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1 Introduction

1.1 Structure-based drug design

The genome sequencing projects provide us with an increasing number of fully assigned

genomes, including those of humans and vertebrates (e.g. mouse) and important mi-

crobial pathogens [Marcotte et al., 1999; Broder & Venter, 2000; Lander et al., 2001;

Rubin et al., 2000]. The total number of protein sequences in the Swiss-Prot database

[Boeckmann et al., 2003] is about 122600 as of February 2003. In contrast, the number

of protein structures deposited in the PDB is 21248 for the same date. Although the

rate of experimental structure determination will continue to increase, the number of

newly discovered sequences grows much faster than the number of structures solved

(Fig. 1.1).

As a matter of fact, the number of experimentally determined novel protein folds has

steadily decreased over the last years (see Fig. 1.2). Actually, 90 % of the protein

structures solved today correspond to already known folds (Fig. 1.2).

Structural genomics is expected to yield a large number of experimentally determined

protein structures, in the long run hopefully resulting in a complete coverage of protein

folding space [Sanchez et al., 2000; Brenner, 2000; Brenner & Levitt, 2000; Holm &

Sander, 1996]. Thus, referring to suitable reference structures, well spread in sequence

and folding space, it will become increasingly possible to generate realistic models

for any given protein sequence using comparative modelling techniques [Marti-Renom

et al., 2000]. This technique can be considered sufficiently mature, given that there has

been only a marginal improvement in the comparative modelling results while going

from CASP3 to CASP4 [Tramontano et al., 2001]. Its rate of success depends on the

degree of sequence identity with the template structure (as a rule of thumb at least 30

%) and the reliability of the underlying sequence alignment [Moult et al., 1999; Venclo-

vas et al., 2001]. As an advantage, the regions predicted best are often the biologically

important ones, [Wei et al., 1999], because they are structurally most conserved by

evolution. This provides the perspective that structural genomics will support biology

and medicine through the annotation of protein function [Thornton et al., 1999, 2000;

Skolnick et al., 2000; Andrade et al., 1999]. Furthermore, the generated protein struc-
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Figure 1.1: Sequence - Structure gap. The number of protein sequences in

SWISS-PROT and protein structures in the PDB are plotted as annual dis-

tribution. Data from http://us.expasy.org/sprot/relnotes/index.html and

http://pdb.protein.osaka-u.ac.jp/pdb/holdings table.html.
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tural models can be used for virtual screening to discover potential new lead structures

for drug therapy [Russell & Eggleston, 2000].

For the rational structure-based design of drugs, knowledge of the three-dimensional

structure of the target protein is indeed inevitably required. The approach followed

here starts from a known or hypothetical binding mechanism. A lead structure is

rationally designed and subsequently tested experimentally. The obtained results are

fed back into a design cycle as new information.

However, if the structure of a target protein is not available, currently two distinct

concepts are followed to discover novel drugs. On the one hand side, it is possible

to establish a 3D QSAR (quantitative structure-activity relationship) model on the

basis of a set of known ligands to extract 3D features primarily explaining observed

trends in binding affinity. On the other hand, a homology model of the target protein

can be constructed and subsequently used for the search of novel ligands, e.g. by

virtual screening. While the QSAR approach is solely based on features derived from

the ligands, the second approach only considers information available from the related

proteins. The latter procedure is in fact rather approximate, especially if in the query

Figure 1.2: The number of protein structures solved versus the identification of

new folds. In blue the number of novel folds is given, in red the number of newly

solved structures. From http://www.rcsb.org/pdb/holdings.html.
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protein several amino acids in the active site are replaced with respect to the references.

Although ligands binding to a particular protein provide implicit information about

the complementary features required at the protein active site, to the best of our

knowledge, there is so far no approach which considers ligand information explicitly

already during the comparative modelling step.

Figure 1.3: Targets of currently marketed small-molecule drugs, subdivided by

biochemical class. Data from [Hopkins & Groon, 2002].

Fig. 1.3 gives an overview over currently launched drugs with respect to the addressed

targets grouped into several biochemical classes. Enzymes represent nearly half of the

total drug targets (47 %), whereas G-protein coupled receptors account for 30 %. Con-

sidering that for none of the G-protein coupled receptors (except for bovine rhodopsin)

the 3D-structure is experimentally determined and that for most ion channels and a

considerable amount of the enzymes the 3D-structure is not available, it becomes obvi-

ous that drug design is indeed frequently faced with the situation that a ligand has to

be discovered for a target protein for which no experimentally determined structure is

yet available. A recent estimate about the number of expected new molecular targets
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in the post-genomic era indicates that this overall distribution will virtually remain

[Hopkins & Groon, 2002].

Thus, to take advantage of the principles of structure-based drug design, methods are

required which generate (more) realistic models of protein binding sites.

1.2 Scope of this thesis

The present work describes in detail how data about related proteins can be comple-

mented with information about the binding modes of bioactive ligands to generate

more realistic homology models of protein binding-sites. As a prerequisite for this ap-

proach, it is assumed that (1) information about ligands binding to the target protein

is available and (2) that the 3D structures of related proteins with significant sequence

identity are known.

Figure 1.4 provides a schematic overview of the strategy. It was initiated by the devel-

opment of the DragHome concept [Schafferhans & Klebe, 2001] and is followed by the

MOBILE approach (Modelling Binding Sites Including Ligand Information Explicitly).

Starting with the (crystal) structure of one or more template proteins, several pre-

liminary homology models of the target protein are generated (step 1). After placing

one or more ligands, known to bind to the target protein, into an averaged binding-

site representation of the generated binding-site models (step 2), new protein models

are generated, now considering explicitly the docked ligand(s) (step 3). After scoring

the thus generated complexes with DrugScore, a final model is obtained by selecting

the model which explains best the observed ligand binding (affinities). The modelled

complexes can be further refined considering a composite picture of the best side-chain

conformers taken from different models and minimising the side-chain-to-ligand inter-

actions using a common force-field (step 4).

In chapter 4 of this work, the presented MOBILE approach is applied to a relevant

real-life test example. Based on the crystal structure of bovine rhodopsin a homology

model of the neurokinin-1 receptor, a G-protein coupled receptor, is generated, under

explicit consideration of known antagonists. This model is then successfully used for

the search of new neurokinin-1 antagonists.
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Figure 1.4: Schematic overview over the approach presented in this thesis: After

generating preliminary models of the target protein (1), the ligand is docked into the

superimposed ensemble of homology models (2). In the next step (3), new homology

models of the target protein are generated under explicit consideration of the ligand

in its docked orientation. Finally (4), the modelled complexes are further optimised

by combining fragments from different models and subjecting the entire complex to an

energy minimisation
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2 Literature survey

As outlined in the introduction, the approach presented in this Thesis consists of meth-

ods related to the prediction and evaluation of protein structures and protein-ligand

complexes. These issues are covered by homology modelling, docking and scoring. Fur-

ther relevant issues essential for the understanding of the presented approach are the

problem of protein flexibility (especially in the active site), strategies for ligand-based

drug design (i.e. 3D-QSAR approaches) and methods which combine protein- and

ligand-based approaches. This chapter gives a brief summary of currently available

approaches and applications. A detailed description will be given for those methods

which have actually been used in the context of this work.

2.1 Prediction of protein structure

A prerequisite for the understanding of protein-ligand interactions at the atomic level

is the knowledge of the 3D structure of the target protein. Experimental 3D struc-

tures of proteins at atomic resolution are obtained by X-ray crystallography [Glusker

et al., 1994; Drenth, 1999] and NMR [Wüthrich, 1986; Siegal et al., 1999; Clore & Gro-

nenborn, 1991]. In these techniques, a model of the protein is constructed such that

consistency with the experimental diffraction or NOE data is achieved. However, the

rate at which protein sequences are determined exceeds far the rate at which protein

structures are solved experimentally. Furthermore, many pharmacologically important

targets are membrane-bound proteins, such as G-protein-coupled receptors (GPCRs),

ion channels, or transporter proteins, for which the experimental determination of the

3D structure is, due to technical difficulties, either still impossible or can only be re-

alised with immense experimental effort and complexity.

If the structure of a protein is not given, a theoretical approach for prediction of

the structure based on the proteins sequence is required. This section provides a

brief overview over the principles of protein structures and outlines strategies for their

modelling and validation. A comprehensive introduction will be given for the program

MODELLER, which has been used in this study for the generation of homology models.
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2.1.1 Basic principles of protein structure

Proteins are polymers composed by the sequences based on twenty different amino acids

which are connected by amide bonds. Although adopting unregular tertiary structures,

common secondary and supersecondary structure motifs frequently occur in proteins.

The most common motifs are the α-helix and the β-strand. These secondary structural

elements are connected by loops which adopt less regular structures, such as β-turns

[Wilmot & Thornton, 1988].

It has been demonstrated that the native tertiary structure of a given protein is de-

termined solely by the protein’s amino acid sequence [Anfinsen, 1973]. The native

structure corresponds to the global minimum of free energy in the protein-solvent sys-

tem (thermodynamic hypothesis). Levinthal showed that folding cannot be simulated

or screened via a systematical search of all possible conformations because it would take

”longer than the lifetime of a universe” [Levinthal, 1968]. The protein folding process

has been investigated by Monte Carlo (MC) simulations on a 27-bead self-avoiding

chain on a cubic lattice [Sali et al., 1994a,b; Dinner et al., 1996]. From these studies a

three-stage process was suggested: Folding starts by a rapid (∼ 104 MC steps) collapse

from a random-coil state to a random semi-compact globule. It then proceeds by a

slow, rate-determining search (∼ 107 MC steps) through the (∼ 1010) semi-compact

states to find one of about 1000 similar transition states from which the chain rapidly

(∼ 105 MC steps) folds to the native state.

The surface of water-soluble globular proteins preferentially consists of polar and

charged amino acids while the interior is composed almost entirely of hydrophobic

amino acids. The packing of these residues, which is almost perfect [Klapper, 1971;

Tsai et al., 1999], is a consequence of the hydrophobic effect [Kauzmann, 1959], which

is generally assumed to be of entropic origin. Water molecules around a non-polar

solute form a cage-like (”iceberg”) structure, which locally reduces the entropy [Frank

& Evans, 1945]. When the non-polar residues of the unfolded protein associate, the

water molecules are liberated, increasing the entropy, which is the dominating part of

the overall free energy of folding [Tsai & Levitt, 1997].
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2.1.2 Approaches for predicting protein structure

Protein structure prediction is divided into two basic areas, depending on the existence

and similarity of homologous template proteins to the given target protein sequence:

• ab initio methods

• homology/comparative modelling techniques

However, the dividing line between these two approaches is diminishing and they are,

to some extent, complementary to each other. Principally, threading methods [Bowie

et al., 1991; Jones et al., 1992; Jones & Thornton, 1993], which cooperatively fit se-

quences onto known three-dimensional folds, could be considered as a combination of

the two because threading samples sequences to known protein conformations in the

PDB and evaluates them in terms of physical energies.

Progress in protein structure prediction methods is assessed by the Critical Assessment

of Protein Structure Prediction (CASP) meetings [Moult et al., 1995, 1997, 1999, 2001].

In CASP, sequences of proteins whose experimental structures are soon to be released

are made publically available. Computational research groups are then invited to

predict 3D structures starting with the target sequence and any other publicly available

information.

ab initio protein folding

Based on Anfinsen’s afore-mentioned thermodynamic hypothesis it should be theoreti-

cally possible to calculate the 3D structure of a protein from its amino acid sequence

by exact description of the physical environment within the cell and computing the

molecular dynamics based on the underlying physical laws [van Gunsteren, 1998; Duan

& Kollman, 1998].

Ab initio prediction methods require three elements: a representation of the protein

geometry, a force field, and an energy surface searching technique [Osguthorpe, 2000].

Almost all methods use some kind of simplified geometry model, in which single vir-

tual atoms represent a number of atoms in the all-atom model. The phase space to

be searched is either continuous (off-lattice models, e.g. [Liwo et al., 1997a,b, 1998;

Osguthorpe, 1997, 1999]) or discrete (lattice models, see [Godzik et al., 1993; Skolnick
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et al., 1997; Ortiz et al., 1998; Hinds & Levitt, 1992]). The potential functions are usu-

ally statistical potentials which are either derived from knowledge-based approaches

[Hinds & Levitt, 1994; Samudrala & Moult, 1998] or use an underlying physical model

parameterised at experimental data [Liwo et al., 1997a,b, 1998; Pillardy et al., 2001;

Hao & Scheraga, 1999; Osguthorpe, 1997, 1999]. Standard search techniques such as

genetic algorithms, Monte Carlo and simulated annealing are usually applied to explore

the conformational space of proteins.

Compared to results from earlier CASP experiments, in CASP4 longer fragments (of

up to 124 residues) of proteins were predicted within 6 Å deviation from the crystal

structure.

The resolution of current ab initio structure prediction techniques may be sufficient for

genome annotation; however, it is clearly not yet precise enough for detailed studies

such as docking and drug design [Hardin et al., 2002].

Homology modelling

The most reliable technique for predicting protein structures is homology modelling,

provided the geometry of one or more template proteins with sufficient sequence iden-

tity are given. If the sequence identity between template and target protein is high

enough, the resulting model may even be sufficiently accurate to perform structure-

based drug design.

In homology modelling, one or more template proteins with high sequence identity

to the target sequence are identified. The target and template sequences are aligned,

and a three-dimensional structure of the target protein is generated starting with the

coordinates of the aligned residues of the template protein, combined with models for

loop regions and other unaligned segments. The assembled 3D-model is then refined

to bring it closer to the structure of the target protein.

Major difference between the various homology modelling techniques is how the 3D

model is calculated from the sequence alignment [Sali, 1995b,a]. The original homology

method is based on rigid-body assembly [Browne et al., 1969; Greer, 1981; Blundell et al.,

1987]. The model is constructed from several core regions and from loops and side-

chains, which are taken from related structures. The assembly involves fitting rigid

bodies onto the framework, which is defined as the average of the Cα atoms in the
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conserved folding regions. A further group of methods, modelling by segment matching,

uses approximate positions of conserved atoms from the template protein structures

to calculate the coordinates of the remaining atoms [Jones & Thirup, 1986; Unger

et al., 1989; Claessens et al., 1989; Levitt, 1992]. This is achieved using a database of

short segments of protein structure, energy or geometry rules, or a combination of these

criteria. The third group of methods, modelling by satisfaction of spatial restraints, uses

either distance geometry [Havel & Snow, 1991; Srinivasan et al., 1993] or optimisation

techniques [Sali & Blundell, 1993] to satisfy spatial restraints defined by the alignment

of the target sequence to homologous template protein structures. In addition to the

methods for modelling the entire fold, numerous other techniques for predicting loops

[Fideslis et al., 1994; Lessel & Schomburg, 1999] and side-chains [Vasquez, 1996] with

respect to a given backbone have also been described. These methods are often used

in combination with each other.

The performance of the top eight comparative modelling groups at CASP4 was roughly

similar [Tramontano et al., 2001; Marti-Renom et al., 2002]. The key element for

successful model building is the quality of the sequence alignment, in particular in

regions of low sequence identity. There is a limit for the alignment accuracy that can

be achieved for distantly related proteins because their residual sequence similarity that

guides the alignment becomes weaker with greater evolutionary distance [Schonbrun

et al., 2002].

The accuracy of a comparative model is related to the percentage sequence identity on

which it is based, it is thus correlated with the relationship between the structural and

sequence similarity of two proteins (Fig. 2.1) [Marti-Renom et al., 2000; Sanchez &

Sali, 1998; Koehl & Levitt, 1999]. Models based on more than 50 % sequence identity

with their templates tend to have not more than 1 Å rms deviation with respect to

the main-chain atoms. Medium-accuracy comparative models are based on 30 to 50 %

sequence identity. They tend to have about 90 % of the main-chain modelled with 1.5

Å rms error.[Baker & Sali, 2001] As an advantage, the regions predicted best are often

the biologically important ones [Bates et al., 2001], because they are structurally most

conserved by evolution. This also allows for the application of these modelled regions

for drug design purposes.

Homology modelling with MODELLER MODELLER belongs to the group of

methods that model a proteins structure by satisfaction of spatial restraints [Sali &
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Figure 2.1: Accuracy and application of protein structure models. Shown are the

different ranges of applicability of comparative protein structure modelling, threading,

and de novo prediction; the corresponding accuracy of protein models; and their sample

applications. From [Baker & Sali, 2001].
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Blundell, 1993]. Protein modelling with MODELLER starts with a sequence alignment

of the target protein with related known 3D structures. In the initial phase of the

modelling process, restraints on the target protein are derived based on the sequence

alignment with the template structures. Further restraints are derived from statistical

analysis of the relationships between various general features of the protein structure,

i.e. the distributions of distances between Cα atoms, residue solvent accessibilities or

side-chain torsion angles. These features are associated between the target and the

homologous template protein(s). Thus, the conformation of a particular residue can

be restrained according to the residue type, the conformation of an equivalent residue

in a related protein, and the local similarity between the proteins. These restraints

are expressed in terms of conditional probability density functions (pdf). Each of these

pdfs is a smooth function which describes the distribution of the considered feature as

a function of the related variables. To enforce proper stereochemistry, these individual

pdfs are combined with terms from the CHARMM force field [Brooks et al., 1983] (also

expressed as pdf) to a molecular probability function:

F = F (R) = −ln

[∏
i

Pi(fi, Ii)

]
=

∑
i

Ei(fi, ai) (2.1)

where −lnPi = Ei. R are the Cartesian coordinates of all atoms, Pi is a conditional

probability density function (pdf) for a geometric feature fi that depends on information

Ii, which is derived from the template protein structure and associated restraints from

analysis of various features of protein structures. Ei is an energy term, and ai are

general parameters related to Ii.

The model is obtained by optimising the objective function F by use of the variable

target function method [Braun & Go, 1985], employing methods of conjugate gradients

and molecular dynamics with simulated annealing [Clore et al., 1986]. Local restraints

are considered first, global restraints subsequently.

A consequence of the probability density functions is that side-chains adopt similar con-

formations as in the template structure in regions which are conserved in the sequence

alignment. By entering the optimisation with slightly different structures, models with

differing structure can be obtained, which can reflect the conformational flexibility of

the target protein in those regions which are different in the sequence alignment.

One major strength of MODELLER is that constraints or restraints derived from a
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number of different sources can be added to the homology-derived restraints. For ex-

ample, restraints could be provided by rules in terms of secondary structure packing,

analyses of hydrophobicity, NMR experiments, etc. In this way, a homology model,

especially in difficult cases, can be improved by making it consistent with available

experimental data and with general knowledge about protein structures. Accordingly,

it should in principle be possible to include ligand-based information into the homology

modelling process. Within MODELLER, there are several possibilities to accomplish

this task: for example, upper and lower boundaries for bond distances can be con-

strained between protein and ligand atoms or interactions can be approximated by

van-der-Waals, Coulomb or H-bond potentials. Another possibility, which was fol-

lowed in this study, is to approximate knowledge-based atom-pair potentials between

protein and ligand atoms in terms of cubic splines to describe and regard their mutual

influence in the homology modelling process.

2.1.3 Evaluation of protein structures

Once a protein model is constructed, it is important to assess its validity for the

following modelling steps. Several approaches exist which evaluate the quality of a

protein model. For the detection of correct protein models, an energy function is

required, which efficiently identifies near-native structures. The principles of currently

applied energy functions can be divided into physical and knowledge-based approaches

[Wallner & Elofsson, 2003].

In physical energy functions, energy functions are used which were originally developed

for 3D structure refinement and molecular dynamics simulations, such as CHARMM

[Brooks et al., 1983] or Amber [Weiner et al., 1986]. Additionally, terms accounting

for effects not considered implicitly in the energy function, are generally included into

the scoring function. For example, Dominy et al. recently used the generalised Born

solvation model [Still et al., 1990] to describe solvent effects [Dominy & Brooks, 2002].

Knowledge-based energy functions are calculated as the difference between features of a

random protein model and observations from real protein structures. Most frequently,

preferences for interacting protein residues are considered (e.g. [Jones et al., 1992; Sippl,

1993; Huang et al., 1995]), measuring the distances or simply counting the number

of contacts. Some approaches are based on atom-type preferences [Colovos & Yeates,

1993; Samudrala & Moult, 1998; Melo & Feytmans, 1997, 1998; McConkey et al., 2003].
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Another popular knowledge-based approach is Eisenberg’s 3D profiles method [Bowie

et al., 1991; Luthy et al., 1992; Eisenberg et al., 1992]. It calculates for each amino acid

in the proposed structure (1) the total surface area of a residue that becomes buried in

the protein, (2) the fraction of the side-chain area that is covered by polar atoms and

(3) the local secondary structure. These three parameters are then used to allocate

the residue to one of eighteen environment classes. Each amino acid is assigned a score

that reflects its compatibility with the amino acids in the local environment.

Finally, analysis of protein models is often performed by examining the structure and

analysing any significant deviation from the norm, e.g. by calculating a Ramachandran

plot. Another basic test is to use Procheck [Laskowski et al., 1993] or What Check

[Hooft et al., 1996] which assess the stereochemical quality of a protein structure.

They analyze how common, or, conversely, how unusual the geometry of the residues

in a given protein structure is, as compared with stereochemical parameters derived

from well-refined, high-resolution crystal structures. The program PROVE (PROtein

Volume Evaluation) [Pontius et al., 1996] measures deviations from standard atomic

volumes as a figure-of-merit for protein structures.

2.2 Prediction of protein-ligand interactions

Two aspects are of utmost importance for successful computer-aided structure-based

drug design: generating near-native protein-ligand configurations (docking), the iden-

tification of those binding modes that agree best to the experimentally given situation,

and a computational translation of the obtained protein-ligand geometries into approx-

imate estimates of the binding affinity (scoring). These issues will be addressed in the

following, discussing in some more detail those methods which were applied in this

study (FlexX, AutoDock, and DrugScore), and considering in particular the problem

of ligand-induced protein flexibility.

2.2.1 Ligand docking

The goal of docking is the computing of non-covalent protein-ligand complexes. Given

the structures of a protein and a ligand, the task is to predict the structure of the formed

complex. This is the so-called ”docking problem”. Assuming that the native geometry
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of the complex corresponds to the global minimum of the binding free energy, docking

can actually be regarded as an energy optimisation problem [Totrov & Abagyan, 2001],

concerned with the search of the lowest-free energy binding mode of a ligand within a

given protein binding-site. The macromolecular nature of the protein and the fact that

binding occurs in aqueous solution complicate the problem significantly because of the

high dimensionality of the configuration space and the considerable complexity of the

energetics governing the interactions. Accordingly, heuristic approximations are fre-

quently applied to render the problem tractable within a reasonable time frame. The

development of docking methods is therefore also concerned with making appropri-

ate assumptions and finding acceptable simplifications that still provide a sufficiently

accurate and predictive model for protein-ligand interactions [Sotriffer et al., 2002a].

Comprehensive overviews on docking algorithms and programs have been given by

Sotriffer et al. [Sotriffer et al., 2002a] and Halperin et al. [Halperin et al., 2002].

The following paragraphs give an introduction into two docking programs (FlexX and

AutoDock), which have been used in the context of this work.

Approaches for docking into rigid protein structures

FlexX In FlexX [Rarey et al., 1996a, 1997, 1996b; Kramer et al., 1999], interaction

types and geometries according to Böhm [Böhm, 1992a,b] and Klebe [Klebe, 1994]

describe the protein ligand interactions. Each interacting group of the molecule to

be docked is assigned an interaction type and a corresponding compatibility. Possible

interaction types are geometrically restricted hydrogen bonds, interactions between

metals and metal acceptors, and hydrophobic interactions, for example those between

phenyl rings and methyl groups. For each group capable to form an interaction, a

special contact geometry is defined by placing an interaction surface around the centre,

usually as part of a sphere. Two groups form an interaction if the interaction centre of

one group coincides with the interaction surface of a counter group.

Conformational ligand flexibility is modelled discretely [Klebe & Mietzner, 1994] using a

set of preferred torsion angles about acyclic single bonds taken from a library which was

compiled from torsional fragments extracted from the Cambridge Structural Database

[Allen et al., 1979]. Multiple conformations for ring systems are computed with the

program CORINA [Gasteiger et al., 1990; Sadowski & Gasteiger, 1993; Sadowski et al.,

1994].
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The docking algorithm in FlexX is based on an incremental construction strategy

consisting of three phases: In the first phase (base selection), the base fragment of

the ligand is selected which is then placed into the active site of the protein (base

fragment placement). Finally, the ligand is reconstructed in an incremental fashion,

starting from different placements of the base fragment (complex construction). Upon

connecting additional fragments, new interactions are screened and the best partial

solutions based on the ranking of a scoring function are hooked up until the ligand is

completely constructed.

The docking algorithm is relatively sensitive to the selection and placement of the base

fragment. If the geometry of a fragment of a molecule to be docked is known (e.g.,

from a similar ligand crystallised in the target protein), a useful option is to place

the referring fragment manually into the binding pocket via the mapref command.

This reduces the run time of the docking procedure and increases the probability of

predicting the correct binding mode of the ligand.

Another possibility to include knowledge about protein-ligand interactions a priori,

as user-defined constraint, into the docking process can be realised by FlexX-Pharm

[Hindle et al., 2002], an extended version of FlexX. The constraints are determined by

selected FlexX interactions and inclusion volumes. They guide the docking process to

produce a set of docking solutions with particular properties. By applying a series of

look-ahead checks during the flexible construction of ligand fragments within the active

site, FlexX-Pharm determines which partially built docking solutions can potentially

obey the constraints. Solutions that will not obey the constraints are discarted as early

as possible, thus decreasing the calculation time and enabling new docking solutions

to emerge.

AutoDock Instead of explicit interaction types and geometries, as realised in FlexX,

AutoDock [Goodsell & Olson, 1990; Morris et al., 1996, 1998] uses grid representations

of the protein structure.

The binding pocket of the protein is represented by an affinity grid which is calculated

for each type of atom occurring in the ligand, typically carbon, oxygen, nitrogen and

hydrogen, as well as a grid of the electrostatic potential.

These maps then serve as look-up tables for the calculation of the interaction en-

ergy or scoring value during the flexible docking of the ligand. The search can be
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performed using one out of three possible search strategies: Monte Carlo simulated

annealing, a traditional genetic algorithm, and a Lamarckian genetic algorithm. The

latter Lamarckian genetic algorithm is the combination of a traditional genetic algo-

rithm with a local search method to perform energy minimisation. At each generation,

a user-defined fraction of the population is subjected to such a local minimisation. The

Lamarckian genetic algorithm was observed to be the most efficient and reliable of the

three methods [Morris et al., 1998].

Approaches for docking considering protein flexibility

Most docking approaches treat the protein rigid during the docking process, which is a

reasonable simplification if the protein binding pocket is sufficiently rigid and does not

exhibit significant side-chain rearrangements upon ligand binding. However, in some

cases it cannot be justified to neglect protein flexibility [Teague, 2003; Davis & Teague,

1999; Bursavich & Rich, 2002; Najmanovich et al., 2000; Carlson & McGammon, 2000;

Verkhivker et al., 2000]: if the system under consideration is known to be flexible or if

the available protein structure is not well resolved, as, for example, in the case of a ho-

mology model. A study, recently performed by McGovern et al. [McGovern & Shoichet,

2003], clearly demonstrated that the success of molecular docking depends significantly

on the particular representation of the receptor used in a screen. In their experiment,

the best enrichment was produced by docking into the ligand-bound receptor structure

instead of docking into the uncomplexed structure or a homology model. The authors

note, however, that a receptor determined in one particular ligand-bound conformation

could possibly bias the docking screen, preventing the discovery of ligands much differ-

ent from the ligand already captured in the complex. The same conclusion was drawn

by Murray et al., who successfully identified the correct ligand conformation (for three

test enzymes) in 79 % of the cases as the lowest energy configuration when the enzyme

structure was provided in terms of the crystal structure actually complexed by the

tested ligand. Their methodology only docks however in 49 % of the cases successfully

when the ligand is screened against an enzyme crystal structure extracted from a com-

plex with another ligand [Murray et al., 1999]. As a consequence, possible adaptations

of the protein binding-site upon ligand binding have to be considered in a docking run,

in order to avoid false-negative results. As an alternative or pragmatic compromise the

scoring functions used to subsequently rank the generated binding modes have to be

tailored in a way to tolerate such structural deficiencies.
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A possible approach for considering structural variations of proteins is to dock into an

ensemble of protein structures showing deviating active site conformations. As shown

previously, by averaging structural details and, hence, smoothing the energy landscape,

it is possible to circumvent local minima of an otherwise rugged energy surface. This

results in a faster convergence of the docking problem [Trosset & Scheraga, 1998;

Vakser, 1996]. Furthermore, the treatment of protein structures as ensembles has the

advantage that this compensates for some of the structural deficiencies and inequality

using only one single protein model. In addition, potential protein flexibility induced

upon ligand binding [Ma et al., 1999] can be accounted for.

Several approaches have been developed that can dock ligands into ensembles of protein

structures:

• Knegtel et al. used (1) simple and (2) energy-weighted averaging for the de-

scription of interactions between a ligand and each receptor structure from the

ensemble by generating composite grids. These were subsequently used for scor-

ing within DOCK [Knegtel et al., 1997]. Both averaging methods performed

equally well in their test cases. Österberg et al. extended this approach by test-

ing four methods for merging multiple ensemble entries into one single grid-based

lookup table of interaction energies using AutoDock [Österberg et al., 2002]. In

their test set, mean and minimum averaging methods perform poorly, but two

weighted averaging methods yield consistent and accurate ligand docking.

• Another approach to handle protein flexibility is realised in FlexE, [Claussen

et al., 2001] a variant of the FlexX program. FlexE is based on a united protein

description generated from an ensemble of superimposed structures of an ensem-

ble. For the structurally deviating parts of the protein, discrete alternative con-

formations are explicitly taken into account during the incremental construction

of the ligand in the binding-site. These geometric alternatives are then combi-

natorially joined to create new valid protein structures. Thus, conformations of

the protein are not limited to those explicitly present in the ensemble.

• DragHome was especially developed for the purpose of ligand docking into

approximate homology-modelled proteins [Schafferhans & Klebe, 2001]. The

binding-site models are analysed in terms of putative interaction sites, which are

predicted by LUDI [Böhm, 1998; Böhm & Klebe, 1996; Böhm, 1994b,a, 1993,

1992a,b]. They are then translated via Gaussian functions into arithmetically or
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geometrically averaged binding-site descriptions representing physico-chemical

properties. The use of ”soft” Gaussian functions to describe protein-ligand inter-

actions smoothes the potential energy surface and, thus, takes into account the

limited accuracy of the modelled structures for the purpose of docking. The lig-

ands are similarly expressed by property densities based on Gaussian functions.

The docking is performed by maximising the overlap between the functional de-

scriptions for ligand and binding-site representations using the ligand alignment

program SEAL [Kearsley & Smith, 1990; Klebe et al., 1994b, 1999].

• In SLIDE, ligand and receptor flexibility is introduced after the initial ligand

placement. Collisions are resolved by using mean field theory [Jackson et al.,

1998; Koehl & Delarue, 1994, 1996] to select rotations about single bonds in the

ligand and the protein side-chains, reducing a maximal number of collisions by

minimal conformational changes of both binding partners [Schnecke et al., 1998;

Schnecke & Kuhn, 2000].

Another approach for ligand docking, accommodating receptor flexibility, was recently

described by Lin et al. [Lin et al., 2002, 2003]: Initially, a long molecular dynamics

(MD) simulation of the uncomplexed receptor is performed to sample sets of protein

conformations. The second phase of their ”relaxed complex” scheme involves rapid

docking of candidate inhibitors into a large ensemble of MD snapshots, followed by a

more accurate scoring using the MM/PBSA (Molecular Mechanics/Poisson Boltzmann

Surface Area) approach [Kollman et al., 2000; Massova & Kollman, 2000; Srinivasan

et al., 1998] to find the best ligand-receptor complexes.

It should be noted that (to our knowledge) all above-mentioned approaches still await

successful applications for finding a novel ligand for a flexible protein system. On the

one hand, this is probably due to the fact that some methods are computationally too

demanding to perform a virtual screening since the dimensionality of the configuration

space is significantly increased; on the other hand, a reliable scoring scheme to identify

the native protein-ligand configuration may still be missing.

2.2.2 Affinity prediction

In the following section, a brief overview over general aspects concerning affinity predic-

tion will be given. A detailed description of the scoring function DrugScore is provided,
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which is used in the context of this work. For a more comprehensive overview over cur-

rent approaches for affinity prediction, the reader is referred to refs [Gohlke & Klebe,

2002a; Sotriffer et al., 2002a].

Affinity prediction in case the protein structure is given

General overview The strategy followed in rational drug design depends on whether

the three-dimensional structure of the biological target molecule is known or not. If

the structure of a target receptor is available, information about the binding-site and

principles of protein-ligand interactions can be used to estimate the binding affinity of

a given protein-ligand orientation obtained by crystal structure analysis or by compu-

tater docking (see section 2.2.1). Accurate and fast scoring is important both for the

determination of the correct binding modes from a sample of protein-ligand configu-

rations and for the ranking of a large sample of different ligands with respect to their

affinity.

Three main classes of scoring functions can be distinguished: force-field based methods,

empirical scoring functions, and knowledge-based methods. Force-field based methods

[Ewing et al., 2001; Morris et al., 1998; Jones et al., 1997] calculate binding affinity

using energy functions developed for 3D structure refinement and molecular dynamics

calculations, usually employed in free energy perturbation (FEP) methods [Kollman,

1993, 1996]. Although these methods are relatively accurate, they are computationally

demanding and limited to structurally similar ligands. Empirical scoring functions ap-

proximate the free energy of binding in terms of a ”master equation” as a weighted

sum of several factors corresponding to arbitrary enthalpic and entropic contributions.

The coefficients are optimised by fitting the derived functional form to observed bind-

ing data of a training set of protein-ligand complexes with known structure [Eldridge

et al., 1997; Murray et al., 1998; Böhm, 1994a, 1998; Wang et al., 1998, 2002; Jain,

1996; Head et al., 1996]. The most recently developed approaches are the so-called

knowledge-based scoring functions [Muegge & Martin, 1999; Muegge, 2000, 2001; De-

Witte & Shakhnovich, 1996; Mitchell et al., 1999a,b; Gohlke et al., 2000a,b; Wallquist

et al., 1995; Verkhivker et al., 1995]. They are based on the idea that a sufficiently large

data sample can serve to derive rules and general principles inherently stored in this

knowledge base. Accordingly, the development of a knowledge-based scoring function

at an atomic level is based upon observed frequency distributions of typical interac-

tions in experimentally determined structures: in any system, only those interactions
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that are close to the frequency maxima of the interactions in the knowledge base are

considered as favourable. Using the concept of the ”inverse Boltzmann law” [Sippl,

1995], the frequency distributions of interatomic interactions, derived from protein

crystal structures, are converted into ”potentials of mean force” or ”knowledge-based

potentials”.

A pragmatic strategy to enhance the hit rate from a docking screening is to reevalu-

ate the best docked binding poses with multiple scoring functions, a procedure called

consensus scoring [Charifson et al., 1999; Clark et al., 2002]. Only the compounds

scored at the top commonly by all scoring functions are further considered. Therefore,

in a statistical sense, consensus scoring is more robust and accurate than any single

scoring procedure [Wang & Wang, 2001]. It was indeed shown by Wang et al. [Wang

et al., 2003] and Bissantz et al. [Bissantz et al., 2000] that combining any two or three

scoring functions clearly enhances the success rate to retrieve active hits. However,

when applying consensus scoring, one should keep in mind that, even so the number

of false positives can be reduced, the number of true positives might also decline.

DrugScore In the following, the knowledge-based scoring function DrugScore, de-

veloped in our lab [Gohlke et al., 2000a] will be briefly described. It was used in the

present work to predict and score the binding modes of protein-ligand complexes for

the development of our approach for ligand-supported homology modelling of protein

binding-sites (MOBILE) (chapter 3). Furthermore, we applied DrugScore to rank the

putative hits in our database screen for the neurokinin-1 receptor (chapter 4).

For the development of DrugScore, the structural information of 1376 crystallograph-

ically determined protein-ligand complexes was retrieved from the database ReliBase

[Hendlich et al., 2003; Günther et al., 2003; Bergner et al., 2001]. Subsequently, this in-

formation was converted into statistical preferences based on 17 atom types [Hendlich,

1998]. The distance-dependent atom-pair distributions gi,j(r)/g(r) for the individual

atom types ij are divided by a common reference state which is taken as the average

over the distance distributions of all atom pairs g(r) =
∑ ∑

gi,j(r)/i ∗ j. To consider

only direct protein-ligand contacts, the upper sample radius has been set to 6 Å (see

Fig. 2.2).

At this distance, no further atoms, e.g. of a water molecule, can mediate a protein-
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Figure 2.2: Knowledge-based pair potentials between polar/ charged (O.co2-N.pl3

(green), O.3-O.co2 (red), O.3-O.3 (blue)) ligand and protein atoms (left) and non-

polar/aromatic (C.ar-C.ar (red), C.3-C.3 (blue)) atom pairs (right) as a function of

distance R, calculated according to equation 2.2. The first atom-type symbol refers to

the ligand, the second to the protein. From [Gohlke et al., 2000a].

ligand interaction. The individual potentials have the form

Eij(r) = −kT ((ln
gi,j(r)

g(r)
)− ln g(r)) (2.2)

These pair potentials are applied together with potentials depending on single (protein

or ligand) atom types that express the propensity of an atom type to be buried within a

particular protein environment upon complex formation. Contributions of these surface

potentials and the pair potentials are weighted equally in the final scoring function.

Affinity prediction when the protein structure is unknown

If the three-dimensional structure of the target protein is unknown, ”quantitative struc-

ture activity relationships” (QSAR methods) [Kubinyi, 1993; Kubinyi et al., 1997] can

be used to establish a relationship between molecular structure and biological activity

within a series of active compounds. These models do not only explain the relative

differences among the observed affinities, but also allow for an affinity prediction of

novel compounds.

The most widely used application of 3D-QSAR in molecular modelling and drug design

is the comparative molecular field analysis (CoMFA), first described by Cramer et al.

[Cramer et al., 1988].
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Given a series of ligand molecules binding within an affinity range of four orders of

magnitude to the target protein, the first step is to find a spatial orientation of the lig-

ands which is representative for the differences in the binding geometry at the protein

binding-site. If the protein structure is not given, the ligands are mutually superim-

posed in their assumed active-site conformation, e.g., by applying a strategy such as

the ”active analog approach” [Marshall et al., 1979]. It compares flexible compounds

with rigid analogs in particular by mutually excluding part of the accessible confor-

mational space due to structural restrictions. It finally suggests geometries for all

ligands in the data set that could possibly correspond to the active-site conformation.

Several approaches have been developed which accomplish the task of superimposing

ligand molecules while maximising their spatial overlap with respect to similar physico-

chemical properties [Lemmen & Lengauer, 2000].

Assuming that a reasonable ligand alignment has been generated, a sufficiently large

lattice box is positioned around the molecules with a predefined grid spacing. Field val-

ues representing atomic or physico-chemical properties are calculated at each grid point.

Subsequently, field properties are correlated with differences in the dependent target

property, for example, the binding affinity. In its original implementation, Lennard-

Jones- and Coulomb-interactions energies are calculated for all molecules of the data

set at the grid points. The general form of the QSAR equation results to:

Affinityn = k + α1Sn,1 + ... + αMSn,M + β1En,1 + ... + βMEn,M (2.3)

The indices 1, 2, ..., M reflect the respective grid points, and Sn,1, ..., Sn,M and

En,1, ..., En,M describe steric and electrostatic energies at these points. The coeffi-

cients α1, ..., αM and β1, ..., βM are obtained from a system of linear equations by

partial least-squares (PLS) analysis [Geladi & Kowalski, 1986; Wold et al., 1993].

Binding affinities of new molecules not included in the training set can be predicted

using the derived model.

Despite the straightforward definition of CoMFA, there are a number of serious prob-

lems and possible pitfalls [Kubinyi, 1993; Thibaut et al., 1994]. One alternative to

CoMFA is the comparative molecular similarity indices analysis (CoMSIA) [Klebe

et al., 1994a]. Here, Gaussian functions are used to describe steric, electrostatic, and

hydrophobic similarities. Similarly, hydrogen-bond donor and acceptor properties are

considered [Klebe et al., 1999]. Compared to CoMFA, this approach avoids partic-
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ularly steep potentials next to molecular surfaces. Thus, similarity indices are also

determined close to and even in the area occupied by the ligands.

2.2.3 Approaches combining protein and ligand-based

procedures

When the 3D structure of a target protein is given, drug design usually applies

structure-based techniques, while ligand-based information is often neglected. On the

other hand, if affinity data for a series of ligands is available, generally ligand-based

approaches are applied to discover and optimise novel compounds. If the corresponding

structure of the target protein is available, this knowledge remains often unused apart

from the assistance to produce a reasonable ligand alignment. In many cases, it could

be beneficial to combine protein- and ligand-based approaches, and use the strength of

one approach to overcome shortcomings of the other method, or, at least, to use both

strategies to mutually confirm results from these complementary approaches. The

following sections present examples from literature, where ligand- and protein-based

strategies were combined in order to obtain more reliable predictions for protein-ligand

interactions.

Combination of protein- and ligand-based information for molecular

docking

The docking program FlexX [Rarey et al., 1996a, 1997, 1996b; Kramer et al., 1999]

(see section 2.2.1) offers the option to place the base fragment for the incremental

construction algorithm of the ligand manually into the binding pocket via the mapref

command. However, at the moment this option only works for small, relatively rigid

fragments. A further option, realised in FlexX-Pharm [Hindle et al., 2002], is the

possibility to incorporate more generic information about important characteristics of

protein-ligand binding modes into the docking calculation in terms of pharmacophore-

type constraints and restraints.

A so-called ”similarity-driven approach to flexible ligand docking” was presented by

Fradera et al. [Fradera et al., 2000]. Given a reference ligand or a pharmacophore

positioned in the protein active site, the method allows inclusion of a similarity term

during docking. Using the docking program DOCK 4.0 [Ewing & Kuntz, 1997; Ewing
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et al., 2001] for the placement of the ligand in the protein binding-site, the similarity

program MIMIC [Mestres et al., 1998] is included as a module for the calculation of

similarity indices. MIMIC either (1) corrects docking energy scores at certain steps of

the ligand incremental construction or (2) applies similarity corrections at the end of

the calculation.

Combination of protein- and ligand-based information for affinity

prediction

Combination of protein- and ligand-based information is also possible for the prediction

of binding affinities. A first step in this direction is the usage of the protein structure,

along with a docking protocol, to guide the molecular alignment of ligands in a com-

parative molecular field analysis (CoMFA). Novel ligands could then be searched by

first docking them into the protein structure and then predicting their affinity with

respect to the established CoMFA model. This procedure has already been applied

by several groups (for example see [Gamper et al., 1996; Bursi & Grootenhuis, 1999;

Lozano et al., 2000; Cho et al., 1996; Holloway et al., 1995; Tokarski & Hopfinger, 1997;

Vaz et al., 1998; Sippl, 2003]).

This latter approach, which could be termed ”protein-supported ligand-based drug

design”, can also be applied if the structure of the target protein is not available but

sequentially related proteins with known 3D-structure have been determined. In such

a situation, a homology model can be generated which guides the docking process of

the ligand molecules [Jalaie & Erickson, 2000; Schafferhans & Klebe, 2001; Kim, 1998]

(see also next section). As an advantage, the significance of the generated CoMFA

model can also serve to estimate the quality of the generated homology model.

Wade et al. used selected interaction energy components to include information from

the protein into a 3D-QSAR model. Their COMBINE approach [Ortiz et al., 1995,

1997; Wang & Wade, 2001] quantifies ligand-receptor interaction energies by molecular

mechanics in terms of van der Waals and Coulomb contributions per residue, followed

by a PLS analysis in order to derive a 3D-QSAR model. Other similar approaches have

also been described [Kurinov & Harrison, 1994; Kulkarni & Kulkarni, 1999; Rognan

et al., 1999; Grootenhuis & van Galen, 1995; McCarthy et al., 1997].

Another procedure which considers protein information not only for the suggestion of
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a meaningful ligand alignment but also includes information about the surrounding

protein environment in the potential field calculations, is the recently developed AF-

MoC approach [Gohlke & Klebe, 2002b]. AFMoC tailors protein-specifically adapted

DrugScore pair-potentials to one particular protein by considering additional ligand-

based information in a CoMFA-type approach. As in CoMFA, the results of the analysis

can be interpreted in graphical terms by contribution maps, and binding affinities of

novel ligands are predicted by evaluating the established 3D QSAR equation. Com-

pared to the original, solely ligand-based CoMFA approach, the AFMoC method has

the following striking advantage: Whereas in CoMFA a large data set of structurally

diverse training compounds spreading over a sufficient range of binding affinities is nec-

essary, AFMoC is able to generate predictive models also with a fairly limited number

of ligands, spanning over a lower range of affinity. As a further advantage, AFMoC

allows the user to gradually move from general knowledge-based potentials to protein-

specifically adopted ones, depending on the confidence in the protein structure (e.g. in

the case of a homology model) and the amount of ligand data available for training.

Whereas CoMFA can only interpolate among the data points defined by the ligands

of the data set, AFMoC can still extrapolate to some extent into areas not yet experi-

enced by any of the training set compounds since in these areas the original DrugScore

potentials generate a reasonable predictive power.

Combination of protein- and ligand-based information for homology

modelling

The incorporation of ligand information explicitly into the protein modelling process

has not yet been described in literature. Instead, ligand information was used to

subsequently refine an already existing homology model by energy minimisation or

molecular dynamics. Furthermore, ligands are docked into homology models and the

relevance of the docking solution or the significance of a CoMFA model based on docked

ligands served as validation criterion to assess the generated protein model. For a more

detailed overview, see section 2.3.
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2.3 Examples of homology modelling for the

purpose of structure-based drug design

Several studies have been described in literature where homology models of proteins

have been used to explain putative interactions between a protein and ligands ([Bour-

don et al., 1997; Lozano et al., 1997; Garcia-Nieto et al., 2000; Zhang et al., 2001;

Marhefka et al., 2001; Le Novere et al., 2002; Gieldon et al., 2001; Escherich et al.,

2001; Bathelt et al., 2002; Lopez-Rodriguez et al., 2001; Bissantz et al., 2003; Vaidehi

et al., 2002; Gouldson et al., 1997; Moro et al., 1998b,a]). In some cases, the generated

models were used for the design of new potent inhibitors ([Tiraboschi et al., 1999; Rong

et al., 2002; Kiyama et al., 1999]).

However, in none of these examples ligand information was explicitly considered during

the modelling of the protein. Usually, a homology model based only on one or more

template structures is initially produced and subsequently the ligand(s) are placed

into the modelled binding pocket. This is accomplished either manually or using an

automatic docking tool. Another strategy follows the superimposition of template and

model followed by the merging of the coordinates of a ligand as adopted in the template

structure into the model. In most cases, the resulting complexes are further optimised,

e.g. by using a molecular dynamics protocol, which, to some extend, uses the ligand

information for the protein modelling, at least in terms of a local optimisation.

In another approach, ligand information was used by Jansen et al. for modelling the

serotonin 5 −HT1A receptor. The optimisation was performed with the minireceptor

modelling program Yak [Vedani et al., 1993] based on an extracted active site of a

homology model using three high-affinity ligands [Jansen et al., 1997].

An important task in model-building protein-ligand complexes is the quality assessment

of the produced models, in particular if different orientations of active site residues are

possible. This step is usually performed by visually analysing the interaction geome-

try between protein and ligand functional groups. This consecutive procedure appears

rather inefficient. Only a few approaches assess the quality of the generated complexes

in a more sophisticated way: Johnson et al. created a library of protein models that

are subsequently screened by rigid ligand docking. The more relevant protein models

achieve better scored docking solutions, and the quality of the generated binding modes

is used to select the most relevant models [Johnson et al., 2003]. This approach has
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been applied to the modelling of Fv antibody fragments. Results were compared to the

known crystal structures. However, it requires experimental data about the conforma-

tion of the docked ligand. Bissantz et al. evaluated their generated homology models

(agonist and antagonist bound models of three human G protein coupled receptors) by

retrieving known agonists and antagonists via docking from a database assembled by

such entries and additional randomly collected ”drug-like” compounds [Bissantz et al.,

2003]. Jalaie et al. developed a homology model of spinach photosystem II. After

docking inhibitors, a highly predictive CoMFA model was derived from the resulting

alignment. It helped to score the quality of the homology model [Jalaie & Erickson,

2000]. A similar approach was followed in our group by Schafferhans and Klebe. Struc-

turally distinct thrombin inhibitors were docked onto models of thrombin generated

from a set of serine proteases with 28 up to 40 % sequence identity. Compared to the

crystal structures of actually known thrombin complexes, ligand binding modes were

obtained with an average rms deviation of 1.4 Å [Schafferhans & Klebe, 2001]. Based

on the generated alignment of 88 thrombin inhibitors, a significant 3D QSAR model

could be established.
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3 Development of an approach for

Ligand-supported Homology Modelling

of Protein Binding Sites using

Knowledge-based potentials

3.1 Strategy and computational realisation

3.1.1 General overview

Below, we describe in detail how we complement data about related proteins with

information about the binding modes of bioactive ligands to generate more realistic

homology models of protein binding-sites. A schematic overview of our strategy, which

was initiated by the development of the DragHome concept and is followed by MO-

BILE (Modelling binding-sites including ligand information explicitly), is given in Fig.

1.4. Starting with the (crystal) structure of one or more template proteins, several pre-

liminary homology models of the target protein are generated (step 1). After placing

one or more ligands, known to bind to the target protein, into an averaged binding-

site representation of the generated binding-site models (step 2), the protein models

are generated, now considering explicitly the docked ligand(s) (step 3a). After scoring

the thus generated complexes with DrugScore, a final model is obtained by selecting

the model which explains best the observed ligand binding (affinities) (step 3b). The

modelled complexes can be further refined considering the composite picture of the

best side-chain conformers taken from different models and minimising the side-chain-

to-ligand interactions using a common force-field (step 4).

3.1.2 Step 1: Generation of preliminary protein models

The program MODELLER [Marti-Renom et al., 2000; Sali & Blundell, 1993; Fiser

et al., 2000] is used to generate initial homology models in the first step of our ap-

proach (Fig. 1.4). MODELLER generates protein 3D structures by satisfying spatial
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restraints imposed by the sequence alignment with the template structure and applying

the terms of the CHARMM-22 force-field [Brooks et al., 1983]. A 3D protein model is

obtained by optimising the molecular probability density function while simultaneously

minimising input restraint violations. To guarantee sufficient conformational sampling

of each active site residue, several homology models are generated in this step. Prelim-

inary tests showed that a number between 10 and 100 models provides a satisfactory

sampling. To optimise the local interactions, all models obtained are subjected to a

crude simulated annealing refinement protocol available in MODELLER.

3.1.3 Step 2: Placing the ligand(s) into the homology models

As a next step, proper ligand orientations need to be obtained. Three scenarios are

described, characterised by a decreasing amount of experimental information available:

1. One or more ligands are known to bind to the target protein, and the complex

crystal structures with the related template proteins are available. It can be

assumed that the ligand binding modes are similar in the target and the template

protein. Accordingly, ligands are then transferred among these structures keeping

their orientation as a restraint for the subsequent modelling process.

2. One or more ligands are known to bind to the target, however, no complex

crystal structure with the template is available. In this case, the ligand(s) can

either be placed into the template protein structure by docking, and the resulting

orientation can then be used to restrain the following protein modelling process.

Alternatively, the coordinates of a similar ligand, crystallised together with the

template protein, serves as a reference to restrain the protein modelling process.

The known ligand is then transferred into the modelled proteins as described in

the following section.

3. If no structural information about ligands binding to the template protein is

available, one or more ligands (known to bind to the target protein) are docked

into the homology models of the target protein. Since a homology modelling

program generates a set of different models with similar energies, ligand docking is

attempted as a placement into ensembles of the modelled protein structures. Two

different approaches were combined to place ligands into ensembles of model-built

protein structures. Following Sotriffer et al. [Sotriffer et al., 2002b], DrugScore
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potential grids were calculated in the binding pocket of each homology model by

evaluating protein-ligand interactions between a predefined probe atom, placed at

each grid point, and the surrounding protein environment. At short interatomic

distances, the pair potentials were supplemented by a Gaussian-type repulsive

term as described by Gohlke et al. [Gohlke & Klebe, 2002b]. Grids of identical

size were used for each homology model. Their dimensions were adjusted to fully

embed the ligand in its crystallographically determined binding mode with an

additional margin of at least 4 Å. The ligands were then docked into the merged

binding pockets using AutoDock 3.0 after averaging the grid maps representing

the potential energy using the clamped grid method as described by Osterberg

et al. [Österberg et al., 2002]. The Lamarckian genetic algorithm was applied

using the docking protocol as given by Sotriffer et al. [Sotriffer et al., 2002b].

3.1.4 Step 3a: Incorporating ligand information into the

homology modelling process

Having placed the ligand(s) in a near-native orientation into the consensus binding-site

of the modelled protein, new models are generated using MODELLER which addition-

ally incorporate information about these ligand(s). During this modelling step, the

ligands are kept fixed in space. The presence of the ligand(s) is included into the ho-

mology modelling process in terms of user-defined restraints. Scaled DrugScore pair

potentials are added to the MODELLER force-field to provide information about the

interactions experienced between fixed ligand(s) and flexible protein atoms. The scal-

ing of DrugScore potentials with respect to the MODELLER force-field is described in

detail in the section 3.4.3. No further interactions between protein and ligand atoms

are considered. To make the DrugScore potentials suitable for a minimisation proce-

dure, we approximate them by cubic splines (assigning a range from 0 to 6 Å and a

bin size of 0.1 Å). This can be realised through the MODELLER interface. To include

the repulsive interactions at short distances, the above-mentioned Gaussian repulsion

term has been added [Gohlke & Klebe, 2002b].

The protein modelling process is not necessarily restrained to one ligand. If several

ligands are known to occupy distinct parts of the binding pocket, a combination to a

composite ”super-ligand” can be attempted.
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3.1.5 Step 3b: Scoring the generated models

Having generated a set of ligand-supported homology models, the next objective is to

identify the best one(s). Quality assessment of homology models usually applies fold

plausibility criteria or tries to assess local features considering protein atom interactions

only [Bowie et al., 1991; Colovos & Yeates, 1993; Dominy & Brooks, 2002; Eisenberg

et al., 1992; Laskowski et al., 1993; Luthy et al., 1992; Melo & Feytmans, 1998; Simons

et al., 1999; Wang et al., 1995b,a]. The primary interested in the scope of this Thesis is

to obtain near-native models of protein binding-sites, accordingly the standard proto-

cols for evaluating protein homology models would be insensitive and non-conclusive.

Also, the MODELLER objective function would not provide a proper criterion, as it

assesses matching with all requested input restraints. Assuming that the modelled

protein-ligand geometry corresponds to a near-native geometry, we require a scoring

function suitable to evaluate protein-ligand interactions. As DrugScore shows good

performance to identify near-native ligand poses from a set of decoy binding modes in

rigid binding pockets, this method was used in turn to identify near-native binding-site

geometries with respect to residue side-chain orientations towards the ligand(s).

3.1.6 Step 4: Optimising and refining the homology models

To optimise the modelled binding-sites, a strategy of combining good solutions on a

per-residue basis from different homology models is pursued. In the case of identical

main-chain orientations, the most appropriate side-chain rotamers are assembled from

the different models. As the ligand(s) have been placed in the previous modelling

step, the DrugScore rankings between ligand atoms and individual side-chain rotamers

are used to select the most appropriate solution from the set of generated protein

side-chain orientations. In this context, the number of side-chain conformers for each

residue is reduced by performing a complete linkage clustering, merging two conformers

within a user-defined threshold (by default 1.0 Å). Then the conformer with the best

DrugScore value is selected as cluster representative and the with unfavourable rankings

are eliminated. Finally, all combinations between the remaining cluster representatives

are generated. Solutions that produce intramolecular clashes are discarded. The total

DrugScore scores of the combined pockets are obtained by summing up the individual

scores of the considered side-chain conformers. Finally, the model with the best total

DrugScore values is chosen.
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Since DrugScore pair-potentials implemented into MODELLER consider directionality

of interactions only implicitly, a subsequent structural optimisation using the MAB

force-field in MOLOC is performed. This force-field handles H-bonds using explicit

angular dependencies [Gerber, 1998; Gerber & Müller, 1995]. In addition, this step

finally removes strained interactions within the binding-site residues.
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3.2 Results and Discussion

The following sections will demonstrate that the MOBILE approach produces more

reliable homology modelled complexes if ligand information is included in this pro-

cess. Subsequently, two ”real life” applications will be given to assess the scope and

demonstrate the power of this method.

3.2.1 Analysis of the generated binding-site models

Comparison of binding-site models generated with and without ligand

information

To assess the influence of ligand information on the protein modelling step, root mean-

square deviations (rmsd) of the modelled binding-site residues with respect to orien-

tations found in reference crystal structures were evaluated for the test data set (46

protein-ligand complexes, see 3.4.1 and Table 3.5). Models were generated (1) with-

out ligand information and (2) considering ligands in terms of the DrugScore pair

potentials. For each of the 46 test set proteins, 10 models were generated with new

side-chain and backbone orientations. Of these, the one with the lowest rmsd with re-

spect to the crystal structure was selected, and an average rmsd considering all atoms

of all binding-site residues was computed. It amounts to 1.90 Å if ligand information

was considered (strategy 2) and increases to 2.08 Å if no ligand information has been

used (strategy 1). A paired t-test [Zar, 1999] indicates (with a significance of 0.01)

that these mean values are significantly different. With respect to the average rmsds

of each of the 46 binding pockets, in 28 cases better models were obtained considering

the ligand in terms of DrugScore potentials (see Fig. 3.1). In 17 cases better models

were generated neglecting the ligand. In one case a model of equal quality (with re-

spect to rmsd) was obtained. According to the paired t-test, the respective 46 mean

rmsd values show a significance level of 0.1 in favour of the ligand-supported models.

Remarkably, when the ligand is considered in terms of van-der-Waals potentials only,

the resulting binding-site models are even worse (in terms of rmsd values) than those

generated neglecting ligand information. The mean rmsd value over all atoms from all

binding-sites amounts to 2.34 Å if the ligand is considered in terms of van-der-Waals

potentials. A possible explanation for this different performance might be attributed

to the significant difference in the steepness of the DrugScore versus van-der-Waals po-
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tentials. Soft potentials are more tolerant with respect to slight structural deficiencies

that generally occur with model-built structures.

Figure 3.1: The differences between rmsd values exhibited by binding-site models

(including side-chain and main-chain atoms) generated with ligand infor-

mation (+ligand) and without ligand information (-ligand).

Fig. 3.2 illustrates the benefit of including ligand information into the protein modelling

process. Here, the orientations of all 11 binding-site residues of glycosidase complexed

with adenine (1aha) were predicted either neglecting (Fig. 3.2a,b) or considering (Fig.

3.2c,d) ligand information. Regarding all binding-site residues, the best of the 10 gen-

erated models showed an overall rmsd value of 1.25 Å (neglecting ligand information)

and 0.8 Å (considering ligand information), respectively.

Even for the model which was generated without regarding the ligand, the overall

rmsd value is rather satisfying. With 1.25 Å it is even better than the average value

found for all 46 test set complexes including ligand information (1.90 Å). However,

three modelled residues (Tyr70, Tyr111, Ile155, see Fig. 3.2) will clash with a bound

ligand if it is inserted in its crystallographically determined orientation. Besides vi-

sual inspection, the obtained DrugScore rankings potentially indicate the quality of

the generated binding-site models. While the complex generated considering ligand
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Figure 3.2: Binding site of glycosidase complexed with adenine (1aha). The residue

orientation taken from the crystal structure (atom type coded colouring) and those gen-

erated by homology modelling (cyan or yellow) are shown (a) neglecting ligand infor-

mation and (c) including ligand information. Figures (b) and (d) depict the molecular

surfaces of the binding-site residues in their modelled orientation. The bound adenine

has been considered in its orientation as found in the crystal structure. For clarity,

only the binding-site residues are shown in (a) and (c).
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information scores only slightly worse than the native complex, the model generated

neglecting ligand information exhibits a strongly unfavourable score.

Assessing the side-chain prediction accuracy of MODELLER

To assess MODELLER’s power to correctly predict side-chain orientations in protein

binding-sites, again, homology models for all members of the 46 test suite were gen-

erated. Deviating from the previous test, now 100 models (to sample search space

more exhaustively) were generated considering only the side-chain orientations of the

binding-site residues (thus keeping their backbone coordinates fixed). The orientations

of all binding-site side-chains were generated simultaneously. Ligand information was

(1) included in terms of the DrugScore potentials, (2) included in terms of van-der-

Waals potentials and (3) fully ignored. The quality of the protein models was validated

in two ways: (1) the computed binding-site models were considered in total and (2) for

each single residue, only that conformer which had the lowest rmsd compared to the

crystal structure was considered.

The results are summarised in Table 3.1. Regarding the modelled binding pockets in

total, the best solutions are obtained while including the ligand in terms of DrugScore

potentials (1.74 Å rmsd). Paired t-tests [Zar, 1999] indicate that this mean value

significantly differs (with a significance level of 0.05) from the mean values which are

obtained when neglecting ligand information (1.82 Å rmsd) or including it in terms

of van-der-Waals potentials (1.88 Å rmsd). Considering the best conformer of each

predicted side-chain, all three approaches (ligand included in terms of (1) DrugScore

potentials, (2) van-der-Waals potentials, (3) ignored) seem to generate equally good

results (mean rmsd values of 1.04, 1.06, and 1.03 Å). This is probably due to the

fact that the conformational space of a residue is exhaustively screened by 100 probe

conformers, irrespective whether a ligand is present or not.

Comparing the rms deviations for each of the 46 modelled binding pockets in turn,

in 30 cases better models were obtained when considering the ligand in terms of the

DrugScore potentials (see Fig. 3.3). In 14 cases models with a lower rmsd were ob-

tained when neglecting the ligand, and in two cases models with equal rmsds were

generated. According to the paired t-test, the respective mean rmsd values are signifi-

cantly different (with a significance level of 0.1).
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Figure 3.3: The differences between rmsd values observed for binding-site models

(including only side-chain atoms) generated with ligand information (+lig-

and) and without ligand information (-ligand).
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Table 3.1: Results for predicting side-chains located in the active sites of the test set proteins

active site

predictions with DrugScore potentials

MIN a) 1.74

BEST b) 1.04

predictions with VDW potentials

MIN 1.88

BEST 1.06

predictions without ligand information

MIN 1.82

BEST 1.03

Side-chain predictions were performed for all binding-site
residues of the test data set (Table 3.5) simultaneously,
keeping the ligand and the remaining part of the protein
fixed. In each case, the rmsd is calculated for all atoms in
the given category (i.e. no averaging over residues or
structures).

a) The MIN values consider the binding pockets as whole
entities. For each protein, the binding pocket with the
rmsd value closest to the crystal structure was considered.

b) The BEST values consider the best side-chain conformer
for each single residue of the generated binding site models
compared to the residue in the crystal structure.
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Table 3.2.1 gives a detailed list of the deviations of the multiple binding-site models

generated in the presence of ligand information (in terms of DrugScore potentials).

MODELLER computed geometries with rmsd < 2.0 Å in 32 of 46 cases. Obviously,

the prediction accuracy does not depend on the number of residues to be modelled

but rather on the type of residues for which conformations have to be generated. If

a binding pocket contains rigid, space-filling amino acids (in particular Phe, Tyr, Trp

or His), remarkably large deviations are modelled compared to the crystal structure:

Among the 32 satisfactorily modelled pockets, on the average 2.8 Phe, Tyr, Trp or His

residues are present, whereas the 14 cases with rmsd < 2.0 Å comprise 5.8 residues

of this type. This is probably due to the fact that an incorrect geometry of a bulky

residue also provokes incorrect geometries of adjacent residues. This influence increases

with a growing number of bulky residues in an active site.

Identification of the best binding-site models

The above-described homology models generated to assess the prediction accuracy of

MODELLER were subsequently used to evaluate DrugScore’s ability to identify near-

native complex geometries (”near-native” requires an rmsd < 2.0 Å over all binding-site

residues with respect to the corresponding crystal structure).

For each of the 46 test cases, DrugScore rankings were calculated for the crystal struc-

ture and the 100 model-built complexes. The crystal structures, assumed to represent

the global optimum, should obtain the best score. In fact, DrugScore was able to re-

trieve the crystal structures on rank 1 in 32 out of 46 cases (70 %). Data in Tables 3.2.1

and 3.3 indicate good correlation between DrugScore ranks and deviations of model-

built vs. crystallographically determined binding-sites. If a near-native geometry (<

2.0 Å) was generated by MODELLER (32 cases), DrugScore was also able to identify

a pose with rmsd < 2.0 Å on rank 1 in 21 cases (66 %).

Combination of side-chain conformers in carboxypeptidase A

Even in the overall best model, MODELLER does not necessarily generate the best

possible orientation for all binding-site residues. Thus, an improved model can be

obtained by combining conformers from different models. Fig. 3.4a shows the crys-

tallographically determined binding-site of carboxypeptidase A complexed with L-
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Table 3.2: Results for binding-site models of 46 protein-ligand complexes generated by MOD-

ELLER and scored with DrugScore

pdb

code

rmsd of 1st

DS (Å) a)

best rmsd

value (Å) b)

residues in the binding-site c)

≤1.0 Å

1ABF 0.23 0.13 KQEWFCDDMTRMNN

1LAH 0.96 0.96 DYFSSLSRLSTQD

≤1.5 Å

1LNA 1.02 1.02 NNAFLVHEILRH

1IMB 1.13 0.90 EDIDGTEGSGTAYEID

1HSL 1.15 1.15 YLSSLSRLGTTQD

1F3E 1.17 0.98 DYDCIQGGLAVMG

121P 1.18 1.18 AGGVGKSAFVDEDPTTAGNKDLSAK

1MLD 1.32 1.32 IRRINLRHGTVSAM

1BLH 1.41 1.28 ASKYSNEINGQAI

≤2.0 Å

1LMO 1.50 1.05 DQINYWVDNAW

1PPL 1.52 1.52 EENDGSSYGDSQFLFIDGTTLLYLFI

1PSO 1.66 1.42 MEVDGSTYGTFFIIYDGTSLQMLI

1BUG 1.71 1.21 HHFHHIHMGNFAFH

1HDC 1.72 1.63 STGMSLLTYPGMTMTTW

1APT 1.75 1.49 ENDGYGDSFLFIDGTTLLYLFI

1POC 1.85 1.69 IYWCGHGCHDHTLFFVMYI

1CTR 1.87 1.09 EFILEMEAVMA

1AHA 1.89 1.27 VYIFGNYIAER

1HEF 1.89 1.25 RDGADDVIGGIPVI

1ABE 1.96 1.96 KQEWFDDMLTRMNN

1ROB 1.97 1.39 QHKVNTDRHFDAS

≤2.5 Å

1MRG 2.05 1.41 IYIFGDYIAER

1BYB 2.21 2.21 MLDWIHNVDAERYQWFKSGHW

TCMEALLR
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pdb

code

rmsd of 1st

DS (Å) a)

best rmsd

value (Å) b)

residues in the binding-site c)

1EPB 2.21 1.81 FIFWMVLAFKVVAIIKY

1ICN 2.21 2.20 YFMMIKFVFFYLADLWFLQQY

1STP 2.24 1.57 NLSYSVGNWASTWWLD

1TLP 2.25 1.88 YNNAFWFLVHEHYELRDH

1ATL 2.26 1.32 EETLGTHEHHCIRPGL

1RDS 2.27 2.13 YHEYHDYEEPGARHGDDF

1CPS 2.32 1.79 HRERNRHSYLIIYAGTEF

1ELA 2.34 1.85 HTVAWTGCQGDSTSFVSR

1TMN 2.34 1.98 YNNAFFLVHEHYEILRH

1HYT 2.36 2.16 NAFFLVHEHYEIGLRH

1RBP 2.42 1.65 LFLAFATAVLMVGMYLQHYFF

1RNT 2.43 2.43 NYHKYNNYEERHNNF

1AZM 2.46 2.42 FHHEHLLVSLTHW

>2.5 Å

1SRJ 2.54 2.54 NLSYSAVGNAYWASTWWLD

1BBP 2.55 2.09 ENVEGWANYHYFIHLYNFYKFWL

1DIE 2.62 2.62 WHTTFVWEEHDD

1DID 2.64 2.48 WHMTFVWENEHDHD

1SNC 2.66 2.10 DTRLLDEDKYRLYY

1CBX 2.76 1.49 HERNRHSLIIYAGTE

1HFC 2.89 1.62 GNLAHYVHEHHYPSY

1CIL 3.15 2.94 WNHQHHEHVFVLVSLTTPPW

1MRK 3.26 2.22 YIMFEGNYIEREW

1ACJ 3.31 2.85 GWGGYEFYWIHGY

The rmsd values are calculated for all atoms of each model (i.e. no averaging over
structures). The models are treated as whole entities (i.e. no further optimisation
by combining fragments from different models).

Rigid, space-filling amino acids (Phe, Tyr, Trp, His) are coloured red.

a) rmsd of the binding-site model found on rank 1 by DrugScore, with respect to
the crystal structure.

b) rmsd of the binding-site model with the least deviation from the crystal
structure.
c) residues in the active site (given as one-letter code) for which new geometries
were computed.
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Table 3.3: Results for scoring multiple solutions of 46 protein-ligand complexes generated by

MODELLER

% of complexes with solutions exhibiting

rmsd of the crystal structure

< 1.0 Å < 1.5 Å < 2.0 Å ≥2.0 Å

All ranks a) 9 43 70 30
1st rank b) 44 47 66 34

a) All solutions of each modelling experiment for the test data set
(Table 3.5) are considered. The number expresses the portion of
all complexes for which at least one solution with the given rmsd
value was computed by MODELLER.

b) Only the binding-site geometry scored to be on the first rank
by DrugScore is considered. The numbers are related to the ones
in the first line.

benzylsuccinate together with 100 generated models (yellow). The three best-scored

models (DrugScore) are shown in Fig. 3.4b. Each individual model contains at least

one residue rotamer that differs significantly from the crystal structure. In contrast,

a combination of rotamers considering only the individually best-scored ones retrieved

from the entire ensemble matches the crystal structure to a greater extent (Fig. 3.4c).

To assess whether the thus generated binding pocket is capable to reproduce a correct

ligand pose, we flexibly docked the ligand present in 1cbx into either the crystal struc-

ture or into the model. Prior to this, the modelled binding pocket was minimised with

MOLOC in presence of the ligand. Of course, this procedure does not correspond to a

realistic scenario in real-life modelling case studies because the modelling process was

restrained with the ligand in its orientation known from the crystal structure, which

will usually not be given. The Lamarckian genetic algorithm was applied in AutoDock

using DrugScore grids to describe the protein binding-sites (Fig. 3.4d) [Sotriffer et al.,

2002b] and ten independent runs were performed. In both cases, docking produced two

different ligand placements (AutoDock scoring energies for crystal structures: -8.03 and

-7.62 kcal/mol and model-built complex: -8.39 and -8.10 kcal/mol, respectively). In

case of the experimentally protein structure, the first solution has an rmsd of 1.21 Å

with respect to the crystal coordinates. For the model, the second solution deviates

from the crystal coordinates by 0.75 Å rmsd. The close energy ranks and the small
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rmsds indicate high similarity between the model and the original crystal structure.

The ligand orientation, albeit found on rank 2, could be reproduced satisfactorily via

docking into the generated model. This convincing result stimulated us to embark on

some real-life modelling applications.

Figure 3.4: Binding site residues of carboxypeptidase A complexed with L-

benzylsuccinate (1cbx). (a) shows the crystal structure (atom type coded colouring)

together with an ensemble of 100 models (yellow). The ligand in its orientation as found

in the crystal structure is coloured in red; (b) depicts the 3 models which obtained the

best DrugScore values (green > cyan > yellow). The model which results as best combi-

nation of all binding-site residues retrieved individually from the generated 100 models

is depicted in violet (c). The best docking solution obtained for the ligand based on the

combined and subsequently minimised model is shown in (d). (Orientation of docked

ligand in yellow, crystallographically determined orientation in red)
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3.2.2 Modelling case studies

Modelling factor Xa based on trypsin

In the previous test examples entire binding pockets have been modelled. Furthermore,

the modelling process was restrained by the ligand in its orientation known from the

crystal structure. In real-life applications, the protein to be modelled may differ by

only several mutations with respect to the template protein(s) and the ligand geometry

might not be exactly known beforehand. To apply such a scenario, homology models of

factor Xa were generated using bovine trypsin as template. Both proteins are members

of the class of trypsin-like serine proteases and share 38 % sequence identity in common

(see Fig. 3.5a). They are known to bind the ligand RPR128515 in a similar orientation

[Maignan et al., 2000]. A sequence alignment was produced by MALIGN3D [Sali &

Blundell, 1990]. In order to mimic a scenario where a ligand orientation is not given

by crystallography, we generated 10 preliminary homology factor Xa models based

on the crystal structure of trypsin (1f0u) excluding ligand information. The ligand

RPR128515 was then flexibly docked into the merged binding pockets using AutoDock.

The docking solutions, together with the ensemble of all modelled residues known to

be crucial for the ligand binding, are depicted in Fig. 3.5b. Nine deviating docking

solutions were obtained. The best solution (rmsd = 0.97 Å with respect to the ligand

orientation in the crystal structure 1ezq) is found on rank six (AutoDock energy score:

-14.35 kcal/mol). While the solution found on rank 1 (with an energy score of -14.80

kcal/mol) deviates by 3.33 Å rmsd, four additional solutions were generated with an

rmsd value < 2.0 Å. The solution found on rank 2 differs by 1.64 Å from the crystal

coordinates and has an energy score of -14.27 kcal/mol. As indicated in Fig. 3.5b, the

orientations of some modelled binding-site residues (mainly those which are mutated

compared to the original binding pocket of trypsin) are distributed over a large area.

Nevertheless, the mapped configuration space for ligand orientations is rather restricted

since all generated solutions cluster about the native orientation.

Following the strategy outlined above, subsequently new factor Xa models were gen-

erated explicitly considering ligand information. RPR128515 (see Fig. 3.5a)[Maignan

et al., 2000] was included as additional restraint in the protein modelling process. Tak-

ing the crystal structure of bovine trypsin (1f0u)[Maignan et al., 2000] with the ligand

in its co-crystallised orientation as template, 100 new factor Xa models were generated

(Fig. 3.5c). Again, side-chain conformational space is considerably mapped, however,
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Figure 3.5: Superimposed crystal structures of trypsin (beige) and factor Xa

(grey), both complexed with the ligand RPR128515 (a). In (b), the ensem-

ble of relevant binding-site residues of factor Xa (modelled without considering ligand

information using trypsin as template), together with the backbone of the crystal struc-

ture of factor Xa is shown. The ligand is depicted in yellow (native orientation known

from the crystal structure) and red (solutions from docking into the ensemble of the

homology models). Part (c) shows 100 new homology models of factor Xa that were

generated based on trypsin regarding the ligand during the modelling process. The

finally optimised binding-site model (generated by combining side-chains from different

models) is shown in beige in (d), together with structures of factor Xa crystallised with

RPR128515 (1ezq, grey) or with other ligands (cyan).

solutions penetrating into the ligand hardly occur. A final factor Xa model was ob-

tained by combining rotamers retrieved from different homology models (Fig. 3.5d)

(beige). For comparison, the crystal structure of factor Xa with bound RPR128515

(1ezq, cyan) and nine other crystal structures of factor Xa crystallised with different

ligands (grey) are also shown [Maignan et al., 2000; Nar et al., 2001; Guertin et al.,

2002; Kamata et al., 1998; Adler et al., 2000; Brandstetter et al., 1996]. Although the
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rmsd between final model and crystal structure (1ezq) amounts to 1.66 Å, the features

primarily responsible for binding are well reproduced, apart from Glu147, Gln192 and

Glu97 which do not perfectly align with the crystal structure. In case of Glu147, this

is due to the fact that the backbones of factor Xa and trypsin do not align in this

area. However, as there is no specific interaction between the ligand and Glu147, this

deviation is of no relevance. The ester group of the ligand forms an H-bond to Gln192-

NH. Since the backbone traces match well in the template and the model, deviations in

side-chain orientation of Gln192 are not important for the ligand pose. The same holds

for Glu97, which establishes a strong H-bond (2.5 Å) through its backbone carbonyl

oxygen and an amino group of the ligand. The other residues, in particular Tyr99 and

Phe174 which contribute to binding (among others) and determine the specificity of the

S4 pocket in factor Xa [Adler et al., 2000], are almost perfectly modelled. Regarding the

fact that some of the discussed binding-site residues in factor Xa exhibit considerable

side-chain flexibility upon binding of different ligands as indicated by multiple structure

determinations (see Fig. 3.5d), the generated model appears rather convincing.

To assess whether the generated binding-site model could be used successfully for vir-

tual screening, we tried to reproduce the binding mode of ten ligands which have been

co-crystallised with factor Xa [Maignan et al., 2000; Nar et al., 2001; Guertin et al.,

2002; Kamata et al., 1998; Adler et al., 2000; Brandstetter et al., 1996]. For reasons of

comparison, we also docked these ligands into the binding pocket of a crystallographi-

cally determined factor Xa structure (1ezq).

The results with respect to rmsd and AutoDock energy score are listed in Table 3.4. The

overall success rate is slightly higher while docking into the factor Xa crystal structure.

Considering the solutions with the lowest rmsd value with respect to the experimental

structure, in 6 (out of 10) cases a better solution is obtained while docking into the

crystal structure instead of our model. However, the differences expressed in terms of

rmsd are not large, in particular, taking the grid approximation within AutoDock and

positional uncertainties in the experimentally determined structures into consideration.

Also, the differences in energy scores are negligible. Only in 2 cases, they amount

to more than 0.5 kcal/mol. Remarkably, docking RPR128515 either back into our

model (rmsd: 0.33 Å, score: -17.24 kcal/mol) or into the crystal structure (rmsd:

0.78 Å, score: -16.17 kcal/mol) reveals a better result for the model. This shows, not

unexpectedly, that the model is slightly tailored towards the ligand used to restrain

the modelling. Nevertheless, since convincing results are obtained for all considered
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Table 3.4: Statistics on the docking experiment on factor Xa

Crystal structure a) Model b)

ligand pdb code c) rmsd (Å) energy (kcal/mol) rmsd (Å) energy (kcal/mol)

1EZQ 0.78 -16.17 0.33 -17.24

1F0R 1.81 -15.08 2.04 -15.35

1F0S 1.15 -13.50 1.75 -13.51

1FAX 1.98 -15.67 1.89 -15.20

1FJS 1.57 -15.48 2.21 -16.35

1G2L 1.96 -15.70 1.95 -15.76

1G2M 1.98 -15.03 1.83 -15.40

1KSN 1.03 -15.99 1.28 -16.32

1XKA 1.88 -14.71 2.38 -15.12

1XKB 1.90 -14.27 2.53 -14.30

All values refer to the least deviating solution with respect to the crystal structure.

a) Results for docking the ligands into the crystal structure of factor Xa (1ezq).

b) Results for docking the ligands into the homology model of factor Xa.

c) Data set of 10 factor Xa ligands.

ligands, the generated model appears to be well suited for structure-based drug design

purposes.

Modelling aldose reductase based on aldehyde reductase

The previous case study demonstrated that our approach generates sufficiently accu-

rate geometries of protein residues to establish specific interactions with ligands. In

the following example, we will investigate how well binding modes can be reproduced

for a protein known from crystal structure analysis to exhibit pronounced induced-fit

adaptations upon ligand binding.

Aldose reductase (AR), an NADPH-dependent enzyme, catalyses the reduction of glu-

cose along the sorbitol pathway, and, therefore, represents a promising drug target in

diabetes therapy of secondary complication.

AR shares 49.5 % sequence identity with aldehyde reductase. In particular, the co-
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Figure 3.6: Superimposed crystal structures of aldose reductase (AR, cyan) and

aldehyde reductase (marine) with the NADP+ cofactor (shown in beige)

in its orientation from aldehyde reductase. The loop regions composing the

specificity pockets are coloured yellow (AR) and red (aldehyde reductase), respectively.



3.2 Results and Discussion 51

factor binding-sites and the regions where the hydrid transfer from NADPH to the

carbonyl carbon of the substrates occur (anion binding pocket), are structurally highly

conserved (see Fig. 3.6). However, aldehyde reductase exhibits an additional loop,

comprising 11 residues, that is responsible for differences in substrate specificity. Inter-

estingly, in AR, this segment, is composed of only 4 residues (Ala299-Ser302). Here, it

is part of the hydrophobic specificity pocket and shows the most striking adaptations

upon ligand binding. An MD simulation performed on the ultra-high resolution crys-

tal structure of human aldose reductase complexed with IDD59497 revealed the most

pronounced flexibility in this region with the largest side-chain mobility exhibited by

Leu300.[Sotriffer et al., 2003] A very distinct binding-site conformation (compared to

the IDD594 complex) is observed for tolrestat binding (1ah3) to the porcine enzyme.

Superimposition with the IDD594 complex (Fig. 3.7) reveals identical orientations of

the ligand’s carboxylates in the anion binding pocket, whereas tolrestat would clash

into Leu300 in the IDD594 structure.

To examine whether these specific binding-site geometries could be modelled by the

MOBILE approach, two different sets of AR models were generated including either

tolrestat (1ah0) or IDD594 as ligand-derived restraints. According to our strategy,

we initially generated 100 preliminary AR models based on the crystal structure of

aldehyde reductase (1hqt) neglecting ligand information. The coordinates of the co-

factor (being identical in AR and aldehyde reductase) were transferred from aldehyde

reductase to the AR models. Next, we placed tolrestat and IDD594 into the ensemble

of preliminary homology models using AutoDock. In case of tolrestat, a good docking

solution (2.05 Å rmsd) was found on rank 2. For the IDD594 complex, a solution

with 2.53 Å rmsd was obtained on rank 3. To further refine the modelled complexes,

we performed an additional iteration of our approach. Therefore, the obtained ligand

orientations of tolrestat and IDD594 were used to restrain the subsequent homology

modelling. Considering each of the docked inhibitors separately, two sets of 100 ho-

mology models based on aldehyde reductase (1hqt) as template were generated. Next,

we docked the two ligands into the ensembles of the produced protein models. For

tolrestat, a solution with 0.84 Å rmsd with respect to the orientation observed in the

crystal structure was obtained (found on rank 3), the best solution for IDD594 had 1.22

Å rmsd (also on rank 3). Compared to the respective rms deviations for the docking

into the preliminary homology models (as shown above: 2.05 Å (tolrestat) and 2.53

Å (IDD594)), these improvements for the docking into the refined models are strongly

significant.
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Figure 3.7: Conformational changes in the AR binding pocket in consequence of

inhibitor binding. The nicotinamide ring of the cofactor is shown in red. In blue,

the orientations of tolrestat and the side chains of Leu300 are displayed (as observed in

the corresponding crystal structure 1ah3), the latter residue is mainly affected by the

conformational rearrangement of the binding pocket upon ligand binding. The ligand

IDD594, together with the obtained geometry of the corresponding binding-site residue,

is depicted in orange.
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Besides producing a near-native ligand geometry, the prime interest is focused on pre-

diction of a correct loop geometry since the remaining part of the binding pockets in

AR and aldehyde reductase are rather similar. Accordingly, we scored only the inter-

actions formed between both docked ligands and the residues in the sequence stretch

Ala299-Ser302 of the generated models using DrugScore. For both cases, loop geome-

tries closely approximating the crystal structures (a comparison is shown in Fig. 3.8a

and 3.8b) were found among the top-scored solutions. In case of tolrestat, the most

convincing loop orientation was found on rank 2 (rmsd considering the side-chain atoms

of Leu300: 1.22 Å), for IDD594 the loop conformer on rank 2 deviates by 1.49 Å.

Figure 3.8: Superimposition of the crystal structures (blue) and the modelled

complexes (cyan) of AR with (a) tolrestat and (b) IDD594. The side-chain

orientations of Leu300 are indicated. The nicotinamide ring of the cofactor is shown in

red.

AR provides an example for ligand-induced protein-adaptations affecting even the back-

bone conformation. This case study demonstrates that realistic protein-ligand geome-

tries can be generated by applying the MOBILE approach to this rather complex sys-

tem, where ligands reinforce different loop conformations upon binding. Furthermore,

we have shown that the mutual orientations between the protein and a particular ligand

can be adjusted in a stepwise fashion. Even though the initial starting protein-ligand

geometries deviated considerably from the orientations found in the referring crystal

structures, near-native geometries could be generated for both, the tolrestat- and the

IDD594-complex after performing a second cycle of the MOBILE approach.
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3.3 Summary and Outlook

In this contribution, a novel strategy (MOBILE) is presented to consider informa-

tion about the binding mode of bioactive ligands during the homology modelling pro-

cess. It starts with a combined set of homology models, and ligands are placed into

a crude binding-site representation via docking onto averaged property fields derived

from knowledge-based potentials. Once the ligands are placed, a new set of homol-

ogy models is generated. However, in this step, ligand information is considered as

additional restraint in terms of knowledge-based pair potentials. Consulting a large

ensemble of produced models exhibiting different side-chain rotamers for the binding-

site residues, a composite picture is assembled considering the individually best scored

rotamers with respect to the ligand. After a local force-field optimisation, the obtained

binding-site models are used for flexible docking. As a result, protein binding-site mod-

els of higher accuracy and relevance are generated. The application of DrugScore pair

potentials proved efficient to restrain the homology modelling process and to score and

optimise the modelled protein-ligand complexes. This was demonstrated using a test

data set of 46 complexes and further validated by applying the new strategy to relevant

modelling scenarios.

A commonly applied protocol for modelling binding-sites of unknown proteins usually

starts with generating one preliminary homology model of the uncomplexed protein,

occasionally optimised by molecular dynamics. After placing a ligand into the mod-

elled active site, usually the entire complex is subjected to a further refinement. As

pointed out by Schonbrun et al.,[Schonbrun et al., 2002] it is debatable whether a refine-

ment by molecular dynamics actually improves the predicted structure. Indeed, none

of the top comparative modelling groups involved in CASP4[Moult et al., 2001] used

such protocols, probably because previous experience did not suggest any advantage

in predictive power. Most likely this is due to the limited sampling of configuration

space using standard molecular dynamics although this limitation could be overcome

by generalised-ensemble simulations. Accordingly, it is rather unlikely that the global

minimum geometry of a protein-ligand complex can be obtained if the starting ge-

ometry is distant from the near-native one and separated by a high energy barrier.

Supposedly, this limitation does not occur in our approach because the configuration

space of the modelled binding pocket is more exhaustively sampled simultaneously con-

sidering the ligand in a near-native orientation. The global minimum is approximated

as composite picture by identifying optimally scored rotamers from a large set of gen-
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erated models. The individual rotamers are scored with respect to a given ligand pose

using DrugScore. This function has been demonstrated to identify efficiently native

and near-native protein-ligand configurations.[Gohlke et al., 2000a]

Similar to protein-ligand docking, the strategy to detect near-native complex geome-

tries involves two equally important steps: (1) computing relevant geometries and (2)

identifying the pose being most close to the experimentally given situation (scoring).

The program MODELLER used in our approach produces relevant geometries of pro-

tein binding-sites even in the absence of a placed ligand, particularly, if the search space

for side-chain rotamers is small and, thus, can be sampled efficiently. However, our

approach also shows that the efficiency and accuracy of the modelling process is clearly

enhanced by considering ligand information. The second goal - identifying complexes

with near-native geometries - inevitably requires the presence of a ligand in a realistic

orientation.

It has been shown that relevant binding modes can be produced by docking ligands into

ensembles of protein structures.[Claussen et al., 2001] Smoothing the potential energy

surface results in an even faster convergence of the docking problem. Nevertheless, due

to the approximate nature of the binding-site representations derived from an ensemble

of modelled protein geometries, the use of conformationally restricted ligands is advis-

able. If a 3D superposition of ligands, e.g. in the context of a previously performed

3D-QSAR study, is available, these aligned ligands could be docked rigidly into the

homology models. This will further reduce the search space of the docking problem.

The mutual similarity of different ligands in their docked orientations can be used as

an additional criterion to assess the quality of the docking solutions.[Schafferhans &

Klebe, 2001]

In the presented approach, ligand information is only used in structural terms. Addi-

tionally, affinity data of the ligands might be considered to assess the quality of the

generated homology models. Such concepts will result in a ”QSAR-refined homology

modelling”. The first option would be to use a given set of ligands, docked into several

homology models, and the affinity of all resulting complexes is predicted. The model

that yields the best correlation between calculated and experimental affinities is ren-

dered prominent. A possible limitation of this strategy might be that the presently

available scoring functions cannot predict affinities accurately enough. Interestingly,

3D-QSAR models based on superimposed ligands reveal surprisingly high predictive

power in affinity estimation, provided a correct superimposition is given. In conse-
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quence, a second alternative to assess the quality of the produced models would be to

generate multiple QSAR models based on distinct ligand alignments obtained from the

docking into the various homology models. In analogy to the procedure followed by

several authors [Jalaie & Erickson, 2000; Schafferhans & Klebe, 2001; Kim, 1998], the

statistical significance of the generated QSAR models is used to assess the relevance

of the different protein models. A further possibility to reliably predict the affini-

ties between homology models and ligands would be to establish an AFMoC model.

[Gohlke & Klebe, 2002b] AFMoC tailors protein-specifically adopted DrugScore pair-

potentials to one particular protein by considering additional ligand-based information

in a CoMFA-type approach. The statistical significance of an AFMoC model thus ex-

plicitly reflects the quality of the underlying protein model. A further advantage is that

AFMoC allows the user to gradually move from general knowledge-based potentials to

protein-specifically adopted ones, depending on the confidence in the generated protein

model and the amount of ligand data available for training.

To assess the predictive power of protein homology modelling techniques, usually the

rmsd between the model-built and the corresponding crystal structure is determined.

In the present contribution, we follow the same procedure. However, one has to regard

intrinsic accuracy limits. X-ray structures obtained for the same protein in different

laboratories or determined in two different crystal forms can show deviations in main-

chain atoms of about 0.5 Å rmsd. The solvent-exposed side-chains can differ by as much

as 1.5 Å, while for more buried side-chains, the difference can amount to 1.0 Å [Levitt

et al., 1997]. Exploring the theoretical prediction limit of commonly applied force-

fields, Petrella et al. suggested a limit for side-chain prediction of 0.8 Å [Petrella et al.,

1998]. Xiang et al. assume accuracy limits of 0.7 Å for the side-chains of core residues

[Xiang & Honig, 2001]. In light of these estimates, the accuracies achieved by our

approach on the test set for binding-site residues (1.0 Å) are quite convincing. This

becomes even more pronounced when considering that in the two above-mentioned

studies, all residues were kept fixed except the one being predicted, whereas in our

approach the orientations of all protein side-chains in the active site are predicted

simultaneously. Finally, as noted by Tramontano et al. [Tramontano et al., 2001],

the rmsd criterion is widely accepted, but not necessarily always a perfect figure-of-

merit. Criteria that rank proper side-chain orientations with respect to neighbouring

side-chains would be more conclusive. In particular, this is important while evaluating

the side-chain orientations of a protein with respect to a preoriented ligand. In our

approach, DrugScore convincingly supports in particular this step.
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For proteins exhibiting pronounced induced-fit adaptations, homology modelling based

on a single crystal structure of a related protein is difficult and results could be mis-

leading. Even so crystal structures are our most reliable source to learn about protein

geometry, they only provide a frozen snap-shot of a dynamically fluctuating system.

Local effects such as the applied pH conditions or impacts imposed by crystal packing

do influence binding modes [Stubbs et al., 2002]. Through ligand binding, different

local minima experienced by the uncomplexed protein under dynamic conditions can

be stabilised and observed as favourable binding-site geometries in a crystal [Sotriffer

et al., 2003].

Homology modelling using MODELLER is based on a reference template structure and

the approach tries to carry over as much information as possible from the template into

the model, in particular in regions of high sequence identity and structural conservation.

To perform an exhaustive side-chain screening by our approach, such regions must

be excluded from the direct homology matching step. As an alternative, structural

variability can also be introduced in the modelling process by considering multiple

template structures exhibiting deviating conformations in the flexible regions.
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3.4 Materials and Methods

3.4.1 Test data set

A test data set of 46 protein ligand complexes was compiled to validate the performance

of our approach (see Table 3.5). This set has been extracted from the 91 protein-

ligand complexes used for DrugScore validation [Gohlke et al., 2000a], considering the

following criteria: (1) As MODELLER is primarily intended for homology modelling,

we only selected structures which do not contain cofactors next to the active site. (2)

The only hetero atoms allowed (besides those in the ligands) were metal ions. (3)

We also eliminated all water molecules as their positions will generally not (yet) be

predicted realistically in modelling scenarios. We used this test data set for scaling

the DrugScore potentials to the MODELLER force-field, comparing homology models

generated with and without ligand information, assessing the side-chain prediction

accuracy of MODELLER, and evaluating DrugScore’s power to identify near-native

complex geometries.

Table 3.5: PDB codes of proteins used for the parameterisation of the pair potentials

121P 1ABE 1ABF 1ACJ 1AHA 1APT 1ATL

1AZM 1BBP 1BLH 1BUG 1BYB 1CBX 1CIL

1CPS 1CTR 1DID 1DIE 1ELA 1EPB 1F3E

1HDC 1HEF 1HFC 1HSL 1HYT 1ICN 1IMB

1LAH 1LMO 1LNA 1MLD 1MRG 1MRK 1POC

1PPL 1PSO 1RBP 1RDS 1RNT 1ROB 1SNC

1SRJ 1STP 1TLP 1TMN

3.4.2 Generation of binding-site models of the test data set

For validation studies performed with the test data set (see Table 3.5), only the ge-

ometries of residues next to the active site (within a distance of 4.5 Å to the ligand)

were modelled. Here, the crystal structure of the respective PDB entry served itself as

template for the modelling process (Fig. 3.9). The coordinates of all but the binding-

site residues of the protein were kept unchanged with respect to the templates. New
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geometries for binding-site residues (including side-chain and main-chain atoms) were

forced to be generated by MODELLER by keeping the binding-site residues unmatched

in the sequence alignment (see Fig. 3.9, panel C). For the de novo prediction of side-

chain geometries only, the referring residues in the template structures were mutated

to Gly (see Fig. 3.9, panel B).

Figure 3.9: Generation of binding-site models for the proteins of the test set

(Table 3.5). An aligned sequence stretch of a protein is shown in panel A. Five

residues, belonging to the active site, are shaded grey. The procedure for generating

binding-site models works as follows: The available structure of the Template protein

serves as basis to model the structure of the Model sequence. Generating a homology

model with the identically aligned sequences as represented in panel A would result

in a Model structure that is identical to the Template. To generate a Model with new

side-chain orientations of the binding-site residues (while keeping the remaining part

of the protein as in the Template structure), sequence alignment (panel B) is used.

Here, the binding-site residues in the Template structure are mutated to Gly. Thus,

information about the respective side-chain coordinates cannot be inferred by homology

and must be predicted de novo by MODELLER. For modelling the main- and side-

chain orientations of the Model, the binding-site residues are unaligned in the sequence

alignment, thus, leading to a complete neglect of information in MODELLER about

these residues from the Template structure.
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3.4.3 Scaling the DrugScore potentials with respect to the

MODELLER force-field

In order to incorporate the DrugScore pair potentials as additional restraints into the

MODELLER force-field, they were empirically scaled with respect to the remaining

force-field terms. Apart from the terms adapted from CHARMM to constrain stereo-

chemical properties, the MODELLER force-field consists of probability density func-

tions of purely empirical origin. Therefore, it appears justified to weight the DrugScore

potentials empirically. This adjustment was accomplished using our test data set of 46

complexes (see Table 3.5) by systematically varying the contribution of the DrugScore

pair potentials to the MODELLER molecular probability density function. For this

parameterisation study, the coordinates of the ligand atoms were adapted from the

referring PDB entries. For each parameter setting (i.e. scaling factor), 10 homol-

ogy models were generated. In these ”models”, all coordinates apart from residues

within 4.5 Å distance to the ligand were kept identical to the crystal coordinates. The

binding-site residues, however, were generated de novo by MODELLER, i.e. without

considering information taken from the template structure. The models generated us-

ing the actual parameter setting were assessed with respect to their spatial deviation

from the corresponding crystal structures by computing the rmsd between the residues

of the modelled and crystallographically determined binding-site. As a further crite-

rion to consider the similarity between model and crystal structure, grids based on

DrugScore potentials were calculated in the modelled and crystallographic binding-

sites and their mutual similarity has been assessed by evaluating the Hodgkin index

[Hodgkin & Richards, 1987]. A scaling factor of 7.5 • 10−5 was finally found as best

solution to adjust the DrugScore potentials to the MODELLER force-field. A similar

scaling factor was obtained by Sotriffer et al. scaling DrugScore to the intramolecular

force-field implemented into AutoDock [Sotriffer et al., 2002b].
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4 Generation and validation of a

ligand-supported homology model of the

neurokinin-1 receptor by virtual

screening for a submicromolar inhibitor

4.1 Biological target system

4.1.1 G-protein-coupled receptors

Introduction

G-protein-coupled receptors (GPCRs) form one of the largest superfamilies of cell-

surface receptors mediating responses to diverse signals, for example, visual, olfacto-

rial, hormonal, and neurotransmitter signals [Marinissen & Gutkind, 2001]. A large

percentage of prescription drugs (30 % of the top 50 sellers in 2001, 50 % of all currently

launched drugs) target one or more GPCRs, with most major therapeutic areas be-

ing served to some extent by several GPCR-based drugs [Scussa, 2002]. Currently,

there are more than 3000 sequences of this family known for different organisms,

and GPCR genes correspond to 3 % of the genes in humans. The superfamily of

GPCRs is subdivided into three main receptor subfamilies on the basis of the phar-

macological nature of their ligands and sequence similarity. The division includes the

class I (rhodopsin like) receptors (their ligands are biogenic amines, neuropeptides,

chemokines and prostanoids), the class II receptors (secretin like) and the class III re-

ceptors (metabotropic glutamate receptor like), which represent about 89 %, 7 % and

4 %, respectively, of the known GPCRs [Menzaghi et al., 2002].

GPCRs play a key role in a whole series of processes in our body, establishing a

functional and unidirectional link between the exterior of a cell and its cytoplasm

[Baldwin, 1994; Nederkoorn et al., 1995; Oliveira et al., 1993; van Rhee & Jacobson,

1996; Selbie & Hill, 1998]. When a ligand interacts with the extracellular half of

the GPCR, a signal is generated which is transmitted through the membrane to the
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Figure 4.1: Family classification of G-protein coupled receptors. From [Chalmers &

Behan, 2002].
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cytosolic side where a G-protein is activated. This G-protein in turn activates one or

more of a variety of secondary messengers. The mediation of the ligand action occurs

through a conformational change of the GPCR [Oliveira et al., 1999; Birnbaumer &

Birnbaumer, 1995]. A simple model suggests that GPCRs exist in an equilibrium of

active and inactive states, R* and R, respectively [Costa & Hertz, 1989; Samama et al.,

1993; Lefkowitz et al., 1993]. Only R* can bind to the G-protein and produce a cellular

response. Under physiological conditions, the ligand-receptor interaction results in an

increase in the ligand bound receptor LR*, resulting in the production of an LR*-G-

protein complex and consequent cellular response.

GPCR Structural Information

It has long been known that GPCRs share a central core domain constituted of seven

transmembrane helices (TM-I through -VII) connected by three intracellular (i1, i2

and i3) and three extracellular (e1, e2 and e3) loops (see Fig. 4.2) [Baldwin, 1993].

Albeit their common structural features, GPCRs do not share any overall sequence

homology [Kolakowski Jr, 1994; Probst et al., 1992]. Significant sequence homology is

found, however, within several subfamilies [Gether, 2000]. Despite the divergent overall

sequence homology of GPCRs, the antagonist binding-site is often located in the same

region where bovine rhodopsin binds the retinal ligand [Böhm et al., 1996]. On the

other hand, it was shown by Jacoby et al. that for the monoamine GPCR 5HT1A three

distinct biding sites exist [Jacoby et al., 1999; Jacoby, 2001]. This was also suggested

for other monoamine GPCRs.

A cartoon diagram of the recently resolved high-resolution structure of rhodopsin [Pal-

czewski et al., 2000; Teller et al., 2001] is depicted in Fig. 4.3. The retinylidene

chromophore (coloured cyan), which is covalently bound to the receptor, is located

more toward the extracellular boundary of the plane of the putative membrane bilayer.

Absorption of a photon by 11-cis-retinal causes its isomerisation to all-trans-retinal,

initiating a conformational change in the receptor that leads to its activation. One of

the most striking features of the structure of rhodopsin is the presence and position-

ing of the β4-hairpin (coloured red in Fig. 4.3) within the second extracellular loop

which holds the chromophore very firmly in place by many contacts. The β4-hairpin

is stabilised by a disulfide bond between Cys110 and Cys187 which is highly conserved

in the family of the GPCRs [Sakmar, 2002]. The role of the E2 loop in rhodopsin

and the other GPCRs is not known and still a question of debate. Experiments in
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Figure 4.2: (A) GPCRs comprise a central common core composed of seven trans-

membrane helices (TM-I to -VII) connected by three intracellular (i1, i2,

i3) and three extracellular (e1, e2, e3) loops. The diversity of messages which

activate these receptors is an illustration for their evolutionary success. (B) Illustra-

tion of the central core of rhodopsin, viewed from the cytoplasm. The core

is represented under its ‘active conformation’. The TM-VI and -VII lean out of the

structure, the TM-VI turn by 30 % on its axis (clockwise as viewed from the cyto-

plasm) [Bourne, 1997]. This opens a cleft in the central core in which G proteins can

find their way. i2 and i3 loops are the two main loops engaged in G-protein recognition

and activation. From [Bockaert & Pin, 1999]
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Figure 4.3: Cartoon representation of the high-resolution X-ray structure of bovine

rhodopsin. The E2 loop which contains the β4-hairpin is coloured red. It is in close

contact to the retinal ligand (coloured cyan).
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the laboratory of Sakmar et al. indicate that its main role might be to regulate the

stability of the active state of the receptor in which the all-trans chromophore acts,

suggesting that the E2 loop in other GPCRs also might provide contacts with agonist

ligands [Sakmar, 2002]. The presence of the β4-hairpin raises the question how the

ligand gets from the external medium into the binding pocket. Oliveira et al. suggest

the following two options [Oliveira et al., 2002]:

1. Through the space between the helices VII, I and II, and the beta turn 182-185

in the IV-V hairpin, through a space flanked by the 178-182 strand, the part of

the IV-V hairpin directly after Cys187, and the helices VI-VII

2. Motion of the IV-V hairpin leaves the entry to the binding cavity open long

enough for a ligand to enter

The authors furthermore note that the β4-hairpin sequence is highly variable among

the family GPCRs. It is therefore unlikely that any function can be found in this area

that is common to many receptors. Accordingly, it is questionable if the β4-hairpin in

the orientation observed in bovine rhodopsin provides a reasonable structural template

for homology models of other GPCRs.

Considering the fact that the global sequence identity between bovine rhodopsin and

other GPCRs is generally below 25 %, might lead to the conclusion that rhodopsin

might not provide a proper template for homology modelling. Normally, when the

sequence identity between the model and the template is below 30 %, the sequence

alignment is the main bottleneck in the modelling procedure. GPCRs form an exception

to this rule [Oliveira et al., 2002]. Each helix contains one or more highly conserved

residues that allow for an unambiguous alignment of the helices of the model and the

bovine rhodopsin template. Therefore, it seems reasonable to assume that the geometry

of the transmembrane region is very similar among GPCRs.

Until the high-resolution X-ray structure of bovine rhodopsin became available [Pal-

czewski et al., 2000; Teller et al., 2001; Okada et al., 2002], inferences about the struc-

ture of GPCRs have been based on cryo-microscopy studies of rhodopsin [Unger &

Schertler, 1995; Schertler & Hargrave, 1995; Davies et al., 1996] and the high-resolution

structures of bacteriorhodopsin [Henderson et al., 1990; Pebay-Peyroula et al., 1997;

Luecke et al., 1999]. Recent pairwise comparisons of the high-resolution structures

of rhodopsin and bacteriorhodopsin show that helices IV and V do not superimpose
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[Teller et al., 2001]. The twists and kinks in the helices create substantial differences

between the two proteins. Furthermore, bacteriorhodopsin, even though it belongs to

the family of 7-TM receptors, does not couple through G-proteins and thus is not a

member of the GPCR family. Before the high-resolution structure of bovine rhodopsin

became available, a common approach for generating hypotheses about binding mech-

anisms was the generation of preliminary GPCR models based on bacteriorhodopsin,

subsequently refined by experimental findings from structure-activity, mutagenesis and

affinity labelling studies [Gershengorn & Osman, 2001]. Although models based on bac-

teriorhodopsin could thus be useful for studying the functional architecture of GPCRs,

they are probably not reliable enough for precise structure-based ligand design.

GPCRs and drug design

Nowadays, the search and optimisation of lead structures for GPCRs predominantly

relies on ligand-based drug design techniques. They usually start by establishing a

pharmacophore model. If only limited information about ligands is available, such a

model can be deduced directly from the natural ligand and its analogues. It can then

be exploited for virtual screening. This technique has been applied successfully for

the search of novel lead structures by researchers at Merck for the sst receptor [Yang

et al., 1998] and Aventis for the urotensin II receptor [Flohr et al., 2002]. If information

about other ligands is available, a common strategy is to spatially superimpose several

structurally diverse, preferably rigid ligands to identify common features responsible

and essential for binding the target receptor. These features are subsequently translated

into a pharmacophore model used for virtual screening (for example, see [Marriott et al.,

1999]). Another new successful strategy for finding novel leads is based on the fact that

many GPCR ligands share common structural motifs, although binding to different

receptors. Based on this observation, so-called targeted libraries for GPCRs have been

compiled [Balakin et al., 2002, 2003]. These libraries are assembled and continuously

enriched by compounds with structural features required to bind to members of the

target family. Indeed, such preselected libraries provide significantly higher hit rates

compared to the screening of randomly selected libraries.

Another conceivable option to discover novel leads for GPCRs would be a docking

screen using a homology model of the target receptor. To our knowledge, such pro-

cedure has not yet been described in literature. This is possibly due to the fact that

the sequence identity among the active sites of bovine rhodopsin and other GPCRs are
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often too low to allow for reliable prediction of side-chain geometries at the binding-

sites. Aspects concerning homology modelling of GPCRs for drug design have been

discussed in recent review articles ([Klabunde & Hessler, 2002; Flower, 1999; Balles-

teros et al., 2001; Gether, 2000]). Flower suggests that improvement of GPCR models

for the purpose of structure-based drug design can be achieved by refining preliminary

models using information from mutational data. Prediction accuracy can supposedly

be optimised by combining QSAR with receptor modelling [Flower, 1999].

Indeed, the knowledge about ligands is often combined with is data of GPCRs, which

is increasingly communicated via the internet, e.g. the GPCRDB [Horn et al., 1998],

the GRAP Mutant Database [Beukers et al., 1999; Kristiansen et al., 1996; Edvardsen

& Kristiansen, 1997], and the Olfactory Database [Crasto et al., 2002]. Ligand binding

information on GPCRs and their effectors is available at the PDSP (Psychoactive Drug

Screening Program) database [Roth et al., 2000]. Combining the receptor information

with structure-activity data of ligands, the relevant amino acids and the composite

interacting moieties of the ligands can be identified and, thus, provide a starting point

for further optimisation of binding affinity.

Examples of GPCR models based on the crystal structure of bovine rhodopsin, refined

or validated by ligand and mutational data, can be found in literature (for example

[Jöhren & Höltje, 2002; Chambers & Nichols, 2002; Shim et al., 2003; Lopez-Rodriguez

et al., 2001]). As mentioned above, no such homology model was ever used to screen

for novel compounds, although Bissantz et al. recently demonstrated that homology

models of GPCRs, based on bovine rhodopsin, are reliable enough to be used for

virtual screening of chemical databases [Bissantz et al., 2003]. This was shown by

successful retrieval of known antagonists of the dopamine D3 receptor, the muscarinic

M1 receptor, and the vasopressin V1a receptor via docking from a database, which

additionally included randomly collected drug-like compounds.

An important issue in homology modelling of GPCRs for the purpose of structure-based

drug design is the fact that the bovine rhodopsin structure resolved by Palczewski et al.

is that of the inactive state of rhodopsin. This justifies the usage of bovine rhodopsin

as structural template as long as ligands are searched which preserve the addressed

GPCR in its inactive conformation (i.e., antagonists).

The task of finding agonists for GPCRs represents a more demanding challenge because

in bovine rhodopsin, the activation, i. e. the coupling with the G-protein involves an
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alteration in the relative orientation of TM III and TM VI, with an accompanying

rotation of TM VI (see Fig. 4.2B). These movements probably result in an alteration

in the position of the third intracellular loop (i3), which uncovers residues related

to G-protein coupling [Chalmers & Behan, 2002]. Once the molecular details about

the activation mechanism are resolved, it could be possible to transfer these steps

to other GPCRs, assuming that the activation process is similar among all GPCRs

[Oliveira et al., 2002]. However, considering the divergence of the extracellular loops

which interact with the natural ligands and taking into account the diversity of these

ligands in terms of molecular size and chemical diversity, it is in question whether all

GPCRs follow exactly the same activation mechanism, or whether the coupling with

the G-protein can be achieved by slightly different structural rearrangements. In any

case, as long as the molecular mechanism of activation at an atomic resolution is still

unresolved, it is probably unreasonable to search for agonists based on such a homology

model. Consequently, ligand-based drug design is probably a more promising strategy

to discover new agonists for GPCRs. This assumption is supported by the docking

results revealed by Bissantz et al., who successfully identified GPCR antagonists from

large compound databases via docking, but the models were not accurate enough for

retrieving known agonists [Bissantz et al., 2003].

Homology Modelling of GPCRs

Due to the enormous importance of GPCRs as drug targets and to support structure-

based drug design, several approaches have been developed especially with respect to

the modelling of GPCRs.

• Shacham et al. presented a technology, named PREDICT, which models the 3D

structure of any GPCR based on its amino acid sequence, without the use of

a structural template [Shacham et al., 2001]. The modelling procedure reveals

a low-energy conformation by optimising a model considering a large number

of properties, including helical-packing geometry, multihelical tilts, helix orien-

tations, sidechain rotamers, helix membrane-surface crossing, and helical kinks.

The huge size of the protein conformational space is covered through a hier-

archical design, starting with a coarse representation and gradually increasing

its complexity until reaching a full atomistic model. PREDICT was capable of

reproducing the experimental structure of bovine rhodopsin.
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Furthermore, PREDICT has been incorporated into the Predix Drug Discovery

Platform [Predix]. Within this platform, PREDICT-generated models of GPCRs

have been used for computational screening of virtual molecular libraries. Using

these models, the authors report hit rates of 85 to 100 % when screening for known

binders and hit rates of 10 to 24 % for unknown binders (with an experimental

binding affinity of < 5 µM) [Becker et al., 2003]. To the best of our knowledge,

GPCR models generated by PREDICT are the only ones reported to yield novel

GPCR binders identified by docking.

• Another method for predicting the structure of GPCRs (MembStruk), and the

binding mode of ligands classified in terms of relative binding affinities (HierDock)

was developed by Vaidehi et al. [Vaidehi et al., 2002]. Similar to PREDICT,

MembStruk predicts 3D structures by using only the amino acid sequence of the

target GPCR by applying a hierarchical modelling strategy. Starting with the

prediction of the TM regions, the individual helices are constructed and oriented

according to the 7.5 Å electron density map of bovine rhodopsin. After a coarse

grain optimisation of the TM bundle, interhelical loops are added and the full

structure is generated.

The HierDock ligand screening protocol also follows a hierarchical strategy to

examine ligand binding conformations and calculating their binding energies.

MembStruk and HierDock were successfully used for predicting the retinal-bound

structure of bovine rhodopsin and applied to the β1-adrenergic receptor, endothe-

lial differential gene 6, mouse and rat l7 olfactory receptors, and the human sweet

receptor.

• An integrated GPCR modelling approach was introduced by Müller [Müller,

2000]. Based on a sequence alignment established by exhaustive sequence simi-

larity searches over all sequence databases, an in-plane projection structure for

the seven transmembrane helices is derived assisted by calculated vectorial prop-

erty moments. After mapping this 2D topology representation onto the Cα-trace

suggested by Baldwin [Baldwin et al., 1997], side-chains are added in favourable

conformation. Such models are refined by molecular dynamics simulation under

explicit consideration of the non-isotropic environment for energetic relaxation.

This procedure was applied to the human CCK-B receptor, followed by docking

studies of nonpeptide antagonists utilising the DragHome concept introduced in

section 2.2.1 [Escherich et al., 2001].
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• Another program for building the transmembrane domains of GPCRs is BUNDLE

[Filizola et al., 1998]. The following steps are involved in the construction of a

GPCR model: After identifying the helices, their centres are arranged according

to the low-electron density map of rhodopsin, followed by the computation of the

tilt of each helix. After defining a local coordinate axis for each of the helices,

they are oriented in an antiparallel fashion and rotated along their axes. In the

next step, each helix is rotated along an axis perpendicular to the helical one;

finally, each helix is translated to its centre deduced from the projection map.

The described procedure was used to model rhodopsin and other GPCRs. At the

time of publication, the low resolution crystal structure of bovine rhodopsin was

not available, thus a detailed validation of generated models was not possible.

4.1.2 The Neurokinin Receptors

The tachykinins are a family of neuropeptides comprising substance P, neurokinin A

and neurokinin B, which share the C-terminal sequence Phe-X-Gly-Leu-Met-NH2 in

common. The preferred receptors for these neuropeptides are named (respectively)

neurokinin-1 (NK1), neurokinin-2 (NK2), and neurokinin-3 (NK3) (see Table 4.1).

They belong to the family of the GPCRs and share a high sequence homology. For

example, the human (h)NK3 receptor sequence has 74 % and 68 % homology with the

hNK1 and hNK2 receptors, respectively, with maximal sequence conservation in the pu-

tative transmembrane regions and minimal identity at the amino- and carboxy-termini.

Whereas NK1 and NK2 are widely distributed in the central nervous system (CNS)

and peripheral tissue, NK3 seems to be stronger localised in the CNS. Tachykinins have

been described to be implicated in numerous physiological and pathological processes

such as neuronal modulation, plasma protein extravasation, mast cell degranulation,

stimulation of mucus secretion, or neurotropic and mitogenic effects. Modulation of

their functional properties is suggested for the treatment of at least 6 major disease

groups including CNS disorders, pain, airway disease, urinary incontinence, emesis and

intestinal disfunction [Patacchini & Maggi, 2001].

The percentage sequence identity between bovine rhodopsin and the NK1 receptor is

21 %, considering only the transmembrane regions, it rises to 27 %. In the case of

soluble proteins, pronounced structural similarity is generally given among proteins

with > 25% sequence identity, but below this level of sequence identity, structural
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divergence increases rapidly [Wilson et al., 2000; Yang & Honig, 2000a]. Nevertheless,

recent work has demonstrated that a number of different soluble proteins can achieve

the same fold with different sequence patterns [Yang & Honig, 2000b]. This holds also

for GPCRs [Oliveira et al., 2002]. In GPCRs, each helix contains one or more highly

conserved residues that allow for an unambiguous alignment of the helices of the model

and the bovine rhodopsin template. Therefore, it seems reasonable to assume that the

transmembrane region is very similar among all GPCRs.

4.1.3 NK1 antagonists

Meanwhile, a variety of NK1 antagonists have been developed based on several diverse

lead structures (for an overview, see [Giardina et al., 1997]). Although distinct in

their chemical scaffolds, they are similar in their interaction geometries. A generally

accepted pharmacophore model for non-peptidic NK1 antagonists is depicted in Fig.

4.4 [Boks et al., 1997]. It consists of at least two aromatic rings kept in fixed orientation

by various scaffolds, and contains at least one hydrogen-bond acceptor.

Table 4.2 gives some examples for antagonists binding with high affinity to the NK1

receptor. In Fig. 4.4, the key pharmacophoric elements are coloured according to the

given pharmacophore definition. Besides these pharmacophoric elements, a remarkable

structure-activity relationship for the ligands binding with high affinity is given with

respect to the substitution pattern at the phenyl rings. In compounds 4, 5, 6, 7, and 8

(Table 4.2), the phenyl ring is 3,5-bis(trifluoromethyl)-substituted. On the other hand,

compounds 2 and 3 are 2-methoxylated. The substitution pattern at the phenyl ring

seems to take a strong impact on binding affinity.

The influence of an appropriate phenyl substitution is demonstrated by examples given

Table 4.1: Tachykinins and their receptors

Receptor endogenous

ligand

sequence of the ligand

NK-1 substance P Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2

NK-2 Neurokinin-A His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2

NK-3 Neurokinin-B Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2
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in Table 4.3. If the phenyl ring of the tryptophane-benzyl-esters is 3,5-bis-methyl-

substituted, affinity increases at least by 6-fold, replacing the methyl groups by trifluor-

methyle even results in a 40-fold affinity increase. In another series, compound 14 has

a 40-fold increased affinity compared to the unsubstituted phenyl ether 13. Here, no

remarkable change in affinity was observed when substituting the methyl by trifluor-

methyl groups (compound 15). Furthermore, the compounds in Table 4.3 show that

affinity can be increased by substituting the exocyclic nitrogen atom. Introduction of

a N-acetyl group to compound 10 enhances its affinity by more than 20-fold (11), the

same increase is observed when attaching the carboxamidomethyl to compound 15 (cf

16).

The first active NK1 antagonist was CP-96345, which was found in 1991 in a high-

throughput screening at Pfizer [Snider et al., 1991]. It is probably the best studied

NK1 antagonist. The binding of several derivatives of CP-96345 was measured to

obtain insight into the features responsible for binding (for example, see Table 4.4, 90)

[Swain et al., 1995; Lowe et al., 1992; Seward et al., 1993; Fong et al., 1993, 1994b; Lowe

et al., 1994]. Mutational studies and affinity measurements of derivatives of CP-96345

revealed the key roles of Gln165 [Fong et al., 1994a], His265 [Fong et al., 1994b], and

His197 [Fong et al., 1993] in binding of the quinuclidine antagonists. Several groups

have constructed a putative interaction model based on the skeleton of CP-96345 and

the amino acids essential for binding have been highlighted [Elliott et al., 1998; Takeuchi

et al., 1998; Swain et al., 1995; Jacoby et al., 1997; Vedani et al., 2000; Boks et al.,

1997]. An interaction model, constructed in our group, is depicted in Fig. 4.5. It is

based on the mutational data available in literature and is in agreement with the other

Figure 4.4: Generalised pharmacophore for non-peptidic NK1 antagonists. Two aro-

matic rings are connected via various scaffolds (left). A more detailed pharmacophore

contains at least one hydrogen-bond acceptor within the scaffold (right).
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published models.

Figure 4.5: Schematic representation of the postulated NK1-receptor-ligand inter-

actions for CP-96345. The arrows indicate proposed key interactions between the

receptor and the ligand.

In this interaction model, Gln165 establishes a hydrogen bond with the exocyclic sec-

ondary amine. As high affinity is also obtained when this secondary amine is replaced

by an oxygen, Gln165-NH probably acts as a donor and the amine-nitrogen as ac-

ceptor. The benzhydryl group of CP-96345 performs an amino-aromatic interaction

with His197 which is kept in place by an aromatic-aromatic interaction with Tyr272

[Fong et al., 1993]. The interactions of the aromatic moiety C with Ile204 [Holst et al.,

1998; Greenfeder et al., 1998] and His265 [Fong et al., 1994b] are obviously not spe-

cific. Instead, these residues seem to be part of a hydrophobic pocket. The aromatic

moiety A occurs in several NK1 antagonists, but is obviously not necessarily required

for high affinity. Supposedly, it serves as conformational anchor, but does not experi-
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ence any specific interactions with the receptor. Furthermore, an ionic interaction (or

a charged-assisted hydrogen-bond) between the positively charged quinuclidine nitro-

gen and a corresponding counterpart in the receptor is possible [Boks et al., 1997]. A

putative candidate is Glu193, however, mutational data do not definitely support this

assumption [Elling et al., 1995; Greenfeder et al., 1998]. Another explanation could

be that this part of the ligand interacts with residues from the extracellular loop or it

is exposed to the solvent. The latter hypothesis is supported by the observation that

a range of diverse polar substituents at the nitrogen is well tolerated [Giardina et al.,

1997].

A detailed study of the bioactive conformation of CP-96345 (and other antagonists)

was performed by Boks et al. [Boks et al., 1997]. They analysed small molecule crystal

structures of NK1 antagonists with respect to the intermolecular interactions of their

pharmacophoric groups with neighbouring molecules in the crystal packing. The most

striking feature is the relative orientation of the two aromatic rings to each other (B

and C in Fig. 4.5). Three distinct conformations are observed in crystal structures

for CP-96345 and two closely related derivatives, which exhibit distinct orientations of

the aromatic ring C. In one case, a conformation with parallel orientation is observed,

in the other two cases orientations with perpendicularly oriented rings are found (see

Fig. 4.6).

In another study, a conformational search was undertaken by Swain et al. to identify

the most favourable conformation of CP-96345 [Swain et al., 1995], however, no clear

preference for any of the two possible orientations has been found. Modelling studies

performed by Sisto et al. on a series of peptides and nonpeptides indicate that the

aromatic moieties exhibit a parallel stacking with respect to each other [Sisto et al.,

1995]. This assumption was further evidenced by ultraviolet absorption and fluores-

cence measurements. These findings suggest that the conformation adopted in the

crystals of LEWCUL (CSD refcode, see Fig. 4.6) matches best the given requirements

at the binding site of the NK1 receptor.
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Figure 4.6: Superimposed small molecule crystal structure conformations of CP-

96345. The CP-96345 free base (coloured yellow, CSD Refcode YAFJOE, [Lowe et al.,

1992]), the CP-96345 dimesylate salt (orange, YAFJUK [Lowe et al., 1992]), and the

N-methyl analogue of CP-96345 (cyan, LEWCUL, [Natsugari et al., 1995]) are shown.
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Table 4.2: Examples of NK1 antagonists from diverse structural classes.

No. compound IC50 [nM] No. compound IC50 [nM]

1 12 5 0.53

2 0.6 6 0.21

3 0.06 7 0.05

4 1.3 8 1.0

The compounds are extracted from the following references: 1: [Ofner et al., 1996],
2: [Williams et al., 1994], 3: [Desai et al., 1992, 1993], 4: [Natsugari et al., 1995], 5:
[Ward et al., 1995], 6: [Ladduwahetty et al., 1996], 7: [Swain et al., 1993], 8:
[Stevenson et al., 1995].
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Table 4.3: Effect of introducing appropriate substituents to increase affinity to

the NK1 receptor.

No. compound IC50 [nM] No. compound IC50 [nM]

9 > 10000 13 400

10 1533 14 9.3

11 67 15 10.7

12 1,6 16 0.53

The compounds are extracted from the following references: 9, 10, 11, 12:
[MacLeod et al., 1993], 13, 14, 15, 16: [Williams et al., 1994].
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4.2 Modelling the neurokinin-1 receptor

In chapter 3, we have presented MOBILE, an approach for homology modelling of

protein binding-sites including information about bioactive ligands. In the following,

we describe in detail the application of this approach to the NK1 receptor, which

belongs to the family of the G-protein coupled receptors.

The quality of the NK1 model and, thus, a critical evaluation of the MOBILE approach,

is accomplished by probing the ability to find novel antagonists with this homology

model. This task is realised by performing a virtual screening based on the modelled

receptor structure and a subsequent biochemical testing of a limited number of selected

hits.

Considering the fact that G-protein coupled receptors represent one of the most relevant

classes of pharmaceutic drug targets, the present study provides a particular challenge

for homology modelling with respect to structure-based drug design. This holds in

particular for the NK1 receptor, as its overall sequence identity to bovine rhodopsin

is only 21 % and in the region of the NK1 antagonist binding pocket no homology is

given. A successful application of the MOBILE procedure to the NK1 receptor would

therefore open a new perspective for the discovery of novel antagonists for any member

of the GPCR family.

4.2.1 Generation of protein-ligand complexes using the

MOBILE approach

Sequence alignment

The sequence alignment (see Fig. 4.7), generated automatically with PSI-BLAST

[Altschul et al., 1997] and IMPALA,[Schaffer et al., 1999] was taken from a previously

produced homology model of the NK1 receptor deposited in ModBase [Pieper et al.,

2002] (database accession number P25103). The alignment was slightly modified in

the region of the β4-hairpin following the recommendations of Oliveira et al. [Oliveira

et al., 2002] (see section 4.1.1).

As apparent from the mutual alignment, the sequences are most divergent in the ex-
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tracellular regions. No gaps or insertions are predicted in the TM regions. However,

in the antagonist binding-site region (residues marked grey in Fig. 4.7), no matching

residues are conserved.

Figure 4.7: Sequence alignment of bovine rhodopsin and the NK1 receptor. All

residues comprising the putative binding pocket of CP-96345 are marked gray. The

amino acids known from mutational studies to be essential for CP-96345 binding are

labelled with an asterisk.

Generation of preliminary NK1 models

A set of 100 initial protein models of the NK1 receptor were generated using MOD-

ELLER [Marti-Renom et al., 2000; Sali & Blundell, 1993; Fiser et al., 2000]. According

to the algorithms implemented into MODELLER, structures of slightly deviating ge-

ometry are subjected to the optimisation step. In total, 100 different structures are

finally obtained, which reflect - to some extend - the conformational variability in of

those regions which differ in the sequence alignment. For those regions which align
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in the sequence space, but with different amino acids (i.e. no insertion or gap), the

backbone coordinates will remain close to those of the template coordinates, whereas

the conformational space of the side-chain atoms is exhaustively sampled. Thus, an

ensemble of 100 binding-site models of the NK1 receptor was produced (see Fig. 4.8).

Visual inspection of the generated models in particular of the residues known by mu-

tational studies to be involved in antagonist binding [Garret et al., 1991; Snider et al.,

1991; Cascieri et al., 1992; Fong et al., 1992; Gether et al., 1993a; Fong et al., 1993;

Zoffmann et al., 1993; Gether et al., 1994b,a; Huang et al., 1994; Fong et al., 1994a,b;

Gether et al., 1993b; Holst et al., 1998; Greenfeder et al., 1999] confirmed the rele-

vance of our sequence alignment: The spatial arrangement of the modelled binding-site

residues is in good agreement with the pattern of the proposed interaction models used

to describe CP-96345 binding (Fig. 4.5). Fig. 4.8 (left) shows the backbone of one NK1

model together with an ensemble of orientations of those residues which are known to

be involved in antagonist binding. The backbone trace of the putative β4-hairpin is

coloured red.

Since the NK1 receptor model was generated by homology, the geometry generated for

the β4-hairpin has been directly transferred from the bovine rhodopsin template struc-

ture. Its geometry appears unlikely for the modelled receptor since it would prevent

antagonist binding in the present close-up conformation. This detail of the modelled

receptor points to the limitations in protein structure prediction by homology., however

it is not crucial for the present modelling attempt since mutational studies do not give

hints for specific interactions with CP-96345.

Placing the ligand into the preliminary homology models

The next step following our MOBILE approach, outlined in chapter 3, would be to

dock a ligand flexibly into an averaged ensemble of preliminary NK1 models. However,

this procedure is not reasonable in the case of the NK1 receptor. As the conformational

space of the residues defining the NK1 antagonist binding-site is exhaustively sampled,

the averaged ensemble is too diffuse to allow for precise docking. Therefore, the ligand

was docked into each single NK1 model using AutoDock 3.0 [Morris et al., 1996] with

DrugScore pair potentials serving as objective function. The E2 loop (containing the

β4-hairpin) as described is not essential for the present modelling study, thus it was

removed from the models for the following docking procedure.
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Figure 4.8: Homology models of the NK1 receptor. left: The backbone (cyan) and an

ensemble of 100 side-chain residue conformers involved in binding CP-96345 is shown;

right: Four docking solutions of CP-96345. Their orientations agree well to the muta-

tional data and the proposed interaction model shown in Fig. 4.5. The ensemble of the

binding-site residues crucial for binding CP-96345 is depicted: Gln165, Glu193, His197,

Ile204, His265, and Tyr272.
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To reduce the search space, CP-96345 was kept rigid for the docking into the initial

homology models, simultaneously assuming that its bound conformation is similar to

that observed in the crystal structure (LEWCUL) [Natsugari et al., 1995], i.e. the

aromatic rings are supposed to be oriented in parallel to each other (see Fig. 4.6).

Finally, the docking solutions were inspected visually, evaluating the obtained agree-

ment with the interaction model based on the published mutational data [Elliott et al.,

1998; Takeuchi et al., 1998; Swain et al., 1995; Jacoby et al., 1997; Vedani et al., 2000;

Boks et al., 1997] (4.5). A total of four solutions with alternative orientations of the

side-chains of the protein binding-site residues (see Fig. 4.8 (right)) were selected for

the subsequent protein modelling step.

Generation of refined NK1 models including ligand information and

optimisation of the modelled protein-ligand complexes

In the next step, for each of the four selected docking poses, 100 new homology models

were generated. According to the MOBILE approach, ligand information was con-

sidered as additional restraint in the homology modelling procedure. The 400 thus

generated protein-ligand complexes were further refined. First, to each amino acid a

DrugScore value was assigned to describe the interaction with the ligand. It was then

used to restrain the protein modelling step. Subsequently the best individual solutions

from the different models were combinatorially assembled, and finally the composed

complex was selected which yielded the best total DrugScore value avoiding any in-

tramolecular clashes between the individual amino acid side-chains from the different

models. In order to relax the composed model, the entire binding pocket was min-

imised with the MAB force-field available in Moloc [Gerber, 1998; Gerber & Müller,

1995], keeping the ligand and the protein residues flexible.

4.2.2 Analysis of the model

Analysis of the global fold of the model

As we applied the principle of homology modelling, the length and geometry of the

transmembrane region is produced very similarly to that in bovine rhodopsin. As

outlined in section 4.1.1, considering the conservation of key residues in the family of
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GPCRs, there are good reasons to assume that the geometry of the transmembrane

region will be conserved among these receptors. This assumption is supported by the

fact that all GPCRs couple to the same protein (the G-protein). Furthermore, it is

likely that all GPCRs follow a similar G-protein activation mechanism [Oliveira et al.,

2002]. In consequence, it can be assumed that the inactive state of the NK1 receptor

(as for all GPCRs) corresponds to the inactive state of bovine rhodopsin captured in

the crystal structure and which was used as template in our modelling process. As

we are interested in finding antagonists, which should stabilise the NK1 receptor in

its inactive state, the crystal structure of bovine rhodopsin as reference appears well

suited.

The confidence in the geometry of the extracellular loops (including the β4-hairpin)

is very low, in contrast to the transmembrane region. This holds in particular for

the extra-cellular regions. Considering that all endogenous agonists interact with the

extracellular region of their receptor and recalling that these agonists are rather diverse

with respect to different GPCRs, it is very likely that GPCRs are very different in this

region. From this point of view, it seems very unlikely that the extracellular loop

regions adopt similar orientations in all GPCRs. Furthermore, it must be considered

that the conformation adopted by the extracellular loops in the crystal structure of

bovine rhodopsin is supposedly largely determined by crystal packing forces. However,

it has been noticed that for the attempted modelling of the antagonist binding site

the assumed loop conformations are of no direct relevance since no specific interactions

with NK1 antagonists are suggested in literature.

Analysis and validation of the active site and modelled protein-ligand

complex

The complex of the NK1 model, including the six residues known to be crucial for

binding CP-96345, is depicted in Fig. 4.9. The proposed interactions (as suggested by

the interaction model, Fig. 4.5) are displayed as dashed lines. As mentioned above, no

sequence identity between NK1 receptor and bovine rhodopsin is given in the antagonist

binding pocket. Thus, the backbone trace of the NK1 model is closely related to

the rhodopsin template, but no restrictions for the orientation of the active-site side-

chains is provided by the homology model. Since the NK1 model was generated and

optimised to produce a binding pocket that exhibits optimal interactions with CP-

96345, the arrangement of these side-chains is predominantly determined by the docked
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binding mode of this ligand. The finally achieved spatial arrangement of the binding-

site residues agrees well with the topographic interaction model depicted in Fig. 4.5:

All residues known to be crucial for CP-96345 binding are in direct contact with the

ligand in our model. This fact retrospectively confirms the relevance of the assumed

sequence alignment.

As indicated by the mutational studies, the most important interaction between NK1

receptor and antagonists is the hydrogen-bond between the Gln165-NH and a hydrogen-

bond acceptor of the antagonist. This interaction is well reproduced by our model as

indicated in Fig. 4.10. The distance between the Gln165-NH and the nitrogen N2

(dashed lines, see Fig. 4.9) amounts to 3.21 Å. Also, our model reproduces the sug-

gested amino-aromatic interactions [Fong et al., 1993], which are established between

the aromatic rings A and B and His197, which is in turn stabilised by an aromatic-

aromatic interaction with Tyr272. The role of His267 and Ile204 and their interactions

with the ligand are not clear. In agreement with mutational data, instead of specific in-

teractions, hydrophobic interactions between the aromatic moiety C and His264/Ile204

are established. A possible ionic interaction between the nitrogen N1 and a correspond-

Figure 4.9: Modelled complex of the NK1 receptor with CP-96345 The dashed lines

indicate the key interactions of the proposed interaction model depicted in Fig. 4.5.
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ing protein partner is not fully evidenced, neither by the mutational data nor by our

model (the distance to the Glu193-carboxy oxygen amounts to 5.58 Å). The mutational

data show that a slight change in affinity is detected when Glu193 is mutated to Ala

or His [Elling et al., 1995; Greenfeder et al., 1998], however, as this decrease is not

significant (less than 3-fold and 7-fold), and the ionic interaction cannot be reproduced

by our model, N1 is possibly exposed to the solvent and does not directly interact with

Glu193 or another amino acid.

As indicated above, it is unlikely that the orientation of the the β4-hairpin is similar in

bovine rhodopsin and the NK1 receptor. Indeed, in our modelled complex, CP-96345

would clash with the β4-hairpin if it would adopt the same orientation as the crystal

structure of bovine rhodopsin (see Fig. 4.8). It was shown by Cavasotto et al. that reti-

nal can be docked accurately into the bovine rhodopsin pocket even if the N-terminus,

C-terminus, and extracellular (including the β4-hairpin) and intracellular loops are re-

moved [Cavasotto et al., 2003]. Even though retinal is in contact with the β4-hairpin in

the rhodopsin crystal structure, the majority of the ligand is deeply buried and bind-

ing is sufficiently determined by contacts established to the transmembrane part of the

receptor. This fact suggests that these features can be used to identify ligands on the

basis of a sufficiently accurate homology model of the NK1 receptor. This assumption

is further supported by the observation that mutations within the β4-hairpin of the

NK1 receptor did not result in any specific interactions with CP-96345. Consequently,

one option for structure-based drug design would be to fully neglect this region in the

search for new antagonists. This, however, could provoke docking solutions for ligands

that are artificially oriented into unoccupied region. Therefore, to restrict the binding

pocket to some degree, however simultaneously to avoid specific interactions with the

binding site of CP-96345, we manually placed the β4-hairpin loop in a somewhat dis-

tant region. Subsequently, the corresponding residues were relaxed using the AMBER

force-field [Weiner et al., 1986] to avoid unreasonable interaction geometry. In the fol-

lowing virtual screening procedure, the relevance of the docked ligands was evidenced

not by solely evaluating the interactions between protein- and ligand-atoms but in

particular by considering their similarity with known NK1 antagonists (see section ).

To further assess the relevance of the produced model, we examined its ability to

accommodate other known NK1 antagonists. Two different sets of antagonists were

docked into the active site. The first data set comprised known NK1 antagonists listed

in Table 4.2. A second set has been composed by quinuclidine derivatives of CP-96345

(see Tab. 4.4). The ligands were placed using FlexX-Pharm [Hindle et al., 2002],
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restraining the docking procedure by defining an essential hydrogen-bond interaction

between the Gln165-NH and a hydrogen-bond acceptor in the ligand. As base fragment

for the incremental construction algorithm of FlexX, the aromatic ring B was used in

the docked orientation of CP-96345 (Fig. 4.9) using the mapref mode in FlexX. In

all cases, reasonable orientations were obtained. In addition, based on the docking

solutions, the trends in binding affinity could be reproduced qualitatively.

4.2.3 Generation of a protein- and ligand-based

pharmacophore

Based on the modelled NK1–CP-96345 complex, a structure-based pharmacophore

model has been generated considering the mutational data from literature and the

common features of known NK1 antagonists, which are assumed as prerequisite for

binding.

This pharmacophore model is characterised by the following three features (see Fig.

4.5 and 4.10):

• A hydrogen-bond between the Gln165-NH and a corresponding acceptor of the

ligand (N2 in CP-96345). The hydrogen-bond between Gln165-NH and the NK1

antagonists are indicated to be essential by Fong et al. [Fong et al., 1994a].

This assumption is best demonstrated by the observation that replacing N2 in

CP-96345 by a carbon atom (compound 24 in Table 4.4) results in a dramatic

decrease in affinity (0.52 to > 32000 nM).

• The aromatic moiety B which interacts with His197 via amino-aromatic interac-

tions [Fong et al., 1993].

• A second aromatic group (C) which falls next to His265 [Fong et al., 1994b] and

Ile204 [Holst et al., 1998; Greenfeder et al., 1998]. Obviously it does not form

specific interactions to His265, but favourable interactions are observed for CP-

96345 analogs that show substituents at ring C. Although the kind of interaction

is not clear, analysis of known NK1 antagonists reveals that an aromatic moiety

C is essential for high-affinity binding to the NK1 receptor.
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Figure 4.10: Structure-based Pharmacophore hypothesis The H-bond interaction be-

tween GLN165-NH (cyan sphere) and a corresponding H-bond acceptor (red) is consid-

ered essential for all NK1 antagonists. The aromatic moieties are indicated by yellow

spheres.
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4.2.4 Virtual Screening

In the present study, about 800000 candidate molecules, assembled from seven dif-

ferent databases, were screened to search for NK1 antagonists. The same compounds

were previously screened in our group to search tRNA-guanine transglycosylase (TGT)

inhibitors [Brenk et al., 2003].

Similar to the studies of Brenk et al. [Brenk et al., 2003] and Grüneberg et al.

[Grüneberg et al., 2002], the screening has been performed in a stepwise fashion using

Selector [Selector, 1996], Unity [UNITY, 2001], and FlexX-Pharm [Hindle et al., 2002]

and included several hierarchical filters of increasing complexity with respect to their

computational requirements.

The initial step, a rather unspecific and target-independent filter, was already applied

by Brenk et al. [Brenk et al., 2003]: Only compounds with up to seven rotatable bonds

and a molecular weight of less than 450 Da have been considered. The reason for these

criteria is to retrieve hits small enough to allow for further optimisation, thus focusing

on ”leadlike” hits [Oprea et al., 2001; Hann et al., 2001]. Furthermore, highly flexible

ligands are avoided as they possibly (1) reveal reduced binding affinity due to entropic

considerations and (2) increase the complexity of the attempted 3D search procedures.

A further rationale to restrict flexibility arises from the experience that the reliability

of accurate docking diminishes with increasing degrees of freedom to be considered in

the search procedure. Almost 50 % of the initial compounds were eliminated by this

filter.

In a second step, a topological filter was applied according to the pharmacophore

requirements given in Fig. 4.5. Only candidate molecules comprising at least (a)

two phenyl rings and (b) one hydrogen-bond acceptor were further considered. This

reduced the list of prospective compounds to about 16 % of the initial set.

The 3D protein- and ligand-based pharmacophore model (Fig. 4.10) was used in the

following step to constrain the mutual spatial arrangement of the aromatic rings and

the hydrogen-bond acceptor. In a fourth step, receptor information was explicitly

included by restraining the directionality of the hydrogen-bond (to interact with the

Gln165-NH) and by considering excluded volume constraints. The number of hits in

agreement with this filter contained 11109 compounds. Accordingly, the hierarchical

filtering procedure reduced the databases to 1.34 % of their original size (Table 4.5).
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Table 4.4: Quinuclidines and analogues that were used for model validation.

No. compound IC50 [nM] No. compound IC50 [nM]

17 0.8 22 > 1000

18 246 23 85

19 20 24 > 32000a

20 1.6 25 12.2b

21 106 26 332b

Affinities of compounds 17 – 23 were derived from inhibition of [125I]SP binding
(IC50 of CP-96345: 0.8 nM); [Swain et al., 1995]. a) compound 24 was measured
against [3H]SP (IC50 of CP-96345: 0.77 nM) [Lowe et al., 1992] and b) affinities of
compounds 25 and 26 were measured against [125I]BHSP (IC50 of CP-96345: 0.52
nM) [Lowe et al., 1994].
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Table 4.5: Statistical Overview of the Results from Sequential Application of a Series of Hierarchical Filters on the Seven

Considered Databases

ACD AMBINTER AEGC AEPC

filter step no. of compds [%] no. of compds [%] no. of compds [%] no. of compds [%]

215212 100.00 115815 100.00 182485 100.00 44549 100.00

1. rotatable bonds/ MW 135502 62.96 59877 51.70 91677 50.24 9417 21.14
2. requested no. of hydrophobic,
donor and acceptor properties 30878 14.34 19764 17.07 36302 19.89 2740 6.15

3. pharmacophore hypothesis 8645 4.02 5353 4.62 10534 5.77 1018 2.29

4. excluded volumes 3084 1.43 1510 1.30 2998 1.64 334 0.75

continuation Table 4.5

ChemStar IBS LeadQuest [
∑

]

filter step no. of compds [%] no. of compds [%] no. of compds [%] no. of compds [%]

57927 100.00 158942 100.00 52002 100.00 826952 100.00

1. rotatable bonds/ MW 28712 49.57 76321 48.02 18231 35.04 419747 50.76
2. requested no. of hydrophobic,
donor and acceptor properties 11229 19.38 24571 15.46 6483 12.47 131967 15.95

3. pharmacophore hypothesis 3547 6.12 5463 3.44 2144 4.12 36704 4.44

4. excluded volumes 1226 2.12 1362 0.86 595 1.14 11109 1.34
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The remaining compounds were docked into the binding-site of our NK1 homology

model. To obtain only hits which agree with our 3D pharmacophore model, we used

FlexX-Pharm for docking, which allows the incorporation of constraints derived from

pharmacophore features. Based on our 3D protein- and ligand-based pharmacophore

model (Fig. 4.10), the following features were included: The phenyl ring B was defined

as base fragment for the incremental construction algorithm of the docking procedure.

This was accomplished using the phenyl ring coordinates of the initially modelled ori-

entation of CP-96345 applying the mapref command in FlexX. The hydrogen-bond

between Gln165-NH and a composite hydrogen-bond acceptor was constrained as es-

sential hydrogen-bond interaction. The orientation of the aromatic ring (C) was not

constrained in order to reduce the bias on the system and to assess whether reasonable

orientations for this moiety can be generated by FlexX-Pharm using other molecular

skeletons and considering the protein environment as constraints.

All docking solutions were scored with DrugScore [Gohlke et al., 2000a]. DrugScore

scales within the size of the ligands in contact with the protein. We therefore normalised

the score with respect to the number of non-hydrogen atoms in each placed candidate

ligand [Pan et al., 2002].

For the 1000 best-ranked ligands, the best docking solutions were minimised with the

MAB force-field available in Moloc [Gerber, 1998; Gerber & Müller, 1995] keeping the

ligand and the binding-pocket (i.e., all residues within 6 Å around the ligand) flexible.

The purpose of this procedure was (1) to optimise the local interactions and (2) to

account for protein flexibility induced by ligand binding.

The minimised solutions were very quickly checked visually rejecting those poses which,

did not show the aromatic ring C in parallel orientation to ring B as depicted in Fig.

4.10.

The remaining ∼ 250 solutions were inspected more carefully considering the follow-

ing aspects. Ideally, the selection of virtual screening hits could be solely based on

the ranking of the scoring function used to evaluate the interaction geometry of the

docked ligands. However, many binding features in the protein-ligand interface are

yet not fully understood and certain observations cannot be reproduced adequately

enough by current scoring functions. Furthermore, it has been shown that the perfor-

mance of a scoring function possibly depends on binding characteristics present in a

particular protein-ligand interface, such as hydrophobicity, hydrophilicity, dominance
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of electrostatic/H-bond properties, etc. [Stahl & Rarey, 2001; Schulz-Gasch & Stahl,

2003]. In addition, general observations from quantitative structure-activity relation-

ships prompted us to carefully inspect the best hits from the virtual screening with

special regard to the following characteristics:

• An amino-aromatic interaction should be given between His197 and the aromatic

moiety B. This type of interaction is not yet parameterised and validated in the

current scoring functions.

• Most scoring functions do not consider intramolecular interactions when eval-

uating protein-ligand interactions, in particular aromatic-aromatic interactions.

The described π − π-stacking, as observed between the aromatic moieties B and

C, seems to have a favourable impact on binding, thus its occurrence has been

requested.

• As the binding pocket and most interactions between the NK1 receptor and its

antagonists are mainly hydrophobic, the hydrogen-bond between Gln165-NH and

a corresponding acceptor was carefully analysed. This interaction seems to be

of utmost importance: as mentioned, upon replacement of N2 in CP-96345 by a

carbon atom (compound 24 in Table 4.4) affinity is dramatically reduced (0.52

to > 32000 nM). This is probably beyond the scope of any scoring function.

• As the model is not reliable next to the region of the β4-hairpin, parts of the

ligands placed into this region were evaluated with respect to a given similarity

with known NK1 antagonists.

We furthermore focused on ligands with a limited number of rotatable bonds to avoid

entropically disfavourable binding due to pronounced conformational immobilisation.

Applying these criteria in a thorough visual inspection of the retrieved candidates, the

seven compounds listed in Table 4.6 were selected for biochemical testing.

4.2.5 Testing for binding

As assay a radioligand binding assay on whole CHO (Chinese Hamster Ovary) cells

(with substance P as radioligand) has been performed. This assay is only sensitive to

detect ligands of at least 1 µM potency. Any binding beyond this rather stringent limit
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cannot be detected. Out of the seven selected compounds, one (29) shows 0.25 µM

affinity.

Compound 29 agrees well with the 3-dimensional pharmacophore model. Comparing

compound 29 and CP-96345 in their docked orientations reveals that the aromatic moi-

eties and the position of the hydrogen-bond acceptor superimpose well. Even the pos-

tulated amino-aromatic interaction between His197 and the aromatic ring is matched

similarly to CP-96345. The hydrogen-bond with Gln165-NH is established via the

peptide carbonyl oxygen (see Fig. 4.11). Besides, the sulfur of the thioether-group

could be involved as further hydrogen-bond acceptor. The peptide bond rigidifies the

ligand’s skeleton and possibly has a favourable impact on the entropic contribution to

binding. Considering the docked geometry of 29, both aromatic moieties (B and C

in the pharmacophore model) exhibit a parallel arrangement, however they are shifted

with respect to each other in a way that they do not establish a π − π-stacking inter-

action. Instead, according to our model, the aromatic ring B stacks upon the π-face of

the peptide bond. In addition, 29 exhibits an aromatic moiety A (Fig. 4.10) that is

present in several NK1 antagonists. It is obviously not mandatory for high affinity. As

mentioned before, it probably serves as conformational anchor, but does not perform

any specific interaction with the receptor. Interestingly enough, besides 27, it is the

only one out of the seven tested compounds that possesses this moiety.

Figure 4.11: Modelled binding mode of ASN-1377642, which was identified as novel

submicromolar NK1 antagonist by virtual screening. The orientation with respect to

the modelled binding pocket is shown (left). On the right, the modelled superimposition

of ASN-1377642 and the known NK1 antagonist CP-96345 is shown.
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4.2.6 Discussion

In this contribution, we present a strategy for the computer screening of large com-

pound libraries for the NK1 receptor. This receptor belongs to the family of G-protein

coupled receptors, which represents one of the most important pharmaceutical drug

target classes. Our approach, which can in principle be applied to any member of the

GPCR family to produce a geometry of the receptor in an inactive state, is based on a

homology model generated on the basis of the crystal structure of bovine rhodopsin as

structural template. The NK1 model was constructed under explicit consideration of

ligand information applying our recently developed MOBILE (Modelling Binding Sites

Including Ligand Information Explicitly) approach described in chapter 3 of this thesis.

The model was validated by reproducing experimental information such as mutational

data and corresponding affinity data of known ligands. It was successfully used to

screen seven databases containing in total about 800000 compounds. Docking yielded

one novel compound (out of seven selected, biochemically tested hits) that binds to

the receptor in the submicromolar range. Any binding of the other tested hits in an

affinity range beyond 1 µM could be possible, however it is out of the detection limit

of the applied assay conditions.

Similar computer-aided screening approaches have previously been performed in our

group to discover novel inhibitors for the tRNA-guanine transglycosylase (TGT) [Brenk

et al., 2003] and carbonic anhydrase II [Grüneberg et al., 2002]. Both studies were based

on available high-resolution crystal structures of protein-ligand complexes. The search

strategy applied in the present contribution is somewhat different in certain steps of

the screening to account for potential structural uncertainties of the homology model.

We started with the generation of preliminary protein models and subsequent docking

into these crude models and finally generated a refined protein-ligand complex consis-

tent with experimental data. This modelled complex served as a platform to generate

a hybrid protein- and ligand-structure-based pharmacophore model and as structural

grounds for the following database search. Thus, in our approach, ligand information

was not only explicitly included in the protein modelling step but also considered in

the screening and scoring procedure. In the initial screening only those compounds

out of 800000 database entries were selected, that agreed to simple 2D pharmacophore

features established as minimal requirement due to the analysis of known NK1 antag-

onists. In subsequent steps, ligand information was taken into account by applying

3D pharmacophore features derived from the analysis of the putative binding mode of
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the ligand CP-96345, complexed with our NK1 model. In contrast to the approach

followed by Brenk et al. and Grüneberg et al., these pharmacophore features were also

used to constrain the docking procedure within FlexX-Pharm. As a further difference

to the above-mentioned studies, the entire protein-ligand complexes were minimised

using the MAB force-field to consider possible adaptations of the protein induced by

ligand binding and to subsequently account for potential structural deficiencies of the

model. Finally, the docked solutions were carefully inspected considering the agree-

ment of their pharmacophoric features with the putative interaction features present

in known active NK1 antagonists. Considering the fact that CP-96345 and compound

29 are similar with respect to their pharmacophoric features, but different with respect

to their molecular skeletons, we believe that our hit would not be retrieved as one of

the top hits using a solely ligand-based or a solely protein-based screening approach.

Primary focus of this study was to demonstrate that ligand-supported homology mod-

elling of the target receptor can be accomplished successfully for GPCRs using our

MOBILE approach. The discovered lead structure 29 has yet not been further opti-

mised. This could involve, as outlined in section 4.1.3, a remarkable affinity increase

by introduction of a 3,5-bis(trifluoromethyl)-substitution at the aromatic moiety C.

Swain et al. suggested as possible explanation of this observation that a particular

arrangement of the aromatic moieties B and C with respect to each other is favoured

or that lipophilic contacts with His265 can be established [Swain et al., 1995]. Further

optimisation of binding of 29 could be attempted by appropriate substitution of one of

the nitrogen atoms at the triazole ring by attaching a N-acetyl or carboxamidomethyl

group (cf examples in Table 4.3).

The applied procedure of combining information from bioactive ligands and the knowl-

edge about the 3D structure of bovine rhodopsin, along with mutational data, provides

a new perspective to drug discovery of GPCR ligands. Remarkably enough, the global

sequence identity between bovine rhodopsin and the NK1 receptor is 21 %. Consider-

ing the transmembrane region only, the identity increases to 27 %, however, regarding

only the modelled binding site of CP-96345, no sequence identity is given. Usually, if

sequence identity falls below 35 %, the accuracy of a homology model is considered not

sufficient enough to allow for virtual screening and docking of small ligands [Baker &

Sali, 2001]. In light of this non-conserved antagonist binding area among NK1 recep-

tor and rhodopsin it is even more remarkable that our MOBILE approach produced a

binding-site geometry reliable and relevant enough to discover a submicromolar antag-

onist via structure-based screening methods.
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However, it must be noted that precise affinity prediction is not possible with our

model. To a certain extent, this is due to shortcomings of the currently available

scoring functions. Further limitations probably arise from the fact that towards the

β-hairpin, our model is very crude and approximative and not correctly reflecting the

native configuration of the protein.

An important binding determinant is the H-bond formed to Gln165. The mutational

and ligand data provide clear evidence that Gln165 acts as a donor [Bieler, 1998]. It

could furthermore serve as H-bond acceptor, depending on the side-chain orientation

of the terminal amide group and the composite group in the ligand. This has con-

sequences on the definition of the pharmacophore model used to specify the search

queries. In our search we requested an acceptor site in putative ligands. An alterna-

tive pharmacophore model could define an acceptor or donor site at this position and

serve as additional basis for the search of NK1 antagonists. Besides, in the 3D phar-

macophore model, the arrangement of the aromatic ring systems was assumed to be

parallel as observed in the small molecule crystal structure LEWCUL and confirmed by

experimental studies based on ultraviolet absorption and fluorescence measurements

[Sisto et al., 1995]. Nevertheless, the other two small molecule crystal structures in-

dicate that a perpendicular arrangement of these aromatic moieties to each other also

corresponds to a low-energy conformer. Accordingly it cannot be ruled out that the

latter geometry is also of relevance for the arrangement at the binding pocket. Neither

the available mutational data nor the local contacts to adjacent protein residues next

to both aromatic rings favours one of these arrangements.

Furthermore, it has to be mentioned that originally 15 compounds were selected for

biochemical testing. Due to inaccessibility or delivery problems of the commercial

suppliers, we could only obtain half of the requested compounds (7). The affinity de-

termination was performed using an assay with a detection limit beyond 1 µM affinity.

Since testing at higher concentrations was impossible to perform we cannot decide

whether the remaining six hits from our selection antagonise the NK1 receptor with

micro- or millimolar affinity. For the present feasibility study such information would

be desirable but even the test results on seven compounds would not allow for statistics

on the success rates of the present method. To demonstrate that homology modelling

using our MOBILE approach is capable to produce models of relevance for structure-

based virtual screening, the discovered hit which is in full agreement with the search

hypothesis is a remarkable and convincing result.
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Table 4.6: List of compounds that were tested for inhibition.

No. compound label (Database) DS a)

(rank)
DS2 a)

(rank)
KB [nM]

27 ASN-2069941 (AEPC) -54.2 (10) -17.7 (9) > 1000

28 ASN-2069935 (AEPC) -52.7 (19) -17.3 (16) > 1000

29 ASN-1377642 (AEPC) -53.4 (15) -17.4 (15) 251

30 STOCK2S-25832 (IBS) -48.1 (42) -16.7 (29) > 1000

31 STOCK2S-20468 (IBS) -49.3 (35) -16.2 (37) > 1000

32 STOCK2S-74056 (IBS) -55.0 (6) -17.9 (7) > 1000

33 STOCK1S-23930 (IBS) -51.2 (24) -16.7 (30) > 1000

a) The original DrugScore values are divided by 10000.
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4.3 Modelling the neurokinin-2 receptor

Both, NK1 and NK2 receptors, appear to be involved in pulmonary pathophysiology.

Accordingly, agents that simultaneously antagonise NK1 and NK2 may have therapeu-

tic applications.

To understand the molecular basis of factors relevant to neurokinin selectivity, we

generated ligand-supported homology models of the NK2 receptor including knowledge

about mutational studies and the binding of the NK2-selective antagonist SR-48968

[Emonds-Alt et al., 1992]. Different sets of models were constructed, based (1) on the

structure of the previously generated homology model of the NK1 receptor (section

4.2) and (2) on the crystal structure of bovine rhodopsin [Palczewski et al., 2000;

Teller et al., 2001; Okada et al., 2002].

To obtain insights into the features determining selectivity between NK1 and NK2,

mutational and affinity data with respect to the following three ligands (Table 4.7) are

analysed: (1) the NK2-selective compound SR-48968 [Emonds-Alt et al., 1992], (2) the

dual NK1/NK2 antagonist ZD-6021 [Bernstein et al., 2001], and (3) the NK1-selective

CP-96345 [Snider et al., 1991].

4.3.1 Generation of protein-ligand complexes using the

MOBILE approach

Sequence alignment

Different sets of homology models were based on the sequence alignment depicted in

Fig. 4.12. This alignment was generated by CLUSTALW [Thompson et al., 1994]

keeping the relative positions of the NK1 receptor and bovine rhodopsin as in the

alignment depicted in Fig. 4.12 and realigning only the sequence of the NK2 receptor.

According to this alignment, the global sequence identity amounts to 56 %. According

to the overall strategy of our approach, initial sets of NK2 models were generated

without including ligand information into the homology modelling process.

Considering the corresponding 15 residues defining the antagonist binding pocket in

the NK1 receptor, the sequence identity between the binding sites of the NK1 and NK2
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Table 4.7: Ligands binding to the neurokinin receptors

ligand structure KB [nM] (NK1) KB [nM] (NK2)

ZD-6021 1.0 5.5

SR-48968 > 10000 0.7

CP-96345 8.1 > 10000

Affinity measurement of ZD-6021 ([Bernstein et al., 2001]) was performed with a
different assay than measurement of SR-48968 and CP-96345 ([Gether et al.,
1993b]). The absolute affinity values can thus not be compared directly with each
other.

receptor is 75 %. As in the case of the NK1 receptor, the thus defined binding pockets

of the NK2 receptor and bovine rhodopsin lack any similarity.

Generation of preliminary NK2 models

Using MODELLER, 100 homology models of the NK2 receptor were constructed. For

the generation of these preliminary models, the homology model of the NK1 receptor
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Figure 4.12: Sequence alignment of bovine rhodopsin, the NK1, and NK2 receptor.
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(see section 4.2) served as a template. The rationale for such doing is the fact that

the sequence identity of the antagonist binding pockets between NK1 and NK2 is

rather high (75 %), whereas no identity is given among the binding pockets of the NK2

receptor and rhodopsin. This reduces the search space for the modelling procedure.

Not surprisingly, a binding cavity is defined by those amino acids, which are known

from mutational studies to be involved in SR-48968 binding (Gln166, His198, Tyr266,

His267, Phe270, Tyr289, and Phe293) (see Fig. 4.13).

Figure 4.13: Homology model of the NK2 receptor. left: the backbone (cyan) and

the ensemble of 100 conformers of 7 residues relevant for binding the NK2-selective

antagonist SR-48968 is shown: Gln166, His198, Tyr266, His267, Phe270, Tyr289, and

Phe293; right: binding pocket with two docking solutions of the core fragment of SR-

48968.

Placing the ligand into the preliminary homology models

A core fragment of SR-48968 (see Table 4.7) was flexibly placed into each individual

homology model. For this experiment, SR-48968 was docked with an unsubstituted

piperidine moiety, because experimental observations indicate that these substituents

interact with regions of the extracellular loops for which, due to the low sequence iden-

tity with rhodopsin, no reliable conformation can be obtained by homology modelling.
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Accordingly, the corresponding extracellular sequence stretch in the NK2 receptor was

not considered for the docking experiment.

The docking solutions were visually analysed. The major criterion to assess the rel-

evance of the modelled complex was the question whether the generated interactions

are in agreement with mutational data and preliminary assumptions about a pharma-

cophore model: Analysing selective NK1, NK2 as well as dual NK1/NK2 antagonists

(e.g. [Giardina et al., 1997]), the aromatic ring B in our pharmacophore model for the

NK1 receptor (see Fig. 4.10, p. 88) seems to be an essential pharmacophore element

with respect to both receptors, probably establishing an amino-aromatic interaction

with His197 (NK1), His198 (NK2), respectively. Also an H-bond seems to be essential

between SR-48968 and Tyr287. As most NK2 antagonist possess H-bond acceptors

at corresponding positions, this feature also appears mandatory for binding. On the

other hand, mutational data suggest that an H-bond with Gln166 (Gln165 in NK1)

is not essential. Two similar ligand geometries could be identified, which fulfilled the

required criteria (see Fig. 4.13).

Generation of refined NK2 models including ligand information and

optimisation of the modelled protein-ligand complexes

Assuming that the selected docking solutions resemble the native orientation in the

NK2 binding pocket, new ensembles of NK2 models were generated. In order to allow

for more conformational sampling of the binding site residues, this modelling step was

performed with bovine rhodopsin as structural template. Due to the fact that no

sequence identity between NK1 and bovine rhodopsin is given in the active site, the

conformational space of the referring residues was exhaustively covered.

The binding sites of the NK1 models were then further refined by optimising the

interactions with the two ligand orientations of SR-48968 retrieved from the initial

docking experiments. First, each amino acid was assigned a score (the DrugScore value

for the interaction with the actual ligand). Then, the best individual solutions from

the different models were combinatorially merged, and finally the model was selected

which yielded the best DrugScore value and did not show any intramolecular clashes

between the individual amino acid side-chains. In order to relax the system, the entire

binding pocket was minimised with the MMFF94 force-field [Halgren, 1996], keeping

the ligand and the protein residues flexible.
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4.3.2 Analysis of the model

Analysis of the global fold of the model

Expectedly, the same observations which were evident for the NK1 model (section

4.2.2) also apply for the global structure of the NK2 model: the global fold is similar

to that of the template structure (see Fig. 4.13). As no insertions or deletions occur in

the transmembrane regions, the Cα trace is completely identical. The geometry of the

loops, in particular of the β-hairpin, which interacts with NK2 antagonists, is unlikely

to correspond to the actual orientation in NK1 as the sequence identity between both

receptors is below 25 % in this sequence stretch.

Analysis of the modelled protein-ligand complexes

The binding at the NK2 receptor is not as extensively supported by mutational studies

in literature as binding to the NK1 receptor. Most binding (along with mutational)

data for antagonists are available for compound SR-48968 [Emonds-Alt et al., 1992].

According to the mutational data published in refs [Huang et al., 1995; Labrou et al.,

2001; Renzetti et al., 1999a,b; Bhogal et al., 1994; Giolitti et al., 2000; Donnelly et al.,

1999] the most essential residues for binding SR-48968 are His198, Tyr266, His267,

Phe270, Tyr289, Phe293, and Gln166. In particular, Tyr289 (TM VII), along with

Tyr266 and Phe270 (TM VI), are proposed to form part of the SR-48968 binding

pocket [Huang et al., 1995]. Giolitti et al. [Giolitti et al., 2000] propose as prime inter-

actions of SR-48968 the contacts to the aromatic ring of Tyr266 and both, the aromatic

ring and the OH group of Tyr289. According to their data, the binding site should

comprise Gln166 on TM IV, His198 on TM V, Tyr266 and Phe270 on TM VI for signif-

icant but not essential interactions, and Tyr289 as a crucial residue. Although binding

is not totally abrogated by the mutations Phe270Ala and Phe270Cys [Labrou et al.,

2001; Renzetti et al., 1999b; Huang et al., 1995; Giolitti et al., 2000], the decrease in

affinity is significant. Since the mutation Phe270Tyr [Labrou et al., 2001] results only in

minor affinity changes, the role of Phe270 could be (1) a hydrophobic interaction with

a corresponding part of the ligand, and (2) it stabilises the orientation of the neigh-

bouring aromatic residues Tyr266 and Tyr289 to perform favourable interactions with

the ligand. Furthermore, although not directly, Phe293 seems to play an important
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role in binding SR-48968. Interestingly, the single mutations Phe270Ala or Phe293Ala

do not affect SR-48968 binding but the double mutation Phe270Ala-Phe293Ala fully

abolishes SR-48968 binding. Similarly, with respect to SR-48968 binding, simultane-

ously mutating His267Phe and Phe293Ala produces an effect that was more than the

sum of those resulting from two point mutations. Surprisingly, in contrast to the NK1

receptor, Gln166 (Gln165 in the NK1 receptor, which performs an essential H-bond

in the NK1 receptor) does not seem to be crucially essential for binding, since the

mutation Gln166Val only slightly affects SR-48968 binding. In summary, in the NK2

receptor, the crucial interactions with the analysed ligands seem to be performed via

the hydrophobic patch defined by Tyr266, His267, Phe270, Tyr289, and Phe293.

Our model reproduces these observation. As shown in Fig. 4.14a, an H-bond is estab-

lished between the amide-O of SR-48968 and the Tyr266-OH (dashed lines). According

to our model, Tyr289-OH can also forms an H-bond with Tyr266-OH and possibly

stabilises its orientation and the interaction with the ligand. Although not exactly

observed in our model, it could well be that an H-bond network is established between

Tyr266, Tyr289, and the ligand (see Fig. 4.14a). This assumption is supported by

the fact that all NK2 antagonists show an H-bond acceptor at the corresponding po-

sition. Also the role of Phe270 and Phe293 can be explained by our model. Indeed,

no direct, specific interaction is observed for Phe293. Phe270, on the other hand, per-

forms a hydrophobic interaction with SR-48968. It furthermore seems to hold Tyr266

and, eventually, Tyr289 in position to interact with the ligand. As concluded from

the mutational data, Phe293 does not interact directly with the ligand, but it borders

the hydrophobic binding pocket and, similarly to Phe270, it seems to keep Tyr266 and

Tyr289 in position. According to our model, an H-bond with Gln166 is also possible,

however, as mentioned above, this interaction does not seem to be as essential for

binding as in the NK1 receptor (Fig. 4.14b).

Differences between the NK1 and NK2 receptor models

Fig. 4.15a displays those residues of the NK1 receptor, which are within 6.0 Å distance

to CP-96345 (residues coloured yellow) and the corresponding residues of the modelled

NK2 receptor (cyan). Fig. 4.15b depicts all those binding-site residues which are con-

served among NK1 and NK2 (in total 24 residues). Those residues which are mutated

among the NK1 and NK2 receptor are displayed in Fig. 4.15c. In the extracellular

region (residues at the top of the ligand), the degree of conservation seems to be lower
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Figure 4.14: Binding pockets of the (a) NK2 and (b) NK1 receptors and their

selective ligands SR-48968 (NK2) and CP-96345 (NK1)

than in the transmembrane region. Fig. 4.15d depicts all those residues which do not

belong to the extracellular region and are not conserved among the NK1 and NK2

receptor. From these (seven) residues, three (Lys194, Thr201, and Leu269 in the NK1

receptor) point away from the ligand, whereas Glu193 could possibly perform specific

interactions with antagonists (see also section 4.2). On the other hand, the residues

Phe264 and Met291, which are not conserved with respect to the NK2 receptor, are

part of the hydrophobic pocket depicted in Fig. 4.14. As discussed above, this part of

the binding pocket is essential for binding NK2 antagonists and could be relevant with

respect to selectivity between NK1 and NK2 antagonists.

Due to the low sequence identity of the β-hairpin region among the neurokinin receptors

and to rhodopsin, the homology models are probably too unprecise to allow for reliable

structural comparisons. It is very likely that this sequence stretch adopts distinct

conformations in the NK1 and NK2 receptor. This suggests that selectivity can be

modulated by addressing the corresponding region of the receptors.

Analysis of ligand data

Whereas CP-96345 binds selectively to the NK1 receptor, SR-48968 is selective for

the NK2 receptor (see Table 4.7, p. 100). ZD-6021 shows similar affinities to both
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receptors. Interestingly, ZD-6021 and SR-48968 are relatively similar, differing only in

the substitution of the piperidine ring and the phenyl ring of the benzamide group.

It was indeed shown that by modifying this phenyl ring the degree of NK1 and NK2

activity can be modulated (for example, refs [Shih et al., 2002; Burkholder et al., 1996;

Qi et al., 1998; Bernstein et al., 2001; Albert et al., 2002]). For example, as discussed for

the NK1 homology model (see section 4.1.3), 3,5-disubstitutions on the benzyl group,

especially by CF3 can markedly enhance the activity for the NK1 receptor. However,

these effect could not be rationalised quantitatively by the NK1 homology model.

Another option to modulate selectivity to the NK1 and NK2 receptor is the substitution

of the piperidine ring. According to the NK2 model, substituents at this ring interact

with the extracellular region of the receptor. As the model is probably not reflecting the

native structure in this region, insights into structure-activity relationships should not

be based on the model but on the analysis of ligand data, for example cf [Gerspacher

et al., 2001; Ting et al., 2000, 2001, 2002; Nishi et al., 1999; Qi et al., 1998; Mah et al.,

2002; Bernstein et al., 2001; Albert et al., 2002; Reichard et al., 2002].

4.3.3 Discussion

Computer-aided inhibitor design is concerned with the task of (1) finding and (2) op-

timising lead structures. In this thesis, it was shown for the NK1 receptor that the

derived homology model was sufficient for identifying a lead structure with submi-

cromolar affinity. However, trends in binding affinity for known inhibitors could not

be reproduced at a quantitative level. A possible approach for optimising our novel

NK1 lead structure, is to consider structure-activity relationships by analysis of known

potent NK1 antagonists (see 4.2.6).

Our approach of combining protein- and ligand-based information in a computer-aided

screening procedure should also be followed to discover novel dual antagonists for the

NK1 and NK2 receptor. Based on the insights of the NK2 homology model (in complex

with SR-48968) and on the analysis of ligand data, a 3D pharmacophore model could

be derived that is general enough to filter potential NK1 and NK2 antagonists. This

pharmacophore model would comprise the phenyl ring B of the NK1 model as given

in Figures 4.5 and 4.10 (p. 74 and 88). Furthermore, an H-bond acceptor is required.

The spatial tolerances should be defined large enough to enable an H-bond to Gln165

(for binding the NK1 receptor) and (simultaneously) to Tyr266 (for binding the NK2
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receptor, see Fig. 4.14). Finally, the pharmacophore should include the aromatic

moiety C (Fig. 4.5, p. 74).

Since sufficient data about ligand binding affinities are available for the NK1 and NK2

receptor, lead structure optimisation should be followed by analysing affinity data

about known ligands. This holds in particular for the modulation of NK1 and NK2

selectivity. In the case of the NK1 and NK2 receptors, this approach is probably an

attractive procedure since a vast number of information is available in the literature. As

inferred by analysis of the homology models and ligand data, NK1 and NK2 selectivity

can be modulated by variations in the region (1) pointing to the extracellular region

or (2) pointing to the hydrophobic subpocket of the receptors.
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Figure 4.15: Comparison of the NK1 and NK2 receptor models. The 24 antagonist

binding-site residues of the NK1 (yellow) and NK2 receptor (cyan) are shown (a). (b)

depicts all residues that are conserved among the NK1 and NK2 receptor (12 residues).

(c) shows the 12 residues that are mutated among the NK1 and NK2 receptor, (d)

depicts only those mutated residues that do not belong the extracellular region (7

residues). The residues of the NK1 receptor are labelled.
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5 Summary, Zusammenfassung

5.1 Summary

Recent advances in the various genome sequencing projects have opened the floodgates

to thousands of protein sequences, possibly coding for new targets in drug discov-

ery. Thus increasingly, for a considerable part of putative drug targets, the three-

dimensional structure will not be readily available. In such cases, the most reliable

computer-based technique to generate a three-dimensional protein structure is homol-

ogy modelling. As homology modelling only considers information available from the

related protein structures, it has to remain on a rather approximate level if in the

target protein several amino acids of the active site are replaced with respect to those

in the template protein(s).

In this thesis, a novel strategy (MOBILE (Modelling Binding Sites Including Ligand

Information Explicitly)) was developed that models protein binding-sites simultane-

ously considering information about the binding mode of bioactive ligands during the

homology modelling process (chapter 3). As a result, protein binding-site models of

higher accuracy and relevance can be generated.

Starting with the (crystal) structure of one or more template proteins, in the first

step several preliminary homology models of the target protein are generated using the

homology modelling program MODELLER. Ligands are then placed into these pre-

liminary models using different strategies depending on the amount of experimental

information about the binding mode of the ligands. (1.) If a ligand is known to bind

to the target protein and the crystal structure of the protein-ligand complex with the

related template protein is available, it can be assumed that the ligand binding modes

are similar in the target and template protein. Accordingly, ligands are then trans-

ferred among these structures keeping their orientation as a restraint for the subsequent

modelling process. (2.) If no complex crystal structure with the template is available,

the ligand(s) can be placed into the template protein structure by docking, and the

resulting orientation can then be used to restrain the following protein modelling pro-

cess. Alternatively, (3.) in cases where knowledge about the binding mode cannot

be inferred by the template protein, ligand docking is performed into an ensemble of
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homology models. The ligands are placed into a crude binding-site representation via

docking into averaged property fields derived from knowledge-based potentials. Once

the ligands are placed, a new set of homology models is generated. However, in this

step, ligand information is considered as additional restraint in terms of the knowledge-

based DrugScore protein-ligand atom pair potentials. Consulting a large ensemble of

produced models exhibiting different side-chain rotamers for the binding-site residues,

a composite picture is assembled considering the individually best scored rotamers with

respect to the ligand. After a local force-field optimisation, the obtained binding-site

models can be used for structure-based drug design.

The incorporation of the knowledge-based DrugScore pair-potentials as additional re-

straints into the MODELLER force-field was adjusted using a test data set of 46

protein-ligand complexes extracted from the Protein Data Bank (PDB). The use of

the DrugScore pair potentials proved not only efficient to restrain the homology mod-

elling process, they were also successfully applied to score and optimise the modelled

complexes (section 3.2.1). For 70 % of the complexes in the test set, near-native

binding-site geometries were produced (root-mean-square deviation (rmsd) ≤ 2.0 Å)

with MODELLER considering a bound ligand in its native orientation. Scoring the

resulting complexes with DrugScore revealed, in 66 % of the cases a near-native binding

mode (rmsd ≤ 2.0 Å) on rank 1.

MOBILE has been applied to two case studies (sections 3.2.2 and 3.2.2). In the first ex-

ample, factor Xa was modelled based on the crystal structure of trypsin. After docking

the ligand RPR128515 flexibly into preliminary factor Xa models, new homology mod-

els were generated with the MOBILE approach including the ligand in its orientation

crystallised with trypsin. To validate the correctness of the model, 10 known factor Xa

inhibitors were docked into the factor Xa model and, for reasons of comparison, into a

crystallographically determined factor Xa structure. Since similar docking poses and

energy scores were obtained for all considered ligands, the generated model appears to

be well suited for structure-based drug design purposes.

In another example, different sets of models of aldose reductase were generated based on

the crystal structure of aldehyde reductase and (1) the ligand tolrestat or (2) IDD594,

which are known to induce conformational changes in the protein affecting even the

backbone. This study demonstrated that relevant protein-ligand geometries can even

be generated by MOBILE in case of a rather complex system, where the bound ligands

reinforce different loop conformations upon binding. Furthermore, it was shown that
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the mutual orientations between the protein and a particular ligand can be adjusted in

a stepwise fashion. Even though the initial starting protein-ligand geometries deviated

considerably from the orientations found in the corresponding crystal structures, near-

native geometries could be generated for different complexes after performing a second

cycle with the MOBILE approach.

As a real-life test scenario we applied MOBILE to the neurokinin-1 (NK1) receptor, a

member of the superfamily of G-Protein coupled receptors (GPCRs) which mediate re-

sponses to, e.g. visual, olfactory, hormonal, or neurotransmitter signals (4). This class

represents one of the most relevant target families for small-molecule drug design. Due

to the fact that GPCRs are membrane-bound proteins, their expression, purification,

crystallisation and structure determination remain a major enterprise. So far, only the

structure of bovine rhodopsin could be determined to sufficiently high resolution. The

NK1 receptor belongs to the series of tachykinin-binding receptors (NK1, NK2, and

NK3). They selectively bind the peptide neurotransmitters substance P, neurokinin

A, and neurokinin B, respectively. Substance P plays a role in the transmission of

pain and is involved in inflammation and immune response. The probably best studied

NK1 antagonist is CP-96345. Considerations about its bioactive conformation were

achieved through several theoretical and experimental studies. Through mutational

studies and comparative affinity determinations based on CP-96345 binding, the es-

sential amino acids involved in ligand recognition could be identified and translated

into a crude topographical interaction model (Fig. 4.5, p. 74). The sequence identity

between bovine rhodopsin and the NK1 receptor amounts to 21 %. Considering only

the transmembrane regions, this figure increases to 27 %. However, regarding only the

antagonist binding site of the NK1 receptor, no sequence identity can be detected.

In the first step, 100 preliminary homology models based on the crystal structure

of rhodopsin were generated. Next, CP-96345 was docked rigidly into the modelled

binding pockets with AutoDock, using the conformation observed in its small-molecule

crystal structure (CSD Refcode: LEWCUL). From the set of docked ligand poses,

we selected that solution which satisfied the key interactions of our topographical

model best. Subsequently, new homology models were generated explicitly considering

bound CP-96345. The best-scored side-chain orientations of the individual models were

merged in a combinatorial fashion. Finally, the model was selected that yielded the

best total DrugScore value avoiding any unfavourable intramolecular contacts among

individual amino acid side-chains. The binding-site of the finally composed complex

(Fig. 4.9, p. 85) reproduced convincingly well the proposed interactions observed in the
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topographical model. The relevance of the model was validated by probing its ability

to accommodate other known NK1 antagonists from structurally diverse compound

classes.

Mutational data and features shared in common by known NK1 antagonists were then

used to establish a pharmacophore hypothesis to retrieve candidate ligands from seven

databases containing in total about 800000 compounds. A hierarchical search strategy

consisting of 2D and 3D filters of increasing complexity was applied using the programs

Selector and UNITY. The 11109 compounds remaining after these filtering steps were

flexibly docked into the modelled NK1 binding pocket using the program FlexX-Pharm

and scored with DrugScore. After minimising the produced complexes of the best-

ranked solutions using MOLOC, the best hits were inspected visually analysing their

adopted binding modes, the agreement with the proposed topographical interaction

model, and the mutual surface complementarity between protein and accommodated

ligand. Finally, seven compounds were selected for biochemical testing. Out of these,

one (29) showed at 251 nM binding affinity. Considering that CP-96345 and 29 are

similar with respect to their pharmacophore features (Fig. 4.11, p.94), but distinct

with respect to their molecular skeletons, suggests that this hit would not be matched

as one of the top hits using a solely ligand-based or solely protein-based screening

approach.

A further step towards homology modelling GPCRs for structure-based drug design

was undertaken by generating a ligand-supported homology model of the neurokinin-2

(NK2) receptor (section 4.3). Both, NK1 and NK2 receptors appear to be involved

in pulmonary pathophysiology. Accordingly, agents that simultaneously antagonise

NK1 and NK2 may have therapeutic applications. Following the MOBILE approach,

ligand-supported NK2 models were generated that were restrained by the NK2-selective

antagonist SR-48968. The modelled antagonist binding pockets of the NK1 and NK2

receptors, showing an overall sequence identity of 75 %, were compared and the fea-

tures responsible for binding the NK1-selective antagonist CP-96345, the NK2-selective

antagonist SR-48968, and the dual antagonist ZD-6021 were rationalised on the basis

of the homology models. These insights, together with the generated models, might be

a useful platform for the design of further ligands antagonising NK1 and NK2.

In summary we can conclude that our ligand-supported homology modelling produces

binding-site models that can be successfully applied as platform for structure-based

drug design. The fact that the post-genomic era will provide us with about a factor
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of ten more new drug targets of unknown structure, emphasises the relevance and

demand for such method. This is in particular the case for the family of the GPCRs

where structure determination will probably remain a major enterprise in the next

future. Consequently, the successful application of the MOBILE procedure to the NK1

receptor opens a perspective field for the discovery of novel antagonists for a large

subset of members of the GPCR family.

5.2 Zusammenfassung

Durch die Fortschritte in den Genomsequenzierungsprojekten werden in nächster Zeit

tausende von Proteinsequenzen entschlüsselt werden, die für neue Zielproteine (”Tar-

gets”) für die Arzneimittelforschung kodieren. Für einen beträchtlichen Anteil dieser

neuen Targets wird die dreidimensionale Struktur nicht unmittelbar zur Verfügung

stehen. Die Homologiemodellierung ist die zuverlässigste computergestützte Methode,

um die dreidimensionale Struktur eines Proteins vorherzusagen. Voraussetzung für

die Anwendung dieser Methode ist das Vorhandensein einer experimentell aufgeklärten

Templat-Proteinstruktur mit ausreichend hoher Sequenzidentität zum Zielprotein. Sie

verbleibt bis zu einem gewissen Grad ungenau, insbesondere dann, wenn sich Templat-

und Zielprotein in ihrer Sequenz im aktiven Zentrum unterscheiden.

In dieser Arbeit wurde eine neue Methode (MOBILE (Modelling Binding Sites Including

Ligand Information Explicitly)) entwickelt, die Modelle von Proteinbindetaschen er-

stellt (Kapitel 3). Durch die explizite Mitberücksichtigung von Liganden während

der Homologiemodellierung gelingt es, Bindetaschenmodelle höherer Genauigkeit und

Relevanz zu erstellen.

Ausgehend von der Kristallstruktur eines oder mehrerer Templatproteine werden

zunächst vorläufige Homologiemodelle des Zielproteins erstellt. Im nächsten Schritt

werden bioaktive Liganden in diese vorläufigen Modelle eingepaßt. Dabei werden,

je nach vorhandenem Informationsgehalt über die Ligandenbindung, unterschiedliche

Strategien verfolgt. (1.) Gibt es einen Liganden, der an Ziel- und Templatprotein

bindet und ist darüber hinaus die Kristallstruktur des Protein-Ligand Komplexes mit

dem Templatprotein vorhanden, wird der Ligand zwischen diesen Strukturen trans-

feriert und in dieser Orientierung als Randbedingung für die folgende Homologiemod-

ellierung vorgegeben. (2.) Wenn keine Kristallstruktur des Templatproteins mit dem
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Liganden gegeben ist, wird der Ligand durch Docking in das Templatprotein plaziert

und in der resultierenden Orientierung als Randbedingung für die folgende Protein-

modellierung verwendet. (3.) Können Erkenntnisse über die Ligandenbindung nicht

über das Templatprotein gewonnen werden, wird der Ligand in angenäherte Binde-

taschenrepräsentationen des modellierten Zielproteins eingepaßt. Diese Bindetaschen-

repräsentationen werden durch sogenannte gemittelte Eigenschaftsfelder beschrieben,

die durch wissensbasierte Potentiale abgeleitet werden. Basierend auf der erhaltenen

Ligandenorientierung werden im nächsten Schritt mehrere neue Homologiemodelle

erstellt. Dabei wird der Ligand als zusätzliche Randbedingung in Form der wissens-

basierten DrugScore Protein-Ligand Atom-Paarpotentiale berücksichtigt. Bei dem

resultierenden Ensemble der generierten Homologiemodelle weisen die Aminosäuren

im aktiven Zentrum unterschiedliche Seitenkettenkonformationen auf. Daraus wird

ein optimiertes Modell zusammengesetzt, indem zunächst die individuellen Rotamere

bezüglich ihrer Wechselwirkung zum Liganden bewertet und anschließend so miteinan-

der kombiniert werden, daß die Gesamtbewertung der zusammengesetzten Bindetasche

maximal ist. Nach einer lokalen Kraftfeldminimierung können die resultierenden Binde-

taschenmodelle für strukturbasiertes Wirkstoffdesign verwendet werden.

Die Einbindung der wissensbasierten DrugScore Paarpotentiale als zusätzliche Randbe-

dingung in das MODELLER Kraftfeld erfolgte durch eine Parameterisierung an einem

Datensatz von 46 Protein-Ligand Komplexen aus der Proteindatenbank (PDB). Die

Verwendung der DrugScore Potentiale erwies sich nicht nur als geeignet für die Gener-

ierung von Homologiemodellen, sie wurden auch erfolgreich zur Bewertung und Opti-

mierung der modellierten Protein-Ligand Komplexe eingesetzt (Abschnitt 3.2.1). Für

den Testdatensatz wurden in 70 % der Fälle nativ-ähnliche Bindetaschenmodelle (rmsd

≤ 2.0 Å) erstellt, wenn der Ligand in seiner Orientierung aus der Kristallstruktur als

zusätzliche Randbedingung in die Homologiemodellierung einbezogen wurde. Bei der

Bewertung dieser Modelle mit den DrugScore Paarpotentialen wurden in 66 % der

Fälle Orientierungen mit einer mittleren quadratischen Abweichung ≤ 2.0 Å auf Rang

1 gefunden.

MOBILE wurde für zwei Teststudien verwendet (Abschnitte 3.2.2 and 3.2.2). Im er-

sten Fall wurde die Struktur von Faktor Xa basierend auf der Kristallstruktur von

Trypsin modelliert. Nachdem der Ligand RPR128515 flexibel in vorläufige Faktor Xa

Modelle eingepaßt wurde, wurden neue Homologiemodelle erstellt. Dabei wurde der

Ligand explizit in seiner Orientierung aus der Trypsinkristallstruktur miteinbezogen.

Um die Relevanz des Modells zu validieren, wurden 10 weitere bekannte Inhibitoren in
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das Faktor Xa Model eingepaßt. Aus Vergleichsgründen wurden dieselben Verbindun-

gen zusätzlich in eine Faktor Xa Kristallstruktur plaziert. Für alle Liganden wurden

ähnliche Lösungen sowohl hinsichtlich ihrer Orientierung als auch hinsichtlich ihrer En-

ergiewerte erhalten. Folglich scheint das Model für strukturbasiertes Wirkstoffdesign

gut geeignet zu sein.

In der zweiten Studie wurden zwei unterschiedliche Serien von Aldose Reduktase Ho-

mologiemodellen erstellt. Die Liganden (1) Tolrestat bzw. (2) IDD594, die konforma-

tionelle Änderungen im Protein hervorrufen, wurden jeweils in die Homologiemodel-

lierung einbezogen. Dieses Beispiel demonstrierte, daß MOBILE auch dann erfolgre-

ich realistische Protein-Ligand Geometrien generiert, wenn zwei Liganden durch ihre

Bindung unterschiedliche Konformationen der Loop-Regionen induzieren. Darüber hin-

aus wurde gezeigt, daß die Orientierungen zwischen dem Protein und einem spezifischen

Liganden in einem schrittweisen Verfahren aneinander angepasst werden können. Ob-

wohl die Startgeometrien zwischen Protein und Ligand beträchtlich von der jeweiligen

Kristallstruktur abwichen, wurden nach Durchführung eines zweiten MOBILE Zyklus

nativ-ähnliche Komplexgeometrien erhalten.

Im Rahmen eines realen Modellierungsproblems wurde MOBILE für die Erstellung von

Homologiemodellen für den Neurokinin-1 (NK1) Rezeptor verwendet. Dieser Rezeptor

gehört zur Familie der G-Protein gekoppelten Rezeptoren (GPCRs), die Reaktionen auf

verschiedenste Signale (z.B. optische, geruchliche, hormonelle oder neurotransmitter-

vermittelte) übermitteln. Die Klasse der GPCRs ist eine der relevantesten Zielfamilien

des aktuellen Wirkstoffdesigns. Da GPCRs membran-gebundene Proteine sind, ist ihre

Expression, Aufreinigung, Kristallisation und Strukturaufklärung immer noch nicht

gelöst. Bisher konnte nur die Kristallstruktur von Rinderrhodopsin in genügend hoher

Auflösung bestimmt werden. Der NK1 Rezeptor gehört zu den Tachykinin binden-

den Rezeptoren (NK1, NK2 und NK3), die selektiv an die peptidischen Neurotrans-

mitter Substanz P, Neurokinin A und Neurokinin B binden. Substanz P spielt eine

wichtige Rolle in der Schmerzübertragung und ist an Entzündungsprozessen und Im-

munantworten beteiligt. Der wahrscheinlich am besten untersuchte NK1 Antagonist

ist CP-96345. Erkenntnisse über dessen bioaktive Konformation wurden durch eine

Reihe von theoretischen und experimentellen Untersuchungen gewonnen. Durch Mu-

tationsstudien und vergleichende Affinitätsbestimmungen, basierend auf der Bindung

von CP-96345, konnten die essentiell an der Ligandenbindung beteiligten Aminosäuren

identifiziert und in ein topographisches Wechselwirkungsmodell übersetzt werden (Fig.

4.5, S. 74). Die Sequenzidentität zwischen Rinderrhodopsin und dem NK1 Rezep-
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tor beträgt 21 %. Betrachtet man nur die Transmembranregion, steigt sie auf 27 %.

Werden jedoch nur die Aminosäuren der Antagonistenbindungsstelle berücksichtigt, so

beobachtet man überhaupt keine Sequenzidentität.

Basierend auf der Kristallstruktur von Rinderrhodopsin wurden zunächst 100 vorläufige

Homologiemodelle erstellt. Im nächsten Schritt wurde CP-96345 mit AutoDock in die

modellierten Bindetaschen plaziert. Dabei wurde der Ligand rigide in seiner Orien-

tierung aus der Kristallstruktur (CSD Referenzcode: LEWCUL) eingesetzt. Die am

besten bewerteten Aminosäuren der individuellen Proteinmodelle wurden kombina-

torisch zusammengesetzt und das Modell mit der besten gesamten DrugScorebewer-

tung ausgewählt. Die im topographischen Modell (Fig. 4.9, S. 85) vorgeschlagenen

Wechselwirkungen werden durch das resultierende Modell gut reproduziert. Die Rel-

evanz dieses NK1 Modells wurde durch die Vorhersage der Bindungsmodi weiterer

bekannter NK1 Antagonisten aus strukturell verschiedenen Klassen bestätigt. Mu-

tationsdaten und gemeinsame strukturelle Eigenschaften bekannter NK1 Antagonis-

ten wurden anschließend in eine Pharmakophor-Hypothese umgesetzt. Basierend auf

dieser Pharmakophor-Hypothese wurden in einer Datenbanksuche Liganden aus sieben

Datenbanken mit insgesamt 800000 Verbindungen durchmustert. Dieses virtuelle

Screening wurde schrittweise mit den Programmen Selector und UNITY durchgeführt.

Es bestand aus mehreren hierarchischen 2D und 3D Filterschritten mit zunehmender

Komplexität. Die erhaltenen 11109 Verbindungen wurden anschließend mit dem Pro-

gramm FlexX-Pharm in die modellierte NK1 Bindetasche plaziert und mit DrugScore

bewertet. Nach einer lokalen Kraftfeldminimierung der resultierenden Komplexe mit

MOLOC wurden die besten Treffer einer visuellen Inspektion unterzogen. Dabei wur-

den die Bindungsmodi insbesondere hinsichtlich ihrer Übereinstimmung mit dem to-

pographischen Wechselwirkungsmodell und hinsichtlich ihrer Oberflächenkomplementarität

zwischen Protein und Ligand beurteilt. Sieben Verbindungen wurden für eine bio-

chemische Testung ausgewählt. Von diesen zeigte eine (29) eine Bindungsaffinität von

251 nM. CP-96345 und 29 ähneln sich bezüglich ihrer Pharmakophoreigenschaften

(Fig. 4.11, p.94), sie weisen aber unterschiedliche molekulare Gerüste auf. Folglich

wäre dieser Ligand vermutlich nicht als als einer der besten Treffer in einem rein

protein- oder rein ligand-basierten Screening gefunden worden.

Ein weiterer Schritt in Richtung ”Homologiemodellierung von GPCRs für struktur-

basiertes Wirkstoffdesign” wurde durch die Erstellung eines liganden-verfeinerten Ho-

mologiemodells für den Neurokinin-2 (NK2) Rezeptors unternommen. Sowohl der

NK1 als auch der NK2 Rezeptor sind offenbar in Lungenerkrankungen involviert. De-
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mentsprechend könnten Substanzen, die gleichzeitig NK1 und NK2 antagonisieren,

therapeutische Anwendung finden. Mit MOBILE wurden unter Berücksichtigung des

NK2-selektiven Antagonisten SR-48968 ligandengestützte Homologiemodelle des NK2

Rezeptors erstellt. Die modellierten Bindetaschen des NK1 und NK2 Rezeptors, die

eine Sequenzidentität von 75 % aufweisen, wurden hinsichtlich ihrer Bindung zu dem

NK1-selektiven Antagonisten CP-96345, dem NK2-selektiven Antagonisten SR-48968

und dem dualen Antagonisten ZD-6021 verglichen. Die gewonnenen Erkenntnisse

können, zusammen mit den generierten Homologiemodellen, als nützliche Grundlage

für die Entwicklung weiterer NK1 und NK2 Antagonisten dienen.

Zusammenfassend kann festgestellt werden, daß durch liganden-unterstützte Ho-

mologiemodellierung Proteinbindetaschenmodelle generiert werden, die erfolgreich als

Grundlage für strukturbasiertes Wirkstoffdesign verwendet werden können. Die Tat-

sache, daß die Genomprojekte uns mit zahlreichen neuen Arzneistofftargets versorgen

wird, verdeutlicht die Relevanz und Notwendigkeit einer solchen Methode. Dies gilt

insbesondere für die Familie der GPCRs, die für die experimentelle Strukturbestim-

mung voraussichtlich auch in der Zukunft eine bedeutende Hürde darstellen wird. Die

erfolgreiche Anwendung der MOBILE Methode für den NK1 Rezeptor eröffnet eine

neue Perspektive für die Entdeckung von Antagonisten auch für andere Mitglieder der

GPCR Familie.
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Horn, F., Weare, J., Beukers, M. W., Hörsch, S., Bairoch, A., Chen, W., Edvardsen, O., Campagne,

F., & Vriend, G. (1998). GPCRDB: an information system for G protein-coupled receptors. Nucleic

Acids Res, 26:275–279.

Huang, R.-R. C., Vicario, P. P., Strader, C. D., & Fong, T. M. (1995). Identification of Residues

Involved in Ligand Binding to the Neurokinin-2 Receptor. Biochemistry, 34:10048–10055.

Huang, R.-R. C., Yu, H., Strader, C. D., & Fong, T. M. (1994). Interaction of Substance P with

the Second and Seventh Transmembrane Domains of the Neurokinin-1 Receptor. Biochemistry, 33:

3007–3013.

Jackson, R. M., Gabb, H. A., & Sternberg, M. J. E. (1998). Rapid refinement of protein interfaces

incorporating solvation. J Mol Biol, 276:265–285.

Jacoby, E. (2001). A Novel Chemogenomics Knowledge-Based Ligand Design Strategy — Application

to G Protein-Coupled Receptors. Quant Struct-Act Relat, 20:115–123.

Jacoby, E., Boudon, A., Kucharczyk, N., Michel, A., & Fauchere, J. L. (1997). A structural Ratio-

nale for the Design of Water Soluble Peptide-derived Neurokinin-1 antagonists. J Recep Signal

Transduction Res, 17(6):855–873.

Jacoby, E., Fauchere, J.-L., Raimbaud, E., Ollivier, S., Michel, A., & Spedding, M. (1999). A Three

Binding Site Hypothesis for the Interaction of Ligands with Monoamine G Protein-coupled Recep-

tors: Implications for Combatorial Ligand Design. Quant Struct-Act Relat, 18:561–572.

Jain, A. (1996). Scoring noncovalent protein-ligand interactions: A continuous differentiable function

tuned to compute binding affinities. J Comput Aided Mol Des, 10:427–440.



130 Bibliography

Jalaie, M. & Erickson, J. A. (2000). Homology model directed alignment selection for comparative

molecular field analysis: application to photosystem II inhibitors. J Comput Aided Mol Des, 14(2):

181–97.

Jansen, J. M., Koehler, K. F., Hedberg, M. H., Johansson, A. M., Hacksell, U., Nordvall, G., &

Snyder, J. P. (1997). Molecular design using the minireceptor concept. J Chem Inf Comput Sci,

37(4):812–8.

Johnson, M. A., Hoog, C., & Pinto, B. M. (2003). A novel modeling protocol for protein receptors

guided by bound-ligand conformation. Biochemistry, 42(7):1842–53.

Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). A New Approach to Protein Fold Recognition.

Nature, 358:86–89.

Jones, D. T. & Thornton, J. M. (1993). Protein Fold Recognition. J Comput Aided Mol Des, 7:

439–456.

Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and Validation

of a Genetic Algorithm for Flexible Docking. J Mol Biol, 267:727–748.

Jones, T. H. & Thirup, S. (1986). Using known substructures in protein model building and crystal-

lography. EMBO J, 5:819–822.
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können. Der gewährte Spielraum für die Entwicklung eigener, kreativer Ideen,
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Vermessung der Affinitätswerte der NK1 Antagonisten.



• Dr. Markus Hauswald (Bayer AG, Wuppertal) danke ich für die
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