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                                                                                                                                                                    Summary 

I. Summary 

 
Methane-oxidizing bacteria (MOB) or methanotrophs are a group of bacteria that have the 

unique ability to grow on methane as their sole carbon and energy source. They have been 

isolated from a wide range of terrestrial and aquatic ecosystems and have also attracted a lot 

of interest biotechnologically.  

The aim of the present Ph.D. work was to increase our knowledge on the molecular diversity 

and genotypic characteristics of methanotrophs. Focus has been made on two important 

methanotrophic gene markers: - 1) the 16S rRNA gene - and 2) the pmoA gene which codes 

for the �-subunit of the particulate methane monooxygenase.  

 

In the first minor part of this study, some recently published methanotrophic 16S rRNA gene 

primers were applied in order to assess their target specificity on the ecosystem “flooded rice 

microcosm”. Two clone libraries were generated and analysis of libraries identified broad 

methanotroph diversity, including new type I MOB and type II MOB sequences. The type I 

MOB group-specific primers retrieved sequences related to the genera Methylobacter, 

Methylomicrobium, Methylococcus and Methylomonas. The type MOB II primers detected 

Methylocystis-like sequences. Most of these sequences were related to Methylocystis strain 

SC2, a type II methanotroph recently isolated from a polluted aquifer. Only a very few non-

methanotrophic sequences were detected by both type I and type II MOB assays, suggesting 

that these assays were highly specific on the ecosystem “flooded rice microcosm”. 

 

In the second major part of the study, several PCR assays were formulated in order to 

specifically retrieve additional sequence types belonging to the same phylogenetic group as a 

recently identified novel pmoA (clone M84-P3) that clustered neither with the conventional 

pmoA of type I nor with those of type II methanotrophs. The term “novel” was applied to 

accommodate the novel type of pmoA as distinct to the “conventional” or previously known 

pmoA of type I MOB and type II MOB. Two PCR assays, one of which was a single-round-

PCR and the other which was a nested-PCR were successful. Phylogenetic analysis of the 

derived amino acid sequences of pmoA retrieved from the ecosystem “rice microcosm” 

revealed a cluster of environmental sequences that were related to clone M84-P3. The novel 

cluster had intracluster amino acid dissimilarities of up to 19%. Amino acid sequence 

identities were ca. 70% with the conventional pmoA of type II methanotrophs, 60% to 65% 

with that of type I methanotrophs and 44% to 65% with the amoA of nitrifiers. Diversity 
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assessment via T-RFLP analysis showed that the novel environmental pmoA sequences could 

easily be classified based on their T-RFs. The novel environmental pmoA sequences grouped 

with a novel pmoA sequence identified in strain SC2. This indicated that the novel pmoA 

sequences retrieved in our study do not originate from a hitherto uncharacterized group of 

methanotrophs, but rather are an indication of divergent, multiple pmoA copies in known 

methanotrophs. The presence of the novel pmoA in strain SC2 was confirmed by Southern 

hybridization. 

The question of whether the novel pmoA is expressed or not was addressed by applying total 

RNA extracts of strain SC2 in Northern hybridisation. An unclear and faint signal was 

observed. To investigate this by a second independent method RT–PCR was applied. The 

result confirmed expression of the novel pmoA, although at lower level than that of the 

conventional pmoA. This suggested that the gene product of the novel pmoA may be a 

functionally active enzyme. In order to get further evidence for the putative function of the 

novel pmoA and to confirm that methane would be the substrate of the enzyme, we conducted 

a search for amino acid residues, that indicate whether an enzyme is adapted to methane or to 

ammonia as a substrate. The novel pmoA cluster of sequences contained 93.3% (42 of 45) of 

the universally conserved monoooxygenase (pMMO and AMO) signatures, 78.8% (11 of 14) 

of the putative pMMO signatures, and none of the putative AMO signatures, indicating that 

the gene probably codes for the active subunit of a particulate methane monooxygenase. 

By using one of the specific PCR assays developed in our study we identified the novel pmoA 

in a wide range of methanotrophs, most of which were type II MOB and a few type I MOB. 

Confirmation of the presence of the gene in selected strains was possible via Southern 

hybridization. Phylogenetic affiliation of novel pmoA sequences showed that sequences of 

type I MOB and type II MOB did not separate into monophyletic groups but rather were 

intermixed, indicating that the novel gene cannot be used as a marker for inferring MOB 

phylogeny.  



                                                                                                                                                               Introduction 

II. Introduction 
Since the last major glaciation (about 18,000 years ago) the concentration of methane in the 

atmosphere has increased from 0.35 to 1.7 ppm. During the last 300 years atmospheric 

methane concentration has been increasing from 0.8 to 1.0% per year until recently when 

slight decreases in the rate of increase has been reported (Blake et al, 1988; Craig et al, 1982; 

Khalil et al., 1989; Rowland et al. 1990). It is estimated that the concentration of methane will 

reach 2.1 to 4.0 ppm by the year 2050 (Ramanathan et al, 1985). This accumulation makes 

methane one of the most abundant greenhouse gases in the atmosphere. The release of 

methane to the atmosphere results in an increased rate of global warming and causes changes 

in the chemical composition of the atmosphere (Lelieveld et al., 1993). As other greenhouse 

gases, methane absorbs terrestrial radiation in the 4- to 100-nm region (infrared radiation) and 

while reemitting the absorbed radiation the environment becomes warmer (Lelieveld et al., 

1993). Evidence suggests that an increase in the atmospheric concentrations of CH4, CO2, 

NO2 and H2O is the major cause of global warming. Although the concentration of methane in 

the atmosphere is lower than that of carbon dioxide, it has been estimated that one mole of 

methane contributes 26 times more than one mole of carbon dioxide to climate change 

(Lelieveld et al., 1993). In the past century methane has accounted for 15 to 25% of the 

thermal trapping while carbon dioxide has contributed 60% (Hogan et al., 1991; Ramanathan 

et al., 1985; Rodhe et al., 1990).  

It has been predicted that increases in methane production in the atmosphere will decrease OH 

radical concentrations and thus increases the lifetime of methane in the atmosphere (Lelieveld 

et al., 1993). On the other hand, decreases in the rate of methane emissions would have a 

positive feedback on the decrease of methane in the atmosphere, because of the increase in the 

atmospheric concentrations of OH radicals that would result. By this process atmospheric 

methane oxidation would result in an increase in the tropospheric ozone (Tie et al., 1992) and 

stratospheric water concentrations (Cicerone et al., 1983; Ehalt, 1974; Vaghjiani et al., 1991).  

 

1. Balancing the global methane budget 

 
Global balances in the CH4 budget have been updated repeatedly. Total sources of 

atmospheric methane have been estimated at 520 Tg year-1 (Cicerone et al., 1983, Fung et al., 

1991, Lelieveld et al., 1993). The lifetime of this gas in the atmosphere is approximately 8 to  

12 years (Whalen, 1993). An amount equal to approximately 90% of the annual emissions 

(450 Tg year-1) is oxidized through photochemical reactions initiated by OH radicals in the 

troposphere, and a smaller but significant amount (approximately 10 Tg year-1) is lost by 
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microbial oxidation in soils (Cicerone et al., 1983, Fung et al., 1991, U.S. Environmental 

Protection Agency, 1990). The net annual increase in atmospheric methane is estimated to be 

40 Tg year-1.  

The increase in atmospheric methane is believed to result primarily from human activities 

(agricultural and industrial emissions), whereas pre-industrial sources of methane were 

primarily methanogenic activity in natural wetlands with minor contributions from ruminants, 

fires, oceans, and insects (Hogan et al., 1991; Lelieveld et al., 1993, Oremland, 1998; 

Reeburgh et al., 1977; Reeburgh et al., 1991; Reeburgh et al., 1993; Whalen, 1993). 

Estimates of methane budgets, including terms for global production, oxidation, and 

atmospheric emissions have been reviewed by Cicerone et al. (1981; 1988), Lelieveld et al. 

(1993), Reeburgh et al. (1993) and Bartlett and Harriss (1993).  

 

2. Methanotrophic bacteria  

 
Methane-oxidizing bacteria (MOB) or methanotrophs are a subset of a larger physiological 

group of bacteria known as methylotrophs. Methanotrophs are characterized by their ability to 

utilize methane as their sole source of carbon and energy (Hanson and Hanson, 1996). 

Methane escapes from anaerobic environments to the atmosphere when it is not oxidized by 

methanotrophs. Söhngen in 1906 recognized that methane was produced in large amounts in 

sediments and suggested that the low atmospheric concentrations of this gas were due to its 

oxidation by microbes. The oxidation of methane is known to occur in both aerobic and 

anaerobic environments, although little has been published about the microbiology or 

biochemistry of anaerobic methane oxidation. 

Methanotrophs are ubiquitous in environments where methane and oxygen are present. These 

environments include rivers, lakes, swamps, rice paddies, sediments, soils, seawage sludge etc 

(Corpe, 1985; Hanson, 1980; Hanson et al., 1991; Hanson and Watenburg, 1991, Heyer et al., 

1984; Heyer et al., 1984a; Holmes et al., 1995; Seiburg et al., 1987, Topp and Hanson, 1991). 

Methanotrophs alone would oxidize 5-10 % of total methane produced in these environments 

before it reaches the atmosphere (Conrad, 1995; King, 1997; Neue, 1997). 

Methanotrophs are strictly aerobic, gram-negative bacteria that are obligately methylotrophic, 

and can be classified into two major groups on the basis of their intracytoplasmic membranes, 

pathways for formaldehyde assimilation and 16S rRNA sequence. The genera Methylomonas, 

Methylobacter, Methylococcus, Methylocystis and Methylosinus proposed by Whittenbury et 

al. (1970) largely have remained unaltered (Bowman et al., 1993) except for the addition of 

new genera of methanotrophs including Methylomicrobium (Bowman et a.l, 1993; Bowman et 
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al., 1995), Methylosarcina (Wise et al., 2001), Methylosphaera (Bowman et al., 1997), 

Methylothermus (Brodossy et al., 2000), Methylocella (Dedysh et al., 2000) and 

Methylocapsa (Dedysh et al., 2001). Type I methanotrophs, such as Methylobacter and 

Methylomonas, are γ-Proteobacteria that possess bundles of intracytoplasmic membranes 

throughout the cell and fix carbon into cell biomass using the ribulose monophosphate cycle 

(Figure 1). Type II methanotrophs including Methylosinus and Methylocystis are α-

Proteobacteria that have their membranes arranged around the periphery of the cell and fix 

carbon at the level of formaldehyde via the serine cycle. A new group, type X, was added to 

accommodate methanotrophs similar to Methylococcus capsulatus that, like type I 

methanotrophs utilize the ribulose monophosphate pathway (RuMP) for formaldehyde 

assimilation. Type X methanotrophs were distinguished from type I methanotrophs because 

they also possessed low levels of enzymes of the serine pathway, and ribulose biphosphate 

carboxylase, an enzyme present in the Calvin cycle (Whittenbury, 1981; Whittenbury and 

Dalton, 1981; Whittenbury and Krieg, 1984). Type X methanotrophs grew at higher 

temperatures than type I and type II methanotrophs and possessed DNA with a higher mol% 

G + C content than that of most type I methanotrophs (Gal’chenko et al., 1984; Green, 1992; 

Hanson et al., 1991). 

The interest in methanotrophs over the last 30 years has largely been due to their 

biotechnological potential for the production of single cell protein, propylene oxide and other 

biotechnological products (Leak, 1992). sMMO- (soluble methane monooxygenase) 

containing methanotrophs are particularly useful in biotransformation reactions since they are 

able to degrade the groundwater pollutant trichloroethylene (TCE) and other halogenated 

hydrocarbons (Oldenhuis and Jansen, 1993; Brusseau et al, 1990; Bowman et al., 1994; Baker 

et al., 2001).  

 

3. Physiology, biochemistry and molecular biology of methane oxidation 

 
Methane is oxidized by methanotrophs to CO2 via the intermediates methanol, formaldehyde, 

and formate. Approximately 50% of the formaldehyde produced is assimilated into cell 

carbon and the remainder is oxidized to CO2 and lost from the cell (Anthony, 1982).                     

The dissimilatory reactions, converting formaldehyde to CO2, generate reducing power for 

biosynthesis and the oxygenation step (Figure 1). The first enzyme in the methane oxidation 

pathway is methane monooxygenase (MMO). There are two distinct types of MMO enzymes: 

a soluble, cytoplasmic enzyme complex (sMMO) and a membrane-bound, particulate enzyme 

system (pMMO).  
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Fig. 1. Pathways for methane oxidation and formaldehyde assimilation in type I and type II methanotrophs. 

 

Until recently it was thought that sMMO was found only in the genera Methylosinus, 

Methylocystis and Methylococcus. Although it has subsequently been observed in some 

Methylomonas (Shigematsu et al., 1999) and Methylomicrobium (Fuse et al., 1998) species, 

not all methanotrophs contain this enzyme. sMMO is only expressed when the copper-to-

biomass ratio of the culture is low, that is under low-copper growth conditions. There is also 

evidence that copper can inhibit sMMO activity (Green et al., 1985). sMMO has an extremely 

broad substrate specificity, co-oxidizing a wide range of alkanes, substituted aliphatics and 

even aromatic compounds, making it an extremely attractive enzyme for biotransformation 

processes and bioremediation (Brusseau et al., 1990). The most well-characterized sMMO 

enzymes are those from Methylococcus capsulatus (Bath) and Methylosinus trichosporium  

OB3b (Lipscomb, 1994; Gassner et al., 1999; Lee et al., 1999). sMMO is a non-heme, iron-

containing enzyme complex consisting of three components: hydroxylase, protein B and 

protein C. The hydroxylase has three subunits, α, β and γ, of 60, 45 and 20 kDa respectively, 

which are arranged in an α2β2γ2 configuration. The α subunit contains a non-heme bis-µ-

hydroxo-bridged binuclear iron centre at the active site of the enzyme, where methanol is 

formed from methane and oxygen. The genes encoding sMMO have been cloned and 
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sequenced from several methanotrophs, including Methylococcus capsulatus (Bath) and 

Methylosinus trichosporium OB3b. In methanotrophs these genes are clustered on the 

chromosome. mmoX, mmoY and mmoZ encode the α, β and γ subunits of the hydroxylase, 

respectively; mmoB and mmoC code for protein B and protein C , respectively. An open 

reading frame (ORF) of unknown function, orfY, separates mmoY and mmoZ in all 

methanotrophs examined to date (McDonald et al., 1997). sMMO genes are highly conserved 

in all methanotrophs examined with sequence identities of 55-95 % and 46-96 % being 

observed between the corresponding DNA and amino acid sequences, respectively.  

Virtually all methanotrophs examined possess a membrane-bound, particulate methane 

monooxygenase, which is expressed only when the copper-to-biomass ratio of the culture is 

high. The only exception is Methylocella palustris that harbours only sMMO. Unlike sMMO, 

pMMO has a relatively narrow substrate specificity, oxidizing alkanes and alkenes of up to 

five carbons in length. However it can be useful for biotransformation (DiSpirito, 1992). The 

pMMO from Methylococcus capsulatus (Bath) consists of three subunits of 45, 27 and 23 

kDa. The 45- and 27-kDa subunits probably constitute the active site because they can be 

labelled by the suicide substrate acetylene (Zahn and DiSpirito, 1996). Particulate methane 

monooxygenase has proven difficult to purify to homogeneity with high activity. However 

this enzyme has now been purified from membranes of Methylococcus capsulatus (Bath) 

(Nguyen, 1998; Zahn and DiSpirito, 1996). There are two nearly identical copies of the genes 

encoding pMMO (pmoCAB) in the chromosome of Methylococcus capsulatus (Bath) (Semrau 

et al., 1995; Stolyar et al., 1999) and a third, separate copy of pmoC has also been identified 

(Stolyar et al., 1999). Mutagenesis experiments have suggested that the two sets of genes are 

functionally equivalent (Stolyar et al., 1999). This gene duplication has also been observed 

with the analogous enzyme ammonia monooxygenase (amoCAB) in ammonia-oxidizing 

bacteria (Sayavedra et al., 1996); comparison of pmo and amo gene sequences suggests that 

pMMO and AMO could be evolutionarily related (Holmes et al., 1995; Klotz and Norton, 

1998). The pmo gene clusters have also been sequenced from Methylosinus trichosporium 

OB3b and Methylocystis sp. strain M (Gilbert et al., 2000). These species also                             

have two copies of pmoCAB and there is a high degree of similarity (80-94 %) at the derived 

amino acid sequence level between the pMMO polypeptides from different methanotrophs. 

The pmoA, which encodes the α subunit (PmoA) of the pMMO, has been shown to be 

evolutionary highly conserved among methanotrophs (Holmes et al., 1995).  

In methanotrophs such as Methylosinus trichosporium OB3b, which possess both pMMO and 

sMMO, there is a metabolic switch mediated by copper ions. When cells are starved for 
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copper, and the copper-to-biomass ratio of the cell is low, sMMO is expressed. Cells grown 

under conditions of excess copper express pMMO and there is no detectable sMMO 

expression (Murrell et al., 2000). No other metal ion effects this metabolic switch. However, 

the exact mechanism for reciprocal regulation of the sMMO and pMMO gene clusters by 

copper ions is not clear at present.  

 

4. Molecular ecology of methanotrophs 

 
Culture-based techniques have successfully been used to isolate methanotrophs from 

environmental samples. However, culture-based methods are limited because many 

methanotrophs do not grow on conventional media and pure cultures isolated constitute only a 

small fraction of the viable species diversity and the fraction of cells recovered from 

environmental samples is also believed to be a small fraction of those present (Bone et al., 

1986; Hanson, 1980; Hanson and Wattenburg, 1991). The physiological types of 

methanotrophs isolated from environmental samples may reflect the conditions used for 

enrichments and isolation attempts and thus may not be the dominant organisms in the 

original population (Amaral et al., 1995; Hanson, 1992; Hanson and Wattenburg, 1991; 

Whittenbury and Dalton; 1981).  

Another method for identification of methanotrophs in natural environmental samples is 

phospholipids and fatty acid analysis. Phospholipids extracted from environmental samples 

are useful for measuring changes in community structure and physiological stress within a 

microbial community (Nichols et al. 1985; Nichols et al., 1987). This approach has been 

particularly useful for detecting populations of type I and type II methanotrophs, because each 

contains characteristic fatty acids. However the technique is relatively expensive and requires 

an extensive database for methylotrophic organisms.  

The use of fluorescent antibodies prepared against killed cells from pure cultures is a 

potentially effective tool for identifying and enumerating methanotrophs without culturing 

them (Abramochkina et al., 1987; Bohlool and Schmidt, 1980; Broxrukova et al., 1983; 

Gal’chenko et al., 1988). However these techniques require that the organisms used to prepare  

the antisera belong to all the serotypes present in the habitats under study and that the cells 

being used are permeable to antibodies.  

Non-cultured methanotrophs can be detected with nucleic acid probes or by sequencing genes 

amplified by PCR directly from environmental samples (Amann et al., 1990; Fox et al., 1980; 

Giovannoni et al., 1988; Miyata et al., 1993; Olsen et al., 1986). These methods are useful for 

identification of taxa and for determination of the phylogenetic positions of microbes. Current 
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classification schemes (Green, 1992; Hanson et al., 1991) have been strengthened as a result 

of the comparative sequence analysis of both the 5S and the 16S ribosomal RNA (rRNA) 

from a large number of methanotrophs and methylotrophs (Tsuji et al., 1990; Bratina et al., 

1992; Bowman, 1990). Type II methanotrophs, such as Methylocystis parvus and 

Methylosinus trichosporium, appear to cluster in the α-2 sub-class of the class Proteobacteria 

and form a separate cluster from other serine pathway methylotrophs. Type I methanotrophs, 

such as Methylomonas methanica, Methylomicrobium album and Methylobacter luteus are 

found in the γ-sub-class of Proteobacteria (reviewed by Hanson and Hanson, 1996). Hanson 

and colleagues designed oligonucleotide probes from 16S rRNA data, which can be end-

labelled with 32phosphorous or dyes, such as fluoresceine and rhodamine, for fluorescence 

microscopy work. The first probe, designated 9α, was complementary to target sequences in 

16S rRNA of serine-pathway methylotrophs and is specific for these organisms. The second, 

10γ, was specific for RuMP-pathway methylotrophs. These two probes, when labelled with 

two different dyes, have successfully been used to differentiate two different groups of 

methanotrophs (Tsien et al., 1990; Hanson et al., 1993). Several other group-specific probes 

have been designed for type I and type II methanotrophs and have been successful in a wide 

range of applications. A partial list of these probes is given in table 1. 

 

5. Functional gene probes for methanotrophs 

 
The high degree of identity between sMMO genes has enabled the design of PCR primers 

which specifically amplify each of the five sMMO structural genes (McDonald et al., 1995 

Mini review) such that amplification of the five sMMO structural genes is now possible from 

cultured methanotrophs containing sMMO and from total DNA from a variety of different 

freshwater, estuarine, soil, wetlands and rice root samples. Subsequent cloning and DNA 

sequencing of a number of these PCR products has uncovered sMMO-encoding DNA genes 

very similar to, but not identical to known sMMO gene sequences (McDonald et al., 1995; 

Horz, 2001). Although sMMO-based approaches are useful for studying methanotroph 

diversity in copper-depleted environments such as wetlands or contaminated aquifers, these 

genes, however, are not present in all known methanotrophs. A better approach would be 

based on the pMMO, present in all known methanotrophs except for Methylocella palustris.  

Sequence data on pmoA and amoA genes have allowed the design of degenerate primers, 
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Table 1. Group-specific probes targeting type I and type II methanotrophs 

 
Probe name  Sequence 5’-3’ Description of specificity Reference 
1034-Ser CCATACCGGACATGTCAAAAGC Serine pathway 

methanotrophs 
Brusseau et al., 1994 

1038-Ser-M GGTAACATGCCATGTCCAG      ==//== ===//== 
1041-5 CTCCGCTATCTCTAACAGATT RuMP pathway 

methanotrophs 
===//== 

1035-RuMP GATTCTCTGGATGTCAAGGG        ==//== ===//== 
Mb1007 CACTCTACGATCTCTCACAG Methylobacter Holmes et al., 1995 
Mc1005 CCGCATCTCTGCAGGAT Methylococcus          ===//== 
Mm1007 CACTCCGCTATCTCTAACAG Methylomonas          ===//== 
Ms1020 CCCTTGCGGAAGGAAGTC Methylosinus          ===//== 
Mm850 TACGTTAGCTCCACCACTAA Methylomonas ===//== 
MG-64 CCGAAGGCCTRTTACCGTTC Methylococcus, 

Methylomonas, 
Methylomicrobium 

Bourne et al., 2000 

Mc1029 CCTGTGTCTTGGCTCCCGAA Methylococcus ===//== 
MA-221 GGACGCGGGCCGATCTTTCG Type II Methanotrophs ===//== 
MA-621 TCAAAGGCAGTTCCGAGGTT ===//== ===//== 
Mcell-1026 GTTCTCGCCACCCGAAGT Methylocella Dedysh et al., 2001 
Mcell-181 TCTTTCTCCTTGCGGACG Methylocella ===//== 
M�450 CTATTACTGCCATGGACCTA Type II Methanotrophs Eller et al., 2001 
M�464 ATTACTGCCATGGACCTATT Type II Methanotrophs ===//== 
M�84 AGCCCGCGACTGCTCACC Type I Methanotrophs ===//== 
M�705 CTAGACTTCCTTGTGGTC Type I Methanotrophs ===//== 
M�983 TGGATGGGAACTGTAGGT Type I Methanotrophs ===//== 
M�993 CTGTAGGTCTCTTTAGACA Type I Methanotrophs ===//== 
 

that specifically amplify a 525-bp internal DNA fragment of these genes from a variety of 

methanotrophs and nitrifiers (Holmes et al., 1995). Use of these allowed amplification of 

pmoA or amoA fragments from diverse cultures, and the results suggested that the pMMO and 

AMO may be evolutionary related enzymes, despite their different physiological roles 

(Holmes et al., 1995).  

The degenerate oligonucleotide PCR primers described above have now been successfully 

used to specifically amplify pmoA/amoA from DNA isolated from a variety of environments                             

(Murrell et al., 1998; Costello et al., 1999; Horz et al., 2001; Auman et al., 2000). At present 

an extensive database of sequences from extant methanotrophs and nitrifiers is being 

established and will aid further molecular ecological studies. Moreover, PCR primers have 

been designed, that specifically amplify either amoA (Rotthauwe et al., 1997) or pmoA 

(Costello et al., 1999). These new primers may help to assess the relative roles of 

methanotrophs and nitrifiers in the cycling of methane in a number of interesting 

environments. 
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Another potentially useful marker is the mxaF gene. PCR primers that specifically amplify a 

550-bp fragment of mxaF sequences from methanotrophs have been used to extend the 

database of mxaF genes of methanotrophs and methylotrophs and to identify mxaF sequences 

in marine, soil and wetland samples (McDonald et al., 1997, Holmes et al., 1995, McDonald 

et al., 1995). The mxaF gene is not specific for methanotrophs, however. 

Finally degenerate nifH primers have been applied to amplify nifH sequences of 

methanotrophs based on their nitrogen fixation capabilities. Although these primers could 

discriminate among type I and type II methanotrophs, not all type I organisms seemed to 

harbor the nifH gene (Auman et al., 2001). Moreover, as with the mxaF, the nifH gene is not 

specific for methanotrophs. 

 

6. Anaerobic methane oxidation 

 

Recently, consortia have been found, that are responsible for anaerobic methane oxidation. 

This process probably contributes to a significant proportion of global methane oxidation. The 

consortia consist of microorganisms affiliated to lineages of Archaea and bacterial sulfate-

reducers (Boetius et al., 2000). They occur in anaerobic environments in the deep sea and 

consume methane coming out off gas hydrates (Orphan et al., 2001). This process does not 

occur in terrestrial ecosystems. Obviously, these anaerobic consortia are important for 

controlling emission of methane out off gas hydrates, and play a role in global methane budget 

(DeLong, 2000). But for oxidation of atmospheric methane only terrestrial ecosystems seem 

to be relevant. 

 

7. Aim of work 

 

PCR-mediated preferential amplification of MOB 16S rDNA and pmoA, and subsequent 

cloning and sequencing has extensively been applied to create phylogenetic inventories of 

MOB in numerous environments (Costello et al., 1999; Henckel et al., 2000; Horz et al., 

2001, Wise et al., 1999). 

The pmoA encodes the � subunit (PmoA) of pMMO and it has been shown to be 

evolutionarily highly conserved among methanotrophs (Holmes et. al, 1995). Consequently, 

the pmoA has been used as a functional gene marker to detect MOB in a wide range of 

environments (Costello et al., 1999; Auman et al., 2000; Henckel et al., 2000; Horz et al., 

2001; Pacheco-Olivier et al., 2002). In numerous studies, phylogenetic trees constructed 
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based on pmoA sequences closely mirrored 16S rDNA-based phylogenies for the same 

organisms, and therefore it has been suggested that pmoA is a useful phylogenetic marker for 

MOB in molecular ecology studies (Murrell et al., 1998; Costello et al., 1999; Horz et al., 

2001; Auman et al., 2000). This view is based on the assumption that multipe pmoA copies 

present in a single MOB species are nearly identical, as has been shown for the duplicate 

pmoA gene copies present in the type I MOB Methylococcus capsulatus Bath and 

Methylomicrobium album BG8 (Semrau et al., 1995; Stolyar et al., 1999), as well as the type 

II species Methylosinus trichosporium OB3b and Methylocystis sp. M (Gilbert et al., 2000). 

Both RFLP patterns and comparative sequence analysis suggested that the one to three pmoA 

copies present in five type I and six type II MOBs isolated from lake sediment are almost 

identical (Auman et al., 2000). However, if divergent pmoA copies were present in the same 

organism, the interpretation of environmental data would become rather more complicated. 

Moreover, incomplete coverage of cultured MOB in the current 16S rRNA and pmoA data 

sets renders it impossible to decide whether a novel environmentally retrieved 16S rRNA or 

pmoA sequence represents a previously uncultured MOB, or is identical to an already isolated 

MOB, that is not yet included in the respective database. 

The objectives in the present study were as follows: 

 

1.  16S rDNA-based detection of methanotrophs on rice roots 

In a previous study, Wise et al. (1999) exploited the limited database of obligate methane 

oxidizers to design degenerate methanotroph-specific 16S rRNA PCR primers, and used these 

primers to construct clones libraries from DNA extracted directly from landfill soil, in an 

effort to describe methanotrophic community structure in a cultivation-independent manner. 

Primer sets were specific for the retrieval of either type I or type II sequences on the 

environment tested. However, a decision about the target specificity requires that these assays 

be tested on a wide range of environments.  One of the goals in our study was to test the 

reliability of the newly developed methanotroph specific 16S rRNA assays on DNA extracted 

from rice roots. 

 

2. Development of specific PCR assays for the detection of novel pmoA-like sequences on 

rice roots 

In an effort to generate a larger methanotrophic pmoA database we identified a novel pmoA-

like sequence that clustered neither with the conventional pmoA sequences of type I, nor with 

those of type II methanotrophs. Analyses of pmoA signatures showed that the novel sequence 
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exhibited amino acid residues normally found at conserved positions within the pmoA gene 

and therefore could be assumed to code for pmoA than amoA. We therefore assumed that the 

novel sequence was indicative of a novel group of methanotrophs whose members were 

characterized not yet. In order to further investigate this problem and to identify novel 

sequences belonging to the same phylogenetic group, we designed PCR primers that were 

specific to the novel pmoA-like sequence cluster, then evaluated the target specificity of the 

primers for further application to environmental studies.  

 

3. Screening of pure cultures isolates for the presence of the novel pmoA gene 

In parallel to our study mentioned in section 2, colleagues (Dr. Peter F. Dunfield and Dr. 

Jürgen Heyer) in our department were developing a culture collection and a molecular 

database for MOB isolated from a number of environments. During their study they identified 

a Methylocystis strain (termed strain SC2) with two very different pmoA-like genes (Dunfield 

et al., 2002). The first gene (pmoA1 or conventional pmoA) exhibited very high sequence 

homology to pmoA genes of other type II MOB (even identical amino acid sequence to PmoA 

of some other Methylocystis strains). The second gene (pmoA2 or novel pmoA) possessed only 

73% identity with the first gene at the nucleotide level and 68.5% identity at the amino acid 

level. The PmoA2 of strain SC2 was closely related to the above-mentioned pmoA-like 

sequence retrieved in our previous study by cultivation-independent methods from rice field 

soil (86.3% identity on amino acid level), indicating that the presence of multiple, diverse 

pmoA copies might not be unique to strain SC2. This finding was strengthened by detection of 

a novel pmoA2-like copy in Methylosinus trichosporium strain KS21 (Dunfield et al., 2002). 

This is intriguing because the pmoA has been used instead of 16S rDNA as a phylogenetic 

marker (Auman et al., 2000; Horz et al., 2001). However, the presence of diverse copies in 

single strains may change this view and the interpretation of environmental pmoA data may 

become more complicated.  It also poses the questions of how widely distributed these novel 

pmo genes are among methanotrophs and of what function they may have. To address the first 

question, we used our newly designed PCR assays (as mentioned in section 2) to screen for 

the presence of the novel type of pmoA gene among members of type I and type II 

methanotrophs obtained from the culture collection established by Peter F. Dunfield and 

Jürgen Heyer. Then, selected strains, which tested positive by PCR were subjected to 

Southern hybridization, a PCR-independent approach. Finally, the expression of the novel 

pmoA gene was investigated by Northern hybridization and the results confirmed via RT-

PCR.  
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III. Materials and Methods 
 

1. Materials 
1.1 Environmental samples and DNA extracts  

  

DNA extracts were either obtained from extraction performed during the present study (see 

Methods section) or they were made available from previous Ph.D. studies. The list of 

extracts is given in table 2. 

 

Table 2. Environmental DNA extracts applied in the course of this study 

 
   Designation        Provider                           Origin 

Rr90a                       Dirk Rosencrantz  Roots of 90-day-old rice plants (1) 

RsVb, RsVc, RsVd Heiner Lüdemann                    Rice soil (2) 

Rz90e, Rz90f Regine Großkopf  Root mat of 90-day-old rice plants 

Rr90g Hans-Peter Horz Roots of 90-day-old rice plants (1) 

Rr90h Present study Roots of 90-day-old rice plants (1) 

 
The microcosms were cultivated using soils sampled from drained rice fields of the Italian Rice Research 
Institute in Vercelli, Italy. (1) Soils were obtained in 1995. (2) Soils were obtained for samples RsVb, RsVc and 
RsVd in 1993, 1995 and 1997, respectively. 
  

 

1.2 Microorganisms 

 

A number of methanotrophic pure cultures, including isolates and type strains, were applied 

in the course of this study in either PCR or hybridization assays. Taxonomic designation and 

sources of microorganisms are given in table 2. E. coli strain INV�F’ (Invitrogen, de Schelp, 

The Netherlands) was applied in cloning experiments (not shown in table 2). 

 

1.3 Cloning vectors  

 

 pCR� II and pCR� 2.1 (TA Cloning� Kit, Invitrogen, de Schelp, Netherlands). 
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Table 3: List of methanotrophic pure cultures 
 
     Strain 
designation 

        Taxonomic name                    Origin 

SM16  Methylocystis spec. High polluted River Saale, Maua, Germany 
LRI  Methylocystis spec. Agricultural soil, Ottawa, Canada  
B2/7 Methylocystis spec. Meadow soil, Gießen, Germany 
62/12 Methylocystis spec. Oligotrophic Lake Stechlinsee, Neuglobsow, 

Germany  
KS9 Methylocystis spec. Mesotrophic Lake Kinneret, surface sediment, Israel 
014c Methylocystis spec. Baltic Sea, Bornholm-Becken, surface sediment, 

Germany 
51 Methylocystis spec. Meadow soil, Gießen, Germany  
IMET10484 Methylocystis spec. Soil near oil extraction plant, Mannhäger Moor, 

Germany  
21/1 Methylocystis spec. Soil near oil extraction plant, Wittenhagen, Germany 
IMET10499 Methylocystis spec. Water, Insel Rügen, Germany 
F10v12a Methylocystis spec. Peatsludge, Neuglobsow, Germany  
Ks7 Methylocystis spec. Mesotrophic Lake Kinneret, surface sediment, Israel 
IMET10486 Methylocystis spec. Water, Wittenhagen, Mecklenburg-Vorpommern, 

Germany 
SC2 Methylocystis spec. Highly polluted River Saale, Weißen, Germany 
IMET 10491 Methylocystis echinoides Clearing station, sludge, Jena-Lobeda, Germany 
Pi6/2 Methylocystis spec. Rice field, paddy soil, Los Banos, Philippines 
NCIMB 11132  Methylocsystis parvus National collection of industrial and marine bacteria, 

Aberdeen , Scotland, United Kingdom 
SC8 Methylosinus sporium Highly polluted River Saale, Weißen, Germany 
SK13 Methylosinus sporium Highly polluted River, Saale, Weißen, Germany 
20/3 Methylosinus sporium Soil near oil extraction plant, Wittenhagen, Germany 
H1b Methylosinus sporium Eutrophic Lake Haussee, surface sediment, Feldberg, 

Germany 
SC6 Methylosinus trichosporium Highly polluted River, Saale, Wichmar, Germany 
H3 Methylosinus trichosporium Sea sediment, Feldberg, Germany  
M23 Methylosinus trichosporium Mangrove roots, Hisal, India 
39/3 Methylosinus trichosporium Water, Rügen Island, Mecklenburg-Vorpommern, 

Germany  
NCIMB 11131 Methylosinus trichosporium National collection of industrial and marine bacteria, 

Aberdeen , Scotland, United Kingdom 
SC10 Methylosinus trichosporium Water, Saale, Wichmar, Thürigen, Germany  
IMET 10556 Methylomonas spec. Clearing station sludge, Jena-Lobeda, Germany  
D1a Methylomonas spec. Eutrophic Lake Dagowsee, surface sediment, 

Neuglobsow, Germany   
E10a Methylocaldum spec. Field soil,  Eiterfeld, Germany 
08a Methylocaldum spec. Ostsee, Gotland-Tief, Germany, surface sediment 
NCIMB 11853 Methylococcus capsulatus National collection of industrial and marine bacteria, 

Aberdeen , Scotland, United Kingdom 
NCIMB 11123 Methylomicrobium album National collection of industrial and marine bacteria, 

Aberdeen , Scotland, United Kingdom 
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1.4 Enzymes and Kits 

 

 

Item                                                                                          Source 

 

AmpliTaq�-DNA-Polymerase                         Perkin Elmer Applied Biosystems, Weiterstadt,   

ABI PRISM� Dye                                            Germany 

Terminator Cycle Sequencing  

Ready reaction Kit   

ABI PRISM� BigDye                                     

Terminator Cycle Sequencing  

Ready reaction Kit                                                                        

                                                                                                                                                                              

AmpliTaq-DNA-Polymerase                            Promega, Mannheim, Germany 

Restriction enzymes:                                         

MspI, BamHII, BglII,  

PstI, HindIII, EcoRI,  

SmaI, XhoI 

 

Lysozyme from chicken egg                              Sigma Aldrich, Deisenhofen, Germany 

Proteinase K                                                    

 

RNase A, RNase T1                                         Boehringer Mannheim, Mannheim, Germany 

 

Qiagen OmniscriptTM Kit                                Qiagen, Hilden, Germany          

 

 TOPO TA Cloning� Kit                                 Invitrogen, Groningen, The Netherlands 
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1.5 Nucleic acid standards  

 

DNA Smart Ladder (Eurogentec, Searing, Belgium) 

RNA Ladder (New England Biolabs, Frankfurt) 

Genescan-standard Rox 1000, with Rox (6-carboxy-X-Rhodamin) labelled (Perkin Elmer 

Applied Biosystems). 

 

1.6 Oligonucleotide primers and probes 

 

Primer and probe sequences are summarized in table 3. Primers for T-RFLP analyses had a 

5(6)-carboxyfluorescein-N-hydroxysuccinimidester (fluorescein) labeling whereas probes for 

hybridization had a Digoxygenin labeling. 

 

1.7 Chemicals and reagents 

 

Chemicals and reagents used in this study were purchased from the following companies: 

Bio-Rad, Munich; Biozym, Hess. Oldendorf; Boehringer Mannheim, Mannheim; New 

England Biolabs Frankfurt; Fluka, Buchs, Switzerland; Gibco, Eggenstein; Merck, Darmstadt; 

MWG-Biotech, Ebersberg; Metabion, Martinsried; Perkin Elmer Applied Biosystems, 

Weiterstadt; Amersham Pharmacia, Freiburg; Biometra Goettingen; Qiagen, Hilden; 

Stratagene, Heidelberg;  Sigma, Deisenhofen. 

 

1.8 Gases 

 

The following gases were used for cultivation of methanotrophic bacteria: CH4, CO2, and air.  

Liquid nitrogen was used in nucleic acid extraction protocols. All gases were purchased from 

Messer-Griescheim (Düsseldorf). 

 

1.9 Buffers and solutions 

 

Buffers and solutions were prepared with distilled water and sterilized 30 min at 121°C. 

Solutions which did not require autoclaving such as 10% SDS were prepared with sterile 

distilled water and filtered (0.2 �m diameter Whatman paper, Schleicher and Schuell, Dassel) 

under sterile conditions.  
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Table 4: Oligonucleotide primers and probes used in this study 

 

Name                   

Target           

Strategy  Gene positions                                     Sequence 5’�3’   Reference 

A189f pmoA    PCR 171-189 GGNGACTGGGACTTCTGG Holmes et al., 1995 

A682b pmoA    PCR 703-685 GAASGCNGAGAAGAASGC Holmes et al., 1995 

PmoA206f   pmoA     PCR 171-206 GGNGACTGGGACTTCTGGATCGACTTCAAGGATCG This study

PmoA703b pmoA     PCR 703-668 GAASGCNGAGAAGAASGCGGCGACCGGAACGACGT This study

PmoA190f pmoA     PCR 190-206 TCGACTTCAAGGATCG This study

PmoA668b pmoA PCR 686- 668 ACCGGAACGACGTCCTTA This study 

PmoA671b pmoA     PCR 689-671 ATCATGCGGATGTATTCMGGSGTGCC This study

PomA636b pmoA S/N Blot 610-636 CATCGACGTGCGGACGAAGTGGA This study 

PmoA593b pmoA    S/N Blot 615-593 CATCGACGTGCGGACGAAGTGGA Dunfield et al., 2002 

MethT1dF    16S rDNA PCR 988-1006 CCTTCGGMGCYGACGAGT Wise et al., 1999 

MethT1bR     16S rDNA PCR 84-102 GATTCYMTGSATGTCAAGG -----------------------

MethT2R     16S rDNA PCR 997-1017 CATCTCTGRCSAYCATACCGG -----------------------

Eub9f   16S rDNA PCR 9-27 GAGTTTGATCMTGGCTCAG Lane, 1991 

Eub1492b    16S rDNA PCR 1512-1492 ACGGYTACCTTGTTACGACTT Weisburg et al., 1991 

536f 16S rDNA 16S rDNA sequencing  519-536 CAGCMGCCGCGGTAATWC Lane, 1991 

536r 16S rDNA 16S rDNA sequencing  519-536    GWATTACCGCGGCKGCTG Lane, 1991

907f 16S rDNA 16S rDNA sequencing  907-926f    AAACTRAAAMGAATTGACGG Lane; 1991

907r 16S rDNA 16S rDNA sequencing  907-926f    CCGTCAATTCMTTTRAGTTT Lane, 1991

Puc/M13f (-20) PCR�II Clone sequencing 433-448 GTAAAACGACGGCCAG TA Cloning Kit�, Invitrogen 

Puc/M13r PCR�II Clone sequencing 205-221 CAGGAAACAGCTATGAC TA Cloning Kit�, Invitrogen 

N=(A,T,C,G), M=(C,A), W=(T,A), K=(G,T), R=(A,G), Y=(C,T) 

Numbering for pmoA is referred to the pmo gene sequence of Methylococcus capsulatus (Bath) (Semrau et al., 1995). Numbering for 16S rDNA is referred to the 16S rDNA gene sequence of E. 

coli (Brosius et al., 1978). Numbering for PCR�II is referred to the vector map (see TA Cloning Kit� booklet). 
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A) Buffers and solutions for DNA extraction: 

 

- Extraction buffer for environmental DNA 

100 mM Tris-HCl, pH 8.0; 50 mM EDTA, pH 8.0; 500 mM NaCl; 1.0 mM 

Dithiothreitol (DTT) 

 

- TE-Buffer (Sambrook et al., 1989) 

                   10 mM Tris-HCl, pH 8.0; 1.0 mM EDTA, pH 8.0 

           

           -    Lysozyme buffer: 1 mg/ml Tris, pH 8.0  

 

- Other solutions 

10% SDS, 5 mM KAc, pH 7.5; chloroform/isoamylalcohol (24:1, v/v); 

isopropanol, ethanol 70%. 

 

B)  Buffers and solutions for separation of nucleic acids: 

 

- TBE-buffer (Sambrook et al., 1989) 

90 mM Tris-boric acid, pH 8.0; 2 mM EDTA, pH 8.0 

 

- TAE-Buffer (Sambrook et al., 1989) 

40 mM Tris-HCl, pH 7.5; 20 mM NaAc, 1 mM EDTA, pH 7.5 

 

- 10 x loading buffer for agarose gel electrophoresis 

40% (w/v) saccharose, 0.25% (w/v) bromophenol blue, 0.25% (w/v) xylenecyanol, 

0.25% (w/v) Orange G2 

 

- Ethidium bromide solution 

0.0001% (w/v) 

 

C) Buffers and solutions for cloning: 

- X-Gal solution 5 % (w/v) 

50 mg 5-bromo-4-chloro-3-indolyl-ß-galactopyranoside (X-Gal) in 1.0 ml 

dimethylformamid (storage at  –20°C). 
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- Glycerin buffer 

65 % glycerol, 0.1 M MgSO4, 25 mM Tris-HCl, pH 8.0 

 

D) Buffers and solutions for Southern hybridization: (see the DIG Application manual for 

filter hybridization) 

- Sterile double distilled water for rinsing gel and eventually dilution of DNA 

- Depurination solution: 250 mM HCl 

- Denaturation solution: 0.5 M NaOH, 1.5 M NaCl 

- Neutralization solution: 0.5 Tris-HCl, pH 7.5; 1.5 M NaCl 

- 20 x SSC buffer, 3 M NaCl, 300 mM sodium citrate, pH 7.0 

- Maleic acid buffer: 0.1 M maleic acid, 0.15 M NaCl, pH 7.5 

- 10 x blocking solution: 1:10 (w/v) in maleic acid buffer 

- Hybridization buffer: 5 X SSC, 0.1% N-Lauroylsarcosin, 0.02% SDS, 1% 

blocking solution 

- Washing buffer: 0.1 M maleic acid, 0.15 M NaCl; pH 7.5; 0.3% (v/v) Tween 

20  

- Low stringency buffer: 2 x SSC containing 0.1% SDS 

- High stringency buffer: 0.5 x SSC containing 0.1% SDS, pH 7.5; 0.3 % (v/v) 

Tween 20 

- Detection buffer: 0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5 

- Stripping buffer: 0.2 M NaOH, 0.1% SDS 

 

E) Buffers and solutions for Northern hybridization: (see the DIG Application manual for 

filter hybridization) 

- 10 x MOPS buffer: 200 mM MOPS, 50 mM NaAc, 20 mM EDTA, pH 7.0 

- Loading buffer: 

MOPS/deionized formamide/formaldehyde/glycerol/bromophenol blue 

- Others: Hybridization buffer, maleic acid buffer, 10 x blocking solution, 

washing buffer, low stringency buffer, high stringency buffer, detection buffer 

buffer.  

- Stripping buffer: 50 % deionized formamide; 5 % SDS; 50 mM Tris-HCl, pH 

7.5 

- DEPC-treated deionised water: 1 ml DEPC (diethyl pyrocarbonate) in 1000 ml 

deionised H2O 
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1.10 Culture media 

 

A) Media for growth of Escherichia coli 

- LB-Medium (Luria-Bertani-Medium, Sambrook et al., 1989) 

Liquid medium: 1.0 % Bacto-Trypton; 0.5 % Beef extract; 1.0 % NaCl, pH 7.0 

Solid medium: 1.0 % Bacto-Trypton; 0.5 % Beef extract; 1.0 % NaCl, 1.5 % Agar, 

pH 7.0 

Antibiotic selection required addition of Kanamycin at final concentration of 50 

�g/ml.       

     

2. Methods 
 

2.1  DNA extraction from environmental samples 

 

Construction of microcosms, growth of rice plants, handling and harvesting of rice roots were 

performed in previous studies (Großkopf et al., 1998; Horz et al., 2001) 

 DNA was extracted from dried root material following a procedure adapted from Großkopf et 

al. (1998). Ca. 100 mg of lyophilised roots, were pulverized with a mortar under liquid 

nitrogen. The pulverized root material was resuspended in 1 ml of extraction buffer. The 

homogenisate was transferred in a 2-ml tube. The tube was placed into liquid nitrogen for 2 

minutes, then for another 2 minutes in a 65°C water bath. The operation was repeated twice, 

followed by addition of 2 mg lysozyme (40 �l of a 50 mg/ml solution) and 1 h incubation at 

37°C.  Subsequently, 0.1 mg of proteinase K (5 �l of 20 mg/ml solution) and 50 �l of a 10% 

SDS solution were added and the mixture was incubated for another hour at 37°C.  Finally, 

SDS was added to a final concentration of 2%, followed by incubation at 65°C for 10 minutes 

and addition of 5 M potassium acetate and further incubation for 20 minutes on ice. The 

mixture was centrifuged at 13 000 x g for 15 minutes and the supernatant was transferred into 

a new tube. The supernatant was extracted three times with chloroform/isoamylalcohol (24:1) 

followed by precipitation of total nucleic acids with isopropanol and then with ethanol (70%). 

The pellet was dried and suspended in 150 �l of Tris-EDTA buffer. Further purification was 

carried out with the “Prep-A-Gene Purification Kit” (Bio-Rad, Hercules, USA) following the 

recommendations of the supplier. 
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2.2   Nucleic acid extraction from pure cultures 

 

DNA extracts intended for PCR studies were provided by Dr Peter F. Dunfield. Extraction 

protocols are described in Dunfield et al. (2002). 

For hybridization studies pure cultures grown under standard cultivation conditions (5% CO2, 

20% CH4, 75% air) were provided by Dr. Peter F. Dunfield and Dr. Jürgen Heyer. The 

protocols that were used for extraction of DNA or RNA are almost identical except that 

solutions for extracting RNA were prepared using DEPC-treated deionised water. 

Cells were first pelleted at 6 000 x g for 20 min at 4°C and washed once with TE buffer (10 

mM Tris, 1 mM EDTA �pH 8.0�). The pellet was then suspended in 10 ml TE buffer to which 

25 mg of lysozyme and 20 �l of proteinase K (25 mg/ml) were added. The solution was 

placed in a 37°C water bath for two hours after which a 10% (w/v) SDS solution was added to 

a final concentration of 1%, followed by a 1.5-h incubation at 37°C. After centrifugation at  

5 000 x g for 15 min at 4°C the supernatant was transferred to a new tube, and to this 1 ml of 

5 M potassium acetate �pH 7.5� was added, followed by another 5 000 x g centrifugation step 

(15 min at 4°C). Total nucleic acids were extracted from the supernatant twice with one 

volume of chloroform/isoamylalcohol (24:1 v/v) and then precipitated with isopropanol and 

resuspended in 5 ml TE buffer. The resulting extract was used either for DNA extraction or 

for RNA extraction. For DNA extraction, 30 �l of 100 mg/ml RNase A and 20 �l of 100 000 

U/ml RNAse T1 were added, followed by incubation for two hours at 37°C. Finally, DNA 

was extracted three times with chloroform/isoamylacohol and then precipitated with 

isopropanol and resuspended in TE buffer. For RNA extraction, 20 �l of RNAse-free DNase 

was added, followed by incubation for two hours at 37°C. RNA was extracted three times 

with chloroform/isoamylacohol and then precipitated with isopropanol and resuspended in 

DEPC-treated TE buffer. The quality of DNA or RNA was checked on a 1% agarose gel. 

 

2.3   Agarose gel electrophoresis 

 

Agarose gel electrophoresis was applied to check the completeness of restriction enzyme 

digestions, and to determine the yield and purity of a nucleic acid extraction or PCR reaction. 

Prior to gel casting, dried agarose was dissolved and heated in 1% TAE-buffer. Then the 

warm gel solution was poured into a mold, which is fitted with a well-forming comb. The 

percentage of agarose in the gel varied depending on the purpose of experiment. Agarose gels 

were submerged in electrophoresis buffer (1% TAE-buffer) in a horizontal electrophoresis 

 24



                                                                                                                                              Materials and Methods                             

apparatus. DNA samples were mixed with gel tracking dye and loaded into the sample wells. 

Electrophoresis was usually carried out at 150 to 200 mA for 0.5 to 1 hour, depending on the 

desired separation. Size markers (in our case �-DNA cleaved with restriction endonuclease 

PstI) were co-electrophoresed with DNA samples. After electrophoresis, the gel was stained 

with ethidium bromide and placed on a UV light box and a photo of the fluorescent ethidium 

bromide-stained DNA separation pattern was taken with a video camera (Gel Jet Imager, 

INTAS, Goettingen, Germany). 

 

2.4 Quantification of nucleic acids 

 

Extracted nucleic acids and PCR products were quantified by measuring the optical density 

(OD) at 260 nm. At this wavelength an OD of 1.0 would correspond to 50 �g/ml for double- 

stranded DNA or 40 �g/ml for single-stranded DNA or RNA, or 20 �g/ml for 

oligonucleotides. 

The purity of nucleic acid solutions is given by the ratio of OD260/OD280. For a good purity 

this ratio should vary between 1.8 and 2.0 (Sambrook et al., 1989). 

 

2.5    PCR amplification  

 

2.5.1 Amplification of 16S rDNA of type I and type II methanotrophs  

 

Specific PCR assays (Wise et al., 1999) were used to amplify the 16S rDNA of type I and 

type II methanotrophs inhabiting the rice roots. The different primer sets applied are listed in 

Table 4.  

All reactions were carried out in a volume of 100 �l, containing 1 �l of target DNA, 2.5 U 

Taq Polymerase (Applied Biosystems, Weiterstadt, Germany), 0.3 �M each primer, 1.5 mM 

Mg2+, 0.2 mM of each dNTP (USB, Cleveland, Ohio, USA) and 1 x PCR Taq buffer (10 �l in 

100 �l final volume). The reactions were performed in a thermal cycler (model 2400, PE 

Applied Biosystems) and the PCR profile consisted of an initial denaturation at 94°C for 3 

min, and 33 cycles consisting of denaturation at 94°C for 60s, annealing at 55°C for 60s, 

elongation at 72°C for 60s, and final extension step at 72°C for 7 min. The size and purity of 

PCR products were checked by agarose gel electrophoresis (1% agarose) and PCR products 

were cloned into pCR�II-TOPO� of the TA Cloning kit. 
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2.5.2   Development of specific PCR assays for the retrieval of sequence types belonging 
to a novel pmoA lineage 
 
Different PCR assays were designed in an attempt to specifically detect sequences of a novel 

pmoA gene cluster in extracts of environmental DNA. Primer sequences and descriptions are 

given in table 4. 

 

First-round-PCR strategies were designed as follows:  

- PCR strategy A: A189f/A682b 

- PCR strategy A°: pmoA190f/pmoA668b or pmoA190f/pmoA671b 

- PCR strategy A’: pmoA189f/pmoA668b 

- PCR strategy B1: pmoA206f/pmoA703b 

 

Second-round- (NESTED or semi-nested) PCR strategies were applied using the 

amplification product of PCR strategy A as follows: 

- PCR strategy A1: pmoA189f/pmoA668b or pmoA189f/pmoA671b 

- PCR strategy A2: pmoA190f/pmoA668b or pmoA190f/pmoA671b 

 

PCR was carried out in a volume of 75 �l containing 1 �l of target DNA, 2.5 U Taq 

Polymerase (Promega, Mannheim, Germany), 0.125 �M each primer, 1.5 mM Mg2+, and 0.15 

mM of each dNTP. The PCR profiles are given in Table 5. 

The sizes of PCR products were checked on a 1% agarose gel, and PCR products were cloned 

into pCR�2.1. 

 

2.5.3   PCR amplification of pmoA from methanotrophic pure cultures 

 

Depending on the experimental strategy (T-RFLP analysis or sequencing), different PCR 

strategies were designed for amplifying either the conventional or the novel pmoA genes from 

methanotrophic isolates or type strains. 

pmoA genes were amplified in a 75 �l reaction mixture containing 1 �l of target DNA, 2.5 U 

Taq Polymerase (Promega, Mannheim, Germany), 0.125 �M each primer, 1.5 mM Mg2+ and 

0.15 mM of each dNTP. Conventional pmoA genes were amplified with the primer 

combination A189f/A682b at an annealing temperature of 55°C whereas the novel type of 

pmoA was amplified with the primer combination pmoA206f/pmoA703b at annealing 

temperature 60°C or 66°C. The reactions were carried out in a Perkin-Elmer thermocycler and 
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Table 5: PCR profiles for amplification of pmoA in environmental DNA extracts 

 
Strategy Fragment length (bp) PCR profile Cycle number 

A 531 94°C, 60s; 55°C, 60s; 72°C, 60s 32 

A° Ca. 492 94°C, 60s; 57.8°C, 60s; 72°C, 60s 35 

A1 Ca. 510 94°C, 60s; 51°C, 60s; 72°C, 60s 35 

A2 Ca. 492 94°C, 60s; 58°C, 60s; 72°C, 60s 23 

A’ Ca. 508 94°C, 60s; 62.8°C, 60s; 72°C, 60s 35 

B1 531 94°C, 60s; 59°C, 60s; 72°C, 60s 34 

 

 

PCR profiles consisted of an initial denaturation at 94°C for 3 min, followed by 28 cycles of 

denaturation at 94°C for 60s, annealing at 60°C or 66°C for 60s, elongation at 72°C for 60s 

and final extension step at 72°C for 7 min. 

 

2.6   Amplification of 16S rDNA from methanotrophic pure cultures 

 

In order to verify the identity of cultures, specific PCR assays (Wise et al., 1989) were used to 

amplify the 16S rDNA of either type I or type II methanotrophs. The primer combination 

MethT1dF/Metht1bR was attempted for amplifying the 16S rDNA of type I methanotrophs 

whereas the primer combination 27f/MethT2R was applied for amplifying the 16S rDNA of 

type II methanotrophs. 

     

 2.7 Cloning of PCR products  

 

The plasmid vector (pCR�II-TOPO� or pCR�2.1-TOPO�) of the TOPO TA Cloning kit 

(Invitrogen, de Schelp, Netherlands) is supplied linearised with single 3’-thymidine (T) 

overhangs for TA Cloning� and topoisomerase I covalently bound to the vector (referred to 

as “activated” vector). Taq polymerase has a non-template-dependent terminal transferase 

activity that adds a single deoxyadenosine (A) to the 3’ ends of PCR products. The linearized 

vector supplied in the TOPO TA Cloning kit has single, overhanging 3’ deoxythymidine (T) 

residues. This allows PCR inserts to ligate efficiently with the vector. Vectors of the pUC 

series such as those of the TA cloning kit carry the coding information for the first 146 amino 

acids of the �-galactosidase gene. Embedded in this coding region is the polycloning site into 

which the DNA insert is cloned. When expressed, this 146 amino acid fragment of �-
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galactosidase protein is incapable of acting on the chromogenic substrate (X-gal). But when 

expressed in appropriate host cells, which express the carboxyl terminal fragment of the �-

galactosidase protein, these two protein fragments can associate to form an enzymatically 

active protein. This is called the �-complementation and such cells turn blue when plated on 

plates containing X-gal. But if inserts DNA were cloned in the polycloning site, it almost 

invariably results in production of an amino-terminal fragment that is not capable of �-

complementation and hence those colonies remain white. 

PCR products were cloned into pCR�II or pCR�2.1 and transformed in E. coli strain 

INV�F’ following the instructions of the manufacturer. Positive clones were selected based 

on transformation of X-gal on kanamycin-containing LB-agar plates. 25 �l of 50 mg/ml X-gal 

were spread onto LB-agar plates that were placed 15 min at dark. Subsequently, variable 

amounts of the transformation reaction were spread onto the plates, which then were 

incubated at 37°C overnight. Positive clones were picked by means of a sterile toothpick and 

replated onto new plates for growth. After the second growth, the plates were stored at 4°C 

and the clones could either be screened by means of PCR or they could be stored in liquid 

LB-medium containing kanamycin. 

 

2.8   Screening of clone libraries 

 

Individual colonies containing inserts were suspended in 60 �l of water and boiled for 6 min. 

The cells debris were spun down, and 1 �l portions of the supernatants were used in PCR 

mixtures to reamplify the insert from the vector with the primer combination M13f and M13r 

at an annealing temperature of 55 °C. The size of the PCR product was checked on a 1% 

agarose gel. 

 

2.9 Long-term storage of clones 

 

Single colonies were inoculated into 1-2 ml of liquid LB-medium containing 50 �g /ml 

kanamycin. After overnight incubation at 37°C, 0.85 ml of cultures were mixed with 0.15 ml 

of sterile glycerol buffer and stored at –80°C. 
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2.10   T-RFLP analysis 

 

The T-RFLP (Terminal restriction fragment length polymorphism) analysis is a recent 

molecular approach (Liu et al., 1997) that can assess subtle genetic differences between 

strains as well as provide insight into the structure and function of microbial communities 

(Reviewed in Marsh, 1999; Osborn et al., 2000). The method is based on the restriction 

endonuclease digestion (normally with 4 bp cutters) of fluorescently end-labelled PCR 

products. Either one or both primers used in the PCR can be fluorescently labelled with a 

distinct fluorescent dye. The digested product is mixed with a DNA size standard, itself 

labelled with a distinct fluorescent dye, and the fragments are then separated by 

electrophoresis using either gel- or capillary-based systems, with laser detection of the 

labelled fragments using an automated analyser (in our case, Applied Biosystems). Upon 

analysis, only the terminal end-labelled restriction fragments are detected. The output from 

such an analysis is in two forms: first an electropherogram is produced which shows the 

profile of a microbial community as a series of coloured peaks of varying heights and the 

second output consists of a table, which includes most importantly the size (in base pairs) and 

the height of each peak. 

The presence of divergent pmoA gene copies in methanotrophs (Dunfield et al., 2002) 

suggests that both copies are different enough to be screened based on differences in their 

restriction patterns. T-RFLP analysis was applied in this study for the following aims: 

      -    Assessing the community profiles of environmental DNA extracts. 

- Screening the intragenomic pmoA-based diversity of methanotrophic isolates. 

- Optimising PCR conditions for a rapid retrieval of novel pmoA sequence types (if 

present) without cloning the PCR product prior to sequence analysis. 

 

PCR amplifications 

Single-round-PCR amplifications were carried out using a combination of either 5’-Fam-

A189f/A682b or 5’-Fam-pmoA206f/pmoA703b. Nested- or semi-nested-PCR were carried 

out using the combination of primers A189f/A682b in a first-round and then using its product 

in a second-round with primers 5’-Fam-pmoA190f/pmoA668b. 

All reactions were carried out in a volume of 75 �l reaction containing 1 �l of target DNA, 

2.5 U Taq Polymerase (Promega, Mannheim, Germany), 0.125 �M each primer, 1.5 mM 

Mg2+ and 0.15 mM of each dNTP. PCR profiles consisted of an initial denaturation at 94°C 

for 3 min and 28 cycles of 94°C for 60s, annealing at 50°C (5’-Fam-A189f/A682b) or 60°C or 
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66°C (5’-Fam-pmoA206f/pmoA703b) for 60s and elongation at 72°C for 60s and final 

extension step at 72°C for 7 min. The sizes of PCR products were checked on a 1% agarose 

gel. 

 

Restriction digestion 

An aliquot (ca. 200 ng) of the PCR product was digested in reaction tubes containing 10 U 

MspI (Promega, Mannheim), 1 �l buffer B (Promega Mannheim), 0.1 �l BSA and H2O for a 

total volume of 10 �l. All reactions were incubated at 37°C for 3 h and stored at 4°C 

thereafter. 

 

Analyses of the restricted products 

2.5 �l of the restricted products were mixed with 2 �l of formamide and 0.5 �l of an internal 

size standard (Gene-Scan-1000 ROX, PE Applied Biosystems, Weiterstadt). Mixtures were 

denatured at 94°C for 4 min and electrophoresed on a 6 % polyacrylamide gel containing 8.3 

M urea for 6 h at 2, 500 V, 40 mA and 27 W on an ABI sequencer 373. T-RFLP profiles were 

analysed using the GENESCAN software (version 2.1) (Applied Biosystems). The size, in 

base pairs, of terminal restriction fragments (T-RFs) was estimated by reference to the 

internal lane standard. T-RFs with a peak height of less than 100 fluorescence units were 

excluded from further analysis. 

 

2.11 Southern hybridization  

 

Localization of particular sequences within genomic DNA is usually accomplished by the 

transfer techniques described by Southern (1975). In this method, genomic DNA is digested 

with one or more restriction enzymes, and the resulting fragments are separated according to 

size by electrophoresis through an agarose gel. The DNA is then denatured in situ and 

transferred from the gel onto a solid support (usually nitrocellulose filter or nylon membrane). 

The relative positions of the DNA fragments are preserved during their transfer to the filter. 

The DNA attached to the filter is hybridized to a probe and the positions of bands of interest 

can be located via a suitable detection method. In this study, Southern hybridization was 

applied to a number of methanotrophic isolates and type strains. The aim was to confirm the 

results of PCR-based strategies applied for the retrieval of sequence types belonging to the 

novel pmoA lineage. 
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Restriction digestion and hybridization 
Aliquots of genomic DNA (10 �g) were digested overnight at 37°C using 50 U restriction 

enzyme, by following the protocols as recommended by the supplier (Promega, Wisconsin, 

MA, USA). The restricted DNA was precipitated with ethanol, dried in a vacuum dessicator 

(Savant, Holbrook, NY, USA), resuspended in 20 �l of TE buffer and separated on a 0.8% 

agarose gel at 25 V for 12 h. Southern blotting was carried out according to the procedure 

outlined in the DIG Application manual for Filter hybridization (Roche Molecular 

Diagnostics GmbH, Gemany, 2000). This consisted of denaturation and neutralization of the 

electrophoresed genomic DNA and blotting overnight on a Hybond-N-membrane 

(Amersham, Piscataway, NJ, USA). The DNA was UV cross-linked using a UV Stratalinker 

2400 (Stratagene, La Jolla, CA, USA) at 266 nm for 3 min. 

Based on the alignment of pmoA sequences obtained from environmental samples and pure 

cultures, a 26-bp oligonucleotide probe (pmoA636b) was designed to specifically detect the 

novel pmoA gene. DNA fragment probes were generated as a mixture of DIG-labelled 

amplification products of the different strains tested in a PCR using the primer combination 

A189f/A682b. Hybridizations were carried out overnight at 40°C with a standard 

hybridization solution (5 x SSC, 0.1% N-lauroylsarcosin, 0.02% SDS, 1% blocking solution). 

Membranes were washed in a 0.5 x SSC at 60°C for 30 min and positive bands were detected 

on a Storm 860 phosphoimager (Molecular Dynamics, Sunnyvale, CA, USA) after reaction of 

ECF substrate for Western blotting (Amersham). 

 

2.12  Northern hybridization 

 

Northern hybridization or RNA blotting allows the determination of the size and the amount 

of specific RNA molecules in preparations of total RNA (Alwine et al., 1977, 1979). The 

RNA is separated according to size by electrophoresis through a denaturing agarose gel and is 

then transferred to activated cellulose (Alwine et al., 1977; Seed 1982), nitrocellulose 

(Goldberg, 1980; Thomas, 1980), or nylon membranes (Bresser and Gillespie, 1983). The 

RNA of interest is then located by hybridization with a radiolabelled or non-radiolabelled 

DNA or RNA probe followed by detection via a suitable method. Using Methylocystis sp. 

strain SC2 as model organism, Northern hybridization was applied to assess the expression of 

the novel pmoA gene type under standard cultivation conditions (see “Methods). 
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Total RNA separation and hybridization 

Ca. 60 �g of total RNA from strain SC2 were first separated on a 1% formaldehyde agarose 

gel at 60 V for 3 h in the presence of 1 x MOPS buffer (10 x MOPS buffer is 200 mM MOPS, 

50 mM sodium acetate, 20 mM EDTA, pH 7.0). Northern blotting was carried out according 

to the procedure outlined in the DIG Application Manual for Filter Hybridization (Roche 

Molecular Diagnostics GmbH, Gemany, 2000). Blotting was carried out overnight on a 

Hybond-N-membrane (Amersham, Piscataway, NJ, USA). The DNA was UV cross-linked 

using a UV Stratalinker 2400 (Stratagene, La Jolla, CA, USA) at 266 nm for 3 min. 

Hybridizations were carried out overnight at 40°C with a standard hybridization solution (5 x 

SSC, 0.1% N-lauroylsarcosin, 0.02% SDS, 1% blocking solution), by using probes 

pmoA636b or A593b. Membranes were washed in 0.5 x SSC at 60°C for 30 min and positive 

bands were detected on a Storm 860 phosphoimager (Molecular Dynamics, Sunnyvale, CA, 

USA) after reaction of ECF substrate for Western blotting (Amersham). 

 

2.13  Reverse transcription-PCR (RT-PCR) 

 

Reverse transcription-PCR is a common method used in the analysis of gene expression. In 

this method, the RT step is used to produce a cDNA that serves as template in subsequent 

PCR. This method is highly sensitive and, in contrast to Northern hybridization, only very 

little amounts of RNA are applied. RT-PCR was applied in this work as a complementary 

method to confirm the results obtained by Northern hybridization.  

 

Reverse transcription 

Reverse transcription was performed using a Qiagen OmniscriptTM Kit (Qiagen GmbH, 

Hilden, Germany) according to the instructions of the manufacturer. The reaction was carried 

out in a 20-�l (total volume) mixture containing 2 �g of strain SC2 total RNA, 0.5 mM each 

dNTP, reverse transcriptase buffer, 10 U of RNase inhibitor, 1.0 �M of primer A682b and 4 U 

of Omniscript Reverse Transcriptase. The reaction mixture was incubated at 37°C for 30 min. 

 

PCR amplification 

PCR amplification was carried out in a volume of 100 �l containing 1 �l RT product, 2.5 U of 

Taq polymerase, 0.25 �M each primer, 1.5 mM Mg2+ and 0.2 mM of each dNTP. Primer 

combinations were as follow: A189f/pmoA593b to amplify the cDNA of the conventional 

pmoA gene and PmoA206f/PmoA636b to amplify the cDNA corresponding to the novel 
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pmoA gene. The reactions were performed in a thermal cycler (model 2400, PE Applied 

Biosystems), and the PCR profile consisted of an initial denaturation at 94°C for 3 min, and 

32 cycles of 94°C for 40s, 62°C for 40s and 72°C for 45s and final extension step of 72°C for 

7 min.  

PCR products were checked by agarose gel electrophoresis and comparative sequence 

analysis. 

 

2.14   Dideoxynucleotide DNA sequencing (Sanger et al., 1977) 

 

Prior to sequencing, PCR products were purified using the Qiaquick PCR purification kit 

(Qiagen, Hilden, Germany) by following the instructions of the manufacturer. Reactions for 

sequencing were performed using the “ABI PRISM� Dye (or BigDye) Terminator Cycle 

Sequencing Ready Reaction kit” (PE Applied Biosystems, Weiterstadt). All reactions were set 

in 20 �l (or 10 �l) (total volume) and contained 6 �l (or 3 �l) master mix, ca. 5 pmol primer, 

ca. 100 ng DNA and H2O. Sequencing reactions were carried out on a GeneAmp PCR System 

9600 (PE Applied Biosystems, Weiterstadt) and the PCR profile consisted of 25 cycles of 

denaturation at 96°C for 10s, annealing at 50°C for 5s, extension at 60°C for 4 min and 

cooling at 4°C. Reaction samples were purified using Microspin G-50 chromatography 

columns (Pharmacia, Upsala, Sweden) according to the recommendations of the supplier, and 

purified samples were dried on a vaccum dessicator (Savant, Holbrook, NY, USA). Dried 

pellets were mixed with 3 �l of formamide/EDTA (25 mM, pH 8.0) in a ratio of 4:1 (v/v), 

denatured at 100°C for 3 min and separated on a 5 % polyacrylamide gel containing 8 M urea. 

The gel was run on an ABI sequencer (model 373 or 377) for 16 h at 2500 V, 40 mA and 27 

W. 

 

2.15   Blast searches and phylogenetic analyses 

 

BLAST searches 

In order to determine whether the sequence data obtained exhibited homologies with 16S 

rDNA or pmoA sequences available in public domain databases, searches were performed 

using the BLAST programs of the NCBI (National Center for Biotechnology Information, 

http://www.ncbi.nlm.nih.gov/) and the EMBL (European Molecular Biological Laboratory, 

http://www2.ebi.ac.uk/). BLAST® (Basic Local Alignment Search Tool) is a set of similarity 

search programs designed to explore all of the available sequence databases regardless of 
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whether the query is protein or DNA. BLAST is able to detect relationships among sequences 

which share only isolated regions of similarity (Altschul et al., 1990). The scores assigned in 

BLAST create a list of most similar sequences to the query sequence, with homology values 

given in percent. 

 

16S rDNA-based phylogenetic inference 
The new 16S rRNA sequences were added to a 16S rDNA alignment of about 14 000 

homologous primary structures from members of the domain Bacteria using the alignment 

tool of the ARB program package (O. Strunk and W. Ludwig, http://www.biol.chemie.tu-

muenchen.de/pub/ARB). Sequences were first aligned with most similar sequences by using 

methods for pairwise or multiple sequences comparison (Maidak et al., 1996; Van de Peer et 

al., 1996; Ludwig, 1995). By these methods it was possible to compare conserved and 

variable regions in the 16S rRNA sequences. Alignments were refined by visual inspection 

and manual correction. Variabilities in the individual alignment positions were determined 

using the ARB package and were used as criteria for removing or including variable positions 

for phylogenetic analyses. An alignment was performed for every single sequence introduced 

to the database and new sequences were inserted into a phylogenetic tree constructed on the 

basis of all 16S rRNA sequences available in the ARB database. 

Phylogenetic analyses were performed for selected sequences by applying the distance matrix 

methods using the respective tools in the ARB and PHYLIP (Phylogeny Inference Package; J. 

Felsenstein, Depatment of Genetics, University of Washington, Seattle) program packages. 

Evolutionary distances between pairs of sequences were calculated using the “Jukes-Cantor” 

correction (Jukes and Cantor, 1969). Trees were constructed by applying “Neighbor-Joining 

method” (Saitou and Nei, 1987). The stastistical significance of interior node, were 

determined by performing bootstrap analyses by the “neighbor-joining” method. For each 

calculation, 500 bootstrap resamplings were analysed. 

 

PmoA-based phylogenetic inference 

The novel pmoA-like sequences were added to an ARB sequence database, which was created 

based on pmoA sequences downloaded from public databases. Deduced amino acid sequences 

were aligned using the editor GDE 2.2 (S. W. Smith, C. Wang, P. M. Gillevet, and W. 

Gilbert, Genetic Data Environment and the Havard Genome Database, Genome Mapping and 

sequencing, Cold Spring Harbor Laboratory) implemented in the ARB software package. To 

construct phylogenetic trees based on an alignment of amino acid residues, distances were 

inferred by using the maximum likelihood method implemented in the PROTDIST program, 
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with the Kimura (1983) matrixes as the amino acid replacement models. Trees were inferred 

from the distances by using the “Neighbor-Joining” method with global arrangements and 

randomised input order of species. Boostrap values for deduced amino acid sequences were 

calculated for 500 data resamplings. 
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IV. Results 
 
1. 16S rDNA-based diversity of type I and type II methanotrophs on rice roots 
 

16S rDNA PCR products obtained by using target DNA extracted from rice roots were used 

to construct two clone libraries. The primers used to construct both libraries were group-

specific primers for type I or type II methanotrophs as described and published by Wise et al. 

(1999).  

 

1.1 Type I MOB clone library 

 

The Type I group-specific primer MethT1dF was used in combination with MethT1bR to 

generate a PCR product of approximately 920 bp. The PCR product was used to construct a 

clone library from which 24 clones were randomly selected for further analysis. Database 

searches indicated that the great majority of the clones were related to Methylobacter sp. 

BB5.1 whereas a few clones were related to known type I MOB of the genera 

Methylomicrobium, Methylocaldum and Methylococcus. Three clones could not be assigned 

to any known MOB. 

Figure 2 shows the results of the phylogenetic analysis of all type I MOB clones and their 

relationship to representative members of the genera Methylobacter, Methylocaldum, 

Methylomonas, Methylococcus and other characterized Proteobacteria. Seventeen clones 

formed a distinct cluster most closely related (sequence identities of 96% to 97%) to members 

of the genus Methylobacter. The high boostrap value separating these clone sequences from 

any other known methanotrophs suggests that these clones form a monophyletic group. One 

clone was related (identity 98%) to Methylomicrobium album whereas two clones were 

related (identity 93%) to members of the genus Methylocaldum and one clone was related to 

Methylococcus capsulatus (92% identity).  Three clones were not related to known MOB and 

were related to the genus Coxiella (two clones) or to Proteobacterium strain DSM 1181 (one 

clone). 

 

1.2 Type II MOB clone library 

 

The type II MOB specific primer-(probe) MethT2R was used in combination with the 

Bacteria-specific primer 27F, which targets most members of the domain Bacteria. The 

expected product had a size of approximately 950 bp. Thirty clones were randomly selected 
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from the clone library for further analysis. Database searches indicated that sequences were 

related to Methylosinus or Methylocystis. 

   

 
 
Fig 2. Phylogenetic tree showing the relationship of rice root type I methanotroph 16S rDNA clone sequences to 
some characterized type I methanotrophs and �-Proteobacteria. The tree was constructed using the Neighbour-
Joining method with a Jukes-Cantor correction. The 16S rDNA of Methylosinus sporium served as outgroup. 
The scale bar represents 0.10 substitutions per base position. The numbers at nodes of the tree indicate bootstrap 
values (data resamplings values below 50 are not shown). 
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Figure 3 shows the results of the phylogenetic analysis of the type II MOB clone sequences in 

relation to representative type II MOB. Seventeen clones were closely related to Methylocystis 

strain SC2 with sequence identities ranging from 98.1% to 98.4%. Five clones (KLMII236, 

KLMII260, KLMII210 KLMII281 and KLMII233) exhibited the highest percentages of 

sequence identity to Methylocystis sp. strain M (98.0% to 98.5%), an sMMO-containing 

isolate that can degrade high levels of trichloroethylene (McDonald et al., 1997). Three clones 

(KLMII227, KLMII228 and KLMII209) were found most closely related to Methylocystis 

strain Lw5, a type II methanotroph recently isolated from lake sediment (Costello et al., 

1999). Sequence identities varied from 97.1% to 97.9%.  The clones KLMII2114, 

KLMII2200 and KLMII2108 were more closely related to Methylocystis sp. M and 

Methylocystis sp. Lw5 (97.6% to 97.8% identity) than to other type II MOB. Clone 

KLMII2122 was related to Afipia genospecies 7 with sequence identity of 99%.  

 

2. Development of PCR assays for the specific retrieval of novel pmoA-like sequences  

2.1 Specific primers for novel pmoA 

In our effort to generate a pmoA sequence database by using target DNA extracted from rice 

roots, we identified a novel pmoA-like sequence. A more detailed analysis of the derived 

amino acid sequence revealed that, although this sequence clusters closer to type II MOB than 

to type I MOB, it does form a distinct branch (Horz et al., 2001). Many of the conserved 

amino acid residues of known pmoA/amoA sequences are present within the novel sequence, 

suggesting that the sequence is indeed pmoA-like. We assumed that the novel sequence was 

indicative of a novel group of methanotrophs whose members were characterized not yet. In 

order to specifically retrieve further sequences of this novel pmoA-like cluster, a set of PCR 

primers was designed by aligning the novel sequence with conventional pmoA sequence types 

from representatives of different MOB subgroups. Overall, we manually developed four 

oligonucleotide primers termed PmoA190f, PmoA206f, PmoA668b and PmoA671b (see table 

4). These primers were highly specific to the novel pmoA-like gene and exhibited enough 

mismatches to enable differentiation of known methanotrophs. However, a few mismatches 

were observed with conventional pmoA sequences of Methylocystis-group members (two to 

three mismatches). According to database searches, none of the primers perfectly matched to 

conventional pmoA or amoA sequences, suggesting that our assays should be specific.  

 38



                                                                                                                                                                        Results 

 
 
Fig 3. Phylogenetic tree showing the relationship of rice roots type II methanotroph 16S rDNA clone sequences 
to some characterized type II methanotrophs and other members of �-Proteobacteria. The tree was constructed 
using the Neighbour-Joining method with a Jukes-Cantor correction. Methylobacter whittenburyi served as 
outgroup. The scale bar represents 0.10 substitutions per base position. The numbers at nodes of the tree indicate 
bootstrap values, from 100 bootstrap resamplings (values below 50 are not shown). 
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2.2 Specific PCR assays and pmoA sequences of the novel lineage 

In order to investigate the intracluster diversity of the novel pmoA in environmental samples, 

DNA extracts of various compartments of rice microcosms were applied in molecular studies. 

Using a combination of the newly designed primers, various PCR assays were formulated and 

applied to environmental DNA extracts (see table 4).  

Initially primer pairs PmoA190f/PmoA668b and PmoA190f/PmoA671b were used. A band of 

approximately 492 bp was observed and this product was cloned. Ten clones were randomly 

selected for further analysis. Database searches indicated that the sequences amplified by 

these assays were not pmoA. 

In order to increase the specificity and to detect target sequences, new primer combinations 

were formulated. Single-round-PCR was carried out by using the primer combinations 

PmoA206f/PmoA703b and PmoA190f/A682b. Nested-PCR was also formulated by 

amplifying pmoA sequences in a first-round-PCR with the primers A189f/A682b and using 

the amplified product in a second-round-PCR with primer pairs PmoA190f/PmoA668b or 

pmoA190f/PmoA671b. Products of the correct size (492 bp) were observed in both cases and 

these were used to generate clone libraries. A total of 7 clone libraries were produced from 

rice roots (samples Rr90h and Rr90a, one and two libraries, respectively), or from root mats 

(samples Rz90e and Rz90f, one library each), or from rice soil (sample RsVc, two libraries). 

Twelve to fifteen clones were randomly selected from every single library for further analysis. 

Database searches indicated that all the environmental sequences exhibited a higher level of 

identity with pmoA than with amoA. 

Environmental pmoA sequences were added to the existing pmoA database and the alignments 

were used to generate a phylogenetic tree (Fig. 4). PCR assay PmoA190f/A682b failed to 

retrieve MOB sequences belonging to the novel lineage, and sequences belonged mostly to a 

novel sublineage within the type I MOB. A few other sequences were conventional 

Methylocystis-like pmoA sequences. The novel cluster of type I MOB sequences had low 

sequence identities to known type I methanotrophs. Identities at the amino acid level were 

86% to Methylococcus capsulatus (Bath), 77% to Methylobacter sp. LW1, 71% to 

Methylomonas methanica, ca. 84% to Methylocaldum zegediense and 76% to Methylosarcina 

quisquiliarum. Single-round-PCR assay PmoA206f/PmoA703b and nested-PCR were specific 

for detecting sequence types belonging to the novel pmoA lineage. The large majority of clone 

sequences retrieved clustered with the novel pmoA-like sequence of clone M84-P3 previously 

retrieved in a cultivation-independent approach (Horz et al, 2001).  However, a few clones 

could also be identified as type II-like conventional pmoA sequences belonging to the 

Methylocystis group. Sequences of the novel pmoA cluster had amino acid identities of ca. 
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70% with known type II methanotrophs and ca. 60%-65% with type I MOB. The intracluster 

diversity was much greater. Sequences formed three distinct clusters with identities varying 

from 81% to 98%. 

 
 
Fig 4. Phylogenetic tree based on pmoA showing the relationship of the derived amino acid sequences of 
environmental clones to some cultured and uncultured methanotrophs. The tree was constructed using a 
Neighbour-Joining method with a Kimura correction. The sequences RA14, RA21 and Rold5 were retrieved by 
cultivation-independent methods from forest soils and the sequence M84-P3 was retrieved from rice paddy 
soil.Bootstrap values >50% are indicated. The scale bar represents 0.10 substitutions per base position.  
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2.3 T-RFLP for assessing pmoA diversity in selected environmental DNA extracts 

 

Horz et al. (2001), showed recently that MspI is the most appropriate restriction enzyme for 

analysing pmoA diversity of methanotrophic communities by T-RFLP analysis. This 

conclusion was based on silico analysis of MspI cutting sites of pmoA sequences derived from 

cultured methanotrophs, and was later confirmed with experimental findings. The comparison 

of T-RFLP profiles obtained from rice roots allowed group-based and even genus-based 

differentiation among methanotrophs and nitrifiers (Horz, 2001; Horz et al., 2001). In order to 

assess pmoA diversity in environmental DNA extracts via T-RFLP analysis and to confirm the 

extent of diversity based on comparative sequence analysis, we manually searched for MspI 

restriction sites in all environmental pmoA sequences retrieved from rice roots. We found that 

environmental sequences could be differentiated on the basis of their T-RFs. 
 
 

A

C

B

225

225

225

259

259

327

327

327

426

426

492

492

 
 
 
Fig. 5. pmoA-based T-RFLP profiles of three environmental samples: A (Rz90f, root mate of 90-day-old rice 
plants), B (Rr90a, roots of 90-day-old rice pants) and C (RsVc, roots of 90-day-old rice plants). The x-axis 
shows the lengths (in base pairs) of the T-RFs, and the y-axis shows the signal intensities of the fragments in 
arbitrary units. The numbers are T-RFs of individual pmoA sequences. 
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DNA extracts from samples Rr90a, Rz90f and RsVc were used for nested-PCR of pmoA (see  

“Methods”) and the products were subjected to MspI-based T-RFLP analysis. These samples 

exhibited a considerable diversity of sequence types belonging to the novel pmoA. The T-

RFLP patterns of individual samples reflected the diversity provided by sequence analysis. 

Comparison of T-RFLP profiles (Fig. 6) allowed the identification of T-RFs with a size of 

225 bp, 259 bp, 327 bp, 426 bp and 492 bp in samples Rr90a and RsVc, whereas T-RFs 225 

bp and 327 bp were identified in sample Rz90f. Except for 492 bp T-RF, all the T-RFs 

identified by T-RFLP analysis could be assigned to specific clusters of environmental 

sequences, confirming that T-RFLP analysis would be suitable as a rapid tool for assessing 

the diversity of the novel pmoA gene cluster in environmental samples. 

 

3. Methylocystis strain SC2 harbours a novel pmoA-like gene 

In parallel to our study on novel environmental pmoA sequences, colleagues (Dr. Peter F. 

Dunfield and Dr. Jürgen Heyer) in our department created a culture collection and a molecular 

database for type II MOB. In the course of their study they identified a Methylocystis strain 

(termed strain SC2) that harboured two very different pmoA-like genes (Dunfield et al., 

2002). The first gene exhibited very high sequence homology to pmoA genes of other type II 

MOB (even identical amino acid sequence to pmoA of some other Methylocystis strains). The 

second gene possessed only 73% identity with pmoA1 at the nucleotide level and 68.5% 

identity at the amino acid level. pmoA2 of strain SC2 was closely related to the above-

mentioned pmoA-like clone sequence M84-P3 (Fig. 5) retrieved in our previous study by 

cultivation-independent methods from rice field soil (86.3% sequence identity), indicating 

that the presence of multiple, diverse pmoA gene copies might not be unique to strain SC2. 

This finding was strengthened by detection of a novel pmoA2-like gene copy in Methylosinus 

trichosporium strain KS21 (Dunfield et al., 2002). The translated amino acid sequences of 

strain SC2 were aligned with those corresponding to some of our environmental sequences. 

The alignments were used to construct a phylogenetic tree (Fig. 6). pmoA1 clustered with 

conventional pmoA sequences of the Methylocystis group whereas pmoA2 clustered with 

environmental sequences belonging to the novel cluster, indicating that the novel pmoA gene 

is not indicative of a novel uncharacterized group of methanotrophs. Instead, it is present in 

some currently known methanotrophs. 
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Fig. 6. Phylogenetic tree showing the relationship of the derived amino acid sequences of the two partial pmoA 
fragments of Methylocystis sp. SC2 to those of some environmental clones, as well as selected type II and type I 
MOB. The tree was constructed using a Neighbour-Joining method with Kimura correction. Sequence M84-P3 
was retrieved by cultivation-independent methods from rice paddy soil. 
Bootstrap values>50% are indicated. The scale bar represents 0.1 change per amino acid position.  
 

In order to confirm the above results by a non-PCR-based method, genomic DNA was 

extracted from cell biomass of strain SC2 and used in Southern hybridization in conjunction 

with oligonucleotide probes specific either for pmoA1 or for pmoA2 (Dunfield et al., 2002).  

The probe A539b specific for the pmoA1 gene (containing eight mismatches to the pmoA2 

gene) hybridized to two DNA size fragments (Fig. 7). The pmoA2 probe, specific for the 

novel gene type  (12 mismatches to the pmoA1 gene), hybridized to a single, distinct size 

fragment. The results were the same regardless of the restriction enzyme used. The Southern 

hybridization data therefore confirmed that both pmoA-like genes detected by PCR-based 

methods were present in the genome of Methylocystis strain SC2. The probe A593b was 

employed instead of the probe pmoA1b to detect the pmoA1 gene. The rationale behind the 

use of probe A593b was that this probe produced three hybridization signals, two strong 

signals identical to those produced by probe A593b, and a very weak, third hybridization 

signal corresponding to the same size fragment to which the pmoA2b probe hybridized 

strongly. 
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Fig. 7. Southern hybridization of genomic DNA extracted from Methylocystis strain SC2. DNA 
 was digested with either XhoI (1) or EcoRI (2). A, hybridization with probes A593b and 
pmoA2b. B, hybridization with probe A593b (pmoA1-specific). C, hybridization with probe 
pmoA2b (pmoA2-specific). The rightmost panel shows digested genomic DNA and a DNA 
ladder stained with ethidium bromide. 
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4. Screening of pure cultures for the presence of the novel pmoA gene type 

The presence of multiple conventional pmoA gene copies within a single strain has been 

demonstrated for laboratory strains (Semrau et al., 1995; Stolyar et al., 1999), and for both 

Methylococcus capsulatus Bath and Methylosinus trichosporium OB3b, the two copies of the 

pmoCAB operon are almost identical (Gilbert et al., 2000, Stolyar et al., 1999). This propenty 

has facilitated the rapid identification of methanotrophic strains (Holmes et al., 1995; Wise et 

al., 1999) by direct sequencing of pmoA PCR products i.e a single sequence corresponds to a 

particular species. However, if divergent multiple copies of pmoA are present within a single 

strain, amplification of pmoA genes with universal pmoA primers would result in mixtures of 

amplicons in PCR reactions, thereby affecting further characterization by direct sequencing of 

PCR products. Therefore, there was a need to find an appropriate method to isolate the 

divergent pmoA gene copies present in a single organism. 

 

4.1 Establishment of a T-RFLP-based screening method 

 

The ability of T-RFLP analysis to distinguish divergent pmoA sequence types within a single 

strain was assessed by computer simulation of the T-RF size distribution of the two pmoA 

sequence types present in Methylocystis strain SC2. Based on the PCR primers pmoA206f and 

pmoA703b, the T-RF sizes (5’ or 3’ termini) were predicted for as many as 10 different 

restriction endonucleases. For MspI we identified two distinct 5’-T-RFs, which corresponded 

to a pmoA1 (245 bp) and pmoA2 (438 bp), respectively. Based on the in silico analysis, we 

concluded that PCR with primer pair pmoA206f /pmoA703b followed by digestion with MspI 

was the simplest way to classify the two different pmoA sequence types present in 

Methylocystis strain SC2. To test our predictions experimentally, PCR amplification of pmoA 

was conducted with a fluorescently labelled forward primer pmoA206f. The effect of 

annealing temperature used in PCR on the pmoA sequence type detectable via T-RFLP 

analysis was investigated by performing the amplifications at two different annealing 

temperatures (60°C and 66°C). The PCR products were digested with MspI and separated on 

an ABI 373 automated sequencer. No discrepancy was observed between the results expected 

by in silico analyses and the empirical data obtained. Two different T-RFs with a size of 245 

bp and 438 bp were observed at an annealing temperature of 60°C, whereas only one distinct 

T-RF was observed at an annealing temperature of 66°C (Fig 8). This finding led us to 

conclude that there were at least two distinct pmoA sequence types within the genome of 

strain SC2.  To verify that only pmoA2 was amplified at 66°C, another PCR was carried using 

the annealing temperature of 66°C (with no fluorescently labelled primers) and the resulting 
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PCR product was sequenced. Comparative sequence analysis confirmed the product as 

derived from pmoA2. This finding allowed us to conclude that T-RFLP analysis in 

combination with comparative sequence analysis may be a rapid and reliable method for 

screening methanotrophic pure cultures for the presence of multiple, divergent pmoA gene 

copies. 
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Fig. 8. pmoA-based T-RFLP profiles of Methylocystis strain SC2. PCRs were carried out with primers 
pmoA206f and pmoA703b at two different annealing temperatures: A (60°C) and B (66°C). On the y-axis are 
represented the intensities of fragments in arbitrary units. Numbers are the lengths of T-RFs corresponding to 
individual pmoA sequences. 
 
 
 
4.2 Screening of pure cultures 

 
Thirty-one pure cultures, including 9 type strains and 22 environmental isolates, were 

screened for the presence of a novel pmoA gene copy. 

Prior to pmoA-based analysis, the identity of each strain was confirmed by comparative 

sequence analysis of its 16S rRNA gene and the conventional pmoA gene copy. The 16S 

rRNA and the pmoA genes had been amplified using group-specific 16S rRNA gene primers 

described by Wise et al., (1999) and the pmoA primers A189f/A682b, respectively. 

The pmoA-based diversity present within a single strain (including 6 type I MOB and 25 type 

II MOB) was assessed by determining the number and the size of fragments (T-RFs) observed 

in restriction digests of pmoA genes amplified at two different annealing temperatures (60°C 

and 66°C). PCR products were obtained for nearly all type II MOB and the type I 

Methylomicrobium album. Three type strains and two environmental isolates failed to give a 
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positive PCR with this pmoA2-specific primer set, including Methylococcus capsulatus, 

Methylosinus trichosporium OB3b, Methylocaldum E10A, Methylomonas spec. D1a, 

Methylosinus spec. H3 and Methylocaldum spec. O8a. The T-RFLP patterns obtained 

(referred to as “strain fingerprints”) are composites of the number of fragments with unique 

lengths and the relative abundance of each fragment as reflected by the size of each peak in 

the electropherogram. Based on an analysis of electropherograms from the sequencing gel 

images, the 5’ T-RFLP patterns revealed various distinct T-RFs among the strains, suggesting 

that there occurred a high degree of “pmoA sequence diversity” (i.e. multiple T-RFs, 

examplarily shown for Methylocystis parvus). For most of the strains that tested positively for 

the novel gene, the pmoA sequence diversity decreased with increasing annealing temperature 

and a single T-RF was observed at 66°C. This allowed the identification of T-RFs with sizes 

of 130 bp, 159 bp, 209 bp, 245 bp, 350 bp, and 438 bp. It was possible to classify the strains 

that were tested positively by PCR in groups of T-RFs identified, and on the basis of this 

classification representatives of different T-RFs were further investigated by direct 

sequencing of the pmoA amplicon generated at an annealing temperature of 66°C. 

 Translated sequences of PCR products were aligned, and compared with amino acid 

sequences of environmental clones. It was confirmed that the 245 bp T-RF was indeed 

characteristic of conventional pmoA sequences of the Methylocystis/Methylosinus group that 

could still be amplified with the presumed pmoA2-specific primer set at 66°C. Phylogenetic 

analyses (Fig. 10) showed that novel pmoA sequences of methanotrophic isolates were related 

to environmental clone sequences. Sequences of isolates grouped in two larger clusters. 

Amino acid sequence identities between these clusters were ca. 85% to 89%. Novel pmoA 

sequences of Methylocystis parvus and Methylomicrobium album were almost identical and 

grouped in a separate cluster. 
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Fig. 9. PmoA-based T-RFLP profiles of Methylocystis parvus. PCR were carried out with primers pmoA206f and 
pmoA703b at annealing temperature 60°C. On the y-axis are represented the intensities of fragments in arbitrary 
units. Numbers are T-RFs corresponding to individual pmoA sequences. 

 48



                                                                                                                                                                        Results 

 
Fig. 10. Phylogenetic tree based on pmoA sequences showing the relationship of the derived amino acid 
sequences of two partial pmoA1 and pmoA2 of methanotrophic isolates to environmental clones as well as to 
selected type I and type II MOB. The sequences RA14, RA21 and Rold5 were retrieved by cultivation-
independent methods from forest soils, and the sequence M84-P3 was retrieved from a rice-paddy soil. The tree 
was constructed using a neighbour-joining method with a Kimura correction. Bootstrap values >50% are 
indicated. The scale bar represents 0.1 change per amino acid position.  
 

In order to confirm the PCR-based screening results for a representative set of MOB by 

Southern hybridization, a 26-bp oligonucleotide probe was developed for the detection of the 
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novel pmoA gene type (Fig. 11). The probe exhibited two mismatches to the corresponding 

target site of the conventional pmoA gene copy of Methylococcus capsulatus Bath, 4 

mismatches to the corresponding target site of Methylomonas methanica, Methylosinus 

trichosporium OB3b and Methylocystis parvus and 5 mismatches to the corresponding target 

site of Methylomicrobium album. However, the probe �termed pmoA636b (Table 3)�, 

perfectly matched to the target site of all currently available sequence types belonging to the 

novel pmoA-like cluster. 

 

Target…………………………………………………...GGCACSCCKGAATACATCCGCATGAT……………………           
Clone M84-P3……………………………… …..GGCACGCCTGAATACATCCGCATGAT…………………… 
SC2 novel..………………………………………..GGCACCCCGGAATACATCCGCATGGT…………………… 
RsVc-B1-XV_05…………………………………..GGCACGCCGGAATACATCCGCATGAT……………………   
RsVc-A2-XIV_04.……………………………..GGCACACCGGAATACATCCGCATGAT…………………… 
Methylococcus capsulatus…...GGTACGCCCGAGTACATCCGCATGGT…………………… 
Methylomonas methanica…………..GGTACACCTGAGTACATCCGTATGGT…………………… 
Methylosinus trichosporium….TCGATGCCGGAATATATCCGCATGGT…………………… 
Methylocytis parvus conv……….TCGATGCCGGAATATATCCGCATGGT…………………… 
Methylomicrobium album conv.GGTACTCCAGAATATATCCGGATGGT…………………. 
RA21…………………………………………………………..AGCATGCCGGAATATCTGCGCATCAT…………………… 
 
Fig. 11. Alignment showing the target region of probe pmoA636b among  methanotrophic representatives. Bold 
letters indicate mismatches, underlined letters show differences at degenerated sites. 
 

Southern blots of digested chromosomal DNA were probed respectively with the 

oligonucleotide probe pmoA636b and a pmoA gene probe (generated as a mixture of DIG-

labelled amplification products of the different strains tested). All hybridization experiments 

were carried out using strain SC2 as a positive control (Fig. 12). Probing with oligonucleotide 

pmoA636b gave one distinct signal for either Methylomicrobium album or strain SC2. No 

signal was observed for Methylococcus capsulatus, Methylomonas sp. D1a and Methylosinus 

trichosporium OB3b. These results agreed well with those obtained by PCR. Among the 

strains tested by Southern hybridization, detection and retrieval of sequence information of a 

novel pmoA gene was only the case for Methylomicrobium album and for Methylocystis strain 

SC2. Full-length gene probes of pmoA detected multiple pmoA copies in several of the strains. 

Two copies were detected in the genomic DNA of Methylomicrobium album, Methylococcus 

capsulatus and Methylosinus trochosporium OB3b while only a single copy was detected in 

Methylomonas sp. strain D1a.  
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Fig. 12. Hybridization of digests of methanotroph genomic DNA to pmoA probes. EcoRI digests: 1- 
Methylosinus trichosporium OB3b; 2- Methylomicrobium album; Methylocaldum sp. E10A; 4- Methylocystis 
strain SC2. PstI digests: 5- Methylococcus capsulatus (Bath); 6- Methylocystis strain SC2; 7- Methylomonas sp. 
D1a. A1+B1, hybridization with probe pmoA636b. A2+B2, hybridization with DNA fragment probes. 
 

5. Expression of the novel pmoA-like gene in strain SC2 

 

Two different experimental strategies were applied to assess whether the novel pmoA gene 

type will be expressed when strain SC2 is grown under standard cultivation conditions (see 

“Methods”). 

Detection by Northern hybridization. Attempts were made to check whether or not the novel 

methanotrophic pmoA gene is expressed under standard cultivation conditions. Total RNA of 

strain SC2 was extracted and separated on a 1% formaldehyde agarose gel and blotted onto a 

nylon membrane. Probing was carried out with oligonucleotides A593b or PmoA636b 

specific for either the conventional pmoA gene or for the novel pmoA gene type.  

Hybridizations with both oligonucleotides were positive (Fig. 12). However, in comparison to 

a strong signal observed for the conventional pmoA probe, only a very weak signal could be 

observed for the novel gene type. It was unsure whether the weak signal observed for 

pmoA636b resulted from experimental biases.  

 

Detection by RT-PCR. An RT-PCR experiment was designed to check by a second, 

independent approach whether or not the novel pmoA gene copy is expressed under standard 
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laboratory growth conditions. Primers A593b and pmoA636b were initially applied for the 

reverse transcription. Sequencing of RT-PCR products identified no mRNA product 

expressed by the novel pmoA gene type. However, an unspecific fragment was amplified 

corresponding to a portion of the 23S rRNA. A strong product could be identified for the 

conventional pmoA gene. It was assumed that an unspecific cDNA was formed when using 

primer pmoA636b at low binding temperature of the reverse transcription. In an attempt to 

overcome the problem, the universal pmoA primer A682b was used for the generation of 

cDNA. Specific PCR assays were then carried out either with primers A189f/A593b or 

pmoA206f/pmoA636b (see tabe 3). In both cases products of the expected size were obtained 

(Fig. 14) and sequences corresponded either to the conventional pmoA gene (primer A593b) 

or to the novel gene (primer pmoA636b) (Fig. 15). 
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Fig. 13 Hybridization of total RNA from strain SC2 to pmoA probes. A) agarose gel electrophoresis of total 
RNA in presence of an RNA marker (RNA Ladder, New England Biolabs). B) Hybridization with probe A593b 
specific to the conventional pmoA gene. C) Hybridization with probe pmoA636b specific to the novel pmoA 
gene type. Lanes contain ca. 60 �g total RNA of strain SC2.
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Fig. 14. RT-PCR of total RNA of strain SC2. Reverse transcription was carried out at 
37°C with methanotrophic primer A682b. A) Primers specific for the novel 
methanotrophic pmoA gene type. B) Primers specific for the conventional pmoA 
gene. 1-RNA sample + RT-PCR; 2-RNA sample + PCR, without RT; 3-RNAse 
treated RNA sample + PCR; 4-DNA + PCR; 5-PCR without DNA.  
 
 

 
 
Fig. 15. Phylogenetic tree based on pmoA showing the two partial cDNA fragments of Methylocystis sp. SC2 in 
relation to the respective pmoA genes as well as representative set of  type I and type II MOB and environmental 
pmoA clone sequences. The sequence M84-P3 was retrieved by cultivation-independent methods from a rice-
paddy soil.DNA fragments were ca. 525 bp long whereas cDNAs were ca. 400 bp long. The tree was constructed 
using the Neighbour-Joining method with a Kimura correction. Bootstrap values >50% are indicated. The scale 
bar represents 0.1 change per amino acid position.  
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V. Discussion 

 
Methanotrophic bacteria are an environmentally important group due to their role in 

regulating CH4 fluxes from ecosystems, as well as their use in bioremediation strategies. 

However, the cultivation of methanotrophs is laborious and time-consuming and for some 

species not yet possible using standard techniques. This makes cultivation-based assessments 

of natural methanotrophic populations problematic. Consequently, the ability to rapidly assess 

and monitor natural populations of methanotrophs by using molecular techniques holds great 

promise for understanding the complex role of these bacteria in nature (Hanson and Hanson, 

1996). However, in order to develop more reliable molecular tools for monitoring the 

diversity and dynamics of MOB populations in nature, more information regarding the 

diversity of in situ populations is needed.  

Originally, this Ph.D. work aimed at generating methanotroph-specific pmoA and 16S rRNA 

sequence databases with a special focus on rice field soil. These sequence databases were 

intended to be the basis for the development of population-specific oligonucleotide probes 

(16S rRNA) and PCR asssays (pmoA). However, during the first months of my Ph.D. work, 

Horz et al. (2001) detected a unique pmoA-like sequence in rice rizosphere soil. That could 

not be assigned to any of the known pmoA sequences and formed a novel lineage (clone M84-

P3). Consequently, the presence of a novel group of methanotrophs was assumed. Due to the 

detection of this novel pmoA-like sequence, the aim of my Ph.D. work shifted towards the 

retrieval of more information about this novel pmoA-like lineage. This included the 

development of PCR assays and probes for retrieval of additional sequence information from 

environmental samples as well as pure cultures. Another aspect of the work focused on the 

expression of the novel gene in Methylocystis strain SC2. As a consequence, one of the 

original aims, the assessment of 16S rRNA will only be briefly mentioned. 

 

1. 16S rRNA-based diversity of type I and type II methanotrophs on rice roots 

 

Several of the 16S rRNA primers and probes published previously for methanotrophs have 

some disadvantages for studying natural populations of these organisms. Most of the primers 

currently available were developed on a relatively small sequence database. In addition, some 

of the previously described sequences on which the primers were based contained errors. This 

made accurate primer design difficult. Wise et al. (1999), designed and published group- 

specific primers for type I and type II methanotrophs. These primers were successful in 
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studying methanotroph diversity in a landfill soil. However, strong evidence on target 

specificity of the assays requires that these assays be tested on a wide range of environments. 

The aim of this study was twofold: first to test for the specificity and applicability of Wise et 

al. primers on the ecosystem “flooded rice microcosm”, and second to increase the database 

for methanotrophic 16S rDNA sequences that might be useful for the design of population-

specific probes for FISH (fluorescent in situ hybridization)-based detection of methanotrophs 

in rice soil. 

The group-specific primers developed by Wise et al. (1999) were applied in the course of this 

study to generate 16S rDNA clone libraries from rice root DNA extracts. Broad methanotroph 

diversity was identified, including new type I and type II MOB sequences. The type I MOB 

group-specific primers retrieved sequences related to the genera Methylobacter, 

Methylomicrobium, Methylococcus, and Methylocaldum. We did not detect any 16S rDNA 

sequences that grouped with Methylomonas, Methylosphaera or other type I methanotrophs. 

The type II MOB group specific primers detected Methylocystis-like sequences; most of the 

sequences were related to Methylocystis strain SC2, a type II methanotroph recently isolated 

from a polluted aquifer (Dunfield et al., 2002). We did not detect any 16S rDNA sequences 

that grouped with the genera Methylosinus, Methylocapsa or Methylocella. Only a very few 

non-methanotrophic sequences were detected by both type I and type II MOB assays, 

suggesting that these assays were highly specific on the ecosystem “flooded rice microcosm”.  

The presence of type I and type II methanotrophs on rice roots has been shown in previous 

studies (Bodelier et al., 2000; Eller et al., 2001; Horz et al., 2001). The cultivation-

independent characterization of type I methanotrophs in unfertilized rhizosphere soil by 

Bodelier et al. (2000) resulted in the detection of one distinct cluster of highly similar 16S 

rDNA sequence types related to the genus Methylobacter.  Horz et al. (2001) investigated the 

methanotroph diversity on roots of submerged rice plants by targeting the 16S rDNA, the 

pmoA, mmoX and mxaF gene and diverse population of both type I and type II methanotrophs. 

In the study of Horz et al. the 16S rDNA primers used were the type I group-specific primers 

also used in our study. By contrast to our study, the comparative analysis of sequences of 

cloned RT-PCR products revealed a more complex population, including sequences closely 

related to the genera Methylomonas, Methylobacter, Methylomicrobium, Methylococcus and 

Methylocaldum. The differences observed as compared to our study may be linked to the 

different retrieval strategies used. RT-PCR targets the 16S rRNA and thus might select for 

more active populations. One may assume that members of the Methylomonas were among 

the active populations, but that a relatively low cell number did not allow enough 
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amplification for a greater representation in 16S rDNA-based clone library. By using group-

specific 16S rRNA-targeted probes for the detection of type I and type II methanotrophs by 

FISH, Eller et al. (2001) detected both type I and type II methanotrophs in soil and root 

samples from rice microcosms.      

  

2. The novel pmoA gene copy 

2.1 Development of molecular tools for the detection of the novel gene copy 

 

In our effort to generate a methanotroph-specific pmoA database, we identified in rice paddy 

soil a novel pmoA-like sequence (clone M84-P3), that clustered neither with the conventional 

pmoA sequences of type I MOB, nor with those of type II methanotrophs. Analyses of pmoA-

specific signatures showed that the novel pmoA-like sequence type exhibited the same amino 

acid residues at conserved positions within the pmoA gene as one present in methanotrophs, 

and therefore could be assigned as one pmoA-like than amoA-like. We assumed that the novel 

sequence was indicative of a new group of methanotrophs whose members were characterized 

not yet. In order to retrieve additional sequence types belonging to this novel pmoA cluster, 

we used clone M84-P3 as a reference to design oligonucleotide primers and assessed the 

target specificity of different combinations of these primers on environmental DNA extracts.  

In total, five PCR assays were developed (table 4). Three PCR assays (A°, A1 and A’) failed 

to retrieve sequences belonging to the novel lineage. Two PCR assays including a single-

round-PCR and a nested-PCR (PCR system B1 and A2, respectively) were successful. 

Phylogenetic analyses of the derived amino acid sequences of pmoA genes obtained from 

different DNA extracts of the ecosytem “rice microcosm” revealed a novel cluster of 

environmental pmoA sequences with low similarity to known pmoA/amoA from 

methanotrophs and nitrifiers. Amino acid sequence identities were ca. 70% with known type 

II methanotrophs, 60% to 65% with type I MOB and 44% to 65% with nitrifiers. A more 

detailed analysis of the derived amino acid sequences showed that, although these sequences 

are more closely related to pmoA of known type II methanotrophs, they do form a distinct 

branch with a close affiliation to clone M84-P3. The intracluster diversity within the novel 

cluster was great, indicating that members of this novel pmoA cluster are numerous in the rice 

microcosm. Intra-cluster sequence dissimilarity values were up to 19% compared to ca. 30% 

for type I, and ca. 15% for type II methanotrophs. Moreover, the novel environmental pmoA 

sequence closely matched (85% to 92%, amino acid level) a sequence (LP21), recently 

detected in a polluted aquifer (Baker et al., 2001). This suggests that this novel type of pmoA 
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is not restricted to the environment rice microcosms, but rather may also be present in other 

environments. Besides the detection of novel pmoA sequence types, we also detected a few 

type I and type II MOB sequences. Interestingly, the type I MOB sequences formed a novel 

sublineage with amino acid identities of only 75% to 80% with those of known type I MOB. 

This finding suggests that a novel subgroup of type I MOB whose presence has not yet been 

identified may inhabit the rice roots. However, confirmation of this novel subgroup is needed 

through cultivation approaches.  

 In addition to the diversity assessment of environmental samples via sequencing, T-RFLP 

analysis was conducted on three samples. This aimed at correlating the T-RFs observed to 

novel pmoA sequences. All the T-RFs observed could be assigned to environmental pmoA 

sequences. Only one of the T-RFs (492 bp) present in the profiles could not be detected by 

cloning and sequencing. Figure 5 shows a MspI-based electropherogram of the 5’ T-RFLP 

patterns for samples Rz90f, Rr90a and RsVc. Differences in the numerically dominant T-RFs 

between two T-RFLP patterns were clearly observed. For example, the dominant T-RFs of 

samples Rr90a and RsVc were different (Fig. 5B and C). Certain major T-RFs observed in 

samples Rr90a and RsVc were not observed in sample Rz90f. Above all, the T-RFs 

corresponded to sequence types of our novel pmoA, suggesting that the T-RFLP method is  a 

reliable tool for rapid analysis of environmental samples harbouring the novel pmoA sequence 

types. 

 

2.2 Evidence for the presence of a novel pmoA gene in Methylocystis strain SC2 

 

Methylocystis strain SC2 was recently isolated from a polluted aquifer, and it has been of 

interest in molecular-based studies (Dunfield et al., 2002). As shown by DGGE (Denaturant 

Gradient Gel Electrophoresis) combined with sequencing, strain SC2 has two very different 

pmoA-like genes. The first gene (pmoA1 or conventional pmoA) exhibited very high sequence 

homology to pmoA genes of other type II MOB (even identical amino acid sequence to pmoA 

of some other Methylocystis strains). The second gene (pmoA2 or novel pmoA) possessed only 

73% identity with the first gene at the nucleotide level and 68.5% identity at the amino acid 

level. As identified in our study, pmoA2 of strain SC2 was closely related to the novel pmoA-

like sequences retrieved from flooded rice microcosms. This indicated that the novel pmoA-

like sequences in our study do not originate from a hitherto uncharacterized group of 

methanotrophs, but rather are divergent, extra copies of pmoA in known methanotrophs.  

Interestingly, as confirmed by phylogenetic analyses (Fig. 4) some of our environmental 16S 
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rRNA gene sequences are affiliated with 16S rDNA of strain SC2, suggesting that SC2-like 

strains that harbour multiple, divergent pmoA gene copies might be present in rice paddy soil. 

In order to confirm the presence of divergent multiple copies of pmoA within a single species, 

Methylocystis strain SC2 was tested for the number of detectable copies of pmoA by using 

oligonucleotide probes specific for either pmoA1 or pmoA2. Our results suggest that these 

probes detected two copies of pmoA1 and one copy of pmoA2 (Fig. 8). The two gene copies of 

pmoA1 are the most homologous to pmoA genes detected in other type II MOB at two to three 

nearly identical copies (Auman et al., 2000; Gilbert et al., 2000; Semaru et al., 1995; Stolyar 

et al., 1999). Therefore, the finding of multiple identical copies of pmoA in strain SC2 is 

consistent with earlier findings.  

 

2.3 Expression of the novel gene in strain SC2 

 

The finding of a novel pmoA within the strain SC2 raised the question of whether the gene is 

functionally active or not. In order to address this question, Northern hybridization and RT-

PCR were carried out on total RNA of strain SC2 grown under standard cultivation conditions 

(see “Methods”). Both methods confirmed the expression of the novel gene, suggesting that 

the expression product of the novel pmoA may be an active enzyme and not a pseudogene. 

However, hybridization showed that, the expression of the novel pmoA gene was low 

compared to that of the conventional pmoA gene. We are unable based on these findings to 

predict the function that the novel pmoA gene has in strain SC2 and in other MOB. Further 

studies will need to be conducted to elucidate this. 

 

2.4 Screening of methanotrophic pure cultures for the presence of the novel pmoA 

 

The specific primers developed for the retrieval of the novel pmoA had few mismatches with 

conventional pmoA sequences of the Methylocystis/Methylosinus group. At lower annealing 

temperature, both pmoA copies present within a single strain would be amplified and mixtures 

of amplicons therefore resulted. These could not be characterized by direct sequencing. An 

alternative to alleviate the problem would to clone the PCR product or to use it in fingerprint 

methods such as DGGE, TGGE (Muyzer et al., 1993) or SSCP (Lee et al., 1996).  Although 

the current methods of cloning and sequencing have proven suitable for the retrieval of 

multiple sequences present in environmental samples as well as pure cultures (Auman et al., 

2000), these methods would be too laborious if a large number of isolates would have to be 
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screened. Moreover construction and screening of a clone library for every single isolate 

would be rather time-consuming and expensive. Consequently, there was a need to establish a 

reliable method that would circumvent these limitations.  

Our data on environmental pmoA sequences suggested that T-RFLP analysis would be the 

easiest way to classify the sequences. Ideally, each single sequence could be assigned to a 

given T-RF. In contrast to the laborious aspects of cloning and sequencing and other methods 

such as DGGE or its cousin TGGE or SSCP, T-RFLP has the advantage that on-line analysis 

of data is immediate and the output is digital. Moreover, direct reference to the sequence 

database can be made, i.e. all T-RFs sizes observed in a pmoA-based T-RFLP pattern can be 

compared with T-RFs derived from the growing sequence database. Another advantage is that 

several isolates are analyzed simultaneously on the same gel. Moreover, DGGE, TGGE and 

SSCP have other advantages: bands observed on gels can be blotted on membranes and 

characterized by probing or they can be exised and sequenced. 

At an annealing temperature of 66°C, the combined T-RFLP and sequencing analysis seemed 

ideal for the retrieval of the novel pmoA. One important aspect of our investigation was the 

finding that the novel pmoA is distributed among most type II MOB and a few type I MOB 

examined in this study. However, some MOB including type I as well as type II strains failed 

to give a positive PCR with our specific assays. The observation that the novel pmoA can be 

found only in a restricted number of species is not surprising. Other functional genes such as 

sMMO (Auman et al., 200; Bowman et al., 1993; Fuse et al., 1998) or nifH (Auman et al., 

2001, Oakley and Murrell, 1988) are found only in a limited number of methanotrophs. We 

also identified false positive sequence types in this study. pmoA sequences belonging to the 

Methylocystis/Methylosinus group were still amplified at an annealing temperature of 66°C, 

suggesting that these sequences had only a very few mismatches to our specific primers.  

The phylogenetic analysis of novel pmoA-like sequences led to some unexpected results. We 

observed a close affiliation of pmoA2 of Methylomicrobium album (type I MOB) and pmoA2 

of Methylocystis parvus (type II MOB). However, based on comparative analysis of 16S 

rDNA, those are only distantly related MOB. Thus, the finding that their novel pmoA are 

closely related suggests that the pmoA2 cannot be considered a reliable phylogenetic indicator 

in affiliating either type I or type II MOB. Recently, pmoA has been used in addition to 16S 

rDNA as a phylogenetic marker for MOB (Auman et al., 2000; Costello and Lidstom, 1999; 

Murrell et al., 1998). However, the presence of diverse pmoA gene copies in single strains 

may complicate the interpretation of environmental pmoA data. In addition, in a recent study, 

Pacheco-Olivier et al. (2000) investigated isolates from arctic soils with unusual pmoA/amoA 
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and 16S rDNA sequences. The 16S rRNA sequences of these organisms were closely related 

to 16S rRNA genes from Methylosinus and Methylocystis, although they did form a separate 

branch. However the amoA/pmoA sequences were affiliated with amoA of Nitrosopira and 

were very distant from those Methylosinus and Methylocystis. Moreover, these sequences 

were different to those retrieved in our study, so the distribution of pmoA-like genes in MOB 

may be much more complicated than originally thought. 

 

2.5 Southern hybridization 

 

Southern blot analyses were in accordance with PCR results suggesting that PCR were not 

affected by false positive results. One interesting feature is that we could not detect the novel 

pmoA gene in Methylococcus capsulatus and in Methylosinus trichosporium OB3b neither by 

PCR nor by Southern hybridization. These two organisms are model organisms that have 

extensively been used to study the molecular biology and genetics of MOB (Semrau et al, 

1995; Stolyar et al., 1999). Our findings may explain why the novel gene had never been 

detected in these organisms. Moreover, in contrast to Methylosinus trichosporium OB3b; we 

could detect the novel pmoA in Methylosinus trichosporium SM6. These two organisms are 

closely related with 16S rDNA sequence similarities of 98.15%. This finding suggests that the 

distribution pattern of the novel pmoA is not only restricted to the species level, but 

differences can also be observed at the strain level.  

 

2.6 Functional significance of the novel pmoA 

 

Northern hybridization and RT-PCR provided evidence that the novel pmoA is expressed. 

However, the putative function (PmoA or AmoA) the gene may have is not clarified by these 

results. Therefore, we conducted a search for amino acid residues that may indicate whether 

the enzyme is adapted to methane or to ammonia as a substrate. An amino acid was 

considered a putative signature if it fulfilled the following criteria: it had to be universally 

conserved in all type I and type II MOB, and at the same position in the alignment there had 

to be universal conservation of a different residue in all known autotrophic ammonia oxidizers 

of the �-Proteobacteria (Holmes et al., 1995). Sites fulfilling these criteria were found 

distributed throughout the gene, suggesting that the protein expressed by the novel pmoA gene 

type will also show strong structural conservation. Residues that are identical for all MOB  

and AOB may reflect adaptation to AMO or pMMO function. Figure 16 shows an alignment 
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of the predicted protein sequences for PmoA and AmoA. Residues conserved within each of 

the identity groups and those that are universally conserved are highlighted. The novel pmoA 

cluster sequences contained 93.3% (42 of 45) universally conserved monooxygenase (pMMO 

and AMO) signatures, 76.8% (11 of 14) of the putative MMO signatures and 0.0% of the 

putative AMO signatures. The strong conservation of MMO (and especially pMMO) 

signatures is an indication that the novel gene codes for the active site of a particulate 

methane monooxygenase. Both pMMO and AMO are key enzymes in major biogeochemical 

cycles and are of potential significance in bioremediation programs. However, further studies 

are needed to understand the role and adaptation of the novel pmoA to methanotrophs.   

 
 
Fig. 16. Alignment of inferred amino acid sequences of pmoA and amoA from representative methanotrophic and 
nitrifying bacteria as well as clones Rr90a-B1-43 and RsVc-A2-05 and  pmoA2 of Methylocystis strain SC2 and 
Methylomicrobium album. Residues, that are universally conserved in extant MOB and AOB are highlighted in 
black. Residues boxed are putatives MMO or AMO signatures. The sequences shown are as follow: Mm. alb. 
(1), Methylomicrobium album (pmoA1); Methylomonas methanica; Mc. M, Methylocystis sp. M; Mc. LW5, 
Methylocystis sp. LW5, Mc. SC2 (2), Methylocystis sp. SC2 (pmoA2); Mm. alb. (2), Methylomicrobium album 
(pmoA2); clone Rr90a-B1-43; clone RsVc-A2-05; Ns. eur. Nitrosomonas europaea; Ns mult., Nitrosospira 
multiformis 
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