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1 Überblick

1.1 Einleitung

Turbulenz ist ein Alltagsphänomen, das ebenso faszinierend wie in weiten Teilen unver-

standen ist. Die Entstehung von Turbulenz ist selbst für manch klassische Scherströmungen

mit einfachster Geometrie ein noch ungelöstes Problem, obwohl diese schon seit Jahrzehnten

intensivst untersucht werden.

Wann und wie werden Scherströmungen turbulent? Für eine Annäherung an diese Frage

kann man Scherströmungen, je nach der Stabilität ihrer laminaren Grundströmung, zunächst

in zwei Klassen einteilen, deren unterschiedliche Transitionsszenarien jetzt vorgestellt wer-

den.

Da sind zum einen die Scherstömungen, bei denen der Turbulenzübergang von der li-

nearen Instabilität der laminaren Grundströmung bestimmt wird. Ihre berühmtesten und

ausführlichst untersuchten Vertreter sind das thermisch getriebene Rayleigh-Bénard Sys-

tem im Schwerefeld, und das zentrifugal getriebene Taylor-Couette System zwischen zwei

rotierenden, konzentrischen Zylindern. Im folgenden wollen wir den Übergang am Taylor-

Couette System mit rotierendem Innenzylinder exemplarisch vorstellen. Für diese Dis-

kussion benötigen wir den zentralen dimensionslosen Parameter in der Hydrodynamik, die

Reynoldszahl, die wir hier zunächst einmal nur als ein Maß für die Stärke des Antriebs

der Strömung auffassen wollen. Unterhalb einer gewissen, sehr kleinen, Reynoldszahl, d.h.

bei einem nur sehr schwachen Antrieb, ist die laminare Strömung der einzige Zustand, der

asymptotisch angenommen werden kann. Jede beliebige Störung dieses Zustands zerfällt

hier monoton. Deutlich oberhalb dieser sogenannten Energie-Reynoldszahl, gibt es eine

wohldefinierte, erste krititsche Reynoldszahl, bei der das vormals linear stabile Grundpro-

fil linear instabil und damit repulsiv wird. Das heißt, infinitesimale Abweichungen vom

Grundprofil werden nicht mehr gedämpft sondern wachsen exponentiell an. Die Strömung

entfernt sich dabei vom laminaren Profil und relaxiert dann durch den Einfluss von schwach

nichtlinearen Effekten auf ein sekundäres Strömungsmuster. Im Falle des Taylor-Couette

Systems mit rotierendem Innenzylinder sind das z.B. die Taylor-Wirbel. Dies ist ein sta-

tionärer Strömungszustand der aus Paaren von gegeneinander rotierenden Wirbeln besteht,

die sich wie Tori um den Innenzylinder winden. Dabei wird die kontinuierliche axiale Trans-

lationssymmetrie in eine diskrete Translationssymmetrie gebrochen, d.h. der neue Zustand
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hat geringere Symmetrie und etwas mehr räumliche Struktur, die aber immer noch sehr ein-

fach ist. Diese primäre Bifurkation ist im Rahmen der klassischen linearen Stabilitätstheorie

sehr gut verstanden; es gibt präzise Übereinstimmung zwischen einfacher Numerik und

unzähligen Experimenten. Dieser erste Übergang ist sogar von analytischen Modellen quan-

titativ erfassbar [31]. Wenn man die Reynoldszahl ausgehend von diesem sekundären Zu-

stand ein wenig weiter erhöht, kann man mit Hilfe von schwach nichtlinearen Theorien die

Entwicklung des Zustands gut nachvollziehen. Bei einer etwas höheren zweiten kritischen

Reynoldszahl wiederholt sich derselbe Vorgang noch einmal: Der sekundäre wird nun sei-

nerseits linear instabil, es kommt zu einer weiteren Symmetriebrechung und die Strömung re-

laxiert schwach nichtlinear auf einen tertiären Zustand. Im Taylor-Couette System entspricht

dies z.B. dem Brechen der kontinuierlichen axialen Rotationssymmetrie des Taylor-vortex

flow und einer Relaxation in eine diskrete Rotationssymmetrie des sogenannten “wavy-

vortex flow”. Dies ist ein zeitlich periodischer Zustand, bei dem die Wirbelschläuche azi-

muthal moduliert sind, und der in einem geeignet mitrotierenden System stationär ist. Dies

setzt sich erst mal so fort, wobei sich die Abfolge der Zustände folgendermaßen darstellt:

laminares Grundprofil, Taylor-Wirbel, wavy-vortex flow, modulierter wavy-vortex flow, tur-

bulente Taylor-Wirbel. Durch eine Folge von symmetriebrechenden Bifurkationen wird die

Struktur der anfänglich trivialen laminaren Strömung also Schritt für Schritt nachvollziehbar

komplizierter. Sie bleibt dabei aber immer noch sehr glatt und regelmässig. Die Anzahl der

dabei dynamisch aktiven Freiheitsgrade nimmt nur sehr langsam zu. Diese Folge geht jedoch

nicht endlos so weiter. Wenn die modulierten Wellen instabil werden, ist die entstehende

Dynamik nicht mehr länger glatt sondern unregelmäßiger und komplexer. Dennoch sind

die großen Wirbelstrukturen weiterhin dominant; es handelt sich um eine niederdimension-

ale, chaotische Bewegung. Mit steigender Reynoldszahl wird diese allmählich immer klein-

skaliger und schließlich auf so vielen räumlichen und zeitlichen Skalen dynamisch aktiv,

dass man sie turbulent nennt. Die Dynamik spielt sich bei all diesen Strömungen auf Attrak-

toren ab, welche entweder eine reguläre und einfache Dynamik zeigen oder chaotisch sind.

Zu ersteren gehören die stationären, zeitlich periodischen oder quasiperiodischen Zustände.

Bei diesen gibt es zum Teil durchaus eine Koexistenz von Attraktoren im Phasenraum. Es

hängt also nicht nur vom Systemparameter, der Reynoldszahl, ab, welcher Strömungszustand

sich einstellt, sondern auch von den Anfangsbedingungen, von denen aus sich die Strömung

genähert hat. So gibt es z.B. im Taylor-Couette System viele stabile Zustände von mo-

duliertem wavy-vortex flow, die sich nur in den Wellenlängen voneinander unterscheiden.

Bei den turbulenten Taylor-Wirbeln und deren immer komplexer werdenden Dynamik han-

delt es sich um eine Bewegung auf einem chaotischen Attraktor. Auch dies ist ein zeitlich

invariantes Phasenraumobjekt, das die innerhalb seines Attraktionsgebiets liegenden Tra-

jektorien, d.h. Strömungen, anzieht. Das Übergangsszenario in einer solchen von linea-
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ren Instabilitäten dominierten Scherströmung stellt sich also folgendermaßen dar: bei einer

Abfolge genau bestimmbarer kritischer Reynoldszahlen wird durch symmetriebrechende

Vorwärtsbifurkationen die Strömung Schritt für Schritt komplizierter, bis sich schließlich

eine turbulente Strömung auf einem chaotischen Attraktor einstellt.

Ganz anders ist die Situation für die Klasse von Scherströmung ohne lineare Insta-

bilität. Zu dieser Klasse gehören die Strömung durch ein Rohr mit kreisförmigem Quer-

schnitt, die ebene Couette Strömung zwischen ebenen, gescherten Platten sowie die druck-

getriebene Strömung zwischen parallelen Platten, die ebene Poiseuille Strömung, deren

lineare Instabilität bei relativ hohen Reynoldszahlen liegt. Den Turbulenzübergang für

diese Klasse von Strömungen wollen wir am Beispiel der in dieser Arbeit numerisch un-

tersuchten Rohrströmung vorstellen. Die ersten experimentellen Untersuchungen des Tur-

bulenzübergangs gehen hier bis zurück in das Jahr 1883, in dem Osborne Reynolds seine

berühmten Experimente veröffentlichte [68]. Bereits Reynolds konnte zeigen, dass es

bei guter Präparation des Experiments auch bei sehr hohen (später nach ihm benannten)

Reynoldszahlen1 noch möglich ist, die laminare Grundströmung zu realisieren. Der Grund

dafür ist, dass das laminare, parabolische Hagen-Poiseuille Profil in der Rohrströmung li-

near stabil für alle Reynoldszahlen ist. Nur für sehr kleine Reynoldszahlen (
��������� � �

) ist

sie nachgewiesenermaßen die einzige und global attraktive Lösung [72]. In einer Vielzahl

von Experimenten [19, 30, 68, 95, 96] konnte ab einem Reynoldszahlbereich von ca.
���	���

bis 
 �	�	� turbulente Dynamik beobachtet werden. Dabei kann es sich zum einen um den

’natürlichen’ Übergang aufgrund unvermeidbarer Störungen insbesondere am Einlassbereich

des Rohres handeln. Dieser tritt abrupt und unvermittelt auf und führt zu einem stark inter-

mittenten Wechsel von laminaren und turbulenten Bereichen. Zum anderen können gezielt

Störungen von außen eingebracht werden, wie in den für diese Arbeit relevantesten Ex-

perimenten von Darbyshire & Mullin [19]. In diesen Experimenten zeigte sich, dass es

stark von Details des experimentellen Aufbaus sowie der Struktur zusätzlich eingebrachten

Störungen abhängt, ob Transition erfolgt oder nicht. Experimentell konnte bisher nur die

laminare oder die turbulente Strömung realisiert werden, sowie der intermittente Wechsel

zwischen beiden. Dabei zeigen die turbulenten Bereiche von Anfang an eine hochdimen-

sionale und komplexe Dynamik. Es kommt dabei zur Bildung großskaliger, reproduzierbarer

Strukturen, sogenannten “puffs” und “slugs”. Für die Rohrströmung sind bisher keinerlei

Strömungszustände von mittlerer Komplexität oder mit wenigen beteiligten Freiheitsgraden

bekannt. Damit fallen weitere methodische Zugänge aus, wie z.B. schwach nichtlineare

1Die Reynoldszahl ist für die Rohrströmung definiert als

���	��
 mittlere Strömungsgeschwindigkeit ��
�� 
 Rohrdurchmesser ��

kinematische Viskosität �
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Ansätze über Amplitudengleichungen. Verglichen mit linear instabilen Scherströmungen

erfordert ein Verständnis des Turbulenzübergangs hierbei andere konzeptuelle Zugänge. Li-

neare Stabilitätstheorie, die so erfolgreich für zentrifugal und thermisch getriebene Insta-

bilitäten ist, versagt bei diesen von Scherkräften dominierten Strömungen. Es kommt nicht

einmal zu einer qualitativen Veränderung des Eigenwertspektrums bei Reynoldszahlen, ab

denen eine turbulente Dynamik beobachtet werden kann.

Der Turbulenzübergang in der Rohrströmung ist also durch starke Intermittenz, eine große

Unsicherheit und schlechter Reproduzierbarkeit in den Übergangs-Reynoldszahlen und

einer empfindlichen Abhängigkeit von Anfangsbedingungen gekennzeichnet. Eine Auswahl

grundlegender experimenteller Ergebnisse zur Transition in Rohrströmungen wird in Kapi-

tel 3 präsentiert, um eine breitere Diskussionsgrundlage für unsere Untersuchungen und

Ergebnisse zu schaffen.

Diese je nach Stabilität des Grundprofils völlig verschiedenen Transitionsszenarien können

in einem sehr instruktiven Experiment miteinander in Verbindung gebracht werden [33].

Im Taylor-Couette System gibt es die Möglichkeit (insbesondere numerisch) die Radien

der Zylinder beliebig groß werden zu lassen, so dass man sich asymptotisch der ebenen

Couette Strömung nähert. Das heißt, es steht ein kontinuierlicher Geometrieparameter zur

Verfügung, mit dessen Hilfe man die kritische Reynoldszahl der linearen Instabilität des

Grundprofils stetig verschieben kann, im Limes der ebenen Couette-Strömung sogar bis

unendlich. Dabei verschiebt sich natürlich auch das Transitionsszenario von einem von

linearen Instabiliäten und attraktiven kohärenten Strukturen dominierten Übergang hin zu

einem stark intermittenten Übergang mit einer sofort hochdimensionalen Dynamik. Es hat

sich dabei gezeigt, dass Zustände, die aus höheren Bifurkationen stammen, also nicht direkt

mit dem laminaren Profil verbunden sind, wie z.B. der tertiäre wavy-vortex flow, durchaus

bei etwa den gleichen Reynoldszahlen weiterexistieren können; sogar bis in den Bereich

hinein, in dem es keine lineare Instabilität des laminaren Profils mehr gibt. Der entschei-

dende Punkt ist, dass aus der sekundären Vorwärtsbifurkation eine Rückwärtsbifurkation

wird, die zu kleineren Reynoldszahlen hinführt. Im Limes der ebenen Strömung können

tertiäre Zustände also nicht mehr aus sekundären Bifurkationen entstanden sein. Vielmehr

enstehen sie nun aus Sattel-Knoten-Bifurkationen bei einer kritischen Reynoldszahl, ohne

jede Verbindung zum laminaren Profil also gewissermaßen aus dem Nichts. Man nennt dies

auch eine Bifurkation aus dem Unendlichen. Die Zustände verlieren dabei in der Regel

ihre lineare Stabilität und werden repulsiv, das heißt linear instabil. Aber damit haben sie

ihre dynamische Relevanz nicht verloren, sie hat sich jedoch verändert. Auch wenn sie

nicht mehr das bisherige große und zum Teil globale Attraktionsgebiet haben, so besitzen

sie dennoch eine hochdimensionale stabile Mannigfaltigkeit und nur wenige instabile Rich-

tungen. Obwohl linear instabil existieren diese Strukturen weiterhin im Phasenraum, wo sie
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gewissermaßen als ordnendes Element wirken. Transient sind sie durchaus in der Lage, Tra-

jektorien entlang ihrer stabilen Mannigfaltigkeit anzuziehen, bevor diese dann entlang der

instabilen Mannigfaltigkeit wieder entweichen und vielleicht in das Attraktionsgebiet eines

weiteren kohärenten Zustands gelangen. Bei einem genügend dichten Geflecht aus solchen

Zuständen ist ein Wandern zwischen ihnen über lange Zeiträume möglich, bis die Dynamik

schließlich doch wieder zerfällt, das heißt wieder laminar wird. Solch eine Dynamik, die auf

dem chaotischen Streuen zwischen linear instabilen Zuständen basiert, ist also zunächst ein-

mal nur transient, existiert also nur für eine endliche Zeit. Die Menge der instabilen Zustände

bildet also keinen chaotischen Attraktor sondern einen chaotischen Repellor, aus dem Tra-

jektorien mit einer von der Reynoldszahl abhängigen charakteristischen Entweichrate wieder

zu einer laminaren Strömung zerfallen. Eine feste mittlere Entweichrate hat eine expo-

nentielle Verteilung der Zeiten, die eine Trajektorie turbulent bleibt, also ihrer turbulenten

Lebensdauer, zur Folge. Diese wurde in der ebenen Couette Strömung experimentell [9]

und auch numerisch [74] nachgewiesen sowie numerisch auch in Parameterbereichen der

Taylor-Couette Strömung identifiziert [27]. Unter anderem dadurch wurde die Existenz eines

Repellors in diesen Systemen bestätigt. Der Repellor und das laminare Profil sind nun ko-

existierende, invariante Phasenraumobjekte, die beide ein endliches, komplexes Attraktions-

gebiet haben [33, 73]. Selbst das laminare Attraktionsgebiet ist keineswegs einfach, sondern

in manchen ausgezeichneten Richtungen hoher Symmetrie sogar unbeschränkt.

Das Ziel der vorliegenden Arbeit ist es, die Natur des Turbulenzübergangs in der

Rohrstömung zu identifizieren. Dabei soll insbesondere untersucht werden, inwieweit

die Interpretation der Transition in Couette-Strömungen, durch eine Repellorbildung aus

kohärenten Zuständen, auf die Rohrströmung übertragbar ist. Ein tieferes Verständnis der

nichtlinearen Mechanismen in der Rohrströmung ist von grundlegender theoretischer Bedeu-

tung für eine der ältesten klassischen Fragestellungen in der Hydrodynamik. Weiterhin sind

Strömungen durch Rohre auch von großer technischer Bedeutung. Besonders Mechanismen,

die zu einer Reduktion der Turbulenzintensität führen und damit den Strömungswiderstand

senken, sind von größtem Interesse.

Bei einer Annäherung an diese Ziele konnten auf zwei unterschiedlichen Feldern Ergebnisse

durch direkte numerische Simulation gewonnen werden, die nach einer kurzen Darstellung

der Numerik aufgezeigt werden.

1.2 Direkte numerische Simulation

Es ist bemerkenswert, dass so viele Fragen der Turbulenzforschung noch ungeklärt sind,

wo doch die zugrundeliegenden Bewegungsgleichungen seit 150 Jahren bekannt sind. Dies

ist auf die ungeheure Komplexität und Vielfalt der Lösungsstruktur und die große Zahl der
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dynamisch aktiven Freiheitsgrade zurückzuführen.

Ein zentraler Anteil dieser Arbeit bestand darin, ein neues, für unsere Aufgaben optimiertes

numerisches Simulationsprogramm zu entwickeln, dass unsere Untersuchungen der dreidi-

mensionalen Rohrströmung erst ermöglichte. Bei den zu lösenden Bewegungsgleichungen

handelt es sich um die Navier-Stokes-Gleichungen für ein inkompressibles, newtonsches

Fluid. Dies sind nichtlineare, partielle Differentialgleichungen, die zusammen mit ver-

schiedenen Rand- und Nebenbedingungen gelöst werden mussten. Hierbei konnten wir

auf fundierte Erfahrungen aus Simulationen von Couette-Scherströmungen zurückgreifen.

Dabei erwies sich die Rohrströmung in vielerlei Hinsicht als ein numerisch deutlich kom-

plexeres Problem als die Couette Strömungen, was insbesondere auf die Koordinatensingu-

larität in den dem Problem angemessenen Zylinderkoordinaten zurückzuführen war. Für die

räumliche Darstellung des Geschwindigkeitsfeldes verwendeten wir ein Fourier-Legendre

Kollokationsverfahren, das spektrale Genauigkeit und die effiziente Berechnung der advek-

tiven Nichtlinearität ermöglichte. Die Haft-Randbedingungen an der Rohrwand, sowie die

Forderungen nach Inkompressibilität, Regularität und Analytizität des Geschwindigkeits-

feldes konnten über Lagrangeverfahren erster und zweiter Art berücksichtigt werden. Die

Simulation turbulenter Dynamik entsprach dabei der zeitlichen Integration eines Anfangs-

und Randwertproblems, die Suche nach kohärenten Lösungen basierte dagegen auf einem

modifizierten Newton-Verfahren und einer Methode zur Erzeugung ausgezeichneter An-

fangsbedingungen. Die Erläuterung der wichtigsten von uns ausgewählten Methoden

und Algorithmen zur direkten numerischen Simulation der Rohrströmung erfolgt in Kapi-

tel 4. Um die hier vorliegenden Ergebnisse zu erzielen wurden Gesamtrechenzeiten in der

Größenordnung von CPU-Jahren auf verschiedenen Hochleistungsrechnern benötigt.

Bei der Entwicklung von Programmen dieser Komplexität ist eine umfangreiche Verifikation

im Sinne von signifikanten Tests von größter Bedeutung. Als Meilensteine der Programm-

entwicklung und -verifikation wurden die Lösung der linearisierten Bewegungsgleichungen,

die nichtlineare Zeitentwicklung ’optimaler’ Strömungsmoden sowie die Simulation dreidi-

mensionaler turbulenter Strömungen zugrunde gelegt. Aufgrund der umfangreichen Litera-

tur über numerische Arbeiten zur Rohrströmung sind hochpräzise Daten vorhanden, denen

wir unsere Rechnungen in Kapitel 5 gegenüberstellen. Dabei wird gleichzeitig großer Wert

darauf gelegt, die wichtigsten auftretenden physikalischen Effekte und Mechanismen heraus-

zuarbeiten.

1.3 Exakte kohärente Strukturen in der Rohrströmung

Eine Familie von nichtlinearen dreidimensionalen Wellenlösungen der vollen Navier-

Stokes Gleichungen konnte gefunden werden. In einem geeignet mitbewegten Koor-
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dinatensystem handelt es sich hierbei um stationäre Strömungen. Sie weisen diskrete

axiale Rotationssymmetrien auf, wobei der Zustand mit dreizähliger Symmetrie die nie-

drigste kritische Reynoldszahl von
� 
 ��� hat. Ihre Struktur wird von Wirbeln mit Achse

in Strömungsrichtung sowie schlauchartigen Bereichen relativ hoher bzw. niedriger

Geschwindigkeit in Strömungsrichtung dominiert. Die Wellenlösungen erinnern damit ei-

nerseits an stationäre Strömungen in ebenen Scherströmungen [17, 51, 74], andererseits auch

an experimentell beobachtete kohärente Strukturen in turbulenten Wandschichten [41]. Sie

entstehen in Sattel-Knoten-Bifurkationen ohne jede Verbindung zum laminaren Profil. Be-

reits an der Bifurkation sind sie linear instabil, jedoch nur in einer bis vier Richtungen. Die

beiden bifurkierenden Äste bilden dabei je ein zweidimensionales Kontinuum von Lösungen.

Das Auffinden dieser Lösungen gelang mittels einer transversalen Volumenkraft, die auf-

grund von Beobachtungen in anderen Scherströmungen richtig konstruiert werden konnte.

Unseres Wissens handelt es sich hierbei um die ersten nichttrivialen exakten kohärenten

Zustände, die in der Rohrströmung gefunden wurden. Die Vorstellung der neu gefunden

Familie von dreidimensionalen Wellenlösungen und die Analyse ihrer Struktur und Sta-

bilität erfolgt in Kapitel 6. Dort wird auch die Methode detailliert beschrieben, mit der

ihr Auffinden erst möglich wurde. Diese kohärenten Zustände sind in vielerlei Hinsicht von

fundamentalem Interesse. Sie zeigen auf, wie in der Rohrströmung eine dauerhafte nicht-

triviale Dynamik möglich ist, die dennoch um ein vielfaches einfacher strukturiert ist als

eine turbulente Strömung, die sofort mit irregulärer Dynamik auf einer Vielzahl von Längen-

und Zeitskalen verbunden ist. Somit sind sie grundlegend für das Verständnis komplexerer

Strömungen sowie für die Bildung niedrigdimensionaler dynamischer Systeme, mit denen

Eigenschaften der Rohrströmung modelliert werden können. Der Nachweis erster exakter

kohärenter Zustände stützt die Theorie der Bildung eines chaotischen Repellors im Phasen-

raum. Im Rahmen der Theorie periodischer Orbits [25] wäre es als ein längerfristiges Ziel

denkbar, turbulente dynamische Größen, wie z.B. Dimensionen des Repellors, Lyapunov-

Exponenten oder Entweichraten, durch eine Entwicklung nach kohärenten Strukturen sys-

tematisch zu approximieren.

1.4 Simulation des Turbulenzübergangs in der Rohrströmung

Durch die dynamische Untersuchung turbulenter Rohrströmungen bei Reynoldszahlen

zwischen
� �	�	�

und 
�
 �	� konnten neue Ergebnisse im Übergangsbereich zwischen rasch zer-

fallenden und langlebig turbulenten Strömungen erzielt werden, die in Kapitel 7 präsentiert

werden. Dabei wurde die Amplitude der eingebrachten Störung sowie die Reynoldszahl sys-

tematisch variiert. Die Lebenszeit turbulenter Trajektorien zeigte eine starke Sensitivität auf

kleinste Änderungen in den Anfangsbedingungen und in den Systemparametern. So konnten

beispielsweise relative Änderungen in den Anfangsbedingungen im sub-promille Bereich zu
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einer Erhöhung der Lebensdauer um eine Größenordnung führen. Diese Sensitivität konnte

durch die Berechnung des größten positiven Lyapunov-Exponenten entlang einer Vielzahl

turbulenter Trajektorien quantifiziert werden. Dem Wert des Lyapunov-Exponenten von

ca.
��� ���

in Einheiten der mittleren Geschwindigkeit und des Rohrdurchmessers bei Rey-

noldszahlen um 
 �	�	� entspricht eine Halbierung der Vorhersagbarkeit der Strömung alle
� �

Zeiteinheiten. Es zeigte sich, dass die Einzugsbereiche schnell zerfallender und lang-

lebiger turbulenter Trajektorien durch eine sehr verwobene und komplexe Stabilitätsgrenze

getrennt sind. Dies ist in Übereinstimmung mit den Laborexperimenten von Darbyshire &

Mullin [19]. Bei der statistischen Untersuchung von Ensembles von transienten turbulen-

ten Trajektorien wurde eine exponentielle Verteilung der turbulenten Lebensdauern identi-

fiziert. Diese entspricht einer konstanten Entweichrate, die ein Hauptcharakteristikum eines

Repellors darstellt.

All diese Ergebnisse stützen die Erklärung des Turbulenzübergang in der Rohrströmung im

Rahmen der Theorie dynamischer Systeme: instabile exakte kohärente Zustände existieren

im Phasenraum, deren Anzahl und Grad der Vernetzung durch heterokline und homokline

Verbindungen mit der Reynoldszahl wächst. Diese Zustände bilden das Skelett eines chaoti-

schen Repellors, der das Auftreten langlebiger turbulenter Strömungen erst ermöglicht.

Der Turbulenzübergang in der Rohrströmung erweist sich nun in zentralen Aspekten als

eng verwandt mit der ebenen Couette Strömung [9, 17, 51, 73, 74], sowie dem Taylor-

Couette System bei großen Radien [27, 33], wodurch der universelle Charakter eines

Übergangsszenarios für linear stabile Scherströmungen untermauert wird.
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Hagen-Poiseuille flow through a pipe of circular cross-section belongs to the class of shear

flows with a linearly stable profile for all Reynolds numbers. As in the case of plane Couette

flow and Taylor-Couette flow with the inner cylinder at rest, the transition to turbulence is

not related to series of symmetry-breaking linear instabilities. On the contrary, laboratory

experiments show a strongly intermittent transition [19, 68, 95, 96]. The Reynolds number,

based on pipe diameter and mean flow velocity, down to which turbulent dynamics can be

observed strongly varies between
���	�	�

and 
 �	�	� . Whether transition is triggered or not

depends very much on details of the experimental setup and on the type of the injected

finite amplitude disturbance [19]. Further key features of pipe flow turbulence transition

experiments will be presented in chapter 3.

Our aim is to shed some light on this transition process.

For the direct numerical simulation of pipe flow transition a new spectral code had to be

developed to solve the full three-dimensional nonlinear Navier-Stokes equations accurately

and efficiently. We use a Fourier-Legendre collocation method in cylindrical coordinates,

with Lagrangian multipliers to account for no-slip boundary conditions at the wall and the

constraint that the flow field is solenoidal, analytical and regular at the centerline. Details on

the equations of motion and the various numerical methods involved in their solution will be

provided in chapter 4. In chapter 5 the pipe code will be thoroughly tested by reproducing

literature values for the linearized problem, for the nonlinear dynamics of optimal modes,

and for the statistical properties of fully developed turbulent flow up to Reynolds numbers of���	���
.

Based on extensive numerical calculations we give evidence for an explanation for the pipe

flow transition scenario. According to this explanation turbulence transition in a pipe is

dominated by linearly unstable nonlinear 3-d states that are not connected to the laminar

profile and that form a chaotic saddle. This would then be similar to the situation in plane

Couette flow [9, 17, 51, 73, 74] and certain parameter regimes of Taylor-Couette flow [27,

33].

As one indicator for this process we present a family of three-dimensional travelling waves

for flow through a straight pipe of circular cross-section in chapter 6. These are the first non-

linear 3-d exact coherent states identified in pipe flow. They were found by a continuation of
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transversally forced travelling waves by a modified Newton-Raphson method which was im-

plemented with a spatial resolution of up to 21 modes in azimuthal and downstream direction

and 44 Legendre polynomials radially. This corresponds to about
�����	�

dynamically active

velocity coefficients. They originate in saddle-node bifurcations at Reynolds numbers as

low as
� 
 ��� , which is well below transitional Reynolds numbers. All states are immediately

linearly unstable at the bifurcation and they differ in their discrete axial rotation symme-

try. Their dominating structures are streamwise streaks and streamwise vortices that closely

resemble coherent states in other shear flows like the wavy-vortex flow in Taylor-Couette,

plane Couette or plane Poiseuille flow [17, 33, 51, 94].

In chapter 7 we analyse extensive numerical simulations of turbulent trajectories at transi-

tional Reynolds numbers. Numerically this corresponds to the solution of initial-boundary

value problems which have been implemented with up to
���

Fourier-modes in azimuthal

direction and 
�� Fourier-modes in downstream direction, as well as
���

Legendre polynomi-

als radially. This is a compromise between maximum resolution, maximum cut-off lifetime

and largest statistics. We show the very sensitive dependence on initial conditions quanti-

fied by the largest Lyapunov exponent of turbulent trajectories, a complex stability border

between long-living and quickly decaying transient states, and the exponential distribution

of life times of the turbulent state. These findings strongly support the existence of a strange

saddle (repellor) in phase space.

Our findings give evidence that the transition to turbulence in pipe flow is connected with

the existence of unstable exact coherent states that provide a skeleton for the formation of

a chaotic saddle that can explain the intermittent transition to turbulence and the sensitive

dependence on initial conditions in this classic shear flow.
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Figure 3.1: The hall of fame: Gotthilf Hagen, Jean Poiseuille, Osborne Reynolds (from left to right)

In this chapter we want to give a short overview over key features of laboratory pipe flow

transition experiments in order to provide a basis for the discussion of many of our numerical

experiments and findings in chapter 6 and 7. Due to the tremendous amount of literature this

list cannot claim to be exhaustive.

Three names are once and for all connected to pipe flow experiments: These are on the one

hand Gotthilf Hagen (1797-1884), a German scientist from Königsberg, and Jean Poiseuille

(1797-1869), a French scientist from Paris, both of which investigated in laminar pipe flow

which now bears their names. On the other hand there is Osborne Reynolds (1842-1912),

an Irish scientist from Belfast, whose famous experiments from 1883 [68] were the starting

point for the study of transition from laminar to turbulent flow in a pipe. Reynolds found that

the various parameter dependencies can be boiled down to a single dimensionless parameter,

the Reynolds number
���

= ������� , where � is the mean flow velocity, � the pipe diameter,

and � the kinematic viscosity. He observed that

”. . . there were two critical values for the velocity in the tube, the one at which

steady motion changed into eddies, the other at which eddies changed into steady

motion.” [68]
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L

R

Figure 3.2: Sketch of a section of a straight pipe of uniform circular cross-section with the laminar

Hagen-Poiseuille flow profile.

The latter corresponds to the Reynolds number of about 
 �	�	� above which turbulent flow can

intermittently be maintained if transition has been induced. Literature values for this num-

ber scatter between
���	�	�

and 
 �	��� [19, 68, 95, 96]. The former corresponds to the Reynolds

number at which ’natural’ transition occurs. Natural transition is induced by unavoidable im-

perfections of the experimental setup and hence it strongly depends on experimental details.

It can be delayed up to
����� � � � [60] since the laminar flow (sketched in Fig. 3.2) stays

linearly stable to infinitesimal disturbances. The finite smoothness of the pipe inlet conti-

nously disturbs the flow and instabilities in the boundary layer might develop long before the

laminar flow becomes fully developed [95]. At transitional Reynolds numbers this leads to

an intermittent transition where series of turbulent spots and laminar regions alternate. (At

high enough Reynolds numbers the pipe flow finally stays turbulent over its full length.) Be-

tween the turbulent patches there are patches of laminar flow where the level of turbulence

is not only somewhat decreased but exactly zero and a disturbance from outside is required

to initialize a new burst. The intermittent character of pipe turbulence is most intriguing and

has already been described by Reynolds:

”Another phenomenon very marked in smaller tubes was the intermittent char-

acter of the disturbance. The disturbance would suddenly come on through a

certain length of the tube and pass away and then come again, giving the appear-

ance of flashes, and these flashes would often commence successively at one

point in the pipe. The appearance when the flashes succeeded each other rapidly

was as shown. . . ” [68]

. . . in Fig. 3.3, which is Reynolds’ original sketch.

In order to observe the flow structure it is necessary to visualize the working fluid, which

is usually chosen to be water. Flow visualization can be based on methods as simple as

the injection of of a thin band of dyed fluid, as sketched in Fig. 3.3, or the seeding with

anisotropic light-reflecting plates. Or it might be as fancy as high-speed stereoscopic particle

image velocimetry [22] to obtain highly resolved data on all three velocity components on
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Figure 3.3: The intermittent character of transition in pipe flow as sketched by Reynolds.

two-dimensional cuts through the flow.

As we have a mean straight flow in the laboratory frame of reference and only finite pipe

lengths the maximal observation time is limited. It must remain unanswered whether a tur-

bulent patch that leaves the pipe stays sustained or is only a transient. This is in contrast

to the closed Taylor-Couette flow and to plane Couette flow where an experimental device

has been developed which allows for arbitrary observation times [9]. This technique has not

been transfered to the pipe geometry yet.

The pipe length needed for a certain degree of development of the laminar profile has already

been given in [16]. The estimate for the pipe length where the centerline velocity deviates

by less than
�
% from the Hagen-Poiseuille profile is

������� � � � ��� 
 � ��� � (3.1)

By optimizing and smoothing the pipe inlet this distance can somewhat be reduced but the de-

gree of development still changes with Reynolds number. This initial pipe section of course

reduces the experimentally available test section of the pipe and therefore the maximum

observation time.

In the early experiments the flow was driven by a constant pressure gradient between

both ends of the pipe. Sometimes the spatial intermittency was sometimes tried to be

explained by the drop in Reynolds number due to a turbulent patch which then leads to

re-laminarization [89]. But this explanation failed as in experiments by Darbyshire &

Mullin [19], which we present below, the volume flux is held constant and similar inter-

mittency is observed.

It is not possible to force a turbulent pipe flow with a constant pressure drop as well as with

a constant volume flux. The energy balance derived from the equations of motions (which

will be presented later in chapter 4) reads

���
� �

	 �
�	 
��
�������
�

��� 	������� � �
(3.2)

i.e. the rate of change in kinetic energy density is due to dissipation and forcing. Since the
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Figure 3.4: Sketch of the experimental setup for transition experiments by Darbyshire & Mullin [19].

The fluid (water) is pulled out of the tank and through the pipe by a piston which is motor driven

via a lead screw. Some distance downstream of the pipe inlet a disturbance can be injected. �����
pipe diameters further downstream it is observed whether turbulence transition has occurred or

not.

first two terms are strongly fluctuating functions of time and are not exactly correlated the

rightmost term cannot be held constant for a turbulent flow.

Different realisations of constant-flux experiments exist. In the experiments by Draad et

al. [23] a magnetic inductive flow-meter monitors the instantaneous flow rate and any devi-

ations from the target flux are used to control the pump. This keeps the flow rate constant to

within variations of 0.5% and allows for a continuous operation. An alternative realisation

has been used by Darbyshire & Mullin [19], which is sketched in Fig. 3.4. There the fluid

is pulled through the pipe by a cylindrical piston which is led by a leadscrew. The speed of

the driving motor is held constant to within 0.5%. In both experiments the control of the flux

and of the temperature results in an accuracy in the experimental Reynolds number of �
� �

at transitional Reynolds numbers of about 
 �	��� .
The alternative to natural transition is to induce a finite amplitude controlled localized dis-

turbance. This has been done, for instance, in the experiments by Darbyshire & Mullin [19],

which are particularly relevant to the present analysis. Some of their results are shown in

Fig. 3.5. They inject an initial disturbance by jets or suction devices and record whether or

not transition occurs some distance downstream. This is repeated for many combinations of

initial amplitude and Reynolds number.

Fig. 3.5 shows that a sufficiently high disturbance amplitude and
��� � � �	�	�

are necessary

for transition. The minimum necessary disturbance amplitude decreases with
���

. They

clearly find a strong sensitivity to perturbations and a broad intermittent range of decaying

and turbulent perturbations in an amplitude vs. Reynolds number plane. These results do not

change qualitatively for different types of initial disturbances. Darbyshire & Mullin interpret

their findings as evidence for the existence of disconnected solutions.
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Figure 3.5: Laboratory transition experiments by Darbyshire & Mullin [19]. ����� pipe diameter

downstream of the disturbance inlet the decision is made whether a turbulent patch can be

observed (+), which then corresponds to transition, or whether the disturbance has decayed ( � ).

The experiment is repeated with different disturbance amplitudes and Reynolds numbers. The

dashed line from A to B is a guide for the eye but it not possible to divide the transition region

from the decay region by such a smooth line. The experimental setup is sketched in Fig. 3.4.

Puffs and slugs

Turbulent spots in pipe flow evolve within very reproducible enveloping large scale struc-

tures which have been termed (turbulent) ’puff’ and ’slug’ by Wygnanski & Champagne [95].

They are sketched in Fig. 3.6 where the turbulent fluctuations have been neglected. The puff

has a well-defined upstream interface which is sharp in the center of the pipe. Disordered

motion of large-scale structures forms an intermediate downstream interface which is pre-

Figure 3.6: Time evolution of the streamwise centerline velocity at a fixed observation point as a

turbulent puff or slug passes by [76].
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Figure 3.7: The parameter re-

gions in which puffs and

slugs occur (from [95] af-

ter Coles [18]); initial distur-

bance level at the pipe inlet

vs. Reynolds number.

ceded by undisturbed laminar fluid. The slug shows well-defined interfaces at both ends and

extends over almost the whole pipe cross-section. Streamwise vortices and streaks can be ob-

served at the laminar-turbulent interfaces [30]. The parameter regions where puffs and slugs

appear are displayed in Fig. 3.7. Puffs can only be seen for 
 �	�	��� ����� 
 ���	� whereas

slugs occur for
����� � 
 �	� .

The velocities of the laminar-turbulent interfaces of slugs and puffs as a function of Reynolds

number is shown in Fig. 3.8. At 
 � �	� � ��� � 
 � �	� the fronts travel at about the mean flow

velocity and ’equilibrium puffs’ which neither grow nor shrink nor split are found [96]. For

larger Reynolds numbers the turbulent region increases in size as the slug is advected along

the pipe. The leading downstream front velocity of a slug first increases with the Reynolds

number, becomes maximal at about
��� ��� � � , and finally decreases to values slightly above

the mean velocity. The trailing upstream front velocity decreases monotonously but stays

positive for the Reynolds number range shown in Fig. 3.8. That is, disturbances are always

swept away out of the test section and therefore only convective instabilities are induced by

finite amplitude disturbances.
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Figure 3.8: Propagation speed of the leading

(open symbols) and trailing (filled sym-

bols) interface for puffs and slugs as a func-

tion of Reynolds number. Velocities are

given in units of the mean flow velocity.

The data were obtained in three different

pipes and is taken from [95].



4 A new spectral code for pipe flow

Why a new pipe code? A variety of codes using different algorithms have successfully been

applied to simulate nonlinear pipe flow, for instance, [28, 46, 57, 66, 76, 90]. But none of

these codes seems to meet our claim to combine highest spectral spatial precision with the

lowest number of degrees of freedom. The method of Lagrange multipliers for the treatment

of various different linear constraints on the flow enables us to use the Lagrange II mecha-

nism, i.e. to work in the subspace of velocity fields that obey all constraints on the velocity

field:

�
�

�
�
� �

(incompressibility)

�
� ��� � ��� � � (no-slip )

� regularity (no singularities at pipe center-line)

� analyticity (spectral precision).

This minimizes the remaining number of active degrees of freedom which is essential for the

search algorithm for exact coherent states since the computation time scales with the third

power of the total number of degrees of freedom [32, 74]. The development of most accurate

and efficient numerical schemes for polar coordinates is still an active field of research. For a

comparison of different spectral and finite difference methods for polar coordinates see [50]

and references therein.

In the following the equations of motion are formulated and key algorithms that have been

employed for their solution are presented.

4.1 Equations of motion

The pipe flow system consists of a smooth, non-rotating, straight pipe of uniform circular

cross section, as sketched in Fig. 3.2. The pipe is filled with a Newtonian fluid of kinematic

viscosity � which is driven through the pipe by a uniform axial pressure gradient. The fluid is

supposed to be incompressible so that the mass density � is constant. In streamwise direction

periodicity is assumed with a wavelength
�

. We measure lengths in units of the pipe radius�
and velocities in units of half the mean streamwise flow velocity, � �	
 , where

� �
�	 


	

�
� � 	 �

(4.1)
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and where the integral goes over one fundamental periodic volume. This corresponds to

measuring velocities in units of the center-line velocity of a laminar Hagen-Poiseuille flow

of the same mean flow velocity � . The unit of time is ��� � with pipe diameter � . This

leaves us with two dimensionless parameters, the Reynolds number, based on mean flow and

pipe diameter,

��� � ���
�

�
(4.2)

and the streamwise length
�

of the periodic domain. The Reynolds number can be interpreted

as the ratio of inertial forces ( (
�
�
�

)
���

� � � � ) to viscous forces ( � � ��� � � � � � ) or as

the ratio of the viscous diffusion time scale � � ��� to the inertial time scale ��� � .

The governing equations of motion are the Navier-Stokes equations and the continuity equa-

tion for an incompressible fluid:������ � � � �
� � � � � � � 	

� ��
� � � �
� (4.3)

The impermeable and no-slip boundary condition imply that the fluid is at rest at the wall.

The appropriate coordinate system are cylindrical coordinates � � ��� �	� ��
 � 1. This allows for

the most accurate and simple handling of the boundary conditions, the price to be paid is the

treatment of a coordinate singularity at the center-line and the various problems which arise

from it - but that can be overcome (see below).

The fluid state at a time instant is completely described by the velocity field
� � � � �

� � � � ��
 � � � � � � ��� ��
 � and the pressure field � � � �	� ��
 � . The equations of motion (4.3) together

with boundary and initial conditions now explicitly read:

� � � � � � � �
� � � � 	 �

�
�
�

 �

	
� � � � � � � � � 	 
� �

� 
 ��

	

�
� �
� ���

� � ��
 � � � �
� � ��
 � �

�
� � ��
 � 	

�
� � 
 � � � � � ��
 � 
� �

� 
 � � 	 �
� �
��
 �

� � � � � � � �
� � � � � 	

� � � � � � � �� � � � �
� � � � � �

� � 
 ��
 � � � � � � �� � � ��� � ���
(4.4)� � � � � � � �

�
�

1For problems that might result from a treatment with finite differences in Cartesian coordinates see [42].
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where

� � �
� � � � � � � � �

�
��
 � 
 � �

� � � �
� � � � � � �

� � � � �
� �
� 
 
 � � � � �

For the optimal treatment of the coordinate singularity at the pipe center-line this set of

equations must be completed by regularity and analyticity constraints.

4.2 Regularity constraints

Due to the periodic boundary conditions in azimuthal and streamwise direction the velocity

field is expanded in terms of Fourier modes in those directions,
� ��� �	� ��
 � � �

��� �����
	 ��� � � ���
�� � 
 � � ��� � � � � , with
� � � 
�� � � and � � 
����

. The complete spectral method and the treat-

ment of the radial coordinate will be discussed in detail in section 4.4 below. For a solenoidal

velocity field the solution to the linearized equations of motion are bounded along the center-

line of the pipe (
� � �

) if and only if certain regularity conditions are fulfilled [48]. They

are given in a way which closely resembles a scalar product being equal to zero, �����
� ��� � �

,

with linear ’forces’ ��� , which enables a formalism further discussed in section 4.5.

for � � � : � �
� � ���� �! � � � (4.5)� 

� � � ��� �! � � � (4.6)

d
� �
� � �

d
� ���� �! � � � (4.7)� �

� � ���� �! � � 
�"
�� � d
� �
� � �

d
� ���� �! � � � (4.8)

� � �
�
: � � #

� � � �� �! � � � (4.9)

d
� � # � � �
d
� ���� �! � � � (4.10)

d
� 
 #
� � �

d
�

����� �! � � � (4.11)� � # � � ���� �! � � � � 
 # � � � ��� �! � � � (4.12)
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� � � 
 : � � � 
 � �#
� � � ��� �! � � � (4.13)

d
� � #

� � �
d
� ���� �! � � � (4.14)

d
� � #

� � �
d
� ���� �! � � � d

� 
 #
� � �

d
�

����� �! � � � (4.15)

and for
�
�
�
� 
 : � � � 
 � ���� � �� �! � � � (4.16)

d
� � � 
 � ���� �
d
�

����� �! � � �
� (4.17)

4.3 Analyticity constraints

In order to obtain spectral accuracy we need the numerically represented velocity field to be

analytical. This gives us extra restrictions for the expansion of the velocity field.

Theorem 4.1 (Priymak & Miyazaki [64] )

Consider an analytic vector field
� � � �	� � � � � �



� � � ��� ��� � � ��
 ��� ��� 
 � �

� ��� ��� ��� , � � �
, for

���
	
for some

	 � �
. The radial, azimuthal and axial components must then satisfy the

following conditions:� � � ����
 ��� ��� ��
 � ����
 ��� � � � � � �� � � ��� � � � � ��
 � � � � ��
 � ��� � � � � ��
 � � � � ���� � ��
� � � � � � � 
 � � � ��� � � � �

(4.18)

where
��


,
��


, and
� 


are analytic and even functions.

Similar to the regularity constraints above the analyticity constraints are written as a scalar

product being equal to zero, ��� �
� ��� � �

:

For � � � :

d �
� �
� � �

d
� �

����� �! � � ��� � � � � 
 ��� ������� (4.19)

d �
� 

� � �

d
� �

����� �! � � ��� � � � � 
 ��� ������� (4.20)

d �
� �
� � �

d
� �

����� �! � � ��� � ��� ����� � �������
(4.21)
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and for � �� � :
d �
� ���� �

d
� �

����� �! � � ��� � � � ����� 
 ������� �
�
�
�
	 
 �

�
�
� � � � � � 
 ������� (4.22)

d �
� 

��� �

d
� �

����� �! � � ��� � � � ����� 
 ������� �
�
�
�
	 
 �

�
�
� � � � � � 
 ������� (4.23)

d �
� �
��� �

d
� �

����� �! � � ��� � � � ����� 
 ������� �
�
�
�
	
��� � � � � ��� � � � � � �������

(4.24)

Note that the regularity equations (4.5–4.7) are contained in the analyticity conditions (4.19–

4.21). The regularity equations (4.9–4.11, 4.13, 4.14, 4.16, 4.17) are contained in the analyt-

icity conditions (4.22–4.24).

It is convenient to divide the total velocity field into the laminar profile
� � ��� and a not nec-

essarily small disturbance. The laminar flow, which is known as Hagen-Poiseuille flow, is

purely axial and only a function of the radial coordinate:
� � ���� ��� � � ����� � � 	 � � � where �����

is the laminar axial center-line velocity.

4.4 Fourier-Legendre collocation

For the spatial discretization we use a spectral method due to its high spatial accuracy with

a low number of degrees of freedom. Due to periodic boundary conditions Fourier modes

are appropriate for the expansion of the velocity field as a function of the azimuthal and

axial coordinates, as has already been addressed in section 4.2. For the radial coordinate

with no-slip boundary condition at the wall normalized Legendre polynomials have been

used2, which belong to the class of Jacobian polynomials that are particularly suitable as

their convergence properties depend only on the smoothness of the function being expanded

and not on a definite boundary condition: expanding a smooth ( 
	� ) function the remainder

after N terms of the expansion goes to zero more rapidly than any finite power of
� ��
 as



� � [37]. This is the important advantage over finite differences or other methods.

We use a Legendre collocation over the pipe diameter where the collocation points are dis-

tributed according to the Gauss-Lobatto quadrature.

In a collocation method the approximating function is defined by its values at certain distinct

points of the computational domain. It has been chosen as spectral method because of its

efficiency in calculating the quadratic nonlinearities in the Navier-Stokes equation. The re-

sults of the collocation method do not only depend on the polynomials that are used but also

2The Legendre polynomials are normalized with respect to the scalar product induced by the Legendre

Gauss-Lobatto quadrature, see below.
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on the collocation points. The best choice for a set of collocation points corresponds to the

quadrature formula of maximum precision:


 � � ��� � � � �
��
�  �

� ��� � ��� � (4.25)

where the
� � and the

� � are the positive weights and the abscissae of the quadrature, respec-

tively. The use of a Gauss-Lobatto quadrature in which the first and last quadrature abscissae

are chosen to be the end points of the integration interval � simplifies the treatment of no-slip

boundary conditions. The other
�	�
	
� �

abscissae and the
�
� � � �

weights are defined by the

demand that Eqn. (4.25) is exact for any Legendre polynomial up to degree (2J-1). Stable

methods to calculate these weights and abscissae exist [63].

The density of collocation points near the wall increases quadratically with the number of

collocation points whereas it only goes linearly near the center. This leads to a high spa-

tial resolution where it is needed: close to the wall where velocity gradients are expected

to be largest. The fact that Legendre polynomials � � have a definite parity, � � ��� � �� � � 	 � � � 	 � � � , considerably simplifies the implementation of the analyticity constraints. We

only use even numbers of collocation points so that no point is directly at the coordinate

singularity.

When calculating quadratic nonlinearities with collocation methods the implicit multiplica-

tion of polynomials might result in polynomials of an order which is too high to be properly

accounted for in the expansion. In practice this can slightly corrupt amplitudes of low order

polynomials [14], but during our calculations errors or instabilities due to this aliasing have

not been encountered. Thus, we have not made use of explicit de-aliasing methods.

Spatial derivatives

The velocity field expanded in Fourier modes and normalized Legendre polynomials taken

at a collocation point
� � � � reads:�


�
� ���
�
�

���
� ��� � �	� � 
�� � � � �

��� �
� � � �


�� � ��� � � �
���
� �
�
��

�
�
�

���
�
��� � � �
� � ����� � ����� � � �

(4.26)

where the expansion coefficients are complex in general. By inserting this expansion into the

equations of motion (4.4) the partial differential equations are transformed into an infinite set

of coupled ordinary differential equations which has to be truncated for numerical purposes.

Partial derivatives with respect to
�

and



are trivial due to the Fourier expansion in these

directions, partial differentiation with respect to the radial coordinate is accomplished by

a matrix multiplication in collocation space using the derivative matrix � � � for which an
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explicit analytical representation exists in terms of the values of the highest order Legendre

polynomial at the collocation points [79].

4.5 Lagrange method of the first kind

The problem of most discretisations of the incompressible Navier-Stokes equation (4.3) is the

treatment of the pressure to which no boundary conditions exist [14]3. The pressure adjusts

itself instantaneously to changes in the velocity according to the continuity condition
�
� � =0.

An elegant method to solve this problem is the method of Lagrange multipliers [32, 74].

Instead of a direct solution of the coupled equations (4.4), the gradient of the pressure is

treated as a boundary force which ensures the freedom of divergence. First
� � � � � is calcu-

lated from Eqns. (4.4) neglecting the contribution from the pressure gradient and then the

result is projected on the subspace of velocity fields that obey the linear constraints: The

no-slip boundary conditions and the continuity equation together with the regularity and an-

alyticity conditions build up constraints which can be written as inner products��� � �
� � �

� � ��
�
� � (4.27)

for all constraints
� � ����� � ���

, where the summation goes over all velocity coefficients
� �

,� ��� ��� � � � � ��� �
. Here

�
is a multi-index and the dagger ( � ) represents the adjoint of a linear

operator. Note, however, that the definition of adjointness depends on the definition of the

inner products. Due to the cylindrical coordinates and the factor
�

in the integration measure

the adjoint of a linear differential operator is not necessarily the transpose of the complex

conjugate in the matrix representation. For instance, the operator for the divergence, (
�
� ),

reads (
� � ��� � � � � � � � � 
 � � � � 
 � � � � � ) whereas its adjoint operator is the transpose of the

complex conjugate of the gradient operator, (
�

), that reads (
� � � � � � 
 � � � � 
 � � � � � ).

The fact that the constraints decouple with respect to the Fourier modes reduces the numeri-

cal efforts considerably. To eliminate all components of the velocity field along the directions

� � a projector � on the subspace of velocity fields that obey all the constraints is constructed:

� � � �
	
�
�
� � 	 � �

�
	 � 	 � (4.28)

where the complex Lagrange parameters are denoted
	
� . Premultiplying (4.28) by � � gives

� � � � � � � � � � 	 � � � 	 (4.29)
 	 ��� � � ��
 � � � � � (4.30)

3The driving pressure drop along the pipe length is of course excluded from these considerations
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and therefore

� � Id 	 � � � � � 
 � � � � � (4.31)

where Id is the identity. The various linearly dependent constraints have to be boiled down to

a linear independent set of constraints to guarantee the invertibility of the Hermitian matrix
� � � � � .
The above projections and thus the definition of the projector � are only correct if an

orthonormal (with respect to the scalar product induced by the Legendre Gauss-Lobatto

quadrature) basis is used to construct the constraints F [32]. Only then do the forces due

to the constraints not change the energy content of the field. The collocation method trans-

forms the orthonormalised Legendre basis into an orthogonal but non-orthonormal basis.

Consequently, all the constraints have been formulated in spectral space, i.e. expanded in

terms of normalized Legendre polynomials. The resulting Lagrange projector is then lin-

early transformed into collocation space by a one-to-one mapping. Now the action of the

projector is equivalent to the action of the gradient of the pressure.

Time stepping

For the solution of the initial-boundary value problem (4.4) a standard solver for nonlinear

ordinary differential equations has been chosen, an explicit fourth-fifth order Runge-Kutta-

Fehlberg algorithm with adaptive step size control [82]. It includes an automatic error esti-

mation and maximizes the step size while keeping the relative time stepping error below a

certain threshold (typically
��� � � ���

). Starting from arbitrary initial conditions the dynamical

time evolution of the pipe flow field is simulated by the solution of the initial-boundary value

problem (4.4).

Considerably higher numerical efforts are necessary for the search for exact coherent states

in pipe flow, as they are expected to be linearly unstable and cannot be found by simple

time integration. With the Lagrange method of the second kind the problem can be trans-

formed into the search for a zero of nonlinear equations of motion of considerably reduced

dimension. This will be explained in the next two sections.

4.6 Lagrange method of the second kind

Singular value decomposition (SVD) enables the explicit construction of orthonormal bases

for the null-space and the range of any linear operator.

Using SVD on the Lagrange projector � on the subspace of velocity fields obeying the correct

boundary conditions we construct a basis of the range of � and transform the whole problem

into this new basis. In other words, we reduce the problem to the relevant subspace. This
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represents the transition to the Lagrange method of the second kind, which is equivalent to

the Lagrange method of the first kind, but which has an important advantage: the number of

variables one has to converge on in a Newton-Raphson cycle has decreased considerably and

the Jacobian becomes regular.

For the treatment of coherent states that have a certain discrete spatial symmetry the span of

the Lagrange projector � has to be divided into symmetric and antisymmetric basis vectors

and the ones of the incorrect symmetry are neglected. This usually distinguishes between

real and imaginary parts of certain velocity components and therefore it cannot be included

by linear constraints in the above projection operator.

4.7 Search and continuation of travelling waves

On top of the code for the initial-boundary value problem we develop methods to find and

continue travelling waves in pipe flow.

We first reduce the search for a travelling solution to a search for a fixed point. For this

we get rid of the contribution from Navier-Stokes which merely acts as downstream trans-

lation of the velocity field: assume a travelling wave with downstream phase velocity � ,� � 
�� � � � � � 
 �
�
� � �
�
�
. Then

��� � � 
�� � � �
�
� � � � 
�� � � , that is, �

� � � � � � � � �
� � � ���
� � . This gives

the reduced contribution from the Navier-Stokes equations,
� � � � � � � �

	��
� � � , which is

equivalent to a transformation into the downstream comoving inertial frame of reference.

Finding a travelling wave in pipe flow is now equivalent to finding a zero to the set of

nonlinear equations
� � � � � �

. The method of choice for this task is a ’modified Powell

hybrid method’ [36] a combination of a Newton-Raphson method and a scaled conjugate

gradient method, which has proven to be much more robust than other methods including

hand-optimized Newton methods, and which still has a fast rate of convergence near a solu-

tion. The Jacobian is updated by the rank-1 method of Broyden [82] as long as this produces

satisfactory progress.

The continuation of a travelling wave is accomplished by Keller’s pseudo-arclength con-

tinuation method [21], which allows for a larger continuation step size as well as for the

continuation of solution branches around folds, by the expense of enlarging the dimensional-

ity of the problem by 1. This continuation method cannot, however, be applied to changes in

the streamwise fundamental periodicity
�

, as then the projection operator � has to be rebuild

and the following SVD randomly permutes the basis vectors of the span of � . Changes in
�

are therefore numerically especially expensive.

To get a rough idea of the total size of this software project pipe code: the total number of

lines of Fortran90 code without comment lines is about
���	�	�

(and thus comparable to the
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number of LATEX lines underlying this thesis). Additionally, various highly efficient routines

for the solution of standard linear or nonlinear algebra problems have been employed (ma-

trix inversion, eigenvalue decomposition, single value decomposition, Powell-hybrid method

etc.).



5 Physics of pipe flow and

verification of the new pipe code

Extensive tests on the validity and accuracy of the new numerical pipe program for the sim-

ulation of pipe flow have been carried out. In this chapter we will present a comparison with

high-precision literature data for the linearized problem (section 5.1), for the non-normal

and nonlinear dynamics of optimal modes (section 5.2), and for the statistical properties of

fully developed turbulent flow up to Reynolds numbers of
���	�	�

(section 5.3). Along the

lines of these tests various interesting properties of pipe flow dynamics show up and will be

discussed.

5.1 Linearized equations of motion

The first milestone and already one of the most important tests on the numerics is the accurate

solution of the linearized problem. This is already the crucial verification, mode by mode,

for many of our concepts which have been discussed in the previous chapter:

� spatial representation by Legendre polynomials including integration and differentia-

tion,

� treatment of the boundary conditions,

� regularity and analyticity constraints,

� implementation of the linear Navier-Stokes equation,

� projection mechanism based on the method of Lagrange multipliers.

Two major difficulties emerged which had to be overcome: the problematic representation of
� � � and

� � � terms that appear in the differential operators in terms of Legendre polynomials

had to be catered for, and the correct space and scalar product for the projection mechanism

for the method of Lagrange multipliers had to be found. These problems could finally be

overcome and the linearized equations could be solved with full spectral accuracy.

Let us write the eigenvalue problem as

�
���
� � � �

��� (5.1)
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eigenvalue author

-0.02317 + i 0.95048 Salwen et al., 1980 [70]

-0.023170795764 + i 0.950481396668 Leonard & Wray, 1982 [45]

-0.0231707957650042152055 + i 0.9504813966699031794843 Priymak & Miyazaki, 1998 [64]

-0.023170795765 + i 0.950481396670 present work

Table 5.1: Comparison with selected literature data on the least stable eigenvalue at
��������� ��� .

( 	 =1, 
 = � )-mode and �
� ������� . Here our result is ’limited’ to � � leading decimal places

due to double precision arithmetic. For a more detailed comparison with literature data see

Appendix A.

with the linearized evolution operator
�

, the eigenfunctions � � ��� and the eigenvalues � 	 � .
As usual we measure lengths in units of the pipe radius and velocities in units of the laminar

Hagen-Poiseuille centerline velocity, so that the eigenvalues
	

are expressed as a multiple of

����� � � .

We successfully compare our numerical eigenvalues with high precision literature data [72],

[48], which have been obtained by independent numerical methods: in Appendix A we

present tables of the least stable eigenvalues and visualizations of eigenfunctions of the lin-

earized Navier-Stokes equations in detail.

Historically, research concentrated on a few test cases for the eigenvalue problem which we

would also like to follow, such as a streamwise pipe length of
� � � � 
 � and

��� �
�
�	�	�

.

Exemplarily we here give a first comparison with selected literature values for the least stable

eigenvalue in Table 5.1.

We observe two factors limiting the accuracy: for the first leading eigenvalues the accuracy is

mainly limited by the finite number of digits available in double precision arithmetic whereas

for higher eigenvalues the finite spectral resolution dominates.

The main feature of the eigenvalue spectrum is the fact that all eigenmodes lie in the stable

half of the complex plane, that is, the Hagen-Poiseuille profile is linearly stable with respect

to infinitesimal disturbances. Any improper handling especially of the coordinate singularity

could lead to spurious linearly unstable eigenmodes which could corrupt the whole character

of the transition process.

Fig. 5.1 exemplarily shows the well known ’swear hand’ distribution of the least stable eigen-

values � 	 � of the
� � ��� �

-mode together with four selected eigenvectors1. The notation ( � ,



)-

1As a single eigenvector of a complex conjugate pair does not correspond to a velocity field we here visualize

the velocity field that corresponds to the real part of the eigenvector.
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Figure 5.1: ’Swear hand’ distribution of eigenvalues ����� . � ��� �	� -mode at
��� ��
 ����� and � � � � . The

upper left branch of eigenvalues consists of ’wall modes’, the two branches in the upper right

are ’center modes’, the straight lower branch consists of ’mean modes’ (see text). The velocity

fields corresponding to the real part of the eigenvectors number ����
�� ��� � and
���

are shown

(counterclockwise, beginning with the upper right graph); for the eigenvalues see Tab. A.3) .

mode always corresponds to an azimuthal wavenumber � and a streamwise wavenumber

. The distribution is similar to plane shear flows like plane Couette and plane Poiseuille

flow [24]. The eigenfunctions can be classified into ’wall modes’, ’center modes’ and ’mean

modes’. Apart from obvious visual reasons (see Fig. 5.1, wall modes localized near the wall,

center modes localized near the center-line), these classifications are defined by the asymp-

totic behaviour of the phase velocity �
�

imag
� 	 � � � � of the modes for large values of the

product (
��� � � ) [72]:

wall modes: � � �
as

��� � � � � �
(5.2)

center modes: � � �
as

��� � � � � �
(5.3)

mean modes: � � 
�� � as
��� � � � � �

(5.4)

That is, for instance, the phase velocity of center modes approaches the laminar pipe center-

line velocity in this limit.
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5.2 Two-dimensional nonlinear equations of motion

The second milestone of the development and verification of the pipe code is the time-

integration of ’optimal’ modes. This section is concerned with the evolution of streamwise

invariant flows: three-component velocity fields in two (spatial) dimensions (’3c-2d’),

� � � � � � � �

�
� ���
�
�

���
� ��� �	� � � � �

(5.5)

This class of two-dimensional modulations of the basic flow is of special interest as the initial

disturbances of largest linear transient energy amplification are those without streamwise

modulation and with azimuthal wavenumber � � �
, as has been shown in [5]. Note that

only the � � �
mode perturbs the mean centerline velocity, in contrast to disturbances with

higher azimuthal wavenumber as well as axisymmetric modes. The precise shape of the

optimal disturbance has been identified in [72]: it is a pair of streamwise vortices with 40%

of the energy in the radial component and 60% in the azimuthal component. Zikanov [97]

chose a simple but very close approximation to this optimal disturbance and studied its linear

transient dynamics, its nonlinear behaviour and the stability of the transient dynamics.

We want to reproduce some of Zikanov’s results on initial-boundary value problems in order

to check the implementation of

� the dynamical time integration method,

� the (two-dimensional) advective nonlinearity in the Navier-Stokes equations,

� the volume forcing in terms of an axial uniform pressure gradient,

� various service routines.

All aspects tested in Section 5.1 will here undergo a further and complementary test.

As the initial condition for the disturbance of the laminar profile we take Zikanov’s nearly

optimal ( � � �
��� 
 � �

)-mode,

� � � � � 


�

�

�
	
� � � � 
 � 	� � �

	 �
� � � � � 	 �
�

� �
� � �


 ����� �
(5.6)

which is divergence free and satisfies no-slip boundary conditions at the wall 2 . This vortex

pair is visualized in Fig. 6.2, page 46. We scale the initial amplitude 
 so that the energy
2Note that this approximation to the optimal initial condition is no longer analytic in a neighbourhood of

the pipe centerline as it violates Theorem 4.1 from page 20. In our numerics only (arbitrary close) analytical

approximations are employed.
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of the initial disturbance takes a certain value ( � (
�
=0)/ �

�
�!� =

� � ���
,
��� �	� �

,
��� �	� 
 � , ��� �	��� ,

or
��� �	�	� �

in units of the energy of the laminar profile). Additionally we consider the case

of linearized equations which corresponds to the limit � (
�
=0) �

�
. The non-normal and

nonlinear evolution of a two-dimensional disturbance which is close to the optimal initial

condition that leads to maximal non-normal amplification is shown in Fig. 5.2.

Our results nicely agree with Zikanov’s [97] original data which are shown in Fig. 5.3. The

differences are within plotting accuracy, which is even more surprising considering the com-

pletely different numerical schemes that have been employed3. Our calculations have been

carried out with 40 Legendre polynomials radially and 21 Fourier modes azimuthally. Con-

trol runs with 40 polynomials and 51 modes as well as with 60 polynomials and 21 modes

show that our results have converged to within plotting accuracy. The results have similarly

converged with respect to the time stepping. The linear evolution leads to a maximum en-

ergy amplification of
� � ��� �

at time
� � ��� ��� �

, which is very close to the result by Schmid

& Henningson [72], who found a maximum energy amplification of
� �

� at time
�����

for the

optimum initial condition.

Non-normality

No exponential linear growth can be expected, as the laminar profile is linearly stable. Nev-

ertheless, there is a strong transient algebraic linear growth. Both the amplitude and the

time instant of the maximal transient amplification of the velocity field grow linearly with

Reynolds number. Non-normality of the linear evolution operator
�

is mathematically re-

flected by the fact that it does not commute with its adjoint operator,
� �
� � � � �� � , and that its

eigenfunctions are not mutually orthogonal. This can be understood in the following way:

the laminar profile advects disturbances downstream, i.e. the eigenmodes are mostly oriented

(anti-)parallel to the laminar flow. This makes the eigenmodes collapse into the main stream-

wise direction. Therefore a misfit disturbance has large coefficients when expressed in terms

of the eigenmodes. It grows algebraically, turns into the main direction of the eigenmodes

and decays exponentially.

The nonlinear evolution in time changes the mean flow in such a way that non-normality is

effectively reduced. For the nonlinear calculations an increase in initial energy hence reduces

the maximal energy amplification and shifts it to earlier times. The trajectories increase their

initial oscillations in energy until they start to decay monotonously.

All trajectories with Zikanov’s initial conditions decay asymptotically to the laminar profile

as in fact do all streamwise independent (3c-2d) velocity fields [97]. It follows that for a self-

sustaining dynamics streamwise dependent structures are needed to feed back on the initial

3In a recent publication [49] a ’very good’ agreement with Zikanov’s computations has already been claimed

even though the work showed obvious quantitative differences.
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Figure 5.2: Non-normal linear and nonlinear evolution of a nearly optimal two-dimensional distur-

bance. Relative energy amplification � ��� � ��� � � � vs. time at
��� � 
 ����� . The linear evolution

leads to a maximum energy amplification of
��� ��� 
 at time � � � � ��� � , the time unit is, as

always, � �
	 .

Figure 5.3: Zikanov’s original data (Fig. 1 from [97]). As in Fig. 5.2: relative energy amplification

� ��� � ��� � � � vs. time at
��� � 
 ����� .
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streamwise rolls by nonlinear self-interaction, cf. [92]. Therefore all of the presumed exact

coherent structures like travelling waves and unstable periodic orbits must be streamwise

modulated.

The above transient dynamics shows a further interesting feature: the almost steady streaky

flow develops inflection points in its profile which lead to inviscid instabilities with respect

to three-dimensional disturbances. This opens the possibility for 3-d structures to grow,

localized near the inflection points at first, but finally destabilizing the streaks and taking over

to a turbulent dynamics. This streak breakdown mechanism is a possible route to turbulence

in shear flows [97]. A visualisation of this process will be shown in Fig. 5.9 in section 5.3.

Note that all our calculations so far were performed at a constant forcing, i.e. with a fixed

pressure drop along the length of the pipe. Later on (Chapter 7) we want to drive pipe flow

at a constant volume flux. We use this well controlled 2-d situation to develop the necessary

tools we need for constant mass flux forcing and discuss the dynamical changes in the next

section.

5.2.1 Constant-flux pipe flow

Fig. 5.4 once again shows the nonlinear time evolution of the nearly optimal two-dimensional

disturbance at
���

=
�	�	�	�

and � (
�
=
�
)=
��� ���

as in Fig. 5.2. But now we compare the constant-

pressure-drop simulation (black lines) with the constant-volume-flux simulation (red lines),

where the mean flux is kept at its laminar value. The latter is accomplished by an instanta-

neously adjusted linear pressure gradient in the explicit time marching scheme. This guaran-

tees the absence of numerical instabilities or artificial temporal oscillations in the flux. The

upper graph of Fig. 5.4 shows the energy traces. In the constant flux simulation the decay is

faster. This is due to the changes in the eigenvalue spectrum for the ( � =0,



=0)-mode where,

for instance, the least stable eigenvalue has changed to zero (see table A.1 in Appendix A).

The middle graph of Fig. 5.4 shows the total pressure drop normalized by the laminar Hagen-

Poiseuille linear pressure gradient as a function of time. In the constant volume flux situation

the pressure drop over the pipe length has to be increased considerably, at
��� 
 � the nec-

essary total pressure gradient has almost doubled. The lower graph of Fig. 5.4 shows the

temporal development of the total flux. At constant pressure drop the total flux goes down as

the friction increases. At time 
 � � (not shown) the flux takes its minimum and then slowly

increases back to its laminar value. For the constant-flux case the initial maximum pressure

drop is delayed in comparison to the maximum in energy. This phase lag is due to the time it

takes for smaller structures to develop by instabilities of the initial larger scale structures and

thereby increase the friction. Energy dissipation will then take place much more efficiently

at the smaller scales.
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Figure 5.4: Constant-pressure-drop (black lines) vs. constant-flux pipe flow (red lines). Exemplary

comparison of nonlinear 2-d calculations with Zikanov’s initial condition with � ��� � � � �
� � � � at

��� � 
 ����� . Upper graph: energy amplification factor; middle graph: total pressure

drop in units of the laminar pressure drop; lower graph: total streamwise volume flux in units

of the laminar flux.

5.3 Three-dimensional nonlinear equations of motion

Having precisely reproduced linear and 2-d nonlinear results in sections 5.1 and 5.2 we now

go for the final test of our pipe code: solving initial-boundary-value problems for the full 3-d

nonlinear Navier-Stokes equation i.e. simulating turbulent pipe flow. In order to compare

our numerics with suitable experimental and numerical literature data we have to go up to

a Reynolds number of
���	�	�

, which is considerably above the transitional Reynolds number

range we are mostly interested in. By reproducing turbulent experimental and numerical data

we want to test

� the implementation of the full 3-d nonlinear equation of motion,

� the accuracy with which the flow stays regular and analytic, especially for long turbu-

lent time integrations.
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5.3.1 Turbulent pipe flow at
��� � ���	�	�

: a comparison with laboratory and DNS literature

data

We start from random initial conditions of sufficiently high amplitude to trigger transition

to a turbulent dynamics. After 
 �	� initial time units that are needed for the relaxation on to

the turbulent state a single long turbulent trajectory of more than
� �	���

time units is analysed.

The spatial resolution for this calculation is
�
�
�
��
 � � � 
 � ��
 � � �

, i.e. up to
�
� Fourier-modes

in azimuthal direction and
� �

modes in axial direction.
�	�

Legendre polynomials have been

used radially and the streamwise wavelength is
� � � � � �

.

The distribution of mean kinetic energy on the Fourier-modes is shown in a two dimensional

energy spectrum in Fig. 5.5. It is normalized in such a way that the energy of the (0,0)-mode

is
�
. The (0,0)-mode including the mean profile is of course by far the dominant mode,

followed by a handful of modes that contribute a considerable amount of energy, and then

the energy content of the modes slowly goes down. No piling up of energy can be observed

at the smallest scales, which would have occurred for a severely under-resolved calculation.

The various numbers that can be extracted from the mean turbulent profile are compared

to numerical and experimental literature values in Tab. 5.2. Quantities based on the overall
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Figure 5.5: Two-dimensional energy spectrum at
��� � 
 ����� . The spatial resolution for the sim-

ulation is
� 	 � � ����� � 
 � � � ��� � . � � Legendre polynomials have been used radially. Only

the upper half of the spectrum is shown as the (-n,-m)-mode is related to the (n,m)-mode by

complex conjugation due to the reality of the velocity field.
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present Quadrio & Sibilla Eggels et al. Eggels et al. Reich & Beer

work (DNS) [66] (DNS) [28] [28] [67]

Re 5000 4900 5300 5450 5000���
0.148 0.145 - - -�
0.093 0.089 - - -�
1.60 1.63 - - -�

��� � � 1.31 1.31 1.31 1.30 1.27

� �
�
� 13.2 14.24 14.73 14.88 14.59


�� 0.0115 0.00986 0.00922 0.00903 0.00939��� ��� 6550 6419 6950 7100 6350��� � 186 172 180 183 171

Table 5.2: Scalar properties of the mean turbulent profile. Comparison with two DNS and two

experimental data sets. These are the definitions of the various characteristics of the laminar

profile. � � �
	 � ��� 	 � ��
�� , � �
	 	 � � ��� 	 � ��
�� , � � � � ��� : integral shape factors for

the mean profile 	 � normalized by its mean centerline value. � ��� � 	 are the mean center-line

velocity and mean streamwise velocity, respectively. � � ��� �
w ��� : friction velocity based

on the wall shear stress
�
w
� ��� ��
 	 ��
�� � ��� � � � . ��� ��� : Reynolds number based on mean

center-line velocity � ��� .
��� � : Reynolds number based on � � .

shape of the laminar profile are in very good agreement, whereas those that mainly base on

the slope at the wall show deviations of about 5%.

A direct comparison of the mean profile with experimental data from much higher Reynolds

numbers is given in Fig. 5.6. Here the distance from the wall is given in wall units,  
�
�

� �
	
� � � ��! , where

��! � � �
�
� is the viscous length scale and

�
� is the friction velocity as

defined in Tab. 5.2. At  
�
� 
 � both data sets change from a linear to a logarithmic scaling

(’law of the wall’) but with slightly different constants.

A much more sensitive test on the numerical convergence is to not consider mean values like

the mean profile or the mean energy spectrum but to focus on fluctuations. Fig. 5.7 shows the

radial profiles of the root-mean-square (rms) velocity fluctuations, in wall units, compared

to DNS literature data from [66]. The amplitudes as well as the the overall features are very

similar, only the positions of the maxima differ slightly.

We are satisfied with these various reasonable good agreements. The comparison showed

that we are able to reproduce experimental and numerical literature results on nonlinear

turbulent pipe flow at Reynolds numbers that are considerably above the transition region we

are mainly interested in.
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Figure 5.6: Mean velocity profile of turbulent pipe flow. Experimental data (circles) from Zagarola

& Smits (1997) at
��� � 
�� ����� for � � ��� � � � , taken from [62], in comparison to the present

results (line) for
��� � 
 ����� .
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Figure 5.7: Radial profiles of rms velocity fluctu-

ations in wall units at
��� � 
 ����� . Present

work.
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Figure 5.8: Radial profiles of rms velocity fluc-

tuations in wall units at
��� � � � ��� , taken

from DNS data from [66].

Visualisations of the temporal evolution of the axially averaged flow field show important

dynamical aspects of 3-d turbulent pipe flow: counter-rotating streamwise vortices transport

slow fluid from near wall regions into the bulk and fast fluid from the bulk towards the

boundary thus generating streamwise low-speed and high-speed streaks. This lift-up effect

is well known from other shear flows. In Fig. 5.9 we exemplarily show the evolution of the

streak-breakdown transition to turbulence which has already been introduced in section 5.2.
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A B

C D

Figure 5.9: Snapshots of an animation illustrating the different stages of a well-controlled streak-

breakdown turbulence transition process. The streamwise averaged deviation from the laminar

profile is shown, arrows for the in-plane motion and color-coding for the axial component in

units of the laminar center-line velocity.
���

=

 ����� and the volume flux is fixed. Fig. A: Optimal

(1,0)-’Zikanov’-mode chosen as initial condition. Fig. B: Lift-up. The vortex pair pumps the

slow fluid from the left wall into the bulk, and the fast fluid from the center to the right wall, thus

generating high-speed (red) and low speed (blue) streaks. Fig. C: Streak-breakdown. Initial

very low-amplitude 3-d noise has been amplified by the inflection instability of the modified

profile and destroys the (apparent) symmetry of the large vortex pair. Fig. D: Turbulence.

Fluctuating high speed streaks close to the wall, large center region has considerably been

slowed down, pairs of smaller vortices dominate the near wall dynamics.
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5.3.2 Optimal resolution for transitional Reynolds numbers

Unfortunately it is not feasible to use the above resolution for our investigations since a sin-

gle run over 
 ���	� time units already takes about 25 CPU days on a 1.3 GHz IBM power4

processor. As a compromise we need a spatial resolution which is high enough to ac-

curately represent the dynamics but low enough to enable us to obtain good statistics of

many and long trajectories. We have to compare different spatial resolutions relative to

each other as we do not have appropriate literature values for transitional
���

. We com-

pare a ’low’ resolution,
�
�
�
� � � � � 
 � � ��� � �

and 50 Legendre polynomials, a ’medium’

resolution,
�
�
�
�	
 � � � 
 � �	
 � � �

and 50 Legendre polynomials, and a ’high’ resolution,�
�
�
�	
 � � � 
 � ��
 � � �

and 60 Legendre polynomials. The latter resolution has been proven

above to be reasonably accurate even at
����� ���	���

. In all cases
� � � ��� �

.

Fig. 5.10 shows the comparison of these resolutions for a turbulent run. Exemplarily, the

turbulent friction factor as defined in Eqn. (6.8) is shown as a function of time. The first 
 ���

time steps are neglected because of transients and the statistics is obtained over
� �	�	�

non-

dimensional time units. The mean friction factor and its fluctuations have been extracted in

Tab. 5.3 and it can be seen that they are rather independent of the resolution, all the more

when taking neglected statistical errors into account. The lowest of the three resolutions
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Figure 5.10: Turbulent friction factor fluctuations at
��� � � 
 ��� . Comparison of three spatial res-

olutions: ’low’ (black line), ’medium’ (red line), and ’high’ (green line) resolution. For the

statistics see Tab. 5.3.

has been employed for extensive statistics on sensitivity, lifetimes and Lyapunov exponents

that will be presented in detail in chapter 7. The close agreement of the above results gives



40 5 Physics of pipe flow and verification of the new pipe code

resolution
�

rms

’low’ 0.0503 2.90
� � � � 	

’medium’ 0.0479 3.84
� � � � 	

’high’ 0.0472 3.03
� � � � 	

Table 5.3: Turbulent friction factor and its rms fluctuations for three different spatial resolutions.

us considerable trust in the significance of this resolution for even lower Reynolds numbers

between
� �	���

and 
	
 ��� . Regularity and divergence are monitored continously during all

time evolutions to guarantee that the relative errors stay below
� � � � � throughout.

5.4 Conclusions

The new pipe code has been thoroughly tested and has passed all tests on the solution of

linear and nonlinear pipe flow problems with spectral precision. In the framework of the

Lagrange II mechanism, i.e. by a restriction to those velocity fields that obey the various

constraints, the remaining number of degrees of freedom are minimized. This will be essen-

tial for the search for exact coherent states in chapter 6 which relies on algorithms that scale

cubically with the total number of degrees of freedom. For simpler tasks like the solution

of initial-boundary value problems in chapter 7 our code is not as optimized with respect to

certain aspects such us memory usage and integration speed, but, nevertheless, the above test

results have proven the significance of our simulations of turbulent pipe flow at transitional

Reynolds numbers.

On the one hand an incredible amount of degrees of freedom (dof) is needed to quantitatively

approximate experimental statistical results at twice the transitional Reynolds number, on

the other hand there are severely truncated approximations to Navier-Stokes that already

capture main features of transition in shear flows: in the thesis of A. Spille on plane Couette

flow [80] from 1999 a severe approximation restricting to a total of four Fourier modes,

corresponding to 108 degrees of freedom, could already identify the transitional Reynolds

number to within 5%. In the work by Schmiegel & Eckhardt [73] from 1997 on the stability

border in plane Couette �
� 
 dof have been employed. In 2003 Meseguer [49] analysed the

transition border in pipe flow with an emphasis on streak breakdown with a resolution of
� � ���

dof for Reynolds numbers of up to
� � � . These simulations are considerably lower resolved

than the present simulations of turbulent trajectories that will be presented in chapter 7. There

we will use the ’low’ resolution from section 5.3.2 which corresponds to
��� � � � � � velocity

coefficients and we will restrict ourselves to
��� � 
	
 �	� . This comparison further supports

the significance of our results. When restricting the objective of the investigations to the

simulation and analysis of only a single or very few turbulent trajectories, higher spatial

resolutions are feasible [28, 46, 57, 66, 76, 90].
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“There are no good, general methods for solving

systems of more than one nonlinear equation. Fur-

thermore, it is not hard to see why (very likely)

there never will be any good, general methods”

Numerical Recipes [63]

“. . . in one dimension, it is possible to [...] ’trap’

a root between bracketing values, and then hunt it

down like a rabbit. In multidimensions, you can

never be sure that the root is there at all until you

have found it.” Numerical Recipes [63]

“[...] multidimensional root finding becomes virtu-

ally impossible without insight”

Numerical Recipes [63]

In the following we want to find exact coherent states in pipe flow. Previous studies of other

shear flows [1, 15, 17, 29, 51, 53, 74, 93, 94] have shown that for sufficiently high Reynolds

numbers 3-d coherent states exist beside the laminar profile. The existence of stationary

states in plane Couette flow is connected with an inversion symmetry in the laminar profile.

In the absence of such a symmetry in pipe flow the simplest states we can expect are travelling

waves (TWs), i.e. coherent structures that move with constant wave speed.

Root finding to sets of nonlinear equations strongly relies on having good initial conditions

from which the search is started. In low dimensional systems it is in general relatively easy

to extract very good approximations to stationary and time periodic states from long chaotic

time series [20, 78]. They serve as excellent initial conditions from which the exact solu-

tion can be quickly converged on by any standard root finding algorithm such as a Newton-

Raphson method. This would be the method of choice as the dynamically most relevant

states would be found most easily. But in high dimensions (in pipe flow we have to deal with

thousands of degrees of freedom) this strategy is increasingly infeasible as the recurrence

time to a neighborhood of an individual state grows rapidly with the number of dimensions.
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Methods of high-dimensional root finding in this field often rely on brute force, where initial

conditions are chosen more or less at random [80, 85], which is not satisfactory as it is an

unsystematic and costly process. Alternatively it was tried to first find solutions to model

systems that are generated by severe reductions of the spatial resolution. But when trying to

increase the resolution again problems arise due to the very different phase-space structure

of the model and the full system.

Embedding methods

have been highly successful in identifying coherent states in different linearly stable shear-

flows. Here, the system is embedded into a family of systems. Consider, for instance, the

example of plane Couette embedded into Taylor-Couette flow [33]. This results in a param-

eter dependence in such a way that for certain nonzero parameter values the flow is linearly

destabilized. Series of symmetry breaking bifurcations can then be followed from the lami-

nar profile and various coherent states can be identified (wavy-vortex flow in our example).

A continuation of the states back to a vanishing parameter leads to exact coherent states in

the original linearly stable system. Various examples exist for plane Couette flow. Its em-

bedding into a rotating system, for instance, leads to nonlinear 3-d states that continue to the

non-rotating system (rotating plane Couette flow [51, 54]; Taylor-Couette flow [33]). Fur-

ther examples are plane Poiseuille-Couette flow [1, 15, 53, 94], Bénard-Couette flow [17], or

the modification by an electrically conducting fluid in the presence of a transverse magnetic

field [52].

Before presenting our strategy to find coherent states in pipe flow we give an instructive

example of the embedding of pipe flow into rotating pipe flow. It has not been possible to

continue 3-d solutions to the non-rotating system in this case.

6.1 Earlier attempts to find coherent states in pipe flow

Barnes & Kerswell [3] investigated in travelling waves in rotating pipe flow where fluid is

driven by a constant pressure gradient along a pipe which is rotating axially as well as about

a perpendicular diameter, i.e. a rotating and precessing pipe. For a sketch of their bifurcation

diagram see Fig. 6.1 (taken from [3], modified). Low axial rotation rates are known to lead to

a linear instability of the laminar profile [47] from which nonlinear two-dimensional helical

waves emerge [86]. Different branches of travelling waves that bifurcate from the linearly

unstable laminar flow have been followed but none of them could be continued to pure (non-

rotating) Hagen-Poiseuille flow. As the type of the primary and secondary bifurcations stays

a forward Hopf bifurcation the reduction of the rotation rates always leads to a reconnection

with the laminar flow.
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Figure 6.1: Sketch of the bifurcation diagram for travelling waves in rotating and precessing pipe

flow, from [3]. The vertical axis denotes the usual Reynolds number
���

based on the mean

streamwise velocity, � � denotes the axial rotation rate, and � depicts the perpendicular rota-

tion around a diameter. Various branches of forward bifurcations have been followed that all

reconnect to the laminar profile in the limit of the non-rotating pure Hagen-Poiseuille problem

� � � �
� � .

6.2 Embedding method with transversal volume force

Our search begins at a low Reynolds number of a few hundreds where a large amplitude

volume forcing is added to generate a transverse flow. At first this is a mathematical trick

only. But, presumably, approximations to these volume forces could be achieved experimen-

tally by differential heating and cooling of the pipe wall as predicted by the symmetries of

the states, or by magnetic forcing in an electrically conducting fluid [52]. For the types of

forcing discussed further below and for a sufficiently low Reynolds number a narrow param-

eter interval can be identified where the forced 3c-2d solution (three velocity components as

functions of the two spatial dimensions
�

and
�

) dynamically follows a supercritical bifurca-

tion which is due to an inflectional instability. The solution nonlinearly saturates into a stable

3c-3d forced travelling wave. A path following scheme (cf. section 4.7) is then used to track

this state through parameter space: the Reynolds number is increased and the amplitude of

the body force decreased. When the artificial volume forcing is reduced the ’natural’ internal

forcing (i.e. the shear due to the laminar Hagen-Poiseuille profile) has to be increased and

has to take over the driving of the TW-structure. We therefore need to design a forcing and
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a velocity field topology which finally can be driven solely by the Hagen-Poiseuille shear. If

a situation with zero body force can be reached, a nonlinear TW for the original pipe flow

is found. Here we do not restrict ourselves to volume forces that necessarily have a specific

physical realisation such as centrifugal forces, for instance. This gives us the freedom to

choose any topology of volume force that seems to be a good candidate. The big advantage

here is that one can systematically probe the system for the existence of a state of a certain

topology, so that even in the case when one does not find a solution one might have learned

something about which topologies (of streaks and vortices) cannot be supported by the flow

and why.

A similar approach has been employed by Waleffe [93] for plane Couette flow which in turn

had been motivated by the work of Benney [4] on approximate steady states. The major

difference, however, is that in that case the existence and properties of the wavy-vortex flow

state to be found had been known in advance by the work of Nagata [51] and Busse &

Clever [17] for the no-slip boundary-condition case.

So if a nonlinear TW for the original pipe flow is found it corresponds to an element of a

two-dimensional continuum of waves, spanned by the viscosity � and the streamwise peri-

odicity
�

. In comparison to other shear flows, the parametric study is simplified due to the

trivial periodicity in azimuthal direction. Here the fundamental azimuthal wavenumbers are

discrete and only the lowest are relevant for transitional Reynolds numbers.

The continuation method is implemented with a spatial resolution of
�
��
�
� � � � � 
 � � � � � �

,

i.e. up to 
 � modes in azimuthal direction and downstream direction. In this chapter we mod-

ify the notation slightly as only integer multiples of � are needed as azimuthal wavenumbers,

where � is fixed by the index of the 
 � symmetry and the azimuthal expansion functions are

���
	 � � �� �
� �

. Usually
���

Legendre polynomials have been used radially. These are about�������
dynamically active velocity coefficients for the calculation of the Navier-Stokes equa-

tion. By single-value decomposition of the projector on the correct subspace of velocity

fields (see section 4.6) the problem is reduced onto the
� � �	�	�

dimensional span of the

projector. For a check on the numerical convergence of the results the radial resolution has

been increased up to
� �

polynomials corresponding to about
��� �	�	�

velocity coefficients and

a
� �	�	�

dimensional span. Details on the numerical convergence of the states are discussed in

Appendix B. Following a state through parameter space, a single small step takes about 2h

on an IBM Power 4, 1.3 GHz processor. The memory demand without the preceding initial

construction of the projection operators and its SVD is about 700MB RAM.

In the following we test pipe flow for the existence of most ’basic’ TWs: 
�� -vortex TWs in

section 6.3 and 6.4, spiral TWs in section 6.5. The conclusions will be given in section 6.6.
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6.3 ��� -vortex travelling waves

What structure do we expect for the most ’basic’ travelling waves? We expect the lowest

states to have high spatial symmetry and to be dominated by largest scale flow patterns that

have smallest gradients, i.e. smallest dissipation, but to be still able to extract a maximum

amount of energy from the laminar profile.

The first travelling waves we aim for are dominated by pairs of counter-rotating streamwise

vortices. This choice is guided by various observations. First of all those vortical structures

are most prominent in stationary and travelling states in other shear flows such as plane

Couette, Taylor-Couette or plane Poiseuille flow. Large streamwise streaks have also been

reported from the leading laminar-turbulent interface of turbulent puffs in pipe flow, both

experimentally [30] and numerically [76]. Near-wall coherent structures in turbulent wall

flow show similar streamwise streaks and vortices as well [41].

The forcing for the streamwise invariant 
�� -vortex flow is based on a simple lowest-order

polynomial ansatz. We require zero divergence, no-slip boundary conditions, and a regular

solution of the Poisson equation, from which the corresponding force field is derived in a

next step1. With this ansatz for the model flows with azimuthal wavenumber � � �
we

constructed the following velocity field u,

� � � � � � �

�

� � � � ��� 	 � � �
� � �

	
� � � �

	
� � � �

�

���
� � � �


 � ��� �
(6.1)

where cc denotes the complex conjugate. These are 2c-2d velocity fields, two velocity com-

ponents as a function of two spatial dimensions. These 
�� -vortex flows of symmetry 
 � are

visualized in Fig. 6.2. The case of a single vortex pair ( � � �
) will be discussed later in

section 6.4.

To derive the corresponding volume forcing � � � � we start from the (forced) linearization of

the Navier-Stokes equations 4.4 for the
�

and
�

component,

��� � � � � � � � � �
� � � � � � � � � � � � � � � �

� �
� �
� �� � �

�
�
�� 	 � �

	
� 
 


� � 	
� � � � � � 	 
� �

� 
 � 
�� � � � (6.2)

1Note that for this model flow we do not require analyticity in a neighbourhood of the pipe center line

(cf. Theorem 4.1, page 20). In our numerics of course only (arbitrary close) analytical approximations are

employed.
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Figure 6.2: Model
� 	 -vortex flows of � � -symmetry, 	 � ��� � � � ��
 (for the case 	 � � see sec-

tion 6.4). These fields are not solutions to the Navier-Stokes equations but they are chosen to

be divergence free and satisfy no-slip boundary conditions at the wall and their corresponding

forcing is regular at the origin. They are streamwise invariant and they each consist of a single

Fourier mode with azimuthal wavenumber 	 . With the corresponding volume forcing, which

is the solution to the Poisson equation for these modes, one might be able to hunt down the

travelling waves of same topology. The aspect ratio of an individual vortex seems to be optimal

for the hexagonal
�
-vortex mode which indeed leads to the travelling wave of lowest critical

Reynolds number in the end.

��� ��
 � � 
 � � � �
� � � � � � 
 � � � � � � � � �

� �
� �
� �

 � �

�
�
�


	

� �
	
� 
 


� � 	
� � � � ��
 � 
� �

� 
 � � � � �

 �

(6.3)

If we assume a single stationary, streamwise invariant mode,
� � � ��� � ���
	 � � � � � , the equa-

tions boil down to the Poisson equation for this mode,

� � �
� �
� �� � �

�
�
�� 	 � � � � � �� � 	


� �
� �
� 
 � � � �

� � �
� �
� �

 � �

�
�
�


	

��
 � � � �� �
� 
� �

� �
� � � � �


 � (6.4)

As the Poisson equation is linear the forcing � � � � will be divergence free as well. The

volume forcing which is a solution to the Poisson equation (6.4) for the 
�� -vortex model
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Figure 6.3: Energy vs.
���

diagram of the non-trivial continuation process from the forced to the

unforced � 	 -symmetric state. The development of the solution is often surprising and far

from straightforward. Sometimes larger parameter changes help to overcome being stuck in an

unwanted solution branch like the rightmost � 	 -symmetric unforced branch that does not seem

to be connected to the TW that is discussed below and bifurcates at
��� � � � 
 � . A reduced

numerical solution is employed here.

flow (6.1) is

� � � � � � � �
�

�
� � � � � 	 �

� � � � 
 	 
�� � � � � � � � � 	 
 � � �

� 	 � � � � � � � � 	 � � � � � � � �	�
	
� � � ��

� �
� � � �


 � ��� �
(6.5)

Here an additional factor
�

has been introduced as a scalar forcing amplitude. Note that the

above choices are not unique as other functional forms are possible. If they are successful

a whole class of model-velocity and force fields will exist that all converge to the same

travelling wave. Of course the transverse velocity fields constructed above are only solutions

to the linear forced Navier-Stokes equations. The nonlinear dynamical time evolution will

lead to a modified mean profile which then gives rise to a nonlinear feedback on the modes:

the corresponding streamwise streaks will develop.

The continuation process of reducing the force and finding the unforced TW is far from being

straightforward. Some of the difficulties become obvious in Fig. 6.3 where the 
 	 symmetric

case is shown exemplarily.

Finally, the above techniques have been successful and a family of three-dimensional (un-

forced) travelling waves has been identified.
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They originate in finite amplitude saddle-node bifurcations so that away from the bifurcations

there is an upper (nodal) and a lower (saddle) branch. We have identified four different states

of discrete rotation symmetry 
 � . An � -fold symmetry 
 � is defined by the invariance under

rotation around the pipe axis by an angle 
�� ��� , i.e.�

�
� ���
�
�

���
� ��� �	� � 
 � � �


�
� ���
�
�

���
� ��� �	� � 
�� ��� ��
 � � (6.6)

The lowest critical Reynolds number,
��� � � 
 ��� , is obtained for the TW with three-fold

rotational symmetry in azimuthal direction, 
 	 , for which the arrangement of vortices is

optimal in the sense of being closest to a hexagonal packing, the preferred pattern in other

systems.

In analogy to the instability of wakes and other model streaky flows [92] two types of li-

near instability could be expected: one leading to ’fundamental sinusoidal’ modes, the other

leading to ’subharmonic sinucose’ modes. The first type is invariant with respect to the

shift-and-reflect symmetry,�

�
� ���
�
�

� �
� ��� �	� � 
 � � �


�
� �
	

��
�
�

� �
� � � �

	
� ��
 � � �	
 � � (6.7)

the latter is invariant with respect to the simple reflection symmetry without the streamwise

shift.

The 3-d states that bifurcated first always showed the first type of symmetry which was

then explicitely exploited in the following continuation as described in section 4.6. It is

based on a streamwise shift of half a pipe length and an additional reflection with respect

to a midplane of the cross-section. This is completely analogous to the shift-and-reflect

symmetry of the lowest coherent state, wavy-vortex flow, in plane Couette, plane Poiseuille

and Taylor-Couette flow [17, 51, 94].

Fig. 6.4 shows cross-sections of the travelling 
 � -symmetric waves for � � 
 ��������� � . All

these states have a similar topology: they have 
�� streaks of fast fluid close to the wall and

streaks of slow fluid towards the center. The high-speed streaks near the wall remain fairly

stationary over one period of the wave, and the low speed streaks in the center oscillate

vigorously.

The structure of the waves is governed by vortices which have a predominant downstream

orientation and which are slightly tilted inside the volume. They resemble near wall coher-

ent structures which have been observed experimentally and numerically in turbulent wall
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flows [41]. They are responsible for the ’lift-up’, that is, they transport slow fluid towards

the center and fast fluid towards the wall, thus producing the high- and low-speed streaks (all

speeds are relative to the laminar profile for that Reynolds number). The resulting steeper

gradients near the wall imply higher friction losses, i.e. higher dissipation and higher pres-

sure gradients for the same flow speed. So the main flow features depend on these vortices

and any modifications lead to drastic changes: non-Newtonian additives as well as constant

axial rotation or axial oscillation interfere with near-wall vortical structures (although by dif-

ferent mechanisms) and considerably reduce the growth of streamwise streaks and therefore

the turbulent friction (’drag reduction’, up to
� �

% by axial oscillations [66], up to
�	�

% by

polymer additives [65, 81]).

To further clarify the three-dimensional structure of the dominant streamwise vortices

Fig. 6.5 shows a contour plot of the streamwise vorticity field for the 
�	 -symmetric state.

It can be seen how the contours of positive and negative vorticity are entwined. The vor-

tices emerge near the wall and they are tilted azimuthally depending on the sign of rotation.

Clockwise and counter-clockwise vortices are advected in clockwise and counter-clockwise

direction, respectively. At the same time they develop towards the bulk where pairs of vor-

tices annihilate.
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Figure 6.4: Cross-sections of travelling waves at their respective bifurcations. � � ,. . . , � � -symmetric

waves are displayed from top to bottom. From left to right the frames are cross sections at

different downstream positions separated by ��� � � � � . Only half a period is shown: the last

frame is the same as the first one up to a reflection at the horizontal diameter ( ��� ��� � �


�

� �


). Note that the high speed streaks near the wall move much less than the low speed streaks

closer to the center. Velocity components in the plane are indicated by arrows, the downstream

component by color coding: velocities faster than the parabolic profile are shown in red, slower

ones in blue. For quantitative details see Tab. 6.1. The � � -symmetric situation is discussed in

section 6.4.
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Figure 6.5: Three-dimensional side view of iso-contours of the streamwise vorticity field � � for the

� 	 -symmetric travelling wave at the bifurcation to clarify the spatial structure of the streamwise

vortices. Three fundamental streamwise periods of total length �
� � � � � � �
are shown. The

two iso-contours are at
� � ��� of the maximum streamwise vorticity. The black line is the pipe

center-line for orientation. The flow goes from left to right.

Several properties of these states are listed in Tab. 6.1. The state with 
 � -symmetry is not

included in the table as it seems to be the one which is most sensitive to the numerical

resolution and not fully converged. A preliminary estimate for its critical Reynolds number

is about 
 �	�	� . The 
�� -symmetric situation is discussed in section 6.4.

symmetry 
�� 
�	 
 �
�����

1350 1250 1590��� � � 4.19 2.58 2.51

� � � 1.43 1.29 1.17

��� 2 1 4�
	 � � 0.38 0.35 0.34�

 � � 0.035 0.046 0.045

� 0.621 0.555 0.574

��	�� � � � � 	 0.828 1.82 1.47

Table 6.1: Selected properties of travelling waves at the saddle-node bifurcation. Given is the critical

Reynolds number
��� �

at the optimal wave length � � , the phase velocity � and the number

	 � of unstable dimensions. � 	 is the maximum deviation of the streamwise velocity from the

laminar flow, � 
 is the maximum in-plane velocity component. � is the total energy and � 	��
the energy content in the streamwise dependent part of the velocity field, both in units of the

laminar energy.
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Figure 6.6: Travelling waves with symmetries � � with 	 � � , 
 ,
�

and 
 at the bifurcation. In

order to highlight the topology of the states all states are averaged in downstream direction.

The representation of the velocity field by vectors (in-plane motion) and color (downstream

component) is as in Fig. 6.4. The absolute scale for the velocity fields is given in Tab. 6.1. Note

the respective structural similarity between the � � - and � 	 -symmetric states and the linear

eigenmodes ’EV2’ in Fig. A.3 and A.4 in Appendix A.

The Reynolds number is not a good continuation parameter as it explicitely depends on the

state’s mean profile, i.e. on a small fraction of the velocity coefficients. Instead the kinematic

viscosity � is kept as a free parameter for the continuation method and the Reynolds number

is determined by the mean downstream velocity � of the TW. The mean flow velocity as

well as the phase velocity � of the wave depend on its shape and structure and are not known

in advance.

The 
 � -symmetric travelling waves are axially averaged in Fig. 6.6 in order to highlight the

dominant streamwise elements of the vector fields. The close relationship between the vor-

tical structures and the original model flows in Fig. 6.2 is noticeable, however, two vortices

each arrange in pairs along the side of their radial inwards flow.

Fig. 6.7 shows the averaged effect of the high speed streaks near the boundary and the low

speed streaks in the bulk: the mean profile is steeper at the wall and flatter in the center, a

feature it has in common with the mean turbulent profile. The maximum relative deviation

from the laminar profile is
� �

%.

The amplitudes of the velocity fields reflect the non-normal amplification that dominates

the linear evolution: small transverse components can produce strong downstream streaks.

Tab. 6.1 shows that for the TWs the transverse components are about an order of magnitude

smaller than the differences between the downstream components of the laminar profile and

the TW.

Each TW is part of a continuum of states that exists for a range of downstream wave lengths.

The range increases with Reynolds number and varies with the symmetry (Fig. 6.8). The
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Figure 6.7: Mean downstream velocity profile of the travelling waves with � � -symmetry, 	 � � � 
 � � ,

in units of the mean streamwise velocity at the bifurcation. The TWs steepen the profile at the

wall and flatten it in the bulk.
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Figure 6.8: Dependence of the critical Reynolds number on the downstream wavenumber for the

two-, three-, and fourfold symmetric state. The numerical values (symbols) are interpolated by

a 4th-order polynomial fit (lines). The solutions extend to higher and lower wavenumbers than

shown.

lowest critical Reynolds number is obtained for a wavelength of about
� � 
 � for the twofold

symmetry and about 
 � ��� for the three- and fourfold symmetric state. This seems to be
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Figure 6.9: Phase velocities of the travelling states at optimal wavelength as a function of Reynolds

number. The velocities are normalized by the respective downstream velocity. The solutions

extend to higher Reynolds numbers than shown.

shorter than the lowest state in plane Couette flow where the optimal wavelength is about


�� � with � the gap width. However, when the wedge shape of the boundary is taken into

account and the lengths are compared to the widths, the comparison is more favorable: the

ratio widths to lengths is about 2 � :4 � = 1:2 in plane Couette flow and about 1:2.5 in pipe

flow.

The fact that the maximum optimal wavelength is just below
� � ���

nicely fits together with

the numerical observation by Eggels et al. [28] that velocity fluctuations in turbulent flows

are decorrelated for streamwise distances larger than
���

at transitional Reynolds numbers.

All the above wavelengths are at least an order of magnitude smaller than the typical ex-

tension of turbulent slugs or puffs. These reproducible enveloping structure have typical

extensions of
���

pipe radii or more and are based on unknown large scale effects.

The downstream phase speed � of the TWs is a function of both parameters, length and

Reynolds number. Its Reynolds number dependence at optimal wavelengths is shown in

Fig. 6.9. In all cases the phase speed is slower than the maximal speed possible with a

laminar fluid and larger than the mean speed , i.e. the wave still propagates downstream

when viewed from a frame of reference moving with the mean flow velocity. This is similar

to the leading laminar-turbulent interface of a turbulent puff and slug, which propagates with

a speed larger than the mean flow (see chapter 3), and where wave-like solutions could be

active.
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Bifurcation diagram

We compare the friction properties of the waves with experimental and numerical results for

turbulent friction as well as with laminar friction in Fig. 6.10.

The friction factor
�

is defined as

��� � ���� 
 ��
� � �

(6.8)

with the pressure drop ��� over the pipe length
�

and with the fluid density � [62]. It is equal

to four times the skin-friction coefficient,
� � � 
�� . From the laminar Hagen-Poiseuille

profile a laminar friction law of
�
lam

� � � � ��� follows. Approximating the mean turbulent

profile by a logarithmic profile and fitting the constants to experimental data leads to Prandtl’s

friction law for smooth pipes [62], which is an implicit formula for the turbulent friction as

a function of Reynolds number
�
� � � 
����	� ��
 � ��� �

	
��� �
�

(6.9)

The saddle-node bifurcations take place at Reynolds numbers significantly below the values

where typical perturbations induce turbulent dynamics. At the bifurcation the friction factor

is higher than the value extrapolated from turbulent states at higher
���

. With increasing

Reynolds number the friction factor for the TWs seems to follow the laminar scaling. This

has not been expected. The upper branches in Fig. 6.10 correspond to the lower branches in

Fig. 6.9: states with higher friction have lower phase velocity and vice versa.

Stability analysis

Information about the linear stability of the states has been obtained by solving the full

eigenvalue problem for the equations of motion linearized around the travelling waves. All

states have shown to be already unstable at the saddle-node bifurcation. This is in contrast

to plane Couette flow where at least the lowest state has an interval of stability, although a

tiny one [17]. However, the unstable manifold is extremely low-dimensional, see Tab. 6.1.

Exemplarily the eigenvalue spectrum of the 
�	 -symmetric wave at its bifurcation is shown

in Fig. 6.11, where one unstable and one neutral eigenvalue from the saddle-node bifurcation

can be identified, as compared to thousands of stable ones. One additional neutral eigenvalue

corresponding to the streamwise translation invariance of the wave is not captured in the

numerics. The upper branch (node) of the saddle-node bifurcation initially has one more

stable eigenvalue than the lower branch (saddle) until both of them independently undergo

further bifurcations leading to higher (’quaternary’) states, which are beyond the present

analysis.

Let us consider whether the maximal growth rates of the travelling waves at the bifurcation

are ’large’ or ’small’. The appropriate time scale to compare with seems to be the period
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Figure 6.10: The bifurcation diagram for travelling waves together with turbulent states in pipe

flow. Shown is the friction factor as defined in Eq. (6.8) vs. Reynolds number. The lower

dashed straight line indicates the strict lower bound from the laminar profile, the upper dashed

line corresponds to Prandtl’s friction law, Eq. (6.9). The full circles are experimental data

taken from [71] or from the present numerical simulations (the value at
��� � � 
 ��� with rms

deviation). The wave solutions extend to higher Reynolds numbers than shown.

of the wave, i.e. the time it takes the phase of the wave to travel one wavelength. For this

quantity,
	 � � � � � � , we get the values

��� � 
	
 � ��� ����� � ��� � � � for � � 
 ������� , respectively. This

is considerably smaller than
�
, so all three waves are only slightly unstable and the growth

rates of the linear instability are ’small’. This enhances the experimental chances to stabilize

and control these structures.

Comparison at
��� � 
 �	�	�

Let us look at the changes of the individual solution branches with increasing Reynolds

number. The upper and lower branches of the 
 � , 
�	 and 
�� state are compared at
����� 
 �	�	�

in Fig. 6.12 at their respective optimal wavelength. Again the streamwise averaged flow is

shown in order to concentrate on the streamwise streaks and vortices.

Both the upper and the lower 
�� -symmetric branch have a structure which is still very similar

to that at the bifurcation, only the middle horizontal stripe of low speed streaks becomes

narrower in the lower branch. For the 
 	 - and 
 � -symmetric wave the most prominent

change is the fusion of two neighbouring high-speed streaks in the lower branch. In summary,

the lower branches appear to develop a more streamlined structure.
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Figure 6.11: Part of the eigenvalue spectrum of the lowest travelling wave ( � 	 ) at the bifurcation.

Eigenvectors are real or come in complex conjugate pairs. One unstable and one neutral eigen-

value from the saddle-node bifurcation can be identified.


 � � � 
 � �
�


�	 � � 
�	 �
�


 � � � 
 � �
�

�
	 � � 0.19 0.175 0.13 0.15 0.11 0.13�

 � � 0.011 0.008 0.012 0.013 0.012 0.017

Table 6.2: � 	 is the maximum deviation of the streamwise velocity from the laminar flow, � 
 is the

maximum in-plane velocity component.

6.4 Search for ��� -symmetric two-vortex travelling waves

For the � =1 case we have chosen to force Zikanov’s optimal mode (see section 5.2) since

it already has the topology of streaks we are looking for and since it fulfills the same con-

ditions as the fields for the case � � �
above (no-slip, divergence free, regular forcing, low

order polynomial) 2. The precise velocity field has already been introduced in Eqn. 5.6 in

section 5.2. The corresponding forcing is

� � � � � � � �
�

� 
 � 	 �	� �
� � 
 � 	 ��� � �

�

���
� � �


 � ��� �
(6.10)

which is obtained from the Poisson equation for the � � �
����
 � �

mode.

2As for the ��� model flows we do not require analyticity in a neighbourhood of the pipe center line (cf. The-

orem 4.1, page 20). In our numerics of course only (arbitrary close) analytical approximations are employed.
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Figure 6.12: Axially averaged upper and lower branch of the � � -symmetric states, 	 � � � 
 � � , at��� � � ����� .

The upper row shows the upper branch, the lower row shows the lower branch; 	 increases

from left to right. For the vector plots of the in-plane velocity the same scale has been used so

they are directly comparable. The streamwise velocity component is as usual given by color-

coding, with red faster than the laminar flow and blue slower, but the color scaling has been

optimized for each individual graph. The maximum in-plane and streamwise velocities are

listed in Tab. 6.2.

This two-vortex (’Zikanov’-) flow is visualized in Fig. 6.2.

At a low Reynolds number (
��� � � ���

) and a high forcing amplitude (
� � ��� �

) the state

dynamically bifurcates with a critical streamwise wavelength of about ( � � 
 ��� ). So we

begin our search with
� � � 
 as in the above 
�� -vortex case. Fig. 6.13 shows the structure of

the forced two-vortex travelling wave. In order to prevent the TW from relaminarizing when

reducing the forcing
� � has to be adjusted and � has to be reduced. But at Reynolds numbers

as high as
�	�	�	�

the forcing can still not be reduced below
� � � � � � � 	 without the decay of

the forced TW.

We offer the following explanation for this failure: when the artificial forcing is reduced the

’natural’ internal forcing, i.e. the shear due to laminar Hagen-Poiseuille profile, has to be

increased and has to take over the driving of the TW-structure. For our forced two-vortex

flow a driving across the pipe diameter was necessary but this is not provided by the Hagen-

Poiseuille shear profile.

So our list of TWs does not include a state of 
 � - symmetry to which the mode with strongest

linear transient growth belongs [5]. This should have implications for lowest-dimensional
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Figure 6.13: Forced travelling two-vortex wave at
��� � ��� � ��� � � � ��
���� � � � . The frames are

cross sections at different downstream positions separated by ��� � � � � . Only half a period is

shown: the last frame is the same as the first one up to a reflection at the horizontal diameter.

Upon a reduction of the force to zero the forced travelling wave dies to the laminar Hagen-

Poiseuille flow, even for
���

of up to
� ����� .

model building [6, 12] where linear arguments might have led to an overemphasis of the

mode with 
�� -symmetry.

In an asymptotic analysis by Smith & Bodonyi [77] neutral modes were identified in high

Reynolds number pipe flow which is subject to small but finite 3-d disturbances and modeled

with a nonlinear critical layer. These modes exist for azimuthal wavenumber � � �
but not

for � � �
, which is exactly the other way round as for the above 
 � -symmetric travelling

waves.

6.5 Search for spiral ��� -vortex travelling waves

Completely analogous to the construction of the 
 � -vortex travelling waves in the previous

section we now go on to what seems to be one of the the next more complicated topology of

vortices, spiral travelling waves. We make a low order ansatz for the forced velocity field of

a spiral 2n-vortex flow where the vortices are azimuthally rotated when going downstream,

which leads to a helical structure. A simple realization of such a (forced) spiral velocity

(n,m)-mode which fulfills the various constraints is

� ��� � � � � � �

�

� � � � ��� 	 � � �
� � �

	
� � � �

	
� � � �

�

���
� � � �



� � � � � � � ��� � (6.11)
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Figure 6.14: Forced travelling six-vortex helical wave ( 	 � 
 � 
 � � ) at
��� � � � 
 ����� � � � 
 ��� � ��

. The frames are cross sections at different downstream positions separated by � � � � � � .
Only half a period is shown, here the first and last frame are connected by an axial rotation of� � 
 . Upon a reduction of the force to zero the forced spiral travelling wave dies to the laminar

Hagen-Poiseuille flow, even for Reynolds numbers of up to
� ����� .

In the appropriate spiral coordinates we again have a 2c-2d velocity field. The corresponding

regular volume forcing that follows from the Poisson equation (6.4) is

� ��� � � � � �
� � �

�

�

� � � � � 	 �
� � � � 
 	 
�� � � � � � � � � 	 
 � � � 
 � � �� � � ��� 	 � � � �

� 	 � � � � � � � � 	 � � � � � � � �	�
	
� � � � � 
 � � �� � � � 	 � � � � � � 	 � �
�

���
� �

��� � �


� � � ��� � � ��� �

(6.12)

We test pipe flow for the existence of a ( � � ��� 
 ���
)-spiral travelling wave. At

����� �	���
,� � ��� �

and
� � � 
 the flow dynamically relaxes onto a forced 3-d TW. The spatial symmetry

of the bifurcated state is helical,� � � ��� ��
 � � � � � ��� � �
�
��
 � �



� �

(6.13)

The structure of the forced flow can be seen in Fig. 6.14. A strong mean azimuthal flow

is induced by this configuration of vortices. It is possible to continue the state down to� � � � � � � 	 but a further reduction of the forcing leads to a reconnection with the laminar

profile, even upon extensively optimizing
���

and
�

. So far, no spiral travelling wave can

be identified as solution to the unforced pipe flow problem below
��� � � ���	�

. This seems

to be in agreement with the findings of Barnes & Kerswell [3] whose TWs in the rotating

pipe presumably also excite a non-vanishing mean azimuthal flow, which does not seem to

be easily supported by unforced Hagen-Poiseuille pipe dynamics. This has not been obvious

a priori, as, for instance, in Taylor-Couette flow secondary states exist that induce a mean

flux in the ’neutral’ spanwise direction (e.g. spiral vortices). Stable spiral waves have been
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searched for numerically by Landman [44] but without success whereas experimentally he-

lical wave-like structures have been reported from the central part of the upstream region of

a turbulent puff [2, 19].

6.6 Conclusions

The existence of exact coherent states in pipe flow has been an object of speculation for some

time [7, 12, 19] but different earlier attempts to find them numerically have failed [3, 44].

In the present work a whole family of exact coherent states has been identified as nonlinear

solutions to the full Navier-Stokes equations for an incompressible fluid. Their structure is

dominated by streamwise vortices and is similar to coherent states observed in other shear

flows. This underlines the significance of vortex-streak interactions in shear flows and opens

alternative routes to modeling and controlling pipe flow.

The numerical task of representing them accurately is considerably more expensive than for

stationary states in plane shear flows. About five times more active degrees of freedom are

necessary here although full spectral precision has been used. The reason is not obvious as

the states do not seem to be of considerably richer structure than those in plane Couette. On

the other side, the parametric study is markedly simplified due to the trivial periodicity in

azimuthal direction.

Compared to travelling waves in plane Couette flow, which we also investigated in (not pre-

sented here), TWs in pipe flow are easier to handle. In plane Couette states have to break

the inversion symmetry of the laminar profile to obtain a mean drift velocity in the labora-

tory system. This leads to a much richer spatial structure which in turn induces numerical

difficulties.

Besides the TWs presented here we can expect many other states. Future search for TWs

should be based on a further symmetry decomposition of the problem. First of all it would

be interesting to look for states that are invariant with respect to a simple reflection symmetry.

Numerically imposing this symmetry in advance suppresses the bifurcation to the shift-and-

reflect symmetry and along the lines of the above method we expect to find a second family

of travelling waves. Further inspiration by the structure of selected linear eigenmodes seems

possible. Travelling waves with an additional nodal radius which (streamwise averaged)

resemble the modes labeled EV4 in Fig. A.3 and A.4 in Appendix A can be expected. On

the assumption that narrower vortices will require stronger driving we anticipate that they

will have critical Reynolds numbers higher than the
� 
 ��� found for the 
�	 -symmetric state.

States of the present family of 
 � -symmetric waves for all � � �
are expected to exist, but

with increasing numerical demands on the radial resolution. The scaling of critical Reynolds
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number and optimal wavelength with � would be of great interest.

In addition there are all the states that bifurcate from the TWs as well as periodic and ape-

riodic states that bifurcate in further bifurcations. There will be homoclinic and heteroclinic

connections between them. All these states together then form a chaotic saddle in phase

space that supports the turbulent dynamics. It will be interesting to see to which extend these

states can be used to approximate properties of the turbulent flow. Further evidence for this

transition scenario will be given in the next chapter.

Travelling waves are steady fields in the comoving frame of reference. Its dynamics at a

cross-section of fixed position in the lab frame is, however, far from trivial. Nevertheless,

it has a considerably less complexity than a turbulent dynamics at transitional Reynolds

numbers. In order to systematically approximate the dynamical properties of the turbulent

state within the framework of periodic orbit theory [25] states of more complex dynamics,

especially periodic orbits, are still missing. Also, for a clearer manifestation of a tempo-

ral regeneration cycle [92] periodic orbits should show the different phases of downstream

vortices generating streaks whose instability in turn regenerates the downstream vortices.

We would like to speculate about the possibility that the 
 � -symmetric travelling waves re-

stricted to a wedge shaped section of the pipe of angle 
�� ��� are homotop to wavy-vortex flow

in plane Couette (which in turn is homotop to wavy-vortex flow in Taylor-Couette and plane

Poiseuille flow, with no-slip or free-slip boundary conditions). This is motivated by structural

similarities of the 
 � -symmetric states and wavy-vortex flow: in both flows counter-rotating

vortices are aligned in spanwise direction which are again modulated in spanwise direction.

This suggests a common ground state for a large fraction of shear flows which would not

only be of great interest for a study of the effects of curvature and boundary conditions on

the states.

Experimentally, Darbyshire & Mullin [19] observed a ’wave-like flow’ triggered in less than
� �

of their transition experiments with rather large initial amplitudes. Since they could not

determine whether it decayed or not and they did not give a description of the wave structure

we can not compare with these findings.

Due to the very low-dimensional unstable manifold of the travelling waves it appears promis-

ing to try to stabilize them experimentally. This should be possible with a closed loop con-

trol, consisting of real-time monitoring of the velocity field [22], a quickly adjustable volume

forcing and any standard method of chaos control [8, 58]. This is assisted by the fact that the

growth rate of the linear instabilities of the waves is slow.

Selected results of this chapter have been submitted for publication to Physical Review Let-

ters [35].
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In the present chapter we want to propose that the transition to turbulence in pipe flow is

connected with the formation of a chaotic strange saddle (repellor) in phase space. This

repellor is a presumably fractal invariant manifold with a complex domain of attraction and

with an unstable manifold along which the escape of turbulent trajectories is enabled. It

is composed of nonlinear three-dimensional exact coherent states like travelling waves or

periodic orbits, and their homoclinic and heteroclinic connections, all of which are expected

to be linearly unstable. The first have been identified and analysed in the previous chapter. A

turbulent dynamics on the repellor then corresponds to trajectories that are scattered between

these states in an irregular, chaotic manner, attracted by their large stable manifolds but then

again quickly repelled along their unstable manifolds.

As indicators for this scenario we analyse the sensitive dependence on initial conditions and

on parameters, the Lyapunov exponent of the turbulent state, the scaling near the boundary to

the turbulent state, and the distribution of turbulent lifetimes. All our findings are consistent

with the formation of a strange saddle in phase space.

7.1 Numerical lifetime experiments

Our analysis will be based on the time evolution of initial perturbations in circular pipe flow

with periodic boundary conditions in the downstream direction. For an accurate simulation

of turbulent dynamics at transitional Reynolds numbers the streamwise periodicity
�

is set

to
� ���

which is about the minimal value that is necessary to justify periodic boundary con-

ditions [28], i.e. for velocity fluctuations to be decorrelated at a streamwise separation of

half the pipe length. This is about 
 � � to
�

times the optimal wavelength of a travelling

wave, cf. Tab. 6.1. As in the experiments of Darbyshire & Mullin [19] we keep the volume

flux constant. This simplifies the analysis as the Reynolds number is constant in time and a

possible decay is not connected to a drop in flux, i.e. in
���

.

We want to study the dependence of the lifetime of intermittent trajectories on parameters to

identify transition thresholds, stability boundaries and the statistical distribution of lifetimes.

In order to do so we first have to discuss our definition of a lifetime experiment, that is,

our choice of initial conditions, decay threshold, maximum observation time, and numerical

resolution.
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Initial conditions

The first question is what type of initial condition should be used. Possible choices are:

� an element of the turbulent state, i.e. a snapshot of a turbulent velocity field. This,

however, is not suitable as the turbulent state drifts in phase space as a function of

Reynolds number (cf. Fig.7.11 below). Thus a snapshot from the turbulent state at

some Reynolds number is no longer a good initial condition at 20% higher or lower

Reynolds numbers as the probability for a more or less direct decay is rather high.

� simulation of suction and blowing from the wall. Presumably a good choice and closest

to the laboratory experiment but not without problems. Plane Poiseuille flow experi-

ments [61] have shown a nontrivial dependence of the receptivity of a jet disturbance

on the jet amplitude: intermediate jet amplitudes did not trigger transition whereas

higher and a range of lower amplitudes did. This might be connected to interactions of

the near wall and far wall laminar boundary layers with the jet.

� Zikanov’s nearly optimal initial condition with a small additional 3-d perturbation. As

shown in section 5.2, Zikanov’s 2-d mode develops inflection points of the mean pro-

file and becomes linearly unstable with respect to 3-d disturbances which grow and

take over to a turbulent dynamics. This streak breakdown mechanism is a smooth and

well controlled way into turbulence but it depends too much on a linear process: for

different Reynolds numbers the linear transient amplification and thus the maximum

linear growth of the 3-d initial disturbance changes considerably which again compli-

cates the comparison for different Reynolds numbers. Here the amplitude of the 2-d

mode as well as the amplitude of the 3-d disturbance has to be defined.

� 3-d uncorrelated superposition of all spectral modes. The amplitudes for the real and

imaginary part of all velocity coefficients are chosen once by a random process for

independent and uniformly distributed random variables over the interval (-1,+1). In

comparison to the above initial condition that relies on streak-breakdown, this cor-

responds to taking only the 3-d disturbance part. Its spatial structure is so rich that

the probability to trigger turbulent dynamics is maximal for a wide range of Reynolds

numbers.

We decided on the latter type of initial condition. With a fixed structure of variable amplitude

a one dimensional cut through the space of all initial conditions is obtained.

For a measurement of statistical properties of the turbulent state (such as escape rates and

Lyapunov exponents) it should not matter which type of initial condition has been used

as long as transition to the turbulent state has been triggered: due to positive Lyapunov

exponents (see below) the trajectory quickly ’forgets’ which part of phase space it came
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from. Furthermore, it seems to be evident that they all approach the same turbulent state,

regardless of the type of disturbance. This is confirmed experimentally where, for instance,

wall-normal and azimuthal jets or a combination of jets and suction lead to very similar

results [19]. Rubin et al. [69] also report on the independence of the downstream structures

of transitional flow of the method of production.

Disturbance amplitude

We define the amplitude of an initial disturbance as its kinetic energy in units of the energy

of the laminar profile
� � ��� ,

� � 	 � �
	
� � ��� � �

� � 	 � � � ��� � � �
(7.1)

This definition trivially depends on the Reynolds number - various alternative choices are

possible and have been employed in laboratory and numerical experiments, for a discussion

see [88].

Decay threshold

We define a turbulent lifetime beginning from the time integration of the initial condition up

to the time when the energy content in the streamwise modulated part of the velocity field,

� 	�� , has decreased below a threshold. � 	�� is defined as

��	�� �
� ��� � � � 	 � � ��� � ��� � � �

� � 	 � � � ��� � � �
(7.2)

The energy content of the streamwise invariant part of the flow may still be fairly large at

that stage. ��	�� has shown to be a much more sensitive measure for turbulence intensity

than the total energy. In section 5.2 we have seen that 3c-2d streamwise invariant velocity

fields ( ��	�� � � ) can show oscillations and may have long transients although they are known

to be about to decay. By analysing many turbulent trajectories we realized that none of

them dropped below � 	�� � � � � 	 without decay. So we decided on a decay threshold of

� 	�� � � � � � , which is two orders of magnitude below the turbulent mean. (For the turbulent

mean and fluctuations in the total energy and in � 	�� see Fig. 7.11.)

Maximum lifetime

We extended our numerical investigations to dimensionless times of 
 ���	� or more, far ex-

ceeding the maximal observation time of the experiments by Darbyshire & Mullin [19]

(
�

max
� �

/ � =
� �	�

) and exceeding the values accessible in the longest currently available

pipe flow setup, which to our knowledge is the one at the J.M. Burgers Centre, Delft Univer-

sity of Technology. Its total length is
� 
 m and its diameter is

� �
mm, i.e.

�
max

� �
/ � =

���	�
,

but the test section for the measurement is only a fraction of it [23] 1.

1Here we assumed the turbulent puff’s leading laminar-turbulent interface to travel at about the bulk velocity,

as discussed in chapter 3.
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Figure 7.1: Typical turbulent time evolution of initial perturbations in pipe flow at
��� � � ����� . The

initial energies are chosen high above the turbulent mean and the trajectories relax onto the

turbulent state within approximately
� ��� time units. Three initial disturbances of same spatial

structure but slightly different amplitudes have been chosen. The top frame shows the total

pressure drop needed to sustain the volume flux at its laminar value. The bottom frame shows

the kinetic energy of the streamwise modulated part of the velocity field, � 	�� , normalized by its

turbulent mean as a measure of the velocity fluctuations. It is strongly correlated to the pressure

drop. Within statistical fluctuations the averages of the turbulent dynamics are the same for all

trajectories including the green trajectory which just happens to decay near � � � ����� .

Numerical resolution

If not stated otherwise the spatial resolution used for the results presented in this chapter is�
�
�
� � � � � 
 � � ��� � �

, i.e. up to
� �

Fourier-modes in azimuthal direction and 
�� Fourier-

modes in downstream direction, and
���

Legendre polynomials radially. It is a compromise

between maximum resolution, maximum cut-off lifetime and largest statistics. It is justified

by a comparison with lower and higher resolutions which give no qualitatively different

results, as discussed in section 5.3.2. This resolution is an order of magnitude higher than

for the travelling waves in the previous chapter as the algorithmic demands on the solution

of initial-boundary problems are considerably lower.

The typical time evolution of turbulent trajectories in our lifetime experiments is shown in

Fig. 7.1. Immediately after onset high dimensional dynamics on many temporal and spatial

scales is observed.
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7.1.1 Sensitivity on initial conditions and on parameters

In this section we present extensive measurements of lifetimes of turbulent trajectories for

various disturbance amplitudes and Reynolds numbers. We want to give evidence that the

overall features of our results are rather robust with respect to the spatial resolution and,

therefore, present lifetime diagrams are based on two different types of simulations.

First we show preliminary calculations that were considerably lower resolved than all the

following ones. Here a spatial resolution of
�
�
�
� � � � � 
 � � � � � �

, i.e. up to 
 � modes in

azimuthal and streamwise directions, and
� �

Legendre polynomials in radial direction has

been used, which is close to the resolution of the travelling waves in the previous chapter.

The streamwise wavelength has been restricted to
� � � � 
�� . Fig. 7.2 shows the turbulent

lifetime of trajectories as a function of Reynolds number and initial disturbance amplitude

for these runs. In spite of these limitations various conclusions can be drawn from these

lifetime experiments that have all been validated by higher quality numerical simulations

which are presented in Fig. 7.3. Those and all the following are based on the resolution with�
�
�
� � � � � 
 � � ��� � �

and
���

Legendre polynomials for a length
� � � ��� �

.

The turbulent lifetimes in Fig. 7.2 and Fig. 7.3 show large fluctuations that imply an extreme

sensitivity with respect to small changes in initial conditions and parameters. A complicated,

fuzzy stability boundary between decaying and sustained turbulent solutions is observed.

First long-living solutions are identified at around
���

=
���	���

. A more or less complex net-

work of states in phase space must exist at this stage and be sufficiently entwined to enable

repeated scattering without decay. From
��� � 
 �	�	� on a large fraction of initial conditions

trigger long-living turbulence that reach the cut-off lifetime of
�
= 
 �	�	� . We observe a double

threshold to turbulence, that is, in order for a transition to take place a sufficient Reynolds

number as well as a sufficient amplitude is needed. The minimum amplitude to trigger a long

living turbulent dynamics decreases with Reynolds number.

All these findings are in agreement with laboratory experiments by Darbyshire &

Mullin [19], which in parts have been presented in chapter 2, as well as with transition

scenarios in other shear flows that are not dominated by linear instabilities [9, 33, 73].

Scaling near the transition boundary

Let us investigate the situation at
����� 
 �	��� in more detail. The parameter region inside the

red rectangle in the lower left graph (
��� � 
 �	��� ) in Fig. 7.3 is successively magnified by

orders of magnitude in Fig. 7.4. Two separate regions of different behaviour can clearly be

distinguished, above and below a critical disturbance amplitude. Below the critical amplitude

lifetimes vary smoothly. Up to a certain disturbance amplitude the lifetime grows linearly

with the amplitude as the dynamics is dominated by linear terms. Then nonlinear dynamics
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Figure 7.2: Turbulent lifetime as a function of Reynolds number and of initial disturbance amplitude.

Simulations were done with a reduced numerical resolution. The color-coding separates runs

that would have decayed within usual experimentally accessible lifetimes and those that would

have appeared as sustained. A grid of � 
�� � 
 parameter points underlies this surface plot.

quickly accelerates the increase in lifetime. By further increasing the amplitude the dynamics

approaches the stable manifold of the repellor and long lifetimes of the order of
� �	�	�

are

observed. This critical amplitude region is magnified in the right graph in Fig. 7.4. Above

the critical amplitude the lifetime varies irregularly and depends very sensitively on the initial

amplitude. Supported by numerical simulations [73] as well as by models for plane shear

flow [26] even a fractal behaviour could be suggested. The sensitivity of this flow is enhanced

by the ability to amplify small perturbations through non-normal amplification.

Energy traces of selected trajectories from these lifetime experiments at
��� � 
 �	�	� are

shown in the following. Fig. 7.5 shows trajectories from the ’smooth’ side that are very close

to the transition boundary. As the initial amplitude is slightly increased, with relative changes

of approximately
� � � � , the trajectory lives longer and undergoes more and more nonlinear

regeneration cycles before it finally decays towards the laminar state.

The non-monotonous but still smooth dependence of lifetime on the initial amplitude close

to the turbulence transition boundary at
��� � 
 �	�	� is shown in Fig. 7.6. As the boundary
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Figure 7.3: Turbulent lifetime vs. perturbation amplitude for different Reynolds numbers. For all

Reynolds numbers a smooth region with short-lived states can be observed for small ampli-

tudes. With increasing Reynolds number this region is followed by a ragged region of highly

fluctuating lifetimes. The threshold amplitude that divides the two regions decreases with

Reynolds number and is shown in Table 7.1 The red marked parameter range at
��� � � ����� is

further investigated in the following. The data obtained at amplitude � � are analysed statisti-

cally in section 7.1.2.

is approached the amplitude and frequency of oscillations in lifetime as functions of param-

eters quickly increase. This is a footprint of the complex structure of the stability boundary

between decaying and sustained solutions, and a hint on the folding of the stable manifold

of the repellor.

With a re-definition of the disturbance amplitude based on the
� � -norm predictions exist for

an algebraic scaling for the minimal disturbance amplitude that triggers transition as
�����

with an exponent �
�

	
�
. However, according to [88], laboratory experiments only give

rough estimates of 	
��� � �

�
�
	
��� � �

for the investigations of Darbyshire & Mullin [19]

and 	�
 � �
� �

for Draad & Nieuwstadt’s experiments [23]. It is of course not clear whether

the different injected perturbations really have maximal efficiency in triggering turbulence.
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Figure 7.4: Successive magnifications of the lifetime diagram at the transition boundary at
��� �

� ����� . The left graph is a magnification of the red marked parameter region in Fig. 7.3, the right

graph is a further magnification of the red marked tiny parameter range in the left graph. The

lifetimes do not simply increase like a logarithm when approaching the boundary as might be

expected at smooth boundaries of simple basins of attraction (see text). Instead, oscillations in

lifetime of increasing amplitude and frequency are observed.
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Figure 7.5: Energy measure of trajectories in units of the turbulent mean as a function of time at��� � � ����� when approaching the stability boundary from the ’smooth’ side. These trajectories

correspond to data points in Fig. 7.3 and 7.4.

We give the data on the lowest perturbation amplitude where a first maximum in lifetime is

observed in Tab. 7.1 but we do not dare to extrapolate on an asymptotic value for the scaling

of the transition threshold with
���

for
��� � � as we know our limitations in Reynolds

number.



7.1 Numerical lifetime experiments 71

0 50 100 150 200
time

0

0.2

0.4

0.6

0.8

E
3d

 amplitude;  T 
  0.003270;  162
  0.003322;  197
  0.003340;  187
  0.003367;  226

Figure 7.6: Non-monotonous but still smooth dependence of life time on the initial amplitude close

to the turbulence transition boundary at
��� � � ����� . These trajectories correspond to data

points in Fig. 7.3 and 7.4.

Parameter dependence of the turbulent lifetime

We observe sensitivity not only with respect to the initial disturbance but also with respect

to Reynolds number and other external parameters. The turbulent lifetime as a function of

the Reynolds number at a fixed initial disturbance amplitude � (
�
=0)=

��� �	��� 
 � is shown in

Fig. 7.7. Again two parameter regimes can be identified. Below a transition boundary the

dependence of lifetime on Reynolds number is smooth, whereas it is irregular above. The

magnification of the neighbourhood of the boundary in the right graph in Fig. 7.7 further

exemplifies the extreme parameter sensitivity above the threshold and the increasingly non-

trivial dependence when approaching the boundary. A relative change of
� � � � in

���
can

already lead up to a factor of four in the change in lifetime. Again, no simple scaling can be

observed.

But what scaling could have been expected when approaching the transition boundary from

the ’smooth’ side? For the most simple dynamical systems, which show smooth and simple

boundaries in parameter space, with smooth seperatrices in phase space that correspond to

simple configurations of the stable and unstable manifolds, a logarithmic behaviour could be

expected. A simple saddle fixed point as well as the 2-d Henon-map, for instance, show this

Reynolds number 1600 1700 1800 1900 2000 2100

amplitude/
� � � 	 8.66 8.67 4.56 3.95 3.37 3.16

Table 7.1: Lowest perturbation amplitude where a first maximum in lifetime is observed. The data

have been extracted from Fig. 7.3.
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Figure 7.7: A complementary approach to the turbulence transition boundary: turbulent lifetime

vs. Reynolds number at a fixed initial disturbance amplitude � ( � = � )= � � ��� 
���� . The parameter

range adjacent to the transition boundary, marked by red lines, is magnified in the right graph .

logarithmic scaling behaviour, for instance. It is also possible to have a smooth algebraic

increase in lifetime when approaching a transition boundary, but as soon as the boundary

structure becomes too complex the stable and unstable manifolds are twisted in an irregular

manner and a simple scaling can no longer be observed. All this is illustrated in a low-

dimensional example that already exhibits logarithmic, algebraic as well as irregular scaling,

depending on the direction of approach to the transition boundary. This example will be

presented in Appendix C.

7.1.2 Exponential distribution of lifetimes

As explained in the last section, the turbulent lifetimes show an extreme sensitivity with

respect to changes in parameters, which leads to a complicated, fuzzy stability boundary

between decaying and sustained turbulent solutions. This calls for a statistical description.

More than 50 trajectories have been analysed each for transitional Reynolds numbers from
� �	���

up to 
	
 ��� . Only very high initial amplitudes of
� �

have been chosen for this task and

their lifetimes have been included in Fig. 7.3 in the previous section 7.1.1. A total real time

of 3 CPU-years on 2.2 GHz Pentium 4/Xeon processors has been necessary to obtain these

statistics. The resulting probability � � � � for a single trajectory to stay turbulent for a certain

time is shown in Fig. 7.8. Despite the large fluctuations an exponential dependence can be

identified, which we interpret as a constant escape rate,
	
, which is a major characteristic

of a chaotic saddle in phase space. Neglecting the initial relaxation time to the repellor,

the probability to stay turbulent is � � � � � 	 � ��� �
. The median lifetime � , where � � � � ���� �

, as a function of Reynolds number is extracted in Fig. 7.9. Below
��� � � �	�	�

the

increase is mainly due to non-normal transient linear dynamics. When the Reynolds number
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Figure 7.8: Distribution of turbulent lifetimes for different transitional Reynolds numbers. The prob-

ability for a single trajectory to still be turbulent after a certain time is displayed. Six Reynolds

numbers are shown from � � ��� to
� � 
 � . Between 
 � and ����� trajectories have been evaluated

per Reynolds number. The distributions are in agreement with exponential distributions though

the fluctuations are strong, especially in the tails.

is increased above
����� 
 �	��� the median of the turbulent lifetimes as well as the fluctuations

raise rapidly until the median reaches the cut-off lifetime of 
 �	�	� at
��� � 
�
 �	� . From the

exponential distribution it follows that the rms fluctuations increase linearly with the median.

The analysis of transient turbulent trajectories for
��� � 
	
 �	� suggests that at the end of each

individual nonlinear regeneration cycle there is a certain probability to decay to the laminar

state. The conclusion from the exponential distribution of lifetimes is that this probability

remains constant during the evolution, independent of the ’age’ of the trajectory.

Exponential distributions of lifetime have been identified before in plane Couette flow, exper-

imentally [9] and numerically [74], as well as in Taylor-Couette flow [27]. This is evidence

for a further generic feature of transition in shear flows that are not dominated by linear

instabilities.

We see that no sharp, reproducible critical Reynolds number for the transition to turbulence

in pipe flow exists. But what is the transitional Reynolds number in pipe flow? First of

all, how can we define it? Accepting the exponential distribution of lifetimes any defini-
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Figure 7.9: The median of the turbulent lifetimes as a function of Reynolds number. The median and

the fluctuations increase rapidly with Reynolds number until the median reaches the cut-off

lifetime of
� ����� . The error bars indicate the statistical uncertainty of the median. The rms

fluctuations about the mean lifetime are expected to grow linearly with the median and are not

displayed. The straight dashed line marks the linear increase in lifetime expected due to purely

non-normal linear dynamics.

tion of a transitional Reynolds number,
��� � � , must be probabilistic. It might be based on

a certain value of the median lifetime or, equivalently, on the escape rate, which calls for

measurements at different downstream distances. An alternative would be to extrapolate to

the Reynolds number where the median lifetime seems to diverge, which, however, is much

more problematic since the behaviour in this limit is not yet clear.

The energy Reynolds number,
��� 


, below which all trajectories monotonously decay, is

a very conservative approximation to the transitional Reynolds number in shear flows. The

Reynolds number where the first nonlinear exact coherent state (travelling wave) is observed,�������
, is a much better approximation,

��� 
 � � ����� � � � ������� � � � 
 ��� � � ��� � � � 
 �	��� , but

it is still a considerable underestimation.
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7.2 Lyapunov exponents

It is our aim here to analyse Lyapunov exponents in order to quantify the sensitive depen-

dence on initial conditions and the spatially chaotic motion.

The largest Lyapunov exponent
	

along a trajectory
� � � � � � � � ��� � �

,

	 � � ���� � � � � ��� � � � � � ���� �
�
� � �

�
� � � � � � �
��
� � � � � � �
� � (7.3)

governs the mean exponential escape �
� � � of closely neighbouring trajectories in phase

space. For the norm in the definition of
	

we take the
� � norm of the velocity coefficients.

We approximate
	

numerically by ensembles of finite-time (
� � 
 ��� ) Lyapunov exponents,

which have been extracted from the integration of series of closely neighboured pairs of

turbulent trajectories. We measure the distance of the trajectories every 
 �	� time steps and

reduce it back to
�
� � ��� � � � � � �

. This time interval appears to be appropriate as up to this

time no nonlinear effects take over and the escape is still exponential. Taking too short time

intervals non-normal effects dominate the time evolution. We have to omit an initial and final

time interval of 
 ��� time steps where the relaxation on to and the escape from the repellor

give too large and too small values, respectively, for the Lyapunov exponent of the turbulent

dynamics on the repellor. Due to the large fluctuations we have to evaluate a total of
� � �

time units each, taking the center part of the trajectories only, in order to obtain sufficiently

reliable results. This makes it difficult to acquire a sufficient statistics below
��� � 
 �	�	� .

As shown in Fig. 7.10 the largest Lyapunov exponent increases with Reynolds number, but

not as quickly as the lifetimes. Its typical value is about
��� � � � � � � at transitional Reynolds

numbers. This corresponds to an amplification factor of the order of
� ���

over 
 �	� time units

which is a typical time interval for a regeneration cycle. The short-time Lyapunov expo-

nents are strongly correlated with the large energy fluctuations shown in Fig. 7.1. When

new large scale structures are generated the energy grows strongly and the Lyapunov ex-

ponent increases. Towards the end of a nonlinear regeneration cycle the energy goes down

and the Lyapunov exponent decreases as well. Therefore, the fluctuations in the exponent

are large and long statistics over many turbulent trajectories have to be gathered. The cou-

pling between energy and Lyapunov exponent is also reflected in their very similar slope

as functions of Reynolds number, see Fig. 7.10 and 7.11, where the latter shows the slow

drift in the turbulent mean of the total energy and in � 	�� together with their rms-fluctuations.

The positive Lyapunov exponent also measures the mean loss in predictability with time.

The uncertainty in the state doubles all ��	 � 
 � � 	 � � �
time units at transitional Reynolds

numbers.
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Figure 7.10: Largest Lyapunov exponent of the turbulent state and rms fluctuations as a function of

Reynolds number.
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Figure 7.11: Turbulent mean of the total kinetic energy (upper data) and � 	�� (lower data) together

with rms fluctuations as a function of Reynolds number. Both the energy and the Lyapunov

exponent in Fig. 7.10 increase with a similar slope.
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7.3 Conclusions

In this chapter we investigated in turbulent trajectories that were triggered by finite amplitude

disturbances at Reynolds numbers between
� �	�	�

and 
	
 �	� . For Reynolds numbers above
���	���

and a disturbance above a threshold amplitude we observe strong sensitivity on initial

conditions as well as on parameters which results in large fluctuations in turbulent lifetimes.

The regions of quickly decaying and long-living trajectories are separated by complicated,

fuzzy stability borders, which might have fractal properties. Lifetime experiments reveal an

exponential distribution which suggests a constant escape rate from the turbulent state. These

findings strongly suggest the existence of a chaotic repellor which supports the turbulent

dynamics. Above
���

= 
 � �	� lifetimes quickly reach the maximum observation time of 
 �	�	� .
It might even be the case that the escape routes from the repellor are closed and the repellor

is turned into a strange attractor at a finite Reynolds number.

We give evidence that the above results are not numerical artefacts of low numerical resolu-

tion or of periodic boundary conditions of a too short pipe by successfully comparing results

for two spatial resolutions and two pipe lengths.

The prediction of an exponential distribution of lifetimes should be accessible to experimen-

tal investigations provided that the observation time is of the order of at least
� �	�	�

units.

Repeated measurements with similar perturbations are necessary in order to obtain the prob-

ability to find a turbulent state that exists at least up to time
�
. This is a property of the

turbulent state in the transition region and can be studied by sampling different initial condi-

tions. Exact reproduction of an initial condition is not critical here since all initial conditions

relax to the same turbulent state. The mechanism studied here, the formation of a chaotic

saddle, is fairly independent of the boundary conditions, but the quantitative characteristics

may depend on it. Whereas in laboratory experiments turbulent spots evolve as slugs or puffs

we numerically simulate only their turbulent core region, modelled with periodic boundary

conditions in streamwise direction. It will be interesting to see whether this will affect the

lifetimes or their distribution. In principle, the detailed analysis of the distribution of life-

times is a task which is (still) much better suited for experiments than for numerics: it is

not necessary to prepare the initial disturbance with highest precision, and the experimental

observation time is of the order of
�

minute for the run and at most
�	�

minutes for the water

to come to rest in the head-tank, whereas the numerical calculation of a single trajectory

takes up to
� �

days on a 
 � 
 GHz Pentium IV processor. Sensitivity measurements on the

other hand are much better suited for numerical investigations due to the high demands on

the accuracy of the initial flow state for both the laminar profile and the disturbance. But

inspite of these and further differences between numerics and experiment listed in Tab. 7.2

the agreement in key features of the results is notably high.
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laboratory experiment numerical simulation

axial length
� � � puff, slug

� ��� � �

laminar profile �
�
	 �

� �
developed

� �����
developed

type of initial disturbance single jet / six jets uncorrelated

relative error in initial disturbance
�
	
� ��� � � � � �

relative error in Reynolds number
� � � � � � � �

maximal observation time [D/U]
� �	� 
 �	���

real time / run
���

s +
�	�

min
� 
 h. . .

� �
d

Table 7.2: Differences between laboratory and numerical turbulence transtion experiments

The experimental uncertainty in a suction/blowing experiment seems to be of the order of

at least
�
%. With a Lyapunov exponent of

� � ���
the flow field cannot be controlled for more

than about
�	�

time units. If the disturbance develops into a localized turbulent patch (puff or

slug, see chapter 3) the envelope of the patch might be under control for much larger times.

These large scale patterns are beyond the scope of the present analysis.

When approaching the transition boundary no simple scaling can be observed. A simple

example in Appendix C shows that this is not necessarily due to the high dimensionality

of the problem but rather a hint on the complex boundary structure where the stable and

unstable manifolds are twisted in a complicated, irregular manner.

All observations are in agreement with pipe flow experiments as well as with observations in

plane shear flows and confirm the universal character of the turbulence transition scenario in

shear flows that are not governed by linear instabilities:

First unstable exact coherent states appear in phase space below transitional Reynolds num-

bers. With increasing Re the number of coherent states like TWs and periodic orbits is

expected to grow fast. Together with their growing number of homoclinic and heteroclinic

connections they span a complex network, a chaotic repellor, which is then able to support a

turbulent dynamics for a long time.



Appendix A Eigenvalue analysis

To verify the spectral accuracy of our code we here present tables of eigenvalues to the

linearized Navier-Stokes equations at
��� � �	���	�

. To identify the spatial structure of the

least stable linear modes in pipe flow visualizations of selected eigenfunctions are shown.

A.1 Eigenvalues

Only those leading digits of the eigenvalues are given that coincide with literature values [48].

In this way we get a lower limit for our numerical accuracy of the linearized problem. Note

that apart from the ( � =0,



=0)-mode all eigenvalues come in pairs (real and twice degenerate

for



=0, complex conjugate else).

Eigenvalues are reproduced with spectral accuracy of up to 12 decimal places with 64 Leg-

endre polynomials used for the radial discretization (see Tab. A.1, A.2, A.3). There are two

factors limiting the accuracy: for the first leading eigenvalues the accuracy is mainly limited

by the finite number of digits available in double precision arithmetic whereas for higher

eigenvalues it is mainly limited by the finite spectral resolution.

Table A.1 gives the eigenvalues for the streamwise and azimuthally invariant modes. The

first column shows the eigenvalues for the constant-pressure-drop calculation, the second

column is for the constant-flux case. Fixed volume flux changes the eigenvalue spectrum

of the (0,0)-mode only. In this case all eigenfunctions with nonvanishing axial component

are affected and only those. The eigenvalue of the least stable eigenfunction is changed to

zero, for instance. This is because it only consists of an axial component which is purely

parabolic, so it is immediately absorbed by a change in the axial pressure drop. For the case

of fixed volume flux we do not have literature data, and we have chosen to show the first 12

leading digits as we expect about the same accuracy as in the unconstrained case.
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� =0, � =0;
�������	�

const. � =0, � =0; flux=const.

1 -0.001927728654 0.000000000000

2 -0.004893990214 -0.004893990214

3 -0.0101570874478 -0.008791538809

4 -0.01640615210723 -0.016406152107

5 -0.0249623355969 -0.023616666456

6 -0.034499817965 -0.034499817965

7 -0.0463467614754 -0.045006903098

8 -0.059173588937 -0.059173588937

9 -0.07431076787255 -0.072973397694

10 -0.0904272180909 -0.090427218091

11 -0.1088544509774 -0.107518373150

12 -0.1282606350342 -0.128260635034

13 -0.1499778428393 -0.148642526686

14 -0.1726738136706 -0.172673813671

15 -0.1976809565519 -0.196346121179

16 -0.2236667425409 -0.223666742541

17 -0.2519637982613 -0.250629298821

18 -0.2812394159789 -0.281239415979

19 -0.3128263711585 -0.311492098465

20 -0.3453918309236 -0.345391830924

Table A.1: Eigenvalues for the 	 =0, 
 =0 mode. The first column gives the values for the uncon-

strained problem. The second column shows the eigenvalues for the system with fixed volume

flux.

� =1, � =0 � =2, � =0 � =3, � =0

1 -0.00489399021 -0.008791538 -0.0135688219

2 -0.0087915388 -0.0135688219 -0.0191943136

3 -0.0164061521 -0.0236166663 -0.03175919084

4 -0.0236166663 -0.03175919085 -0.040809265355

5 -0.03449981796 -0.04500690295 -0.0564651499

6 -0.045006902955 -0.05646514994 -0.06885660345

7 -0.059173588937 -0.0729733963 -0.087733618

8 -0.072973396381 -0.08773361808 -0.10344075328

9 -0.090427218091 -0.1075183721 -0.1255751331

10 -0.107518372097 -0.12557513314 -0.14458704546

11 -0.128260635034 -0.1486425215 -0.1699932252

12 -0.148642521512 -0.16999322529 -0.19230443298

13 -0.1726738136 -0.19634611723 -0.2209893628

14 -0.196346117238 -0.22098936279 -0.2465967917

15 -0.22366674254 -0.2506292846 -0.278564248

16 -0.250629284603 -0.27856424829 -0.3074660355

17 -0.281239415979 -0.3114920878 -0.342718253

18 -0.311492087829 -0.34271825329 -0.37491320196

19 -0.345391830923 -0.3789345626 -0.4134515895

20 -0.378934562605 -0.41345158953 -0.4489388946

Table A.2: Eigenvalues for streamwise wavenumber 
 =0
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� =0, � =1 � =1, � =1

1 -0.0519731112828 + i 0.9483602220505 -0.0412756447 + i 0.9114655676

2 -0.0519731232053 + i 0.948360198487 -0.06161901800 + i 0.3709350926

3 -0.103612364039 + i 0.896719200867 -0.0883460251 + i 0.95820554298

4 -0.103612889227 + i 0.8967204441 -0.088870156 + i 0.854788817

5 -0.112217160388 + i 0.412396334210 -0.11687715358 + i 0.21680386299

6 -0.121310028246 + i 0.2184358147279 -0.13749034 + i 0.79969946

7 -0.15522016529 + i 0.8450717997 -0.144346144486 + i 0.910037309

8 -0.15525266720 + i 0.84508066812 -0.186433 + i 0.7453043

9 -0.2004630477669 + i 0.376242360025 -0.19583946 + i 0.54931158

10 -0.206476811 + i 0.793784129 -0.19864610 + i 0.86074946

11 -0.2068928490 + i 0.7934407990 -0.204955511 + i 0.376431414

12 -0.2274656214 + i 0.6262969981 -0.23433 + i 0.69346232

13 -0.25731571584 + i 0.50203731043 -0.25180909 + i 0.50264251

14 -0.258508467 + i 0.741757503 -0.2521234 + i 0.8108448

15 -0.25888061 + i 0.7470464672 -0.270458582 + i 0.325130263

16 -0.29752650276 + i 0.34739229185 -0.28964 + i 0.6550

17 -0.301051765 + i 0.610862594 -0.305126 + i 0.760702

18 -0.30816630 + i 0.69260621 -0.30901 + i 0.60793

19 -0.3243181 + i 0.7103043 -0.34479 + i 0.587438

20 -0.3705329 + i 0.67457959 -0.35914 + i 0.71123

� =2, � =1 � =3, � =1

1 -0.06028568955 + i 0.88829765875 -0.08325397694 + i 0.86436392104

2 -0.08789898037 + i 0.352554927087 -0.105708407362 + i 0.34640195338

3 -0.1088383407 + i 0.8328933609 -0.11687792134 + i 0.214919869761

4 -0.11200161615 + i 0.939497219531 -0.1323924331 + i 0.8097468023

5 -0.115514380221 + i 0.215491816529 -0.13603545952 + i 0.91671917468

6 -0.15810861 + i 0.77858498 -0.182036372 + i 0.755879315

7 -0.16729404595 + i 0.8906185726 -0.190639836903 + i 0.8674136555

8 -0.207591466 + i 0.725077139 -0.2127794121 + i 0.37123649827

9 -0.20931432998 + i 0.37502653759 -0.23181786 + i 0.70300722

10 -0.2214747313 + i 0.8409753749 -0.244111241 + i 0.551731632

11 -0.2282286376 + i 0.5516823128 -0.2444955726 + i 0.817569997

12 -0.249803052 + i 0.5008719091 -0.251142783 + i 0.499292178

13 -0.25796791 + i 0.67522075 -0.2619068832 + i 0.36144947997

14 -0.26313897737 + i 0.34209716626 -0.2851531 + i 0.655473

15 -0.275037018 + i 0.790895108 -0.29784493 + i 0.76744555

16 -0.30889763 + i 0.6027732 -0.30736554 + i 0.5978281

17 -0.32819903 + i 0.74092549 -0.3468856 + i 0.6237010

18 -0.3321112 + i 0.6400873 -0.3509874 + i 0.71809663

19 -0.3430168 + i 0.6141604 -0.3762043 + i 0.652416

20 -0.3829978 + i 0.6929646 -0.4110346 + i 0.677885

Table A.3: Eigenvalues for streamwise wavenumber 
 =1
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A.2 Eigenfunctions

For streamwise invariant modes (



=0) the eigenfunctions are real and directly correspond

to a velocity field of which a cross-section is visualized (as before) with color-coding for the

axial component and arrows for the in-plane motion. For the sake of clarity of the in-plane

pattern an optimal scaling of the arrows has been chosen for each mode. For the streamwise

dependent modes (A.5,A.6) only the velocity field corresponding to the real part has been

visualized, which is sufficient to see the spatial structure of the mode.

EV 1 EV 2

EV 3 EV 4

EV 5 EV 6

Figure A.1: Visualisation of the first six eigen-

vectors (EV) of the linearized Navier-

Stokes operator at
��� � 
 ����� for

the streamwise and azimuthally invari-

ant problem: (0,0)-mode. For the eigen-

values see table A.1.

EV 1 EV 2

EV 3 EV 4

EV 5 EV 6

Figure A.2: Least stable eigenfunctions for

the (1,0)-mode. For the eigenvalues see

table A.2.
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EV 1 EV 2

EV 3 EV 4

EV 5 EV 6

Figure A.3: Least stable eigenfunctions for

the (2,0)-mode. For the eigenvalues see

table A.2.

EV 1 EV 2

EV 3 EV 4

EV 5 EV 6

Figure A.4: Least stable eigenfunctions for

the (

 � � )-mode. For the eigenvalues see

table A.2.
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EV 1 EV 2

EV 3 EV 4

EV 5 EV 6

Figure A.5: Least stable eigenfunctions for

the ( ��� � )-mode. Streamwise wavenum-

ber is � � � �
. Eigenvectors

�
and 


are wall modes, EV’s ��� 
 � � � � are cen-

ter modes. For the eigenvalues see ta-

ble A.3.

EV 1 EV 2

EV 3 EV 4

EV 5 EV 6

Figure A.6: Least stable eigenfunctions for

the (

 � � )-mode. Eigenvectors

�
and




are wall modes, EV’s ��� � ��
�� and
�

are

center modes. For the eigenvalues see

table A.3.



Appendix B Numerical convergence of travelling waves

For the travelling waves of 
 � symmetry the structures of the velocity field in radial and

azimuthal direction are getting smaller with increasing � like
� � � . The effective resolution in

azimuthal (and streamwise) direction stays the same for all 
 � states as only integer multiples

of the fundamental azimuthal wavenumber � are needed due to the symmetry of the state.

This is in contrast to the radial resolution which can only be improved with considerably

increased numerical efforts. The usual number of independent Fourier modes corresponding

to
�
�
�
� � � � � 
 � � � � � �

is 66. The radial resolution is most critical and it is changed primarily.

Figs. B.1 and B.2 show the changes in the turbulent friction due to the change in resolution.
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Figure B.1: Changes in the turbulent friction factor due to the change in spatial resolution for the � � -
and � 	 -symmetric travelling waves. The � � state hardly changes when the number of Legendre

polynomials is increased from

��

to 
 � . For the � 	 state
� �

polynomials are necessary for

numerical convergence: the lower right frame shows three different radial resolutions with

three different numbers of Fourier modes (in brackets) that overlap.
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The relative radial resolution is getting worse with increasing � and we already observe

difficulties in accurately representing 
�� and 
�� .

In the following we show the amplitude spectra for the travelling waves of 
 � , 
�	 , and


 � symmetry, both for the Fourier modes and for the Legendre Polynomial expansion. No

explicit piling up of energy can be observed at small scales. The 
 � state has shown to be

nicely converged, the highest resolution seems appropriate for the 
 	 state.

1000 1500 2000 2500 3000 3500 4000
Re

0.02

0.03

0.04

0.05

0.06

fr
ic

ti
o

n
 f

ac
to

r

1000 1500 2000 2500 3000 3500 4000
0.02

0.03

0.04

0.05

0.06

36
40
44

C4

2600 2800 3000 3200 3400
Re

0.03

0.04

0.05

fr
ic

ti
o

n
 f

ac
to

r

2600 2800 3000 3200 3400

36
40

C5

Figure B.2: Changes in the turbulent friction factor due to the change in radial resolution from

��

Legendre polynomials up to
� �

for the � � -symmetric travelling waves. The problems with

convergence increase with 	 .
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� � -symmetric travelling wave
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Figure B.3: Log ��� of the maximum amplitude of each Fourier mode for the � � wave
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��� -symmetric travelling wave
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Figure B.5: Log ��� of the maximum amplitude of each Fourier mode for the � 	 wave
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��� -symmetric travelling wave
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Figure B.7: Log ��� of the maximum amplitude of each Fourier mode for the � � wave.
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Appendix C Scaling at a complex boundary:

the Mandelbrot set

The various types of behaviour that can arise when approaching a boundary of basins of

attractions is presented here in a low-dimensional example.

Consider the simple map

 � � 
 � � � , � ��� , where
 � � � � 
 �� � 


�
(C.1)

The set of all those complex 
 -parameters for which the corresponding trajectory (orbit)

� 
 � � that starts in


�
� �

does not escape to infinity is called the Mandelbrot set. For an

introduction to the Mandelbrot set and related problems see [59] and references therein. Let

us define the lifetime of a trajectory by the number of iteration it takes until it first leaves a

circle of radius 
 around the origin, it is then known to tend to infinity. We want to draw the

(loose) analogy between this escape to infinity to the decay of a turbulent trajectory in pipe

flow.

We measure chaotic lifetimes for various complex parameters 
 starting at


� =0. Parameter

values with lifetimes larger than
� �	�

are marked by black dots in Fig. C.1.

-2 -1,5 -1 -0,5 0 0,5
real(c)

0

0,2

0,4

0,6

0,8

1

im
ag

(c
)

Figure C.1: Plane of the complex parameter � (see Eqn. C.1). Lifetimes larger than ����� are marked

by black dots. The black area is a (poor man’s) approximation to the Mandelbrot set. For the

beauty of the Mandelbrot set see, for instance, [59].
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Figure C.2: Lifetimes for real parameters,

����� . Approaching the boundary of the

Mandelbrot set at � � from the left and at

� � � 
 from the right. The boundary region

is magnified in Fig. C.3.
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Figure C.3: Scaling of lifetimes � on the

’smooth’ side of the boundary of the Man-

delbrot set. Lifetimes vs. distance from

the boundary for real parameters � .

In the following we approach the complex boundary of the Mandelbrot set along the hori-

zontal (real) and vertical (imaginary) axis.

Horizontal cut

Choosing parameter values from the horizontal (real) axis, 

���

, we approach the boundary

from the left and from the right, see Fig. C.2. The left (right) threshold is exactly at 	�
 (
��� 
 � )

and the scaling in their neighborhood is magnified in the following.

Approaching from the left, i.e. 

� �

, calculations in quad precision are necessary in order

to reach a maximum lifetime of
� �

on the ’smooth’ side of the boundary. Moving the initial

condition by
� � � 	 � to the right results in an increase in lifetime from

� �
to infinity. Fig. C.3

shows the smooth logarithmic increase in lifetime when approaching the boundary of the

Mandelbrot set.

Approaching from the right, i.e. for 

� �

, the situation changes as now the lifetime di-

verges algebraically as
� � � � 	 � �

. This is due to the tangential approach to the boundary,

cf. Fig. C.1.

Vertical cut

Now we choose parameter values from the vertical (imaginary) axis. Only positive imaginary

parts are needed as the problem has reflection symmetry with respect to the real axis. The

lifetime as a function of the imaginary parameter is shown in Fig. C.4.

There is no longer a single well defined threshold but the lifetime shows a fractal dependence

on the imaginary parameter and self-similarity. This is much closer to the fuzzy stability
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Figure C.4: Lifetimes for ��� � parameters on the imaginary parameter axis. The inset shows a mag-

nification of the region near the boundary of the Mandelbrot set. No clear scaling is observed

for this vertical cut through the parameter plane, the lifetimes show a fractal dependence as a

function of the parameter.

border observed in the high-dimensional pipe flow turbulence transition region.

In summary, the scaling of lifetimes can change dramatically with the direction of approach

to the boundary, especially when approaching on a symmetry subspace (as is the case for

real parameters 
 ). It might, therefore, be interesting to approach the transition region in

pipe flow by different families of initial conditions, especially with ones of highest spatial

symmetry.
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sionen. Diplomarbeit, (2000).



98 REFERENCES

[43] G. Kawahara, S. Kida. Periodic motion embedded in plane Couette turbulence: regen-

eration cycle and burst. J. Fluid Mech., 449, 291, (2001).

[44] M.J. Landman. On the generation of helical waves in circular pipe flow. Phys. Fluids,

pages 738–747, (1990).

[45] A. Leonard, A. Wray. A new numerical method for the simulation of three dimensional

flow in a pipe. In E. Krause, editor, 8th Int. Conf. on Numerical Methods in Fluid

Dynamics. Springer Verlag, Berlin, (1982).

[46] B. Ma, C.W. van Doorne, Z. Zhang, F.T.M. Nieuwstadt. On the spatial evolution of

a wall-imposed periodic disturbance in pipe Poiseuille flow at
��� � �	�	���

. Part 1.

Subcritical disturbance. J. Fluid Mech., 398, 181–224, (1999).

[47] P.A. Mackrodt. Stability of Hagen-Poiseuille flow with super-imposed rigid rotation.

J. Fluid Mech., 73, 153–164, (1976).

[48] A. Meseguer, L.N. Trefethen. A spectral Petrov-Galerkin formulation for pipe flow.

Technical report, Oxford University Computing Laboratory, Oxford, England, (2001).

[49] A. Meseguer. Streak breakdown instability in pipe Poiseuille flow. Phys. Fluids, 15(5),

1203–1213, (2003).

[50] K. Mohseni, T. Colonius. Numerical treatment of polar coordinate singularities. J.

Comput. Phys., 157, 787–795, (2000).

[51] M. Nagata. Three-dimensional finite-amplitude solutions in plane Couette flow: bifur-

cation from infinity. J. Fluid Mech., 217, 519–527, (1990).

[52] M. Nagata. Nonlinear solutions of modified plane Couette flow in the presence of a

transverse magnetic field. J. Fluid Mech., 307, 231–243, (1996).

[53] M. Nagata. Three-dimensional traveling-wave solutions in plane Couette flow. Phys.

Rev. E, 55(2), 2023–2025, (1997).

[54] M. Nagata. Tertiary solutions and their stability in rotating plane Couette flow. J. Fluid

Mech., 358, 357–378, (1998).

[55] E. Nino, C. Serio. Laser doppler velocimetry analysis of transitional pipe flow. Eur.

Phys. J. B, 14, 191–200, (2000).

[56] S. Novopashin, A. Muriel. Is the critical Reynolds number universal? J. Exp. Theor.

Phys., 95(2), 262–265, (2002).

[57] P. Orlandi, M. Fatica. Direct simulations of turbulent flow in a pipe rotating about its

axis. J. Fluid Mech., 343, 43–72, (1997).



REFERENCES 99

[58] E. Ott, C. Grebogi, J.A. Yorke. Controlling chaos. Phys. Rev. Lett., 64(11), 1196,

(1990).

[59] H.O. Peitgen, P.H. Richter. The beauty of fractals. Images of complex dynamical sys-

tems. Springer, (2000).

[60] W. Pfenniger. Transition in the inlet length of tubes at high Reynolds numbers. In

G.V. Lachman, editor, Boundary Layer and Flow Control, pages 970–980. Pergamon,

(1961).

[61] R. Piva. private communication,. (2002).

[62] S.B. Pope. Turbulent Flows. Cambridge University Press, (2000).

[63] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Numerical Recipes. Cam-

bridge University Press, (1989).

[64] V.G. Priymak, T. Miyazaki. Accurate Navier-Stokes investigation of transitional and

turbulent flows in a circular pipe. J. Comp. Phys., 142, 370–411, (1998).

[65] P.K. Ptasinski, F.T.M.Nieuwstadt, M.A. Hulsen, B.H.A.A. v. d. Brule. Experiments in

turbulent pipe flow with polymer additives at maximum drag reduction. Flow, Turbu-

lence and Combustion, 66, 159–182, (2001).

[66] M. Quadrio, S. Sibilla. Numerical simulation of turbulent flow in a pipe oscillating

around its axis. J. Fluid Mech., 424, 217–241, (2000).

[67] G. Reich, H. Beer. Fluid flow and heat transfer in axially rotating pipe. 1. Effect of

rotation on turbulent pipe flow. Intl. J. Heat Mass Transfer, 32, 551–561, (1989).

[68] O. Reynolds. An experimental investigation of the circumstances which determine

whether the motion of water shall be direct or sinuous and the law of resistance in

parallel channels. Phil. Trans. R. Soc., 174, 935–982, (1883).

[69] Y. Rubin, I.J. Wygnanski, J.H. Haritonidis. Further observations on transition in a pipe.

In R. Eppler, F. Hussein, editor, Laminar-Turbulent Transition, pages 19–26. Springer,

(1980).

[70] H. Salwen, F.W. Cotton, C.E. Grosch. Linear stability of Poiseulle flow in a circular

pipe. J. Fluid Mech., 98, 273–284, (1980).

[71] H. Schlichting. Boundary-Layer Theory. New York: McGraw-Hill, (1979).

[72] P.J. Schmid, D.S. Henningson. Optimal energy density growth in Hagen-Poiseuille

flow. J. Fluid Mech., 277, 197–225, (1994).



100 REFERENCES

[73] A. Schmiegel, B. Eckhardt. Fractal stability border in plane Couette flow. Phys. Rev.

Lett., 79(26), 5250–5253, (1997).

[74] A. Schmiegel. Transition to turbulence in linearly stable shear flows. PhD thesis,

Philipps-Universität Marburg, (1999).

[75] H.G. Schuster. Deterministisches Chaos. VCH, Weinheim, (1994).

[76] H. Shan, B. Ma, Z. Zhang, F.T.M. Nieuwstadt. Direct numerical simulations of a puff

and a slug in transitional cylindrical pipe flow. J. Fluid Mech., 387, 39–60, (1999).

[77] F.T. Smith, R.J. Bodonyi. Amplitude-dependent neutral modes in the Hagen-Poiseuille

flow through a circular pipe. Proc. R. Soc. Lond. A, 384, 463–489, (1982).

[78] P. So, E. Ott, S.J. Schiff, D.T. Kaplan, T. Sauer,C. Grebogi. Detecting unstable periodic

orbits in chaotic experimental data. Phys. Rev. Lett., 76, 4705–4708, (1996).

[79] A. Solomonoff, E. Turkel. Global Collocation Methods for Approximation and the

Solution of Partial Differential Equations. ICASE Rep. No. 86-60 (NASA Langley Re-

search Center, Hampton,VA), (1986).

[80] A. Spille. Nichtlineare Stabilitätsanalyse der 3D-Couette-Strömung unter Berück-
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