field which can be described via the density
matrix

ρ̂field =

∞
∑

n,n′=0

|n〉Cn,n′〈n′| (B.6)

in the Fock basis {|n〉}n=0,1,2,.... The total initial density matrix is then given by

ρ̂(t = 0) = |down〉〈down|⊗̂ρfield (B.7)

and the time evolution follows from

ρ̂(t) = exp(−iĤJCt/~)ρ̂(t = 0)exp(iĤJCt/~). (B.8)

Since the quantum statistics of the emitted light can be described [43] by pure photon
expectation values

IJK ≡ 〈[B̂†]J [B̂]K〉, J and K integers ≥ 0, (B.9)
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it is useful to compute the partial trace

ρ̂B(t) ≡ Trdot[ρ̂(t)] = 〈down|ρ̂(t)|down〉 + 〈up|ρ̂(t)|up〉, (B.10)

given explicitly in Ref. [80]. With the help of the reduced density matrix ρ̂B(t), we
obtain the pure photon expectation values

IJK = TrB[ρ̂B(t)[B̂†]J [B̂]K ] ≡
∞
∑

n=0

〈n|ρ̂B(t)[B̂†]J [B̂]K |n〉 (B.11)

which for the resonant condition ∆ = 0 explicitly read

IJK(t) =
∞
∑

n=K

√
n!
√

(n−K + J)!

(n−K)!
exp(−iωc(K − J)t)

×
[

Cn+1,n−K+J+1 sin(
√
n+ 1

gt

~
) sin(

√
n−K + J + 1

gt

~
)

+ Cn,n−K+J cos(
√
n
gt

~
) cos(

√
n−K + J

gt

~
)
]

. (B.12)

In the following, we are interested in the excitation with a coherent light field, i.e. ρ̂field =
|α〉〈α| with the coherent state |α〉 =

∑∞
n=0Qn|n〉, Qn ≡ αn/

√
n! exp [−|α|2/2], such that

Cn,n′ = QnQ
⋆
n′ holds. For n = n′, we obtain the usual photon-number distribution

Pn = Cn,n.

B.3 Second-Rung Generation

To follow the emission properties of the coupled system for the coherent excitation, we
consider again the correlated quantities

∆〈B̂†B̂〉 ≡ 〈B̂†B̂〉 − |〈B̂〉|2, (B.13)

∆〈B̂†B̂†〉 ≡ 〈B̂†B̂†〉 − (〈B̂〉⋆)2, (B.14)

where the photon-number like correlation ∆〈B̂†B̂〉 defines the emission intensity while
∆〈B̂†B̂†〉 describes the squeezing. The time evolutions of these quantities are determined
via Eq. (B.12) and are presented in Figs. B.1(a)-B.1(b), for the initial average photon
number I ≡ 〈B̂†B̂〉(t = 0) = |α|2 = 0.01; the inset of Fig. B.1(c) shows the corresponding
photon-number distribution Pn. In Figs. B.1(a)-B.1(b), the shaded area is the exact
analytical solution, according to Eq. (B.12), the dashed line is the singlet-doublet (sd),
the solid line is the singlet-doublet-triplet (sdt), and the dotted line is the singlet-doublet-
triplet-quadrupolet (sdtq) approximation. The single-mode numerics at the different
approximation levels (sd, sdt, sdtq) is obtained by reducing the general equations of
motion of the full dot-cavity problem, given in Chapter 3 and App. D, to one dot and
one single cavity mode according to Eq. (B.1).

In Fig. B.1(a), we observe that the sd numerics (dashed) does not fully reproduce
the exact emission dynamics (shaded). However, we can see that the sdt approximation
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Figure B.1: Cluster-expansion approach reproduces the second rung. In all frames: The
shaded area is the analytical solution, the dashed line is the singlet-doublet
(sd), the solid line is the singlet-doublet-triplet (sdt), and the dotted line is
the singlet-doublet-triplet-quadrupolet (sdtq) approximation. (a) Time evo-
lution of the emission intensity ∆〈B̂†B̂〉. (b) Time evolution of the squeezing
∆〈B̂†B̂†〉. (c) Emission spectrum ∆〈B̂†B̂〉(ω). The second rung (vacuum
Rabi peak) is marked by a vertical line and labeled

√
2(1). Dephasing con-

stant is γFT = 0.072 g. The inset shows the photon-number distribution with
the average photon number I = 0.01. (d) Squeezing spectrum |〈B̂†B̂†〉(ω)|2.
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(solid) produces a very good agreement between the analytics and numerics. Including
also the quadrupolets (dotted) changes the results only marginally. In Fig. B.1(b), we
see that the squeezing dynamics is already well described at the sd level.

To determine the resonances in the system, we Fourier transform the presented time
dynamics Figs. B.1(a)-B.1(b). For this purpose, we use a Fourier cosine transform
defined by

f(ω) ≡ 2Re

[
∫ ∞

0

f(t) exp (iωt) exp

(

−γFTt

~

)

dt

]

, (B.15)

where a dephasing constant γFT has been introduced which ensures the numerical conver-
gence of the integral and which results from the electron-electron and electron-phonon
coupling in the dot-cavity system. Here, we again find analytical expressions for the
spectra. In particular, the emission spectrum for the coherent excitation is determined
by [79]

(∆〈B̂†B̂〉 − ∆〈B̂†B̂〉stat)(ω)

=
P1 (1 − P0)

2

~γFT

(~ω − 2g)2 + (γFT)2

+
P2

2

~γFT
(

~ω − 2g
√

2
)2

+ (γFT)2
, (B.16)

where ∆〈B̂†B̂〉stat is the stationary part of ∆〈B̂†B̂〉(t), explicitly given by

∆〈B̂†B̂〉stat
≡ 〈B̂†B̂〉(t = 0) +

1

2
(P0 − 1) − 1

2
P0P1. (B.17)

The first term in Eq. (B.16) represents the vacuum Rabi peak, centered at ~ω/(2g) = 1,
and the second term is the second rung of the Jaynes-Cummings ladder, centered at
~ω/(2g) =

√
2. Formally, one also obtains emission from the higher quantum rungs,

but they have been neglected in Eq. (B.16). In Eq. (B.16), we indeed observe that the
second rung scales like P2 in the emission spectrum; a property which we have already
verified numerically in Chapter 4. A similar expression can be obtained for the squeezing
spectrum for the coherent excitation

|〈B̂†B̂†〉|2(ω) = P0P2
~γFT

(

~ω − 2g
√

2
)2

+ (γFT)2
, (B.18)

where we have taken the full expectation value 〈B̂†B̂†〉(t) for simplicity. Here, we find
that there is only the second rung at ~ω/(2g) =

√
2 which appears as a first contribu-

tion to the squeezing spectrum. In contrast to the emission intensity, the second-rung
squeezing signal |〈B̂†B̂†〉| scales like

√
P0P2.

In Figs. B.1(c)-B.1(d), the emission and squeezing spectra are presented. The shaded
area is again the exact analytical solution, according to Eqs. (B.16) and (B.18), the
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dashed line is the sd, the solid line is the sdt, and the dotted line is the sdtq approxima-
tion. The position of the vacuum Rabi peak and second rung are marked by the vertical
lines and labeled 1 and

√
2, respectively. Indeed, we see that both the vacuum Rabi peak

and second rung are present in the emission, while only the second rung is present in the
squeezing. In Fig. B.1(c), we find that the sd approximation (dashed line) is not accurate
enough to reproduce the second rung in the emission spectrum; we have already found
this property in Fig. 4.1 which shows that there are no quantum rungs in the emission
spectrum in the singlet-doublet approximation, as indicated by the grey shaded area in
Fig. 4.1. Figure B.1(c) shows that the sdt approximation (solid line) indeed reproduces
the second-rung very well. Moreover, the higher-order correlations may be neglected as
can be seen from the sdtq-level results. In Fig. B.1(d), we notice again that already the
sd level (dashed line) accurately reproduces the second rung in the squeezing spectrum.

In summary, we have verified with these single-mode analyses that the generic singlet-
doublet-triplet equations describe the second rung very well and constitute a profound
basis for the investigation of true quantum-optical effects in the dot-cavity systems.

B.4 Two-Photon Correlations

We analyze next the two-photon correlations g(2) which determine the probability of
detecting two photons at the same time. Similarly to Eq. (5.1), we define

g(2) ≡ 〈B̂†B̂†B̂B̂〉
〈B̂†B̂〉2

. (B.19)

We can evaluate the exact solution of g(2)(t) if we use Eq. (B.12) which defines the full
quantum statistics. Furthermore, we can investigate the role of the different cluster to
the exact solution. For this, it is convenient to expand the g(2) formula into the clusters

g(2) =
[

|〈B̂〉|4 + 4∆〈B̂†B̂〉|〈B̂〉|2 + 2Re[∆〈B̂†B̂†〉〈B̂〉2]
+ 2∆〈B̂†B̂〉2 + |∆〈B̂†B̂†〉|2 + 4Re[〈B̂〉∆〈B̂†B̂†B̂〉]
+ ∆〈B̂†B̂†B̂B̂〉

]/

(|〈B̂〉|2 + ∆〈B̂†B̂〉)2. (B.20)

The correlated two-photon quantities ∆〈B̂†B̂〉 and ∆〈B̂†B̂†〉 are defined in Eqs. (B.13)
and (B.14). For completeness, the three-photon and four-photon correlations can be
recursively obtained via

∆〈B̂†B̂†B̂〉 ≡ 〈B̂†B̂†B̂〉 − (〈B̂〉⋆)2〈B̂〉
− 2〈B̂〉⋆∆〈B̂†B̂〉 − 〈B̂〉∆〈B̂†B̂†〉, (B.21)

∆〈B̂†B̂†B̂B̂〉 ≡ 〈B̂†B̂†B̂B̂〉 − |〈B̂〉|4 − 4∆〈B̂†B̂〉|〈B̂〉|2
− ∆〈B̂†B̂†〉⋆(〈B̂〉⋆)2 − ∆〈B̂†B̂†〉〈B̂〉2
− 2〈B̂〉⋆∆〈B̂†B̂†B̂〉⋆ − 2〈B̂〉∆〈B̂†B̂†B̂〉
− 2∆〈B̂†B̂〉2 − |∆〈B̂†B̂†〉|2. (B.22)
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Figure B.2: Maximum of g(2) as function of the average photon number for the co-
herent excitation. The shaded area presents the exact analytical solution
and the solid line presents the analytical solution without the quadrupo-
lets ∆〈4〉 ≡ ∆〈B̂†B̂†B̂B̂〉. The maximum of g(2)(t) is computed for
gt/~ ∈ [0, 20]. Vertical and horizontal lines at 1 are guides for the eyes.

The cluster-expansion version Eq. (B.20) of g(2) is useful to analyze the importance of the
quadrupolets ∆〈B̂†B̂†B̂B̂〉 which enter the nominator and which can be easily switched
off.

Figure B.2 shows g(2) Eq. (B.19) as function of the average photon number I for
the coherent excitation. For convenience, we have determined the maximum g(2) value
during the time evolution. The shaded area presents the exact analytical solution,
according to Eqs. (B.12) and (B.19), while the solid line presents the analytical solution
without the quadrupolets ∆〈B̂†B̂†B̂B̂〉. We nicely see that g(2) dramatically increases if
we approach the vacuum. Furthermore, in the low-intensity regime with average photon
number I < 1, there is an excellent agreement between the full and approximated
analytical solution. This demonstrates that we can neglect the quadrupolets in the high-
g(2) regime for the coherent excitation. Hence, it is justified to use a singlet-doublet-triplet
calculation for the analysis of the two-photon correlations, as has been done in Chapter 5.
If we approach the regime I ≥ 1, the exact g(2) tends to the coherent-state value g(2) = 1
while the approximated solution converges to a higher value close to g(2) = 3. We thus
learn that the quadrupolets become more dominant and ensure the physical consistency
in the high-intensity regime. This is clear since the higher-order clusters are generated
for increasing light-field intensities.

In summary, we conclude that the omission of the quadrupolets is justified in the
regime with average photon number less than one. Another interesting finding is that
also this simple analytical model predicts the gigantic g(2) values which we have found
in the more demanding QD calculation in Chapter 5.
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C Thermal Excitation - Role of

Correlations

We consider the single-mode Jaynes-Cummings model discussed in App. B and focus
on the excitation with the thermal light. Even though we have not used the thermal
excitation in this Thesis, the following results are essential if one wants to extend the
presented theory to study also the thermal light. For this reason, we append here our
fundamental insights which we have gained through a simple analysis.

Our main interest is to analyze the quantum statistics of the fluorescent light and the
role of the different clusters. We show that for the incoherent excitation, the so-called
X- (exciton) and X-photon correlations become crucial for a correct description of the
quantum statistics. In particular, we demonstrate that these correlations play a major
role for a consistent description of the emission in the incoherent regime, as also shown
in Ref. [29] in a more demanding QD calculation. Finally, we show that the two-photon
correlation g(2) is dominated by the four-particle correlations and reaches gigantic values
for average photon number less than one.

C.1 Extended Equations of Motion

We consider the single-mode Hamiltonian

Ĥ =
(

Ecĉ†ĉ+ Evv̂†v̂
)

+ ~ωc

(

B̂†B̂ +
1

2

)

+
(

F⋆B̂†P̂ + h.c.
)

(C.1)

and develop the necessary equations of motion for the thermal excitation. In the inco-
herent regime, no polarization and classical light field are present [35] such that we have
P = 0 and 〈B̂〉 = 0. By studying the equation structure at the singlet-doublet-triplet-
quadrupolet level, we find that only the photon-assisted polarization ∆〈B̂†P̂ 〉 and the
four-particle correlation ∆〈B̂†B̂†B̂P̂ 〉 couple to the X- and X-photon correlation, defined
by

X correlation ≡ ∆〈P̂ †P̂ 〉, (C.2)

and

X-photon correlation ≡ ∆〈B̂†B̂P̂ †P̂ 〉. (C.3)
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C Thermal Excitation - Role of Correlations

To analyze also the incoherent regime, we therefore extend the equations of motion of
the correlations ∆〈B̂†P̂ 〉 and ∆〈B̂†B̂†B̂P̂ 〉 [79] and obtain

i~
∂

∂t
∆〈B̂†P̂ 〉 = i~

∂

∂t
Π = (Ecv − ~ωc)Π − F

(

f cfh + ∆〈P̂ †P̂ 〉
)

− F∆〈B̂†B̂〉
(

f c + fh − 1
)

− F〈B̂〉∆〈B̂†f̂ cv〉
− F∆〈B̂†B̂f̂ cv〉, (C.4)

i~
∂

∂t
∆〈B̂†B̂†B̂P̂ 〉 = i~

∂

∂t
∆〈B̂†B̂†B̂P̂ 〉no X, X-photon correlations

− 2F∆〈B̂†B̂P̂ †P̂ 〉. (C.5)

The additional X- and X-photon correlations are solved directly with the Pauli exclusion
principle

〈a†a†cc〉 = 〈a†a†vv〉 = 〈a†a†cv〉 = 0, (C.6)

where a = c, v denotes the fermionic carrier operator of conduction, valence electron,
respectively. We find for the dynamics of X correlation

∆〈P̂ †P̂ 〉 = 〈P̂ †P̂ 〉 − 〈P̂ †P̂ 〉Hartree Fock
= f c − |P |2 − f cfh, (C.7)

which reads in the incoherent regime (inc)

∆〈P̂ †P̂ 〉inc = f c − f cfh. (C.8)

Analogously, we solve the X-photon correlation which reads

∆〈B̂†B̂P̂ †P̂ 〉 =

(

−1

2

)

(

f c + fh − 1
)

∆〈B̂†B̂f̂ cv〉 − P ⋆∆〈B̂†B̂P̂ 〉

− P∆〈B̂†B̂P̂ 〉⋆ − 1

2
|∆〈B̂†f̂ cv〉|2 − |Π|2 − |∆〈B̂†P̂ †〉|2, (C.9)

and reduces in the incoherent regime to

∆〈B̂†B̂P̂ †P̂ 〉inc =
1

2
∆〈B̂†B̂f̂ cv〉 − |Π|2 − 1

2

(

f c + fh
)

∆〈B̂†B̂f̂ cv〉. (C.10)

The extended equation of motion for the four-particle correlation ∆〈B̂†B̂†B̂P̂ 〉 in the
incoherent regime then reads

i~
∂

∂t
∆〈B̂†B̂†B̂P̂ 〉inc = (Ecv − ~ωc) ∆〈B̂†B̂†B̂P̂ 〉

− F
[

∆〈B̂†B̂f̂ cv〉
(

1 + 2∆〈B̂†B̂〉
)

− 2|Π|2

+∆〈B̂†B̂†B̂B̂〉
(

f c + fh − 1
)

]

− 2F⋆Π2. (C.11)

To summarize, the extended equations of motion in the incoherent regime consist of
Eqs. (C.4) and (C.11).
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C.2 Role of Clusters

Figure C.1: Time dynamics of the emission (a) and of the four-photon correlation (b)
for the thermal excitation. The shaded area is the exact analytical solution,
the solid line is the fully consistent sdtq approximation, and the dashed
line is the sdtq approximation where the X- and X-photon correlations are
switched off. The average photon number is I = 0.01, the light-matter
coupling constant is g = 22 GHz. (c) Photon-number distribution Pn.

C.2 Role of Clusters

Figure C.1 shows a part of the quantum statistics of the fluorescent light for the thermal
excitation. Figure C.1(a) presents the time dynamics of the emission intensity ∆〈B̂†B̂〉
and Fig. C.1(b) presents the time dynamics of the four-photon correlation ∆〈B̂†B̂†B̂B̂〉.
The shaded area denotes the exact analytical solution according to Eq. (B.12), the solid
line is the numerically calculated sdtq (singlet-doublet-triplet-quadrupolet) approxima-
tion with X- and X-photon correlations included, denoted by fully consistent sdtq ap-
proximation in the following, and the dashed line is the numerically calculated sdtq
approximation without the X- and X-photon correlations. Figure C.1(c) shows the cor-
responding photon-number distribution Pn for the used thermal excitation. We observe
that the two-particle and four-photon correlations presented in Fig. C.1 are well repro-
duced via the fully consistent sdtq approximation. In contrast, the sdtq approximation
without the X- and X-photon correlations shows negative emission intensity ∆〈B̂†B̂〉
[29]. Furthermore, the approximation does not follow the exact solution, neither in the
emission intensity Fig. C.1(a) nor in the four-photon correlation Fig. C.1(b). It is thus
crucial to include the X- and X-photon correlations in the incoherent regime to obtain a
physically consistent solution.

To demonstrate further the reliability of the fully consistent sdtq approximation, we
show that we can correctly describe the second rung in the higher-order expectation
values. Figure C.2 presents the Fourier transform of the four-photon expectation value
〈B̂†B̂†B̂B̂〉. The shaded area is the exact solution, according to Eq. (B.12), which
explicitly reads

〈B̂†B̂†B̂B̂〉(ω)inc = P2
~γFT

(

~ω − 2g
√

2
)2

+ (γFT)2
, (C.12)
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Figure C.2: Spectrum of the four-photon expectation value 〈B̂†B̂†B̂B̂〉 for the thermal
excitation. The vertical lines mark the energetic position of the vacuum Rabi
peak and the second rung labeled by ’

√
2’. The shaded area is the exact

analytical solution and the solid line is the fully consistent sdtq approxi-
mation. The average photon number is I = 0.01, the light-matter coupling
constant is g = 22 GHz and the dephasing constant in the Fourier transform
is γFT = 0.072 g. The inset shows the photon-number distribution Pn.

and the solid line is the fully consistent sdtq approximation. The vertical lines mark the
energetic position of the vacuum Rabi peak and the second rung which is also labeled
by ’

√
2’. The inset shows again the photon-number distribution Pn. Indeed, we obtain

a very good agreement between the analytics and numerics. The second-rung resonance
in the spectrum Fig. C.2 is well reproduced via the numerics. This shows that the fully
consistent sdtq approximation accurately describes the higher-order expectation values
up to four particles.

C.3 Two-Photon Correlations

Figure C.3 shows the two-photon correlation g(2) as function of the average photon
number I for the thermal excitation. The shaded area (dotted line) is the exact solution
of the maximum (minimum) g(2)(t) value for gt/~ ∈ [0, 20], and the solid line presents the
analytical solution without the quadrupolets. The dashed vertical line at I = 1 is a guide
for the eye. We observe that g(2) dramatically increases for decreasing photon numbers
I ≤ 1 and takes values up to g(2) ∼ 103. The minimum value of g(2) converges to zero
for decreasing photon numbers. For large I > 1, we notice that both the maximum and
minimum of g(2) tend towards the thermal-light value of g(2) = 2. From the solid line,
we can see that we obtain a constant value of g(2) = 2 if we switch off the quadrupolet
terms ∆〈4〉. This is in extreme contrast to the exact behavior of g(2) which takes gigantic
values in the low-intensity regime. Thus, the four-particle correlations are essential for
a consistent description of the two-photon correlation g(2) in the incoherent regime [81].
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C.3 Two-Photon Correlations

Figure C.3: Two-photon correlation g(2) as function of the average photon number I
for the thermal excitation and influence of the quadrupolet terms ∆〈4〉.
The shaded area (dotted line) is the full analytical solution of the maximum
(minimum) of g(2)(t) for gt/~ ∈ [0, 20]. The solid line presents the analytical
solution without the quadrupolets, resulting in a constant value of g(2) = 2.
The light-matter coupling constant is g = 22 GHz. The dashed vertical line
at I = 1 is a guide for the eye.
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D Triplet Equations

In Chapter 3, we have applied the Heisenberg equation-of-motion technique and the
cluster-expansion approach. We have set up a consistent set of singlet-doublet-triplet
equations and we have discussed one of the triplet equations. In App. D, we present also
the remaining triplet equations [79] for the system Hamiltonian (2.2) to close the full set
of singlet-doublet-triplet equations. In particular, we obtain the photon-photon-carrier
correlations and photon-photon-photon correlations.

Starting with the photon-photon-carrier correlations, the photon-photon-density cor-
relations follow from

i~
∂

∂t
∆〈B̂qB̂q′ f̂

cv
j 〉

= ~ (ωq + ωq′) ∆〈B̂qB̂q′ f̂
cv
j 〉

+ 2
∑

q′′

[

Fq′′Π
⋆
qj∆〈B̂q′B̂q′′〉 + Fq′′Π

⋆
q′j∆〈B̂qB̂q′′〉

− F⋆
q′′∆〈B̂qP̂j〉∆〈B̂†

q′′B̂q′〉 − F⋆
q′′∆〈B̂q′P̂j〉∆〈B̂†

q′′B̂q〉

+ Fq′′P
⋆
j ∆〈B̂qB̂q′B̂q′′〉 − F⋆

q′′Pj∆〈B̂†
q′′B̂qB̂q′〉

]

− 2Ωj∆〈B̂qB̂q′P̂
†
j 〉 + 2Ω⋆

j∆〈B̂qB̂q′P̂j〉
−

(

f cj + fhj
)

(

F⋆
q∆〈B̂q′P̂j〉 + F⋆

q′∆〈B̂qP̂j〉
)

+ 2
∑

q′′

Fq′′∆〈B̂†
qB̂

†
q′B̂

†
q′′P̂j〉⋆ − 2

∑

q′′

F⋆
q′′∆〈B̂†

qB̂
†
q′B̂q′′P̂

†
j 〉⋆

− Pj

(

F⋆
q∆〈B̂q′ f̂

cv
j 〉 + F⋆

q′∆〈B̂qf̂
cv
j 〉
)

. (D.1)

As further sets which contain the carrier operators, we have the photon-photon-
polarization correlations which are determined by
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i~
∂

∂t
∆〈B̂†

qB̂q′P̂j〉

= (Ecv + ~ωq′ − ~ωq − iγP ) ∆〈B̂†
qB̂q′P̂j〉

−
∑

q′′

[

Fq′′∆〈B̂qf̂
cv
j 〉⋆∆〈B̂q′B̂q′′〉 + Fq′′∆〈B̂q′ f̂

cv
j 〉∆〈B̂†

qB̂q′′〉

+ Fq′′
(

f cj + fhj − 1
)

∆〈B̂†
qB̂q′B̂q′′〉

]

+ Ωj∆〈B̂†
qB̂q′ f̂

cv
j 〉

− 1

2
Fq

(

f cj + fhj
)

∆〈B̂q′ f̂
cv
j 〉 − 2F⋆

q′PjΠqj

−
∑

q′′

Fq′′∆〈B̂†
q′′B̂

†
q′B̂qf̂

cv
j 〉⋆, (D.2)

i~
∂

∂t
∆〈B̂qB̂q′P̂

†
j 〉

= (−Ecv + ~ωq + ~ωq′ − iγP ) ∆〈B̂qB̂q′P̂
†
j 〉

+
∑

q′′

[

F⋆
q′′∆〈B̂qf̂

cv
j 〉∆〈B̂†

q′′B̂q′〉 + F⋆
q′′∆〈B̂q′ f̂

cv
j 〉∆〈B̂†

q′′B̂q〉

+ F⋆
q′′

(

f cj + fhj − 1
)

∆〈B̂†
q′′B̂qB̂q′〉

]

− Ω⋆
j∆〈B̂qB̂q′ f̂

cv
j 〉

+
1

2

(

f cj + fhj
)

(

F⋆
q∆〈B̂q′ f̂

cv
j 〉 + F⋆

q′∆〈B̂qf̂
cv
j 〉
)

+
∑

q′′

F⋆
q′′∆〈B̂†

qB̂
†
q′B̂q′′ f̂

cv
j 〉⋆, (D.3)

i~
∂

∂t
∆〈B̂qB̂q′P̂j〉

= (Ecv + ~ωq + ~ωq′ − iγP )∆〈B̂qB̂q′P̂j〉
−

∑

q′′

[

Fq′′∆〈B̂qf̂
cv
j 〉∆〈B̂q′B̂q′′〉 + Fq′′∆〈B̂q′ f̂

cv
j 〉∆〈B̂qB̂q′′〉

+ Fq′′
(

f cj + fhj − 1
)

∆〈B̂qB̂q′B̂q′′〉
]

+ Ωj∆〈B̂qB̂q′ f̂
cv
j 〉

− 2Pj

(

F⋆
q∆〈B̂q′P̂j〉 + F⋆

q′∆〈B̂qP̂j〉
)

−
∑

q′′

Fq′′∆〈B̂†
qB̂

†
q′B̂

†
q′′ f̂

cv
j 〉⋆. (D.4)
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Finally, the photon-photon-photon correlations which contain only the photon opera-
tors follow from

i~
∂

∂t
∆〈B̂qB̂q′B̂q′′〉

= ~ (ωq + ωq′ + ωq′′) ∆〈B̂qB̂q′B̂q′′〉
+

∑

j

[

F⋆
q∆〈B̂q′B̂q′′P̂j〉 + F⋆

q′∆〈B̂qB̂q′′P̂j〉

+ F⋆
q′′∆〈B̂qB̂q′P̂j〉

]

, (D.5)

i~
∂

∂t
∆〈B̂†

qB̂q′B̂q′′〉

= ~ (ωq′′ + ωq′ − ωq)∆〈B̂†
qB̂q′B̂q′′〉

+
∑

j

[

F⋆
q′′∆〈B̂†

qB̂q′P̂j〉 + F⋆
q′∆〈B̂†

qB̂q′′P̂j〉

− Fq∆〈B̂q′′B̂q′P̂
†
j 〉
]

. (D.6)
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