
Structured Generic Programming
in Eden

Dissertation
zur

Erlangung des Doktorgrades
der Naturwissenschaften

(Dr. rer. nat.)

dem
Fachbereich Mathematik und Informatik

der Philipps-Universität Marburg
vorgelegt von

Steffen Priebe
aus Marburg/Lahn

Marburg/Lahn 2007

Vom Fachbereich Mathematik und Informatik
der Philipps-Universität Marburg als Dissertation am 3. Februar 2007 angenommen.

Erstgutachterin: Prof. Dr. Rita Loogen
Zweitgutachter: Hochschuldozent Dr. Ralf Hinze, Universität Bonn

Tag der mündlichen Prüfung am 9. Februar 2007

Zusammenfassung
Die Ausnutzung von Parallelität ist schon immer eine für den Benutzer unsichtba-
re, aber große Quelle zur Verbesserung der Prozessorleistung gewesen. Da aber die
Menge an implizit nutzbarer Parallelität auf Befehlsebene begrenzt ist und gleich-
zeitig immer größere Rechenleistungen benötigt werden, erleben wir gegenwärtig
eine Renaissance expliziter paralleler Techniken sowohl auf Hardware- als auch
auf Softwareebene. Aufgrund ihrer Komplexität sind parallele Systeme mit tra-
ditionellen Programmiersprachen schwer zu handhaben. Deshalb werden zuneh-
mend abstraktere Programmiersprachen betrachtet. Eden ist eine solche Spra-
che, die Programmkonstrukte zur gleichzeitigen Auswertung von Ausdrücken in
die funktionale Programmiersprache Haskell integriert. Eden ist ein Kompromiss
zwischen vollständiger und fehlender Parallelitätskontrolle durch den Program-
mierer: Es wird genügend Kontrolle zur Erreichung guter Beschleunigungen be-
reitgestellt, gleichzeitig wird aber auch ein abstrakter Programmierstil durch die
Übernahme weniger wichtiger Vorgänge durch das Laufzeitsystem gewahrt.

In dieser Arbeit stellen wir Eden drei Sprachkonzepte zur Seite, um eine noch
weitergehende Abstraktion zu erreichen:

• Unter Meta-Programmierung versteht man die Definition von Programmen,
die andere Programme erzeugen oder verändern. Diese Technik wird benutzt,
um in Haskell programmierte statische Präprozessorphasen zur Verbesse-
rung von Eden-Programmen zu konstruieren. Dadurch wird die Portabilität
des Eden-Compilers verbessert, da diese Phasen nun nicht mehr in den zu-
grundeliegenden Haskell-Compiler integriert werden müssen.

• Generische Programmierung erweitert parametrische zur strukturellen Poly-
morphie und ermöglicht daher die Definition von Funktionen, die mit belie-
bigen Argumentdatenstrukturen funktionieren. Wir beschreiben einen redu-
zierten struktur-orientierten Ansatz zur generischen Programmierung, der
für den Einsatz in Eden konzipiert wurde. Mit diesem Ansatz definieren wir
allgemeine parallele Verarbeitungsschemata.

• Möglichkeiten zur Auswertungskontrolle müssen vorhanden sein, wenn in
einer funktionalen Sprache Bedarfssteuerung auf Parallelität trifft. Deren
Ziele sind gegensätzlich: Auf der einen Seite werden Auswertungen zeitlich
nach hinten geschoben, während auf der anderen Seite frühe Auswertung die
Gleichzeitigkeit und damit die Parallelität fördert. Wir zeigen Wege auf, um
die Auswertung zu Gunsten der Parallelität zu steuern.

In funktionalen Sprachen wird der Auswertungsverlauf durch Datenabhängigkeiten
sowie durch Kontrollkonstrukte bestimmt. Analog kann man bei parallelen funk-
tionalen Programmen zwischen daten-orientierten und kontroll-orientierten unter-
scheiden. Entsprechend zeigen wir zunächst generische Methoden zur Partitionie-
rung von Datenstrukturen sowie generische Versionen der parallelen map-Funktion.
Dann stellen wir kontroll-parallele Methoden vor, mit denen die in Eden oft vor-
kommenden Datenströme behandelt werden können; zusätzlich zeigen wir par-
allele Schemata zur effizienten Verarbeitung irregulärer Strukturen und langer
Kommunikationswege. Letztendlich vereinigen wir die gezeigten Techniken in ei-
ner Programmentwicklungsmethodik für Eden.

Abstract

Parallelism has always been a hidden main source of processor power. As a result
of the limited amount of implicitly exploitable small-scale parallelism (for example
on the instruction-level) and ever-growing needs for more computational power,
parallel techniques break their way from a minor matter to a major feature in
both hardware and software. Due to their complexity, such parallel systems are
getting increasingly difficult to control with conventional programming languages.
Therefore, more abstract high-level approaches move into focus. Eden is a repre-
sentative of these approaches which integrates constructs for remote evaluation
into the standard functional language Haskell. It strikes a balance between full
and no parallelism control and delivers good speedups while providing a high-level
style of programming.

In this thesis we equip Eden with three language features to raise the abstrac-
tion level even more:

• Meta-programming, which means that programs manipulate other programs,
will be used to define static preprocessing steps coded in Haskell for enhanc-
ing Eden programs. This supports portability of the Eden compiler, as some
transformations can be pulled out of the foreign Haskell implementation.

• Generic programming raises parametric to structural polymorphism and al-
lows to write functions which are valid for all data structures. We will present
a reduced, structure-oriented approach to generic programming tailored for
Eden’s needs. Using this approach, very general parallel schemes are defined.

• Demand control is a basic requirement if a lazy functional language is faced
with parallelism. The contradictory aims of postponing evaluations and si-
multaneity of evaluations enforces demand control in favour of parallelism.
We present a set of means to do that.

In functional programs, evaluation progress is determined by a mix of control
structures and data dependencies. Accordingly, parallel functional programs can
roughly be classified into data-oriented and control-oriented ones. Firstly, we will
present generic methods for partitioning data structures as well as generic versions
of the parallel map function. Secondly, we will show methods to manage the om-
nipresent streams as well as parallel schemes for dealing with irregular task sizes
and long communication distances. To conclude, we will summarise all methods
shown in a program developing guide for Eden.

Acknowledgements

My thanks are threefold:
Firstly, I want to most heartily thank my supervisor Rita Loogen. Not
only for introducing me into the exciting topics of functional languages
and parallel computers, but also for giving me the possibility to write
this thesis about the topics I am most interested in and for providing
a very stimulating working atmosphere. Thanks also go to the many
present and past members of the Eden group in Marburg and Madrid
for many valuable discussions. I am grateful to Ralf Hinze for agreeing
to serve on the examination board despite being loaded with teaching
duties and research activities. I am also thankful for the suggestions of
other conference participants and especially for the neutral assessments
and helpful comments of many anonymous referees.
Secondly, I am most thankful to the Evangelisches Studienwerk Vil-
ligst e.V. (which is the scholarship organisation of the german protes-
tant church) for granting me a scholarship when I needed it the most.
Not only their generous financial support is acknowledged, but at least
as much the inspiring, interdisciplinary meetings at Villigst and in the
local group of scholarship holders at Marburg.
Thirdly, the warmest thanks go to my family for their constant and lov-
ing support in all situations. Above all, my loving thanks go to my wife
Friederike and our daughter Luisa for bearing with me through all ups
and downs of my work.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Why Parallel Computing Is on the Rise Again 1
1.1.2 Why More Abstract Programming Languages Are Needed . . 2
1.1.3 Why Functional Programming Languages May Be the Solution 3
1.1.4 Why More Advanced Programming Techniques Are Needed . 6

1.2 Contributions . 7
1.3 Structure of this Dissertation . 8

2 Fundamentals 9
2.1 Motivation . 9
2.2 Parallel Computers . 9
2.3 Approaches to Parallel Programming 13
2.4 Approaches to Parallel Functional Programming 15
2.5 The Parallel Functional Language Eden 16

2.5.1 Process Creation and Placement 17
2.5.2 Communication and Storage . 18
2.5.3 Evaluation Behaviour and Laziness 20

3 Meta-Programming for Eden 21
3.1 Motivation . 21
3.2 Meta-Programming with Template Haskell 23
3.3 Preprocessing Eden . 26

3.3.1 The Preprocessor . 26
3.3.2 Technical Issues . 28
3.3.3 The State Transformer Monad 29
3.3.4 Stateful Monadic AST Traversal 30
3.3.5 Global Actions . 32
3.3.6 The Main Loop . 35

3.4 Automatic Instance Derivation . 36
3.4.1 Deriving NFData . 38
3.4.2 Context Inference . 40

3.5 Reflection and Adaption . 44
3.5.1 Reflection: Eager Transformation 44
3.5.2 Adaption: Self-Configuring Skeletons 45

i

ii CONTENTS

4 Generic Programming for Eden 49
4.1 Motivation . 49
4.2 Data Structures . 51
4.3 The Type System in a Nutshell . 53
4.4 Basic Approaches to Generic Programming 55

4.4.1 Static . 55
4.4.2 Dynamic . 56

4.5 Generic Programming for Eden . 56
4.5.1 Gaining Access to Data Structures 57
4.5.2 Nested Data Structures . 58
4.5.3 The Abstraction Classes . 60
4.5.4 Implementation . 63

4.6 Sequential Genericity . 63
4.6.1 Functions for Abs0 . 65
4.6.2 Functions for Abs1 and Abs2 66

4.7 Discussion . 69

5 Controlling Demand in Eden 73
5.1 Motivation . 73
5.2 Sequential Evaluation of Functional Expressions 74

5.2.1 How Expressions are Reduced 74
5.2.2 How Reduction Progresses . 75
5.2.3 Data Structure Reduction Degrees 77

5.3 The Need for Demand Control . 78
5.3.1 Sequential Setting . 78
5.3.2 Parallel Setting . 80

5.4 Means for Demand Control . 82
5.4.1 Without Operators . 83
5.4.2 With Operators . 85
5.4.3 With Operators and Overloading 87

5.5 Data-Oriented Demand Steering . 89
5.5.1 Spine Evaluation, Generically 89
5.5.2 Selective Evaluation . 91
5.5.3 Universal Functions for Four Reduction Degrees 93
5.5.4 Annotated Data Structures . 93

5.6 Control-Oriented Demand Steering . 95
5.6.1 Early Process Creation . 95
5.6.2 Effects and their Execution . 97
5.6.3 Effect Groups . 100
5.6.4 Automatic Grouping . 102
5.6.5 Demand Management . 103

6 Data Parallelism 107
6.1 Motivation . 107
6.2 Partitioning, Granularity, and Grouping 108

6.2.1 Non-Generic Partitioning . 109
6.2.2 Generic Partitioning . 109

CONTENTS iii

6.2.3 Grouping . 115
6.3 Parallel Maps . 115
6.4 Generic Parallel Maps . 117

6.4.1 Generic Skeletons . 117
6.4.2 Combining Generic Skeletons 121
6.4.3 Example . 121

7 Control Parallelism 125
7.1 Motivation . 125
7.2 Dealing with Streams . 126

7.2.1 Introduction . 127
7.2.2 Delayed Matching . 127
7.2.3 Incremental Functions . 128
7.2.4 Partial Result Streams . 130
7.2.5 Threads . 130
7.2.6 Lazy List Comprehensions . 131
7.2.7 Accumulations and Limited Access 131
7.2.8 Stream Spreading . 132

7.3 Dealing with Irregular Task Sizes . 132
7.3.1 Basic Workpool . 134
7.3.2 Dynamic Workpool . 136
7.3.3 Nested Workpool . 141
7.3.4 Dynamic Workpool with Stateful Master 142
7.3.5 Example . 143

7.4 Dealing with Long Communication Distances 144
7.4.1 The Eden Process Tree . 144
7.4.2 The Hypertree . 145
7.4.3 A Hypertree Skeleton for Eden 146
7.4.4 Applications . 152

8 Developing Programs in Eden 157
8.1 Motivation . 157
8.2 Choosing a Parallelisation . 158
8.3 Handling Program Phases . 160
8.4 Building a Program . 162

8.4.1 Implementing in the Large . 163
8.4.2 Implementing in the Small . 165

9 Related Work 167
9.1 Meta-Programming . 167
9.2 Generic Programming . 169
9.3 Demand Control . 172
9.4 Data and Control Parallel Skeletons 172
9.5 Developing Programs in Eden . 174

iv CONTENTS

10 Conclusion 177
10.1 Conclusion . 177
10.2 Future Work . 179

List of Figures

1.1 Structural Chapter Overview . 8

2.1 MIMD: multiprocessors and multicomputers 12
2.2 Levels of parallelism . 12

3.1 Haskell program representation in Template Haskell, (1/2) 24
3.2 Haskell program representation in Template Haskell, (2/2) 25
3.3 Transition from input source code to code with embedded preprocessor 27
3.4 GHC workflow diagram with changes for preprocessor 28
3.5 State monad definition . 30
3.6 Monadic traversal class Traverser (excerpt) 31
3.7 Traverser class extended by global actions (excerpt) 33
3.8 Lift action into full state, run action, update state 34
3.9 Position tracking action (use with tActionPost) 34
3.10 Definition of passes with exemplary pass list 35
3.11 Loop functions doLoop and doPasses 35
3.12 NFData instance derivation pass . 39
3.13 Constraint and context definition . 41
3.14 Canonising a context . 41
3.15 Building the constraint equation (excerpt) 42
3.16 Solving the constraint equation (excerpt) 43
3.17 Eager transformation for Eden . 46
3.18 Internal parallel computer representation 48

4.1 The Abs0, Abs1, and Abs2 constructor classes 60
4.2 De- and reconstruction for kind (* -> *) 61
4.3 Derivation scheme for Abs0 (kind (*)) constructor class (excerpt) . . 64
4.4 Sequential generic functions (*), based on Abs0 65
4.5 Sequential generic functions (* -> *), based on Abs1 67
4.6 Sequential generic functions (* -> * -> *), based on Abs2 68

5.1 Reduction degrees of [a] . 78
5.2 Lazy reduction of hamming demonstrating distributed sequentiality . 82
5.3 The deepSeq type class . 88
5.4 deepSeq via explicit type annotations and GADTs 88
5.5 Evaluation strategies, sequentially . 89

v

vi LIST OF FIGURES

5.6 Generic spine traversal . 91
5.7 Generic touching with element demand and traversal predicate . . . 92
5.8 Universal reduction functions . 93
5.9 Data structure annotations . 95
5.10 Early process creation by result lifting 97
5.11 Wrapping I/O and effects around a function 99
5.12 Example demand annotations . 105

6.1 Direct and variable partitioning methods (chunking) 110
6.2 List partitioning on element level . 110
6.3 Destructive generic partitioning . 111
6.4 Tree partitioning on element level . 112
6.5 Non-destructive generic partitioning: single level-cut 113
6.6 Non-destructive generic partitioning: multi level-cut 114
6.7 Multi-level generic partitioning . 114
6.8 map implementation skeletons for regular granularity 117
6.9 Three non-generic implementation skeletons for map 118
6.10 Selected parallel generic functions . 120
6.11 Exemplary quad tree partitioning . 122

7.1 Template Haskell generation of spread (buildP omitted) 133
7.2 Code for Basic Workpool . 135
7.3 Stream interconnections of workpool (seen from master process) . . . 138
7.4 Workpool with dynamic task generation and task pool transformation 139
7.5 Higher-order function ttransform for task pool transformation 140
7.6 Nested workpool . 141
7.7 Two-level example wpN call with process tree and argument distribution142
7.8 Dynamic workpool with stateful master 142
7.9 Task creation for PSA (t

2
represents an incomplete task) 143

7.10 Relative speedups and activity diagram (length 10.000, 9 nodes) . . . 144
7.11 Conventional Eden process tree with long communication (four hops) 145
7.12 Determination of address bits for node connection 146
7.13 A hypertree with binary node encodings (MSB marked) 147
7.14 Binary coding of nodes and basic definitions 148
7.15 Routing within the hypertree . 149
7.16 Data flow in Eden hypertree (father, node, and leaf) 150
7.17 The Hypertree skeleton . 151
7.18 Process definition within the hypertree 153
7.19 Shared definitions within hyperproc 154

8.1 Runtime phases (from left to right): start, working, shutdown 161

10.1 Structural Overview . 177

1. Introduction

”More positively, once the programmer has dreamt up a parallel al-
gorithm, they want to be able to express that parallelism in an ex-
plicit way in the program. Writing a vanilla functional program,
and hoping that a cunning compiler will be able to figure out your
intentions, is not good enough ...”
”Second, the always dubious ’feed in an arbitrary program and
watch it run faster’ story is comprehensively dead.”

Simon Peyton Jones[80]

1.1 Motivation

The fundamental motivation for starting this thesis grew out of the fascination
for a blend of two exciting, yet often considered peripheral, fields of research in
computer science. The combination of their often contradictory characteristics has
already attracted lots of research, but a standard and commonly acknowledged so-
lution has not yet been achieved. This thesis describes another way of functionally
programming parallel computers.

1.1.1 Why Parallel Computing Is on the Rise Again

Forty years ago “it seemed that the future of computers was parallel”, as everyone
was working on “multiprocessors, vector processors, array processors, dataflow-
driven pipelined processors” (Michael J. Flynn in the preface of the Parallel and
Distributed Computing Handbook[217]). At that time, Flynn proposed his nowa-
days famous parallel computer taxonomy[62] based on having either a single or
multiple instruction and data streams. Then, rather unexpected, remarkable ad-
vances in uniprocessor and memory technology were made. The uniprocessor price-
to-performance ratio became unbeatable and parallelism took a back seat for some
time, although a few high-performance supercomputers have always been present.

Today, we experience a renaissance of parallel computing, which has often been
predicted for the future and now has become reality. Parallel technologies (like
pipelining, instruction-level parallelism via superscalar processors, and Very Long
Instruction Words[48]) have also been used in the past, but more as implicit means

1

2 1. INTRODUCTION

for performance-boosting in the background. But these seem to have found their
limits, as the lookahead for exploiting instruction-level parallelism and chip die
sizes housing ever-growing caches have to be extended more and more; addition-
ally, since 2003 CPU clock frequencies are hardly advancing anymore, and the
4 GHz barrier seems to be a tough one. Therefore uniprocessor development is
heading more towards revealing explicit parallelism since a couple of years to gain
performance. There are not only massively parallel GPUs for graphics processing
(which are also bundled as symmetric multiprocessing nodes), but also multi-core
processors which climb the step from thread-level (for example hyperthreading) to
chip-level parallelism. With the success of the Internet, also new network-based
techniques like distributed computing using idle resources and Grid computing [49]

are on the rise.

1.1.2 Why More Abstract Programming Languages Are Needed

Together with the change in everyday systems also the bigger classical parallel
systems change: Nodes are getting faster and are equipped with ample storage,
network bandwidths are also increasing steadily. All this is very desirable, but the
situation is not all roses from a programming point of view as three fundamental
problems in exploiting this huge computational power persist [217] :

• Finding large degrees of parallelism: It is getting harder to generate or find
enough parallelism to adequately employ parallel nodes. Often traditional
sequential algorithms have to be reconsidered, as they do not expose enough
parallelism or lead into false directions of parallelisation.

• Efficiently executing that parallelism: Speedup, which is the performance ad-
vantage gained from using multiple nodes, has to be realised despite substan-
tial system overheads introduced by managing parallel execution. A parallel
runtime system has to care for scheduling, communication, synchronisation,
and memory consistency.

• Efficiently expressing that parallelism in a language: Cooperation and coor-
dination has to be expressible in an abstract and concise way. This is most
important for later modifications, reuse, reasoning, and comprehensibility.

While the first problem is one of finding new parallelisable algorithms the sec-
ond one is about implementing efficient compilers. In the following, we focus on
solving the third problem.

Originating from a quite technical direction, parallel computers first attracted
practitioners introducing parallelism into technical low-level languages. Conven-
tional languages with parallel extensions tried to swallow parallelism as another
side feature or library, while not treating it as a substantial part of the language.
Indeed, effective parallel programming is possible with these languages, but at the
cost of quickly getting extremely complex and error-prone programs hard to reason
about. Still it is common to run the most advanced parallel computers with pro-
grams written in languages based on the most low-level approaches (for example
C [115] and MPI [76]).

1.1. MOTIVATION 3

For expressing parallelism and defining the way of internode cooperation, many
different more abstract approaches have appeared; but an easy and commonly ap-
plicable programming model is still missing. Automatic parallelisation of tradi-
tional programs has proven to be not successful, and parallelism has found its way
into programming languages being not a background feature but a prominent and
visible one. Due to the complexity of managing parallel activities (cooperating to
solve problem while competing for shared resources like network bandwidth, pro-
cessor time, and memory access), one can get full parallelism control in a simple
low-level language or little control in a comfortable high-level language, usually
not both at the same time.

Due to the complex interplay between parallel architecture, operating system,
programming language, compiler, algorithm, and algorithm implementation, moni-
toring or tracing tools have to be used for both performance tuning and debugging.
The wealth of existing tools (Chapter 9 of Foster[64] , Chapter 31 of Zomaya[217])
also indicates a need for more abstract programming approaches, as these tools
are often used for real debugging and not just for improving an already good per-
formance.

In total we now have the odd situation, that the available parallel computing
power is growing rapidly, while this power cannot always be used efficiently. As
Ebcioğlu et al.[59] put it:

“It is now common wisdom that the ongoing increase in complexity of
large-scale parallel systems to address these challenges [increase of node
speeds, fast uniform memory access, use all levels of parallelism] has
been accompanied by a decrease in software productivity for developing,
debugging, and maintaining applications ...”

Moreover, parallel computers are often used as a pool of sequential nodes for ex-
ecuting algorithms based on trivial parallelisations where tasks have no or only
small dependencies. It causes not too many problems to express these in a low-
level language, while more complex problems are much harder to express and to
solve. More abstract languages can provide the means for expressing high-level
parallel schemes in a concise and provably correct way while providing predictable
performance.

Corresponding to the aim of building parallel computers with the highest pos-
sible performance, many people design parallel programs aiming only at achiev-
ing maximum performance above everything else while sacrificing clarity. Parallel
program development is accordingly not as structured as one would wish and is in
need of more abstract programming languages and development methods.

1.1.3 Why Functional Programming Languages May Be the Solution

As applications are getting more complex, this is compensated by programming
getting more abstract. This is reflected by

• the increasing presence of sophisticated tools supporting program develop-
ment, like integrated development environments (IDEs) or extensive libraries
as for example in Java [75] .

4 1. INTRODUCTION

• the increasing abstraction in programming languages. Object-oriented lan-
guages, being the followers of their less abstract imperative predecessors C
and Pascal, are extremely popular because of their abstraction and maybe
even more because of their extensive standardised libraries. Declarative lan-
guages are also attracting more and more interest.

IDEs, extensive libraries, and tools for post-mortem performance analysis alone
are useful, but cannot replace a truly abstract parallel language; therefore, the
need for such a language which treats parallelism not as an aside but as one of its
main features is evident.

Traditional imperative languages tend to be extremely verbose, low-level, and
artificially sequential. This makes them not an ideal target for integrating par-
allel language constructs. But even today the most recent approaches to paral-
lel programming developed by three big supercomputer vendors are based on im-
perative languages: X10[59] by IBM is closely related to Java, Chapel[36, 38] by
Cray Inc. also (but integrates functional features like parametric polymorphism),
and Fortress[196] by Sun Microsystems is essentially Fortran.

Functional languages are in contrast not only a radically different approach to
programming, but also have a lot of advantageous features. Hughes in his famous
paper[105] and Hammond and Michaelson in their comprehensive work [80] identify
the following advantages:

• Ease of program construction

• Ease of code reuse

• Simplicity, generality (higher-order functions), and abstraction

• Ease of reasoning

• Ease of program transformation and scope for optimisation

All these advantages carry over from a sequential to a parallel setting. Hammond
and Michaelson[82, 80] argue, that functional languages are additionally qualified
for integrating parallelism because of:

• Ease of parallel partitioning
As a functional program lacks implicit control dependencies (such as assign-
ment), only the clearly visible explicit control dependencies and data depen-
dencies limit the parallel evaluation of any pair of subexpressions. Thus func-
tional programs reveal quite directly and naturally all parallelism they con-
tain.

• Data dependencies reveal communication needs
Communication needs display themselves naturally via data dependencies
and provide a fine-grained communication network which only needs to be
coarsened to a degree which fits the parallel algorithm and the execution en-
vironment.

1.1. MOTIVATION 5

• Deadlocks are hard to create
Parallelising a purely functional program will not introduce deadlocks. Only
if more powerful constructs are present, deadlocks can occur in rare situa-
tions.

• Strong connection to sequential version
Usually it is easy to move from the parallel to the sequential version and back
for testing purposes, as parallel constructs fit nicely into the functional style
of expression. In purely functional programs, evaluation order does not mat-
ter so that results will always be the same; correspondingly, non-termination
will also occur in both settings.

• Natural expression of high-level parallelism constructs
Due to the higher-order functional style, high-level parallelism schemes can
be expressed quite naturally; this is done by a functional input-output de-
scription annotated with parallel constructs.

As in every approach to parallel programming, the distribution of parallelism con-
trol between the runtime system and the programmer can vary also here. Fol-
lowing the taxonomy of Hammond and Michaelson[80] in their Chapter 1.2.4, the
control exerted by the programmer can range from none to all. Purely implicit
approaches directly derive available fine-grained parallelism from a given sequen-
tial program with the help of none or only few annotations. Restricted implicit
approaches identify more coarse-grained parallelism and exchange for example a
higher-order function by a predefined parallel one; thus this approach is restricted
to a collection of predefined cases. Controlled parallelism approaches rely on ex-
plicit parallel annotations by the programmer. Implicit variants hand some control
over to the runtime system by allowing the annotation to be ignored; explicit vari-
ants are rigorous by executing every annotation. Truly explicit approaches reveal
every detail of parallel coordination on the program level and let the programmer
specify each detail.

Explicit approaches are not desirable, as the complete burden of correctly spec-
ifying the parallel collaboration is shifted to the programmer. On the other hand,
fully implicit approaches have not proven successful in the past. If a program is
written without aiming at a later parallelisation, an automatic system may have a
hard time generating an acceptable speedup. And if it is written with a paralleli-
sation in mind, the system is given no hint about the programmer’s intentions and
may have again problems finding out. This leaves us with two approaches which
both leave some control to the programmer and some to the runtime system, each
with a bias to one side. This is where the current research mostly focuses at the
moment.

In our thesis, we will work with the parallel Haskell [164] dialect Eden [143] . Eden
follows the controlled parallelism branch by introducing explicit process creation
constructs with implicit communication and termination. This way, the program-
mer has enough control for specifying an efficient parallel program while much
tedious work is left for the runtime system. We will describe Eden in some detail
in Chapter 2.5. Eden inherits a wealth of libraries and tools from Haskell and
provides itself a specialised performance monitoring tool.

6 1. INTRODUCTION

1.1.4 Why More Advanced Programming Techniques Are Needed

Eden is already a powerful and abstract parallel programming language. Then why
do we claim that the current programming techniques are insufficient? We do be-
cause currently programming is done mainly by using some basic and well-known
sequential methods. Additionally, a couple of non-uniform parallel skeletons have
been collected. Program design is then often done by attaching code to a selected
skeleton or by inserting parallel constructs into sequential legacy code. Therefore
there is a need for a more advanced programming style. We have identified the
following extensions from which programming in Eden can benefit:

• Meta-programming
Different language design lines usually each possess one or two standardised
and commonly agreed-on representatives. C is a representative for impera-
tive languages, while Java is one for imperative object-oriented languages.
Strict functional languages are represented by ML [163] , while the advances
in non-strict functional languages are cumulated in Haskell [164] . For each
of them, at least one reference implementation exists. For Haskell, this is
the Glasgow Haskell Compiler[165] , GHC for short. Apart from standard lan-
guages, different domain-specific extensions of these languages (like paral-
lelism for Eden) arise. Understandably these are mostly implemented by ex-
tending the corresponding standard implementation. Unfortunately, the base
language implementation is progressing rather quickly, forcing the extension
to be carried over many different versions to stay comparable with other ex-
tensions. This forces the extension implementation to be small and portable.
As the base languages are often implemented in their own language via boot-
strapping, one could think of a library expressing the extension. But this is
often not viable, as extensions may need to change internals (like parallelism
needs to change the runtime system). Nevertheless the aim should be to im-
plement domain-specific extension as far as possible as a library with only
minimal base compiler modifications to stay portable.
Meta-programming[189] can help by providing static program code access for
implementing domain-specific program analyses and transformations as a li-
brary. It can also help specialising the program according to its parallel execu-
tion environment, on which parallel program performance depends because
of the differences in node number, node architecture, network topology and
bandwidths.

• Demand control
Parallelism relies on the strong control of evaluation progress; in contrast,
laziness represents loose control of evaluation with unclear evaluation order
and without execution guarantees. For Eden to be efficient we use mixed
evaluation which needs to combine strong parallel control and lazy sequen-
tial control. Although being sufficient for achieving an efficient program, un-
documented demand control scattered across a program is not helpful when
it comes to later modifications. For clear program structures we need a clear
demand control which also separates both concerns.

1.2. CONTRIBUTIONS 7

• Generic programming and skeletons
Depending on the parallel algorithm and design choices, parallelism may ei-
ther reveal itself dominantly either via data structures or via control struc-
tures.
Data parallelism can be abstracted via parametric polymorphism and even
more via structural polymorphism (generic programming) used for more ab-
stract parallel functions. As nested data structures are omnipresent in par-
allel programming, the approach to generic programming has to provide gen-
eral and stepwise access to each data structure layer. We are not aiming at
pinpointing elements in an ignored surrounding structure but in a detailed
data structure de- and recomposition.
Abstraction of control parallelism can be gained by specifying parallel control
schemes as higher-order functions. Both help to build a collection of prede-
fined abstract parallel schemes (with clear interfaces, demand behaviours,
and parallel efficiencies) which can be applied in a plug-and-play fashion dur-
ing program development.

• Program development methods
There exist not many approaches to program development in functional lan-
guages, and we have only been able to find a single approach[140] for the
development of parallel functional languages. Therefore a standard method
for organising the development of Eden programs needs to be outlined.

1.2 Contributions

The contributions of this thesis are:

• We will introduce a portable preprocessor to the Eden implementation. This
preprocessor is based on Template Haskell and allows for general and domain-
specific program analyses and transformations. As an application we will
describe Eden preprocessing stages using the preprocessor.

• We will introduce a new structure-oriented approach to generic parallel pro-
gramming for Eden, which is based on the preprocessor. Additionally we will
define a set of sequential and parallel generic functions.

• We will discuss and summarise possibilities to control demand in Eden. We
will show a way to uniformly express demand exertion and propagation.

• We will enhance data-parallel skeletons by using generic methods. Generic
functions for data structure partitioning will be given.

• We will define control-parallel skeletons for dealing with irregular tasks con-
tained in dynamically evolving task sets. We will also provide a skeleton for
introducing short-cuts into the regular Eden process tree.

8 1. INTRODUCTION

• Finally we summarise our results in an outline of a program development
method for Eden.

1.3 Structure of this Dissertation

The goals and contributions of the previous section are reflected in the dissertation
structure shown in Figure 1.1. After the introduction, we will describe fundamen-
tals needed for our work in Chapter 2. Chapters 3, 4, and 5 deal with introducing
our three tools for enhancing programming in Eden: meta-programming for static
program modifications, an approach to generic programming for flexible function
definition, and demand control techniques for steering parallelism. The following
two Chapters 6 and 7 apply these techniques to the two parallelism models data
and control parallelism. Finally, the techniques shown before are united in Chap-
ter 8 to a program development guideline for Eden. Chapter 9 discusses related
work and Chapter 10 concludes.

1. Introduction

2. Fundamentals

Tools
3. Meta-Programming 4. Generic Programming 5. Demand Control

Parallelism Models
6. Data Parallelism 7. Control Parallelism

All together
8. Developing Programs in Eden

9. Related Work

10. Conclusion

Figure 1.1: Structural Chapter Overview

2. Fundamentals

”A renaissance of parallel computing research is on the horizon since:
1. chip multi-cores are the wave of the future for all major hardware vendors,
2. since 2003 clock frequency of CPUs is hardly advancing any more,
3. the 6-decade quest for an easy-to-program parallel architecture paradigm is

yet to provide a competitive alternative to the serial paradigm.”

CFP of 18th ACM Symposium on Parallelism in Algorithms and Architectures

2.1 Motivation

Within this chapter, we provide a short panoramic view across the various types of
parallel computers, the different non-functional approaches of programming them,
and finally a survey of functional parallel programming approaches. After a short
categorisation we describe Eden and show why Eden is a promising approach.

Section 2.2 describes parallel computer architectures, while Section 2.3 and
Section 2.4 describe first traditional non-functional and then functional ap-
proaches to programming these. Section 2.5 closes by describing the parallel
functional language Eden together with a survey of research conducted for
Eden.

Parts of the chapter are based on two fundamental Eden articles [32, 143] .

2.2 Parallel Computers

Many important applications in science and technology (like simulations) need far
greater computing power than common computers based on a single processor unit
can deliver nowadays. Because algorithms often contain parts which can be com-
puted independently from other parts, they lend themselves to simultaneous eval-
uation on different computers. This transition from sequential to parallel process-
ing promises huge gains in program execution performance. However, for these
gains one has to accept much more complex programs: Program sequences run-
ning in parallel cooperate regarding solving the problem, but compete regarding

9

10 2. FUNDAMENTALS

the access to limited machine resources like processor time, memory, and periph-
ery. Furthermore one has not only to ensure correctness of the sequential program
parts, but now also correctness of their parallel interaction. The programmer has
to deal with the efficient partitioning of the algorithm into mostly disjoint parts
and the coordination of cooperation. Both depend heavily on the architecture of
the parallel computer, on which the resulting program will be executed.

Before looking at programming, we want to have a short look at the technical
side of parallelism, as advances in technology preceded and attracted advances in
parallel programming research. Parallelism has for a very long time been an im-
portant part of a computing system’s power, but has usually been hidden from the
programmer. The older pipeline parallelism has been exploited by optimising com-
pilers which reordered instructions to feed the pipeline in an optimal way; all this
happened without the programmer’s knowledge. Nowadays, however, processors
are hitting a performance barrier which seemingly cannot that easily be overcome:
Clock frequencies are stagnating, pipeline parallelism is limited, caches are get-
ting larger and larger demanding bigger chip dies, and it seems that parallelism
can no longer be hidden from the programmer if further performance gains have
to be achieved. It seems no longer to be sufficient to speed up computations by
exploiting the independencies on a small scale (like instructions): Parallelism has
to be found at a larger scale which means bothering the programmer. Therefore,
parallelism is nowadays not a side matter anymore.

To set the scene for our thesis, we will give a short classification of parallel ar-
chitectures. The approaches to exploiting parallelism span many levels which are
extremely different; a traditional classification by Flynn [62, 24] differs between the
relation of instructions and data at execution time and defines four classes:

1) SISD (single instruction, single data).
This class comprises the classical PC, workstation, or single node of a parallel com-
puter where a single instruction stream is applied to a single data stream. As there
is no interprocessor parallelism, we will now shortly sketch parallel processor-
internal techniques[87] :

• In a RISC architecture, pipelining is an essential feature by which the execu-
tion of a set of instructions can be accelerated. Each instruction is split into
a set of execution phases and fed into a pipeline of execution units. As soon
as the first phase of the first instruction has finished, the execution of the
first phase of the second instruction can begin. This parallelism is limited,
as instruction dependencies often prevent the pipeline from being completely
filled.

• Instruction-level parallelism exploits independencies between instructions.
Firstly, this can be done dynamically by a superscalar processor which has
multiple execution units. Independent instructions are then scheduled at
runtime to different units. Secondly, a program can also be statically anal-
ysed for such independencies. An optimising compiler then builds very long
instruction words (VLIW) each containing several instructions which have
been recognised as being independent. These are fed into a processor which

2.2. PARALLEL COMPUTERS 11

also has multiple execution units but no scheduling decision mechanism; it
just executes the statically determined VLIWs.

• Hyperthreading is multithreading implemented in hardware. Pipeline stages
and registers are duplicated to support multiple parallel threads.

Additionally, there are two new parallel processor trends which are processor-
internal but could be put into other groups: Graphical processing units (GPUs)
exploit massive data-parallelism contained in graphical representations and be-
long to the SIMD group. Also, the recent multi-core processors, which are main-
stream technology by now, simply contain multiple single-processor cores acting on
a shared memory. These are essentially multiprocessors of the MIMD group.

2) SIMD (single instruction, multiple data).
Within SIMD computers, a single instruction stream is applied to multiple data
streams. Therefore one gets synchronous data-parallelism. This kind of paral-
lelism is fine-grained and also called tightly coupled as after each instruction all
nodes are synchronised. Communication happens via a collective data exchange.
Vector and array processors are typical representatives of that class.

3) MISD (multiple instruction, single data).
If multiple instruction streams are applied to a single data stream, a pipeline re-
sults in which data traverses parallel nodes which each execute a stream of in-
structions on each data element. In contrast to the other three classes, there are
almost no parallel architectures belonging to this group.

4) MIMD (multiple instruction, multiple data).
MIMD computers consist of nodes which each apply an instruction stream to a
data stream. These computers are also called loosely coupled or asynchronous as
no direct synchronisation is preassumed. If synchronisation becomes necessary,
some effort is needed to do so; therefore, synchronisation is avoided by using more
coarse-grained parallelism. In general one differs between two kinds of MIMD
computers depending on the distribution of memory (also shown in Figure 2.1):

• Multiprocessors consist of a set of nodes which are connected via a network
and share a common memory. Communication and synchronisation happen
via reading and writing of shared memory locations. A disadvantage is the
network, which presents a bottleneck for memory accesses causing memory
contention. As each node usually manages an own cache, special cache consis-
tency algorithms have to applied to avoid memory misinterpretations. In to-
tal, shared memory eases communication but aggravates network contention.

• Multicomputers consist also of a set of nodes connected over a network. In con-
trast to multiprocessors, each node is equipped with its own memory; there
is no shared memory. Communication is therefore not implicit via shared
memory but explicit via send and receive operations (message-passing). The
distributed memory makes synchronisation (as every communication) more

12 2. FUNDAMENTALS

MP

P1 P2 . . . Pn

Network

Memory
6?

6? 6? 6?

MC

P1

M1

P2

M2

. . .

Pn

Mn

Network
6? 6? 6?

Figure 2.1: MIMD: multiprocessors and multicomputers

expensive. Therefore data locality, which means that the computations of
a node can mostly be done with local data, is of fundamental importance
in such systems. In total, multicomputers are a straight-forward model of
parallel computing: Off-the-shelve nodes can be connected via inexpensive
networks. Communication via message-passing is possible via standardised
libraries[160, 76] and many problems can be solved by modelling them as a set
of communicating programs.

In our thesis we will assume the presence of a multicomputer. These occur most
often as clusters of conventional uniprocessor nodes. We will not aim at other ar-
chitectures, like the recent Grid[63, 49] architecture: A grid can be seen as a cluster
of clusters or also as a multicomputer whose nodes are parallel computers. Grids
and cluster may be homogeneous or heterogeneous, which means that its nodes
have either uniform speed, memory, and network connection or not. In our thesis
we will not assume homogeneity.

Given these architectures, parallelism can appear in different degrees of gran-
ularity and abstraction[24] (see Figure 2.2). On the program level, multiple pro-
grams can run interleaved or even truly parallel. On the function level, processes
or threads are used to model remote function invocation. Expressions can be exe-
cuted in parallel on an instruction level. Finally, an instruction can often trivially
be parallelised by executing the bitwise operations in multiple chip units.

Level Parallelism unit Example
program job, task operating systems, grid
function, procedure process, thread MIMD
expression instruction SIMD
bit instruction internal processor-internal

Figure 2.2: Levels of parallelism

2.3. APPROACHES TO PARALLEL PROGRAMMING 13

2.3 Approaches to Parallel Programming

In this section we will shortly outline traditional parallel programming languages.
The next section will then deal with parallel functional approaches.

There are numerous and very different approaches to parallel programming;
almost equally numerous are categorisations of these. We will now give another
classification and point out some approaches. To set the scene, we will first clarify
three terms whose meanings are often intermixed. Each of them defines a different
aim concerning coexisting activities:

• Concurrent programming[7] deals with the safe execution of tasks on a single
node. These tasks can either be running, runnable, or blocked and compete
for entering the running state. A scheduler distributes running time in the
form of time slices (preemptive scheduling), or each task decides on itself to
hand over control to another task (cooperative scheduling). This distribution
should be fair, such that starvation cannot happen and progress is guaranteed
for each task. The interleaved execution of all tasks raises the impression of
true simultaneity if the time slices are small enough. The tasks have to be
restricted concerning the access to the memory shared by them, such that
no conflicts arise. This mutual exclusion (as well as synchronisation) is usu-
ally achieved via semaphores or monitors, which depend on uninterruptible
(also called atomic) operations. A typical example for a concurrent program
is an operating system managing different user tasks. In total, concurrency
is about safe coexistence, fault avoidance, long runtimes; its tasks are inde-
pendent but maybe collaborating[80, 13] and often pursue no shared aim.

• In contrast, parallel programming[175] is based on many (usually homoge-
neous) nodes, each of which concurrently runs a set of tasks. Tasks on dif-
ferent nodes can then be active at the same, which is the aim of parallelism:
to speed up calculations by distributing them over multiple nodes and letting
their runtimes overlap. Parallelism inherits much of the problems of con-
currency mentioned above. In total, parallelism is about speed, and small
to medium runtimes; its tasks are interdependent and collaborate to solve a
shared aim.

• Distributed programming[146, 169] on the other hand has the same execution
environment, but is designed for coping with heterogeneity and change. This
means, that different nodes connected with different networks (and latencies)
cooperate in the sense of concurrency. In total, distribution is about long run-
times, fault recovery, and dynamic node changes. An example of a distributed
program is a multiuser video conference system run in the Internet within
which users can join or leave the conference.

Given one of these aims, there are three design approaches (as argued in Chap-
ter 29.3 of Zomaya[217]) for a new language:

• The one which bothers the programmer the least is to enhance an existing
sequential language compiler to detect parallelism. Program analysis is then

14 2. FUNDAMENTALS

completely responsible for discovering parallelism in a sequential program
and executing it efficiently.

• One can also introduce explicit parallel constructs into an existing sequential
language. This has the advantage of building upon a sequential base lan-
guage compiler.

• Instead of integrating parallel constructs into a language, one can also attach
a parallel coordination language to an existing sequential language. The se-
quential language will be used for defining the computations whose execution
on a parallel computer is then managed by separately defined coordination
instructions.

• The most straight-forward method, however, is to invent a completely new
language. This has the advantage of getting a homogeneous language, but
the disadvantage of having to implement a whole new compiler.

Now we can give a set of parallelism views into which parallel languages can
be sorted. The following presentation is a blend of the many parallel language
surveys[194, 64, 217] that have been already published:
Shared Memory. These approaches are dominated by the idea of a globally acces-

sible shared storage, via which all tasks communicate and synchronise. This
is typical for operating systems (like Unix[191]) with processes, threads, locks,
and barriers. OpenMP[20] is a typical representative.

Message-Passing. These models see the world as a set of tasks communicating
synchronously or asynchronously via send and receive operations. Such mod-
els are typically implemented as a library and enrich an existing sequential
language. Representatives are the PVM (Parallel Virtual Machine)[160] and
MPI (Message Passing Interface)[76] libraries. The languages Occam[134] , For-
tran M[64] , and Erlang[11] also belong to this group.

Data-Parallelism. The data-parallel model is driven by data structures, espe-
cially arrays. Processes and communication are not immediately present, but
parallel matrix operators as well as complex partitioning operators. SIMD
machines are typically used to execute program written in such languages.
To these belong: Fortran 90 and its successor High-Performance Fortran[64] ,
NESL[19] , and C-Star (Thinking Machines Corporation).

Communication Space. These models are similar to the ones using shared mem-
ory, but instead of a global storage a global communication space is assumed.
The most famous approach is Linda[37] , which administrates a tuple space, in
which active process tuples and passive data tuples meet.

Skeletal. Skeletal programming models attach high-level programming constructs
to a sequential language. These skeletons[45, 55, 56] can either be general or
specialised to certain parallel architectures. Skil[22] , for example, attaches
skeletons to an imperative language with functional features like higher-
order functions and a polymorphic type system. P3L[52] is a similar approach
based on C.

2.4. APPROACHES TO PARALLEL FUNCTIONAL PROGRAMMING 15

Object-Oriented. These models use objects as parallel units. Typical representa-
tives are the Actors[2] model and Compositional C++[64] .

Logic. There are also approaches which parallelise the evaluation within logic and
constraint languages. A member of the first group is Strand[65] .

Functional. The group of parallel functional languages will be discussed in detail
in the next section.

Such an enumeration can hardly be complete. See Figure 2 of Skillicorn’s survey[195]

for another classification and enumeration of parallel approaches.

2.4 Approaches to Parallel Functional Programming

Approaches to parallel functional programming can be categorised in many ways,
because the combination of functional programming and parallelism possesses so
many facets which can vary. If one (or sometimes two) facet is considered most
important, the ordering of approaches with respect to that facet yields a new clas-
sification. Common ones are:

• Strictness

• Purity

• Level of control (automatically or by hand)

– Task definition
– Data decomposition
– Physical mapping
– Communication
– Synchronisation

In our presentation, we will restrict ourselves to non-strict and purely functional
approaches. For others, see the presentation in Figures 1.5 and 1.6 of Hammond
et al. [80] and the discussion in Section 6.2 of Loogen et al. [143] . Therefore, we will
classify approaches after the level of parallel control, as proposed in Figure 2 of
Skillicorn’s survey[195] . We will classify only functional languages, although there
are also many non-functional representatives for each group:
Nothing explicit, parallelism implicit. Models in which no parallel construct

whatsoever is used and where parallel execution is not even guaranteed.
Representatives: Evaluation transformers[142] , PMLS[78]

Parallelism explicit, decomposition implicit. Models in which potential par-
allelism is marked, but not necessarily fully executed. The runtime system
selects the right amount of parallelism and cares for mapping, communica-
tion, and synchronisation.
Representatives: GpH[83, 205] , Concurrent Clean[156]

16 2. FUNDAMENTALS

Decomposition explicit, mapping implicit. Models in which parallelism and
decomposition are explicit. Mapping, communication, and synchronisation
are implicit. The work is partitioned explicitly into pieces, while execution
details are automated.
Representatives: Eden[143]

Mapping explicit, communication implicit. Like the former, but with explicit
mapping. Defining the physical mapping in the program commits it to a spe-
cial parallel architecture and damages portability.

Communication explicit, synchronisation implicit. In these models, only syn-
chronisation is left implicit. These differ not much from the last category:

Everything explicit. Everything is handled explicitly by the programmer.
Representatives: Haskell with MPI[33]

We will now turn to describing the language Eden, which we have sorted into the
third group.

2.5 The Parallel Functional Language Eden

This section describes the parallel functional language Eden and follows the pre-
sentation in our diploma thesis[171] . Eden’s characteristics are:

• Parallel extension of Haskell. Eden is a clear parallel extension of the
standardised lazy functional language Haskell [164] . It introduces parallelism
via two constructs which are intuitive in use due to their duality to λ-ab-
straction and λ-application. The language inherits Haskell’s laziness with all
its advantages like non-strict functions and infinite and circular data struc-
tures. Being an obstacle to parallelism, laziness also causes drawbacks which
are dealt with via explicit demand control.

• Semi-explicit. Eden belongs to the semi-explicit approaches, as it delivers
enough control for writing efficient programs while not burdening the pro-
grammer with every detail of parallel coordination. Process construction is
explicit, and allows for the construction of arbitrary process systems if Eden’s
dynamic channels are used for introducing cross connections in the process
tree. Communication on the other hand is implicit.

• Semantics. Eden has a clearly defined operational semantics together with
an abstract machine execution model.

• Implementation. Eden has been implemented as an extension of the stan-
dard Glasgow Haskell Compiler GHC[165] .

Different topics concerning Eden have been covered by a wide range of research in
the past:

2.5. THE PARALLEL FUNCTIONAL LANGUAGE EDEN 17

• The language has been developed in various articles[25, 32, 28, 26, 143] and com-
pared to other approaches in another one[137] .

• On the programming side, Eden has been successfully used for program-
ming with skeletons[69, 31, 119, 141, 149] . Also, dynamic channels have been used
for creating complex communication structures[16] and Template Haskell for
adapting to a parallel execution environment[79] .

• The implementation of Eden has been treated both theoretically [30] and
practically[27, 171, 29, 33, 15] . A very recent development is the reimplementation[14]

of the GHC runtime system in Haskell to form a generic parallel runtime
system which is capable of supporting also other parallel Haskell dialects be-
neath Eden.

• A tool for tracing the behaviour of a running Eden program has been imple-
mented in Java[72] and reimplemented in Haskell[198] with extended func-
tionality.

• Formally Eden has been treated in terms of program analyses[120, 187, 204] and
semantic definitions[91, 90] .

In our thesis, we will concentrate on the expressiveness of Eden. The next subsec-
tion will introduce Eden’s features step after step.

2.5.1 Process Creation and Placement

Eden extends Haskell with means for relocating the evaluation of a function appli-
cation to another network node, enabling the evaluation of several expressions in
parallel.

2.1 Definition (Process Abstraction and Application)
A function embedded in a process abstraction by applying

process :: (Trans a, Trans b) =>

(a -> b) -> Process a b

can be run in parallel to the continuing evaluation of its parent expression on an-
other processor by applying its arguments to a special application operator

(#) :: (Trans a, Trans b) =>

Process a b -> a -> b

A process abstraction therefore serves as a process template which can be instanti-
ated in many ways.

The type variables imply that all values for which corresponding low-level sending
and receiving functions exist (ensured by the Trans context) can be communicated.
Given a process abstraction Process a b the inputs a and b are often tuples. The
elements of the first one are called inports and of the second one outports. If a
process is created out of an abstraction, a thread for evaluating every inport is

18 2. FUNDAMENTALS

created on the parallel node of the creator. Correspondingly, a thread for each
outport is started on the node where the process is placed. A bit deeper within
Eden’s implementation the (#) operator is directly implemented via
createProcess :: (Trans a, Trans b) =>

Process a b -> a -> Lift b

data Lift a = Lift a

Wrapping the result in a data constructor is necessary to keep local evaluation
from stopping because of waiting for the process to deliver a result. By lifting
the result its head-normal form can immediately be obtained. Thus subsequently
created processes will run in parallel to the first one which would not be the case
without lifting[118] . We will further discuss that matter in Chapter 5.

Being embedded in expressions which are tree-shaped, process creations also
form a tree-shaped process and communication structure. As every process can
create many child processes, the natural Eden process topology is a rose tree. Due
to its non-strictness, cycles and mutual dependencies can be introduced into the
tree. Note that Eden only defines a logical process structure and does not assume a
certain kind of parallel architecture. The efficient physical mapping of processes to
parallel nodes lies within the responsibility of the Eden implementation, making
Eden architecture-independent. The usual mapping strategies are random and
round-robin distribution.

For the sake of efficiency, however, it has proven nevertheless useful to be able
to exert some control concerning process placement. The createProcess function
above is itself implemented via createProcessAt, which has an additional parame-
ter identifying the number of the node on which the new process has to be created.
createProcess itself signals via a negative value, that node selection has to be done
by the runtime system:
createProcess = createProcessAt (-1)

createProcessAt :: (Trans a, Trans b) =>

Int -> Process a b -> a -> Lift b

Explicit placement is useful, if a specific physical mapping for a known parallel
architecture has to be enforced.

2.5.2 Communication and Storage

In Eden, every exchange of data between running processes happens via communi-
cation. Every parallel node administrates its own local heap. There is no globally
shared heap, and therefore no global references which would imply the implemen-
tation of a distributed garbage-collection. Communication then causes expressions
from one local heap to be sent and inserted into another local heap, where it re-
places a heap construct which represents an absent value onto which demanding
threads block until it is inserted. This means, that sending is non-blocking and
receiving is blocking; therefore, processes can only synchronise by exchanging data
via communication. Communication connections are established when a process is
created. Via a connection three kinds of values can be communicated:

2.5. THE PARALLEL FUNCTIONAL LANGUAGE EDEN 19

• A single finite value

• A potentially infinite stream of finite elements

• A potentially infinite stream of potentially infinite elements (also called chan-
nel structures[28] and currently not implemented)

The second alternative transmits values elementwise and is often used to build a
system of interdepending streams. For managing these stream systems, it is often
necessary to merge two streams into a single one. For doing so, Eden defines a
merging process

merge :: Trans a => Process [[a]] [a]

Although being initially defined as a separate process, merge has today become a
function

merge :: Trans a => [[a]] -> [a]

This eliminates the cost of setting up an additional process and directly merges the
streams at the receiver process. However, when using merge one has to be careful
since it introduces non-determinism into the language. But even then one can keep
up functional purity in most parts of a program; by carefully sorting the merged
streams (see Section 7.2), element order can be regained.

We have mentioned above, that in Eden the normal process system is tree-
shaped. As this structure contains long communication ways (without the bypass-
ing mechanism[120]), dynamically created channels were introduced for establish-
ing additional interconnections between processes. An Eden process can create a
new dynamic channel by using the new function:

new :: Trans a => (ChanName a -> a -> b) -> b

A call

let (ch,in) = new (\ch val -> (ch,val)) in ...

then provides a channel name ch as well as an input value in. The channel name
can be sent via regular communication to find its communication partner; if an-
other process receives the channel name, it can pass it on or use it himself. The
values fed into the channel will then appear under the name in at the receiver.
A dynamic channel is used via the parfill function. Its name indicates, that a
channel is filled in parallel to the evaluation of a local expression:

parfill :: Trans a => ChanName a -> a -> b -> b

It creates a thread (as a side effect) which feeds its second argument into the chan-
nel represented by the first argument; concurrently, the original evaluation thread
continues with the third argument. To continue our example from above:

parfill ch some_values continuation

20 2. FUNDAMENTALS

will send some_values into the channel concurrently to evaluating continuation.
Using these dynamic channels, powerful process structures can be set up (see
Berthold and Loogen[16] and Section 7.4). One has, however, to take into account
that some build-up time is necessary to set up the regular process tree and propa-
gate channel names through it to establish the additional connections.

Processes are terminated if either every outport has produced its complete out-
put or if a garbage-collection at the receiver node determines that further results
of the process are not needed. In either case, all inport threads and all outport
threads are stopped. This again may cause other processes to terminate, as their
outputs are now as well unneeded. Therefore termination may propagate through
the process system.

2.5.3 Evaluation Behaviour and Laziness

As mentioned above, Eden integrates parallelism and laziness. While laziness aims
at postponing evaluations as long as possible, parallelism relies on early process
creation to gain overlapping process lifetimes. We will discuss this matter in Chap-
ter 5 thoroughly and will show how to control laziness such that timely process
creation can be achieved. In short: One has to explicitly steer demand to a certain
degree to gain early process creation. Even more, strict evaluation of outports and
strict sending of values without caring for their neededness, is advantageous in
Eden.

Additionally one has to be aware, that by introducing the strict evaluation of
outports a chain of process creations may be triggered. As we will also show in
Section 5.4, demanding an outport (out of a tuple of outports) causes a variety of
demand on other expressions: Demand will not only be exerted to all inports, but
also to all remaining outports. All this contains the danger of runaway parallelism,
which is a flood of speculative processes.

3. Meta-Programming for Eden

”One of the most under-used programming techniques is writ-
ing programs that generate programs or program parts.”

Jonathan Bartlett, ’The Art of Metaprogramming’

3.1 Motivation

Suppose you have designed a new, fancy domain-specific extension of Haskell[164] ,
possibly an extension for providing easy data base access, for interfacing to foreign
languages, for providing faster computations by exploiting parallelism, or for mo-
bile computing. How do you implement your extension? Developing a whole new
compiler would mean reinventing the wheel, while extending an existing Haskell
compiler most often produces a deep entanglement of compiler interiors with domain-
specific implementation parts. That would result in reduced portability and main-
tainability, which is especially problematic if the base compiler is subject to fre-
quent version changes which usually have to be reproduced:

host language
?

extension
⇒

host implementation
?

extension implementation

v1.0 → v1.1 → v2.0 → . . .

v1.0 →

Having all your implementation extensions contained in a traditional library seems
like a nice idea. But a mere collection of subroutines would not be powerful enough,
since such extensions usually also need changes to the runtime system and new op-
timisation passes run by the compiler. Following the idea of active libraries[50] one
solution to this could be to use meta-programming tools to separate the domain-
specific implementation from the compiler while expressing it as a library. Steele [196]

considers this an “interesting language design strategy”:

“Wherever possible, consider whether a proposed language feature can
be provided by a library rather than having it wired into the compiler.”

This envisions having a compiler for a base language and extensions of that lan-
guage implemented as a set of attached libraries.

Eden[143] is such a domain-specific extension of Haskell which introduces con-
structs for parallel programming. Its first implementation consisted of a largely

21

22 3. META-PROGRAMMING FOR EDEN

modified GHC[165] which was very hard to maintain over GHC version changes. To
avoid these problems parts of the Eden-specific implementation have been pulled
out[15, 14] of the GHC. Among others one thing that still remains to be separated
from the GHC is the preprocessing machinery for analysing and transforming Eden
code which still resides amidst GHC’s original code. This can also often be the case
for other domain-specific extensions.

Besides writing a library one could also suggest building a standalone tool for
preprocessing the sourcecode which can then be fed into the compiler manually.
Disadvantages include: the introduction of an extra tool which needs additional
care, manual and possibly erroneous operation by the user, the inability to use
compiler facilities (functionality needs to be rewritten) and compile-time informa-
tion and therefore probably a large reimplementation of compiler machinery. Much
more promising instead is a preprocessor library which remains separate but can
be glued on top of the compiler. The same has been done for the foreign function
interface Greencard by making the transition from an external tool[157] to an inte-
grated (active) library[177] .

We will use compile-time meta-programming facilities provided by Template
Haskell[189] to implement a series of pre-GHC preprocessing passes on domain-
specific source code. The preprocessor code will be automatically inserted into the
source program and run prior to the compilation of the actual program, mean-
ing that an enriched program is created which preprocesses itself. We will show
how the new implementation (forming an active library) can be separated from the
GHC implementation, while only a small hook for the invocation of the preproces-
sor needs to remain. The scheme shown is generally applicable and in no way tied
to the Eden implementation. Advantages include a simplified addition of prepro-
cessing passes, shorter and more concise pass code, and enhanced maintainability.
The scheme will be used to rewrite and shorten existing passes and in the next
Chapter to express a kind of generic parallel programming in Eden.

We will also use the preprocessor to implement program transformation passes.
Especially those transformations within which a program inspects itself (also called
reflection), are interesting and will be examined.

In the next Section 3.2 we will introduce Template Haskell as our tool for
meta-programming. The following Section 3.3 will then describe in detail
an Eden preprocessor implemented in Template Haskell. Subsections cover
the main idea, technical implementation issues, a state transformer monad
needed for the implementation, global actions during preprocessing, and the
preprocessor’s main loop. Afterwards Section 3.4 describes a basic meta-
programming application, namely instance derivation. Finally Section 3.5
describes other useful applications of meta-programming to Eden: program
transformations and self-configuring skeletons.

Parts of the chapter are based on our GPCE paper[172] .

3.2. META-PROGRAMMING WITH TEMPLATE HASKELL 23

3.2 Meta-Programming with Template Haskell

Active libraries can be built using Template Haskell[189] , which is a typesafe compile-
time meta-programming extension of Haskell built into the GHC. Essentially Tem-
plate Haskell permits the definition of functions which can take Haskell code as
arguments, yield Haskell code as their result and are typechecked and executed
during compilation of the actual Haskell program. Therefore it introduces a sec-
ond layer of execution by allowing to label Haskell expressions as ”to be executed
by interpretation at compile-time”. This means that one can insert Haskell code
that is meant to be run at compile-time into regular Haskell code:

. . . Runtime Haskell . . . $(. . . Compile-time Haskell . . .). . . Runtime Haskell . . .
︸ ︷︷ ︸

Splice

The result of this splice expression then has to be Haskell code described in an
abstract syntax which will replace the splice and be embedded as runtime Haskell
into the surrounding code. This corresponds to classical macro expansion, except
that the newly generated Haskell code will also be successively typechecked. This
is possible because splices are expanded by the GHCi interpreter during the type-
checking phase.

A set of data structures (see Figures 3.1 and 3.2) forming an abstract syntax of
Haskell is defined to be able to handle Haskell code as a value. There are types
for patterns (Pat), expressions (Exp), declarations (Dec), types (Type) and so on. A
function declaration consists of a name and a set of clauses. Each clause (which is
a function alternative) contains of a list of single patterns, a body, and a list of dec-
larations which represents the where block. A body can be guarded or unguarded
and finally contains the body expression.

Datatype declarations via data are described by DataD and contain a type con-
text (which is a list of Type), its name, the type variables, the constructor alter-
natives defining the datatype, and finally the derived type classes. An instance
is declared similarly: a context is followed by a type (containing the type class
name and the instance type) and a set of declarations which define the instance’s
functionality.

Depending on its position the code inside a splice has type Q Exp (part of a bigger
expression) or Q [Dec] (top-level declarations). The Q monad is introduced among
other things for encapsulating the generation of fresh names. The code within a
splice has to be wrapped by the Q monad.

A simple case expression for instance could then be described like this:

(CaseE (AppE (VarE "f") (VarE "x")) [...]) :: Exp

[| case (f x) of ... |] :: Q Exp

The first row shows pure abstract syntax while the second row uses the quasi-
quotation operator [|.|] for automatic transformation of user-legible code into ab-
stract syntax. Quasi-quotation occurs inside a splice. Both versions can be used
although the first one is more expressive than the second. The same can be done
for declarations using [d|.|]. A binary tree declaration

24 3. META-PROGRAMMING FOR EDEN

data Lit = CharL Char | IntL Int | ...

data Pat = LitP Lit -- literal

| VarP String -- variable

| TupP [Pat] -- tuples

| ConP String [Pat] -- constructor patterns

| TildeP Pat -- lazy pattern

| AsP String Pat -- as pattern (@)

| WildP -- wildcard (_)

| RecP String [FieldPat] -- record

| ListP [Pat] -- list

data Exp

= VarE String -- variable

| ConE String -- constructor

| LitE Lit -- literal

| AppE Exp Exp -- function application

| InfixE (Maybe Exp) Exp (Maybe Exp) -- infix / partial app

| LamE [Pat] Exp -- lambda abstraction

| TupE [Exp] -- tuples

| CondE Exp Exp Exp -- if then else

| LetE [Dec] Exp -- let decs in exp

| CaseE Exp [Match] -- case e of alts

| DoE [Stmt] -- monadic do

| CompE [Stmt] -- list comprehension

| ArithSeqE Range -- arithmetic sequence

| ListE [Exp] -- lists

| SigE Exp Type -- typed expression

| RecConE String [FieldExp] -- record

| RecUpdE Exp [FieldExp] -- record update

data Match = Match Pat Body [Dec]

data Dec

= FunD String [Clause] -- function

| ValD Pat Body [Dec] -- p = b where decs

| DataD Cxt String [String] [Con] [String] -- data

| NewtypeD Cxt String [String] Con [String] -- newtype

| TySynD String [String] Type -- type synonym

| ClassD Cxt String [String] [Dec] -- class

| InstanceD Cxt Type [Dec] -- instance

| SigD String Type -- type signature

| ForeignD Foreign -- imported function

Figure 3.1: Haskell program representation in Template Haskell, (1/2)

3.2. META-PROGRAMMING WITH TEMPLATE HASKELL 25

data Clause = Clause [Pat] Body [Dec]

data Body = GuardedB [(Exp,Exp)] -- guarded function body

| NormalB Exp -- normal function body

data Con = NormalC String [StrictType] -- normal constr.

| RecC String [VarStrictType] -- recursive con.

| InfixC StrictType String StrictType -- infix con.

data Module = Module [Dec]

data Type = ForallT [String] Cxt Type -- forall vars. ctxt => type

| VarT String -- type var

| ConT String -- type constructor

| TupleT Int -- tuple types

| ArrowT -- ->

| ListT -- list type

| AppT Type Type -- type application

Figure 3.2: Haskell program representation in Template Haskell, (2/2)

data Tree a = Leaf a

| Node a (Tree a) (Tree a)

could then look like this (again written in two ways):

[DataD [] "Tree" ["a"]

[NormalC "Leaf" [(NotStrict,VarT "a")], NormalC "Node" ...] []

] :: [Dec]

[d| data Tree a = Leaf a | Node ... |] :: Q [Dec]

We will elucidate both splicing and quasi-quotation by a simple example:

1 Example (Selection from n-tuples)
Consider writing a function select which returns the ith value of an n-tuple such
that $(select 2 4) (a,b,c,d) returns b (see Sheard and Peyton Jones[189]):

select :: Int -> Int -> Q Exp

select i n = [| \ x -> $(return (CaseE (VarE "x") [alt])) |]

where alt = Match pat rhs []

vars = ["v"++(show j) | j <- [1..n]]

pat = TupP (map VarP vars)

rhs = NormalB (VarE (vars !! (i-1)))

A lambda abstraction is generated which contains a case for deconstructing the
tuple into its components v1 to vn before vi is selected and returned. Note the
nesting of another splice into the quasi-quotation.

Quasi-quotation cannot only be used for the simple construction of code but also
for its deconstruction as the contained code will just be translated into abstract
syntax. Therefore we can write

26 3. META-PROGRAMMING FOR EDEN

do { abssyn_case <- [| case (f x) of ... |]; ... }

to extract the abstract syntax representation of the case expression which can then
be used inside the Q monad and be spliced back in modified form. The same applies
to declarations which can be decomposed by the [d|.|] operator.

In summary Template Haskell makes it possible to write Haskell programs
which modify themselves at compile-time, which is exactly what we need.

3.3 Preprocessing Eden

Having introduced our meta-programming tool we will now turn to building the
preprocessor. What we want to achieve is a preprocessor which takes a program,
applies a series of preprocessing steps to it and places back the result. We want the
preprocessor implementation to be separated from the base compiler implementa-
tion but at the same time have it glued closely enough to it to avoid getting an
extra tool. We want the preprocessor to run on original code not yet altered by the
compiler; this means, that no compiler internal transformation or simplification
has been carried out yet.

3.3.1 The Preprocessor

We have seen that the quasi-quotation mechanism of Template Haskell can also
be used to deconstruct declarations and expressions. Then why not let it embrace
and decompose a whole program? This suggests the following basic scheme for
preprocessing code with Template Haskell:

1. Textually embrace the given source code with quasi-quotes to get an abstract
syntax representation of the source code.

2. Let predefined preprocessing machinery work on the extracted code given in
abstract syntax (provided by the base compiler’s parser).

3. Surround all this with a splice which delifts the modified source from abstract
syntax back to regular Haskell code.

How can we operationally integrate that into a compiler? Simply by modifying the
compiler to textually insert two small predefined code blocks into the source pro-
gram before anything else happens. The source program will then carry around the
preprocessing code for modifying itself through the compilation. The preprocessor
will be triggered before other regular compilation stages are started.

In Figure 3.3 the transition of regular source code to an identical code with
embedded preprocessing is shown. The two additional preprocessing code blocks
contain import statements to import the Template Haskell module, a Stager mod-
ule which contains the actual preprocessor functions, and a Tools module. User
imports remain untouched. We assume that no module name clashes happen and

3.3. PREPROCESSING EDEN 27

module Main where

<import decls>

<type decls>

<class decls>

<function decls>

<main>

→

module Main where

<import decls>

import Language.Haskell.THSyntax

import qualified Stager as St

import qualified Tools as To

$(do ds <- [d|{

<type decls>

<class decls>

<function decls>

<main>

}|]

-- Build passes -----------------------

let passes = St.buildPasses To.getFlags

-- Preprocess code --------------------

ds’ <- St.doLoop ds passes

-- Announce original ghc messages -----

To.box "Base compiler messages"

-- Insert new sourcecode --------------

return ds’

)

Figure 3.3: Transition from input source code to code with embedded preprocessor

therefore no renaming is necessary. The remaining code is contained inside quasi-
quotation brackets. After extraction into an abstract syntax representation ds it
has to be decided which preprocessing passes will be run on the code. External
flags are read by getFlags and fed into buildPasses which will build a list of pre-
processing passes. doLoop then runs these passes on ds producing the modified
code ds’. After the loop has ended an announcement is printed that all the follow-
ing messages belong to the underlying Haskell compiler. At last, the modified code
ds’ is returned and reinserted by the surrounding splice.

This solution permits the smooth integration of the preprocessor into the com-
piler implementation with only slight modifications while achieving technically a
complete separation. In the following subsection we will discuss implementation
aspects as well as advantages and drawbacks of the approach.

28 3. META-PROGRAMMING FOR EDEN

File

Haskell code

Prefix form

Abstract syntax

Core syntax

STG syntax

Abstract C

ANSI C Libraries

Machine code

���

���

���

?

?

?

?

?

?

?

?

�

Parsing

Reader

Desugarer

CoreToSTG

Code generation

Flattening

C compiler

1. Renamer
2. Typechecker

Simplifier

Transform.

ANALYSIS

TRANS-
FORMATION

SYNTHESIS

�����

Execution of
preprocessor
code

��������*

Insertion of
preprocessor
code

A
A

A
A

A
A

A
A

A
A

A
AK

Former location
of passes

Figure 3.4: GHC workflow diagram with changes for preprocessor

3.3.2 Technical Issues

Figure 3.4 gives an overview of the workflow inside the Glasgow Haskell Compiler
(GHC), which is the basis of the Eden compiler and into which we will therefore
integrate the Eden preprocessor. The compiler stages can be roughly divided into
the classical sections[3] analysis, transformation and synthesis. Until now ad-
ditional analysis and transformation passes were usually placed in the transfor-
mation section and worked on the Core syntax representation, which is a subset
of Haskell plus explicit type annotations and resembles the polymorphic lambda
calculus. Due to complex functions and data structures for handling Core, insert-
ing an additional pass is a complex task; furthermore, the extension would reside
amidst the original compiler code. And with desugaring already having taken place
it is additionally very hard to issue meaningful comments if necessary because the
reference back to the original code is lost. A better place for domain-specific opti-
misation passes is the analysis section where the full source code is still available

3.3. PREPROCESSING EDEN 29

and for example error messages of the preprocessor can contain much more accu-
rate position descriptions. For domain-specific extensions it is especially important
that their high-level constructs have not already been boiled down to less meaning-
ful constructs. Our new preprocessor code will be inserted into the source program
before any other GHC stage has started.

As a technical remark: This can be done by textually inserting the preprocessor
calls into the program when it is read by the compiler. The driver, which steers
the compilation process, works as a kind of pipeline which applies all necessary
compilation steps to a program. There we can insert the preprocessor code at an
early point in time.

Unfortunately there are also three drawbacks to the taken approach which par-
tially are related to Template Haskell and may be removed in a future version:

1. Quasi-quotation cannot handle source code which completely relies on layout.
Braces and semicolons have to be used sometimes.

2. Regenerating the modified code via splicing destroys the internal location
tracking of GHC. Regular errors discovered by GHC will not contain a line
number but only the message <at compiler-generated code> which makes it
harder to track down errors.

3. Since the preprocessor acts outside the base compiler’s passes, it has no access
to informations (like types) gained by the base compiler. If these are required
for an earlier pass, they have to be provided. On the other hand, one could
also think of moving passes into the preprocessor proposed here.

At the bottom line there is a clear trade-off when using the preprocessor: On the
one hand we are able to work on the richer full Haskell syntax and to formulate
different passes, while on the other hand we have to face technical restrictions.

3.3.3 The State Transformer Monad

For most preprocessing passes an internal state is needed. The state can be used
to collect information for passes which cannot work only on local information. To
achieve an omnipresent state during a pass, the whole syntax tree traversal needed
for a pass will be based on a predefined state monad (ST s) s (see the standard
papers[213, 129, 130, 131, 113]) which is shown in detail in Figure 3.5. Each preprocessing
pass will then traverse the syntax tree of the program to be preprocessed monad-
ically. State modifications will then be strewn into the traversal; mostly the state
will be passed on without being changed.

A state transformer ST maps a state s to a new state and yields an additional
value of type a. The MonadState class captures those monads, which do not only
provide the sequencing mechanism via (>>=) and return, but also functions for
direct state transformation. get reads and returns the current state, while put

overwrites the current state with a new state. update is similar to get and put

but takes a state-transforming function, applies the function to the state, and re-
turns the new state. The state transformer ST is both an instance of Monad and
MonadState.

30 3. META-PROGRAMMING FOR EDEN

data ST s a = ST (s -> (a, s))

class (Monad m) => MonadState m s | m -> s where

get :: m s -- read state

put :: s -> m () -- write state

update :: (s -> s) -> m s -- update state by function

get = update id

instance Monad (ST s) where

(ST m) >>= f = ST (\s -> let (v, s’) = m s

ST m’ = f v

in m’ s’)

return v = ST (\s -> (v, s))

instance MonadState (ST s) s where

put s = ST (_ -> ((), s))

update f = ST (\s -> (s, f s))

Figure 3.5: State monad definition

We will use this state transformer to model our preprocessing passes. Within a
pass, the specific state of the pass can be changed anytime by using the functions
of MonadState.

3.3.4 Stateful Monadic AST Traversal

We have seen how the preprocessor is attached to the source program and how it
is run. But what should it do when it is run and how can that be specified?

Quasi-quotation delivers the program to be preprocessed as an abstract syn-
tax tree (AST) of type [Dec]. Therefore we define a general type class Traverser

(see Figure 3.6), which contains functions for the recursive traversal of that tree.
For each part of the mutually-recursive abstract syntax (Decs, Dec, Exp, . . .) shown
in Figures 3.1 and 3.2 the class contains a corresponding transformation function
(tDecs, tDec, tExp, . . .). The tMain function is the central starting point which even-
tually calls tDecs and is therefore wrapped by the Q monad. By default all these
functions are defined to return the unaltered syntax tree. As later each instance
will represent a preprocessor pass, selected functions will be overloaded to examine
or modify the tree if certain parts of special interest are encountered.

If the transformation functions were defined in a straightforward fashion
tExp (LetE ds e) = do ds’ <- mapM tDec ds

e’ <- tExp e

return (LetE ds’ e’)

one could not easily define small modifications, as for example the Exp datatype
consists of many data constructors. If one would like to change only the behaviour

3.3. PREPROCESSING EDEN 31

class (MonadState m s) => Traverser m s where

-- Functions --

tName :: m s -> String

tMain :: m s -> [Dec] -> Q ([Dec], [Pass])

tDecs :: [Dec] -> m [Dec]

tDecs’ :: [Dec] -> m [Dec]

tDec :: Dec -> m Dec

tDec’ :: Dec -> m Dec

tBody :: Body -> m Body

tBody’ :: Body -> m Body

tExp :: Exp -> m Exp

tExp’ :: Exp -> m Exp

...

-- Defaults ---

tName _ = "Identity"

...

-- Decs defaults --

...

-- Dec defaults ---

...

-- Exp defaults ---

tExp = tExp’

...

tExp’ (VarE vname) = VarE vname -- variable

tExp’ (AppE e1 e2) = do e1’ <- tExp e1 -- application

e2’ <- tExp e2

return (AppE e1’ e2’)

tExp’ (LetE ds e) = do ds’ <- mapM tDec ds -- let

e’ <- tExp e

return (LetE ds’ e’)

...

Figure 3.6: Monadic traversal class Traverser (excerpt)

32 3. META-PROGRAMMING FOR EDEN

of tExp for LetE, all other definitions, although being unaltered, would have to
be rewritten. To avoid these extensive redefinitions when overloading only one
alternative of a transformation function, each traversal function is split into two
layers. For example, the function tExp is accompanied by a second function tExp’.
By default tExp’ is defined to continue the AST traversal without making any
changes itself while tExp is defined to immediately call tExp’. Within a Traverser

instance, one overloads tExp to implement modifications of an alternative of Exp (for
example LetE) and refers to the default tExp’ definitions for all other alternatives
by also declaring tExp x = tExp’ x.

Finally, the function tMain starts the pass by calling tDecs with the monad-
specific starting state; it returns the resulting code and additional passes cre-
ated by the current pass for subsequent execution and wraps up both in Template
Haskell’s Q monad. The tMain function is called from a main loop described in a
following subsection.

3.3.5 Global Actions

Many preprocessing passes only modify the abstract syntax tree very locally. For
instance, for a typical let transformation in Haskell only the LetE alternative of
the transformation function tExp would have to be overloaded. In the same way
state changes are often limited to local actions. On the other hand in the same
passes one often needs to insert actions on the internal state which are triggered
on every part of the syntax tree. In the let transformation one would for instance
like to determine where each transformation happened; this output of the form:

in function ’f’,

in alternative ’(TreeNode e l r)’,

in ’case’:

let transformed

which might stem from a parsed code fragment like

f (TreeLeaf e) = ...

f (TreeNode e l r) = case e of

0: let x = ...

...

has to be collected from the place where the let transformation occurred back up to
the AST root. This would result in the need to overload almost each transformation
function and update the pass state by location information.

To avoid that, we extend the Traverser class as shown in Figure 3.7. As an
example, only the extension of tExp for the alternative AppE is shown; all other cases
are extended in the same way. Before descending into a branch of a source tree, the
function tActionPre is evaluated; after finishing the branch traversal tActionPost
is called.

AbsSyn is defined as a collection of Dec, Exp, etc. to avoid having to define tAction

functions for each part of abstract syntax. ASTop marks the root of syntax tree, that
means the whole program.

3.3. PREPROCESSING EDEN 33

class (MonadState m s) => Traverser m s where

-- Functions --

...

tActionPre :: AbsSyn -> m ()

tActionPost :: AbsSyn -> m ()

-- Defaults ---

tActionPre _ = return ()

tActionPost _ = return ()

...

tExp’ e@(AppE e1 e2) = do tActionPre (AS4 e)

e1’ <- tExp e1

tActionPost (AS4 (AppE e1’ e2))

tActionPre (AS4 (AppE e1’ e2))

e2’ <- tExp e2

tActionPost (AS4 (AppE e1’ e2’))

return (AppE e1’ e2’)

...

Figure 3.7: Traverser class extended by global actions (excerpt)

data AbsSyn = ASTop

| AS0 Dec -- not [Dec] but whole Dec branches

| AS1 Dec

| AS2 Body

| AS3 Clause

| AS4 Exp

| AS5 Match

| AS6 Stmt

| AS7 Range

| AS8 Type

deriving Show

Both tActionPre and tActionPost are by default defined to leave the state unal-
tered, but can be overloaded to house a set of global actions which is run before and
after entering a node of the syntax tree. A single action is run by runAction (see
Figure 3.8). As each action usually acts only on one part of the state, this action
has to be lifted to the full state by applying the identity function to the remaining
state parts. The lifted function can then be used to update the full state. An action
set is run by sequencing (using sequence_) a list of runAction calls in an overloaded
version of tActionPre or tActionPost. In a later section we will show an example
on how to attach action sets to a pass.

All this allows us to define global actions separately and to attach selected ones
to a preprocessor pass. Predefined actions include: collecting position in code, keep-
ing an indentation level for output, accessing predecessor nodes in the AST, and

34 3. META-PROGRAMMING FOR EDEN

runAction :: (MonadState m b) =>

AbsSyn -> -- encountered object

(AbsSyn -> (a -> a), -- action

(a -> a) -> (b -> b)) -> -- lifting

m ()

runAction x (action, lift) = do update (lift (action x))

return ()

Figure 3.8: Lift action into full state, run action, update state

aPos :: AbsSyn -> (([String],[String]) -> ([String],[String]))

aPos (AS0 _) =

\(fin,act) -> (fin++act,[])

aPos (AS1 (FunD n cs)) =

\(fin,act) -> (fin, aPosAdd ("in function "++n++", ") act)

aPos (AS1 (ValD (VarP n) body ds)) =

\(fin,act) -> (fin, aPosAdd ("in constant "++(To.var n)++", ") act)

aPos (AS1 (ClassD cxt name vars ds)) =

\(fin,act) -> (fin, aPosAdd ("in class "++name++", ") act)

aPos (AS1 (InstanceD cxt typ ds)) =

\(fin,act) -> (fin, aPosAdd ("in instance, ") act)

aPos (AS4 (LetE ds e1)) =

\(fin,act) -> (fin, aPosAdd ("in let, ") act)

aPos _ =

id

aPosAdd :: String -> [String] -> [String]

aPosAdd m is = [m++" "++i | i <- is, i /= []]

Figure 3.9: Position tracking action (use with tActionPost)

others. As an example Figure 3.9 shows an action for keeping a position informa-
tion in the style of the example shown at the beginning of this subsection. To keep
the necessary position information, the pass state is extended by
([String],[String])

A string will represent a position. We need a list of strings, as the event, whose
position in the code we want to record, may happen more than one time. The sec-
ond string list will record the positions for one branch of the syntax tree. If the
traversal returns to the tree root, the second list will be appended to the first one
which collects the final position results. This way we avoid to get a kind of depth-
first traversal. aPosAdd adds the current position to all position strings only if the
position string is non-empty. The position strings are built on the way up from an
event to the syntax tree root, therefore tActionPost has to be used.

In total, global actions are advantageous because:

• One can easily assign global actions in an aspect-oriented way. Actions can

3.3. PREPROCESSING EDEN 35

be predefined and grouped and applied as sets.

• Using wildcards we can define actions for whole syntactical groups (like all
expressions).

3.3.6 The Main Loop

We have seen in the previous subsections how the preprocessor is started and how
a preprocessing pass can be coded. But how can we set up and execute a series of
passes? We start by defining a list of passes (see Figure 3.10), which in this case
contains two fictional passes, namely a pass for the automatic derivation of class
instances and a simplification pass.

type Passes = [Pass]

data Pass = forall m s . (Traverser m s) => Pass (m s)

passes :: Passes

passes = [Pass (return (Derive ([],[])) :: (ST Derive) Derive),

Pass (return (Simplify []) :: (ST Simplify) Simplify)]

Figure 3.10: Definition of passes with exemplary pass list

Preprocessing is started by a call to doLoop (see Figure 3.3 and Figure 3.11)
which applies the passes ps to the given code sc by calling doPasses. The total
number of performed passes is counted and shown. doPasses successively applies
each pass by first announcing its start and then calling its specific version of tMain.

doLoop :: [Dec] -> Passes -> Q [Dec]

doLoop sc ps = do (sc’,n) <- doPasses sc 0 ps

To.box ((show n) ++ " pass(es) performed.")

return sc’

doPasses :: [Dec] -> Int -> Passes -> Q ([Dec], Int)

doPasses sc n [] = return (sc, n)

doPasses sc n ((Pass p):ps) =

do To.box ("Pass " ++ (show n) ++ ": " ++ (tName p))

(sc’, newps) <- tMain p sc

doPasses sc’ (n+1) (newps ++ ps)

Figure 3.11: Loop functions doLoop and doPasses

New passes created by the current pass are executed right after the the current
pass has ended. This could for example be used to tidy up code by invoking a
simplification pass after finishing an inlining pass. Note that there is no automatic
bail out mechanism, which means that the pass designer has to make sure that the
pass list terminates.

36 3. META-PROGRAMMING FOR EDEN

3.4 Automatic Instance Derivation

In the language definition of Haskell, the class mechanism is an important con-
struct used for overloading. Datatypes become members of a class by defining a
specialised class instance. By demanding additional class memberships before al-
lowing an instance definition, a whole graph of dependent classes is built in the
Haskell definition. Analogously, classes are used within Eden to provide over-
loaded functions for data structure evaluation and data value transmission. Usu-
ally instances have to be defined by hand. As instance definitions most often follow
regular patterns (which have to be adapted a bit to the specific datatype), this is a
tedious task. Therefore there have been some efforts to automate instance deriva-
tion:

• The Haskell 98 Report already defines a deriving construct (Section 4.3.3)
which provides automatic instance derivation for the following type classes:
Eq, Ord, Enum, Bounded, Show, Read

For each class, Chapter 10 of the Report states exactly when and how an
instance of that class can be derived for a given data structure. Of course
the standard instance derived is not always the one desired; for example,
Show does not always deliver the kind of output one would like to see and is
therefore often coded by hand. If the deriving keyword is left out a handmade
instance can be given instead.
A disadvantage is that the deriving implementation, at least for the GHC, is
hidden in the compiler implementation. Therefore it can neither be extended
by new schemes for additional classes nor modified easily.

• Derive[216] is a tool for parsing a Haskell program which allows for the defi-
nition of Haskell-coded rules which are applied to the parsed program. These
rules can then generate additional code which is appended to the original
code. Derive not only allows for the definition of new derivation schemes,
but also reimplements instance derivation of the standard classes mentioned
above. It can be used easily by inserting special comments into the Haskell
code:
{-!for Mytype derive : Eq,Show,Read!-}

Rules for instance derivation are given as pairs of a string (containing the
name of the rule) and a function mapping an abstract type representation to
a text which contains the newly generated code.

• DrIFT is the successor to Derive. While some features have been improved
(small utility functions can now also be generated for a data type), it preserves
the basic mechanism shown for Derive.

In addition to these tools the preprocessor shown in the last subsection is also
capable of deriving instances. One just has to define a pass which scans the given
source code for datatype declarations, generates instance code for these types, and
adds the code to the original source code. In contrast to the deriving construct,

3.4. AUTOMATIC INSTANCE DERIVATION 37

such a preprocessor pass for instance derivation is easily extendable. While Derive
and DrIFT both have to introduce new abstract syntax definitions we can easily
use the standardised one of Template Haskell.

In general, one can follow a common pattern when defining a deriving pass:

1. The pass overloads tDec for DataD (and also for NewtypeD) to trigger instance
derivation when a data structure declaration is encountered. This means,
that the instance is generated for every datatype contained in the program
and not only for selected ones. But this restriction could easily be alleviated
by giving a list of data type names, for which instances have to be derived, to
the deriving pass.

2. The pass state contains a [Dec] entry for collecting the derived code for each
instance.

3. When the pass finishes, the collected instance code is appended to the source
code.

Obeying that pattern, one can define a general derivation scheme in Haskell which
is then applied to every data structure definition in a program to be compiled. As
implicitly available data structures like tuples, numbers, strings, Either, or Maybe

are imported and not immediately visible, these will be predefined in Template
Haskell Syntax in a separate module and implicitly exposed to instance derivation.
For example, the imported definitions for a pair and a list look like this:

th_bt_Tup2 :: Dec

th_bt_Tup2 =

DataD [] "Data.Tuple:(,)" ["a","b"]

[NormalC "Data.Tuple:(,)" [(NotStrict,VarT "a"),

(NotStrict,VarT "b")]] []

th_bt_List :: Dec

th_bt_List =

DataD [] "GHC.Base:[]" ["a"]

[NormalC "GHC.Base:[]" [],

NormalC "GHC.Base::" [(NotStrict,VarT "a"),

(NotStrict,AppT ListT (VarT "a"))]] []

The following basic types are described in the same way and thus made implicitly
visible to instance derivation:

Char, Bool, Int, Integer, Double, Float

Unit

(a,b), (a,b,c), (a,b,c,d), (a,b,c,d,e), (a,b,c,d,e,f)

[a], Maybe a, Either a b

One could also think of redefining instance derivation for classes usually covered
by GHC, like Eq or Ord. This does not clash with compiler-internal derivation as
the keyword deriving can just be left out.

38 3. META-PROGRAMMING FOR EDEN

3.4.1 Deriving NFData

Let us now turn to the derivation of instances for Eden-specific type classes. We
will present a class for demand control, which we will discuss in detail later in
Chapter 5. For now we are only interested in how to derive instances for that class
automatically.

For controlling process creation order and steering evaluation depth in Eden
one frequently needs functions for controlling evaluation of data structures based
on the seq library function [118] . In Eden as well as in Glasgow Parallel Haskell [205]

these functions are united in a type class called NFData:

class NFData a where

xi1 :: a -> ()

xi2 :: a -> ()

Functions xi1 and xi2 enforce different evaluation depths for a given argument
value; the most commonly used xi2 demands the spine of a data structure which
means that the recursive structure is forced without touching anything else. Eval-
uation is demanded via the function seq :: a -> b -> b which evaluates its first
argument to weak-head normal form and then returns the second argument.

2 Example (xi1 and xi2 for [a])
The functions xi1 and xi2 for the list data structure are:

xi1 :: [a] -> () -- no traversal, just outermost constructor

xi1 [] = ()

xi1 (_:_) = ()

xi2 :: [a] -> () -- traversal of recursive structure

xi2 [] = ()

xi2 (v1:v2) = seq (xi2 v2) ()

Instances of this class usually have to be written by hand, a tedious and error-prone
task. Figure 3.12 shows a pass which automatically derives instances of NFData for
every data declaration found (and selected base types like tuples) and adds it to
the program. To do that, a state for containing the newly generated instance code
is defined at first. Using that state, a Traverser instance is constructed. The
tMain function defines an empty starting state and temporarily appends Haskell’s
basic data types to the source code. Then preprocessing is started by calling tDecs.
When tDecs returns, the additional instance code generated during the traversal
is permanently added to the source code (the file is left unaltered) and returned.

Inside the pass, only tDec is overloaded for DataD (NewtypeD is left out in this
presentation but can be handled identically). A single state update appears, which
appends the newly generated instance code ds to the code generated so far. The
instance itself is defined as a combination of

• a class context, which has to be inferred (described in next Subsection),

3.4. AUTOMATIC INSTANCE DERIVATION 39

newtype DeriveNFData = NFData [Dec]

instance Traverser (ST DeriveNFData) DeriveNFData where

tName _ = "Derive NFData"

tMain p sc =

do let startstate = NFData []

let sc’ = sc ++ Ty.th_bt_Comp

let ST f = tDecs sc’

let (_, NFData endstate) = f startstate

qIO (putStrLn ("=>"++(show (length endstate))++" NFData derived"))

return (sc ++ endstate, [])

tDec d@(DataD c name vars cons ders) =

do tActionPre (AS1 d)

update (\(NFData ds_sofar) -> NFData (ds_sofar++ds))

tActionPost (AS1 d)

return d

where

ds = [InstanceD (infer_context "NFData" d) iName decs]

iName = AppT (ConT "NFData") typ

typ = foldl (\z v -> AppT z (VarT v)) (ConT name) vars

decs = [FunD "xi1" [derive_xi1_cl con | con <- cons]] ++

[FunD "xi2" [derive_xi2_cl name con | con <- cons]]

derive_xi1_cl :: Con -> Clause

derive_nfdata_xi1_cl (NormalC cName cElems) =

(Clause [ConP cName pats] (NormalB rhs) [])

where pats = [WildP | _ <- [1..(length cElems)]]

rhs = TupE []

derive_xi2_cl :: String -> Con -> Clause

derive_nfdata_xi2_cl name (NormalC cName cElems) =

(Clause [ConP cName (map VarP cVars)] (NormalB rhs) [])

where cVars = zipWith (:) (repeat ’v’)

[show i | i <- [1..(length cElems)]]

rhs = foldr f (TupE []) cVars’

f v e = AppE (AppE (VarE "seq")

(AppE (VarE "xi2") (VarE v))) e

zs = zip cElems cVars

cVars’ = [v | (t, v) <- zs, find (snd t) == name]

find :: Type -> String

find (ConT n) = n

find (AppT a b) = find a

find _ = ""

tDec x = tDec’ x

Figure 3.12: NFData instance derivation pass

40 3. META-PROGRAMMING FOR EDEN

• its name, which is a direct composition of the class name and the data struc-
ture which becomes a class member,

• and finally the function declarations defining the instance’s specific behaviour.

Corresponding to the two functions contained in NFData, the declarations decs are
divided in two parts. For each function, a function alternative (or clause) for each
data constructor is generated by calling derive_xi1_cl or derive_xi2_cl, respec-
tively. Without going into details, each function generates patterns and right-hand
sides for each clause. This can be followed by comparing the code with Template
Haskell’s abstract syntax shown in Figures 3.1 and 3.2.

3.4.2 Context Inference

As soon as parametric polymorphism is used, the context of a derived instance is no
longer immediately clear. If for example an Eq instance has to be derived for [a],
then one has to demand the existence of an Eq instance for a beforehand:
instance Eq a => Eq [a] where

...

This is the case because for comparing elements one has to step back to a cus-
tomised comparison functions for elements of type a. As we derive instances auto-
matically, we also have to derive instance contexts automatically. We do this by

1. scanning the data structure and generating a set of context constraints,

2. successively simplifying the constraint set until a fixed point has been reached.

We will take the following datatype as a running example:
data T a b = C1 Int | C2 (T b a) | C3 a b

It represents the different cases which are also reflected in the constraint repre-
sentation of Figure 3.13. Besides the empty constraint CE there is a constraint CB

on base types. CB contains two strings which describe the class name and the base
type. CV describes constraints on variables and finally CD describes constraints on
polymorphic datatypes. CD contains the class name, the type constructor name, and
a list of type variable names. A context is then a set of constraints. This context is
translated to Template Haskell’s context definition via the function context2cxt;
also, we define a standard Ord instance for a constraint. To simplify the comparison
of contexts, Figure 3.14 gives the definition of a function for translating a context
into a standard canonised form. It removes empty constraints and true constraints,
eliminates duplicates, and sorts the context in a predefined order. A constraint is
true if the instance demanded by the constraint has already be defined by default.
This is the case for all instances contained in the standard prelude, like all combi-
nations of
Eq, Ord

with

3.4. AUTOMATIC INSTANCE DERIVATION 41

data Constraint =

CE -- {}

| CB String String -- Eq Int, Eq Char, ...

| CV String String -- Eq a, Ord b, ...

| CD String String [String] -- Eq T, Eq (T a), Eq (T a b), ...

deriving (Eq, Show)

type Context = [Constraint]

context2cxt :: Context -> Cxt

context2cxt = map c2t . elimCE

where c2t :: Constraint -> Type

c2t (CB c t) = AppT (ConT c) (ConT t)

c2t (CV c v) = AppT (ConT c) (VarT v)

c2t (CD c t vs) = foldl AppT (ConT c) (map VarT vs)

elimCE :: Context -> Context

elimCE cs = [c | c<-cs, c/=CE]

instance Ord Constraint where ...

Figure 3.13: Constraint and context definition

canonise :: Context -> Context

canonise = order . elimDup . elimTrue . elimCE

where elimCE :: Context -> Context

elimCE cs = [c | c<-cs, c/=CE]

elimTrue :: Context -> Context

elimTrue cs = [c | c<-cs, not (elem c truecontexts)]

elimDup :: Context -> Context

elimDup [] = []

elimDup (c:cs) | elem c cs = elimDup cs

| otherwise = c : elimDup cs

order :: Context -> Context

order = qsort

Figure 3.14: Canonising a context

42 3. META-PROGRAMMING FOR EDEN

build_equation :: String -> Dec -> (Constraint, Context)

build_equation inst (DataD _ dname namevars cons _) =

(CD inst dname namevars, concat [c2c c | c <- cons])

where c2c :: Con -> [Constraint]

c2c (NormalC _ sts) = [trans1 inst t | (_, t) <- sts]

trans1 :: String -> Type -> Constraint

trans1 i (ConT t) = CB i t

trans1 i (VarT t) = CV i t

trans1 i (AppT t1 t2) = CD i d vs

where (d,vs) = trans2 (AppT t1 t2)

trans2 :: Type -> (String, [String])

trans2 ListT = ("GHC.Base:[]", [])

trans2 (ConT t) = (t, [])

trans2 (AppT t1 (VarT t)) = (d, vs++[t])

where (d, vs) = trans2 t1

trans2 (AppT t1 (ConT t)) = (d, vs++[t])

where (d, vs) = trans2 t1

Figure 3.15: Building the constraint equation (excerpt)

Int, Float, Double, Bool, Char

Figure 3.15 shows the function for building the constraint set out of a given data
structure. For every constructor, it generates a set of constraints. This is done by
demanding an corresponding instance for every element contained in the construc-
tor. For our example datatype T given above it generates the following set:

[CB "Eq" "GHC.Base:Int", -- Constructor C1

CD "Eq" "Main:T" ["b’11","a’10"], -- Constructor C2

CV "Eq" "a’10", CV "Eq" "b’11"] -- Constructor C3

Canonising will eliminate the true context Eq Int and reorder the constraints giv-
ing:

[CV "Eq" "a’10", CV "Eq" "b’11",

CD "Eq" "Main:T" ["b’11","a’10"]]

Figure 3.16 shows the code for minimising the constraint set. A series of simplifi-
cation steps is applied to the original constraint set. By zipping the set series with
a set series shifted by an empty constraint, it can easily be determined if a fixed
point has been reached by simply searching for the first pair whose elements are
equal.

Within each step, every constraint out of equation is matched against the aim

constraint. Every CE, CB, or CV constraint is just copied; if a CD constraint is found
and both class and datatype name are equal to the ones of the aim constraint,
then additional constraints are generated via substitute. This is necessary, as

3.4. AUTOMATIC INSTANCE DERIVATION 43

recursive datatypes my contain constructors with flipped elements (like T b a in
T a b). For a complete step, consider again our running example. The current set

solve_equation :: (Constraint, Context) -> Context

solve_equation (aim, equation) = fix pairs

where steps = iterate (step aim equation) []

pairs = zip steps ([CE]:steps)

fix :: [(Context,Context)] -> Context

fix ((a,b):cs) | a == b = a

| otherwise = fix cs

step :: Constraint -> Context -> Context -> Context

step aim equation current =

canonise equation’

where equation’ = concat [match aim current e | e <- equation]

match :: Constraint -> Context -> Constraint -> Context

match (CD i t abs) cur e@(CD i’ t’ abs’) = if (i==i’) && (t==t’)

then substitute cur (zip abs abs’)

else [e]

match _ _ e = [e]

substitute :: Context -> [(String,String)] -> Context

substitute [] sub = []

substitute (CE:as) sub = substitute as sub

substitute ((CB c b):as) sub = (CB c b) : substitute as sub

substitute ((CV c v):as) sub = case lookup v sub of

Just v’ -> (CV c v’) : substitute as sub

Nothing -> (CV c v) : substitute as sub

substitute ((CD c t vs):as) sub =

(CD c t vars) : substitute as sub

where vars = [case lookup v sub of

Just v’ -> v’

Nothing -> v

| v <- vs]

Figure 3.16: Solving the constraint equation (excerpt)

of constraints has to reach a fixed point:

1) aim: Eq (T a b)

equation: Eq Int, Eq (T b a), Eq a, Eq b

current: []

match (Eq (T a b)) [] (Eq Int) -> [Eq Int]

44 3. META-PROGRAMMING FOR EDEN

match (Eq (T a b)) [] (Eq (T b a))

substitute [] [(a,b),(b,a)] -> []

match (Eq (T a b)) [] (Eq a) -> [Eq a]

match (Eq (T a b)) [] (Eq b) -> [Eq b]

current’: canonise [Eq Int, Eq a, Eq b]

-> [Eq a, Eq b]

2) aim: Eq (T a b)

equation: Eq Int, Eq (T b a), Eq a, Eq b

current: [Eq a, Eq b]

match (Eq (T a b)) [Eq a, Eq b] (Eq Int) -> [Eq Int]

match (Eq (T a b)) [Eq a, Eq b] (Eq (T b a))

substitute [Eq a, Eq b] [(a,b),(b,a)] -> [Eq b, Eq a]

match (Eq (T a b)) [Eq a, Eq b] (Eq a) -> [Eq a]

match (Eq (T a b)) [Eq a, Eq b] (Eq b) -> [Eq b]

current’: canonise [Eq Int, Eq b, Eq a, Eq a, Eq b]

-> [Eq a, Eq b]

3) fixed point reached

3.5 Reflection and Adaption

Until now we have been quite conservative when using the preprocessor, because
we have only used it to add code to otherwise unaltered source code. But there are
also other possible uses which are sometimes classified as follows:

• Reflection describes the process of a program altering itself (not only adding
to itself) with respect to inner circumstances to improve itself, for example in
terms of runtime or storage use.

• Adaption describes the process of a program altering itself with respect to
outer circumstances to improve itself in the same way as before.

Both are typical meta-programming applications and can be implemented as pre-
processor passes. The following two subsections contain examples for both.

3.5.1 Reflection: Eager Transformation

As an example for reflection we will now describe the eager transformation[143]

which is important for an effective execution of an Eden program. This trans-
formation seeks and transforms certain kinds of let expressions. These contain

3.5. REFLECTION AND ADAPTION 45

top-level process applications which would normally due to lazy evaluation be eval-
uated quite late; late process creation causes usually a decrease in parallelism. To
remedy that, these let expressions are transformed so that all top-level process
applications are executed on entering the function:

let r = p # a let r’ = createProcess p a

in e => r = deLift r’

in r’ ‘seq‘ e

Until now this transformation had been implemented as a transformation of Core
syntax embedded into the GHC. By expressing it as a preprocessor pass the code
size has been reduced from around 300 lines to less than 30 lines, mostly by saving
the effort of rewriting compiler front-end mechanisms.

The pass code is shown in Figure 3.17. The pass state is defined to collect the
number of transformations performed as well as the position of these transfor-
mations. The first state action is done locally upon encountering a suitable let,
while the second one is implemented as a global action. As we want to transform
let expressions, tExp is overloaded only for LetE. Within the let, process applica-
tions are identified via the predicate isPapp and separated from other expressions
via partition. The process applications inside the let declaration, which are of
the form p # x are then changed to createProcess applications via toCP. The let

expression e1’ is then changed to e’’ by adding process creation enforcements
via seq. The internal state is updated to reflect the number of performed trans-
formations and to store their positions before the reconstructed let expression is
returned.

This is a typical Eden-specific reflection pass. Among others one could also
imagine the following ones:

• other transformational passes:

– for each function, pull all process applications (not only the ones con-
tained in a let) to the beginning of the function’s main expression

– for each process abstraction, try to inline arguments into the abstraction
to save argument transmission when the process is created

• program analysis passes:

– for the whole program, report which functions contain Eden language
constructs or skeletons and all remaining functions which are not in-
volved into parallelism

– for the whole program, analyse whether a dynamic channel is used twice

3.5.2 Adaption: Self-Configuring Skeletons

As an example for adaption, we will shortly sketch the approach taken by Ham-
mond et al.[79] which lets the programmer choose a general type of skeleton in
his program but instantiates that skeleton with a selected environment-dependent
and cost-minimal implementation of that skeleton automatically.

46 3. META-PROGRAMMING FOR EDEN

newtype Eager = Eager (Int, ([String],[String]))

instance Traverser (ST Eager) Eager where

tName _ = "Eager transformation"

tMain p sc =

do let startstate = Eager (0, ([],[]))

let ST f = tDecs sc

let (sc’, Eager (count,(positions,_))) = f startstate

To.printToScreen positions

return (sc’, [])

tExp e@(LetE ds e1) =

do ds’ <- mapM tDec ds; e1’ <- tExp e1

let (papps, normals) = partition isPapp ds’

let vars = [v | (ValD (VarP v) _ _) <- papps]

let ds’’ = normals ++ (concatMap toCP papps)

let e’’ = foldr f e1’ [VarE (v++"’") | v <- vars]

let nET = length papps

let vals = ["in "++(To.stripvar v)++", Eager" | v <- vars]

update (\(Eager (n, (f, ps),fs,pr)) ->

Eager (n+nET,(f,vals++ps),fs,pr))

let e’ = (LetE ds’’ e’’)

tActionPost (AS4 e’)

return e’

where

f v r = AppE (AppE (VarE "seq") v) r

isPapp :: Dec -> Bool

isPapp (ValD (VarP _) (NormalB (InfixE _ (VarE "EdenSim:#") _)) _)

= True

isPapp _ = False

toCP :: Dec -> [Dec]

toCP (ValD (VarP o)

(NormalB (InfixE (Just p) (VarE "EdenSim:#") (Just v)))

des)

= [(ValD (VarP (o++"’"))

(NormalB (AppE (AppE (VarE "createProcess") p) v))

des),

(ValD (VarP o)

(NormalB (AppE (VarE "deLift") (VarE (o++"’"))))

[])]

tExp x = tExp’ x

tActionPost x = sequence_ [runAction x (aPos, liftPos)]

where liftPos :: (([String],[String]) -> ([String],[String])) ->

(Eager -> Eager)

liftPos f (Eager (c, ps)) = Eager (c, f ps)

Figure 3.17: Eager transformation for Eden

3.5. REFLECTION AND ADAPTION 47

Adaption means, that a program adapts itself according to outer influences.
In a parallel setting, what outer factors influencing the performance of a parallel
program are there?

• System-specific informations include the network topology of the parallel com-
puter, the number of nodes included, and the communication latency.

• Problem-specific informations include the size of the data structures involved,
the problem-specific data granularity (minimal and maximal independent
task sizes), the problem’s suitability for different algorithms and its paral-
lelisability.

A generalised parallel method for a certain kind of collaboration between a set
of processes, a skeleton, can be seen as a kind of logical pattern whose imple-
mentation can vary in many facets. Therefore usually a set of implementation
skeletons[119] belong to a single logical skeleton. For example, a parallelised map
function can be implemented in at least four ways (as shown in our paper[119] and
described in Section 6.3): The first way directly reflects the behaviour of map by
creating a process for each list element. The second way creates a process for each
machine node and distributes the list element over these node processes, saving
process creation costs. The third way embeds process argument directly into the
process, so that at creation time the arguments are incorporated by the process
and need not be transmitted separately. The fourth way is especially suited for
varying task sizes induced by the list elements; it creates a worker process on each
machine node and dynamically assigns tasks to idle workers.

Normally it’s up to the programmer to choose the most suited implementation
skeleton after having chosen the general skeleton. This decision is usually made by
hand depending on the outer factors shown above and often some intuition. With
automatic skeletons[79] , each implementation skeleton comes along with a specific
cost model. Given a set of environmental factors like the ones above, the cost for
running each skeleton can be calculated statically. Therefore, the most efficient one
can be chosen at compile-time. From a programming point of view, instead of using
a hand-selected skeleton with hand-selected parameters for granularity control

... (myMap myParameters) f xs ...

one would now insert a Template Haskell splice autoMap which is given actual en-
vironmental parameters

... $(autoMap environment) f xs ...

After calculating the costs of all predefined implementations for map the splice will
then replace itself by a call for the most efficient one

... (bestMap bestParameters) f xs ...

Environmental factors can be stored in different ways. One approach taken within
Fortress[196] is to map the parallel computer to a hierarchical data structure (see
for example Figure 3.18, where each level represents a different level of parallelism
associated with a memory and cache model and an inter-level communication la-
tency. Later processes together with data structure partitions can systematically
be placed in this hierarchy.

48 3. META-PROGRAMMING FOR EDEN

Grid

Cluster

Node Node

Chip

Core

Chip

Core Core

Node Node Node

Cluster Cluster

Node

Figure 3.18: Internal parallel computer representation

This scheme can be extended by using the preprocessor developed in this thesis.
We can now define a general preprocessing pass which by itself

1. detects all standard skeletons (which are given firm names in the Eden li-
brary module) used in a program

2. assumes the same environment description as the one given in Hammond et
al. [79]

3. replaces each one by its most efficient relative in the family of implementation
skeletons

The advantage of this approach is that the programmer does not need to know
about Template Haskell syntax. Furthermore it allows for the easy extension of
the former approach to deal with all standard skeletons in a uniform way.

Instead of using specialised implementation skeleton calls which may be (pos-
sibly unexpectedly) changed by subsequent preprocessing, one could also decide to
let the programmer use more general functions which denote the general skeleton
class and serve as placeholders for their most efficient implementations. If, how-
ever, specialised implementation skeletons are used by the programmer the pre-
processing pass could also act as a non-transforming pass which issues warnings if
non-optimal implementation skeletons are detected.

4. Generic Programming for Eden

”Generic programming has ... major advantages over ’one-shot’ program-
ming, since genericity makes it possible to write programs that solve a
class of problems once and for all ...”

In Section 1.5 ”Why Generic Programming?”of Backhouse et al.[12]

4.1 Motivation

Sequentially, one of the most often used abstractions in Haskell programs is surely
parametric polymorphism; this mechanism, if semantically applicable, saves us
the effort of having to write different implementations of a function for different
element types. As an example, the function elem on lists would normally have to
be implemented for every possible element type:

elemI :: Int -> [Int] -> Bool

elemI e [] = False

elemI e (x:xs) | x == e = True

| otherwise = elemI e xs

elemC :: Char -> [Char] -> Bool

elemM :: Matrix -> [Matrix] -> Bool

...

Although determining whether the element is contained within the structure is
a simple structure traversal and independent of the element datatype (given an
equality check), a separate function would have to be defined for each element
type. Haskell’s polymorphic typesystem now allows for the introduction of type
variables to capture the basic similarity of these functions:

elem :: Eq a => a -> [a] -> Bool

elem e [] = False

elem e (x:xs) | x == e = True

| otherwise = elem e xs

This polymorphic version can be used with all element types which provide an
equality check, which is already quite general. Nevertheless further abstraction is
desirable and possible, as elem can only operate on lists. If other data structures

49

50 4. GENERIC PROGRAMMING FOR EDEN

around the type variable a would have to be searched, the same situation as before
would arise; we would have to define separate implementations although the basic
search procedure remains unchanged:

elemList :: Eq a => a -> [a] -> Bool

elemTree :: Eq a => a -> Tree a -> Bool

elemHMQueue :: Eq a => a -> HMQueue a -> Bool

...

What we need is another generalisation which makes it possible to summarise
these function in a single one. Via constructor classes, Haskell again leads the way
to a solution, because using them we can let type constructors vary:

elemGeneric :: Eq a => forall t. forall a. a -> t a -> Bool

Given an implementation for elemGeneric (which is not trivial and the topic of this
chapter), we have defined once and for all the elem check for all data structures of
kind (* -> *) and all element types. When abstracting like that one also speaks of
structural polymorphism [180] , polytypic functions [111] , or in a more general context
of generic programming. For more information on approaches to generic program-
ming see Section 4.4 (for general approaches) and Section 9.2 (for specific imple-
mentations). Providing an implementation for a generic function like elemGeneric

above, is not trivial, as it is not immediately clear how a function can be defined
without knowing its argument datatypes completely; classical pattern-matching
is then impossible. In this chapter we will show how to implement an approach
to generic programming which can not only be implemented with means provided
mostly by Haskell but which is also suited for parallel programming.

We are interested in efficiently programming parallel computers in Eden. Gen-
eralising a function will not make it run faster. In the contrary, the additional
overhead can even slow it down. Then why do we consider genericity useful for
parallel functional programming? We do because it fits well into the whole picture:

1. Even if we do not apply generic methods to Eden’s parallel constructs, they
will be useful on a purely sequential level. All advantages in favour of usual
generic programming therefore also apply to generic programming in Eden.

2. Parallelism can be seen as an occasion for simultaneity induced by only small
or even no dependences between expressions which are exploited to a certain
amount for increasing program performance. In Eden, parallelism can be
reflected on the program-level in two ways:

• as control parallelism: process cooperation patterns reveal independence;
these are generalised via skeletons/HOFs which means that parameter
functions may vary

• as data parallelism: data structure organisations reveal independence;
these are generalised via parametric and now structural polymorphism
which means that types may vary

4.2. DATA STRUCTURES 51

This means, that just as abstract control parallelism is reflected by skeletons,
abstract data parallelism is reflected by the combination of parametric and
structural polymorphism. This dualism will be further discussed in Chap-
ters 6 and 7.

3. In addition to data parallelism, parallelism in general depends very much on
data structure handling (partitioning, granularity control), which can greatly
benefit from generic functions.

4. Although generic functions will not speed up a program, they will speed up
the implementation process. The high-level programming style eases later
code changes and supports speed gains by specialising generic functions to
more efficient versions. Therefore generic functions advocate to rapidly pro-
totype a parallel program suitable for later tuning.

For direct combination with parallel programming, generic methods will usually
be applied in a structure-oriented way. This means, that for parallelism usually
large structures and not small values are processed. This is the case, as parallel
programming mostly deals with partitioning, merging, traversing, searching, zip-
ping, mapping, and unifying structures. When being combined with generic meth-
ods the focus will therefore be more on polymorphic structures and not so much
on the usual base types like Int or Char contained within them. Generic parallel
functions are therefore more functions for programming ’in the large’ than func-
tions for changing small parts of a structure. Therefore our approach to generic
programming is tailored for being applied in the context of a parallel functional
programming language like Eden.

Section 4.2 introduces into generic programming by giving a short descrip-
tion of data structures in general. In the same way, Section 4.3 summarises
Haskell’s type system together with a couple of implementation-dependent
extensions. Then Section 4.4 shortly sketches the different approaches to
implementing generic functionality so far. Subsequently, Section 4.5 in depth
describes a new approach to generic programming geared towards being used
in the parallel Haskell dialect Eden. To flesh out the approach, Section 4.6
shows generic versions of well-known sequential standard Haskell functions.

The chapter is based on our technical report[174] .

4.2 Data Structures

To prepare the ground for the oncoming sections on generic programming, we will
now set out to give a short summary on data structures. These can be described
via methods of algebraic specification. These methods are well-known[107, 60] ; we
will, however, give a more practical description.

When a data structure is needed, one usually starts not by defining the struc-
ture itself, but by defining the set of functions wanted for accessing and manipu-
lating the structure. The resulting abstract datatype can then only be accessed via

52 4. GENERIC PROGRAMMING FOR EDEN

these functions while its interior implementation is invisible. This abstraction bar-
rier [17] is useful, because the concrete implementation of the data structure can
be changed while its interface is left untouched. A data structure is then typically
accessed via a set of functions tailored for selecting special parts of the structure.
Such an abstract datatype spans a space of different concrete implementations. For
example, a queue with its typical interface can be implemented in different ways:
via a simple list with expensive access, or as a Hood-Melville queue [92] which
breaks the queue into two lists providing more efficiency when accessing both ends
of the queue. A concrete implementation can be used on its own without further
access functions, as its parts are known.

Within Haskell both approaches are possible: One can construct an abstract
datatype by creating a module which exports only the functions needed for oper-
ating the data structure while hiding the concrete implementation. But more of-
ten datatypes are defined explicitly and reveal their interior to the outside, which
enables the programmer to avoid access operations and to use the more popular
pattern-matching style of programming.

Besides predefined datatypes Haskell allows for the definition of user-defined
datatypes; for doing so usually the data declaration is used:

data C ⇒ T a1 . . . an = D1 t11 ... t1m1

| D2 t21 ... t2m2...
| Dk tk1 ... tkmk

This declaration introduces a new datatype with a type constructor T which is pa-
rameterised via the type variables a1, . . . , an. On the value side, new data construc-
tors D1, . . . , Dk are defined. Data constructors can also be seen as functions and
be treated as such; especially, partial application of argument values is valid. The
whole type is restricted by a type context C which can demand the existence of
class instances for types assigned to type variables a1, . . . , an. Type synonyms can
be defined via the type declaration; this means, that a type is also known under
another type constructor without introducing new data constructors. The same
can be done via newtype but with the difference that a new data constructor is in-
troduced. The compositional building of values out of nested data constructors is
accompanied by the dual concept of pattern-matching for value decomposition in
function definitions.

Data constructors contain (possibly empty) sequences of elements. Different
combinations can arise:

data Ex1 = A1 -- empty constructor

| A2 Int Char -- base types

data Ex2 a = B1 a -- type vars

| B2 Int (Ex2 a) (Ex2 a) -- recursion

data Ex3 a b = C1 (Ex3 a b) (Ex3 b a) -- exchanged type vars

| C2 (Ex3 (Ex3 a b) b) -- exponential type

| C3 a b

The first two examples show the most common data constructor layouts, while the
third one shows the (quite uncommon) flipping of elements and exponential (or

4.3. THE TYPE SYSTEM IN A NUTSHELL 53

non-uniform[161]) datatypes. When designing an approach to generic programming
one has to deal with these cases.

4.3 The Type System in a Nutshell

In this section we will shortly describe Haskell’s type system and some of its ex-
tensions which are not defined within the Haskell language report. Some parts of
the following work is based on the mechanisms shown here. Like in the previous
section we will give an application- and language-oriented description of the topic
and skip the large field of type theory, as it is not needed here.

Haskell is all about values: These are nested applications of various data con-
structors which we have introduced in the previous section. Beneath these, also
functions are first-class values in Haskell. Data constructors to which not all ele-
ments are applied are also functions. To avoid the incorrect application of values
within a functional program, families of values are introduced and called types
(see Pierce[168] or Chapter 8 in van Leeuwen[208]). Haskell incorporates a Hindley-
Milner type system [154] which allows for the automatic and static inference of the
most general type for every function and expression. Explicitly given types are not
only checked for correctness, but missing types are also inferred. Many errors in
a program then show up during static type inference instead of yielding a runtime
error, supporting Robin Milner’s famous slogan that ’well-typed programs never go
wrong’.

Types can themselves be grouped and divided into different kinds. Unlike types,
kinds are entirely invisible on the language-level and just serve the purpose of
checking the validity of type expressions via kind inference. In contrast to only
monomorphic functions like

and :: [Bool] -> Bool

the most general type of polymorphic functions permits a certain variety in the
type parameters. This is reflected by type variables:

length :: forall a. [a] -> Int

The forall declaration is implicitly present and can be omitted; this represents
the typical Haskell 98 rank-1 polymorphism. Kinds then reflect polymorphism by
categorising types via their parameters in a curried way by using (*) for nullary
type constructors and (->) for connecting two kinds. The example datatypes Ex1

to Ex3 shown in the previous section are of the kinds (*), (* -> *), and (* -> *

-> *). These just reflect the number of type variables and are therefore called
first-order or flat kinds. Higher-order kinds arise if type variables are used as type
constructors; this will be discussed below.

If we allow for a deeper nesting of the forall clause in a type, we obtain rank-n
polymorphism. This way, were are allowed to hide additional polymorphism inside
a type:

data List = Cons (forall a. Eq a => a -> a -> Bool) List

| Nil

54 4. GENERIC PROGRAMMING FOR EDEN

Parametric polymorphism is powerful but can also be problematic. The simple
addition operator (+) should and can for example neither be typed monomorphi-
cally as Int -> Int -> Int (would be too restrictive) nor fully polymorphically as
a -> a -> a (would be too general as for example functions cannot be added). Ad-
hoc polymorphism [214, 77, 166] extends the Hindley-Milner type system by defining
an intermediate stage which restricts type variables in parametric polymorphism.
Type classes incorporate these restrictions: Each class contains a set of functions.
If these are defined for a datatype (forming an instance), that datatype is allowed
to instantiate the restricted type variable. Arithmetic is captured by the Num class,
so our example would now be specified via
(+) :: Num a => a -> a -> a

If more than one instance is defined for a class the functions of the class are over-
loaded. In Haskell this mechanism resulted in large graph of interdependent type
classes for expressing various restrictions ranging from comparisons to enumer-
ations and numbers. Even multi-parameter classes are allowed (example taken
from the GHC User’s Guide):

class Collection c a where

union :: c a -> c a -> c a

...

Given the polymorphic definition of length above, one is tempted to generalise
over the type constructor to obtain:
size :: forall t. forall a. t a -> Int

Types like these are possible via higher-order polymorphism [113] which induces
higher-order kinds. Type correctness can then be determined by inferring its kind
which in the end has to be (*). Practically, functions with types like the one above
hardly exist, because without special additional mechanisms a function cannot
cope with anonymous data constructors.

The combination of ad-hoc-polymorphism and higher-order kinds provides a so-
lution: In contrast to normal type classes constructor classes take partially applied
type constructors as arguments. A standard example from the Haskell prelude is
the map functor:

class Functor f where

fmap :: (a -> b) -> f a -> f b

Within an instance of Functor, the concrete allocation of f is clear; therefore,
pattern-matching can be used:

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x)

4.4. BASIC APPROACHES TO GENERIC PROGRAMMING 55

4.4 Basic Approaches to Generic Programming

This section explains two basic approaches to implementing generic functionality
and discusses their relationship. Based on both approaches, we will present a third
one for Eden in the following section.

4.4.1 Static

The static approach to generic programming can be summarised as follows. By
using constructor classes which can also vary over type constructors one can sim-
ply overload the function to be generalised with a specific version for every data
structure which might be applied to the function. Each instance can be written
statically in full knowledge of the respective data structure and its data construc-
tors. At runtime the correct version will be chosen according to its argument. One
could then express a generic length function via the class Countable:

class Countable t where

len :: t a -> Int

data BinT a = Leaf a

| Node a (BinT a) (BinT a)

instance Countable [] where

len [] = 0

len (_:xs) = 1 + len xs

instance Countable BinT where

len (Leaf _) = 1

len (Node _ le ri) = 1 + len le + len ri

Unpleasantly, one would have to write many instances of the generic function
which would therefore be only generic in use, not in definition. This could be auto-
mated to some extent in the form of a static deriving mechanism, which would shift
the generic function definition from a high to a lower abstraction level (by giving
general instructions on how to derive proper instances).

The types shown above differ in their kind. While types categorise values, kinds
categorise types in terms of their type variables. Flat kinds just reflect the arities
of type constructors in a curried way. The above example datatypes are of flat kinds
(*) and (* -> *). (Higher order non-flat kinds arise if type variables are used as
type constructors.) One would therefore also need a class for every flat kind, and
all that again for various other generic functions resulting in large type contexts,
e.g.:

class Countable2 t a b where ...

class Countable3 t a b c where ...

class Zippable2 t a b where ...

class Zippable3 t a b c where ...

56 4. GENERIC PROGRAMMING FOR EDEN

f :: (Countable2 ..., Zippable2 ..., ...) => ...

The main advantage of this approach is: It is fast and simple because no lifting
and no compiler or language extension is needed.

4.4.2 Dynamic

The dynamic approach to generic programming consists in transferring argument
data structures at runtime into a uniform algebraic sum-of-products representa-
tion. For example, the binary tree (BinT a) shown above would be interpreted as
(Leaf * a) + (Node * a * (BinT a) * (BinT a))

The generic function, which has to be defined only once on the program level, is de-
signed for working only on such representations. A typical compositional function
definition looks like this:
genlength<a> :: t a -> Int

genlength<a> x = 1

genlength<1> () = 0

genlength<Int> n = 0

-- analogously for Char,Bool,...

genlength<a+b> (Inl x) = genlength<a> x

genlength<a+b> (Inr y) = genlength y

genlength<a*b> (x, y) = genlength<a> x +

genlength y

The generic function will dynamically lift the whole value to the general sum-of-
products representation, compute the result by traversing the sum-of-products rep-
resentation, and for non-basic result types delift it back. Disadvantages include: A
language extension has to be implemented, expensive whole-value lifting happens,
and functions for lifting and delifting have to be generated. Advantageous is the
absence of type contexts and that generic functions are generic in definition and in
use, keeping it on a high level of abstraction.

4.5 Generic Programming for Eden

We will now present an approach to introducing generic methods into Eden. Our
approach is designed to meet three aims:

• Based on Haskell to support portability.
When implementing supersets of common programming languages, for exam-
ple an extension of Haskell, it is desirable to implement the superset on top of
a mature parent language compiler. As already argued in our preprocessing
paper[172] and in Chapter 3, it is even more desirable to implement the super-
set in the parent language without having to modify the existing compiler.
Our approach to generic programming is implemented in Haskell with almost
no internal parent compiler modification. Therefore it can be much more eas-

4.5. GENERIC PROGRAMMING FOR EDEN 57

ily ported to newer versions of the parent language compiler. This is very
important for extensions of Haskell, as Haskell compilers develop quickly;
versions have to be followed for being able to make expressive comparisons
between parallel Haskell dialects.

• Combines static and dynamic approach for easy implementation.
We combine parts of the static and the dynamic approach: Like in the static
approach a class mechanism with statically generated instances will be used
to provide ease of implementation. At the same time, generic functions will
be definable on the language-level like in the dynamic approach.

• Structure-oriented to suit parallelism.
In addition to being portable, our approach is more directed towards being
used together with parallel functional languages, as it provides stepwise ac-
cess to nested data structures. This is important when dealing with paral-
lelism, as the decomposition of algorithms into tasks which are executable
in parallel is closely accompanied by the decomposition of nested data struc-
tures in collections of substructures. Therefore generic functions in a parallel
world are not aimed at skipping uninteresting outer layers of a data structure
but are expected to allow access to every layer of a nested data structure for
detailed data structure de- and recomposition.

The last point is where we will start: How to gain access to the constructors of an
unknown data structure passed as an argument to a generic function.

4.5.1 Gaining Access to Data Structures

As generic functions are expected to work on arbitrary data structures, one faces
the problem of defining a function which can cope with arguments of unknown
types. But how can we express that? Imagine a function f receiving an argument
of type t a:

f :: t a -> ...

f ? = ...

Normally one would now define f via a couple of alternatives, each of which reflect-
ing a data constructor case of the argument type. But as the exact type constructor
t is unknown and varies, we cannot know statically which data constructors we
will face. Another possibility is now to defer pattern-matching by using somehow
generalised selection functions (similar to the specialised head and tail for lists)
after matching against variables:

f :: t a -> ...

f x = ... (select_element x) ...

This of course only shifts the same problem to a second function. But it leads the
way to a solution: We can relocate the deconstruction of an argument value to the
place where its parts are needed. If a common deconstruction function is defined
for all data structures which may be encountered as arguments, we can deconstruct
the given value, work on its internal parts in the way needed, and reconstruct the

58 4. GENERIC PROGRAMMING FOR EDEN

value using a reconstruction function also provided by the deconstruction function.
This way, we implement a kind of postponed pattern-matching and abstract from
data constructors. Such a deconstruction function would then have the type
h :: t a -> (([a], [t a]), -- deconstruction

([a], [t a]) -> t a) -- reconstruction

which, given a value of kind (* -> *), yields lists of the value’s internal parts (a
deconstruction) together with a complementary reconstruction function. Using that
deconstruction function, a generic map function for data structures with a single
type variable (thus called map1) can simply be expressed as:
map1 :: (a -> b) -> t a -> t b

map1 f xs = reconstruction (as’, tas’)

where (deconstruction@(as, tas), reconstruction) = h xs

as’ = map f as

tas’ = map (map1 f) tas

To get the well known map for lists, one would use:
h :: [a] -> (([a],[[a]]), ([a],[[a]])->[a])

h [] = (([], []), \([], []) -> [])

h (x:xs) = (([x],[xs]), \([y],[ys]) -> y:ys)

A map working on rose trees
data Rose a = R a [Rose a]

can be obtained by:
h :: Rose a -> (([a],[Rose a]),

([a],[Rose a]) -> Rose a)

h (R a xs) = (([a],[xs]), \([b],[ys]) -> R b ys)

Therefore the function h provides a wrapping for data structures forming a general
interface to its constructors. If defined for all data structures occurring in a pro-
gram, dynamic generic functions can be defined (like map1 above) and used. This
construction lends itself to overloading via constructor classes. We therefore use
a set of constructor classes (one for each of the most common flat kinds), which
provide the h function for its instances. Static derivation of an instance for the
fitting class is done automatically for each data type in the program by a meta-
programming mechanism already presented in Chapter 3. Generic functions are
then defined only once on the program level using these abstraction functions for
being able to work on all data types occurring in the compiled program. This way
no compiler or language extension is necessary.

4.5.2 Nested Data Structures

One decision has yet to be made regarding nested data structures: Given the com-
mon map function on lists
map :: (a -> b) -> [a] -> [b]

4.5. GENERIC PROGRAMMING FOR EDEN 59

what would one in general semantically expect from a generic version of map? Cer-
tainly, one would want it to work on arbitrary type constructors t instead of only
on lists:

map1 :: (a -> b) -> t a -> t b

But what does that mean when the function is applied to a data structure nested
via the replacement of type variables like for example

type IntTreeListList = [[BinT Int]]

Do we want

α) a to match only the innermost type Int and t to match the remaining hull
[[BinT ...]] or do we want

β) t to match only the outermost type constructor and a to match the remaining
[BinT Int]?

As map applies a function (a -> b), this decision determines the whole function be-
haviour: Innermost matching corresponds to working on a carefully selected part
of the data type while ignoring the remaining structure and saving the traver-
sal effort; in the case of data structures having a larger flat kind than (* -> *),
other mechanisms for choosing one of the innermost types are needed. Outermost
matching in a sense generically peels off the outermost layer of a data type and, in
the case of nested data structures, may require multiple applications to propagate
down the nesting.

α) Innermost matching is explored by the boilerplate approach [123] . Within this
approach map acts element-oriented: map is defined as a generic traversal
over arbitrary data structures during which the argument function is applied
to every data structure element. Using a special wrapping, the argument
function is triggered only if a predefined element type is encountered. The
generic map is defined via overloading and reflects its very general applica-
bility (limited by the existence of class instances):

class Typeable a => Term a where

gmapT :: (forall b. Term b => b -> b) -> a -> a

everywhere :: Term a =>

(forall b. b -> b) -> a -> a

everywhere f x = f (gmapT (everywhere f) x)

The absence of type constructors shows how structure is left aside. Structure
traversal is considered as tiresome boilerplate code and abstracted away.

β) In our approach we will use outermost matching. It is structure-oriented, as
de- and reconstruction clearly reveal the layout of the data structure to the
generic function and not only its elements. Then it is easy to write generic
functions which not only traverse but also transform data structures. This
is especially important for parallel programming, which rests upon data-
parallel functions and functions for partitioning large data structures into

60 4. GENERIC PROGRAMMING FOR EDEN

collections of smaller parts. In a sense, for organising a parallel computation
structure is more important than the elements contained in the structure.
Due to its different perspective, our approach results in a different style of
generic programming.

We can operate generically on a nested datatype in an outermost fashion by using
a corresponding nesting of generic functions: For example, we can apply a function
f :: a -> b to a nested structure x :: t1 (t2 a) by using map1 (map1 f) x.

4.5.3 The Abstraction Classes

For implementing our structure-oriented approach, we need to have a generally
applicable version of the h function shown above. We will now use overloading via
type classes to provide this function for different flat kinds. Figure 4.1 shows ab-
straction constructor classes for the three most common flat kinds (*), (* -> *),
and (* -> * -> *). Inside an Abs class a set of core functions is defined on top
of which external generic functions are constructed later. As it is often helpful to

-- at least kind (*) ---

class Abs0 t where

null0 :: Maybe t

suco0 :: t -> -- value

(String, -- constructor name

([t], -- deconstruction

[t] -> t) -- reconstructor

)

-- at least kind (* -> *) --

class Abs1 t where

null1 :: Maybe (t a)

suco1 :: t a -> -- value

(String, -- constructor name

(([a], [t a]), -- deconstruction

([b], [t b]) -> t b) -- reconstructor

)

-- at least kind (* -> * -> *) ---

class Abs2 t where

null2 :: Maybe (t a b)

suco2 :: t a b -> -- (analogous)

(String,

(([a], [b], [t a a], [t a b], [t b a], [t b b]),

([c], [d], [t c c], [t c d], [t d c], [t d d]) -> t c d)

)

Figure 4.1: The Abs0, Abs1, and Abs2 constructor classes

4.5. GENERIC PROGRAMMING FOR EDEN 61

v :: t a

�
��	 ?

@
@@R

deconstruction (su)

[a] [t a] bt

? ? ?

work on [a]

descend into [t a]

copy base types[b] [t b] bt

v’ :: t b

@
@@R ?

�
��	

reconstruction (co)

Figure 4.2: De- and reconstruction for kind (* -> *)

be able to determine whether a nullary constructor is available, a null function
is included. Because not every data type has a nullary constructor (for example
Either), the result is wrapped in Maybe. The main abstraction function (formerly
called h) however is called suco, because for a given value it yields the name of the
value’s constructor, a deconstruction (su-btrees) of the value, and a reconstruction
function (co-mpose) for putting all parts together again (see Figure 4.2). Because
the order of type variables can be changed, suco has to deal with all possible per-
mutations of type variables. The tuples for deconstruction grow larger accordingly.
Fortunately flat kinds higher than (* -> * -> *) are rare in average programs.

For a base type like Char one would write:
instance Abs0 Char where

null0 = Just ’a’

suco0 c = ([c], ([], \[] -> c))

A simple data type describing terms of the lambda calculus could be treated via:
data LamTerm = Var String

| App LamTerm LamTerm

| Abs String LamTerm

instance Abs0 LamTerm where

null0 = Nothing

suco0 (Var s) = ("Var", ([], \[] -> Var s))

suco0 (App l1 l2) = ("App", ([l1,l2], \[l1’,l2’] -> App l1’ l2’))

suco0 (Abs s l) = ("Abs", ([l], \[l’] -> Abs s l’))

A bit more interesting is the instance for a data type of higher kind:
instance Abs1 BinTree where

null1 = Nothing

suco1 (Leaf x) = ("L", (([x],[]), \([y],[]) -> Leaf y))

suco1 (Node x l r) = ("N", (([x],[l,r]), \([y],[m,s]) -> Node y m s))

The de- as well as the reconstruction actually have to take care of all possible

62 4. GENERIC PROGRAMMING FOR EDEN

components which can appear within a data type. But it is advisable to restrict
ourselves to such components which can be constructed out of the type constructor
and type variables. The examples as well as Figure 4.1 show the components taken
care of by these classes, which comprise all type variables and all n-ary combina-
tions of t a1 . . . an because type variables may be flipped like for example:
data Flip a b = Foo (Flip a b) (Flip b a) | Bar a b

instance Abs2 Flip where

null2 = Nothing

suco2 (Foo f1 f2) = ("Foo",(([],[],[],[f1],[f2],[]),

\([],[],[],[g1],[g2],[]) -> Foo g1 g2))

suco2 (Bar x1 x2) = ("Bar",(([x1],[x2],[],[],[],[]),

\([y1],[y2],[],[],[],[]) -> Bar y1 y2))

Base types like Int or Char are copied and are therefore not at the generic func-
tion’s disposal. If base types were included, one would get into trouble for example
with zipWith, which would need a list of functions for combining values of any base
type. Together with values of base types, all values not directly belonging to the
inductive definition of the datatype are also not accessible and therefore usually
just copied. This includes the (List a) value in Example, a case which is covered
by other (inductive) approaches to generic programming (like PolyP[112]):
data Example a = E1 a (List a) | E2 (Example a)

Each class can have instances for types of at least the given kind, because one can
write instances of Abs0 not only for Int or Char but also for BinTree a or Either a b.
This means that one can choose how many type variables are pushed into the type
constructor t and how many are revealed to the abstraction functions, but only in
the order defined by the data type. Of course, an instance for Abs0 can then be
given for every data type. One has to be aware that the decision on how many type
variables are exposed to an abstraction class directly influences the semantics of
the generic functions derived. Type variables bound to the type constructor are not
available to the generic function. Typically one would choose the highest possible
class. In a sense one can speak of a ’kind waterfall’ as a type of a certain kind can
be an instance in its own and all classes of lower kind. For example:
instance Abs2 Either ... -- Either

instance Abs1 (Either a) ...

instance Abs0 (Either a b) ...

instance Abs1 BinTree ... -- BinTree

instance Abs0 (BinTree a) ...

Compared to the static approach it is advantageous to abstract from having a class
for every generic function. Because many generic functions share the same ab-
straction functions we can keep type contexts small. Nevertheless for each data
type involved in a generic function at least one Abs instance will occur.

The instances above show that their derivation is tedious, but not difficult. In
the next subsection we show how to generate these instances automatically by
means of meta-programming already discussed in Chapter 3.

4.6. SEQUENTIAL GENERICITY 63

4.5.4 Implementation

Now we will give a panoramic view across the implementation: When a program
containing generic functions is compiled, a preprocessing pass for every kind cov-
ered by the abstraction classes is applied to the program. Each pass is defined
for the preprocessing mechanism presented in Chapter 3 and is based on meta-
programming via Template Haskell [189] . In essence Template Haskell parses the
program, applies a set of preprocessing passes to the resulting internal syntax tree,
and writes the program back for further compilation. In our case, each Abs pass
will scan the input program for data declarations, check whether they fit its kind,
and derive the suitable instances if this is the case. For each data type of flat kind
n, an Abs instance is derived for every flat kind equal to or lower than n. Instances
for indirectly present base types (like tuples) are also derived. A generic function
library based on these abstraction functions is defined normally on the program
level and is simply imported by the user’s program to provide a predefined collec-
tion of generic functions.

Figure 4.3 shows the pass for generating Abs0 instances. DeriveAbs0 is the
state maintained throughout the syntax tree traversal. Its only component is a
list of declarations containing all instances created via the traversal. tMain steers
the derivation. At first the syntax tree sc is extended by declarations of compiler-
internal base types like Bool, Maybe, Either, tuples, and so on. These are otherwise
implicitly present but now need to be directly available to be considered by the
passes. The main machinery is started by the call to tDecs which transforms the
program. After transformation the state (containing the created Abs0 instances) is
given back and appended to the syntax tree.

tDecs itself calls tDec for every declaration. tDec is the identity function for
every declaration with DataD being the only exception. The state is extended by
the instance for the encountered data type. The instance itself is composed by its
name, its type context, and its definitions of null0 and suco0. Both are derived by
traversal of the data type constructors of type [Con]. Each function generates for
each constructor a Clause which is a right hand side of a function. null0 checks
whether nullary constructors are available and if this is the case chooses the first
one as default. suco0 scans the data type alternatives and builds the correct de-
and reconstruction expressions.

The derivation schemes for Abs1 and Abs2 are essentially of the same structure,
a bit more complex, much longer, and therefore not shown here.

We will now turn to see how this generic approach can be used in practice.

4.6 Sequential Genericity

Now we will generalise some of the well-known Haskell Prelude functions (see
Section 8 in the Haskell language definition[164]). But wait: What does it mean to
generalise a function for every datatype? Is there always a unique generalisation,
a clear meaning simply extendable to any data type?

Of course not. Many functions of which we seem to have a clear semantic con-

64 4. GENERIC PROGRAMMING FOR EDEN

newtype DeriveAbs0 = Abs0 [Dec]

instance Traverser (ST DeriveAbs0) DeriveAbs0 where

tMain p sc = do let startstate = Abs0 []

let sc’ = sc ++ basetypes

let ST f = tDecs sc’

let (_, Abs0 endstate) = f startstate

return (sc ++ endstate, [])

tDec d@(DataD c name vars cons ders) =

do update_state state -- No kind check necessary,

return d -- Abs0 is derived for every DS

where

state = \(Abs0 ds_sofar) -> Abs0 (ds_sofar++ds)

ds = [InstanceD [] iName decs]

iName = AppT (ConT "Abs0")

(foldl (\z v -> AppT z (VarT v)) (ConT name) vars)

decs = [FunD "null0" [derive_null0 cons]] ++

[FunD "suco0" [derive_suco0 con | con <- cons]]

derive_null0 :: [Con] -> Clause

derive_null0 cs = Clause [] (NormalB e) []

where e = case length nk of

0 -> ConE "Data.Maybe:Nothing"

otherwise -> AppE (ConE "Data.Maybe:Just")

(ConE (head nk))

nk = [name c | c <- cs, nullary c]

nullary :: Con -> Bool

name :: Con -> String

derive_suco0 :: Con -> Clause

derive_suco0 (NormalC cName cElems) =

Clause [ConP cName (map VarP cVars)] (NormalB rhs) []

where

cVars = zipWith (:) (repeat ’v’) (map show [1..length cElems])

rhs = TupE [LitE (StringL cName), rest]

rest = TupE [decon,recon]

vs = [v |((_,t),v) <- zip cElems cVars, t == ConT name]

vs’ = map (\v -> v ++ "’") vs

decon = ListE (map VarE vs)

recon = LamE (map VarP vs’) rexp

rexp = foldl (\z v -> AppE z (VarE v)) (ConE cName) rvs

rvs = [if t == ConT name then v++"’" else v |

((_,t),v) <- zip cElems cVars]

Figure 4.3: Derivation scheme for Abs0 (kind (*)) constructor class (excerpt)

4.6. SEQUENTIAL GENERICITY 65

sf :: (a,(b,c)) -> b ss :: (a,(b,c)) -> c

sf = fst . snd ss = snd . snd

dfs0, bfs0, tail0 :: Abs0 t => t -> [t]

dfs0 t = t : concatMap dfs0 (sf (suco0 t))

bfs0 = concat . l

where l t = [t] : foldr cat []

(map l (sf (suco0 t)))

cat = zipWith (++)

tail0 = sf . suco0

depth0, size0 :: Abs0 t => t -> Int

depth0 = (+1) . foldl max 0 . map depth0 . tail0

size0 = (+1) . sum . map size0 . tail0

init0, paths0 :: Abs0 t => t -> [[t]]

init0 t = [init p | p <- paths0 t]

paths0 t | null bs = [[t]]

| otherwise = [t:p | b <- bs, p <- paths0 b]

where bs = sf (suco0 t)

Figure 4.4: Sequential generic functions (*), based on Abs0

ception are hard to put to general terms. Take length as an example: How do you
define length for Bool or (BinTree a)? Within the tree, one would normally count
occurrences of values of type a in the tree. Therefore we chose to generalise only in
terms of type variables and recursive occurrences of the datatype itself. Base types
are left untouched. Only those functions which work on these type variables or the
recursive occurrence are considered for generalisation. These are anyway the most
abstract and therefore most interesting ones. For higher kinds, possibly lists, sets,
or pairs of results are produced because of the wealth of possible combinations.

4.6.1 Functions for Abs0

Figure 4.4 shows a couple of generic functions for datatypes of kind (*). None of
them has a higher-order type, because interesting higher-order functions usually
use their functional arguments on values belonging to their type variables. Seen
from the perspective of parametric polymorphism, datatypes from kind (* -> *)

upwards usually serve as a kind of structured container for element types inserted
via type variables; this is when higher-order functions get powerful. Notable excep-
tions are functions not working immediately on data structures like (.), flip, ($),
and until. That is the reason why the most common higher-order functions map,
fold, filter, and scan are not generalised for Abs0. Instead we have generalised
typical functions which in some way are related to structure traversal without con-
sidering elements contained within the structure.

66 4. GENERIC PROGRAMMING FOR EDEN

4.6.2 Functions for Abs1 and Abs2

Much more interesting are functions for data structures of at least kind (* -> *).
These include the large set of omnipresent list-processing functions for which lan-
guages like Haskell are known. These and other functions can in general be cat-
egorised in terms of their ’data structure transformation’ behaviour; by this we
mean how the main argument data structures relate to result data structures seen
in a 1-1 relationship. For our use we have roughly identified four categories for
each of which we have constructed generalised representatives (see Figure 4.5):

• (t a1 . . . an → t b1 . . . bm).
Functions of this category transform the interior of a data structure and
leave its overall shape mostly unchanged. Well-known examples include map,
zipWith, and unzip which are all shown in their generic version in Figure 4.5.
They all first decompose their argument, apply their non-generic counter-
parts to the components, and then reconstruct the value. Higher kinds are
treated by applying additional arguments to additional components.

• (t a1 . . . an → [t a1 . . . an]).
These functions select parts of a data structure. The standard example filter

has been generalised and is implemented and extended to higher kinds like
the functions of the last category.

• (t a1 . . . an → b).
Fold functions (or catamorphisms) reduce data structures and are represented
by the generalised foldr. As the existence of a nullary constructor cannot be
preassumed, a function [a] -> b has to be provided instead of the usual b.
Two versions of size are presented, one defined in the usual way and one
defined via gfoldr1. gfoldr1 works by recursively folding the data structure
tree. When lifted to higher kinds both of its argument functions have to be
extended.

• (b → t a1 → an).
To reduce is much easier than to unfold[71] , which is the basis for lazy con-
structive functions like repeat or iterate. Unfolding is difficult because a
set of constructors can give rise to a wealth of possible unfoldings which
would have to be generated fairly. Therefore we restrict ourselves to a pseudo-
generic version which unfolds over a non-recursive and a recursive construc-
tor given as arguments. (We do not use our Abs approach, which is in general
not well suited for unfolding as it depends on a deconstruction prior to a con-
struction.) As an example we have also shown a generic repeat.

Two standard selection functions have not been given in Figure 4.5, but are
listed now. Generic version of head and tail are:
head1 :: Abs1 t => t a -> [a]

head1 = fst . sf . suco1

tail1 :: Abs1 t => t a -> [t a]

tail1 = snd . sf . suco1

4.6. SEQUENTIAL GENERICITY 67

-- Transform ---

gmap1 :: Abs1 t => (a -> b) -> t a -> t b

gmap1 f t = rec (as’, tas’) where (_, ((as, tas), rec)) = suco1 t

as’ = map f as

tas’ = map (gmap1 f) tas

gZipWith1 :: Abs1 t => (a -> b -> c) -> t a -> t b -> t c

gZipWith1 f t1 t2 = rec1 (cs, tcs)

where (n1, ((as,tas),rec1)) = suco1 t1

(n2, ((bs,tbs),rec2)) = suco1 t2

cs = zipWith f as bs

tcs = zipWith (gZipWith1 f) tas tbs

gunzip1 :: Abs1 t => t (a,b) -> (t a, t b)

gunzip1 t = (rec (as1, ta1), rec (as2, ta2))

where (_, ((as,tas),rec)) = suco1 t

(as1, as2) = unzip as

(ta1, ta2) = unzip [gunzip1 t’ | t’ <- tas]

-- Select --

gfilter1 :: Abs1 t => (a -> Bool) -> t a -> [a]

gfilter1 f t = ls ++ rs

where (_, ((as,tas), _)) = suco1 t

ls = filter f as

rs = concat [gfilter1 f ta | ta <- tas]

-- Fold --

gfoldr1 :: Abs1 t => ([a] -> [b] -> b) -> ([a] -> b) -> t a -> b

gfoldr1 f z t = if null tas then (z as) else (f as bs)

where (_, ((as,tas), _)) = suco1 t

bs = [gfoldr1 f z t’ | t’ <- tas]

size1, size1’ :: Abs1 t => t a -> Int

size1 t = size_es + size_bs where (es, bs) = sf (suco1 t)

size_bs = sum (map size1 bs)

size_es = length es

size1’ = gfoldr1 (\as bs -> length as + sum bs) (\as -> length as)

-- Unfold (pseudo-generic, without using Abs) --------------------------

gunfold1 :: ([a] -> ta) -> ([a] -> [ta] -> ta) ->

(b -> Bool) -> (b -> a) -> (b -> b) -> b -> ta

gunfold1 nc rc p f g x | p x = nc (repeat a’)

| otherwise = rc (repeat a’) (repeat ta’)

where a’ = f x

ta’ = gunfold1 nc rc p f g (g x)

grepeat1 :: ([a] -> t a) -> ([a] -> [t a] -> t a) -> a -> t a

grepeat1 nk rk = gunfold1 nk rk p f g where {p _ = False; f = id; g = id}

Figure 4.5: Sequential generic functions (* -> *), based on Abs1

68 4. GENERIC PROGRAMMING FOR EDEN

gmap2 :: Abs2 t => (a -> c) -> (b -> d) -> t a b -> t c d

gmap2 f g t = rec (as’, bs’, aas’, abs’, bas’, bbs’)

where (_, ((as, bs, aas, abs, bas, bbs),rec)) = suco2 t

as’ = map f as

bs’ = map g bs

aas’ = map (gmap2 f f) aas

abs’ = map (gmap2 f g) abs

bas’ = map (gmap2 g f) bas

bbs’ = map (gmap2 g g) bbs

gZipWith2 :: Abs2 t =>

(a -> c -> e) -> (b -> d -> f) -> t a b -> t c d -> t e f

gZipWith2 f g t1 t2 = rec1 (es,fs,tees,tefs,tfes,tffs)

where (n1, ((as,bs,taas,tabs,tbas,tbbs),rec1)) = suco2 t1

(n2, ((cs,ds,tccs,tcds,tdcs,tdds),rec2)) = suco2 t2

es = zipWith f as cs

fs = zipWith g bs ds

tees = zipWith (gZipWith2 f f) taas tccs

tefs = zipWith (gZipWith2 f g) tabs tcds

tfes = zipWith (gZipWith2 g f) tbas tdcs

tffs = zipWith (gZipWith2 g g) tbbs tdds

gfoldr2 :: Abs2 t =>

([a] -> [b] -> [c] -> c) -> ([a] -> [b] -> c) -> t a b -> c

gfoldr2 f z t | null tabs = z as bs

| otherwise = f as bs cs

where (_, ((as,bs,taas,tabs,tbas,tbbs),rec)) = suco2 t

cs = [gfoldr2 f z t’ | t’ <- tabs]

Figure 4.6: Sequential generic functions (* -> * -> *), based on Abs2

Additionally Figure 4.6 shows selected functions of Figure 4.5 for kind (* -> *

-> *). They have been constructed according to the descriptions within the cate-
gories and are therefore not explained further. The amount of possible type vari-
able sequences already shows that the taken approach cannot easily be lifted to
larger flat kinds. On the other hand, datatypes with higher kinds are quite rare,
with tuples being a common exception. If larger kinds become strictly necessary,
one could easily turn away from covering types which flip their type parameters
and save the huge effort of treating every possible sequence.

Until now we have only shown generic versions of the classical higher-order
functions. These can of course be used to span a huge space of more specialised
generic functions, as known from the standard Haskell prelude using their non-
generic counterparts. For completeness, we will now give a couple of useful generic
functions derived as specialised applications of gfoldr1:
and1, or1 :: Abs1 t => t Bool -> Bool

and1 = gfoldr1 (\as bs -> (and as) && (and bs)) (\as -> and as)

4.7. DISCUSSION 69

or1 = gfoldr1 (\as bs -> (or as) || (or bs)) (\as -> or as)

any1, all1 :: Abs1 t => (a -> Bool) -> t a -> Bool

any1 p = or1 . gmap1 p

all1 p = and1 . gmap1 p

sum1, prod :: (Abs1 t, Num a) => t a -> a

sum1 = gfoldr1 (\as bs -> (sum as) + (sum bs)) (\as -> sum as)

prod1 = gfoldr1 (\as bs -> (prod as) * (prod bs)) (\as -> prod as)

flatten1 :: Abs1 t => t a -> [a]

flatten1 = gfoldr1 (\as bs -> as ++ (concat bs)) id

elem1 :: (Abs1 t, Eq a) => a -> t a -> Bool

elem1 e = gfoldr1 (\as bs -> (elem e as) || (or bs)) (\as -> elem e as)

lookup1 :: (Abs1 t, Eq a) => a -> t (a,b) -> [b]

lookup1 e = gfoldr1 (\as bs -> [b | (a,b) <- as, a == e] ++ (concat bs))

(\as -> [b | (a,b) <- as, a == e])

After having described our approach and having listed a couple of generic function,
we will now discuss its characteristics.

4.7 Discussion

Now we will summarise the limitations of our approach. We also discuss objections
which could be raised against it in comparison to other approaches.

• Within a datatype (t a), our approach does not allow special access to val-
ues of other types than a or (t a) and is therefore not as complete as other
approaches.
As we aim at generic parallelism, our approach is not element-oriented but
structure-oriented. Generic parallel functions aim primarily at processing
and transforming large structures, not so much at quickly traversing an arbi-
trary structure to peek out a special element.

• Type contexts are introduced and may spoil the program code to some degree.
The presence of type contexts cannot be avoided when using type classes.
On the other hand, as an annotation they indicate use of generics within a
function which helps to find these. The spine view introduced by Hinze, Löh,
and Oliveira[101] avoids type classes, but at the cost of having to give explicit
types on the value level.

• Datatypes of different flat kinds are not handled uniformly; instead a set of
Abs classes has to be used.
This is necessary as we

70 4. GENERIC PROGRAMMING FOR EDEN

– use explicit typing for the de- and reconstruction functions (instead of
coding the types into expressions which would force us to implement our
own typing)

– type variable cannot be declared as sets

• Datatypes of higher-order kinds are not covered.
This is true, but such datatypes are a rare case in parallel programming.

• Template Haskell has to be part of the Haskell implementation for running
the preprocessor needed to automatically generate Abs instances.
Template Haskell has become a standard part of the Glasgow Haskell Com-
piler is not likely to be dropped in the future. In the contrary, Template
Haskell meta-programming can be expected to gather even higher interest.

• The approach provides only ’fake’ genericity, as functions are not really generic
but only for the datatypes (for which instances have been generated) of the
corresponding program where they are used.
This is true, but the difference is not observable. Other approaches also use
this mechanism.

• The approach is quite verbose as explicit functions for de- and reconstructing
data constructors are given. These have to be called explicitly and are visible
in the program.
Data constructors need to be handled somehow, and we do it in a recursive
traversal. Usually calls to the suco functions do not appear in ordinary func-
tions, but are hidden in higher-order functions which are imported as a sepa-
rate module.

• The permanent value de- and reconstruction is expensive and decreases pro-
gram performance.
This is true. As an example, a traditional map is twice as fast as gmap applied to
lists. This is due to the overhead caused by the dictionary lookup of the class
mechanism and the extra calls to suco. But for our application of parallel
programming, this is not as grave as one may think at first as:

– Generic parallel functions are normally used in the large and not in the
small. This means, that data structures are usually not deconstructed
to the smallest element. Therefore, the overhead caused by genericity is
not too big.

– Generic functions are also a tool during software development. At per-
formance-critical positions they can easily be specialised and replaced by
faster versions. We consider it a rare case that a truly generic function
is irreplacibly needed at a central position in a program.

• Due to its restrictive typing, the approach cannot handle non-uniform data-
types like
data Seq a = Nil | Cons a (Seq (a,a))

4.7. DISCUSSION 71

This is true. However, non-uniform datatypes can be reformulated to regain
uniformity. The pair nesting can be defined implicitly by an integer depth
parameter:
data Seq’ a = Nil’ | Cons’ Int [a] (Seq’ a)

Alternatively, one can always pull the pairwise nesting out of the recursive
Seq and into a newly defined element datatype (like shown in Section 10.1.1
of Okasaki[161]):
data Seq’’ a = Nil’’ | Cons’’ (Elem a) (Seq’’ a)

data Elem a = E a | P (Elem a) (Elem a)

Unfortunately, this redefinition suffers from introducing additional data con-
structors and from giving up a tight typing which allowed the type system
to catch many errors. The programmer has to ensure the correct nesting of
elements.

• As flipped type elements are handled, the types of the suco functions will
grow very fast.
This is true, but types with more than three type variables are very rare in
practice. On the other, flipped type variables are also rare; if necessary, the
approach can most easily be changed to skip these.

• The approach is able to deconstruct and consume values, but not to build
values.
We have shown a limited way to building values by giving a reduced unfold

definition. However, the approach has been designed for supporting paral-
lelism where controlled deconstruction is much more important than value
building.

72 4. GENERIC PROGRAMMING FOR EDEN

5. Controlling Demand in Eden

Vertrauen ist gut, Kontrolle ist besser.
German saying

5.1 Motivation

There is one central aspect in lazy functional programming which can cause grave
unexpected behaviours during program execution but is sometimes greatly under-
estimated: The way evaluation progresses influences the time and space needs of
a program greatly. In lazy (or non-strict) languages the reduction order is clearly
defined: Out of all possible reductions within a reducible expression the outermost
reduction is done next. The demand for evaluation propagates through a program,
which is a set of function declarations. In parallel functional languages like Eden
this demand flow is closely related to parallelism, as demand is responsible for
process creation. Eden itself is a language which deliberately puts full parallelism
control into the hands of the programmer; besides a very carefully implemented
parallel algorithm it is therefore equally important for the programmer to control
demand flow which is responsible for the correct progress of the algorithm. In
parallel functional programming, demand and parallelism cannot be separated.

In Section 5.2 we will first show how a functional program is executed and
how reduction progresses. Section 5.3 then points out why demand has to
be controlled in some situations both in sequential and especially in parallel
programming. Having acknowledged the need for demand control we turn in
Section 5.4 our attention to which means for demand control are present in
Haskell. In Section 5.5 we focus on demand related to data structures. Using
generic programming we show methods to flexibly evaluate data structures
to different degrees. Finally in Section 5.6 we identify effects, to which
not only data structure evaluation functions but also process creation and
others belong. Besides getting a more structured program in the sense of
aspect-orientation, the separation and identification of effect groups are the
key to true parallelism. In the end we propose three measures for demand
management, which together form a tool for extensive demand control in
parallel functional programs.

Parts of the chapter are based on two of our papers[118, 174] .

73

74 5. CONTROLLING DEMAND IN EDEN

5.2 Sequential Evaluation of Functional Expressions

5.2.1 How Expressions are Reduced

In Haskell a functional program consists of a set of function declarations. A target
expression containing applications of functions defined in this set is evaluated to
finally yield a result value. Execution of a functional program corresponds to the
continuous evaluation of reducible subexpressions within the target expression and
the replacement of the subexpression by its value. Expressions can contain many
reducible subexpressions which can also be nested. This means, that expressions
can be reduced to different degrees:

5.1 Definition (Reduction Depths)
An expression e is in

• normal form (NF), if it contains no reducible subexpression (also called redex
for short).

• weak head normal form (WHNF), if it is either[201] :

– a value of a base type
– a data constructor (C e1 ... ek) where C has at least arity k
– a lambda abstraction \x -> e

– a partial function application (f e1 ... el) where f is n-ary and l < n

If more than one reducible subexpression exists, a choice has to be made which one
to reduce next. Two different reduction orders are common:

5.2 Definition (Reduction Orders)
• Within the strict reduction order, always the leftmost innermost redex is re-

duced next (also known as call-by-value).

• Within the non-strict reduction order, always the leftmost outermost redex is
reduced next (also known as call-by-name or demand-driven).

Leftmost-innermost reduction means, that regarding a function application at first
all function arguments are evaluated before evaluation of the function body starts
(also called eager evaluation). Eventually the function body will be reduced to
normal form. This means, that a non-terminating argument expression will unfor-
tunately cause the non-termination of the whole function application. This is even
more unfortunate if the diverging argument is not needed to compute the func-
tion’s result. For example, given a function f a call with a non-terminating first
argument causes the whole application to diverge:
f x y = y, f ⊥ 2 → ⊥

5.2. SEQUENTIAL EVALUATION OF FUNCTIONAL EXPRESSIONS 75

Advantages of strict evaluation are its ease of implementation and the obvious way
to exploit parallelism by simultaneous evaluation of argument expressions.

On the other hand, leftmost-outermost reduction means, that regarding a func-
tion application the function’s body will be evaluated first. The evaluation of the
arguments is deferred until they are needed to produce the function’s result; if an
argument is never needed, it will remain unevaluated. This is especially advan-
tageous, because non-terminating arguments which are not needed will not cause
the whole function to diverge. The danger of evaluating the same expression more
than once, like in a simple multiplication

(nth_prime 42) * (nth_prime 42)

is averted by the sharing mechanism, by which identical subexpressions are as-
signed the same memory location. After evaluating the expression for the first
time, it will be replaced by its value. Therefore subsequent evaluations of that ex-
pression will immediately get the result value. The combination of the non-strict
reduction order and the sharing mechanism is also called lazy evaluation. It en-
ables circular definitions, formally infinite data structures, and allows for runtime
savings by referencing results which have not yet been produced. The main dis-
advantage is a more complex implementation as suspended evaluations have to be
administrated.

5.2.2 How Reduction Progresses

A special function called main is singled out of the set of function declarations
within a program. Via the IO monad main is the root of every safe I/O operation
within the program and therefore the connection to the console and the file sys-
tem. The whole program starts by evaluating main, which most often consists of
an I/O operation writing the result value of a function call representing the actual
algorithmic calculations (called target expression for now) to the console or a file,
for example:

main :: IO ()

main = putStr (show (f x1 ... xn)) -- write as string to console
︸ ︷︷ ︸

Target expression

Other possible I/O operations are left aside for now. As of course unevaluated
function calls cannot be written to any media, the result of the function call has
to be completely evaluated and free of any unreduced function calls. This means,
that it is either a value belonging to one of Haskell’s base types (like Char, Bool,
Integer) or it is a (probably nested) data constructor. Besides, base type values can
also be seen as nullary data constructors.

This means, that in the non-strict language Haskell the main function is the
initial source of all demand for evaluation. The I/O functions contained within
main exert constant demand for evaluating expressions to yield result values. In
general, an expression representing a result data structure is demanded from out-
side until the demand is satisfied, which means that the result data structure has
been established to a sufficient degree. Expression evaluation works stepwise:

76 5. CONTROLLING DEMAND IN EDEN

the leftmost-outermost redex is reduced until weak head normal form has been
reached. If a satisfying evaluation degree has been reached the evaluation will
stop. Otherwise the next leftmost outermost redex is evaluated. In total, there are
only three common natural sources for demand:

• I/O operations (like output calls in main) exert the demand necessary to trans-
form the target expression into a value suitable for output. If that demand
is satisfied, no other demand for further evaluation can exist (in non-parallel
languages).

• Strict basic functions like arithmetic and comparison operators demand all of
their arguments to yield a result.

• Case expressions like
case e of { pat1 match1 ; ... ; patn matchn }

employ pattern-matching via pat1 to patn to distinguish the available alter-
natives. Irrefutable patterns like variables, wildcards, @-patterns, or lazy
matching via ~ will always match any argument and leave that argument un-
changed. In contrast there are also refutable patterns like explicit base type
values or data constructors (including tuples). To be able to decide which al-
ternative matches, the expression e upon entering case has to be evaluated to
such a degree that allows the decision to be made. Thus case is another source
of demand. Demand is also generated by guards[164] , direct pattern-matching
in function definitions or let expressions, and conditional expressions; but all
these are in the end case expressions.

Based on the importance of demand control, some more special constructs for de-
mand steering have been added to Haskell. These are described in Section 5.4 in
detail.

If these sources of demand are used in a function definition, the function ex-
hibits a termination behaviour depending on its arguments. This can happen if
strictly needed arguments are non-terminating. This is formally captured by the
strictness property:

5.3 Definition (Strictness)
There are two notions of strictness:

• A function f : t1 → . . . → tn → t is called strict in its i-th argument (with
i ∈ {1, . . . , n}) if
∀x1, . . . , xi−1, xi+1, . . . , xn with xj :: tj: f x1 . . . xi−1 ⊥ xi+1 . . . xn evaluates to ⊥

(⊥ represents a non-terminating evaluation.)

• The same function is called strict, if it is strict in every argument.

The following example demonstrates how evaluation of an expression proceeds
and where demand takes effect. It is a very basic example which serves only for
clarification.

5.2. SEQUENTIAL EVALUATION OF FUNCTIONAL EXPRESSIONS 77

3 Example (Non-strict reduction)
We define a binary search tree and a function ins for inserting elements into such
a tree. ins contains refutable patterns and a case expression.

data BST a = E | Node (BST a) a (BST a) -- (E)mpty or Node

ins :: Ord a => a -> BST a -> BST a -- insert element

ins x E = Node E x E

ins x (Node l y r) = case x <= y of

True -> Node (ins x l) y r

False -> Node l y (ins x r)

ex = Node (Node E 2 E) (105 ‘mod‘ 10) (Node E 6 E) -- example BST

Below the insertion of an element into an example tree is shown. On the left the
expression is reduced step by step; dots mark not yet demanded subexpressions.
On the right the corresponding (assumed) console output is shown as it evolves.
Note how case forces the evaluation of (105 ‘mod‘ 10) in line 3. Note also how
console output forces evaluation to look up an Empty node in line 7.

1 ins (2+2) ex |

2 -> ins (2+2) (Node . . .) |

3 -> ins 4 (Node . (105 ‘mod‘ 10) .) |

4 -> ins 4 (Node . 5 .) |

5 -> Node (ins 4 .) 5 . | Node

6 -> Node (ins 4 (Node . 2 .)) 5 . |

7 -> Node (Node . 2 (ins 4 .)) 5 . | (Node

8 -> Node (Node E 2 (ins 4 .)) 5 . | E 2

9 -> Node (Node E 2 (ins 4 E)) 5 . |

10 -> Node (Node E 2 (Node E 4 E)) 5 . | (Node E 4 E)) 5

11 -> Node (Node E 2 (Node E 4 E)) 5 (Node E 6 E) | (Node E 6 E)

The example has shown a typical evaluation sequence. Unfortunately, there are
situations which can cause evaluation to proceed in an unfavourable way not in-
tended. These will be discussed in the next section; before doing so, we will first
shortly describe additional reduction degrees.

5.2.3 Data Structure Reduction Degrees

The strictness of a function, which we have described in the definition above, is
an interesting property which can be used in many ways. Strictness analysis[188]

is used to gather strictness information. To do that, the actual value domain of a
data structure is mapped to an abstract domain whose values represent the needed
strictness information. Until now we have been interested only in the fact whether
a value is completely unavailable (described by ⊥) or not. This is sufficient for
flat[57] types like Int, Bool, or Char. But with more complex self-defined non-flat

78 5. CONTROLLING DEMAND IN EDEN

data structures more complex strictness statements can be made[212] , as these
structures allow for more complex combinations of definedness (as has been hinted
by Def. 5.1).

If we take the list structure on characters as an example, it is immediately clear,
that it generates an infinite abstract domain:

undefined

undefined : undefined

def : undefined

def : []

undefined : undefined : undefined

def : undefined : undefined

...

To be manageable, domain sizes have to reduced by combining similar cases. Fig-
ure 5.1 shows a common reduction to a four-point domain. Besides being fully

Example Description Burn[35] Wadler[212]

undefined Completely undefined E0 ⊥
undefined:undefined WHNF E1 ∞
’a’:undefined:’c’:[] Full list spine E2 ⊥∈

’a’:’b’:’c’:[] Full spine and all elements E3 >∈

Figure 5.1: Reduction degrees of [a]

defined and fully undefined the two middle cases are interesting. While the second
case only touches the first data constructor without descending further, the third
case completely traverses the spine of the data structure (every recursive limb of
type [a]) but does not touch any value of type a. These cases have become very com-
mon and will be used in a later section of this chapter for a generalised reduction
function.

5.3 The Need for Demand Control

The picture drawn so far is tempting: Whenever strict reduction terminates, non-
strict reduction will also terminate, except that unnecessary evaluations are omit-
ted. However, it is not all roses. In this section we show for both the sequential
and the parallel Eden setting why it is mandatory to take care of demand control.

5.3.1 Sequential Setting

In a sequential setting the amount of demand is important regarding memory us-
age. Usually functions and data structures are stored within a heap structure and
most often form by and large a tree with a couple of interconnections and cycles.
Nodes of that graph are called closures, which contain values or unevaluated ex-
pressions. If heap space is tight, a garbage collection is triggered which traverses

5.3. THE NEED FOR DEMAND CONTROL 79

the graph starting from the result expression to evacuate everything still needed
to calculate the result. Intermediate or cut-off data structures and expressions
are not referenced by the graph, are therefore not evacuated, and finally disposed
as garbage. The following describes unfavourable situations in which heap space
shortages are related to unintended demand behaviour:
Not enough demand.
Too much laziness can do harm, as the following example shows:

4 Example (Stack overflow)
Imagine one wants to sum up all numbers within a list. A foldr seems to be
appropriate, but the strictness of (+) demands that the second argument must be
known. Therefore a large nested arithmetic expression is built which results in
heavy stack load.

foldr (+) 0 [1..100000]

-> 1+(foldr (+) 0 [2..100000])

-> 1+(2+(foldr (+) 0 [3..100000]))

-> 1+(2+(3+(foldr (+) 0 [4..100000])))

-> ...

-> stack overflow!

foldl does not remedy that: It builds up a nested arithmetic expression which
can only be evaluated when the end of the list has been reached. The leftmost-
outermost redex is always foldl.

foldl (+) 0 [1..100000]

-> foldl (+) (0+1) [2..100000]

-> foldl (+) ((0+1)+2) [3..100000]

-> foldl (+) (((0+1)+2)+3) [4..100000]

-> ...

-> stack overflow!

These overflows are also called space leaks, because either heap or stack are bur-
dened with structures which are much bigger than expected. This will cause the
stack to overflow and the heap to trigger expensive garbage collections or also to
overflow. The reason is typically not enough demand (or excessive laziness) at the
right place and at the right time. Eventually these expressions are evaluated and
(most often) deflated to comparatively small values while the large expressions
which have created them are garbage collected later. The foldl example above can
be repaired by adding just enough strictness to the foldl definition to demand the
immediate addition of values for every list element processed. The means to do
that together with the solution are presented in Section 5.4.
Not enough / too much demand.
Closures can be quite big, as they are also equipped with infotables and (depending
on the compiler) are piggybacked with additional parameters for profiling, paral-
lelism, etc. This raises the question whether it is cheaper to store an unevaluated
expression or to evaluate the expression and to store the value. If the value takes

80 5. CONTROLLING DEMAND IN EDEN

up less space and has to be evaluated anyway, then it should be evaluated early by
placing additional demand. This is especially important in the context of lazy eval-
uation, where demand may walk through many expressions leaving an inflated pile
of large, partially evaluated WHNF expressions behind. These often use intermedi-
ate data structures which are not needed otherwise; but being referenced by these
incompletely evaluated expressions keeps them from being exposed to garbage col-
lection. The space used by these intermediate structures could be deallocated if
the expressions would have been fully evaluated. On the other hand, if the value
generated by an expression takes up more space than its creator, it is better to
evaluate not too much:
Too much demand.
Too much demand can also cause heap space shortages. Mostly this is caused by
defining and evaluating constant applicative forms or CAFs for short. These are
simply top-level constants which one easily tends to define, like:

nats = [1,2..] -- list all natural numbers

matrix = buildMat 1000 1000 -- build 1000 x 1000 matrix

Unfortunately, these can permanently occupy much heap space as heap referenced
by CAFs is never garbage collected. Although modern Haskell compilers try to
avoid creating CAFs, a CAF intentionally created by the programmer is usually
not eliminated. Therefore special care has to be taken when evaluating CAFs, as
every newly created part will persist until the program ends.

To be able to influence evaluation is helpful in a sequential setting, but becomes
vital in a parallel setting as we will show now.

5.3.2 Parallel Setting

Because of their independence the parallel evaluation of function arguments upon
entering a function is an obvious occasion for the easy introduction of parallelism.
This is the reason why strict functional languages are often favoured as a basis
for parallel extensions. But if one wants to introduce parallelism and retain the
advantages of non-strict reduction (like the ability to define circular structures),
then the evolution and control of demand becomes a matter of high importance.

As shown before, Eden’s language constructs for parallelism are the process
abstraction and the process application. Denotationally these correspond to the
well-known lambda abstraction and lambda application. However, operationally
they differ because in Eden a process for evaluating the application is generated
on a network node. For the following example, let us assume the following conser-
vative Eden semantics (in contrast to its real semantics described in Section 2.5)
by which non-strict reduction is adopted for Eden’s language constructs:

• A process is not created before its result is really needed.

• Results are evaluated to WHNF. Then reduction stops and is not resumed
before new demand for larger parts of the results has been exerted.

• Results are transmitted only on demand.

5.3. THE NEED FOR DEMAND CONTROL 81

The following example shows an Eden program for calculating Hamming num-
bers [61] and Figure 5.2 shows how it is executed when the assumptions shown
above are made. The calculation of the Hamming numbers is done via a set of
interacting streams using circular references to the result list. This is possible
because reduction is carried out non-strictly.

5 Example (Hamming numbers)
For a given non-empty set of primes {p0, . . . , pm−1} and a given n ∈ N enumerate all
elements of

{z | z = pk1

0 ∗ . . . ∗ p
km−1

m−1 , ki ∈ N0, z ≤ n}
without multiples and in ascending order. For the set of primes {2, 3, 5}, for which
the first 20 Hamming numbers are

{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36},
this is done by generating a multStream process for each prime. Each multStream

multiplies every element of the incoming stream with a previously assigned prime
number. The input stream is simply the result list hamming, which ensures that
every process will also compute multiples of the results of other processes. All three
streams are ordered (including evaluation of multiple elements) by a mergeThree

process. To illustrate demand progression, those subexpressions for which there is
immediate demand are boxed.

1 multStream :: (Num a, Trans a) => a -> Process [a] [a]

2 multStream n = process (map (*n))

3

4 mergeThree :: (Ord a, Trans a) => Process ([a],[a],[a]) [a]

5 mergeThree = process (\(xs,ys,zs) -> sm xs (sm ys zs))

6 where sm [] ys = ys

7 sm xs [] = xs

8 sm (x:xs) (y:ys) | x < y = x : sm xs (y:ys)

9 | x == y = sm (x:xs) ys

10 | x > y = y : sm (x:xs) ys

11

12 hamming :: [Int]

13 hamming = 1 : mergeThree # ((multStream 2) # hamming,

14 (multStream 3) # hamming,

15 (multStream 5) # hamming)

The reduction sequence clearly shows, that it is not sufficient to just generate pro-
cesses. Parallelism emerges and time savings are obtained if processes coexist
whose active phases overlap. In our example, the demand-driven evaluation does
not generate such overlaps. At every point in time, only one process is actively
evaluating. There is only one flow of demand which is never split to obtain results
in parallel. All non-active processes are waiting to regain demand. This situation
of distributed sequentiality[118] shows the vital need for demand control to enable
true parallelism. But how much more demand is needed? In a sense non-strict
reduction and parallelism are two conflicting aims: On the one hand, we would
like to defer expression evaluation to the latest possible point in time so that we

82 5. CONTROLLING DEMAND IN EDEN

Root Children processes
main hamming mergeThree (mt) multStream 2 (ms2) . . .
take 10 hamming

take 10 (1:mt)

1:(take (10-1) mt)

1:(take 9 mt)

sm ms2 (sm ms3 ms5)

map (*2) hamming

1: mt

map (*2) (1:mt)

(1*2):(map (*2) mt)

sm ((1*2):(map ...))

(sm ms3 ms5)
...

...
...

...
...

Figure 5.2: Lazy reduction of hamming demonstrating distributed sequentiality

maybe in the end could even let it remain unevaluated. On the other hand, the
earliest possible evaluation supports parallelism by generating processes as early
as possible. Therefore we have to make decisions on

• how demand can be controlled

• how much demand is exerted and finally

• when and

• where it should be enforced.

In the next section we will answer the first question. The remaining questions are
answered in subsequent sections.

5.4 Means for Demand Control

The paradigm of lazy evaluation is usually seen as being quite optimal in the sense
that no unnecessary evaluation is done. As we have seen before, this is true but this
can also be carried too far by postponing too many evaluations to a later point in
time. Then the problem changes from avoiding unneeded computations to avoid-
ing excessive laziness. The needed demand control to solve the problem is often
considered dirty or non-standard, breaking the smooth non-strict evaluation order
and spoiling the otherwise pure flow of demand. On the other hand, its usefulness
has been widely acknowledged as there are surprisingly many approaches and pos-
sibilities for controlling demand in Haskell 98[164] . Some research has also been
done on that topic which we discuss in the chapter about related work. As Eden is
based on Haskell we will now give a systematic overview about ways of controlling
demand in Haskell; these will then also be applicable for Eden.

5.4. MEANS FOR DEMAND CONTROL 83

5.4.1 Without Operators

We will start by looking at purely functional ways of demand control. Neither
operators nor classes are used.

Implicit Eden Demand. Eden introduces additional demand into Haskell. If a
process is created by

(res1, . . . , resm) = p # (arg1, . . . , argn)

then Eden will force evaluation of res1, . . . , resn without caring about the real
demand for these expressions. Furthermore, as already discussed in our mas-
ter thesis[171] , the demand for an element outi of a result tuple created by a
process application

initial demand
︷︸︸︷

(out1, . . . , outi−1, outi, outi+1, . . . , outn) = pabs par1 . . . park # (in1, . . . , inm)
︸ ︷︷ ︸

⇒ new demand
︸ ︷︷ ︸

⇒ new demand
︸ ︷︷ ︸

⇒new demand
has two consequences: Firstly, process creation implies the speculative eval-
uation of out1, . . . , outi−1, outi+1, . . . , outn which may be unneeded. Secondly,
new demand is placed on the argument expressions in1, . . . , inm, which, in the
case of streams, could cause a continuous evaluation and value transmission
sequence. On the receiving side, this is accompanied by an increasing heap
consumption while the arguments are being referenced.

Deep Patterns. In Haskell a function is declared via a sequence of alternatives
which cover different argument constellations. If the function is used, a fit-
ting alternative (more than one may fit) is found by traversing the alterna-
tives sequentially. To decide whether an alternative matches the given argu-
ments are evaluated to such a degree that the decision can be made. Pattern-
matching, i.e. case, can therefore be used to trigger the evaluation of a data
structure to a fixed depth by giving nested data constructors as patterns:

data BinTree a = Leaf a | Node (BinTree a) a (BinTree a)

f (Node (Leaf x) y (Leaf z)) = ...

As patterns may overlap, Haskell follows a first-fit policy. Therefore the more
special pattern alternatives usually precede the more general ones which are
finally closed by a catch-all alternative using the wildcard operator. Unfor-
tunately, patterns have to be statically fixed. This prevents flexible demand
control.

Nested Case. As case e of ... exerts demand on the scrutinee e to allow choos-
ing the first matching alternative, a series of nested case expressions can be
used to demand a series of expressions:

case e1 of

r1 -> case e2 of

r2 -> ...

84 5. CONTROLLING DEMAND IN EDEN

This simple construction is of course in danger of being optimised away, as the
case results are maybe unused. Also other compiler-internal transformations
can change the intended behaviour: case floating, as described by Santos[185] ,
may change the evaluation order of e1 and e2. The seq operator, described in
the next subsection, preserves that order.

Data Dependencies. Demand steering is also possible by enforcing an evaluation
order via data dependencies. This is how state transformers[132] introduce
sequentiality into non-strict languages. A state transformer takes a state and
yields a new state together with a result which is fed into the next state
transformer. A sequence is built via the >>= operator, which connects two
state transformers. The state resulting from executing the first one is fed as
a starting state into the second one:

data ST s a = ST (s -> (a, s))

instance Monad (ST s) where

(ST m) >>= f = ST (\s -> let (v, s’) = m s

ST m’ = f v

in m’ s’)

return v = ST (\s -> (v, s))

This approach is quite costly and complex, as for systematic demand control
large parts of a program would be dominated by the state transformer monad.

Continuation Passing Style. To enforce a certain evaluation order, also contin-
uation passing style (CPS)[10] can be used. Imagine a function f defined as
follows:

f x y = g (h x y)

where h a b = result

Inside f, a call to h is wrapped into a call to g. Due to lazy evaluation, h will at
first not be computed. This can be changed by turning the expression inside
out: To expose the call to h to evaluation, it now forms the result of f. A new
argument has been added to h, which is called a continuation. It represents
the functionality of f and is passed as a parameter to h which applies its result
to it.

f x y = h x y (\res -> g res)

where h a b cont = cont result

This way h is reduced before entering g and a certain sequence of reduction is
enforced. For recursive functions h, passing along the continuation gets more
complicated. And for even more complex functions, the redesign of the whole
function may be necessary. In general, CPS works but can heavily complicate
a program.

The last two approaches are only useful for controlling the reduction order. This
way no additional demand is created, therefore means like pattern-matching have

5.4. MEANS FOR DEMAND CONTROL 85

to be used in combination with these. Due to their difficult applicability, additional
strictness operators have been introduced.

5.4.2 With Operators

Special strictness operators and annotations ease demand control as they can eas-
ily be used more abstractly.

The seq combinator. In the context of another parallel Haskell dialect, Glasgow
Parallel Haskell (GpH)[205] , the need for demand control had also arisen. Be-
neath an operator for introducing parallelism called par a second operator for
demand control was introduced:

seq :: a -> b -> b

The semantics of seq is simple but powerful: The first element is (as a side-
effect) evaluated to WHNF and the second argument is given back as a result:

seq x y =

{

⊥, if x = ⊥
y, otherwise

seq cannot be defined directly in Haskell. Instead, in the Glasgow Haskell
Compiler GHC, it is defined as a unique identifier whose type and implemen-
tation is supplied internally. Its implementation corresponds in essence to a
case application like
seq x y = case x of _ -> y

which is protected from compiler transformations. Using seq, another func-
tion pseq is defined:
pseq :: a -> b -> b

pseq x y = x ‘seq‘ lazy y

Without lazy, the strictness analyser would find out that pseq is strict in y;
then the compiler could via transformations evaluate y before evaluating x.
As this is not desired, a function lazy is defined as a unique identifier which
prevents that:
lazy :: a -> a

lazy x = x

lazy behaves like id but its strictness is not defined by the strictness anal-
yser; instead, the strictness information is overridden internally and set to
non-strict. This way the evaluation order is preserved.
Using infix notation one can then control demand via a sequence of seq combi-
nators. If demand control is about to be introduced into a function definition

f x y z = h <exp_x> <exp_y> <exp_z>

one most often gives names to the subexpressions one wants to control and
then exerts demand on each of them:

86 5. CONTROLLING DEMAND IN EDEN

f x y z = let expx = <exp_x>

expy = <exp_y>

expz = <exp_z>

in expx ‘seq‘ expy ‘seq‘ expz ‘seq‘

h expx expy expz

Strict apply. Starting from seq many other operators can be derived. A useful
one defined in the Haskell standard prelude is a strict apply operator

($!) :: (a -> b) -> a -> b

f $! x = x ‘seq‘ f x

which is equal to normal function application except that the function argu-
ment is evaluated to WHNF before being applied to the function.

Strict fields. Fields within data constructors can be labelled with a strictness an-
notation. While the arguments of C1 are unlabelled both arguments of C2

are given a strictness flag which causes them to be evaluated when the data
constructor is defined:

data T a b = C1 a b

| C2 !a !b

Guard tricks. The seq operator shown above can be used to trigger evaluation
upon entering a function before anything else has happened. As Haskell uses
a first-fit pattern-matching semantics, we add an alternative (standing before
all other alternatives of the function) which always fails in a guard. Before
failing, effects can be carried out. A function f can be modified in the follow-
ing way:

f x y = result →
f x y | effects ‘seq‘ False = undefined

where effects = ...

f x y = result

When looking for a fitting alternative Haskell’s pattern-matching will first
check the effect alternative, execute the effect, and then fail. Afterwards,
the original alternatives will be checked as before. This trick is due to Oleg
Kiselyov and has been described in the Haskell mailing list.
Another older trick to force evaluation is to add an equality check via a guard.
Unfortunately, newer compilers optimise these checks away and make the
trick useless. Additionally, it works only on types for which instances of Eq
are defined. Also, one cannot rely on correctly defined instances which really
execute the needed evaluation.

eval :: Eq a => a -> ()

eval x | x == x = ()

Equipped with these mechanisms, we can now solve the space leak problem shown
in Section 5.3:

5.4. MEANS FOR DEMAND CONTROL 87

6 Example (Strict foldl)
The problem we encountered when summing up a list of numbers via a fold was a
growing arithmetic expression which can only collapse when the fold has finished.
Before that usually a heap or stack exhaustion happened. Now we can counter this
via strictly evaluating the newly built expression within each folding step:

strictFoldl :: (a -> b -> a) -> a -> [b] -> a

strictFoldl (*) z [] = z

strictFoldl (*) z (x:xs) = ((strictFoldl (*)) $! (z*x)) xs

Now one gets the following reduction sequence (which runs in constant space) when
summing up a list of numbers:

strictFoldl (+) 0 [1..1000000]

-> ((strictFoldl (+)) $! (0+1)) [2..1000000]

-> strictFoldl (+) 1 [2..1000000]

-> ((strictFoldl (+)) $! (1+2)) [3..1000000]

-> strictFoldl (+) 3 [3..1000000]

-> ...

These mechanisms are sufficient for dealing with data structures which are small
or of low complexity. More complex data structures however require a more power-
ful approach to allow for comfortable demand control.

5.4.3 With Operators and Overloading

The methods shown in the last section can ensure that an evaluated expression is
at least in WHNF. Often this is sufficient, but on other occasions some more control
is needed: One could for example want to evaluate an expression to NF, which,
given only the above methods, is a tedious task. A more systematic approach is to
use type classes to overload a common evaluation function. This function is then
declared for most (or all) data structures by giving a corresponding instance of that
type class.

DeepSeq. The DeepSeq class communicated by Dean Herington via the Haskell
mailing list extends seq and ($!) to deepSeq and ($!!). In contrast to seq,
deepSeq descends into a data structure (evaluates its spine) and evaluates its
leafs to WHNF. Parts of the class are provided in Figure 5.3. The missing
parts are straightforward to define.
Figure 5.4 shows the same functionality while avoiding the use of type classes.
Instead overloading is modelled by adding explicit type information to expres-
sions via the Typed data structure. This technique has been propagated by
Cheney and Hinze [39] and then been used by Hinze et al.[101] for the defini-
tion of generic functions. Types themselves are represented by a generalised
algebraic data type [190] . This approach shifts the otherwise unreachable

88 5. CONTROLLING DEMAND IN EDEN

class DeepSeq a where

deepSeq :: a -> b -> b

deepSeq = seq

infixr 0 ‘deepSeq‘, $!!

($!!) :: DeepSeq a => (a -> b) -> a -> b

f $!! x = x ‘deepSeq‘ f x

instance DeepSeq () -- Base type instances

instance DeepSeq Int

...

instance DeepSeq a => DeepSeq [a] where -- Structured type instances

deepSeq [] y = y

deepSeq (x:xs) y = deepSeq x $ deepSeq xs y

...

Figure 5.3: The deepSeq type class

data Type :: * -> * where

Unit :: Type ()

Char :: Type Char

Int :: Type Int

Pair :: Type a -> Type b -> Type (a,b)

List :: Type a -> Type [a]

data Typed a = HasType {val :: a, typ :: Type a}

deepSeq :: Typed a -> b -> b

deepSeq (HasType v Unit) e = v ‘seq‘ e

deepSeq (HasType v Char) e = v ‘seq‘ e

deepSeq (HasType v Int) e = v ‘seq‘ e

deepSeq (HasType p (Pair a b)) e = case p of

(v1,v2) ->

deepSeq (HasType v1 a) $

deepSeq (HasType v2 b) e

deepSeq (HasType xs (List a)) e =

case xs of

[] -> e

(y:ys) -> deepSeq (HasType y a) $

deepSeq (HasType ys (List a)) e

Figure 5.4: deepSeq via explicit type annotations and GADTs

5.5. DATA-ORIENTED DEMAND STEERING 89

type information to the language level where it can be used to assign differ-
ent implementations to each type and gain an overloaded function. Within
the deepSeq function this overloading shows up as every alternative handles
a separate type case and assigns it its special implementation.

Strategies. Evaluation strategies[207] have been introduced into Glasgow Parallel
Haskell as a method to structure complex uses of the seq and par combina-
tors. Strategies are simply functions which have an effect on an argument
value (see Figure 5.5) and yield unit as a result. Strategies are applied via
the using operator. For sequential demand control a class NFData has been
introduced which is equivalent to the DeepSeq class. Strategies get interest-
ing when parallelism via the par combinator is introduced; then strategies
combine both sequential and parallel control within a single tool.

type Strategy a = a -> ()

using :: a -> Strategy a -> a

using e st = st e ‘seq‘ e

class NFData a where

rnf :: Strategy a

rnf = rwhnf

instance NFData a => NFData [a] where

rnf [] = ()

rnf (x:xs) = rnf x ‘seq‘ rnf xs

Figure 5.5: Evaluation strategies, sequentially

Finally, there are many means for demand control. In the next subsection we will
use these to provide more comfortable ways of demand control.

5.5 Data-Oriented Demand Steering

As functional programming is about values, we will start with looking for addi-
tional and more powerful demand steering mechanisms for data structures. These
can be evaluated to different degrees and we will therefore focus on constructing
functions for doing that in a comfortable way. Lastly we will discuss explicit data
structure annotations; using these, a data structure can carry information about
itself around during evaluation.

5.5.1 Spine Evaluation, Generically

In Figure 5.1 we have already discussed list spines. Now we will turn to a more
general definition.

90 5. CONTROLLING DEMAND IN EDEN

5.4 Definition (Spine)
Let v be a value of a data structure T a1 . . . an

data T a1 . . . an = D1 t11...t1m1

| D2 t21...t2m2...
| Dk tk1...tkmk

where ai are type variables, Di are data constructors, and tij are types like external
datatypes, type variables out of a1, . . . , an, or the (recursive) data structure Ta1 . . . an

itself. The spine of the value v is then the tree traversal of v such that only those
limbs are visited which are of type Ta1 . . . an. All others are left unvisited.

For example, a function for traversing the spine of a list could be written as:
spine_list :: [a] -> ()

spine_list [] = ()

spine_list (_:xs) = spine_list xs

In the second alternative, only the recursive branch of type [a] is followed while
the element branch is not considered for traversal. Demanding WHNF for an ex-
pression (spine_list some_list) suffices to ensure that a complete traversal is
done. For the more complex binary search tree of Example 3, a more complex spine
function is needed:
spine_bst :: BST a -> ()

spine_bst E = ()

spine_bst (Node l _ r) = spine_bst l ‘seq‘ spine_bst r

The seq operator has now to be used to ensure a complete traversal when only
WHNF demand is exerted. This is because there is more than one recursive branch
in the Node case. Using the generic approach presented earlier, the spine traversal
can be generalised as shown in Figure 5.6. Three functions spine0, spine1, and
spine2 are given for the flat kinds (*), (* -> *), and (* -> * -> *), respectively.
Each function sequentialises the traversal of all branches of the given value using
the auxiliary function seqs, which we introduce as an extension of the seq operator.
Spine evaluation is very helpful for:

• spanning up lazily defined data structures which are needed anyway

• walking through a data structure of function (or process) applications to en-
sure timely execution (or process creation)

Within Eden one often deals with data structures which are first divided to form
a collection of partitions before they are worked on by parallel processes. To form
the connection between processes and partitions, one very often maps a process
abstraction on the partition collection. A spine function is then normally used to
start all processes at (almost) the same time via a traversal. As spine does not
exert demand on interior elements, usually additional demand is contained within
each node. The next subsection provides functions for doing that comfortably.

5.5. DATA-ORIENTED DEMAND STEERING 91

seqs :: [a] -> b -> b

seqs acts fin = foldr seq fin acts

spine0 :: Abs0 t => t -> () -- (*)

spine0 t = recs

where (_,(ts,_)) = suco0 t

recs = seqs (map spine0 ts) ()

spine1 :: Abs1 t => t a -> () -- (* -> *)

spine1 t = recs

where (_,((_,tas),_)) = suco1 t

recs = seqs (map spine1 tas) ()

spine2 :: Abs2 t => t a b -> () -- (* -> * -> *)

spine2 t = recs

where (_, ((_, _, taas, tabs, tbas, tbbs),_)) = suco2 t

recs = r taas ‘seq‘ r tabs ‘seq‘ r tbas ‘seq‘ r tbbs

r x = seqs (map spine2 x) ()

Figure 5.6: Generic spine traversal

In contrast to spine evaluation one also sometimes needs a full NF evaluation.
For doing that, an evaluation function has to be defined and overloaded for ev-
ery data structure which might occur during NF evaluation. This is necessary as
in our approach generic functions do not descend down into a data structure but
merely peel off the outermost type constructor layer. As shown before, overloading
can be implemented via type classes or simulated via explicit type annotations in
combination with GADTs (Figure 5.4).

Regarding nested data structures always only the spine of the outermost type
is traversed by spine. Deeper-reaching spine traversals for nested structures like
[BST a], which traverse both list and tree structure and leave the a elements un-
touched, must be defined separately. This is reasonable, because one cannot tell
how deep the spine has to reach and which part has to be left out.

5.5.2 Selective Evaluation

Spine evaluation does not touch the elements of a data structure and traverses
the whole structure. In contrast to that we will now give the definition of a touch

function (see Figure 5.7), which allows for discontinuing the traversal for branches
determined by a given predicate. Furthermore a function for controlling demand
exerted on element values can also be given. All this makes touch a general func-
tion for data-oriented demand control.

For a given value, touch1 simply applies the element demand function da to
all element values found at the root. Furthermore it uses the c function to filter
out those branches for which traversal shall continue. always is a simple auxiliary

92 5. CONTROLLING DEMAND IN EDEN

touch1 :: Abs1 t => (a -> ()) -> (t a -> Bool) ->

t a -> t a

touch1 da c t = as_eff ‘seq‘ tas_eff ‘seq‘ t

where (_,((as,tas),_)) = suco1 t

as_eff = seqs (map da as) ()

tas’ = filter c tas

tas_eff = seqs (map (touch1 da c) tas’) ()

touch1n :: (Abs1 t1, Abs1 t2) =>

(a -> b) ->

(t2 a -> Bool) ->

(t1 (t2 a) -> Bool) ->

t1 (t2 a) -> t1 (t2 a)

touch1n da c2 c1 = touch1 (touch1 da c2) c1

always :: a -> Bool

always _ = True

touch2 :: Abs2 t => (a -> ()) -> (b -> ()) ->

(t a a -> Bool) -> (t a a -> Bool) ->

(t a a -> Bool) -> (t a a -> Bool) ->

t a b -> t a b

touch2 da db c_aa c_ab c_ba c_bb t =

as_eff ‘seq‘ bs_eff ‘seq‘

taas_eff ‘seq‘ tabs_eff ‘seq‘ tbas_eff ‘seq‘ tbbs_eff ‘seq‘ t

where

(_, ((as, bs, taas, tabs, tbas, tbbs),_)) = suco2 t

taas’ = filter c_aa taas

-- tabs’,tbas’,tbbs’ analogously

as_eff = seqs (map da as) ()

bs_eff = seqs (map db bs) ()

tabs_eff = seqs (map (touch2 da db c_aa c_ab c_ba c_bb) tabs’) ()

-- taas_eff,tbas_eff,tbbs_eff analogously

Figure 5.7: Generic touching with element demand and traversal predicate

5.5. DATA-ORIENTED DEMAND STEERING 93

function which can be inserted for c when a full traversal is desired. All effects are
then sequenced as the result of the function. touch2 is constructed analogously.
Given these functions, spine1 can easily be defined in terms of touch1:

spine1 = touch1 (_ -> ()) always

spine2 can be redefined analogously.
As usual in our approach to generic programming, touch1 and touch2 will only

work on the outermost type constructor layer of the value to be demanded. If,
however, deeper demand exertion has to be applied to nested data structures an
appropriate nesting of touch functions has to be used. A version of touch1 for two
nested data structures is touch1n, which is also shown in Figure 5.7.

7 Example (Touching a binary search tree)
As an example for touch consider a function span_bst which forces evaluation of
a given binary search tree. Elements are evaluated to WHNF and traversal of
branches is determined by an element valuation function f. Note that the value
inspection done by f will itself already cause evaluation of that element; therefore
the element_eval function is mainly defined to ensure element evaluation of the
first node.

span_bst :: (a -> Bool) -> BST a -> ()

span_bst f = touch1 element_eval cont

where element_eval x = x ‘seq‘ ()

cont E = False

cont (Node l x r) = f x

5.5.3 Universal Functions for Four Reduction Degrees

To sum up, Table 5.8 shows the functions by which we can obtain the four reduc-
tion degrees shown in Figure 5.1 universally for all data structures. This range of
functions allows for flexible demand steering on data structures.

Red. degree Description Function(s)
E0 Unaltered untouched = ()

E1 WHNF whnf x = x ‘seq‘ ()

E2 Spine traversal spine0, spine1, spine2,
Selective traversal touch1, touch2

(E3) NF NFData class instances created in Chapter 3

Figure 5.8: Universal reduction functions

5.5.4 Annotated Data Structures

The functions shown so far allow for evaluation of data structures in various ways.
When writing a program, data structures are carefully chosen with regard to access

94 5. CONTROLLING DEMAND IN EDEN

complexities and memory requirements. However, some other properties of a data
structure regarding its status during a program run are not always clear:

• Is it needed frequently and completely or only sporadically and partially? Is
it intermediate and of a short life-time (garbage-collected soon)?

• Is it global within the program (passed through many functions) or only of
local interest (not passed to an external function)?

• At a certain point in the program, which is its current status? To which
degree has it already been evaluated? There is no point in traversing an
already evaluated data structure a second time.

• In a parallel setting, is this data structure a partition of a bigger data struc-
ture? Is it used on one node only or is it sent to other nodes?

This kind of meta information is often available during the design process, used
during the process, but finally not kept in the program. At a later point in time,
this makes programs harder to understand and to modify, as these vital informa-
tions are not present anymore; program modifications are harder as they could be
because demand control is very sensible and the proper amount of demand can
easily be too big or too small, especially in a parallel setting. We therefore propose
the explicit annotation of data structures on the expression level.

We will wrap selected data structures in the Info data structure shown in Fig-
ure 5.9. This data structure is a simple enumeration of properties and can easily
be extended by additional ones. Instances of common classes are defined to hide
the Info from all other operations. Within a program, the additional Info layer
around a data structure is then ignored by functions aware of it or can explicitly
be removed by applying the stripInfo function. We are aware of the newly intro-
duced administration overhead; but if this annotation is used for all major data
structures one can benefit from the given information.

Upon getting an argument data structure, a function can immediately inspect
its general status like its neededness and whether it is a global or local structure
(seen from a function’s point of view). In a parallel setting one can also get infor-
mation of this data structure will be communicated between nodes or whether it
will stay on the local node. Additionally we will note if the data structure is part of
a larger one. Another entry could be the type of the data structure; then Info could
also cover the HasType data constructor of Figure 5.4.

The current evaluation degree of a data structure is described via State which
records the current evaluation degree via one of four simplified degrees. This is
harder to follow than all the other properties: As lazy evaluation employs sharing,
duplicate references to the same data structure can easily be generated:
let datastructure = ...

in f (g datastructure) (h datastructure)

Both can now experience different evaluations, which nevertheless affect the same
data structure. At such a branch the programmer has to make sure that the more
extensive of both evaluations is stored in the Info table.

5.6. CONTROL-ORIENTED DEMAND STEERING 95

data Info a = Info {

val :: a, -- The wrapped value

fully :: Bool, -- True: Fully needed, False: Lazy

global :: Bool -- True: Global, False: Local

remote :: Bool -- True: Remote, False: Local

part :: Bool -- True: Partition, False: Top-level

state :: State -- Evaluation state

} deriving Show

data State = Untouched | WHNF | Spine | NF

stripInfo :: Info a -> a

stripInfo = val

instance Eq a => Eq (Info a) where

(Info x _) == (Info y _) = x == y

(Info x _) == (Info y _) = x == y

(Info x _) == (Info y _) = x == y

(Info x _) == (Info y _) = x == y

instance Ord a => Ord (Demand a) where

compare (Info x _) (Info y _) = compare x y

compare (Info x _) (Info y _) = compare x y

compare (Info x _) (Info y _) = compare x y

compare (Info x _) (Info y _) = compare x y

Figure 5.9: Data structure annotations

5.6 Control-Oriented Demand Steering

We have seen that data-oriented demand steering provides many possibilities to
evaluate a data structure to different degrees. But how, when, and in which order
does demand reach these isolated operations? Control flow, which is equal to de-
mand flow in lazy languages, has to reach and touch these function calls to trigger
evaluation. Accurately specified local demand on data structures is of no use if its
activation is not equally accurate in a global context. Therefore we will look at con-
trol flow steering in this Section. But first we will introduce a common notion for
effects executed on entering a function; we will start with an example of an effect.

5.6.1 Early Process Creation

Looking at the parallel computation of Hamming numbers back at Section 5.3.2
we have seen that for gaining real parallelism demand has to be considered. By
applying Haskell’s lazy semantics also to the additional Eden parallel constructs
all what we gained was not real parallelism but only distributed sequentiality.

96 5. CONTROLLING DEMAND IN EDEN

As discussed before[118] , the restrictive semantics for Eden constructs is therefore
defined to allow the following:

• A process can be created before its result is really needed. This is an essential
requirement for gaining real parallelism, as only processes whose runtimes
overlap can be called parallel. In the following we will describe how this can
be done.

• Results are evaluated to NF. This will keep processes producing results in-
dependently of explicit outer demand for these results. We are acting on the
assumption that all results produced by processes are typically needed for the
most part. One exception, which demonstrates the possible misbehaviour of
this strategy, is a stream of trivial elements which can easily be computed.
This may lead to a heap flooded by possibly unneeded elements. The next
item shows an Eden mechanism for limiting that effect.

• Results are transmitted eagerly. This will keep the sending node sending re-
sult values as soon as they are available, saving explicit request messages. To
avoid flooding the receiving node with unneeded result elements, the follow-
ing mechanism has been incorporated: If a garbage collection on the receiving
node collects the result data structure, a message will be sent to the sending
node to terminate the result producing thread. This will also delete the ref-
erence to the remaining result values at the sending node which will cause
their garbage collection. Partial results which are already on their way will
be deleted on arrival.

To circumvent distributed sequentiality, processes defined via the (#) operator
are behind the scenes created via the mechanism shown in Figure 5.10. A func-
tion containing a process instantiation (p # x) is transformed into a version which
wraps (or lifts) the result value into a newly created data constructor Lift. The (#)

operator is replaced by a slightly different function createProcess, which does not
yield the result directly but wrapped into Lift. If createProcess is evaluated to
WHNF, the process is created. The problem with distributed sequentiality was,
that the control flow stopped waiting to obtain the WHNF of the result. Even get-
ting the comparatively small WHNF of the result could take a long time (depending
on the necessary evaluations); the solution therefore is to provide an artificial data
constructor wrapping around the result which is immediately available and allows
the control flow to continue. The regular occurrences of the result have of course
each to be equipped with an additional deLift call to regain the original value.

The mechanism shown can also be automated to a certain amount. The eager
transformation[143] is a let transformation which applies the mechanism to let-
bound process applications like:
f x = let r = p # x

in ... r ...

These are by definition considered as top-level and created speculatively. During
program design one has to be aware of that transformation, as careless placements
of process applications in let expressions within a recursive function could easily

5.6. CONTROL-ORIENTED DEMAND STEERING 97

f x = ... (p # x) ...

⇓

data Lift a = Lift a

deLift :: Lift a -> a

deLift (Lift x) = x

createProcess :: (Trans a, Trans b) => (Process a b) -> a -> Lift b

f x = let lifted = createProcess p x

delifted = deLift lifted

in lifted ‘seq‘ (... delifted ...)

Figure 5.10: Early process creation by result lifting

lead to a flood of speculatively created processes (runaway parallelism). As shown
before, this transformation can be done via the preprocessing scheme of Chapter 3.

If this mechanism is used consequently, distributed sequentiality gives way to
real parallelism; this parallelism, however, is not yet optimal as control flow has
still to reach every process creation site first. In the following, we will call process
creation an effect and show that effect groups are desirable for parallelism.

5.6.2 Effects and their Execution

In a non-imperative language like Eden, where computation proceeds by evaluat-
ing functions and rewriting expressions, can there, besides the side-effects intro-
duced by Eden’s parallelism constructs, be something like an effect? Effects can of
course be covered by monads, as it is usually done with the ST and IO monads or
any self-written instance of the Monad class. But also on a non-monadic level we
can identify another kind of effects in Eden: All these evaluations belong more to
how something is computed than to what is computed, for example:

• Process creation. As seen before, to achieve early process creation the ex-
pression containing createProcess is given a name (lifted in Figure 5.10)
and touched by the control flow upon entering the function. Due to sharing
the name is then later a reference to the process result, in a sense similar to
using a dynamic channel reference.

• Local demand on data structures. Local demand-steering techniques like the
ones described in Section 5.5 are also effects as they are only steering mecha-
nisms. They just prepare data structures for subsequent evaluations.

• Unsafe I/O. Small unsafe I/O operations not integrated into the I/O sequence
starting from the main expression are also effects. For example, they include
debugging message output like:

98 5. CONTROLLING DEMAND IN EDEN

print :: String -> ()

print s = unsafePerformIO (putStr s)

f ... = print "Entering f" ‘seq‘ ...

• Filling dynamic channels. Another effect is the usage of a dynamic channel. If
a channel name has been received it can be filled with data by calling parfill.
This is usually done in the middle of an expression, which makes sense if it is
placed within a case selection. If not, it can be pulled out of the expression:
parfill cname value () ‘seq‘ ...

Seen from an aspect-oriented point of view it is desirable to separate these intra-
functional effects from the remaining expression: The clear separation provides
not only a quick overview of what effects are executed within a function, but the
effects also usually benefit from being executed early.

Effects usually result in the unit value (), but may also yield a lifted value after
a process creation or a data structure after exertion of demand. We therefore give
three different, yet still simple, operators for sequencing effects:

(>.) :: a -> b -> b -- Sequence

x >. y = x ‘seq‘ y

(>:) :: a -> (a -> b) -> b -- Seq. w/ argument

x >: y = x ‘seq‘ (y x)

(>:.) :: (Lift a) -> (a -> b) -> b -- Seq. w/ arg. and delift

x >:. y = x ‘seq‘ (y (deLift x))

(>::) :: Abs1 t => -- Seq. w/ arg. and generic delift

t (Lift a) -> (t a -> b) -> b

x >:: y = x ‘seq‘ (y (gmap1 deLift x))

The first one just renames seq for clarity and sequences effects whose results are
either irrelevant or the unit value. The second one (similar to the monadic (>>=)

operator) allows for passing the result of the first effect as an argument to the
next effect. This can be the case when demand is exerted on data structures and
the evaluated data structure is used subsequently in another effect. The third one
aims at postprocessing a process creation by additionally applying a deLift call to
argument passed by the first effect. Lastly the fourth one assumes that the first
effect generates a data structure of lifted values which is passed as an argument.
This data structure is traversed, its are elements delifted, and the structure is used
in the remaining effects.

Using these combinators we can now start to systematically extract effects out
of a function and let them precede the function’s result expression. Figure 5.11 uses
a technique shown in Section 5.4 to wrap I/O and other effects around a function.

This means, that one can specify a group of effects which is always executed
when entering the function and another group which is executed when leaving the

5.6. CONTROL-ORIENTED DEMAND STEERING 99

f args = result

⇓

import System.IO.Unsafe

f args | beforeIO >. beforeEff >.

whnf >.

afterIO >. afterEff >.

False = undefined

| otherwise = whnf

where beforeIO = unsafePerformIO (putStr "Entering f ...")

beforeEff = ()

whnf = f’ args

afterIO = unsafePerformIO (putStr "... leaving f")

afterEff = ()

f’ args = result<f/f’>

Figure 5.11: Wrapping I/O and effects around a function

function; to initiate that it suffices to reach the function call with WHNF. In be-
tween the original function f is called. f has been transformed to f’, in which all
calls to f have been replaced by calls to f’ via substitution:

5.5 Definition (Substitution)
We denote the textual substitution of every x by y within e by e < x / y >. Pre-
vious proper renaming to avoid name clashes is assumed. To clarify the notation,
(a+b)<b/c> would yield (a+c).

In the first of the two guards f’ is called to demand WHNF evaluation; this guard
is then (after executing all effects) rejected when False is encountered. The second
guard then delivers the function result, which (by sharing) is already available in
WHNF. Using this scheme for a function one can easily separate effects from the
remaining computation.

The scheme also lends itself to automatic transformation, for example to anno-
tate functions with debugging or tracing effects. Then one would choose to submit
information like the ones shown in Figure 5.11 about entering and leaving the func-
tion (augmented by the specific argument values) to the console or some trace file.
The latter one is harder to achieve because these I/O operations are isolated and
it is not immediately clear where the file handle can be kept. However, one could
give the same dynamic channel to every function and use the channel’s merging
behaviour for collecting unordered tracing results from all functions. This can be
done if the restriction, that every dynamic channel may at most be used once, is
lifted. Such transformations for the systematic introduction of effects can easily be
implemented via the preprocessing mechanism shown in Chapter 3.

100 5. CONTROLLING DEMAND IN EDEN

Besides wrapping the whole function in effects, one would often want a more
accurate distinction when dealing with functions with alternatives. Alternative-
specific effects can then simply be specified by wrapping each alternative in effects,
like we have already shown for early process creation:
f alt1 = effs1 >. exp1

f alt2 = effs2 >. exp2

The whole function can of course also again be wrapped in effects like shown above.

8 Example (Generic parallel map with effects)
All together we can formulate a generic parallel version of map in Eden which
clearly separates effects from computation:

ggParMap1 :: (Abs1 t, Trans a, Trans b) =>

(a -> b) -> t a -> t b

ggParMap1 f v = effects >:: id

where effects = touch1 whnf always results

results = gmap1 (createProcess (Proc f)) v

The function needs only an initial WHNF impulse to create the whole process struc-
ture.

5.6.3 Effect Groups

An expression can be seen as a tree, with effects, like the ones mentioned above,
being scattered all over the tree. As an example for discussing effect distribution
within a program we have sketched such a tree below for a fictional root expression
with randomly distributed effects. Functions, marked here by black circles, are
then subtrees. Some leafs are indeed subtrees themselves, these are displayed in a
shorter form as an expression ...ei... containing an effect ei:

�� @@

�
�

�

@
@

@

���������

HHHHHHHHH
�� @@

s
s

s

Root expression

...e1...
...e2... ...e3...

...e4...e5...

During execution, lazy evaluation will traverse the tree and trigger an effect
when encountering it. This leads to an unpredictable and uncontrolled effect ex-
ecution order. This is especially undesirable in the context of process creation in
Eden, as this will usually yield only little parallelism due to only small (if any)
temporal overlapping of processes. The execution order of the other effects is not

5.6. CONTROL-ORIENTED DEMAND STEERING 101

as critical, although a parfill can also benefit from early execution. Demand and
I/O can, if they are to be executed anyway, just as well be executed early.

This is why effect groups are desirable. Especially process creations which are
executed anyway can be pulled to the front of a function’s main expression and be
executed right after entry. This local overlap causes at least the processes started
by the same function to have a common starting time. This can easily be achieved
via the mechanism shown in Figure 5.11.

�� @@

�
�

�

@
@

@

���������

HHHHHHHHH
�� @@

s
s

s

Root expression

e1

exp1

e2 ; e3

exp2 exp3

e4 ; e5

exp4

Overlap between different local groups ({e1}, {e2, e3}, and {e4, e5} in our exam-
ple) is harder to increase. The most desirable solution would be to gather all local
effects in a single, global group to achieve maximal simultaneity:

�� @@

�
�

�

@
@

@

���������

HHHHHHHHH
�� @@

s
s

s

Root expression
e1 ; e2 ; e3 ; e4 ; e5

exp1

exp2 exp3

exp4

But this is of course hardly viable, as the scope and the visibility of identi-
fiers used within the effects is limited to local declarations. One could pass these
through all functions between the maximal effect group and the effect’s home func-
tion, but this is very tedious and spoils the program code. Therefore one steps back
to achieving a small set of local effect groups which are as big as possible.

�� @@

�
�

�

@
@

@

���������

HHHHHHHHH
�� @@

s
s

s

Root expression

exp1

exp2 exp3

exp4

e1 ; e2 ; e3 e4 ; e5

102 5. CONTROLLING DEMAND IN EDEN

And this is exactly what some skeletons are providing: For a subtree of the
expression tree they collect all effects (in a data structure or on the control-level)
and instantiate them at almost the same time in a structured way. If more than
one skeleton is used within a program, one has then also to take care that these
are triggered for maximum inter-skeleton overlap. This can be done via continuous
demand control throughout the whole program.

5.6.4 Automatic Grouping

As it is a tedious task to extract effects out of a function and to form an effect group
executed on function entry, we would like to have an automated mechanism for
effect grouping. Using our meta-programming facilities of Chapter 3, we are able
to define a kind of automatic local effect grouping. This transformation will collect
the easy to spot process creations which are important for an Eden program’s per-
formance and move them to the function’s entry point. Other effects are neglected,
as they are either very much harder to identify or not already contained in the code
and must be explicitly defined by the user. This grouping will only consider effects
contained in a single function and will not group effects of different functions; to ac-
complish this, a much more extensive function analysis and transformation would
be necessary. An automated grouping within a single function will face expressions
or function declarations:

Regarding expressions there are two cases: Firstly, the process creation can be
contained within a let block. Then the needed transformation is already contained
in the Eden system and called the eager transformation which we have already
shown in Chapter 3. As a reminder, written with our new operators and reduced
to a single effect:

let r = p # a let r’ = createProcess p a

in e => in r’ >:. (\r -> e)

If other local declaration blocks are nested into the let declarations, these will not
be considered top-level and therefore not be traversed. The effects contained within
these will not be moved. Secondly, the process creation could be contained within
the expression as an anonymous subexpression. The resulting transformation is
equally easy (also only shown for a single effect):

(... (p # a) ...) => let r = createProcess p a

in r >:. (\r -> ... r ...)

The last case can easily be integrated into the eager transformation.
Regarding function declarations there are also two cases: Firstly, the function’s

main expression is treated like shown above. Secondly, process creations can be
contained within the local where declaration block. This case is treated like the let

block above. Like above, nestings are not traversed.
While the expression transformation is automatic, the function transformation

is optional. For selective application we can therefore introduce a Template Haskell
splice which can easily be applied by the programmer to those functions whose top-
level effects shall be grouped. The splice, which we will not show in detail, can be
applied as follows:

5.6. CONTROL-ORIENTED DEMAND STEERING 103

$(bundle [| f args = result |]) -- bundle annotation by programmer

bundle :: Dec -> Q Dec -- predefined bundle function

It embraces a function out of which all top-level process creations are collected via
traversing the function subtree. Calls triggering these effects will then be bundled
at function entry.

5.6.5 Demand Management

Finally we have achieved (manually or semi-automatically) a program in which
effects are gathered in local groups of considerable size. Touching a group with
WHNF demand suffices to reliably trigger execution of the whole group. Now that
we have the demand flow in every group under control, what about demand flow
between groups? How can we ensure that every group is touched early, reliably,
and almost simultaneously?

���������

HHHHHHHHHs s

Root expression

e1 ; e2 ; e3 e4 ; e5

? ?

One traditional method is to carefully construct functions in such a way that
everything just fits in the right place. Everything is laid out so that demand finds
its way through the code to every group in time. If some difficult demand steering
remains, then usually a punctual demand control, resembling a kind of hack, is
inserted. The disadvantage is that all code parts are interdependent and that the
whole setup is therefore very fragile. Modifications can easily destroy the intended
evaluation order and depth. This happens even more easily as demand needs and
exerted demand are almost never documented. Just having the undocumented
code at hand it is hard to understand why at a certain point the correct amount
of demand arises. Unexperienced programmers then often fall back to randomly
inserting demand into a program to get it running in the desired way. Demand
annotations would help, but demand informations are not kept in a program.

One would never think like that of type annotations. In the Hindley-Milner
type system it is completely unnecessary to give explicit types, as each type can be
inferred automatically. Often the given types are also inferior to those inferred, as
the given types are very often much too special: When writing a function (and its
type), one mostly has a single use of that function in mind and types the function
according to that use. For example in a program which calculates with matrices
and vectors one might write:

map :: (Matrix -> Vector) -> [Matrix] -> [Vector]

104 5. CONTROLLING DEMAND IN EDEN

map f ms = [f m | m <- ms]

The special type is accepted, although the well-known more general type of map

would have been much more adequate and not as misleading as the above type can
be if this map is used in another context.

When types can be inferred automatically, and the inferred types are at least
as exact as those given by the programmer, why does almost every programmer
explicitly type each function? Because:

• During writing, it is helpful to clearly see a function’s intended input/output
behaviour. Type systems are good because they can point out mistakes during
compilation; they are even better, as they encourage the programmer to write
programs in a structured and incremental way by first defining the function’s
type before constructing the function.

• After writing, type annotations are not deleted although they could be. They
are left in the program as they document the programmer’s intention and aid
in understanding the program if later modifications are to be done. The first
thing usually read when first seeing an unknown function is its type.

Then why is this conviction not carried over to demand annotations? The same two
points made above in favour of type annotations also apply to demand annotations.
Therefore we propose explicit demand annotations as one of three measures to
ensure a better demand management in a program:

1. Use effect groups (or skeletons) with strictly defined demand behaviour

2. Annotate each (or each central) function with its demand behaviour so that
the progress of demand from the root expression, which is the source of all
demand, to each effect group is clear

3. Ensure fully controlled propagation of demand from the root to each effect
group

These three measures can be introduced into programming as sketched in the fol-
lowing:

1) Effect groups have been shown above. It is important to know which demand
is necessary to start execution of the group and which demand is exerted to
other expressions. This can be described via the notation sketched in the next
item.

2) Demand annotations will not be introduced as an additional language con-
struct but as special comments. Given a function we can describe its demand
behaviour by noting which demand is exerted by the function on its argu-
ments and internal function calls if a certain external demand exists.
Figure 5.12 shows a traditional definition of parMap with two auxiliary func-
tions tlList (for forcing a list of process instantiations with subsequent delift-
ing) and forceWHNFSpine. (Interestingly, the latter function even encodes a
part of its demand behaviour in its name: It exerts WHNF demand on ev-
ery list element and evaluates the list spine.) For each function we have

5.6. CONTROL-ORIENTED DEMAND STEERING 105

sketched a possible demand notation; within each demand description, the
function’s demand behaviour is shown for each of three possible external de-
mands (WHNF, spine, and NF). Then for each argument the demand exerted
on that argument is shown. Although being a bit long, the notation clears up
a function’s behaviour.

{ WHNF => Spine => NF =>

a : Nothing a : Nothing a : NF

[.] : Spine [.] : Spine [.] : Spine

eagerIL : WHNF eagerIL : Spine eagerIL : NF }

parMap :: (Trans a, Trans b) =>

Process a b -> [a] -> [b]

parMap p xs = eagerInstList (repeat p) xs

{ WHNF => Spine => NF =>

a : Nothing a : Nothing a : NF

Lift . : WHNF Lift : WHNF Lift . : NF

[.] : Spine [.] : Spine [.] : Spine

fWS : WHNF fWS : Spine fWS : NF }

tlList :: [Lift a] -> [a]

tlList insts = forceWHNFSpine insts ‘seq‘ (map deLift insts)

{ WHNF => Spine => NF =>

a : WHNF a : WHNF a : NF

[.] : Spine [.] : Spine [.] : Spine }

forceWHNFSpine :: [a] -> ()

forceWHNFSpine [] = ()

forceWHNFSpine (x:xs) = x ‘seq‘ forceWHNFSpine xs

Figure 5.12: Example demand annotations

3) Demand propagation is then the next step: Starting with the I/O driven de-
mand of the main expression, demand has to be passed on in a controlled way.
Demand annotations show how functions propagate exerted demand to other
functions. Together, functions can form a chain of demand propagation. Addi-
tionally for parallelism, as shown in Section 5.3.2 and solved in Section 5.6.1,
it is also important to be able to split demand. This can in general be done
by lifting as shown in Figure 5.10; then an immediately available outer re-
sult hull satisfies WHNF demand which can progress while a second demand
chain has been started.

These three measures together enable the programmer to actively control and doc-
ument demand flow in a program. Controlling demand has proven to be of great
importance, both in a sequential (memory efficiency) and in a parallel (true par-
allelism) setting. The importance for parallelism is even higher, as Eden is a
language that explicitly lays process control into the hands of the programmer
and therefore relies on an equivalently powerful demand control. We have shown

106 5. CONTROLLING DEMAND IN EDEN

mechanisms, some related to generic functions, and sketched a method for active
demand flow control.

6. Data Parallelism

”Should I structure my program after the decomposition of the value
it consumes ...”

Introduction of Meijer et al.[151] (continued in Chapter 7)

6.1 Motivation

Due to Fox[66] and Chapter 38.2.1 of Zomaya[217] , most parallel algorithms can be
classified in terms of the regularity or irregularity of

• the underlying data structures and

• the synchronisation required as elements of these are updated.

These two data-oriented characteristics span four categories of parallel algorithms:

Synchronous. This is classical data parallelism. Regularly sized data elements
are updated in a regular intervals. Algorithms of this class are usually asso-
ciated to parallel machines of the SIMD class, and are ideally suited for be-
ing expressed in specialised data-parallel languages like High Performance
Fortran (see Chapter 7 of Foster[64]). Algorithms of this category are quite
predictable and can therefore be implemented quite efficiently.

Loosely synchronous. These algorithms deal with irregular data elements which
are updated regularly. This means, that like before a global iteration or step-
ping scheme rules the computation, but that within each step the size of the
data elements (and therefore the amount of work) can vary. To get an equal
utilisation, usually some kind of load-balancing is therefore applied.

Embarrassingly parallel. These are very common and combine regular data struc-
tures with irregular synchronisation. Tasks are usually completely indepen-
dent and are distributed via a static or dynamic load-balancing scheme.

Asynchronous. These algorithms lack regular synchronisation points as well as
regular data structures and are therefore hard to express. They are classical
examples of control parallelism.

107

108 6. DATA PARALLELISM

In this chapter we will focus on data-parallel algorithms which include the first two
categories. More easily expressed, data parallelism can also be understood as the
parallelism one gets by applying the same operation to a group of data elements at
the same time. A sequence of these steps is then a data-parallel program.

In Eden, data parallelism is quite important. Many functional data structures
reveal parallelism in a natural way, and Eden makes it easy to exploit this paral-
lelism. In this setting it is important to be able to partition the input data struc-
ture comfortably for distributing the parts of the data structure across the parallel
nodes. We will show how to do that both in the traditional non-generic way but
also using our generic programming approach. Having produced partitions, one
usually works on these with the standard higher-order functions also known from
the Bird-Meertens formalism [193] , like map, fold, or filter. In Eden parallelisations
are often done via map, which can be expressed in different ways depending on its
use. All non-generic parallel versions of map have generic counterparts, which we
will also describe. Another problem with data parallelism in parallel functional
languages is how one should deal with large data structures. We will show what
can be done to avoid inefficiencies.

Section 6.2 will deal with non-generic and generic methods for partitioning
and regrouping data structures. Then Section 6.3 introduces non-generic
parallel map skeletons into Eden which are generalised in Section 6.4.

Parts of the chapter are based on three of our papers[119, 174, 141] .

6.2 Partitioning, Granularity, and Grouping

Partitioning, which is the division of a data structure in a structured collection of
substructures, is an elementary part of parallel programming. In a data-oriented
parallelisation, it is immediately clear that data has to be partitioned for distri-
bution over the parallel nodes. The same is the case for control-oriented paralleli-
sations, where each parallel task has to get its share of the input data structure
on which the computation depends. It can also happen, that no noteworthy data
structure is needed for a computation and that therefore a data structure parti-
tioning is not necessary. Then one needs a control partitioning, which belongs to
parallel algorithm design and which this section is not about.

Control partitioning is directly related to granularity. Normally, granularity is
interpreted as the amount of work which results from evaluating an expression.
The size and kind of a data structure partition directly influence the granularity
of the computational task that is based on that partition. In a parallel setting it
is especially important to choose the task grainsize carefully: Large sets of fine-
grained tasks can most often be generated very easily, but due to high communica-
tion costs it is often not feasible to evaluate these in parallel. On the other hand,
too coarse-grained tasks may leave nodes unemployed or induce stagnation in task
distribution as there are not enough of them.

According to Sadayappan et al.[183] , granularity can also be measured as the

6.2. PARTITIONING, GRANULARITY, AND GROUPING 109

ratio of the compute time needed for task execution to the communication cost in-
curred by executing that task. Therefore granularity grows with the amount of
work contained in a task, while it is considered shrinking if that is accompanied
by lots of communication. The most useful grainsize depends on the number and
the speed of the parallel nodes and the speed of the interconnection network. It is
important for a parallel program to be able to change granularity depending on the
parallel system on which it is run. As granularity directly interacts with partition-
ing, we will now set out to describe methods for data structure partitioning.

Before doing so we have to note, that not every partitioning function needs
to have an inverse function for recombining the partitions. At times it may be
acceptable to neglect the initial context as results are collected in another form.

6.2.1 Non-Generic Partitioning

Non-generic partitioning focuses exclusively on dividing explicit data structures
like lists. We will not deal with the partitioning of implicit data structures like co-
ordinate ranges, which can easily be split and administrated. Figure 6.1 shows two
typical list partitioning methods; being standard collections, lists are a typical aim
for partitioning. Both deal with partitioning a list into a set (also a list) of sublists.
For each partitioning function f an inverse function f ′ is given such that f ′ · f = id

holds. Both are reflected by the type synonyms Partitioning and Combination.
The first partitioning scheme takes a partition size n and cuts of pieces of that

size starting from the beginning of the list. That implies, that the last piece has
size ≤ n. This means, that it could be considerably smaller than n, which can
be a disadvantage during partition distribution. The second partitioning scheme
makes for a better distribution by using the Bresenham distribution [34] . It divides
the input list into sublists such that the difference between the lengths of any two
sublists is always ≤ 1.

Figure 6.2 shows a most simple list partitioning on the element level. The list
is essentially a tree, as every data structure in Haskell. It is weighted to the right
such that its elements are attached to a spine of cons nodes which ends with the
nullary nil constructor. The list can therefore be partitioned quite easily by trav-
elling down the spine, counting elements, and filling in nullary nil contructors for
the disconnected cons nodes. The collection of partitions can then (if partition or-
der is maintained by the collection) easily be recombined because every partition
contains only a single nil node. The recombination is done by traversing the first
partition until the nil node is found; then the nil is replaced by the next partition
which is then treated in the same way until all partitions have been added. This is
not quite as easy in a generic setting, which we will treat now.

6.2.2 Generic Partitioning

In this subsection we will restrict ourselves to datatypes of kind (* -> *); other
flat kinds can be handled analogously. Now we will at first distinguish between
destructive and non-destructive partitionings:

110 6. DATA PARALLELISM

-- Types ---

type Partitioning a = a -> [a]

type Partitioning’ a = [a] -> a

-- Direct partitioning ---

direct :: Int -> Partitioning [a]

direct _ [] = []

direct n xs = ys : direct n zs

where (ys,zs) = splitAt n xs

direct’ :: Partitioning’ [a]

direct’ = concat

-- Variable partitioning ---

variable :: Int -> Partitioning [a]

variable n xs = (reverse . snd) (foldr f (xs,[]) ls)

where ls = bresenham (length xs) n

f l (xs,ps) = let (p,xs’) = splitAt l xs

in (xs’,p:ps)

bresenham :: Int -> Int -> [Int]

bresenham total parts = take parts (calc total)

where calc t = let (d,m) = t ‘divMod‘ parts

in d : calc (total + m)

variable’ :: Partitioning’ [a]

variable’ = concat

Figure 6.1: Direct and variable partitioning methods (chunking)

1

2 Nil
1 Nil

,
2 Nil

1

2 Nil

Figure 6.2: List partitioning on element level

6.2. PARTITIONING, GRANULARITY, AND GROUPING 111

prefix, postfix :: Abs1 t => t a -> [a]

prefix t = as ++ rest

where (_, ((as, tas), rec)) = suco1 t

rest = concat [prefix ta | ta <- tas]

postfix t = rest ++ as

where (_, ((as, tas), rec)) = suco1 t

rest = concat [postfix ta | ta <- tas]

Figure 6.3: Destructive generic partitioning

• Destructive partitionings extract elements out of data structures in a well-
defined way and store these in a collection which will not allow a later recon-
struction of the initial structure. This can be useful when the order of the
extracted elements contains enough information and the initial structure is
not needed for computing the result. These functions have the generic type:

p :: Abs1 t => t a -> [a]

• Non-destructive partitionings on the other hand deconstruct a data structure
into parts of the same type, which can be recombined later. This is an often
applied kind of parallelisation: Partition into smaller parts, treat these in
parallel, and recombine the results. The generic types comprise a partition
and a recombination function:

p :: Abs1 t => t a -> [t a] -- Abs1 t => Partitioning (t a)

p’ :: Abs1 t => [t a] -> t a -- Abs1 t => Partitioning’ (t a)

Non-destructive partitioning schemes can in principle also be used destructively.
But additionally functions like the ones in Figure 6.3 can be used to extract ele-
ments in various fashions. The figure shows functions for a prefix and a postfix
element collection; this collection can the be further partitioned with the functions
of Figure 6.1. Level-wise traversal corresponds to the flatten1 function shown at
the end of Section 4.6.2.

Truly non-destructive partitionings are harder to define generically. We now
have to be able to deal with arbitrary tree structures, for which general meaningful
partitioning schemes have to be defined. Dividing them is also difficult, as it is
not guaranteed, that a nullary constructor for filling open ends (which are created
when the data structure is split into portions) is available. As an example, consider
the partitioning of a rose tree

data Rose a = Rose a [Rose a]

which has no explicit nullary constructor. If several partitions are cut out of the
whole structure, how can the open ends be filled? Even if the data structure, like a
binary tree with empty leafs

112 6. DATA PARALLELISM

1

2

5 6

3

7 8

4

9 10

1

Mark Mark Mark
,

2

5 6
,

3

7 8
,

4

9 10

Figure 6.4: Tree partitioning on element level

data BinTree a = Leaf

| Node a (BinTree a) (BinTree a)

possesses an explicit nullary constructor, it cannot be used for closing and marking
the site of fracture, as it is not unique. Therefore we have to add a special nullary
constructor to data structures to allow for non-destructive partitioning, if the order
of partitions is otherwise not unique or no nullary constructor is present at all. The
rose tree above lacks an explicit nullary constructor which we add now:

data Rose a = Rose a [Rose a]

| Mark

Then the partitioning of Figure 6.4 is possible, where the mark defines a place
where a substructure can be attached. For recombination, the first partition is
traversed levelwise. If a mark is encountered, the next partition is attached at
that place. The continued levelwise traversal will then yield the next mark; this is
done until all partitions have been attached.

Having found a possibility to divide and recombine a data structure, this raises
the question which general partitioning strategies make sense for arbitrary data
structures? Data-parallel languages like High Performance Fortran offer combin-
able block, cyclic, and wildcard operators (see Foster[64]) for partitioning matrices
flexibly. Can we do something similar for tree-shaped data structures?

We can define meaningful generic partitionings, which we will do in the follow-
ing. At first we present in Figure 6.5 the function gsingle1, which implements the
generic level-wise cut operation already sketched in Figure 6.4. The level can be
chosen freely and yields the whole unchanged value for level 0. The cut in Fig-
ure 6.4 then represents a cut on level 1. The function works by descending down
the data structure while rebuilding it from recursive results at the same time; if
the correct level has been reached, the recursive subtrees are cut off, collected, and
replaced by nullary mark constructors which have to be explicitly contained in the
data structure.

9 Example (Single-level partitioning)
Partitioning a rose tree

example = Rose1 1 [Rose1 2 [Rose1 4 [], Rose1 5 []], Rose1 3 []]

on different levels yields the results:

6.2. PARTITIONING, GRANULARITY, AND GROUPING 113

gsingle1 :: Abs1 t =>

Int -> Partitioning (t a)

gsingle1 0 t = [t]

gsingle1 level t = self : rest

where (self, rest) = gp1 0 t

Just nc = null1

gp1 current x | current == level = (nc, [x])

| otherwise = (rec (as,as’), concat tas’)

where (_, ((as, tas), rec)) = suco1 x

(as’,tas’) = unzip [gp1 (current+1) ta | ta <- tas]

gsingle1’ :: (Eq (t a), Abs1 t) =>

Int -> Partitioning’ (t a)

gsingle1’ maxl ps = head (foldl gs1’ ps [0..maxl])

gs1’ :: (Eq (t a), Abs1 t) =>

[t a] -> Int -> [t a]

gs1’ (part:parts) level = trav 0 part parts where

Just nc = null1

trav _ val [] = [val]

trav current val (p:ps)

| current == level = if val == nc then (p:ps) else (val:p:ps)

| otherwise = (rec (as, reverse tas’):ps_rest)

where

(_, ((as, tas), rec)) = suco1 val

(tas’, ps_rest) = foldl f ([], p:ps) tas

f (acc,pas) ta = let (a:b) = trav (current+1) ta pas in (a:acc,b)

Figure 6.5: Non-destructive generic partitioning: single level-cut

gsingle1 0 example:

[Rose1 1 [Rose1 2 [Rose1 4 [], Rose1 5 []], Rose1 3 []]]

gsingle1 1 example:

[Rose1 1 [Mark,Mark],Rose1 2 [Rose1 4 [],Rose1 5 []],Rose1 3 []]

gsingle1 2 example:

[Rose1 1 [Rose1 2 [Mark,Mark],Rose1 3 []],Rose1 4 [],Rose1 5 []]

The dual function gsingle1’ uses an auxiliary function gs1’, which takes a parti-
tion list and a level number as arguments. The first partition is used as the root out
of which the complete data structure is reconstructed. It is traversed via a fold and
all marks on the specified level are replaced by partitions in the partition list. The
relative order of replacement is kept to level-wise despite a depth-first traversal;
this is done via the level restriction.

114 6. DATA PARALLELISM

gmulti1 :: Abs1 t =>

Int -> (Int -> Int) -> Partitioning (t a)

gmulti1 end offset t = foldl f [t] levels

where levels = takeWhile (>=0) (iterate offset end)

f [] _ = []

f (v:ps) l = parts++ps

where parts = gsingle1 l v

gmulti1’ :: (Eq (t a), Abs1 t) =>

Int -> (Int -> Int) -> Partitioning’ (t a)

gmulti1’ end offset parts = head (foldl gs1’ parts levels)

where levels = (reverse . takeWhile (>=0)) (iterate offset end)

Figure 6.6: Non-destructive generic partitioning: multi level-cut

The single-level cut can easily be extended to a multi-level cut, as is shown in
Figure 6.6. The function gmulti1 takes two level arguments, the downmost level
to start from and an offset function parameter. It then successively cuts the value
into level-wise pieces of the offset calculated by applying the offset function to the
current level. The function essentially folds the value upwards using the single-
level cut as the folding function. Figure 6.7 shows this for an exemplary tree with
a constant offset function (\x -> x-1). gmulti1’ is the corresponding function for

1

2

4

8

5

3

6 7
3

2

1

0

[v]

[v’,parts3]

[v’’,parts2,parts3]

[v’’’,parts1,parts2,parts3]

[parts0,parts1,parts2,parts3]

Figure 6.7: Multi-level generic partitioning

recombining partitions of a multi-level cut. Similar to gmulti1, it folds the reverse
list of levels using the single-cut combination function gs1’.

Using these level-cuts one can already form many partitionings, including the
usual list and tree partitionings. As said before, one has of course to restrict oneself
to data structures which are defined inductively via data constructors. Haskell
arrays or data structures hidden behind foreign language interfaces can of course
not be handled that way. Also implicit data structures like a list represented by a
range (Int, Int) has to be partitioned manually.

6.3. PARALLEL MAPS 115

6.2.3 Grouping

We have used different partitioning methods to divide data structures into man-
ageable pieces of little or even no interdependence. But do they fit the reality of
the parallel computer on which the program will be run? Usually one defines too
fine-grained pieces rather than too coarse-grained ones. This results in having too
many pieces of work for the number of available parallel nodes. Therefore usu-
ally a static regrouping of pieces depending on the execution environment and a
data distribution strategy is useful. This can be done using the meta-programming
methods of Section 3.5.2.

The grouping itself can be done via the combine function

combine :: (a -> Bool) -> [a] -> [[a]]

combine p [] = []

combine p (x:[]) = [[x]]

combine p (x1:x2:xs) | p x1 == p x2 = (x1 : h) : t

| otherwise = [x1] : combine p (x2:xs)

where (h:t) = combine p (x2:xs)

which creates groups in a list of elements depending on a predicate. During list
traversal, elements are put in one group as long as the predicate holds. If it is no
longer true, a new group is started until it holds again. This function can be used
to regroup a list of partitions for mapping them efficiently on a parallel computer
represented as a Haskell value in the style of Figure 3.18. This way, one can place
data on the right level of the memory hierarchy and support locality.

6.3 Parallel Maps

The inherent parallelism of functional programs is usually quite fine-grained. It
mostly reveals itself in the form of independent subexpressions which are strictly
needed. The effort to evaluate these can then actually range from very small to
very big. On the other hand, current parallel computers consist of fast comput-
ing nodes which are connected by comparatively slow network connections; this
combination needs coarse-grained tasks to justify the large costs of task and re-
sult transportation compared to the task evaluation time. Therefore, the natural
parallelism of a functional program has to be concentrated to form larger tasks.
Grainsize is only one of many facets of parallel control which are vital for gaining
speedups. Who should take care of these? There are two extremes between which
Eden strikes a balance:

• Implicit approaches do not bother the programmer with parallel control and
rely on program analysis for detecting sources of parallelism. This is difficult
and may lead to poor parallelism.

• Explicit approaches burden the programmer with full control over processes,
granularity, communication, and data distribution. Given such control, effi-
cient programs can be constructed with some effort.

116 6. DATA PARALLELISM

Data parallelism in Eden is often represented by the map function. This function
can be called an algorithmic skeleton, as it captures a general pattern of computa-
tion on a high-level in a reusable form. Programming with algorithmic skeletons
raises the abstraction level of the program, as these predefined building blocks
usually have well-known properties and structure the program. For each algo-
rithmic skeleton a fully controllable, parallel architectural skeleton can be prede-
fined, which is tailored for different parallel computer architectures. These aim
at exploiting special characteristics of a given architecture and are thus quite spe-
cialised and low-level. Therefore, programming with these specialises a program
too much to a single architecture.

Like with parallel control, an intermediate level of abstraction has to be found
which provides sufficient control to gain efficiency while sparing low-level details
like process management. In Eden the situation is solved by introducing an inter-
mediate layer of implementation skeletons[119] between algorithmic and architec-
tural skeletons. These describe different Eden parallelisation methods of an algo-
rithmic skeleton and are powerful and comfortable at the same time. They retain
architecture-independence in the sense of GpH[206] , as the Eden implementation
is based on a standard parallel message-passing library and quite easily adapts to
new parallel environments. Taking map as a classical data-oriented algorithmic
skeleton, we will now present four implementation skeletons. We classify the first
three as data-oriented, while the last one is more control-oriented.

The standard parallelisation is called parMap, which is a direct parallelisation
by evaluating each list element within a separate process; processes are usually
distributed over the available nodes in a round-robin fashion, independent of the
underlying parallel architecture. Driven by three possible savings three additional
map parallelisations are induced:

• With a parMap, list size can easily exceed the number of parallel nodes. This
results in multiple processes, which differ only in their argument, residing on
the same node . The solution is here to group tasks so that the number of task
collections is identical to the node number. Within such a farm, every node
executes only one process.

• In a farm, the root process (or the calling main function) has to partition and
group the arguments for the element processes. While no global load has yet
been established, this is an inherently sequential action keeping the element
processes from starting their evaluations (besides the ones for which the argu-
ment is not needed) and damaging speedup. Furthermore, as communication
is expensive, the solution is to include the full argument in the process ab-
straction so that each process receives everything and chooses its part on its
own. This replaces communication by recomputation and shifts work down
in the process tree (which is always desirable). This pays off especially on
systems with high communication costs. We call this the direct mapping (or
communication fusion) approach.

• The third saving deals with process creation, which is expensive. The solu-
tion in a changing process structure can be to recycle processes. This means
that a set of flexible processes is generated, which can change their functional

6.4. GENERIC PARALLEL MAPS 117

increasing process granularity

.T T T T

P P P P

PE PE. . .

Parallel Map

T T T T

P P

PE PE

. . .

Farm

T T

P P

PE PE

. . .

Direct Mapping

.

Figure 6.8: map implementation skeletons for regular granularity

behaviour and thus avoid process termination and recreation. A typical map
version tailored for dealing with irregularly sized tasks is the workpool, which
creates a set of worker processes which deal dynamically with different argu-
ments. This version is considered control-oriented and is treated in detail in
Section 7.3.

Figure 6.8 (taken out of our paper[119]) shows for each implementation skeleton how
tasks are assigned to processes, and how processes are assigned to parallel nodes
(also called processing elements or PEs for short). The typical non-generic imple-
mentations of these schemes for lists are shown in Figure 6.9. Every scheme has
in the map type Map a b in the end for providing the same interface. The function
eagerInstList is used in every scheme directly or indirectly for eager process cre-
ation. It takes care for early process creation as described earlier in Section 5.6.1.

parMap is then just an application of eagerInstList with a process list created
by wrapping the function f in a process abstraction and repeating it to match the
argument list. farm introduces partitioning and is a function composition which
first partitions, computes via parMap, and recombines. dm uses processes with a
void input parameter and input provided as a part of the process abstraction. Each
process then extracts for itself its relevant part of the input data structure.

Having shown the approaches to parallelise map for lists, we will now set out
to transfer these schemes to generic ones. These have to be able to use the generic
partitioning and generic demand control schemes shown before.

6.4 Generic Parallel Maps

In the following we will apply our generic programming approach to the parallel
functional language Eden.

6.4.1 Generic Skeletons

In the last subsection we have generalised representatives of four function cate-
gories. For which of these exists a meaningful version in a parallel setting? Clas-

118 6. DATA PARALLELISM

type Map a b = (a -> b) -> [a] -> [b]

eagerInstList :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

eagerInstList ps xs = tlList insts

where insts = zipWith (createProcess) ps xs

tlList :: [Lift a] -> [a]

tlList insts = forceWHNFSpine insts ‘seq‘ (map deLift insts)

forceWHNFSpine :: [a] -> ()

forceWHNFSpine [] = ()

forceWHNFSpine (x:xs) = x ‘seq‘ forceWHNFSpine xs

-- 1) parMap ---

parMap :: (Trans a, Trans b) =>

Map a b

parMap f inputs = eagerInstList (repeat (process f)) inputs

-- 2) farm ---

farm :: (Trans a, Trans b) =>

Int -> -- number of available nodes

(Int -> Partitioning a) -> -- partition

(Int -> Partitioning’ b) -> -- recombine

Map a b

farm np part part’ f inputs =

((part’ np) . (parMap (process f)) . (part np)) inputs

-- 3) direct mapping ---

dm :: (Trans a, Trans b) =>

Int -> -- number of available nodes

(Int -> Partitioning a) -> -- partition

(Int -> Partitioning’ b) -> -- recombine

Map a b

dm np part part’ f inputs = part’ results where

results = eagerInstList proclist (repeat ())

proclist = [proc (extract i np inputs) | i <- [0..(np-1)]]

proc arg = process (\() -> f arg)

extract i n inputs = (part n inputs)!!i

Figure 6.9: Three non-generic implementation skeletons for map

6.4. GENERIC PARALLEL MAPS 119

sical parallel skeletons[119] are often derivatives of map, therefore we show their
generalised counterparts in Figure 6.10:

• gParMap1 uses the generic gZipWith1 to create a data structure of process in-
stantiations which are demanded by a generic spine1 traversal function. De-
mand causes early process creation which supports maximum parallelism.

• gFarm1 and gDirect1 are closely related to gParMap1. While gParMap1 typi-
cally creates a process for every element of its argument data structure and
places more than one process on each node of a parallel machine, both gFarm1

and gDirect1 let each process work on a whole partition of their argument.
This is usually done so that only one process resides on each node. A join

function later combines the results. The difference between both functions is
that within gFarm1 the function calling gFarm1 is doing the partitioning for all
processes created.

• gDirect1 on the other hand gives each process the complete argument (space-
savingly housed within the process abstraction) for partitioning within the
process.

As an aside, we show that the demand control function spine1 of Figure 5.6 can also
be expressed via gfoldr1. This results in a shorter and clearer implementation.

How can these generic skeletons be used in a profitable way? Some advanta-
geous uses are:

• These generic parallel maps enable the programmer to easily apply a function
to every element of an arbitrary data structure in parallel.

• Obviously a gParMap is very flexible in its application. Its type (see Figure 4.5)
shows that it essentially is able to take any data structure containing a type a

and to replace all occurrences of that type by a value of type b corresponding
to the argument function. This is related to the boilerplate approach[123] .
This makes it a useful tool in parallel programming, where one often changes
process structures and data partitionings.

• As shown before[118] , it is crucial for an efficient parallelisation to overrule
laziness to some extent by placing additional early demand on process in-
stantiations. This is usually done via data structure dependent sequences
of seq :: a -> b -> b, which delivers its second argument and evaluates its
first argument to weak head normal form. An often used representative is the
spine function for lists, shown in Figure 6.10 as listspine inside a comment.
With the generic definition of spine1 the tedious and errorprone rewriting of
that functionality for different data structures is not needed anymore.

But are there disadvantages? Due to the de- and construction of data con-
structors generic functions introduce significant additional overhead which can be
costly when used frequently. With generic parallel skeletons however, these costs
are much lower as generic functions are used only for creating process structures
which, compared to data structures within other computations, usually contain
only a comparatively small number of processes. Additionally these skeletons are

120 6. DATA PARALLELISM

-- (* -> *) ---

gParMap1 :: (Abs1 t, Trans a, Trans b) =>

t (Process a b) -> t a -> t b

gParMap1 ps vs = let insts = gZipWith1 createProcess ps vs

in spine1 insts >. gmap1 deLift is

gFarm1 :: (Abs1 t, Trans a, Trans b) =>

m -> (m -> t1 -> t a) -> (m -> t b -> t2) ->

Process a b -> t1 -> t2

gFarm1 mode partition join p t = let rs = gParMap1 procs parts

in join mode rs

where parts = partition mode t

procs = gmap1 (_ -> p) parts

gDirect1 :: (Abs1 t, Trans (t a), Trans (t b)) =>

m -> (m -> t a -> t (t a)) -> (m -> t (t b) -> t b) ->

(t a -> Process () (t b)) -> t a -> t b

gDirect1 mode partition join p t = let rs = gParMap1 procs units

in join mode rs

where parts = partition mode t

procs = gZipWith1 ($) (gmap1 (_ -> p) parts) parts

units = gmap1 (_ -> ()) parts

spine1 :: Abs1 t =>

t a -> ()

spine1 = gfoldr1 f z

where f _ tas = foldr seq () tas

z _ = ()

-- (* -> * -> *) --

gParMap2 :: (Abs2 t, Trans a, Trans b, Trans c, Trans d) =>

t (Process a c) (Process b d) -> t a b -> t c d

gParMap2 ps vs = let insts = gZipWith2 createProcess createProcess ps vs

in spine2 insts >. gmap2 deLift deLift insts

spine2 :: Abs2 t =>

t a b -> ()

spine2 t = recs where

(_, ((_, _, taas, tabs, tbas, tbbs),_)) = suco2 t

recs = foldr (>.) () (concatMap (map spine2) [taas,tabs,tbas,tbbs])

Figure 6.10: Selected parallel generic functions

6.4. GENERIC PARALLEL MAPS 121

mostly called only once: As process creation is quite costly, static process systems
are preferred over dynamically changing ones. On the other hand it is clear, that
some overhead is still present. Also, the extended type context and the different
type classes for different kinds have to be noted.

6.4.2 Combining Generic Skeletons

If we express gParMap1 of Figure 6.10 in another way so that its type signature
resembles that of map, we can even pinpoint the parallelisation within a nested
data structure via higher-order functions; this (and more) is possible, because our
generic functions are first class citizens (in contrast to other approaches):

gPMap1 :: (Abs1 t,Trans a,Trans b) =>

(a -> b) -> t a -> t b

gPMap1 f v =

let is = gmap1 (createProcess (Process f)) v

in spine1 is ‘seq‘ gmap1 deLift is

Now we can easily define generic skeletons for inner and outer map-like paralleli-
sations:

inner1 :: (Abs t1,Abs t2,Trans a,Trans b) =>

(a -> b) -> t1 (t2 a) -> t1 (t2 b)

inner1 f = gmap1 (gPMap1 f)

outer1 :: (Abs1 t1,Abs1 t2,

Trans (t1 a),Trans (t1 b)) =>

(a -> b) -> t1 (t2 a) -> t1 (t2 b)

outer1 f = gPMap1 (gmap1 f)

The inner function can be very helpful if one has to deal with large data struc-
ture partitioned into a structure containing the parts, for example a list of matrix
blocks. Using inner one can easily work on the partitions in parallel.

6.4.3 Example

We will now use our approach to generic programming for the successive improve-
ment of a partitioning scheme used in a parallel program to portion an argument
data structure into computationally equal-sized chunks. This is very important
for gaining load-balance. Partitionings are typically often subject to change during
parallel program development.

As an example we will use a simple raytracer for calculating a two-dimensional
photo-realistic image of a three-dimensional scene[119] . For calculating the result
image, for each coordinate of the image a ray is shot into the scene. The central
function

trace :: Scene -> Coord -> Color

calculates for the given scene and the coordinate the coordinate’s color by tracing
the way the ray takes through the scene. This happens backwards starting at the

122 6. DATA PARALLELISM

Leaf Leaf

Leaf

Figure 6.11: Exemplary quad tree partitioning

eye of the observer and ending at a light source. The image can then roughly be
described by:
img = [trace s c | c <- allCoords]

When parallelising that algorithm, one can obviously compute each coordinate in-
dependently. As this results in far too fine granularity, one has to to coarsen the
granularity by dividing the coordinate space into larger parts. A first improvement
is to consider whole rows instead of single coordinates which allows us to paral-
lelise via the given expression:
rows :: [[Coord]]

img = flattenRs (outer1 (trace s) rows)

To coarsen the granularity even more lists of rows can be grouped to form chunks:
rows :: [[[Coord]]]

img = flattenCs (outer1 (gmap1 (trace s)) rows)

When changing the chunk representation to
rows :: [Set [Coord]]

the old img function still works. Finally we will introduce a more complicated parti-
tioning. As computational complexities vary greatly over the coordinate space, the
partitionings shown above will usually not produce partitions of similar complex-
ity. A better way is to divide the two-dimensional coordinate space into differently
sized areas by using a quad tree partitioning:
data Quad a = Leaf a

| Node (Quad a) (Quad a) (Quad a) (Quad a)

instance Abs1 Quad where

null1 = Nothing

suco1 (Leaf a) =

("Leaf", (([a],[]), \([a’],_) -> Leaf a’))

suco1 (Node a b c d) =

("Node", (([], [a,b,c,d]),

\([],[a’,b’,c’,d’]) -> Node a’ b’ c’ d’))

Figure 6.11 shows a simple quad tree partitioning where each box represents a leaf
and contains a list of all coordinates of that area. As each box represents about the
same estimated amount of computational complexity, the finer division of the upper
left corner shows that more complex calculations are expected for that area. The

6.4. GENERIC PARALLEL MAPS 123

code used so far can even now easily be adapted for the new partitioning scheme:
quad :: Quad [Coord]

img = flattenQ (outer1 (trace s) quad)

In all cases the existence of functions for flattening the partitioning back to a list
representation has been preassumed. The use of generic skeletons has enabled us
to quickly switch partitioning schemes. Without generic skeletons a lot more work
would have arisen.

124 6. DATA PARALLELISM

7. Control Parallelism

”... or after the computation of the value it produces?”
Introduction of Meijer et al.[151] (continued from Chapter 6)

7.1 Motivation

In an Eden program, parallel control can be realised in different dimensions:

• Small-scale control comprises the use of single process applications created in
different locations of a program without being organised in a joint context like
a higher-order function. Due to the lack of encapsulation it is hard to create
and coordinate parallelism, as processes are hard to relate to each other to
gain simultaneity and thus parallelism. Therefore, such an approach is rare
in Eden.

• Large-scale control is usually captured in a higher-order function and encap-
sulates a pattern of parallelism together with a defined strictness behaviour.
As the activity of data parallelism is limited by data, the activity of control
parallelism is limited by state. Therefore most often an explicit (or sometimes
implicit) state is involved, which steers termination. As usually a single pro-
cess keeps that state and decides on termination, a method to determine the
current global state is needed. Often this can be done by observing and in-
terpreting communication, but at times it may nevertheless be necessary to
include explicit termination detection algorithms in the sense of distributed
programming[146] . Large-scale control can differ in its nature:

– A major difference is interaction: Most Eden programs are transforma-
tional, as they transform input values to output values representing a
computation. Reactive systems[116] , however, are creating a system of
interacting processes connected by lazy streams, ruled by state, and re-
acting to events. They are not easy to express within functional program-
ming languages, as their specification requires complex mutual recursion
and stream interactions.

– Related to the former is the difference between distributed systems and
parallel systems. While the former aims at creating stable, long-term

125

126 7. CONTROL PARALLELISM

process systems on heterogeneous nodes accepting long latencies, the lat-
ter is aiming at executing a computation in the shortest possible time on
a homogeneous system with low latencies. Both require extremely differ-
ent methods of control parallelism.

– Task grainsizes, which can vary between regular and irregular, deter-
mine to some extent the kind of control that is used to execute them in
parallel. This is because efficient execution of irregular tasks requires a
different coordination model than the execution of regular tasks.

– As described in Section 6.1, the execution of a parallel algorithm is often
ruled by internal dependencies. These determine the possible amount
of overlap between processes, which is in essence the degree of paral-
lelism. Synchronous activities require common waiting points, while
asynchronous activities allow for time-savings due to overlap.

There exists a wealth of control-parallel skeletons in the categories shown above.
In this Chapter, we will deal with three special cases:

• Streams are commonly used within many Eden skeletons. To deal with them
in a safe way is not always easy, as deadlocks can easily occur. We will show
a set of methods for dealing with them.

• Tasks of irregular size can be executed efficiently by a master-worker skele-
ton. Some algorithms, however, require extensions of that scheme which we
will present here.

• Long communication distances within the Eden process tree can be alleviated
by introducing dynamic channels cross-connecting processes. We present an
implementation of the Hypertree, which represents a binary process tree with
additional Hypercube-like cross-connections.

Section 7.2 shows problematic situations that may arise when dealing with
streams and discusses methods for solving them. In contrast to the easy to
handle regular tasks, irregular tasks are also common and require special
treatment: Section 7.3 shows how this can be done with the Workpool scheme.
The connections between Eden processes (if dynamic channels are not used)
form a tree; in the worst case, it can require many hops to communicate
between two processes. Section 7.4 describes the Hypertree skeleton for
introducing short-cuts into that tree.

Parts of the chapter are based on our EuroPar paper[173] .

7.2 Dealing with Streams

Infinite lazy lists (as known as streams) can enhance your parallel functional pro-
gram in many ways. However it is not all roses: We show some caveats which occur
in daily stream programming together with techniques on how to avoid them. The

7.2. DEALING WITH STREAMS 127

results of this subsection will then be used in the next subsection to define a skele-
ton based on stream communication.

7.2.1 Introduction

A stream is an infinite sequence of values. In a lazy functional language like
Haskell they can be modelled by lazy lists. Due to non-strict evaluation these can
be defined without running the risk of non-termination. Typical well-known func-
tions for stream-generation include: repeat, replicate, iterate, and cycle. These
share a common basic scheme of circular reference and rely on the combination of
non-strict evaluation and sharing (or memoization):

ones :: [Int] repeat :: a -> [a]

ones = 1 : ones repeat x = xs where xs = x:xs

One basic advantage of streams is some kind of aspect-orientation: Normally one
would write specific functions which combine both the construction of a data struc-
ture and a function processing it; now one can separately define the data structure
and the processing function:

fibs_lt n = flt 1 1 where flt x y | x > n = []

| otherwise = x : flt y (x+y)

↓Separation

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

fibs_lt n = takeWhile (<n) fibs

When dealing with streams we faced a couple of problematic constellations, espe-
cially when multiple streams are connected and interdependent. In the following
we will show in each subsection a small example exposing a typical problem when
using streams and give a solution to the problem or sketch a way showing how to
avoid it. For a more complete presentation even quite basic problems are included.
A combination of all these solutions will be used in the next section to define a
substantial stream-processing skeleton in the parallel Haskell dialect Eden.

7.2.2 Delayed Matching

The following describes a classical client/server relationship. A client executes a
stream of tasks and produces a stream of results. The server receives the workers’
results and generates new tasks. Note that this mutual dependency can only be
opened by including an initial task as the first element of the server’s task list.

client :: ([Task] -> [Result]) -> [Task] -> [Result]

client execute ts = execute ts

server :: Task -> ([Result] -> [Task]) -> [Result] -> [Task]

server initialTask generate rs = initialTask : generate rs

128 7. CONTROL PARALLELISM

tasks = server init gen results -- init, gen, ex de-

results = client ex tasks -- fined elsewhere

Now imagine a server checking the client’s status first:

server :: Task -> ([Result] -> [Task]) -> [Result] -> [Task]

server initialTask generate (r:rs)

| clientOK r = initialTask : generate (r:rs)

| otherwise = error "Client not working!"

As matching the results (r:rs) (which do not yet exist) occurs before generating
the first task, this will result in deadlock. Typical solutions include:

• Using lazy matching by taking the pattern ~(r:rs)

• Using selection functions head and tail over the pattern rs

Both postpone the matching of the argument against cons from the function enter-
ing time to the later expression evaluation time. In general it is useful to defer the
matching of arguments to the latest possible point in time.

7.2.3 Incremental Functions

Imagine the client is given the following function for task execution which counts
the number of incoming tasks and then creates an average result which is repli-
cated numTasks times:

ex :: [Task] -> [Result]

ex ts = replicate numTasks averageResult

where numTasks = length ts

averageResult = f ts numTasks

The system will again block immediately trying to calculate the length of the task
list which does not yet exist completely. The ex function is monolithic, which means
that it will not yield a part of its result until it has completely consumed its argu-
ments. As Hinze[92] puts it:

7.1 Definition (Monolithic)
A list-processing function f :: Eq b => [a] -> [b] is monolithic if

∃n.∀m, 0 < m < n : f . first m = undefined

where

first :: Int -> [a] -> [a]

first 0 _ = []

first _ [] = undefined

first n (x:xs) = x : first (n-1) xs

7.2. DEALING WITH STREAMS 129

Causes for getting monolithic functions include:

• Problem-inherent dependencies. The reverse of a list cannot be calculated
incrementally, although a stream of partial results can be given (see next
section).

• Unnecessary tailrecursion. Tailrecursion often accumulates the final result
in a list parameter and releases it only when a condition has been met. In-
stead these functions can be transformed to avoiding the accumulator and
immediately building the final result which is thus visible even if it is not yet
complete.

Now think of an alternative function for task execution like the map-based

ex :: [Task] -> [Result]

ex = map f where f t = ...

which of course runs smoothly. Such functions are called incremental, since for
each element of the argument stream an element of the result stream is produced.
Again more formal:

7.2 Definition (Incremental)
A list-processing function f :: Eq b => [a] -> [b] is incremental if

∀n : first n . f = first n . f . first n

Both definitions can be expressed as Haskell predicates which are suitable for lim-
ited testing purposes:

test :: Eq b =>

(a -> b -> Bool) -> ([a] -> [b]) -> [a] -> Int -> Bool

test t f list limit = and vs

where vs = [first n (f list) ‘t‘ first n (f (first n list))

| n <- [1..limit]]

is_incremental = test (==); is_monolithic = test (/=)

Limited because for example is_incremental may not terminate for non-incre-
mental functions instead of yielding False (semi-decidable).

Between monolithic and incremental functions other functions are located which
show a more stagnant character. The following function takes groups of five tasks
completely to give back a group of results and is (taken the definitions above) nei-
ther monolithic nor incremental:

stagnant = s 5 r

where s :: Int -> ([a] -> [b]) -> [a] -> [b]

s size reduce xs = reduce group ++ s size reduce rest

where (group,rest) = splitAt size xs

r xs = replicate (length xs) (average xs)

130 7. CONTROL PARALLELISM

7.2.4 Partial Result Streams

It is desirable to use only incremental functions on a system of interdependent
streams. Unfortunately some functions like length generate not streams but val-
ues of some base type. To keep streams flowing in an incremental way, one can
also produce instead of some base value an incremental stream of result approxi-
mations finally containing the full result (see length’); additionally, an inherently
monolithic function like reverse can be turned into a partial result version:

length’ :: [a] -> [Int] reverse’ :: [a] -> [a]

length’ = scanl (\x y -> x+1) 0 reverse’ = scanl (flip (:)) []

Even approximated results can be useful, in the case of length’ a function receiving
the partial result stream can issue some computation if a given bound is exceeded.

A similar method is given by Okasaki in Section 8.2.1 of his book[161] via intro-
ducing state. Reversing a list incrementally could then be done as follows:

data Reverse a = Working [a] [a] | Done [a]

reverse’ xs = Working xs []

exec (Working (x:xs) xs’) = Working xs (x:xs’)

exec (Working [] xs’) = Done xs’

A series of exec applications to the initial reverse’ application then executes the
reversal.

7.2.5 Threads

Very often one needs to merge streams into a single one. Three deterministic pos-
sibilities to do that are:

detDeepM, detFlatPairM, detFlatM, :: [[a]] -> [a]

detDeepM = foldr (++) []

detFlatPairM = foldr1 il

where il [] ys = ys

il (x:xs) ys = x : (il ys xs)

detFlatM xss | null xss = []

| otherwise = (heads xss) ++ (detFlatM (tails xss))

where heads [] = []

heads ([] :rest) = heads rest

heads ((x:xs):rest) = x : heads rest

tails [] = []

tails ([]:rest) = tails rest

tails ((x:[]):rest) = tails rest

tails ((x:xs):rest) = xs : tails rest

7.2. DEALING WITH STREAMS 131

detDeepM (as known as concat) follows each stream to its end and is therefore prob-
lematic. detFlatPairM merges elementwise but only for pairs of streams. detFlatM
finally works elementwise on all streams.

But what happens if a stream does not deliver elements, as it is common in a
parallel setting? All deterministic versions would block which rises the need for a
nondeterministic merge which is predefined in the Glasgow Haskell Compiler:

nondetMerge :: [[a]] -> [a]

nondetMerge = unsafePerformIO . nmergeIO

nmergeIO creates a thread for each substream which nondeterministically appends
elements to the merged stream via MVars.

7.2.6 Lazy List Comprehensions

Imagine some values vals are to be distributed over a set of streams depending on
a list of unsorted stream identifier keys out of a set of all keys. A good way to do
that is to use a list comprehension to define each substream by lazily traversing
vals together with the list of unsorted keys searching for all values matching each
substream key.

concDistr :: Eq a => [a] -> [a] -> [b] -> [[b]]

concDistr unsortedKeys allKeys vals = result

where vals’ = zip unsortedKeys vals

result = [[v | (uk,v) <- vals’, uk == k] | k <- allKeys]

7.2.7 Accumulations and Limited Access

Searching an infinite stream (with the purpose of eliminating duplicate elements)
is a bad idea:

nub1, nub2, nub3, nnn :: Eq a => [a] -> [a]

nub1 [] = []

nub1 (x:xs) | elem x xs = nub1 xs

| otherwise = x : nub1 xs -- keep last occurrence

Alternatively one can accumulate the first occurrences of each element in the stream
and delete forthcoming duplicates or filter out duplicates explicitly. Both versions
create space leaks:

nub2 = rm []

where rm acc [] = []

rm acc (x:xs) | elem x acc = rm acc xs

| otherwise = x : rm (x:acc) xs

nub3 [] = []

nub3 (x:xs) = x : nub3 [e /= x | e <- xs]

132 7. CONTROL PARALLELISM

A better alternative to creating a second list is to lazily refer back to the so far
generated list of unique values. This implies that a counter has to be kept which
describes the number of unique values found so far; this counter is then used by
a version of the elem function to avoid searching for not yet existent values in the
result list. The resulting function is more space-efficient than its predecessor since
no intermediate data structure has to be garbage collected.
nnn vs = res

where res = n’ vs 0

n’ [] _ = []

n’ (x:xs) l | elem’ x res l = n’ xs l

| otherwise = x : n’ xs (l+1)

elem’ :: Eq a => a -> [a] -> Int -> Bool

elem’ e ~(x:xs) l

| l == 0 = False

| otherwise = if e == x then True else elem’ e xs (l-1)

elem’ e [] l = False

7.2.8 Stream Spreading

When communicating via streams one most often sends nested tuple values. For
individual processing these usually have to be split from a stream of tuples into a
tuple structure whose elements are streams, for example via using unzip repeat-
edly:
spread :: [(a,(b,[c]))] -> ([a], ([b], [[c]]))

spread xs = (as, (bs, css)) where (as, ys) = unzip xs

(bs, css) = unzip ys

Meta-programming with Template Haskell (as shown in Chapter 3) can be used
to create the needed spread version automatically. Figure 7.1 shows the function
mkSpread, which creates the needed function version. The auxiliary function buildP

is not shown as it is almost identical with buildE. The initial call is a top-level
splice which calls mkSpread with a structure describing the tuple nesting. In this
case, spread will be created for (a,(b,c)):
$(do let empty = ListE []

let tuplestruct = TupE [empty, TupE [empty, empty]]

let spread_fct = mkSpread tuplestruct

return spread_fct)

After expansion the splice will be replaced by the needed version of spread.

7.3 Dealing with Irregular Task Sizes

Parallelism contained within an algorithm reveals itself in the form of (fully or
mostly) independent pieces of work. Determined by the nature of the algorithm
and its underlying data structures these pieces (or tasks) can either be

7.3. DEALING WITH IRREGULAR TASK SIZES 133

mkSpread :: Exp -> [Dec]

mkSpread s = [FunD "spread" clauses]

where clauses = [Clause ps1 b1 [], Clause ps2 b2 [ValD pat b []]]

ps1 = [ListP []]

b1 = NormalB (buildE s (repeat (ListE [])))

ps2 = [ConP "GHC.Base::" [ps2’, VarP "rest"]]

ps2’ = buildP s [VarP [c] | c <- [’a’,’b’..]]

b2 = NormalB (buildE s lists)

lists = [AppE (AppE (ConE "GHC.Base::") (VarE [c]))

(VarE [c,’s’]) | c <- [’a’,’b’..]]

pat = buildP s [VarP [c,’s’] | c <- [’a’,’b’..]]

b = NormalB (AppE (VarE "spread") (VarE "rest"))

buildE :: Exp -> [Exp] -> Exp; buildP :: Exp -> [Pat] -> Pat

buildE (TupE vs) ls = TupE rs

where (rs, _) = trav vs ls

trav ((ListE []):rest) (l:ls) = (l : r, ls’)

where (r, ls’) = trav rest ls

trav ((TupE ws):rest) ls = ((TupE rec):r,ls’’)

where (rec, ls’) = trav ws ls

(r, ls’’) = trav rest ls’

trav [] ls = ([], ls)

Figure 7.1: Template Haskell generation of spread (buildP omitted)

• regular, which means that the amount of processing time is approximately
the same for each piece of work (assuming a homogeneous set of processing
nodes)

• or irregular, which means that the pieces differ considerably. As their true
complexity can often hardly be estimated, it is also not easy to combine them
to form a collection of similarly sized tasks.

Regular tasks are usually organised in a collection and lend themselves to being
processed with data-parallel skeletons. These are perfectly suited for distributing
equally-sized tasks over a network of uniform computing nodes to easily achieve a
predictable load-balance.

On the other hand, uneven task sizes arise naturally from many problems and
are often an obstacle to static parallelisation. Even if data structures are divided
into portions of equal sizes, this does not imply that the amounts of work induced
by those portions are also equal. Take for example the parallel calculation of the
Mandelbrot set [119] . This set is computed over a range of complex coordinates by
iterating a function until a certain approximation has been reached; the number
of iterations needed determines the color of the corresponding pixel. Some pixels
need only a few iterations, while others need many more. As computation-intensive
pixels are grouped together, a regular partitioning leads to irregular granularity:

134 7. CONTROL PARALLELISM

In this graphic, white pixels represent short and black pixels represent long com-
putation times. If these partitions are equally distributed over the parallel nodes,
a serious load-imbalance would arise. (But if portions have to be laid out evenly in
a static manner, a partitioning into portions of varying sizes would be necessary.)

Such irregular tasks, on the other hand, cannot be handled that easily. Within
parallel dialects of Haskell the classical static distribution schemes (like parallel
map) can hardly establish load-balance given unevenly sized tasks; therefore dy-
namic task distribution schemes are used. The well-known workpool scheme (also
known as farm, master-worker, or client-server)[119] is mostly used to compensate
for such irregularly sized tasks: A master administrates a statically fixed task pool
out of which tasks are gradually assigned to currently idle workers, leading to a
balanced workload. Such a scheme is often expressed as a high-level code template,
known as a skeleton[45, 176] .

In the following subsections we will present a series of Eden workpool skeletons
(see also our previous work[119, 173]), each tailored for a different purpose. Together
they provide means for dealing with irregular task sizes in many facets.

7.3.1 Basic Workpool

Within the basic workpool[119] , a master process keeps a pool of tasks which are
distributed to a set of worker processes on request. When a worker receives a task,
it solves it and sends back the result which is interpreted as a request for new
work. This way each worker is busy most of the time and load balance is kept as
tasks are assigned depending on the current work distribution.

M

W W W

�
�

�
��+

t
�

�
�

��3

r

Figure 7.2 shows the code for the basic workpool. The skeleton takes as arguments:

• the number of worker process that should be created (having n nodes, one
would ideally create n− 1 workers and leave one node for the master process)

7.3. DEALING WITH IRREGULAR TASK SIZES 135

wpool :: (Trans t, Trans r) =>

Int -> -- #workers

Int -> -- prefetch size

(t -> r) -> -- worker function

[t] -> [r] -- tasks, results

wpool np prefetch f tasks = results where

fromWorkers = eagerInst1 workerProcs toWorkers

workerProcs = [process (zip [n,n..] . map f) | n<-[1..np]]

toWorkers = distribute tasks requests

(newReqs, results) = (unzip . merge) fromWorkers

requests = initialReqs ++ newReqs

initialReqs = concat (replicate prefetch [1..np])

distribute :: [t] -> [Int] -> [[t]]

distribute tasks reqs = [taskList reqs tasks n | n<-[1..np]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)

| otherwise = taskList rs ts pe

taskList _ _ _ = []

Figure 7.2: Code for Basic Workpool

• a prefetch number for ordering tasks in advance (prefetch n means, that for
each worker n requests for work are preassumed)

• a function which each worker executes and the task set.

The whole data flow of the skeleton is modelled as a set of interdependent streams;
within this basic workpool, stream handling is not yet difficult. At first, all worker
processes are created via the generic function eagerInst1. This function takes a
structure of process abstractions and another structure of arguments and eagerly
creates all processes. The whole result is a structure of results:

eagerInst1 :: (Abs1 t, Trans a, Trans b) =>

t (Process a b) -> t a -> t b

eagerInst1 ps xs = let insts = gZipWith1 (createProcess) ps xs

in tl1 insts

toWorkers is a list of argument streams (one for each worker) which is created by
distributing the tasks of the task pool depending on the current requests for work.
The requests for work are defined by a set of initial requests determined by the
prefetch parameter, together with the new requests which are derived from the
results sent by the workers. The worker processes themselves operate on a stream
of tasks by mapping their worker function and a marking function onto the task
stream. The marking function just pairs the result with the worker number; this
information is later used as a new request.

136 7. CONTROL PARALLELISM

There are two peculiarities influencing the performance of the workpool which
are connected to the way communication is handled by the Eden implementation.
Messages are sent via one of the typical message-passing libraries PVM [160] or
MPI [152, 153] , which is quite costly and not worthwhile if the message is smaller
than a certain limit. In contrast, programming in a parallel function language
like Eden can easily tempt the programmer to define communication ’in the small’
by encouraging the use of stream processing of small elements. This can lead to
small data structures being transmitted via costly message sending which has to
be avoided. Two situations can occur:

• Task sizes are allowed to vary, as the dynamic assignment to workers will
compensate their different sizes. Too small tasks on the other hand can harm
the performance, as they may be delivered by costly messages. Therefore task
sizes should be allowed to vary only above a certain level.

• As with every parallel program it is important to quickly get every paral-
lel node working. For the workpool this means, that in the beginning every
worker has to start working as quick as possible. The prefetch parameter
shown above will speed up the distribution of work in the starting phase of
the workpool, as the master will send a supply of tasks to each worker inde-
pendent on receiving the corresponding requests. In the starting phase this
eliminates the typical pause consisting of the pause between sending a result
(i.e. a request) and receiving a new task.
Another improvement is the addition of an initial task to the worker function
in the style of the direct mapping skeleton of Chapter 6. Then each worker
process is created carrying its first task already in itself:

wpool np prefetch f tasks = results where

...

workerProcs = [process (\ts -> (zip [n,n..] . map f)

((ts1!!n):ts)) | n <- [1..np]]

(ts1, ts2) = splitAt np tasks

toWorkers = distribute ts2 requests

...

7.3.2 Dynamic Workpool

In contrast to the workpool just shown, some applications expose their full task set
only successively as the computation proceeds and need therefore a more general
workpool skeleton whose worker processes are allowed to generate new tasks dy-
namically. Then a task will not only produce a result, but possibly also a set of new
tasks for the global task pool. This introduces the problem of termination detection,
which was not a problem before since a statically fixed task number makes it easy
to determine termination: Given n tasks, the master can terminate the workpool
if n results have been received. Now special care has to be taken to account for

7.3. DEALING WITH IRREGULAR TASK SIZES 137

a dynamically growing and shrinking task pool. Emptiness of the the task pool
does no longer mean that there is no more work to do, since new work may still be
created by active workers.

M

W

�
�

�
��+

t
�

�
�

��3

r,[t]
. . .

To make things even more complicated, dynamically created tasks may be incom-
plete (e. g. due to limited local data) and need to be combined with other incom-
plete tasks before submission to a worker. Therefore means have to be provided
for traversing and transforming the task pool on the fly. But since the task pool is
often modelled as a lazy list and woven into a network of interdependent streams,
one has to be extra careful during a transformation. When combining partial tasks,
deadlocks can easily occur by searching for not yet existent partial partner tasks;
additionally, all usual techniques (like delayed pattern matching and incremental
functions shown in the previous Section) when dealing with lazy lists have to be
considered.

M ⇒ t

W W W

t/2
�

�
�

��3... t/2
Q

Q
Q

QQk

Therefore we extend the basic workpool scheme by two new features:

• Dynamic task generation. When a worker processes a task new tasks may
arise. These will be sent back to the master and appended to the global task
pool, preserving task order.

• Task pool transformation. Sometimes it is helpful to be able to process and
transform the task pool. A given transformation function tt will be applied
to the task pool to combine incomplete tasks and replace them by complete
ones, possibly changing task order.

The resulting basic interaction scheme is shown in Figure 7.3. All connections
shown are stream connections; the thick pointers touching the worker processesmW are interprocess connections while all others reside within the master process.
The diagram directly reflects the informal workpool description given above to-
gether with our two extensions. After a task pool transformation by the function
tt, tasks are distributed (depending on the requests at hand) over the idle worker
processes. The list of result streams is then merged and unzipped via spread to
yield a result stream, a list of streams containing new tasks, and a list of new
requests. Figure 7.4 shows the full code for the extended workpool. Parameters
are: The number of processors available, the number of advance requests for each
worker, the worker function, the transformation function for the task pool, and fi-
nally a set of initial tasks. At first, the workpool demands the first cons of the list

138 7. CONTROL PARALLELISM

"!

W

"!

W

...

toWorkersfromWorkers

concDistrH
H

H
H

H
HHY

�
�

�
�

�
���

�
�

�
�

���

H
H

H
H

HHY
merge�spread

results
6

newTasks
- merge -

newReqs
-

�
�

�
�task pool - tt

?

�
�

�
�requests

?

Figure 7.3: Stream interconnections of workpool (seen from master process)

of worker processes via touch to trigger their creation using the predefined parallel
zip function eagerInst1, then the results are given back. concDistr is taken from
Section 7.2.6, and mkSpread from Section 7.2.8. The main skeleton body is divided
into two parts:

The stream part directly transfers Figure 7.3 into a set of interdependent stream-
processing functions. A set of workerProcs is created, which apply the worker func-
tion f to their input and attach their id number to the result as a request for new
work. Their input toWorkers is a list of streams, each of which contains tasks

for the corresponding worker according to its requests. The initialRequests are
built based on an interleaved sequence (each of size prefetch) of worker numbers
and provides an initial supply of tasks for each worker. The worker’s outputs are
merged to a single workerstream which is spread to yield a tuple of streams instead
of a stream of tuples. New requests are appended to the list of pending requests
while new tasks are added to the task pool which gets transformed by tt. Now
one could finish the transfer by extracting the results out of spread via x. Wrong,
because this would result in non-termination since after processing all tasks the
master would wait forever for further worker messages containing new tasks.

Therefore the state part has been introduced to care for termination detection
and result accumulation. The terminate function carries a state consisting of a set
of incomplete tasks, the number of complete tasks in the task pool, the accumulated
results, and the number of accumulated results. In addition to the continuous eval-
uations in the stream part, terminate traverses workerstream a second time in a
stepwise fashion. For every answer from a worker process, terminate will run tt on
the incomplete tasks extended by the received new tasks and update its t counter
accordingly. The result counter r is incremented by 1, as every answer delivers
exactly one result. If then the new counters t’ and r’ are equal, which means
that for every complete task issued to the task pool a result has been received, the

7.3. DEALING WITH IRREGULAR TASK SIZES 139

wpool :: (Trans t, Trans r) =>

Int -> Int -> ([t] -> [(r, [t])]) ->

(([t],[t],[t],Int) -> ([t],[t],[t],Int)) ->

[t] -> [r]

wpool np prefetch f tt initialTasks =

(touch fromWorkers) ‘seq‘ results

where touch [] = () -- Demand first constructor to

touch (_:_) = () -- initiate worker creation

-- 1) Streams and communication ---------------------------

fromWorkers = eagerInst1 workerProcs toWorkers

workerProcs = [process (zip [n,n..] . f) | n<-[1..np]]

toWorkers = concDistr requests [1..np] tasks

requests = initialReqs ++ newReqs

initialReqs = concat (replicate prefetch [1..np])

taskpool = initialTasks ++ (merge newTasks)

(_, _, tasks, _) = tt (taskpool, [], [], 0)

workerstream = merge fromWorkers

(newReqs, (x, newTasks)) = spread workerstream

-- 2) State and termination -------------------------------

([], _, results, _) = terminate

([], length initialTasks, [], 0)

workerstream

terminate (is,t,rs,r) ((_,(res,ntasks)) :ws)

| t’ > r’ = terminate (is’, t’, res:rs, r’) ws

| t’ == r’ = (is’, t’, reverse (res:rs), r’)

| t’ < r’ = error ("Will never happen.")

where ([], is’, _, n) = tt (is++ntasks, [], [], 0)

t’ = t + n

r’ = r + 1

terminate _ []

= error "Workerstream empty!"

-- TH splice creates: spread :: [(a,(b,[c]))] -> ([a], ([b], [[c]]))

$(do let empty = ListE []

let structure = TupE [empty, TupE [empty, empty]]

let spread_fct = mkSpread structure

return spread_fct)

Figure 7.4: Workpool with dynamic task generation and task pool transformation

140 7. CONTROL PARALLELISM

workpool terminates giving back the reversed list of results. If, on the other hand,
t’ > r’, then the remaining incomplete tasks together with the new counters and
the result list will be used for a tail-recursive call to terminate. The remaining
case t’ < r’ can never happen since every step will yield only one result.

When constructing a proper task pool transformation function tt for the work-
pool one has to be careful because:

• In the stream part tt is applied once to a stream of tasks while in the state
part it is applied many times to a finite task pool. It has to behave correctly
in both situations.

• As interdependent task and result streams are used it is necessary to produce
as much output as possible with as few inputs as possible. Therefore delayed
matching (via the lazy matching operator ~ or selection functions head and
tail) and the earliest possible production of results should be used.

• Transformation often means combination or comparison which implies search-
ing the task pool. As the task pool is potentially infinite one runs the risk of
searching for (and then blocking on) not yet existent tasks.

As tt will often in some way have to combine incomplete tasks to complete ones,
we present in Figure 7.5 a predefined function ttransform for doing this while
taking some care of the aforementioned dangers. One has to provide only two
arguments to ttransform to get a full version of tt: Firstly, a predicate cp, which

ttransform,ttransform2 :: (t -> Bool) -> -- complete, cp

([t] -> ([t],[t],Int)) -> -- combine, co

([t], [t], [t], Int) -> ([t], [t], [t], Int)

ttransform cp co old@(tasks, incomplete, complete, n) -- Step 1

= if (not (null incomplete))

then let (ct,it,d) = co incomplete

in if (not (null ct))

then ttransform cp co (tasks,it,ct++complete,n+d)

else ttransform2 cp co old

else ttransform2 cp co old

ttransform2 cp co (t:ts, incomplete, complete, n) -- Step 2

| cp t = (tts1,iis1, t:ccs1, d1+1)

| otherwise = (tts2,iis2,ct++ccs2, d2+d)

where (tts1,iis1,ccs1,d1) = ttransform cp co

(ts, incomplete, complete, n)

(ct,it,d) = co (t:incomplete)

(tts2,iis2,ccs2,d2) = ttransform cp co (ts, it, complete, n)

ttransform2 cp co ([],incomplete, complete, n) = ([], it, ct, n+d)

where (ct,it,d) = co incomplete

Figure 7.5: Higher-order function ttransform for task pool transformation

7.3. DEALING WITH IRREGULAR TASK SIZES 141

checks whether a given task is complete or not. Secondly, a function co which
takes a set of mixed complete and incomplete tasks and tries to combine as many
incomplete tasks as possible. Its results are the already complete tasks together
with the newly completed tasks, the currently not combinable incomplete tasks,
and the number of newly generated complete tasks.

To avoid the above mentioned danger of blocking when trying to find partners
for incomplete tasks we will make only a single traversal over the task list and
use an accumulator to carry not yet combined tasks with us. For that purpose
ttransform carries a state argument consisting of the remaining task stream, the
accumulator, a stream of complete tasks (its result), and the number of new com-
plete tasks (needed to correct termination detection counters). ttransform is di-
vided in two steps: The first step postpones any matching on the input task stream
and tries to combine incomplete tasks inside the accumulator as long as possible.
Only if that fails, it matches the first task of the task stream and acts depending
on its completeness. Complete tasks are immediately passed to the output stream
while incomplete ones are tried to be completed. By considering data dependencies
the user has to make sure that enough complete or completable tasks are generated
in the right order by his application.

7.3.3 Nested Workpool

A growing number of workers or tasks induces heavy traffic at the master pro-
cess which then apparently quickly becomes a bottleneck for the whole workpool
scheme; additionally the dynamic task pool transformation means even more work
for the master process which worsens the bottleneck it already presents. This can
be alleviated by having more independent workers which manage a buffer of tasks
for themselves. In other words: We will replace each worker by another workpool
for local task distribution to distribute the administrative load.

Figure 7.6 shows the code for such a nested workpool with an even arbitrary
nesting depth ≥ 1. For depth 1 the previously defined workpool is returned. The
depth is controlled by the (equal) length of the first three argument lists which
contain the number of workers (or submasters respectively), the prefetch, and the
task transformation function for each level of the workpool tree. The nesting itself
works by folding the zipped arguments for each level with the wpool function. The

wpN :: (Trans t, Trans r) =>

[Int] -> [Int] -> -- #workers, prefetches

[(([t],[t],[t],Int) -> ([t],[t],[t],Int))] -> -- transformations

([t] -> [(r,[t])]) -> -- worker function

[t] -> [r] -- tasks, results

wpN ns pfs tts f initTasks = results where

(results,_) = unzip ((foldr fld f (zip3 ns pfs tts)) initTasks)

fld (n,pf,tt) wf = \ts -> zip (wpool n pf wf tt ts) (repeat [])

Figure 7.6: Nested workpool

142 7. CONTROL PARALLELISM

M | |tt1| |tasks

/ \ | | | |

wpN [2,3] [6,2] [tt1,tt2] w tasks M M 2|6|tt2| |

/|\ /|\ | | | |

W W W W W W 3|2| |w|

Figure 7.7: Two-level example wpN call with process tree and argument distribution

worker function f is used to close the workpool tree with a set of worker leafs. Note
the use of repeat: No submaster will migrate tasks to masters above him, therefore
newly created tasks will only be sent by the worker leafs to their respective master
processes. For better understanding Figure 7.7 shows an example call of the nested
workpool together with the resulting process tree; additionally for each argument it
is shown to which level it applies. The termination detection of wpool fits smoothly
into this nesting.

7.3.4 Dynamic Workpool with Stateful Master

Due to redundancies workers within a dynamic workpool may generate new tasks
which are equal or (in comparison to others) even outdated and unneeded. This is
the case for example for branch-and-bound algorithms: A tree of solutions is tra-
versed searching for a maximal solution. Using the currently maximal solution
whole parts of the search tree can be pruned and left out. Such methods require a
local state, in which the current progress of the algorithm can be stored. The dy-

wpoolS :: ...

(t -> r) -> -- worker function

(state -> [r] -> (state, [t])) -> -- tt function

state -> -- initial state

[t] -> state -- initial tasks, result

wpoolS np prefetch function tt s1 tasks =

(touch fromWorkers) ‘seq‘ s2

where ...

(s2, newtasks) = tt s1 results

...

Figure 7.8: Dynamic workpool with stateful master

namic workpool can easily be adapted to carry state (see Figure 7.8). This is done
by cutting away the termination detection since now the master will trigger termi-
nation based on its own state. The task transformation function now traverses the
result stream and updates its initial state s1 depending on these results. Further-
more, it uses these results to generate the new tasks. This of course shifts work
from the workers to the master. As soon as the final state s2 has been generated
the workpool terminates.

7.3. DEALING WITH IRREGULAR TASK SIZES 143

7.3.5 Example

We have used the extended workpool of Section 7.3.2 to parallelise the alignment
of DNA sequences via the linear Needleman-Wunsch [155] algorithm. Although not
being very efficient, the algorithm serves as a good example for wavefront paral-
lelism [9] : Within a matrix structure the algorithm exhibits diagonal wavefront
dependencies (see Figure 7.9) which can be expressed as tasks for execution via
the extended workpool. More specifically: Each block depends on its two left and
upper neighbours in the matrix. Therefore each result produces incomplete tasks
for its right and lower (not yet computed) neighbours. Two of these incomplete
tasks will then be combined in the task pool to form a new complete task. Only
elements of the first row and the first column can be computed given only one of
their respective neighbours.

Figure 7.10 shows on the left the relative speedup of the parallel sequence align-
ment algorithm using the extended workpool. All measurements were taken on a
cluster of nine Linux PCs connected via 100 Mbit ethernet. The PCs are not com-
pletely identical, but this is compensated by the dynamic task distribution of the
workpool. Sequences of length 10.000 have been tested with a varying block par-
titioning. The figure shows that a medium task granularity (block size 500) has
paid off the most in our experiments. Larger tasks result in task shortage, while
smaller tasks induce too much administrative overhead due to their large number.
The nested workpool cannot be used to reduce that overhead, since tasks of differ-
ent subworkpools would have to be combined. We are aware that our unoptimised
implementation of a suboptimal algorithm is slower than modern imperative align-
ment solutions; it nevertheless serves as a good example of wavefront parallelism
for our workpool.

Figure 7.10 shows on the right an activity diagram for the execution of the par-
allel sequence alignment on nine processors (length 10.000, block size 500). Each
row represents the activity of one processor during execution, starting on the left
and ending on the right at around 45 seconds. White areas represent phases of in-
activity or blocking on not yet available data (combined for better visibility), while
black areas represent active computation or communication. The lowest row (pro-
cessor 1) contains the master process which shows constant activity in distributing
and combining tasks. The remaining rows show the activity of the worker pro-
cesses. These are evenly loaded with tasks. Both start and end phase of the com-
putation show clearly the growing and shrinking task availability induced by the
diagonal wavefront traversal of the matrix described in Figure 7.9.

r13

r12

r11

r22

r21

?

?-

-

-

t

t
2

t

t

Creation of task t23:
1) t13 ends, yields r13, releases t14 and (t

2
)23 into the task pool

2) t22 ends, yields r22, releases (t
2
)23 and (t

2
)32 into the task pool

3) tt creates t23 in the task pool
4) t23 will later release (t

2
)24 and (t

2
)33 into the task pool

Figure 7.9: Task creation for PSA (t
2

represents an incomplete task)

144 7. CONTROL PARALLELISM

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9

R
el

at
iv

e
sp

ee
du

p

Number of processors

10.000 x 10.000

Linear speedup
block size 250
block size 500

block size 1250

Figure 7.10: Relative speedups and activity diagram (length 10.000, 9 nodes)

7.4 Dealing with Long Communication Distances

On the first sight, Eden process trees have to follow the tree-like topology of func-
tional expressions. Due to the restrictions and disadvantages of this topology in a
parallel setting, it is possible to break up this topology to form more flexible ones
(encoded as skeletons) using dynamic channels. In this section we introduce cross
connections into the Eden process tree forming a hypertree.

7.4.1 The Eden Process Tree

In a functional program, expressions and functions are nested and form, by and
large, a rose tree. Due to laziness circles can be introduced, which enable the
programmer to concisely define infinite data structures (like the Hamming num-
bers shown in Subsection 5.3.2). The same is true for Eden, with the difference
that process applications are inserted into the tree. Therefore the process topology
normally created also resembles a rose tree with communication flowing up and
down the tree. This is satisfactory as long as not too much communication between
processes of different branches occurs. If this happens (see Figure 7.11), the long
distances with many process-to-process hops will make communication expensive.
The root process will then additionally be a bottleneck, which we have already seen
when dealing with the workpool master in the previous section.

If processes are created carelessly, the resulting communication topology can
even be totally different to what was planned in the first place. As has been shown
by Berthold and Loogen[16] , an intended ring of processes can degenerate to a tree
with all communication flowing through the root process. This situation can be
solved by using dynamic channels to cut short communication ways by directly
linking two processes. Using these, the standard communication topologies ring,
torus, and hypercube have already been implemented.

Looking again at the conventional Eden process tree, it is clear that extensive
communication in an unforeseen nature between remote nodes will be quite expen-

7.4. DEALING WITH LONG COMMUNICATION DISTANCES 145

j

j j

j j z z

?6

���������������* HHHHHHHjH
HHHHHHY

�
�

��	�
�

���

@
@

@@I@
@

@@R?
6

�
�

��	�
�

���

Figure 7.11: Conventional Eden process tree with long communication (four hops)

sive. As an alternative to using a hypercube, we will now look at another way to
introduce short-cuts into the tree while using less additional interconnections than
the hypercube does.

7.4.2 The Hypertree

The Hypertree[73, 58] has been designed to combine features of the hypercube and
the binary tree. It is basically a binary tree whose nodes are numbered level-wise
such that the children of node n are nodes 2n and 2n + 1; the parent of node n is
then node n div 2. Additionally, level-wise interconnections (see Figure 7.13) are
added between selected nodes. However, not all nodes on each level are connected;
instead, nodes which get a direct connection are chosen depending on their distance
in the tree.

Interconnections are added incrementally and level-wise. Firstly, for each level,
every pair of nodes whose number in binary representation differs in only one bit
is selected. Then for each pair the number of hops needed to reach each other
is counted; when determining the distance, the new interconnections above the
current level can already be used. For the largest distance, all pairs differing in
that bit are then connected via an additional connection. By doing so, for each
level the largest communication distance is reduced to one.

As an example, we will look at level 1. Level 0 contains only the root node and
is therefore skipped. In the following, we will count bits starting from the most
significant bit (the first 1 occurring when searching from the left). For example,
the node number 5 in binary representation is referenced bitwise as follows:

Bit 0 Bit 1 Bit 2
0 0 1 0 1

Figure 7.13 also shows the bit representations for four levels with a line marking
the most significant bit within each representation. The two nodes of level 1 then
differ in bit 1. Their distance is 2 and as this is the only pair a direct connection is
constructed:

146 7. CONTROL PARALLELISM

Level↓, MSB→ 1 2 3 4 5 6 7
001 2 → bit 1
010 3 2 → bit 1
011 3 4 2 → bit 2
100 5 3 4 2 → bit 1
101 3 5 6 4 2 → bit 3
110 5 7 3 6 4 2 → bit 2

...

Figure 7.12: Determination of address bits for node connection

rr r��� HHH

Level 2 is different: For bit 1 two node pairs occur with communication distance 3.
Two other node pairs (for bit 2) only have a distance of only 2, therefore the first
two pairs (bit 1) are connected:

rr rr r r r�� ��

rr rr r r r@@ @@

rr rr r r r��@@

rr rr r r r��@@

This is continued for the following levels. Figure 7.12 shows the communication
distances for each bit up to level 6. The longest distance within each level is chosen
for a short-cut and printed in bold style. The resulting bit numbers which deter-
mine node pairs connected by these short-cuts are shown in the last column. As
shown by Goodman and Séquin[73] , the bit positions can also be calculated via

b =
levelnumber

2z+1
+

1

2

where z is the number of consecutive trailing zeros in the level number in binary
representation. If the nodes defined by this method are connected, the hypertree of
Figure 7.13 is the result: A binary tree, within which the longest communication
distances are shortened by adding accurately chosen interconnections.

We will now implement the Hypertree as an Eden skeleton in a stepwise fash-
ion.

7.4.3 A Hypertree Skeleton for Eden

Figure 7.14 shows the basic definitions used within the Eden hypertree skeleton.
Each node is identified via its code, which is represented as an Int. The skele-
ton will finally be modelled as a tree of processes connected by streams; via these
streams, messages Msg a b s will be routed. A message can be one of four types:

• Output contains a result which is always routed to the father node and in-
cluded into the result stream

7.4. DEALING WITH LONG COMMUNICATION DISTANCES 147

Level
0

1

2

3

4

m1 000|1

m2 00|10 m3 00|11

m4 0|100 m5 0|101 m6 0|110 m7 0|111

m8 |1000 m9 |1001 m10 |1010 m11 |1011 m12 |1100 m13 |1101 m14 |1110 m15 |1111

f f f f f f f f f f f f f f f f

����������

HHHHHHHHHH

�
�

�
�

�

@
@

@
@

@

�
�

�
�

�

@
@

@
@

@

�
�

�
�
�

L
L
L
L
L

�
�

�
�
�

L
L
L
L
L

�
�

�
�
�

L
L
L
L
L

�
�

�
�
�

L
L
L
L
L

�
�
�
�
�

D
D
D
D
D

�
�
�
�
�

D
D
D
D
D

�
�
�
�
�

D
D
D
D
D

�
�
�
�
�

D
D
D
D
D

�
�
�
�
�

D
D
D
D
D

�
�
�
�
�

D
D
D
D
D

�
�
�
�
�

D
D
D
D
D

�
�
�
�
�

D
D
D
D
D

Figure 7.13: A hypertree with binary node encodings (MSB marked)

• Payload is used for transmitting a value from one node to another

• Ref contains a reference to a dynamic channel and is used for building up
cross connections in the starting phase of the tree

• State contains a state generated by a node and is also routed always to the
father node which updates its internal state on arrival

The levelnumber function computes for a node the level in the tree to which it be-
longs. Functions for calculating the parent and the children of a node are based on
the standard level-wise ordering. More interesting is the partner function which,
for a given node, calculates its partner node to which it is connected via a hyper
connection. Every node has a partner except the father node. As we have seen in
Figure 7.12, the level number of a node can be used to calculate its partner node
address. To avoid constant recalculation of partner bits, the first 20 bits have been
precalculated; this is sufficient for 220 leaf nodes or 220+1 −1 nodes in total, which is
by far enough for a parallel system. Given a node address, the function first deter-
mines its level, then selects the bit to be changed out of the offsets list, determines
the most significant bit of the node address, and finally applies the offset to that
position to find the bit which has to be complemented for finding the node’s partner.

Messages are routed within the hypertree via a central function route (see Fig-
ure 7.15). It takes the addresses of the current and the destination node and cal-

148 7. CONTROL PARALLELISM

type Code = Int

father = 1

data Msg a b s =

Output b -- Output, route to father

| Payload Code Code a -- Payload Src -> Dst

| Ref Code Code (ChanName [Msg a b s]) -- DC Src -> Dst

| State s -- State to father

levelnumber :: Code -> Int

levelnumber code = find ((bitSize code)-1) code

where find counter c | testBit c counter = counter

| otherwise = find (counter-1) c

leftChild, rightChild, parent :: Code -> Code

leftChild code = shiftL code 1 -- x -> 2x

rightChild code = setBit (shiftL code 1) 0 -- x -> 2x + 1

parent code = shiftR code 1 -- x -> x div 2

partner :: Code -> Code

partner code = code’ where

code’ = complementBit code bit’

offsets = [1,1,2,1,3,2,4,1,5,3,6,2,7,4,8,1,9,5,10,3] -- height 20

offset = offsets!!((levelnumber code)-1)

bit’ = msb code (bitSize code) - offset

msb code cnt | testBit code cnt == True = cnt

| otherwise = msb code (cnt-1)

Figure 7.14: Binary coding of nodes and basic definitions

culates the next neighbouring node to which the message is forwarded. This way
the message travels node-wise to its destination while each node determines the
next node the message will be sent to. Messages can be routed in different direc-
tions captured by the datatype Route: up to the parent, left or right to the children,
or sideways via a hyper connection. Not every node offers every direction, as for
example a leaf node has no children. Additionally we have to be able to deal with
an incompletely constructed hypertree, as the calculations within the nodes are
allowed to start while the tree is still unfolding itself; this means, that in the be-
ginning a Hyper connection may not be available but is added later if the connection
has been established. Therefore the route function is also supplied with a set of
possible communication ways it may use at the moment the routing decision is
made.

The routing itself is driven by the level numbers of the source and the destina-
tion nodes. If the destination node is located on a lower level (towards the leafs),
the subtree of the current node has to be taken into account: If the destination node
is part of that subtree, then it can simply be routed downwards to one of its chil-

7.4. DEALING WITH LONG COMMUNICATION DISTANCES 149

data Route = Up -- 0: father

| Hyper -- 1: hyperspace

| Lefty -- 2: left child

| Righty -- 3: right child

route :: Code -> -- Current node

Code -> -- Destination node

[Route] -> -- Possible ways (always: Up)

Route -- Next stop

route me dst ways

| dst == father = Up

| me == dst = error "Self removed, should be intercepted earlier!"

| meL < dstL = if (dst ‘inSubtreeOf‘ me)

then if (dst ‘inSubtreeOf‘ (leftChild me))

then Lefty

else Righty

else if (elem Hyper ways && useful)

then Hyper

else Up

| meL >= dstL = if (elem Hyper ways && useful)

then Hyper

else Up

| otherwise = Up

where meL = levelnumber me

dstL = levelnumber dst

pme = partner me

useful = hdist pme dst < hdist me dst

hdist :: Code -> Code -> Int

hdist c1 c2 = sum [1 | b <- [0..(bitSize c1)], testBit c b]

where c = xor c1 c2

inSubtreeOf :: Code -> Code -> Bool

inSubtreeOf search root

| search == root = True

| search < root = False

| search > root = if (even search)

then inSubtreeOf (search ‘div‘ 2) root

else inSubtreeOf ((search-1) ‘div‘ 2) root

Figure 7.15: Routing within the hypertree

150 7. CONTROL PARALLELISM

father node leaf
?

6

out

?
6

?
6

�
���

�
��	

�
���

�
��	

@
@@R

@
@@I

@
@@R

@
@@I

-�
hyper -�

hyper

Figure 7.16: Data flow in Eden hypertree (father, node, and leaf)

dren. If it is not part of that subtree, the message has to change the subtree. This
is done first via checking if using a hyper connection is possible and useful. If it is
not, then the message is routed upwards. As shown by Goodman and Séquin[73] ,
a hyper connection is useful if the Hamming distance between the current and the
destination node is bigger than the Hamming distance between the node reached
via the hyper connection and the destination node. But a hyper connection is not
always the best choice, even if the Hamming distance is reduced; the sequence of
checks in the route function is needed to ensure proper routing, which is still not
optimal. If the destination node lies on the same or a higher level (towards the
father node) than the current node, it is checked whether a hyper connection is
useful. A message to the father node is always routed upwards.

We will now start to construct the skeleton itself. Figure 7.16 shows the all three
kinds of nodes contained in the tree together with their final stream connections.
The skeleton itself consists of two functions, the main function hypertree and the
auxiliary function hyperproc, which is an Eden process abstraction. The main part
of hypertree is shown in Figure 7.17. Its arguments consist of

• the number of levels,

• the worker function executed by each node (except the father node) which
essentially processes a stream of messages

• four arguments for keeping state,

• an input message stream and a result stream.

Its result is twofold: First, a sequence of side effects is touched. These consist of the
creation of the left and the right child process via the second function hyperproc we
will show later. Second, it returns its output outExtern. In total the father will act
as a message distributor. It merges the incoming streams from outside and from
its two children and routes them via distr either to the outside or to its children.
distr is then the central steering function of hypertree. It keeps a state which is
updated if

• using updateO when an output message arrives

• using updateC when a state message arrives.

7.4. DEALING WITH LONG COMMUNICATION DISTANCES 151

hypertree :: (Trans a, Trans b, Trans s2) =>

Int -> -- Tree height (height-1..0)

(Code -> [Msg a b s2] -> [Msg a b s2]) -> -- Node function (not father)

s -> -- / Initial state

(s -> s2 -> s) -> -- | Update state (child)

(s -> b -> s) -> -- | Update state (output)

(s -> Bool) -> -- \ Terminate?

[Msg a b s2] -> -- Input message stream

[b] -- Output stream

hypertree height nf init updateC updateO finished inExtern

| height >= 2 = side_eff ‘seq‘ outExtern

| otherwise = error "Height too small! (<2)"

where

side_eff = inLeft’ ‘seq‘ inRight’

inLeft’ = cP (hyperproc (height-2) (leftChild father) nf) outLeft

inRight’ = cP (hyperproc (height-2) (rightChild father) nf) outRight

cP = createProcess

inLeft = deLift inLeft’

inRight = deLift inRight’

inAll = inExtern ++ (merge [inLeft, inRight])

(outExtern, outLeft, outRight) = distr init inAll

distr st [] = ([], [], [])

distr st (Output b : is) | finished st’ = ([b], [], [])

| otherwise = (b:oe, ol, or)

where (oe, ol, or) = distr st’ is

st’ = updateO st b

distr st (p@(Payload s d v) : is) = if d == me

then error "Payload to father!"

else case way of Lefty -> (oe, p:ol, or)

Righty -> (oe, ol, p:or)

where (oe, ol, or) = distr st is

way = route me d ways

distr st (r@(Ref s d c) : is) = if d == me

then error "Ref to father!"

else case way of Lefty -> (oe, r:ol, or)

Righty -> (oe, ol, r:or)

where (oe, ol, or) = distr st is

way = route me d ways

distr st (State s : is) | finished st’ = ([], [], [])

| otherwise = distr st’ is

where st’ = updateC st s

ways = [Lefty,Righty]

me = father

Figure 7.17: The Hypertree skeleton

152 7. CONTROL PARALLELISM

The state triggers termination: If the finished function yields True, all output
streams are closed which leads to the successive shutdown of the hypertree.

The hyperproc function (see Figure 7.18) is the process abstraction which is run
for every node except the father which only deals with routing and state keeping.
Only one process abstraction is used to cover both internal tree nodes and tree
leafs; hyperproc is therefore divided in two parts. Definitions common to both are
shared (see Figure 7.19) and also part of the where block. We will leave out the de-
tails for the leaf implementation, as they are similar to the node implementation.
The process abstraction again first touches the side effects which trigger the fur-
ther tree creation. Then it gives back the outParent stream to its parent. In total,
all input streams are merged yielding inAll. Payloads aiming at the node itself
are separated and handed over to the node function nf for further processing. The
rest is merged with the output stream of the node function giving inAll’ whose
elements are routed to the fitting output stream. The first element sent to the
outside, however, is the dynamic channel reference href for connecting the node to
its partner. The routing itself is divided into two functions routeN1 and routeN2.
The first one is used while the hyper connection has not yet been established. It
only uses the remaining ways for output. As soon as the Ref message of the part-
ner node has been received, routing changes to routeN2 which also uses the hyper
node.

Two peculiarities about inserting hyper connections have also to be mentioned:

• After being defined, the input from the dynamic channel can be merged into
inAll even if the connection has not yet been established. The hyper input
stream is empty which does not harm the merging as merge is fair.

• While all hyper connections have not yet been constructed, all Ref messages
for doing just that will be routed upwards to the father node and then down-
wards to their destinations. Hyper connections will be established approxi-
mately levelwise down from the father, as these Ref messages will reach their
partners first. Subsequent messages can then be routed more and more via
lower hyper connections. Therefore the the hypertree has an inherent start-
ing phase as a binary tree where communication is expensive.

7.4.4 Applications

Now we will look first at a trivial example for illustration purposes and then at
possible applications for the hypertree skeleton.

10 Example (Double Ping)
This trivial example just sends two messages to two grandchildren nodes and waits
for their answers. These are counted via the father’s state. The system terminates
if both answers have arrived.

trivial :: Int -> [Int]

trivial h = outs

where outs = hypertree h nf initstate updC updO term inps

7.4. DEALING WITH LONG COMMUNICATION DISTANCES 153

hyperproc :: (Trans a, Trans b, Trans s) =>

Int -> Code -> -- Current height, my code

(Code -> [Msg a b s] -> [Msg a b s]) -> -- Node function

Process [Msg a b s] [Msg a b s]

hyperproc h me nf = process p where

p inParent = side_eff ‘seq‘ outParent where

-- Leaf --

outPL = ... -- analogous to node

-- Node --

(outPN, outLeft, outRight) = case route me pme ways1 of

Up -> (href:outPN’, outL, outR)

Lefty -> (outPN’, href:outL, outR)

Righty -> (outPN’, outL, href:outR)

inLeft’ = cP (hyperproc (h-1) (leftChild me) nf) outLeft

inRight’ = cP (hyperproc (h-1) (rightChild me) nf) outRight

inLeft = deLift inLeft’; inRight = deLift inRight’

[outPN’, outL, outR, []] = routeN1 inAll’ -- with internal hyper c.

--

routeN1 :: (Trans a, Trans b, Trans s) => -- DISCONNECTED

[Msg a b s] -> [[Msg a b s]]

routeN1 [] = [[],[],[],[]]

routeN1 (State s : ms) = [State s : ps, ls, rs, []]

where [ps,ls,rs,[]] = routeN1 ms

routeN1 (o@(Output b) : ms) = [o : ps, ls, rs, []]

where [ps,ls,rs,[]] = routeN1 ms

routeN1 (p@(Payload src dst v) : ms) = tuple

where tuple = fill p (routeN1 ms) (route me dst ways1)

routeN1 (r@(Ref src dst c) : ms)

| dst == me = parfill c hs2 [ps2,ls2,rs2,[]]

| otherwise = tuple

where [ps2,ls2,rs2,hs2] = routeN2 ms

tuple = fill r (routeN1 ms) (route me dst ways1)

--

routeN2 :: [Msg a b s] -> [[Msg a b s]] -- CONNECTED

routeN2 [] = [[],[],[],[]]

routeN2 (State s : ms) = [State s:ps,ls,rs,hs]

where [ps,ls,rs,hs] = routeN2 ms

routeN2 (o@(Output b) : ms) = [o:ps,ls,rs,hs]

where [ps,ls,rs,hs] = routeN2 ms

routeN2 (p@(Payload src dst v) : ms) = tuple

where tuple = fill p (routeN2 ms) (route me dst ways2)

routeN2 (r@(Ref src dst ch) : ms) | dst == me = error "Already c.!"

| otherwise = tuple

where tuple = fill r (routeN2 ms) (route me dst ways2)

Figure 7.18: Process definition within the hypertree

154 7. CONTROL PARALLELISM

-- Shared defs within where block ---------------------------------

side_eff = (h==0)?((),inLeft’ ‘seq‘ inRight’ ‘seq‘ ())

outParent = (h==0)?(href:outPL,outPN)

pme = partner me

(ch,inHyper) = new (\ch val -> (ch,val))

href = Ref me pme ch

inAll = case h of

0 -> merge [inParent, inHyper]

_ -> merge [inParent, inHyper, inLeft, inRight]

(inNF, inRest) = split (isPayloadFor me) inAll

outNF = nf me inNF

inAll’ = merge [outNF, inRest]

ways1 = (h==0)?([Up], [Up, Lefty,Righty])

ways2 = (h==0)?([Up,Hyper],[Up,Hyper,Lefty,Righty])

fill :: Msg a b s -> [[Msg a b s]] -> Route -> [[Msg a b s]]

fill m [ps,ls,rs,hs] r | r == Up = [m:ps,ls,rs,hs]

| r == Lefty = [ps,m:ls,rs,hs]

| r == Righty = [ps,ls,m:rs,hs]

| r == Hyper = [ps,ls,rs,m:hs]

(?) :: Bool -> (a,a) -> a

(?) True (x,_) = x

(?) False (_,y) = y

Figure 7.19: Shared definitions within hyperproc

nf me ((Payload src dst val) : ps) =

(Output (val+1)) : nf me ps

initstate = 0

updC s _ = s

updO s _ = s+1

term s = s >= 2

inps :: [Msg Int Int Int]

inps = [Payload father (leftChild (leftChild father)) 1,

Payload father (rightChild (rightChild father)) 2]

Other applications include:

• All-to-all communications
Every node and leaf is a process with equal rights. All-to-all communication is
possible in an MPI-like way. This is the classical application of the hypertree:
Whenever a set of processes has to communicate in an unexpected way, the
Eden process tree is shortened by the hypertree.

• Workpool
All leafs are workers, while all nodes are masters and submasters, respec-

7.4. DEALING WITH LONG COMMUNICATION DISTANCES 155

tively. This gives 2n−1 master processes and 2n worker processes. As the tree
is binary only, this is not yet as flexible as other workpool schemes. Hierar-
chical masters are immediately available.

• Binary tree with level-wise rings
As shown by Goodman and Séquin[73] , this structure can easily be imple-
mented using the hypertree skeleton.

The hypertree is universal enough to house different process schemes. It is a kind
of generalised Eden process tree whose communication is made more efficient by
wiring in bypasses of the most expensive communication pathways. The hypertree
enables the programmer to quickly develop a process scheme at moderate costs; at
the same time, the performance will also be moderate. Therefore the hypertree can
be seen as efficient for some special schemes and as a rapid prototyping tool for
many other schemes.

156 7. CONTROL PARALLELISM

8. Developing Programs in Eden

”Programming is hard. [...] But parallel programming is much,
much harder.”

Simon Peyton Jones[80]

8.1 Motivation

The systematical development of functional programs is rarely handled in litera-
ture and research; see Chapter 4.1 of Thompson[202] for some hints. The cause for
this may be that functional languages are considered being on such a high level
of abstraction, that no specialised development method is necessary. This may be
true for the development of small programs, but certainly not for the development
of large ones. Introducing parallelism makes things even harder, as an additional
dimension of complexity is introduced. In daily programming practice, programs
are often the result of one of the two following development patterns:

• An application is given as a sequential legacy program, for which a paral-
lelisation is wanted. After an inspection of the program’s internals, it is es-
sentially left unchanged but is punctually extended by side-effects for (often
data-parallel) processes and demand control. The underlying algorithm is not
really questioned for its suitability of being parallelised.

⊕ If the algorithm is sufficiently parallelisable, a parallel version can be
achieved quickly.

	 However, if it is not, one has to undertake extensive rewriting of the
program and to consider a complete reimplementation.

	 Maintainability is limited because of the hack-like parallelisation.
	 The resulting program can easily lack clarity and structure.

• The better alternative is to rewrite from scratch. But even then parallelism
may be treated as a side-matter with sequential and parallel development
steps being interleaved.

⊕ Rapid development in the style of extreme programming[104] .
	 No clear design decisions in the beginning.

157

158 8. DEVELOPING PROGRAMS IN EDEN

	 Reduced maintainability and lack of clarity as before.

Our aim is to enhance the second way of program development by starting with
a parallel core design and structuring the further development around that core.
In our thesis we have presented until now only a loose collection of programming
techniques for Eden which are more or less related to each other. In this chapter
we will compose them to form a guide to developing programs in Eden. We will
not construct a formal method of software engineering in the style of FAD[181] , but
more a collection of good advice and best practice. This collection will be organised
as a sequence of questions and advice guiding the successive development of an
Eden program using the techniques presented. The chapter is divided into three
steps and represents the sequence of development steps:

1. Choosing a parallelisation

2. Handling program phases

3. Building a program

(a) Implementing in the large
(b) Implementing in the small

In a top-down approach, we will describe a decision frame for constructing a typi-
cal Eden program. We will assume no special parallel architecture but that nodes
are homogeneous (in terms of speed, memory, and network connection) and their
number is known. The adaption to a more special architecture can later be done
by hand, via special preprocessing steps, or by adaption (for example via automatic
skeletons[79]).

Section 8.2 starts program construction by choosing an adequate parallel al-
gorithm which will dominate the program. Following that, Section 8.3 will
describe how to handle and plan the five phases a parallel program goes
through; these range from preprocessing to shutdown. Finally Section 8.4
enumerates techniques for parallel program construction. These are divided
in two parts: first far-reaching programming decisions, and then program-
ming details.

8.2 Choosing a Parallelisation

Given a problem that is to be solved, one first has to consult literature[108, 4, 175, 217, 146]

to find a parallel algorithm for solving the problem. The first question concerning
that algorithm is then:

1. Is the algorithm transformational or reactive? The first option means whether
it calculates a result from an input in a mathematical sense; then termina-
tion can usually be initiated if the complete output has been produced. The
second option describes algorithms which are not driven by computation but

8.2. CHOOSING A PARALLELISATION 159

by interaction. They set up process systems which react to events; termina-
tion is determined by state, which is either kept up to date in a central place
or is collected from time to time. Reactive systems usually do not compute a
value in the traditional sense.

A transformational system directly corresponds to the regular functional program-
ming style; calculations are as usual with the exception of shifting selected evalu-
ations to remote nodes via processes. However, if one aims at a reactive system, a
good way to do so is to define:

• a process state and a state transition diagram

• a way of determining global state in a process as near to the root of the process
tree as possible

• states which imply termination

• a communication diagram of interdependent streams together with the data-
types communicated via these streams

The workpool of Section 7.3 can be viewed as an example for such a reactive system,
although it also possesses transformational behaviour. The next question is about
the kind of control that drives the algorithm:

2. Is the algorithm control-parallel or data-parallel? Can a central control mech-
anism be identified or a central data structure from which parallelism em-
anates? Which is dominant?

Usually both aspects are true to some degree, as functional programs use control
structures to transform values; both are therefore inseparable. Nevertheless, one
usually dominates and a program orientation has to be chosen. As evaluation is
determined by dependencies the next step is:

3. Divide control or data into the smallest possible independent or mostly inde-
pendent parts.

This corresponds to the partitioning step of Foster’s PCAM development scheme[64]

for parallel programs. By doing so one breaks down control to the smallest possible
bits.

4. Regroup parts to form tasks of an appropriate size. The right granularity has
to be determined out of the number and speed of parallel nodes. As a rule of
thumb, one should have more tasks than nodes, but not too many.

This step corresponds to Foster’s agglomeration step. The next step is about the
kind of tasks:

5. Are tasks of regular or irregular size? Is the task set statically fixed or chang-
ing dynamically? If tasks are developing dynamically, how is the task avail-
ability over time? Are tasks getting trivially available or are there strong
dependencies releasing new tasks only one by one?

160 8. DEVELOPING PROGRAMS IN EDEN

If a static set of regular tasks is given, the task distribution can be planned stati-
cally. If tasks are evolving dynamically or are irregular, a dynamic work distribu-
tion scheme like the workpool has to be chosen to gain load balance. We will now
continue by defining processes:

6. Within the parallel algorithm, identify central computations with little or bet-
ter no interdependence. These will later be turned into processes.

7. Is explicit process placement useful? Then define an explicit mapping via a
function which maps process abstraction parameters to node numbers. Use
this function when calling createProcessAt; it can easily be replaced by -1 for
stepping back to automatic mapping.

The next step is to decide the kind of communication, the structure of which is
given by the dependencies between the processes:

8. Are values communicated as single values or are there value streams needed?
If so, is non-determinism present? When merging streams, has element order
to be preserved? If so, then values need to be paired with an unique identifier.
Define datatypes which are communicated.

In the next Section we will deal with the phases the program will be in at runtime.

8.3 Handling Program Phases

In its lifetime from compilation to shutdown an Eden program passes through five
phases, for each of which some things have to be noted:

• The meta phase is based on Template Haskell and can house the following ac-
tions: Firstly, the preprocessor shown in Chapter 3 will be run and will apply
the eager transformation adding demand for let-defined process applications.
This implicit demand bears the danger of interfering with the programmer’s
demand control structures; ideally, it should only add demand which already
exists. Otherwise, one could choose to steer demand completely in an explicit
way and switch off the transformation. By doing so one would avoid a mix-
ture of implicit and explicit demand control. Furthermore, the programmer
should be aware that other passes may be run on their code. The prepro-
cessor will also add auxiliary functions and class instances to the program;
name clashes may occur. Secondly, direct use of Template Haskell besides
the preprocessor may happen which should not interfere. This also includes
the use of automatic skeletons for adapting the program to the given parallel
architecture.

• In the standard compilation phase Haskell transformations are applied to
the Eden program. These include different optimisation steps[185] , which are:
inlining, deforestation, and others. These may interfere with the intended
Eden behaviour.

8.3. HANDLING PROGRAM PHASES 161

After the two compilation phases, three runtime phases follow. To illustrate them,
we have taken the trace of Figure 7.10 and have inserted black lines to show them
(see Figure 8.1). The phases are:

Figure 8.1: Runtime phases (from left to right): start, working, shutdown

• In the starting phase it is important to employ every parallel node as quickly
as possible. This means that processes have to be created and that these
processes have to be supplied with work. Therefore the direct mapping mech-
anism is useful, as the process abstractions carry their own tasks and will
not have to wait for a second communication operation. It is also important
to create processes in bulk and not one by one during evaluations. It can even
be useful to create processes before their arguments are available; by doing
so, the process creation has time to complete while its creator computes the
process arguments. In the workpool of Section 7.3, the prefetch parameter is
used to overcome the initial lack of tasks and to ensure a constant supply of
tasks for each worker in the beginning.
If tasks only evolve dynamically due to data dependencies, task shortage in
the beginning cannot be avoided. This is the case in the workpool example of
Figure 8.1, as the matrix contains data dependencies in the diagonal direction
and the calculation starts with a single task. Task shortage is even worse, if
(due to fast parallel nodes) granularity is further coarsened and tasks are
united to form larger ones. If possible, one should try to keep the initial task
set as large as possible while preserving a sufficient granularity. Under some
circumstances, one may be able to statically compute some results to enlarge
the initial task set.

• The working phase describes is the one where the system should run under
(the highest possible) constant load. To achieve that, one should ensure the
constant availability of communicated data in systems with interdependent
streams. This can be done by using the techniques of Section 7.2; functions

162 8. DEVELOPING PROGRAMS IN EDEN

preprocessing streams should be incremental to keep the streams flowing.
Communication can be saved by sending container values which can carry
multiple messages.
One should avoid the integration of process creations in functions which are
called many times, as the constant build-up and shutdown of (practically iden-
tical) processes is too expensive. Instead, one should create a set of more gen-
eral processes very early and supply these with different parameters to mimic
the different versions.
Finally, termination has to be detected. In a purely transformational system,
this most easily happens by running out of tasks; this will cause the processes
to terminate. In a reactive system, this is usually more complicated as inter-
dependent streams can block on each other waiting for more input. Therefore,
as has been described in the previous Section, a state has to be kept. To avoid
expensive algorithms for determining global state[146] , one can select a central
process (usually high in the process tree) which monitors communication and
keeps a representative state during computation. Often, such a local state is
sufficient for detecting termination.

• The shutdown phase starts after termination has been detected. It consists
of the result collection (and combination) for output and the shutdown of the
process structure. The shutdown phase has to end quickly for the same reason
as the startup phase.
Usually the root of the process tree collects all results and detects termina-
tion. For output, results may need to be combined or transformed in the end.
This is an inherently sequential task and should be avoided as far as possible.
Transformations should be done by the processes in parallel. Additionally, the
process structure should be one which supports quick result collection. It is
also advisable to pipeline result collection by processing some results while
others are being calculated.
Like startup, shutdown contains inherent work which cannot be avoided. Pro-
cesses have to be terminated, which happens either when there is no more
input or no more need for output. In the latter case garbage collection will
trigger termination.

In essence, one should create only a few processes, but these very early. Also, the
root process should delegate as much work as possible to its child processes; not
only in the starting phase (children calculate their arguments on their own), but
also during shutdown (children help to transform their results).

8.4 Building a Program

Having decided the parallel algorithm, how to model it in Eden (tasks, type of par-
allelism, processes, data structures, termination), and how to handle the program
phases, we can now go on with building the real program. We will construct an

8.4. BUILDING A PROGRAM 163

Eden program in a top-down approach: First we will plan the general structure
and then flesh out the details.

8.4.1 Implementing in the Large

In the large, we want to structure an Eden program into four parts which should
only be intermixed if necessary:

1. Datatype definitions and sequential access functions can be defined first. They
are the basic building blocks for function definitions and include

(a) datatypes for sequential computations as well as
(b) datatypes for communication and parallel coordination.

Specific datatype implementations should be hidden behind access interfaces
allowing for the implementation to change. For example, a general collec-
tion has a typical common set of access functions, but can be implemented
(depending on its use) via lists, via a binary search tree, or other data struc-
tures.
The preprocessor could be used to implement steps which derive a set of stan-
dard functions for each datatype in the same way it is done for our generic
programming approach.
If the datatypes are accessed not via the interface but directly, the later use of
generic functions on processing these will tolerate changes in the data struc-
tures to some degree.

2. Functions for sequential computation comprise all functions needed for exe-
cuting the basic computational part of the algorithm. They are based on the
data structures and can ideally be tested in a sequential setting with no ad-
ditional problems caused parallelism.

3. Parallel coordination functions with demand control should be defined sepa-
rately as much as possible in the sense of aspect orientation. These deal with
the creation of processes and channels and should not be intermingled with
sequential code. These are mostly parallel skeletons together with some glue
for connecting them, often zip and unzip functions for stream decomposition
and demand steering calls. In general, side effects like process creation and
demand control should be clearly separated in a function from the remaining
code by executing them on block right at the beginning.

4. I/O is accessed only by the main function, unsafe I/O operations should not
be executed. main is the gate for all input and all output and is responsible
for exerting the correct amount of demand on the main parallel coordination
function (often a skeleton) which triggers the remaining demand and control
flow.

164 8. DEVELOPING PROGRAMS IN EDEN

These parts also determine the order of development: At first the datatypes for the
sequential computations and the parallel communication are defined together with
their access functions. Based on these, the functions for the sequential computation
are defined. At this point, the basic functionality of the program can already be
tested, if the missing parallel parts are modelled via their sequential counterparts.
Following that, parallel coordination and demand control are inserted. Now the
orientation of parallelism is important:

Transformational systems come in general in two flavours which determine the
construction of the parallel part:

• If data-parallel:
For each datatype concerned, define a partitioning scheme corresponding to
one defined in Section 8.2. Define a specialised one if a generic partition-
ing is too general. Insert (or replace existing sequential versions) generic
data-parallel skeletons (either predefined or self-constructed ones) into the
program. They can be placed either in separate functions with separate de-
mand control and be called from within a sequential computation function.
Alternatively, they can be inlined into the sequential code; in that case, how-
ever, a clear separation is useful and can be provided by triggering all effects
on block before the main expression of a function.

• If control-parallel:
Define datatypes for parallel coordination, which includes state messages,
task and result messages, termination detection messages, termination mes-
sages, and others. Then predefined or self-constructed control-parallel skele-
tons are introduced in separate functions; these are called via demand con-
trol from a central function where the result of the skeleton is needed or from
where it can be distributed.

Reactive systems are different in that a skeleton or a self-defined process struc-
ture incorporates a set of often interdependent streams which have to be connected
to sequential computation functions. To set up the process structure, a communi-
cation diagram (like defined in the beginning and as shown in Figure 7.3) can
mostly be translated into a structure of interdepending functions (see stream part
of Figure 7.4). State can explicitly be communicated or implicitly by observing and
interpreting tasks and results.

Finally, the main function is the source of all activity: After getting the argu-
ments, these are given into a parallel coordination function which is called with a
certain amount of demand, usually WHNF. From there, demand and parallelism
propagates through the parallel functions which should result in almost all pro-
cesses created in the beginning. These will then compute the results, which are
given back to main for output.

Like in the spiral model[21] , the given sequence is not only traversed once but
many times, as most probably the first parallel model will be in some way incom-
plete. The development of a parallel program is more an iterative process, during
which a program usually proves to be too specialised. Datatypes may need to be
extended or functions may need some generalisation to be able to cope with the

8.4. BUILDING A PROGRAM 165

new datatypes. This can also happen because of granularity changes, which rise
the need for functions being able to deal with a deeper datatype nesting.

When a satisfying program giving the correct results has been reached, it will
contain generic parallel functions and will be in some sense architecture-independent.
At this point, the program can be ported to various other parallel architectures or
node constellations (with different nodes or varying network connections). Serving
as a program template, it can for each architecture be specialised to a more specific
program yielding higher performance: Generic functions can be transformed to
their more efficient specialised counterparts, and meta-programming can be used
to specialise the program to the given parallel architecture (in terms of task granu-
larity, process distribution, and data distribution). For example, if the given paral-
lel architecture is represented by a Haskell datatype like in Figure 3.18, one could
partition data structures to fit this architecture (depending on the skeletons used).
Additionally, skeleton parameters and process placements could also be chosen de-
pending on that architecture description. This is similar to what Michaelson et
al. do automatically in PMLS[78, 137] . All this is then part of the meta phase in
Section 8.3.

8.4.2 Implementing in the Small

We will now turn to smaller implementation details. We will give a loose (an in-
complete) list of advice groups; of course, all good programming habits of Haskell
also apply to Eden. At first we will look at peculiarities of the given architecture:

• Due to the availability and price-performance ratio, clusters of standard PC
nodes connected via ethernet have become by far the most common parallel
architecture. A main characteristic of these is that they combine extremely
fast nodes with modestly fast network connections. One therefore has to avoid
communication as far as possible by combining small messages to larger ones.

Storage and laziness provide ample opportunity to loose performance:

• In Section 5.3 we have made clear that both in a sequential and in a parallel
setting memory and performance can be lost if space leaks and large CAFs
exist. Their existence will also trigger costly garbage collections. Also expen-
sive is the typical stepwise programming, which applies a series of transfor-
mations not all at once but stepwise to a data structure; this causes a series
of intermediate data structures to be allocated. This can be remedied by hand
via function fusion or automatically via deforestation.

• When using data structures one is usually aware of its lifetime: Some are
used throughout the whole program, others are only used locally and only a
few times. The first are often called persistent, while the others are called
transient. It is useful to keep in mind each data structures lifetime, as persis-
tent ones are better fully evaluated while local ones should not.

Concerning programming in general a few things have to be noted:

166 8. DEVELOPING PROGRAMS IN EDEN

• To obtain a general program, it is advisable to use higher-order and generic
functions as much as possible to keep the program flexible to later changes
and specialisations.

• Skeletons should have a common standardised interface to make it easier
to replace their sequential counterpart. Figure 6.9 shows this for map: All
parallel versions of map contain in their type at the end the type signature of
map.
With standardised interfaces, skeletons can also be plugged together to form
a nested skeleton structure. This is also demonstrated by Kuchen[122] .

• When introducing data structures, one can begin with intuitive (and maybe
inefficient) ones, separated by a clear interface (consisting of general access
functions) from the remaining program. This means, that one could start
modelling a set via a list which introduces bad access efficiency. When work-
ing with data structures, try to use generic functions to stay flexible. These
can later be specialised to more efficient ones tailored to the final data struc-
ture implementation. In a parallel setting, generic partitionings are advisable
for the same reason.

When writing a program, the programmer has many assertions and facts in mind
which do not get written down in the program itself. While types are specified,
other knowledge is left implicit. We propose to make that knowledge explicit:

• As has been argued in Section 5.6, we find it useful to explicitly note the
demand behaviour of functions. In Eden we need to insert explicit demand
control to trigger process creation, while at the same time it is unsure whether
the triggering demand control expression is reached by enough demand. It is
also useless to analyse the demand once during program construction, set up
everything, and then leave behind a program which contains exactly the right
amount of undocumented demand everywhere. Then any change or insertion
would bear the risk of interrupting the correct demand flow.
Together with the above mentioned standardised skeleton interfaces stan-
dardised explicit demand behaviours have to be introduced. Then it is clear
whether a nesting of skeletons will trigger each other in a controlled way. To
enable that, we will explicitly define that WHNF demand is needed to trig-
ger side effects which precede the main expression of the skeleton, and that
WHNF demand will be passed on to other skeletons. Thus we will gain a
whole which only has to be touched by WHNF to unfold itself.

• Other meta information, like a data structure’s lifetime and its degree of eval-
uation (see Figure 5.9), are important informations and can be kept on the
value level where they can be used by the program. This can be a kind of
explicit documentation on the program level.

9. Related Work

In this chapter we will list and shortly discuss related work. We will group the
references according to the structure of our thesis.

9.1 Meta-Programming

Approaches to implementing meta-programming are numerous and we will only
name the existing main directions and a few approaches:

Macro programming. Keith Wansbrough argues in “Macros and Preprocessing
in Haskell” [215] , that meta-programming facilities are necessary also for
Haskell. He mentions possibilities for program preprocessing in the style
of the C preprocessor CPP as well as macro expansion.

Boost C++. By using templates, also C++[197] contains a kind of parametric poly-
morphism. As part of the Boost C++ libraries[1] , meta-programming via a pre-
processor has also found its way into C++. Then even functional concepts like
higher-order functions are expressible; the function twice f = f . f then
looks like this:

template <class F, class X>

struct twice

{

typedef typename F::template apply<X>::type once; // f x

typedef typename F::template apply<once>::type type; // f (f x)

}

Generative programming. Component-based and generative programming aim
at building software from standard components and are used in object-oriented
imperative languages. They employ automatic source code creation through
generic classes and templates; they are described in the standard reference
by Czarnecki and Eisenecker [51] .

Pragmas. Related to this work is the approach by Peyton Jones et al. [167] , where
so-called RULES pragmas can be inserted into the program (in the form of

167

168 9. RELATED WORK

special comments) which describe source-to-source transformations executed
by the compiler. The compiler executes the transformations in the Core sim-
plifier stage. For example, the map/map pragma fuses two maps into a single
one:

{-# RULES

"map/map" forall f g xs.

map f (map g xs) = map (f . g) xs

#-}

The difference to our approach is that these are restricted to function ap-
plications and cannot work on expressions or whole programs. Still another
alternative[203] is developed by Tolmach et al. which aims at defining a com-
mon external Core syntax format to help developers write external optimisa-
tion passes for the GHC. In total, pragmas are useful but limited in their
power.

Partial evaluation. Program specialisation, also called partial evaluation, is also
related to meta-programming. Such techniques enhance programs in terms
of size or speed by precalculating results or parts of results. Classical works
include papers by Futamura[68] and others[47, 114] .

Template Haskell. Template Haskell [189] (TH) is an approach to include basic
meta-programming into the GHC. The work presented in Chapter 3 has been
inspired by the work of Lynagh on Template Haskell. The first paper [144]

shows five ways how Haskell could benefit from meta-programming: TH gen-
erates FFI interface code, TH generates class instances, TH removes boiler-
plate code, TH wraps optimisation code around functions, and finally TH is
used for explicit program transformations. The second paper[145] elaborates
on the fourth way by unrolling a recursive function to gain performance. Both
papers discuss ways of manipulating Haskell code which are extended to a
separate framework in this work.
Similar to our approach of outsourcing the preprocessor, Reid[177] has also
used Template Haskell to turn the foreign-language interface Greencard[157]

from a separate tool to a library. He also experienced considerably shorter
code and an improved portability.
Torrano and Segura[204] also use Template Haskell to introduce passes for
preprocessing programs. In particular, they show how to encode a reduced
strictness analysis as well as a let-to-case transformation. They preassume,
however, that the program to be preprocessed is already available as a value
in their analysis program. Therefore, their approach lacks a connection be-
tween the preprocessing passes and the host compiler.
Seefried et al. investigate an approach[186] similar to ours: Template Haskell
is used to implement and optimise an extension of a host language.

Scheme. Scheme has a long tradition of macro programming. Hygienic macros[43]

have been introduced to avoid easier expansion avoiding name-capture. For a
discussion see Sheard and Peyton Jones[189] .

9.2. GENERIC PROGRAMMING 169

Multi-stage Programming. While we have introduced static meta-programming
into Eden, other approaches even allow for dynamic meta-programming which
is called multi-stage programming[199] ; by doing so, partial evaluation and
program specialisation techniques are provided directly to the programmer.
MetaOCaml[200] , which is based on the strict ML[163] , is an example of a
multi-staged language. It provides basic annotations (brackets, escape, and
run) for delaying and forcing the execution of an expression.
Research on this approach is also done by Christoph Herrmann and Christian
Lengauer at the University of Passau in Germany. They also use Template
Haskell and MetaOCaml and even apply meta-programming to the construc-
tion of parallel programs[89] . There, parallelism is introduced into general
skeletons while the programmer does not need to have knowledge of paral-
lelism. Meta constructs are used for the generalisation of the skeletons.

The general idea of ’separation of concerns’ has been carried on by Veldhuizen et
al. in their work on active libraries[50, 209] . This relates to our approach of sepa-
rating host compiler and extension implementations by pulling the latter into a
separate meta-programmed library.

9.2 Generic Programming

The term generic can be misleading as it has been used in many different contexts.
It is also known as polytypic or, what seems to be the most clear term, structural
polymorphism. For the extensive research done in that area see in general the
excellent and comprehensive bibliographies of Hinze [95] and (the more recent)
Löh [136] . For a general motivational article see Backhouse et al. [12] .

Derivable Type Classes/DrIFT. Building on Hinze’s earlier work[102] , Hinze and
Peyton Jones introduced derivable type classes[103] into Haskell. In this ar-
ticle, type classes are enriched with the possibility to define very general de-
fault methods over a sum-of-products representation (in essence structural
induction) of the given datatype. For an empty instance declaration of such
a class, these general default methods are then used to generate the corre-
sponding datatype-specific methods. This means, that a generic function is
defined via general default methods; like a template, it can then be used to
construct instances for various types. The approach is, however, restricted
to datatypes of kind (*). In a sense, this mechanism can replace Haskell’s
deriving mechanism (which in itself can be seen as a very simple form of
genericity). For the sake of completeness, Alimarine and Plasmeijer have
given a similar mechanism[5] for Clean.
The automatic generation of instances can also be done via the DrIFT[216]

preprocessor, which is however a separate tool. In DriFT, instance generation
is specified via Haskell functions which map type representations to a Haskell
code representation.

170 9. RELATED WORK

PolyP. Following the work[150] of Meertens on polytypy, Jeuring and Jansson have
developed an approach to generic programming called PolyP[111, 112] . Repre-
senting regular (no higher-kinded or nested) datatypes via polynomial pat-
tern functors and initial algebras, they define polytypic functions over a sum-
of-products representation of the given argument datatype. As this corre-
sponds to structural induction over the datatype, polytypic functions are most
often defined via a catamorphism and a polytypic map operator. For being
able to work on the general representation of a datatype, two functions in

and out for making the representation transition are needed.
The polytypic functions are collected into the PolyLib library, which is de-
scribed in detail both in Jansson’s PhD thesis[109] as well as in the exten-
sive introduction[12] by Backhouse et al. A more recent port[158] of PolyP to
Haskell 98 is based on the same principles: It first transforms a value into an
general representation, applies the generic function to that representation,
and then transforms the result back into the Haskell world. The transforma-
tion functions are contained in instances of the FunctorOf class, which have
to be written by hand or derived automatically via some unspecified tool.
Norell and Jansson also compare and implement[159] the two quite similar
approaches PolyP and Generic Haskell (see next item) in Template Haskell.

Generic Haskell. Generic Haskell evolved out of a long series of research papers.
It started with Hinze’s work[102, 94] on a generic programming extension for
Haskell, which we have already described in the context of derivable type
classes above. In essence, type classes are interpreted as collections of po-
tentially generic function type signatures which are specified via inductively
defined default methods. Instances are then the actual specific implementa-
tions with respect to the instance datatype. These generic functions can also
be called type-indexed, as they are defined over a range of types. However,
the kind of these types must be flat, which includes (*), (* -> *), and so on.
In contrast to the PolyP approach, pattern functors do not appear; generic
functions can be directly defined over the inductive datatype structure. The
theoretical framework is developed in another paper[93] . This approach, like
ours, is not flexible in terms of kind.
This is remedied in a later extension[96] , in which it is possible to define a
single generic function for all kinds (meaning it is also kind-indexed). In
his habilitation thesis[95] , Hinze compares both approaches and selects the
second one for the basis of Generic Haskell. He also describes a way of im-
plementing the approach: For every datatype encountered in a program that
is applied to the generic function, a specific instance of that function is gen-
erated. This is similar to our approach, although we generate an instance
for every datatype contained in the program without doing a usage analysis.
General and extensive overviews about practice, theory, and applications[98, 97]

are also available.
Generic Haskell has also been implemented, and practical experience has
led to improvements[41, 99] which were implemented in a following release.
Dependency-style Generic Haskell[135] enhances the syntax and provides more

9.2. GENERIC PROGRAMMING 171

flexibility in Generic Haskell. The theoretic foundations until here as well as
implementation aspects are covered in the PhD thesis[136] of Löh.

Stratego/Strafunski. In term-rewriting it is common to implement and use tree-
traversals via combinators. Stratego[210, 211] is such a language, which pro-
vides primitives for generic tree-traversal; conditional rewrite-rules are then
used to modify the traversed syntax tree. This is also closely related to our
approach of implementing our preprocessor in Chapter 3.

Tree-traversals can also be used to implement generic traversals into sub-
terms of a structure. In the so-called Strafunski approach, Lämmel and
Visser present “Typed Combinators for Generic Traversal”[128] . These are
organised as strategies[126, 127] , which besides allowing for generic traversal
also provide non-generic ad-hoc behaviour for specifically selected types. This
approach is ported to Haskell in the series of boilerplate papers.

Boilerplate. Code for the traversal of data structures, also called boilerplate code,
is considered tiresome and errorprone in writing. Using the Strafunski ap-
proach, Lämmel and Peyton Jones[123] show a way to “scrap your boilerplate”
in Haskell (SYB for short). They show how to generically traverse arbitrary
data structures while having specialised functions being applied if a specified
subterm is encountered. The approach is presented as a combinator library.
The necessary class instances are created by the DrIFT tool mentioned above.
The whole approach is, however, quite element-oriented and does not allow
access to the structure.

A followup paper[124] provided generic buildup in contrast to the generic
traversal and consumption. Another one[125] changes the cast-based imple-
mentation to one based on type classes.

Hinze, Löh, and Oliveira have reimplemented[101] SYB in Haskell. They ex-
plicitly define a Type datatype as a generalised algebraic datatype (GADT
for short) which represents types which can be built out of the given ele-
ments of Type. Using explicit typing of values, overloaded functions can be
implemented[70] without type classes; this is not yet truly generic, but very
flexible. Then a Spine datatype is used to lift explicitly typed values to an eas-
ily accessible spine level and back using the functions toSpine and fromSpine.
Then truly generic functions can be written working on that spine represen-
tation. Nevertheless, for a new datatype it is still needed to extend the Type

datatype as well as the toSpine function.

This approach is similar to ours, as both access the spine of a data struc-
ture to be able to let generic functions work on it. The given approach deals
with overloading by introducing explicit types and GADTs, while we use type
classes. Type classes introduce additional type contexts which may be tire-
some, but one has not to give the correct type of an argument when using a
generic function. It is however a natural and elegant solution to make types
directly available to the program by coding them explicitly as values. Another
advantage is that arbitrary kinds can be handled.

172 9. RELATED WORK

Like SYB, the spine view is element-oriented, which makes it easy to con-
sume structures but hard to construct structures. Our approach shares this
deficiency; but as we aim at parallel programming, deconstruction is much
more important than construction. For SYB, this limitation is remedied by
Hinze and Löh[100] . The type spine view makes it possible to define generic
producers. It remains future work to extend our approach accordingly.

Charity, FISh, G’Caml. Following Norell and Jansson[158] , other non-Haskell ap-
proaches include Charity[44] , FISh[110] , and G’Caml[67] . We will not further
describe these here.

9.3 Demand Control

Demand control has already been recognised as an important topic by Hughes in
his PhD thesis [106] . He was the first to describe space leaks caused by lazy evalu-
ation and described the seq function as one possibility to overcome (some kinds of)
them.

Harrison and Kieburtz describe in their paper “Pattern-Driven Reduction in
Haskell” [85] , how pattern-matching (contained in function definitions, let expres-
sions, and case expressions) affects non-strict evaluation. They also describe the
semantics of evaluations enforced by pattern-matching. In a sequel paper “The
Logic of Demand in Haskell” [86] , they introduce a programming logic which for-
malises the mixed evaluation (partly lazy, partly strict) of pattern-matching to ease
specification and verification of Haskell programs.

Harrison, Sheard, and Hook set out to examine the difference between the λ-
calculus and the mixed evaluation order of Haskell in their paper “Fine Control
of Demand in Haskell” [84] . There they introduce a calculational semantics for
Haskell which exposes the interaction of the default laziness with Haskell’s strict
features.

In his paper “Eager Haskell: resource-bounded execution yields efficient itera-
tion” [147] , Maessen proposes to evaluate Haskell eagerly by default to circumvent
space leaks and introductions of seq. Only if resource bounds (stack, heap, or time)
are exceeded, computation is switched back to lazy evaluation.

Evaluation strategies, as already presented in Figure 5.5, expand the seq oper-
ator inductively over data structures for different depths of evaluation. Strategies
have been introduced by Trinder et al.[205] and the language containing them has
extensively be compared to Eden in “Comparing Parallel Functional Languages:
Programming and Performance” [137] .

9.4 Data and Control Parallel Skeletons

The term skeleton has been coined by Cole[45] . The general understanding is, that
a skeleton is an abstract language construct (like a higher-order function or a tem-

9.4. DATA AND CONTROL PARALLEL SKELETONS 173

plate) which encapsulates a useful pattern of implicit or explicit parallel coopera-
tion.

Skeletons have also been integrated into imperative languages; we name a few
approaches:

Skil. Skil[22] is an imperative language, enhanced with functional features (higher-
order functions, currying, polymorphic type system) and parallel skeletons.
The concepts of Skil have been extended to C++ by Kuchen[122] .
Poldner and Kuchen[170] argue, that in a normal workpool the master process
has to both distribute work and collect results. Therefore they propose the
division of the master into two processes, a dispatcher and a collector. One
is responsible for distributing work while the second one only has to collect
results. Therefore each of them is burdened less than before. A clear disad-
vantage is however, that the distributor is spreading work randomly as he
has no knowledge about the worker’s loads. Poldner and Kuchen argue that
by random assignment the load is roughly kept equal.

SAT. The SAT approach[74] by Gorlatch and Lengauer stands for staging and
transformation, as the approach is about gaining internally parallel stages
by formal program transformations. It focuses on a single high-level paral-
lel programming pattern, the list homomorphism, to capture the divide-and-
conquer skeleton. Ported to Haskell, this approach was called HDC[88] , which
was implemented in C and MPI.
Skeletons have also been modified for being used in a high-latency Grid en-
vironment[6] . There, Java is enhanced by the introduction of parallel skele-
tons.

P3L. P3L [53, 52] integrates parallel skeletons (farm, pipe, map, reduce, loop) into
the host language C++. Furthermore it allows for the nesting of these skele-
tons. Every skeleton is accompanied by an implementation template which
can be specialised to a given parallel architecture.

With higher-order functions, functional languages have for some time been used
as a target for the introduction of parallel skeletons; fundamental work has been
done by Darlington et al.[54, 55, 56] . General overviews (Chapter 13 of Hammond
and Michaelson[80] , the book of Rabhi and Gorlatch[176] , and a Dagstuhl seminar
on high-level parallel programming [46]) show the wide range of approaches. We
name a few of them:

SkelML. In his PhD thesis[23] , Tore Bratvold has integrated skeletons in the strict
functional programming language ML. Programs are analysed and paral-
lelism is automatically extracted, most often directly out of the use of higher-
order functions (like map, filter, and fold). Performance models for each skele-
ton help decide if a parallelisation is promising an efficiency gain or not.

PMLS. The PMLS system[78] is a direct successor of the SkelML system and has
also been developed at the Heriot-Watt University in Edinburgh.

174 9. RELATED WORK

HaskSkel. In HaskSkel[81] , Hammond and Rebón Portillo combine evaluation
strategies of GpH[205] with the efficient data structure implementations of
Okasaki’s Edison library[162] .

Eden. We have shown Eden skeletons in our thesis, but a paper[69] containing
a collection of basic skeletons (like pipeline, divide-and-conquer, grid, and
others) has also to be mentioned.

9.5 Developing Programs in Eden

It seems that not much research has been done in the area of systematic pro-
gram development of (parallel) functional programs. There are lots of technical
tools like integrated development environments [8] , version control systems[178] ,
debuggers[40] , testing tools[42] , automatic documentation tools[148] , interfaces to
foreign languages[177] , graphical user interface libraries[192] , and profilers[184, 117] .
These are undoubtedly useful, but we aim more at approaches for developing pro-
grams in the sense of software engineering. The traditional approaches all mainly
aim at developing much larger systems:
Waterfall. The classical waterfall model of Royce[179] defines program develop-

ment to flow down the steps of requirements specification, design, implemen-
tation, verification, and maintenance. However, it assumes that every phase
is fully completed, before the next one is begun; it is considered non-iterative.
In practice, this is hard to achieve and changes are hard to integrate. The
idea of rapid-prototyping is also not included.

Spiral/RUP. In contrast, the iterative (sometimes also called incremental) devel-
opment method connects the two ends of the waterfall to a cycle. This means,
that evaluations during maintenance give rise to new requirements and lead
to a new iteration in program enhancement. The waterfall is applied itera-
tively and yields an evolutionary design process. This has also been done by
Boehm in his spiral model[21] . A successor of this model is Rational Unified
Process (RUP)[121] . These iterative methods allow for rapid-prototyping.

Agility/XP. In these approaches[104] , it is accepted that requirements and deliver-
ables are subject of constant change throughout the whole development pro-
cess. Therefore, being able to adapt to changes is considered more important
than achieving a full specification in the beginning.

Beneath these, we have only been able to identify the following more specialised
approaches for functional languages:
FAD. The most important and most complete approach to functional program de-

velopment is FAD[181] . FAD stands for Functional Analysis and Design rep-
resenting its main two phases which consist of a requirements analysis and
an implementation design phase. In the first phase, requirements and deliv-
erables are analysed and defined. The second phase then aids the construc-
tion of a functional program. All these processes are expressed in a pictorial

9.5. DEVELOPING PROGRAMS IN EDEN 175

language, which represents each component of a functional program as a di-
agram which can be linked together. This is a very complex, complete, and
model-oriented approach and hardly comparable to our more practical design
guide.

Program Derivation. As a part of the development of complete programs, spe-
cialisation via function transformation is well-known. Duality and fusion
theorems in the style of Bird[17] allow for transforming a naive function im-
plementation into one much more efficient.

Refactoring. Refactoring (see the Haskell Refactorer HaRe[133] for example) can
be seen as one part of program development: It deals with redesigning and
enhancing programs without changing their semantics. Refactoring steps of-
ten correspond to modifications every programmer does by hand from time
to time; for example, consider the process of generalising a function by in-
troducing an additional parameter (introducing a step parameter to the from

function):

g x = x : (g (x + 1)) -> g n x = x : ((g n) (x + n))

Existing calls to g have also to be replaced:

g z -> g 1 z

Steps like these occur often during program construction, and can (if done
manually) introduce harmless but annoying bugs. Automatic rewriting there-
fore improves the situation.
Refactoring steps can be implemented as static preprocessing steps. Then
also the Eden eager transformation step is part of a refactoring process. Al-
though being useful, refactoring is not a complete development method but
only an enhancement method for existing programs.

Of course, all these apply also to parallel functional languages. Specialised ap-
proaches, however, are:

GpH. For Glasgow parallel Haskell, a development scheme together with some
applications has been given in [138] . It is based on having a correct sequen-
tial implementation and then incrementally parallelises this implementation
aiming at achieving moderate parallelism at low cost. Firstly, a thorough
analysis and a time profile has to reveal program hotspots and top-level par-
allelism. These hotspots are then parallelised using evaluation strategies[205]

which are essentially skeletons combined with demand control. The result
is then tested via the simulator GranSim[139] and refined if necessary. Then
tests on real systems are run to prove the efficiency of the parallelisation.

176 9. RELATED WORK

10. Conclusion

10.1 Conclusion

To structure our conclusions, we recall the structure of our thesis from the be-
ginning in Figure 10.1. Our thesis described techniques for meta-programming,
generic programming, and demand control. Building on these, skeletons and func-
tions for data-oriented and control-oriented parallelism have been given. Shaped
like a funnel, all this is then concentrated in an outline of how to develop programs
in Eden.

Tools
Meta-Programming Generic Programming Demand Control

Parallelism Models
Data Parallelism Control Parallelism

All together
Developing Programs in Eden

Figure 10.1: Structural Overview

The preprocessing tool presented allows for the definition of Eden’s domain-
specific preprocessing passes as an external active library. This is typical in domain-
specific languages, which often extend a standard base language by a special topic:
Being implemented as an extension of an also often standardised base language
compiler, the portability of these implementations benefits greatly from leaving
the standard compiler as untouched as possible. This is what we have partly done
for Eden, which is a parallel extension of Haskell based on the Glasgow Haskell
Compiler. The preprocessor has been implemented via Template Haskell, which
unfortunately still is subject to change. Of course the whole construction relies on
the future availability of Template Haskell in GHC.

Inside the tool we have defined a stateful monadic traversal of the abstract syn-
tax tree. This traversal allows for the flexible redefinition of syntactical constructs,

177

178 10. CONCLUSION

as well as global redefinitions. We have used it for deriving class instances as
well as for program transformations. The quasi-quotation operator has not been
constructed for our use, but works nevertheless besides misinterpreting layout at
times. This can be remedied by using explicit parentheses at the moment.

An approach to generic programming aimed at supporting parallelism needs to
be structure-oriented, which means that data structures have to be accessible lay-
erwise. This is necessary, as parallelism relies on traversing these for creating pro-
cesses connected to the correct layers as well as for partitioning and recombining
argument data structures. We have given such an approach based on type classes,
which allows to access data structure layers via constant de- and reconstruction.
We have called our approach reduced, as it is not as general as other approaches; as
a main downside, we cannot handle arbitrary kinds inductively. On the other hand,
this is not very often necessary, since more than two type variables are rarely met.
Another downside is the overhead caused by de- and reconstruction. This is allevi-
ated by the fact, that mostly quite small data structures are handled generically in
a parallel setting. This is even further alleviated, as we consider our approach as
a means for rapid parallel prototyping, aiming more at the quick construction of a
correct program than at competing with a most cleverly constructed hand-crafted
one. In our approach a more efficient program is constructed in a sequence of suc-
cessive enhancements, including the specialisation of generic function application
to specialised and more efficient ones.

The control of demand in a lazy parallel language is vital for gaining speedups.
We have summarised methods for demand control and categorised them as data-
oriented and control-oriented. For the first topic we have given generic versions
of the important spine evaluation with branch selection. For the second topic we
have identified and separated effects in a function. We have shown how to express
these uniformly and how to group them.

The difference between data- and control-orientation carries over to parallel
control. Data-parallel methods rely on the partitioning and recombining of argu-
ment data structures. We have given generic methods to do that. Then we have
turned to parallelising the map function. We have generalised three data-oriented
parallelisations, and have looked at combining these for nested data structures.
Control-parallel methods do not naturally leave much room for genericity. We have
identified three topics for which we have provided solutions: Firstly, we have shown
techniques to deal with the omnipresent streams in Eden. Secondly, we have ap-
plied these techniques to deal with irregularly sized tasks in the workpool skeleton.
The workpool skeleton has been presented in three flavours, the basic workpool,
one capable of dynamically managing new tasks, one for introducing a hierarchy
of master processes, and one with a stateful master. Lastly, we have constructed
a Hypertree skeleton for cutting short long communication distances in the Eden
process tree.

As a result of all the techniques shown so far, we have set out to summarise
all this to form a guideline for Eden program construction. This guideline is an
instruction manual on Eden programming, and not a formal program derivation
calculus like the transformational one by Bird[17] . Nevertheless we think that this
could be a good starting point for developing a more sophisticated program devel-
opment methodology. In total, we have introduced new techniques into parallel

10.2. FUTURE WORK 179

functional programming, which will hopefully lead not only to faster but also to
better programs.

10.2 Future Work

This thesis covers a wide range of programming techniques, which all leave room
for further investigations. We will outline a few ideas for future work in the order
described in Figure 10.1:

• The preprocessing tool shown in Chapter 3 has to be integrated as a standard
part of the Eden implementation. Together with the work of Jost Berthold,
who reimplements the Eden runtime system in Haskell, significant parts of
the Eden implementation are then expressed in Haskell. The result will be a
much better versional portability.
Furthermore, reflection and adaption are two extremely useful techniques.
For both, new preprocessing steps have to be devised. One can think of many
reflections, like:

– analytical steps which execute a non-determinism analysis[187] or an
analysis about the usage of dynamic channels (single use only)

– informational steps which give an abstract view of the program, mark-
ing central functions and hotspots where parallelism and memory usage
concentrate (see Medina[182] for example)

– transformational steps which, like the eager transformation, optimise
predefined expression constellations to support the common program-
ming style (which could result in inefficiency) with parallel efficiency

The same is true for adaption: self-configuring skeletons have to be further
investigated, as the adaption to the many and very different levels of hard-
ware parallelism (with the associated memory hierarchy) raises the need for
very adaptive skeletons.

• Generic programming also leaves much room for improvement. The approach
described in this thesis is based on type classes. Recent improvements of
the type system open new possibilities of implementing generic techniques;
therefore, the principle of de- and reconstruction could be reimplemented in a
more flexible way. Especially the recent research[100] of Hinze and Löh on type
spine views is interesting. Also, a library of sequential and parallel generic
functions has to be constructed; in this thesis, we have given only a couple
of generic functions. Finally, much more programming practice with generic
functions in a parallel context is needed, especially for larger applications.
Then we can see, if the overhead introduced by our approach is outweighed
by advantages in program development. Also the specialisation of generic
skeletons to a data structure can be implemented as a preprocessing step.
The insights gained that way are needed for further improvement.

180 10. CONCLUSION

• Regarding data parallelism, more research can be done on finding appropri-
ate generic partitioning methods. Also, the usefulness of generic partitioning
has to be assessed; in a larger program context, they may prove to be too
general. To accompany map, other functions of the BMF[18, 193] and Squiggol
community (like fold and filter) could also be a target for parallelisation.

• Naturally, genericity tends more towards data parallelism than towards con-
trol parallelism. Nevertheless, more research has to be done on how generic
functions can be useful in control parallel skeletons. Furthermore, more stan-
dardised solutions (in the form of skeletons) have to be found for other typical
constellations in parallel programming. In a form of a library with exactly de-
fined demand, storage, and parallel behaviours, these will support our plug-
and-play approach to program development.

• Systematic program development methods for parallel functional languages,
even for only functional ones, hardly exist. This is a widely open field of re-
search, and we have merely sketched one approach of doing so by summaris-
ing our experiences and techniques in a unified context.

Bibliography

[1] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond. Addison-Wesley,
2005.

[2] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Sys-
tems. PhD thesis, MIT Press, 1986.

[3] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

[4] Selim G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall,
1993.

[5] A. Alimarine and R. Plasmeijer. A generic programmin extension for Clean.
In Proceedings of the 13th International Workshop on the Implementation
of Functional Languages (IFL’01), volume 2312 of LNCS, pages 168–185.
Springer-Verlag, 2001.

[6] M. Alt, H. Bischof, and S. Gorlatch. Program development for computational
grids using skeletons and performance prediction. Parallel Processing Let-
ters, 12(2):157–174, 2002.

[7] Gregory R. Andrews. Concurrent Programming: Principles and Practice.
Benjamin/Cummings, 1991.

[8] Krasimir Angelov and Simon Marlow. Visual Haskell: A full-featured
Haskell development environment. In Haskell ’05: Proceedings of the 2005
ACM SIGPLAN workshop on Haskell, Tallinn, Estonia, pages 5–16, Septem-
ber 2005.

[9] J. Anvik et al. Generating Parallel Programs from the Wavefront Design Pat-
tern. In Proceedings of the 7th International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS’02), April 2002.

[10] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, 1992.

[11] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Con-
current Programming in ERLANG. Prentice-Hall, 2nd edition, 1996.

181

182 BIBLIOGRAPHY

[12] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic Program-
ming – An Introduction –. In S. Doaitse Swierstra, P. R. Henriques, and J. N.
Oliveira, editors, Advanced Functional Programming, LNCS 1608, pages 28–
115. Springer-Verlag, 1999.

[13] H. Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice
Hall, 1990.

[14] J. Berthold. Towards a generalised runtime environment for parallel
haskells. In Marian Bubak et al., editors, Computational Science — ICCS’04,
volume 3038 of LNCS, page 297ff, Krakow, Poland, 2004. Springer-Verlag.

[15] J. Berthold, U. Klusik, R. Loogen, S. Priebe, and N. Weskamp. High-level
Process Control in Eden. In Harald Kosch et al., editors, EuroPar 2003 –
Parallel Processing, volume 2790 of LNCS, Klagenfurt, Austria, 2003.

[16] J. Berthold and R. Loogen. The Impact of Dynamic Channels on Functional
Topology Skeletons. In Proceedings of the 3rd International Workshop on
High-Level Parallel Programming and Applications (HLPP), 2005.

[17] R. Bird. Introduction to Functional Programming using Haskell. Prentice
Hall, 2nd edition, 1998.

[18] Richard S. Bird. An introduction to the theory of lists. In M. Broy, editor,
Logic of Programming and Calculi of Discrete Design, volume F36 of NATO
ASI Series, pages 5–42. Springer-Verlag, 1987.

[19] Guy E. Blelloch. NESL: A Nested Data-Parallel Language (3.1). Technical
Report CMU-CS-95-170, Carnegie Mellon School of Computer Science, USA,
September 1995.

[20] OpenMP Architecture Review Board. OpenMP Application Program Inter-
face, 2005. (see also http://www.openmp.org).

[21] Barry Boehm. A Spiral Model of Software Development and Enhancement.
IEEE Computer, 21(5):61–72, May 1988.

[22] G. H. Botorog and H. Kuchen. Skil: An imperative language with algorith-
mic skeletons for efficient distributed programming. In Fifth International
Symposium on High Performance Distributed Computing (HPDC-5), pages
243–252. IEEE Computer Society Press, 1996.

[23] Tore A. Bratvold. Skeleton-Based Parallelisation of Functional Programs.
PhD thesis, Heriot-Watt University, November 1994.

[24] Thomas Bräunl. Parallele Programmierung: Eine Einführung. Vieweg, 1993.
In german.

[25] S. Breitinger, R. Loogen, and Y. Ortega-Mallén. Towards a declarative lan-
guage for concurrent and parallel programming. In Glasgow Workshop on
Functional Programming 1995. Springer-Verlag, 1995.

BIBLIOGRAPHY 183

[26] Silvia Breitinger. Design and Implementation of the Parallel Functional Lan-
guage Eden. PhD thesis, Fachbereich Mathematik und Informatik, Philipps-
Universität Marburg, June 1998.

[27] Silvia Breitinger, Ulrike Klusik, and Rita Loogen. An Implementation of
Eden on Top of Concurrent Haskell. In W. Kluge, editor, Implementation of
Functional Languages, Bonn 1996, LNCS 1268. Springer-Verlag, 1997.

[28] Silvia Breitinger, Ulrike Klusik, and Rita Loogen. Channel Structures in the
Parallel Functional Language Eden. In Glasgow Workshop on Functional
Programming 1997, 1998. revised version.

[29] Silvia Breitinger, Ulrike Klusik, and Rita Loogen. From (sequential) Haskell
to (parallel) Eden: An Implementation Point of View. In International Sym-
posium on Programming Languages: Implementations, Logics, Programs
(PLILP), Springer LNCS, 1998.

[30] Silvia Breitinger, Ulrike Klusik, Rita Loogen, Yolanda Ortega-Mallén, and
Ricardo Peña. DREAM - the DistRibuted Eden Abstract Machine. In Chris
Clack, Tony Davie, and Kevin Hammond, editors, Symposium on the Im-
plementation of Functional Languages 1997, St. Andrews, selected papers,
LNCS 1467. Springer-Verlag, 1998.

[31] Silvia Breitinger and Rita Loogen. Explicit Process Systems in Eden. In
Constructive Methods for Parallel Programming (CMPP), Marstrand, Swe-
den, 1998.

[32] Silvia Breitinger, Rita Loogen, Yolanda Ortega-Mallén, and Ricardo Peña.
Eden — Language Definition and Operational Semantics. Technical Report
96-10, Philipps-Universität Marburg, 1996.

[33] Silvia Breitinger, Rita Loogen, and Steffen Priebe. Parallel Programming
with Haskell and MPI. In Proceedings of the Conference on the Implementa-
tion of Functional Languages, London 1998, 1998.

[34] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM
Systems Journal, 4(1):25–30, January 1965.

[35] Geoffrey Burn. Abstract Interpretation and the Parallel Evaluation of Func-
tional Languages. PhD thesis, Imperial College, London, 1987.

[36] David Callahan, Bradford L. Chamberlain, and Hans P. Zima. The Cascade
High Productivity Language. In 9th International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS 2004),
pages 52–60. IEEE Computer Society, April 2004.

[37] Nicholas Carriero and David Gelernter. How to write parallel programs: a
guide to the perplexed. ACM Computing Surveys, 21(3):323–357, September
1989.

184 BIBLIOGRAPHY

[38] Brad Chamberlain. An Introduction to Chapel: Cray’s High-Productivity
Language, September 2005. Talk at the Parallel Global Address Space
(PGAS) Programming Models Conference, Minneapolis, USA.

[39] J. Cheney and R. Hinze. A Lightweight Implementation of Generics and
Dynamics. In M. Chakravarty, editor, Proceedings of the ACM SIGPLAN
2002 Haskell Workshop, October 2002.

[40] Olaf Chitil, Colin Runciman, and Malcolm Wallace. Freja, Hat and Hood - A
Comparative Evaluation of Three Systems for Tracing and Debugging Lazy
Functional Programs. In Proceedings of the 12th International Workshop
on Implementation of Functional Languages (IFL 2000), Aachen, Germany,
pages 176–193. LNCS 2011, Springer-Verlag, September 2001.

[41] D. Clarke and A. Löh. Generic Haskell, specifically. In IFIP TC2/WG2.1
Working Conference on Generic Programming, number 115 in International
Federation for Information Processing, pages 21–47. Kluwer Academic Pub-
lishers, 2003.

[42] K. Classen and J. Hughes. QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. In International Conference on Functional Pro-
gramming (ICFP 2000), Montréal, Canada, September 2000.

[43] W. Clinger and J. Rees. Macros that work. In Proceedings of the 19th An-
nual ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL’00), pages 155–162. ACM Press, January 1991.

[44] R. Cockett and T. Fukushima. About Charity. Technical Report Yellow Se-
ries Report No. 92/480/18, Department of Computer Science, University of
Calgary, Canada, 1992.

[45] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. Research Monographs in Parallel and Distributed Computing. Pit-
man / MIT-Press, 1989.

[46] M. Cole, S. Gorlatch, J. Prins, and D. Skillicorn. High level parallel program-
ming: Applicability, analysis and performance. Technical report, Dagstuhl-
Seminar-Report 99171, April 1999.

[47] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation.
In Twentieth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 493–501, 1993.

[48] D. Culler, J.P. Singh, and A. Gupta. Parallel Computer Architecture : A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, November 1998.

[49] José C. Cunha and Omer F. Rana. Grid Computing: Software Environments
and Tools. Springer, December 2005.

[50] K. Czarnecki et al. Generative Programming and Active Libraries. In
Dagstuhl Seminar on Generic Programming, volume 1766 of LNCS, April
1998.

BIBLIOGRAPHY 185

[51] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley Professional, first edition, June
2000.

[52] M. Danelutto, F. Pasqualetti, and S. Pelagatti. Skeletons for data parallelism
in P3L. In Euro-Par 1997, LNCS 1300, pages 619–628. Springer-Verlag,
1997.

[53] Marco Danelutto and Susanna Pelagatti. Parallel Implemenation of FP us-
ing a Template-based Approach. Technical report, University of Pisa and
University of Edinburgh, 1995.

[54] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu,
and R. L. While. Parallel Programming Using Skeleton Functions. Technical
report, Imperial College, London, 1992.

[55] John Darlington, Yike Guo, Hing Wing To, and Jin Yang. Parallel Skele-
tons for Structured Composition. Technical report, Imperial College, London,
November 1993.

[56] John Darlington, Yike Guo, Hing Wing To, and Jin Yang. Functional Skele-
tons for Parallel Coordination. In Proceedings of Euro-Par 1995. LNCS 966,
Springer-Verlag, 1995.

[57] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

[58] J. G. Delgado-Frias, J. Nyathi, and D. H. Summerville. A programmable
dynamic interconnection network router with hidden refresh. IEEE Trans-
actions Circuits and Systems, 45(11):1182–1190, November 1998.

[59] Kemal Ebcioğlu, Vijay Saraswat, and Vivek Sarkar. X10: Programming for
Hierarchical Parallelism and Non-Uniform Data Access. In Proceedings of
the 3rd International Workshop on Language Runtimes (Part of the 19th
Annual ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA), 2004.

[60] H. Ehrig, B. Mahr, and F. Cornelius. Mathematisch-strukturelle Grundlagen
der Informatik. Springer-Verlag, 2001.

[61] J. T. Feo. A Comparative Study of Parallel Programming Languages: The
Salishan Problems. In Special Topics in Supercomputing, volume 6. North
Holland, 1992.

[62] M. J. Flynn. Very high-speed computing systems. In Proceedings of the IEEE,
volume 54, pages 1901–1909, December 1966.

[63] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers, 1998.

[64] Ian Foster. Designing and Building Parallel Programs. Addison Wesley,
1995.

186 BIBLIOGRAPHY

[65] Ian Foster and S. Taylor. Strand: New Concepts in Parallel Programming.
Prentice-Hall, 1989.

[66] G. Fox. Parallel computing comes of age: Supercomputer level parallel com-
putations at caltech. Concurrency - Practice and Experience, 1(1):63–103,
1989.

[67] J. Furuse. Generic polymorphism in ML. In Journées Francophones des
Langages Applicatifs, 2001.

[68] Yoshihiko Futamura. Partial evaluation of computation process – an ap-
proach to a compiler-compiler systems. Higher-Order and Symbolic Compu-
tation, 12(4):381–391, 1999.

[69] Luis A. Galán, Cristóbal Pareja, and Ricardo Peña. Functional Skeletons
Generate Process Topologies in Eden. In International Symposium on Pro-
gramming Languages: Implementations, Logics, Programs (PLILP), LNCS
1140. Springer, 1996.

[70] J. Gibbons and O. de Moor, editors. The Fun of Programming, book chapter
Fun with Phantom Types by Ralf Hinze, pages 245–262. Palgrave, 2003.

[71] Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. In Third
International Conference on Functional Programming (ICFP), pages 273–
279, 1998.

[72] P. Roldán Gómez. Eden Trace Viewer: A Tool to Visualize Parallel Program
Executions. Diploma thesis, Universidad Complutense de Madrid, 2004. In
german.

[73] J. R. Goodman and C. H. Séquin. Hypertree: A multiprocessor interconnec-
tion topology. IEEE Transactions on Computers, 30(12):923–933, 1981.

[74] Sergej Gorlatch and Christian Lengauer. Abstraction and Performance in
the Design of Parallel Programs: An Overview of the SAT Approach. Acta
Informatica, 36(9/10):761–803, 2000.

[75] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specifica-
tion. Addison-Wesley, 3rd edition, June 2005.

[76] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface. MIT Press, 1995.

[77] C. Hall, K. Hammond, S. Peyton Jones, and P. Wadler. Type Classes in
Haskell. In European Symposium On Programming, LNCS 788. Springer-
Verlag, April 1994.

[78] M. Hamdan. A Combinational Framework for Parallel Programming Using
Skeletons. PhD thesis, Department of Computing and Electrical Engeneer-
ing, Heriot-Watt University, Edinburgh, January 2000.

BIBLIOGRAPHY 187

[79] K. Hammond, J. Berthold, and R. Loogen. Automatic skeletons in Template
Haskell. Parallel Processing Letters, 13(3):413–424, September 2003.

[80] K. Hammond and G. Michaelson. Research Directions in Parallel Functional
Programming. Springer-Verlag, November 1999.

[81] K. Hammond and Á. J. Rebón Portillo. HaskSkel: Algorithmic Skeletons in
Haskell. In P. Koopman and C. Clack, editors, Proceedings of 1999 Workshop
on the Implementation of Functional Programming Languages, volume 1868,
pages 181–198. Springer-Verlag, 2000.

[82] Kevin Hammond. Parallel Functional Programming: An Introduction. In
PASCO, Linz, Austria. World Scientific, 1994.

[83] Kevin Hammond, James Mattson, Jr., Andrew Partridge, and Simon L.
Peyton Jones. GUM: a portable parallel implementation of Haskell. In
Thomas Johnsson, editor, Workshop on the Implementation of Functional
Languages, Båstad, Sweden. Chalmers University of Technology and Uni-
versity of Göteborg, September 1995.

[84] W. Harrison, T. Sheard, and J. Hook. Fine Control of Demand in Haskell. In
6th International Conference on the Mathematics of Program Construction.
Dagstuhl, Germany, 2002.

[85] W. L. Harrison and R. B. Kieburtz. Pattern-driven Reduction in Haskell. In
2nd International Workshop on Reduction Strategies in Rewriting and Pro-
gramming (WRS02), Copenhagen, Denmark, 2002.

[86] W. L. Harrison and R. B. Kieburtz. The Logic of Demand in Haskell. Journal
of Functional Programming, 15(6):837–891, November 2005.

[87] John L. Hennessy and David A. Patterson. Rechnerarchitektur. Vieweg,
1994. In german.

[88] Christoph Herrmann and Christian Lengauer. HDC: A Higher-Order Lan-
guage for Divide-and-Conquer. Parallel Processing Letters, 10(2/3):239–250,
2000.

[89] Christoph Herrmann and Christian Lengauer. Functional Metaprogram-
ming in the Construction of Parallel Programs. In Proceedings of the 4th
International Workshop on Constructive Methods for Parallel Programming
(CMPP’04), Stirling, Scotland, UK, July 2004.

[90] M. Hidalgo-Herrero. Formal Semantics for a Parallel Functional Language.
PhD thesis, Universidad Complutense de Madrid, 2004. In spanish.

[91] M. Hidalgo-Herrero and Y. Ortega-Mallén. A distributed operational seman-
tics for a parallel functional language. In SFP’00 - Scottish Functional Pro-
gramming Workshop. Trends in Functional Programming, Vol. 2. Intellect,
1995.

188 BIBLIOGRAPHY

[92] R. Hinze. Fortgeschrittene Algorithmen und Datenstrukturen in Haskell.
Vorlesung Universität Bonn, 1998.

[93] R. Hinze. Polytypic Programming with Ease. In Proceedings of the
4th Fuji International Symposium on Functional and Logic Programming
(FLOPS’99), Tsukuba, Japan, number 1722 in LNCS. Springer-Verlag,
November 1999.

[94] R. Hinze. A New Approach to Generic Functional Programming. In Proceed-
ings of the 27th Annual ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL’00), Boston, Massachusetts, USA. ACM Press,
January 2000.

[95] R. Hinze. Generic Programs and Proofs. Habilitationsschrift, Universität
Bonn, October 2000.

[96] R. Hinze. Polytypic values possess polykinded types. Science of Computer
Programming, MPC Special Issue, 43:129–159, 2002.

[97] R. Hinze and J. Jeuring. Generic Haskell: Applications. In Lecture notes
of the Summer School on Generic Programming, number 2793 in LNCS.
Springer-Verlag, 2003.

[98] R. Hinze and J. Jeuring. Generic Haskell: Practice and Theory. In Lecture
notes of the Summer School on Generic Programming, number 2793 in LNCS.
Springer-Verlag, 2003.

[99] R. Hinze, J. Jeuring, and A. Löh. Typeindexed Data Types. In Proceedings of
Sixth International Conference on the Mathematics of Program Construction,
number 2386 in LNCS, pages 148–174. Springer-Verlag, 2002.

[100] R. Hinze and A. Löh. Scrap your boilerplate revolutions. In Proceedings of the
9th International Conference on the Mathematics of Program Construction
(MPC), 2006.

[101] R. Hinze, A. Löh, and B. C. d. S. Oliveira. Scrap Your Boilerplate Reloaded.
In Proceedings of the 4th Fuji International Symposium on Functional and
Logic Programming (FLOPS’06), Fuji Susono, Japan, 2006.

[102] Ralf Hinze. A generic programming extension for Haskell. Technical Report
UU-CS-1999-28, Universiteit Utrecht, 1999. In Erik Meijer, editor, Proceed-
ings of the 3rd Haskell Workshop, Paris, France September 1999.

[103] Ralf Hinze and Simon Peyton Jones. Derivable type classes. Electronic Notes
in Theoretical Computer Science, Elsevier, 41(1), August 2001.

[104] P. Hruschka, C. Rupp, and G. Starke. Agility kompakt. Spektrum Akadem-
ischer Verlag, 2004.

[105] J. Hughes. Why Functional Programming Matters. Computer Journal,
32(2):98–107, 1989.

BIBLIOGRAPHY 189

[106] R.J.M. Hughes. The Design and Implementation of Programming Languages.
PhD thesis, Oxford University Computing Laboratory, July 1983.

[107] Th. Ihringer. Allgemeine Algebra. Teubner-Studienbücher, 1993.

[108] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[109] P. Jansson. Functional Polytypic Programming. PhD thesis, Computing Sci-
ence, Chalmers University of Technology and Göteborg University, Sweden,
May 2000.

[110] C. Jay and P. Steckler. The functional imperative: shape! In Proceedings of
the 7th European Symposium on Programming (ESOP’98), number 1381 in
LNCS, pages 139–153. Springer-Verlag, 1998.

[111] J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury, E. Mei-
jer, and T. Sheard, editors, Tutorial Text 2nd Int. School on Advanced Func-
tional Programming, Olympia, WA, USA, 26–30 Aug 1996, volume 1129.
Springer-Verlag, Berlin, 1996.

[112] J. Jeuring and P. Jansson. PolyP - a polytypic programming language exten-
sion. In Proceedings of the 24th ACM Symposium on Principles of Program-
ming Languages (POPL’97), Paris, France, pages 470–482, January 1997.

[113] Mark P. Jones. Functional Programming with Overloading and Higher-
Order Polymorphism. In LNCS 925, 1st International School on Advanced
Functional Programming, Båstad, Sweden, 1995.

[114] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall International, June 1993.

[115] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice
Hall, 1988.

[116] Richard B. Kieburtz. Reactive Functional Programming. In PROCOMET’98,
pages 263–284. Chapman and Hall, June 1998.

[117] David J. King, Jon G. Hall, and Philip W. Trinder. A strategic profiler for
glasgow parallel haskell. In Implementation of Functional Languages (IFL),
London, UK, pages 88–102, 1998.

[118] U. Klusik, R. Loogen, and S. Priebe. Controlling Parallelism and Data Dis-
tribution in Eden. In Trends in Functional Programming (Selected papers
of the Second Scottish Functional Programming Workshop), volume 2, pages
53–64. Intellect, 2000.

[119] U. Klusik, R. Loogen, S. Priebe, and F. Rubio. Implementation Skeletons
in Eden: Low-Effort Parallel Programming. In M. Mohnen and P. Koop-
man, editors, 12th International Workshop, IFL 2000, Aachen, LNCS 2011.
Springer-Verlag, 2001.

190 BIBLIOGRAPHY

[120] Ulrike Klusik, R. Peña, and C. Segura. Bypassing of Channels in Eden. In
SFP’99 - Scottish Functional Programming Workshop, Trends in Functional
Programming, pages 2–10. Intellect, 2000.

[121] Per Kroll and Philippe Kruchten. The Rational Unified Process Made Easy:
A Practitioner’s Guide to the RUP. Addison-Wesley, 2003.

[122] H. Kuchen. A skeleton library. In Proceedings of Euro-Par 2002, LNCS 2400,
pages 620–629. Springer-Verlag, 2002.

[123] R. Lämmel and S. Peyton Jones. Scrap your Boilerplate: A Practical Design
Pattern for Generic Programming. In Proceedings of ACM Sigplan Types in
Language Design and Implementation (TLDI), 2003.

[124] R. Lämmel and S. Peyton Jones. Scrap more Boilerplate: Reflection, Zips,
and Generalised Casts. In Proceedings of the International Conference on
Functional Programming (ICFP’04), pages 244–245, 2004.

[125] R. Lämmel and S. Peyton Jones. Scrap your Boilerplate With Class: Exten-
sible Generic Functions. In Proceedings of the International Conference on
Functional Programming (ICFP’05), Tallinn, Estonia, pages 204–215, 2005.

[126] R. Lämmel, E. Visser, and J. Visser. The Essence of Strategic Programming.
Unpublished. Available from the author’s web page., October 2002.

[127] R. Lämmel and J. Visser. Design Patterns for Functional Strategic Program-
ming. In Proceedings of third ACM Sigplan Workshop on Rule-based Pro-
gramming, 2002.

[128] R. Lämmel and J. Visser. Typed Combinators for Generic Traversal. In Pro-
ceedings of the International Conference on Practical Aspects of Declarative
Languages (PADL), Portland, Oregon, USA, 2002.

[129] John Launchbury. Lazy Imperative Programming. Technical report, Com-
puting Science Department, Glasgow University, December 1993.

[130] John Launchbury and Simon L. Peyton Jones. Lazy Functional State
Threads. In Proceedings of the ACM Conference on Programming Languages
Design and Implementation (PLDI), Orlando, June 1994.

[131] John Launchbury and Simon L. Peyton Jones. State in Haskell. Technical
report, Kluwer Academic Publishers, November 1994.

[132] John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp and
Symbolic Computation, 8(4):293–341, December 1995.

[133] Huiqing Li, Simon Thompson, and Claus Reinke. The Haskell Refactorer:
HaRe, and its API. In John Boyland and Grel Hedin, editors, Proceedings of
the 5th workshop on Language Descriptions, Tools and Applications (LDTA
2005), April 2005. Published as Volume 141, Number 4 of Electronic Notes
in Theoretical Computer Science.

BIBLIOGRAPHY 191

[134] INMOS Limited. Occam2 Reference Manual. Prentice Hall, 1988.

[135] A. Löh, D. Clarke, and J. Jeuring. Dependency-style Generic Haskell. In Pro-
ceedings of the 8th ACM SIGPLAN International Conference on Functional
Programming (ICFP’03). ACM Press, 2003.

[136] Andres Löh. Exploring Generic Haskell. PhD thesis, Utrecht University,
Netherlands, September 2004.

[137] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik,
R. Loogen, G. J. Michaelson, R. Peña, S. Priebe, Á. J. Rebón Portillo, and
P. W. Trinder. Comparing Parallel Functional Languages: Programming and
Performance. Higher-order and Symbolic Computation, 16(3), 2003.

[138] H.-W. Loidl, P W. Trinder, K. Hammond, S.B. Junaidu, R.G. Morgan, and S.L.
Peyton Jones. Engineering Parallel Symbolic Programs in GPH. Concurrency
— Practice and Experience, 11:701–752, 1999.

[139] Hans-Wolfgang Loidl. Granularity in Large-Scale Parallel Functional Pro-
gramming. PhD thesis, Department of Computing Science, University of
Glasgow, 1997. TR-1998-7.

[140] Hans-Wolfgang Loidl and Phil Trinder. Engineering Large Parallel Func-
tional Programs. In Selected papers from the 9th International Workshop on
Implementation of Functional Languages, volume 1467 of Lecture Notes In
Computer Science (LNCS), pages 178–197, 1997.

[141] R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Patterns and
Skeletons for Parallel and Distributed Computing, chapter Parallelism Ab-
stractions in Eden. In Rabhi and Gorlatch [176] , 2003.

[142] Rita Loogen. Parallele Implementierung funktionaler Programmiersprachen.
PhD thesis, RWTH Aachen, January 1989. In german.

[143] Rita Loogen, Yolanda Ortega-Mallén, and Ricardo Peña. Parallel Functional
Programming in Eden. Journal of Functional Programming, 15(3):431–475,
2005.

[144] Ian Lynagh. Template Haskell: A report from the field. Unpublished. Avail-
able from the author’s web page., May 2003.

[145] Ian Lynagh. Unrolling and simplifying expressions with Template Haskell.
Unpublished. Available from the author’s web page., May 2003.

[146] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
1996.

[147] Jan-Willem Maessen. Eager Haskell: resource-bounded execution yields ef-
ficient iteration. In 2002 ACM SIGPLAN workshop on Haskell, Pittsburgh,
Pennsylvania, pages 38–50, 2002.

192 BIBLIOGRAPHY

[148] Simon Marlow. Haddock, A Haskell Documentation Tool. In Proceedings
of the ACM SIGPLAN workshop on Haskell, Pittsburgh Pennsylvania, USA,
ACM Press, October 2002.

[149] R. Martı́nez and R. Peña. Building an Interface Between Eden and Maple: A
Way of Parallelizing Computer Algebra Algorithms. In IFL 2003, Edinburgh,
2004.

[150] L. Meertens. Calculate polytypically! In Proceedings of the 8th International
Symposium on Programming Languages: Implementations, Logics, and Pro-
grams, volume 1140 of Lecture Notes In Computer Science, pages 1–16, 1996.

[151] E. Meijer and J. Jeuring. Merging Monads and Folds for Functional Program-
ming. In Advanced Functional Programming (AFP 95), LNCS 925, pages
228–266. Springer-Verlag, 1995.

[152] Message Passing Interface Forum, University of Tennessee, Knoxville. MPI:
A Message-Passing Interface Standard, May 1994.

[153] Message Passing Interface Forum, University of Tennessee, Knoxville. MPI-
2: Extensions to the Message-Passing Interface, March 1997.

[154] R. Milner. A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences, 17(3), 1978.

[155] S. B. Needleman and C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol.
Biol., 48(3):443–453, 1970.

[156] E. G. J. M. H. Nöcker, J. E. W. Smetsers, M. C. J. D. van Eekelen, and M. J.
Plasmeijer. Concurrent Clean. In E. H. L. Aarts, J. van Leeuwen, and
M. Rem, editors, PARLE ’91, Parallel Architectures and Languages Europe,
Volume I: Parallel Architectures and Algorithms, volume 505 of LNCS, pages
202–219. Springer-Verlag, 1991.

[157] T. Nordin and S. L. Peyton Jones. Green card: a foreign-language interface
for Haskell. In Proceedings of the Haskell Workshop, Amsterdam, Nether-
lands, June 1997.

[158] Ulf Norell and Patrik Jansson. Polytypic programming in haskell. In Pro-
ceedings of the International Workshop on the Implementation of Functional
Languages, pages 168–184, 2003.

[159] Ulf Norell and Patrik Jansson. Prototyping generic programming in tem-
plate haskell. In Proceedings of the 7th International Conference on the Math-
ematics of Program Construction (MPC), 2004.

[160] Oak Ridge National Laboratory. Parallel Virtual Machine, 2003. See:
http://www.csm.ornl.gov/pvm/pvm home.html.

[161] Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

BIBLIOGRAPHY 193

[162] Chris Okasaki. An Overview of Edison. In Proceedings of the Haskell Work-
shop 2000, 2000.

[163] Lawrence Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.

[164] S. Peyton Jones et al. Haskell 98: A Non-strict, Purely Functional Language,
2003. See: http://www.haskell.org/onlinereport.

[165] S. Peyton Jones et al. The Glorious Glasgow Haskell Compilation System,
Version 6.4, 2005. Available at: http://www.haskell.org/ghc.

[166] S. Peyton Jones, M. Jones, and E. Meijer. Type Classes: Exploring the Design
Space. In Proceedings of the Haskell Workshop, Amsterdam, Netherlands,
1997.

[167] S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the Rules: Rewriting
as a practical optimisation technique in GHC. In Haskell Workshop, 2001.

[168] B. Pierce. Types and Programming Languages. MIT Press, 2002.

[169] R. Pointon, P. Trinder, and H.-W. Loidl. The Design and Implementation of
Glasgow distributed Haskell. In International Workshop on the Implementa-
tion of Functional Languages, LNCS 2011. Springer-Verlag, 2000.

[170] Michael Poldner and Herbert Kuchen. On Implementing the Farm Skele-
ton. In Proceedings of the 3rd International Workshop on High-Level Parallel
Programming and Applications (HLPP), Warwick, UK, 2005.

[171] S. Priebe. Concepts for the Communication in the Eden Runtime System.
Master’s thesis, Philipps-Universität Marburg, September 1998.

[172] Steffen Priebe. Preprocessing Eden with Template Haskell. In Robert Glück
and Michael R. Lowry, editors, Generative Programming and Component En-
gineering (GPCE), volume 3676 of Lecture Notes in Computer Science, pages
357–372. Springer, 2005.

[173] Steffen Priebe. Dynamic Task Generation and Transformation Within a
Nestable Workpool Skeleton. In Wolfgang Nagel et al., editors, EuroPar
2006 – Parallel Processing, volume 4128 of LNCS, Dresden, Germany, 2006.
Springer.

[174] Steffen Priebe. Towards Generic Rapid Prototyping of Parallel Functional
Programs. Technical Report 53, Philipps-Universität Marburg, July 2006.

[175] Michael J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill,
2nd edition, 1994.

[176] F. A. Rabhi and S. Gorlatch. Patterns and Skeletons for Parallel and Dis-
tributed Computing. Springer-Verlag, 2003.

194 BIBLIOGRAPHY

[177] A. Reid. Template Greencard. In Proceedings of 15th International Work-
shop on the Implementation of Functional Languages (IFL 2003), Edinburgh,
September 2003.

[178] David Roundy. Darcs: a free, open source source code management system.
Available at http://darcs.net, 2003.

[179] Winston Royce. Managing the Development of Large Software Systems.
IEEE WESCON, 26:1–9, August 1970.

[180] F. Ruehr. Structural polymorphism. In R. Backhouse and T.
Sheard, editors, Informal Proceedings Workshop on Generic Programming,
Marstrand/Sweden, 1998.

[181] Dan Russell. FAD: A Functional Analysis and Design Methodology. PhD
thesis, Computing Lab, University of Kent, Canterbury, UK, January 2001.

[182] Chris Ryder. Software Measurement for Functional Programming. PhD the-
sis, Computing Lab, University of Kent, Canterbury, UK, August 2004.

[183] P. Sadayappan, Y. L. C. Ling, and K. W. Olson. A restructurable VLSI robotics
vector processor architecture for real-time control. IEEE Transactions on
Robotics and Automation, 5(5):583–601, 1989.

[184] Patrick M. Sansom and Simon L. Peyton Jones. Time and space profiling for
non-strict higher-order functional languages. In 22nd ACM Symposium on
Principles of Programming Languages, San Francisco, California, January
1995.

[185] André Santos. Compilation by Transformation in Non-Strict Functional Lan-
guages. PhD thesis, Glasgow University, Department of Computing Science,
1995.

[186] S. Seefried, M. Chakravarty, and G. Keller. Optimising Embedded DSLs
using Template Haskell. In Third International Conference on Generative
Programming and Component Engineering, pages 186–205. Springer-Verlag,
October 2004.

[187] Clara Segura Dı́az. Program Analysis in Parallel Functional Languages.
PhD thesis, Universidad Complutense de Madrid, Spain, 2001.

[188] Julian Seward. Towards a Strictness Analyser for Haskell: Putting Theory
into Practice. Master’s thesis, University of Manchester, 1991.

[189] T. Sheard and S. Peyton Jones. Template Meta-programming for Haskell. In
Haskell Workshop 2002. ACM Press, October 2002.

[190] Tim Sheard. Languages of the future. In Companion to the 19th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver,
BC, Canada, pages 116–119, 2004.

BIBLIOGRAPHY 195

[191] Abraham Silberschatz and Peter Galvin. Operating System Concepts.
Addison-Wesley, fifth edition, 1998.

[192] A. Simon and D. Coutts. Gtk2Hs: A GUI Library for Haskell based on Gtk.
Available under http://haskell.org/gtk2hs, 2005.

[193] D. B. Skillicorn. The Bird-Meertens Formalism as a Parallel Model. In J.S.
Kowalik and L. Grandinetti, editors, NATO ARW “Software for Parallel Com-
putation”, volume 106. Springer-Verlag NATO ASI, 1993.

[194] David B. Skillicorn and Domenico Talia, editors. Programming Languages
for Parallel Processing. IEEE Computer Society Press, 1994.

[195] David B. Skillicorn and Domenico Talia. Models and languages for parallel
computation. ACM Computing Surveys, 30(2):123–169, June 1998.

[196] Guy Steele. Parallel Programming and Parallel Abstractions in Fortress.
Invited talk at the Eighth International Symposium on Functional and Logic
Programming (FLOPS), Fuji Susono, Japan, April 2006.

[197] Bjarne Stroustrup. Die C++ Programmiersprache. Addison-Wesley, 2nd edi-
tion, 1992.

[198] Björn Struckmeier. Eden Trace Viewer: A Reimplementation in Haskell.
Diploma thesis, Philipps-Universität Marburg, Germany, 2006. In german.

[199] Walid Taha. Multi-stage Programming: Its Theory and Applications. PhD
thesis, Oregon Graduate Institute of Science and Technology, USA, Novem-
ber 1999.

[200] Walid Taha et al. MetaOCaml: A compiled, type-safe, multi-stage program-
ming language, 2006. See: http://www.metaocaml.org.

[201] Peter Thiemann. Grundlagen der funktionalen Programmierung. B. G. Teub-
ner, Stuttgart, 1994.

[202] Simon Thompson. Haskell: The Craft of Functional Programming. Addison-
Wesley, 2nd edition, 1999.

[203] A. Tolmach et al. An External Representation for the GHC Core Language,
September 2001. (Draft for GHC 5.02 documentation).

[204] Carmen Torrano and Clara Segura. Strictness analysis and let-to-case trans-
formation using Template Haskell. In M. van Eekelen, editor, 6th Sympo-
sium on Trends in Functional Programming (TFP 2005), pages 429–442. In-
stitute of Cybernetics, Tallinn, Estonia, 2005.

[205] P. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algorithm +
Strategy = Parallelism. Journal of Functional Programming, 8(1), January
1998.

196 BIBLIOGRAPHY

[206] P. W. Trinder, E. Barry, Jr., M. K. Davis, K. Hammond, S. B. Junaidu,
U. Klusik, H.-W. Loidl, and S. L. Peyton Jones. GPH: An Architecture-
Independent Functional Language. IEEE Transactions on Software Engi-
neering, 1999.

[207] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algorithm
+ Strategy = Parallelism. In Werner Kluge, editor, Workshop on the Imple-
mentation of Functional Languages, Bonn, Germany. Universität Kiel, 1996.

[208] J. van Leeuwen, editor. Handbook of Theoretical Computer Science, volume
B: Formal Models and Semantics. Elsevier, 1990.

[209] T. Veldhuizen and D. Gannon. Active libraries: Rethinking the roles of com-
pilers and libraries. In Proceedings of the SIAM Workshop on Object Oriented
Methods for Inter-operable Scientific and Engineering Computing (OO’98),
1998.

[210] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. In ACM SIGPLAN International Conference on
Functional Programming (ICFP’98), Baltimore, USA, volume 34/1 of ACM
SIGPLAN Notices, pages 13–26. ACM Press, 1999.

[211] Eelco Visser. Stratego: A Language for Program Transformation based on
Rewriting Strategies. In Rewriting Techniques and Applications (RTA’01),
Utrecht, The Netherlands, volume 2051 of LNCS, pages 357–361. Springer-
Verlag, May 2001.

[212] Philip Wadler. Strictness analysis on non-flat domains (by abstract interpre-
tation over finite domains), pages 266–275. Ellis Horwood, 1987.

[213] Philip Wadler. Comprehending monads. In Mathematical Structures in Com-
puter Science, volume 2, pages 461–493, 1992.

[214] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad-hoc. In Proceedings of the 16th ACM Symposium on Principles of Pro-
gramming Languages. Austin, Texas, January 1989.

[215] K. Wansbrough. Macros and Preprocessing in Haskell. Unpublished, avail-
able from the author’s webpage, 1999.

[216] N. Winstanley. A Type-Sensitive Preprocessor for Haskell. In Glasgow Work-
shop on Functional Programming, Ullapool, Scotland, 1997.

[217] A. Zomaya. Parallel and Distributed Computing Handbook. McGraw-Hill
Series on Computer Engineering, 1996.

Curriculum Vitae

Steffen Priebe
(verheiratet, eine Tochter)

10. Juni 1972 geboren in Marburg

September 1991 Abitur am Gymnasium Martin-Luther-Schule in Marburg

Okt. 1991 - Okt. 1992 Zivildienst bei der Blista EHG in Marburg

Okt. 1992 - Sep. 1998 Studium der Informatik an der Philipps-Universität
Marburg (“Mit Auszeichnung bestanden”)

Okt. 1998 - Jan. 2004 Wissenschaftlicher Mitarbeiter am Fachbereich Mathematik
u. Informatik der Philipps-Universität Marburg

Jun. 2001 - Mai 2003 Unterbrechung der Dissertation wegen schwerer Erkrankung

Apr. 2004 Aufnahme als Stipendiat in die Promotionsförderung des
Evangelischen Studienwerkes Villigst e.V.

Wiederaufnahme der Dissertation

