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1.1 Zebrafish as a model system

Over the last decade, the zebrafish (Danio rerio) has been established as a successful
and popular model organism for studying vertebrate development (Anderson and
Ingham, 2003; Detrich et al., 1999; Eisen, 1996). Zebrafish are easy to keep and
breed, have a relatively short generation time (3-4 months), produce large numbers
of embryos (100-200 per mating) and provide easy access to all developmental
stages due to external fertilisation. The embryos are optically transparent and
develop rapidly. Within three days, all important structures of an adult fish are
established. Since defined strains are available and the sequencing of the zebrafish
genome was started in 2001 by the Sanger Institute, zebrafish are also useful to study
genetics. They present a unique opportunity to study not only embryology but also
genetically inherited diseases and the genetics underlying developmental biology
(Shin and Fishman, 2002), making zebrafish an attractive model system (Neumann,

2002).

In the context of limb development zebrafish offer the new possibility of using a
forward genetics approach in a vertebrate, which allows the discovery of new genes

involved in this process.

As part of this thesis, I analysed pectoral fin formation in a novel zebrafish mutant,

trapped.

1.2 Screening

Already more than two decades ago, the aptness of zebrafish for random mutagenesis
and mutant screening was pointed out (Streisinger et al., 1981) and consequently, a
large scale screening protocol was developed at the Max-Planck-Institute for
Developmental Biology in Tiibingen (Mullins et al., 1994). This protocol was then
employed in a large-scale screen in 1996 (Haffter et al., 1996). In the years 2000/01,
a second large-scale screen, with the aim of reaching saturation and hitting every

gene essential for embryonic development was performed (Aldhous, 2000).

Germ line cells of male zebrafish of the Tiibingen (TU (Haffter et al., 1996) strain

(PO generation) were mutagenised by placing the fish in water containing ENU (1-
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ethyl-1-nitrosourea (Werner, 1919)), a synthetic compound of pH-dependent stability
which causes point mutations in the genome. This most likely leads to GC to AT
transitions, although all types of transitions and transversions are possible (Knapik,
2000). By crossing three week old males to non-mutagenised females, premeiotic
mutagenised germ cells were recovered to prevent mosaic offspring. A classical
three-generation screen (Haldane, 1956) strategy was employed. PO males were
outcrossed to wild type Tiibingen females and an F1 generation of non-mosaic
founder fish, carrying one or more mutations in their germ line were raised. To drive
the mutation to homozygosity, random pairwise matings between founder fish were
performed, resulting in F2 families. Since half of the fish in each of the F2 families
are heterozygotes for any segregating recessive mutation, crosses within the family
will reveal homozygote embryos that display the mutant phenotype. F2 fish were
subsequently visually screened for various phenotypes, including defects in pectoral

fin development.

Heterozygous mutant lines of the Tiibingen strain carrying an interesting phenotype,
presumably due to a recessive point mutation, were then kept, and pectoral fin

mutants brought to Heidelberg.

1.3 Mapping and positional cloning

The process of mapping and positional cloning involves unique issues for each
organism. Success is usually based on experience. The mapping and cloning methods
and facilities used for this dissertation were newly established in the lab in

collaboration with William Norton.

Before embarking on the meticulous and time-consuming process of mapping
(Fishman, 1999), it may be useful to set up complementation crosses of a
heterozygous carrier of an unknown mutation with a heterozygous carrier of (known
or unknown) mutants with similar phenotypes to identify multiple alleles of the same
gene. If the mutations do not complement, i.e. one quarter of the offspring show the
expected mutant phenotype, the mutants should be considered as alleles of the same
gene. However, this test is not fool-proof and occasionally different genes acting in

the same pathway may also fail to complement.
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To identify the gene affected in a zebrafish ENU mutant, the most common mapping
strategy uses SSLPs (single sequence length polymorphisms), CA-repeats whose
lengths are polymorphic with respect to different strains of zebrafish (Beier, 1998;
Postlethwait and Talbot, 1997). A mapping cross is up, outcrossing heterozygous
mutant carriers - in this case of the Tiibingen (TU) strain - to wild type fish of
another — in this case the WIK (Wild India Kalkutta (Rauch, 1997)) strain (PO

generation, cf. Figure 1).

PO == X TS

WIK VI mut/ T
— l

F1 Se== ) ‘o<

mut £ K mut /e
F2 Siblings Mutants
ﬁ ‘@ﬂ—,
Vil kCS mut muts mut
W] AN B
mut /I
no linkage: : :
linkage: : A

Figure 1. Map cross and bulked segregant analysis of a recessive zebrafish mutation.

(Geisler, 2002) WIK/WIK, reference fish; mut/Tii, fish carrying the mutation in Tii background. Band
sizes and intensities of a representative SSLP marker are indicated schematically. In case of no
linkage between the mutation and the marker, the intensities in the mutant and sibling pool are the
same. In case of a linkage, the Tii band is stronger in the mutant pool and the WIK band in the sibling
pool. Only a quarter of F1 crosses consist of two mutant carriers and yield mutant F2 as shown, the
others are discarded.

However, these and all other widely available zebrafish strains are not entirely
inbred. Genetic polymorphisms may be present within a given family of fish and the
strains are not as isogenic as inbred strains of mice. Heterozygous F1 carriers of the
mutation are then identified by multiple random incrossing. As many of the

mutations are homozygous lethal, they are kept as heterozygote carriers. Individual



INTRODUCTION 5

identified F1 carriers are set aside pairwise for ongoing incross embryo collection.
Of these mapping pairs, embryos are collected and then visually sorted into
phenotypically mutant and wild type siblings. According to Mendelian genetics, one
quarter of the embryos should be mutants. Genomic DNA from individual embryos

is then extracted.

The positional cloning approach is based on assessing meiotic recombination
frequencies between the mutation to be mapped and defined SSLP markers of a
known position within the genome. To this aim, linkage analysis with SSLP markers

is performed.

For low resolution or rough mapping, bulked segregant analysis is employed
(Michelmore et al., 1991). Its goal is to locate the linkage group (which equals one of
the 25 chromosomes of zebrafish) - or better rough region of a linkage group - on
which the mutation lies, by scanning microsatellite markers (SSLPs) throughout the
genome. For this study, a set of 192 agarose scorable markers optimised for
polymorphism between the TU and WIK strains were used. About two thirds of the
markers in this set were usually polymorphic. This SSLP set covers the entire
genome (2500cM) (Postlethwait et al., 1994) with an average distance of about 13
cM (centiMorgan, 1cM = 1 recombination event within 100 meioses) between
markers. It has been developed in the lab of Robert Geisler (Geisler, 2002) and
markers have previously been mapped to the meiotic MGH panel (Knapik et al.,
1996), so their location within the genome is roughly known. Pools of DNA
extracted from 48 mutant and wild type embryos each from the same F1 mapping
pair are used to PCR-amplify the SSLPs set using a defined flanking primer pair for
each marker. The products are electrophoretically separated on agarose gels. If an
SSLP is polymorphic for the two strains used, the band size will be different for the
two alleles, since the length of the CA repeats will differ between the strains. Bands
are typically 100-400bp long and the size difference between alleles will be roughly
between 20 and 150bp, which makes it necessary to perform the analysis under high

resolution conditions.

For markers which are not physically close to the location of the mutation and
therefore not linked to it, there will be no difference in the band pattern between

mutants and wild types — both will show the mutant (TU) and wild type (WIK)
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alleles (Figure 1). However, markers which are linked to the mutation, will co-
segregate with it. Without meiotic recombination, the expected result for a marker on
the same linkage group as the mutation would be that mutant pool DNA will show
only the mutant (TU) band. This occurs since the embryos can only be
phenotypically mutant if they are homozygous for the mutation, which was originally
made on a chromosome of the mutant strain (TU). Pools of phenotypically wild type
siblings will show both the mutant (TU) and wild type (WIK) bands, since they are a

mixture of genotypically wild type and heterozygous embryos.

However, as meiotic recombination takes place, part of the F2 chromosome
containing the mutation may actually be of wild type (WIK) origin. And if this part
of the chromosome contains the marker being checked, the wild type (WIK) band
will also show up in the PCR. The closer the marker being tested physically is to the
mutation, the less often a recombination event will occur between the two. So the
weaker the wild type (WIK) band amplified from a pool of mutant DNA for an
individual marker is, the tighter its linkage to the mutation. Since it is not usually
known which size the band should have for any given strain (due to polymorphism
also within strains), the bands amplified by a pair of PCRs on DNA pools from
mutant and wild type siblings (F2) with the same SSLP-flanking primer pair must be
checked for a typical two-band-in-wild type-pool one-band-considerably-weaker-in-

mutant-pool pattern (Figure 1). These will then be recorded as potential linkages.

False-positive linkages are not uncommon, therefore they must be confirmed by PCR
on individual embryos. This also enables the calculation of the distance between
marker and mutation by analysing the recombination rate between the marker and the
mutation. DNA from the same individual embryos which were pooled for bulked
segregant analysis is used. Mutant embryos should show either one (not
recombinant) or two bands (recombinant), while wild type siblings will have two
(heterozygotes) or either one (homozygous wild types or recombinants) of the two

bands, if they are truly linked (Figure 2).

The distance between marker and mutation is calculated as follows:

Distance (cM) = (number of recombinant mutant embryos) x 100

2 x (number of all mutant embryos analysed)
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The number of mutant embryos analysed has to be doubled since each embryo will
represent two meioses and therefore possible recombination events — that of the

father and the mother.

TU WIK
PO * = X —
* Figure 2. Linkage analysis of individual embryos.
(Geisler, 2002) In the heterozygous F1 the mutant Tii (red,
F1 p— - bearing an asterisk indicating linkage with the mutation) and
— — wild type WIK (blue) alleles from the PO generation are
R! meiotically recombined (R!) to the F2 generation. Individual
wild type siblings (S) will have the wild type (blue) allele or be
heterozygous (red and blue), plus some recombinants with the
Tii allele (red). Mutants (M) will have the Ti allele (red). Two
recombinant mutant individuals (red and blue) are represented.
—— — Here, there are two recombinants out of six (17%
F2 recombination, 17¢cM).

However, there are several caveats. First of all, the recombination rates of males is
about 10-15 times lower than that of females, especially close to centromeres and
telomeres, where recombination is generally repressed. The calculations above will
give an average distance which will be the more accurate the higher the number of
embryos that were actually counted and the closer the marker is to the mutation (up
to a limit of about 0.1-0.3cM, where inaccuracy in a too-close-area begins again). It
is also necessary to make sure that F1 parents are truly heterozygous for the marker
in question. Otherwise, only the meioses of mother or father will be counted, and the
number of embryos analysed in the formula above should not be doubled any more.
The distance calculated will be much too low if only the father was heterozygous. To
deal with this problem, F1 fish are regularly fin-clipped and DNA is extracted from
a cut-off piece of the tail fin. Carriers are then genotyped for their allele composition

of the marker being used to calculate the distance.

Another problem is caused by markers which give multiple bands. Band systems of
one to five bands are common. Often it may be difficult to assess which bands are

actually the ones that should be scored and markers will have to be abandoned.
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Also, if the distance between marker and mutation is too high (more than about 5-
10cM), double recombination events will obscure the correct recombination

frequency, making it impossible to calculate distance.

At the same time, missorted wild type embryos can distort the calculations and

appear as false-positive recombinants.

Once the distance between a marker and the mutation has been established, it is
necessary to find out in which direction along the chromosome the mutation lies. To
this aim, SSLP markers on the same linkage group are chosen accordingly (eg. from
the meiotic MGH panel) to define a set of two markers between which the mutation
lies. Since accurate distance calculation can be impaired for the above reasons, it is
recommendable to define a pair of markers which can reliably be said to lie on either
side of the mutation. To this end, the same individual embryos are tested with
different markers. If mutually exclusive recombinants can be found, that is to say, if
embryos can be found which are recombinant for one marker but not the other and
vice versa, it can be assumed that the markers lie on different sides of the mutation.
If they share a set of recombinant embryos, they will lie on the same side, the marker

with less recombinants being closer to the mutation.

However, there are different scenarios in which the decision as to whether two
markers lie on the same or opposite sides of the mutation is not that straightforward.
One problem can again be missorted wild type embryos, which will then occur in
markers on both sides of the mutation as false-positive recombinants. To address this
problem, individual embryos then have to be tested with markers which were
previously proven to definitely lie on different sides of the mutation. If they still
appear recombinant for both, they must be either missorted wild types — or double
recombinants, if the markers are too far apart. Thus, possible recombinants have to
be confirmed, or markers can wrongly be assumed to lie on the same side of the
mutation. Another problem occurs if for one of the markers tested only the F1 female
is heterozygous, for the other marker only the F1 male. Such couples of markers will
never show overlapping recombinants, no matter which side of the mutation they are
on. If it is impossible to find markers for which both parents of a mapping pair are
heterozygous, it is advisable to use markers for which at least the female meioses can

be counted. Since the male recombination frequency is much lower, relying on such
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markers means that 10-15 times more embryos need to be scored until a recombinant

can be found, making a reasonable estimate of the distance virtually impossible.

Once a clear interval containing the mutation is identified, closer markers are sought
to narrow it down as much as possible. This process is called fine mapping. To this
end, markers from the meiotic MGH panel are used to exhaustion and tested for
polymorphism and for which side of the mutation they are on. Several thousand
individual mutant embryos from parents which are heterozygous for the respective
markers have to be collected to refine the distance calculations. The aim of fine
mapping is to get considerably closer than 1cM to the mutation from either side. On
average, 1cM corresponds to 625kb of the zebrafish genome (Postlethwait et al.,
1994). The SSLPs from the MGH panel can then be used to identify the actual
genomic region encompassed by finding them in the zebrafish genome database
(http://ensembl.org/Danio_rerio/), either by annotation or BLAST search of
primer/marker sequences. This will sometimes prove difficult, since the genome is
still patchy in parts and contains a large number of gaps. The genomic sequence
between the closest markers can then be searched for simple repeats using the
RepeatMasker program (http://www.repeatmasker.org), and flanking primers
designed for these. These self-designed SSLP markers will then be tested for
polymorphism and linkage, and typically about 20% of them yield useful results. By
this method, the mutation can be fine-mapped until no further SSLP markers are

available.

Should this region happen to contain sequence gaps, they can be filled by searching
an assembly of sequenced zebrafish BAC (bacterial artificial chromosome) and PAC
(P1-derived artificial chromosome) clones (http://vega.sanger.ac.uk/Danio_rerio/) or,

failing that, by BAC-walking.

The available sequence can then be assessed for possible candidate genes using the
distances calculated between markers and mutation and fitting predicted gene
functions to the mutant phenotype. Candidate gene cDNA will then be cloned and
sequenced from both mutant and wild type embryos to compare the sequence and
look for possible point mutations. Failing that, introns, promoters and enhancers may
also be cloned and analysed. RNA expression patterns and previously known data of

individual genes can be taken into account when looking for possible candidates.
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1.4 The Mediator complex

Much of biological regulation occurs at the level of transcription initiation. Protein-
coding genes contain promoter sequences that are bound by transcriptional activators
and repressors, which then recruit the transcription initiation machinery, consisting
of RNA polymeras II (pol II) and at least 50 additional components. This complex
contains DNA-binding factors, cyclin-dependent kinases (Cdks) and chromatin

modifying enzymes (Lemon and Tjian, 2000).

Pol II itself is a 12-subunit complex in which the largest subunit contains a C-
terminal domain (CTD) composed of a conserved heptapeptide sequence
(YSPTSPS), rich in amino acids that can be phosphorylated. This phosphorylation is
highly regulated and modulates the association of proteins with pol II. Elongating,
transcriptionally active pol II contains a highly phosphorylated CTD (Cho et al.,
1998).

The Mediator complex is a multifunctional key coactivator acting as a bridge
between DNA-binding transcription factors (TF) and pol II, thus conveying
regulatory information from enhancer elements to the basal transcription machinery
(reviewed in (Bjorklund and Gustafsson, 2005; Kim and Lis, 2005; Malik and
Roeder, 2005). It is involved in integrating both positive and negative transcriptional
regulation (Carlson, 1997; Hampsey, 1998; Ito et al., 2000; Kuchin et al., 1995; Song
et al., 1996) and stimulates basal, activator-independent transcription (Baek et al.,
2002; Cho et al., 1998). Moreover, it is important to regulate and control the
phosphorylation state of pol II CTD at Serines 2 and 5 in concert with TFIIH, a
member of the transcription initiation complex (Bjorklund et al., 2001; Park et al.,
2001a). Coactivators are defined as required for function of DNA-binding activators
and by themselves show no site-specific binding (Malik and Roeder, 2000). Distinct
activators can bind simultaneously to Mediator, providing a mechanism for

synergistic functions of activators (Ptashne and Gann, 1997).

Recruitment of Mediator to promoters occurs by binding of TFs to different
activation domains in a chromatin-dependent fashion (Naar et al., 1999). This is
mostly preceded by chromatin-remodeling cofactors with histone acetyltransferase

(HAT) activity like CBP/p300 and p160 making the DNA accessible (Fondell et al.,
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1999; Malik and Roeder, 2000). Yet, Mediator itself can also bind to nucleosomes,
and one of its subunits, Med5 has HAT activity (Bjorklund et al., 2001; Boube et al.,
2002; Zhang and Emmons, 2001).

Pol II is then recruited to the complex, rather than being a stoichiometric component
of it (Park et al., 2001b; Rachez and Freedman, 2001). Mediator can override
transcription factors of the basal machinery in some cases, in others they function
synergistically (Malik and Roeder, 2000).1t does not act instead of other coactivators,

but mostly in concert with them (Malik and Roeder, 2000).

When transcription has been initiated, Mediator and some general transcription
factors remain at the promoter, forming a scaffold onto which pol II and other
components of the transcription initiation complex can reassemble to reinitiate

transcription (Rachez and Freedman, 2001).

Apart from components of the transcription initiation machinery and chromatin
remodelling enzymes, mammalian Mediator has also been copurified with RNA
processing, DNA repair and elongation factors, suggesting a complex involvement in

many DNA-related processes (Cho et al., 1998).

The first Mediator components were identified as suppressors of a yeast pol II CTD
mutant phenotype (Thompson et al., 1993). Mediator complexes of differing
composition were subsequently identified using different purification approaches and
in different species (Malik and Roeder, 2000), but ultimately found to be essentially
conserved as one (Figures 54, 55 appendix) (Boube et al., 2002; Sato et al., 2004).
Consequently, a multitude of names for each subunit and subcomplex exist, which
has recently been attempted to simplify by a unified nomenclature (Bourbon et al.,
2004). There appears to be an intrinsic modular organisation, and the variations
found may not only reflect different purification procedures, but also different
physiological states of the cell (Malik and Roeder, 2000). Thus, the selectivity of
transcriptional control may lie in subtle differences in the particular composition of
Mediator. It may besides be influenced by combinations of activators and the context
of enhancer sequences to which they are bound at the promoters of specific target

genes (Rachez et al., 1999).
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Electron-microscopic 3D-structures of yeast and murine Mediator are remarkably
similar, implicating constraints imposed by the highly conserved shape of pol II, with
which Mediator interacts (Asturias et al.,, 1999; Malik and Roeder, 2000).
Essentially, the up to 30 components of Mediator are divided into three core parts - a
head domain, closest to the CTD and most conserved among species, a less
conserved middle domain, which interacts with other parts of pol II (Jiang et al.,
1998; Malik and Roeder, 2000), and the divergent tail, which is thought to bind the
TFs (Figure 3) (Bjorklund et al., 2001).

Cdk8
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Figure 3. Topological organisation of yeast Mediator.

(Guglielmi et al., 2004) This model was made taking into account direct links between subunits found
in (Guglielmi et al., 2004; Ito et al., 2001; Kang et al., 2001; Koh et al., 1998; Lee et al., 1998; Uetz et
al., 2000).

Upon pol II binding, a conformational change from a compact structure to a form in
which the three modules are wrapped around the globular pol II takes place (Asturias
et al., 1999; Naar et al., 2002; Woychik and Hampsey, 2002). Moreover, human
Mediator has been shown to change shape dramatically depending on which

activator is bound to it (Taatjes et al., 2002). Apart from the core modules, a
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detachable kinase subcomplex, composed of Trap230/Medl12, Trap240/Med13,
cyclinC (cycC) and its cyclin dependent kinase Cdk8, has been identified.

Still, there are some subunits which have not yet found their corresponding match
across the phyla, namely Med2/3/5 in yeast, and Med23-30 as well as the recently
identified Med12L, Med13L and Cdk11 in metazoans. Considering the discrepancy
in numbers, it seems less likely that these subsets perform equivalent functions than
that they represent species- or phylum-specific components added to an ancient

protocomplex (Boube et al., 2002; Sato et al., 2004).

Interestingly, some of these derived subunits (Med28-30) are part of the Mediator
head, which had been proposed as most conserved Mediator module. The others are
part of the middle and tail modules (Med2/3/5), the kinase submodule (MedI12L,
Med13L, Cdk11) or still unassigned.

While some Mediator subunits appear to be universally required for the transcription
of all genes, a number of subunits are dedicated to the regulation of specific genes
(Bjorklund and Kim, 1996; Kwon et al., 1999). The specialised (activator-dedicated)
subunits may fulfil a recruitment function, while a more kinetic, post-recruitment
role could be carried out by a core complex (Malik and Roeder, 2000). Yeast
Mediator subunits have been described to regulate distinct families of target genes of
varying size and compositions (Holstege et al., 1998), while certain submodules are
thought to constitute specialised targets for a subset of activators (Malik and Roeder,

2000).

For example, in yeast, C. elegans and Drosophila, mutations in Med6 are cell-lethal
(Boube et al., 2002; Gim et al., 2001; Kwon and Lee, 2001) as well as Medl7 in
yeast and Drosophila (Boube et al., 2002) and Med21 in mouse (Tudor et al., 1999),
all components of the Mediator head module (Figure 3), suggesting these subunits
are essential for general functions of the Mediator complex. Nevertheless, Med6 is
not required for integrity of the overall Mediator complex, nor for transcription of all

genes in all tissues (Gim et al., 2001).

Mutations in yeast and metazoan Trap230/Med12 (hereafter called Trap230) and
Trap240/Med13, (hereafter called Trap240) on the other hand, are cell-viable yet

organism-lethal, due to their roles in environment-directed cell fate decisions and
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development (Boube et al., 2002; Janody et al., 2003; Yoda et al., 2005). These
subunits are named Trap (thyroid hormone receptor associated protein) after the
specific Mediator complex in which they were identified, characterised by its binding

ability to thyroid hormone receptors and other nuclear receptors (Yuan et al., 1998).

Notably, the C. elegans tail component Med14 is broadly required for transcription
and phosphorylation of Serins 2 and 5 in the CTD, possibly indicating requirement at
an early recruitment/initiation step (Shim et al., 2002), suggesting that the idea of the
head module being most important in this respect may not exclusively hold true.
Moreover, this subunit enhances ligand-dependent androgen receptor activity (Wang

etal., 2002).

To date, little genetic evidence is available on the vertebrate Mediator complex.
Mouse Medl mutants are viable and show specific defects in embryonic
development, cell cycle regulation, cell survival, function of the pituitary-thyroid
axis and a hypoplastic heart. The protein interacts with several nuclear hormone
receptors. Additionally, fibroblasts derived from Med! mutants fail to differentiate
into adipocytes in response to PPARy2 (peroxisome proliferator-activated receptor
gamma 2, a nuclear receptor essential for adipogenesis) (Ge et al., 2002; Ito et al.,

2000).

Medl yeast and C. elegans mutants are also viable, and in C. elegans have a similar
phenotype to those of 7Trap230, both being required for Wnt-dependently
suppressing a Hox (homeobox transcription factor) gene (egl-5) in the postembryonic

neuroectodermal lineage (Zhang and Emmons, 2001).

Knockdown of Medl5 is also not cell-lethal in yeast (Boube et al., 2002) and
Xenopus, there leading to defects in Activin and Nodal, but not BMP, signaling
through Smad transcription factors (Kato et al., 2002). Its specific function in
signalling by these human tumour suppressors suggests it may itself be a tumour

suppressor (Kato et al., 2002).

Concerning the metazoan-only-components, Med24 mutant mice are embryonic
lethal. They also lack the metazoan Med23 and conserved Med16 as well as having
reduced amounts of Cdk8. The other three components of the kinase submodule are

still present. This suggests a stabilising role for Med24 in the interaction of Cdk8
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with CycC, as well as the existence of a Med16/Med23/Med24 submodule (Ito et al.,
2002), which, notably, contains both conserved and metazoan subunits. The residual
complex shows unaltered binding to pol II and various activators. Med24, as Medl1,
interacts with nuclear receptors (Ito et al., 2002; Wang et al., 2002). Med24, Med1
and Trap240 have the same spatiotemporal expression pattern, being ubiquitous, but
almost absent in small intestine and weak in pancreas and skeletal muscle (Ito et al.,

2002).

1.4.1 Trap230 and the kinase subcomplex

The Mediator kinase subcomplex was identified as a part of the Mediator which is
not present in all preparations. It consists of Trap230, Trap240, cyclin C and CDKS8
(Myer and Young, 1998). Cyclins are a conserved family of proteins required for
activation of a class of protein kinases termed CDKs (cyclin dependent kinases).
Originally, cyclins were described as proteins whose abundance oscillated during the
cell cycle (Evans et al., 1983). CycC was originally isolated in yeast assuming it to
be a G1 cyclin, since its expression increases during G1 phase in the mammalian cell
cycle (Lahue et al., 1991). It may be important for regulating cell proliferation, since
it is expressed in reponse to growth factor stimulation and oscillates throughout the
cell cycle (Liu et al., 1998b). However, it is not entirely clear whether this function is
achieved independently of the Mediator complex or through it, by regulating the
level of transcriptional activation. Trap230 and Trap240, the largest Mediator
subunits, named after their molecular weight, seem to be required for the integrity of
the subcomplex — loss of either one will abrogate function of the entire subcomplex,
which is thought to be defined mainly via the cdk8 kinase function (Spahr et al.,
2003).

In contrast to the Mediator core, this subunit has been implicated in transcriptional
repression rather than activation. In both yeast and metazoans, a subset of genes has
been found to be repressed by this subcomplex (Holstege et al., 1998; Samuelsen et
al., 2003). This is a promoter-specific function, and thought to be mediated by
phosphorylation of the CTD through cdk8 and cdk8-stimultaed TFIIH before the
binding of pol II to the transcription initiation machinery, inhibiting this (Bregman et

al., 2000; Hengartner et al., 1998; Nair et al., 2005; Sun et al., 1998). This idea is
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supported by the reduction of basal transcription levels in presence of the kinase
submodule (Spahr et al., 2003). Nevertheless, CTD-independent repression through
Mediator also occurs (Rachez and Freedman, 2001). Additionally, instances where
the kinase subcomplex, or one of its members, may play an activating transcriptional

role, have been described (Chang et al., 2001; Green and Johnson, 2004).

In addition to the CTD, CycC/Cdk8 in yeast phosphorylates other substrates within
the initiation complex that could also influence transcriptional events. It can
phosphorylate cycH, the cyclin partner of Cdk7, leading to inhibition of Cdk7
activity (Akoulitchev et al., 2000), subunits of the TFIID complex, Fal4 or Sip4, to
increase the efficiency of inducing galactose respective glucose-responsive genes,
transcription factors such as Gen4 and Stel2, targeting them for ubiquitin-mediated
degradation (Ansari et al., 2005; Chi et al., 2001), and other activators (Ansari et al.,
2002; Baxter et al., 2004; Borggrefe et al., 2002; Boube et al., 2002; Hengartner et
al., 1998; Lee et al., 2000; Song et al., 1998).

Consistent with the different interaction partners of Mediator copurified aside from
the transcription machinery, cdk/cyclin complexes have been reported to connect
transcription and RNA splicing, suggesting cdk8/cycC may be one of them (Loyer et
al., 2005). Moreover, chromatin remodelling has also been attributed as a function to

the human subcomplex (Cho et al., 1998).

Absence of the kinase subunit coincides with presence of the Med26 subunit in
human cells, therefore distinguishing small and large Mediator (Naar et al., 2002;
Taatjes et al., 2002; Wang et al., 2001). Absence of this subunit has been proposed as
an alternative reason for the repressive function of large Mediator (Akoulitchev et
al., 2000). However, since this subunit is metazoan-specific, this does not provide a
sufficiently good explanation for the observations in yeast. The fact that small
Mediator is still highly active in transcription confirms the idea that the kinase
subcomplex is not required for Mediator function per se (Naar et al., 1999). Also,
free Mediator was found to lack the kinase subcomplex (Myers et al., 1998) and
large Mediator fails to bind the CTD (Naar et al., 2002). Moreover, different Cdk§-
containing complexes have been separated in human cells, suggesting an even further

modular composition of Mediator (Cho et al., 1998; Wilson et al., 1996).
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Recruitment of Mediator to the yeast HO and Drosophila HSF promoters in absence
of pol II supports the view that large Mediator may bind to activators, then, when pol
IT is recruited, the kinase submodule leaves (Figure 4). Lack of the submodule may
have more profound effects on kinetics and timing of transcriptional activation at

specific promoters, rather than on the overall levels of gene expression (Samuelsen et
al., 2003).
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Figure 4. Model of positive and negative regulation by yeast Mediator.

(Bjorklund and Gustafsson, 2005) (A) Mediator (blue) functions as a bridge between gene-specific
activators (ACT; red) and the general pol II transcription machinery (purple) at the promoter.
Activator interactions mainly take place within the tail region of Mediator, whereas contacts with pol
II are localised to the head and middle region. A kinase subgroup of Mediator components — Srb8
(Med12), Srb9 (Med13), Stb10 (Cdk8) and Srbl1 (CycC) — forms a module (pink) that is involved in
negative regulation of transcription. (B) Only Mediator lacking the Srb811 module can associate
with pol II. Gene-specific repressors (REPR; green) interact with specific Mediator subunits (blue)
and recruit the complex to upstream regulatory DNA sequences. Mediator that is recruited by
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repressors contains the Srb8—11 (Medl12-Med13—Cdk8—CycC) module (pink), which prevents
interactions with pol II and the basal transcription machinery (violet).

All members of the kinase subcomplex have been knocked down in yeast, and some
also in metazoans. The general consensus is that they may perform very similar
functions or all just aid Cdk8 kinase activity, since their phenotypes are said to be
indistinguishable (Carlson, 1997; Hengartner et al., 1995). This is supposedly the
case because loss of one subunit leads to disintegration of the whole subcomplex

(Spahr et al., 2003).

Nevertheless, cyclin C and c¢dk8 have special functions in their roles as kinase and
cyclin partners, also outside of Mediator, suggesting the situation may actually be
more complex. Also Trap230 and Trap240, who have repeatedly been reported to
share all functions and phenotypes, have been assigned differential functions, though
this has mostly gone unnoticed. Some of these differences may be due to the analysis
of only one of the two genes in a study, others, however, clearly mark them for

distinction.

In yeast (S. cerevisiae), the components of the kinase subcomplex regulate genes
involed in nutrient stress response, repressing genes required for gluconeogenic
growth (Balciunas et al., 1999; Balciunas and Ronne, 1995; Holstege et al., 1998).
The subcomplex itself is regulated by a stress response pathway under the influence
of Ras, which by elevating intracellular cAMP levels activates a PKA homologue
(Chang et al., 2004; Cooper et al., 1997; Woods et al., 1994). This PKA, which is
inactive in presence of glucose, will mark the subcomplex for degradation, when a
lack of nutrients occurs (Hengartner et al., 1998), by phosphorylation of Trap240
(Chang et al., 2004). Whether Trap230 is also phosphorylated, was not studied, but
phosphorylation of Trap240 seems sufficient. Loss of kinase subcomplex function
derepresses genes important for entry into stationary phase/GO (Spahr et al., 2003).
Therefore, mutants in these genes are also not cell-lethal (Boube et al., 2002).
Another feature of these cells is then the formation of clumps (flocculation) in liquid

culture, suggesting a change in cell affinities (Chang et al., 2004; Nair et al., 2005).

Some genes have been found to be regulated by both Cdk8 and and the head
component Med18 (Holstege et al., 1998). Both Cdk8 and a HDACI1 (histone

deacetylase 1) homologue in yeast mediate transcriptional repression by the Groucho
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homologue Tup-1 (human TLE) through different mechanisms, either on their own
or synergistically (Green and Johnson, 2004). Cdk8 plays a role in both Groucho-
dependent and independent repression, and was also found to act as an activator in
cases (Green and Johnson, 2004). Trap240 was also described to show an HDACI1-
like phenotype, as well as an HMG box protein. Other than above, neither Cdk8 nor
the other two members of the kinase subcomplex showed a similar function in this

study (Larschan and Winston, 2005).

Trap240 plays a role in blocking transcript cleavage when pol II is arrested. For this,
it interacts with the N-terminus of the elongation factor TFIIS on the outer surface of
pol II (Kettenberger et al., 2003). This conserved N-terminus has significant
homology to that of Med26 (Bourbon et al., 2004; Ryu et al., 1999). However, it is
not clear, when an interaction between Med26 and Trap240 should take place, since
they are mutually exclusive in Mediator. Trap240 was found to probably change the
phosphorylation pattern of TFIIS in this context and interact with the SAGA
coactivator (Wery et al., 2004). It is unclear whether this function is specific to

Trap240 or whether Trap230 was just not mentioned.

Similar to S. cerevisiae, Trap230 and Trap240 mutants in S. pombe were described to
show a nutrient limitation and flocculation phenotype, suggesting this may be a
conserved specific process. Expression of only 10 genes was affected, especially

those known to be involved in flocculation (Samuelsen et al., 2003).

In Dictyostelium discoideum, Trap230 and Trap240 were also found to affect a
growth/differentiation transition in a cAMP-dependent signalling pathway upon
nutrient-deprivation (Kon et al., 2000). A functional conservation from yeast to fly,
involving specific effects on cell differentiation, notably in response to cell signalling
pathways, has been suggested for Trap230 and Trap240 (Boube et al., 2002).
Dictyostelium Cdk8 was found to be required specifically for spore differentiation

(Lin et al., 2004).

Trap230 and Trap240 in C. elegans were found to have similar phenotypes and
operate on common pathways. They are expressed ubiquitously and have maternal
contribution, the protein localising to the nucleus. Yet, their loss does not incresase
all gene expression (Wang et al., 2004a; Zhang and Emmons, 2000). The functional

interaction between the two is conserved from yeast to mammals, but the
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subcomplex modulates metazoan-specific genetic pathways in addition to the ones in
yeast. In vulval development, they relay signals downstream of Wnt, via B-catenin,
to block activation of a homologue of the homeobox gene caudal through one of two
known pathways (Zhang and Emmons, 2000; Zhang and Emmons, 2001). This
results in a transcription factor activation cascade, from expression of a homologue
of the Antennapedia homeobox gene (mab-5), to the Abdominal B homeobox gene
(egl-5) and a homologue of the basic helix-loop-helix (bHLH) factor atonal (1in32)
(Zhang and Emmons, 2000).

Trap230 and Trap240 are specifically required for the regulation of genes controlling
asymmetric cell division in a complex with Med23 and Med6 (Yoda et al., 2005). In
this function, they again repress a Hox gene (lin-39) through Wnt signalling via [3-
catenin. The canonical Wnt pathway shares some components with the Wnt pathway
controlling polarity of cell division, suggesting that this pathway may be affected
here. A different function of the Wnt/B-catenin pathway, the posterior migration of
the QL neuroblast, is however not defective in Trap230/Trap240 mutants, indicating

the tissue specificity of Trap230/Trap240 function (Yoda et al., 2005).

For Trap230, a Wnt-independent function in negative regulation of the RTK/Ras
pathway by EGFR was identified. While the glutamine-rich C-terminus of Trap230
is important for B-catenin-dependent gene expression, it is dispensable for inhibition
of Ras-dependent cell differentiation, therefore contributing to the specificity of
protein (Moghal and Sternberg, 2003). The above 1in-39 is a common target for Ras
and Wnt signalling in C. elegans vulval development (Eisenmann et al., 1998;
Maloof and Kenyon, 1998). Trap230 in one study is proposed to act largely on the
Ras pathway rather than the Wnt pathway in this context (Moghal and Sternberg,
2003), consistent with its role in yeast an Dictyostelium. The metazoan-specific
Med23 is also downstream of Ras, through the MAPK pathway, in C. elegans and
human (Boyer et al., 1999; Singh and Han, 1995). Yet, its function is different from
Trap230, suggesting that different Mediator components have selective effects in
promoting different transcriptional regulatory signals, although Trap230 and Med23
interact to control asymmetric cell division (Zhang and Emmons, 2000). Also, it

suggests that, unlike Med23, Trap230 may be activated through PKA
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phosphorylation, as is the case for Trap240 in yeast. This agrees with a proposed
ligand-independent activation of Trap230 (Zhang and Emmons, 2000).

EGFR function is inhibited by two pathways — by the Antennapedia homeobox gene
mab-5 through Trap230/Trap240, and by HDAC complex components (Chen and
Han, 2001; Lu and Horvitz, 1998; Solari and Ahringer, 2000). This is reminiscent of
the situation in yeast, where HDAC1 and the kinase subcomplex have some common

functions (Green and Johnson, 2004).

The intrinsic repressive function of C. elegans Trap240 has been located in one of
four domains conserved to human, which affects specific genes (Wang et al., 2004a).
Neither Trap230 nor Trap240 influence the phosphorylation at Serine 2 of the CTD
(Wang et al., 2004a), indicating that a similarity to a Cdk8 phenotype may rather be

due to a secondary loss of Cdk8 function.

The conserved C-terminus of Trap230 in yeast, Dictyostelium, C. elegans and
Drosophila suggests its importance for their function, and was found to be essential
for relaying Wnt downstream signals. Interestingly, strong and weak Trap230 loss-
of-function mutants have opposite effects on mab-5 expression, which may suggest a

tricky dose-dependent effect (Yoda et al., 2005).

As in C. elegans, Trap230 and Trap240 in Drosophila have similar effects, and,
moreover, were shown to physically interact with one another, forming a submodule.
They are required to regulate specific target genes, including those controlling cell
affinity, possibly through Ci (Cubitus interruptus), although a direct interaction could
not be shown (Janody, 2001). Mutants show misregulation of specific genes during
imaginal disc development (Janody et al., 2003). Trap230/Trap240 do not seem to be
required for cell proliferation but for differentiation, eg. of photoreceptors (Janody et
al., 2004). Reminiscent of the strong and weak C. elegans Trap230 alleles,
conflicting reports exist about the phenotypes elicited by different Trap240 alleles —
some affect wing, eye and antenna, while others seem to be wing and leg-specific

(Boube et al., 2000; Janody et al., 2003).

These discrepancies are further underlined, by Drosophila Trap230 and Trap240
alleles being divergingly described as members of the Trithorax or Polycomb groups

of proteins, sometimes with opposing functions to each other (Bajusz et al., 2001;



INTRODUCTION 22

Gindhart and Kaufman, 1995; Gutierrez et al., 2003; Kennison and Tamkun, 1988;
Papoulas et al., 1998). Mostly, however, they are grouped as trithorax type genes,
which are defined as activators of homeotic genes (Janody et al., 2004; Kennison and
Tamkun, 1988). Notably, this suggests they can have activating function, in
agreement with reports from C. elegans, where they were found to both activate and
repress diverse homeobox transcription factors (Yoda et al., 2005; Zhang and

Emmons, 2000; Zhang and Emmons, 2001).

Trap230/Trap240 in Drosophila function as specific adaptors for signalling pathways
including Notch and Wingless (Wnt). Supposedly, this effect is mediated by physical
interaction with the transcriptional complexes regulated by these pathways,
modulating the association of activating or repressing cofactors at downstream target
genes (Carrera, 2003). Expression of Notch and Wingless themselves is normal
(Janody, 2001). Interestingly, Cdk8/CycC in human cells have been shown to
promote the degradation and turnover of the Notch ICD (intracellular domain) at
target enhancers through phosphorylation (Fryer et al., 2004). The mutant eye
phenotype observed is reminiscent of BMP overexpression, and both eye and wing
discs show misregulation of some, but not all Hedgehog targets in both ways,
indicating gene-specific functions (Janody et al., 2004). Interestingly, one of these
targets is atonal, a bHLH TF which is also ectopically activated in C. elegans
Trap230/Trap240 mutants as a downstream function of Wnt signalling (Zhang and
Emmons, 2000).

Also in the eyes, Trap230 was found to be downstream of unpaired, a secreted ligand
in the JAK/STAT pathway (Bach et al., 2003). Moreover, Trap230 has been reported
to act downstream of the sevenless receptor tyrosine kinase in Drosophila,
suppressing its Ras/RTK mutant phenotype (Maixner et al., 1998). Thus,
Trap230/Trap240 have been implicated in a substantial number of signalling
pathways, and it remains to be seen, which functions may be direct and specific, and

which may result indirectly from crosstalk among the pathways.

Moreover, a cell-cycle regulated function for Trap230 downstream of cyclin E has
been suggested (Brumby et al., 2002), in line with the proposed requirement of
Trap230 for cell differentiation (Janody et al., 2004) and the implication of kinase

subcomplex components in the mammalian cell cycle (Liu et al., 1998a; Liu et al.,
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1998b). CycC has been implicated in the vertebrate cell cycle, specifically an
alternatively spliced smaller chick variant, which shows a pattern of cell cycle
variation similar to cycB2 (Lew et al., 1991; Li et al., 1996; Liu et al., 1998b). CycC
expression can be induced in response to serum or cytokine stimulation. The role in
cell cycle regulation and mediating changes in cell adhesion in vertebrates has been
demonstrated to be Cdk8-independent (Liu et al., 1998a) although the two are

specific interaction partners for each other (Tassan et al., 1995).

Interestingly, this coincides with the cell adhesion phenotype observed in Drosophila
Trap230/Trap240 mutants (Janody, 2001; Treisman, 2001) as well as the flocculation
phenotypes in S. cerevisiae (Hengartner et al., 1998) and S. pombe (Samuelsen et al.,
2003). This leaves the question open of whether it is a direct function of CycC for
which an intact kinase subcomplex is needed, or whether it is an intrinsic function of
another subcomplex component, eg. Trap240, indirectly attributed to CycC. The
intriguing discrepancy is the flocculation phenotype observed also in yeast Cdk8
mutants, which, however, has been attributed to Trap240 phosphorylation (Chang et
al., 2004) and the finding that the cell adhesion function of CycC is Cdk8-
independent (Liu et al., 1998a).

Synergistic genetic interactions between Trap240 and Med17 have been observed in
relaying the activity of a Hoxb5 homologue, indicating a shared function in
specification of adult cell and segment identity within the Mediator complex (Boube
et al., 2000). Med6 mutants show a significant reduction of Trap240 (Gim et al.,
2001). However, Trap230 and Trap240, unlike Med6 and Med17 are not required for
cell proliferation or survival (Boube et al., 2000; Gim et al., 2001; Treisman, 2001).

A differential function for Trap240 as opposed to Trap230 and Medl7 has been
reported concerning a strong interaction with tonally, a protein involved in
posttranslational modification of transcriptional complexes (sumoylation), indicating
that Trap240 may thus be modified, while the other two Mediator components are
not (Gutierrez et al., 2003). Moreover, a link between BEAF32A, with known
chromatin insulator function, and Trap230, but not Trap240, has been described

(Yamaguchi et al., 2001).

The repressive effect of Trap230/Trap240 could be mediated by preventing the

Mediator complex from acting on certain enhancers while promoting its activity on
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others (Janody, 2001). These very large and higly conserved proteins are likely to
present a large number of interaction surfaces or perhaps even exhibit enzymatic

activities (Janody, 2001).

Interestingly, on the vertebrate side, while Trap240 is otherwise known to be
ubiquitously expressed, its expression in newborn mice appears to be almost gone
(Ito et al., 2002). The human protein contains two LXXLL sequences, potential
nuclear receptor (NR) binding sites, suggesting a function in relaying nuclear
hormone signals, as Med1 has (Ge et al., 2002; Ito et al., 1999; Ito et al., 2000). The
phenotype of Med] mutants has been described to resemble that of CycC in yeast
(Balciunas et al., 1999) and Trap230 in C. elegans (Zhang and Emmons, 2001). It is
negatively controlled by CycC-dependent phosphorylation (Balciunas et al., 1999;
Bjorklund and Gustafsson, 2004). Med1 constitutes one of the core subunits to which
the kinase module attaches, namely through Cdk8, which interacts also with Med4
and Med9. An additional interaction is that of Med21 with Cdk8 and CycC (Cho et
al., 1998; Kang et al., 2001).

Recently, three new members of the kinase subcomplex have been identified in
human cells (Sato et al., 2004), Med12L, Med13L and Cdkl11, suggesting they may
take the place of the canonical subunits under certain circumstances. Med13L was
originally identified in human patients suffering from a congenital heart condition
including looping defects. Subsequently, it was cloned from human and mouse and
found to be rather ubiquitously expressed, but most strongly in heart and skeleton.

This protein has conserved LXXLL putative NR binding sites (Musante et al., 2004).

Other interactions identified for the kinase subcomplex include a binding of Trap230
to the RTA transcription activator of Kaposi's sarcoma-associated herpesvirus
(KSHV). This protein acts as a molecular switch for lytic reactivation of the virus
and is essential in its life cycle. It also interacts with Med6, Med16, Med17, Med21
and Med30, but most strongly with the C-terminal domain of Trap230. The resulting
complex includes the whole large Mediator and the RTA, as well as a chromatin

remodelling complex (Gwack et al., 2003).

Most importantly for this work, the C-terminal domain of human Trap230 has also

been found to interact with the transcription factor Sox9 (Zhou et al., 2002).
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1.5 Sox9

The precise control of transcription is of central importance during the development
of multicellular animals, as it leads to cell type-specific gene expression required for
differentiation. Sox (Sry-type high-mobility group box) proteins are a large family of
transcription factors implicated in the control of a variety of developmental processes
not only in vertebrates, but also in C. elegans and Drosophila (Pevny and Lovell-
Badge, 1997; Wegner, 1999). They often play roles in determining early cell fates
and are suggested to act in a dose-dependent manner (Pevny and Lovell-Badge,
1997). They are characterised by the presence of a single HMG (high mobility
group) box, a high affinity DNA-binding domain of 70-80 amino acids, which also
contains a nuclear localisation signal (Wegner, 1999), and by their homology to
SRY, the mammalian testis-determining factor (reviewed in (Pevny and Lovell-
Badge, 1997; Wegner, 1999). Among HMG box proteins, DNA binding sequence
specificity is unique to Sox and TCF/LEF (Laudet et al., 1993), to which they are
closely related (Pevny and Lovell-Badge, 1997). Sox proteins show highly restricted
tissue distribution (Ner, 1992).

They display properties of both classical transcription factors and architectural
components of chromatin (Pevny and Lovell-Badge, 1997). Upon binding to the
minor groove of DNA (unusually for a transcription factor) at enhancers distal to the
basal promoter, they cause DNA to bend at an acute angle (Ferrari and Kosher, 2002;
Giese et al., 1992).

Five groups of Sox proteins are distinguished, termed A-G (Wegner, 1999). Group E
features a conserved region of 36 amino acids N-terminal of the HMG box and a

transactivation domain at the far C terminus (Figure 5) (Wegner, 1999).

Group E

Y W R Sox9
36aa T9aa Tdaa thaa
T8% 91% 61% 41%

Figure 5. Conserved regions within SoxE proteins.

(Wegner, 1999) black HMG box, TA transactivation domain, percent conservation between vertebrate
members of this goup.
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It consists of three members, Sox8, Sox9 and Sox10. Sox§ is expressed in the neural
crest and its derivatives, in the pituitary and gonads (Cheung and Briscoe, 2003;

Wegner, 1999).

Sox10 is expressed in the premigratory and migrating neural crest, restricted to its
derivatives of the glial lineage — early in the embryonic PNS (peripheral nervous
system), and late in the embryonic CNS (central nervous system), pigment cells,
enteric nervous system and Schwann cells (Barembaum and Bronner-Fraser, 2005;
Wegner, 1999). Sox10 is found to undergo nucleocytoplasmic shuttling, for which
Sox9 contains identical regulatory sequences. Thus, regulating the balance of nuclear
import and export might provide a mechanism to regulate transcriptional activity of

these proteins (Rehberg et al., 2002).

Sox8 and Sox10 expression patterns overlap and functional redundancy among Sox E

genes in the neural crest has been suggested (Cheung and Briscoe, 2003).

Expression of Sox9 is already found maternally (Spokony et al., 2002). During
embryogenesis, Sox9 is expressed in premigratory neural crest, prior to other markers
(Cheung and Briscoe, 2003), in mesenchymal condensations and later on in
chondrocytes, in the kidney, sex-dysmorphically first in the genital ridge of both
male and female, later only in the adult testis, notochord and epithelial placodes (otic
and nasal), tubular heart structures and the CNS (Kent et al., 1996; Morais da Silva et
al., 1996; Ng et al., 1997; Wagner et al., 1994; Wegner, 1999; Zhao et al., 1997).

A Sox9 homologue in Drosophila has been identified, named Sox/00B. It is also
expressed male-specifically at the time of initial gonadal formation, as in vertebrates.
This is a strikingly conserved pathway controlling gonad sexual dimporphism

(DeFalco et al., 2003).

Due to the additional genome duplication at the base of the teleost radiation,
(Amores et al., 1998; Meyer and Schartl, 1999; Postlethwait et al., 1998; Taylor et
al., 2001; Van de Peer et al., 2002) followed by nonfunctionalisation, zebrafish retain
duplicate orthologs of about 30% of tetrapod genes (Postlethwait et al., 2000).
Subfunctionalisation may preserve duplicate genes (Force et al., 1999; Stoltzfus,
1999) and ancestral functions may assort to different duplicate copies. Therefore,

zebrafish have two Sox9 co-orthologs: Sox9a and Sox9b (Chiang et al., 2001).
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Functional analysis indicates that these two Sox9 orthologs have partitioned the
various functions of the ancestral Sox9 gene, leaving each with a subset of the
original functions (Yan et al., 2002; Yan et al., 2005). This subfunctionalisation
appears to be achieved at the level of transcription, as Sox9a and Sox9b are expressed
in largely complementary domains that together approximate the expression of Sox9
in tetrapods (Cresko et al., 2003; Spokony et al., 2002; Wright et al., 1995; Yan et
al., 2002). A phylogenetic tree for Sox9-related genes (Sox E group) can be found in
the appendix.

There are substantial differences among expression and function of Sox genes
throughout vertebrates. In chick, for example, Sox4, L-Sox5 and Sox11 also occur in
neural crest progenitors and derivatives, while this is not the case for zebrafish Sox11
and has not been studied for Sox4 and L-Sox5 in the fish. Concerning members of
the SoxE group, Sox§ is not expressed in the zebrafish neural crest, in contrast to
mouse and chick, and Sox9a and b do not appear to be expressed in the heart, other
than in mouse and chick. Zebrafish Sox10 is also different in that it is not expressed
in pharyngeal arches, yet in the pectoral fin bud and otic placode. Nevertheless,
common domains of Sox9 expression are the neural crest progenitors and pharyngeal
arch crest derivatives, and for Sox/0 the neural crest progenitors, PNS, pigment cells
and enteric ganglia, which zebrafish share with other vertebrates (Hong and Saint-

Jeannet, 2005).

Sox9 plays an important role in sex determination. Interestingly, in zebrafish gonads,
Sox9b is expressed in the ovary and Sox9a in the testes (Chiang et al., 2001). In

mammals, only the testes express Sox9 (Morais da Silva et al., 1996).

Besides sex determination, for which Sox9 is thought to be the ancestral protein,
rather than SRY (Wegner, 1999), Sox9 plays important roles in development of
neural crest and cartilage/bone, as well as epidermal placode formation. Neural crest
and epidermal placodes (ears, olfactory organs, lens, lateral line and some cranial

ganglia) are vertebrate innovations.

Human patients with mutations in Sox9 suffer from campomelic dysplasia, a skeletal
malformation condition concurrent with renal malformations, absence of olfactory
bulbs, heart and lung defects, deafness, mental retardation and male XY sex reversal.

This disease reflects the Sox9 expression pattern in mouse (Wegner, 1999).
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Neural crest cells are induced at the interface between non-neural ectoderm and
neural plate, with both tissues contributing to them (Liem et al., 1995; Selleck and
Bronner-Fraser, 1995). From there, they delaminate and migrate along specific
routes to many destinations in the vertebrate embryo. They differentiate into a wide
variety of cell types, including neurons and glial cells of the PNS, pigment cells
(melanocytes), smooth muscle of the heart, head cartilage and skeleton (Christiansen
et al.,, 2000). Migratory routes and cell types formed vary with their rostrocaudal
position of origin along the embryonic axis. The frontmost, cranial neural crest,
contributes to facial cartilage and bone as well as neurons and all the glia of the
cranial ganglia. The vagal crest, arising from the caudal hindbrain, contributes to the
heart and, together with the sacral neural crest at the most caudal part of the embryo,
forms the enteric nervous system of the gut. Trunk neural crest gives rise to sensory
and sympathetic ganglia and adrenal medulla. Pigment cells throughout the body

arise from virtually all levels of neural crest (Barembaum and Bronner-Fraser, 2005).

All members of the Sox E group are expressed in the neural crest (Cheung and
Briscoe, 2003), though not equally in all organisms. SoxE proteins can initiate neural
crest formation, but are not sufficient for delamination from the neural tube (Cheung

and Briscoe, 2003).

Growth factor signalling is essential for neural crest induction. An interplay of BMPs
in the non-neural ectoderm, BMP antagonists like noggin and chordin in the
ectoderm (Spokony et al., 2002), fine-tuning of Delta/Notch signalling to inhibit
neurogenesis (Gammill and Bronner-Fraser, 2003), and Wnt signalling inducing the

expression of Fgfs is necessary (Barembaum and Bronner-Fraser, 2005).

Sox9 provides competence for neural crest cells to undergo an EMT (epithelial-
mesenchymal transition), essential for the cells to migrate, and is required for trunk
neural crest survival — in its absence, cells undergo apoptosis prior to or shortly after

delamination (Cheung et al., 2005).

Moreover, Sox9 is essential for cartilage and bone formation. In this context, it
directly activates the cartilage extracellular matrix proteins col2al, collla2 and

aggrecan (Bi et al 1999, Lefebvre & de Crombrugghe 1998).
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1.6 Pectoral fin development

Classically, limb development has been most studied in Drosophila for invertebrates,
chick and mouse for vertebrates and amphibians for regeneration (Capdevila and
Izpisua Belmonte, 2001). Lately, zebrafish (Danio rerio) pectoral fins (Sordino et al.,
1995), being homologueous to tetrapod forelimbs, have also been investigated as a
complementary model system for vertebrate limb development. One of their main
advantages is the possibility to use forward genetics in a vertebrate to identify new

genes involved in the process (Neumann, 2002).

However, it must be taken into account that in contrast to chondrichtyans and
sarcopterygians (to which the tetrapods belong), zebrafish lack the structural
equivalent of the distalmost limb, the autopod (Sordino et al., 1995) and first develop
larval pectoral fins first which later undergo morphogenesis into adult structures

(Grandel and Schulte-Merker, 1998).
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Figure 6. Forelimb outgrowth cascade model.

This is a model of the right hand side of an embryo in dorsal view. A retinoic acid (RA) gradient
along the midline (SO: somites) induces a specifix Hox code in the forelimb field. This will lead to
limb field specification via Wnt and Fgf signalling in the lateral plate mesoderm (LPM). Expression
of thx5 specifies forelimb versus hindlimb. A regulatory Fgfl10/Fgf8 loop between mesoderm and
overlying ectoderm will induce the apical ectodermal ridge (AER), the signalling centre for the
proximodistal axis, characterised by expression of Bmps and dlx2, among others. These processes lead
to outgrowth of the forelimb bud.

Fins and limbs develop from buds formed by lateral plate mesoderm (LPM). The
anteroposterior location of these along the embryonic flank is designated by
combined expression of certain Hox genes, induced by retinoic acid, Fgfs and TGFfs

(Capdevila and Izpisua Belmonte, 2001) (Figure 6). Bud induction is initiated by
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interactions between LPM and more medial axial tissues, namely kidney-forming
intermediate mesoderm (IM) and possibly also somites (Capdevila and Izpisua
Belmonte, 2001). This interaction is supposedly mediated by expression of Fgfs and
Whnts, with Wnt2b/B-catenin mediating an Fgf8/Fgf10 loop between mesoderm and
overlying ectoderm (Figure 6). In hindlimb buds, Wnt8c plays the role of Wnt2b
(Kawakami et al., 2001). Budding is achieved through differential cell proliferation,

bud cells proliferating faster than those around them (Searls and Janners, 1971).

Depending on the expression of specific transcription factors (Pitx, Tbx, Hox genes),

pectoral or pelvic fins will develop (Capdevila and 1zpisua Belmonte, 2001).
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Figure 7. Molecular interactions that coordinate limb growth and patterning along the three
limb axes.

(Niswander, 2003) Proximal—distal (Pr—D) axis is under the control of fibroblast growth factors (Fgfs;
blue) from the apical ectodermal ridge (AER), the anterior—posterior (A—P) axis is under the control of
Sonic hedgehog (Shh; red) from the zone of polarising activity in the posterior mesenchyme, and the
dorsal-ventral (D—V) axis is under the control of bone morphogenetic proteins (Bmps) and Engrailed1
(En1; both in pink) from the ventral ectoderm and Wnt7a (green) from the dorsal ectoderm.
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In the bud, there are organising centres for each of the three-dimensional axes. These
three axes cross-talk to each other: Proximodistal patterning and bud outgrowth are
directed by the apical ectodermal ridge (AER, Fgfs), an epidermal thickening on the
dorsoventral border of the distal bud tip (Figure 7). Anteroposterior patterning is
controlled by the zone of polarising activity (ZPA, Shh), a region in the posterior bud
mesenchyme (Figure 7). The dorsoventral axis is patterned by signals from the non-
ridge ectoderm (Wnt7a, Bmp/Enl) (Figure 7) (Capdevila and Izpisua Belmonte,
2001; Niswander, 2003). Especially important is the epithelial-mesenchymal
interaction between AER and ZPA, which maintain each other’s activity (Capdevila
and Izpisua Belmonte, 2001; Neumann et al., 1999; Ng et al., 1999; Niswander,
2003; Panman and Zeller, 2003).

Members of all major growth factor families are involved in this process: Fgfs are
secreted by the LPM, IM and AER, Bmps and Wnts by the LPM and ectoderm,
Hedgehogs by the ZPA (Capdevila and Izpisua Belmonte, 2001; Niswander, 2003).

Patterning and growth mainly proceed in a proximal-to-distal fashion, whereby there
are two controversial models. Positional information along this axis could either be
specified very early on in individual cells or cell groups (early specification model)
or be acquired in a time-dependent manner by a clock-like mechanism (progress
zone model) (Duboule, 2002; Dudley et al., 2002; Saunders, 2002; Sun et al., 2002;
Tickle, 2003; Wolpert, 2002).

1.7 Aim of this thesis

A novel zebrafish mutant named trapped (tpd), carrying a recessive point mutation
had been identified in a chemical mutagenesis screen performed in Tiibingen in
2000/01 by its pectoral fin phenotype. Two alleles, tpd?**”’ and pd?*”’, were
identified, of which pd?*”’ is the stronger one. Tpd mutants show a complex
pleiotropic phenotype including reduced embryonic pectoral fins, defects in neural
crest derived structures, cartilage and placode formation as well as defects in other

embryonic structures.

The aim of this thesis was the identification of the mutated gene responsible for the

tpd phenotype and an initial characterisation of the mutant, since it is too complex



INTRODUCTION 32

for a fully detailed analysis during the course of this work. One focus was on the
developmental defect of the pectoral fins, since this is a strong phenotype by which
the mutation was originally identified. A second focus became a comparative
analysis of the pd phenotype with that of Sox9a/Sox9b double mutants and the role
of the mutated Trap230/Med12 gene in mediating Sox9 activity.

Both #pd and Sox9a/Sox9b mutants strongly resemble each other and Sox9 activity is
impaired in #pd embryos, indicating that Trap230, a component of the Mediator
transcriptional cofactor complex, is directly required for the activity of Sox9. Finally,
I show that Trap230 functions downstream of Tbx5 and upstream of Fgf24 during
pectoral fin induction, indicating that it also participates in Sox9-independent
signaling events. This is the first genetic analysis of Trap230 in a vertebrate species,
and reveals that vertebrate Trap230 is remarkably specific in mediating Sox9

activity.



2 RESULTS
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2.1 Mapping and cloning the zebrafish trapped
mutant

2.1.1 Rough mapping

In a large-scale genetic screen to identify genes required for zebrafish embryonic
development (Habeck et al., 2002), a number of mutants with defects in pectoral fin
development were isolated. Before mapping, complementation crosses were set up

for mutant lines with similar phenotypes. This showed that the mutant lines tpd”*”’

d?*" are allelic, 1pd”*’”’ being the weaker allele. However, they complement

and tp
the known pectoral fin mutants heartstings (tbx5, (Garrity et al., 2002), dackel (ext2,
(Grandel et al., 2000; Lee et al., 2004), boxer (extl3(Lee et al., 2004; Trowe et al.,
1996), neckless (raldh2, (Begemann et al., 2001; Grandel et al., 2002), and also hand

(hand2, (Yelon et al., 2000), which are all phenotypically related.

For tpd”*”" and tpd**”’, sufficient embryos from four pairs each could be collected
to start rough-mapping them. This was done using SSLP (single sequence length
polymorphism) markers according to (Geisler, 2002) using bulked segregant

analysis. Potential linkages were identified.

According to both the complementation analysis and the fact that similar linkages
were found for both, tpd*”’/tpd?**"° would presumably be two alleles of the same
gene. This novel mutant was named trapped (tpd). Besides the defects in pectoral fin
outgrowth, #pd also has problems in craniofacial development, pigmentation, ear and
eye development as well as slightly U-shaped somites and defective axon guidance
and brain formation. In addition, #pd mutants have a heart edema and a curly-down

body axis.

The phenotypic analysis was mostly pursued with pd”**”” embryos, this being the
more penetrant allele, while for mapping more embryos from pd”*”’ were used,

since more pairs showed polymorphisms in the available markers.

In order to identify the molecular nature of pd, bulked segregant analysis
(Michelmore et al., 1991) was used to map it to linkage group 14 (Figures 8 and 9),
close to marker 220214 at 60.6cM from the top.
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Figure 8. Bulked segregant analysis using marker 220214.

PCR was performed on DNA pools from mutant (mut) and wild
type (WT) siblings from both alleles. Both alleles show potential
linkage to this marker.

2.1.2 Fine mapping

Fine mapping using CA-repeat based markers from the meiotic MGH panel (Knapik

et al.,, 1996), localised the mutation in a region at 49.8cM on linkage group 14

between markers 253264 (0.35 cM away, 5 recombinations in 1288 meioses) and

Z11725 (0.58 cM away, 7 recombinations in 1207 meioses) (Figure 9).
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While 7253264 was identified at 24.7Mb on chromosome 14 in the Zv4 version of the
zebrafish genome (http://ensembl.org/Danio_rerio/), Z11725 was found at 25.8Mb.
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The low recombination frequency corresponded to an apparently incompatibly large
genomic region - 1100kb correspond to 0.93cM between the two markers, while the
average distance corresponding to 1cM is 625kb (Postlethwait et al., 1994), so the
expected distance for 0.93cM would be about 580kb. This genomic region still
contained sequencing gaps which suggested the region may actually be even larger.
It was supposed that the recombination in this region may be suppressed due to

proximity of the centromere (Johnson et al., 1996).

However, detailed analysis of the various gene predictions annotated within this
region finally revealed that part of the region in question had been triplicated in the
genome assembly (Figure 10). This was reported to the Sanger Centre and the

mistake confirmed.
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Figure 10. Annotated genomic region of linkage group 14 in Zv4 containing the putative
mutation.

Assembled contigs in blue in the centre. Homology annotation for predicted protein sequences in
yellow, for mRNAs in red. Red and green circles indicate predicted open reading frames
homologueous to the same set of genes/proteins, which occur in triplicate with different orientations
and lengths.

77495 is another marker identified to lie on the same side of the mutation as Z11725,
also at 49.8cM on the MGH mapping panel. However, it is not to be found in the
genomic zebrafish sequence by either annotation or sequence alignment (BLAST

search). Its exact distance from the mutation remained elusive due to its failure to be
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polymorphic in most of the mapping fish pairs used. Referring back to an assembly
of sequenced zebrafish BAC and PAC clones
(http://vega.sanger.ac.uk/Danio_rerio/), it was possible to identify an assembly of
BAC sequences between 753264 and Z7495, which also contained the two
triplicated genes annotated in the genome sequence between Z53264 and Z11725
(Figure 11). Z11725 was annotated to be further away from the mutation, the
distance between Z11725 and Z53264 now being about 710kb (including two gaps),

a much more plausible number.
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Figure 11. Annotated region containing assembled BAC sequences between Z53264 and Z7495
in VEGA.

Assembled BACs in blue in the centre. The black circle indicates a gap in the assembly. Red and
green circles indicate the same pair of predicted genes found in Figure 10. Note the pink circle
indicating a homology annotation for a short C-terminus of a protein. The red cross indicates position
of marker P1.

By making use of the zebrafish genomic sequence (http://ensembl.org/Danio_rerio/
and http://vega.sanger.ac.uk/Danio_rerio/) available for this interval, new SSLP
markers based on CA and other simple sequence repeats were designed. For one of
these markers, termed P1, no recombinants out of 2894 meioses with 1pd (1pd“*"")
were obtained, indicating that it must lie very close to the /pd mutation (Figure 11,

red cross), but failing to indicate to which side of P1 it had to be.
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Importantly, the region which must include the mutation still contained a sequence
gap, right next to P1. In the worst case the gene containing the mutation could be

present within this gap, which should therefore be closed.

A first hint to tackle this problem was found in form of a tiny bit of a protein
homology annotated right next to the gap (Figure 11, pink circle). Looking back at
the scrambled triplicated genome sequence, a gene prediction with the same
homology annotation could be found, this time containing an almost full-length gene

(Figure 12).
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Figure 12. Annotated genomic region of linkage group 14 in Zv4 containing the putative
mutation.

Red and green circles indicate a triplicated set of similarly annotated gene predictions. Note the pink
circle indicating an almost complete open reading frame of the 3' end found in Figure 11.

The  zebrafish BAC  fingerprinting  contig  (BAC-FPC)  database
(http://www.sanger.ac.uk/Projects/D _rerio/ WebFPC/zebrafish/small.shtml) revealed
a BAC (zK87D3) whose ends aligned nicely with the BACs at either side of the gap.
Therefore a BAC to bridge it was found. However, the shotgunning and sequencing
of this BAC had only just begun, and none of the BAC sequence appeared to
correspond to any part of the predicted sequence of the gene in the gap. The
estimated length of the BAC from the fingerprinting data was about 150kb (Mario

Caccamo, Sanger Centre, personal communication). Considering that its overlap with



RESULTS 39

the flanking BACs (as estimated from the alignment of the zK87D3 BAC end
sequences with them) is about 41kb, the gap should then be about 109kb long. The
sequence of the predicted gene covered 61kb plus an estimated 2kb for the missing 5'
end predicted from homology to human, so this gene appeared to make up about two

thirds of the gap, which was a reasonably good coverage.

2.1.3 Cloning

Since none of the genes annotated in the region was an obvious candidate for causing
the #pd phenotype according to previously published data, we considered several
candidate genes in the region close to P1 and cloned their cDNAs from both wild
type and #pd embryos. I also tested their expression pattern by in situ hybridisation

on wild type and #pd embryos.

While one of the candidates, a gene for a homologue of the multi-drug-resistance
protein MRP5, showed a spatiotemporal expression pattern corresponding to the

mutant phenotypes, no mutation in the cDNA sequence could be identified.

Another of these candidates, Trap230/Med12, was ubiquitously expressed. Although
it was therefore not considered a prime candidate, a difference in cDNA sequence
between wild type and mutants was found (Figure 13). This happens to be the
predicted gene in the gap.

The open reading frame of the predicted cDNA is about 6kb long and was therefore
amplified in several parts for ease of cloning and sequencing (primers used cf.
Materials and Methods). Firstly, polymorphisms and possible PCR artefacts had to
be excluded as misinterpreted point mutations. Therefore, cDNA from several
individual preparations was used, and several PCR reactions and individually picked
clones were compared. Wild type sequences were aligned with sequences of both

alleles. This excluded a large number of possible point mutations.

From the mapping data, the mutation in pd”*’*”’ was expected to lie further 5' in the
affected gene than the mutation in tpd”*’’ (253264 was unfortunately not
polymorphic in any #pd?”*”’ fish, but Z11725 — which is downstream of Trap230 -
had one recombinant in 154 meioses for tpd”**”’, corresponding to 0.65cM and 6

recombinants in 1053 meioses for tpd”**”’, corresponding to 0.57cM).
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For tpd124970

, several cDNA variants were found with various deletions within a range
of three exons in the 3' end of the gene. None of them corresponded to the use of
cryptic splice sites or to otherwise obvious specific point mutations. This allele also
being the weaker one, it was decided to abandon its detailed analysis and concentrate

on tpdl25870

As two different forms of cDNA were found in pd””**”’ that could both be explained
by aberrant splicing at the exon 12/intron 12 junction, the genomic locus of tpd?”*"’
was also sequenced. The splice donor site of intron 12 was found to be altered from

CAgtgag to CAgcgag (capitalized nucleotides belong to exon12; Figure 13).

TRAP230 protein LT | LS [ PQL | OPA
1 450 1590 2015 2155
LG14
mRNA (R0 11 A1 A R &I UEI@ (R IIRIFI S i ui) (g (({ sunlians § 4]
—— 753264 (0.35cM)
——  pg2sero Exon 12 Intron 12 Exon 13
——  P1(<0.08cM)
WT genomic CAGGCCCCTGTGCTCAgTgagtttatat................... 9tgaagCTGAGCCTG
cDNA CAGGCCCCTGTGCTCA CTGAGCCTG
protein Q A P V L T E P
AA 466 AA 467
tpd?57  genomic CAGGCCCCTGTGCTCAgCgagtttatat................... gtgaagCTGAGCCTG
Z11725 (0.65cM) cDNA 1 CAGGCCCCT. CTGAGCCTG
protein 1 Q A P L S L [90AA]*
cDNA 2 CAGGCCCCTGTGCTCAGCGAGTTTATATGA...GTGAAGCTGAGCCTG
protein 2 Q APV LS ETF. *
A B

Figure 13. Molecular characterisation of the tpd**" locus.

(A) pd”™° maps to linkage group (LG) 14, between markers Z53264 and Z11725, close to marker
P1. (B) The tpd”*"® mutation (marked in red) causes an alteration of the splice donor site of intron 12.
Two defectively spliced transcripts are generated as a result of this mutation. cDNAL is spliced at a
cryptic splice site (shaded in yellow) within exon 12. This leads to a frame shift and a stop codon after
93 amino acids. cDNA2 contains unspliced intron 12, leading to a stop codon after 6 amino acids. L:
leucine-rich domain; LS leucine-and-serine-rich domain; PQL: proline-, glutamine-, and leucine-rich
domain; OPA: glutamine-rich domain.

This mutation changes the highly conserved GU found at the intronic 5’ splice site to

GC, and results in two types of aberrant splicing in #pd>*®"

mutants: In type 1
cDNAs, a cryptic splice site (CTgtgct) located 7 bases 5° of the correct splice site is
used, resulting in a frame shift and a stop codon 93 amino acids downstream of this
point (Figure 13). In type 2 cDNAs, intron 12 fails to be spliced at all, and its

translation generates a stop codon 6 amino acids downstream of this point (Figure
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13). In both cases, the tpd”™*"’

mutation results in a severely truncated Trap230
protein, in which more than half the C-terminus is missing (Figure 13). Nevertheless,
this #pd allele may be hypomorphic, as it shows some variability in its phenotype

(Figure 13).

Several attempts were made at cloning the missing 5' end of the gene, using 5' RACE
(rapid amplification of cDNA ends) and degenerate PCR methods making use of a
putative conservation of the ATG region as defined by comparison of the sequences
of Homo sapiens and Fugu rubripes. Nevertheless, the sequence of an estimated
three exons and 142 amino acids at the 5' end remains to be ultimately identified.
The full-length wild type and predicted sequences can be found aligned in the
appendix.

Taking advantage of the fact that the point mutation of tpd®®”’ lies within the
recognition site of the restriction enzyme Estl, this enzyme was used to confirm the
mutation and identify further carriers with the point mutation as SNP (single
nucleotide polymorphism). A band of 282bp comprising the exonl2/intronl2

d125 870

boundary was PCR-amplified from genomic DNA of individual #p mutant and

sibling embryos and then cut with Estl. While two bands are visible for the tpd?>*”’
embryos, corresponding to 25% of the batch, one third of the wild type siblings has
one band (being homozygous wild type embryos) and two thirds have three bands,
showing one cut (mutant) and one uncut (wild type) allele and therefore

corresponding to heterozygous embryos (Figure 14).

@ 400bp

. L 25870
« 300bp Figure 14. The mutation in pd”®”’ as a SNP.

Restriction enzyme Estl cuts genomic pd”*”’ but not

wild type DNA due to the point mutation in its

« 200bp recognition site. het: DNA from a heterozygous embryo,
WT: wild type, tpd: . tpd?*"".

2.1.4 Expression of Trap230

The trap230 transcript is expressed ubiquitously throughout the embryo, and is also

deposited maternally (Figure 15). This is in agreement with the findings in other
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organisms (Janody, 2001; Treisman, 2001; Wang et al., 2004a; Zhang and Emmons,

2000). The sequence used for the in situ probe comprised the 3' end of the gene. No

d?**”" embryos compared to wild type.

dt25870

change in the expression was found in #p

Hereafter, tpd will be used to indicate the #p mutant allele, since phenotypic

characterisation was carried out with this allele.

Figure 15. Trap230 RNA expression.

(A) 4-cell-stage, animal pole to the top. (B)
3-somite stage, lateral view, dorsal to the top,
anterior to the left.

2.1.5 Phenotype of the embryo

The ¢pd mutants were originally identified for their defect in pectoral fin

development (Figure 16).

Figure 16. The #pd pectoral fin phenotype.

Methylene blue-stained (Humphrey and Pittman, 1974) transverse sections at the level of the pectoral
fin buds (arrows and asterisks) through 3dpf wild type (WT) and #pd embryos showing absence of
buds in the mutant.

Figure 17. The overall #pd phenotype.
Wild type and #pd embryos at 3dpf.
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Moreover, defects are apparent in craniofacial development, pigmentation, ear and
eye development, and it shows slightly U-shaped somites, defective axon guidance
and brain formation. In addition, #pd mutants have a heart edema and a curly-down

body axis (Figure 17).

2.1.6 Phenocopy by morpholino injections
To further investigate the possibility that ¢pd disrupts Trap230, a morpholino

oligonucleotide was designed to block splicing of the trap230 transcript at the exon
26/intron 26 splice junction (Figure 18). It is not targeted against the exon-intron
boundary containing the actual mutation because this experiment preceded the

cloning of the point mutation.

GAGATGCTGAGCTGAAAGGCTCAGGCTTTTCCCATCCTGCTGGTCTGGATGATATTGGAGAGGATGAC
ATGGGCTCTAAAAAATCTGGGGGACGTAATGTCTCTATTGAAACAGCCAGTCTGGTGGTTTACGCCAA
GTATGTGCTGAAGAGCATCTGCCACCAGGTGATGATTTTTAGAGGATCTGTATAATCCAAATTACAAT
TACTGTAGAGCTTAAAGTTGTGAGACTATTTTAAGAGATATCTATTCCCAACTACTGGAACACAATTT
GATGTTGTGGAAATGCCTATAATTGTGCTTCTCTGATACTGTAATGGACTAAGGCCACTAAAGTGATT
AATATCAGAATTACTCTGCTCACTTCCAGCGGAGATGAGATGATTTTCATAGGAAAAGCTTAGAAATG
CTGGTTTTAATGTATGAAGCTTGTTTGATTGAGCTGATTTGTGTCTGTGGTTCAGGAATGGGTTGG

Figure 18. The Trap230-morpholino targets the exon 26/intron 26 splice junction.

Partial genomic sequence of zebrafish Trap230 as predicted in the Zv4 genome annotation. Sequences
of exon 26 and start of exon 27 in red, intron 26 in black. The sequence targeted by the Trap230-
morpholino is shaded in yellow.

It was found that injection of this morpholino into fertilised 1-cell stage zebrafish
embryos generates a phenocopy of pd mutants, including absence of pectoral fins,
identical ear, pigmentation and craniofacial defects, heart, brain and somite

phenotype and a curly-down body axis (Figure 19).

Figure 19. Trap230 morphant at 3dpf.

To confirm the functionality of the Trap230 morpholino, an RT-PCR product was
amplified from exons 26 and 27 of both wild type and morpholino-injected embryos.
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Morpholino-injected embryos lack this product, since intron 26 fails to be spliced out

(Figure 20).

WT MO

« 200bp

Figure 20. Trap230 MO effectively targets splicing

« 100bp of the exon 26/intron 26 splice junction.

Trap230 morphants lack the RT-PCR product amplified
from exons 26 and 27, since intron 26 fails to be spliced
out.

Taken together, these data show that the #pd phenotype is due to disruption of
zebrafish Trap230 function.

2.2 Trap230 and Sox9

2.2.1 The Trap230 loss-of-function phenotype
resembles loss of Sox9 activity in many different
tissues

Since several of the phenotypes observed in #pd mutants affect cell types known to

depend on Sox9 function, the characterised phenotypes of zebrafish Sox9a/Sox9b

single and double mutants (Yan et al., 2005) were systematically compared to the
phenotypes present in pd embryos. In Sox9a/Sox9b double mutants, the ear fails to
form, while it is only partially reduced in Sox9a or Sox9b single mutants. One of the
prominent functions of Sox9 is its requirement for the development of epidermal
placodes, like the otic placode (Saint-Germain et al., 2004; Yan et al., 2005). We find
the ear is variably reduced in #pd mutants (Figure 21), similar to Sox9bh mutants,
showing an overall size reduction and smaller otoliths of equal size instead of one
large and one small otolith (Figure 21 A). Additionally, some embryos show three
otoliths instead of two, a phenotype so far only described for zebrafish runx/ mutants

(Kalev-Zylinska et al., 2002), a gene otherwise implicated in hematopoiesis.
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Figure 21. Ear phenotype of #pd mutants.

Ears of WT (A) and #pd (B and C) embryos at 4dpf. Note partial reduction of the overall ear, smaller
otoliths and irregular number in #pd.

In Trap230 morphants, however, the ear is either partially reduced or completely
absent (Figure 22), similar to Sox9a/Sox9b double mutants, suggesting the morphant
gives a stronger reduction of Trap230 function than the #pd mutation, and further

indicating that zpd**”’ is a hypomorphic mutation.

B

Figure 22. Ear phenotype of Trap230
morphants at 4dpf.

(A) reduced size and absence of
otoliths. (B) absent ear.

Sox9 activity is also important for specification of neural crest cells. Pigment cells
derive from the neural crest — in zebrafish three types are known: melanophores,
xanthophores and iridophores. In Sox9b or Sox9a/Sox9b double mutants, there is an
absence of iridophores, which can be detected as bright, shiny cells in darkfield
microscopy. As in Sox9b single mutants or Sox9a/Sox9b double mutants, no

iridophores are detected in #pd mutants (Figure 23).

Figure 23. tpd iridophore phenotype.

Dark field microscopy, revealing iridophores (bright shiny cells), present in WT, but not in tpd
mutants at 4dpf in dorsal view.
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The decision to form either pigment cells or neural derivatives is supposedly made
early during migration. In zebrafish, medially located cranial neural crest cells are
induced by local Wntl and Wnt3a signals to form pigment cells, whereas lateral cells

that are further from the Wnt signals form neurons (Dorsky et al., 1998).

This is mediated through Tcf/Lefl directly activating nacre/mitfa, which is essential
for melanophore differentiation (Dorsky et al., 2000; Lister et al., 1999) and was

reported to be normally expressed in sox9a/sox9b double mutants (Yan et al., 2005).

Sox9 mutants have largely unperturbed pigment cells, since Sox9 is primarily
involved in cranial neural crest development and pigment cells derive from neural

crest all along the embryonic crest (Spokony et al., 2002).

Therefore, melanocytes are present in Sox9a/Sox9b mutants, but are larger than in
wild types, due to dispersed melanosomes even in bright light (Yan et al., 2005).
Melanocytes are similarly enlarged in #pd mutants and in Trap230 morphants (Figure
24). This is a physiological rather than developmental consequence because both
Sox9a/Sox9b and tpd mutants have eye defects and are presumably blind, so that

light cannot be detected to elicit a light-dependent response of the melanophores.

Formation of xanthophores, the third pigment phenotype, is not impaired in either

Sox9 or tpd mutants (Yan et al., 2005) (not shown).

Figure 24. Trap230 loss-of-function melanophore phenotype.

Trunk melanocytes (dark cells, arrows) in wild type embryos contract under influence of light, but not
in tpd mutants and Trap230 morphants.

Sox9b mutants fail to straighten the body axis, resulting in a curly-down tail,
probably due to Sox9b function in the notochord (Yan et al., 2005). A similar curly-
down body axis is observed in 7pd mutants (90% of embryos in pd”*”’, n=272) and

Trap230 morphants (Figures 17 and 19).

Taken together, these results show that Trap230 loss-of-function strongly resembles
zebrafish Sox9a/Sox9b mutants with respect to ear, pigmentation, and body axis

development.
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2.2.2 Trap230 is required for Sox9-dependent neural
crest fates and craniofacial cartilage formation

To further investigate the role of Trap230 in Sox9 signaling, an analysis of neural
crest and cartilage-related phenotypes was perfomed. Craniofacial cartilage derives
from head neural crest. Therefore, the expression of co/2al was examined, which is
expressed during the differentiation of craniofacial cartilage elements, and known as
a direct target of Sox9 binding and activation (Bell et al., 1997; Lefebvre et al., 1997;
Ng et al., 1997; Zhou et al., 1998). In Sox9b and Sox9a/Sox9b double mutants,
col2al expression is strongly reduced, although not completely absent, in the
pharyngeal arches. It is also present in reduced amounts in the eye capsule and otic
vesicle (Yan et al., 2005). A similar reduction of co/2al in these expression domains

is found in #pd embryos (Figure 25).

WT tod

Figure 25. Expression of col2al
at 68hpf in the head, lateral
view.

While either Sox9a or Sox9b single mutants show partial absence of craniofacial
cartilages, the Sox9a/Sox9b double mutant animals lack all traces of pharyngeal
cartilages and the neurocranium (Yan et al., 2005). Likewise, tpd mutants have a
complete absence of both the pharyngeal cartilages and the neurocranium, as well as
total absence of the pectoral fin skeleton (Figure 26). In contrast to Sox9a/Sox9b
double mutants, #pd mutants also lack the entire shoulder girdle including a

cleithrum, hinting to a further function of Trap230.

Figure 26. Alcian
blue stained
cartilages at Sdpf,
ventral view.
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The earliest known response to neural crest induction through Sox9 is expression of
slug/snail zinc finger transcription factors (Nieto et al., 1994; Sefton et al., 1998).
Snail-mediated repression is an important mechanism for the induction of an EMT
and hence for initiating neural crest migration. This is thought to occur through
targeting of cadherins (Christiansen et al., 2000). Loss of Sox9 impairs expression of
slug/snail as well as foxd3, sox10 and other transcription factors in premigratory
neural crest dose-dependently (Bronner-Fraser, 1986; Cheng et al., 2000; Nakagawa
and Takeichi, 1998; Spokony et al., 2002).

In zebrafish premigratory cephalic and trunk neural crest cells of Sox9b single
mutants or in Sox9a/Sox9b double mutants, expression of snailb is reduced, as are

foxd3 and sox10. This can also be seen in pd mutants (Figure 27).

WT WT WT
- e
w -
\ Figure 27. Expression of
snai1b A foxD3 C sox10 neural crest markers at 3
tod tod tod  somites, dorsal view.
s - Qs - S
snai1b B foxD3 D sox10 F

Neural crest cells originating from the hindbrain express dix2a during their migration
into the visceral arch primordia (Akimenko et al., 1994; Ellies et al., 1997). In Sox9b
and Sox9a/Sox9b double mutants, expression of the migratory neural crest marker
dix2a is only slightly reduced, with the strongest reduction in the posterior branchial
arches, indicating that the cells are specified normally and also start to migrate (Yan

et al., 2005).

WT

Figure 28.
Expression of dix2a
at 24hpf in the
pharyngeal arches,
dorsal view.

In tpd mutants, there is a similar reduction of d/x2a, which is also more pronounced

in the posterior arches (Figure 28). Trap230, as Sox9 function, is not essential for
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cranial crest migration, but Sox9b and Trap230 may help determine the size of the

dix2a-expressing cell population (Yan et al., 2005).

Both in mouse Sox9 mutants and in zebrafish Sox9b and Sox9a/Sox9b double
mutants, neural crest cells are induced, but then undergo apoptosis, indicating that
Sox9 acts as a survival factor (Cheung et al., 2005; Yan et al., 2005). A similar
increase of apoptotic cells was detected by TUNEL labeling in pd mutants (Figure
29).

Figure 29. Apoptosis at 4dpf.

TUNEL staining reveals apoptotic
neural crest cells in pd but not wild
type embryos..

An important derivative of trunk neural crest are the neurons and glia found in dorsal
root ganglia (DRG), and in mouse Sox9 mutants, these cell types are strongly
reduced (Cheung et al., 2005). Similarly, no Hu-positive DRG neurons could be
detected in Trap230 morphants, Hu being a neuron-specific RNA-binding protein in
vertebrates (Marusich et al., 1994) (Figure 30).

Figure 30. Dorsal root ganglion neurons at 3dpf (arrows).

Dorsal root ganglion neurons detected by Hu and Isletl (Isll) antibodies at 3dpf are absent in #pd
embryos. Note the circular structure of the ganglia stained with Isletl.
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Staining with Islet-1 (Isl1) as another neuronal marker (Cheung et al., 2005) was

similarly reduced in DRGs (Figure 30).

Altogether, these results show that Trap230 activity is crucial for Sox9-dependent
neural crest development and cartilage differentiation, and that many of the defects
found in #pd embryos are identical to those found in Sox9 mutants. While some of the
phenotypes can be explained by loss of Sox9b activity only, others like the ear and
cartilage phenotypes clearly indicate that functions depending on both Sox9a and

Sox9b synergistically are impaired in #pd.

2.2.3 The role of Trap230 in Sox9-dependent ear
development

The vertebrate inner ear develops from a thickening of the embryonic ectoderm,
adjacent to the hindbrain, known as the otic placode. Otic Sox9 expression, initiated
in the prospective otic placode, a bilateral cell patch adjacent to the cranial neural
crest shortly after gastrulation by Fgf and Wnt signalling (Pfeffer et al., 1998; Saint-
Germain et al., 2004), is required for specification of the otic placode. Patients
suffering of campomelic dysplasia due to mutations in Sox9 are often deaf (Saint-

Germain et al., 2004).

Sox9 is one of the earliest genes expressed in the otic placode, and knockdown of
Sox9 activity in Xenopus leads to complete absence of the ear (Saint-Germain et al.,
2004). pax8 is also expressed very early in the otic placode, and pax8§ expression
fails to be activated following Sox9 knockdown (Saint-Germain et al., 2004).
Similarly, no pax8§ expression is detected in the otic placode of Trap230 morphants
(Figure 31 E and F), even though Sox9a and Sox9b expression are present in the
presumptive otic placode of these morphants, although at partially reduced levels

(Figure 31 A-D).
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pax8

Figure 31. Expression of sox9a, sox9b and pax8 in the otic placode of Trap230 morphants.

Expression of sox9a (A, B) and sox9b (C, D) in the otic preplacode region of wild type (A, C) and
Trap230 morphant (B, D) embryos at 3 somites. Expression of pax8 (E, F) in wiltdype and Trap230
morphant embryos at tailbud stage. Arrows indicate expression domain.

Figure 32. Expression of pax2.1 in the otic placode at 24hpf in wild type and Trap230 morphant
embryos.

In the majority of Trap230 morphants, there is a partial recovery of ear development
later on, leading to a reduced number of cells expressing pax2./ compared to wild

type siblings at 24hpf (Figure 32).

This partial recovery of morphants is likely due to incomplete blockage of trap230
splicing, since a small number of morphants do not have any signs of ear

development (cf. Figure 22 B).

These results show that Trap230 is required for Sox9-dependent activation of pax§ in
the ear and for Sox9-dependent ear development, and further indicate that Trap230 is

required for Sox9 activity.
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2.3 Trap230 is required for Sox9 activity

As tpd mutants are very similar to Sox9a/Sox9b mutants, one can hypothesise that
this could potentially reflect two different modes of regulatory interaction between
Trap230 and Sox9. Since Trap230 is a transcriptional regulator, it might be required
for expression of Sox9a and Sox9b. Alternatively, it might participate together with

Sox9 proteins in regulating Sox9 targets.

2.3.1 Sox9 expression in tpd is mostly normal

To distinguish between these possibilities, first the expression of Sox9a and Sox9b
mRNA in the absence of Trap230 activity were examined. Sox9a expression was
found to be largely normal in #pd mutants compared to wild type siblings, both at

10hpf and at 24hpf (Figure 33 A-D).
WT . tpd WT tod

sox9a A sox9a B sox9a C sox9a D

WT MO ' WT MO

| — .. " /

sox9b E sox9b F sox9 G sox9 H
WT tod m MO
a‘ ? 4
* * vt s
* *
| sox9a J  sox9b | : K sox9b L

Figure 33. Expression of sox9a and sox9b is mostly normal in Trap230 loss-of-function embryos.

Expression of sox9a (A-D, 1, J) in wild type and #pd embryos at tailbud stage (animal pole to the top)
and 24hpf (lateral view). Expression of sox9b (E-H, K, L) in wild type an Trap230 morphant embryos
at 3 somites (dorsal view) and 24hpf (lateral view). Expression of sox9a and sox9b in the pectoral fin
buds is lost in tpd or Trap230 morphant embryos at 24hpf (I-L, dorsal view). Arrows indicate fin bud
expression, asterisks its absence.
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The exceptions to this are the pectoral fin buds, in which Sox9a expression fails to be
activated (Figure 33 C, D, I, J), and the presumptive otic placodes, in which Sox9a
expression is activated, but at reduced levels compared to wild type siblings (Figure
31 A and B). Sox9b expression is also largely normal in Trap230 morphants (Figure
33 E-H), although there is a weak reduction in the neural crest region at 3 somites
(Figures 31 C, D and 33 E, F) and a loss of pectoral fin bud expression at 24hpf
(Figure 33 G, H, K, L). The weak reduction of Sox9a in the otic placode region and
Sox9b in neural crest might be due to the fact that Sox9a and Sox9b activate each
other's expression (Yan et al., 2005), and thus reflects a stimulatory effect of Sox9

activity on its own transcription in these cells.

2.3.2 Sox9 overexpression cannot rescue tpd mutants

Since failure to activate Sox9a or Sox9b expression does not appear to be the cause
of the tpd phenotype, the ability of Sox9b mRNA to trigger downstream target gene
activation in the absence of Trap230 activity was examined next. Since snailb
expression is reduced in Sox9bh mutants, but is upregulated and/or its expression
expanded rostrally in wild type embryos injected with Sox9h mRNA injection (Yan
et al., 2005), Sox9h mRNA was injected into 1-cell stage wild type and #pd embryos,
and its ability to up-regulate snailb transcription in the presence or absence of
Trap230 activity compared. While Sox9h mRNA injection leads to strong
upregulation of snailb expression in wild type embryos, no effect was detected on

tpd embryos, which still show reduced snailb expression (Figure 34).

Similar results were obtained with foxd3 and Sox10, which also fail to respond to
Sox9b overexpression in the absence of Trap230, although the effect observed is not
as strong (Figure 34). Interestingly, the overexpression of Sox9h mRNA seems to
lead to an expansion of neural plate tissue (between the two neural crest expression
domains). However, such a function has so far not been described for Sox9 and the
presumptively expanded tissue of Sox9h-mRNA-injected embryos in this study has
not yet been analysed for expression of neural plate markers to confirm this

observation.
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Figure 34. Overexpression of sox9b-mRNA fails to rescue neural crest marker expression in tpd
embryos.

Expression of snailb, foxD3 and soxI0 is strongly activated in wild type embryos injected with
sox9b-mRNA, but not in sox9b-mRNA-injected #pd embryos. Expression of these markers is reduced
in tpd embryos. Embryos at 3 somites, dorsal view. Note concomitant expansion of neural plate in
sox9b-mRNA injected embryos.

Taken together, these results show that Trap230 activity is not necessary for
transcription of Sox9 genes in most tissues, including many tissues showing a Sox9
loss-of-function phenotype in #pd embryos. Instead, Trap230 is required for Sox9
activity and for activation of Sox9 downstream targets. Importantly, this study not
only confirms the data from mammalian chondrocytes, which indicated that a direct
interaction between Trap230 and Sox9 may be required for Sox9 function (Zhou et
al., 2002), but extends this requirement to activity of Sox9 in a large variety of
tissues and functional contexts, moreover in a vertebrate in vivo system, showing

genetic epistasis.

2.4 A Sox9-independent role of Trap230 in
forelimb development

Since fpd mutants show a complete absence of pectoral fins in the most strongly

affected mutants (Figure 16), it was interesting to determine how Trap230 fits into
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the cascade of genes involved in limb induction. It is well established that both tbx5
mutants (Ahn et al., 2002; Garrity et al., 2002; Ng et al., 2002) and fgf24 mutants
(Fischer et al., 2003) show a similar absence of pectoral fins. Therefore the

expression of these two genes, as well as other genes known to be regulated by them,

in tpd mutants were examined.

Figure 35. The pectoral fin phenotype of zpd mutants.

All embryos shown are 24 hpf, dorsal views, anterior to the top. (A-D, I-L) WT; (E-H, M-P) tpd
mutant embryos. (A, E) wnt2b expression. (B, F) thx5.1 expression. (C, G) fgf24 expression. (D, H)
msx-c expression. (I, M) dix2a expression. (J, N) shh expression. (K, O) erml expression. (L, P) pea3
expression.

thx5 expression (Tamura et al., 1999) is activated in /pd mutants, but thx5-expressing
cells fail to congregate towards the fin bud and stay dispersed in the lateral plate
mesoderm (Figure 35 B, F), as in both thx5 and fgf24 mutants (Ahn et al., 2002;
Fischer et al., 2003; Garrity et al., 2002). fgf24 expression, in contrast, fails to be
activated at all in tpd mutants (Figure 35 C, G). Consistent with this result, Fgf24-
and Tbx5-dependent expression of dlx2a in the fin bud ectoderm (Akimenko et al.,



RESULTS 56

1994; Fischer et al., 2003), and of s/ in the fin bud mesenchyme (Ahn et al., 2002;
Fischer et al., 2003; Krauss et al., 1993; Roelink et al., 1994), are not detectable in
tpd mutants (Figure 35 I, J, M, N). Similarly, pectoral fin activation of erml, pea3
(Raible and Brand, 2001; Roehl and Nusslein-Volhard, 2001), and msx-c (Akimenko
et al., 1995) fails to occur, or is strongly reduced, in #pd mutants (Figure 35 D, H, K,
L, O, P). Since these three genes are normally activated in the absence of fgf24
activity (Fischer et al., 2003), these results indicate that Trap230 functions upstream
of Fgf24 activation, but downstream of Tbx5 during limb development. This is
further confirmed by the absence of a cleithrum, a feature of /bx5 but not fgf24 loss-
of-function (Fischer et al., 2003; Garrity et al., 2002). Consistent with this proposal,
wnt2b, which in zebrafish functions upstream of Tbx5 (Ng et al., 2002), is expressed
normally in #pd mutants (Figure 35 A, E).

While Sox9 activity is important for development of the fin cartilage elements, the
initial induction, patterning, and outgrowth of pectoral fin buds is normal in
Sox9a/Sox9b double mutants (Yan et al., 2005), indicating that the #pd fin phenotype
cannot be attributed to loss of Sox9 activity, and that Trap230 regulates a Sox9-

independent mechanism in forelimb development.

2.5 Other Phenotypes

The tpd mutant has a number of interesting phenotypes, as would be expected from a
component of the Mediator complex. However, a mutation in Trap230 is not
immediately lethal in zebrafish, similar to what has been found in yeast, C. elegans
and Drosophila. Homozygotes survive up to one week and many structures develop

rather normally considering and show surprisingly specific defects.

For completeness and with regard to possible involvement of the Sox9 pathway or
genes/functions affected in development of the pectoral fin, the other phenotypes
displayed by #pd mutants shall be reported here. They have not been analysed in

detail yet, but may raise some interesting aspects.

Beside the described neural crest, cartilage, otic placode, curled body and pectoral
fin phenotypes, tpd mutants have defects in brain, eye formation and axon guidance

defects as well as heart problems, slightly U-shaped somites and edemae at the
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colon/cloaca. Whole mount in situ hybridisation studies also revealed an overall

reduction in the expression of several fibroblast growth factors (Fgfs).

2.5.1 Brain phenotype

The earliest phenotype by which #pd mutants can easily be distinguished while alive

(from around 28hpf), is when midbrain-hindbrain boundary (MHB) formation is
retarded (Figure 36 A, B).

Figure 36. Defective formation of
the MHB in #pd embryos.

(A, B) Lateral view of embryos at
28hpf. Arrow indicates MHB, note
impaired formation in fpd embryos.
(C-F) Expression of fgf3 in the
MHB is reduced in #pd embryos at
24hpf (C, D lateral views, E, F
dorsoposterior views).

Concomittantly, expression of fgf3 in the MHB (Raible and Brand, 2001) is strongly
reduced in #pd embryos at 24hpf (Figure 36 C-F).

The forebrain also appears to be smaller (cf. Figures 17, 19, 36, 37) and the midbrain

ventricle fails to inflate (Figure 37).

Figure 37. Midbrain ventricle
inflation.

Brackets indicate size of the
midbrain ventricle at 24hpf. Note
failure to inflate and reduced size in
tpd embryos (right panel, dorsal
views).
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Together with the lack of cartilage, this leads to an overall smaller head. An almost
complete lack of touch response and hence hatching problems suggest either further

neural disorders or muscular problems (cf. 2.5.4).

2.5.2 Eye and axon guidance phenotypes

The second most prominent phenotype visible in #pd embryos beside the pectoral fin
defect is a defect in eye formation. As well as having slightly fused eyes (cyclopia),
they are reduced in size and misshapen (Figure 38). Moreover, methylene blue
staining of transverse cryosections reveals that lamination of the #pd retina is not

entirely intact, i.e. the different layers cannot be distinguished properly and a

reduction of the lens is visible (Figure 38 B, C).

Figure 38. Eye phenotype of tpd
embryos.

(A) The eyes of tpd embryos at 4dpf
(bottom) are smaller than in wild
type embryos (top) and misshapen.
Embryos are also slightly cyclopic.
(B, C) Methylene blue stained
transverse sections across eyes of
embryos at 3dpf. Note the shape of
the tpd eye, small lens and problems
with proper lamination. GCL:
ganglion cell layer, INL: inner
nuclear layer, IPL: inner plexiform
layer, L: lens, ONL: outer nuclear
layer, OPL: outer plexiform layer,
RPE: retinal pigmented epithelium.

Seven major cell types compose the zebrafish retina. They are arranged in three
major layers of neural retina, interconnected by two plexiform layers (Figure 38 B).
From outer to inner layer, these are: the outer nuclear layer (ONL) containing cone
and rod photoreceptors (Malicki, 2000); the outer plexiform layer (OPL), made up
from synaptic connections between the photoreceptors and bipolar and horizontal
cells (Bilotta and Saszik, 2001); the inner nuclear layer (INL) with amacrine, bipolar
and horizontal interneurons and Mueller glia cells (Hogan, 1963); the inner
plexiform layer (IPL) formed by dendrites of retinal ganglion cells and processes of

bipolar and amacrine cells (Bilotta and Saszik, 2001); and finally the retinal ganglion
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cell layer (GCL) containing retinal ganglion cells (RGCs), which transmit the visual

signals to the brain and are the first neurons to be born in the retina (Malicki, 2000).

tpd

F-actin
2dpf

F-actin
3dpf

F-actin
3dpf

Figure 39. Eye morphology of #pd embryos at 2 and 3dpf visualised by antibody staining.

Sections through the eye, dorsal view. All embryos counterstained with F-actin (red) to visualise
membranes. (A-C) zn5 antibody staining (green) at 2dpf labels ganglion cells (asterisk). Note failure
of tpd embryos to form a proper ganglion cell layer (B, C), though some retinal ganglion cells can be
identified in the posterior part of the retina (asterisk in B). Note also the defasciculated optic nerve
(yellow arrow in C) exiting the retina (compare with D, G). (D-F) zprl antibody staining (green) at
3dpf labels red/green double cone photoreceptors. fpd embryos form a partial outer nuclear layer (E, F
in green) at the back of the eye, but misplaced groups of cone photoreceptors are found, especially in
the posterior half of the eye (light blue arrows in E and F), which form rosettes (arrows an close-ups
in F and I) and disrupt the inner plexiform layer (bright red). Note also the small lens in #pd embryos
(compare D, E). (G-I) zpr3 antibody staining (green) at 3dpf labels rod photoreceptors. A similar
phenotype to cone photoreceptors is seen. Note misplaced and rosette-forming groups of
photoreceptors in H and I (light blue arrows), also disrupting the inner plexiform layer (bright red,
compare G and I).

To further analyse the lamination defect seen in #pd embryos, antibody stainings on
transverse sections of the eye were performed at 2 and 3dpf. Inner surfaces of plasma

membranes were visualised by F-actin staining with phalloidin. This confirmed the
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reduced size of the lens and defective shape of the tpd eye (Figure 39, in red).
Moreover, the IPL can thus be detected, since phalloidin strongly stains it at 3dpf due
to its high plasma membrane density (Figure 39 D, G, in red). In the #pd retina, the
IPL forms, but it does not appear as smooth and gets disrupted, especially in the

ventroposterior half of the eye (Figure 39 E, F, H, 1, in red, arrows).

To detect whether ganglion cells are present in the #pd retina at 2dpf, zn5 antibody
staining was performed. This shows that the GCL is strongly affected in pd mutants
and not formed correctly (Figure 39 A-C, in green, asterisks). RGCs are either not
visible at all or occur as a small disorganised group in the ventroposterior retina

(Figure 39 B-C, in green), where they normally start to form (Hu and Easter, 1999).

The ONL was visualised by labelling of either red/green cone photoreceptors with
zprl antibody or rod photoreceptors with zpr3 antibody at 3dpf (Figure 39 D-I, in
green). Similar to the IPL, the ONL in #pd embryos does form, however, is not as
smooth in shape as in wild type embryos and again the defects occur mainly in the
ventroposterior part of the retina (compare Figure 39 D and G with E, F, H and I, in
green). Notably, photoreceptor cells are found ectopically throughout the
ventroposterior half of the #pd eye, disrupting the IPL, among other layers (Figure
39, E, F, H and I, in green, arrows). Most interestingly, these photoreceptors seem to
aggregate in small groups and form rosettes (Figure 39 F, I, arrows and close-ups),
seemingly around a strongly F-actin expressing centre, reminiscent of the n-cadherin

mutant retina phenotype in zebrafish (Malicki et al., 2003; Pujic and Malicki, 2001).

Another phenotype visible in retinal sections is the defasciculation of the optic nerve
exiting the #pd retina in comparison to wild type embryos (compare Figure 39 D, G
with C, yellow arrow). This is further confirmed by anti-acetylated tubulin antibody
stainings of the axons (Devine and Key, 2003) in 2dpf old embryos (Figure 40,
asterisks), which moreover reveal a defect in guidance of the retinotectal axons,
which misproject anteriorly towards the anterior commissure in #pd embryos (Figure
40, arrow). Whether this is accompanied by a misprojection within the optic tectum,

remains to be seen.
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Figure 40. Axons stained with anti-acetylated tubulin antibody at 2dpf.

In tpd embryos, retinotectal axons misproject anteriorly (arrow) and optic nerves do not form orderly
fascicles (asterisks).

As retinotectal axons are guided to the diencephalon along the optic stalk, a
transitory structure, which is lost in wild type embryos by 3dpf (Figure 41 D), it was
interesting to look at this in #pd embryos. Indeed, the optic stalk in fpd embryos fails
to degenerate (Figure 41 E, arrows) and persists at 3dpf instead, disrupting the RPE,
so that the choroid fissure in the ventral eye does not close, leading to a coloboma
phenotype in #pd embryos, which is even stronger in Trap230 morphants (Figure 40
A-C).

\A/T

Figure 41. Loss of Trap230 leads to formation of a coloboma in the eye.

(A-C) Eyes at 4dpf (MO: Trap230 morphants). Note failure of the choroid fissure (ventrally) to close.
(D, E) Methylene blue stained sections of embryos at 3dpf at the level of the eye. The optic stalk
(arrows) fails to degenerate in fpd embryos.
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Concomittantly, expression of pax2a, a marker for the optic stalk, which is also
required for its development (Macdonald et al., 1997), is still present in tpd embryos
at 52hpf, while it is absent from the optic stalk expression domain of wild type

embryos at that age (Figure 42).

Figure 42. Expression of
pax2a in the optic stalk.

At 52hpf, pax2a expression
in the optic stalk persists in
tpd embryos, while it is gone
in wild types (ventral view).

Expression of fgf3 is downregulated in the #pd optic stalk at 28hpf (Figure 43), a
feature that has been reported to concur with expansion of the optic stalk tissue

(Walshe and Mason, 2003).

Since the ventral eye in fpd embryos appears to be most strongly affected, judging
from the severe coloboma and the disorganised lamination in the ventroposterior
retina, fgfs which are expressed in the ventral eye were analysed by wholemount in
situ hybridisation. This revealed that expression fgf24 and fgf10 in the tpd ventral
retina is lost (Figure 43). Of note, expression of fgf10 in the tpd nasal placode at
24hpf is also lost.

24hpf 30hpf 28hpf
fgred fgf10 fgf10 fgf3

Figure 43. Expression of fgfs in the eye of tpd embryos.

At 24hpf, expression of fgf24 (lateral view) and fgf10 (dorsal view) in the retina (ret, arrow) is
reduced. Expression of fgf3 at 28hpf is lost in the optic stalk (os) of tpd embryos (lateral view).
Reduced expression of fgf10 in the posterior retina of ¢pd embryos (arrow) at 30hpf (lateral view).
Note also loss of fgf10 expression in the #pd nasal placodes (topmost expression domain).
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Since the reduced expression of markers for the ventral retina suggested a possible
dorsoventral patterning defect, expression of thx5, which is a known dorsal marker in
the retina (Lupo et al., 2005), was studied in #pd embryos. There, it was found to be
strongly reduced at 24hpf (Figure 44), indicating that there is no additional

expansion of dorsal fates beside the optic stalk persistence at the expense of ventral

Figure 44. Expression of
tbx5 in the eye.

tissues.
At 24hpf, tbx5 expression in
the eye of #pd embryos is
reduced (dorsal view). Note

WT tpd
1 also the reduced expression

By 50 in the heart domain (below
A the left eye) of tpd embryos.

» A,

2.5.3 Heart and circulation phenotype

The tpd embryos show a heart phenotype reminiscent of tbx5 mutants (Garrity et al.,
2002), with variably small/dysmorphic ventricle, as (Deborah Yelon, personal
communication, Figure 45 B). The heart forms severe edemae, the tube fails to loop
and forms a thin string instead (Figure 45 A). As seen in Figure 44, expression of

tbx5 in the tpd heart domain seems to be reduced at 24hpf.

R/ Figure 45. Heart phenotype of
tpd embryos.

(A) The heart of pd embryos at
3dpf has a string-like shape
(arrow) and shows a severe
edema (lateral view). (B)
Staining of the heart courtesy of
Deborah Yelon. #pd embryos
show a variably
small/dysmorphic ventricle (v,
frontal view). a: atrium.

The heart rate of fpd embryos at 3dpf is reduced compared by 37% (n=32) in pd**’”’

and by 55% (n=25) in pd”*"’ compared to wild type embryos (150-160 beats per
minute, n=20). Bradycardia is another feature of Tbx5 loss-of-function (Garrity et

al., 2002). Moreover, blood islands form in the embryo (not shown).
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2.5.4 Somite phenotype

A lack of touch response and motility was observed in tpd embryos, indicating a
possible neuromuscular problem. Somites in #pd mutants appear slightly U-shaped
instead of having the wild type V-shape (not shown). This is a classical feature of
defects in the Hedgehog pathway (Ingham and Kim, 2005; van Eeden et al., 1996)
and has been related to function of the repressive transcription factor Prdml
(Baxendale et al., 2004; Roy et al., 2001). Alternatively, since sox9a is expressed in

the somites, its function there may relate to the #pd muscle phenotype.

2.5.5 Overall downregulation of Fgf signalling and gut
phenotype

The #pd mutant shows reduced expression of fgfs and downstream genes (erml,
pea3) (Roehl and Nusslein-Volhard, 2001) not only in the pectoral fin buds (Figures
35C, G, K, L, O, P and 46), but also in other structures including the eye (Figure
43), midbrain-hindbrain-boundary (Figure 36 C-F), branchial arches (Figure 47),
nasal placodes (Figure 43) and midgut (Figure 48 A, B). Especially fgf24 is absent in
all expression domains (Figures 35 C, G, 43, 47, 48 A, B). This suggests that further

investigation of the role of Trap230 in Fgf regulation may be interesting.

Figure 46. Expression of
f2f10 is reduced in the fin
~ bud of 30hpf #pd embryos
(dorsal view).
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WT tpd

fgf24 24hpf

Figure 47. Expression of fgfs
in tpd branchial arches.

Expression of fgf24 at 24hpf,
fgf3 at 28hpf and fgf10 at
30hpf is reduced in branchial
% arches of tpd embryos

| (dorsal views).

fgf10 30hpf

Figure 48. Gut phenotype of
tpd embryos.

(A, B) Expression of fgf24 in
the gut (black arrow, dorsal
view) is reduced in tpd
embryos at 24hpf. (C) An
edema can be found at the
colon/cloaca of many #pd
embryos at 3dpf (lateral view,
red arrow).

Apart from the lack of fgf24 expression (Figure 48 A, B) in the midgut, /pd embryos
show another gut phenotype, namely the development of a strong edema at the

colon/cloaca.



3 DISCUSSION
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3.1 tpd encodes a mutation in the Mediator
complex component Trap230

The #tpd mutant was found to encode a splice-site mutation in a zebrafish homologue
of the conserved Mediator complex component Trap230. The Mediator complex is a
general coactivator for most RNA pol II driven transcription in eukaryotes
(Bjorklund and Gustafsson, 2004). While some of its up to 30 components are
conserved from yeast to human, others have so far been identified in only some of
the organisms (Sato et al., 2004). The Trap230 subunit is one of the conserved
components, indicating an important function. The zebrafish Trap230 protein is
presumably 2155 amino acids long. This is an estimation, since the sequence of the
first three exons of the gene is so far only predicted and cannot be identified in any
of the zebrafish sequence databases nor has been possible to clone so far.
Considering the high degree of conservation between the gene structures and protein
sequences of Fugu rubripes and Homo sapiens, however (cf. appendix Figures 51,
52, 56), a high similarity of the zebrafish sequence and gene structure can be

postulated for the N terminus encoded by the first three exons.

Similar to C. elegans and Drosophila Trap230, the expression in zebrafish is found
to be maternal and ubiquitous (Treisman, 2001; Wang et al., 2004a; Zhang and
Emmons, 2000). In zebrafish, the only Mediator components cloned so far are cdk§
and part of cycC (Brabazon et al., 2002), and they appear to be expressed similarly,
although, of note, the published pictures seem to show no expression of cdk§ in the

pectoral fin buds.

The Trap230 protein consists of four domains: a leucine-rich domain (L) comprising
the first 450 amino acids of the N terminus, followed by a leucine-and-serine-rich
domain (LS) up to amino acid 1590, a proline-, glutamine-, and leucine-rich domain
(PQL) of 424 amino acids length and finally a C-terminal glutamine-rich domain

(OPA) starting at amino acid 2015.

The OPA (opposite paired) domain was originally identified in Drosophila proteins.
It consists of (CAX), repeats in the cDNA encoding poly-glutamine (Q) stretches,

where X stands for either G or A and n is <30. They occur in developmentally
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regulated genes, e.g. in Notch, also in mice, where the first description was actually
that of the Trap230 OPA domain (Duboule et al., 1987). Yet there, in contrast to the
fly, they are not apparent in homeobox transcription factors. They have been
speculated to function as hinges/spacers or protein-interaction domains. (Duboule et

al., 1987; Wharton et al., 1985)

The conserved Trap230 OPA domain (Ito et al., 1999) has been described as
essential for Wnt-dependent but not Ras-dependent activity in C. elegans (Moghal
and Sternberg, 2003). In human cells, the domain has shown activation functions in

Gal4-protein fusion assays. However, it was not reported which genes were tested

(Ito et al., 1999).

Such CAG repeats as in Trap230 have been associated with many hereditary
diseases, most notably neuropsychiatric disorders (Ito et al., 1999). Susceptibility to
several neuropsychiatric disorders including autism, depression, schizophrenia, X-
linked dementia and hypothyroidism in humans has controversially been attributed to
a dodecamer insertion in the Trap230 OPA domain (Beyer et al., 2002; DeLisi et al.,
2000; Friez et al., 2000; Hung et al., 2003; Kirov et al., 2003; Michaelis et al., 2000;
Philibert et al., 2002; Philibert et al., 2001; Sandhu et al., 2003; Spinks et al., 2004).
Of note, a possible use for zebrafish in studying the causes of autism has been
proposeded, and Trap230 may be suitable as a possible object for such studies

(Tropepe and Sive, 2003).

The link to hypothyroidism is especially interesting, since other Mediator
components including Medl - which in C. elegans has a similar Wnt-dependent
repressor phenotype to Trap230 (Zhang and Emmons, 2000; Zhang and Emmons,
2001) - are known to mediate ligand-dependent nuclear hormone receptor signalling
including that through thyroid hormones (Ito et al., 2000). Moerover, maternal
thyroid deficiency during pregnancy can have an adverse effect on the subsequent

neuropsychological functioning of the offspring (Haddow et al., 1999).

The Trap230 protein contains two overlapping LXXLL motifs (Ito et al., 1999) near
the N-terminus, known as nuclear receptor recognition motifs (Voegel et al., 1998) in
various coactivators including Medl. This motif interacts with nuclear receptors in

vitro, but has only a modest effect on nuclear receptor function in cells (Ito et al.,
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2002). Fittingly, Trap230 has been described to be associated with androgen receptor
in the presence of testosterone (Wang et al., 2002).

Unlike for Sox9, no subfunction partitioning appears to have occurred for the
members of the Mediator kinase subcomplex in zebrafish. In the Zv5 genome
assembly, only one homologue each for Trap230, Trap240, Cdk8 and CycC could be
identified. However, this also means that Med12L and Med13L still remain to be
found, since they should have come up in such a homology search. Nevertheless, the
fact that it took several years to identify homologues for Mediator subunits in several
species shows that this will not always be easy, as structure may be conserved rather

than sequence.

Still, the severe phenotype of #pd mutants makes it unlikely that there should be
redundancy, although the even stronger morphant phenotype might hint to another
Trap230-like gene being targeted and knocked down. Yet, morpholino
oligonucleotides are known to be highly sequence specific, with a 2 or 3bp mismatch
already abolishing their function — so another target sequence would perchance have
to be essentially identical to the here targeted exon26-intron26 boundary of 7Trap230.
Considering the high level of polymorphism in the zebrafish genome, this is highly
unlikely.

However, the strong Trap230 phenotype may be argued not to be sufficient proof of
no other Trap230-like gene in zebrafish, since loss of one may be enough to abrogate
the function of another, as is seen in the case of Trap230 and Trap240 in Drosophila
and C. elegans. In these two organisms, one might also suspect at least homologues
of Med12L and Medl13L, but still the strong phenotypes visible for Trap230 or
Trap240 mutants are there, suggesting the two novel subunits will have non-
redundant functions. This may also be the case for any Trap230-like gene still out
there in the zebrafish genome — which, as has to be remembered, is not in a good
enough state yet anyway to entirely exclude sequence homologues to be found

eventually.

Possibly, a comparative microarray analysis of invertebrate and vertebrate 7Trap230
mutants may elucidate whether the functions are entirely similar or whether essential

invertebrate Trap230 functions are still intact in #pd mutants. Yet, already the fact
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that vertebrate-specific structures as neural crest and epithelial placodes are affected

in tpd embryos, makes the comparison more difficult.

Interestingly, The N-terminus of Trap230 has been found to interact with the
BEACH domain of the lysosomal trafficking regulator protein (LYST), whose
mutation causes Chediak-Higashi syndrome, an inherited immunodeficiency disease,
characterised by giant lysosomes and impaired leukocyte degranulation (Tchernev et
al., 2002). Unexpectedly, this may suggest a so far undescribed prevalence of

Trap230 in the cytoplasm, since LYST is a cytosomal protein.

3.2 Interaction of Sox9 + Trap230

3.2.1 The trapped mutation shares many phenotypes
with Sox9 mutants

Although the Mediator complex functions as a general coactivator for most RNA Pol
I driven transcription in eukaryotes, it seems that different parts of Mediator
regulate distinct sets of genes by interacting with specific DNA-binding
transcriptional activators. In this study, zebrafish Trap230 was shown to be required
for Sox9 activity. trapped, a novel Trap230 mutant, was isolated, and the
characterisation of this mutant shows that it strongly resembles the Sox9a/Sox9b

double mutant in many different tissues.

The phenotypes shared between tpd and Sox9a/Sox9b mutants include the complete
absence of craniofacial cartilages, the absence or strong reduction of otic placodes,
the absence of iridophores, the presence of expanded melanophores, and the presence
of a curly-down body axis and heart edema. The absence of craniofacial cartilages
correlates with strongly reduced col2al expression in this region. co/2al is a direct
target of transcriptional activation by Sox9 (Bell et al., 1997; Lefebvre et al., 1997;
Ng et al., 1997; Zhou et al., 1998) and is strongly reduced in Sox9a/Sox9bh mutants
(Yan et al., 2005), therefore raising the possibility that Trap230 functions as a
transcriptional coactivator participating in the regulation of Sox9 targets such as

col2al.

In trunk neural crest, tpd mutants show reduced expression of snailb, foxd3 and

sox10, which is also observed in zebrafish Sox9bh mutants (Yan et al., 2005).
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Expression of the postmigratory neural crest marker dix2a in tpd and Sox9a/Sox9b
mutants is only slightly reduced, especially in the posterior branchial arches. This
indicates that cranial neural crest cells are specified correctly, although the
population of dix2a expressing cells is smaller than usual. Migration of cranial neural
crest cells also starts normally, as is the case in Sox9a/Sox9b double mutants and

Sox9 mutants in chicken, frog or mouse.

However, Sox9 in mouse and Sox9b in zebrafish are known to act as survival factors
for neural crest cells. Accordingly, both zebrafish Sox9b and Sox9a/Sox9b double
mutants and mouse Sox9 mutants show elevated apoptosis in pre-and post-migratory

neural crest cells, which is also observed in #pd mutants.

This eventually leads to a loss of neural crest derived structures in Sox9 mutants. One
instance of this is the absence of DRG neurons, which has been previously described
in mouse Sox9 mutants (Cheung et al., 2005) and was again confirmed in #pd

mutants.

Otic placodes are also Sox9-dependently induced. Therefore, it is not surprising to
find that loss of either Sox9a/Sox9b or Trap230 function leads to smaller otic
vesicles and otoliths, which in the strongest cases are entirely absent. Interestingly,
tpd mutants show three otoliths instead of two in some cases. The only instance
where to my knowledge occurrence of three otoliths has been described, is a
zebrafish knockdown of the runx/ gene (Kalev-Zylinska et al., 2002). Otherwise,
Runx1 has been mainly described as a hematopoietic factor. Besides, a role in

neurogenesis has been suggested.

Expression of fgf3 and fgf8 during late gastrula stages cooperatively induces otic
placode formation and is required for expression of pax8 and pax2.1 in preplacode
tissue (Phillips et al., 2001). Also, loss of Sox9 has been correlated with loss of pax§
expression in the presumptive otic placodes (Saint-Germain et al., 2004). Indeed, tpd

mutants show a similar loss of pax8§ and reduced pax2.1 expression.

While some of the phenotypes can be explained by loss of Sox9b activity only,
especially the cartilage and ear phenotypes observed in #pd are as strong as otherwise
only found in Sox9a/Sox9b double mutants (Yan et al., 2005), suggesting activity of

both genes is lost in pd mutants.
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These results indicate that Trap230 is crucial for Sox9 activity, and is required for
both Sox9a and Sox9b in zebrafish, suggesting that the split of the ancestral Sox9
gene into two teleost copies did not affect their dependence on Trap230 activity. My
results suggest that Trap230 specifically interacts with Sox9, since most pd
phenotypes can be explained by disrupted Sox9 activity. However, Trap230 clearly
also functions in Sox9-independent events, such as limb induction. It therefore
remains to be seen how many different vertebrate transcription factors depend on
Trap230. The present study has focused on the role of zygotically expressed trap230,
and it may be that maternally expressed trap230 is required for distinct transcription

factors.

3.2.2 The role of Trap230 in Sox9 activity

Two possible scenarios could explain the apparent similarity between the #pd and
Sox9a/Sox9 mutant phenotypes: Trap230 could either be upstream of Sox9a and
Sox9b and necessary for the transcriptional activation of these two genes, or else it
could be a competence factor necessary for Sox9-dependent transcription through

interaction with the Mediator complex.

Since transcription of Sox%a and Sox9b is activated normally in most tissues in the
absence of Trap230 activity, this suggests that the activity of Sox9 is disrupted in
these mutants. The exception to this are the pectoral fin buds, where both Sox9a and
Sox9b fail to be expressed. However, the fin development defect observed in tpd
mutants is very early, the disruption taking place already at the bud initiation stage,
while the role of Sox9a and Sox9b in the limb buds is a later one, namely during
chondrogenesis. Since tpd fin buds never reach that stage, it is not surprising that in

this case Sox9 expression should be lost and Trap230 function be upstream of Sox9.

Consistent with the proposal that Trap230 acts as a competence factor for Sox9
rather than as a transcriptional regulator of Sox9 expression, injection of Sox9bh
mRNA can trigger target gene activation in wild type embryos, but not in pd
mutants. Consequently, Sox9 activity appears to require the presence of at least part

of the Mediator kinase subcomplex.

Similar to the situation in Sox9a/Sox9b double mutants and mouse Sox9 mutants,

col2al expression persists in some expression domains in #pd embryos (Ng et al.,
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1997; Yan et al., 2005). Since col2al is known to be directly activated not only by
Sox9 but in cooperation with Sox5 and Sox6 (Ng et al., 1997; Zhou et al., 1998), this
may explain the residual expression of co/2al in both Sox9a/Sox9b and tpd mutants.
A similar cooperation has been observed for the aggrecan gene, suggesting that Sox
genes coordinately affect the composition of the extracellular matrix (Wegner, 1999).
Importantly, the residual co/2al expression in tpd embryos indicates the specificity
of the interaction between Sox9 and Trap230, since the pd mutant does apparently
not affect the activities of Sox5 and Sox6 in this context, but specifically that of

So0x9.

These results are in agreement with the finding that the transactivating domain of
human SOX9 protein binds directly to TRAP230 in vitro, both in a yeast two-hybrid
assay, and in a GST pull-down assay (Zhou et al., 2002). Furthermore, Zhou et al.
also showed that TRAP230 co-immunoprecipitates with SOX9 from a human cell
line, thus demonstrating that this binding also occurs in vivo. The PQL domain of
TRAP230 is both necessary and sufficient for this interaction with SOX9. The PQL
domain, which is located near the C-terminus, is deleted both in #pd mutants and in
Trap230 morphants, and therefore suggests these truncated forms are unable to bind
Sox9. The in vivo results of this study thus confirm and extend the significance of

the regulatory interaction between Trap230 and Sox9.

Other regions of Sox9 could also contact the TRAP complex. The PQA motif
(Wagner et al., 1994) adjacent to the Sox9 TA domain is known to contribute to its
function. Nevertheless, this region is poorly conserved in Sox9 between different
species and because of its PQA-rich sequence may only work as a flexible hinge for

the TA-domain (Zhou et al., 2002).

The study of (Zhou et al., 2002) also found the PQL domain of TRAP230 to interact
with the transactivating domains of human SOX8 and SOX10, the two other
members of the E group of SOX transcription factors. This may indicate a similar

function of Trap230 for the activities of Sox8 and Sox10 and remains to be tested.

A general Trap230 function for Sox10 activity can however be excluded, since
zebrafish Sox10 mutants lack all melanophores, as #pd embryos clearly do not

(Dutton et al., 2001).
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Interestingly, both Sox9 and Trap230 have been suggested to be regulated by Wnt
and through PKA phosphorylation (Harley et al., 2003), suggesting they might be
regulated in parallel on top of Trap230 being required for the activity of Sox9.
Moreover, Sox9 is involved in the induction of migratory neural crest through
modulating cadherin expression (Cheung and Briscoe, 2003), indicating a possible
involvement in the cell affinity defects observed in /pd mutants, like failure of
pectoral fin bud cells to migrate into a coherent patch, or the axon guidance and

photoreceptor defects.

C. elegans Trap230 has been described as modulator of B-catenin stimulated Wnt
pathway activity (Zhang and Emmons, 2000). This could reinforce the capacity of
different Sox proteins to interfere with TCF/LEF binding to B-catenin and modulate
Whnt signalling (Zorn, Williams 1999 XSox3; Takash, Poulat, Mattei 2001 Sox7).

The binding of Sox9 at enhancers and concurrent bending of the DNA may facilitate
the interaction of Sox9 with the promoter-bound Mediator and allow context-
dependent coregulation by bringing other enhancer-bound factors close to the

Mediator machinery (Pevny and Lovell-Badge, 1997).

Importantly, my findings not only support the previous data suggesting an interaction
of Trap230 and Sox9 but extend it, indicating that Trap230 and Sox9 in vivo not only
interact in chondrogenesis but also in all other tissues, reflecting in vivo Sox9
activity. Besides, the fact that some of the phenotypes seen in #pd reflect interference
with the Sox9a/Sox9b double activity rather than that of only one of them (eg the
chondrogenesis defect), indicates that this interaction has survived the division and
subfunctionalisation into two Sox9 proteins. Moreover, the fact that the C-terminal
sequences containing the transactivating domain of Sox9a and Sox9b are reasonably
different (Chiang et al., 2001), nevertheless not abolishing the functional interaction
with Trap230, supports the idea that this interaction is structure rather than sequence
specific, a possibility that has also been postulated by (Zhou et al., 2002) in view of
the fact that the TA domains of human SOX8 and SOXI10, the other two E box
transcription factors, also show in vitro interaction with the Trap230 PQL domain,
despite their sequence dissimilarities. Sox genes from other groups, which

presumably will have different 3D structures, show no such interactions (Zhou et al.,
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2002). Unfortunately, Sox5 and Sox6, the two prime candidates for interaction with

Sox9 in chondrogenic regulation, have not been tested.

One possible scenario for the function of Trap230-Sox9 interaction in transcriptional
activation (at least in the case of Col2al, my study has demonstrated Trap230 to be a
direct coactivator rather than a corepressor) could be similar to the scenario observed
in activation of the retinoic acid pathway, where PARP-1 interacts with Cdk8 (Pavri
et al., 2005) to mediate RA-induced activity — which actually comes about through
uncoupling the kinase module from the core complex and hereby sterically allowing
for RNA Pol II binding, resulting in constitutively active RA signalling activity if
Cdk8 — and through this presumably the integrity of the kinase subcomplex — is lost.
This would also be in accordance with the dominant-negative activity of an
ectopically supplied Trap230 PQL/OPA domain for Sox9 (Zhou et al., 2002). If this
truncated protein cannot interact properly with endogenous members of the kinase
subcomplex, only endogenous Trap230 will be part of the complex and binding of
Sox9 to the ectopic Trap230 will not disrupt endogenous Mediator structure,

resulting in its dominant negative activity.

Another possibility would be that the interaction of Sox9 with Trap230 leads to a
conformational change, but without detaching the kinase subcomplex from the rest of
Mediator. This seems to be the case, as it was possible to purify an entire Mediator
complex (including core components) through a Sox9 interaction. Nevertheless,
there are two caveats in the approach used — one is the fact that thyroid hormone
receptor (TR) is still bound to the purified Mediator complex, which could positively
be viewed as steric non-inhibition of Sox9 and TR binding together to the Mediator
complex, or negatively as TR holding together the complex artificially and
overriding a possible disengagement of parts that could be the normal result of Sox9
interaction. The other possibility that cannot be ruled out is that Sox9 can also bind
to other parts of the Mediator complex, possibly also of the core, and it is this

interaction that has actually been monitored by this assay.
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3.2.3 Trap230 as a transcriptional co-regulator during
vertebrate development

The Trap230/Med12 and Trap240/Med13 subunits are part of a Mediator
subcomplex that also contains Cdk8 and CycC (reviewed in Bjorklund and
Gustafsson, 2005; Malik and Roeder, 2005). This module is variably present in the
Mediator complex, and its presence correlates with transcriptional repression in yeast
(Holstege et al., 1998; Samuelsen et al., 2003; Spahr et al., 2003) and in mammalian
cells (Naar et al., 2002; Wang et al., 2001), leading to a model in which recruitment
of Mediator containing this module represses transcription, whereas Mediator devoid
of this module activates transcription. The role of this module may be more complex,
however, since Cdk8 is linked to the positive regulatory effect of Mediator on pol II
in Drosophila (Park et al., 2001a), and activation of the Notch signaling pathway
leads to the recruitment of Cdk8 and CycC to a Notch target promoter for Notch
degradation and turnover (Fryer et al., 2004). Mediator containing this module may
thus be involved both in transcriptional activation and repression. In C. elegans,
Trap230 is required for transcriptional repression (Yoda et al., 2005), while in
Drosophila it is not yet clear if Trap230 participates in transcriptional repression or

activation (Janody et al., 2003).

My results are consistent with a role for Trap230 in transcriptional activation by
Sox9. Thus col2al, a direct transcriptional target of Sox9 activation (Bell et al.,
1997; Lefebvre et al., 1997; Ng et al., 1997; Zhou et al., 1998), shows strongly
reduced expression in fpd mutants, and the same is true of genes known to be
downstream of Sox9 signaling in neural crest and otic placodes. Furthermore,
injection of Sox9b mRNA can upregulate snailb, foxd3 and sox10 expression in wild
type, but not in zpd mutant embryos. Consistent with this proposal, overexpression of
a Trap230 subfragment, which only contains the Sox9-binding domain, acts as a
dominant negative and blocks the ability of Sox9 to activate target gene expression
in vitro, suggesting that binding of full-length Trap230 is crucial for transcriptional
activation by Sox9 (Zhou et al., 2002). Alternatively, for targets that are not known
to be direct, Sox9 may achieve some of its activation effects indirectly, by repressing
the transcription of a repressor. In that case, Trap230 might mediate such an effect as

a corepressor while in the case of col2al it must surely act as a coactivator.
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3.3 The role of Trap230 in forelimb initiation

This study has shown that pd mutants fail to form pectoral fin buds, and lack all
pectoral fin structures. Since Sox9 signaling is not involved in the early steps of limb
development (Yan et al., 2005), this is a clear example of Trap230 involvement in a

Sox9-independent pathway.

The data indicate that Trap230 functions upstream of Fgf24 during limb
development. fgf24 expression fails to be activated in ¢pd mutants, as do the fgf24-
dependent genes dlx2 and shh. Also, several genes that are activated independently
of Fgf24 in the limb bud mesenchyme, including msx-c, erml, and pea3 (Fischer et
al., 2003), are strongly reduced or absent in #pd embryos, thus further indicating an
event upstream of Fgf24 is blocked in the absence of Trap230 activity.

fef24, dix2 and shh are all downstream of Tbx5 in the limb signalling cascade
(Fischer et al., 2003). Since tbx5 expression is activated in pd mutants, the data of
this study suggest that Trap230 is required for an event between Tbx5 and Fgf24
activation. Similarly, the heart and eye phenotypes observed in tpd embryos may also
be related to loss of Tbx5 activity during their development. In the simplest scenario,
Trap230 might bind directly to Tbx5, and function as a coregulator, similar to its
interaction with Sox9. Alternatively, it could bind to a transcription factor acting
downstream of Tbx5. Future experiments will help to distinguish between these

possibilities.

Tbx5 has been proposed to act directly on the promoters of human and mouse fgf70
(Ng et al., 2002). In zebrafish, however, fgf24, a member of the fibroblast growth
factor family for which a mammalian ortholog still waits to be identified (Draper et
al., 2003), has been placed in the early limb outgrowth signalling cascade between
Tbx5 and Fgfl0 (Fischer et al., 2003; Norton et al., 2005), suggesting that the fgf24
promoter is a worthwhile candidate for Tbx5 binding site analysis. A direct role for
zebrafish Trap230 mediating Tbx5 function on this promoter seems plausible.
Depending on whether a mammalian fgf24 ortholog can be identified, this may point
to a specialised role of Trap230 in zebrafish and thus to the versatility of a highly

conserved pan-eukaryotic complex such as Mediator.
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While thx5-expressing cells in zebrafish tpd and ¢bx5 mutants fail to migrate towards
the mesenchymal core of the developing limb bud, they nevertheless occasionally
turn perpendicular to the basement membrane, but do not proliferate further (Garrity
et al., 2002) and this study). This effect of missing Tbx5 activity has not been
confirmed in the mouse, though (Agarwal et al., 2003; Ahn et al., 2002). It is likely
mediated through Fgf24, as the same effect is observed in fgf24 mutants (Fischer et
al., 2003). A general role has been proposed for 7-box family genes in cell-
autonomously mediating cell migration, possibly through changes in adhesive
properties (Griffin et al., 1998; Ho and Kane, 1990; Russ et al., 2000; Wilson et al.,
1995). Trap230 has also been implicated in cell affinity changes in Drosophila, C.

elegans and yeast, suggesting a possible cooperation.

T-box genes, like Hox genes, have been proposed to often work within gene
networks comprised of related family members (Goering et al., 2003). Moreover,
Tbx5 in the heart has been shown to interact with the Nkx2.5 homeodomain for
direct transcriptional activation of targets like atrial natriuretic factor and Connexin
40 (Cx40, (Fan et al., 2003). Cx40 is a gap junction component that has recently also
been reported as a direct target of Tbx5 in the mouse limb (Pizard et al., 2005).
There, it is required at a later stage, during bone formation. Interestingly, this is
mediated through modulating Sox9 expression (Pizard et al., 2005). Whether there is
another function of Cx40 in early zebrafish pectoral fin development, possibly
mediating Tbx5 dependent cell migration in parallel to or downstream of Fgf24,
remains to be seen. A modulation of gap junctions could well be implicated in this

process.

The connection of #bx5 to bone formation indicates a possible pathway by which
formation of the cleithrum in the pectoral girdle of both #pd and thx5 mutant embryos
is lost (or significantly reduced) in contrast to mutations in sox9a/sox9b or fgf24

(Fischer et al., 2003; Yan et al., 2005).

Cooperation with other transcription factors is a common theme for both Sox9 and
Tbx5. Thus, should Trap230 prove to be directly required for Tbx5 function,
Trap230-Mediator may be envisaged as an integrating platform for combined
transcription factor activity. Whether transcription factors bound to Sox9 and Tbx5

would then also interact directly with the Mediator complex, and with which
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component, remains speculative. The size of Trap230 as the second-largest
component of the complex may already permit simultaneous binding of several
transcription factors. Protein-protein interaction sites outside the Sox9-interacting

PQL domain remain still to be identified.

In tpd embryos, expression of wnt2b upstream of Tbx5 in pectoral fin induction is
normal. While this requirement for Wnt signalling in zebrafish is well established
(Ng et al., 2002), experiments in mouse failed to confirm it (Agarwal et al., 2003;
Galceran et al., 2001; Yamaguchi et al., 1999). In chick, on the other hand, a
dominant negative form of Tbx5 lead to reduced wnt2b expression, while inhibition
of canonical Wnt signalling did not affect Tbx5. This suggests a role for Tbx5 in
maintenance of Wnt signalling (Takeuchi et al., 2003). Nevertheless, the lack of
Tbx5 activity in tpd pectoral fins constitutes a modulation of a Wnt signalling
downstream effect. This is consistent with a role for Trap230 as Wnt signalling

modulator reported in Drosophila and C. elegans.

3.4 Other phenotypes

3.4.1 Brain and muscle phenotypes

The brain of #pd embryos shows several defects: the forebrain is reduced, the

midbrain ventricle fails to inflate and the MHB is not specified properly.

These defects may, at least in part, again be mediated by loss of Sox9 activity, since
sox9a 1is expressed in the MHB and forebrain (both diencephalons and
telencephalon), sox9b in the ventral midbrain, and both sox9a and sox9b are
expressed in the epiphysis and hindbrain at 24hpf (Chiang et al., 2001; Yan et al.,
2005). Moreover, patients suffering from campomelic dysplasia due to a defect in

Sox9, have also been described to display brain abnormalities (Houston et al., 1983).

Wnt signalling is necessary for proper MHB specification in zebrafish. This is a
function conserved among vertebrates (Buckles et al., 2004). With regard to the
proposed and known functions of Sox9 and Trap230 in Wnt signalling mentioned

above, this may add to explanation of the phenotype.
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3.4.2 Eye and axon guidance phenotypes

The eye phenotype of pd embryos is the most prominent one beside that in the
pectoral fins. They are overall reduced in size and misshapen, plus they are closer
together than normal anteriorly (slight cyclopia), which may correlate with the

observed reduction of forebrain tissue (cf. 3.4.1).

Derivatives of the eye premordium (optic stalk, neural retina, retinal pigmented
epithelium) and patterning events responsible for their formation are determined
along the dorsoventral axis of the eye (Chow and Lang, 2001). tpd mutant embryos
show severe defects in dorsoventral patterning. Specifically, ventral, and to some
extent also dorsal retina tissue is reduced, while the optic stalk fails to degenerate
and is therefore expanded relative to the rest of the eye. This can not only be visually
assessed by the coloboma which #pd embryos show, but also molecularly, by in situ
hybridisation. While expression of tbx5 as a marker for the dorsal retina prior to
retinal lamination (Begemann and Ingham, 2000; Lupo et al., 2005) and fgf24 and
fgf10 as markers for the ventral retina are lost, expression of pax2a in the optic stalk
(Lupo et al., 2005) persists overly long, while expression of fgf3 in the same domain
(Walshe and Mason, 2003) is prematurely lost. All this is consistent with the
observed fpd phenotype. Strong expansion of optic stalk tissue at the expense of
mainly ventral retina as in ¢pd has been described as a function of strong retinoic
acid, Hedgehog or Fgf receptor signalling or their combination (Lupo et al., 2005).
However, expression of at least fgf3, fgf10 and fgf24 in the eye is entirely lost rather
than enhanced. Fgf3 and Fgf10 both act mainly through Fgf receptor 2 (Fgfr2I1IB)
(Herzog et al., 2004), therefore, enhanced signalling through this Fgf receptor is
possibly not expected to be the trigger.

Moreover, lamination defects are seen in the #pd retina later on. While the ganglion
cell layer fails to develop to more than a few disorganised cells at 2dpf, both the
outer nuclear and inner plexiform layers do form at 3dpf, although with a less
smooth appearance than usual and strong disruptions in the ventroposterior part of
the retina, which is strongly affected in tpd embryos. This disruption is seen mostly
in form of displaced photoreceptor cells, both rods and cones, mainly in the inner
plexiform layer. There, they form rosettes around an expression centre of F-actin.

Intriguingly, this is a specific phenotype observed also in zebrafish n-cadherin
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mutants (Malicki et al., 2003; Pujic and Malicki, 2001), suggestive of a cell affinity

specification defect in zpd embyos.

Here, zebrafish #pd mutants are clearly different from mutants in Drosophila
Trap230, which have been reported to lack photoreceptor differentiation (Janody et
al., 2004). Still, another Trap230 Drosophila allele has been described, which shows
no overt eye defect (Boube et al., 2000).

Guidance of retinal ganglion cell axons along the optic stalk is also defective. They
are not fasciculated into an orderly optic nerve as in wild type embryos (Culverwell
and Karlstrom, 2002), and misproject anteriorly to the anterior commissure along
their way. The lack of melanophore condensation displayed by #pd embryos
furthermore suggests they are blind and therefore unable to detect light. With regard

to the disorganised retina and optic nerve, this seems likely.

Different types of retinotectal axon pathfinding mutants are known in zebrafish
(Karlstrom et al., 1997). The defects seen in tpd resemble the no-isthmus phenotype
seen in pax2a mutants, which fail to close the choroid fissure and have
defasciculated retinotectal axons extending rostrally inappropriately (Macdonald et
al., 1997). Intriguingly, however, expression of pax2a in tpd embryos is upregulated
rather than downregulated, suggesting that possibly pax2a may be another
transcription factor for whose activity Trap230 is necessary. Its transcription may
then be upregulated due to the failure to activate a negative feedback loop.
Alternatively, pax2a misregulation may lead to a similar phenotype, no matter
whether its transcription is up- or downregulated, and Trap230 may play a role in
finetuning the transcriptional level of pax2a, normally repressing it either directly or

indirectly.

As obvious candidates for transcription factors requiring Trap230 as a competence
factor, expression of thx5, Sox9a and Sox9b in the tpd eye were considered.
Expression of tbx5 in the eye of tpd embryos appears to be reduced by 24hpf (Figure
44). However, zebrafish thx5 mutants do not have an overt eye phenotype (Garrity et

al., 2002), suggesting that ¢bx5 is anyway not a prime candidate in this context.

Sox9a does not seem to be expressed in the zebrafish eye (Chiang et al., 2001; Yan et
al., 2005) and this study, and Sox9b expression in the tpd eye at 24hpf did not seem
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altered (Figure 33 G, H). This is in agreement with my other findings concerning the
interaction of Sox9 and Trap230. As the role of Sox9 in the eye has not been
reported yet, it remains to be seen whether the defects described in /pd embryos can
be attributed to a lack of Sox9, in this case Sox9b activity. Although this has not
actually been reported, Sox9bh mutant embryos appear to have a coloboma of the eye,

as well (Yan et al., 2005), suggesting that a closer analysis is certainly worthwhile.

Once again, loss of Trap230 function seems to be implicated in altered cell adhesion
properties and migration defects, in this case defined by retinal cells which do not
form smooth layers, and, in the case of photoreceptors, even aggregate ectopically as
rosettes of cells, a phenotype that has been related to defects in N-cadherin, a cell
adhesion molecule. Moreover, retinotectal axons fail to form fascicles and are

misguided, phenotypes that also suggest defective cell affinity properties.

Mutations in Trap230 have been reported to alter cell affinity already in Drosophila
eye, antennal and wing discs, where mutant clones disrupt expression boundaries
and/or have smooth borders (Janody et al., 2003; Treisman, 2001). A possible link to
E-cadherin has been drawn (Dahmann and Basler, 2000), interestingly correlating
with the n-cadherin-like photoreceptor phenotype of tpd eyes. Moreover, Trap230 in
Drosophila has been implicated in the RTK/Ras pathway (Maixner et al., 1998),
which through phosphorylation of Trap240 in yeast stimulates a flocculation
phenotype of cell aggregation, therefore also a change in cell affinity (Chang et al.,
2004).

3.4.3 Heart and circulation phenotype

Tbx5 deficiency in humans leads to Holt-Oram syndrome, a defect in heart and limb
development (Basson et al., 1994; Newbury-Ecob et al., 1996). Zebrafish tbx5
mutants exhibit not only a similar limb but also heart phenotype as tpd embryos
(Garrity et al., 2002) and Tbx5 function is involved in heart formation (Begemann
and Ingham, 2000; Fan et al., 2003). With regard to this, a direct role for Trap230 in
Tbx5 activity similar to that it has with Sox9, seems plausible not only in the context

of pectoral fin induction, as discussed above, but also of heart development.

Sox9 expression in the heart during development has also been reported (Ng et al.,

1997). Therefore, Sox9 loss of activity may explain the #pd heart phenotype. Since
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regulation of Sox9 by Tbx5 through Connexin 40 in limb bone development has
recently been reported (Pizard et al., 2005), a similar cascade may function in the

heart, involving Trap230 at multiple steps.

3.4.4 Somite phenotype

In tpd mutants, a motility problem and slightly U-shaped somites were observed. As
sox9a is expressed in the somites, a requirement for Trap230 in this context may
explain the #pd muscle phenotype. However, the phenotype described for sox9a
mutants consists of shorter and thicker muscles (Yan et al., 2002) and it is not clear
whether this is identical with the phenotype displayed by #pd embryos. Alternatively,
Prdml, a zinc finger and SET domain transcription factor with histone methyl
transferase activity, which has been implicated in this process (Baxendale et al.,
2004; Roy et al., 2001) and is known to function mainly as a repressor (Wilm and
Solnica-Krezel, 2005), may recruit Trap230 for its function — especially since
Trap230 is thought to act mainly as a corepressor rather than a coactivator.
Strikingly, loss of Prdm1 function also leads to a failure of fin bud induction and the
gene is expressed in the photoreceptor cell layer (Wilm and Solnica-Krezel, 2005)
(cf. tpd eye phenotype in 2.5.2).

3.4.5 Overall downregulation of Fgf signalling and gut
phenotype

Zebrafish tpd mutants show a downregulation of fgf and Fgf-downstream-target

expression in several tissues apart from pectoral fin buds, namely in branchial arches,

midbrain hindbrain boundary, ventral eyes, nasal placodes and the midgut.

fgf-expression in the nasal placodes may be reduced due to lack of Sox9 activity,
caused by the function of Sox9 in epidermal placode formation, not only for the otic

but also the nasal placodes (Yan et al., 2005).

Genetic interactions between Fgf signalling pathways and T-box transcription
factors, where the latter are required for their induction and maintenance, have
started to become a common theme in vertebrate development (Draper et al., 2003;

Ng et al., 2002). Should the possibility of a rule for Trap230 in mediating T-box
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transcription factor activity, firstly in the case of Tbx5, hold true, this may provide an

explanation for reduced expression of Fgfs in tpd embryos to be proven.

Another hint may come from cloning the gene affected in the zebrafish aussicht
mutant, which shows a general fgf overexpression (Heisenberg et al., 1999) and may
point to a universal Fgf-regulatory mechanism which could possibly also be

conversely affected and lead to general downregulation of fgfs.

A combined effect of deficient Sox9 and Tbx5 activity with disruption of a general
Fgf-regulatory mechanism and indirect components attributable to misregulated
targets of other major signalling pathways as the Wnt pathway, which is known to
intersect with the Fgf pathway on several levels and in many instances, appears
plausible though complex. Possibly, a simpler and more specific explanation may

turn out to hold true.

In addition to fgf24 downregulation in the midgut, zpd embryos also show an edema
at the colon/cloaca. This may be a secondary effect due to osmotic problems caused
by renal failure, as Sox9 is also known to have a function in the kidney (Morais da
Silva et al., 1996). However, it also seems feasible that this should hint to a possible
interaction of Trap230 with Sox10, since a mouse Sox/0 mutant, DOM (dominant
megacolon) shows exactly this phenotype (Herbarth et al., 1998). On the other hand,
zebrafish Sox/( mutants have an intrinsic lack of melanophores (Dutton et al., 2001),
which #pd embryos certainly do not have (Figure 48 C). Therefore, Trap230 could
only be required for some functions of Sox10, but not all. Interestingly, an
expression of Sox9 in the gut has also recently been reported (Blache et al., 2004),
suggesting that there may be a function of Sox9 whose loss could lead to the tpd gut
phenotype. Yet, Sox9a/Sox9b double mutants have not been reported to show such
edemae, making this explanation less likely. The Sox9 function in the gut,
interestingly, appears to involve maintenance of an undifferentiated cell state through
Wnt signalling regulation (Blache et al, 2004), relating back to loss of
Trap230/Mediator kinase subcomplex being involved in entry of cells into a

G0/stationary phase/differentiated state (Spahr et al., 2003).

A regulator of Fgf24 in the gut has unfortunately also not been reported yet. So the

cause of this #pd phenotype remains elusive.
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3.4.6 Outlook

Certainly, one recurrent theme for Trap230 and the Mediator kinase subcomplex is
its involvement in the control of differentiation. Intriguingly, as seems to be the case
for HDACI (Stadler et al., 2005), which is generally thought to be a repressor and
has been proposed as an opponent of the Mediator complex (Kwon and Lee, 2001),
although they share some phenotypes, the Mediator kinase subcomplex appears to be
involved in activation as well as in its canonical repression of genes, and has been
implicated in both maintaining an undifferentiated cell state and promoting cell
differentiation, depending on the context. Its cdk and cyclin components link it to the
cell cycle, making this role more feasible. Apparently, phosphorylation of Trap240
and possibly also Trap230 through a Ras/cAMP pathway seems to be recurrently
involved in this function. Moreover, the proposed chromatin remodelling activity in
the subunit may come to aid there, and complex differential regulation of the
Mediator kinase submodule through other Mediator components, co- and
transcription factors as well as directly through secondary modifications like
phosphorylation or possibly sumoylation explain the fact that Trap230 and Trap240
have been identified in Drosophila as members of both the Trithorax and Polycomb
group, maintaining either an active or repressed transcriptional state. Indeed,
Trap230/Trap240 are involved in regulating the activity or expression of a number of

homeobox transcription factors in various organisms.

Differentiation is inhibited - respective an undifferentiated state maintained - in
presence of the kinase complex in case of yeast cells, where it represses entry into
G0/stationary phase. This is also the case for much of the Sox9 functions, which
through Wnt signalling have been implicated in maintaining undifferentiated cell
states and require Trap230 to be relayed. On the other hand, in C. elegans vulval
development, Drosophila eye development and Dictyostelium spore formation,

Trap230 appears to promote differentiation.

Moreover, another (or possibly the same) connection exists between Trap230/the
Mediator kinase subcomplex and regulation of cell affinity in yeast, mammalian
cells, Drosophila and zebrafish. Whether this is an indirect effect, eg. through
modulating Wnt/Sox9 signalling and thereby the composition of the ECM, the actin
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cytoskeleton bound to B-catenin or the planar cell polarity pathway, or a more direct

function, remains to be seen.

Clearly, the emerging picture of Mediator is that of an all-integrative platform for
transcriptional regulation as well as other DNA-related activities, at which signalling
pathways and transcription factor activities converge and cross-talk. It is a complex
and versatile machinery with manifold regulatory features. Different proteins may
bind to different subunits, modify them, eg. by phosphorylation, sterically inhibit
each other or be brought in contact with one another. The chromatin structure is
altered to bring enhancer- and promoter-bound proteins in contact with one another,
nucleosomes are removed and acetylated, individual Mediator components may
modify each other and regulate each other, submodules may be recruited depending
on the context — and ultimately, structure and state of the entire complex are thus
modified to intricately regulate the activity of pol II for transcribing the gene close to

which Mediator is bound.

Such a complex system is probably more than the sum of its components, yet,
understanding the function of individual subunits will promote the understanding of
the whole. Therefore, it is essential to analyse a component like Trap230 and study
its function. Again, analysing individual instances of Trap230 activity will help to
get an idea, like its interaction with Sox9 or a possible interaction with Tbx5 and
resulting effects. Nevertheless, it will be most important to understand the general
idea behind it and find the rules that this piece in the whole framework obeys to. One
may think of Trap230 as a protein which randomly interacts with some transcription
factor or other as a competence factor for its activity, yet I believe the emerging
picture to be more specific. A number of possibilities present themselves for now,
which may not encompass the whole scope yet and can also include the truth in a
combination of them. Trap230 may be specific for relaying transcription factor
activity downstream of certain signalling pathways and not others — so far, the Wnt,
Ras, Notch, Hedgehog and JNK pathways have been proposed. It may be specific for
certain tissues, although its ubiquitous expression suggests otherwise. Its specificity
may lie in a role for regulating cell cycle and proliferation, as has been implicated at
several points also for other components of the Mediator kinase subunit.

Alternatively, it may serve to regulate cell-cell or cell-matrix affinity as a general
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rule, as some data suggest. Or, it may be specific for a set of transcription factors
with common structural or other features, like those which need to synergise with
others for their function, as Sox and T-box proteins do. Moreover, unknown
functions of Trap230 may remain to be found, like enzymatic activities or a role in
the cytoplasm. These possible functions may also differ from one species or phylum

to the other — or be conserved. It remains to be seen.

Another important point are the possible implications of Trap230 and Mediator
defects for human diseases. They have been linked to neurodegenerative and
neuropsychiatric diseases, as well as to congenital defects of many organs and

cancer.

In summary, both a detailed analysis of specific Trap230-interactions and a broader
analysis, eg. by microarray studies, should help to provide us with a clearer picture
of its function within the Mediator complex. The same holds true for its other
components, and comparative analysis of the clockwork components will be

important to understand how the Mediator clock ticks.



4 MATERIALS AND METHODS
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4.1 Fish stocks

The trapped alleles used were ¢ 24970

and t™""". Embryos were cultured in E3 medium,
with or without the addition of 0.003% 1-Phenyl-2-thiourea (PTU, Sigma) to inhibit
pigmentation. Embryos were staged according to hours post fertilisation (hpf) or

days post fertilisation (dpf;(Westerfield, 1995).

4.2 Chemicals and solutions

The following overview comprises general buffers and solutions. Special solutions
and reagents are mentioned together with the methods. All chemicals, if not noted
otherwise, were purchased from the companies Applichem, Merck, Roth and Sigma.
Agarose was purchased from Pharmacia, Bromophenol blue and Xylene cyanol from

Serva.

60x stock solution E3 saline 34,8g NaCl
1,6g KCl1
5,8g CaCl, x 2H,0
9,78g MgSO4 x 6H,O
H,0O ad 21
pH 7.2 with NaOH
autoclave

for 1x use 16ml/l + 100l methylene blue solution

10x loading buffer: 50% glycerol
1x TE
0.25% bromophenol blue
0.25% xylene cyanol

TE: 10 mM Tris/HCI pH 7.4

ImM EDTA pH 8.0

S0xTAE 242 gm Tris base

57.1 ml glacial acetic acid
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100ml 0.5M EDTA
Add ddH;O to 1 liter and adjust pH to 8.5.

10xPBS 70g NaCL; 62.4g Na2HPO4.2h20; 3.4g KH2PO4
pH7.4

4.3 Linkage analysis and genetic mapping

4.3.1 Quick lysis of embryos

Fix embryos in 100% MetOH

Place at -20°C for at least 30min

Place embryos individually into a 96-well-plate
Mix 250ul proteinase K (20mg/ml) and 2250ul TE
Pipet 25l into each well (multipipet)

Close plate firmly with lids

Digest 4h-O/N at 50-70°C

Boil 5min at 96°C to destroy proteinase K
Dilute with 75ul H,O per well

Store at -20°C

Use 1-5ul per PCR

4.3.2 Finclipping

Anesthetise the fish in 100ml H,O + 4ml 0.4% Triacin (MS222, Sigma). After 30-
60sec, the fish will be anesthetised. Scoop the fish out with a tea-strainer, cut off a
tiny bit of tail fin using a sharp sterile blade and let the fish recover in fresh water.

Finclip solution:

400mM  Tris
5mM EDTA
150mM NaCl
0.1% SDS
pHS.0
e Digest finclip in 100ul finclip solution + 5ul proteinase K (20mg/ml) for
several hours at 60°C or O/N at 50°C
¢ Boil 5min to destroy proteinase K
e Purify and concentrate DNA using a Qiagen PCR Purification Kit, elute with
10-50pul1

4.3.3 SSLP markers used

Primer sequences for all markers used from the meiotic MGH panel can be found in
the ZFIN database (http://www.zfin.org).
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For fine mapping of tpd, SSLPs were generated using the Sanger genome database.
The closest SSLP marker to the #pd mutation, P1, uses the primer pair
GCATCCACCCAAACATGAGG (forward) and GCAGTGCGATTGATGTTGGG
(reverse), at a distance of <0.08cM south of the mutation.

4.3.4 Bulked segregant analysis

For bulked segregant analysis, Sul each of quick lysis extracted DNA from 48
mutant or wild type embryos (cf. 4.3.2) were pooled.
PCR using SSLP primers was performed as follows:

PCR MIX
Sul DNA
2ul 10x PCR Buffer

1.6ul DNTPs (2.5umol each)
0.08ul each primer at 100pmol/ul
0.4pl Taq polymerase
ad 20pul  H»0
PROGRAM
2min 94°C
35 —40 cycles:
30sec 94°C
30sec 58°C
Imin 72°C
Smin 72°C

For initial linkage analysis of the 192 marker set, PCRs were performed in 96-well-
plates, for analysis of single markers, 8-strip or single PCR tubes.

4.3.5 Fine mapping

Individual embryo PCR was performed essentially as described for bulked segregant
analysis, but using 2-5ul of DNA from individually lysed embryos (cf. 4.3.2) and
doing the PCRs in 96-well-plates.

4.3.6 Websites

http://www.zfin.org Zebrafish database
http://www.repeatmasker.org Program to find CA
repeats
http://www.sanger.ac.uk/Projects/D_rerio/WebFPC/zebrafish/small.shtml Zebrafish BAC-FPC map
http://ensembl.org/Danio_rerio/ Zebrafish genome
http://vega.sanger.ac.uk/Danio_rerio/ Zebrafish BAC/PAC
sequence assembly
http://zebrafish.mgh.harvard.edu/ Zebrafish meiotic MGH
mapping panel
http://helix.wustl.edu/dcaps/dcaps.html Program to find SNPs
http://www.ebi.ac.uk/clustalw/ Sequence alignment

program
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4.4 Histochemical methods

4.4.1 Whole mount in situ hybridization (WMISH)

4.4.1.1 WMISH probes

col2al (Yan et al., 1995)

dix2 (Akimenko et al., 1994)

erml (Roehl and Nusslein-Volhard, 2001)

fgf3 (courtesy of Michael Tsang) (Kiefer et al., 1996)
fgf10 (Ng et al., 2002)

fef24 (Fischer et al., 2003)

foxd3 (courtesy of Darren Gilmour) (Odenthal and Nusslein-Volhard, 1998)
msx-c (Akimenko et al., 1995)

pax2a (Krauss et al., 1991)

pax8 (Pfeffer et al., 1998)

pea3 (Roehl and Nusslein-Volhard, 2001)

shh (Krauss et al., 1993)

snailb (courtesy of Stephen Wilson) (Thisse et al., 1995)
sox9a (courtesy of Stephen Wilson) (Chiang et al., 2001)
sox9b (Chiang et al., 2001)

sox10 (courtesy of Darren Gilmour) (Dutton et al., 2001)
tbx5 (Begemann and Ingham, 2000)

wnt2b (Ng et al., 2002)

The trap230 in situ probe was synthesized using the following primers:
forward primer GGTGGGTGGGATGTTTGAC
reverse primer TTCACAGAACAACGCCAGTATG.

4.4.1.2 IN SITU PROBE SYNTHESIS

Preparation of DNA template:

e Digest 4-5ug plasmid DNA in 100pul volume 2h at 37°C
e Purify DNA with Qiagen PCR purification kit
o Add 5 vol. buffer PB to 1 vol. PCR sample, mix
o Apply sample on Qiaquick spin column on 2ml tube, spin 30-60s,
discard flow-through
o Wash with 750ul Buffer PE, spin 30-60s, discard flow-through, spin
Imin max. speed
o Place column on clean 1.5ml tube
o Add with 30ul Buffer EB, let stand for Imin, spin 1min max. speed
e Measure concentration

Transcription reaction (20ul final):

e Ipug linearised DNA in 9ul H,O
e 4ul 5x trascription Buffer (Promega DIG kit no. 8)
e 2ul 100mM DTT (shelf 5 in box)
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2ul 10x DIG-labelled nucleotide mix (DIG kit no. 7)
1ul RNAse inhibitor (DIG kit no. 10)

2ul RNA polymerase (DIG kit no. 12, shelf 7)
incubate 2h 37°C

Nucleotide removal:

e use Qiagen RNeasy kit

@)
@)

0O O O O

(©]

@)
@)
©)

use maximum of 100ug RNA for Mini kit

Buffer RLT should be redissolved by warming if precipitated, then at
RT

Adjust sample to 100ul with RNase-free water

Add 350ul Buffer RLT, mix thoroughly (B-ME should be in Buffer!)
Add 250ul EtOH, mix thoroughly by pipetting, don’t spin

Apply to RNeasy column in 2ml tube, spin 15s at max. speed
(=8000g), discard flow-through

Place column on new tube

Add 500ul Buffer RPE, spin 15s at max. speed, discard flow-through
Add 500ul Buffer RPE, spin 2min at max. speed, discard flow-
through

Optional: place column in new tube, spin 1min at max. speed

Place column on new 1.5ml tube

Add 30ul H,O, spin Imin at max. speed

e Check RNA concentration (should be ~100ng/pl)
e Add 30ul formamide
e Store at —20°C

4.4.1.3 WMISH protocol

BUFFERS:
20xSSC:

175.3 g NaCl

88.2 g NatriumCitrat
in 11 H,O pH 7.0/NaOH

Hyb-:

50% formamide

5x SSC

0.1% Tween-20
(store at -20°C)

Hyb+:
Hyb-

50ug/ml Heparin

50mg/ml torula (yeast) RNA
(store at -20°C)

Staining buffer:

100mM Tris pH 9.5 (50ml 1M stock for 500ml)
50mM MgCl, (25ml 1M stock for 500ml)
100mM NacCl (16.7ml 3M stock for 500ml)
0.1% Tween-20 (add shortly before use!)
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2x malate buffer:

200mM Malate pH 7.5 (50ml 2M stock for 500ml — adjust pH in stock!!)
300mM NacCl (50ml 3M stock for 500ml)

0.1% Tween-20 (add shortly before use!)

blocking buffer:

for 300ml:

6g blocking reagent (Roche Cat. No. 1096176) to make 2% solution
150ml H,O

150ml 2x malate buffer with 0.1% Tween

(store at —20°C)

EMBRYO FIXATION AND STORAGE

Fix embryos in 4% PFA (paraformaldehyde) in PBS at RT 1-4h or O/N at

4°C

Wash 2-3x in PBS

Dechorionate in small petridish with forceps in PBS
Wash in PBS

Replace PBS by 50% methanol (in PBS)

Replace by 100% methanol

Wash 1-2x in 100% methanol

Store at -20°C 30min - storage

WMISH

DAY 1

[ ]
DAY?2

[ ]

[ ]

Smin 50% MetOH in PBS at RT
S5min 30% MetOH in PBS at RT
2-4x 5Smin PBST (0.1% Tween 20 in PBS) at RT

digest with 5pg/ml Proteinase K (2ml PBST + 0.5ul 20mg/ml stock) at RT,

time depends on embryo stage
10h  3min
3s Smin
l4s  7min
16s  8min
20s  10min
24h  12min
52h  15min
o 68h  15min
wash 2-3x in PBST
transfer to 0.5ml tube (20-30 embryos per tube)
prehybridise in 200ul Hyb- (RT liquid) Smin at 67°C (may be left out)
may be stored in Hyb- up to 24h at -20°C
prehybridise in 200ul Hyb+ (RT liquid) at least 1-2h at 67°C
take off 100-120ul Hyb+ (don’t let embryos touch air)
add 1-2ul RNA probe
hybridise at 65-68°C O/N — 48h

0O O O O O O O

take off probe, store at -20°C and reuse
wash 2x 30min in 50% formamide / 50% 2xSSCT (0.1% Tween) at 67°C
wash 15min with 2xSSCT at 67°C
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wash 2x 30min with 0.2x SSCT at 67°C

wash 2x with 1x malate buffer

block at least 1h with blocking buffer at RT

incubate in 500ul alkaline phosphatase coupled Fab antibody (0.5ul in 2ml
blocking buffer) for 4h at RT or 4°C O/N

wash 4x 25min with 1x malate buffer at RT (make fresh!!)

(leave in PBST at 4°C O/N)

wash 3x 5min with staining buffer at RT (make fresh)

stain in 500pl BM Purple AP substrate solution (Roche Cat. No. 1442074)
(warm & shake before use) in 24-well-plates at 37°C in the dark, check every
10-15min

wash 3x with PBST

fix in 4% PFA, store at 4°C

replace by 75% glycerol/PBS, store at 4°C

4.4.2 Cryosections

Fix dechorionated embryos in 4% PFA/PBS for 1h at RT or O/N at 4°C
Wash with PBS

2h at RT (O/N — a few days at 4°C) in 20% sucrose/PBS

take embryos out from sucrose and place in plastic moulds (Polysciences)
take off sucrose as well as possible

cover embryos with Tissu Tek (Plano)

align embryos in required position (ventral to the mold bottom) under the
microscope

place molds on dry ice so tissue-tek hardens (about 20min)

detach blocks by pressing hard with the thumb against the mold bottom
place blocks on holders

place a holder in the cryostat and start to cut

try to find the plane containing embryos by trimming 30-50pum sections
cut embryos in 12um sections

transfer sections in a line to slide (super frost slides, Roth), 5-7 sections per
line are optimal

leave to dry at RT at least 1h

4.4.3 Antibody stainings

4.4.3.1 Antibodies

The following primary antibodies were used:

mouse anti-acetylated tubulin antibody (Santa Cruz; 1:1000)

mouse anti-Hu (Marusich et al., 1994), kindly provided by Darren Gilmour; 1:200)
mouse anti-Islet] (Developmental Studies Hybridoma Bank; 1:50)

mouse anti-Zn5 (University of Oregon; 1:500)

mouse anti-Zprl (University of Oregon; 1:200)

mouse anti-Zpr3 (University of Oregon; 1:200)
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Secondary antibodies:

anti-mouse antibody used was either coupled with AlexaFluor488 (green) or
AlexaFluor 549 (red) (Molecular Probes, 1:500)

Alexa Fluor 568-conjugated phalloidin (Molecular Probes; 1:40)

4.4.3.2 Hu staining protocol

Fix embryos in 4% PFA (PBS) for 3h at RT or O/N at 4°C

Rinse once + wash 3x with PBST (0.1% Tween 20)

Dehydrate in MetOH series (33%, 66%, 2x100%, 5min each, place at -20°C
for at least 1h). Important for penetration of later stage samples.

Permeabilise in 1ml Proteinase K solution (30pug/ml in H,O). Time depends
on stage of embryos — 10min should be enough for most later stages.

Rinse once + wash 3x with PBST (0.1% Tween 20)

Block 1h in GS-PDT (10% goat serum in 0.1% Tween 20, 1% DMSO in
PBS)

Dilute primary antibody in GS-PBST (no DMSO), add 100-200ul to the
samples and incubate O/N at 4°C or 4h at RT

Wash 4-6x 30min in GS-PBST

Incubate with secondary antibody (anti-mouse AlexaFluor 488; 1:500) in GS-
PBST 4h at RT or O/N at 4°C

Rinse once + wash 2x 30min in GS-PDT

Rinse once + wash 2x 30min in PDT

4.4.3.3 Isletl staining protocol

This is a tedious but worthwhile protocol, since embryos have to be digested in every

possible way to let the antibody through to the dorsal root ganglia.

Dechorionate embryos

Fix in 4% PFA 0.1% Tween 1h at RT

Wash embryos 2x Smin in PBSTw (0.1% Tween/PBS)

Wash 5min in H,O, then 1h in H,O, then through a series of 25%, 50%, 75%
into 100% MetOH in H,O to keep at -20°C O/N

Rehydrate through a MetOH series into PBS 0.1% Tween20 0.5% Triton
Pass embryos into a glass tube (acetone will dissolve plastic)

Short wash with H,O

Permeabilise with cold (-20°C) acetone for 20min at -20°C

Short wash with H,O

Wash 3x Smin with PBS 0.1% Tween20 0.5% Triton

Short wash in 2% goat serum, 1% BSA, 1% DMSO, 0.5% Triton in PBS
(PBDST)

Transfer embryos back into Eppendorff tubes

Block 1h in PBDST

Primary antibody incubation: Islet-1 1:30 in PBDST O/N at 4°C or 4h at RT
4x 30min wash in PBDT (no goat serum)

secondary antibody incubation: (anti-mouse AlexaFluor 488; 1:500) In PBDT
O/N at 4°C or 4h at RT
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e 4x 30min wash in PBDT

4.4.3.4 Acetylated tubulin staining protocol

SOLUTIONS
TCA: 10% trichloroacetic acid stock in distilled water, stored at 4°C, dilute to 2% in
PBS
PBT: 0.5% Triton X-100 in PBS, 10% Triton, stored at RT
Trypsin: from Gibco-BRL (2.5% solution), stored at -20°C in aliquots (200ul), dilute
to 0.25% in PBT before use
Primary and secondary antibodies, goat serum and DAB stocks are stored at -20°C in
aliquots.
PROTOCOL
e Fix embryos in 2% TCA (trichloroacetid acid) in PBS for 3h exactly at RT
e Wash 3x 5min in PBS
e Store at 4°C in PBTx (0.5% Triton in PBS) until use
Careful: TCA fixed fish are quite fragile
DAY1
e Wash 2x 10min in PBS after several rinses
e Trypsin treatment (to permeabilise the embryos)
o Prechill trypsin solution (dilute frozen stock 10x in PBTx 100ul
stock) on ice
o Prechill aliquot of PBTx (for stop solution)
o Incubate the embryos in trypsin solution on ice
4min for 44hpf, 8min for 58hpf, 12min for 72hpf embryos
¢ Rinse in prechilled PBTx
e Wash 5x 5Smin in PBTx at RT
e Blocking: incubate in 10% goat serum, 1% DMSO in PBTx for at least 1h at

RT
e Replace with primary antibody diluted in 10% goat serum, 1% DMSO in
PBTx
e Incubate O/N at 4°C
DAY2

e Remove primary antibody solution and keep in fresh tube at 4°C for reuse
Rinse embryos 2x with PBTx
Wash 6x 30min in PBTx on a shaker at RT
Wash in PBTx for 30min
Incubate in secondary antibody (anti-mouse AlexaFluor 488; 1:200) diluted
in 1% goat serum in PBT O/N at 4°C
DAY3
e Remove secondary antibody (and discard)
Rinse 3x with PBTx
Wash 6x 30min in PBTx on shaker at RT
Final wash in PBS after several rinses
Transfer to 70% glycerol / 30% PBS and store at 4°C to view

4.4.3.5 Eye sections double labelling protocol
Cryosections of 2 and 3dpf old embryos were used.
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Wash 2x 5Smin in PBST (0.1% Tween)
Block 1h at RT in 1% BSA/PBS in a wet chamber, cover sections with
parafilm, 150ul per slide
Primary antibody:
o Zn5 1:500; or Zprl or Zpr3: 1:100
o 4°C O/N incubation
Wash 3x 5Smin in PBST
Secondary antibody:
o Anti-mouse AlexaFlour 488 (1:500) and Alexa-conjugated phalloidin
(1:40)
o 150yl per slide in blocking buffer
o lhat RT in wet chamber, slides covered with parafilm
wash 3x 10min with PBST
mount with Moviol

4.4.4 Methylene blue staining

Methylene blue solution:

Add 25ml of 4% NaOH solution to 100ml of 1% silver nitrate solution

Allow the precipitated silver oxide to sediment and decant supernatant
Dissolve 1g methylene blue in 100ml distilled water, heat and add to the
washed silver oxide

Heat for a further Smin

Allow to cool and filter

Staining procedure:

Wash cryosections 2x in PBS

Wash sections with distilled water

Stain for 15sec — 2min in methylene blue

Wash in running tap water around 10min (dependent on section thickness and
age of staining solution)

Wash 30sec in 70% EtOH

Wash 2x 30sec in 100% EtOH

Place 5min in xylene

Check staining quality under microscope

Mount with Entellan

4.4.5 Alcian blue staining

H,OT: tap water with 0.1% Tween 20

Fix embryos O/N at 4°C in 4% PFA (PBS)

Place embryos in 70% EtOH for 10min (can be stored at 4°C for about a
week)

For storage (optional): take through a MetOH series and store in 100%
MetOH at -20°C

Stain O/N in 0.1g Alcian Blue in 0.1N HCI pH1 at 37°C

Rinse 2x 5min in H,0T
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Bleach and defat 30min at 37°C in:

10ul 30% H»0,

100ul 10% KOH

890ul H,OT

(freshly made, invert tube 2x to mix)

Rinse 2x Smin in H,OT

Rinse 10min in:

300ul saturated Borate (Borax)

600ul H,OT

Digest: replace with the same solution including 0.25mg/ml Trypsin, digest
30min at 37°C (invert tube 2x to mix)

Rinse 2x 5min in H,OT

Rinse in 25% glycerol/75% H,O for 30min

Transfer to 50% glycerol / 50% H,O

Transfer to 75% glycerol / 25% H»O for long term storage at RT/4°C

4.4.6 TUNEL staining

TUNEL staining was performed on whole mount embryos using the in situ cell death

TMR red kit (Roche).

4.5 Total RNA isolation from embryos

Collect 30-50 embryos at 3dpf and shock-freeze with liquid nitrogen
place at -80°C for a few hours
resuspend in 400ul TES solution:
o 10mM TrisCl pH 7.5
o 10mM EDTA
o 0.5% SDS
add 400l acid phenol, vortex vigorously 10sec
incubate 60min at 65°C with occasional, brief vortexing
place on ice Smin, centrifuge Smin at top speed, 4°C
transfer aqueous (top) phase (400pul) to a clean 1.5ml tube, add 400ul acid
phenol, vortex vigorously, place on ice Smin, centrifuge at top speed, 4°C
repeat
transfer aqueous phase to a new tube, add 40ul of 3M sodium acetate, pH
5.3 and 1ml of ice-cold 100% EtOH
precipitate 1h at -80°C
centrifuge Smin at top speed, 4°C
take off EtOH
wash RNA pellet by vortexing briefly in ice-cold 70% EtOH
centrifuge as before to pellet RNA
take off EtOH
resuspend pellet in 50ul H,O, determine OD (1:100), store at -20°C
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4.6 cDNA synthesis

cDNA first strand synthesis (for cloning) was performed with SuperScriptll Reverse

transcriptase (Gibco) according to the manufacturer’s protocol.

4.7 General gene cloning procedure

Programs and PCR mixtures used depended on the aim of amplification and primers.
If not noted otherwise, 1000bps/ min were used as standard to calculate the extension
time. Promega Tfl polymerase was used.
PCR products were separated electrophoretically on agarose gels, cut out and
extracted using a Qiagen MinElute Kit.

Redo TA overhangs:

5.6ul DNA

2ul  Promega Tfl 5x buffer

lul  dATP 0.2mM (1:50dilution of stock from stores)

lul  Promega Tfl polymerase from RT kit (Promega)

0.4ul MgS0O4 25mM
30min 70°C
Ligation TopoTA Kit: Ligation pGEMT Kit:
(Invitrogen) (Promega)
2ul DNA 2ul DNA
1 ul salt solution 5ul buffer
0.5ul vector Iul vector
2.5ul water 1 ul water
1ul ligase
5-15min RT 1h RT

Ligated plasmids were chemically transformed into ToplO cells (Invitrogen)
according to product sheet, grown O/N on agar plates. Individual clones were picked
and a bacterial mini preparation performed. Restriction digests using EcoRI were
done to check insert size on agarose gel. Clones containing inserts of correct size
were then sequenced in house.

4.7.1 Trap230 primers

Primer name forward primer(s) reverse primer(s)
Trap-1 GTTCCCATCTTCAGCAAGAAAG TCTCTGCTGTACTCTTGCGG
Trap-1b ACACGAGTTCCTCACCTGG CAGAAGTGGCAGAAGCAAACG
Trap-1c GTGTTGTGTTGCCCCAGC GTTAAAGGTGCTGTTGCCCC
Trap-1d GTCAGAAGTTGTAGATGAGAAAGG GAAACTGCAGCAGGACATCC
Trap-2 GAGGAGAGTGCAAGTCATGAG TGCTGGCACTGTTGCTATTGG
Trap-3 GCTGTATTCTCTTCTGGAGAAC ACTGGAGAGCTGCTGCTG
Trap-3b GTCAAACATCCCACCCACC
Trap-4(a) GGTGGGTGGGATGTTTGAC TTCACAGAACAACGCCAGTATG

Trap-4b CATGTCTCTCCTGAGCCAG CCT CTT CTC TCA GAA AGG TCC
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Primer name forward primer(s) reverse primer(s)

Trap-5UTR  AAGAGTGTGCATTTGTGTGTGC

Trap-5SRACE  CACTGGCACAGAGTACTTGGCAAGGTA
GCC

nested: GCC AAA CAC TTC CTC TTT CTT
GCT GAA GAT GGG AAC

T1-14A w1 GGTCCAGGTGGGCATCAG GAGGCCAGGTCCCCACGG
T2-12-12wl  TGTTCTGCGGAGATACCA CAGCATCTCCCAGCATG
T4 wl TGGACCTGCTGTTGCA TCCTGGGGCTGGTTCG
J4wl CTGGGGCTGGTTCGGA TCCAAAAACTGGACCCT
Trap-MO- gaaacagccagtctggtgg CAAATTGTGTTCCAGTAGTTGGG
Test
Trap-MO- CAG GAT GCG TTT GAT GCG C
Test-Ex24
Trap-MO- ACAGAGACTTCAGACAGCGC
Check-Ex24
Trap-5'deg ATGAARCARWSNATGCC
Trap-5' spec ATCTTGTTTTCAGTTATGGCAGCG
Trap-5'-Tet- ATGGGCKGCYTTCGGGATC
deg
Trap-Ex10- ACTCGCTCACTCTCGTTCC
rev
Trap-Int9-rev gaatgccacttcactgtatce

Figure 49. Sequences of Trap230 primers used in this study.

4.8 Sequencing

DNA sequencing was performed by the EMBL internal service unit of Vladimir

Benes.

4.9 Sequence alignments

DNA sequences were analysed and aligned using the DNAMAN program. DNA and
protein sequences of a selected number of species were obtained from the database

and aligned using the online CLUSTALW algorithm at the EBI, Cambridge.

4.10 Microinjection of morpholino
oligonucleotides and mRNA

TRAP230 splice morpholino oligonucleotide (MO) was purchased from GeneTools
LLC. The MO, designed to target the exon26-intron26 splice junction, has the
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sequence CAGATCCTCTAAAAATCATCACCTG. A MO stock solution was
formed by dilution in water and was stored at —20°C prior to use. Embryos were

injected at the single cell stage with 0.25 mM MO.

sox9b-mRNA was synthesized using the SP6 mMessage mMachine kit (Ambion)
from a full-length clone obtained at RZPD (IMAGp998A0514858Q) and injected at

single cell stage with a concentration of 90ng/pl.

4.11 Further molecular standard techniques

DNA restriction digests and agarose gel electrophoresis (1-2% agarose, TAE buffer)
were performed according to standard protocols (Sambrook, 1989). Ethidium
bromide was added in a 1:10000 dilution directly to the gels prior to solidifying. Gels

were used for gel extraction or photography on a gel documentation station.
Bacterial mini preparations were done using an Eppendorff FastPlasmid Mini kit.

DNA was eluted from agarose gels by cutting the respective piece out of gel under
long-wave UV conditions (A=366nm) and subsequently purifying it using a Qiagen

MinElute kit and eluted in a final volume of 10pl.
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Figure 50. Alignment of zebrafish Trap230 sequences.
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6.2 Phylogenetic trees

2 Trap230
' 2 Trap230 pred
i ko
m_THRC11
h_MED12
h_MED12L
¢_THRC11
1 f Trap230
SC_snrh8
| 55 srhf

' (_skd

h_ MED13
1 h_ MED13L

Figure 52. Cladogram of Trap230 and related proteins across species (Clustalw).

Abbreviations as in Figure 52.
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Figure 53. A phylogenetic tree for Sox9-related genes.

(Cresko et al., 2003) Numbers are bootstrap values for 1,000 trials. Dre, Danio rerio, zebrafish; Gac,
Gasterosteus aculeatus, threespine stickleback; Gga, Gallus gallus, chicken; Hsa, Homo
sapiens, human; Mal, Monopterus albus, rice eel; Mmu, Mus musculus, mouse; Tru, Takifugu
rubripes, pufferfish. Dre Sox8 AW153579; Dre Sox9a AY090034; Dre Sox9b AAG09815; Dre
Sox10 AF402677; Gga Sox9 U12533; Gga Sox10 AF152356; Gga Sox8 AF228664; Hsa Sox8
NP_055402; Hsa Sox9 NP _000337; Hsa Sox10 NP_008872; Mal Sox9a AF378150; Mal Sox9b
AF378151; Mmu Sox8 XP_128601; Mmu Sox9 NP_035578; Mmu Sox10 XP_128139; Tru Sox9%a
AAL32172 (mayfold000587); Tru Sox9b mayfold 000421 (fugu assembly 3 at
http://fugu.hgmp.mrc.ac.uk/).Mediator complex components
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6.3 Mediator complex components
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Figure 54. Mediator subunits. New nomenclature and comparison of synonyms across species.

(Bourbon et al., 2004)
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Large Small MudPIT

S. cerevisiae
rat MED
TRAP/SMCC
mMED

Hela control
293 control
f:Med10 (HeLa)
f:Med9 (Hela)
fMed29 (Hela)
f:Med19 (HeLa)
fMed28 (Hela)
f:Med8 (Hela)
fMed8 (293)
f:Med26 (Hela)
f.Cdk8 (Hela)

ARC
DRIP
PC2
CRSP

Cdk3
Cdk11
Cyclin C
Med12L
MED12
MED13L
MED13

Kinase

MED6

MED8

MED11
MED17
MED18
MED19
MEDZ20
MEDZ22
MED28
MED29
MED30

Head

MED1
MED4
MEDS
MED7
MED9
MED10
MED21

Middle

MED2
MED3
MED14
MED15
MED16

Tail

MED23
MED24
MED25
MED26
MED27
MED31

Unassigned

Figure 55. Comparison of mammalian Mediator-like complexes.

(Conaway et al., 2005) Mediator subunits identified in different Mediator preparations are indicated
with blue; Mediator subunits not identified are indicated with yellow. Subunits are grouped according
to which module they are believed to be in. On the left, composition of S.cerevisiae Mediator is
summarised in comparison. On the right, a summary of Mediator components identified by MudPIT
(multidimensional protein identification technology) via immunoaffinity chromatography of nuclear
extracts prepared from extracts of HeLa cells expressing the indicated subunits with an N-terminal
epitope tag with the amino sequence Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys (the FLAG epitope).
denotes the FLAG epitope; proteins identified following immunoaffinity chromatography of extracts
from parental HeLa or 293 cells are indicated.



APPENDIX 141
MED1 | ] TRAP220 Med1
MED4 [ ] TRAP36 Med4

Head MED6 [ ] Meds Meds
MED7 [ | Med7 Med7

Head MED8 [ W] Meds Med8
MED9 [ ] Med25 Cse2
MED10 [ I MED10  Nut2

Head MED11 [ | HSPC296 MED11
MED12 (@ | I ] TRAP230 Srbg
MED13 [T JTRAP240 Sth9
MED14 [ | ] TRAP170 Rgr1
MED15 [ [ 1 | PCQAP Gall1
MED16 [ | TRAP95 Sin4

Head MED17 | | TRAP80 Srb4

Head MED18 [ I p28b Srb5

Head MED19 [ ] LCMR1 Rox3

Head MED20 [ | hTRFP  Stb2
MED21 [ ] hSrb7  Srb7

Head MED22 [ ] Surfs Srb6
MED23 [ [ | | ]  sur2
MED24 | | TRAP100

?  MED25 | | ARC92
?  MED26 | | CRSP70

Head MED27 [ [ | TRAP37

Head MED28 [ | FKSG20

Head MED29 [ | hintersex

Head MED30 [ | TRAP25
MED31 [ Soh1 Soh1
CDKs [N | CDK8  Srb10
cyclinc (1IN | CyclinC  Srb11

Common Name

Module Systematic Name\:_ Human Yeast

20 40 60

80

100 % identity

Figure 56. Location of conserved regions within human Mediator subunits.

(Blazek et al., 2005) Extended stretches of high homology can be found in the MED23 and MED31 proteins
and the Cdk8/Cyclin C pair. Regions that share at least 20% homology with the corresponding sequences in the
respective Drosophila melanogaster subunits are coloured according to the degree of identity. Systematic as well
as common names of human and corresponding yeast subunits are listed. In addition, tentative locations of
subunits within the Head, Body and Kinase (KIN) module of the complex have been assigned. Sequences were
aligned using the SIM program (BLOSUMG62 Matrix) and visualized with the LALNVIEW (Duret et al., 1996)
program (both available at http://www.expasy.ch). The data were extracted for further manipulation. Alignments
of up to 20 regions per subunit were generated. Within the LALNVIEW program the “similarity score threshold”
was set to a value above 40 to ignore insignificant alignments.
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Factor Mediator subunit References

ERa and ERpB MED1 (Zhu et al., 1999); (Burakov et al.,
2000); (Warnmark et al., 2001); (Kang
et al., 2002)

AR MEDI1 (Wang et al., 2002)

GR MEDI1, MED14 (Hittelman et al., 1999)

TRa MEDI, MED21 (Yuan et al., 1998)); (Zhu et al., 1997);
(Nevado et al., 2004)

TRpB MED1 (Yuan et al., 1998); (Zhu et al., 1997)

VDR MEDI1 (Rachez et al., 1999)

RARa MEDI1 (Zhu et al., 1997); (Shao et al., 2000)

RXRa MEDI1 (Zhu et al., 1997); (Yuan et al., 1998)

PPARa MEDI1 (Zhu et al., 1997); (Yuan et al., 1998)

PPARy MEDI1 (Zhu et al., 1997);(Ge et al., 2002)

HNF-4 MEDI1, MED14 (Malik et al., 2002)

FXR MED1 (Pineda Torra et al., 2004)

RORa MEDI1 (Atkins et al., 1999)

STAT2 MED14, MED17 (Lau et al., 2003)

Elk-1 MED23 (Stevens et al., 2002)

Esx/Elf-3 MED?23 (Asada et al., 2002); (Shimogawa et al.,
2004)

C/EBPp MED23 (Mo et al., 2004)

SMAD2, SMAD3, SMAD4 MED15 (Kato et al., 2002)

DSXr MED29 (Sato et al., 2003a; Sato et al., 2003b);
(Sato et al., 2003a; Sato et al., 2003b)

SOX9 MEDI12 (Zhou et al., 2002)

Dif (dmNF-«B like) MED17, MED16, MED23, MED25  (Park et al., 2003); (Kim et al., 2004)

E1A-13S MED23 (Stevens et al., 2002); (Wang and Berk,
2002)

RTA MED12 (Gwack et al., 2003)

VP16 MED25, MED17 (Mittler et al., 2003); (Tto et al., 1999);
(Yang et al., 2004)

Myc Cdk8 (Eberhardy and Farnham, 2002)

p53 MEDI, MED17 (Drane et al., 1997); (Frade et al.,
2000); (Ito et al., 1999)

BRCA1 MEDI1 (Wada et al., 2004)

HSF MED17, MED23, MED25 (Park et al., 2001b); (Kim et al., 2004)

Aryl HC receptor MEDI1 (Wang et al., 2004b)

SREBP-1a MED14 (Toth et al., 2004)

Figure 57. The role of Mediator in cellular signalling.

(Blazek et al., 2005) Transcription factors that exert their function via the Mediator complex are listed along with
their target subunit within the Mediator complex and the corresponding reference(s)
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6.4 Abbreviations

SI units (systeme international d’unités) and symbols of standard multiples (m, p,
etc.) are not listed below. Additional abbreviations are introduced in the text at the

site of their first appearance.

AA amino acid

AER apical ectodermal ridge

AT adenin-thymine

3-ME B-mercapto ethanol

BAC bacterial artificial chromosome
BAC-FPC BAC fingerprinting contig
bHLH basic helix-loop-helix

bp base pairs

BSA bovine serum albumin

CA cytosine-adenin

cAMP cyclic Adenosine-5"monophosphate
°C degree Celsius

cdks cyclin-dependent kinases

cf. Compare

cM centiMorgan

CNS central nervous system
C-terminus Carboxy-terminus (of a peptide)
Da Dalton

DMSO dimethylsulfoxide

DNA deoxyribonucleic acid

dNTP deoxy-A/C/G/T-trisphosphate
DRG dorsal root ganglion

EtOH ethanol

EST expressed sequence tag

Fgf (FgfR) Fibroblast growth factor (receptor)
g gravity constant

GC guanine-cytosine

GCL ganglion cell layer

h hour(s)

HDAC histone deacetylase

hpf hours post fertilization

ICD intracellular domain

M intermediate mesoderm

IPL inner plexiform layer

kB kilo bases

LG linkage group

LPM lateral plate mesoderm

M mol/l

MetOH methanol

MHB midbrain-hindbrain boundary
min minute(s)

MO morpholino oligonucleotide
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mRNA messenger RNA

MRP multi-drug-resistence protein

NR nuclear receptor

N-terminus Amino-terminus (of a peptide)
OD optical density

O/N overnight

ONL outer nuclear layer

PAC P1-derived artificial chromosome
PCR polymerase chain reaction

PFA paraformaldehyde

PKA protein kinase A

PTU 1-phenyl-2-thiourea

RA retinoic acid

RACE rapid amplification of cDNA ends
RGC retinal ganglion cells

RNA ribonucleic acid

RPE retinal pigmented epithelium

RT room temperature

SET (domain transcription factor)

SNP single nucleotide polymorphism
Shh sonic hedgehog

SSLP single sequence length polymorphism
TE Tris/EDTA

trp trapped

UTR untranslated region

vol. volume

WMISH whole mount in situ hybridization
wt wildtype

ZPA zone of polarising activity



Short Summary

This thesis deals with the mapping and cloning of trapped (tpd), a novel zebrafish
mutant found to disrupt an ortholog of Trap230, a member of the Mediator complex.
Mediator is a coactivator complex transducing the interaction of DNA-binding

transcription factors with RNA polymerase II.

The vertebrate Sox9 transcription factor directs the development of neural crest, otic
placodes, cartilage, and bone. In zebrafish, there are two Sox9 orthologs, Sox9a and
Sox9b, which together perform the functions of the single-copy tetrapod Sox9. The
mutant phenotypes of #pd and the Sox9a/Sox9b double mutant are remarkably
similar. The results of this thesis show that Trap230 is required for Sox9 activity. In
addition, I show that Trap230 is required for an early step in pectoral fin induction,
indicating that it also participates in Sox9-independent signaling events. Moreover,
additional phenotypes in brain, eye, heart, muscle and gut development as well as
axon guidance and a general downregulation phenotype of fibroblast growth factor
expression in #pd mutants are described. These phenotypes may or may not be Sox9-
dependent. This is the first characterisation of a vertebrate Trap230 mutant, and

reveals a surprisingly specific requirement for Trap230 in mediating Sox9 activity.



Zusammenfassung

Diese Dissertation befaf3t sich mit der Kartierung und positionellen Klonierung einer
neuen Zebrafisch-Mutante, trapped (tpd). Es wird gezeigt, daB in ihr das Gen fiir ein
Zebrafisch-Ortholog von Trap230 betroffen ist, einer Untereinheit des Mediator-
Komplexes. Der Mediator-Komplex ist ein Coaktivator, der fiir die Verstaindigung

von DNA-bindenden Transkriptionsfaktoren und RNA-Polymerase II zusténdig ist.

Der Sox9 Transkriptionsfaktor steuert in Wirbeltieren die Entwicklung von
Neuralleistenzellen, Ohr-Plakoden, Knorpel und Knochen. Im Zebrafisch gibt es
zwei Orthologe von Sox9, Sox9a und Sox9b. Diese erfiillen gemeinsam die Funktion
einer einzelnen Sox9-Kopie in Tetrapoden. Die Phanotypen der Zebrafisch-Trap230-
Mutante und einer Doppelmutante in Sox9a und Sox9b dhneln sich verbliiffend. In
dieser Arbeit wird gezeigt, dal Trap230 fiir die Aktivitit von Sox9 notwendig ist.
Zudem hat Trap230 eine wichtige Funktion in einem frithen Schritt der
Brustflosseninduktion. Dies deutet darauf hin, dal Trap230 auch in Signalwegen und
bei Entwicklungsprozessen, die unabhdngig von Sox9 sind, eine Rolle spielt.
Dariiber hinaus werden zusétzliche Phinotypen der Trap230-Mutante besprochen,
die Entwicklung von Hirn, Auge, Herz, Muskeln und Darm betreffend, sowie ein
Defekt in der Fiihrung von Axonen und eine allgemein reduzierte Expression und
Funktion von Fibroblastenwachstumsfaktoren. Bei einigen dieser Phdnotypen konnte
auch die Interaktion mit Sox9 eine Rolle spielen. Dies ist die erste Beschreibung
einer Wirbeltiermutante von Trap230. Sie zeigt auf, da Trap230 erstaunlich

spezifisch fiir die Aktivitdt von Sox9 notwendig ist.
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