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1   Introduction 
 

 

 

 

Why Meta-Analysis? 

In recent years, the focus of genetic epidemiology has been on diseases that are 

common and thus of major interest to public health. These are mostly complex 

diseases that have several genetic and environmental influences. The contribution 

of each disease gene to the overall risk is presumed to be small, thus large sample 

sizes are necessary to identify such loci by linkage analysis. The power of samples 

that can reasonably be recruited within a few years in one center is therefore 

limited. The popular affected sib pair (ASP) design with a few hundred ASPs is 

known to have low power for genes with small to moderate effects (e.g. Risch and 

Merikangas 1996) and many examples exist where genome scans did not show 

significant evidence for linkage (Altmüller et al. 2001). However, for many 

complex diseases several groups worldwide recruited families and the initial 

analyses of many genome scans are already published, so meta-analysis seems to 

be a realistic scenario now. A combined sample of similar studies could result in a 

sample size sufficient to find loci with smaller effects. Therefore researchers 

might be willing to cooperate towards a joint analysis.  

 

Differences between studies 

Different studies usually vary in many aspects, and the heterogeneity caused by 

numerous sources should be taken into account. These are, for example, different 

ascertainment schemes and family structures (population based family cohorts, 

nuclear families with affected sib pairs, extended pedigrees with many affecteds 

or even one large pedigree from a population isolate). Typically another obvious 

difference is the sample size. Whereas pooling automatically accounts for sample 

size differences between studies, this is not the case for methods that combine p-

values or effect estimates. For genotyping markers, different “standard panels” are 

used, e.g. from the Marshfield Mammalian Genotyping Center (see 
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http://research.marshfieldclinic.org/genetics) or commercial marker sets (such as 

the ABI Prism linkage mapping sets, see http://www.appliedbiosystems.com), 

sometimes with additional markers in candidate regions or genes. These panels 

vary in number and spacing of markers and their heterozygosity. In many studies, 

environmental and other covariables are collected, but not in a consistent manner 

across studies. These covariates may or may not be included in the initial analysis, 

but are rarely published in detail. Even the phenotype definition varies between 

studies, e.g. it may be possible to use either a quantitative phenotype or a discrete 

trait for the same disease (like hypertension). Especially in psychiatric disorders, 

the diagnosis is sometimes difficult because no objective measure of disease 

exists, and different diagnostic schemes are used (such as ICD 10 and DSM IV). 

The different ethnic background of study populations can lead to genetic 

heterogeneity between samples, especially in combination with different 

ascertainment criteria and phenotype definitions. As for a single linkage study, 

locus heterogeneity seriously diminishes the power of meta-analysis. However, 

very little is known about its extent in complex diseases, and one would expect 

that at least some common disease genes can be identified in a combined sample. 

Hardly any work has been done on the question if and when it is appropriate to 

aggregate evidence across genetic linkage studies and to test whether samples are 

homogenous enough. This applies to both genetic homogeneity (same disease 

gene responsible in all study populations, same phenotype) and variability caused 

by study design, for instance family structures. A test for homogeneity was 

proposed by Babron et al. (2001), but its usefulness for the typical sample sizes, 

where it might have very low power, was questioned by the authors. The 

differences in study design also pose methodological problems as they preclude 

simple methods of combining evidence for linkage across studies. For example, 

just adding model-based two-point LOD scores over families (from different 

studies) is not possible if different markers at different locations were genotyped, 

or different genetic models were used for analysis. And traditional methods of 

fixed or random effects meta-analysis that produce an overall effect size estimate 

require that the same parameter or effect size measure is estimated and available 

from all studies, which is usually not the case if different study designs were used.  

 For genetic linkage studies, a combination of tests of the same null hypothesis 

is usually required for meta-analysis, namely that there is no linkage at a specific 
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locus. This implies that genotype data of the same marker must be available in all 

studies or that equivalent information about the inheritance at the specific locus is 

available in all studies through multipoint linkage methods (e.g. Kruglyak et al. 

1996). But even with multipoint methods, the estimated inheritance pattern 

depends on the number, positions, and heterozygosity of the genotyped markers in 

a region (and the availability of genotyped founders), all of which determine the 

information content. For regions with low information content, the estimated 

sharing of alleles identical by descent (IBD) between relatives is biased towards 

the null hypothesis under several commonly used IBD estimation methods 

(Schork and Greenwood 2004). With different marker panels genotyped, there is a 

systematic difference in IBD estimates between studies even with the same study 

design and underlying genetic model, which is neither considered by most 

published meta-analysis methods, nor by simple pooling. Therefore, pooling of 

raw data should not be considered the gold standard of meta-analysis (for biases 

from simple pooling see also Bravata and Olkin 2001). 

 

Previous applications of meta-analyses to linkage studies of complex diseases 

Interest in meta-analysis and the awareness of the necessity of collaboration and 

meta-analysis seems high in the human genetics community (Conneally 2003), 

and the number of published meta-analyses for complex diseases has been rising 

steadily over the last years. Examples for meta-analyses of linkage genome scans 

include a meta-analysis of published genome scan data for autism (Badner and 

Gershon 2002b), meta-analyses of genome scans for hypertension and blood 

pressure (Koivukoski et al. 2004), cleft lip/palate (Marazita et al. 2004), psoriasis 

(Sagoo et al. 2004), rheumatoid arthritis (Choi et al. 2006), body mass index 

(Johnson et al. 2005) and age-related macular degeneration (Fisher et al. 2005). A 

two-stage approach has been employed by Demenais et al. (2003) who conducted 

a meta-analysis of four European genome scans for type 2 diabetes, first using the 

GSMA method (Wise et al. 1999, which is presented in detail in chapter 2.3.1) for 

the whole genome as a “screening tool” for the most promising regions and then 

pooled the individual genotype and phenotype data and family information for a 

combined analysis of only those chromosomes that were significant in the GSMA. 

Such a combined analysis of individual data has also been perfomed for whole 

genome scans on diseases such as multiple sclerosis (The Transatlantic Multiple 
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Sclerosis Genetics Cooperative 2001) and type I diabetes (Cox et al. 2001) where 

three groups each combined their samples. It has also been used for a combined 

analysis of data from eight linkage genome scans for body mass index (Wu et al. 

2002). For some diseases, consortia were formed to facilitate and prospectively 

plan the pooling of data. They have proposed standardized study protocols and 

consistent methods for diagnosis and data collection (CSGA asthma consortium 

(Xu et al. 2001), The ADHD Molecular Genetics Network (2000)).  

 

Publication bias 

Publication bias, the usual concern about meta-analyses that negative results are 

less likely to be published, could be a smaller problem in the context of genome 

scans. These are always large, expensive projects which are bound to be 

published, and some interesting results are obtained in virtually every scan. 

Exceptions could be those studies conducted by industry. One special form of 

publication bias could occur in genome scans when detailed results are only given 

for regions that show some evidence for linkage and genome wide results are only 

presented as small figures. Including only those scans or regions with a significant 

result in a meta-analysis would lead to serious bias. In this case, it is necessary to 

request the complete and exact results from the authors. Also linkage studies for 

candidate regions might not be published if negative. Thus, a thorough search for 

all relevant studies, including unpublished ones or those presented only at 

scientific meetings is an important first step in a meta-analysis. Tests for 

publication bias and sensitivity analysis are also advisable (for some general 

remarks and methods see Sutton et al. 2000). 
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Objectives 

In this thesis, the following objectives will be addressed: 

A) Give an overview of existing meta-analysis methods both in general and 

specifically for linkage genome scans (chapter 2). 

B) Describe in detail a new statistical method for meta-analysis of genetic 

linkage studies (chapter 3). This method was first proposed by Loesgen et 

al. (2001). 

C) Compare the power of the proposed new method with existing methods 

and explore effects of different markers sets and sample sizes on the power 

of meta-analysis (chapter 4). This simulation study was published in 

Dempfle and Loesgen (2004). 

D) As a first application of the proposed weighted meta-analysis, a meta-

analysis of a binary phenotype, i.e. asthma affection status, is performed 

(chapter 5). This was carried out in the context of the Genetic Analysis 

Workshop 12 (GAW 12) and published in Loesgen et al. (2001). 

E) A meta-analysis of the quantitative phenotype adult height is performed 

(chapter 6), using a different meta-analysis methodology. This was 

motivated by the results of a linkage genome scan of this phenotype in the 

Framingham Heart Study, which was published as Geller/Dempfle et al. 

(2003, joint first authorship).  

In chapter 7, the implications of this research for meta-analysis of linkage studies 

and the phenotypes asthma and adult height are discussed. 
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2   Statistical Methods for Meta-Analysis 
 

 

 

 

2.1 Overview of statistical methods for meta-analysis in general  

In the classical meta-analysis context (e.g. clinical trials) there is typically one 

pre-specified effect of interest for which estimates or tests from several studies are 

combined (Hedges and Olkin 1985). In genome scans for linkage on the other 

hand, statistical tests, for example on sharing of alleles identical by descent (IBD) 

between relatives, are considered at many loci across the whole genome, and the 

interest is in the location of the largest test statistic. Some methods for the classic 

case of one specific effect of interest are reviewed first, before coming to the 

genome scan situation. 

 The aim of a meta-analysis is to take advantage of an increased sample size 

for a more precise estimate or for a more powerful statistical test (or both) than in 

the individual samples. In general, it can be distinguished between p-value based 

methods, which are purely tests of significance and those to combine effect 

estimates, often together with the estimation of a confidence interval and a 

significance test.  

 

Methods based on the combination of p-values 

Overviews of p-value methods are given by Folks (1984) and Hedges and Olkin 

(1985). If k independent studies test equivalent null hypotheses H0i, i=1, ..., k, a 

combined test of the omnibus null hypothesis H0: “all H0i are true” can be 

constructed. Let pi be the one-sided p-values from continuous test statistics 

(possibly different statistics in the different studies) used to test the individual H0i. 

Then the pi are distributed as independent uniform variables on the interval [0,1] 

under the null hypothesis. This fact is used for most combined tests. The first such 

test was proposed by Tippett (1931, as cited by Hedges and Olkin (1985)), which 

uses the smallest p-value p(1). Under the null hypothesis, the probability that p(1) is 
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smaller than 1 - (1 - α)1/k is α, which gives a level α test. This procedure is 

admissible for tests from the exponential family (Folks 1984).  

 Another often used procedure was proposed by Fisher (1932), who 

transformed the uniformly distributed p-values to χ2 variables and combine these. 

If p has a uniform distribution, then -2 ln(p) has a χ2 distribution with 2 degrees of 

freedom. So the combined test uses ∑
=

−
k

i
ip

1

ln2 , which is distributed as a χ2 

random variable with 2k degrees of freedom. This test procedure is also 

admissible for tests from the exponential family (Folks 1984). Elston (1991) 

shows that Fisher’s method is asymptotically optimal among essentially all 

methods of combining independent tests.  

 Two related modifications of Fisher’s method are given by Olkin and Saner 

(2001) and Zaykin et al. (2002) who propose trimming some p-values, either all 

above a certain threshold or the n largest (or smallest, with n<k) and give the 

correct distributions of the resulting test statistics. This method is more powerful 

than Fisher’s original method for alternatives where only some of the k null 

hypotheses are false, while Fisher’s method which uses all p-values will rather 

detect departures from the omnibus null hypothesis when most of the individual 

null hypotheses are false. 

 A third method that uses the uniform distribution of p-values is to transform 

them via the standard normal distribution (attributed to Stouffer et al. 1949 by 

Hedges and Olkin (1985)). If Zi=Φ-1(pi) (with Φ-1 the inverse of the standard 

normal distribution function), then ∑
=

=
k

i
iZ

k
Z

1

1 is distributed as a standard 

normal. This can also be used to give studies different weights wi, as  

∑
∑=

=

=
k

i
k

i
i

ii

w

ZwZ
1

1

2

  

is also distributed as a standard normal (the unweighted inverse normal method is 

the case of setting all weights equal to 1). These weights can reflect study 

characteristics such as sample size with more weight for larger, more precise 

studies and less weight for small studies. This procedure is also admissible for 

tests from the exponential family (Hedges and Olkin 1985). Since it also uses all 
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p-values, it is more powerful against alternatives where most of the individual null 

hypotheses are false than in cases where only some of them are false. 

 

Methods based on effect estimates 

Meta-analysis methods that use effect estimates usually result in a combined 

effect estimate together with a confidence interval and a significance test. In 

general, the effect estimates from single studies are weighted proportional to their 

precision for a combined estimate. Depending on the research question and study 

designs of the individual studies, appropriate effect size measures, e.g. odds ratios 

or relative risks, differences in survival between treatment and control group or 

the number of alleles shared IBD between sib pairs have to be extracted from each 

study. Following Sutton et al. (2000), let Ti be the observed effect sizes in i=1, … 

, k independent studies, each with variance vi. Let θi be the underlying population 

effect sizes for which Ti are estimates from each study, i.e.  

iii eT += θ , with ei being a random sampling error that has mean 0 and variance vi. 

In a fixed effects model, all population effect sizes are assumed equal, i.e.  

θ1 =… = θk = θ, where θ is the true common underlying effect size. Then a fixed 

effects meta-analysis estimate of the common effect is 

,
1

1

∑
∑

=

== k

i i

k

i ii

w

Tw
T  with .1

i
i v

w =  

These weights (inversely proportional to the variance in each study) minimize the 

variance of T, which is then 

.1)var(
1∑=

= k

i iw
T  

If a sufficient number of studies are combined, T can be assumed to be normally 

distributed, which leads to a canonical confidence interval and significance test. 

 If the assumption of a common underlying effect size θ is not justified, 

random effects meta-analysis can be used. Here, heterogeneity between studies is 

included in the model and the study-specific (true) effects θi are assumed to come 

from a random distribution of effect sizes with a fixed mean θ and variance στ2:  

ii τθθ += . 

Therefore the model includes both within and between study variation, with 

independent error terms: 
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iii eT ++= τθ . 

Again, a weighted estimate of θ can be constructed as above now with weights 

.
)(1

)(1~

1
2

2

∑=
+

+
= k

i i

i
i

v
vw

τ

τ

σ
σ  

In practice, estimates of vi and στ2 are used for weighting. 

 Estimation of between-study heterogeneity is an important step in meta-

analysis, which is also performed to decide whether studies are combined using 

fixed or random effects meta-analysis. This is usually done by Cochran’s Q-

statistic (Cochran 1937 as cited by Sutton et al. (2000)), which is defined as 

follows using the above notation: 

.)(
1

2∑
=

−=
k

i
ii TTwQ  

 Under the null hypothesis of homogeneity, Q is distributed as a χ2 variable 

with k-1 degrees of freedom. However, if only a small number of studies is 

combined such heterogeneity tests usually have very low power (Sutton et al. 

2000). Stratified analyses for subgroups of studies defined by plausible causes of 

heterogeneity may be a useful addition to formal heterogeneity tests. 

 The results of a meta-analysis are often presented graphically. The most 

typical form of display is the so called forest plot in which much information can 

be conveyed succinctly (Sutton et al. 2000). The point estimates of the relevant 

effect size measure together with a 95% confidence interval are shown for each 

study, together with the combined estimate and its confidence interval. The size of 

each study is often represented additionally as the size of the box denoting the 

point estimate. 

 

2.2 The special situation of meta-analysis of linkage genome scans 

In genetic linkage studies, the choice and definition of appropriate effect sizes can 

be difficult. For affected sib pairs (ASP) the number of alleles shared IBD at a 

marker locus is often the parameter of interest, e.g. in the popular mean test of 

Blackwelder and Elston (1985) and related test statistics. However, if the study 

design includes also other affected relative pairs, e.g. cousins, the underlying 

effect size measure will be different. For quantitative traits, the effect size can be 

the Haseman-Elston regression coefficient (Haseman and Elston 1972) which 
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relates the phenotypic differences between siblings to the IBD sharing. But since 

there is no general agreement as to which study design should be used for linkage 

analysis of complex diseases, and even less which test is preferred for a particular 

study design, the researcher is confronted with the problem that published studies 

of the same disease use different statistics which are based on completely different 

effect size measures. Therefore it is often not possible to extract estimates of a 

common effect size measure from different studies. Besides, the results are 

usually reported as statistical tests (often termed LOD score, but not necessarily 

following the same distribution as a parametric LOD score (Morton 1955; Nyholt 

2000) and it is often not possible to transform this back to a parameter estimate 

and its variance. Lastly, since a genome scan includes not only one statistical test 

but several hundreds along the genome, it is common to report only results that 

reached some level of significance in detail in the paper and not results for all 

positions tested. So the necessary information for a meta-analysis usually will 

have to be requested from the authors of the original studies. 

 The goal of a meta-analysis of genome scans is not only to get a more 

powerful test for any specific locus but to identify the loci or genetic regions with 

the strongest overall evidence for linkage in the genome. Even though technically 

hypothesis tests are considered, a linkage genome scan is rather a method to 

generate a hypothesis (determine a region for subsequent analysis, including 

finemapping and functional studies) than to test one or more specific hypotheses 

(like the involvement of a particular candidate gene). The results of genome wide 

analyses are never taken as a definite proof for the involvement of a specific gene. 

Therefore, claiming linkage to a region which in the end turns out to be false is 

often considered less serious than missing a true linkage. 

 The growing interest in meta-analysis of linkage studies has led to the 

adaptation of standard statistical methods and the development of new specific 

methodology, which will be briefly reviewed below. In general, methods for 

linkage genome scans can be divided into those for pooling raw data and those for 

genuine meta-analysis that combine statistics from different studies (see table 1 

for some differences between pooling and meta-analysis). Meta-analysis methods 

can be further divided into those that combine significance tests (e.g. in the form 

of p-values) and those that combine effect estimates and then test the significance 

of the estimated common effect.  
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Table 1: Some differences between pooling and meta-analysis of genetic linkage studies. 

Pooling Meta-Analysis 

 Needs complete raw data (family structures, 
genotypes and phenotypes of all individuals) 

 Needs only intermediate results, e.g. LOD 
scores (but these usually for all loci) 

 All available information can potentially be 
used 

 Only aggregated information is available 

 Automatically accounts for sample size  Possible to account for sample size 

 Often only possible for same markers  Methods to account for different markers can 
be developed  

 Can use same linkage analysis method  Has to cope with different linkage methods 

 Can use methods that account for family 
structures, covariates or heterogeneity on an 
individual or family level 

 Can use such information only on a per-study 
basis, not individually 

 

 Pooling of linkage genome scan data would mean to use the complete family 

structures and genotypes and phenotypes of all individuals in all studies in one 

combined analysis which treats data as if it was derived from one single study, 

while meta-analysis uses only the results, such as LOD scores or effect estimates 

along the genome, of each study. Pooling of raw data automatically uses all 

available information and thus might be the most powerful way to combine 

linkage data, but this is not necessarily the case. Multipoint methods will enable 

the combined analysis even if different marker sets were genotyped in the 

different studies. However, without consideration of systematic differences, 

pooling may yield spurious or paradoxical results (Bravata and Olkin 2001). 

Especially in unbalanced designs, this can lead to counterintuitive conclusions, if 

e.g. in clinical trials a treatment is beneficial in two (unbalanced) studies, and a 

pooling of the data shows that in the pooled study groups the treatment does not 

appear beneficial. This phenomenon is known as Simpson’s paradox (Simpson 

1951, as cited by Bravata and Olkin 2001) and can be avoided by weighting 

results appropriately before combining. In linkage analysis, unbalanced designs 

may not be such a serious problem, but systematic genetic heterogeneity between 

studies may be a concern that is better addressed by meta-analysis than simple 

pooling. But even for a meta-analysis, the availability of the complete genotype 

data (instead of just LOD scores or other summary data) would be helpful, since 

this enables a potentially sensible primary analysis with the same linkage statistic 
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and facilitates incorporation of study characteristics (such as family structures) or 

covariates into the meta-analysis. 

 

2.3 Overview of existing methods for meta-analysis of linkage genome scans 

 

2.3.1 Meta-analysis methods specifically for linkage studies 

2.3.1.1 Genome Search Meta-Analysis (GSMA) 

A meta-analysis method specifically developed for linkage genome scans is the 

Genome Search Meta-Analysis (GSMA) by Wise et al. (1999), which is a non-

parametric rank method to evaluate the combined evidence for linkage in several 

genome scans. As input from each study, it allows any linkage test statistic and, 

for each chromosomal region, measures the relative significance of the results 

across different studies. For GSMA, the chromosomes are divided into bins of 

roughly equal size, each bin containing at least one measurement per study. Thus 

the complete results of the genome scan have to be available, not just the locations 

and LOD scores of significant linkage regions. The authors suggest approximately 

30 cM intervals as bins to combine typical human genome scan results, yielding 

about 120 bins. For each scan, the result corresponding to the smallest level of 

significance in each bin is recorded; this could be the highest LOD score in the 

interval or the smallest p-value. Within each study, the bins are ranked according 

to this result, and the ranks within a bin are summed across all studies. Wise et al. 

(1999) give the distribution of this rank sum under the null hypothesis that there is 

no susceptibility locus within the bin. This assumes that results of different bins 

are stochastically independent. No combined effect estimate can be computed 

with this method. The different studies do not need to be analyzed with the same 

statistical method (e.g. the results of parametric LOD score analyses can be 

combined with non-parametric allele sharing statistics), and it is not necessary to 

have the same markers genotyped in different studies. Wise et al. (2001) extend 

their method to work with studies not covering the whole genome, e.g. candidate 

gene studies, but in this situation the distribution under the null has to be obtained 

by simulation. The same would be necessary to incorporate weights, e.g. for study 

size, which is not considered in the originally proposed method. As the procedure 

is very computer intensive for a simulation study, the investigation in the 

following chapter is restricted to unweighted GSMA. 
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2.3.1.2 Multiple scan probability (MSP) 

Badner and Goldin (1999) proposed a method to combine p-values across studies 

by calculating the probability for a set of attained p-values in a genetic region. The 

procedure is proposed for situations where not the complete results of the whole 

genome scans are available, but just the usually published smallest p-values with 

their locations. Each p-value is corrected for multiple testing by accounting for the 

length of the investigated interval using the dependence structure of genetic 

linkage along a chromosome (Lander and Schork 1994). So if for one study the 

smallest p-value attained on a certain chromsome arm is known, this will be 

corrected for the genetic length of this chromosome arm. The resulting adjusted p-

values are then combined using Fisher’s procedure. As such, this type of meta-

analysis does not take into account different sample sizes between studies. This 

method cannot yield a location estimate, but will give an adjusted meta-analysis p-

value which applies to the largest region included in the meta-analysis. This 

method was further refined and applied to bipolar disorder and schizophrenia 

(Badner and Gershon 2002a) and also to autism (Badner and Gershon 2002b).  

 

2.3.2 Methodological adaptations and applications of general meta-analysis 

methods to linkage studies  

2.3.2.1 Fisher’s method for combining p-values 

For the evaluation of several independent tests of the same null hypothesis, the 

before mentioned procedure of combining p-values by Fisher (1932) is available. 

Under the null hypothesis, that there is no disease gene at a particular locus, p-

values p1, ... , pn from n independent studies are uniformly distributed on the 

interval [0,1], and -2 ln pi is distributed as a χ2 random variable with 2 degrees of 

freedom. Therefore, the combination of p-values, ∑
=

−
n

i
ip

1

ln2 , is distributed as a χ2 

random variable with 2n degrees of freedom. When using this method, studies can 

be analyzed with different statistical methods, i.e. p-values can be derived from 

different test statistics, but have to be available at the same loci.  

 A note on the use of Fisher’s method in the context of linkage analysis was 

given by Province (2001). Since many nonparametric linkage methods truncate 

the LOD score space at 0 (i.e. do not give evidence against linkage), he suggested 
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interpreting a nonparametric LOD of 0 as a p-value of 0.72 (instead of 0.5), to 

avoid bias when including results from such studies.   

 Fisher’s method to combine p-values (Fisher 1932), has been applied in 

genetic epidemiology by Allison & Heo (1998) who used this method to combine 

p-values from single point analyses at different markers across a candidate region 

in studies of obesity. Guerra et al. (1999) compared Fisher’s method with the 

pooling of raw data on Genetic Analysis Workshop 11 simulated data (Greenberg 

et al. 1999). Finally, Wu et al. (2002) analyzed eight samples from four ethnic 

groups in a study on obesity and used Province’s  modification (2001) of Fisher’s 

method (interpreting a nonparametric LOD of 0 as a p-value of 0.72). A similar 

approach was applied recently in a meta-analysis of genome scans for fasting 

glucose, insulin, and insulin resistance (An et al. 2005). 

 

2.3.2.2 Truncated product method (TPM) 

Zaykin et al. (2002) present a generalization of Fisher’s method for combining p-

values in the context of genetic analyses. For this method, only p-values below a 

certain threshold τ (e.g. 0.05, naturally accounting for habits of reporting only 

‘significant’ results) are considered. They derive the exact distribution of the 

product of these p-values under the null by conditioning on the number of p-

values less than τ. This is derived from the fact that the number of p-values less 

than τ (from k independent tests) follows a binomial distribution Bin(k, τ) under 

the global null hypothesis. Again, these p-values can be obtained by different 

methods but must be given for each study on every marker intended for meta-

analysis. TPM has been proposed for genetic studies, but has not been applied to 

linkage genome scans yet. 

 

2.3.2.3 Fixed and random effects meta-analysis 

The general concept of obtaining combined estimates of relevant effect size 

measures through fixed or random effects meta-analysis have also been proposed 

in the context of genetic linkage analysis, both for single locations (e.g. candidate 

genes) and whole genome scans. They require the availability of sensible effect 

estimates and their variances for each study at each genetic location. These are 

generally not part of the published data for genome scans and can rarely be 



STATISTICAL METHODS 
___________________________________________________________________________________________________ 

 15

extracted from the published data (as is usually the case for other types of studies, 

e.g. clinical trials). Therefore such methods are only feasable if the complete 

individual data for each study are available to conduct sensible primary analyses 

which yield such parameter estimates for all samples. As mentioned above, even 

if the raw genotype data from several studies is available, it might be sensible to 

use a meta-analysis which accounts for possible heterogeneity instead of pooling 

the data in one combined analysis without regard for systematic differences such 

as different genotyped marker sets. Approaches that aim at combining effect 

estimates in model-free linkage analysis mostly use the number of alleles identical 

by descent (IBD) between relative pairs as the common effect across studies (e.g. 

Wu et al. 2002). Gu et al. (1998) present a method how to derive and combine 

IBD estimates even from different sib pair designs (e.g. concordant affected and 

discordant) in a random effects model. Further developments of this approach are 

found in Gu et al. (1999) and Gu et al. (2001). Similarly, McQueen et al. (2005) 

used the complete genotype data of eleven linkage studies of Bipolar Disorder to 

perform the same statistical analysis for each sample, test heterogeneity of IBD 

estimates and finally combine them in a random-effects model. Goldstein et al. 

(1999) proposed combining IBD estimates in a fixed effects meta-analysis, by 

weighting estimates with the inverse of their variance. For quantitative 

phenotypes, a sensible effect size measure from linkage analysis can be the 

Haseman-Elston regression coefficient (Haseman and Elston 1972). These were 

combined in fixed and random effects meta-analyses by Etzel and Costello 

(2001), Iyengar et al. (2001) and Jacobs et al. (2001) in the context of the Genetic 

Analysis Workshop 12 (Meyers et al. 2001) where the complete, individual data 

of four genome scans and five candidate studies on asthma were available. Etzel 

and Guerra (2002) investigated this approach in some more detail. A different 

effect size measure for quantitative traits was used by Hejimans et al. (2005), who 

initially analyzed serum lipid levels in each of four samples separately using an 

inverse regression method (Sham et al. 2002; implemented in Merlin-Regress, 

Abecasis et al. 2002), which yields locus-specific heritabilities and corresponding 

standard errors. These were then combined across samples by use of a random 

effects meta-analysis, but without further testing of heterogeneity.  
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2.3.3 Heterogeneity tests for linkage studies 

In a traditional meta-analysis framework, estimation of between-study 

heterogeneity is an important step. This is usually done by Cochran’s Q-statistic 

(Cochran 1937 as cited by Sutton et al. (2000)) which was introduced in chapter 

2.1, or variants of this. The specific form of this heterogeneity test if the effect of 

interest is the mean IBD sharing among affected sib pairs has been given e.g. by 

Gu et al. (1998; 2001) and Goldstein et al. (1999).  

 This type of heterogeneity test needs the study specific effect estimates and 

variances, just as the estimation of a common effect in a fixed or random effects 

meta-analysis. Therefore it is usually only possible to perform for linkage genome 

scans if the original genotype data are available from all studies. If no effect size 

estimates but just measures of significance (e.g. LOD scores) are available from 

each genome scan, such a test is not possible. In theory, it is possible to use the 

fact that a one-tailed p-value is a function of sample size and effect size, to 

construct a heterogeneity test using just p-values, but this is only valid if all 

studies have the same sample size (Hedges and Olkin 1985, p 126) and thus of 

limited use. Similar approaches to inferring an effect estimate from a p-value have 

been proposed (Rosenthal and Rubin 2003) but these are subject to analogous 

inadequacies (Kraemer 2005; Hsu 2005). So in practice a heterogeneity test based 

just on measures of significance is not adequate if different study designs, test 

statistics and sample sizes are used and would be of limited applicability.   

 In a similar spirit, Zintzaras and Ioannidis (2005) proposed a generalization of 

Cochrans Q statistic for the GSMA method, using ranks instead of effect 

estimates in each of 120 bins. Ranks are only measures of the relative significance 

of a genomic region in relation to all other regions in the same study. As such, 

ranks for each bin across studies are independent of sample size, study design or 

statistical test used. This test is supposed to be performed for each bin, leading to 

120 heterogeneity tests for a genome-wide meta-analysis. For one bin, let Ri and 

wi be the rank and weight for study i and R the average rank across all studies, 

then the test statistic would be  

.)(
1

2∑
=

−=
k

i
ii RRwQ  

Two similar metrics were also proposed, and in all cases, the significance of the 

test statistic was assessed by permutations. The power of this approach (e.g. in 
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comparison to using effect size measures has not been assessed. This procedure 

for heterogeneity testing has been used by Malhotra et al. (2005) in a meta-

analysis of genome scans for lipid traits in African Americans. 

 An additional concern in genome-wide linkage studies is the question for 

which loci heterogeneity tests should be performed, since studies usually differ in 

the markers that are genotyped. One approach would be to test heterogeneity for 

each locus for which a combined linkage test (or effect size estimate) is intended, 

e.g. at every cM position along the genome, thus leading to approximately 3600 

tests for a whole genome scan (based on sex-averaged genetic length of the 

human genome (Kong et al. 2002)). But since such homogeneity tests usually 

have very low power if only a small number of studies is combined (Sutton et al. 

2000), performing so many tests might lead to an unacceptably high amount of 

both false positive and false negative results. Other options have also been 

proposed, such as one test per chromosome arm to account for the considerable 

variation in location of the maximum linkage peak in small samples. Therefore 

just the maximum linkage statistic at each chromosome arm for each study could 

be included in a test for heterogeneity (Babron et al. 2001).  

 In conclusion, heterogeneity tests for linkage genome scans have low power, 

and are rarely feasible as they need the complete individual data from all studies. 

Additionally, not enough research has been done on the question for which loci 

such tests should be best performed. Stratified analyses, e.g. based on subgroups 

of studies of the same ethnicity or population may be more appropriate. 

 

2.3.4 Graphical display of results  

A graphical display of meta-analysis results in relation to individual results can be 

done in a similar fashion as the presentation of the primary genome scan results, 

using a graph of the obtained LOD scores or p-values against the genetic location 

along the genome (for examples see the applications in chapters 5 and 6). This 

makes it possible to simultaneously depict the results for the complete genome. 

However, contrary to the graphical presentation of meta-analysis results in 

traditional cases where just one effect is of interest, the precision of the individual 

studies will not be apparent from such a display. Results for the most interesting 

loci (such as those reaching significance) could be presented in such a way, e.g. as 
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a forest plot, if the relevant effect size estimates and confidence intervals are 

available for all studies. 
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3  Proposed new method: weighted combination of Z-scores 
 

 

 

 

For genetic linkage analysis of complex traits, non-parametric methods are often 

used, which do not require specification of a genetic model. These model-free 

methods evaluate the number of alleles shared IBD between affected relatives. 

One of the most popular study designs for linkage analysis of complex diseases is 

the affected sib pair (ASP) design, where families with at least two children 

affected with the disease of interest are ascertained. The children and their parents 

(if available) are genotyped with highly polymorphic microsatellite markers or 

large numbers of single nucleotide polymorphism (SNP) markers spread 

throughout the genome. Non-parametric linkage analysis is then performed, e.g. 

using the mean test of Blackwelder and Elston (1985), which is based on the 

number of alleles shared IBD between an ASP. Such tests are implemented in 

commonly used software such as Genehunter (Kruglyak et al. 1996), Allegro 

(Gudbjartsson et al. 2000) and Merlin (Abecasis et al. 2002). The popular NPLpairs 

statistic as implemented in Genehunter is a generalization of the mean test, which 

is equivalent to the mean test for ASPs and a fully informative marker and 

generalizes to other family structures such as larger sibships or affected cousins. 

For a marker which is not fully informative in a given family, the genotypes at 

neighboring markers are used to estimate IBD sharing, based on the known 

dependence structure of linkage along a chromosome. Such multipoint methods, 

using Hidden Markov Models are used to incorporate information from flanking 

markers and allow the calculation of the linkage statistic also for positions 

between markers (Kruglyak et al. 1995).  

 In an ASP study, let πi(t) be the number of alleles shared IBD by sib pair i at 

location t (in cM). Then πi(t) follows a trinomial distribution under the null 

hypothesis of no linkage and takes values 0, 1 and 2 with probabilities ¼, ½ and 

¼. Thus the expectation of πi(t) is 1 and its variance ½. For most genetic locations 

πi(t) is not directly observable, so likelihood-based methods were developed to 
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estimate πi(t) conditional on all marker data on one chromosome (Risch 1990b; 

Kruglyak et al. 1996). The NPLpairs test statistic at location t for a study j (j = 1, ..., 

k) with nj independent ASPs is then defined as Zpairs, j(t): 

 ∑
=

=
jn

i

i

j
pairs, j

ta)-|marker datE(
n
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1 21
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 Under the null hypothesis of no linkage at locus t, this is the standardized 

mean allele sharing. Thus, Zpairs, j(t) is asymptotically distributed as a standard 

normal (Kruglyak et al. 1996), if the inheritance pattern at this position can be 

completely inferred (fully informative marker). 

 For meta-analysis using effect estimates, π(t), the mean number of alleles 

shared IBD between ASPs is the appropriate effect size for which a combined 

estimate is required. Zpairs, j(t) is a standardized estimate of this variable for study j, 

multiplied by jn . The variance of π(t) is proportional to 1/nj, so weighting this 

estimate with n (or equivalently Zpairs, j with jn ) is optimal to minimize the 

variance of the combined estimate as in a fixed effects meta-analysis (Hedges and 

Olkin 1985). Thus, a combined linkage test statistic can be defined, by weighting 

each study specific NPL statistic with jn .  

 At a marker that is not fully informative, the expectation under the null 

hypothesis is used to estimate the IBD sharing in Zpairs, which makes it a 

conservative test and leads to a biased estimate of IBD sharing under the 

alternative (Kong and Cox 1997; Schork and Greenwood 2004). In the extreme 

case, where a family is completely uninformative (e.g. not genotyped for a 

marker) this leads to an estimated IBD sharing of 1 for an affected sib pair, as 

would be expected under the null hypothesis. This so called “perfect data 

approximation” (Kruglyak et al. 1996) will always result in reduced power for 

locations between genetic markers, since here the inheritance pattern has to be 

estimated. For single studies, this is also evident in the fact that NPL scores 

always peak at markers (see figure 3 in chapter 4) and drop between markers, 

contrary to parametric LOD scores which are usually higher between markers. 

Since NPL scores are preferentially evaluated at the genotyped markers in 

individual studies, this power loss between markers is most relevant if marker 

spacing is large (and heterozygosity low). For meta-analysis however, studies 
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which used different sets of markers are included and thus results at all genetic 

locations are relevant. Uncertainty on the inheritance pattern therefore reduces 

power for non-parametric linkage analysis and can be interpreted as reducing the 

effective sample size of a study (Guo and Elston 2000). Examples for this loss of 

power caused by ambiguity of the inheritance pattern at a genetic location are 

described in the simulation study and shown in figures 2 and 3 (chapter 4). 

Unweighted pooling of NPL scores across studies, or weighting just with study 

size, is therefore not optimal when different markers are genotyped and the 

amount of information on inheritance in families varies between studies at each 

locus. A measure for the uncertainty of the inheritance pattern at a genetic 

location is the information content (IC) as first proposed by Kruglyak and Lander 

(1995) and refinded by Kruglyak et al. (1996). This uses the information-theoretic 

entropy as a measure of residual uncertainty in a probability distribution, here the 

distribution of inheritance vectors for a pedigree, which describe the inheritance 

pattern at a genetic location within a family. The entropy at a genetic location t is 

defined as  

∑−=
i

ii tPtPtE )(log)()( 2  

where Pi(t) is the probability of the ith possible inheritance vector for a family. In 

the absence of genotypic data, the probability distribution is uniform over all 22n-f 

equivalence classes of inheritance vectors (with n denoting the number of non-

founders and f the number of founders in a family), thus the entropy in this case is 

E0=2n-f. The information content for a family is then defined as  

.)(1)( 0EtEtIC −=  

The entropy is an additive measure and is summed over all pedigrees in a sample. 

With this definition, IC is a general measure of available information on the 

inheritance pattern in the included families which does not depend on any specific 

linkage test statistic and always lies between 0 and 1, taking the value 1 for a fully 

informative marker and the value 0 in the absence of any genotype information 

(Kruglyak et al. 1996). The product of IC and sample size therefore is a 

reasonable approach to approximate the effective sample size. Using IC to 

approximate the effective sample size has the advantage that this is standard 

output of most multipoint linkage analysis programs (e.g. Genehunter, Allegro or 

Merlin) and therefore may be available for a meta-analysis, while other measures 
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of information which are based on individual genotypes will not be accessible for 

meta-analysis. 

 Recently, the loss of power in non-parametric linkage analysis caused by less 

than perfect information about inheritance has also been discussed in detail by 

Schork and Greenwood (2004) which lead to a lively debate (Cordell 2004; 

Mukhopadhyay et al. 2004; Visscher and Wray 2004; Sieberts et al. 2004; 

Abecasis et al. 2004). As several authors pointed out, the extent of this power loss 

depends on the test statistic used and on the specific implementation in a software 

algorithm. Specifically, the NPLpairs statistic (as implemented in Genehunter 

(Kruglyak et al. 1996)) and the equivalent mean test (as implemented e.g. in 

SIBPAL/S.A.G.E. 2004) suffer from a relevant loss of power due to the “perfect 

data approximation” used that treats uninformative (or partly informative) families 

inappropriately. This is overcome by non-parametric linkage statistics which were 

proposed by Kong and Cox (1997), termed allele sharing LOD scores, which are 

implemented e.g. in Genehunter-Plus (Kong and Cox 1997), Allegro 

(Gudbjartsson et al. 2000) and Merlin (Abecasis et al. 2002). Franke and Ziegler 

(2005) suggested a weighting scheme for individual families to improve the mean 

test, by weighting each affected sib pair with the appropriate marker informativity. 

A comparison of the power of their proposed approach with the power of the 

Kong and Cox (1997) non-parametric LOD scores has not been done, yet. A 

comparison of this test statistic with Holmans’ possible triangle test (Holmans 

1993) and other extensions of the mean test (Knapp 2006) shows that it performs 

poorly for realistic genetic models, especially in situations with low marker 

informativity, for which it was designed (Knapp 2006). Sensible linkage test 

statistics therefore should not treat un-informative or partly informative families 

as though they would provide evidence for the null hypothesis of no linkage but 

rather consider that they provide only limited or no information at all for the test, 

thus reducing the effective sample size (Mukhopadhyay et al. 2006). If such test 

statistics are used, the loss in power is reduced. However, the effective sample 

size of a study is still diminished if families in the sample are un-informative or 

partly informative for a marker. And even if genetic markers are highly 

polymorphic and all individuals within a family are genotyped, the multipoint 

approximation used to calculate the test statistic even for locations between 
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markers (which have to be considered in meta-analysis), always leads to a 

reduction of the effective sample size. 

 Consequently, a combination of NPL scores is proposed which uses the 

following different weights: study size (equals pooling of the raw data in the case 

of ASPs), information content, and if the information content is not available an 

exponential function of the distance to the next marker (which provides a simple 

means to describe the loss in information content between markers). These 

methods for weighted meta-analysis were first proposed in Loesgen et al. (2001) 

and further refined and evaluated in Dempfle and Loesgen (2004). 

 For any locus t let ICj(t) denote the information content in study j, and dtj be 

the distance (in cM) from t to the closest genotyped marker in study j. Then the 

different weighting schemes are as follows: 
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 The unweighted combined tests statistic is used for comparison in the 

simulation study in the next chapter and analogously ZIC and ZDist are defined 

without the weighting factor for study size. With these definitions, the weighted 

scores are again distributed as standard normal under the null hypothesis, so 

appropriate p-values can be calculated. The normality assumption is confirmed in 

the following simulation study (chapter 4) on unlinked chromosomes both for 

weighted and unweighted Z-scores. 

 The implementation of the proposed meta-analysis is very simple: it uses the 

NPL scores at regular intervals (e.g. every 1 cM) for each study, which are 

standard output of all programs for multipoint non-parametric linkage analysis. If 

the NPL scores are only available at genotyped markers, they may be interpolated 
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for the desired regular locations between markers. Depending on the desired 

weighting scheme and extend of available data, it is also necessary to obtain the 

sample size and study specific IC at the same intervals as the NPL scores (which 

is also standard output from e.g. Genehunter, Allegro or Merlin). If IC is not 

accessible, the locations of genotyped markers can be used to calculate the 

distance between each evaluated position and the closest marker. The combined 

NPL statistic is then calculated from these ingredients (usually at regular intervals 

again) and the p-value can be derived from the standard normal distribution.  

 If other test statistics instead of NPL scores have been calculated in the 

original studies, these may be included through the inverse normal method. P-

values or LOD scores from other test statistics are converted to Z-scores via the 

normal distribution and can then also be usefully weighted and combined. The 

application of the more sophisticated weighting schemes with IC or a distance 

measure is of course dependent on the availability of the necessary data and if 

these cannot be obtained, a weighting just with sample size will still be possible 

and valuable. 

 General concerns regarding tests for heterogeneity in genome-wide linkage 

studies have been addressed in the preceding chapter and apply to this method as 

well. Especially low power if only relatively few studies are combined (which will 

be the case for most diseases) in combination with severe multiple testing make 

such tests very unreliable (Babron et al. 2001). The parameter of interest in non-

parametric ASP studies is the mean IBD sharing and as a test of heterogeneity, 

Cochran’s Q statistic can be used (Gu et al. 1998). However, a valid estimate of 

the variance of the mean IBD sharing without the assumption that the null 

hypothesis is true requires the locus-specific, family-wise IBD estimates 

(McQueen et al. 2006), which are usually not available for a meta-analysis. From 

just the NPL scores themselves, which are standardized for each study, no valid 

estimate and variance of the relevant parameter can be calculated, especially 

because information content and thus effective sample size varies across genetic 

locations. Another drawback is that in practical applications the sample often 

contains a mixture of similar but not identical family structures, such as more than 

two affected siblings or additionally some affected cousins. More distant relatives 

have lower expected IBD sharing and thus there is not one single relevant 

parameter (such as π(t)) that applies to all families or all samples in a meta-
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analysis. All this makes a formal heterogeneity test practically infeasible if only 

summary results (such as NPL scores) and not individual data are available for a 

meta-analysis. If potential sources of heterogeneity, such as different ethnicities 

between study samples, are known, a useful strategy would instead be to perform 

meta-analyses for presumably more homogeneous subsets of samples from the 

same population as well as for all study samples. Other known study-specific 

covariates, such as average disease severity of ascertained cases or average age-

of-onset, could also be used to define clinically relevant subgroups which may be 

genetically more homogeneous and perform subgroup specific meta-analyses. 

 As a graphical display, a plot of the individual and the meta-analysis NPL 

scores in one figure (for each chromosome or genome-wide) will allow useful 

comparisons. Examples of such figures can be seen in the applications to the 

phenotypes asthma and height (chapters 5 and 6). Forest plots, as are used for 

meta-analyses of just one specific parameter of interest, will not be practical for 

genome-wide analysis.  

 The proposed methods are widely applicable for meta-analysis of linkage 

studies. Multipoint NPL scores are calculated in many affected sib pair studies for 

complex disease. Other multipoint test statistics can be used via the inverse 

normal method. The necessity to have results for all loci is not unique to the 

proposed method, but arises in similar form in any other meta-analysis method for 

genome wide linkage studies as statistical tests of the same hypothesis, i.e. linkage 

to the same locus, have to be combined. Here, Badner’s method (Badner and 

Gershon 2002b) is an exception that can be applied to the usually published data 

which still is often only the significant p-values. GSMA needs at least one value 

of each study in each bin which is rarely the case if only interesting values are 

reported. However, more and more researchers distribute the detailed results of 

their analysis via the internet, like NPL scores for each marker tested (as in a 

psoriasis scan by Nair et al. 1997), where the multipoint statistics at regular 

intervals (as in a stature and BMI genome scan by Perola et al. 2001) and the 

information content could be included. Besides, it is a long standing scientific 

tradition to keep data and intermediate results and to give other researchers the 

opportunity to verify the reported results by making materials and data available. 

Many scientific journals (e.g. Nature, Science, The American Journal of Human 

Genetics, Human Molecular Genetics, or Molecular Psychiatry) stress this 
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obligation in their instructions for authors. The need to provide all original data to 

reviewers and, after publication, to all interested scientists was emphasized in the 

context of microarray gene expression studies by Perou (2001) and deposition of 

microarray data in public databases is now explicitly demanded by most journals 

(MIAME standard, Brazma et al. 2001). His reasoning, that other scientists need 

the chance to check the alleged conclusions and to gain additional insight by a re-

analysis applies equally to genome wide linkage analysis. It should therefore be a 

matter of course to obtain at least the detailed results for all markers from the 

authors of a published genome scan. 
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4   Simulation Study: Exploring Effects of Different Markers 

and Sample Sizes 
 

 

 

 

4.1 Simulated model 

Whole genome scan data was simulated to compare the power of different 

methods of meta-analysis. The simulations are intended to reflect a realistic 

scenario, which represents studies by four separate research groups undertaken in 

the same or closely related populations. This means that a clinically homogeneous 

sample with the same underlying genetic model of disease, such as disease allele 

frequencies and penetrances, is simulated for all studies. The simulations 

correspond to a situation where collaboration between groups is anticipated or 

planned in advance, so that study protocols, especially with regard to 

ascertainment and diagnosis, are similar or even standardized. Therefore the 

affected sib pair (ASP) design was chosen for all studies. The studies differ in 

their sample size (i.e. the number of ASP) and in the marker panels that are 

genotyped. The emphasis of this simulation study is on the effect of using 

different marker panels and the resulting variation in information content at each 

locus. 

 A binary trait dependent on a bi-allelic disease locus is modeled. The 

population frequency of disease allele D is 0.1 and that of the low-risk allele or 

group of alleles d equals 0.9. The penetrances are 0.4 for genotype DD, 0.1 for 

genotype Dd and 0.025 for genotype dd, so the disease alleles act multiplicatively 

with a genotypic relative risk (GRR) of 4. This results in a λsib of 1.54 and a 

λoffspring of 1.48 (Risch 1990a) and an expected IBD sharing at the disease locus of 

0.597 (see table 2). To investigate whether the results generalize to other trait 

models, two other scenarios were also simulated. These were a recessive model 

with a very similar effect (expected IBD sharing 0.594, penetrances 0.05, 0.05 and 

0.6 for the homozygous wildtype, heterozygous and homozygous disease allele 
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carriers) and a multiplicative model with a relative risk of only 3.5 (expected IBD 

sharing 0.576, penetrances 0.05, 0.175 and 0.613). 

 
Table 2: Parameters of different simulation scenarios. 

Scenario Multiplicative GRR 4 Recessive Multiplicative GRR 3.5 

Penetrance DD 0.4 0.6 0.613 

Penetrance Dd 0.1 0.05 0.175 

Penetrance dd 0.025 0.05 0.05 

Prevalence of 
disease 

0.042 0.056 0.078 

λsib 1.537 1.287 1.392 

λoffspring 1.479 1.088 1.360 

E(IBD|ASP) 0.597 0.594 0.576 

 

 1000 replicates of affected sib pair data of 80 families on four different 

marker panels A, B, C, D were simulated, which represent the four different 

studies. Marker loci are spaced every 5 or 15 cM on two 90 cM chromosomes 

with 2 or 6 equifrequent alleles at each marker (such as SNP or microsatellite 

markers). See table 3 for the combination of these parameters. The disease gene is 

always located at position 46 cM of chromosome 1, but as the position of the first 

marker varies, so does the distance of the closest marker to the disease locus as 

shown in figure 1.  

 
Table 3: Parameters for the simulation of study types A to D. 

Type Number of 
families 

Distance 
between 

markers (cM) 

Number of 
equifrequent 

alleles 

First marker 
(position in 

cM) 

Distance of 
closest marker 
to the disease 

locus (cM) 

A 80 15 6 8 7 

B 80 5 2 3 2 

C 40+40 15 6 0 1 

D 40+40 5 2 0 1 
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Figure 1: Simulated Marker Maps. Total length is 90 cM, disease locus is at position 46 cM. 
 
 
Chromosome 2 is “unlinked”, i.e. it does not have a disease gene. To investigate 

the influence of study size, data on marker panels C and D were split into two 

groups of 40 sib pairs each, referred to as C_1, C_2, D_1, and D_2, respectively. 

Simulations were performed with the genome scan simulation program 

SIMSCAN developed by S. Loesgen (unpublished). The core algorithm renders 

this program especially suited for the evaluation of methodology for affected 

relative designs. The basis of the following comparisons in the simulation study is 

a ‘standard analysis’ of each simulated study with Genehunter NPLpairs (Kruglyak 

et al. 1996) in 1 cM steps (for ASPs and a fully informative marker, the NPLpairs is 

equivalent to the mean test of Blackwelder and Elston (1985)). Combined 

analyses of the four simulated studies were done with the proposed weighting 

methods for Z-scores (unweighted, weighted by size, information content, 

distance or combinations of these), with the GSMA, Fisher’s method and TPM as 

described in the previous chapter. As the GSMA method uses only the relative 

significance (i.e. the rank) of a region compared to all other regions in the 

respective study, the p-values depend on the number of bins. To get a good 

approximation of a full genome scan, the results of the linked chromosome in 

each study are used together with the results of 39 replicates of an “unlinked” 

chromosome, for a total of 120 bins in each study. As expected this gives indeed 

higher power than adding just 2 or 10 null chromosomes. 
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4.2 Results of the simulation study 

4.2.1 Effect of recombination and low informativity on power 

The power of the different meta-analysis methods to detect linkage to the 

simulated disease locus is compared. The power of a statistical test under a 

specific alternative (here the simulated disease model) is determined by the 

sample size (in this case the number of informative sib pairs). The maximal power 

of an affected sib pair linkage study with a given sample size, and a given test 

statistic, will be achieved when the inheritance pattern at the disease locus can be 

correctly inferred in every family. This is the case if each sib pair is fully 

informative. In reality, this upper bound will not be reached, as not every meiosis 

at every marker is informative, and additionally there is recombination between 

the disease locus and the closest marker. However, this overly optimistic approach 

is frequently used in sample size calculations (e.g. Risch and Merikangas 1996) as 

this is a straightforward method and corrections for realistic situations are difficult 

to model. The theoretical power of the NPLpairs test with full information at the 

disease locus (which is the maximal power achievable with this test statistic) is 

given in table 4 for different significance levels and sample sizes for scenario 1 

and in table 5 for different sample sizes in scenarios 1 to 3 at a significance level 

of 0.00074. Under the assumptions mentioned above, a single study of 80 ASP 

has little power to establish linkage in scenario 1 (less than 25% at α = 0.00074, 

the threshold for “suggestive” linkage as defined by Lander and Kruglyak (1995)), 

but a combined sample of 320 ASP can reach a good power of about 80% even at 

a stringent significance level of α = 0.000022 (“significant“ linkage) and over 

95% power at α = 0.00074. Scenarios 1 and 2 with different genetic models have 

very similar expected power, whereas the multiplicative genetic model with the 

smaller effect in scenario 3 has much smaller power. 

 
Table 4: Theoretical power (in %) of the mean test for ASPs in a single study with the simulated 
disease parameters of scenario 1 at different significance levels (with a fully informative marker 
locus completely linked to the disease locus). 

Number of ASPs α = 0.01 α = 0.00074 α = 0.000022 

40 27.13 6.98 0.82 

80 54.82 22.74 4.73 

320 99.55 95.95 79.41 
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Table 5: Theoretical power (in %) of the mean test for ASPs in a single study of scenarios 1 to 3 
at a significance level of 0.0074 (with a fully informative marker locus completely linked to the 
disease locus). 

Number of 
ASPs 

Scenario 1:  
multiplicative, GRR = 4

Scenario 2:  
recessive, GRR = 4

Scenario 3: 
multiplicative, GRR = 3.5 

80 22.74 21.05 10.31 

320 95.95 94.82 75.44 

 

 Recombination between the disease locus and a marker will diminish the 

chance to detect linkage. The incorporation of recombination rates in the power 

calculation for the mean test is for example implemented in the TDT-Power 

Calculator (primarily designed for TDT power calculation, but also capable of 

calculating the power of the mean test for ASPs) by Chen and Deng (2001). Note 

that even though marker allele frequencies are required to be specified in this 

program, they are only used in the TDT power calculation, but not in the power 

calculation for the mean test, which assumes that the number of alleles identical 

by descent at the marker locus can be unequivocally inferred for each sib pair, as 

with a fully informative marker. Table 6 gives the estimated power under scenario 

1 with different numbers of ASPs and recombination fractions. A distance of 1 

cM between the disease locus and a fully informative marker does not affect the 

power very much, but a distance of 7 cM will result in an important loss of power, 

e.g. from about 51% to 30% with 80 ASPs at a significance level of 0.01 or from 

73% to 31% for 320 ASPs at a level of 0.000022. 

 
Table 6: Power (in %) of the mean test for ASPs in a single study under scenario 1 at different 
recombination fractions between disease locus and a fully informative marker (calculated with the 
TDT-Power Calculator) at different significance levels. 

Number of ASPs Distance (cM) α = 0.01 α = 0.00074 α = 0.000022 

80 1 50.90 19.91 3.86 

80 7 30.04 8.31 1.07 

320 1 99.21 93.89 73.31 

320 7 90.39 67.11 31.80 

 

 Another, more realistic method to estimate the power of a linkage study is 

implemented in the ASP Power Calculator by Krawczak (2001) which uses a 

likelihood ratio test for allele sharing in sib pairs. Here, the incomplete 

information content of a marker and the recombination to the disease locus are 
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incorporated. However, the program is restricted to just four preset significance 

levels, and the power is calculated for an implicit two-point analysis. Power 

estimates are presented for the restricted likelihood ratio test, which is an 

extension of the mean test for not fully informative sib pairs and should therefore 

be comparable in terms of power with the NPLpairs method from Genehunter 

(Kruglyak et al. 1996). Table 7 shows the results for different marker settings 

comparable to the marker closest to the disease locus in this simulation setup at 

α=0.01 under scenario 1. The difference to the theoretical estimates of maximal 

power is striking. Depending on the distance and the information content of the 

marker the power for 80 ASPs ranges from less than 20% to 42% instead of the 

maximal power of 55% at this significance level. Due to the loss of information, a 

bi-allelic marker (with equifrequent alleles) yields only about half the power of a 

six-allelic marker at the same locus (compare columns 1 and 2). Almost the same 

reduction can be seen if the marker is 7 instead of 1 cM away from the disease 

locus (see columns 1 and 3). 

 
Table 7: Estimated power (in %) of a single study under scenario 1 (10000 simulations of ASP 
Power Calculator, restricted model) at a significance level of 0.01, for different distances between 
the disease locus and the closest marker locus and different numbers of equifrequent marker 
alleles. 

Number of ASPs 1 cM, 6 alleles 1 cM, 2 alleles 7 cM, 6 alleles 

40 21.1 9.6 12.2 

80 41.7 18.9 24.2 

320 97.1 71.0 82.2 

 

 Summarizing, the power is overestimated by Risch’s formula as it assumes 

full information at the disease locus while the ASP Power Calculator is too 

pessimistic for multipoint analysis. The size of these deviations can be seen in the 

analysis of the individual simulated studies (table 8). The power is calculated as 

the fraction of simulations in which the p-value for the combined sample is below 

a given level, and thus the null hypothesis is correctly rejected. Here, the lowest p-

value in an interval of 30 cM around the disease locus is considered. This is a 

practical compromise between counting any significant result on the whole 

chromosome and counting only the disease locus itself as a correct positive result. 

The first approach would be too optimistic as further investigations (e.g. fine 

mapping) are usually concentrated in a limited region around the most promising 
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finding. The latter approach would be too restrictive as it is well known that there 

is considerable variation in the location of the strongest result (Cordell 2001). 

This choice is also reasonable as GSMA can only localize a trait to within a bin 

(usually about 30 cM) and it would be unfair to require the other methods to 

localize it more precisely. If power is based on an interval of 14 cM around the 

disease locus, all results are between 0.2 to 2.6 percentage points lower (at the 

suggestive level), but with no clear pattern of differences between the meta-

analysis methods. 

 
Table 8: Power of single studies at different significance levels (percentage of replicates with a p-
value below the respective level at a locus within 15 cM in both directions of the true disease 
locus, out of 1000 replicates) and average information content (IC) of each study at the disease 
locus under scenario 1. 

Study type α = 0.01 α = 0.00074 α = 0.000022 Average IC 

A 34.3±1.5 6.3±0.8 0.5±0.2 0.583 
B 45.1±1.6 12.6±1.0 1.2±0.3 0.703 
C 43.3±1.6 11.2±1.0 1.6±0.4 0.775 
D 43.9±1.6 10.9±1.0 1.3±0.4 0.722 
C_1 21.4±1.3 3.9±0.6 0.3±0.2 0.776 
C_2 20.9±1.3 3.4±0.6 0.3±0.2 0.775 
D_1 21.6±1.3 3.2±0.6 0.0±0.0 0.722 
D_2 21.2±1.3 3.1±0.5 0.1±0.1 0.721 

 

 When there is less than perfect information (which is always the case), the 

NPLpairs procedure is conservative under both the null and alternative hypotheses, 

but for different reasons. Under the null hypothesis, the variance of the test 

statistic is overestimated (Kong and Cox 1997), thus leading to a conservative 

test. Under the alternative (at the position of a disease gene) the test statistic will 

additionally be downward-biased, resulting in power loss. Thus low information 

in effect distorts the overall result in the direction of no linkage. This occurs 

because allele sharing is estimated given all marker data by using the distribution 

of the number of alleles identical by descent under the null hypothesis (Kruglyak 

et al. 1996). The expectation under the alternative of linkage would in general be 

higher. So in the extreme case when there is no information about the actual 

inheritance at a locus in a family, this is considered equivalent to the case when it 

can be observed that an ASP shares one allele identical by descent, which is what 

is expected under the null. But in the latter case there is actually have some 
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evidence against linkage, whereas in the former case there is in fact no evidence at 

all since nothing has been observed at all. This effect can be quite drastic. Figure 2 

shows the information content (IC, as calculated by Genehunter (Kruglyak et al. 

1996)) along the linked chromosome in one replicate of studies A and C each, 

both having markers with 6 equifrequent alleles, spaced 15 cM apart. The disease 

locus is highlighted. At the locations of the markers, the information content is 

almost 90%, and it drops to less than 60% between markers.  
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Figure 2: Information content along the linked chromosome for a replicate of study type A 
(dashed line) and C (solid line). The position of the disease locus is denoted by a dot. 
 

 The corresponding NPLpairs statistics for this replicate are shown in figure 3. 

For study C, which has a marker close to the disease locus and therefore high 

information content at this position, the NPLpairs score is 4.03 at the disease locus 

(p-value=0.000025) and 4.21 at the next marker (p-value=0.000011). For study A, 

on the other hand, the maximal score is only 3.0 (p-value=0.00297) at the flanking 

marker and 2.84 at the disease locus (p-value=0.00216).  
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Figure 3: NPL Score along the linked chromosome for a replicate of study type A (dashed line) 
and C (solid line). The position of the disease locus is denoted by a dot. 
 

 Table 8 shows the power of the single studies of type A-D and their 

respective average information content at the disease locus in scenario 1. The 

distance between the disease locus and the closest marker can be seen in table 3. 

As expected, they all have considerably less power than under the assumption of 

full information but more power than estimated by Krawczak’s method. At a 

suggestive α level, power estimates for 80 simulated sib pairs are between 6% and 

13%, compared to 23% maximum power. As power for this level cannot be 

calculated by the ASP Power Calculator, the power at a significance level of 0.01 

is also compared. Here, the maximum power would be 55%, estimates in this 

simulation study vary between 34% and 45%, while Krawczak’s program gives 

20% to 42%, and Chen and Deng’s program calculates 30% to 51%.  

 For the microsatellite markers, the power is lower in study type A (where the 

closest marker is 7 cM from the disease locus and the average IC across families 

at the disease locus is 0.58) than in study type C (closest marker 1 cM from 

disease locus, average IC at disease locus is 0.78). The difference in power of 
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these two designs is due to the combined effect of less than perfect information 

and recombination between disease locus and the closest marker, which cannot be 

disentangled in this setup. The multipoint analyses of the SNP maps B and D have 

similar power and average IC at the disease locus, comparable to the 

microsatellite design C. Splitting the samples C and D into two studies of 40 pairs 

each decreases the power by more than half, at stringent α levels even to a quarter. 

 The power of single studies under scenarios 2 and 3 is given in table 9. As 

expected, scenario 2 has similar power to scenario 1 and scenario 3 has lower 

power. 

 
Table 9: Power of single studies at different significance levels (percentage of replicates with a p-
value below the respective level at a locus within 15 cM in both directions of the true disease 
locus, out of 1000 replicates) under scenarios 1 to 3 at a significance level of 0.00074. 

Study type Scenario 1:  
multiplicative, GRR = 4 

Scenario 2:  
recessive, GRR = 4 

Scenario 3: 
multiplicative, GRR = 3.5 

A 6.3±0.8 6.3±0.8 4.2±0.6 

B 12.6±1.0 10.0±0.9 4.1±0.6 

C 11.2±1.0 11.8±1.0 5.4±0.7 

D 10.9±1.0 10.5±1.0 4.8±0.7 

C_1 3.9±0.6 3.8±0.6 2.3±0.5 

C_2 3.4±0.6 3.6±0.6 1.7±0.4 

D_1 3.2±0.6 3.6±0.6 1.3±0.4 

D_2 3.1±0.5 3.9±0.6 1.5±0.4 

 

 

4.2.2 Power of meta-analysis methods 

The power of the different meta-analysis methods and weighting schemes to 

combine four studies of equal size (80 ASPs each) is shown in table 10. Again, it 

is always below the maximum power for 320 ASPs. The highest power, close to 

80% at the suggestive level, is achieved by the Z-score combination methods 

proposed here. Among them, weighting with information content or distance 

parameter seems to have slightly better power at all levels. The p-value based 

methods (Fisher, TPM, GSMA) have around 65% power at the suggestive level. 

Here, the lowest power is estimated for Fisher’s method, but at the level of 

significant linkage Fisher’s procedure has higher power than TPM and GSMA.  
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Table 10: Power of combined analyses of four studies A-D (N=80 each, scenario 1, multiplicative, 
GRR=4) at different significance levels (percentage of replicates with a p-value below the 
respective level at a locus within 15 cM of the true disease locus out of 1000 replicates). 

Method α = 0.01 α = 0.00074 α = 0.000022 

Zunweighted 96.6±0.6 77.3±1.3 37.5±1.5 

ZIC 97.0±0.5 79.8±1.3 39.7±1.5 

ZDist 96.9±0.5 79.5±1.3 39.6±1.5 

GSMA 87.8±1.0 62.8±1.5 26.2±1.4 

Fisher 87.5±1.0 62.4±1.5 28.3±1.4 

TPM 94.0±0.8 68.2±1.5 27.9±1.4 

 

 For the recessive scenario with a very similar effect size, the Z-score 

combination methods have a power of 70% (unweighted) to 73% (weighted with 

IC or distance) at a suggestive level, while Fisher’s method and GSMA have 

about 57% and TPM 63% power (table 11). In a scenario with a smaller effect 

size (multiplicative with GRR of 3.5), the Z-score methods reach 42% to 46% 

power, while Fisher’s method has 28%, GSMA 31% and TPM 33% power. 

 
Table 11: Power of combined analyses of four studies A-D (N=80 each) at different significance 
levels for scenarios 2 and 3 (percentage of replicates with a p-value below the respective level at a 
locus within 15 cM of the true disease locus out of 1000 replicates). 

Method Scenario 2, recessive Scenario 3, multiplicative, GRR 3.5 

 α = 0.00074 α = 0.000022 α = 0.00074 α = 0.000022 

Zunweighted 69.9±1.5 30.6±1.5 42.4±1.6 10.7±1.0 

ZIC 72.4±1.4 33.4±1.5 45.8±1.6 11.9±1.0 

ZDist 73.3±1.4 33.8±1.5 46.1±1.6 12.2±1.0 

GSMA 56.4±1.6 23.1±1.3 30.9±1.5 7.4±0.8 

Fisher 57.0±1.6 22.7±1.3 28.5±1.4 6.9±0.8 

TPM 62.6±1.5 23.7±1.3 33.4±1.5 6.5±0.8 

 

 The results for different study sizes are given in table 12. Here, the general 

picture is similar. One should keep in mind that, in each simulation, these are the 

same families as before, just split up differently, thus the power reached in table 

12 has to be compared with that in table 10. However, only for the Z-score 

combination methods weighted additionally with the number of affecteds, the 

results are exactly the same (the small difference when weighting with IC occurs 

because IC is calculated on either 40 or the whole 80 families and thus differs 
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marginally). For all methods that do not account for study size, the power is 

slightly lower in the setting with the smaller samples. The Z-score methods 

disregarding sample size lose around 3 percentage points in power (in the 

following presentation differences in power will still be reported as percentage 

points using the % symbol for convenience). Fisher’s method seems to be the least 

robust in this respect, the power drops from 62% to 53%. For TPM the difference 

is about 4%, for GSMA only about 2% (at the suggestive level).  

 
Table 12: Power of combined analyses of six studies A-D2 (N=80 or 40) of scenario 1 
(multiplicative, GRR=4) of different study size at different significance levels (percentage of 
replicates with a p-value below the respective level at a locus within 15 cM of the true disease 
locus out of 1000 replicates). 

Method α = 0.01 α = 0.00074 α = 0.000022 

Zunweighted 96.1±0.6 75.7±1.4 35.8±1.5 

ZSize 96.6±0.6 77.3±1.3 37.5±1.5 

ZIC 96.7±0.6 76.9±1.3 36.9±1.5 

ZIC+Size 96.8±0.6 80.1±1.3 39.9±1.5 

ZDist 96.7±0.6 76.6±1.3 37.0±1.5 

ZDist+Size 96.9±0.5 79.5±1.3 39.6±1.5 

GSMA 87.5±1.0 60.5±1.5 24.1±1.4 

Fisher 81.9±1.2 53.0±1.6 20.5±1.3 

TPM 93.0±0.8 64.3±1.5 24.5±1.4 

 

 This picture is similar for the other simulated disease models (table 13), 

where the power of Fisher’s method drops from 28% to 23% (multiplicative 

model with smaller effect) or from 57% to 49% (recessive model) at the 

suggestive level. The power of TPM drops by 3% and that of GSMA by about 

1%, whereas the Z-score methods still have the same power as with four studies of 

equal size. 
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Table 13: Power of combined analyses of six studies A-D2 (N=80 or 40) at different significance 
levels for scenarios 2 and 3 (percentage of replicates with a p-value below the respective level at a 
locus within 15 cM of the true disease locus out of 1000 replicates). 

Method Scenario 2, recessive Scenario 3, multiplicative, GRR 3.5 

 α = 0.00074 α = 0.000022 α = 0.00074 α = 0.000022 

Zunweighted 69.2±1.5 29.0±1.4 42.5±1.6 9.7±0.9 

ZSize 69.9±1.5 30.6±1.5 42.4±1.6 10.7±1.0 

ZIC 70.6±1.4 31.5±1.5 44.1±1.6 11.0±1.0 

ZIC+Size 72.3±1.4 33.6±1.5 46.0±1.6 11.8±1.0 

ZDist 71.3±1.4 31.8±1.5 44.6±1.6 11.3±1.0 

ZDist+Size 73.3±1.4 33.8±1.5 46.1±1.6 12.2±1.0 

GSMA 55.3±1.6 19.1±1.2 30.7±1.5 7.5±0.8 

Fisher 47.8±1.6 17.9±1.2 22.9±1.3 4.2±0.6 

TPM 59.6±1.6 21.9±1.3 30.7±1.5 5.8±0.7 

 

 In a single replicate, there can be large differences for the p-value methods if 

the samples C and D are split or not, for instance in one replicate Fisher’s method 

gave a p-value of 1 at the disease locus when six studies were combined and a p-

value of 0.065 when the same families where arranged in four samples. For 

another replicate, the TPM method gave p-values of 0.0086 and 0.0659 at the 

disease locus, depending on the arrangement of families into subsamples. So, with 

the same data, the result can vary between significant to very far from significant. 

When a meta-analysis is classified as having a significant or not significant result 

at a certain level (again counting as significant a p-value below the significance 

level at any locus within 15 cM of the disease locus), the concordance between 

these results when arranging the families into six or four studies can be compared 

in a 2-by-2 table (with rows significant/not significant and columns 4/6 studies 

and one entry for each replicate). The Kappa coefficient of this concordance over 

the 1000 replicates is 1 for the weighted Z-scores, 0.84 for the TPM method, 0.71 

for Fisher’s method and 0.55 for GSMA on the 0.000022 level (on the 0.00074 

level the Kappa for GSMA is 0.64, the other methods have the same Kappas as 

before). As can be seen, the advantage of the Z-score combination methods is 

even greater when studies differ in size. 
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4.2.3 Type 1 error (significance level)  

The following presentation of the type 1 errors (tables 14 and 15) is intended to 

give only an indication of what can be expected with these meta-analysis methods. 

1000 simulations are generally not enough to estimate the type 1 error rate with 

appropriate precision. Thus, only values to a pointwise level of 0.01 are reported 

in detail (for the other levels less than 3 false positives occurred with each method 

in 1000 simulations). These are pointwise significance levels which imply a 

different type 1 error in a genome wide analysis with multiple correlated markers. 

According to the formula by Lander & Schork (1994) in the simulated setup (one 

90 cM chromosome) a pointwise α=0.01 corresponds to a chromosome wide 

α*=0.107, if an analysis with an infinitely dense marker map is assumed. Since 

this assumption is never fulfilled, the resulting correction from chromosome-wide 

to pointwise is too conservative. Thus the equivalent chromosome-wide level will 

in fact be considerably smaller.  

 The simulation of the single studies yields the chromosome-wide levels 

which correspond to the chosen pointwise levels in the chosen setup. For the 

single studies, chromosome wide false positive rates range between 0.022 and 

0.045 (table 14), for the meta-analyses with p-value methods 0.013 to 0.033 and 

for the Z-score combination methods 0.016 to 0.051 (table 15). Thus, within the 

limit of precision attainable by 1000 simulations, the type 1 error rates seem to be 

acceptable. The three p-value methods might be slightly more conservative than 

the Z-score combination methods.  

 
Table 14: False positive rates at a significance level of 0.01 (percentage of replicates with at least 
one p-value below 0.01 on an unlinked chromosome of length 90cM) for single studies. 

Study type Scenario 1:  
multiplicative, GRR = 4 

Scenario 2:  
recessive, GRR = 4 

Scenario 3: 
multiplicative, GRR = 3.5 

A 3.4 2.5 4.2 

B 3.4 4.3 4.3 

C 3.6 4.3 4.1 

D 4.0 3.0 3.5 

C_1 2.2 3.9 2.7 

C_2 4.5 3.8 4.4 

D_1 4.0 2.7 4.5 

D_2 3.6 2.9 3.7 
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Table 15: False positive rates at a significance level of 0.01 (percentage of replicates with a p-
value below 0.01 for an unlinked chromosome of length 90cM) for combined analyses of four 
equally sized studies A-D (N=80 each) and of six studies A-D2 (N=80 or 40) of varying size. 

Four equally sized studies Six studies, varying size Method 

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

Zunweighted 3.8 4.0 1.6 3.8 4.2 1.9 

ZSize - - - 3.8 4.0 1.6 

ZIC 4.4 4.8 2.7 4.6 4.7 2.9 

ZIC+Size - - - 4.6 5.0 2.6 

ZDist 5.1 5.0 3.2 4.9 5.0 3.2 

ZDist+Size - - - 5.1 5.0 3.2 

GSMA 2.2 2.6 1.3 2.6 3.3 1.9 

Fisher 2.1 2.9 3.2 2.6 1.7 2.3 

TPM 2.8 2.8 2.2 2.3 3.0 1.9 
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4.3 Discussion of the simulation study 

This simulation study presents the first comparison of methodology for meta-

analysis of genome wide linkage studies. In the simulated scenarios, under three 

different trait models with different genetic effect sizes, the p-value methods that 

have been applied so far in meta-analysis have consistently lower power than a 

direct combination of Z-scores. The unweighted combination of Z-scores gives 

9% to 15% (9% to 13%) more power than the p-value methods at the suggestive 

(significant) level when combining studies of the same sample size (table 10 for 

the multiplicative model with GRR of 4). In the normal situation that studies are 

of different size, a weighting with size raises the power of the Z-score method by 

2% to 3% compared to the unweighted method (table 12). And while this 

weighted method has the same power if the complete sample of families is split up 

into four or six studies, the p-value methods lose up to 9% power. And even more 

importantly, for a single replicate, the weighted Z-score combination gives the 

same result, while the p-value methods can give drastically different results on 

different partitions of the same data. In terms of power, Fisher seems to be the 

least robust, in terms of concordance of results, GSMA was the least robust when 

going from 4 to 6 studies with the same total sample.  

 When weighting with the additional information on marker map and 

information content as proposed here, the power increases by another 2% to 3%. 

Even though this gain is comparatively small, it is consistent across these 

simulations and as it comes at no additional cost, it should be exploited when the 

necessary information is available. The total difference in power between the best 

weighted Z-score combination and the p-value methods is 16% to 27% and 15% 

to 19% at the suggestive and significant level, respectively for the multiplicative 

model with GRR 4. For the recessive model it is 14% to 26% and for the 

multiplicative model with GRR 3.5 it is 13% to 15% at the suggestive level. The 

magnitude of possible gain in power depends on the specific situation, e.g. how 

much the studies differ in marker spacing and informativity. But in general, low 

information reduces power which can be interpreted as reducing the effective 

sample size of a study. 

 The false positive rates at a nominal 0.01 level were slightly higher for the Z-

score methods than for the p-value methods but all very close to the expected 

level in this simulated setup.  
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 The 15 cM microsatellite maps that were simulated represent gaps that are 

larger than the average marker spacing in genome scans, but it is common to have 

some gaps of at least this size (many published scans have about 10 cM average 

spacing, recent ones 3 to 5 cM but early ones even have 20 cM and all of these 

have to be included in a meta-analysis). And if the disease locus is in one of these 

gaps, the power to detect linkage is reduced substantially as could be seen in the 

individual studies. Situations with even worse constellations around the disease 

locus can occur by chance, e.g. when including candidate studies and sparser 

genome scans. 

 In the published applications of the p-value methods, study size and map 

information are usually ignored, even though appropriate weights could be 

integrated. However, in contrast to weighted Z-scores, the distribution of a 

weighted GSMA method under the null has to be derived by extensive 

simulations, which might be the reason why it is not performed in practice. For 

TPM and Fisher’s p-value combination, a weighting of studies, especially with 

sample size, but extensible to other weights as well, has been proposed (Good 

1955; Zaykin et al. 2002). It also relies on simulations under the null, since the 

exact distribution can be given only in special cases. Again, this improvement has 

not been widely adopted in applications of genetic epidemiology. For instance, 

Wu et al. (2002), and Badner & Gershon (2002a; 2002b) combine samples using 

modeifications of Fisher’s method without accounting for their very different 

sizes. Other extensions of weighting schemes, such as for differences in family 

structures, ascertainment, or general aspects of study quality can be developed. 

The weights proposed here are a first approach to address some of the most 

common differences between studies. The weighting by distance to the closest 

marker has the advantage of being independent of the observed genotype data and 

could be further refined by including a measure of the marker informativity such 

as polymorphism information content (PIC, Botstein et al. 1980), linkage 

information content (LIC, Guo and Elston 1999; Guo et al. 2002) or multipoint 

PIC value (MPIC, Rijsdijk and Sham 2002). 

 As noted above, it seems that the deviation under the alternative model is 

better captured by the Z-scores than by p-values, independent of the weighting. As 

a standard multipoint analysis often includes the calculation of NPL-scores, 

combining the Z-scores instead of p-values would be straightforward. The 
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advantage of the Z-score method can also be utilized for genome scan data 

analyzed with any other linkage statistic, as Z-scores can be derived from p-values 

by the inverse of the normal distribution. This procedure was apparently 

introduced by Stouffer (1949, as cited by Hedges and Olkin 1985) and is also 

known as the inverse normal method. In general, caution must be applied when 

combining results from different test statistics - p-values as well as Z-scores - that 

have different underlying assumptions on the disease model.  

 In their article introducing TPM, Zaykin et al. (2002) compare their method 

with Fisher’s and the inverse normal method, among others. They directly 

simulate Z-scores under the null and under a shift alternative and investigate the 

situation where only some of the null hypotheses are false. This corresponds to 

genetic heterogeneity between studies, where only in some samples a disease gene 

segregates at the studied position. In this case, the TPM method performed best, 

and the power of Fisher’s procedure is higher than that of the inverse normal 

method. When all null hypotheses are false, i.e. the same disease locus is present 

in all studies, the inverse normal method has much higher power than TPM. For 

this simulation study, data was simulated under the same alternative for all 

studies, i.e. under the same disease model for all studies and thus similar results 

were obtained. The power of a meta-analysis compared to individual studies is 

highest for genes common to all investigated populations - for population specific 

genes the power necessarily drops. TPM accounts for possible genetic 

heterogeneity and therefore is less efficient when this is not present. Optimal 

methods for combining statistical tests depend on the alternative, especially 

whether all or just few of the null hypotheses are false. Some theoretical work can 

be found in a review article by Folks (1984), who investigates in which situations 

the inverse normal method, Fisher’s method or truncation methods are better. 

Further simulations for other realistic models of gene effects and heterogeneity 

within or between studies might be of interest, since a generalization of results 

always depends on the simulated model. The methodology investigated here was 

developed for studies that supposedly are homogeneous in this respect and 

simulations were done accordingly. The proposed weighting schemes correspond 

to fixed effects meta-analysis (Hedges and Olkin 1985). To account for genetic 

heterogeneity between studies, a random effects meta-analysis could be more 

appropriate (e.g. Li and Rao 1996). If the average number of alleles shared 
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identically by descent between affected sib pairs is the parameter of interest, the 

estimated numbers of sib pairs sharing 0, 1 or 2 alleles are necessary to calculate 

the appropriate between study variance of the parameter estimates (Gu et al. 

2001). However, most commonly used linkage software programs do not output 

the necessary statistics which greatly hampers such a random effects analysis. 

McQueen et al. (2006) recently proposed a bootstrap variance estimator for the 

average number of alleles shared identically by descent between affected sib pairs 

to be used in a random effects meta-analysis. Again, this relies on the availability 

of detailed data, here the family specific IBD estimates, which can be output by 

analysis programs such as Genehunter (Kruglyak et al. 1996) or Merlin (Abecasis 

et al. 2002), but are usually only available if the raw genotype data are also 

available. NPL scores and information content on the other hand are normal 

output of linkage programs for affected relative pairs and genome-wide NPL 

scores are usually also published. If conducting a meta-analysis with studies from 

very diverse populations it might be advisable to first combine all samples to find 

common genes and additionally analyze combinations of more closely related 

subsets to identify population specific genes (as done by Wu et al. 2002).  
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5   Application of the Meta-Analysis Method: the GAW12 

Asthma Data 
 

 

 

 

Identifying susceptibility loci for complex diseases such as asthma with the use of 

genome scans is a difficult task. One family study alone seldom yields statistically 

significant results for susceptibility genes of moderate effect. Higher power can be 

expected with a pooled linkage analysis of the combined raw data or a meta-

analysis of outcomes from different genome scans. Methodological problems are 

how to account for differences in population, ascertainment and family structure, 

phenotype definition and marker sets between studies. Weighting schemes for 

combining results from several genome scans are proposed. The GAW 12 asthma 

studies vary, partly extremly, in sample size, marker density and information 

content at each chromosomal location. For the combined analysis a simple sum or 

average of individual scores cannot account for these differences. To avoid 

confounding, different approaches of weighting the scores accordingly are 

investigated.  

 For a genome scan using multipoint linkage analysis of the pooled data sets, a 

common marker map is necessary, consisting of all markers genotyped in any one 

of the studies. The GAW 12 studies use at least partly different markers. From 

existing, publicly available marker maps the order and distances of all markers 

could not be determined unambiguously. Multipoint linkage analysis with a dense 

marker set has been reported as sensitive to misspecification of marker order and 

intermarker distance (Halpern and Whittemore 1999). Two different maps were 

constructed and used for multipoint linkage analysis to compare the results for 

discrepancies attributable to map differences.  

 

5.1 Data sets  

The data of GAW12 problem 1 consists of four genome scan and five 

chromosome 5 data sets: the genome scans from the Collaborative Study on the 
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Genetics of Asthma (CSGA, Xu et al. 2001), the Hutterites (Ober et al. 2000), 

Germany (Wjst et al. 1999), and Busselton in Australia (Daniels et al. 1996). The 

chromosome 5 data sets are from the Consortium on Asthma Genetics (COAG, 

Lonjou et al. 2000) and come from Southampton, Finland, Perth, Oxford and 

Freiburg as described by Palmer et al. (Palmer et al. 2001). The binary phenotype 

asthma was considered and all pedigrees with relevant affecteds for linkage 

analysis were used (see table 16), i.e. those with at least two affected genotyped 

members excluding parent-child pairs. Because of pedigree size limitations for 

multipoint linkage algorithms one pedigree (No.97) of the Oxford sample had to 

be divide into two families and the Hutterite pedigree was split into 14 families 

with at least two affected genotyped members by discarding most of the 

unaffected and untyped individuals.  

 
Table 16: Families with at least 2 asthmatics relevant for linkage analysis in the GAW12 data sets. 
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Families 225 88 97 52 43 30 14 14 4 

Relevant 
Affecteds 596 214 200 122 115 81 48 30 8 

Subjects 1492 517 415 399 235 222 174 70 20 

 

5.2 Methods 

5.2.1 Common Marker Map Construction 

A common marker map that contains all markers typed in any study was first 

constructed. This map is based on the Marshfield comprehensive human genetic 

linkage map (Broman et al. 1998) and was completed for markers without 

Marshfield distance by using genotype information of the GAW 12 studies. To 

assess sensitivity of the analysis method to marker order and intermarker 

distances, two maps that differed slightly in marker order and considerably in 

intermarker distances were assembled.  

 For each study marker name and order was provided. Marker distance (cM 

from p-ter) was only provided for the Hutterite and CSGA data sets. There were a 

total of about 900 markers across studies. 
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The problems for the construction of the common map were: 

• Choice of a reference map. 

• Location assignment of markers used in a study but missing in the reference 

map. 

• Handling of different markers located at the same position. 

 Two different combined maps resulted, which are based on the same 

reference map, but with different handling of location assignment and same 

positions.  

 1. Reference map: The sex-averaged Marshfield comprehensive human 

genetic linkage map (http:// research.marshfieldclinic.org/genetics/, Broman et al. 

1998) was used as the reference map. For an entered list of markers corresponding 

distances are given, which is especially helpful for a large number of requested 

marker locations. The locations of typed markers in the Hutterite study correspond 

to the Marshfield map (rounded to one cM). If available, distances given by the 

CSGA or Hutterite study descriptions were used for markers missing in the 

Marshfield map. 

 2. Location assignment: Markers not appearing in the reference map were 

assigned a location in two different ways yielding slightly different maps. Given 

the GAW 12 data sets the order-based map utilizes only the order of markers and 

the data-based map additionally incorporates genotype information. For the order-

based map, missing markers were assigned a position corresponding to the 

provided order and equidistant to the flanking markers of the Marshfield map. For 

the data-based map, the location were assigned by two point and multipoint 

linkage analysis using the MLINK and LINKMAP options of LINKAGE (Lathrop 

et al. 1984) and the available genotype data. Based on the given marker order, 

linkage analyses with the closest typed markers and their Marshfield positions 

were performed. When several adjacent markers were missing, their relative 

positions were assigned by combining the results for these markers relative to 

each other and with neighboring markers of the Marshfield map.  

 3. Same position: For multipoint linkage analysis different markers have to be 

assigned distinct positions. In the Marshfield map markers separated by little or 

no genetic distance quite often have no recombination events in the CEPH 

families used and therefore are presented with the same position in arbitrary order. 

Markers from different studies with identical Marshfield map positions were 
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merged to one artificial marker in both maps. For the order-based map markers 

analyzed in the same study with the same position in the Marshfield map were set 

0.01 cM apart with their order as given in the study. For the data-based map they 

were tested for recombinations using two point linkage analysis. If no 

recombination was observed, the same procedure as in the order-based map was 

used. Otherwise markers were located by multipoint linkage analysis.  

 

5.2.2 Linkage analysis and weighting schemes for meta-analysis 

Multipoint linkage analysis of each study was performed with the ALLEGRO 

program (Gudbjartsson et al. 2000) an improved version of Genehunter (Kruglyak 

et al. 1996). For each pedigree the nonparametric linkage score statistic Zlr (using 

the exponential model as recommended by Kong and Cox 1997) was calculated at 

each position where a marker was typed in any of the studies. This score is based 

on IBD sharing in affected relative pairs. The pointwise scores were averaged 

using different study specific weights. Multipoint linkage analysis gives scores for 

every position along the genome and thus enables the combination of results from 

studies in which different marker sets were analyzed. However, when adding 

scores for each position across studies the differences in study size (number of 

affecteds) as well as the information content of each study at that position (or the 

distance to the next typed marker as an alternative measure of information 

content) should be taken into account so as not to bias the results towards the null. 

This can be done by using appropriate weights on the study scores. 

 The following weighted and standardized statistics were used (as defined in 

chapter 3): 

Z_1: equal weights 

Z_a: weights relative to the number of relevant affecteds included in the study 

Z_ic: weights relative to the number of relevant affecteds and to the information 

content of the considered locus in the specific study. As a measure for information 

content, the per-family information measure calculated in ALLEGRO was used.  

 Z_d2, Z_d10: weights relative to the number of relevant affecteds and an 

exponential function of the distance of this locus to markers typed in that study. 

The distance to the closest typed marker was calculated and used as argument of 

the exponential function with parameter -1/2 or -1/10. 
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 These weighting schemes were compared with the Genome Search Meta-

Analysis Method (GSMA) proposed by Wise et al. (1999). As described in 

chapter 2, the chromosomes are split into bins of approximately equal length for 

GSMA. A bin width of approximately about 30 cM was used as proposed by the 

authors, resulting in 113 bins. For each study, the most significant result in each 

bin is recorded. The bins within one study are ranked accordingly. Then the ranks 

for each bin are summed across all studies. The exact distribution of the summed 

ranks under the null hypothesis of no susceptibility locus in a specific bin is given 

by the authors. The markers in the Busselton study are spread rather unevenly 

over the genome resulting in six bins containing no Busselton marker. One other 

bin contained no CSGA marker. Even increasing the bin size from the 

recommended 30 cM to 40 cM left some empty bins and created the additional 

problem on chromosomes 21 and 22 of using either one bin considerably larger or 

two bins considerably smaller than all other bins. Therefore 30 cM bins were used 

and only the ranks 1 to 53 and 60 to 113 were assigned to the Busselton data. 

Rank-sums and p-values for those bins were calculated as if there were only three 

studies. GSMA can only be used for the four genome scans and is not valid for the 

COAG data of the chromosome 5 candidate region. Application of GSMA to only 

a candidate region would violate the assumption of at least one marker in each bin 

and the distribution of the ranks of the candidate region alone would differ from 

their distribution among ranks in the whole genome. At GAW12 Wise presents an 

extension of GSMA to this situation where the null distribution is approximated 

by simulation (Wise 2001). 

 

5.3 Results 

5.3.1 Common Marker Map Construction 

For a total of about 800 markers the map locations could be assigned by the 

Marshfield linkage map. For about 100 markers the position was missing or more 

than one marker was at the same position in the Marshfield map.  

 The data-based and order-based maps contain 832 or 828 markers, 

respectively. Some markers merged into one marker in the order-based map could 

be assigned different positions in the data-based map. One marker (D3S11), 

allegedly located on chromosome 3 in one study, was positioned on chromosome 

2 (for both maps) by the linkage analysis using the genotype data of this study in 
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agreement with several other physical and linkage maps. The data-based and 

order-based maps differ as follows:  

 1. Differences in location assignment: 47 markers were analyzed in at least 

one study, but were not contained in the Marshfield map or in the CSGA and 

Hutterite study description. These markers are located at different positions in the 

two constructed maps, the differences amounting to 1 cM for 13 markers, 2-4 cM 

for 16 markers, 5-10 cM for 14 markers and more than 10 cM (11-23 cM) for 4 

markers.  

 2. Differences for same positions: For a total set of 52 markers, two or more 

were located at the same position in the Marshfield map and genotyped in a single 

study. For 13 out of these 52 markers the positions in the two constructed maps 

were identical, since linkage analysis did not show any recombinations. For 39 

markers linkage analysis resulted in positions which differed from the original 

reference map. The localization of these 39 markers in the two constructed maps 

differs by 1 cM in 15 cases, by 2-4 cM in 13 cases, by 5-10 cM in 9 cases and 15 

cM in two cases. 

 To compare the results of the different maps, the analysis where Z-scores for 

each study were weighted relative to the number of relevant affecteds in the study 

and the information content calculated by ALLEGRO is considered. The results of 

this linkage analysis are presented as p-values yielded by the overall score statistic 

for each genome position. In general, differences in p-values for the two 

constructed maps were negligible, even where markers were differently 

positioned. There are a few regions for which small differences in p-values can be 

noted. Figure 4 shows the results for the region with the largest differences across 

the whole genome which was on chromosome 5 (130-156 cM). Figure 5 shows 

the corresponding maps.  
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Figure 4: Multipoint linkage results using ALLEGRO for chromosome 5 based on the data-based 
map (solid line) and the order-based map (dotted line). 
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Figure 5: Chromosome 5, region 130-156 cM. Presented are markers which are in this region for 
both maps.; * indicates discrepancies for the same gene due to different data descriptions. 
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 The maximal difference is at position 137 cM with p-values 0.172 and 0.120 

for the data-based and order-based map, respectively. There were three positions 

(all within 3 cM) with differences in p-values greater than 0.04. Considering 

individual markers, the differences in p-values are maximal at marker D5S413 

(data-based map: 156 cM, p-value 0.287; order-based map: 150.01 cM, p-value 

0.157) and marker ADRB27 (data-based map: 155 cM, p-value 0.271; order-

based map: 149 cM, p-value 0.140). There were eight more markers in this region 

with differences over 0.05. 

 

5.3.2 Linkage analysis and weighting schemes for meta-analysis 

In the following the results of the combined analyses (figure 6, rows 1 – 6) are 

elucidated and compared to those of the single studies (figure 6, rows 7 – 10) to 

assess the weighting schemes. Here the data-based map was used as a common 

marker map. 

 GSMA: GSMA gives by design only one p-value per bin, none below 0.01. 

The lowest p-value is attained for the last bin of chromosome 11. 

 

 



APPLICATION: ASTHMA 
___________________________________________________________________________________________________ 

 54

Figure 6: P-values along the whole genome for GSMA (row 1), the different combined scores 
Z_1, Z_a, Z_ic, Z_d2, Z_d10 (rows 2 - 6) and each genome wide study (rows 7 – 10); Note: 
inverse logarithmic scale with a line indicating a screening level of 0.01. 
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Z_1: Of the combined scores, the unweighted Z_1 is closest to GSMA. 

Again, the p-values are far from significant and the minimal values are higher 

than those obtained for the single studies. However, the combined minimal p-

values are considerably smaller than those obtained by GSMA: below 0.01 at 

D5S421, 14cM away from the smallest value for the Hutterites, around D6S291, 

reflecting the German result supported by Busselton data, and at D12S327, 

combining the low values of German and Hutterite data, while the lowest values 

for the Hutterites 35cM away are leveled out by the other studies. 

 Z_a: When each study is weighted by the number of relevant affecteds 

slightly lower p-values were observed for the combined score at regions distinct 

from those indicated by Z_1. On chromosome 1 the low p-value of the German 

study of 0.009 corresponds to 0.002 in the combined analysis. The p-value 0.003 

of the CSGA study at the marker BETA corresponds to a p-value of 0.006 in the 

combined analysis, for D19S886 the p-value of 0.004 remains, while the peak on 

chromosome 12 is slightly shifted. Scores from the larger studies (CSGA, 

Germany) have considerably more weight. Thus small p-values from these studies 

are hardly influenced by other studies.  

 Z_ic: Use of the information content and the number of relevant affecteds 

gives a similar picture. Because of large differences in study size, the information 

content has a relatively small impact on the weights but close examination shows 

small differences between Z_ic and Z_a in p-values and peak locations in most 

regions. 

 Z_d10: The weighted score Z_d10 again shows much similarity to Z_a 

because the map density has only limited influence on the weights compared to 

the number of relevant affecteds per study. The agreement with Z_ic is even 

greater, reflecting the correspondence of data driven information content and 

theoretically chosen distance measure. However, p-values differ to some degree as 

for example Z_d10 gives a p-value below 0.01 for chromosome 9 which Z_a and 

Z_ic do not. 

 Z_d2: The results for the weighted score Z_d2 show much more variation. 

For markers untyped in a study the distance measure can lower the weights so that 

the combined score could essentially be based on a single or two smaller studies 

only. P-values below 0.01 were obtained on chromosomes 4 and 5 and in the same 
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regions as indicated by Z_ic on chromosomes 1, 6, 9, 11, 19 . A suggestive result 

was reached at the marker BETA with a p-value of 0.0006. 

 For all methods the single p-values below 0.01 at D7S528 and D10S1248 for 

the German data, the distinct regions for German and Busselton data on 

chromosome 2, and the broad region indicated by Busselton data on chromosome 

22 are leveled out by the other studies. 

Figure 7 gives the combined results and individual weighting functions for all 

nine studies on chromosome 5. To investigate the direct impact of the weighting 

functions, the individual study scores Zlr need to be considered. In addition to the 

number of relevant affecteds, the information content or the distance function, 

respectively, calculated for each study and each marker yields the basis for the 

different weighting functions. Figure 7 displays the results for chromosome 5 for 

individual studies ordered in descending order of the number of relevant affecteds 

(see table 16). The first row shows the p-values for the indicated scores in the 

combined analysis. Among the remaining rows the first column shows the p-

values for the score Zlr for each individual study. The next columns, denoted by 

Z_ic, Z_d10, Z_d2 present the information content and the distance function, 

respectively, on a scale from 0 to 1 which yield the weighting functions for the 

corresponding score. 

 There is basically zero weight for the COAG studies outside the candidate 

region and very high weight within. All studies show high weights within the 

candidate region. The weights for Z_ic are smoother than the ones incorporating 

marker distance. Z_d2 displays gaps between markers with basically zero weights 

especially for the genome scan data. Z_d10 displays a reduction of weights in 

marker gaps rather similar to Z_ic, with higher weights than Z_ic at the typed 

markers. Z_d10 seems to give higher influence to a wider candidate region than 

Z_ic. Note that the information content and distances measures given in figure 7 

will be weighted again by the number of relevant affecteds such that their 

influence decreases rapidly with descending order in the figure. 

 



APPLICATION: ASTHMA 
___________________________________________________________________________________________________ 

 57

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7: Combined and individual p-values, information content and distance measure for 
chromosome 5. Row 1: p-values for the indicated combined scores, remaining rows: a) Column 1: 
individual p-values of the single studies, column 2: information content, column 3&4 distance 
measure on which weighting functions for indicated scores are based (b) scale 0-1 for weights, 
omitted); Map distance omitted.  
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5.4 Discussion 

Differences in the linkage results based on the two constructed maps must be due 

to differently placed markers. Hence, for the most part of the genome differences 

were expected to be negligible. However, even around the differently placed 

markers, only a few differences could be found with a large effect on the absolute 

p-value. No regions with p-values under a screening level of 0.01 could be 

identified in this combined analysis. Thus in the current situation, none of the 

differences due to the marker maps are relevant for the interpretation of results. 

The largest differences can be seen for a candidate region on chromosome 5 

which was available for all data sets, including very small studies. Here, the 

differences in the marker maps are largest, since the Marshfield map, which 

contains only anonymous markers but not candidate genes, did not contain many 

markers of this region. 

 Overall are these asthma linkage results not sensitive in a relevant manner to 

the differences in the maps. Some large differences in p-values however indicate 

that map differences could change results for linkage regions between significant, 

suggestive and even non-significant. Previous studies have shown that serious 

map misspecification can result in appreciable effects on power and false positive 

rates of multipoint linkage analysis (Halpern and Whittemore 1999; Daw et al. 

2000). Since the availability of the human genome sequence as a physical map 

(Lander et al. 2001; Venter et al. 2001), marker order should not be a relevant 

problem for linkage analysis any more. Additionally, more precise linkage maps 

have also been published (Kong et al. 2002) and recently, improved databases 

which combine information from linkage and physical maps have been published 

(Kong et al. 2004; Duffy 2006).   

 This analysis, which does not specifically incorporate heterogeneity of data 

sets, shows that suggestive regions previously identified in single data sets could 

no longer be identified in a combined analysis. This might be due to shifts in 

estimated linkage location for individual data sets. A heterogeneity test for these 

genome scans has been done by another group at GAW 12 (Babron et al. 2001), 

and it was concluded, that the studies do not show significant evidence for 

heterogeneity. However, the authors caution that this test probably has low power 

for just four different genome scan samples. 
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 An important reason for the lack of significant results may be that the 

combined sample size is still too small to identify linkage to a complex trait such 

as asthma. The whole genome scans included only 340 families, for the 

chromosome 5 candidate region 567 families were available. Given the moderate 

power of ASP linkage analysis for complex diseases, this seems to be insufficient 

to reliably identify genes involved in asthma susceptibility. The only asthma 

susceptibility gene that was by now identified by positional cloning, the ADAM33 

gene on chromosome 20p13 (Van Eerdewegh et al. 2002), was identified in a 

genome scan of 460 families with a LOD score of 2.94 and through the help of 

subsequent association studies. Linkage to this genetic region has not been 

observed in most other asthma genome scans, including those in this meta-

analysis, which gives a minimum p-value of 0.01 on chromosome 20. In further 

association studies with larger sample sizes the effect of this gene appears smaller 

than in the initial report (especially in other populations, Blakey et al. 2005; 

Holgate et al. 2006), probably due to the expected bias in effect estimates from 

initial studies for loci identified through genome wide linkage analysis (Göring et 

al. 2001). A meta-analysis of association studies estimated the odd-ratio as 1.46 

for a SNP in this gene. Therefore, this linkage meta-analysis of only 340 ASP 

families did not have sufficient power to identify this gene and probably also had 

low power for other asthma susceptibility genes. 

 The different weighting schemes are based on both the number of relevant 

affecteds and on the corresponding information content or distance measure in 

each study. The number of relevant affecteds is highly variable between the 

studies (range 8-596) and thus has overwhelming effect on the weighting 

functions. Family structures varied also considerably between studies (affected sib 

pairs to extended pedigrees) and it should be remarked that more distant affected 

relative pairs (such as e.g. second cousins) offer greater power for linkage analysis 

than close relative pairs such as siblings. Additionally the power varies whether 

connecting relatives in the pedigree are genotyped or not and a useful definition of 

the relevant sample size in a linkage study depends also on the specific linkage 

test statistic used. Taking the number of affecteds without regard for the specific 

family structures as the weighting factor is a compromise which approximates the 

relevant sample size for linkage analysis in this setting (for a more thorough 

discussion of the issue of relevant sample size, see section 6.3.4 below). The 
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results of three large studies (CSGA, Germany and for chromosome 5 COAG 

Southampton) dominate the combined scores, except if the variation in marker 

density is given extreme weight. 

 The information content measure depends not only on the informativeness of 

the observed genotypes but also on the family structure and density of the typed 

markers so that the weighting scheme for Z_ic implicitly incorporates all these 

factors. The weighting according to the distance of typed markers for Z_d2 and 

Z_d10 on the other hand depends only on the used markers but not on the actual 

data. Z_d2 might be too variable for practical use and only sensible in 

combination with a smoothing procedure.  

 The GSMA method seems to have comparatively low power. To some extend 

this can be explained by the disregarding of differences in the size of the studies 

and the set of markers used. Still, compared to the unweighted combined scores 

GSMA p-values are higher. A problem with the GSMA method arises when typed 

markers are not evenly spaced and covering each chromosome with appropriate 

bins can become impossible. The extension of GSMA to include studies covering 

only candidate regions or to incorporate weights involves extensive analysis of 

simulated data which might be too time-consuming for multipoint analysis of 

larger families. GSMA is a true meta-analytic approach adequate for published 

data, but a combined analysis using as much information of the data as possible is 

preferable. 

 Pooling or meta-analysis is the only possibility to substantially increase the 

power of genome scans to identify genes of moderate effect. Results of the pooled 

analysis of the GAW 12 asthma data as a real data application of the proposed 

methods are promising although only one problem of pooled analysis, the use of 

different marker sets, was addressed. The appropriate weighting of family data 

with large differences in marker sets is necessary to avoid bias of the results 

towards the null. The proposed methods with weighting schemes, which do not 

require the raw data but only scores, measures for weights and a common map, 

seem feasible for multi-center analysis and collaborative studies. 
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6   Application to the Quantitative Phenotype Adult Height 
 

 

 

 

Many epidemiological studies or genome scans for common diseases come up 

with large and well characterized samples. If a sufficient number of the recruited 

individuals are related and additionally DNA or genotype information is available, 

linkage analysis for several traits can be conducted. This was done in 12 

publications reporting genome scans in 28 separate samples for linkage with adult 

height (Deng et al. 2002; Geller et al. 2003; Hirschhorn et al. 2001; Perola et al. 

2001; Thompson et al. 1995; Wiltshire et al. 2002; Wu et al. 2003; Xu et al. 2002; 

Sale et al. 2005; Sammalisto et al. 2005; Willemsen et al. 2004; Liu et al. 2004). 

Most of these were performed in samples ascertained for specific diseases 

unrelated to body height such as diabetes (Wiltshire et al. 2002) or asthma (Wu et 

al. 2003) while a few were performed in population samples such as the 

Framingham Heart Study (Geller et al. 2003). 

 Adult height (stature) is a highly heritable trait, with heritability estimates 

around 0.8 (Preece 1996; Silventoinen et al. 2000; Silventoinen 2003; Xu et al. 

2002). In most of the published genome scans, heritability was also estimated 

from the study sample and reported values are between 0.69 (Perola et al. 2001) 

and 0.98 (Wu et al. 2003) (see table 19 below for the individual estimates). Height 

is a trait that follows a normal distribution in the whole population, as noted by 

Pearson and Lee already 100 years ago (Pearson and Lee 1903), who explained 

how this can be the result of many genes, each with a small, additive effect 

independent of the others, termed a polygenic model. But more recent segregation 

analyses showed also evidence for major genes on top of the purely polygenic 

inheritance (Ginsburg et al. 1998; Xu et al. 2002).  

 Many candidate genes for stature and growth-related traits have been 

proposed and studied for association. These include genes of the growth hormone-

IGF-system (e.g. GH1, GHR, GHRHR, GHSR, IGF-1, IR, STAT5b), genes 

regulating bone formation (e.g. COL1A1, BMP2, FGFR3, VDR), genes involved 
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in pituitary development (e.g. POU1F1, PROP1, LHX3, LHX4, HESX1), and 

several others (Kant et al. 2003, see also table 25 in the discussion). Studies 

relating to these candidate genes and monogenic forms of growth disorders have 

been extensively reviewed (e.g. by Palmert and Hirschhorn 2003). 

 Additionally, the genetic analysis of variation in stature can be supplemented 

by the study of genetic syndromes which include short or tall stature among their 

cardinal features, such as Noonan Syndrome (OMIM 163950), Prader-Willi 

Syndrome (OMIM 176270) and many others. In some cases, genes responsible for 

these syndromes might also have alleles which influence normal growth variation 

or the whole syndrome is caused by microdeletions which include dozens of genes 

(e.g. Prader-Willi Syndrome), just one of which might be involved in growth 

regulation. Similarly, the short stature seen in Léri-Weill dyschondrosteosis 

(LWD, OMIM 127300) and Ullrich-Turner Syndrome is caused by 

haploinsufficiency due to heterozygous deletions or mutations of the SHOX gene 

or its regulatory regions (Attie 2000; Benito-Sanz et al. 2005; Rao et al. 1997). 

Such mutations or deletions in the SHOX gene seem to be responsible for a 

fraction of patients with idiopathic short stature as well. 

 This meta-analysis of linkage genome scans for adult height was conceived 

when analysing a genome scan of the Framingham Heart Study for this phenotype 

and noting remarkable overlapping linakge peaks with some of the previously 

published genome scans for height. However, there were also other scans which 

had identified different regions that did not seem to be replicated by our own 

results. Therfore a meta-analysis of all available genome scans for the phenotype 

stature seemed highly desirable to exactly quantify the evidence for linkage in 

these regions.  

 In this chapter, the linkage scan for height in the Framingham Heart Study 

sample is presented first, followed by the meta-analysis of genome scans for adult 

height. 

 

6.1 Framingham Heart Study genome scan for height  

The Framingham Heart Study is a large epidemiological cohort study, started to 

investigate risk factors for coronary disease. The sampling approach for the 

original cohort, which was recruited on a household basis, i.e. all household 

members above a certain age where asked to participate, lead to many related 
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participants which where extended for the Framingham family study with an 

offspring cohort in 1971. 

 GAW13 provided genetic and anthropometrical data from 330 general 

pedigrees of the Framingham Heart Study. In this sample, the genetics of height 

were studied using a two-stage approach, which ensures that all individuals can be 

analyzed together. First, regression models for the phenotypes were built to obtain 

a single adjusted trait value for each individual. At the second stage, a linkage 

analysis incorporating all genotyped individuals was performed. 

 

6.1.1 Methods 

6.1.1.1 Study group 

The individuals from the Framingham Heart Study were recruited at two time 

points (the original cohort in 1948 and the offspring cohort in 1971) from the 

general population excluding those with cardiovascular diseases, heart attack, or 

stroke. Almost all participants were of Caucasian origin. From the 330 largest 

pedigrees with 4692 members, DNA was available for 1702 individuals, who 

were genotyped for 401 markers on the 22 autosomes. The positions of the 

markers were from the Marshfield map 

(http://research.marshfieldclinic.org/genetics, Broman et al. 1998),  using the sex-

averaged positions converted to the Haldane mapping function. Phenotypic 

information is provided for 2885 persons (1213 from the original cohort). Detailed 

information about the Framingham Heart Study is given at 

http://www.nhlbi.nih.gov/about/framingham/index.html. 

 

6.1.1.2 Condensation and trimming of pedigrees 

The given pedigrees had to be condensed and trimmed to enable efficient 

multipoint linkage analysis with Merlin (Abecasis et al. 2002). Condensation was 

done without losing linkage information since only untyped individuals were 

discarded. Here, ungenotyped persons without children and untyped founders with 

only one child were removed, since they are not informative for linkage. After this 

step, four families were removed because they had no informative relationship left 

and four families fell into two unrelated branches. Finally, 14 families, which 

were still too large to allow some of the planned analyses, were trimmed by 

breaking some relationships that carried the least linkage information. This 
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resulted in a total of 346 pedigrees with 2656 individuals used in all analyses. The 

pedigree size ranged from four to eighteen individuals in two to four generations. 

 

6.1.1.3 Phenotype definition 

The phenotype height was investigated as the maximum of the available height 

measurements over the age of 18 years. Regression models for height were built 

for each sex in the original and the offspring cohort separately, adjusted for age at 

first examination to account for the different years of birth. The model for the ith 

individual is: 

 

with µ - overall mean, ai - age at first examination and ei - residual. The 

standardized residuals are approximately normally distributed and were taken as 

height variables in the linkage analyses. 

 

6.1.1.4 Linkage analysis methods 

Multipoint linkage analyses for the height phenotype were done with the variance 

components (VC) models implemented in Merlin (Abecasis et al. 2002) and 

SOLAR (Almasy and Blangero 1998) and the inverse regression method (Sham et 

al. 2002) implemented in Merlin-Regress.  

 Variance components methods model the phenotypic variance which is 

explained by the estimated identity-by-descent sharing at a chromosomal position. 

Merlin (Regress and VC) calculates exact IBD sharing probabilities using the 

Lander-Green algorithm with sparse gene flow trees and can handle pedigrees up 

to about 20 individuals for multipoint analysis (Abecasis et al. 2002). On the other 

hand, SOLAR estimates multipoint IBD sharing probabilities with a 

generalization of the Fulker method (Fulker et al. 1995; Almasy and Blangero 

1998) and has no restriction on the pedigree size. 

 

6.1.2 Results 

For chromosomes 6p, 6q, 9, 12, 14, 18 and 22, LOD scores greater than 1 for 

adult height were obtained with at least one analysis method. The strongest 

evidence for linkage to height was found near the q-ter of chromosome 6, with a 

iii eaβµheight ++=)(max
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LOD score of 2.45 for Merlin-Regress and a 1-LOD support interval spanning 

from 190 to 204 cM. The variance components methods gave LOD scores of 1.83 

and 1.67 at the same position (Figure 8). Table 21 gives all LOD scores greater 

than 1. The heritability of maximum height was estimated by the VC methods as 

0.8. 

 
Table 17: Multipoint LOD Scores >1 for adult height with different methods. 

 

 
Figure 8: Multipoint LOD scores for height from SOLAR, Merlin-VC and Merlin-Regress for the 

22 autosomes. Analysis method: SOLAR (black line), Merlin-VC (red line), Merlin-Regress (blue 

line). For ease of presentation, negative LOD scores from Merlin-Regress were set to 0. Positions 

are given in cM. 

 
 

LOD Scores 
Chromosome  Marker 

Peak Position 

(cM) SOLAR Merlin-VC Merlin-
Regress 

6 D6S2434 23-28 1.24 1.34 1.36 

6 GATA184A08 159-162 1.19 1.06 1.14 

6 D6S503 200-201 1.83 1.67 2.45 

9 D9S319 60-61 1.22 1.15 1.56 

12 D12S398 70-77 0.48 1.33 1.70 

14 D14S742 5-11 1.27 0.80 1.02 

14 D14S1426 137 1.35 1.49 1.58 

18 D18S1364 111 1.54 1.44 1.73 

22 D22S345 19-21 1.07 1.16 1.28 
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6.1.3 Discussion  

A linkage genome scan for the quantitative phenotype adult height was performed 

in the extended pedigrees of the Framingham Heart Study. Analyses were 

conducted using two variance components approaches (SOLAR and Merlin-VC) 

and one regression method (Merlin-Regress), which gave very similar results. 

Even though the power of linkage analysis was substantially reduced since for 

many founders no DNA was available, this population-based and unselected 

sample has been a good example for the successful identification of linked 

regions. The results indicate that for moderately to highly heritable traits the 

analysis of phenotypically well characterized but unselected and rather large 

samples of extended pedigrees is promising. Other such large epidemiological 

cohort studies, where many covariables are carefully collected, can be valuable 

and efficient tools in studying the genes and interactions between genes and 

environmental factors in common complex diseases. 

 A first comparison of the linkage results in this study with previous genome 

scans for the same phenotype identified several regions of potentially overlapping 

linkage findings. In particular, on chromosome 6q there was a broad peak with a 

maximum LOD of 2.45 at 201 cM. Interestingly, Hirschhorn et al. (2001) and Xu 

et al. (2002) reported LODs of 3.85 at 159 cM and 3.06 at 155 cM, respectively. 

In this region a LOD score of 1.19 was obtained and it remains unclear if the 

maximum LOD scores on 6q result from the same locus. Substantial corroborative 

evidence exists also from Hirschhorn et al. (2001), Xu et al. (2002) and Perola et 

al. (2001) for the regions on chromosomes 6p, 9, 12, 14, 18 and 22 (see table 22).  

 
Table 18: Multipoint LOD scores for adult height in different scans. 

Chromosome and Region 
(cM) 

Framhingham 
study 

Xu et al.   
2002 

Hirschhorn et 
al. 2001 

Perola et al. 
2001 

6p 0-30 1.36 <1 1.08 1.4 

6q 155-200 2.45 3.06 3.85 0 

9 42-66 1.53 2.09 2.01 0.15 

12 56-80 1.55 1.86 3.35 0.82 

14 11-47 1.02 <0.8 <1 1.67 

18 72-116 1.73 <0.5 1.77 1.71 

22 0-27 1.28 <0.8 1.95 0.54 
Upper limits for the LOD scores <1 from Hirschhorn et al. (2001) and Xu et al. (2002) were 
estimated from their figures. 
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 However, there was no overlap with the putative linkage regions reported by 

Thompson et al. (1995) and Wiltshire et al. (2002). Deng et al. (2002) reported a 

LOD score of about 1 on chromosome 18 at 75 cM. When comparing the results 

from these genome scans, differences between the studies have to be considered. 

Whilst all but one study investigated individuals of Caucasian origin (Thompson 

et al. (1995) analyzed Pima Indians), differences in sampling, sample size, 

pedigree structure and marker sets were more pronounced. 

 To exactly evaluate the combined evidence for linkage to the phenotype adult 

stature in these regions and throughout the genome, a meta-analysis of all 

published genome scans was therefore conducted. 

 

6.2 Data sets for meta-analysis 

For this meta-analysis, all published linkage genome scans up to August 2004 for 

the phenotype adult height were intended to be included (Deng et al. 2002; Geller 

et al. 2003; Hirschhorn et al. 2001; Perola et al. 2001; Thompson et al. 1995; 

Wiltshire et al. 2002; Wu et al. 2003; Xu et al. 2002). The 8 identified studies 

reporting linkage genome scans for adult height vary in several aspects of study 

design. An overview of important points is given in table 17. The first molecular 

genetic study of adult height was published in 1995, the others between 2001 and 

2003. Most studies included Caucasian families, from different countries in 

Europe and North America, one used Pima Indians and one had subsamples of 

African American, Mexican American and Asian ethnicity. Five studies used a 

single sample each and 3 studies combined four to eight subsamples. The 

collection includes two cohort studies of families not ascertained for a specific 

phenotype and 20 studies that recruited for phenotypes such as hypertension, 

asthma or diabetes. Family structures that were recruited also differ substantially 

between studies from sib pairs to 3-4 generation pedigrees and average family 

sizes range from 2.4 to 11.9 individuals. A detailed description of each study is 

given below. 
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Table 19: General characteristics of the published genome scans for height. 

First 
author 

Year of 
Publication 

Population, 
Country or Region 

No of separate 
samples 

Phenotype for which 
studies were ascertained 

Thompson 1995 Pima Indians 1 Cohort study, no specific 
phenotype 

Hirschhorn 2001 Finland, Sweden, 
Canada (Quebec) 

4 Diabetes 2, coronary heart 
disease 

Perola 2001 Finland 5 Hypertension, obesity, 
osteoarthritis, migraine, 
familial hyperlipidemia 

Wiltshire 2002 UK 1 Diabetes 2 

Xu 2002 Netherlands 1 Asthma 

Deng 2002 US whites 1 Osteoporosis, obesity 

Geller & 
Dempfle 

2003 US whites 1 Cohort study, no specific 
phenotype 

Wu 2003 European American, 
African American, 
Mexican American, 
Japan and China 

8 Hypertension 

 

6.2.1 Study identification and data collection 

All published linkage genome scans up to August 2004 for the phenotype adult 

height were intended to be included in this meta-analysis. Segregation analyses 

and association studies or mutation screens of candidate genes are not included. 

Relevant studies were identified through searches of PubMed 

(http://www.ncbi.nlm.nih.gov) using different combinations of the search terms 

“genome”, “scan” or “screen”, “height” or “stature” and “linkage”. Abstracts of 

the PubMed search results were read and yielded six eligible publications (Perola 

et al. 2001; Hirschhorn et al. 2001; Wiltshire et al. 2002; Xu et al. 2002; Deng et 

al. 2002; Wu et al. 2003). Additionally, the identified papers and their reference 

lists were searched for other publications. This resulted in the identification of the 

paper by Thompson et al. (1995) where the title, abstract and key words do not 

reveal that a genome scan was done. The analysis of the Framingham Heart Study 

genome scan for the phenotype height was done in the context of the Genetic 

Analysis Workshop 13 (GAW13) and was published in December 2003 (Geller et 

al. 2003). The four studies published after August 2004 (Liu et al. 2004; Sale et al. 

2005; Sammalisto et al. 2005; Willemsen et al. 2004) were not included. The 

study of Liu et al. (2004) was performed in an extended sample of that used by 

Deng et al. (2002). 
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 For a meta-analysis of genome scans, it is necessary to have the results of 

each study at corresponding locations along the whole genome available to 

combine them appropriately. These could be results from common markers that 

were genotyped in several studies or at evenly distributed positions, e.g. every 

cM. Publications of genome scan studies usually do not include the results in such 

detail, but report only the markers or positions with the most interesting results 

exactly and include all other results in a figure. Therefore the authors of all 

published studies were contacted and asked for the detailed results, including the 

names and positions of all genotyped markers and LOD scores or other linkage 

statistics for all available positions. Details of the study design that were not 

sufficiently clear from the publications were also requested, such as information 

on family structures and numbers of genotyped and phenotyped individuals. The 

data used for the meta-analysis were only a more detailed version of the already 

published summary statistics (mostly LOD scores) and not any individual data 

such as genotypes. 

 Six of the contacted seven authors agreed to supply the necessary detailed 

results for the meta-analysis. The authors of Thompson et al. (1995) refused to 

make their results available, even after an intervention of the journal’s editor. The 

American Journal of Medical Genetics where this study was published does not 

currently have a policy on authors’ obligations to make data available to other 

interested scientists. Thompson et al. (1995) report in their publication only 

results on chromosome 20, where some markers showed significant p-values. No 

data for the other chromosomes are given. Therefore the results for chromosome 

20 could not be included in the meta-analysis as this would bias the combined 

conclusions (publication bias).  

 

6.2.2 Description of published genome scans 

In the following, the design and important results of each of the separate genome 

scans are briefly presented. An overview of design and statistical methods of all 

scans is given in tables 18 and 19 for convenient comparison of important features 

across scans.  
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Table 20: Design features of the published genome scans for height (as reported in the individual 
studies). 

First author 
Individuals 

phenotyped and 
genotyped 

Family 
structures  

Average 
family size 

No of 
families 

No of 
genotyped 
markers 

Thompson 924 Sib pairs with 
parents 4.1 226 160 

Botnia: 920 

Finland: 504 

Saguenay: 362
Hirschhorn 2111 

Sib pairs to 
extended 
pedigrees 

4.8 483 

Sweden: 504 

Perola 580 Sib pairs 2.5 247 530 

Wiltshire 1377 Sibships 2.4 573 418 

Xu 962 2-3 Generations 4.8 200 366 

Deng 630 Larger pedigrees 11.9 53 380 

Geller & 
Dempfle 1702 2-3 Generations 7.7 346 401 

Wu 6752 Sibships / nuclear 
families 2.7 2508 372 

 

 
Table 21: Overview of statistical analyses in published genome scans for height (NR: not 
reported, VC: Variance components, SDS: Standard deviation scores). 

First 
author 

Transformation Covariates Separate 
models 
for 

Estimated 
heritability 
of height 

Linkage 
Statistic 

Software 
used 

Thompson NR NR NR NR Haseman-
Elston 

SAGE 

Hirschhorn SDS Age  Sex, 
study 
group 

0.7 - 0.95 VC Genehunter2 

Perola Square root, 
SDS 

Age  Sex, 
study 
group 

0.69 VC SOLAR 

Wiltshire Square root, 
SDS 

Age, 
diabetes 
status  

Sex 0.89 VC Genehunter2 

Xu SDS Age  Sex 0.78 VC SOLAR 

Deng - Age  Sex 0.73 VC SOLAR 

Geller & 
Dempfle 

SDS Age  Sex, 
cohort 

0.80 VC SOLAR / 
Merlin 

Wu SDS Age  Sex, 
study 
group 

0.75 - 0.98 VC / 
Merlin-
Regress 

SOLAR / 
Merlin 
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As an overview of the important results of each scan, the different regions 

highlighted together with the obtained LOD scores is given in table 20. For a 

better comparison of these individual results and easier assessment of their 

concordance (or lack thereof), the LOD scores along the genome are plotted in 

figure 11 (together with the results of the meta-analysis), see below after the 

description of the individual scans (pages 98-105). 

 
Table 22: Results of the individual scans as published. The two highest LOD scores and 
corresponding genetic region (approximate cM position according to the publication) are given. 
NR = not reported, ‘-‘ in the sample column denotes publications with just one sample. 

Region of highest 
LOD score 

Region of second 
highest LOD score First author Sample 

Highest 
LOD 
score Chromosome cM

Second 
Highest 

LOD 
score Chromosome cM

Thompson - 
NR, 

p=0.0001 
20 34-

40 NR - - 

Hirschhorn Botnia 3.85 6 159 2.69 17 66 

Hirschhorn Finland 3.56 13 80 3.35 12 56 

Hirschhorn Sweden 3.40 7 150 1.95 22 0 

Hirschhorn Sanguenay-
Lac-St.-Jean 1.35 17 40 1.26 4 13 

Perola combined 2.91 7 164 2.61 9 159

Wiltshire - 3.17 3 9 2.26 7 103

Xu - 3.06 6 150 2.09 9 50 

Deng - 2.14 5 144 1.95 X 10 

Geller & 
Dempfle - 1.83 6 200 1.54 18 111

Wu European 
Americans 3.67 14 67 2.66 6 78 

Wu African 
Americans 2.25 1 136 NR - - 

Wu Mexican 
Americans NR - - NR - - 

Wu Asians 1.60 14 67 1.48 5 134

 

Thompson et al. scan (1995) 

The Thompson et al. (1995) scan used a sample from a cohort study on the 

genetics of type 2 diabetes and obesity in Pima Indians from Arizona (USA), but 

included only non-diabetics in this analysis. Sib pairs and their parents from 226 

families were genotyped for 160 markers and analyzed for the phenotype stature 

using the Haseman-Elston method (Haseman and Elston 1972). Three markers on 



APPLICATION: HEIGHT 
___________________________________________________________________________________________________ 

 79

chromosome 20 (D20S66, D200S98 and D20S118; 34 to 40 cM) showed 

evidence for linkage to stature with nominal p-values of 0.0001 to 0.0003. 

D20S118 also showed evidence for linkage to leg length with a nominal p-value 

of 0.0002. A mutation screen of a candidate gene in this region, Bone 

morphogenetic protein 2 (BMP2) in 40 of the tallest and shortest individuals of 

the study group revealed one SNP, which was not associated with height in these 

40 subjects. They concluded that other genetic variation in the region must be 

responsible for the observed linkage. 

 

Hirschhorn et al. scan (2001) 

Hirschhorn et al. (2001) used four different samples for their linkage analysis of 

height, a sample from the Botnia region in Finland, one from other parts of 

Finland and one from Southern Sweden, all with probands ascertained for type 2 

diabetes, and one sample from the Saguenay-Lac-St.-Jean region in Canada with 

probands with either type 2 diabetes or coronary heart disease. The four samples 

were genotyped separately for different marker panels and the linkage analyses 

were also done separately using the variance components method implemented in 

Genehunter 2 (Pratt et al. 2000). This resulted in four genomic regions with LOD 

scores >3.3 on chromosomes 6, 7, 12 and 13 in different samples. In none of these 

regions, another sample reached LOD scores > 1 to support the respective result. 

On the other hand, there were another five regions (on chromosomes 4, 11, 17, 18 

and 22) in which two samples each showed LOD scores between 1.35 and 2.69. A 

combined analysis of all four scans was done, using GSMA (Wise et al. 1999) 

which showed no genome-wide significant result, with the highest ranked bin 

overlapping the chromosome 6 region that was significant in the Botnia scan. This 

shows the difficulty in judging whether a region with one genome-wide 

significant result in a single scan and no replication of this in several other scans 

or rather e.g. two suggestive results in independent scans represent on the whole 

more statistical evidence for linkage. Only a quantitative meta-analysis, which 

incorporates important features of each scan such as sample size, can yield this. 
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Perola et al. scan (2001) 

Perola et al. (2001) report a combined analysis of height in five samples from 

Finland, ascertained for osteoarthritis, familial combined hyperlipidemia, 

hypertension, obesity and migraine. Here, genotyping was done separately with 

only slightly different marker panels, but then the individual genotype and 

phenotype data were analyzed as one sample, again using variance components 

linkage analysis. Separate analyses of the samples were also done, but no detailed 

results were reported and could also not be obtained from the authors. The 

maximum LOD score on chromosome 7 is carried mostly by one sample and 

overlaps with the chromosome 7 peak in the Swedish sample by Hirschhorn et al. 

(2001). 

 

Wiltshire et al. scan (2002) 

Whiltshire et al. (2002) conducted a linkage analysis for stature in a single, large 

British/Irish sample that had been recruited for type 2 diabetes, including 573 

sibships. The region of their highest LOD score on chromosome 3 is not 

highlighted in any of the other scans and their region on chromosome 7 is about 

60 cM from the peaks on chromosome 7 obtained by Perola et al. (2001) and 

Hirschhorn et al. (2001). Indeed, at the Perola and Hirschhorn region (around 150-

165 cM), Wiltshire at al. (2002) have a LOD score of 0. 

 

Xu et al. scan (2002) 

Xu et al. (2002) used a sample of 200 Dutch families ascertained through a 

proband with asthma to first perform a detailed segregation analysis of adult 

height followed by a genome wide linkage analysis. Heritability estimates were 

around 0.8 for most relative pairs used to calculate correlations, well in 

accordance with estimates reported elsewhere (Preece 1996; Silventoinen et al. 

2000; Silventoinen 2003). There was also significant evidence of assortative 

mating for height, with a spouse correlation of 0.16. The segregation analysis 

gave the best fit for a mixed-recessive model, i.e. a model with a major recessive 

gene and residual polygenic effect, while a purely polygenic model fit the data 

significantly worse. The hypothetical recessive gene would explain 38% of the 

total variance of height in these families.  



APPLICATION: HEIGHT 
___________________________________________________________________________________________________ 

 81

 In the linkage analysis, the highest LOD (3.06) was obtained on chromosome 

6, very close to the peak in the Botnia sample by Hirschhorn et al. (2001). Close 

to the second highest LOD (2.09 on chromosome 9) was another Botnia peak with 

a LOD of 2.01. The third highest peak (1.86 on chromosome 12) overlaps with yet 

another peak from the Hirschhorn et al. (2001) study in the Finland sample (LOD 

of 3.35). 

 

Deng et al. scan (2002) 

Deng et al. (2002) searched for linkage to adult height in a sample of white 

Americans of European descent which had been collected for a study on the 

genetics of osteoporosis. Each of the 53 extended pedigrees contained a proband 

with low bone mineral density (lowest 10 percentiles of population), which is 

correlated with height (r²=0.12 in this sample, sex-adjusted), leading to 

significantly smaller heights in probands (sex- and age-adjusted difference of 8 

cm). This ascertainment was accounted for in the variance components linkage 

analysis.  

 Deng et al. (2002) obtained their highest LOD score of 2.14 on chromosome 

5 (close to a region with a LOD score of 1.48 in the Asian sample of Wu et al. 

(2003)), and a two-point LOD score of 1.95 on the X chromosome, which was not 

analyzed by the other studies and thus not included in this meta-analysis. 

 

Wu et al. scan (2003) 

Wu et al. (2003) analyzed the by far largest collection of more than 6700 

individuals in more than 2500 families from eight different studies in four ethnic 

groups. These had all been recruited to study the genetics of blood pressure and 

hypertension. The genotyping was done for all eight samples together and with 

the same markers. The primary analysis as reported in the publication was done 

separately for the eight samples, but a combined analysis was also carried out. For 

the meta-analysis, the results of the separate analyses are used.  

 Two regions had elevated LOD scores in both European Americans and 

Asians (LODs of 3.67 and 1.6 on chromosome 14 and LODs of 2.26 and 1.48 on 

chromosome 5). On chromosome 6, a LOD of 2.66 was reached in the European 

American sample, but this is about 70 cM away from the LOD score peaks of Xu 

et al. (2002) and Hirschhorn et al. (2001, Botnia sample) on this chromosome. 
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The strongest support for linkage in the combined analysis was found on 

chromosome 7 (LOD 2.46), which did not stand out in any of the eight individual 

analyses, but is in the same region as the chromosome 7 peaks of Hirschhorn et al. 

(2001, Swedish sample) and Perola et al. (2001). 

 

6.3 Meta-analysis methods 

6.3.1 Available Data 

From the published studies, VC LOD scores (from SOLAR or Genehunter) along 

the 22 autosomes were available, either at regular intervals, e.g. every 1 cM or at 

the genotyped markers and at certain positions between them. Additionally, the 

names and assumed positions of the genotyped markers were provided. Only the 

study by Deng et al. (2002) reported results for the X-chromosome, all other 

studies did not perform linkage analysis for this chromosome and therefore it was 

not included in the meta-analysis. For all studies, the sample size (usually number 

of phenotyped and number of genotyped subjects) and in more or less detail, the 

distribution of the sample in families (number of families, family structure such as 

sib pairs with or without parents) was given. For only two studies, additional data 

was obtained such as the Genehunter information content at the same positions as 

the LOD scores, but for almost all of the studies this was not available and thus 

could not be used in this meta-analysis. 

 The VC LOD score, which is the difference in log10 likelihoods between the 

restricted and unrestricted variance components models is equivalent to a regular 

parametric LOD score, i.e. twice the difference in loge likelihoods between the 

restricted and unrestricted models yields a test statistic that is asymptotically 

distributed as a ½:½ mixture of a χ2 variable with one degree of freedom and a 

point mass at zero (Self and Liang 1987; Almasy and Blangero 1998). Thus VC 

LODs can easily be converted to p-values or standard normal Z scores (and vice 

versa), which can then be used in a meta-analysis. 

 The VC LOD score is a measure of significance and not an effect estimate. 

Relevant effect size measures for variance components linkage analysis would be 

the (additive) genetic variance component or equivalently the locus-specific 

heritability (h²). With these and the respective variance estimates, a fixed or 

random effects meta-analysis would be possible. Most genetic analysis programs 

(specifically Genehunter (Kruglyak et al. 1996) and SOLAR (Almasy and 
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Blangero 1998)) do not routinely provide these estimates, and they were not 

available for this meta-analysis. The program Merlin-Regress (Abecasis et al. 

2002) on the other hand, which implements a regression approach to quantitative 

trait linkage analysis (Sham et al. 2002), normally provides estimates of the locus-

specific heritability and its standard error in the detailed output.  

 

6.3.2 Common marker map 

In a meta-analysis of linkage studies, it is essential that linkage information of the 

same genetic location is combined over studies. This can easily be achieved if the 

same markers are analyzed in all studies, but becomes more difficult if the 

markers differ between studies. Even for markers that are common to more than 

one study, the assumed positions of markers for the analysis often differs, either 

through use of different marker maps, such as the Marshfield (http:// 

research.marshfieldclinic.org/genetics/, Broman et al. 1998) and deCode maps 

(Kong et al. 2002), or because the position of the most proximal genotyped 

marker of each chromosome is arbitrarily designated as 0 cM. In this case, 

distances between markers may be equal across studies, but absolute positions in 

cM are not. Therefore a locus designated at the same cM position in different 

scans does not necessarily specify the same genetic location. This has to be 

corrected by constructing a consensus map, which includes unique cM positions 

for all markers genotyped in any study and subsequently repositioning all results 

(LOD scores) to this map. For the height meta-analysis, the Marshfield map 

(Broman et al. 1998) was chosen as the basis of this consensus map, because 

many of the individual studies had already used this map in their analysis (in 

several cases with the first genotyped marker on each chromosome given the 

position 0 cM). Of the total 1558 different markers in all studies, 1467 were 

included in the Marshfield map; only 91 are missing from the Marshfield map. 

The marker order was consistent with that used in the individual studies. Markers 

that were not included in the Marshfield map were placed according to their 

relative position assumed in the single studies, i.e. between the same flanking 

markers and at the same relative distance to them. The reported LOD scores were 

now designated new positions according to the positions of the corresponding 

markers on the consensus map. LOD scores from different studies pertaining to 
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the same marker are therefore assigned the same position and will then be 

combined in the meta-analysis. 

 Since the positions of the first and last marker on each chromosome differ 

quite a lot between studies, results of each study were only included 2 cM beyond 

the first and last genotyped marker. 

 

6.3.3 Combination of linkage results  

The only data available from all studies were variance components LOD scores, 

which are measures of significance (essentially a function of the likelihood ratio 

test statistic and thus equivalent to p-values) and no measures of effect size and 

corresponding standard errors could be obtained. Therefore only a meta-analysis 

method that uses p-values could be applied such as Fisher’s p-value combination 

method. As Elston (1991) observes, Fisher’s method is asymptotically optimal 

among essentially all methods to combine significance levels of independent tests. 

VC LOD scores were first transformed to p-values (via the χ2 distribution), these 

were combined and the resulting p-value was back-transformed to a LOD score. 

This transformation to LOD scores is mainly done for ease of comparison with the 

results of the single studies. A slight modification is necessary since VC methods 

do not give negative LOD scores, even if allele sharing between affecteds is less 

than expected, but rather truncate the LOD score space at zero. So LOD scores of 

0 are biased and should therefore not be assigned a p-value of 0.5 (as would be the 

case in parametric linkage analysis). Province (2001) pointed this out and 

proposed to give such LOD scores a p-value of 72.0
)2(log2

1

10

≈  in a meta-

analysis as a way to avoid a bias in the combined result. This was used in the 

current meta-analysis.  

 There is no clear consensus in the literature, whether Fisher’s method 

sufficiently accounts for different sample sizes of the combined studies (see 

Hedges and Olkin 1985, p. 38). The p-value results both from the observed effect 

size and the sample size. Thus, for a given effect size, the p-value will reflect the 

sample size, but since effect sizes are not expected to be constant across studies 

(not exactly the same IBD sharing at all locations in different samples), the p-

value is no longer proportional to sample size. Weights, which could reflect 

different sample sizes, can be incorporated in Fisher’s method by exponentiating 



APPLICATION: HEIGHT 
___________________________________________________________________________________________________ 

 85

the p-values with the respective study weights (Good 1955). However, the 

distribution of the weighted test statistic is no longer a simple χ2 distribution and 

is only known if the weights are distinct. Additionally, an optimal choice of 

weights has only been evaluated for special designs (Hedges and Olkin 1985). 

 The inverse normal method (Stouffer et al. 1949) on the other hand can easily 

be used unweighted or weighted with the relevant sample size for each study. For 

the weighted form, p-values (derived from LOD scores with Province’s bias 

correction) were transformed to corresponding standard normally distributed Z-

scores and these were weighted by study size and combined to a standardized Z-

score which was back-transformed to a LOD score. These are defined as follows: 

let k be the number of studies, and nj (j=1, …, k) be the relevant sample size of 

study j (as defined in the next section). Let, pj(t) (j=1, …, k) be the p-value of 

study j at position t (in cM) and Zj(t) = Φ-1[pj(t)] be the standard normal quantile 

of pj(t). For the inverse normal methods, the combined scores are 

∑
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For comparison, results of three different meta-analyses are therefore presented, 

using Fisher’s method, the unweighted inverse normal method and a weighted 

inverse normal method.  

 

6.3.4 Relevant sample size 

Weighting of the linkage results should be proportional to the sample size. In 

contrast to other types of studies, where each individual contributes the same 

amount of information and therefore the relevant sample size is just the number of 

individuals, this is not necessarily the case in a linkage study. The basic unit of 

information for linkage would be one informative meiosis (where a recombination 

or non-recombination is counted), so only non-founders in a pedigree can contain 

linkage information and while founders do not contain linkage information 

themselves, they can (through determination of phase) enhance the information of 

their children. Depending on the linkage test statistic used, an individual in a 

specific family constellation may carry different amounts of information, e.g. 
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unaffected offspring can also be counted as recombinant or non-recombinant in 

parametric linkage analysis (depending on the underlying penetrance model) but 

do not usually contribute to an affected sib-pair analysis (if parents are not typed, 

unaffected siblings may be used to improve IBD estimation). If the disease model 

is unknown, it is not known which meioses (dependent on phenotypes, i.e. disease 

genotypes) are informative, therefore it is reasonable to use e.g. the number of 

independent pairs (for a test statistic that is based on relative pairs) as a weighting 

factor (Sham 1998). For linkage analysis of quantitative traits, such as height, the 

information of an individual depends also on the phenotypic value. For variance 

components analysis, all genotyped and phenotyped non-founders can contribute 

information, provided there is at least one other genotyped and phenotyped family 

member besides his/her parents. For all included studies, the number of genotyped 

and phenotyped individuals was available (table 23). This was not presented 

separately for founders and non-founder, and further details regarding family 

structures could not be obtained from most authors. Therefore, the weighting was 

performed by using the number of genotyped and phenotyped individuals in each 

study (regardless of founder status).  

 If more detailed information on the family structures had been available, this 

could have been incorporated in an approach to calculating the relevant sample 

size. Tang and Siegmund (2001) showed that for variance components analysis of 

quantitative, oligogenic traits in nuclear families, the power of a sibship of size s 

is approximately the same as of s(s-1)/2 independent sib pairs. This justifies 

weighting k sibships of size s equally to ks(s-1)/2 independent sib pairs from 

different families. Tang and Siegmund (2001) also showed that in nuclear families 

where parents are also phenotyped and genotyped, the power for variance 

components linkage analysis is higher than without parents. Depending on the 

sibship size this ranges from about 15 % for sib pairs to 7 % for five sibs. So for 

nuclear families with or without parents, an “effective sample size” for VC 

linkage analysis could be calculated based on the approximately equal number of 

independent sib pairs. If family structures do not vary much within a study (as is 

usually the case) this can be used based on just the average family size in a study 

(and not the distribution of family sizes which is rarely provided). This has the 

advantage that it can often be calculated with just the published summary 

description of the sample. 
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Table 23: Family structures and sizes for linkage studies of height. 

First 
author 

Sample No of 
individuals 
genotyped 

and 
phenotyped

No of 
extended 
pedigrees

No of 
nuclear 
families 

Founders 
geno- & 

phenotyped 

Mean 
family 

size 

Range 
family 

size 

Hirschhorn Botnia 379 47 11 Partly 7 2-18 

Hirschhorn Finland 702 80 99 Partly 4.2 2-13 

Hirschhorn Sweden 683 89 94 Partly 4.1 2-11 

Hirschhorn Sanguenay-
Lac-St.-Jean 

347 2 61 Partly 6.7 3-15 

Perola combined 580 0 247 No 2.5 NR 

Wiltshire - 1377 0 573 No 2.4 NR 

Xu - 962 34 166 Yes 4.8 NR 

Deng - 630 53 0 Yes 11.9 3-99 

Geller & 
Dempfle 

- 1702 346 0 Partly 4.9 4-18 

Wu GenNet 
European 

Americans 

598 0 NR1) Yes NR NR 

Wu GenNet 
African 

Americans 

595 0 NR1) Yes NR NR 

Wu GENOA 
European 

Americans 

749 0 NR1) No NR NR 

Wu GENOA 
African 

Americans 

611 0 NR1) No NR NR 

Wu GENOA 
Mexican 

Americans 

778 0 NR1) No NR NR 

Wu HyperGEN 
European 

Americans 

1100 0 NR1) No NR NR 

Wu HyperGEN 
African 

Americans 

1252 0 NR1) No NR NR 

Wu Asians 1069 0 NR1) No NR NR 
1)it was only reported that the total number of families in all 8 data sets was 2508, and the average 
sibship size was 2.8 across all 8 data sets. 
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 Other approaches to defining an appropriate effective sample size in linkage 

studies have also been described, especially in the context of meta-analysis. For 

meta-analyses of Bipolar Disorder and Schizophrenia (Levinson et al. 2002), the 

square root of the number of genotyped cases in each sample was used as the 

weighting factor for the respective study. For accompanying power analysis, they 

simulated samples of families which contained one ASP each (which is 

computationally easier and allows for easier interpretation of genetic model 

parameters). The number of ASP families was chosen to represent approximately 

equal linkage information to the samples of pedigrees of different size and 

structure as the original samples. Based on detailed information from one 

Schizophrenia linkage study, they estimated the equivalent number of independent 

ASPs as 1.39 times the number of genotyped cases minus the number of 

pedigrees. Such an approach is only reasonable if the pedigree structures and sizes 

are known in some detail and ideally, the appropriate conversion factor (here 

1.39) should be determined for each study. They did not investigate whether the 

weighting of studies would be more powerful by using the equivalent number of 

independent ASPs as the effective sample size instead of using the number of 

genotyped cases (as they did for the actual meta-analysis).  

 

6.3.5  Ethnicity and heterogeneity 

Genetic heterogeneity between samples might lead to inconsistent results across 

studies. One important reason for heterogeneity could be the presence of causal 

alleles at very different frequencies in different populations, which would lead to 

linkage signals only in some populations but not in others. Ethnically 

homogeneous samples would reduce the risk of such genetic heterogeneity. Most 

of the samples analyzed for linkage to adult stature were of Caucasian origin, only 

the sample from the NHLBI Family Blood Pressure Program (Wu et al. 2003) 

includes three non-Caucasian sub-samples (African American, Asian and 

Mexican American), this supports the expectation that at least some common 

genetic effects can be identified in this sample. A limitation of meta-analysis 

methods that use only p-values is that no formal test for heterogeneity can be 

performed as there is no sensible way to obtain effect sizes from each study. The 

VC LOD scores available for this meta-analysis are equivalent to p-values in this 

respect.  
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6.4 Results 

6.4.1 Comparison of Fisher’s method and weighted and unweighted inverse 

normal meta-analysis 

Figure 9 shows the results of the three applied meta-analysis methods on 

chromosomes 1 to 22: Fisher’s method and the weighted and unweighted inverse 

normal meta-analyses. Table 24 gives the LOD scores of the different meta-

analysis methods on selected chromosomes. In this comparison, it has to be kept 

in mind that on such a real data set, no general conclusions regarding power or 

type 1 error can be drawn, since the complex genetic architecture of human stature 

is currently not known in detail. Thus no genes are definitely known to be 

involved in the genetic regulation of height, nor can any genomic region be 

considered as not containing any genes of relevant effect on height. 

 
Table 24: LOD scores of different meta-analysis methods on selected chromosomes 

  Maximum LOD in the region 

Chromosome Approximate 
position of maximum 

LOD (cM) 

Fisher’s method Unweighted 
inverse normal 

Weighted 
inverse normal 

3 144-147 1.82 2.6 2.31 

5 130-138 1.92 1.25 1.27 

6 157 4.44 3.4 3.33 

7 175 3.63 4.59 4.13 

9 62 3.95 4.26 4.08 

12 64-65 4.12 3.95 4.08 

13 98-99 2 1.71 1.34 

14 63-66 2.93 1.73 1.41 

15 98-101 2.01 2.52 2.66 

17 76-77 2.24 2.26 2.0 

20 29-33 and 62 2.48 (at 62 cM) 2.91 2.81 
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Figure 9: LOD scores obtained by the three different meta-analysis methods on chromosomes 1-

22, the weighted and unweighted Z-score combination method and Fisher’s method.  
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 In general, for these VC LOD scores, the three methods give very similar 

results with the weighted and unweighted inverse normal methods even more 

similar and Fisher’s method sometimes a bit different. The unweighted inverse 

normal method often gave slightly higher scores than the weighted equivalent. For 

the chromosomes with LOD scores above 3, Fisher’s method gave the highest 

meta-analysis LOD scores on chromosomes 6 and 12 whereas on chromosome 7 

and 9 both inverse normal methods had higher LOD scores. The highest peaks 

differed in magnitude by more than 1, e.g. on chromosome 6 Fisher’s method 

gave a maximum LOD score of 4.44, while the weighted inverse normal method 

had only 3.33. On chromosome 7, a similar difference is seen between Fisher’s 

method (maximum LOS score of 3.63) and the unweighted inverse normal 

method with 4.59. 

 On other chromosomes with lower meta-analysis LOD scores, even slightly 

larger differences exist between the methods: on chromosome 14, Fisher’s method 

gives a maximum LOD score of 2.93 while the weighted inverse normal method 

reaches only 1.41.  

 But while the magnitude of the maxima may differ, overall the results are 

very similar and no method gives the highest LOD scores for the majority of 

regions. 

 The location of regional maxima is also in almost all cases identical or just 1-

2 cM apart. Only on chromosome 20, the location of the maximum LOD score 

differs some more, because there are two local maxima (with both methods) and 
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the inverse normal methods reach their chromosome-wide maximum at 30 cM, 

while Fisher’s method has the maximum at 62 cM. 

 

6.4.2 Comparison of meta-analysis results with individual results 

Figure 11 shows the LOD scores of all individual scans and the meta-analysis 

LOD score for Fisher’s method. For ease of presentation, just one meta-analysis 

method is presented in these graphs.  

 
Figure 10: Legend to figure 11. 
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Figure 11: Comparison of LOD scores of the individual study samples (different colors, see 
legend above) and meta-analysis (Fisher’s method, bold red line). 
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 The meta-analysis yields LOD scores above 3 on chromosomes 6, 7, 9 and 

12. The maximum LOD scores (Fisher’s method) are 4.44 on chromosome 6 at 

157 cM, 4.12 on chromosome 12 at 64 cM, 3.95 on chromosome 9 at 62 cM and 

3.63 on chromosome 7 at 175 cM. The next highest LOD score is 2.93 on 

chromosome 14 at 66 cM. 

 There are several instances where interesting regions and peaks in one or 

more scans are confirmed by the meta-analysis. The chromosome 6 region is 

significant in 2 scans (Hirschhorn et al. (2001), Botnia sample and Xu et al. 

(2002) ), but has LOD scores below 1 in the rest of the scans. Similarly for the 

chromosome 7 region, which was significant in the scan by Hirschhorn et al. 

(2001, Swedish sample) and close to significance with a LOD score of 2.91 in the 

scan by Perola et al. (2001), but failed to show any evidence for linkage in the 

other genome scans (LOD scores below 1). Even more marked is this on 

chromosome 12 where a significant LOD score was seen in the Finland sample 

(Hirschhorn et al. 2001), and only two other scans (Geller et al. 2003; Xu et al. 

2002) obtained LOD scores above 1. So the regions which turn out to be 

significant in the meta-analysis were not considered to be “replicated” by the 

majority of available genome scans in the original publications.  

 On the other hand, some regions which show similar patterns of suggestive or 

even significant linkage peaks in one or more scans are not confirmed in meta-

analysis. Most of the regions with suggestive linkage in only one scan are not 

confirmed, e.g. on chromosomes 1 and 8, and significant linkage in just one scan 

is often not quite substantiated by meta-analysis, e.g. on chromosomes 3 and 13, 

which showed evidence for linkage in the scans by Wiltshire et al. (2002) and 

Hirschhorn et al. (2001, Finland sample), respectively. Also regions that were 

suggestive in two scans such as on chromosome 5 do not turn out significant in 

the meta-analysis, but reached only a combined LOD score of 1.9. 

 And finally, the meta-analysis also reveals regions which were not significant 

in any scan and not identified as relevant in the individual publications. This is 

most notably the case on chromosome 9, where no scan gave significant results 

but two reached LOD scores above 2 (Hirschhorn et al. (2001, Botnia sample) and 

Xu et al. (2002), third and second highest peak, LOD scores 2.01 and 2.09, 

respectively) and several with LOD scores above 1. This region had a meta-

analysis LOD score of almost 4. Xu et al. (2002) mentions the overlap with the 
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Botnia peak without considering the other results for this region published until 

then. To a lesser extent this occurred also on chromosomes 15 and 20 where all 

genome scans had LOD scores below 2 but the meta-analysis gives a LOD score 

of 2 on chromosome 15 (even 2.66 with the weighted inverse normal method) and 

2.48 on chromosome 20 (2.91 with the unweighted inverse normal method). Both 

these regions were not among the highest in any individual scan and thus not 

discussed as potentially relevant. In the same region on chromosome 20, the 

Thompson et al. (1995) scan, which could not be included, also had its smallest p-

value, so the total evidence for linkage would probably be even higher. 

 Another interesting aspect is the location of the meta-analysis maximum in 

relation to the positions of the maxima of the individual scans. In many cases, the 

meta-analysis reaches its maximum LOD score very close to the position of the 

maximum of the one or few significant individual linkage results, as can be seen 

nicely on chromsomes 6, 12 or 14. In some cases however, much smaller LOD 

scores, which are by themselves not significant, nevertheless lead to a noticable 

shift in the location of the meta-analysis maximum compared to the position of 

one prominent and dominating individual linkage peak. This is e.g. evident on 

chromosomes 7 or 17. Finally, in some instances, e.g. on chromosome 9, there is 

no dominating individual linkage peak, but rather several moderate linkage results 

spread over a considerable region, which leads to a broad meta-analysis peak, 

which all the same has a pronounced maximum. 

 Overall, the meta-analysis gives new insights and confirms or refutes the first 

impressions gained from casual inspection and comparison of individual results. 

 

6.5 Discussion 

6.5.1 Comparison of Fisher’s method and weighted and unweighted inverse 

normal meta-analysis 

The three different meta-analysis methods give very similar results in this 

example. Since only variance components LOD scores were available from the 

individual studies, these were transformed to p-values and all three applied meta-

analysis methods are techniques to combine p-values of independent tests. Thus a 

certain similarity of results was expected. Conclusions regarding power or type 1 

error cannot be drawn based on such an example with one set of real data. 
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6.5.2 Comparison of meta-analysis results with individual results 

A formal, stringent meta-analysis has important advantages over the casual 

inspection of individual results or a loosely defined “replication” approach. All 

available data is incorporated and statistically valid results are reached. This can 

result in confirmation or non-confirmation of regions that showed linkage in one 

of the individual studies and can even reveal new linked regions, which did not 

display prominent linkage in any individual study. 

 In this meta-analysis of linkage genome scans for adult height, including 17 

different samples, there are three important regions which showed linkage in one 

or more scans and were confirmed in the meta-analysis: the chromosome 6 region 

showed significant linkage in two samples, but had LOD scores below 1 in the 

rest of the scans. Similarly, a region on chromosome 7 previously showed one 

significant linkage, one study was close to significance, while the others all had 

LOD scores below 1 in this region. Finally on chromosome 12 again one study 

displayed significant linkage, and only two others reached LOD scores above 1. 

Using a simple replication criterion, the total of these individual results might not 

have been interpreted as convincing evidence for linkage. For these three regions 

on chromosomes 6, 7 and 12, only one or two of the 17 separate genome scans, 

showed strong linkage, while most scans obtained LOD scores below 1, therefore 

the results could easily be interpreted as false positives or as caused by substantial 

genetic heterogeneity between samples. 

 On the other hand are genetic regions which on first impression show similar 

patterns of individual results, but do not reach significance in the meta-analysis. 

This is particularly the case for most regions showing suggestive linkage in only 

one scan which are often not confirmed in meta-analysis, e.g. on chromosomes 1 

and 8. Even regions with significant linkage in only one scan are often not 

confirmed in meta-analysis, e.g. on chromosome 3 (around 20 cM) or on 

chromosome 13.  

 Finally, there are some regions which did not show significant linkage in any 

individual scan, like the region on chromosome 9 where two genome scans 

showed suggestive linkage and several others had LOD scores above 1. A 

comparable pattern was observed on chromosome 5, where also two individual 

studies have suggestive linkage, but here the meta-analysis revealed an overall 
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not-significant result. In such cases only a formal meta-analysis allows a 

statistically correct interpretation of all available evidence. 

 

6.5.3 Conclusions for the genetics of stature 

The significant results of this meta-analysis of linkage genome scans of adult 

stature may lead the way to important insights into the genetics and molecular 

mechanisms of human growth. Ten chromosomal regions yielded meta-analysis 

LOD scores of at least 2 (and chromosome 5 had a LOD score of 1.92), four of 

these had LOD scores above 4 (with at least one of the meta-analysis methods). 

This could be compatible with the results of segregation analyses (Ginsburg et al. 

1998) that found a combination of major gene and polygenic inheritance of height 

and goes in line with the polygenic concept that small additive effects at many 

loci lead to an approximately normally distributed phenotype in the general 

population. The results of the meta-analysis are consistent with the expectation 

that there are several genes with effects that are detectable in linkage analysis 

(albeit only in large samples). The combined sample size of genotyped and 

phenotyped individuals in this meta-analysis was more than 14000. This means 

that the power to detect genes with large effect (high locus-specific heritability) 

should be very high. Genetic regions with meta-analysis LOD scores around 4 

might contain genes with medium locus-specific heritability, i.e. either relatively 

rare variants with moderate effect or rather common alleles with smaller effect, 

while regions with LOD scores ~2 might harbor genes with lower locus-specific 

heritability or no genes influencing height at all (i.e. false positives). Candidate 

genes for human stature in the regions identified in this meta-analysis would be 

expected to contribute to the normal variation in height in the general population. 

Additionally, there are probably many genes which are essential for growth, and 

as such do not show relevant variation in the normal population. In these genes, 

mutations might lead to extreme phenotypes (very rare monogenic diseases with 

severe short stature or lethal mutations) and possibly no frequent functional 

polymorphisms exist. This might be the case for growth hormone related genes 

(e.g. GHR, GH1, GHRHR, GHSR, see table 25) where rare mutations have been 

identified which lead to extremely short stature, but no common variants with 

subtle effect are currently known in the general population. Such genes would not 

be detectable with linkage studies of unselected samples, such as the population-
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based studies in this meta-analysis. Accordingly, in the chromosomal regions of 

the growth hormone secretagogue receptor gene (GHSR, chr. 3, approximately 

183 cM), the growth hormone receptor gene (GHR, chr. 5, 60 cM) and the growth 

hormone releasing hormone receptor gene (GHRHR, chr. 7, 49 cM) the meta-

analysis LOD scores are below 0.5. Near the growth hormone 1 gene (GH1, chr. 

17, 82 cM) on the other hand, the meta-analysis obtained a maximum LOD score 

of 2.26 (at 77 cM), which might indicate that there are common polymorphisms in 

the GH1 gene or its regulatory region (promoter) which influence also normal 

variation in stature. Different results and the identification of additional growth 

related loci could therefore be expected with selected samples (short or tall 

stature) as opposed to samples from the normal population. Similarly, the genetic 

analysis of variation in stature can be supplemented by the study of genetic 

syndromes which include short or tall stature among their cardinal features, such 

as Noonan Syndrome (OMIM 163950), Prader-Willi Syndrome (OMIM 176270) 

and many others. In some cases, genes responsible for these syndromes might also 

have alleles which influence normal growth variation or the whole syndrome is 

caused by microdeletions which include dozens of genes (e.g. Prader-Willi 

Syndrome), just one of which might be involved in growth regulation. E.g., the 

short stature seen in Léri-Weill dyschondrosteosis (LWD, OMIM 127300) and 

Ullrich-Turner Syndrome is caused by haploinsufficiency due to heterozygous 

deletions or mutations of the SHOX gene or its regulatory regions (Attie 2000; 

Benito-Sanz et al. 2005; Rao et al. 1997). Such mutations or deletions in the 

SHOX gene seem to be responsible for a fraction of patients with idiopathic short 

stature as well, with estimates ranging from 1% to 22% (Huber et al. 2004; 

Morizio et al. 2003; Rappold et al. 2002; Schneider et al. 2005; Stuppia et al. 

2003) with the largest studies to date reporting only 2-2.4% (Rappold et al. 2002; 

Schneider et al. 2005). The SHOX gene is located in the pseudoautosomal region 

of the X- and Y-chromosome (Xp22), which was not analyzed in this meta-

analysis as only Deng et al. (2002) reported X-chromosomal linkage analysis. The 

genetic regions of Noonan and Prader-Willi-Syndrome had meta-analysis LOD 

scores below 0.5, thus not supporting the possibility of relevant alleles for normal 

height in these regions. 

 Many candidate genes especially for stature and growth related phenotypes 

have been proposed and studied for association (see table 25 for a non-



APPLICATION: HEIGHT 
___________________________________________________________________________________________________ 

 111

comprehensive list of some examples). These include genes of the growth 

hormone-IGF-system (e.g. GH1, GHRHR, GHSR, IGF-1), genes regulating 

skeletal development and bone formation (e.g. COL1A1, BMP2, FGFR3, VDR), 

genes involved in pituitary development (e.g. POU1F1, PROP1, LHX3, HESX1), 

or genes related to sex hormones (ESR1, CYP17, CYP19). Studies relating to these 

candidate genes and monogenic forms of growth disorders have been extensively 

reviewed (e.g. by Palmert and Hirschhorn 2003; Castro-Feijoo et al. 2005; Kant et 

al. 2003).  

 These genes are considered candidate genes for height because of the 

knowledge about the gene function and their involvement in growth processes. 

Genome scans on the other hand have the advantage that no prior knowledge on 

gene function is required, so new candidates which are not obviously related to 

the phenotype in question can be identified. Future research should therefore 

investigate especially genes in linkage regions identified in this meta-analysis for 

their potential involvement in growth regulation. Some known candidate genes in 

linked regions are BMP10 (chromosome 2), ESR1 (chromosome 6), VDR, KRAS 

and IGF-1 (all chromosome 12), GH1 (chromosome 17) and BMP2 (chromosome 

20). These might be responsible for the observed linkage peaks in this meta-

analysis. For other significant linkage regions, such as those on chromosomes 7 

and 9 and smaller linkage peaks such as on chromosomes 14 and 15, no obvious 

candidate genes have yet been identified but careful consideration of known genes 

in these genetic regions might lead to plausible candidates. 
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Table 25: Candidate genes for height.  

Chromosome Cytogenetic 
region 

Position 
(cM) Gene name Context References 

2 2p12 88 Bone morphogenetic 
protein 10 (BMP10) 

Skeletal 
development 

Castro-
Feijoo et al. 
(2005) 

3 3p26 19 

Basic helix-loop-
helix domain 
containing, class B, 
2 (BHLHB2, DEC1) 

 Wiltshire et 
al. (2002) 

3 3p25 37 

Peroxisome 
proliferative 
activated receptor, 
gamma (PPARG) 

Growth 
Hormone 
Axis 

Meirhaeghe 
et al. (2003) 

3 3p22-p21.1 69 
Parathyroid 
hormone receptor 1 
(PTHR1) 

Skeletal 
development 

Lei et al. 
(2005); 
Minagawa et 
al. (2002) 

3 3q26.31 183 
Growth hormone 
secretagogue 
receptor (GHSR) 

Growth 
Hormone 
Axis 

Pantel et al. 
(2006) 

5 5p13-p12 60 Growth hormone 
receptor (GHR) 

Growth 
Hormone 
Axis 

Dos Santos 
et al. (2004) 

5 5q31-q32 150 
Adrenergic, beta-2-, 
receptor, surface 
(ADRB2) 

Growth 
Hormone 
Axis 

Matsuoka et 
al. (2002) 

6 6q25.1 153 Estrogene receptor 
alpha gene (ESR1) 

Sex 
hormones 

Lorentzon et 
al. (2000); 
Schuit et al. 
(2004) 

7 7p14 49 
Growth hormone 
releasing hormone 
receptor (GHRHR) 

Growth 
Hormone 
Axis 

Castro-
Feijoo et al. 
(2005) 

7 7p12-p13 66 
Insulin-like growth 
factor binding 
protein 3 (IGFBP3) 

Growth 
Hormone 
Axis 

Deal et al. 
(2001)  

8 8p21-23 37 Early growth 
response (EGR3)  Deng et al. 

(2002) 

10 10q24.3 125 

Cytochrome P450, 
family 17, subfamily 
A, polypeptide 1 
(CYP17A1) 

Sex 
hormones 

Zmuda et al. 
(2001) 

11 11p15.3-
p15.1 20 Parathyroid 

hormone (PTH) 
Skeletal 
development 

Lei et al. 
(2005) 

11 11q23 106 Dopamine D2 
receptor (DRD2) 

Growth 
Hormone 
Axis 

Arinami et 
al. (1999); 
Miyake et al. 
(1999) 

12 12p12.1 45 KRAS, Noonan 
Syndrom  Schubbert et 

al. (2006) 
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Chromosome Cytogenetic 
region 

Position 
(cM) Gene name Context References  

12 12q12-q14 62 Vitamin D receptor 
(VDR) 

Skeletal 
development 

Suarez et al. 
(1997; 1998); 
Tao et al. 
(1998); 
Minamitani 
et al. (1998); 
Ferrara et al. 
(2002); van 
der Sluis et 
al. (2003) 

12 12q22-q23 109 Insulin-like growth 
factor 1 (IGF1) 

Growth 
Hormone 
Axis 

Arends et al. 
(2002); 
Abuzzahab et 
al. (2003) 

15 15q11-q13 8 (0-20) 
Imprinted in Prader-
Willi syndrome 
(IPW) 

 Cassidy 
(1997) 

15 15q21.1 45 

Cytochrome P450, 
family 19, subfamily 
A, polypeptide 1 
(CYP19A1) 

Sex 
hormones 

Ellis et al. 
(2001) 

17 17p11.2 44 Zinc finger protein 
179 (ZNF179)  Deng et al. 

(2002) 

17 17q21.3-
q22.1 69 Collagen type 1 

alpha 1 (COL1A1) 
Skeletal 
development 

Garnero et al. 
(1998); Long 
et al. (2004) 

17 17q24.2 82 Growth hormone 1 
(GH1) 

Growth 
Hormone 
Axis 

Horan et al. 
(2003) 

17 17q24-25 101 
Growth factor 
receptor-bound 
protein 2 (GRB2) 

 Deng et al. 
(2002) 

19 19q13.32 75 Luteinizing hormone 
beta (LHB) 

Sex 
hormones 

Raivio et al. 
(1996) 

20 20p11 18 Bone morphogenetic 
protein 2 (BMP2) 

Skeletal 
development 

Castro-
Feijoo et al. 
(2005) 

X/Y 

Xp22 
Pseudo-

autosomal 
region 

2 

short stature 
homeobox-
containing gene 
(SHOX)  

Skeletal 
development 

Rao et al. 
(1997); 
Rappold et 
al. (2002) 

X Xp22 21 
spondyloepiphyseal 
dysplasia, late 
(SEDL)  

Skeletal 
development 

Gedeon et al. 
(1999) 
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7   General Discussion 
 

 

 

 

Prospects for meta-analysis of linkage studies 

For complex phenotypes, which are influenced by several genetic and 

environmental factors, the sample sizes achievable within one study are generally 

too small to yield convincing evidence for genetic linkage (Altmüller et al. 2001). 

However, many common complex diseases are investigated by numerous groups 

worldwide and meta-analysis of all available studies can result in sufficient power 

with combined samples (Conneally 2003). A growing number of published meta-

analyses of linkage genome scans for various complex diseases has shown the 

increasing interest in such scientific co-operations and the good prospects for 

applications. 

 

Different approaches for meta-analysis of linkage studies 

Depending on the degree of detail in which data can be obtained for a meta-

analysis, different statistical approaches are possible. Accordingly, the results that 

can be achieved by different methods of meta-analysis yield more or less detailed 

information about the combined effect and may include a more precise location 

estimate. If the complete family information, genotype and phenotype data of all 

samples are available, a sensible primary analysis can be performed which yields 

effect size estimates and their variances. These can be combined in traditional 

fixed or random effects meta-analysis, together with heterogeneity tests, to obtain 

combined effect estimates and confidence intervals which in turn give refined 

location estimates. If such detailed data cannot be obtained, methods such as the 

proposed weighted combination of NPL scores (Loesgen et al. 2001; Dempfle and 

Loesgen 2004), the GSMA (Wise et al. 1999) or Fisher’s method (Fisher 1932) 

for the combination of p-values still require results for all tested markers or 

genetic locations, which usually will have to be requested from the authors of 

published genome scans. These methods do not yield combined effect estimates, 
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but only tests of significance, and while Fisher’s method and the weighted 

combination of NPL scores can refine the locations of the best combined results, 

the GSMA gives only one p-value per 30 cM bin, thus indicating only very broad 

linkage regions. Only the MSP method (Badner and Gershon 2002a), a variation 

of Fisher’s method, can be performed with just the usually published data, i.e. the 

smallest p-values in a genetic region with their approximate locations. Again, no 

effect estimation for the combined sample is possible and the resulting p-value 

applies to the largest region investigated in one of the original studies.  

 

Heterogeneity  

An area of further research are useful heterogeneity tests for linkage genome 

scans. A random effects meta-analysis, e.g. on the number of alleles shared 

identical by descent (IBD) between affected sib pairs (ASPs) might be advisable if 

heterogeneity between samples is suspected, but is only practically feasible if the 

detailed data such as the family specific IBD estimates are available (McQueen et 

al. 2005). This will usually only be the case for close collaborations where the 

complete raw data (family structures, genotypes, phenotypes) are accessible. Such 

entire data is also necessary for standard heterogeneity tests, which have low 

power for whole genome scans. A heterogeneity test for the Genome Search 

Meta-Analysis statistic (GSMA) was recently proposed using just the data 

commonly available for meta-analysis (Zintzaras and Ioannidis 2005), its power 

however has not been investigated in comparison to other approaches. If potential 

sources of heterogeneity, such as different ethnicities between study samples, are 

known, a useful strategy would be to perform meta-analyses for presumably more 

homogeneous subsets of samples from the same population as well as for all study 

samples. Additionally, methods that are explicitly designed to be powerful against 

specific alternatives (e.g. linkage to a certain region in only a subset of studies, i.e. 

only some of the null hypotheses are false) may be preferable. This includes 

truncation methods (variants of Fisher’s method (Olkin and Saner 2001; Zaykin et 

al. 2002)), which consider only p-values below a certain threshold and the number 

of p-values above that threshold.  
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Proposed new meta-analysis method for linkage genome scans 

A new statistical method for meta-analysis of linkage studies was proposed by  

Loesgen et al. (2001) which is, for non-parametric linkage analysis of ASPs, 

equivalent to a fixed effects meta-analysis on the number of alleles IBD. As such, 

study specific parameter estimates are weighted by the inverse of their variances 

(determined by the sample size) to obtain a combined estimate. The loss of power 

in non-parametric multipoint linkage analysis, which occurs for locations at which 

there is no fully informative marker, corresponds to a reduction in effective 

sample size (Guo and Elston 1999; Schork and Greenwood 2004). Therefore, 

weighting schemes are proposed which account for such lower information 

content. This becomes especially important for meta-analysis since different 

studies usually employ different sets of markers and information content within 

each study varies between genetic locations. Therefore the weighting factor for 

each study (representing the effective sample size) does not have to be constant 

throughout the genome but can vary by location. 

 

Power comparison 

The new meta-analysis method proposed by Loesgen et al. (2001) is compared to 

other approaches (GSMA, Fisher’s method and the truncated product method) in a 

simulation study (Dempfle and Loesgen 2004). This shows that the incorporation 

of study specific characteristics (such as information content and sample size) in a 

meta-analysis of a qualitative trait by direct weighted combination of NPL scores 

has better power than previously used methods that combine p-values. Different 

weighting schemes for the proposed NPL score combination method are 

investigated and a weighting with information content and sample size has best 

power for the simulated scenarios. An important characteristic of the NPL 

combination method is that for studies with the same design (e.g. ASP studies) 

appropriate weighting by sample size leads to the same result as would be 

obtained if the raw genotype data were analyzed together. P-value methods on the 

other hand, are sensible to different sample sizes between studies and yield 

different results if the same families are split up into samples in different ways. 

The loss of power for non-parametric linkage methods that occurs if markers are 

not completely informative can be reduced by using the NPL combination method 

weighted by information content, if this is available for all studies.  
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Application of the meta-analysis method: asthma 

The meta-analysis of four whole genome and five candidate region linkage studies 

on asthma revealed no region of significant linkage to this phenotype (Loesgen et 

al. 2001). The lowest p-values were obtained on chromosomes 1, 11 and 19. A 

possible reason for this lack of significant results is that the combined sample size 

is still too small, as the whole genome scans included only 340 families, and for 

the chromosome 5 candidate region 567 families were available. Given the 

moderate power of ASP linkage analysis for complex diseases, this seems to be 

insufficient to reliably identify genes involved in asthma susceptibility. The only 

asthma susceptibility gene that was yet identified by positional cloning, the 

ADAM33 gene (Van Eerdewegh et al. 2002), was identified in a genome scan of 

460 families and it seems plausible that samples of at least this size are necessary 

to identify this and other asthma susceptibility genes. Different methodological 

issues were explored in this meta-analysis where individual data was available. 

Besides a demonstration of the feasibility and practical application of different 

weighting schemes for NPL scores, a comparison with the GSMA method was 

performed, and effects of marker map construction for the combined marker sets 

were investigated. While inaccuracies of the assumed marker map can lead to bias 

in multipoint linkage analysis, nowadays very precise (linkage and physical) maps 

are available (Kong et al. 2004; Duffy 2006) so that this does not impose serious 

problems for meta-analysis. 

 

Framingham Heart Study genome scan for height 

A genome scan for the quantitative phenotype adult height which was performed 

in a sample of extended pedigrees not ascertained for this trait, the Framingham 

Heart Study, yielded suggestive evidence for linkage in several genetic regions 

(Geller et al. 2003). Comparison of these results with previously published 

genome scans for the same phenotype showed remarkable concordance for some 

regions, as well as discordance for regions linked in other studies which were not 

replicated in the current sample. Thus a meta-analysis of all available genome 

scans for height was planned to exactly quantify the combined evidence for 

linkage throughout the genome. 
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Meta-analysis of height genome scans 

The available, published genome wide linkage studies for the quantitative 

phenotype adult stature (Perola et al. 2001; Hirschhorn et al. 2001; Wiltshire et al. 

2002; Xu et al. 2002; Deng et al. 2002; Wu et al. 2003; Geller et al. 2003) were 

very well suited for a meta-analysis, as almost all samples were of Caucasian 

origin, all samples were unselected for the phenotype of interest, the same primary 

statistical analysis was used for all individual studies (variance components 

linkage analysis) and all had used the Marshfield map as a reference map. 

However, only LOD scores and sample size for each study were available for the 

meta-analysis, so only methods appropriate for the combination of p-values could 

be applied and no formal heterogeneity test was possible. The three methods used 

(weighted and unweighted inverse normal method and Fisher’s method) gave very 

similar results. The large combined sample size of over 14000 phenotyped and 

genotyped individuals enabled the identification of significant linkage to 

chromosomes 6, 7, 9 and 12 (with LOD scores greater 4) and revealed several 

“suggestive” regions (another six regions with LOD scores greater 2). This is well 

compatible with the results of segregation analyses which support the concept of 

stature as a phenotype with mostly polygenic but also major gene inheritance. 

 

Conclusions for meta-analysis of linkage studies 

The role of meta-analysis in genetic epidemiology will become more important as 

it is realized that for complex diseases that have a high impact on public health 

but are influenced by many factors with small effects, a single study alone cannot 

have sufficient power. While large studies are in progress, the valuable data from 

genome scans that were too small individually but are already completed should 

not be wasted but exploited efficiently. Thus, there are good prospects for future 

applications of meta-analysis in the area of genetic linkage studies for complex 

diseases, since scientists are interested in making more use of their already 

collected and published data to obtain higher power through increased sample 

sizes. Among the first efforts towards this goal, some successful meta-analyses of 

complex diseases have been published in the last few years (e.g. Badner and 

Gershon 2002b; Cox et al. 2001) and the application to the phenotype adult height 

presented here shows the great potentials of meta-analyses that include large 

combined sample sizes. The practical applicability of such meta-analyses is good 
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and depending on the extend of co-operation and data sharing, different methods 

are available. The weighted combination of NPL scores investigated here is a 

useful tool for research in genetic epidemiology, as it is easily applicable, and has 

more power than other suggested methods. It does not need raw data but leads to 

the same results as a pooled analysis that considers systematic differences in 

markers and uses only the output commonly given by model-free linkage analysis 

software. If less detailed results are available (such as LOD scores from variance 

components linkage analysis of quantitative traits), methods that are based on the 

combination of p-values are useful, as demonstrated in the meta-analysis of 

height. More research on sensible heterogeneity tests for meta-analysis of linkage 

genome scans would be desirable. A further increase of published meta-analyses 

for complex diseases can be expected in the next years. 
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8  Summary 
 

 

 

 

Linkage genome scans for genetically complex diseases have low power with the 

sample sizes that were often used in the past, and hence meta-analysis of several 

scans for the same disease might be a promising approach. Appropriate data are 

now becoming accessible as many groups worldwide investigate common 

diseases. The aim of this thesis is to extend and evaluate statistical methodology 

for meta-analysis. In addition, two meta-analyses of linkage genome scans for the 

complex phenotypes asthma and adult stature are performed and discussed. 

 In the first part of this thesis, an overview of available statistical methods and 

current applications is given. Important differences between studies, which may 

lead to heterogeneity and should be accounted for in a meta-analysis, are 

reviewed. Some available statistical tests for heterogeneity between linkage 

studies are presented and their limitations for genome scans are discussed. A new 

meta-analysis method is introduced which is based on a weighted combination of 

non-parametric linkage scores. Its relationship to traditional fixed effects meta-

analysis of combining parameter estimates from different studies weighted by the 

inverse of their respective variances is described. Recombination and low 

informativity of markers lead to a reduction of the effective sample size in 

multipoint linkage analysis. A locus specific weighting of individual studies with 

this effective sample size is therefore proposed. In a simulation study, the power 

of different methods to combine multipoint linkage scores, namely Fisher’s p-

value combination (Fisher 1932), the truncated product method (Zaykin et al. 

2002, a variant of Fisher's method), the Genome Search Meta-Analysis (GSMA, 

Wise et al. 1999) method and the proposed weighting methods were compared. In 

particular, the effects of different genetic marker sets and sample sizes between 

genome scans were investigated. The weighting methods explicitly take those 

differences into account and have higher power in the simulated scenarios than the 

other methods. 
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 The proposed meta-analysis method was applied to four linkage genome 

scans for the phenotype asthma and five studies of a candidate genetic region. 

Multipoint nonparametric linkage analysis is performed and different weighting 

schemes are used to combine the score statistics of individual studies to an overall 

statistic. For comparison, the GSMA method is also applied to the same data sets. 

For meta-analysis of linkage studies, a common map of genetic markers is 

necessary to align results obtained in different studies with different markers. In 

this meta-analysis, the effects of map uncertainties were evaluated. The latest 

versions of available combined physical and linkage maps are very precise and the 

small potential map errors that are left do not have relevant impact. This meta-

analysis of nine asthma linkage studies does not identify significant regions of 

genetic linkage to asthma. A still rather small size of the combined samples may 

be the reason for low power to identify susceptibility genes for the complex trait 

asthma.  

 The statistical methods that can be applied for a meta-analysis of linkage 

studies depend crucially on the available data, especially any additional 

information besides the usually reported linkage statistics. For the meta-analysis 

of linkage genome scans for the highly heritable trait adult height, only LOD 

scores from variance components linkage analysis, which are measures of 

significance and not effect estimates, could be obtained.  Thus, Fisher’s method 

and a weighted and unweighted variant of the inverse normal method were 

applied. Initially, a linkage genome scan for this quantitative trait was performed 

in the extended pedigrees of the Framingham Heart Study. A variance 

components linkage analysis in this sample unselected for height gave evidence 

for linkage in several regions. All markers showing a LOD score greater than 1 in 

this analysis correspond to previously reported linkage regions, including 

chromosome 6q with a maximum LOD score of 2.45 and chromosomes 9, 12, 14, 

18 and 22. Following this observation, a meta-analysis of all previously published 

genome scans for adult stature was planned. Genome scan results of 17 separate 

samples reported in seven publications and comprising more than 14000 

phenotyped and genotyped individuals could be obtained in sufficient detail to be 

included in the meta-analysis. The comparison of meta-analysis results with 

individual studies shows that only a formal meta-analysis can exactly quantify the 

combined evidence for linkage and is superior to an informal classification of 
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results as replication or non-replication. Significant linkage of stature is observed 

on chromosomes 6, 7, 9 and 12 (LOD scores >4) and suggestive linkage with 

LOD scores >2 is obtained in six additional genetic regions. This is well 

compatible with the concept of height as a mostly polygenic trait for which also 

some major genes exist. Candidate genes in the linkage regions are discussed. 
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9  Zusammenfassung 
 

 

 

 

Kopplungsgenomscans für genetisch komplexe Krankheiten haben mit den 

bislang üblichen Fallzahlen oft nur eine geringe statistische Power, daher sind 

Meta-Analysen von mehreren Genomscans für die gleiche Krankheit ein 

erfolgversprechender Ansatz. Passende Datensätze werden zunehmend verfügbar, 

da weltweit viele Gruppen genetische Studien zu den häufigsten Krankheiten 

durchführen. Ziel dieser Arbeit ist es, statistische Methoden der Meta-Analyse 

weiter zu entwickeln und zu evaluieren. Weiterhin werden zwei Meta-Analysen 

von Genomscans für komplexe Phänotypen, Asthma und Körpergröße, 

durchgeführt.  

Im ersten Teil dieser Dissertation wird ein Überblick über aktuelle 

Anwendungen und bisherige statistische Methoden gegeben. Wichtige 

Unterschiede zwischen Studien, die zu Heterogenität führen können und in einer 

Meta-Analyse berücksichtigt werden sollten, werden erörtert. Einige vorhandene 

statistische Tests auf Heterogenität zwischen Kopplungsstudien werden 

vorgestellt und ihre Einschränkungen bei der Anwendung auf Genomscans 

diskutiert. Eine neue Methode für Meta-Analysen von genetischen 

Kopplungsgenomscans, die auf einer gewichteten Kombination von nicht-

parametrischen Kopplungsstatistiken basiert, wird vorgestellt. Ihr Zusammenhang 

mit herkömmlicher „fixed-effects“ Meta-Analyse für Parameterschätzer wird 

erläutert. Rekombinationen und geringe Informativität genetischer Marker führen 

in der multipoint Kopplungsanalyse zu einer Reduzierung der effektiven Fallzahl. 

Eine locusspezifische Gewichtung der einzelnen Studien mit dieser effektiven 

Fallzahl wird vorgestellt. In einer Simulationsstudie wurde die statistische Power 

verschiedener Meta-Analyse Methoden für multipoint Kopplungsergebnisse 

verglichen. Dabei wurden die Methode nach Fisher zur Kombination von p-

Werten (Fisher 1932), die „truncated product method“ (Zaykin et al. 2002, eine 

Variante von Fishers Methode), die Genome Search Meta-Analysis Methode 
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(GSMA, Wise et al. 1999) und die vorgeschlagenen Gewichtungsmethoden 

angewandt. Insbesondere wurden die Einflüsse unterschiedlicher genetischer 

Marker und Fallzahlen zwischen Genomscans untersucht. Die 

Gewichtungsmethoden berücksichtigen diese Unterschiede explizit und haben 

eine höhere statistische Power in den untersuchten Szenarien als die anderen 

Methoden.  

Die vorgeschlagene Meta-Analyse Methode wurde auf vier 

Kopplungsscans und fünf Studien einer Kandidatengenregion für den Phänotyp 

Asthma angewandt. Zunächst wurden nicht-parametrische multipoint 

Kopplungsanalysen der Einzelstudien durchgeführt und die Einzel-Teststatistiken 

dann mit verschiedenen Gewichtungsmethoden zu einer Gesamtstatistik 

zusammengefasst. Zum Vergleich wurde auch die GSMA Methode auf dieselben 

Daten angewandt. Für eine Meta-Analyse von Kopplungsstudien benötigt man die 

relative genetische Position aller in den verschiedenen Studien verwendeten 

Marker zueinander, also eine gemeinsame genetische Karte. Die Bedeutung von 

Ungenauigkeiten der genetischen Karte wurde daher in dieser Studie untersucht. 

Die neuesten Versionen der zur Verfügung stehenden kombinierten 

physikalischen und genetischen Karten sind sehr präzise und die möglicherweise 

noch enthaltenen geringen Fehler haben keinen relevanten Einfluss auf eine Meta-

Analyse. Die Meta-Analyse der neun Asthma-Studien ergab keine signifikanten 

Hinweise auf Kopplung. Die relativ geringe Gesamtstichprobengröße ist ein 

möglicher Grund für geringe statistische Power zur Identifikation von 

Suszeptibilitätsgenen für die genetisch komplexe Krankheit Asthma.  

 Welche statistischen Methoden für eine Meta-Analyse verwendet werden 

können, hängt stark von den zur Verfügung stehenden Daten ab, insbesondere 

welche weiteren Informationen neben den üblicherweise berichteten 

Teststatistiken vorhanden sind. Für die Meta-Analyse von Kopplungsgenomscans 

des Phänotyps Körpergröße standen nur LOD scores aus 

Varianzkomponentenanalysen zur Verfügung, welche Signifikanzmaße, nicht aber 

Effektstärkenschätzer sind. Daher wurden die Methode nach Fisher und eine 

gewichtete sowie ungewichtete Variante der Inversen-Normalverteilungsmethode 

angewandt. Zunächst wurde ein Kopplungsgenomscan dieses quantitativen 

Merkmals in den erweiterten Stammbäumen der Framingham Heart Study 

durchgeführt. Eine Kopplungsanalyse mit Varianzkomponentenverfahren ergab in 
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dieser für Körpergröße nicht speziell ausgewählten Stichprobe Kopplung zu 

mehreren genetischen Regionen. Alle Marker, die in dieser Auswertung einen 

LOD score (Kopplungsteststatistik) größer als 1 zeigen entsprechen schon früher 

berichteten Kopplungsregionen, darunter Chromosom 6q mit einem maximalen 

LOD score von 2,45 und Regionen auf den Chromsomen 9, 12, 14, 18 und 22. 

Auf Grund dieser Beobachtung wurde eine Meta-Analyse aller publizierten 

Genomscans für Körpergröße geplant. Die Ergebnisse von 17 Stichproben (aus 

sieben Veröffentlichungen) mit insgesamt mehr als 14000 phänotypisierten und 

genotypisierten Personen konnten in die Meta-Analyse einbezogen werden. Der 

Vergleich der Ergebnisse der Meta-Analyse mit denen der Einzelstudien zeigt, 

dass nur eine formale Meta-Analyse die Hinweise auf Kopplung genau 

quantifizieren kann und einer ungenauen Einteilung der Ergebnisse im Sinne einer 

Replikation oder Nicht-Replikation vorzuziehen ist. Signifikante Kopplung von 

Körpergröße ergibt sich zu den Chromosomen 6, 7, 9 und 12 (mit Gesamt-LOD 

scores >4) und Hinweise auf Kopplung mit LOD scores >2 finden sich in sechs 

weiteren genetischen Regionen. Dies ist gut vereinbar mit dem Konzept, dass 

Körpergröße hauptsächlich polygen bestimmt ist, daneben aber auch Hauptgene 

existieren. Schließlich werden Kandidatengene in den Kopplungsregionen 

diskutiert. 



 
___________________________________________________________________________________________________ 

 126

Parts of this doctoral thesis have been published in the following papers: 
 
 

I. Loesgen S, Dempfle A, Golla A, Bickeböller H (2001). Weighting Schemes 

in Pooled Linkage Analysis. Genetic Epidemiology 21 Supplement 1: S142-

S147 

 

II. Geller F, Dempfle A, Görg T (2003). Genome Scan for BMI and height in 

the Framingham Heart Study. BMC Genetics 4 Supplement 1:S91. 

 

III. Dempfle A, Loesgen S (2004). Meta-analysis of linkage studies for complex 

diseases: an overview of methods and a simulation study. Annals of Human 

Genetics 68:69-83. 

 

For paper I, I participated in the data management and analysis, and in writing the 

paper, the co-authors (especially S. Loesgen) proposed the methodology and were 

also involved in data analysis and writing of the paper. 

For paper II, both first authors contributed equally, i.e. they conceived the idea 

and design of the study, both performed the analysis and wrote the manuscript. I 

was responsible for the analysis of the phenotype height which is presented in this 

thesis, the other first author had the main responsibility for the BMI analysis, 

which is not included in this thesis. The third author participated in data 

management and prepared figures. 

In case of paper III, both authors designed and performed the simulation study 

together, I had the main responsibility for writing the paper. 

 

 



REFERENCES 
___________________________________________________________________________________________________ 

 127

10  References 
 

 

 

 

Abecasis G, Cox N, Daly MJ, Kruglyak L, Laird N, Markianos K, and Patterson 

N (2004) No bias in linkage analysis. Am J Hum Genet 75:722-723 

Abecasis GR, Cherny SS, Cookson WO, and Cardon LR (2002) Merlin--rapid 

analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97-101 

Abuzzahab MJ, Schneider A, Goddard A et al (2003) IGF-I receptor mutations 

resulting in intrauterine and postnatal growth retardation. N Engl J Med 349:2211-

2222 

Allison DB and Heo M (1998) Meta-analysis of linkage data under worst-case 

conditions: a demonstration using the human OB region. Genetics 148:859-865 

Almasy L and Blangero J (1998) Multipoint quantitative-trait linkage analysis in 

general pedigrees. Am J Hum Genet 62:1198-1211 

Altmüller J, Palmer LJ, Fischer G, Scherb H, and Wjst M (2001) Genomewide 

scans of complex human diseases: true linkage is hard to find. Am J Hum Genet 

69:936-950 

An P, Freedman BI, Hanis CL, Chen YD, Weder AB, Schork NJ, Boerwinkle E, 

Province MA, Hsiung CA, Wu X, Quertermous T, and Rao DC (2005) Genome-

wide linkage scans for fasting glucose, insulin, and insulin resistance in the 

National Heart, Lung, and Blood Institute Family Blood Pressure Program: 

evidence of linkages to chromosome 7q36 and 19q13 from meta-analysis. 

Diabetes 54:909-914 

Arends N, Johnston L, Hokken-Koelega A, van Duijn C, de Ridder M, Savage M, 

and Clark A (2002) Polymorphism in the IGF-I gene: clinical relevance for short 

children born small for gestational age (SGA). J Clin Endocrinol Metab 87:2720 



REFERENCES 
___________________________________________________________________________________________________ 

 128

Arinami T, Iijima Y, Yamakawa-Kobayashi K, Ishiguro H, Ohtsuki T, Yanagi H, 

Shimakura Y, Ishikawa H, and Hamaguchi H (1999) Supportive evidence for 

contribution of the dopamine D2 receptor gene to heritability of stature: linkage 

and association studies. Ann Hum Genet 63:147-151 

Attie KM (2000) Genetic studies in idiopathic short stature. Curr Opin Pediatr 

12:400-404 

Babron MC, Selinger-Leneman H, Dizier MH, and Clerget-Darpoux F (2001) 

Homogeneity of asthma genome scan results. Genet Epidemiol 21 Suppl 1:S44-

S48 

Badner JA and Gershon ES (2002a) Meta-analysis of whole-genome linkage 

scans of bipolar disorder and schizophrenia. Mol Psychiatry 7:405-411 

Badner JA and Gershon ES (2002b) Regional meta-analysis of published data 

supports linkage of autism with markers on chromosome 7. Mol Psychiatry 7:56-

66 

Badner JA and Goldin LR (1999) Meta-analysis of linkage studies. Genet 

Epidemiol 17 Suppl 1:S485-S490 

Benito-Sanz S, Thomas NS, Huber C, Gorbenco del Blanco D, Aza-Carmona M, 

Crolla JA, Maloney V, Rappold G, Argente J, Campos-Barros A, Cormier-Daire 

V, and Heath KE (2005) A Novel Class of Pseudoautosomal Region 1 Deletions 

Downstream of SHOX Is Associated with Leri-Weill Dyschondrosteosis. Am J 

Hum Genet 77:533-544 

Blackwelder WC and Elston RC (1985) A comparison of sib-pair linkage tests for 

disease susceptibility loci. Genet Epidemiol 2:85-97 

Blakey J, Halapi E, Bjornsdottir US, Wheatley A, Kristinsson S, Upmanyu R, 

Stefansson K, Hakonarson H, and Hall IP (2005) Contribution of ADAM33 

polymorphisms to the population risk of asthma. Thorax 60:274-276 



REFERENCES 
___________________________________________________________________________________________________ 

 129

Botstein D, White RL, Skolnick M, and Davis RW (1980) Construction of a 

genetic linkage map in man using restriction fragment length polymorphisms. Am 

J Hum Genet 32:314-331 

Bravata DM and Olkin I (2001) Simple pooling versus combining in meta-

analysis. Eval Health Prof 24:218-230 

Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a 

microarray experiment (MIAME)-toward standards for microarray data. Nat 

Genet 29:365-371 

Broman KW, Murray JC, Sheffield VC, White RL, and Weber JL (1998) 

Comprehensive human genetic maps: individual and sex-specific variation in 

recombination. Am J Hum Genet 63:861-869 

Cassidy SB (1997) Prader-Willi syndrome. J Med Genet 34:917-923 

Castro-Feijoo L, Quinteiro C, Loidi L, Barreiro J, Cabanas P, Arevalo T, Dieguez 

C, Casanueva FF, and Pombo M (2005) Genetic basis of short stature. J 

Endocrinol Invest 28:30-37 

Chen WM and Deng HW (2001) A general and accurate approach for computing 

the statistical power of the transmission disequilibrium test for complex disease 

genes. Genet Epidemiol 21:53-67 

Choi SJ, Rho YH, Ji JD, Song GG, and Lee YH (2006) Genome scan meta-

analysis of rheumatoid arthritis. Rheumatology (Oxford) 45:166-170 

Cochran WG (1937) Problems arising in the analysis of a series of similar 

experiments. J Roy Statist Soc 4:102-118 

Conneally PM (2003) The complexity of complex diseases. Am J Hum Genet 

72:229-232 

Cordell HJ (2001) Sample size requirements to control for stochastic variation in 

magnitude and location of allele-sharing linkage statistics in affected sibling pairs. 

Ann Hum Genet 65:491-502 



REFERENCES 
___________________________________________________________________________________________________ 

 130

Cordell HJ (2004) Bias toward the null hypothesis in model-free linkage analysis 

is highly dependent on the test statistic used. Am J Hum Genet 74:1294-1302 

Cox NJ, Wapelhorst B, Morrison VA, Johnson L, Pinchuk L, Spielman RS, Todd 

JA, and Concannon P (2001) Seven regions of the genome show evidence of 

linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J 

Hum Genet 69:820-830 

Daniels SE, Bhattacharrya S, James A, Leaves NI, Young A, Hill MR, Faux JA, 

Ryan GF, le Souef PN, Lathrop GM, Musk AW, and Cookson WO (1996) A 

genome-wide search for quantitative trait loci underlying asthma. Nature 383:247-

250 

Daw EW, Thompson EA, and Wijsman EM (2000) Bias in multipoint linkage 

analysis arising from map misspecification. Genet Epidemiol 19:366-380 

Deal C, Ma J, Wilkin F, Paquette J, Rozen F, Ge B, Hudson T, Stampfer M, and 

Pollak M (2001) Novel promoter polymorphism in insulin-like growth factor-

binding protein-3: correlation with serum levels and interaction with known 

regulators. J Clin Endocrinol Metab 86:1274-1280 

Demenais F, Kanninen T, Lindgren CM, Wiltshire S, Gaget S, Dandrieux C, 

Almgren P, Sjogren M, Hattersley A, Dina C, Tuomi T, McCarthy MI, Froguel P, 

and Groop LC (2003) A meta-analysis of four European genome screens (GIFT 

Consortium) shows evidence for a novel region on chromosome 17p11.2-q22 

linked to type 2 diabetes. Hum Mol Genet 12:1865-1873 

Dempfle A and Loesgen S (2004) Meta-analysis of linkage studies for complex 

diseases: an overview of methods and a simulation study. Ann Hum Genet 68:69-

83 

Deng HW, Xu FH, Liu YZ, Shen H, Deng H, Huang QY, Liu YJ, Conway T, Li 

JL, Davies KM, and Recker RR (2002) A whole-genome linkage scan suggests 

several genomic regions potentially containing QTLs underlying the variation of 

stature. Am J Med Genet 113:29-39 



REFERENCES 
___________________________________________________________________________________________________ 

 131

Dos Santos C, Essioux L, Teinturier C, Tauber M, Goffin V, and Bougneres P 

(2004) A common polymorphism of the growth hormone receptor is associated 

with increased responsiveness to growth hormone. Nat Genet 36:720-724 

Duffy DL (2006) An integrated genetic map for linkage analysis. Behav Genet 

36:4-6 

Ellis JA, Stebbing M, and Harrap SB (2001) Significant population variation in 

adult male height associated with the Y chromosome and the aromatase gene. J 

Clin Endocrinol Metab 86:4147-4150 

Elston RC (1991) On Fisher's Method of Combining p-Values. Biom J 33:339-

345 

Etzel CJ and Costello TJ (2001) Assessing linkage of immunoglobulin E using a 

meta-analysis approach. Genet Epidemiol 21 Suppl 1:S97-102 

Etzel CJ and Guerra R (2002) Meta-analysis of Genetic-Linkage Analysis of 

Quantitative-Trait Loci. Am J Hum Genet 71:56-65 

Ferrara M, Matarese SM, Francese M, Borrelli B, Coppola A, Coppola L, and 

Esposito L (2002) Effect of VDR polymorphisms on growth and bone mineral 

density in homozygous beta thalassaemia. Br J Haematol 117:436-440 

Fisher RA. 1932. Statistical Methods for Research Workers. 4 ed. Edinburgh: 

Oliver and Boyd 

Fisher SA, Abecasis GR, Yashar BM et al (2005) Meta-analysis of genome scans 

of age-related macular degeneration. Hum Mol Genet 14:2257-2264 

Folks LJ (1984) Combination of Independent Tests. In: Krishnaiah PR, Sen PK 

(eds) Handbook of Statistics, vol. 4. Amsterdam: Elsevier Science 

Franke D and Ziegler A (2005) Weighting affected sib pairs by marker 

informativity. Am J Hum Genet 77:230-241 (Erratum in: Am J Hum Genet. (2006) 

78:732.) 



REFERENCES 
___________________________________________________________________________________________________ 

 132

Fulker DW, Cherny SS, and Cardon LR (1995) Multipoint interval mapping of 

quantitative trait loci, using sib pairs. Am J Hum Genet 56:1224-1233 

Garnero P, Borel O, Grant SF, Ralston SH, and Delmas PD (1998) Collagen 

Ialpha1 Sp1 polymorphism, bone mass, and bone turnover in healthy French 

premenopausal women: the OFELY study. J Bone Miner Res 13:813-817 

Gedeon AK, Colley A, Jamieson R, Thompson EM, Rogers J, Sillence D, Tiller 

GE, Mulley JC, and Gecz J (1999) Identification of the gene (SEDL) causing X-

linked spondyloepiphyseal dysplasia tarda. Nat Genet 22:400-404 

Geller F, Dempfle A, and Görg T (2003) Genome Scan for BMI and height in the 

Framingham Heart Study. BMC Genetics 4 Suppl 1:S91 

Ginsburg E, Livshits G, Yakovenko K, and Kobyliansky E (1998) Major gene 

control of human body height, weight and BMI in five ethnically different 

populations. Ann Hum Genet 62:307-322 

Goldstein DR, Sain SR, Guerra R, and Etzel CJ (1999) Meta-analysis by 

combining parameter estimates: simulated linkage studies. Genet Epidemiol 17 

Suppl 1:S581-S586 

Good IJ (1955) On the weighted combination of significance tests. Journal of the 

Royal Statistical Society, Series B 17:264-265 

Göring HH, Terwilliger JD, and Blangero J (2001) Large upward bias in 

estimation of locus-specific effects from genomewide scans. Am J Hum Genet 

69:1357-1369 

Greenberg DA, MacCluer JW, Spence MA, Falk CT, and Hodge SE (1999) 

Simulated data for a complex genetic trait (problem 2 for GAW11): how the 

model was developed, and why. Genet Epidemiol 17 Suppl 1:S449-S459 

Gu C, Province M, and Rao DC (1999) Meta-analysis of genetic linkage to 

quantitative trait loci with study- specific covariates: a mixed-effects model. 

Genet Epidemiol 17 Suppl 1:S599-S604 



REFERENCES 
___________________________________________________________________________________________________ 

 133

Gu C, Province M, Todorov A, and Rao DC (1998) Meta-analysis methodology 

for combining non-parametric sibpair linkage results: genetic homogeneity and 

identical markers. Genet Epidemiol 15:609-626 

Gu C, Province MA, Rao DC (2001) Meta-analysis for model-free methods. In: 

Rao DC, Province MA (eds) Genetic Dissection of Complex Traits, 42 ed. San 

Diego: Academic Press 

Gudbjartsson DF, Jonasson K, Frigge ML, and Kong A (2000) Allegro, a new 

computer program for multipoint linkage analysis. Nat Genet 25:12-13 

Guerra R, Etzel CJ, Goldstein DR, and Sain SR (1999) Meta-analysis by 

combining p-values: simulated linkage studies. Genet Epidemiol 17 Suppl 1:S605-

S609 

Guo X and Elston RC (1999) Linkage information content of polymorphic genetic 

markers. Hum Hered 49:112-118 

Guo X and Elston RC (2000) Two-stage global search designs for linkage analysis 

I: use of the mean statistic for affected sib pairs. Genet Epidemiol 18:97-110 

Guo X, Olson JM, Elston RC, and Niu T (2002) The linkage information content 

value of polymorphism genetic markers in model-free linkage analysis. Hum 

Hered 53:45-48 

Halpern J and Whittemore AS (1999) Multipoint linkage analysis. A cautionary 

note. Hum Hered 49:194-196 

Haseman JK and Elston RC (1972) The investigation of linkage between a 

quantitative trait and a marker locus. Behav Genet 2:3-19 

Hedges LV, Olkin I. 1985. Statistical Methods for Meta-Analysis. San Diego: 

Academic Press 

Heijmans BT, Beekman M, Putter H, Lakenberg N, van der Wijk HJ, Whitfield 

JB, Posthuma D, Pedersen NL, Martin NG, Boomsma DI, and Slagboom PE 

(2005) Meta-analysis of four new genome scans for lipid parameters and analysis 



REFERENCES 
___________________________________________________________________________________________________ 

 134

of positional candidates in positive linkage regions. Eur J Hum Genet 13:1143-

1153 

Hirschhorn JN, Lindgren CM, Daly MJ, Kirby A, Schaffner SF, Burtt NP, 

Altshuler D, Parker A, Rioux JD, Platko J, Gaudet D, Hudson TJ, Groop LC, and 

Lander ES (2001) Genomewide linkage analysis of stature in multiple populations 

reveals several regions with evidence of linkage to adult height. Am J Hum Genet 

69:106-116 

Holgate ST, Yang Y, Haitchi HM, Powell RM, Holloway JW, Yoshisue H, Pang 

YY, Cakebread J, and Davies DE (2006) The genetics of asthma: ADAM33 as an 

example of a susceptibility gene. Proc Am Thorac Soc 3:440-443 

Holmans P (1993) Asymptotic properties of affected-sib-pair linkage analysis. Am 

J Hum Genet 52:362-374 

Horan M, Millar DS, Hedderich J, Lewis G, Newsway V, Mo N, Fryklund L, 

Procter AM, Krawczak M, and Cooper DN (2003) Human growth hormone 1 

(GH1) gene expression: complex haplotype-dependent influence of polymorphic 

variation in the proximal promoter and locus control region. Hum Mutat 21:408-

423 

Hsu LM (2005) Some properties of r equivalent: a simple effect size indicator. 

Psychol Methods 10:420-427 

Huber C, Ipsas-Jouron S, Rossilio M, Salaun-Martin C, Munnich A, and Cormier-

Daire V (2004) Molecular analysis of the SHOX gene in a series of 100 patients 

with short stature. Paper presented at the 54th Anual Meeting of the American 

Society of Human Genetics abstract 187 

Iyengar SK, Jacobs KB, and Palmer LJ (2001) Improved evidence for linkage on 

6p and 5p with retrospective pooling of data from three asthma genome screens. 

Genet Epidemiol 21 Suppl 1:S130-S135 

Jacobs KB, Burton PR, Iyengar SK, Elston RC, and Palmer LJ (2001) Pooling 

data and linkage analysis in the chromosome 5q candidate region for asthma. 

Genet Epidemiol 21 Suppl 1:S103-S108 



REFERENCES 
___________________________________________________________________________________________________ 

 135

Johnson L, Luke A, Adeyemo A, Deng HW, Mitchell BD, Comuzzie AG, Cole 

SA, Blangero J, Perola M, and Teare MD (2005) Meta-analysis of five genome-

wide linkage studies for body mass index reveals significant evidence for linkage 

to chromosome 8p. Int J Obes 29:413-419 

Kant SG, Wit JM, and Breuning MH (2003) Genetic analysis of short stature. 

Horm Res 60:157-165 

Knapp M (2006) Power comparison of generalizations of the mean test for 

affected sib pairs in case of incompletely informative markers. Genet Epidemiol 

30:314-319 

Koivukoski L, Fisher SA, Kanninen T, Lewis CM, von Wowern F, Hunt S, 

Kardia SL, Levy D, Perola M, Rankinen T, Rao DC, Rice T, Thiel BA, and 

Melander O (2004) Meta-analysis of genome-wide scans for hypertension and 

blood pressure in Caucasians shows evidence of susceptibility regions on 

chromosomes 2 and 3. Hum Mol Genet 13:2325-2332 

Kong A and Cox NJ (1997) Allele-sharing models: LOD scores and accurate 

linkage tests. Am J Hum Genet 61:1179-1188 

Kong A, Gudbjartsson DF, Sainz J et al (2002) A high-resolution recombination 

map of the human genome. Nat Genet 31:241-247 

Kong X, Murphy K, Raj T, He C, White PS, and Matise TC (2004) A combined 

linkage-physical map of the human genome. Am J Hum Genet 75:1143-1148 

Kraemer HC (2005) A simple effect size indicator for two-group comparisons? A 

comment on r equivalent. Psychol Methods 10:413-419 

Krawczak M (2001) ASP-a simulation-based power calculator for genetic linkage 

studies of qualitative traits, using sib-pairs. Hum Genet 109:675-677 

Kruglyak L, Daly MJ, and Lander ES (1995) Rapid multipoint linkage analysis of 

recessive traits in nuclear families, including homozygosity mapping. Am J Hum 

Genet 56:519-527 



REFERENCES 
___________________________________________________________________________________________________ 

 136

Kruglyak L, Daly MJ, Reeve-Daly MP, and Lander ES (1996) Parametric and 

nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 

58:1347-1363 

Kruglyak L and Lander ES (1995) Complete multipoint sib-pair analysis of 

qualitative and quantitative traits. Am J Hum Genet 57:439-454 

Lander ES and Kruglyak L (1995) Genetic dissection of complex traits: guidelines 

for interpreting and reporting linkage results. Nat Genet 11:241-247 

Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of 

the human genome. Nature 409:860-921 

Lander ES and Schork NJ (1994) Genetic dissection of complex traits. Science 

265:2037-2048 

Lathrop GM, Lalouel JM, Julier C, and Ott J (1984) Strategies for multilocus 

linkage analysis in humans. Proc Natl Acad Sci U S A 81:3443-3446 

Lei SF, Wang YB, Liu MY, Mo XY, and Deng HW (2005) The VDR, COL1A1, 

PTH, and PTHR1 gene polymorphisms are not associated with bone size and 

height in Chinese nuclear families. J Bone Miner Metab 23:501-505 

Levinson DF, Holmans PA, Laurent C et al (2002) No major schizophrenia locus 

detected on chromosome 1q in a large multicenter sample. Science 296:739-741 

Li Z and Rao DC (1996) Random effects model for meta-analysis of multiple 

quantitative sibpair linkage studies. Genet Epidemiol 13:377-383 

Liu YZ, Xu FH, Shen H et al (2004) Genetic dissection of human stature in a 

large sample of multiplex pedigrees. Ann Hum Genet 68:472-488 

Loesgen S, Dempfle A, Golla A, and Bickeböller H (2001) Weighting schemes in 

pooled linkage analysis. Genet Epidemiol 21 Suppl 1:S142-S147 

Long JR, Liu PY, Lu Y, Xiong DH, Zhao LJ, Zhang YY, Elze L, Recker RR, and 

Deng HW (2004) Association between COL1A1 gene polymorphisms and bone 

size in Caucasians. Eur J Hum Genet 12:383-388 



REFERENCES 
___________________________________________________________________________________________________ 

 137

Lonjou C, Barnes K, Chen H, Cookson WO, Deichmann KA, Hall IP, Holloway 

JW, Laitinen T, Palmer LJ, Wjst M, and Morton NE (2000) A first trial of 

retrospective collaboration for positional cloning in complex inheritance: assay of 

the cytokine region on chromosome 5 by the consortium on asthma genetics 

(COAG). Proc Natl Acad Sci U S A 97:10942-10947 

Lorentzon M, Lorentzon R, and Nordstrom P (2000) Vitamin D receptor gene 

polymorphism is associated with birth height, growth to adolescence, and adult 

stature in healthy caucasian men: a cross-sectional and longitudinal study. J Clin 

Endocrinol Metab 85:1666-1670 

Malhotra A, Coon H, Feitosa MF, Li WD, North KE, Price RA, Bouchard C, 

Hunt SC, and Wolford JK (2005) Meta-analysis of genome-wide linkage studies 

for quantitative lipid traits in African Americans. Hum Mol Genet 14:3955-3962 

Marazita ML, Murray JC, Lidral AC et al (2004) Meta-analysis of 13 genome 

scans reveals multiple cleft lip/palate genes with novel loci on 9q21 and 2q32-35. 

Am J Hum Genet 75:161-173 

Matsuoka H, Iwama S, Miura N, Ikezaki A, and Sugihara S (2002) Impact of 

polymorphisms of human beta-adrenergic receptor gene on changes in height 

during growth hormone treatment. Endocr J 49:21-28 

McQueen MB, Blacker D, and Laird N (2006) Variance Calculations for Identity-

by-Descent Estimation. Am J Hum Genet 78:914-921 

McQueen MB, Devlin B, Faraone SV et al (2005) Combined analysis from eleven 

linkage studies of bipolar disorder provides strong evidence of susceptibility loci 

on chromosomes 6q and 8q. Am J Hum Genet 77:582-595 

Meirhaeghe A, Fajas L, Gouilleux F, Cottel D, Helbecque N, Auwerx J, and 

Amouyel P (2003) A functional polymorphism in a STAT5B site of the human 

PPAR gamma 3 gene promoter affects height and lipid metabolism in a French 

population. Arterioscler Thromb Vasc Biol 23:289-294 

Meyers DA, Wjst M, and Ober C (2001) Description of three data sets: 

Collaborative Study on the Genetics of Asthma (CSGA), the German Affected-



REFERENCES 
___________________________________________________________________________________________________ 

 138

Sib-Pair Study, and the Hutterites of South Dakota. Genet Epidemiol 21 Suppl 

1:S4-S8 

Minagawa M, Yasuda T, Watanabe T, Minamitani K, Takahashi Y, Goltzman D, 

White JH, Hendy GN, and Kohno Y (2002) Association between AAAG repeat 

polymorphism in the P3 promoter of the human parathyroid hormone (PTH)/PTH-

related peptide receptor gene and adult height, urinary pyridinoline excretion, and 

promoter activity. J Clin Endocrinol Metab 87:1791-1796 

Minamitani K, Takahashi Y, Minagawa M, Yasuda T, and Niimi H (1998) 

Difference in height associated with a translation start site polymorphism in the 

vitamin D receptor gene. Pediatr Res 44:628-632 

Miyake H, Nagashima K, Onigata K, Nagashima T, Takano Y, and Morikawa A 

(1999) Allelic variations of the D2 dopamine receptor gene in children with 

idiopathic short stature. J Hum Genet 44:26-29 

Morizio E, Stuppia L, Gatta V, Fantasia D, Guanciali FP, Rinaldi MM, Scarano 

G, Concolino D, Giannotti A, Verrotti A, Chiarelli F, Calabrese G, and Palka G 

(2003) Deletion of the SHOX gene in patients with short stature of unknown 

cause. Am J Med Genet A 119:293-296 

Morton NE (1955) Sequential Test for the Detection of Linkage. Am J Hum Genet 

7:277-318 

Mukhopadhyay I, Feingold E, Wang T, Elston RC, and Weeks DE (2006) 

Treatment of Uninformative Families in Mean Allele Sharing Tests for Linkage. 

Statistical Applications in Genetics and Molecular Biology 5:Article 13. Available 

at: http://www.bepress.com/sagmb/vol5/iss1/art13 

Mukhopadhyay I, Feingold E, and Weeks DE (2004) No "bias" toward the null 

hypothesis in most conventional multipoint nonparametric linkage analyses. Am J 

Hum Genet 75:716-718 

Nair RP, Henseler T, Jenisch S, Stuart P, Bichakjian CK, Lenk W, Westphal E, 

Guo SW, Christophers E, Voorhees JJ, and Elder JT (1997) Evidence for two 



REFERENCES 
___________________________________________________________________________________________________ 

 139

psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q 

and 20p) by genome-wide scan. Hum Mol Genet 6:1349-1356 

Nyholt DR (2000) All LODs are not created equal. Am J Hum Genet 67:282-288 

Ober C, Tsalenko A, Parry R, and Cox NJ (2000) A second-generation 

genomewide screen for asthma-susceptibility alleles in a founder population. Am J 

Hum Genet 67:1154-1162 

Olkin I and Saner H (2001) Approximations for trimmed Fisher procedures in 

research synthesis. Stat Methods Med Res 10:267-276 

Palmer LJ, Cookson WO, Deichmann KA, Holloway JW, and Laitinen T (2001) 

Single region linkage analyses of asthma: description of data sets. Genet 

Epidemiol 21 Suppl 1:S9-15 

Palmert MR and Hirschhorn JN (2003) Genetic approaches to stature, pubertal 

timing, and other complex traits. Mol Genet Metab 80:1-10 

Pantel J, Legendre M, Cabrol S, Hilal L, Hajaji Y, Morisset S, Nivot S, Vie-Luton 

MP, Grouselle D, de Kerdanet M, Kadiri A, Epelbaum J, Le Bouc Y, and 

Amselem S (2006) Loss of constitutive activity of the growth hormone 

secretagogue receptor in familial short stature. J Clin Invest 116:760-768 

Pearson K and Lee A (1903) On the laws of inheritance in man. I. Inheritance of 

physical characters. Biometrika 2:357-462 

Perola M, Ohman M, Hiekkalinna T, Leppavuori J, Pajukanta P, Wessman M, 

Koskenvuo M, Palotie A, Lange K, Kaprio J, and Peltonen L (2001) Quantitative-

trait-locus analysis of body-mass index and of stature, by combined analysis of 

genome scans of five Finnish study groups. Am J Hum Genet 69:117-123 

Perou CM (2001) Show me the data! Nat Genet 29:373 

Pratt SC, Daly MJ, and Kruglyak L (2000) Exact multipoint quantitative-trait 

linkage analysis in pedigrees by variance components. Am J Hum Genet 66:1153-

1157 



REFERENCES 
___________________________________________________________________________________________________ 

 140

Preece MA (1996) The genetic contribution to stature. Horm Res 45 Suppl 2:56-

58 

Province MA (2001) The significance of not finding a gene. Am J Hum Genet 

69:660-663 

Raivio T, Huhtaniemi I, Anttila R, Siimes MA, Hagenas L, Nilsson C, Pettersson 

K, and Dunkel L (1996) The role of luteinizing hormone-beta gene polymorphism 

in the onset and progression of puberty in healthy boys. J Clin Endocrinol Metab 

81:3278-3282 

Rao E, Weiss B, Fukami M et al (1997) Pseudoautosomal deletions encompassing 

a novel homeobox gene cause growth failure in idiopathic short stature and Turner 

syndrome. Nat Genet 16:54-63 

Rappold GA, Fukami M, Niesler B, Schiller S, Zumkeller W, Bettendorf M, 

Heinrich U, Vlachopapadoupoulou E, Reinehr T, Onigata K, and Ogata T (2002) 

Deletions of the homeobox gene SHOX (short stature homeobox) are an 

important cause of growth failure in children with short stature. J Clin Endocrinol 

Metab 87:1402-1406 

Rijsdijk FV and Sham PC (2002) Estimation of sib-pair IBD sharing and 

multipoint polymorphism information content by linear regression. Behav Genet 

32:211-220 

Risch N (1990a) Linkage strategies for genetically complex traits. II. The power 

of affected relative pairs. Am J Hum Genet 46:229-241 

Risch N (1990b) Linkage strategies for genetically complex traits. III. The effect 

of marker polymorphism on analysis of affected relative pairs. Am J Hum Genet 

46:242-253 

Risch N and Merikangas K (1996) The future of genetic studies of complex 

human diseases. Science 273:1516-1517 

Rosenthal R and Rubin DB (2003) r equivalent: A simple effect size indicator. 

Psychol Methods 8:492-496 



REFERENCES 
___________________________________________________________________________________________________ 

 141

S.A.G.E. (2004) Statistical Analysis for Genetic Epidemiology. Release 5 0 

Sagoo GS, Tazi-Ahnini R, Barker JW, Elder JT, Nair RP, Samuelsson L, Traupe 

H, Trembath RC, Robinson DA, and Iles MM (2004) Meta-analysis of genome-

wide studies of psoriasis susceptibility reveals linkage to chromosomes 6p21 and 

4q28-q31 in Caucasian and Chinese Hans population. J Invest Dermatol 

122:1401-1405 

Sale MM, Freedman BI, Hicks PJ, Williams AH, Langefeld CD, Gallagher CJ, 

Bowden DW, and Rich SS (2005) Loci Contributing to Adult Height and Body 

Mass Index in African American Families Ascertained for Type 2 Diabetes. Ann 

Hum Genet 69:1-11 

Sammalisto SA, Hiekkalinna T, Suviolahti E et al (2005) A male-specific QTL on 

1p21 controlling human stature. J Med Genet 42:932-939 

Schneider KU, Sabherwal N, Jantz K, Roth R, Muncke N, Blum WF, Cutler GB, 

Jr., and Rappold G (2005) Identification of a major recombination hotspot in 

patients with short stature and SHOX deficiency. Am J Hum Genet 77:89-96 

Schork NJ and Greenwood TA (2004) Inherent bias toward the null hypothesis in 

conventional multipoint nonparametric linkage analysis. Am J Hum Genet 74:306-

316 

Schubbert S, Zenker M, Rowe SL et al (2006) Germline KRAS mutations cause 

Noonan syndrome. Nat Genet 38:331-336 

Schuit SC, van Meurs JB, Bergink AP, van der KM, Fang Y, Leusink G, Hofman 

A, van Leeuwen JP, Uitterlinden AG, and Pols HA (2004) Height in pre- and 

postmenopausal women is influenced by estrogen receptor alpha gene 

polymorphisms. J Clin Endocrinol Metab 89:303-309 

Self S and Liang K-Y (1987) Asymptotic properties of maximum likelihood 

estimators and likelihood ratio tests under nonstandard conditions. J Am Stat 

Assoc 82:605-610 

Sham PC. 1998. Statistics in Human Genetics. London: Arnold 



REFERENCES 
___________________________________________________________________________________________________ 

 142

Sham PC, Purcell S, Cherny SS, and Abecasis GR (2002) Powerful regression-

based quantitative-trait linkage analysis of general pedigrees. Am J Hum Genet 

71:238-253 

Sieberts SK, Broman KW, and Gudbjartsson DF (2004) "Bias toward the null" 

means reduced power. Am J Hum Genet 75:720-722 

Silventoinen K (2003) Determinants of variation in adult body height. J Biosoc 

Sci 35:263-285 

Silventoinen K, Kaprio J, Lahelma E, and Koskenvuo M (2000) Relative effect of 

genetic and environmental factors on body height: differences across birth cohorts 

among Finnish men and women. Am J Public Health 90:627-630 

Simpson EH (1951) The interpretation of interaction in contingency tables. 

Journal of the American Statistical Association 88:81-88 

Stouffer SA, Suchman EA, DeVinney LC, Star SA, Williams RM. 1949. The 

American Soldier: Adjustment During Army Life. Vol. 1.  New Jersey: Princeton 

University Press 

Stuppia L, Calabrese G, Gatta V et al (2003) SHOX mutations detected by FISH 

and direct sequencing in patients with short stature. J Med Genet 40:E11 

Suarez F, Rossignol C, and Garabedian M (1998) Interactive effect of estradiol 

and vitamin D receptor gene polymorphisms as a possible determinant of growth 

in male and female infants. J Clin Endocrinol Metab 83:3563-3568 

Suarez F, Zeghoud F, Rossignol C, Walrant O, and Garabedian M (1997) 

Association between vitamin D receptor gene polymorphism and sex-dependent 

growth during the first two years of life. J Clin Endocrinol Metab 82:2966-2970 

Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F. 2000. Methods for Meta-

Analysis in Medical Research. Chichester: John Wiley & Sons 

Tang HK and Siegmund D (2001) Mapping quantitative trait loci in oligogenic 

models. Biostatistics 2:147-162 



REFERENCES 
___________________________________________________________________________________________________ 

 143

Tao C, Yu T, Garnett S, Briody J, Knight J, Woodhead H, and Cowell CT (1998) 

Vitamin D receptor alleles predict growth and bone density in girls. Arch Dis 

Child 79:488-493 

The ADHD Molecular Genetics Network (2000) Collaborative possibilities for 

molecular genetic studies of attention deficit hyperactivity disorder: report from 

an international conference. Am J Med Genet 96:251-257 

The Transatlantic Multiple Sclerosis Genetics Cooperative (2001) A meta-

analysis of genomic screens in multiple sclerosis. Mult Scler 7:3-11 

Thompson DB, Ossowski V, Janssen RC, Knowler WC, and Bogardus C (1995) 

Linkage between stature and a region on chromosome 20 and analysis of a 

candidate gene, bone morphogenetic protein 2. Am J Med Genet 59:495-500 

Tippett L.H.C. 1931. The method of statistics. London: Williams & Norgate 

van der Sluis I, de Muinck Keizer-Schrama SM, Krenning EP, Pols HA, and 

Uitterlinden AG (2003) Vitamin D receptor gene polymorphism predicts height 

and bone size, rather than bone density in children and young adults. Calcif Tissue 

Int 73:332-338 

Van Eerdewegh P, Little RD, Dupuis J et al (2002) Association of the ADAM33 

gene with asthma and bronchial hyperresponsiveness. Nature 418:426-430 

Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human 

genome. Science 291:1304-1351 

Visscher PM and Wray NR (2004) Conventional multipoint nonparametric 

linkage analysis is not necessarily inherently biased. Am J Hum Genet 75:718-720 

Willemsen G, Boomsma DI, Beem AL, Vink JM, Slagboom PE, and Posthuma D 

(2004) QTLs for height: results of a full genome scan in Dutch sibling pairs. Eur J 

Hum Genet 12:820-828 

Wiltshire S, Frayling TM, Hattersley AT, Hitman GA, Walker M, Levy JC, 

O'Rahilly S, Groves CJ, Menzel S, Cardon LR, and McCarthy MI (2002) 



REFERENCES 
___________________________________________________________________________________________________ 

 144

Evidence for linkage of stature to chromosome 3p26 in a large U.K. Family data 

set ascertained for type 2 diabetes. Am J Hum Genet 70:543-546 

Wise LH (2001) Inclusion of candidate region studies in meta-analysis using the 

genome screen meta-analysis method: application to asthma data. Genet 

Epidemiol 21 Suppl 1:S160-S165 

Wise LH, Lanchbury JS, and Lewis CM (1999) Meta-analysis of genome 

searches. Ann Hum Genet 63:263-272 

Wjst M, Fischer G, Immervoll T et al (1999) A genome-wide search for linkage to 

asthma. Genomics 58:1-8 

Wu X, Cooper RS, Boerwinkle E, Turner ST, Hunt S, Myers R, Olshen RA, Curb 

D, Zhu X, Kan D, and Luke A (2003) Combined analysis of genomewide scans 

for adult height: results from the NHLBI Family Blood Pressure Program. Eur J 

Hum Genet 11:271-274 

Wu X, Cooper RS, Borecki I, Hanis C, Bray M, Lewis CE, Zhu X, Kan D, Luke 

A, and Curb D (2002) A combined analysis of genomewide linkage scans for 

body mass index from the national heart, lung, and blood institute family blood 

pressure program. Am J Hum Genet 70:1247-1256 

Xu J, Bleecker ER, Jongepier H, Howard TD, Koppelman GH, Postma DS, and 

Meyers DA (2002) Major Recessive Gene(s) with Considerable Residual 

Polygenic Effect Regulating Adult Height: Confirmation of Genomewide Scan 

Results for Chromosomes 6, 9, and 12. Am J Hum Genet 71:646-650 

Xu J, Meyers DA, Ober C et al (2001) Genomewide screen and identification of 

gene-gene interactions for asthma-susceptibility loci in three U.S. populations: 

collaborative study on the genetics of asthma. Am J Hum Genet 68:1437-1446 

Zaykin DV, Zhivotovsky LA, Westfall PH, and Weir BS (2002) Truncated 

product method for combining P-values. Genet Epidemiol 22:170-185 

Zintzaras E and Ioannidis JP (2005) Heterogeneity testing in meta-analysis of 

genome searches. Genet Epidemiol 28:123-137 



REFERENCES 
___________________________________________________________________________________________________ 

 145

Zmuda JM, Cauley JA, Kuller LH, and Ferrell RE (2001) A common promotor 

variant in the cytochrome P450c17alpha (CYP17) gene is associated with 

bioavailability testosterone levels and bone size in men. J Bone Miner Res 

16:911-917 

 

 

 
 



LEBENSLAUF 
___________________________________________________________________________________________________ 

 146

11 Lebenslauf 
 

 

 

 

Astrid Dempfle 

Geb. am 14.1.1975 in Freising 

Staatsangehörigkeit: deutsch 

 

Sept. 1981 - Juli 1985 

Sept. 1985 - Juli 1994 

Aug. 1991 - Juli 1992  

Juli 1994 

Okt. 1994 - Aug. 1996 

 

Sept. 1996 - Feb. 1997 

 

März 1997 - März 2000 

 

 

 

27. März 2000 

Mai 2000 - April 2001 

 

 

Mai 2001 - Feb 2004 

 

 

März 2004 - August 2004 

Seit Sept. 2004 

Grundschule Kranzberg 

Josef-Hofmiller-Gymnasium, Freising 

High School Besuch in Sioux City, Iowa, USA 

Abitur am Josef-Hofmiller-Gymnasium, Freising 

Mathematikstudium an der Justus-Liebig-Universität 

Gießen mit Nebenfach Stochastik 

Mathematikstudium an der Université des Sciences et 

Techniques du Languedoc, Montpellier, Frankreich 

Fortsetzung des Mathematikstudiums an der Justus-

Liebig-Universität Gießen 

Diplomarbeit bei Prof. Stute: "Changepoints in der 

Regression" 

Diplom in Mathematik (Note: sehr gut) 

Wissenschaftliche Mitarbeiterin am Institut für 

Epidemiologie (AG Genetische Epidemiologie) der GSF, 

München 

Wissenschaftliche Mitarbeiterin am Institut für 

Medizinische Biometrie und Epidemiologie, Philipps-

Universität Marburg 

Familienpause (eine Tocher, geb. 31.3.2004) 

Wissenschaftliche Mitarbeiterin am Institut für 

Medizinische Biometrie und Epidemiologie, Philipps-

Universität Marburg 



LEBENSLAUF 
___________________________________________________________________________________________________ 

 147

Eigene Publikationen 

1. Loesgen S, Dempfle A, Golla A, Bickeböller H (2001). Weighting Schemes in 

Pooled Linkage Analysis. Genet. Epidemiol. 21 Suppl 1: S142-S147 

2. Immervoll Th, Loesgen S, Dütsch G, Gohlke H, Herbon N, Klugbauer S, 

Dempfle A, Bickeböller H, Becker-Follmann J, Rüschendorf F, Saar K, Reis 

A, Wichmann HE, Wjst M (2001). Fine mapping and single nucleotide 

polymorphism association results of candidate genes for asthma and related 

phenotypes. Human Mutation 18: 327-336.  

3. Dempfle A, Stute W (2002). Nonparametric Estimation of a Discontinuity in 

Regression. Statictica Neerlandica. 56: 233-242 

4. Scherag A, Dempfle A, Hinney A, Hebebrand J, Schäfer H (2002). 

Confidence intervals for genotype relative risks in case-parent trio designs for 

candidate gene association studies. Human Heredity. 54:210-217 

5. Hebebrand J, Wulftange H, Dempfle A, Geller F, Hinney A (2002). Epidemic 

obesity: are genetic factors involved via increased rates of assortative mating? 

Obesity. 26 Suppl 1:S67 

6. Smidt J, Heiser P, Dempfle A, Konrad K, Hemminger U, Kathöfer A, Halbach 

A, Strub J, Grabarkiewicz J, Kiefl H, Linder M, Knölker U, Warnke A, 

Remschmidt H, Herpertz-Dahlmann B,  Hebebrand J (2003). 

Formalgenetische Befunde zur Aufmerksamkeitsdefizit-

/Hyperaktivitätsstörung. Fortschritte der Neurologie · Psychiatrie. 71:366-377 

7. Geller F*, Dempfle A*, Görg T (2003). Genome Scan for BMI and height in 

the Framingham Heart Study. BMC Genetics. 4 Suppl 1:S91 (* gemeinsame 

Erstautorenschaft) 

8. Scherag A, Müller HH, Dempfle A, Hebebrand J, Schäfer H (2003). Data 

adaptive interim recalculation of sample sizes for candidate-gene association 

studies. Human Heredity. 56:56-62 

9. Fritsch B, Karakizlis H, Hamer HM, Dempfle A, Oertel WH, Rosenow F 

(2003). Long-term effects of chronic-intermittent deep brain stimulation of the 

ncl. subthalamicus (STN) on seizure activity in a rat model of absence 

epilepsy. Epilepsia. 44 Suppl 9:63-64 

10. Dempfle A*, Loesgen S* (2004). Meta-analysis of linkage studies for 

complex diseases: an overview of methods and a simulation study. Annals of 

Human Genetics. 68:69-83 (* gemeinsame Erstautorenschaft) 



LEBENSLAUF 
___________________________________________________________________________________________________ 

 148

11. Malik S, Arshad M, Din MA-U, Oeffner F, Dempfle A, Haque S, Koch M, 

Ahmad W, Grzeschik K-H (2004). A novel type of autosomal recessive 

syndactyly: clinical and molecular studies in a family of Pakistani origin. Am J 

Med Genet. 126A:61-77 

12. Wang HJ, Geller F, Dempfle A, Schäuble N, Friedel S, Lichtner P, Fontenla-

Horro F, Wudy S, Hagemann S, Gortner L, Huse K, Remschmidt H, 

Bettecken T, Meitinger T, Schäfer H, Hebebrand J, Hinney A (2004). Ghrelin 

Receptor Gene: Identification of several sequence variants in extremely obese 

children and adolescents, healthy normal weight and underweight students and 

children with short normal stature. J Clin Endocrinol Metab. 89:157-162  

13. Geller F, Reichwald K, Dempfle A, Illig T, Vollmert C, Herpertz S, Siffert W, 

Platzer M, Hess C, Gudermann T, Biebermann H, Wichmann HE, Schäfer H, 

Hinney A, Hebebrand J (2004). Melanocortin-4 receptor gene variant I103 is 

negatively associated with obesity. Am J Hum Genet. 74:572-581 

14. Hebebrand J, Geller F, Dempfle A, Heinzel-Gutenbrunner M, Raab M, Gerber 

G, Wermter AK, Fontenla Horro F, Blundell J, Schäfer H, Remschmidt H, 

Herpertz S, Hinney A (2004). Binge-eating episodes are not characteristic of 

carriers of melanocortin-4 receptor gene mutations. Mol Psychiatry. 9:796-800 

15. Sure U, Battenberg E, Dempfle A, Tirakotai W, Bien S, Bertalanffy H (2004). 

Local Hypoxia Upregulates Endothelial Proliferation and Neoangiogenesis in 

Cerebral Arteriovenous Malformations. Neurosurgery. 55:663-670 

16. Dempfle A, Hinney A, Heinzel-Gutenbrunner M, Raab M, Geller F, 

Gudermann T, Schäfer H, Hebebrand J (2004). Large Quantitative Effect of 

Melanocortin-4 Receptor Gene Mutations on BMI. J Med Genet. 41:795-800 

17. Heiser P, Friedel S, Dempfle A, Konrad K, Smidt J, Grabarkiewicz J, 

Herpertz-Dahlmann B, Remschmidt H, Hebebrand J (2004). Molecular 

Genetic Aspects of Attention-Deficit/Hyperactivity Disorder. Neuroscience 

and Biobehavioural Reviews. 28:625-641 

18. Friedel S, Fontenla Horro F, Wermter AK, Geller F, Dempfle A, Reichwald 

K, Smidt J, Konrad K, Herpertz-Dahlmann B, Warnke A, Hemminger U, 

Linder M, Kiefl H, Goldschmidt HP, Siegfried W, Remschmidt H, Hinney A, 

Hebebrand J (2004). Mutation screen of the brain derived neurotrophic factor 

gene (BDNF): Identification of several genetic variants and association studies 



LEBENSLAUF 
___________________________________________________________________________________________________ 

 149

in patients with obesity, eating disorders and attention-deficit/hyperactivity 

disorder. Am J Med Genet B Neuropsychiatr Genet. 132B:96-99  

19. Seifart C, Dempfle A, Plagens A, Seifart U, Clostermann U, Müller B, 

Vogelmeier C, von Wichert P (2005). TNF-α, TNF-β, IL-6 and IL-10 

promotor polymorphisms in patients with chronic obstructive pulmonary 

disease. Tissue Antigens. 65:93-100 

20. Wudy SA, Hagemann S, Dempfle A, Ringler G, Blum WF, Berthold LD, 

Alzen G, Gortner L, Hebebrand J (2005). Children with Idiopathic Short 

Stature are Poor Eaters and Have Decreased Body Mass Index. 

Pediatrics.116: e52-e57 

21. Wündisch T, Thiede C, Morgner A, Dempfle A, Günther A, Liu H, Ye H, Du 

MQ, Kim TD, Du M, Bayerdörffer E, Stolte M, Neubauer A (2005). Long-

term follow up of patients with gastric MALT lymphoma after Helicobacter 

pylori eradication. J Clin Oncol. 23:8018-8024 

22. Seifart C, Plagens A*, Dempfle A*, Clostermann U, Vogelmeier C, 

von Wichert P, Seifart U (2005). TNF-α, TNF-β, IL-6 and IL-10 

polymorphisms in patients with lung cancer. Disease Markers. 21:157-165  (* 

gemeinsame Zweitautorenschaft) 

23. Walitza S*, Renner T*, Dempfle A*, Wewetzer C, Halbach A, Herpertz-

Dahlmann B, Konrad K, Remschmidt H, Linder  M, Schäfer H, Gross C, 

Hebebrand J, Warnke A, Lesch KP (2005). Transmission disequilibrium of 

polymorphic variants in the tryptophan hydroxylase-2 gene in attention-

deficit/hyperactivity disorder. Mol Psychiatry. 10:1126-1132 (* gemeinsame 

Erstautorenschaft) 

24. Hebebrand J, Dempfle A, Saar K, Thiele H, Herpertz-Dahlmann B, Linder M, 

Kiefl H, Remschmidt H, Hemminger U, Warnke A, Knölker U, Heiser P, 

Friedel S, Hinney A, Schäfer H, Nürnberg P, Konrad K (2006). A Genome-

wide Scan for Attention Deficit/Hyperactivity Disorder in 155 German Sib 

Pairs. Mol Psychiatry. 11:196-205 

25. Renner T, Walitza S, Dempfle A, Konrad K, Wewetzer C, Halbach A, 

Herpertz-Dahlmann B, Remschmidt H, Smidt J, Linder M, Flierl L, Knolker 

U, Friedel S, Schafer H, Gross C, Hebebrand J, Warnke A, Lesch KP (2006). 

Polymorphic variants in the transcriptional control region of TPH2 are 



LEBENSLAUF 
___________________________________________________________________________________________________ 

 150

preferentially transmitted in ADHD. European Neuropsychopharmacology. 

16(Suppl. 1): S21-S22 

26. Friedel S, Heiser P, Dempfle A, Konrad K, Hebebrand J (2006). Molecular 

Genetic Aspects of Attention-Deficit/Hyperactivity Disorder. In: Attention-

Deficit/Hyperactivity Disorder (AD/HD) and the Hyperkinetic Syndrome 

(HKS): Current Ideas and Ways Forward. Ed. Robert D. Oades. Nova Science 

Publishers, Hauppauge, NY  

27. Zeiler T, Heim M, Dempfle A, Kretschmer V (2006). Platelets do not adsorb 

HLA class I molecules during storage of pooled platelet concentrates. 

Transfus Med. 16:176-183 

28. Dempfle A, Wudy SA, Saar K, Hagemann S, Friedel S, Scherag A, Berthold 

LD, Alzen G, Gortner L, Blum WF, Hinney A, Nürnberg P, Schäfer H, 

Hebebrand J (2006). Evidence for involvement of the vitamin D receptor gene 

in idiopathic short stature via a genome wide linkage study and subsequent 

association studies. Human Molecular Genetics. 15(18):2772-2783 

29. Görg Ch, Bert T, Kring R, Dempfle A (2006). Transcutaneous contrast 

enhanced sonography of the chest for evaluation of pleural based pulmonary 

lesions: experience in 137 patients. Ultraschall Med. 27(5):437-444  

30. Schimmelmann BG, Friedel S, Christiansen H, Dempfle A, Hinney A, 

Hebebrand J. Genetische Befunde bei der Aufmerksamkeitsdefizit- und 

Hyperaktivitätsstörung (ADHS) (2006). Zeitschrift für Kinder- und 

Jugendpsychiatrie und Psychotherapie. 34(6):425-433  

31. Heiser P, Dempfle A, Friedel S, Konrad K, Hinney A, Kiefl H, Walitza S, 

Bettecken T, Saar K, Linder M, Warnke A, Herpertz-Dahlmann B, Schäfer H, 

Remschmidt H, Hebebrand J. Family-based association study of serotonergic 

candidate genes and attention-deficit/hyperactivity disorder in a German 

sample. J Neural Transmission. In press 

32. Schimmelmann BG, Friedel S, Dempfle A, Warnke A, Lesch KP, Walitza S, 

Renner T, Romanos M, Herpertz-Dahlmann B, Linder M, Schäfer H, Seitz C, 

Palmason H, Frei-tag C, Meyer J, Konrad K, Hinney A, Hebebrand J. No 

Evidence for Preferential Transmission of Common Valine66 Allele of the 

Val66Met Polymorphism of the Brain-Derived Neurotrophic Factor Gene 

(BDNF) In ADHD. J Neural Transmission. In press 

 



AKADEMISCHE LEHRER 
___________________________________________________________________________________________________ 

 151

12 Akademische Lehrer 
 

 

 

 

Meine akademischen Lehrer waren die Damen und Herren 

 

in Gießen 

Bartsch, Beutelspacher, Braunss, Fenske, Häusler, Hübner, Metsch, Stute, 

Timmesfeld, Walther 

 

in Montpellier 

Attouch, Boyom, Ducharme 

 

in München 

Bickeböller, Wichmann 

 

in Marburg 

Grzeschik, Hebebrand, Schäfer.



DANKSAGUNG 
___________________________________________________________________________________________________ 

 152

13 Danksagung 
 

 

 

 

Zunächst danke ich Prof. Dr. Helmut Schäfer für die stete Unterstützung bei der 

Erstellung dieser Doktorarbeit und für die Möglichkeit in den vergangenen Jahren 

an einer Vielzahl sehr interessanter und spannender Projekte zu arbeiten. Prof. Dr. 

Heike Bickeböller danke ich für die gute Betreuung bei den ersten Schritten in die 

Genetische Epidemiologie.  

 Besonders danke ich Sabine Loesgen für ihre Unterstützung bei der 

Einarbeitung in dieses Thema. Sie trug mit etlichen Ideen und konstruktiven 

Anregungen zum Gelingen der Arbeit bei, insbesondere war sie an der 

Durchführung der Asthma Meta-Analyse und der Simulationsstudie beteiligt. 

Frank Geller danke ich für die sehr gute Zusammenarbeit in vielen Projekten, 

speziell dem Genetic Analysis Workshop 13 und ganz besonders für das 

aufmerksame Korrekturlesen dieser Arbeit. Gundula Huth und Tilman Görg 

verdienen großen Dank für ihre Mitarbeit an der Meta-Analyse zur Körpergröße, 

am Genetic Analysis Workshop 13 und für all die vielen Aufgaben, die sie so 

sorgfältig und gewissenhaft erledigen. Auch André Scherag gebührt besonderer 

Dank für viele anregende Diskussionen und seine Hilfsbereitschaft. Allen 

derzeitigen und ehemaligen Kollegen danke ich für viele kleine und große Hilfen, 

gute Tipps, interessante Gespräche und insbesondere für das sehr gute 

Arbeitsklima am Institut für Medizinische Biometrie und Epidemiologie in  

Marburg.  

 Auch von etlichen guten Kooperationen mit klinischen und 

molekulargenetischen Partnern habe ich profitiert. Besonders bereichernd ist die 

Zusammenarbeit mit Prof. Dr. Johannes Hebebrand und seinen Mitarbeitern, 

insbesondere Susann Friedel und Dr. Anke Hinney, denen ich für die Gelegenheit 

danke, in gemeinsamen Projekten so viel zu lernen.  

 Ich danke den Organisatoren des Genetic Analysis Workshop und den 

Wissenschaftlern, die für diese Workshops ihre Daten (Asthma Genomscans und 



DANKSAGUNG 
___________________________________________________________________________________________________ 

 153

Framingham Heart Study) zur Verfügung gestellt haben. Ebenso danke ich den 

Wissenschaftlern, die mir persönlich ihre detaillierten Ergebnisse für die Meta-

Analyse zur Körpergröße zur Verfügung gestellt haben. 

 Ich danke meinen Eltern dafür, dass sie mich nie gedrängt sondern immer 

unterstützt und ermutigt haben und dafür, dass sie stets viel Interesse an meiner 

Arbeit zeigen. Allen Freunden und Verwandten danke ich besonders für die 

Ablenkungen von der Arbeit und gemeinsam verbrachte Stunden. Ina Lochnit 

danke ich für die beste Kinderbetreuung, die man sich vorstellen kann, die es mir 

ermöglicht immer unbeschwert zu arbeiten. Julie danke ich für die Freude und den 

Spaß, den sie in unser Leben bringt. Und schließlich bin ich meinem 

Lebensgefährten Tobias Donath besonders dankbar für seine fortwährende 

Unterstützung, ohne die ich diese Arbeit nicht hätte fertig stellen können. 



EHRENWÖRTLICHE ERKLÄRUNG 
___________________________________________________________________________________________________ 

 154

14 Ehrenwörtliche Erklärung 
 

 

 

 

Ich erkläre ehrenwörtlich, dass ich die dem Fachbereich Medizin der Philipps-

Universität Marburg zur Promotionsprüfung eingereichte Arbeit mit dem Titel 

„Evaluation of methods for meta-analysis of genetic linkage studies for complex 

diseases and application to genome scans for asthma and adult height“ am Institut 

für Medizinische Biometrie und Epidemiologie unter der Leitung von 

Prof. Dr. H. Schäfer mit Unterstützung durch Frau Prof. Dr. H. Bickeböller und 

Frau Dipl.-Stat. S. Loesgen (damals Institut für Epidemiologie der GSF, 

München) ohne sonstige Hilfe selbst durchgeführt und bei der Abfassung der 

Arbeit keine anderen als die in der Dissertation angeführten Hilfsmittel benutzt 

habe.  

Ich habe bisher an keinem in- und ausländischen medizinischen Fachbereich ein 

Gesuch um Zulassung zur Promotion eingereicht noch die vorliegende oder eine 

andere Arbeit als Dissertation vorgelegt.  

 

Teile der vorliegenden Arbeit wurden in den Zeitschriften Genetic Epidemiology 
(2001, 21 Supplement 1: S142-S147), BMC Genetics (2003, 4 Supplement 1:S91) 
und Annals of Human Genetics (2004, 68:69-83) veröffentlicht.  
Außerdem wurden Teile der vorliegenden Arbeit als Poster oder Vortrag auf 
folgenden Tagungen vorgestellt: Genetic Analysis Workshop 12, 23.-26.10.2000, 
San Antonio, Texas (USA); 47. Biometrisches Kolloquium, 20.-23.3.2001, 
Homburg/Saar; European Mathematical Genetics Meeting, 6.-8.4.2002, Sheffield, 
Großbritannien; Symposium „Genomics of Chronic Inflammatory Diseases“ des 
NGFN, 5.-7.7.2002, Kiel; Genetic Analysis Workshop 13, 11.-14.11.2002, New 
Orleans, Louisiana (USA); 11. International Genetic Epidemiology Society 
Meeting, 15.-16.11.2002, New Orleans, Louisiana (USA); NGFN Partnering-Day 
„Disorders of Body Weight Regulation“, 29.-31.1.2003, Marburg; Tagung  
„Medical Genetics - Current Developments in Statistical Methodology for 
Genetic Architecture of Complex Diseases“, 2.2.-8.2.2003, Mathematisches 
Forschungsinstitut Oberwolfach; 14. Jahrestagung der Deutschen Gesellschaft für 
Humangenetik, 1.-4.10.2003, Marburg. 
 

 

Marburg, den 30.7.2006 


