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Zusammenfassung

In dieser Arbeit werden offene Mikrowellenresonatoren mit harten Wanden und
mit weichen Wénden als Modelsystem eines Quantenpunktes untersucht. Da die
Quantenpunkte Abmessungen im pm-Bereich haben, ist es noch schwierig, dabei
verschiedene Messungen durchzufiihren, bis auf die Transportmessungen. Fiir die
Simulierung sind die Mikrowellenresonatoren nach einem Quantenpunktbillard
angefertigt, das in der Arbeitsgruppe von J. P. Bird untersucht wurde.

Erstens werden die periodisch vorkommenden vernarbten Wellenfunktions-
familien bei einem Resonator mit harten Wanden analysiert und die
moglichen entsprechenden Bahnen werden identifiziert. Um die kompliziert-
eren vernarbten Wellenfunktionsfamilien zuzuordnen, wurden Kanaltransmis-
sionsmessungen durchgefiihrt, wobei ein Absorber auf 1381 Positionen auf einem
5-mm - Raster positioniert wurde. Dann wird der Einfluss des Absorbers unter-
sucht, indem die Transsmissionsdaten fouriertransformiert werden, und Fourier-
abbildungen davon analysiert werden. Die berechneten Bahnlangen und die von
den Experimenten erhaltenen Werte stimmen gut iiberein.

Durch Variation des Abstands zwischen Deckel und Boden des Resonators lassen
sich Potentiale simulieren, wobei die Aquivalenz zwischen Quantenmechanik
und Elektrodynamik ausgenutzt wird. Dadurch wurde ein Resonator mit den
weichen Wanden erzeugt, dessen Potentialstruktur einem Quantenpunktbillard
entspricht. Die bei dem Billard gemessenen Eigenfrequenzen fiir die periodischen
Bouncing-Ball-Familien mit den Theoriewerten, die iiber eine WKB-Naherung
berechnet werde, zeigen sehr gute Ubereinstimmung. Die Wellenfunktionenfami-
lie mit einer X-formigen Bahn wird als ein Beweis des dynamischen Tunnelns un-
tersucht. Durch die Phasendifferenzanalyse und das Transportverhalten wird das
dynamische Tunneln nachgewiesen, welches bei Mikrowellenexperiment schwierig
zu beobachten ist.

Im letzten Abschnitt werden die statistischen Eigenschaften der Wellenfunktio-
nen bei einem unsymmetrischen offenen Billard mit harten Wanden diskutiert.
Die Offnung zu der AuBenwelt des Billiards macht die Wellenfunktion komplex,
da die Wellen nicht nur rein stehend ist, sondern auch laufend vorkommen. Das
Ubergangsgebiet von der reellen zu der imagindren Wellenfunktion wird unter-
sucht, indem die Offnungen des Billards durch Frequenzinderung erhht werden.
Die Verteilung der Phasensteifigkeit, die das Verhaltnis von Imaginarteil zu Real-
teil angibt, die weitreichenden Korrelationen der Intensitat und der Stromdichte
werden verglichen mit den Theoriewerten, die mit der random superposition of
plane waves-Theorie [Ber77] berechnet werden. Bei allen untersuchten Gréfien
findet man gute Ubereinstimmung zwischen Experiment und Theorie.






Abstract

In this work, open microwave resonators have been investigated as a model system
of a quantum dot. Since quantum dots are pum-sized, measurements in quantum
dots are still very difficult except for transport measurement, but relatively simple
in a microwave resonator. We fabricated a flat resonator and a resonator with
soft-wall potential so that the shape corresponded to a quantum dot which has
been investigated in the laboratory of J. P. Bird.

For a flat resonator, i.e. a resonator with a hard-wall potential, periodically
occurring scarred wave function families are analyzed, and the associated orbits
are identified. For complicated wave function families, we use a Fourier spec-
troscopy. Influence of an absorber center is investigated using Fourier transform
of transmission between the input and output leads. The Fourier map is analyzed
to identify scar families. The calculated orbits lengths and the experimentally
obtained values show very good agreement.

By varying the height of the resonator, potentials can be simulated, using the
correspondence between quantum mechanics and electrodynamics. Using this
relation, a resonator with soft-wall potential was fabricated. The shape of the
potential corresponds to the above mentioned quantum dot. The measured eigen-
frequencies for the periodic bouncing-ball scar families agree very well with the
theoretical values from a WKB approximation . The wave function family of
an X-like cross bouncing ball is used to obtain evidence of dynamical tunneling.
By phase difference analysis and transport behavior, the presence of dynamical
tunneling is proven.

In the last part of this work, the statistical properties of the wave functions of an
asymmetric open flat resonator are discussed. Opening to the outside world of
billiard makes the wave function complex, since there is transport. This cross-over
regime, from real to imaginary of wave functions is investigated opening of the
billiard by frequency increasing. The phase rigidity distribution which give the
ratio between the real and imaginary parts of the wave function, the long-range
correlation of intensity and the current density are compared with the theoretical
values calculated from the random superposition of plane waves theory [Ber77].
For all investigated quantities, a very good agreement between experiment and
theory is found.
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Chapter 1

Introduction

The difference between regular motion in integrable systems and chaotic motion in
non-integrable systems is observed by the chronological expansion of neighboring
trajectories in phase space. Two trajectories that start out very close to each
other separate only linearly in the case of regular motion, whereas they separate
exponentially in the case of chaotic motion. The corresponded exponent is called
the Lyapunov-exponent [Sch94].

Since the phase space trajectory is meaningless in quantum mechanics, the clas-
sical definition of “chaos” is not directly applicable. From Bohr’s correspondence
principle, we expect a gradual transition from quantum to classical mechanics in
the limit h — 0, corresponding to high quantum numbers. In this semiclassical
region, the classical chaotic motion can be recognized again [Gut90, Haa01]. The
survey of such quantum systems is called “quantum chaos”. From a statistical
point of view, eigenvalues and eigenfunctions of the wave equation in a chaotic sys-
tem can be described by a random-superposition of plane-waves (RSPW) [Ber77],
as well as by random matrix theory (RMT) [Bro81, Ber85, Guh97]. Numerical
calculations for a chaotic system are very time consuming. Therefore experimen-
tal approaches are beneficial. In our group, various billiard systems have been
investigated by means of microwave experiments and many theoretical predictions
have been proved [St690, Ste93, Per00, Kuh01, Sch01, Bar01, Kim02].

Quantum dot billiard experiments have been of interest, too. They were ini-
tiated by C.M. Marcus and coworkers [Mar92|, studying electronic transport
through ballistic microscopic semiconductor structures. These consist of a meso-
scopic scattering region, connected to external reservoirs by means of quantum-
point-contact leads. In recent studies of such dots by J.P. Bird [Bir99, Bir97b],
their transport characteristics were found to exhibit evidence for the presence of
strongly scarred wave function states [Jal90, Mar92, Fro94, Fro95]. In submicron-
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sized semiconductor structures, experiments are confined to transport measure-
ments whereas microwave experiments allow wave function and current measure-
ments as well. Chapter 3 shall deal with the simulation of a quantum dot billiard
with an open microwave cavity. In section 3.2, we shall demonstrate how mi-
crowave experiments may be used to perform analog studies of transport, and
the influence of a movable scattering center on the wave function in an open
quantum dot.

Adiabatic changes of the resonator height allow the realization of a soft-wall po-
tential in a microwave resonator. H.M. Lauber presented a microwave experiment
with a harmonic potential and a Hénon-Heiles potential in his thesis [Lau94]. In
section 3.3, we shall present the transmission properties and the wave functions
of an open microwave resonator with a soft-wall potential, simulating the typical
structure of a quantum-dot potential.

Over the last twenty years, the role of quantum mechanical tunneling has received
considerable attention. Many of the recently discovered tunneling phenomena
involve a counterpart to potential barrier penetration called dynamical tunneling
by Davis and Heller [Dav81, Hel95]. This tunneling occurs between two separated
regions of classically trapped quasiperiodic motion in the phase space. We shall
show experimental evidence of the existence of dynamical tunneling between two
distinct two regions in phase space in section 3.3.3.

Wave functions in a chaotic billiard cross over from real to complex as the the
opening to the outside world increases. Recently, the full real-to-complex cross
over regime was studied using microwave experiments [Bar02, Chu00]. The sta-
tistical distribution of wave functions in the cross over regime depends on how the
average is taken over the coordinate 7, the frequency v, or both. In chapter 4, we
shall show the distribution of intensities, currents and vorticities, as well as phase
rigidity fluctuations, long-range correlations of intensity and current density.



Chapter 2

Basic principles of microwave
experiments

2.1 Theoretical background

In a flat microwave resonator of height d whose top and bottom plates are parallel
to each other, the stationary solutions of electrodynamic wave equations, whose
time dependencies are described by harmonic oscillation, follow [Jac82]

1L & ((E(@y.zt)\ _ [ E@y) .
e ( Bl g 1) ) =A < Ble.y) ) expi(k,z — wt) (2.1)

where the electric field E(z, y) and the magnetic field B (x,y) do not depend on
each other. This leads to the Helmholtz-Equation

Eﬁ(f Y)
ANy, + K — K N =0, 2.2
[ Y Z} ( B(l‘7 y) ) ( )
where the wave vector k = —2’;", the z-component of the wave vector k, = —9;, 0=

0,1,2..., and v and c are frequency and the velocity of light respectively.
We can decompose the vectors following
E E, + E,
L) = T (2.3)
B B, + B,,
where EZ, B, are z-components, and the Emy, Ewy x — y-components which are
parallel to the  — y plane. With the boundary conditions

( ?taég ) —0 (2.4)
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where Etang . tangential component to the resonator boundary

Biorm : normal component to the resonator boundary;,

one can obtain the solutions of Eq. (2.2)

for the TE (Transversal-Electric) - Modes:

0
B, = B.(x,y)sin (%z) ,0=1,2,3,...
E. =0 (2.5)

for the TM (Transversal-Magnetic) - Modes:

E, = E,(z,y)cos (%Tz), 0=0,1,2,...,
B. = 0 (2.6)

Eq. 2.2 is equivalent to the stationary Schrodinger equation for a particle in a
potential V' (z,vy).

2mE  2mV(x,y)
A:zt,y + 2 2 :| Qﬂ(ﬁ, y) = O (27)
h h
It yields the following correspondences
U(zy) = E.(z,y) (2.8)
2mE. 27v, \ 2
o= k= = 2.
i - () 29
2mV o\ 2
= K = (— 2.1
> = e- (%) 210)

These correspondences between quantum mechanics and electrodynamics go even

further. For a quasi-two-dimensional resonator, the Poynting vector is given
by [Seb99]

—

S(x,y) ~ Im[E (2, y) VE.(z,y)] (2.11)
This corresponds to the quantum mechanical probability current density

-

j(z,y) ~ Im[y* (2, y)Vii(z,y).] (2.12)
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Thus, we arrive at a direct correspondence between the current density and the
Poynting vector. Since the latter may be measured directly in experiment, the
quantum-mechanical current density may also be obtained.

Below the frequency vy, = 55 only the TM-Mode remains for ¢ = 0.
Then Eq. (2.2) can be reduced to

<Am,y + (27;””>2 ) E.(z,y) =0 (2.13)

with Dirichlet boundary conditions at the resonator walls, ¢. e. E, = 0. This is
equivalent to the stationary Schrodinger equation of a two-dimensional billiard
with hard walls [St599]

(Ax,y + 27;;—2E) Y(z,y) =0. (2.14)

If the top and bottom plates are not exactly parallel, but the height d of the res-
onator varies with (z,y), then the z-component of the wave vector k, should adapt
the (z,y)-dependent boundary condition. The separation of the z-component de-
pendence resulting into Eq. (2.6) is no longer exact. But error terms are small,
if d(x,y) varies only adiabatically on the scale of the de Broglie wave length.
The Helmholz Equation for TM-mode for 6 = 1 is equivalent to the Schrédinger
equation for a particle in a soft potential.

From Eq.(2.10), the following relation between the potential V(x,y) and the
resonator height d(z,y) is obtained

2m\;(2x,y) _ (d@z y))2 (2.15)

This relation will be applied to fabricate a microwave resonator with a soft wall
potential (see section 3.3.1).

2.2 Measuring technique

For our measurements, we use antennas as input and output channels. The
transmission- and reflection behavior of systems can be described by scattering-
matrix theory.
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For example, a measurement with two antennas is considered as a 2-channel-
scattering-system. The combination of the output signals b; and by ( the am-
plitudes of the outbound waves) with the input signals a; and ay (amplitudes
of the incoming waves) is described by the so called S-parameters (elements of

scattering matrix),
by St Siz ay
= 2.16
(bz> (521 522)(a2> ( )

The relation between S and the electrodynamic Greensfunction for billiards is
derived in [Ste95]. For isolated resonances, it reduces to a billiard Breit-Wigner
function.

Sij = 8 — 20+ iB)G(F 7 b) (2.17)

where «, [ are coupling constants which depend on antenna geometry, and

where
Yn(7;) + wave function of undisturbed systems at 7; = (x;, y;)
', : the spectral line width of resonance with I', = a >, |10, (77)]?
A,, : the resonance shift with A, = 83, [¢,,(7)]?

In the resonance case (k* = k2 + A,), Eq. 2.17 becomes

(7)Y (7
Sij = 513' + 2(—5 + za)% (219)
2t n
For the reflection measurement S;; with 7 = 1, 2, the amplitudes |1, (77)|* at 7;
are accordingly to calculate :
_ 1 — Re(Si (7)) Im(S; (7))L,

443 4o
The Agilent8720ES VNA (Vectorial Network Analyzer) measures the entire scat-
tering matrix S of a system with modulus and phase as function of frequency.

The VNA 8720ES can measure in the frequency range of 0.05-20 GHz with a
maximal resolution of 1kHz. A detailed description is found in [Ste93, Bar01].

Two dimensional wave function measurements can be measured with a measure-
ment table, in which we move the antenna position by computer control. To
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control the devices and to record the measured data, a program written by U.
Kuhl in Delphi is used [Ste93, Kuh98].

Figure 2.1: Sketch of resonator with coupling antenna and measurement table
[Kuh9g]



Chapter 3

Quantum-dot like resonator

3.1 Background

During the last decades, it has become possible to manufacture structures of pym
size. In the case of semiconductors, electrons can form a two-dimensional gas
located between two layers of a heterostructure. The potential confining this
two-dimensional gas can be controlled. At temperatures below 1K, the phase
coherence length is larger than the system size, and quantum coherence plays an
important role. The elastic mean free path length is typically 10 um or larger.
The electrons move “ballistically”, 1. e. they scatter only at the boundaries
defined by the confining potential. The device can be viewed as a billiard and is
called a quantum dot. The number of electrons in the dot varies typically from
just a few to several hundred. The coupling between the dot and leads may be
controlled by gates which create a potential barrier.

Quantum-dot-billiard experiments were initiated by C.M. Marcus and cowork-
ers [Mar92|, who studied electronic transport through ballistic microscopic semi-
conductor structures which consist of a mesoscopic scattering region, connected
to external reservoirs by means of quantum-point-contact leads. The quantum
dot billiards are true quantum mechanical systems. The motion of the electrons
can be modified by the presence of magnetic fields due to Lorentz forces leading
to a break of time-reversal symmetry. To achieve ballistic electron transport,
the measurements have to be done well below 1K to suppress phonon induced
scattering. In recent studies of such dots by J.P. Bird [Bir99, Bir97b], their trans-
port characteristics were found to exhibit evidence for the presence of strongly
scarred wave function states [Jal90, Mar92, Fro94, Fro95] which recur in inten-
sity when either the magnetic field or the energy is varied. The scarred wave
functions have important implications for the semiclassical description of trans-

12
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400nm

i 400nm !

Figure 3.1: Quantum dot and corresponding potential
The quantum dot studied by J.P.Bird(left panel). The grey regions denote the
gate pattern of the quantum dot.The dotted line roughly indicates the expected
profile of the quantum dot that forms in the two-dimensional electron gas layer.
The contour lines of the corresponding potential [Bir95, Mic98| are shown in the
right panel.

port in dots, since they indicate a highly nonuniform sampling of phase space
within the dot. Such behavior is in turn inconsistent with the assumption of
fully chaotic transport, which is often made in semiclassical treatments of these
dots. In submicron-sized semiconductor structures, essentially, only transport
measurements can be performed. Wave functions can not be measured which are
accessible in microwave experiment. This was the motivation of our microwave
experiment. Magnetoconductance fluctuation in the quantum dot were studied
by J.P. Bird and co-workers cite[Bir95, Bir97, Bir99].

We simulated the open quantum dot experiment by J.P. Bird which is shown
in Fig.3.1 and in Refs. [Bir97a, Bir97b]. By confirming the presence of mea-
surable transport results, associated with the wave function scars, our studies
demonstrate the usefulness of microwave-analog studies of transport in meso-
scopic systems.

3.2 Hard-wall billiard

3.2.1 Experiment

The quantum-dot like resonator (160 mmx 210 mmx 8 mm) was made of brass and
the geometry shown in Figure 3.2 was used to measure the entire of the scatter-
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21cm

26cm

Figure 3.2: Set up: Sketch and Photograph of the quantum dot resonator
Left: Sketch of the billiard, A; is the probe antenna and A,, Az are input and
output antennas, respectively. Right: Photograph of the billiard. At the end of
each lead, an absorber is placed to avoid reflections.

ing matrix S (see Egs. (2.16)-(2.20)), with modulus and phase, as function of
frequency. The height d =8 mm ensures that only a single transverse mode is
present at frequencies up to V., = 18.7 GHz as explained in section 2.1. To open
the system, two waveguides with width of 30 mm were included at the bottom
corners of the resonator. In the end of the leads, absorbers made of carbon-
doped-glass-fiber were placed to reduce unwanted reflections. The antennas As
and Az in the leads were of standard construction, consisting of an inner con-
ductor (copper) of diameter 1 mm, which is coated by teflon of diameter 4 mm.
To minimize the leakage through the probe antenna, the diameter of the probe
antenna A; was reduced to 0.2 mm and it was not coated by teflon. The billiard
was set on the measurement table in Figure 2.1. On the top plate of the mea-
surement table, the probe antenna A; was mounted and scanned the billiard by
moving the top plate [Kuh98| on a square grid of period 5 mm. The transmission
S12 between the input antenna As and the movable scanning antenna A;, and the
reflection Sq; at the scanning antenna A; were measured at 1381 positions in the
frequency range of 1-17 GHz in steps of 0.5 MHz. As reference, the transmission
S32 between A, and Az was measured. The measured transmission spectrum S3o
is shown in Fig.3.3. The width of each lead is W = 3cm. Hence the system is
open for frequencies higher than the threshold frequency vr = 5 = 5 GHz. The
second and third modes open at 2v7 and 3vp. The billiard has two leads con-
necting it to the external world. Hence the total number of channels N is 2, 4, 6
for the first, second, and third mode respectively. These threshold frequencies of
the modes are marked with dashed lines in Fig.3.3. In the experiment, however,
because of the limited length of the leads, the effect of evanescent modes can be
seen close to the threshold frequencies. In Fig.3.4, the transmission fluctuation
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Figure 3.3: Channel transmission spectrum in open microwave cavity
Transmission |Ssz| from the input antenna A, in the right lead to the output
antenna As in the left lead. The dashed lines indicate where the first, second,
third mode open, i. e. total number of channels(N =2, N =4, N =6) changes at
the frequencies.

|S32| ia expanded in the frequency range of 7.5-10 GHz and the magnetoconduc-
tance fluctuation in the quantum dot are compared. In this frequency range,
only one mode for each lead is open and the ratio of wave length to the cavity
size corresponds to the ratio of the Fermi wavelength A\ ~40nm and the effective
size ~300nm of the quantum dot [Mic98] shown in Fig.3.1. This comparison of
such similar features in these two different systems provides a clear indication
that the wave-like nature of the electron is critical to understanding the main
aspects of transport in the quantum dots. Fig. 3.5 shows typical wave functions
(left panel) and current distributions (right panel) within the microwave res-
onator. We used the transmission Sis between the input antenna in the right
lead A and the probe antenna A; for these plots. Dark region in wave functions
corresponds to maximum intensity and arrow lengths in flow map indicate the
magnitude of the Poynting vector. The corresponding frequencies are marked
in the channel transmission spectrum |Ss;| of Fig.3.4. At 9.241 and 9.310 GHz,
leakage current through the probe antenna can give rise to unwanted artifacts in
the measurements. At most frequencies where the transmission is larger, it is no
significant problem, as shown in Fig. 3.5 for 8.281 GHz.
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Figure 3.4: Magnetoconductance on a quantum dot and transmission in a res-
onator

Upper panel shows the magnetoconductance fluctuations observed in the quan-
tum dot of Fig.3.1. In the lower panel, with Gaussian window smoothed trans-
mission spectrum |Ssz| is shown in the frequency range of 7.5 GHz—10 GHz. The
two curves are comparable to each other.
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a. 8.281 GHz

C. 9.310 GHz

Figure 3.5: Typical wave functions and corresponding current distributions
The selected wave function plots |Syz|(left column) and the corresponding cur-
rent distributions(right coulmn) for a=8.281 GHz, b =9.241 GHz, ¢ =9.310 GHz.
Dark region in wave functions corresponds to maximum intensity and arrow
lengths in flow map indicate the magnitude of the Poynting vector. The cor-
responding frequencies are marked in the channel transmission spectrum |Sss| of
Fig. 3.4.
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3.2.2 Wave function scarring

In Fig. 3.6, the frequencies at which horizontal bouncing ball wave functions occur
are plotted versus node index n in the upper panel. The corresponding wave
functions obtained from the modulus of the transmission |S}3| for the node indexes
n=3,5,6,9, 11, 14 are shown in the lower panel. From this figure, one can see
that the scars recur quite regularly as the frequency varies. The slope of the
straight line corresponds to a period Av = 0.937 GHz. Since the orbit length
should be an integer multiple of the wavelength [ = n), this corresponds to an
orbit length [ = ¢/Av = 0.32m which is exactly twice the distance between the
vertical faces of the billiard. Fig.3.7 and Fig. 3.8 show vertical bouncing ball and
diamond-like scar families, respectively. From the upper panels of the Figures,
we too can calculate the slope gradients which yield the orbits lengths. The
period of the vertical bouncing ball orbits Arv = 0.708 GHz corresponds to an
orbit length 0.42m. This is the twice distance between the horizontal faces of the
cavity as expected. The same process yields a frequency period Av = 0.563 GHz
corresponding to an orbits length 0.53m for the diamond like orbits which we
also obtained by a calculation of this orbit with the billiard size.

We have found very regularly and clearly recurring horizontal and vertical bounc-
ing ball and diamond like scar families. For these scar families, we could find an
exact agreement between the orbit lengths obtained by the frequency periods Av
and the orbit lengths calculated from the billiard size.

Additionally, there are several complicated scars which also recur as the frequency
is varied. Typical member of these scar families are shown in Fig. 3.9. To find all
members of these scar families is difficult due to their overlapp with the stronger
scarred wave functions, and their instability. Hence we could not obtain exact
periods of these scar families. The possible orbits whose lengths are matched with
approximately found periods of the scar families are plotted with white lines in
the selected wave functions in Fig.3.9. In the next section, such complicated
cases are carefully investigated with the periodic orbits theory and the Scanning
Fourier spectroscopy [Gut90, St699].
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Figure 3.6: Eigenfrequencies at horizontal bouncing ball scars (hard wall billiard)
The measured frequencies at horizontal bouncing ball wave functions are plotted
in the upper panel and the typical member of the corresponding scar family.
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Figure 3.7: Eigenfrequencies at vertical bouncing ball scars (hard wall billiard)
The measured frequencies at vertical bouncing ball wave functions are plotted in
the upper panel and the typical member of the corresponding scar family.
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Figure 3.8: Eigenfrequencies at diamond-like scars (hard wall billiard)
The measured frequencies at diamond-like wave functions are plotted in the upper
panel and the typical member of the corresponding scar family.
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Figure 3.9: Complicated scar families
Complicated recurred scars. Typical member of complicated recurred scars are
plotted. Possible associated orbits are plotted with white lines.
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3.2.3 Scanning Fourier spectroscopy

In this section, we study the influence of a movable absorber on the transmission
properties, and the wave functions, of the same microwave cavity as in Figure 3.2
in section 3.2.1. In addition, we placed a disk like absorber with diameter of
1.5cm and height of 8mm at a fixed position in the billiard. Then we measured
the S matrix as described in section 3.2.1. This measurement is illustrated in the
left panel in Fig. 3.10 and was repeated for three different absorber positions. The
red marked point is the probe antenna A; and the checkered circle presents the
absorber. The absorber positions are plotted with black points in the right panel
in Fig.3.11. A second type of measurement is also shown in the right panel in
Fig. 3.10, where we replaced the probe antenna A; by the absorber disk. Moving
the absorber on a square grid of 5mm, we measured the transmission between
the input antenna A, in the right lead and the output antenna As in the left lead.

21cm
21cm

26cm 26¢cm

Figure 3.10: Sketch of the billiard scanning
Left: Scanning of the probe antenna A; with an absorber present, the reflection
S11 and transmission Sio were measured. Right: Scanning of an absorber disk,
transmission S3y between the waveguide leads was measured.

In Fig. 3.11, the transmission spectra |Sss| for different fixed positions of the ab-
sorber disk are compared in the frequency range of 4.4 GHz-4.9 GHz. One can
see the influence of the absorber position on the microwave transmission through
the cavity. In general, the transmission amplitudes are suppressed in the pres-
ence of the absorber in the case of b,c,d in the right panel in Fig. 3.11. Especially,
the first and last resonance at 4.489 GHz and 4.808 GHz are strongly disrupted
in cases b, ¢, d. The second resonance at 4.642 GHz is mostly disturbed in the
case of ¢, and the third one at 4.677 GHz in d. We can understand this result
better with Fig.3.12 which shows the wave functions at each of the resonant
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frequencies for the empty resonator and with the absorber located at three dif-
ferent positions. The columns correspond to the resonant frequencies 4.489 GHz,
4.642 GHz, 4.677 GHz, 4.808 GHz and the rows present the cases a, b, ¢, d. If the
absorber position corresponds to local maxima of the original wave function with-
out absorber, then the original wave function structure is destroyed or strongly
distorted as seen at 4.489 GHz and 4.808 GHz while their patterns almost remain
at 4.642 GHz and 4.677 GHz where the absorber is located closer to nodal lines
in the original wave function.
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Figure 3.11: Transmission spectra |Sse| with different absorber position
Typical isolated resonances (a) with no absorber present, (b)-(d) for three dif-
ferent absorber positions as shown in the right column. The spectra are shifted
upwards by increments of 0.04.
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Figure 3.12: Wave function comparison for different absorber positions
Wave functions for the resonances shown in Fig. 3.11, with a absorber located at
different positions.
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Figure 3.13: Wave functions for periodic orbits with an absorber
Wave functions for the horizontal and vertical bouncing-ball orbits, diamond-like
scar and loop-like scar. In this frequency range, wavelength is comparable with
the diameter of the absorber. Consequently the original wave function patterns
are strongly destroyed by the absorber.

In Fig. 3.13, the scarred wave functions studied in the section 3.2.2 are plotted in
the upper panel. The left column shows the absorber influence on the horizontal
bouncing ball orbits. The vertical bouncing ball orbit is shown in the second col-
umn, and the diamond like trajectory and loop like trajectory are in the third and
fourth columns, respectively. The resonant frequencies of these wave functions in
Fig. 3.13 correspond to a half wavelength of 1.5 cm which is the diameter of the
absorber. Therefore, the effect of the absorber is stronger than in Fig. 3.12 where
the wave functions have a lower eigenfrequency. The main principle, however,
is identical. Whenever the absorber is located closed to the scarred regions, the
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original wave function pattern is strongly distorted. The loop like scar remains
only when the impurity is placed in the center of the upper loop. In the horizon-
tal bouncing ball scars, the bouncing ball structure remains regardless of where
the absorber is placed though the wave functions are partly deformed.

0.16 m  3X0.16 m 0.638 m 0.897 m
N ~ £ - —
0. 160 : :
o§.883 — —
{{

0.638 —

0.494

Length Spectrum T

0.0 0.2 0.4 0.6 0.8 1.0
Length [m)]

Figure 3.14: Length spectra with an absorber at different positions
Length spectra by Fourier transform of the transmission spectrum of the clean
cavity (a), (b)-(d) with the absorber located at three different positions. Each
maximum corresponds to a trajectory connecting the entrance with the exit port.
The spectra are shifted at the abscise by a constant

Semiclassical quantum mechanics yields the transmission amplitude
- 2Ty
t(k) = ZG/] elklj7 k = T, (31)
J
as a sum over all classical trajectories j connecting the entrance and exit
ports [Gut90]. Here, k is the wavenumber, v is frequency, ¢ is light velocity,
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and [; is the length of the classical trajectory j with (complex) stability factor a;.
By taking the Fourier transform of this expression, one can obtain the stability
weighted length spectrum of the periodic orbits [Eck88, St699].

- / tk) e Wk =Y ay8(1 1) (3.2)

:27T

This equation allows a semiclassical interpretation of our results. Fig. 3.14 shows
length spectra T= f(l)2 from the transmission between the input and the output
channels S3;. The peaks of the length spectra can be associated with classical
trajectories. Some classical trajectories whose lengths are consistent with the
major peaks in the Fourier spectra are also shown. As we have already mentioned,
the absorber destroys the scarred wave function structure whenever it is placed
close to the trajectory, whereas the resonance remains intact if the absorber is
not on the orbit. Only small changes of the peaks of the length spectra which
are associated with the horizontal bouncing ball orbits are observed with the
absorber present in the cavity. The peaks for the loop-like orbit disappear when
the absorber is at position ¢ (under center) and d (off-center). The last orbit
of the upper panel in Fig.3.14 is suppressed when the absorber is placed in the
upper center of the billiard b (upper center).

The results of Fig.3.14 suggest a new type of experiment which we call scan-
ning Fourier spectroscopy. As we described in the beginning of this section, we
measured the transmission between the channels S3; with absorber present at
each position within the billiard. In Fig.3.15, the channel transmission |Sss| is
mapped out for the frequencies which are marked by dotted lines in Fig.3.11.
Dark color corresponds the maximum of |Sss|. When the absorber is placed on
the dark region, it suppresses the channel transmission less than on the light
region. This region corresponds to the nodal line of the original wave functions
at these frequencies of the first row in Fig. 3.12 as we expected.

We repeated the Fourier transform defined in Eq. (3.2) for each transmission
spectrum |Ssp| at each position and generated length dependent Fourier maps.
We plotted the Fourier amplitude for each absorber position for fixed length.
The selected Fourier maps are shown in the right panel in Fig.3.16 and the
associated classical orbits with corresponding scars wave function for billiard
without absorber. Light regions indicate small, and dark regions correspond to
large, amplitude. The associated classical trajectories are indicated with white
lines. In the light region in the Fourier map, the absorber strongly suppresses the
transmission amplitude, 7. e. the absorber was placed close to the orbit whose
length corresponds the length of the Fourier map. The associated classical orbits
marked by white lines match very well with the light regions in the Fourier maps,
even for the quite complicated trajectories with length 0.638 and 0.897 m. This
result suggests the possibility of mapping out the wave function of a quantum dot
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Figure 3.15: Channel transmission map |Ssz| with absorber scan
Channel transmission |Sss| with absorber at each position within the billiard
is plotted for 4.489, 4.642, 4.677 and 4.808 GHz. Dark color corresponds the
maximum. The absorber on the dark region suppresses the transmission less
less than on the light region. This region corresponds the nodal line in the
corresponding original wave function which is shown in Fig. 3.12.

in a scanning probe experiment, by monitoring the change in the conductance as
a scanning probe is rastered over its area [Top01, Top00, Woo02]. According to
Fig. 3.16, such an approach should allow one to identify the paths most relevant
to transmission through a quantum dot.

In this section and the previous section 3.2.2, we studied periodically recurring
scar families and possible associated trajectories that dominate transmission
through the open microwave cavity. Some of these trajectories connect the in-
put and output leads, as illustrated in Fig.3.14 and Fig.3.16 for the length 0.638
and 0.897 m, whereas other orbits are isolated from the channels like the vertical
bouncing ball orbits with [ = 0.42m, the diamond like orbits with [ = 0.53 m.
The latter ones do not show up as peaks in the Fourier transform, since they do
not contribute to the transport, as might be expected from the usual semiclassical
approximation. In the following section 3.3, however, we observe different prop-
erties in a microwave resonator with a soft wall potential, which are not expected
in the classical case. A cross-like scar family shall be investigated as an evidence
of dynamical tunneling.
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7.632 GHz

Figure 3.16: Classical trajectories and the Fourier maps
The left column shows selected classical trajectories with wave wave function
obtained from |Sj2|. The corresponding Fourier maps are illustrated in the right
column. The Fourier maps are produced by Fourier transform of the transmission
between the input and output channels S35 with the absorber scanning through
the billiard. Small amplitudes are represented by light colors in the Fourier maps.
They correspond to the classical trajectories. Details see text.
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3.3 Soft-wall resonator

In this section, we shall present the results of an experiment on a microwave
resonator with a soft-wall potential. There is already a study of a microwave
experiment with soft-wall potential by Lauber [Lau94], where microwave ex-
periments for a harmonic potential and a Hénon-Heiles potential were pre-
sented. They studied closed systems, however, and we shall study the trans-
mission properties and the wave functions of an open microwave resonator
with a soft-wall potential, simulating the typical structure of a quantum-dot
potential. We compare the measured eigenvalues with those calculated from
a WKB approximation. We present wave functions associated with certain
periodic orbits as evidence for dynamical tunneling between two isolated is-
lands [Mou02, Tom94, Tom01, Hen01, Ste01, Hel95] in phase space.

3.3.1 Experiment

The typical soft-wall potential of a quantum-dot [Bir95] is constant in the center,
but increases quadratically close to the boundaries. The sketch of a quantum-dot
and the corresponding contour of the potential are shown in Fig. 3.1. As we
derived in Eq.(2.15), the correspondence between the potential and the height
for TM mode 6 = 1 allowed us to realize the soft wall potential of a quantum-dot
with a microwave resonator. The maximal height d,,,, and minimal height d,,;,
of the resonator were 16.65 mm and 6.3 mm respectively. A photograph of the
resonator used here is shown in Fig.3.17(a). The resonator was produced by a
computer-assisted milling machine in height steps of 0.1 mm, so that the shape of
the potential of the resonator (see Eq. 3.5) was similar to the soft-wall potential of
a quantum-dot. Fig. 3.17(b) shows the height profile where the z coordinate has
been stretched by a factor of 10. The height profile along a horizontal cut and the
corresponding potential are shown in Fig. 3.17(c) and Fig.3.17(d) respectively.
In the measurements, the top plate supporting the probe antenna A; was moved
on a quadratic grid of side length 5mm, thus mapping out the field distribution
within the resonator, just as in section 3.2.1. Since the top plate had to be moved
in the experiment, and due to the imperfection in the mechanical treatment,
the uncertainties in the height were about 0.9 mm. For frequencies v below the
minimal frequency v,,;, = m = 9GHz, only the TM-mode with § = 0 exists.
Since the billiard is open in the x — y plane, the § = 0 mode gives only rise
to a smooth background, but not to sharp resonances. For frequencies with
Umin < V < Vpmaz = d"iw = 18 GHz, the TM-mode with # = 1 can also exist. This
is the frequency range of interest. For frequencies v > v,,4,, the modes with 6 > 2
can exist. Reflection Si; and transmission S7s were measured on a square grid of
period 5 mm in the frequency range of 8.5 GHz-18 GHz in steps of 0.5 MHz. There
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Figure 3.17: Structure of resonator and corresponding potential
(a) Photograph of the resonator, (b) height profile, (c¢) horizontal cut of height
profile, (d) profile of the corresponding soft-wall potential

was another frequency threshold vy = 12.5 GHz of relevance. At this frequency,
the attached channels open, 7. e. below this frequency all states for # = 1 of the
resonator are bound, whereas for higher frequencies the states extend into the
leads and have thus to be interpreted as resonance states. In the upper panel
in Fig. 3.18, the measured reflection |Sy;| on the position of (z,y)=(140,125) mm
and the corresponding channel transmission spectrum |Ss,| are shown.



3.3. SOFT-WALL RESONATOR 33

.99

.80

A
1S4

.60

15

.10

A
Sz,

.O 1 1 1 1
12 13 14 15 16
Frequency/GHz

ISq11

a b c d

.03

1S3l

01

.0 4
12 13 14 15 16
Frequency/GHz

Figure 3.18: Measured reflection and transmission spectra of soft-wall resonator
Upper panel: the measured reflection spectrum |§11| on the position of
(z,1)=(140,125) mm and channel transmission spectrum |Ss,|. Lower panel: the
corresponding spectra with correction |Siy|, |Ss2|. Wave functions for the fre-
quencies with dotted lines are shown in Fig. 3.20. The channel opening frequency
vr = 12.5 GHz is marked by a dashed line.
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Due to the opening in the x — y direction, only a part of the radiated microwave
is coupled into the system, hence, the ground lines of the measured spectra (espe-
cially transmission spectrum) are not very clean. Subtracting the average value
over 100 neighboring values, we removed this component from the measured spec-
tra and plot the result in the lower panel in Fig.3.18. The corresponding wave
functions from the reflection |Si;1| and the transmission |So| at the frequencies
with the vertical dotted lines are illustrated in Fig.3.20. At the threshold fre-
quency vp marked by a dashed line in Fig. 3.18, the billiard states start to couple
to the wave guides. Fitting the resonances below this frequency is easier than
the resonances above vp. From the fit parameters «, (8 of Eq.(2.17), we could
obtain the wave functions 1. Wave functions |¢|* are shown in Appendix A.

We compared the differently obtained wave functions at 12.743 GHz, 12.603 GHz,
12.630 GHz in Fig. 3.19. The upper panel shows the measured channel transmis-
sion |5’32| and the corrected transmission |S3| where the ground line is subtracted.
In the lower panel, the corresponding wave functions are illustrated. The first
row shows the fitted wave functions [1|>. The measured transmission for this
fixed frequency |S12| is plotted in the second row. In the last row, the corrected
transmission |S12| are shown. Without correction, the resonances are not clearly
found in the plot of the Sso in the upper panel, hence, the wave function struc-
tures are hardly recognized in the second row of the lower panel. After correction,
the wave functions of |Sys| are comparable with the fitted wave functions [v]?.
From now, we will use the fitted wave functions |¢|? for the resonant frequencies
which are below the threshold frequency vy = 12.5 GHz or very strongly coupled
resonances like the vertical and horizontal bouncing ball scar families. For other
cases, the corrected transmission |Sis| and reflection |Sy;| will be presented.

Fig. 3.20 shows members of the frequently recurring scar families. The resonant
frequencies a, b, ¢, d are marked with dotted lines in Fig.3.18. The left panel
illustrates the wave functions of the reflection |S1;|. In the right panel, the corre-
sponding transmission plots | S12| are shown. These three scar families, associated
with the vertical bouncing ball orbits, horizontal bouncing ball orbits, as well as
with a scar of the shape of the X-like-cross orbits, are most pronounced for the
microwave resonator with the soft-wall potential. It is interesting to note the
the X-like-cross structure was not observed on the hard wall resonator in sec-
tion 3.2.2. Instead, we found scar families in the shape of a loop connecting input
and output leads (see Fig3.9). The cross-like scar family and bouncing ball scars
are in more detail discussed in the next section 3.3.2 and 3.3.3.
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Figure 3.19: Comparison of selected wave functions
The measured transmission |Ss;| and the corrected |Ssy| are plotted in the upper
panel. In the lower panel, the first row shows the wave function [¢|, plots of the
measured transmission |S12| in the second row, plots of the corrected transmission
|S12| in the third row for the three different frequencies marked by dotted lines
in the transmission spectra.
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Figure 3.20: Selected wave functions of the soft-wall resonator
Corresponded reflection wave functions |Sy;| and transmission wave functions
|S12| at the marked frequencies in Fig. 3.18.
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3.3.2 WKB approximaion

In the semi-classical case, we expect the wave function can be characterized by
position dependent wave numbers. We can decompose the wave function into an
amplitude factor A(q) and a phase factor S(g) for a one-dimensional system

¥(g) = Alq)erS@. (3.3)

Eigenenergies E, ~ v of the members of the three scar families, associated
with the vertical bouncing ball orbits, horizontal bouncing ball orbits, the X-like-
cross orbits from Fig. 3.20 can be calculated semiclassically by means of a WKB
approximation (after Wentzel, Kramer, Brillouin, details in AppendixB). In a
one-dimensional system with two classical turning points qi, g2, the action S is

quantized according to

S, =2 /qudq =2 /qq V2m(E, —V(q))dq = 2rh <n + %) : (3.4)

q1

This gives an implicit expression for the eigenenergy F,, of the nth state. Eq. 3.4
may be directly applied to the scarred structures observed in the experiment.
For the two bouncing-ball families, a one-dimensional treatment is obviously jus-
tified, and the cross-like structure may be looked upon as a superposition of
two one-dimensional structures oriented along the diagonal of the billiard. For
the cross-like structures, the application of the WKB approximation is somewhat
questionable above 12.5 GHz where the states start to extend into the wave guides,
but we shall see that this leads only to small deviations. The one-dimensional
potential to be inserted into Eq. 3.4 is given by (see Fig.3.17)

( e )" <l
Vomdmns ) 74="
V(g) =4 30 (lal = %)+ Vi, 2 <lodl<B+L (3.5)
h 2 L
\ (\/%dmn) ’ 7+ L <|q]
where w = \/<d1A = d;ax2) \/;—;La L = 50mm for all three cases, and Ly =

60 mm, 140 mm, 152 mm for the vertical, horizontal, and cross-like bouncing-ball
structures. Inserting expression (3.5) for V' (¢) into equation (3.4) and performing
the integration we get

2hm? L fir? 1
n= 02y 2—0\/4%% — V2. T V2o - 3 (3.6)
c

mc2w " Smciw

where v, is the eigenfrequency of the nth state. The calculated eigenfrequen-
cies and measured eigenfrequencies for the vertical bouncing-ball, the horizontal
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bouncing-ball and the cross-like bouncing-ball scarred wave functions are plotted
in Fig. 3.21 to 3.23 respectively. Stars indicate the calculated values and diamonds
the experimentally-identified values. The lower panels show a set of correspond-
ing wave functions |¢|>. The deviations of experimental values are likely to be
caused by imperfections and a possible misalignment of the top plate changing
the potential slightly. The deviations are somewhat larger above 12.5 GHz where
the states start to extend into the wave guides because we used the WKB ap-
proximation for bound states. The greater the contribution to transport of the
trajectory the more influence we expect of the channel opening on the devia-
tion. Therefore the deviations for the cross-like structures are largest above the
channel opening frequency vp. However they are still small enough that we can
find overall very good agreement of the experimental results with the predicted
theoretical values.
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Figure 3.21: Vertical bouncing-ball scarred wave functions
Calculated values are plotted with diamonds and measured values are plotted
with stars. The solid line indicates the channel opening frequency v = 12.5 GHz.
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Figure 3.22: Horizontal bouncing-ball scarred wave functions
Calculated values are plotted with diamonds and measured values are plotted
with stars. The solid line indicates the channel opening frequency vy = 12.5 GHz.
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Figure 3.23: Cross bouncing-ball scarred wave functions
Calculated values are plotted with diamonds and measured values are plotted
with stars.The solid line indicates the channel opening frequency vy = 12.5 GHz.
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Figure 3.24: Cross-like scarred wave function
Cross-like orbit is an independent superposition of two diagonal bouncing ball
orbits try, try. Classically such orbits do not contribute to transport between the
leads.

3.3.3 Dynamical tunneling

Quantum mechanical tunneling involves an allowed quantum event which is clas-
sically forbidden. Dynamical tunneling is the subset of such events which do not
involve a classically insurmountable potential barrier through which to tunnel
in the traditional sense. The dynamical tunneling occurs between two distinct
classically trapped regions in phase space. Semiclassically, we can consider the
cross-like structure as an independent superposition of two one dimensional tra-
jectories try, tro oriented along the diagonals. Each of these structures corre-
sponds classically to a particle that is injected from one side, following the di-
agonal trajectory, being reflected from the upper corner and leaving the billiard
through the entrance wave guide (see Fig. 3.24). To use the terms introduced by
E.J. Heller [Dav81, Hel95], the pair of “clean” states 11,1 , oriented along to the
diagonal are degraded by their tunneling interaction into the “dirty” cross-like
states v, 1, with

ws - Csl¢1+052¢2
Yy = Ccur + cuatbe

. The wave functions calculated by M.J.
ig. 3.25.

where cg1 = c5o = €1 = %, Cug = —
Davis and E.J. Heller are plotted in

e

The magnitudes of these coefficients are all equal because of the symmetry of
potential from Eq.3.5 around x = 0. Without dynamical tunneling, we could
not explain the contribution of the cross-like states to the transport between the
input and output leads which is clearly shown in Fig. 3.18. If the symmetry of
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Figure 3.25: Clean and Dirty states
The clean states (two uncoupled single states) 1)1, 19 and the dirty states (sym-
metrically and anti-symmetrically coupled states) v, 1, with ¥ = %(Zﬁl + 1)9),

Wy = %(1/11 — 1hy). These are calculated by M.J. Davis and E.J. Heller [Dav81]

the potential is broken enough we should expect eigenstates with |cg| # |cs2| and
|cu1| # |cuz| resulting in a reduction of the dynamical tunneling [Dav81, Hel95].
In those cases, one of the two single states dominate the coupled state. Such
cases are shown in Fig.3.26. In our experiment, the symmetry of the potential
was broken due to the imperfections and a possible misalignment of the top plate.
Thanks to that, however, we could observe the cases for which |cg| # |cs| and
|cu1| # |cua|. The comparable experimental cases are shown in Fig. 3.29.

The case of (a) in Fig.3.29 shows an eigenstate dominated by #; = tr; and in
the case of (c¢), dominated by 1y = trs.

Figure 3.26: Dirty states by breaking the symmetry of potential
The differently coupled states v, = c,¥1 + cuats, Vs = cs1W1 + csothe With
lcur] > |cuz| and |cs1| < |es2|. These are calculated by M.J. Davis and E.J.
Heller [Dav81]

We found one more evidence of the existence of the dynamical tunneling at the
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cross-like orbits. If the cross-like orbits consisted of a single state, there would be
no change from the symmetric state 15 to the antisymmetric state v, through the
resonance frequency. This is a direct evidence of dynamical tunneling discussed in
a number of papers [Mou02, Tom94, Tom01, Hen01, Ste01, Hel95]. We calculated
the phase of measurements ¢ with Sj» = |Sy2|e®®. Theoretically the modulus of
phase differences of two symmetrical positions to the y-axis

should be 0 for the symmetric case and 7 for the antisymmetric case. In our

experiment, noise sources obscure the observation of the symmetric A¢ = 0 or

antisymmetric A¢ = 7 states. Instead, cases where A¢ < 7 are considered as
symmetric and those where A¢ > 7 as antisymmetric. In Fig.3.27, the mean

value of the phase difference over the measured area (AQB)(W) is plotted in the
range of 11.3 — 13.6 GHz and the frequencies of the cross-like orbits with quan-
tum number n = 9, 10, 11, 12, 13, 14 are marked by dotted lines. A change of

the phase difference from the symmetric state(A¢ < 7) to the antisymmetric

state(A¢ > 7) is observed around every resonant frequency. For demonstration,

3n/4[ 1 T 5 ' 5 - T

<Ag>
|
l
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Figure 3.27: Mean value of the phase difference over the measured area <A¢>(fc7y)
The mean value of the phase difference <Agb)(w) vs frequency is plotted. The
frequencies for the cross-like orbits are marked by dotted lines.

we chose a typical cross-like wave function at v =15.285 GHz. In the first row
and second row in Fig. 3.28, the reflection and transmission |Sy1], |Ss2| are shown
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in the frequency range of 15.25 — 15.33 GHz, respectively. The mean value of
the corresponding phase difference over the measured area (A¢>(x7y) is plotted in
the last row. The three dotted lines a, b, ¢ indicate three different frequencies
15.278 (below the resonance), 15.285 (the resonance case), 15.295 GHz (above
the resonance) which are also used for the phase maps and intensity plots in
Fig.3.29. The corresponding phase distributions ¢ are plotted in the third row.
Black for ¢ < 0 and white for ¢ > 0 are used in the phase map. The corre-
sponding wave functions from reflection |Sy;| and transmission |Sis| are shown
in the first and second row in Fig. 3.29, respectively. A phase difference changing
from the symmetric state to the antisymmetric state is also found around this
state in Fig. 3.28, the phase map is symmetric below the resonance frequency and
antisymmetric above the resonance frequency (see the lowest panel in Fig. 3.29).

0.05

1 . . 1 1

15.26 15.28 15.30 15.32
Frequency/GHz

Figure 3.28: Spectrum |Sy], |S52| and phase difference at 15.285 GHz
The reflection spectrum |Sy;|(first row) at a position in the billiard (z,y) =
(140, 125) mm and transmission spectrum |Ssz| between the input and output
channels(second row) and the mean value of the phase difference < A¢ >, ) vs
frequency(third row) are plotted. The wave functions and phase maps for the
frequencies marked by dotted lines are shown in Fig. 3.29.
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a.15.278 GHz b.15.285 GHz c.15.295 GHz

Figure 3.29: Typical cross bouncing-ball scar near 15.285 GHz
The first row shows |Sy1|, the second row shows |S12|. The third panel presents
the phase maps ¢ in black for negative values and white for positive values.

In this section, we dealt with three dominating bouncing-ball scar families. First
we found very good agreement of experiment with the theoretical prediction from
a WKB approximation for one dimensional systems. The contribution of the
cross-like scar family as a pair of two separated diagonal bouncing ball orbits
showed evidence of dynamical tunneling. The observed changes of the phase
difference near the resonant frequencies of this scar family strongly supported
the existence of dynamical tunneling.
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3.3.4 Outlook

After this first attempt with a open soft-walled microwave resonator, we can
extend the microwave measurement with soft wall potential varying the shape and
corresponding potential. The placement of the top plate should be improved to
achieve the desired accurate heights of the resonator since the heights correspond
to the potential. The structure of the leads connecting to the outside world
can be lengthened and changed. A multi-quantum-dot like resonator can be
fabricated, and the transport behavior through the multi-quantum dots and their
wave functions can be investigated.

There are works in which a scanning microscope is used to study current flow
in a quantum point contact by M.A. Topinka [Top00, Top01]. By scanning the
charged microscope tip above the two-dimensional electron gas, the electron flow
through a narrow constriction in two-dimensional electron gas (quantum point
contact) was imaged. The influence of the width of the quantum point contact
and the position of the tip on current flow were studied. Such investigations of
quantum point contacts can be easily simulated with microwave experiments.



Chapter 4

Wave function statistics for open
systems

4.1 Intensity distribution in dependence of the
phase rigidity

The statistical properties of the eigenfunctions and eigenvalues of a chaotic bil-
liard can be well described by random matrix theory (RMT) [Guh98] or the ran-
dom superposition of plane waves approach (RSPW) [Ber77]. At any point in the
system, sufficiently far from the boundary, the wave function can be described
by a random superposition of plane waves [Ber77],

V() =Y anexp™ 7, k= [k (4.1)

where the modulus of the wave number & of the incoming wave is fixed, but the
directions l;/:n /k and amplitudes a,, are considered as random. In billiards with
time-reversal symmetry, there is an additional restriction that the wave function
has to be real. This ansatz is not strictly correct, because it completely ignores
the boundary conditions at the billiard walls, but this is of no importance as
long as the wave length is small enough compared to the billiard size. As an
immediate consequence the wave function amplitudes are Gaussian distributed,
or, equivalently, their squares [1)|? are Porter-Thomas distributed,

PUOE) =[5 o (5 10P) (4.2)

where A is the billiard area.

47
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For the spatial correlation function of the wave function amplitudes, one obtains
a Bessel function,

C(m,72) = QM) (72)) = Jo(kr), (4.3)
where r = |} — 73|. The brackets denote an average over all positions. All these
features have been demonstrated by McDonald and Kaufman in their influential
work on stadium wave functions [McD79, McD88|. It is impossible to mention all
papers which have been published hitherto on the subject. The RSPW approach
is not restricted to quantum mechanics. This is why experiments using classical
waves have played an important role, since for a long time they were the only
ones with the ability to look into the system. Very recently techniques have
been developed which yield comparable information for electron flow patterns in
mesoscopic structures [Top00]. The state of the art of experiments with classical
waves is presented in reference [St699].

Most of experiments with classical waves have been performed in microwave res-
onators [St690, Sri91, Gra92| and vibrating solids [E1195]. In one work, light prop-
agation through a wave guide with distorted cross-section was studied [Doy02].
In all cases the predictions of the RSPW approach could be verified. It should
be noted that in the general case there is no one-to-one correspondence to quan-
tum mechanics, thus demonstrating the universality of the approach. There-
fore similar ideas have been developed independently in the context of room
acoustics [Ebe84]. Quasi-two-dimensional microwave resonators constitute one
prominent exception where the equivalence to quantum mechanics is complete,
including the boundary conditions. This is no longer true in three-dimensional
resonators. But even here the approach remains valid [D6r98]. One only has to
superimpose plane electromagnetic waves with the consequence that expression
(4.3) for the spatial autocorrelation function has to be modified [Eck99].

If the billiard is opened, or if time-reversal symmetry is broken, the wave functions
are complex, and currents are present, the wave function acquires an imaginary
part,

Y =vr+ iy, (4.4)

where 1 g and v are orthogonal. In Ref. [Bro03], the wave function distribution
was described as the convolution of a Gaussian distribution with correlated real
and imaginary parts and that of a single complex number p, the dot product of
the wave function ¢ and its time reversed,

p= [ ar v (4.5)

The square modulus |p|? is known as the “phase rigidity” of the wave function
¢ [Lan97]. Real wave functions have p = 1, whereas p = 0 is fully complex, i. e.,
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1¥r and ¥y have the same magnitude.

In microwave experiments wall absorption is another source of currents. For
quasi-two-dimensional electromagnetic cavities we use the one-to-one correspon-
dence between the z-component of the electric field E, and the quantum-
mechanical wave function ). We normalize the wave function ¢ such that

/ I = 1. (4.6)

Then the square of the z-component of the electric field and the Poynting
vector correspond to the normalized “intensity” and “current” density, respec-
tively [Seb99).

I17) = AR, ) = Sl (V()] (4.7

In dependence of the phase rigidity p, the distribution of the intensity I = A|¢|?
changes from Porter-Thomas (Eq. (4.2)) to single exponential behavior. An ex-
plicit formula describing the distribution in this cross-over regime has been given
by different authors [Zyc91, Kan96, Pni96, Sai02],

i) == |- o [ ) -

In the case of p = 1, there is no imaginary part, then Eq. (4.8) reduces to the
Porter-Thomas distribution, whereas one obtains an exponential distribution for
p=0,or < |[Yg|* >=<|r]* >.

By convolution Eq. (4.8) with the distribution of phase rigidity p(p), we can obtain
the full intensity distribution,

P(I) = / dpp(p) PA(D). (4.9)

The distribution p(p) was calculated in Ref. [Bro03] and is given by,

p<p) _ 6 + 2(1 — ’p’2)1/2

_ L 0< |pl < 1. 4.10
St (1 ey LS 410)

For the experiment, we used the same resonator as in Fig. 3.2, but to break the
symmetry of the shape of the resonator and to block direct transport, we placed
two half disks with a radius of 3 cm in the resonator. These were made of the same
material as the resonator. In the range of 4- 18 GHz, the same measurements as
described in section 3.2.1 were done. We now describe the measured wave function
distributions.
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We first discuss wave function distributions measured at a fixed frequency, and
compare the results to the theory for the corresponding fixed value of p. A
statistical distribution at a fixed frequency is obtained by varying the position of
the antenna only. The phase rigidity |p|? can be measured independently using
Eq. (4.5). Fig.4.1 shows the intensity distribution for the intensity pattern at
11.048, 12.015, 13.865 GHz shown in the left panel of Fig. 4.2 together with the
theory of Eq. (4.8), using the measured value of |p|* = 0.0937, 0.5226, 0.2358.
The solid lines in Fig. 4.1 indicate the calculated values from Eq. (4.8). Dark color
corresponds to large intensity in wave function in the left column in Fig. 4.2. The
corresponding currents maps are shown in the right column in fig.4.2, and the
arrow lengths indicate the magnitudes of the Poynting vectors.
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Figure 4.1: Intensity distribution for the wave function
Intensity distribution for the wave function at v = 11.048, 12.015, 13.865 GHz.
The corresponding wave functions are shown in Fig.4.2. The theoretical values
from Eq. (4.8) with |p|? = 0.0937, 0.5226, 0.2358 are plotted with solid line.

As was discussed in Ref. [Bar02], there are frequency regimes where the leakage
to the probe antenna becomes intolerably high, either due to the fact that the
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transport through the cavity is small, or due to some strongly scarred wave
functions. In all such cases there were strong deviations from the generalized
Porter-Thomas behavior described by Eq. (4.8). We therefore only used frequency
regimes where P,(I) was in agreement with theory on a confidence level of 90
percent.
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Figure 4.2: Typical wave functions and corresponding current distributions for
asymmetrical billiard

The selected wave function plots |Sia|(left panel) and the corresponding current
distributions(right panel) for a=11.048 GHz, b=12.015GHz, c¢=13.865GHz.
Black in wave functions corresponds to maximum intensity and arrow lengths
in flow map indicate the magnitude of the Poynting vector.
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4.2 Current and vorticity auto correlation

The consequences of the RSPW approach for the distribution of currents
have been studied in particular by Berggren and coworkers in a series of pa-
pers [Ber99, Sai01, Ber01, Sai02]. In open systems there are no longer nodal lines
but nodal points, or vortices, since for the wave function to be zero both real and
imaginary part have to be zero at the same time. Two-point correlation functions
of vortices have been given independently by Berry and Dennis [Ber00] and by
Saichev et al. [Sai01]. Nearest neighbor distributions of vortices have been stud-
ied in Ref. [Ber02]. The theoretical predictions have been tested experimentally
in two microwave experiments [Bar02, Vra02|, including a direct visualization of
persistent currents well-known from mesoscopic physics. In the present paper a
number of additional microwave tests of the RSPW hypothesis are presented with
special emphasis on spatial auto correlation functions of currents and vorticities.
To the best of our knowledge such quantities have never been studied before,
neither theoretically nor experimentally.

Fig. 4.3 shows plots of the vorticities, or vortex strengths at the same frequencies
as in Fig.4.2. The vorticity is, up to the factor 1/2, just the curl of the current
[Ber00] and reduces for two-dimensional systems to

w = (Vor)(Vytr) — (Vyor)(Vathr), (4.11)

where 1,1, are real and imaginary part of the wave function. A plot of the
vorticity is particularly useful to make the vortex pattern visible.

Figure 4.3: Selected vorticity map
The vorticity maps at v = 11.048, 12.015, and 13.865 GHz. The corresponding
wave functions are shown in Fig. 4.2.

It follows immediately from the RSPW hypothesis, as a consequence of the central
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limit theorem, that ¥ (r) can be treated as Gaussian random variables. They obey
the well-known property that all higher moments can be expressed in terms of
the second moment. Thus all distributions of interest can be calculated [Sre96a,
Sre96b]. We do not follow this route, however, but start directly from Eq. (4.1)
to calculate current and vorticity auto correlation functions.

Writing k, = k(cos @, sin ¢, ), we obtain for the derivatives of the wave function

o . ik 7

e = 1k Xn: @y, COS O, €

0 s

a—;j) = ik ; ay sin p,, 7 (4.12)

Using Eq. (4.7), it follows for the x component of the current

J(7) =k Z a @y, (cos ¢, + cos gom)e_’;(’;”_';m)"?. (4.13)

In calculating the autocorrelation functions
Cj. (71,72) = (Ju(71)Ju(72)) (4.14)
we use the assumption that the a,, are uncorrelated
(anam) = (lanl*) dpm- (4.15)
It follows from Egs. (4.13) and (4.14)

ij(T_i,T_é) ~ K <Z |an|2|am|2<COS P + COS @m)2€_i(E’L_Em)'(F1—Fz)>

~ <cos2 gpne’iE"'F> <e”z"'?> + <cos gone’“;”'F> <cos gpne“;”'F> ,(4.16)

where ¥ = 77 — 5. All averages can be expressed in terms of Bessel functions
with the result

Cj.(r) = (Jo(kr)[Jo(kr) — cos 2¢J5(kr)] + 2 cos® p[Jy (kr)]*) (4.17)

where we have written C}, (r) instead of C;, (r1,73) to indicate that the autocorre-
lation function depends on r = |7 — 75| exclusively. The normalization C}, (0) = 1
was applied. It only remains to perform the average over ¢, the angle between
vector 7 and the x axis. The averaging gives

Cj (T) = [Jo(k?")]Q + [J1<k77")]2 (418)
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For the autocorrelation function of j,(r) the same expression is obtained. Instead
of averaging over (, we may alternatively look for two other quantities, namely
the autocorrelation functions of jj(r), and j (r), the current components parallel
and perpendicular to 7, respectively. Inserting ¢ = 0 and ¢ = 7 we obtain from
Eq. (4.17)

Cj\l (T) = Jo(k?T)[JQ(kJT) - Jz(k’l")] + 2J1(k’7")
Ci (r) = Jo(kr)[Jo(kr) + Jo(kr)] (4.19)

In the same way the spatial autocorrelation function for the vorticity is obtained,
entering definition from Eq. (4.11) with expressions in (4.12) for the derivatives of
the wave function. The derivation is a step-by-step repetition of the calculation
for C},(r), and we find

_ (w(r)w())
) = amm
= [Jo(kr)]? = [J1(kr)]? (4.20)

All correlation functions depend on the parameter kr exclusively. Therefore it is
possible to superimpose the results from different frequencies by an appropriate
rescaling to improve statistics. We start with the presentation of our results for
the spatial autocorrelation function of the wave function amplitudes (see Fig. 4.4).
A perfect agreement is found between the experimental results and the prediction
from the RSPW hypothesis. This may be considered as a check for the validity
of the approach in the selected frequency regimes.

1‘0 T T T

-0.5

0 5 10 15 20
kr

Figure 4.4: Spatial autocorrelation functions
Experimental spatial autocorrelation functions of the wave function amplitude
for the quantum dot billiard. The solid lines correspond to the prediction from
the random-superposition of plane-waves approach (see Eq. (4.3)).
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In Fig. 4.5, the results of the different current autocorrelation functions derived in
Eqgs. (4.18), (4.19), are shown for the experimental data. The overall agreement
is very good.
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Figure 4.5: Spatial autocorrelation functions of j,(r), j,(r), jj(r), and j (r)
Experimental spatial autocorrelation functions of j,(r), j,(r), jj(r), and j.(r)
(from top to bottom) for the quantum dot billiard. The solid lines correspond
to the predictions from the random-superposition of plane-waves approach (see
Eqgs. (4.18) to (4.19)).
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Figure 4.6: Experimental spatial autocorrelation functions of the vorticity w(r)
The solid lines correspond to the predictions from the random-superposition of
plane-waves approach (see Eq. (4.20)).

For the vorticity autocorrelation function, shown in Fig. 4.6, the agreement be-
tween theory and experiment is nearly perfect. In Fig. 4.7 vortex pair correlation

function for the system is presented. The vortex pair correlation function is given
by [Ber00, Sai01]

g(kr) = = (5(RA)S(L)S(Re)d (Is)wallwsl) (4.21)

2
where A, B two vortexes with distance r and their real R4, Rp and imaginary
part 14, Ig. The corresponding vorticities w4, wp are calculated from Eq.4.11.
The expected oscillatory behavior again is reproduced correctly. The deviations
between experiment and theory at small distances reflect the experimental reso-
lution. The data were taken on a grid of 5 mm side length with the consequence
that vortices with a distance below 10 mm can no longer be separated reliably.

We now extend this discussion to the nearest neighbor spacing distribution be-
tween vortices. This quantity was introduced by Saichev et al.,[Sai01] and was
studied by the authors in a number of papers. There are different types of spacing
distributions denoted by Py, (r), Py_(r), P_,(r), P__(r) where the pair of in-
dices denotes the sense of rotation of the vortices considered. P, (r) and P__(r),
as well as Py _(r) and P_, (r) should be identical, of course. Only for small system
sizes (where the RSPW approach fails anyway) there may be deviations due to the
presence of the boundary [Sai01]. Fig. 4.8 shows our results, for P, (r), P__(r)
and P, _(r), P_.(r). The theoretical curve is the result of the Poisson approx-
imation [Sai01]. It is obtained from the vortex pair-correlation functions and
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Figure 4.7: Vortex pair correlation function
The solid line corresponds to the theoretical prediction from the random-
superposition-of-plane waves approach [Ber00, Sai01].

neglects all higher order correlations. The deviations between experiment and
theory for P, (r), P_.(r) are comparable to that found in the papers of the
Berggren group [Sai0l, Ber(02]|, and reflect at least partly the limitations of the
Poisson approximation. Another cause, in particular for the small distances, is
the limited experimental resolution discussed above. For P, (1), P__(r), on the
other hand, the agreement between experiment and theory is quite good, again in
accordance with Refs. [Sai01, Ber02]. In addition, the experiment resolution has
only a small effect in this case, since small distances do not contribute anyway
to Py (r), P__(r) significantly.

In this section, a number of consequences of the RSPW hypothesis have been
presented not been studied hitherto. A qualitatively good agreement between
the experiment and the theoretical prediction was found for different types of
spatial current correlation functions. The remaining discrepancies are probably
due to experimental imperfections caused by leakage currents into the probe an-
tennas. For the vorticity autocorrelation function a perfect agreement between
experiment and theory is found. In addition vortex pair correlation functions,
and vortex nearest neighbor distance distributions were studied. Again the agree-
ment between experiment and theory are good, apart from discrepancies at small
distances.
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Figure 4.8: Nearest neighbor distance distribution of vortices
Nearest neighbor distance distribution of vortices of opposite (Py_(r)), (P-+(r))
in the lower panel and same sense of rotation (P, (7)), (P-_(r)) in the upper
panel respectively, for the hard wall billiard. The solid lines have been calculated
from the respective pair correlation functions, neglecting higher order correla-
tions.
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4.3 Long-range correlation

For microwaves, an open billiard is obtained by connecting a two-dimensional
microwave cavity to wave guides. The parameter governing the crossover from
real to complex wave functions is the total number of channels N in the two
wave guides. As was shown by P.W. Brouwer [Bro03], wave functions in this
crossover have a non-Gaussian distribution and long-range correlations, just like
the eigenvectors of the Pandey-Mehta Hamiltonian (4.22).

H(O&) = Ho + OéHl, (422)

where Hy and H; are real and complex random hermitian matrices, respec-
tively, and « is a crossover parameter. The main difference, however, is that the
crossover parameter NN is discrete and can be measured independently. We here
report on the first measurement of such long-range wave function correlations in
the real-to-complex crossover. In this section, we study spatial correlation func-
tions of the squares of intensities and currents. The statistical average is taken
by averaging over both position 7 and frequency v. It is for these quantities and
for this full ensemble average that long-range correlations were predicted [Bro03].

In order to explain the origin of long-range correlations of intensity and current
density in an open chaotic billiard, we consider the joint distribution of intensities
at points 7] and 75 with separation kr = k|r, — 75| > 1,

PUG). 1)) = [ dpplo) PTG PG (4.23

For an open billiard, p has a nontrivial distribution, hence the long-range cor-
relations of P[I(r),I(7)]. Whereas random matrix theory predicts the long-
range correlations of intensities through Eq. (4.23), it cannot alone predict the
long-range correlations of current densities and the precise dependence of these
correlators on the separation r = |7} — 75| for kr = k|rf} — 75| of order unity.
However, as shown in Ref. [Bro03], the latter can be obtained from the random
matrix result by making use of a random sum over plane waves (see Eq. (4.1)).

The plane wave amplitudes a(k) of Eq. 4.1 have a Gaussian distribution with zero
mean and with variance

(a(k)a(=k)) = pla(k)a" (K)), (4.24)

where p is the (random) phase rigidity of 1. Performing the ensemble average
using Eqgs. (4.1) and (4.24), the correlators of intensity and current density can be
expressed in terms of moments of the phase rigidity |p|?>. Long range correlations
are found for correlators involving the square of the intensity I and the current
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density J = |7,

(I(7)2 (7)), = var|p|® + 4Jo(kr)*(4 + 13|p)* + |p|*)
+ 4Jo(kr) (1 + 4|p|* + |p|*),

— — 1
(TFRT R = —pvar|of? + Jo(br)(2 = o = 11,
(JEPIEP)e = varlol+ S Ik = 20l + ol
1
+ 3 Jo(kr)H(3 = 5lof? + 2ol (4:25)

Here J; is the Bessel function, and the subscript “c” refers to the connected
correlator, (AB). = (AB) — (A)(B). The relevant moments of the phase rigidity
|p|? were calculated in Ref. [Bro03] and are compared with the experimental values

in Tab.4.1. We found a good agreement between experiment and theory.

(ol*) {ol")
N 2 4 6 2 4 6

Theory 0.7268 | 0.5014 | 0.3918 | 0.6064 | 0.3285 | 0.2155
Experiment | 0.7116 | 0.4986 | 0.3849 | 0.6070 | 0.3464 | 0.2368

Table 4.1: The calculated and experimental moments of the phase rigidity

To have a well defined number of transversal modes within each waveguide, we
investigate the frequency regimes 5-9.5, 10-14.5, 15- 18 GHz, corresponding to
a total number of channels N=2 4, 6, respectively (i.e., 1, 2, and 3 propagating
modes in each waveguide)

We now describe our results for a full ensemble average, in which both the position
of the detector antenna and the frequency are varied. Fig.4.9 shows the mea-
sured phase rigidity distribution P(|p|?) together with the theory of Ref. [Bro03],
for N = 2, 4, and 6. Good agreement is found between experiment and theory,
especially as there is no free parameter. Figures 4.10, 4.11, and 4.12 show mea-
surement and theoretical prediction for the correlation functions of the squared
intensity and the squared current density at positions 7 and 7. Since these
correlation functions depend on the positions 7 and 7’ through the combina-
tion kr only, results from different frequency regimes can be superimposed by a
proper scaling. In our analysis, we selected frequency windows for averaging of
Av = 0.3 GHz guaranteeing that Av < ¢/2vL, where L is the billiard size and ¢
the velocity of wave propagation. The gaps in the N = 4, 6 histograms for small
values of kr reflect the spatial resolution,which is limited to 5 mm due to the cho-
sen grid size. For the long-range correlations, we observe very good agreement
between experiment and theory for the squared intensity correlation (I(77)1(r3)).
The short-range oscillations predicted by theory are suppressed to a large extent
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Figure 4.9: Phase rigidity distribution
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indicate the theory of Ref. [Bro03].
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in the experiment for the correlators that involve the current density, however.
This, again, is a consequence of the limited resolution. We would like to stress,
however, that the asymptotic values of all correlations in the limit kr — oo is
different from zero and in perfect agreement with the predictions from Eq. (4.25).
We analyzed the measured data with the symmetric billiard in Fig. 3.2. For the
all magnitudes mentioned above, we could also find very good agreement with
the theoretical prediction in spite of the symmetry of the billiard shape. The
influence of the coupling antenna might be strong enough to break the symmetry
of the system.

Long-range correlations have also been observed in the transmission of mi-
crowaves [Seb02] and visible light [Emi03] through two- and three-dimensional
disordered media, in which wave propagation is diffusive. There are important dif-
ferences between the long-range correlations observed in Refs. [Seb02, Emi03] and
those in ballistic systems, which are reported here. First, in Refs. [Seb02, Emi03],
long-range correlations appear already for the intensity autocorrelation function,
whereas we find long-range correlations for correlators of second and higher mo-
ments only. Second, in Refs. [Seb02, Emi03], the correlations scale with the in-
verse of the sample conductance, whereas in the present work there is no small
parameter that sets the size of the long-range correlations, irrespective of sample
size or distance. In that sense, only the latter correlations are truly long range.
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Fitted wave functions for the
soft-wall billiard
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68 Fitted wave functions for the soft-wall bil.
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Appendix B

WKB approximation

Semiclassically we can decompose the wave function into an amplitude factor
A(q) and a phase factor S(q) for a one-dimensional system

¥(q) = Alg)er™?. (B.1)
We put this expression into the time-independent Schrédinger equation

TVH(a) = (B~ V(@) la), (.2
then we obtain

ds\® . 25 __dAdS _,d2A

Separating real and imaginary parts, it yield two equations

ds\? h*d2A
) = om(E - nes B.4
(5) =2nE-v)+ 505 (B4)
d*S _dAdS
I sl B.5
i " “dq dg ! (B.5)
Eq. (B.5) can be paraphrased by
1dgd*S 1dA
it e B B.
2asde T Adg (B.6)
which is equivalent to
d (1, dS
— [ =log— +1logA)| = B.
dq(zogdq—i—og) 0 (B.7)
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The integration of Eq. (B.7) yields

_ ¥
NEE

(B.8)

where 1)y is the integration constant.

In the semiclassical limit A — 0, the term hA ‘3‘ in Eq. (B.4) is negligible and

thus Eq. (B.4) yields

S = /‘1 dg\/2m(E —V(q)). (B.9)

q0
From Eq. (B.8) and Eq. (B.1) one can obtain

vlg) = ——2 ‘exp(}ﬁb [avEmE—v@)  ©w)

VR E= V@) "

This approximation becomes invalid in particular for the classical turning points
with p = 0. Maslov [Mas81, Eck88] developed this approximation for this prob-
lematic region. If the approximation is poor in position space then it should
work well in momentum space. The wave function zﬁ(p) in momentum space is
obtained from 1 (q) by a Fourier transformation.

U(p) = \/ﬁ dq(q) exp (—%qp) (B.11)
‘ exp (% / dg\/2m(E -V (q)) — qp)

Yo
\/ﬁ/dq\/)\/Qm(E

The integral is of the type

I— /dq A(q) exp (%@(q)). (B.12)

In the semiclassical limit i — 0, the phase %@(q) oscillates rapidly. These oscil-
lations cause a cancelation of nearly all contributions to the integral. Exceptions
are the neighborhoods of the points ¢s; where the phase is stationary, i. e. where

2'(g,) = 3 (VEn(E -~ V(g) - p) =0, (B.13)

and it yields with the Taylor expansion at the point x,

®(q) = P(qs) + %qﬂ’(qs) +ee (B.14)



5

If A(q) is regular, it may be considered as constant. We thus obtain

I atg)esp (1000 ) [ o e (9525000 (B.15)

This is of the type of the Fresnal integral(see Appendix D), and we thus obtain

2mh T

I~ |<I>”(qs)|A<QS) exp (ﬁfb(qs) + ngn(@”(qs))), (B.16)

This is the stationary phase approximation. Now we can apply this approxima-
tion to the integral in Eq. B.12. From Eq.B.13 we can replace ¢, with ¢(p) as a
function of p. Now we can express the wave function ¢ (p) in momentum space

by:

) ' i [a@) i
b(p) = ¥o \qlﬁp)' exp <ﬁ [ dav/EmE=V@) - patp 7) (B.17)

90

By Fourier transformation into the position space and repeating the same steps
as above we obtain the representation of the wave function in the position space

U(q) = \/’wpz—q)‘exp (% /q: dq p(q) — %) (B.18)

where p(q) = /2m(E — V(q)) As Eq.B.18 shows there is a phase loss of /2
whilst passing the turning point. It yields:

1 W
AP =—-5—"— B.19
h 2 ) ( )
where S = $dqp(q), and pu, called the Maslov index. For Dirichlet boundary
conditions each reflection leads to a phase jump of 7, i. e. a hard wall reflection
contributes twice to the Maslov index, while there is no phase jump for Neumann

boundary conditions. Semiclassically only orbits withA® = n - 27 are allowed,

and this yields

%j{dqp(Q) =27 (n + %) : (B.20)



Appendix C

Random superposition of plane
waves

In the semiclassical case, we can describe the wave function by a random super-
position of plane waves with random amplitudes a,,, and random directions of
wave number k/k,

V() = anexp™ T, k= [k, (C.1)

The amplitude distribution can be written ,

o= (o(o- Soe))

where the average over amplitudes and directions of incoming waves. We can
express the delta function by its Fourier representation(compare with Appendix
D) and get

P(y) = % /+OO dte"™ l_N[ <e’lt“”ezgn‘ra> : (C.2)

- n=1

We have thus obtained a factorization of the averaging over the different contri-
butions. An exponential expansion yields

1k - 7 - t2 o=
<e‘”“”e * > = 1—at <ane’k"""> ) <a2622k""“> +...

From the normalization of the wave function in billiard area A, we obtain in the
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case of N — oo only terms with /Zn = —k‘;n remain:

1:/|w(77‘)’2dA:Zanam/ezf{wf’ezlzm.FdA:Azai:AN<ai>'

Inserting this result into Eq. C.2 we obtain in the limit N — oo:
1ot 2 N
P = — dt e li 1— e
() 2 /Oo c Nllnoo( 2AN * )
1 +o0 t2
= — dt e -
o /_ e e ( 2A>

B \/I Anp?
- %eXp<_T> '

This is a Gaussian amplitude distribution and once more a manifestation of the
central limit theorem.

One can further obtain a Porter Thomas distribution for intensity I = |¢|? dis-

tribution,
P(I)=(6(I - ¥]*)) = y/%exp (—%). (C.3)



Appendix D

Mathematical functions/
formulas

In this appendix, the formulas used in previous chapters are listed.

/ e’ o = |7T—| elisen(@) (D.1)
oo \ o

Fourier representation of d-function

5z) = / ety (D.2)

Fresnel integral

Bessel J function

Jaln) + Junla) = ()
T~ @)+ @
djo(l‘) .
de —h(@)

In(z) = ( /Oei“"wcos(ngo)dgo

v
J(ZL‘) o l/ﬂeimcosgo
0 — T Jo



Bessel Y function

Yn,1 (I’) + YnJrl (13)

Bessel I function

Bessel K function

Kn+1($) - Kn—l(x)

dK,(x)
dx
dKQ (ZE)

dx

Q

\V2Tx

iy (ix),

for x > 1

]0(1’) = J()(Z.T),

de.
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