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Abstract

The main purpose of metabolic engineering is the modification of biological
systems towards specific goals using genetic manipulations. For this purpose,
models are built that describe the stationary and dynamic behaviour of bio-
chemical reaction networks inside a biological cell. Based on these models,
simulations are carried out with the intention to understand the cell’s be-
haviour. The modeling process leads to the generation of large amounts of
data, both during the modeling itself and after the simulation of the created
models. The manual interpretation is almost impossible; consequently, ap-
propriate techniques for supporting the analysis and visualization of these
data are needed.

The purpose of this thesis is to investigate visualization and data mining
techniques to support the metabolic modeling process. The work presented
in this thesis is divided into several tracks:

• Visualization of metabolic networks and the associated simulation data.

Novel visualization techniques will be presented, which allow the visual
exploration of metabolic network dynamics, beyond static snapshots of
the simulated data plots. Node-link representations of the metabolic
network are animated using the time series of metabolite concentra-
tions and reaction rates. In this way, bottlenecks and active parts of
metabolic networks can be distinguished. Additionally, 3D visualization
techniques for metabolic networks are explored for cross-free drawing of
the networks in 3D visualization space. Steerable drawing of metabolic
networks is also investigated. In contrast to other approaches for draw-
ing metabolic networks, user guided drawing of the networks allows
the creation of high quality drawings by including user feedback in the
drawing process.



• Comparison of XML/SBML files.

SBML (Systems Biology Markup Language) has become ubiquitous
in metabolic modeling, serving the storage and exchange of models
in XML format. Generally, the modeling process is an iterative task
where the next generation model is a further development of the cur-
rent model, resulting in a family of models stored in SBML format.
The SBML format, however, includes a great deal of information, from
the structure of the biochemical network to parameters of the model or
measured data. Consequently, the CustX-Diff algorithm for a customiz-
able comparison of XML files will be introduced. By customizing the
comparison process through the specification of XPath expressions, an
adaptable change detection process is enabled. Thus, the comparison
process can be focused on specific parts of a XML/SBML document,
e.g. on the structure of a metabolic network.

• Visual exploration of time-varying sensitivity matrices.

Sensitivity analysis is a special method used in simulation to analyze
the sensitivity of a model with respect to its parameters. The results
of sensitivity analysis of a metabolic network are large time-varying
matrices, which need to be properly visualized. However, the visual-
ization of time-varying high-dimensional data is a challenging problem.
For this purpose, an extensible framework is proposed, consisting of
existing and novel visualization methods, which allow the visual ex-
ploration of time-varying sensitivity matrices. Tabular visualization
techniques, such as the reorderable matrix, are developed further, and
algorithms for their reordering are discussed. Existing and novel tech-
niques for exploring proximity data, both in matrix form and projected
using multi-dimensional scaling (MDS), are also discussed. Informa-
tion visualization paradigms such as focus+context based distortion
and overview+details are proposed to enhance such techniques.

• Cluster ensembles for analyzing time-varying sensitivity matrices.

A novel relationship-based cluster ensemble, which relies on the accu-
mulation of the evolving pairwise similarities of objects (i.e. parame-
ters) will be proposed, as a robust and efficient method for clustering
time-varying high-dimensional data. The time-dependent similarities,
obtained from the fuzzy partitions created during the fuzzy clustering
process, are aggregated, and the final clustering result is derived from
this aggregation.



Zusammenfassung

Metabolic Engineering beabsichtigt die zielgerichtete Modifikation biologis-
cher Systeme mittels genetischer Manipulationen. In diesem Kontext werden
Modelle gebaut, die sowohl das stationäre, als auch das dynamische Verhalten
der biochemischen Reaktionen innerhalb einer biologischen Zelle beschreiben.
Auf dieser Basis werden Simulationen durchgeführt, mit dem Ziel, das Ver-
halten einer Zelle zu verstehen. Der Modellierungsprozess ist mit der Erzeu-
gung großer Datenmengen, sowohl während der Modellierung, als auch nach
der Simulation der erstellten Modelle, verknüpft. Da eine manuelle Auswer-
tung nahezu unmöglich ist, werden Techniken zur Analyse und Visualisierung
solcher Daten benötigt.

Die vorliegende Dissertation behandelt geeignete Ansätze der Visualisierung
und des Data Minings zur Unterstützung des metabolischen Modellierungspro-
zesses. Die Arbeit liefert Beiträge zu folgenden Problemstellungen:

• Visualisierung metabolischer Netzwerke sowie der zugehörigen Simula-
tionsdaten.

Neuartige Visualisierungstechniken, die die visuelle Exploration des
Simulationsverlaufs metabolischer Netzwerke jenseits von statischen
Schnappschüssen erlauben, werden vorgestellt. Knoten-Kanten Darstel-
lungen von metabolischen Netzwerken werden durch Benutzung der
jeweiligen Zeitreihen der Metabolitenkonzentrationen und Reaktion-
sraten animiert. Engpässe und aktive Teile eines Netzwerks werden
leichter identifizierbar. 3D Visualisierungsmethoden, die das Zeichnen
von Netzwerken ohne Überschneidungen von Kanten ermöglichen, wer-
den untersucht. Das Konzept des gesteuerten Zeichnens metabolischer
Netzwerke wird eingeführt. Im Gegensatz zu anderen Ansätzen wird
ein vom Benutzer steuerbarer Ansatz zum Zeichnen metabolischer Net-



zwerke laut biochemischer Anforderungen mittels Einbindung von Be-
nutzerrückmeldungen vorgestellt.

• Vergleich von XML/SBML Dateien.

SBML (Systems Biology Markup Language), ein XML-Format zur Spe-
icherung und zum Austausch von biochemischen Modellen, ist allge-
genwärtig in der metabolischen Modellierung geworden. Die metabolis-
che Modellierung funktioniert üblicherweise als ein iterativer Prozess,
bei dem neue Modelle aus vorhergehenden Modellen abgeleitet wer-
den. Somit entstehen Familien von Modellen, die im SBML-Format
gespeichert werden. Die abgespeicherten Daten enthalten eine große
Menge an Informationen, von der Struktur eines Netzwerkes bis zu den
Parametern eines Modells oder entsprechenden Messdaten. Zur Re-
duktion der Datenmenge wird der CustX-Diff Algorithmus zum ges-
teuerten Vergleich von XML-Dokumenten eingeführt. Durch Spezi-
fikation von XPath-Ausdrücken wird ein anpassbarer Differenzprozess
ermöglicht, der eine Fokussierung des Vergleichs auf bestimmte Teile
von XML/SBML-Dokumenten erlaubt.

• Visuelle Exploration von zeitabhängigen Sensitivitätsmatrizen.

Sensitivitätsanalyse wird desöfteren in der Modellierung genutzt, um
die Sensitivität eines Modells in Bezug auf seine Parameter zu unter-
suchen. Die Ergebnisse der Sensitivitätsanalyse eines metabolischen
Modells sind große zeitabhängige Matrizen, die analysiert bzw. visual-
isiert werden sollen. Die Visualisierung hochdimensionaler Datensätze
ist ein anspruchsvolles Problem. Daher wird ein erweiterbares System,
bestehend aus vorhandenen und neuartigen Visualisierungstechniken
zur visuellen Exploration von zeitabhängigen Sensitivitätsmatrizen, vor-
gestellt. Tabellarische Visualisierungsansätze wie die sogenannte Re-
orderable Matrix werden weiterentwickelt, und Algorithmen für deren
Sortierung werden diskutiert. Techniken zur Visualisierung von Prox-
imitätsdaten, sowohl in Matrizenform, als auch projeziert anhand der
Methode der Multidimensionalen Skalierung (MDS) werden erforscht.
Informationsvisualisierungsparadigmen wie die focus+context basierte
Verzerrung, sowie overview+details Methoden werden eingesetzt, um
die vorgeschlagenen Visualisierungstechniken zu verbessern.

• Cluster-Ensembles zur Analyse von zeitabhängigen Sensitivitätsmatrizen.
Neuartige verwandtschaft-basierte Cluster-Ensembles, die sich auf die
Akkumulation der enstehenden paarweisen Ähnlichkeiten zwischen Ob-
jekten stützen, werden zur Clusterung von zeitabhängigen hochdimen-
sionalen Datensätzen vorgeschlagen. Die zeitabhängigen Ähnlichkeiten,



die aus den unscharfen Partitionen des Fuzzy-Clustering Prozesses en-
stehen, werden aggregiert, und die daraus resultierende Proximitätsmatrix
wird zur Erzeugung des endgültigen Clusterergebnisses verwendet.
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1
Introduction

1.1 Metabolic Engineering

Metabolism has been a research subject since ancient times. The old ap-
proach to understand the functioning of the metabolism was trial-and-error,
and most of the current knowledge in this field is based on centuries of experi-
ence with such an approach. However, the trial-and-error approach does not
provide an insight into the underlying functionality of the metabolism, thus
resulting in limitations regarding new treatments or gaining new knowledge.
This limitation shifted the attention of scientists to the idea of searching for
laws and rules that govern the metabolism. The first approaches in modeling
metabolism fall into the reductionism category. Reductionism is a top-down
approach which proceeds in the following way: to understand an organism,
one should understand its parts, and to understand its parts one would have
to understand the cells and their components until one achieves the elemen-
tary components already understood. However, this approach is insufficient
since there is a strong difference between the organism and its chemical com-
ponents inside a test tube; in the same way there is a big difference between a
cake and its raw components. From reductionism there was then a paradigm
shift to reconstructionism, which apart from studying components of the sys-
tem separately, integrates the isolated parts together in order to analyze their
interactions with the environment. In the context of integrated biochemical
systems, models of biochemical i.e. metabolic networks play an important
role. Models are used to address one of the central questions in metabolic
networks, namely to identify which parts of a complex network are impor-
tant and how they interact with each other. By building a quantitative model
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which describes the biochemical processes occurring inside the cell, it is pos-
sible to deduce the optimal conditions for maximizing the productivity of the
cell.

An important concept in this context is Metabolic Engineering, which is
defined as the ”guided improvement of product formation or cellular proper-
ties through the modification of specific biochemical reactions or introduction
of new ones by using recombinant DNA technology” [SS93]. Thus, using
specific genetic manipulations, it is possible to modify the metabolism of a
certain organism, mainly a microorganism, for the purpose of its optimiza-
tion. For achieving this purpose, a thorough study of different metabolic
processes inside the cell is needed. One possibility to study this problem is
by using mathematical models, which describe the timely evolution of cell
dynamics. Mathematical modeling of the cell works as an iterative process,
where the next generation model builds on the previous one. This process is
accompanied with generation and interpretation of large quantities of data.
Their interpretation is strongly related to visualization, and because of the
abstract nature of the data it is related to Information Visualization (InfoVis)
[CMS99].

The next section briefly introduces the field of information visualization,
whereas the theoretical background in metabolic engineering used in this
thesis will be described in Chapter 2.

1.2 Information Visualization

Information is essential to make good decisions. In our everyday life, it comes
in a variety of forms; from a mere table of numbers or a collection of texts to
well-structured drawings of underground connections.

If we look for the term information in the Merriam-Webster Online Dic-
tionary (www.m-w.com/) we will find the following definitions:

1. the communication or reception of knowledge or intelligence

2. a (1) : knowledge obtained from investigation, study, or instruction
(2) : INTELLIGENCE, NEWS (3) : FACTS, DATA b : the attribute
inherent in and communicated by one of two or more alternative se-
quences or arrangements of something (as nucleotides in DNA or bi-
nary digits in a computer program) that produce specific effects c (1)
: a signal or character (as in a communication system or computer)
representing data (2) : something (as a message, experimental data, or
a picture) which justifies change in a construct (as a plan or theory)
that represents physical or mental experience or another construct d :
a quantitative measure of the content of information; specifically : a

www.m-w.com/
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numerical quantity that measures the uncertainty in the outcome of an
experiment to be performed.

From the computer science point of view, there are two aspects of information
that occur in the literature: the concept of information in information theory
(item 2.2.d of the definition above) which deals with the uncertainty factor
contained in a certain sequence and the concept of information related to
knowledge (item 2.1 of the definition). The latter is interesting for us in the
context of information visualization. But what is information visualization?

Card et al. [CMS99] define visualization as the use of computer sup-
ported, interactive, visual representations of data to amplify cog-
nition. This definition contains the essence of visualization, which is its
purpose to amplify the understanding of the underlying object of study. In
analogy to computation, whose purpose is insight and not numbers [Ham87],
the purpose of visualization is insight and not pictures [CMS99].

The definition of information visualization is derived from the definition
of visualization as the use of computer supported, interactive, visual repre-
sentations of abstract data to amplify cognition. Thus, the abstract nature
of data is what makes information visualization different from related fields
such as scientific visualization where data often has a clear visual represen-
tation. The idea can be illustrated easily with two small examples. The first
one comes from the application field of this thesis, namely visualization of
multidimensional data in the form of matrices.

The data in Figure 1.1(a) present a matrix with real values. Suppose we
want to search for similar columns/rows or just for nearly equal values. We
would have to traverse the values several times and possibly the results of our
search would not be so encouraging. If we convert the values into colors like
in Figure 1.1(b), the understanding of the data is easier. The data is abstract
in the context of information visualization because it does not possess a clear
mental model to be used as a visual representative.

The second example in Figure 1.2 shows an example from graph drawing,
where the network of protein-protein interactions is visualized [JMBO01].
The nodes represent proteins and the edges possible interaction between
them. The various colors used in this visualization signify the effect of re-
moving the corresponding protein.

1.3 Motivation

Modeling and simulation play an important role in metabolic engineering.
Different models of metabolic pathways are built to describe the metabolism
of a cell. Simulators operating on these models generate results which are
then compared to in vitro experimental data and to in vivo data if they
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r1 K_Ia r1 K_Ib r1 K_mS r1 r_max r2 K_eq r2 K_mP r2 K_mS r2 r_max r3 kdiff r4 K_eq r4 K_mP r4 K_mS r4 r_max r5 kdiff

A 0.007 0.002 -0.01 0.013 -0.032 -0.001 0.002 -0.043 -0.031 -0.016 -0.001 0.001 -0.002 -0.003

P1 0.031 0.009 -0.046 0.059 0.072 0.003 -0.005 0.101 -0.384 -0.066 -0.003 0.004 -0.01 -0.012

P1X 0.156 0.045 -0.237 0.299 0.318 0.014 -0.024 0.432 0.479 -0.268 -0.012 0.016 -0.037 -0.017

P2 0.064 0.02 -0.097 0.124 -0.241 -0.011 0.018 -0.329 -0.231 0.257 0.012 -0.016 0.036 -0.074

P2X 0.193 0.055 -0.294 0.371 -0.397 -0.018 0.03 -0.535 -0.343 0.472 0.02 -0.028 0.063 0.979

S -0.132 -0.039 0.2 -0.253 -0.098 -0.004 0.007 -0.133 -0.091 0.108 0.005 -0.007 0.015 -0.03

(a) The raw matrix data
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(b) Its colored visualization

Figure 1.1: An example of visualization of multidimensional data using the
reorderable matrix. The red-white-blue spectrum is used to convert numerical
values into colors.

exist, in order to select the model which describes these data best. In this
context, in vivo data is data obtained from a living organism, in vitro data
represents data obtained from experiments in a test tube, whereas in silico
data means data generated in simulations. However, the selection of the right
model describing a certain metabolic network does not only require reliable
simulation results but also their correct interpretation.

Figure 1.3 represents the steps followed in metabolic modeling in the
broader context of our project. The experimental data, which in our case
is represented by rapid sampling experimental data, associated with the bio-
logical know-how is used to set up an initial model. After the initial setup,
a simulator tailored to the model is built by code generation. Based upon
simulation results, the model is then improved further. For this purpose,
sensitivity analysis, a technique used to separate the important parameters
of the model from the less significant ones is employed. Typically, the latter
are discarded to arrive at a simpler model. The process is iterated to obtain
the best model with respect to the reproduction of measured data and model
complexity.

Visualization is very helpful in the process of modeling and simulation
and is used extensively not only to support the modeling process but also to
explore the data generated from the simulations.

In the following, the problems that we discuss in this dissertation will be
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Figure 1.2: Drawing of protein-protein interaction networks (taken from
[JMBO01]). The nodes representing proteins, are colored according to the
effect of their removal with red being lethal; green, non-lethal; orange, slow-
growth and yellow unknown.

described.

1.3.1 Visualization of Metabolic Networks

Metabolic network models usually encode a graph structure and parameters.
The latter are used to generate simulations of the metabolic network. The
results of simulation include time-series data, describing the timely evolu-
tion of the network dynamics. A challenging problem in this context is the
integrated visualization of these time-series data with the graph represen-
tation of the metabolic network. Furthermore, the automatic drawing of
metabolic pathways according to established biochemical conventions pos-
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Initial Model Setup

Simulation of
the Model

Sensitivity
and Statistical Analysis

of the Model

Rapid
Sampling

Analysis of the
Simulation

Results

Biological
Know-how

Figure 1.3: The steps involved in the modeling process. Biological know-how
coupled with experimental data is included in the iterative process of metabolic
modeling.

sesses a greater scale of difficulty compared to the traditional graph drawing
problem. Consequently, efficient solutions to these problems are proposed in
Chapter 4.

1.3.2 Visual Exploration of Time-Varying Sensitivity

Matrices

Sensitivity matrices represent simulation-generated data, which describe how
strong the output of the metabolic model simulation is affected by changes in
its parameters. The visualization of time-varying sensitivity matrices is help-
ful to find and reduce redundancies in the parameters of a model. Several
visualization techniques, including dimension reduction techniques such as
multidimensional scaling [YH38, Mar79] and the Sammon mapping [Sam69],
and tabular visualization techniques based on the reorderable matrix con-
cept [Ber81] have been extended to allow the visualization of time-varying
sensitivity matrices (see Chapter 6).

1.3.3 Clustering of Time-Varying Data

The aim of clustering algorithms is to partition a data set into groups of
similar objects. Existing cluster algorithms deal with static data or low di-
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mensional streaming data. The problem of clustering time-varying data, i.e.
evolving sensitivity matrices, is the focus of Chapter 7.

1.3.4 Comparison of Semistructured Files

Metabolic models are typically saved as XML files containing all the above
mentioned information such as structure, parameters, experimental data and
so on. An important problem is change detection on these XML files. Since
the techniques for comparing XML files are generic in nature and do not
take into consideration the semantics of the format, a customizable change
detection algorithm is proposed in Chapter 5.

1.4 Project Framework

The techniques introduced in this thesis were developed in the framework of
a large project in the area of metabolic engineering and systems biology. This
project was financed by the DFG (Deutsche Forschungsgemeinschaft) under
the name Modeling of metabolic networks based on in-vivo-, in-vitro-, and in-
silico data, as part of the DFG Priority Programme SPP 1063: Informatics
methods for the analysis and interpretation of large genomics data sets. The
work was performed in the Distributed Systems Group at the University
of Marburg, Germany in cooperation with two other working groups, the
IBT (Institute for Biotechnology), Research Center Jülich, Germany and the
Institute of Systems Engineering, University of Siegen, Germany.

1.5 Contributions of this Thesis

The goal of this dissertation is to improve the understanding and interpre-
tation of data generated during the metabolic modeling process. This data
is abstract in nature and ranges from graphs representing the structure of
metabolic networks to complex high-dimensional time-varying matrices de-
scribing the sensitivity of the model with respect to its parameters. The
ideas utilized in this dissertation are derived from machine learning, cluster-
ing, classification, graph theory, graph drawing, computer graphics and vision
and human-computer interaction. The contributions of this dissertation are
as follows:

• Design and implementation of MetVis, a software tool that allows vi-
sualization and animation of metabolic networks with associated time
series representing the timely evolution of the simulations.
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• Development of an interactive graph drawing algorithm tailored to
metabolic networks, which includes user feedback to enhance the draw-
ing process.

• Design and implementation of a prototypical 3D visualization tool, for
interactive exploration of metabolic networks in three dimensions with
reduced crossing of edges.

• Development of novel algorithms for customizable change detection and
similarity measurement for XML files representing metabolic models.

• Design and implementation of MatVis, a tool for interactive visualiza-
tion of time-varying matrices. Such matrices are high-dimensional, with
10-100 attributes and dynamically evolving for 50-1000 time points.
This tool supports:

– Reorderable matrices [Ber81], which provide means for visualizing
high-dimensional data in a tabular form.

– Dimension reductioning techniques such as Multidimensional Scal-
ing [Mar79] and Sammon Mapping [Sam69].

– Interactive visualization of clustering results.

– Visualization of cluster evolution for the evolving objects.

• Development of a novel fuzzy clustering ensemble algorithm for cluster-
ing time-varying data.

Although the evaluation of techniques presented in this dissertation is fo-
cused on metabolic modeling data, they are useful in a broader context. For
example, the idea of customizable change detection algorithms to compare
metabolic models saved as XML files can also be applied to compare other
types of XML formats. In the same way, the fuzzy clustering ensemble pro-
posed in Chapter 7 is also applicable to any time-varying multidimensional
data.

In the framework of the research performed in this thesis, the following
papers have been published.

1. E. Qeli, B. Freisleben, D. Degenring, A. Wahl and W. Wiechert. “MetVis:
A Tool for Designing and Animating Metabolic Networks”, in Proceed-
ings of European Simulation and Modelling Conference, Naples, Italy,
pp. 333-338, EUROSIS Press, 2003

2. E. Qeli, W. Wiechert and B. Freisleben. “Visualization of Sensitivity
Matrices Generated During Simulations of Metabolic Network Mod-
els”, in Proceedings of the IASTED International Conference on Ap-
plied Simulation and Modelling, Rhodes, Greece, pp. 583-589, Acta
Press, 2004
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3. E. Qeli, W. Wiechert and B. Freisleben. “Visualizing Time-Varying
Matrices Using Multidimensional Scaling and Reorderable Matrices”,
in Proceedings of the International Conference on Information Visual-
ization (IV’04), London, UK, pp. 561-567, IEEE Press, 2004

4. M. Haunschild, A. Wahl, E. von Lieres, E. Qeli, B. Freisleben, R.
Takors and W. Wiechert. “MMT 2: Supporting the Modeling Pro-
cess for Rapid Sampling Experiments”, in Metabolic Engineering V,
Lake Tahoe, USA, 2004

5. E. Qeli, W. Wiechert and B. Freisleben. “3D Visualization and Anima-
tion of Metabolic Networks”, in Proceedings of the European Simulation
Multiconference, Magdeburg, Germany, pp. 258-262, SCS Publishing
House, 2004

6. E. Qeli, W. Wiechert and B. Freisleben. “Visual Exploration of Time-
Varying Matrices”, in Proceedings of the International Conference on
Information Visualization (IV’05), London, UK, pp. 889-895, IEEE
Press, 2005

7. E. Qeli, W. Wiechert and B. Freisleben. “The Time-Dependent Re-
orderable Matrix Method for Visualizing Evolving Tabular Data”, in
Proceedings of the IST/SPIE Conference on Visualization and Data
Analysis VDA’05, San Jose, USA, pp. 199-207, IST/SPIE Press, 2005

8. W. Wiechert, M. Haunschild, M. Weitzel, K. Nöh, E. von Lieres, A.
Wahl, E. Qeli and B. Freisleben. “Grid Computing for Systems Biol-
ogy”, in Grid Computing / (eds.): T. Barth, A. Schüll, pp. 98-133,
Vieweg-Verlag, 2006

9. S. Noack, A. Wahl, M. Haunschild, E. Qeli, B. Freisleben and W.
Wiechert. “Visualizing Regulatory Interdependencies and Parameter
Sensitivities in Biochemical Network Models”, in MATHMOD 5th Vi-
enna Symposium on Mathematical Modelling / (eds.): I. Troch, F. Bre-
itenecker, Vienna, Austria, (ARGESIM report: 30,1: pp. 17; Volume:
30,2: Full Papers-CD), ARGESIM Verlag, 2006

10. W. Wiechert, M. Haunschild, A. Wahl, E. Qeli, B. Freisleben and M.
Oldiges. “Model Families as a Tool for Identifying Regulatory Mecha-
nisms in Intracellular Biochemical Networks”, in Proceedings of Inter-
national Conference on Systems Biology ICSB’05, Boston, USA, 2005

11. M. Oldiges, S. Noack, A. Wahl, E. Qeli, B. Freisleben and W. Wiechert.
“From Enzyme Kinetics to Metabolic Network Modeling - Visualization
Tool for Enhanced Kinetic Analysis of Biochemical Network Models”,
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in Engineering in Life Sciences (Vol. 6), pp. 155-162, WILEY-VCH
Verlag, 2006

12. C. Görg, M. Pohl, E. Qeli and K. Xu. “Visual Representations”, in
Human Centered Visualization Environments Book Chapter, Springer
LNCS, to appear, 2007

13. J. Gllavata, E. Qeli and B. Freisleben. ”Holistic Comparison of Text
Images for Content-Based Retrieval”, in Proc. of the IEEE Int’l Sym-
posium on Multimedia (ISM’06), San Diego, USA, pp. 299-306, IEEE
Press, 2006

14. J. Gllavata, E. Qeli and B. Freisleben. ”Detecting Text in Videos Using
Fuzzy Clustering Ensembles”, in Proc. of the IEEE Int’l Symposium
on Multimedia (ISM’06), San Diego, USA, pp. 283-290, IEEE Press,
2006

15. E. Qeli and B. Freisleben. “Filtering XML Documents Using XPath Ex-
pressions and Aspect-Oriented Programming”, in Proceedings of ACM
Symposium on Document Engineering (DocEng’06), Amsterdam, The
Netherlands, pp. 85-87, ACM Press, 2006

16. E. Qeli, J. Gllavata and B. Freisleben. “Customizable Detection of
Changes for XML Documents Using XPath Expressions”, in Proceed-
ings of ACM Symposium on Document Engineering (DocEng’06),
Amsterdam, The Netherlands, pp. 88-90, ACM Press, 2006

1.6 Organization of this Thesis

The remainder of this thesis consists of nine chapters.
Chapter 2 introduces the fundamentals of metabolic engineering, with a

short introduction to related biological concepts.
Chapter 3 is concerned with the foundations of information visualization.

Different aspects of information visualization ranging from cognitive issues
to algorithmic solutions are overviewed.

Chapter 4 presents techniques and ideas for visualizing metabolic networks
and their timely evolution. MetVis is presented as a tool for accomplishing
these purposes. 2D and 3D visualization are discussed and interactive draw-
ing of metabolic networks is introduced.

Chapter 5 describes a novel algorithm which allows customizable compar-
ison of metabolic networks saved as XML files.

Chapter 6 is focused on visualization techniques for time-varying matrices.
Techniques such as Multidimensional Scaling, Reorderable Matrix, Cluster
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Membership Visualization are introduced or extended. Algorithms for re-
ordering matrices, both locally and globally, are presented.

Chapter 7 proposes a fuzzy clustering ensemble approach for clustering
of time-varying multidimensional data. Evaluations are demonstrated on
synthetic data sets and sensitivity matrices.

Chapter 8 presents extensions to visualization techniques presented in
Chapter 6 for dealing with large-scale data sets. Information visualization
paradigms such as distortion, overview+detail and filtering as well a tiled-
displays approach are discussed.

Chapter 9 concludes this thesis with a summary of achievements. Further-
more, potential areas for future research are discussed.





2
Foundations of Metabolic Engineering

2.1 Introduction

This chapter introduces the foundations of metabolic engineering. First, a
short overview of biological concepts will be given, followed by an intro-
duction to the modeling approach in metabolic engineering. Furthermore,
sensitivity analysis, which is very important for some parts of this thesis, will
be described in detail.

2.2 Biological Background

Life is exceptionally diverse. Many organisms consist of a single cell whereas
others consist of billions of cells. Organisms can be found in different envi-
ronments regardless of the conditions existing in that environment. Diversity
in general is translated also to diversity in the molecular level. However,
despite this diversity, the same mechanisms and processes are present in all
organisms.

The first important fact is that all living things are made of cells which
could be abstracted as chemical containers where strictly controlled sequences
of reactions occur, which transform a certain substance to another one. The
substances that take part in these different reactions and the genetic machin-
ery that controls the production and the interaction of these substances are
more or less the same for all livings, from bacteria to humans.
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2.2.1 Eukaryotes and Prokaryotes

Based on the structure of their consisting cell(s), creatures are divided in
two groups, eukaryotes and prokaryotes. Eukaryotic creatures consist of cells
which contain a nucleus; the part of the cell containing the genetic material.
Furthermore, other specialized cellular areas, called organelles, are part of
eukaryotic cells. Mitochondria and chloroplasts are examples of organelles;
chloroplasts are found in plants and their purpose is to catch the sunlight en-
ergy whereas mitochondria produce energy i.e. adenosintriphosphate (ATP)
for the cell. All multicellular organisms are eukaryotes and many single celled
organisms such as yeasts are eukaryotes, too. Figure 2.1(a) shows a schematic
view of an eukaryotic cell with its components.

Prokaryotes are distinguished from eukaryotes by the fact that they lack
a cell nucleus. Two major groups are distinguished in prokaryotes: Archaea
and Bacteria.

Archaea are a recently discovered class of organism, which lives in extreme
conditions such as environments with extremely high temperatures or highly
alkaline or acid properties. They were first considered to belong to the same
group as bacteria in the universal phylogenetic tree, which was later dismissed
by Woese [Woese]. Although at the structural level they are prokaryotes, at
the genetic level they have more similarities with eukaryotes.

2.2.2 Bacteria

Bacteria are single-celled organisms, which are ubiquitous in soil and water or
live in symbiosis with other organisms. There are millions of them everywhere
on this page or in the air we are breathing. Bacteria reproduce themselves
asexually by cell division and their most important activity is to produce
more bacteria. Natural selection generally favors bacteria based on the ability
of reproducing as fast as possible when enough food supplies are available
[AJL+02, Hun93]. To move, bacteria use flagella or flagella-like structures
(see Figure 2.1(b)). Bacteria come in a variety of different shapes such as
rod-shaped, sphere or helix-shaped and although shape is not considered a
defining factor in the classification of bacteria, their name is often derived
from the shape e.g. Bacillus, Streptococcus or Staphylococcus. Bacteria are
far more diverse than mammals or insects. For example, the genetic distance
between E. coli and Thermus aquaticus is greater than the distance between
humans and oak trees.

Bacteria are both harmful and useful to animals and humans. Different
diseases and infections in humans are caused by bacteria. Furthermore, bac-
teria can also cause different diseases in plants. On the other side, bacteria are
useful for transforming wastes into environment friendly substances. Bacteria
have also been successfully used to clean oil spills. Combined with yeasts,
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(a) An Eukaryotic cell (image taken from Microsoft c©

Encarta c© Encyclopedia, http://encarta.msn.com/

media_461540224_761568585_-1_1/Animal_Cell.html)

(b) A Prokaryotic cell (image taken from http://nai.

nasa.gov/library/images/news_articles/94_1.jpg )

Figure 2.1: Schematic views of Eukaryotic and Prokaryotic cells.

bacteria are also used to produce fermented foods such as cheese or yogurt.
Another useful aspect of bacteria is their ability to live as symbiants and help
humans or other organisms, for example, in the digestion process.

2.2.3 The Organism Escherichia coli

Escherichia coli (usually abbreviated to E. coli) is one of the main species of
bacteria that live in the lower intestines of warm-blooded animals (including
birds and mammals) and are necessary for the proper digestion of food. Its

http://encarta.msn.com/media_461540224_761568585_-1_1/Animal_Cell.html
http://encarta.msn.com/media_461540224_761568585_-1_1/Animal_Cell.html
http://nai.nasa.gov/library/images/news_articles/94_1.jpg
http://nai.nasa.gov/library/images/news_articles/94_1.jpg
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Figure 2.2: E.coli colony (taken from http://www3.niaid.nih.gov/NR/

rdonlyres/49477C30-0513-47BE-88FC-17974CB1F952/0/e_coli.jpg)

presence in groundwater is a common indicator of pollution. The name comes
from its discoverer, Theodor Escherich.

E. coli is successfully used in industry in the production of insulin, trypto-
phan and ethanol [VBP93]. E. coli has the ability to survive outside its native
living environment and to reproduce itself quickly. In normal conditions, it
reproduces itself by division every 45 minutes and in optimal conditions in
37 degrees Celsius with a pH value between 6.5 and 7.3 every 22 minutes.
In these conditions, a colony consisting of more than 1 billion cells can be
obtained from a single cell in only 20 hours. E.coli has different sensors which
signal the presence of chemicals in its environment. By rotating its flagella,
E. coli can move away from toxic substances or in the direction of food, if
needed. Populations of E. coli cells with particular characteristics are known
as strains, such as, for example, strains living in the intestine of humans or
those living in birds. Some of those strains could be harmful to the host
organism.

Because of its ubiquity and the available knowledge regarding its genetic
structure and the mechanisms underlying its metabolism, E. coli is frequently
studied in cellular biology. Several databases in the Internet have published
information regarding the sequencing of the genome of E. coli [eco].

The complex mechanisms underlying the functioning of E. coli cells are
the focus of many studies. However, in the context of this work, only the
metabolism of these cells is important.

http://www3.niaid.nih.gov/NR/rdonlyres/49477C30-0513-47BE-88FC-17974CB1F952/0/e_coli.jpg
http://www3.niaid.nih.gov/NR/rdonlyres/49477C30-0513-47BE-88FC-17974CB1F952/0/e_coli.jpg
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Figure 2.3: Schematic representation of the major processes taking place in
a living cell

2.2.4 Processes Inside the Cell

Based on the reductionism approach (see Section 1.1), researchers have stud-
ied the elementary components of living cells such as DNA, RNA, ribosome,
proteins, metabolites, etc. These components, however, do not function
alone; they interact together in different processes like in gene translation
or transcription, enzyme catalysis or enzyme regulation. These interactions
are represented visually in Figure 2.3 [LDS99]. The DNA stores the genetic
information regarding the synthesis of proteins. In the process of transcrip-
tion, messenger RNA (mRNA) copies are made of bases along one strand of
DNA which is obtained in the process of RNA polymerase. The information
contained in this mRNA is used to create the respective amino acid sequence
of the polypeptide chain during translation. These polypeptide chains fold
and combine into three dimensional structures of proteins. Therefore, con-
trol of the cellular machinery requires tight regulation of the transcription
and translation processes. This regulation is accomplished by the promoters,
namely nucleotide sequences, which themselves are controlled by regulatory
proteins.

The process of activation of genes in the production of proteins is called
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expression. Considering that some proteins are always needed inside the
cell, they are always expressed, while for other proteins their gene expression
changes according to their need. Proteins have different functions in the
organism:

• Regulatory proteins which are divided into hormones and transcrip-
tion factors. Hormones such as insulin regulate the metabolism of cells,
whereas transcription factors bind to target genes and regulate the gene
expression by preventing or activating the transcription of the respec-
tive proteins.

• Transport proteins are responsible for the transportation of substances,
e.g. Hemoglobin transports the oxygen in blood.

• Storage proteins which serve as reservoirs of nutrients like ovalbumin
(egg white).

• Contractile and motile proteins that allow cell and tissue movement,
such as actin and myosin in muscles.

• Structural proteins, such as collagen, which is the structural protein for
bone connective tissues.

• Protective proteins, such as immunoglobulin or antibodies, which are
the proteins of the immune response.

• Exotic proteins that are found in certain plants or other organisms for
special purposes, such as glue proteins in mussels.

• And last but not least, enzymes which are catalysts that interact with
the reactants in a particular reaction and increase the reaction rate of
that reaction up to 20 million times.

Enzymes are biological catalysts, meaning that they are produced or
derived from some living organism and are not changed or destroyed by
the chemical reaction that they accelerate. These catalysts are specific
in nature to the type of reaction they can catalyze. Each enzyme can
act to catalyze only very specific chemical reactions and only with very
specific substances. An enzyme can be described as a key, which unlocks
complex compounds based on its structure and shape. The substrate
i.e. the compound or substance which takes part in the reaction, can
undergo the change only after it is coupled with the enzyme. After that,
the enzyme is released and can be used again. The role of enzymes is
crucial because in normal conditions (i.e. body temperature), certain
processes such as the oxidation of glucose, which is very important
for producing energy for plants or animals, proceeds at a very slow
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rate. Thus, enzymes allow reactions that are necessary to sustain life
to proceed relatively quickly at the normal environmental temperatures.

2.2.5 Metabolism and Metabolic Networks

From a chemical perspective, living organisms are open thermodynamic sys-
tems far from equilibrium. Furthermore, cellular constituents are in a chemi-
cally more reduced state than the matter that surrounds them. Nevertheless,
cells must somehow extract energy from the environment and use this energy
to maintain the chemical activities that occur inside the living organism. The
sum of all these processes constitutes the metabolism of the living organism.
On the other side, metabolism consists of two major realms: the degradative
pathways of catabolism and the biosynthetic pathways of anabolism ( see
[Fel97]). A pathway is a sequence of reactions, which transform a certain
substance to an end product. This sequence of reactions is controlled by
enzymes, which were described in the previous section. Catabolic pathways
result in the conversion of complex molecules into simple compounds releas-
ing energy, whereas anabolic pathways use the released energy to convert
simple compounds into complex biomolecules. Usually, the pathway for the
biosynthesis of a biomolecule is inherently more complex than the pathway for
its degradation, because anabolic pathways must be coupled to many other
exergonic reactions, i.e. reactions that generate energy. For example, the
conversion of phosphoenolpyruvate (PEP) to pyruvate proceeds in a single
reaction during glycolysis, whereas the reversal proceeds in two stages during
glyconeogenesis. The whole metabolic pathways inside a cell constitute the
Metabolic Network of the cell. Figure 2.4 shows the entire metabolic network
of an E. coli cell. The points indicate the metabolites (substances) inside the
cell, whereas lines indicate reactions i.e. transformations from one substance
to the other.

2.2.6 Experimental Basis for the Study of Metabolic

Networks

Modern developments in measurement techniques have made it possible to
explore the intracellular properties of the cell in vivo, meaning in the living
cell. The data generated from these automatized experiments is then coupled
with the biochemical knowledge for building a basis of the modelers work. In
this context, the research is concentrated in several fields:

• Genomics is concerned with the genome, i.e. the genes of an organ-
ism. One of its major applications is Comparative Genomics with the
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Figure 2.4: Metabolic network of the E. coli. Nodes represent metabolites,
whereas edges represent reactions. The highlighted part represents the central
metabolism.

purpose of clearing different phylogenetic relationships between organ-
isms.

• Transcriptomics is concerned with the gene expression under differ-
ent experimental conditions. Various methods are used for this purpose,
but one of the most popular methods uses DNA Microarrays. The main
idea here is to study the concentration of mRNA in a cell under differ-
ent physiological conditions, obtaining thus large matrices containing
information about different genes in different experimental conditions.
These data is further processed using various statistical methods.
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Figure 2.5: Difference between in Vivo and in Vitro approaches

• Proteomics is concerned with the study of proteins and their interac-
tions, thus searching to deduce information about the phenotype of the
cell.

• Metabolomics and Fluxomics are concerned with the concentrations
of metabolites or the rate of intracellular reactions, respectively, by
using LC-MS (Liquid Chromatography Mass-Spectrometry) methods
in case of metabolites or NMR with C13 marking in case of intracellular
fluxes.

For exploring intracellular properties of the cells, two types of experiments
are performed: In Vitro and In Vivo Experiments. The basic idea of the
in vitro approach (experiments performed in the test-tube) is to study the
interaction of the isolated enzymes with the substances which are inside the
cell. However, the knowledge gained from in vitro experiments should be
validated further by using in vivo experiments i.e. in the living cell (similar
to the reductionism approach, components of the cell in this case enzymes,
are studied separately first, and later it is sought to find their place in the
bigger picture, i.e. in the whole cell). The level of enzymes studied in vitro is
much lower than in vivo. Furthermore, the effect of other substances, which
could possibly affect the activity of enzymes, cannot be studied in in vitro
experiments.

Figure 2.5 illustrates the difference between the in vivo and in vitro ap-
proaches. Kitano [Kit02] writes in his overview paper about systems biol-
ogy that, “To understand biology at the system level, we must examine the
structure and dynamics of cellular and organismal function, rather than the
characteristics of isolated parts of a cell or organism.”.
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Figure 2.6: The equipment used in the Research Center Jülich for rapid
sampling experiments

Rapid Sampling and Substrate-Pulse Experiments [HFTW05] are
broadly used approaches for carrying out in vivo experiments. The first con-
cept, rapid sampling, is related to the time frame used to sample the cell
contents. One assumption used in this case is that there is no cell reproduc-
tion i.e. division during the sampling time, thus restricting the time frame
used for the sampling to avoid these cell divisions. A short time frame means
that the metabolism of the cell has a constant activity, thus being not very
interesting to study. To avoid this situation, substrate-pulse experiments are
used. The metabolism of the cell is affected externally by overfeeding the cells
with the help of a substrate pulse. After the substrate pulse, a time frame of
several seconds remains to sample the cells in order to measure the concen-
tration of metabolites. However, special equipment is needed to successfully
implement these types of experiments. Figure 2.6 shows the equipment used
for rapid sampling at the Research Center Jülich, whereas Figure 2.7 shows
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the process of performing rapid sampling experiments. Cells are cultivated
earlier in a bioreactor using feed batch culture. To continue its normal life,
the cells in the bioreactor consume the glucose until it is fully exhausted. At
this moment, the metabolism of the cell comes in a quasi-stationary state.
The sampling process begins five seconds before a glucose pulse is given and
continues another 35 seconds after the pulse has been given. Samples are
taken every 220 ms, resulting in 20 samples from the steady state and 144
samples after the pulse. The samples are then inserted in reactant glasses
filled with methanol at -50 ◦C, stopping instantly every cell activity. These
reactant glasses are later stored at -28 ◦C.

The whole procedure is time-consuming: all the test tubes must be ana-
lyzed and the metabolites inside them must be quantified. This takes from
several months until two years of time. The metabolites are separated from
the methanol solution and the enzymes (so that they do not interact any-
more) using several centrifugal processes. The final concentration of metabo-
lites is determined using LC-MS techniques. Imprecision occurs although
latest technical possibilities are used. Furthermore, metabolites having the
same weight, such as G6P and F6P, cannot be distinguished from each other,
a fact that should be kept in mind during the later use of quantized data.

2.3 Modeling and Simulation of Metabolic Net-

works

High-throughput devices have produced a tremendous amount of data about
the molecular mechanisms of living cells. This data comes either in the form
of experimental data, as described in Subsection 2.2.6 where data about the
metabolite concentrations inside the cell is obtained, or in the form of data
related to genes and proteins accessible in public databases. However, all
these data separated from each other are like parts of a puzzle. By inserting
them in appropriate mathematical models, more knowledge can be gained
as the systems level about the functioning of the cell. In this way, complex
mathematical models are created, which in contrast to the complex biological
system (e.g. the metabolism of the cell), possess an unambiguous meaning
and thus could be used to facilitate the understanding of metabolism. On
the other hand, the existing complexity of metabolism is transferred also to a
certain degree to the model, making the model dependent on other techniques
related to simulation such as sensitivity analysis and optimization [Wie02].

However, optimistic views such as those expressed by the authors of E-
CELL [THT+99] predict that cellular processes may be understood by in
silico experiments, whereas more skeptical views such as those presented by
Westerhoff [Wes01] have their remarks in this issue [WT04].
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Cell Growth

Rapid Sampling

Analysis of Collected Data
Sampling Closed

Glucose Pulse

Sample Every 220ms

Glucose Resources Still There

Figure 2.7: Description of the process of rapid sampling

• In contrast to discrete data, e.g. data related to the genome which
(almost) never changes, the physiological conditions are continuous and
depend on time. On the other hand, in vivo conditions cannot be
reconstructed in a test tube, meaning that in vitro data are not equal
to in vivo data.

• In vivo data sampled from whole cell experiments do not give any in-
formation about specific units of the cellular system.

• Some cellular processes such as protein synthesis are still unknown.
There is a lack of information about active enzymes, and thus the max-
imal rate of specific reactions vmax is unknown.

• The in vivo data collected and published in databases is often gath-
ered under different experimental conditions, making their combination
questionable.

For several reasons, one of the commonly used approaches to start the
modeling of cells is by using only the central metabolism of the cell [Wie02],
which is represented in Figure 2.8.

• Many, but not all, major intracellular metabolite concentrations can
be measured by different mass spectrometry (MS) methods. By per-
forming non-stationary pulse experiments and using rapid sampling,
the time course of the metabolic response can be precisely monitored.

• In steady state, most metabolic fluxes in the central metabolism can be
determined by 13C flux analysis. By repeating several stationary exper-
iments under different physiological conditions, a portrait of metabolic
regulation can be obtained.

• Enzyme activities can be roughly determined from cell extracts.

• Kinetic parameters of most enzymes (although determined in vitro) are
collected in databases. At least the Km (Michaelis-Menten constant)
values are usually assumed to be reliable.
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Figure 2.8: The central metabolism of the cell

2.3.1 General Metabolic Modeling Strategy

Before describing metabolic models in detail, some major assumptions about
modeling cells are made:

• It is assumed that the differences in cell population regarding length,
age and other factors affecting the metabolism are negligible, taking
into consideration average cells.

• The effect of the cell cycle, i.e. the different steps between two cell
divisions, to the central metabolism are also considered to be negligible.

• The metabolites are distributed uniformly throughout the cell and the
stochastic effects related to them, which occur mainly when the con-
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Figure 2.9: A simple branched network with inhibition

centrations of metabolites are extremely low, are neglected because the
central metabolism deals with metabolites with high concentrations and
reactions with fast rates. Furthermore, the diffusion process occurring
around the cell membrane is supposed to run quickly.

• There are no gradients with respect to temperature, pH value, pressure
or nutrients in the bioreactor due to the small size of the reactor and
the short mixing times. Furthermore, the effect of gradients inside the
cell itself is not considered.

• It is known that cells adapt to their environment by changing the con-
centration of respective enzymes, thus adjusting their metabolism to
the environment. These effects are neglected in the presented models
due to the short duration of the experiments of 20-40 seconds.

To illustrate the process of building a metabolic model, an example from
[WT04] is adapted. Figure 2.9 shows a sample metabolic network with four
metabolites and five reactions. Furthermore, two of these reactions are in-
hibited by their respective metabolites. From the graph theoretic point of
view, a metabolic network could be modeled either as a directed hypergraph,
meaning that some edges, which represent reactions could connect more than
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two nodes which represent metabolites, or as a directed digraph with edges
beginning at the metabolite nodes and ending at reaction nodes or beginning
at reaction nodes and ending at metabolite nodes.

Stoichiometric Matrix of Metabolic Network Models. The stoicho-
metric matrix of a metabolic model is defined similar to the adjacency ma-
trix of normal graphs. In contrast to the adjacency matrix which shows the
connectivity relationships in a graph, the stoichometric matrix shows the re-
lationships between metabolites and reaction nodes, without forgetting the
direction of the flow in the metabolic network. For this purpose, there is
a positive coefficient when a metabolite is the output of the reaction and a
negative sign otherwise; the respective coefficients are multiplied with their
order in the respective reactions, which in this case is one. The metabolite
S is an external metabolite and its trajectory is considered as known be-
forehand. The stoichometric matrix does not represent all the information
present in the graphical representation of the metabolic network, since the
effectors, i.e. inhibitors and activators, are not present. Equation 2.1 presents
the stoichometrix matrix N of the simple metabolic network shown in Figure
2.9.

N =




v1 v2 v3 v4 v5

X1 +1 −1 −1 0 0
X2 0 +1 0 −1 0
X3 0 0 +1 0 −1


 (2.1)

A reaction named v1 of the form aA + bB = cC + dD would affect the
stoichiometric matrix of the respective metabolic network as follows:

Nimaginary =




. . . v1 . . .
...

...
...

...
A . . . −a . . .
B . . . −b . . .
C . . . +c . . .
D . . . +d . . .
...

...
...

...




(2.2)

Mathematical Formulation of the Metabolic Model. If we consider
X(t) as the vector of metabolite concentrations and v(t) as the vector of
reaction rates, then the short form of the system of differential equations
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Figure 2.10: The relationship between the substrate and reaction rate ac-
cording to the Michaelis-Menten equation [CB95]

describing the specific metabolic network would be:

Ẋ = N · v (2.3)

where X(0) = X0. v is a function of a parameter set α and the vector of
metabolite values including the input metabolite X and S. Thus

v = v(α, S,X) (2.4)

Here, enzyme kinetics come into play. The reactions taking part in a
metabolic network are catalyzed by at least an enzyme. The rates of enzyme-
catalyzed reactions have been studied since the nineteenth century. The
Michaelis-Menten equation is one of the fundamental equations of enzyme
kinetics.

v =
Vmax · S
Km + S

(2.5)

Here, Vmax represents the maximum velocity of the reaction (although it is
a limit and not a maximum in the mathematical sense) and Km represents
the Michaelis-Menten constant (see Figure 2.10). The inhibitory effects can
be included in the Michaelis-Menten equation by adding one (or more) mul-
tiplicative term(s) expressing inhibition, as shown in Equation 2.6

v =
Vmax · S
Km + S

· KI

KI + X
(2.6)

where KI represents the inhibition constant and X is the metabolite which
has an inhibiting effect on the specific reaction. The normal and inhibited
form of the Michaelis-Menten equation are only two possibilities that can be
chosen from more than 33 possible kinetic laws [HFS+03].



CHAPTER 2. FOUNDATIONS OF METABOLIC ENGINEERING 29

For the network of Figure 2.9, the model after substituting the respective
Michaelis-Menten equations would look like:

v1 =
Vmax,1 · S
Km,1 + S

· KI,1

KI,1 + X3

v2 =
Vmax,2 · X1

Km,2 + X1

· KI,2

KI,2 + X2

v3 =
Vmax,3 · X1

Km,2 + X1

v4 =
Vmax,4 · X2

Km,4 + X2

(2.7)

v5 =
Vmax,5 · X3

Km,5 + X3

Ẋ1 = v1 − v2 − v3

Ẋ2 = v2 − v4

Ẋ3 = v3 − v5

or in matrix form:

˙


X1

X2

X3


 =




+1 −1 −1 0 0
0 +1 0 −1 0
0 0 +1 0 −1


 ·




Vmax,1·S

Km,1+S
· KI,1

KI,1+X3
Vmax,2·X1

Km,2+X1
· KI,2

KI,2+X2
Vmax,3·X1

Km,2+X1
Vmax,4·X2

Km,4+X2
Vmax,5·X3

Km,5+X3




(2.8)

In practice, the modeling process is an iterative approach trying to explain
the available data with the help of mathematical models. Thus, the process
usually starts with a simple model and at each iteration step some new com-
ponent(s) of the model such as new reaction steps are added to the old model.
The operations modifying the old model fall into several categories [WT04]:

• A reaction step is added, removed or replaced by another one.

• A reaction kinetic term is extended, simplified or replaced by another
one.

• The kinetic parameters are estimated by a parameter-fitting algorithm.

This procedure eventually leads to a family of models, which contain the
accumulated knowledge about the biological system, as shown in Figure 2.11.
In this scenario, the models M1, M2 and M3 belong to the first generation
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Time

1st Generation

2nd Generation

3rd Generation

Figure 2.11: Graphical representation of a family of models (see [WT04])

of the created models and are derived from each other. On a later point of
time, a new generation of models is constructed, which is derived from model
M2, developed further and then divided into two branches. Finally, the last
generation of models is constructed, which uses knowledge derived from the
models M4 and M7a.

Formally, this model set can be described with the set of systems of dif-
ferential equations as presented in Equation 2.9.

Ẋ i = N i · vi(αi, Si, X i), X i(0) = X i
0 (2.9)

2.3.2 Sensitivity Analysis of Metabolic Network Mod-

els

Sensitivity Analysis plays an important role for analyzing the current model
and for evolving into a new one. It is widely used to analyze complex nonlin-
ear models [CH88, SCS00]. Its purpose is to separate important parameters
from less important ones, thus being a very important tool for model simpli-
fication.

Typical questions that could be asked by sensitivity analysis are:

• Which factors i.e. parameters have the biggest impact on the output
of the model and should thus be investigated in detail?

• Which parameters are insignificant and could thus be omitted in a newly
derived model?

• How good describes a model the considered biological system?

Sensitivity analysis is treated both in the general case of modeling [SCS00,
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CH88] and in the specific case of modeling metabolic networks [WT04, HW03,
IS03, MAR97, Koh02].

The sensitivity coefficients of a regression model are the partial derivatives
of all computed quantities (i.e. fluxes and concentrations) with respect to all
the parameters of the model (i.e. kinetic constants, substrate input concen-
tration), which could be arranged in a Jacobian matrix. It should be pointed
out that sensitivities, as it is always the case with derivatives, are just local
approximations of the system behavior, i.e. they approximate the system
behavior in the neighborhood of the chosen linearization point. A certain
parameter may have a strong influence on the system behavior for certain
values of X but little influence in other situations. The non-stationary model
was described shortly in Subsection 2.3.1 and has the form:

Ẋ = f(X,α) = N · v(α, S,X) (2.10)

where X(0) = X0. The local sensitivity functions for this model are defined
as follows:

Si,k(t) =
∂Xi(t, α)

∂αk

i = 1..m, k = 1..p (2.11)

where m and p are the respective dimensions of metabolite concentrations
vector X and parameters vector α. The calculation of equation 2.11 can
be effected in two ways: (I) approximation via finite differences; and (II)
analytical solution of sensitivity equations.

Approximation via Finite Differences is obtained by applying the cen-
tral differences approach.

Si,k(t) ≈
X(t, αk + ∆αk, αj=1..p,j 6=k) − X(t, αk − ∆αk, αj=1..p,j 6=k)

2∆αk

(2.12)

However, the accuracy of this method depends on the value of ∆αk, which
should be suitably small to obtain good results.

Analytical Solution of Sensitivity Equations is based on calculating
the partial derivatives directly, obtaining in this way a considerably more
precise solution. From Equation 2.10 we obtain:

∂Ẋ

∂α
=

∂f

∂X

∂X

∂α
+

∂f

∂α
(2.13)
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with ∂X
∂α

(0) = 0. Transforming Equation 2.13 further we obtain:

∂Ẋ

∂α
= N · ( ∂v

∂X

∂X

∂α
+

∂v

∂α
) (2.14)

Similarly, the systems of sensitivity equations with respect to extra cellular
metabolites i.e. substrates, are obtained as shown in Equation 2.15 and with
respect to initial values in Equation 2.16.

∂Ẋ

∂S
= N · ( ∂v

∂X

∂X

∂S
+

∂v

∂S
) (2.15)

with boundary condition ∂X
∂S

(0) = 0.

∂Ẋ

∂X0

= N · ( ∂v

∂X

∂X

∂X0

) (2.16)

where the boundary condition is ∂X
∂X0

(0) = I [WT04]. Rewriting Equation
2.14 in matrix form, we obtain:

∂Ẋ

∂α
= N · (J · S + F ) (2.17)

The matrices J and F contain the partial derivatives of reaction rates with
respect to concentrations and parameters respectively, whereas the matrix S
is the sensitivity matrix.

Returning to the example model of Equation 2.8 and Equation 2.8 we
have:

∂Ẋ

∂α
= N ·




∂r1

∂X1

∂r1

∂X2

∂r1

∂X3

∂r2

∂X1

...
...

...
...

...
∂r5

∂X1

∂r5

∂X2

∂r5

∂X3










∂X1

∂Vmax,1

∂X1

∂Km,1

∂X1

∂KI,1
. . . ∂X1

∂Km,5
∂X2

∂Vmax,1

∂X2

∂Km,1

∂X2

∂KI,1
. . . ∂X2

∂Km,5
∂X3

∂Vmax,1

∂X3

∂Km,1

∂X3

∂KI,1
. . . ∂X3

∂Km,5


 +




∂v1

∂Vmax,1

∂v1

∂Km,1

∂v1

∂KI,1
. . . ∂v1

∂Km,5
∂v2

∂Vmax,1

∂v2

∂Km,1

∂v2

∂KI,1
. . . ∂v2

∂Km,5

...
...

...
. . .

...
∂v5

∂Vmax,1

∂v5

∂Km,1

∂v5

∂KI,1
. . . ∂v5

∂Km,5







(2.18)
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where the sensitivity matrix is:

S =




∂X1

∂Vmax,1

∂X1

∂Km,1

∂X1

∂KI,1
. . . ∂X1

∂Km,5
∂X2

∂Vmax,1

∂X2

∂Km,1

∂X2

∂KI,1
. . . ∂X2

∂Km,5
∂X3

∂Vmax,1

∂X3

∂Km,1

∂X3

∂KI,1
. . . ∂X3

∂Km,5


 (2.19)

The values obtained for the sensitivity matrix are not normalized; in order to
obtain comparable values, the sensitivities are normalized using the respective
concentration and parameter values according to Equation 2.20:

Si,k(t) =
∂Xi(t, α)

∂αk

· αk

Xi(t)
i = 1..m, k = 1..p (2.20)

which is based on the fact that:

∂ln(x)

∂ln(p)
=

∂ln(x)

x
· ∂x

∂ln(p)
=

∂ln(x)

x
· ∂x

∂p
· ∂p

∂ln(p)
=

p

x
· ∂x

∂p

2.4 Summary

This chapter presented an introduction to the field of metabolic engineer-
ing. Basic background in cell biology as well as techniques for modeling
metabolism of the cell were given. Furthermore, an introduction to the tech-
nique of sensitivity analysis, as an important step in model building is given.
The output of sensitivity analysis, namely the time-varying sensitivity ma-
trices are discussed in several chapters of this thesis.





3
Foundations of Information Visualization

3.1 Introduction

In Section 1.2, we gave a short introduction to information visualization. This
section will give a deeper overview in the field of information visualization by
touching different aspects ranging from psychological ones to aspects dealing
with algorithmic problems occurring in this field.

3.2 Background

Visualization, when used properly, can help in the process of extracting in-
sight from data during decision-making. Its advantages consist of the ability
to rapidly interpret large quantities of data.

The challenges in this context are in enabling the user to visually approach
the data so that the user can understand and perceive the data effectively,
find the information the user is looking for and to provide interaction methods
which allow effective communication between the user and the data.

Information visualization, as already defined in Section 1.2, deals with data
that is usually abstract, high-dimensional, and structured in a complex way.
Information visualization is not necessarily bound to the computer, although
the usage of computers has given a boost to visualization. Indeed, simple ex-
amples of information visualization are found since the 19th century. Figure
3.1 presents one such example of visualization, showing the distribution of
cholera death cases in a certain part of London during the epidemy of 1854,
drawn by the epidemiologist Dr. John Snow ([Tuf83]). The death cases are
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Figure 3.1: One of the early examples of information visualization (from
Tufte [Tuf83])

presented as dots in the picture; from their concentration along Broad Streed
it was found that the people living in this street had a common water pump
which was the cause of the disease. Thus, although the term information
visualization has been coined only fifteen years ago, its history cannot be
restricted to the last fifteen years. Computer-based information visualization
is the intersection point of several other fields, which appeared to be inde-
pendent and specific, such as cognitive psychology, graphic representation,
cartography, visual languages, semiotics, and data analysis. The common
denominator of all these fields is their final purpose: Knowledge Extraction.

In the context of computer science, information visualization has the biggest
intersection with computer graphics, human-computer interaction and data
mining, including also basic subfields such as algorithms, data structures and
alike. Cognitive and perceptual psychology offer important scientific guid-
ance on how humans perceive information in general and visual information
in particular. The focus of scientific visualization is on the visual display of
spatial data associated with scientific processes, e.g. simulations. Information
visualization examines developing visual metaphors for abstract data such as
social networks or high dimensional data sets without a trivial visualization.

Visualization of this kind of data is difficult because no natural display is
possible in contrast to e.g. volume visualization, a subfield of scientific visual-
ization, where the objects to be visualized are approached visually via isosur-
faces, representing constant data values. In scientific visualization, physical
methods are often used to help make the data visible like in flow visualiza-
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tion, where dye or smoke is injected, enabling an arrow based visualization of
the flow. Furthermore, scientific visualization presumes that we have certain
features to look for, whereas in information visualization the character of the
relationships to be found is not at all obvious a priori. Thus, information
visualization methods must be able to deal with data that appears to be
random, but still contains valuable information.

However, these two fields share with each other the idea of transforming
quantitative data into meaningful sensory information for the purpose of
analyzing the data by taking advantage of the human brain’s ability to process
a vast amount of visual information very rapidly.

3.3 Visual Perception

Human visual perception is very important in the context of information
visualization. Although haptic or sonification based approaches are used
to enable visualization for visually impaired people [FB99, SBG90], normal
visual perception still remains the most important method of conveying visual
information to the end user. In the context of this thesis, we will consider only
perception issues regarding human vision since the implemented approaches
function only in this context.

3.3.1 Structure of the Human Eye

The eye has an average diameter of 2.5 cm and is covered by several mem-
branes: cornea and sclera as outer covers and choroid and retina as inner
ones. The cornea consists of tough, transparent tissue and covers the anterior
part of the eye and sclera is continuous with the cornea. The choroid serves
as source of nutrition for the eye and lies directly below the sclera. In the
anterior part, it is divided into the ciliary body and the iris diaphragm, which
controls the amount of light that enters the eye. The pupil is the central
opening of the iris. The lens of the eye serves as a flexible optical lens and
absorbs a part of the visible light spectrum as well as infrared and ultraviolet
light. In a properly focused eye, the light coming from an object outside the
eye is imaged on the retina, where millions of receptors divided into two large
groups, cons and rods, are distributed. The number of cones is between 6
and 7 million and they are located in the central retina, called fovea and are
highly sensitive to color. Each of these cones is connected to its own nerve,
making the cones important in resolving fine details. The number of rods
is much larger, 75 to 150 million, and several of them are connected with a
single nerve, which makes them appropriate for generating an overall picture
of what is seen. The rods are not involved in the color vision. The fovea has
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(a) Mach bands

(b) Illumination (continued line) and per-
ceived brightness (dashed line)

Figure 3.2: Mach bands illustrating the differently perceived brightness of
adjacent bands with gradient luminance

a diameter of about 1.5 mm and a density of cones of about 150,000 elements
per mm2, meaning that the region with the highest sensibility in the eye has
about 337,000 elements. Thus, the ability of the eye to resolve detail is within
the capacity of current electronic imaging sensors.

3.3.2 Image Perception

The flexibility of the eye lens controls the focus of the eye; when it is thicker,
the focus is nearer, whereas when the lens becomes thinner, the focus is on
distant objects. The contact with light in the retina excites the receptors
which generate electrical impulses that are further processed in the brain.
These nerves do not transmit any information about the amount of light
falling in the retina; it is the relative amount of light, both in context of how
the light in a certain part changes and how the light in a certain part differs
from the neighborhood that is signaled. This fact is very important in the
context of visualizations because it can cause errors in the way data is read
from visualizations. Furthermore, this fact implies that light perception is
nonlinear [War00].

Figure 3.2 shows the Chevreul illusion (sometimes known also under the
name Mach bands). Bands with different grayscale intensities are put ad-
jacent to each other. Although the light intensity has a staircase pattern,
the perceived intensity (shown in the dashed line in Figure 3.2(b)) shows a
slightly different pattern, which differs from the actual intensity especially at
the borders. Figure 3.3 shows similarly that the perceived intensity of the
small middle rectangle does not depend only on its intensity, which is the
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Figure 3.3: Simultaneous contrast illusion. The middle rectangles have the
same intensity, but are perceived differently because of the intensity of the
surrounding rectangle.

same in all three cases, but also on the surrounding background.
From the visualization point of view, these examples are important because

situations where the real meaning could be misperceived due to the way the
human visual system is built, should be avoided.

3.3.3 Use of Color in Visualization

Color vision has no central role in everyday life; it does not help us to distin-
guish the shape of objects or track their movements. However, color usage is
extremely useful in visualization.

Humans can discern thousands of color shades and intensities, compared
to about only two dozen shades of gray, which makes them very interesting
in the context of visualization compared to simple gray scale values.

In the following paragraphs, two color models, namely the RGB and the
CIE color models will be briefly explained. The described color spaces are
three-dimensional, which is derived from the fact that the rods, described in
Subsection 3.3.1, have three distinct color receptors.

3.3.3.1 RGB Color Model

In the RGB color model [GW01], each color appears in its primary spectral
components of red, green, and blue. This model is based on a Cartesian
coordinate system and is often visualized by a unit cube where each color
(red-R, green-G, blue-B) is assigned to one of the three orthogonal coordinate
axes in the 3D space, as illustrated in Figure 3.4(a) and in Figure 3.4(b). The
values of the R, G, and B components move from 0 to 255.
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(a) Schematic view of the RGB
color model

(b) The colored presentation of the RGB
model

Figure 3.4: Two different visualizations of the RGB color model

3.3.3.2 Color in the Context of Visualization

In exploratory data analysis, one way of approaching the data is to visualize
it and search for relationships without any prior assumptions. For low di-
mensional data sets (1D, 2D or even 3D), commonly used approaches are to
plot the data and then try to interpret the visualizations in the context of the
problem. Thus, the perception of the visualization is of utmost importance
for the right interpretation of data. However, things become difficult when
the data has more than three dimensions. Color can help to extend the space
of dimensions further by attaching the three basic colors, red, green and blue
to another three dimensions.

To illustrate this, let us take an example data set and show how its visual-
ization could possibly enhanced by using color. Figure 3.5 shows six scatter
plots, representing the projection of the data set into every pair of dimensions
of the four dimensional Iris data set [SHM]. These six plots must be exam-
ined together in order to make hypotheses about possible groups/clusters in
this data set. Figure 3.6, again represents plots of this data set into the
respective pair of dimensions, but with the additional property that the two
remaining features are used to determine the color of the respective point.
Thus, in Figure 3.6(a), for example, the first and second dimension are used
to create the two dimensional plot, the third dimension defines the quantity
of red in the respective color and the fourth dimension defines the quantity of
blue. Again, these six plots should be examined together, however, a single
plot in Figure 3.6 with respect to a single plot of Figure 3.5 gives much more
information about possible clusters in the data set, since similar points are
near to each other and have similar colors.

For visualizing data sets with more than four dimensions (but definitely
with equal or less than six dimensions), all three components of the RGB
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spectrum can be used. However, interpreting the data in such an approach
can be difficult, because items could appear with similar color, e.g. green
because they lack the red component partially and not because they have a
strong green component.
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Figure 3.5: Projection plots of Iris data set

When using color in visualizations, several rules should be kept in mind:

• Good discrimination of small color differences is possible when
the colored areas are large, adjacent to each other and are viewed simul-
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Figure 3.6: Colored projection plots of Iris data set

taneously. This is often the case in the visualization of different kind of
weather, temperature or terrain maps. Deviance from these conditions
should be dealt with larger color differences.

• Size is very important for proper color distinction. The smaller the
size, the more difficult is the discrimination between colors.

• Individual differences in color discrimination are important in
the context of visualization users with anomalous color vision. In these
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cases, smaller color sets, which can be better discriminated by such
people, should be used.

• Usage of sharp edges could also possibly help to better discriminate
colors in contrast to the usage of smooth gradients. Smooth gradients,
on the other side, are used to show, for example, elevations in terrain
maps.

• Conformity with cultural conventions. Some colors have become
associated with particular meanings in certain contexts and other uses
could lead to false interpretations of the visualization, as for example,
red, yellow, and green which are associated with the safety status in
safety related visualization problems.

• Consistency of usage. Color should be used consistently in the same
context so that the same meanings are associated with the same color,
otherwise different interpretations in different contexts increase the cog-
nitive effort and open opportunities for error.

• Usage of neutral colors e.g. gray backgrounds in cases where color
interpretation is critical as otherwise similar colors could interfere with
the process of interpretation of visualization.

3.3.4 Pre-Attentive Processing

Certain features of the visual image can be identified easily after looking
briefly the image. This step, which logically occurs before the attention of
the user is concentrated on the visual image, is called pre-attentive process-
ing. One such example, generated in analogy to an example given by Ware
[War00], is presented in the following. The same block of numbers is pre-
sented two times, once without any highlighting and in the second case, the
digits 3 are bold whereas the rest is gray. It is clear that counting 3s in the
second example is much easier than in the first.

62469533302564284162533066088093455666026249775005
47173708707625885929151544992118585041209070762974
00814240307627367608821441631497293941734788463575
75158257142149622091596144304923114510440467803674
05161008726205613478351811614648711502830618984204



44 3.3. VISUAL PERCEPTION

62469533302564284162533066088093455666026249775005
47173708707625885929151544992118585041209070762974
00814240307627367608821441631497293941734788463575
75158257142149622091596144304923114510440467803674
05161008726205613478351811614648711502830618984204

In the context of visualization, pre-attentive processing is important be-
cause good visualizations could be enhanced to make use of factors that can
be processed pre-attentively. Thus, if one is interested that the user identifies
instantly something on a visual display, it could be made distinct from the
rest by using pre-attentively processed features. Typically, experiments are
conducted in order to find out if certain features are processed pre-attentively
or not. If the time taken to distinguish the target is independent of the dis-
traction level, then the subject feature is processed pre-attentively. Table 3.1
(taken from [War00]) presents features of visual images that are processed
pre-attentively.

Table 3.1: Pre-attentively processed features

Form Color Motion Spatial Position
Line Orientation Hue Flicker 2D Position
Line Length, Width Intensity Motion Direction Stereoscopic Depth
Line Colinearity Convexity/Concavity
Size
Curvature
Spatial Grouping
Added Marks

Table 3.1 also shows that color is one of the pre-attentively processed fea-
tures, which is a well established fact. However, in order for a color to be
distinguished pre-attentively, it should lie outside the region defined by the
existing colors in a visual display in the CIELAB color space. The CIELAB
color space, although not a directly displayable format, has several advan-
tages such as its colorimetric property where similarly perceived colors are
also encoded similarly, perceptually uniform i.e. color differences are per-
ceived uniformly and it is device independent [GW01]. Thus, the convex hull
defined by certain colors in the CIELAB space defines colors that have a cer-
tain similarity with all the predefined colors. Colors that are pre-attentively
distinct from the given colors lie outside of this convex hull.

Figure 3.7 (adapted from [War00]) illustrates this idea. In Figure 3.7(a),
the gray color lies within the convex hull defined by the colors blue, red,
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(a) Convex hull of red, green, yellow and
blue with gray inside the hull

(b) Convex hull of green, yellow and blue
with red outside the hull

(c) Gray is not processed pre-attentively (d) Red is processed pre-attentively

Figure 3.7: Pre-attentive processing of colors (adapted from [War00]).

yellow and green in the CIELAB color space. For this reason, it is difficult
to find the gray circle in Figure 3.7(c), whereas in Figure 3.7(b) the red color
lies outside the convex hull defined by the colors blue, yellow and green in the
CIELAB color space, making it easier to distinguish the red circle in Figure
3.7(d).

3.3.5 Types of Data

Data is at the source of every visualization method. However, its attributes
vary from one data set to the other. Below, two taxonomies related to data
attributes and data types are discussed.
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3.3.5.1 Attributes of Data

One of the broadly accepted taxonomies for the classification of data scales
is the one defined by Stevens [Ste46]. According to this classification, there
are four categories for measuring data scales: nominal, ordinal, interval and
ratio.

• Nominal scale is a collection of identifiers, which has the peculiarity
of possessing no specific order, e.g. hair color of people. Every trans-
formation preserves the relationships between variables of this scale.

• Ordinal is similar to the nominal scale, but in contrast to the nominal
scale, it encompasses values that have an ordering defined in them.
Examples include the income of people, which can be classified as low,
medium and high, or the height of a person defined as short, medium
and tall, etc.

• Interval scale is a further extension of the nominal scale, where the
intervals between possible values of the variables are equally spaced.
For example, consider three people with heights 160, 175 and 190 cm.
With nominal variables, they would be short, medium and tall. In
the case of nominal variables, no presumption is possible about the
differences between the three persons, whereas in the case of interval
scale we know that the difference between the third and second person
is the same as the difference between the second and first person.

• Ratio scale is an extension of the interval scale, where an absolute zero
is defined, as in the case of money, size etc.

A more practical division is based on three groups: Category or enumer-
ation data like nominal data above, integer data similar to the ordinal scale
and real-valued data.

3.3.5.2 Data Type Taxonomy

Shneiderman [Shn96] has defined a taxonomy of seven data types in the
context of visualization:

1. 1-dimensional or linear data types include data which could be or-
ganized in a sequential manner such as lists of strings, source code of
programs, texts and so on. Each item belonging to collections of this
data type could possibly have attributes that characterize it.1

1It could be argued that text data, e.g. source code is structured and might thus be
classified as hierarchical or network data
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2. 2-dimensional or planar/map data includes geographic maps, plans
and alike where each item in the collection covers some part of a 2D
plan. This kind of data type is extensively used in geographic informa-
tion systems.

3. 3-dimensional data represents real-world objects such as molecules,
the human body and buildings, which have items with volume and some
potentially complex relationship with other items.

4. Temporal data represents time lines, which are widely used and crucial
in the context of medical records or project management. This data
type bears similarities to 1-dimensional data, with the distinction that
we have a start and a finish time defined, and possible overlaps could
occur.

5. Multi-dimensional data represents relational and statistical databases
as tuples with n attributes (considered also as points in a n-dimensional
space).

6. Tree data hierarchies or tree structures are collections of items with
each item having a link to one parent item (except the root). Items
and the links between parent and child can have multiple attributes.

7. Network or graph data represents data whose structure/relationships
cannot be captured with hierarchical data types. In this case, links
exist arbitrarily and not only between child and parent nodes.

3.3.6 Visual Variables

In his seminal work Semiology of Graphics [Ber83], Bertin developed a theory
of what he calls visual variables. According to him, the graphic system has
several visual variables: position, form, orientation, color, texture, value, and
size. Since position is two-dimensional, there are eight variables to work with.
Bertin also used the term retinal variables, because they can be compared ef-
fortlessly without additional cognitive processing, as if the retina were doing
all the work. Figure 3.8 visually illustrates these mentioned visual variables.
In modern visualization, motion is also considered a visual variable. Further-
more, the set of visual variables is a subset of the pre-attentively processed
features which were listed in Table 3.1. In the context of human processing,
the differences expressed by the above mentioned visual variables are distin-
guished perceptually without involving other processing steps, as in the case
of comparing numbers.

Figure 3.8 is self-explanative, except perhaps for color and value. Value
represents the luminance or the grayscale value and it is different from color.
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Figure 3.8: Illustration of visual variables

Although it might be argued that both represent subsets of RGB color space,
value is thought to be suitable for ordinal types, whereas color is thought to
be suitable for nominal/categorical data types. Thus, visual variables serve
as a means of communication by encoding data in such a way as to draw
distinctions between visual elements. However, depending on the attributes
of data to be visualized (see Subsection 3.3.5), some of these visual variables
have more representational power than others. Thus, when visualizing a file
system, shape is not as efficient as color to make some files distinguishable
from the others. For certain types of data, e.g. temperature, any one of these
visual variables could be used: position on a scale, length of a bar, color of
an indicator, or shape of an icon. The choice of a visual variable will strongly
affect how the users will be able to perceive and use the displayed data.

In general, Bertin divides the perception characteristics of visual variables
into four groups:

• Associative perception describes how much a visual variable affects
the visibility of other dimensions. The size or color of an object is
unaffected by its orientation, making orientation associative whereas
for very small objects we can hardly distinguish their orientation or
color, making the size a dissociative variable. Size and value dominate
perception and are both dissociative variables.

• Selective perception defines how good a certain visual variable iso-
lates particular instances from the rest. A visual variable is selective if
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this process is immediate and effortless. An example is the selection of
all green objects in a visual display. All visual variables are selective
with the sole exception of shape. Thus, the process of picking out a
triangle amidst a set of rectangles does not occur effortlessly.

• Ordered perception of a visual variable means that the objects should
be able to be put into a ranked order based on their values. An ordered
variable does not need to consult an index to determine the ranking of
the objects. Position, size and value are ordered in human perception.

• Quantitative perception restricts the criteria of ordered perception
further; it must be possible for a viewer to distinguish between two
ordered values and to be able to determine the amount of difference.
Position and size are quantitative in human perception.

Table 3.2 shows the seven visual variables and summarizes their characteris-
tics, whereas Table 3.3 shows their appropriateness for being used to visualize
different data types.

Table 3.2: Characteristics of visual variables

Selective Associative Quanti- Order
tative

Position yes yes yes yes
Size yes no yes yes
Shape no yes no no
Value yes no no yes
Color yes yes no no
Orientation yes yes no no
Texture yes yes no no
Motion yes yes no no

3.4 Algorithmic Aspects

Algorithmic problems in the context of information visualization can be di-
vided into two main classes: (I) problems related to computational issues for
enhancing visualizations, e.g. dealing with optimizing the space on the screen
for a certain visualization issue; or (II) problems related to highly computa-
tional aspects of a visualization problem, e.g. computing a low dimensional
representation of a high dimensional data set. Both classes of problems are
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Table 3.3: Appropriateness of visual variables for different data types with 1
lowest and 3 highest

Categorical/ Ordinal Numeric
Nominal

Position 3 3 3
Size 1 3 3
Shape 3 2 1
Value 1 3 3
Color 3 2 1
Orientation 3 1 1
Texture 3 1 1

very important for good visualizations; however, they are distinct from each
other because the first class of problems need not be very challenging from
the computational side, whereas the second one is usually computationally
intensive. Below, these two aspects will be illustrated.

Visualization of high dimensional data is a difficult problem. Depending
on the data to be visualized, different paths are followed. One possibil-
ity are so called dimension reduction methods, which try to approximate
the high-dimensional representation of data by a low dimensional one, usu-
ally two- and sometimes three-dimensional. Multidimensional Scaling (MDS)
[YH38, Mar79] represents a common class of methods used for dimension
reduction, which tries to approximate the inter-object distances in the high-
dimensional space with inter-object distances in lower-dimensional spaces.
To illustrate the idea, consider Table 3.4, representing the distances between
some major US cities ( 1=Boston, 2=NY, 3=DC, 4=Miami, 5=Chicago,
6=Seattle, 7=SF, 8=LA, 9=Denver), with the aim of reconstructing their
map. Thus, we are looking for a two-dimensional configuration of the cities,
which should be “close” to the true map of these cities. Different compu-
tational approaches are used to achieve this aim, and MDS includes a large
group of them. Figure 3.9 represents one configuration of the cities generated
using the classical MDS approach. Since MDS solutions are insensitive to ro-
tation and translation, the solution approximates fairly well the real map.
Thus, purely computational approaches as the one described above can be
used to generate visual displays for exploring high dimensional data that is
otherwise not visualizable using common approaches.

Let us consider another example where visual displays are not directly
generated from computational frameworks but are improved significantly by
their usage. To illustrate the situation, let us consider Parallel Coordinates,
a popular multivariate visualization technique [ID90]. Each dimension in
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Table 3.4: Distance between some major US cities

1 2 3 4 5 6 7 8 9
1 0 206 429 1504 963 2976 3095 2979 1949.0
2 206 0 233 1308 802 2815 2934 2786 1771.0
3 429 233 0 1075 671 2684 2799 2631 1616.0
4 1504 1308 1075 0 1329 3273 3053 2687 2037.0
5 963 802 671 1329 0 2013 2142 2054 996.0
6 2976 2815 2684 3273 2013 0 808 1131 1307.0
7 3095 2934 2799 3053 2142 808 0 379 1235.0
8 2979 2786 2631 2687 2054 1131 379 0 1059.0
9 1949 1771 1616 2037 996 1307 1235 1059 0.0

Boston

New York

Washington

Miami

Chicago

Seattle

San Francisco

Los Angeles

Denver

Figure 3.9: MDS representation of US cities. The MDS projection is cal-
culated from the matrix of pairwise distances and is insensitive to translation
and rotation.

this method corresponds to an axis; the axes by themselves are organized
as uniformly spaced horizontal (sometimes vertical) lines. A point in the
high dimensional space is represented as a line connecting points on each
axis. Figure 3.10 shows the parallel coordinates visualization of the Cars



52 3.4. ALGORITHMIC ASPECTS

ORIGIN

Japanese

American

YEAR

1982.0

1970.0

0to60

24.8

8.0

WEIGHT

5140.0

1613.0

HP

230.0

0.0

DISPL

455.0

68.0

CYL

8.0

3.0

MPG

46.6

0.0

CAR

chevy s10

rolet chevelle ma

Figure 3.10: Parallel coordinates example. Each feature of the data set is
mapped to one of the parallel axes and an object of the data set is represented
by a line connecting the respective feature values.

data set (this data set contains information about 8 different features for 406
cars http://lib.stat.cmu.edu/datasets/). This method, as many other
methods used in visualization of large data sets, suffers from the clutter effect.
To reduce cluttering, different techniques such as distortion or sampling are
used. However, in the case of parallel coordinates, algorithmic approaches
could be used to enhance visualizations. Thus, a different order of dimensions
could possibly reduce (or increase) clutter in Figure 3.10 [PWR04]. This
occurs due to the fact that different axes orders create different shapes in
the parallel coordinates display. The biggest difficulties occur in disclosing
relationships of non-adjacent dimensions. A proper order brings more clarity,
as Figure 3.11 illustrates, e.g. outliers with respect to cylinder number (third
column on both displays) are easier to extract.

http://lib.stat.cmu.edu/data sets/
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Figure 3.11: Parallel coordinates ordered. The configuration of visualization
is affected by changes in the order of axes.

3.5 Visualization Stages

The visualization process consists of the following steps:

1. Collection of data to be visualized;

2. Visual display of data;

3. Human perception of the visualization.

The second step, depending on the context, could be further elaborated into
preprocessing of data and visual rendering of the preprocessed data. Figure
3.12 (adapted from [War00]) illustrates the visualization process, with the
above described steps.

To explain the figure, let us consider the two cases below. In the simplest
case, the data set to be visualized possesses a relatively clear visual repre-
sentation, such as data gathered for a certain time period for the price of a
single stock. In this way, no special preprocessing is needed; the graphical en-
gine plots the trajectory of the stock based on the data, and the human user
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Figure 3.12: The visualization process (adapted from [War00]).

interprets the evolution of the stock based on its visualization. In a slightly
more complicated case, we could consider a set of stocks in real time, and
in addition to their trajectory plots, we would like to visualize any possible
relationships/correlations between stock evolutions. In this case, the data
gathering process is continuous, preprocessing is needed in order to calculate
the correlations between stocks and they need to be properly visualized. The
human user could then interact with the visualization for obtaining informa-
tion about related stocks, filter a subset of the considered stock set and so
on (data manipulation/data exploration steps in Figure 3.12).

Thus, the interaction between the user and the visual environment is very
important in the context of information visualization. For this reason, the
following section is dedicated to the explanation of the basic issues.

3.6 Interaction Issues

In some way, visualization could be considered as an interface between the
human user and the data to be visualized.

In the early days of paper based visualization, interaction with visualiza-
tion was nearly non-existent for technical reasons. Complicated visualizations
needed to be created from scratch when changes in the data occurred and
this was the only interaction loop between the user and the visualization, if
it could be considered as such. An interesting example of interaction in early
visualization techniques provides the interaction with the reorderable matrix
method of Bertin [Ber81]. The reorderable matrix represents numerical data
arranged in a matrix form by symbols with changing sizes or values. By rear-
ranging columns or rows of the matrix, the user can thus discover interesting
patterns in the data. The original version of the reorderable matrix was a
paper based one. To interact with it, the reorderable matrix was cut along
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the rows or columns, and the paper stripes representing them were permuted
to explore the patterns obtained. In this way, a certain degree of interaction
was provided for the reorderable matrix.

Computer based visualization should offer appropriate interaction abili-
ties. Interaction techniques range from simple methods such as linking and
brushing to sophisticated distortion techniques. However, leaving the differ-
ences aside, these techniques are united in a common goal: helping the user
to better understand the data by enhancing the visualization.

Shneiderman [Shn96] defined what he called the visual information seek-
ing mantra: Overview first, zoom and filter, then details-on-demand, which
represent the most important aspects of the taxonomy he defined for visual
frameworks in the context of information visualization and are tightly coupled
with the data types defined in Section 3.3.5.2:

• The overview task for enabling the user to gain an overview of the
entire collection.

• The zoom task to focus on items of interest.

• The filter task for selecting out uninteresting items.

• The details-on-demand task, which allows selecting an item or a
group and get details when needed.

• The relate task for viewing relationships among items.

• The history task for keeping a history of actions to support undo,
replay, and progressive refinement.

• The extract task for allowing the extraction of sub-collections and of
the query parameters.

3.6.1 Interaction Techniques for Large Visualizations

Information visualization has to deal with a serious restriction: available
screen space. Whereas slow algorithms perform better in faster computers or
algorithms that require too much memory become feasible by extending the
memory of the computer, the screen resolution has remained nearly constant
in the last years. For this reason, proper interaction techniques need to
be provided which can cope with this restriction. These techniques should
furthermore simplify the user’s tasks, for example, by providing means for
finding unknown patterns in the visualization.

Interaction techniques are divided by Eick [GCE98] into three categories,
namely focusing, filtering, and linking.
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3.6.1.1 Focusing Techniques

Focusing techniques work by promoting certain area(s) of the visualization
to the focus of the user, whereas the rest of the visualization either is not
shown at all or it is visualized separately or in an integrated view in the
visualization, as described below.

Inside focusing techniques, three large groups are distinguished which will
be discussed in the following paragraphs.

Zooming and Panning. The basic approach to deal with large visualiza-
tions is to use zooming and panning. This approach is often used in practice;
however, the user sequentially explores the information provided by the vi-
sualization. Enhancements to this approach include the ability to bookmark
positions already visited in order to navigate rapidly between different posi-
tions. In general, the implementation of the ability to zoom and pan is often
application specific. However, there are some approaches to provide unifying
zoom and pan ability for visual displays [BM98, BMG00].

Overview+Detail. Another approach for dealing with insufficient screen
size is to employ several visualization techniques, which display different views
of the same document. This approach seems a little bit counterintuitive, since
a resource which is already scarce, namely the screen space, is restricted. But
the different views are specialized and include at least one overview display,
which represents the entire visualization and a detail view, which represents
the details the user needs. The two views are connected to each other by
using markers that show the position of the detail view in the overview.
Overview+Detail visualization techniques are ubiquitous in visualization, es-
pecially in maps, medical visualization, etc. The detail view is often a zoomed
and enhanced visualization of a certain part of the overview window. Shnei-
derman [Shn98] has suggested that if the zooming factor exceeds a certain
upper value, the two window approach should be extended to a cascade of
more than two windows.

Focus+Context. Focus+Context techniques develop the ideas presented
in the previous paragraph further in that they offer both a view of the whole
data and a view for the detailed analysis of parts of visualization. How-
ever, the difference between the two consists of the fact that focus+context
techniques aim to integrate both the details and the overview in a single
visualization. The motivation for such an approach comes from the fact
that when information is divided into two displays, the performance of the
user degrades [Ber81]. A large group of focus+contest techniques consists of
distortion-based visualization techniques. The introduced distortion in these
techniques interferes with tasks requiring judgments about scale, distance,
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direction, or alignment. However, it is this distortion that makes it possible
to integrate both overview and details in one view.

Fisheye views are a well known distortion technique and were first intro-
duced by Furnas [Fur86]. Originally, they were conceived as an interaction
framework for filtering information based on the current point of interest of
the user and found application in the browsing of structured data such as
source code of programs. Nowadays, fisheye views are commonly used to in-
troduce distortion in visualizations where the available screen size is scarce.
The general metaphor used in this context is the effect observed when look-
ing through fisheye lenses or magnifying glasses. Furthermore, instead of one
focus viewers, bifocal and polyfocal viewers [LA94] are used when detailed
information of more than one object is needed.

Another group of focus+context techniques makes use of non-Euclidean
hyperbolic geometry, which offers more space for visualization. Although
hyperbolic space is an infinite space more voluminous than Euclidean space,
it can be projected into a finite volume of Euclidean space, achieving a fisheye-
alike effect where the objects in the origin of hyperbolic space are displayed
in the center of the normal space. Lamping et al. [LRP95] applied projection
from hyperbolic space to Euclidean space to visualize large tree hierarchies,
whereas Munzner [Mun97] extended the idea further to three dimensions.

Depending on the context and the tasks to be solved by the user, the
above mentioned techniques have their advantages and disadvantages. Us-
ability studies which would be appropriate in different contexts do not exist.
However, in the case of large graph visualizations [SZG+96] distortion tech-
niques are considered superior to full-zooming techniques.

3.6.1.2 Filtering Techniques

Filtering techniques are based on the simple idea of reducing the available in-
formation on the screen in order to make the visual display more understand-
able. The filtering process proceeds by browsing or querying the visualization
as follows:

• The user filters one or some objects and wants to see all objects that
possess similar properties to the one selected.

• The user selects some objects and wants to omit the selected objects
(possibly omitting the objects that possess similar properties).

The results of the filtering process can be either highlighted (where the
removed items are only dimmed), or the removed items are not shown at
all in the visualization. Furthermore, this process can be accomplished both
interactively or based on a query processing mechanism. For example, nu-
merical data objects can be filtered based on specific ranges which can be
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given either manually or selected by interacting with the visualization. For
character based data, as in the case of search engines, manual interaction
with a query engine is more effective.

The division between filtering techniques and focus-based methods is fuzzy;
both aim to convey more relevant information to the user. However, focus
techniques usually affect the visualization space, whereas filtering techniques
focus on the attributes of the objects being visualized.

3.6.1.3 Linking and Brushing Techniques

There are many possibilities to visualize a data set based on its attributes,
which have their advantages and their drawbacks depending on the user tasks
to be performed. The idea of linking and brushing is to combine different
visualization methods to overcome the shortcomings of single techniques. The
different visual views need not necessarily be different visualization techniques
as in the case of matrices of scatter plots (see Figure 3.6), where every pair
wise projection is provided and all of them are linked with each other.

Thus, the consequences of an action carried out on one particular view of
a visualization framework will be reflected in other views as well. The action
could be brushing (highlighting temporarily an object or a set of objects),
filtering and so on.

The decision whether to provide a set of linked views or an integrated
visualization environment has been the subject of various research efforts
[Rob98]. Some of the issues that are important in this context are:

• Orthogonality/Complementarity. The different views should com-
plement each other with respect to the insight they give to the data,
i.e. they should be “orthogonal” to each other.

• User attention. The drawbacks related to the attention problems
since the user will be focused on several views simultaneously need to
be properly considered in the case of multiple views.

• Appropriateness. Multiple views for different data sets and the re-
lated user tasks should be appropriately used to represent the data.

3.7 Summary

In this chapter, an overview of the field of information visualization was given.
Different issues ranging from properties of the visual perception system to
the interaction issues related to visualization were treated. In this way, the
basic background needed for the rest of the thesis related to information
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visualization was provided. More details about specific issues will be given
in the respective chapters.





4
Visualization of Metabolic Networks

4.1 Introduction

Until recently, graphical representations of metabolic networks were prepared
manually. A good example for these manual visualizations is the Metabolic
Pathways Poster [Mic93]. Figure 4.1 shows fragments of this poster, focused
on a part of glycolysis which transforms Glyceraldehyde-3-phosphate (GAP)
into Pyruvate (Pyr).

General purpose drawing programs are still used in practice in visualiz-
ing metabolic networks to create static visualizations of metabolic networks.
However, such approaches have their restrictions with respect to the following
aspects:

• Reuse of the work. An existing drawing is only partially reusable in
another context. For example, parts of an already drawn metabolic net-
work which are needed in another visualization should be transferable
to a new drawing.

• Modification of the work. A current drawing cannot be used at all
if another protocol is used for visualization. Thus, if one disagrees with
the used convention for visualizing metabolites, reactions or effectors,
the drawing needs to be modified manually to accomplish the changes.

• Updates of the drawing based on data generated from simulations
or residing in databases. This is probably one of the major drawbacks
of static visualizations. Two scenarios are distinguished here: in the
first scenario, the visualization of a metabolic network could be ani-
mated to reflect its evolution during simulation (see Subsection 4.4).
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Figure 4.1: Parts of the metabolic pathways poster

In the second scenario, the visualized metabolic network could be up-
dated/generated from data residing in databases or XML files.

In this chapter, different methods for visualizing metabolic networks are
exploited. Parts of this work are published in several papers [QWF03, QWF04a,
ONW+06, NWH+06].

This chapter is organized as follows: Section 4.2 deals with modeling ap-
proaches for metabolic networks from the graph theoretic point of view. Sec-
tion 4.3 gives a survey of existing techniques for visualizing of metabolic
networks. Then, the tool MetVis created in the framework of this disserta-
tion is introduced in Section 4.4. Section 4.5 discusses the visualization of
the metabolic networks in 3D. Graph drawing techniques in the context of
designing and visualization of metabolic networks are discussed in Section
4.6. Section 4.7 summarizes this chapter.
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4.2 Graph-Theoretical Modeling of Metabolic

Networks

The basic structure underlying a metabolic network is a graph or one of its
derivatives. A graph G is represented by the tuple G = (V,E) consisting of
a finite set of nodes V and a finite set of edges E. Each edge e ∈ E connects
two nodes u, v ∈ V . The graph could be undirected, meaning that an edge
between u and v also implies the existence of an edge between v and u and vice
versa, or directed where this condition does not hold. A hypergraph GH =
(V,EH) consists of finite sets of nodes V and a finite set of hyper-edges EH .
Each hyper-edge e ∈ EH connects a set of nodes u1, ..., un ∈ V . A bipartite
graph GB = (V1, V2, EB) consists of finite sets of nodes V1 and V2 and a finite
set of edges EB. Each edge e ∈ EB connects exactly two nodes, one node
from the set V1 with one node from the set V2. Formally, a metabolic network
can be modeled as a normal graph, digraph or hypergraph. Wagner and
Fell [WF01] create two types of normal undirected graphs: a) the substrate
graph GS = (VS, ES) where vertices represent substances/metabolites and
edges represent if two substances are part of the same reaction; and b) the
reaction graph GR = (VR, ER) where vertices represent reactions and edges
represent if the reactions produce/consume the same substance. These graphs
are shown to be small world networks, meaning that the connectivity of these
networks follows a power law distribution1. Jeong et al. [JTA+00] analyze
metabolic networks of several organisms with respect to their topology and
similarities. The network is modeled as a directed graph and its scale free
structure is observed in all organisms studied. Furthermore, in case of E.
coli γin = γout = 2.2 where γin controls the probability that a metabolite in
the E. coli metabolic network participates as an educt in k reactions k−γin

and γout is defined similarly for a metabolite participating as a product in
k reactions. Small world networks are distinguished by the relatively short
paths connecting nodes in the network, and this fact is measured through
the diameter of the network indicating the average of shortest paths between
nodes. This diameter remains constant through all the organisms studied
by Jeong et al. [JTA+00]. Furthermore, the power-law connectivity implies
that some metabolites serve as hubs inside the network. Random removal of
these hubs, corresponding to possible mutation in genes, does not affect the
average distance between nodes, and these hub metabolites remain the same
across different organisms.

In the context of visualizing metabolic networks, modeling them as hy-
pergraphs or digraphs seems to be more reasonable since modeling them as

1Such networks are called also scale-free networks and the connectivity distribution
follows the law P (k) ≈ k−γ in contrast to random networks where this distribution is
exponential, namely P (k) ≈ e−k, where k represents the degree of nodes.
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Figure 4.2: Three possible graphs representing a small metabolic network.
4.2(a) is used to analyze properties of metabolic networks such as metabolite
centrality and scale-free structure. 4.2(b) and 4.2(c) are often used inter-
changeably.

normal graphs would increase the number of crossings artificially. Hyper-
graphs constitute a natural way of modeling metabolic networks. They have,
however, some drawbacks. First, they are not as easy to handle as normal
graphs or digraphs. Second, they do not allow proper modeling of networks
with effectors, where metabolites not participating in a reaction as products
or educts have an inhibition or activation effect on the reaction.

Digraphs offer the same flexibility as normal graphs from the mathematical
point of view. Furthermore, they allow the proper representation of effectors.
Figure 4.2 illustrates the three discussed possibilities of modeling a metabolic
network as a graph. Figure 4.2(a) creates four edges for one reaction, mak-
ing this approach inappropriate for visualizing metabolic networks. Figure
4.2(b) represents the hypergraph approach; however it does not allow the
representation of effectors as in Figure 4.2(c), where the network is modeled
as a digraph.

The remainder of this work assumes that a metabolic network is modeled
as a digraph, where two types of nodes exist, those representing metabolites
and those representing reactions.

After having fixed an approach of modeling metabolic networks, an appro-
priate way of saving the data related to a metabolic network model is needed.
The possibilities range from simple text files to intrinsic data structures saved
in binary files. However, a good format should satisfy at least the following
conditions:

• allow the easy exchange and reuse of models between users;

• be extensible to provide room for future developments;

• allow the integration of both structural i.e. graph theoretic informa-
tion of a metabolic network and information related to the mechanistic
model.
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A PA-->P

(a) A simple network

(b) Fractions of its XML representation

Figure 4.3: M3L representation of a simple metabolic network

The Systems Biology Markup Language (SBML) [HFS+03], which is a de-
scription language for simulations in systems biology satisfies all these con-
ditions. SBML is oriented towards representing biochemical networks and
embodies the experience of several simulation tools in the field of metabolic
modeling, thus being a perfect match for representing biochemical reaction
networks in general and our models in particular. Furthermore, SBML is
software-independent and XML-based, allowing great flexibility in its us-
age. Exploiting this flexibility, a SBML dialect has been created called M3L,
which provides possibilities for distributed simulation of several model vari-
ants [HFWT02, HFTW05, Hau06].

Figure 4.3 shows a simple network with two metabolites and one reaction
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and fragments of its M3L representation. Further details of SBML and M3L
will be provided in Chapter 5.

4.3 Related Work

Previous work in the visualization of metabolic networks is focused on two
tracks:

• Drawing of metabolic networks/pathways, which deals with different
techniques for creating visual representations of metabolic networks
based on an underlying model.

• Visualization of metabolic networks with their associated information,
which is related to the above point, but in contrast to the former it
focuses on issues related to the combined visualization of associated
data, which are mainly time series, with the drawings produced in the
previous step.

Below, a survey of the related work on both these fields will be given. Some
technical details of the techniques will be further elaborated in Section 4.6.

4.3.1 Drawing Metabolic Networks

By representing metabolic networks graphically, researchers have the advan-
tage of understanding the topology of these networks, which is tightly linked
to their functionality. Thus, proper tools which make this topology under-
standable are needed, otherwise researchers will be confronted with just a list
of reactions that are difficult to grasp. In general, the problem of visualizing
metabolic networks can be solved in different ways. Depending on how they
approach the problem of visualization, the methods can be divided into three
large groups:

• Manual

• Semi-Automatic

• Automatic

Furthermore, the drawing techniques in these groups differ from each other
on what kind of output they generate, and whether they are static (i.e. not
modifiable) or dynamic (i.e. modifiable). Table 4.1 2 summarizes these con-
cepts based on the quality of the results they generate (with 3 being the
highest and 1 the lowest).

2The estimations are based on personal experience with drawing of metabolic networks
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Table 4.1: Three groups of drawing methods classified according to the qual-
ity of results

Static Output Dynamic Output
Manual Drawing 3 3
Semi-Automatic Drawing 1 3
Automatic Drawing 2 3

An example of a system in which metabolic pathways are manually drawn
is KEGG (Kyoto Encyclopaedia of Genes and Genomes) [KG00]. The query-
ing process is achieved by displaying interactive image maps which are linked
to the related enzymes and pathways.

Similarly, the ExPASy Molecular Biology Server [ABH94] gives online ac-
cess to the scanned version the Biochemical Pathways poster [Mic93], which
is divided into rectangular pieces.

Brandenburg et al. [BJM97] have pointed out some of drawbacks of static
visualizations in the context of metabolic networks, such as:

• manual update of changes;

• static behavior of the visualization (no reduction/increase of details);

• no approach to deal with novel pathways.

PathDB [Men00] offers an example of a semi-automatic approach to the
drawing problem: metabolic networks stored in a database are analyzed for
their topology; if they contain cycles, then the user decides if (s)he wants a
hierarchical or a circular layout.

Several papers exist on dynamic graph layout algorithms for metabolic
networks. They are motivated by the fact that although the aesthetics of gen-
eral purpose drawing algorithms intersect with those for drawing metabolic
networks, their priorities are different and new rules come into play (an addi-
tional discussion on this point follows in Section 4.6). The reasons for special
purpose drawing algorithms in this context range from high connectivity of
nodes (see Section 4.2) to specific cyclical structures. But the most impor-
tant reason is that the end users of such visualization tools, i.e. biochemists,
are used to see these networks visualized in a certain way and big deviations
from their standard would definitely not help the main purpose of drawing
algorithms, namely better understanding the topology of metabolic networks.

Karp et al. [KP94] developed the first divide-and-conquer technique tai-
lored to metabolic networks, which is mainly focused on automatically draw-
ing the networks stored in the database they built in the framework of BioCyc
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project. The technique divides the networks into smaller parts with known
topologies, which are then drawn using algorithms known to function well for
those elementary topologies. The combination of the parts is done by using
a hierarchical layout algorithm.

In BioPath [Fal02], a dynamic electronic version of the Biochemical Path-
ways poster [Mic93] presented earlier is realized. The visualizations it offers
are generated by using a customized hierarchical layout algorithm, where
nodes of different size and other restrictions approximate the established con-
ventions regarding the drawing of biochemical networks.

The divide-and-conquer approach of Karp et al. was used also by Becker et
al. in their drawing algorithm [BR01], but different from Karp et al. they use
only two categories for distinguishing the topology, hierarchical and circular,
and the combination of parts is done using a force-directed algorithm. The
approach of Becker et al. was further extended by Wegner and Kummer
[KU05]. Their approach [KU05] takes into consideration certain conventions
used by biochemists such as node splitting and proper cycle identification.

Rojdestvenski [RC02, Roj03] computes 3D representations of metabolic
networks in VRML (Virtual Reality Markup Language) by using a modified
spring-embedding algorithm. However, it is difficult for a biologist to get
accommodated with the visualization since the transformation from 2D to
3D is difficult to comprehend from a biological point of view, and the high
connectivity fact is not considered at all, generating a lot of edge crossings.

4.3.2 Visualization of Metabolic Networks with Time

Series Data

Computational and experimental approaches for determining the metabolome
(and fluxome) offer new insights into the functionality of metabolic networks.
These approaches, especially simulations of metabolic networks, lead to a
great amount of data which needs to be properly interpreted in the context of
the networks they are associated with. Thus, proper visualization techniques
are needed to make this interpretation step easier. The common approach
used to achieve this is by displaying data in tables, plots or histograms. In this
way, the user can compare preselected metabolites or fluxes. Furthermore,
these visualizations are quite often static snapshots, which have the same
disadvantages mentioned in the context of drawing metabolic networks.

Despite the need for proper visualization tools for time series data related
to metabolites and fluxes in the context of metabolic networks, there are only
few approaches that treat this problem.

The solution proposed in this thesis, which will be elaborated in Section
4.4, is the first one considering this problem. Some other approaches are
described below.
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FluxAnalyzer [KSGG03] is a MATLAB package which offers several func-
tionalities for analyzing the structure of metabolic networks and allows basic
visualizations of simulation results through interactive flux maps. However,
its functionality is restricted because the visualization proceeds by overlay-
ing numbers as labels of the respective graph nodes, without making use of
pre-attentive processing features.

Dwyer et al. [DRS04] visualize the experimental data directly in a metabolic
network. This work is a continuation of [BDS03] where related metabolic net-
works are superimposed over each other to create a two and a half dimensional
view of metabolic networks. Thus, this approach allows to overview at the
same time several steps of a timely evolution in 3D. However, if the time se-
ries data representing experiments contains many time points, this approach
suffers from the superimposition effect, where the visibility of layers in the
end of the stack is reduced. Another drawback of the approach is that the
time series data is stored in the same place where the structure of the network
is stored, restricting the reuse of the same structure with different time series
data.

Another tool which treats specifically this problem is SimWiz presented by
Rost and Kummer [RK04]. This tool reflects the changes in concentrations
of the metabolites (nodes) by changing their color or shape. The approach is
extended to 3D by Wegner [Kat05] in a similar way to the approach proposed
by Dwyer et al. [DRS04].

Finally, Sarayia et al. [SLN05] evaluate different approaches of visualiz-
ing graphs with associated time series data in a general context. They have
studied several tasks related to overlaying of data for single time points or
simultaneously for all time points, coming to the conclusion that the simul-
taneous overlaying is useful when judgments for all time points occur (e.g.
outlier detection), whereas for local judgments the one time point approach
performs better. However, they do not focus on different techniques for rep-
resenting changes in time since different features, such as color, shape, size,
etc. could be used to represent them.

4.4 MetVis: Metabolic Visualizer

Commonly, a great deal of attention is dedicated to building simulation tools,
whereas the creation of tools to facilitate the evaluation of simulation results is
somehow neglected. This, of course, does not affect the quality of simulation,
but proper evaluation techniques such as visualization of time series, describ-
ing simulation results of metabolic networks makes the interpretation of the
results much easier. A possibility to achieve this is by simultaneously visu-
alizing the quantities describing the metabolic data (metabolites and fluxes)
inside the metabolic network. We published the first such approach [QWF03],
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Network Design Animation Control

Figure 4.4: A screenshot of MetVis

called MetVis (Metabolic Visualizer), to animate metabolic networks visu-
alizations based on data generated by simulation. This approach will be
explained in detail in this section.

4.4.1 Basic Features of MetVis

When faced with the problem of simultaneously visualizing both simulation
data and metabolic network structure, a good starting point is to enable the
user to visualize metabolic networks in agreement with existing standards.
In the framework of this dissertation, the tool MetVis was developed, which
allows user friendly design of metabolic networks. Figure 4.4 shows a screen-
shot of MetVis, with an already designed metabolic network visualized.

4.4.1.1 Designing a Network

The desired metabolic network component (i.e. metabolite, reaction node,
reaction flow, compartment and inhibitor/activator) to be drawn is simply
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chosen from the toolbar offered by MetVis (Figure 4.4). A simple mouse
click is required to draw the components, which are arranged in the toolbar
on the left, on the screen in the case of a reaction node or a metabolite. For a
reaction flow, the source metabolites, the reaction node and the destination
metabolites have to be clicked in the corresponding sequence.

For reactions and metabolites, additional information should be provided.
For example, the name is the most important input as it creates the logical
connection with the output of a simulation. This information can be specified
explicitly or taken from an already existing model.

The metabolites are represented by a square, and reactions are represented
by a rhombus. Reaction and metabolite properties can be defined in a special
dialog in the case when the model file will be exported or read from an existing
model file. After finishing the design, the work can be saved, resulting in two
XML files, one containing the model file and the other containing its graphical
representation.

Basically, after this step, the user has a drawing representing the structure
of the metabolic network, which satisfies the following conditions:

• representation of the metabolic network as a bipartite graph;

• consideration of effectors (inhibition/activation effects);

• easily updatable in case of improvements in the model;

• exportable in XML;

• separation of graphical information in another XML file.

4.4.1.2 Visualization of Simulation Time Series

The results of simulations are usually delivered as a CSV (Character Sepa-
rated Values) structured file, containing information about the concentrations
of metabolites and flows of reactions varying over time.

The dynamic metabolic behavior contained in this data is expressed visu-
ally by an animation showing changing metabolite pool sizes and changing
fluxes being represented by differently filled boxes and varying arrow widths,
respectively, according to data generated by a simulation.

Figure 4.5 illustrates this idea with a fictitious network. The difference
in the fill volume shows the concentration of a metabolite at a specific time.
The same idea applies to reactions where the width of the Bezier curves
represents reaction rates changing over time. To control the animation, a
VCR like toolbar is provided with play/pause/stop buttons and sliders for
controlling the time and the speed the animation will run with.
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Figure 4.5: Illustration of how animation works

4.4.1.3 Scaling of Simulation Output

Before proceeding with the visualization procedure, the input values for
metabolites and reactions need to be scaled to the interval [0, 1] (or [-1,
1] for effectors and reactions). This can be achieved in different ways which
will be briefly explained in the following.

The motivation for the scaling is strengthened by the fact that the concen-
tration of single metabolites can vary greatly, and with the scaling, a proper
measure for visually comparing them is achieved.

Since the metabolite concentrations cannot be negative, a linear transfor-
mation to the interval [0, 1] is carried out. For reactions, which can have
negative rates when the inverse flow is greater, a transformation to the inter-
val [-1, 1] is carried out.

Two scaling methods are applied3:

• Local Scaling, where metabolite concentrations and reaction rates are
scaled using the extremum values achieved during all time points in the
following way:

Cscaled(M, t) =
Craw(M, t) − Craw−min(M)

Craw−max(M) − Craw−min(M)
(4.1)

where Craw−min(M) and Craw−max(M) represent the minimum and max-
imum of concentrations or rates, respectively. In this case, an empty fill
value for a metabolite (maximum fill value) shows that the minimum
value (maximum value) of that metabolite is obtained.

• Global Scaling, which is basically an extension of local scaling, used
firstly by Noack [Noa05], where the scaling is done globally with respect
to metabolite concentrations and reaction rates according to Formula
4.2, respectively. In contrast to the first scaling method, an empty fill

3Local and global scaling methods will also be encountered in later chapters, when the
problem of visualizing time-varying sensitivity matrices is treated
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value indicates the overall minimum is achieved.

Cscaled(M, t) =
Craw(M, t) − Cglobal−raw−min

Cglobal−raw−max − Cglobal−raw−min

(4.2)

Sometimes, it is useful to scale metabolite concentrations based also on exter-
nal data. Thus, the concentration of some substances such as AcCoA grows
continually, and by achieving a high maximum they can affect the scaled
concentrations of all metabolites in the global scaling method.

4.4.2 Visualization of an E. coli Model with MetVis

The presented ideas about the visualization and animation of metabolic net-
works were tested in the diploma thesis of Noack [Noa05]. Figure 4.6 presents
a model of E. coli, originally published in [CNRS+01], designed with MetVis.
It portrays the state of the animation after the substrate pulse of glucose
is given (see Subsection 2.2.6). The animation underlies the global scaling
(Equation 4.2) in this case, which puts stress on global extrema, both with
respect to time and metabolite concentrations or reaction rates, as for exam-
ple, in the case of Pts in the figure. Furthermore, bottlenecks in the reactions
can be detected easily in this way.

Figure 4.7 represents the same step, but normalized locally (Equation 4.1).
The local scaling method is more sensitive to small changes of concentrations
and rates, meaning that there are more dynamics in the animation of the
network. This local scaling method is useful for observing the evolution
of metabolite concentrations and reaction rates, whereas the global scaling
method is useful for comparing metabolite concentrations with each other.

MetVis also provides the possibility to focus on how reaction rates in the
network change during the time. To visualize the changes in this case, we
make use of the ”stock market visualization” metaphor, by visualizing the
changes in the reaction rates with a small arrow colored in green or red,
indicating an increase or decrease in the reaction rate. Furthermore, positive
reaction flows are colored in blue, whereas negative ones are colored in red.
Figure 4.8 presents the visualization of fluxes as described above.

4.4.3 Visualization of Models with Effectors

The examples presented until now treated models of E. coli where effectors,
i.e. inhibition and activation effects, were not taken into consideration. The
quantities describing the effectors need to fulfill the following two conditions
in order to be considered in the context of visualization:
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Figure 4.6: Animation of an E. coli model scaled globally. The most active
reaction is the one where the substrate Glucose takes part.

• They should be restricted to a certain range to be scalable for visual-
ization;
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Figure 4.7: Animation of an E. coli model scaled locally. In contrast to
Figure 4.6, other reactions are also stressed by the local scaling process.

• The sign, whether positive or negative, should indicate if it is an inhi-
bition or activation effect.
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Figure 4.8: Visualization of E. coli model with flux rates stressed

4.4.3.1 Quantification of Effectors

This paragraph describes how the quantification of effectors is performed.
We will discuss the two basic cases, where only activation or inhibition takes
place, in the context of a Michaelis-Menten kinetic. Further details are avail-
able in [Noa05].

Quantification of One Inhibitor. The basic Michaelis-Menten equation
with one inhibitor is:

r =
rmaxS

Ks(1 + I
KI

) + S
(4.3)

The purpose is to find a measure indicating how much a change in the
inhibition level I affects the reaction rate r. This is fulfilled by taking the
value of iI , which is defined as follows:

iI =
r(s, I) − rmax,I(S)

rmax,I(S) − rmin,I(S)
(4.4)

where

rmax,I(S) = sup
0≤I≤Imax

r(S, I) (4.5)

indicates the reaction rate obtained when the effect of inhibition tends to
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(a) Inhibitor case with S=0.1, rmax = 1,
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(b) Activator case with S=0.1, rmax = 1,
KS = KA = 0.1

Figure 4.9: Graphics of inhibition and activation indicators

zero and Equation 4.6

rmin,I(S) = inf
0≤I≤Imax

r(S, I) (4.6)

indicates the reaction rate when the effect of inhibition is maximal. Thus,
the indicator of inhibition iI takes values in the interval [−1, 0]. Figure 4.9(a)
illustrates the quantified inhibition indicator in comparison with quantities
rmin,I(S), rmax,I(S) and r(S, I). With increasing inhibition effect I, rI is
increased (in absolute value, because it is negative) and the reaction rate
tends to go to zero when rI tends to go to the maximum.

Quantification of One Activator. The case of one activator follows anal-
ogously as denoted in Equation 4.7 where the modified Michaelis-Menten
equation with one activator is presented.

r =
rmaxS

Ks(1 + A
KA

)−1 + S
(4.7)

The index of activation iA, which is defined as:

iA =
r(s, A) − rmin,A(S)

rmax,A(S) − rmin,A(S)
(4.8)

where

rmax,A(S) = sup
0≤A≤Amax

r(S,A) (4.9)
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indicates the reaction rate obtained when the effect of inhibition tends to go
to zero and

rmin,A(S) = inf
0≤A≤Amax

r(S,A) (4.10)

indicates the reaction rate when the effect of inhibition is the maximum.
Thus, the indicator of activation iA takes values in the interval [0, 1]. Figure
4.9(b) illustrates the quantified activation indicator, where an increasing ac-
tivation effect A also increases rA and the reaction rate tends to go towards
its maximum.

4.4.3.2 Visualization of Effectors

To visualize the effectors, except edges presenting reaction flows, edges rep-
resenting the inhibition or activation effect connecting metabolites with re-
actions (enzymes) need to be inserted into the visualization.

These connecting edges are visualized with a red circle for inhibition and
a green circle for activation. The circle is placed next to the affected reac-
tion. The changing size of these circles indicates the level of the respective
activation and inhibition. Figure 4.10 presents the visualization of the E. coli
network after effector related modifications have been made. The state of
the network presented in the figure corresponds to the moments before the
glucose pulse has been given, which is indicated by the high inhibition that
G6P exerted on Pts reaction. Furthermore, PEP show also a high concen-
tration, thus inhibiting the Pfk reaction, whereas FBP which activates three
reactions has a low concentration. Generally, the flow inside the network is
on a constant low level, because of the lack of Glucose.

Figure 4.11 presents the state of the E. coli network after the glucose pulse
has been given. After the pulse, the activation effect FBP exercises on G1pat
and Pepcx increases substantially, favorizing thus the production of OAA and
the increase in consumption of PEP. The decrease of the concentration of the
latter also decreases the inhibition effect on Pfk, leading to a general increase
of the production of OAA.

4.4.4 Discussion

The above section presented different ideas for visualizing metabolic networks
including their animation based on time series of simulation data. Here, some
of the choices made during this process and the reasons behind them were
discussed.

We begin by discussing color usage in MetVis. Although the colors are
customizable, i.e. the user can select her/his own colors, the preselected colors



CHAPTER 4. VISUALIZATION OF METABOLIC NETWORKS 79

are chosen so that they make the interpretation of the figures easier. Thus, in
concordance with other usages of these colors, inhibition is represented with
red edges and activation with green ones.

To indicate the concentration level of metabolites, the visual variable size
is used (see Subsection 3.3.6). However, the size of the filling level is restricted
to a certain range and its minimum and maximum value is understandable in
every moment because they correspond to the size of the square representing
the metabolite. The same visual variable is also used for reaction flows, but
without surrounding borders to indicate the minimum and maximum size
because they would overload the visualization too much.

4.5 3D Visualization of Metabolic Networks

2D visualizations are very helpful for analyzing both topological and other
simulation related properties of metabolic networks. However, 2D views have
some restricions which could possibly be avoided by using 3D visualizations.
Thus, some pathways, as for example the pentose phosphate pathway, cannot
be drawn in 2D without line intersections. A much more difficult problem
occurs when the metabolic cofactors like ATP or NADH are involved. They
are coupled to almost all central metabolic reaction steps and induce a strong
network connection resulting in many line crossings. The crossings issue can
be tackled in the following ways:

• by ignoring it;

• by duplicating the metabolites so that we have fewer crossings;

• by using special purpose algorithms to reduce the number of crossings;

• by using 3D visualization techniques to displace edges in different planes.

In the case of metabolic networks, the crossing problem is complicated
furthermore when the activation/inhibition effect is considered.

This section presents an approach allowing the visualization (and anima-
tion) of the evolution of a metabolic network based on generated simulation
data in three dimensions (3D). This approach is an extension of MetVis to
3D.

4.5.1 Transformation from 2D to 3D

Basically, the 3D visualizations we generate are transformations of 2D visual-
izations into the 3D space following certain rules. The 3D view is intended to
be used as a complementary part to the 2D view, allowing the elimination of



80 4.5. 3D VISUALIZATION OF METABOLIC NETWORKS

Glucose

Pts

G6P

Pgi

F6P

Pfk

FBP

Aldo

GAPTisDHAP

Gapdh

PGP

Pgk

m3PG

Pglumu

m2PG

Eno

PEP

Pk

PYR

Pdh

AcCoA_ex

G6pdh m6PG Pgdh RIBU5P

Ru5p R5pi

XYL5P RIB5P

GAPSED7P

Tka

Ta

E4P F6P

Tkb

Rppk XNA_ex

Dahps

AAA_ex

PgmG1PG1patPolySach_ex

MursynthMureine_ex

G3pdhGlycerol_ex

SersynthSerine_ex

Synth1CHO_ex

Synth2ILE_ex

PepcxOAA_ex

ATP_sp

AMP_sp

ATP_sp

AMP_sp

NADP_sp NADPH_sp NADPH_spNADP_sp

ATP_sp

ADP_sp

NAD_sp

NADH_sp

ADP_sp

ATP_sp

ADP_sp

ATP_spADP_sp

Figure 4.10: Animation of E. coli model with effectors before the Glucose
pulse is given

crossings in 2D. Furthermore, the generated 3D views are similar to their 2D
counterparts, without creating totally different views which do not conform



CHAPTER 4. VISUALIZATION OF METABOLIC NETWORKS 81

Glucose

Pts

G6P

Pgi

F6P

Pfk

FBP

Aldo

GAPTisDHAP

Gapdh

PGP

Pgk

m3PG

Pglumu

m2PG

Eno

PEP

Pk

PYR

Pdh

AcCoA_ex

G6pdh m6PG Pgdh RIBU5P

Ru5p R5pi

XYL5P RIB5P

GAPSED7P

Tka

Ta

E4P F6P

Tkb

Rppk XNA_ex

Dahps

AAA_ex

PgmG1PG1patPolySach_ex

MursynthMureine_ex

G3pdhGlycerol_ex

SersynthSerine_ex

Synth1CHO_ex

Synth2ILE_ex

PepcxOAA_ex

ATP_sp

AMP_sp

ATP_sp

AMP_sp

NADP_sp NADPH_sp NADPH_spNADP_sp

ATP_sp

ADP_sp

NAD_sp

NADH_sp

ADP_sp

ATP_sp

ADP_sp

ATP_spADP_sp

Figure 4.11: Animation of E. coli model with effectors after the Glucose
pulse is given

to biochemical conventions and would confuse modelers in their work.
In the 3D visualization, metabolites are represented by 3D cubes, and
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Figure 4.12: Visualization of E. coli model in 3D

edges that in 2D were represented by Bezier curves are now represented by
tubes that have the shape of a three dimensional Bezier curve and with a
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certain diameter. To eliminate crossings between edges, the control points
lying in the middle are displaced in different z-planes.

Figure 4.12 presents the 3D visualization of the model of E. coli considered
earlier in this chapter, where the intersecting edges are displaced in the z-
plane. A separate z-plane is used for inhibitor and activator edges such that
they do not visually affect the rest of the network, as shown in Figure 4.12.

To animate the 3D views, the raw data taken from a simulation is converted
into relative percentages of the respective metabolite or flow, as described in
Equations 4.1 and 4.2. Two types of objects are animated:

• The z-dimension of the cubes representing the metabolites varies ac-
cording to the scaled concentration of the corresponding metabolite.
Figure 4.13 and Figure 4.14 illustrate this effect; the substrate (the
highest metabolite) has a low z-dimension before the pulse in Figure
4.13 and a high z-dimension after the pulse in Figure 4.14.

• Tubes represent flows for both reactions and inhibitions, and accord-
ingly colored spheres moving within the tubes represent the material
flow for the corresponding reaction. For the reaction flows, these spheres
are colored with a nuance of blue, for inhibition they are colored in red
and for activation they are colored in green. The speed of flow of these
spheres depends on the scaled rate of the respective reaction. Depend-
ing on the point of time, cubes will show how high the concentration
of the metabolite is, and the reaction flow will be faster or slower.

4.5.2 Technical Visualization Issues

The approach has been implemented completely in the Java programming
language. For 3D rendering, the idx3d library [Wal00] is used. This library
is similar to the well know Java3D library, but offers additional functional-
ity for our specific case and is in pure Java allowing easy inclusion in Java
applications and applets without additional libraries. It is worth mentioning
that for eliminating crossings, a simple but effective algorithm was imple-
mented to assign different z-planes to the middle control points of Bezier
tubes representing edges. The nodes of the metabolic network (i.e. reactions
and metabolites) are all left in plane z = 0. Only the inner control points of
Bezier curves (i.e. edges) that connect metabolites with reactions are shifted
to different z-planes. The edges are processed consecutively. In the begin-
ning, the first edge is directly assigned to the first group of edges to be drawn
in plane z = 0. Then, the second edge is processed; if it intersects with the
first edge, a new group is created with edges to be drawn in plane z = c,
otherwise it is inserted in the first group. The third edge is processed in the
same way, if it intersects any of the edges in the first group or second group
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Figure 4.13: Animation of E. coli model in 3D. The point of time here is
before the substrate pulse is given.
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Figure 4.14: Animation of E. coli model in 3D. The point of time here is
after the substrate pulse is given.
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Algorithm 4.1: Z coordinate assignment algorithm

Input: Graph representing metabolic network
Output: Z coordinate assignments for the edges of the network
Initialize an empty array T for storing the respective levels;1

Initialize an empty array Z-edges for storing the z coordinates;2

for i=1 to Number of Edges do3

edgeLevel=0;4

currentList=getEdgesofLevel(edgeLevel);5

doesIntersect=false;6

for j=1 to currentList.length do7

if edgei intersects edgej then8

doesIntersect=true;9

end10

end11

if doesIntersect==false then12

T[i]=edgeLevel;13

if i mod 2==0 then14

Z[i]=edgeLevel × c;15

end16

else17

Z[i]=edgeLevel × (−c);18

end19

end20

end21

(if this group exists), then a new group is created with edges to be drawn
in plane z = −c, otherwise it is inserted in the first group where it does not
intersect with other edges. The fourth edge would be drawn in the plane
z = 2c if it intersects with at least one edge from every previous group, the
fifth in plane z = −2c, and the algorithm proceeds in this way until all edges
are processed. The pseudocode of the method is presented in Algorithm 4.1.

4.5.3 Discussion

This section presented our approach to visualize metabolic networks in three
dimensions. In contrast to 2D visualization, this approach allows the dynamic
visualization of metabolic network models without crossings, by using the
third dimension to eliminate the possible crossing points.

The visual variable motion was used to indicate the change in reaction
flows instead of the visual variable size in case of 2D. Thus, whereas in the
2D animation one must be concentrated to view the changes in different flows,
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in 3D animation the speed of the movement of spheres makes it directly clear
which part of the metabolic network is more active. For metabolite concen-
trations, the same visual variable, namely size, was used for visualization.

4.6 Graph Drawing Algorithms for Metabolic

Networks

As discussed in Section 4.3, there are several approaches for automatic draw-
ing of metabolic pathways and networks. This section discusses some of them
in more detail and presents our approach, Steerable Drawing of Metabolic
Networks, which unifies the best properties of automatic drawing in a highly
interactive process for achieving high quality drawing of metabolic networks.
In contrast to the approach presented in Section 4.4, which assumes that the
drawing of a metabolic network is done in parallel to the creation of its respec-
tive model (i.e. the differential equations describing the model), this section
handles a different problem, namely the drawing of the metabolic network
after the model has been created without having the layout related informa-
tion. Thus, the basic problem in this context is how to create a drawing of
the metabolic network knowing only its structure.

4.6.1 The Automatic Drawing Problem

Conventional layout algorithms are not capable of realizing the special re-
quirements of drawing metabolic networks. The reason is that common users
of programs for visualizing metabolic networks, biologists, biochemists and
so on, follow certain conventions which are either not considered during the
layout process or contradict with the conventions which are usually taken
into consideration during the same process. Basically, the approaches in the
automatic layout of metabolic networks are divided in two groups:

• methods which support the layout process by extracting information
from the respective databases.

• methods which adapt generic techniques for graph drawing for the case
of metabolic networks.

The former approach is based on the assumption that somebody has drawn
a specific metabolic pathway/network earlier and stored it in a database.
Such an approach would be inappropriate for dynamic models, where some
metabolites and reactions are removed or added as is often the case during
the modeling process.
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In contrast, the latter approach is mainly concerned with how to adapt
the generalized graph drawing approach for metabolic networks. Drawing
metabolic networks automatically is important in the context of these two
problems:

• Visual exploration of large metabolic networks involving thousands of
metabolites. Here, the simple details of the structure of a metabolic
network are put in the background, and the user is concerned with an
overview of the structure of the metabolic network, the main metabo-
lites and reactions with the largest number of connections which serve
as hubs, maximum pathway length, etc. Such questions are impor-
tant especially in the context of exploring the small world structure
of metabolic networks [WF01, JTA+00]. The drawing algorithms used
in this case are general purpose algorithms, usually force-directed ap-
proaches with slight modifications.

• Visual exploration of small to medium sized metabolic networks, usu-
ally involving one or several pathways will be considered further in this
section. Compared to the first problem, the user expects certain con-
ventions regarding the display of metabolic networks to be met. These
conventions will be discussed in detail in the following.

The objective of graph drawing in general is to fulfill a set of aesthetic
criteria. The extent to which this criteria are fulfilled determines how good
or how bad a certain algorithm performs on a certain graph. Some of the
most important aesthetic criteria include:

• minimizing size for clarity and to fit on a certain area (of a display,
paper etc.).

• minimizing edge crossings : edge crossings are one of the most important
indicators of the readability of the drawing; the smaller their number,
the better readability of the drawing.

• minimizing edge bends : to improve readability, some of the edges are
bent in order to reduce crossings; however, good drawings make use of
a minimal number of bends.

• maximizing symmetry in cases where symmetry is possible.

• maximizing the minimum angle between edges leaving a node to support
drawings where outgoing/incoming edges form optimal angles in the
sense that they do not occlude each other.

• maximizing edge orthogonality : edge orthogonality measures how much
edges deviate from the vertical or horizontal direction.
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Table 4.2: Importance of drawing aesthetics for metabolic networks

Generalized Drawing of
GD MN

Size Minimization ++ ++
Edge Crossing Minimization ++ ++
Node Duplication Minimization ++
Edge Bends Minimization4 ++ ++
Symmetry Maximization ++ +
Angle Maximization ++ +
Edge Orthogonality Maximization ++ +
Node Orthogonality Maximization ++ ++
Consistency of Flow Maximization + ++
Cycle Visibility Maximization + ++

• maximizing node orthogonality : node orthogonality measures how good
the position of the nodes could be described by an imaginary grid.

• maximizing consistent flow direction in the case of directed graphs; un-
derstanding flow direction is extremely important when directed graphs
are drawn.

Purchase [Pur02] has defined metrics for some of these aesthetics criteria,
which can serve to determine the quality of specific drawings or used as
objective functions in optimizing drawings.

However, in the context of drawing metabolic networks, only some of these
aesthetics are important. Furthermore, some of these are complemented with
additional aesthetics which are borrowed from the conventions used in bio-
chemistry books for drawing metabolic networks. Thus, minimization of
edge crossings is often achieved by duplication of metabolites which take
part in more than one reaction. This is often the case with the so called
co-metabolites such as ATP, ADP, NADP and NADPH. However, their du-
plication does not follow strict rules and is usually done ad-hoc during the
manual drawing process. Another aesthetic criteria important in the context
of drawing metabolic networks is the cycle readability. Metabolic networks
often contain one or more cycles which should be clearly identified and prop-
erly drawn.

Table 4.2 shows the aesthetic criteria, including those related only to
metabolic networks, along with their importance for drawing of general graphs
and metabolic networks.
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4.6.2 Existing Approaches for Drawing Metabolic Net-

works

One of the first approaches for automatically drawing metabolic networks was
presented by Karp and Paley [KP94]. Their layout algorithm is composed of
three main steps:

1. Determining the topology of the metabolic pathway if it is linear, branched,
cyclic or complex;

2. Applying layout algorithms appropriate for the topology;

3. Assigning positions to “auxiliary” nodes with respect to the main nodes
of the metabolic pathway. This step calculates the necessary space for
such nodes.

The pathways are classified according to the following conditions:

1. Circular pathways are those pathways which are found to belong to
a single circle during a cycle detection process in the graph representing
the pathway.

2. Branched pathways are those pathways that contain no cycles and
could be represented by a Directed Acyclical Graph (DAG) in their
representation graph.

3. Linear pathways are those pathways that contain no cycles and no
branches in their representation graph.

4. Complex pathways represent pathways whose representation graph
is a combination of two or more of the situations above.

Circular, branched and linear pathways are laid out using algorithms suitable
for these kind of graphs. Complex pathways are decomposed further into
parts which belong to one of the basic topologies. The proposed approach
focuses on models present in the EcoCyc database and produces good results
on pathways with basic topologies.

A similar recipe is also followed by Becker and Rojas [BR01], but the
basic topologies defined in their approach are only two, namely hierarchical
and cyclic. Each reaction is represented by a hyperedge, connecting the
metabolites taking part in the reaction. Since the graph drawing library
used to draw the basic topologies does not support hypergraphs, dummy
nodes with size zero are inserted to represent the hypergraph with a normal
graph. Cycles are defined as above as parts of the metabolic pathway where
each node is traversed exactly once and are detected by breaking the graph
into strongly connected components. The following cases are distinguished:

4Bends are usually drawn as Bezier curves or B-splines
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• The metabolic network contains no cycle at all, meaning that it is
a DAG. Hierarchical layout algorithms are then used to lay out the
metabolic network.

• The metabolic network consists of only one entire cycle, which is laid
out using circular layout drawing algorithms.

• The metabolic network is complex i.e. it is composed of both hier-
archical and circular parts. Then, the largest cycle is found and the
procedure is repeated until we have only basic topologies, whose lay-
out is already possible to calculate. The parts of the network obtained
in this way are transformed into supernodes of a meta-graph and the
resulting meta-graph is laid out using a force-directed algorithm. The
supernodes are then expanded and replaced by the proper layout of the
representing parts. Furthermore, metabolites which have a high degree
of connectivity with a cycle are drawn inside the cycle. As a last step,
some enhancements are made to reduce crossings which are induced
when supernodes are expanded.

4.6.3 Steerable Drawing of Metabolic Networks

Often, the drawings created with automatic layout algorithms, although cus-
tomized for metabolic networks, either do not satisfy biochemical conventions
entirely or need many manual modifications to come into an acceptable state.
Let us illustrate the ideas with the metabolic network representing E.coli
model which we considered in Section 4.4. Basically, the network contains
no cycles and is a directed acyclic digraph. However, if we feed the graph
representing the network to the dot program of Graphviz [GN00], which is
one of the best libraries for drawing hierarchical networks, then we obtain
the drawing in Figure 4.15. From the figure, we see that the quality of the
drawing, although the network visualized is simplified by omitting the co-
metabolites (ADP, ATP, etc.), is much worse than the quality of the hand
made visualization in Figure 4.6. Two main reasons affect the bad quality of
automatic drawing in this case:

• The nodes F6P and GAP, which are basically the nodes with the high-
est degree, are duplicated.

• The drawing of two of the hierarchical parts are not branches of a tree
but rather perpendicular to the main flow.

Similar problems are also encountered with networks of mixed topology,
i.e. networks that contain both hierarchical and cyclical parts. Whereas the
drawing of specific parts with clear structure succeeds without problems, their
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Figure 4.15: Automatic drawing of E. coli model with dot
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Algorithm 4.2: General schema for drawing metabolic networks

Input: Graph representing metabolic network
Output: Layout of the metabolic network
Decompose the network into subnetworks;1

Draw the subnetworks;2

Combine the drawings into a single one;3

aggregation in a common drawing of the whole network is a difficult process,
which strongly affects the quality of the final drawing. To solve these prob-
lems, we follow a different route compared to the existing automatic drawing
approaches. The drawing process is automated maximally without affecting
the quality of the final visualizations. Furthermore, the highly critical steps
of putting together the parts of the network already drawn is designed as an
interactive process, steerable by the user. Thus, we focus on the quality of
the visualizations by automating all the steps that do not affect this quality.

4.6.4 The Drawing Process

The fact that metabolic networks have a complex structure with cycles and
hierarchical parts intermixed with each other and the requirements regarding
the final layout make the drawing problem challenging. As shown above,
the divide and conquer approach can be beneficial in this case. However,
there are several issues that strongly affect the quality of the final drawings,
namely the way the network is decomposed, how the separate subnetworks are
drawn and their final merging. The general schema of the proposed drawing
method is presented in Algorithm 4.2. Basically, the decomposing methods
corresponding to step 1 of Algorithm 4.2, can be divided into two groups:

• Graph theoretical methods such as finding cycles, strongly connected
components and weakly connected components.

• Biological methods such as elementary mode or extreme mode analysis.

After decomposing the network with graph theoretical methods, we achieve
subnetworks with a simple structure. After elementary mode analysis, we
achieve simpler subnetworks but not necessarily with basic structure, i.e.
only hierarchical or only cyclical.

Step 2, which is employed after the decomposition, is either a simple ap-
plication of well known drawing procedures when the structure is simple or
a repetition of the same algorithm when a complex structure is still present
in the network.

Step 3 is the decisive step which generates the final drawing. While merg-
ing subnetworks that have nothing or few things in common (e.g. common
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Algorithm 4.3: Steerable drawing process

Input: Graph G representing the metabolic network
Output: Layout of the metabolic network
decompositionModes={none,SCC,WCC,Elementary Modes};1

currentSubgraph=undrawnNodes(G);2

while there are nodes not yet drawn do3

currentDecompositionMode=userSelection();4

for each decomposed subgraph subG do5

preview its hierarchical or force directed layout;6

if results are visually satisfiable then7

Glue the subnetwork subG to the current drawing;8

Mark subG as drawn;9

end10

else11

Repeat the whole procedure with subG as main graph;12

end13

end14

end15

nodes, connecting edges) is relatively easy, the problem becomes much more
difficult when subnetworks overlap substantially.

User feedback can affect the results substantially if it is included in steps 1
and 3. Thus, our idea is to build a steerable system that allows the user to in-
teractively select how the network will be decomposed into subnetworks, draw
these subnetworks automatically and then glue the subnetworks together in
a last step.

Algorithm 4.3 presents the steerable drawing procedure. Basically, the
method works as follows. First, the user selects how the network should be
decomposed. Then, each subnetwork is previewed on the top of the current
visualization and its settings are adjusted. The drawn subnetwork is glued to
the rest. This procedure is repeated for every part of the entire network. The
subnetworks can be individual reactions (with related metabolites), strongly
connected components or elementary modes.

The following paragraphs describe different ways how metabolic networks
can be decomposed.

4.6.4.1 Graph Theoretical Decomposition

A common step followed when drawing metabolic networks is represented by
finding the cycles present in the network. These cycles are then laid out using
force directed algorithms, which generally deliver very good results with such
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Figure 4.16: Automatic drawing of Urea Cycle with neato

structures. Figure 4.16 and Figure 4.17 represent two cycles, namely the urea
cycle and tca cycle drawn automatically by using neato [GN00].

Furthermore, there are situations where cycles intersect with each other
and dividing them from each other is a counterintuitive step. In this case,
finding strongly connected components, which quite often represent more than
just cycles, is more interesting because force directed algorithms deliver very
good results in this case. Detection of weakly connected components can be
used in networks where the structure graph contains more than one connected
component.

4.6.4.2 Biological Decomposition

Elementary Modes. Extraction of elementary modes constitutes an im-
portant step in the context of stoichiometric network analysis. To explain
what the elementary modes mean, we need to return shortly to the model of
a metabolic network presented in Section 2.3.1. In steady state, metabolite
concentrations are equilibrated, implying that Equation 2.3 is simplified to:

N · v = 0 (4.11)
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Figure 4.17: Automatic drawing of TCA Cycle with neato

To analyze the steady states of the network, the concept of elementary
modes is defined, which represents minimal sets of reactions (and thus metabolic
routes) which connect the inputs to the outputs of the biochemical network
provided that no accumulation takes place within the network. Furthermore,
they also describe the presence of internal cycles.

Basically, the elementary modes are derived from the set of vectors v sat-
isfying equation 4.11, which define the null-space of N . For the irreversible
reactions to take place, they must fulfill the condition:

virr ≥ 0 (4.12)
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Extreme Modes. Extreme modes are detected in a similar way with the
elementary modes but they present a more compact subset of feasible states.

The decomposition of the metabolic network into elementary modes results
in a large number of elementary modes, which increases exponentially with
the network complexity. Furthermore, these elementary modes have large
intersection parts with each other. Thus, using the technique in an automatic
drawing approach to decompose the metabolic network would increase rather
than decrease the complexity of the problem due to issues related to the
layout and merging of subnetworks with large intersections. However, in an
interactive drawing process they can be used up to a certain degree to simplify
the process.

4.6.4.3 The Merging Process

During the execution of Algorithm 4.3, decomposition and merging is con-
sidered as concurrently running processes. However, the drawing of subparts
can generate layouts which contradict each other and thus need to be adapted
in order to be merged with each other. For this purpose, we allow the user to
preview the layout of the subgraph before gluing it to the rest. Furthermore,
we allow the user to perform the following operations on the preview:

• moving up, down, right or left the previewed layout.

• rotating it clockwise or counter-clockwise.

• increasing or decreasing the space where the layout of the subgraph is
drawn.

Figure 4.18 illustrates a merging example, where the Urea Cycle previewed
in Figure 4.16 is rotated until it fits into the previous drawing of TCA Cy-
cle in Figure 4.17. The toolbar which controls the merging is presented in
Figure 4.19. The list shown in Figure 4.19 is the list of reactions which iden-
tify the parts of the network to be drawn, whereas the buttons allow the
accomplishment of the operations described above.

4.6.5 Discussion

Steerability allows the user-guided drawing of metabolic networks. Automatic
approaches, although tailored to metabolic pathways, deliver often results
which are far from the biochemical conventions that the user is expected to
see.

By allowing users to immediately preview what kind of layout hierarchical
or force directed algorithms generate with a subpart of the network, it enables
the user to achieve the expected results. The ability to quickly see that a
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Figure 4.18: Merging of Urea and TCA Cycle. The urea cycle is rotated
until its drawing fits to the drawing of TCA cycle.

layout is not promising for a certain part of the network and to abandon such
layouts offers great flexibility in this process. In this way, the novelty of the
approach consists of bringing steerability to the drawing process. This results
in more time dedicated to the drawing process compared to the automatic
drawing approaches, and also in better results of the layout. Figure 4.20
shows the network of Figure 4.15 drawn using the steerable approach. It has
the same structure as the hand-drawn model in Figure 4.6; the difference
consists in the drawing process. The steerable drawing approach allows a
faster drawing of the network while keeping the high quality of the drawing.
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Figure 4.19: The toolbar which controls the merging process

4.7 Summary

In this chapter, we have presented MetVis, a tool which supports the design,
visualization and animation of metabolic networks. In contrast to previous
approaches, MetVis allows to graphically animate the dynamic evolution of
a modeled cell’s metabolic properties based on time series generated during
the simulation. Furthermore, we provided a prototypical 3D visualization ap-
proach, which permits the drawing of complex networks in three dimensions,
thus enabling the reduction of edge intersections. Finally, a steerable draw-
ing technique was proposed for high quality drawing of metabolic pathways.
By the inclusion of user feedback in the drawing process, we ensure that
biochemical conventions related to layout of metabolic networks are satisfied.



100 4.7. SUMMARY

Glucose

G6P

F6P

FBP

GAP

PGP

m3PG

m2PG

PEP

PYR

AcCoA_ex

Pts

Pgi

Pfk

Aldo

Tis

Gapdh

Pgk

Pglumu

Eno

Pk

Pdh

m6PG Ru5PG6pdh Pgdh

F6P

GAP

Xyl5P

Sed7P

Rib5P

E4P

AAA_ex

Ru5p R5pi

Tka

Ta

Dahps

Tkb

XNA_exRppk

G1PPolySach_ex PgmG1pat

DHAP

Glycerol_ex

G3pdh

OAA_ex

CHO_ex

Pepcx

Synth1

ILE_exSynth2

Figure 4.20: Steerable drawing of E. coli model



5
Customizable Comparison of Metabolic

Network Models

5.1 Introduction

Biological data, especially data related to metabolic network modeling, is
often represented as structured data stored in XML files. A common problem
encountered in this context is how to structure this information to provide a
basis for compatibility and reusability between a broad range of sources and
tools. Furthermore, a suitable format should represent the main features of
the represented objects and should serve as an exchange language between
different systems. After a certain format has been fixed, a very important
problem is how to detect changes in the underlying data sources. The purpose
of change detection is twofold:

• To detect changes between different files in order to grasp the similarity
that exists between these files.

• To track changes in a family of files which are derived from a common
source.

However, the different techniques for comparing XML data are generic in
their purpose and do not take into account the semantics of the underlying
data. For this purpose, a novel customizable technique for detecting changes
in XML files, will be proposed in this thesis. It can be adapted to different
contexts and takes into consideration formalized format semantics. Then,
existing techniques are used to detect exact changes in metabolic network
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models stored in XML format. Parts of this work are published in [QF06,
QGF06].

The remainder of this chapter is organized as follows. Section 5.2 gives a
survey of existing techniques for comparing structured data, especially XML
data and techniques related to change visualization in similar contexts. Sec-
tion 5.3 describes the SBML format and its dialect, M3L. Section 5.4 presents
a novel extensible and customizable XML diff algorithm, which takes into ac-
count special semantics of SBML before doing the comparison of XML files.
Section 5.5 describes the evaluation of the approach. Section 5.6 concludes
this chapter.

5.2 Related Work

5.2.1 Comparison of XML Documents

Approaches for comparing structured data can be divided into different groups.
Methods that compute the minimum cost edit distance constitute an impor-
tant group. Their drawback usually consists of the fact that their computa-
tion is expensive. Thus, other heuristics which sacrifice accuracy for speed
have been developed.

In the following, an overview of the different types of algorithms used
to determine document similarity is given. These techniques include tree
edit distance based similarity, tag similarity, Fourier transformation based
similarity, and path similarity.

5.2.1.1 Tree-Edit Based Similarity Measures

Considering that XML documents can be thought of as trees, a natural ap-
proach to the comparison problem would be to use tree-to-tree editing tech-
niques [Sel77, Tai79] to detect changes in XML documents. The algorithms
used to achieve this purpose are derivatives of the edit distance between
strings, which search for the best sequence of edit operations that transform
a tree into another.

The algorithms that compare trees can be divided into two groups:

• algorithms that consider XML files as ordered trees, i.e. where the
order of subtrees and leaves is important;

• algorithms that consider XML files as unordered trees.

One of the first algorithms working with ordered labeled trees has been
proposed by Zhang and Shasha [ZS89]. For two ordered trees T1 and T2,
where each node has an associated label, their approach for finding an edit
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script which transforms T1 into T2 has a time complexity of O(|T1| × |T2|×
min{depth(T1), leaves(T1)} × min{depth(T2), leaves(T2)}), where depth()
returns the depth of the tree given as parameter.

Chawathe et al. [CRGMW96] formulated the change detection problem
on hierarchically structured data, proposing an efficient algorithm based on
the assumption that when comparing two labeled trees T1 and T2, any leaf
in T1 is at most matched by one leaf in T2. The time complexity achieved in
this way is of the order O(ne + e2) where n is the number of leaves and e is
the edit distance between the two documents. This assumption works well
for documents that do not contain duplicates, but it does not perform well
for all XML documents.

Two other algorithms for change detection in ordered trees are XMLTreeD-
iff [CE99] and XyDiff [CAM02].

XMLTreeDiff computes hash values for the nodes of both documents using
DOMHash [MTU00], reducing the size of the two trees by removing identical
subtrees. Zhang and Shasha’s [ZS89] algorithm is then employed to generate
the difference between the two simplified trees. However, the removal of
identical subtrees might conflict with the cost model employed by Zhang and
Shasha’s algorithm, possibly generating non-optimal results.

XyDiff is a heuristic which calculates a signature and a weight, which
depends on the subtree size for every node on the two documents to be
compared. Starting at the root node, the signatures are then compared with
each other. If they are equal, then the nodes are matched; otherwise, the
child nodes will be inserted in a priority queue and will be matched against
each other in decreasing order of weight. Exact matches between subtrees are
then propagated to the upper levels according to the weight of the subtree.
Furthermore, XyDiff avoids the full evaluation of alternatives by using simple
heuristic rules when more than one potential candidate can be matched.
The overall complexity of XyDiff is O(n log n), but because it makes use of
heuristic rules it cannot guarantee optimal results.

Nierman and Jagadish [NJ02] provide a dynamic programming approach
for evaluating the tree edit distance between (ordered) XML documents by
taking into account XML issues such as repetitions in sub-elements and op-
tional nodes.

Handling unordered trees, on the other hand, is a much more difficult
problem. Zhang et al. [ZSS92] proved that the general unordered tree-to-tree
correction problem is NP-complete. Zhang et al. also proposed a polynomial-
time algorithm based on a restriction that matching is only performed be-
tween nodes at the same level [Zha93]. Mh-Diff [CGM97] is a heuristic for
detecting changes in unordered structured data. The edit script is found as
an edge cover in a bipartite graph and the basic edit operations foresee not
only the usual insert, delete or update but also operations on subtrees such
as subtree copy and subtree glue. The complexity of the approach is of the
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order O(n3).
Wang et al. [WDC03] present a change detection algorithm specialized

for XML documents. Their approach assumes that XML trees are unordered
and it exploits XML specific features to overcome the NP-completeness of
the unordered tree comparison problem.

The algorithms presented above have a common property, namely they
calculate both a numerical value indicating the similarity between the docu-
ments and they also output an edit script transforming one document to the
other, which is not the case for the other similarity algorithms which will be
presented in the following paragraphs. To convert this similarity value into
a similarity metric, this value is often normalized with the number of nodes
of the tree representing the larger document.

5.2.1.2 Tag Based Similarity Measures

The presented techniques are used both for matching structures of documents
and their contents. However, when only structure matching is needed, a
simple method is to measure how closely the sets of tags match between
documents.

Buttler [But04] defines a so called Weighted Tag Similarity as follows:
Let T1 and T2 be the two sets of tags of documents D1 and D2, t1k and t2k

members of T1 and T2, w1k be the number of times tag t1k appears in T2 and
v2k be the number of times tag t2k appears in T1 and n the number of unique
tags.

Then, in analogy with the Dice Coefficient, the similarity between docu-
ments is defined as:

WTS(D1, D2) =

∑n
k=1 2 × min(w1k, v2k)∑n

k=1(w1k + v2k)
(5.1)

Considering that this approach takes into account only the set of tags in
each document, it will be very sensitive on the tags used. Thus, if HTML
data is compared in this way, where the tag set is fixed but structure may
vary than the accuracy would be low.

5.2.1.3 Path Based Similarity Measures

To avoid the time complexity restrictions that tree edit based distances pose
and the accuracy problems of tag based approaches, path based similarity
measures are used.

Joshi et al. [JAKN03] introduced a bag of paths model for measuring the
structural similarity of tree models such as DOM trees representing HTML
and XML documents. Two different techniques are used in this context:



CHAPTER 5. CUSTOMIZABLE COMPARISON OF METABOLIC NETWORK MODELS 105

1) the first considers simple tree paths which retain all child-parent rela-
tionships ignoring sibling relationships; and 2) the second technique called
bag of XPaths includes some sibling information into the model. The sim-
ple bag of paths model, which constructs a multiset containing all root-to-
leaf paths, functions well with trees containing many levels of nesting and
has certain difficulties with shallow trees that contain many similar paths.
The bag of XPaths defines a Jaccard-alike similarity measure on generalized
XPaths, which incorporate positional information on nodes that accounts for
sibling relationships. In this way, this model better accommodates issues
encountered often in XML such as repetition, optional elements and recur-
sive elements. Both methods are used as similarity measures for clustering
XML/HTML files with different structures, where the bag of XPaths model
performs better than the bag of paths model.

A similar idea is followed by Buttler [But04], where a shingle-based ap-
proach for comparison of semi-structured data is introduced. Shingles were
introduced originally by Broder [Bro97] to compare text documents for sim-
ilarity and containment. Using these sets of shingles, the resemblance and
containment between two documents is defined as in Formulas 5.2 and 5.3 re-
spectively, where S represents the set of shingles for the respective document.
Furthermore, the set of shingles S obtained for a certain size w is reduced
into a subset of itself, called sketch, which is further used to determine doc-
ument similarity. These sketches are random samples of text in documents,
which are chosen after applying random permutations to the shingles, i.e.
words of the document. Two selection methods are used by Broder [Bro97],
namely choosing the smallest s indices after permutation or the indices that
are multiples of a parameter m. It is shown that by using these sketches,
unbiased estimates of resemblance and containment are found by retaining
only a small part of the document.

rw(D1, D2) =
S(D1, w) ∩ S(D2, w)

S(D1, w) ∪ S(D2, w)
(5.2)

cw(D1, D2) =
S(D1, w) ∩ S(D2, w)

S(D1, w)
(5.3)

Semi-structured documents such as XML have the advantage that they do
not need to be partitioned arbitrarily into sequences of words because they
can be viewed as sequence of root-to-leaf branches. In this way, a XML
document is represented as a list of tokens, representing root-to-node paths
for every node. Figure 5.1 illustrates how a path list is constructed from the
tree representing a XML document.

To measure the similarity between two documents, their respective lists
of paths can be compared. This comparison can proceed in different ways,
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< a >
< b >

< d/ >
< e >

< f/ >
< /e >

< /b >
< c >

< g/ >
< /c >

< /a >

(a) XML document
(b) Tree representa-
tion

/a
/a/b
/a/b/d
/a/b/e
/a/b/e/f
/a/c
/a/c/g

(c) Path representa-
tion

Figure 5.1: XML documents and its tree and path representations

namely:

• by comparing the two lists of paths as sets, measuring the ratio of their
intersection over their union

• by building weighted models where different paths have different weights

• by applying the shingle technique mentioned above for the path lists

Buttler [But04] uses the last approach to measure the similarity of structures
of XML documents. Instead of tokens in word documents it considers root-
to-node paths which are later transformed via a hash function. Out of these
hashed values either sets or bags of shingles are built, which represent the
values S(Di, w) in Formula 5.2 or 5.3. The rest then proceeds like for text
documents.

5.2.1.4 FFT-Based Comparison

Another approach for comparing XML documents has been introduced by
Flesca et al. [FMM+02, FMMP05], where a Fourier transformation is used
to compare encoded XML documents. It is based on the idea to interpret an
XML document as a time series, where the values combine relevant features
of the XML elements. These time series can be compared with each other as
being discrete-time signals by using DFT (Discrete Fourier Transform).
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The whole procedure can be summarized as follows. First, an appropriate
tag encoding scheme is chosen. In the first proposal [FMM+02], a simple
encoding scheme using a randomly chosen linear order for all distinct tags
was used. Since both opening tags and closing tags are encoded, the tech-
nique uses a simple trick where closing tags are encoded with the opposite
negative value. This simple technique means that no neighborhood relation-
ships between nodes of XML documents are exploited. Later [FMMP05], the
scheme was further enriched with two other techniques, namely pair wise tag
encoding where two consecutive tags are encoded together with a numerical
value and nested tag encoding which also considers the path names and not
only the tags.

After an encoding function for tags has been defined, the document itself
is encoded into a time series. Thus, a document D with tags [t0, t1, ..., tn] will
be encoded as a time series [S0, S1, ..., Sn] where

Si = γ(ti) × Bmaxdepth(D)−lti +
∑

tj∈nestd(ti)

γ(tj) × Bmaxdepth(D)−ltj (5.4)

B is usually chosen as the number of distinct symbols present in tag names
so that different nesting levels do not interfere to each other’s contribution
and nestd(ti) represents the ancestors of ti. γ(.) represents the tag encoding
function, i.e. a function that assigns numerical values to the distinct tags of
the XML document.

The final distance between documents D1 and D2 encoded as time series
h1 and h2 is defined as:

dist(D1, D2) = (

M/2∑

k=1

(|[DF̃T (h1)](k)| − |[DF̃T (h2)](k)|)2)
1
2 (5.5)

where DF̃T represents an interpolation of DFT to frequencies common
to both documents and M = Ndi

+ Ndj
− 1.

This approach assumes that XML documents are ordered, and indeed the
ordering affects the tag encoding process substantially.

5.2.1.5 Discussion

Buttler [But04] presents an empirical evaluation of the accuracy and per-
formance of the different techniques explained. To compare the different
metrics with each other, which sometimes is not quite easy because the met-
rics are not directly comparable to each other, clustering (such as k-means
clustering) based on both real and synthesized data is performed based on
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the assumption that the clusters that are generated by the same algorithm
are comparable with each other.

For HTML pages extracted from known websites, the weighted tag metric
has the best results, whereas the FFT based approach has the worst; path
based approaches and TED are somewhere in the middle. The bad perfor-
mance of TED is justified by the simple set of tags HTML has to offer.

In terms of speed, the TED based approach is the slowest followed by FFT
based approach. Path based approaches are the fastest with the weighted tag
approach being the fastest among them.

When dealing with large files, the tree edit distance becomes dramatically
slow. Path based approaches are more efficient and furthermore they can be
enhanced using shingle based techniques. Buttler [But04] concludes that the
approach based on the Fourier transform is the slowest and the least accurate
technique and the tree edit distance may not be appropriate for the purposes
of clustering whereas path based approaches present efficient heuristics for
measuring similarity.

It should be mentioned that whereas TED algorithms compute also a
delta accounting for the differences between documents, the other techniques
concentrate only on the computation of similarity values between documents.

5.3 SBML and M3L

This section is concerned with SBML and its dialect M3L which were briefly
described in Chapter 4. XML has become a common standard for informa-
tion representation and exchange in the context of biological data. These
biological data range from protein and gene interaction data to metabolic
pathways, and although interconnected with each other, for obvious reasons
they differ in structure and scope. The next subsection will give a survey on
XML standards for describing biochemical pathways.

Several databases and simulation tools in bioinformatics and especially
in metabolic engineering support the exchange and processing of XML data.
This XML data can be grouped under several ongoing standardization efforts
such as SBML [HFS+03], PSI-MI [HMPB+04], etc. In [SL05] a comparison
study for three such standards is performed.

The Proteomics Standards Initiative Molecular Interaction XML format
(PSI-MI) [HMPB+04] is a proteomics standard focusing on protein-protein in-
teractions. As such, it represents an unnatural language for storing pathways
although they can be represented indirectly via interactions. Furthermore,
this format is not intended to be used in simulation environments and is thus
inappropriate in this context.
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5.3.1 SBML

The Systems Biology Markup Language(SBML) [HFS+03] was created as a
cooperation from representatives of many system and tool developers work-
ing with models of metabolic pathways. Its development is based on merg-
ing of common features of different tools such as BioSpice [Bio06], DB-
Solve [GHS99], E-Cell [THT+99], Gepasi [Men93], Jarnac [Sau00], StochSim
[MFB98] and Virtual Cell [SL99].

Its releases are organized into levels, with level 2 being currently in use,
but there is ongoing work on level 3. The number of systems supporting
SBML is more than 801, with systems ranging from databases to simulation
environments. Figure 5.2(a) shows the skeleton of a SBML document. The
structure of the XML file is kept simple and can thus be used as an exchange
format as well as a representation format to be formatted with simple XML
editors. We will describe briefly the structure of SBML below.

Two upper hierarchies of the SBML file represent the elements identify-
ing the type with the <sbml> tag and basic properties of the model such
as the name embedded with the <model> tag. Compartment nodes, listed
under the tag <listOfCompartments> represent virtual containers in which
species are located. They do not necessarily correspond to structures related
to the cell although this is often the case. The following fragment of SBML
describes the definition of compartments:
<listOfCompartments>

<compartment name=”Cyt” volume=”1.5” />

<compartment name=”Nuc” outside=”Cyt” />

</listOfCompartments>

The required attribute for compartment is its unique name whereas optional
attributes are its volume (default 1 unit) and outside which expresses re-
lationships between compartments. Compartment nodes are optional in a
SBML document and no compartment definition assumes that everything is
located within a single compartment of unit volume. Species on the other side
represent entities that take part in reactions such as molecules. Examples of
species include molecules such as glucose or proteins. In the context of this
thesis, specie and metabolite are used interchangeably. Below, an extract of
a species definition in a sample SBML model is shown.

<listOfSpecies>

<species compartment=”Cyt” initialAmount=”3.48” name=”G6P”/>

<species compartment=”Cyt” initialAmount=”0.6” name=”F6P”/>

...

<listOfSpecies>

Species elements have two required attributes, “name” and “initialAmount”

1http://www.sbml.org
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1: <?xml version=”1.0” encoding=”UTF-8”?>

2: <sbml >

3: <model”>

4: <listOfUnitDefinitions>

5: ...

6: </listOfUnitDefinitions>

7: <listOfCompartments>

8: ...

9: </listOfCompartments>

10: <listOfSpecies>

11: ...

12: </listOfSpecies>

13: <listOfParameters>

14: ...

15: </listOfParameters>

16: <listOfRules>

17: ...

18: </listOfRules>

19: <listOfReactions>

20: ...

21: </listOfReactions>

23: </model>

24: </sbml>

(a) SBML structure

1: <m3l>

2: <model name=”...”>

3: <listOfCompartments>

4: ...

5: </listOfCompartments>

6: <listOfSpecies>

7: ...

8: </listOfSpecies>

9: <listOfReactions>

10: ...

11: </listOfReactions>

12: <listOfKineticLaws>

13: ...

14: </listOfKineticLaws>

15: <listOfConstraints>

16: ...

17: </listOfConstraints>

18: <listOfModelParameters>

19: ...

20: </listOfModelParameters>

21: <listOfSplines>

22: ...

23: </listOfSplines>

24: <listOfMeasurements>

25: ...

26: </listOfMeasurements>

27: <listOfMeasureModels>

28: ...

29: </listOfMeasureModels>

30: </model>

31: </m3l>

(b) M3L structure

Figure 5.2: SBML and M3L structure

and several optional attributes, such as, for example, “compartment” which
indicates the compartment within which the species is located. This attribute
can be omitted only if the model does not define any compartments.

Reactions represent some transformation, transport or binding process,
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typically a (bio)chemical reaction, that can change one or more species, as
described below. In SBML, reactions are defined using lists of reactant species
and products, their stoichiometric coefficients, and kinetic rate laws. A short
example of a reaction node definition is shown below.
The reaction node has a required attribute name, used to identify it in the

<listOfReactions>

<reaction name=”reaction1” reversible=”false”>

<listOfReactants>

<speciesReference species=”X0” stoichiometry=”1”/>

</listOfReactants>

<listOfProducts>

<speciesReference species=”S1” stoichiometry=”1”/>

</listOfProducts>

<kineticLaw formula=”k1 * X0”>

<listOfParameters>

<parameter name=”k1” value=”0”/>

</listOfParameters>

</kineticLaw>

</reaction>

...

</listOfReactions>

Figure 5.3: Reaction definition in SBML

model, one optional attribute indicating whether the reaction is reversible or
not (default true) and one optional attribute “fast” (default false) indicating a
reaction which proceeds very fast and can thus be treated as quasi-stationary.
Information about reversibility is useful in certain kinds of analyses such
as elementary mode analysis. Furthermore, the reactants (sometimes called
educts) and products, together with their stoichometric numbers of a reaction
are identified by the proper “specieReference” nodes inside “listOfReactants”
or “listOfProducts”.

The optional “kineticLaw” element provides a mathematical formula de-
scribing the rate at which the reactants combine to form the products. It
is optional although there is no useful default value for this element, but
certain kinds of network analysis (e.g. elementary mode analysis) are still
possible. The “kineticLaw” element has one required attribute, “formula”, of
type string, that expresses the rate of the reaction. The “kineticLaw” tag was
modified in SBML level 2 in order to be able to define MathML expressions
instead of strings present in level 1 for kinetic laws.

The elements of SBML introduced so far fully define the structure of a
metabolic network. However, SBML offers the possibility to insert other ele-
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<kineticLaw>

<math xmlns=”http://www.w3.org/1998/Math/MathML”>

<apply>

<times/>

<ci>

k1

</ci>

<ci>

X0

</ci>

</apply>

</math>

<listOfParameters>

<parameter id=”k1” value=”0”/>

</listOfParameters>

</kineticLaw>

Figure 5.4: Kinetic law definition in SBML using MathML

ments which could be helpful in different situations in simulation. The details
of these other elements can be taken from the SBML user manual.

5.3.2 M3L

The simulation tool used in the framework of the project including this thesis,
MMT [HFTW05], makes use of a SBML dialect called Metabolic Modeling
Language (shortened M3L). The reason why it is a dialect and not pure SBML
lies in the fact that SBML does not support the inclusion of rapid sampling
results or other experimental data into the simulation model, which could be
used as a criteria to evaluate the simulation, especially when more than one
model i.e. model variants, are used.

Figure 5.2(b) shows the structure of M3L and the original structure of
SBML. The elements “listOfCompartments”, “listOfSpecies” and “listOfRe-
actions” were taken from SBML. Furthermore, kinetic laws which in SBML
were stored under “listOfReactions” were promoted one level higher to reduce
redundancy, because they are often repeated especially in model variants.
Thus, a reaction in M3L is defined as shown in Figure 5.5.

The kinetic laws are defined separately as presented, in Figure 5.6.
Constraints (see Figure 5.3.2) are defined in order to exclude variants,

which are feasible but not wanted.
A further development of M3L compared to SBML is the ability to define

measurements and splines, which are used later to help in the estimation of
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1: <listOfReactions>

2: <reaction value=”v1”>

3: <listOfReactants>

4: <specieRef compartment=”X” specie=”A”/>

5: </listOfReactants>

6: <listOfProducts>

7: <specieRef compartment=”X” specie=”B”/>

8: </listOfProducts>

9: <listOfKinetics>

10: <kineticLawRef kineticLaw=”null”>

11: </kineticLawRef>

12: <kineticLawRef kineticLaw=”mm”>

13: <parameter symbol=”k m” value=”1”/>

14: <specieLink specie=”A” symbol=”S0”/>

15: </kineticLawRef>

16: <kineticLawRef kineticLaw=”mm 1inh”>

17: <parameter symbol=”k m” value=”1”/>

18: <parameter symbol=”k I” value=”1”/>

19: <specieLink specie=”A” symbol=”S0”/>

20: <specieLink specie=”C” symbol=”S1”/>

21: </kineticLawRef>

22: <kineticLawRef kineticLaw=”mm 1inh”>

23: <parameter symbol=”k m” value=”1”/>

24: <parameter symbol=”k I” value=”1”/>

25: <specieLink specie=”A” symbol=”S0”/>

26: <specieLink specie=”D” symbol=”S1”/>

27: </kineticLawRef>

28: </listOfKinetics>

29: </reaction>

30: </listOfReactions>

Figure 5.5: Reaction definition in M3L

parameters of the model or to reduce the complexity of the model. For this
purpose, the element “listOfMeasurements” (Figure 5.8) is defined, which
contains information about the time point, the value and the standard devi-
ation of the respective species.

The splines are defined similarly under the element “listOfSplines” as given
in Figure 5.9. Splines are mainly used to reduce the complexity of the model
by inserting splines representing pre-processed measured data into the model,
which serve the purpose of reducing the noise in the measured data.

Another change with respect to SBML is represented by the extended



114 5.3. SBML AND M3L

1: <listOfKineticLaws>

2: <KineticLaw name=”mm” formula=”v m*S0/(S0+k m)”/>

3: <KineticLaw name=”mm 1inh” formula=”v m*S0/(S0+k m)*1/(1+k I)”>

4: <extends name=”mm”/>

5: </KineticLaw>

6: </listOfKineticLaws>

Figure 5.6: Kinetic law definition in M3L

1: <listOfConstraints>
2: <constraint name=”c1”>
3: (r.v1==k.null XOR r.v6==k.null)
4: </constraint>
5: </listOfConstraints>

Figure 5.7: Constraints definition in M3L

1: <listOfMeasurements>

2: <measurement name=”mDAHP”>

3: <measure t=”-3.942” value=”0.0117749” stddev=”6.6e-5”/>

4: <measure t=”-3.708” value=”0.0471655” stddev=”0.0004314”/>

5: <measure t=”-3.477” value=”0.0379831” stddev=”0.0003058”/>

6: <measure t=”-3.246” value=”0.042373” stddev=”0.0003632”/>

7: <measure t=”-3.012” value=”0.0464297” stddev=”0.0004205”/>

8: <measure t=”-2.781” value=”0.0438399” stddev=”0.0003834”/>

9: ...

10: </measurement>

11: ...

12: </listOfMeasurements>

Figure 5.8: Measurements definition in M3L

attribute set for species in M3L (in Figure 5.10) which serve the purpose
of distinguishing which metabolites are connected with measured data and
which metabolites take part in ODEs.

The last modification in M3L is represented by model parameters which
define global parameters such as time of simulation, boundaries for flux rates
and metabolite concentrations, etc. An extract of the definition of model
parameters is shown in Figure 5.11.



CHAPTER 5. CUSTOMIZABLE COMPARISON OF METABOLIC NETWORK MODELS 115

1: <listOfSplines>

2: <spline name=”spl ADP” t0=”-3.942”>

3: <break tr=”-3.708” degree=”3”>

4: <coef c=”0” value=”0.119826413412”/>

5: <coef c=”1” value=”0.0159524499127”/>

6: <coef c=”2” value=”0”/>

7: <coef c=”3” value=”0.195012665949”/>

8: </break>

9: ...

10: </spline>

11: ...

12: </listOfSplines>

Figure 5.9: Splines definition in M3L

1: <listOfSpecies>

2: <specie compartment=”Cyt” name=”DAHP” initialAmount=”0.04” measure=”mDAHP”

min=”0” max=”0.2”/>

3: <specie compartment=”Cyt” name=”ADP” from data=”spl ADP”/>

4: <specie compartment=”Cyt” name=”Phe” initialAmount=”20” fixed=”1”/>

5: <specie compartment=”Cyt” name=”EPSP” initialAmount=”0.2” min=”0” max=”5”/>

6: ...

7: </listOfSpecies>

Figure 5.10: Species definition in M3L

1: <listOfModelParameters>

2: <defaultValue flux max=”10” flux min=”-10”/>

3: <dilutionRate value=”0”/>

4: <resultSamplePoints begin=”-3.0” end=”20” interval=”0.1”/>

5: <listOfModelParameters>

Figure 5.11: Definition of global model parameters in M3L

5.4 Customizable XML Comparison

In the following, we will motivate why a customizable XML comparison tech-
nique is needed. Then, CustX-Diff, the customizable tree edit distance for
XML documents is presented, which extends the normal tree edit distance
with the ability to specify XPath lists for the elements of XML documents.
These XPath expressions will specify which parts of the XML trees will be
compared against each other. Then, a similar approach for path based dis-
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tances is presented. For both approaches, some experimental results will be
given.

5.4.1 Motivation

Section 5.2 presented an overview of the techniques for comparing semi-
structured data, especially XML data. However, the presented techniques
focus either on the computation of a generic similarity measure (as a value)
or on the calculation of edit distances between trees. The techniques are
generic, i.e. they do not incorporate any previous information on the struc-
ture of the document and do not make any assumptions about the semantics
of the data. However, in real data sets, important information for mea-
suring the difference between XML files often, is mixed with unimportant
one in the same XML file. Since XML elements are treated all the same in
the existing approaches when measuring the difference between two docu-
ments, unimportant elements would also affect the difference, which may be
an unwanted effect. To illustrate this with an example, let us consider two
imaginary documents, as shown in Figure 5.12. Both represent a book with
the same information up to the extract element which is different in the two
documents. A XML difference algorithm would answer the question whether
the two book elements are the same negatively, due to the influence of the
extract element.

1: <books>

2: <book>

3: <author>

4: Author A

5: </author”>

6: <title>

7: Title A

8: </title>

9: <extract>

10: Extract 1

11: </extract>

12: </book>

13: </books>

(a) First document

1: <books>

2: <book>

3: <author>

4: Author A

5: </author”>

6: <title>

7: Title A

8: </title>

9: <extract>

10: Extract 2

11: </extract>

12: </book>

13: </books>

(b) Second document

Figure 5.12: Two XML documents
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However, there are cases when we would like to simply ignore specific
nodes or attributes of elements in different levels of the XML document, thus
measuring a constrained difference between the two documents. For example,
we would like to ignore the node “extract” in both documents.

To illustrate the idea further, we consider the structure of SBML files. A
SBML file represents a metabolic model, i.e. it represents both the network
structure of the metabolic network and the model parameters which serve
to build simulations of this metabolic network. The same is valid for M3L
documents. When comparing SBML files, two kinds of questions can be
posed, namely are the structures of the respective metabolic networks the
same or are the models represented by the SBML files the same. For the
latter, we need a full comparison of SBML documents, whereas for the former
a constrained XML comparison algorithm, which considers only the elements
under listOfSpecies and listOfReactions is needed. From the illustrations
above it becomes clear that two potential possibilities come into question for
every element: to include or not to include the element during the difference
process, thus creating filters with the to-be-included and not-to-be-included
elements. After defining these filters, this difference process can proceed in
three different ways:

• by customizing the tree edit distance to assign zero weight to the re-
spective edit operations;

• by first filtering the two XML trees and then doing the comparison;

• by modifying path based distances to measure the similarity.

These techniques are illustrated in detail in the following subsections.

5.4.2 Formalization of the Problem

XML documents basically contain three kinds of nodes when represented as
a DOM tree:

• Element nodes which are named non-leaf nodes

• Text nodes which are leaf nodes with a value

• Attributes which are leaf nodes containing both a name and a value

Comments, processing instructions and namespaces are not considered in the
context of comparing XML documents. Although attributes are unordered
and element nodes are ordered in the DOM specification, in many cases such
as in SBML the order of element nodes is not important. For this purpose,
we have extended the X-Diff algorithm presented by Wang et al. [WDC03].
Also some notation is borrowed from the same paper.
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Three elementary and two composite edit operations are defined on trees,
namely:

• Insert(x(name, value), y) inserts a leaf node x as a child of y. The
position is not important since the tree is unordered.

• Delete(x) deletes a leaf node x.

• Update(x, newvalue) changes the value of the leaf x to newvalue.

• Insert(Tx, y) insert a tree rooted at x as child of y and represents a
sequence of Insert operations.

• Delete(Tx) deletes the subtree rooted at x and represents a sequence of
Delete operations.

Sequences of these operations can be used to transform a tree into another.
Since there are many such sequences, the concept of minimum cost edit script
is introduced. By assigning costs to each of the elementary operations (e.g.
one to each of them), each sequence will have an overall weight.

Definition. E is a minimum cost edit script for transforming the tree Tx

into Ty iff ∀ edit script E ′ which transforms Tx into Ty, cost(E ′)≥cost(E).
The edit distance between Tx and Ty is defined as cost(E).

Two more notions are needed before proceeding further. The signature of
a node is defined as the modified path from the root to that node. In general,
it has the form Signature(x) = /Name(x1)/.../Name(xn)/Name(x)/Type(x)
where (x1,...xn,x) represents a path from root to x. For text nodes, it is
reduced to /Name(x1)/.../Name(xn)/Type(x).

Furthermore, for each subtree, a hash value, XHash, similar to the DOMHash
[MTU00] is calculated. An equal value of XHash indicates with high proba-
bility that the two compared subtrees are equal to each other.

So far, the formalities dealt with the generic edit distance between XML
documents. To customize the comparison process, means for defining the
parts of XML which are to be excluded from the comparison process are
needed. To achieve this purpose, two techniques are used, namely:

• by specifying complete paths of the parts of XML documents not to be
considered

• by specifying XPath expressions for the same purpose, allowing more
flexibility.
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The first approach works by defining complete paths of the form /a/b/c,
which implies that every part of the XML document whose signature starts
with /a/b/c will be omitted from the comparison process. This approach
allows a simple but efficient way of excluding nodes from the comparison
process because the verification of the fact that the signature fulfills the de-
fined condition can be accomplished by checking if the predefined path /a/b/c
is prefix of the signature of the treated part of the XML document. How-
ever, more complicated expressions are beyond the capabilities of this simple
approach. For this purpose, XPath expressions are defined, which specify
the parts of XML document to be omitted. But by increasing the capability
of the filtering expressions, we also increase the complexity of verification if
a certain signature of a part of XML document is contained in a predefined
XPath expression. A short XPath introduction and the containment problem
for XPath expressions are presented in the following paragraphs.

5.4.2.1 Short Description of XPath

XPath is a technology which allows to address certain parts, i.e. nodes of
XML documents, in a manner similar to the Unix file systems. The matching
of nodes in a XML document is done via XPath expressions, whose evaluation
results can be a set of nodes, a boolean variable, a number or a string. The
specification of an XPath expression defines which nodes of the document
are requested while the question of which algorithm should be used to find
these nodes is left open. Some of the examples below illustrate the results of
interpreting XPath expressions in their long and short form in simple XML
documents. Figures 5.13(a) and 5.13(b) show the result of the interpretation
of the simplest XPath expressions, namely the selection of nodes using an
XPath expression without wild characters. Figure 5.13(c) illustrates a slightly
complicated expression, which selects nodes B, descendants of A, that have
a son C.

Figure 5.14(a) illustrates the selection via a XPath expression of text in-
formation contained in a certain part of the XML document. So far, the
queries involved nodes on a certain level. Figure 5.14(b) illustrates XPath
expressions which involve results occurring on different levels of the XML
document, namely elements with the name C in every level or elements with
any name, as in Figure 5.14(c). The last group of figures illustrates more
complex XPath expressions. Thus, in Figure 5.15(a) all daughter nodes of
the node /A/B including the node itself, result from the interpretation of the
XPath expression /A/B//∗. Figure 5.15(b) and 5.15(c) show the backwards
filtering ability of XPath expressions. A further functionality of XPath is rep-
resented by the ability to move not only down and up in the document tree,
but also sideways, allowing to specify expressions such as the 3rd B-named
child of a certain element and so on.
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<A>

<B>

</B>

<C>

</C>

<D>

</D>

</A>

(a) XPath expres-
sion /A (long form
/child::A)

<A>

<B>

</B>

<C>

</C>

<C>

</C>

</A>

(b) XPath ex-
pression /A/C
(/child::A/child:C)

<A>

<B>

<C>

</C>

</B>

<B>

</B>

</A>

(c) XPath ex-
pression /A/B[C]
(/child::A[child::C])

Figure 5.13: Results of XPath expressions emphasized in bold (1)

<A>

<B>

XML Text

</B>

<C>

</C>

<D>

</D>

</A>

(a) XPath expres-
sion /A/B/text()
(/child::A/child::B/child::text()

<A>

<B>

<C>

</C>

</B>

<C>

</C>

</A>

(b) XPath expression
//C ( /descendant::C)

<A>

<B>

<C>

</C>

</B>

<B>

</B>

</A>

(c) XPath expression
//* (/descendant::*)

Figure 5.14: Results of XPath expressions emphasized in bold (2)

5.4.2.2 Containment of XPath Expressions

After having defined a list of XPath expressions which are to be omitted from
the XML comparison process, an efficient algorithm for checking whether
elements of XML documents are in the list of exclusions is needed. The
algorithm receives as an input an XPath expression and a signature, i.e.
path of an element in the XML document, and check whether the signature
is contained in the XPath expression. A more difficult problem, namely
the containment problem for two XPath expressions, was treated by Miklau
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<A>

<B>

<C>

</C>

</B>

<D>

</D>

</A>

(a) XPath expres-
sion /A/B//* (
/child::A/child::B/descendant-
or-self::*

<A>

<B>

<C>

</C>

</B>

<C>

</C>

</A>

(b) XPath expression
//C/parent::*

<A>

<B>

<C>

</C>

</B>

<B>

</B>

</A>

(c) XPath expression
//B/ancestor-or-
self::*)

Figure 5.15: Results of XPath expressions emphasized in bold (3)

et al. [MS04]. Furthermore, Miklau et al. have introduced an algorithm
for efficiently checking the embedding problem between XPath expressions
(in fact for a subclass of them called Tree Patterns) and trees. Based on
this algorithm, and using the characteristics of our problem, we developed
a dynamic programming approach for the embedding problem for XPath
expressions and a signature. We consider the Tree Patterns subset of XPath
which is commonly defined X{[],∗,//}. Figure 5.16 shows the tree representing
XPath a//∗ [b//d][c]. The tree has two kind of edges: child edges represented
by one line and descendant edges represented by two parallel lines. We use
XPath to customize and thus filter parts of XML documents. As such, we
use XPath in a slightly other context compared to the original proposal.
Thus, the XPath expression given above would return nodes ∗ which are
descendants of a, and have two children named b and c. The child b must
have a descendant named d. We use XPaths to specify the tree pattern we
would like to filter from the XML document. In this way, we are not interested
anymore in the node ∗, but in the leaf nodes of the tree pattern. We could
have restricted the filtering to one subset of tree patterns with X{∗,//}, but
this would have been more restrictive on the user. In this way, we allow for
complicated filters with a single expression.

5.4.3 CustX-Diff

In this subsection, we present an algorithm called CustX-Diff for detecting
exact changes between parts of SBML files. Our algorithm builds on X-
Diff [WDC03], a published XML change detection algorithm. X-Diff can
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(a) XPath tree pattern (b) Embeddable path (c) Embeddable path

Figure 5.16: XPath tree patterns and two paths

detect the optimum differences between two unordered XML documents in
polynomial time. It works for any type of XML data. For reasons explained
in the previous sections, our change detection process is based on deciding
for each XML element whether it should be included in the comparison or
not.

To achieve this purpose, XPath expressions (XPEs) are used to specify
filters for the XML documents to be compared. The XPEs we consider are
the tree patterns, commonly defined as X{[],∗,//}. Note that we use XPEs
only to address the XML document for obtaining filtered subtrees, and not
to obtain a set of nodes. Furthermore, if a parent node is embeddable, all its
children nodes are considered embeddable, too.

The pseudocode of CustX-Diff is given in Algorithm 5.2. It differs from
the original X-Diff in that it includes the above described filtering in the
comparison process. Thus, before performing the matching of nodes (line 10
of the algorithm), the considered nodes are checked to determine whether
they fulfill the filtering conditions.

The same effect can be achieved by filtering the XML documents either
during parsing of the XML documents or using an Aspect Oriented Program-
ming (AOP) approach. For the latter, more details can be found in [QF06].
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Algorithm 5.1: Matching of paths with XPath expressions

Input: Two strings p and q representing XPath expressions and an
XML path, respectively

Input: An integer value indicating whether a simple comparison or an
embedding algorithm is to be applied

Output: True if the path is matched against XPath expression, false
otherwise

Parse p into pattern tree P and q into tree T;1

do a postorder traversal of P and store the nodes in postP:2

do a postorder traversal of T and store the nodes in postT:3

for x ∈ postT do4

for y ∈ postP do5

childX=x.child;6

descendantMatched=false;7

if y.descendants=null then8

descendantMatched=true;9

end10

for z ∈ y.descendants do11

if D[z][childX] then12

descendantMatched=true;13

end14

end15

childMatched=false;16

if y.children=null then17

childMatched=true;18

end19

for z ∈ y.children do20

if C[z][childX] then21

childMatched=true;22

end23

end24

C[x][y]= ((label(x)==label(y) || label(y)=”*”) &&25

descendantMatched && childMatched);
D[x][y]= (C[x][y] || D[childX][y]);26

end27

end28

5.5 Evaluation of CustX-Diff

The first set of XML documents CustX-Diff is evaluated on a set of SBML
documents consisting of seven metabolic models of the Valine/Leucine path-
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way in C. glutamicum [MHOT06]. The models are derived from each other
iteratively beginning with a small model (i.e. a small number of reactions)
and increasing it in each step by adding new reactions to the model. The
XML files contain all the information needed for the simulation as described
in Section 5.3, such as the structure of the network, parameters, splines, etc.
Figure 5.17 shows the distance matrices visualized using the methods intro-
duced in Chapter 6. The darker the color of the respective cell, the greater
the similarity between the respective model pair.

6 0 4 3 5 2 1

6

0

4

3

5

2

1

(a) XDiff distances

2 5 3 1 4 0 6

2

5

3

1

4

0

6

(b) CustXDiff distances

Figure 5.17: Matrix of edit distances between a set of models derived from
each other incrementally

Figure 5.17(a) presents the results of X-Diff and Figure 5.17(b) presents
the results of CustX-Diff. CustX-Diff considers only the topology of the
models, which is encoded inside the tag listOfReactions. The distances
generated from X-Diff in Figure 5.17(a) do not give a clear information about
the structural differences of the models because the rest of model definition
affects the difference operation. It just shows that model number 6 is different
from the rest of models.

In contrast, Figure 5.17(b) reflects much better the structural differences in
the list of metabolic networks. After reordering the matrix (with techniques
presented in Section 6.7), the sequence these models are derived from each
other becomes clear (6, 0, 4, 1, 3, 5, 2 ).

Figure 5.18 shows the time in milliseconds needed to complete the pairwise
comparisons (a total of 21) between the seven models. The time required by
CustX-Diff is nearly constant. It is sometimes higher than the time X-Diff
requires to perform the difference operation, which is due to the overhead
introduced by the verification process to check if a certain part of the XML
document is included in the filter or not.
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0.5

1

1.5

2

2.5
x 10

4

XDiff

CustXDiff

Figure 5.18: Time in milliseconds X-Diff and CustX-Diff require to com-
plete the pairwise comparisons between seven models, whose edit distances
are shown in Figure 5.17(b)

For further evaluation of CustX-Diff, a test set consisting of 90 XML doc-
uments in SBML format was selected from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database [KG00]. The models selected in this case
represent the Glycolysis/Gluconeogenesis pathway for 90 different organisms,
in contrast to the above example which represented derivatives of the same
pathway for the same organism. The topology of the graph describing the
metabolic network is again encoded inside the tag listOfReactions and to
compare two topologies with each other, we do not need to compare entire
SBML documents, but just the hierarchy which is encoded between the open-
ing and closing listOfReactions tag. The edit distances between the models
were evaluated using both X-Diff and CustX-Diff algorithms.

Figure 5.19 presents the matrix of pairwise edit distances for the 90 mod-
els, labelled as they are indexed in KEGG. The respective matrix of X-Diff
distances is not shown because as in the previous example, it could not be
used to extract any visual pattern. The matrix of CustX-Diff distances re-
veals clear patterns of similar models (again after the reordering of columns
and rows), as for example the family of E. coli strains which is highlighted in
Figure 5.19. Similar patterns can be observed for other groups of organisms.
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Figure 5.19: Matrix of edit distances between the same metabolic pathway
for different organisms taken from KEGG [KG00]

5.6 Summary

In this chapter we presented CustX-Diff, a customizable change detection ap-
proach to compare metabolic networks saved as SBML or M3L files. CustX-
Diff performs a tailored change detection operation which filters XML doc-
ument parts according to specified XPath expressions. The subset of XPath
expressions used allows the specification branching, wildcards and descendant
relationships between nodes. The evaluation of CustX-Diff confirmed, as ex-
pected, lower edit distances between XML documents compared to X-Diff.
As such, it allows potential human and machine users to focus the comparison
process on specific parts of the documents.
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Algorithm 5.2: Customizable XML Diff

Input: XML Documents D1 and D2, Lists of constraints L1 and L2

Output: Constrained edit script E which considers the lists above
Parse D1 into T1 and hash T1 and parse D2 into T2 and hash T2;1

if HashValue(root(T1))==HashValue(root(T2)) then2

return empty edit script; /* The XML files are equal */3

else4

N1={set of leaves of T1}, N2={set of leaves of T2};5

Filter out subtrees that have equal XHash values or belong6

respectively to list of constraints L1 or L2;
repeat7

foreach x ∈ N1 do8

foreach y ∈ N2 do9

if x /∈ L1 and y /∈ L2 and Signature(x)==Signature(y)10

then
Compute and save in dist the distance(x,y);11

N1={set of parent nodes in N1}, N2={parent nodes in N2};12

until N1 and N2 are not empty ;13

if HashValue(root(T1))==HashValue(root(T2)) then14

Mmin=empty; /* The roots are different; */15

else16

add the pair {root(T1, root(T2)} in Mmin;17

foreach (x, y) ∈ Matching do18

add matching to Mmin19

x=root(T1), y=root(T2); Insert (x,y) into empty queue Q;20

while Q not empty do21

extract (x,y) from queue Q;22

if (x, y) ∈ Mmin then23

return “Delete T1, Insert T2”24

foreach (xi, yi) ∈ Mmin where xi child of x and yi child of y do25

if xi and yj are not leaves then26

add (Txi
, Tyj

) into the queue;27

else if dist(xi, yj)!=0 then28

add Update(xi, value(yj)) in E;29

foreach xi /∈ Mmin do30

Add Delete(xi) in E;31

foreach yj /∈ Mmin do32

Add Insert(yj) in E;33





6
Visualization of Sensitivity Matrices

6.1 Introduction

To visualize high-dimensional data sets, two issues need to be dealt with:

• Large dimensionality of data (which might be moderate in size)

• Large size of data

In both cases, the purpose of visualization is to optimally use the available
screen space for conveying as much information as possible to the user. This
task becomes challenging in the case of high-dimensional data sets encoun-
tered during the simulation of metabolic networks, such as the sensitivity
matrices introduced in Section 2.3.2. In contrast to static high-dimensional
data, sensitivity matrices are dynamic in nature, meaning that they evolve
with the time. These sensitivity matrices indicate how the changes in the
parameters of a metabolic network model affect the output of the model.
Their analysis serves two purposes, namely to find redundancies, which are
then used to derive a simpler model with the same properties, and to find
important parameters, which could be adequately changed to achieve specific
effects in the output of the model.

The focus of this chapter is on techniques for the visualization of static and
dynamic multi-dimensional data (i.e. data that changes over time) and their
application for the visualization of sensitivity matrices. Two problems can
be distinguished in this case: (a) finding patterns/structures locally, i.e for
static data or for a single point of time and (b) finding patterns that persist
for several points of time or globally for all points of time.
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In the framework of this dissertation, a toolkit called MatVis (Matrix Vi-
sualizer) has been developed as a visualization environment to offer solutions
to these problems. It consists of several visualization methods, which rep-
resent different techniques for approaching high-dimensional data; used to-
gether,they provide multiple coordinated views to the user. The techniques
provided in this toolkit include:

• Dimension reductioning techniques such as multi-dimensional scaling
and Sammon mapping. These techniques are extended and combined
with an interactive version of the K-Means clustering algorithm to allow
the direct exploration of the clustering results in the multi-dimensional
scaling view.

• Techniques such as the colored reorderable matrix, which allows the vi-
sualization of multi-dimensional data by mapping numerical values to
colors, gray-scale values or symbols, which are then ordered automat-
ically or interactively with the help of the user. Different algorithms
for their ordering are introduced in this chapter. Furthermore, we ex-
plore different techniques for adapting the reorderable matrix method
for time-varying data as well as algorithms for searching for similar re-
orderings, i.e. permutations of the columns which are consistent within
certain time ranges.

• Novel visualization methods for large covariance/correlation matrices
are introduced. The reorderable covariance/correlation matrix view al-
lows the interactive visualization of the covariances and correlations
dynamically as the time-varying sensitivity matrices are explored.

• The novel colored cluster membership matrix, represents the timely
evolution of cluster memberships for the objects clustered by any parti-
tional clustering algorithm (such as K-Means or Fuzzy C-Means). It is
based on calculating a cumulated adjacency matrix that gathers infor-
mation regarding the membership of objects in clusters for each point
of time. By examining the color visualization of this matrix, changes
in cluster memberships and possible outliers, i.e. objects that change
clusters frequently, can be extracted. Furthermore, groups of objects
which belong to the same cluster for a certain number of points of time
can be distinguished.

For all the above mentioned techniques, different algorithmic and interaction
aspects are discussed in detail in the course of this chapter.

The work presented in this chapter has been partially published in several
papers [QWF04b, QWF04c, QWF05b, QWF05a].

The chapter is organized as follows. Section 6.2 gives a survey of related
work in the field. Section 6.3 describes the input data in the context of
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sensitivity analysis in metabolic modeling. Section 6.4 presents the MatVis
toolkit, which includes the visualization techniques presented in this chap-
ter. Section 6.5 focuses on the asymmetrical reorderable matrix, in its static
and time varying variants and the related problems. Section 6.6 describes
techniques related to low-dimensional projection of sensitivity matrices for
purposes of visualization. Section 6.7 is concerned with reorderable matrix
derivatives for proximity data and the related reordering problems. Section
6.9 concludes the chapter.

6.2 Related Work

Depending on which visual variables (see Chapter 3 for a definition of visual
variables) they use, on how the screen space is used and the transformation
that data undergoes, the techniques for visualizing high-dimensional data can
be broadly categorized as:

• Dimensional subsetting, such as scatterplot matrices [CM88].

• Dimensional embedding techniques, e.g. dimensional stacking [LWW90].

• Axis reconfiguration techniques, such as parallel coordinates [ID90].

• Icon based techniques, such as Chernoff faces [Che73].

• Dimensional reduction techniques, such as multi-dimensional scaling,
principal component analysis , and self-organizing maps [YH38, Sch35,
Mar79].

• Tabular visualization techniques, such as the reorderable matrix and
its derivatives [Ber81].

Some of the techniques focus on certain types of data; e.g. dimensional
stacking is used either for discrete data or for discretized continuous data.
Thus, in this section, we will focus on existing approaches that are relevant
in the context of this chapter. The techniques described below are roughly
divided into two categories: (1) simple visualization techniques, i.e. pure
approaches which include only one technique for visualizing data and (2)
combinations of visualizations techniques, which use several techniques for
visualizing data, profiting from the advantages each one has to offer.

The reorderable matrix method proposed by Bertin [Ber81, Ber83] is a
simple but robust approach to visualize tabular data. The main idea of
the reorderable matrix method is to convert a tabular data set into an in-
teractive 2D view. The 2D view has the same dimensions as the original
data, and according to Bertin the data size should not exceed dimensions
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of X × Y = 10000, where X and Y represent the dimensions of the rows
and columns of data. Data values are replaced by filled circles whose size
depends on the actual value. With manual interaction or automatic per-
mutations, different patterns in the data are made visible. Minnotte et al.
[MW98] use reorderable matrices under another name, data image, to explore
high-dimensional data. Marchette et al. [MS03a] use data images for outlier
detection in data. Corrgrams proposed by Friendly [Fri02] is an approach
similar to the reorderable matrix method to visually explore correlation ma-
trices which are important in multivariate statistics. Bezdek and Hathaway
[BH02] use an approach called ODI (Ordered Dissimilarity Image) for visu-
ally clustering data. Ghoniem et al. [GFC04] use an approach similar to
the reorderable matrix in a different context, namely to compare the usual
graph visualization approach with a matrix-based representation. However,
the reordering of the matrix based representation is not considered, since it
aims to assess the difference between the two representations. In [Sii03], Si-
irtola combines parallel coordinates with reorderable matrices [Ber81, Ber83]
to visualize multi-dimensional data.

Dimension reduction is another alternative to visualize multivariate data
in 2D or 3D. There are two types of dimension reduction techniques: linear
and nonlinear. Principal component analysis (PCA) is a linear projection
method where the projection is formed as a linear combination of the input.
Multi-dimensional scaling (MDS) and the Sammon Mapping are two related
nonlinear projection methods, with the former method preserving large dis-
tances and the latter preserving small distances. A survey of these techniques
can be found in [Fod02].

Parallel coordinates introduced by Inselberg and Dimsdale [ID90] allow
visualizing multi-dimensional data in parallel axes and is one of the popu-
lar methods used in multi-dimensional data visualization. Each dimension
in this method corresponds to an axis; the axes themselves are organized as
uniformly spaced horizontal (sometimes vertical) lines. A point in the high-
dimensional space is represented as a line connecting points on each axis. To
visualize massive data sets, different techniques such as brushing or sampling
are used to reduce the clutter effect. Andrews curves [And72] is a visualiza-
tion method similar to parallel coordinates based on a transformation similar
to a Fourier transformation. Glyphs [Lit83] are graphical entities that convey
the information present in the data set using attributes such as shape, size,
color, and position. Chernoff faces [Che73] represent multi-dimensional data
by means of faces with changing attributes. Thus, the problem of finding
similar vectors is converted into the problem of finding similar faces. Star
glyphs, where axes are arranged as radiating lines in equal angular distance,
in contrast to parallel coordinates, represent another glyph technique for vi-
sualizing multi-dimensional data.
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So far, the techniques dealt with static multi-dimensional data. The tech-
niques for visualizing time-varying data on the other side, usually deal with
univariate or vectorial data. A survey of visualization techniques for time-
dependent data is given by Müller and Schumann [MS03b], which focuses
on the visualization of time series data. The techniques for visualizing time-
varing data into several categories, namely:

• Updating of static states, where static visualizations are changed in a
timely matter based on the time-varying data. Such techniques can also
be enhanced with query mechanisms, which allow filtering by selecting
time periods. Inside this group, the techniques differ from each other in
the way the update of the states is made (with or without animation,
steerable from the user or not, etc.).

• Time series plots, where time is represented with its own dimension and
finds usage in stock market diagrams, EKG plots, etc.

• Overview based methods, which aggregate the data for a certain time
period, to produce a unified visualization of the data. In this context, a
large group consists of force-directed methods, which could be applied
after the data has been transformed in the form of a similarity matrix.
The methods can be interactive in their spirit, allowing the user to
control the process of aggregation. For example, Groenen and Franses
[GF00] use multi-dimensional scaling to visualize time-varying stock
market correlations.

• Other methods, which extend the existing static metaphors for time-
varying data, e.g. TimeHistograms by Kosara [KBH04] as an extension
of standard histograms to visualize time-varying data.

6.3 Description of Input Data

Before explaining in detail the visualization techniques that are part of MatVis,
the information contained in time-varying sensitivity matrices and their pre-
processing are described.

6.3.1 Sensitivity Matrices

To illustrate the input data, i.e. the sensitivity matrices, a small example
is introduced. The model presented visually in Figure 6.1 [Noa05], has 7
metabolites, where Sf is the input substrate, S, P1X , P2X are extracellular
metabolites and A,P1, P1 intracellular metabolites. Furthermore, the model
has 6 reactions named r1, ..., r5 and rf .
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The model is described by the system of differential equations in 6.1, as
illustrated in Chapter 2. The parameters of the model are listed in Table
6.1. Even for such a small model, the number of parameters increases rapidly
depending on the number of reactions and the complexity of the respective
kinetic laws.

rf = D(Sf − S)

r1 =
rmax · S

KmS(1 + P2

KIa
) + S(1 + P2

KIb
)

r2 =
rmax(A − P1

Keq
)

KA(a + P1

KmP
) + A

r3 = kdiff (P1 − P1X)

r4 =
rmax(A − P2

Keq
)

KA(a + P2

KmP
) + A

(6.1)

r5 = kdiff (P2 − P2X)

Ṡ = rf − v · r1

Ȧ = r1 − r2 − r4

Ṗ1 = r2 − r3

˙P1X = v · r3

Ṗ2 = r4 − r5

˙P2X = v · r5

Table 6.2 shows parts of the raw similarity matrix and its normed versions
with respect to the metabolite concentrations and flux rates. These matrices
are selected from the point of time t = −5s, when the system is in a stationary
state and the metabolite concentrations are nearly constant. The parameters
that have zero values for all metabolites and reactions are excluded from the
table.

The values in the matrices indicate how the changes in the parameter
values affect the concentrations of metabolites and reaction rates respectively.
A positive value indicates an increase of the concentration (or reaction rate)
for an infinitesimal increase in the parameter value and a negative value
indicates a decrease. For absolute sensitivity values, the sensitivity indicates
how much the concentration changes when the respective parameter changes
by one unit. For normed sensitivities on the other side, the values indicate the
percentage of change when the parameter value is increased one percent. For
example, an increase of 1mM of r1 KmS, would bring a decrease of 3.26mM
in P2, whereas an increase of 1% in the value of r1 KmS would decrease 20%
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Sf
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P2
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r2 r3

r4
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Figure 6.1: A sample metabolic model used to illustrate the visualization of
sensitivities

Table 6.1: Parameters of the model in Figure 6.1

Reaction Param. Value Unit
r1 KIa 0.4 mM

KIb 0.3 mM
KmS 0.05 mM
rmax 10.0 mMs−1

r2 Keq 5.0
KmP 0.6 mM
KmS 0.01 mM
rmax 1.0 mMs−1

r3 kdiff 0.6 s−1

r4 Keq 2.0
KmP 0.3 mM
KmS 0.1 mM
rmax 0.6 mMs−1

r5 kdiff 0.05 s−1

Param. Value Unit
Sf 100 mM
D 0.3e-4 s−1

Initial
Concent.
S 0.05 mM
A 0.44 mM
P1 0.95 mM
P1X 0.00 mM
P2 0.77 mM
P2X 0.00 mM

the concentration of P2. Parameters such as r2 Keq, that control reactions
developing in both directions, have a low absolute sensitivity and a high
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Table 6.2: Sensitivity matrix for the time moment t = −5s

r1 r2 r3 r4 r5

KIa KIb KmS rmax Keq rmax kdiff Keq kdiff

Raw Sensitivity (S(raw))
S -0.01 -0.01 0.16 0 0 -0.01 -0.01 0 -0.02
A 0.15 0.06 -1.8 0.01 -0.05 -0.37 -0.44 -0.07 -0.55
P1 0.15 0.06 -1.8 0.01 0.03 0.2 -1.26 -0.07 -0.48
P1X 0.01 0 -0.12 0 0 0.01 0.02 0 -0.01
P2 0.27 0.11 -3.26 0.02 -0.08 -0.55 -0.65 0.22 -2.5
P2X 0 0 -0.02 0 0 0 0 0 0.05

Normalized with respect to metabolite concentrations (S(m))
S -0.49 -0.14 0.74 -0.93 -0.36 -0.49 -0.34 0.4 -0.11
A 0.13 0.04 -0.2 0.26 -0.61 -0.83 -0.59 -0.3 -0.06
P1 0.06 0.02 -0.09 0.12 0.15 0.21 -0.79 -0.14 -0.03
P1X 0.09 0.03 -0.14 0.18 0.19 0.26 0.29 -0.16 -0.01
P2 0.14 0.04 -0.21 0.26 -0.51 -0.7 -0.49 0.55 -0.16
P2X 0.17 0.05 -0.27 0.34 -0.36 -0.48 -0.31 0.43 0.89

Normalized with respect to flux rates (S(f))
r1 0.05 0.02 -0.07 0.09 0.07 0.09 0.07 -0.06 0.02
r2 0.06 0.02 -0.08 0.11 0.14 0.19 0.15 -0.13 -0.03
r3 0.06 0.02 -0.09 0.12 0.15 0.21 0.16 -0.14 -0.03
r4 -0.01 0 0.03 -0.03 -0.74 -1.03 -0.73 0.75 0.7
r5 0.14 0.04 -0.21 0.26 -0.52 -0.7 -0.5 0.55 0.84

relative one. For this reason, relative sensitivities are used to compare the
different parameters with each other.

The values of the normed matrix S(m) indicate a distributed control of
metabolite concentrations from the model parameters. The parameters of
reactions affecting the metabolites have usually a higher sensitivity than the
rest.

In analogy with the sensitivity analysis for the stationary state, the same
strategy can be used to analyze the system in an instationary state. For
this purpose, pulse experiments are carried out, as explained in Chapter 2, to
analyze the interaction mechanisms inside the cell in several different states of
the system. The sensitivity matrices in an instationary state are time-varying
and their analysis is important for gaining knowledge about the regulation
of the metabolic network. As such the sensitivity of the parameters changes
with time. After the system is balanced again some of the parameters return
to the old sensitivity values and some of them keep the changed sensitivities.
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6.3.2 Scaling the Input Data

Assuming that the input data is a set of matrices for consecutive points of
time, their storage in our case is accomplished by keeping them in a CSV
(Character Separated Value) file. Some visualization techniques of those
described below require that the data is scaled to a certain range, e.g. the
segment [-1, 1]. For example, the colored reorderable matrix needs to map the
values into a color spectrum and as such the values need to be mapped into a
well known interval. Furthermore, such scaling must take into consideration
that comparable visualizations over time need to be obtained. Two methods
are considered in this context. The first one considers normalizing the values
using the maximum value over all time points, parameters, and metabolites
(or reaction rates). With this method, different orders of magnitudes in
the sensitivity values for different metabolites mean that the lower order
of magnitudes will not be considered properly. As such, the input data is
exposed to a row-based normalization process in which the maximum norm
(L∞ norm for a vector ~x is defined as ‖~x‖ = maxi|xi| ) is used to normalize
the data within all points of time. The maximum norm is appropriate in this
case, because it can be calculated very fast. After normalization, the values
of the matrices for all points of time lie in the segment [-1, 1]. Formally, the
second method can be formalized as below:

‖xi‖∞ = maxkmaxj(S
M
i,j (t)), i = 1..m, j = 1..n, t = 1..T (6.2)

SM
(scaled) = diag(‖xi‖∞)−1 · SM (6.3)

6.4 The MatVis Toolkit

The MatVis visualization toolkit consists of several coordinated views that
interact with each other. These views are selected so that they are as “orthog-
onal” as possible to each other for bringing different perspectives of data to
the user. Figure 6.2 shows a screenshot of the MatVis GUI with some of the
provided views. Basically, MatVis is composed of the following visualization
techniques:

• The Colored Reorderable Matrix, which enables a low level visualiza-
tion of the underlying data by transforming the matrix values into an
interactive colored matrix.

• The Multi-dimensional Scaling view, which includes classical MDS and
the Sammon mapping to provide an aggregated view of the similarities
in the input data.
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Figure 6.2: The MatVis graphical user interface

• The Reorderable Correlation Matrix, enabling an interactive view of
both correlations and covariances of the input data.

• The Reorderable Cluster Membership Evolution Matrix, which based
on results of clustering process for every time point, constructs a prox-
imity matrix which contains information about the similarity of the
objects of visualization, in this case parameters, with each other.

Although the methods contained in the toolkit are tailored to time-varying
sensitivity matrices, no further domain knowledge information is used. In this
way, the framework can be used to visualize any kind of similar data set of
time-varying multi-dimensional data.

In the following, each of the techniques will be described in detail both from
the implementation point of view and from the advantages/disadvantages
they offer.
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r1 K_Ia r1 K_Ib r1 K_mS r1 r_max r2 K_eq r2 K_mP r2 K_mS r2 r_max r3 kdiff r4 K_eq r4 K_mP r4 K_mS r4 r_max r5 kdiff

A 0.007 0.002 -0.01 0.013 -0.032 -0.001 0.002 -0.043 -0.031 -0.016 -0.001 0.001 -0.002 -0.003

P1 0.031 0.009 -0.046 0.059 0.072 0.003 -0.005 0.101 -0.384 -0.066 -0.003 0.004 -0.01 -0.012

P1X 0.156 0.045 -0.237 0.299 0.318 0.014 -0.024 0.432 0.479 -0.268 -0.012 0.016 -0.037 -0.017

P2 0.064 0.02 -0.097 0.124 -0.241 -0.011 0.018 -0.329 -0.231 0.257 0.012 -0.016 0.036 -0.074

P2X 0.193 0.055 -0.294 0.371 -0.397 -0.018 0.03 -0.535 -0.343 0.472 0.02 -0.028 0.063 0.979

S -0.132 -0.039 0.2 -0.253 -0.098 -0.004 0.007 -0.133 -0.091 0.108 0.005 -0.007 0.015 -0.03

(a) Point of time t = −5s

r1 K_Ia r1 K_Ib r1 K_mS r1 r_max r2 K_eq r2 K_mP r2 K_mS r2 r_max r3 kdiff r4 K_eq r4 K_mP r4 K_mS r4 r_max r5 kdiff

A -0.435 0.42 0.652 -0.076 -0.044 -0.002 0.003 -0.06 -0.042 0 0 0 0 -0.007

P1 -0.617 0.58 0.927 -0.13 0.021 0.001 -0.001 0.03 -0.429 -0.013 -0.001 0.001 -0.002 -0.028

P1X 0.119 0.058 -0.181 0.262 0.294 0.013 -0.022 0.401 0.417 -0.252 -0.011 0.016 -0.035 -0.026

P2 -0.541 0.541 0.814 -0.07 -0.303 -0.014 0.023 -0.415 -0.292 0.319 0.015 -0.02 0.045 -0.094

P2X 0.166 0.062 -0.251 0.337 -0.449 -0.02 0.034 -0.609 -0.404 0.514 0.023 -0.031 0.07 0.963

S 0.004 -0.005 -0.006 -0.001 -0.001 0 0 -0.001 -0.001 0.001 0 0 0 0

(b) Point of time t = 0.1s

r1 K_Ia r1 K_Ib r1 K_mS r1 r_max r2 K_eq r2 K_mP r2 K_mS r2 r_max r3 kdiff r4 K_eq r4 K_mP r4 K_mS r4 r_max r5 kdiff

A -0.435 0.42 0.652 -0.076 -0.044 -0.002 0.003 -0.06 -0.042 0 0 0 0 -0.007

P1 -0.617 0.58 0.927 -0.13 0.021 0.001 -0.001 0.03 -0.429 -0.013 -0.001 0.001 -0.002 -0.028

P1X 0.119 0.058 -0.181 0.262 0.294 0.013 -0.022 0.401 0.417 -0.252 -0.011 0.016 -0.035 -0.026

P2 -0.541 0.541 0.814 -0.07 -0.303 -0.014 0.023 -0.415 -0.292 0.319 0.015 -0.02 0.045 -0.094

P2X 0.166 0.062 -0.251 0.337 -0.449 -0.02 0.034 -0.609 -0.404 0.514 0.023 -0.031 0.07 0.963

S 0.004 -0.005 -0.006 -0.001 -0.001 0 0 -0.001 -0.001 0.001 0 0 0 0

(c) Point of time t = 0.5s

r1 K_Ia r1 K_Ib r1 K_mS r1 r_max r2 K_eq r2 K_mP r2 K_mS r2 r_max r3 kdiff r4 K_eq r4 K_mP r4 K_mS r4 r_max r5 kdiff

A 0.001 0.052 -0.001 0.059 -0.008 -0.001 0.001 -0.043 -0.007 -0.037 -0.006 0.006 -0.019 0.01

P1 0.001 0.08 -0.001 0.091 0.062 0.004 -0.006 0.333 -0.358 -0.057 -0.009 0.01 -0.029 0.015

P1X -0.008 0.262 0.013 0.296 0.223 0.014 -0.02 0.997 0.266 -0.193 -0.026 0.03 -0.106 0.028

P2 0.006 0.327 -0.007 0.371 -0.049 -0.003 0.005 -0.268 -0.046 0.047 0.008 -0.009 0.027 -0.075

P2X 0.015 0.697 -0.018 0.815 -0.136 -0.008 0.012 -0.609 -0.127 0.157 0.017 -0.019 0.05 0.936

S 0 -0.012 0 -0.013 -0.004 0 0 -0.016 -0.004 0.004 0.001 -0.001 0.003 -0.004

(d) Point of time t = 39s

Figure 6.3: Four matrices in four different points of time. The first point is
before the substrate pulse, the three others are after the pulse.

6.5 The Asymmetrical Reorderable Matrix

6.5.1 Basics

The information that is hidden in the input data, such as similarities or cor-
relation, is difficult if not impossible to extract only by looking at numbers.
Considering that the human user is more sensitive to visual stimuli, the sub-
stitution of numbers by symbols or colors is a good way to eliminate this
problem. Thus, the basic idea of our approach is to transform a matrix of
numerical data into a matrix of colors. In the original version of the reorder-
able matrix, numerical values are replaced with ink blobs. Since we consider
values in [-1, 1], the use of color spectra is more appropriate. The color
spectrum we use is defined by three colors: two border colors and the transi-
tion color, as shown in figure 6.4(a). Spectra with more colors are not used
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(a) The color spectrum Red-White-
Blue

-1 0 1
0

255

(b) Mapping of values into colors

Figure 6.4: The color spectrum Red-White-Blue in (a) is used for mapping
values into colors as illustrated in (b)

though in specific problem domains this could be useful. The segment [-1,1]
is divided in as many small segments as nuances of colors are used (we use
511 colors; 256 for red, 256 for blue, but white is common to both), and the
transformation to colors is done according to Formula (6.4) where ColorMap
is a function of the spectrum in Figure 6.4(a).

color = ColorMap(value × 255) (6.4)

Our idea of using color scales as a means of communicating fine variations in
numeric data is partially inspired by the red-green heat-maps that bioinfor-
maticians have successfully used to visualize microarray data.

Figure 6.3 shows four matrices which were extracted from the set of time-
varying sensitivity matrices generated during the simulation of the example
metabolic network model presented in Section 6.3. Figure 6.5 shows the cor-
responding visualization as described above without any postprocessing steps
regarding the ordering of columns. In the right of the matrix visualizations,
the maximum norm as described in 6.3.2 is plotted, which is the same for all
time points.

6.5.2 Local Reordering Techniques

In order for this color matrix visualization to be successful, the columns and
rows of these matrices must be reorganized via manual permutations or by
algorithms for the automatic generation of the most suitable permutations,
since the color visualization alone does not allow the easy detection of struc-
tures in the data. Automatic ordering algorithms can be focused on different
ordering objectives:

• Reordering the matrix in one dimension, for discovering the structures
existing in that dimension.

• Reordering the matrix to obtain blocks of similar values in the matrix.
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(a) Point of time t = −5s
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(b) Point of time t = 0.1s
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(c) Point of time t = 0.5s
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(d) Point of time t = 39s

Figure 6.5: The color visualization of the matrices presented in Figure 6.3.
The color hues indicate higher sensitivity just after the pulse in 6.5(b) and
6.5(c).

In the context of this work, the first group of techniques is important. How-
ever, in other contexts, the second group of techniques might be also impor-
tant.

6.5.2.1 One-Dimensional Reordering Problem

One of the approaches for making patterns visible in the reorderable matrix
is to sort either rowwise or columnwise, depending on how the objects and
their patterns are placed. The problem encountered in this context is given
formally in the following. Here, the formulation for column ordering is given,
the row based formulation follows similarly. Suppose that we have a matrix of
values Xm×n, where n is the number of columns. Each column of X is treated
as a vector and the distance function d gives the Euclidean distance between
these vectors. Then, the ONE DIMENSIONAL ORDERING problem is de-
fined as the permutation π, which minimizes the function

∑n−2
i=0 d(πi, πi+1),

where d(πi, πi+1) is the distance between columns πi and πi+1. This defini-
tion is similar to the definition of the TRAVELING SALESMAN PROBLEM
(TSP), but in contrast to the TSP the sum does not include the distance be-
tween the last element of permutation and the first one. The respective
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decision problem would be defined as finding the optimal permutation where∑n−2
i=0 d(πi, πi+1) < B, where B ∈ R is a fixed upper bound.

Theorem 1: ONE DIMENSIONAL ORDERING is NP-complete.
Proof. To prove Theorem 1, it is required to define a polynomial transfor-
mation from a known NP-complete problem to the ONE DIMENSIONAL
ORDERING (ODO) problem. HAMILTIONIAN PATH (HP) will be used
for this purpose [GJ79]. We will indeed show that the intractability of HP
implies the intractability of the ODO decision problem. Thus ODO is as hard
as HP.

For this purpose, a polynomial transformation t which transforms instances
of the HP problem into instances of ODO problem is sought. This transfor-
mation, except being polynomial, must also fulfill the condition that for every
instance P of HP that we know that a hamiltonian path exists if and only if
there is a solution for the corresponding problem f(P ). Suppose we have the
graph G = (V,E) where |V | = n is an instance of HP. The transformation
t transforms every instance G to an instance of ODO, composed by the set
of columns C identical to V , where the distance between columns i and j is
defined to be 1 if vi, vj ∈ E and 2 otherwise. The bound B is set equal to
n − 1. This transformation is clearly polynomial since the maximal number
of edges E we consider is n(n− 1)/2. We need now to show that G contains
a Hamiltonian Path if and only if there is an ordering of t(G) with length
no more than B. If < v0, v1, ..., vn−1 > is a Hamiltonian Path in G, than its
length is

∑n−2
i=0 1 = n−1 hence the forward direction is proved. Suppose now

that < v0, v1, ..., vn−1 > represents an ordering of the columns with length
no more than B = n − 1. Since for each column pair, the distance is either
1 or 2 and the computed value of the ordering is the sum of n − 1 numbers
with values either 1 or 2, all the distances are 1 (if any distance is 2 than
there should be a distance 0 to balance this value, which is not possible).
This implies that the every pair vi, vi+1 is an edge of E and consequently
< v0, v1, ..., vn−1 > is an Hamiltonian Path of G.

Although the general one-dimensional ordering problem is NP-complete,
there are special cases when polynomial time algorithms exist. One such
example is given by Bar-Joseph et al. [BJGJ01] in a different context. If
ordering is performed on data which is before subjected to a hierarchical
clustering procedure, then optimal ordering proceeds in polynomial time,
although of the order O(n4). This comes from the fact that the number of
possibilities to be considered is reduced and the one dimensional order must
be embeddable in the binary tree resulting from the hierarchical clustering.
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Algorithm 6.1: Weighted ordering algorithm

Input: Input the matrix Sm×n corresponding to the set of
parameters P = {p1, ..., pn}, each with m features

Input: The weight vector w = (w1, ..., wm)

Output: The ordered matrix S̃
for i = 1 to n do1

for j = 1 to m do2

weight(i)+=S(i, j) × w(j);3

end4

end5

Sort weight vector e.g. with quicksort and keep the indices in I;6

Obtain the ordered matrix S̃ by reordering S according to I;7

6.5.2.2 Heuristics for One-Dimensional Reordering

Considering that no exact solution can be found for the one dimensional
ordering problem, a range of heuristics were adapted to accomplish this pur-
pose. The first one is a weight-based sorting algorithm.

Algorithm 6.1 shows the weighted ordering algorithm. Its functioning de-
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Figure 6.6: The weighted sorting of colored visualization of the matrices
presented in Figure 6.3 with Algorithm 6.1
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Algorithm 6.2: Weighted spectral seriation

Input: The Euclidean distance matrix Dn×n corresponding to the
distances between pairs of parameters P = {p1, ..., pn},
each with m features, the weighting factor σ

Output: The ordering represented by the permutation π

Aij = exp(−D2
ij

2σ2 ) for i 6= j1

Aii = 02

Gii =
∑n

j=1 Aij3

Gij = 0 for i 6= j4

L = G− 1
2 AG− 1

25

Find the largest eigenvector x1 of L6

Sort x1 e.g. with quicksort and keep the indices in π;7

pends on the weight vector w. By choosing the weight vector w = (1, d, d2, ...
dm−1) or a permutation thereof, where d is the maximum discretization value
used in the visualization, matrices with m dimension up to 50 can be or-
dered. This happens due to the overflow that can occur in step 3 of the
algorithm. This includes a large range of sensitivity matrices generated
from middle scale models encountered in our project. For larger dimen-
sions, a simple modification of step 3 can be accomplished using the formula
weight(i)+ = log(S(i, j)×w(j)) for avoiding the overflow. Figure 6.6 shows
the three visualizations of the matrices in Figure 6.5 after the columns have
been permuted according to Algorithm 6.1.

A similar problem to the ordering of the reorderable matrix is represented
by seriation, a concept which comes from archaeology and is used for plac-
ing artifacts discovered in archaeological sites in chronological order. Various
techniques are used to achieve seriation [Ken71] and spectral methods play
an important role in this context. However, in the classical approach to seri-
ation, they differ from our case because they consider only binary data. To
adapt these techniques for our problem, the method introduced in [NJW02]
for achieving spectral clustering, which will be encountered again in Chapter
7, is further extended for accomplishing seriation. Algorithm 6.2 shows the
weighted spectral ordering algorithm. The distance matrix is modified ap-
propriately using a Gaussian weighting function. Other techniques used in
spectral clustering would be to select k nearest neighbors or all the neigh-
bors which lie in a ǫ neighborhood of a certain point. Such approaches are,
however, more time-consuming compared to Gaussian weighting. Eigenvalue
decomposition is then applied to the weighted matrix L, which is similar to
the Laplacian matrix of simple unweighted graphs. To order the matrix, the
largest eigenvector (i.e. the eigenvector corresponding to the largest eigen-
value) is taken and the order of its values defines the order of the matrix.
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Figure 6.7 shows the result of weighted spectral clustering on the same set
of matrices of Figure 6.3. In contrast to Figure 6.6, in Figure 6.7 the matri-
ces seem more visually disordered. The various spectral clustering methods,
which in contrast to us use k eigenvectors simultaneously, differ from each
other in the set of these eigenvectors used (k largest ones or k smallest ones).
The proper selection of the eigenvector is crucial in the ordering process. As
such, we extended the idea further by introducing an exhaustive spectral or-
dering algorithm, as shown in Algorithm 6.3. Algorithm 6.3 tries exhaustively
all the eigenvectors of L and keeps the ordering that minimizes the sum of
distances of consecutive matrix columns. Figure 6.8 shows that the results of
the exhaustive spectral sorting, which are visually superior compared to the
simple spectral sorting.

A third class of heuristics is constructed by considering the ordering prob-
lem as an optimization problem. As such, we can use the similarity that
one dimensional ordering has with the Traveling Salesman problem (TSP)
[JM97], an analogy which will be used again in Section 6.5.3.The TSP is de-
fined as follows: A salesman has to visit N cities. Each city is visited only
once and the final city is the same as the starting city. In which order should
the salesman visit the cities such that the distance traveled is minimized?
In contrast to the TSP, the path traversed here is not a cycle. To formal-
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Figure 6.7: The simple spectral sorting of colored visualization of the matri-
ces presented in Figure 6.3 Using Algorithm 6.2
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Algorithm 6.3: Exhaustive Weighted Spectral Seriation

Input: Euclidean distance matrix Dn×n corresponding to the
distances between pairs of parameters P = {p1, ..., pn},
each with m features, The weighting factor σ

Output: The ordering represented by the permutation π

Aij = exp(−D2
ij

2σ2 ) for i 6= j1

Aii = 02

Gii =
∑n

j=1 Aij3

Gij = 0 for i 6= j4

L = G− 1
2 AG− 1

25

dmin = ∞6

for i = 1 to n do7

Find the ith largest eigenvector xi of L8

Sort xi e.g. with quicksort and keep the indices in π(i);9

dtemp =
∑

Dπiπi+1
10

if dtemp ≤ dmin then11

dmin = dtemp12

π = π(i)
13

end14

end15

ize the idea, let Sm×n represent a sensitivity matrix with dimensions m × n
and Dn×n be the Euclidean distance matrix obtained when considering the
columns of S as vectors in the space Rm. The purpose is to find the per-
mutation π = {π1, ..., πn}, which minimizes the value

∑n
i=1 d(πi, πi+1). To

optimize this sum, a range of techniques can be used from local search to
more sophisticated techniques such as genetic programming and simulated
annealing. The same sum of distances can be used as an indicator of the
goodness of TSP-based approaches and in connection with the other heuris-
tics presented above. Figure 6.9 shows the matrices as they are ordered by
using simulated annealing for finding the (possibly local) optimum sum of
the distances.

6.5.2.3 Heuristics for Block Ordering

The problem of automatically computing the ”optimal” permutations for
both the columns and rows of the reorderable matrix method has been ad-
dressed also by Mäkinen and Siirtola [MS00]. The authors make an analogy
between reordering the matrix and the bipartite graph drawing problem and
give heuristics on how to automatically reorder matrices. Heuristics for draw-
ing bipartite graph drawing focus on layouts with as few edge crossings as
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possible. If the bipartite graph is represented by an adjacency matrix, the
problem of drawing the bipartite graph with the minimal number of edge
crossings is transformed into the problem of grouping the ones in the adja-
cency matrix (representing edges) into blocks alongside the diagonal of the
matrix. However, the difference between the ordering of adjacency matri-
ces and the reorderable matrix consists in the fact that adjacency matrices
contain only binary values representing if a edge is present or not, whereas
the reorderable matrix takes values from an ordered set {v1, v2, ..., vmax}. In
the Sugiyama algorithm [STT81], the vertices on one side of the bipartite
graph are ordered according to the order of average values of their adjacent
nodes. Mäkinen and Siirtola apply the Sugiyama algorithm (basically the
part of Sugiyama algorithm dealing with crossing minimization) for ordering
matrices both with binary values and with values coming from a discrete
set. In the latter case, a threshold is defined interactively and the problem is
converted to the former case.

However, the threshold based approach cannot be applied for the visualiza-
tion of sensitivity matrices containing arbitrary values. The graph obtained
for arbitrary values presents a complete bipartite graph and since the graph
is complete, it makes no sense speaking about the reduction of the number of
crossings. To achieve automatically block ordering, we apply the techniques
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(d) Point of time t = 39s

Figure 6.8: The exhaustive spectral sorting of colored visualization of the
matrices presented in Figure 6.3 using Algorithm 6.3
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(d) Point of time t = 39s

Figure 6.9: The ordering of colored visualization of the matrices presented
in Figure 6.3 using Simulated Annealing

presented above for one dimensional ordering both on columns and the rows
of the reorderable matrix. This approach keeps the spirit of the Sugiyama
algorithm, especially when Algorithm 6.1 is applied on both columns and
rows of the matrix, since the Sugiyama algorithm is nothing more than a
weighted sorting. Figure 6.10 shows the three matrices used for illustration
in this chapter after applying the one dimensional sort on both dimensions.

6.5.2.4 Reordering via Interaction

In addition to the automatic generation of the optimal permutation, our re-
alization of the reorderable matrix method allows reordering in an interactive
way, supporting the user during the visual exploration process. The user can
select a set of columns to observe by highlighting the selection or dimming
the rest out. Our implementation allows the user to swap columns of matrices
in the case when he or she is not pleased with the found permutation.

6.5.2.5 Discussion

The above techniques are applied interactively in the MatVis environment.
As such, the user must be conscious about the advantages of the specific meth-
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(c) Point of time t = 0.5s
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Figure 6.10: The ordering of colored visualization of the matrices presented
in Figure 6.3 on both dimensions

ods. First of all, the techniques need to provide their results in a reasonable
time, otherwise the user will experience delays in the visual exploration pro-
cess. From the complexity point of view, Algorithm 6.1 has a complexity of
order O(n log n) as it is derived from Quicksort. Applied in two dimensions as
described in Section 6.5.2.3 it will have a complexity of O(n log n+m log m),
where m and n are the dimensions of the matrix to be ordered. Weighted
spectral ordering presented in Algorithm 6.2 depends on the calculation of
eigenvalue decomposition of a n-dimensional square matrix. The rest of the
algorithm has a complexity of O(n log n). In Algorithm 6.3 the same factor is
of order O(n2 log n). From the quality of orderings they generate, Algorithm
6.1 although quick and easy to understand, can sometimes generate orderings
with outliers in the middle of similar columns. This comes from the fact that
a weighting vector is used, which implies a priority for the rows of the matrix
(if the columns are sorted). However, these difficulties can be overcome by in-
teractively specifying an order of priorities during the visualization process.
From the spectral ordering techniques, it is clear that exhaustive ordering
has superior results because it includes the simple spectral ordering. They
produce stable results and especially the exhaustive approach also of high
quality.

Figure 6.11 shows the sum of Euclidean distances of consecutive columns
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Figure 6.11: Comparison of the different ordering techniques for 500 time
points

for three of the above mentioned ordering methods. Simple spectral order-
ing is ommitted because its results are always worse (or the same) than
exhaustive spectral ordering. The results are reported for a set of sensitivity
matrices consisting of 500 time points for the model described in Section 6.3.
Exhaustive spectral ordering has the best results overall; however, simulated
annealing generates comparable results. Weighted ordering is the worst; how-
ever considering that the purpose of all three methods is to help the user in
the visual exploration process, all three generate satisfiable results.

6.5.3 The Time-Dependent Reorderable Matrix

The reorderable matrix presented until now considered time-varying data one
matrix at a moment. Considering that we deal with evolving time-varying
matrices, the permutations calculated in subsection 6.5.2 can vary over time.
Below, the index of one parameter over an extract of several time points is
shown. We see that although the index stays constant for several consec-
utive time points, it jumps on several states when the entire time frame is
considered.

85 times︷ ︸︸ ︷
11, ...,

12 times︷︸︸︷
5, ..., ...

200 times︷︸︸︷
2, ...

In this context, enabling the user to explore the data with the reorderable
matrix without being distracted by the swapped columns, means to find the
optimal permutation over the time which “considers” the local orderings for
each time point. Thus, a discrete optimization problem is raised: we have to
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find the optimal permutation which has the minimum distance to all other
permutations over time.

6.5.3.1 Global Reordering Problem

Basically, the global reordering problem, i.e. the problem of finding the
permutation, which on the average ”agrees” with the permutations calculated
for every time step, is similar to the problem of finding a Kemeny optimal
permutation. The Kemeny optimal permutation is defined as the ordering σ
which minimizes the sum of Kendall distances with orderings τ1, τ2,..., τk.
Kendall distance is defined as the number of swaps of adjacent pairs required
to transform one permutation into the other.

The complexity of Kemeny optimal permutation is studied in several works
[ITT89, DKNS01, BBD05]. Bartholdi et al. [ITT89] treat the problem in a
different context, namely while considering the difficulty of manipulating cer-
tain kinds of election schemes. The ordering of matrices globally bears more
similarity with the works of Dwork et al. [DKNS01] and Biedl et al. [BBD05]
and thus the following theorem will be based on the theorems provided in
these works.

Dwork et al. remark that computing the Kemeny optimal permutation
for two permutations is trivial by outputting one of the input permutations.
However, in the context of visualization with the reorderable matrix it might
be interesting not just to output one of the input permutations but to com-
pute the permutation, which is equidistant using the Kendall distance from
both permutations. For three permutations, Dwork et al. remark that the
complexity is still open [DKNS01]. Formally, the GLOBAL ORDERING
problem is stated as follows: For a list of permutations π1, ..., πk, find the
permutation σ which minimizes

∑k
i=1 dK(σ, πi).

Theorem 2: GLOBAL ORDERING is NP-complete for k full per-
mutations, where k ≥ 4 and k is even.
Proof. The reduction follows from the feedback arc set problem. The feed-
back arc set problem is stated as follows. Given a directed graph G = (V,E),
and an integer L ≥ 0, the question is whether there exists a subset F of E
such that |F | < L and (V,E − F ) is acyclic.

Let’s consider first the case when k is even. Let n = |V | and m = |E|.
Given G, a new graph G’ is produced by introducing new nodes, which are
formed by splitting the edges of the graph G into two edges. Formally, the
graph G′ = (V ′, E ′) is defined as follows: V’ denotes the union of V and
the set {ve : e ∈ E} and E ′ = {(i, vi,j), (vi,j, j) : (i, j) ∈ E}. Figure 6.12
illustrates the transformation from G to G’. The original nodes 1,2,3 and 4
are left unchanged. Furthermore, the edges of the original graph, which are
numbered intentionally, are transformed into nodes in the new graph G’. The
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(a) Graph G (b) Graph G’

Figure 6.12: The graph G and its transformation G’

graph G’ has a minimum feedback arc set of size L if and only if G does.
This fact is proven in the following Lemma.

Lemma: 6.3.1 G’ has a minimum feedback arc set of size L iff G does.
Proof. To prove the only if direction, suppose that G has a feedback arc

set of size L. We can assume that the edges e1, e2,...,eL are removed from
the graph G and the resulting graph is then acyclic. By removing one of
the two edges created for every edge ei, i ∈ 1..L in G’, the resulting graph
in G’ is acyclic. Indeed, if any cycle exists afterwards in G’ then from the
construction procedure described above this cycle traverses the nodes vG′

1 ,
vG′

2 , ..., vG′

C−1, vG′

C , vG′

1 . If we assume that vG′

1 is also a node of G, which does
not restrict our proof because we can begin the numbering from such a node,
then the cycle has the form vG

i1
, eG

j1
, ..., vG

iI
, eG

jJ
, vG

i1
. This means that a cycle

traversing the nodes vG
i1
, ..., vG

iI
, vG

i1
exists in G because both edges created

in G’ are in the modified graph G’ and as such the respective edge is in the
modified graph G. This contradicts the assumption that the modified graph
G is acyclic.

To prove the if direction, if G’ has a minimum feedback arc set of size L, it
is clear from the construction that no two adjacent edges (having a common
node), which are created for every edge in G, can belong to such a feedback
set because removing one of them would result in a smaller feedback arc set.
Again, for every edge removed in G’ we remove its corresponding edge in G.
If a cycle exists in G, then it has the form vG

i1
, ..., vG

iI
, vG

i1
. By introducing the
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artificial nodes added in G’, we achieve the cycle vG′

1 , vG′

2 , ..., vG′

C−1, vG′

C , vG′

1

in G’. All the edges of this cycle belong to the modified graph G’ (after the
removal of the edges belonging to the minimum feedback arc set) because if
not than the respective edges in the cycle in G would also have been removed
in G. The existence of such a cycle contradicts the assumption that G’ has a
minimum feedback arc set.

Let us define the basis permutation Z by ordering the vertices of G’ so
that the original vertices of G receive the numbers 1, ...,n and the vertices
of G’ induced by edges of G receive the numbers n+1, ...,n+m. Let out(i)
denote the sequence of out-neighbors of vertex i in G’ and in(i) the sequence
of in-neighbors. If 1 ≤ i ≤ n than the lists out(i) and in(i) contain only
vertices of the original graph G. Two pairs of permutations are constructed
from the vertices of G:

π1 = 1, out(1), 2, out(2), ..., n, out(n)

π2 = n, out(n)r, n − 1, out(n − 1)r, ..., 1, out(1)r

π3 = in(1), 1, in(2), 2, ..., in(n), 2

π4 = in(n)r, n, in(2)r, 2, ..., in(1)r, 1

where Lr denotes the reversal of the list. The permutation π1 represents
an ordering of the vertices of G’ where the out-neighbors of each vertex of
G are preceded by the vertex itself, but the internal order of out-neighbors
and their predecessor vertices is done according to Z. The permutation π2

reverses the order of out-neighbors while keeping the predecessor vertices (of
graph G) before their out-neighbors. Similarly, in the permutation π3 the
vertices are preceded by their in-neighbors (in the original version [DKNS01]
this is misswritten and is corrected in [BBD05]) and in t4 these orders are
analogously to π2 reversed.

The claim is that G has a feedback edge set of size L iff there is a permu-
tation π∗, such that

∑4
r=1 dK(π∗, πr) ≤ L′, where L′ = 2L+2(

(
n
2

)
+

(
m
2

)
+m).

Suppose that G has a feedback edge set F of size L. The set F ′ = {(i, vi,j)|
(i, j) ∈ F} is a feedback arc set for G’ and as such the graph (V ′, E ′ − F ′)
is acyclic. Thus, we can apply a topological sorting and obtain an ordering π
of vertices V’ such that for every edge (i, j) ∈ E ′ −F ′} i is placed before j in
π. The sum of Kendall distances of π with πi, 1 ≥ i ≤ 4 of the following four
terms, where the three first ones are independent of how π was obtained:

1. For each pair i, j ∈ V , exactly one of π1 and π2 places i above j and the
other places j above i, contributing thus 1 to dK(π, π1) + dK(π, π2) and
analogously contributing of 1 to dK(π, π3) + dK(π, π4). Together, they
account for the term 2n(n-1)/2.
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2. Similarly, for each pair i, j ∈ E, and there are m(m-1)/2 such pairs,
once i is ranked above j, then j is ranked above i for both π1, π2 and
π3, π4 pairs, accounting for the term 2m(m-1)/2.

3. Furthermore, for pairs i, j where i ∈ V and j ∈ E with respect to π3

and π4 (because the vertices of G come after their in-neighbors in π3

and π4 ), and for pairs i, j where i ∈ E and j ∈ V , with respect to π1

and π2 (because the out-neighbors of vertices of V are listed after the
vertices V) contribute each 1 to the sum of Kendall distances, totaling
2m.

4. The last term accounts for the contribution to the total Kendall distance
of pairs i, j where i ∈ V and j ∈ E with respect to π1 and π2 and for
pairs i, j where i ∈ E and j ∈ V , with respect to π3 and π4. Such pairs
contribute 2 to the sum of distances for every edge of G’ which does
not satisfy the order implied by the topological ordering of vertices of
V’. The number of such edges is at most |F ′| = L.

To prove the other direction, suppose that there exists a permutation π
that has a total Kemeny distance of at most L’ = 2L + 2(n(n-1)/2 + m(m-
1)/2 + m) and we need to prove that the graph G’ has a feedback set of size
L. The three terms defined above are constant for every permutation and as
such the fourth term contribution is equal to 2L. But again for every pair i, j
where i ∈ V and j ∈ E with respect to π1 and π2 and for every pair i, j where
i ∈ E and j ∈ V , with respect to π3 and π4 the contribution to the sum of
distances is either 0 or 2. Denoting the edges which contribute 2 to the sum
with F’ and keeping in mind that these edges do not satisfy the ordering in
π, their removal would result in an acyclical graph (V’,E’-F’). Thus, G’ has
a feedback arc set of size L and from Lemma 6.3.1 G has a feedback arc set
of size L.

Thus, computing the optimal Kemeny permutation for four full lists is
NP-hard. For an even number of permutations k ≥ 4, the proof proceeds
similarly by adding k−4

2
pairs of permutations which are the reverse of each

other. In this case, the overall distance is increased by a k−4
2

(
n+m

2

)
term.

The proof for odd k provided in [DKNS01] has some flaws and as such we
provided above only the proof for even ks. The correction of these flaws is not
the object of this thesis and remains an open issue for further work. The two
cases differ from each other because of the fact that when combining an odd
number of ranking, for every pair of objects there is a well defined majority
preference for ranking one above the other (or vice versa). This might not
be the case when combining an even number of permutations.
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6.5.3.2 Similarities on Orderings

Permutations define a bijective function π : {1, 2, ..., n} → {1, 2, ..., n}. As
such, every permutation has two representations, namely the order vector
and the rank vector. The order vector presents an ordered list of elements,
whereas the rank vector presents the list of ranks of the elements. Thus if
we have the permutation presented with order vector 3, 1, 2, 5, 4 its respective
rank vector is 2, 3, 1, 5, 4. These two representations identify uniquely their
counterpart and furthermore they complement each other i.e. if we have
permutation π and its rank σ then σ = π−1 and π · σ = {1, 2, ..., n}.

Similarity on orderings can be defined on their order vector or on their
rank vector. The similarity measures are divided into two groups: spatial
and disorder. Spatial similarity measures the closeness of permutations in
the n-dimensional space, whereas disorder similarity measures the effort re-
quired to transform one permutation to the other. Deza and Huang [DH98]
give a survey of metrics on permutations, without however distinguishing be-
tween order and rank vectors. We will mention below if a specific distance is
calculated with respect to its order vector or its rank vector.

The Spearman distance is computed from the rank vectors following the
formula:

dS(πa, πb) =

√√√√
n∑

i=1

(πa(i) − πb(i))2 (6.5)

With proper normalization, the Spearman’s Rho coefficient is derived as
follows:

ρ = 1 − 6d2
S

n3 − n
(6.6)

The value of ρ lies in [−1, 1] and it serves also as a correlation measure be-
tween the two orderings. Similar to the Spearman distance, the Spearman’s
footrule distance is defined (in analogy to the Manhattan distance for Eu-
clidean space) as:

dfootrule(πa, πb) =
n∑

i=1

|πa(i) − πb(i)| (6.7)

In the same spirit, the maximum norm can also be defined(see [DH98]).
The Kendall distance is based on the other side on the order vector. It

represents the number of swaps of consecutive elements required to transform
one permutation into the other.

dK(πa, πb) =
∑

i<j

I{(πa(i) − πa(j)) · (πb(i) − πb(j)) < 0} (6.8)



156 6.5. THE ASYMMETRICAL REORDERABLE MATRIX

Here I{...} denotes the indicator function, which has value 1 when the con-
dition inside curly brackets holds, otherwise 0. Thus, the same order implies
a Kendall distance of zero, a Kendall distance of one would mean one swap
and the Kendall distance of n(n−1)

2
is the greatest possible distance between

two permutations.
Its respective correlation similarity measure, Kendall’s tau is defined as

follows:

τ = 1 − 4dK

n2 − n
(6.9)

Diaconis and Graham [DG77] proved that for any two permutations of
length n, π and σ, dK(π, σ) ≤ dfootrule(π, σ) ≤ 2dK(π, σ).

The Cayley distance (dC) is similar to the Kendall distance but swaps
can occur between any two elements. Cayley distance is calculated as n −
C(π−1

a πb) [DG77], where C(π−1
a πb) is the number of cycles of the permutation

π−1
a πb. Permutation cycles represent subsets of permutations, whose elements

map the subset into itself e.g. the permutation 4, 1, 3, 2 contains the cycles
(1, 4, 2) and (3).

Table 6.3 [DG77] shows some of the properties of these distances. For the
mean and variance only the leading terms are given. The Cayley distance
has the lowest variance and this maybe explains the fact that this distance
has not received much attention in literature.

Table 6.3: Properties of permutation distances

Max Mean Variance
dS [1

2
n2] 1

3
n2 2

45
n3

dfootrule
1
3
(n3 − n) 1

6
n3 1

36
n5

dC n-1 n-log(n) log(n)
dK

1
2
(n2 − n) 1

4
n2 1

36
n3

The Hamming distance is defined as the number of items whose rankings
differs from one permutation to the other.

dHamming(πa, πb) =
n∑

i=1

I{πa(i) 6= πb(i)} (6.10)

The last distance is known under different names as Ulam, edit or Leven-
shtein distance.

dedit(πa, πb) = n − length of the longest increasing subsequence of

{πbπ
−1
a (1), ..., πbπ

−1
a (n)} (6.11)
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It can be described differently as n minus the number of items which have the
same rank in both permutations or as Levenshtein distance [Lev66] between
two permutations, which is the number of minimal insertions, deletions or
substitutions needed to convert one permutation to the other. The Leven-
shtein distance is calculated efficiently by a dynamic programming approach.

The last two distances have a smaller spectrum of values with minimum
and maximum values 0 and n for the Hamming distance and 0 and n-1 for
the Levenshtein distance. However, in different contexts they might be ap-
propriate similarity measures. For example, if πa = 1,2,3,4,5,6,7 and πb =
7,1,2,3,4,5,6 then the two permutations have a Kendall distance of 6, and a
Levenshtein distance of two (delete 7 at the end of first permutation, add 7
to the beginning). Such situations might occur frequently in the seriation of
the reorderable matrix. Obviously such a change in permutations does not
represent radical changes in the order of the matrix.

6.5.3.3 Heuristics for Global Reordering

Considering that the problem of finding exact solutions to the global ordering
i.e. aggregation of permutations using the Kendall distance is NP-complete,
heuristics for approaching this problem are needed. According to Bertin
[Ber81, Ber83], the reorderable matrix method can be used for exploring ma-
trices where one dimension can go up to 500 (and with distortion techniques
or other focus+context techniques even larger matrices can be visualized),
creating thus a large search space reaching in the worst case orders of 500!.
The problem of finding the optimal permutation can be formulated as follows :

• Let πt for t=1,..,n be the permutations of m columns of time-varying
sensitivity matrix X(t) at all n points of time as calculated using one
of the methods described in section 6.5.2.

• Let d(π1, π2) be the similarity function between two permutations, as
defined in Section 6.5.3.2.

• Find the permutation π̂, for which
∑n

k=1 d(π̂, πk) is minimized.

It is clear that finding the optimal permutation depends on the similarity
measure used for defining the proximity between permutations. Further-
more, even the measurement of the goodness of the optimal permutation
itself depends on this measure, since we need to estimate the sum of dis-
tances between the optimal permutation and the rest. Finding the optimal
solution for the respective distance can be either NP-hard as in the case when
the Kendall distance is used (as shown in Section 6.5.3.1), or efficient tech-
niques might exist for its estimation as in the case of the Spearman footrule
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Algorithm 6.4: Spearman footrule aggregation

Input: The permutations π1, π2, ..., πk of length n
Output: The spearman footrule permutation π̃
/* Compute the sum of permutations */

for j = 1 to k do1

for i = 1 to n do2

rankSum(i)=rankSum(i)+πj(i)3

end4

end5

Sort rankSum (e.g. with quicksort) and keep the indices in π̃;6

distance. Using the Kendall distance provides an aggregate solution, which
fulfills several goodness properties, which are studied also in the context of
aggregating election results. Thus, the optimal aggregation in the case of
the Kendall distance, called also Kemeny optimal aggregation, fulfills the
Condorcet criterion [DKNS01].

For this reason, we will develop heuristics for finding the aggregate per-
mutation of a list of permutations, assuming that Kendall distance is used to
measure the similarity between permutations. Basically, the heuristics can
be divided into two large groups:

• Heuristics trying to “guess” good solutions based on the information
provided by the existing list of permutations

• Heuristics based on optimization algorithms, which try to iteratively
improve a certain solution of the problem. It is understandable that
the first class of heuristics can be used to generate good initial solutions
for this category of heuristics.

The first heuristic presented tries to aggregate the rank vectors of the
permutations. It is basically an implementation of the Spearman footrule
aggregation function. The ranks of each object, columns of the matrix in
our case, are summed with each other for all permutations and the ordering
implied by sorting the sum of ranks implies the aggregation. Its functioning is
similar to the sum of Borda counts, which is often used in election procedures,
where each of the n candidates receives a ranking from 0 (worst) to n − 1
(best) and the winner(s) are those with highest sum of ranks. The Spearman
footrule aggregation minimizes the sum of Spearman distances and can be
used as a 2-approximation for the Kemeny optimal permutation [DKNS01,
DG77]. It should be emphasized that the Spearman footrule aggregation does
not necessarily belong to the list of input permutations being aggregated.

Another heuristic we found to often deliver good results works similarly
to the Spearman footrule aggregation. We imposed the condition that the
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Algorithm 6.5: Barycenter heuristic

Input: The permutations π1, π2, ..., πk of length n
Output: The average permutation π̃
/* Compute the average of permutations */

for j = 1 to k do1

for i = 1 to n do2

rankSum(i)=rankSum(i)+πj(i)3

end4

rankSum(i)= rankSum(i)
k

5

end6

/* Calculate the Spearman distance of the average from

every permutation */

for j = 1 to k do7

dist(j)=dS(πj, rankSum)8

end9

/* Output the permutation which has the minimal distance

*/

Find the index jmin of the minimum of dist and set π̃ = πjmin
;10

permutation must belong to the list of permutations being aggregated. The
heuristic is presented in Algorithm 6.5. Instead of calculating the sum of
ranks, we calculate the mean of ranks for each object. The selected permuta-
tion is the permutation of the list which has the smallest Spearman distance
from the vector of rank means. In this case, the distance between a permu-
tation and a n-dimensional vector which is not a permutation, is calculated.
However, as the Spearman distance is basically the Euclidean distance of
permutations in the n-dimensional space, the solution works. The Spearman
footrule distance can also be used in this case.

The last approach for solving the aggregation problem for permutations
is again (similar to ODO in Section 6.5.2) based on heuristics for solving
the traveling salesman problem. Whereas in Section 6.5.2 the transformation
from ODO to TSP was straightforward, here the analogy is not so obvious.
If a tour of the salesman is a permutation of the indices of cities if they
are numbered from 1 to N, then the goal is to find the optimal permutation
which minimizes the overall distance. The aggregation of permutations is
thus defined in analogy to the optimal tour in TSP. The big difference is
in the cost function; the aggregation of permutations should have minimal
(Kendall) distance to the list of permutations it aggregates. Here we use
Kendall distance, which is harder to calculate, but other distances defined in
Section 6.5.3.2 could be used in the same way. The complexity of calculating
the goodness of a certain permutation with respect to the objective function
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Algorithm 6.6: TSP heuristic

Input: The permutations π1, π2, ..., πk of length n
Output: The optimized permutation aggregation π̃
/* The cost function is defined as

∑k
j=1 dK(π̃, πj) */

Initialize πtemp randomly or using one of the methods described in1

Algorithm 6.4 or in Algorithm 6.5
/* Permute the solution locally until no improvement is

found */

for j = 1 to n do2

for i = 1 to n do3

if reversal of elements i and j in permutation πtemp4

decreases the cost function then
reverse i and j;5

end6

end7

end8

Set π̃ = πtemp ;9

is O(kn log n), where k is the number of permutations to be aggregated and
n the permutation length.

Algorithm 6.6 shows the approach, when using Next Best for optimization.
Next Best functions as a local search technique, and local search methods in
general, and the k-opt algorithms in particular [JM97] are among the best
heuristics for solving the TSP. However, k-opt techniques cannot be used
easily in our case since they are based on geometrical properties of the tour
the salesman travels. The Next Best heuristic takes an initial solution, which
can be generated randomly or using the techniques described above (e.g.
Spearman Footrule Aggregation in Algorithm 6.4 or Barycenter Heuristic in
Algorithm 6.5), and tries to optimize it locally by swapping the places of
two positions in the result; if the gain in the cost function is higher than
zero, then the solution is improved by accomplishing the swap of positions.
Random Walk and Simulated Annealing 1 [JM97, KGV83] are two other opti-
mization techniques, which were also implemented. Random Walk functions
straightforwardly, by substituting the steps 2-8 of Algorithm 6.6 with the

1Simulated annealing tries to optimize difficult optimization problems by mimicking
the process the atoms undergo in a metal when it is heated and then slowly cooled. This
technique is unlikely to find the optimum solution, but it can often find very good solutions.
The process of simulated annealing is controlled by the temperature T, which is slowly
decreased. Furthermore, “bad” solutions, which decrease the value of cost function (when
maximization is the purpose) by δ are accepted if the condition e−δ/T > R holds, where
R is a random number in [0, 1]. The general idea of the approach is that by allowing the
selection of “bad” solutions, the method allows to explore more of the possible space.
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lines:

generate random numbers i and j between 1 and n;
if reversal of elements i and j in permutation πtemp decreases the
cost function then

reverse i and j;

Simulated annealing adds to the improvement condition the simulated
annealing condition, which allows for possibly worse states at the benefit of
exploring more thoroughly the search space.

generate random numbers i and j between 1 and n;
if reversal of elements i and j in permutation πtemp decreases the
cost function or SA condition is fulfilled then

reverse i and j;

Whereas Random Walk and Simulated Annealing need a lot of time to
converge, at the benefit of delivering better results, Next Best is faster. Con-
sidering that the techniques are used in the context of visualizing data in-
teractively, some of the quality of the optimal solution can be traded off for
achieving timely responses.

6.5.3.4 Discussion

Again, the techniques need to provide their results in a reasonable time,
otherwise the user will experience delays in the visual exploration process.
Thus, Algorithm 6.4 has a complexity of O(kn+n log n) and the Barycenter
heuristic in Algorithm 6.5 has a complexity of O(2kn + k). The TSP heuris-
tic presented in Algorithm 6.6 has a complexity of O(kn log n) per iteration.
Here k and n represent the number of permutations being aggregated and
length of permutation respectively. The goodness of the aggregation algo-
rithms can be judged both from the minimum sum of Kendall distances from
the list of permutations and by considering the distance of the aggregate
permutation from each permutation in the list. Figure 6.13 shows five time
series presenting the distance of the respective aggregate permutation from
each permutation in every time point. The aggregate permutation is cal-
culated for each of them using Spearman footrule aggregation, Barycenter,
TSP initialized randomly, TSP initialized using Spearman footrule and TSP
initialized using Barycenter. The TSP heuristic itself is optimized using the
Next Best approach. The sum of the distances for each of the approaches
is 17126, 2842, 2767, 2767, and 2767, respectively. The results of the TSP
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Figure 6.13: Comparison of the different heuristics for aggregation

heuristic variations are comparable with each other, independent of initial-
ization, when considering the sum of distances. The Spearman Footrule has
the worst results. All plots have the same pattern because of the effect of
substrate pulse on the values of the sensitivity matrix.

6.6 Dimension Reductioning Techniques

The reorderable matrix and its derivatives visualize raw data (or its normal-
ized forms) without distortions. In this context, they allow for viewing fine
changes in objects. Sometimes, instead of viewing the raw data, a map of
similarities is needed to create an idea what relationships exist between the
objects in the data set. In this context, dimension reductioning techniques
play an important role. In the following, we will discuss how such techniques
can be used to visualize time-varying high-dimensional data.

6.6.1 Multi-Dimensional Scaling

Multi-dimensional scaling (MDS) is concerned with the construction of a
configuration of n points in Euclidean space using information about the
distances between these points. MDS is often used to project data nonlinearly
from a high-dimensional space to a low-dimensional one, usually a 2D or
3D space. The purpose of MDS is that the distances between points in
the lower-dimensional space approximate the distances between points in the
higher-dimensional space best. MDS allows the use of similarity/dissimilarity
measures instead of strict distances and thus enables to flexibly view the
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Algorithm 6.7: General template of MDS algorithms

Preprocess the matrix D;1

Project the data into lower dimensions;2

Refine the solution in order to improve the cost function;3

relationships between data items.
MDS in general defines a family of techniques (without specifying imple-

mentation details), which are focused on constructing configurations of n
entities in Euclidean space using information about the distances between
these entities (by entities we mean any multi-dimensional vectors). The ori-
gins of MDS are in psychology, where it is used for the study of proximity
data for different entities. MDS methods are widely used in econometric and
social sciences as well as other fields where data analysis is needed such as
biology, chemistry, etc. MDS is in itself an exploratory method; it helps to
provide insight into the relationships of the objects being studied and it is
not about measuring something accurately.

For visually exploring high-dimensional data sets, reduction of dimensions
is important because it enables the visual inspection of the data set in lower
dimensions. There are quite often cases when the reduction of dimensions
cannot be captured with linear methods such as Principal Component Anal-
ysis (PCA), where the projection is expressed as a linear combination of
the components of the original data. MDS concentrates on non-linear pro-
jection methods. There are several approaches for reproducing nonlinear,
high-dimensional data structures. Two large groups are distinguished: Met-
ric MDS and Non-metric MDS. The difference between the two consists in
the fact that metric MDS assumes that there is a true configuration of points
in the low-dimensional space with the specified interpoint distances δrs. If
the projected distance is drs, then metric MDS assumes that drs = δrs + ers,
where ers indicates the projection error. Non-metric MDS assumes a less rigid
relationship between drs and δrs, namely that drs = f(δrs + ers), where f is
a monotone increasing function. In this way, non-metric MDS considers only
the rank order between object distances. Algorithm 6.7 shows the general
template of MDS algorithms. Such algorithms are usually composed of three
steps: the preprocessing of the matrix, which might be a weighting procedure,
the actual projection of the data, and the refinement of the solution. Some
of the approaches might omit the first or third step, and sometimes both.

Classical MDS and its derivatives are a well known implementation of
metric MDS. Non-metric MDS has several well known implementations which
are mainly based in steepest descent optimization algorithms, and often the
techniques differ in the cost function used. For both cases we will discuss
implementation issues and our novel modifications in the following.
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Algorithm 6.8: Classical MDS [Mar79]

Input: The distance matrix D
Output: The Solution of the Classical MDS
Preprocess the matrix D;1

Construct the matrix A where aij = (−1
2
d2

ij);2

Construct the matrix B where bij = aij − ai. − a.j + a.. where ai. is3

the mean of row i, a.j is the mean of column j and a.. is the overall
mean;
Compute the k largest eigenvalues λ1, λ2,... , λk where k is the4

dimension (in our case, k = 2 or k = 3);
Get the corresponding k eigenvectors v1,... , vk and normalize them5

by v′
i · vi = λi and take the normalized eigenvectors as a solution of

MDS ;

6.6.1.1 Classical Multi-Dimensional Scaling

Classical MDS is a technique based on linear algebra for achieving low-
dimensional projections of data. It is similar in spirit to Principal Component
Analysis; however in contrast to PCA the starting point is a distance matrix.
PCA works with the covariance or correlation matrix.

The classical algorithm for metric multi-dimensional scaling [YH38, Sch35,
Mar79] relies on the fact that the coordinates of the projection Z can be
derived from the eigenvalue decomposition of the matrix Z ′Z. As such, the
distance matrix D should be converted in such a form and for this purpose,
double centering is performed on the original distance matrix D in lines 2
and 3 of Algorithm 6.8.

The full pseudocode of the classical MDS algorithm is given in Algorithm
6.8. This algorithm has the advantage of being robust and fast, which en-
sures good response times with time-varying data. The performance of the
algorithm is strongly dependent on the procedure for finding the eigenvalues
of the distance matrices (calculated in step 3).

6.6.1.2 Sammon Mapping

Sammon Mapping [Sam69] is a non-metric MDS approach, which in con-
trast to MDS preserves smaller distances better than large ones. It tries to
minimize an error criterion given by the following expression:

E =
1

∑n−1
i=1

∑n
j=i+1 dij

n−1∑

i=1

n∑

j=i+1

(dij − d̂ij)
2

dij

(6.12)
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Here dij indicates the original distance and d̂ij indicates the distance in the
low-dimensional space.

For minimizing E in 6.12, any minimization technique can be used. Usu-
ally, the steepest descent technique 2 is used for this purpose, which proceeds
iteratively in improving the solution using the formula

y(i + 1)jk = y(i)jk + α

δEs(i)
δyjk(i)

| δ2Es(i)
δ2yjk(i)

|
(6.13)

where y(i)jk presents the value of the kth dimension of the jth point after
the ith iteration. α is a constant with the value 0.3 or 0.4, described in the
original version as the magic factor.

6.6.2 Projection of Sensitivity Matrices

The application of multi-dimensional scaling techniques to sensitivity matri-
ces needs an intermediate step, namely the derivation of distance matrices
from the raw sensitivity matrices. Based on the data type under considera-
tion, different distance measures can be used. However, for sensitivity ma-
trices, after the normalization process described in Section 6.3.2, Euclidean
distance is used.

Algorithm 6.9 shows the proceedings of the classical MDS, as implemented
in MetVis. The Sammon Mapping works as described in the previous section;
its initialization is carried out using the solution generated by classical MDS.

Figure 6.14 shows the two respective views of the classical MDS and the
Sammon Mapping. Small distances between parameters indicate larger sim-
ilarities between them.

6.6.2.1 Time-Varying Similarity Measures

For taking into account time-varying features of data, other similarity mea-
sures can be used instead of the Euclidean distance. For this purpose, step 3
of Algorithm 6.9 can be modified to define cumulative similarity measures.

In this case, the distance dij =
√

cii − 2cij + cjj, where cij is the cu-
mulative correlation coefficient between two vectors. The cumulative in-
formation matrix of a set of time-varying matrices X(t) is calculated as
I(t) =

∑Tmax

k=Tmin
X ′(k).X(k). I(t) is converted by normalization to a cor-

relation matrix which is then used as a similarity measure that cumulatively
considers time-varying matrices. The time window from Tmin to Tmax allows

2Gradient descent could be used also and in that case we do not need to compute the

second order derivative. In that case y(i + 1)jk = y(i)jk + α
δEs(i)
δyjk(i)
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Algorithm 6.9: Template of the MDS algorithm

Input: The data matrix Xt representing the normalized
time-varying matrices as described in section 3.1

Output: The Solution of the MDS
Let the vectors X1(t)...Xn(t) represent the columns of the matrix1

X(t) at time t;
Compute the matrix D(t) for t = 1 to Tmax, where the elements dij2

of this matrix are calculated as follows:
dij =‖ Xi(t) − Xj(t) ‖ ;3

Construct the matrix A(t) where aij(t) = (−1
2
d2

ij(t));4

Construct the matrix B where bij = aij − ai. − a.j + a.. where ai. is5

the mean of row i, a.j is the mean of column j and a.. is the overall
mean;
Compute the k largest eigenvalues λ1(t), λ2(t),... , λk(t) where k is6

the dimension (in our case, k = 2 or k = 3);
Get the corresponding k eigenvectors v1(t),... , vk(t) and normalize7

them by v′
i(t) · vi(t) = λi(t) and take the normalized eigenvectors as

a solution of MDS for time t;

more flexibility for the users so that they can take into consideration a vari-
able number of consecutive matrices, e.g. from the beginning to time point
t, or only time point t, etc. To illustrate the step by an example, suppose we
have two matrices in two consecutive points of time 1 and 2, X(1) and X(2):

X(1) =




2 1
0 0
1 2


 and X(2) =




2 −1
0 0
1 −2


 (6.14a)

Then I(1) =

(
6 4
4 6

)
and I(2) =

(
12 3
3 12

)
(6.14b)

I(1) contains information about time 1 whereas I(2) contains information
about time 1 and time 2. It is important that we cumulate the sums of
X(t) ∗ X(t), otherwise if we directly add the matrices X(1) and X(2), the
second column would be zero.

6.6.2.2 Comparison of Configurations: Procrustes Transformation

MDS, when applied to time-varying data, can possibly generate different con-
figurations for different time points. Taking also into consideration that such
configurations are insensitive (i.e. represent the same information) regard-
less of rotation and translation, a means for comparing such configurations
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Figure 6.14: The MDS and Sammon Mapping views of the data in Figure
6.3(b)

is needed.
In this context, the Procrustes transformation [Sib78] can be used as a

comparison tool between two configurations. In the original version, the
Procrustes transformation is used as a goodness of fit measure, when the
original configuration of data is available. We will use it to compare pairs of
configurations for different time points.

The Procrustes transformation calculates a mapping and measures the
similarity between two point sets. Its starting point are the two configurations
represented by the vectors x1, ..., xn (or the matrix Xn×p) and y1, ..., yn (or
the matrix Yn×r). We can assume that p ≥ r, and adding zeros for obtaining
two configurations with the same number of points in the same dimensions.
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How good the two configurations fit to each other can be measured by finding
the minimum of sum of squares:

n∑

i=1

(xi − yj)
′(xi − yj) (6.15)

Since MDS configurations are insensitive to rotation, reflection and transla-
tion, finding the minimum translates to the problem of finding the matrix
Ap×p, the scaling factor c and the vector b1×p, which achieve:

R2 = minA,b

n∑

i=1

(xi − cA′yj − b)′(xi − cA′yj − b) (6.16)

Assuming that the points xi and yi are centered at the origin, A and b are
found by least squares [Mar79, Sib78]. This assumption works for configura-
tions created with classical MDS, but not with those created by non-metric
MDS algorithms such as the Sammon Mapping. Furthermore, the proce-
dure is not symmetrical with respect to X and Y and as such X is chosen
as a reference configuration. The solution comes from the Singular Value
Decomposition of the matrix Z = Y ′X,

Z = V ΓU (6.17)

The matrix A and vector b are then estimated as

A = V U ′ (6.18)

b = x̄ − A′ȳ (6.19)

where x̄ =
Pn

i=1 xi

n
and ȳ =

Pn
i=1 yi

n
. In case that scaling is also involved, the

scaling factor c is calculated as

c =
tr(Γ)

tr(Y Y ′)
(6.20)

6.6.3 Clustering and Projection

MDS techniques, although useful in exploring relationships between objects,
do not deliver exact information about possible clusters in data. To achieve
this purpose, clustering techniques which function independently of the di-
mension reduction procedure are needed. Chapter 7 focuses on the problem
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Algorithm 6.10: The pseudocode of the k-means algorithm
[Mac67, HW79]

Input: N objects to cluster xi i=1..n; number of clusters K
Output: K clusters of objects cluster1, cluster2, ..., clusterK

Select K initial cluster centroids c1, c2, ..., cK ;1

repeat2

for i=1 to N do3

for k=i to K do4

dik = ‖xi − ck‖;5

end6

Assign object xi to the cluster k with the minimum dik;7

end8

for k=i to K do9

Set Sk = {x | x ∈ clusterk};10

ck =
P

∀x∈Sk
x

|Sk|
, where |Sk| is the cardinal of the set ;11

end12

until convergence criteria is met ;13

of clustering time-varying sensitivity matrices. In this section, clustering is
considered in the context of enhancing dimension reductioning techniques for
better estimation of groups in the 2D or 3D visualizations. Thus, results of
clustering are visualized directly in the projection and the user can judge
about possible groups in data. For clustering the parameters, K-means a
partitional clustering algorithm, is used.

K-means is a popular iterative descent algorithm for non-hierarchical clus-
tering [Mac67, HW79]. It is used for quantitative data and tries to partition
the data into K clusters, where K should be known beforehand. For each
cluster, a mean feature vector is calculated and the algorithm tries to find
the clusters with the minimum Euclidean distance with respect to this mean
feature vector. Two problems arise when applying the K-means algorithm:
1) a change in the number of clusters could possibly bring quite different
clusters and 2) the initialization of the model is crucial. The first problem
is addressed using an interactive version of K-means: the user selects the
number of clusters and the partition is then directly reflected in the respec-
tive projection view (MDS or Sammon Mapping). The initialization process
is carried out either randomly or using principal component analysis as de-
scribed in [Spä85]. Random initialization brings sometimes clearer results due
to the fact that PCA initialization is often local minimum for the Sammon
cost function.

In Figure 6.14, objects belonging to different clusters are plotted using
different colors. From Figure 6.14(b) it is evident that clusters are visually
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better separated by the Sammon Mapping than by the classical MDS. The
number of clusters for this example is set K = 3. Parameters with lower
sensitivity (which are in the middle of the reorderable matrix, visualized
for comparison purposes in 6.14(c)), belong also to the same cluster. The
highlighted parameters, r1KmS and r1KIb, which have high sensitivity but
different effect on the metabolites, are highlighted in the figure. They belong
to different clusters, and in the Sammon mapping view they have the largest
pairwise distance.

6.6.4 Discussion

The presented methods for dimension reductioning allow the visual explo-
ration of relationships between parameters in two or three dimensions. The
goodness of these methods can be measured in two ways, namely by measur-
ing how much the distances of the configuration in lower-dimensional space
differ from the original distances of the parameters and by measuring how
good these approaches separate possible groups/clusters existing in the pa-
rameter set.

The former is easy to measure and can be used as an overall measure
of goodness for any projection technique. Measuring how good structures
are preserved is more difficult, because we do not possess ground truth data
related to any existing clusters in the parameters.

Figure 6.15 shows the normalized stress (
Pn−1

i=1

Pn
j=i+1(dij−d̂ij)

2

Pn−1
i=1

Pn
j=i+1 d2

ij

) and Sammon

stress ( 1
Pn−1

i=1

Pn
j=i+1 dij

∑n−1
i=1

∑n
j=i+1

(dij−d̂ij)
2

dij
) for classical MDS and the Sam-

mon mapping. The vertical axis represents the stress whereas the horizontal
axis represents the respective time points. Normalized stress(on the left) is
more informative than the Sammon stress (right).

Classical MDS is more stable when normalized stress is considered. How-
ever, as the Sammon mapping focuses more on small distances, it preserves
local structures present in data better.

6.7 The Symmetrical Reorderable Matrix

Section 6.5 handled the problem of visualizing data in form of matrices. It
assumed that these matrices were asymmetrical i.e. they represented raw
data, e.g. sensitivity matrices with different dimensions for parameters and
metabolites. Sometimes, it is interesting to investigate another problem:
visualizing symmetrical matrices which represent some kind of proximity in
the raw data.

We will focus below on two such proximity measures: correlation/covariance
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Figure 6.15: Comparison of the dimension reductioning techniques for 500
time points

data and cluster membership proximity. However, the techniques are generic
in their nature and can be used for any other similar proximity measures.

6.7.1 Visualization of Proximity Matrices

In contrast to raw matrices, proximity matrices contain information regarding
certain relationships between the objects in the data set. For example, the
correlation matrix contains information about linear relationships between
objects, the distance matrix contains information about distances between
objects, etc. The focus is on symmetrical proximity matrices encountered
when exploring relationships within a set of objects, in contrast to the two
mode proximity matrices, which present proximities between two distinct
object sets or other asymmetrical proximity measures.

To visualize such kind of matrices, the symmetrical reorderable matrix
(SRM) method is defined, which is an extension of the previously introduced
colored reorderable matrix for this special case. SRM differs from the re-
orderable matrix in two issues:

• In symmetrical matrices, if we change the order of a column of the
matrix, the order of the respective row is also changed.

• Although some of the algorithms for reordering the raw matrix are also
good heuristics for reordering symmetrix matrices, the two problems
differ from each other.

The first issue is dealt with by interactively changing the order of the
rows(columns) when the order of columns(rows) is changed.
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Algorithm 6.11: Template of the VAT ordering algorithm [BH02]

Input: The dissimilarity matrix Rn×n corresponding to the set of
images O = {o1, ..., on}

Output: The ordered dissimilarity matrix R̃
Set K = {1, 2, ..., n}; I = J = φ; P [0] = (0, ..., 0);1

Select (i, j) ∈ arg maxp∈K,q∈KRpq;2

Set P (1) = i; I = {i}; and J = K − {i};3

for r = 2 to n do4

Select (i, j) ∈ arg minp∈I,q∈JRpq;5

Set P (r) = j; Replace I = I
⋃{j}; and J = J − {j};6

r = r + 1;7

end8

Obtain the ordered dissimilarity matrix R̃ using the ordering array9

P as: R̃ij = RP (i)P (j), for 1 ≤ i, j ≤ n.

Dealing with reordering of proximity matrices on the other side, is gen-
erally more difficult than with the simple reorderable matrix. Formally, re-
ordering the proximity matrix would mean to find a permutation π, which
minimizes

Γ(π) =
∑

i,j

d(π(i), π(j)) (6.21)

This is a special case of the quadratic assignment problem [GJ79, PRW94],
where the weight function is the matrix W with values being 1 overall except
the main diagonal. In the reorganization of the reorderable matrix we were
looking only for minimum sum of consecutive objects in a permutation. This
problem is also NP-hard [GJ79] and the respective decision problem NP-
complete.

A heuristic for reorganizing proximity matrices is presented by Bezdek
and Hathaway [BH02], who use a variant of Prim’s algorithm for finding
minimal spanning trees (MST) for ordering dissimilarity images presented in
Algorithm 6.11. The algorithm does not compute the MST itself; it just keeps
the order of vertices as they are added in the MST. It starts with an object
which is at one end of an edge with maximum length, so as not to divide
possible groups of objects into several parts. Some examples with Visual
Assessment of cluster Tendency (VAT) generated orderings will be given in
the following sections.

The TSP-based heuristics used in reordering raw matrices and in aggre-
gating permutations were extended further to consider the new cost function
defined in Equation 6.21 as described in Algorithm 6.12. The same comments
about modification of the local search procedure in Algorithm 6.6 in Section
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Algorithm 6.12: TSP heuristic for reordering proximity matrices

Input: The proximity matrix Xn×n

Output: The optimized permutation π̃
/* The cost function is defined as Γ(π) =

∑
i,j d(π(i), π(j))

*/

Initialize πtemp randomly or using the permutation generated by1

VAT in Algorithm 6.11
/* Permute the solution locally until no improvement is

found */

for j = 1 to n do2

for i = 1 to n do3

if reversal of elements i and j in permutation πtemp4

decreases the cost function then
reverse i and j;5

end6

end7

end8

Set π̃ = πtemp ;9

6.5.3.3 are valid also for Algorithm 6.12.

6.7.2 Reorderable Covariance/Correlation Matrix

Covariance and correlation are closely related parameters that indicate the
extent to which two random variables co-vary. In our case they give us a mea-
sure on how the parameters of the model are related to each other. Whereas
the approach described in [Fri02] is a good step forward in the exploration
of correlation matrices, we have implemented a similar approach containing
two additional aspects: (a) Prim’s ordering algorithm for proximity matrices
is implemented, and (b) interaction with the user is allowed. Figure 6.16
shows the reorderable correlation matrix for the data in Figure 2.1(a). Fig-
ure 6.16(a) shows the initial unordered correlation matrix and Figure 6.16(b)
shows the same matrix after applying Prim’s algorithm. In Figure 6.16(c),
this ordering is then changed by iterative click-and-drag steps to obtain a
more satisfiable ordering.

The data in Figure 6.16(b) is divided into three large groups of correlated
parameters. Although some of the information present in Figure 6.16(c) could
also be extracted from Figure 6.10, the correlation matrix emphasizes it in a
much better way, for example the parameters r1KIa and r1KIb are correlated
negatively with each other.
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(b) TSP Sorted view
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(c) Sorted view after manual permuta-
tion

Figure 6.16: The reorderable correlation matrix of the data in Figure 6.3(b).
After sorting the parameters, three large groups of correlated parameters be-
come visible.

6.7.3 Reorderable Cluster Membership Evolution Ma-

trix

Partitional clustering algorithms such as K-means, which was described shortly
in Section 6.6.3, divide the objects of analysis into non-overlapping groups of
objects similar to each other. Since we have time-varying data, it is interest-
ing to find out how the found clusters evolve over time.

Usually, partitional algorithms create an assignment array A containing
information about cluster membership for each object clustered. For a run of
K-means for n objects, A[i] would have a value between 0 and K-1 for i=1..n.
Such assignment vectors might have the form (1,1,1,1,0,1,1,1,1,1,1,0,1,0) in
the case when we run K-means with K=2, meaning that only three elements
belong to the cluster labeled as cluster 0; the rest belongs to the cluster
labeled as cluster 1.

The vector representation given above does not help much in this case
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since (1,1,1,1,0,1,1,1,1,1,1,0,1,0) and (0,0,0,0,1,0,0,0,0,0,0,1,0,1) give us the
same information; only the cluster labels have changed. For this reason, we
transformed the assignment vectors into what we call a membership adjacency
matrix. This matrix contains a 1 if the two objects are in the same cluster,
0 otherwise. An element is considered as being not in the same cluster with
itself since this is not important for our application. It can be verified that for
both assignment vectors the same matrix would result. Another advantage
of this matrix representation is that these matrices can be cumulated for
different segments of time, resulting in matrices that describe how often the
respective objects were in the same cluster for the selected time segment.

Algorithm 20 shows the pseudocode of the above described procedure. The
matrix in Figure 6.17(b) shows the result of cumulation for the entire time
range for the example used for illustration. The advantage of this cumula-
tion matrix is that it contains information about cluster membership for all
points of time. However, the numerical values in this matrix are difficult to
interpret as the dimensions of the matrix grow. For this reason, this matrix
is transformed into a frequency matrix with values in [0,1] by dividing the
values by the number of points of time which were used in the cumulation.
This transformed matrix is then visualized as a reorderable matrix, which we
call ’Cluster Membership Evolution Matrix’, as shown in Figure 6.17.

Figure 6.17(a) represents the cumulative adjacency matrix where the time
interval from t = 0 to t = 10s is taken into consideration. The number of
clusters for each point of time is three in this case. Figure 6.17(b) represents
the corresponding colored visualization. Figure 6.17(c) is the result of re-
ordering of columns with exhaustive spectral ordering. Figure 6.17(e) which
differs from Figure 6.17(c) in the fact that it was generated using four clusters
instead of three. Possible outliers in this context, i.e. parameters that change
clusters frequently over all points of time are represented by columns/rows
visualized with lighter colors. The higher granularity implied by the colors
in Figure 6.17(e) suggest that three clusters are more appropriate. Figure
6.17(d) presents the VAT generated ordering, which is provided for compari-
son purposes. Though K-Means is used as the input of the Cluster Evolution
Algorithm, any other partitional clustering algorithm could be used instead
of K-Means.

6.7.4 Discussion

The visualization methods presented in this section serve both as comple-
mentary views to the previous approaches as well as stand alone visualiza-
tion techniques for proximity data. They allow for discovering structures
and clusters (or their absence) in a natural way. The reorderable correlation
matrix view is important not only in the context of exploring correlations be-
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r1 K_Ia r1 K_Ib r1 K_mS r1 r_max r2 K_eq r2 K_mP r2 K_mS r2 r_max r3 kdiff r4 K_eq r4 K_mP r4 K_mS r4 r_max r5 kdiff

r1 K_Ia 1 0.476 0.913 0.505 0.359 0.942 0.942 0.058 0.398 0.175 0.942 0.942 0.942 0.029

r1 K_Ib 0.476 1 0.563 0.913 0 0.476 0.476 0 0 0.291 0.476 0.476 0.476 0.437

r1 K_mS 0.913 0.563 1 0.476 0.301 0.913 0.913 0 0.34 0.146 0.913 0.913 0.913 0

r1 r_max 0.505 0.913 0.476 1 0 0.563 0.563 0 0 0.379 0.563 0.563 0.563 0.524

r2 K_eq 0.359 0 0.301 0 1 0.301 0.301 0.699 0.961 0.146 0.301 0.301 0.301 0

r2 K_mP 0.942 0.476 0.913 0.563 0.301 1 1 0 0.34 0.233 1 1 1 0.087

r2 K_mS 0.942 0.476 0.913 0.563 0.301 1 1 0 0.34 0.233 1 1 1 0.087

r2 r_max 0.058 0 0 0 0.699 0 0 1 0.66 0 0 0 0 0

r3 kdiff 0.398 0 0.34 0 0.961 0.34 0.34 0.66 1 0.146 0.34 0.34 0.34 0

r4 K_eq 0.175 0.291 0.146 0.379 0.146 0.233 0.233 0 0.146 1 0.233 0.233 0.233 0.854

r4 K_mP 0.942 0.476 0.913 0.563 0.301 1 1 0 0.34 0.233 1 1 1 0.087

r4 K_mS 0.942 0.476 0.913 0.563 0.301 1 1 0 0.34 0.233 1 1 1 0.087

r4 r_max 0.942 0.476 0.913 0.563 0.301 1 1 0 0.34 0.233 1 1 1 0.087

r5 kdiff 0.029 0.437 0 0.524 0 0.087 0.087 0 0 0.854 0.087 0.087 0.087 1

(a) Matrix of frequencies of cluster adjacency memberships
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Spectral Sorting (Algorithm 6.3)
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Figure 6.17: The reorderable cluster membership evolution matrix accumu-
lating results from t = 0s to t = 10s
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Algorithm 6.13: Algorithm for displaying cluster evolution

Input: Data Xmxn(t)
Output: Visualization of Cluster Evolution
Initialize all elements of A with 0;1

for t=1 to timemax do2

for i=1 to n do3

for j=i+1 to n do4

if samecluster(i,j) then5

C[i,j]=1;6

end7

end8

end9

A=1
t
((t-1)A+C);10

Update the Reorderable Matrix Display of A;11

end12

tween parameters of the metabolic network but any other correlation matrix.
The reorderable cluster membership matrix on the other side is tailored for
time-varying multi-dimensional data. Inspired from this approach, clustering
techniques adapted for time-varying multi-dimensional data (e.g. sensitivity
matrices) based on cluster ensembles are presented in Chapter 7.

6.8 Visualization of Sensitivity Results for the

E. coli Model

The E. coli model presented in Chapter 5 was analyzed thoroughly using
MatVis in [Noa05]. Some of the results of this analysis related to the visual-
ization of sensitivity matrices will be discussed below.

The network analyzed considers 18 metabolites and 30 reactions, whose
relationships are described with mechanistic models. In total, 116 parame-
ters are present, resulting in sensitivity matrices describing the influence of
metabolites from parameters of dimensions 18 × 116 for every time point.
The sensitivity matrices describing the dependency of reaction rates from
parameters are of dimensions 30 × 116 for every time point.

6.8.1 Visualization of sensitivity matrices

Figure 6.18 shows the respective sensitivity matrices both with respect to
metabolites (above) and fluxes (below). From the figure, many parameters
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Figure 6.18: Sensitivity matrices for fluxes and metabolites of the E. coli
model for the stationary state

exhibit only a small influence on the respective metabolites or fluxes. Fur-
thermore, some metabolites and reaction rates are sensitive to changes of the
same parameter and several other parameters affect either metabolites or re-
action rates. To make the analysis of such large data sets easier for the user,
some of this parameters which show low sensitivity values can be excluded
from further examination. Techniques for filtering these visualizations will
be described in detail in Section 8.3.

Figure 6.18 shows the sensitivity matrix with respect to metabolites after
the removal of 74 parameters. The most sensitive parameters are highlighted
in green. These parameters are part of the following reactions: Phosphotrans-
ferase (Pts), Phosphoglucoisomerase (Pgi) and Phosphofructokinase (Pfk).
Their changes influence the metabolites which are products of specific reac-
tions, in this case Dihydroxyacetonphosphate (DHAP) and Glycerinaldehyd-
phosphate (GAP). A concentration change in GAP would bring a change also
in the concentration of Erythrose-4-phosphate (E4P) (the Pentose-Phosphate-
Pathway in Figure 4.11 clarifies the relationships between the two metabo-
lites). From the reordering, the parameters are divided into three large groups
at the left, at the right and at the center of the matrix. From the colors of the
boxes, it is clear that the sensitivities in the two groups differ by their sign,
i.e. for the positive sensitivity in one group there is a negative sensitivity
in the other group. The maximum norm drawn at the right of the matrix
indicates that metabolites PGP, 3PG, 3PG and PEP are affected more by
the changes in parameters. However, these changes are not visible at this
time point because they come after the substrate pulse is given.
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Figure 6.19: Reduced sensitivity matrix with respect to metabolites for the
E. coli model

6.8.2 Dynamic sensitivities

Figure 6.20 and Figure 6.21 show the reorderable matrices and the respective
Sammon Mapping projections for four selected points of time.

At the time point t = 0.1s, which is directly after the pulse is given, the
visualization is quite similar to the data in stationary state shown in Fig-
ure 6.19. Three clusters are visualized in the Sammon Mapping view which
correspond roughly to three zones in the reordered matrix, namely to the
left, middle and right of the matrix. The left and right group possess a
higher sensitivity compared to the middle group. Focusing on the reorder-
able matrix (Figure 6.20(a)), on the second column representing parameter
pgi keq, which controls the transformation of G6P into F6P , an increase
of this parameter would affect all the consecutive metabolite concentrations
(FBP, DHAP, GAP). On the other side, the high consumption of G6P would
mean that less G6P is available to be transformed into 6PG, hence there is
a negative sensitivity of pgi keq with respect to 6PG. Figure 6.23, which
presents the cluster membership evolution for the time interval t = 0s to
t = 10s, indicates that the parameters pgi keq and pfk h belong to the same
cluster for this period of time; similarly pts n and pfk K mA belong to
the same cluster (different from the previous). These parameters represent
two groups of highly sensitive parameters, which differ from each other only
from the sign and are highlighted in Figure 6.23. The other group represents
relatively unsensitive parameters.

At the time point t = 23.0s, the sensitivities change thoroughly compared
to the stationary state ones. The sensitivity values of nearly all parameters
are increased, which is reflected in the increased distances in the Sammon
Mapping view in Figure 6.20(c). Furthermore, the sign of some similarity
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Figure 6.20: Reorderable matrix and Sammon Mapping for two time points
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Figure 6.21: Reorderable matrix and Sammon Mapping for two time points
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Figure 6.22: Reorderable matrix and Sammon Mapping for one time point

values is reversed in this time point compared to the stationary state. For
example, an increase in pgi keq brings now a decrease of the concentration of
F6P , whereas in the stationary state it brought an increase in the same con-
centration. This fact seems contradictory in the first sight but it is explained
with the activation effects of PEP and FBP (see Figure 4.11). The increase
in FBP increases also the activation effect of enzyme PepCx, which results
in greater consumption of PEP . In this way, the inhibition effect of PEP on
the enzyme Phosphofructokinase (Pfk) is decreased, resulting in increased
transformation of F6P into FBP (implying the decrease of F6P concentra-
tion). For t = 26.0s, a different configuration is encountered. The decrease
of FBP concentration decreases also its activator effect, which decreases also
the transformation of PEP . This by itself increases the inhibition effect on
the Pfk enzyme, explaining the high sensitivity of pgi keq with respect to
FBP , DHAP and GAP .

The sensitivities for t = 33.0s are quite similar to those for t = 23.0s and
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result from some kind of oscillation in the system. However, the amplitude
of values in this point of time is lower than for t = 23.0, which is reflected in
smaller distances in the Sammon Mapping view.

Near the end of simulation, the sensitivity values presented in Figure 6.22
are decreased and a new stationary state is reached.
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Figure 6.23: The reorderable cluster membership evolution matrix for the
sensitivity matrices of the E. coli model aggregated for the interval t = 0 to
t = 23s

6.9 Summary

In this chapter, different techniques dealing with visualization of time-varying
multi-dimensional data in general and sensitivity matrices in particular were
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presented. First, sensitivity analysis and its output, sensitivity matrices were
explained in the context of metabolic modeling. Then the MatVis toolkit,
consisting of several novel methods and extensions to existing approaches to
visualize time-varying matrices was introduced.

The asymmetrical reorderable matrix, and issues related to its visualiza-
tion and reordering were described. Furthermore, problems and solutions
for global reordering of the time-dependent reorderable matrix for evolving
multi-dimensional data were also discussed.

Dimension reductioning was also discussed in this context, and dimension
reduction techniques, such as multi-dimensional scaling and the Sammon
mapping, were combined with an interactive version of the K-means clustering
algorithm in order to create a graspable view of the multi-dimensional data
and the possible clusters and groups in the data.

Finally, the symmetrical reorderable matrix, a novel method for visualiz-
ing time-varying proximity data was also presented. Two examples, namely
the reorderable correlation/covariance matrix for visualizing the time-varying
covariances and correlations and the cluster membership evolution view en-
abling the user to distinguish clusters or parts of them which are consistent
within all time points were proposed.

The benefits of the different methods were illustrated by visualizing sensi-
tivity matrices generated during the simulation of metabolic network models.



7
Clustering Algorithms for Time-Varying

Data

7.1 Introduction

The aim of clustering algorithms is to partition a data set into groups of
similar objects, where objects inside the same cluster are more closely re-
lated to each other than objects assigned to different clusters. In contrast
to (supervised) classification, clustering is a data driven approach that does
not require class labels. Cluster algorithms are grouped into hierarchical and
partitional algorithms. The latter are grouped into hard clustering methods
and fuzzy clustering methods.

Since different clustering algorithms behave differently with different data
sets and very often behave differently with the same data set, cluster ensem-
bles have been proposed [SG02, Fre01, GMT05]. The main purpose of cluster
ensembles is to merge the results of several clusterings together in order to
obtain a partitioning which ideally is robust and improves the quality of
the clusters. In general, cluster ensemble algorithms consist of the following
steps:

1. Obtain the different partitions of objects;

2. Build a similarity matrix for each partition;

3. Merge the matrices based on similarity;

4. Find the final partitioning using the merged similarity matrix.
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So far, cluster ensembles have either been used to improve the clustering
results when applied to static data sets or they have been used to merge
together multiple clusterings of the same objects described by different sets
of features.

In this chapter, we investigate the problem of clustering time-varying mul-
tidimensional data using cluster ensembles. Whereas in Chapter 6 clustering
was used as an enhancement of dimensional reductioning techniques for un-
derstanding better the low dimensional plots, in this chapter the focus is on
clustering frameworks which generate aggregate clusterings for time-varying
data. For clustering such data, a novel fuzzy cluster ensemble is presented,
which is based on the combination of different fuzzy partitionings, in contrast
to previous ensemble clustering approaches where only hard partitionings
were considered. Several problems encountered in this context are addressed
in this chapter, namely: (I) defining appropriate similarity measures between
two objects based on a given fuzzy partition; (II) merging the calculated sim-
ilarity matrices with each other; and (III) partitioning the resulting matrix
into clusters.

Time-varying multidimensional data can be thought of as an (ordered) se-
quence of multidimensional data. Such data often occurs, e.g. in the analysis
of (a) time dependent models in biology (i.e. sensitivity analysis of metabolic
models), (b) video or audio streams, (c) gene expression data over different
time frames, (d) patient data for certain periods of time, (e) logs of multi-
variate sensors. In this context, we can assume that data will be processed
incrementally. Thus, it is convenient to keep only a summary of the past data
in order to be able to process future data since such data sets can get very
large in size and cannot fit in main memory anymore. Consequently, we pro-
pose to use cluster ensembles, which fit perfectly because the summary of the
past data can be represented naturally by an accumulated similarity matrix,
calculated during the ensemble process. The accumulated similarity matrix
contains information about cluster membership for the past and current data
and as such is suitable to generate clusters which take into consideration the
evolving memberships.

To demonstrate the performance and robustness of the the approach, we
report comparative results based on synthetic test sets as well as time varying
sensitivity matrices. The fuzzy cluster ensemble for time-varying data delivers
better results on the average than K-Means or Fuzzy C-Means and it has
also a smaller variance, while it increases the running time only slightly.
Furthermore, the application of FCM ensemble for analysis of time-varying
sensivity matrices is discussed.

The remainder of this chapter is organized as follows. Section 7.2 reviews
current approaches for cluster ensembles. In Section 7.3, the proposed fuzzy
clustering ensemble approach is described. Section 7.4 presents comparative
results. Section 7.4.5 discusses application of ensemble for sensitivity matrices
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analysis. Section 7.5 concludes the chapter and outlines areas for future
research.

7.2 Related Work

A survey of data clustering algorithms can be found in [JMF99]. The idea of
using cluster ensembles in cluster analysis is inspired by supervised learning
approaches, where classification ensembles had been used earlier.

Fred [Fre01] presents an ensemble scheme called the voting-k-means al-
gorithm. The algorithm is based on a co-association matrix which collects
information from different runs of the k-means algorithm. A fixed threshold
based voting scheme is then used to partition this matrix into the final clus-
ters. This idea was developed further under the name evidence accumulation
[FJ02b, FJ02a, FJ05] where the co-association matrix is used as the input to
a hierarchical clustering algorithm.

Strehl and Ghosh [SG02, SGM02] consider three approaches for solving the
cluster ensemble problem. All three approaches basically consist of the follow-
ing steps: several runs of different clustering algorithms are performed; based
on these clusterings, a similarity graph is constructed; a graph partitioning
algorithm is executed to obtain the final clusters. One of the approaches
is based on a co-association matrix similar to Fred’s approach [Fre01]. The
other two model the similarity between points as a hypergraph. The authors
mention that when applying the cluster-based similarity partitioning algo-
rithm (CSPA), a soft clustering membership matrix could be used instead of
the hard one, without going into detail how this step can be realized [SG02].

Yang and Kamel [YK03] apply swarm intelligence techniques to the clus-
ter ensemble problem by using ant colony algorithms representing different
clusterings.

Gionis et al. [GMT05] convert the problem of finding the final clustering
with a minimum number of total disagreements with existing clusterings into
the problem of correlation clustering and use algorithms applied for the latter
to solve the original problem.

Fern and Brodley [FB03] combine clusterings of random projections of
high dimensional data to reduce instability and improve the performance of
the final cluster results. They discuss how the cluster ensemble problem could
be solved by using bipartite graph partitioning [FB04].

Zeng et al. [ZTGFR02] consider the problem under a slightly different
point of view, namely as a meta-clustering problem where the final purpose
is to merge the results of different clustering techniques such as k-means,
SOM etc. Hard clustering results are converted into fuzzy ones by making
the assumption that the density of points inside a cluster follows a Gaussian
distribution and the Euclidean distance is used to calculate the similarity of
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two objects in the cluster space. The similarity matrices are then combined
with each other (averaged) and the final result is obtained using a hierarchi-
cal clustering algorithm. However, this approach makes use of the original
features of the objects in the data set. Furthermore, the Euclidean distance
used for measuring similarity sometimes performs worse than other distance
measures. Hu and Yoo [HY04] follow the same idea, but use a graph parti-
tioning algorithm to obtain the clusters instead of the hierarchical clustering
algorithm.

A related concept to the time-varying multidimensional data we study is
that of data streams. Clustering data streams is treated by several authors.
Guha et al. [GMM+03] present theoretical and practical results related to
the clustering of data streams. Furthermore, they present a single pass algo-
rithm for clustering streaming data, which is based on a facility location algo-
rithm. Aggarwal et al. [AHWY03, AHWY04, AHJY05] have also considered
the clustering problem for data streams. A complex approach for clustering
data streams is presented, which is concepted as a framework composed of
two parts: an online component dealing with the storage of detailed sum-
mary statistics about the stream and an offline component which is utilized
by an analyst to accomplish a customizable clustering process [AHWY03].
Common user inputs are the time horizon or the number of clusters. Fur-
thermore, they treat the problem of projected clustering of high dimensional
data streams [AHWY04]. Projected clusters represent clusters which are
meaningful in a subset of dimensions due to the sparsity of the data in high
dimensions.

7.3 Fuzzy Ensemble Clustering

To improve the robustness of clustering time-varying data, the basic idea
of the proposed Ensemble Fuzzy C-Means (Ensemble-FCM) approach is to
combine the fuzzy partitions as they are created by Fuzzy C-Means (FCM)
incrementally into a symmetric proximity matrix. However, the idea could
be extended further to include hard clusterings by using proper similarity
measures between objects partitioned into clusters or by fuzzifying hard clus-
tering partitions, although fuzzification could require access to the original
features of the data set, as described by Zeng et al. [ZTGFR02], in contrast
to our approach which considers only the fuzzy partition matrix. By provid-
ing Ensemble-FCM with a memory horizon (in our case t), the stability and
robustness of the clustering is increased, especially when abrupt changes in
data do not allow proper clustering at certain points of time.

Algorithm 7.1 gives an overview of the steps of our proposed fuzzy cluster
ensemble approach for time-varying data. The same algorithm can be used
also as a fuzzy cluster ensemble for static data, by feeding a certain number
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Algorithm 7.1: Template of the Fuzzy Clustering Ensemble algo-
rithm

Input: The data matrix Xt representing the information about n
objects to cluster in time t

Input: The number of clusters c(Ensemble)

Output: The Cluster Ensemble Partition
Let all elements of A0 be initialized with 0;1

Cluster the Data Xt using FCM;2

for i=1 to n do3

for j=i to n do4

Ct[i,j]=SimilarityFunction(i,j);5

end6

end7

At = Merge(At−1, Ct);8

Use similarity matrix A to create the final partition of the data;9

Output the final partition;10

of times Nmax the same data matrix to the algorithm. The output of the
algorithm depends on four criteria: I) the fuzzy partition generated by each
fuzzy C-Means run in step 2; II) the similarity function used in step 5, which
converts the fuzzy partitions into a similarity matrix; III) the way how the
merging of similarity matrices is obtained in step 8; and IV) how the final
partitioning of the resulting similarity matrix is done in step 9. Each of these
criteria is discussed in the following subsections.

7.3.1 Fuzzy C-Means Algorithm

In practice, quite often there are situations where an object does not belong
fully to a cluster but is more or less divided into several clusters, e.g. an
object which is equidistant from two cluster centers and belongs thus to both
clusters to some degree. The Fuzzy C-Means (FCM) algorithm [Bez76] has
been developed to cope with this kind of situations. Algorithm 7.2 shows the
steps that define the FCM algorithm. The output of the algorithm depends on
three factors: the initial partitioning of the data, the number of clusters and
the number of iterations. The initial partitioning is obtained randomly; the
number of clusters given to FCM (c(FCM)) is taken as the number of clusters
given to the ensemble (c(Ensemble)) multiplied by a constant. Depending on
the size and complexity of the data sets, FCM needs different numbers of
iterations to converge.

In comparison to the K-means algorithm which also could have been used
to cluster the data, FCM is often more stable regarding local minima. This
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Algorithm 7.2: Fuzzy C Means algorithm [Bez76]

Input: Input n Objects to Cluster xi i=1..n, number of clusters
c(FCM)

Output: The Fuzzy Partition of the Data Un×c(FCM)

Initialize Un×c(FCM) randomly such as ∀i
∑c(FCM)

j=1 U(i, j) = 1;1

repeat2

Calculate the vectors of cluster centers cj =
Pn

i=1 um
ij×xi

Pn
i=1 um

ij
for3

j=1..c(FCM) where m is the fuzzification factor, usually m=2;
Calculate dij = ‖xi − cj‖;4

for i=1 to n do5

for j=i to c(FCM) do6

if dij > 0 then7

ui,j = 1
Pc

k=1(
di,j
dik

)
2

m−1
;

8

else9

ui,j = 1;10

end11

end12

end13

until max{δU} < tolerance or NumberOfIterations reached ;14

is due to the fact that cluster memberships in FCM are fuzzy in contrast to
crisp memberships in K-means. Since the search for the optimum tries to
minimize an Euclidean sum of squares, which depends on the membership
values, a point belonging to one cluster in K-means could belong to another
cluster in the next iteration, bringing thus an abrupt change of the sum of
squares. In FCM this process is smoother, leading to more stability.

7.3.2 Converting the Fuzzy Partition into a Similarity

Matrix

The fuzzy clustering algorithm generates a so called fuzzy partition matrix
containing information about the membership grades of objects in clusters.
For illustration purposes let us consider the fuzzy partition matrix U rep-
resenting the cluster membership grades of six objects oi, i = 1..6 (rows) to
four clusters cj, j = 1..4 (columns).
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Figure 7.1: Membership grades visualized using parallel coordinates

C(d1) =




.80 .70 .25 .15 .10 .05
.70 .70 .25 .15 .16 .16
.25 .25 .50 .20 .25 .30
.15 .15 .20 .45 .45 .30
.10 .16 .25 .45 .65 .25
.05 .16 .30 .30 .25 .60




Figure 7.2: Fuzzy similarity matrix and its graphical representation

U =




.80 .10 .05 .05
.70 .10 .04 .16
.25 .05 .20 .50
.15 .45 .30 .10
.01 .65 .09 .25
.05 .05 .60 .30




Figure 7.1 shows the visual representation of the membership vectors for
the objects o1(dashed line), o2 (solid line) and o3 (dash-dotted line) using
parallel coordinates. It is evident that o1 and o2 belong more to cluster c1 and
less to the rest, whereas o4 belongs more to c2 but belongs to a considerable
degree also to c3.

The fuzzy partition matrix can be considered as a projection of the data
from the original feature space into the cluster space. Thus, the problem
that is raised is to derive a new matrix describing the similarity between
two objects in the cluster space (steps 4-8, Algorithm 7.1). Different simi-
larity/dissimilarity functions can be used for this purpose [BM95]. We have
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C(hard) =




1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0
0 0 0 0 0 1




Figure 7.3: Hard similarity matrix and its graphical representation

implemented and tested several of these functions; three of them are listed
below.

d1(oi, oj) = 1 − maxc
k=1min{U(i, k), U(j, k)} (7.1a)

d2(oi, oj) = maxc
k=1|U(i, k) − U(j, k)| (7.1b)

d3(oi, oj) =

√√√√
c∑

k=1

(U(i, k) − U(j, k))2 (7.1c)

d3 and d2 are the Euclidean and infinity norms, respectively, whereas the
definition of d1 comes from fuzzy theory and expresses how strong two sets
intersect. A short evaluation of these dissimilarity measures is presented in
section 7.4.

Thus, for the objects o1 and o2, based on the membership matrix U and
using the above distance functions, we get d1(o1, o2) = .3, d2(o1, o2) = .11
and d3(o1, o2) = .14. To convert them to similarities and to scale them in the
range [0, 1], each element is transformed according to the formula:

C(dk)(oi, oj) =
max − dk(oi, oj)

dk(oi, oj)
where k=1,2,3 (7.2)

where max is the largest value the distance could reach. For d1 and d2 max
is equal to 1 and for the distance d3 max is equal to

√
2. The similarity

matrix for the matrix U using the d1 distance is shown in figure 7.2. The
right part of the figure 7.2 presents the visualization of the matrix on the
left using obtained obtained with techniques presented in Chapter 6. Darker
colors represent larger values in the corresponding element of the similarity
matrix.

The matrix C(d1) contains information on how much two objects belong
to the same cluster. It contains much more information than the analogous
hard clustering similarity matrix presented in figure 7.3, which is obtained
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from the fuzzy one by using the maximum criteria.

7.3.3 Merging of Similarities

After the similarities have been calculated, another problem is to find a way
to merge these similarities for different clustering results (step 9, Algorithm
7.1). We have considered two alternatives: the MINIMUM (Formula 7.3b)
and MEAN (Formula 7.3a) alternative.

At(i, j) =
(t − 1) × At−1(i, j) + Ct(i, j)

t
for i,j=1..n (7.3a)

At(i, j) = min(At−1(i, j), Ct(i, j)) for i,j=1..n (7.3b)

Matrix At−1 stores information about the accumulation of cluster results for
the first t-1 runs, whereas matrix C is the similarity matrix calculated for
the t-th run, as described in 7.3.2. An evaluation of these two alternatives
is described in section 7.4. Other alternatives would be to compute the
MEDIAN of the accumulated values, but such an approach is much more
expensive computationally than MINIMUM or MEAN.

7.3.4 Final Partitioning

The final step of the cluster ensemble algorithm is to partition the resulting
accumulated similarity matrix into clusters. Several solutions were considered
for this problem. The first solution is the use of a Minimum Spanning Tree
inspired approach [Zah71] for partitioning the accumulated similarity matrix.
However, the results are unbalanced clusters consisting very often of a single
node only.

Consequently, two other possibilities were considered, namely to treat the
problem of finding the final clusters of objects as a graph partitioning problem
or to use spectral clustering for the same purpose.

7.3.4.1 Graph Partitioning

The graph to be partitioned is a complete graph with nodes representing
the objects to be clustered and weighted edges represented by the respective
values of the accumulated similarity matrix. Thus, the problem is to partition
the complete undirected weighted graph G = (V,E), where V represents the
objects (|V | = n) and E is the same as the accumulated similarity matrix At.
The METIS [KK98] approach was used to partition this graph into clusters
due to its scalability and the good quality of the partitions it creates. METIS
generates balanced clusters and consists of three basic steps:
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1. Coarsening phase where the original graph is transformed into a se-
quence of graphs with decreasing size by collapsing vertices and edges

2. Partitioning phase where the smallest graph obtained in the above step
is partitioned using heuristic algorithms

3. Uncoarsening phase which projects back the partition in the smallest
graph into its predecessors. In this phase, vertices of the graph can be
swapped only between neighboring partitions.

This approach is very fast but has the drawback that generates only balanced
clusters. As such, it can be used in the cases when prior information confirm-
ing this fact exists. For other cases, the spectral clustering based partitioning,
which is explained below can be used.

7.3.4.2 Partitioning by Spectral Clustering

Spectral clustering is concerned with the clustering of data based on the
spectral decomposition of a preprocessed version of the distance matrix of
the data. A subset of (normalized) eigenvectors generated from the spectral
decomposition is assumed to represent the new features of the objects and
which are then clustered using the well known K-means algorithm. The
different spectral cluster algorithms differ themselves on the preprocessing of
the distance matrix, on the subset of eigenvectors selected after decomposition
as well as normalization (or lack thereof) of these eigenvectors.

Considering that spectral clustering algorithms take as input distance ma-
trices, they are natural candidates for performing the partition of the accu-
mulated similarity matrix. Consequently, the spectral clustering algorithm
by Ng et al. [NJW02], shown in Algorithm 7.3 is used to perform the spec-
tral partitioning. The preprocessing performed includes Gaussian weighting
of the distances and the calculation of the Laplacian of the weighted dis-
tance matrix (Steps 1-3). After the spectral decomposition, the largest k
eigenvectors are normalized to unit length by dividing each coordinate with
the vector length and are stacked in a n × k dimensional matrix, which is
clustered using K-means. The partition created in this way is the result of
spectral clustering. In step 6 of Algorithm 7.3, K-means can be replaced with
fuzzy C-means if a fuzzy partition instead of a hard one is needed.
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Algorithm 7.3: Spectral Clustering [NJW02]

Input: Proximity matrix ∆ and the number of clusters k
Output: Partition of objects into clusters
Preprocess the proximity matrix, calculating aij = exp(δij)/2σ

2;1

Calculate a diagonal matrix D as the sum of rows of A;2

Calculate the matrix L = D−1/2AD−1/2;3

Estimate the eigenvectors and eigenvalues of L using the spectral4

decomposition theorem, L = UΛU ′;
Form the matrix Y by stacking the eigenvectors u1, ..., uk after5

norming them to unit length;
Cluster Y using K-means and return the achieved assignment vector as6

the spectral clustering result;

(a) Spin pa-
rameter t =
0 (tmax =
9)

(b) Spin pa-
rameter t =
1 (tmax =
9)

(c) Spin pa-
rameter t =
2 (tmax =
9)

(d) Spin pa-
rameter t =
3 (tmax =
9)

(e) Spin pa-
rameter t =
4 (tmax =
9)

(f) Spin pa-
rameter t =
5 (tmax =
9)

(g) Spin pa-
rameter t =
6 (tmax = 9)

(h) Spin pa-
rameter t =
7 (tmax = 9)

(i) Spin pa-
rameter t =
8 (tmax =
9)

(j) Spin pa-
rameter t =
9 (tmax =
9)

Figure 7.4: Four Gaussian clusters and their transformation using a spiral
function
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7.4 Experimental Results

7.4.1 Indices for Evaluating Clustering Results

Evaluating the results of a clustering algorithm is not a trivial task. For
this purpose, both internal and external criteria that show the goodness of
the results can be defined [JD88]. Whereas internal criteria try to assess the
cluster quality using only the data themselves, external criteria use a priori
information (such as category labels assigned beforehand) for assessing the
cluster quality. For the synthetic data sets external indices as listed below
will be used.

7.4.1.1 External Goodness Measures

F-measure (F) similar to [YK03]. Let ni,j be the number of objects
belonging to cluster i and class j, ni be the number of objects in cluster i
and mj be the number of objects in class j. Let precision(i, j) =

ni,j

mj
and

recall(i, j) =
ni,j

ni
. Then

F (i, j) =
2 × precision(i, j) × recall(i, j)

precision(i, j) × recall(i, j)
(7.4a)

F =
k∑

i=1

ni

k
max{F (i, j)} (7.4b)

where k is the number of clusters. F varies between 0 to 1 and larger F values
indicate larger similarity between partitions.

Normalized Mutual Information (NMI) [SG02]. Let the clustering
λa define the frequencies ni

n
, where ni is the number of elements in cluster i

and n is the total number of elements. Then, the entropy of this partition is
defined as H(λa) = −∑

i nilog(ni). For two partitions λa and λb the mutual
information is defined as in equation (7.5a), whereas the normalized mutual
information is defined as shown in equation (7.5b).

I(λa, λb) =
ka∑

i

kb∑

j

nab
ij log(

n × nab
ij

na
i × nb

j

) (7.5a)

NMI(λa, λb) =
−2 × I(λa, λb))

H(λa) + H(λb)
(7.5b)

Jaccard similarity measure (J) [JD88]. Let us calculate the matrix
Cn×n where Cij = 1 iff the objects i and j are in the same cluster, 0 otherwise
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and the matrix Gn×n where Gij = 1 iff the objects i and j are in the same
prior class and 0 otherwise. Let a00 denote the number of items which are 0
in both matrices, a11 the number of items which are 1 in both matrices and
define similarly a10 and a01. Then

J(λa, λb) =
a11

a01 + a10 + a11

(7.6)

Minkowski Score (MS) similar to [HY04]. Let Cn×n represent the
matrix where Cij = 1 iff the objects i and j are in the same cluster according
to the clustering method, and let G represent the analogous definition for the
true clusters i.e. using prior knowledge. Then

MS(G,C) =

√∑
i

∑
j(Gi,j − Ci,j)

√∑
i

∑
j Gi,j

(7.7)

In contrast to the other measures described in this section, a smaller Minkowski
score indicates a larger similarity and is the only external measure of this na-
ture used in this chapter.

7.4.1.2 Internal Goodness Measures

Internal measures are suitable for clustering since they are data driven and
do not require external information such as ground truth data, i.e. the dis-
tribution of the real clusters, to be calculated. Conversely, internal measures
report the quality of clustering results with respect to the data clustered, thus
being a biased measure for the goodness of obtained clusters. Two internal
measures are used to evaluate the goodness of clustering results for sensitivity
matrices. The first one focuses on the compactness of the clusters relative to
their centers and is defined using the formula

SSQ(X,C) =
∑

j∈C

∑

i∈Cj

‖xi − cj‖ (7.8)

Here X represents the data and C the partition implied by the clustering.
For each cluster, its respective center, the vector cj, which has the same di-
mensions as the input vectors xi is calculated. The sum of all these distances
indicates how compact the clusters are; the smaller this distance, the better
the clustering. The second measure, silhouette [Rou87] of objects in clus-
ters, is more complicated and in contrast to the above measure is calculated
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separately for each object in the data set. It is calculated for each object as

s(i) =
b(i) − a(i)

max{a(i), b(i)} (7.9)

where a(i) is the average similarity of the object i to the objects found
in the same cluster as i and b(i) is the minimal average distance of object
i to the other clusters. The silhouette has the property −1 ≤ s(i) ≤ 1.
Values near 1 indicate that object i belongs to the right cluster, values near
0 indicate that object i belongs to the same degree to the actual cluster as
well as the nearest cluster and values near −1 indicate that the object i is
probably misclassified.

7.4.2 Synthetic Data Generation

We generated several synthetic data sets for testing our approach. One of
these data sets, called Butterfly 1 is visualized in Figure 7.4. The data set is
generated as follows. First, four points (-5,5),(5,5),(-2,-2) and (2,-2) serving
as cluster centers are selected. Then 250 points are generated from the two
dimensional Gaussian distribution for every cluster center, thus generating
four Gaussian clusters. Two of these clusters intersect slightly with each other
whereas the other two are separated from the rest. The time-varying effect for
this data set is accomplished using a spiral transformation, presented by the
equations 7.10, 7.11 and 7.12. These transformations need two parameters,
maxtime which indicates the discretization level and time which indicates
the requested time point.

tt = 3 × π

2
× (1 + 2 × time

maxtime
) (7.10)

newX = oldX + tt × cos(tt) (7.11)

newY = oldY + tt × sin(tt) (7.12)

By selecting different directions for different clusters i.e. multiplying their
coordinates appropriately with -1, we have created the effect that clusters
are mixed temporarily with each other, as shown in Figure 7.4(c) or 7.4(e).
Later on, the clusters are again separated from each other.
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Figure 7.5: Evaluation of different distance/merge combinations

7.4.3 Parameter Evaluation

In subsections 7.3.2 and 7.3.3, we have presented several alternatives for
calculating distances and merging them together. Since the clustering of data
is an explorative process, these alternatives, together with other parameters of
the clustering (such as number of clusters of the ensemble C(Ensemble), number
of clusters of the individual FCMs c(FCM), maximum number of iterations for
individual FCMs) can be considered as the user input to the ensemble FCM.

To evaluate which combination of distance and merge operation achieves
the best results, we conducted a set of experiments with data set Butterfly
1. The results of these experiments are shown in Figure 7.5. The exper-
iments were carried out using maxtime = 10 using different combinations
of distance/merge operation. The bar chart shown in Figure 7.5 shows the
F-measure for the specific combination. Figure 7.5(a), which is obtained by
applying Ensemble-FCM with fixed c(FCM) = 8 and where FCM is executed
until it converges, shows that combinations using distance d2 perform badly,
whereas the rest has comparable results. In Figure 7.5(b) we increased c(FCM)

to 20 to see how it affects the results of clustering. It turned out that com-
binations with d3 were more affected in this case. From the experiments, the
combinations d1-MIN and d2-MEAN deliver good results; d2-MEAN is more
robust to abrupt changes in data and as such this combination will be used
for the evaluation in the next subsection.

As already mentioned in subsection 7.3.1, the number of iterations needed
for the convergence of FCM depends on the size and complexity of the data
set. In this context, two options were tested regarding the convergence of
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Table 7.1: Cluster results for synthetic data set Butterfly 1

Worst Case Average Case Best Case
Km. FCM Ens. Km. FCM Ens. Km. FCM Ens.

MS 0.998 0.893 0.711 0.504 0.244 0.170 0.000 0.000 0.000
F 0.542 0.666 0.752 0.853 0.945 0.971 1.000 1.000 1.000
J 0.491 0.553 0.597 0.744 0.887 0.928 1.000 1.000 1.000
NMI 0.528 0.672 0.735 0.858 0.931 0.947 1.000 1.000 1.000

Table 7.2: Cluster results for synthetic data set Butterfly 2

Worst Case Average Case Best Case
Km. FCM Ens. Km. FCM Ens. Km. FCM Ens.

MS 1.115 0.953 0.798 0.671 0.449 0.419 0.000 0.000 0.000
F 0.552 0.623 0.719 0.804 0.901 0.918 1.000 1.000 1.000
J 0.364 0.440 0.517 0.642 0.783 0.800 1.000 1.000 1.000
NMI 0.507 0.577 0.653 0.765 0.847 0.851 1.000 1.000 1.000

FCM: 1) FCM is executed until it converges and 2) the number of iterations is
fixed (usually less than the number of iterations needed to converge) resulting
in a semi-weak partitioning of the data [TJP03]. During our tests, the second
option generated comparable results with the first one in less computational
time and consequently it will be used for the following evaluations.

7.4.4 Evaluation of the fuzzy cluster ensemble

The Ensemble-FCM was evaluated on several time-varying data sets. The re-
sults of applying the Ensemble-FCM on the Butterfly 1 data set for maxtime =
100 are shown in Table 7.1. The table represents all the introduced measures
of quality for K-Means, simple FCM and Ensemble-FCM. The two first meth-
ods consider each point of time as a separate data set. Ensemble-FCM, on
the other hand, accumulates the timely evolution in a single clustering. For
all three methods, the worst, average and best case are calculated for every
measure. The ground truth data comes with the data generation process be-
cause cluster centers were selected beforehand. From the table we see that all
three methods generate the perfect clusters in the best case; this can be ex-
plained by the fact that the data originally represents four Gaussian clusters.
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Ensemble-FCM, besides having the best results overall, has also a smaller
variance compared to the two other methods.

Furthermore, a more complicated data set named Butterfly 2 is gener-
ated using (-1.5,-2) and (1.5,-2) instead of (-2,-2) and (2,-2) as cluster cen-
ters and by selecting the points from two dimensional Gaussian distribution

N2(centeri,

(
2 0
0 2

)
) for each centeri), obtaining thus clusters which are

even more intersected with each other. The parameter maxtime was set to
100. The results of Ensemble-FCM are presented in Table 7.2. The overall
results are worse than with the data set Butterfly 1 because of the larger in-
tersection effect. However, Ensemble-FCM has again the overall best results
and the most stable ones.

Both Table 7.1 and 7.2 show that the proposed fuzzy clustering ensemble
approach outperforms the single K-means and FCM algorithms. For example,
in the case of the Butterfly 1 data set, the overall average F-measure of the
ensemble is 0.971, whereas the K-means and FCM have achieved an overall
average F-measure of 0.853 and 0.945, respectively (see Table 7.1, row 2,
column named ”Average Case”). The same conclusion can be drawn for the
other measures, indicating the robustness of our proposal in the average case.
Figure 7.6 shows how the average accuracy measures evolve over time when
maxtime = 100 for the Butterfly 2 data set. From the figure, it is clear that
K-Means has the worst results, and in addition its variance is higher than the
variance of the other two methods. Ensemble-FCM has a similar course as
FCM, which is understandable because it is derived to a certain degree from
FCM. However, the results of Ensemble-FCM do not deteriorate instantly
as it is the case with FCM, making Ensemble-FCM stable and robust for
analyzing time-varying data.

7.4.5 Cluster Analysis of Time-Varying Sensitivity Ma-

trices

Number of clusters. Performing cluster analysis via partitional methods
requires a pre-specified parameter, namely the number of clusters. Estimat-
ing the “right” number of clusters is a hard problem and many approaches
exist for dealing with this problem. Usually, a goodness measure is fixed (as
for example SSQ above) and its plot for a different number of clusters is exam-
ined. The point of maximum curvature in this plot, which is called the knee
of the curve, is chosen as the number of clusters, based on the assumption
that a larger number of clusters would bring minimal benefits.

This idea has been formalized in the gap statistic [TWH00]. Such ap-
proaches as the gap statistic however are computationally expensive, and are
usually applied on sampled subsets of the original data sets. In the case of
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Figure 7.6: The evolution of measure coefficients for Ensemble-FCM, FCM
and K-Means for 100 consecutive time points with data set Butterfly 1

sensitivity matrices of the E. coli model presented in Section 6.8, the SSQ
error is calculated for numbers of clusters in the range [2..10]. The results
are presented in Figure 7.7. The different plots reflect SSQ for a subset of
20 time points from 143 time points. All these curves have the maximum
curvature for k = 3, and for this reason the number of clusters is chosen as
3. This can be explained by considering for example Figure 6.20(d); three
large groups are distinguished at the left, at the right and in the middle of
the reorderable matrix.

Performance of FCE with sensitivity matrices. The time-varying sen-
sitivity matrices generated during the simulation of the E. coli model pre-
sented in Section 6.8 have dimensions of 116 parameters ×18 metabolites for
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each time point. In total there are 143 time points. FCE considers each point
of time individually, and exhibits a nearly constant execution time, indepen-
dently of the number of time points. For FCE and K-Means the overhead
increases with every time point added; in the last step of the algorithm the
data would have dimensions of 116 × 2574. The execution times in millisec-
onds, are shown in Figure 7.8, and they reflect the above mentioned fact.

Figure 7.9 presents the FCE silhouette profiles for the 116 parameters, as
they evolve over time. High profiles of silhouettes indicate accurate clustering
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Figure 7.9: Evolution of FCE silhouettes for all parameters and all time
points

of parameters, whereas low ones indicate bad classification of parameters.
Most of the parameters of this model are clustered correctly, since they are
described by high silhouette values.

7.5 Summary

In this chapter, we have presented a novel fuzzy cluster ensemble for analyzing
time-varying multidimensional data. The approach is based on the idea of
combining the fuzzy partitions created during the simple fuzzy clustering
process. Several issues associated with such a fuzzy cluster ensemble approach
were addressed. Experimental results for different synthetic and real data sets
were carried out showing competitive results. The experiments have shown
that the proposed approach has a higher degree of robustness compared to
FCM or K-Means due to its ability to memorize the past relationships such
that it will not be strongly affected in the negative direction when abrupt
bad results are obtained by FCM.



8
Large-Scale Visualization

8.1 Introduction

Traditional visualization techniques, as presented in Chapter 6 function well
as long as the underlying data sets have acceptable dimensions and size. For
example, the reorderable matrix works well with data dimensions of up to
400 × 400.

Visualization techniques which deal with larger data sets need workarounds,
which can solve the problems raised by the limited screen space. However,
such solutions depend quite often on the specific visualization method. In
this context, we will focus on the following ideas:

• Filtering approaches for visualization. The simplest approach to reduce
the data dimensions is to enable the user to interactively filter the
wanted information. This filtering can be interactive i.e. by interacting
with the visualization, or query based i.e. by enabling the user to query
the visualization using a specific query language. Both methods have
their advantages and drawbacks depending on the context.

• Implementing Overview+Detail features for visualization. In this way,
a raw overview of the data is always in the focus of the user and further-
more if details are wanted, they are shown in a separate visualization
window.

• Distortion of the views in order to enable Focus+Context visualizations,
where details and overview are merged into one window, which displays
both global and local details.
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• Tiled displays, where the responsibility for visualizing a large data set
is distributed between a set of monitors (or computers).

This chapter is concerned with solutions to these problems in the context of
tabular visualization techniques, such as the reorderable matrix. The chapter
is organized as follows. Section 8.2 gives a survey of related work in the
field. Section 8.3 describes a filtering approach for the MetVis toolkit, which
enables command-line based filtering of the data. Section 8.4 focuses on
overview+details techniques for visualizing large data sets. Section 8.5 is
concerned with distortion techniques for the reorderable matrix. Section
8.6 discusses tiled displays for large-scale visualization in the context of the
reorderable matrix. Section 8.7 concludes the chapter.

8.2 Related Work

The related work regarding filtering, Overview+Details and Focus+Context
techniques was discussed in the Chapter 3, especially in Section 3.6.1, when
the technical background of information visualization was given. Conse-
quently, we will focus here on related work in visualization using tiled dis-
plays, and in the following sections will mention approaches related to the
ideas presented in this chapter.

Tiled displays are used extensively in large scale visualization systems.
The basic idea is to integrate a set of displays, organized in a grid, such
as their entirety forms a virtual display with a larger size. This approach
has both additional hardware requirements (e.g. additional graphics cards),
and software requirements for accomplishing the integration and alignment
between displays. The displays in this context can be monitors or projection-
based devices.

Tiled display systems are widely used in large scale visualization, e.g.
the PowerWall [oM06], scalable display wall [Uni06], and others [SFF+00,
Lab06b, Lab06a].

For further information on the construction of such systems, Hereld et al.
[HJS00] describe concepts and technologies on how to build tiled displays.

In the context of information visualization, Wei et al. [WSK+00] discuss
experiences in visualizing massive telecommunication data sets with large
scale displays. A 4 × 2 projector system, called InfoWall, with more than 10
million pixels was built. Data collected from AT & T networks and services
is visualized in real time on the InfoWall platform.

Tiled displays and the software related to their functioning, provide a vir-
tual layer which is independent of the application field. Thus, the techniques
represented above are generic in nature and could be used for any visual-
ization technique. On the other side, they are expensive to construct and
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maintain.
In our case, the generality of such approaches is traded off for the possi-

bility to construct a light weight system using Java RMI, which allows for
tiled displays in the context of the colored reorderable matrix presented in
Chapter 6. The details are given in Section 8.6.

8.3 Filtering Approaches for MatVis

Filtering enables the user to reduce the quantity of information in a display
based on the user’s interests. Filtering can be achieved by selecting appro-
priate subsets of the data (browsing the data), or by specifying attributes
that the subset must fulfill (querying the data). Both Overview+Details and
Focus+Context techniques presented below provide browsing capabilities to
their respective visualization techniques. However, for very large data sets,
browsing might be difficult or impossible to achieve.

8.3.1 Interactive Filtering

Interactive filtering follows a middle way between browsing and querying and
is extensively used in the process of data exploration. Strongly related with
filtering is the concept of brushing, which implies selection and highlight-
ing of objects in visualization according to the interests of user. Figure 8.1
and Figure 8.2(a) illustrate the idea of brushing as implemented in MatVis.
Parameters can be selected either in the dimension reductioning view (as
illustrated in Figure 8.1) or they are automatically selected in the other re-
spective views as, for example, in the reorderable matrix as in Figure 8.2(a).
These parameters are highlighted using a different color of the respective cell
boundaries. Furthermore, the selected parameters can be excluded from fur-
ther consideration on the user’s request. Figure 8.2(b) shows the same matrix
as in Figure 8.2(a) up to the highlighted parameters which are excluded from
the visualization.

8.3.2 Query-Based Filtering

Interactive selection and filtering enriches the visualization for better data
exploration. However, there are situations when command line based ap-
proaches are more effective for filtering purposes. This is especially the case
when objects and their features have meaningful names, which can be used
to address them in a query expression.

For this purpose, a robust language allowing ”AND/OR” logic and paren-
thesis constructions is defined for achieving filtering of the data set, in our
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Figure 8.1: Linking and brushing between views in MatVis. The selected
objects in the dimension reductioning view are highlighted in the colored re-
orderable matrix.

case sensitivity matrices, in MatVis. Considering that MatVis is built in
Java, JavaCC [jav06] comes in handy as a tool which allows to express the
definition of the language in the BNF (Backus-Naur Form), generating thus
a Java program which parses input in the defined language. The parsing pro-
cess itself bears a certain resemblance to the event based parsing of XML files,
which was described in Chapter 4. JavaCC, which stands for Java Compiler
Compiler, accepts as input the definition of a language in BNF and emits Java
code for speeding the development of parser logic for the specified language.
It was developed in analogy with YACC (Yet Another Compiler Compiler),
the C-based tool developed by AT&T for the purposes of building parsers for
C. The whole definition of the query language proceeds inside a template file
with the extension .jj, which when compiled with JavaCC generates the real
parser classes of the defined language in Java. The whole process is similar
to the querying approach provided in [Bre04]. The template needs to specify
the following components: 1) the context of parsing, 2) definition of the query
language tokens and whitespace, 3) definition of the syntax of the language
and 4) definition of behavior of parser.
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Figure 8.2: Brushing of the reorderable matrix and its visualization after
filtering of parameters
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Query Specification The two dimensions of the reorderable matrix can be
considered as two imaginary tables for the purpose of filtering. Furthermore,
each specific visualization technique can be considered as a separate database;
this can help, for example, in case we want to differentiate filtering in the
different visualization techniques i.e. apply different filters in different views.

Consequently, the user may enter filtering expressions of the form (metabo-
lite = “Pyr” OR metabolite =“Gluc”) AND parameter = “V max*” for con-
sidering the sensitivity of Pyr and Gluc for all parameters starting with
V max. In the above expression, keywords AND and OR as well as paren-
theses were used. In the language of JavaCC, they would be specified in the
block:
SKIP:

{

” ”

”\n”

”\r”

”\t ”

}

TOKEN:

{

<AND: ”and”>

| <OR: ”or”>

| <PARAMETER: ”parameter”>

| <METABOLITE: ”metabolite”>

| <LPAREN: ”(”>

| <RPAREN: ”)”>

| <EQUALS: ”=”>

| <NOTEQUAL: ”<>”>

}

TOKEN:

{

<STRING : ([”A”-”Z”,”a”-”z”,”0”-”9”])+ >

| <QSTRING: ”\”” (̃[”\””,”*”,”?”])* ([”*” , ”?”])? ”\””>

}

First, the white space characters, i.e. characters that are ignored, are
defined. Then, the specification of the token elements of the language follows.
This includes both tokens which define the language (such as AND, OR,
EQUALS, etc.) as well as literals (STRING and QSTRING). The definition
of literals proceeds using regular expressions. On the other hand, regular
expressions are allowed as literals for the query language itself.
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parameter

queryTerm()

= K_I

metabolite

queryTerm()

= B

expression()

parse()

ANDqueryTerm()

metabolite

queryTerm()

= A

OR

( )

expression()

Figure 8.3: An example query and its parsing tree

Query Processing The template for processing queries is defined based
on the tokens defined above and on parsing rules which decompose the query
into its components. During the query decomposition, three main methods,
namely:

parse()

expression()

queryTerm()

accomplish the processing of the query parts.
Figure 8.3 presents the parsing tree generated for the filtering expres-

sion (metabolite = A OR metabolite =B) AND parameter = K I. Thus,
parse() method is produced out of expression() methods, which by them-
selves are composed of queryTerm() methods combined with AND or OR.
The queryTerm() methods are produced out of an elementary piece of the
query (e.g. parameter = A) and an expression(). The same filtering
achieved interactively in Figure 8.2(b) can be achieved also using the query
expression parameter = “synth2*” OR parameter =“synth1*”.

8.4 Overview+Detail

Overview+detail interfaces convey the information to the user by means of
multiple views, where some views are specialized to show detailed informa-
tion about the object of visualization (e.g. through a larger zooming fac-
tor), whereas other views concentrate on overviews of the information space
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Figure 8.4: Overview+Details approach for MatVis. The view on the fore-
ground enables the user to navigate in large scale visualizations.

(e.g. using a smaller zooming factor). The overview+detail paradigm is
used extensively in rendering of maps, image collections, text collections, etc.
Using overview+detail interfaces is associated with several benefits, namely
efficient navigation, because users may navigate using the overview window
rather than using the detail window and keep track of their current position
in the information space. Furthermore, the overview window itself might give
users task-relevant information on a higher level. The overhead caused by
the visual search in the user’s memory for keeping the overview and details
views synchronized with each other on the other side represents a drawback
of overview+detail interfaces.

To properly use overview+detail interfaces, taxonomies and guidelines
have been developed to make their usage easier [HBP02]. In this context,
the overview and detail views need to be tightly coupled to each other and
the ratio of level of details i.e. zooming factors in both views should not
exceed a certain bound (e.g. 25-30). In addition, depending on the tasks,
proper sizes of the overview and detail windows need to be selected. Some
tasks require a large detail window coupled with a small overview window
whereas some other tasks require a large overview window with a small details
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window.
The overview+detail paradigm is used in the context of the MatVis plat-

form to enhance the reorderable matrix visualization method by extending its
capacity of visualizing larger data sets. Consequently, for large dimensions,
overview windows which represent zoomed out versions of the full space are
estimated and shown to the user. The detail window shows a part of the
matrix visualized using normal zooming levels, allowing for proper analysis
of details. Figure 8.4 shows an example of the overview+detail paradigm
in action. The overview window is shown on the foreground and the detail
window in the background. The detail window is focused on the part of the
matrix which corresponds to the selected region in the overview window. The
ratio of the zooming levels in the two windows is four in this case, but higher
zooming ratios are applied for larger data sets.

8.5 Focus+Context Techniques

Focus+context techniques were reviewed shortly in Section 3.6.1.1. Distor-
tion techniques represent a large group of focus+context techniques. They
allow an exploration process which provides means for focusing both on de-
tails and on the overview of the data in the same interface, in contrast to
overview+detail techniques where the two are separate from each other. Dis-
tortion techniques are based on the simple idea of using a variable level of
details in the same visualization window, which means usually a high level of
detail for selected portion(s) of data and a lower level of detail for the rest.

It is obvious that distortion techniques are effective when used in an in-
teractive context. The application of distortion techniques depends on the
context of visualization. Thus, for visualizing trees and graphs, a transfor-
mation in another space, e.g. hyperbolical space, can be used [LRP95]. In
other contexts, as for example in the visualization of maps, a lens-like distor-
tion procedure can be used. Furthermore, the different distortion techniques
distinguish themselves from each other on the number of foci and on how
the level of details is decremented from the focus to the normal visualization
area.

Returning to the context of MatVis and the reorderable matrix visualiza-
tion, distortion can help in extending the capabilities of tabular visualizations.
Subsequently, a robust distortion procedure is implemented which provides:

• Simultaneous row and columnwise distortion. The focus in this case is
interactively set on a specific cell of the reorderable matrix. This cell
and its respective row and column define the center of the distortion.
This cell has the highest level of detail i.e. the highest zooming level.
The other cells have the same width or height with the center of the
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(a) Focus is on the lower right
part of the window
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Figure 8.5: Illustration of distortion in the reorderable matrix
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distortion if they are in the same column respectively row. For the rest,
the zooming level is either minimal if they are far from the distortion
center or reduced proportionally with the distance to the focused cell.

• One-dimensional distortion of either the rows or columns. If the user
wants to consider whole objects (e.g. parameters) with their features
(e.g. metabolites), then the one-dimensional distortion makes more
sense. Here the focus of the user is not on a single cell any more but on
a column or in a row. The distortion takes place only in one dimension,
and the zooming level on the other dimension stays constant.

Figure 8.5 shows two reorderable matrices with different distortion centers.
In Figure 8.5(a) the focus is on the lower right part of the matrix whereas in
Figure 8.5(b) the focus is on the upper left part of the matrix. Consequently,
the user can keep a certain part of the matrix in his/her focus while always
having a global view of the whole data set available in the same interface.

8.6 Tiled Displays

Distributed computing is extensively used in the context of visualization
mainly to enable/simplify computations needed for the visualization itself or
to construct visualization environments consisting of several displays acting
as a large single virtual display.

Tiled displays and the related software provide a virtual layer which is
independent of the application field. Thus, the techniques represented above
are generic in nature and could be used for any visualization technique. As
was revealed in the related work in Section 8.2 these approaches are expensive
to build. As such, a light weight architecture is presented in this section,
which allows for tiled displays in the context of colored reorderable matrix
visualizations.

This approach has the following advantages:

• It expands the capability of the reorderable matrix by allowing different
parts of the matrix to be visualized in different displays.

• It can be used as a tool for allowing collaborative visualization of the
same data set. In this way, different users sitting in different computers
can explore the same data set in cooperation with each other.

• It can be used as a tool for comparison purposes by visualizing differ-
ent parts of the same data set, without restricting the space for the
visualization itself.
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Figure 8.6: Schema of the distributed tiled displays approach

8.6.1 Architecture of the Approach

The architecture for enabling tiled and distributed displays was structured as
an interactive environment, where visualization results can be viewed from
one user with several displays or from several users in a collaborative way.

So far, the algorithms presented in MatVis work in a standalone way. The
tiled displays are organized in a client-server configuration, several analysis
clients can share a single analysis server. Remote clients can request opera-
tions on the server and visualize the results. Furthermore, they are instructed
by the server which part of the visualization they will show, when they need
to visualize different parts of a large visualization.

Figure 8.6 shows the architecture of the approach. The Client is a MatVis
implementation which does not proceed with local analysis of data but it
connects to the Server using Remote Method Invocation (RMI) and submits
the necessary information for further processing. The server then passes the
raw data to an analysis engine which performs the requested analysis. Once
the analysis is complete, the Server returns the results back to the Client,
where these results are visualized in the same way as if they were performed
locally. The interactive requests the Client makes range from ordering of
matrices to clustering using different algorithms or dimension reductioning.

8.6.2 Visualizing over Multiple Displays

The user may either visualize a full copy of the data set or just parts of
it. For some of the visualization techniques presented in Chapter 6, e.g.
dimensionality reduction techniques, it does not make sense to divide their
visualization over multiple displays as these are presented as plots of points
and their division over multiple displays would simply disorient the user.
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In these cases, only the computation results of the dimension reductioning
process are obtained from the server.

For the reorderable matrix, the distribution among several displays comes
as a natural extension of the normal visualization method. Here, two cases
are distinguished:

• The matrix is asymmetrical (raw data matrix) and one dimension is
much smaller than the other. This scenario happens often in reality as
usually analysts consider data sets with just a few features (from two to
several tens of features usually) but many objects (from tens of objects
to thousands of objects). In this case, the different displays can be
arranged linearly and are considered by MatVis as extensions to each
other. Figure 8.7 presents such an example where the visualization of
a large data set is divided between two displays.

• The matrix is symmetrical or with nearly equal dimensions. This sce-
nario happens in cases when proximity matrices such as correlation or
distance matrices are considered. The displays in this case need to be
arranged in a (possibly square) grid, similar to the PowerWall or other
approaches for tiled displays.

For both cases, the synchronization is simplified by the fact that the RMI
Server needs to maintain which parts of the permutation vector are displayed
by the respective display. In the example shown in Figure 8.7, half of the data
set is visualized in each display. The permutation of rows is the same over all
displays. Consequently, interactive changes into one display are reflected into
the other displays while the permutation of columns is local for each display.

Considering that the code is in Java using RMI, clients can run on dif-
ferent platforms. The two clients presented in the figure are executed in a
SUSE Linux and Windows XP machine respectively. The possible reordering
of columns is performed on the server side, thus reducing the load on the
client. The algorithmical side of visualizations is currently performed on the
Server side on a single machine, but it may be extended further to allow for
the distribution of the computations on a network of computers or even a
computational grid.

8.7 Summary

This chapter focused on extensions of visualization techniques presented in
Chapter 6 dealing with large scale visualizations. First, issues related to
filtering of data for the purpose of reducing unnecessary information were
discussed. Both interactive and query-based filtering were discussed and a
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Figure 8.7: Visualization of matrices with two displays

simple but robust query language for filtering the visualizations was intro-
duced.

Furthermore, the reorderable matrix was extended with two techniques for
browsing and exploring large data sets:

• An overview+detail interface, which allows navigation in the visualiza-
tion by providing two different levels of details in two different windows.
One is used as the master view and controls the other view which dis-
plays the details for the user.

• A focus+context based distortion view, which allows the integration of
both the overview as well as details in the same interface. Both two-
dimensional and one-dimensional distortion were considered in the case
of the reorderable matrix.

Finally, an architecture for distributed visualization of large data sets in a
(possibly) tiled display system was described. This architecture enables the
extension of the capabilities of tabular visualization techniques by dividing
the visualization into multiple displays. Moreover, it allows MatVis to be
used as a tool for collaborative visualization and analysis of data.



9
Concluding Remarks

9.1 Summary of Contributions

In this dissertation, different techniques for analyzing data in the context of
metabolic modeling were discussed. The main contributions of this thesis
are organized along four areas of information visualization and data mining
topics and are summarized as follows:

• Novel techniques for the visualization of metabolic networks and the
related simulation data.

– Visualization of the networks together with simulation-generated
time series data, for a thorough exploration of the network dy-
namics. Bottlenecks and active parts of the network can be easily
distinguished. Effectors, expressing activation and inhibition are
also considered. The dynamic changes in concentrations of the
metabolites and reaction rates in the network are emphasized us-
ing the visual variable size.

– Prototypical visualization of metabolic networks in 3D, allowing
cross-free drawing of edges representing reactions in the network.

– Steerable drawing of complex metabolic networks, which aggre-
gates the benefits of automatic drawing and manual drawing, for
creating high quality drawings of these networks quickly. The
steerability allows the user to guide the drawing process to meet
biological conventions, allowing him or her to decompose the net-
work into parts, draw the parts automatically when possible and
merge them interactively into the main drawing.
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All these approaches are bundled together in the visualization tool
named MetVis.

• Comparison of semistructured data (XML files) in the context of SBML
files storing metabolic network models. Consequently, the CustX-Diff
algorithm for customizable comparison of XML files was introduced.
The customization of the comparison process proceeds through specifi-
cation of XPath expressions, which specify the parts of SBML document
to be considered during the change detection process. The approach
is generic in that it can be used in other contexts, i.e. non-SBML
documents. Additionally, parts of this approach can be used to effi-
ciently filter XML trees using the Aspect-Oriented Programming (AOP)
paradigm, as described in [QF06].

• Visualization of time-varying sensitivity matrices generated during the
simulation of metabolic network models. Different techniques for visu-
alizing and analyzing them were explored, which include:

– Tabular visualization techniques such as the reorderable matrix.
A colored heatmap-like version was introduced and automatic re-
ordering techniques both for static data as well as time-varying
data were explored. Both local reordering and global reordering
problems belong to the NP-hard class of problems, and conse-
quently different heuristics for solving these problems were pro-
posed. Local ordering was approached using Weighted Ordering,
Weighted Spectral Seriation, Exhaustive Spectral Seriation, and
TSP(Traveling Salesman Problem) based local search, whereas
global ordering was approached using Spearman Footrule Aggrega-
tion, Barycenter Heuristic and again a TSP-based heuristic. Eval-
uation results of these heuristics were presented in Chapter 6. Fur-
thermore, symmetrical derivatives of the reorderable matrix were
introduced for exploring (interactively) proximity data, such as
correlation matrices or the cluster membership evolution matrix.
The latter was introduced to observe the dynamic evolution of the
memberships of clusterings of parameters over the time.

– Dimension reduction techniques were used to allow the visual ex-
ploration of relationships between parameters in low dimensions.
Multi-dimensional Scaling (MDS) and the Sammon Mapping, com-
bined with clustering methods, were presented as a means for cre-
ating understandable view of the high-dimensional sensitivity ma-
trices.

– Approaches for visualizing large-scale data were the focus of Chap-
ter 8. Filtering methods for reducing unnecessary information were
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discussed. Moreover, overview+detail interfaces and focus+ con-
text based distortion were developed to expand the capabilities
of the reorderable matrix. Finally, an architecture for distributed
visualization of large data sets in a (possibly) tiled display system
was introduced.

• Clustering of multidimensional time-varying data

The techniques developed in Chapter 6 motivated us to develop a
relationship-based clustering framework in Chapter 7, which relies on
the accumulation of evolving pairwise similarities. It is based on the
idea of combining the fuzzy partitions created during the simple fuzzy
clustering process at each point of time. Issues related to the technical
implementation of the approach were discussed and evaluation results
both with synthetic data sets as well as time-varying sensitivity ma-
trices were presented. This technique provides robustness and can be
parallelized easily in a distributed computing environment.

9.2 Open Issues and Further Work

There are several directions for future research on issues treated in this dis-
sertation. This section highlights some of the promising directions by dis-
cussing possible improvements of the presented visualization techniques and
ensemble clustering algorithms. Furthermore, intersection points with other
application areas are mentioned.

Visualization of Metabolic Networks. Open issues related to the visu-
alization of metabolic networks are as follows:

• New approaches for visualization of networks with associated time se-
ries, for example new metaphors which can be used to animate the state
of the network.

• Further development of 3D visualization techniques, focusing possibly
on 3D virtual reality interfaces.

• Improvement of the steerable drawing approach. This can be achieved
by incorporating data from available databases, such as KEGG [KG00].
Furthermore, more efforts should be put on the biological decomposition
of metabolic networks for the purpose of drawing.

Customizable Comparison of XML Structures. Further work in this
context should be focused on two tracks: extension of the subset of XPath
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allowed for customizing the comparison process, e.g. by allowing predicates in
the XPath expressions, and optimizing the aggregation of XPath expressions,
when more than one expression is used for filtering.

Visualization of Sensitivity Matrices. Although a great part of this
thesis dealt with algorithmic and visualization issues for time-varying multi-
dimensional data in the context of sensitivity matrices, there are several areas
for future research.

First, it would be of a special interest to study the behavior of the pro-
posed methods with other kinds of data, for example gene microarrays. The
current research in this direction is focused on static analysis of such data;
the synergy of static methods such as clustering, classification, etc. and in-
teractive techniques of information visualization remains to be researched.
Another kind of data where the techniques, especially the reorderable ma-
trix, could be applied, are network data representing social networks, parts
of the Internet, etc. These kind of data is rarely visualized using tabular
techniques and represents an interesting future research area.

Second, algorithmic problems such as reordering the matrices, either lo-
cally or globally, are NP-hard problems represent an interesting track for fur-
ther research. Especially their analogy with ranking problems in web search
remains a very attractive research direction.

Third, the structure of the techniques presented in Chapter 6 permits their
exploitation in order to construct distributed versions of at least some of the
techniques, e.g. the dimension reductioning techniques. However, special at-
tention is needed, because the usage of distributed versions is justified only for
very large data sets. Dimension reductioning techniques on the other hand,
work on distance matrices, which are quadratic in size, and there is a certain
overhead for transmitting large size data sets and their solutions. Conse-
quently, distributed versions would need to consider these two contradictory
facts, in order to provide a quality gain over the non-distributed versions.

Cluster Ensembles for Time-Varying Data. A distributed version of
the approach, executable on a network of computers, could be of interest,
since the cluster ensemble approach represents an ”embarrasingly” parallel
problem. Furthermore, the merging of similarities in Subsection 7.3.3 allows
for unweighted merging of similarities during a time horizon. There are cases,
however, when the user might be interested only in specific time frames, and
for such cases a weighted approach would be more appropriate. Moreover,
the exploration of filtering approaches for automatic exclusion of bad cluster
results is another direction for future research. In this context, techniques re-
lated to information theory for defining the information content of clustering
partitions is of special interest.
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Application of Fuzzy Cluster Ensembles (FCE) in other fields, such as
clustering of web documents, is also interesting. Here, fuzzy clustering could
be more appropriate than hard clusters because of the nature of this data,
where objects do not belong fully to a cluster but rather to a certain degree
to different clusters.

Large-Scale Visualization. The object of future work in large-scale vi-
sualization techniques presented in Chapter 8 will be the evaluation of the
different techniques by completing user studies for measuring empirically the
goodness of approaches. Additionally, for the distributed tiled display ap-
proach, further development of the backend component by including dis-
tributed computing platforms is intended.
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