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AIMS OF THIS DISSERTATION 

The aim of this dissertation was to gain insight into crucial steps involved in 

polymeric gene delivery and to construct novel vectors with advantageous 

properties.  

A major goal was to clarify crucial steps in the subcellular trafficking of 

polyethylenimine/nucleic acid complexes. Several publications have dealt with 

this issue, however, conclusive data describing mechanisms of cellular uptake 

and especially modalities of endosomal or lysosomal release are limited. To 

achieve this, it was necessary to monitor complex uptake and to identify the 

major subcellular compartment(s) of accumulation. Furthermore, we were 

interested in visualizing complex release from vesicular structures in order to 

estimate the extent to which this event happens and acquire insights into the 

mechanism. These issues were investigated by living cell confocal laser 

scanning microscopy and inhibitor experiments. 

A major shortcoming of polymeric gene delivery is the low specificity of 

polymer/nucleic acid complexes. Consequently, our aim was to develop a gene 

delivery system with a high specificity for target cells combined with a very low 

unspecific transfection of non target cells. We chose an ovarian carcinoma 

model for these studies and used an antibody directed against an epitope 

expressed by most ovarian carcinoma cells. We constructed a vector system by 

coupling the antigen binding fragment (Fab´) of this antibody to pegylated 

polyethylenimine. Our hypothesis was that the positive charge of the poly-

ethylenimine could be efficiently shielded by the linear PEG chains thus leading 

to a decrease in unspecific binding to non target cells, as well as increased 

specificity of the vector.   

Currently, only rudimentary knowledge of the stability of polyethylene-

imine/DNA and pegylated polyethlenimine/DNA complexes in the bloodstream 

is available. To address this issue, we performed pharmacokinetic studies in 

mice, in which polymer and DNA were labelled with two different radioactive 
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tracers. Comparison of polymer and DNA profiles allowed us to form 

conclusions about complex stability. Furthermore, in order to get an insight into 

the mechanisms of complex destabilization, we performed in vitro stability 

investigations, in which we tried to simulate certain aspects of an in vivo 

environment. 

A further issue addressed in this thesis was the development of a new vector 

system with favourable properties, such as a high transfection efficiency, high 

stability and a low toxicity. To achieve this, novel shielding strategies were 

developed, which exhibited an onion-like structure when complexed with DNA. 

The inner core of the system consisted of polyethylenimine and DNA 

surrounded by a hydrophobic shell and an outer hydrophilic corona. Further, a 

triblock polymer was developed consisting of polyethylenimine, 

polycaprolactone and polyethylenglycol. In order to enhance the solubility of 

this compound, cyclodextrin was threaded over the linear polyethylenglycol and 

polycaprolactone chains. Our hypothesis was that, due to the hydrophobic chains 

surrounding the central core of the vector, complexes should become more 

stable, as a result of the decreased penetration of e.g. plasmaproteins into the 

core. The in vivo properties of these novel vectors were investigated and 

pharmacokinetic studies in mice were performed.           
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SUMMARY  

Gene and antisense/ribozyme therapy possess a tremendous potential for the 

successful treatment of genetically based diseases, such as cancer. Several 

cancer gene therapy strategies have already been realized in vitro, as well as in 

vivo. A few have even reached the stage of clinical trials, most of them phase I, 

whereas some antisense strategies have advanced to phase II and III studies. 

Despite this progress, a major problem in exploiting the full potential of cancer 

gene therapy is the lack of a safe and efficient delivery system for nucleic acids. 

As viral vectors possess toxicity and immunogenicity, non viral strategies are 

becoming more and more attractive. They demonstrate adequate safety profiles, 

however their rather low transfection efficiency remains a major drawback. This 

review will introduce the most important cationic polymers used as non viral 

vectors for gene and oligonucleotide delivery and will summarize strategies for 

the targeting of these agents to cancer tissues. Since the low efficiency of this 

group of vectors can be attributed to specific systemic and subcellular obstacles, 

these hurdles, as well as strategies to circumvent them, will be discussed. Local 

delivery approaches of vector/DNA complexes will be summarized and an 

overview of the principles of anticancer gene and antisense/ribozyme therapy as 

well as an outline of ongoing clinical trials will be presented.   

1. INTRODUCTION 

Since progress in the therapy of cardiovascular diseases is improving rapidly, 

cancer is on the way to become leading cause of death in industrialized 

countries. Due to its invasive, aggressive growth profile as well as the complex 

mechanisms involved in cancer development and propagation, an efficient, 

specific therapy is not yet available. If a tumor is discovered at a defined, well 

localized stage, surgery, chemo- and/or radiation therapy may represent 

promising curative strategies. However, at latter stages, especially when 
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metastases have already spread to remote sites of the body, such approaches are 

less successful. In this case, chemotherapy is the most frequently applied 

treatment. However, it exhibits general limitations, such as a poor specificity of 

most chemotherapeutic drugs resulting in suppression of the bone marrow and 

other fast dividing tissues as well as potential genesis of secondary cancer. 

Another drawback of chemotherapy is the development of resistant phenotypes, 

which no longer respond to chemotherapy thus making the treatment inefficient. 

Therefore, an urgent need is evident for new anticancer strategies exhibiting 

high specificity, low toxicity and lack of resistant phenotypes. Conventional 

drugs to specifically block molecular pathways responsible for uncontrolled 

cancer growth [1], angiogenesis [2] or metastases genesis [3] are currently under 

investigation, however success is still limited.  

The human genome project has substantially increased our knowledge about 

molecular mechanisms of cancer during the last decade, thus opening up new 

possibilities for cancer gene therapy. In contrast to classic cancer treatments, this 

approach in theory represents a much more efficient and specific therapy, due to 

its ability to directly influence the defected genes responsible for cancer. Several 

strategies have been considered for manipulation of gene expression either on 

the transcriptional or on the translational level and have been performed 

successfully in vitro and in vivo. A deficient gene can either be replaced or the 

effect of an unwanted gene can be blocked by introduction of a counteracting 

one. Suicide gene therapy offers the perspective to kill cancer cells selectively 

by using prodrug-converting enzymes and tumor specific promoters. 

Furthermore antisense and ribozyme strategies offer the potential to selectively 

downregulate the expression of specific genes mainly on the translational level 

predominantly by sequence specific interaction with messenger RNAs.  

Despite the enormous potential of gene therapy, there are still numerous 

difficulties to be overcome before efficient clinical application is attempted. 
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Although remarkable advances have been made in identifying target structures 

for cancer gene therapy and synthesis or biotechnological production of nucleic 

acids has become feasible in larger quantities, progress is mainly hampered by 

the lack of a safe and efficient delivery system. 

Generally, two different approaches have been utilized for the delivery of 

nucleic acids in gene therapy, namely that of viral vectors and non viral delivery 

systems mainly using cationic polymers or lipids. Viral vectors including 

retroviruses, adenoviruses and adeno-associated viruses impress by their high 

efficiency in introducing their genetic material into host cells. Researchers 

thought that it would be feasible to domesticate viruses and to take advantage of 

them for therapeutic needs. However, in the last few years a reappraisal has 

occurred due to serious safety risks. Viral vectors show excellent transfection 

efficiencies. However, they develop a high immunogenicity after repeated 

administration since the mammalian immune system has developed strategies to 

eliminate viral invaders as well. Other problems associated with viral vectors are 

their potential oncogenicity due to insertional mutagenesis and the limited size 

of DNA that can be carried. Furthermore the inclusion of a targeting moiety in 

order to transfect specific cell types or tissues is problematic. Despite these 

problems, still more than two thirds of clinical gene therapy trials use viral 

vectors. Because of these concerns non viral vectors are emerging as a viable 

alternative. Non viral systems, especially polymers, show significantly lower 

safety risks and can be tailored to specific therapeutic needs. They are capable of 

carrying large DNA molecules and can be produced in large quantities easily 

and inexpensively. The major disadvantage of these non viral vectors is their 

low transfection efficiency. Great efforts have been undertaken to improve the 

efficiency, however we are still far away from a system that could be considered 

as satisfactory. In the past much work went into the improvement of  

transfection efficiency under in vitro conditions with little attention of vectors 

for in vivo use. However most applications especially in the context of cancer 
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gene therapy require an in vivo application. A thorough investigation of the 

behavior of vector/nucleic acid complexes in vivo and key obstacles to their 

effectiveness is essential for further rational advances.   

The first section of this review provides an overview of the most frequently used 

cationic polymers in non viral gene and oligonucleotide delivery. Since the 

inefficiency of these vectors in (cancer) gene therapy can be attributed to 

specific hurdles on a systemic, as well as subcellular level, strategies to 

surmount these will be discussed. The second section provides an overview of 

gene therapy and antisense/ribozyme strategies, as well as clinical trials using 

these approaches.  

Looking for efficient and safe vector systems for cancer gene therapy raises the 

question: What is easier, taming viruses or making synthetic vectors more 

intelligent and efficient? A paradigm shift is currently underway, as it is 

questionable if viral vectors will ever be considered safe. Therefore the 

development of non viral systems, which may be safer and more versatile, is 

warranted. The goal must be to create systems that act as targeted synthetic 

viruses displaying high specificity for cancer tissue, high transfection 

efficiencies and controllable safety risks. Vectors that are currently used in non 

viral gene therapy are far from optimal, however studying their biological and 

physicochemical properties will provide valuable knowledge for the future 

design of more sophisticated systems. Regarding the advantages of non viral 

vectors compared to viruses it is obvious that they have a great perspective in 

(cancer) gene therapy, although more research is needed for optimisation of 

these systems. A combination of non viral vectors with viral moieties like 

fusogenic peptides or protein transduction domains may represent additional 

promising approaches.      
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2. NON VIRAL VECTORS 

Cationic polymers and cationic lipids are by far the most widely used vectors in 

non viral gene and oligonucleotide delivery. Other strategies including particle 

bombardment, ultrasound transfection [4] or the application of naked DNA have 

been realized as well, however their applicability is restricted to specific 

circumstances. This review focuses on cationic polymers. For a recent review 

about gene delivery using cationic lipids we refer to reference [5].  

Polymers display striking advantages as vectors for gene delivery. They can be 

specifically tailored for the proposed application by choosing appropriate 

molecular weights, coupling of cell or tissue specific targeting moieties and/or 

performing other modifications that confer upon them specific physiological or 

physicochemical properties. After identifying a suitable polymer structure a 

scale up to the production of large quantities is rather easy as well. A weakness 

of gene therapy with cationic polymers is our limited knowledge regarding the 

formation of electrostatic complexes with DNA and their biological effects. For 

example when forming complexes with polyethylenimine (PEI) the addition of 

polymer to DNA, rather than the opposite results in higher transfection 

efficiency [6]. Many other factors play crucial roles in this context, e.g. 

concentration of the polymer and DNA solutions, ionic strength of the solvents 

[7] and speed of mixing. Thus, gene therapy with cationic polymers is still 

rudimentarily understood and ongoing investigations will provide avenues to 

more sophisticated approaches. Figure 1 gives an overview over frequently used 

cationic polymers for non viral nucleic acid delivery.  

2.1. Polyethylenimine (PEI) 

PEI polymers have become the gold standard of non viral gene delivery. 

Polymers with different molecular weights and degrees of branching have been 

synthesized and evaluated in vitro as well as in vivo. Highly branched polymers 
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such as the 25 kDa PEI (Aldrich) and the 800 kDa PEI (Fluka) are most 

frequently used as well as polymers with lower degrees of branching [8]. PEI 

polymers are able to effectively complex even large DNA molecules [9,10], 

leading to homogeneous spherical particles with a size of around 100 nm or less 

that are capable of transfecting cells efficiently in vitro as well as in vivo. They 

offer a significantly more efficient protection against nuclease degradation than 

other polycations, e.g. poly(L-lysine) possibly due to their higher charge density 

and more efficient complexation. The huge amount of positive charges, 

however, results in a rather high toxicity of PEI polymers which is one of the 

major limiting factors especially for its in vivo use. The high density of primary, 

secondary and tertiary amino groups exhibiting protonation only on every 3rd or 

4th nitrogen at pH 7 confers significant buffering capacity to the polymers over a 

wide pH range. This property, known as ´proton sponge property´ [11] is likely 

one of the crucial factors for the high transfection efficiencies obtained with 

these polymers. Despite this recognized association, knowledge about 

relationships between polymer structure and important biological properties 

such as toxicity or transfection efficiency is rather limited. Polymers with high 

molecular weight, e.g. the highly branched 25 kDa or 800 kDa PEI exhibit high 

transfection efficiencies, however toxicity is rather high as well [8]. Polymers 

with low molecular weight, e.g. with a molecular weight of 800 Da, display low 

toxicity yet transfection efficiency is very low as well [own unpublished data]. 

An approach to combine the advantages of high and low molecular weight PEI 

has been realized recently by crosslinking small PEIs via biodegradable 

disulfide bonds. A greatly enhanced transfection efficiency of crosslinked small 

PEIs could be observed with only a moderate increase in toxicity [12].  

Not only the size, also the degree of branching plays an important role for 

biological properties of complexes with nucleic acids. Linear PEIs [13] have 

been synthesized and investigated [14] and it could be demonstrated that linear 

PEI 22 kDa, e.g. ExGenTM 500 (Euromedex, France), displays excellent 
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transfection efficiency with a rather low toxicity [13-15]. Linear PEI has 

recently been reported to mediate a cell cycle independent nuclear entry of 

plasmid DNA [16] This finding is of particular importance in the therapy of 

slowly dividing tissues.  

2.2. Poly(L-lysine) 

Poly(L-lysine) was one of the first polymers used in non viral gene delivery and 

a large variety of polymers with different molecular weights have been utilized 

in physicochemical and biological experiments [17]. Due to its peptide structure 

poly(L-lysine) is biodegradable, a property that makes it especially suitable for 

in vivo use, however the polymer exhibits modest to high toxicity. If prepared 

with poly(L-lysine) of suitable molecular weights and at suitable N/P ratios, 

complexes with plasmid DNA display a size of around 100 nm [17] and are 

taken up into cells as efficiently as PEI complexes (own unpublished data), 

however transfection efficiencies remain several orders of magnitude lower. A 

potential reason for this is the lack of amino groups with a pKa between 5 and 7, 

thus allowing no endosomolysis and low levels of transgene expression [18]. 

The inclusion of targeting moieties or co-application of endosomolytic agents 

like chloroquine [19] or fusogenic peptides [20] may improve reporter gene 

expression.   

2.3. Imidazole containing polymers 

Polymers containing the heterocycle imidazole have shown promising 

transfection capabilities. In several approaches modification of -amino groups 

of poly(L-lysine) using histidine or other imidazole containing structures 

showed a significant enhancement of reporter gene expression compared to 

poly(L-lysine) [21-23]. The imidazole heterocycle displays a pKa around 6 thus 

possessing a buffering capacity in the endolysosomal pH range, and possibly 

mediating vesicular escape by a ´proton sponge´ mechanism. Supports for this 
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assumption is the fact that endosomal acidification is required for the efficiency 

of these polymers in gene transfer [23]. A sophisticated approach is the 

optimization of the balance between free -amino groups of L-lysine moieties 

that enable effective complex formation with DNA and the amount of imidazole 

heterocycles responsible for endolysosomal escape of the complexes. With this 

approach a polymer has been developed that mediates a transfection efficiency 

equal to PEI and demonstrates little toxicity due to its optimized charge density 

[24]. The incorporation of imidazole moieties represents a promising option for 

the improvement of endolysosomal escape and enhancement of the efficiency of 

polymers without increasing toxicity.  

N

N

N

N

N

N

N

N

H2N

H2N NH2

NH2

NH2
NH2

NH2

N

H2N

H2N

NH2

H2N

NH2

N

N

N
H

N

H2N NH

NH
N

NH

HN

NH2

NH

H
C

CH2

CH2

CH2

CH2

NH2

H
N CO

H
C

CH2

CH2

CH2

CH2

HN

H
N CO

O

O

CH2OH

OH

CH2OHNH

OH

NH2

O

CO CH2

N

NH

O

COH3C

H
N CH2 CH2

N

different
generations

dendrimers e.g. SuperfectTM

N

x

brached polyethylenimine (PEI) 
e.g. PEI Aldrich 25 Kda

linear PEI e.g. ExGenTM 500

poly(L-lysine)

imidazole modified poly(L-lysine)

x y

y

chitosan

x

H
C

CH2

CH2

CH2

CH2

NH2

H
N CO

x

Figure 1 
Cationic polymers most frequently used for nucleic acid delivery  

2.4. Chitosans 

Chitosans are biodegradable linear aminopolysaccharides with randomly 

distributed beta1-4 linked N-acetyl-D-glucosamine and D-glucosamine, derived 

from the common biopolymer chitin. They have been utilized as a food additive 

for some time and display a significantly better biocompatibility than PEI, thus 
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they represent interesting candidates as gene transfer agents. Depending on the 

molecular weight and the degree of deacetylation, chitosans are capable of 

forming small (<100 nm), rather stable, toroidal complexes with plasmid DNA 

[25,26] and provide protection for the complexed DNA against DNase 

degradation that is comparable to PEI [26]. Structure-property relationships 

show that the percentage of positively charged monomer units must be greater 

than 65 % in order to obtain stable complexes capable of transfecting cells in 

vitro [26]. Small (1.2 kDa) and very large chitosan polymers lead to minimal 

levels of reporter gene expression [27]. However, in the molecular weight range 

between 30-170 kDa chitosan polymers provide levels of gene expression that 

are comparable to PEI [26]. When a pH-sensitive endosomolytic peptide is 

incorporated into chitosan/plasmid complexes, significantly increased levels of 

reporter gene expression can be observed [25] indicating that endolysosomal 

escape may be a major limiting factor in gene delivery with chitosans, probably 

due to the poor buffering capacity of this polymer around pH 5.5.   

Remarkably the kinetics of gene expression seem to be different for chitosans 

compared to PEI. While gene expression using PEI reaches maximum levels at 

24-72 h post incubation depending on the kind of plasmid and cell line, it 

reaches its highest levels for chitosans significantly later [26,28]. The reason for 

these different kinetics is unclear. While for PEI the polymer itself displays 

buffering capacity, resulting in rapid escape, it is possible that in the case of 

chitosans degradation of the polymer is crucial. Lysosomal enzymes may 

degrade the polymer into small molecules, thus leading to increased osmolarity 

and eventually to subsequent release by rupture of lysosomes [26]. This however 

is speculation.  

Intratracheal instillation of chitosan and PEI (25 kDa) polyplexes revealed 

similar distribution patterns, however levels of gene expression were 

approximately 10fold lower for chitosan [26].  
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2.5. Dendrimers 

Dendrimers are spherical, highly branched polymers prepared either by 

divergent (starting from a central core molecule) or convergent (starting with 

what will become the periphery of the molecule building inwards) synthesis 

strategies. The degree of branching is expressed in the generation of the 

dendrimer. Most commonly used dendrimers for non viral nucleic acid delivery 

are synthesized via the divergent strategy [29] and represent 6th generation 

StarburstTM polyamidoamine (PAMAM) dendrimers either in intact (PolyfectR) 

or fractured (SuperfectR) form. Intact dendrimers bear two new polymer arms at 

each point of branching, whereas in fractured polymers either one or two arms 

originate or the polymer is terminated at this point. Similar to PEI the structures 

of these polymers show high densities of amines in the periphery of the 

molecule. These outer amines enable efficient condensation of nucleic acids, 

leaving the inner amine functions available for neutralization during 

endolysosomal acidification, thus enabling more efficient endosomal escape. 

Concerning 6th generation PAMAM dendrimers the fractured dendrimers show 

significantly enhanced (>50-fold) levels of reporter gene expression compared 

to the intact polymer. The reason for this finding is unclear yet, however an 

increased flexibility of the polymer with a better ability to complex DNA might 

play a crucial role [29].   

2.6. Comparison of transfection agents 

Generally the in vitro transfection efficiency of a polymer or lipid formulation 

depends on a large variety of factors including dose, N/P ratio, confluency of 

cells, composition of incubation medium, mode of complex formation and time 

of incubation. Therefore, optimal formulation techniques would be established 

by considering each of these factors and their influence on complex properties, 

cellular uptake, toxicity and transfection efficiency.  
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Only a few studies comparing efficiency and toxicity of several transfection 

reagents under similar experimental conditions have been performed. Table 1 

shows results of a study using several commercially available transfection 

agents (Data from [30]) at optimized N/P ratios on Cos-7 cells. It is obvious that 

lipid formulations overall showed a higher toxicity than polymers tested, 

although doses were only slightly more than half than when using polymers. 

Among the latter linear PEI ExGenTM 500 and the dendrimer formulation 

SuperfectTM show superior transfection efficiency compared to PEI 25 kDa 

(Aldrich) with moderate toxicities. Among lipids only LipofectAMINETM 

exhibits high transfection efficiency (higher than any of the tested polymers). 

Since not all factors mentioned above have been optimized for each formulation 

in this study, changes in experimental conditions may lead to significantly 

different results.  

Transfection system DNA dose Luciferase expression

 

cellular protein

   

( g/well) % of ExGenTM 500 % of control 

POLYMERS 

      

ExGenTM 500  0,75 100 79 

(linear PEI 22 Kda) 

      

PEI (25 Kda), Aldrich 0,75 39 85 

SuperfectTM 0,75 134 84 

(dendrimer formulation) 

      

LIPID FORMULATIONS

       

LipofectinTM 0,4 40 63 

LipofectAMINETM 0,4 176 61 

CellfectinTM 0,4 8 67 

Table 1  
Comparison of reporter gene expression and toxicity of different cationic polymers and 
lipids at optimized N/P ratios on Cos-7 cells  (Data from [30]).     
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3. HURDLES IN NUCLEIC ACID DELIVERY 

Ideally, a vector/nucleic acid complex should be delivered exclusively to target 

tissue where it may be subsequently taken up and further processed on the 

cellular level. To accomplish this, however, the complexes must first overcome 

numerous obstacles, such as misrouted deposition or complex destabilization 

with subsequent degradation in the bloodstream. On the cellular level great 

amounts of complexes are buried in the endolysosomal compartment or 

degraded in the cytoplasm. In the end, only a very small fraction of the applied 

dose has been observed to exhibit the desired effect, whereas the remaining 

portion of the dose is either inactivated or shows gene expression elsewhere.   

3.1. Hurdles on the systemic level 

3.1.1. The endothelial barrier 

One major problem for systemic gene therapy is the delivery of agents beyond 

the endothelial barrier. Extravasation of complexes is highly dependent on their 

size and the permeability of the endothelia at specific sites. In most tissues the 

structure of the endothelia is tight. Only organs and tissues with an irregular 

fenestration, such as the liver, spleen, bone marrow and certain tumors (see 

below), have endothelia with large meshes, which allow extravasation of 

molecules ranging up to 0.1 – 1 m. Thus, in most tissues the access of 

polyplexes to parenchymal cells is denied, a fact that hampers the efficacy of 

gene therapy dramatically.  

3.1.2. Problems resulting from cationic surface charge 

Unmodified polyplexes exhibit numerous problems when applied systemically. 

The major problem associated with this type of vectors is their cationic surface 

charge, which leads to numerous unspecific interactions with e.g. cellular blood 

components, vessel endothelia and plasma proteins such as albumin, fibronectin, 
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immunoglobulines, complement factors or fibrinogen [31]. These interactions 

lead to very short plasma half lives for complexes with a high cationic surface 

charge [32].  

Due to their size and the high number of cationic charges, polyplexes can 

activate the complement system [33] in a manner that suggests a correlation 

between the density of accessible positive surface charges and the extent of 

complement activation. Activation occurs via attachment of complement 

components, i.e. factor C3, to the complex surface and eventually leads to 

complex removal by the reticular endothelial system (RES). Large cationic 

polymers, such as long chain poly(L-lysine), PEI 25 kDa or high generation 

dendrimers, have enormous potential in activating the complement system, 

while small polyamines, i.e. oligo(L-lysine), exhibit this effect to a much lesser 

extent [33]. Complex formation of such polymers with DNA reduces the overall 

charge and as a consequence also reduces complement activation significantly. 

A decrease in the nitrogen to phosphate ratio leads to lower extents of activation 

and electrostatic neutral complexes only exhibit very low levels of complement 

activation.  

Interactions with plasma proteins are omnipresent in vivo and, therefore, play a 

major role in determining circulation time and cellular uptake. The major 

component, albumin, is primarily responsible for the rapid clearance of 

complexes from the bloodstream [34]. It has been demonstrated that interaction 

of albumin with polyplexes leads to the formation of ternary complexes with a 

reversed surface charge [34,35], resulting in the formation of large aggregates 

[32,35]. These associates are removed rapidly from the bloodstream, presumably 

via phagocytic capture by scavenger receptors of phagocytic liver cells or via 

accumulation in fine capillary beds.  

The administration of highly charged complexes leads to aggregate formation 

with cellular blood components, especially with erythrocytes. A subsequent 

obstruction of blood vessels accompanied by undesired consequences, such as 
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pulmonary embolism [31] may be the result. The complex-mediated aggregation 

of erythrocytes also influences the biodistribution and gene expression patterns 

of polyplexes in vivo, resulting in enhanced accumulation in the lung, due to a 

certain sieve effect of the pulmonary capillaries.   

3.1.3. Biodistribution and gene expression after i.v. application  

The biodistribution of unmodified polyplexes using different cationic polymers 

is quite similar. Organ distribution of the complexes immediately after injection 

shows a high accumulation in the lung, approximately 80-90 % of the injected 

dose, possibly resulting from aggregate formation with blood cells or plasma 

proteins and subsequent filtration in fine lung capillaries [35]. Due to the low 

stability of such aggregates, complexes are often released into the circulation 

again, leading to a secondary redistribution with high concentrations found in 

Kupffer cells of the liver. The endothelial tissue of other organs and tissues, e.g. 

spleen, kidney and especially endothelia close to the site of injection, 

accumulate significant levels of complexes, as well [36]. After 30 minutes post 

injection, usually less than 5 % of the injected dose is detectable [31] and the 

majority of the complexes remaining in circulation are attached to cellular blood 

components. A typical biodistribution pattern after i.v. administration of poly(L-

lysine)/DNA complexes is shown in Figure 2.  

Gene expression patterns after i.v. administration are rather similar to those of 

organ distribution, whereas phagocytic capture by the RES does not lead to high 

levels of reporter gene expression. The highest levels of gene expression are 

found in the lung, not only due to enhanced deposition, but also due to a more 

efficient gene expression in this organ [37]. Although the lung capillaries 

possess a tight endothelia, reporter gene expression after i.v. application has 

been measured not only in endothelial, but also in interstitial cells [38,39].  

Some studies have even discovered a rapid crossing of the endothelial barrier by 

polyplexes [39], although the mechanism of this transport has yet to be 
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elucidated.  It has been suggested that at sites where the vasculature is fragile, as 

in the alveoli, small complexes may be able to pass the endothelial barrier, due 

to vascular leakage. This theory is favored by experimental findings, which 

showed that only PEI/DNA complexes with a size of around 60 nm are able to 

exhibit this effect [40]. Other mechanisms, such as transport via a form of 

transcytosis or the existence of transport systems for polyamines, have also been 

postulated. Support for the latter theory has been shown in studies demonstrating 

that polyamines, such as putrescine, spermine or spermidine, are taken up into 

arterial endothelial cells via specific polyamine carrier systems [41,42]. Overall 

the lung represents an attractive organ for non viral gene delivery for the 

treatment of e.g. cystic fibrosis or lung cancer.  

 

Figure 2 
Typical organ distribution 30 min after i.v. administration of  cationic polymer/DNA 
complexes. Empty columns show distribution of unmodified complexes, filled columns of 
pHPMA-modified complexes (Figure from [48]).  

3.1.4. Steric stabilization of complexes 

The pattern of organ distribution showing initial deposition in the lung and 

subsequent rapid uptake predominantly into Kupffer cells of the liver is of 

limited value for therapeutic application. Hence, strategies must be developed to 
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change this biodistribution pattern and to prolong circulation, hereby enabling 

the targeting of specific tissues. 

Steric stabilization involves the attachment of hydrophilic polymers to 

complexes, thus shielding positive surface charges and creating a steric barrier 

against aggregation with e.g. albumin, complement factors or cellular 

components in the bloodstream. The modification of such complexes may 

reduce the potential of nonspecific interactions, such as opsonization or 

deposition due to cationic surface charges. Several strategies have been tested 

for their ability to shield the cationic surface charge of polyplexes.

 

Polyethylenglycol: Two different general strategies using PEG for steric 

stabilization of polyplexes have been developed. The first strategy is based on 

the formation of copolymers from cationic polymers and PEG [36,43-45], 

whereas the second approach relies on the initial formation of polymer/DNA 

complexes with subsequent attachment of PEG to free amino groups [31]. It 

could be demonstrated that small particles with a size of approximately 100 nm 

and surface charges close to neutrality could be obtained under appropriate 

conditions with both strategies [31,36,44]. The in vivo application of both 

construct types displayed a slightly prolonged circulation time compared to 

unmodified complexes. However, the circulation half-lives were still rather short 

compared to e.g. stealth liposome formulations. A decrease in gene expression 

in the lung and a lower initial toxicity was observed in both cases, when 

compared to unmodified complexes, most likely due to decreased interactions 

with blood constituents and, therefore, a lower rate of deposition in lung 

capillaries via filtration. Significant gene expression was also detected close to 

the site of injection for both approaches, suggesting a still significant rate of 

nonspecific electrostatic interactions. Overall however both PEG coating 

approaches were of limited use. 

Transferrin not only represents a possible targeting moiety for tumor cells 

and brain endothelia (see below), but has also been demonstrated to effectively 
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shield the surface charges of polyplexes [46]. When incorporated at appropriate 

densities it leads to a significant decrease of non-specific interactions with 

erythrocytes. In vivo studies using charge neutral transferrin-PEI/DNA 

complexes displayed the accumulation of DNA primarily in the liver and tumor 

tissues, whereas liver uptake mainly occurred into Kupffer cells, resulting in 

DNA degradation without significant gene expression. In tumor tissue, on the 

other hand, a remarkable 100-500 fold higher reporter gene expression was 

detected compared to other major organs, including the lung [46], thus making 

this strategy an interesting approach for further research. 

Poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA): HPMA polymers 

have displayed versatile properties as polymeric carriers for a large variety of 

drugs with an excellent biocompatibility [47]. Hence, this group of hydrophilic 

polymers represents an interesting candidate for surface charge shielding of 

polyplexes. The formation of electrostatic complexes consisting of poly(L-

lysine) and plasmid DNA with the subsequent attachment of semitelechelic 

pHPMA to uncomplexed -aminogroups led to decreased interactions with 

albumin and reduced association with macrophages in vitro [48]. In vivo 

experiments, however, did not display a prolonged circulation time in this study 

and liver uptake was even higher than for uncoated complexes (Figure 2). The 

detailed reason for these poor in vivo results remain as of yet unclear. 

Innovative shielding strategies: Shielding by simple attachment of PEG or 

pHPMA has not shown satisfying results. Therefore more sophisticated 

strategies have been developed, in order to obtain vectors that show sufficient 

extracellular stability in combination with triggered intracellular release of the 

complexed DNA. Crosslinking of primary amines of poly(L-lysine)/DNA 

complexes via disulfide bonds has shown promising results [49]. In circulation 

those complexes are stable thus offering efficient stabilization of the DNA, 

however when taken up into cells disulfide bonds are reductively cleaved and 

DNA is released. Such crosslinked complexes showed 10 fold increased plasma 
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circulation after i.v. administration compared to unmodified complexes with 

similar levels of reporter gene expression in vitro.  

Another approach uses plasmid DNA complexed with a reducible linear 

polycation and subsequent steric and lateral stabilization by multivalent HPMA 

copolymers [50]. In circulation these complexes provide efficient protection of 

DNA against degradation and furthermore shielding of the positive surface 

charge leads to a decrease of unspecific interactions. Transfer to a reducing 

environment (cellular uptake) again results in degradation, in this case of the 

polycation, leading to lower molecular weight compounds and hereby DNA 

release (see Figure 3). The exploitation of bioreversible bonds represents a very 

promising strategy.  

 

Figure 3  
Example for a polyplex modification with trigerred intracellular DNA release. 
RPC=reductively cleavable linear polycations (data from [50]).   
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3.1.5. Local application 

If a particular tissue or organ needs to be targeted in non viral gene or  

oligonucleotide therapy, local application may in many cases represent a more 

promising approach, since several barriers of systemic application can be 

avoided. This approach has been utilized for a variety of cases, including tumors 

[51-54], kidney [55], lung [56], brain [57-60], heart [61,62], skin [63], muscle 

[64], and arterial blood vessels [65,66]. Here we will discuss some important 

applications employing non viral vectors. 

Lung: Due to its direct accessibility, local gene therapy to the lung by 

direct airway application is an attractive approach. However, access is impeded 

by several obstacles. The first obstacle of gene delivery to and across the 

epithelial cells of the lung is a mucus layer secreted by goblet cells, which 

creates a mechanical barrier against access to the plasma membrane of the 

epithelial cells. Furthermore, the epithelium itself hinders the uptake of 

particulate structures, due to its dense structure with actin strengthened apical 

surfaces and characteristic tight junctions between cells inhibiting intercellular 

transport. Additionally, countless alveolar macrophages constantly patrol the 

lung removing particles from the deeper airway via phagocytosis.  

The method of application greatly influences the extent of gene expression in the 

lung [67,68]. For example, the instillation of poly- or lipoplexes in the 

respiratory airways was shown to lead to significant gene expression levels that 

could be significantly enhanced by the coadministration of penetration 

enhancers.  However, the use of penetration enhancers increased toxicity [69]. A 

further problem encountered using instillation strategies is the insufficient 

spreading of vector solutions on the lung surface and the channeling of airway 

administered solutions [70]. These factors led to unequal distribution and 

inhomogeneous gene expression patterns showing maximum levels in epithelial 

cells lining the bronchioles and in distal airways [70,71]. The even distribution 
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of preparations may be improved by the use of artificial surfactants, resulting in 

increased levels of gene expression [72]. 

A more convenient way of application for local gene therapy to the lung is 

aerosol delivery, a method that has been used for lipo-, as well as polyplexes 

[67,73,74]. In contrast to instillation, this method of application enables a more 

uniform distribution of transgene expression along the airways. In a study 

targeting lung metastases, a p53 tumor suppressor gene complexed with PEI was 

able to significantly inhibit growth of tumors, as well as to prolong survival time 

of laboratory animals [75].

 

Tumor: To reach cancer cells in a tumor, a blood-borne polyplex must 

enter the tumor supplying blood vessels, extravasate into the interstitium and 

finally migrate through the tumor tissue [76].  

Two general means of application are most frequently used to treat tumor tissue: 

The first method is a direct injection of complexes into arterial blood vessels 

that supply the tumor. As previously mentioned, tumors often show irregular 

endothelial fenestration, which makes it possible to reach the interstitial tissue 

via afferent blood vessels. Furthermore, complexes may even accumulate at this 

site, due to the enhanced permeation and retention (EPR) effect and/or 

electrostatic interactions [77,78], thus, enabling passive tumor targeting. 

However the problem using this technique is the poor distribution of polyplexes 

throughout tumor tissue and thus a limited transfection efficiency towards the 

mass of the tumor. 

Another method of application is the direct injection of the complexes into the 

tumor.  In this case, however, the low extent of complex diffusion throughout 

the tissue limits its applicability. When a direct injection into tumor tissue is 

performed, complex size, charge and concentration are of utmost importance for 

mobility within the tissue and, ultimately, the overall efficiency of the 

complexes. Even the speed of injection seems to play a crucial role for 

efficiency of intratumoral (i.t.) gene delivery [52]. A more detailed 
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characterization of complex properties with regard to their diffusibility in tumor 

tissue would be helpful for optimization of this approach.  

A method to enhance transfection efficiencies after i.t. injection has been 

demonstrated in mammary tumors. In this study in vivo electroporation lead to a 

significant increase of reporter gene expression [54]. Although this technique is 

limited to certain applications it represents an interesting method to enhance 

treatment efficiency.  

Intraperitoneal application of complexes has been performed successfully in 

several studies in animals exhibiting intraperitoneal disseminated tumors [51] 

whereas a certain specificity of gene expression could be achieved in tumors, 

due to their high mitotic activity. In this case complexes consisting of linear PEI 

and DNA displayed a higher efficiency than several lipoplex formulations 

without showing significant levels of toxicity [51].  

Brain: The brain endothelium is composed of non fenestrated cells 

surrounded by tight junctions that block the exchange of proteins, hydrophilic 

molecules, and ionic diffusion. Furthermore, transcellular movement via non-

specific fluid phase endocytosis does not occur in these cells and only small 

lipophilic molecules are capable of surmounting this barrier. However, there are 

several receptor mediated transport systems for specific molecules, such as 

transferrin. A successful approach of exploiting this transferrin receptor to cross 

the blood brain barrier after i.v. application has been described recently [79]. 

Local approaches for non viral gene therapy to the brain have also been 

developed. The injection of complexes into the internal carotid artery supplying 

the brain displayed significant gene expression in experimental brain tumors and 

other tissues. Approaches using direct intraventricular application or injection of 

polyplexes into specific structures of the brain have also been performed 

[58,60]. In all these cases significant, and in several cases long lasting, levels of 

gene expression could be observed, however, distribution was highly dependent 

on mobility and stability of complexes [57].  
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An inventive, non invasive approach for gene delivery to the brain stem was 

developed based on the observation that neurons are capable of taking up 

exogenous particles from the muscles they innervate. Thus, the injection of 

PEI/plasmid complexes into the tongue led to retrograde axonal transport to 

hypoglossal motoneurons of the brain stem and significant levels of gene 

expression in this area [59]. More detailed studies about the applicability of this 

technique are necessary to estimate their potential.  

3.2. Hurdles on the cellular level 

Reaching the cell membrane of a targeted cell is only half the way to efficient 

gene/antisense/ribozyme therapy. The nucleic acid has to be carried across 

several cellular hurdles in order to reach its desired site of action and to display 

the desired therapeutic effect.  

3.2.1. Across the cellular membrane 

The first obstacle to be surmounted in gene delivery is traversing the cellular 

membrane. Composed of a lipid bilayer and containing various integral proteins, 

it acts as a gatekeeper, selectively screening all foreign matter entering the cell. 

It has been shown that polyplexes are able to pass the cellular membrane via 

endocytosis [18,80], as long as they exhibit suitable surface properties and are of 

the appropriate size range. Endocytotic uptake, however, does have its 

disadvantages. Not only may complexes be exposed to enzymatic degradation in 

the lysosomes, but they also may be entrapped and never released.  

Strategies to circumvent such difficulties have become the object of intense 

investigations. A new and most promising approach includes the use of viral 

protein transduction domains, such as the HIV-TAT protein from HIV-1 virus. 

These proteins are capable of mediating the entry of large biomolecules directly 

into the cytoplasm without the use of endocytotic mechanisms. Some even 

promote transport across the nuclear envelope.   



Chapter 1  40

 
Uptake of polyplexes:

 
Uptake into the cells may occur in various ways, 

including adsorptive or fluid phase endocytosis, receptor mediated endocytosis, 

macropinocytosis or phagocytosis.  

The predominant, if not the only route of entry for polyplexes, is fluid phase or 

adsorptive endocytosis [80,81] following the clathrin coated pit mechanism [81]. 

Due to their content of glycoproteins, proteoglycans and glycerolphosphates 

[82] cell surfaces are negatively charged. Thus, adsorptive endocytosis is a 

plausible mechanism of entry for vectors with positive surface charges. The 

importance of proteoglycans for efficient uptake has been demonstrated 

experimentally [83], since removal of these compounds leads to a significant 

decrease in cellular uptake. Confocal microscopy studies have demonstrated that 

complexes adhere to the cell membrane in clumps and migrate to specific areas, 

most likely coated pits [81], within 30 minutes. Such findings support the theory 

of an adsorptive endocytotic mechanism. Additionally, uncomplexed 

polyethylenimine has been shown to deposit on the cell surface and 

subsequently enter the cell via endocytosis. [84].  

In contrast studies using L929 fibroblasts demonstrated that no aggregation on 

the cell membrane could be observed and a rapid uptake occurred within 10 

minutes, thus favoring a fluid phase mechanism of entry [80]. An explanation 

for this apparent discrepancy may be that, depending upon the cell line, 

adsorptive and fluid-phase endocytosis superpose. Therefore, factors such as the 

composition of the cell membrane or surface charge of complexes may influence 

the balance in favor of either one or the other route. 

Polyplexes coupled to targeting moieties are taken up by receptor mediated 

endocytosis (see below). At the early endosome level the receptor is recycled 

back to the cell membrane, while the receptor ligand attached to the vector is 

processed to late endosomes and lysosomes [85]. Targeted complexes featuring 

targeting moieties with a positive surface charge may also enter cells via 

adsorptive endocytosis and, in this case, both routes of entry may be observed. 
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3.2.2. Improving  unspecific cellular uptake 

Cationization of complexes: One way to achieve improved uptake into cells is 

by increasing the surface charge of complexes [86]. This modification results in 

a higher affinity to negatively charged membrane constituents and subsequently 

to a higher rate of uptake. At the same time, an increase in positive surface 

charges also results in an increased toxicity both on the cellular and systemic 

level. The in vivo applicability of such complexes becomes increasingly 

problematic, since a higher surface charge leads to increased nonspecific 

interactions resulting in a rapid removal from the blood stream as well as 

unwanted events such as lung embolism due to aggregate formation with 

erythrocytes. Therefore, the therapeutic use of this strategy is limited to local 

administrations and for improving transfection efficiencies in vitro. 

Protein transduction domains: An alternative route into the cell may be achieved 

with the help of so-called protein transduction domains (PTDs). Although the 

number of publications dealing with nucleic acid delivery in conjunction with 

PTDs is currently limited, this group of compounds will be discussed here to 

some extent, as they may hold the potency to open up a whole new branch in 

gene/ODN delivery. Since their discovery more than a decade ago [87,88] it has 

been demonstrated that PTDs mediate an endocytosis independent cellular 

uptake [89] of proteins, as well as other large molecules. Physiological 

membranes do not seem to hinder the PTDs, due to the fact that they are able to 

accumulate in cells in a concentration dependent manner. The overwhelming 

advantage of this type of cell entry is the circumvention of the harmful 

endolysosomal compartment with its acidic environment resulting in DNA/RNA 

degradation, as well as an inefficient release. All cell types used to date are 

susceptible to transduction which means that even cell lines with low 

transfection efficiencies via the classical route should be transfectable via PTDs 

and the percentage of transfected cells should increase. In vivo studies with 

PTDs have shown very encouraging results. The intraperitoneal injection of a 
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120-kilodalton beta-galactosidase protein coupled to the HIV-1 TAT protein led 

to a significant delivery in virtually all tissues [90] including the brain. 

Several sequences have been identified to possess transducing efficiency: The 

TAT protein derived from the HIV-1 virus [88], the drosophila antennapedia 

transcription factor ANTP [91] and the herpes simplex virus type-1 VP22 

transcription factor [89] are three examples possessing the highest efficiencies. 

Minimal sequences mediating a transducing efficiency are shown in Table 2. It 

should be noted that the 11 amino acid sequence derived from the TAT protein 

also bears a potential nuclear localization sequence, making it even more 

attractive for gene delivery purposes.  

A characteristic feature of PTD sequences is the presence of a high number of 

basic amino acids, such as arginine and lysine (see Table 2), which may be 

necessary for interactions with negatively charged constituents of cell 

membranes. Indeed, it can be demonstrated experimentally that membrane 

bound heparan sulfate proteoglycans are required for an efficient internalization 

of TAT [92]. Interestingly, the maximal size of the cargo molecule gaining entry 

to the cell varies depending upon the PTD: While TAT and VP22 are capable of 

mediating the cellular entry of peptides consisting of more than 1000 amino 

acids [90] and even 4 µm iron nanoparticles [93], ANTP mediated delivery is 

limited to peptides with less than 100 amino acids [94]. Mechanistic knowledge 

as to how PTDs mediate cell entry is currently limited, however we do know 

that no classical routes, such as receptor- or transporter-mediated mechanisms, 

as well as adsorptive endocytosis are involved [89,95-97]. Furthermore uptake is 

ATP independent and cannot be inhibited by cooling to 4°C. 

It is unclear if all PTDs mediate cell entry via the same mechanism. However 

direct interactions with the cell membrane seem to occur in all cases. A 

disruption of the membrane bilayer can also be ruled out, as no studies have 

reported leaking of cell content during transport. 
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Sequences of frequently used protein transduction domains 
HIV-1 TAT YGRKKRRQRRR (bold:a potential nuclear localization sequence) 

HSV VP22 DAATATRGRSAASRPTERPRAPARSASRPRRPVE 

ANTP RQIKIWFQNRRMKWKK 

    
Table 2 
Sequences of most frequently used protein transduction domains  

The major physiological task of all three peptides is the interaction with nucleic 

acids during transcription. Their transducing property is not necessary to fulfill 

this function, thus the evolutionary purpose remains as of yet unclear. This, 

however, could also mean that PTDs may have not undergone a selection 

process for their transducing potential during evolution and, therefore, it might 

be possible to improve this property by modifying the sequences. This has been 

done recently with success [98]. 

Making use of PTDs: A major difficulty of PTD utilization in DNA/RNA 

delivery is the positive charge of the peptides, which leads to electrostatic 

interactions. As a result, the peptide is not in its maximally active conformation 

and, thus, a reduced transducing efficiency is observed. An additional problem is 

the lack of specificity, so that combinations of PTD and targeting moieties will 

be required. 

The formation of ternary complexes using TAT peptide together with PEI and 

plasmid DNA has led to approximately a 10fold increase in reporter gene 

expression, as compared to regular PEI/plasmid complexes and an increased 

nuclear accumulation could be observed [99].  

Furthermore it has been demonstrated that liposomes with a size of 200 nm can 

be delivered directly into the cytosol without causing major damage of the 

vesicles by attaching TAT peptides to their surface [100]. ntisense 

oligonucleotides have been coupled to the ANTP peptide as well resulting in an 

efficient and specific downregulation of the target gene product using 

concentrations much lower than with regular ODNs [101].   
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3.2.3. Strategies to improve uptake into specific cell types  

Especially for in vivo therapy it is necessary to address gene delivery vehicles to 

specific cell types in order to avoid unwanted effects in non target cells. 

Targeting can be achieved actively by incorporating structures, which facilitate 

the exclusive uptake of the vector in certain tissues or cell types. Furthermore, in 

some cases, it can be achieved passively by taking advantage of particular 

physiological conditions of the target tissue such as irregular endothelial 

fenestration in tumors in conjunction with certain complex properties. A third 

method of achieving gene expression in specific tissues is the use of cell type 

specific promoters or enhancers, which can be activated by induction factors 

(e.g. hormones, growth factors, cytokines etc.) via responsive elements. This 

strategy has been pursued with success in several targets and represents a very 

helpful tool for increasing cell specific efficiency [102-106]. 

Active targeting: To achieve an efficient active targeting in vivo the vector must 

fulfill two requirements: On the one hand, unspecific interactions must be 

reduced by shielding positive surface charges of the complexes and by using 

rather low nitrogen to phosphate ratios. On the other hand, a targeting moiety, 

enabling uptake into a specific cell type, needs to be incorporated (see table 3).  

Target structure Targeting moiety cell/tumor type Reference 

folate receptor folate various [107] 

integrines RGD peptides tumor endothelia [108] 

transferrin receptor transferrin rapidly dividing tissues [109] 

asialoglycoprotein  lactose hepathocytes [110] 

receptor galactose hepathocytes [111] 

  

mannose dendritic cells/(hepathocytes) [111] 

  

asialoglycoprotein hepathocytes [112] 

LDL receptor LDL various [113] 

FGF receptor FGF various [114] 

EGF receptor EGF various [115] 

Table 3 
Active targeting strategies realized with polyplexes. For targeting with antibodies see 
Table 4 
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Integrins: Integrins are heterodimeric membrane receptors that are involved in 

interactions between cells and the extracellular matrix. Furthermore several 

bacterial, viral and eukaryotic pathogens use it as a receptor to efficiently bind to 

and enter the cell. Peptides containing the highly conserved arginine-glycine-

aspartic acid (RGD) motif, such as fibronectin [116], kistrin [117], and several 

viral capsid proteins [118] have been identified as candidates for specific 

interactions with integrins. Since integrins are highly overexpressed in tumor 

endothelia they represent an interesting approach for the improvement of nucleic 

acid delivery to tumor tissue. Several strategies have been realized to make use 

of this target, such as varying the carrier polymer. The size of the RGD 

containing peptide has been shown to influence integrin binding and the use of 

cyclic RGD containing oligopeptides has resulted in superior receptor affinities 

[119].  RGD peptides attached to polyplexes [108,120,121] and combinations of 

polyplex and liposomal approaches [122] have been shown to associate with 

cells much readily than those without a targeting moiety, resulting in an 

increased reporter gene expression of up to 200fold.  

Transferrin: The transferrin receptor was one of the first targeting structures 

used in non-viral gene delivery. It is physiologically necessary for the uptake of 

transferrin-iron complexes into all actively proliferating cells and highly 

overexpressed in rapidly dividing tissues such as tumors. Cerebral endothelial 

cells and hepatocytes possess significant levels of transferrin receptors, a fact 

that makes transferrin an attractive target for systemic gene therapy. Transferrin 

has been incorporated into polyplexes [123-126] via covalent or electrostatic 

attachment with and without PEG-spacers, resulting in a significant increase in 

reporter gene expression when compared to complexes without a targeting 

moiety. Several formulations have also been evaluated in vivo via regional [124] 

administration, whereby a significant increase in transfection activity in tumors 

was measured.  
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As described above the inclusion of high amounts of transferrin into polyplexes 

leads to both, effective shielding of surface charge and tumor targeting [46]. 

Interestingly, it has been demonstrated by an in vitro study with lipoplexes that 

apo-transferrin is as efficient as transferrin in enhancing reporter gene 

expression. Furthermore, inhibition studies using an excess of free ligand 

displayed no decrease in effectiveness [127]. These results are contradictory to 

previous results and suggest that attachment of transferrin might also improve 

gene therapy e.g. by facilitating endolysosomal escape. More detailed studies 

are underway.   

Folate: The folate receptor represents an attractive structure to target cancer 

cells. This issue of Advanced Drug Delivery Reviews contains a detailed review 

about cancer targeting with folate [128]. 

Glucosylated vehicles: The so-called asialoglycoprotein receptor (ASGPr) is 

expressed abundantly in hepatocytes and selectively binds to galactose-

terminated glycoproteins. Various saccharide ligands have shown affinity to the 

ASGPr, including mono- or oligosaccharides, such as lactose, galactose, 

mannose, fucose, as well as larger carbohydrates like asialo-oromucoid. The 

receptor is well characterized and ligand binding leads to receptor mediated 

endocytosis. The high level of receptor expression on hepatocytes in addition to 

the rather simple coupling chemistry of the sugars, has stimulated research on 

gene delivery vehicles incorporating ASGPr targeting moieties. The low 

immunogenicity of these conjugates compared to antibody- or peptide- 

conjugates makes them attractive for in vivo use.  

Several approaches have been developed to couple the above mentioned sugars 

to polyplexes and to evaluate their efficiency in the selective transfection of 

hepatocytes. Successful in vitro targeting has been reported in various cases 

using charge-neutral complexes containing poly(L-lysine) and 

polyethylenimine. A 10-1000fold increase of gene expression can be achieved in 

targeted cells when compared to complexes without a targeting moiety [129-33]. 



Introduction  47  

The attachment of sugars not only leads to a targeting effect, if incorporated at 

sufficient amounts it also increases the physical stability of complexes and 

enables the formation of small associates with neutral zeta potential, thus 

making them suitable for in vivo use. Efficient in vivo targeting of hepatocytes 

has been described in several studies using asialoglycoprotein-, asialo-

oromucoid-, mannose-, fucose- or galactose-conjugates [111,112,134-136]. 

Incorporation of a sugar moiety has increased uptake into liver cells 

significantly, however, the ratio of uptake into parenchymal or non-parenchymal 

(endothelial and Kupffer cells) liver cells differs depending on the type of sugar 

attached. Since hepatic disorders, such as cirrhosis or liver cancer, affect 

predominantly parenchymal cells this cell type should be the predominant target. 

Galactosylated polyplexes have shown a higher affinity to parenchymal cells 

than non parenchymal cells, while mannosylation or fucosylation leads to a 

lower ratio of distribution between both cell types [111,137].  A possible 

explanation for this preference is the fact that the asialoglycoprotein receptor, 

which is present on parenchymal cells, recognizes all three sugars, while the non 

parenchymal cells such as Kupffer cells, also exhibit mannose and fucose 

receptors, that take up additional conjugate concentrations [137]. A galactose-

receptor has been identified on Kupffer cells, however, uptake efficiency is 

much lower when compared to the asialoglycoprotein receptor on hepatocytes. 

Promising hepatocyte targeting results in vivo have been achieved by 

intravenous injection of a vector consisting of poly(L-ornithine) modified with 

galactose and a fusogenic peptide. The use of this vector led to highly enhanced 

uptake into parenchymal liver cells and 95 % of total reporter gene expression 

was observed in the liver [138]. Hepatic uptake could be inhibited by prior 

administration of BSA conjugates with galactose or mannose, a fact that 

provides evidence for a predominantly receptor mediated uptake [111,138].   

Mannose conjugates are most frequently used as for enhancing the uptake into 

dendritic cells  [139]. 
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Conjugation of antibodies: Due to the high specificity of binding to their target 

structures antibodies or antibody fragments represent very promising candidates 

for targeted gene and oligonucleotide delivery. Several types of antibodies or 

their fragments have been conjugated to polyplexes via different conjugation 

strategies in order to achieve a targeting of specific cell types (see table 4)   

Target Antibody Polymer Reference 

lung endothelia anti platelet endothelial cell adhesion PEI [140] 

  

molecule (anti PECAM) 

   

leukemia T-cells anti-JL1  poly(L-lysine) [141] 

neuroblastoma anti-RET receptor-  poly(L-lysine) [142] 

  

tyrosine kinase 

   

neuroblastoma anti chCE7 poly(L-lysine) [143] 

squamous carcinoma

 

anti erythrocyte growth poly(L-lysine) [144] 

  

factor  

   

epithelial cells antibody fragments against  poly(L-lysine) [145] 

  

polymeric immunglobulin receptor 

   

peripheral blood anti-CD3 antibody PEI [146] 

mononuclear cells 

     

T lymphocytes T101  poly(L-lysine) [147] 

Table 4 
Examples for antibodies used as targeting moieties in polyplex gene delivery  

All immunologically targeted conjugates summarized in Table 4 have shown a 

significant increase in transfection efficiencies, as compared to complexes 

without targeting moiety. Enhancement of gene expression is usually greater 

than obtained by most other targeting moieties. However, a potential 

disadvantage of the in vivo application of antibody conjugates is the possibility 

of immunogenicity after repeated administration and their huge size, which 

might affect complex size and stability. 

Low density lipoprotein (LDL) receptor: Effective targeting of cells displaying 

the LDL receptor on their surface like hepathocytes or artery wall cells can be 

achieved by using complexes carrying LDL on their surface. A sophisticated 

strategy in this context is the so-called terplex system. It consists of stearyl-
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poly(L-lysine), low density lipoprotein (LDL) and DNA wherein the ratio 

between the charged stearyl-poly(L-lysine) and the hydrophobic moiety of LDL 

is optimised for obtaining particles that are suitable in size and charge for an 

efficient cellular uptake. This system is capable of mediating a receptor 

dependent uptake into artery wall cells in vitro [113] as well as the efficient and 

long lasting transfection of myocardial cells in vivo [62].   

Growth factors: Growth factor receptors, such as the epidermal growth factor 

(EGF) or fibroblast growth factor (FGF) receptors are attractive targets in cancer 

gene therapy, since they are highly overexpressed in a large variety of cancer 

tissues, including lung, head, neck, bladder, liver and breast cancers (EGF-

receptor) [148]. These receptors bind to their target specifically and with high 

affinity, whereby upon binding the receptors dimerize and are internalized 

together with their bound target. Recently, EGF has been covalently coupled to 

PEI [115]. This modification led to a 300fold increase of reporter gene 

expression, when compared to the unmodified polymer. Similar observations 

were made when EGF-poly(L-lysine) [149], EGF-PEI [150] or FGF–poly(L-

lysine) [151] conjugates where employed.  

Passive targeting: Complexes or macromolecules may accumulate passively in 

solid tumors, due to an increased permeability of tumor endothelia and lack of 

normal lymphatic drainage in connection with hypervasculature of the tissue 

[77]. This effect is known as the enhanced permeability and retention (EPR) 

effect and leads to the capture of complexes in the tumor interstitium. It has 

been exploited successfully to passively target polymers [152] or liposomes 

[153] to tumors without incorporating a more specific targeting moiety. The 

extent of accumulation depends on size and charge of the compound. It has been 

demonstrated that cationic lipoplexes or cationic dextran derivatives accumulate 

in regions of high angiogenic proliferation, most likely due to electrostatic 

interactions [78] and this effect may be applicable to polyplexes, as well. 
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Figure 4 
Scheme of subcellular trafficking of polyplexes  

3.2.4. Escape from the endosome 

Independent of the mechanism of endocytotic uptake, polyplexes invariably 

follow the scheme of the endolysosomal pathway, leading from the early to late 

endosomes, and ultimately ending in the lysosomal compartment. The lysosomal 

vesicles fuse and assemble in the perinuclear region [80]. Here the majority of 

complexes remains without significant changes in distribution patterns [18]. In 

order to be effective, a small fraction of complexes or at least their nucleic acid 

component must escape from this route since the lysosomal environment, with 

its aggressive nucleases and acidic pH of approximately 5, eventually destroys 

the potential efficacy of the entrapped complexes. Release has to take place 

rapidly, otherwise degradation occurs. Since endosomal escape is one of the 

major bottlenecks in non viral nucleic acid delivery, researchers are seeking to 

improve nucleic acid delivery at this level. They have attempted to mimic viral 

strategies by using peptides with pH triggered fusogenic activity, which are 

capable of destabilizing lysosomal vesicles.  Another method uses specific 

polymer properties, which enable the polyplexes to exit from 

ensosomes/lysosomes more efficiently. 
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Mechanism of endosomal escape: Vesicular escape of polyplexes most likely 

occurs via a pH dependent process. It is obvious that the efficiency of the 

polymers used for non viral nucleic acid delivery is narrowly connected to their 

buffering capacity in the lysosomal pH range of 5-7. Polymers that exhibit high 

transfection efficiencies, such as polyethylenimine [8], Starburst DendrimersTM 

[29], or imidazole-containing polymers [21-24,154] exhibit this property. The 

fact that the latter enhance gene expression is a rather strong evidence for the 

importance of buffering capacity, since their structure is unrelated to PEI or 

dendrimers. In contrast, cationic polymers with strong basic residues, e.g. 

poly(L-lysine) or polymers without titrable groups, such as quaternary amines, 

exhibit very low transfection efficiencies [18].  This may very well be due to the 

lack of protonable groups between pH 5-7. A plausible explanation for the 

mechanism of polyplex release, the so called ´proton sponge hypothesis´ has 

been developed [11]. According to this hypothesis the buffering capacity of the 

polymer leads to increased influx of protons and chloride ions during 

endolysosomal acidification, which results in an increased osmotic pressure in 

the vesicle. As a consequence, the passive diffusion of water into the vesicle 

increases, thus leading to swelling and eventually rupture or leakage of the 

vesicle. The expansion of the polymer structure, due to repulsion of positive 

charges may contribute to the vesicle destabilization. An indication for the 

validity of this hypothesis is shown by the fact that reporter gene expression is 

reduced dramatically when lysosomal acidification is abolished by the selective 

inhibitor bafilomycin A1. This has been demonstrated for PEI  [18,155] and 

imidazole-containing polymers [23]. Recently more experimental evidence was 

obtained for a pH dependent release of PEI-polyplexes possibly due to vesicle 

bursting. Living cell confocal laser scanning microscopy showed that release of 

PEI/ribozyme complexes occurs as a sudden event and that this process could be 

abolished by inhibiting endolysosomal acidification [18]. Another finding 

supporting the ´proton sponge hypothesis´ is that complexes with improved 
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packaging and thus a higher density of amine groups possesses a greater 

buffering potential, which results in higher transfection efficiencies [156]. 

It has been demonstrated that high generation PAMAM dendrimers and PEI 

possess a high membrane destabilizing potential compared to low generation 

dendrimers or poly(L-lysine) [157,158]. This may be a result of electrostatic 

interactions between the negatively charged membrane constituents and cationic 

polymers, a process that may cause disturbances in the curvature of the vesicles 

and finally lead to leakage [157] or bursting. In the case of dendrimers, these 

destabilizing effects seem to be more prominent for high rather than for low 

generation polymers, possibly resulting from the more rigid structure of the 

former. The results of these studies were obtained using anionic vesicles 

incubated with the cationic polymers, a system in which the described 

interactions occurred on the outside of the vesicles and not from within, as is 

found in vivo. This mechanism seems to play a role in gene delivery as well, 

since there seems to be a correlation between efficient membrane disruption in 

vitro and reporter gene expression. 

Strategies to enhance endolysosomal escape/ to prevent lysosomal degradation: 

Great efforts have been undertaken to abolish the endosomal bottleneck. The 

most important strategy is adapted from viruses, which have evolved 

sophisticated methods to escape the harsh environment of this compartment and 

deliver their genetic information safely into the nucleus.  

One approach is the use of short amino acid sequences derived from the N-

terminus of Haemophilus Influenza Haemagglutinin-2.  These amino acid 

sequences are responsible for enabling endolysosomal escape during the 

acidification process. Several sequences with approximately 20 amino acids 

have been identified and used successfully.  It has been discovered that all 

sequences follow a similar scheme [20]. For example, the INF7 peptide with the 

sequence GLFGAIAGFIENGWEGMIDGGGC exhibits a hydrophobic side 

chain, such as leucine, isoleucine or tryptophan (underlined) at nearly every 
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fourth amino acid. The rest of the sequence consists of variable amino acids, 

although it is important that no helix breaking amino acids are present and 

several glutamic acids are included. The ?-carboxyl groups of these glutamic 

acids play the key role in the activation of the fusogenic activity of the peptide.  

At neutral pH the ?-carboxyl groups are deprotonated, thus, leading to 

electrostatic repulsion and thereby conferring the sequence a random coil 

structure without fusogenic activity. When the pH drops, however, the carboxyl 

groups are protonated and the charge repulsions diminish. This process leads to 

a transition from the random coil to an a-helical structure, which displays the 

above mentioned hydrophobic residues on one side, thus making the helix 

amphipathic. The hydrophobic side of the helix may be able to insert itself into 

the vesicular membrane and disturb the membrane geometry, eventually leading 

to release of the vesicle contents. Furthermore, inserted helices may aggregate 

and form pores, which result in vesicle leakage. 

Experimental evidence has been gathered implying that this is not the only 

mechanism of transfection enhancement, at least for the INF7 peptide. It was 

discovered that this peptide also effects transfection at later stages, e.g. that it 

promotes dissociation of DNA from polyplexes in the nucleus [159] or acts as a 

nuclear localization sequence.  

Several synthetic peptides displaying pH dependent fusogenic properties have 

been synthesized successfully following similar structure principles [160,161]. 

The synthetic peptide GALA WEAALAEALAEALAEHLAEALAEALEALAA 

has been demonstrated to bind to phospholipid membranes at acidic pH 

[160,161] and to form aggregates within the membrane. These aggregates form 

membrane pores, although they are too small to enable plasmid DNA to escape 

from vesicles [162,163]. Therefore, other mechanisms must contribute to the 

transfection enhancement of GALA. Simoes suggested that in the case of 

lipoplexes the conformational change of the peptide could promote 

deaggregation of complexes, hereby releasing larger amounts of cationic lipids. 
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These could lead to a flip flop of anionic lipids from the cytoplasmic leaflet of 

the membrane into the region of pores formed by GALA peptides and 

subsequently to extensive membrane destabilization [164].    

Another example of a synthetic fusogenic peptide following the above described 

rationale is KALA WEAKLAKALAKALAKHLAKALAKALKACEA [165]. 

This peptide also mediates acid dependent increased vesicular escape and 

achieves transfection enhancement [166-68].  

Disadvantages of using protein structures like fusogenic peptides are low 

stability of the peptides, high costs for peptide synthesis and an immunogenic 

potential of these structures. They also do not enhance transfection efficiencies 

of polymers that already display rather high levels of reporter gene expression.   

Treatment with the lysosomotropic agent chloroquine has been used to enhance 

transfection efficiencies of cationic polymers without proton sponge properties, 

e.g. poly(L-lysine) in vitro. Chloroquine is thought to protect internalized 

material from degradation by preventing pH decrease [169,170] or acting as an 

endosomolytic agent [19,171]. The dimension of enhancement, however, is even 

lower than for fusogenic peptides and shows great variations between cell lines. 

The overall transfection efficiencies remain comparably low. Due to toxicity 

problems with chloroquine in vivo, the applicability of this compound is limited 

to the enhancement of transfection in vitro. 

A method developed to disrupt the membranes of endosomes and lysosomes 

precisely in a desired location, such as in tumor tissue, is the so-called 

photochemical transfection. In this technique photosensitizing compounds 

selectively accumulate in endosomal or lysosomal membranes, which upon 

illumination disrupt the vesicle. This method, in conjunction with regular 

poly(L-lysine) mediated transfection, led to a 20fold higher reporter gene 

expression, as well as a significant increase in the number of transfected cells 

[172].  
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3.2.5. Through the cytoplasm to the nucleus 

After release from endosomes/lysosomes the DNA/RNA component of 

polyplexes has to cross the cytoplasm in order to reach its site of action. The 

mobility of large molecules, such as plasmid DNA, is extremely low in the 

cytoplasm, making them an easy target for cytoplasmic nucleases. While 

ribozymes and antisense oligonucleotides may already be active in the cytosol, 

plasmid DNA has to be transported into the nucleus, in order to exhibit the 

desired gene expression. Thus, the major challenge is to modify the nucleic acid 

or complex in such a way as to protect it from degradation, however enable 

release from carrier and facilitate transportation into the nucleus.     

Stability and mobility of DNA in the cytoplasm: The cytoplasm is a critical 

place with respect to stability of DNA and RNA, due to the presence of 

nucleases that reduce their half life dramatically. Naked plasmid DNA, for 

example, exhibits a half-life as short as 50-90 minutes, which is likely due to 

degradation by cytoplasmic nucleases [173,174]. The importance of this fact 

becomes even more obvious when one recognizes that the majority of plasmid 

DNA enters the nucleus during cell division and, therefore, must remain stable 

until the next disassembly of the nuclear envelope. Accordingly, the role of the 

cell cycle length in this process must also be stressed. It is recognized that 

rapidly dividing cell lines show more efficient gene expression than slowly 

dividing ones, which is attributed to the short intervals of nuclear disassembly.  

Another factor that plays an important role in nucleic acid transit through the 

cytoplasm is the rate of mobility, which depends on size and spherical structure 

of the molecule. Low mobility means a longer trafficking time to the nucleus 

and thus a prolonged exposure to aggressive nucleases. While the diffusion rate 

for a small 100 bp DNA fragment is only ~5 times slower than in water, it is 

reduced dramatically with increasing size. Large DNA molecules, such as 

plasmids exhibit an extremely low mobility [175]. Several factors are 

responsible for the decrease in cytosolic diffusion rate. The higher viscosity of 
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the cytosol and sievelike effects of the cytoskeleton, forming meshes of ~10 nm 

that sterically hinder diffusion of large molecules contribute to this effect. 

Interactions of the negatively charged DNA with cytosolic constituents may also 

play an important role [176]. Microinjection studies have shown that the 

majority of the injected plasmid remains at its site of injection. Injections farther 

from the nucleus (60-90 µm) lead to a significant decrease in gene expression, as 

compared to injections performed in close proximity to the nucleus [176]. 

Therefore the site, where plasmid DNA is released into the cytosol is of great 

importance for efficient nuclear delivery.  

Effect of delivery agent in the cytoplasm: The above mentioned microinjection 

studies of naked DNA may not accurately display the situation for plasmid DNA 

or oligonucleotides during non viral nucleic acid delivery, since the mode of 

cytosolic transit for these molecules is not currently known. They may be 

complexed to some extent either with the transfection agent or with other cell 

constituents such as membrane lipids [81], and thus in a compacted state. This 

compaction could lead to an increased cytosolic mobility, as compared to naked 

DNA, or could offer an increased stability against cytoplasmic nucleases. 

Evidence for these assumptions has been gathered experimentally by cytosolic 

microinjection of polyplexes [177]. The microinjection of PEI/plasmid 

complexes resulted in a 10fold higher level of gene expression, as compared to 

naked DNA. This effect was independent of the polymer-nitrogen to DNA-

phosphate ratio, suggesting that the compaction mediated by the polymer may 

be of greater importance than the positive net charge of the complexes. In other 

words, the enhanced gene expression may be a consequence of increased 

cytoplasmic mobility, due to the smaller size of compacted DNA. 

Alternatively the cationic polymer could alter the structure of the cytoskeleton 

by widening the ´meshes´ and, thus, enhancing the permeability for large 

molecules. In vitro studies reported interactions between cationic polymers and 
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f-actin fibres leading to the formation of bundles and thus disturbing their 

natural assembly [178].  

A further reason for the higher level of gene expression could be the protection 

of DNA from cytoplasmic nuclease degradation afforded by the complex 

formation with cationic polymers demonstrated in vitro. Several studies have 

evaluated the stability of naked and complexed DNA/RNA in the presence of 

DNases or RNases, whereas excellent stabilization was observed using cationic 

polymers such as PEI even using very high enzyme concentrations [179,180].   

3.2.6. Into the nucleus 

The final barrier in non viral gene delivery is the nucleus. Access to this 

compartment enables the expression of the delivered gene and the desired 

therapeutic effect. The nuclear compartment is surrounded by a formidable, but 

not impenetratable barrier, the nuclear envelope, which consists of a double 

membrane interrupted by large integral protein structures, the so called nuclear 

pore complexes (NPC). Two paths lead into the nucleus: During mitosis the 

nuclear membrane disassembles and, thus, even large molecules, such as 

plasmids are able to gain access. In contrast, during interphases, the only way to 

enter the nucleus is through the NPC. This entry may occur via one of two 

different routes: While small molecules or ions are able to diffuse passively 

through the NPC, larger molecules, such as proteins or RNA, require something 

similar to an identification tag that is recognized by receptors and, thus, enables 

translocation into and out of the nucleus. These “tags” are termed nuclear 

localization sequences (NLS) if they mediate transport into the nucleus and 

nuclear export signals (NES) if they enable exit from the nucleus.  

DNA, however, does not move into the nuclear compartment under 

physiological conditions and, therefore, does not interact with NPCs [181]. 

Hence, the rate of DNA entry into the nucleus is very low and highly 
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sophisticated strategies are required to increase entry to levels necessary for 

efficient gene therapy.  

For therapeutic purposes nuclear translocation through the NPC seems to be 

only important for slowly dividing tumors. Fast dividing tissues have a sufficient 

frequency of cell divisions, thus nuclear entry occurs during disassembly of the 

nuclear membrane. 

The nuclear pore complex (NPC): NPCs are large, nuclear membrane protein 

structures of ~120 million Daltons in vertebrates [182]. They contain 50-100 

functionally distinct proteins [183], the so-called nucleoporins, which are 

involved in transport processes or form the structure of the NPC. During mitosis 

in vertebrates these proteins are fragmented into approximately 12 

subcomplexes, which then are reassembled at the end of the telophase to form 

the structure of the pore complex again [183].

 

Transport through the NPC: Molecules which are trafficked through the NPC 

can be classified into molecules with or without affinity to components of the 

NPC. The entry of molecules with no affinity occurs via passive diffusion and 

seems to be controlled only by size and steric properties [184,185]. The upper 

size limit for this form of nuclear entry is approximately 50 kDa [186], 

corresponding to a molecule diameter of approx. 10 nm. The velocity of this 

process is, as in every diffusion process, inversely proportional to the size of the 

molecule.  

On the other hand, a variety of molecules larger than 50 kDa are able to enter 

the nucleus via a different route. This process, however, requires not only 

energy, but also specific interactions with components of the NPC. Generally, a 

series of association/dissociation processes is thought to mediate nuclear entry 

of the substrate [182]. Feldherr et al. determined the upper size limit for this 

form of entry using gold particles of various sizes coupled to nucleoplasmin (see 

below) [187], and discovered that it is approximately 26 nm, which corresponds 

to a molecular mass of ~ 8 million Dalton. This size limit varies not only 
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between species, but also within the same cell line depending on the confluency 

or energy status of the cells [187]. The diameter of the substrate seems to be the 

most important property for passage across the NPC, as no limitation for the 

length of a substrate was found.  

Nuclear localization sequences (NLS): Protein sequences that mediate nuclear 

import are so called nuclear localization sequences (NLS). A NLS is a short 

amino acid sequence that enables the active transport of proteins or viral DNA 

into the nucleus. Although more than 100 NLS have been identified [188], 

several aspects regarding their function remain yet to be investigated. One of the 

most intriguing questions still unanswered is: To what extent do homologies 

exist among NLS? NLS do not conform to a specific consensus sequence, very 

likely because they interact with different receptors. However, they can be 

classified into monopartite and bipartite motifs [189]. In these sequences, the 

positively charged amino acids, lysine and arginine, are typical [190]. Usually, 

the monopartite motif consists of several positively charged amino acids, 

accompanied by a helix breaking residue, for example, the 92 kDa SV40 large 

T-antigen NLS, PKKKRKV [191]. For this example it has been demonstrated 

that phosphorylation and dephosphorylation of the SV40 large T-antigen protein 

upstream from this sequence is involved in the regulation of affinity to proteins 

interacting with the NPC machinery [192]. Bipartite NLS usually consist of two 

sets of positively charged residues with a small upstream cluster of two arginine 

or lysine residues separated by a 9-12 amino acid point mutation tolerant linker 

from a downstream cluster similar to a monopartite NLS [193]. Examples for 

bipartite NLS are the nucleoplasmin NLS, KRPAATKKAGQAKKKK

 

[194] or 

the nucleolin NLS, KRKKEMANKSAPEAKKKK

 

[195]. It should be noted that 

not all experimentally identified NLS fit into the above mentioned scheme and 

also many cytosolic, non-nuclear proteins show sequences similar to the above 

mentioned properties. Interestingly, if a protein contains both a NLS and a DNA 

binding site these regions overlap in ~90 % of the cases, indicating that during 
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evolution the principle of DNA binding via electrostatic interactions was used 

for targeting DNA binding proteins to the nuclear compartment.   

Examples for NLS functions differing from the classical ones described above 

are the arginine-rich sequences, Tat and Rev, from the human 

immunodeficiency virus type 1 (HIV-1). These sequences do not only act as 

protein transduction domains, mediating access to the cell in an endocytosis-

independent way, but also enhance nuclear uptake [196].  

It has been thought that poly(L-lysine) acts as a NLS, due to the large density of 

positive charges similar to those found in mono- and bipartite NLS [197]. This 

assumption, however, has been refuted. By using polylysine carrying peptides it 

could be demonstrated that no significant affinity to NLS-binding subunits of 

the nuclear import machinery exists and no rapid accumulation in the nucleus 

occurred [197].  

Specific DNA sequences have also been observed that mediate increased nuclear 

import. Plasmids containing a region of the SV-40 early promoter and enhancer 

have been shown to cross the nuclear envelope much more efficiently than those 

without this specific sequence [198]. Studies investigating the mechanism of 

nuclear uptake have pointed out that NLS harbouring cytosolic transcription 

factors selectively bind to specific DNA sequences on the plasmid thus forming 

a DNA/peptide complex that is able to enter the nucleus [199]. The 

incorporation of such a viral nucleotide sequences in order to enhance nuclear 

uptake is a conceivable strategy to improve nuclear uptake of plasmid DNA. 

Modifying the binding site of these sequences for transcription factors that 

particularly occur in specific cell types enables the selective targeting to the 

nucleus in these cells [199].

 

Nuclear entry of DNA: In contrast to protein or viral DNA entry into the 

nucleus, little is currently known about the mechanism of DNA entry. What we 

do know is that, although the transport of DNA from the cytosol into the nucleus 

does not occur under physiological conditions, the NPC does not seem to be an 
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impenetratable barrier to passive diffusion. Unfortunately, the passive entry of 

DNA becomes less efficient with increasing size. Small nucleic acid molecules 

with a size of less than 300 bp have little difficulty entering the nucleus via free 

diffusion [200]. For larger DNA molecules >300 bp the rate of transfer through 

the intact nuclear envelope decreases with the size of the molecule.  

The mode of nuclear entry of plasmid DNA in non dividing cells occurs 

independently of NLS-bearing proteins, as it cannot be inhibited by cooling 

down to 4 °C or ATP depletion, which inhibit both active protein uptake [181]. 

Evidence suggests that two different mechanisms of nuclear entry are likely for 

plasmid DNA. On one hand a rather inefficient passive diffusion through the 

aqueous pores of the NPC is postulated, whereas, on the other hand, entry may 

occur at the time of nuclear membrane disassembly during cell division. The 

former path has been demonstrated by several groups via microinjection studies. 

Pollard [177] found that no more than 0.1 % of the plasmid copies microinjected 

into the cytoplasm reached the nucleus. This result was improved by 10fold 

when plasmid DNA was complexed to PEI. Mirzayans [201], in contrast could 

not detect any transient gene expression after cytosolic microinjection. An 

explanation for this inefficient nuclear entry could be the low velocity of the 

translocation process in conjunction with the short half life [173] and low 

mobility [175] of the plasmid DNA in the cytosol. 

Evidence for the latter route is supported by the fact that gene expression is 

generally much higher in rapidly dividing, than in slowly dividing cell lines. If 

cells are arrested in the G1 phase and, thus, unable to perform mitosis, reporter 

gene expression is up to 500 times lower than in cells that undergo mitosis 

starting from the S or G2 phase [202].  

Nuclear localization sequences have been used in various ways to improve the 

uptake of plasmid DNA into the nucleus.  

Non-covalent attachment of NLS: Electrostatic complexes between negatively 

charged DNA and positively charged SV40 large T-antigen NLS have been 
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utilized. Cytoplasmic microinjection of complexes into zebrafish embryos have 

shown a significant increase in nuclear uptake in comparison to naked DNA 

[203-205], which increased with higher NLS:plasmid ratios. Complexes with a 

nuclear import deficient reverse sequence and plasmid DNA did not show 

nuclear accumulation or increased gene expression under the same experimental 

conditions. These findings indicate that if plasmid DNA and NLS reach the NPC 

simultaneously, electrostatic interactions can promote the nuclear uptake of 

DNA.   

Another approach using non-covalent interactions between DNA and NLS 

bearing proteins is their complexation to histones. These relatively small 

proteins are synthesized in the cytosol and imported into the nucleus via the 

NLS/NPC machinery. The use of a recombinant histone containing the 

carboxyterminal domain of the human histone, H1, complexed to plasmid DNA 

and a lipid formulation resulted in a 20fold higher luciferase expression than 

plasmid-lipofectin complexes alone [206,207].  

The Tat sequence has also been used in electrostatic complexes with PEI. In this 

study an enhanced nuclear uptake was observed microscopically and a more 

than 10fold increase in reporter gene expression was detected [99].   

Strategies exploiting complementary base pairing between DNA strands to non 

covalently attach a NLS to a specific site of a DNA molecule have been realized 

as well. For example Neves et al. [208] attached a NLS specifically to plasmid 

DNA by forming a triple helix with an oligonucleotide-NLS peptide conjugate 

complementary to a specific sequence on the plasmid. These complexes were 

able to interact specifically with proteins involved in nuclear uptake. 

Microinjection of the complexes into cells, however, did not lead to nuclear 

accumulation, as no diffusion from the site of injection could be observed.  

Another elegant example of a complementary approach is the use of a peptide 

nucleic acid (PNA) sequence conjugated to a NLS. PNA contains the same 

bases as DNA, however, the desoxyribose-phosphate backbone is replaced by a 
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peptide structure that can be functionalized with a NLS. PNA can form double 

or triple strands with complementary DNA. The use of PNA-NLS conjugates 

have lead to an increased nuclear uptake of oligonucleotides and enhanced 

transfection efficacy of plasmid DNA, which could be even further improved by 

the use of PEI as delivery agent [209].   

Recently it has been reported that linear 22 kDa PEI is able to mediate efficient 

and cell cycle independent nuclear uptake of plasmid DNA [16]. The detailed 

mechanism how transport through the NPC occurs, however, remains 

unelucidated and needs further investigation. 

Covalent coupling of NLS: A different way to take advantage of NLS is to 

synthesize covalent conjugates with DNA. This strategy has been realized by 

several groups using various coupling methods and different evaluation 

techniques [200, 210-12]. Zanta et al. [210] synthesized a capped 

CMVLuciferase-NLS gene containing a single SV-40 large T-antigen NLS per 

DNA molecule. They found a 1000fold enhancement of the transfection 

efficiency for this conjugate when compared to unmodified DNA. This effect 

was reduced to normal levels after the replacement of a single lysine residue 

with a threonin in the NLS, suggesting that the enhancement of transfection was 

the result of an increased nuclear uptake. Ludtke et al. [200] synthesized NLS-

DNA conjugates with various sizes of DNA. They observed that the coupling of 

NLS to DNA significantly enhanced DNA uptake into the nucleus, whereas the 

efficiency of uptake was dependent upon the size of the DNA.  

Although the non covalent strategy for binding NLS to DNA has been tested in 

vivo with some success [213] the use of a covalently linked NLS seems to be 

more promising, due to the much higher stability of these conjugates.   
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4. GENE THERAPY STRATEGIES TOWARDS 

CANCER 

Progress of molecular biology has provided a remarkable increase in our 

knowledge about cancer and its molecular mechanisms. The introduction of 

genes and nucleic acids into mammalian cells has become feasible during this 

information explosion. These advances have enabled cancer gene therapy to step 

from a diffuse vision into laboratory routine and even into clinical trials. 

Specific forms of cancer are especially suitable for gene therapy since cancer 

development has its origin in genetic mechanisms. At least one mutation from a 

protooncogene to an oncogene in conjunction with an aberration of a tumor 

suppressor gene leads to cancer genesis and proliferation. In contrast to other 

strategies, a therapy on this level is capable of providing high efficiency and 

specificity. Several strategies have been pursued to exploit the potential of this 

new field. Antisense- and ribozyme therapy provide the possibility of 

specifically downregulating the expression of particular genes predominantly by 

interactions with mRNA. In gene therapy new DNA material is introduced into 

the nucleus of the target cell. Different strategies such as knockout gene therapy, 

gene replacement, suicide gene therapy and immunomodulatory strategies have 

been performed successfully. The principles of these approaches will be 

introduced briefly, however non viral strategies most often use reporter genes 

which have no cancer relevance. Furthermore the vast majority of the studies 

have been accomplished with viruses.   

4.1. Antisense oligonucleotides and ribozymes 

Antisense oligonucleotides and ribozymes possess the potential to downregulate 

the expression of particular genes in a highly specific manner. In contrast to 

knockout gene therapy where a gene coding for an antisense RNA 



Introduction  65  

oligonucleotide or ribozyme is introduced into the target cell, this method 

employs synthetic oligonucleotides. 

 
Antisense approaches: Antisense strategies make use of a highly specific 

binding of an oligonucleotide (in most cases DNA) to its complementary 

sequence on a target mRNA and hence the subsequent inactivation of the target. 

To achieve sufficient specificity, the sequence must consist of at least 12 

nucleotides, however, most antisense oligonucleotides contain 16-24 

nucleotides. 

The mechanisms of antisense action are complex and not fully understood, 

however, a major one appears to be RNA cleavage after hybridization of the 

DNA antisense oligonucleotide with its target mRNA. This reaction is catalyzed 

by the ubiquitous enzyme Ribonuclease H (RNase H). RNase H is an 

endoribonuclease that specifically degrades the RNA strand in a RNA-DNA 

hybrid and has its evolutionary roots in the defense of mammalian cells against 

retroviruses. The RNase H mechanism is by far the most important due to the 

fact that the antisense oligonucleotide is not destroyed or permanently occupied 

and therefore only catalytic amounts are necessary. Several other mechanisms 

such as transcriptional arrest, inhibition of splicing and inhibition of 

posttranslational modifications are involved as well (see Figure 7), however, 

they require stoichiometric amounts of oligonucleotide and are probably less 

important.  

Since regular phosphodiester oligonucleotides are inactivated by serum 

nucleases rather rapidly, chemical modifications especially on the 

phosphodeoxyribosyl-backbone were investigated to achieve higher stability. 

Phosphorothioate oligonucleotides (SODN) with one of the oxygen atoms in the 

phosphate group replaced with sulfur have a significantly increased resistance to 

nuclease inactivation, however, their binding affinity to the target mRNA and 

their affinity to RNase H is slightly reduced. In total however the higher 

resistance leads to an enhanced efficiency and therefore SODN have become the 
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standard type of oligonucleotide for antisense therapy and several SODN 

targeting cancer are in clinical trials [214]. A problem associated with this type 

of oligonucleotides is their susceptibility towards unspecific effects due to their 

interactions with biomacromolecules such as proteins. Therefore a careful 

evaluation of experimental data should be performed in order to attribute 

therapeutic effects exclusively to an antisense mechanism.  

Another example for a stabilizing modification on oligonucleotides is the 

introduction of a methoxyethoxy group at the 2' position of the ribose ring [215], 

which leads to significant stabilization and displays synergistic effects with 

phosphorothioate modifications. For a deeper insight into antisense mechanisms 

and chemistry we refer the reader to an extensive review for details [216].  

 

Figure 5 
Major sites of action of antisense oligonucleotides  

Ribozymes: Ribozymes are RNA molecules endowed with catalytic activity and 

capable of cleaving mRNA molecules in a sequence specific, catalytic manner. 

They contain sequences for selective ligation with target mRNAs which confers 

upon them high specificity. They also contain sequences that perform cleavage 
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reactions with the target mRNA. By modifying the substrate recognizing 

sequences, ribozymes can be specifically tailored for the suppression of 

particular genes. A large variety of gene products have been targeted 

successfully using this strategy (see Table 5 for cancer specific targets). 

Two types of ribozymes, the hammerhead and hairpin ribozymes have been 

extensively studied due to their small size and high cleavage efficiency. 

One problem using these structures is their low stability against ubiquitous 

RNases. Therefore strategies have been developed that enable efficient 

protection of ribozymes without loss of catalytic activity. Modifications of the 

chemical structure of the phosphoribosyl backbone have been performed, 

including the use of 2´-O-methyl nucleotides instead of 2´-hydroxyls throughout 

the sequence. The addition of an inverted deoxyabasic sugar residue on the 3´ 

end or the introduction of phosphorothioate nucleotides on the 5´ end of the 

ribozyme have also been performed [217]. The sum of these modifications leads 

to a decreased recognition by nucleases and an increased biological activity. 

Complexation with cationic polymers or application of DNA/RNA chimeras 

have shown promising results for stabilization as well (own unpublished data). 

A major advantage of this strategy is the high efficiency of stabilization 

provided by these agents and the possibility of attaching targeting moieties to 

polymers in order to target specific cells. 

A problem when using hammerhead ribozymes is their dependence on 

magnesium ion concentration for catalytic activity. Physiological concentrations 

of this ion are 5-10fold lower than in optimized cell culture conditions [218]. 

Therefore correlation from in vitro to in vivo activity is problematic. 

For reviews about hammerhead and hairpin ribozymes see references [219,220]. 

To date the major site of action for either antisense oligonucleotides or 

ribozymes on the subcellular level has not been determined and it remains 

unclear if actual delivery into the nucleus is required for effectivity.  
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Target genes for antisense/ribozyme strategies: Several antisense and ribozyme 

strategies have been pursued with some success in cancer therapy in vitro as 

well as in vivo. One approach is to make cancer cells more sensitive to 

chemotherapy by blocking the expression of genes that are involved in 

multidrug resistance. A target that has been investigated intensively in this 

context is the Multidrug resistance gene (MDR1) and its product P-glycoprotein 

that removes a large variety of chemotherapeutic agents from the cell. Treatment 

with anti-MDR1 oligonucleotides or ribozymes led to a significant reduction of 

MDR1 expression (see Table 5) and subsequently to a higher sensitivity of the 

treated cells against a variety of cytostatic substances. 

For further examples see Table 5.  

Target Gene Biological effect of ODN/ribozyme (a)ntisense / (r)ibozyme Reference 

MDR1 reverse multidrugresistance a,r [215,222] 

BCL2 apoptosis a,r [223,224] 

MDM2 inhibition of proliferation  a [225] 

c-ERBB-2  inhibition of proliferation  a,r [226,227] 

c-Myc apoptosis a,r [228,229] 

Ras inhibition of proliferation and a [230,231] 

  

CAM expression 

   

Raf inhibition of proliferation and a [231] 

  

CAM expression 

   

AKT1 apoptosis a [232] 

EGFR inhibition of cell prolifration a,r [233,234] 

FGF  antiangiogenesis a [235] 

angiogenin antiangiogenesis a [236] 

telomerase cell death a,r [237,238] 

survivin cell death a [239] 

Table 5  
Examples for cancer related targets in antisense and ribozyme therapy  

Antisense treatment towards these targets has been investigated intensively in 

vitro and in clinical trials at several stages. Early clinical trials show only 

modest efficiency in some patients. At present, antisense therapy in combination 
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with classic chemotherapy seems to be the more favorable regimen [221]. More 

research is necessary to optimize such combinations and antisense therapy itself.   

Target  Effector structure Reference 

  
(a)ntisense/(r)ibozyme

   

k-ras r [240,241] 

Epidermal growth factor (EGF)

 

r [242] 

bcl-2 r [243] 

Alpha1-antitrypsin r [244,245] 

HER2/neu r [246] 

mutant p53 r [247] 

BCRABL r [248] 

Interleukin-8 a [249] 

Cyclin D1 a [250] 

VEGF  a [251] 

c-myc a [252] 

Basic fibroblast growth factor  a [253] 

High mobility group I proteins a [254] 

hNr-CAM a [255] 

Urokinase-type plasminogen  a [256] 

activator receptor 

    

Table 6  
Cancer related targets used for knockout gene therapy  

4.2. Knockout gene therapy 

Knockout gene therapy aims to inactivate or attenuate the expression of 

oncogenes and hereby to inhibit uncontrolled cell proliferation, angiogenesis, 

drug resistance or metastasis formation. This can be achieved by the 

introduction of a gene coding for an antisense RNA which hybridizes with the 

target mRNA of the desired oncogene. Since duplexed mRNA cannot be 

translated, it is degraded quickly and the expression of the targeted oncogene is 

inhibited specifically. Furthermore genes can be introduced coding for ribozyme 

molecules that reduce the expression of an aberrant gene by specific cleavage of 

its mRNA. Since decoding of the human genome has provided knowledge about 
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a large variety of oncogene sequences, this approach can be utilized in a variety 

of clinical situations and has been realized mainly using viral vectors (Table 6).

 
A second strategy to ´knock out´ the effect of a cancer gene is the introduction 

of a modified oncogene that acts in a dominant manner towards the cancer 

causing gene and thereby attenuates or even inhibits its expression. This method 

is less versatile due to difficulties in finding genes with counteracting properties 

and its application is limited to very specific targets.   

4.3. Gene replacement/gene augmentation  

This strategy tends to replace either a missing or a mutated/defective gene, in 

most cases tumor suppressor or other apoptosis-inducing genes. The difficulty 

with this approach is that this type of gene therapy replaces only one gene and is 

thus less effective if the cancer is oligo- or multigenic in origin. There are 

numerous diseases that are based on monogenic defects for example cystic 

fibrosis, hemophilia IX or familial hypercholesterolemia. In these situations 

gene replacement may be suitable. Cancer, however, is usually caused by 

multiple gene defects, so that either more than one gene has to be introduced or 

a combination with other forms of therapy must be performed. In fact the 

combination with chemo/radiotherapy showed synergistic effects and represents 

a valuable augmentation of classical cancer therapy [257]. 

P53 in cancer gene therapy: P53 is the best investigated tumor suppressor and 

mutations within the p53 gene are involved in a large portion of human tumors. 

It acts as a transcriptional factor and is involved in the regulation of apoptosis, 

cell growth arrest and senescence. Its malfunction is a common mechanism for 

tumorigenesis leading to cell immortalization, multidrug resistance and 

uncontrolled cell division. One approach in selective treatment of p53 

aberrations is to reactivate its expression with low molecular weight drugs like 

actinomycin D or leptomycin B [258]. This has been done with success in 

several cell lines, however, it requires a residual level of p53 expression and is 
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therefore not suitable in all situations. Furthermore, toxicological problems 

make this approach applicable only for local administration and is therefore 

limited to easily accessible tumors. 

Gene replacement represents a direct approach towards the restoration of wild 

type p53 function. It has been demonstrated in vitro that introduction of wild 

type p53 gene into human carcinoma cells induces apoptosis of cancer cells 

[259] and may induce remission of drug resistance connected with mutant p53 

variants [260]. Most forms of lung cancer are p53 deficient, therefore this 

approach has been investigated in detail for this target. Delivery of wild type 

p53 to the lung either by systemic or local application via inhalation of 

aerosolized polyplexes led to a significant suppression of tumor growth in both 

cases and a prolonged survival time of laboratory animals [56,261].  

Delivery to breast cancer cells in vivo using immunolipoplexes including anti-

transferrin receptor antibody as targeting moiety has been reported recently 

[262]. This treatment led to a high level of p53 gene expression in the targeted 

cells and a combination treatment with docetaxel resulted in significantly 

improved efficacy of the drug with prolonged survival of laboratory animals. 

For a review concerning non-viral p53 delivery see reference [263].  

4.4. Suicide gene therapy 

A special form of gene augmentation therapy is the introduction of prodrug-

converting enzyme genes, better known as suicide genes. A suicide gene 

encodes for an enzyme usually of viral or prokaryotic origin that performs the 

conversion of a non-toxic prodrug into an active toxin that causes cell death. The 

gene for this enzyme is either under the control of a tumor specific promoter, 

thus limiting the cytotoxic effect to specific tissues or injection directly into 

target tissue is performed in order to limit nonspecific toxicity. Table 7 gives an 

overview of frequently used suicide genes and their substrates. This strategy 

recently was effective in an in vivo model using PEI as non viral vector in 
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hepatocellular carcinoma [264]. Transfection with herpes simplex thymidine 

kinase (HSV1-tk) gene and subsequent ganciclovir treatment, one of the most 

common suicide gene systems, was used in this study. HSV1-tk converts the 

rather non-toxic drug ganciclovir into its triphosphate that interferes with DNA 

synthesis and leads to death of transfected cells. This treatment leads to a 

suppression of tumor growth and a significantly prolonged survival time of 

laboratory animals. Many suicide gene therapy approaches mainly with viral 

vectors as well as some liposomal formulations have been performed and 

resulted in tumor and metastasis remission in vivo [265,266]. Furthermore the 

HSV1-tk/ganciclovir and cytosine deaminase/5-Fluorocytosine system are 

currently being evaluated in clinical trials [267-69]. A major disadvantage of 

this strategy is that gene expression must occur specifically in tumor tissue in 

order to spare healthy cells. Therefore highly tumor specific promoters need to 

be developed in order to minimize toxic effects. Targeting moieties specific for 

cancer cells may also help to limit impact of non target cells. For a review about 

prodrug activation enzymes in cancer gene therapy see reference [270].  

Enzyme Prodrug Active drug Reference 

Thymidine kinase (HSVtk) ganciclovir ganciclovir triphosphate [271] 

Cytosine deaminase 5-fluorocytosine 5-fluorouracil [272] 

Purine nucleoside phosphorylase 6-methylpurine-2´deoxyribonucleoside 6-methylpurine [273] 

Guanosine-xanthine Phosphoribosyl

 

6-Thioguanine 6-thioguanine triphosphate [274] 

transferrase  

      

Varizella zoster virus thymidine  araM araM-MTP [275] 

Kinase 

      

E. coli nitroreductase CB 1954  (5-(aziridin-1-yl)- (5-(aziridin-1-yl)-4-hydroxyl [276] 

  

2,4-dinitrobenzamide) amino-2-nitrobenzamide) 

  

Table 7 
Enzyme/Substrate systems used in suicide gene therapy     
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4.5. Cancer vaccination using gene therapy approaches 

Vaccination approaches have been performed successfully for a large variety of 

cancers and they represent promising strategies for future advances especially 

due to their rather low toxicity and their ability to reach multifocal targets 

throughout the body [277,278]. In fact most of the clinical trials of cancer gene 

therapy employ such immunological strategies, using the transfer of genes for 

cytokines, costimulatory factors or tumor associated antigens into a variety of 

cellular targets. 

Malignant cells do show antigenic differences to normal cells, however their 

immunogenicity is not recognized by the host´s immune system. The goal of 

immunological strategies is either to boost the immune system in a way that 

enables it to identify and efficiently eliminate tumor cells or to enhance the 

immunogenicity of tumor cells so they can no longer remain undiscovered.  

One strategy relies on augmentation of the conspicuousness of tumor cells to the 

immune system by explantation of cancer cells from a patient´s body and 

transfection ex vivo with a cytokine gene such as interferon-?, tumor necrosis 

factor-a and interleukin 12 or genes of costimulatory factors such as B7 (CD80) 

or intercellular adhesion molecule-1 (CD54) [279,280]. Cells are then 

transplanted back into the patient where the expression of cytokines and 

costimulatory factors in proximity to tumor antigens presented on MHC class I 

proteins on the surface of tumor cells draws attention of the host´s immune 

system to the tumor.  

An alternative approach towards cancer vaccination is a modification in the way 

a tumor associated antigen is presented to the host´s immune system. If antigens 

are only weakly expressed via MHC class I proteins on tumor cells they are not 

recognized under normal conditions and the tumor remains unmolested. If, 

however, they are presented with professional antigen presenting cells (APC) of 

the immune system, especially dendritic cells in association with costimulatory 
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factors, an immune reaction is initiated. This strategy is most effective when 

combined with the introduction of cytokine genes. 

One approach to achieve the presentation of tumor antigens on dendritic cells is 

based on the insertion of the DNA sequence encoding the desired antigen into a 

plasmid vector, capable of expressing exogenous proteins in mammalian cells. 

These plasmids are then introduced into skeletal muscle cells or subcutaneous 

tissue via gene gun or injection of naked DNA with the intention that these cells 

will express the protein and export it into the surrounding tissue interstitium. 

The antigen is captured by antigen presenting cells, especially dendritic cells 

(DC) and presented after intracellular processing on major histocompatibility 

complex (MHC) class I and II, thus leading to cellular and humoral immune 

response against the presented antigen. 

A second strategy aims to directly introduce the vector containing the tumor 

antigen sequence into DC via a targeted vector resulting in similar effects as 

described above [139,281]. Introduction of the tumor antigen can be performed 

ex vivo as well, with subsequent reimplantation into the patients [282].  

4.6. Bystander effect 

One problem concerning knockout and suicide gene therapy is the fact that in 

theory the whole cell population of a tumor has to be transfected in order to 

achieve tumor eradication. Otherwise non-transfected cells survive and 

proliferate, thus leading to survival of the cancer. A helpful phenomenon in this 

context is the so called bystander effect, which means that the introduced gene 

can affect cells in which the gene is not expressed itself. The mechanisms of 

action is not fully understood, however, cell-cell exchange of soluble factors 

through gap junctions may be involved. Using suicide gene therapy strategies 

with herpes simplex virus thymidine kinase/ganciclovir treatment for example, a 

transfer of toxic metabolites of ganciclovir from transfected to non-transfected 

cells through cell-cell contacts can be observed, thus augmenting efficiency of 
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the treatment [283]. A mechanism involved in bystander effects in distant cells 

and/or anatomically separated tumors is the activation of innate and adaptive 

immunological antitumor responses against cancer cells [284] This effect is 

probably mediated by significant increase of CD4 positive, CD8 positive and 

natural killer cells. 

A more detailed knowledge about mechanisms of action and methods to 

augment the bystander effect will be very valuable to future cancer gene therapy 

regimens.  

4.7. Clinical trials 

Cancer gene therapy: Cancer treatment is by far the most important proposed 

application of gene and antisense therapy and many clinical trials are underway 

(Figure 6). Approximately 50 percent of all cancer gene therapy trials use 

various forms of immunemodulatory strategies via systemic or local 

administration. Another significant contribution (15%) to the studies is 

represented by suicide gene therapy strategies. Further approaches like insertion 

of multidrug resistance genes in stem cells or tumor suppressor gene therapy 

represent approximately five percent. The vast majority of gene therapy clinical 

trials are in phase I and only a very few have progressed to phase II studies. The 

majority of the studies have demonstrated that gene therapy is generally feasible 

using both, viral as well as non viral strategies, however at present cancer gene 

therapy has not fulfilled the high expectations initially predicted. No one has 

been cured through the use of gene therapy and the therapeutic efficiency 

monitored in clinical trials is disappointing. 

More than two thirds of gene therapy clinical trials use viral vectors, only 13 % 

employ lipid vectors and ~ 10 % use naked DNA (Figure 7). Cationic polymers 

have only been used in animal models and have not advanced into clinical trials 

due to the various problems described in this review. Some of the clinical trials 

using lipid vectors are summarized in Table 8. The majority of these studies 
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employ immunological strategies against cancer and another significant portion 

aims the transcriptional repression of HER-2/neu gene by introduction of the 

adenovirus type 5 E1A gene via local application. Her-2/neu is a growth factor 

receptor overexpressed in multiple human cancers, especially breast and ovarian 

cancer. Several studies demonstrated E1A gene expression in target tissue, 

accompanied by HER-2/neu downregulation, increased apoptosis, and reduced 

proliferation. 

Antisense therapy: Antisense therapy is clinically far ahead of actual gene 

therapy and remarkably the FDA has already approved one drug. This drug is 

named Fomivirsen (VitraveneR), a 21mer phosphorothioate oligonucleotide that 

is being used against infections of the eye caused by human cytomegalovirus 

(HCMV). It inhibits the expression of proteins necessary for virus replication 

through an antisense mechanism and needs to be administered via intravitreal 

(eye) injections.  

Target Vector  Phase Reference 

Metastatic melanoma DMRIE/DOPE II [285] 

Breast and ovarian cancer DC-Chol I [286] 

Brest and head and neck cancer tgDCC I [287] 

Peripheral neuroektodermal cationic lipid preliminary clinical

 

[288] 

malignancy (ex vivo) trial 

  

Cutaneous metastases DC-Chol/DOPE I [289] 

Hepathic metastases of DMRIE/DOPE I [290] 

colorectal carcinoma 

      

Melanoma DMRIE/DOPE I [291] 

Table 8  
Examples for clinical trials with cationic lipids (Abbreviations: DMRIE=1,2-
dimyristyloxypropyl-3-dimethyl-hydroxy ethyl ammonium bromide, DOPE=dioleoyl 
phosphatidylethanolamine, DC-Chol=3-beta(N-(N',N'-dimethylaminoethane)carbamoyl) 
Cholesterol, tgDCC=3 beta[N-(n',n'-dimethylaminoethane)-carbamoyl] cholesterol/ 
dioleoylphosphatidyl-ethanolamine). 
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Figure 6 
Percentage of diseases treated in clinical trials using cancer gene therapy 
(data from http://www.wiley.co.uk/genetherapy/clinical/).  

 

Figure 7 
Overview about vectors used in clinical trials (data from 
http://www.wiley.co.uk/genetherapy/clinical/).  

With regard to cancer therapy a variety of phase I studies are underway. An 

antisense oligonucleotide for the treatment of melanoma and B-cell lymphoma 

targeting bcl-2 and an antisense inhibitor of protein kinase C alpha in solid 

tumors are being investigated in phase III trials [214]. Phase II clinical trials are 

in progress against raf-kinase, Hras, R2-protein and DNA methyltransferase (see 

table 9 and [214]).   

http://www.wiley.co.uk/genetherapy/clinical/
http://www.wiley.co.uk/genetherapy/clinical/
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Name Company Application Disease Target Stage 

ISIS 3521 ISIS/Lilly parenteral non-small cell lung cancer

 
PKC-a

 
phase III 

      
and others 

    
G3139  Genta subcutaneous

 
melanoma bcl-2 phase III 

ISIS 2503 ISIS parenteral cancer, pancreatic  H-ras phase II 

      

and others 

    

ISIS 5132 ISIS parenteral cancer, ovarian raf phase II 

      

and others 

    

GTI-2040 Lorus parenteral advanced or metastatic  R2-protein of ribo-  Phase II 

      

renal cell carcinoma nucleotid reductase 

  

GEM 231 Hybridon parenteral various cancers PKA Phase II 

Table 9  
Antisense ODN against cancer in higher stages of clinical trials  

Numerous other antisense approaches against cancer related targets are in 

clinical trials and the interest in antisense strategies is expected to increase as it 

displays several advantages. It is easier to synthesize large amounts of pure 

antisense oligonucleotides as compared to plasmids as the antisense sequences 

used are much shorter. Furthermore, the antisense mechanism is applicable to a 

wide range of conditions and antisense oligonucleotides are physiologically well 

tolerated.  

5. CONCLUSIONS  

Progress in molecular biology has provided the opportunity for the introduction 

or replacement of missing, as well as malfunctioning genes. Using these tools, 

cancer cells may be selectively destroyed via suicide strategies or the expression 

of undesired genes may be blocked by antisense or ribozyme strategies. 

Immunological approaches have displayed promising therapeutic effects, as 

well. The best clinical results, however, have been achieved by local 

administration or the use of antisense oligonucleotides, as is indicated by the 

high number of clinical trials currently taking place. These new techniques, 

however, lack efficient and specifically targeted delivery systems for nucleic 
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acids and raise toxicity concerns. No one system meets all needs; instead 

different therapeutic circumstances will require different vectors. Remarkable 

efforts have been made to optimize gene delivery systems in vitro; in vivo 

application, however, requires different vector features. Properties of non viral 

vectors determined in vitro are insufficient for predicting their behavior in vivo 

and the development of a set of in vitro assays that allow prediction of in vivo 

behavior of the vectors would be a valuable tool for further advances. Additional 

research, which elucidates the factors influencing opsonization and other 

mechanisms leading to RES uptake and other forms of elimination in vivo, is 

necessary.  

A useful strategy to reduce unspecific interactions of polyplexes after systemic 

administration is the steric stabilization of complexes via the attachment of 

hydrophilic polymers. The poor in vivo results displayed by the first generation 

of these complexes using simple attachment of PEG or pHPMA occurred 

probably due to ineffective shielding. Strategies developed by Oupicky et al. 

[49,50] using bioreversible crosslinking of surface modifying structures or DNA 

compacting polymers lead to higher stability in circulation and efficient 

intracellular release. Research employing other bioreversible complex 

modifications and the use of more efficient shielding strategies represent 

interesting approaches to improve in vivo vectors.  

Another major problem occurring in vivo is gene expression in sites other than 

the target tissue. A number of targeting moieties for cancer tissues have been 

identified and these structures were effective in vitro and, in some cases, even 

after systemic application. Incorporation of tissue specific promoters, in order to 

limit gene expression exclusively to the target tissue, will provide synergistic 

effects with active targeting strategies and should be addressed in particular 

therapeutic circumstances.  

Local gene therapy approaches, at this time, hold more promise than systemic 

application, because the danger of misrouted deposition and unwanted gene 
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expression in non target tissues can be partly avoided. Local strategies using 

immunological approaches have shown most promising results, due to strong 

bystander effects.   

Delivery at the subcellular level remains inefficient as well. While endocytotic 

uptake of polyplexes occurs rather efficiently, the release from endosome is still 

one of the primary reasons for the low efficiency of non-viral gene and 

oligonucleotide therapy. For polyplexes, there is some evidence that the majority 

of the nucleic acid is entrapped in such vesicles [80]. Although some success has 

been obtained with fusogenic peptides or other endosomolytic agents, such as 

chloroquine, the applicability of these structures in vivo is limited. Subcellular 

trafficking at this stage probably bears great potential for further advances in 

non viral vectors. However, it should be noted that the release mechanism, as far 

as it is known to date, leads to the release of endosomal or lysosomal content 

into the cytosol. This event represents a perturbation of subcellular 

compartmentalization and, therefore, stress for the cell. The stage of the pathway 

at which the release occurs is of great importance since hydrolytic enzymes and 

other lysosomal content may cause major damage in the cell finally leading to 

apoptosis or necrosis [292]. Further improvements at the stage of vesicular 

escape will result in increased reporter gene expression, however, it may lead to 

a higher toxicity of the method, as well. More research about the release 

mechanism, especially for polyplexes is required for a better understanding of 

this problem. 

Transfer of DNA, once released into the cytosol, to the nucleus and across the 

nuclear envelope is very inefficient. It is still unclear how plasmid DNA reaches 

the nucleus, if via free diffusion or via a specific cellular transport system, e.g. 

dynein. The complexing agent plays an important role [177] for nuclear 

delivery, by either helping to reach the nuclear envelope through the cytoplasm 

or facilitating nuclear entry. Nuclear uptake is inefficient and highly connected 

to the mitotic activity of the cells. This may help to target fast growing tumors, 
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however, there are applications that require uptake in slower dividing cells. Here 

some improvements have been achieved using nuclear localization sequences, 

however, increase in reporter gene expression is still moderate and there is 

probably more potential for optimization.  

To summarize, cancer gene therapy still represents a highly promising research 

area that bears a great potential for future cancer therapy, however, to achieve 

this goal numerous hurdles have to be surmounted.   
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SUMMARY 

Purpose: Critical steps regarding the subcellular processing of 

polyethylenimine/nucleic acid complexes, especially endosomal/lysosomal 

escape, were visualized using living cell confocal laser scanning microscopy 

(CSLM) to obtain an insight into their mechanism. 

Methods: Living cell confocal microscopy was used to examine the intracellular 

fate of polyethylenimine/ribozyme and poly(L-lysine)/ribozyme complexes over 

time, in the presence of and without bafilomycin A1, a selective inhibitor of 

endosomal/lysosomal acidification. The compartment of complex accumulation 

was identified by confocal microscopy with a fluorescent acidotropic dye. To 

confirm microscopic data, luciferase reporter gene expression was determined 

under similar experimental conditions. 

Results: Polyethylenimine/ribozyme complexes accumulate in acidic vesicles, 

most probably lysosomes. Release of complexes occurs in a sudden event, very 

likely due to bursting of these organelles. After release, polyethylenimine and 

ribozyme spread throughout the cell, during which slight differences in 

distribution between cytosol and nucleus are visible. No lysosomal escape was 

observed with poly(L-lysine)/ribozyme complexes, or when polyethylene-

imine/ribozyme complexes were applied together with bafilomycin A1. 

Polyethylenimine/plasmid complexes exhibited a high luciferase expression, 

which was reduced approximately 200-fold when lysosomal acidification was 

suppressed with bafilomycin A1. 

Conclusions: Our data provide, for the first time, direct experimental evidence 

for the escape of  polyethylenimine/nucleic acid complexes from the 

endosomal/lysosomal compartment. CLSM, in conjunction with living cell 

microscopy, is a promising tool for studying the subcellular fate of polyplexes in 

nucleic acid/gene delivery. 

Supplementary material for this publication can be accessed under: 

 

http://www.uni-marburg.de/iptb/institut/akkissel/motherpage.htm 

http://www.uni-marburg.de/iptb/institut/akkissel/motherpage.htm
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INTRODUCTION 

Polyethylenimine [PEI] is one of the most commonly used nonviral vectors 

based on polycations for DNA/RNA delivery both in vitro and in vivo [1]. In 

spite of numerous  publications dealing with the mechanisms of uptake and 

subcellular processing of PEI/plasmid complexes, current understanding of the 

release mechanism from the endosomal/lysosomal compartment is still limited 

[1,2,3]. New insights could facilitate the design of new polymers for nonviral 

gene delivery systems. It has been demonstrated by several groups that PEI 

polyplexes are taken up via endocytosis [4,5], however, theories regarding 

intracellular processing of these complexes remain controversial. Using confocal 

microscopy studies Godbey et al. [3] found that PEI/plasmid complexes access 

cells in culture via endocytosis. According to Godbey et al. [2] these endocytotic 

vesicles do not seem to fuse with lysosomes, but rather proceed directly to the 

perinuclear region where PEI and DNA are released and taken up into the 

nucleus [2,3]. Further Lecocq et al. [4] examined uptake and subcellular 

distribution of radioactively labelled PEI/plasmid complexes in vivo using 

differential and isopycnic centrifugation methods. They observed that PEI was 

localized in plasma membrane fractions 5 minutes after administration and in 

lysosomal fractions after 4 hours. According to this study PEI persists in the 

lysosomal compartment without significant release for days. Another unclear, 

yet very important question, is how PEI/nucleic acid complexes escape from the 

endosomal/lysosomal compartment. Behr [6] proposed the so-called ´proton-

sponge hypothesis´ explaining the lysosomal release of PEI polyplexes by their 

buffering capacity. During acidification of endosomes/lysosomes this property 

leads to increased influx of protons, chloride ions, and water, thus eventually 

causing rupture of the vesicles due to the high osmotic pressure. Although this 

hypothesis was developed some years ago, no convincing experimental 

verification has been provided by anyone so far. 
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Another intensively discussed issue is the mode of entry that DNA/RNA and 

PEI, once released from lysosomes, use to gain access into the nucleus. There 

has been some preliminary work done in this field, however much still remains 

to be discovered [7]. 

In contrast to previous reports we attempted to gain insight into these subcellular 

distribution processes using living cell confocal laser scanning microscopy. This 

method is unique, as it allows a direct observation of PEI/nucleic acid 

complexes in the intact subcellular environment over a long time period. More 

specifically, it may prove to be a valuable tool in elucidating the release 

mechanism of PEI polyplexes from the endosomal/lysosomal compartment.  

PEI/ribozyme complexes were used in the presence of and without bafilomycin 

A1, a selective inhibitor of the vacuolar-type H(+)-ATPase, which prevents 

acidification of endosomes/lysosomes. We compared the findings of these 

CLSM experiments to those obtained with poly(L-lysine)/ribozyme complexes 

under identical conditions. To confirm our observations we also performed 

transfection experiments with a luciferase plasmid under similar experimental 

conditions. Our aim was to gain a mechanistic insight in subcellular processing 

of dually labelled PEI/ribozyme complexes by observing fluorescence 

distribution over time.  

MATERIALS AND METHODS 

Chemicals 

Polyethylenimine (Mw 25,000), poly(L-lysine) (Mw 34,300), chloroquine and 

bafilomycin A1 were purchased from Sigma-Aldrich.  

Labelling of PEI and poly(L-lysine) with Oregon Green 488  

Polymer (20 mg) was dissolved in 2 mL 0.1 M sodium bicarbonate solution with 

pH 9. Oregon Green carboxylic acid succinimidyl ester (1 mg, Molecular 

Probes) was dissolved in 200 L dimethylsulfoxide and added dropwise under 
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stirring to the polymer solution. The mixture was stirred in the dark for 3 hours 

at room temperature before the labelled polymer was purified by ultrafiltration 

in an Amicon cell (regenerated cellulose membrane, molecular weight cut off 

10,000) and washed with 0.1 M borate / 1.0 M sodium chloride solution pH 7.5. 

The washing procedure was performed until no absorption was detectable at 488 

nm in the cell outflow. As a final step, the buffer was exchanged with distilled 

water.   

Ribozyme and plasmid 

A 5-carboxytetramethylrhodamine labelled 37-mer ribozyme with the sequence 

3´-UCUCUCAAAGCAGGAUUGCCUGAGUAGUCAUAACCUU-5´ was 

purchased from MWG-Biotech. A luciferase plasmid (pGL3-control, Promega) 

was used for transfection experiments. The plasmid was amplified in JM109 

competent cells (Promega) and purified with QIAfilter plasmid Kits (Qiagen) 

according to the manufacturers protocol.  

Complex formation 

All ribozyme/PEI or plasmid/PEI complexes were prepared at a PEI-nitrogen to 

DNA/RNA- phosphate ratio (N/P ratio) of 8. For microscopic experiments 

ribozyme (2 g) and PEI (2.2 g) were each dissolved in 100 L of 0.9 % 

sodium chloride solution pH 7. The two solutions were mixed by gentle 

pipetting. Complexes were allowed to interact for 10 minutes before use. 

Ribozyme/poly(L-lysine) and plasmid/poly(L-lysine) complexes were prepared 

at an N/P ratio of 2. In this case 2 g of ribozyme and 1.6 g poly(L-lysine) 

were dissolved in 100 L 0.9 % sodium chloride solution pH 7. For transfection 

experiments using pGL3-control luciferase plasmid, complexes were prepared in 

a similar manner with 4 g plasmid and 4.4 g PEI or 3.2 g poly(L-lysine) 

dissolved in double the volume of sodium chloride solution 0.9 % pH 7. 
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Cell culture 

All experiments were performed with the SW13 adrenal gland carcinoma cell 

line (ATCC number CCL-105) which was a kind gift from Dr. A. Aigner 

(Philipps University, Marburg, Germany). Cells were cultured in IMDM 

medium (PAA) containing glutamine (584 mg/l) and 25 mM 4-(2-

hydroxyethyl)-1-piperazine ethane sulfonic acid (HEPES), supplemented with 

10 % fetal bovine serum (HyClone). For transfection experiments cells were 

grown at 37 °C in a humidified atmosphere containing 10 % CO2 (V/V).  

Confocal laser scanning microscopy with Lyso Tracker Blue 

A Zeiss Axiovert 100 M microscope coupled to a Zeiss LSM 510 scanning 

device was used for all confocal microscopy experiments. 

Cells were seeded at a density of 20,000 cells per well in 8 well chamber slides 

(LabTek, Nunc). After 24 hours, medium was removed and complexes of 

Oregon Green-labelled PEI and non-labelled pGL3-control plasmid were added 

in new medium containing 100 nM Lyso Tracker Blue (Molecular Probes). 

After 1h the incubation medium was aspirated, cells were washed three times 

with phosphate buffered saline (PBS) pH 7, and observed in PBS with the 

confocal microscope. For excitation of the blue Lyso Tracker an Enterprise UV 

laser with an excitation wavelength of 364 nm was used. For excitation of green 

fluorescence (labelled PEI) an argon laser with an excitation wavelength of 488 

nm was used. This experiment was performed using a longpass filter of 385 nm 

for blue fluorescence and a longpass filter of 505 nm for green fluorescence. All 

images were recorded using the Zeiss LSM 510 Multitracking Mode in which 

each fluorescence channel was scanned individually.    

Living cell confocal laser scanning microscopy 

An argon laser was used to excite green fluorescence at 488 nm and a helium-

neon laser was used for red fluorescence at 543 nm. Images were taken using a 

band pass filter of 505-530 nm for green fluorescence and a long pass filter of 
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560 nm for red fluorescence. Detector sensitivity was set relatively high in order 

to be able to visualize faint fluorescence, however was kept constant during 

experiments. Thickness of the optical sections was between 0.5 and 1 µm. 

Stacks of 15-35 images were recorded every 3-9 minutes to obtain information 

over time (setting descriptions for the individual figure are listed below each 

figure). The different layers were overlaid for each time point by Zeiss LSM 510 

software. For creating movies the overlaid images of the single time points were 

animated over time. Total thickness of stacks ranged between 10–20 m. 

Temperature was maintained at 37 °C for the duration of the experiment. A CO2 

atmosphere was not necessary, as the cell culture medium contained 25 mM 

HEPES. For living cell microscopy 30,000 cells were seeded on 2 cm2 self-made 

chamber dishes containing a total of 500 L medium. Bafilomycin A1 was 

added to the media at a concentration of 300 nM, where indicated.  

Transfection experiments with luciferase plasmid 

Transfection experiments with pGL3-control luciferase plasmid were performed 

with poly(l-lysine)/plasmid complexes in addition to PEI/plasmid complexes in 

the presence of, as well as without bafilomycin A1. Cells were seeded in 12 well 

plates at a density of 50,000 cells per well. After 24 hours medium was removed 

and complexes were added to fresh medium containing 300 nM bafilomycin A1, 

when applicable. Media was exchanged again after four hours and cells were 

incubated for 44 hours. Luciferase gene expression was quantified using a 

commercial kit (Promega) and photon counting with a luminometer (Sirius, 

Berthold).  

Results in relative light units per second (RLU/s) were converted into ng 

luciferase by creating a calibration curve with recombinant luciferase 

(Promega). Protein concentration in each sample was determined using a BCA 

assay [10]. All experiments were performed in quintuplet and data were 

expressed in ng luciferase per mg protein. 
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RESULTS 

Confocal laser scanning microscopy using Lyso Tracker Blue 

In Figure 1, colocalization of PEI/DNA complexes (green) and Lyso Tracker 

Blue is shown approximately 1 hour after transfection (turquoise vesicles). 

Several predominantly green vesicles are also present in this image. These could 

either represent PEI in nonacidic prelysosomal compartments or in lysosome 

remnants, suggesting that in this case the lysosomes had already burst. This 

strongly indicates that complexes accumulate in the lysosomal compartment 

after one hour. We obtained similar results with OVCAR-3 (ATCC number 

HTB-161) cells (data not shown).  

 

Figure 1 
PEI/plasmid complexes colocalize with Lyso Tracker Blue ~ 1 hour post incubation 
(turquoise vesicles). In addition, vesicles containing predominantly PEI are visible 
(green vesicles). The image shows an overlay of light microscopic and confocal 
fluorescence image. (Lyso Tracker is blue in this image, PEI is green)  

Living cell confocal laser scanning microscopy 

Five short movies have been chosen to demonstrate the results of living cell 

confocal laser scanning microscopy [see Table 1]. Movies #1 and #2 were 

obtained with PEI/ribozyme complexes. Movie #3 shows PEI/ribozyme 

complexes in the presence of 300 nM bafilomycin A1 and Movie #4 was 

recorded using poly(L-lysine)/ribozyme complexes. Movie #5 shows an 
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overview of approximately 20 cells incubated with PEI/ribozyme complexes, 

whereas only the green fluorescence of PEI is shown. All movies can be 

accessed as supplementary material for this publication on our website 

“http://www.uni-marburg.de/iptb/institut/akkissel/motherpage.htm". Essential 

excerpts from Movies #1 and #2 are shown in Fig. 2 and 3. It should be noted 

that the vesicle sizes in Movies #1-5 do not accurately display actual sizes, due 

to fluorescence outshine, however relative changes in localization and size over 

time can be observed.   

       

  

      

  

Figure 2a 
Living cell microscopic visualization of swelling and, finally, bursting of a single vesicle 
(yellow arrow). PEI is green and ribozyme is red in this sequence. Before burst, the 
characteristic appearance of the vesicle with a yellow core and green PEI-corona can be 
seen. Afterwards the faint green-yellow fluorescence can be seen evenly distributed 
throughout the entire cell. The remnant of the vesicle is significantly smaller and deeper 
red. Images were recorded 28, 31, 37 and 40 minutes after incubation. They display 
computer overlaid projections of the different confocal slices for each time point. The 
whole movie can be accessed on our website [Movie #1]. The yellow mark displays the 
size of 10 µm.  

http://www.uni-marburg.de/iptb/institut/akkissel/motherpage.htm"
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Figure 2b 
The same confocal layer of 1 µm thickness before and after lysosomal burst (37 and 40 
minutes after incubation). It may be observed that fluorescence intensity  increases 
throughout the whole cell after burst whereas there seems to be an area where it is 
slightly weaker. This area might display the nucleus. The right image shows a light 
microscopic image. The complete sectioning of this cell for the 37 and 40 minutes time 
point can be accessed on our website.  

In Fig. 2 and 3 (Movies #1 and #2) it is shown that PEI/ribozyme complexes and 

also some free PEI, resulting from an N/P ratio of 8, adhere to the cellular 

membrane within a few minutes after incubation, possibly due to interactions 

between positively charged complexes and the negative charges of certain 

membrane constituents. Time of uptake into cells is rather heterogeneous. In 

several cells uptake is very rapid, occurring approximately 10-15 minutes after 

incubation [e.g. Fig. 3, Movie #2]. In other cells internalization seems to be 

much slower, e.g. several cells shown in Fig. 2 [Movie #1]. Under the conditions 

used in this experiment (i.e. microscope settings), some PEI containing vesicles 

display a very typical appearance (Fig. 2, Image 1,vesicle marked with yellow 

arrow; Fig. 3, Images #1-7). The inner core of these vesicles is yellow, 

indicating that ribozyme and PEI are colocalized here, whereas a very small 

surrounding ´corona´ is green, which implies that PEI is predominantly located 

in this area. This ´corona´ might represent interactions between PEI and 

components of the lysosomal membrane and/or extensive swelling of the 

polymer matrix in proximity to the vesicular membrane. Separation of PEI and 

ribozyme close to the membrane might be another possible explanation for this 

appearance. The size of the vesicle in Fig. 2, Image 1 (marked with the yellow 
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arrow) seems to increase within the 9 minutes between Images 1 and 3, possibly 

due to osmotic swelling or fusion with other PEI containing vesicles. Finally it 

releases its content into the cytoplasm (Fig. 2a, Image 4). After this event the 

whole cell, including the nuclear compartment, is filled with a faint green-

yellow fluorescence, resulting from the mixture of green fluorescence from PEI 

(predominantly) and the red fluorescence from ribozyme (very faint). This 

fluorescence can be seen only with sensitive instrument settings, but is 

significantly brighter than background fluorescence. If distribution of 

fluorescence in the different confocal layers is regarded before and after 

endosomal/lysosomal burst one finds a significant increase of fluorescence 

throughout the whole cell after burst. In Fig. 2b it can be seen that the 

distribution of fluorescence is not totally homogeneous after burst. These images 

represent the fluorescence in a single confocal layer of 1 µm thickness before 

and after burst. The area exhibiting slightly less intense fluorescence may likely 

display the nuclear compartment.  

However, it should be noted that both green and red fluorescence also increase 

significantly in this area, thus implying that PEI and ribozyme are present in the 

nucleus a maximum of 3 minutes after burst. The complete sectioning of the 

whole cell can be accessed on our supplementary material website. The remnant 

of the burst vesicle is predominantly red and seems to consist of ribozyme and 

PEI whereas relatively more ribozyme seems to be present than before burst. It 

persists in the cytosol and only changes its size and color marginally. The 

further fate of these remnants is unclear and requires a more thorough 

investigation. In most of the cells only a small percentage of vesicles burst. The 

majority of the PEI/ribozyme complexes persists in the endosomal/lysosomal 

compartment for a minimum of several hours or longer [4].   
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Figure 3 
Living cell microscopic images of three cells loaded with enormous amounts of 
PEI/ribozyme complexes. PEI is green and ribozyme is red in this sequence. Vesicles 
start bursting between Images 3 and 4. In the next ~ 20 minutes all vesicles release their 
content. Yellow arrows point out vesicles which have already burst in the next image. 
For example, Image 8 shows the evenly distributed  fluorescence throughout cells # 1 
and # 3. In cell 2, obvious interactions between PEI and ribozyme with nuclear 
constituents occur and in this case a fluorescence remains in the nucleus. Images were 
recorded every 3 minutes starting 15 minutes after incubation. Images 1-15 are duo 
fluorescence images derived from the computer aided overlay of different confocal 
layers for each time point. Image 16 is a light microscopy image to show positions and 
numbers of the cells. The whole movie can be accessed on our website [Movie #2].      

1

 

2

 

3
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Movie # Type of Experiment Excerpts in Figure

 
Colors 

1 PEI/ribozyme complexes Figure 2 PEI green, ribozyme red

 
2 PEI/ribozyme complexes Figure 3 PEI green, ribozyme red

 
3 PEI/ribozyme complexes   PEI green, ribozyme red

   
with bafilomycin A1     

4 Poly(L-lysine)/ribozyme   Poly(L-lysine) green, 

  

complexes   ribozyme red 
5 PEI/ribozyme complexes   PEI green 

  

overview     
Table 1 
Characteristics of movies accessible on our website. Additionally the complete sections 
of Images 3 and 4 from Figure 2 can be regarded. The website is optimized for Microsoft 
Internet Explorer and a resolution of  1024 x 768 pixels.  

In Fig. 3 (Movie #2) three cells can be seen which contain enormous amounts of 

PEI/ribozyme complexes. Although under average conditions vesicle burst 

occurs only once or twice per cell, this example is suitable to demonstrate the 

mechanism of escape. In this case, a clear sequential increase in fluorescence in 

the cells after burst of individual vesicles can be readily observed. Vesicles 

move in a random fashion within the cells and also fuse to create larger vesicles 

(in Fig. 3 Images 1-4). Between Images 3 and 4 some vesicles seem to burst 

(arrow in Image 3), thus initiating a disastrous process for these cells. Within the 

next ~ 20 minutes a chain reaction takes place during which all vesicles in these 

three cells burst and release their contents into the cytosol (yellow arrows in 

images of Fig. 3 mark vesicles which have burst in the next image). A possible 

explanation for this phenomenon could be the destabilizing effect of PEI on the 

lysosomal membrane not only from the inner compartment, but from the 

cytosolic side, as well [5]. Once one lysosome releases its content, PEI is present 

in the cytosol and can destabilize other vesicles that are still intact. The more 

endosomes/lysosomes that rupture, the more PEI is released and the higher is the 

destabilizing potential present in the cytosol. This process may progress until all 

vesicles have burst, as shown in this example. The distribution of fluorescence 

throughout cells after destabilization of vesicles can be observed very well in 

this sequence. Interestingly, there seems to be an accumulation of green and red 
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fluorescence in the nucleus of cell number 2 in Fig. 3. This accumulation might 

display interactions of the high PEI and ribozyme concentrations present in this 

cell with DNA in the nucleus.  

It is important to note that the time scale for uptake and lysosomal release of the 

PEI/ribozyme complexes is very heterogeneous, occurring after 20 minutes in 

some cells, whereas in others the process may take hours for unknown reasons.  

Movie #5 on our supplementary material website shows an overview of 

approximately 20 cells, thus demonstrating that data shown here is 

representative. In this movie the bursting of several endosomes/lysosomes can 

be observed as a sudden increase of green fluorescence (PEI) within cells 

indicated by yellow arrows. Also the sequential increase in fluorescence within 

one particular cell can be observed. 

When the acidification of lysosomes was prevented by using 300 nM 

bafilomycin A1, no bursting of lysosomes could be observed over a period of 4 

hours [data shown in Movie #3 on our supplementary material website]. Cells 

examined under these conditions take up complexes as efficiently as without 

bafilomycin A1. The vesicles move within the cells in a disorganized manner, 

however no escape of PEI or ribozyme can be observed.  

Using poly(L-lysine)/ribozyme complexes under similar experimental 

conditions showed that complexes were taken up into cells efficiently, however, 

there was no bursting of lysosomes or other visible escape route from this 

compartment [Movie #4 on our internet pages].  

Transfection experiments with luciferase plasmid 

Transfection experiments with PEI/luciferase-plasmid complexes at N/P=8 led 

to a high reporter gene expression [Fig. 4]. In the presence of bafilomycin A1, 

however, expression was decreased more than 200-fold. This stresses the great 

importance of endosomal/lysosomal acidification for the release of complexes 

from this compartment. With poly(L-lysine)/plasmid complexes only a very low 
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transfection efficiency could be observed, suggesting that these complexes are 

not as readily able to leave endosomes/lysosomes. These data are in good 

agreement with our microscopic observations.  
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Figure 4 
Luciferase reporter gene expression of PEI in the presence of and without bafilomycin 
A1 and using poly(L-lysine).   

DISCUSSION 

The subcellular trafficking of PEI/ribozyme complexes could be followed using 

living cell confocal microscopy. Especially the escape from the 

endosomal/lysosomal compartment, as well as the distribution of PEI and RNA 

after this event could be visualized for the first time. We also demonstrated that 

acidification is equally essential for the release of PEI/RNA polyplexes, as for 

efficient gene expression after application of PEI/luciferase-plasmid complexes.  

Complexes of PEI and DNA/RNA reach the lysosomal compartment. This may 

be concluded from our microscopic data with the acidotropic Lyso Tracker, 

which is in agreement with the results of subcellular fractionation experiments 

[4]. In contrast, Godbey et al. [2] found PEI located in non-acidic structures 

using confocal laser scanning microscopy. A possible explanation for this 
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discrepancy could be that, in this case, non-intact endosomes or lysosomes were 

observed. Instead, remnants of lysosomes, such as those in the last images of 

Figures 2 and 3 could have been observed. These compartments are no longer 

acidic and, therefore, do not accumulate acidotropic agents, such as Lyso 

Tracker Blue.  

Concerning the escape mechanism of PEI/RNA complexes from 

endosomes/lysosomes, our results demonstrate that release occurs as a sudden 

event, such as the bursting or rupture of endosomes or lysosomes. No release of 

PEI-polyplexes from endosomes/lysosomes was observed, however, when 

acidification of these vesicles was prevented. In addition, there was a dramatic 

reduction of luciferase reporter gene expression in the presence of bafilomycin 

A1, a finding which is consistent with recent results of Kichler et al. [24]. The 

manifest importance of endosomal/lysosomal acidification suggests that the 

buffering capacity of PEI is one of the crucial properties of the polymer for its 

high efficiency in DNA/RNA delivery. There is evidence in the literature that 

this is one of the key features which cationic polymers require to obtain high 

transfection efficiencies. Cationic polymers with strong basic groups (e.g. 

poly(L-lysine) or quaternary amines with poor to no buffering properties possess 

low transfection efficiencies when used without chloroquine [11, 12, 13] or 

other lysosome destabilizing agents [14]. In contrast, polymers with a significant 

buffering capacity in the lysosomal pH range show a much higher transfection 

capability. For example imidazole containing polymers [16] exhibit a high 

reporter gene expression, very likely due to the pKa of imidazole (~ 6). Midoux 

et al. [16] performed transfection experiments in the presence of bafilomycin A1 

and, similar to our results, reporter gene expression was reduced more than 100-

fold compared to experiments without inhibition of endosomal/lysosomal 

acidification. Other examples of polymers supporting these findings include 

polyamidoamine dendrimers [17, 19] or fractured dendrimers [18]. These groups 

of polymers are quite similar to PEI as they also exhibit a large number of 
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terminal amino groups on their surface and higher order amines in their interior, 

whereas not all amino-groups are protonated at physiological pH. Transfection 

efficiencies with these polymers are significantly higher than those obtained, for 

example, with poly(L-lysine) and it is likely that efficient endosomal/lysosomal 

release is at least part of the reason for this. Further examples in literature of 

effective nucleic acid delivery agents with titratable groups between pH 5-7 

include lipospermines [20] and poly[2-(N,N-dimethylamino)ethyl methacrylate] 

[21] which both exhibit good transfection efficiencies.  

These similar findings with structurally unrelated agents suggest that several 

requirements must be fulfilled for an efficient transfection with cationic 

polymers. The polymer must be of low toxicity and, because of its three 

dimensional structure, capable to effectively complex with DNA/RNA at 

physiological pH. It also needs to possess a certain buffering capacity between 

pH 5-7. These factors enable effective uptake and a sufficient release from the 

endosomal/lysosomal compartment, thus leading to the desired gene expression 

or ribozyme action.  

As suggested by Behr [6], the buffering capacity of the polymer could lead to 

lysosomal swelling based on two possible mechanisms: An increased H+/Cl-

/water influx and possible swelling of the polymer network as a result of the 

increasing electrostatic repulsion of charged groups. Both effects eventually lead 

to rupture of vesicles and release of their contents into the cytosol. In our study 

it is remarkable that PEI and ribozyme are distributed throughout the cytoplasm 

and nucleus minutes after endosomal/lysosomal burst, due to the fact that 

PEI/ribozyme complexes are rather stable. The cause of this could be the 

extension of the polymer network during acidification or interactions of PEI 

with the lysosomal membrane or cytoplasm constituents. Both effects could lead 

to destabilization of the complexes and enhanced dissociation after release from 

vesicles. Interactions of cationic polymers and negatively charged lipids have 

been previously demonstrated [22]. Also other pH dependent interactions of 
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polyplexes with the endosomal/lysosomal membrane could play an important 

role for efficient escape from vesicles. 

A very important question that remains to be answered is: At what stage of the 

endosomal/lysosomal pathway does bursting of the vesicles occur? Although 

our data and the findings of Lecocq et al. [4] suggest that the majority of 

complexes accumulate in lysosomes, release could also occur from late 

endosomes. If release takes place from lysosomes the simultaneous release of 

lysosomal content, such as hydrolytic enzymes, might be harmful for cells [25]. 

This could be one mechanism of toxicity of PEI/nucleic acid complexes and 

might be a limiting factor for this branch of nonviral nucleic acid delivery.  

Another intensively discussed point is the mode of entry of PEI and DNA/RNA 

into the nucleus. Our results indicate that no cell division is necessary for the 

entry of PEI and ribozyme, a finding that has also been shown for plasmids by 

Pollard et al. [7]. The entry of PEI and ribozyme into the nucleus in our 

experiments could occur via diffusion, as implied by the high speed of the 

process. This is a reasonable assumption, based upon the fact that ribozyme and 

PEI have molecular weights of ~ 11 kD and ~ 25 kD, respectively, and therefore 

could be small enough to diffuse through the nuclear pore complex. The 

maximum size for this form of nuclear entry has been determined as ~50 kD 

[23]. PEI could promote this process by compacting the ribozyme in such a way 

as to facilitate nuclear entry. In addition, negatively charged phospholipids 

might coat these structures, such as suggested by Godbey et al. [3] to allow for 

an easier nuclear entry. This mechanism, however, is speculative and requires a 

more detailed investigation. For plasmids, on the other hand, the free diffusion 

or coating mechanism is unlikely, due to their large size. In this case, a 

condensation caused by PEI may also play a crucial role, although the nuclear 

transfer is much more inefficient [7]. Interactions between plasmid or 

plasmid/PEI and the nuclear pore complex might be considered. Experiments 

investigating the nuclear entry of plasmids are in progress at this time. 
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In summary, CSLM in living cells allows visualization of subcellular trafficking 

of PEI/RNA complexes and sheds some light on the mechanism, as well as 

kinetics of their  endosomal/lysosomal escape. Our data are compatible with the 

‘proton sponge hypothesis´ [6], however other pH dependent membrane 

interactions of the polycation may play a significant role for the escape of 

polyplexes into the cytoplasm as well. CSLM in living cells may be a valuable 

tool for the design of  more efficient non-viral vectors based on polycations in 

gene delivery.   
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SUMMARY 

Specific targeting of ovarian carcinoma cells using pegylated polyethylenimine 

(PEG-PEI) conjugated to the antigen binding fragment (Fab´) of the OV-TL16 

antibody, which is directed to the OA3 surface antigen, was the objective of this 

study. OA3 is expressed by a majority of human ovarian carcinoma cell lines.  

To demonstrate the ability of the PEG-PEI-Fab´ to efficiently complex DNA, an 

ethidium bromide exclusion assay was performed.  Comparison with PEG-PEI 

or PEI 25 kDa showed only minor differences in the ability to condense DNA.  

Since conjugation of Fab´ to PEG-PEI might influence complex stability, this 

issue was addressed by incubating the complexes with increasing amounts of 

heparin.  This assay revealed stability similar to that of unmodified PEG-

PEI/DNA or PEI 25 kDa/DNA complexes.  Complexes displayed a size of 

approximately 150 nm with a zeta potential close to neutral.  The latter property 

is of particular interest for potential in vivo use, since a neutral surface charge 

reduces nonspecific interactions.  Binding studies using flow cytometry and 

fluorescently labeled DNA revealed a more than 6 fold higher degree of binding 

of PEG-PEI-Fab´/DNA complexes to epitope-expressing cell lines compared to 

unmodified PEG-PEI/DNA complexes. In OA3-expressing OVCAR-3 cells, 

luciferase reporter gene expression was elevated up to 80 fold compared to 

PEG-PEI and was even higher than that of PEI 25 kDa.  The advantage of this 

system is its specificity, which was demonstrated by competition experiments 

with free Fab´ in the cell culture media during transfection experiments and by 

using OA3-negative cells.  In the latter case, only a low level of reporter gene 

expression could be achieved with PEG-PEI-Fab´.      
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INTRODUCTION 

The general feasibility of gene delivery using synthetic polymers has been 

demonstrated in numerous studies [1-5].  Cationic polymers, such as linear or 

branched polyethylenimine (PEI) [2,3], starburst dendrimers [4] or imidazole 

containing polymers [5], were found to be suitable for in vitro applications. 

Unmodified cationic polymers lead to complexes with DNA displaying a 

relatively high cationic surface charge. Therefore, unspecific binding, as well as 

a fairly high toxicity due to electrostatic interactions with the negatively charged 

components  of cellular membranes, e.g. sialic acid, remain a serious limitation 

for in vivo gene delivery [3,6].  After intravenous injection of these polyplexes 

serious damage of body tissues [7] and a rather high rate of mortality [8] was 

observed in laboratory animals. 

In order to progress from in vitro gene delivery towards in vivo gene therapy, 

vectors are needed that exhibit high stability in body fluids, minimal nonspecific 

interactions, low toxicity and a targeting moiety that provides selective uptake 

into target cells. Since an excess of cationic polymer is necessary for 

complexation of DNA, the cationic surface charge needs to be shielded to 

reduce nonspecific interactions with blood components in non target tissues. 

A possible strategy towards achieving an optimized polymeric gene delivery 

system is schematically shown in Figure 1.  Polyplexes prepared with 

unmodified cationic polymer yield a rather high level of reporter gene 

expression under in vitro cell culture conditions (Figure 1a).  Yet, due to the 

high cationic surface charge of these vectors, this effect is nonspecific.  

Pegylation [8-10] or attachment of other hydrophilic polymers, such as pHPMA 

[11], to cationic polymers leads to vectors with a surface charge close to 

neutrality (Figure 1b).  Lower levels of nonspecific interactions have been 

demonstrated for these systems and some have been used successfully in vivo.  

These studies have shown that such shielded gene delivery systems offer the 

advantage of lower toxicities and prolonged circulation times in vivo [8,10].  
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However, the resulting complexes with DNA display rather low levels of 

reporter gene expression.  Although this property might be less favorable in 

vitro, it would be valuable for in vivo application because it may minimize gene 

expression in non-target cells.  If a targeting ligand, for example Fab´, is 

conjugated to these polymers, the resulting complexes could then be capable of 

targeting specific cell types with only low levels of reporter gene expression in 

non-target cells (Figure 1c).    

Figure 1  
Rationale behind polymer modifications described in this publication.  Unmodified 
complexes (A) displayed high levels of transfection efficiency, due solely to unspecific 
electrostatic interactions with cellular membranes.  Pegylation of PEI (B) led to 
complexes with an almost neutral zeta-potential, however, reporter gene expression 
remained at a low level.  Yet, when targeting moiety was conjugated to PEG-PEI (C), 
the resulting PEG-PEI-Fab’complexes showed lower levels of unspecific interactions, 
combined with a highly specific uptake and transfection of target cells.  

A variety of targeting moieties, such as transferrin [12], folate [13,14], RGD-

peptides [15,16], different types of saccharides [17,18] antibodies or antibody 

fragments [19,20] have been described for active gene delivery.  Most studies 

used ligands conjugated directly to unmodified cationic polymers, such as PEI 

or poly(L-lysine) resulting in polymer/DNA complexes with a high cationic 

surface charge.  Of the various targeting moieties already under investigation, 

antibodies and their fragments are of particular interest, due to their high 
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specificity for their target epitopes, as well as the wide variety of possible target 

structures.  

In this publication, we describe the use of a pegylated PEI to generate 

polymer/DNA complexes with a nearly neutral surface charge.  We then 

synthesized a conjugate consisting of pegylated PEI and an antigen binding 

antibody fragment (Fab´) that provided specific binding and efficient reporter 

gene expression coupled with a high specificity for target cells. Fab´ was used 

instead of the whole monoclonal antibody due to its lower molecular weight and 

therefore a lower level of steric hindrance during complex formation with DNA. 

As a model, we used OVCAR-3 human ovarian carcinoma cells that express 

high levels of the OA3 surface antigen, a structure that is expressed on most 

human ovarian carcinomas [21,22].  The OV-TL16 antibody specifically binds 

to the OA3 antigen triggering subsequent internalization [22].  Conjugation of 

OV-TL16 Fab´ to PEG-PEI produced conjugates that efficiently complexed 

DNA.  These complexes were stable and showed a very high specificity for 

OVCAR-3 cells as demonstrated by their enhanced binding capabilities and 

strongly elevated levels of reporter gene expression in vitro.  Furthermore, only 

a low level of gene expression occurred in OA3-negative cells.   

MATERIALS AND METHODS 

Chemicals and plasmid   

PEI 25 kDa, hexamethylene diisocyanate (HMDI), PEG monomethylether (2 

kDa), salmon testes DNA and N-succinimidyl 3-(2-pyridyldithio)propionate 

(SPDP) were purchased from Sigma-Aldrich, Taufkirchen, Germany.  

Luciferase plasmid (pCMV-luc) was produced by Plasmid Factory, Bielefeld, 

Germany.      
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Antibody and (Fab´)2 production   

OV-TL16 IgG directed against the surface antigen OA3 [21] was produced by in 

vitro cartridge bioreactor culture of the OV-TL16 hybridoma cell line (Cellco, 

Spectrum Labs, Pancho Dominguez, CA).  IgG purification and pepsin digestion 

to produce (Fab’)2 antibody fragments were performed as previously described 

[23].  

Cell culture   

NIH/3T3 (Swiss mouse embryo) cell line was purchased from the German 

Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, 

Germany).  NIH:OVCAR-3 cells were purchased from the American Type 

Culture Collection (ATCC), Teddington, UK.  Cells were cultured according to 

the protocols suggested by the supplier.  

Synthesis of PEG-PEI   

PEI(25k)-g-PEG(2k)10 was synthesized via a strategy which was described 

previously [24]. Briefly, PEG monomethylether (2 kDa) was dissolved in 

anhydrous chloroform (200 g/L) and activated with a 10-fold excess of 

hexamethylene diisocyanate, HMDI (60 °C, 24 h).  Unreacted HMDI was 

carefully removed by repetitive extraction with light petrol.  The reaction of 

activated PEG with the amino groups of PEI was carried out in anhydrous 

chloroform at 60 °C for 24 h.  The reaction solution was precipitated in diethyl 

ether and the product was dried in vacuo.   

Synthesis of PEG-PEI-Fab’ conjugate  

PEG-PEI (5 mg total polymer corresponding to 2,8 mg PEI) was dissolved in a 1 

mL reaction buffer containing 150 mM sodium chloride and 20 mM 4-(2-

hydroxyethyl)-1-piperazine ethane sulfonic acid (HEPES) pH 7.5. SPDP (80 µg) 

was added to this solution in 80 µL 100% ethanol while stirring and the reaction 

was allowed to continue for 90 min.  SPDP-activated PEI was then purified by 
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gel filtration on a PD-10 column.  The amount of SPDP coupled to PEI was 

determined by pyridine-2-thione release upon addition of a 20-fold excess of 

dithiothreitol (DTT) and by measuring the absorption at 343 nm against a 

standard curve of pyridine-2-thione.  PEG-PEI content was measured by a 

copper complexation assay [25].  

In the second step, a 1.4 fold molar excess of freshly reduced Fab’ was added in 

the same buffer.  The reaction proceeded for 12 h at room temperature and 

purification was performed by ion exchange chromatography as described 

earlier using 0.9 % NaCl, 10 mM HEPES pH 7.4 as buffer A and 3 M NaCl, 10 

mM HEPES pH 7.4 as buffer B [12].  The solvent was exchanged with 150 mM 

NaCl solution pH 7.4 via a further gel filtration step and the PEI concentration 

was determined by a copper complexation assay

 

[25].  The amount of Fab’ per 

PEG-PEI was determined by UV-absorption at 280 nm with background 

correction using a solution of PEG-PEI with the same concentration.  

Complex formation   

Luciferase plasmid (pCMV-luc) and the appropriate amount of polymer were 

dissolved separately in 0.9 % sodium chloride solution, pH 7.  The two solutions 

were mixed by vigorous pipetting and complexes were allowed to interact for 10 

min before use.  Complexes were prepared for transfection experiments with 

either 0.5 or 4 g plasmid in 45 or 300 µL 0.9 % NaCl and the appropriate 

amount of  polymer or PEG-PEI-Fab´ in 45 or 300 µL 0.9 % sodium chloride 

solution pH 7.  Flow cytometry experiments required 10 µg of plasmid dissolved 

in 300 µL sodium chloride solution, into which the appropriate amount of 

polymer in 300 µL 0.9 % NaCl was added. Complexes for the complex stability 

assay were formed with 1 µg plasmid in 50 µL sodium chloride solution and the 

appropriate amount of polymer in the same volume.  
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Ethidium bromide exclusion assay   

DNA condensation was measured by the decrease in ethidium bromide 

fluorescence, as described earlier [26].  The assay was performed in 96 well 

plates in triplicate.  Eight µg of salmon testes DNA was dissolved in 79 µL 

water and 50 µL of 60 mM Tris buffer pH 7.4 were added to each well. 

Volumes were equalized to 300 µL with water.  Subsequently, appropriate 

volumes of 0.05 mg/mL polymer solutions were added to produce N/P ratios 

between 0.2 and 4.  These were incubated for 10 min and then 20 µL of a 0.1 

mg/mL ethidium bromide solution were added.  Wells were mixed thoroughly 

and the fluorescence was measured using a fluorescence plate reader with 

excitation wavelength at 518 nm and an emission wavelength of 605 nm.  

Photon correlation spectroscopy   

Hydrodynamic diameters of the polymer/DNA complexes were determined by 

photon correlation spectroscopy.  Plasmid (0.5 µg pCMV-Luc) in 25 µL 0.9 % 

NaCl were complexed with the appropriate amount of polymer in 25 µL NaCl 

each, as described above.  Measurements were performed on a Zetasizer 3000 

HS from Malvern Instruments, Herrenberg, Germany (10 mW HeNe laser, 633 

nm).  Scattering light was detected at 90° angle through a 400 µm pin hole.  For 

data analysis, the viscosity (0.88 mPa s) and the refractive index (1.33) of 

distilled water at 25 °C were used.  The instrument was routinely calibrated 

using Standard Reference latex particles (AZ 55 Electrophoresis Standard Kit, 

Malvern Instruments).  Values given are the mean of 5 measurements.   

Measurement of zeta potential 

Zeta-potential measurements were carried out in the standard capillary 

electrophoresis cell of the Zetasizer 3000 HS from Malvern Instruments at 

position 17.0.  Measurements were performed in 0.9 % NaCl and average values 

were calculated with the data obtained from 5 runs.   



Pegylated PEI-Fab´-conjugates for targeted gene delivery   

 
135

Complex stability against heparin 

Complexes were formed in septuplet, as described above, in a total volume of 

100 µL sodium chloride solution at an N/P ratio of 7.  To these solutions, 0.01, 

0.03, 0.05, 0.1, 0.2, 0.5 and 1 International Units heparin were added in 10 µL 

0.9 % sodium chloride.  These solutions were mixed well and incubated for 10 

min before they were applied to a 1 % agarose gel containing ethidium bromide. 

In the eighth lane of each gel, plasmid was applied as a reference.  Gels were run 

for 50 min at 100 V, and then scanned using a Biometra gel analysing system. 
   

Atomic force microscopy (AFM)   

The polymer-DNA complexes were prepared as described above and diluted in 

milliQ water (pH 5.5, 18.2 M ).  The formulations were directly transferred 

onto a silicon chip by dipping into the polyplex solution for 10 min.  Atomic 

force microscopy was performed on a Digital Nanoscope IV Bioscope (Veeco 

Instruments, Santa Barbara, CA), as described elsewhere [27].  The microscope 

was vibration-damped.  Commercial pyramidal Si3N4 tips (NCH-W, Veeco 

Instruments, Santa Barbara, CA) on a I-type cantilever with a length of 125 µm, 

a resonance frequency of about 220 kHz and a nominal force constant of 36N/m 

were used.  All measurements were performed in Tapping mode

 

to avoid 

damage to the sample surface.  The scan speed was proportional to the scan size.  

The scan frequency was between 0.5 and 1.5 Hz.  Images were obtained by 

displaying the amplitude signal of the cantilever in the trace direction, and the 

height signal in the retrace direction, both signals were simultaneously recorded.  

The results were visualized in amplitude mode.   

Flow cytometry   

Flow cytometry was performed with plasmid DNA labeled with the intercalating 

dye YOYO-1 (Molecular Probes, Leiden, The Netherlands), as described by 

Ogris et al. [28].  Briefly, cells were grown for 24 h in six-well plates at a 
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density of 400,000 cells per well.  Complexes were prepared as described above 

and applied in fresh media with a total volume of 3 mL.  After 10 min, media 

was aspirated and cells were washed two times with cold (4 °C) PBS pH 7.3.  

Cells were suspended in PBS after detachment via trypsin incubation for 1 min. 

Cell suspensions were kept on ice until analysis. Flow cytometry was performed 

using a Becton Dickinson FACS Scan equipped with an argon laser with an 

excitation wavelength of 488 nm. The filter settings for emission was 530/30 nm 

bandpass.   

Transfection experiments   

Transfection experiments with pCMV-Luc luciferase plasmid were performed 

with PEI 25 kDa, PEG-PEI and PEG-PEI-Fab´ at N/P ratios of 2.5, 3.5, 7 and 10 

using 0.5 and 4 µg of plasmid. OVCAR-3 or NIH/3T3 (negative control) cells, 

were seeded in 12 well plates at a density of 50,000 cells per well.  After 24 h, 

the media was removed and the complexes were added in 1.5 mL fresh media 

containing different amounts of free Fab´ (where applicable).  Media was 

exchanged again after four hours and the cells were incubated for an additional 

44 h.  Luciferase gene expression was quantified using a commercial kit 

(Promega) and photon counting on a luminometer (Sirius, Berthold).  Results 

were measured in relative light units per second (RLU/s) which were then 

converted into ng luciferase by creating a calibration curve with recombinant 

luciferase (Promega).  Protein concentration in each sample was determined 

using a BCA assay [29].  All experiments were performed in triplicate and data 

were expressed in ng luciferase per mg protein.     
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RESULTS AND DISCUSSION 

Synthesis of PEG-PEI and PEG-PEI-Fab’ conjugates   

Polymer synthesis resulted in a pegylated polyethylenimine consisting of 10 

PEG chains (2 kDa) grafted to one PEI 25 kDa molecule as determined by 1H-

NMR and FT-IR spectroscopy [24].  Previous investigations suggest that this 

degree of pegylation is suitable for obtaining vectors with a suitable size and 

neutral surface charge [10].   

Using SPDP as a linker for coupling OV-TL16 Fab´ to PEG-PEI led to 

efficient conjugation.  SPDP modification of PEG-PEI produced a polymer 

containing approximately 0.5 PDP linkers per polymer.  In the second step, OV-

TL16 Fab´ was coupled to SPDP-modified PEG-PEI.  The progress and the end 

point of the reaction were followed by measuring pyridine-2-thione release 

using absorption at 343 nm (data not shown).  Purification of PEG-PEI-Fab´ 

conjugate via ion exchange chromatography displayed one peak containing free 

Fab´ shortly after application to the column in buffer A and one peak containing 

PEG-PEI-Fab´ after changing to buffer B.  UV measurement at 280 nm revealed 

that approximately every other polymer molecule carried one OV-TL16 Fab´.  

The overall polymer yield after purification was about 70 %, as determined by 

the copper complexation assay [25].  

Ethidium bromide exclusion assay   

Since ethidium bromide shows fluorescence only when intercalated with DNA, 

the reduction of fluorescence after the addition of polymer to DNA/ethidium 

bromide complexes can be regarded as a measurement for the efficiency of 

complex formation of the polymer.  

Monitoring complex formation via decrease of ethidium bromide 

fluorescence revealed efficient DNA complexation using the PEG-PEI-Fab´ 

conjugate (Figure 2).  The shape and position of the curve were only slightly 
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different when compared to that of PEG-PEI or PEI 25 kDa, suggesting a similar 

DNA condensing ability.   
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Figure 2  
Ethidium bromide exclusion assay using PEI 25 kDa, PEG-PEI and PEG-PEI-Fab’.  
The ability to complex DNA was only marginally hindered by pegylation and Fab´ 
conjugation to PEI 25 kDa.  

Photon correlation spectroscopy  

The sizes of complexes with PEI, PEG-PEI and PEG-PEI-Fab’ at different N/P 

ratios are shown in Figure 3a.  Complexes containing PEG displayed a similar 

size over the N/P ratio of 3.5 to 10.  Unmodified PEI 25 kDa/DNA complexes 

were significantly smaller at higher N/P ratios.  It is very important to note that 

complexes of PEI 25 kDa tend to aggregate especially at low N/P ratios, with 

sizes increasing from about 300 to 900 nm in the first 10 min after formation 

(large error bar).  However, those containing PEG exhibit an increase of size of 

less than 20 nm, probably due to efficient shielding of cationic surface charge, 

hereby abolishing aggregation (data not shown).  This effect has been 

demonstrated for pegylated PEIs in several studies [8,24].   
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Furthermore, it can be summarized that all complex sizes except the one of PEI 

25 kDa at N/P=3.5 are in a range that is suitable for endocytic uptake into cells 

[30].  Remarkably, sizes of DNA complexes with PEG-PEI-Fab’ are only 

marginally different than those of PEG-PEI/DNA complexes.  Obviously, the 

inclusion of Fab´ only slightly influences complex properties.  
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Figure 3  
Comparison of hydrodynamic diameters and zeta potentials of complexes at three 
different N/P ratios 
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Measurement of zeta potential  

Zeta potentials of complexes with PEI, PEG-PEI and PEG-PEI-Fab´ are shown 

in Figure 3b.  Zeta potentials of PEG-PEI/DNA complexes are close to neutral 

throughout the whole N/P range tested and differences are rather small.  This 

data suggests that the shielding effect of PEG is rather efficient, an observation 

that is in good agreement with previous studies [9,24,31].  Conjugation of Fab´ 

to PEG-PEI did not lead to significant changes in surface charge of complexes at 

N/P ratios from 2.5 to 10.  As expected the zeta potentials of complexes with 

unmodified PEI were rather high.  Interestingly, surface charge of these 

complexes decreased for N/P ratios from 3.5 and 10 although the amount of 

cationic polymer increased.  A possible explanation for this property could be 

differences in complex shape and size and therefore a different exposure of 

cationic polymer to the surrounding media. 

A neutral zeta potential is of major importance since it has been demonstrated 

that surface charge plays an important role for the in vivo fate of complexes.  For 

example, Plank et al. found a direct relationship between opsonization of 

complexes via attachment of complement factors and accessible cationic surface 

charge [32].  Furthermore, interactions of cationic polyplexes with albumin may 

result in the formation of large aggregates with a reversed surface charge leading 

to a rapid clearance by the reticulo-endothelial system [33].  For complexes with 

a neutral surface charge reduced interactions with plasma proteins, vessel 

endothelia or cellular blood components have been demonstrated [8,11].   

Complex stability against heparin.   

To evaluate complex stability, we compared levels of DNA release after 

incubation of PEI 25 kDa/DNA, PEG-PEI/DNA and PEG-PEI-Fab’/DNA 

complexes with increasing amounts of heparin (Figure 4).  Heparin, a polyanion 

capable of displacing DNA from polycation/DNA complexes, was chosen as a 

model substance for this assay.  The lowest concentration of heparin where 
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displacement occurs provides an estimation of the complex stability against 

polyanions.  In this case, no striking differences could be detected when PEG-

PEI-Fab’/DNA complexes were compared to native PEG-PEI/DNA or PEI 25 

kDa/DNA complexes.  In all three gels shown in Figure 4, DNA release started 

at the same concentration, suggesting no major influence of Fab´ conjugation on 

complex stability.  This data is in good agreement with the DNA complexing 

profiles obtained in the ethidium bromide exclusion assay.      

  

PEI 25 kDa

PEG-PEI

PEG-PEI-Fab´

Figure 4  
Determination of complex stability using increasing amounts of heparin.  In the first 
seven lanes of each gel increasing amounts of heparin were added in order to determine 
the threshold where DNA release occurs.  This concentration was similar in all gels  

Atomic force microscopy 

Images of complexes recorded under the conditions described above are shown 

in Figure 5.  The polymers and PEG-PEI-Fab´ have been shown to form defined, 

toroidal complexes with plasmid DNA.  The shape and size of complexes 

prepared with PEI, PEG-PEI and PEG-PEI-Fab´ were only slightly different.  

Size measurements from the AFM images were in good agreement with those 

obtained by photon correlation spectroscopy.  The data indicated complex 

diameters around 140 nm. 
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Figure 5  
Atomic force microscopy images from PEI 25 kDa/plasmid, PEG-PEI/plasmid and 
PEG-PEI-Fab’/plasmid complexes  

Flow cytometry   

Flow cytometry data revealed a moderate degree of cell binding of the 

unmodified PEI 25 kDa/DNA complexes (Figure 6).  The binding efficiency of 

complexes prepared with PEG-PEI is only slightly less for both cell types 

investigated in this study.  This is somewhat surprising since surface charges of 

PEI/DNA complexes are about 20 mV higher than that prepared with PEG-PEI.  

Obviously charge is only one factor that influences cell binding. As expected, 

PEG-PEI-Fab´/DNA complexes show an about 6-fold higher degree of binding 

to OVCAR-3 cells compared to those prepared with PEI 25 kDa and PEG-PEI.  

However, using OA3-negative NIH/3T3 cells, PEG-PEI-Fab´/DNA complexes 

displayed least efficient cell binding of all three polymers.  The data strongly 

suggests a specific binding of PEG-PEI-Fab´/DNA complexes to OA3 antigen 

expressing cell lines.  This property is of great importance for the transfection of 

particular cell types in vivo.    

100 nm 

 

PEI                    PEG-PEI          PEG-PEI-Fab´ 
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(A) 

 

(B) 

 

Figure 6  
Investigation of cell binding using flow cytometry. In (A), a strongly enhanced binding 
of PEG-PEI-Fab’/DNA complexes to OA3-expressing OVCAR-3 cells can be observed 
when compared to PEG-PEI/DNA and PEI/DNA complexes at an N/P ratio 3.5.  (B) 
shows binding to NIH/3T3 cells, which do not express OA3 antigen.  PEI/DNA display 
the strongest binding compared to PEG-PEI/DNA and PEG-PEI-Fab’/DNA complexes.  
The latter exhibit the least efficient binding to this non OA3-expressing cell line at an 
N/P ratio of 3.5  

Transfection experiments   

Data from transfection experiments using luciferase as a reporter gene are 

shown in Figure 7.  When experiments were performed using OA3 antigen 

expressing OVCAR-3 cells PEG-PEI-Fab´/plasmid complexes yielded fairly 

high levels of reporter gene expression between N/P 2.5 and 10 using either 0.5 

or 4 µg plasmid per well (Figure 7a and b).  Expression levels were 10 to 80-
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fold higher than those of complexes prepared with PEG-PEI or unmodified PEI.  

In OA3-negative NIH/3T3 cells, however, reporter gene expression remained at 

a rather low level (Figure 7c), probably due to a lower level of cellular 

association as determined by flow cytometry.   
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Figure 7 (A) and (B) 
Levels of reporter gene expression in OA3-positive OVCAR-3 cells using either 4 µg (A) 
or 0.5 µg (B) of luciferase plasmid per well are shown. Strongly enhanced levels of 
reporter gene expression can be observed compared to PEG-PEI which is especially 
distinct at low N/P ratios.   
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Figure 7 (C) and (D) 
In (C) luciferase expression in OA3-negative NIH/3T3 cells using 4 µg pCMV-Luc per 
well is depicted.  Here PEG-PEI-Fab´/plasmid complexes led to only low levels of 
reporter gene expression, stressing the high specificity of this system.  (D) Shows levels 
of reporter gene expression in OVCAR-3 cells in the presence of different amounts of 
free Fab´ in the incubation media.  The higher the Fab’ concentration, the lower the 
gene expression.  

In both cell lines, PEG-PEI/DNA complexes showed rather low levels of 

luciferase expression and only a moderate increase from N/P 2.5 to 10, probably 
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due to the low surface charge of complexes and, therefore, a reduced uptake.  

Unmodified PEI, however, displayed rather high levels of reporter gene 

expression at all N/P ratios with an increase of more than two orders of 

magnitude.  This effect cannot be attributed to the zeta potential of complexes 

since it decreases with increasing N/P ratio.  Increase in reporter gene 

expression occurs probably due to a more efficient complexation of DNA and a 

reduced size of complexes.  This may lead to a more efficient endocytic cellular 

uptake.  

Competition experiments with increasing amounts of Fab´ in the cell culture 

media showed a constant decrease in reporter gene expression in the case of 

PEG-PEI-Fab´/DNA complexes (Figure 7d).  This together with the low 

transfection efficiency in OA3-negative cell lines (Figure 7c) demonstrated a 

high degree of  specificity for this gene delivery system.  

Cytotoxicity of either PEG-PEI/DNA or PEG-PEI-Fab´/DNA complexes 

remained on a low level.  At N/P=10 using 4 µg of DNA per well, protein 

content was as high as that of an untreated control containing the same amount 

of cells.  The reason for this reduced in vitro toxicity is probably a reduced 

surface charge and hereby a reduced membrane disruptive potential of 

complexes as described earlier in the literature [24,34].  Unmodified PEI, 

however, caused a rather high cytotoxicity, leading to a protein content of as low 

as ~ 50 % at this N/P ratio.  

In summary it can be stated that complexes formed with plasmid DNA and 

PEG-PEI-Fab´ display only minor differences concerning physicochemical 

complex properties compared to PEG-PEI/DNA and PEI/DNA complexes. A 

possible disadvantage of the method we described here may be a reduced ability 

of PEG-PEI-Fab´ or PEG-PEI to complex DNA, or a reduced complex stability 

due to steric hindrance by PEG chains or the targeting moiety.  However, for our 

system, we have been able to demonstrate that neither the grafting of ten 2 kDa 

PEG chains, nor the conjugation of Fab´ leads to significant changes in complex 
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properties.  An explanation could be that in the complex cationic PEI moiety is 

oriented towards the core where it efficiently interacts with DNA, leading to 

similar curves in the ethidium bromide exclusion assay.  Hydrophilic PEG-

chains, as well as Fab´, most likely form a shell around this core, which 

accounts for the efficient shielding properties and proper presentation of the 

targeting ligand.  Consequently, complexes show a neutral zeta potential and a 

high level of reporter gene expression on cells expressing the OA3 antigen. The 

attachment of the targeting ligand to the end of a PEG-spacer like described by 

Woodle et al. for RGD-peptides [35]

 

and Blessing et al. for EGF (epidermal 

growth factor) [36] could lead to further improvements of vector efficiency. This 

work is currently in progress. 

Interestingly, the differences of reporter gene expression obtained with PEG-

PEI-Fab´/DNA complexes were minor in the N/P range from 2.5 to 10.  This 

strongly suggests an internalization or cell binding mechanism that is not related 

to charge.  Flow cytometry data suggest that the increase in reporter gene 

expression with PEG-PEI-Fab´/DNA complexes when compared to PEG-

PEI/DNA complexes is at least partially due to enhanced binding to OA3-

positive cells.  These results are in good agreement with previous studies where 

a variety of PEG-PEI copolymers and PEIs containing a targeting moiety have 

been investigated [16,24].  Advantages of the strategy described here are the 

possibility to produce conjugates in larger quantities and an easy one-step 

complex formation.  Several steps are required in other strategies [8].  

Due to their high specificity and low toxicity targeted vectors with PEG-

shielding are attractive constructs for in vivo use.  Three general approaches 

have been described in the literature.  The first approach is the one we described 

here using conjugates of block polymers and a targeting moiety.  In the second 

strategy pegylation and conjugation of a targeting moiety were performed after 

complex formation with unmodified PEI [36].  This method was developed 

using EGF as a targeting moiety.  Complexes prepared via this strategy showed 
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significantly enhanced levels of reporter gene expression in target cells and 

almost neutral surface charges.  The major disadvantage of this method 

compared to our procedure is that the reaction products or the reaction solvent 

(e.g. DMSO) may remain in the complex solution and, therefore, influence their 

properties.  In addition, the means of characterization the true composition of the 

resulting complexes with regard to the degree of pegylation, for example, are 

limited.  Furthermore, the preparation of targeted vectors via this strategy is 

much more complicated than in the case of simple electrostatic vectors since 

several sequential steps are required. 

The third approach used to obtain a targeted and pegylated vector starts with the 

conjugation of a targeting moiety followed by complexation with DNA.  

Pegylation is carried out as the last step.  This strategy has been performed using 

EGF [36] and transferrin

 

[8], and showed rather high levels of reporter gene 

expression in target cells.  The advantage of this approach is the possibility of 

purification and characterization of the intermediate PEI conjugate and targeting 

moiety.  The disadvantage is the difficulty in characterizing the PEG-content of 

the complex, the high operating expense of the pegylation process and the 

possibility that reaction products may remain in the complex solution.  

In conclusion, the strategy described in this publication represents a 

straightforward and efficient method to achieve active targeting using non-viral 

gene delivery systems with a high specificity and a low cytotoxicity. These 

investigations suggest that the PEG-PEI-Fab´ conjugates might be promising 

candidates for in vivo applications.  
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SUMMARY 

Differences between polyethylenimine (PEI)/plasmid and pegylated 

polyethylenimine (PEG-PEI)/plasmid complexes were investigated especially 

with regard to in vivo application. Size and zetapotential of complexes were 

measured and complex structures were visualized by atomic force microscopy. 

Furthermore, the stability of complexes against anionic exchange reactions was 

investigated, as well as the protection of complexed DNA against digestion by 

DNase I. To obtain an insight into the stability of complexes in blood we 

performed in vitro transfection experiments with polymer/DNA complexes in 

blood and investigated plasmid integrity after incubation with serum. Finally, to 

characterize the in vivo stability of complexes the fate of both types of 

complexes was investigated in vivo in mice after intravenous injection with 

radioactive labels attached to the polymer and incorporated into the DNA. 

Our data indicate that both types of complexes are spherical in shape with a size 

of approximately 100-150 nm. PEI/DNA complexes display a highly positive 

zeta potential, while PEG-PEI/DNA complexes possess a nearly neutral surface 

charge. Complex stability against polyanions does not show striking differences. 

A significant discrepancy was found with respect to the ability of polymers to 

protect against DNase digestion. While PEI offers effective protection against 

degradation, this effect is less pronounced for PEG-PEI. Transfection 

experiments in blood revealed that both types of complexes were at least partly 

stable in blood. In vivo investigations showed similar pharmacokinetic profiles 

and similar levels of organ accumulation for both the polymer and DNA from 

PEI/plasmid complexes indicating a considerable in vivo stability of these 

structures. PEG-PEI/DNA complexes, in contrast, showed obvious differences 

between polymer and DNA profiles. Kinetic curves and organ accumulation of 

DNA applied as PEG-PEI/DNA complexes were similar to those obtained with 

naked DNA. This data provides evidence for a rapid complex separation after 

injection with subsequent DNA degradation by serum nucleases. Our data 
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indicate that simple electrostatic vectors prepared with pegylated PEI and DNA 

are, despite favorable in vitro properties, not suitable for systemic gene delivery, 

at least under the conditions used in this study.   

INTRODUCTION 

Gene delivery has proven its efficiency in numerous in vitro studies [1]. The use 

of genes as therapeutic agents offers a tremendous potential for the causal 

treatment of yet incurable diseases, especially viral infections or cancer [2]. 

However, if this technique is to be applied systemically for the treatment of, e.g. 

malignant metastases, it is necessary to develop a vector system with sufficient 

stability and circulation time in the bloodstream in order to reach remote sites of 

the body. Cationic polymers, such as linear PEI [3,4] or methacrylates [5], have 

been frequently used for in vivo transfection experiments with primarily 

luciferase as a reporter gene. Some pharmacokinetic and organ distribution data 

has been obtained for different vectors [6-8]. In order to extend the circulation 

time of these vectors, hydrophilic polymers, such as PEG or pHPMA have been 

incorporated into the vector structure [9-11] with the intent to obtain a stealth-

like effect. Similar to that described for liposomes [12]. Several of these PEG-

modified cationic polymers display promising in vitro properties, such as a 

neutral zeta potential, very low toxicity and little to no aggregation [9,11,13]. 

Remarkable efforts have gone into the investigation of the in vitro stability of 

polyplexes [11,14], however, it is still unclear which factors are crucial for the in 

vivo stability of these systems. Several promising in vivo results have been 

obtained with local application of PEG-modified polymer/DNA complexes 

[15,16]. In a recent study, for example, it was demonstrated that the repeated 

administration of PEG-PEI/DNA complexes led to a prolonged transgene 

expression in the spinal cord as compared to unmodified PEI/DNA complexes 

[17]. However, little is known about the stability of simple electrostatic 

complexes in the bloodstream after intravenous injection and how the 
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incorporation of hydrophilic polymers, such as PEG, influences this stability. A 

study comparing poly(L-Lysine) and pegylated poly(L-Lysine)/DNA complexes 

revealed less efficient DNA protection in vivo, when using the pegylated 

polymer [7]. Further studies have investigated the pharmakokinetics and organ 

distribution of either DNA or polymer after intravenous injection [9,11], 

however, it still remains unclear if and to what extent complexes stay together in 

the bloodstream.  

The adequate dose for in vivo gene delivery is controversial. Some in vivo 

studies have used enormous amounts of DNA with up to 100 µg of plasmid per 

mouse [18]. However, the high levels of gene expression in lung and liver in 

such studies were also accompanied by a substantial in vivo toxicity leading to a 

high mortality among laboratory animals, due to lung embolism [19], and 

serious tissue damage [20]. If highly efficient plasmids encoding, e.g. suicide 

genes [21], are used for in vivo gene therapy, unspecific gene expression in the 

lung or liver is highly undesirable.  

In the present study complexes were characterized with regard to size, zeta 

potential and complex shape. In vitro stability of complexes was assessed by 

incubation with increasing amounts of anions, such as heparin and dextran 

sulfate. Furthermore we investigated complex stability by performing 

transfection experiments in blood and analyzed plasmid integrity by extracting 

DNA after incubation with serum. In order to assess the in vivo stability of 

PEI/plasmid and PEG-PEI/plasmid complexes after intravenous injection, we 

investigated the fate of polymer and DNA using two different radioactive labels. 

In these experiments, a dose of 2 µg plasmid per mouse were chosen to avoid 

tissue damage, lung embolism or other toxic side effects.     
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MATERIALS AND METHODS 

Materials and animals 

Luciferase plasmid (pCMV-luc) was purchased from Plasmid Factory, Bielefeld, 

Germany. PEI 25 kDa, PEG monomethylether (2 kDa) and hexamethylene 

diisocyanate (HMDI) were purchased from Sigma-Aldrich, Taufkirchen, 

Germany. Male balb/c mice as well as citrate mouse blood were purchased from 

Charles River, Sulzfeld, Germany.   

Polymer synthesis  

PEI(25k)-g-PEG(2k)10 was synthesized as previously described [22]. Briefly, 

PEG monomethylether (2 kDa) was dissolved in anhydrous chloroform and 

activated with hexamethylene diisocyanate (HMDI). Unreacted HMDI was 

carefully removed by extraction with light petrol. The reaction of activated PEG 

with the amino groups of PEI was carried out in anhydrous chloroform. The 

reaction solution was precipitated in diethyl ether and the product was dried in 

vacuo.    

Preparation of complexes 

Polymer solutions for complex formation were prepared in 79 µl of 150 mM 

NaCl with 10 mM Hepes buffer pH 7.4 and 36 µl glucose 5 % pH 7.4. These 

mixtures were added to solutions of plasmid in 115 µl glucose 5 % pH 7.4. 

Complexes were prepared at an N/P ratio of 6.  

Photon correlation spectroscopy 

Hydrodynamic diameters of the polymer/DNA complexes were determined by 

photon correlation spectroscopy.  Plasmid (0.5 µg pCMV-Luc) in 25 µL glucose 

5 % were complexed with the appropriate amount of polymer in 25 µL glucose 

5 % each, as described above.  Measurements were performed on a Zetasizer 

3000 HS from Malvern Instruments, Herrenberg, Germany (10 mW HeNe laser, 

633 nm).  Scattering light was detected at 90° angle through a 400 µm pin hole.  
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For data analysis, the viscosity (0.88 mPa s) and the refractive index (1.33) of 

distilled water at 25 °C were used.  The instrument was routinely calibrated 

using Standard Reference latex particles (AZ 55 Electrophoresis Standard Kit, 

Malvern Instruments).  Values given are the mean of 5 measurements.   

Measurement of zeta potential 

Zeta-potential measurements were carried out in the standard capillary 

electrophoresis cell of the Zetasizer 3000 HS from Malvern Instruments at 

position 17.0.  Measurements were performed in glucose 5 % and average 

values were calculated with the data obtained from 5 runs.  

Complex stability against exchange reactions with albumin and anions 

This assay was performed using a procedure described earlier [23] using a more 

narrow range of concentrations. Briefly: Complexes were prepared from 1 µg of 

pDNA and the corresponding amount of polymer in a total volume of 50 µl 

glucose 5 %. 0.075, 0.1, 0.125, 0.15, 0,175, 0.2 and 0.225 international units of 

heparin were added to these complex solutions in 10 µl glucose 5 %. The 

solutions were mixed well and incubated for 10 min before application to a 1 % 

agarose gel containing ethidium bromide. In the eighth lane of each gel, plasmid 

was applied as a reference. Gels were run for 50 min at 100 V and then scanned 

using a Biometra gel analyzing system.   

Studies with dextran sulfate were performed in the same manner. Increasing 

amounts of dextran sulfate (0.5, 0.75, 1.0, 2.5, 5.0, 7.5 and 10 µg) were 

incubated with the complex solutions in 10 µl glucose 5 %.  

Stability against DNase digestion 

Complex stability was investigated according to a method described earlier [24]. 

Briefly, complexes were prepared at N/P=6 in glucose 5 % using 5 µg of 

pCMV-luc in a total volume of 25 µl. Aliquots of 5 µl corresponding to 1 µg of 

plasmid were incubated with 0.0001, 0.01, 0.1, 1 and 5 international units (I.U.) 
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of DNase I in digestion buffer (0.1 M sodium acetate, 5 mM MgSO4 pH 7.4) for 

15 minutes at 37 °C. Subsequently, 6 µl termination buffer (equal volumes of 

0.5 M EDTA, 2 M NaOH and 0.5 M NaCl)  were added, as well as 2 µl of a 

heparin solution containing 1000 I.U. per ml. A positive control reaction 

containing naked DNA was carried out under the same conditions using 5 I.U. 

DNase I. Resulting mixtures were applied to a 1 % agarose gel and 

electrophoresed at 100 V for 1 hour. The resulting gel was visualized and 

photographed on a BioRad transilluminator. 
      

Atomic force microscopy 

The polymer-DNA complexes were prepared as described above and diluted in 

milliQ water (pH 5.5, 18.2 M ).  The formulations were directly transferred 

onto a silicon chip by dipping the chip into the polyplex solution for 10 min.  

Atomic force microscopy was performed on a Digital Nanoscope IV Bioscope 

(Veeco Instruments, Santa Barbara, CA) as described elsewhere [25].  The 

microscope was vibration-damped.  Commercial pyramidal Si3N4 tips (NCH-

W, Veeco Instruments, Santa Barbara, CA) on a I-type cantilever with a length 

of 125 µm, a resonance frequency of about 220 kHz and a nominal force 

constant of 36N/m were used.  All measurements were performed in Tapping 

mode

 

to avoid damage to the sample surface.  The scan speed was 

proportional to the scan size.  The scan frequency was between 0.5 and 1.5 Hz.  

Images were obtained by displaying the amplitude signal of the cantilever in the 

trace direction, and the height signal in the retrace direction, both signals were 

simultaneously recorded. The results were visualized in amplitude mode.  

Transfection in blood 

NIH/3T3 cells were seeded in 12 well plates at a density of 150,000 cells per 

well and grown for 48 hours. Complexes were prepared as described above 

using 4 µg of DNA in a total volume of 100 µl sodium chloride 150 mM and 

added either to 1000 µl mouse blood or 1000 µl sodium chloride 150 mM, pH 7. 
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These mixtures were shaken for 1 hour at 37 °C. After that media was aspirated, 

complex/blood, as well as complex/sodium chloride solutions, were added 

directly to cells and plates were shaken carefully. After 15 minutes, mixtures 

were removed and cells were washed 5 times very carefully to remove all 

cellular blood components. Cells were incubated for a further 24 hours and 

luciferase expression, as well as protein content were determined as described 

earlier [26].  

Stability of DNA in serum   

Complexes were prepared using PEI and PEG-PEI in glucose 5 % at a N/P ratio 

of 6 in a total volume of 200 µl and a plasmid content of 10 µg. Complexes and 

a control sample containing 10 µg of pCMV-Luc in 200 µl glucose 5 % were 

incubated with 800 µl human serum for 30 minutes at 37 °C. Subsequently, 

pDNA was extracted from samples. This was carried out using a commercial kit 

(DNeasy, Qiagen, Hilden, Germany), whereas, as an additional step, pDNA was 

released from polymers using 60 µl of heparin solution (1000 I.U./ml) after 

inactivation of DNases. The volume of eluted DNA was reduced to 20 µl using 

Microcon 10 ultracentrifugation units (Amicon, Bedford, USA) and applied to a 

1 % agarose gel. Electrophoresis was carried out at 100 V for 50 minutes and the 

resulting gel was visualized and photographed on a BioRad transilluminator.  
     
Radioactive labeling of polymers  

Polymers were labeled employing N-succinimidyl-3-(4-hydroxy-3-[125I]iodo-

phenyl)propionate (Amersham Pharmacia Biotech, Freiburg, Germany) 

according to the method of Bolton and Hunter as described earlier [9,27]. 

Briefly: Polymers were dissolved in 0.1 M borate buffer pH 8.5 and the Bolton 

Hunter reagent was dissolved in DMSO. The polymer solution was added to the 

Bolton Hunter reagent solution and the reaction was carried out for 60 minutes 

at room temperature. Purification was performed on a Sephadex G-25 column 
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(PD10, Pharmacia), using an elution buffer containing 150 mM NaCl and 10 

mM HEPES pH 7.4.  

Radioactive labeling of DNA  

Plasmid (pCMV-Luc) was radioactively labeled by incorporation of 32P-dCTP 

(Readivue, Amersham Pharmacia, Freiburg Germany) using a Nicktranslation 

Kit (Amersham Pharmacia, Freiburg, Germany) following a protocol provided 

by the manufacturer. Unincorporated nucleotides were carefully removed using 

Autoseq spin columns containing Sephadex G50 (Amersham Pharmacia, 

Freiburg, Germany) in two subsequent steps. Plasmid purity was verified via 

size exclusion chromatography using a PD-10 column and via 

ultracentrifugation using Microcon 10 spin columns (Amicon, Beverly, USA). 

No significant amounts of free 32P-dCTP were detected.  

Pharmacokinetic analysis and organ distribution   

All animal experiments followed the “Principles of Laboratory Animal Care” 

(NIH publication #85-23, revised 1985) and were approved by an external 

review committee for laboratory animal care. Male balb/c mice with a body 

weight of 20-25 g were anaesthetized using Ketamine (Ketavet, Pharmacia & 

Upjohn, Erlangen, Germany) and Xylazine (Rompun, Bayer AG, Leverkusen, 

Germany). Complexes of either 125I-poylmer/plasmid or polymer/32P-plasmid 

were injected as a bolus of approximately 100µL through the jugular vein. In the 

case of naked DNA, the appropriate amount of DNA was injected as a bolus of 

100 µl in the same buffer mixture as complex solutions. Blood samples were 

obtained via a catheter in the common carotid artery and urine was sampled by 

flushing the bladder with sodium chloride solution through a 2-way catheter. 

After 120 minutes, mice were sacrificed and organs (cortex, liver, kidneys, 

heart, lungs, spleen, fat tissue) were weighed and assayed for radioactivity. 

Radioactivity of the 125I-polymer was measured on a 1277 Gammamaster 

(Perkin Elmer Wallac, Freiburg, Germany). To assess the radioactivity from 32P-



Chapter 4  162

pCMV-Luc, organs and blood samples were dissolved in 1 ml of Soluene 350 

(Amersham Pharmacia, Freiburg, Germany). Subsequently, 200 µl of 30 % 

sodium peroxide were incubated with the mixture for 30 minutes, and then 

added to 15 ml HionicFluor (Perkin Elmer, Dreieich, Germany). Measurements 

were performed using a TriCarb liquid scintillation counter (Perkin Elmer, 

Dreieich, Germany) with a counting time of 15 minutes and 1 minute precount 

delay. Measurements of complex solutions were used for both tracers to 

determine the injected dose of radioactivity. In the case of PEI/DNA complexes 

concentration time curves from polymer and pDNA were fitted to a two 

compartmental model with the Software Kinetica 1.1 from Simed. The model 

used was tt BeAetC )( and the weighting applied was 2)/(1 calcc . Polymer 

concentrations in the samples were then calculated as percent of injected dose 

(%ID) or %ID/mL, respectively. Unpaired t-test was performed using 

Microcal™ Origin to compare blood levels of different polymers at 

corresponding time points. Differences were considered significant if two-tail P 

= 0.05.   

RESULTS AND DISCUSSION 

Size and zeta potential measurements  

At an N/P ratio of 6, both PEI 25 kDa and PEI(25k)-g-PEG(2k)10 are capable of 

forming complexes with plasmid DNA. Complexes prepared with PEI 25 kDa 

display a size of approximately 100 nm and a zeta potential of about + 25 mV. 

In contrast, PEG-PEI/DNA complexes display a size of approximately 145 nm 

and a neutral zeta potential, indicating an efficient shielding of the cationic 

charge by linear PEG molecules. Compared to measurements obtained in 

sodium chloride 150 mM [23] complexes are significantly smaller when 

prepared in glucose 5 %.  
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Complex stability against exchange reactions with anions  

The gels in Figure 1 were obtained with heparin (A) and dextran sulfate (B). 

Both show a similar stability of PEI/DNA and PEG-PEI/DNA complexes 

against exchange reactions with polyanions. Initial release being at the same 

concentrations, however, in the case of PEG-PEI, total release occurs at higher 

concentrations than that of PEI. This can be observed in lane 6 of the heparin 

gels (0.2 international units added) and lane 4 of the dextran sulfate gels (2.5 µg 

added). The differences in release profiles may reflect a DNA complexing 

ability from PEG as described earlier in the literature [28]. Complex stability 

against serum was investigated as well, however in this case no release of DNA 

could be observed (data not shown).  

  

Figure 1a 
Investigation of complex stability against exchange reactions with anions. Gels were 
obtained by incubating PEI/DNA and PEG-PEI/DNA complexes with increasing 
concentrations of heparin. Obviously release starts at the same concentration, however 
in the case of PEG-PEI total release occurs at higher concentrations as when using PEI.   

  

Figure 1b 
The same experiment with increasing amount of dextran sulfate     

  0.5       0.75      1.0        2.5        5.0      7.5      10 µg

 

 dextran sulfate added to complex preparation 
  0.5       0.75      1.0        2.5        5.0      7.5      10 µg

 

 dextran sulfate added to complex preparation 

PEI

 

PEG-PEI 

PEI PEG-PEI

 

0.075     0.1     0.125  0.15    0.175    0.2      0.225    free  
International Units Heparin added                           DNA 

 0.075  0.1     0.125     0.15    0.175   0.2        0.225     free  
 International Units Heparin added                             DNA 
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Stability against DNase digestion 

Gels in Figure 2 show that if complexes of PEI/DNA and PEG-PEI/DNA are 

incubated with increasing concentrations of DNase I for 15 minutes, digestion of 

pDNA starts at an enzyme concentration of 1 I.U. DNase I per complex 

preparation. However, the degree of degradation is different. While complete 

degradation can be observed for DNA from PEG-PEI/DNA complexes, 

PEI/DNA shows only partial degradation with the majority of pDNA remaining 

intact. These results suggest a significantly greater ability of PEI 25 kDa to 

protect pDNA as compared to PEG-PEI. An explanation for this finding may be 

the denser complex structure of PEI, which provides a more efficient steric 

hindrance against DNase attack. Similar results have been obtained by Mullen et 

al. in a study where the ability of poly(L-lysine) and pegylated poly(L-lysine) to 

protect plasmid DNA against DNase was compared and the unmodified polymer 

achieved a better protection, as well [7].  

  

 

Figure 2 
Investigation of DNA protection against DNase digestion using PEI (A) and PEG-PEI 
(B). Complexes were incubated with increasing amounts of DNase for 15 minutes and, 
after enzyme inactivation, DNA was released from complexes. Data suggests that PEI 
offers a significantly higher protection against digestion than PEG-PEI, indicating a 
denser complex structure.      

10-4         10-2         0.1           1             5  

 

International Units DNase I added  

A B 

10-4         10-2         0.1           1             5  

 

International Units DNase I added  
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Atomic force microscopy (AFM)  

AFM images shown in Figure 3 as three dimensional plots illustrate that PEI and 

PEG-PEI are capable of forming defined, spherical complexes with plasmid 

DNA. Shape and size for both complex types appear similar. However, 

PEI/DNA complexes seem to be rounder, more compact and smoother. PEG-

PEI/DNA complexes lie flatter on the surface of the silicon chip. Furthermore, 

they seem to have a slightly more irregular shape. However, no free or only 

loosely complexed DNA can be observed. We have put a significant effort into 

the confirmation of the absence of free DNA in several AFM preparations. 

However no free DNA could be observed, as described in earlier studies [22].  

Transfection in blood  

A comparison of reporter gene expression in sodium chloride 150 mM and 

mouse blood are shown in Figure 4. Obviously, both PEI/DNA and PEG-

PEI/DNA complexes are capable of mediating gene expression when applied in 

blood. In the mouse blood used for this study, blood clotting was prevented by 

addition of citrate. This multivalent anion complexes not only calcium, but also 

magnesium ions, thus inhibiting serum nucleases. Since nuclease degradation is 

abolished in this experiment we can assume that the reduction of gene 

expression observed in this study is due to interactions with plasma proteins or 

cellular blood components. Probably a variety of serum proteins attach to 

complexes as described earlier [14,19]. If the degree of reduction of gene 

expression between sodium chloride 150 mM and blood are compared, a 

reduction of reporter gene expression of approximately 50 % can be observed 

for PEI/DNA complexes. When regarding PEG-PEI/DNA complexes, on the 

other hand, reduction goes down to less than 20 % when complexes are applied 

in blood, indicating a higher level of interactions with blood components. This is 

surprising, because one would expect less interactions with blood components as 

a result of the stealth-like effect and the neutral zeta potential.  
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Figure 3 
Complexes of PEI/DNA and PEG-PEI/DNA visualized by atomic force microscopy at 
N/P=6 in glucose 5 %. Images display a similar appearance of complexes, however 
PEI/DNA complexes seem to be more uniform and show a more regular structure than 
that prepared with PEG-PEI.  

(A) PEI/DNA 

(B) PEG-PEI/DNA 
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Our data does provide evidence of a certain degree of complex stability after 

incubation with blood for one hour, since the transfection levels of PEG-

PEI/DNA are about one order of magnitude higher than that of naked DNA.  
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Figure 4 
Comparison of luciferase reporter gene expression when complexes are applied to cells 
in in sodium chloride 150 mM and in blood.  

Stability of DNA in serum  

Results from plasmid extraction after incubation of complexes and naked DNA 

with human serum are shown in Figure 5. While naked DNA is almost totally 

degraded after 30 minutes of incubation, PEG-PEI does offer a certain 

protection against degradation by serum nucleases. However this effect is less 

pronounced than in the case of PEI 25 kDa. These results are in good agreement 

with data from Figure 2 and similar results have been published using poly(L-

lysine) [7].      
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Figure 5 
Investigation of plasmid integrity after incubation with human serum for 30 minutes. 
This assay reveals that PEG-PEI does protect plasmid DNA from degradation in  serum, 
however this effect is less pronounced than when using PEI 25 kDa. Naked DNA is 
almost totally degraded after 30 minutes.   

Pharmakokinetic analysis and organ distribution 

Pharmacokinetic profiles of polymers and DNA are depicted in Figures 6-8. 

None of the animals used in this study died during the experiments and no signs 

of acute toxicity were observed.  The stability of the label attached to the 

polymer has been proven by previous studies [9]. 32P labeled plasmid DNA is 

subject to degradation when injected intravenously [7,29,30] and, as a result, 

organ distributions detected after 2 hours do not contain the entire amount of 

intact plasmid. However, despite the evidence of a certain degree of degradation 

our data does show differences between PEI and PEG-PEI that allows valuable 

conclusions about protection against degradation. 

PEI/plasmid complexes (Figure 6). Pharmacokinetic profiles obtained with 

labeled PEI and plasmid DNA display a very rapid clearance from the 

bloodstream. Curves fitted to a biexponential disposition equation by non-linear 

curve fitting (Figure 6) exhibit very steep alpha phases followed by very flat 

beta elimination phases for both, the polymer and pDNA. After 30 minutes, less 

than 3 % of the injected dose (polymer, as well as pDNA) per milliliter blood is 

still circulating in the bloodstream, approaching levels of approximately 1 % 

PEI/         PEG-PEI/     Naked        untreated  

plasmid   plasmid        plasmi      pCMV-Luc     
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ID/ml blood after 2 hours. Differences between the curves, especially in the first 

30 minutes are only marginal. These similarities suggest that PEI/DNA 

complexes remain stable to a substantial degree in the bloodstream. 

The organ distribution of both PEI and pDNA after two hours reveals similar 

levels of radioactivity in important organs, such as liver, kidney and lung. This 

great similarity provides additional evidence for a certain degree of complex 

stability in the bloodstream with joint uptake into tissues. Uptake into the liver 

probably occurs due to opsonization of complexes as demonstrated by Planck et 

al. [31] with a subsequent rapid capture by mononuclear phagocytic cells. A 

remarkable difference in organ deposition can be observed in the spleen, 

displaying an approximately threefold higher accumulation of 125I compared to 
32P.  This fairly high accumulation in the spleen has been reported earlier for PEI 

25 kDa [9] and probably occurs due to free polymer present at the N/P ratio used 

or a minor degree of complex separation in the bloodstream. A significantly 

higher amount of radioactivity from 32P was detected in the urine, as compared 

to 125I from the polymer. This difference most likely occurs as a result of a 

minor degree of complex separation within 2 hours accompanied by a rapid 

degradation by serum nucleases as described earlier [29].  

Remarkably, the uptake into the lung is fairly low in this study, despite the fact 

that the lung is the main organ of gene expression after systemic administration 

of PEI/DNA complexes [3,4,32]. The reason for this is very likely a result of the 

low dose of only 2 µg pDNA used for the present investigation. At higher doses 

of PEI/DNA complexes a substantial accumulation is detectable in the lung even 

after 2 hours following injection (data not shown). Furthermore, deposition of 

pDNA and gene expression do not necessarily correlate as described ealier by 

Liu et al. [33]. Other tissues investigated in this study, such as heart, cortex, 

fatty tissue or the injection site in the jugular vein, did not exhibit significant 

levels of radioactivity from either polymer or pDNA after application of both 

PEI/DNA and PEG-PEI/DNA complexes. 
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Figure 6 
Pharmacokinetic profile and organ distribution after 2 hours of PEI 25 kDa / pCMV-
Luc complexes. A very rapid clearance from the bloodstream of both, DNA and polymer 
can be observed as well as a similar organ distribution.   



In vitro and in vivo properties of PEI/DNA and PEG-PEI/DNA complexes 171  

PEG-PEI/plasmid complexes (Figure 7). Pharmacokinetic data from PEG-

PEI/DNA complexes reveals major differences between polymer and plasmid 

DNA. Similar to PEI 25 kDa, PEG-PEI displays a rapid initial elimination 

phase, however, after approx. 5 minutes a plateau can be observed at ~25 % of 

the injected dose per milliliter blood. The blood level decreases only marginally 

over the following two hours. A plausible reason for this long circulation of the 

polymer could be an efficient steric barrier created by PEG chains against 

opsonization and thus less uptake into the reticuloendothelial system of the liver. 

Another explanation could be the attachment of the polymer to e.g. cellular 

blood components. While the pharmacokinetic profile of the polymer seems 

very promising at the outset, it soon becomes clear that the polymer rapidly 

loses its cargo. The kinetic profile from 32P labeled pCMV-Luc complexed with 

PEG-PEI displays an initial decrease over the first two minutes with a 

subsequent maximum at 5 minutes of approximately 25 % of the injected dose 

per milliliter blood. The reason for this maximum could be an initial entrapment 

of DNA or PEG-PEI/DNA complexes in the lung microvaculature with a 

subsequent time-delayed redistribution into the bloodstream as described earlier 

[34]. After crossing of this maximum, however, the blood level of DNA 

decreases rapidly reaching levels of less than two percent after 120 minutes. The 

organ distribution after 2 hours shows great differences between the polymer 

and DNA, as well. While radioactivity from the polymer accumulates 

predominantly in the liver, reaching approximately 40 % of injected dose, 

radioactivity from the DNA appears in the liver at a lower level, remarkably 

even significantly lower than that of naked DNA (Figure 8). Furthermore, a high 

level of radioactivity from 32P was found in the urine after two hours, most 

likely present as pDNA degradation products.   
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Figure 7 
Pharmacokinetic profile and organ distribution (after 2 h) of PEI(25k)-g-PEG(2k)10 / 
pCMV-Luc complexes. Blood levels as well as organ distribution show great differences 
between polymer and DNA.   



In vitro and in vivo properties of PEI/DNA and PEG-PEI/DNA complexes 173  

From pharmacokinetic profiles and organ accumulation data it can be concluded 

that PEG-PEI/DNA complexes very likely undergo a rapid separation of 

polymer and DNA after injection into the bloodstream. After separation, the 

PEG-PEI is taken up by the liver and a substantial amount of the injected dose 

circulates in the blood, possibly attached to cellular blood components. Plasmid 

DNA, however, is probably degraded by serum nucleases rapidly after 

separation leading to a high renal excretion of degradation products. Similar 

findings have been obtained by Mullen et al. [7]. They reported that pegylated 

poly(L-lysine)/plasmid complexes very likely separate rapidly after intravenous 

injection.   

Naked DNA (Fig. 8). The pharmacokinetic profile and organ distribution of 

naked pCMV-Luc was investigated under our experimental conditions and used 

as a reference. Interestingly, a maximum was obtained with naked DNA after 15 

minutes, as well, probably again due to accumulation in the lung with 

subsequent release. The curve progression following this maximum shows a 

rapid clearance from the bloodstream. The organ distribution after 2 h shows a 

substantial accumulation in the liver and excretion via the urine. The high renal 

excretion is probably a result of degradation of unprotected pDNA by serum 

nucleases [7,29].  

When the pharmacokinetic profile and organ distribution of DNA complexed to 

PEI is compared to that of naked pDNA, the impact of the polymer becomes 

obvious. The blood level curve for PEI/pDNA is similar to that obtained for the 

labeled polymer alone, while naked DNA shows a different behavior. This 

finding indicates that the polymer dictates the fate of the DNA and this 

observation can be explained by the assumption that the complexes remain 

stable in the bloodstream. Organ distributions of PEI complexed pDNA 

compared to naked pDNA shows great differences as well. In the case of 

PEI/pDNA, a much higher DNA accumulation in the liver and a lower excretion 

via the urine were measured. The threefold decrease in urine excretion is  
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Figure 8 
Comparison of pharmacokinetics and organ distribution of 32P labeled pCMV-Luc 
complexed to PEI 25 kDa, PEG-PEI and plain DNA. Complexation with PEI 25 kDa 
leads to significant changes in organ distribution and blood levels over time, whereas 
remarkable similarities can be observed for free DNA and PEI(25k)-g-PEG(2k)10 / DNA 
complexes.  
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evidence that efficient protection of pDNA from degradation in the bloodstream 

is provided by PEI 25 kDa.  

Comparison of pDNA profiles from PEG-PEI/DNA complexes, however, shows 

similarities to that of naked DNA. While blood concentration levels are different 

at early time points, they become very similar after 15 minutes. Furthermore, 

organ distributions after 2 hours are similar, as well. Both show a moderate 

accumulation in the liver and a substantial renal excretion. These similarities 

support the assumption that PEG-PEI/DNA complexes separate rapidly after 

injection and that DNA is subject to degradation.  

In conclusion, we can summarize that under the conditions described in this 

study, complexes of unmodified PEI 25 kDa and pCMV-Luc exhibit a certain 

stability in the bloodstream. Complexes prepared with PEI(25k)-g-PEG(2k)10 

and pCMV-luc, however, very likely separate rapidly after injection. The reason 

for this rapid in vivo separation of PEG-PEI/DNA complexes is not yet clear, 

especially since in vitro studies revealed a similar capability of both polymers to 

condense DNA [23]. Furthermore, complex stability against heparin and dextran 

sulfate were very similar, as well. A possible explanation for this reduced 

stability in blood could be the higher susceptibility of PEG-PEI/DNA complexes 

to enzymatic degradation via  DNase I and serum nucleases as described in this 

study. This may lead to degradation of DNA in the complexes and thus 

destabilization. Similar findings are described for pegylated poly(L-

lysine)/plasmid complexes [7]. Furthermore, AFM images showed flatter and 

more irregular structures indicating less stable complexes. Transfection data in 

nuclease inactivated blood revealed a lower stability of PEG-PEI/DNA 

complexes in vitro. This lower stability together with a degradation of 

complexed DNA by serum nucleases may lead to separation of complexes. 

Especially in fine capillary beds of the lung complexes are exposed to vigorous 

shear stress. Furthermore negatively charged endothelia or blood components, as 

suggested in the literature [14] may contribute to complex destabilization. The 
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sum of these factors may lead to penetration of proteins or polyelectrolytes into 

the core of complexes [18]. This process could be facilitated by the hydrophilic 

PEG-chains incorporated into the inner layers of the complexes. A more detailed 

investigation concerning this issue is currently underway.  

It is yet unclear if complex separation of PEG-PEI/DNA complexes occurs to 

the same extent at higher doses as well. In this study only approximately 2 µg of 

plasmid DNA per mouse were used and it is conceivable that there is a saturable 

mechanism of complex destabilization that can be overcome or at least delayed 

with higher doses. Furthermore it is unclear if and to what extent the size of the 

complexed DNA influences complex stability. It is conceivable that complexes 

formed with small nucleic acids, such as antisense oligonucleotides or 

ribozymes, show a higher stability. Currently PEG-PEIs with different polymer 

structures complexed with nucleic acids of various sizes are under investigation 

concerning their in vivo properties. If a rapid destabilization occurs with other 

PEG-PEIs or at higher doses, it will be necessary to create new methods to 

stabilize the electrostatic complexes. For example, lateral stabilization using 

bioreversible disulfide bonds has shown promising properties [18].    
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SUMMARY 

Major problems using cationic polymers for nonviral gene delivery stem from 

fairly high positive surface charges of the resulting polyplexes with DNA and 

consequently high toxicity under in vitro and in vivo conditions. Attachment of 

hydrophilic polymers such as polyethylenglycol (PEG) has reduced toxicity of 

formulations. However most of these systems are not biodegradable at all. We 

therefore developed a biodegradable gene delivery system showing high 

transfection efficiency while displaying a low toxicity.  

A new type of copolymer was synthesized by grafting a diblock copolymer 

consisting of PEG and polycaprolactone (PCL) onto hyperbranched 

polyethylenimine (hy-PEI). Since the solubility of these compounds is only very 

poor, we formed supramolecular inclusion complexes by threading a-

cyclodextrin (a-CD) over PEG and PCL chains. The successful threading of a-

CD onto PCL blocks was investigated by FTIR and UV spectroscopy as well as 
1H NMR. Furthermore we investigated the ability of the resulting compounds to 

complex DNA by ethidium bromide fluorescence quenching. Hydrodynamic 

diameters of complexes and zeta potentials were assessed using a Zetasizer.  

Furthermore, cellular uptake was evaluated by confocal laser scanning 

microscopy and flow cytometry. Transfection efficiencies were evaluated 

employing a luciferase reporter gene assay and toxicity was estimated by 

determination of protein content. 

Characteristic shifts of PCL in FTIR, 1H NMR and UV spectra strongly suggest 

that -CD is threaded over PEG and PCL. Due to the reduced hydrophobic 

interaction between PCL blocks the resulting supramolecular complexes 

displayed a dramatically increased solubility. Their ability to complex DNA 

was almost as efficient as that of PEI 25 kDa. Resulting complexes show a size 

of approximately 200 nm and a neutral surface charge. Cellular uptake was 

increased as well when the inclusion complex is compared to the -CD-free 

triblock copolymer. Subcellular localization suggests an uptake in distinct 
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structures, probably by endocytosis with subsequent trafficking to lysosomes. 

Transfection efficiencies of inclusion complexes were in the same order of 

magnitude as PEI, however, a significantly lower toxicity was observed 

allowing the administration of nitrogen to phosphate ratios of up to 20. 

The supramolecular vesicles combine a very low toxicity with high levels of 

reporter gene expression, which is comparable to that of unmodified PEI 25 

kDa. Due to its adequate biocompatibility this system is especially promising 

for in vivo use.  

INTRODUCTION 

A host of nonviral gene delivery systems consisting of DNA complexes with 

various polycations has been investigated [1-3]. Among synthetic cationic 

polymers, polyethylenimine (PEI) is known to offer the highest positive charge 

density leading to strong DNA binding. Another positive feature of PEI is the 

“proton-sponge effect” over a broad pH range, which allows endosomal/ 

lysosomal escape without the use of disruptive agents [4]. Only high molecular 

weight PEIs have been reported to be very effective for gene delivery [5-7]. 

However, high molecular weight PEI was found to be cytotoxic due to its 

interaction with negatively charged cell membranes.  

Therefore, the use of PEI-based copolymers, instead of PEIs, to form DNA 

polyplexes has been extensively investigated recently [8-12]. Most studies 

utilize nonionic hydrophilic polyethers, e.g. polyethylenglycol (PEG), as a 

building block to obtain block or graft copolymers with linear or hyperbranched 

PEIs. When these copolymers were mixed with pDNA in aqueous solution, the 

cationic PEI segments of the copolymers were first bound to DNA via 

electrostatic interactions and then the neutralized polyions aggregated to form 

an insoluble core, while the nonionic water-soluble PEG chains served as a 

hydrophilic shell stabilizing the resultant nanoscale particles [8]. Complexes 
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thus prepared show a lower positive surface charge compared to polyplexes 

from homo PEIs, and are therefore less cytotoxic. 

A drawback for the in vivo application of these copolymers is their lack of 

biodegradability, since PEI and PEG were linked by chemical bonds stable 

under physiological conditions.  Therefore, very recently we synthesized a new 

type of biodegradable copolymers by grafting diblock copolymers of PEG and 

PCL onto hyperbranched polyethylenimines (hy-PEIs). Strong hydrogen 

bonding between PCL and PEI blocks was observed in the bulk materials, and 

the solubility of these copolymers were strongly dependent on their 

compositions, i.e. block length and graft density. Further, DNA polyplexes 

formed with soluble copolymers or copolymers possessing high critical micelle 

concentration (cmc) showed considerably increased gene transfection 

efficiency. By contrast, those copolymers having high graft density and long 

PCL blocks showed very poor transgene expression. In the latter case, the 

access and binding of DNA to the PEI block were seriously hindered by the 

dense hydrophobic PCL chains surrounding the hydrophilic PEI head. 

Hydrogen bonding between PCL and PEI blocks is also believed to be an 

impediment for the DNA complexation with PEI [13]. Therefore, breaking of 

hydrogen bonding between PCL and PEI as well as the dissolution of PCL 

block in aqueous media seem to be key factors for improving gene transfection 

efficiency of these copolymers. 

In this paper, we present an unusual way to dissolve the PCL blocks of hy-PEI-

g-PCL-b-lPEGs in aqueous solution by including them inside the -

cyclodextrin ( -CD) cavities. -CD is a cyclic oligosaccharide consisting of 6 

glucose units [15]. One of its distinctive properties is the amphiphathy, i.e. it 

possesses a hydrophobic cavity of 4.5 Å in diameter with a hydrophilic outer 

layer carrying many hydroxyl groups [15-16]. Supramolecular inclusion 

complexes (ICs), organized by noncovalent interactions, can be formed by 

threading -CD molecules onto various polymer chains [17-23]. The driving 
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force for the threading process is probably due to intermolecular hydrogen 

bonding between neighboring CDs, as well as steric compatibility and 

hydrophobic interactions between host and guest molecules. Thus far, it has 

been demonstrated that -CD may form inclusion complexes with both 

polyethylenglycol (PEG) [17-18] and PCL [24-28] chains. In most cases, a full 

coverage of individual polymer chains with -CD bracelets leads to a 

crystalline water-insoluble inclusion complex. However, if insufficient -CD 

was used and the polymer solution is dilute, a partial coverage of polymer chain 

with -CD can also be achieved. In this case, the resultant inclusion complexes 

are completely soluble in water. For instance, selective inclusion of the octane-

1,8-dicarboxylate segment of a PEG octane-1,8-dicarboxylate  polyester with - 

or -CD showed significantly improved water solubility [29].   

MATERIALS AND METHODS 

Materials  

Synthesis and physicochemical properties of graft copolymers, hy-PEI-g-PCL-

b-PEGs, were reported recently [13]. To prepare the inclusion complexes, a 

predetermined amount of -CD aqueous solution (e.g. 5 mg/mL, 20mL) was 

added stepwise to the copolymer micelle solution (e.g. 4.2 mg/mL, 15mL) in a 

glass vial immersed in an ultrasonic water bath at room temperature. Ultrasonic 

agitation was applied for 30 minutes during and after the addition of the -CD 

solution. The mixed solution was then stirred magnetically overnight at room 

temperature, frozen at -40 C, and then freeze-dried to obtain a powder sample 

[30]. 

As a reference polymer for all studies we used PEI 25 kDa (hy-PEI) from 

Sigma-Aldrich, Taufkirchen, Germany. 

pCMV-Luc encoding for luciferase as a reporter gene was purchased from 

Plasmid Factory, Bielefeld, Germany.  NIH/3T3 (Swiss mouse embryo) cell line 
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was purchased from the German Collection of Microorganisms and Cell 

Cultures (DSMZ, Braunschweig, Germany). Cells were cultured according to 

the protocols suggested by the supplier. Polyplex formation at N/P 3, 7 and 20 

were carried out as described previously [13].  

Ethidium bromide exclusion assay  

DNA condensation was measured by the decrease in ethidium bromide 

fluorescence, as described earlier [31-32]. The assay was performed in 96 well 

plates in triplicate. Eight µg of salmon testes DNA were dissolved in 79 µL 

water and 50 µL of 60 mM Tris buffer pH 7.4 were added to each well. 

Volumes were equalized to 300 µL with water.  Subsequently, appropriate 

volumes of 0.05 mg/mL polymer solutions were added to produce N/P ratios 

between 0.2 and 4.  These were incubated for 10 min and then 20 µL of a 0.1 

mg/mL ethidium bromide solution were added.  Wells were mixed thoroughly 

and the fluorescence was measured using a fluorescence plate reader with 

excitation wavelength at 518 nm and an emission wavelength of 605 nm.  

Characterization of inclusion complexes and polyplex nanoparticles  

FTIR, 1H NMR and DSC measurements of inclusion complexes were 

performed as reported earlier [13]. UV spectra were recorded on a Shimadzu 

UV-160 UV-visible recording spectrophotometer.  

Photon correlation spectroscopy   

Hydrodynamic diameters of the polymer/DNA complexes were determined by 

photon correlation spectroscopy.  Plasmid (0.5 µg pCMV-Luc) in 25 µL 0.9 % 

NaCl were complexed with the appropriate amount of polymer in 25 µL NaCl 

each, as described above.  Measurements were performed on a Zetasizer 3000 

HS from Malvern Instruments, Herrenberg, Germany (10 mW HeNe laser, 633 

nm).  Scattering light was detected at 90° angle through a 400 µm pin hole.  For 

data analysis, the viscosity (0.88 mPa s) and the refractive index (1.33) of 
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distilled water at 25 °C were used.  The instrument was routinely calibrated 

using Standard Reference latex particles (AZ 55 Electrophoresis Standard Kit, 

Malvern Instruments).  Values given are the mean of 5 measurements.   

Measurement of zeta potential  

Zeta-potential measurements were carried out in the standard capillary 

electrophoresis cell of the Zetasizer 3000 HS from Malvern Instruments at 

position 17.0.  Measurements were performed in 0.9 % NaCl and average 

values were calculated with the data obtained from 5 runs.   

Transfection experiments   

Transfection experiments were performed at N/P ratios of 3, 7 and 20. NIH/3T3 

cells were seeded in 12 well plates at a density of 50,000 cells per well. After 24 

h, the media was removed and the complexes were added in 2 ml fresh media. 

Media was exchanged again after four hours and the cells were incubated for an 

additional 44 h. Luciferase gene expression was quantified using a commercial 

kit (Promega, Mannheim, Germany) and photon counting on a luminometer 

(Sirius, Berthold, Bundoora, Australia).  Results were measured in relative light 

units per second (RLU/s) which were then converted into ng luciferase by 

creating a calibration curve with recombinant luciferase (Promega, Mannheim, 

Germany). Protein concentration in each sample was determined. All 

experiments were performed in triplicate and data were expressed in ng 

luciferase per mg protein.  

Fluorescent Labeling of PEI and DNA for Confocal Laser Scanning 

Microscopy Experiments  

Polymer (20 mg) was dissolved in 2 mL 0.1 M sodium bicarbonate solution at 

pH 9. Oregon Green 488 carboxylic acid succinimidyl ester (1 mg, Molecular 

Probes, Leiden, The Netherlands) was dissolved in 200 L dimethylsulfoxide 

and added dropwise under stirring to the polymer solution. The mixture was 
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stirred in the dark for 3 hours at room temperature before the labelled polymer 

was purified by ultrafiltration in an Amicon cell (regenerated cellulose 

membrane, molecular weight cut off 10,000) and washed with 0.1 M borate / 

1.0 M sodium chloride solution pH 7.5. The washing procedure was performed 

until no absorption was detectable at 488 nm in the cell outflow. As a final step, 

the buffer was exchanged with distilled water. Plasmid (pCMV-Luc) was 

labeled with Cy-3 using a commercial kit (Mirrus Label It, Mobitec, 

Goettingen, Germany). Procedure was performed according to the 

manufacturer’s manual.  

Confocal Laser Scanning Microscopy Experiments  

A Zeiss Axiovert 100M microscope coupled to a Zeiss LSM 510 scan module 

was used. NIH/3T3 cells were seeded at a density of 50,000 cells per well in 8 

well chamber slides (Lab Tek, Nunc, Wiesbaden, Germany). After 24 h the 

media was removed and complexes of 0.5 mg Oregon Green-labeled PEI and 

0.5 mg Cy3 labeled plasmid were added in new media. After an additional 4 h 

media was removed again and cells were washed 4 times with phosphorus 

buffered saline (PBS). Fixation of cells was done by incubation with 400 mL 

paraformaldehyde solution 3 % in PBS for 20 min. Cells were washed again for 

4 times and incubated for an additional 20 min with a 0,1 mg/mL DAPI (4’,6-

diamidino-2-phenylindole, dihydrochloride) (Molecular Probes, Leiden, The 

Netherlands) solution in PBS. For excitation of DAPI fluorescence, an 

Enterprise UV laser with an excitation wavelength 364 nm was used. Excitation 

of Oregon Green was performed using an argon laser with an excitation 

wavelength of 488 nm and for excitation of Cy3 a Helium-Neon laser with an 

excitation wavelength of 543 nm was used. Images were recorded in the 

multitracking mode using a longpass filter of 385 nm for DAPI, a longpass filter 

of 505 nm for Oregon Green and a longpass filter of 560 nm for rhodamine.  
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Flow cytometry   

Flow cytometry was performed with plasmid DNA labelled with the 

intercalating dye YOYO-1 (Molecular Probes, Leiden, The Netherlands), as 

described by Ogris et al [33]. Briefly, cells were grown for 24 h in six-well 

plates at a density of 400,000 cells per well. Complexes were prepared as 

described above and applied in fresh media with a total volume of 3 ml.  After 

30 min, media was aspirated and cells were washed twice with cold (4 °C) PBS 

pH 7.3 and once with 1 M NaCl to remove complexes attached to the cell 

membrane as described earlier [34]. Cells were suspended in PBS after 

detachment via trypsin incubation for 1 min. Cell suspensions were kept on ice 

until analysis. Flow cytometry was performed using a Becton Dickinson FACS 

Scan equipped with an argon laser with an excitation wavelength of 488 nm. 

The filter setting for emission was 530/30 nm bandpass.   

RESULTS AND DISCUSSION 

Formation of soluble inclusion complexes  

Except for hy-PEI-g-PCL-b-PEG copolymers with very short PCL block length 

and low graft density which are completely soluble in a wide concentration 

range, most copolymers showed a distinct critical micellization concentration 

(cmc) in water [13]. To form inclusion complexes, the -CD solution of 

predetermined concentration was added stepwise to the dilute micellar solution 

of the ternary block copolymer under ultrasonic agitation.  During this process, 

dynamic light scattering (DLS) measurements were employed to monitor the 

micelle collapse upon dilution and addition of -CD. When the turbid solution 

became transparent upon addition of an aqueous -CD solution, nanoparticles 

were no longer detectable by DLS measurement, suggesting the dissolution of 

micelles. The copolymer concentration calculated at this point was much higher 
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than its initial cmc, suggesting solubilization of the hydrophobic blocks upon 

threading by -CD.   

It is worth noting that copolymer solutions must be dilute in order to obtain 

soluble inclusion complexes. Otherwise, precipitation from the solutions of 

copolymers of low graft density (< 3) or gelation for the solutions of highly 

grafted copolymers will occur, indicating the formation of insoluble crystals of 

inclusion complexes. In solutions of highly grafted copolymers, the graft 

copolymer was physically crosslinked by the insoluble crystals of inclusion 

complex formed between -CD and the copolymer side chain [35]. Our 

objective was to dissolve PCL blocks while avoiding the occurrence of either 

precipitation or gelation of copolymer solution. Therefore, the control of 

copolymer concentration is very crucial.  

It was found that the effect of adding -CD on the solubility of the copolymers 

depends much on the copolymer compositions. For instance, we failed to 

dissolve the copolymers containing long PCL block (e.g. 3800) [13] and 

PEG5000 regardless of varying the graft density from 1.4 to 4.5.  When 

attempting to dissolve these copolymers upon addition of -CD solutions, clear 

solutions were not obtained, and eventually hy-PEI25K-g-(PCL3800-b-

PEG5000)1.4 solution formed a precipitate while gelation occurred in hy-

PEI25K-g-(PCL3800-b-PEG5000)2.6 and hy-PEI25K-g-(PCL3800-b-

PEG5000)4.5 solutions. For other copolymers, we successfully obtained soluble 

inclusion complexes. Table 1 (page 197) summarizes four typical soluble 

inclusion complexes selected for the gene delivery experiments. 

It is well known that the cavity depth of -CD molecules is 7 Å, which is equal 

to the length of approximately 0.86 repeat units of PCL. Presuming that only 

PCL block of copolymer had been fully and selectively covered by -CD 

molecules, the PEI contents in hy-PEI25k-g-(PCL580-b-PEG5k)2.9, hy-PEI25k-

g-(PCL1.2k-b-PEG2k)5.1 and hy-PEI25k-g-(PCL2k-b-PEG2k)2.8 should be 
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approximately 43%, 24% and 27% respectively. The actual PEI content of 

complexes shown in Table 1 is close to or higher than that of the complex 

compositions described above (40% vs 43%, 34% vs 24%, and 26% vs 27%). 

Since PEG can also form an inclusion complex with -CD, apparently the 

copolymer side chains (PCL-b-PEGs) were only partially covered by -CD in 

these soluble inclusion complexes. 

The threading of -CD molecules onto the copolymer PCL blocks was 

demonstrated spectroscopically.  Figure 1 shows an expansion of FTIR spectra 

covering the carbonyl bands of a diblock prepolymer MPEG-b-PCL, its 

corresponding ternary copolymer hy-PEI-g-PCL-b-PEG and a typical inclusion 

complex with -CD.   

168017301780 

Figure 1 
FTIR spectra of HO-terminated PCL2k-b-MPEG2k (a), hy-PEI25k-g-(PCL2k-b-
PEG2k)2.8 (b), inclusion complex of -CD and hy-PEI25k-g-(PCL2k-b-PEG2k)2.8 (c)   

The complexed powder sample was obtained by freeze-drying of an aqueous 

sample solution and was allowed to crystallize at room temperature for one 

month before FTIR measurements. It is known that the expanded c=o 

Wave number (cm-1) 
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absorption band of the semicrystalline PCL is very indicative of the PCL phase 

structure in FTIR measurements [27,28]. In agreement with these reports, the 

PCL carbonyl absorption band (s, C=O) of PCL-b-MPEG can be well resolved 

into a peak at 1726cm-1 and a prominent shoulder at 1736cm-1, corresponding to 

the carbonyl absorption of the crystalline and the amorphous PCL phases, 

respectively. The carbonyl absorption of the crystalline phase (1726cm-1) is 

much stronger than that of the amorphous one, suggesting high PCL 

crystallinity in the diblock prepolymer. Upon grafting onto hy-PEIs, the 

absorption of crystalline PCL at 1725 cm-1 becomes weak, while the absorption 

of the amorphous PCL at 1736 cm-1 appears as the main peak, as shown in 

spectrum (b).  These results indicate that the crystallization of PCL blocks has 

been suppressed but not completely eliminated in the hy-PEI-g-PCL-b-PEG 

copolymers. By contrast, as shown in spectrum (c), the C=O absorption of 

crystalline PCL regions completely disappears, and only the C=O absorption of 

noncrystalline PCL blocks is detected in the spectrum of the ICs. These results 

suggest that PCL chains are individually inserted in -CD channels and hence 

were not able to fold and aggregate to form any PCL crystalline domains. 
1H NMR measurements further demonstrated the preferential complexation of 

PCL block with -CD. 1H NMR spectra of copolymer micelles in D2O do not 

show detectable resonance signals of PCL blocks due to suppressed chain 

mobility (data not shown). When the micelles were dissociated upon addition of 

-CD, clear PCL resonance signals (see ref [13] for detailed peak assignments) 

were observed in the 1H NMR measurements. Moreover, as shown in Figure 2, 

the 1H NMR resonance signals of PCL blocks show significant down-field shift 

upon forming the inclusion complex with -CD.  These results are consistent 

with previous reports in which similar down-field shifts were observed when 

polymer chains were included inside CD cavities [29,36].  
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It was reported that protonated polyiminooligomethylenes may form soluble 

inclusion complexes with -CD and result in the similar down-field chemical 

shift of oligomethylene signals. However the threading process was very slow 

at room temperature. In our work, the PEI block signal did not show down-field 

shifts upon mixing with -CD even after several days at room temperature. A 

model study with homo-PEI showed the same results. Thus apparently, PEI 

does not form an inclusion complex with -CD at room temperature. The 

different behavior of PEI and polyiminooligomethylenes may be due to the fact 

that the reported polyiminooligomethylenes contain long oligomethylene chains 

which are known to form an inclusion complex with -CD. The PEI we used, 

however, is branched and therefore probably the formation of inclusion 

complexes is abolished.  

Indeed, polyethylene is known to form an inclusion complex with -CD [37]. It 

is well known that PEG, similar to PCL, can form inclusion complexes with -

CD. However, 1H NMR signals of the PEG blocks of the copolymer complexes 

listed in Table 1 did not show any significant down-field shifts. These results 

suggest that the -CD molecules have preferably formed an inclusion complex 

with the PCL block in these complexes, in case that the -CD molar amount 

was stochiometrically insufficient for the whole side chain (MPEG-b-PCL-) 

inclusion. It is noteworthy that a precipitate or a gel was usually formed if a 

large amount of -CD was used, indicating that whole side chains including the 

PEG blocks were included inside -CD and new insoluble IC crystals were 

formed.  

Based on these results, we concluded that there are two preconditions for 

copolymer solubilization resulting from complexation with -CD. First, the 

amount of -CD should be stochiometrically insufficient to include both side 

chain blocks.  
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Second, copolymer PCL blocks need to be sufficiently isolated by the other two 

soluble components, i.e. the long PEG and bulky hy-PEI blocks. Under these 

two conditions, the newly formed complexes between PCL blocks and -CD 

are not able to aggregate and form insoluble inclusion complex crystals. This is 

probably the reason, why we were not able to dissolve the copolymers 

containing PCL3800.      

Formation of inclusion complex between -CD and PCL block was also 

confirmed by UV measurements. As shown in Figure 3, upon adding -CD, the 

UV absorption peak of the PCL carbonyl showed a clear red-shift from 216 nm 

to 226 nm due to the interaction between -CD and the included PCL chain.   

 

Figure 2 
1H NMR spectra of hy-PEI25k-g-(PCL580-b-PEG5k)2.9 (a),  inclusion complex of -CD 
and hy-PEI25k-g-(PCL2k-b-PEG2k)2.8, in D2O prepared under its cmc (b).     
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200 220 240 260 

Figure 3 
UV spectra of hy-PEI25k-g-(PCL580-b-PEG5k)2.9 (a), and its inclusion complex (b), in 
water.   

Ethidium bromide (EtBr) exclusion assay  

Fluorescence of ethidium bromide added to polyplex solutions was determined 

to monitor DNA condensation. While free ethidium bromide in solution only 

shows weak fluorescence, fluorescence intensity strongly increases when it 

intercalates with DNA. If the DNA is condensed by a polycation, EtBr cannot 

intercalate with DNA. Therefore, condensation of DNA by polycations can be 

monitored by the decrease of EtBr fluorescence. As shown in Figure 4, 

increasing amount of PEI 25 kDa and inclusion complex both led to a 

significant decrease in relative fluorescence intensity from 100% to 26% until 

N/P ratio reached 2. By contrast, the relative fluorescence intensity was only 

slightly decreased to 90% at this N/P scale when DNA was condensed with hy-

PEI25k-g-(PCL1.2k-b-PEG2k)5.1. Apparently, PEI 25kDa and the inclusion 

complexes are much more efficient for DNA condensation, in comparison with 

the non- -CD-complexed copolymers.  
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Figure 4  
Condensation potential of hy-PEI 25kDa, hy-PEI25k-g-(PCL1.2k-b-PEG2k)5.1 and its 
inclusion complex with -CD (Inclusion 34), as determined by EtBr assay   

Size, zeta-potential and biocompatibility of polyplex polyplexes 

The particle size and -potential of various pDNA/copolymer complexes 

formed at an N/P ratio of 7 are summarized in Table 1. Homo PEI 25kDa 

formed the smallest polyplexes of approximately 160 nm in diameter indicating 

the best compaction and condensation of DNA molecules with the high 

molecular weight PEI. For our polymers it is noteworthy that threading of -CD 

does not increase the particle size of polyplexes, i.e. polyplex sizes detected are 

all around 200 nm no matter whether -CD was incorporated or not. Since all 

polyplexes were prepared by controlling the copolymer concentration below its 

critical micellization concentration, the particle size should be mainly affected 

by complexation of DNA and copolymer. This means that the particle size is 

affected not only by the DNA loading but also by the particle density. The 

insoluble micelle core rather than the soluble micelle shell should contribute to 

the micelle size.   
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Copolymer  

 
Inclusion complex 

Zeta Zeta PEI Size 

potential

 
PEI Size 

potential

 

Composition (%) (nm) (  SD)

 

(mV)   

 

(%) (nm) (  SD)

 

(mV)  

PEI25k 100 164.6  5.4 20.9  2.7  

 

ncb ncb ncb 

PEI25k-g-

(PCL580PEG5k)2.9

 

61  207.8  6.2

 

-0.4  1.9  

 

40 208.5  7.2 0.3  1.8 

PEI25k-g-

(PCL2kPEG2k)2.8 

69 234.4 9.8 -3.5  0.3  

 

26 217.5  9.6 -1.5  1.9 

PEI25k-g-

(PCL1.2kPEG2k)5.1

 

61 208.4  8.6 -3.0  0.9  

 

34 222.5  12.7

 

1.4  1.4 

 

Table 1 
DNA complexes formed respectively with net copolymers and copolymer/ -CD 
complexes at N/P 7a 

aDetected with dynamic light scattering. bNo detectable inclusion with -CD.   

As expected, the –potential of the polyplex with hy-PEI 25kDa is relatively 

high (+ 21mV) suggesting high positive charge on the particle surface. In 

contrast, polyplexes based on both copolymer and inclusion complexes 

apparently possess approximately neutral surfaces (-3.5 to +1.4 mV –

potential). Since it is well known that low –potential usually correlates with 

low cytotoxicity, polyplexes based on copolymer and their inclusion complexes 

with -CD should be much more biocompatible than polyplexes with high 

molecular weight PEI alone. This notion was also supported by the viability of  

NIH/3T3 cells observed during the transfection experiments, as shown in Table 

2. At N/P ratios of 3 and 7, cells remained viable when transfected with 

complexes based on the copolymers and their inclusion complexes. By contrast, 

cell viability dropped to 80 % and 69 % respectively when transfected with the 

PEI 25kDa-based polyplexes. As the N/P ratio reached 20, all cells were killed. 

However, cells retained about 50% of their viability when transfected with 
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copolymer-based polyplexes. Furthermore, cell viability is even higher (> 80%) 

when cells were transfected with inclusion complex-based polyplexes at N/P 20, 

suggesting that incorporation of -CD can further improve the biocompatibility 

of these gene delivery systems.   

Gene transfection efficiency of polyplexes 

The transfection efficiencies in NIH/3T3 cells with polyplexes based on three 

copolymers and their inclusion complexes are shown in Figure 5. All inclusion 

complexes showed a significant increase in transfection efficiency compared to 

their copolymer counterparts. Although hy-PEI25k-g-(PCL580-b-PEG5000)2.9 

was soluble in a wide concentration range and showed quite good performance 

in DNA condensation and transgene expression [13], threading of -CD onto 

the PCL blocks may further enhance the gene transfection of this copolymer-

based polyplex by further reducing the hydrophobic hindrance of DNA binding 

to PEI. Effect of incorporating -CD on the transgene transfection of 

polyplexes of the two other copolymers is even much more significant. 

Surprisingly, at N/P 3 and 7, although hy-PEI25k-g-(PCL1200-b-PEG2000)5.1 

did not transfect the cells at all presumably due to its insufficient loading of 

DNA [13], the polyplex based on the inclusion complex of this copolymer 

exhibited excellent transfection efficiency. In Figure 4, it is especially 

noteworthy that biocompatible inclusion complexes formed polyplexes showing 

a transfection efficiency in the same range than that of more cytotoxic PEI 25 

kDa when N/P ratios of 7 and 20 are regarded. 
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Figure 5 
Transfection efficiency of polyplexes based on: (1) hy-PEI 25kDa, (2) hy-PEI25k-g-
(PCL580-b-PEG5k)2.9, (3) inclusion complex of PEI25k-g-(PCL580-b-PEG5k)2.9, (4) hy-
PEI25k-g-(PCL2k-b-PEG2k)2.8 , (5) inclusion complex of hy-PEI25k-g-(PCL2k-b-
PEG2k)2.8, (6) hy-PEI25k-g-(PCL1.2k-b-PEG2k)5.1, and (7) inclusion complex of hy-
PEI25k-g-(PCL1.2k-b-PEG2k)5..1   

Cell viability*  (%) 

N/P = 3 N/P = 7 N/P = 20 POLYMER 

Polymer

 

ICb Polymer

 

IC Polymer

 

IC 

PEI25kDa 80  69  0  

PEI25k-g-(PCL580PEG5000)2.9 99 100 94 91 46 83 

PEI25k-g-(PCL1200PEG2000)5.1 100 100 95 100 45 97 

PEI25k-g-(PCL2000PEG2000)2.8 91 100 90 88 41 84 

*calculated based on the protein level detected. bDNA complexes prepared with inclusion complexes.  
Table 2 
Cell viability in transfection experiments with polymers and inclusion complexes  

Intracellular uptake of polyplexes 

To study the intracellular uptake and distribution of DNA incorporated into 

polyplexes, DNA was labeled with YOYO-1 and Cy3, respectively, for flow 

cytometry analysis and confocal laser scanning microscopy observation. 

Fluorescence of cells treated for 30 min with copolymer- and its inclusion 

complex-based polyplexes was analyzed by flow cytometry and compared with 

that of the untreated cells. As shown in Figure 6, incorporation of -CD to the 
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polyplex led to a approximately 10-fold enhancement of cellular fluorescence 

compared with cells identically treated with the -CD-free polyplex. As it is 

well known that particle size is a critical factor affecting cellular uptake, and 

DLS measurements have already demonstrated the sizes of -CD-containing 

and free polyplexes are almost the same. The enhanced intracellular uptake with 

the inclusion complex-based polyplexes should be mainly due to the enhanced 

DNA condensation, as already revealed by the EtBr exclusion assay. Further 

investigations are carried out to determine whether the incorporated -CD itself 

has any positive effects on the cellular uptake of polyplexes. We are especially 

interested whether the incorporated -CD molecules are helpful for cell 

targeting, cell membrane binding and permeation of gene delivery vectors. 

Similar differences for cellular association were obtained for the the other 

inclusion complexes and their a-CD-free counterparts (data not shown).   

After incubating NIH/3T3 fibroblasts for 3 h, a typical confocal laser scanning 

microscope image of a polyplex is shown in Figure 7. The microscopic image 

demonstrates the efficient internalization of polyplexes, in spite of their neutral 

surface charge. Both DNA and hy-PEI-g-PCL-b-PEG colocalize in punctuate 

vesicles, probably in the lysosomal compartment. The mechanism by which the 

polyplexes escape from the endo/lysosome is presently under investigation. 

Most likely, the hy-PEI component of the copolymer acts as proton sponge, 

while inclusion complex formation modulates complex solubility and 

cytotoxicity.  
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Figure 6 
Flow cytometry of untreated cells (a), cells treated for 30 min with the YOYO-1-labeled 
pDNA/hy-PEI25k-g-(PCL1.2k-b-PEG2k)5.1 (b) and the corresponding inclusion complex 
with -CD (c)  

 

Figure 7 
CLSM micrographs of internalization of fluorescently-labeled polyplex based on 
inclusion complex of hy-PEI25k-g-(PCL2k-b-PEG5k)2.8 into 3T3 fibroblasts after 3 h of 
incubation. Images assignment: Red: DNA, green: inclusion complex, and blue: nucleus 
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CONCLUSIONS 

The transfection efficiency of polyplexes based on hy-PEI25k-g-PCL-b-PEGs 

depends on composition, i.e. graft density and block length, of the copolymers. 

The PCL chains connected to the PEI blocks of hy-PEI25k-g-PCL-b-PEGs may 

impede the access and binding of hydrophilic DNA to PEI. Consequently, DNA 

compaction and condensation are poor. In addition, polyplexes based on 

copolymers were probably loaded with very low content of DNA because the 

copolymers possess low values for cmc that tends to further decrease upon 

complexation of DNA. Therefore, polyplexes based on hy-PEI25k-g-PCL-b-

PEGs showed very poor gene transfection efficiency, especially when the PCL 

blocks are long and/or the graft density is high. Upon formation of inclusion 

complexes between -CD and preferably the PCL blocks of hy-PEI25k-g-PCL-

b-PEGs, the copolymers lost their amphiphathy and became more hydrophilic. 

This change on one hand favored the DNA access and binding to PEI. On 

another hand, when the solubility of a copolymer increased, it probably tended 

to complex more DNA molecules until a new critical micellization 

concentration is reached due to the electrostatic neutralization of the PEI head 

and DNA. Both effects led to the enhancement of DNA complexation and 

condensation resulting in very high gene transfection efficiency.  

To further evaluate the high gene transfection efficiency of these novel delivery 

systems, we are carrying out in vivo gene transfection studies.     
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SUMMARY 

We investigated several properties of electrostatic complexes prepared with 

plasmid DNA and novel hy-PEI-g-PCL-b-PEG polymers with -cyclodextrin 

threaded over PEG and PCL chains.  

The ability of these polymers to complex DNA was investigated by an ethidium 

bromide exclusion assay and atomic force microscopy was performed to obtain 

insights into complex size and shape. Complex stability against heparin was 

investigated, as well as protection of complexed plasmid DNA against 

degradation by DNase I. Furthermore, we investigated the pharmacokinetic 

profile of plasmid DNA complexed to these polymers. This data was compared 

to profiles gathered from PEI 25 kDa after intravenous injection in mice. Organ 

accumulation of both types of complexes was assessed after 30 minutes. 

Our data reveal an efficient complexation of DNA by inclusion compounds 

resulting in the formation of defined, spherical particles. DNA release after 

incubation with polyanions was less efficient and commenced at higher anion 

concentrations than in the case of PEI 25 kDa indicating a greater stability 

against exchange reactions with anions. Protection of plasmid DNA against 

degradation by DNase I is as efficient as that of PEI 25 kDa for one inclusion 

compound tested in this study. Pharmacokinetic profiles of DNA complexed 

with either PEI or Inclusion compounds reveal an elevated area under the curve 

for the latter compared to PEI 25 kDa. Organ distribution after 30 minutes 

revealed a negligible accumulation in the lung, when inclusion complexes were 

used together with a very low in vivo toxicity. PEI, in contrast, was 

characterized by a high level of lung accumulation as well as a high rate of 

mortality among laboratory animals.  

In conclusion this study provides evidence for high stability of inclusion 

compound/DNA complexes combined with elevated in vivo circulation times 

and an improved biocompatibility.  
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INTRODUCTION 

Gene therapy is an evolving field with a tremendous potential for the causal 

treatment of yet incurable diseases, especially cancer or viral infections [1]. A 

variety of functional gene constructs have been designed which pursue different 

therapeutic strategies, e.g. cancer vaccination [2], suicide gene therapy [3] or 

downregulation of gene expression via ribozyme or siRNA constructs [4-6]. 

However, before the full potential of these techniques can be exploited, a safe 

and efficient delivery system must be developed. Viruses exhibit a very high 

efficiency, however their major disadvantage is an oncogenic and especially an 

immunogenic potential after repeated administration, as has been demonstrated 

by several lethal incidents in gene therapy clinical trials [7]. To circumvent this 

problem, alternatives must be found which also possess the capability to deliver 

DNA across systemic and cellular barriers. Cationic polymers, such as PEI [8], 

poly(L-lysine) [9] or starburst dendrimers [10], have been frequently used to 

deliver DNA, as well as RNA into cells. Among these polymers, different 

polyethylenimines have attracted particular attention, due to their enhanced 

ability to complex DNA and protect it from degradation [11] as well as their 

built-in endosomolytic activity [12] both of which lead to high levels of reporter 

gene expression in vitro. One major problem of these systems, however, is a 

limited in vivo applicability resulting from the highly cationic surface charge. 

The charge of complexes leads to incalculable interactions with vessel 

endothelia, plasma proteins and cellular blood components when injected 

intraveneously [13,14]. Furthermore, the circulation time of these vector 

systems are fairly short [15] and, therefore, are not suitable for a therapeutic 

systemic application. Several strategies have been developed to shield the 

cationic surface charge of the complexes using hydrophilic polymers, such as 

PEG or pHPMA [13,15-17], which aim to achieve a similar stealth-like effect as 

has been described for liposomes [18]. Complexes with these modified 

polymers exhibited favorable in vitro properties, such as a neutral surface 
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charge, lower toxicity and less interactions with blood components 

[13,15,17,19]. In vivo evaluations displayed elevated circulation time for these 

systems in some cases [13,15,20]. However, a delivery system that combines a 

high transfection efficiency with a high stability, as well as long circulation 

times and a high level of biocompatibility, is still not available. 

Recently, we described the synthesis and in vitro evaluation of novel, 

biodegradable hy-PEI-g-PCL-b-PEG polymers with -cyclodextrin inclusion 

[21,22]. A scheme of the formation of inclusion polymers is depicted in Figure 

1. The -cyclodextrin is threaded over PEG and PCL chains in these polymers 

by applying ultrasonic agitation. Since the inner part of cyclodextrin is 

hydrophobic, cyclodextrin molecules slide over the PEG chains and attach to 

polycaprolactone via hydrophobic interactions. Successful threading and 

attachment of cyclodextrin predominantly to polycaprolactone was verified by 
1H NMR, UV and FTIR spectroscopy [22,23].   

COMPOSITION OF BASIS POLYMER Name PEI content [%] 

PEI25k-g-(PCL580PEG5k)2.9  "Inclusion 40" 40 

PEI25k-g-(PCL2kPEG2k)2.8 "Inclusion 26" 26 

PEI25k-g-(PCL1.2kPEG2k)5.1 "Inclusion 34" 34 

Table 1 
Composition of polymers investigated in this study.  

The resulting hypermolecular inclusion polymers are capable of forming 

micellar complexes with plamid DNA. When complexed, the micellar structures 

displayed high levels of reporter gene expression combined with a neutral 

surface charge and low toxicities. In the present publication, we aimed to gain 

insight into the stability of this novel type of complexes species and to estimate 

if these systems possess potential for in vivo application. We investigated these 

novel vector systems with regard to their ability to complex DNA in 
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comparison to PEI 25 kDa. We also characterized complex size and shape using 

atomic force microscopy. Furthermore, we assessed complex stability against 

polyanions and determined whether inclusion polymers are able to protect 

pDNA against DNase I degradation. Finally, we performed in vivo studies 

investigating pharmacokinetic profiles and organ distribution after 30 minutes. 

A list of polymers used in this study and their structures is given in Table 1.  

 

Figure 1 
Scheme of inclusion compound formation: a-cyclodextrin threads over linear PEG and 
locates predominantly on PCL chains due to hydrophobic interactions. Primary 
localization on PCl chains was demonstrated by spectroscopic methods as described in 
chapter 5 of this dissertation.    

MATERIALS AND METHODS 

Polymer synthesis and threading of -cyclodextrin 

hy-PEI-g-PCL-b-PEG polymers were synthesized as described previously [21]. 

Subsequently, Inclusion compounds were prepared by stepwise addition of a-

cyclodextrin and ultrasonic agitation [22]. Successful a-cyclodextrin threading 

was verified by FTIR, UV, and 1H-NMR spectroscopy as described earlier 

[22,23].  

Complex formation 

All complexes were prepared in glucose 5 % pH 7.3. For the determination of 

complex stability against heparin 1 µg pCMV-Luc was diluted in 50 µl glucose 

5 % and added to the corresponding amount of polymer in the same volume. 
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For atomic force microscopy, complexes were prepared using 2 µg of pCMV-

Luc in 50 µl glucose 5 % and the corresponding amount of polymer in the same 

volume. For animal experiments, complexes were prepared using 50 µg of 

pCMV-Luc in 125 µl and the corresponding amount of polymer in 125 µl 

glucose 5 %, as well. From this solution 120-130 µl were injected into mice 

corresponding to approximately 25 µg of pDNA per mouse.   

 

Fluorescence quenching assay 

DNA condensation was measured by the decrease in ethidium bromide 

fluorescence, as described earlier [24]. The assay was performed in 96 well 

plates in triplicate. Eight µg of salmon testes DNA was dissolved in 79 µL 

water and added to 50 µL of 60 mM Tris buffer pH 7.4. Volumes were 

equalized to 300 µL with water.  Subsequently, appropriate volumes of 

0.05 mg/mL polymer solutions were added to each well to produce N/P ratios 

between 0.2 and 8.  These were incubated for 10 min and then 20 µL of a 0.1 

mg/mL ethidium bromide solution were added.  Wells were mixed thoroughly 

and the fluorescence was measured using a fluorescence plate reader with 

excitation wavelength of 518 nm and an emission wavelength of 605 nm.  

Atomic force microscopy 

A Multimode™ AFM (Veeco Instruments ™, Santa Barbara, USA) operating 

with a NanoScope IIIa™ controller and a size E scanner was used throughout 

this study. Silicon nitride, oxide sharpened, triangular cantilevers (Veeco 

Instruments™) were selected, operating at resonant frequencies of 

approximately 8 kHz.  All experiments were conducted in tapping mode, with 

either 256 x 256 or 512 x 512 pixel resolution. Scan speeds varied between 

applications. To reduce sample distortion, all data were acquired using optimum 

set-points and drive amplitudes aimed at minimising tip-sample interaction. 

Gains and scan-rate were adjusted to optimize the images obtained.  Post-

imaging analysis was carried out on NanoScope IIIa™ software, version 
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5.12b48. The background slope was removed using a first or second order 

polynomial function.  

Complex stability against exchange reactions with anions 

Complexes were formed in septuplet, as described above, in a total volume of 

100 µL sodium chloride solution at an N/P ratio of 7.  To these solutions, 0.01, 

0.03, 0.05, 0.1, 0.2, 0.5 and 1 International Units of heparin were added in 10 

µL 0.9 % sodium chloride. These solutions were mixed well and incubated for 

10 min before approximately 45 µl were applied to a 1 % agarose gel containing 

ethidium bromide. In the eighth lane of each gel, plasmid was applied as a 

reference. Gels were run for 50 min at 100 V and then scanned using a 

Biometra gel analyzing system.    

Stability against DNase digestion 

Complex stability was investigated according to a method described earlier 

[11]. Briefly, complexes were prepared at N/P=7 in glucose 5 % using 5 µg of 

pCMV-luc in a total volume of 25 µl. Aliquots of 5 µl corresponding to 1 µg of 

plasmid were incubated with 0.0001, 0.01, 0.1, 1 and 5 international units (I.U.) 

of DNase I in digestion buffer (0.1 M sodium acetate, 5 mM MgSO4 pH 7.4) for 

15 minutes at 37 °C. Subsequently, 6 µl termination buffer (equal volumes of 

0.5 M EDTA, 2 M NaOH and 0.5 M NaCl)  were added, as well as 2 µl of a 

heparin solution containing 1000 I.U. per ml. A positive control reaction 

containing naked DNA was carried out under the same conditions using 5 I.U. 

DNase I. Resulting mixtures were applied to a 1 % agarose gel and 

electrophoresed at 100 V for 1 hour. The resulting gel was imaged on a BioRad 

transilluminator.       

Radioactive labeling of plasmid  

pCMV-Luc was radioactively labeled by incorporation of 32P-dCTP (Redivue, 

Amersham Pharmacia, Freiburg, Germany) using a Nicktranslation Kit 
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(Amersham Pharmacia, Freiburg, Germany) following a protocol provided by 

the manufacturer. Unincorporated nucleotides were carefully removed using 

Autoseq spin columns (Amersham Pharmacia, Freiburg, Germany) in two 

subsequent steps. Plasmid purity was verified via size exclusion 

chromatography using PD-10 columns and via ultracentrifugation using 

Microcon 10 spin columns (Amicon, Beverly, USA). No significant amounts of 

free 32P-dCTP were detected.  

Investigation of pharmakokinetics and organ distribution in mice 

All animal experiments followed the “Principles of Laboratory Animal Care” 

(NIH publication #85-23, revised 1985) and were approved by external review 

committee for laboratory animal care. Male balb/c mice with a body weight of 

approximately 25 g were anaesthetized by injection of ketamine (Ketavet, 

Pharmacia & Upjohn, Erlangen, Germany) and xylazine (Rompun, Bayer AG, 

Leverkusen, Germany). Complexes were injected as a bolus of approximately 

120 µL through the jugular vein. Blood samples were obtained through a 

catheter in the common carotid artery and urine was sampled by flushing the 

bladder with sodium chloride solution through a 2-way catheter. After 120 

minutes mice were sacrificed by decapitation and organs (liver, kidneys, heart, 

lungs, spleen, fatty tissue and vena jugularis) were weighted and sampled. 

Radioactivity of all samples was measured on a 1277 Gammamaster (Perkin 

Elmer Wallac, Freiburg, Germany). Measurements of complex solutions were 

used to determine the injected dose of radioactivity. DNA concentrations in the 

samples were then calculated as the percent of injected dose (%ID), %ID/mL or 

%ID/g, respectively. An unpaired t-test  was performed using Microcal Origin 

Version 6.0 to compare blood levels of different copolymers at corresponding 

time points. Differences were considered significant if two-tail P = 0.05. 
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Non-linear curve fitting 

Concentration time curves were fitted to a two compartmental model with the 

Software Kinetica 1.1 from Simed. The model used was tt BeAetC )( and 

the weighting applied was 2)/(1 calcc . Each concentration time curve was fitted 

individually for all samples, as well as the mean of the concentrations for each 

time point. Pharmacokinetic parameters provided are composed of the mean of 

the parameters calculated from individual fits. a

 

and ß

 

values were transformed 

to half-life periods. Plots shown in the results and discussion section are fits for 

the mean concentrations with the standard deviation for each time point shown.  

RESULTS AND DISCUSSION 

Fluorescence quenching assay 

Ethidium bromide exhibits fluorescence only when intercalated with DNA. 

When polymer is added to DNA/ethidium bromide it excludes ethidium 

bromide from DNA thus reducing the fluorescence signal. The degree of 

reduction of fluorescence can be regarded as a measure for the ardency with 

which the polymer complexes DNA. Fluorescence exclusion curves obtained 

with the three inclusion compounds and PEI 25 kDa are depicted in Figure 2. 

This assay revealed a very efficient complexation of DNA by inclusion 34 

which was almost similar to that of PEI 25 kDa. Inclusion 26 and Inclusion 40 

display a less efficient DNA condensation. It seems that this implies that a 

higher number of short PCL-PEG chains with a-cyclodextrin threading, as in 

the case of Inclusion 34, leads to more efficient interactions with DNA than a 

smaller number of long chains. It is astonishing that Inclusion 26 is more 

efficient in DNA complexation than Inclusion 40, although the latter has a 

higher PEI content. The reason for this finding is probably the smaller size of 

linear PEG chains of Inclusion 26 and therefore less steric hindrance.  
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Figure 2 
Ethidium bromide exclusion assay of inclusion compounds and PEI 25 kDa as a 
reference.      

Atomic force microscopy 

Images of complexes between inclusion compounds and DNA, as well as 

PEI/DNA complexes, are shown in Figure 3. All polymers formed defined, 

spherical complexes with plasmid DNA. The shape and size of complexes 

prepared with PEI 25 kDa and inclusion compounds were only slightly 

different. Sizes ranged from about 80 to 120 nm, which is suitable for endocytic 

cellular uptake. Sizes determined via AFM are significantly smaller than those 

measured via photon correlation spectroscopy [22]. A likely explanation for this 

finding is that complexes were prepared in glucose in this study, whereas they 

were prepared in sodium chloride 150 mM in the previous study. A size 

reduction of complexes prepared in glucose 5 % as compared to sodium 

chloride 150 mM has been observed earlier ([25] and own unpublished data).   
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Figure 3 
Atomic force microscopy images of inclusion compound/DNA complexes and PEI/DNA at N/P 
ratio 7. All polymers are capable of forming defined, spherical particles.  

Complex stability against polyanions 

Complex stability was determined by adding increasing amounts heparin. 

Heparin is a highly polyanionic polymer capable of displacing DNA from 

polymer/DNA complexes at a certain concentration. In the case of PEI/DNA 

complexes, total DNA release occurred at a defined concentration. Inclusion 

compound/DNA complexes, however, showed an incomplete release at all 

concentrations tested and smeared bands can be observed. Remarkably, DNA 
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release from the inclusion compound 34 starts at a twofold higher concentration 

than PEI 25 kDa, indicating  a substantially higher stability of these complexes 

compared to PEI/DNA. The reason for this higher stability is presumably a 

hindered penetration of the highly anionic and thus highly hydrophilic heparin 

molecules through the PEG-PCL/cyclodextrin layer surrounding the core of 

complexes. Since Inclusion 34 is the polymer with the highest graft density, it 

can be assumed that a higher amount of PCL-PEG chains leads to enhanced 

stability of complexes.    

     

Figure 4 
Investigation of complex stability against polyanionic exchange reactions. Complexes 
prepared in an identical way were incubated with increasing amounts of heparin. 
Obviously Inclusion 34 forms the most stable complexes with DNA, since release in this 
case takes place at a higher concentration compared to all other polymers investigated. 
All gels with inclusion polymers suggest that release of DNA is less complete than when 
regarding PEI 25 kDa.        

DNA protection against DNase I digestion 

Gels containing DNA from complexes incubated with increasing amounts of 

DNase I are shown in Figure 5. Digestion of pDNA starts at the same DNase I 

concentration of one international unit in all gels. However, analysis of the 

degree of digestion shows that complete degradation can be only observed with 

Inclusion 26 and Inclusion 40. Inclusion 34 and PEI 25 kDa, in contrast, exhibit 
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very little degradation with a substantial amount of pCMV-Luc remaining 

intact. This data suggests that, depending on the polymer architecture, inclusion 

compounds can provide very efficient protection of complexed DNA against 

DNase attack. It is probable that the PCL-PEG chains with cyclodextrin 

threading erect an effective steric barrier against enzymatic degradation, 

especially when polymers feature a higher graft density, as with inclusion 34.     

      

Figure 5 
Investigation of DNA protection against DNase digestion using PEI 25 kDa (A) and 
inclusion polymers (B-D). Complexes were incubated with increasing amounts of DNase 
for 15 minutes and, after enzyme inactivation, DNA was released from complexes. Data 
suggests that Inclusion 34 offers a similar protection against DNase digestion than PEI 
25 kDa. Inclusion 26 and 40 are less efficient and here no intact plasmid is existent any 
more at high enzyme concentrations.  

Pharmacokinetic profiles over 30 minutes 

Pharmacokinetic profiles from 32P-labeled pDNA complexed with PEI 25 kDa 

and inclusion compounds are shown in Figure 6. Pharmacokinetic parameters 

for all polymers investigated are shown in Table 2. All graphs could be fitted to 
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a biexponential disposition equation by non linear curve fitting using Simed 

Kinetica. A very steep a-phase and a rather slow ß-elimination could be 

observed for all inclusion compounds and for PEI. Compared to PEI 25 kDa, all 

inclusion compound/DNA complexes show elevated AUCs, mainly arrising 

from a slower ß-elimination compared to PEI 25 kDa. Especially Inclusion 34 

exhibits an area under the curve that is more than twofold higher than that of 

PEI 25 kDa. After 30 minutes approximately 10 % of the injected dose is still in 

circulation compared to approximately 4 % for PEI 25 kDa (if the total blood 

volume is assumed to be 1.7 ml). After 5 minutes Inclusion 34 and after 15 

minutes Inclusion 26 and 40 show significantly enhanced blood levels. The 

reason for the prolonged circulation of these vector systems is probably their 

neutral zeta potential as described in an earlier publication [22]. The efficient 

shielding of the positive charge from polyethylenimine is provided by PCL-

PEG chains with cyclodextrin inclusion. This presumably reduces opsonization 

of complexes and leads to a less pronounced uptake into the reticuloendothelial 

system (RES) of the liver, as described earlier [15].   

Organ distribution after 30 minutes 

Results from organ distribution assessed after 30 minutes are shown in Figure 6. 

Other tissues and organs investigated like heart, fatty tissue and the vena 

jugularis (site of injection) did not accumulate weighty amounts of radioactivity 

neither for PEI nor for any of the inclusion compounds. Data from PEI 25 kDa 

revealed a rather high and variable uptake into the lung. This accumulation in 

the lung is very likely caused by aggregate formation of the highly cationic 

PEI/DNA complexes with erythrocytes or plasma proteins and subsequent 

filtration of these associates in fine lung capillaries. This phenomenon is 

probably responsible for the high mortality of laboratory animals when using 

PEI 25 kDa as described earlier in the literature [13]. In the present study, about 

25 % of laboratory animals died within 30 minutes after injection of PEI/DNA  
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Figure 6 
(A) Pharmacokinetic profile of 32P labelled pDNA complexed to PEI 25 kDa and 
inclusion compounds. All inclusion compounds exhibit a significantly elevated AUC. 
(B) Organ distribution of 32P labelled pDNA complexed to PEI 25 kDa and inclusion 
compounds 30 minutes after injection. Most remarkable is the high and variable 
accumulation of 32P labelled DNA complexed with PEI 25 kDa in the lung, something 
that could not be observed with inclusion compounds.      



 
Chapter 6   

 
222

 
AUC A t1/2,alpha B t1/2,beta Polymer 

[%ID*mL-1*min]

 
[%ID/mL] [min-1] [%ID/mL] [min-1] 

PEI 25 kDa  300 ± 84 29.8 ± 2.3 1.8 ± 0.1 4.7 ± 1.7 38.2 ± 21 

Inclusion 26 564 ± 122 20.1 ± 3.5 1.8 ± 0.4 7.5 ± 1.7 50.8 ± 20 

Inclusion 34 699 ± 188 29.5 ± 4.1 1.4 ± 0.5 9.1 ± 1.8 53 ± 24 

Inclusion 40 594 ± 72.9 27.4 ± 4.1 1.5 ± 0.4 7.1 ± 1.1 53 ± 9 

Table 2 
Pharmacokinetic parameters of 32P labelled DNA complexed with inclusion compounds 
and PEI 25 kDa. Values were obtained by fitting concentration time curves to a 
biexponential disposition model using Simed Kinetika version 1.1. Figures shown were 
calculated from the pharmacokinetic data obtained from four animals.    

complexes. An assessment of organ accumulation revealed very high 32P values 

in the lung. This finding indicates that lung embolism may be the likely cause of 

death, as has been described earlier [13]. Lung accumulation of inclusion 

compound/DNA complexes on the other hand, was very low and none of the 

animals died during experiments. This difference is probably due to the neutral 

surface charge of inclusion complexes and, therefore, a reduced aggregate 

formation with cellular blood components or plasma proteins, preventing 

entrapment in fine lung capillaries. The negligible accumulation of complexes 

in the lung is a key advantage of such inclusion compounds. The largest fraction 

of radioactivity is found in the liver. PEI exhibits the highest hepatic values, 

whereas those of the inclusion compounds are slightly lower. The discovery of 

the liver as the main organ of complex deposition is not surprising and this 

finding is in good agreement with various studies using cationic polymers 

published earlier [15]. A fairly high amount of radioactivity from PEI 

complexes is found in the spleen. The reason for a higher deposition of 

PEI/DNA complexes in organs of the reticuloendothelial system is probably the 

result of a higher degree of opsonization of these highly cationic structures.  
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Several strategies have been pursued in order to obtain a better shielding of 

cationic surface charges and an extended circulation in the bloodstream. One 

frequently applied strategy is the attachment of hydrophilic polymers, such as 

polyethylenglycol or pHPMA, to polyethylenimine via different strategies 

[13,15-17]. The attachment of PEG to preformed PEI/DNA complexes led to 

increased circulation times and to reduced interactions with plasma proteins 

[13,17]. The major disadvantage of this system is a rather high operating 

expense for complex preparation and a fairly difficult characterization of the 

resulting structures. When PEI or poly(L-lysine) were pegylated prior to 

complex formation, neutral surface charges and enhanced circulation times were 

obtained as well [15]. However, these systems exhibited a reduced stability and 

evidence exists that suggests that complexes of this type separate shortly after 

injection into the bloodstream [26,27]. Another very promising group of vectors 

consists of electrostatic complexes stabilized via bioreversible crosslinking 

agents. The most frequently used system is that of disulfide bridges which are 

stable in the bloodstream [20,28]. On the subcellular level, however, the DNA 

can be released due to the reductive environment created by e.g. glutathion. 

Several of these vectors have shown greatly enhanced circulation times and a 

high degree of stability in the bloodstream. The major problem of these systems 

is the rather time consuming preparation of complexes on the one hand and a 

rather low or even entirely abolished reporter gene expression on the other [29]. 

When using this approach, a compromise between the degree of crosslinking 

required for stabilization in the bloodstream and that which is required for 

possible release at the subcellular level has to be found.  

The system we describe in this publication can be used to prepare complexes 

with plasmid DNA in a simple one step procedure and polymers can be 

produced in bulk. As described above these new vectors are more stable against 

exchange reactions than those prepared with PEI 25 kDa and exhibit an 

excellent stability against DNase I digestion. The reason for this enhanced 
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stability, despite a rather low PEI content of 34 %, is probably due to a micellar 

assembly of the complexes with pDNA. A micellar complex structure has been 

suggested previously for PEG-PEI/oligonucleotide complexes, whereas in these 

structures PEI is believed to neutralize the anionic charge of DNA forming an 

insoluble complex core with PEG chains directed to the surface of the 

complexes [30]. This hydrophilic PEG corona leads to an efficient charge 

shielding and, thus, to reduced charge interactions and toxicity [19]. 

Furthermore, complexes are stabilized, due to a reduction in complex 

aggregation [19]. In the system described in this publication, a further 

stabilizing factor has been incorporated into the complex architecture, PCL-

PEG. The hydrophobic polycaprolactone  becomes partially hydrophilic when 

-cyclodextrin is threaded over its linear chains. However, because these chains 

are not totally covered with -cyclodextrin [22], hydrophobic regions still exist, 

which can interact with each other via hydrophobic interactions and, thus, 

provide a certain lateral stabilization of the micellar structure of complexes.   

From our data, we can state that a higher number of shorter PCL-PEG chains 

leads to more highly stable vector systems. Furthermore, the shielding effect of 

these shorter chains is more effective than the longer chains, which is 

demonstrated by an increased circulation time of Inclusion 34, presumably due 

to reduced opsonization.  

In conclusion, we can state that the approach described in this and in the 

previous chapter represents an easy, efficient method to obtain fairly stable 

vector systems. Furthermore they exhibit a high in vitro and in vivo 

biocompatibility, a high transfection efficiency, and elevated blood levels after 

intravenous injection. These properties make the hy-PEI-g-PCL-b-

PEG/cyclodextrin vectors very attractive for further investigations. We are 

currently conducting more comprehensive studies with these vectors with the 

aim to optimize polymer properties, especially with regard to graft density and 
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chain length of PEG and PCL, as well as the amount of -cyclodextrin 

threading.  

REFERENCES  

[1] A.G. Schatzlein, Non-viral vectors in cancer gene therapy: principles and progress, 
Anticancer Drugs 12 (2001) 275-304.   

[2] P. Moingeon, Cancer vaccines, Vaccine 19 (2001) 1305-26.  

[3] K. Yazawa, W.E. Fisher, F.C. Brunicardi, Current progress in suicide gene therapy for 
cancer, World J Surg 26 (2002) 783-9.  

[4] T. Merdan, J. Kopecek, T. Kissel, Prospects for cationic polymers in gene and 
oligonucleotide therapy against cancer, Adv Drug Deliv Rev 54 (2002) 715-58.  

[5] A.U. Khan, S.K. Lal, Ribozymes: a modern tool in medicine, J Biomed Sci 10 (2003) 
457-67.  

[6] M. Scherr, M.A. Morgan, M. Eder, Gene silencing mediated by small interfering RNAs in 
mammalian cells, Curr Med Chem 10 (2003) 245-56.  

[7] N. Wade, Death leads to concerns for future of gene therapy, NY Times (Print) (1999) 
A22.  

[8] O. Boussif, F. Lezoualc'h, M.A. Zanta, M.D. Mergny, D. Scherman, B. Demeneix, J.P. 
Behr, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: 
polyethylenimine, Proc Natl Acad Sci U S A 92 (1995) 7297-301.  

[9] G.Y. Wu, C.H. Wu, Evidence for targeted gene delivery to Hep G2 hepatoma cells in 
vitro, Biochemistry 27 (1988) 887-92.  

[10] M.X. Tang, C.T. Redemann, F.C. Szoka, Jr., In vitro gene delivery by degraded 
polyamidoamine dendrimers, Bioconjug Chem 7 (1996) 703-14.  

[11] W.T. Godbey, M.A. Barry, P. Saggau, K.K. Wu, A.G. Mikos, Poly(ethylenimine)-
mediated transfection: a new paradigm for gene delivery, J Biomed Mater Res 51 (2000) 321-
8.  

[12] J.P. Behr, The proton sponge – A trick to enter cells the viruses did not exploit, Chimia 
51 (1997) 34-36.  

[13] M. Ogris, S. Brunner, S. Schuller, R. Kircheis, E. Wagner, PEGylated DNA/transferrin-
PEI complexes: reduced interaction with blood components, extended circulation in blood 
and potential for systemic gene delivery, Gene Ther 6 (1999) 595-605.   



 
Chapter 6   

 
226

 
[14] C. Plank, K. Mechtler, F.C. Szoka, Jr., E. Wagner, Activation of the complement system 
by synthetic DNA complexes: a potential barrier for intravenous gene delivery, Hum Gene 
Ther 7 (1996) 1437-46.  

[15] K. Kunath, A. von Harpe, H. Petersen, D. Fischer, K. Voigt, T. Kissel, U. Bickel, The 
structure of PEG-modified poly(ethylene imines) influences biodistribution and 
pharmacokinetics of their complexes with NF-kappaB decoy in mice, Pharm Res 19 (2002) 
810-7.  

[16] H.K. Nguyen, P. Lemieux, S.V. Vinogradov, C.L. Gebhart, N. Guerin, G. Paradis, T.K. 
Bronich, V.Y. Alakhov, A.V. Kabanov, Evaluation of polyether-polyethyleneimine graft 
copolymers as gene transfer agents, Gene Ther 7 (2000) 126-38.  

[17] D. Oupicky, K.A. Howard, C. Konak, P.R. Dash, K. Ulbrich, L.W. Seymour, Steric 
stabilization of poly-L-Lysine/DNA complexes by the covalent attachment of semitelechelic 
poly[N-(2-hydroxypropyl)methacrylamide], Bioconjug Chem 11 (2000) 492-501.  

[18] E.G. Mayhew, D. Lasic, S. Babbar, F.J. Martin, Pharmacokinetics and antitumor activity 
of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-
derivatized phospholipid, Int J Cancer 51 (1992) 302-9.  

[19] H. Petersen, P.M. Fechner, A.L. Martin, K. Kunath, S. Stolnik, C.J. Roberts, D. Fischer, 
M.C. Davies, T. Kissel, Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence 
of copolymer block structure on DNA complexation and biological activities as gene delivery 
system, Bioconjug Chem 13 (2002) 845-54.  

[20] D. Oupicky, M. Ogris, L.W. Seymour, Development of long-circulating polyelectrolyte 
complexes for systemic delivery of genes, J Drug Target 10 (2002) 93-8.  

[21] X. Shuai, T. Merdan, F. Unger, M. Wittmar, T. Kissel,

 

Novel Biodegradable Ternary 
Copolymers hy-PEI-g-PCL-b-PEG: Synthesis, Characterization, and Potential as Efficient 
Nonviral Gene Delivery Vectors. Macromolecules, 36 (2003) 5751-5759.  

[22] X. Shuai, T. Merdan, T. Kissel, Supramolecular vehicles based on hy-PEI-g-PCL-b-
PEGs and a-cyclodextrin showing unexpected high gene transfection efficiency and good 
biocompatilbility. Submitted to J Gene Med.  

[23] C. Rusa, C. Luca, A.E. Tonelli, Polymer-cyclodextrin inclusion compounds: Towards 
new aspects of their inclusion mechanism. Macromolecules 34 (2001) 1318-1322.  

[24] K. Kunath, T. Merdan, O. Hegener, H. Haberlein, T. Kissel, Integrin targeting using 
RGD-PEI conjugates for in vitro gene transfer, J Gene Med 5 (2003) 588-99.  

[25] L. Wightman, R. Kircheis, V. Rossler, S. Carotta, R. Ruzicka, M. Kursa, E. Wagner, 
Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in 
vivo, J Gene Med 3 (2001) 362-72.   



In vitro and in vivo investigation of inclusion compound/DNA complexes 227  

 
[26] T. Merdan, K. Kunath, H. Petersen, J. Kopecek, K.H. Voigt, T. Kissel, Comparison of in 
vitro and in vivo properties of electrostatic complexes prepared with either  polyethylenimine 
or pegylated polyethylenimine and plasmid DNA, In preparation for Bioconjugate Chemistry. 
(see chapter 4 of this dissertation)  

[27] P.M. Mullen, C.P. Lollo, Q.C. Phan, A. Amini, M.G. Banaszczyk, J.M. Fabrycki, D. 
Wu, A.T. Carlo, P. Pezzoli, C.C. Coffin, D.J. Carlo, Strength of conjugate binding to plasmid 
DNA affects degradation rate and expression level in vivo, Biochim Biophys Acta 1523 
(2000) 103-10.  

[28] D. Oupicky, M. Ogris, K.A. Howard, P.R. Dash, K. Ulbrich, L.W. Seymour, Importance 
of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended 
systemic circulation, Mol Ther 5 (2002) 463-72.  

[29] V.S. Trubetskoy, A. Loomis, P.M. Slattum, J.E. Hagstrom, V.G. Budker, J.A. Wolff, 
Caged DNA does not aggregate in high ionic strength solutions, Bioconjug Chem 10 (1999) 
624-8.  

[30] S. Vinogradov, E. Batrakova, S. Li, A. Kabanov, Polyion complex micelles with protein-
modified corona for receptor-mediated delivery of oligonucleotides into cells, Bioconjug 
Chem 10 (1999) 851-60.   



             

SUMMARY AND OUTLOOK            



 
Chapter 7 

  
230

 
SUMMARY 

In this dissertation several aspects of polymer based gene delivery were 

investigated. First, key issues in subcellular processing of electrostatic 

polymer/nucleic acid complexes were investigated and new insights into 

mechanisms involved in these processes were gained.  

Secondly, a targeted gene delivery system was developed for the specific 

transfection of ovarian carcinoma cells. The resulting vector exhibited a high 

specificity for target cells combined with low unspecific transfection and 

toxicity. Furthermore, a novel type of gene delivery system was synthesized. 

This vector exhibited a high in vitro transfection efficiency and a very low in 

vitro toxicity as well as favourable in vivo properties, such as reduced toxicities. 

Another aspect that was studied in depth was the investigation of the stability of 

several electrostatic vectors in vitro and when applied intravenously. 

Chapter 1 gives a detailed overview of cationic polymers as delivery systems 

for nucleic acid therapeutics against cancer. The current status quo concerning 

polymeric gene delivery is presented. Systemic and subcellular hurdles, as well 

as the most important strategies for cancer gene therapy, are described in depth.  

In Chapter 2, key steps of the subcellular trafficking of PEI/nucleic acid 

complexes were investigated by confocal laser scanning microscopy and 

inhibitor experiments. Microscopic studies suggest that complexes are taken up 

into cells via adsorptive endocytosis. The major site of complex accumulation 

was identified as the lysosomal compartment by using an acidotropic dye. For 

the first time it was possible to monitor the release of PEI/nucleic acid 

complexes from vesicular compartments by using living cell microscopy. 

Obviously, only a very small fraction of the complex population is able to leave 

the endosomal or lysosomal compartment, whereas the vast majority remains 

within the vesicles for days at least. The application of an endosomal 

acidification inhibitor demonstrated the importance of vesicle acidification for 
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release. These findings were confirmed by performing transfection experiments 

in the presence of and without the acidification inhibitor. Results from these 

experiments demonstrated that pH decrease within the vesicle is essential for 

obtaining efficient reporter gene expression with PEI as a gene delivery agent.  

In Chapter 3, the development of a highly efficient gene delivery system for the 

specific targeting of ovarian carcinoma cells expressing a particular epitope is 

described. An antibody with a high specificity for the target epitope was chosen 

as a targeting moiety. In order to reduce the size of the targeting moiety, antigen 

binding fragments (Fab´) were produced by digestion of the crystallizable 

fragment of the antibody. Conjugates of pegylated polyethylenimine and Fab´ 

were synthesized. It was postulated that the linear polyethylenglycol chains 

could be able to shield the cationic charge of polyethylenimine, thus decreasing 

the degree of unspecific interactions. The conjugate was capable of complexing 

DNA as efficiently as unmodified PEI. Complex stability against the polyanion 

heparin was similar, as well. Cell binding studies using flow cytometry revealed 

a high affinity binding of conjugate/DNA complexes to epitope expressing cell 

lines and a significantly lower degree of binding to a reference cell line. 

Transfection experiments in epitope expressing cell lines exhibited up to 

approximately 100fold higher gene expression compared to PEI or pegylated 

PEI. In non epitope expressing cell lines, however, gene expression obtained 

with conjugate/DNA complexes remained low. In order to further confirm the 

specificity of conjugate/DNA complexes transfection experiments were 

performed with free antigen binding fragments in the cell culture media. A 

concentration dependent decrease in reporter gene expression could be observed 

indicating that the specificity of conjugate/DNA complexes is due to Fab´-

epitope interactions.   

In Chapter 4, the in vitro and in vivo stability as well as the organ deposition of 

PEI/plasmid and PEG-PEI/plasmid complexes were investigated. While the 

stability of both types of complexes against polyanions was similar, striking 
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differences were found when the protective properties of complexed DNA 

against DNase digestion was investigated. Unmodified PEI 25 kDa was more 

effective in protecting DNA from degradation than PEG-PEI. Atomic force 

microscopy revealed a slightly different shape of complexes; PEG-PEI/DNA 

complexes exhibited a slightly irregular and rougher structure. However, no 

uncomplexed DNA was observed after complexation with both polymers. In 

vitro transfection experiments in blood revealed significant stability for 

complexes prepared with both polymers. However, the stability of pegylated 

polyethylenimine/DNA complexes was lower indicated by a more pronounced 

decrease of reporter gene expression when transfection efficiencies in blood 

were compared to that in sodium chloride solution. When the in vivo fate of 

complexes was investigated with different radioactive labels attached to 

polymer, as well as incorporated into DNA, significant differences were 

observed between PEI/DNA and PEG-PEI/DNA complexes. In the case of 

PEI/DNA, a similar pharmacokinetic profile was obtained for both polymer and 

DNA with a similar organ distribution after 2 h. Data for PEG-PEI/DNA, in 

contrast, revealed differences in blood levels and a different organ accumulation. 

In this case, the pharmacokinetic and organ distribution data of the complexed 

DNA was similar to that obtained with naked DNA, thus indicating a rapid 

separation of complexes. This study provided valuable information for the 

further development of polymeric vectors for in vivo use. 

In Chapter 5, the development of a novel class of gene delivery systems is 

described. These vector systems are composed of triblock polymers containing 

hyperbranched PEI 25 kDa, polycaprolactone and polyethylenglycol. Due to the 

poor solubility of these compounds, supramolecular inclusion complexes were 

formed by threading a-cyclodextrin over the polyethylenglycol and 

polycaprolactone chains. Since the inner region of cyclodextrin is hydrophobic, 

it is a reasonable assumption that the cyclodextrin molecules were able to slide 

over the PEG chains and attach themselves to the polycaprolactone via 
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hydrophobic interactions. Successful threading and attachment of the 

cyclodextrin to the polycaprolactone was verified by 1H NMR, UV and FTIR 

spectroscopy. The resulting inclusion polymers were capable of efficient DNA 

complexation. Complexes displayed a neutral zeta potential as well as a size 

suitable for endocytic uptake into cells. Cellular uptake was monitored by 

confocal laser scanning microscopy, in which images showing a rapid 

trafficking to vesicular organelles, such as endosomes or lysosomes, could be 

gathered. Transfection efficiencies were in the same order of magnitude as PEI 

25 kDa, however, toxicities were very low, even at high nitrogen to phosphate 

ratios. These unique efficiency-toxicity properties made this system very 

attractive for further investigations.    

In

 

Chapter 6, several triblock polymers with cyclodextrin inclusions, such as 

those described in Chapter 5, were investigated with regard to properties crucial 

for an in vivo application. Complex stability against polyanions was found to be 

higher than that of PEI 25 kDa. Protection of DNA against DNase digestion was 

efficient as well. Visualization of the complex structure via AFM revealed a 

spherical morphology with a size similar to that of PEI 25 kDa. The in vivo 

evaluation of polymer/DNA complexes exhibited a slightly enhanced circulation 

time of complexes with cyclodextrin inclusion, as compared to PEI 25 kDa. The 

major advantage of the inclusion compounds, however, was a negligible 

accumulation in the lung and a reduced in vivo toxicity compared to PEI 25 kDa.    

OUTLOOK 

The ultimate goal of polymeric gene delivery is the development of a safe vector 

system with low in vitro and in vivo toxicity exhibiting a high stability in the 

bloodstream, efficient and exclusive uptake into target cells and high levels of 

gene expression. However, at this time we are far away from such a system.  
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Mechanistic knowledge about the subcellular trafficking of PEI/nucleic acid 

complexes is of major importance for further advances in this field. Although 

insight into this topic is deepening, numerous unanswered questions remain, 

especially concerning how exactly release from the endosome or lysosome 

occurs and which polymer properties are crucial for efficient release. Further, 

more knowledge is required concerning the mode by which plasmid DNA 

crosses the cytoplasm and enters the nucleus, as well as how the efficiency of 

this process can be improved.  

The reduction of in vitro and in vivo toxicity of polymer based gene delivery 

systems is of crucial importance for further advances in this field. Important 

progress has been made, for example, by coupling hydrophilic polymers, such as 

PEG or pHPMA, via different strategies to polymeric gene carriers. These 

modifications have led to a dramatic decrease in toxicity. However a deeper 

insight into the behavior of polymer/nucleic acid complexes in the bloodstream 

is necessary for the rational development of in vivo gene delivery systems. 

Initial studies of the in vivo stability of such vector systems, as described in this 

dissertation, have demonstrated a rapid separation of PEG-PEI/DNA complexes 

at low doses. However, in order to make conclusive statements about the 

applicability of these vector systems, a systematic evaluation of different 

polymers, varying complex doses, and alternative modes of application is 

required. The new generation of triblock polymers with cyclodextrin threading 

described in Chapter 5 and 6 have shown several advantageous properties, such 

as high levels of reporter gene expression, low in vitro and in vivo toxicities, and 

a low accumulation in the lung. Furthermore, circulation times were slightly 

enhanced compared to PEI 25 kDa. However the effects are not very 

pronounced and therefore, further studies are required to be able to fully 

evaluate the potential of this approach.  

The use of reversibly crosslinked complexes may show favourable properties 

and stimulate progress in this field. This approach involves the formation of 
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complexes following the regular protocol, followed by subsequent lateral 

stabilization using bifunctional linkers containing e.g. disulfide bonds. Such 

systems are potentially more stable in the bloodstream, yet when internalized 

into cells, the DNA can be released as a result of the reductive environment 

created by a high concentration of e.g. glutathion. Of course, the degree of 

crosslinking needs to manipulated in such a way that sufficient stability in the 

bloodstream is, on the one hand, guaranteed and on the other an efficient release 

of DNA at the subcellular level is possible.  Currently, optimization of this type 

of system is under intensive investigation.   

This dissertation and numerous other publications have described gene delivery 

systems containing targeting vectors with a high specificity for particular target 

cells in vitro. The challenge, however, is to develop vector systems that work in 

vivo, although the results in this field are still discouraging. Most of the systems 

that are in use display a low specificity and only a marginal gene expression in 

target tissues in vivo. Currently, the antibody fragment targeted vector system 

described in this dissertation are being tested in vivo in a nude mice tumor model 

and preliminary results look promising. 

Generally, it can be stated that significant progress has been made during the last 

years and that polymer based gene delivery is a promising approach for future 

advances in gene therapy.         
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ZUSAMMENFASSUNG 

In der vorliegenden Dissertation wurden verschiedene Aspekte des 

polymerbasierten Gentransfers eingehend untersucht. Zunächst wurden 

Schlüsselereignisse der subzellulären Prozessierung von elektrostatischen 

Polymer/Nukleinsäure-Komplexen erforscht und neue Erkenntnisse über 

Mechanismen, insbesondere von zellulärer Aufnahme und subzellulärer 

Freisetzung aufgedeckt. Ein weiterer Schwerpunkt lag auf der Entwicklung 

eines zielgerichteten Gentransfersystems für die selektive Transfektion von 

Ovarialkarzinomzellen. Das resultierende Vektorkonstrukt zeigte bei sehr 

geringer unspezifischer Transfektion und Toxizität eine sehr hohe Spezifität für 

Zielzellen. Da eine intravenöse Anwendbarkeit von Gentransfersystemen von 

großer Wichtigkeit ist, wurde die Stabilität elektrostatischer Vektoren in vitro 

und in vivo untersucht. Weiterhin war die Entwicklung einer neuen Klasse von 

Transfektionsagentien Gegenstand dieser Arbeit. Diese Systeme weisen eine 

hohe in vitro Transfektionseffizienz kombiniert mit einer sehr niedrigen 

Toxizität auf. Außerdem zeigten sie nach intravenöser Gabe eine verlängerte 

Zirkulationszeit im Blut.  

Kapitel 1 gibt als Einleitung einen detaillierten Überblick über kationische 

Polymere als Transportsysteme für Nukleinsäuren gegen verschiedene 

Krebsarten. Der aktuelle Stand der Wissenschaft bezüglich kationischer 

Polymere als Genfähren wird dargestellt. Hierbei wird insbesondere auf 

systemische und subzelluläre Hindernisse sowie Strategien zur Überwindung 

derselben abgehoben. Weiterhin wird eine Einführung in die wichtigsten 

gentherapeutischen Strategien gegen Krebs gegeben. 

In Kapitel 2 wurden Schlüsselereignisse der subzellulären Prozessierung von 

Polyethylenimin/Nukleinsäure-Komplexen mittels konfokaler Laser Scanning 

Mikroskopie und Inhibitorexperimenten untersucht. Wie mikroskopische 

Untersuchungen zeigten, findet die zelluläre Aufnahme höchstwahrscheinlich 

via adsorptiver Endozytose statt. Als Hauptort der Komplexakkumulation auf 
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subzellulärer Ebene wurde das lysosomale Kompartiment mittels eines 

Markerfarbstoffes identifiziert. Desweiteren konnte, zum ersten Mal überhaupt, 

die Freisetzung von PEI/Nukleinsäure-Komplexen aus einem vesikulären 

Kompartiment, wahrscheinlich Endosom oder Lysosom, mittels konfokaler 

Lebendzellmikroskopie visualisiert werden. Diese Freisetzung findet 

offensichtlich nur zu einem sehr geringen Teil statt, wobei der bei weitem größte 

Teil der Komplexe in vesikulären Strukturen verbleibt. Unter Verwendung eines 

Inhibitors der endosomalen Azidifizierung konnte die Wichtigkeit dieses 

Vorganges für die Freisetzung gezeigt werden. Diese Erkenntnisse wurden 

durch Transfektionsexperimente in Gegenwart und in Abwesenheit des 

Inhibitors untermauert. Auch diese Experimente zeigten, dass Azidifizierung 

notwendig ist, um eine hohe Reportergenexpression mit PEI als 

Transfektionsagens  zu erhalten. 

In Kapitel 3 ist die Entwicklung eines zielgerichteten Gentransfersystems für 

die spezifische Transfektion von Ovarialkarzinomzellen beschrieben. Als 

Targeting-Struktur wurde ein Antikörper ausgewählt, der eine hohe Spezifität 

für ein Epitop aufweist, das von den meisten Ovarialkarzinomzellinien 

exprimiert wird. Um die Größe der Targeting-Einheit zu reduzieren, wurden 

Antikörperfragmente (Fab´), welche die Antigenbindungsstellen beinhalten, 

durch Verdau des kristallisierbaren Teils des Antikörpers hergestellt. 

Anschließend wurden Konjugate aus einem pegylierten Polyethylenimin und 

Fab´ synthetisiert und sowohl physikochemisch als auch biologisch untersucht. 

Die linearen Polyethylenglykol-Ketten sollten die positive Ladung des 

Polyethylenimins abschirmen, um so die Spezifität des Konjugates zu erhöhen. 

Das PEG-PEI-Fab´-Konjugat war in der Lage, DNA genauso effektiv zu 

kondensieren wie unmodifiziertes PEI, außerdem war die Komplexstabilität 

gegenüber dem Polyanion Heparin sehr ähnlich. Zellassoziationsstudien wurden 

mittels Flow Cytometry durchgeführt und zeigten eine sehr effektive Bindung 

von Konjugat/DNA-Komplexen an Epitop-exprimierende Zellinien, jedoch eine 
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wesentlich niedrigere Bindung an Epitop-negative Referenzzellen. 

Transfektionsexperimente offenbarten eine bis zu etwa 100fach höhere 

Reportergenexpression in Epitop-exprimierenden Zellen verglichen mit PEI 

oder PEG-PEI. In Epitop-negativen Referenzzellen jedoch befanden sich die 

Transfektionsraten mit Konjugat/DNA-Komplexen auf sehr niedrigen Niveau. 

Um die Spezifität von Konjugat/DNA-Komplexen weiter zu verifizieren, 

wurden kompetitive Transfektionsexperimente mit verschiedenen 

Konzentrationen an freiem Fab´ im Zellkulturmedium durchgeführt. Hierbei 

konnte eine Reduzierung der Reportergenexpression mit steigender 

Konzentration an freiem Fab´ beobachtet werden. Die so erhaltenen Daten legen 

nahe, dass die hohe Spezifität der Konjugat/DNA-Komplexe auf spezifische 

Wechselwirkungen zwischen dem zellständigen Epitop und den 

antigenbindenden Fragmenten auf den Konjugat/DNA-Komplexen 

zurückzuführen sind.

 

In Kapitel 4 wurde die in vitro und in vivo Stabilität sowie die Organdeposition 

von PEI/Plasmid und PEG-PEI/Plasmid-Komplexen untersucht. Während die 

Stabilität beider Komplexarten bei Verdrängungsexperimenten gegenüber 

Polyanionen sehr ähnlich war, wurden signifikante Unterschiede beim Schutz 

der DNA vor Abbau durch DNase I gefunden. PEI 25 kDa war hier effektiver 

als pegyliertes PEI. Rasterkraftmikroskopie zeigte eine leicht unterschiedliche 

Komplex-Form, wobei die PEG-PEI/DNA-Komplexe etwas gedrungener und 

unregelmäßiger wirkten. In keinem Fall jedoch konnte freie DNA beobachtet 

werden. Bei der Untersuchung der Transfektionseffizienz in Blut zeigte sich, 

dass beide Komplexarten in Blut eine gewisse Stabilität aufweisen. Betrachtet 

man jedoch den Grad der Reduzierung der Transfektionseffizienz in Blut, zeigt 

sich, dass PEG-PEI/DNA-Komplexe weniger stabil sind. Bei der in vivo 

Untersuchung von Pharmakokinetik und Organdeposition mit zwei 

verschiedenen radioaktiven Markern an Polymer bzw. inkorporiert in Plasmid-

DNA zeigten sich signifikante Unterschiede zwischen PEI/DNA und PEG-
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PEI/DNA-Komplexen. Während im Fall von PEI/DNA-Komplexen ein 

ähnliches pharmakokinetisches Profil für Polymer und DNA sowie eine ähnliche 

Organverteilung nach 2 Stunden beobachtet wurde, zeigten PEG-PEI/DNA- 

Komplexe starke Unterschiede zwischen Polymer und DNA. In diesem Fall 

waren Pharmakokinetik und Organverteilung ähnlich der von nackter DNA. 

Diese Daten legen nahe, dass sich elektrostatische PEG-PEI/DNA-Komplexe 

bereits kurz nach intravenöser Injektion trennen, während PEI/DNA-Komplexe 

zumindest eine gewisse Stabilität aufweisen.  

Kapitel 5 beschreibt die Entwicklung einer neuen Klasse von nichtviralen 

Transfektionsagentien. Diese Vektoren sind Triblock-Polymere bestehend aus 

PEI 25 kDa, Polycaprolacton (PCL) und Polyethylenglykol (PEG). Da die 

Wasserlöslichkeit solcher Strukturen sehr begrenzt ist, wurde diese durch 

Überfädeln von Cyclodextrin über PEG- und PCL-Ketten erhöht. Da das Innere 

des Cyclodextrins hydrophob ist,  liegt die Vermutung nahe, dass die 

Cyclodextrin-Ringe über das hydrophile PEG hinweggleiten und schließlich 

durch hydrophobe Wechselwirkungen auf dem PCL-Bereich des Blockpolymers 

haften bleiben. Der Beweis für das erfolgreiche Einfädeln von Cyclodextrin und 

die vornehmliche Arretierung auf den PCL-Ketten wurde mittels 1H-NMR, UV- 

und FTIR-Spektroskopie erbracht. Die resultierenden Cyclodextrin-Inklusions-

Polymere waren in der Lage, DNA effektiv zu kondensieren. Die resultierenden 

elektrostatischen Komplexe hatten ein neutrales Zetapotential und eine Größe, 

die eine endozytotische Aufnahme in Zellen erlaubt. Zelluläre Aufnahme konnte 

mit Hilfe der konfokalen Laser Scanning Mikroskopie gezeigt werden, wobei 

die Bilder eine schnelle Aufnahme in vesikuläre Organellen wie Endosomen 

oder Lysosomen zeigten. Transfektionsexperimente ergaben eine 

Reportergenexpression in der selben Größenordung wie die von PEI 25 kDa. Ein 

Vergleich der Proteinkonzentrationen im Zell-Lysat zeigte jedoch, dass die 

Toxizität der Inklusionskomplexe sehr gering war im Vergleich zu PEI. Sogar 

bei sehr hohem Stickstoff/Phosphat-Verhältnis konnte keine signifikante 
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Toxizität nachgewiesen werden. Diese einzigartigen Eigenschaften machten das 

Vektorsystem interessant für weitere Untersuchungen. 

In

 
Kapitel 6 wurden ausgewählte Triblock-Polymere mit Cyclodextrin- 

Inklusion aus Kapitel 5 eingehender bezüglich der Eigenschaften untersucht, die 

für eine in vivo Anwendung entscheidend sind. Die Komplexstabilität aller 

Polymer/DNA-Komplexe gegen Polyanionen war höher als die von PEI 25 kDa. 

Außerdem waren die Polymere in der Lage, komplexierte DNA effektiv gegen 

enzymatischen Abbau durch DNase I zu schützen. Die Untersuchung der 

Komplexstruktur mittels Rasterkraftmikroskopie zeigte eine sphärische Struktur 

der Komplexe mit einer Größe ähnlich der von PEI/DNA. Eine in vivo 

Untersuchung von Polymer/DNA-Komplexen mit radioaktiv markierter DNA 

ergab eine leicht verlängerte Zirkulationszeit für DNA, die mit Inklusions-

Polymeren komplexiert war. Der große Vorteil der Inklusionskomplexe jedoch 

war die vernachlässigbare Akkumulation in der Lunge und daraus resultierend 

eine sehr geringe in vivo Toxizität verglichen mit PEI 25 kDa und PEG-PEI.    

AUSBLICK 

Ziel des nichtviralen Gentransfers ist die Entwicklung eines Vektorsystems, das 

eine niedrige in vitro und in vivo Toxizität, eine hohe Stabilität im Blutstrom, 

eine effiziente und exklusive Aufnahme in Zielzellen und eine hohe 

Genexpression in sich vereint. Zur Zeit jedoch sind wir weit entfernt von einem 

solchen System. 

Mechanistisches Wissen über den subzellulären Transport von 

PEI/Nukleinsäure-Komplexen ist von größter Wichtigkeit für den weiteren 

Fortschritt auf diesem Gebiet. Obwohl es in den letzten Jahren einige 

wegweisende Erkenntnisse gab, sind immer noch viele Fragen unbeantwortet.  

So ist zum Beispiel der genaue Mechanismus der Freisetzung aus Endosom oder 

Lysosom noch nicht vollständig geklärt. Außerdem ist weiterhin unklar, welche 

Vektoreigenschaften genau entscheidend sind für ein forciertes Ablaufen dieses 
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Vorganges. Der weitere Weg der Nukleinsäuren auf dem Weg zum Zellkern 

liegt ebenfalls noch weitgehend im Dunkeln. Mechanistisches Wissen auf 

diesem Gebiet würde eine effektiveres Vektordesign erlauben. 

Die Reduzierung der in vitro und in vivo Toxizität von Polymeren als 

Gentransferagentien ist ebenfalls von großer Wichtigkeit für weitere Fortschritte 

auf diesem Gebiet. Hier konnten durch verschiedene Polymermodifikationen, 

zum Beispiel durch die Kopplung der hydrophilen Polymere PEG oder pHPMA 

Fortschritte erzielt werden. Die Inkorporierung dieser Strukturen führte zu einer 

stark verminderten Toxizität der entsprechenden Polymer/DNA-Komplexe. 

Erste Untersuchungen der in vivo Stabilität dieser Systeme im Rahmen dieser 

Arbeit zeigten eine schnelle Trennung der Komplexe im Blutstrom bei den für 

diese Studie gewählten niedrigen Dosierungen. Jedoch ist eine genaue 

Untersuchung des in vivo Verhaltens dieser Vektoren bei unterschiedlichen 

Applikationsarten und Dosierungen unerlässlich für die abschließende 

Beurteilung dieser Systeme. Die beschriebenen Triblockpolymere mit 

Cyclodextrin-Inklusion zeigten exzellente in vitro Eigenschaften wie hohe 

Transfektionseffizienz und sehr niedrige in vitro und in vivo Toxizität verbunden 

mit niedrigen Akkumulationsraten in der Lunge. Außerdem war die 

Zirkulationszeit im Vergleich zu unmodifiziertem PEI 25 kDa etwas erhöht. Ob 

hier noch Potential für Verbesserungen liegt, müssen weitere Untersuchungen 

zeigen. Ein sehr vielversprechender Ansatz für das Erzielen von Fortschritten in 

der in vivo Gentherapie ist der, elektrostatische Komplexe aus PEI und 

Nukleinsäuren zunächst nach standardisiertem Protokoll herzustellen und 

anschließend über bioreversible Bindungen wie z.B. Disulfidbrücken mittels 

bifunktioneller Linker zu stabilisieren. Die Idee hinter dieser Strategie ist eine 

hohe Stabilität der resultierenden lateral stabilisierten Komplexe im Blutstrom. 

Auf subzellulärer Ebene jedoch sorgt das reduzierende Milieu für eine Spaltung 

der Disulfidbindungen und damit für die Möglichkeit der DNA-Freisetzung. Bei 

diesen Systemen muß selbstverständlich der Grad der Quervernetzung so 
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gewählt werden, dass auf der einen Seite die Komplexstabilität ausreichend ist, 

auf der anderen Seite aber auf zellulärer Ebene eine Freisetzung in ausreichend 

schneller Zeit stattfinden kann. An der Optimierung dieser Systeme wird zur 

Zeit intensiv geforscht.  

Bezüglich des zielgerichteten Gentransfers in bestimmte Zell- und Gewebetypen 

zeigten die Resultate dieser Dissertation sowie einige andere Veröffentlichungen 

eine hohe Spezifität der Vektorkonstrukte in der Zellkultur. Die große 

Herausforderung jedoch besteht in der Entwicklung eines zielgerichteten 

Vektorsystems, das auch in vivo selektiv Zielzellen bzw. Zielgewebe transfiziert.  

Die Ergebnisse auf diesem Gebiet sind zur Zeit noch sehr unbefriedigend. Die 

meisten zielgerichteten Systeme zeigen nur eine niedrige Genexpression im 

Zielgewebe in vivo. Zur Zeit wird das PEG-PEI-Fab´-Konjugat, welches in 

dieser Dissertation beschrieben wurde, in einem Nacktmaus-Tumormodell 

untersucht und erste Resultate sehen vielversprechend aus. 

Abschließend kann man sagen, dass in den letzten Jahren beachtliche 

Fortschritte auf dem Gebiet des polymerbasierten Gentransfers gemacht wurden. 

Dieses Feld stellt daher einen vielversprechenden Ansatz für die Zukunft der 

Gentherapie dar.   



          

Appendices 
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ABBREVIATIONS  

AUC   area under the curve 
CD   alpha-cyclodextrin 
CLSM  confocal laser scanning microscopy 
DAPI   4’,6-diamidino-2-phenylindole, dihydrochloride 
EGF   epidermal growth factor 
EtBr   ethidium bromide 
Fab´   antibody fragment (antigen binding part) 
Fc   crystallizable part of antibody 
FACS   fluorescence assisted cell sorting 
HBS   HEPES buffered saline 
HEPES  2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid 
hy-PEI  hyperbranched PEI (PEI 25 kDa, Sigma-Aldrich) 
kb   kilobase 
Mab   monoclonal antibody 
Mw   molecular weight 
N/P   nitrogen to phosphate ratio 
NHS   N-hydroxysuccinimide 
OG   Oregon Green 
PBS   phosphate buffered saline 
PCL   polycaprolactone 
pDNA  plasmid DNA 
PEG   polyethylenglycol 
PEG-PEI  pegylated polyethylenimine 
PEG-PEI-Fab´ conjugate of pegylated polyethylenimine and Fab´ 
PEI   polyethylenimine 
pHPMA  poly(N-(2-hydroxypropyl)methacrylamide)   
PLL   poly(L-lysine) 
RGD   arginine-glycine-aspartic acid 
Rh   rhodamine 
SEC   size exclusion chromatography 
SPDP   N-succinimidyl 3-(2-pyridyldithio)propinate   
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