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Zusammenfassung

Eine seit den Anfängen der Operatortheorie bekannte und bis heute bedeutsame Klasse
von Operatoren sind die so genannten Toeplitz-Operatoren. Klassischerweise sind dies
beschränkte Operatoren auf dem Hardyraum H2(B) , der aus den auf dem Einheits-
kreis B holomorphen Funktionen mit quadratintegrierbaren Randwerten besteht. Der
Toeplitz-Operator zur Symbolfunktion f ist dann Tf = EM f E , wobei M f der Multipli-
kationsoperator mit f sei und E den orthogonalen Projektor auf H2(B) bezeichne.
Ist nun T die von den Tf erzeugte C∗-Algebra, so besagt das klassische Theorem von
Gohberg-Kreı̆n, dass der Quotient von T nach dem Ideal der kompakten Operatoren die
Symbolalgebra ist. Dies ist interessant, weil sich die nicht-kommutative Operatoralge-
bra T klassischen spektraltheoretischen Methoden zunächst verschließt. Anwendungen
findet der Satz in der Indextheorie von Fredholmoperatoren.
Der Satz von Gohberg-Kreın ist vom Einheitskreis auf den Fall so genannter beschränk-
ter symmetrischer Gebiete verallgemeinert worden. Der entsprechende Hardyraum ist
dort auf einem minimalen Teil des Randes, dem Shilovrand, realisiert. Das Hauptresul-
tat, das im allgemeinen Fall auf Upmeier zurückgeht, besagt, dass an den Platz der kurz-
en exakten Sequenz eine Kompositionsreihe tritt, deren sukzessive Quotienten bestimmt
und geometrisch interpretiert werden können. Die Länge des Sequenz entspricht dabei
der Länge des Facettenverbands des betrachteten (konvexen) Gebiets, welche wiederum
durch eine fundamentale geometrische Invariante, den Rang, beschrieben werden kann.
Im Einheitskreis kommen als Facetten nur die Extremalpunkte vor.
In dieser Arbeit wird die Rolle des Shilovrands von einer beliebigen (nicht-kompakten)
Liegruppe G Hermiteschen Typs eingenommen. Das entsprechende (nicht-homogene)
Gebiet ist die so genannte Ol’shanskiı̆-Halbgruppe, die im Rahmen des Gel’fand-Gindi-
kin-Programms konstruiert wurde. Der zugeordnete Hardyraum kann als die Summe
aller Darstellungen der holomorphen diskreten Reihe beschrieben werden, so dass die
harmonische Analyse der Gruppe G eine bedeutende Rolle spielt.
Letztendliches Ziel ist es, die Konstruktion einer Kompositionsreihe der Toeplitz C∗-
Algebra in diesem Rahmen zu verallgemeinern. Dazu wird eine geometrische Stratifizie-
rung des Ol’shanskiı̆-Gebiets entwickelt. Weiterhin wird die harmonische Analyse des
Hardyraums und der Gruppe G , sowie die mikrolokale Analysis der Szegö-Projektion
E im Hinblick auf den Übergang zu Randkomponenten des Gebiets untersucht. Dabei
werden Resultate zur Wellenfront des Faltungskerns dieser Projektion sowie zur Ein-
bettung reduzierter Spektren (im Sinne der abstrakten Fouriertransformation) erzielt.
Schließlich werden operatortheoretische Methoden, die die Anwendung dieser Ergeb-
nisse auf das Problem der Konstruktion einer Kompositionsreihe erlauben, in der ent-
sprechenden Allgemeinheit bereitgestellt.

Es folgt eine ausführliche deutsche Einleitung zu dieser Arbeit.
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Einleitung

Klassischerweise betrachtet man in der Theorie der Toeplitz-Operatoren den Einheits-
kreis B in der komplexen Ebene C . Toeplitz-Operatoren sind dann beschränkte Opera-
toren auf dem Hardyraum H2(B) @ L2(T) , der aus den L2-Randwerten von auf dem
Einheitskreis holomorphen Funktionen auf der Kreislinie besteht. Sie werden in natür-
licher Weise mit Hilfe der Szegö-Projektion auf H2(B) definiert.

Hauptgegenstand mathematischer Analyse ist nun die C∗-Algebra T , die von der Ge-
samtheit aller Toeplitz-Operatoren mit stetigem Symbol erzeugt wird. Typischerweise
sind in dieser Algebra enthaltene Operatoren nicht normal, so dass der gewöhliche
Spektralsatz zu ihrer Untersuchung nicht anwendbar ist. Um die Spektraltheorie die-
ser Operatoren zu verstehen, müssen weitaus elaboriertere Methoden zur Anwendung
gebracht werden.

Der Hauptsatz über die Toeplitz-C∗-Algebra T geht auf Gohberg-Kreı̆n [GK58] zurück:
Es gibt eine kurze exakte Sequenz

0 → K(H2(B)) → T → C(T) → 0 ,

welche sich sogar an T aufspaltet: die Symbolabbildung definiert eine einseitige Um-
kehrung der kanonischen Projektion auf C(T) . Insbesondere stimmt das Kommutator-
ideal von T mit dem Ideal der kompakten Operatoren überein und das Spektrum von
T ist als der nicht-kommutative Raum T∪ pt vollständig bestimmt.

Von größerer Bedeutung ist, dass diese kurze exakte Sequenz es erlaubt, mächtige ope-
ratortheoretische Werkzeuge — wie etwa die K-Theorie von Operatoralgebren — auf
solche Probleme wie Fredholm-Kriterien anzuwenden, die für normale Operatoren klas-
sischerweise mit Hilfe des Spektralsatzes angegangen werden würden. Solchen Überle-
gungen entstammt der Indexsatz von Gohberg-Kreı̆n, ein (nicht-triviales) Korollar der
obigen kurzen exakten Sequenz.

Für den Fall der oberen Halbebene (anstelle der Einheitskreisscheibe) erhält man ganz
ähnliche Resultate. Den Toeplitz-Operatoren auf diesem Gebiet entsprechen die so ge-
nannten Wiener-Hopf-Operatoren auf der positiven Halbgeraden. Die Korrespondenz
ist hierbei durch die euklidische Fourier-Laplace-Transformation gegeben.

Eine naheliegende Verallgemeinerung der obigen Theorie in einer Veränderlichen be-
steht darin, statt der Einheitskreisscheibe die euklidische Einheitskugel in Cn zu be-
trachten (die ‘Hilbertkugel’), oder auch Produktgebiete wie den Polyzylinder. Die er-
stere Situation (die von Coburn [Cob74] betrachtet und von Raeburn, Janas und Ve-
nugopalkrishna für pseudokonvexe Gebiete mit glattem Rand verallgemeinert wurde)
liefert allerdings keine neuen Ergebnisse. Dies liegt in der geometrischen Tatsache be-
gründet, dass die euklidischen Einheitskugeln wie im Falle einer Veränderlichen einen
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glatten Rand besitzen. Anders gesagt haben sie als konvexe Mengen nur einen Typ von
Facetten, nämlich die Extremalpunkte. Der Fall von Produktgebieten ist schwieriger, da
Tensorprodukte von Fredholmoperatoren in der Regel nicht mehr Fredholm sind. Die in
diesem Fall von Douglas-Howe [DH71] erzielten Ergebnisse sind eher vorläufiger Natur
(wie die beiden Autoren selbst einräumen).

Eine viel tiefere Theorie ergibt sich, wenn man stattdessen die Klasse der beschränk-
ten symmetrischen Gebiete betrachtet. Dies sind konvexe, zirkulare Gebiete, welche ei-
ne (nicht-triviale) Darstellung als Einheitskugeln bezüglich einer Art verallgemeinerter
‘Operatornorm’ besitzen. Ein typisches Beispiel ist die Matrixkugel, die aus komplexen
n× n-Matrizen u besteht, so dass der Spektralradius von u∗u echt kleiner Eins ist.

Durch Nachahmung der Konstruktion im Fall des Einheitskreises erhält man für allge-
meine beschränkte symmetrische Gebiete B wiederum einen Hardyraum H2(B) . Dieser
ist ein abgeschlossener Unterraum von L2 , jedoch diesmal nicht des vollen Randes, son-
dern nur des Shilov-Rands S . Letzterer ist der minimale ‘Rand’, für den das Maximum-
prinzip Gültigkeit behält, d.h., Randwerte holomorpher Funktionen bestimmen diese
im Inneren vollständig. Sobald der Hardyraum definiert ist, ist es ein leichtes, eine C∗-
Algebra von Toeplitz-Operatoren zu definieren.

Die Gebiete B haben eine reiche konvexe Geometrie: Sie besitzen r Typen konvexer Fa-
cetten, wobei r eine fundamentale Invariante des Gebiets B darstellt, den Rang. Der Fall
r = 1 entspricht dabei den Gebieten mit glattem Rand. Jeder der Facetten Bj vom Typ
j ist ein beschränktes symmetrisches Gebiet vom Rang r − j . Die Gesamtheit der Fa-
cetten gleichen Typs j bildet einen ‘partiellen Rand’ ∂jB des Gebiet B . Der Shilovrand
entspricht, als Menge aller Extremalpunkte, gerade dem Fall j = r .

Da jede Facette Bj selbst wieder ein beschränktes symmetrisches Gebiet mit einem Shi-
lovrand Sj ist, können ein Hardyraum und eine Toeplitz-C∗-Algebra für jede dieser
Facetten definiert werden. Natürliche Kandidaten für nicht-triviale Darstellungen sind
nun dadurch gegeben, dass man dem Toeplitz-Operator vom Symbol f den Toeplitz-
Operator vom Symbol f | Sj (Einschränkung auf einen der Shilov-Ränder Sj) zuordnet.
Es ist höchst nicht-trivial, dass dies eine Darstellung der C∗-Algebra T wohl definiert.

Indes gilt sogar mehr: Jede irreduzible Darstellung von T ist durch Einschränkung auf ei-
ne der Facetten Bj gegeben und jede solche Facette induziert eine irreduzible Darstellung
der vollen Toeplitz-C∗-Algebra T .

Indem man die Kerne der zu den Facetten Bj eines festen Typs j assoziierten Darstellun-
gen schneidet, erhält man ein Ideal Ij von T . Diese Ideale stehen wie folgt in Beziehung:
Die aufsteigende Kette

0 / I0 = K(H2(B)) / I1 / · · · / Ir−1 / Ir =
[
T , T

]
/ T = Ir+1
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bildet eine Kompositionsreihe der C∗-Algebra T , deren sukzessive Quotienten gerade

Ij+1/Ij = C(Mj)⊗K(H2(Bj))

sind, wobei Mj die kompakte Basis eines dem partiellen Rand ∂jB zugeordneten Fa-
serbündels ist. Insbesondere ist T vom Typ I, genauer, auflösbar der Länge r im Sinne
von Dynin. Das Spektrum kann aus der Kompositionsreihe bestimmt werden. Weiter-
hin kann eine Indextheorie für Toeplitzoperatoren auf der Basis dieses Satzes entwickelt
werden.

Das obige Resultat wurde im Falle eines gewissen Gebiets vom Rang 2 (der Liekugel) von
Berger, Coburn und Korányi [BC79, BCK80] erzielt, während der allgemeine Fall voll-
ständig auf Upmeier zurückgeht [Upm84, Upm96]. In eine andere Richtung wurde die
Theorie einer Veränderlichen von Boutet de Monvel verallgemeinert, der u.a. den Fall
streng pseudokonvexer Gebiete und deren Beziehung zu symplektischer Geometrie be-
trachtet. Für den Fall von Wiener-Hopf-Operatoren wurde der klassischen Rahmen der
positiven Halbgeraden von Muhly und Renault [MR82] auf polyedrische Kegel ausge-
dehnt, wobei Gruppoid-C∗-Algebren als Werkzeug dienten. Diese Theorie wurde im
Rahmen geordneter homogener Räume von Hilgert und Neeb [HN95] weiter verallge-
meinert.

Die Ergebnisse für beschränkte symmetrische Gebiete beruhen wesentlich auf dem Um-
stand, dass das Gebiet B homogen unter der Wirkung eine halb-einfachen Liegruppe
G ist, was zu einer Polarzerlegung G = K · exp pR relativ der maximalen kompakten
Untergruppe K von G führt. Folglich ist die harmonische Analyse auf der Gruppe K ,
insbesondere die Theorie des höchsten Gewichts, für die Untersuchung der Toeplitz C∗-
Algebra von entscheidender Bedeutung.

Diese Dissertation leitet die Untersuchung von Toeplitz-Operatoren und den von ih-
nen erzeugten C∗-Algebren in dem allgemeinen Rahmen des wohl bekannten Gel’fand-
Gindikin-Programms [GG77] ein. Ausgehend von einer nicht-kompakten Liegruppe G
vom Hermiteschen Typ, wird die Rolle des symmetrischen Gebiets B nun von dem so
genannten Ol’shanskiı̆-Gebiet Γ◦ übernommen, einem nicht-linearen Gebiet vom Tuben-
typ, das in der komplexifizierten Liegruppe GC realisiert ist. Dabei stellt sich (neben der
Nichtkompaktheit des Shilovrandes) als wesentlicher Unterschied gegenüber dem Fall
beschränkter symmetrischer Gebiete heraus, dass das Ol’shanskiı̆-Gebiet nicht mehr ho-
mogen ist.

Allerdings lässt sich der Shilovrand von Γ◦ mit der G zu Grunde liegenden Mannigfal-
tigkeit (genauer, mit dem zugrundeliegenden (G × G)-Raum) identifizieren. Insbeson-
dere ist der Shilovrand noch homogen und es gibt ein Analogon der Polarzerlegung für
Γ . Es gilt nämlich Γ = G · exp iΩ− , wobei Ω− ein Ad(G)-invarianter konvexer Kegel in
gR ist, der Liealgebra von G . Das Gebiet Γ◦ ist unter der natürlichen Wirkung von G×G
invariant, wobei letztere Gruppe nun die Rolle der Gruppe K einnimmt.
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In diesem Rahmen wurde der Begriff des Hardyraums von Ol’shanskiı̆ [Ol’82, Ol’91] und,
unabhängig, von Stanton [Sta86] geklärt. Analytisch betrachtet besteht der Hardyraum
aus holomorphen Funktionen auf dem Inneren Γ◦ von Γ , welche quadratintegrierbare
Randwerte auf dem Shilovrand G besitzen. Dabei spielt in der Definition der Randwerte
eine entscheidende Rolle, dass Γ eine Halbgruppe bezüglich der von der umgebenden
komplexen Gruppe GC induzierten Verknüpfung ist. Die Nichtlinearität von Γ ist also
grundlegend.
Der für die Betrachtung dieser Art von Hardyräumen natürliche Rahmen ist der affi-
ner symmetrischer Räume. Der Shilovrand des betreffenden Gebiets ist dann der Form
H/Hσ , wobei Hσ (bis auf Fragen des Zusammenhangs) die Fixgruppe einer Involution
σ auf H ist. Die in dieser Arbeit untersuchte Situation, in der der Shilovrand selbst eine
Gruppe ist, entspricht dem affinen symmetrischen Raum (G × G)/G , wobei man die
Flip-Involution betrachtet. In voller Allgemeinheit wurde der Hardyraum von Hilgert,
Ólafsson und Ørsted [HÓØ91] eingeführt und im Detail untersucht.
Neben der analytischen Definition des Hardyraums gibt es auch eine Beschreibung
durch die harmonische Analyse des Shilovrandes G . Es ist der Hardyraum nämlich ge-
rade die Summe der Darstellungen, die zur holomorphen diskreten Reihe gehören. Dies
war, innerhalb des von Gel’fand und Gindikin initiierten Programms, sogar die ur-
sprüngliche Motivation für die Konstruktion des Gebiets Γ◦ und des zugeordneten Har-
dyraums. Das Ziel bestand dabei darin, zu jeder der zur Plancherelformel des Raum-
es L2(G) beitragenden ‘Reihen’ von Darstellungen Räume vom ‘Hardy-Typ’ zu finden,
die aus auf Gebieten, in deren Rand G enthalten ist, definierten analytischen Data (wie
Funktionen, Formen oder Schnitten) bestehen. Jüngst haben Bernstein und Reznikov
[BR99] in dieser Richtung Fortschritte gemacht; ihre Arbeit ist von Krötz und Stanton
[KS04, KS] auf Gruppen höheren Rangs verallgemeinert worden.
Nachdem ein geeigneter Hardyraum für Γ◦ definiert wurde, ist die Definition einer
entsprechenden C∗-Algebra T von Toeplitz-Operatoren, die stetigen Symbolfunktionen
f ∈ C0(G) auf dem Shilovrand zugeordnet sind, ein naheliegendes Unterfangen. Das
letztendliche Ziel ist es dann, die für den Fall beschränkter symmetrische Gebiete exi-
stente Theorie für T in diesem Rahmen zu verallgemeinern.
Ein wichtiger Spezialfall ist dabei G = SU(1, 1) (isomorph zu der geläufigeren Gruppe
SL(2, R)), was zu den klassischerweise von Gel’fand und Gindikin betrachteten Gebie-
ten führt. Für diesen Fall können wir eine nahezu vollständige Theorie vorlegen und
die zu den verschiedenen Facetten gehörigen Darstellungen von T beschreiben (siehe
Abschnitt IV).
Wie zu erwarten ist, stellt sich der Fall von Liegruppen G höheren Rangs als wesentlich
schwieriger heraus, obwohl das (vermutete) Hauptresultat immernoch einfach zu for-
mulieren ist: Jede irreduzible Darstellung von T wird von einer ‘Facette’ von Γ getragen
und umgekehrt entspricht jeder solchen Facette in natürlicher Weise eine Darstellung.
Dies könnte man treffenderweise als das Prinzip von Restriktion und Induktion für die
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C∗-Algebra T bezeichnen.
Diesem ehrgeizigen Ziel entgegen ist der erste Schritt natürlich die Analyse der Geo-
metrie des zugrundeliegenden Ol’shanskiı̆-Gebiets Γ◦ . Dieser widmet sich Abschnitt I,
wobei das Endergebnis die Bestimmung einer Stratifizierung des Abschlusses Γ von Γ◦

ist, deren Strata wiederum Ol’shanskiı̆-Gebiete sind. Aufgrund der Existenz einer ‘Polar-
zerlegung’ für das Gebiet Γ◦ kann man dies auf die Beschreibung des Facettenverbands
des Kegels Ω− zurückführen, welche der Inhalt des ersten Teils dieser Arbeit ist.
Der nächste Schritt in unserem Programm ist es, die harmonische Analyse des Γ zuge-
ordneten Hardyraums zu verstehen, sowie die der Gruppe G . Dieses Ziel greifen wir in
Abschnitt II an, in dem unser Blickwinkel stets wesentlich lokal und mikrolokal ist: Wir
studieren die mikrolokale Struktur der Szegö-Projektion, d.h., des orthogonalen Projek-
tors auf den Hardyraum, aufgefasst als abgeschlossener Unterraum von L2(G) . Diese
Projektion ist durch die Faltung mit einer invarianten Distribution gegeben, deren Wel-
lenfront und singulären Träger wir beschreiben. Unser Theorem — das zweite Hauptre-
sultat dieser Arbeit — besagt, dass die Faser der Wellenfront dieser ‘Szegö-Distribution’
im Dual des Kegels Ω− liegt. Überdies beschreiben wir präsize die Lage ihrer Singulari-
täten, auf den Konjugationsklassen eines maximalen Torus.
Weiterhin ist es von entscheidender Bedeutung, das asymptotische Verhalten der Ma-
trixkoeffizienten (wenn der Darstellungsparameter gegen Unendlich strebt) derjenigen
irreduziblen unitären Darstellungen der Gruppe G zu verstehen, welche zur Planche-
relformel von L2(G) beitragen. Für die holomorphe diskrete Reihe erzielen wir genaue
Abschätzungen. Desweiteren setzen wir die Plancherelformel für die Gruppe G und für
die den ‘Facetten’ des Ol’shanskiı̆-Gebiets Γ◦ zugeordneten Untergruppen in Beziehung,
indem wir Einbettungen der einen in die andere explizit konstruieren. Dies ist das dritte
wesentliche Ergebnis dieser Dissertation.
Nachdem nun die Probleme der harmonischen Analyse und mikrolokalen Analysis ab-
schließend behandelt wurden, widmen wir uns in Abschnitt III der Untersuchung ope-
ratortheoretischer Fragestellungen.
Im klassischen Fall des Einheitskreises war die gewöhnliche Fouriertransformation be-
deutsam für das Studium der C∗-Algebra aller Toeplitz-Operatoren. Allgemeiner spielt
im Falle kompakter Gruppen (beschränkte symmetrische Gebiete) die abstrakte Fourier-
transformation eine Schlüsselrolle, erlaubt sie doch die Anwendung der harmonischen
Analyse der Gruppe K auf die Toeplitz-C∗-Algebra. Für den Spezialfall der unitären
Gruppen U(n) wurden die notwendigen operatortheoretischen Techniken erstmals von
Wassermann [Was84] eingesetzt. Für allgemeine kompakte Gruppen wurden sie von
Upmeier [Upm91, Upm96] rigoros und in voller Allgemeinheit entwickelt. Die Idee be-
steht hier darin, T als ‘Ecke’ eines Cokreuzprodukts von C∗-Algebren darzustellen, ein
Objekt, das im Rahmen von Takesakis Theorie der nicht-kommutativen Dualität lokal-
kompakter Gruppen definiert wird, mit Hilfe der fortgeschrittenen Methode der Hopf-
C∗-Algebren und ihrer Coaktionen.
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Um dies auf die Toeplitz C∗-Algebra T im in dieser Arbeit gesteckten Rahmen an-
wenden zu können, bedarf es der Verallgemeinerung der entsprechenden Resultate auf
nicht-kompakte Gruppen. Wir entwickeln die dazu gehörige Theorie sogar für belie-
bige lokal-kompakte, unimodulare Gruppen und ohne auf den Raum L2(G) Bezug zu
nehmen. Diese ‘raumfreie’ Betrachtungsweise sollte es letzten Endes erlauben, auch den
Fall affiner symmetrischer Räume zu behandeln. Der Rahmen ist auch weit genug um
Hardyräume zu betrachten, die durch andere Reihen von Darstellungen als die holo-
morphe diskrete Reihe definiert sind.
Desweiteren zeigen wir, wie die Konstruktion irreduzibler Darstellungen der Toeplitz-
C∗-Algebra T vollständig mit Hilfe lokaler, mikrolokaler und asymptotischer Informa-
tion über die Szegö-Projektion vollzogen werden kann. Die entsprechenden Informa-
tionen, die wir für den in dieser Arbeit betrachteten speziellen geometrisch definierten
Rahmen erzielt haben, können daher dem Endziel entgegen, das Prinzip von Restriktion
und Induktion in voller Allgemeinheit zu beweisen, benutzt werden.
Um dies weiter zu erhärten, stellen wir in Abschnitt IV, einer detaillierten Diskussion
des Rang 1-Falles folgend, eine Strategie für den allgemeinen Fall vor, in der wir die
zum Erreichen dieses Zieles nötigen Schritte angeben, sowie die Methoden, die die be-
nötigten Ergebnisse am besten liefern werden.

Es gibt etliche Richtungen, in die man dieses Programm weiter verfolgen könnte. Am
beachtenswertesten ist vielleicht die Untersuchung von Hardyräumen, die anderen Rei-
hen von Darstellungen zugeordnet sind, und daher zu nicht mehr konvexen Kegeln
gehören. Für kompakte Gruppen (die euklidischen Jordanalgebren zugeordnet sind) ist
dieses Problem von Hagenbach [Hag99] und Hagenbach-Upmeier [HU98] behandelt
worden. Für nicht-kompakte Gruppen ist es noch weithin offen.
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Introduction

In the theory of Toeplitz operators, one considers, classically, the unit disc B in the com-
plex plane C . Toeplitz operators are bounded operators on the Hardy space H2(B),
which consists of all L2 boundary values on the circle T of holomorphic functions on
B . They are defined naturally in terms of the Szegö projection, the orthogonal projection
onto H2(B) .

A principal of object of study is the C∗-algebra T , generated by all Toeplitz operators
with continuous symbols. Generically, operators in this C∗-algebra are non-normal, and
hence, the Spectral Theorem is not applicable. To understand their Spectral Theory, more
sophisticated methods have to be applied.

The fundamental theorem on the Toeplitz C∗-algebra T is due to Gohberg-Kreı̆n
[GK58]: There is a short exact sequence

0 → K(H2(B)) → T → C(T) → 0

which, in fact, splits at T , the symbol map giving a partial inverse to the quotient map
onto C(T) . In particular, the commutator ideal equals the ideal of compact operators,
and the spectrum of T is completely determined, as the non-commutative space T∪ pt .

More importantly, this short exact sequence makes high-powered Operator Theoretic
techniques — such as the K-theory of Operator Algebras — applicable to problems such
as Fredholmness criteria, which, for normal operators, would traditionally be attacked
by applying the Spectral Theorem. Along this road lies the Index Theorem of Gohberg-
Kreı̆n, essentially an corollary (albeit non-trivial) of the above short exact sequence.

Similar results are, of course, also valid for the case of the upper half plane, instead
of the unit disc. To Toeplitz operators on this domain, there correspond the so-called
Wiener-Hopf operators of the real half line, the correspondence being given by the Eu-
clidean Fourier-Laplace transform.

An obvious extension of the one-variable theory is the treatment, in place of the unit
disc, of the Euclidean unit ball in Cn (the ‘Hilbert ball’), or of product domains such as
the polydisc. The former situation (considered by Coburn [Cob74], and generalised to
strongly pseudo-convex domains with smooth boundary by Raeburn, Janas, and Venu-
gopalkrishna) however leads to no new results, the geometric reason being that these
domains still have smooth boundaries. Put differently, they only have one type of con-
vex face, namely, the extremal points, just as for the case of the unit disc. The product
case is more difficult, since tensor products of Fredholm operators are not necessarily
Fredholm, and the results by Douglas-Howe [DH71] are of a preliminary nature (as they
themselves state).

A much deeper theory ensues if one considers, instead, the class of bounded symmetric
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domains. These are convex circled domains which can be shown to have a (non-trivial)
representation as the unit ball with respect to a generalised type of ‘operator norm’. A
typical example would be the matrix ball, consisting of complex n × n matrices u such
that the spectral radius of u∗u is strictly smaller than one.

In close analogy to the unit disc case, general bounded symmetric domains B allow
for the definition of a Hardy space H2(B) , a subspace of L2 , however not of the entire
boundary, but only of the so-called Shilov boundary S . The latter is the minimal ‘bound-
ary’ on which the maximum principle remains valid, i.e. boundary values determine
holomorphic functions on the interior. In the presence of the Hardy space H2(B) , a
C∗-algebra of Toeplitz operators is straightforward to define.

The domains B have a rich convex geometry. Namely, they have r types of non-
trivial convex faces, where r is a fundamental invariant of B , its rank, the case r = 1
corresponding to the domains with smooth boundary. Each of the faces Bj of type j is a
bounded symmetric domain, of rank r− j . The totality of all faces of a fixed type j de-
termines a ‘partial boundary’ ∂jB of the domain B , the Shilov boundary corresponding
to j = r , the set of all extreme points.

Since each face Bj is again a bounded symmetric domain with a Shilov boundary Sj ,
a Hardy space and a Toeplitz C∗-algebra can be defined for each of these faces. Natural
candidates for non-trivial representations of the Toeplitz C∗-algebra T are then given
by associating to the Toeplitz operator with symbol f , the operator with symbol f | Sj

(restriction to one of the Shilov boundaries Sj). That this actually well-defines a repre-
sentation of the C∗-algebra T , is a highly non-trivial matter.

However, even more is true: Every irreducible representation of T is given by restric-
tion to one the faces Bj , and every such face induces an irreducible representation of the
full Toeplitz C∗-algebra T .

By intersecting the kernels of all the representations associated to faces of the same
type j , one obtains ideals Ij of T . They are related as follows: The ascending chain

0 / I0 = K(H2(B)) / I1 / · · · / Ir−1 / Ir =
[
T , T

]
/ T = Ir+1

is a composition series of the C∗-algebra T , whose successive quotients are

Ij+1/Ij = C(Mj)⊗K(H2(Bj)) ,

where Mj is the compact base of a fibre bundle associated to the partial boundary ∂jB .
In particular, T is of type I, more precisely, solvable of length r in the sense of Dynin,
and its spectrum can be determined from the composition series. Moreover, an Index
Theory for Toeplitz operators can be developed with the help of this theorem.

The above result was established for the case of a certain rank 2 domain (the Lie ball)
by Berger, Coburn, and Korányi [BC79, BCK80], and the general case was settled com-
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pletely by Upmeier [Upm84, Upm96]. A different road to generalisation was pursued
by Boutet de Monvel, who treats e.g. the case of strictly pseudo-convex domains, and
their connection to symplectic geometry. For Wiener-Hopf operators, the classical real
half-line setup was generalised to polyhedral cones by Muhly and Renault [MR82], us-
ing the technique of groupoid C∗-algebras. This theory has been further extended, to
ordered homogeneous spaces, by Hilgert and Neeb [HN95].

The results for bounded symmetric domains rely heavily on the fact that the domain
B is homogeneous under the action of a semi-simple Lie group G , which leads to a
polar decomposition G = K · exp pR with respect to its maximal compact subgroup K .
Therefore, the harmonic analysis of the compact group K , in particular, the Theory of
the Highest Weight, is crucial for the analysis of the Toeplitz C∗-algebra.

In this thesis, we initiate the study of Toeplitz operators, and the C∗-algebra gen-
erated by them, within the general framework of the well-known Gel’fand-Gindikin
programme [GG77]. Starting with a non-compact Lie group G of Hermitian type, the role
of the symmetric domain B is now played by the so-called Ol’shanskiı̆ domain Γ◦ , a non-
linear tube type domain realised in the complexified Lie group GC . The essential new
feature of this domain (besides the non-compactness of its Shilov boundary) is that it is
no longer homogeneous.

However, its Shilov boundary can be identified with the underlying manifold (more
precisely, the underlying (G×G)-space) of the group G . In particular, the Shilov bound-
ary is still homogeneous, and there is an analogue of the polar decomposition for Γ .
Namely, Γ = G · exp iΩ− where Ω− is an Ad(G)-invariant convex cone in gR , the Lie
algebra of G . The domain Γ◦ is invariant under the natural action of G× G , which now
plays the role of the group K .

In this setting, the appropriate notion of Hardy space has been clarified, indepen-
dently, by Ol’shanskiı̆ [Ol’82, Ol’91] and Stanton [Sta86]. Analytically, the Hardy space
consists of holomorphic functions on the interior Γ◦ of Γ , which have L2 boundary val-
ues on the Shilov boundary G . In the definition of these boundary values, an important
role is played by the fact that Γ is a semigroup for the composition induced by the ambient
complex group GC . Hence, the non-linear nature of Γ is fundamental.

The natural framework in which to treat this type of Hardy spaces is in fact that of
Affine Symmetric Spaces. Here, the Shilov boundary of the respective domain is of the
form H/Hσ where Hσ is (up to connectivity issues) the group of fixed points for some
involution σ defined on the group H . Our situation, where the Shilov boundary is itself
a group, corresponds to (G × G)/G , for the flip involution. In the general case, the
Hardy space was introduced and thoroughly analysed by Hilgert, Ólafsson, and Ørsted
[HÓØ91].

Besides the analytic definition of the Hardy space, it can be given a description in
terms of the harmonic analysis of the Shilov boundary G . Namely, it is the sum of
all holomorphic discrete series representations of the group G . In fact, this was the original
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motivation for the construction of the domain Γ◦ and the associated Hardy space, within
the programme initiated by Gel’fand and Gindikin. Here, the aim was to find ‘Hardy
type’ spaces of analytic data (functions, forms, or sections) on domains containing G
in their boundary, for each of the ‘series’ of representations belonging to the Plancherel
decomposition of L2(G) . Recently, progress in this direction has been made by Bernstein
and Reznikov [BR99], work which has been extended higher rank by Krötz and Stanton
[KS04, KS].

Having defined an appropriate Hardy space, it is straightforward to define a corre-
sponding C∗-algebra T of Toeplitz operators, associated to continuous symbol functions
f ∈ C0(G) defined on the Shilov boundary G . The ultimate goal is then to generalise to
this setup the theory for the C∗-algebra T , in particular, the construction of a composi-
tion series.

An important special case is G = SU(1, 1) (isomorphic to the more familiar SL(2, R)),
which leads to the domains classically considered by Gel’fand and Gindikin. In this
case, we present a more or less complete theory, describing (all) representations of T
corresponding to the different ‘faces’ of the domain Γ◦ (see part IV).

As is to be expected, the case of semi-simple Lie groups G of higher rank turns out
to be much more difficult, although the principal (conjectural) result is still easy to for-
mulate: Every irreducible representation of T is supported by a unique ‘face’ of Γ , and
conversely, every such face gives rise to such a representation in a natural way. This
could be called the Principle of Restriction-Induction for the C∗-algebra T .

Towards this ambitious goal, the first step is of course the analysis of the geometry of
the underlying Ol’shanskiı̆ domain Γ◦ . This is the content of part I, and the final result
is the determination of a stratification of the closure Γ of the domain Γ◦ into strata which
are again Ol’shanskiı̆ domains. Due to the existence of a ‘polar decomposition’ for the
domain Γ◦ , this reduces to thedescription of the face lattice of the cone Ω− , our first
main endeavour in this thesis.

The next step in our programme is to understand the harmonic analysis of the Hardy
space associated to Γ , and of the group G . We tackle this objective in part II, where our
perspective is, throughout, local and micro-local in a crucial way. Namely, we study
the micro-local structure of the Szegö projection, the orthogonal projection onto Hardy
space, realised as a closed subspace of L2(G) . This projection is given by convolution
with an invariant distribution, whose wave front and singular support we are able to
describe. Our theorem — the second main result of this work — states that the fibre of
the wave front set of this ‘Szegö distribution’ is contained in the dual of the cone Ω− .
Moreover, we give precise information of the location of singularities, on the conjugacy
classes of a maximal torus.

Furthermore, it is decisive to understand the asymptotic behaviour of matrix coef-
ficients of the irreducible unitary representations of the group G which contribute to
the Plancherel formula of L2(G) , as the representation parameter tends to infinity. For
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the holomorphic discrete series, we obtain precise bounds. In addition, we relate the
Plancherel formulae for the group G and the subgroups associated to the ‘faces’ of the
Ol’shanskiı̆ domain Γ◦ , by explicitly constructing embeddings of one into the other. This
is the third essential result of this thesis.

The harmonic analysis and micro-local analysis issues having been settled, we begin,
in part III, the investigation of Operator Theoretic questions.

For the classical case of the unit disc, the classical Fourier transform plays an impor-
tant role in the study of the C∗-algebra of Toeplitz operators. More generally, in the case
of compact groups (bounded symmetric domains), the abstract Fourier transform is a
key tool, allowing for the application of the harmonic analysis on K to the Toeplitz C∗-
algebra. For the case of the unitary groups U(n) , the necessary Operator Theoretic ma-
chinery was first employed by Wassermann [Was84]. For general compact Lie groups, it
was rigorously developed, in full generality, by Upmeier [Upm91, Upm96]. The idea is
to represent T as the ‘corner’ of a C∗-algebra co-crossed product, an object defined in the
framework of Takesaki’s theory of non-commutative duality of locally compact groups,
using the advanced technique of Hopf C∗-algebras and their coactions.

To treat the C∗-algebra T in our present setting, it is necessary to generalise this result
to non-compact groups. In fact, we develop the theory, in part III, for arbitrary locally
compact unimodular groups, and without reference to the space L2(G) , our fourth main
result. The ‘space-free’ viewpoint should eventually allow for the treatment of Hardy
spaces defined on Affine Symmetric Spaces, and is also sufficiently general to accom-
modate Hardy spaces defined in terms of other series of representations, rather than the
holomorphic discrete series.

Moreover, we show how the construction and irreducibility of representations of T
can be completed solely in terms of local, micro-local, and asymptotic information on
the Szegö projection. The corresponding information we have gathered in our partic-
ular geometric setup can thus be applied towards the ultimate goal of establishing the
Principle of Restriction-Induction in full generality.

To make this more substantial, we present in part IV, after a detailed discussion of the
rank one case, a strategy for the general case, indicating the precise steps that should be
taken to achieve this goal, and presenting the methods which are most likely to produce
the required results.

There are various directions in which this programme could be generalised, most no-
tably, the treatment of Hardy spaces associated to other series of representations, and
hence, to non-convex cones. For compact groups (associated to Euclidean Jordan alge-
bras), this problem has been treated by Hagenbach [Hag99] and Hagenbach-Upmeier
[HU98]. For non-compact groups, it is, as yet, wide open.
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Geometry of Ol’shanskiı̆ domains

IN THIS PART, we introduce two types of geometric objects fundamental to our work
and study their structure in detail. Namely, the objects we consider are certain, inti-

mately related, convex cones and complex domains.

The investigation proceeds on two levels, the first being the study of symmetric do-
mains and cones. On the second level, we examine geometric objects associated to au-
tomorphisms of these. More precisely, the matter of interest is the (minimal) invariant
convex cone lying in the Lie algebra of all complete holomorphic vector fields on the
underlying symmetric domain B , and the bi-invariant so-called Ol’shanskiı̆ domain it
defines in the complexification of the automorphism group of B .

Throughout, our emphasis is not on the interior of these geometric objects, which is
well-known, but on their boundary. Of course, the boundaries of symmetric domains
and symmetric cones have already been studied conclusively, and our account in 1.1–1.3
of this theory is largely expository, seeing that there are already several well-established
and generally accessible monographs developing its principal results. Nevertheless, we
have found this reconsideration of known material useful for the purpose of reference
and fixing our notation.

In 2.1, we introduce the minimal and maximal cone in the Lie algebra of infinites-
imal automorphisms of B , and present the basic theory of these cones. The content is
mostly known and even classical, nonetheless, the presentation in terms of Jordan the-
ory appears to be new. This elementary approach allows for a concise, complete and
largely self-contained development of both the fundamental results on these cones and
the classification of nilpotent orbits of convex type.

Subsection 2.2 contains our main result in this part, the description of the faces of
the minimal cone. The most important realisation is that they are not classified by the
faces of the associated polyhedral cone in a compact Cartan subalgebra. In particular,
the length of the face lattice exceeds the rank of B . Moreover, the Lie algebras generated
(as vector spaces) by the faces are not all simple Hermitian, but of a more general type.

We describe the faces in five alternative forms: as intersection with a supporting
hyperplane, with parabolic subalgebras, or a generalised Jacobi algebra, as a union of
adjoint orbits, and by projection onto a compact Cartan subalgebra. Of course, in them-
selves, these faces are known as cones, and form part of the classification of Lie algebras
with (pointed, elliptic, or weakly elliptic) generating invariant convex cones, as settled in
general by Hilgert, Hofmann and Neeb [HH88, Nee94]. Their appearance as faces of an
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invariant cone in a simple Hermitian Lie algebra, however, is apparently new. Other to
the author’s knowledge novel features include the description the of conjugacy classes
of these faces, and their relation to nilpotent orbits of convex type.

Finally, in 2.3, we discuss the Ol’shanskiı̆ domains associated to the minimal cone
and its faces. We obtain a stratification of the closure of the minimal Ol’shanskiı̆ domain
into fibre bundles whose fibres are lower-dimensional Ol’shanskiı̆ domains in gener-
alised Jacobi groups.

1Symmetric domains and cones, and their boundaries

1.1 Bounded symmetric domains and Jordan triple systems

1.1.1. Let Z be an n-dimensional complex vector space, and B ⊂ Z a bounded domain.
The holomorphic vector fields are of the form

h(z)
∂

∂z
for some h ∈ O(B, Z)

where (
h(z)

∂

∂z

)
f (z) = f ′(z)h(z) for all f ∈ O(B, Z) .

The set of all holomorphic vector fields forms a complex Lie algebra via

[
h(z)

∂

∂z
, k(z)

∂

∂z

]
=
(
h′(z)k(z)− k′(z)h(z)

) ∂

∂z
.

A basic result due to H. Cartan states that since B is bounded, the set Aut(B) of
all holomorphic automorphisms of B , endowed with the compact-open topology, is a
(finite-dimensional) real Lie group. Moreover, any g ∈ Aut(B) is uniquely determined
by g(z) and g′(z) , if z ∈ B is arbitrary, but fixed. Hence, the action of the Lie algebra gR

of Aut(B) by holomorphic vector fields is faithful.

So, gR identifies with a subalgebra of all holomorphic vector fields. In fact, it coin-
cides with the set aut(B) of all complete holomorphic vector fields, for which the local
flow is defined for all times. Moreover, Liouville’s theorem shows that gR ∩ igR = 0
(since the vector fields in the intersection define a bounded, entire complex flow). So
gR , in contrast to the set of all holomorphic vector fields, is totally real.

Under the identification of gR with the set of complete holomorphic vector fields, the
adjoint action of Aut(B) corresponds to the pullback of vector fields,

Ad
(

g−1)(ξ)(z) = g′(z)−1ξ
(

g(z)
)

for all ξ ∈ gR , g ∈ Aut(B) , z ∈ B .
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1.1.2. The domain B is called symmetric, if for all z ∈ B , there is an involutive automor-
phism sz ∈ Aut(B) , such that z is an isolated fixed point of sz . This amounts to

sz(z) = z and s′z(z) = −1 ∈ End(Z) .

By Cartan’s theorem, this determines sz uniquely.

If B is symmetric, then it is biholomorphically equivalent to a circular domain [Loo75,
th. 1.6]. Here, circular means that the domain contains 0 and is U(1)-invariant. We as-
sume w.l.o.g. that B be circular.

Let kR ⊂ gR be the subalgebra of all complete linear vector fields. The circularity of
B implies that

iz
∂

∂z
∈ z
(
kR

)
⊂ kR ,

so kR has non-trivial centre. This will be of fundamental importance in all that follows.

1.1.3. Let G = Aut0(B) be the connected component of idB ∈ Aut(B) , and let K @ G be
the fixed group of 0 ∈ B . (The full automorphism group may have up to two connected
components if B is irreducible, cf. [Tak64].)

G is transitive on B , and hence B = G/K . By [Upm82, lem. 1.7], the elements of the
subgroup K are linear, in particular its Lie algebra is kR . The same lemma implies that G
has trivial centre. Moreover, the Bergman metric hz on B (cf. [Loo75, 1.2]) is Kähler, so K
is a closed subgroup of the unitary group U(Z) (with respect to h0) and hence compact.

Further, define ϑ = Ad(− idB) . Then ϑ is an involutive automorphism of G , and K
is its fixed group. On the Lie algebra level, we have the decomposition into eigenspaces
of ϑ with respect to the eigenvalues ±1 ,

gR = kR ⊕ pR , where
[
kR, kR

]
⊂ kR ,

[
kR, pR

]
⊂ pR ,

[
pR, pR

]
⊂ kR .

By Proposition 2.1.11 below, G is semi-simple and ϑ is a Cartan involution. Therefore, K
is maximally compact, by [Hel78, ch. III, § 7, prop. 7.4].

1.1.4. Since B = G/K , the map

pR → Z⊗R : ξ 7→ ξ(0)

is an R-linear isomorphism.

For z ∈ Z , let ξ−z ∈ pR be uniquely determined by ξ−z (0) = z . Then Qz , defined by
Qz(w) = z− ξ−z (w) , is a homogeneous quadratic polynomial in z and conjugate linear
in w by [Loo75, lem. 2.3]. This allows us to polarise

2Qu,w = Qu+w −Qu −Qw for all u, w ∈ Z .

Then {uv∗w} = Qu,w(v) is linear in u and w , and conjugate linear in v . Moreover, if we
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define the box operator u � v∗ ∈ End(Z) by

(
u � v∗

)
(w) = {uv∗w} for all u, v, w ∈ Z ,

then

{uv∗w} = {wv∗u} , (JTS1)[
u � v∗, z � w∗] = {uv∗z}� w∗ − z � {wu∗v}∗ , (JTS2)

by [Loo75, lem. 2.6]. We have Qz(w) = {zw∗z}, and an equivalent expression for the
rules (JTS1-2) is given by the equations

(
u � v∗

)
Qu = Qu

(
v � u∗

)
,(

Quv
)
� v∗ = u �

(
Qvu

)∗ ,

by [Upm85, prop. 18.8].
Any complex vector space Z , endowed with a triple product

{xyxy∗xy} : Z× Z× Z → Z : (u, v, w) 7→ {uv∗w}

linear in u and w , and conjugate linear in v , such that the identities (JTS1-2) are satisfied,
is called a Jordan triple system (JTS).

It is clear that the Lie algebraic properties of gR can be analysed in terms of the Jordan
triple Z . Note that

pR =
{

ξ−u
∣∣ u ∈ Z

}
where ξ−u =

(
u− {zu∗z}

) ∂

∂z
.

The fundamental identities for these vector fields are

[
ξ−u , ξ−v

]
= 2 ·

(
u � v∗ − v � u∗

)
,[[

ξ−u , ξ−v
]
, ξ−w

]
= 2 · ξ−{uv∗w}−{vu∗w} ,

for all u, v, w ∈ Z , cf. [Loo75, lem. 2.6.].

1.1.5. Returning to our setting with B ⊂ Z a circular bounded symmetric domain, the
Bergman metric hz at z = 0 defines a positive Hermitian inner product on the holomor-
phic tangent space Z = T0(B) . With respect to h0 ,

(
u � v∗

)∗ = v � u∗ for all u, v ∈ Z ,

by [Loo75, lem. 2.6]. Moreover,

h0(u, v) = trZ
(
u � v∗

)
for all u, v ∈ Z ,
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by [Loo75, th. 2.10], so the trace form

Z× Z → C : (u, v) 7→ trZ(u � v∗)

is positive Hermitian.

A JTS such that the trace form is positive Hermitian is called positive Hermitian or a
JB∗-triple, cf. [Upm85].

Define the spectral norm on the JB∗-triple Z by

‖z‖ = ‖z � z∗‖1/2
op = suptrZ(w � w∗)61

4
√

trZ
(
{zz∗w}� w∗

)
.

The fundamental theorem [Loo75, th. 4.1] on JB∗-triples states that the unit ball of Z ,
B = {z | ‖z‖ < 1} , is a circular bounded symmetric domain such that Z is the associated
JB∗-triple. Conversely, the bounded circular domain B is the unit ball of its associated
JB∗-triple.

In particular, any circular bounded symmetric domain is convex. By the long exact
sequence in homotopy for K → G → B where B is simply connected, K is connected.

1.1.6. Any k ∈ GL(Z) such that

k{uv∗w} = {(ku)(kv)∗(kw)} for all u, v, w ∈ Z ,

or, equivalently,
k
(
u � v∗

)
k−1 = (ku) � (kv)∗ for all u, v ∈ Z ,

is called a triple automorphism. The set Aut(Z) ⊂ Aut(B) of all triple automorphisms is
the fixed group of 0 , so K = Aut0(Z) is its connected component, cf. [Loo75, cor. 4.9].

The Lie algebra kR of Aut(Z) is the set aut(Z) of all triple derivations δ ∈ End(Z) , i.e.

δ{uv∗w} = {(δu)v∗w}+ {u(δv)∗w}+ {uv∗(δw)} for all u, v, w ∈ Z ,

or, equivalently,

[
δ, u � v∗

]
= (δu) � v∗ + u � (δv)∗ for all u, v ∈ Z .

Since Z is finite-dimensional, all triple derivations are inner, i.e.

kR = aut(Z) = 〈u � v∗ − v � u∗ | u, v ∈ Z〉 .

1.1.7. A non-zero JB∗-triple Z is said to be simple if it has only trivial ideals. Here, an
ideal is a triple W ⊂ Z such that {WZ∗Z}+ {ZW∗Z} ⊂ W . The triple Z associated to
B is simple if and only if B is irreducible, i.e. not the product of manifolds of positive
dimension, cf. [Loo75, 4.11]. Equivalently, G is simple, cf. Proposition 2.1.11 below.
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The classification of irreducible bounded symmetric domains, substantially due to
E. Cartan [Car35], can be stated (and proved) in terms of the classification of simple
JB∗-triples — although this was not Cartan’s approach. We summarise it as follows

Classification of irreducible bounded symmetric domains

Cartan Helgason B = G/K Z

Ip,q A III SU(p,q)
S(U(p)×U(q)) Cp×q

IIn D III SO∗(2n)
U(n) Cn×n

−

IIIn C I Sp(2n,R)
U(n) Cn×n

+

IVn BD I SO(2,q)
SO(2)×SO(q) Vbqc+2

V E III
E6(−14)

SO(2)×SO(10) O1×2
C

VI E VII
E7(−25)

SO(2)×E6
H3
(
OC

)
There are four infinite series of irreducible bounded symmetric domains, usually termed
classical, and two types which do not not belong to infinite series, termed exceptional. The
rank (= dimension of a maximally flat totally geodesic submanifold) of the domains of
type I-III is arbitrarily large, whereas the domains of type IV always have rank 2 . We
review the domains and their associated JB∗-triples, as given in [Loo75, 4.14, 4.17].

type Ip,q The triple Z = Cp×q consists of all complex p× q matrices. The triple product
is given by

{uv∗w} = 1
2

(
uv∗w + wv∗u

)
for all u, v, w ∈ Cp×q .

The domain B is the matrix ball

B =
{

z ∈ Cp×q ∣∣ 1− zz∗ � 0
}

.

type IIn The triple Z = Cn×n
− consists of all skew-symmetric n × n complex matrices,

with the same triple product as for type In,n . Then B is

B =
{

z ∈ Cn×n
−

∣∣ 1 + zz̄ � 0
}

.

type IIIn In this case, Z = Cn×n
+ consists of all symmetric complex matrices, with the

product induced by type In,n . The domain B is the Siegel ball, given by

B =
{

z ∈ Cn×n
+

∣∣ 1− zz̄ � 0
}

.

type IVn Here, Z = Vn = Cn , n 6= 2 , consists of column vectors. The triple product is
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given by

2 · {uv∗w} = u · v̄tw− v̄ · wtu + w · utv̄ for all u, v, w ∈ Cn .

For n = 1, 3, 4 , Z is isomorphic to C = C1×1 , C2×2
+ , and C2×2 , respectively. For

n > 5 , Z = Vn is called the complex spin factor of dimension n . The domain B is the
Lie ball, given as

B =
{

z ∈ Cn ∣∣ z∗z < 1 , 1− 2z∗z +
∣∣ztz

∣∣2 > 0
}

.

type V In this case, Z = O1×2
C

consists of 1× 2 matrices with entries in the complexified
octonions OC = O⊗C . The triple product is defined as for type I. The domain B
has complex dimension 16 and is given a quadratic and a quartic inequality.

type VI For this exceptional domain, Z = H3
(
OC

)
is the set of Hermitian 3× 3 matrices

with entries in OC . The product is formally the same as for type I. The domain B
has complex dimension 27 and is given by two quadratic inequalities and a quartic
inequality.

1.2 Peirce decomposition and boundary faces

1.2.1. An element e ∈ Z is called a tripotent (triple idempotent) if {ee∗e} = e . Geo-
metrically, the tripotents are the limit points of the geodesic rays emanating from 0 ∈ B
[Loo75, cor. 4.8]. For a tripotent e ∈ Z and λ ∈ R , one considers the Peirce λ-space

Zλ(e) = ker
(
e � e∗ − λ

)
.

Then Zλ(e) = 0 , unless λ ∈
{

0, 1
2 , 1
}

. Moreover, Z = Z0(e)⊕ Z1/2(e)⊕ Z1(e) and this
sum is orthogonal with respect to the trace form, by [Loo75, th. 3.13].

By [Upm85, prop. 21.9], we have the Peirce rules

{
Zα(e)Zβ(e)∗Zγ(e)

}
⊂ Zα−β+γ(e) for all α, β, γ ∈ R

and {
Z0(e)Z1(e)∗Z

}
=
{

Z1(e)Z0(e)∗Z
}

= 0 .

In particular, Z1(e) and Z0(e) are subtriples of Z .

1.2.2. A tripotent e is said to be unitary if e � e∗ = idZ , i.e. Z = Z1(e) . If e is unitary,
define for all z, w ∈ Z

z ◦ w = {ze∗w} and z∗ = {ez∗e} .

Then xy∗ is an involution, and ◦ is bilinear, commutative, with unit e, and moreover,
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satisfies the Jordan identity

z2 ◦ (z ◦ w) = z ◦ (z2 ◦ w) for all z, w ∈ Z,

by [Upm85, prop. 13]. Thus, in this case, Z is a complex Jordan algebra. The triple product
of Z is given in terms of the Jordan algebra product by

{uv∗w} = u ◦ (v∗ ◦ w)− v∗ ◦ (w ◦ u) + w ◦ (u ◦ v∗) for all u, v, w ∈ Z .

Furthermore, X = {x ∈ Z | x∗ = x} is a real form of the complex vector space Z ,
◦-closed and hence a real Jordan algebra. Since Z is a JB∗-triple, we have the relation

x2 + y2 = 0 ⇒ x = y = 0 for all x, y ∈ X ,

i.e. X is formally real, by [Loo75, th. 3.13]. Conversely, for a formally real Jordan algebra X
(sometimes also called Euclidean, cf. [FK94, prop. VIII.4.2]), the vector space complexifi-
cation Z = X⊗C is naturally a complex Jordan algebra whose underlying Jordan triple
is a JB∗-triple.

Z contains a unitary tripotent (i.e. is the Jordan triple defined by a Jordan algebra)
if and only if B is of tube type (i.e. biholomorphic to a tube domain over a symmetric
cone). For a simple JB∗-triple Z , B is of not of tube type for type Ip,q , p 6= q , type IIn ,
n ≡ 1 (mod 2) , and type V.

If the tripotent e is arbitrary, then e is unitary in Z1(e) and Z1(e) is a complex Jordan
algebra. Its canonical real form is denoted X1(e) . Note that if e ∈ Z is a tripotent, then
so is ie , and Zλ(ie) = Zλ(e) since (ie) � (ie)∗ = e � e∗ . However, the real forms differ:

X1(ie) = iX1(e) = {x ∈ Z1(e) | x∗ = −x
}

.

Moreover, the product with respect to ie is

{u(ie)∗v} = −i{ue∗v} = i · (−iu) ◦ (−iv) for all u, v ∈ Z1(e) ,

where on the right hand side, ◦ denotes the product with respect to e . Hence,

x 7→ ix : X1(e) → X1(ie) = iX1(e)

is an isomorphism of real Jordan algebras.

1.2.3. For two tripotents e, c ∈ Z ,

e � c∗ = 0 ⇔ {ee∗c} = 0 ,

by [Loo75, lem. 3.9]. If this the case, we write e ⊥ c and say that e and c are orthogonal.
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Since
(
e � c∗

)∗ = c � e∗ , this relation is symmetric.
Further, we define an order on the set of non-zero tripotents by

c 6 e :⇔ {(e− c)(e− c)∗(e− c)} = e− c , c ⊥ e− c .

A non-zero tripotent e ∈ Z is primitive if it is minimal, and maximal if it is maximal with
respect to this order. e is primitive if and only if Z1(e) = C · e , and maximal if and only
if Z0(e) = 0 . If e is unitary, then it is maximal, and the converse is true if and only if Z is
a Jordan algebra.

A maximal set e1, . . . , er of mutually orthogonal primitive tripotents is called a frame
of Z . The length r of a frame is unique and coincides with the rank of B . We define
rk Z = r , the rank of the Jordan triple Z . By definition, the rank of a tripotent e ∈ Z is
the rank of Z1(e) . Any sum of mutually orthogonal tripotents is a tripotent, and any
tripotent can be written as the sum e1 + · · ·+ ek of the initial segment of a frame, [Loo75,
5.1, th. 3.11].

Given a frame e1, . . . , er of Z , define for 0 6 i 6 j 6 r the joint Peirce spaces

Zij = Zji =
{

z ∈ Z
∣∣∣∣ {eke∗k z} =

δik + δjk

2
· z , k = 1, . . . , r

}
.

Then Z = ∑⊕
06i6j6r Zij is an orthogonal direct sum with respect to the trace form, we

have Z00 = 0 , and Zii = C · ei , 1 6 i 6 r .
If Z is simple, a = dim Zij , 1 6 i < j 6 r , and b = dim Z0j , 1 6 j 6 r , are fixed. The

tuple (r, a, b) is called the signature of Z . Then b = 0 if and only if Z is a Jordan algebra.
The canonical inner product (xy | xy) of Z is the unique positive Hermitian inner prod-

uct on Z which is K-invariant, associative, i.e.

(u � v∗)∗ = v � u∗ for all u, v ∈ Z ,

and for which (e | e) = 1 for every primitive tripotent e ∈ Z . The restriction of (xy | xy)
to any subtriple is the canonical inner product of that triple.

For simple Z , the canonical inner product is expressed in terms of the signature as

(u | v) =
2r

2n− rb
· trZ(u � v∗) for all u, v ∈ Z .

1.2.4. Consider the topological closure B of B in Z . The faces or holomorphic arc compo-
nents of B are the equivalence classes of B under the equivalence relation

z ∼ w :⇔ z ∈ B0 , Bj ∩Bj+1 6= ∅ , Bm 3 w for some Bj ⊂ B ,

where Bj = f j(B) , f j ∈ O(B, Z) . Here B ⊂ C denotes the unit disc and the Bj are called
holomorphic arcs.
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The faces of B can described quite effectively in terms of tripotents. For any tripotent,
define B0(e) = B ∩ Z0(e) . Then B0(e) is the circular bounded symmetric domain of the
JB∗-triple Z0(e) . Moreover, the set e + B0(e) is a face of B , and

e 7→ e + B0(e) : EZ =
{

e ∈ Z
∣∣ {ee∗e} = e

}
→
{

F ⊂ B
∣∣ F face

}
is a bijection, by [Loo75, th. 6.3]. (The trivial tripotent 0 gives the interior B .) The set of
faces coincides with the set of (exposed) convex faces (i.e. intersections with supporting
hyperplanes).

To describe the closure B as a whole, define the smooth vector bundle

EZ =
{
(e, z) ∈ EZ × Z

∣∣ z ∈ Z0(e)
}
→ EZ

with projection (e, z) 7→ z . Consider further the disc bundle

BZ =
{
(e, z) ∈ EZ

∣∣ z ∈ B0(e)
}
→ EZ

which is an open sub-fibre bundle of EZ , and, set-theoretically, the disjoint union of the
faces e + B0(e) . Then, by [Loo75, prop. 6.8], the bijective map

(e, z) 7→ e + z : BZ → B

is an immersion which restricts to an embedding on each connected component. If Z
is simple, K acts transitively on the sets Ek

Z of rank k tripotents, by [Loo75, cor. 5.12].
Hence, in this case, B has r + 1 connected strata

Bk =
⋃

e∈Ek
Z

(
e + B0(e)

)
, k = 0, . . . , r .

Moreover, by [Loo75, cor. 9.17],

Bk = G.ek = K.
(
ek + B0(ek)

)
for ek ∈ Ek

Z .

Hence, Bk can be viewed as a G-homogeneous space or as a K-fibre bundle.

Definition 1.2.5. To each face e + B0(e) of B , we associate the facial subgroup

Ge = Aut0
(

B0(e)
)

.

Then Ge = Ke · exp pR,0(e) where

Ke = Aut0
(
Z0(e)

)
and pR,0(e) =

{
ξ−u
∣∣ u ∈ Z0(e)

}
,

by [Loo75, cor. 4.9]. Moreover, Ke is connected and therefore generated by the exponen-
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tial of its Lie algebra

kR,0(e) = aut
(
Z0(e)

)
= 〈u � v∗ − v � u∗ | u, v ∈ Z0(e)〉 ⊂ kR .

Here, the equality holds because all triple derivations of Z0(e) are inner. We conclude
that Ge @ G , i.e. Ge is indeed a closed subgroup of G .

If c ∈ Z is a tripotent such that c 6 e , then Z0(e) ⊂ Z0(c) and e is a tripotent in the
JB∗-triple Z0(c) . Hence, Ge @ Gc = Aut0(B0(c)) .

1.3 Symmetric cones and formally real Jordan algebras

1.3.1. Let X be an n-dimensional real vector space, endowed with a symmetric bilinear
form (xy : xy) . A convex cone Ω ⊂ X (with vertex 0) is said to be pointed if it contains no
affine line. If Ω is closed, this means that −Ω ∩Ω = 0 .

Define the (closed) dual cone by

Ω∗ =
{

x ∈ X
∣∣ (x : y) > 0 for all y ∈ Ω

}
.

Then Ω∗ has non-trivial interior Ω∗◦ if and only if Ω is pointed.
Let Ω ⊂ X be a closed cone with Ω◦ 6= ∅ . Then

GL(Ω) =
{

g ∈ GL(X)
∣∣ gΩ = Ω

}
is a closed subgroup of GL(X) and hence a Lie group. Ω is called symmetric if it is self-
dual, i.e. Ω∗ = Ω , and Ω◦ is homogeneous, i.e. GL(Ω) acts transitively on the interior
Ω◦ . In particular, a symmetric cone is pointed.

1.3.2. Assume Ω is symmetric. Then GL(Ω)t = GL(Ω) , if gt denotes the transpose
with respect to (xy : xy) . Hence, ϑ(g) =

(
g−1)t defines an involutive automorphism of

GL(Ω) whose fixed group O(Ω) = O(X) ∩ GL(Ω) is compact. Therefore, the group
GL(Ω) is reductive, and the ±1-eigenspaces of ϑ give a Cartan decomposition of its Lie
algebra gl(Ω) ,

gl(Ω) = o(Ω)⊕ pR(Ω) .

By [FK94, prop. I.1.8], for any x ∈ Ω◦ , the stabiliser GL(Ω)x of x in GL(Ω) is compact,
and any compact subgroup of GL(Ω) is contained in some GL(Ω)x . Fix e ∈ Ω◦ such
that GL(Ω)e = O(Ω) .

By definition, gl(Ω) is the set of complete linear vector fields on Ω◦ . Since the interior
Ω◦ = GL(Ω)/O(Ω) , the linear map

ξ 7→ ξ(e) : pR(Ω) → X

is a bijection. For x ∈ X , define Mx ∈ pR(Ω) uniquely by Mx(e) = x , so that we have



32 1. Symmetric domains and cones, and their boundaries

MX = pR(Ω) . Then Mx ∈ End(X) , and if we define

x ◦ y = Mxy for all x, y ∈ X ,

then X is a formally real Jordan algebra with identity e , cf. [FK94, th. III.3.1]. Moreover,
we have Ω = {x2 | x ∈ X} .

Conversely, by [FK94, th. III.2.1], for any formally real Jordan algebra X , the cone of
squares Ω = {x2 | x ∈ X} is symmetric, and the Jordan algebra structure of X is induced
by the cone Ω .

1.3.3. Similarly as for Jordan triple systems, any idempotent c ∈ X (i.e. c2 = c) gives
rise to a Peirce decomposition

X = X0(c)⊕ X1/2(c)⊕ X1(c)

orthogonal with respect to the trace form (x, y) 7→ trX(Mx◦y) . Here, the Peirce λ-space is
Xλ(c) = ker

(
Mc − λ

)
. The trace form on X is positive symmetric, O(Ω)-invariant, and

is hence proportional to (xy : xy) .

As for Jordan triples, we define the canonical inner product (xy | xy) by the require-
ments of O(Ω)-invariance, associativity (i.e. (u ◦ v | w) = (v | u ◦ w) ) and that the norm
of any primitive idempotent be 1 . If X is simple,

(x | y) =
r
n
· trX

(
Mx◦y

)
for all x, y ∈ X ,

where r is the rank of X .

1.3.4. It is clear that the connected component GL+(Ω) of GL(Ω) is transitive on Ω◦ ,
and SO(Ω) = GL+(Ω) ∩O(Ω) is connected since Ω◦ is simply connected.

An element k ∈ GL(X) is called a Jordan algebra automorphism if

k(x ◦ y) = (kx) ◦ (ky) for all x, y ∈ X .

By [FK94, th. III.5.1], Aut(X) = O(Ω) and the connected component is SO(Ω) . More-
over, the Lie algebra o(Ω) coincides with the set of all Jordan algebra derivations δ ∈
aut(X) , i.e. δ ∈ End(X) ,

δ(x ◦ y) = (δx) ◦ y + x ◦ (δy) for all x, y ∈ X .

It can be seen that Aut(X) is the set of those Jordan triple automorphisms k of X⊗C

such that ke = e , and that aut(X) consists of all Jordan triple derivations δ such that
δ(e) = 0 .
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1.3.5. A subset F ⊂ Ω is called a (convex) face of Ω , if

1
2 · (x + y) ∈ F ⇒ x, y ∈ F for all x, y ∈ Ω .

Denote the set of faces of Ω by F (Ω) . The faces F of Ω are closed pointed convex cones.
The relative interior F◦ of F ∈ F (Ω) is defined as the interior of F in the subspace F− F
of X generated by F .

A proper face F ∈ F (Ω) is called exposed if it is the intersection of a hyperplane with
Ω . General cones may have non-exposed proper faces, an example is given in [Rup88,
ex. 2.7.(5)].

As for Jordan triples, we can define an order on the set EX of idempotents. A non-
zero minimal element of EX is called primitive. The rank of c ∈ EX , defined as the rank
of X1(c) , is the number k of summands in the decomposition c = c1 + · · ·+ ck as a sum
of mutually orthogonal primitive idempotents.

If X is simple, by [FK94, prop. IV.3.1], the closed symmetric cone Ω decomposes into
exactly r + 1 orbits GL+(Ω).ck where ck ∈ Ek

X , i.e. ck is a rank k tripotent. The orbit
GL+(Ω).ck consists of the elements of rank k .

To any idempotent c ∈ EX , we associate the closed cone Ω0(c) of squares in X0(c) =
X1(e− c) . Then Ω0(c) ⊂ G.(e− c) ⊂ Ω .

Proposition 1.3.6. Let X be simple. The set F (Ω) of faces consists of

Ω0(c) = X0(c) ∩Ω = c⊥ ∩Ω =
{

x2 ∣∣ x ∈ X0(c)
}

, c ∈ EX .

In particular, all the faces of Ω are exposed. The dual face of Ω0(c) is Ω0(e − c) . Two
faces Ω0(c) and Ω0(c′) are GL+(Ω)-conjugate if and only if rk c = rk c′ .

Proof. The conjugacy follows from the above, and from [FK94, prop. IV.3.1]. We prove
that Ω0(c) is a face of Ω . Since Ω is the set of x ∈ X for which Mx is positive semi-
definite, by [FK94, prop. III.2.2], we see that Ω∩X0(c) = Ω0(c) . Moreover, c ∈ Ω = Ω∗ ,
so c⊥ ∩ Ω is a face. We have c⊥ ⊃ Ω0(c) . If x ∈ Ω , (x | c) = 0 , then x ◦ c = 0 ,
i.e. x ∈ X0(c) , by [FK94, ex. III.3]. This proves that Ω0(c) is a face.

More generally, Ω0(e− c) ⊂ Ω ∩Ω0(c)⊥ , and we have already proved the converse
inclusion. Hence these faces are dual to each other.

By [FK94, prop. IV.3.2], the extremal rays of Ω are all of the form Ω0(c) where c < e
is maximal. The orthogonal face Ω∩Ω0(c)⊥ = Ω0(e− c) , as seen above. Since Ω is self-
dual, any proper face F ( Ω has a non-trivial dual face. Hence, Ω0(e− c) is a maximal
proper face. Since any face of Ω contained in Ω0(e− c) is a face thereof, and vice versa,
it follows by induction by that all faces are of the form Ω0(c) where c ∈ EZ . �
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2Ol’shanskiı̆ domains and their boundaries

2.1 Invariant cones

2.1.1. We return to our setting where G = Aut0(B) , B ⊂ Z a circular bounded symmet-
ric domain. The Cartan decomposition gR = kR ⊕ pR gives rise to a decomposition of
the complexified Lie algebra, g = k⊕ p . The Cartan involution ϑ extends naturally to
the conjugation of g with respect to the (compact) real form uR = kR ⊕ ipR . We denote
it by the same letter.

Lemma 2.1.2. The space p can be decomposed as p = p+ ⊕ p− where

p+ =
{

u
∂

∂z

∣∣∣ u ∈ Z
}

and p− =
{
{zu∗z} ∂

∂z

∣∣∣ u ∈ Z
}

.

Then [
k, p±

]
⊂ p± and

[
p±, p±] = 0 .

Proof. The decomposition is trivial. We have

ϑ
(

u
∂

∂z

)
=

1
2
· ϑ(ξ−u − iξ−iu) = −1

2
·
(
ξ−u + iξ−iu

)
= {zu∗z} ∂

∂z
.

Since the vector fields in p+ are constant,
[
p+, p+] = 0 . Applying ϑ , we find that[

p−, p−
]

= 0 .

Since δ ∈ k is linear, [
δ, u

∂

∂z

]
= δu

∂

∂z
for all u ∈ Z .

Since kR leaves uR invariant and hence commutes with ϑ , and p± are complex vector
spaces, the assertion follows. �

2.1.3. Fix a frame e1, . . . , er of Z . Then

i · ej � e∗j ∈ kR = aut(Z) , j = 1, . . . , r ,

is a commutative family of triple derivations. Consequently, there exists a maximal com-
mutative subalgebra tR ⊂ kR containing

t−R = i〈ej � e∗j | j = 1, . . . , r〉 .

By [Upm86, lem. 1.1-2], tR = t+R ⊕ t−R , where

t+R =
{

δ ∈ tR

∣∣ δej = 0 for all j = 1, . . . , r
}

.
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By maximality of tR , z(kR) ⊂ tR , in particular iz ∂
∂z ∈ tR .

Lemma 2.1.4. The centraliser of iz ∂
∂z in g is k . More precisely,

ad
(

iz
∂

∂z

)
= ±i on p± .

In particular, tR is a Cartan subalgebra of gR , and rk gR = rk kR .

Proof. Clearly, iz ∂
∂z acts by multiplication with i on p+ . Since iz ∂

∂z ∈ kR and hence
commutes with ϑ ,[

iz
∂

∂z
, {zu∗z} ∂

∂z

]
= ϑ

[
iz

∂

∂z
, u

∂

∂z

]
= ϑ

(
iu

∂

∂z

)
= −i{zu∗z} ∂

∂z
.

Hence, the first statement follows.

As for the second, any element of gR centralising tR is contained in kR by the first
part. But tR is its own centraliser in kR . This proves the remaining assertions. �

2.1.5. Since the complexification t of tR is a Cartan subalgebra of g , we can consider for
α ∈ it∗R the root spaces

gα =
{

ξ ∈ gR

∣∣ [δ, ξ] = α(δ) · ξ for all δ ∈ t
}

.

Then the set
∆ = ∆(g : t) =

{
α ∈ it∗R \ 0

∣∣ gα 6= 0
}

is a reduced root system in the subspace of it∗R it generates, by [Bou68, ch. VIII, § 2.2,
th. 2]. By lemma 2.1.4, for α ∈ ∆ ,

gα ⊂ p ⇔ α
(

iz
∂

∂z

)
6= 0 and gα ⊂ k ⇔ α

(
iz

∂

∂z

)
= 0 .

In the first case, we say that α is non-compact, in the second, that it is compact. We denote
the set of non-compact resp. compact roots by ∆n resp. ∆c . Then ∆ = ∆c ∪ ∆n is a Z2-
grading of ∆ in the sense of Loos-Neher [LN02], namely

∆ ∩
(
∆c + ∆c

)
⊂ ∆c , ∆ ∩

(
∆c + ∆n

)
⊂ ∆n , ∆ ∩

(
∆n + ∆n) ⊂ ∆c .

In particular, ∆c is a root system in the subspace of it∗R it generates.

We consider the Weyl groups

W = 〈sα | α ∈ ∆〉 and Wc = 〈sα | α ∈ ∆c〉

generated by the reflections

sα

(
β
)

= β− β
(

Hα

)
· α for all β ∈ it∗R .
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Here Hα ∈ itR is determined by α
(

Hα

)
= 2 , cf. [Bou68], [Kna86, ch. IV].

Lemma 2.1.6. Let ∆++
c ⊂ ∆c be any positive system. The set

∆++
n =

{
α ∈ ∆

∣∣∣ −i · α
(

iz
∂

∂z

)
> 0

}
is Wc-invariant, and ∆++ = ∆++

c ∪ ∆++
n is a positive system of ∆ such that the sum of

two positive non-compact roots is never a root. Moreover,

p± = ∑⊕
α∈±∆++

n
gα .

Proof. The last statement follows from lemma 2.1.4. Now,
[
p+, p+] = 0 implies that the

sum of α, β ∈ ∆++
n is never a root. Because all compact roots annihilate iz ∂

∂z ,

∆ ∩ (∆++
c + ∆++

n ) ⊂ ∆++
n .

Since ∆++
c is closed, so is ∆++ . But

∆ = −∆++ ∪ ∆++ and − ∆++ ∩ ∆++ = ∅

because g = p+ ⊕ k⊕ p− by lemma 2.1.2. Thus, ∆++ is a positive system, by [Bou68,
ch. VI, § 1.7, cor. 1]. The statement about Wc-invariance now follows from [Nee00a,
prop. VII.2.12]. �

Remark 2.1.7. The positive system constructed in the lemma is of a somewhat spe-
cial type (which merits the notation ∆++ , in contrast to a general positive system ∆+ ).
Namely, it is ∆c-adapted.

This means that the sum of two positive non-compact roots is never a root. Equiv-
alently, the set of positive non-compact roots is Wc-invariant; any ∆++

c -simple compact
root is ∆++-simple; the non-compact positive roots are strictly larger than all compact
roots for any (some) total vector space order defining ∆++ ; or, the subset ∆c ∪ ∆++

n of ∆
is closed (and hence parabolic).

If Z is simple, the adapted positive system ∆++ is, up to sign and Wc-conjugacy,
uniquely determined, by [Nee00a, lem. VII.2.16]. Moreover, the property that there ex-
ists a ∆c-adapted positive system singles out the class of non-compact simple Lie alge-
bras (Hermitian Lie algebras) which occur as the set of complete holomorphic vector
fields of a bounded symmetric domain, by [Nee00a, prop. VII.2.14].

2.1.8. Recall that the Killing form B of gR is given by

B(ξ, η) = − tr
(
ad ξ ad η

)
for all ξ, η ∈ gR .

B is symmetric, and the adjoint action is skew-adjoint (Jacobi identity). It extends by
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complex bilinearity to g , and coincides with the Killing form of g . Moreover, we define

(ξ : η) = −B(ξ, ϑη) for all ξ, η ∈ g .

This form is symmetric, and conjugate bilinear with respect to the complex structure of
g induced by the compact real form uR .

Lemma 2.1.9. The decomposition g = p+ ⊕ k⊕ p− is B-orthogonal. We have

B
(
δ, u � v∗

)
= 2 trZ

(
(δu) � v∗

)
for all δ ∈ aut(Z) , u, v ∈ Z ,

and
B
(

u
∂

∂z
, {zv∗z} ∂

∂z

)
= −4 trZ

(
u � v∗

)
for all u, v ∈ Z .

Moreover, p± are isotropic, and

B
(
ξ−u , ξ−v

)
= 4 · trZ

(
u � v∗ + v � u∗

)
for all u, v ∈ Z .

Proof. The orthogonality follows since the spaces p+ , k , and p− are eigenspaces of
ad
(
iz ∂

∂z

)
for the eigenvalues i , 0 , and −i , respectively.

Note [
u

∂

∂z
, {zv∗z} ∂

∂z

]
= −2 · u � v∗ for all u, v ∈ Z .

Hence

B(δ, u � v∗) = −1
2
· B
([

δ, u
∂

∂z

]
, {zv∗z} ∂

∂z

)
= −1

2
· B
(
(δu)

∂

∂z
, {zv∗z} ∂

∂z

)
,

the first equation follows from the second, and to prove the second, we need only prove
the first for δ = iz ∂

∂z . But

B
(

iz
∂

∂z
, u � v∗

)
= i trp+ ad

(
u � v∗

)
− i trp− ad

(
u � v∗

)
by lemma 2.1.4. Moreover,

[
u � v∗, w

∂

∂z

]
= {uv∗w} ∂

∂z
,

and by (JTS2), [
u � v∗, {zw∗z} ∂

∂z

]
= −{z{vu∗w}∗z} ∂

∂z
.

We conclude
B
(

iz
∂

∂z
, u � v∗

)
= 2i trZ

(
u � v∗

)
.

This proves the first two formulae.
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The subspace p+ is isotropic, because

B
(

u
∂

∂z
, v

∂

∂z

)
= −i · B

([
iz

∂

∂z
, u

∂

∂z

]
, v

∂

∂z

)
= −i · B

(
iz

∂

∂z
,
[
u

∂

∂z
, v

∂

∂z

])
= 0

for all u, v ∈ Z . By ϑ-invariance of B , p− is isotropic, too.
This implies the third formula, as

B
(
ξ−u , ξ−v

)
= B

((
u− {zu∗z}

) ∂

∂z
,
(
v− {zv∗z}

) ∂

∂z

)
= −B

(
u

∂

∂z
, {zv∗z} ∂

∂z

)
− B

(
{zu∗z} ∂

∂z
, v

∂

∂z

)
= 4 · trZ

(
u � v∗ + v � u∗

)
for all u, v ∈ Z . �

Remark 2.1.10. For an alternative proof of lemma 2.1.9, we refer to [Koe69, lem. 4.2]
and [Upm82, lem. 6.1].

Proposition 2.1.11. The form (xy : xy) is positive symmetric. In particular, B is non-
degenerate, gR is semi-simple, and gR = kR ⊕ pR is a Cartan decomposition. If Z is
simple, then so is gR .

Proof. Since kR ⊥ pR , it suffices to check positivity for each component individually.
By lemma 2.1.9, for all u, v ∈ Z ,

(
ξ−u : ξ−v

)
= B(ξ−u , ξ−v ) = 4 · trZ

(
u � v∗ + v � u∗

)
= 8 Re trZ

(
u � v∗

)
Since the trace form is positive Hermitian, (ξ−u : ξ−u ) > 0 for u 6= 0 .

By lemma 2.1.9, if δ ∈ kR \ 0 , then

(δ : u � v∗) 6= 0 for some u, v ∈ Z .

In particular, (xy : xy) and B are non-degenerate. Since K is compact and the centre of G
is trivial, B is negative on kR , by [Hel78, ch. II, § 6, prop. 6.8]. Hence gR is semi-simple,
and ϑ is a Cartan involution by [Hel78, ch. III, § 7, prop. 7.4]. Finally, if Z is simple, then
gR is simple by [Koe69, th. 4.4]. �

In the following, we shall always understand orthogonality in gR in terms of the positive
symmetric form (xy : xy) .

2.1.12. Consider the following polyhedral cones in tR :

ω− = cone 〈iHα | α ∈ ∆++
n 〉

and its dual cone

ω+ =
(
∆++

n
)∗ =

{
H ∈ tR

∣∣∣ −iα(H) > 0 for all α ∈ ∆++
n

}
.
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These cones are closed and Wc-invariant by lemma 2.1.6. By [HC56, lem. 10], α(Hβ) > 0
for all α, β ∈ ∆++

n , so ω− ⊂ ω+ .
For k = 1, . . . , r , define γk ∈ it∗R by

γk
(
e` � e∗`

)
= δk,` and γk

∣∣
t+R

= 0 .

Then, by [Upm86, lem. 1.3], the γk are mutually strongly orthogonal roots, i.e.

γk ± γ` 6∈ ∆ for all 1 6 k 6= ` 6 r .

Note that

iz
∂

∂z
=

r

∑
k=1

i · ek� e∗k + δ for some δ ∈ t+R .

Therefore, it is clear that γk ∈ ∆++
n . There is a total vector space order on it∗R defining

∆++ , such that 0 < γ1 < · · · < γr . Consequently, γ1, . . . , γr is the Harish-Chandra
fundamental sequence, cf. [HC56, II.6]. In particular, by [HC56, lem. 8, cor.], the cardinality
of γ1, . . . , γr is maximal.

By [Moo64, th. 2] and [Pan83, lem. 1], all the γk are long. Here we say that α is long
if |β| 6 |α| for all roots β contained in the irreducible factor of ∆ containing α . (An
irreducible, reduced root system has at most two root lengths, by [Bou68, ch. VI, § 1.4,
prop. 12].)

Lemma 2.1.13. The generators of the extremal rays of ω− are iHα , α ∈ ∆++
n , α long. In

particular,
ω− = cone

〈
σ
(
i · ej � e∗j

) ∣∣ σ ∈ Wc , j = 1, . . . , r
〉

.

Proof. It is clear by definition of ω− that the generators of extremal rays are among
the Hα where α ∈ ∆++

n . Since ω− decomposes into a direct product according to the
decomposition of gR into simple factors, we may assume w.l.o.g. that gR be simple.

Then [Pan83, lem. 1] shows that for short γ ∈ ∆++
n ,

γ =
γk + γ`

2
for some k 6= ` .

This implies
4 |γ|2 = |γk|2 + |γ`|2 = 2 |γk|2 ,

and

(Hγ : ξ) =
2γ(ξ)
|γ|2

=
2γk(ξ)
|γk|2

+
2γ`(ξ)
|γ`|2

= (Hγk + Hγ`
: ξ) for all ξ ∈ t .

Hence, Hγ = Hγk + Hγ`
lies in the interior of a face of dimension at least 2 .

On the other hand, because ω− is polyhedral, there is α ∈ ∆++
n such that iR+ · Hα is

extremal. α is necessarily long. By [Pan83, lem. 2], all such iHα generate extremal rays.
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Returning to the general (semi-simple) case, any irreducible factor of ∆ contains
some γk , by maximality of this set. Moreover, [Pan83, lem. 2] shows that any long
non-compact α ∈ ∆++

n is Wc-conjugate to any γk contained in the same irreducible fac-
tor. Finally, note that Hγj = 2 · ej � e∗j by definition of γj . Since a polyhedral cone is
generated by its extremal rays, we have proved the lemma. �

Lemma 2.1.14. Let γ ∈ ∆++
n be long. There exist 1 6 ` 6 r and a frame c1, . . . , cr of Z

such that

tR = 〈i · ck� c∗k | k = 1, . . . , r〉 ⊕
{

δ ∈ tR

∣∣ δck = 0 for all k = 1, . . . , r
}

,

and γ is determined by

γ
(
ck� c∗k

)
= δ`,k and γ(δ) = 0 whenever δck = 0 , k = 1, . . . , r .

Proof. There exists 1 6 ` 6 r such that γ` and γ lie in the same irreducible factor of
∆ . By [Pan83, lem. 2], there exists σ ∈ Wc such that σγ` = γ . By [Kna02, th. 4.54],
σ = Ad(k) for some k ∈ NK

(
tR

)
. Since k ∈ Aut(Z) , the kej , j = 1, . . . , r , are mutually

orthogonal primitive tripotents, and

Ad(k)
(

ej � e∗j
∂

∂z

)
=
(
k−1′(z)

)−1{ej e∗j k−1(z)
} ∂

∂z
= k

(
ej � e∗j

)
k−1 = (kej) � (kej)∗ .

Moreover, since Ad(k) normalises tR , we have a decomposition as stated. By the defini-
tion of γ` , the lemma follows. �

Remark 2.1.15. By lemma 2.1.13 and lemma 2.1.14, the extremal rays of ω− are gener-
ated by i · e � e∗ where e is a primitive tripotent Wc-conjugate to an element of the frame
e1, . . . , er .

2.1.16. At this point, it seems appropriate to point out the relation between the cone ω+

and the Weyl chambers of tR .

Consider for ξ ∈ gR the expansion det(t − ad ξ) = ∑n
j=1 aj(ξ) · tj . The polynomial

coefficients aj are independent of ξ . The lowest index j for which aj is non-trivial is the
rank R = rk gR , by [Bou68, ch. VII, § 3.3, th. 2]. Then ξ is called regular if aR(ξ) 6= 0 . If
particular, ξ is regular if and only if its centraliser g

ξ
R = ker(ad ξ) is a Cartan subalgebra

(loc.cit.). The set gR,∗ of regular elements in gR is open and dense both in the Hausdorff
vector space and the Zariski topology. Moreover, it is Ad-invariant.

The intersection tR,∗ = gR,∗ ∩ tR coincides with the complement of the union of all
ker α , where α ∈ ∆ , cf. [Bou68, ch. VII,§ 3.2, lem. 2]. The connected components of tR,∗

are called Weyl chambers. They are polyhedral cones, and the Weyl group W acts simply
transitively on their totality. Hence, they are in one-to-one correspondence with the set
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of positive systems for ∆ . The Weyl chamber associated to ∆++ is

c+ =
{

H ∈ tR

∣∣ −iα(H) > 0 for all α ∈ ∆++} .

By definition, it is obvious that c+ ⊂ ω+◦ .

Proposition 2.1.17. We have ω+ = Wc · c+ =
⋃

σ∈Wc
σ(c+) .

Proof. Let Πc be the set of ∆++
c -simple roots. Since ∆++ is adapted, they are also ∆++-

simple. Let H ∈ ω+ . Let

nH = #
{

α ∈ Πc
∣∣ −iα(H) < 0

}
.

If nH = 0 , then H ∈ c+ , because −iβ(H) > 0 for all β ∈ ∆++
n , and ∆++

c ⊂ N〈Πc〉 .
If nH > 0 , let α ∈ Πc such that −iα(H) < 0 . Then −iα(sα(H)) > 0 . Let β ∈ Πc such

that −iβ(sα(H)) < 0 . By [Bou68, ch. VI, § 1.6, prop. 17, cor. 1], sα(β) is a positive root,
so β(Hα) < 0 . Now

0 > −iβ(sα(H)) = −iβ(H)− iα(H) · β(Hα)

implies
−iβ(H) 6 i · α(H) · β(Hα) = −

(
−iα(H) · β(Hα)

)
< 0 .

Hence, nsα(H) < nH , and by induction, there exists σ ∈ Wc such that σ(H) ∈ c+ . This
proves ω+ ⊂ Wc · c+ . The converse is clear from Wc-invariance. �

2.1.18. From now on, we assume that Z be simple. Then the centre z
(
kR

)
of kR is one-

dimensional and hence generated by iz ∂
∂z . By [Pan83, lem. 3], we have iz ∂

∂z ∈ ω− . Let
Ω− be the closed G-invariant cone generated by iz ∂

∂z ,

Ω− = cone
〈

Ad(g)
(

iz
∂

∂z

) ∣∣∣ g ∈ G
〉

.

Since all invariant cones in gR with non-void interior contain a K-fixed vector by [Vin80,
§ 2], Ω− is a minimal such cone. (The interior of Ω− is non-trivial by [Pan83, lem. 3].)

For u ∈ Z , define the Cayley vector field ξ+
u ∈ ipR by

ξ+
u = −iξ−iu =

(
u + {zu∗z}

)
· ∂

∂z
.

Moreover, consider the following standard basis for sl(2, R) :

H =

(
1 0
0 −1

)
, X+ =

(
0 1
0 0

)
, X− =

(
0 0
1 0

)
.

The complex structure of the upper half plane (corresponding to iz ∂
∂z on the unit disc)

is given by X+ − X− , up to scalar multiples. Hence, the p± spaces for sl(2, C) are gen-
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erated by H ± i(X+ + X−) .

We shall call call a triple (ξ, η±) a disc embedding if sR = 〈ξ, η±〉 is a subalgebra of gR

isomorphic to sl(2, R) via
H 7→ ξ and X± 7→ η± ,

and if for s = sR ⊗C ,

s∩ k = C · (η+ − η−) and s∩ p± = C ·
(
ξ ± i(η+ + η−)

)
.

The terminology is justified because such a triple corresponds to an embedding of a
(poly-) disc into B .

Lie algebraically, the above conditions can be described by the condition that the
embedding sR ⊂ gR respects the Cartan involution ϑ and the choice of complex structure
on p . Satake [Sat80, ch. II, § 8, ch. III] calls such an embedding of an Hermitian Lie
algebra an (H1)-homomorphism.

Proposition 2.1.19. For u ∈ Z , define

X±
u =

1
2
·
(

ξ−−iu ±
1
2
·
[
ξ−u , ξ−−iu

])
=

1
2
·
(

ξ−−iu ± 2i · u � u∗
)

.

Let e ∈ Z be a non-zero tripotent. Then

[
ξ−e , X±

e
]

= ±2X±
e and

[
X+

e , X−
e
]

= ξ−e .

Moreover, if se
R = 〈ξ−e , X±

e 〉 and se = se
R ⊗C , then

se ∩ k = C · (X+
e − X−

e ) = C · e � e∗ ,

and
se ∩ p± = C ·

(
ξ−e ± i(X+

e + X−
e )
)

= C ·
(
ξ−e ± ξ+

e
)

.

Hence, (ξ−e , X±
e ) is a disc embedding. In addition, se and sc commute if only if e and c

are orthogonal.

Proof. First, note the formula

[[
ξ−ae, ξ−be

]
, ξ−ce

]
= 4 Im(ab̄) · ξ−ic·e for all a, b, c ∈ C ,

whence [
ξ−e , X±

e
]

=
1
2
·
[
ξ−e , ξ−−ie

]
∓ ξ−ie = ±2X±

e .

Furthermore, [
X+

e , X−
e
]

=
1
4
·
[[

ξ−e , ξ−−ie

]
, ξ−−ie

]
= ξ−e .

It is immediate that se
R is ϑ-stable. Hence, the intersections se ∩ k and se ∩ p± are at
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most 1-dimensional. But

X+
e − X−

e =
1
4
·
[
ξ−e , ξ−−ie

]
= 2i · e � e∗

and

ξ−e ± i
(
X+

e + X−
e
)

= ξ−e ± ξ+
e = 2 ·

{
e

−{ze∗z}

}
∂

∂z
∈ p± .

Note ξ±e ∈ se and ξ±c ∈ sc . Since

[
ξ−e , ξ−c

]
−
[
ξ−e , ξ+

c
]

=
[
ξ−e , ξ−c + iξ−ic

]
= 4 e� c∗ ,

e and c are orthogonal if
[
se, sc] = 0 . Conversely,

[
ξ−e , ξ−c

]
=
[
e � e∗, c � c∗

]
= 0

whenever e and c are orthogonal, whence the assertion. �

Corollary 2.1.20. Let e ∈ Z be a non-zero tripotent. We have

Ad
(
exp tX±

e
)(

iz
∂

∂z

)
= iz

∂

∂z
− t

2
· ξ−e ±

t2

2
· X±

e

for all t ∈ R , and

Ad
(
exp ξ−−ie

)(
X+

e
)

= −X−
e .

In particular, ±X±
e ∈ Ω− , −X−

e ∈ Ad(exp(pR))(X+
e ) and ω− ⊂ Ω− ∩ tR .

Proof. We note the formula exp Ad(ξ) = ead ξ for all ξ ∈ gR , cf. [Kna02, prop. 1.9].
Now, since iz ∂

∂z ∈ z(kR) ,

ad
(
X±

e
)(

iz
∂

∂z

)
= −1

2
·
[
iz

∂

∂z
, ξ−−ie

]
= −1

2
· ξ−e ,

and by proposition 2.1.19,

ad
(
X±

e
)2
(

iz
∂

∂z

)
=

1
2
·
[
ξ−e , X±

e
]

= ±X±
e ,

so the higher powers vanish. Hence the first formula. By the definition of Ω− ,

±X±
e = limt→∞

2
t2 ·Ad

(
exp tX±

e
)(

iz
∂

∂z

)
∈ Ω− .

As for the second formula,

[
ξ−−ie, X+

e
]

= −1
4
[[

ξ−e , ξ−−ie

]
, ξ−−ie

]
= −ξ−−ie ,
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and all higher powers are zero. Hence

Ad
(
exp ξ−−ie

)(
X+

e
)

= X+
e − ξ−−ie = −X−

e .

This proves the formula and the conjugacy of ±X±
e .

We have i · e � e∗ = X+
e − X−

e ∈ Ω− by proposition 2.1.19. Thus, ω− ⊂ Ω− , by
lemma 2.1.13. �

Remark 2.1.21. For an alternative, but similar proof that X+
e ∈ Ω− (for e primitive), see

[Pan83, lem. 4].

Proposition 2.1.22. Let (ξ, η±) be a disc embedding. Then there exists a non-zero tripo-
tent e ∈ Z such that ξ = ξ−e and η± = X±

e .

Proof. Note the relation
1
2
·
[
ξ, η+ ± η−

]
= η+ ∓ η− .

Hence

B(ξ, η+ + η−) =
1
2
· B
(
ξ,
[
ξ, η+ − η−

])
=

1
2
· B
(
[ξ, ξ], η+ − η−) = 0 .

This shows that ξ ⊥ kR , so ξ ∈ pR and there exists u ∈ Z \ 0 such that ξ = ξ−u . Since
η+ − η− ∈ kR = aut(Z) , the element v = − 1

2 · (η+ − η−)(u) ∈ Z makes sense. Now

ξ−v =
1
2
·
[
ξ, η+ − η−

]
= η+ + η− 6= 0 .

By assumption, 1
2 · (η+ − η−) acts on s just as iz ∂

∂z does, namely, by multiplication with
±i on p± . Hence,

−ξ−v + iξ−u =
1
2
[
η+ − η−, ξ−u + iξ−v

]
=
[
iz

∂

∂z
, ξ−u + iξ−v

]
= ξ−iu + iξ−iv .

This implies v = −iu . Moreover,

ξ−i{uu∗u} =
1
4
·
[[

ξ−u , ξ−−iu

]
, ξ−u

]
=

1
4
[[

ξ, η+ + η−
]
, ξ
]

=
1
2
·
[
η+ − η−, ξ

]
= ξ−iu .

Therefore, u = {uu∗u} is a non-zero tripotent. �

Remark 2.1.23. By proposition 2.1.22, disc embeddings — or, equivalently, the (H1)-ho-
momorphisms from sl(2, R) to gR in the sense of Satake — can be rephrased in terms of
tripotents and Jordan theory.

2.1.24. It is clear that
aR =

〈
ξ−ek

∣∣ k = 1, . . . , r
〉
⊂ pR

is an Abelian subalgebra, and by [HC56, lem. 8, cor.], it is maximally so. By [Kna02,
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prop. 6.40], gR decomposes as

gR = mR ⊕ aR ⊕∑⊕
α∈∆a

gα
R

where

mR = zkR
(aR) and gα

R =
{

ξ ∈ gR

∣∣ [η, ξ
]

= α(η) · ξ for all η ∈ aR

}
are the restricted root spaces and ∆a = {α ∈ a∗R \ 0 | gα

R 6= 0} is the set of restricted roots.
∆a is an irreducible root system, non-reduced if B is not of tube type.

For any tripotent e , define the Cayley element

γe = exp
(

π
4 · ξ+

e
)
∈ exp ipR .

The Cayley transform Ad(γe) ∈ Int(g) has order 8 . Furthermore, if e and c are orthogonal,
proposition 2.1.19 shows that

[
ξ+

e , ξ+
c
]

= 0 , so γeγc = γe+c .

In particular, for ek = e1 + · · ·+ ek , 1 6 k 6 r , γek = γe1 · · · γek leaves t+R pointwise
fixed, and aR = Ad(γer)

(
it−R
)

. It follows that

∆a ∪ 0 = ∆ ◦Ad(γ−1
er )
∣∣
aR

.

This allows for the definition of a positive system by

∆+
a ∪ 0 = ∆++ ◦Ad(γ−1

er )
∣∣
aR

.

We define a nilpotent subalgebra by setting nR = ∑⊕
α∈∆+

a
gα

R . Then [Kna02, prop. 6.43]
implies that gR = kR ⊕ aR ⊕ nR is the Iwasawa decomposition associated to the choices of
aR and ∆+

a . By [Kna02, th. 6.46], we also have a global decomposition G = KAN as a
direct product of manifolds, where A = exp aR and N = exp nR .

We describe the restricted roots explicitly. Define αk = γk ◦ γ−1
er , i.e.

αk
(
ξ−e`

)
= δk` for all 0 6 k 6 r , 1 6 ` 6 r .

Set, for 0 6 k 6 ` 6 r and ε2 = 1 , αε
k` = α` − ε · αk . Then

∆+
a ⊂ {αε

k` 6= 0 | 0 6 k 6 ` 6 r , ε2 = 1
}

.

More precisely, ∆+
a contains exactly those αε

k` for which

g
αε

k`
R =

{
ξ−u + (2− δk`) ·

(
ek � u∗ − u � e∗k

) ∣∣∣ u ∈ Zk` , k > 0 ⇒ u∗ = ε · u
}

is non-zero, where u∗ = {eru∗er} for u ∈ Z1(er) , cf. [AU03, lem. 5.1.1].
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Lemma 2.1.25. Let 1 6 k 6 ` 6 r . If α ∈ ∆+
a such that α + α−k` ∈ ∆+

a , then

α + α−k` =

α−j` 1 6 j 6 k ,

α−kj k 6 j 6 ` .

Proof. Obvious, since α−ij + α−pq 6∈ ∆a and α+
ij + α−k` ∈ ∆+

a implies j ∈ {k, `} . �

Lemma 2.1.26. For u ∈ Z and δ ∈ aut(Z) = kR ,

[
δ, X±

u
]

= X±
δu .

In particular, Ad(k)(X±
u ) = X±

ku for all k ∈ K .

Proof. We have

2 ·
[
δ, X±

u
]

= ξ−−iδu ±
[
δ, i · u � u∗

]
= ξ−−iδu ± (iδu) � u+ − u � (iδu)∗

= ξ−−iδu ±
1
2
·
[
ξ−u , ξ−−iδu

]
= 2 · X±

δu ,

whence the assertion. �

Theorem 2.1.27. For a tripotent e ∈ Z , the orbit

Oe = Ad(G)(X+
e ) = −Ad(G)(X−

e ) ⊂ Ω−

depends only on the rank of e . Moreover,

rk e 6= rk c ⇒ Oe ∩Oc = ∅ and rk e 6 rk c ⇒ Oe ⊂ Oc .

Finally, for e primitive, we have

Oe = R> ·Ad(K)(X+
e ) =

{
α · X+

c
∣∣ α > 0 , c primitive tripotent

}
and Ω− \ 0 = co

(
Oe
)

.

Proof. By corollary 2.1.20, Oe ⊂ Ω− , and ±X±
e are conjugate. If e and c have equal

rank, k(e) = c for some k ∈ K , by [Loo75, cor. 5.12]. Hence, lemma 2.1.26 shows that
Ad(k)(X+

e ) = X+
c , and hence the orbits are equal.

For the tripotent ek = e1 + · · ·+ ek ,

X+
ek =

k

∑
j=1

X+
ej
∈ ∑⊕

16j6k g
α−jj
R ⊂ ∑⊕

16i6j6k g
α−ij
R .

By lemma 2.1.25, the latter space is AN-invariant. By lemma 2.1.26 X+
ek+1 ∈ Oek if and
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only if this orbit contains some rank k + 1 tripotent. But for ` ∈ K ,

`(ek) = `(e1) + · · ·+ `(ek) where `(ej) , j = 1, . . . , r ,

form a frame. Then the same argument as above applies to the restricted root decompo-
sition associated to the maximal Abelian subspace γ`(er)(t−R) ⊂ pR . Hence, Oek contains
a rank k + 1 tripotent if and only if X+

ek+1 is contained in the AN-orbit of X+
ek . Since this

is not the case, the orbits must be disjoint.
Let k > 2 . For t ∈ R ,

Ad
(
exp

(
tξ−ek

))(
Xek

)
= et · X+

ek
+ X+

ek−1 .

In particular,
X+

ek−1 = limt→−∞ Ad
(
exp tξ−ek

)(
X+

ek

)
∈ Oek .

Now, consider the case of k = 1 . Lemma 2.1.25 implies

[
nR, X+

e1

]
∈
[
nR, gα−11

R

]
= 0 .

Moreover,
[
aR, X+

e1

]
= R · X+

e1
. This proves that

Ad(G)(X+
e1
) = R> ·Ad(K)(X+

e1
) = R> ·

{
X+

c
∣∣ c primitive tripotent

}
,

where the last statement follows from lemma 2.1.26.
Clearly, 0 6∈ C = co

(
Ad(G)(X+

e1
)
)

, C is invariant, and

0∪ C = R> · co
(
Ad(K)(X+

e1
)
)

is a closed cone, because the convex hull of a compact set is compact.
We contend that this cone is Ω− . Since we already know by proposition 2.1.19 that

X+
e1
∈ Ω− , it remains to be shown that iz ∂

∂z ∈ C . We have i · e1� e∗1 = X+
e1
− X−

e1
∈ C

by corollary 2.1.20. Thus, ω− \ 0 ⊂ C , by lemma 2.1.13. But we have already noted
iz ∂

∂z ∈ ω− . �

Remark 2.1.28. Theorem 2.1.27 is contained in [Vin80, th. 2] and [HNØ94, th. III.9]. The
last step of our proof follows [Pan83, lem. 4].

Hilgert, Neeb and Ørsted [HNØ94] show that all nilpotent orbits of convex type
(those contained in the dual of Ω− ) are of the form Oe , e ∈ Z tripotent. By proposi-
tion 2.1.22, this follows in our framework from their refined Jacobson-Morosov theorem
[HNØ94, th. II.10].

2.1.29. Define the dual cone

Ω+ = Ω−∗ =
{

ξ ∈ gR

∣∣ (ξ : Ad(k)(X+
e1
)
)

> 0 for all k ∈ K
}

.
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By duality, Ω+ is a maximal pointed invariant cone.

Lemma 2.1.30. We have Ω− ⊂ Ω+ and ω± = Ω± ∩ tR .

Proof. The vector field iz ∂
∂z is fixed by K . Moreover, for all tripotents e ∈ Z \ 0 ,(

iz
∂

∂z
: X+

e

)
= −B

(
iz

∂

∂z
, i · e � e∗

)
= trZ

(
e � e∗

)
> 0

by lemma 2.1.9. In particular, this is true for e = e1 , so Ω− ⊂ Ω+ . If ξ ∈ ω+ and e ∈ Z
is a tripotent, then

(
ξ : Ad(k)(X+

e )
)

= (ξ : Ad(k)(i · e � e∗)) > 0 for all k ∈ K

since the projection of Ad(K)(i · e � e∗) onto tR is co
(
Wc (i · e � e∗)

)
⊂ ω− by Kostant’s

convexity theorem [Kos74]. Hence, ξ ∈ Ω+ .
Now ω+ ⊂ Ω+ ∩ tR . But

Ω+ ∩ tR ⊂ (Ω− ∩ tR)∗ ⊂ ω−∗ = ω+ ,

so ω+ = Ω+ ∩ tR . Similarly

Ω− ∩ tR ⊂ (Ω+ ∩ tR)∗ = ω+∗ = ω− ,

so ω− = Ω− ∩ tR . �

Remark 2.1.31. By [Pan83, th. 2], the map Ω 7→ Ω ∩ tR is an order-preserving bijection
between the set of closed pointed G-invariant cones Ω ⊂ gR with non-trivial interior
and the closed Wc-invariant cones ω− ⊂ ω ⊂ ω+ . The cones Ω are given by

Ω =
{

ξ ∈ gR

∣∣ pt

(
Ad(G)(ξ)

)
⊂ ω

}
where pt denotes the orthogonal projection onto tR . Moreover, [Pan83, th. 3] shows that
Ω∗ ∩ tR =

(
Ω ∩ tR

)∗ . Moreover, any orbit in Ω◦ has a non-trivial intersection with the
relative interior of Ω ∩ tR .

Lemma 2.1.32. If ξ ∈ Ω+ is regular, it is conjugate to an element of ω+◦ , and hence
contained in Ω+◦ .

Proof. The centraliser g
ξ
R of ξ is a Cartan subalgebra. By [War72, prop. 1.3.4.1], the

subset U = Ad(G)(hR,∗) is open. Since Ω+◦ is dense in Ω+ and ξ ∈ U ∩Ω+ , we find an
element η ∈ Ω+◦ ∩U 6= ∅ .

Since η ∈ Ω+◦ , η is conjugate to an element ζ of tR , necessarily also regular. Then
tR = g

ζ
R , so hR = g

η
R and tR are conjugate. Hence, ξ is conjugate to an element of tR .

The remaining assertions follow from ω+ ∩ tR,∗ = Wc · c+ ⊂ ω+◦ , a consequence of
proposition 2.1.17. �
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2.2 Faces of invariant cones

Given the description of the orbits Oe in theorem 2.1.27, one might naively suspect that
the faces of Ω± have a similar description as in the case of symmetric cones, cf. proposi-
tion 1.3.6. In truth, the convex geometry of the cones Ω± is a little more involved.

2.2.1. In this subsection, e and c shall always denote tripotents, without further men-
tion. Associated to e , the Lie algebra gR has a natural Z-grading

ge
R[k] = ker

(
ad ξ−e − k

)
for all k ∈ Z .

By [Loo75, lem. 9.14], ge
R[k] = 0 unless |k| 6 2 . Moreover,

ge
R[0] = ke

R ⊕
{

ξ−u
∣∣ u ∈ Z0(e)⊕ X1(e)

}
where ke

R =
{

δ ∈ kR

∣∣ δe = 0
}

. Furthermore,

ge
R[±1] =

{
ηe,±

u
∣∣ u ∈ Z1/2(e)

}
and ge

R[±2] =
{

ηe,±
u
∣∣ u ∈ iX1(e)

}
where ηe,±

u = ξ−u ± 1
2 ·
[
ξ−e , ξ−u

]
. In particular, ±2 · X±

e = ηe,±
ie .

From the restricted root decomposition of gR (2.1.24) it is clear that

ke
R =

(
kR,0(e)⊕ kR,1(e)

)
+ mR

where we recall kR,0(e) = aut Z0(e) and kR,1(e) = aut X1(e) , the set of algebra deriva-
tions of the formally real Jordan algebra X1(e) . The sum with mR is usually not direct.

By a parabolic subalgebra (or parabolic for short) we mean a subalgebra of gR that is
its own normaliser and contains a maximal solvable subalgebra. Then it is clear that
qe

R = ge
R[0, 1, 2] is parabolic. To wit, aR ⊕ nR ⊂ qe

R if ej 6 e or ej ⊥ e for all j = 1, . . . , r .
In fact, by [Loo75, prop. 9.21], qe

R is a maximal proper parabolic.
Let ne

R = ge
R[1, 2] be the nilpotent part of qe

R . Recall that a generalised Heisenberg
algebra hR is simply a step 2 nilpotent Lie algebra, i.e.

[
hR, hR

]
⊂ z(hR) .

Lemma 2.2.2. The following map is an isomorphism of Lie algebras:

(u, v) 7→ ηe,+
u+v : he

R = Z1/2(e) n iX1(e) → ne
R

where he
R is a generalised Heisenberg algebra with bracket relations

[
(u, v), (u′, v′)

]
=
(
0, {u′u∗e} − {uu′∗e}

)
for all u, u′ ∈ Z1/2(e) , v, v′ ∈ iX1(e) .

Proof. If k = 1, 2 , then [
ge

R[k], ge
R[2]

]
⊂ ge

R[k + 2] = 0 .
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Thus, ge
R[2] is central in ne

R .

For u, v ∈ Z1/2(e) ,
[
ηe,+

u , ηe,+
v
]
∈ ge

R[2] and hence equals ηe,+
w for some w ∈ iX1(e) .

Since ηe,+
w (0) = ξ−w (0) = w ,

w =
[
ηe,+

u , ηe,+
v
]
(0) =

1
2
·
[
ξ−u ,

[
ξ−e , ξ−v

]]
(0) +

1
2
·
[[

ξ−e , ξ−u
]
, ξ−v

]
(0)

= {ve∗u} − {ev∗u}+ {eu∗v} − {ue∗v} = {vu∗e} − {uv∗e} .

This proves the required bracket relation. �

Remark 2.2.3. The map in lemma 2.2.2 is related to Ad(γe) , the Cayley transform as-
sociated to e . It identifies ge

R[2] with constant vector fields, and ge
R[1] with certain affine

vector fields, cf. [Upm85, cor. 21.17].

It is interesting to note that the product ◦ of the formally real Jordan algebra X1(e)
can be expressed in terms of bracket relations as

ηe,+
i·(u◦v) =

1
2
·
[
ξ−u , ηe,+

iv

]
for all u, v ∈ X1(e) .

2.2.4. We define

he(u, v) = {uv∗e} ∈ Z1(e) for all u, v ∈ Z1/2(e) .

Then [Loo75, 10.4] shows that he satisfies

he(u, v)∗ = he(v, u) and he(u, u) ∈ Ω1(e)

where Ω1(e) is the closed cone of squares in the formally real Jordan algebra X1(e) .
Moreover, he(u, u) = 0 if and only if u = 0 . We shall call such an he an Ω1(e)-positive
Hermitian map.

Associated to he is a skew-symmetric map qe , given by

qe(u, v) = Im he(u, v) = i · {vu∗e} − {uv∗e}
2

∈ X1(e) for all u, v ∈ Z1/2(e) .

Hence, the bracket of he
R can be expressed as

[
(u, v), (u′, v′)

]
=
(
0,−2i · qe(u, u′)

)
for all (u, v), (u′, v′) ∈ Z1/2(e) n iX1(e) .

Lemma 2.2.5. For any x ∈ Ω1(e)◦ , the form

(u, v) 7→ (qe(iu, v) | x) : Z1/2(e)× Z1/2(e) → R

is positive symmetric. In particular, z(he
R) = iX1(e) .
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Proof. We have

qe(iu, v) =
i
2
·
(
{v(iu)∗e} − {(iu)v∗e}

)
=
{vu∗e}+ {uv∗e}

2
.

In particular, the form is symmetric. For u = v , we find

(qe(iu, u) | x) = (he(u, u) | x) > 0 ,

since Ω1(e) is self-dual. Since x ∈ Ω1(e)◦ , the face Ω1(e)∩ x⊥ dual to the face generated
by x is 0 . Hence, the form is non-degenerate.

We know that z(he
R) ⊂ iX1(e) , and if u ∈ Z1/2(e) \ 0 , then

[
(iu, 0), (u, 0)

]
=
(
0,−2iqe(iu, u)

)
where (qe(iu, u) | e) > 0 . So, equality follows. �

Remark 2.2.6. Recall (1.2.2) that iX1(e) = X1(ie) is a formally real Jordan algebra with
the product induced by the tripotent ie . Therefore, the centre of the generalised Heisen-
berg algebra he

R is a formally real Jordan algebra such that the product induces an iΩ1(e)-
positive symmetric form (in the obvious sense). Such Lie algebras he

R are called conal
Heisenberg algebras by Hilgert, Neeb and Ørsted, and are the subject of study in [HNØ96].

Since he
R = ne

R is nilpotent, the exponential map is an isomorphism onto the corre-
sponding generalised Heisenberg group He = Z1/2(e) n iX1(e) with composition law

(u, v) · (u′, v′) =
(

u + u′, v + v′ +
{u′u∗e} − {uu′∗e}

2

)
for all u, u′ ∈ Z1/2(e) , v, v′ ∈ iX1(e) .

The classical Heisenberg group (with one-dimensional centre) corresponds to the
special case of a primitive tripotent e .

The groups He are not the most general kind of generalised Heisenberg groups that
can occur. They correspond to symmetric Siegel domains D (i.e. D is biholomorphically
equivalent to a bounded symmetric domain B ), whereas the general case corresponds
to homogeneous Siegel domains (of type II) which are not necessarily symmetric.

2.2.7. Let Ω1(e) be the closed cone of squares in the formally real Jordan algebra X1(e) .
iΩ1(e) ⊂ iX1(e) ⊂ he

R can be thought of a subset of ge
R[2] ⊂ gR under the identification

from lemma 2.2.2.
Applying this consideration to −e , we see that Ω1(e) ⊂ X1(e) = X1(−e) maps

isomorphically into ge
R[−2] . We denote its image by iΩ1(−e) .

Proposition 2.2.8. We have Ω± ∩ he
R = iΩ1(e) .

Proof. Let ε2 = 1 . The intersection Ω̃ = Ωε ∩ he
R is a closed pointed cone invariant

under inner automorphisms. Hence, [HNØ96, lem. I.13] implies that Ω̃ ⊂ ge
R[2] . On



52 2. Ol’shanskiı̆ domains and their boundaries

the other hand, X+
e ∈ Ω̃ , and this element corresponds to the unit e of the formally real

Jordan algebra X1(e) under the isomorphisms from lemma 2.2.2 and 1.2.2. Identifying
Ω̃ with its image in X1(e) , this implies

Ω1(e) ⊂ Ω̃ and Ω̃∗ ⊂ Ω1(e)∗ = Ω1(e) .

Since Ω̃ is pointed, the interior of Ω̃∗ is non-void. Hence, Ω̃∗ contains an interior element
x ∈ Ω1(e)◦ . Thus,

Ω1(e)◦ = GL(Ω1(e)).x ⊂ Ω̃∗ ⊂ Ω1(e) .

It follows that Ω̃∗ = Ω1(e) , and by duality, Ω̃ = Ω1(e) . �

Lemma 2.2.9. For u ∈ Z1/2(e)⊕ iX1(e) and c 6 e ,

(
ηe,+

u : X−
c
)

= 0 and
(
ηe,−

u : X−
c
)

= 4i trZ
(
u � c∗ − c � u∗

)
.

Likewise, if e 6 c ,

(
ηe,−

u : X+
c
)

= 0 and
(
ηe,+

u : X+
c
)

= 4i trZ
(
c � u∗ − u � c∗

)
.

Proof. Note X+
−c = −X−

c and η−e,+
u = −ηe,−

u . Hence, the second set of formulae follows
from the first. Now, −X−

c = 1
2 · ξ−ic + i · c � c∗ . This implies

−
(
ηe,±

u : X−
c
)

= ∓1
2
· B
([

ξ−e , ξ−u
]
, i · c � c∗

)
+

1
2
· B
(
ξ−u , ξ−ic )

= ∓1
2
· B
(
ξ−u ,

[
i · c � c∗, ξ−e

])
+

1
2
· B
(
ξ−u , ξ−ic )

= ∓1
2
· B
(
ξ−u , ξ−ic ) +

1
2
· B
(
ξ−u , ξ−ic )

which is 0 or
B
(
ξ−u , ξ−ic ) = −4i trZ

(
u � c∗ − c � u∗

)
,

by lemma 2.1.9, proving the claim. �

Lemma 2.2.10. Let Ω ⊂ gR be a closed cone invariant under Ad(exp tξ−e ) for all t ∈ R .
If ξ = ∑`

j=k ξ j ∈ Ω where ξ j ∈ ge
R[j] , then ξk, ξ` ∈ Ω .

Proof. We have

Ad
(
exp tξ−e

)
(ξ) =

`

∑
j=k

ejt · ξ j ∈ Ω for all t ∈ R .

In particular,
ξk = limt→∞ ekt ·Ad

(
exp−tξ−e

)
(ξ) ∈ Ω

and
ξ` = limt→∞ e−`t ·Ad

(
exp tξ−e

)
(ξ) ∈ Ω ,

proving the lemma. �
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2.2.11. Define a convex cone F±e contained in Ω± by F±e = Ω± ∩
(
X−

e
)⊥ .

Proposition 2.2.12. We have

F±e = Ω± ∩
(
X−

e
)⊥ = Ω± ∩ qe

R .

In particular, F±e is an exposed face of Ω± .

Proof. If e = 0 , then X−
e = 0 , F±e = Ω± , and qe

R = gR . W.l.o.g., we may assume
rk e > 0 . From corollary 2.1.20, we know that −X−

e ∈ Ω− ⊂ Ω+ , so
(
X−

e
)⊥ is a

supporting hyperplane for Ω± , and F±e is an exposed face.
Since they are eigenspaces of a symmetric endomorphism (ϑ(ξ−e ) = −ξ−e ), the de-

grees of the grading are mutually orthogonal. In particular, qe
R ⊥ X−

e ∈ ge
R[−2] .

For the converse, let ξ ∈ F±e , and write ξ = ∑2
j=−2 ξ j where ξ j ∈ ge

R[j] . Since X−
e

is an eigenvector of ad ξ−e , F±e is invariant under Ad(exp tξ−e ) for all t ∈ R , so we can
employ lemma 2.2.10.

In particular, ξ−2 ∈ F±e . Assume ξ−2 6= 0 . Then ξ−2 = ηe,−
u for some non-zero

u = iv ∈ iX1(e) . By proposition 2.2.8, v ∈ Ω1(e) . Since we have e ∈ Ω1(e)◦ , and Ω1(e)
is pointed and self-dual, (v | e) > 0 . By lemma 2.2.9,

(
ξ−2 : X−

e
)

= 4i · trZ
(
u � e∗ − e � u∗

)
= −8n

k
· (v | e) < 0

where k = rk e . Contradiction! We deduce ξ−2 = 0 , so ξ−1 ∈ Ω± as above. But then
ξ−1 = 0 by proposition 2.2.8. �

We have seen that the exposed face F±e is contained in the maximal parabolic qe
R , and in

particular, invariant under inner automorphisms of qe
R . However, this is not the defini-

tive statement on F±e .
Namely, the vector subspace of qe

R generated by F±e is a proper ideal of qe
R . To de-

termine it explicitly, and to gain more insight into the structure of F±e , we need to study
ge

R[0] in greater detail.

2.2.13. In the following, we assume, as we may, that the frame e1, . . . , er is such that
ej 6 e for j 6 k and ej ⊥ e for j > k , in other words,

e = ek = e1 + · · ·+ ek .

Recall mR = zkR
(aR) where aR = 〈ξ−ej

| j = 1, . . . , r〉 . Let

gR,0(e) = kR,0(e)⊕ pR,0(e) = aut Z0(e)⊕
{

ξ−u
∣∣ u ∈ Z0(e)

}
and

gR,1(e) = kR,1(e)⊕ pR,1(e) = aut X1(e)⊕
{

ξ−u
∣∣ u ∈ X1(e)

}
.
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Then gR,0(e) is the Lie algebra of the facial subgroup Ge , i.e. the set of complete holo-
morphic vector fields on the circled bounded symmetric domain B0(e) .

Lemma 2.2.14. We have gR,1(e) = Ad(γ−1
e )
(
gl Ω1(e)

)
, and a decomposition

ge
R[0] = gR,0(e)⊕me

R ⊕ gR,1(e)

where me
R ⊂ mR = zkR

(aR) is a compact subalgebra. All the factors in the decomposition
are ideals of ge

R[0] .

Proof. We know from 2.2.1 that there exists a subspace

me
R = ke

R ∩
(
kR,0(e)⊕ kR,1(e)

)⊥
of mR such that

ge
R[0] = gR,0(e)⊕me

R ⊕ gR,1(e) .

If u ∈ X1(e) ,

1
4
·
[
ξ+

e , ξ−u
]

=
i
4
·
[
ξ−−ie, ξ−u

]
=

1
2
·
(
e � u∗ + u � e∗

)
= u � e∗ = Mu .

Hence, by [Upm85, lem. 21.16],

Ad(γ−1
e )(2 · Mu) = ξ−u and Ad(γe)(δ) = δ for all δ ∈ aut X1(e) .

This proves that
gR,1(e) = Ad(γ−1

e )
(
gl Ω1(e)

)
,

in particular, this is a Lie algebra. The Peirce rules show that it commutes with gR,0(e) .
Since mR leaves the restricted root spaces invariant, the orthogonal complement of me

R

is an ideal of ge
R[0] . Hence, so is me

R . �

Remark 2.2.15. Note that the factor me
R in the decomposition is actually independent

of the choice of frame.

2.2.16. By [Sat80, prop. 4.4, cor. 4.5], each of the ge
R[0]-modules

ge
R[1] ∼= Z1/2(e) and ge

R[2] ∼= iX1(e)

is trivial or irreducible. Moreover, if non-zero, ge
R[1] is faithful. Let leR = gR,0(e)⊕me

R .

Proposition 2.2.17. The algebra leR commutes with iX1(e) . On Z1/2(e) , the action is

δ.v = δ(v) and ξ−u .v = −{uv∗e}

for all δ ∈ kR,0(e)⊕me
R , u ∈ Z0(e) , and v ∈ Z1/2(e) . Moreover,

qe(ξ.u, v) = −qe(u, ξ.v) for all ξ ∈ leR , u, v ∈ Z1/2(e) .



2.2. Faces of invariant cones 55

Proof. We have

[
δ, ηe,+

u
]

= ηe,+
δu for all δ ∈ kR , u ∈ Z1/2(e) n iX1(e) .

Moreover, δ(u) = 0 if δ ∈ kR,0(e) = aut Z0(e) and u ∈ iX1(e) (Peirce rules). For all
derivations δ ∈ ke

R , δ(e) = 0 . In particular,
[
me

R, X+
e
]

= 0 . By lemma 2.2.14, me
R is an

ideal, and thence commutes with gR,0(e)⊕ gR,1(e) . By irreducibility of ge
R[2] , the vector

X+
e ∈ ge

R[2] is cyclic, so we find

[
me

R, ge
R[2]

]
=
[
me

R,
[
ge

R[0], X+
e
]]

=
[
me

R,
[
gR,0(e)⊕ gR,1(e), X+

e
]]
⊂
[
ge

R[0],
[
me

R, X+
e
]]

= 0 .

Furthermore, for all u ∈ Z0(e) , v ∈ Z1/2(e)⊕ iX1(e) ,

[
ξ−u , ηe,+

v
]
(0) = −{ev∗u}+ {ve∗u} = −{uv∗e} .

If v ∈ iX1(e) , this is zero. In particular, for ξ ∈ leR , u, v ∈ Z1/2(e) ,

−2i · qe(ξ.u, v) =
[[

ξ, ηe,+
u
]
, ηe,+

v
]
(0)

=
[
ξ,
[
ηe,+

u , ηe,+
v
]]

(0)−
[
ηe,+

u ,
[
ξ, ηe,+

v
]]

(0) = 2i · qe(u, ξ.v)

by the Jacobi identity. �

2.2.18. By the preceding proposition 2.2.17, the semi-direct products

leR n he
R and gR,0(e) n he

R

make sense. Moreover, the reductive factors leR and gR,0(e) leave the ’vector-valued sym-
plectic form’ qe invariant, i.e. they act as ’generalised symplectic Lie algebras’. For this
reason, leR n he

R and gR,0(e) n he
R will be called generalised Jacobi algebras.

By lemma 2.2.14, the generalised Jacobi algebras leR n he
R and gR,0(e) n he

R are ideals
of the parabolic qe

R .

Lemma 2.2.19. Under the assumption from 2.2.13, tR ∩mR = t+R , and

te
R[0] = tR ∩ ge

R[0] = 〈i · ej � e∗j | j = k + 1, . . . , r〉 ⊕ t+R ⊂ leR .

The subalgebras ge
R[0] , gR,0(e) , and me

R of gR are tR-invariant. Moreover,

tR,0(e) = tR ∩ gR,0(e) and t+R ∩me
R

are Cartan subalgebras of, respectively, gR,0(e) and me
R .



56 2. Ol’shanskiı̆ domains and their boundaries

Proof. Since
[
δ, ξ−ej

]
= ξ−δej

for all j = 1, . . . , r and δ ∈ kR , we have

t+R =
{

δ ∈ tR

∣∣ δej = 0 , j = 1, . . . , r
}
⊂ mR .

Since {ej e∗j ej } = ej 6= 0 , tR ∩mR ⊂ t+R .

Moreover, i · ej � e∗j ∈ kR,0(e) if j > k , and if j 6 k ,

[
δ, i · ej � e∗j

]
= i · (δej) � e∗j + i · ej � (δej)∗ = 0 for all δ ∈ ke

R

and [
ξ−u , i · ej � e∗j

]
= −ξ−i{ej e∗j u} = 0 for all u ∈ Z0(e) .

We conclude that leR is tR-invariant, and that

te
R[0] = 〈i · ej � e∗j | j = k + 1, . . . , r〉 ⊕ t+R ⊂ leR .

In addition, by [Bou68, ch. VIII, § 3.1, prop. 3], tR,0(e) is a Cartan subalgebra of gR,0(e) ,
and me

R ∩ t+R is a Cartan subalgebra of me
R . �

2.2.20. Let Ω−
0 (e) denote the minimal cone of the Lie algebra gR,0(e) , cf. definition 1.2.5.

Likewise, let Ω+
0 (e) ⊂ gR,0(e) be the dual cone of Ω−

0 (e) .

Then, if we set ω±
0 (e) = Ω±

0 (e) ∩ tR,0(e) , lemma 2.1.30 shows that

ω+
0 (e) = ω−

0 (e)∗ and ω−
0 (e) =

〈
iHα

∣∣ α ∈ ∆++
n , gα ⊂ g0(e)

〉
.

Here, of course, g0(e) denotes the complexification of gR,0(e) , and the set

{
α ∈ ∆++

n
∣∣ gα ⊂ g0(e)

}
coincides with the set of positive non-compact roots for gR,0(e) , since this algebra is
tR-invariant and ϑ-invariant, cf. [Bou68, ch. VIII, § 3.1, prop. 3].

2.2.21. For what follows, recall that a Lie algebra is said to be reductive if its adjoint
representation is semi-simple. A Lie algebra a is quasi-Hermitian, if a = zb(z(a ∩ b)) for
some maximal compact subalgebra b ⊂ a . If a is simple and non-compact, it is called
Hermitian if some maximal compact subalgebra has non-trivial centre. A reductive Lie
algebra a is quasi-Hermitian if and only if it is the direct sum of a maximal compact ideal
and Hermitian simple ideals.

Lemma 2.2.22. The centre of kR,1(e) is trivial. In particular, if rk e > 2 , then the derived
algebra gR,1(e)′ =

[
gR,1(e), gR,1(e)

]
is a non-compact, non-Hermitian simple Lie algebra.

If rk e 6 1 , gR,1(e) = R · ξ−e is Abelian.

Proof. By lemma 2.2.14, Ad(γe)(gR,1(e)) = gl Ω1(e) . We know from 1.3.2 that gl Ω1(e)
is reductive with centre R · Me , and the derived algebra gl Ω1(e)′ is simple since X1(e)
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is simple, whenever e is non-zero. If rk e > 2 , there exists a non-trivial idempotent
c ∈ X1(e) , 0 < c < e . Then Mc ⊂ gl Ω1(e)′ generates an unbounded 1-parameter group,
so gl Ω1(e)′ is non-compact.

Let δ ∈ kR,1(e) = aut X1(e) be central. Since δe = 0 , for all u ∈ X1(e) ,

0 =
[
δ,
[
ξ−u , ξ−e

]]
=
[
ξ−δu, ξ−e

]
+
[
ξ−u , ξ−δe

]
= 2 · (δu) � e∗ = 2 · Mδu .

This implies δu = 0 , so δ = 0 . �

Proposition 2.2.23. We have

Ω± ∩ ge
R[0] = Ω±

0 (e) and ω± ∩ ge
R[0] = ω±

0 (e) .

In particular,
F±e = Ω± ∩

(
gR,0(e) n he

R

)
.

Proof. If e = 0 , there is nothing to prove. W.l.o.g. we assume e 6= 0 . From lemma 2.2.14,
we have

ge
R[0] = gR,0(e)⊕me

R ⊕ gR,1(e)

where me
R ⊂ mR = zkR

(aR) is a compact reductive ideal of gR,0(e) .

Now, gR,0(e)⊕me
R is tR-invariant by lemma 2.2.19. Since kR ⊥ pR and

(
i · ej � e∗j : δ

)
= −2i · trZ

(
(δej ) � e∗j

)
= 0 for all δ ∈ kR ∩ ge

R[0] , j 6 k ,

the orthogonal projection pt onto tR leaves ge
R[0] invariant. Thus,

pt

(
Ω− ∩ ge

R[0]
)

= ω− ∩ ge
R[0] ⊂ te

R[0] .

From the lemma 2.2.19 and lemma 2.1.13, ω− ∩ gR,0(e) = ω−
0 (e) ⊂ tR,0(e) . Hence,

Ω− ∩ gR,0(e) = Ω−
0 (e) , by [Pan83, th. 2].

Let Ω̃± = Ω± ∩ ge
R[0] . Then Ω̃± is closed, pointed, and invariant under inner auto-

morphisms. In particular, a± = Ω̃±− Ω̃± is an ideal of ge
R[0] . Since ge

R[0] is reductive, so
is a± . By [Nee96, prop. II.2 and lem. II.4], a± is quasi-Hermitian. Lemma 2.2.22 implies
a± ∩ gR,1(e) = 0 , since a± has neither proper non-compact Abelian nor non-Hermitian
simple ideals. We conclude

Ω̃± ⊂ a± ⊂ gR,0(e)⊕me
R .

Let ξ ∈ ω+ ∩ me
R . Seeking a contradiction, assume ξ 6= 0 . By definition of ω+ ,

there exists α ∈ ∆++
n such that α(ξ) > 0 . Since

[
ξ−e , ξ

]
= 0 , the one-dimensional root

space gα ⊂
[
ξ, p+] ⊂ p+ is ad ξ−e -invariant, and hence contained ge[k] , for some k . Since
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[
ξ−e , gα

]
⊂ gα and [p, p] ⊂ k , necessarily k = 0 . But me is an ideal of ge[0] , so

gα ⊂
[
me, gα

]
⊂ me ∩ p+ = 0 ,

a contradiction. Therefore, ω+ ∩me
R = 0 . Since

tR ∩
(
gR,0(e)⊕me

R

)
= tR,0(e)⊕me

R ∩ t+R ,

the projections pt and pme commute, and

pme
(
ω± ∩ ge

R[0]
)

= ω± ∩me
R = 0 .

Consequently, ω− ∩ ge
R[0] = ω−

0 (e) , and this entails Ω̃− = Ω−
0 (e) .

As for the dual cone, clearly Ω+ ∩ ge
R[0] ⊂ Ω−

0 (e)∗ = Ω+
0 (e) . In particular, we have

the inclusion ω+ ∩ ge
R[0] ⊂ ω+

0 (e) . Conversely, if α ∈ ∆++
n is non-vanishing on ω+

e (0) ,
we have seen above that gα ⊂ p+ ∩ ge[0] . If gα 6⊂ g0(e) , then, since gα is one-dimensional
and intersects me trivially, gα ⊂ g1(e) . Since α(t0(e)) 6= 0 ,

gα ⊂
[
t0(e), g1(e)

]
⊂
[
g0(e), g1(e)

]
= 0 ,

which is a contradiction. So, gα ⊂ g0(e) . By 2.2.20, this means that α is a root for gR,0(e) .
We have established that all −iα , α ∈ ∆++

n , are > 0 on ω+
0 (e) . Hence,

ω+
0 (e) ⊂ ω+ ∩ ge

R[0] ,

and equality follows. Now, [Pan83, th. 2] shows that Ω+ ∩ ge
R[0] = Ω+

0 (e) . �

Remark 2.2.24. It is appropriate to acknowledge that Neeb’s result [Nee00b, prop. I.11]
(also available as [Nee00a, prop. VIII.3.30]) is quite similar to proposition 2.2.23. The
latter part our proof owes much to the argument found there.

Now we have gained more insight into the structure of the exposed faces F±e , we can
consider more general faces.

Lemma 2.2.25. Let e > c be tripotents. Then

he
R ∩ qc

R =
{

ηe,+
u
∣∣ u ∈ iX1(e− c)⊕ Z1/2(e) ∩ Z0(c)⊕ Z1/2(e) ∩ Z1/2(c)⊕ iX1(c)

}
.

In terms of the grading gc
R[j] , the first two factors correspond to j = 0 , and the other

two to j = 1 and j = 2 , respectively.

Proof. Note first that [ξ−e , ξ−c ] = 2
(
e � c∗ − c � e∗

)
= 2

(
c � c∗ − c � c∗

)
= 0 , so the

ad ξ−e -eigenspaces are ad ξ−c -invariant and vice versa. Thus,

he
R ∩ qc

R = ∑⊕
λ=1,2 , µ=0,1,2 ge

R[λ] ∩ gc
R[µ] .
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Thus, we may consider the levels of the gradings individually and refer to the explicit
form of the decomposition.

First, let us consider the case µ > 0 . The equation ηe,+
u = ηc,+

v gives, by Cartan
decomposition, ξ−u = ξ−v , and thus u = v . Consequently, the equality of the kR compo-
nents is equivalent to

(e− c) � u∗ + u � (e− c)∗ = 0 .

If (λ, µ) = (1, 2) , then u ∈ Z1/2(e) ∩ iX1(c) = 0 . If we have that (λ, µ) = (2, 1) , then
u ∈ iX1(e) ∩ Z1/2(c) . Hence

0 = {(e− c)u∗e} − {u(e− c)∗e} = −u− {cu∗c} − {cu∗e− c} − 1
2 · u = − 3

2 · u ,

because {cu∗c} ∈ Z3/2(c) = 0 and

0 = {(e− c)u∗c} − {u(e− c)∗c} = {cu∗(e− c)} ,

so u = 0 . In case (λ, µ) = (1, 1) , we have u ∈ Z1/2(e) ∩ Z1/2(c) = Z0(e− c) ∩ Z1/2(c) ,
and conversely, this implies the condition explicated above for the equality of the kR

components. If (λ, µ) = (2, 2) , we have u ∈ iX1(e) ∩ iX1(c) = iX1(c) . Then again the
Peirce rules give the converse inclusion.

Consider now the case µ = 0 . Then we need to determine the solutions of the
equation ηe,+

u = ξ−v + δ where v ∈ X1(c)⊕ Z0(c) and δ ∈ kR is such that δ(c) = 0 . This
equality is equivalent to u = v and

0 = {eu∗c} − {ue∗c} = {eu∗c} − {uc∗c} .

If λ = 1 , we point out that X1(c) ⊂ Z1(e) ⊥ Z1/2(e) , so u ∈ Z1/2(e) ∩ Z0(c) . In this
case, the kR condition is always satisfied. If λ = 2 , u ∈ iX1(e) ∩ (Z0(c)⊕ X1(c)) write
u = u0 + u1 where u0 ∈ Z0(c) and u1 ∈ X1(c) . Then

−u1 − u0 = −u = {eu∗e} = {eu1
∗e}+ {eu0

∗e} = {cu1
∗c}+ {(e− c)u0

∗(e− c)}
= u1 + {(e− c)u0

∗(e− c)} .

By the Peirce rules, {(e− c)u0
∗(e− c)} ∈ Z0(c) , so we read off from the decomposition

that u1 = −u1 = 0 and

u = u0 = −{(e− c)u0
∗(e− c)} = {(e− c)u∗(e− c)} ,

which means precisely that u ∈ iX1(e− c) . By the Peirce rules, this conversely implies
the kR condition. This completes our proof. �

2.2.26. Denote ge
R = gR,0(e) n he

R . By a flag f of tripotents we mean a decreasing
sequence c1 > · · · > cm of tripotents. If f = (c1 > · · · > cm > 0) is such a flag, we set
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cm+1 = 0 and define

h
f
R =

{
ηc1,+

u

∣∣∣∣ u ∈
m

∑
j=1

⊕Z1/2(c1) ∩ Z1/2(cj) ∩ Z0(cj+1)⊕
m

∑
j=1

⊕iX1(cj − cj+1)
}

.

Proposition 2.2.27. Let f = (c1 > · · · > cm > 0) be a flag of non-zero tripotents. Then

m⋂
j=1

g
cj
R = gR,0(c1) n h

f
R .

In particular, h
f
R is a gR,0(c1)-invariant subalgebra of gR .

Proof. Once the equation is proven, the subspace h
f
R turns out to be the nilpotent radical

of the intersection.

We prove the equation by induction on the length m of the flag f . If m = 1 , the
statement is trivial, and if m = 2 , it follows from lemma 2.2.25.

So, let m > 2 and the statement be true for all 1 6 m′ < m . Setting ej = cj − cj+1

for all 1 6 j 6 m , we find that e = (ej) is a system of mutually orthogonal tripotents, so
the vector fields ξ−ej

commute. The vector fields ξ−cj
have the same span and hence also

commute. Denote their joint eigenspaces by gc1,...,cm
R [λ1, . . . , λm] .

The inductive hypothesis implies that

m−1⋂
j=1

g
cj
R = gR,0(c1) n

2

∑
i=1

⊕ m−1

∑
j=1

⊕
g

c1,...,cm−1
R [i, . . . , i︸ ︷︷ ︸

j

, 0, . . . , 0]

where g
c1,...,cm−1
R [i, . . . , i, 0, . . . , 0] (for j positive eigenvalues) consists of the ηc1,+

u with

u ∈



Z1/2(c1) ∩ Z1/2(cj) ∩ Z0(cj+1) i = 1 , 0 6 j < m− 1 ,

Z1/2(c1) ∩ Z1/2(cm−1) i = 1 , j = m− 1 ,

iX1(cj − cj+1) i = 2 , 0 6 j < m− 1 ,

iX1(cm−1) i = 2 , j = m− 1 .

We need to determine the intersection of these with gcm
R [λ] where λ = 0, 1, 2 . To that

end, observe

g
c1,...,cm−1
R [i, . . . , i︸ ︷︷ ︸

j

, 0, . . . , 0] ∩ gcm
R [λ] ⊂

g
cm−1,cm
R [0, λ] 0 6 j < m− 1 ,

g
cm−1,cm
R [i, λ] j = m− 1 ,

for all i = 1, 2 and λ = 0, 1, 2 . The m = 2 case shows that this is non-zero only if λ = 0
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or j = m− 1 and i = λ . The assertion follows, once we notice that

Z1/2(c1) ∩ Z1/2(cm−1) ∩ Z1/2(cm) = Z1/2(c1) ∩ Z1/2(cm) ,

which follows from lemma 2.2.28 below. �

Lemma 2.2.28. Let c1 > c2 > c3 be tripotents. Then

Z1/2(c1) ∩ Z1/2(c2) ∩ Z1/2(c3) = Z1/2(c1) ∩ Z1/2(c3) ,

and in particular, this is independent of c2 .

Proof. Let e1 = c1 − c2 , e2 = c2 − c3 and e3 = c3 . Then e1, e2, e3 are mutually orthogonal
tripotents, and we may consider the associated joint Peirce decomposition. We have
cj = e1 + · · ·+ ej , j = 1, 2, 3 , so [Loo75, th. 3.14] gives

Z1/2(c1) = Z10 ⊕ Z20 ⊕ Z30 , Z1/2(c2) = Z20 ⊕ Z30 ⊕ Z21 ⊕ Z31 ,

Z1/2(c3) = Z30 ⊕ Z31 ⊕ Z32 .

Therefore, both sides of the equation are equal to Z30 , which proves our claim. �

2.2.29. Let f = (c1 > · · · > cm > 0 = cm+1) be a flag of tripotents. Define

g
f
R = gR,0(c1) n h

f
R =

m⋂
j=1

(
gR,0(cj) n h

cj
R

)
.

More generally, for I ⊂ {1, . . . , m} , define

g
f ,I
R = gR,0(c1) n h

f ,I
R

where

h
f ,I
R =

{
ηc1,+

u

∣∣∣∣ u ∈ ∑
j∈I

⊕Z1/2(c1) ∩ Z1/2(cj) ∩ Z0(cj+1)⊕∑
j∈I

⊕iX1(cj − cj+1)
}

.

It is easy to see that h
f ,I
R is a Heisenberg type Lie algebra whose centre corresponds to

the sum of the Peirce-1-spaces occuring in the above definition. To prove its gR,0(c1)-
invariance, we give the following description of g

f ,I
R .

Proposition 2.2.30. Let f = (c1 > · · · > cm > 0 = cm+1) be a flag of tripotents and
I ⊂ {1, · · · , m} . Then

g
f ,I
R = g

f
R ∩

⋂
j 6∈I

q
cj+1−cj
R .

In particular, h
f ,I
R is the nilpotent radical of the Lie algebra g

f ,I
R .

Proof. We prove our claim by decreasing induction on #I . For #I = m , the statement



62 2. Ol’shanskiı̆ domains and their boundaries

is clear. It remains to prove

q
ck+1−ck
R ∩ g

f ,I
R = g

f ,I\k
R whenever k ∈ I .

Since ξ−ck+1−ck
= ξ−ck+1

− ξ−ck
and the ξ−cj

commute, we find

q
ck+1−ck
R ∩ g

f ,I
R = gR,0(c1)⊕∑

`∈I

⊕ 2

∑
i=1

⊕ 2

∑
j=0

⊕
g

ck+1−ck
R [j] ∩ gc1,··· ,cm

R [i, . . . , i︸ ︷︷ ︸
`

, 0, . . . , 0]

= gR,0(c1)⊕∑
`∈I

⊕ 2

∑
i=1

⊕
g

ck+1−ck
R [0] ∩ gc1,··· ,cm

R [i, . . . , i︸ ︷︷ ︸
`

, 0, . . . , 0] ,

because the eigenvalues λj of ξ−cj
on g

f
R always satisfy λj > λj+1 . Now,

g
ck+1−ck
R [0] ∩ gc1,··· ,cm

R [i, . . . , i︸ ︷︷ ︸
`

, 0, . . . , 0] =


gc1,...,cm

R [i, . . . , i︸ ︷︷ ︸
`

, 0, . . . , 0] ` < k or k + 1 < ` ,

0 ` = k

for all i = 1, 2 , since to lie in g
ck+1−ck
R [0] means that λk = λk+1 . But

2

∑
i=1

⊕
gc1,...,cm

R [i, . . . , i︸ ︷︷ ︸
k

, 0, . . . , 0] = h
f ,k
R ,

which proves the assertion. �

2.2.31. Let f = (c1 > · · · > cm > 0 = cm+1) be a flag of tripotents and I ⊂ {1, . . . , m} .
Consider the subgroup H f ,I of He associated to he,c

R . Then the subgroup of G associated
to g

f ,I
R = gR,0(c1) n h

f ,I
R is the semi-direct product G f ,I = Gc1 n H f ,I , cf. [Loo75, th. 9.15].

Now, set

F±f ,I = Ω± ∩
m⋂

j=1

(
X−

cj

)⊥ ∩⋂
j 6∈I

(
X+

cj−cj+1

)⊥ .

Clearly, this is an exposed face of Ω± .

Corollary 2.2.32. Let f = (c1 > · · · > cm > 0 = cm+1) be a flag and I ⊂ {1, . . . , m} . We
have

F±f ,I = Ω± ∩
m⋂

j=1

q
cj
R ∩

⋂
j 6∈I

q
cj+1−cj
R = Ω± ∩ g

f ,I
R .

Proof. First, recall that X+
e = −X−

−e . Thus, the first equation follows from proposi-
tion 2.2.12. The second equation thus follows from propositions 2.2.23, 2.2.27 and 2.2.30.
�

2.2.33. To see that g
f ,I
R is spanned by F±f ,I , it is useful to consider, for c1 > c2 > c3 > 0 ,
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the subalgebra gc1,c2,c3
R = gR,0(c1) n hc1,c2,c3

R where

hc1,c2,c3
R =

{
ηe,±

u
∣∣ u ∈ Z1/2(c1) ∩ Z1/2(c2) ∩ Z0(c3)⊕ iX1(c2 − c3)

}
.

Indeed,
h

f ,I
R = ∑

j∈I

⊕
h

c1,cj,cj+1
R and g

f ,I
R = ∑

j∈I
g

c1,cj,cj+1
R

whenever f = (c1 > · · · cm > 0 = cm+1) and I ⊂ {1, . . . , m} .

Thus, to see that F±f ,I generates g
f ,I
R , it suffices to prove that gc1,c2,c3

R ∩Ω± spans gc1,c2,c3
R

for any tripotents c1 > c2 > c3 .

Fix tripotents c1 > c2 > c3 and let Gc1,c2,c3 = Gc1 n exp hc1,c2,c3
R be the analytic sub-

group of G corresponding to the subalgebra gc1,c2,c3
R of gR . For all ξ ∈ gc1,c2,c3

R , consider
the adjoint orbit

Oc1,c2,c3
ξ = Ad

(
Gc1,c2,c3

)
(ξ) ⊂ gc1,c2,c3

R

Moreover, define Ω±(c1, c2, c3) to be the set

{
ξ ∈ gc1,c2,c3

R

∣∣ Oc1,c2,c3
ξ ∩

(
gR,0(c1)× iX1(c2 − c3)

)
⊂ Ω±

0 (c1)× iΩ1(c2 − c3)
}

.

The set tc1,c2,c3
R = tR,0(c1) × iX1(c2 − c3) is manifestly a compactly embedded Cartan

subalgebra of gc1,c2,c3
R . Denote by pc1,c2,c3

t the projection onto tc1,c2,c3
R along

[
tc1,c2,c3
R , gc1,c2,c3

R

]
.

Lemma 2.2.34. The set Ω±(c1, c2, c3) is a Gc1,c2,c3-invariant convex cone, and

Ω±(c1, c2, c3) =
{

ξ ∈ gc1,c2,c3
R

∣∣ pc1,c2,c3
t

(
Oc1,c2,c3

ξ

)
⊂ ω±

0 (c1)× iΩ1(c2 − c3)
}

.

In particular, Ω±(c1, c2, c3) is closed.

Proof. By linearity of the adjoint action,

Oc1,c2,c3
α·ξ = α · Oc1,c2,c3

ξ and Oe,c
ξ+η ⊂ Oc1,c2,c3

ξ +Oc1,c2,c3
η for all α > 0 , ξ, η ∈ gc1,c2,c3

R .

Hence, Ω±(c1, c2, c3) is a convex cone, and the invariance is trivial.

Abbreviate pt = pc1,c2,c3
t . Since pt

(
Ω±

0 (c1)
)

= ω±
0 (c1) by [Nee00a, prop. V.2.2] and

lemma 2.1.30, Ω±(c1, c2, c3) is certainly contained in the right hand side of the equation
stated above. For the converse, let ξ ∈ gc1,c2,c3

R be such that

pt

(
Oc1,c2,c3

ξ

)
⊂ ω±

0 (c1)× iΩ1(c2 − c3) .

Let (η, ζ) ∈ Oc1,c2,c3
ξ ∩

(
gR,0(c1)× iX1(c2 − c3)

)
. Then Gc1 fixes ζ , and

pt

(
Ad(Gc1)(η)

)
⊂ ω±

0 (c1) .

By [Pan83, th. 2], η ∈ Ad(Gc1)(η) ⊂ Ω±
0 (c1) . Hence the lemma. �
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Proposition 2.2.35. The cone Ω±(c1, c2, c3) generates gc1,c2,c3
R as a vector space. We have

gc1,c2,c3
R ∩Ω± = Ω±(e, c) = Ad

(
Gc1,c2,c3

)(
Ω±

0 (c1)× iΩ1(c2 − c3)
)

,

and in particular, the cone Ω±(c1, c2, c3) is closed.

Proof. Let C = gc1,c2,c2
R ∩Ω± . This cone is clearly Gc1,c2,c3-invariant. Lemma 2.2.10, and

propositions 2.2.23 and 2.2.8 readily entail the relation C ⊂ Ω±(c1, c2, c3) . In particular,

ω±
0 (c1)× iΩ1(c2 − c3) ⊂ tc1,c2,c3

R ∩Ω± ⊂ tc1,c2,c3
R ∩Ω±(c1, c2, c3)

By lemma 2.2.34, we have

tc1,c2,c3
R ∩Ω±(c1, c2, c3) ⊂ ω±

0 (c1)× iΩ1(c2 − c3) ,

and thus, equality. Since ω±
0 (c1)× iΩ1(c2 − c3) generates tc1,c2,c3

R , the cone

{
ξ ∈ gc1,c2,c3

R

∣∣ pt

(
Oc1,c2,c3

ξ

)
⊂ ω±

0 (c1)× iΩ1(c2 − c3)
}

generates gc1,c2,c3
R , by [HHL89, prop. III.5.14 (ii)]. By lemma 2.2.34, this is Ω±(c1, c2, c3) .

Moreover, [HHL89, prop. III.5.14 (i)] shows that this is the smallest Gc1,c2,c3-invariant
cone containing ω±

0 (c1)× iΩ1(c2 − c3) = tc1,c2,c3
R ∩ C , and is thus contained in C . This

proves the proposition. �

Corollary 2.2.36. Let f = (c1 > · · · > cm > 0 = cm+1) be a flag of tripotents and
I ⊂ {1, · · · , m} . The face F±f ,I = g

f ,I
R ∩Ω± generates g

f ,I
R as a vector space, and

F±f ,I = Ω±( f , I) = ∑
j∈I

Ω±(c1, cj, cj+1)

=
{

ξ ∈ g
f ,I
R

∣∣∣∣ O f ,I
ξ ∩

[
gR,0(c1)⊕∑

j∈I
iX1(cj − cj+1)

]
⊂ Ω±

0 (c1)⊕∑
j∈I

iΩ1(cj − cj+1)
}

,

where O f ,I
ξ = Ad(G f ,I)(ξ) .

Remark 2.2.37. This shows that Ω−( f , I) = F−f ,I is, for the Lie algebra g
f ,I
R , the minimal

invariant cone Wmin defined by Neeb in [Nee00b, def. I.3] (see also [Nee00a, ch. VIII.3,
(3.1)]). Our proof in proposition 2.2.35 that Ω±( f , I) is generating in g

f ,I
R is similar to

[Nee00b, prop. I.11] (also [Nee00a, prop. VIII.3.30]). The reader should note that Neeb’s
result is much more general.

Theorem 2.2.38. Let fi = (ci1 > · · · > cimi > 0 = ci,mi+1) , i = 1, 2 , be flags of tripotents,
and Ii ⊂ {1, . . . , mi} , i = 1, 2 . Let

ri = rk ci1 and Ri =
{

rk
(
cij − ci,j+1

) ∣∣ j ∈ Ii
}

.
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The exposed faces F±f1,I1
and F±f2,I2

are K-conjugate if only if they are G-conjugate, if and
only if r1 = r2 and R1 = R2 .

First, note the following lemma.

Lemma 2.2.39. Let c1 > c2 > c3 > 0 be tripotents. Then

Z1/2(c1) ∩ Z1/2(c2) ∩ Z0(c3) = Z1/2(c1) ∩ Z1/2(c2 − c3) .

In particular, F±f ,I , where f = (c1 > · · · > cm > 0 = cm+1) and I ⊂ {1, . . . , m} , depends
only on c1 and the cj − cj+1 for j ∈ I .

Proof. Consider the mutually orthogonal tripotents e3 = c1 − c2 , e2 = c2 − c3 , and
e1 = c3 , and their common Peirce spaces

Zij = Zji =
{

z ∈ Z
∣∣∣ {ekek

∗z} =
δik + δjk

2
· z for all k = 1, 2, 3

}
for all 0 6 ij 6 3

Then cj = e1 + · · ·+ ej , so by [Loo75, th. 3.14], we have

Z1/2(c1) = Z10 ⊕ Z20 ⊕ Z30 , Z1/2(c2) = Z10 ⊕ Z20 ⊕ Z13 ⊕ Z23 ,

Z1/2(c2 − c3) = Z20 ⊕ Z21 ⊕ Z23 , Z0(c3) = Z00 ⊕ Z20 ⊕ Z30 ⊕ Z22 ⊕ Z23 ⊕ Z33 .

Thus, both sides of the equation equal Z20 . �

Proof of theorem 2.2.38. Assume r1 = r2 and R1 = R2 . There are frames ei1, . . . , eir of Z
and subsets Aij ⊂ {1, . . . , r1} , j = 1, . . . , #R1 , such that Aik ∩ Ai` = ∅ for k 6= ` , and

ci1 = e1 + · · ·+ er1 , cij − ci,j+1 = ∑
k∈Aij

eik for all i = 1, 2 , j ∈ Ii .

There is ` ∈ K such that `(e1k) = e2k for all k = 1, . . . , r . This clearly implies the conju-
gacy of g

f1,I1
R and g

f2,I2
R .

Conversely, if F±fi ,Ii
, i = 1, 2 , are G-conjugate, then Ad(g)

(
g

f1,I1
R

)
= g

f2,I2
R for some

g ∈ G . We have

Ad(g)
(
h

f1,I1
R

)
= h

f2,I2
R and Ad(g)

(
∑
j∈I1

⊕iX1(c1j − c1,j+1)
)

= ∑
j∈I2

⊕iX1(c2j − c2,j+1) ,

since the Lie algebra isomorphism Ad(g) identifies the nilpotent radicals and the centres
of the two algebras.

Moreover, Ad(g)
(
gR,0(c11)

)
is a Levi complement of h

f2,I2
R invariant under the com-

pact Cartan subalgebra

Ad(g)
(
tR,0(c11)× z

(
g

f1,I1
R

))
= Ad(g)

(
tR,0(c11)× z

(
g

f2,I2
R

))
,

cf. [Nee00a, th. VII.2.26]. Similarly, gR,0(c21) is a tR,0(c21)× z
(
g

f2,I2
R

)
-invariant Levi com-
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plement. Since, for any compact Cartan subalgebra hR , the hR-invariant Levi comple-
ment is unique by [Nee00a, VII.2.5] and compact Cartan subalgebras are G f2,I2-conjugate
by [Nee00a, th. VII.1.4],

Ad(hg)
(
gR,0(c11)

)
= gR,0(c21) for some h ∈ G f2,I2 .

W.l.o.g., we may assume h = 1 .

It is clear that Ad(g)
(
kR,0(c11)

)
is a maximal compact subalgebra of gR,0(c21) . De-

noting the Killing forms of gR,0(ci1) by Bi , for i = 1, 2 , we find

B2
(
Ad(g)ξ, Ad(g)η

)
= trgR,0(c21)

(
ad
(
Ad(g)ξ

)
ad
(
Ad(g)η

))
= trgR,0(c21)

(
Ad(g) ad ξ ad η Ad(g−1)

)
= trgR,0(c11)

(
ad ξ ad η

)
= B1(ξ, η)

for all ξ, η ∈ gR,0(c11) , whence

gR,0(c21) = Ad(g)
(
kR,0(c11)

)
⊕Ad(g)

(
pR,0(c11)

)
is a Cartan decomposition, by [Hel78, prop. 7.4]. By [Hel78, th. 7.2] and [Kna02, th. 6.51],

r− rk c11 = real rk gR,0(c11) = real rk gR,0(c21) = r− rk c21 ,

and therefore r1 = r2 . Moreover, there exists h ∈ Gc12 , such that

Ad(gh)
(
kR,0(c11)

)
= kR,0(c21) and Ad(gh)

(
pR,0(c11)

)
= pR,0(c21) .

W.l.o.g., h = 1 . If we let a1
R =

〈
ξ−e11

, . . . , ξ−e1r

〉
where e1j , j = 1, . . . , r , is some frame

such that the c1j are sums of e1k , then Ad(g)(a1
R) is a maximal Abelian subspace of pR

such that the span of ξ−e1j
where e1j 6 c11 is a maximal Abelian subspace of pR,0(c12) .

(Because r1 = r2.) By K-conjugate of maximal Abelian subspaces, we may assume that
a2

R = Ad(g)(a1
R) is the span of ξ−e2j

where e2j , j = 1, . . . , r , is some frame such that the c2j

are sums of e2k .

For each j , Z1/2(ci1) ∩ Z1/2(cij − ci,j+1) is a simple gR,0(ci1) + ai
R-module, and these

simple modules are mutually inequivalent because ai
R acts differently. Hence, for each

j ∈ I1 , there exists exactly one α(j) ∈ I2 , such that

Ad(g)
(
Z1/2(c11) ∩ Z1/2(c1j − c1,j+1)

)
= Z1/2(c21) ∩ Z1/2(c2,α(j) − c2,α(j)+1) .

Since dim Z1/2(ci1) ∩ Z1/2(cij − ci,j+1) = ri − rk cij + rk ci,j+1 + 1 for all i, j , we find that
R1 = R2 . �
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2.3 Stratification of Ol’shanskiı̆ semigroups

We now turn to the study of certain complex domain defined by the cones Ω± , the so-
called Ol’shanskiı̆ domains. Infinitesimally, they look like the tube gR + iΩ± . To give
a rigorous introduction to these domains, we first have to recall the construction of a
complexification GC of the real group G .

2.3.1. For any pair (u, v) ∈ Z× Z , define the Bergman operator

B(u, v) = 1− 2 · u � v∗ + QuQv ∈ End Z .

We say that (u, v) is quasi-invertible if there exists w ∈ Z such that

B(u, v) w = u−Qu(v) and B(u, v) Qw(v) = Qu(v) .

In this case, B(u, v) is invertible, and the quasi-inverse w is given by

w = uv = B(u, v)−1(u−Qu(v)
)

.

It can be seen that

(u, v) ∼ (u′, v′) ⇔ (u, v− v′) quasi-invertible, u′ = uv−v′

defines an equivalence relation on Z × Z , cf. [Loo75, 7.6]. We denote the class of (u, v)
by [u : v] , and the quotient space by

B∗ = Z× Z/ ∼=
[
Z : Z

]
.

2.3.2. We can inject Z into B∗ via u 7→ [u : 0] . More generally, let

B∗v =
{
[u : v]

∣∣ u ∈ Z
}
⊂ B∗ .

Then ϕv : [u : v] 7→ u : B∗v → Z , is a bijection. Moreover, by [Loo75, prop. 7.7], there
exists a unique structure of smooth algebraic variety on B∗ , such that the B∗v are open
affine subvarieties, and the ϕv are isomorphisms of algebraic varieties. (Cf. [Hum75] for
the basic definitions of algebraic geometry.) In particular, the subset Z = B∗0 ⊂ B∗ is
open and dense.

In fact, B∗ is a projective variety by [Loo75, th. 7.10], and in particular compact.
Hence, B∗ is a compactification of the vector space Z . B∗ can be viewed as a ’generalised
Grassmannian’, since, for the triple Z = Cp×q of rectangular matrices, B∗ = Grp(Cp+q) ,
cf. [Loo75, 7.11].

2.3.3. By [Loo75, prop. 8.2], the set Aut(B∗) of automorphisms of B∗ has a unique struc-
ture of algebraic group, so that for any action H × B∗ → B∗ of an algebraic group H



68 2. Ol’shanskiı̆ domains and their boundaries

which is a morphism of algebraic varieties, the associated map H → Aut(B∗) is an ho-
momorphism of algebraic groups.

As a smooth projective variety, B∗ has a complex structure, and Aut(B∗) coincides
with the group of holomorphic automorphisms of B∗ , cf. [Loo75, 8.3]. In particular,
it is a complex Lie group in the compact-open topology. The connected component
GC = Aut0(B∗) (in the Zariski or compact-open topology) acts transitively on B∗ , by
[Loo75, cor. 8.5]. The Lie algebra of GC is g = gR ⊗C , the set of all holomorphic vector
fields on Z . Furthermore, G ⊂ GC since every automorphism of B extends uniquely to
B∗ , by [Loo75, prop. 9.4]. Hence, GC is a complexification of G . Note that Z(GC) = 1 ,
by [Loo75, cor. 8.8].

The Cartan involution ϑ has an extension to GC whose fixed group is the compact
connected subgroup U = K · exp ipR with Lie algebra uR = kR ⊕ ipR . Moreover, U
acts transitively on B∗ , and K is the fixed group at 0 ∈ Z ⊂ B∗ , by [Loo75, prop. 9.9].
Therefore, B∗ = U/K is the compact symmetric space dual to B = G/K .

2.3.4. A pair (k+, k−) with k± ∈ GL(Z) is called a Jordan pair automorphism if

k+Qu = Qk+(u) k− for all u ∈ Z .

k± determine each other uniquely. Let Aut(Z, Z) be the set of all Jordan pair automor-
phisms. Since Z is finite-dimensional, all Jordan pair automorphisms are inner, i.e.

Aut0(Z, Z) =
〈

B(u, v)
∣∣ (u, v) quasi-invertible

〉
.

Note here that the set of quasi-invertible pairs (u, v) ∈ Z × Z is connected since it is
given by a polynomial inequality, cf. [Kna02, lem. 2.14]. Hence, B(u, v) is always con-
tained in the connected component of Aut(Z, Z) if (u, v) is quasi-invertible.

The set Aut(Z, Z) is a complex Lie group whose Lie algebra aut(Z, Z) consists of all
Jordan pair derivations (δ+, δ−) , i.e. δ± ∈ End Z and

[
δ+, u � v∗

]
= (δ+u) � v∗ + u � (δ−v)∗ for all u, v ∈ Z .

All Jordan pair derivations are inner, i.e.

aut(Z, Z) = C〈u � v∗ | u, v ∈ Z〉 .

The set kR = aut(Z) of Jordan triple derivations sits in aut(Z, Z) as the diagonal. It is
easy to see that aut(Z, Z) = k = kR⊗C , cf. [Upm85, 22.10.9]. If we set KC = Aut0(Z, Z) ,
then K ⊂ KC and KC is a complexification of K .

We have KC ⊂ GC , by letting

(k+, k−)[u : v] =
[
k+(u) : k−(v)

]
for all (k+, k−) ∈ Aut(Z, Z) , u, v ∈ Z .
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This embedding respects the embedding K ⊂ G ⊂ GC .

2.3.5. Let P± = exp p± . Then P± ⊂ GC are closed, Abelian and contractible. Moreover,
P+KCP− ⊂ GC is exactly the set of all γ ∈ GC leaving Z invariant, and is open and
dense, by [Loo75, prop. 8.10]. For g ∈ P+KCP− , the decomposition g = p+kp− , where
k ∈ KC and p± ∈ P± , is unique.

We have P± =
{

t±u
∣∣ u ∈ Z

}
where

t+w [u : v] = [u + w : v] and t−w [u : v] = [u : v + w]

are called translations and quasi-translations, respectively. On the subset Z ⊂ B∗ , they are
determined by the formulae

t+v (u) = u + v and t−v (u) = uv

whenever (u, v) is quasi-invertible.

Translations and quasi-translations act according to the fundamental identity

t−v t+u = t+uv B(u, v)−1t−vu for all (u, v) quasi-invertible,

by [Loo75, 7.3.4]. What is more, given a triple ( f +, f 0, f−) of continuous homomor-
phisms f 0 : KC → H , f± : P± → H , there exists a continuous homomorphism
f : GC → H extending f 0 and f± if and only if

f±(kpk−1) = f 0(k) f±(p) f 0(k)−1

and

f−
(
t−v
)

f +(t+u ) = f +(t+uv

)
f 0(B(u, v)

)−1 f−
(
t−vu

)
for all k ∈ KC , p ∈ P± , and (u, v) quasi-invertible, by [Loo75, th. 8.11].

2.3.6. Let e ∈ Z be a tripotent. Since all Jordan pair automorphisms are inner, we find
KC

e ⊂ KC where KC
e = Aut0(Z0(e), Z0(e)) . Likewise, if

p0(e)+ =
{

u
∂

∂z

∣∣∣ u ∈ Z0(e)
}

and

p0(e)− =
{
{zu∗z} ∂

∂z

∣∣∣ u ∈ Z0(e)
}
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then P±e = exp p0(e)± are given by

P±e =
{

t±u
∣∣ u ∈ Z0(e)

}
.

Setting GC
e = Aut0 B0(e)∗ , the considerations in 2.3.5 show that there exists a contin-

uous homomorphism GC
e → GC . Its kernel is discrete and normal, and hence central,

by [Kna02, prop. 1.93]. Since GC
e has trivial centre, the kernel is trivial, allowing us to

identify GC
e with its image in GC .

Proposition 2.3.7. Let H be a connected Lie group contained in a connected complexi-
fication HC , and let Ω ⊂ hR be a closed, pointed generating convex cone. Then

H ×Ω → H̃C : (h, ξ) 7→ h · exp iξ

is an homeomorphism onto a closed sub-semigroup Γ(Ω) = H · exp iΩ ⊂ HC with
dense interior (in HC ) given by Γ◦(Ω) = Γ(Ω◦) = H · exp iΩ◦ .

Proof. Let φ : H̃C → HC be the universal covering group. Then ker φ ⊂ H̃C is discrete
and normal, and hence central. By [Loo69, ch. IV, th. 3.4], the fixed group H̃ ⊂ H̃C of the
conjugation on H̃C is connected. By [Nee96, prop. II.2], ad ξ has imaginary spectrum for
all ξ ∈ hR . Now, Lawson’s theorem [Nee00a, th. XI.1.7 and th. XI.1.10] implies that the
map

H̃ ×Ω → H̃C : (h, ξ) 7→ h · exp iξ

is an homeomorphism onto its closed image Γ̃(Ω) = H̃ · exp iΩ which is a closed sub-
semigroup of H̃C .

Lawson’s theorem also shows that H̃ is a retraction of H̃C . Hence H̃ is simply con-
nected. By [Glö00, prop. 25.9], HC and H are also homotopy equivalent. Thus, we have
canonical isomorphisms

ker φ ∩ H̃ → π1(H, 1) → π1(HC, 1) → ker φ .

This map associates to h ∈ ker φ the unique homotopy class of φ ◦ γh , γh a path in H̃
from 1 to h ; to this, the homotopy class in HC of φ ◦ γh ; hereto, the end point of a lifting
of φ ◦ γh in HC . Since γh is such a lifting and γh(1) = h , the map is the identity on
ker φ ∩ H̃ , and ker φ ⊂ H̃ .

So, we get an homeomorphism

H ×Ω → φ(Γ̃(Ω)) ⊂ HC : (h, ξ) 7→ h · φ(expH̃C iξ) = h · expHC iξ

onto a closed semigroup Γ(Ω) = φ(Γ̃(Ω)) = H · exp iΩ . Moreover, the semigroup
Γ◦(Ω) = Γ(Ω◦) is its interior in HC by [Nee00a, lem. XI.I.9]. �

Remark 2.3.8. Needless to say, a real Lie group H is not always contained in a complexi-
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fication HC . However, Glöckner [Glö00, prop. 25.9] actually shows that the pointedness
of Ω (and even the weaker condition that the endomorphisms ad ξ for ξ ∈ hR have
imaginary spectrum) implies that H is contained in a complexification HC .

Definition 2.3.9. We call the sets from proposition 2.3.7 Γ(Ω) and Γ◦(Ω) the Ol’shanskiı̆
semigroup and Ol’shanskiı̆ domain defined by Ω , respectively. In particular, we consider
the closed sub-semigroups

Γe = Γ(Ω−
0 (e)) ⊂ GC

e and Γ f ,I = Γ(F−f ,I) ⊂ GC
f ,I = GC

c1
n HC

f ,I

and their interiors Γ◦e and Γ◦f ,I , for tripotents e , flags f = (c1 > · · · > cm > 0 = cm+1) ,
and subsets I ⊂ {1, . . . , m} . In particular, we set Γ = Γ0 and Γ◦ = Γ◦0 .

On the semigroup Γ(Ω) , we define an involutory anti-automorphism by

γ∗ = γ̄−1 = exp iξ · g−1 = g−1 · exp i Ad(g)ξ for all γ = g · exp iξ ∈ Γ(Ω) .

It leaves Γ◦(Ω) invariant and is anti-holomorphic on this domain.

Remark 2.3.10. The open sub-semigroup Γ◦ ⊂ GC is the minimal Ol’shanskiı̆ semigroup
constructed by G. I. Ol’shanskiı̆ [Ol’82], whereas Γ◦(Ω+) is the maximal Ol’shanskiı̆ semi-
group and can be characterised as the set of compressions in GC of the domain B ⊂ B∗ ,
by [Sta86, th. 2.2]

In [HN93, ch. 3 and 7] and [Nee00a, ch. XI], the construction of Ol’shanskiı̆ semi-
groups is developed in full generality.

2.3.11. In the setting of proposition 2.3.7, a natural H × H-action on HC is given by

H × H × HC → HC : (s, t, γ) 7→ sγt−1 .

Then Γ(Ω) and Γ◦(Ω) are clearly H × H-invariant. We consider H as the diagonal in
H × H , i.e. the action by conjugation.

Lemma 2.3.12. In the setting of proposition 2.3.7, the map

Γ(Ω)× Γ(Ω)× Γ◦(Ω) → Γ◦(Ω) : (γ1, γ2, γ) 7→ γ1 γ γ∗2

defines a continuous semigroup action sesqui-holomorphic on the interior. Moreover,
for any γ ∈ Γ◦(Ω) , there exist γ1, γ2 ∈ Γ◦(Ω) such that γ = γ1γ2 .

Proof. Continuity and sesqui-holomorphy on the interior are immediate from the cor-
responding properties of the operations of HC . Moreover, given any γ1, γ2 ∈ Γ(Ω) , the
map

γ 7→ γ1 γ γ∗2 : HC → HC

leaves Γ(Ω) invariant because this is a semigroup. In addition, it is injective and holo-
morphic, hence open. This implies the invariance of Γ◦(Ω) under the action.
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Write γ = g · exp iξ where g ∈ H and ξ ∈ Ω . Then 1
2 · ξ ∈ Ω , which entails

γ = g · exp i
2 ξ · exp i

2 ξ ∈ Γ◦(Ω) · Γ◦(Ω) ,

since [ξ, ξ] = 0 . �

Proposition 2.3.13. Let fi = (ci1 > · · · > cimi > 0 = ci,mi+1) , i = 1, 2 , be flags of
tripotents, and Ii ⊂ {1, . . . , mi} , i = 1, 2 . Let

ri = rk ci1 and Ri =
{

rk
(
cij − ci,j+1

) ∣∣ j ∈ Ii
}

.

The semigroups Γ f1,I1 and Γ f2,I2 are K-conjugate if and only if they are G-conjugate, if
and only if r1 = r2 and R1 = R2 . Likewise for the interiors.

Proof. Since the Γ fi ,Ii have dense interiors, conjugacy is equivalent to conjugacy of the
interiors. Note

h g · exp iξ h−1 = hgh−1 · exp i Ad(h)(ξ) for all g, h ∈ G , ξ ∈ gR .

Thus the conjugacy on the level of semigroups is equivalent to conjugacy on the level of
cones. The statement follows from proposition 2.3.7 and theorem 2.2.38. �
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Analysis & Representation Theory

THE STUDY of the geometry of the Ol’shanskiı̆ domain Γ◦ in part I culminated in the de-
termination of a stratification whose strata have fibres which are smaller Ol’shanskiı̆

domains Γ◦f ,I . For these domains, the groups G f ,I played the role of Shilov boundaries.
Making this fact more precise, we discuss in this part the interplay between the domain
and its Shilov boundary, both from point of view of Analysis, and of Representation
Theory.

In 3.1, we recapitulate the theory of Hardy spaces of a complex Ol’shanskiı̆ domain.
These are spaces of functions holomorphic on the Ol’shanskiı̆ domain, having L2 bound-
ary values on the associated group. They may be considered as closed subspaces of
L2 , and the corresponding orthogonal projection, the so-called Szegö projection, is the
starting point for our study of Toeplitz operators in part III. We introduce the Szegö
distribution and the Szegö kernel function, which are related to the Szegö projection.

In 3.2, we review Strichartz’s symbol calculus for invariant pseudo-differential op-
erators as a tool of micro-local analysis. We then adapt to the invariant setup a method
of Melrose-Seeley-Uhlman showing that self-adjoint order zero pseudo-differential op-
erators are invariant under single-operator Weyl functional calculus, and extend this
to tuples of possibly non-commuting tuples using an idea of Álvarez-Calderón. This
paragraph is somewhat of an interlude, but the result indicates that methods such as
those used by Guillemin-Boutet de Mouvel [Gui79, BdMG81] in their study of Toeplitz
operators should be applicable in this setup.

In 3.3, we estimate the wave front set of the Szegö distribution by explicit estimates
showing the uniform tempered growth of the Szegö kernel, locally close to the boundary.
In the following paragraph 3.4, we prove some results estimating the singular support
of the Szegö distribution.

Besides the analytic definition of the Hardy space, there is also a representation the-
oretic approach. Namely, it can be described as the restriction of the Plancherel decom-
position of L2 to the holomorphic discrete series. We shall not review the proof of this
fact, but we give a mostly self-contained introduction to the holomorphic discrete series.
The algebraic theory of highest weight modules is treated in 4.1, and the analytic theory,
including Harish-Chandra’s square integrability criterion, in 4.2.

We closely follow Neeb’s approach [Nee00a, ch. IX, XII] using reproducing kernel
Hilbert spaces, and do not claim any originality in this point. We sometimes include ref-
erences to more classical texts such as Dixmier’s [Dix77] where our less general frame-
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work asks for weaker results, and take Jordan theoretical short cuts where this seems
appropriate. Although this is a revision of material which in large parts has been known
for almost half a century, it perhaps better motivates some of the constructions we per-
form in the sequel.

In 4.3, we show that the holomorphic discrete series of the boundary subgroups Ge

can be embedded into the holomorphic discrete series of the group G . Here, there is
some freedom in the choice of parameters, allowing us to pass to the limit.

Using our knowledge of the kernel functions associated to holomorphic discrete se-
ries, we examine in 4.4 the asymptotic behaviour matrix coefficients these representa-
tions. Also, the micro-local information we have gathered on the Szegö projection and
the calculus developed in 3.2 allow us to obtain some results on asymptotics of the Szegö
distribution. To be precise, we show that it bears no information at infinity in the spec-
trum of G in directions which in some sense are bounded away from the holomorphic
discrete series. Although the latter result is not decisive for the further development, it
seemed natural to include it.

In part III, the results on singularities of the Szegö distribution and asymptotics of
coefficient function are important for the development of a detailed structure theory for
a C∗-algebra of Toeplitz operators, defined in terms of the Szegö projection.

To fathom the C∗-algebra of Toeplitz operators alluded to here, it is however neces-
sary to understand other parts of the Plancherel decomposition of L2(G) , besides the
holomorphic discrete series. Specifically, an appropriate generalisation of the embed-
ding of holomorphic discrete series of facial subgroups constructed in 4.3 should be
available for the other series of representations.

In a first step, we treat the discrete series, 5.1-5.2. Our approach is simple-minded,
in that we basically try to imitate what is done in the case of holomorphic discrete series
representations. Namely, we identify a copy of lowest K̄-type of a discrete series of Ḡ
within a discrete series of G , and take the generated submodule. However, the machin-
ery of Verma modules is not available (because we treat non-adapted positive systems).
Instead, we use a realisation of the discrete series due to Knapp-Wallach.

The existence of an embedding more or less comes down to finding compatible
choices of fundamental sequences of strongly orthogonal non-compact roots, a matter
which is trivial for adapted positive systems, and non-trivial otherwise.

The discrete series form the basic building blocks of the representations weakly con-
tained in L2(G) , the other series being given by induction from discrete series. Thus, the
main difficulty in 5.3-5.4, where we embed the parabolic Q-series of facial subgroups, is
to control the behaviour of the parabolic subgroups. Here, our Jordan theoretic setting
pays off again, and we are able to give a fairly complete description of the parabolics.
Then, basically the same naive idea as for the discrete series goes through in the con-
struction of an embedding of the parabolic Q-series.
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3Local and micro-local analysis of the Szegö distribution

3.1 The Hardy space defined by Γ

3.1.1. Let B ⊂ Z be a circled bounded symmetric domain defined by a simple JB∗-triple
Z , and G = Aut0(B) .

Consider the closed cone Ω− ⊂ gR , the Ol’shanskiı̆ semigroup Γ = G · exp iΩ−

contained in GC = Aut0(B∗) , and its interior, the Ol’shanskiı̆ domain Γ◦ = G · exp iΩ−◦ .

If f = (c1 > · · · > cm > 0 = cm+1) is a flag of tripotents, and I ⊂ {1, . . . , m} , the
open sub-semigroup

Γ◦f ,I = GC
f ,I · exp iF−◦f ,I ⊂ GC

f ,I

is connected by proposition 2.3.7, justifying the term Ol’shanskiı̆ domain. It is known that
it is Stein, cf. [Nee98, th. 5.18] (also [Nee00a, th. XIII.5.15]). So, it makes sense to consider
the space O(Γ◦f ,I) of holomorphic functions on Γ◦f ,I . We have noted (2.3.11) that Γ◦f ,I is

G f ,I-invariant for both left and right translations. Since the cone F−f ,I is generating in g
f ,I
R

by proposition 2.2.35, it follows from [Nee00a, th. VII.1.8] that G f ,I is unimodular.

Remark 3.1.2. Unimodularity is clear for each of the factors Gc1 and H f ,I individually,
since the former is simple, and the latter is nilpotent. For G f ,I = Gc1 n H f ,I as a whole, it
is rather surprising and certainly not true of semi-direct products of unimodular groups
in general.

3.1.3. In order to treat the groups G f ,I simultaneously without too much notation, let H
be a connected Lie group, contained in a connected complexification HC . Assume that
there exists a pointed invariant closed convex cone Ω ⊂ hR with non-void interior.

Then there is an Ol’shanskiı̆ domain Γ◦ = H · exp iΩ◦ ≈ H ×Ω◦ , open in its closure
Γ , which is a closed sub-semigroup of HC . Moreover, H is unimodular.

Definition 3.1.4. Denote

fγ(γ′) = f (γ∗γ′) for all f ∈ O(Γ◦) , (γ, γ′) ∈
(
Γ◦ × Γ

)
∪
(
Γ× Γ◦

)
.

Let the Hardy space be given by

H2(Γ) =
{

f ∈ O(Γ◦)
∣∣∣∣ supγ∈Γ◦

∫ ∗

H
| fγ(t)|2 dt < ∞

}
,

endowed with the norm ‖xy‖H2 given by

‖ f ‖2
H2 = supγ∈Γ◦

∫ ∗

H
| fγ(t)|2 dt = supγ∈Γ◦ ‖ fγ‖2

2 .
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The Haar measure on H and the domain Γ◦ are H-bi-invariant. Therefore,

(s, t)# f (γ) = f (s−1γt) for all s, t ∈ H , γ ∈ Γ , f ∈ H2(Γ)

defines a representation of H × H on H2(Γ) . Note∥∥(s, t)# f
∥∥

H2 = supγ∈Γ◦ ‖ fγs(xyt)‖2 = supγ∈Γ◦ ‖ f ‖2 = ‖ f ‖H2

for all s, t ∈ H and f ∈ H2(Γ) , i.e. the action is by isometries.

3.1.5. By [Nee00a, lem. XIV.3.3], the topology on H2(Γ) is finer than the topology of
compact convergence. Moreover, the boundary value map

j :
{

fγ

∣∣ γ ∈ Γ◦ , f ∈ H2(Γ)
}
→ L2(H) : f 7→ f

∣∣
H

extends uniquely to an isometry H2(Γ) → L2(H) , as is proved in [Nee00a, th. XIV.3.5].
In particular, the representation of the product group H × H on H2(Γ) is unitary.

We also deduce that the Hardy space H2(Γ) is a Reproducing Kernel Hilbert space
of functions on Γ◦ , with a kernel function

K : Γ◦ × Γ◦ → C

defined by K(z, w) = Kw(z) and the reproducing property

f (w) = (Kw | f )H2 for all f ∈ H2(Γ) , w ∈ Γ◦ .

The function K is called the Szegö kernel.

Proposition 3.1.6. The Szegö kernel function K is sesqui-holomorphic. In addition, it is
Hermitian and H-bi-invariant in the sense that

K(z, w) = K(w, z) and K(szt−1, swt−1) = K(z, w)

for all z, w ∈ Γ◦ , s, t ∈ H .

Proof. We have
K(z, w) = (Kz | Kw) = (Kw | Kz) = K(w, z) .

Hence K(z, w) is separately holomorphic in z and anti-holomorphic in w . By Hartogs’s
joint analyticity theorem [Hör73, th. 2.2.8], K is globally sesqui-holomorphic.

Furthermore, since the action on H2(Γ) is isometric,

(
(s, t)#Kz | f

)
=
(
Kz | (s, t)−# f

)
= f (szt−1) =

(
Kszt−1

∣∣ f
)
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for all f ∈ H2(Γ) . This shows (s, t)#Kz = Kszt−1 , and in particular,

K(szt−1, swt−1) =
(
(s, t)#Kz | (s, t)#Kw

)
= (Kz | Kw) = K(z, w) ,

proving the proposition. �

Corollary 3.1.7. We have

K(uzv∗, w) = K(z, u∗wv) for all z, w ∈ Γ◦ , u, v ∈ Γ .

Proof. This follows from

K(szt−1, w) = K(z, s−1wt) for all z, w ∈ Γ◦ , s, t ∈ H

and the identity theorem [Nee00a, lem. XI.2.2]. �

Proposition 3.1.8. The boundary value map j is given by the formula

j f = limΓ◦3γ→1 fγ

∣∣
H in L2(H)

for all f ∈ H2(Γ) .

Proof. Let f ∈ H2(Γ) . The family ( fγ)γ∈Γ◦ is bounded in H2(Γ◦) , and hence also in L2 ,
since j is an isometry. Therefore, the fγ are contained in a weakly compact subset. The
weak topology on the unit sphere of L2 is separable and therefore metrisable.

Let γk ∈ Γ◦ be a sequence converging to 1 , such that fγk is weakly convergent. We
compute, because j j∗ is the projection onto j

(
H2(Γ)

)
,

(j Kz | j f ) = f (z) = limk→∞ f (γ∗k z)

= limk→∞ (j Kz | fγk) = (jKz | limk→∞ fγk) .

Since the vectors j Kz , z ∈ Γ◦ , have dense span in j
(
H2(Γ)

)
, we deduce that j f = limk fγk

in the weak topology. By compactness, this implies

j f = limΓ◦3γ→1 fγ weakly in L2(H) .

Now, consider the bounded family of real numbers ‖ fγ‖2 , γ ∈ Γ◦ . Since

‖j f ‖2 = ‖ f ‖H2 = supγ∈Γ◦ ‖ fγ‖2

and j fγ = fγ

∣∣
H , we find∥∥ fγ′γ

∥∥
2 =

∥∥( fγ)γ′
∥∥

2 6 ‖ fγ‖H2 = ‖ fγ‖2 for all γ, γ′ ∈ Γ◦ .

Let γk → 1 be such that ‖ fγk‖2 converges. Then, for any k ∈ N , there exists ` > k so that
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γk ∈ Γ◦ · γ` . Consequently, there is a subsequence α satisfying

γα(k) ∈ Γ◦ · γα(k+1) for all k ∈ N .

Then the sequence ‖ fγα(k)‖2 is increasing, so it converges to its supremum ‖ f ‖H2 . Hence,
limk→∞ ‖ fγk‖2 = ‖ f ‖H2 . Since the sequence γk was arbitrary, by compactness,

limΓ◦3γ→1 ‖ fγ‖2 = ‖ f ‖H2 = ‖j f ‖2 .

By the Radon-Riesz theorem [Els99, prop. 5.10], fγ → j f in norm. �

Remark 3.1.9. The formula for the isometry j is part of the original proof that that the
Hardy space H2(Γ) is a Hilbert space, cf. [HÓØ91, th. 2.2] and [HN93, th. 9.31]. Compare
[Nee00a, th. XIV.3.5] for another proof.

Proposition 3.1.10. There exists a holomorphic function

K : Γ◦ → C such that K(z, w) = K(zw∗) for all z, w ∈ Γ◦ ,

K(z∗) = K(z) , and K is H-conjugation invariant. Moreover,

K = limΓ◦3z→1 Kz compactly on Γ◦ ,

and (
j Kw

)
(g) = K(gw∗) = K(w∗g) for all g ∈ G , w ∈ Γ◦ ,

in the sense that K(xy w∗) is a representative of the L2 class j Kz .

Proof. Since j∗ j is the identity on H2(Γ) , we deduce

f = j∗ limΓ◦3γ→1 fγ = limΓ◦3γ→1 j∗ fγ = limΓ◦3γ→1 fγ .

By translation with elements of Γ , this shows that

γ 7→ fγ : Γ → H2(Γ)

is continuous.
Let z ∈ Γ◦ . Then there are u, v ∈ Γ◦ such that z = v∗u , by lemma 2.3.12. Taking a

neighbourhood v ∈ V ⊂ Γ◦ , V∗u is a neighbourhood of z , since u is invertible in HC (or
by holomorphy). Corollary 3.1.7 implies

limV∗u3γ→z Kγ = limV3γ→v Kγ∗u = limV3γ→v
(
Ku
)

γ
=
(
Ku
)

v = Kz

in the topology of H2(Γ) . Therefore,

z → Kz : Γ◦ → H2(Γ)
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is continuous. Since the topology of compact convergence is coarser than the norm
topology, we find that Kzλ

is a Cauchy net for any net Γ◦ 3 zλ → 1 . Hence, the limit

K(z) = limΓ◦3w→1 K(z, w) exists in O(Γ◦) .

Then
K(zw∗) = limΓ◦3γ→1 K(zw∗, γ) = limΓ◦3γ→1 K(γ∗z, w) = K(z, w) .

If z ∈ Γ◦ , then z = uv∗ for some u, v ∈ Γ◦ . Hence

K(z∗) = K(v, u) = K(u, v) = K(z) .

Furthermore, g Γ◦ g−1 = Γ◦ for g ∈ H , so

K(gzg−1) = limΓ◦3w→1 K(gzg−1, w)

= limΓ◦3w→1 K(z, gwg−1) = K(z) .

Finally, let γk ∈ Γ◦ be such that γk → 1 . Then

j Kw(g) = limk→∞ K(γ∗k gw∗) = K(gw∗)

where the first limit is taken in the L2 sense and the second convergence is uniform for g
varying in compact subsets of H . By the Riesz-Fischer theorem, K(xy w∗) is a represen-
tative of the L2 class j Kz . �

Remark 3.1.11. Cf. [HÓØ91, th. 4.4], [HN93, th. 9.33] and [Nee00a, cor. IV.1.30] for al-
ternative proofs. The latter is the shortest, and perhaps most in the spirit of the theory
of positive definite functions on (involutive) semigroups, as an extension of the classical
theory for C∗-algebras.

3.1.12. Given a unimodular locally compact group H , recall that the convolution of two
functions f , g : H → C such that s 7→ g(s−1t) · f (s) is integrable for all t ∈ H is

( f ∗ g)(t) =
∫

H
g(s−1t) f (s) ds for all s, t ∈ H .

More generally, the convolution of two bounded measures µ, ν ∈ Mb(H) is given by

〈 f : µ ∗ ν〉 = 〈∆ f : µ⊗ ν〉 for all f ∈ L∞(H)

where ∆ f (s, t) = f (s · t) .
If H is, moreover, a Lie group, and µ ∈ D′(H) a distribution, then the convolution

with a smooth function ψ is given by

〈ϕ : µ ∗ ψ〉 =
〈

ϕ ∗ ψ∨ : µ
〉

=
∫

H

〈
t 7→ ψ(t−1s)ϕ(s) : µ

〉
ds ,
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hence
µ ∗ ψ(t) =

〈
t ∗ ψ∨ : µ

〉
=
〈
s 7→ ψ(s−1t) : µ

〉
for all t ∈ H .

Here, we identify g ∈ H with the Dirac measure δg , and ϕ∨(t) = ϕ(t−1) .

Proposition 3.1.13. The adjoint j∗ is given by

(
j∗ f
)
(z) =

∫
H

K(g−1z) f (g) dg for all f ∈ L2(H) .

The projection j j∗ onto j
(
H2(Γ)

)
is given by convolution with a uniquely determined

central distribution E ∈ D′(H) . In particular,

〈ϕ : E〉 = limΓ◦3γ→1

∫
H

ϕ(g)K(gγ) dg for all ϕ ∈ D(H) .

Proof. Let f ∈ L2(H) . Then

(
j∗ f
)
(z) = (Kz | j∗ f ) = (j Kz | f ) =

∫
H

K(z∗g) f (g) dg =
∫

H
K(g−1z) f (g) dg .

Since jj∗ commutes with right convolutions, it is given by convolution with a unique
distribution, cf. [Eym64, prop. 3.27]. In particular, it maps smooth functions to smooth
functions, and the propositions 3.1.8 and 3.1.10 entail

〈ϕ : E〉 =
(
E ∗ ϕ∨

)
(1) = limΓ◦3γ→1

(
j∗ϕ∨

)
(γ∗)

= limΓ◦3γ→1

∫
H

K(g−1γ∗)ϕ(g−1) dg = limΓ◦3γ→1

∫
H

K(gγ)ϕ(g) dg

since H is unimodular and Γ◦ is invariant under xy∗ . The invariance of K now implies
that E is conjugation invariant, and hence, central. �

3.2 Functional calculus of invariant pseudo-differential operators

At the beginning of this subsection, we recall some standard facts from the calculus
of pseudo-differential operators, mainly to fix notation. As a general reference, we cite
[Hör67], and, to a lesser extent, [Hör71a]. Textbooks would be [Kg81], [Trè80] or [Tay81].

3.2.1. Let n, k ∈ N , m ∈ R , 0 6 1− $ 6 δ < $ 6 1 , and U ⊂ Rn an open subset. Recall
the definition of Hörmander’s symbol class Sm

$,δ(U ×Rk) : It consists of smooth functions
a : U ×Rm → C , such that for all compact subsets K ⊂ U and multi-indices α, β ,

|∂β
x∂α

ξ a(x, ξ)| 6 Cα,β,K ·
(
1 + |ξ|

)m−|α|$+|β|δ for all x ∈ K , ξ ∈ Rk

for some Cα,β,K > 0 . The least constants Cα,β,K in this estimate define a system of semi-
norms making Sm

$,δ into a Fréchet space. For the special case of $ = 1 , δ = 0 , we write
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Sm = Sm
1,0 . Moreover,

S∞
$,δ =

⋃
m∈Z

Sm
$,δ and S−∞

$,δ =
⋂

m∈Z
Sm

$,δ .

For a ∈ Sm(U ×Rn) (i.e. n = k ), define

[
a(x, D)ϕ

]
(x) =

1
(2π)n ·

∫∫
Rn×Rn

ei(x−y : ξ)a(x, ξ)ϕ(y) dy dξ for all ϕ ∈ D(U) , x ∈ U .

Then a(x, D) : D(U) → E(U) is continuous.

3.2.2. The symbol class Sm
$,δ(U×Rk) has an important completeness property: For sym-

bols aj ∈ S
mj
$,δ(U ×Rk) , m = m0 > mj > mj+1 → −∞ , there exists a ∈ Sm

$,δ(U ×Rk) ,
unique modulo S−∞

$,δ (U ×Rk) , such that

a =
`−1

∑
j=0

aj (mod Sm`
$,δ(U ×Rk)) for all ` ∈ N .

We write a ∼ ∑∞
j=0 aj and call this an asymptotic expansion of a .

Using this device, one shows that for ϕ ∈ D(U) , a ∈ Sm1
$,δ(U×Rn) , b ∈ Sm2

$,δ(U×Rn)
there exists a symbol c ∈ Sm1+m2

$,δ (U ×Rn) such that

a(x, D)ϕb(x, D) = c(x, D) ,

cf. [Hör67, th. 2.10]. Moreover, the symbol class also stable under diffeomorphisms.

3.2.3. An important subclass of Sm is the set of classical symbols Sm
h (U ×Rk) . These

are all a ∈ Sm(U × Rk) which have an asymptotic expansion a ∼ ∑∞
j=0 aj such that

mj −mj+1 ∈ N and aj is (positively) homogeneous of degree mj for |ξ| → ∞ , i.e.

aj(x, tξ) = tmj · aj(x, ξ) for all x ∈ U , |ξ| � 1 , t > 1 .

In fact, asymptotic expansions make sense for functions not smooth for ξ = 0 , and one
may assume aj is homogeneous for all ξ 6= 0 without changing the class of a modulo
S−∞ . The set Sm

h of all classical symbols is stable under asymptotic expansions, and, for
n = k , under composition and diffeomorphisms.

The top order term a0 of the asymptotic expansion of a ∈ Sm
h is uniquely determined

up to terms of order m1 6 m− 1 and is called the principal part of the classical symbol a .

3.2.4. A pseudo-differential operator in U of order m and type ($, δ) is a continuous linear
map A : D(U) → E(U) such that for all ϕ ∈ D(U) , there exists aϕ ∈ Sm

$,δ(U × Rn)
satisfying

A(ϕψ) = aϕ(x, D)ψ for all ψ ∈ D(U) .

The set of all such operators is denoted Ψm
$,δ(U) . Similarly, the set of all classical pseudo-
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differential operators Ψm
h (U) consists of those A ∈ Ψm(U) = Ψm

1,0(U) such that aϕ can
be chosen to be classical for all ϕ .

We say that a continuous linear map A : D(U) → D′(U) is properly supported, if for
the distribution kernel α ∈ D′(U ×U) of A , the projections

U supp α
pr1oo

pr2 // U

are proper. Equivalently, for any compact K ⊂ U , there is a compact L ⊂ U such that

supp ϕ ⊂ K ⇒ supp Aϕ ⊂ L and ϕ
∣∣

L = 0 ⇒ Aϕ
∣∣
K = 0 .

Pseudo-differential operators are very regular and can hence be extended to continuous
linear maps E ′(U) → D′(U) . If a pseudo-differential operator is properly supported, it
can even be extended to a continuous linear map D′(U) → D′(U) .

Recall that a very regular continuous linear map A : D(U) → E(U) is called smooth-
ing if A(E ′(U)) ⊂ E(U) . Any smoothing A in U is a pseudo-differential operator of
order −∞ (all types coincide at this order), and conversely.

Any pseudo-differential operator is the sum of a smoothing operator and a properly
supported one. Any properly supported operator A ∈ Ψm

$,δ(U) is of the form a(x, D) for
some a ∈ Sm

$,δ(U ×Rn) . Similarly for classical operators.

If A− a(x, D) is smoothing, a is called the symbol of A since it is essentially unique.
If A is classical and a is the classical symbol of A , the principal part of a is called the
principal symbol of A .

3.2.5. If M is a smooth manifold endowed with some positive density (so M is ori-
entable), then a continuous linear map A : D(M) → E(M) is said to be a pseudo-
differential operator of order m and type ($, δ) , if for any local chart (U, φ) , the map
φ∗(A) is a pseudo-differential operator in Ψm

$,δ(U) , where φ∗(A) is defined by

φ∗(A)ϕ = A(ϕ ◦ φ−1)
∣∣
U ◦ φ for all ϕ ∈ D(φ(U))

and it is understood that ϕ ◦ φ−1 is extended to M by zero.

Similarly, we define classical pseudo-differential operators on M . One may restrict
attention to a fixed covering by local charts if, in addition, it is required that the kernel
of A be singular only on the diagonal of M .

An alternative definition of pseudo-differential operators which does not require ex-
pression in local coordinates is via Fourier integral operators with non-degenerate linear
phase function smooth off the diagonal, cf. [Hör71a, § 2.3].

3.2.6. For a global theory for pseudo-differential operators in Euclidean space, one in-
troduces global Sobolev spaces and proves Sobolev continuity for properly supported
operators. For general non-compact manifolds, there is no established definition of
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global Sobolev spaces, a difficulty which can be overcome for homogeneous spaces by
considering invariant pseudo-differential operators. We restrict ourselves to Lie groups.

Let H be a Lie group. Choose a Euclidean inner product on hR , an orthonormal basis
Xj of hR , and the dual basis ξ j ∈ h∗R .

This allows us to define Sm(h∗R) = Sm({0} × h∗R) and Sm
h (h∗R) = Sm

h ({0} × h∗R) . In
particular, S−∞

h (h∗R) = S(h∗R) , the Schwartz space on h∗R .

Denote by IΨm(H) resp. IΨm
h (H) the set of all pseudo-differential operators on H

commuting with left translations. These, we call invariant. By [Str72, th. 1], an invariant
properly supported A : D(H) → E(H) is in Ψm(H) = Ψm

1,0(H) if and only if

Aϕ = opχ(a) + ϕ ∗ ψ for all ϕ and some a ∈ Sm(h∗R) , ψ ∈ D(H)

and χ ∈ D(hR) such that χ = 1 in the neighbourhood of zero. Here,

opχ(a)ϕ(t) =
1

(2π)n ·
∫∫

h∗R×hR

e−i〈X : ξ〉a(ξ)χ(X)ϕ(t exp X) dX dξ .

The symbol a is unique modulo S−∞(h∗R) = S(h∗R) . It is called the Lie symbol of A .
Moreover, A is classical if and only if a be chosen to be classical. In the latter case, the
principal part a0 of the classical Lie symbol is called the principal Lie symbol of A .

Fix χ ∈ D(hR) and define the invariant pseudo-differential operator

Λs = opχ

(
(1 + |xy|2)s/2) ∈ IΨs(H) .

Λs is elliptic by [Str72, th. 4]. Define H(s)(H) = D(Λs) ⊂ L2(H) for s > 0 , with the
graph norm. Let H(−s)(H) be the dual of H(s)(H) , and define H(−∞)(H) and H(∞)(H)
to be the union resp. the intersection of all H(s)(H) . These are the invariant Sobolev spaces.

The definition and the topology of the Sobolev spaces is independent of the choice
of inner product and basis on hR , and of χ , by [Str72, th. 7, cor.] and [Goo80, cor. 1.1].

Any properly supported A ∈ IΨ0(H) is bounded on L2(H) . In fact, any properly
supported A ∈ IΨm(H) is a bounded operator H(s+m)(H) → H(s)(H) by [Str72, th. 7].

Having reviewed the basic calculus of invariant pseudo-differential operators, our next
aim is to establish a functional calculus for possibly non-commuting tuples of properly
supported order zero operators which are self-adjoint on L2(H) .

To this end, we adapt the construction of a single-operator functional calculus from
[GS79] (which Guillemin-Sternberg attribute to R. Melrose, R. Seeley and G. Uhlman)
to invariant pseudo-differential operators on the Lie group H . Their proof — valid for
the Euclidean situation and for compact manifolds — goes through without essential
changes, with the help of Strichartz’s invariant pseudo-differential calculus.

In fact, using an idea of Álvarez-Calderón [ÁC83, rem. 5.7], it is straightforward to
extend the proof of the single-operator calculus to non-commuting tuples.
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It should be noted that in [AH96], Álvarez-Hounie construct a functional calculus
for non-commuting tuples in the context of non-classical operators of Hörmander class
Ψm

$,δ(Rn) , m 6 0 , 0 6 δ < 1 , 0 < $ 6 1 , δ 6 $ . However, they rely heavily on
the characterisation of pseudo-differential operators via Sobolev continuity of certain
commutators due to Beals. Therefore, their proof does not immediately apply in the
context of manifolds (the existence of a functional calculus is a global question).

Nonetheless, a Beals type characterisation should be valid in the invariant setup on
the Lie group H . If this is the case, the methods of Álvarez-Hounie should extend to
this situation (for suitable ($, δ)) and give a more general functional calculus. With the
applications we have in mind, we are content to restrict attention to classical operators.

Proposition 3.2.7. Let T ∈ IΨ0
h(H) be properly supported and self-adjoint as a bounded

operator on L2(H) . Then, for t ∈ R , the unitary operator u(t) = eitT is an element of
IΨ0

h(H) with principal Lie symbol eitτ0 where τ0 is the principal Lie symbol of T .
In fact, if (Tλ)λ∈Λ is a family of such operators, such that the Lie symbols (τλ)λ∈Λ

form a bounded subset of S0
h(hR) , then a family of operators

uλ
∞(t) = opχ

(
aλ(xy, t)

)
∈ IΨ0

h(H)

can be constructed such that for each t ∈ R , (uλ(t)− uλ
∞(t))λ∈Λ is a bounded family of

smoothing operators in L(H(m)(H) , H(m+k)(H)) for all m ∈ Z and k ∈ N .

The proof begins with a lemma which gives an algorithm for the computation of the
total Lie symbol of u(t) .

Lemma 3.2.8. Let T ∈ IΨ0
h(H) be properly supported and self-adjoint with principal

Lie symbol τ0 : h∗R → R . Fix χ = 1 in a neighbourhood of unity.
There exist bk ∈ E(R, S−k

h (hR)) homogeneous of degree −k in ξ such that b0 = 1 ,
bk(ξ, 0) = 0 for all ξ ∈ h∗R , k > 1 ,

t 7→ ‖(1 + |ξ|)|µ|∂ν
ξ bk(xy, t)‖∞

is bounded by a polynomial in |t| of degree at most 2k for any |µ| 6 |ν| , k ∈ N , and

u̇k − iTuk : R → IΨ−(k+1)
h (H) .

Here, uk(t) = opχ

(
eitτ0 ·∑k

j=0 bj(xy, t)
)

.
In fact, if (Tλ)λ∈Λ is a family such that the symbols (τλ)λ∈Λ form a bounded subset

of S0
h(hR) , then the polynomial bounds of (1 + |ξ|)|µ|∂ν

ξ bλ
k (ξ, t) are independent of λ .

Proof. Proof by induction on k . The case k = 0 being clear, assume the statement is true
for k− 1 . Let rk(t) = u̇k−1(t)− iT · uk−1(t) ∈ IΨ−k(H) . We wish to find bk such that

uk(t) = uk−1(t) + opχ

(
eitτ0 bk(xy, t)

)
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has the required properties. Assuming such a bk given for the moment, we compute

rk+1(t) = u̇k(t)− iTuk(t) = rk(t) + ∂t opχ

(
eitτ0 · bk(xy, t)

)
− iT · opχ

(
eitτ0 bk(xy, t)

)
= rk + opχ

(
eitτ0 ḃk(xy, t)

)
+ i opχ

(
τ0eitτ0 bk(xy, t)

)
− iT · opχ

(
eitτ0 bk(xy, t)

)
.

The sum of the two latter terms is in IΨ−(k+1)(H) , since the top order term in the asymp-
totic expansion of the Lie symbol of T · opχ

(
eitτ0 bk(xy, t)

)
is τ0eiτ0 bk(xy, t) by [Str72, th. 2].

Hence, the requirement is that rk(t) = − opχ

(
eitτ0 ḃk(xy, t)

)
, up to terms of lower degree.

So, let ak ∈ S−k(hR) be the principal Lie symbol of rk , and define

bk(ξ, t) = −
∫ t

0
e−isτ0(ξ)ak(ξ, s) ds for all ξ ∈ h∗R , t ∈ R .

Then bk ∈ E(R, S−k(hR)) , and is homogeneous of degree −k because τ0 has degree of
homogeneity 0 .

By abuse of notation, we write degt(a(ξ, t)) for the degree of the polynomial bound
in |t| for a function a(ξ, t) . In particular, let Bk,` = max|µ|6|ν|6` degt(1 + |ξ|)|µ|∂ν

ξ bk(ξ, t) .

By definition, rk = u̇k−1 − iT · uk−1 . The total Lie symbol of u̇k−1 is the t derivative
of eitτ0 · ∑k−1

j=0 bj(xy, t) . Since this expansion only involves only terms homogeneous of
degree > −k , we see that ak only depends on iT · uk−1 . Then the asymptotic expansions
in [Str72, lem. 3, th. 2, and rem.] show that

ak(ξ, t) =
k−1

∑
i=0

k−i

∑
j=1

∑
|α+γ|6 k−(i+j)

∑
|β|=i+j−k+|α+γ|

cαβγ · ξβ · ∂α
ξ τj(ξ) · ∂

γ
ξ

(
eitτ0(ξ)bi(ξ, t)

)
for some cαβγ ∈ C , where τ ∼ ∑∞

k=0 τk is the Lie symbol of T . By Leibniz’ rule,

∂ν
ξ

(
e−itτ0(ξ) · ∂

γ
ξ

(
eitτ0(ξ) · bi(ξ, t)

))
= ∑

β6γ

cβγ · t|γ−β| · ∂
ν+β
ξ bi(ξ, t)

for some cβγ ∈ C . Moreover,

|ξβ∂α
ξ τj(ξ)| . (1 + |ξ|)|β|−|α|−j = (1 + |ξ|)k−i−|γ|

where k − i − |γ| 6 −j < 0 . If τ is part of a bounded family (τλ)λ∈Λ , τλ ∼ ∑∞
k=0 τλ

k ,
then for each k ∈ N , the family (τλ

k )λ∈Λ is bounded in S−k(hR) . Hence, the constants
occurring in the bound of ξβ∂α

ξ τλ
j (ξ) are independent of λ ∈ Λ .

Since integration raises the degree by one and Bi,q 6 2i , i < k , we have

degt(1 + |ξ|)|µ|∂ν
ξ bk(ξ, t)

6 1 +
k−1

max
i=0

max
|ν|6`

max
|γ|6k−i

degt(1 + |ξ|)|µ|∂ν
ξ

(
e−itτ0(ξ)∂

γ
ξ

(
eitτ0(ξ)bi(ξ, t)

))
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6 1 +
k−1

max
i=0

max
|ν|6`

max
|γ|6k−i

max
β6γ

|γ| − |β|+ degt(1 + |ξ|)|µ|∂ν+β
ξ bi(ξ, t)

6 1 +
k−1

max
i=0

(
k− i + max

q6k−i
Bi,q+`

)
6 2k ,

for |µ| 6 |ν| 6 ` , which is the required estimate. All the constants occurring in this
polynomial bound are independent of λ , by the inductive hypothesis and the conditions
on τλ .

Now, rk − opχ

(
ak
)
∈ IΨ−(k+1)(H) , so, defining uk as above, rk+1(t) ∈ IΨ−(k+1)(H) ,

completing the lemma’s proof. �

Proof of proposition 3.2.7. Given a sequence bk as in lemma 3.2.8, define

u∞(t) = opχ

(
eitτ0 b(xy, t)

)
where b(xy, t) ∼

∞

∑
j=0

bj(xy, t) .

We show that v(t) = u(t)− u∞(t) is smoothing. Observe u∞(0) = 1 , and by the cor-
responding properties of the uk , r∞(t) = u̇∞(t) − iT · u∞(t) is smoothing. Moreover,
lemma 3.2.11 shows that its operator norm on Sobolev space is bounded independently
of λ ∈ Λ , since the polynomial bounds on (1 + |ξ|)|µ|∂ν

ξ bk(ξ, t) , |µ| 6 |ν| , are.

We have

v̇(t) = iT · u(t)− u̇∞(t) = iT · v(t) + r∞(t) for all t ∈ R .

By integrating factors,

v(t) = −u(t)
∫ t

0
u(−s)r∞(s) ds for all t ∈ R .

The above differential equation and the integral make sense as bounded operators be-
tween suitable Sobolev spaces. In particular, r∞(t) ∈ IΨ−∞(H) and is properly sup-
ported, hence bounded H(m)(H) → H(m+k)(H) for all m ∈ Z and k ∈ N by [Str72, th. 7].
u(t) is bounded on H(s)(H) for all s ∈ R since this is true of T by the same theorem.
Hence v(t) : H(m)(H) → H(m+k)(H) is bounded for all m ∈ Z and k ∈ N . The norm is
bounded independently of λ ∈ Λ .

From lemma 3.2.10 below we conclude that v(t) is smoothing, and therefore we con-
clude u(t) ∈ IΨ0(H) , as required. �

Remark 3.2.9. Apart from the polynomial estimates in lemma 3.2.8, the proof of propo-
sition 3.2.7 goes through for non-classical symbols. However, these estimates are essen-
tial in the proof of the functional calculus below.

The following lemma was employed in the proof of proposition 3.2.7.

Lemma 3.2.10. Let A : D(H) → D′(H) be continuous. If there are continuous exten-
sions A : H(k)(H) → H(k+`)(H) for all k ∈ Z and ` ∈ N , then A is smoothing.
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Proof. Choose an open exponential neighbourhood V ⊂ H of unity. Then Haar mea-
sure, restricted to V , is equivalent to the image of Lebesgue measure on U = log(V) . We
get the equality L2(V, dg) = L2(U, dX) , with equivalence of norms. Since the topology
of the local Sobolev spaces is independent of the choice of local frames of the tangent
bundle, we find H(s)

c (U) = H(s)
c (V) and H(s)

loc(V) = H(s)
loc(U) in the category of locally

convex vector spaces, for all s ∈ R .
Note that by [Goo80, th. 1.1], the topology of H(m)(H) , m ∈ N , is the weakest lo-

cally convex topology such that all left-invariant differential operators of order 6 m
are bounded with values in L2(H) . Hence, for all ϕ ∈ D(U) , and f ∈ H(m)(H) ,
ϕ · f ∈ H(m)

loc (U) . The Sobolev lemma [Kg81, ch.3, § 2, lem. 2.5, cor.], applied locally,
shows that H(m+k)(H) ⊂ C(m)(H) for 2k > dim H . By the closed graph theorem, the
inclusion is continuous.

In particular, A : D(H) → E(H) is continuous. Therefore, A is very regular in the
sense of Schwartz, and has a continuous extension A : E ′(H) → D′(H) . To see that A is
smoothing, we need to see that A : E ′(H) → E(H) .

To that end, let µ ∈ E ′(H) . Then µ has finite order m , in particular, defines a con-
tinuous linear form on H(m+k)(H) where 2k > dim H . This implies µ ∈ H(−(m+k))(H) .
Hence Aµ ∈ H(∞)(H) ⊂ E(H) . This proves the lemma. �

To prove the functional calculus, we need to make the dependence of the operator norm
on the Lie symbol in Strichartz’s Sobolev boundedness result explicit.

Lemma 3.2.11. Let 0 ∈ V ⊂ hR be an open, relatively compact, and exponential neigh-
bourhood, such that the Campbell-Hausdorff series converges on U . Let K be compact,
so that 0 ∈ K◦ ⊂ K ⊂ U and 1K 6 χ 6 1U , χ ∈ E(hR) . For all τ ∈ Sm(h∗R) , s > 0 ,

‖Tϕ‖H(s) 6 C · sup|µ|=|ν|6n+1 , ξ |(1 + |ξ|)|µ| · ∂ν
ξ τ(ξ)| · ‖ϕ‖H(s+m)

where n = dim H , T = opχ

(
τ
)

, and the constant C is independent of τ . If H is uni-
modular, the estimate is valid for all s ∈ R .

Proof. From the proof of [Str72, th. 1], we find

χ(X)Tϕ(exp X) =
1

(2π)m ·
∫∫

hR×h∗R

ei〈X−Y : ξ〉 · τ(W(X, Y)ξ)R(X, Y) · ϕ(exp Y) dY dξ

for all X ∈ U , where R is smooth with compact support in U × U and the function
W : U ×U → GL(h∗R) is smooth. Moreover, W and R are independent of τ . Let

σ(X, Y, ξ) = τ(W(X, Y)ξ) · R(X, Y) for all X, Y ∈ U , ξ ∈ h∗R

and V = exp(U) . Then, by [Trè80, th. 2.1 and proof], for all ϕ ∈ D(V) ,

‖χ · (Tϕ) ◦ exp‖H(s) 6 C · sup
|α|,|β|6n+1,X,Y,ξ

|∂α
X∂β

Yσ(X, Y, ξ)| · ‖ϕ ◦ exp‖H(s+m)
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where the constant C is independent of τ . Since H(s)
c (U) and H(s)

c (exp U) are isomorphic
with equivalent norms, we have

‖ψ · (Tϕ)‖H(s) 6 C′ · sup
|α|,|β|6n+1 , X , Y , ξ

|∂α
X∂β

Yσ(X, Y, ξ)| · ‖ϕ‖H(s+m) for all ϕ ∈ D(V)

where ψ = χ ◦ log .

By induction, it is easy to prove

∂α
X∂β

Y
[
σ(X, Y, ξ)

]
= ∑

|µ|=|ν|6|α+β|
cµν(X, Y) · ξα

(
∂

β
ξ τ
)
(W(X, Y)ξ)

for some smooth cµν with compact support in U ×U , independent of τ . In particular,

sup
|α|,|β|6n+1 , X , Y , ξ

|∂α
X∂β

Yσ(X, Y, ξ)| 6 ∑
|µ|=|ν|6|α+β|

c′µν · supξ |(1 + |ξ|)|µ| · ∂ν
ξ τ(ξ)|

for some positive constants c′µν .

Combining this information, we get

‖ψ · (Tϕ)‖H(s) 6 C′′ · sup
|µ|=|ν|6n+1 , ξ

|(1 + |ξ|)|µ|∂ν
ξ τ(ξ)| · ‖ϕ‖H(s+m) for all ϕ ∈ D(U)

where C′′ is independent of τ . Let ζ ∈ D(H) such that

ζ(1) = 1 and (supp ζ) · (exp supp χ) ⊂ U ,

and choose φ ∈ D(U) such that φ = 1 on (supp ζ) · (exp supp χ) . Then

ζ(h) · χ(Y) = ζ(h) · χ(Y) · φ
(
h exp Y

)
for all h ∈ H , Y ∈ hR ,

so we conclude

ζ · (Tϕ) = ζ · T(φ · ϕ) = ζ · ψ · T(φ · ϕ) for all ϕ ∈ D(H) .

Introducing ζ does not change the above estimate. Plugging in g ∗ ϕ in place of ϕ and
integrating, we see

(∫
H
‖ζ·T(h ∗ ϕ)‖2

H(s) dh
)1/2

6 C′′ · sup
|µ|=|ν|6n+1 , ξ

|(1 + |ξ|)|µ|∂ν
ξ τ(ξ)| ·

(∫
H
‖φ · (h ∗ ϕ)‖H(s+m) dh

)1/2

.

By [Str72, th. 8], the integrated norms are equivalent to the usual norm on H(s)(H) for
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s > 0 , so we have the assertion for s > 0 .

If H is unimodular, T∗ = opχ

(
τ̄
)

by [Str72, th. 3], so for s < 0 , we may apply the
above to get the estimate for T∗ : H(−s)(H) → H(−s+m)(H) . By duality [Str72, th. 7,
cor.], we get the estimate for T : H(s−m)(H) → H(s)(H) . Since the H(s)(H) form a scale
[Goo80], the result follows by interpolation. �

We now assume that the group H is unimodular.

Theorem 3.2.12. Let T = (T1, . . . , Tm) , Tj ∈ IΨ0(H) properly supported, with principal
Lie symbol τ

j
0 , and self-adjoint on L2(H) . Then, for f ∈ E(Rm) , the bounded operator

f (T) on L2(H) , defined by

f (T) =
1

(2π)m ·
∫∫

Rm×Rm
e−i〈x : ξ〉 f (ξ) · ei(x1T1+···+xmTm) dx dξ for all f ∈ D(Rm) ,

lies in IΨ0(H) , with principal Lie symbol f (τ1
0 , . . . , τm

0 ) .

Proof. Define f̂ (x) = (2π)−m/2 ·
∫

Rm e−i〈x : ξ〉 f (x) dx whenever this makes sense. Ob-
serve that

f 7→ 1
(2π)m/2 ·

∫
R

f̂ (x)ei(x1T1+···xmTm) dx

is an operator-valued distribution with compact support contained in

K =
[
−‖T1‖ , ‖T1‖

]
× · · ·

[
−‖Tm‖ , ‖Tm‖

]
,

by the Paley-Wiener theorem, cf. [And69]. Hence, f (T) makes sense for f ∈ E(Rm) , and
only depends on χ · f where χ ∈ D(Rm) , χ = 1 on K .

Thus, w.l.o.g., let f ∈ D(Rm) . For λ ∈ Sn−1 , let bλ
k (xy, t) be the sequence of symbols

constructed in lemma 3.2.8 for the operator λ1T1 + · · · + λmTm ∈ IΨ0(H) . Since f̂ is
rapidly decreasing, the integral

bλ
k (ξ, f ) =

2πn/2

Γ(m/2) · (2π)m/2 ·
∫ ∞

0
f̂ (r · λ)eir(λ1τ1

0 (ξ)+···+λmτm
0 (ξ))bλ

k (ξ, r) rm−1dr

converges in the Fréchet space S−k
h (h∗R) , for all k ∈ N and λ ∈ Sn−1 , because of the

polynomial estimates from lemma 3.2.8. Moreover, (bλ
k (xy, f ))λ∈Sn−1 is bounded in this

space.

Let bλ(xy, f ) ∼ ∑∞
k=0 bλ

k (xy, f ) , and let

f∞(T) =
1

Γ(m/2) · 2m/2−1 ·
∫

Sm−1
opχ

(
bλ(xy, f )

)
dσ(λ) ,

where dσ is surface measure on Sm−1 , so f∞(T) ∈ IΨ0
h(H) with principal Lie symbol

ξ 7→ 1
Γ(m/2) · 2m/2−1 ·

∫
Sm−1

∫ ∞

0
f̂ (r · λ)eir(λ1τ1

0 (ξ)+···+λmτm
0 (ξ)) rm−1dr dσ(λ)
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=
1

(2π)m/2 ·
∫

Rm
f̂ (x)ei〈x : (τ1

0 (ξ),...,τm
0 (ξ))〉 dx = f (τ1

0 (ξ), . . . , τm
0 (ξ)) ,

by Cavalieri’s principle and Fourier inversion. We need to show that f (T) − f∞(T) is
smoothing.

Define uλ(t) = exp(it(λ1T1 + · · ·+ λmTm)) . Since all operators involved are prop-
erly supported, the Sobolev continuity result [Str72, th. 7] shows that the proof of [GS79,
lem. A.1] goes through without changes, proving

‖uλ(t)ψ‖H(k) 6 Ck ·
(
‖ψ‖H(k) + tk · ‖ψ‖2

)
for all ψ ∈ D(H)

where the constant Ck depends only on k . By interpolation, this extends to all s > 0 .

Moreover, H(s)(H) ⊂ L2(H) for all s > 0 , and the inclusion is continuous, cf. [Str72,
th. 7, cor.]. Hence, we may estimate the L2 norm on the right hand side by ‖xy‖H(s) , by
increasing the constant Cs .

Recall rλ
k (t) = u̇λ

k (t) − iT · uλ
k (t) ∈ IΨ−(k+1)(H) from lemma 3.2.8 where uλ

k corre-
sponds to the operator λ1T1 + · · ·+ λmTm . By the proof of lemma 3.2.8, rλ

k = opχ

(
aλ
)

where degt(1 + |ξ|)`∂
β
ξ a(ξ, t) 6 2k for all ` 6 |β| and the polynomial bound can be

chosen independent of λ . Hence, lemma 3.2.11 gives

‖rλ
k (t)ψ‖H(s+k+1) 6 Csk · (1 + |t|)2k · ‖ψ‖H(s) for all ψ ∈ D(H) , s > 0

with Csk independent of ψ , t and λ .

By integrating factors,

uλ(t)− uλ
k (t) = −uλ(t) ·

∫ t

0
uλ(s)rλ

k (s) ds ,

so we find

‖(uλ(t)− uλ
k (t))ψ‖H(s+k+1) 6 C′sk · (1 + |t|)4s+1 · ‖ψ‖H(s) for all ψ ∈ D(H) , s > 0

with C′sk independent of ψ , t and λ . This proves that

f (T)− 1
Γ(m/2) · 2n/2−1 ·

∫
Sm−1

∫ ∞

0
f̂ (r · λ)uλ

k (r) rm−1dr dσ(λ)

=
1

Γ(m/2) · 2n/2−1 ·
∫

Sm−1

∫ ∞

0
f̂ (r · λ)(uλ(r)− uλ

k (r)) rm−1dr dσ(λ)

is bounded H(s)(H) → H(s+k+1)(H) for all s > 0 . But, by definition,

f∞(T)− 1
Γ(n/2) · 2n/2−1 ·

∫
Sm−1

∫ ∞

0
f̂ (r · λ)uλ

k (r) rm−1dr dσ(λ)
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is an invariant, properly supported pseudo-differential operator of order −(k + 1) , and
consequently also bounded H(s)(H) → H(s+k+1)(H) .

Therefore, the same is true of f (T)− f∞(T) . Since f (T)∗ = f ∗(−T) where f ∗(t) =
f (−t) , the same argument applies to f (T)∗ , and by duality and interpolation,

f (T)− f∞(T) : H(s)(H) → H(s+k)(H)

is bounded for all s ∈ R and k ∈ N . So, by lemma 3.2.10, f (T)− f∞(T) is smoothing,
and f (T) ∈ IΨ0

h(H) with principal Lie symbol f (τ1
0 , . . . , τm

0 ) . �

3.3 Wave front of the Szegö distribution

3.3.1. The cotangent bundle T∗(H) of H is canonically trivialised, and shall therefore
be identified with H × h∗R .

So, for µ ∈ D′(H) , the wave front set WF(µ) ⊂ H × h∗R . Namely,

WF(µ) =
⋂{

char A
∣∣ Aµ ∈ E(H) , A ∈ IΨ0

h(H) properly supported
}

.

Here, whenever A ∈ IΨm
h (H) , the characteristic set char A ⊂ H × h∗R is

char A =
{
(h, ξ) ∈ H × h∗R

∣∣∣ lim inft→∞ t−m |am(h, ξ)| = 0
}

where am is a principal symbol of A .

Theorem 3.3.2. Assume H ⊂ HC , and, moreover, the existence of the Ol’shanskiı̆ do-
main Γ◦ = H · exp iΩ◦ defined by a closed, pointed, and generating H-invariant cone
Ω ⊂ hR . If E is the associated Szegö distribution, then

WF(E) ⊂ H ×Ω∗

where Ω∗ is the closed dual cone of Ω .

Corollary 3.3.3. If f = (c1 > · · · > cm > 0 = cm+1) is a flag of tripotents of the simple
JB∗-triple Z , and I ⊂ {1, . . . , m} , then for the Szegö distribution E f ,I of the group G f ,I ,
we have

WF(E f ,I) ⊂ G f ,I × F−∗f ,I .

Proof of theorem 3.3.2. Fix t ∈ H . By proposition 3.3.4 below, there exists a compact
neighbourhood V ⊂ Γ of 1 such that K(t(expxy)γ) has tempered growth at the boundary
on W ∩ (hR + iΩ◦) for some exponential neighbourhood W ⊂ h of 0 , uniformly in
γ ∈ V . We assume this proposition for the moment, and postpone its proof.

By a theorem of Martineau [Mar77, ch. III,§ 1, th. 2, and proof] (see also [Iag78,
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app. I.1, lem. 3], or [Hör83, th. 3.1.15]), there exist distributional boundary values µγ ,

〈ϕ : µγ〉 = limr→0+

∫
hR

ϕ(X)K(t exp(X + irY)γ) dX for all ϕ ∈ D(WR)

where WR = W ∩ hR , and Y ∈ Ω◦ is arbitrary, but fixed. Since the tempered growth of
K(t(expxy)γ) is uniform in γ , the above convergence in D′(WR) is uniform in γ ∈ V . In
particular, γ 7→ µγ : V → D′(WR) is continuous.

On the other hand, because K is continuous on Γ◦ , by dominated convergence,∫
H

ϕ(log s)K(tsγ) ds =
∫

hR

ϕ(X)K(t(exp X)γ)$(X) dX

= limr→0+

∫
hR

ϕ(X)K(t exp(X + irY)γ)$(X) dX .

Here, $ > 0 is the smooth function such that ds = exp∗($ · dX) on exp(WR) .

Moreover, by proposition 3.1.13,

〈t ∗ (ϕ ◦ log) : E〉 = limγ→1

∫
H

ϕ(log s)K(tsγ) ds .

Since one of the inner limits is uniform, we can exchange limit order by Moore’s theorem
[DS58, I.7, lem. 5], so we find

E =
(
t ∗ exp∗($ · µ1)

)
on t exp(WR) .

The fibre of the analytic wave front set of µ1 at 0 is contained in Ω∗ , cf. [Sjö82, th. 6.5],
[Iag78, C.1, lem. 3, p. 113]. Consequently, the fibre of WF(E) at t is also contained in Ω∗

[Hör71b, th. 3.4], [Bon77]. �

Proposition 3.3.4. Let K : Γ◦ → C be the Szegö kernel function and t ∈ H . Then there
exists a compact neighbourhood V of 1 in the closed Ol’shanskiı̆ semigroup Γ such that
the functions

K
(
t−1(expxy)γ

)
: hR + iΩ◦ → C : Z 7→ K

(
t−1(exp Z)γ

)
have tempered growth on W ∩ (hR + iΩ◦) for some neighbourhood W ⊂ h of 0 , uni-
formly in γ ∈ V .

Remark 3.3.5. Our proof of this fact is rather technical, so we have divided it into three
parts. The first part is a simple elaboration of the estimates in [HN93, proof of th. 9.31]
proving that the norm topology of H2(Γ◦) is finer than the topology of local uniform
convergence. The next two steps, stated as lemmata below, are more technical, concern-
ing estimates of the Baker-Campbell-Hausdorff formula.
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Proof of proposition 3.3.4. Consider the smooth map

φ : HC × h → HC : (γ, X + iY) 7→ φγ(X + iY) = t−1(exp iY)γ(exp X) .

Then φ0 is regular at 0 , and (γ, Z) 7→ Dφγ(Z) is continuous, so there exists a compact
neighbourhood K ⊂ HC of 1 and a compact neighbourhood L ⊂ hR such that

det Dφγ(X + iY) 6= 0 for all γ ∈ K , X, Y ∈ L .

In particular,
φγ : L◦ + iL◦ → t−1(exp iL)γ(exp L)

is a diffeomorphism onto its open image for all γ ∈ K . We may also assume that

iL◦ → (exp iY)γ(exp L) : X 7→ φγ(X + iY)

is a diffeomorphism for all γ ∈ K and Y ∈ L . We note that due to the regularity of left
multiplication on HC , L is independent of t .

Let
ε = inf

γ∈K , X,Y∈L
|det DXφγ(X + iY)| > 0 .

Furthermore, for z ∈ K ∩ Γ◦ , let

δ(z) = sup
{

0 < r 6 1
∣∣ Cr(0) ⊂ L + iL , φz(Cr(0)) ⊂ Γ◦

}
∈ ]0, 1]

where Cr(0) = Br × · · · ×Br ⊂ h is the open poly-cylinder with radius r . Because Γ◦ is
H × H-invariant, δ(z) is also independent of t .

Then, for z ∈ Γ◦ and f ∈ H2(Γ◦) ,

∣∣ f (t−1z)
∣∣2 = | f ◦ φz(0)|2 6

1
πn · δ(z)2n ·

∫
Cδ(z)(0)

| f ◦ φz(X + iY)|2 dX dY

6
1

πn · δ(z)2n ·
∫

L

∫
L

∣∣∣ f (t−1(exp iY)z(exp X)
)∣∣∣2 dX dY

6
1

ε · πn · δ(z)2n ·
∫

L

∫
H

∣∣∣ f (t−1(exp iY)zs
)∣∣∣2 ds dY 6

vol L
ε · πn · δ(z)n · ‖ f ‖2

H2

where in the first step, [Hel78, ch. VIII, § 3, prop. 3.1 and proof] was employed, and

vol Cδ(z)(0) = πn · δ(z)2n .

In particular, by the reproducing property

‖Kt−1z‖H2 = sup
‖ f ‖H261

|(Kt−1z | f )| = sup
‖ f ‖H261

| f (t−1z)| 6

√
vol L

ε · πn · δ(z)2n
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for all z ∈ K ∩ Γ◦ .
Now, let K0 ⊂ K◦ be a compact neighbourhood of 1 . There exists a compact neigh-

bourhood U ⊂ K◦ of 1 such that

K0 ∩ Γ◦ ⊂
⋃

η∈U

(K ∩ Γ◦)η∗ .

Hence, for z ∈ K0 ∩ Γ◦ and η ∈ U , there is zη ∈ K such that z = zη · η∗ .
Moreover, there is a compact neighbourhood V ⊂ Γ of 1 such that V∗ ·U ⊂ K . Thus,

for all z ∈ K0 ∩ Γ◦ and γ ∈ V ,

|K(t−1zγ)| = |K(t−1zηη∗γ)| = |Kγ∗η(t−1zη)|

6

√
vol L

ε · πn · δ(zη)2n ·
∥∥Kγ∗η

∥∥
H2 6

vol L
ε · πn · δ(zη)n · δ(η)n

because
∥∥Kγ∗η

∥∥
H2 =

∥∥Kγ∗η ∗ t
∥∥

H2 = ‖Kt−1γ∗η‖H2 by unimodularity of H , and

δ(γ∗η) > δ(η) for all γ ∈ V , η ∈ U .

By lemma 3.3.7, for exp(X + iY) ∈ K0 ∩ Γ◦ , Y varying in a closed cone C \ 0 ⊂ Ω◦ ,

δ(exp(X + iY)) > A · ‖Y‖ for some A > 0

since the norms on h defining the poly-cylinder and the Euclidean ball are equivalent,
and L and δ are independent of t .

By essentially the same argument as the proof of lemma 3.3.7, if η ∈ U ∩ exp iΩ◦ is
fixed, the norm of V such that

exp(U + iV) · η∗ = exp(X + iY)

is bounded by B · ‖Y‖ for some B > 0 . Hence, the above estimate for |K(z)| shows
that, uniformly in γ ∈ V , K(t−1(expxy)γ) has tempered growth on log(K0 ∩ Γ◦) if K0 is
chosen small enough to fulfill the conditions of lemma 3.3.7. �

Lemma 3.3.6. Let X, Y ∈ h be in an exponential neighbourhood, such that the Baker-
Campbell-Hausdorff series c(X, Y) = log

(
(exp X)(exp Y)

)
is well defined. Then∥∥∥∥∫ 1

0

(
f (et ad Xead Y)− 1

)
X dt

∥∥∥∥ 6
√

M · (‖X‖+ ‖Y‖) · ‖X‖ for all M · (‖X‖+ ‖Y‖) 6
1
9

where M = ‖ad‖ is the operator norm of ad : h → End h , and

f (z) =
log z
z− 1

for all |z− 1| < 1 .
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Proof. Note that c(X, Y) = X +Y +
∫ 1

0 ( f (et ad Xead Y)− 1)X dt by [KMS93, ch. I, th. 4.29].

We claim that √
s > − log(2− es) for all s ∈

[
0, 1

9

]
.

We establish this by a brief discussion of the function h(s) =
√

s + log(2− es) , defined
for 0 6 s < log 2 . Observe h′(s) = 1

2
√

2
− es

2−es for s > 0 . Hence

h′(0+) = ∞ and h′(s) 6 0 ⇐⇒ 2 6 (2
√

s + 1) · es for all s > 0 .

If 0 < s 6 1
9 , then

(2
√

s + 1)es 6 5
3 · e1/9 < 2 ,

since e1/9 < 6
5 . Hence, h′(s) > 0 for all 0 < s 6 1

s . Because h(0) = 0 , we have proved
the claim. Now, for |z− 1| < 1 ,

| f (z)− 1| 6
∞

∑
n=1

1
n + 1

· |z− 1|n 6
∞

∑
n=1

1
n
· |z− 1|n = − log(1− |z− 1|) .

Moreover, for all 0 6 t 6 1 ,

∥∥et ad Xead Y − 1
∥∥ =

∥∥∥ ∑
k+`>1

tk

k! · `!
(ad X)k(ad Y)`

∥∥∥ 6 ∑
k+`>1

tk

k! · `!
‖X‖k · ‖Y‖` · Mk+`

= eM·(t‖X‖+‖Y‖) − 1 6 eM·(‖X‖+‖Y‖) − 1 .

Hence,∥∥∥∥∫ 1

0

(
f (et ad Xead Y)− 1

)
X dt

∥∥∥∥ 6 supt∈[0,1]

∥∥ f (et ad Xead Y)− 1
∥∥ · ‖X‖

6 supt∈[0,1]− log
(
1−

∥∥et ad Xead Y − 1
∥∥) · ‖X‖

6 − log(2− eM(‖X‖+‖Y‖)) · ‖X‖

6
√

M · (‖X‖+ ‖Y‖) · ‖X‖ ,

whenever M · (‖X‖+ ‖Y‖) 6 1
9 . �

Lemma 3.3.7. Let X ∈ hR and Y ∈ Ω◦ , ‖X‖ , ‖Y‖ 6 1
18·M . Define

r = min
(
1, dist(Y, ∂Ω)) > 0 .

Then, for |z| 6 1 , Im z > 0 we have

(exp iV)(exp(X + zY))(exp U) ∈ Γ◦



3.3. Wave front of the Szegö distribution 97

for all U, V ∈ hR such that

‖V‖ < min
[ 1

18 · M
,
(

1 +
1√

6 · M

)−1
· r · Im z

]
.

Proof. Since Γ◦ is H × H-invariant,

(exp iV)(exp(X + zY))(exp U) ∈ Γ◦ ⇐⇒ (exp iV)(exp(X + zY)) ∈ Γ◦ .

By the Baker-Campbell-Hausdorff formula [KMS93, ch. I, th. 4.29]

exp c(iV, X + zY) = (exp iV)(exp(X + zY))

where

c(iV, X + zY) = X + zY + iV +
∫ 1

0

(
f (et ad iVead(X+zY))− 1

)
iV dt .

Hence,

‖Im c(iV, X + zY)− i · Im z ·Y‖ =
∥∥∥∥iV +

∫ 1

0

(
f (et ad iVead(X+zY))− 1

)
iV dt

∥∥∥∥
6
(
1 +

√
‖V‖+ ‖X + zY‖

)
· ‖V‖ < r · Im z

for all V ∈ hR satisfying the condition stated above. This implies

Im c(iV, X + zY) ∈ BIm z·r(i · Im z ·Y) = Im z · Br(iY) ⊂ Im z · iΩ◦ = iΩ◦ .

Thus, c(iV, X + zY) ∈ hR + iΩ◦ , and (exp iV)(exp(X + zY)) ∈ Γ◦ . �

3.3.8. Recall that for X ⊂ h∗R ,

AC(X) =
{

ξ ∈ h∗R
∣∣ t · ξ ∈ X for all t � 1

}
,

the asymptotic cone of X .

Proposition 3.3.9. Let A ∈ IΨm
h (H) with principal Lie symbol am ∈ Sm

h (H) . The char-
acteristic set char A of A is

char A = H ×AC(a−1
m (0)) .

Proof. The point is to express the principal symbol in terms of the principal Lie symbol.
By [Str72, (3.8)], we see that

a(X, ξ) =
[
am
(
W(X, Y)ξ

)
· R(X, Y)

]∣∣
Y=X

defines a principal symbol of A in a coordinate neighbourhood of the identity. Here,

W : U ×U → GL(h∗R) and R : U ×U → R+
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are smooth, and R has compact support. By the proof of [Str72, th. 1], it is clear that
W(X, X) = idh∗R

for all X ∈ U . Moreover, R is non-zero at (0, 0) .
Since am is homogeneous of degree m for |ξ| → ∞ , we conclude that (1, ξ) ∈ char A

if and only if am(t · ξ) = 0 for all t > 1 . Hence, the fibre of char A at the identity is
exactly AC

(
a−1

m (0)
)

. By left invariance of A , the contention follows. �

3.3.10. Let H be a connected Lie group and ξ1, . . . , ξn ∈ hR a basis of its Lie algebra.
Denote by ξ∗1 , . . . , ξ∗n the dual basis. We identify h∗R with Rn via this basis. Then the
following corollary is obvious.

Corollary 3.3.11. Assume H is contained a complexification HC , and that there exists
an Ol’shanskiı̆ domain Γ◦ = H · exp iΩ◦ defined by a closed pointed H-invariant cone
Ω ⊂ hR . Let E be the Szegö distribution. If A = (A1, . . . , Ar) is defined by

Ak = −iξk
(
1−∑n

j=0 ξ2
j
)1/2 ∈ IΨ0

h(H) ,

then
f (A)(α · E) ∈ E(H) for all α ∈ D(H) and f ∈ E(h∗R, R)

homogeneous of degree 0 for |ξ| → ∞ , such that AC( f−1(0)) ∩Ω∗ = 0 .

Proof. The operators Aj are well-defined, since −∑n
j=0 ξ2

j has Lie symbol |xy|2 and is
therefore elliptic. They are properly supported, because ξ j are, as differential operators,
and self-adjoint. The Lie symbol of iξ j is ξ∗j . Hence, theorem 3.2.12 shows that the princi-
pal Lie symbol of f (A) ∈ IΨ0

h(H) is f (ξ∗1 , . . . , ξ∗n) , where we have used the homogeneity
of the function f .

Proposition 3.3.9 implies char f (A) = AC( f−1(0)) . Since this intersects Ω∗ trivially,
and WF(E) ⊂ H ×Ω∗ by theorem 3.3.2, we find that f (A)(α · E) is smooth. �

Besides the wave front estimates coming from the fact that the Szegö distribution is
locally the boundary value of a holomorphic function, there are also estimates coming
from invariance. We have the following global version of [DV90, lemme 1 (a)].

Proposition 3.3.12. Let H be a Lie group and e ∈ D′(H) an invariant distribution, i.e.(
cg
)
∗(e) = e for all g ∈ H where cg(h) = ghg−1. Then

WF(e)g ⊂ Ad∗(h) ker(1−Ad∗(h−1gh)) for all g, h ∈ H .

Proof. For X ∈ hR, define a vector field X̃ on H by

X̃ f (g) =
d
dt

f
(
exp(−tX)g exp(tX)

)∣∣
t=0 for all g ∈ H , f ∈ E(H) .

Then, for all ψ ∈ D(H) ,

〈ψ : X̃p〉 = − d
dt
〈ϕ ◦ cexp(tX) : p〉

∣∣
t=0 = 0 .
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Hence, by [Hör83, th. 8.3.1], WF(e) ⊂ char X. So, we need to determine the principal
symbol of the differential operator X̃. For g ∈ H ,

X̃g =
d
dt

exp(−tX)g exp(tX)
∣∣
t=0

=
d
dt

g exp(−t Ad(g−1)(X)) exp(tX)
∣∣
t=0 = d`g(1)(1−Ad(g−1))(X) ,

where `g(h) = gh . Since these are the trivialising maps T(H) → H × hR ,

σ(g, ξ) = 〈X : (1−Ad∗(g))(ξ)〉 for all g ∈ H , ξ ∈ hR

is the principal symbol of X̃ . We find

⋂
X∈hR

(
char X̃

)
= ker

(
1−Ad∗(g)

)
.

This proves the equation for h = 1. Now let h ∈ H be arbitrary. ch : H → H is a
diffeomorphism, so by [Hör83, th. 8.2.4],

d`g(1)t WF(e)g = d`g(1) WF
(
(ch)∗(e)

)
g = (dch(g))td`g(1)t WF(e)hgh−1

= Ad∗(h−1)d`hgh−1(1)t WF(e)hgh−1 ,

because dch(1)t = Ad∗(h−1) and ch ◦ `g = `hgh−1 ◦ ch. Applying the trivialising maps,
this proves the assertion. �

Although the preceding proposition main seem innocuous, combined with the previous
wave front estimate for the Szegö distribution, it surprisingly gives some information
on its singular support.

Proposition 3.3.13. Let G = Aut0 B and E be the Szegö distribution associated to the
cone Ω− ⊂ gR . Let T = ZG(tR) be the torus for the compact Cartan subalgebra tR . If
g ∈ G∗ is regular, and WF(E)g contains regular elements, then g ∈ TG

∗ . In other words,
if g ∈ G∗ \ TG

∗ , then WF(E)g consists of singular semi-simple elements.

Proof. Let g ∈ G∗ , i.e. g is regular. Then hR = ker(1−Ad(g)) is a Cartan subalgebra.
We have

WF(E)g ⊂ Ω−∗ ∩ ker(1−Ad∗(g)) .

Identifying g∗R = gR w.r.t. the invariant inner product (xy : xy) , the right hand side iden-
tifies with Ω+ ∩ hR .

In particular, all elements of WF(E)g are semi-simple, since hR is a CSA. If X ∈
Ω+ ∩ hR is regular, lemma 2.1.32 shows that X is conjugate to an element of ω+◦ ⊂ tR .
Then hR is conjugate to tR , and by [Kna02, th. 7.108], this implies g ∈ TG . �

Remark 3.3.14. If something could be said about the relation of WF(E) to the cone of
nilpotents in gR , then more conclusive information on the singular support sing supp E
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would be available. To wit, whenever g ∈ G∗ is regular and WF(E)g consists only of
nilpotents, it would follow that WF(E)g = ∅ , so that g 6∈ sing supp E .

For Z(g)-finite invariant distributions, the fibre of the wave front set is contained in
the cone of nilpotents, cf. [DV90, lem. 1 (b)]. This follows from the fact that such dis-
tributions are annihilated by the differential operators built from the ideal of invariant
polynomial without constant term. The common set of zeros of this ideal is the cone of
nilpotent elements.

3.4 Singular support of the Szegö distribution

3.4.1. The considerations of the previous subsection suggest a closer study of the Szegö
distribution on TG

∗ . Consider the map

φ : G/T × T∗ → TG
∗ : (ġ, t) 7→ gtg−1 .

It is a real analytic submersion, and by [OM80, th. 2], it is a Wc : 1 covering map. In
particular, it is proper, and we can pull back arbitrary distributions along φ .

Proposition 3.4.2. There exists a unique ET ∈ D′(T∗) such that

〈φ∗(ϕ) : E 〉 =
〈

t 7→
∫

G/T
ϕ(ġ, t) dġ : ET

〉
for all ϕ ∈ D(G/T × T∗) .

On TG
∗ , E is determined uniquely by ET . Moreover, ET is Wc-invariant and given by

〈ψ : ET〉 = limTC
+3γ→1

∫
T

ψ(t)K(tγ) dt for all ψ ∈ D(T∗)

where K : Γ∗ → C is the one-variable Szegö kernel function and TC
+ = Γ◦ ∩ TC .

Proof. By [HC64, th. 1], the linear map φ∗ : D(G/T × T∗) → D(TG
∗ ), well-defined by∫

G/T

∫
T

ψ(gtg−1)ϕ(ġ, t) dt dġ =
∫

G
ψ(g)φ∗(ϕ)(g) dg

for all ϕ ∈ D(G/T × T) , ψ ∈ D(TG
∗ ) , is weakly continuous and surjective, so that

φ∗(E) = E ◦ φ∗ uniquely determines E on TG
∗ . Moreover, φ intertwines the G-action on

G/T × T∗ induced by left multiplication and the action by conjugation on TG
∗ .

Hence, φ∗(E) is left-invariant, thus φ∗(E) = dġ⊗ ET for some uniquely determined
and Wc-invariant ET ∈ D′(TG

∗ ) , by [Kna86, X, § 6, lem. 10.28]. Let ϕ ∈ D(G/T × T) .
Since K(gγ) is, locally in g , of uniform tempered growth for γ → 1 , by proposition 3.3.4,

limγ→1

∫
T

ϕ(ġ, t)K(tg−1γg) dt = limγ→1

∫
T

ϕ(ġ, t)K(tγ) dt

exists and is continuous in ġ ∈ G/T . The equality follows from the invariance of Γ◦ and
the independence of the limit on the sequence γ → 1 . The projection of supp ϕ onto
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G/T is compact, so we may apply Lebesgue’s theorem to the outer integral, and

〈ϕ : dġ⊗ ET〉 = 〈φ∗(ϕ) : E〉 = limγ→1

∫
G

φ∗(ϕ)(g)K(gγ) dg

= limγ→1

∫
G/T

∫
T

ϕ(ġ, t)K(gtg−1γ) dt dġ

=
∫

G/T
limγ→1

∫
T

ϕ(ġ, t)K(tγ) dt dġ ,

by propositions 3.1.13 and 3.1.10. By uniqueness of ET , the assertion follows. �

3.4.3. Ol’shanskiı̆ [Ol’95, proofs of ths. 4.2 and 4.3] has computed the kernel K on TC
+ .

Namely, let Π = B(∆++) be the simple system, and $ = 1
2 ·∑α∈∆++ α . Then Hα , α ∈ Π ,

is a basis of itR . Let ωα , α ∈ Π , denote the dual basis of it∗R . These are the so-called
fundamental weights, and $ = ∑α∈Π ωα , by [Bou68, ch. VI, § 1.11, prop. 29].

The Weyl denominator is

d(s) = s$ ·∏α∈∆++

(
1− s−α

)
for all s ∈ TC

Then d(s) 6= 0 whenever s ∈ TC
∗ . Define

k(s, x) =
1

d(sx)
· ∑

σ∈W
∑

τ∈Wc

ε(σ)ε(τ) · (σ(x) · τ(τ0(s)−1))$

∏β∈Π
(
1− (σ(x) · τ(τ0(s)−1))ωβ

) for all s, x ∈ TC

where this makes sense. Here, τ0 ∈ Wc is the longest Weyl group element, and

ε(σ) = (−1)`(σ) = det σ for all σ ∈ W

is the sign function. If t ∈ T∗ , then there exist compact connected neighbourhoods

t ∈ U◦ ⊂ U ⊂ T∗ , 0 ∈ V◦ ⊂ tR and 1 ∈ W◦ ⊂ W ⊂ TC ,

such that k is a holomorphic function on O×W∗ where O = U · exp i(V ∩ω−◦) .

Then Ol’shanskiı̆’s formula is

K(s) = limW∗3x→1 k(s, x) for all s ∈ O .

This convergence can be sharpened, and indeed, the limit can be computed explicitly,
by the same device as is used in the proof of Weyl’s dimension formula from Weyl’s
character formula.

This is nothing but L’Hospital’s rule, applied to the differential operator

D = ∏α∈∆++ Hα on TC .

We first state and prove an appropriate version of L’Hospital’s rule.
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Namely, for r > 0 let Br = {z ∈ C | |z| < r} , and the punctured polydisc

Ḋn
r = (Br \ 0)× · · · × (Br \ 0) ⊂ Cn .

Moreover, for any positive function $ : A →]0, ∞[ , define a norm by

‖ f ‖$ = supa∈A |$(x) · f (x)| for all f : A → C

and a Banach space
`∞

$ (A) =
{

f : A → C
∣∣ ‖ f ‖$ < ∞

}
.

Lemma 3.4.4. Let n ∈ N , r > 0 and A be a set

(i). Let $ : A →]0, ∞[ . If

f : Ḋn
r × A → C is holomorphic in the first variable,

and ( f (xy, x))x∈L is bounded in `∞
$ (A) , then

f (α)(0, a) = limz→0 f (α)(z, a) exists in `∞
$ (A) ,

for all multi-indices α ∈ Nn .

(ii). Assume f and g satisfy the assumptions of (i) for $1 and $2 . Let β ∈ Nn such that

f (α)(0, a) = g(α)(0, a) = 0 for all |α| 6 |β| , α 6= β , a ∈ A

and infa∈A |$2(a) · g(β)(0, a)| > 0 . Then, for any $3 > $2 and any U ⊂ Bn
r star-shaped

around 0 , such that

sup
a∈A,z∈U

∣∣∣$3(a) f (α)(z, a)
∣∣∣ < ∞ for α = β and |α| = |β|+ 1 ,

we have

limU\03z→0
f (z, x)
g(z, x)

=
f (α)(0, x)
g(α)(0, x)

uniformly in a ∈ A .

Proof of (i). For any a ∈ A, f (xy, a) is a holomorphic function locally bounded near the
analytic set Bn \D. Hence, by the Riemann removable singularity theorem, it is uniquely
holomorphically extendible to Bn

r . By assumption, the resulting function f is, locally on
Bn, uniformly bounded with values in `∞

$ (A) . Since A ⊂ `∞
$ (A)′ is norm-determining,

f : Bn → `∞
$ (A) : z 7→ f (z, xy)
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is a holomorphic vector-valued function, cf. [Nee00a, cor. A.III.1]. In particular,

f (α)(0, xy) = limz→0 f (α)(z, xy) in `∞
$ (A) .

Proof of (ii). Assume β ∈ Nn given as stated. By Taylor’s theorem,

β! · f (z, a)
zβ

= f (β)(0, a) + ϕ(z, a) and β! · g(z, a)
zβ

= g(β)(0, a) + ψ(z, a)

where

limz→0 ϕ(z, x) = 0 = limz→0 ψ(z, x) in the respective spaces `∞
$1

(A) and `∞
$2

(A) .

Let ε = infa∈A |$2(a) · g(β)(0, a)| > 0. Then∥∥∥∥∥ f (z, xy)
g(z, xy)

− f (β)(z, xy)
g(β)(z, xy)

∥∥∥∥∥
∞

6
1
ε
· ‖ϕ(z, xy)‖$3

+
1
ε2 · ‖ f (β)(0, xy)‖$3

· ‖ψ(z, xy)‖$2
→ 0 ,

since for z ∈ U and s ∈ [0, 1] , by Lagrange’s formula,

|$3(a)ϕ(sz, a)| 6 ∑
|α|=|β|+1

∥∥∥$3(a) f (α)(xy, a)
∥∥∥

∞,[0,sz]
· 1

s|β|

∫ s

0
t|β| dt 6 C · s

for some positive constant C . �

Proposition 3.4.5. Let 0 < ε < 1 and denote

Vε =
{

H ∈ iV ∩ω−◦ ∣∣ minβ∈Π ωβ(H) > − log(1− ε)
}

.

Then, uniformly for s ∈ Oε = U · exp Vε ,

K(s) = limT∩W∗3x→e k(s, x)

=
1

d(s) ·∏α>0 ($ : α)
·∑τ∈Wc

ε(τ) · Du
u$

∏β∈Π(1− uωβ)

∣∣∣∣
u=τ(τ0(s)−1)

.

Proof. The Weyl denominator d ∈ Z[P] where P = Z〈ωβ | β ∈ Π〉 is the group of
weights. In fact, [Bou68, ch. VI, § 3.3, prop. 2], d is a universal divisor for any W-odd
p ∈ Z[P]. Consequently, the limit

lim
x→e

1
d(x)

· ∑
σ∈Wt

ε(σ) · σ(x)$+µ = ∏
α>0

($t + µ : α)
($t : α)

exists and can be evaluated via L’Hospital’s rule, applied the operator D as in [Kna86,
IV, § 10, proof of th. 4.48]. To see that the convergence is uniform in µ ∈ P+ , the set of
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dominant weights, we wish to apply lemma 3.4.4. To that end, consider

$1(µ)−1 = maxσ∈W , x∈T∩W∗ |σ(x)µ| , µ ∈ P+

and $2 = $3 = 1. Since µ is imaginary, |σ(x)µ| = 1 if x ∈ T ∩W∗. So the boundedness
assumptions are verified if we take U = log(T ∩W∗) in the lemma.

For s−1 ∈ O , the geometric series

∑µ∈P+ s$+µ =
s$

∏β∈Π(1− sωβ)

is locally uniformly convergent. Viz, if s−1 = u · exp X ∈ O , u ∈ T , −X ∈ iω−◦ , then

|sωβ | = eωβ(X) < 1

and the convergence is uniform of subsets where maxβ eωβ(X) 6 1− ε < 1 . Now,

Ds s$+µ = ∏α>0 ($ + µ : α) · s$+µ .

Since the derivatives of power series have the same radius of convergence as their prim-
itives, the series

∑µ∈P+ ∏α>0 ($ + µ : α) · s$+µ = Ds ∑µ∈P+ s$+µ = Ds
s$

∏β∈Π(1− sωβ)

converges uniformly for s−1 = u · exp X, maxβ ωβ(X) 6 log(1− ε). By the above con-
siderations, the convergence for T ∩W∗ 3 x → 1 of the coefficients is uniform in µ, so
we may exchange limit order to achieve, for W∗ ∩ T ∈ x → 1 ,

d(s) · k(s, x) = ∑τ∈Wc
ε(τ) ·∑µ∈P+

1
d(x)

·∑σ∈W ε(σ) · σ(x)$+µ · τ(τ0(s)−1)$+µ

→ 1
∏α>0 ($ : α)

·∑τ∈Wc
ε(τ) · Du

u$

∏β∈Π(1− uωβ)

∣∣∣∣
u=τ(τ0(s)−1)

,

uniformly in s = u · exp(−X), maxβ ωβ(X) 6 log(1− ε). Since d(s) is locally uniformly
bounded away from 0, the assertion follows. �

3.4.6. For rk gR > 2 , there may exist fundamental ωβ not proportional to any root, so
to evaluate K on a subset of T , we need to consider the set

T∗∗ =
{

t ∈ T∗
∣∣ tωβ 6= 1 for all β ∈ Π

}
.

whose elements are more-than-regular.

Proposition 3.4.7. Let U ⊂ T∗∗ be a small relatively compact neighbourhood of t ∈ T∗∗ .
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Then the limit

K(u) = limiω−◦3X→0 K(u · exp X) exists uniformly in u ∈ U ,

together with all derivatives. In particular,

sing supp ET ⊂ T \ T∗∗ and
(
sing supp E

)
∩ TG ⊂ TG \ TG

∗∗ .

Proof. The function f defined by

f (s) =
s$

∏β∈Π(1− sωβ)

is holomorphic and bounded on a neighbourhood of U−1 in TC
∗∗. Hence, so are its deriva-

tives. But then

Ds f (s)
∣∣
s=τ(τ0(u)−1) = limiω−◦3X→0 Ds f (s)

∣∣
s=τ(τ0(u·exp X)−1)

uniformly in u ∈ U, proving the assertion by propositions 3.4.5 and 3.4.2. �

Remark 3.4.8. One should note that Hecht [Hec76] has computed the characters of the
holomorphic discrete series on a set of conjugacy classes of Cartan subgroups. (In fact,
the formula is due to Martens in the case of a regular parameter λ , and Hecht extends
this to singular cases.) The formula is the same as on the torus. Basically, the same
proof as Ol’shanskiı̆ has given on the compact Cartan subgroup T should go through in
general. This would allow for the computation of E on the other Cartan subgroups.

4Holomorphic discrete series, and the Hardy space

4.1 Algebraic theory of highest weight modules

4.1.1. As above, consider the group G = Aut0 B where B ⊂ Z is a circled bounded sym-
metric domain defined by a JB∗-triple Z . Fix a frame e1, . . . , er of Z , and choose a torus
tR ⊂ kR , as in 2.1.3. For the corresponding root system ∆ , choose any positive system
∆+

c of ∆c , and define the corresponding adapted positive system ∆++ of ∆ , according to
lemma 2.1.6. Then

b = t⊕∑⊕
α∈∆++ gα = t⊕ k+ ⊕ p+

is a maximal solvable subalgebra of g = gR ⊗ C , containing p+ as an Abelian ideal.
Denote its nilpotent radical by n+ = k+ ⊕ p+ .

To any Λ ∈ t∗ , we associate the one-dimensional b-module CΛ = C ,

H z = Λ(H) · z and X z = 0 for all z ∈ CΛ , H ∈ t , X ∈ n+ .
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The universal enveloping algebra U (g) is naturally a (g, b)-bimodule. The Verma module

Vg
Λ = U (g)⊗U(b) CΛ

is therefore naturally a g-module. Denote by 1Λ the image of 1⊗ 1 in this tensor product.

4.1.2. Recall that for a t-module V , a linear form µ ∈ t∗ is called a t-weight of V if

H v = µ(H) · v for some non-zero v ∈ V .

In this case, v is called a µ-weight vector. The subspace of all µ-weight vectors in V is
denoted V[µ] .

The Verma module Vg
Λ is the algebraic direct sum of its t-weight spaces. The weights

are of the form Λ − ∑α∈Π nα · α where nα ∈ N and Π = B(∆++) is the set of simple
roots, cf. [Bou68, ch. VI, § 1.5]. The weight spaces are finite-dimensional, and the highest
weight space Vg

Λ[Λ] = C · 1Λ . Moreover, the vector 1Λ is annihilated by U (n+) . For
these statements, cf. [Dix77, prop. 7.1.6].

A cyclic g-module V = U (g) v such that v ∈ V[µ] and U (n+) v = 0 is called a
highest weight module. Then V[µ] = C · v and v is called a highest weight vector. Moreover,
one has V = U (n−) v where n− = ∑α∈∆++ g−α is opposite to n+ , and there is a unique
equivariant surjection Vg

µ → V mapping 1µ 7→ v , cf. [Dix77, prop. 7.1.7].
There is a largest proper submodule U ⊂ Vg

Λ , by [Dix77, prop. 7.1.11]. Consequently,
Lg

Λ = Vg
Λ/U is simple, and by what was said above, the unique simple quotient of Vg

Λ .

4.1.3. Define an conjugate linear involution xy∗ : g → g by

(X + iY)∗ = −X + iY for all X, Y ∈ gR .

Then xy∗ is an anti-automorphisms of g , i.e.

[Z, W]∗ = [W∗, Z∗] = −[Z∗, W∗] for all Z, W ∈ g .

With respect to this involution, gR = {Z ∈ g | Z∗ = −Z} , and it is clear that this sets up
a bijection between real forms and conjugate linear, involutive anti-automorphism of g .

If α ∈ ∆ ⊂ it∗R and Z ∈ gα , then

[H, Z∗] = −[H∗, Z]∗ = [H, Z]∗ =
(
α(H) · Z)∗ = −α(H) · Z∗ for all H ∈ tR ,

and this shows that (gα)∗ = g−α . We deduce (n±)∗ = n∓ .
The involution xy∗ can be naturally carried over to the dual space g∗ by

〈Z : µ∗〉 = 〈Z∗ : µ〉 for all Z ∈ g , µ ∈ g∗ .

Then xy∗ : g∗ → g∗ is a conjugate linear involution.
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For this involution on g∗ , g∗R = {µ ∈ g∗ | µ∗ = −µ∗} . In particular, the weight Λ ∈ t

satisfies Λ∗ = Λ if and only if Λ ∈ it∗R .

4.1.4. By the universal property [Dix77, lem. 2.1.3] of the universal enveloping algebra
U (g) , the conjugate linear involutive Lie algebra anti-automorphism xy∗ : g → g extends
to a conjugate linear involutive algebra anti-automorphism xy∗ : U (g) → U (g) .

If V is a g-module, an R-bilinear form (xy : xy) : V ×V → C is invariant if

(X∗ u : v) = (u : X v) for all X ∈ U (g) , u, v ∈ V .

If (xy : xy) is invariant, then the left and right annihilators of submodules U ⊂ V

U⊥ =
{

u ∈ V
∣∣ (U : u) = 0

}
and ⊥U =

{
u ∈ V

∣∣ (u : U) = 0
}

are submodules of V . The form (xy : xy) is non-degenerate if V⊥ = ⊥V = 0 . Of course,
there are one-sided notions of non-degeneracy.

A sesqui-linear form (xy | xy) , conjugate linear in the first variable, is Hermitian if

(u | v) = (v | u) for all u, v ∈ V .

If it is invariant and Hermitian, then left and right annihilators coincide.

Define an involution h 7→ h∗ on the space of invariant sesqui-linear forms on V by

h∗(u, v) = h(v, u) for all u, v ∈ V .

Then h is Hermitian if and only if h∗ = h . Moreover, any invariant sesqui-linear form h
decomposes as

h =
1
2
·
(
h + h∗

)
+

1
2
·
(
h− h∗

)
where h ± h∗ are invariant sesqui-linear forms which are, respectively, Hermitian and
skew-Hermitian.

Let (xy | xy) be sesqui-linear and invariant, and λ, µ weights of V such that λ∗ 6= µ .
Then, for all X ∈ U (g) , u ∈ V[λ] , v ∈ V[µ] ,

(λ∗(X)− µ(X)) · (u | v) = (λ(X∗) · u | v)− (u | µ(X) · v)

= (X∗ u | v)− (u | X v) = 0 .

There exists X ∈ g such that λ∗(X) 6= µ(X) . Hence V[λ] ⊥ V[µ] .

The set of invariant sesqui-linear forms is exactly Homg(V̄ ⊗V, C) where the conju-
gate space V̄ is a a g-module via

X v̄ = −X∗ v for all v ∈ V
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where x̄y : V → V̄ : v 7→ v̄ is the (conjugate linear) identity. We denote the set of
Hermitian elements in Homg by Hom+

g .

Proposition 4.1.5. Let Λ ∈ it∗R . For the modules V = Vg
Λ and L = Lg

Λ ,

dimC Homg (V̄ ⊗V, C) = dimC Homg (L̄⊗ L, C) = 1 .

and
dimR Hom+

g (V̄ ⊗V, C) = dimR Hom+
g (L̄⊗ L, C) = 1 ,

Any non-zero h ∈ Hom+
g (L̄⊗ L, C) is non-degenerate.

Proof. Since all the weights of V = Vg
Λ are of the form Λ − ∑α∈Π nα · α ∈ it∗R and

therefore fixed by xy∗ , the weight spaces are mutually orthogonal. Hence, if (xy | xy) is
an invariant form on V such that (1Λ | 1Λ) = 0 , we see that 1Λ ∈ ⊥V ∩V⊥ .

Since 1Λ is a cyclic vector, we find ⊥V = V⊥ = V , which means that (xy | xy) = 0 . In
particular, dimC Homg(V̄ ⊗V, C) 6 1 .

Let h = (xy | xy) ∈ Homg(V̄ ⊗V, C) , and set z = (1Λ | 1Λ) . If z ∈ R , then the skew-
Hermitian part of h vanishes on 1Λ and is hence zero. We conclude that h is Hermitian in
this case. Clearly, the converse is also true. Consequently, dimR Hom+

g (V̄ ⊗V, C) 6 1 .
Since any form on L = Lg

Λ lifts to V , the dimensions of the corresponding spaces are
at most one, too.

As a quotient of V , L = Lg
Λ is the algebraic direct sum of its weight spaces. So, there

is a unique h = (xy | xy) ∈ Hom+
g (L̄⊗ L, C) such that (1Λ | 1Λ) = 1 . Namely,

(1Λ | V[µ]) = 0 and (X 1Λ | u) = (1Λ | X∗ u) for all µ 6= Λ , X ∈ U (g) , u ∈ L .

Hence,
1 6 dimR Hom+

g (L̄⊗ L, C) 6 dimC Homg (L̄⊗ L, C) 6 1 .

The same is true of V , since the form h just constructed pulls back.
The remaining claim is that any non-zero invariant sesqui-linear form on L is non-

degenerate. But L⊥ is a submodule of L , and it is non-trivial since 1Λ 6∈ L⊥ . Since L
is simple, L⊥ = 0 , so h is non-degenerate (since it is Hermitian). Because any other
invariant sesqui-linear form is proportional to h , we are done. �

Remark 4.1.6. Our proof of proposition 4.1.5 closely follows [Enr79, prop. 6.8]. The
main difference being that Enright deals with bilinear instead of sesqui-linear forms
(symmetric instead of Hermitian). This does not place any conditions on the parameter
Λ and is therefore a crucial difference. Moreover, he treats slightly different involutions
(they are linear instead of conjugate linear). The construction of the unique Hermitian
invariant sesqui-linear form satisfying (1Λ | 1Λ) = 1 goes back to Shapovalov which is
why it is often called by this name.

Neeb generalises this theory in [Nee00a, IX.1] to Lie algebras including, among oth-
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ers, the Lie algebras g
f ,I
R generated by the faces F−f ,I of the cone Ω− , and even infinite-

dimensional cases.

Definition 4.1.7. If V is a g-highest weight module of weight Λ , and we have fixed
a highest weight vector 1Λ , we call the unique invariant Hermitian form such that
(1Λ | 1Λ) = 1 the Shapovalov form of V .

Proposition 4.1.5 allows for the classification of highest weight modules admitting a
non-degenerate invariant Hermitian form.

Proposition 4.1.8. Let V be a highest weight module of weight Λ ∈ t∗ . Then V permits
a non-zero invariant Hermitian form if and only if Λ ∈ it∗R . In this case,

dimC Homg (V̄ ⊗V, C) = dimR Hom+
g (V̄ ⊗V, C) = 1 .

Moreover, there exists a non-degenerate invariant Hermitian form on the g-module V if
and only if it is simple, i.e. V = Lg

Λ .

Proof. We know that V is a quotient of Vg
Λ . If (xy | xy) ∈ Hom+

g (V̄ ⊗V, C) is non-zero,
then so is its pull-back to Vg

Λ . This shows that (v | v) 6= 0 for any non-zero v ∈ V[Λ] ,
compare the proof of proposition 4.1.5. Hence

Λ∗(H) · (v | v) = (Λ(H∗) v | v) = (H∗ v | v) = (v | H v) = Λ(H) · (v | v)

for all H ∈ t , v ∈ V[Λ] , shows that Λ = Λ∗ ∈ it∗R .

Conversely, let Λ ∈ it∗R . As a highest weight module, V 6= 0 . The kernel of the
epimorphism Vg

Λ → V is hence contained in the largest proper submodule. In other
words, there is a canonical g-linear epimorphism V → Lg

Λ . Hence

1 = dimC Homg(L̄g
Λ⊗ Lg

Λ, C) 6 dimC Homg(V̄⊗V, C) 6 dimC Homg(V̄g
Λ⊗Vg

Λ, C) = 1 ,

by proposition 4.1.5, and analogously for Hermitian forms.

If V is simple, then clearly V = Lg
Λ . Hence proposition 4.1.5 shows that V admits

a non-degenerate Hermitian invariant form. Assume, conversely, that V admits such a
form. Let U ⊂ V be a proper submodule. So is its preimage in Vg

Λ , and we infer that
V[Λ] ∩U = 0 . Hence U is contained in the sum of weight spaces V[µ] with µ 6= Λ . All
of these are orthogonal to V[Λ] , so V[Λ] ⊂ U⊥ . But U⊥ is invariant, and V[Λ] contains
a cyclic vector. Consequently, U⊥ = V . By non-degeneracy, this implies U = 0 . So we
have proved that V is simple. �

4.1.9. If ej , j = 1, . . . , n , is a basis of g , and f j , j = 1, . . . , n a B-dual basis, i.e.

B(ei, f j) = δij for all 1 6 i, j 6 n ,

then Ω = ∑n
j=1 ej f j ∈ U (g) is called the Casimir operator.
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A preimage of Ω under the canonical epimorphism
⊗

g → U (g) is ∑n
j=0 ej ⊗ f j .

Under the representation of the tensor algebra
⊗

g derived from ad : g → End g , this
tensor is the identity of g . Consequently, Ω is independent of the choice the basis (ej) ,
and invariant under the adjoint action of g on U (g) , cf. [Bou68, ch. I, § 3.7, prop. 11]. So,
it is a canonical non-zero element on Z(g) , the centre of U (g) .

It is desirable to express Ω in terms of the root space decomposition of g .

Lemma 4.1.10. Consider for α ∈ ∆ elements Hα ∈ itR such that α(Hα) = 2 . There exist,
for all α ∈ ∆ , Xα ∈ gα such that

X∗
α = ±X−α and

[
Xα, X−α

]
=
|α|2

2
· Hα

where the sign is + or − according to whether α ∈ ∆c or α ∈ ∆n , and we consider the
inner product dual to B on it∗R .

In particular, the Casimir Ω of g is given by

Ω =
R

∑
j=1

H2
j +

1
2
· ∑

α∈∆++
|α|2 · Hα + 2 · ∑

α∈∆++
c

X∗
α Xα − 2 · ∑

α∈∆++
n

X∗
α Xα

where Hj , j = 1, . . . , R = rk g is any B-orthonormal basis of itR .

Proof. Recall from proposition 2.1.11 that B is positive definite on pR , and negative
definite on kR . In particular, B is an inner product on itR . Hence Hα is determined by
B(Hα, H) = 2 |α|−2 · α(H) for all H ∈ t .

By [Kna02, II.4, lem. 2.18], [X, Y] = |α|2
2 · B(X, Y) · Hα for all X ∈ gα , Y ∈ g−α . Now,

h : (Z, W) 7→ B(Z∗, W) : g× g → C

is a sesqui-linear form which, on gR , coincides with −B . Hence, h is negative on pR ,
and by sesqui-linearity, this remains true on p . Likewise, h is positive on k . Hence, for
α ∈ ∆++ , we may choose Xα ∈ gα in such a way that h(Xα, Xα) = ±1 with the sign
positive or negative according to whether α is compact or non-compact.

Now, for α ∈ ∆++ , let X−α = h(Xα, Xα) · X∗
α = B(X∗

α , Xα) · X∗
α . Then X∗

α = ±X−α

and X∗
−α = ±Xα . Moreover, B(Xα, X−α) = ±h(Xα, Xα) = 1 , so [Xα, X−α] = |α|2

2 · Hα .

Since B is positive on itR , there is an orthonormal basis Hj , j = 1, . . . , R = rk g of
itR . By definition of Ω ,

Ω =
R

∑
j=1

H2
j + ∑

α∈∆c

X∗
α Xα − ∑

α∈∆n

X∗
α Xα

=
R

∑
j=1

H2
j +

1
2
· ∑

α∈∆++
|α|2 · Hα + 2 · ∑

α∈∆++
c

X∗
α Xα − 2 · ∑

α∈∆++
n

X∗
α Xα ,
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because, for α ∈ ∆++ ,

[
X∗
−α, X−α

]
= ±

[
X−α, Xα

]
= ∓|α|

2

2
· Hα ,

with the usual sign convention. �

We can now compute the Casimir on highest weight modules.

Proposition 4.1.11. Let V be a highest weight module of highest weight Λ ∈ t∗ . Then

Ω
∣∣
V = |Λ + $|2 − |$|2

where $ = 1
2 ·∑α∈∆++ α .

Proof. All g-linear endomorphisms of V are scalar by [Dix77, prop. 7.1.8]. Hence, it
suffices to evaluate Ω on some non-zero v ∈ V[Λ] . Since v is annihilated by elements of
U (b) without constant term, we find, by lemma 4.1.10,

Ω v =
R

∑
j=1

Λ(Hj)2 · v +
1
2
· ∑

α∈∆++
|α|2 ·Λ(Hα) · v

= |Λ|2 · v + ∑
α∈∆++

(α : Λ) · v =
(
|Λ|2 + 2 (Λ : $)

)
· v

which is the desired expression since |Λ|2 + 2 (Λ : $) = |Λ + $|2 − |$|2 . �

Remark 4.1.12. It should be noted that none of the above propositions depend on the
choice the Lie algebra gR , the Cartan subalgebra tR , or the positive system ∆++ . The
only fact that was needed was the semi-simplicity of gR . In fact, if the Killing form had
been replaced by another non-degenerate invariant form negative on kR and positive on
pR , the definition and expression the Casimir could been extended to this situation. This
applies to reductive Lie algebras.

In particular, the operator

Ωc =
R

∑
j=1

H2
j +

1
2
· ∑

α∈∆++
c

|α|2 · Hα + 2 · ∑
α∈∆++

c

X∗
α Xα ∈ Z(k) .

If we consider the subalgebra of k given by

bk = b∩ k = t⊕ k+ = t⊕∑⊕
α∈∆++

c
gα ,

then we can naturally define, for Λ ∈ t∗ , the k-Verma module Vk
Λ = U (k) ⊗U(bk) CΛ .

Moreover, a cyclic k-module V = U (k) v where v ∈ V[Λ] \ 0 is annihilated by bk , is
called a k-highest weight module and v a k-highest weight vector.

The same theory as before applies. In particular, on a k-highest weight module V of
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weight Λ , the Casimir Ωc acts by

Ωc
∣∣
V = |Λ + $c|2 − |$c|2

where $c = 1
2 ·∑α∈∆++

c
α .

If V is a highest weight module, we say that V is unitary if it admits a positive definite
invariant Hermitian form.

Proposition 4.1.13. Let Λ ∈ it∗R and denote FΛ = Lk
Λ , the unique irreducible quotient

of the k-Verma module Vk
Λ . Then FΛ is finite-dimensional if and only if it is unitary, and

this is the case precisely if Λ is ∆++
c -dominant and integral, i.e.

Λ(Hα) ∈ N for all α ∈ ∆++
c .

Proof. If FΛ is finite-dimensional, the representation of kR integrates to one of the uni-
versal covering group K̃ of K . The kernel of the covering map is discrete and normal,
and hence central. Any k-linear endomorphism of FΛ is scalar by [Dix77, prop. 7.1.8]. Fix
a highest weight vector 1Λ and consider the Shapovalov form (xy | xy) on FΛ . It is posi-
tive on V[Λ] , and hence, Z(K̃) acts by elements of U(1) . We conclude that the image of
K̃ in End FΛ is compact. By integrating any inner product FΛ over this compact group,
we conclude that FΛ is unitary.

Assume that FΛ is unitary. Then the Shapovalov form is positive definite. For the
root vectors Xα ∈ gα chosen in lemma 4.1.10, we define

Eα =
|α|√

2
· Xα for all α ∈ ∆ .

Then [
Hα, E±α

]
= ±2 · E±α and

[
Eα, E−α

]
= Hα .

Hence [Dix77, lem. 7.1.14] applies to show

[
Eα, Em

−α

]
= m · Em−1

−α (Hα −m + 1) for all m ∈ N ,

in the universal enveloping algebra U (k) .
Fix α ∈ ∆++

c . Because Xα 1Λ = 0 , we find

Em
α Em

−α 1Λ = Em−1
α

[
Eα, Em

−α

]
1Λ = m

(
Λ(Hα)−m + 1

)
· Em−1

α Em−1
−α 1Λ = m!(Λ(Hα))m · 1Λ

where (z)m = z(z− 1) · · · (z−m + 1) is the falling factorial. We infer

0 6 (Em
−α 1Λ | Em

−α 1Λ) = (1Λ | Em
α Em

−α 1Λ) = m! · (Λ(Hα))m for all m ∈ N .

In particular Λ(Hα) > 0 , and is an integer since otherwise, (Λ(Hα))m would be negative
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for some m > Λ(Hα) + 1 .
Finally, assume Λ is dominant and integral. The canonical generator 1Λ ∈ Vk

Λ lies
above 1Λ ∈ FΛ . If α ∈ Πc = B(∆++

c ) , then m = (Λ + $c)(Hα) = Λ(Hα) + 1 ∈ N by
[Bou68, ch. VI, § 1.10, prop. 29]. Moreover, the vector v = Em

−α 1Λ ∈ Vk
Λ is non-zero,

and is annihilated by bk , cf. [Dix77, prop. 7.1.15]. The weight of v is Λ−m · α 6= Λ , so
v lies in a proper submodule of Vk

Λ . This means that Em
−α 1Λ = 0 in FΛ . Now, [Dix77,

lem. 7.2.4] implies that FΛ is finite-dimensional. �

4.1.14. If V is a g-module, U ⊂ V a subspace and h ⊂ g some subalgebra, we denote by
Uh the subspace of U consisting of those vectors annihilated by h . In particular, we are
interested in the subalgebra bk .

Proposition 4.1.15. Let Λ ∈ it∗R be ∆++
c -dominant and integral. Then L = Lg

Λ is unitary
if and only if

|Λ + $| < |µ + $| for all µ ∈ t∗ , L[µ]bk 6= 0 .

Proof. Let v ∈ L be a k-highest weight vector of weight µ . Then U (k) v is a highest
weight module, and hence proposition 4.1.11 shows that Ωc acts on v by |µ + $c|2− |$c|2 .
Since Ω acts by |Λ + $|2 − |$|2 , we find

(
|Λ + $|2 − |µ + $|2

)
· (v | v) = ([Ω−Ωc − 2 · (µ : $n)] v | v)

= −2 (µ : $n) · (v | v) + ∑
α∈∆++

n

([(µ : α)− 2X∗
α Xα ] v | v)

= −2 · ∑
α∈∆++

n

(Xα v : Xα v)

where $n = $− $c = 1
2 ·∑α∈∆++

n
α .

Hence, if (xy | xy) is an inner product, then |Λ + $| 6 |µ + $|with equality if and only
if v is annihilated by p+ . If this is the case, then U = U (g) v is a non-zero submodule
of L with highest weight µ . Since L is simple, we conclude U = L , so µ = Λ . We have
proved one implication.

As for the converse, we argue by contraposition and assume that the Shapovalov
form be non-positive. It is obvious that the k-submodule U (k) 1Λ of the Verma module
Vg

Λ is isomorphic to Vk
Λ . The Shapovalov form on V1 = Vg

Λ induces the one on V2 = Vk
Λ ,

so V2 ∩ V⊥
1 ⊂ V⊥

2 . Since the g-Shapovalov form is non-degenerate on L , V⊥
1 is the

maximal proper submodule of V1 . Hence V⊥
2 = V2 ∩ V⊥

1 . This implies that the k-
submodule U (k) 1Λ ⊂ L equals FΛ .

The PBW theorem [Dix77, th. 2.1.11] shows that U (p−) FΛ = L , so

L = ∑⊕
j∈N

Lj with Lj = Uj(p−) FΛ

is a decomposition into k-submodules, where we consider the grading of U (p−) into ho-
mogeneous parts. The Shapovalov form is not positive on some Lj where j is minimal.
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Since Lj is finite-dimensional, it is fully reducible, and the decomposition into isotypic
components is orthogonal with respect to the Shapovalov form. Hence there is an iso-
typic component Lj ⊃ V = Fµ ⊗ Cm(µ) such that the Shapovalov form is not positive
when restricted to V . Since

V = ∑⊕
0 6=C·v⊂Vbk

U (k) v where U (k) v = Fµ for all v ∈ Vbk \ 0 ,

there exists v ∈ Vbk such that (v | v) < 0 . Write v = ∑` X1` · · ·Xj`Y 1Λ where Y ∈ U (k)
and Xi` ∈ p+ . Then

Xα v = ∑`

[ j

∑
i=1

X1` · · · [Xα, Xi`] · · ·Xj`Y 1Λ + X1` · · ·Xj`([Xα, Y] + YXα) 1Λ

]
∈ Lj−1

since [Xα, Xi`], [Xα, Y] ∈ k and Xα 1Λ = 0 . Hence (Xα v | Xα v) 6 0 . The above calcula-
tion shows |Λ + $| > |µ + $| , so we have completed the proof. �

4.1.16. Since p+ is k-invariant by lemma 2.1.2, the subspace k + p+ is a subalgebra of k .
In an abstract Lie algebraic setting, this is related to the fact that the positive system ∆++

is adapted. In fact, if p+ is the sum of the positive non-compact root spaces for some
positive system ∆+ , then k + p+ is a subalgebra if and only if ∆+ is adapted.

Since k + p+ is an algebra, we can define, for Λ ∈ it∗R ∆++
c -dominant and integral

N(Λ) = U (g)⊗U(k+p+) FΛ

where p+ acts trivially on FΛ . Then the canonical generator 1Λ = 1⊗ 1Λ is annihilated
by b = bk + p+ . Moreover, it is cyclic and has weight Λ . Hence, N(Λ) is a g-highest
weight module.

From PBW [Dix77, th. 2.1.11], it follows that N(Λ) = U (p−) ⊗ FΛ as k-modules,
where consider the adjoint action on the first factor, i.e.

X (u⊗ v) = [X, u]⊗ v + u⊗ X v for all u ∈ U
(
p−
)

, v ∈ FΛ , X ∈ k .

4.1.17. We can give a convenient Jordan theoretic description of U (p±) . Since p± is
Abelian, the universal enveloping algebra is just U (p±) = S(p±) , the symmetric algebra
of p± . Recall from lemma 2.1.2 the isomorphisms

∂ : Z → p+ : u 7→ ∂u = u
∂

∂z
and ∂∗ : Z → p− : u 7→ ϑ(∂u) = ∂∗u = {zu∗z} ∂

∂z

respectively linear and conjugate linear. Here, the involution xy∗ is the one defined in
4.1.3. On p , it coincides with the Cartan involution on p , because the latter is the complex
conjugation of g with respect to the real form uR = kR ⊕ ipR , cf. 2.1.1.
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On the symmetric algebras, the above isomorphisms extend to isomorphisms

∂ : S(Z) → U
(
p+) = S(p+) and ∂∗ : S(Z) → U

(
p−
)

= S(p−)

of graded commutative algebras, the first linear, the second conjugate linear. Observe
that ∂ is equivariant for KC = Aut0(Z, Z) (2.3.4) where the action on U (p+) is induced
by the adjoint action.

Define an involutive anti-automorphism of KC by

(k+, k−)∗ = (k−, k+)−1 = (k−−1, k+−1) for all k ∈ KC .

On k , this involution of KC induces the involution xy∗ defined in 4.1.3. Indeed,

(δ+, δ−)∗ = −(δ−, δ+) for all (δ+, δ−) ∈ k = aut(Z, Z) .

Moreover, the dependence of δ− on δ+ is conjugate linear by 2.3.4. Since kR is the diag-
onal in k and ikR the anti-diagonal, the identity of the two involutions follows.

Hence, the involution of KC satisfies

Ad(k)(ξ∗) = Ad
(
k−1∗)(ξ)∗ = Ad(k−, k+)(ξ)∗ for all k = (k+, k−) ∈ KC .

In particular,
∂∗k(p) = Ad(k−1∗)(∂∗p) for all p ∈ S(Z) , k ∈ KC .

Of course, the algebras U (p±) act naturally, by holomorphic differential operators,
on the algebra P (Z) of polynomials on Z . If we endow P (Z) with the gradation by
homogeneous terms,

∂p : Pm(Z) → Pm−k(Z) and ∂∗p : Pm(Z) → Pm+k(Z) for all p ∈ Sk(Z) , m ∈ Z , k ∈ N

where, as is customary, Pm(Z) = 0 for m < 0 . There is a natural bilinear pairing

〈p : q〉 = (∂pq)(0) for all p ∈ S(Z) , q ∈ P (Z) ,

If we define a KC-action on P (Z) by

(k+, k−)−1 p = p ◦ k+ for all (k+, k−) ∈ KC ,

then the pairing satisfies

〈k p : q〉 = 〈p : k−1 q〉 for all k ∈ KC , p ∈ S(Z) , q ∈ P (Z) .
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The different degrees of the gradings are mutually orthogonal. By [Upm82, lem. 3.10],

〈um : p〉 = m! · p(u) for all u ∈ Z p ∈ Pm(Z) , m ∈ N .

Consequently, the pairing is non-degenerate.

The canonical inner product (xy | xy) on Z gives rise to an isomorphism

Z∗ → Z : α → α∗ , α(u) = (u | α∗) for all u ∈ Z

which is conjugate linear because the canonical inner product is conjugate linear in the
second variable. Since P (Z) = S(Z∗) as graded algebras, this induces a conjugate linear
graded algebra isomorphism

P (Z) → S(Z) : p 7→ p∗ .

We can now define a sesqui-linear form on P (Z) by

(p | q)P (Z) = 〈p∗ : q〉 =
(
∂p∗q

)
(0) for all p, q ∈ P (Z) .

This in an inner product by [Upm82, lem. 3.11], and extends the conjugate of the canon-
ical inner product. Since

(k u | v) = (u | k∗ v) for all u, v ∈ Z , k ∈ KC ,

where we have

(k p | q)P (Z) = (p | k∗ q)P (Z) for all k ∈ KC , p, q ∈ P (Z)

and
k p∗ =

(
k−1∗ p

)∗ for all p ∈ P (Z) .

Hence, the inner product (xy | xy)P (Z) is k-invariant, and the map

p 7→ ∂∗p∗ : P (Z) → S(p−) = U
(
p−
)

is KC-equivariant. This enables us to define k-invariant inner products on U (p±) ,

(
∂p∗ | ∂q∗

)
U(p+) = (q | p)P (Z) =

(
∂q∗ p

)
(0) for all p, q ∈ P (Z)

and

(∂∗p∗ | ∂∗q∗)U(p−) = (p | q)P (Z) =
(
∂p∗q

)
(0) for all p, q ∈ P (Z) .
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Theorem 4.1.18. Let Λ ∈ it∗R be ∆++
c -dominant and integral. If

(Λ + $)
(

Hα

)
< 0 for all α ∈ ∆++

n ,

then N(Λ) is unitary, and, in particular, simple.

Proof. We have noted N(Λ) = U (p−) ⊗ FΛ , as k-modules. Hence, we can define a
k-invariant inner product on N(Λ) by the requirement

(
u⊗ v | u′ ⊗ v′

)
=
(
u | u′

)
U(p−)

(
v | v′

)
for all u, u′ ∈ U

(
p−
)

, v, v′ ∈ FΛ .

Here, we consider the Shapovalov form on FΛ , an inner product by proposition 4.1.13.

We claim that the k-highest weights of N(Λ) are all contained in Λ −N〈∆++
n 〉 . To

that end, let
U = U

(
p−
)
⊗ n−k FΛ where n−k = ∑α∈∆++

c
g−α .

Then n−k FΛ is the sum of weight spaces of weight 6= Λ . In particular,

N(Λ) = U ⊕
(
U
(
p−
)
⊗ 1Λ

)
is an orthogonal direct sum. Since U (p−)⊗ 1Λ is bk-invariant and n−k ⊂ b∗k , the image
under the involution xy∗ , U is n−k -invariant. If v ∈ Ubk , then

U (k) v = U
(
n−k
)

v ⊂ U

by PBW, so
(
U (k) v

)⊥ ⊃ U (p−)⊗ 1Λ . But the latter is a generating set for the k-module
N(Λ) , so we conclude v = 0 . This proves that all k-highest weight vectors of N(Λ) are
contained in U (p−)⊗ 1Λ , in particular, their weights are in Λ−N〈∆++

n 〉 .

If µ = Λ− ν is the weight of a k-highest weight vector, then

(Λ + $ : ν) =
|ν|2

2
·
(
Λ + $

)(
Hν

)
6 0 since ν ∈ N〈∆++

n 〉 .

Hence
|µ + $|2 − |Λ + $|2 = |ν|2 − 2 · (Λ + $ : ν) > 0 .

Since any k-highest weight vector in Lg
Λ lies below one in N(Λ) , this implies, by propo-

sition 4.1.15, that Lg
Λ is unitary. In particular, the g-invariant Shapovalov form on N(Λ)

is positive semi-definite.

By [Dix77, prop. 7.6.1], the Verma module Vg
Λ has a Jordan-Hölder series

0 = Vm ⊂ Vm−1 ⊂ · · · ⊂ V0 = Vg
Λ .

Assume that N(Λ) is not simple. Then there exists a non-trivial proper submodule of
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N(Λ) , and in particular, some Vj , 0 < j < m , is not mapped to 0 in N(Λ) . Let j be
maximal with this property.

Again by [Dix77, prop. 7.6.1],

Vj/Vj+1 = Lg
µ for some µ ∈ Λ−N〈∆++〉 .

Hence, there is a non-zero vector v ∈ Vj[µ] such that b v ∈ Vj+1 . Since Vj+1 is mapped
to 0 in N(Λ) , we conclude that the image u ∈ N(Λ) of v is a highest weight vector, and
W = U (k) v is a highest weight module. By proposition 4.1.11 ,

Ω
∣∣
W = |µ + $|2 − |$|2 .

But we already know that Ω
∣∣

N(Λ) = |Λ + $|2 − |$|2 . Hence |Λ + $| = |µ + $| , a contra-
diction. We conclude that N(Λ) is simple, so the Shapovalov form is non-degenerate,
and consequently, an inner product. �

Remark 4.1.19. The condition from theorem 4.1.18,

λ(Hα) < 0 for all α ∈ ∆++
n

where λ = Λ + $ , is called Harish-Chandra’s square integrability condition. First introduced
by Harish-Chandra in [HC56, th. 4], this condition guarantees that the module N(Λ) is
the Harish-Chandra (g, K)-module of K-finite vectors for a square-integrable irreducible
unitary representation of G . This will become evident in the sequel.

4.2 Analytic theory of the holomorphic discrete series

Our next aim is to globalise the representation N(Λ) under additional conditions on the
parameter Λ . To this end, we need a different realisation of this g-module.

Lemma 4.2.1. For g ∈ P+KCP− and z ∈ Z , the holomorphic derivative g′(z) : Z → Z
uniquely defines an element of KC . Specifically, we have the formulae

t+′v (u) = 1 , k′(u) = k and t−′v (u) = B(u, v)−1 for all u, v ∈ Z , k ∈ KC ,

where in the latter equation, (u, v) is quasi-invertible.

Proof. By the chain rule, it suffices to check g′(z) ∈ KC for generators. Moreover, since
1′(0) = 1 ∈ KC and P+KCP− × Z is connected, g′(z) varies in a connected set. Hence,
we need only see that g′(z) ∈ Aut(Z, Z) .

The action of KC on Z is linear, so the statement is trivial for k ∈ KC . If v ∈ Z , then

t+v (u) = u + v for all u ∈ Z ,

so t+′v (u) = 1 which defines an element of KC = Aut0(Z, Z) .
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The computation of t−′v (u) is contained in [Loo75, 7.8], we repeat it the for sake of
completeness. Namely, since (u, v) is quasi-invertible,

(u + w)v = uv + B(u, v)−1 · wvu
for all w ∈ Z

such that (w, vu) is quasi-invertible, by [Loo75, 7.3.4]. Now, by [Loo75, 7.3.1],

(tw)vu
= t · wt·vu

for all t ∈ C .

Differentiating, we get
d
dt

t · wt·vu
= wt·vu

+ t · d
dt

wt·vu

which is w0 = w for t = 0 . We compute

t−′v (u)w =
d
dt

(u + tw)v∣∣
t=0 =

d
dt
[
t · B(u, v)−1 · wt·vu]∣∣

t=0 = B(u, v)−1w ,

proving the assertion, since B(u, v) ∈ KC = Aut0(Z, Z) . �

4.2.2. Note that the map

J : G× B → KC : (g, z) 7→ g′(z)

satisfies the cocycle relation

J(gh, z) = J(g, h(z)) · J(h, z) for all g, h ∈ G , z ∈ B

by the chain rule. For this reason, it is sometimes called the canonical automorphy factor,
e.g. [Sat80, § 5]. We shall check in a moment that our definition coincides with the one
given by Satake.

Lemma 4.2.3. Let g ∈ G and u ∈ Z . Then, in the P+KCP− decomposition of

g exp
(

u
∂

∂z

)
∈ P+KCP− ,

the KC component is g′(u) . Similarly,

exp
(

v
∂

∂z

)∗
exp

(
u

∂

∂z

)
∈ P+KCP−

if and only if (u, v) is quasi-invertible. In this case, its KC component is the inverse of
the Bergman operator, B(u, v)−1 ∈ KC .

Proof. Let k ∈ KC and u, v, w ∈ Z . By [Loo75, 8.6],

t+u = exp
(

u
∂

∂z

)
and t−v = exp

(
{zv∗z} ∂

∂z

)
=
(

exp v
∂

∂z

)∗
.



120 4. Holomorphic discrete series, and the Hardy space

In particular,

k t+u = exp Ad(k)
(

u
∂

∂z

)
k = exp

(
k−1′(z)−1u

∂

∂z

)
k = t+k(u) k ,

by the formula for the adjoint action from 1.1.1. Then [Loo75, th. 8.11] shows that for
g = t+w kt−v ∈ G ,

g exp
(

u
∂

∂z

)
= t+w k t−v t+u = t+w k t+uv B(u, v)−1 t−vu = t+w t+k(uv) k B(u, v)−1 t−vu ,

if (u, v) is quasi-invertible. But the first equality shows that g exp u ∂
∂z ∈ P+KCP− if and

only if this is the case for t−v t+u . By [Loo75, th. 8.11], this is equivalent to that requirement
that (u, v) be quasi-invertible.

The KC component in the above formula is

k B(u, v)−1 = t−′w (kt−v (u)) k′(t−v (u)) t−′v (u) = g′(u) ,

by lemma 4.2.1 and the chain rule. Since G ⊂ P+KCP− by [Loo75, prop. 8.10], we have
proved the first assertion.

As for the second, the statement about quasi-invertibility is [Loo75, th. 8.11]. For
(u, v) quasi-invertible,

(
exp v

∂

∂z

)∗(
exp u

∂

∂z

)
= t−v t+u = t+uv B(u, v)−1 t−vu ,

completing the proof. �

4.2.4. The sesqui-holomorphic Bergman operator

B : Z× Z → Aut0(Z, Z) = KC : (u, v) 7→ B(u, v) = 1− 2 u � v∗ + QuQv

is sometimes also called the universal kernel function of G . Observe that it behaves co-
variantly under the group action of G ,

B
(

g(z), g(w)
)

= g′(z) B(z, w) g′(w)∗ = J(g, z) B(z, w) J(g, w)∗ for all g ∈ G , z, w ∈ B ,

by [Loo75, lem. 2.11]. Recall that we have noted in 4.1.17 that the adjoint with respect to
the trace form on Z coincides on KC with the involution defined in 4.1.3.

The Bergman operator encodes the Hermitian Bergman metric of B . Indeed, at any
point z ∈ B ,

hz(u, v) = (B(z, z)−1 u | v) for all u, v ∈ Z

by [Loo75, th. 2.10], where on the right hand side, we take the trace form on Z . More-
over, the Bergman kernel is simply det B(u, v)−1 , for a suitable normalisation of mea-
sures.
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Under certain conditions on the parameter Λ , a global realisation of the g-module
N(Λ) is obtained by generalising these considerations to certain homogeneous Hermi-
tian vector bundles on B .

Lemma 4.2.5. Let λ be Lebesgue measure on Z , normalised such that λ(B) = 1 . Then
dµ0(z) = det B(z, z)−1 dλ(z) defines a G-invariant measure on B .

Proof. We only need to check invariance. Let g ∈ G . Then

|det dg(z)| = det g′(z) · det g′(z)∗ ,

as follows from the Cauchy-Riemann equations. Consequently,

g∗(dµ0(z)) = |det dg(z)| · det B(g(z), g(z))−1 dλ(z) = det B(z, z)−1 dλ(z) = dµ0(z)

by the change of variables formula. This proves the assertion. �

4.2.6. Let Λ ∈ it∗R be ∆++
c -dominant and integral, and let λ = Λ + $ . In particular, FΛ

is a finite-dimensional unitary k-module with Shapovalov form (xy | xy)Λ .

If T = NK(t) is the torus, then a necessary and sufficient condition that FΛ integrates
to K is that (exp H)Λ = eΛ(H) for all H ∈ tR defines a character of T , by [Kna02, th. 5.110].
Equivalently, Λ is analytically integral, i.e.

Λ
(
exp−1(1)

)
⊂ 2πiZ ,

cf. [Kna02, prop. 4.58]. If this is the case, the representation of K on FΛ is unitary, and it
extends to an involutive holomorphic representation of KC . Slightly abusing notation,
we denote the action of k ∈ KC on FΛ by kΛ , and the action of k−1 by k−Λ .

Consider the spaceO(B, FΛ) of holomorphic functions f : B → FΛ . Define operators
g−πλ = πλ(g−1) on O(B, FΛ) by

(
g−πλ f

)
(z) = g′(z)−Λ f (g(z)) for all f ∈ O(B, FΛ) , g ∈ G , z ∈ B .

Then it is obvious that πλ is a representation of G on O(B, FΛ) . Since z 7→ g′(z)−1

is a polynomial (of degree at most 2 ) by [Loo75, prop. 8.13], the subspace P(Z, FΛ) of
FΛ-valued polynomials on Z is πλ-invariant.

Moreover, consider the weighted Bergman space O2
Λ = O2(B, FΛ) ,

O2(B, FΛ) =
{

f ∈ O(B, FΛ)
∣∣∣ ‖ f ‖2

O2
Λ

=
∫ ∗

B
( f (z) | B(z, z)−Λ f (z))Λ dµ0(z) < ∞

}
.

It is easy to see thatO2
Λ , endowed with the norm ‖xy‖O2

Λ
, is a reproducing kernel Hilbert

space, cf. [Nee00a, lem. XII.5.2]. Moreover, the invariance of µ0 implies that it is invariant
under πλ , and this defines an action by unitary operators, cf. [Nee00a, lem. XII.5.3].
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The representation is unitary, since the strong continuity of πλ follows from domi-
nated convergence.

Remark 4.2.7. It should be noted that the action of G on O(B, FΛ) is in some sense
natural. Since this is not immediately obvious from the definitions, we briefly comment
on this fact.

Indeed, the domain B is homogeneous and thus, canonically identified with G/K . It
is therefore the base of G , considered as principal fibre bundle for the group K . Hence,
the vector bundle

FΛ = G×K FΛ 3 [g, v] = [gk, k−Λ v]

associated to the representation FΛ of K , has base B . Consider the map

φ : FΛ → B× FΛ : [g, v] 7→
(

g(0), g′(0)Λ v
)

.

It is well-defined, since

[gk, k−Λ v] 7→
(

g(k(0)), g′(k(0))Λk′(0)Λk−Λ v
)

=
(

g(0), g′(0)Λ v
)

for all k ∈ K . Also, φ is a bundle map, and it can be shown that for the natural vector
bundle structure of FΛ , φ is a diffeomorphism. (Local trivialisations of FΛ are con-
structed from local sections of the K-principal bundle G → B : g 7→ g(0) .)

Hence, φ is a trivialisation. Indeed, for the canonical Hermitian structure on FΛ , it is
a holomorphic trivialisation.

The vector bundle FΛ is naturally G-homogeneous, for the action defined by

h [g, v] = [hg, v] for all g, h ∈ G , v ∈ FΛ .

Then φ is G-equivariant if we endow the trivial bundle B× FΛ with the G-action

h (z, v) =
(
h(z), h′(z)Λ v

)
for all h ∈ G , z ∈ B , v ∈ FΛ .

If σ : B → FΛ is a holomorphic section, then

F = φ ◦ σ : B → B× FΛ is of the form F(z) = (z, f (z)) for some f ∈ O(B, FΛ) .

The natural action of G on σ , given by g σ = g ◦ σ ◦ g−1 , then corresponds to gπλ f .

4.2.8. In order to characterise when the weighted Bergman space O2
Λ is non-zero, we

very briefly recall some basic facts about reproducing kernel Hilbert spaces.
Given a set X and a Hilbert space V , a Hilbert space H is called a reproducing kernel

Hilbert space (RKH) of V-valued functions on X if H ⊂ VX and this inclusion mapping is
continuous for the product topology on VX . An equivalent condition is that the point
evaluations on H be continuous.
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The space VX of V-valued functions on X can be naturally identified with the space
of continuous conjugate linear functionals on V⊕X , the algebraic direct sum of X copies
of V (V-valued functions with finite support). Here, V⊕X is endowed with the final
locally convex topology with respect to the inclusions VK ⊂ V⊕X for K ⊂ X finite. Then
the product topology of VX equals the σ(VX, V⊕X)-topology, and the weak topology on
V⊕X equals the σ(V⊕X, VX)-topology. The pairing of V⊕X and VX which induces this
identification is given by

〈ϕ | f 〉 = ∑
x∈X

(ϕ(x) | f (x))V for all ϕ ∈ V⊕X , f ∈ VX .

Since this pairing is non-degenerate, V⊕X
σ can be identified with the space of continuous

conjugate linear functionals on VX .

These considerations show that, by duality,H is isometrically isomorphic to an RKH
of V-valued functions on X if and only if there is continuous linear map V⊕X → H with
dense image, i.e., H is the completion of a quotient of V⊕X .

Given an RKH H , the concatenation of the maps V⊕X → H → VX is denoted by h
and called the kernel operator of H . Then h is continuous, and

〈ϕ | hψ〉 = 〈ψ | hϕ〉 and 〈ϕ | hϕ〉 > 0 for all ϕ, ψ ∈ V⊕X ,

i.e., h is Hermitian positive.

Since the functions of point support span V⊕X , there is a bijective correspondence
between the set of Hermitian positive continuous linear operators h : V⊕X → VX and
functions h : X × X → L(V) which are of positive type, meaning that, for any choice of
elements x1, . . . , xm ∈ X , the matrix

(
h(xi, xj)

)
is a positive self-adjoint element of the

C∗-algebra L(V)m×m . By a standard argument, this is equivalent to h(x, y) = h(y, x)∗

for all x, y ∈ X , and

m

∑
i,j=1

(
vi | h(xi, xj) vj

)
> 0 for all x1, . . . , xm ∈ X , v1, . . . , vm ∈ V .

The correspondence between Hermitian positive operators and functions of positive
type given by

〈ϕ | hψ〉 = ∑
x,y∈X

(ϕ(x) | h(x, y) ψ(y))V for all ϕ, ψ ∈ V⊕X ,

and is a conoid isomorphism. The function h(xy, xy) associated to the RKH H is called
the kernel function of H.

Given a function h(xy, xy) of positive type, and the associated Hermitian positive op-
erator h , we can associate by a generalised GNS construction to h an RKH H such that
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its kernel is h . Indeed, we endow h(V⊕X) with an inner product by

(hϕ | hψ) = 〈ϕ | hψ〉 for all ϕ, ψ ∈ V⊕X ,

well-defined by the properties of h . Completing, we obtain a Hilbert space H . As the
completion of a quotient of V⊕X , we can identify H with an RKH. Specifically, for all
f ∈ VX , we have f ∈ H if and only

sup〈ϕ | hϕ〉61 |〈ϕ | f 〉| < ∞ ,

and in this case, ‖ f ‖H is given by this quantity. Clearly, the kernel of H is h .

It is now an easy matter to show that the correspondence between Hermitian positive
kernels (functions or operators) and RKH is bijective. Note here that equality of RKH is
understood as the equality as subspaces of VX and identity of Hilbert space norms. Two
RKH in VX are equal as vector subspaces if and only they have equivalent norms. This
is equivalent to the fact that their kernels be proportional by a strictly positive constant.
The main ingredients in the proof of these facts are Riesz’s theorem and the closed graph
theorem, or a replacement thereof (such as the barreledness of the space V⊕X ).

There is a property analogous to the reproducing property for RKH of scalar func-
tions (corresponding to V = C ). Namely, denote for x ∈ X by εx : H → V the continu-
ous evaluation at x . If vx ∈ V⊕X denotes the function such that

εy(vx) = δxy · v for all y ∈ X ,

then the image of vx in H is given by

(hvx)(y) = ∑
z∈X

h(y, z) vx(z) = h(y, x) v for all y ∈ X .

Moreover, for all x ∈ X , v ∈ V and f ∈ H ,

(v | f (x))V = ∑
y∈X

δxy · (v | f (y)) = 〈vx | f 〉 = (hvx | f )H ,

so the adjoint of εx : H → V is given by hvx = ε∗xv . We conclude

h(x, y) v = εxhvy = εxε∗y v for all x, y ∈ X , v ∈ V .

This is the required generalisation of the reproducing property.

Properties of the RKH H can be expressed in terms of the kernel function h . E.g., if
X is a topological space, H consists of continuous functions if and only if h is separately
continuous. The topology on H is always weaker than the topology of uniform conver-
gence on subsets of Y ⊂ X such that the operator norm of h(x, x) remains bounded when
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x varies in Y . By Hartogs’s joint analyticity theorem [Hör73, th. 2.2.8], if X is a complex
manifold, then H consists of holomorphic functions if and only h is sesqui-holomorphic
on X× X .

For a more thorough treatment of RKH of V-valued functions, in particular, their
connection to involutive semigroups. we refer to [Nee00a, ch. I-IV].

Using these facts on RKH, we can characterise precisely when O2
Λ is non-zero.

Theorem 4.2.9. If Λ ∈ it∗R is ∆++
c -dominant and analytically integral, then the following

conditions are equivalent.

(i). The weighted Bergman space O2
Λ = O2(B, FΛ) is non-zero.

(ii). The function

BΛ : B× B → End FΛ : (z, w) 7→ B(z, w)Λ

is of positive type, and proportional to the kernel function of O2
Λ .

(iii). The integral ∫
B

tr B(z, z)−Λ dµ0(z) < ∞ .

(iv). We have P (Z, FΛ) ⊂ O2(B, FΛ) .

In this case, O2
Λ is an irreducible square-integrable representation of G whose space of

K-finite vectors is P(Z, FΛ) .

Proof. Let K be the kernel function of O2
Λ . Then, for z = g(0) ∈ B and all u, v ∈ FΛ ,

(u | K(z, z) v)Λ = (u | (ε∗zv)(z))Λ =
(
u
∣∣ g′(0)Λ(g−πλ ε∗zv)(0)

)
Λ

=
(

gπλ ε∗0(g′(0)∗Λu)
∣∣ ε∗zv

)
O2

Λ
=
(

g−1′(g(0))−Λ(ε∗0(g′(0)∗Λu))(0)
∣∣ v
)

Λ

=
(
u
∣∣ g′(0)Λ ε0ε∗0 g′(0)∗Λ v

)
Λ =

(
u
∣∣ g′(0)Λ K(0, 0) g′(0)∗Λ v

)
Λ .

In particular, K(0, 0) commutes with the action of K . Since FΛ is simple, C = K(0, 0) > 0
is a scalar constant, by Schur’s lemma. If O2

Λ is non-zero, so is εz for some z ∈ B . Then
K(z, z) 6= 0 , and consequently, so is K(0, 0) . Hence, C > 0 .

Moreover, B(0, 0)Λ = 1 , and BΛ is also covariant, so K = C · BΛ on the diagonal.
Since both functions are sesqui-holomorphic, the identity is valid everywhere. In partic-
ular, BΛ is of positive type, and the RKH it defines equals O2

Λ as a vector space, and has
an equivalent norm.

If the kernel functions K and BΛ are proportional, then

O2(B, FΛ) 3 B(xy, 0)Λ v for all v ∈ FΛ .

But B(z, 0) = 1 , so these are the constant FΛ-valued functions on B . This means that for
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any v ∈ FΛ ,

∞ > ‖v‖2
O2

Λ
=
∫

B
(v | B(z, z)−Λ v) dµ0(z) .

Applying this to an orthonormal basis of FΛ , the integrability of tr B(z, z)−Λ follows.

Assuming the finiteness of the integral, the Cauchy-Schwarz and Hölder inequalities
show that∫ ∗

B
(p(z) | B(z, z)−Λ p(z))Λ dµ0(z) 6

∫ ∗

B
‖p(z)‖2

Λ · ‖B(z, z)−Λ‖ dµ0(z)

6 ‖p‖2
∞ ·
∫

B
‖B(z, z)−Λ‖ dµ0(z)

6 ‖p‖2
∞ ·
∫

B
tr B(z, z)−Λ dµ0(z)

for all p ∈ P (Z, FΛ) . The right hand side is finite, because p is continuous on Z and
hence bounded on the relatively compact subset B . Hence P (Z, FΛ) ⊂ O2(B, FΛ) .

Finally, if O2
Λ contains the polynomials, then it is clearly non-zero.

Assume that one of the equivalent conditions is fulfilled. The representation of G
on the RKH O2

Λ is irreducible by a theorem of Kobayashi [Nee00a, th. IV.1.10], since
B is homogeneous, and FΛ is simple. In order to check the square-integrability, it is
necessary and sufficient that the matrix coefficient (v | πλ v)O2

Λ
be square integrable for

some constant v ∈ FΛ , by [Dix69, def. 14.1.3, cor. 14.3.2].

To this end, note that the set of constants in O2
Λ is K-equivalent to FΛ . Moreover, by

G-invariance of µ0 , the integral

I =
∫

B
B(z, z)−Λ dµ0(z) ∈ End FΛ

defines a K-equivariant operator. By Schur’s lemma, c = I is a scalar constant, namely

c =
tr I

dim FΛ
=
(
dim FΛ

)−1
∫

B
tr B(z, z)−Λ dµ0(z) .

But this implies that

‖v‖2
Λ = c−1 ·

∫
B
(v | B(z, z)−Λ v)Λ dµ0(z) = c−1 · ‖v‖2

O2
Λ

.

By polarisation, the inner products are also proportional.

For v ∈ FΛ and f ∈ O2
Λ , we compute

(v | f )O2
Λ

= (B(xy, 0)Λ v | f )O2
Λ

=
1
C
· (ε∗0 v | f )O2

Λ
=

1
C
· (v | f (0))Λ =

c
C
· (v | f (0))Λ .

Hence c
C · ε0 is the orthogonal projection onto the constants. But ε2

0 = ε0 , so C = c , and
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the projection is just ε0 . This implies

(v | (gk)πλ v)O2
Λ

= (g−πλ v | kΛ v)O2
Λ

= ((g−πλ v)(0) | kΛ v)Λ = (g′(0)−Λ v | kΛ v)Λ .

For a suitable normalisation of Haar measure dg on G , dg = dµ0(g(0)) dk . Hence,
the orthogonality relations on K [Dix69, th. 14.3.3, prop. 15.2.3] imply for ‖v‖Λ = 1

∫
G

∣∣∣(v | gπλ v)O2
Λ

∣∣∣2 dg =
∫

B

∫
K
|(g′(0)−Λ v | kΛ v)Λ|

2 dk dµ0(g(0))

=
1

dim FΛ
·
∫

B
‖g′(0)−Λ v‖2

Λ dµ0(g(0))

=
1

dim FΛ

∫
B
(v | (g′(0)Λg′(0)∗Λ)−1 v) dµ0(g(0))

=
1

dim FΛ

∫
B
(v | B(z, z)−Λ v) dµ0(z) =

1
dim FΛ

· ‖v‖2
O2

Λ
< ∞ .

Hence, πλ is square-integrable.
To complete the theorem’s proof, we have to show that the module of K-finite vectors

coincides with P (Z, FΛ) . For any polynomial p , and for k ∈ K , we have

(
kπλ p

)
(z) = kΛ p(k(z)) for all z ∈ B .

Since the action of K on B is linear, deg(kπλ p) = deg p . Since Pm(Z) is of finite di-
mension for any m ∈ N , this proves that all elements of P (Z, FΛ) are K-finite in the
representation πλ . On the other hand, P (Z, FΛ) is G-invariant, and since πλ is a topo-
logically irreducible unitary representation, the space of K-finite vectors is algebraically
irreducible, by [War72, th. 4.5.2.11, th. 4.5.5.4]. Hence, we have equality. �

We have reduced the non-triviality of the weighted Bergman space O2
Λ to the finiteness

of an integral.
Our next goal is to characterise this finiteness in terms of an algebraic condition on

the parameter λ = Λ + $ , namely, Harish-Chandra’s square-integrability condition. To
this end, we digress a little on the meaning of this condition.

4.2.10. Recall from 4.1.1 that we have fixed a frame e1, . . . , er , an associated torus and
positive system. The Killing form is an inner product on itR , and it∗R is endowed with
the dual product. Via this duality, to µ ∈ it∗R , there corresponds µ∗ ∈ itR . Then

−µ(Hα) = −B(µ∗, Hα) = (µ∗ : Hα) = (−iµ∗ : iHα) for all α ∈ ∆ .

Hence, µ(Hα) < 0 for all α ∈ ∆++
n simply means that µ ∈ i(ω−)∗ , if we identify the

Euclidean vector spaces it∗R = itR by µ 7→ µ∗ . Moreover, since σ(i · ej � e∗j ) , σ ∈ Wc ,
j = 1, . . . , r , are the generators of extremal rays in ω− by lemma 2.1.13,

µ ∈ i(ω−)∗ ⇐⇒ µ(Hα) < 0 for all α ∈ ∆++
n
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⇐⇒ 〈σ
(
ej � e∗j

)
: µ〉 < 0 for all σ ∈ Wc , j = 1, . . . , r .

If µ ∈ it∗R is assumed to be ∆++
c -dominant and integral, then this can be sharpened. In

fact, 2 · er � e∗r = Hγr , and γr is the largest root. Since ∆++
n ⊂ γr −N〈∆++

c 〉 by [Nee00a,
proof of lem. IX.5.8], the dominance of µ implies that

µ(Hα) 6 2 · 〈er � e∗r : µ〉 for all α ∈ ∆++
n .

This shows that in the above equivalence, it is already sufficient that 〈er � e∗r : µ〉 < 0 .

The following proposition gives some indication why Harish-Chandra’s condition is
related to the non-triviality ofO2

Λ . The precise theorem will be stated and proved below.

Proposition 4.2.11. Let Λ ∈ it∗R be ∆++
c -dominant and analytically integral. On the

orbit of the Iwasawa A component A = exp〈ξ−e1
, . . . , ξ−er

〉 , the kernel BΛ is given by

B
(
a(0), a(0)

)Λ v =
r

∏
j=1

(
cosh tj

)−4µj · v for all a = exp
( r

∑
j=1

tj · ξ−ej

)
, v ∈ FΛ[µ]

where µj = 〈ej � e∗j : µ〉 , j = 1, . . . , r .

Proof. For log a = ∑r
j=1 tj · ξ−ej

, we have

a =
r

∏
j=1

exp ξ−tjej
=

r

∏
j=1

t+tanh tjej
B(tanh tjej, tanh tjej)1/2 t−− tanh tjej

,

by [Loo75, prop. 9.8]. By [Loo75, prop. 8.10], KCP− fixes the origin. Since the above
factors commute, we have, by the chain rule and lemma 4.2.1,

a′(0) =
r

∏
j=1

(
t+tanh tjej

B(tanh tjej, tanh tjej)1/2 t−− tanh tjej

)′
(0)

=
r

∏
j=1

B((tanh tj) · ej, (tanh tj) · ej)1/2 ,

because tanh(te) = (tanh t) · e for any tripotent e ∈ Z . Hence,

B
(
a(0), a(0)

)
= a′(0)a′(0)∗ =

r

∏
j=1

B((tanh tj) · ej, (tanh tj) · ej) =
r

∏
j=1

B(ej, (tanh2 tj) · ej) .

If e ∈ Z is a tripotent, then gt = B(e, (1− et) · e) is a one-parameter group in KC , by
[Upm85, proof of 21.9]. Moreover,

ġ0 = 4 · e � e∗
(
1− e � e∗

)
+ 2 · e � e∗

(
2 e � e∗ − 1

)
= 2 · e � e∗ .
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Therefore,

B
(
a(0), a(0)

)
= exp

(
2

r

∑
j=1

log(1− tanh2 tj) · ej � e∗j
)

= exp
(
−4

r

∑
j=1

log cosh tj · ej � e∗j
)

.

The vector v has weight µ . In particular,

B
(
a(0), a(0)

)Λ v =
r

∏
j=1

(
cosh tj

)−4µj · v ,

since ej � e∗j ∈ itR . �

4.2.12. The normalised Lebesgue measure dz on B is given by

∫
B

f (z) dz = C ·
∫
· · ·

∫
1>tr>···>t1>0

∫
K

f
(
k

r
∑

j=1
tjej
)

dk ∏
16i<j6r

(t2
j − t2

i )
a

r

∏
j=1

t2b+1
j dt1 · · · dtr

for all Lebesgue-integrable f , and some constant C > 0 , cf. [Upm96, prop. 1.5.84]. Here,
a = dim Zij (1 6 i < j 6 r), and b = dim Z0j (0 < j 6 r). For an evaluation of the
constant C , we refer to [FK94, ex. VI.3] and the references given there.

Lemma 4.2.13. The invariant measure µ0 of B is given by

∫
B

f (z) dµ0(z) = C ·
∫
· · ·

∫
1>tr>···>t1>0

∫
K

f
(
k

r
∑

j=1
tjej
)

dk
∏16i<j6r(t2

j − t2
i )

a ∏r
j=1 t2b+1

j

∏r
j=1(1− t2

j )2+(r−1)a+b
dt1 · · · dtr

for all µ0-integrable f . Here, C > 0 is the constant from 4.2.12.

Proof. The calculation in proposition 4.2.11 shows that for log a = ∑r
j=1 sj · ξ−ej

,

a(0) =
[ r

∏
j=1

t−tanh sjej

]
(0) =

r

∑
j=1

(tanh sj) · ej ,

since KCP− fixes 0 . So, for z = ∑r
j=1 tj · ej = a(0) , we have

B(z, z) = exp
(

2
r

∑
j=1

log(1− tanh2 sj) · ej � e∗j
)

= exp
(

2
r

∑
j=1

log(1− t2
j ) · ej � e∗j

)
.

The action of k on Z is unitary, so det B(kz, kz) = det k B(z, z) k∗ = det B(z, z) . Moreover,

det exp
(
ej � e∗j

)
= exp tr

(
ej � e∗j

)
.

Here, ej � e∗j acts by λ on Zλ(ej) . By [Loo75, th. 3.14],

Z1(ej) = Zjj and Z1/2(ej) = ∑⊕
06i<j Zij ⊕∑⊕

j<i6r Zji ,
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so dim Z1(ej) = 1 and dim Z1/2(ej) = dim Z0j + (r− 1) ·dim Zij = (r− 1) · a + b . Hence,

tr
(
ej � e∗j ) = 1 +

1
2
·
(
(r− 1) · a + b

)
.

We conclude

det B
(

k
r
∑

j=1
tjej, k

r
∑

j=1
tjej

)
=

r

∏
j=1

(
1− t2

j
)2+(r−1)·a+b .

Hence, the assertion follows from lemma 4.2.5 and the formula from 4.2.12. �

Theorem 4.2.14. Let Λ ∈ it∗R be ∆++
c -dominant and analytically integral. Then the

weighted Bergman space O2
Λ = O2(B, FΛ) is non-zero if and only if Harish-Chandra’s

square-integrability condition

λ(Hα) < 0 for all α ∈ ∆++
n

is satisfied for λ = Λ + $ , $ = 1
2 ·∑α∈∆++ α .

Proof. First, we need to evaluate $ on ej � e∗j . To this end, recall the facts from 2.1.24.
In particular, Ad∗(γe)($) = $a , the half sum of the positive restricted roots (with multi-
plicity). Moreover,

Ad(γe)
(
ej � e∗j

)
=

1
2i
·
[
Ad(γe)

(
ξ−iej

)
, Ad(γe)

(
ξ−ej

)]
=

1
4i
[
ξ−iej

,
[
ξ+

e , ξ−ej

]]
=

1
2
· ξ−ej

by [Upm85, lem. 21.16]. We deduce

〈ej � e∗j : $〉 = 〈ξ−ej
: $a〉 =

1
2
· ∑

α∈∆+
a

dimR gα
R · 〈ξ−ej

: α〉

Recall that αε
k` = α`− ε · αk where α0 = 0 and α1, . . . , αr is dual to e1 � e∗1 , . . . , er � e∗r , and

that ∆+
a consists of non-zero αε

k` for 0 6 k 6 ` 6 r and ε2 = 1 . Now,

〈ξ−ej
: αε

k`〉 = δ`j − ε · δkj =



0 j 6∈ {k, `} or j = k = ` , ε = +1 ,

2 j = k = ` , ε = −1 ,

−ε j = k < ` ,

1 k < ` = j .

Hence,

〈ξ−ej
: $a〉 =

1
2
·
(
2 · dimR iX1(ej) + dimR Z0j + (r− 1) · dimR Zij

)
= 1 + (j− 1) · a + b .

We conclude that $j = 1
2 · (1 + (j + 1) · a + b) .
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By proposition 4.2.11,

tr B
(

k
r
∑

j=1
tjej, k

r
∑

j=1
tjej

)−Λ
= ∑

FΛ[µ] 6=0
dim FΛ[µ] ·

r

∏
j=1

(
1− t2

j
)−2µj

If we denote mµ = dim FΛ[µ] , then by lemma 4.2.13,

∫ ∗

B
tr B(z, z)−Λ dµ0(z) = C ·

∫
· · ·

∫
1>tr>···>t1>0

∑µ
mµ ·

∏i<j(t2
j − t2

i )
a ·∏r

j=1 t2b+1
j

∏r
j=1(1− t2

j )
2µj+2+(r−1)a+b

dt1 · · · tr .

By theorem 4.2.9, this integral is finite if and only if O2
Λ 6= 0 . The numerator of the

fraction is bounded and non-zero for tj close to 1 . Moreover, µj is an half-integer because
2 · ej � e∗j = Hγj is a coroot and all weights of FΛ are integral. Since

∫ 1
0

dr
1−t2 = ∞ , the

above integral is finite if and only if

2(µj + $r) + 1 = 2µj + 2 + (r− 1)a + b 6 0 for all µ ∈ t∗ , mµ > 0 , j = 1, . . . , r .

By integrality, this is equivalent to

2(µj + $r) = 2µj + 1 + (r− 1)a + b < 0 for all µ ∈ t∗ , mµ > 0 , j = 1, . . . , r .

Since µ ∈ Λ−N〈∆++
c 〉 for any weight µ of FΛ , this is the case of and only if it is true

for Λ . Since λj = Λj + $j , this requirement implies Harish-Chandra’s condition. On
the other hand, in the presence of Harish-Chandra’s condition, we have λr < 0 . But
Λj 6 Λr for all j = 1, . . . , r by 4.2.10, and the above condition follows. �

We have characterised the non-triviality of the weighted Bergman space in terms of
Harish-Chandra’s condition. To complete this discussion, we need to see that O2

Λ is
indeed a globalisation of N(Λ) .

Lemma 4.2.15. The action of G on O(Z, FΛ) is analytic. Infinitesimally, it is given by

[
πλ

(
u

∂

∂z

)
f
]
(z) = − f ′(z)u[

πλ(δ+, δ−) f
]
(z) = (δ+, δ−)Λ f (z)− f ′(z)δ+(z)[

πλ

(
{zv∗z} ∂

∂z

)
f
]
(z) = 2 · (z � v∗)Λ f (z)− f ′(z){zv∗z}

for all z ∈ B , u, v ∈ Z , (δ+, δ−) ∈ aut(Z, Z) , and f ∈ O(Z, FΛ) .

Proof. Let ξ ∈ g be an holomorphic vector field on B and let gt = exp tξ be its local
holomorphic flow. We compute

(ξπλ f )(z) =
d
dt

g′−t(z)−Λ f (g−t(z))
∣∣
t=0 =

d
dt

g′−t(z)−Λ∣∣
t=0 f (z)− f ′(z)ξ(z) .
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If ξ = u ∂
∂z , then

d
dt

g′−t(z)
∣∣
t=0 =

d
dt

t+′−tu(z)
∣∣
t=0 = 0

since t+′−tu(z) = 1 . If, ξ = (δ+, δ−) , then the local flow is linear.
Finally, let ξ = v ∂

∂z . Then

g′−t(z)−1 = t−′−tv(z)−1 = B(z,−tv) .

by lemma 4.2.1. Hence,

d
dt

g′−t(z)−1∣∣
t=0 =

d
dt

2t · z � v∗ + t2QuQv
∣∣
t=0 = 2 · z � v∗ ,

proving the assertion. �

Proposition 4.2.16. Let Λ ∈ it∗R be ∆++
c -dominant and analytically integral. When-

ever O2
Λ = O2(B, FΛ) is non-zero, its module of K-finite vectors P (Z, FΛ) is a g-highest

weight module of highest weight Λ . In particular, it is g-isomorphic to N(Λ) .

Proof. If O2(B, FΛ) is non-zero, then P (Z, FΛ) is simple by theorem 4.2.9. Hence, the
constant 1Λ is cyclic. By lemma 4.2.15, it is annihilated by p+ . The constants in O2

Λ

are K-equivalent to FΛ , so 1Λ has weight Λ . Therefore, P (Z, FΛ) = Lg
Λ as g-modules.

But theorem 4.2.14 shows that Harish-Chandra’s condition is fulfilled, so theorem 4.1.18
shows that N(Λ) = Lg

Λ , completing the proposition’s proof. �

Remark 4.2.17. In principle, the g-isomorphism P (Z, FΛ) = N(Λ) is computable with
the help of lemma 4.2.15, by considering the action on U (p−) on the highest weight
vector 1Λ . However, the action of p− on P (Z, FΛ) is quite complicated. In fact, the main
technical difference between these two realisations of the module of K-finite vectors of
O2(B, FΛ) is the following: The action of p+ on P (Z, FΛ) is straightforward, whereas it
is rather involved if computed in terms of the basis of N(Λ) given by the k-isomorphic
identification with U (p−)⊗ FΛ , and conversely for the action of p− .

4.2.18. We have seen that the representations O2
Λ of G , where Λ is ∆++

c -dominant and
analytically integral, and λ = Λ + $ satisfies Harish-Chandra’s condition, are square-
integrable irreducible unitary representations, i.e., belong to the discrete series of G . In
fact, their totality is called the holomorphic discrete series of G .

Which part of L2(G) is spanned by the coefficient functions of the holomorphic dis-
crete series can be characterised quite precisely. Indeed, any holomorphic discrete series
representation extends to a holomorphic representation of the involutive semigroup Γ◦ ,
by [Ol’82, cor. 5.8] or [Sta86, th. 3.5], and its coefficient functions therefore belong to
H2(Γ) . Conversely, the Hardy space is spanned by these matrix coefficients (loc.cit.). In
fact, this was the original motivation for the construction of the domain Γ◦ , cf. [GG77].

The characterisation of the unitary highest modules which are square-integrable
(module centre) as holomorphic semigroup representations, respectively as represen-
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tations contained in some Hardy space, has been considerably extended, encompassing
the groups G f ,I associated to the faces F−f ,I of the cone Ω− . As a blanket reference we
give [Nee00a, ch. XIV]. The theory we have reviewed in the last two sections applies,
among the Lie groups associated to the faces of Ω− , only to the Ge , where c = 0 . In
order to complete the programme set forth in this work for all faces of Ω− , a treatment
of the case c > 0 would, however, be necessary.

4.3 Embedding of the holomorphic discrete series

4.3.1. Let e ∈ Z be a tripotent, and consider the facial subgroup Ge = Aut0 B0(e) @ G
where B0(e) = Z0(e) ∩ B . We may assume e = ek+1 + · · · + er where 0 6 k 6 r . We
abbreviate Ḡ = Ge and B̄ = B0(e) . Then the extreme cases k = r and k = 0 correspond
to Ḡ = G , B̄ = B and Ḡ = 1 , B̄ = 0 , respectively.

The definition 1.2.5 of the embedding Ḡ @ G implies the inclusions K̄ = Ke ⊂ K ,
k̄R = kR,0(e) ⊂ kR , and p̄R = pR,0(e) ⊂ pR .

Moreover, Z̄ = Z0(e) ⊂ Z is a subtriple, which implies that p̄± = p0(e)± ⊂ p± . Since
e1, . . . , ek is a frame of Z̄ , lemma 2.2.19 shows that t̄R = tR,0(e) = tR ∩ ḡR is a compactly
embedded Cartan subalgebra of ḡR = g0,R(e) , such that t̄±R ⊂ t±R .

By 2.2.20 and the arguments therein,

∆̄ =
{

α ∈ ∆
∣∣ gα ⊂ ḡ

}
is the set of roots for ḡR . We have already seen that the Cartan decompositions of ḡ and
g are compatible, so ∆̄c = ∆̄ ∩ ∆c and ∆̄n = ∆̄ ∩ ∆n . Moreover, ∆̄++ = ∆̄ ∩ ∆++ is an
adapted positive system constructed as in lemma 2.1.6. By proposition 2.2.23,

ω̄± = ω±
0 (e) = ḡR ∩ω± and Ω̄± = Ω±

0 (e) = ḡR ∩Ω± .

The Killing forms of ḡR and gR are proportional on ḡR , and the canonical inner products
of Z̄ and Z coincide on Z̄ .

We may assume that ∆++
c was chosen in such a way that the compact simple roots

Π̄c = B(∆̄++
c ) are also ∆++

c -simple, cf. lemma 2.1.6 and [Bou68, ch. VI, § 1.7, prop. 24].
In addition, γ1 is the only simple non-compact root, and it is contained in it̄∗R . Hence,
the set Π̄ = B(∆̄++) of ∆̄++-simple roots is contained in Π = B(∆++) . Since the half
sum of positive roots $ is also the sum of the fundamental weights [Bou68, ch. VI, § 1.10,
prop. 29], this implies that $

∣∣
t̄
= $̄ where $̄ = 1

2 ·∑α∈∆̄++ α .

4.3.2. Given a ∆++
c -dominant and analytically integral parameter Λ ∈ it∗R , its restric-

tion Λ̄ = Λ
∣∣
t̄

is manifestly ∆̄++
c -dominant and analytically integral, since the exponen-

tial map restricts as expG

∣∣
Ḡ = expḠ . Besides, the analytically integral functionals form

a spanning lattice in itR , so any such parameter Λ̄ can be extended to a parameter Λ ,
with rk gR − rk ḡR degrees of freedom.
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Since ω̄− = t̄R ∩ ω− and $
∣∣
t̄

= $̄ , 4.2.10 shows that λ̄ = Λ̄ + $̄ fulfils Harish-
Chandra’s condition if this is the case for λ = Λ + $ . Conversely, Λ̄ can be extended to
such a Λ with sufficiently many degrees of freedom.

In order to state matters more succinctly, we say that (Λ̄, Λ) is an adapted pair if
Λ
∣∣
t̄

= Λ . We say (Λ̄, Λ) is compactly dominant and integral if both parameters are,
and similarly for analytic integrality. We that (Λ̄, Λ) is an adapted pair of holomorphic
discrete series parameters if it is compactly dominant and analytically integral, and the
shifted parameters (λ̄, λ) satisfy Harish-Chandra’s condition.

Lemma 4.3.3. Let (Λ̄, Λ) be a compactly dominant and integral adapted pair. Then
the k̄-submodule U (k̄) 1Λ of the simple highest weight module FΛ is k̄-equivalent to the
simple highest weight module FΛ̄ of k̄ .

Proof. Clearly, U (k̄) 1Λ is a k̄-highest weight module of weight Λ̄ . Moreover, the subal-
gebra n−

k̄
= ∑⊕

α∈∆̄++
c

k−α acts locally nilpotently, since dim FΛ < ∞ . By [Dix77, lem. 7.2.4],
U (k̄) 1Λ is simple, so the assertion follows. �

Proposition 4.3.4. Let (Λ̄, Λ) be an adapted pair of holomorphic discrete series param-
eters. Then there is a unique Ḡ-equivariant isometry

O2(B̄, FΛ̄) → O2(B, FΛ)

determined by 1Λ̄ 7→ 1Λ , where 1Λ̄ and 1Λ are normalised highest weight vectors.

Proof. Clearly, U (ḡ) 1Λ ⊂ Vg
Λ is a ḡ-highest weight module, and since any X ∈ g−α \ 0 ,

α ∈ ∆̄++ , acts injectively, [Dix77, prop. 7.1.8] implies that it is ḡ-equivalent to Vḡ

Λ̄ . The
identities

N(Λ̄) = U
(
p̄−
)
⊗ FΛ̄ and N(Λ) = U

(
p−
)
⊗ FΛ

which are k̄-, respectively k-equivariant, show, together with lemma 4.3.3, that the map
Vḡ

Λ̄ → Vg
Λ descends to a well-defined and ḡ-equivariant injection N(Λ̄) → N(Λ) .

In particular, there is an injection j : P (Z̄, FΛ̄) → P (Z, FΛ) which is ḡ-equivariant,
and, by connectedness, also Ḡ-equivariant. Since P (Z̄, FΛ̄) is algebraically irreducible,
the requirement 1Λ̄ 7→ 1Λ uniquely determines this map.

Denote by V the image of j . It consists of K̄-finite vectors, and is hence the al-
gebraic sum of its isotypic components, each of which has finite multiplicity. If Vµ is
some isotypic component of type Fµ , then j−1(Vµ) = Uµ is the corresponding isotype
of U = P (Z̄, FΛ̄) . The adjoint j∗ : Vµ → Uµ with respect to the inner products induced
by O2

Λ and O2
Λ̄ is well-defined, and by summing over all µ , we get a Ḡ-equivariant

map j∗ : V → U . Then j∗ j is a Ḡ-equivariant endomorphism of U , and hence a scalar
constant α , by Schur’s lemma. We compute

α = (1Λ̄ | j∗ j 1Λ̄)O2
Λ̄

= (j 1Λ̄ | j 1Λ̄)O2
Λ

= ‖1Λ‖2
O2

Λ
= 1 ,

and this proves the proposition. �



4.4. Asymptotic behaviour of matrix coefficients 135

Remark 4.3.5. In principle, the embedding O2(B̄, FΛ̄) → O2(B, FΛ) can be computed,
at least on the level of K̄-finite vectors, by applying lemma 4.2.15. Here, it however
quickly becomes evident that the extension of a polynomial p ∈ P (Z̄, FΛ̄) to Z , with
values in FΛ , is not constant in all directions orthogonal to Z̄ , viz, its behaviour in the
direction of Z1/2(e) could be quite complicated. So the embedding, which is somewhat
innocuous on the level of the highest weight modules N(Λ̄) and N(Λ) , is not what one
might naively expect in the natural analytic realisation.

4.4 Asymptotic behaviour of matrix coefficients

4.4.1. For g ∈ G , there is, by [Hel78, ch. IX, § 1, th. 1.1], a decomposition g = kal where
k, l ∈ K and a ∈ A , such that

log a =
r

∑
j=1

tj · ξ−ej
for some t1, . . . , tr > 0 .

In this decomposition, a is unique. Define a open cover of the set G \ (K · Ḡ ·K) , indexed
by ε > 0 ,

Uε(Ḡ) =
{

g
∣∣∣ g−1 = kal , k, l ∈ K , log a =

r

∑
j=1

tj · ξ−ej
, t1, . . . , tk > 0 , tk+1, . . . , tr > ε

}
.

Proposition 4.4.2. Consider adapted pairs (Λ̄, Λ) of holomorphic discrete series pa-
rameters. For any constant v ∈ FΛ , define the real analytic functions ∆Λ

v by

∆Λ
v (g) = (v | gπλ v)O2

Λ
for all g ∈ G .

Then
limΛk+1,...,Λr→−∞ ∆Λ

v = 0 on G \ (K · Ḡ · K) ,

uniformly with all derivatives on each of the subsets Uε(Ḡ) with ε > 0 .

Proof. Let ε > 0 and take g ∈ Uε(Ḡ) , and set w = g(0) . For any p ∈ P (Z, FΛ) ,∣∣(v | g−πλ p
)∣∣2 = |(v | g′(0)−Λ p(w))Λ|

2 6 ‖v‖2
Λ · ‖g′(0)−Λ p(w)‖2

Λ

= ‖v‖Λ̄ · (p(w) | B(w, w)−Λ p(w))Λ 6 ‖v‖2
Λ̄ · ‖p(w)‖2

Λ · tr B(w, w)−Λ

= ‖v‖2
Λ̄ · ‖p(w)‖2

Λ · ∑
FΛ[µ] 6=0

dim FΛ[µ] ·
r

∏
j=1

(
cosh tj

)4µj ,

by proposition 4.2.11. We have ∑FΛ[µ] 6=0 dim FΛ[µ] = dim FΛ = dΛ . Moreover, µj 6 Λj ,

so the above sum is majorised by dΛ ·∏r
j=1
(
cosh tj

)4Λj . The number dΛ is a polynomial
in Λ by Weyl’s dimension formula [Kna02, th. 5.84]. So, since cosh tj > cosh ε > 1 , this
quantity falls exponentially for Λk+1, . . . , Λr → −∞ , uniformly in g ∈ Uε(Ḡ) .
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It remains to study the polynomial p . We need only consider the case p = πλ(u) v
where u ∈ U (g) is fixed, independently of Λ . Indeed,

(
ξ ∆Λ

v
)
(g) =

d
dt

(v | πλ(g exp(−tξ)) v)
∣∣
t=0 = − (v | gπλ πλ(ξ)v) for all ξ ∈ g .

Lemma 4.2.15 shows that πλ(u) v ∈ P (Z, FΛ) for any u ∈ U (g) .

Since k⊕ p+ leaves the constants FΛ̄ invariant, PBW [Dix77, th. 2.1.11] allows us to
restrict attention to u ∈ U (p−) . We contend the following: For all holomorphic discrete
series parameters Λ , all m ∈ N , and all a1, . . . , am ∈ Z ,

πλ

(
{za∗1z} ∂

∂z
· · · {za∗mz} ∂

∂z

)
u = ∑j amj ·

bmj

∏
i=1

pmji(a1, . . . , am)(z)Λu for all u ∈ FΛ ,

where amj ∈ Z , bmj ∈ N , and pmji(a1, . . . , am) are homogeneous polynomials of degree
nmji , with values in k , such that

bmj

∑
i=1

nmji = m and
bmj

∏
i=1

pmji(a1, . . . , am)(z)Λ

depends m-conjugate linearly on a1, . . . , am . Moreover, amj , bmj and pmji are independent
of the parameter Λ .

The proof hereof is a straightforward induction on m . Indeed, for q ∈ Pm−1(Z, k) ,

πλ

(
{za∗z} ∂

∂z

)
(qΛv)(z) = 2 · (z � a∗)Λq(z)Λ −

(
q′(z){za∗z}

)Λ ,

as follows from lemma 4.2.15. Now, q′(z){za∗z} is an m-homogeneous polynomial with
values in k , so the contention follows.

Now we apply this fact to our estimate. Namely, let p(z) =
(
∂∗a1···am

)πλ v . Then, by
lemma 4.4.3 below,

‖p(w)‖Λ 6
(
|Λ + $c|2 − |$c|2 + 1

)m/2 ·∑j

∣∣amj
∣∣ · bmj

∏
i=1

cmji

where the constants cmji depend only on pmji(a1, . . . , am) . Since the sum on the right
hand side is constant, the left hand side is polynomially bounded in Λ , and we have
proved the proposition. �

The following lemma was used in the proof of proposition 4.4.2.

Lemma 4.4.3. Let δ ∈ k be fixed. Then, for the operator norm ‖δΛ‖ ,

‖δΛ‖ 6 c ·
√
|Λ + $c|2 − |$c|2 + 1 .
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where the constant c is independent of the ∆++
c -dominant and analytically integral pa-

rameter Λ ∈ it∗R .

Proof. The Casimir Ωc is an elliptic invariant differential operator of degree 2 . Hence
A = δ(1 + Ω)−1/2 ∈ IΨ0

h(K) , and this operator is properly supported because K is
compact. Hence, it is bounded on L2(K) , by [Str72, th. 6]. Writing dΛ = dim FΛ , propo-
sition 4.1.11 and the orthogonality relations on K [Dix69, th. 14.3.3, prop. 15.2.3] imply

(
|Λ + $c|2 − |$c|2 + 1

)−1 · ‖δΛv‖2
Λ = ‖AΛv‖2

Λ

= dΛ · ‖A∆Λ
v ‖

2
2 6 dΛ · ‖A‖2 · ‖∆Λ

v ‖
2
2 = ‖A‖2

for all v ∈ FΛ , ‖v‖Λ = 1 . This proves the lemma. �

4.4.4. A fundamental theorem on the Hardy space H2(Γ) associated to the Lie group
G = Aut0 B states that it is the largest invariant subspace of L2(G) such that for all
ξ ∈ Ω− , the action of −iξ on H2(Γ) is given by a positive semi-definite self-adjoint
(unbounded) operator, cf. [HÓØ91, th. 3.4].

This can interpreted in the following manner: Let π be any irreducible unitary rep-
resentation of G , weakly contained in L2(G) . Then we may define the moment map µ

µ : 〈G〉π \ 0 → g∗R where 〈ξ : µ(ϕ)〉 = − i

‖ϕ‖2 · (ϕ | π(ξ) ϕ)

where 〈G〉π denotes the representation space of π . Then the above theorem states that
if π is not contained in the holomorphic discrete series, then the image of the moment
map contains an orbit which is disjoint from the dual (Ω−)∗ of Ω− .

In other words, the ‘orbit picture’ given by the moment map separates the holomor-
phic discrete series from the remainder of the reduced dual.

Such considerations entail, with the micro-local information on the Szegö distribu-
tion, the following statement on the behaviour of E on sequences of matrix coefficients.

Proposition 4.4.5. Let πk be a sequence of irreducible unitary representations of G ,
and ϕj ∈ 〈G〉πj

be smooth unit vectors, of weight µj ∈ it∗R . If πj tends to infinity
in the reduced dual of G , and −iµj is eventually contained in the complement of a
neighbourhood of the dual (ω−)∗ of ω− , then

∆k · E → 0 weakly, where ∆k(g) =
(

ϕj | πj(g) ϕj
)

for all g ∈ G .

Here, πj → ∞ means that it is eventually contained in the complement of every quasi-
compact subset of the reduced dual of G , in the Jacobson topology.

Proof. By a parameter shift, we may assume that −iµj is contained in t∗R \ U for all
j ∈ N , for some neighbourhood U of (ω−)∗ . Then there exists a smooth function f :
t∗R → R , homogeneous of degree 0 as |ξ| → ∞ , such that f (−iµj) = 1 for all j ∈ N , and
f = 0 on (ω−)∗ .
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If we chose an orthonormal basis ξ j , j = 1, . . . , R , of tR , then the Lie symbol of the
associated order zero operators Aj is ξ∗j , cf. corollary 3.3.11. Similarly as in the proof of
this corollary, the symbol of f (A) = f (A1, . . . , AR) is f ◦ (ξ∗1 , . . . , ξ∗R) = f ◦ pt∗ where
pt∗ is the orthogonal projection g∗R → t∗R . Its characteristic set is hence contained in
pt∗(t∗R \U) .

By [Pan83, th. 2 (12)], this set is disjoint from (Ω−)∗ , and hence non-characteristic
for E , by theorem 3.3.2. It follows that f (A)(α · E) is smooth for any α ∈ D(G) . On the
other hand, since ϕj is a simultaneous eigenvector of Aj , we find

f (A)∆k = f
(
−iµj · πj(Ω−1/2)

)
· ∆k = f (−iµj) · ∆k = ∆k

where Ω = ∑n
j=1 ξ2

j is the Casimir operator of gR (ξ1, . . . , ξn an extension to a basis of
gR), and the homogeneity of f was used.

Consequently, we find that

〈α : ∆k · E〉 = 〈 f (A)∆k : α · E〉 = 〈∆k : f (A)(α · E)〉 → 0 for all α ∈ D(G) ,

by dominated convergence, because f (A)(α · E) is a smooth function of compact sup-
port, and ∆k → 0 point-wise a.e., by the Riemann-Lebesgue lemma [Dix69, prop. 3.3.8,
18.2.4], because πj tends to infinity. �

Remark 4.4.6. The device used in this proof is similar to the first step in the proof of
[Upm96, lem. 3.6.33]. Here, Upmeier used a theorem of Guillemin stating that (in his
setting) the Szegö projection is a Hermite operator (a special class of Fourier integral
operator) whose distribution kernel has a certain prescribed singular set. So, whereas
Upmeier’s use of the symbol calculus was local, our use is micro-local.

However, in the applications we have in mind, the above result is not as conclusive
as Upmeier’s is in his setting. Indeed, the projection onto the torus tR does not separate
adjoint orbits. This can already be seen for the case of the unit disc, where gR = su(1, 1) .
Here, the complement of the double light cone consists of adjoint orbits (time-like hy-
perboloids) which all have non-trivial projection onto the cone ω+ = (ω−)∗ .

Hence, if πj is a sequence of representation not belonging to the holomorphic discrete
series, the above proposition can only be applied to vectors ϕj in the representation πj

whose image under the moment map lies in a part of these orbits which does not project
onto ω+ . Since such vector can always be moved above ω+ by the action of some inner
automorphism, we will not be able to apply the proposition to a spanning subset of
〈G〉πj

, which is a severe restriction.
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5Embedding of representations of facial subgroups

In order to study the asymptotic behaviour of the Szegö distribution on sequences of
matrix coefficients associated to representations of G belonging to the support of the
Plancherel measure, but not to the holomorphic discrete series, it is necessary to embed
such representations of the facial subgroups Ḡ = Ge into those of G . I.e., we have
to prove an appropriate generalisation of proposition 4.3.4 for the other parts of the
reduced spectrum.

However, what is nearly trivial for the holomorphic discrete series, is comparatively
difficult for the discrete series, and even more so, for the parabolic Q-series which are
induced from discrete series. The main complication is that the positive systems corre-
sponding to non-holomorphic discrete series are not related to the complex structure of
the Jordan triple system Z , as is the adapted positive system ∆++ . Hence, a convenient
Jordan theoretic description is not available.

We have only been able to overcome these difficulties by case-by-case arguments,
using the classification of Hermitian symmetric spaces. Moreover, we omit the excep-
tional cases. In would of course be desirable to have a uniform argument, independent
of classification.

5.1 An embeddability theorem for fundamental sequences

5.1.1. Let G = Aut0 B where B ⊂ Z is an irreducible circled bounded symmetric do-
main. Two roots α, β ∈ ∆ are said to be strongly orthogonal if

α 6∈ Qβ and α± β 6∈ ∆ .

Given a positive system ∆+ ⊂ ∆ , a fundamental sequence of positive non-compact roots
α1, . . . , αr is defined by the following properties

(FS1). The αi ∈ ∆+
n are strongly orthogonal and r is maximal with this property.

(FS2). Every αi is simple in the set of roots strongly orthogonal to α1, . . . , αi−1 . I.e. if
α, β ∈ ∆+ are strongly orthogonal to α1, . . . , αi−1 , then α + β 6= αi .

(FS3). Whenever α ∈ ∆n is strongly orthogonal to α1, . . . , αi−1 but not strongly orthogonal
to αi , we have |αi| > |α| .

It is important to insist that the length r , and not only the sequence α1, . . . , αr be maximal.
Indeed, ε1 + ε2 is a maximal strongly orthogonal sequence of positive non-compact roots
for sp(4, R) , but its length is not maximal, since 2ε2, 2ε1 are also strongly orthogonal. The
number r is independent of ∆+ and coincides with the real rank of gR . Moreover, r is also
the rank of B , and of Z .
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Knapp-Wallach [KW76, prop. 4.5] show that fundamental sequences always exist,
even for non-Hermitian groups, except in the case that the Lie algebra contains a split
G2 factor. In this case, (FS3) has to be replaced with another condition. We have avoided
this difficulty, since in the Hermitian symmetric case, only the root systems A–E occur.

We have already seen in 2.1.12 that Harish-Chandra’s roots γ1, . . . , γr form a funda-
mental sequence for the positive system ∆++ . Moreover, if we consider, for the tripotent
e = e1 + · · ·+ ek , the subgroup Ḡ = Ge and the associated substructures as in 4.3.1, it is
a trivial matter that the corresponding Harish-Chandra sequence is simply the terminal
segment γk+1, . . . , γr where r̄ = r− k is the rank of Z̄ .

We wish to generalise this statement to arbitrary positive systems. More precisely,
given a positive system ∆+ ⊂ ∆ and a fundamental sequence α1, . . . , αr , we define

mj = #
{

α ∈ ∆+
n
∣∣ α strongly orthogonal to α1, . . . , αj−1 , and α− αj ∈ ∆

}
.

The sequence m = (mj)j=1,...,r is called lower signature of α1, . . . , αr .

Theorem 5.1.2. Let Z be classical and Ḡ @ G be a facial subgroup. Then, for any posi-
tive system ∆̄+ ⊂ ∆̄ , there exists a positive system ∆+ ⊂ ∆ and a fundamental sequence
α1, . . . , αr ∈ ∆+

n such that

(i). ∆+ extends ∆̄+ , i.e. ∆̄+ = ∆̄ ∩ ∆+ ,

(ii). for ᾱj = αr−r̄+j , 1 6 j 6 r̄ , the sequence

ᾱ1, . . . , ᾱr̄ ∈ ∆̄+
n

is fundamental for ∆̄+ , and

(iii). for the lower signature m̄ = (m̄j) of ᾱ1, . . . , ᾱr̄ , we have

m̄j = mr−r̄+j for all 1 6 j 6 r̄ .

Remark 5.1.3. Since the theorem is a purely infinitesimal statement, it is also valid for
any finite cover of G .

Proof of theorem 5.1.2. Since Z is simple, all subtriples Z̄ = Z0(e) with e non-zero tripo-
tent of fixed rank r − r̄ are conjugate, it is also sufficient to consider one tripotent for
each rank r̄ < r . Finally, since the conditions (i)–(iii) are manifestly invariant under W̄c-
conjugacy, we need only consider a set of representatives of the W̄c-conjugacy classes of
positive systems in ∆̄ .

So, the proof reduces to a case-by-case study, using the classification of irreducible
bounded symmetric spaces of non-compact type. Hence propositions 5.1.11, 5.1.17,
5.1.23, 5.1.29 and 5.1.35 below complete the proof. �
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Definition 5.1.4. Let Ḡ @ G be a closed connected subgroup. Whenever Ḡ fulfils the
conclusion of theorem 5.1.2 for any positive system, we shall say that it is an embeddable
subgroup. The etymology being that the discrete series of an embeddable Ḡ can be em-
bedded into that of G , see corollary 5.2.25 below. We have seen that Ḡ is embeddable if
it is a facial subgroup, and if Z is classical.

In the following case-by-case considerations, we refer to the table in 1.1.7 for a summary
of the classification. Moreover, refer to [Bou68, ch. IV-VI, planches I-IV] and [Tit67], or
to [Kna02, app. C], for tables of root systems and Weyl groups.

5.1.1 Proof for type Ip,q

5.1.5. As is customary, we identify it∗R with RR , R = rk gR (not to be confused with the
real rank r ). Denote the standard orthonormal basis by ε1, . . . , εR .

If G = Aut0 B where B is of type Ip,q , R = p + q . Furthermore,

∆ =
{
±
(
ε i − ε j

) ∣∣∣ 1 6 i < j 6 p + q
}

and

∆c =
{
±
(
ε i − ε j

) ∣∣∣ 1 6 i < j 6 p or p < i < j 6 p + q
}

.

Moreover, the respective Weyl groups W and Wc are

W = Sp+q and Wc = Sp ×Sq ,

acting by permutation of labels. The adapted positive system ∆++ is given by

∆++ =
{

ε i − ε j

∣∣∣ 1 6 i < j 6 p + q
}

.

For an appropriate ordering of the simple roots, one calculates

γj = εp−j+1 − εp+j for all 1 6 j 6 r = p

for the Harish-Chandra sequence.

5.1.6. Since #(W/Wc) = (p+q
p ) , a system of representatives of Wc-conjugacy classes of

positive systems is indexed by subsets

A = {a1 < · · · < ap} ⊂ {1, . . . , p + q} .

Write
{1, . . . , p + q} \ A = {b1 < · · · < bq} .
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Then the permutations

σA =

(
1 · · · p p + 1 · · · p + q
a1 · · · ap b1 · · · bq

)
∈ Sp+q = W

are clearly pairwise non-Wc-conjugate. Hence the sets ∆+,A = σA.∆++ constitute a set of
representatives of positive systems.

Lemma 5.1.7. Let A ⊂ {1, . . . , p + q} and retain the above notation. Set

pA = #
(

A ∩ {1, . . . , p}
)

.

Then the subsets of ∆+,A of compact resp. non-compact roots are

∆+,A
c =

{
εai − εaj

∣∣∣ 1 6 i < j 6 pA or pA < i < j 6 p
}

∪
{

εbi − εbj

∣∣∣ 1 6 i < j 6 p− pA or p− pA < i < j 6 q
}

∪
{

εai − εbj

∣∣∣ 1 6 i 6 pA , 1 6 j 6 p− pA or pA < i 6 p , p− pA < j 6 q
}

and

∆+,A
n =

{
εai − εaj

∣∣∣ 1 6 i 6 pA < j 6 p
}

∪
{

εbi − εbj

∣∣∣ 1 6 i 6 p− pA < j 6 q
}

∪
{

εai − εbj

∣∣∣ 1 6 i 6 pA , p− pA < j 6 q or pA < i 6 p , 1 6 j 6 p− pA

}
.

Proof. From the definition of σA , it is clear that α ∈ ∆+,A if and only if α is of the form

α =


εai − εaj 1 6 i < j 6 p ,

εbi − εbj 1 6 i < j 6 q ,

εai − εbj 1 6 i 6 p , 1 6 j 6 q .

The compact roots among these are precisely those where either both indices are left of
p or both on the right hand side. Since aj 6 p if and only if j 6 pA and bj 6 p if and only
if j 6 p− pA , the assertion follows immediately. �

Proposition 5.1.8. A fundamental sequence for ∆+,A is given by

γA
j = εap−j+1 − εbj for all 1 6 j 6 p .

Proof. The sequence manifestly consists of strongly orthogonal roots. Moreover, in case
1 6 j 6 p− pA , then bj 6 p , and p− j + 1 > pA , so p < aj . Hence, γA

j ∈ ∆+,A
n in this

case. If p− pA < j 6 p , then bj > p and p− j + 1 6 pA , so aj 6 p . Hence, γA
j ∈ ∆+,A

n in
this case, too. This verifies (FS1).
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If α, β ∈ ∆+,A such that α + β = γA
j , then either

α = εap−j+1 − εak and β = εak − εbj ,

or
α = εap−j+1 − εbk and β = εbk − εbj .

In the first case, p − j + 1 < k 6 p , so j > p − k + 1 and α 6⊥ γA
p−k+1 , in particular,

not strongly orthogonal. In the second case, 1 6 k < j , so β 6⊥ γA
k , in particular, not

strongly orthogonal. This proves (FS2).

Finally, condition (FS3) is trivial in this case since Ap+q is simply laced, and therefore
only one root length occurs. �

Proposition 5.1.9. For lower signature mA = (mA
j ) of γA

1 , . . . , γA
p is

mA
j =

2
(

p− pA − j
)

j 6 p− pA ,

p + q− 2j j > p− pA .

Proof. Let α ∈ ∆+,A
n . We need to determine when α− γA

k ∈ ∆ . As a consequence of
(FS2), this the case if and only if α− γ+,A

k ∈ ∆+,A
c . It is clear that α− γ+,A

k cannot be of
the form εai − εbj . Hence, α must be of this form.

This entails that either

j = k and α− γA
k = εai − εap−k+1 ∈ ∆+,A

c ,

or
i = p− k + 1 and α− γA

k = εbk − εbi ∈ ∆+,A
c .

If k 6 p− pA , then p− k + 1 > pA , so the first case occurs exactly for pA < i 6 p− k ,
and the second, if and only if k < j 6 p− pA . If k > p− pA , then since p− k + 1 6 pA ,
the first case occurs if and only if 1 6 i 6 p− k , and the second if and only if k < j 6 q .
In summary,

α =



εai − εbk

εap−k+1 − εbj

pA < i 6 p− k
k < j 6 p− pA

}
k 6 p− pA

εai − εbk

εap−k+1 − εbj

1 6 i 6 p− k
k < j 6 q

}
k > p− pA

Since, in all cases, α is strongly orthogonal to γA
1 , . . . , γA

k−1 , the value of mA
k is easily

determined. �
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5.1.10. For the subtriples Z̄ = Z0(e) @ Z , it suffices to consider the tripotents

ek =



k q− k

k

1
. . .

1

0
...
0

p− k 0 · · · 0 0

 for all 1 6 k 6 p .

Hence, we find Z̄ ∼= Cp̄×q̄ , where

1 6 p̄ < p , 1 6 q̄ < q , q− p = q̄− p̄ .

So,
∆̄ =

{
±
(
ε i − ε j

) ∣∣∣ p− p̄ < i < j 6 p + q̄
}

,

and we need to consider

Ā =
{

ā1 < · · · < ā p̄
}
⊂
{

p− p̄ + 1, . . . , p + q̄
}

with {
p− p̄ + 1, . . . , p + q̄

}
\ Ā =

{
b̄1 < · · · < b̄q̄

}
.

Set
aj = āj for all 1 6 j 6 p̄ and bq−q̄+j = b̄j for all 1 6 j 6 q̄ .

This allows us to define

A = Ā ∪
{

p + q̄ + 1, . . . , p + q
}

=
{

a1 < · · · < ap
}

where ap+q̄+j = p + q̄ + j for 1 6 j 6 q− q̄ = p− p̄ , and

{
1, . . . , p + q} \ A =

{
b1 < · · · < bq

}
where bj = j for all 1 6 j 6 q− q̄ .

Proposition 5.1.11. We have ∆̄+,Ā = ∆̄ ∩ ∆+,A . The fundamental sequence

γ̄Ā
j = ε ā p̄−j+1 − ε b̄j

for all 1 6 j 6 p̄

for ∆̄+,Ā , satisfies
γ̄Ā

j = γA
p− p̄+j for all 1 6 j 6 p̄ ,

and for its lower signature m̄Ā =
(
m̄Ā

j
)

, we have

m̄Ā
j = mA

p− p̄+j for all 1 6 j 6 p̄ .
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Proof. Clearly,
ε āi − ε b̄j

= εai − εbp− p̄+i ∈ ∆+,A ,

and similarly for ε āi − ε āj and ε b̄i
− ε b̄j

, so ∆̄+,Ā ⊂ ∆+,A . The equality ∆̄+,Ā = ∆̄ ∩ ∆+,A

follows, since −Φ ∩Φ = ∅ for any positive system Φ .

Furthermore, since p− p̄ = q− q̄ ,

γA
p− p̄+j = εa p̄−j+1 − εbq−q̄+j = ε ā p̄−j+1 − ε b̄j

= γ̄Ā
j .

Finally, we have

p̄Ā = #
(

Ā ∩ {p− p̄ + 1, . . . , p}
)

= #
(

A ∩ {1, . . . , p}
)

= pA ,

so j 6 p̄− p̄Ā if and only if p− p̄ + j 6 p− pA . Hence,

mA
p− p̄+j =

{
2
(

p− pA − (p− p̄ + j)
)

p− p̄ + j 6 p− pA

p + q− 2(p− p̄ + j) p− p̄ + j > p− pA

}

=

{
2
(

p̄− p̄Ā − j
)

j 6 p̄− p̄Ā

p̄ + q̄− 2j j > p̄− p̄Ā

}
= m̄Ā

j ,

where, once again, the equation p− p̄ = q− q̄ was used. �

This completes the proof of theorem 5.1.2 in case B is of type Ip,q . The other types are
less demanding combinatorially.

5.1.2 Proof for type IIn

5.1.12. If G = Aut0 B where B is of type IIn , then R = n , and

∆ =
{
±
(
ε i ± ε j

) ∣∣∣ 1 6 i < j 6 n
}

and ∆c =
{
±
(
ε i − ε j

) ∣∣∣ 1 6 i < j 6 n
}

,

where n > 3 . (Note that D2 = A1 + A1 is not simple.) The Weyl groups are

W = An n Sn and Wc = Sn ,

where An =
{
κ ∈ Zn

2

∣∣ ∏i κi = 1
}

. Here, our convention is Z2 = {±1} . The adapted
positive system is

∆++ =
{

ε i ± ε j

∣∣∣ 1 6 i < j 6 n
}

.

The Harish-Chandra sequence is then (for an appropriate ordering of the simple roots)

γj = εn−2j+1 + εn−2j+2 for all 1 6 j 6 r ,
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where r = b n
2 c . A system of representatives of Wc-conjugacy classes is indexed by

elements κ ∈ An = W/Wc . Namely, we set ∆+,κ = κ.∆++ . These positive systems are
manifestly pairwise non-Wc-conjugate.

Lemma 5.1.13. Let κ ∈ An . Then

∆+,κ
c =

{
κi
(
ε i − ε j

) ∣∣∣ 1 6 i < j 6 n
}

and ∆+,κ
n =

{
κi
(
ε i + ε j

) ∣∣∣ 1 6 i < j 6 n
}

.

Proof. Clearly, α ∈ ∆+,κ if and only if κ = κi
(
ε i ± ε j

)
, for some 1 6 i < j 6 n . The

compact roots among these are precisely those for which the sign in ε i ± ε j is negative.
This proves the lemma. �

Proposition 5.1.14. Let κ ∈ An . A fundamental sequence for ∆+,κ is given by

γκ
j = κn−2j+1 · γj = κn−2j+1 ·

(
εn−2j+1 + εn−2j+2

)
for all 1 6 j 6 r .

Proof. Clearly, γκ
k ∈ ∆+,κ

n . Moreover, these roots are strongly orthogonal since this
is true of γk , proving (FS1). Since Dn is simply laced and hence only one root length
occurs, the statement (FS3) is trivial.

As to (FS2), assume α, β ∈ ∆+,κ such that α + β = γκ
k . We may assume α is non-

compact and β is compact, moreover, that α, β are strongly orthogonal, in particular,
orthogonal, to γκ

1 , . . . , γκ
k−1 .

This means that
α = κi(ε i + ε j) and β = κa(εa − εb)

where 1 6 i < j 6 n − 2k + 2 and 1 6 a < b 6 n − 2k + 2 . Hence, if κi = κa , then
necessarily i = b , so

a = n− 2k + 1 and j = n− 2k + 2 .

But this implies n− 2k + 2 = b = i < n− 2k + 2 , contradiction. If κi = −κa , necessarily
i 6= a , so a = j . Thus

i = n− 2k + 1 and b = n− 2k + 2 ,

contradicting i < j = a < b . This proves (FS2) and hence, the lemma. �

Proposition 5.1.15. Let κ ∈ An . For the lower signature mκ =
(
mκ

j
)

of the fundamen-
tal sequence γκ

1 , . . . , γκ
r , we have

mκ
j = 2 · #

{
1 6 i 6 n− 2j

∣∣∣ κi = κn−2j+1

}
for all 1 ≤ j ≤ r .

Proof. Let α = κi
(
ε i + ε j

)
∈ ∆+,κ

n be strongly orthogonal to γκ
1 , . . . , γκ

k−1 , which is
equivalent to 1 6 i < j 6 n− 2k + 2 . We wish to determine when α− γκ

k ∈ ∆ , which is
the case if and only if α− γκ

k ∈ ∆+,κ
c .
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I.e., we are searching for solutions i , j of the equation

κi
(
ε i + ε j

)
−κn−2k+1

(
εn−2k+1 + εn−2k+2

)
= κu

(
εu − εv

)
where 1 6 i < j 6 n − 2k + 2 and 1 6 u < v 6 n − 2k + 2 . A solution exists only if
κi = κn−2k+1 .

Since i < j 6 n− 2k + 2 , we see that i < n− 2k + 1 . Then a solution exists if and
only if j = n− 2k + 1, n− 2k + 2 , for arbitrary i . We may summarise this as

α =

{
κi
(
ε i + εn−2k+1

)
κi
(
ε i + εn−2k+2

)} 1 6 i 6 n− 2k .

This entails the formula. �

5.1.16. A rank j tripotent, 1 6 2j 6 r , of Z = Cn×n
− is given by

ej =



n− 2j 2j

n− 2j 0 0 · · · 0

0
0 −1
1 0

2j
...

. . .

0
0 −1
1 0


.

The corresponding subtriples Z̄ ∼= Cn̄×n̄
− for some 1 6 n̄ < n , where we have 2

∣∣ (n− n̄) .
Hence, the rank r̄ = b n̄

2 c of Z̄ satisfies 2 · (r− r̄) = n− n̄ . Furthermore,

∆̄ =
{
±
(
ε i ± ε j

) ∣∣∣ 1 6 i < j 6 n̄
}

,

unless n̄ = 2 . Indeed, defining ∆̄ as above in this case, ∆̄ = D2 = A1 + A1 is reducible.
Moreover,

∆̄c =
{
±(ε1 − ε2)

}
and ∆̄n =

{
±(ε1 + ε2)

}
are precisely the two summands of type A1 . This corresponds to the isomorphism
so∗(4) = su(2)⊕ sl(2, R) . We have aut B̄ = sl(2, R) , but the set of non-compact roots
is the same for sl(2, R) and so∗(4) , and the compact roots are strongly orthogonal to the
non-compact ones. Hence, we may as well check the embeddability for so∗(4) .

So, we need to consider κ̄ ∈ An̄ . Define κ =
(
κ̄, 1, . . . , 1

)
∈ An .

Proposition 5.1.17. Let κ̄ ∈ An̄ . Then ∆̄+,κ̄ = ∆̄ ∩ ∆+,κ . The fundamental sequence

γ̄κ̄
j = κ̄n̄−2j+1

(
ε n̄−2j+1 + ε n̄−2j+2

)
for all 1 6 j 6 r̄
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satisfies
γ̄κ̄

j = γκ
r−r̄+j for all 1 6 j 6 r̄ .

For the lower signature m̄κ̄ =
(
m̄κ̄

j
)

of γ̄κ̄
1 , . . . , γ̄κ̄

r̄ , we have

m̄κ̄
j = mκ

r−r̄+j for all 1 6 j 6 r̄ .

Proof. The first statement is trivial, and the second follows from

γκ
r−r̄+j = κn−2(r−r̄+j)+1

(
εn−2(r−r̄+j)+1 + εn−2(r−r̄+j)+2

)
= κ̄n̄−j+1

(
ε n̄−2j+1 + ε n̄−2j+2

)
= γ̄κ̄

j ,

since n − n̄ = 2(r − r̄) . The last assertion now follows from the fact that mκ
j only de-

pends on κ1, . . . , κj−1 . �

This completes the proof of theorem 5.1.2 in case B is of type IIn .

5.1.3 Proof for type IIIn

5.1.18. For B of type IIIn , we have R = n ,

∆ =
{
±
(
ε i ± ε j

)
6= 0

∣∣∣ 1 6 i 6 j 6 n
}

and ∆c =
{
±
(
ε i − ε j

) ∣∣∣ 1 6 i < j 6 n
}

,

so ±2ε i are long, whereas ±
(
ε i ± ε j

)
, 1 6 i < j 6 n , are short. The Weyl groups are

W = Zn
2 n Sn and Wc = Sn .

The adapted positive system ∆++ is

∆++ =
{

ε i ± ε j 6= 0
∣∣∣ 1 6 i 6 j 6 n

}
.

For an appropriate ordering of the simple roots, Harish-Chandra’s roots γ1, . . . , γn are

γj = 2εn−j+1 for all 1 6 j 6 n = r .

Since W/Wc = Zn
2 , a system of representatives of positive systems is indexed by el-

ements κ ∈ Zn
2 . Set ∆+,κ = κ.∆++ . Clearly, this is a system of representatives of

Wc-conjugacy classes of positive systems.

Lemma 5.1.19. Let κ ∈ Zn
2 . Then

∆+,κ
c =

{
κi
(
ε i − ε j

) ∣∣∣ 1 6 i < j 6 n
}

and ∆+,κ
n =

{
κi
(
ε i + ε j

) ∣∣∣ 1 6 i 6 j 6 n
}

.

Proof. The proof is essentially the same as in the case IIn . �
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Proposition 5.1.20. Let κ ∈ Zn
2 . A fundamental sequence for ∆+,κ is given by

γκ
j = 2κn−j+1εn−j+1 for all 1 6 j 6 n .

Proof. It is clear that for this particular root system, a root is strongly orthogonal to a
given long root if and only if it is orthogonal. Now, γκ

j = κ.γj for all 1 6 j 6 n , and
are non-compact. Moreover, ∆+,κ = κ.∆++ , and κ leaves the orthogonal complement
〈γ1, . . . , γj〉⊥ invariant for any j . Hence the assertions (FS1) and (FS2) for γκ

j follow from
those for γj . (FS3) is clear, since the γκ

j are long. �

Proposition 5.1.21. Let κ ∈ Zn
2 . For the lower signature mκ =

(
mκ

j
)

of the fundamen-
tal sequence γκ

1 , . . . , γκ
n , we have

mκ
j = #

{
1 6 i 6 n− j

∣∣∣ κi = κn−j+1

}
for all 1 6 j 6 n .

Proof. Let α ⊥ γκ
1 , . . . , γκ

k−1 , α ∈ ∆+,κ
n such that α− γκ

k ∈ ∆+,κ
c . This means

α = κi
(
ε i + ε j

)
for some 1 6 i < j 6 n− k + 1 .

Hence
j = n− 2k + 1 , i 6 n− k , κi = κn−k+1 ,

i.e.
α = κi

(
ε i + εn−k+1

)
, 1 6 i 6 n− k , κi = κn−k+1 ,

proving the formula. �

5.1.22. A rank k tripotent, 1 6 k 6 n = r , is given by

ek =



n− k k

n− k 0 0 · · · 0
0 1

k
...

. . .

0 1

 .

Hence, the subtriples Z̄ ∼= Cn̄×n̄
+ , where 1 6 n̄ < n . We have

∆̄ =
{
±
(
ε i ± ε j

)
6= 0

∣∣∣ 1 6 i 6 j 6 n̄
}

.

Consider κ̄ ∈ Zn̄
2 , and set κ =

(
κ̄, 1, . . . , 1

)
∈ Zn

2 . The following is immediate.

Proposition 5.1.23. Let κ̄ ∈ Zn̄
2 . Then ∆̄+,κ̄ = ∆̄ ∩ ∆+,κ . The fundamental sequence

γ̄κ̄
j = 2κ̄n̄−j+1ε n̄−j+1 for all 1 6 j 6 n̄ ,
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satisfies
γ̄κ̄

j = γκ
n−n̄+j for all 1 6 j 6 n̄ .

For its lower signature m̄κ̄ =
(
m̄κ̄

j
)

, we have

m̄κ̄
j = mκ

n−n̄+j for all 1 6 j 6 n̄ .

This completes the proof of theorem 5.1.2 in case B is of type IIIn . In the remaining cases,
B has rank 2 . Therefore, for the proof of the theorem, they could be omitted, since all
non-trivial facial subtriples have rank 1 . We include them for the sake of completeness.

5.1.4 Proof for type IVn , q = 2k

5.1.24. For B of type IVn , B = SO(2, q)/(SO(2)× SO(q)) , q = 2k ,

∆ =
{
±
(
ε i ± ε j

) ∣∣∣ 1 6 i < j 6 k + 1
}

and ∆c =
{
±
(
ε i ± ε j

) ∣∣∣ 2 6 i < j 6 k + 1
}

.

The respective Weyl groups are

W = Ak+1 n Sk+1 and Wc = Ak n Sk

where Wc acts only on ε2, . . . , εk+1 . The adapted positive system is

∆++ =
{

ε i − ε j

∣∣∣ 1 6 i < j 6 k + 1
}

,

and the associated Harish-Chandra sequence is

γ1 = ε1 − ε2 , γ2 = ε2 + ε2 .

Since #W/Wc = 2(k + 1) , a set of representatives of Wc-conjugacy classes of positive
systems is indexed by κ ∈ Z2 = {±1} and 1 6 n 6 k + 1 . We define ∆+,κ,n by setting

∆+,κ,n
c =

{
κ
(
ε j ± ε i

) ∣∣∣ 2 6 i < j 6 n
}
∪
{

κ
(
ε i ± ε j

) ∣∣∣ 2 6 i < j 6 k + 1 , n < j
}

,

and

∆+,κ,n
n =

{
κ
(
ε j ± ε1

) ∣∣∣ 1 < j 6 n
}
∪
{

κ
(
ε1 ± ε j

) ∣∣∣ 1 6 n < j 6 k + 1
}

.

Lemma 5.1.25. The sets ∆+,κ,n = ∆+,κ,n
c ∪ ∆+,κ,n

n for κ ∈ Z2 , 1 6 n 6 k + 1 , are
pairwise non-Wc-conjugate positive systems for ∆ .

Proof. Clearly,
∆ = −∆+,κ,n ∪̇∆+,κ,n
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where the union is disjoint. To see that ∆+,κ,n is a positive system, we need to prove that
∆+,κ,n is closed, i.e. ∆ ∩ (Φ + Φ) ⊂ Φ for Φ = ∆+,κ,n , by [Bou68, ch. VI, § 1.7, cor. 1].

If α = κ
(
ε i + ε j

)
, 1 6 i 6= j 6 k + 1 and β ∈ ∆+,κ,n are such that α + β ∈ ∆ , then

β = κ
(
εp − εq

)
where q = i, j . In any case

α + β = κ
(
εp + ε i+j−q

)
∈ ∆+,κ,n .

The only other possible situation is that α = κ
(
ε i − ε j

)
and β = κ

(
ε j − εp

)
. Here,

the interesting cases are

1 6 j < i 6 n , 1 6 j < p 6 k + 1 , n < p ,

and
1 6 i < j 6 k + 1 , n < j , 1 6 p < j 6 n .

The second case is impossible, and in the first case,

α + β = κ
(
ε i − εp

)
, i 6 n < p ,

so α + β ∈ ∆+,κ,n . Hence ∆+,κ,n is closed and therefore a positive system.
If two of these positive systems are Wc-conjugate, then the signs κ are identical, and

we may assume κ = 1 . Let σ ∈ Sk be such that σ.∆+,1,n1 = ∆+,1,n2 . Then n1 = n2 , and
σ fixes a positive system of the root system

Ak−1 =
{
±
(
ε i − ε j

) ∣∣∣ 2 6 i < j 6 k + 1
}

,

so σ = 1 . Hence the positive systems ∆+,κ,n are pairwise non-conjugate. �

Proposition 5.1.26. Let κ ∈ Z2 and 1 6 n 6 k + 1 . The sequence

γκ,n
1 =

κ
(
ε1 − ε2

)
n = 1

κ
(
ε2 − ε1

)
n > 1

, γκ,n
2 = κ

(
ε1 + ε2

)
is fundamental for the positive system ∆+,κ,n .

Proof. Condition (FS1) is obvious, and so is (FS3), since Dk+1 is simply laced.
As to (FS2), first note that for n = 1 , κ

(
ε1 − ε2) is simple. Indeed, this is clear since

∆+,κ,1 = κ.∆++ and ε1 − ε2 is simple in ∆++ .
For n > 1 , γκ,n

1 = κ
(
ε2 − ε1

)
∈ ∆+,κ,n

n is simple, too. Indeed, if α ∈ ∆+,κ,n
n and

β ∈ ∆c such that α + β = γκ,n
1 , then

α = κ
(
ε j − ε1

)
and β = κ

(
ε2 − ε j

)
,

so β is negative. Therefore, γκ,n
1 is simple. The only positive non-compact root strongly
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orthogonal to γκ,n
1 is γκ,n

2 . This proves (FS2). �

Proposition 5.1.27. Let κ ∈ Z2 and 1 6 n 6 k + 1 . Then for the fundamental sequence
γκ,n

1 , γκ,n
2 , the lower signature mκ,n =

(
mκ,n

1 , mκ,n
2

)
is given by

mκ,n
1 =

2(k− 1) n = 1

n− 1 n > 1
, mκ,n

2 = 0 .

Proof. As we have already seen, the only non-compact positive root strongly orthogo-
nal to γκ,n

1 is γκ,n
2 , so mκ,n

2 = 0 .
Now let α ∈ ∆+,κ,n

n such that α− γκ,n
1 ∈ ∆+,κ,n

c . If n = 1 , then

α = κ
(
ε1 ± ε j

)
for some 2 6 j 6 k + 1 .

Clearly, there are 2(k− 1) possibilities for α .
If n > 1 , then

α = κ
(
ε j − ε1

)
for some 2 6 j 6 n .

Then there are n− 1 possibilities for α . �

5.1.28. The JB∗-triple Z = Vk+1 has rank 2 , and the only non-trivial subtriple Z̄ = Z0(e)
is Z̄ ∼= C . Since γ̄1 = γ2 (recall that we already know that the Harish-Chandra sequence
for Z̄ occurs as the tail of that for Z), the rank-one root system ∆̄ is

∆̄ =
{
±γ2

}
=
{
±
(
ε1 + ε2

)}
.

We have W̄c = 1 , and the two positive systems of ∆̄ are indexed by κ ∈ Z2 :

∆̄+,κ =
{

κ
(
ε1 + ε2

)}
.

Since γ̄κ
1 = γκ,n

2 = κ
(
ε1 + ε2

)
is the only non-compact positive root for ∆̄+,κ , the fol-

lowing proposition is clear.

Proposition 5.1.29. Let κ ∈ Z2 . For any 1 6 n 6 k + 1 , ∆̄κ = ∆̄ ∩ ∆+,κ,n , the sequence
γ̄κ

1 = γκ,n
2 is fundamental, and its lower signature is m̄κ

1 = mκ,n
2 = 0 .

5.1.5 Proof for type IVn , q = 2k + 1

5.1.30. If B = SO(2, q)/(SO(2)× SO(q)) where q = 2k + 1 , then

∆ =
{
±ε i

∣∣∣ 1 6 i 6 k + 1
}
∪
{
±
(
ε i ± ε j

) ∣∣∣ 1 6 i < j 6 k + 1
}

,

and

∆c =
{
±ε i

∣∣∣ 2 6 i 6 k + 1
}
∪
{
±
(
ε i ± ε j

) ∣∣∣ 2 6 i < j 6 k + 1
}

,
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so the roots ±ε i are short, whereas ±
(
ε i ± ε j

)
are long. The Weyl groups are

W = Zk+1
2 n Sk+1 and Wc = Zk

2 n Sk ,

where Wc acts only on ε2, . . . , εk+1 . The adapted positive system ∆++ is

∆++ =
{

ε i

∣∣∣ 1 6 i 6 k + 1
}
∪
{

ε i ± ε j

∣∣∣ 1 6 i < j 6 k + 1
}

.

As in the case q = 2k , #(W/Wc) = 2(k + 1) , so a set of representatives of Wc-conjugacy
classes of positive systems is indexed by κ ∈ Z2 , 1 6 n 6 k + 1 . Define ∆+,κ,n by

∆+,κ,n
c =

{
κε i

∣∣∣ 2 6 i 6 k + 1
}
∪
{

κ
(
ε j ± ε i

) ∣∣∣ 2 6 i < j 6 n
}

∪
{

κ
(
ε i ± ε j

) ∣∣∣ 2 6 i < j 6 k + 1 , j > n
}

,

and

∆+,κ,n
n =

{
κε1

}
∪
{

κ
(
ε j ± ε1

) ∣∣∣ 2 6 j 6 n
}
∪
{

κ
(
ε1 ± ε j

) ∣∣∣ n < j 6 k + 1
}

.

Lemma 5.1.31. The sets ∆+,κ,n = ∆+,κ,n
c ∪ ∆+,κ,n

n are pairwise non-Wc-conjugate posi-
tive systems for ∆ .

Proof. Clearly, we have a disjoint union

∆ = −∆+,κ,n ∪̇∆+,κ,n .

Hence, we need only establish the closedness of ∆+,κ,n . The subset

Φ = ∆ \
{
±ε i

∣∣ 1 6 i 6 k + 1
}

is a subsystem of type Dk+1 . Φ ∩ ∆+,κ,n is the positive system ∆+,κ,n for Φ from lem-
ma 5.1.25 above, in particular, closed. So it remains to consider sums where at least one
root is short.

Moreover, w.l.o.g., we may assume κ = 1 . ε1 + ε i and ε i + ε j , 2 6 i < j 6 k + 1 ,
are always positive roots. ε1 +

(
ε j − ε1

)
= ε j is positive. Similarly for ε i +

(
ε j − ε i

)
and

ε j +
(
ε1 − ε j

)
. Since these are all possible cases, the lemma follows. �

Proposition 5.1.32. et κ ∈ Z2 and 1 6 n 6 k + 1 . The sequence

γκ,n
1 =

κ
(
ε1 − ε2

)
n = 1

κ
(
ε2 − ε1

)
n > 1

, γκ,n
2 = κ

(
ε1 + ε2

)
is fundamental for ∆+,κ,n .
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Proof. γκ,n
1 and γκ,n

2 are strongly orthogonal positive non-compact roots, whence (FS1),
and they are also both long, whence (FS3).

Since the only positive non-compact root strongly orthogonal to γκ,n
1 is γκ,n

2 , for the
latter, (FS2) is true. As for γκ,n

1 , it is certainly never the sum of two short roots (since
these sums are κ

(
ε i + ε j

)
), or of a short and a long root (since these sums are short).

Moreover, γκ,n
1 is simple in Φ ∩ ∆+,κ,n by proposition 5.1.26 (notation from the proof of

lemma 5.1.31), so γκ,n
1 is simple in ∆+,κ,n and (FS2) follows. �

Proposition 5.1.33. Let κ ∈ Z2 and 1 6 n 6 k + 1 . For the fundamental sequence
γκ,n

1 , γκ,n
2 , the lower signature mκ,n =

(
mκ,n

1 , mκ,n
2

)
is given by

mκ,n
1 =

2(k− 1) n = 1

n− 1 n > 1
, mκ,n

2 = 0 .

Proof. Let α ∈ ∆+,κ,n
n such that α− γκ,n

1 ∈ ∆ . Apart from those stated in the proof of
proposition 5.1.27, there are no further possibilities for α , since clearly α 6= κε1 . This
proves the proposition. �

5.1.34. The JB∗-triple Z is the same as in case BD I, q = 2k . Hence the same considera-
tions as in that case show that we need only consider

∆̄ =
{
±
(
ε1 + ε2

)}
,

and that γ̄κ
1 = κ

(
ε1 + ε2

)
with signature m̄κ

1 = 0 . The following proposition ensues.

Proposition 5.1.35. Let κ ∈ Z2 . For any 1 6 n 6 k + 1 , ∆̄κ = ∆̄ ∩ ∆+,κ,n , the sequence
γ̄κ

1 = γκ,n
2 is fundamental, and its lower signature is m̄κ

1 = mκ,n
2 = 0 .

5.2 Embedding of the discrete series of embeddable subgroups

5.2.1. Let G = Aut0 B , and Ḡ @ G an embeddable facial subgroup. By theorem 5.1.2,
this is the case if Z is classical. Both G and Ḡ have equal rank, i.e. rk G = rk K̄ and
rk Ḡ = rk K̄ . This condition is equivalent to the existence of a discrete series.

If tR is Cartan subalgebra (CSA) of gR contained in kR , then t̄R = ḡR ∩ tR is a CSA of
ḡR contained in k̄R . Fix a positive system ∆̄+ ⊂ ∆̄ , and let ∆+ ⊂ ∆ and a fundamental
sequence α1, . . . , αr be given as in theorem 5.1.2.

We now construct compatible Iwasawa decompositions of gR and ḡR , related to the
fundamental sequence α1, . . . , αr in the same way as the Iwasawa decomposition con-
structed in 2.1.24 was related to Harish-Chandra’s fundamental sequence γ1, . . . , γr .

For α ∈ ∆ , there are unique Hα ∈ t , such that α
(

Hα

)
= 2 . Moreover, for α ∈ ∆+ , we

may choose E±α ∈ g±α such that

Hα =
[
Eα, E−α

]
, ϑEα = −E−α , B

(
Eα, E−α

)
=

2

|α|2
,
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cf. [Hel78, ch. IV, § 3, lemma 3.1]. Here, B is the Killing form and ϑ the Cartan involution
w.r.t. the Cartan decomposition chosen above. Then

Eα + E−α , i
(
Eα − E−α

)
are in gR resp. in igR , depending on whether α is non-compact resp. compact.

We define the Cayley transforms (following Korányi-Wolf),

c =
r

∏
j=1

Ad exp
[π

4
(
Eαj − E−αj

]]
and c̄ =

r̄

∏
j=1

Ad exp
[π

4
(
Eᾱj − E−ᾱj

)]
,

cf. [KW76, Sch75]. Here, recall that ᾱj = αr−r̄+j for all 1 6 j 6 r̄ .

Due to the strong orthogonality of the root αj , c and c̄ are products of commuting
automorphisms of g resp. ḡ . Moreover,

c
(
iHαj

)
= Eαj + E−αj for all 1 6 j 6 r

and similarly for c̄ . Define real Abelian subspaces

aR = ∑⊕
16j6r R

〈
Eαj + E−αj

〉
and āR = ∑⊕

16j6r̄ R
〈

Eᾱj + E−ᾱj

〉
,

and denote their complexifications by a and ā . Let $a and $̄ā be the respective weighted
half sums of positive restricted roots, i.e.

$a =
1
2
·∑α∈∆+

a
dim gα · α ,

and similarly for $̄ā . Here, ∆+
a denotes the set of positive restricted roots w.r.t. a compat-

ible ordering.

Denote by (mj) and (m̄j) the lower signatures of (αj) and (ᾱj) . Define upper signatures

nj = #
{

α ∈ ∆+
n

∣∣∣ α strongly orthogonal to α1, . . . , αj−1 , and α + αj ∈ ∆
}

,

and

n̄j = #
{

α ∈ ∆̄+
n

∣∣∣ α strongly orthogonal to ᾱ1, . . . , ᾱj−1 , and α + ᾱj ∈ ∆̄
}

.

Proposition 5.2.2. The sets aR resp. āR are maximal Abelian subspaces of pR resp. p̄R .
Moreover,

āR = ḡ∩ aR and c̄−1∣∣
ā

= c−1∣∣
a
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Let Λ ∈ it∗R and Λ̄ = Λ
∣∣
t̄
, and define ν ∈ a∗R resp. ν̄ ∈ ā∗R by

(
ν− $a

)(
Eαj + E−αj

)
= − 2∣∣αj

∣∣2 · (Λ + nj · αj : αj
)

for all 1 6 j 6 r ,

and

(
ν̄− $̄ā

)(
Eᾱj + E−ᾱj

)
= − 2∣∣ᾱj

∣∣2 · (Λ̄ + n̄j · ᾱj : ᾱj
)

for all 1 6 j 6 r̄ .

Then (
ν + $a

)∣∣
ā

= ν̄ + $̄ā .

Proof. The first statement follows from [Sug71, th. 7]. The next two are immediate
consequences of the above considerations. As for the last statement,

$a

(
Eαj + E−αj

)
= 1 + nj + mj

by [KW76, lemma 8.5], and similarly for $̄ā . Moreover,

ν− $a = −
(

Λ +
r

∑
j=1

nj · αj

)
◦ c−1

∣∣∣
a

,

since

αi
(

Hαj

)
=

2
(
αi : αj)∣∣αj
∣∣2 = 2δij .

Thus, by theorem 5.1.2 (iii),

(
ν + $a

)(
Eᾱj + E−ᾱj

)
= −Λ

(
Hαr−r̄+j

)
− 2nr−r̄+j + 2

(
1 + nr−r̄+j + mr−r̄+j

)
= −Λ̄

(
Hᾱj

)
− 2n̄j + 2

(
1 + n̄j + m̄j

)
=
(
ν̄ + $̄ā

)(
Eᾱj + E−ᾱj

)
for all 1 6 j 6 r̄ . �

5.2.3. Let us recall the Iwasawa decomposition associated to the choices of K and aR .
The CSA

hR = t+R + aR where t+R =
{

δ ∈ tR

∣∣ (δ : γj
)

= 0 for all j = 1, . . . , r
}

equals gR ∩ c(t) , cf. [Sch75, § 2, lemma 2.15]. (Note that this is the appropriate generali-
sation of t+R , as defined for the adapted positive system ∆++ in 2.1.3.)

Therefore, the root system ∆
(
h : g

)
is just ∆ ◦ c−1 , and the root spaces are the same
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as for ∆ . Hence, with the induced compatible ordering, the positive restricted roots are

∆+
a =

{(
α ◦ c−1)∣∣

a

∣∣∣ α ◦
(
c−1ϑc

)
6= α , α ∈ ∆+

}
,

and the associated nilpotent subalgebra nR is

nR = gR ∩∑⊕
α∈∆+ ,
α◦(c−1ϑc) 6=α

gα ,

cf. [Hel78, thm. 3.4]. On the Lie algebra level, the Iwasawa decomposition is

gR = kR ⊕ aR ⊕ nR .

On the group level, let A resp. N be the connected closed subgroups of G with Lie
algebras aR resp. nR . Then G = KAN by [Hel78, thm. 5.1].

Consider further the Iwasawa decomposition of ḡR ,

ḡR = k̄R ⊕ āR ⊕ n̄R

and Ḡ = K̄ĀN̄ , defined similarly w.r.t. āR , K̄ , c̄ and ∆̄+ .

Proposition 5.2.4. We have n̄R = ḡR ∩ nR and N̄ = Ḡ ∩ N . Moreover, for the centralis-
ers M = ZK(a) and M̄ = ZK̄(ā) , we have M̄ = K̄ ∩ M = Ḡ ∩ M .

Proof. The intersection ḡR ∩ nR is the sum of restricted root spaces gα
R where α ∈ ∆̄+

does not vanish on aR . In particular, n̄R ⊂ ḡR ∩ nR . Since n̄R is maximally nilpotent,
equality follows. In particular, we have N̄ = Ḡ ∩ N .

It is clear that Ḡ ∩ M = K̄ ∩ M ⊂ M . To prove the converse inclusion, since K̄ is
connected, it suffices to see that k̄R centralises aR 	 āR . This is true of

t̄R = t̄+R ⊕ 〈iHᾱj | 1 6 j 6 r̄〉 .

In fact, t̄+R ⊂ t+R commutes with a , and for 1 6 i 6 r̄ and 1 6 j 6 r− r̄ ,

[
Hᾱi , Eαj + E−αj

]
= αj

(
Hαr−r̄+i

)
· Eαj − αj

(
Hαr−r̄+i

)
· E−αj = 0 .

So, let α ∈ ∆̄c . Then α ⊥ α1, . . . , αr−r̄ . By [KW76, lemma 4.2], α is strongly orthogonal to
these roots. Thus [

Eα, Eαj + E−αj

]
= 0 for all 1 6 j 6 r− r̄ ,

so Eα ∈ gα ⊂ k centralises a	 ā , proving the assertion, i.e. k̄R centralises aR 	 āR . Hence
M̄ ⊂ K̄ centralises aR 	 āR , and is therefore contained in Ḡ ∩ M . �

5.2.5. Let the tori T = ZK(t) and T̄ = ZK̄(t̄) . Let a parameter λ̄ ∈ it̄∗R be given that is



158 5. Embedding of representations of facial subgroups

∆̄+-dominant regular, i.e.

λ̄(Hα) > 0 for all α ∈ ∆̄+ ,

and such that eλ̄−$̄ is a character of T̄ , i.e. λ̄− $̄ is analytically integral.

Set Λ̄ = λ̄ + $̄− 2$̄c and take Λ ∈ it∗R such that Λ
∣∣
t̄
= Λ̄ , λ = Λ + 2$c − $ is ∆+-

dominant regular, and eλ−$ is a character of T . Then (Λ̄, Λ) will be called an adapted pair
of discrete series parameters.

For the root system ∆+ = −τ0(∆++) where τ0 ∈ Wc is the longest element of Wc

with respect to the Bruhat order induced by ∆++
c (cf. [Bou68, ch. VI, § 1.6, cor. 3]), this

reduces to the adapted pairs of holomorphic discrete series parameters, cf. 4.3.2.

Fix an adapted pair (Λ̄, Λ) of discrete series parameters. Recalling that the facts on
Verma modules up to proposition 4.1.13 were independent of the adaptedness of the
positive system, we conclude as in lemma 4.3.3 that FΛ̄ = 〈K̄.1Λ〉 @ FΛ , and this is an
isometric K̄-invariant embedding if 1Λ̄ and 1Λ are normalised.

To stress the dependence on the group, we use the uniform notation 〈H〉π for the
space of the representation π of the group H (unless we have to distinguish between
different realisations). In particular, we have 〈K〉Λ = FΛ and 〈K̄〉Λ̄ = FΛ̄ .

5.2.6. Since G/K and Ḡ/K̄ are Hermitian symmetric spaces, [KW76, prop. 5.5] and
[KW80, remark 2], show that

〈M〉Λ = 〈M.1Λ〉 and 〈M̄〉Λ̄ = 〈M̄.1Λ̄〉 = 〈M̄.1Λ〉 ,

i.e., the finite-dimensional irreducible representations of M resp. M̄ of highest weight
Λ
∣∣
t∩m

and Λ̄
∣∣
t̄∩m̄

are the respective cyclic subrepresentations generated by 1Λ in 〈K〉Λ .

Hence, by proposition 5.2.4, there are M- resp. M̄-equivariant projections

p〈M〉Λ
: 〈K〉Λ → 〈M〉Λ and p〈M̄〉Λ̄

: 〈K̄〉Λ̄ → 〈M̄〉Λ̄

which give rise to a commutative square

〈K〉Λ

p〈K̄〉Λ̄ //

p〈M〉Λ
��

〈K̄〉Λ̄

p〈M̄〉Λ̄
��

〈M〉Λ
p〈K̄〉Λ̄

∣∣
〈M〉Λ

// 〈M̄〉Λ̄

5.2.7. Define ν ∈ a∗R resp. ν̄ ∈ ā∗R as in proposition 5.2.2, i.e.

(
ν− $a

)(
Eαj + E−αj

)
= − 2∣∣αj

∣∣2 · (Λ + nj · αj : αj
)

for all 1 6 j 6 r ,
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and

(
ν̄− $̄ā

)(
Eᾱj + E−ᾱj

)
= − 2∣∣ᾱj

∣∣2 · (Λ̄ + n̄j · ᾱj : ᾱj
)

for all 1 6 j 6 r̄ ,

where $a , nj, $̄ā and n̄j are defined in 5.2.1 and proposition 5.2.2. Let

H∞
ν =

{
f : K → 〈M〉Λ

∣∣∣ f ∈ C∞ , f (km) = m−Λ f (k) for all m ∈ M , k ∈ K} .

Then H∞
ν is a pre-Hilbert space with respect to the norm

‖ f ‖2
Hν

=
∫ ∗

K
‖ f (k)‖2

Λ dk

and G acts (non-unitarily) on H∞
ν by

(
gν f )(k) = a(g−1k)−(ν+$a) · f

(
k(g−1k)

)
.

Here, g = k(g)a(g)n(g) denotes the Iwasawa decomposition of G associated to the
choices of aR and K . Let Hν be the completion of H∞

ν . The Hilbert space Hν is a contin-
uous representation of G . The action of K is unitary.

5.2.8. The space H∞
ν is naturally identified with the space of smooth sections of the vec-

tor bundle K ×M 〈M〉Λ associated to the principal M-bundle K → K/M and the repre-
sentation 〈M〉Λ . The identification K/M = G/Q given by the Iwasawa decomposition,
where Q = MAN is a minimal parabolic subgroup, allows for the identification

K×M 〈M〉Λ = G×Q
(
〈M〉Λ ⊗ 〈A〉ν+$a

⊗C
)

.

Here, C is the trivial N-module. Under this identification, the G-action on Hν becomes
natural. Namely, extend f ∈ H∞

ν to a section on G/Q by

f (g) = a(g)−(ν+$a) · f
(
k(g)

)
for all g ∈ G .

Then the action is by left translations.

The space H∞
ν is a dense subspace of smooth vectors of the non-unitary principal

series representation Hν = indG
Q
(
〈M〉Λ ⊗ 〈A〉ν ⊗ C

)
, by [Kna86, lem. 3.13]. Moreover,

Hν is admissible (has finite-dimensional K-types) by the Frobenius reciprocity theorem.
Hence [Kna86, th. 8.7] implies that the set Hν,K of K-finite vectors in Hν coincides with
the set of K-finite vectors in H∞

ν .

5.2.9. Following Knapp-Wallach [KW76], we define

SΛ f (g) =
∫

K
kΛ f (gk) dk for all f ∈ Hν , g ∈ G .
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We have the transformation rule∫
K

f (k) dk =
∫

K
f
(
k(gk)

)
a(gk)−2$a dk for all f ∈ L1(K) , g ∈ G .

Applying this to the map

k 7→ kΛ f (gk) = a(gk)−(ν+$a)kΛ f
(
k(gk)

)
,

we see that

SΛ f (g) =
∫

K
a(g−1k)−2$a a

(
gk(g−1k)

)−(ν+$a)k(g−1k)Λ f
(
k(gk(g−1k))

)
dk

=
∫

K
a(g−1k)ν−$ak(g−1k)Λ f (k) dk

since k
(

gk(g−1k)
)

= k and a
(

gk(g−1k)
)

= a−1 , as follows easily from Iwasawa decom-
position, because A normalises N .

Note the parameter shift, compared with [KW76]. Knapp-Wallach realise the in-
duced representation Hν by right translations. We prefer to use left translations, and a
more conventional parametrisation.

Since Pν(g, k) = a(g−1k)ν−$a is the Poisson kernel of the symmetric space G/K , SΛ

may be thought of as a matrix-valued Poisson transformation. On the other hand, in
limiting cases on the unit disc, the kernel

SΛ(g, k) = Pν(g, k)k(g−1k)Λ = a(g−1k)ν−$ak(g−1k)Λ

coincides with the Szegö kernel. For this reason, Knapp-Wallach refer to SΛ as a Szegö
map. In fact, as we shall elaborate below for the case of the unit disc, for the holomorphic
discrete series, SΛ is the (weighted) Bergman kernel. For a certain limit of holomorphic
discrete series, this gives the Szegö kernel of the unit disc.

5.2.10. The map SΛ has values in

Γ
(
G/K, G×K 〈K〉Λ

)
=
{

f : G → 〈K〉Λ

∣∣∣ f ∈ C∞ , f (gk) = k−Λ f (g) for all k, g
}

and is G-equivariant with respect to the G-action by left translations on this space of
smooth sections.

Let Hν,K denote the space of K-finite vectors in Hν . Knapp-Wallach [KW76, th. 1.1,
th. 10.8] show that the image of Hν,K under SΛ equals the Harish-Chandra (g, K)-module
〈G〉πλ,K of K-finite vectors of the discrete series representation 〈G〉πλ

.

More precisely, the SΛ
(

Hν,K
)

is non-zero and contained in the K-finite part of the
kernel of Schmid’s differential operator D , by [KW76, th. 6.1]. If λ is strongly dominant,
then the K-finite part of kerD equals 〈G〉πλ,K [KW76, cor. 9.6], in particular, it is irre-
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ducible and hence equals the image of SΛ . In any case, the image of SΛ is irreducible
and equivalent to 〈G〉πλ,K , by [KW76, th. 10.8].

Remark 5.2.11. We have already noted that Knapp-Wallach use a somewhat different
parametrisation of the induced representation Hν . To check that our choice of param-
eters indeed guarantees that their results remain valid, it suffices to ascertain that the
image of SΛ is contained in kerD . In order to do this, we recapitulate part of [KW76,
proof of th. 6.1] for our realisation of Hν .

Namely, the integral kernel of SΛ is

SΛ(g, k) = a
(

g−1k
)ν−$ak

(
g−1k

)Λ ,

cf. 5.2.9, and if Eβ = Xβ + iYβ , then

EβSΛ(xy, 1)(1) =
d
dt

[
SΛ
(
exp(−tXβ), 1

)
+ iSΛ

(
exp(−tYβ), 1

)]
t=0

= (ν− $a)
(
pra Eβ

)
+
(
prk Eβ

)Λ

where it is understood that the left invariant action of U(g) is given by

X f (g) =
d
dt

f
(

g exp(−tX)
) ∣∣∣

t=0
for all X ∈ gR , f ∈ C∞(G) , g ∈ G .

Now, Schmid’s differential operator D is defined as

D f (g) = ∑
β∈∆n

|β|2

2
· P
(
Eβ f (g)⊗ E−β

)
,

where P is the orthogonal projection of 〈K〉Λ ⊗ p onto the K-submodule given by the
sum of the simple submodules with highest weights Λ− β , β ∈ ∆+

n . Hence,

DSΛ(xy, 1)1Λ(1) =
1
2 ∑

β∈∆n

|β|2 · P
[[

(ν− $a)
(
pra Eβ

)
+
(
prk Eβ

)Λ]1Λ ⊗ E−β

]
=

1
4

m

∑
j=1

cj(ν, Λ) ·
∣∣αj
∣∣2 · P

(
1Λ ⊗ E−αj

)
where the constants

cj(ν, Λ) = (ν− $a)
(
Eαj + E−αj

)
+

2(Λ + njαj : αj)∣∣αj
∣∣2 = 0

by our assumptions. Compare [KW76] for the last step of the above calculation. As there,
it follows that kerD contains the image of SΛ . This proves that for our parametrisation
of the induced representation, ν should be defined as indicated.
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5.2.12. Since HΛ,K = SΛ
(

Hν,K
)

is equivalent to 〈G〉πλ,K , it carries a pre-Hilbert space
norm ‖·‖HΛ

which makes the action of G unitary. By Schur’s lemma, the norm is unique
up to constant multiples.

Lemma 5.2.13. The Szegö map SΛ extends to a continuous map

SΛ : Hν → 〈G〉πλ
= HΛ = HΛ,K .

In fact, there is C > 0 such that SΛS∗Λ = C . In particular, C−1/2 · SΛ is a partial isometry,
and C−1 · S∗ΛSΛ is the orthogonal projection onto im S∗Λ =

(
ker SΛ

)⊥ ∼= 〈G〉πλ
.

Remark 5.2.14. It is not natural to normalise ‖·‖HΛ
in such a way that SΛS∗Λ = 1 . The

reason is that SΛ depends on the choice of a fundamental sequence of roots, and different
choices of fundamental sequences may give rise to different realisations of the discrete
series πλ as quotients of non-unitary principal series, cf. [KW76].

Proof of lemma 5.2.13. By the remark in 5.2.8, Hν is admissible, and so is HΛ . I.e. for
any δ ∈ K̂ , the K-isotypic components Hν,δ and HΛ,δ are finite dimensional. So, we may
define S∗Λ : HΛ,K → Hν,K by S∗Λ

∣∣
HΛ,δ

=
(
SΛ
∣∣

Hν,δ

)∗ , cf. the proof of proposition 4.3.4. Then
SΛS∗Λ is g-equivariant and hence, by Schur’s lemma, equals a positive constant C > 0 .
Hence the assertion. �

Proposition 5.2.15. The evaluation map

ε1 : HΛ → 〈K〉Λ : f 7→ f (1)

is well-defined, continuous and K-equivariant. In particular, HΛ = 〈G〉πλ
is a repro-

ducing kernel Hilbert space of sections of G×K 〈K〉Λ . Moreover, the lowest K-type Λ is
precisely

(
ker ε1

)⊥ .

Proof. Clearly, ε1 is well-defined on HΛ,K and K-equivariant.
To see the continuity, we proceed as in [ÓØ88, § 2]. Namely, let

p f (g) = dim 〈K〉Λ ·
∫

K
tr kΛ · f (k−1g) dk for all f ∈ SΛ(H∞

ν ) , g ∈ G .

By the equivariance, linearity and continuity of SΛ ,

dim 〈K〉−1
Λ ·

(
pSΛ f

)
(g) =

∫
K

SΛ
(
tr kΛ · kν f

)
dk = SΛ

[∫
K

tr kΛ · kν f dk
]

.

In particular, p extends by continuity to HΛ . Since, for f ∈ Hν,K , the integral∫
K

tr kΛ · kν f dk ∈ Hν

and moreover, is K-finite, we see that p(HΛ,K) ⊂ HΛ,K .
By the Schur orthogonality relations and the Peter-Weyl theorem, p is the projection
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onto the K-type Λ , which is isomorphic to 〈K〉Λ since the latter occurs without multi-
plicity. Hence,

(p f )(1) = dim 〈K〉Λ ·
∫

K
tr kΛ · kν dk · f (1) = f (1) ,

so ε1 = ε1 p on HΛ,K , and this formula defines an extension of ε1 to HΛ . Because the
minimal K-type is finite-dimensional, ε1 is continuous on pHΛ . Hence, it is continuous
on HΛ . Moreover, ε1 vanishes on ker p . Since

εg = ε1g−πλ for all g ∈ G ,

we have ε1 6= 0 , for otherwise, HΛ would be zero. Hence, ε1 restricts to an isomorphism
on the K-type Λ , by irreducibility.

The maps εg , g ∈ G , extend to 〈G〉πλ
by continuity. Because πλ is irreducible, the

union of the subspaces
ε∗g 〈K〉Λ = gπλ pHΛ , g ∈ G ,

has dense span in 〈G〉πλ
. Hence, for any f ∈ 〈G〉πλ

, εg f = 0 for all g ∈ G implies f = 0 .
So, the f ∈ 〈G〉πλ

are 〈K〉Λ-valued functions on G .
By the formula for εg , all the evaluations at points of G are continuous. Hence, 〈G〉πλ

is a reproducing kernel Hilbert space of 〈K〉Λ-valued functions on G . The transforma-
tion rule f (gk) = k−Λ f (g) remains valid on the completion, so these functions may be
viewed as sections of G×K 〈K〉Λ . �

Remark 5.2.16. We do not say anything about continuity or differentiability properties
of the functions or sections the space HΛ consists of.

Corollary 5.2.17. For a suitable normalisation of ‖·‖HΛ
,

‖ε∗11Λ‖HΛ
= 1 where 1Λ ∈ 〈K〉Λ

is a normalised highest weight vector. Moreover, ε1ε∗1 = 1 for this norm, and ε∗1ε1 is the
orthogonal projection onto the lowest K-type Λ .

Remark 5.2.18. The above normalisation is natural in the sense that is turns the — up
to the choice of 1Λ ∈ 〈K〉Λ — canonical realisation ε∗11Λ of the highest weight vector in
the lowest K-type into a unit vector.

Proof of corollary 5.2.17. Since ε1 is continuous, we may consider ε∗1 : 〈K〉Λ → HΛ .
Then C = ε1ε∗1 > 0 is a constant by Schur’s lemma. If ‖·‖′HΛ

is the given norm on HΛ , let
‖·‖HΛ

=
√

C · ‖·‖′HΛ
. Since this does not affect the operator norm on endomorphisms of

HΛ , this space is a unitary G-representation with the new norm.
However, the adjoint of ε1 with respect to this norm is C−1 · ε∗1 . Hence, ε1ε∗1 = 1

where the adjoint is now computed for the new norm. In particular, ε∗1 is an isometry,
‖ε1‖ = 1 , and ε∗1ε1 is a projection, so the assertion follows. �
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Fixing the above normalisation of ‖·‖HΛ
, we can compute the norm of SΛ .

Proposition 5.2.19. For ξ ∈ 〈K〉Λ , let fξ ∈ Hν,K be defined by

fξ(k) = p〈M〉Λ
k−Λξ for all k ∈ K .

Then
fξ = S∗Λε∗1ξ and SΛ fξ(1) = cΛ · ξ where cΛ =

dim 〈M〉Λ
dim 〈K〉Λ

.

In particular, ‖SΛ‖ =
√

cΛ .

Proof. It is obvious that fξ ∈ H∞
ν . Moreover,

Kν fξ ⊂
〈

fη

∣∣ η ∈ 〈K〉Λ
〉

,

so fξ is K-finite. By irreducibility of 〈K〉Λ and Schur’s lemma,

SΛ fξ(1) =
∫

K
kΛ p〈M〉Λ

k−Λξ dk

=
1

dim 〈K〉Λ
·
∫

K
tr
(
kΛ p〈M〉Λ

k−Λ) dk · ξ =
dim 〈M〉Λ
dim 〈K〉Λ

· ξ .

Finally, for f ∈ Hν , we compute

(
f | fξ

)
Hν

=
∫

K

(
f (k)

∣∣ p〈M〉Λ
k−Λξ

)
Λ dk =

∫
K

(
kΛ f (k)

∣∣ ξ
)

Λ dk

= (SΛ f (1) | ξ)Λ = (ε1SΛ f | ξ)Λ

by the projection theorem. Hence, fξ = S∗Λε∗1ξ . In particular, letting C = SΛS∗Λ > 0 ,

C · ξ = C · ε1ε∗1 ξ = ε1SΛS∗Λε∗1 ξ = SΛ fξ(1) = cΛ · ξ .

This proves the proposition. �

Remark 5.2.20. Proposition 5.2.19 gives rise to an integral formula for the End 〈K〉Λ-
valued reproducing kernel of HΛ ,

K(g, h) = ε1(h−1g)πλ ε∗1 for all g, h ∈ G ,

cf. [ÓØ88]. Indeed,

cΛ · (ξ | K(g, h) η)Λ = cΛ ·
(
ξ
∣∣ ε1(h−1g)πλ ε∗1η

)
Λ

=
(
ξ
∣∣ ε1(h−1g)πλ SΛS∗Λε∗1η

)
Λ =

(
ξ
∣∣ SΛ fη(g−1h)

)
Λ

=
∫

K
a(h−1gk)ν−$a

(
ξ
∣∣ k(h−1gk)Λ p〈M〉Λ

k−Λη
)

Λ dk .

However, this integral is difficult to compute in general, so it appears that this formula
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may be more useful in evaluating the right hand side once the left hand side is known.
At least, the analyticity of this integral implies that HΛ consists of real analytic functions.

5.2.21. For the subgroup Ḡ @ G , we may define, analogously to SΛ , a map

S̄Λ̄ : H̄∞
ν̄ = Γ

(
K̄/M̄, K̄×M̄ 〈M̄〉Λ̄

)
→ Γ

(
Ḡ/K̄, Ḡ×K̄ 〈K̄〉Λ̄

)
such that H̄Λ̄,K̄ = S̄Λ̄(H̄ν̄,K̄) ∼= 〈Ḡ〉πλ̄,K̄ . Moreover, recall that by 5.2.6,

〈M̄〉Λ̄ = M̄.1Λ @ M.1Λ = 〈M〉Λ .

This allows us to define a map H∞
ν → H̄∞

ν̄ , as follows.

Proposition 5.2.22. The formula

R : H∞
ν → H̄∞

ν̄ : f 7→ p〈M̄〉Λ̄
f
∣∣
K̄ .

defines a Ḡ-equivariant map.

Proof. R is well-defined, since

R f (km) = p〈M̄〉Λ̄
m−Λ̄ f (k) = m−Λ p〈M̄〉Λ̄

f (k) = m−ΛR f (k)

for all k ∈ K̄ and m ∈ M̄ . Moreover, for k ∈ K̄, g ∈ Ḡ and f ∈ Hν(
gν̄R f

)
(k) = ā(g−1k)−(ν̄+$̄ā) · p〈M̄〉Λ̄

f
(
k̄(g−1k)

)
= p〈M̄〉Λ̄

[
a(g−1k)−(ν+$a) · f

(
k(g−1k)

)]
=
(

Rgν f )(k) ,

since the Iwasawa decompositions of G and Ḡ are compatible,

(
ν + $a

)∣∣
ā

= ν̄ + $̄ā

by proposition 5.2.2, and by 5.2.6. So, R is indeed Ḡ-equivariant. �

Remark 5.2.23. If Hν were a Ḡ-admissible representation, R would be automatically
continuous. However, generically, this will be false. Consider, for instance, the extreme
case of the trivial subgroup Ḡ = K̄ = 1 : The multiplicity of its unique representation
equals the dimension of Hν !

Theorem 5.2.24. The map

S̄Λ̄RS∗Λ : HΛ,K = 〈G〉πλ,K → H̄Λ̄,K̄ = 〈Ḡ〉πλ̄,K̄

is a Ḡ-equivariant surjection. Moreover, c−1
Λ̄ · SΛ̄RS∗Λ , where cΛ̄ = dim〈K̄〉Λ̄

dim〈M̄〉Λ̄
, restricts to

an orthogonal projection on the minimal K-type.
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Proof. In order to prove surjectivity, we need only ascertain that S̄Λ̄RS∗Λ 6= 0 (since
H̄Λ̄,K̄ is irreducible).

To this end, consider fξ ∈ Hν,K from proposition 5.2.19 and consider, by analogy,

f̄ξ(k) = p〈M̄〉Λ̄
k−Λξ for all k ∈ K̄ , ξ ∈ 〈K̄〉Λ̄ .

Let ξ ∈ 〈K̄〉Λ̄ \ 0 . Then SΛ̄ f̄ξ 6= 0 by proposition 5.2.19. Now, for k ∈ K̄ ,

R fξ(k) = p〈M̄〉Λ̄
p〈M〉Λ

k−Λξ = p〈M̄〉Λ̄
k−Λξ = f̄ξ(k) .

Hence, again by proposition 5.2.19,

SΛ̄RS∗Λε∗1 ξ = SΛ̄R fξ = SΛ̄ f̄ξ = SΛ̄S∗Λ̄ ε̄∗1 ξ = cΛ̄ · ε̄∗1 ξ 6= 0

where ε̄1 denotes the evaluation map on H̄Λ̄ . So, p = SΛ̄RS∗Λ is a surjection. Moreover,
it restricts to a map

p : ε∗1 〈K〉Λ → ε̄∗1 〈K̄〉Λ̄

which is surjective and of norm cΛ̄ . Since, by Schur’s lemma, p differs only by a constant
from a projection, the assertion follows. �

Corollary 5.2.25. The (ḡ, K̄)-module H0 = U (ḡ) fΛ where fΛ = f1Λ , is K̄-finite and
admissible. In particular, if q is the projection onto H = H0 , and p = c−1

Λ̄ · SΛ̄RS∗Λ is the
map constructed in theorem 5.2.24, then

j = (pq)∗ :
〈

Ḡ
〉

πλ̄
→ 〈G〉πλ

is a Ḡ-equivariant isometry.

Proof. Since fΛ = ε∗1 1Λ is K-finite, it is K̄-finite, and since the K̄-finite vectors form a ḡ-
module by [War72, prop. 4.4.5.18], H0 consists of K̄-finite vectors. As a U (ḡ)-module, H0

is finitely generated. Moreover, its set of weights is bounded from below, since this is the
case for 〈G〉πλ,K . Hence, by essentially the same proof of this fact as for Verma modules
(cf. [Dix69, 7.1.6]), the t̄-weight spaces of H0 are finite dimensional. In particular, its
K̄-types have finite multiplicity, viz, H0 is admissible.

Now the argument from the proof of lemma 5.2.13 applies to show that the restriction
of p is bounded with pp∗ = c on H = H0 , some positive constant c > 0 . But pp∗ = 1 on
ε∗1 〈K〉Λ by theorem 5.2.24, so c = 1 . An application of q entails our claim. �

5.2.26. We conclude this section with a discussion of the case of the unit disc B = B . As
we shall see, the Knapp-Wallach Szegö kernel SΛ turns out to be the weighted Bergman
kernel. This is a general fact for the holomorphic discrete series that can be established
by Jordan theoretic methods, where K/M is interpreted as the manifold of frames.

As this will be irrelevant for our further programme concerning Toeplitz operators,
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we shall not dwell upon this point, and content ourselves with the nonetheless revealing
unit disc case.

We may consider G = SU(1, 1) and K = U(1) , acting by Möbius transformations.
Then G is the connected double cover of Aut0 B . The torus

tR = kR = R · H , H =

(
−i 0
0 i

)
.

The root system ∆ = ∆n = {±α} where α(H) = 2i . Hence Hα = −iH , and λ ∈ it∗R is
determined by its value on Hα , also denoted by λ = λ(Hα) ∈ R .

λ− $ is a weight if λ ∈ Z . If, moreover, λ is dominant regular, then λ ∈ N , λ > 1 .
Then Λ = λ + $− 2$c = λ + 1 > 2 .

Up to normalising constants,

Eα =

(
0 0
1 0

)
and E−α =

(
0 1
0 0

)
.

Of course, α = γ1 is the Harish-Chandra fundamental sequence. Then

Y = c(Hα) = Eα + E−α =

(
0 1
1 0

)
.

Consequently,

at = exp(tY) =

(
cosh t sinh t
sinh t cosh t

)
∈ A .

Any ν ∈ a∗R is determined by its value on Y , also denoted by ν = ν(Y) ∈ R . Since gR

is three-dimensional, there is exactly one positive reduced root, and it has multiplicity
one. So, $a = $a(Y) = 1 . Hence, ν = 1−Λ ∈ Z , −1 > ν .

We also compute the N component of the associated Iwasawa decomposition. Recall
that the Cayley transform c is Ad of the element

exp
π

4
· (Eα − E−α) = exp

(
0 −π

4
π
4 0

)
=

1√
2
·
(

1 −1
1 1

)
.

Hence

exp c(2x · Eα) =

(
1− ix −ix

ix 1 + ix

)
∈ N .

5.2.27. The holomorphic discrete series πλ is the Bergman space of weight Λ ,

HΛ = O2
Λ(B) =

{
f ∈ O(B)

∣∣∣ ‖ f ‖2
HΛ

=
∫

B
| f (z)|2 dµΛ(z) < ∞

}
.
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Here,

dµΛ(z) =
Λ− 1

π
· (1− |z|2)Λ−2 dz

where dz is Lebesgue measure. The space O2
Λ(B) has the reproducing kernel function

BΛ(z, w) = (1− z̄w)−Λ .
The action of G on O2

Λ(B) is given by

g−πλ f (z) = g′(z)Λ/2 · f
(

g(z)
)

for all g ∈ G , z ∈ B ,

where the denominator 2 in the exponent of the cocycle is the order of the covering map
SU(1, 1) → Aut0 B .

The highest weight representation of weight Λ (in this case, simply a character of T )
is given by kΛ = uΛ for all k = exp(ϑ · H) =

(
ū 0
0 u
)

, u = eiϑ . Hence, f ∈ O2
Λ(B) is

identified with a section s of G×K 〈K〉Λ via

s(g) = g′(0)Λ/2 · f
(

g(0)
)

for all g ∈ G .

(Note k′(0)Λ/2 = u−Λ if k =
(

ū 0
0 u
)

.)
We demonstrated in theorem 4.2.9 that the space HΛ,K = O2

Λ,K of K-finite vectors is
C[z] . In fact, the K-type of weight Λ + 2k is spanned by the polynomial zk .

5.2.28. The map
K/M → T :

(
ū 0
0 u
)

M 7→ ū2

is a K-equivariant isomorphism (because M = {±1} ). A section s ∈ Hν corresponds to
a function f ∈ L2(T) by

f (ϑ) = kΛ · h(k) , k =
(

ū 0
0 u
)

, ū2 = ϑ .

Let A(z, ϑ) ∈ R be the (signed) hyperbolic distance from 0 to the horocycle through
z ∈ B tangential to ϑ ∈ T . By [Hel70, ch. I, § 1], this horocycle is defined as

ξ(g(0), kM) = ka(g−1k)−1N.0 for all g ∈ G , k ∈ K .

We find
exp

(
−A(g(0), k) ·Y

)
= a(g−1k) for all g ∈ G , k ∈ K .

If the centre of ξ(z, ϑ) is r · ϑ , then the point closest to 0 is w = (2r− 1) · ϑ . The modulus
r of the centre is characterised by |z− rϑ| = 1− r , so

2r− 1 =
Re(zϑ−1)− |z|2

1− Re(zϑ−1)
for all z ∈ B , ϑ ∈ T .

By [Hel84, Intro., § 4, (3)], the (unsigned) distance is d(0, w) = 1
2 · log 1+|w|

1−|w| . Since the
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sign is precisely that of Re(zϑ−1)− |z|2 , we find

A(z, ϑ) =
1
2
· log

[
1− |z|2

|z− ϑ|2

]
.

In particular, if k =
(

ū 0
0 u
)

, then

a(g−1k)ν−$a =
(

1− |g(0)|2

|g(0)− ū2|2

)Λ/2

for all g ∈ G .

Since (
v̄ 0
0 v

)(
c s
s c

)(
1− ix −ix

ix 1 + ix

)
=

(
∗ ∗

v(s + i(c− s)x) v(c + i(c− s)x)

)

it follows that for g =
( α β

β̄ ᾱ

)
, k =

(
ū 0
0 u
)

, we have

k(g−1k) =

(
v̄ 0
0 v

)
where v =

αu− β̄ū∣∣αu− β̄ū
∣∣ .

Hence,
SΛ f (z) =

∫
T

sΛ(z, ϑ) f (ϑ) dϑ for all f ∈ Hν , z ∈ B ,

where (taking the trivialising factors g′(0)−Λ/2 and ϑΛ/2 into account)

sΛ(g(0), ϑ) = g′(0)−Λ/2 ·
(

1− |g(0)|2

|g(0)− ϑ|2

)Λ/2

·
(

αϑ−1/2 − β̄ϑ1/2∣∣αϑ−1/2 − β̄ϑ1/2
∣∣
)Λ

· ϑΛ/2

= ᾱΛ ·
(

α− β̄ϑ∣∣ᾱ− βϑ̄
∣∣2
)Λ

=
(
1− β̄

α · ϑ̄
)−Λ ,

so that sΛ(z, ϑ) = (1 − zϑ̄)−Λ = KΛ(z, w) . So SΛ is just the weighted Bergman pro-
jection. Note that we could have established this result by using the formula from re-
mark 5.2.20.

5.2.29. The only subgroup Ḡ we can consider is the trivial one, associated to the unique
non-zero tripotent in Z = C . In this case Λ̄ = 0 , H̄Λ̄ = H̄ν̄ = C , and SΛ̄ = 1 . So R is
simply evaluation at 1 ∈ T , and we are considering the map

RS∗Λ : HΛ,K = C[z] → C ,

where
RS∗Λ p =

∫
B
(1− z̄)−Λ p(z) dµΛ(z) =

(
KΛ

1
∣∣ p
)

= p(1) .

Here, BΛ
w (z) = BΛ(z, w) . Clearly, RS∗Λ is not continuous, but its restriction to the con-
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stants C = U(ḡ)πλ ε∗1 〈K̄〉Λ̄ is, trivially, an isometry onto H̄Λ̄ = C .

5.3 An embeddability theorem for parabolic subgroups

So far, we have given an embedding of the discrete series of an embeddable subgroup
Ḡ @ G into the discrete series of G . It is natural to ask whether the entire reduced
unitary dual of Ḡ can be embedded in this way.

The support of the Plancherel measure for Ḡ decomposes into finitely many series of
representations, each of which is associated to the conjugacy class of a cuspidal parabolic
subgroup Q̄ @ Ḡ . Here, cuspidal means that M̄ has a discrete series, where Q̄ = M̄ĀN̄ .
The Q̄-series then consists of the representations indḠ

Q̄

(
π ⊗ eν ⊗ 1

)
where π is a discrete

series representation of M̄ . Therefore, an embedding of the reduced dual of Ḡ should
be induced by an embedding of M̄-discrete series once a sensible relationship between
cuspidal parabolics Q̄ of Ḡ and Q of G has been established.

5.3.1. We return to our setting with G = Aut0 B and Ḡ = Aut0 B̄ where Z is a simple
JB∗-triple, B̄ = B0(e) , and e ∈ Z is a tripotent.

A subalgebra qR ⊂ gR is called parabolic, if it is its own normaliser and contains a
maximal solvable subalgebra. The normaliser Q = NG(qR) of a parabolic subalgebra is
said to be a parabolic subgroup. Its Lie algebra is qR .

A subalgebra sR is ϑ-stable if sR = kR ∩ sR ⊕ pR ∩ sR . A parabolic qR containing a
fixed minimal parabolic, compatible the Cartan decomposition, has a unique ϑ-stable
maximal reductive subalgebra, namely sR = qR ∩ ϑqR , called the Levi component. Then
qR = sR n nR , as the semi-direct product of Lie algebras, where nR ⊂ qR is the nilpotent
radical.

The Levi component sR and its centraliser S = ZG(sR) have a canonical decomposi-
tion. Namely, let aR be the vector part of the centre, i.e. aR = z(sR) ∩ pR , and let mR be
the orthogonal complement with respect to an sR-invariant inner product.

Let N = exp nR , A = exp aR , and let M be the largest subgroup of S with Lie algebra
mR . These are closed subgroups of G , and S = MA , as the direct product of Lie groups.
Similarly, Q = SN = MAN , as the semi-direct product of S = MA and N . This is called
the Langlands decomposition of Q .

A parabolic qR or Q is called cuspidal if the component mR is an equal-rank algebra,
i.e. rk mR = rk mR ∩ kR .

5.3.2. Let c ∈ Z be a tripotent. In 2.2.1, we introduced the parabolic

qc
R = gc

R[0, 1, 2] where gc
R[k] = ker

(
ad ξ−c − k

)
.

The parabolic is maximal for c non-zero, and equals G otherwise. Let Qc ⊂ G denote
corresponding the parabolic subgroup. Then Qc coincides with the normaliser of the
face c + B0(c) , by [Loo75, thm. 9.15]. By [Loo75, prop. 9.21], the parabolics Qc associated
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to non-zero tripotents c ∈ EZ \ 0 exhaust the set of maximal proper parabolic subgroups.

In order to describe all proper parabolics, we introduce the following concept. By a
flag of tripotents we mean a sequence

f = (0 < f1 < · · · < fk) of non-zero tripotents.

For such a flag f = ( f1, . . . , fk) , define

Q f = Q f1 ∩ · · ·Q fk .

This is a proper parabolic subgroup, and by [Loo75, 9.22], f 7→ Q f is a bijection from the
set of non-trivial flags of tripotents onto the set of parabolic subgroups of G , manifestly
K-equivariant.

5.3.3. Consider the Lie algebra of Q f ,

q
f
R = q

f1
R ∩ · · · ∩ q

fk
R ,

and its Levi component s
f
R = q

f
R ∩ ϑq

f
R . For a single tripotent, this is simply gc

R[0] .
According to lemma 2.2.14, it decomposes as

sc
R = gc

R[0] = g0,R(c)⊕mc
R ⊕ g1,R(c) ,

the sum of ideals. As for the Levi component s
f
R of the parabolic q

f
R associated to a flag

0 < f1 < · · · < fk , it is clearly given by

s
f
R = s

f1
R ∩ · · · ∩ s

fk
R = g

f1
R [0] ∩ · · · ∩ g

fk
R [0] .

Evidently, this intersection contains the direct sum of Lie algebras,

g0,R( fk)⊕∑⊕
16j6k g1,R( f j − f j−1)

where we set f0 = 0 . However, the orthogonal complement of this subalgebra in s
f
R is

difficult to determine.

5.3.4. Given a flag f =
(
0 < f1 < · · · < fk

)
, there exists a frame e1, . . . , er of Z and a

sequence 1 6 m1 < · · · < mk 6 r of integers, such that

f j = e1 + · · ·+ emj for all 1 6 j 6 k .

Consider the maximal Abelian subspace

aR = 〈ξ−e1
, . . . , ξ−er

〉 ⊂ pR .
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introduced in 2.1.24. The basis α1, . . . , αr ∈ a∗R dual to ξ−e1
, . . . , ξ−er

, and α0 = 0 , give rise
to the linear forms αε

k` = α` − εαk , 0 6 k 6 ` 6 r , ε2 = 1 . Then the positive restricted
roots are exactly

α+
k` (1 6 k < ` 6 r) , α−k` (1 6 k 6 ` 6 r) and αk = α+

0k = α−0k (1 6 k 6 r , b = Z0k 6= 0) .

Hence, the αk are roots if and only if B is not of tube type. Consequently, 2αr is simple if
and only if B is of tube type. In summary, the simple system for ∆+

a is given by

Πa =

α2 − α1, . . . , αr − αr−1, 2αr B of tube type ,

α2 − α1, . . . , αr − αr−1, αr B not of tube type .

In the first case, the root system ∆a is of type Cr , in the second, of type BCr . We enu-
merate the simple roots as ω1, . . . , ωr .

By [Loo75, 9.20] (cf. [Kna86, prop. 5.27]), Q f is the parabolic subgroup associated to
the subset Πa \

{
ωm1 , . . . , ωmk

}
of Πa . In particular, the Levi component decomposes as

S f = M f A f where A f = exp pR ∩ Z(S f ) is given by

A f = exp a
f
R with a

f
R = 〈ξ−em1

, . . . , ξ−emk
〉 ,

cf. [Loo75, proof of prop. 9.19].

5.3.5. The structure of the Lie algebra of the component M f of the parabolic Q f is al-
ready quite complicated, but to gain control of Q f , we need to understand also the
degree of its disconnectedness. Fortunately, the disconnectedness of M f is already com-
pletely determined by that of M = ZK(aR) .

For G = Aut0 B , it turns out that M can be described quite well. This is the content
of the next proposition. In its proof, we need to know the value of the characteristic
multiplicities a = dim Zij and b = dim Z0j for all simple JB∗-triples. We list these in the
following table, cf. [Upm96, p. 60].

Invariants of the simple JB∗-triples

type dim Z r a b

Ip,q pq min(p, q) 2 max(p, q)−min(p, q)

IIn
n(n−1)

2

⌊ n
2

⌋
4 ε , n = 2k + ε

IIIn
n(n+1)

2 n 1 0

IVn n 2 n− 2 0

V 16 2 6 4

VI 27 3 8 0
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Proposition 5.3.6. Consider M = ZK(aR) where aR = 〈ξ−e1
, . . . , ξ−er

〉 and e1, . . . , er is a
frame. Let F ⊂ G be the finite Abelian group generated by the Peirce reflections

sej = B(ej, 2ej) = exp iπ(ej � e∗j ) = γ4
ej

= exp πξ+
iej

for all j = 1, . . . , r

each of which has order 2 . Then

F ⊂ Z(M) and M = F · M0

where M0 is the connected component of M .

Proof. Let H = K′ ∩ exp iaR , where K′ is the split component of K , given as the analytic
subgroup of K with Lie algebra kR ∩

[
zgR

(t+R), zgR
(t+R)

]
. Here, t+R is part of the Z2-grading

of tR defined in 2.1.3. Then, because G is semi-simple, connected, and contained in GC ,
by [Kna02, ch. VII, th. 4.53], H ⊂ Z(M) is finite, Abelian, consists of elements of order
two (apart from 1), and M = HM0 .

Moreover, consider the CSA hR = t+R ⊕ aR obtained by Cayley transformation from
tR , cf. 2.1.24. Whenever α ∈ ∆(h : g) is a real root, i.e. vanishes on t+R , we can consider
the elements Hα ∈ aR determined by

Hα ∈
[
gα, g−α

]
and α

(
Hα

)
= 2 .

Then we may define γα = γ−α = exp iπHα . These elements generate H , by [Kna02,
ch. VII, th. 7.55]. More precisely, consider the real root α as a restricted root. Letting
mβ = dim g

β
R for all β ∈ a∗R , we have γα ∈ M0 whenever ∑c∈Q , c>0 mcα > 1 , by [Kna02,

ch. VII, cor. 7.69]. Here, recall that M0 denotes the connected component of M . In other
words, M is generated by M0 and the γα where α ∈ ∆+

a is reduced and has multiplicity
one. (Recall that a root β is called reduced if the only roots in Q · β are ±β .)

The multiplicity of the roots αε
k` defined in 2.1.24 is

mα−kk
= 1 (1 6 k 6 r) , mαε

k`
= a (1 6 k < ` 6 r) and mαε

0k
= b (1 6 k 6 r)

where we recall a = dim Zk` for 1 6 k < ` 6 r and b = dim Z0k for 1 6 k 6 r . The roots
α−kk = 2αk are reduced if and only if b = 0 (i.e. B of tube type). If b > 0 , the linear forms
αk = α±0k are roots, but they are always non-reduced. The roots αε

k` for 1 6 k < ` 6 r are
always reduced. As for their multiplicity, it equals a .

Seeing that in the spin factor case IVn , we may assume n > 5 , we have a > 1 unless
Z = Cn×n

+ , by 5.3.5. Except in this case, we have γαε
k`
∈ M0 for all 1 6 k < ` 6 r , ε2 = 1 .

Postponing the treatment of type IIIn for the moment, we determine γα for α = 2αk ,
k = 1, . . . , r .
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Since αk(ξ−e`
) = δk` , it is clear that H2αk = ξ−ek

. But iξ−ek
= ξ+

iek
, and hence

γαk = exp πξ+
iek

= γ4
iek

= B(iek, 2iek) = B(ek, 2ek) ,

by [Loo75, 10.1.(5)]. Moreover, [Loo75, th. 5.6] implies B(ek, 2ek) = exp iπ(ek � e∗k ) ∈ K .
Except for type IIIn , we have proved the proposition.

As for type IIIn , a finite cover of G is the matrix group Sp(2n, R) . A cover of K in
Sp(2n, R) is given by U(n) . We may identify aR with the set of matrices( t1

. . .
tn

)
for all t1, . . . , tr ∈ R ,

on which the preimage M̃ ⊂ U(n) of M acts by conjugation. The set of u ∈ U(n) leaving
these diagonal matrices invariant consists of diagonal matrices with entries ±1 , and is
therefore a group isomorphic to Zr

2 . Its image in K is isomorphic to Zr
2 modulo diagonal,

so it is generated by the Peirce reflections. This completes the proof in case Z is of type
IIIn , and hence, in general. �

Corollary 5.3.7. Let f = (0 < f1 < · · · < fk) be a flag of tripotents in Z . Let e1, . . . , er

be a frame such that f j = e1 + · · ·+ emj for all j = 1, . . . , k . Then the component M f of
the parabolic Q f is given by

M f = Ff · M f ,0 where Ff = 〈sej = B(ej, 2ej) | j = 1, . . . , mk〉

is a finite Abelian subgroup, and M f ,0 is the connected component of M f .

Proof. If M = ZK(aR) , then M ⊂ M f . Moreover, M f = M · M f ,0 by [Kna02, ch. VII,
prop. 7.82], and M = F · M0 by proposition 5.3.6. But gR,0( fk) ⊂ m

f
R , the Lie algebra of

M f , so G fk ⊂ M f ,0 . Since fk = e1 + · · ·+ emk implies ej ∈ Z0( fk) for j > mk ,

sej = exp iπ(ej � e∗j ) ∈ exp kR,0( fk) = K fk ⊂ G fk ⊂ M f ,0 for all j > mk .

This proves the claim. �

5.3.8. Consider now a facial subgroup Ḡ = Ge @ G and the corresponding subtriple
Z̄ = Z0(e) @ Z . Take a flag f = (0 = f0 < f1 < · · · < fk) of tripotents in Z̄ . f is also a
flag in Z , and there exists a frame e1, . . . , er of Z , such that e1, . . . , er̄ is a frame of Z̄ and

f j = e1 + · · ·+ emj for some 1 6 m1 < · · · < mk 6 r̄ .

Let Q̄ f = M̄ f Ā f N̄ f denote the parabolic of Ḡ associated to f .

Theorem 5.3.9. Under the assumptions of 5.3.8, Q̄ f = Ḡ ∩Q f . Moreover,

Ā f = A f and N̄ f ⊂ N f .
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Assume further that Z is classical. Then there are closed reductive subgroups M′ @ M f ,
M̄′ @ M f and a closed connected reductive subgroup L @ K such that

M′ = L× M̄′ , M̄ f = Ḡ fk × M̄′ and M f = G fk × M′ .

In particular, Q̄ f is cuspidal if and only if Q f is.

Proof. Clearly,
ā

f
R = 〈ξ−em1

, . . . , ξ−emk
〉 = a

f
R ,

so Ā f = A f . The positive systems ∆̄+
ā and ∆+

a are compatible, so N̄ f ⊂ N f . Since
ḡc

R[0] = ḡR ∩ gc
R[0] for any tripotent c ∈ Z̄ , we have s̄

f
R ⊂ s

f
R .

The Levi component S f has the Cartan decomposition S f = K f · exp
(
s

f
R ∩ pR

)
where

K f = K f1 ∩ · · · ∩ K fk =
{

k ∈ K
∣∣ k( f j) = f j for all j = 1, . . . , k

}
,

and an analogous formula is valid for S̄ f . Since K̄ f = K̄ ∩ K f , we conclude S̄ f = Ḡ ∩ S f

and Q̄ f = Ḡ ∩Q f .

Let r
f
R denote the orthogonal complement of

kR,0( fk)⊕∑16j6k kR,1( f j − f j−1)

in k
f
R =

{
δ ∈ kR

∣∣ δ( f j) = 0 , j = 1, . . . , k
}

. Then r
f
R is an ideal of m

f
R , and since

m
f
R = r

f
R ⊕ gR,0( fk)⊕∑16j6k gR,1( f j − f j−1)

is the sum of ideals, all of these factors commute. Define

m′
R = r

f
R ⊕∑16j6k gR,1( f j − f j−1) ,

and let M′
0 be the analytic subgroup of G with this Lie algebra. Then M′

0 commutes with
G fk and G fk ∩ M′

0 = 1 . By its mere definition, Ff commutes with G fk , so M′ = Ff · M′
0 is

a subgroup of G , commuting with G fk .

Now, since f j − f j−1 ⊥ e for 1 6 j 6 k , gR,1( f j − f j−1) ⊂ ḡR . Moreover, if Z is
classical, by proposition 5.3.11 below, either r

f
R ⊂ ḡR , or it commutes with ḡR . Hence,

M′
0 = L × M̄′

0 where M̄′
0 ⊂ Ḡ is defined for Ḡ as M′

0 is for G , and L is a compact
factor. Since Ff ⊂ Ḡ , we may define M′ = Ff · M′

0 @ G and M̄′ = Ff · M̄′
0 ⊂ Ḡ . Then

M′ = L× M̄′ . Since L is compact,

rk m′
R − rk(kR ∩m′

R) = rk m̄′
R − rk(k̄R ∩ m̄′

R) ,

so M′ has equal rank if and only M̄′ does.

In particular, M f = G fk × M′ and M̄ f = Ḡ fk × M̄′ . Finally, because G fk and Ḡ fk are
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Hermitian, and therefore have equal rank, these are equal rank groups if and only if M′

has equal rank, and therefore always simultaneously so. �

Remark 5.3.10. In principle, theorem 5.3.9 should be true for all JB∗-triples. This is a
matter of generalising the following proposition, which was essential in the theorem’s
proof.

Proposition 5.3.11. Assume Z is classical. If e ⊥ c are tripotents in Z , then either

kc
R ∩

(
kR,0(c)

)⊥ ⊂ kR,0(e) ,

or kc
R ∩

(
kR,0(c)

)⊥ has trivial intersection with kR,0(e) and commutes with it.

Proof. There exists a frame e1, . . . , er of Z such that c = e1 + · · ·+ ek , e = e` + · · ·+ er .
Because the correspondence e 7→ kR,0(e) is decreasing, we may w.l.o.g. restrict attention
to the case ` = k + 1 . By K-conjugacy of the assertion, it suffices to prove it for a fixed
frame. Hence, it follows from propositions 5.3.13, 5.3.15, 5.3.17 and 5.3.19. �

5.3.1 Proof for type Ip,q

5.3.12. The JB∗-triple Z = Cp×q , p 6 q , of rank p , has triple product given by

{uv∗w} = 1
2

(
uv∗w + wv∗u

)
for all u, v, w ∈ Cp×q ,

where v∗ denotes the conjugate transpose matrix of v . A tripotent ek of rank k is given
by the formula in 5.1.10. We consider the tripotents ek defined in 5.1.10. The Lie algebra

kR = s
(
u(p)× u(q)

) ∼= {(
A 0
0 D

) ∣∣∣ A ∈ u(p) , D ∈ u(q) , tr A + tr D = 0
}

,

every
(

A 0
0 D

)
∈ kR acting on Z by z 7→ Az + zDt .

Proposition 5.3.13. For c = ek and e = er − ek , we have kc
R ∩

(
kR,0(c)

)⊥ ⊂ kR,0(e) .

Proof. The Peirce space decomposition of Z w.r.t. c is given by

Z =

( k q− k

k Z1(c) Z1/2(c)
p− k Z1/2(c) Z0(c)

)
.

According to this decomposition, we write

A =

( k p− k

k α β

p− k γ δ

)
and D =

( k q− k

k α′ β′

q− k γ′ δ′

)
.

Then
(

A 0
0 D

)
∈ kc

R implies
(

α+α′t γ′t

γ 0

)
=
(

0 0
0 0

)
. Hence, γ = 0 = γ′ . Since A and D are
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skew-Hermitian, this implies β = 0 = β′ . Therefore, α , α′ , δ and δ′ are skew-Hermitian.
Moreover, from (

A 0
0 D

)
⊥ kR,0(c) = s(u(p− k)× u(q− k)) ,

one deduces that δ = 0 = δ′ . Thus,

(
α 0
0 −αt

)
∈ kR,1(c) ⊂ kR,0(e) = s(u(k)× u(q− p + k)) ,

proving the assertion. �

5.3.2 Proof for type IIn

5.3.14. In the JB∗-triple Z = Cn×n
− of rank r = b n

2 c , the Jordan triple product is given by

{uv∗w} = 1
2 ·
(
uv∗w + wv∗u

)
for all u, v, w ∈ Cn×n

− = Z ,

as in the case of the full matrix algebra. Since, for n = 2 , Z ∼= C = C1×1 , we may assume
n > 3 . We consider a different set of tripotents than in 5.1.16. Namely, we take

ej =

(
J 0
0 0

)
where J =

(
0 1
−1 0

)
∈ C2j×2j .

The Lie algebra kR
∼= u(n) , where u ∈ u(n) acts by z 7→ uzut .

Proposition 5.3.15. For c = ek and e = er − ek , we have kc
R ∩

(
kR,0(c)

)⊥ ⊂ kR,0(e) .

Proof. The Peirce space decomposition is

Z =

( 2j n− 2j

2j Z1(e) Z1/2(e)
n− 2j ∗ Z0(e)

)
.

We choose a corresponding decomposition of u ,

u =

( 2j n− 2j

2j α β

n− 2j γ δ

)
.

Then (
αJ + Jαt γJ

Jγt 0

)
=

(
0 0
0 0

)
,

so we find γ = 0 = β . Thus, α and δ are skew-Hermitian, and u ⊥ kR,0(c) = u(n− 2j)
implies δ = 0 . Hence the assertion, since kR,0(e) = u(2j) . �
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5.3.3 Proof for type IIIn

5.3.16. In this case, Z = Cr×r
+ has rank r , and the triple product is

{uv∗w} = 1
2

(
uv∗w + wv∗u

)
for all u, v, w ∈ Cr×r

+ = Z ,

as in the other matrix cases. A rank 1 6 k 6 r tripotent ek is given as in 5.1.22. The
compact Lie algebra kR

∼= u(r) , u ∈ u(r) acting by z 7→ uzut . By a similar proof as for
the other matrix cases, we have the following proposition.

Proposition 5.3.17. For c = ek and e = er − ek , we have kc
R ∩

(
kR,0(c)

)⊥ ⊂ kR,0(e) .

5.3.4 Proof for type IVn

5.3.18. In this case, the JB∗-triple is Z = Vn , the complex spin factor of dimension n .
There is no loss of generality in assuming n > 5 , since in the other cases n = 1, 3, 4 in
which Z is simple, Z is isomorphic to C , C2×2

+ , and C2×2 , respectively.
The rank 2 triple Z is the vector space Cn of column vectors, with triple product

2 · {uv∗w} = utv̄ · w + wtv̄ · u− utw · v̄ for all u, v, w ∈ Cn = Z .

Here vt denotes transposition and v̄ complex conjugation.
A standard frame of tripotents is given by

e1 =
( 1

2 , i
2 , 0, . . . , 0

)t and e2 =
( 1

2 ,− i
2 , 0, . . . , 0

)t .

The compact Lie algebra is kR
∼= R⊕ so(n) , where (t, u) acts by z 7→ (t + u)z .

Proposition 5.3.19. For c = e1 and e = e2 , the subalgebra kc
R ∩

(
kR,0(c)

)⊥ commutes
with kR,0(e) , and has a trivial intersection with it.

Proof. The Peirce decomposition is given by

Z11 = C · e1 , Z22 = C = e2 and Z12 = 02 ⊕Cn−2 .

Write u ∈ so(n) as

u =

( 2 n− 2

2 α β

n− 2 −βt δ

)
.

Then α =
(

0 a
−a 0

)
for some a ∈ R . Hence,

0 = 2
(
t · e1 + ue1) = 2t · (t− ia, it + a, 0, . . . , 0)t ,

so t = 0 and a = 0 . But then it is clear that kR,0(e2) commutes with (t, u) , since the latter
is generated by 4i e1 � e∗1 = (1, v) where v =

( 0 −i 0
i 0 0
0 0 0

)
. �
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5.4 Embedding of Q-series of facial subgroups

5.4.1. By Harish-Chandra’s Plancherel theorem for the space L2(G) [HC70, th. 19, cor.],
[HC76, th. 27.3], the reduced unitary dual of G is exhausted by the set of representations

πQ
λ,ν = indG

Q(πλ ⊗ eν+$a ⊗ 1)

induced from cuspidal parabolic subgroups Q = MQ AQNQ , where πλ is a discrete
series representation of MQ (MQ has a discrete series because Q is cuspidal) and eν is a
unitary character of AQ . For a fixed cuspidal parabolic Q , the set of the πQ

λ,ν is called the
Q-series. The discrete series corresponds to the case Q = G , if G is an equal-rank group.

More precisely, let Q = Q f = M f A f N f be the Langlands decomposition of the cus-
pidal parabolic Q f with S f = M f A f ϑ-stable. We may assume that A f = exp a

f
R where

a
f
R ⊂ aR = 〈ξ−e1

, . . . , ξ−er
〉 for some fixed frame e1, . . . , er . In fact, we may assume that

f j = e1 + · · ·+ emj for some 0 < m1 < . . . < mk .

The intersection t
f
R = tR ∩m

f
R is a compact CSA of M f , let Tf be the corresponding

Cartan subgroup (CSG). Then H f = Tf × A f is a ϑ-stable CSG of G . If πλ is a discrete
series representation of M (associated to a representation of ZM(M0) and a character of
T0 subject to a certain consistency condition, cf. [Wol80, ch. III, § 22]), and ν ∈ ia f ∗

R is
arbitrary, then πλ,ν acts unitarily on the completion Hλ,ν of the pre-Hilbert space

H∞
λ,ν =

{
h : K → 〈M〉πλ

∣∣∣ h ∈ C∞ , h(km) = m−πλ h(k) , m ∈ M f ∩ K , k ∈ K
}

with respect to the norm

‖h‖2
Hλ,ν

=
∫ ∗

K
‖h(k)‖2

πλ
dk .

The action of G on Hλ,ν is defined by

gλ,νh(k) = a−(ν+$a)m−πλ f (l) for all h ∈ H∞
λ,ν , g ∈ G , k ∈ K ,

whenever g−1k = lman for some l ∈ K , m ∈ M f , a ∈ A and n ∈ N . (The decomposition
exists on a dense subset of G .) Note that although such a decomposition is not unique
(M f ∩ K being non-trivial), the covariance condition of h guarantees that the left hand
side is well-defined.

Hλ,ν is an irreducible unitary representation, and if f runs through all flags con-
structed from e1, . . . , er , πλ runs through the discrete series of M f , and ν runs through
a

f ∗
R , then the Hλ,ν exhaust a thick subset of the support of the Plancherel measure for

L2(G) . (However, they are not necessarily all mutually inequivalent.)

5.4.2. We have to assume that Z be classical. Then, so is Z̄ = Z0(e) , since no exceptional
Jordan triple occurs within a classical one. Take a facial subgroup Ḡ = Ge @ G and a
cuspidal parabolic Q̄ f @ Ḡ . At least if Z is classical, theorem 5.3.9 implies that the
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parabolic Q f @ G is cuspidal, and that for the respective Langlands decompositions
Q̄ f = M̄ f Ā f N̄ f , Q f = M f A f N f , we have

Ā f = A f , N̄ f ⊂ N f , M̄ f = M̄0 × M′ , M = M0 × L× M′

where M̄0 is a facial subgroup of M0 and L is compact reductive. Moreover, since M0

and M̄0 are facial subgroups of G and Ḡ , they are also classical. Theorem 5.1.2 applies,
and M̄0 is an embeddable subgroup of M0 .

Choose ν̄ ∈ iā∗R = ia∗R . Define ν by

ν = ν̄ + $̄ā − $a .

A discrete series representation of M̄ is of the form πλ̄ ⊗ η where η is a discrete series
representation of M′ . As in 5.2.5, λ̄ = Λ̄ + 2$̄c − $̄ where Λ̄ ∈ it̄∗ is subject to the condi-
tions explicated there. By theorem 5.2.24, for any extension Λ of Λ̄ ,

〈
M̄0〉

πλ̄
embeds as

a subrepresentation of
〈

M0〉
πλ

. Hence so does

〈
M̄ f
〉

λ̄
=
〈

M̄0〉
πλ̄
⊗
〈

M′〉
η

@
〈

M0〉
πλ
⊗
〈

L
〉

1 ⊗
〈

M′〉
η

=
〈

M f
〉

λ

where 1 is the trivial representation of L and we use the shorthand λ̄ = πλ̄ ⊗ η and
λ = πλ ⊗ 1⊗ η , slightly abusing notation.

Denote the M̄ f -equivariant projection onto this subspace by

p〈M̄ f 〉λ̄

:
〈

M f
〉

λ
→
〈

M̄ f
〉

λ̄
.

As above, let

πλ̄,ν̄ = indḠ
Q̄ f

(
(πλ̄ ⊗ η)⊗ eν̄ ⊗ 1

)
and πλ,ν = indG

Q f

(
(πλ ⊗ 1⊗ η)⊗ eν ⊗ 1

)
,

so that πλ̄,ν̄ acts on H̄λ,ν and πλ,ν on Hλ,ν . Then, in analogy to the discrete series, we
may define a map

Rλ,ν : H∞
λ,ν → H̄∞

λ̄,ν̄ : h 7→ p〈M̄ f 〉λ̄

h
∣∣
K̄ .

Proposition 5.4.3. The map Rλ,ν from 5.4.2 is well-defined and Ḡ-equivariant.

Proof. Indeed, for h ∈ H∞
λ,ν , Rλ,νh : K̄ →

〈
M̄ f
〉

λ̄
, and is smooth. Moreover, for any

m ∈ M̄ f ∩ K̄ ⊂ M f ∩ K , k ∈ K̄ ⊂ K ,

(
Rλ,νh

)
(km) = p〈M̄〉λ̄

m−λ̄h(k) = m−λ p〈M̄〉λ̄
h(k) = m−λ

(
Rλ,νh

)
(k) ,

so Rλ,ν is well-defined. Moreover, for g ∈ Ḡ and k ∈ K̄ , write g−1k = lman with

l ∈ K̄ ⊂ K , m ∈ M̄ ⊂ M , a ∈ Ā = A , n ∈ N̄ ⊂ N .
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Then, by the definition of ν and the equivariance of p〈M̄ f 〉λ̄

,

(
gλ̄,ν̄Rλ,νh

)
(k) = a−(ν̄+$̄ā)mλ̄ p〈M̄〉λ̄

h(l)

= p〈M̄ f 〉λ̄

a−(ν+$a)mλh(l) =
(

Rλ,νgλ,νh
)
(k) ,

proving the equivariance and hence the proposition. �

Theorem 5.4.4. Under the assumptions of 5.4.2, Rλ,ν is non-zero when restricted to the
K-finite part of Hλ,ν . Hence,

Rλ,ν : 〈G〉πλ,ν,K → 〈Ḡ〉πλ̄,ν̄,K̄

is a Ḡ-equivariant surjection.

Proof. As in the proof of theorem 5.2.24, all we need to see is that Rλ,νF 6= 0 for some
K-finite F ∈ Hλ,ν .

The lowest K-type
〈

M0 ∩ K
〉

Λ of
〈

M0〉
πλ

occurs multiplicity freely, and up to nor-
malising constants, the uniquely determined embedding is given by

ε∗1 :
〈

M0 ∩ K
〉

Λ →
〈

M0〉
πλ

,

by corollary 5.2.17. Moreover, by 5.2.5,
〈

M0 ∩ K
〉

Λ coincides with the cyclic space gen-
erated by the highest weight vector 1Λ ∈ 〈K〉Λ (here we extend Λ arbitrarily to a K-
weight). In particular, we have an M0 ∩ K-equivariant projection

p〈M0∩K〉Λ
: 〈K〉Λ →

〈
M0 ∩ K

〉
Λ .

Similarly,
〈

M̄0 ∩ K̄
〉

Λ̄ can be realised in
〈

M0 ∩ K
〉

Λ .

Moreover, since any M′ ∩ K-type of 〈M′〉η is contained (not necessarily multiplic-
ity freely) in some finite-dimensional simple K-module, there exists a K-weight δ , a
non-zero irreducible M′ ∩ K-submodule 〈M′ ∩ K〉δ of 〈M′〉η , and a non-zero M′ ∩ K-
equivariant projection

pδ : 〈K〉δ →
〈

M′ ∩ K
〉

δ
@
〈

M′〉
η

.

We fix an arbitrary non-zero vector ξδ ∈ 〈M′ ∩ K〉δ \ 0 .

This allows us to define, for ξ ∈
〈

M̄0 ∩ K̄
〉

Λ̄ ,

Fξ(k) =
(
ε∗1 p〈M0∩K〉Λ

k−Λξ
)
⊗
(

pδk−δξδ

)
for all k ∈ K .

Then
Fξ : K →

〈
M f
〉

λ
=
〈

M0〉
πλ
⊗
〈

L
〉

1 ⊗
〈

M′〉
η
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is a smooth map. By the definition of M0 ,

M f ∩ K =
(

M0 ∩ K
)
× L×

(
M′ ∩ K

)
,

and we find that for m ∈ M f ∩ K ,

Fξ(km) =
(
ε∗1 p〈M0∩K〉Λ

m−Λk−Λξ
)
⊗
(

pδm−δk−δξδ

)
=
(
m−πλ ε∗1 p〈M0∩K〉Λ

k−Λξ
)
⊗
(
m−η pδk−δξδ

)
= m−πλ⊗η Fξ(k) = m−λFξ(k) ,

by the equivariance of the various maps involved. Hence Fξ ∈ H∞
λ,ν , and is K-finite by

definition.

Recall from theorem 5.2.24 that there exists a constant C > 0 such that

C · p〈M̄ f 〉λ̄

= S̄Λ̄RS∗Λ ⊗ 1⊗ 1 on H ⊗
〈

L
〉

1 ⊗
〈

M′〉
η

where H is the closed linear span of U
(
m̄0) 1Λ . Hence, for non-zero ξ ∈

〈
M̄0 ∩ K̄

〉
Λ̄ \ 0 ,

we compute

C ·
(

Rλ,νFξ

)
(1) = C · p〈M̄〉πλ̄

Fξ(1) =
(
S̄Λ̄RS∗Λε∗1ξ

)
⊗ ξδ

=
(
S̄Λ̄R fξ

)
⊗ ξδ =

(
S̄Λ̄ f̄ξ

)
⊗ ξδ 6= 0 ,

by the proof of theorem 5.2.24. �

In order to prove the boundedness of the map constructed in theorem 5.4.4 on some sub-
space of Hλ,ν , we cannot use the same argument as in the proof of corollary 5.2.25, since
there is no lowest K-type. Rather, in order to achieve the admissibility of the appropri-
ately chosen subspace, we need to apply a result of Harish-Chandra on quasi-simple
representations.

5.4.5. Let Rλ,ν be the map constructed in theorem 5.4.4. Chose a highest weight vector
1Λ̄ ∈

〈
M̄ f ∩ K̄

〉
Λ̄ , and let

FΛ̄(k) = p〈M̄ f∩K̄〉Λ̄
k−Λ̄1Λ̄ for all k ∈ K̄

be the corresponding K̄-finite element of Hλ̄,ν̄ . Let FΛ ∈ Hλ,ν be K-finite, such that
Rλ,νFΛ = FΛ̄ .

If FΛ is Z(ḡ)-finite where U (ḡ) is the centre of U (ḡ) , then consider V = Z(ḡ) FΛ .
Since Hλ̄,ν̄ is irreducible, Z(ḡ) acts by a non-trivial character, and hence V has trivial
intersection with ker Rλ,ν .

Moreover, since V is finite-dimensional, it decomposes as the direct sum of one-
dimensional Z(ḡ)-invariant subspaces. (The algebra Z(ḡ) is Abelian and involutive, so
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every element is normal.) Hence, we may chose a simultaneous eigenvector v ∈ V of
Z(ḡ) such that Rλ,νv = FΛ̄ . Denote H0 = U (ḡ) v , and let H be its closure in Hλ,ν .

Corollary 5.4.6. Under the assumptions of 5.4.5, if p : Hλ,ν → H denotes the orthogonal
projection onto H , then Rλ,ν p is bounded, and there exists a constant C > 0 , such that

C · (Rλ,ν p)∗ : Hλ̄,ν̄ → Hλ,ν

is a Ḡ-equivariant isometry.

Proof. The vector v is K-finite, and a simultaneous eigenvector of Z(ḡ) . Hence, the
latter acts by scalars on H0 , i.e., this is a quasi-simple (ḡ, K̄)-module.

Thus, [HC54, lem. 33] implies that H is admissible, and the same proof as corol-
lary 5.2.25 gives the assertion. �

Remark 5.4.7. It is plausible that the Z(ḡ)-finiteness assumption in 5.4.5 follows auto-
matically from the g-quasi-simplicity of the irreducible G-representation Hλ,ν . Indeed,
this were the case if one could prove that Z(ḡ) is contained in a finitely generated Z(g)-
submodule of the centraliser of U (ḡ) in U (g) .

We assume that this can be proved with the help of [War72, th. 2.1.3.6] which states
that the set of S(t)W̄ of W̄-invariants in the symmetric algebra S(t) is a finitely generated
S(t)W-module (which contains S(t̄)W̄ ). However, the incompatibility of the respective
Harish-Chandra homomorphisms makes it difficult to pull this fact back to the centres
Z(ḡ) and Z(g) .
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C∗-algebras of Toeplitz operators

THE HARDY SPACE, introduced in section III, naturally gives rise to E , the Szegö pro-
jection, or, equivalently, the associated distribution. Hence, it is reasonable to define,

for continuous functions f vanishing at infinity, Toeplitz operators EM f E of symbol f .
These are bounded operators on L2(G) (or H2(Γ) ), and one can consider the C∗-algebra
generated by these operators.

It is a natural and non-trivial question to ask how much of the geometry of the do-
main Γ , and of its boundary, is captured in the structure of this C∗-algebra (compare
the introduction). Extrapolating from the known case of the Hardy space on the Shilov
boundary of a bounded symmetric domain, what one would expect is a lattice of ide-
als corresponding to the lattice of faces of the cone Ω− . Each of the ideals should be
given as the intersection of kernels of certain irreducible representations of the Toeplitz
C∗-algebra associated in an essential way to the subgroups G f ,I of inner automorphisms
of the faces F−f ,I .

The simplest case of these is that f consists only of 0 , so G f ,I = G . Associated to this
subgroup is the identical representation on H2(Γ) .

Section 6 treats the irreducibility of this identity representation. Moreover, it devel-
ops a natural framework for Toeplitz C∗-algebras which will also be useful in construct-
ing other irreducible representations.

In 6.1, the formalism of Hopf von Neumann and Hopf C∗-algebras, and their coac-
tions, is introduced. We have attempted to be as gentle as possible here, proving some
facts in detail which could be found in the literature, while at the same time being sen-
sibly terse.

In 6.2, we introduce a notion of support affiliated with module structures over the
Fourier algebra. The basic properties are well-known or minor modifications of known
results. Nonetheless, we found a complete development more appropriate than an infor-
mal discussion laden with references. We apply these considerations to define coactions
whose co-crossed product serve as models for Toeplitz C∗-algebras. The basic idea be-
hind this is due to Wassermann [Was84], and was developed in the generality necessary
for the treatment of compact groups by Upmeier [Upm96].

A new feature of our presentation is the treatment of locally compact groups, and,
more importantly, arbitrary coactions (instead of merely the ‘identical’ coaction on the
reduced group von Neumann algebra). We feel that this makes proofs more transparent
than e.g. in [AU02]. Moreover, it appears to allow for the description Toeplitz operators
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living on Hardy spaces for more general affine symmetric spaces than G itself. Ad-
mittedly, the operator theoretic details are quite technical, but they provide a pleasing
algebraic framework for the more concrete geometry and representation theory.

In subsection 6.3, the abstract theory developed beforehand is applied to establish
the irreducibility of the identical representation.

In section 7, we consider the problem of constructing other representations of the
Toeplitz C∗-algebra. The basic philosophy is that the compact operators correspond,
upon Fourier transformation, to continuous functions vanishing at infinity. Other rep-
resentations of the Toeplitz C∗-algebra (with the compact operators contained in their
kernel) should correspond to limits to infinity. Specifically, thinking of Pontryagin dual-
ity of locally compact Abelian groups, the representations associated to some subgroup
of G should be given as limits in the ‘orthogonal’ directions.

This philosophy is given a precise formulation in 7.1, in terms of a ‘spectral boundary
condition’. We show how this gives rise to representations of the Toeplitz C∗-algebra.
The basic idea how use the Fourier transform to construct representations is of course
contained in [Upm96]. There, it is applied in the context of compact groups. The Func-
tional Analysis problems which occur in the general setup for locally compact unimod-
ular type I groups are, however, not hard to overcome.

Of course, the difficulty is to verify the spectral boundary condition for our partic-
ular geometric setup. Using some ideas on supports at infinity discussed in 7.2, we
reduce this problem to a support condition. This states, in general terms, that the sup-
port of a distribution associated to a limiting process in directions orthogonal to some
subgroup of G should have support contained in that subgroup. In this reduction, we
use Grothendieck’s double limit criterion which characterises relative compactness in
the topology of simple convergence.

6 Irreducibility of Toeplitz C∗-algebras

In the following, denote by H a unimodular, locally compact group. We shall develop
certain aspects of the theory of Toeplitz C∗-algebras in an abstract framework, without
specific reference to an underlying geometry. Our aim is then to apply these results to
the groups G = Aut0(B) and G f ,I , taking our knowledge of the harmonic analysis on
their associated Ol’shanskiı̆ semigroups into account.

In the beginning, the restriction to unimodular groups is inessential and mainly for
convenience. In later sections, where we further assume that H be of type I, we ap-
ply the Plancherel theorem. Here the assumption of unimodularity becomes crucial.
Of course, since there is a generalised Plancherel theorem due to Duflo-Moore [DM76]
which also encompasses the non-unimodular case, an extension, at least in parts, to non-
unimodular groups is conceivable and possibly interesting, albeit daunting.
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6.1 Hopf von Neumann and Hopf C∗-algebras

6.1.1. Consider the Hilbert space L2(H) and the set Mb(H) of finite complex-valued
measures on H . Any µ ∈ Mb(H) gives rise to a bounded (left) convolution operator

µ# : L2(H) → L2(H) : f 7→ µ ∗ f =
(

g 7→
∫

H
f (h−1g) dµ(h)

)
.

This defines an injection of the set Mb(H) into the bounded operators L(L2(H)) on
L2(H) . The measure µ is reconstructed from µ# by

〈ϕ : µ〉 =
∫

H
ϕ(h) dµ(h) = (µ ∗ ϕ∨)(1) for all ϕ ∈ K(H)

where K(H) denotes the set of continuous functions on H with compact support, and
ϕ∨(t) = ϕ(t−1) for all t ∈ H . Note that µ# leaves L2(H) ∩ C(H) invariant, so the value
at identity is well-defined.

The injection Mb(H) → L(L2(H)) is an involutive algebra morphism. The content
‖µ‖ = |µ| (H) does not define a C∗-norm (unless H is trivial), so it is not an isometry.

Any element h ∈ H gives rise to a Dirac measure δh ∈ Mb(H) , so we may think of
H as a subset of Mb(H) , and hence of L(L2(H)) . The linear span of H in Mb(H) is the
set of finitely supported measures.

Let W∗(H) = H′′ be the von Neumann algebra generated by H . It is called the
reduced group von Neumann algebra. Since Mb(H) commutes with H′ , as follows from
the formula

µ# =
∫

H
h# dµ(h) for all µ ∈ Mb(H)

and standard facts of vector-valued integration, Mb(H) ⊂ W∗(H) . Therefore, W∗(H)
is the weak, strong, ultraweak, and ultrastrong closure of Mb(H) in L(L2(H)) , by the
von Neumann density theorem. In particular, the set of finitely supported measures is
weakly dense in Mb(H) .

Similarly, W∗(H) is the weak, strong, ultraweak, and ultrastrong closure of the set
L1(H) ⊂ Mb(H) of integrable complex-valued functions on H , since Dirac nets define
(bounded) approximate units for L1(H) .

Denote
C∗

#(H) = C∗〈 f # ∣∣ f ∈ L1(H)
〉
⊂ L(L2(H))

where we recall f #g = f ∗ g . The C∗-algebra C∗
#(H) is called the (reduced) group C∗-

algebra of H . The above considerations show that C∗
#(H) ⊂ W∗(H) , and that W∗(H) is

the von Neumann algebra generated by C∗
#(H) .

Remark 6.1.2. It is easy to see that W∗(H) is the commutant of the set of right convo-
lutions h# , h ∈ H . If H is a Lie group, then x ∈ W∗(H) defines a continuous linear map
x : D(H) → D′(H) from the smooth compactly supported functions on H to the set of
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distributions on H . Hence, by the Schwartz kernels theorem, it is given on D(H) by a
kernel operator with distribution kernel ξ ∈ D′(H × H) . Since x commutes with right
translations, ξ(s, t) = µ(t−1s) for some µ ∈ D′(H) . Hence, x is given on D(H) by left
convolution with a distribution.

This construction can be extended to general H by applying Bruhat’s generalised
distributions which are defined via projective limits of Lie groups, cf. [Eym64, prop. 27].
However, it seems to be more natural to introduce a new set of test functions for W∗(H)
(the Fourier algebra), which we do below.

Remark 6.1.3. If H is Abelian, then W∗(H) ∼= L∞(Ĥ) as von Neumann algebras, where
Ĥ is the dual group, and the isomorphism is given by conjugation with the Fourier
transform. Under this isomorphism, C∗

#(H) ∼= C0(Ĥ) . (This is essentially the Riemann-
Lebesgue lemma.)

In the Abelian case, the algebra product of W∗(H) and C∗
#(H) , namely, convolu-

tion, is related via Fourier transform to the point-wise product on L∞(H) and C0(H) .
The starting point of non-commutative group duality is to ask whether there exists on
W∗(H) and C∗

#(H) some algebraic structure, a ‘coproduct’, which induces on a suit-
able ‘dual’ of these algebras a (commutative) algebra product, without reference to the
Fourier transform. After some preliminaries, we describe the relevant structures for
W∗(H) and C∗

#(H) .

6.1.4. Recall that for a C∗-algebra A , the multiplier algebra M(A) is given by

M(A) =
{

a ∈ L(H)
∣∣ aA ∪ Aa ⊂ A

}
where A acts faithfully and non-degenerately on the Hilbert space H . Recall that a
normed A-module E is called non-degenerate, if the linear span of A · E is dense in E .

The definition of M(A) is independent ofH . Abstractly, M(A) can be introduced via
double centralisers, cf. [Bus68].

M(A) is a unital C∗-algebra, and acts non-degenerately on H . It is the largest closed
involutive subalgebra of L(H) containing A as an essential ideal. Here, the requirement
that an ideal J / M(A) be essential means that I ∩ J 6= 0 whenever I / M(A) is non-zero.
Finally, we have M(A) ⊂ A′′ ⊂ L(H) .

The natural topology to consider on M(A) is not the norm topology, but the strict
topology (which is weaker). It is the weakest locally convex topology such that the
multiplication maps

M(A)× A → A : (a, b) 7→ ab and A×M(A) → A : (a, b) 7→ ab

are separately continuous in the norm topologies. Any element of M(A) is the strict limit
of a bounded net in A , and M(A) is strictly complete. Approximate units of A are just
the nets in A converging strictly to 1 ∈ M(A) , cf. [Bus68, prop. 3.5-6].
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6.1.5. Since A is strictly dense in M(A) , it is natural to ask for classes of linear maps on
A which extend to M(A) . If B is another C∗-algebra and α : A → M(B) is an involutive
algebra morphism, then α extends to a unital involutive algebra morphism which is
strictly continuous on bounded subsets of M(A) if and only if

α(uλ) → 1 strictly in M(B) for all approximate units uλ ∈ A ,

by [Val85, lem. 0.2.5]. Such morphisms are called strict, and their extensions to M(A) are
denoted by the same letter. It follows from the non-degeneracy of the action of A on H
that if α is injective on A , then so is its extension to M(A) .

Clearly, any continuous linear functional µ ∈ A∗ has a strictly continuous extension
µ to M(A) . Moreover, by [Tay70, cor. 2.2], the set of strictly continuous linear function-
als on M(A) is A · M(A)∗ = M(A)∗ · A . Here, M(A)∗ is the set of norm continuous
functionals, which is an (A, A)-bimodule via

〈c : a · µ · b〉 = 〈bca : µ〉 for all a, b, c ∈ A , µ ∈ M(A)∗ .

6.1.6. Let us return to our setting with the group H . The C∗-algebra C∗
#(H) acts non-

degenerately on L2(H) , so M(C∗
#(H)) ⊂ C∗

#(H)′′ = W∗(H) .

For s ∈ H , the left convolution (translation) operator s# ∈ W∗(H) , and C∗
#(H) is bi-

invariant under multiplication with s# . Hence s# ∈ M(C∗
#(H)) , leading us to consider

the map
WH : H → M(C∗

#(H)) : s 7→ s# .

It is bounded and strictly continuous, so

WH ∈ Cb(H, M(C∗
#(H))) = M(C0(H)⊗C∗

#(H))

where ⊗ is the spatial tensor product, by [APT73, cor. 3.4].

The latter identity is induced by the usual isomorphism

L2(H, L2(H)) → L2(H × H) : f 7→
(
(s, t) 7→ f (s)(t)

)
.

Consequently, the multiplier WH acts on L2(H × H) by

(WH f )(s, t) = f (s, s−1t) for all f ∈ L2(H × H) , s, t ∈ H .

Hence, it is a unitary operator, sometimes referred to as the Kac-Takesaki fundamental
unitary. Observe that W = WH obeys the pentagonal equation

W12W13W23 = W23W12
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where we use the leg notation W12 = W ⊗ 1 , W23 = 1⊗W , and

W13( f ⊗ g⊗ h) = ∑i fi ⊗ g⊗ hi if W( f ⊗ h) = ∑i fi ⊗ hi ,

cf. [BS93].
If we set

δH(x) = Ad(W)(x⊗ 1) = W(x⊗ 1)W∗ for all x ∈ W∗(H) ,

then δ = δH is coassociative, i.e.

(δ⊗ id) ◦ δ = (id⊗δ) ◦ δ ,

as follows from the pentagonal equation. Note that

δ = δH : W∗(H) → W∗(H)⊗̄W∗(H) = W∗(H × H)

where ⊗̄ denotes the tensor product of von Neumann algebras. Moreover, δ is a normal
morphism. It is called the coproduct of W∗(H) . A von Neumann algebra M with an
injective coassociative normal involutive algebra morphism δ : M → M⊗̄M is called a
Hopf von Neumann algebra.

Define a unitary operator V = VH by

(V f )(s, t) = f (ts, t) for all f ∈ L2(H × H) , s, t ∈ H .

Then V satisfies the pentagonal equation, and

dH f = Ad(V)( f ⊗ 1) = V( f ⊗ 1)V∗ for all f ∈ L∞(H)

defines a normal involutive morphism

d = dH : L∞(H) → L∞(H)⊗̄ L∞(H) = L∞(H × H)

making L∞(H) into a Hopf von Neumann algebra. It is interesting to note the formula

d f (s, t) = f (st) for all f ∈ L∞(H) .

6.1.7. Given C∗-algebras A and B , an involutive morphism α : A → M(B) is called
non-degenerate, if α(A) acts non-degenerately on B . If α is non-degenerate, it follows
from [LPRS87, lemma 1.1] that α is strict.

Consider the following subalgebra of M(A⊗ B) ,

↼
M(A, B) =

{
x ∈ M(A⊗ B)

∣∣ x (C⊗ B) ∪ (C⊗ B) x ⊂ A⊗ B
}

.
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Then, given an injective non-degenerate ∗-morphism δ : A →
↼
M(A, A) such that

(δ⊗ id) ◦ δ = (id⊗δ) ◦ δ ,

(A, δ) is called a Hopf C∗-algebra.

Remark 6.1.8. From an algebraic perspective, to call a von Neumann algebra M with a
coproduct δ , or the corresponding C∗-structure, a Hopf algebra, is not completely appro-
priate. Classically, the existence of a counit ε and an antipode S is what distinguishes
Hopf algebras from mere bialgebras, cf. [Swe69, MM65]. For this, one needs additional
structure.

Most often, one assumes the existence of (the non-commutative analogue of) Haar
measure, cf. [ES92]. Such bialgebras are called Kac algebras, since they were first stud-
ied independently by Kac-Vainerman and Enock-Schwartz. Under weaker invariance
conditions, the term locally compact quantum group has been coined, [KV00, KV03].

Another strategy is to start with a unitary implementation of the coproduct, this was
initiated in [BS93].

Finally, let us note that Vaes-Van Daele [VD01] have, using the so-called Haagerup
tensor product, given topological conditions on C∗-coproducts that guarantee the exis-
tence of a (densely defined) counit and antipode. It should be noted that Effros-Ruan
[ER03] place the theory of Hopf von Neumann algebras in a similar framework, the
category of operator spaces (also using the Haagerup tensor product).

We refer to the introductions of [VD01, KV00] for more thorough discussions of the
different approaches to Hopf operator algebras.

The following proposition is well-known, and will in fact follow from our more general
proposition 6.2.10 below. We give a proof, because the (standard) technique used therein
will reappear presently, in a more abstract guise.

Proposition 6.1.9. With the coproduct δ = δH induced from W∗(H) , the reduced group
C∗-algebra C∗

#(H) is a Hopf C∗-algebra.

Proof. Note that the spatial tensor product C∗
#(H)⊗ C∗

#(H) = C∗
#(H × H) , as follows

immediately from the equality L2(H)⊗ L2(H) = L2(H × H) .

For r ∈ H , δ(r#) = r# ⊗ r# . Hence,

δ(ϕ#) =
∫

H
ϕ(r) · r# ⊗ r# dr for all ϕ ∈ K(H) .

For all ψ, χ ∈ K(H × H) , we get

δ(ϕ#)ψ#χ(u, v) =
∫

H

∫
H

∫
H

χ(s−1u, t−1v)ψ(rs, rt)ϕ(r) dr ds dt = ζ#χ(u, v)
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where ζ ∈ K(H × H) is given by

ζ(s, t) =
∫

H
ψ(rs, rt)ϕ(r) dr for all s, t ∈ H .

Hence, δ(ϕ#)ψ# ∈ C∗
#(H) . Similarly for ψ#δ(ϕ#), so δ(ϕ#) ∈ M(C∗

#(H × H)) .

Using Dirac sequences, we can replace ψ ∈ K(H × H) in the above integral by δ1⊗ψ

where ψ ∈ K(H) and δ1 denotes the Dirac measure at unity. Then we have

δ(ϕ#)(1⊗ ψ#)χ(u, v) =
∫

H

∫
H

χ(s−1u, t−1v)ψ(s−1t)ϕ(s) ds dt = ζ#χ(u, v)

where ζ ∈ K(H × H) is given by

ζ(s, t) = ψ(s−1t)ϕ(s) for all s, t ∈ H .

This shows that δ(ϕ#) ∈
↼
M(C∗

#(H), C∗
#(H)) .

If we take a Dirac net ϕλ ∈ K(H) , then∫
H

ψ(rs, rt)ϕλ(r) dr → ψ(s, t) for all ψ ∈ K(H × H) ,

uniformly on H × H . Hence, δ(ϕ#
λ)ψ# → ψ# in the norm topology. This shows that δ is

non-degenerate. Moreover, δ is injective since W is unitary. Since

(δ⊗ id) ◦ δ = (id⊗δ) ◦ δ ,

our contention is proven. �

Remark 6.1.10. One can prove easily that, as for (C∗
#(H), δ) , the restriction of d = dH

to C0(H) turns this C∗-algebra into a Hopf C∗-algebra.

Note that for µ, ν ∈ Mb(H) , we have

〈d f : µ⊗ ν〉 =
∫

H

∫
H

f (st) dµ(s) dν(t) = 〈 f : µ ∗ ν〉 for all f ∈ C0(H) .

So, convolution, which defines the algebra products of W∗(H) and C∗
#(H) , is in some

sense dual to the coproduct d = dH . It is therefore natural to ask which product is dual
to the coproduct δ = δH .

6.1.11. Define B#(H) = C∗
#(H)∗ , the set of norm continuous functionals, endowed with

the dual norm. B#(H) is called the (reduced) Fourier-Stieltjes algebra of H . (Enock and
Schwartz [ES92] call it the Eymard algebra.)

We have a contractive map L1(H) → C∗
#(H) with dense image. By duality, we get a

contractive injection B#(H) → L∞(H) .
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Hence, for any ϕ ∈ B#(H) , there exists a (unique) ψ ∈ L∞(H) such that

‖ϕ‖B#(H) = sup f∈L1(H) , ‖ f #‖61

∣∣∣∣∫H
f (s)ψ(s) ds

∣∣∣∣ < ∞

and

〈
f # : ϕ

〉
=
∫

H
f (s)ψ(s) ds for all f ∈ L1(H) .

In fact, ψ ∈ Cb(H) , cf. [Eym64, (1.19), prop. 2.1].

Hence, B#(H) is identified with a Banach space of bounded continuous functions. It
consists of coefficient functions of the unitary representations π of H weakly contained
in the regular representation xy# of H on L2(H) . Here, π is weakly contained in $ if

‖ f π‖ 6 ‖ f $‖ for all f ∈ L1(H)

where as usual f π =
∫

H f (s)sπ ds .

Proposition 6.1.12. For all ϕ, ψ ∈ B#(H) , define ϕ · ψ ∈ B#(H) by

〈a : ϕ · ψ〉 = 〈δH(a) : ϕ⊗ ψ〉 for all a ∈ C∗
#(H) .

This defines a commutative, associative product, identical to point-wise multiplication
of functions. Hence, B#(H) is a commutative Banach algebra.

Proof. Since ϕ ⊗ ψ extends to the multiplier algebra M(C∗
#(H × H)) , the definition

makes sense. Moreover, whenever aλ → a in C∗
#(H) , for the norm topology, aλ is a

bounded strictly convergent net. Hence δ(aλ) → a strictly, and this net is bounded.
Therefore, ϕ · ψ is norm continuous on C∗

#(H) , and defines an element of B#(H) . The
coassociativity of δ = δH implies that · is associative.

For the commutativity, consider the transposition σ = (12) ∈ S2 and its natural
action on L2(H)⊗ L2(H) . For any operator T on L2(H × H) , define Tσ = σTσ .

Let µ ∈ Mb(H) , and consider the image measure ∆∗(µ) ∈ Mb(H × H) under the
diagonal map ∆(s) = (s, s) . By [Val85, lem. 4.1], δ(µ#) = ∆∗(µ)# . We find

δ(µ#)σ ϕ(s, t) =
∫

H
(σϕ)(r−1t, r−1s) dµ(r)

=
∫

H
ϕ(r−1s, r−1t) dµ(r) = δ(µ#)ϕ(s, t)

for all ϕ ∈ K(H × H) .

In particular, this is true for µ = f ∈ L1(H) . By density of L1(H) ⊂ C∗
#(H) , δ(xy)σ = δ .

This implies that · is commutative.
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For f ∈ L1(H) , we have∫
H

f (s)(ϕ · ψ)(s) ds =
〈

f # : ϕ · ψ
〉

=
〈
δ( f #) : ϕ⊗ ψ

〉
=
∫

H
(ϕ⊗ ψ)(s, s) · f (s) ds =

∫
H

ϕ(s) · ψ(s) · f (s) ds

because C∗
#(H × H) = C∗

#(H)⊗C∗
#(H) . Hence, the product · is just point-wise multipli-

cation.

The product on B#(H) is norm-contractive for ‖xy‖B#(H) by definition. This implies
that B#(H) is a Banach algebra. �

6.1.13. Recall that for a von Neumann algebra M , the predual M∗ is the set of ultra-
weakly continuous linear functionals on M . This is a closed subspace of the Banach
dual M∗ , and M is its Banach space dual. The σ(M, M∗)-topology coincides with the
ultraweak topology on M .

Let A(H) = W∗(H)∗ , called the Fourier algebra. Since C∗
#(H) is σ(W∗(H), A(H))

dense in W∗(H) , the natural map A(H) → B#(H) is an isometry. Hence, we may think
of A(H) as a Banach space of bounded continuous functions.

Since δ = δH : W∗(H) → W∗(H × H) is normal, it is ultraweakly continuous, and
we see that A(H) is invariant for the product of B#(H) . The Fourier algebra is a com-
mutative Banach algebra of functions on H .

Both the reduced Fourier-Stieltjes algebra and the Fourier algebra are invariant for
the usual involution

ϕ∗(t) = ϕ(t−1) for all ϕ : H → C , t ∈ H .

Namely, for ϕ ∈ Cb(H) and f ∈ L1(H) , we compute

〈ϕ∗ : f 〉 =
∫

H
ϕ(t−1) · f (t) dt =

∫
H

ϕ(t) · f (t−1) dt = 〈ϕ : f ∗〉

by unimodularity. (For non-unimodular groups, the involution has to be defined differ-
ently.) Since ( f ∗)# = ( f #)∗ , the involution leaves B#(H) and A(H) invariant, and is an
isometry. Hence, both are commutative Banach ∗-algebras.

The Fourier algebra can be described as

A(H) =
{

ξ̄ ∗ η∨
∣∣ ξ, η ∈ L2(H)

}
,

by [Eym64, th. 3.25]. I.e., A(H) is the space of coefficient functions of the regular repre-
sentation: Observe that

ξ̄ ∗ η∨(t) =
∫

H
η(t−1s)ξ(s) ds =

(
ξ | t#η

)
for all ξ, η ∈ L2(H) , t ∈ H .
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By [Eym64, lem. 3.1],∥∥ξ̄ ∗ η∨
∥∥

A(H) 6 ‖ξ‖2 · ‖η‖2 for all ξ, η ∈ L2(H) .

Hence the span of all
ϕ ∗ ϕ∗ , ϕ ∈ K(H)

and, in particular, KA(H) = A(H) ∩ K(H) is dense in A(H) . Since we have the norm
inequality ‖xy‖∞ 6 ‖xy‖A(H) , we conclude A(H) ⊂ C0(H) .

6.1.14. An A(H)-module structure on W∗(H) can be defined by

〈
α′ : α · x

〉
=
〈
α · α′ : x

〉
for all α, α′ ∈ A(H) , x ∈ W∗(H) .

Since A(H) / B#(H) , this even makes sense for α ∈ B#(H) .
Since α · α′ = (α⊗ α′) ◦ δH , the formula for the A(H)-action amounts to

α · x = (id⊗ α)(δ(x)) for all α ∈ A(H) , x ∈ W∗(H) .

This formula shows that

‖α · x‖ 6 ‖α‖A(H) · ‖x‖ for all α ∈ A(H) , x ∈ W∗(H) .

If f ∈ L1(H) , we have for all α, α′ ∈ A(H)

〈
α′ : α · f #〉 =

〈
α · α′ : f

〉
=
∫

H
α(s) · α′(s) · f (s) ds =

〈
α′ : α · f

〉
.

Hence, the module structure on W∗(H) extends the usual multiplication of functions.
Moreover, since α · f ∈ L1(H) , this shows that C∗

#(H) is A(H)-invariant. In fact, the
formula

β · a = (id⊗ β)(δ(a)) for all β ∈ B#(H) , a ∈ C∗
#(H)

defines a compatible B#(H)-module structure on C∗
#(H) .

Remark 6.1.15. Let C∗(H) be the universal enveloping C∗-algebra of L1(H) . It is called
the universal group C∗-algebra of H. It has a coproduct dual to the multiplication on
L∞(H) , defined in terms of the minimal tensor product C∗(H)⊗ι C∗(H) = C∗(H × H) ,
rather than the spatial tensor product. Its dual B(H) = C∗(H)∗ is commutative Banach
∗-algebra of bounded continuous functions containing A(H) and B#(H) as closed ideals.
In particular, W∗(H) is a B(H)-module in a compatible way.

6.1.16. If (B, d) is a Hopf C∗-algebra, an action of B on the C∗-algebra is a non-degenerate

∗-morphism δ : A →
↼
M(A, B) such that

(δ⊗ id) ◦ δ = (id⊗ d) ◦ δ .
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If B = C0(H) , one says that δ is an action of H on A . If B = C∗
#(H) , δ is called a (reduced)

coaction of H on A .

Remark 6.1.17. There is a notion of full coaction where the universal group C∗-algebra
C∗(H) of H comes in. As we have noted above,

C∗(H × H) = C∗(H)⊗ι C∗(H) ,

so in this setup one uses the minimal tensor product, rather than the spatial one. How-
ever, we are mainly interested in type I groups H , and for these, C∗(H) , and, as a quo-
tient of C∗(H) , the reduced group C∗-algebra C∗

#(H) , are of type I. In particular, they
are nuclear, so all C∗-cross norms on the algebraic tensor product with these algebras
coincide, by [Tak03, prop. 1.6].

An action of H in the sense defined above coincides with the usual definition, i.e.,
H acts by automorphisms on A . If H is Abelian, full coactions correspond exactly to
actions of the dual group Ĥ .

6.1.18. Similarly to the C∗-case, if (N, d) is a Hopf von Neumann algebra, an action of
N on M is a normal ∗-morphism δ : M → M⊗̄N , such that

(δ⊗ id) ◦ δ = (id ◦ d) ◦ δ .

If N = L∞(H) , one says that δ is an action of H on M , and if N = W∗(H) , δ is said to be
a (reduced) coaction of H on M .

6.2 Localisation, co-crossed products, and Toeplitz operators

The object of this subsection is to define a general notion of support for A(H)-module
structures which are naturally induced by coactions of H . We then define a large class
of ‘localised’ C∗-coactions, and, using the notion of (co-) crossed products by coactions,
show how these relate to ‘Toeplitz-type’ C∗-algebras.

6.2.1. Given a coaction δ of H on a von Neumann algebra M we can, as for W∗(H) ,
declare an A(H)-action by

α · x = (id⊗ α)(δ(x)) for all α ∈ A(H) , x ∈ M .

Analogously, for a coaction δ of H on a C∗-algebra A , we may define a B#(H)-action by

β · a = (id⊗ β)(δ(a)) for all β ∈ B#(H) , a ∈ A .

This is well-defined by [LPRS87, lem. 1.5].

If M is a von Neumann algebra and M∗ its predual, we can define a right Banach
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space action of M on M∗ by

〈ω o x : y〉 = 〈ω : x · y〉 for all x, y ∈ M , ω ∈ M∗ .

This is well defined, because multiplication in M is separately ultraweakly continuous.

6.2.2. Given an A(H)-module E , let

e⊥ =
{

α ∈ A(H)
∣∣ α · e = 0

}
for all e ∈ E

be the annihilator. It is an ideal e⊥ / A(H) , so we may consider the hull

supp e = suppE e = hull(e⊥) =
{
m ∈ Sp A(H)

∣∣ m ⊃ e⊥
}

= Sp
(
A(H)/e⊥

)
,

and we call this the support of e . Here, Sp A(H) is the maximal ideal space of A(H) . By
[Eym64, th. 3.34], Sp A(H) = H , so

supp e =
{

h ∈ H
∣∣ α · e = 0 ⇒ α(h) = 0 for all α ∈ A(H)

}
.

It is easy to see that for E = B#(H) , one gets the usual support of functions, and by
[Eym64, rem. 4.7], if H is a Lie group, the support in W∗(H) is just the usual support of
distributions. Similarly for Mb(H) ⊂ W∗(H) .

6.2.3. Let E be an A(H)-module. Define

KE =
{

e ∈ E
∣∣ supp e is compact

}
.

If E is normed, let K̄E denote the norm closure of KE .
A C∗-coaction δ is said to be non-degenerate if for each non-zero β ∈ B#(H) , there

exists β′ ∈ B#(H) such that
(β⊗ β′) ◦ δ 6= 0 .

Equivalently, A⊗ C∗
#(H) is the closed span of δ(A)(C⊗ C∗

#(H)) ; or even, A = K̄A , by
[Kat84, th. 5] and [Qui92] (see proposition 6.2.4 (v) below for an alternative description
of K̄A ). Hence this notion of non-degeneracy is the usual one for normed modules if
we consider the action of A(H) induced by δ .

Admittedly, this use of the term ‘non-degenerate’ is rather trite. Nonetheless, it
seems inappropriate to alter the prevalent terminology at this point, since its meaning
will always be evident from the context.

A related concept is the following one. We call E a regular A(H)-module, if

A(H)⊥ =
{

e ∈ E
∣∣ α · e = 0 for all α ∈ A(H)

}
= 0 .

We collect some basic facts on supports. The proofs are standard, compare [Eym64,
prop. 4.8] or [NT79, lem. 1.2]. We give them for the reader’s and our own convenience.
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Proposition 6.2.4. Let A(H) ⊂ J ⊂ B#(H) be a closed subalgebra, and E a normed
J-module.

(i). Let e ∈ E such that supp e = ∅ . Then α · e = 0 for all α ∈ A(H) . If E is regular,
then e = 0 . Conversely, if supp e = ∅ implies e = 0 for all e ∈ E , then E is regular.

(ii). We have

supp(α · e) ⊂ supp α ∩ supp e for all α ∈ J , e ∈ E .

(iii). Let e ∈ E . Any α ∈ KA(H) vanishing on a neighbourhood of supp e annihilates
e , i.e. α · e = 0 . Moreover, supp e is the smallest closed subset of H with this property.

(iv). We have

supp(λ · e) = supp e and supp(e + e′) ⊂ supp e ∪ supp e′

for all λ ∈ C \ 0 , e, e′ ∈ E . Equality holds in the second formula if supp e∩ supp e′ = ∅ .

(v). The sets KE and K̄E are J-submodules. If E is regular, then

KE =
{

α · e
∣∣ α ∈ KA(H) , e ∈ E

}
,

and K̄E is the closure of A(H) · E .

Proof of (i). For all h ∈ H , there is α ∈ e⊥ such that α(h) 6= 0 . Moreover, e⊥ is a closed
ideal. The Tauberian theorem [Eym64, cor. 3.38] implies that e⊥ = A(H) , as required.

For the converse, let α · e = 0 for all α ∈ A(H) . Since A(H) separates the points of
H , we have supp e = ∅ . By assumption, this gives e = 0 , so E is regular.

Proof of (ii). Let h 6∈ supp α . Take a neighbourhood h ∈ U ⊂ H such that α
∣∣
U = 0 .

There is β ∈ A(H) such that supp β ⊂ U and β(h) 6= 0 . Then

β · (α · e) = (β · α) · e = 0 .

Hence, h 6∈ supp(α · e) .

Let h ∈ supp(α · e) . For β ∈ e⊥ , we have β · (α · e) = α · (β · e) = 0 , so β(h) = 0 .
This implies h ∈ supp e .

Proof of (iii). Let α ∈ KA(H) , supp α ⊂ U , where U ⊂ H \ supp e is open. There
exists χ ∈ KA(H) such that supp χ ⊂ U and χ = 1 on supp α . Since α = α · χ , we find
α · e = α · (χ · e) . Now,

supp(χ · e) ⊂ supp χ ∩ supp e = ∅
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by part (ii). Part (i) implies that α · e = α · (χ · e) = 0 . Hence, supp e fulfils the stated
condition, and it is, moreover, manifestly closed.

Let the closed subset C ⊂ H fulfill the conditions, and take h 6∈ C . Then there is
α ∈ KA(H) , supp α ⊂ H \ C , such that α(h) 6= 0 . But α · e = 0 by the first part, so
h 6∈ supp e .

Proof of (iv). The first formula is obvious. As for the second, let α ∈ KA(H) vanish in
the neighbourhood of supp e∪ supp e′ . Then α vanishes in the neighbourhood of supp e
and supp e′ . By (iii), this implies α · (e + e′) = α · w + α · e′ = 0 . Since we may assume
that α(h) 6= 0 for any fixed h 6∈ supp e ∪ supp e′ , the conclusion follows.

If supp e ∩ supp e′ = ∅ , let α ∈ KA(H) be such that α · (e + e′) = 0 . Then

supp(α · e) = supp(α · e′) ⊂ supp e ∩ supp e′ = ∅ ,

by part (ii). Let χ ∈ KA(H) , χ · α = α . Then part (i) implies

α · e = χ · (α · e) = 0 ,

and equally α · e′ = 0 .

This implies supp e ∪ supp e′ ⊂ supp(e + e′) , by the definition of supp .

Proof of (v). By (iv) , KE is a linear subspace of E , and by (ii), a J-submodule. By
continuity, so is K̄E .

By (ii), we have KA(H) · E ⊂ KE . On the other hand, let e ∈ E , and choose a
compact neighbourhood K of supp e . There exists χ ∈ KA(H) such that χ

∣∣
K = 1 . Then,

for all α ∈ KA(H) , α− α · χ = 0 on K . By (iii), α · (e− χ · e) = (α− α · χ) · e = 0 .

Since KA(H) is dense in A(H) , we find that

α · (e− χ · e) = 0 for all α ∈ A(H) .

If E is regular, this implies e = χ · e ∈ A(H) · E . �

Proposition 6.2.5. Let (M, δ) be a von Neumann algebra coaction.

(i). The A(H)-module structure on M is regular.

(ii). For any x ∈ M , supp x∗ = (supp x)−1 .

(iii). We have the equation

supp x =
⋃

ω∈M∗

supp(ω⊗ id)(δ(x)) for all x ∈ M

where we note that (ω⊗ id)(δ(x)) ∈ W∗(H) for all ω ∈ M∗ .
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(iv). Let x, y ∈ M . If either x or y has compact support, then

supp(xy) ⊂ supp x · supp y .

Proof of (i). Let x ∈ M such that α · x = 0 for all α ∈ A(H) . Then we have

〈ω⊗ α : δ(x)〉 = 〈ω : α · x〉 = 0 for all ω ∈ M∗ .

Since the algebraic tensor product M∗ �A(H) is dense in (M⊗̄W∗(H))∗ , we conclude
that δ(x) = 0 , and hence x = 0 , δ being injective.

Proof of (ii). Let α ∈ A(H) . Note that since δ is involutive,

〈ω : (α · x)∗〉 = 〈ω∗ ⊗ α : δ(x)〉 = 〈ω⊗ α∗ : δ(x∗)〉 = 〈ω : α∗ · x∗〉 for all ω ∈ M∗

where 〈ω∗ : y〉 = 〈ω : y∗〉 . Hence, (α · x)∗ = α∗ · x∗ . Because xy∗ is an isometry on M
and and on A(H) , and α∗(s) = α(s−1) for all s ∈ H , we conclude

(
α · x = 0 ⇒ α(s) = 0

)
⇐⇒

(
α · x∗ = 0 ⇒ α(s−1) = 0

)
for all s ∈ H .

Hence our contention.

Proof of (iii). We note the formula

〈β : α · (ω⊗ id)(δ(x))〉 = 〈ω⊗ (α · β) : δ(x)〉 = 〈ω : α · β · x〉

for all α, β ∈ A(H) , ω ∈ M∗ .

Let s ∈ supp(ω ⊗ id)(δ(x)) . Then for α ∈ A(H) such that α · x = 0 , we find
α · (ω⊗ id)(δ(x)) = 0 . This implies α(t) = 0 , so t ∈ supp x . Inasmuch supp x is closed,
we infer that it contains the right hand side.

Conversely, let s 6∈ ⋃ω∈M∗ supp(ω⊗ id)(δ(x)) . Then, by proposition 6.2.4 (iii), there
is a neighbourhood U ⊂ H of s such that

α · (ω⊗ id)(x) = 0 for all ω ∈ M∗ , α ∈ KA(H) , supp α ⊂ U .

Given any such α , there is β ∈ A(H) such that α · β = α . The equation we initially stated
shows that α · x = α · β · x = 0 . Another application of proposition 6.2.4 (iii) shows that
s 6∈ supp x , proving our claim.

Proof of (iv). Because of (ii), we may assume that supp y is compact. Let αλ ∈ KA(H)
define an approximate unit in C∗

#(H) . Then, by lemma 6.2.6 (i) below,

δ(y) = limλ δ(y)(1⊗ α∨#
λ ) = limλ

∫
H
(s ∗ αλ) · y⊗ s# ds ultraweakly in M⊗̄W∗(H) ,
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where the integral converges since s 7→ (s ∗ αλ) · y has compact support by proposi-
tion 6.2.4 (iii). We deduce, for all ω ∈ M∗ and α ∈ A(H) ,

〈ω⊗ α : δ(xy)〉 = limλ

∫
H

〈
ω⊗ α : δ(x)

(
(s ∗ αλ) · y⊗ s#)〉 ds

= limλ

∫
H

〈
ω o

(
(s ∗ αλ) · y

)
⊗ α ∗ s−1 : δ(x)

〉
ds

= limλ

∫
H

〈
α :

(
ω o

(
(s ∗ αλ) · y

)
⊗ id

)
(δ(x))s#〉 ds .

Let U ⊂ H be a neighbourhood of the identity. Then there exists λ0 such that

supp αλ ⊂ U for all λ > λ0 .

In particular,
(s ∗ αλ) · y = 0 for all λ > λ0 , s 6∈ U−1U(supp y) ,

by proposition 6.2.4 (iii). Moreover, (iii) shows that

supp
(
ω o

(
(s ∗ αλ) · y

)
⊗ id

)
(δ(x))s# ⊂ (supp x)s .

Hence,
supp(ω⊗ id)(δ(xy)) ⊂ (supp x)U−1U(supp y) ,

and since ω and U were arbitrary, the claim follows from (iii). �

The following lemma was used in the proof of proposition 6.2.5 (iv), and will also be
useful in the sequel.

Lemma 6.2.6. Let δ be a coaction of H on the von Neumann algebra M .

(i). For x ∈ M and α ∈ KA(H) ,

δ(x)(1⊗ α∨#) =
∫

H
(s ∗ α) · x⊗ s# ds in M⊗̄W∗(H)

provided the integral on the right hand side is ultraweakly convergent.

(ii). For α ∈ KA(H) and β ∈ B(H) , we have the norm convergent integral∫
H
(α · β) ∗ s−1 ds =

∫
H

α(s)β(s) ds in B(H) .

(iii). For x ∈ M and α ∈ KA(H) , we have

x⊗ α# =
∫

H
δ(α ∗ s−1 · x)(1⊗ s#) ds in M⊗̄W∗(H) .

provided the integral on the right hand side is ultraweakly convergent.
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Proof of (i). For ω ∈ M∗ and β ∈ A(H) , we compute∫
H

〈
ω⊗ β : (s ∗ α) · x⊗ s#〉 ds =

∫
H

β(s)(ω⊗ s ∗ α)(δ(x)) ds

=
∫

H
β(s) 〈s ∗ α : (ω⊗ id)(δ(x))〉 ds

=
∫

H
β(s)

(
(ω⊗ id)(δ(x))α∨

)
(s) ds

=
〈
ω⊗ β : δ(x)(1⊗ α∨#)

〉
,

since (ω⊗ id)(δ(x)) ∈ W∗(H) , and

〈s ∗ γ : y〉 = (yγ∨)(s) for all γ ∈ KA(H) , y ∈ W∗(H) , s ∈ H ,

by [Eym64, prop. 3.7].

Proof of (ii). Because the integrand is norm continuous and has compact support, the
integral is normally convergent in B(H) = C∗(H)∗ . For all t ∈ H∫

H
(α · β) ∗ s−1(t) ds =

∫
H

α(ts)β(ts) ds =
∫

H
α(s)β(s) ds ,

hence the assertion.

Proof of (iii). By (ii), we have for all ω ∈ M∗ and β ∈ A(H) ,∫
H

〈
ω⊗ β : δ

(
(α ∗ s−1) · x

)
(1⊗ s#)

〉
ds =

∫
H

〈
ω⊗ (β ∗ s−1) : δ

(
(α ∗ s−1) · x

)〉
ds

=
∫

H

〈
ω :

(
(α · β) ∗ s−1) · x

〉
ds

=
〈
ω⊗ β : x⊗ α#〉 ,

proving the claim. �

Remark 6.2.7. The formulae in lemma 6.2.6 are cited in [Qui92, lem. 2.3], without proof
(although with references).

Corollary 6.2.8. Let (M, δ) be a von Neumann algebra coaction. The A(H)-submodule
K̄M @ M is a C∗-algebra. In particular, this is true of K̄W∗(H) ⊂ W∗(H) .

Proof. Let a, b ∈ KM . Then, by proposition 6.2.5 (iv), supp(a · b) ⊂ supp a · supp b , and
is hence compact, i.e. a · b ∈ KM . By continuity, this implies that K̄M is a subalgebra
of M . Since supp x∗ = (supp x)−1 for all x ∈ M , by proposition 6.2.5 (ii), K̄M is also
involutive. Since it is norm closed, it is a C∗-subalgebra of M . �

Now we define a large class of C∗-coactions which, as we shall see below, are intimately
related to C∗-algebras of Toeplitz operators.
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6.2.9. Let δ be a coaction of H on a von Neumann algebra M and E ⊂ M such that
E∗ = E . Define

C∗
E (M, δ) = C∗〈α · e

∣∣ α ∈ A(H) , e ∈ E
〉
⊂ M .

In particular, if (M, δ) = (K̄W∗(H), δH) , we write C∗
E (H) = C∗

E (M, δ) . Then

C∗
L1(H)(H) = C∗

#(H) and C∗
W∗(H)(H) = K̄W∗(H) ,

where the second statement follows from corollary 6.2.8.

Proposition 6.2.10. Assume the conditions of 6.2.9 satisfied. Then δ defines a non-
degenerate C∗-coaction on C∗

E (M, δ) .

Corollary 6.2.11. For any E = E∗ ⊂ W∗(H) , δH defines a non-degenerate C∗-coaction
on C∗

E (H) . In particular, this is the case for C∗
#(H) and K̄W∗(H) .

Proof of proposition 6.2.10. For the sake of brevity, we denote A = C∗
E (M, δ) . Let e ∈ E

and α ∈ KA(H) . Then, for all β ∈ KA(H) and b ∈ C∗
#(H) ,

δ(α · e)(1⊗ α∨#b) =
∫

H

(
(s ∗ α) · β · e

)
⊗ s#b ds ∈ A⊗C∗

#(H) .

Namely, the equation is true by lemma 6.2.6 (i). Moreover, α and β · e have compact
support, so by proposition 6.2.5 (i) and proposition 6.2.4 (i)-(ii),

s 7→ (s ∗ α) · β · e ∈ K(H, A) .

So, the integrand has compact support and is norm continuous. Hence the integral
converges in norm, and the statement is true.

Since α · e , α ∈ KA(H) , e ∈ E , generate A , and E is ∗-invariant,

δ(A) ⊂
↼
M(A, C∗

#(H)) ,

by [Bus68, th. 3.9], as required.

In order to prove that δ defines a C∗-coaction, by self-adjointness of A , C∗
#(H) and

their tensor product, it remains to show that the span of δ(A)(C⊗ C∗
#(H)) is dense in

A⊗C∗
#(H) . Let e ∈ E , α, β ∈ KA(H) , and a ∈ C∗

#(H) . We have

(α · e)(β · f )⊗ γ#b =
∫

H
δ
(
(γ ∗ s−1) · α · e

)(
(β · f )⊗ s#b

)
ds ∈ δ(A)(A⊗C∗

#(H)) .

The set of all (α · e)(β · f ) , e, f ∈ E , α, β ∈ KA(H) generates A as a Banach algebra,
because A = A · A , as follows, e.g., from Cohen’s theorem [HR79, thm. 32.50]. Simi-
larly, the span of γ#b , γ ∈ KA(H) , b ∈ C∗

#(H) , is dense in C∗
#(H) . This implies the

required density result since the right hand side of the above equation is closed under
finite products by the first part of this proof. Hence, δ is a coaction.
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The same argument, taking 1 in place of β · f in the integral, shows that the subset
δ(A)(C ⊗ C∗

#(H)) has dense span in A ⊗ C∗
#(H) . Therefore, δ is non-degenerate as a

coaction, and we have established our claim. �

Remark 6.2.12. Our technique of proof is essentially borrowed from [Qui92, lem. 2.2,
lem 2.3, cor. 2.4].

6.2.13. Recall that

WH ∈ M(C0(H)⊗C∗
#(H)) ⊂ L∞(H)⊗̄W∗(H) .

If α ∈ A(H) , then (id⊗α)(WH) ∈ L∞(H) , if fact, one computes (id⊗α)(WH) = Mα ,
the multiplication operator with symbol α .

This motivates the following definition: A unitary operator

W ∈ L(H)⊗̄W∗(H) such that W12W13(WH)23 = (WH)23W12 ,

or, equivalently, W12W13 = (id⊗δH)(W) , is called a corepresentation of A(H) .

The associated map

µ : A(H) → L(H) : α 7→ (id⊗α)(W)

is a non-degenerate ∗-representation of A(H) on the Hilbert space H .

Conversely, any such representation µ gives rise to a corepresentation via

W = (µ⊗ id)(WH) ∈ L(H)⊗̄W∗(H) ,

cf. [NT79, th. A.1 (b)].

Since H = Sp A(H) , the universal enveloping C∗-algebra of A(H) is just C0(H) ,
cf. [Dix69, 2.7.2]. A non-degenerate ∗-representation of A(H) can be uniquely extended
to one of C0(H) , by [Dix69, prop. 2.7.4].

6.2.14. Let δ be a coaction of H on the C∗-algebra A . Assume given a non-degenerate
∗-representation of A onH , and a corepresentation W ∈ L(H)⊗̄W∗(H) with associated
representation µ . Then (π, µ) is called a covariant pair of representations if

(π ⊗ id)(δ(a)) = W(π(a)⊗ 1)W∗ for all a ∈ A .

If B ⊂ L(H) is a C∗-algebra acting non-degenerately, we say that (π, µ) is a covariant
pair in B if π and µ define non-degenerate ∗-morphisms into M(B) .

The von Neumann algebra M = π(A)′′ is then the ultraweak closure of π(A) , by
non-degeneracy. If we define

δW(x) = W(x⊗ 1)W∗ for all x ∈ M ,



206 6. Irreducibility of Toeplitz C∗-algebras

then the covariance condition shows that δW(π(A)) ⊂ M⊗̄W∗(H) , and by ultraweak
continuity of δW , we see δW : M → M⊗̄W∗(H) . Then δW is clearly normal and injective,
and it satisfies the coaction identity because this is true for its restriction to π(A) .

This shows that δW is a von Neumann algebra coaction of H on M . We say that W
implements this coaction.

Proposition 6.2.15. Let (A, δ) be a C∗-algebra coaction and (π, µ) a covariant pair of
representations on H . Then

C∗(A, π, µ) = 〈π(A) · µ(A(H))〉 ⊂ L(H)

is the C∗-algebra generated by π(A)µ(A(H)) .

The proposition’s proof is preceded by a lemma.

Lemma 6.2.16. Let W ∈ L(H)⊗̄W∗(H) be a corepresentation implementing the von
Neumann algebra coaction δ on M ⊂ L(H) . If µ is the associated representation,

µ(α)x ∈ (x) and µ(α)yµ(β) ∈ (y) for all x ∈ K̄M , y ∈ M , α, β ∈ A(H) ,

where
(x) = 〈A(H) · x · µ(A(H))〉

is the norm closed linear span of all (ϕ · x)µ(ψ) , ϕ, ψ ∈ A(H) .

Proof. Let α, β ∈ A(H) , x ∈ M . We compute

µ(α)x = (id⊗α)(W(x⊗ 1)) = (id⊗α)(δ(x)W) .

There exist nets αjλ ∈ A(H) , j = 1, 2 , such that α = limλ α1λ o α#
2λ in A(H) . Then

µ(α)x = limλ(id⊗α1λ)
(
(1⊗ α#

2λ)δ(x)W
)

normally in L(H) .

Provided the integral is ultraweakly convergent, by lemma 6.2.6 (i), we have

(id⊗α1λ)
(
(1⊗ α#

2λ)δ(x)W
)

=
〈

id⊗α1λ :
∫

H

(
(α∨2λ ∗ s−1) · x

)
⊗ s# ds ·W

〉
=
∫

H

(
id⊗(α1λ o s#)

)((
(α∨2λ ∗ s−1) · x⊗ 1

)
W
)

ds

=
∫

H

(
(α∨2λ ∗ s−1) · x

)
µ(α1λ ∗ s−1) ds ,

because α1λ o s# = α1λ ∗ s−1 . If x has compact support, the integral is normally conver-
gent, proving the first assertion.

For general x , to show that µ(α)xµ(β) ∈ 〈A(H) · x · µ(A(H))〉 , we may assume
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w.l.o.g. that β ∈ KA(H) . We conclude

µ(α)xµ(β) = limλ

∫
H

(
(α∨2λ ∗ s−1) · x

)
µ
(
(α1λ ∗ s−1) · β

)
ds ∈ 〈A(H) · x · µ(A(H))〉 ,

because the function (
s 7→ (α1λ ∗ s−1) · β

)
∈ K(H, A(H)) ,

and the integral inside the limit is hence normally convergent. This proves the second
assertion. �

Proof of proposition 6.2.15. Observe that

α · π(a) = (id⊗α)(π ⊗ id)(δ(a)) = π(α · a) for all a ∈ A , α ∈ A(H) .

Hence, π(A) ⊂ M is an A(H)-submodule. By lemma 6.2.16, we find

µ(α)xµ(β)yµ(γ) ∈ µ(α)x · (y) ⊂
〈
(A(H) · x)(A(H) · y)µ(A(H))

〉
⊂ C∗(A, π, µ)

for all x, y ∈ π(A) , α, β, γ ∈ A(H) . Hence, C∗(A, π, µ) is closed under products. More-
over, lemma 6.2.16 also proves it is invariant for the involution xy∗ . Since C∗(A, π, µ) is
norm closed, it is a C∗-algebra. �

6.2.17. We have seen that WH is the corepresentation associated to

M : A(H) → L(L2(H)) : α 7→ Mα .

Hence, the coaction identity shows that (δ, 1⊗ M) is a covariant pair of representations
in A⊗K(L2(H)) for any C∗-algebra coaction (A, δ) .

By proposition 6.2.15,

A⊗δ C0(H) = C∗(A, δ, 1⊗ M) ⊂ M(A⊗K(L2(H)))

is a C∗-algebra, called the co-crossed product of A with H . From the non-degeneracy one
concludes easily that π(A) ∪ µ(A(H)) ⊂ M(A⊗δ C0(H)) .

By [LPRS87, th. 3.7], the co-crossed product A⊗δ C0(H) can be characterised by the
following universal property: (δ, 1⊗ M) is (up to isomorphism) the unique covariant
pair (π, µ) such that for any covariant pair (π′, µ′) of non-degenerate ∗-representations,
there is a ∗-morphism ϑ : C∗(A, π, µ) → C∗(A, π′, µ′) satisfying

ϑ(π(a)µ(α)) = π′(a)µ′(α) for all a ∈ A , α ∈ A(H) .

We define π′ ⊗δ µ′ = ϑ .
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Similarly, if (M, δ) is a von Neumann algebra coaction, the von Neumann algebra

M⊗̄δ L∞(H) =
[
δ(M)(1⊗ L∞(H))

]′′ ⊂ M⊗̄L(L2(H))

is the ultraweakly closed span of δ(M)(1⊗ L∞(H)) , and is called the co-crossed product
of M with H .

6.2.18. Let M ⊂ L(H) be a von Neumann algebra and δ a coaction thereon, imple-
mented by a unitary W ∈ L(H)⊗̄W∗(H) . Take E ⊂ M such that E∗ = E = E · E (we do
not assume E is a linear subspace). Define the Toeplitz C∗-algebra

TE (M, δ) = C∗〈eµ(α) f | e, f ∈ E , α ∈ A(H)〉 ⊂ L(H) .

Typically, E = {e}where e is a projection. If (M, δ) = (W∗(H), δH) and e is the projection
onto Hardy space, the Toeplitz C∗-algebra is the C∗-algebra generated by the Toeplitz
operators eM f e , as it should be.

Proposition 6.2.19. Given the conditions of 6.2.18, we have

TE (M, δ) =
〈
E ·C∗

(
C∗
E (M, δ), id, µ

)
· E
〉

=
〈
E · (id⊗δµ)

(
C∗
E (M, δ)⊗δ C0(H)

)
· E
〉

,

the closed linear span of eaµ(α) f , for e, f ∈ E , a ∈ C∗
E (M, δ) , and α ∈ A(H) .

In particular, if e ∈ M is a projection,

Te(M, δ) = e
[
(id⊗δµ)

(
C∗

e (M, δ)⊗δ C0(H)
)]

e .

Proof. Since TE (M, δ) is a C∗-algebra, Cohen’s theorem applies to it. Hence, it is gener-
ated as a Banach algebra by products

eµ(α) f µ(β)g with e, f , g ∈ E , α, β ∈ A(H) .

By lemma 6.2.16,

eµ(α) f µ(β)g ∈ e( f )g ⊂ E ·C∗(C∗
E (M, δ), id, µ

)
· E .

Inductively, we find that the Toeplitz C∗-algebra is contained in the right hand side.

On the other hand, let A be the C∗-algebra generated by µ(α)eµ(β) , α, β ∈ A(H) ,
e ∈ E . Then E · A · E ⊂ TE (M, δ) .

Let α, β, γ ∈ KA(H) . We have, by [NT79, th. A.4],

(
(α ∗ β∨) · e

)
µ(γ) =

∫
H

µ(α ∗ t−1) · e · µ
(
(β ∗ t−1) · γ

)
dt ,
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the integral being ultraweakly convergent. Since

χ : H × H → C : (s, t) 7→ β(st)γ(s) =
(
(β ∗ t−1) · γ

)
(s)

is a function in KA(H × H) by lemma 6.2.21 below, we may write χ = ∑∞
j=0 ϕj ⊗ ψj in

A(H × H) , for some ϕj, ψj ∈ KA(H) . We find that β ∗ t−1 · γ = ∑∞
j=0 ψj(t) · ϕj , so

(
(α ∗ β∨) · e

)
µ(γ) =

∞

∑
j=0

∫
H

µ(α ∗ t−1) · e · ψj(t) dt · µ(ϕj)

=
∞

∑
j=0

µ(α ∗ ψ∨j ) · e · µ(ϕj) .

Since, for all ϕ, ψ ∈ A(H) ,∥∥µ(α ∗ ψ∨) · e · µ(ϕ)
∥∥ 6

∥∥α ∗ ψ∨
∥∥

∞ · ‖e‖ · ‖ϕ‖∞

6 ‖α‖1 · ‖ψ‖∞ · ‖e‖ · ‖ϕ‖∞ = ‖α‖1 · ‖e‖ · ‖ϕ⊗ ψ‖∞ ,

the mapping ϕ ⊗ ψ 7→ µ(α ∗ ψ∨)eµ(ϕ) is continuous for the topology of C0(H × H) .
Since the series for χ converges in this topology (it being weaker than the usual one on
A(H × H) ), we conclude

(
(α ∗ β∨) · e

)
µ(γ) ∈ A .

If αλ ∈ C0(H) is an approximate unit, µ(αλ)(β · e)µ(γ) → (β · e)µ(γ) in norm for
all β, γ ∈ A(H) . This shows that as a C∗-algebra, C∗(C∗

E (M, δ), id, µ
)

is generated by
(α · e)µ(β) , α, β ∈ A(H) . Therefore,

C∗(C∗
E (M, δ), id, µ

)
⊂ A ,

and hence the conclusion. �

Remark 6.2.20. The use of the universal enveloping C∗-algebra C0(H × H) of the com-
mutative Banach ∗-algebra A(H × H) in the proof of proposition 6.2.19 is essential.

The appropriate framework to treat completions of the tensor product A(H)�A(H)
directly would be that of operator spaces.

For, if M and N are von Neumann algebras, then, in the category of operator spaces
and completely bounded maps, (M⊗̄N)∗ = M∗⊗̂N∗ , the projective tensor product of
operator spaces, by [ER00, th. 7.2.4].

Note that in [ER03], Effros-Ruan develop the theory of Hopf von Neumann algebras
in this framework.

The following lemma was used in the proof of proposition 6.2.19.

Lemma 6.2.21. Let α, β ∈ KA(H) . Then γ ∈ KA(H × H) where

γ : H × H → C : (s, t) 7→ α(st)β(s)
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Moreover, ‖γ‖A(H×H) 6 ‖α‖A(H) · ‖β‖A(H) .

Proof. For all f , g ∈ L1(H) , we have∣∣∣∣∫H

∫
H

f (s)g(t)γ(s, t) ds dt
∣∣∣∣ =

∣∣∣∣∫H

(
f ∗ (β · g)

)
(t)α(t) dt

∣∣∣∣
6
∥∥ f #∥∥ · ∥∥(β · g)#∥∥ · ‖α‖A(H)

6
∥∥ f #∥∥ · ∥∥g#∥∥ · ‖α‖A(H) · ‖β‖A(H)

=
∥∥( f ⊗ g)#∥∥ · ‖α‖A(H) · ‖β‖A(H) .

Since L1(H)� L1(H) is dense in L1(H × H) , this implies that

γ ∈ B#(H × H) and ‖γ‖B#(H×H) 6 ‖α‖A(H) · ‖β‖A(H) .

Since γ has compact support, [Eym64, prop. 3.4] entails the lemma. �

6.3 Local regularity, compact operators, and irreducibility

6.3.1. We shall now restrict attention to the von Neumann algebra M = W∗(H) , act-
ing on the Hilbert space L2(H) . Also, we assume E consists of a single projection
e ∈ W∗(H) . Then the coproduct δ = δH is a von Neumann algebra coaction, and to-
gether with the representation M : C0(H) → L(L2(H)) : f 7→ M f by multiplication
operators, forms a covariant pair (δ, M) whose associated corepresentation is the funda-
mental unitary W = WH .

Since δ is the dual coaction of the trivial action of H on C , Takesaki’s duality theorem
[NT79, th. 2.5] states that

id⊗δ M : W∗(H)⊗̄δ L∞(H) → L(L2(H))

is an isomorphism which, by [Val85, lem. 5.2.8], restricts to an isomorphism

id⊗δ M : C∗
#(H)⊗δ C0(H) → K(L2(H)) .

By proposition 6.2.19, we get the equality

Te(H) = e
[
(id⊗δ M)(C∗

e (H)⊗δ C0(H))
]
e = e 〈aMα | a ∈ C∗

e (H) , α ∈ A(H)〉 e

for the Toeplitz C∗-algebra. Hence, there is an obvious way to proving when Te(H)
contains the ideal of compact operators on the range of e .

Lemma 6.3.2. The C∗–algebra C∗
#(H) is an ideal of KW∗(H) . In particular, we may

consider KW∗(H) ⊂ M(C∗
#(H)).
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Proof. ClearlyKW∗(H) is dense inKW∗(H) andKA(H) is dense in A(H). So, consider
x ∈ W∗(H) with supp x compact and α ∈ KA(H). Let xα ∈ A(H) be the element
defined by the natural W∗(H)-module structure on its predual A(H) .

By [Eym64, prop. 3.17],

xα# = (xα)# is convolution by xα ∈ A(H) .

Since xα has compact support, it is contained inKA(H) ⊂ L1(H), so xα# ∈ C∗
#(H). Since

C∗
#(H) is involutive, it is a two-sided ideal.

As to the second statement, C∗
#(H) acts faithfully and non–degenerately on L2(H),

so M(C∗
#(G)) is faithfully represented as the idealiser of C∗

#(H) in its ultraweak clo-
sure W∗(H) , by the von Neumann density theorem and [Bus68, 3.9 theorem]. Since
KW∗(G) ⊂ W∗(G) , this entails the assertion. �

Proposition 6.3.3. Let the projection e ∈ W∗(H) be of full support supp e = H . More-
over, assume that e is a.e. locally in A(H) , i.e.

A =
{

g ∈ H
∣∣ α · e ∈ A(H) for some α ∈ KA(H) , α(g) 6= 0

}
is a thick subset of H . Then C∗

#(H) / C∗
e (H) .

Proof. Let α ∈ KA(H) , supp α ⊂ A . Let K ⊂ A be a compact neighbourhood of
supp α , and χ ∈ KA(H) , 1K 6 χ 6 1A . Then

ψ = χ · e ∈ A(H) , and infK |ψ| > 0 .

Since A(G) is Shilov-regular, there is ϕ ∈ KA(H) so that (ϕ · ψ)
∣∣
K = 1 , cf. [Eym64, proof

of prop. 4.4]. Then
α · ϕ · e = α · ϕ · χ · e = α · ϕ · ψ = α ,

whence α ∈ C∗
e (H). Since A is thick, {α ∈ KA(H) | supp α ⊂ A} is dense in L1(H) and

hence in C∗
#(H). Thus, C∗

#(H) ⊂ C∗
e (H) , and by lemma 6.3.2, it is an ideal. �

Proposition 6.3.4. Let the projection e ∈ W∗(H) have full support and be a.e. locally
contained in A(H) . Then K(eL2(H)) / Te(H) , in particular, the latter is faithfully and
irreducibly represented on e L2(H) .

Proof. By proposition 6.3.3, C∗
#(H) ⊂ C∗

e (H) , so by 6.3.1

K(L2(H)) = (id⊗δ M)(C∗
#(H)⊗δ C0(H)) ⊂ (id⊗δ M)(C∗

e (H)⊗δ C0(H)) .

Since K(eL2(H)) = e K(L2(H)) e , we have

K(eL2(H)) ⊂ e
[
(id⊗δ M)(C∗

e (H)⊗δ C0(H))
]
e = Te(H) ,
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by proposition 6.2.19. Now the irreducibility follows from Schur’s lemma, because

K(eL2(H))′ = L(eL2(H))′ = C

by the von Neumann density theorem. The representation is obviously faithful, since
we have realised Te(H) by operators on e L2(H) . �

Corollary 6.3.5. The conclusion of proposition 6.3.4 is true if H is a Lie group, e has
full support, and sing supp e is thin. In particular, it applies to the Szegö distributions
e = E f ,I associated the subgroups G f ,I of G = Aut0 B where B is an irreducible bounded
symmetric domain.

Proof. Suffices to remark that D(H) ⊂ KA(H) , by [Eym64, prop. 3.26]. �

7Asymptotics, singularities, and representations

7.1 Fourier coefficients and covariant pairs

7.1.1. In proposition 6.2.19, we have represented the Toeplitz C∗-algebra Te(H) associ-
ated to a projection e ∈ W∗(H) as a ‘corner’ of a co-crossed product. This suggests that
its representations should be constructed from covariant pairs (π, µ) of representations
π of C∗

e (H) and µ of A(H) .

Having the application to Toeplitz operators defined by the Szegö distribution E on
G and its subgroups Ge n He,c in mind, we shall be interested particularly in the case
where µ is restriction to a closed unimodular subgroup H̄ . To see how this fits into our
framework, we cite the following theorem.

Theorem 7.1.2. Let H̄ @ H be a closed unimodular subgroup.

(i). The restriction map

resH̄ : A(H) → A(H̄) : α 7→ α
∣∣

H̄

is well-defined, and an extremal epimorphism of Banach spaces. I.e., the induced map

A(H)/ ker resH̄ → A(H̄)

is an isometry.

(ii). The adjoint extH = res′H̄ coincides on Mb(H̄) with the natural injection into
Mb(H) . It is an ultraweakly continuous isometry W∗(H̄) → W∗(H) , whose image
is the set

W∗
H̄(H) =

{
x ∈ W∗(H)

∣∣ supp x ⊂ H̄
}

.
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In particular, for all x ∈ W∗
H̄(H), there exists a unique xH̄ ∈ W∗(H̄) such that

〈α
∣∣

H̄ : xH̄〉 = 〈α : x〉 for all α ∈ A(H̄) . (7.1)

Proof. This is the content of [Her73, th. A and th. 1] and [TT72, th. 3]. �

7.1.3. The equation (7.1) and [Eym64, (3.16) and prop. 3.17] show that resH̄ and its
adjoint are algebra morphisms and A(H)-module maps.

In particular, µ = resH̄ is a non-degenerate representation of A(H) on the Hilbert
space L2(H̄) . Moreover,

W f (s, t) =
(
WH,H̄

)
f (s, t) = f (s, s−1t) for all s ∈ H̄ , t ∈ H , f ∈ L2(H̄ × H)

clearly defines the associated corepresentation. Note (id⊗ extH)(WH̄) = WH,H̄ .

7.1.4. For the remainder of this subsection, we fix a closed subgroup H̄ @ H , and we
assume H and H̄ are both unimodular and of type I. Denote their reduced duals by
H∧

# and H̄∧
# . These are precisely the sets of irreducible ∗-representations of the reduced

group C∗-algebras C∗
#(H) and C∗

#(H̄) , and they extend to normal morphisms on the von
Neumann algebras W∗(H) and W∗(H̄) .

Fix projections e ∈ W∗(H) and ē ∈ W∗(H̄) , such that ē 6 e . For almost every
π̄ ∈ H̄∧

# , assume given a sequence π = (πk) ⊂ H∧
# converging to ∞ . This means that π

is eventually contained in the complement of every quasi-compact subset of H∧
# in the

Jacobson topology. Assume given a sequence of Ḡ-equivariant isometries jπ = (jπ,k)

jk = jπ,k : 〈H̄〉π̄ → 〈H〉πk
,

such that
j∗k πj(α · e) jk → π̄

(
ᾱ
∣∣

H̄ · ē
)

for all α ∈ A(H) (7.2)

in the weak topology on L(〈H̄〉π̄) .

The image π(α · e) can be thought of as a generalised Fourier coefficient of α · e . Then
the above relation could be viewed as a boundary condition on the Fourier transform
of α · e . We shall now see how such a spectral boundary condition gives rise to a repre-
sentation π of C∗

e (H) on C∗
ē (H̄) which is covariant w.r.t. the restriction representation

µ = resH̄ . Moreover, the associated representation π ⊗δ µ of the co-crossed product
restricts to a representation of Te(H) .

Proposition 7.1.5. Assume the spectral boundary condition 7.1.4 given. Then, for every
a ∈ C∗

e (H) , there exists ā = πH̄(a) ∈ C∗
ē (H̄) such that

π̄(ā) = limk j∗k π(a) jk strongly in L(〈H̄〉π̄)



214 7. Asymptotics, singularities, and representations

for a.e. π̄ ∈ H̄∧
# . This defines a surjective ∗-morphism

πH̄ : C∗
e (H) → C∗

ē (H̄) so that πH̄(α · e) = α
∣∣

H̄ · ē for all α ∈ A(H) .

The proof of this proposition requires a series of lemmata.

Lemma 7.1.6. Assume that the spectral boundary condition 7.1.4 is satisfied. Then the
convergence in (7.2) is strong, and

limk
∥∥(1− jk j∗k

)
πk(α · e)jk ψ

∥∥ = 0 for all ψ ∈ 〈H̄〉π̄ , α ∈ A(H) .

Proof. Recall that # denotes the left regular representation of H on L2(H) . Define or-
thogonal projections ek and pk on 〈H〉πk

⊗ L2(H) and 〈H〉πk
by

ek = (πk ⊗ #)(e) and pk = jk j∗k .

Set
Ak = (j∗k ⊗ 1) ek (jk ⊗ 1) and Ck = ((1− pk)⊗ 1) ek (jk ⊗ 1) .

Then
A2

k + C∗k Ck = (j∗k ⊗ 1)ek
(
(pk + 1− pk)⊗ 1

)
ek(jk ⊗ 1) = Ak .

If ϕ, ψ ∈ L2(H) , then for α = ϕ ∗ ψ∨ , we have

(u⊗ ϕ | Ak v⊗ ψ) = (jk u⊗ ϕ | ek (jk v)⊗ ψ) = (u | j∗k πk(α · e)jk v)

for all u, v ∈ 〈H̄〉π̄ . Hence,

(u⊗ ϕ | Ak v⊗ ψ) →
(
u
∣∣ π̄
(
α
∣∣

H̄ · ē
)

v
)

= (u⊗ ϕ | (π̄ ⊗ #)(ē) v⊗ ψ) ,

by (7.1). So, Ak converges weakly to a projection p = (π̄ ⊗ #)(ē) .
By Ḡ-equivariance of jk ,

p = (j∗k ⊗ 1)(πk ⊗ #)(ē)(jk ⊗ 1) 6 (j∗k ⊗ 1) ek (jk ⊗ 1) = Ak ,

and [p, Ak] = 0 . Since the product of commuting positive operators is positive, and
A2

k − p = (Ak − p)(Ak + p) , we find p 6 A2
k 6 Ak → p , so C∗k Ck = Ak − A2

k → 0 in
the weak topology. But this means that Ck → 0 in the strong topology. Analogously, the
weak convergence of A2

k implies the strong convergence of Ak , so the convergence in
(7.2) is strong. �

Lemma 7.1.7. Assume the spectral boundary condition 7.1.4 fulfilled. For all finite se-
quences (αj) ⊂ A(H),

limk j∗k
[
∏j πk

(
αj · e

)]
jk = ∏j π̄

(
αj
∣∣

H̄ · ē
)

strongly in L(〈H̄〉π̄) .
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Proof. By lemma 7.1.6, for all j , the sequences (j∗k πk(αj · p)jk ) are bounded and strongly
convergent. In particular, their product converges strongly. Moreover,

limk j∗k πk
(
α1 · e

)
(1− jk j∗k )πk

(
α2 · e

)
jk = 0 ,

so we deduce

limk ∏j j∗k πk(αk · e)jk = limk j∗k πk(α1 · e)
[
jk j∗k + (1− jk j∗k )

]
πk(α2 · e)jk ∏

j>2
j∗k πk(αj · e)jk

= π̄
(
α1
∣∣

H̄ · ē
)

limk j∗k πk(α2 · e)jk ∏
j>2

j∗k πk(αj · e)jk .

Inductively, the claim follows. �

Proof of proposition 7.1.5. Let A ⊂ C∗
e (H) be the dense ∗-algebra generated by the set

{α · e | α ∈ A(H)}. Since e∗ = e, A is the linear span of

(α1 · e) · · · (αn · e) where n ∈ N , (αj) ⊂ A(H) .

Define πH̄((α1 · e) · · · (αn · e)) = (α1
∣∣

H̄ · ē) · · · (αn
∣∣

H̄ · ē) and extend linearly. We need to
see that πH̄ is well-defined. To that end, let

∑j(α1,j · e) · · · (αnj,j · e) = ∑j(β1,j · e) · · · (βmj,j · e) .

By lemma 7.1.7, for a.e. π̄ ∈ H̄∧
#

∑j

nj

∏
i=1

π̄
(
αij
∣∣

H̄ · ē
)

= limk j∗k ∑j

nj

∏
i=1

πk(αij · e) jk

= limk j∗k ∑j

mj

∏
i=1

πk(βij · e) jk = ∑j

mj

∏
i=1

π̄
(

βij
∣∣

H̄ · ē
)

.

So πH̄ is well-defined, in fact, a ∗-morphism. Moreover, for all a ∈ A and a.e. π̄ ∈ H̄∧
# ,

we have for ā = πH̄(a) ,

‖π̄(ā)‖ 6 supk ‖πk(a)‖ 6 ‖a‖ ,

from the uniform boundedness principle. So,

‖ā‖ = ess supπ̄ ‖π̄(ā)‖ 6 ‖a‖ ,

cf. [Tak76]. By continuity, πH̄ extends to a ∗–morphism on C∗
e (H) whose image is man-

ifestly C∗
ē (Ḡ) . Moreover, πH̄ is given on A by strong limits as stated above. Since πH̄ is

a contraction, this formula extends to all of C∗
e (H) . �
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7.1.8. We introduce the following uniform notation for matrix coefficients,

∆π
u,v(g) = (u | π(g) v) for all g ∈ H , u, v ∈ 〈H〉π .

Moreover, we abbreviate ∆π
u = ∆π

u,u , ∆̄u,v = ∆π̄
u,v and ∆k

u,v = ∆πk
u,v .

Proposition 7.1.9. Assume given the spectral boundary condition 7.1.4. If C∗
ē (H̄) acts

non-degenerately on L2(H̄) , then (πH̄, resH̄) is a covariant pair of representations on
L2(H̄) for the coaction δ = δH on C∗

e (H) . The non-degeneracy condition is fulfilled if ē
has full support and is a.e. locally contained in A(H̄) .

Proof. If C∗
ē (H̄) acts non-degenerately on L2(H̄) , πH̄ is non-degenerate. If ē has full

support and is a.e. locally contained in A(H̄) , proposition 6.3.3 shows C∗
#(H̄) ⊂ C∗

ē (H̄) ,
and the former acts non-degenerately.

Let α ∈ A(H), a ∈ C∗
e (H) and b ∈ C∗

#(H). Write π = πH̄ . Then, for a.e. π̄ ∈ H̄∧
# ,

(π̄ ⊗ #)
[
(π ⊗ id)(δ(α · e)(a⊗ b))

]
= limk(j∗k ⊗ 1)[(πk ⊗ #)δ(α · e)(πk(a)⊗ b)](jk ⊗ 1) .

Let ϕ, ψ ∈ L2(H) and set β = ϕ ∗ ψ∨ . For all u, v ∈ 〈H〉πk
,

(u⊗ ϕ | (πk ⊗ #)(δ(a)) v⊗ ψ) = 〈∆k
u,v ⊗ β : δ(a)〉 = 〈∆k

u,v : β · a〉 = (u | πk(β · a) v) .

Consequently, if we take β = bϕ ∗ ψ∨ , for all u, v ∈ 〈H̄〉π̄ ,

((jk u)⊗ ϕ | (πk ⊗ #)(δ(α · e))(πk(a)⊗ b) (jk v)⊗ ψ) = (jk u | πk(αβ · e)πk(a) jk v)

which converges to(
u
∣∣∣ π̄
[(

αβ
∣∣

H̄ · ē
)
· ā
]

v
)

=
〈

∆̄u,π̄(ā)v ⊗ β
∣∣

H̄ : δ
(
α
∣∣

H̄ · ē
)〉

=
〈

∆̄u,π̄(ā)v ⊗ β : Ad(W)
(
α
∣∣

H̄ · ē⊗ 1
)〉

=
(

u⊗ ϕ
∣∣∣ (π̄ ⊗ #)

[
Ad(W)

(
α
∣∣

H̄ · ē⊗ 1
)
(π(a)⊗ b)

]
v⊗ ψ

)
where we denote W = WH̄,H and ā = π(a) . Since π and C∗

#(H̄) are non-degenerate,

(π ⊗ id)(δ(α · e)) = Ad(W)
[
α
∣∣

H̄ · ē⊗ 1
]

,

which is the required covariance condition. �

Remark 7.1.10. Observe the following consequence of proposition 7.1.9.
Assume that C∗

ē (H̄) acts non-degenerately. We noted in 6.2.14 that the covariant pair
(π, µ) = (πH̄, resH̄) defines a von Neumann algebra coaction of H on the bicommutant
π(C∗

e (H))′′ = W∗(H̄) . The relation WH̄,H = (id⊗ extH̄)(WH̄) shows that

(id⊗ α)
(
Ad(WH,H̄)(a⊗ 1)

)
= α

∣∣
H̄ · a for all α ∈ A(H) , a ∈ C∗

ē (H̄) ,
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in particular, π = πH̄ is A(H)-linear (even B#(H)-linear).

Theorem 7.1.11. Assume that the spectral boundary condition 7.1.4 is fulfilled. If the
C∗-algebra C∗

ē (H̄) acts non-degenerately on L2(H̄) , then

$H̄(eae) = ē
(
πH̄ ⊗δ resH̄

)
(a) ē for all a ∈ C∗

e (H)⊗δ C∗
#(H)

defines a non-degenerate ∗-representation of Te(H) on ē L2(H̄) . Moreover,

$H̄(Tf ) = T̄f |H̄ for all f ∈ C0(H̄)

where Tf = eM f e , T̄f = ēM f ē are the Toeplitz operators of symbol f .

The non-degeneracy condition is satisfied if ē has full support and is a.e. locally con-
tained in A(H) . In this case, $H̄ is irreducible.

Proof. We need to ascertain the well-definedness of $ = $H̄ . To that end, we abbreviate
ν = πH̄ ⊗δ resH̄ . Let a ∈ C∗

e (H) ⊗δ C0(G) , so that eae = 0 . By lemma 6.2.16 and its
proof, for all b, c ∈ C∗

e (H)⊗ C0(H) , bec ∈ C∗
e (H)⊗ C0(H) and ν(bec) = ν(b)ēν(c) .

Write a = a1 · a2 for some a1, a2 ∈ C∗
e (H)⊗ C0(H) (Cohen’s theorem). Then

ν(b)ēν(a)ēν(c) = ν(b)ēν(a1)ν(a2)ēν(c) = ν(bea1)ν(a2ec) = ν(beaec) = 0

for all b, c ∈ C∗
e (H)⊗δ C0(H) . Since ν is non-degenerate by assumption, ēν(a)ē = 0 , and

$ is well-defined.

Clearly, $H̄ is linear and involutive. Furthermore,

$(eaebe) = ēν(aeb)ē = ēν(a)ēν(b)ē = $(eae)$(ebe) for all a, b ∈ C∗
e (H)⊗δ C0(H) ,

so $ is a ∗-morphism. Since (πH̄, resH̄) is a covariant pair,

ν(aM f ) = πH̄(a)M f |H̄ for all a ∈ C∗
e (H) , f ∈ A(H) .

This implies that $(Tf ) = T̄f |H̄ for all f ∈ A(H) , and by density, for all f ∈ C0(H) .
Hence, $ is surjective onto Tē(H̄) , and in particular, non-degenerate on ē L2(H̄) . If ē has
full support and is a.e. locally contained in A(H̄) , then proposition 6.3.4 shows that $ is
irreducible. �

7.1.12. Let e be central, i.e.

Ad(g)(e) = cg∗(e) = g#eg−1# = e for all g ∈ H .

Then C∗
e (H) is Ad(H)-invariant. What is more, if we set

dg,h := Ad
(
(g, g)#(1, h)#) for all g, h ∈ H ,
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then d : H × H → Aut
(
C∗

e (H)⊗δ C0(H)
)

is an action of H × H .
If (π, µ) is a covariant pair of representations of C∗

e (H) for the coaction δ = δH , then

(
(π ⊗δ µ) ◦ d−1

g,h
)
(δ(a)(1⊗ f )) = π

(
Ad(g−1#)(a)

)
µ(g ∗ f ∗ h)

for all a ∈ C∗
e (H) , f ∈ C0(H) , since δ ◦ Ad(g#) = (g, g)# ◦ δ . Here, recall that for all

t ∈ H , (g ∗ f ∗ h)(t) = f (g−1th) . Moreover,

(π′, µ′) =
(
π ◦Ad(g−1#), µ ◦ g# ◦ h#

)
is a covariant pair of representations such that

π′ ⊗δ µ′ = (π ⊗δ µ) ◦ d−1
g,h ,

cf. [LPRS87, lem. 5.4]. This establishes a natural action of H × H on the set of non-
degenerate representations of C∗

e (H)⊗δ C0(H) . With this in mind, the proof of the fol-
lowing corollary it straightforward.

Corollary 7.1.13. Let the spectral boundary condition 7.1.4 be satisfied, and assume that
e is central and ē has full support and is a.e. locally contained in A(H̄) . Let g, h ∈ H ,

πgH̄h−1 = πH̄ ◦Ad
(

g−1#) and resgH̄h−1 = resH̄ ◦g# ◦ h# .

Then

$gH̄h−1(eae) = ē
(
πgH̄h−1 ⊗δ µgH̄h−1

)
(a) ē for all a ∈ C∗

e (H)⊗δ C0(H)

defines an irreducible ∗-representation of Te(H) on ē L2(H̄) such that

$gH̄h−1(Tf ) = T̄g∗ f ∗h|H̄ for all f ∈ C0(H) .

7.1.14. A feature of the construction of representations of the Toeplitz C∗-algebra is that
it behaves naturally under restriction to subgroups. To emphasise the dependence of $H̄

on H , we also write $H
H̄ .

Corollary 7.1.15. Let H1 @ H2 @ H be closed subgroups such that H2 satisfies the
spectral boundary condition 7.1.4 relative H , and H1 satisfies it relative H2 . Then H1

satisfies the spectral boundary condition relative H .
If the projections e1 ∈ W∗(H1) and e2 ∈ W∗(H2) have full support and are a.e. locally

contained in the Fourier algebra, then, for the representations from theorem 7.1.11,

$H
H1

= $H2
H1
◦ $H

H2
and ker $H

H2
/ ker $H

H1

holds, and similarly for their shifted versions from corollary 7.1.13.
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Proof. Clearly, we can concatenate the respectively H2- and H1-equivariant embed-
dings j2k and j1` and choose an appropriate enumeration of N2 to get H1-equivariant
embeddings of π1 ∈ H∧

1# into πm ∈ H∧
# . The convergence statement is then also trivial.

As to the formula for the representation of the Toeplitz C∗-algebras,

$H
H1

(Tf ) = e1M f |H1 e1 = $H2
H1

(e2M f |H2 e2) = $H2
H1

(
$H

H2
(Tf )

)
for all f ∈ C0(H) , by theorem 7.1.11. Hence, the inclusion of kernels. �

7.2 Supports at infinity

In the construction of representations of Te(H) from the spectral boundary condition
7.1.4, we considered limits of sequences βk · e where βk ∈ B#(H) were βk = ∆k

jk u,jk v for
fixed u, v ∈ 〈H̄〉π̄ . In order to verify the spectral boundary condition in the concrete
situation of the Szegö distributions, we need to compute the limits of βk · e . A first step
in the computation of these limits is to bound their support. Therefore, it is useful to
have general principles at hand which allow for such estimates.

7.2.1. Since C∗
#(H) is an A(H)-submodule, E = W∗(H)/C∗

#(H) is an A(H)-module.
Hence, the notion of support makes sense, and we define the singular set

sing x = suppE[x] for all x ∈ W∗(H) .

Clearly, if x is locally integrable at g ∈ H , then g 6∈ sing x . In particular, if H is a Lie
group, sing x ⊂ sing supp x .

Moreover, if β = (β j) ⊂ B(H) is a norm bounded sequence, let supp∞ β be

supp∞ β =
⋂{

E ⊂ G closed
∣∣ ∀ α ∈ KA(G) : supp α ⊂ G \ E ⇒ limj ‖α · β j‖ = 0

}
.

i.e. the smallest closed subset of H such that for all α ∈ KA(H) vanishing on a neigh-
bourhood of its complement, α · β j → 0 in norm. This is the support for the A(H)-
module

`∞(N, B(H))/c0(N, B(H)) ,

by proposition 6.2.4 (iii).

Proposition 7.2.2. Let β = (β j) ⊂ B#(G) be bounded, such that limj β j = 0 a.e. on H.
For any x ∈ W∗(H) such that x̄ = limj β j · x exists in σ(W∗(G), A(G)) ,

supp x̄ ⊂ sing x .

Proof. Boundedness and pointwise a.e. convergence β j → 0 implies convergence in
σ(B#(H), L1(H)) by the dominated convergence theorem. The σ-topologies induced by
L1(H) and C∗

#(H) coincide on bounded subsets, because L1(H) ⊂ C∗
#(H) is norm dense.

Hence, β j → 0 in σ(B#(H), C∗
#(H)) .
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If α ∈ KA(H) is such that supp α ∩ sing x = ∅ , then α · x ∈ C∗
#(H) by proposi-

tion 6.2.4 (iii). This implies

〈γ : α · x̄〉 = limj
〈

β j : γ · (α · x)
〉

= 0 for all γ ∈ A(H) ,

so α · x̄ = 0 , and the assertion follows by proposition 6.2.4 (iii). �

Proposition 7.2.3. Let β = (β j) ⊂ B(H) be bounded. For any x ∈ W∗(H) such that
x̄ = limj β j · x exists in the σ(W∗(H), A(H))-topology,

supp x̄ ⊂ supp∞ β .

Proof. Let α ∈ A(H) such that limj ‖α · β j‖ = 0. Then

‖α · x̄‖ = limj
∥∥α · β j · x

∥∥ 6 ‖x‖ · limj
∥∥α · β j

∥∥ = 0 ,

so α · x̄ = 0. The assertion follows from proposition 6.2.4 (iii). �

Proposition 7.2.4. Let H be a Lie group and β = (β j) ⊂ B(H) be smooth. If g ∈ H
is such that β j → 0 uniformly with all derivatives, locally on a neighbourhood U of g ,
then g 6∈ supp∞ β .

Proof. Let ϕ ∈ D(H) be such that ϕ(g) 6= 0 and supp ϕ ⊂ U . We have ϕ · β j → 0 in
the usual (LF) topology on D(H) . By [Eym64, prop. 3.26], this topology is finer than the
norm topology of A(H) . Hence, g 6∈ supp∞ β , by 6.2.2. �

7.2.5. Besides being useful in the computation of the limits of βk · e , as we shall see
below, the concept of singular set also has consequences for the kernels of the represen-
tations $H̄ constructed in the previous subsection.

Proposition 7.2.6. Let the spectral boundary condition 7.1.4 be verified, and assume
ē has full support and is a.e. locally contained in A(H̄) . Then C∗

#(H) / ker πH̄ , and
consequently K(ēL2(H̄)) / ker $H̄ .

Proof. The proposition is an immediate consequence of proposition 6.3.3 and the fol-
lowing lemma. �

Lemma 7.2.7. Assume the spectral boundary condition 7.1.4. If a ∈ C∗
e (H) is such that

sing a ∩ supp∞(∆k
jku) = ∅ for all u ∈ 〈H̄〉π̄

a.e. π̄ ∈ H̄∧
# and (πk) associated to π̄ , then πH̄(a) = 0 .

Proof. Fix π̄ and u ∈ 〈H̄〉π̄ , and write ā = πH̄(a) . For all α ∈ A(H) ,

〈
α
∣∣

H̄ : ∆̄u · ā
〉

=
(
u
∣∣ π̄
(
α
∣∣

H̄ · ā
)

u
)

= limk (jk u : πk(α · a) jk v) = limk 〈α : ∆k
jk u · a〉 ,
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by proposition 7.1.5. Hence,

∆̄u · ā = limk ∆k
jku · a in σ(W∗(H), A(H)) ,

where we consider W∗(H̄) ⊂ W∗(H) , by theorem 7.1.2. Since πk → ∞ in H∧
# , ∆k

jk u → 0
a.e. on H , by the Riemann-Lebesgue lemma [Dix69, prop. 3.3.8, 18.2.4].

By propositions 7.2.2 and 7.2.3,

supp(∆̄u · ā) ⊂ sing a ∩ supp∞(∆k
jku
)

= ∅ .

As a submodule of its bicommutant, C∗
ē (H̄) is a non-degenerate A(H̄)-module, by pro-

position 6.2.5 (i). Proposition 6.2.4 (i) implies that ∆̄u · ā = 0 . Thus, π̄(α · ā) = 0 for all
α ∈ A(H̄) . Since this condition is verified for a.e. π̄ ∈ H̄∧

# , we have α · ā = 0 for all
α ∈ A(H̄) . Again applying non-degeneracy, ā = 0 . �

7.3 Computation of the limits

7.3.1. We now wish to apply the theory developed above to construct representations
of the Toeplitz C∗-algebra TE(G) associated to the Szegö distribution E of the connected
automorphism group G = Aut0 B . The subgroups Ge n He,c associated to the faces of
Ω− are unimodular and of type I. While the construction of the representations for all of
the faces seems a rather ambitious project, the facial subgroups Ḡ = Ge (where c = 0 )
appear to be more tractable. We only treat this case.

We need to make some additional assumptions. First, we assume Z is classical. Then
we have constructed embeddings of the discrete series of Ḡ = Ge , in corollary 5.2.25.
(For the holomorphic discrete series, we have done this general, cf. proposition 4.3.4.)
Assuming that the Z(ḡ)-finiteness condition in corollary 5.4.6 can always be satisfied,
we have embeddings of all parabolic Q-series, and therefore, of a thick subset of the
reduced spectrum of Ḡ∧

# .
We need to see that these embeddings give rise to an appropriate spectral boundary

condition. To do so, we use the following idea: If the sequences βk · E we shall be con-
sidering lie in a sequentially compact set, to show that they converge to some prescribed
limit, it would sufficient to see that all convergent subsequences have the same limit. To
apply this idea, we establish the following compactness result.

Proposition 7.3.2. If H is countable at infinity, then the unit ball B(W∗(H)) is a compact
metrisable space in the σ(W∗(H), A(H))-topology, in particular, sequentially compact.

Proof. The unit ball B(W∗(H)) is a σ(W∗(G), A(G))-compact subset of W∗(H) by the
Alaoğlu theorem. We need to prove metrisability of B(W∗(H)) , and this follows from
the separability of A(H) . Suffices to validate the latter.

Since H is countable at infinity, L2(H) contains a dense countable-dimensional sub-
space and is hence ‖xy‖2-separable. By [Eym64, th. 3.25], A(H) consists of the elements
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ϕ ∗ ψ∨ with ϕ, ψ ∈ L2(H), and∥∥ϕ ∗ ψ∨
∥∥

A(H) 6 ‖ϕ‖2 · ‖ψ‖2

by [Eym64, lem. 3.1]. Hence A(H) is ‖xy‖A(H)-separable. �

Remark 7.3.3. The proposition is contained in [Mia99, proof of th. 3.7].

7.3.4. Fix a facial subgroup Ḡ = Ge and for π̄ in a thick subset of Ḡ∧
# , let jπ̄

k denote the
embeddings of π̄ which exist under the assumptions of 7.3.1. For u ∈

〈
Ḡ
〉

π̄
, let ∆π̄,k

u be
the associated sequence of coefficient functions.

Lemma 7.3.5. Up to a set of set of measure 0 , for the representations (πk) associated to
π̄ and jk = jπ̄

k , we have
limk j∗k πk(E)jk = κ ∈ {0, 1}

where κ = 1 or 0 depending on whether π̄ is contained in H2(Γ̄) or not.

Proof. Any weak accumulation point of j∗k πk(E)jk is Ḡ-equivariant and hence scalar, by
Schur’s lemma. In particular, it suffices to check equality on a single vector. By construc-
tion of the embeddings, πk is a holomorphic discrete series representation depending on
whether this is the case of π̄ or not. Hence the assertion. �

7.3.6. Let α ∈ A(G) and µ be a sublimit of ∆Λ̄,k
u · E where ∆Λ̄,k

u is associated to the
holomorphic discrete series πλ̄ of Ḡ .

If u ∈ FΛ̄ , the submodule of constant functions in
〈

Ḡ
〉

πλ̄
= O2(B̄, FΛ̄) , propo-

sition 4.4.2 and proposition 7.2.4 imply that supp∞(∆Λ̄,k
u
)
⊂ KḠK . If we had esti-

mates on the singular support of E , improving on proposition 3.4.7 in such a way that
sing supp E ∩ (K · Ḡ · K) = Ḡ , then proposition 7.2.2 would imply that supp µ ⊂ Ḡ ,
because of the Riemann-Lebesgue lemma [Dix69, prop. 3.3.8, 18.2.4].

Then by the following device, this could be extended to all vectors v ∈
〈

Ḡ
〉

πλ̄
. For

any element g ∈ Ḡ ,

cg∗(E) = E and ∆Λ̄,k
u ◦ cg−1 = ∆Λ̄,k

πλ̄(g) u for all u ∈ 〈G〉πk
,

so

supp µ ⊂ supp∞(∆Λ̄,k
v
)
∩ sing E ⊂

⋃
g∈Ḡ

gKḠKg−1 ∩ sing E ⊂ Ḡ for all v ∈
〈

Ḡ
〉

πλ̄
,

by proposition 6.2.4 (iv).

At this point, we do not have complete information on the singular set of E , so that
we can, as yet, not complete this argument (compare, however, the discussion of the
rank one case in part IV). Moreover, we need to have similar information for all series of
representations.
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To be precise, let, for a.e. π̄ ∈ Ḡ∧
# , a sequence (πk) ⊂ G∧

# be given, and assume that
for any u ∈

〈
Ḡ
〉

π̄
, and any weak sublimit µ ∈ W∗(G) of the sequence ∆k

u · E , we have
supp µ ⊂ Ḡ . We shall call this the support condition for Ḡ .

Theorem 7.3.7. Let the additional assumptions 7.3.1 and the support condition 7.3.6 be
given. Denote by Ē = Ee the Szegö distribution of Ḡ = Ge . The spectral boundary
condition,

π̄
(
α
∣∣
Ḡ · Ē

)
= limk j∗k πk(α · E)jk weakly for all α ∈ A(H)

and a.e. π̄ ∈ Ḡ∧
# , is verified.

Proof. We note that for u ∈
〈

Ḡ
〉

π̄
,

(
u
∣∣ π̄
(
α
∣∣
Ḡ · Ē

)
u
)

=
〈
α : ∆̄π̄

u · Ē
〉

,

so it suffices to prove

∆̄π̄
u · Ē = limk ∆π̄,k

u · E in σ(W∗(G), A(G)) .

For a.e. π̄ ∈ Ḡ∧
# , and all u ∈

〈
Ḡ
〉

π̄
, choose sublimits µ̄π̄,u of ∆π̄,k

u · E . Since ∆π̄,k
u

restricts to ∆̄π̄
u on Ḡ , we have supp µ̄π̄,u ⊂ supp ∆̄π̄

u , and there exist distributions νπ̄,u

such that µπ̄,u = ∆π̄
u · νπ̄,u .

We have
∆̄π̄

u · ∆̄π̄
v · νπ̄,u = limj limi ∆π̄,i

u · ∆π̄,j
v · E ,

and, symmetrically,
∆̄π̄

u · ∆̄π̄
v · νπ̄,v = limj limi ∆π̄,i

u · ∆π̄,j
v · E ,

where we omit the choice of subsequences from the notation. By corollary 7.3.11 below,
the double limits are equal, so

∆̄π̄
u · ∆̄π̄

v · νπ̄,u = ∆̄π̄
u · ∆̄π̄

v · νπ̄,v ,

and νπ̄,u = νπ̄,v on supp ∆̄π̄
u ∩ supp ∆̄π̄

v . Letting u and v vary, we find that νπ̄ = νπ̄,u ,
independent of u . Since the embeddings jπ̄

k are Ḡ-equivariant, we find that νπ̄ is a Ḡ-
central distribution.

By the same device, ν = νπ̄ is independent of π̄ . But then, for u in the Gårding space
of π̄ , the Fourier coefficient

(u | π̄(ν) u) =
〈
∆̄π̄

u : ν
〉

makes sense. By lemma 7.3.5, it equals ‖u‖2 or 0 according to whether π̄ is a holomor-
phic discrete series representation or not. But then ν coincides with Ē , since their Fourier
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transforms coincide. Hence, the limits of all convergent subsequences are equal, so the
limits exists and are of the required form. �

Corollary 7.3.8. For any facial subgroup Ge @ G and g, h ∈ G , there exists an irre-
ducible ∗-representation

$gGeh−1 : TE(G) → TEe(Ge) so that $gGeh−1(Tf ) = Ee Mg∗ f ∗h|Ge E
e for all f ∈ C0(G) .

Moreover, if Ij =
⋂

g,h∈G ker $gG
ej h−1 for some rank j tripotent ej ∈ Z , then

K(H2(Γ)) / I0 / I1 / · · · / Ir / TE(G)

is an ascending chain of ideals.

Proof. Apply corollaries 7.1.13 and 7.1.15 and proposition 7.2.6 to theorem 7.3.7. �

7.3.9. In the proof of theorem 7.3.7, we used an exchange of limit theorem. To complete
the proof, we need to establish this technical device. To that end, we fix some notation.
In a normed vector space, the ball is denoted B , and the sphere by S . The set of elements
in a subset A ⊂ A(H) which are of positive type will be abbreviated A+ . Moreover, for
a compact subset L ⊂ H , we let

AL(H) =
{

α ∈ A(H)
∣∣ supp α ⊂ L

}
.

Proposition 7.3.10. Let L ⊂ H be compact, and (xj) ⊂ B(W∗(H)) , (αi) ⊂ S(AL(H))+

be sequences. Then
limi limj

〈
αi : xj

〉
= limj limi

〈
αi : xj

〉
whenever the iterated limits exist.

Proof. The set E = B(W∗(H)) is a compact Hausdorff space in the σ(W∗(H), A(H))-
topology. To prove the proposition, by [Gro52, th. 2, cor. 2], it suffices to prove that the
set A = S(AL(H))+ is relatively compact in C(E) , endowed with the topology of simple
convergence.

To that end, observe that since the elements of A are linear, simple convergence on
points of E is equivalent to point-wise convergence on W∗(H) . Furthermore, the set
L(W∗(G), C) of linear forms is closed in CW∗(H) , so limits of nets in A are linear. Also,
Tychonov’s theorem implies that B(C)E is compact, so A is relatively compact in CE .

Remains to prove that the simple closure of A lies in C(E) . Let (uα) ⊂ A be a
net converging point-wise on E to u ∈ B(C)E ∩ L(W∗(H), C) . The net (uα) is norm
bounded in A(H) , and ‖xy‖A(H) coincides on A(H) with the dual norm of W∗(H) be-
cause ‖xy‖W∗(H) is the dual norm of A(H) by [Eym64, th. 3.10]. Thus, we may apply the
Banach-Steinhaus theorem [Trè67, th 33.1, cor.], and u is norm-continuous on W∗(H) .
In particular, it is norm–continuous on C∗

#(H), so u ∈ B#(H) ⊂ B(H) .
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The point evaluation have norm 1 , so H ⊂ E . For any choice of finite sequences
(zi) ⊂ C and (gi) ⊂ H ,

n

∑
i,j=0

z̄izju(g−1
i gj) = limα

n

∑
i,j=0

z̄izjuα(g−1
i gj) > 0 .

Thus u is of positive type, and ‖u‖B(H) = u(1) = limα uα(1) = 1 . Hence, u ∈ S(B(H))+ .
On bounded subsets, the topology σ(B(H), C∗(H)) is weaker than the topology of point-
wise convergence, and AL(H) is σ(B(H), C∗(H))-closed by [GL81, proof of th. B1]. We
conclude u ∈ A = S(AL(H))+ . This proves the assertion. �

Corollary 7.3.11. Let a ∈ W∗(H) , x, y ∈ W∗(H̄) , β̄, γ̄ ∈ S(B(H̄))+ and sequences
(βi), (γj) ⊂ S(B(H))+ be given. Assume that

(α · βi)
∣∣

H̄ → α
∣∣

H̄ · β̄ and (α · γj)
∣∣

H̄ → α
∣∣

H̄ · γ̄

in A(H̄) for all α ∈ A(H) , and

x = limi βi · a and y = limj γj · a

in σ(W∗(H), A(H)) . Then

γ̄ · x = limj limi βi · γj · a = limi limj βi · γj · a = β̄ · y .

Proof. Note that A(H) / B(H) . For α ∈ A(H) , by (7.1),

〈
α
∣∣

H̄ : γ̄ · x
〉

= limj
〈
α · γj : x

〉
= limj limi

〈
α : βi · γj · a

〉
.

Similarly, the other double limit exists. If α ∈ S(A(H))+ has compact support L , then
supp(α · γj) ∪ supp(α · βi) ⊂ L . Moreover, α · βi and α · γj are of positive type. Since
the norm of a function of positive type is given by evaluation at 1 , both products are
contained in S(AL(H))+ . By proposition 7.3.10, the double limits are equal on α . By po-
larisation and [Eym64, prop. 3.4], the set S(KA(H))+ spans a dense subspace of A(H) ,
so we have equality on A(H) . Since resH̄ is surjective by theorem 7.1.2, the assertion
follows. �
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A special case, a general strategy

In this final part, we develop, in section 8, the theory established in general above,
for the important special case of the unit disc. Here, slightly improved results on the
local and harmonic analysis of the group allow us to complete the construction of the
composition series of TE(G) with the help of the methods we have introduced before-
hand. The upshot is that even in this case, the composition series is longer than for the
Toeplitz C∗-algebra defined on the Hardy space of underlying symmetric domain, the
unit disc, itself.

In section 9, we elaborate on the points where our results for the general case are
incomplete or preliminary, and give detailed indications on the further steps that have
to be undertaken to complete our programme, and on the required methods.

8The case of the unit disc

We give a complete account of the theory of the Toeplitz C∗-algebra TE(G) for the case of
the unit disc, where G = P SU(1, 1) . The results were partially obtained in the master’s
thesis [All99]. They were completed and published in [AU02], in an ad hoc form, tailored
to the group SL(2, R) , which is isomorphic to the connected double cover SU(1, 1) of G .
Our present development of the rank one case is perhaps better adapted to the general
theory we have presented in the previous chapters.

8.1 Geometry of the minimal cone

8.1.1. The unit disc B =
{

z ∈ C
∣∣ |z| < 1

}
is the bounded symmetric domain corre-

sponding to the simple JB∗-triple Z = C , with triple product given by

{uv∗w} = uv̄w for all u, v, w ∈ Z = C .

In particular, the set of all non-zero tripotents (which are all primitive) is just the unit
circle, as it should be, because the Shilov boundary ∂1B equals the entire boundary for
rank 1 .

The automorphism group of B is P SU(1, 1) = SU(1, 1)/Z2 , where

SU(1, 1) =
{( α β

β̄ ᾱ

)
∈ C2×2 ∣∣ |α|2 − |β|2 = 1

}
,
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and the action is given by Möbius transformations. Its Lie algebra is

gR = su(1, 1) =
{( α β

β̄ −α

) ∣∣ α ∈ iR , β ∈ C
}

.

We relate the Jordan theoretic viewpoint to this matrix realisation. Consider the one-
parameter group kt =

(
eit/2 0

0 e−it/2

)
∈ SU(1, 1) . We compute

d
dt

kt(z)
∣∣
t=0 =

d
dt

eit · z
∣∣
t=0 = iz ,

so the generator is

iz
∂

∂z
=

(
i
2 0
0 − i

2

)
.

Similarly, consider the one-parameter group at =
(

cosh t sinh t
sinh t cosh t

)
. Then

d
dt

at(z)
∣∣
t=0 =

d
dt

cosh t · z + sinh t
sinh t · z + cosh t

∣∣
t=0 = 1−

(cosh t · z + sinh t
sinh t · z + cosh t

)2∣∣
t=0 = 1− z2 ,

so its generator is

ξ−e = (1− z2)
∂

∂z
=

(
0 1
1 0

)
for the tripotent e = 1 . Hence, aR = R ·

(
0 1
1 0

)
, so one calculates easily that the restricted

root spaces have the respective generators X+ = 1
2 ·
( i −i

i −i

)
and X− = 1

2 ·
( −i −i

i i

)
.

These matrices generate the one-parameter subgroups

n+
t =

(
1 + it

2 − it
2

it
2 1− it

2

)
and n−t =

(
1− it

2 − it
2

it
2 1 + it

2

)
.

One then computes

d
dt

n+
t (z)

∣∣
t=0 = − i

2 · (z− 1)2 and
d
dt

n−t (z)
∣∣
t=0 = − i

2 · (z + 1)2 ,

so X±
e = X± for e = 1 . Now, we can determine Ω− explicitly.

Lemma 8.1.2. For Z = C , the cone Ω− is

Ω− =
{

ξ =
( ir z

z̄ −ir
) ∣∣ r > 0 , det ξ = r2 − |z|2 > 0

}
,

the three-dimensional forward light cone.

Proof. Recall from theorem 2.1.27 that Ω− \ 0 = R> · co
(
Ad(K)(X+

e )
)

where e is an
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arbitrary primitive tripotent. So, we may take e = 1 . We compute

Ad(kt)(X+
e ) =

1
2
·
(

i −ieit

ie−it −i

)
for all t ∈ R .

As t varies, −ieit runs through all points of the circle. Since B is the convex hull of its
extremal points, we find

co
(
Ad(K)(2 · X+

e )
)

=
{

ξ =
( i z

z̄ −i
) ∣∣ z ∈ B

}
.

Note that det ξ = 1− |z| > 0 if z ∈ B . Hence Ω− is contained in the right hand side,
and the converse is also true, by dividing with r > 0 . �

8.1.3. We note kR = tR = z(kR) for the unit disc. Hence, it is obvious that

ω− = R> · iz
d
dz

= R> ·
(

i
2 0
0 − 1

2

)
= ω+ ,

since this cone is manifestly self-dual. Hence, Ω+ = Ω− .

The faces of these cones are easy to determine. For the zero flag 0 one gets, as usual,
the equality F±0,∅ = Ω± . For f = (e = 1 > 0) , we have Z0(e) = 0 , and Z1(e) = Z = C .
Hence, F±(1,0),{1} = iΩ1(e) = R> · X+

e . This is an extremal ray that generates a maximal
nilpotent subalgebra of (the Iwasawa nR component) of gR . Finally, if f = (1, 0), we
find F±(1,0),∅ = 0 . At any rate, Ω− has non-trivial faces, unlike B itself.

8.1.4. It is obvious that any orbitO ⊂ Ω−◦ intersecting R> · iz ∂
∂z is G-isomorphic to the

underlying domain B = G/K , in this case, to B . From the above considerations, we can
describe this isomorphism explicitly.

Lemma 8.1.5. Define a map

Φ : Ω−◦ → B : ξ = 1
2 ·
( ir z

z̄ −ir
)
7→ i

√
det ξ−r

z .

Then Φ is G-equivariant, and its restriction to any orbit is a bijection.

Proof. We observe that G = KNK , and that K fixes z(kR) = R · iz ∂
∂z and 0 ∈ B . Hence

it suffices to apply elements ktn+
x . We have ktn+

x (0) = eit · ix
ix−2 . On the other hand,

Ad(ktn+
x )
(

iz
∂

∂z

)
=

ir
2
·
(

1 + x2

2 eit ·
(
ix− x2

2

)
e−it ·

(
ix + x2

2

)
−1− x2

2

)
.

Under Φ , this element maps to

ix2

2

e−it · x(ix−2)
2

= eit · ix
ix− 2

,
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proving the assertion. �

8.2 Singularities and asymptotics

8.2.1. For the case of the unit disc, the Szegö kernel has been known explicitly for a
while. In fact, a formula is given by Gel’fand-Gindikin [GG77]. Ol’shanskiı̆ [Ol’95] has
determined it explicitly for the classical domains of type Ip,q and IIIn . The unit disc is, of
course, a special case.

The formula for the unit disc is easy to describe. For γ ∈ Γ◦ = G · exp(iΩ−◦) , any
representative of γ has a unique eigenvalue λ of modulus |λ| < 1 . This eigenvalue is
uniquely determined by γ , up to multiplication by ±1 . By abuse of notation, we write
q(γ) = λ . Then

K(γ) =
q(γ)2

(1− q(γ))3(1 + q(γ))
=

q(γ)2

(1− q(γ)2)(1 + q(γ)2)
for all γ ∈ Γ◦ .

Note that the right hand side of this formula is well-defined, since it is independent of
factors ±1 in q(γ) .

Denote by N ⊂ G = P SU(1, 1) the unipotent cone, consisting of all elements of G
whose eigenvalues (as elements of the adjoint group) are all equal to 1 . Since all Ad(g) ,
g ∈ G , are special endomorphisms, this means that if Ad(g) has only one eigenvalue
λ , it satisfies λ2 = 1 . Because λ = −1 is excluded, this implies λ = 1 . Hence, N
coincides with the set of g ∈ G such that Ad(g) has only one eigenvalue, put differently,
the characteristic polynomial is not irreducible, and therefore distinct from its minimal
polynomial.

Since G contains no non-trivial singular semi-simple elements, N coincides with the
set of all singular elements in G .

Lemma 8.2.2. The function q locally has smooth extensions to G∗ = G \ N . Hence, the
Szegö distribution E is regular on G∗ , and sing supp E ⊂ N = G \ G∗ is thin.

Proof. The function ∆ that associates to g the discriminant of the characteristic poly-
nomial Ad(g) is polynomial, and G∗ is the complement of its zero set. For any g ∈ G∗ ,
there exists a connected neighbourhood U of g in Γ such that ∆(U) is contained in a
simply connected region of C \ 0 .

The characteristic polynomial of Ad(g) is quadratic, so wherever a smooth square
root

√
∆ can be chosen, eigenvalues of Ad(g) can be chosen in a fashion depending

smoothly on g . Thus, a smooth extension of q exists on G∩U , and by the above formula
for the Szegö kernel K , the formula for the Szegö distribution in proposition 3.1.13, and
dominated convergence, E is smooth on G ∩U . �

8.2.3. We consider now the embedding of reduced spectra for the subgroups of G asso-
ciated to the faces of the minimal cone Ω− . Associated to the trivial face F−(1,0),∅ is the
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trivial subgroup Ḡ = G(1,0),∅ = 1 . Its sole irreducible unitary representation is the triv-
ial representation on C , also equal to L2(Ḡ) = H2(Γ̄) . The relative Szegö distribution is
in this case simply δ , the Dirac distribution supported by Ḡ = 1 .

The embedding of the ‘holomorphic discrete series’ of Ḡ = 1 , consisting of C , cor-
responds to the choice of the constant 1 = 1Λ in the Bergman space O2

Λ = O2(B, CΛ) .
Then propositions 4.4.2 and 7.2.4 show that supp∞(∆Λ) ⊂ K , where

∆Λ(g) = (1Λ | πλ(g) 1Λ) for all g ∈ G .

The non-trivial face F−(1,0),{1} = R> · X+ , is associated to the subgroup N , the Iwa-
sawa N component of G with its canonical positive system. This is the image of the one-
parameter group n+

t in G . The unitary representations of N are the characters eiν where
ν ∈ n∗R is determined by its value ν(X+) , which we also denote by the letter ν . All of
these are weakly contained in L2(N) = L2(R) , as follows from the Plancherel theorem
for the Euclidean Fourier transform. The Plancherel measure is absolutely continuous
w.r.t. Lebesgue measure on N∧ ∼= R , so we may omit finitely many representations
when constructing embeddings.

An asymptotically equivariant embedding of the space Cν corresponding to the char-
acter eν is constructed in the following manner. We identify the dual g∗R with gR . Any
representation of G gives rise to co-adjoint orbit, which identifies with an adjoint orbit.

To the holomorphic discrete series representation πλ on the Bergman space O2
Λ ,

there corresponds via the moment map

µ : πλ(G) 1Λ → g∗R defined by 〈X : µ(ϕ)〉 = −i · (ϕ | πλ(X) ϕ)

the adjoint orbit OΛ through Λ · z ∂
∂z , where we identify Λ ∈ it∗R with its value on the

element 2 · e � e∗ =
(

1 0
0 −1

)
∈ itR , e = 1 (the positive coroot). Then OΛ is precisely the

set of all ξ ∈ Ω− such that det ξ = Λ2

4 .

An embedding of Cν into O2
Λ corresponds hence to the choice of a point on the orbit

OΛ . We construct such a choice by considering ν as an element of R · X+ , and consid-
ering the intersection of ν + R · X− with Ω− .

The natural generator of R · X− is in fact −X− ∈ Ω− . Hence we are searching for
t > 0 such that νX+ − tX− ∈ OΛ , i.e.

Λ2

4
= det

(
νX+ − tX−) = tν .

We get t = Λ2

4ν for ν > 0 . For this value of t ,

zν,Λ = Φ
(
νX+ − tX−) =

Λ− 2ν

Λ + 2ν
.
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Hence, the embedding Cν → O2
Λ is given by associating to 1 ∈ Cν the element fν,Λ ∈ O2

Λ

determined by

fν,Λ(z) = B(zν,Λ, zν,Λ)−Λ · B(z, zν,Λ)Λ 1Λ for all z ∈ B .

Here, the first factor normalises this vector in O2
Λ . We need to compute this quantity.

Lemma 8.2.4. We have

fν,Λ(z) =
(

(Λ + 2ν)2

8νΛ

)Λ

·
(

1− z · Λ− 2ν

Λ + 2ν

)Λ

for all z ∈ B .

Moreover, the matrix coefficient ∆Λ
ν (g) = ( fν,Λ | πλ(g) fν,Λ) is given by

∆Λ
ν (g−1) = (8νΛ)−Λ ·

(
(β̄− β)(Λ2 − 4ν2) + ᾱ(Λ + 2ν)2 − α(Λ− 2ν)2)Λ

whenever g is represented by
( α β

β̄ ᾱ

)
∈ SU(1, 1) .

Proof. As a linear map, B(u, v)z = z− 2uv̄z + u2v̄2z = (1− uv̄)2z . Hence, as an element
of KC , B(u, v) is represented in the double cover SL(2, C) � GC , by the matrix

B(u, v) =
(

1−uv̄ 0
0 (1−uv̄)−1

)
for all u, v ∈ B .

Recalling that we have identified Λ with its value on 2 · e � e∗ =
(

1 0
0 −1

)
, we find that

B(u, v)Λ = (1− uv̄)Λ . Hence, the first formula.
Up to a normalising factor, BΛ equals the kernel function KΛ of O2

Λ . Thus,

∆Λ
ν (g−1) = c · g′(zν,Λ)−ΛB(g(zν,Λ), zν,Λ)Λ = c · (β̄zν,Λ + ᾱ)Λ ·

(
1− αzν,Λ + β

β̄zν,Λ + ᾱ
· zν,Λ

)Λ

,

for some constant c . Since the value of ∆Λ
ν at the identity is one, this constant is

c = (1− z2
ν,Λ)−Λ =

(
(Λ+2ν)2

8νΛ

)Λ
.

The assertion follows. �

8.2.5. We note that since we have identified Λ with its value on the positive (non-
compact) co-root, Harish-Chandra’s square integrability criterion (theorem 4.2.14) states
that Λ should be a negative integer < −1 .

The normaliser of N in G = P SU(1, 1) is AN (since M = ZK(aR) = 1). We define a
covering of G \ AN by

Uε(N) =
{

g−1 ≡
( α β

β̄ ᾱ

)
(mod Z2)

∣∣ ∣∣α− ᾱ + β− β̄
∣∣ > ε

}
.

We can estimate the rate of decay of ∆Λ
ν as Λ → −∞ on these sets.
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Lemma 8.2.6. Let ε > 0 . On compact subsets of Uε(N) , ∆Λ
ν → 0 (Λ → −∞), uniformly

with all derivatives. In particular, supp∞(∆Λ
ν ) ⊂ AN .

Proof. We have

(
∆Λ

ν (g−1)
)1/Λ =

Λ
8ν
·
(

β̄− β + ᾱ− α
)
+

ν

2Λ
·
(

β− β̄ + ᾱ− α
)
+

1
2
· (α + ᾱ) .

The modulus of the last two summands is bounded by a constant C , independently of
Λ , and g in a compact subset of Uε(N) . Then

|∆Λ
ν (g−1)|1/Λ >

|Λ|
8ν

· ε− C > 1

for sufficiently large |Λ| . Since Λ → −∞ , ∆Λ
ν vanishes exponentially in the limit. Along

the lines of the proof of proposition 4.4.2, it can be seen that derivatives introduce only
factors of polynomial decay. Hence, the result. �

8.2.7. So far, we have only treated the case ν > 0 .
For ν < 0 , one gets an analogous embedding of Cν into the anti-holomorphic discrete

series, associated to the positive system −∆++ . It is realised on the conjugate space of
O2

Λ , so it quickly turns out that the corresponding sequence of matrix coefficients ∆Λ
ν

(ν < 0) is simply the conjugate of ∆Λ
−ν .

The next issue is that the constructed embedding is in fact asymptotically equivari-
ant. Point-wise, for g represented by n+

x , we find

∆Λ
ν (g−1) =

(
1− iνx

Λ

)Λ
→ e−iνx = eiν(g−1) (Λ → −∞) ,

as it should be. We wish to strengthen this convergence. To that end, in the following
lemma, we tacitly identify n+

x with its image in G .

Lemma 8.2.8. The inclusion jν,Λ : Cν → O2
Λ : 1 7→ fν,Λ is asymptotically equivariant in

the sense that
j∗ν,Λπλ(n)jν,Λ − eiν(n) → 0 strongly on Cν

for all n ∈ N . Moreover,

α · ∆Λ
ν

∣∣
N → α · eiν in A(N) for all α ∈ A(N) .

Proof. We calculate∥∥∥(πλ(n+
x )− eiνx) fν,Λ

∥∥∥2

O2
Λ

= 2
(
1− Re(eiνx∆Λ

ν (n+
−x))

)
→ 0 (Λ → ∞) .

This proves the first assertion.
As for the second, the restriction mapping resN : A(G) → A(N) is surjective by

theorem 7.1.2. Hence, for α ∈ A(N)+ , we may assume that α is the restriction of some
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element of A(G) . Hence, α · ∆Λ
ν

∣∣
N ∈ A(N) . We may assume α(1) = 1 . Then the

sequence α · ∆Λ
ν

∣∣
N ∈ S(A(N))+ .

The convergence statement is true point-wise. By [GL81, th. B2], it remains valid in
norm. �

8.3 Construction of a series of ideals

8.3.1. First, we consider the problem of irreducibility of the Toeplitz C∗-algebras. We
have already noted that for the trivial subgroup G(1,0),∅ = 1 , the Szegö distribution is
simply E(1,0),∅ = δ . On N = G(1,0),{1} , the Hardy space the classical Hardy space of
the upper half plane, isomorphic to L2(R>) . Hence, the Szegö distribution E(1,0),{1} is
the Fourier transform of the characteristic function of R> . Hence the following result is
immediate.

Proposition 8.3.2. The Toeplitz C∗-algebras TE(G) , TN(E(1,0),{1}) , and T1(E(1,0),∅) = C

contain the ideal of compact operators, and hence, act irreducibly on their respective
Hardy spaces.

Proof. This is proposition 6.3.4, applied to lemma 8.2.2. �

8.3.3. The next step is to construct the representations associated to the faces. We first
treat the case of the trivial subgroup, associated to the face F−1,0 = 0 .

Proposition 8.3.4. For every g ∈ G , there is a character

$g : TE(G) → C determined by $g(Tf ) = f (g) for all f ∈ C0(G) .

Proof. We have seen in 8.2.3 that supp∞(∆Λ) ⊂ K , and sing E ⊂ N , by lemma 8.2.2.
Since K contains no non-trivial unipotent elements, all sublimits of ∆Λ · E have support
contained in the trivial subgroup 1 . Hence, the assertion follows from theorem 7.3.7 and
corollary 7.1.13. �

8.3.5. Now to the case of the subgroup N , associated to the face F−(1,0),{1} .
We note that the only point where the equivariance of the embeddings in the spectral

boundary condition was used in the construction of the representations in theorem 7.1.11
was the passage from weak to strong convergence in the proof of lemma 7.1.6. For
the group N , this is however trivial, since Cν is finite-dimensional. Hence, the same
technique is applicable.

Moreover, for ν > 0 , ∆Λ
ν ∈ H2(Γ) , whereas for ν < 0 , ∆Λ

ν ⊥ H2(Γ) . Hence, we have

limΛ→−∞ j∗ν,Λπλ(E)jν,Λ = κ ∈ {0, 1}

corresponding to whether ν > 0 or ν < 0 . This is analogous to lemma 7.3.5.
Finally, we note supp∞(∆Λ

ν ) ⊂ AN by lemma 8.2.6. Since sing E ⊂ N , and the set of
unipotents in AN is N , all sublimits of ∆Λ

ν · E have support contained in N . Lemma 8.2.8
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shows that we can apply corollary 7.3.11. Hence, by the same proof as for theorem 7.3.7,
we obtain the following proposition.

Proposition 8.3.6. For any g, h ∈ G , there exists an irreducible representation

$gNh−1 : TE(G) → TE1,1(N) determined by $gNh−1(Tf ) = E(1,0),{1}Mg∗ f ∗h|NE(1,0),{1}

for all f ∈ C0(G) .

8.3.7. Define ideals

I(1,0),{1} =
⋂

g,h∈G

ker $gNh−1 and I(1,0),∅ =
⋂

g∈G

ker $g .

Then we have the following theorem.

Theorem 8.3.8. We have the following chain of ideals

K(H2(Γ)) / I(1,0),{1} / I(1,0),∅ / TE(G)

where I1,1 6= I1,0 and I1,0 6= TE(G) .

Proof. The existence of the ideals follows from the above. The inclusions follow from
corollary 7.1.15. That I(1,0),∅ 6= TE(G) is clear, because Tf ∈ I(1,0),∅ means that f = 0 .
As for the other inequality, T /I(1,0),∅ is manifestly isomorphic to the sum of the repre-
sentations $g , g ∈ G , and similarly for I(1,0),{1} (where the sum extends over a system
of mutually inequivalent representations). Since the representations $g and $gNh−1 are
clearly inequivalent, the assertion follows. �

9A strategy for the general case

In some parts, the results we have obtained fall short of the completion of the pro-
gramme set forth in the introduction, namely, to establish a Principle of Restriction-
Induction for the Toeplitz C∗-algebra TE(G) . In this final section, we present a strat-
egy for the general case, by presenting the methods that should allow for the definitive
achievement of this bold objective.

9.1 Singularities and wave front of the Szegö distribution

The results on the geometry of the Ol’shanskiı̆ domain we have obtained are complete
and valid in full generality, for any bounded symmetric domain B , and the associated
automorphism group G = Aut0 B . Likewise, the estimate of the fibre of the wave front
set WF(E)g of the Szegö distribution (theorem 3.3.2) is also valid in complete generality,
but so far, we have not been able to fully exploit this information.
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More specifically, as we have seen in theorem 7.3.7, the construction of the repre-
sentation of TE(G) associated to a facial subgroup Ḡ = Ge reduces to the proof of the
statement that the support of a sublimit distribution is contained in Ḡ . The tools we
have at hand for the proof of such a statement (and which are, in fact, successful in the
rank one case) were established in section 7.2, and are purely local (not micro-local).

To verify the support condition with the help of these methods, we need to have
more information available on the singular support of E , that is, the base, and not the
fibre, of the wave front set. Of course, one can infer that a distribution is smooth at
some point in the presence of sufficiently detailed information on the wave front set.
Using such micro-local methods, Duflo-Vergne [DV90] reproved Harish-Chandra’s fa-
mous regularity theorem on invariant Z(g)-finite distributions. Needless to say, their
proof is much shorter than Harish-Chandra’s original argument.

However, the result (proposition 3.3.13) we have obtained by attempting to imitate
this train of thought is, as yet, of a rather preliminary nature. Perhaps the existent infor-
mation on the boundary of the cone Ω+ = (Ω−)∗ and its relation to the (non-convex)
cone of nilpotents (theorem 2.1.27, which we recall is due to Hilgert, Neeb, and Ørsted)
can be used to improve on the result lemma 2.1.32, which was important in the proof of
proposition 3.3.13.

Another approach to the singular support would be to determine a formula for the
Szegö kernel function K , at least on a system of representatives for the conjugacy classes
of Cartan subgroups. This idea was pursued in 3.4, were the location of the singularities
on the regular part TG

∗ of the conjugacy classes of the maximal torus T was determined
by extending Ol’shanskiı̆’s explicit formula for the Szegö kernel on TC∩ Γ◦ to the bound-
ary. This was in fact also the approach we take in the case of the unit disc.

Here, however, the Szegö kernel is known explicitly on all of Γ◦ . Likewise, this
is true for all other the classical domains of type Ip,q or IIIn . For these domains, the
explicit formulae could be used to determine the singular support of E . This is rather
unsatisfactory, since they are quite different from each other and depend on the specific
structure of the algebra S(t)W of invariant polynomials in each of these cases.

As we have already remarked, at the end of section 3.4, it might well be possible to
get similar formulae for the Szegö kernel on HC ∩ Γ◦ , where H is any one of a system of
representatives of ϑ-stable CSG. The idea would be to imitate Ol’shanskiı̆’s proof for the
torus, which consisted in computing the sum over all characters of the holomorphic dis-
crete series. On the torus T , these are given by the well-known rational function which
resembles Weyl’s character formula. The series summation is a sophisticated application
of the geometric series.

Martens and Hecht have proved that this character formula essentially remains valid
on (an ‘octant’ of) any ϑ-stable CSG constructed by Cayley transformation from T .
Hence, a similar summation scheme should go through. The details of this approach
will certainly be part of further work we intend to undertake in this direction.
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Finally, we note that in order to complete the proof of irreducibility of the Toeplitz C∗-
algebras TE f ,Ic(G f ,I) , the statement that the Szegö distributions are a.e. regular is needed.
To that end, the required information on the singular set need not be very detailed. All
that is required is the statement that it be thin.

9.2 Embedding of representations

Our results on the embedding of representations of facial subgroups are reasonably com-
plete. Of course, a treatment of the exceptional domains, or even better, a unified treat-
ment of all domains, would be desirable.

The construction of embeddings of the discrete series (corollary 5.2.25) relied on theo-
rem 5.1.2 on the existence of compatible fundamental sequences, which was proved by
case-by-case considerations. This is really a theorem on Z2-graded root systems, and
perhaps this is the framework in which it should be proved in general. In any case,
what is missing for a general picture is a good understanding of strong orthogonality of
non-compact roots. This seems to be delicate matter, and even Knapp-Wallach [KW76]
prove the existence of fundamental sequences case-by-case.

As for the result on parabolic subgroups of facial subgroups (theorem 5.3.9) where
the last step was proved by a case-by-case argument, this can probably be made into a
unified argument quite easily, since we allow for the appearance of a connected compact
factor whose detailed structure is not needed. Up to this minor point, the embedding of
the parabolic Q-series follows automatically from the existence of an embedding of the
discrete series.

We note, however, that there is a boundedness issue here which is has not been
completely solved. We commented on this fact in remark 5.4.7. Our approach to the
boundedness of the embedding of parabolic Q-series was via Harish-Chandra’s ad-
missibility theorem for quasi-simple representations. This reduced the question to the
Z(ḡ)-finiteness of a certain ḡ-module. If Z(ḡ) is contained in a finitely generated Z(g)-
submodule of the centraliser of U (ḡ) in U (g) , then this Z(ḡ)-finiteness is automatic. We
think that this is plausible, and we discussed the relation of this statement to a problem
in invariant theory (which is probably not hard for the experts) in the aforementioned
remark.

Besides the case of the exceptional domains, a more important task is the construc-
tion of the reduced spectra of the generalised Jacobi groups G f ,I (which are also unimod-
ular and of type I) associated to the other faces of the cone Ω− . Of course, Mackey’s
machinery is in principle applicable to these groups, and general considerations of such
semi-direct products have been carried out, e.g., by Lipsman.

However, this would ignore the special structure of these groups, where the semi-
simple factor Gc1 acts on the generalised Heisenberg group H f ,I as a vector-valued sym-
plectic group, compare section 2.2. Hence, one expects that the representations of the
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group G f ,I = Gc1 n H f ,I should have the general form of the classical metaplectic repre-
sentation. This fact has been established by Neeb [Nee00a, th. X.3.7], in his metaplectic
factorisation theorem. It represents every unitary representation of G f ,I as the tensor
product of a unitary representation of Gc1 with a highest weight representation of H f ,I .

In particular, the already constructed embeddings of the representations of Gc1 have
only to be made to accommodate the nilpotent factor. Moreover, the highest weight
representations of H f ,I can be described explicitly, either by Neeb’s generalised theory
of highest weight representations, or by the classical construction due to Ogden-Vági
[OV79]. This is closely related to the decomposition of the set of invertible elements in a
Euclidean Jordan algebra into connected components (cones, most of them non-convex),
and can hence be well related to the structure theory of the cone Ω− .

A difficulty which we encountered already for the case of rank one will probably
reappear for the nilpotent groups H f ,I occurring in the semi-direct products: The embed-
ding of their representations into representations of G will turn out to be only asymptoti-
cally equivariant. Here, by a sequence jk :

〈
Ḡ
〉

π̄
→ 〈G〉πk

to be asymptotically equivariant,
we mean

j∗k π(g)jk − π̄(g) → 0 strongly for all g ∈ Ḡ .

Along the lines of proof for lemma 8.2.8, the necessary convergence statements in the
Fourier algebra follow, so that corollary 7.3.11 shall be applicable to prove the spec-
tral boundary condition from the support condition on the sublimit distributions, as in
theorem 7.3.7. The asymptotic equivariance condition should also be sufficient to ex-
tend lemma 7.1.6 to these subgroups. Then the entire construction of representations, as
presented in section 7.2, goes through, as we have seen for the rank one case.

So the essential part is again the asymptotic behaviour of the matrix coefficients.

9.3 Asymptotic behaviour of matrix coefficients

Having only the asymptotic behaviour of the matrix coefficients of the holomorphic dis-
crete series at hand, we can only estimate the supports of limit distributions for these
representations. Moreover, since our information on the singular set of the Szegö distri-
bution is incomplete, the estimates are preliminary at this stage.

To complete the construction of representations for the facial subgroups, the appro-
priate estimates have to be proved for the other series of representations, as well. This
situation does not occur for the unit disc, since there are no other series of representa-
tions for the unique proper facial subgroup (the trivial one).

They main step should be to get an understanding of the discrete series. We point
out that in our construction of the embeddings of the parabolic Q-series, we arranged
matters in such a way to make the A component of the parabolic subgroup of G as
small as possible, so that the parameter of the Q-series representation is fixed on A
by the representation of the corresponding subgroup of Ḡ , i.e. the ν in πλ,ν is fixed.
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The asymptotics we can consider are therefore only in the parameter λ of the inducing
discrete series representation, which has some degrees of freedom.

We note that Duistermaat-Kolk-Varadarajan [DKV83] have obtained precise state-
ments on the asymptotic behaviour of matrix coefficients of unitary principal series rep-
resentations πν , as ν → ∞ , by interpreting these as oscillatory integrals, and applying
the method of stationary phase. An approach for the estimation of the asymptotics of
matrix coefficients of the discrete series might have been to consider Knapp-Wallach’s
embedding into a non-unitary principal series, and applying similar ideas. However,
this leads to oscillatory integrals with complex phase, and the method of stationary
phase is, hence, not applicable.

Our approach for the holomorphic discrete series was to use the kernel function
and its expression in terms of the Bergman operator. To use such an approach for the
discrete series in general, an explicit realisation of the discrete series in a reproducing
kernel Hilbert space has to used. Of course there is a host of such realisations, such as
those due to Narasimhan-Okamoto, Hotta, Schmid, and Parthasarathy. All of these have
the drawback that one has to treat non-holomorphic kernels.

Holomorphic realisations can be given by appropriate generalisations of the Borel-
Weil theorem. These all have the drawback that they are given in some sense as sections
of line bundles on ‘flag manifolds’, or ‘flag domains’ which are huge compared to the
symmetric B = G/K , on which the holomorphic discrete series can be realised to neatly.

An interesting recent development in this direction is the application of the ‘Penrose
transform’, related to a double fibration associated to to the flag domains, by consider-
ing the so-called space of linear cycles. This leads to a realisation of the discrete series
in spaces of holomorphic sections of a vector bundle on the product of B with its conju-
gate. The drawback is here that the representation space identifies with the kernel of a
differential operator which is defined in highly abstract terms, namely, as the image of a
relative ∂̄ operator in some degree of a Leray spectral sequence. This idea has been de-
veloped by Barchini, Gindikin, Matsuki, Huckleberry, Wolf, and Zierau, among others.
We mention the survey [WZ00].

It is conceivable that a more or less explicit formula for the kernel be found for such
a realisation of the discrete series, but, needless to say, the techniques necessary for such
a venture will have to be rather more sophisticated than for the case of the holomorphic
discrete series.

We note in passing that of course a lot of substantial work has been done on the
asymptotics of matrix coefficients. However, with few exceptions, this treated the be-
haviour for fixed representation parameter, as the group variable tends to infinity in
prescribed directions.

A different approach to bounding would be to combine micro-local information on
the matrix coefficients and on the Szegö distribution. A first attempt to do this is given
by proposition 4.4.5. The applicability of this result to the construction of representa-
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tion of the Toeplitz C∗-algebra TE(G) is somewhat hampered by the fact that we were
only able to apply information on the torus, whereas it should by now be obvious that
the orbit picture in the entire (dual) Lie algebra has to be taken into consideration. We
discussed the limitations of the cited proposition in remark 4.4.6.

Nonetheless, micro-local methods will certainly ultimately come to bear upon the
problem, and it seems promising to further investigate how the information on the
wave-front of the Szegö distribution can be brought to effect.

9.4 Inequivalence and exhaustion

Besides the open problems in the construction of irreducible representations of TE(G) ,
there are of course further steps that have to be undertaken in order to fully establish
the Principle of Restriction-Induction.

One point is the proof of inequivalence for the representations $gḠh−1 associated to a
fixed subgroup Ḡ = G f ,I . The conjectural result is that $gjḠh−1

j
, j = 1, 2 , are inequivalent

whenever (g1g−1
2 , h1h−1

2 ) is not contained in the normaliser of Ḡ in G× G . This should
be quite easy to see from the defining equation of these representations on generators.

Moreover, the normaliser of G f ,I with respect to the action of the diagonal subgroup
G @ G × G has already been more or less determined, since we have related the asso-
ciated face F−f ,I to the intersection of Ω− with two opposed parabolics. Since parabolics
are self-normalising, this looks rather promising. To extend this to the action of G×G is
only a matter of invoking the Langlands decomposition.

In analogy to the case of bounded symmetric domains, one may conjecture that the
successive quotients of the constructed ideals is Morita equivalent to the commutative
algebra C0((G× G)/NG×G(Ḡ)) , where the normaliser occurring in the denominator is
computable along the lines sketched above.

In proving such a formula for the successive quotients, the first step is to identify
the ideals associated to the maximal faces, with the ideal of compact operators. By
the machinery of coactions, this reduces to showing equality in the inclusion C∗

#(G) ⊂⋂
g,h∈G ker πgḠh−1 where Ḡ belongs to a maximal face.

Our approach is again to tackle this problem by the local analysis of singularities.
First, we would prove that sing a = 0 for any a contained in the intersection of kernels.
An indication as to which methods should allow for the proof of such a statement is
given by remark 7.1.10 and lemma 7.2.7, in fact, we are searching for a converse of the
latter.

The next point would be to prove that sing a = ∅ implies that a ∈ C∗
#(G) , at least

if a ∈ KW∗(G) . This is a passage from local to global statement. Alternatively, one could
try to prove that the above intersection of kernels is generated by compactly supported
elements (this is not obvious).

Once the ideals at the lowest level of the composition series have been identified,
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the computation of the quotient should amount to a relative version of this argument,
compare the proof of [Upm96, th. 4.11.133]. One should note that Upmeier makes great
use of the (commutative) subalgebra of K-invariants in C∗

E(K) , which in this case was
easy to define, because of the compactness of K . In our setting, the analogous object
is the algebra of (G × G)-invariants. Such an object does exist, for a dense subalgebra
of C∗

E(G) : Quigg [Qui92] has constructed an algebra of invariants, by using methods
of non-commutative integration. To extend this to our framework might turn out be a
crucial step in the computation of the quotients.

Anther useful approach could be to apply the same idea which lead to the definition
of the singular set sing to the successive quotients of the other ideals. Namely, recall that
sing was defined in terms of the A(G)-action on a quotient module. The counterparts
of the ideals Ik,` in the algebra C∗

E(G) are also submodules, so the local deviation of an
element from the ideal in the denominator of a successive quotient can be measured.
Proving the formula for the quotients would then again be a question of passing from
local to global.

Once the successive quotients have thus been computed, it follows that any maximal
chain in the aforementioned lattice of ideals is a composition series. In particular, all of
the representations of the full Toeplitz C∗-algebra are induced by one of the ideals, i.e. are
supported by one of the faces. This solves the problem of exhaustion in the Principle of
Restriction-Induction.
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