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Abstract 

The statistics of a Boltzmann machine can be approximated using the TAP equations com­
bined with linear response theory. We discuss the validity of the TAP equations, in particular 
for finite size networks. We present an algorithm that determines if a particular solution of 
the TAP equations is valid. 

1 Introduction 

Boltzmann machines are networks of 
stochastic binary variables (neurons). All 
neurons Si are linked to each other with 
symmetric weights Wij = Wji. Due to this 
symmetry the probability distribution is 
given by the Boltzmann-Gibbs distribution 
which is a known function of the weights 
and thresholds of the network [1]. 

Since the exact computation of the statis� 
tics is intractable, one has to make an ap­
proximation. Plefka [2] presented an ele­
gant way to derive an approximation (orig­
inally found by Thouless, Anderson and 
Palmer [3]) called the TAP equations. The 
method is based on a small weight expan­
sion around a tractable, decoupled network 
and is an extension of the naive mean field 
method. 

*http://wwv.mbfys.kun.nl/-martijn 
thttp://www.mbfys.kun.nl/-bert 

The small weight expansion only converges 
within the radius of convergence. Outside 
that radius expansions upto any order give 
a poor approximation. Therefore, the TAP 
expansion is only valid if the weights and the 
TAP solution are within that radius. Plefka 
derived some conditions for the convergence, 
but they can only be used in the limit of an 
infinite size network. In section 3 we de­
rive the conditions for a finite size network, 
which is a more realistic case for neural net­
works. 

In section 4 we illustrate the validity con­
dition numerically by computing correla­
tions (SiSj) both exactly and using the TAP 
scheme. In addition we show the results of 
Boltzmann machine learning, where the TAP 
approximation is used for the needed statis­
tics [4][5]. The validity of the TAP solution 
is computed after each weight update. 

�This research is supported by the Technology Foundation STW, applied science devision of NWO and the 
technology programme of the Ministry of Economic Affairs. 
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2 Theory 

We consider a network of N neurons, 

Si = ±1, with thresholds ()i and symmet­
ric weights Wij = Wji. The energy of such a 
network is given by 

where Eint stands for the interaction energy 
defined by 

Eint (8') = -� 2:= WijSiSj (2) 
ij 

The probability to find the system in a state 
8' is given by 

P (8',a) = exp (-E (8', a) - 'l1 (a)) 
(3) 

where 'l1 (a) is a normalisation constant de­
fined by 

'l1 (a) = log 2:= exp ( -E ( 8', a)) (4) 
all "9 

which is minus the well known free energy. 

This free energy is a function of the inde­
pendent variables ()i and Wij. We perform a 
Legendre transformation to make 

(5) 

the new independent variables instead of ()i. 
Hence, we obtain the Legendre transform of 
'l1 

where mi and Wij are the independent vari­
ables and ()i is a function of them defined 
by 

(7) 

We expand if> (m;, Wij, a) in a 
1 <T> (a) = if> (0) + a<T>' (0) + 2a2if>" (0) + 0 (a3) 

(8) 
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where a prime denotes differentiation with 
respect to a. We directly obtain from [2) 

<T>' (a) = (Eint)", (9) 

<T>" (0) = (Eint); - (Ei2nt)", + 

/ Eint 2:= BBi (Si - mi)} 
\ i Ba '" (10) 

Evaluating these expressions at a = 0 gives 

if> (0) = " { 1 + mi 
log 

1 + mi 
� 2 2 • 

1- mi I-m; } 
+-- log--2 2 

<T>' (0) = - � 2:= Wijmimj 
ij 

(11) 

(12) 

if>" (0) = - � 2:= w7i (1 - mn (1 -mJ) 
4 ij (13) 

We find the TAP approximation for if> by 
substituting equations 11 to 13 in equation 8 
and setting a to one. 

To find the value for mi, we use the property 
of the Legendre transformation as in equa­
tion 7 

()i = :<T>. = tanh-i mi -a 2:= Wijmj m. j 
+ a2mi 2:= W7j (1 - mJ) (14) 

j 
which we recognise as the TAP equations for 
a = 1. The correlations are given by (see 
also [4)) 

where the inverse of the matrix X is given 
by 

(X-i)ij = 

(1_lm? + a2 2:= W�k (1 -m�)) Oij 
• k 

- aw·· - 2a2w2.m·m· (16) 'J 'J ' J 
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F igure 1: The left figure shows the complex a-plane and the singularities of det X (a) for a 
network of five neurons. The weights were randomly chosen from a Gaussian with a = 0.45 and 
f..L = O. The mean field variables mi are zero, which is a solution of the TAP equations since the 
thresholds are chosen zero. The right figure shows the increase in phase of det X (a) for three 
different radii la l. Since the circles la l = 1.2 and la l = lA enclose poles, there is a net increase 
of the phase of det X (a) and the solution mi = 0 is invalid. 

since 

(a2�)-1 (17) am ij 

3 Validity of the TAP ex-
. panSlon 

Let the radius of convergence of the expan­
sion in equation 8 be p. For a < p the error 
of the TAP approximation is " ( (3). How­
ever, if a > p the expansion does not con­
verge and any truncation of the Taylor series 
is meaningless. Moreover, the addition of an 
extra expansion term will in general increase 
the error instead of giving a better approx­
imation. Since we set a = 1 to obtain the 
TAP approximation, we require p > 1 [2]. 
For an exact Boltzmann machine, we derive 
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We use the fact that p is the same for <I> (a) 
and a <I> /aa . Furthermore p is equal to the 
distance between the origin and the near­
est singular point in the complex a-plane. 
Thus the singularities of the matrix X (a) 
given the thresholds, weights and mean field 
variables mi determine the radius of conver­
gence p. 

To find these singularities we assume that 
the approximation for X (a)-1, given by 
equation 16 is good within the radius of 
convergence and hence may be used to find 
the singularities. Plefka [2] showed that this 
assumption is correct for the SK-model [6] in 
the limit of infinite networks. 

One should keep in mind that a direct com­
putation of the approximated a <I> / aa to ob­
tain X (a) will never give any poles, since 
<I> is a Taylor expansion (Le. a polynomial 
function of a) . A solution is to use X-1 (a) 
as in (16), which may be not of maximum 
rank, so that X (a) does have poles. This is 
certainly not a unique choice, but it appears 
to be quite good according to our simula­
tions. 



Consider the circle C : la d = 1 in the com­
plex a-plane. This circle is mapped to a 
closed curve by the map det X (a) Since this 
is a analytic function except for a finite num­
ber of poles, the integral 

-2
1. J detx (a) da (19) 

1f1 le 
is equal to the number of poles within C. 
Thus the increase in phase of det X (a) , 
when a follows C, gives the number if poles 
bounded by la l = 1. This is shown in fig­
ure 1. Thus the validity condition p > 1 cor­
responds to a zero integral in equation 19. 
The calculation of the determinant is 
O(N3). The increase of phase of detx (a) is 
somewhere between zero and 27rN. There­
fore, in the worst case of a maximum in­
crease, the step size with which we incre­
ment the phase of a must be 0 (N-l) to 
be able to compute this phase change with 
enough accuracy. Hence the computational 
complexity of the algorithm is somewhere 
between 0 (N3) and 0 (N4). 

4 Results 

We initialise a network of N = 14 neurons 
with weights drawn from a Gaussian with 
standard deviation 1/ VN and zero mean 
(which is the so called sK-model [6]). The 
network has its thresholds set to zero and 
therefore mi = 0 is always a solution of 
equation 14. It is important to understand 
that although the solution mi = 0 is stable 
and corresponds to the exact (Sil = 0, the 
TAP expansion is meaningless when it does 
not converge. As a consequence one can ex­
pect large errors in, for instance, the approx­
imated correlations. Therefore we still need 
to know the validity of the solution. 

We multiply all weights with a scaling factor 
which we vary from zero to two. For each 
value of the scaling factor we compute the 
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correlations using equation 15 with the so­
lution mi = O. In figure 2 we have plotted 
the approximation error of the correlations 
defined by 

versus the scaling of the weights. One can 
see an enormous increase of the error start­
ing roughly at the point that the TAP solu­
tion is invalid according to our algorithm. 

To understand the use of the validity con­
dition in Boltzmann machine learning, we 
train a network of eight neurons using the 
TAP approximation with linear response as 
in [4). The target distribution is the Asia 
problem, where the correlations between 
some diseases and findings are modelled [7). 
This results in a probability distribution of 
eight binary neurons, which we try to learn 
without hidden units. Learning was done 
using the gradient descent rule [1] 

I1Bi = rJ ( (Si)asia -(Si)net) (21) 

I1Wij = rJ ( (SiSj)asia -(SiSjlnet) 
(22) 

with a learning rate rJ = 0.05. Onet and 

Oasia are the averages in the current net­
work and those in the Asia problem, respec­
tively. 

The Kullback divergence between the target 
and the learned distribution is plotted at the 
left of figure 3 for both the exact and the TAP 
learning procedure. Note that the Kullback 
error is not available in large problems due 
to the computational intractability. At the 
right the number of poles is plotted for each 
learning step. As one can see the Kullback 
divergence generally decreases if the number 
of poles is zero, but increases dramatically 
if not. In the latter case the TAP solution 
is wrong, since the TAP expansion does not 
converge. 
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Figure 2: The left graph shows the error of the approximated correlations versus the scaling of 
the weights. Beyond a scaling of 0.8 the TAP solution mi = 0 is not valid since the number of 
poles, as is shown in the right graph, is greater than zero. 
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Figure 3: The learning of the Asia problem. The left graph shows the Kullback divergence for 
the exact and the approximated learning. The right graph shows the number of poles of det X (a) 
with lal < 1 for each learning step. As the number of poles is greater than zero, the TAP solution 
is wrong and learning should be stopped at that point. 
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5 Conclusions 

We have presented an algorithm to deter­
mine the validity of a TAP solution. The 
computational complexity of the algorithm 
is polynomial in the size of the network. 
We have shown that the correlations are 
badly approximated if the solution of the 
TAP equations is invalid according to the al­
gorithm. 

Furthermore we have applied the algorithm 
to Boltzmann machine learning. There are 
targets for which the TAP solution reaches 
the invalid region after some epochs. There­
fore it is reasonable to believe that such a 
target lies in the invalid region. We have 
shown that in this region the learning proce­
dure in general increases the Kullback diver­
gence and thus decreases the network perfor­
mance. If the invalid region is entered, one 
can decide either to stop learning and use 
the realisation of the network so far or to 
mark the problem as unsolvable within the 
TAP approximation. 
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