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A constructive view on ergodic theorems

Bas Spitters∗

Radboud University
Nijmegen, the Netherlands

Abstract. Let T be a positive L1-L∞ contraction. We prove that the following state-

ments are equivalent in constructive mathematics.

1. The projection in L2 on the space N : = cl{x−T x: x∈L2} exists;

2. The sequence (T n)n∈N Cesàro-converges in the L2 norm;

3. The sequence (T n)n∈N Cesàro-converges almost everywhere.

Thus, we find necessary and sufficient conditions for the Mean Ergodic Theorem and the

Dunford-Schwartz Pointwise Ergodic Theorem.

1. Introduction

Bishop [4] (p.233) put forward the following problem connected with the question of finding a
constructive interpretation of ergodic theorems.

Think of X as the union of two equal tanks of fluid, and T as a motion of the
fluid, which is supposed to keep the fluid confined to the tank in which it has been
placed. Imagine that there may be a small leak, which would in fact allow the
fluid in the two tanks to mix, but that we are not able to decide whether a leak
actually exists. Since the leak if it exists, is small, there will be little mixing
between the tanks after unit time (that is, under the transformation T ), but after
a long time (that is, under the transformation Tn for some large n) the mixing
may be substantial.

He concluded that Birkhoff’s Ergodic Theorem is non-constructive.
Bishop proved, using so-called upcrossings, a version of the Chacon-Ornstein Theorem. This

theorem is a generalization of Dunford and Schwartz’s version of the Pointwise Ergodic The-
orem, a result which extends Birkhoff’s Ergodic Theorem. In Bishop’s ergodic theorem a limit is
proved to exists in a constructively very weak sense. Bishop’s result is a so-called equal-hypoth-
esis substitute for the ergodic theorem. Bishop considered finding an equal-conclusion substi-
tute to be ‘an important open problem’, see [2] (p55). His student Nuber [8][9] found such an
equal-conclusion substitute for Birkhoff’s Ergodic Theorem. His proof uses measure theoretic
techniques and seems to work only for measure-preserving transformations. We use functional
analytic techniques to give necessary and sufficient conditions for von Neumann’s Mean Ergodic
Theorem and the Dunford and Schwartz version of the Pointwise Ergodic Theorem to hold.

In the context of Bishop’s constructive mathematics [3] we prove that for the Mean Ergodic
Theorem to hold it is sufficient that the projection on the space of invariant functions exists.
Conversely, from the convergence of the sequence in the conclusion of that theorem we obtain
the projection. We also show that the Mean Ergodic Theorem is sufficient to prove the Dunford
and Schwartz version of the Pointwise Ergodic Theorem, and again a converse is also true. The
aim of this paper is to make these claims rigorous, see Theorem 16.

The paper is organized as follows. We first prove a Mean Ergodic Theorem. Then the Max-
imal Ergodic Theorem and Banach’s Principle are proved and used to prove the Pointwise
Ergodic Theorem. Our presentation loosely follows that of Krengel [7] (p.65,p.159) and Dunford
and Schwartz [5]. We use [3] as a general reference for constructive mathematics.

2. The mean Ergodic Theorem

The following definitions will be used throughout this chapter.

∗. The author was partially supported by the Netherlands Organization for Scientific Research (NWO). The
current paper is an updated version of [12] including the corrections in [13].
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Let T be an operator on a Banach space X . Define the sum Sn: =
∑

k=0
n−1

T k and the average

An: =
1

n
Sn. Define the subspaces M: = {f ∈ X : T f = f } and N : = cl{x − T x: x ∈ X }. An oper-

ator T is called a contraction if ‖T x‖≤ ‖x‖ whenever x∈X .

When X is a vector space and Y , Z are subspaces such that for every x in X there exist
unique y in Y and z in Z such that x= y + z, we write X = Y ⊕Z.

Theorem 1. Let T be a contraction on a Banach space X. The sequence (An)n∈N converges if
and only if X = M⊕N , in which case limn→∞ An = PM, where PM denotes the projection on
M parallel to N.

Proof. First suppose that X = M ⊕ N . Let h = hM + hN , where hM ∈ M and hN ∈ N . We
claim that Anh converges to hM. First consider f = g − T g for some g ∈ X ; then the sequence
Anf =

1

n
(g − Tng) converges to 0. When f ∈ N , then there exists g ∈ X such that ‖f − (g −

T g)‖ < ε, so for all n ∈ N, ‖An(f − (g − T g))‖ < ε. Hence for large n, ‖Anf ‖ < 2ε. Conse-
quently, the sequence Anf converges to 0 whenever f ∈ N and, using the notation above, Anh

converges to hM.

Let f ∈ X ; then there exist fM in M and fN in N such that f = fM + fN . Consequently,
Anf = fM+ AnfN which converges to fM when n tends to ∞.

Now suppose that the sequence (An)n∈N converges to an operator P . The equalities T P =
P = P T follow easily from the definition of the sequence (An)n∈N. Consequently, P = 0 on N
and

P 2 = lim
n→∞

AnP =
[TP =P ]

lim
n→∞

P = P .

If z ∈M∩N and ε > 0, then there exists u ∈ X such that ‖z − (u − T u)‖< ε. Hence for all n ∈
N, ‖An(z − (u − T u))‖ < ε. Because An(u − T u) converges to 0 and for all n ∈ N, Anz = z we
see that ‖z‖≤ ε. Consequently, M∩N = {0}.

To see that (I −P )x∈N observe that

(I −T )(
n− 1

n
I +

n− 2

n
T +� +

1

n
Tn−2) = I −An

for all n in N. Define

yn: = (
n− 1

n
I +

n− 2

n
T +� +

1

n
T n−2)x;

then (I −T )yn→ (I −P )x. Consequently, X =M⊕N . �

Let H be a Hilbert space and let T be an operator on H. Let x∈H. There exists a vector x∗

such that 〈T y, x〉 = 〈x, x∗〉 if and only if the functional y � 〈T y, x〉 is normable. This follows
from the Riesz representation theorem [3] (p.419). If such a vector exists we will denote it by
T ∗x even if the adjoint is not totally defined1.

Theorem 2. [Mean Ergodic Theorem]Let T be a contraction on a Hilbert space H. Then the
sequence (An)n∈N converges if and only if N is located; in this case the sequence (An)n∈N con-
verges to the orthogonal projection PM on M.

Proof. We first prove that M and N are orthogonal. Suppose that x ∈ M, i.e. T x = x. We
claim that the map y� 〈T y, x〉 is normable. Since |〈T y, x〉| ≤ ‖x‖‖y‖ whenever y ∈H, ‖x‖ is an
upper bound on the norm. On the other hand this upper bound is attained at x. It follows that
x∈DomT ∗ and ‖T ∗x‖= ‖x‖. Now,

‖T ∗x− x‖2 = 〈T ∗x− x, T ∗x−x〉

= ‖T ∗x‖2 + ‖x‖2−〈x, T ∗x〉 − 〈T ∗x, x〉

= ‖T ∗x‖2 + ‖x‖2−〈Tx, x〉− 〈x, T x〉

=
[Tx=x]

‖T ∗x‖2 + ‖x‖2− 2〈x, x〉= ‖T ∗x‖2−‖x‖2 = 0.

1. Classically, the adjoint of an operator is always totally defined. Constructively this is not the case.
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Consequently, T ∗x= x and so

〈x, (I −T )y〉= 〈(I −T )∗x, y〉= 0

for all y in H. We see that M and N are orthogonal.

Suppose that the sequence (An)n∈N converges. Theorem 1 shows that H = M⊕N . Because
M and N are also orthogonal, M and N are located.

Conversely, suppose that N is located. We know that M ⊂ N⊥. We will prove that N⊥ ⊂
M. Let x ∈ N⊥. Then 〈(I − T )y, x〉 = 0 whenever y ∈ H. It follows that 〈y, x〉 = 〈T y, x〉, i.e.

x = T ∗x. By a similar argument as above we see that T x = x. We conclude that M=N⊥, so by
Theorem 1 the sequence (An)n∈N converges. �

Let (X, µ) be a measure space. A measure-preserving transformation of X is a partial func-
tion from a full set to a full set such that for all integrable sets A, τ (A) is integrable and
µ(τ (A)) = µ(A). If τ is a measure-preserving transformation, then Tτf : = f ◦ τ is a contraction
on L2. This shows that our result generalizes the possibly more familiar formulation of the The-
orem.

Bishop and Bridges [3] (problem 46, p.395) give the following version of the Mean Ergodic
Theorem. Let T be a unitary operator on a Hilbert space H ; then for all x ∈ H the sequence
(Anx)n∈N converges if and only if the sequence (‖Anx‖)n∈N converges.

3. Maximal Ergodic Theorems

Let (X, µ) be a measure space. An operator T on L1(µ) is an L1-L∞ contraction if T is a con-
traction on L1 that contracts the L∞-norm on L1∩ L∞ — that is, ‖f ‖1≤ ‖T f ‖1 and for all real
numbers m, |T f | ≤ m whenever f ∈ L1 and |f | ≤ m. An operator T on an ordered vector space
is positive2 if T f ≥ 0 whenever f ≥ 0. When τ is a measure-preserving transformation, then Tτ

is a positive L1-L∞ contraction.

Let T be a positive L1-L∞ contraction. Define the operator Mn by

Mnf : = sup
k≤n

Akf

for all n in N. Garcia’s proof [7] (p.8) of the following Theorem 3 is constructive. Note however
that we do not make any claims about M∞. This operator is defined classically as supk∈N Ak,
but constructively M∞f may not be a measurable function for all f in L1, i.e. we may not be
able to find simple functions approximating M∞f .

In the constructive theory of measure spaces it is not always possible to compute the mea-
sure of the set [f < α]4 {x: f(x) < α}. However, we can compute the measure for all but count-
ably many α, such α are called admissible, see [3] for details.

Theorem 3. [Hopf’s Maximal Ergodic Theorem] Let T be a positive contraction on L1(µ). Let
n be a natural number. If α ≥ 0 is admissible for Mnf, then

∫

[Mnf≥α]

f ≥ 0.

Corollary 4. [Wiener [7] (p.51)]Let T be a positive L1-L∞ contraction. Let f ∈ L1, n ∈ N and
α > 0 be admissible for Mnf. Then for all n,

µ[Mnf ≥α]≤
1

α

∫

[Mnf ≥α]

f.

The following theorem is sometimes called the little Riesz theorem. The proof we give here is an
adaptation of [7] (Lemma 1.7.4).

2. When p = 2, this order-theoretic definition differs from the definition of a positive operator on a Hilbert
space.
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Proposition 5. If T is a positive L1-L∞ contraction, then T can be uniquely extended to an Lp

contraction for all p≥ 1.

Proof. Because for all p ≥ 1, L1 ∩ L∞ is a dense subset of Lp, it is enough to prove that
‖T f ‖p ≤‖f ‖p for all f ∈L1∩L∞. To achieve this goal we will prove that

T f ≤T (f p)
1

p (1)

for all positive simple functions f and p > 1.

Assume for a moment that we have done so and let f be a positive simple function and p >

1. Then (T f)p ≤ T (f p), so ‖(T f)p‖1 ≤ ‖T (f p)‖1 ≤ ‖f p‖1 and thus ‖T f ‖p ≤ ‖f ‖p. Observe that
this inequality trivially holds for p = 1. Consequently, ‖T f ‖p > ‖f ‖p is impossible, i.e. ‖T f ‖p ≤
‖f ‖p holds for all p ≥ 1, even if we are unable to decide p = 1 or p > 1. It follows that for all p ≥
1, T is a positive Lp-contraction on the positive simple functions, and consequently also on the
simple functions. The simple functions are dense and T is a contraction, so the operator T

restricted to the simple functions can be uniquely extended to Lp. This extension agrees with T

on L1∩Lp for all p≥ 1.

We will now prove (1) for a positive simple function f and p > 1. We will assume that Y : =
[f > 0] is integrable. Since the simple functions f with this property are also dense in Lp

+, we do

not loose generality. We note that f = fχY . We define q: = (1 −
1

p
)−1 as usual. For all real num-

bers a, b ≥ 0:

a b ≤
ap

p
+

bq

q
.

It follows that for all real numbers c, d > 0:

f

c
·
χY

d
≤

f p

cpp
+

χY
q

dqq
.

Consequently,

T (f · χY )≤T (f p)
c d

cpp
+ T (χY

q )
d c

dqq
a.e. (2)

Let F be a full set on which (2) holds for rational c and d and thus by continuity for all c, d > 0.
Compute M, m ∈ R

+ such that M ≥ f ≥ mχY > 0. Then f ≤ m1−pf p. Let F ′ ⊂ F be a full set
such that for all x∈F ′

f(x)≤M, (T f)(x)≤m1−p(T f p)(x), (T f)(x)≤M(TχY )(x) and (TχY )
1

q(x)≤ 1.

Fix x∈F ′.

If T (f p)(x)= 0, then T (f)(x)≤m1−pT (f p)(x)= 0= T (f p)
1

p(x).

If T (χY )(x)= 0, then T (f)(x)≤M T (χY )(x) =0≤T (f p)
1

p(x).

If T (f p)(x) > 0 and T (χY )(x) > 0, then we define c: = T (f p)
1

p(x) and d: = T (χY )
1

q(x). The right

hand side of (2) equals c d(
1

p
+

1

q
) = c d. Because f = fχY we obtain:

T (f)(x)≤T (f p)
1

pT (χY )
1

q(x)≤T (f p)
1

p(x). (3)

We conclude that in any case T (f)(x) > T (f p)
1

p(x) is impossible. It follows that (3) holds for all
x∈F ′. Consequently, (1) holds and we have thus completed the proof. �

From this point onwards we will assume that a positive L1-L∞ contraction is extended to Lp

for all p≥ 1.

Theorem 6. [Dominated Ergodic Theorem] Let T be a positive L1-L∞ contraction. Then for all

n∈N, p > 1 and f ∈Lp: ‖Mnf ‖p ≤
p

p − 1
‖f ‖p.
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Proof. Fix n∈N, p > 1, and f ∈Lp
+.

∫

(Mnf)
p
dµ =

∫ ∫

0

Mnf(s)

pαp−1dαdµ(s)

= p

∫ ∫

0

∞

αp−1χ[Mnf ≥α](s)dαdµ(s)

=
Fubini

p

∫

0

∞

αp−1µ[Mnf ≥α]dα

≤
Wiener

p

∫

0

∞

αp−2

∫

[Mnf ≥α]

f dµdα

= p

∫

0

∞ ∫

αp−2χ[Mnf ≥α](s)f(s)dµ(s)dα

=
Fubini

p

∫

f(s)

∫

0

∞

αp−2χ[Mnf≥α](s)dαdµ(s)

= p

∫

f(s)

∫

0

Mnf(s)

αp−2dαdµ(s)

=
p

p− 1

∫

f(Mnf)
p−1

dµ

≤
p

p− 1
‖f ‖p‖Mnf ‖p

p−1.

This last inequality follows from Hölder’s inequality and the fact that Mnf ≤
∑

k=0
n

Akf , so that

Mnf ∈Lp. For all f ∈Lp, Mnf ≤Mn|f | and thus ‖Mnf ‖p ≤‖Mn|f |‖p ≤
p

p − 1
‖f ‖p. �

A function f :R→R is convex if

f(λx+ (1−λ)y)≤λf(x)+ (1−λ)f(y),

whenever λ∈ [0, 1] and x, y ∈R.

Theorem 7. A (total) convex function from R to R has an non-decreasing derivative which is
defined in all but countably many points.

Proof. To prove this we will use Bishop’s profile theorem, a constructive substitute for the clas-
sical lemma stating that every non-decreasing real function is continuous in all but countably
many points. Like Bishop we define the set E to be the set of piecewise linear functions

hxy(z)4 min {z, y}−min {z, x}
y − x

whenever x < y. These functions are 0 when z 6x and 1 when x> y. We define

Λ(hxy)4 f(y)− f(x)

y −x
.

Then Λ is increasing3 on the set E with the order inherited from the the functions from R to R

— that is, (E , Λ) is a profile. The profile theorem ensures that all but countably many points
are smooth. In the present case this means that the function is differentiable at these points. �

Lemma 8. [Jensen’s inequality] Let (X, µ) be a finite measure space and φ: R→R be a convex
function. If f , φ ◦ f are in L1, then

φ

(

1

µ(X)

∫

f

)

µ(X)≤

∫

φ ◦ f.

Proof. Let x be in the domain of φ′. Then for all real numbers y,

φ(y)≥ φ′(x)(y −x)+ φ(x),

and hence

φ(f(t))≥ φ′(x)(f(t)− x)+ φ(x)

3. This is most easily seen by a geometric argument considering the graph of a convex function.
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for all t∈Domf . By integrating we obtain
∫

φ ◦ f ≥ φ′(x)

((
∫

f

)

− xµ(X)

)

+ φ(x)µ(X).

If we take a sequence (xn)n∈N in Domφ′ tending to
1

µ(X)

∫

f , we obtain the inequality above. �

The Lp Ergodic Theorem can be proved classically for finite measure spaces using the point-
wise ergodic theorem [14]. Another proof [7] (Thm. 2.1.2) uses a non-constructive compactness
argument. Our proof works not only for finite measure spaces, but also for σ-finite measure
spaces. We make some preparations.

Let µ be a finite measure. If 1 ≤ p < q and f ∈ Lq, then |f |p is measurable and bounded by

|f |q ∨ 1, hence |f |p is integrable and by taking φ(x): = x
p

q in Jensen’s inequality we obtain

‖f ‖p ≤‖f ‖qµ(X)
1

p
−

1

q. (4)

We see that Lq ⊂Lp.
Let µ be σ-finite. If p≥ q ≥ 1 and f ≤M , then

‖f ‖p
p =

∫

|f |p =

∫

|f |q |f |p−q ≤M p−q‖f ‖q
q
.

Consequently,

‖f ‖p ≤M
1−

q

p‖f ‖q

q

p. (5)

Theorem 9. [Lp Ergodic Theorem] Let p, q ≥ 1 and (X, µ) be a finite measure space or let p >

1, q ≥ 1 and (X, µ) a σ-finite measure space. Let T be a positive L1-L∞ contraction. If the
sequence (An)n∈N converges in Lq, then it converges in Lp.

Proof. Let f ∈ Lp and choose a simple g such that ‖f − g‖p <
ε

4
. Let M be a bound for g. For

all n, m∈N:

‖Anf −Amf ‖p ≤ ‖Anf −Ang‖p + ‖Ang −Amg‖p + ‖Amg −Amf ‖p

≤
ε

4
+ ‖Ang −Amg‖p +

ε

4
.

If we show that ‖Ang − Amg‖p → 0, when m, n → ∞, then (Anf)n∈N is a Cauchy sequence in
Lp. That ‖Ang − Amg‖p → 0 follows from the fact that the sequence (Ang)n∈N converges in Lq

and the inequalities (4) and (5) for the case µ is finite or µ is σ-finite and p ≥ q. The case µ is
σ-finite and 1 < p ≤ q is more difficult. We will now proceed to consider this case. If p ≥ 1, h ∈
Lp, n, m, l, r∈N and m = l n + r, then

‖Amh‖p −‖Anh‖p ≤
1

l
‖(I + Tn +� +T (l−1)n)Anh‖p −‖Anh‖p

+
1

m
‖T ln(I +� + T r−1)h‖p

≤ 0+
r

m
‖h‖p ≤

n

m
‖h‖p.

It follows that the sequence (‖Anh‖p)n∈N is essentially decreasing , that is for each n ∈ N and
each ε > 0, there exists N ∈N such that ‖Amh‖p ≤‖Anh‖p + ε for all m≥N .

Let g ∈ Lq ∩ Lp. Let g̃ be the limit of Ang in Lq. The function g̃ is in Lp, because T con-
tracts the Lp-norm. We will prove that limn→∞ Ang = g̃ in Lp. By looking at g − g̃ we may
assume that g̃ = 0.

Because the sequence (‖Ang‖p)n∈N is essentially decreasing, it is enough to find for each η >

0 and k ∈ N, an n > k such that ‖Ang‖p
p < η. We will now proceed to find such n. Let β =

η

4
.

Take an integrable set B1 such that ‖gχX−B1
‖p

p < β. We recall that Ang → 0 in Lq. We can thus

compute n1 such that‖An1
g‖q

p < βµ(B1)
p

q
−1

. By (4)

‖(An1
g)χB1

‖p
p ≤‖(An1

g)χB1
‖q

p
µ(B1)

1−
p

q < β.
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Now

‖An1
g‖p

p
< η or ‖An1

g‖p
p
> η − β.

In the former case we are done, so we may assume that ‖An1
g‖p

p
> η − β and thus

‖(An1
g)χX−B1

‖p
p > η − 2β. We choose B2 ⊃ B1 such that ‖(An1

g)χB2−B1
‖p

p ≥ η − 3β. Compute

n2 > n1 such that ‖An2
g‖q

p
< βµ(B2)

p

q
−1

. Then ‖An2
gχB2−B1

‖p
p
< β.

We continue in this way until we find N ∈ N such that ‖AnN
g‖p

p
< η. That such an N exists

we see as follows. Choose K ∈N such that

((
p

p− 1
)p − 1)‖g‖p

p + β ≤K(η − 3β).

For all N ≤K, ‖AnN
g‖p

p > η − β or ‖AnN
g‖p

p < η. Suppose that for all N ≤K, ‖AnN
g‖p

p > η − β.

Define B0 = ∅ and n0 =0. Remark that for all N ∈N,

MN |g | ≥
∑

i=0

N

MN |g |χBi+1−Bi

≥
∑

i=0

N

Ani
|g |χBi+1−Bi

≥
∑

i=0

N

Ani
gχBi+1−Bi

.

It follows from the Dominated Ergodic Theorem that for all N ≤K,
(

p

p− 1

)p

‖g‖p
p ≥ ‖MN |g |‖p

p

≥ ‖
∑

i=0

N

(Ani
g)χBi+1−Bi

‖p
p

=
∑

i=0

N

‖(Ani
g)χBi+1−Bi

‖p
p

> N(η − 3β) + ‖g‖p
p − β.

It follows that there exists N ≤ K such that ‖AnN
g‖p

p
< η. Consequently, Ang → g̃ in Lp.

Finally, we observe that even if we do not know whether p ≤ q or p > q we can show that the
sequence An converges in Lp. To see this we observe that either p < q + ε or p > q, the latter
case has been treated before. In the former case, the sequence also converges in Lq+ε as we
proved before, and we can thus proceed as above. �

If µ is σ-finite, it is not true in general that if for some p > 1, the sequence An converges to 0
in Lp, then the sequence An converges in L1. To see this let τ (x): = x + 1 on R with Lebesgue
measure, T = Tτ and f = χ[0,1]. For all p > 1, Anf converges to 0 in Lp, but the sequence does
not converge in L1.

4. The Pointwise Ergodic Theorem

The following principle, called Banach’s principle, will be used as follows: we prove that a
sequence of operators converges almost everywhere (a.e.) on a dense set and then conclude that
the sequence converges a.e. on the whole space.

The proof of the following theorem would be easier if we could prove constructively that M∞

is measurable.

Theorem 10. [Banach’s Principle] Let (Y , µ) be a measure space. Let (Tn)n∈N be a sequence
of linear operators from a Banach space X to the space µ-measurable real functions. Define for

each n ∈ N, an operator M̃n by M̃nx: = supk≤n |Tkx| for all x ∈ X. Suppose that there exists a
positive decreasing function C from R to R such that limα→∞C(α)=0 and for all x and n:

µ[M̃nx≥α‖x‖] < C(α),

Bas Spitters 7



whenever α‖x‖ is admissible for M̃nx. Then the set of elements x ∈ X for which the sequence
(Tnx)n∈N converges a.e. is closed.

Proof. Suppose that a sequence zn converges to z in X in norm and that there exists a
sequence (fn)n∈N of measurable functions such that for all m∈N, Tmzn→ fn a.e. We will prove
that the sequence (Tmz)m∈N converges a.e.

For natural numbers a and b, ω ∈Y and x∈X put

∆a,b(ω, x): = sup
a≤n,m≤b

|Tnx(ω)−Tmx(ω)|.

Then

|∆a,b( · , z)−∆a,b( · , zn)| ≤ |∆a,b( · , z − zn)| ≤ 2M̃b(z − zn).

Let ε > 0. Choose a natural numbers n such that C(
ε

2
‖z − zn‖) < ε and choose a natural number

k and an integrable set D⊂Y such that µ(D)< ε and for all a≥ k:

{ω: |Tazn(ω)− fn(ω)|>
ε

2
}⊂D.

For all b ≥ a≥ k,

µ[|∆a,b( · , z)|> 2ε] ≤ µ[|∆a,b( · , zn)|>ε]

+ µ[|∆a,b( · , z)−∆a,b( · , zn)|> ε]

≤ µ(D)+ µ[2M̃b(z − zn) >ε]

≤ ε + C(
ε

2
‖z − zn‖)≤ 2ε.

Construct ascending sequences (nm)m∈N and (km)m∈N of natural numbers such that

C(ε2−m−1‖z − znm
‖)< ε2−m

and

µ[|Tnznm
− fnm

|> ε2−m] < ε2−m

for all n≥ km. Put

E: =
⋃

m

{ω: |∆km,km+1
(ω, z)|> ε2−m}.

The set E is integrable and µ(E)≤
∑

m=1
∞ 2ε2−m =2ε. For ω ∈−E and n, m≥ k1:

|Tnz(ω)−Tmz(ω)| ≤ ε.

Consequently, the sequence (Tnz)n∈N converges a.e. �

Bishop [4] (p.230) gave a constructive proof of Lebesgue’s Differentiation Theorem. Using
Banach’s principle one can give another constructive proof, see [10] (p.101).

When q ≥ 1 and T is a positive L1-L∞ contraction, we define Mq = {f ∈ Lq: T f = f } and
N q = cl{T f − f : f ∈Lq}.

Theorem 11. [Pointwise Ergodic Theorem] Let µ be a σ-finite measure. Let T be a positive L1-
L∞ contraction. If Lq = Mq ⊕ N q, for some q ≥ 1, then for all p ≥ 1, the sequence (Anf)n∈N

converges a.e. for all f ∈Lp.

Proof. Suppose that Lq =Mq ⊕N q, for some q ≥ 1. First let p > 1. Theorem 9 and Theorem 1
show that Lp =Mp ⊕N p. Suppose that f = g + T h − h, where g ∈Lp, T g = g and h ∈L∞ ∩Lp.

The set of these f is dense in Lp. Because T contracts the L∞-norm, limn→∞ Anf = g a.e. For
all admissible α > 0,

αµ[Mnf ≥α] ≤
[Wiener]

∫

[Mnf≥α]

f

≤
[Jensen]

(

∫

[Mnf ≥α]

f p

)

1

p

µ[Mnf ≥α]
1−

1

p

≤ ‖f ‖pµ[Mnf ≥α]
1−

1

p.

8 A constructive view on ergodic theorems



Consequently, αµ[Mnf ≥ α]
1

p ≤ ‖f ‖p. Define M̃nf = supk≤n |Akf |, for all f ∈ Lp. Substituting

α = β‖f ‖p and observing that M̃nf = Mnf when f ≥ 0, we obtain

µ[M̃nf ≥ β‖f ‖p]≤ β−p. (6)

For all f ∈ Lp, M̃nf ≤ M̃n|f |, so inequality (6) holds for all f ∈ Lp. Banach’s principle shows
that the sequence (Anf)n∈N converges a.e. for all f in Lp.

Finally we remove the assumption that p is strictly greater than 1. Let p ≥ 1. The set
Lp+1 ∩ Lp is dense in Lp , so one can apply Banach’s principle since inequality (6) above holds
for all p≥ 1. �

The two-step argument above is used because in general we do not have convergence in the
L1-norm. The space L1 has an awkward geometrical structure: it is not uniformly convex.

Theorem 12. Let p ≥ 1. If the sequence (Anf)n∈N converges a.e. for all f in Lp, then N =
cl{x−T x: x∈L2} is located in L2.

Proof. Let f be an element of L2. Without loss of generality we may assume that Anf → 0 a.e.
We claim that the sequence (Anf)n∈N converges weakly to 0. We may assume that f is a
simple function. Since the sequence (Anf)n∈N is bounded, the sequence

∫

(Anf)g converges to
0 whenever g is a simple function. The inner product is continuous on L2, so 〈Anf , g〉 → 0 for
all f , g ∈L2 — that is, (Anf)n∈N converges weakly to 0.

Define Bn 4 (
n − 1

n
I +

n − 2

n
T + � +

1

n
Tn−2). By an argument similar to the proof of The-

orem 1 we see that for each x, (I − T )Bnx converges weakly to an element in the space wcl{y −
T y: y ∈L2} and thus

L2 =M⊕wcl{(I −T )x: x∈L2},

where wcl denotes the weak closure. Since (I − T )Bnx = (I − An)x is a bounded sequence and
the weak closure of a bounded convex inhabited subset coincides with its strong closure, by
Lemma 5.2.4 in [11], we see that N =wcl{y − Ty: y ∈L2}. It follows that the display sum above
is orthogonal and thus that N is located. �

Lemma 13. [6]Let E be a uniformly convex and uniformly smooth Banach space and C a
bounded convex subset of E. Then C is located if and only if sup {f(z) : z ∈ C } exists for each
normable linear functional f on E .

Lemma 14. [3][6]For p > 1, the space Lp is uniformly convex and uniformly smooth and each
normable functional may be represented by a functional f � ∫

f g, for some g in Lq, where
1

p
+

1

q
= 1.

Lemma 15. If N is located in some Lp, then both M and N are located in all Lp, where p > 1.

Proof. Locatedness is a property of closed sets, so we may restrict to a set which is dense in all
the Lp-spaces, for instance the bounded L1 functions or the simple functions. Moreover, an
inhabited set A is located if we can compute the distance ρ(x, A) for each x. Let a be an ele-
ment of A. Then ρ(x, A) = ρ(x, A∩B(x, ρ(x, a) + 1))), where B(x, r) denotes the ball around x

with radius r. Consequently, when considering located sets we may restrict to its bounded sub-
sets.

We will now apply Lemma 14. Since the simple functions are dense in all the Lp-spaces, if
sup {(z, f): z ∈ C} exists for all f in Lp, then this supremum exists for all f in set of the simple
functions, and thus for all f in any Lp′, where p′ > 1. It follows that A is located in Lp′. In par-
ticular, if N are located in Lp, then it is located in L2. Since these sets are orthogonal, they are
thus both located in L2. Consequently, they are both located in any Lp′. �

Theorem 16. Let µ be a σ-finite measure and T a positive L1-L∞ contraction. Denote by An

the average
1

n

∑

i=0
n−1

T i. The following statements are equivalent:

1. The set N = cl{x−T x: x∈L2} is located in L2;
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2. The sequence (An)n∈N converges in L2;

3. For all p > 1, the sequence (An)n∈N converges in Lp;

4. There is p > 1 such that the sequence (An)n∈N converges in Lp;

5. For all p≥ 1 and f ∈Lp, the sequence (Anf)n∈N converges a.e.;

6. There is p≥ 1 such that for all f ∈Lp, the sequence (Anf)n∈N converges a.e.

For a finite measure we may replace p > 1 by p≥ 1.

Proof. (1)⇔ (2) is Theorem 2. (4)⇒ (3) is Theorem 9. (3)⇒ (2) is trivial. (2)⇒ (4) is trivial.
(4) ⇒ (5) follows from Theorem 1 and Theorem 11. (5) ⇒ (6) is trivial. (6) ⇒ (1) follows from
Theorem 12. �

Some of these results have circulated in preprints for some time. They then appeared in my
thesis [11]. The results have been used in [1] in the context of reverse mathematics.

I would like to thank Wim Veldman for his advice during the PhD-project. Finally, I would
like to thank the referee for comments that helped to improve the presentation of the paper.
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