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Abstract

In this thesis, we propose a method for modeling utility (rating) functions based on
a novel concept called Fuzzy Operator Tree (FOT for short). As the notion sug-
gests, this method makes use of techniques from fuzzy set theory and implements a
fuzzy rating function, that is, a utility function that maps to the unit interval, where
0 corresponds to the lowest and 1 to the highest evaluation. Even though the origi-
nal motivation comes from quality control, FOTs are completely general and widely
applicable.

Our approach allows a human expert to specify a model in the form of an FOT in
a quite convenient and intuitive way. To this end, he simply has to split evaluation
criteria into sub-criteria in a recursive manner, and to determine in which way these
sub-criteria ought to be combined: conjunctively, disjunctively, or by means of an
averaging operator. The result of this process is the qualitative structure of the model.
A second step, then, it is to parameterize the model. To support or even free the
expert form this step, we develop a method for calibrating the model on the basis of
exemplary ratings, that is, in a purely data-driven way. This method, which makes
use of optimization techniques from the field of evolutionary algorithms, constitutes
the second major contribution of the thesis.

The third contribution of the thesis is a method for evaluating an FOT in a cost-
efficient way. Roughly speaking, an FOT can be seen as an aggregation function that
combines the evaluations of a number of basic criteria into an overall rating of an
object. Essentially, the cost of computing this rating is hence given by sum of the
evaluation costs of the basic criteria. In practice, however, the precise utility degree
is often not needed. Instead, it is enough to know whether it lies above or below
an important threshold value. In such cases, the evaluation process, understood as a
sequential evaluation of basic criteria, can be stopped as soon as this question can be
answered in a unique way. Of course, the (expected) number of basic criteria and,
therefore, the (expected) evaluation cost will then strongly depend on the order of the
evaluations, and this is what is optimized by the methods that we have developed.

Keywords : utility function, rating function, quality assessment, fuzzy set, fuzzy
operator, evolution strategies, regression, ordinal classification, cost minimization.
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Zusammenfassung

In dieser Arbeit stellen wir eine Methode vor, um Bewertungsfunktionen zu mod-
ellieren, die auf einem neuartigen Konzept der Fuzzy Operator Bäume (kurz FOT)
basieren. Wie der Name andeutet, nutzt diese Methode die Techniken aus Fuzzy Set
Theorie und implementiert eine Fuzzy Bewertungsfunktion, nämlich eine Funktion,
die das Einheitsinterval abbildet, wobei 0 der niedrigsten und 1 der höchsten Be-
wertung entsprecht. Obwohl die erste Motivation von Qualitätsbewertung aus dem
Bereich der Produktsteuerung kommt, ist unser Modell völlig generell und deshalb
überall einsetzbar.

Unsere Methode macht es möglich, dass ein menschlicher Experte ein Model in Form
eines FOT in einem sehr intuitiven und attraktiven Weg spezifiziert. Schließlich
braucht er nur ein Hauptkriterium in mehrere Unterkriterien rekursiv zu zerlegen,
und entscheidet, in welche Art und Weise die Unterkriterien zu kombinieren sind:
Konjunktion, Disjunktion oder im Sinne eines Durchschnitt-Operators. Das Resultat
ist die qualitative Struktur des FOT Models. In einem zweiten Schnitt wird dann das
Model parametrisiert. Um den menschlichen Experten dabei zu unterstützen, oder
ihn sogar abkömmlich zu machen, haben wir eine Methode zur Kalibrierung eines
Models entwickelt, die auf exemplarischen Bewertungen basiert, in anderen Worten,
rein daten-basiert ist. Diese Methode, die die Optimierungstechnik der Evolutions-
strategie verwendet, bildet den zweiten Hauptbeitrag dieser Arbeit.

Der dritte Hauptbeitrag dieser Arbeit ist eine Methode zur Evaluierung eines FOTs
unter Berücksichtigung der Evaluierungskosten. Allgemein gesehen ist ein FOT
eine Aggregation, die die Evaluierungen mehrerer fundamentaler Kriterien zu einer
gesamt Bewertung eines Objektes kombiniert. Die Kosten für dieser gesamt Bew-
ertung ist im Wesentlichen die Summe allen Evaluierungskosten der fundamentalen
Kriterien. Aber, eine präzise Bewertung ist nicht immer notwendig, stattdessen, re-
icht es oft aus, in manchen Situationen sicherzustellen, dass die Bewertung über oder
unter einem wichtigen Schwellenwert liegt. Darüber hinaus kann ein Evaluierungs-
prozess (sequentielle Evaluierung der fundamentalen Kriterien) gestoppt werden, so
lange diese Frage eindeutig beantwortet werden kann. Natürlich sind die erwarteten
Evaluierungskosten und Anzahl der fundamentalen Kriterien stark abhängig von der
Ordnung der Evaluierung, die durch unsere neue Methode auch optimiert wird.

Schlüsselwörter: Bewertungsfunktion, Qualitätsmessung, Fuzzy Set, Fuzzy Opera-
toren, Gradientenabstieg, Evolutionsstrategie.
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1 Introduction

In this chapter, we give an introduction to the main topic of this thesis, namely mod-
eling utility functions using fuzzy operator tree (FOT for short). After the motivation
in Section 1.1, we give the basic idea of FOT and the main techniques used in this
thesis in Section 1.2. Finally we give an overview of the organization of this thesis in
Section 1.3.

1.1 Motivation

The objective of this section is to introduce the main motivation of this thesis. We
begin with the idea to apply automatic quality assessment instead of human experts.
Then the problem by traditional quality assessment is demonstrated and summarized.
To this end we generalize the expectations of a new method for modeling utility
functions.

1.1.1 From Sensing to Automatic Quality Assessment

The original idea of modeling with FOT is motivated by quality assessment in prod-
uct control, where the evaluation and assessment of products become a fundamental
task. Due to the growing global competition, companies are continuously seeking for
efficient and short developmental periods. At the same time, the demand on prod-
uct quality and consequently customer satisfaction arises recently, so that systems to
ensure products or services and assess quality of products have gained increasing im-
portance. In this regard, quality control and quality engineering [Pyz03] has become
an attractive research area in last decades. We will focus on one of its current research
activities, namely automatic quality assessment (or quality evaluation), in this thesis.

Until now, many quality assessments are usually carried out by a human expert manu-
ally. By definition, an expert is a person who is well knowledgeable about the object,
e.g. a food expert of quality control is a person who can identify quality of food
well, etc. An expert is also called decision maker in the decision making problems
[Saa94], since the knowledge of experts is expressed in the form of decisions in this
case. This is not always a convenient way because of following difficulties:

1. First of all, there are usually only limited human resources available in practice,
but many problems have to be solved. From financial aspect it is not favorable,
because human experts are not always available and maintaining human ex-
perts is in most case more expensive than using measuring instruments.
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Section 1.1: Motivation

2. The assessment is relatively subjective, since human experts may give differ-
ent judgments even under identical conditions, and variable outcomes can be
drawn by the same expert from time to time.

However in a globalized world, the objective, efficient quality assessment schema
has played an essential role for quality control independent of place of production,
especially when products or components of products come from different regions.

One trend to overcome the aforementioned difficulties is to apply electronic mea-
suring instruments to take the place of human experts. For example, the company
“Battenberg Robotic”1 develops robotics as high-precision sensory measuring instru-
ments (see Figure 1.1), which are specially adapted for constraint-dependent measur-
ing tasks in automatic production and control processes for the purpose of guarantee-
ing an objective provable product assessment for producer and component supplier.

While the automatic acquisition of quality measurements has already been progressed
in many industrial fields, the development of automatic quality assessment based on
acquired measurements is still not satisfied, since the automatic quality evaluations
are mostly strongly deflected from those empirical evaluations from human experts.
We shall review traditional quality assessment and its disadvantages in next section.

Figure 1.1: From sensing
to automatic assessment

1.1.2 Traditional Quality Assessment and its Disadvantages

Traditional quality assessment usually relies on predefined “tolerance” domains, which
indicate the desired intervals for measured criteria. A product is then labeled as “in
order” (abbreviated, IO), if all measured criteria lie within given intervals, otherwise
it is “not in order” (or “out of order”, abbreviated NIO), no matter how many criterion
failed.

Let’s consider a concrete example, in which the goal is to evaluate a technical device
such as the control panel of car radios, see Figure 1.2, where the quality depends on
the operability of functional components: The switch button A, the adjusting knob B
and several functional buttons C, D, E, and so on. To assess the quality of control
panel automatically, a robot might be applied to test the operability of components,
in which a robot pushes buttons to predefined pressure, and drives back afterward,
so that the buttons return their starting positions. At the same time, several measure-
ments are recorded, for example, the maximal position or strength of robot to reach
predefined pressure.

For adjusting knobs like B here, a robot rotates the adjusting knob into a predefined
position, and again rotates it back into the starting position, at the same time similar
measurements are recorded. For the sake of clearness, let us assume the operability

1 www.battenberg.biz
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Chapter 1: Introduction

Figure 1.2: Quality
evaluation of car radio A B C, D , E ... ...

of components depends only on the maximal strength (unit: N) of the robot to reach
predefined pressure or positions (maximal strength for short) in this example.

According to a human expert, the quality of car radio can be assessed under following
principles:

• A car radio is “good” operable (IO), if the operabilities of its components are
not too “far” away from (standard) desired values;

• A car radio is “good” operable (IO), if all its components can be operated in
almost “similar” way, for example, the maximal strength on components with
similar functionalities (e.g. C, D and E here) should be the same approxi-
mately, or the proportion of maximal strength of components (e.g. A and B)
should be relatively constant;

• Otherwise a car radio is “bad” operable (NIO).

In traditional quality assessment, the involved criteria would be tested sequentially,
and the result is a set of measurements, say x1, . . ., xn. For each measurement xi,
there is a tolerance interval [li,ui], where li (ui) indicates the lower (upper) bound in
which a measurement is IO. Then the device is IO if xi ∈ [li,ui] for all i ∈ {1, . . . ,n},
otherwise it is NIO.

Table 1.1 lists three car radio examples with measurements of maximal strength at
five tagged control points in Figure 1.2 respectively, where we assume that the tol-
erance domains for these measurements are given. According to traditional quality
assessment, these samples are classified into IO and NIO categories, as the last col-
umn in Table 1.1 indicates.

Table 1.1: Car radio
examples with maximal
strength (unit: N) at five

control points and overall
quality using traditional

quality assessment

A B C D E Quality
[li,ui] [0.5,0.9] [0.2,0.4] [0.4,0.8]
Nr. 1 0.7 0.3 0.5 0.4 0.7 IO
Nr. 2 0.49 0.3 0.6 0.6 0.6 NIO
Nr. 3 0.9 0.41 0.8 0.8 0.8 NIO

However the quality assessments in Table 1.1 are problematic from a human expert’s
point of view, the first sample is labeled as IO, though quite different values on last
three buttons (C, D and E) are measured, which have similar functionalities. On the
other hand, the as NIO labeled second sample comes with “perfect” buttons except
A, whose value lies just a little outside the tolerance domain. Regarding this, one
might question whether the second sample is still more preferable for users than the
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Section 1.1: Motivation

first one. For the third sample, all buttons seem more cumbersome than the standard
settings, since the values all reached or exceeded the upper bound of related intervals
a little. For a human expert, the third sample may still be better than the first one.

Traditional quality assessment, which is common used in industrial quality control,
exhibits a number of obvious disadvantages:

1. Firstly, traditional quality assessment is very coarse, as it only distinguishes
between products that are IO and NIO two categories, which is usually not
sufficient in many applications, where various scales of quality assessment are
desired. Needless to say, a more refined, intelligent quality assessment will
often be desired in practice, which can provide discrimination between dif-
ferent quality levels. For instance, following additional terms are often used
concerning quality assessment in practice: “middle”, “good with few flaws”
or “superior” etc, which can be very useful in that, for example, products with
“middle” quality can still be accepted under price reduction, instead be labeled
as NIO simply, or products can be assembled according to differentiated quality
classes, etc.

2. Secondly, traditional quality assessment usually evaluates each measured cri-
terion separately by comparing with respective standard values and allowed
deviations (expressed in the form of intervals) simply, however, a human ex-
pert is used to consider an evaluated product as a whole, instead of indepen-
dent criteria2. While traditional quality assessment works in a sequential way
by checking measured criteria one by one, for a human expert it is important
that an overall impression on evaluated product determines its overall quality,
so several “bad” criteria can be compensated by other “superior” criteria. Let
us call this property as compensation. From the logical point of view, tradi-
tional quality assessment bases on purely conjunctive combination of single
criteria, which does not allow for any kind of compensation, as a result, even
a large number of almost perfect values cannot compensate for a single criti-
cal measurement. The consequence of such assessment procedure is also very
sensitive towards measurement errors, so in practice, the reject rate is often
extremely high, since the probability to have always a “good” measurement
(xi ∈ [li,ui], for all i ∈ {1, . . . ,n}) will almost vanish for a large enough number
of measurements.

Using tolerance intervals causes the well-known threshold effect, namely a
minimal change of a single measurement around boundaries of tolerance inter-
vals may lead to a completely different evaluation, which is of course undesir-
able in practice. A good example can be found in Table 1.1, where the second
example is labeled as NIO just because of the maximal strength upon A lies a
little under the tolerance domain, which might be error in measurement.

1.1.3 Problem of Modeling Utility Function

In this thesis, we want to develop a new method for modeling utility function (or
rating function), which can be used to assess any sort of object, entity or alternative,
for example products in the previous case. A utility function is able to assign a
numeric degree (called utility or rating) for alternative in place of human experts,
which can be seen as satisfaction or recommendation on related alternative. Note
2 Actually the relationship between criteria could still be specified as additional criteria in traditional
quality assessment. For instance, to express that button C and D should be equally operable, one can add
a new measurement to compute difference between maximal strength on C and D. However a flexible
compensation among criteria is by no means a trivial task in traditional quality assessment.
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Chapter 1: Introduction

that a utility function can be applied in several tasks, for instance, to select the best
alternative, make a ranking of these alternatives or a classification, etc.

Amongst other, the motivation of this thesis is to develop a new method for automatic
quality assessment, which concerns following aspects:

• Compensation: It ought to mimic human experts by automatic quality assess-
ment as accurate and intelligent as possible. In contrast to traditional quality
assessment, the new method should allow compensation of evaluated objects,
just like human experts usually do;

• Gradual quality scales: Instead of simple “IO-NIO” categories in traditional
quality assessment, it is proposed that the new method is able to support a more
refined discrimination between quality levels of objects, in which traditional
quality assessment can be viewed as a special case with only two quality levels.
In the new method, the stability of automatic quality assessment should be
improved. That is, random deviation or error in measurement should not affect
the overall quality dramatically. The threshold effect should be avoided in the
new method.

1.2 Modeling with Fuzzy Operator Tree

In this thesis, we propose a new hierarchical model for quality assessment to over-
come those disadvantages caused by traditional quality assessment, subsequently re-
ferred to as fuzzy operator tree (FOT), which makes use of tools and techniques from
fuzzy set theory by recursively decomposing a utility criterion into sub-criteria. A
fuzzy operator tree implements a fuzzy rating function, that is, a rating function that
maps to the unit interval [0,1], where 0 corresponds to the lowest and 1 to the highest
evaluation. Even though the original motivation for developing an FOT model comes
from quality control, we like to emphasize that FOTs are much more general, due to
the fact that an FOT is simply a special kind of rating function, and can in principle
be used for rating all sorts of things. This is why we shall often use a neutral term
like “alternative” instead of a more special one such as “product”.

In following text, we give a simple example of FOTs in Subsection 1.2.1 and discuss
the advantages of using FOTs in Subsection 1.2.2. The mainly applied techniques are
introduced in Subsection 1.2.3. Finally the challenges to build an FOT are listed in
Subsection 1.2.4.

1.2.1 A Simple Example of Fuzzy Operator Tree

Figure 1.3 shows a simple graphical illustration of an FOT, where the assessment of
candidates for a certain job is decomposed into two criteria formal skills and language
skills. The former criterion is further decomposed into skills in mathematics (math)
and computer science (CS), and the latter into French and Spanish.

Figure 1.3: FOT example
for the assessment of

candidate

∧

∨

math CS

∅

French Spanish

Skills

formal skills language skills

Note that the ∧, ∨ and ∅ stand for parameterized fuzzy aggregation operators AND,
OR or Average respectively. At the lowest level of an FOT, the inputs of an FOT are
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Section 1.2: Modeling with Fuzzy Operator Tree

basic evaluations on different criteria, for example here in this example, math de-
notes a basic criterion upon the mathematic knowledge of candidate. Regarding this,
an input of the FOT might be a measurement related the mathematic knowledge of
candidate, for instance, a degree in a mathematical examination, which is modulated
by an associated fuzzy set.

This example can be interpreted as following: The skills of a candidate depends on
formal and language skills, which are aggregated using an AND operator, where for-
mal skills depend on both mathematics and computer science, but they are combined
with an OR fuzzy aggregation operator, while the language skills are supposed to de-
pend on French and Spanish, which are combined with a fuzzy aggregation operator
Average. The inputs of this example are measurements related to four basic crite-
ria (math, CS, French and Spanish), which might be simply degrees derived from
transcript, or modified according to the particular interest of the decision maker. The
input of this example would firstly be modulated by several fuzzy sets, through which
several numeric degrees in unit interval [0,1] are deduced. These numeric degrees are
typically preference or satisfaction degrees with respect to a given criterion, where 1
expresses perfect satisfaction on a related criterion and 0 corresponds to totally un-
acceptable, they are called “basic evaluations” in this thesis. A scale between 0 and
1 should demonstrate how far a criterion is satisfied from the prospect of a decision
maker. One can read the output (also called utility) of an FOT from the root node,
here “Skills”, where a numeric scale would be returned also in a unit interval [0,1], a
preference degree tells how a decision maker favorites an alternative represented by
the mentioned criteria.

To apply this example, the related measurements according to an alternative are put
into an FOT at the leaf nodes. The evaluation of this alternative can be read from the
root node of the FOT, in this way one can compare a set of alternatives, or obtain the
quality of single alternative.

1.2.2 Features of Fuzzy Operator Trees

Amongst other, an FOT is characterized by the following properties:

1. Modulation of measurements: At the lowest level, any measurement, say xi,
is modulated by an associated fuzzy set, for example, if xi has the definition
domain R, then fi : R→ [0,1]. As a result, a measurement indicates a basic
evaluation to the overall quality. The evaluation ( fi(xi)) is a number in the
unit interval, expressing to what extent xi meets the requirement from the hu-
man expert’s point of view. As generally known, applying fuzzy sets provides
a gradual transition between satisfaction and violation of the range constraint,
and is able to distinguish more carefully between weak and strong violations of
the range constraint, therefore to avoid the above-mentioned threshold effect of
traditional quality assessment and improve the stability of utility function. Im-
plicitly, a membership degree fi(xi) provides information about how far away
xi is from an ideal value. On the other side, the basic evaluation modulated by
fuzzy sets can be interpreted in the natural language intuitively, therefore can
be well understood by human beings.

As another potential advantage of the above approach, we note that it allows
one to treat different types of measurements in a unified way. In fact, using
fuzzy sets to modulate a single measurement variable is only a special case, in
which it is possible to express restrictions on the relation between several mea-
surements in principle, which is especially useful to formalize (fuzzy) con-
straints on more than one measurement variables. For example, in order to
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Chapter 1: Introduction

express the constraints in the form of “xi and x j are almost equal”, where xi

and x j are two measurements, a fuzzy set based on xi and x j can be defined,
and the membership degree fi(xi,x j) is a number in the unit interval that has a
proper semantics and can be compared and combined with other values.

2. Hierarchical structuring of a utility function: Constructing an FOT follows
the criterion-decomposing manner, namely a branch in FOT can be interpreted
as decomposing a criterion into several sub-criteria, this is an intuitively ap-
pealing and commonly used strategy, so that an FOT built in this way is always
comprehensible and can be accepted and understood well by human beings.

The hierarchical, modular structure of an FOT allows one to specify utility
functions in a very systematic way, which is of special importance for assessing
the quality of technical products. Typically, a technical product itself has a
modular structure and therefore can be decomposed into subcomponents in a
recursive way. The “divide-and-conquer” strategy underlying FOTs makes the
assessment of very complex systems controllable.

Notice that the output of an FOT is a numeric scale in unit interval [0,1], as
well as the intermediate results and basic criteria of FOT, which can be easily
understood and used in practice. The nearer a scale to 1, the better quality an
evaluated object has. Reversely, the nearer a scale to 0, the worse quality an
evaluated object has.

3. Parameterized fuzzy aggregation operators : To aggregate the evaluation of
sub-criteria, say C1 and C2, into an evaluation of a criterion C, we make use of
three types of operators that support different combination modes:

• Conjunctive combination: If the satisfaction of C requires the satisfaction
of both C1 and C2, a triangular norm (t-norm) is used as an aggregation
function [KMP02];

• Disjunctive combination: If the satisfaction of C only requires the satis-
faction of C1 or C2, a triangular conorm (t-conorm) is used as an aggre-
gation function [DP80];

• Averaging: If the evaluation of C is supposed to be an average between
the evaluations of C1 and C2, we make use of an OWA (ordered weighted
average) operator [Yag88].

Since all three types of operators are associative, the number of sub-criteria to
be combined can of course be larger than two.

A conjunctive combination is the most stringent type of aggregation, while a
disjunctive combination is the least stringent one. Within these two classes
of operators, it is possible to make an even finer differentiation by looking at
the order relation between t-norms (t-conorms) [DP80]. Our solution here is
to use parameterized families of t-norms (t-conorms), for example, the well-
known Hamacher family [Ham78], most of which include the commonly used
operators as special cases.

On the other side, the class of OWA operators nicely “fills” the gap between
the largest conjunctive combination (minimum) and the smallest disjunction
combination (maximum), we thus obtain a continuous spectrum of aggregation
operators.

4. Weighting sub-criteria : In FOTs it is desirable to weigh one sub-criterion
higher than another one, which is problematic for t-norms and t-conorms since
these are symmetric fuzzy operators by their very nature. We make use of
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a simpler alternative that resorts to the idea of linguistic modifiers [Zad72,
Lak73]. A linguistic modifier is a function m : [0,1]→ [0,1] that depicts the
effect of linguistic hedges. Note that in the previous example of FOTs, the use
of linguistic hedges is omitted for the sake of clearness.

5. Interpretability : In contrast with other utility function modeling methods
[Bly02, Saa94, Dye90, HHR+03, HH03, HS02, FM03a], FOT especially en-
joys its excellent interpretability. The interpretability denotes the capability to
express the behavior of the real system in an understandable way. The inter-
pretability of an FOT is guaranteed by using tools and techniques from fuzzy
set theory, namely:

• Firstly the use of fuzzy sets for modulation of measurements has good
interpretability, since, as is well known, the fuzzy sets can be interpreted
in the form of natural language. Linguistic terms with vague meaning,
which are often used by human beings, can be well expressed in terms
of fuzzy sets, such as: “old”, “not far away from” and “approximately
equal" etc.

• Secondly the fuzzy aggregation operators used in FOTs not only provide
great flexibility to combine sub-criteria in various way, but also reserve
the meaningful interpretations “AND”, “OR” or “Average”. Although
parameter specification can change the behavior of aggregation operators,
their linguistic interpretations are kept.

• Thirdly the linguistic modifiers to represent the weight of sub-criteria
have also good interpretability.

Using an FOT to model the quality assessment process can fulfill the aforementioned
expectations on automatic quality assessment completely, namely:

1. FOTs employ fuzzy sets to modulate measurements, and fuzzy aggregation
operators to combine sub-criteria, which makes it possible to formulize the
constraints on different criteria easily and compensate different criteria in a
more flexible way. Since the compensation of criteria can be modulated in
FOTs, using an FOT enables a much more accurate modeling of human experts
than traditional quality assessment.

2. The numeric output of FOTs provides more flexibilities than traditional qual-
ity assessment, and can support a more refined discrimination between quality
levels. For example, one can convert a numeric scale into “IO-NIO” decision
by employing a single threshold, say α in [0,1], which divides the unit interval
into two regions ([0,α) and [α,1]). Beside this, the numeric scale is more flex-
ible than simple decision, which is especial useful for other tasks, like ranking,
comparison, etc. The stability of automatic quality assessment is improved
strongly by applying fuzzy sets and fuzzy aggregation operators in FOTs, the
threshold effect can be avoided completely.

Although the original motivation for this thesis comes from the field of quality con-
trol, FOTs provide a completely general way for modeling utility functions. More-
over, as will be discussed in later parts of the thesis, FOTs can be applied in several
other different tasks, for example classification problems and information retrieval
in machine learning [HMS02, Mit97, Yag00], or in new researching areas like pref-
erence modeling [CP04, PR02] or label ranking [BH07]. Generally speaking, FOTs
provide powerful tools for assessment of any sort of object, entity, or alternative. In
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this regard, we employ the abstract concept of utility, mathematically formalized in
terms of a utility function, instead of rating or quality, which has a longstanding tra-
dition in economics field, where it plays an important role in the study of economic
behavior [GS88].

1.2.3 How to Build a Fuzzy Operator Tree

Building an FOT consists of two steps: Structure identification and parameter spec-
ification, where the former step aims to allow a human expert to specify a model in
the form of an FOT in a quite convenient and intuitive way. To this end, the latter
step specifies the parameters involved in FOTs. Figure 1.4 demonstrates the process
to build an FOT, where we use different colors to emphasize the parameter specifica-
tion for fuzzy components in an FOT. We give more details about these two steps in
following text.

Figure 1.4: Modeling
utility function with FOT

Expert
FOTFOT FOT

Parameter 
Specification

Structure 
Identification

1.2.3.1 Structure Identification

In this step we want to extract the abstract structure information of an FOT with the
help of a human expert, which is based on three important conceptions, namely:

• Modulation of measurements in terms of fuzzy sets, in which the basic evalua-
tion of involved criteria as inputs at the lowest level of the FOT are modulated
in terms of associated fuzzy sets. According to special interest of human expert
on alternatives, this phase serves to extract the (fuzzy) constraints on measure-
ments in the form of fuzzy sets. To this end, different types of measurements
are converted in a unified way, namely as fuzzy membership degrees.

• Hierarchical structuring of a utility function, in which we intent to elicit how
human experts assess the quality of evaluated alternatives. Human experts are
allowed to decompose a criterion into sub-criteria in a recursive way, until
all criteria are modulated in previous phase already. Following this idea, the
hierarchical structure of an FOT can be built in an intuitive, easy way.

• Flexible aggregation of sub-criteria by means of parameterized fuzzy aggrega-
tion operators, in which human experts are required to determine the type of
decomposition involved in an FOT by means of combination “AND”, “OR” or
“Average”, these combinations can be expressed in the form of a parameterized
t-norm, t-conorm or OWA operator.

1.2.3.2 Parameter Specification

In this step, we concentrate on the specification of the parameters of the aggregation
operators, linguistic hedges as well as the fuzzy sets. Sometimes this task can also
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be done by human experts directly, for example, in quality assessment of technical
products, where the parameterization is usually predefined according respective stan-
dards. But in other situations, the expert may have problems with specifying precise
parameters but only the abstract structure.

In this thesis, we concentrate on a special alternative to support a human expert in de-
signing FOTs, namely learning parameter from data. The main task here is addressed
as: Given the structure of FOT and a set of exemplary data provided by human ex-
perts, we intend to find a parameter specification, which can mimic the behavior of
human experts as well as possible, the quality of a parameter specification depends
on the agreement between evaluations given by human experts and predicted by an
FOT under a given specification. A calibration method is developed in this thesis for
fitting the parameters in FOTs. As the task in this step becomes a typical learning
problem, several techniques are used in this thesis for purpose of parameter specifi-
cation: Gradient descent [Mit97], simulated annealing [KGV83, SPR04] and evolu-
tionary algorithms [Wei02, Coe06]. In following text, we use the term Calibration
instead of specification of parameters, in the sense that the structure of an FOT would
be kept during this step.

1.2.4 Challenges

Modeling with FOTs encounter following challenges:

• Knowledge elicitation: How can we extract the prior knowledge of a human
expert with a loss of information as small as possible? Many current techniques
intend to deal with knowledge elicitation with different types of models. Our
starting point is based on the assumption that a utility function can be expressed
in terms of a hierarchical structure by decomposing criteria into sub-criteria in
a recursive way. The evaluations of sub-criteria can be combined by means
of aggregation operators of different character: Conjunctive, disjunctive and
averaging.

• Calibration: As a special learning problem with given exemplary data, how
can we specify the parameters in FOTs to mimic human experts as accurate as
possible?

• Minimizing evaluation cost: After building FOTs through structure and system
identification processes, an issue of minimizing evaluation cost is addressed by
applying FOTs, since firstly a precise utility is not always necessary in prac-
tice, for example, in many cases one prefers ordinal utility rather than numeric
one. Secondly the evaluations of criteria involved in FOTs have usually dif-
ferent evaluation costs. So from the economical point of view, an order of to
be evaluated criteria is required, so that the overall evaluation cost could be
minimized.

1.3 Outline of the Thesis

The main topic of the previous section are also reflected in the organization of this
thesis.

• Chapter 2 introduces the methods of fuzzy modeling. At first we give the
basic components of fuzzy set theory and their properties. Then we present
a framework to combine them together, which ought to be a powerful tool to
modulate utility functions.

Page: 10



Chapter 1: Introduction

• Chapter 3 discusses the problem of calibration of FOTs, where this problem
is defined formally, then several techniques for the purpose of calibration are
introduced with respective experiments.

• Chapter 4 discusses the problem of minimizing evaluation cost and correspond-
ing approaches to arrange the evaluations on FOTs efficiently.

• Chapter 5 discusses related work. We shall review several similar works and
explain the differences to FOT modeling.

• Chapter 6 concludes this thesis with a summary of its results. Additionally, we
outline future research directions from presented conclusions.

Bibliographic note : The main contributions of Chapter 2 and 3 have been published
in [YHF08]. Chapter 2 is partly based on [Zae05].
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2 Modeling Utility Functions with
Fuzzy Operator Trees

This chapter is devoted to the basic conceptions and techniques for modeling utility
functions with FOTs. To this end, in order to build an FOT model, a human expert
just needs to simply split evaluation criteria into sub-criteria in a recursive manner
and to determine in which way these sub-criteria ought to be combined.

In the following text, we give the details on how to model utility function in the
form of FOT with the help of human experts. In Section 2.1 we define the problem
of modeling utility functions and introduce some related terminologies. After the
components of fuzzy set theory for constructing an FOT are described in Section 2.2,
we present the fuzzy operator tree and its properties in Section 2.3. The elicitation
methods for modeling FOTs are shown in Section 2.4. Section 2.5 concludes this
chapter.

2.1 Preliminaries

Let us start with the formal description of modeling utility functions, then we intro-
duce the related terminologies for modeling utility functions.

2.1.1 Utility and Utility Functions

In economics, utility (also called rating) is a measure of the relative satisfaction or
desiredness of the consumption of goods [NM53]. To represent utilities (ratings), it is
convenient to apply utility functions, then the consumption of goods can be compared
in a unified form. The consumer’s utility function u is defined as:

u : X → R

namely a mapping from a consumption good set X to the real number space R. For
any x,y ∈ X , u(x) ≥ u(y) indicates the customer strictly prefers x to y or there is no
difference between x and y from the customer’s point of view.

Borrowed from economics, the abstract concept of utility and utility function respec-
tively plays a fundamental role for the evaluation and assessment of any sort of object,
entity or alternative involved in numerous types of applications [GS88]. In decision
making, for instance, where a final choice has to be selected among alternatives, the
preference of available alternatives is presented in the form of utilities deduced by
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some kind of utility function. In different context, the utility is also named as prefer-
ence, rating, or quality [CP04].

Let us consider the problem to find an apartment as a concrete example using util-
ity and utility function: Two attributes are considered here, distance D and size S.
The distance is calculated in miles from the apartment to the working place, and we
assume that it ranges over the interval [0,100], the apartments lying more than 100
miles away from the working place are treated as unacceptable. The size of an apart-
ment is measured in squared meters, and ranges over the interval [20,100]. Given a
set of available alternatives (listed in Table 2.1), the goal of decision making is to de-
termine the “best” choice according to the preference of the decision maker. Suppose
that a utility function in this case can be expressed as a linear function:

u(d,s) =

{
1.2 · (1− d

120)+0.7 · ( s
100) if d ∈ [0,100] and s ∈ [20,100]

0 otherwise

one can calculate the utilities for given alternatives, and make a decision in favor of
the offer A.

Table 2.1: Example of
decision making using

utility function

Alternative A B C D
Distance 2.4 40 31 85

Size 48 78 64 100
Utility 1.51 1.35 1.34 0.05

2.1.2 Modeling Utility Functions

Given a utility function, the evaluation process for alternatives is relative straight-
forward, in which one simply deliver all alternatives into utility function as input to
get their utilities. Based on these utilities, a decision or ranking among alternatives
can be determined by making a comparison on their utilities. To construct a “good”
utility function is, however, the main challenge, because there exist numerous repre-
sentations of utility functions, for example, parameterized linear functions, nonlinear
(polynomial) functions, or functions in tabular form, and so on. Usually it depends
on how the overall utility is related to representative features and how the features
interact. Generally, there is no universal representation for all kind of problems.
Even for a particular kind of representations, there exist still numerous variants. For
instance, one can select different combinations of criteria involved in the utility func-
tions, or different parameters. The process for determining a utility function is called
Modeling utility function, which is also the main task for this chapter.

Formally, the problem of modeling utility function is defined as follows: Given a
decision maker (e.g. human expert, customer), whose preference should be modeled
using a utility function, and a set of objects or alternatives O, the goal of modeling
utility function is to determine a utility function u : O→R, which reflects the decision
maker’s preferences on an alternative from O, that is, a function u, which assigns a
real value for each alternative to express the preference of the decision maker, it
holds:

∀x,y ∈ O : u(x) > u(y)⇒ the decision maker prefers x to y

Due to the variety of utility functions, there are two main criteria applied to describe
the quality of a utility function:

• Accuracy
The accuracy is one of most important criteria concerning the quality of a util-
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ity function, which indicates how well a decision maker agrees to a correspond-
ing utility function. There are a lot of common used strategies to measure the
accuracy of utility functions, for example, given a set of alternatives, whose
utilities are given by human expert, accuracy can be defined as the rate of cor-
rect predictions made by utility functions.

• Interpretability
The interpretability denotes the capability of a utility function to express the
preferences of a decision maker in an understandable way. Whereas the accu-
racy describes how well a utility function mimics a decision maker, the inter-
pretability indicates how far a human being understands a utility function. The
term of interpretability is replaced with simplicity in many works, since there
the interpretability is defined as the abstract size of a utility function. Gen-
erally, the simpler a utility function is, the better one can understand it. The
interpretability can be defined as, for instance, the number of linear functions,
or parameters involved in an utility function, etc.

In this thesis, we specially restrict to express the utility in the unit interval [0,1]
instead of the real number space R, that is, a utility function represented by FOT can
be defined as:

u : O→ [0,1]

with O is domain of alternatives to be evaluated, where u(o) = 1 (u(o) = 0) denotes
an alternative o has “best” (“worst”) quality, generally the nearer the value u(o) to 1,
the higher quality of o, vice versa.

2.2 Fuzzy Set Theory

The notion of a fuzzy set stems from the observation made by L.A. Zadeh [Zad65],
which emphasizes the gab between mental representations of reality and usual math-
ematical representations. Fuzzy set theory bases on binary logic, precise numbers,
differential equations and so on, and is characterized such that it permits the gradual
assessment of elements with the aid of the membership functions. As a mathemati-
cal tool fuzzy set theory is particularly desired for handling incomplete information,
the unsharpness of classes of objects and situations. It offers a unifying framework
for modeling various types of information ranging from numerical, to symbolic and
linguistic knowledge [FY02].

In this section, we take benefit of fuzzy set theory to represent the knowledge of
experts in the form of natural language. We introduce several main components of
fuzzy set theory, which are employed to construct an FOT for modeling utility func-
tion, namely fuzzy sets, fuzzy aggregation operators and linguistic hedges. These
three components serve to interpret different natural language terms, for example,
the knowledge from an expert might be expressed as: “The quality of an auto de-
pends on whether it has a very good engine and a low fuel consumption”, where

• the basic properties of measurements, here “good engine”, “low fuel consump-
tion” and “high quality” would be modulated using fuzzy sets, as Subsection
2.2.1 describes. Whether an auto has these fuzzy properties, or belongs to these
fuzzy sets, is a matter of degree.

• the connection terms, like “and” here, are accommodated by fuzzy aggregation
operators, which give a meaningful connection between fuzzy membership de-
grees. We introduce the fuzzy aggregation operators in Subsection 2.2.2.
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• the adverbs and adjectives of natural languages are interpreted with the aid of
linguistic hedges, such as “very”, “slightly” and “approximately”, which we
describe in Subsection 2.2.3.

2.2.1 Fuzzy Sets

As an extension of the classical notion of set theory, fuzzy set theory has been firstly
developed as an useful concept for dealing with real world phenomena. In classical
set theory, an element either belongs or does not belong to the set, for example, the
class of animals clearly includes dogs, horses, birds, etc, and on the other hand ex-
cludes objects such as computers, desks, etc. Generally, in classical set theory the
membership of the elements in a set is assessed in binary terms {0,1}, therefore, we
will assign the membership 1 for dogs to the class of animals, and 0 for computers,
since apparently, dogs are animals, whereas computers are not. However, the classi-
cal set theory encounters difficulties to describe objects with ambiguous status, like
for bacteria it is hard to say whether it is an animal or not. More counterexamples
come from the natural language of human beings, terms such as “old man”, “small
number”, or “bald head” can not be precisely defined in the usual mathematical sense.

In contrast to the classical set theory, fuzzy set theory permits the gradual assessment
of elements to a set. In this subsection, a fuzzy set is employed to represent the ba-
sic properties in the form of natural language, which is achieved with the aid of a
membership function valued in the unit interval [0,1]. In fuzzy set theory, a mem-
bership function plays a basic and significant role, since it characterizes a fuzzy set
and all treatments of those fuzzy sets made in terms of theirs membership functions.
To present a fuzzy property like “low fuel consumption”, a fuzzy set is created to
describe how far that an auto has low fuel consumption from an expert’s point of
view.

2.2.1.1 Definition of Fuzzy Set and Membership Function

Definition 2.1 (Fuzzy set). Let X be a domain of objects, a fuzzy set A over X is
characterized by a membership function µA : X→ [0,1], which associates each object
x in X with a real number in the interval [0,1]. µA(x) represents the membership of x
to fuzzy set A. Usually the membership function µA(x) is abbreviated to A(x).

Note that fuzzy sets generalize classical sets, because classical sets are just special
cases of fuzzy sets, in which the membership function becomes the indicator function
defined in following manner:

A(x) =

{
1, if x ∈ A
0, if x /∈ A

where x is an object instance and A a fuzzy set. Regarding this, classical sets are
also called crisp sets, or Boolean sets. The fuzzy set serves as an expression tool for
properties of objects in the form of “an object X is . . . ”, for instance, “X is the capital
of Germany” describes the property of a city where the government of Germany is
carried out, whereas “X is old man” expresses the property of age of a human being
according to the cognition about “old”.

Let us consider an example with a fuzzy set A of “young man” (for human beings in
a given context), which is based on a single variable “age”. Traditionally, the clas-
sical set theory usually applies a single threshold, in which an arbitrary cut point is
selected to help distinguishing whether a given person (with known age) is young
or not. Suppose that a particular threshold is chosen, say 20 years, so that persons,
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who are exactly 20 years old or younger, are classified to belong to A. The corre-
sponding membership function under classical set theory is plotted in (a) of Figure
2.1. Obviously, for a human being it is hardly to agree the statement that a young
man suddenly becomes “not young” after his twentieth birthday. Fuzzy set theory
solves this problem by setting a transition area between “young" and “not young",
and assigning related objects with gradual memberships, for instance, the previous
fuzzy set A can be defined as follows:

A(x) =


1, if x≤ 20
|x−40|

20 , if 20 < x≤ 40
0, otherwise

where x denotes the age, as in (b) of Figure 2.1 shows.

Figure 2.1: Membership
functions for “young”:
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Based on fuzzy sets, several definitions are extended from classical set theory:

• A fuzzy set A is empty, if and only its membership function is identically zero
on X . That is, ∀x ∈ X : A(x) = 0.

• For two fuzzy sets A and B, we say A = B (A and B are equal), if and only if it
holds ∀x ∈ X : A(x) = B(x).

• The union of two fuzzy sets A and B is a fuzzy set C, written as C = A∪B,
whose membership function is related to those of A and B by

∀x ∈ X : C(x) = S(A(x),B(x))

where S is a t-conorm (see Section 2.2.2), a common used t-conorm is the max
function.

• The intersection of two fuzzy sets A and B is a fuzzy set C, written as C = A∩B,
whose membership function is related to those of A and B by

∀x ∈ X : C(x) = T (A(x),B(x))

where T is a t-norm (see Section 2.2.2), a common used t-norm is the min
function.
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• The complement (or negation)of a fuzzy set A is denoted by A′ and defined by

∀x ∈ X : A′(x) = N(A(x))

where N is a negation operator, a common used negation operator is N(x) :=
1− x.

• The notion of containment from classical set theory is newly defined as: A
fuzzy set A is contained in fuzzy set B (equivalently A is a subset of B, or A is
smaller than or equal to B), if and only if ∀x ∈ X : A(x)≤ B(x).

Generally, if we consider the dimensionality of X , a fuzzy set A over X is a mapping:

A : X1×X2× . . .×Xn→ [0,1]

where X = X1 × X2 × . . .× Xn is the Cartesian product of n domains of variables
x1,x2, . . . ,xn. The previous example shows a fuzzy set of the dimensionality 1. A
fuzzy relation R on X1×X2× . . .×Xn is a fuzzy set defined on X1×X2× . . .×Xn

[Ovc02]. In the particular case when n = 2, a fuzzy set on the Cartesian product
X×Y is a fuzzy binary relation .

For example, regarding the car radio example in Figure 1.2, let us suppose two con-
tinuous domains X = Y = [0.4,0.8] for the maximal strength of two buttons (C,D),
a fuzzy relation A on X ×Y may be used to express a property “Button C and D are
equally operable”, and defined by a two-dimensional membership function in Figure
2.2:

Figure 2.2: Fuzzy relation
of “Button C and D are
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2.2.1.2 Types of Fuzzy Sets and Elicitation of Membership Functions

Note that a fuzzy set is a gradual representation of objects, which depends on the
context of the applied area. For instance, a fuzzy set “high” should have different
meaning for human beings and trees. Even for human beings, a fuzzy set can also
have various expressions, like people do have different definitions of “high” from re-
gion to region. To define a fuzzy set and its membership function respectively, one
direct method is to elicit the memberships representatively through direct communi-
cation with the knowledge source, namely experts [NK02]. Because a fuzzy set is
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identified through its membership function, to elicit a fuzzy set we just need to deter-
mine the memberships of potential objects related to this fuzzy set, such as to clarify
a fuzzy set “tall man”, the expert is required to give the “real” memberships for a
provided set of finite participants, according to the cognition of expert about “tall
man”. But this approach becomes difficult in many applications due to the following
problems:

• Often a real numbers from the interval [0,1] are not natural for a human expert,
and it is very difficult for most experts to express their preference in a precise
real number.

• The number of questions provided to experts may be infinite. For example
it is not possible to ask an expert to assign a membership of “tall man” for
everyone.

The most frequently used method in practice is to form a membership function from
finitely many “real” memberships elicited from experts. For this purpose, only a
small set of representative questions is delivered to experts, from which we recon-
struct the desired function using interpolation, for example the simplest case of in-
terpolation: Piecewise linear functions. For example, we want to build a fuzzy set
for “tall man”, since the height of a human being ranges between less than 1 me-
ter to more than 2 meters, we pick up a set of 10 typical heights and may get ex-
emplary memberships for “tall man” listed in Table 2.2. Based on these data, we
need to use linear interpolation to find a “real” membership function. In general, the
desired linear function, say A should pass through all measured point pairs (xi,yi),
∀i ∈ {1, . . . ,10}, where xi and yi are the i-th height sample and membership provided
by the expert respectively, that is,

A(x) =


1, if x > x10

0, if x≤ x1

yi−1 + x−xi−1
xi−xi−1

· (yi− yi−1), if xi−1 < x≤ xi, ∀i ∈ {2, . . . ,10}

This function is plotted in Figure 2.3.

Table 2.2: Sampling of
“tall man” for fuzzy set

elicitation

Nr. 1 2 3 4 5 6 7 8 9 10
Height(m) 1 1.4 1.6 1.7 1.75 1.8 1.85 1.90 1.95 2

Membership 0 0 0.1 0.2 0.34 0.6 0.85 0.95 1 1

Obviously the more sampling provided, the more precise a piecewise linear function
reflects the “real” membership function. On the other hand, it means more space
needed to save the function, which is from user’s and computer’s point of view not
favorable. More conveniently, a piecewise linear function can be used to approximate
a membership function, which is determined by a few parameters. Regarding this,
two other piecewise linear functions are usually applied to represent a membership
function, namely triangle and trapezoid membership functions, as Figure 2.4 shows.

Definition 2.2 (Triangle membership function). Given a numeric domain X and a
fuzzy set A, a triangle membership function of A is characterized with three parame-
ters (l,m,h ∈ X , and it holds l ≤ m≤ h), and defined as:

A(x) =


h−x
h−m , if m≤ x≤ h
x−l
m−l , if l ≤ x < m
0, otherwise
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Figure 2.3: Piecewise
linear membership

function for “tall man”
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shortly written as A(x; l,m,h).

Definition 2.3 (Trapezoid membership function). Given a numeric domain X and a
fuzzy set A, a trapezoid membership function of A is characterized with four param-
eters (l,m,n,h ∈ X , and it holds l ≤ m≤ n≤ h), and defined as:

A(x) =


h−x
h−n , if n < x≤ h
1, if m≤ x≤ n
x−l
m−l , if l ≤ x < m
0, otherwise

shortly written as A(x; l,m,n,h).

Furthermore we say a membership function is characterized by its core and support,
where

• the core of a fuzzy set A on domain X is the crisp set that contains all elements
of X that have membership degrees of one in A, that is:

core(A) = {x ∈ X : A(x) = 1}

In case of trapezoid membership function A(x; l,m,n,h), the core is obviously
an interval [m,n];

• the support of a fuzzy set A on domain X is the crisp set that contains all
elements of X that have nonzero membership degrees in A, that is:

support(A) = {x ∈ X : A(x) > 0}

In case of trapezoid membership function A(x; l,m,n,h), the core is obviously
an interval (l,h).

It is easy to see that trapezoid membership functions generalize triangle membership
functions, in which the core of trapezoid membership functions shrinks to a crisp set
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with single element.

Figure 2.4: Triangle and
trapezoid membership
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Triangle and trapezoid functions are the simplest membership functions, since there
are only three and four parameters needed to identify their functions. Nevertheless,
they are also, at present, the most frequently used membership functions [NK02]. So
far many current fuzzy systems and applications use them as the standard form of
membership function, it seems that we do not need more complicated membership
functions. Moreover, since we are approximating expert knowledge, it is not reason-
able to try to formalize the fuzzy properties in a too complicated way. On the other
hand, we should note that they are natural extensions of crisp tolerance intervals in
traditional quality assessment by softening the lower and upper bounds of tolerance
intervals. From this point of view, both are used as standard membership functions
in this thesis.

The piecewise linear membership functions are only suitable for handling measure-
ments under continuous and numeric domains, but not appropriate for discrete mea-
surements, which are also very often used in practice. For example, a fuzzy set
of “favored color” involves, after all, only discrete values (colors), as well as “pre-
ferred auto brand”, “kind of sport” etc. The discrete membership functions are of
course again discrete, and the memberships for all involved discrete values have to
be elicited from experts particularly.

Definition 2.4 (Discrete membership function). Given a discrete domain X with n
distinct values (say x1,x2, . . . ,xn) and a fuzzy set A, a discrete membership function
A is characterized with n parameters pi ∈ [0,1], i ∈ {1, . . . ,n}, so that

∀i ∈ {1, . . . ,n} : A(xi) = pi

For example, a discrete membership function of fuzzy set “favored color” might have
a form as illustrated in Figure 2.5.

As a special case of discrete membership function, an ordinal membership function
is defined over an ordinal domain, in which values have a natural order. For example,
in order to assess the satisfaction degree concerning the number of doors of autos,
one might define a fuzzy set “big enough” on an ordinal domain with three values
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Figure 2.5: Discrete
membership function for

“favored color”
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(2,3,4). A car with 4 doors is absolute “big enough”, and has a membership 1.
Furthermore, one might argue that 3 door-auto is preferred than 2 doors, but still
worse than 4 doors. Figure 2.6 illustrates an ordinal membership function for fuzzy
set “big enough” on ordinal number of doors.

In order to determine a fuzzy set on more than one variables, different types of mem-
bership functions are needed of course depending on concrete interest of the users,
for example a two-dimensional matrix might be useful to define a fuzzy set with
dimensionality two, etc.

Figure 2.6: Ordinal
membership function for
“big enough” in terms of

number of doors
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2.2.2 Fuzzy Aggregation Operators

Fuzzy set theory also extends classical set-theoretic operations (intersection, union,
etc.) for combining fuzzy sets [KY95]. Amongst others, we concentrate on three
type of fuzzy aggregation operators: fuzzy AND , fuzzy OR and fuzzy Average (or
fuzzy Mean).
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Before we introduce the definitions of fuzzy AND and fuzzy OR, let us define two
general functions to handle fuzzy membership degrees.

Definition 2.5 (T-norm). A function T : [0,1]2 → [0,1] is called a triangular norm
(t-norm) if and only if it satisfies following conditions, for all x,y,z ∈ [0,1]:

• Identity : T (x,1) = x

• Commutativity : T (x,y) = T (y,x)

• Associativity : T (x,T (y,z)) = T (T (x,y),z)

• Monotonicity : x≤ y⇒ T (x,z)≤ T (y,z)

Definition 2.6 (T-conorm). A function S : [0,1]2→ [0,1] is called a triangular conorm
(t-conorm) if and only if it satisfies following conditions, for all x,y,z ∈ [0,1]:

• Identity : S(x,0) = x

• Commutativity : S(x,y) = S(y,x)

• Associativity : S(x,S(y,z)) = S(S(x,y),z)

• Monotonicity : x≤ y⇒ S(x,z)≤ S(y,z)

With the help of the previous two functions, one can define the set-theoretic oper-
ators on fuzzy sets. Let A,B fuzzy sets on X , the fuzzy AND (denoted by ∧) and
OR (denoted by ∨) operators can be defined pointwise by using t-norm function
T : [0,1]2→ [0,1] and t-conorm function S : [0,1]2→ [0,1] respectively, as follows:

(A∧B)(x) := T (A(x),B(x))
(A∨B)(x) := S(A(x),B(x))

for all x ∈ X . It is simple to see that the Boolean algebra structure of classical sets
does not hold under fuzzy sets [DP80].

For a t-norm T and a t-conorm S, the following properties can be implied from the
definitions of the t-norm and the t-conorm:

• Neutral element : Since for all x ∈ [0,1], it holds T (x,1) = x and S(x,0) = x,
1 (0) is called the neutral element for T (S).

• Absorbing element : Since for all x ∈ [0,1], it holds T (x,0) = 0 and S(x,1) =
1, 0 (1) is called the absorbing element for T (S).

• Minimum and Maximum boundary : For all x ∈ [0,1], it holds T (x,y) ≤
min(x,y) and S(x,y)≥max(x,y)

Definition 2.7 (Negation). A function N : [0,1]→ [0,1] is called a negation, if it
satisfies following conditions:

• N(0) = 1;

• N(1) = 0;

• ∀x,y ∈ [0,1] : x≤ y⇒ N(x)≥ N(y).

Definition 2.8 (Strong negation). A negation N is said to be strong, if it satisfied:
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• N is continuous on x;

• N is strictly decreasing, namely ∀x,y ∈ [0,1] : x < y⇒ N(x) > N(y);

• N is involutive, namely ∀x ∈ [0,1] : N(N(x)) = x.

A common choice for a strong negation is defined by:

∀x ∈ [0,1] : N(x) = 1− x

which is also called standard negation and used in this thesis as default.

Without special remark, the t-norms and t-conorms are defined on two-dimensional
space, the dimensionality of input can of course be extended thanks the associativity
of both norms. Generally, a norm with high dimensionality n (n > 2) can be expressed
in a recursive way as:

T (x1,x2, . . . ,xn) = T (T (x1,x2, . . . ,xn−1),xn)

for x1,x2, . . . ,xn ∈ [0,1].

Definition 2.9 (De Morgan triplet). A triplet (T,S,N) is called a De Morgan triplet,
if T is a t-norm, S a t-conorm, N a strong negation and they satisfy the De Morgan’s
law:

∀x,y ∈ [0,1] : S(x,y) = N(T (N(x),N(y)))

In the following text, we introduce several well-known t-norms and t-conorms in
terms of the De Morgan triplet, as well as a parameterized norm family, in which the
standard negation is taken as default, see Appendix A for a complete list of t-norm
and t-conorm.

• The minimum and the maximum
Zadeh proposed the use of min and max to define t-norm and t-conorm in
his seminal paper [Zad65], which build a De Morgen triplet together with the
standard negation, that is, for x,y ∈ [0,1]:

Tmin(x,y) := min(x,y)
Smax(x,y) := max(x,y)

As mentioned before, the Tmin and Smax are the greatest t-norm and the smallest
t-conorm. They are the most important norms both from a theoretical and from
a practical point of view.

• The product and the probabilistic sum
Goguen gives another De Morgan triplet in [Gog65], for x,y ∈ [0,1]:

Tpro(x,y) := x · y
Spro(x,y) := x+ y− x · y

Figure 2.7 to 2.8 illustrate the previously described t-norms and t-conorms in two-
dimensional space.

Definition 2.10 (c-Idempotency). A function f (x1,x2, . . . ,xn) is c-idempotent, if

∀c ∈ [0,1] : x1 = x2 = . . . = xn = c⇒ f (x1,x2, . . . ,xn) = c
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Figure 2.7: T-norms
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Figure 2.8: T-conorms
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The idempotency of a t-norm and a t-conorm is not guaranteed from the definitions,
but following propositions can be easily drawn without detailed proofs.

Proposition 2.11. The minimum t-norm and the maximum t-conorm are c-idempotent
for all c ∈ [0,1], and they are the only ones with this property.

Proposition 2.12. All t-norms and t-conorms are 0-idempotent and 1-idempotent.

Proposition 2.13. All t-norms show the anti-monotonicity in dimensionality, namely:

∀x1,x2, . . . ,xn,xn+1 ∈ [0,1],∀n≥ 1 : T (x1,x2, . . . ,xn)≥ T (x1,x2, . . . ,xn,xn+1)

where T is a t-norm.

Proposition 2.14. All t-conorm show the monotonicity in dimensionality, namely:

∀x1,x2, . . . ,xn,xn+1 ∈ [0,1],∀n≥ 1 : S(x1,x2, . . . ,xn)≤ S(x1,x2, . . . ,xn,xn+1)

where S is a t-conorm.

Adding arguments can never increase the output of a t-norm, whereas the output of a
t-conorm can not be decreased by adding arguments to it.

The parameterized norms have gained more and more importance in fuzzy applica-
tions because of their flexibility. A well-known parameterized family of t-norm and
t-conorm is, for example, the Hamacher family [Ham78]:

Tr(x,y) :=
x · y

r +(1− r)(x+ y− xy)

Sr(x,y) :=
x+ y− (2− r) · x · y

1− (1− r) · x · y
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for x,y∈ [0,1] and a parameter r≥ 0. The Hamacher family is employed in this thesis
because of its simplicity and other nice properties (see the identifiability in Section
3.2) as standard t-norm and t-conorm. Even though, all families listed in Appendix
A can be applied in principle. As the parameter r changes, we can obtain different
norms from the Hamacher family, such as:

r =


1 Tr is the product t-norm
2 Tr is the Einstein t-norm
∞ Tr is the drastic t-norm

From the definition of the Hamacher family, one can follow the continuity of Hamacher
t-norms (t-conorms), that is:

Proposition 2.15. A Hamacher t-norm (t-conorm) Tr(x,y) (Sr(x,y)) is continuous on
[0,1]× [0,1] with respect of x and y.

Since t-norms and t-conorms are, respectively, conjunctive and disjunctive aggregat-
ing, which do not make any compensation. For example, given two membership
degrees x = 0.3 and y = 0.5, the overall membership T (x,y) (S(x,y)) is restricted to
the interval [0,0.3] ([0.5,1]) for any t-norm T (t-conorm S). Often a type of fuzzy
operator lying somewhere between the t-norm and the t-conorm is desired. Here, we
introduce another type of fuzzy aggregation operator, called the fuzzy average.

Definition 2.16 (Mixnorm). a function M : [0,1]2 → [0,1] is called a fuzzy average
(mixnorm), if it satisfies following conditions:

• Commutativity : ∀x,y ∈ [0,1] : M(x,y) = M(y,x)
the value of a mixnorm is indifferent to the ordering of its arguments.

• Monotonicity : ∀i∈{1, . . . ,n} : xi≥ x′i⇒M(x1, . . . ,xi, . . . ,xn)≥M(x1, . . . ,x′i, . . . ,xn).

• Idempotency
a mixnorm is c-idempotent for all c ∈ [0,1].

From the definition of mixnorm, one can directly imply that a mixnorm always lies
between the min and max of the arguments, it holds for any mixnorm M:

min(x,y)≤M(x,y)≤max(x,y)

Obviously, the arithmetic mean x̂ := 1
n

n
∑

i=1
xi, as well as min, max and median are

mixnorms. Yager proposed a mixnorm called the ordered weighted averaging (OWA)
in [Yag88].

Definition 2.17 (OWA mixnorm). An OWA mixnorm of dimension n is a mapping:

MOWA : [0,1]n→ [0,1].

A n-vector W is associated with MOWA:

W :=


w1
w2
. . .
wn


so that:
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1. wi ∈ [0,1], for all i ∈ {1, . . . ,n},

2. ∑
n
i=1 wi = 1.

Then we have:

MOWA(x1,x2, . . . ,xn) =
n

∑
i=1

wi · yi

where yi is the i-th largest element in {x1,x2, . . . ,xn}.

An OWA mixnorm is parameterized with a weighting vector, which is not associated
with a finite component xi, but with a particular ordered position of xi. A fundamental
aspect of the OWA operator is the re-ordering step, this introduces nonlinearity into
the aggregation process. An OWA mixnorm allow us to aggregate fuzzy membership
degrees in an easily, convenient way. Figure 2.9 illustrates the OWA mixnorms in
two-dimensional space with given weighting vector.

Figure 2.9: OWA
mixnorms
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It is noted that different OWA mixnorms are distinguished by their weighting vector,
specially with a weighting vector W = [1,0, . . . ,0]′ an OWA mixnorm turns to the
max function, and with a weighting vector W = [0, . . . ,0,1]′ to the min function. Fur-
thermore, an OWA mixnorm can serve as the mean or median operator with a proper
weighting vector [FY02], etc. The OWA mixnorms fill the gap between conjunc-
tive and disjunctive combinations, and provide flexible compensations among fuzzy
membership degrees.

From the definition of OWA mixnorms, one can follow the continuity of OWA mixnorms.

Proposition 2.18. An OWA mixnorm MOWA(x1, . . . ,xn;w1, . . . ,wn) is continuous on
each variable xi.

Putting all three aggregation operators together, the boundary property among them
can be easily seen, namely:

∀x,y ∈ [0,1] : T (x,y)≤min(x,y)≤M(x,y)≤max(x,y)≤ S(x,y)

where T stands for t-norm, S for t-conorm and M for mixnorm (see Figure 2.10). We
thus obtain a continuous spectrum of aggregation operators, in which we can express
any kind of combination between membership degrees.

2.2.3 Linguistic Hedges

In order to weigh sub-criteria, we apply the linguistic hedges in this thesis, which
is a function H : [0,1]→ [0,1] that depicts the effect of linguistic hedges upon a
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Figure 2.10: Boundary
properties of t-norm,

t-conorm and mixnorm
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fuzzy membership degree [Zad72, Lak73]. Note that the linguistic hedges have a
nice property that they can be well interpreted in the natural language, a linguistic
hedge is a qualifier on a linguistic proposition, which is very widely used in natural
language of human being, like: “a very very old man”, “he is slightly drunk” or “x
is approximately 4” etc. Among several approaches proposed for the representation
of linguistic hedges (for instance Zadeh in [Zad73], De Cock in [Coc02] and Nguyen
in [NH02]), we shall consider a suggestion from Zadeh [Zad73], where linguistic
hedges can be classified into concentration and dilation, depending on in which way
it modifies membership of a fuzzy object.

• Concentration
A linguistic hedge H of type concentration on a fuzzy set A results in a reduc-
tion in the magnitude of the memberships of x in A, which is relatively small
for those x with a high membership in A and relative large for those x with low
membership. It can be defined as:

H(A(x)) := (A(x))α

where α > 1. Note that the bigger the parameter α , the more a membership
function concentrates on its core, as Figure 2.11 shows. A linguistic hedge
of type concentration can be interpreted in natural language with terms such
as absolutely, very, much more, more and a little more under specifying the
values of α as 4,2,1.75,1.5 and 1.25 respectively [CL03].

• Dilation
Reversely, a linguistic hedge H of type dilation on a fuzzy set A increases the
magnitude of the memberships of x in A, which is relatively small for those x
with a high membership in A and relative large for those x with low member-
ship. It can be defined as:

H(A(x)) := (A(x))α

where 0 < α < 1. Note that the smaller the parameter α , the more a member-
ship function dilates its support , as Figure 2.12 shows. A linguistic hedge of
type dilation can be interpreted in natural language such as a little less, more or
less and slightly under specifying the values of α as 0.75,0.5,0.25 respectively
[CL03].

From the technical point of view, linguistic hedges involved in an FOT are all ini-
tialized with parameters 1, that is, a linguistic hedge servers as an identify function
by default, in which case we say a linguistic hedge is switched off. Of course, the
parameter can be tuned later by human experts or other automatic calibration process.

From the definition of linguistic hedges, one can easily follow the idempotency of
the linguistic hedges, namely:

Proposition 2.19. All linguistic hedges show the 1- and 0-idempotency.

As an example, we consider a fuzzy set “comfortable temperature” A under the as-
sumption that the most “comfortable temperature” lies at 25◦, under 20◦ or above
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30◦ are not “comfortable” at all. Based on these assumption, we build a triangle
membership function for A. Figure 2.11 illustrates the effect of linguistic hedges of
type concentrations, and Figure 2.12 illustrates the effect of linguistic hedges of type
dilation.

Figure 2.11: Linguistic
hedges of type
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Figure 2.12: Linguistic
hedges of type dilation for
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2.3 Fuzzy Operator Tree and Properties

Having introduced the main components from fuzzy set theory, we can consider the
fuzzy operator tree in this section. The properties of an FOT are described in the
subsection 2.3.1, then we give a more detailed example of an FOT, at the end of this
section the issue of handling discrete utility degrees with an FOT is addressed.
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2.3.1 Formal Definition and Properties of Fuzzy Operator Tree

In this thesis, we restrict us to only use the Hamacher t-norm and t-conorm, as well
as the OWA mixnorm, as reasoned later in Section 3.2. For the sake of clearness, we
take an abstract term operator to refer a Hamacher t-norm (Th), a Hamacher t-conorm
(Sh) or an OWA mixnorm (MOWA) in following text.

Definition 2.20 (Fuzzy operator tree). A fuzzy operator tree (FOT for short), say F ,
is a mapping from the domain of alternatives to be evaluated O to the unit interval
[0,1], namely:

F : O→ [0,1]

which can be defined in the Backus-Naur notation by:

< F >::= < A > (< H > {,< H >}) | f

< H >::= h(< F >) | < F >

< A >::= T | S |M

in which:

• T ,S,M stand for a parametrized Fuzzy Operator;

• f is a Fuzzy Set;

• h is a linguistic hedge.

An FOT models a utility function and assigns a utility degree in [0,1] for an input
object o, which is represented by a feature vector (o = [x1,x2, . . . ,xn]). An FOT can be
represented in a tree-like structure, which is characterized with following properties:

• Its leaf node represents a basic evaluation, which is associated with a fuzzy set;

• Its interior node, including the root node, corresponds to an operator and its
parameter(s) respectively; an interior node takes the outputs of its child nodes
as inputs, and delivers an aggregated evaluation to the parent node;

• An edge connects a child node to its parent node and is associated with a lin-
guistic hedge (marked with the respective parameter);

• The root of FOT gives the overall utility degree.

Figure 2.13 illustrates an FOT schematically, in which the y denotes the overall utility
degree of the input vector o (o = [x1,x2, . . . ,xn]), f1, f2, . . . , fm are m fuzzy sets over
o, A stands for an operator and h indicates a linguistic hedge.

Note that objects to be assessed by FOTs are assumed to be represented in the form
of a feature vector, which is the simplest, common-used form to characterize objects.
There are several other alternatives to represent objects, for instance, time series are
used to describe measurements taken at consecutive times, graphic or image data
are located in multi-dimensional space, etc. Usually, it is crucial to be aware of the
representation of the data, any proper form of representation can be employed here,
but for convenience of analyze, we assume that the measurement data for FOTs are
represented in the form of feature vector.

Fuzzy sets in an FOT serve to modulate basic evaluations on the feature vector, such
that an FOT can serve to aggregate evaluations in a hierarchical, flexible way in order
to give one overall evaluation finally. The type and definition of the fuzzy set depends
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Figure 2.13: Schematic
illustration of an FOT
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strongly on the special interest of the human expert in concrete applications. As
standard case, we assume that the fuzzy sets involved in an FOT are defined by a
triangle or trapezoid membership function based on a single numeric input variable.
But in principle, fuzzy sets on discrete or ordinal variable are of course allowed, as
well as fuzzy sets on multiple variables. Furthermore, fuzzy sets in an FOT can share
input variables, which is also often observed in practice. Generally speaking, any
kind of fuzzy set can be applied to construct an FOT based on any form of input data,
as long as they can express basic evaluations for the overall quality assessment.

Related to the FOT, following terms are used in this thesis:

• Height
The height of an FOT is defined as the number of passed nodes on longest
downward path from root node to a leaf node (fuzzy set), including the root
node.

• Complexity
There are two kind of complexities related to an FOT: The component complex-
ity gives the number of components included in an FOT, that is, the number of
operators, linguistic hedges and fuzzy sets, and the parameter complexity is
defined as the number of all parameters in an FOT, since one component of an
FOT might have more than one parameter, the parameter complexity of an FOT
is usually bigger than its component complexity. As default, the complexity of
an FOT denotes its component complexity in this thesis.

Taking a closer look at the definition of the FOT indicates several important properties
associated with FOT:

1. an FOT shows its continuity on each basic evaluation in the unit interval [0,1],
if all basic evaluations based on the corresponding fuzzy sets are continuous in
the unit interval [0,1]. This can simply be drawn from the continuity of fuzzy
aggregation operators and linguistic hedges;

2. an FOT shows its monotonicity on the Cartesian product of [0,1] domains of
all basic evaluations based on fuzzy sets, which can be easily proved due to the
monotonicities of fuzzy aggregation operators, linguistic hedges;

3. the number of fuzzy sets m, operators p and linguistic hedges q holds:

q = m+ p−1
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that is the number of linguistic hedges q is the sum of number of fuzzy sets
m and number of norms p minus 1 in an FOT, which can be implied from the
following two facts:

(a) each fuzzy set is modified by a linguistic hedge, which is illustrated by
an edge between the fuzzy set and its parent operator;

(b) each fuzzy aggregation operator is modified by a linguistic hedge in turn,
except the root node.

We would like to emphasize again one of the attractive advantages of using an FOT,
namely its hierarchical modular structure, which allows one to specify utility func-
tions in a recursive and systematic way. By the quality assessment of technical prod-
ucts, the main motivation of this thesis, their modular structure can be perfectly re-
flected in an FOT. Typically, a technical product itself has a modular structure and can
be decomposed into subcomponents in a recursive manner. For example, the qual-
ity of a car depends on, say, the engine system, the electronic control system, etc.
Amongst others, the electronic control system consists again of a number of compo-
nents (GPS, car radio, etc.), which in turn is made up of several subcomponents, and
so on. We can employ an FOT to model the quality function for a car, at the same time
also for its subcomponents. From this point of view, a subcomponents represented
by an FOT is just a sub-tree in a super ordinate FOT, in other words, an FOT can be
plugged into another FOT by replacing one of its basic evaluations. As we have seen
from this example, the “divide-and-conquer” strategy can be successfully carried out
by using FOTs, which makes the assessment of very complex systems controllable.

2.3.2 An Example of Fuzzy Operator Tree

Again, we consider the example to assess candidates for a certain job, which is al-
ready mentioned in Section 1.2.1 and shown in Figure 2.14. Here we use ∧ to denote
a Hamacher t-norm, ∨ for a Hamacher t-conorm and ∅ for an OWA mixnorm, in ad-
dition there are four fuzzy sets ( f1(x1), . . . , f4(x4)) for the basic evaluations on math,
CS, French and English of the candidate, in which the corresponding grades are taken
to build input vector([x1, . . . ,x4]). Finally there are six linguistic hedges (h1, . . . ,h6)
involved in this case.

Figure 2.14: FOT
example for the

assessment of a
candidate

∧

∨

f1(x1) f2(x2)

∅

f3(x3) f4(x4)

Skills

formal skills language skills

Math CS French Spanish

h1 h2

h3 h4 h5 h6

We assume that all operators and linguistic hedges are determined with following
parameters:

• ∧ is the Hamacher t-norm with parameter 0.4;

• ∨ is the Hamacher t-conorm with parameter 1.2;

• ∅ is the OWA mixnorm with one parameter 0.7;

• h1, . . . ,h6 are assigned with 0.5,4,2,2,1.5,2, which can be interpreted into nat-
ural language terms more or less, absolutely, very and so on.
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This FOT can be expressed formally:

F(x1,x2,x3,x4)= Th(h1(Sh(h3( f1(x1)),h4( f2(x2)))),h2(MOWA(h5( f3(x3)),h6( f4(x4)))))

We like to highlight the good interpretability of FOTs here again. Although the for-
mal expression of this example seems not very comprehensible at the first glance, let
us consider the corresponding knowledge expressed in the form of natural language:

• A good candidate should have more or less good formal skills AND abso-
lute good language skills, in more detail good formal skills mean very good
mathematics OR very good computer knowledge, and good language skills are
averaged between very good French and slightly good Spanish.

As we can see, the interpretation of an FOT in the form of natural language is very
familiar to human being, and can thus be understood very well. No matter the in-
creased complexity of an FOT, the good interpretability is kept in any case due to the
modularity of an FOT.

2.3.3 Discrete Values in Fuzzy Operator Tree

Originally an FOT is designed to take numeric inputs and give numeric utilities in the
unit interval [0,1], but in practice, an FOT has to handle not only numeric variables,
but also discrete ones. For example, the basic evaluations for fuzzy sets are some-
times discrete measurements, such as the number of doors of a car, on the other hand
one might prefer to a discrete quality category rather than real-valued evaluation as
output of an FOT, such categories like quality class A (top-quality), B (still OK) or C
(not acceptable), etc.

The discrete and ordinal membership functions introduced before are designed to
handle the discrete measurements. For a discrete output, without change on the in-
terior structure of the FOT, we consider to convert a discrete input into a numeric
one, and reversely a numeric output into a discrete one. The former transformation
is already achieved in an FOT by using discrete or ordinal membership functions as
mentioned before. For the later transformation, a discretizer would be employed here
on the top of an FOT, which, as its name indicates, discretizes a real-value utility into
predefined set of categories.

In this thesis, a simple “split” discretizer is applied to realize such a discretization, in
which k +1 thresholds are defined (t0, t1, . . . , tk) for k categories. It holds:

0 = t0 < t1 < .. . < tk = 1

Formally this kind of discretizer (noted as D) is a mapping

D : [0,1]→{1,2, . . . ,k}

where k is the number of available categories. Together with the k+1 thresholds, the
“split” discretizer is defined by:

D(y) =

{
j if y ∈ (t j−1, t j]
1 if y = 0

2.4 Fuzzy Operator Tree Elicitation
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This section is contributed to construct an FOT with the help of experts. To guarantee
the interpretability of an FOT, an automatic method without using an expert’s guide
is not desirable here. So how to help experts to express their prior knowledge in the
form of an FOT, or shortly FOT elicitation, becomes the first step for applications
with FOTs. From the definition of the FOT, there are the following tasks for this
section:

• Fuzzy sets elicitation
The definitions of fuzzy sets and their membership functions have to be deter-
mined, which strongly depend on the applied area and particular interests of
applications, rarely two applications share identical fuzzy sets. We describe
the related methods in Section 2.4.1.

• Interior structure elicitation
The interior structure of an FOT describes the interrelationship among fuzzy
sets, or aggregations on fuzzy sets regarding to the overall utility, which are
organized in a recursive hierarchical tree-like structure. The challenge here
focuses on the determination of height and component complexities of an FOT,
as well as the type of aggregation operators. Section 2.4.2 is devoted to this
topic.

• Linguistic hedges determination
In contrast to two former components, the number of linguistic hedges involved
in an FOT is fixed, if the number of fuzzy sets and aggregation operators has
been determined. Therefore we just need to assign “proper” parameters for
the linguistic hedges in an FOT. This can be done using expert knowledge, if
it is available. The elicitation process in this case is relatively straightforward
comparing with the former two components. We refer to [CR06, Lak73] for
more details. Otherwise the parameter specification can be realized by the
calibration process discussed in the next chapter.

2.4.1 Fuzzy Set Elicitation

Here we intend to extract the number of necessary fuzzy sets to express the interest
of human experts, then their membership functions would be determined. At the end
of this subsection, we illustrate this elicitation procedure using an example.

2.4.1.1 Fuzzy Properties Elicitation

Since a fuzzy set expresses a property of an object in a form of “object X is . . . ”,
the following question is going to be answered in this section: Which properties of
objects an expert is interesting during the assessment process? For example, if an
expert summaries his experience so:

The quality of the candidate depends on mathematics and communication skills,

which can be interpreted as:

A candidate with good utility should have good mathematics and good
communication skills.

From this example, we are going to construct two fuzzy sets “good mathematics”
and “good communication skills”, as long as one can directly read “mathematics”
and “communication skills” measurements from input vector, such as school grade,
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or certification grade and so on. Otherwise if a term can not be extracted from the
input vector directly, such as “communication skills” here, which is again aggregated
by other basic measurements, one might split this term more detailed, and we shall
elaborate this approach in Section 2.4.2.

Note that the triangle and the trapezoid fuzzy sets, which are suggested in this thesis
to handle the continuous measurements, are unimodal membership functions, and
not appropriate for those fuzzy multimodal properties, for example a fuzzy set for
“unusual temperature”, for which one might argue that a temperature over 50◦ or
beneath −20◦ are unusual. To handle a multimodal property in an FOT, we suggest
to decompose it into several unimodal ones, then aggregate them using an aggregation
operator.

In most cases a basic measurement in the form of an input feature vector corresponds
to a fuzzy set directly, on which a basic evaluation is carried out. For instance in
the “candidate” case described in Section 2.3.2, the four leaf nodes (“Math”, “CS”,
“French” and “Spanish”) are four independent fuzzy sets, and they can be described
by piecewise linear membership functions, as mentioned before. However there are
some cases, where a basic evaluation on measurements is some kind of relation-
ship on more than one measurements, such as in the car radio example described in
Section 1.1.2, where one might be interest whether three buttons with similar func-
tionalities are equally operable. In such cases, we have to extend the dimensionality
of fuzzy sets to express fuzzy relations with multi-dimensional membership function,
such as a membership function in three-dimensional space to describe whether three
buttons are equally operable. This kind of multi-dimensional membership function
can be defined in very various manners, therefore, in the following text and experi-
ments, we restrict our works on the fuzzy sets with one-dimensional piecewise linear
membership function.

2.4.1.2 Membership Function Determination

As long as experts have decided the set of fuzzy sets to be involved in an FOT, it is
necessary to determine the membership functions for each of these fuzzy sets. These
functions should be elicited from experts again. The empirical researches on mem-
bership function elicitation had been conducted in [KB74, KGK95, BT02, Saa74,
ITS00].

Since we limit us to one-dimensional piecewise linear membership functions that are
parameterized by several points, constructing membership functions aim to locate
these points precisely as well as possible. Usually, the following methods are used in
experiments to elicitate membership functions:

• Direct rating
The most straightforward way to detect a membership function seems to di-
rectly ask an expert the memberships for selected points, for example, a typical
question for direct rating might be:

What are the memberships for the following examples? . . .

At the end we can simply construct a piecewise linear membership function by
connecting all known points, or at least approximate them with a mathematical
model such as trapezoid function. The difficulties using direct rating is that
experts might not be able to distinguish tiny differences between several points
with similar memberships. Beside this, the performance of direct rating suffers
individual subjective vagueness, for instance, the decision of an expert can be
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influenced by past answers, in this case the order of points provided to the
expert affects the form of the membership functions.

• Reverse rating
In this method, an expert would be asked to identify the object for which a
given membership corresponds, for example:

Who, do you think, is 0.6 tall?

However this method has the same difficulties as direct rating.

• Interval estimation
Instead of points, interval estimation subscribes to the random set-view of the
membership function 1 The subject is asked to give an interval that describes
the “α-cuts". A pair of a set-valued observations (in the form of an interval)
and the corresponding frequency it was observed defines a random set for de-
termining the membership function. A typical question sounds like:

In which interval does a fuzzy set have a membership degree in [0.7,1] (a
α-cut with α = 0.7)?

Notice that this method is more appropriate to those situations where a clear
linear order in the measurement of the fuzzy concept exists, for example tall-
ness, heat or time, etc. Interval estimation is a relatively simple way of acquir-
ing the membership function, which is “less fuzzy” (the spread is narrower)
compared to direct rating and reverse rating. Interval estimation subscribes
to the uncertainty view of membership functions as opposed to the vagueness
view and in that sense it brings the issues of uncertainty modeling using fuzzy
set theory, random sets, possibility measures and their relations to probability
theory [DP93].

• Pairwise comparison
Kochen and Badre [KB74] report experimental results for the “precision” of
membership functions using pairwise comparison method. Later Chameau &
Santamarina [Cha87] also use the pairwise comparison technique and report it
to be as robust as direct rating. Typical questions for pairwise comparison are:

Which color do you prefer, blue or green?

, and after the answer to this question (say, blue is chose):

How much do you prefer blue to green?

Pairwise comparisons can yield a matrix of relative weights between selected
representative points. The membership function can be found by taking the
components of the eigenvector corresponding to the maximum Eigenvalue.

Actually, the previously described methods are integrated in many cases. Which
method(s) is (are) used depends on the concrete problem. While one method is se-
lected to determine a membership function for a fuzzy set, other method can be ap-
plied to validate the elicitation process. Furthermore we allow a fine tuning of mem-
bership functions in a data-driven way, in which a membership function is treated

1 Specially, one can also view the membership function horizontally where a fuzzy set A on domain X
is represented in terms of its “level-cuts”: {Aα : α ∈ (0,1]} with Aα = {x ∈ X : A(x)≥ α}, as Zadeh in
[Zad71] defines the membership function as: A(x) = supα ∈ (0,1] : x ∈ Aα .
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as parameterized, and its parameters are allowed to be tuned during the optimization
process, which will be discussed later.

As we have mentioned before that the trapezoid membership function is the main
type of membership functions used in this thesis for quality assessment, the simplest
method to determine a trapezoid membership function is to ask for two intervals
(core and support). On the other hand, regarding quality assessment, intervals are the
commonly used form to express the constraints on criteria, so the standard method in
this thesis is just to elicit two intervals from human experts in order to determine the
trapezoid membership function of a fuzzy set.

2.4.2 Interior Structure Elicitation

The determination of interior structure of an FOT is extremely problem-dependent, so
automatic or semi-automatic construction of an FOT requires a deep understanding
of the faced problem. Only several researches offer quite a limited support for this
stage, such as [BR90]. In contrast to an automatic approach, the interior structure of
an FOT would be elicited from experts in related field. In the remainder we introduce
two elicitation methods at first, and then give a more detailed example at the end of
this section.

2.4.2.1 Bottom-Up Construction

As the name suggested, a bottom-up manner for interior structure elicitation begins
with a candidate set consisting of all available basic criteria, which are associated
with fuzzy sets extracted by the elicitation methods mentioned before. The expert is
asked to aggregate several criteria contained in the candidate set according to their
relationship, this step corresponds to create a fuzzy aggregation operator for the FOT,
in which several criteria in lower level are aggregated into a higher level criterion.
The newly created operator corresponds the fuzzy connective terms of “AND”, “OR”
and “Average” in the natural language. At the same time, the parameter(s) involved
in newly created operator has to be given by human expert. After this, the already
used criteria are removed from candidate set, while the newly created operator is
added into candidate set as a new criterion. The aggregation step is repeated until the
overall quality can be aggregated using criteria from the candidate set. This idea is
detailed in Algorithm 2.1.

Algorithm 2.1: Interior Structure Elicitation: A bottom-up manner
Input: Basic criteria associated with fuzzy sets M, Expert E
Output: FOT F
begin1

initialize F with M ;2

c←{m|m ∈M} ;3

repeat4

inquiry on E to aggregate several criteria a from c ;5

create new aggregation operator n based on a ;6

c← c\a ;7

c← c∪n ;8

insert n into F as parent node of a;9

until (The overall quality can be aggregated using criteria from c) ;10

create aggregation operator n based on c ;11

insert n into F as root node;12

end13
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Note that in the line 5, a new aggregation operator would be generated with the help
of a human expert, the specification of the parameter(s) in the operator may be rela-
tively straightforward in many cases, for instance, in the quality assessment of tech-
nical products, the parameterization is usually predefined and can simply be taken
from a specification sheet. However, in other cases, the expert may have problems
specifying precise parameters. We shall discuss this problem in the following chapter
and propose a new method that free the expert from this. This method is illustrated
in Figure 2.15, in order to elicit the interior structure based on the candidate example
described in Section 1.2.1.

Figure 2.15: Interior
structure elicitation in a

bottom-up manner
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2.4.2.2 Top-Down Construction

This method starts with the overall utility of alternatives being evaluated, in which an
expert is inquired to express the utility as an aggregation of directly related criteria.
As long as one of these criteria does not correspond to one basic criterion associated
with the predefined fuzzy set, the expert is asked to decompose it further into several
sub-criteria. This process is repeated until every criterion is either aggregated by
other sub-criteria, or is a basic criterion already. This idea is detailed in Algorithm
2.2. This method is illustrated in Figure 2.16, in order to elicit the interior structure
based on the candidate example described in Section 1.2.1.

2.4.2.3 An Example of Interior Structure Elicitation

As a concrete example, we consider a car selection problem introduced by Bohanec
and Rajkoviǎ [BR88]. In order to assess the quality of cars there are six attributes
available to describe the status of cars, let us assume each attribute is modulated with
a fuzzy set, which has been defined using fuzzy sets elicitation methods mentioned
before, Furthermore we assume that the fuzzy set is named by the corresponding
attribute, a fuzzy set serves as a basic criterion on the related attribute. These six
attributes, their descriptions and fuzzy sets are listed in Table 2.3.

In order to construct an FOT for the car selection problem in a bottom-up manner,
Table 2.4 demonstrates the elicitation process in four steps, where the available can-
didate set is listed at first for each step, then several sub-criteria from the candidate set
would be aggregated into a new criterion, the second column shows the aggregation
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Algorithm 2.2: Interior Structure Elicitation: A top-down manner
Input: Fuzzy sets M, Expert E
Output: FOT F
begin1

F ← /0 ;2

root← overall utility ;3

// initialize criteria set with overall utility
C← root ;4

while (C 6⊆M) do5

c ∈C \M ;6

inquiry on E to decompose c into several sub-criteria a ;7

C←C \ c ;8

C←C∪a ;9

create a new aggregation operator n at position of c ;10

mark position of sub-criteria a as children of n ;11

insert n to F as parent node of a;12

end13

insert all c ∈C into F as leaf nodes ;14

end15

Figure 2.16: Interior
structure elicitation in a

top-down manner
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Table 2.3: Attributes and
related fuzzy sets for the

car selection problem

Nr. Attribute name Description Fuzzy set
1 “Buying” the purchase price Buying
2 “Maintain” the maintaining cost Maintain
3 “Doors” number of doors Doors
4 “Persons” number of persons fit in the car Persons
5 “Luggage” size of the luggage boot Luggage
6 “Safety” the safety factor Sa f ety
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relationship, which is finally expressed in the form of the newly created aggregation
operator in the last column.

Table 2.4: Interior
structure elicitation for
car selection problem

Step Candidate set Aggregation New operator
1 {Buying,Maintain,Doors, Buying,Maintain t-norm (“OR")

Persons,Luggage,Sa f ety} ⇒ Price
2 {Price,Doors,Persons, Doors,Person,Luggage t-conorm (“AND")

Luggage,Sa f ety} ⇒Com f ort
3 {Price,Com f ort,Sa f ety} Com f ort,Sa f ety OWA (“Average")

⇒ Technique
4 {Price,Technique} Price,Technique t-norm (“AND")

⇒Car

This process is illustrated in Figure 2.17, where the red number in the braces of inte-
rior nodes indicates in which step the node (and its associated aggregation operator)
is created.

Figure 2.17: Interior
structure elicitation for

the car selection problem
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Which method should be applied in practice, is again problem dependent. One can
even combine these both methods in a way that one starts from top and bottom sides,
and tries to decompose (from the top side) and aggregate (from the bottom side)
criteria until a full FOT model is built.

2.5 Conclusions

In this chapter we introduced basic components to construct an FOT for modeling
utility functions, as well as the definition and properties of FOT models. Several elic-
itation methods were proposed to help human experts to express the prior knowledge
in the form of FOTs. To this end, the user is able to model a utility function repre-
sented by an FOT to evaluate a set of objects, entities or alternatives in an intuitive
and convenient way.

Using an FOT to model a utility function takes benefit from its excellent interpretabil-
ity, in which the whole FOT can be interpreted in natural language, such that the
human being can understand an FOT perfectly. However there are still several un-
touched issues related to modeling a utility function with an FOT model, for instance,
how to specify the parameters involved in FOTs precisely, if the human expert can
not do this? Some of these issues are discussed in the following chapters.

Page: 40



3 Calibration of Fuzzy Operator
Trees

As a utility function, an FOT model consists of two parts: A qualitative part and a
quantitative one. The former part includes the tree-like structure of an FOT associ-
ated with fuzzy aggregation operators, linguistic hedges and the type of fuzzy sets,
whereas the latter part corresponds to the parameter specification of an FOT, namely
the specification of parameters involved in aggregation operators as well as linguistic
hedges and fuzzy sets at the leaf nodes of an FOT.

Considering the applications of FOTs, let us distinguish following three cases accord-
ing to the qualitative and quantitative parts:

• Both parts can be specified : In many cases, a human expert is able to provide
both parts in detail, in which not only the structure of an FOT can be deter-
mined by human expert, but also the involved parameters can also be specified
precisely. For example, in many industrial areas, human expert can provide the
structure of FOTs based on the prior knowledge. On the other hand, there are
the detailed specification sheets usually exist, which can be used to determine
quantitative part of FOTs.

• Only qualitative part can be specified : In other situations, a human expert
may still be able to give the qualitative structure of the model, but may have
problems to specify the parameters precisely. For example, in many cases,
specification sheets are not available, or it is impossible to specify an FOT
based on them.

• Both parts can not be specified : There are still some cases where the qual-
itative structure of the model can not be extracted from human experts due to
different reasons, for example, the quality assessment can not be modeled in
the form of an FOT, or it is difficult to communicate with human expert, etc.
In this case, one may question whether an FOT is a reasonable approach at all.

We address the second situation in this chapter. With the help of human experts, we
can build an FOT representing the prior knowledge of experts as introduced in the
previous section. Despite the good interpretability of an FOT, it does usually lack of
accuracy, where disagreement is shown when being applied in practice, for example
different results come from human experts and corresponding FOTs on exemplary
data provided by human experts or extracted from historical records.
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The basic idea in this chapter is to try to find an optimal parameter specification in
a special data-driven way. In order to find parameters that lead to an optimal fit of
the model, we try to tune the involved parameters to fit given exemplary data, called
calibration, since it does not change the structure of FOTs during the calibration
process. As an example for our calibration process, let us reconsider the problem of
assessing candidates illustrated in Section 1.2.1. On the one hand, we can model the
evaluation process of experts in the form of an FOT using elicitation techniques. On
the other hand, a set of exemplary rating of concrete candidates is given by a human
expert, which can be used to determine the parameters in the FOT. In this context,
the above problem can be understood as follows: Knowing that the expert makes
use of a qualitative evaluation scheme represented in the form of FOTs, how to find
parameters such that the entire model imitates the expert in an optimal way. Note that
the calibration based on given exemplary data becomes a typical supervised learning
task in the field of machine learning [Mit97, HMS02]. The problem of calibration
concerns to determine optimal parameters, so that the FOT can fit the exemplary
data.

This chapter is organized as follows: In Section 3.1, we state the problem of calibra-
tion of FOTs formally. In Section 3.2, we discuss the identifiability of FOTs. The
considered techniques for the purpose of calibration of FOTs are discussed in Section
3.3, and the experimental results are shown in Section 3.4. Section 3.5 concludes this
chapter.

3.1 Problem Statement

Formally we can express an FOT F as a parametrized function:

F(x,θ),

where x is the input feature vector, θ = [r1,r2, . . . ,rk] is a vector of all involved param-
eters in F , ri (1 ≤ i ≤ k) denotes a parameter coming from an aggregation operator,
linguistic hedge or fuzzy set.

Furthermore a set of given exemplary data (also called training data) with N tuples
is expressed in the form of:

D := {(xi,yi)|1≤ i≤ N},

where xi corresponds to an input feature vector for F , and yi is the utility suggested
by the expert according to xi. The yi is called real output related to xi, since it is an
output determined by human expert, while the overall utility deduced by applying
F is called estimated output denoted as ŷi (=F(xi,θ)) to distinguish it from the real
output yi.

Therefore the objective of calibration of FOT can be expressed in terms of the accu-
racy on a given training data in the following form:

f (θ) :=
N

∑
i=1

γ(ŷi,yi) (3.1.1)

where ŷi = F(xi,θ) is the estimated output of F under parameter specification θ and
input vector xi, γ is a suitable loss function, which gives positive penalties according
the disagreement between estimated and real outputs, γ is also called error function.
A loss function has generally following properties:
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• γ(ŷ,y) = 0, if ŷ = y.
No penalty is given by a “perfect” assessment.

• 0≤ γ(ŷ1,y)≤ γ(ŷ2,y), if ŷ2 ≤ ŷ1 ≤ y, or ŷ2 ≥ ŷ1 ≥ y.
The more distance to the real output, the more penalty would be assigned.

In the case of continuous outputs ŷi ∈ [0,1], the squared error is selected here as a
default loss function, and it is defined as:

γ(ŷi,yi) := (ŷi− yi)2 (3.1.2)

which is a common choice for regression problems.

In many applications, one would prefer a discrete or ordinal output rather than a
continuous one, for example [WCW+08]. In that case, the discrete outputs can be
converted from continuous ones using a discretizer (see Section 2.3.3), again we have
several candidate loss functions, the simplest function is the so-called 0/1-loss, that
is,

γ(ŷi,yi) =

{
0 if ŷi = yi

1 otherwise

However in the case of ordinal outputs, this becomes a problem of ordinal classifica-
tion, in which the simple 0/1-loss neglects the order between discrete outputs. For
example, assume that there is an ordinal output set with three categories (small,middle
and big) and the real output is big, the penalties for two estimated outputs (ŷ1 =small
and ŷ2 =middle) are both 1 under the 0/1-loss function. But ŷ2 is arguably a better
prediction than ŷ1, although both are incorrect outputs. The problem in ordinal clas-
sification is that deviations from the real output are mostly incomparable, and this
makes it difficult to define a reasonable loss function. For example in the previous
case ŷ1 =small and ŷ2 =big are incomparable, if the real output is middle. To avoid
this problem, we employ an alternative loss function, which is proposed in [Ren05]
and denoted as all-threshold loss function: Let 0 = t0 < t1 < .. . < tk = 1 denote the
thresholds used for converting a continuous prediction ŷ ∈ [0,1] into a discrete one
µ ∈ {1, . . . ,k}. If the sought (discrete) output is y = j, then the all-threshold loss is
defined by:

γ(ŷ,y) =


0 if t j−1 ≤ ŷ≤ t j

∑
j−1
h=i (th− ŷ) if ti−1 ≤ ŷ < ti ≤ t j−1

∑
i
h= j (ŷ− th) if t j ≤ ti < ŷ≤ ti+1

(3.1.3)

According to the all-threshold loss function, the predicted output would not be penal-
ized, if it lies in a correct interval, namely [t j−1, t j]; otherwise the loss is defined as
accumulative distance to each thresholds between ŷ and t j−1 or t j. Figure 3.1 gives
an example for y = 4. Since the output of FOTs is numeric, the all-threshold loss
function is applied in this thesis by default.

As a loss function assigns a positive number to a parameter specification, the ob-
jective function f of FOT builds a mapping from the parameter space Θ to the real
domain R+:

f : Θ→ R+

Since the objection function is associated with a loss function, a parameter specifica-
tion θ1 is better than another parameter specification θ2, if f (θ1) < f (θ2) . The goal
of calibration of FOTs is to find an optimal parameter specification.

Definition 3.1 (Global Optimum). A parameter specification θ ∗ ∈Θ is called global
optimum, if it holds

∀θ ∈Θ : f (θ ∗)≤ f (θ)
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Figure 3.1: All-threshold
loss function with real

output y = 4

ŷ

γ(ŷ, y)

t0 t1 t2 t3 t4 t5

y = 1 y = 2 y = 3 y = 4 y = 5

where Θ is the parameter space and f is the objective function of an FOT.

Definition 3.2 (Local Optimum). A parameter specification θ ′ ∈ Θ is called local
optimum, if it holds

∃ε > 0,∀θ ∈Θ : ||θ −θ
′||< ε ⇒ f (θ ′)≤ f (θ)

where ε is a positive number, which defines the area “near by” θ ′ and ||θ − θ ′||
calculates the Euclidean distance between two parameter specifications θ and θ ′.

A global optimum indicates a θ , which gives the minimum objective value in R+,
whereas a local optimum indicates a minimum among its neighbors. Obviously a
global optimum is a local optimum at the same time. Usually for an optimization
problem there are many local optima and global optima. For instance, Figure 3.2
shows the objective function for a one-dimensional θ , where θ ∗ denotes the position
of global optimum and θ ′ of local optimum. A common problem is how to detect
whether a θ is a global or local optimum, since the parameter space Θ is mostly too
huge to make an exhaustive search. Many heuristic and stochastic approaches have
been proposed to address this problem for different applications. We shall discuss
several techniques regarding to calibration of FOTs later.

Figure 3.2: Global vs.
local optimum

θ∗

θ′

θ

f(θ)
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Note that the calibration problem of FOTs is a highly non-linear optimization prob-
lem, due to the fact that an FOT contains different types of operators, which are
combined in a cascaded way. Moreover, it is a constrained optimization problem,
since not all parameters can be chosen freely. For instance, if the model involves a
modulating fuzzy set with trapezoid membership function, represented by its support
]l,h[ and its core [m,n], that is, this membership function can be learnt during the
calibration process, then l < m≤ n < h must be guaranteed.

3.2 Identifiability of Fuzzy Operator Tree

Before we go into the details of calibration techniques, we give some discussions
about the identifiability of FOTs in this section. To this end, we can show that an
FOT is not identifiable for the general case, but only under some restrictions.

Definition 3.3 (Identifiable). A function f (x,θ) with inputs x and parameters θ is
identifiable, if and only if

∀θ1,θ2 ∈Θ : θ1 6= θ2⇒∃x ∈ X : f (x,θ1) 6= f (x,θ2) (I1)

or
∀θ1,θ2 ∈Θ : [∀x ∈ X : f (x,θ1) = f (x,θ2)]⇒ θ1 = θ2 (I2)

where Θ denotes the domain of parameter θ , and X is the domain of x.

The identifiability of a function depicts that a function is distinguishable as specified
with different parameters. As the parameters of an identifiable function change, its
behavior in terms of a mapping from inputs to outputs will change respectively. For
identifiable functions, it is theoretically impossible that two different specifications
have identical behavior.

As preparations for the identifiability theorem of FOTs, we show the identifiabilities
of the components used to construct an FOT in this thesis at first.

• For the triangle and trapezoid membership functions, we have

Proposition 3.4. All triangle or trapezoid membership functions are identifi-
able.

• For the Hamacher t-norms and t-conorms, we have

Proposition 3.5. The Hamacher t-norm or t-conorm is identifiable.

• For the linguistic hedges, we have

Proposition 3.6. All linguistic hedges are identifiable.

The proofs for these propositions are trivial and omitted here.

• For the OWA mixnorms, we have

Proposition 3.7. All OWA mixnorms are identifiable.

Proof. For any OWA mixnorm M(x,θ), where the input x (with dimension-
ality n) is represented by a feature vector: x = [x1,x2, . . . ,xn] ∈ [0,1]n and
θ = [w1,w2, . . . ,wn], we try to deduce the contradiction according to the nec-
essary condition of identifiability I1, namely if M(x,θ) is not identifiable, then
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it must exist two different parameter specifications for M(x,θ), say θ1 and θ2
(θ1 6= θ2), so that for all x ∈ [0,1]n, it holds M(x,θ1) = M(x,θ2).

We shall deduce the contradiction of this assumption by showing that θ1 = θ2
to satisfy the previous condition. Without loss of generality, let us compare the
first different element in θ1 and θ2, its position, say i, can be defined by:

i := min{ j| j ∈ {1, . . . ,n},w1 j 6= w2 j,w1k = w2k,∀1≤ k < j}

An input x can be assigned in following form:

x = [0,0, . . . ,0︸ ︷︷ ︸
n−i times

,1,1, . . . ,1︸ ︷︷ ︸
i times

] ∈ [0,1]n

then we have:
M(x,θ1) = M(x,θ2)

⇒ ∑
n
j=1 w1 j · y j = ∑

n
j=1 w2 j · y j

⇒ ∑
i
j=1 w1 j = ∑

i
j=1 w2 j

Together with the condition of w1 j = w2 j, for all 1 ≤ j < i, one can follow
immediately that w1i = w2i. In this way, we can prove that w1 j = w2 j, for all
1 ≤ j ≤ n, namely θ1 = θ2, which is contradictory to the assumption before.
So we follow that any OWA mixnorm is identifiable.

Definition 3.8 (Completeness of FOT). An FOT F(x,θ) is complete on the unit in-
terval, if

∀c ∈ [0,1],∀θ ∈Θ,∃x ∈ X : F(x,θ) = c

For convenience of use, we denote an input, which lead to a fixed output of F(x,θ),
as:

x=c ∈ {x ∈ X |F(x,θ) = c}

for any θ ∈Θ and c ∈ [0,1], analog we have:

x>c ∈ {x ∈ X |F(x,θ) > c}

x<c ∈ {x ∈ X |F(x,θ) < c}

In order to show the identifiability of FOT, we make following assumptions:

• Independence : The independence of input variables involved in an FOT is
assumed here. Consequently this requires that fuzzy sets do not share any
input variable, because otherwise it is easy to see that basic evaluations based
on shared input variables are not independent any more. Figure 3.3 shows a

Figure 3.3: An
unidentifiable FOT due to
violation of independence

MOWA(θ1, θ2)

f1 f2

x

y

simple case of unidentifiable FOT due to violation of independence, where all
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involved linguistic hedges are specified with constant 1, two fuzzy sets ( f1, f2)
are identical, which share one input variable x. In this case, one can easily see
that:

y = f (x)

for any parameter specification in MOWA, so that the FOT expressed in Figure
3.3 is not identifiable.

• Completeness : Although as mentioned before that an FOT is able to deal
with numeric and discrete inputs and outputs, we assume in this part that an
FOT works only on numeric inputs, which are modulated by triangle or trape-
zoid membership functions as standard case. Furthermore the completeness
of FOTs is assumed, in case of using trapezoid or triangle membership func-
tions, this can be easily fulfilled by requiring the completeness of all mem-
bership functions, for example, considering a trapezoid membership function
A(x; l,m,n,h), the completeness of A requires the domain of x contains [l,m]
or [n,h]. Obviously, the completeness of all membership functions leads to the
completeness of an FOT, as well as the completeness of all its sub-trees.

• Constraints on linguistic hedges : Furthermore, we assume that linguistic
hedges involved in an FOT are fixed here, that is, we only consider different
parameters in fuzzy sets and operators, whereas the parameters of linguistic
hedges are treated as constants. This is an important condition for identifi-
ability, otherwise the identifiability can be violated easily, for example, Fig-
ure 3.4 gives a simple case, where both FOTs only differ in three labeled lin-
guistic hedges, the output of the subtree containing these linguistic hedges is
(max( fi(xi), f j(x j)))2 in both FOTs (note that MOWA(1,0) = max).

Figure 3.4: An
unidentifiable FOT

without constraint on
linguistic hedges

MOWA(1, 0)

fi fj

xi xj

A

· · · · · ·

y

2 2

1

MOWA(1, 0)

fi fj

xi xj

A

· · · · · ·

y

1 1

2

Under the previous assumptions, we can show the identifiability of FOT:

Theorem 3.9. An FOT satisfying the previous properties (independence, complete-
ness and constraint on linguistic hedges) is identifiable.

Proof. An FOT model can be constructed in a bottom-up way, just like Figure 3.5
shows, where A denotes an aggregation operator consisting of the Hamacher t-norm,
t-conorm or OWA mixnorm. F1, . . . ,Fn are sub-trees of A, which are either fuzzy sets
or FOTs. The edge connecting A and a sub-tree Fi can be associated with a linguistic
hedge (h1, . . . ,hn here). The idea of proof here is to show the identifiability of FOTs
inductively, in which the identifiability of FOTs can be guaranteed if all its sub-trees
and linguistic hedges are identifiable. To accomplish this, we try to examine the
parameters in A,hi or Fi for i ∈ {1, . . . ,n} separately by applying the idempotency of
aggregation operators as well as the linguistic hedges.
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Figure 3.5: Constructing
an FOT recursively A

F2F1 · · · Fn

h1 h2 hn

Note that having a closer look at the assumptions we have made before, it is not
difficult to figure out that for any considered FOT here, the number of involved fuzzy
sets equals the number of input variables and each input variable is numeric, since
any input variable is associated with a triangular or trapezoid membership function
independently. Moreover, the input x of an FOT can be expressed in the form of
a feature vector of dimensionality m, x ∈ Rm, if there are exactly m input variables
involved.

Following, we give the proof using induction upon the aforementioned recursive
structure:

• Basis step:
At the lowest level of an FOT, the input variables are firstly modulated by fuzzy
sets, which can be viewed as lowest sub-trees to construct an FOT. Since all
fuzzy sets used in an FOT are triangle or trapezoid membership functions, the
sub-trees at the lowest level of an FOT are identifiable.

• Induction step:
Assume that all its sub-trees are identifiable, we intend to prove the identifia-
bility of an FOT, which is constructed recursively. For the sake of clearness,
Figure 3.6 illustrates such an FOT, say F , in detail, where y is the overall output
of F , xi ∈ Rmi is input for the i-th sub-trees Fi (assume that mi input variables
involved in Fi) and ti denotes the interior outputs of Fi, while si is output of ti
through the i-th linguistic hedge hi, for all i ∈ {1, . . . ,n}.

Figure 3.6: Constructing
an FOT recursively in

detail

y

A

F2F1 · · · Fn

h1

s1

h2

s2

hn

sn

x1 x2 xn

t1 t2 tn

Again let us assume that F is not identifiable. Then, there must exist at least
two parameter specifications, say θ1 and θ2, so that θ1 6= θ2 and

∀x ∈ Rm1×Rm2× . . .×Rmn : F(x,θ1) = F(x,θ2) = y

according to the necessary condition of identifiability I1. We try to prove that
the parameters of θ1 and θ2 must be identical to fulfill the second condition.
According to the type of aggregation operators, the following three cases are
distinguished here:
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1. if the aggregation operator A is associated with a Hamacher t-norm, let us
have a closer look on the parameters in F . We shall consider the param-
eters in each sub-tree at first, and then the parameters in the Hamacher
t-norm.

– Without loss of generality, a sub-tree Fk is considered here for k ∈
{1, . . . ,n}. To suppress the influence of other sub-trees, we try to
construct a special input, so that the overall output y only depends
on the parameters in Fk and hk, but is independent of the parameters
in other sub-trees and A. Notice that 1 is the neutral element for t-
norms, the criterion to construct the special input vector is to let the
interior outputs of other sub-trees be 1, namely tm = 1, for all m 6= k.
From the completeness of FOT, the existence of such input vector is
guaranteed.
Following this idea, an input vector x′ is selected in the following
specific form:

x′ = [x=1
1 , . . . ,x=1

k−1,xk,x=1
k+1, . . . ,x

=1
n ]

namely all sub-trees except Fk are assigned with an input vector, so
that all their interior outputs are one. Due to the completeness as-
sumption, this kind of input vector exists. So due to 1-idempotency
of linguistic hedges, as well as the property of t-norm, we have:

y = F(x′) = A(1, · · · ,1,sk,1, · · · ,1) = sk = hk(Fk(xk)) (3.2.1)

That is, for the specific input x′, the overall output y equals sk, which
depends only on hk and Fk. Since the parameter of linguistic hedges
hk is fixed, let us denote the parameters involved in Fk as θ1k and θ2k
among the parameters in θ1 and θ2.
Equation 3.2.1 can be extended as follows:

F(x′,θ1) = F(x′,θ2) ∀x′
⇒ hk(Fk(xk,θ1k),α1) = hk(Fk(xk,θ2k),α2) ∀xk
⇒ Fk(xk,θ1k) = Fk(xk,θ2k)

That is for any input of Fk under the parameter specifications θ1k and
θ2k, the interior output of Fk are identical. Due to the fact that all
sub-trees including Fk are conditioned identifiable and I2 from the
definition of identifiability, we conclude that θ1k = θ2k.

– Until now we have shown that the parameters in all sub-trees of θ1
and θ2 must be identical. Here we shall show the parameter in the
root node (a Hamacher t-norm), say r1 ∈ θ1 and r2 ∈ θ2, must again
be identical. Based on the previous conclusions, for any x ∈ Rm, the
same intermediate results s1, . . . ,sn are returned under both param-
eter specifications θ1 and θ2, which are in turn the input values for
the Hamacher t-norm in the root node, on the other hand the overall
output y are identical under θ1 and θ2. From the identifiability of
Hamacher t-norms, we can follow r1 = r2 immediately.

2. if the aggregation operator A is associated with a Hamacher t-conorm,
the identifiability proof is very similar to that of a Hamacher t-norm. The
only difference lies in the proof of the identity of parameters in sub-trees,
where the input vector x is selected in following specific form:

x′ = [x=0
1 , . . . ,x=0

k−1,xk,x=0
k+1, . . . ,x

=0
n ]
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namely all sub-trees are assigned with special input vectors, so that the
interior output of sub-trees are all 0 except the selected sub-tree Fk. In
this way, we can again suppress the influence of all other sub-trees and
the Hamacher t-conorm.

3. otherwise the aggregation operator A must be an OWA mixnorm, say M,
this time we shall check the parameters in the root node at first, then in
the sub-trees.

– Let us assume M has n parameters (w1,w2, . . . ,wn) and the i-th pa-
rameter involved in the root node from θ1 and θ2 is denoted as w1i

and w2i respectively, just as to prove the identifiability of an OWA
mixnorm. Let us denote the index i ∈ {1, . . . ,n}, so that w1i 6= w2i

and w1 j = w2 j, for all 1 ≤ j < i. An input x can be assigned in fol-
lowing form due to the completeness of FOT:

x = [x=1
1 ,x=1

2 , . . . ,x=1
i ,x=0

i+1, . . . ,x
=0
n ],

namely, by assigning special input vector x there are exact i sub-
trees, whose interior outputs are 1, while other sub-trees with interior
outputs 0. Due to the 1(0)-idempotency of linguistic hedges, we have

sm =

{
1 ∀m ∈ {1, . . . , i}
0 ∀m ∈ {i+1, . . . ,n}

which are in turn the input values for the OWA mixnorm in the root
node. This leads to:

y = F(x,θ) = W (s1, . . . ,sn;w1, . . . ,wn)
= W (1, . . . ,1,0, . . . ,0;w1, . . . ,wn)

=
i

∑
m=1

wm

Considering the condition w1 j = w2 j, for all 1≤ j < i, we follow that
w1i = w2i, consequently all parameters in the OWA mixnorm must
be identical under the parameter specifications θ1 and θ2.

– For any sub-tree, say Fk without loss of generality, and the linguis-
tic hedge hk (1 ≤ k ≤ n) respectively, we want to design a specific
form of input vector x again like in the previous cases, to suppress
the influence of other sub-trees. From the definition of the OWA
mixnorm, one can conclude that, for an OWA mixnorm with n pa-
rameters ([w1, . . . ,wn]):

∃p ∈ {1, . . . ,n} : wp > 0

According p, the input vector of x for this case is selected in the
following form due to the completeness of FOT:

x′ = [x=J(1)
1 , . . . ,x=J(k−1)

k−1 ,xk,x
=J(k+1)
k+1 , . . . ,x=J(n)

n ]

where

J(i) =


1 if k ≥ p, i < p
1 if k < p, i≤ p
0 otherwise
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for all i∈ {1, . . . ,n}, namely all sub-trees except Fk are assigned with
special inputs, so that there are exactly p−1 sub-trees with interior
outputs 1, and (n− p) sub-trees with 0. Let us denote the parameters
involved in Fk as θ1k and θ2k, and the parameter in hk as α . So due
to 1(0)-idempotency of FOT and linguistic hedge, we have:

y = F(x′,θ) = W (s1, . . . ,sn;w1, . . . ,wn)
= W ( 1, . . . ,1︸ ︷︷ ︸

(p−1) times

,sk,0, . . . ,0;w1, . . . ,wn)

=
p−1

∑
i=1

wi + sk ·wp

together with the previous conclusion follows that:

F(x′,θ1) = F(x′,θ2) = y ∀x′
⇒ sk(θ1) = sk(θ2) ∀Xk
⇒ (Fk(Xk,θ1k))α = (Fk(Xk,θ2k))α

⇒ Fk(Xk,θ1k) = Fk(Xk,θ2k)

Then we get a similar condition as in the case of a Hamacher t-norm,
which is based only on the k-th sub-tree (Fk) and the k-th linguistic
hedge (hk). Using the same technique we can deduce that

θ1k = θ2k

3.3 Calibration Techniques

As mentioned before, the goal of the calibration of FOTs is to find the global optimum
θ ∗ for given training data, where θ ∗ ∈Θ in the parameter space of an FOT. Note that
Θ is a real-valued constrained space, since the parameters of an FOT are real-valued
and constrained respectively, either from aggregation operators, or from linguistic
hedges or fuzzy sets. There are many techniques proposed in last decades [KHS01,
GBNP96, Coe06, BBPV04] for this kind of optimization problems, and in practice
no universally optimal method exists for all kind of problems. The optimization
techniques can be categorized into following classes:

1. Exhaustive search : In the case of relatively small search space, it is possible
to check through all potential solutions in the space, and to locate the global
optimum precisely, also called complete enumeration. This kind of techniques
becomes infeasible, as the search space becomes large, therefore it can be only
applicable in small part of optimization problems. For the real-valued opti-
mization problem it is usually not appropriate.

2. Iterative search : An iterative search usually starts with an initial solution,
which can be generated, for instance, randomly. After that, one tries to make
small change on a known solution using different approaches, in order to find
a better solution. This process is repeated until some stop-criteria are reached.
Since this search usually gets stuck in a local optimum, it is customary to carry
out the process several times, starting with different initial solutions and sav-
ing the best result. We shall take a closer look at two representative approaches
regarding to calibration of FOTs: Gradient descent (in Section 3.3.1) and sim-
ulated annealing (in Section 3.3.2).
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3. Population-based search : In contrast to the iterative search, a population-
based search, as the name indicates, maintains a population during the op-
timization process, which is a set of solutions. The solutions in population
would be updated in various way, for instance, communicating with other so-
lutions or making (small) changes, until no further improvement can be found.
We are going to consider the evolutionary algorithms based on the principles
of the evolution theory, which has shown an astonishing performance in nu-
merous optimization problems. Section 3.3.3 is devoted for one of variants in
the evolutionary algorithm, namely evolution strategies.

3.3.1 Gradient Descent

Gradient descent (GD for short) is an optimization algorithm, which can be used
to find the local minimum of a function which presupposes that the gradient of the
function can be computed [CK93, Jan93]. The key idea behind original gradient
descent algorithm is as follows: If a real-valued function f (x) is differentiable in a
neighborhood of a point, say x0, then f (x) decreases fastest if one goes from x0 in
the direction of the negative gradient of f (x) at x0, denoted as −∇ f (x0). It follows
that f (x0) ≥ f (x′), where x′ = x0− γ∇ f (x0) for a positive, small enough number γ .
The derivation of f (x) at x0 shows the direction of steepest ascent along the surface of
f (x), so a movement in the reverse direction will reach a lower position than f (x0), as
long as this movement is small enough. The derivation of newly determined position
can help moving to another lower place, until it lies already on a global or local
minimum. The method of gradient descent, also known as the method of steepest
descent, starts at an initial point, say x0, after that one moves from xi to xi+1 iteratively
by making small changes in the direction of the negative gradient of f (x) at xi, until
any further move can only increase f (x).

Regarding to calibration of FOTs, we consider the default loss function (mean squared
error) based on the parameter space Θ, where any parameter specification θ ∈Θ is a
vector of parameter values involved in an FOT. One important reason to use this loss
function is that it is differentiable at any parameter specification θ ∈Θ. On the other
hand, the fuzzy operators in FOTs, as well as the membership functions and linguis-
tic hedges, are differentiable at any valid parameter values, so that an FOT, which
combines these in a cascaded way, is again differentiable at any parameter specifica-
tion. So the gradient descent method can be used here to find an optimal parameter
specification.

Figure 3.7 illustrates the gradient descent algorithm, where the loss function f (θ)
is considered based on an FOT with two parameter variables (θ1 and θ2). Given a
parameter specification θ0, the derivation of f (θ) at θ0 is marked to show the steepest
ascent along the surface of f . In order to move to a neighbor of θ0 with lower loss
value, both parameters θ1 and θ2 are tuned by changing their values in the reverse
direction of the partial derivation of f (θ) on θ1 and θ2 respectively, as the solution
θ ′0 indicates.

Formally we take an FOT F(x;θ) based on input vector x and parameter vector θ ,
where θ = [θ1, . . . ,θn] and there is training data D with tuples in the form of (x,y).
For a parameter specification θ , the loss function is defined as:

f (θ) = ∑
(x,y)∈D

γ(ŷi,yi)

= ∑
(x,y)∈D

(F(x;θ)− y)2 (3.3.1)

Indeed f (θ) depends on both θ and tuples (x,y) in D, but since we assume the train-
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Figure 3.7: Visualization
of gradient descent
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ing data are fixed during the optimization process, f (θ) can be seen as a function on
the parameter vector θ . To determine the direction of gradient descent, the derivation
of f (θ) is computed with respect to each component of the parameter vector θ , we
call the derivations the gradient of the loss function f on θ , written ∇ f (θ). We have:

∇ f (θ) = [
∂ f
∂θ1

,
∂ f
∂θ2

, . . . ,
∂ f
∂θn

]

Note that each component of ∇ f (θ) is a gradient of f with respect to one parameter
in θ , whose positive value shows a small increase of related parameter leads to an
increase of the overall loss value, a negative gradient indicates the other direction
correspondingly. To reach a lower loss value, θ is updated in a following manner:

θ ← θ +∆θ (3.3.2)

where
∆θ =−η∇ f (θ) (3.3.3)

Adding a negative sign is because we want to change θ in a direction so that f (θ)
decreases. Here η is a positive value called the learning rate, which determines the
step size of change on θ . For each parameter in θ , say θi, the updating rule 3.3.2 can
be written:

θi← θi−η∇ f (θi) (3.3.4)

which makes clear that the gradient descent is achieved by altering each component
θi of θ in proportion to ∂ f

∂θi
.

The gradient of f on θ is, fortunately, not complicated, which can be obtained by
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differentiating f based on Equation 3.3.1, as:

∇ f (θi) =
∂ f
∂θi

=
∂

∂θi
∑

(x,y)∈D
(F(x;θ)− y)2

= ∑
(x,y)∈D

∂

∂θi
(F(x;θ)− y)2

= ∑
(x,y)∈D

2(F(x;θ)− y)
∂

∂θi
(F(x;θ)− y)

= ∑
(x,y)∈D

2(F(x;θ)− y)
∂ (F(x;θ))

∂θi

(3.3.5)

on the i-th parameter of θ , where the derivatives of y is zero, since y are treated as
constant in training data D. To calculate ∂ (F(x;θ))

∂θi
, we consider following two cases:

• If θi is a parameter in the root node of F , its partial derivation can be computed
directly.

• Otherwise, the partial derivative on non-root nodes can be calculated with the
chain rule. Since this method can be applied in a recursive manner, we gener-
alize this problem in Figure 3.8 for following discussion, where A denotes an
aggregation operator, whose k-th input is built by Ak (an aggregation operator
in turn or a fuzzy set) and hk (a linguistic hedge), this method is applied to get
the partial derivatives on hk and Ak.

Figure 3.8: Compute
derivatives using the

chain rule

· · ·

A(. . . , xk, . . .)

Ak(. . . , θi, . . .)· · · · · ·

hk(αk)

In FOTs the partial derivative on a parameter θi can be derived in a quite con-
venient way using the chain rule, let us distinguish the position of a parameter
θi in following cases:

1. If it is a parameter involved in a linguistic hedge directly connected to A,
the gradient of A on θi is:

∂A
∂θi

=
∂A
∂xk
· ∂xk

∂θi

2. Otherwise it must be a parameter involved in a sub-tree of A, say Ak, the
gradient of A on the parameter θi can be written as:

∂A
∂θi

=
∂A
∂xk
· ∂xk

∂θi
=

∂A
∂xk
· ∂hk

∂x
· ∂Ak

∂θi

Namely, in this case the partial derivative ∂A
∂θi

on A is related to the partial

derivative ∂Ak
∂θi

on the sub-tree of A, this can be used in a recursive way.
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The update rule for θi yields:

∆θi =−η ∑
(x,y)∈D

(F(x;θ)− y) · ∂F(x;θ)
∂θi

(3.3.6)

where the constant factor 2 in Equation 3.3.5 is integrated into the learning rate
η .

This method is referred as direct gradient descent (GD− direct for short) in the
following discussion.

Inspired by the well-known error back-propagation algorithm of optimization on neu-
ral networks, we notice that the loss function of FOTs measures errors by applying
FOTs on training data essentially, so that it is possible to propagate errors backward
in FOTs to update parameters, in order to decrease overall errors on training data.
Here we consider another method for updating parameters in FOTs, which works in
a similar way like the well-known error back-propagation algorithm [RHW86b].

Again the problem is generalized in Figure 3.9, where we assume that the error of an
operator or linguistic hedge, say A, is e, and the k-th subtree of A is denoted as Ak. To
estimate error on Ak , xk is treated as a parameter, since xk is the output of Ak. On xk,
we can use Equation 3.3.3 to derive an expected update on xk, which is then treated as
the estimated error on Ak, written as ek here. For the root node of an FOT, its error is
simply the output of the loss function, while for other operators or linguistic hedges
involved in an FOT, its error can be estimated in the previous way recursively.

Figure 3.9: Error
Backpropagation

· · ·

A(. . . , xk, . . .)

Ak· · · · · ·

e

ek

Generally speaking, the update rule for any parameter θi using error back-propagation
yields:

∆θi =−η ∑
(x,y)∈D

e · ∂Fk(x;θ)
∂θi

(3.3.7)

where the constant factor 2 is integrated into the learning rate η , and e is the (esti-
mated) error on operators in FOTs, which contains θi. We shall name this method as
static gradient descent (GD for short) in the experiments later.

The gradient descent algorithm updates the parameter θ according to the updating
rule iteratively, in which the parameters are randomly initialized at first. Then for
each tuple from the training data D, the ∆θ is calculated depending on the updat-
ing rule in GD or GD− direct and added into θ . The process is repeated until any
change on θ increases the overall loss value (error). This procedure is summarized
in Algorithm 3.1.

In line 5 all tuples from the training data D are input into an FOT, and the changes ∆θi

are summarized, then added to θi once in line 16. So every time scanning on D makes
an update on θ , which is called batch learning. Another way to update θ is to add ∆θi

into θi after scanning each tuple in D immediately, called online learning, which can
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Algorithm 3.1: Gradient descent algorithm
Input: FOT F(x;θ), training data D, updating type t
begin1

initialize each θi ∈ θ randomly ;2

repeat3

initialize each ∆θi to zero ;4

for (each tuple (x,y) ∈ D) do5

input x to F ;6

compute the estimated output ŷ ;7

if (t is GD) then8

∆θi← ∆θi−η∇e(θi) recursively ;9

else10

for (each θi ∈ θ ) do11

∆θi← ∆θi−η(ŷ− y) · ∂F(x;θ)
∂θi

12

end13

end14

end15

for (each θi ∈ θ ) do16

θi← θi +∆θi17

end18

until ( f (θ) increases) ;19

end20

be achieved with a modification on the previous algorithm by moving the For loop in
line 16 one row ahead. Generally the batch learning provides a stable performance in
contrast to the online one, whereas the later one is usually much faster.

One challenge regarding the gradient descent algorithm is to select a proper learning
rate η . Theoretically a sufficiently small η is preferred to guarantee a real “descent”
of loss value, but on the other hand a small η may cause to a slow learning speed,
in which algorithm has to run a long time until the stop criterion is met. If the η is
too large, the gradient descent search runs the risk of overstepping the optimum, or
getting in an oscillation. Figure 3.10 demonstrates the possible effects of improper
learning rate, where θ0 indicates the initial solution, the dashed line shows the move-
ment tracks under a too small or too large learning rate respectively. For this reason,
one common modification to the algorithm is to gradually reduce the learning rate η

as the number of gradient descent steps grows.

Many other variants of gradient descent have been invented to eliminate the problem
with learning rate. Using a time-dependent learning rate, Equation 3.3.2 to 3.3.3 can
be rewritten as:

θ(t +1) = θ(t)+∆θ(t)
∆θ(t) =−η(t)∇ f (θ(t))

with the iteration time t.

Most of these variants differ in the definition on previous two formulas, here we are
considering several variants by listing their main differences:

1. Manhattan training

∆θ(t) =−η(t)∗ sgn(∇ f (θ(t)))
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Figure 3.10: Effect of
learning rate in gradient

descent

θ

f(θ)

small η

θ0

θ

f(θ)

large η

θ0

where sgn is the signum function to extract the sign of gradient of f with re-
spect to θ at t-th generation [BKKN03]. The numerical value of gradient does
not play a role in the Manhattan training, but its sign, so that the update of
parameters is only determined by direction of gradient and the learning rate
(depend on the iteration time t).

2. Momentum term

∆θ(t) =−η(t)
2
∗∇ f (θ(t))+β ∗∆θ(t−1)

The Momentum term [RHW86a, Sar95] considers not only the update of pa-
rameters determined by current gradient routinely, but also the update in the
last iteration (t− 1), in which a proportion of the previous change is added to
every new change in θ . A common choice for additional parameter β lies in
[0.5,0.95], in this thesis we shall take β = 0.7 as default setting.

3. Self-adaptive error back-propagation

η(t) =


c− ∗η(t−1) , if ∇ f (θ(t))∗∇ f (θ(t−1)) < 0,
c+ ∗η(t−1) , if ∇ f (θ(t))∗∇ f (θ(t−1)) > 0,
η(t−1) , otherwise.

The idea of self-adaptive error back-propagation [Sar95] is to update the learn-
ing rate according to gradient at current and last iterations. As gradients at both
iteration have same directions (∇ f (θ(t))∗∇ f (θ(t−1)) > 0), it means that op-
timum is still far away from current solution, the update would be increased
with a “greater” learning rate, otherwise with a “smaller” one. The suggested
domains for additional parameters c− and c+ are [0.5,0.7] and [1.05,1.2]. A
standard setting c− = 0.6 and c+ = 1.1 are employed in this thesis, as well for
next variants.

4. Resilient error back-propagation

∆θ(t) =


c− ∗∆θ(t−1) if ∇ f (θ(t))∗∇ f (θ(t−1)) < 0,
c+ ∗∆θ(t−1) if ∇ f (θ(t))∗∇ f (θ(t−1)) > 0

and ∇ f (θ(t−1))∗∇ f (θ(t−2))≥ 0,
∆θ(t−1) otherwise.
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The Resilient error back-propagation [RB94] takes gradients in current and last
two iterations into account to increase or decrease the update on parameters.

5. Quick-propagation

∆θ(t) =
∇ f (θ(t))

∇ f (θ(t−1))−∇ f (θ(t))
∗∆θ(t−1)

The Quick-propagation [Fah88] considers gradients in current and last itera-
tions, in which the ratio of gradient change is calculated.

Notice that it is proved the gradient descent can always converge to an optimum with
a proper defined learning rate [Mit97], but not necessary to a global optimum. In a
multimodal case, where many optima coexist, the gradient descent algorithm has a
risk to get stuck in one local optimum. This problem can not be completely avoided
in principle, but one can weaken it using different techniques, for instance restart
training process with different initializations. We shall check its performance in the
later experimental section.

3.3.2 Simulated Annealing

The gradient descent algorithm is a greedy search, in which only a change with im-
provement is allowed. Usually the success of a gradient descent algorithm is very
dependent on the initial position, so if the initial position lies nearby a local op-
timum, it is not able to jump out of the optimum to search another optimum. A
technique to avoid this problem is the so-called simulated annealing (SA for short)
[KGV83, JAMS89, JAMS91, LA87, SPR04], which is inspired by annealing in met-
allurgy. The basic idea behind simulated annealing is to give a probability to accept
a “worse” solution, the probability depends on, first of all, the objective value of
solution and a global parameter (called temperature), which is gradually decreased
during the process (called temperature schedule). As a result, the SA has relative
high probability to accept a “worse” solution at the beginning in the process, and this
probability decreases as the search progresses, so it tends to only accept a solution
with improvement to the end of the search process.

Generally, higher temperatures correspond to a greater probability to accept a worse
solution, so that large moves are allowed in the search space, while lower tempera-
tures correspond to greater probability only allow to move to a local optimum, which
corresponds small moves for improvement of current solutions. The idea of using
simulated annealing is that the earlier (more random) moves have led the algorithm
to the deepest “basin” in the objective function surface. In fact, one of the appeals of
the approach is that it can be mathematically proved that the simulated annealing can
always find a global optimum, if one is using the appropriate temperature schedule
[Haj88, Gid85]. However, under this kind of temperature schedule, the temperature
is decreased very slowly, until a solution is determined. Therefore, this kind of tem-
perature schedule is usually not efficient enough to be used in practice.

Figure 3.11 shows an example visually based on one dimensional parameter θ and
its objective function f (θ) indicated by the bold line, and θ0,θ

′, θ ∗ are the initial
solution, a local optimum, a global optimum respectively. As θ0 starts with a high
temperature, the probability stepping over θ ′ to θ ∗ becomes higher comparing a θ0
with lower temperature.

Following the similar idea of gradient descent, the process of simulated annealing is
shown in Algorithm 3.2. Firstly, a random solution p is selected in the search space,
and its objective value is calculated with given training data. In the iteration step,
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Figure 3.11: Simulated
annealing

θ∗

θ′

θ

f(θ)

θ0

a neighbor of p is generated by adding a small change η , written as p′. According
to the objective value of p′ and the temperature parameter related to the iteration
number i, we check whether to accept p′ or not. The parameter η serves here just
like in gradient descent as a learning rate, whose value is very important to success
of search. To check the stop criterion in line 14, a probability is calculated based on
the objective values and temperature parameter, where:

∆ f the decrease of objective value from f to f ′, namely

∆ f = f ′− f

m the approximated domain of objective values, is defined as the maximal ob-
served deviation of objective value,

m = max(∆ f ), for all ∆ f

T the temperature parameter, which decreases during iterations. A common
choice is a decreasing function on the number of iteration i, for example:

T =
1
i

3.3.3 Evolution Strategies

In computational intelligence, an evolutionary algorithm(EA for short) is a subset
of evolutionary computation, a generic population-based meta-heuristic optimization
algorithm, which is inspired by biological evolutionary theory [Wei02, Coe06, SR95,
Sch93]. Some mechanisms from biological evolution are used in EA: mutation, re-
combination, natural selection and survival of fittest. During the last decades, the EA
has gained increasingly importance in the field of computational intelligence, and
becomes a powerful tool for the optimization problems [BS02]. Table 3.1 lists the
commonly used terminologies taken from the evolutionary theory and their interpre-
tations in the context of evolutionary algorithm.

There are currently four main techniques based on the principle of EA:

1. Genetic algorithm (GA for short) : It is a most popular type of EA, which
is characterized by its representations in the form of number-strings [Rot06,
Gol89]. Traditionally solutions are encoded in binary as strings of 0s and 1s,
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Algorithm 3.2: Simulated annealing algorithm
Input: FOT F(x;θ), training data D
Output: Solution p
begin1

generate a solution p randomly ;2

i← 0 ;3

evaluate p with D to get f ′ ;4

stop-flag← false;5

repeat6

f ← f ′ ;7

p′← p+η ;8

evaluate p′ with D to get f ′ ;9

i← i+1 ;10

// check the stop criterion
if ( f ′ ≤ f ) then /* accept a not-worse solution */11

p← p′;12

else /* otherwise it depends on a probability */13

q← e−
∆ f
m·T ;14

r← random number in [0,1] ;15

if (r ≤ q) then /* with probability q to accept a16

worse solution */
p← p′;17

else /* with probability 1−q to stop */18

stop-flag← true ;19

end20

end21

until (stop-flag) ;22

return p23

end24
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Table 3.1: Terminologies
of evolutionary algorithm Term Explanation Symbol

individual candidate solution I
generation iteration of an evolutionary algorithm t
population a set of individuals in a generation P
population
size

the number of individuals in a population µ

offspring (or
child)

newly generated individuals in a generation

parent individuals, from which off-springs are generated
parent selec-
tion

the technique to choose parent(s) to generate off-
spring(s)

parent size the number of selected parents to generate an off-
spring

ρ

off-springs
size

the number of newly generated off-springs in a gen-
eration

λ

environment
selection

the technique to construct a population for next gen-
eration

sel

fitness the goodness of individual f
recombination
(or
crossover)

the technique to create offspring(s) by exchanging
information of parents

rec

mutation the technique to create offspring(s) by change par-
ent(s)

mut

which are particularly useful for solutions represented by discrete values. Ge-
netic algorithm dealing with real-valued features has also been researched in
several works [KD91, Gol91].

2. Genetic programming (GP for short) : This is a specialization of genetic al-
gorithms where each individual is a computer program usually, traditionally
an individual is represented as tree structures with strings [Koz92]. Originally
GP favors the use of programming languages that naturally embody tree struc-
tures (for example, Lisp), non-tree representations have been also suggested
and implemented successfully, such as in [BNKF01] .

3. Evolutionary programming (EP for short) : As emerged in 1960’s, EP works
just like genetic programming but with fixed structure , and can handle real-
value numbers [YL96]. Currently the EP is extended to deal with flexible
structure or representation, so it is becoming harder to distinguish from the
next variant of EA, evolution strategies.

4. Evolution strategies (ES for short) : ES uses problem-dependent represen-
tations, and is especially desired for optimization problems with real-valued
solutions [BS02]. For the purpose of calibration of FOTs, in which the main
task is to optimize the continuous parameters, this technique is employed in
this thesis. In the following, we concentrate on ES and introduce the corre-
sponding terminologies of ES, as well as the application of ES for calibration
of FOTs.

The ES, developed by Rechenberg and Schwefel at the Technical University of Berlin
in the 1960s [Rec73], simulates the natural evolution process by executing the evolu-
tionary loop illustrated in Figure 3.12. Like common in the evolutionary algorithm,
an individual (standing for a candidate solution in the ES) is represented by a vector
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with real-valued numbers, where the initial step of ES constructs a population with
finite number of individuals randomly. After the evaluation of individuals in the ini-
tial population, the algorithm enters a loop, in which the individuals are recombined,
mutated, evaluated and finally selected according their objective values (fitness val-
ues), so long as the termination criteria are not fulfilled. Following we describe these
steps in detail.

Figure 3.12: Workflow of
evolution strategies

termination?

Parents selection

Recombination

Mutation

Environment selection

Evaluation

no

exit
yesinitialization

3.3.3.1 Representation

The individual, as usually in evolutionary algorithm, ought to represent a candidate
solution for considered problem. In ES an individual consists of several components
in the form as follows:

I(t) =

 θ
(t)
1 , . . . ,θ

(t)
n︸ ︷︷ ︸

object component θ (t)

, σ
(t)
1 , . . . ,σ

(t)
n︸ ︷︷ ︸

strategy component σ (t)

, f (θ (t)),K


= (θ (t),σ (t) f (θ (t)),K)

in the generation t, where θ (t) is called object component to represent a candidate so-
lution. In the case of FOT, the object component is a vector of n parameters involved
an FOT, which can be the parameters in operators, linguistic hedges or membership
functions. As the structure of FOTs are treated fixed during the calibration process,
any FOT with known structure can be identified with its parameter specifications.
Note that in this thesis, these parameters are all real-valued numbers, but have dif-
ferent domains and constraints, which has to be considered in the implementation.
Beside the actual solution in θ (t), an additional strategy component (σ (t)) of dimen-
sion n is attached in an individual, which is a vector of n real-valued numbers, each of
them serves to control the stepsize of one parameter of the object component. As we
shall introduce later in Subsection 3.3.3.2, the strategy component controls how to
mutate offsprings. The numbers in strategy component are initialized and generated
by ES during the generations automatically, therefore they are called endogenous
parameters. Regarding this, another exogenous strategy parameters are predefined
before the ES generations, and treated as a constant. This is the key point of self-
adaptation principle of ES, we will turn back to explain the both strategy parameters
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later while introducing the mutation operator. f (θ (t)) denotes the objective value of
object component θ (t), called fitness here. According to the “survival of the fittest”
principle of the evolution theory, the fitness plays a central role in ES, which guides
the direction of evolution.

The last component of an individual is K, an integer number of generations that an
individual ever survived, which indicates how “old” is an individual. This parameter
is related to the so-called environment selection mechanism, which is applied over-
all in evolutionary algorithms. Because at the end of each iteration, the ES select a
fixed individuals to form a new population, in which the individuals in old genera-
tion are called parent, and newly generated individuals in current iteration are called
offsprings. There are two well-known environment selection strategies:

1. Comma-selection (or ,-selection): In comma-selection, a new population is
constructed for next generation and consists of newly generated off-springs,
whereas parent individuals are excluded in the new population explicitly. To
increase the competition among off-springs, there are usually more off-springs
generated than required, i.e. λ > µ , where µ is fixed size of population, λ

is the number of off-springs, the comma-selection is therefore characterized
by sel(µ,λ ). A bigger number of off-springs means more explorations in the
search space. Nevertheless, one disadvantage of comma-selection is that the
individual with best fitness (“best individual”) can eventually be lost in next
population, and not be found again.

2. Plus-selection (or +-selection, (µ + λ )-selection): In plus-selection, a new
population is constructed based on both parent individuals and newly gener-
ated off-springs. The plus-selection offers a competition between parents and
off-springs, only the “best” ones can survive. From the optimization’s point of
view, the best individual would be always contained in the population. Tradi-
tionally it holds λ < µ , so that only one small part of population will be up-
dated, that is, parent individuals with “bad" fitness are replaced with off-springs
with “good” fitness. In contrast to the comma-selection, the plus-selection con-
centrates on the exploitation of search space.

In ES, a generalized form of K-selection is proposed with a single parameter K, called
life span. The individuals of new population can survive maximal K generations,
obviously it turns out:

K-selection =

{
comma− selection if K = 0
plus− selection if K = ∞

The K-selection makes a compromise between pure exploration and exploitation in
search space, namely between comma-selection and plus-selection. A K-selection
in ES gives of course more flexibility to control the construction of new population.
Formally the environment selection of ES is defined as:

selK(Pµ ,Pλ ) := {the top µ individuals in P′ according fitness}

where P′ := {I|I ∈ Pµ or I ∈ Pλ : (age of I)≤ K}, Pµ denotes the current population
with µ parents and Pλ a set of newly generated λ off-springs.

3.3.3.2 Mutation

One of two important operators in ES to generate a new individual is the mutation
operator, which was originally the only operator applied in ES, as the recombina-
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tion operator was introduced into ES afterward. Generally speaking, the mutation
describes how to change (the component(s) of) an individual to create a new one.
Based on theoretical considerations for a successful ES implementation, Beyer and
Schwefel [Bey01] proposed three guiding principles:

1. reachability : It is the first requirement ensures that the global optimum can
be reached within a finite number of mutation steps or generations from any
random start solution. Only under this condition one can show the global con-
vergence of ES;

2. unbiasedness : This is a requirement derived from “philosophy of Darwinian
evolution”. The mutation should not take use of any fitness information, but
only information about the search space inherited from parents. Therefore,
there is no preference among individuals, and the mutation itself should not
introduce any bias;

3. scalability : The scalability requires the mutation step should be adaptable
according to fitness and problem and progress the optimization.

A mutation operator having the above properties is proposed in [BS02], which change
the object component by adding a vector with normally distributed random numbers:

θ
(t)← θ

(t) +[σ (t)
1 ·X1, . . . ,σ

(t)
n ·Xn] (3.3.8)

abbreviated as mutθ (θ (t),σ (t)), where X1, . . . ,Xn are randomly generated numbers
following a standard normal distribution (Xi ∼ N(0,1), for all i ∈ {1, . . . ,n}), so that
the modification on each parameter in an FOT follows a normal distribution of:

σi ·Xi ∼ N(0,σi),∀i ∈ {1, . . . ,n}

Figure 3.13 shows the probability density function of normal distributions (N(0,1)
and N(0,2)). The adaptation of any parameters involved in FOT is therefore sym-
metrical and has a domain (−∞,+∞), which fulfills the requirements of reachability
and unbiasedness mentioned before.

Figure 3.13: Distributions
used in mutation operator
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σ1, . . . ,σn are endogenous parameters in strategy component, they are called step size,
since they determine the variance of the normal distribution of object components.
Before applying 3.3.8, these step sizes (namely the strategy component) are modified
under the principle of scalability for purpose of self-adaptation, where it is mutated
by multiplying a log-normally distributed random numbers, that is:

σ
(t)← eτ0Y0 [σ (t)

1 · e
τ·Y1 , . . . ,σ

(t)
n · eτ·Yn ] (3.3.9)

abbreviated as mutσ (σ (t),τ0,τ), where Y0 to Yn are again randomly generated num-
bers following a standard normal distribution. τ0 and τ are predefined exogenous
parameters, which, as suggested in [BS02], can be selected as:

τ0 =
1√
2n

, τ =
1√
2
√

n

for a problem with n-dimensional object component. Note that the adaptation of
strategy component by Equation 3.3.9 follows the log-normal distribution, so that
ensures that all step sizes can take values in the domain [0,+∞), as illustrated in the
right half in Figure 3.13.

To this end, this standard mutation operator meets all requirements suggested in
[BS02]. The possible distribution of off-springs produced by mutation is demon-
strated in Figure 3.14 according to two step size (σ1 and σ2), where an ellipse shows
the expected positions of off-springs mutated on θ0.

Figure 3.14: Distribution
of off-springs by mutation

θ0

σ 1

σ 2

3.3.3.3 Recombination

As mutation modifies an individual to get a new off-spring with a randomly genera-
tion self-adaptation, recombination shares the information from a fixed number ρ of
parent individuals. Unlike the standard crossover operator in GA, where two parents
produce exactly two off-springs, the standard recombination in ES generates only
one offspring upon a set of parents, see Figure 3.15, where two standard classes of
recombination used in ES are illustrated, namely:

1. Intermediate recombination : Formally given a set of ρ parents (I1, I2, . . . , Iρ ),
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a new offspring produced by recombination, Irec, is defined:

Irec = (θrec,1,θrec,2, . . . ,θrec,n,σrec,1,σrec,2, . . . ,σrec,n, Null,0)

where θrec,k =
1
ρ

ρ

∑
i=1

θi,k and

σrec,k =
1
ρ

ρ

∑
i=1

σi,k, for all k ∈ {1, . . . ,n}

where Null means the newly generated offspring is still not evaluated, and 0
indicates its age. From the geometric point of view, Irec is the gravity center
of ρ parents. In case of discrete object component instead of numeric one, an
additional procedure is needed to map back newly generated component into
discrete domain, such as rounding.

2. Discrete recombination (also referred as dominant recombination) : In con-
trast to intermediate recombination, the discrete recombination takes one par-
ent into account each time to determine one of the object or strategy compo-
nent, where the parent is selected randomly under a uniform distribution, that
is:

Irec = (θrec,1,θrec,2, . . . ,θrec,n,σrec,1,σrec,2, . . . ,σrec,n, Null,0)
where θrec,k ∈ {θ1,k,θ2,k, . . . ,θn,k} and

σrec,k ∈ {σ1,k,σ2,k, . . . ,σn,k}, for all k ∈ {1, . . . ,n}

Figure 3.15:
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For both recombination variants, the recombination operator can be generalized as
rec(Pρ), where Pρ are randomly selected ρ parents in current population P. Differ
from the environment selection for purpose of constructing a new population for next
generation, the selection of parents for recombination operator is unbiased, in which
all parents in current population are selected with equal probability (again under a
uniform distribution), independent of their fitness.

3.3.3.4 Termination

To terminate the ES loop, different stop criteria can be integrated into an ES, some
commonly used termination criteria are follows:

1. maximal generation : To limit the number of generations, this criterion gives no
guarantee that an optimum can be found by ES, but it is useful to limit resources
available to ES, and can be applied, for example, in distributed computing.

2. maximal runtime : Just like the previous one, the maximal runtime is used to
limit the maximal running time for an ES.
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3. expected fitness : Since in practice one interests usually in searching a solution
with “adequate” fitness, rather than an absolute global optimum, an expected
fitness here serves exactly for this purpose.

4. maximal stalling : In order to approximately detect whether an ES converges
into an optimum, the maximal stalling gives some measurements for this pur-
pose. For example, if in last T generations there is no improvement achieved,
namely no individual with better fitness is found, then an ES is treated as con-
verged into an optimum, or in the case the different between “best” and “worst”
individuals in last generation falls below a user-defined threshold, and so on.

3.3.3.5 Evolution Strategies Algorithm

Now we can give the complete ES algorithm in pseudo-code, shown in Algorithm
3.3. In line 8 the recombination operator is called to generate a new offspring, whose
object and strategy components are marked as θ

′(t)
i and σ

′(t)
i for further operations.

In line 9 and 10 these both components are mutated using the standard mutation op-
erator, and their relative positions of both mutation operators (first mutσ , then mutθ )
play an important role to meet the reachability and unbiasedness, as mentioned be-
fore. As the last two parameters in the ES, namely τ0 and τ , can be approximated
according to the dimension of object component, the ES algorithm is usually referred
as (µ,λ ,K,ρ)-Algorithm with its four characteristic parameters.

Algorithm 3.3: Evolution strategies algorithm
Input: Population size µ , number of off-springs λ , life span K, number of

parents selection ρ , exogenous parameters τ0 and τ

Output: Solution p
begin1

t← 0 ;2

// initialize

P(t)←{(θ (t)
i ,σ

(t)
i , f (θ (t)

i ),1)|i = 1, . . . ,µ};3

while (Not terminated) do4

Po f f ← /0 ;5

for (i ∈ {1, . . . ,λ}) do6

Pρ ← select ρ parents from P(t) ;7

[θ
′(t)
i ,σ

′(t)
i ]← rec(Pρ) ;8

σ
′′(t)
i ← mutσ (σ

′(t)
i ,τ0,τ) ;9

θ
′′(t)
i ← mutθ (θ

′(t)
i ,σ

′′(t)
i ) ;10

evaluate θ
′′(t)
i to get f (θ

′′(t)
i ) ;11

generate an offspring (θ
′′(t)
i ,σ

′′(t)
i , f (θ

′′(t)
i ),0) into Po f f ;12

end13

// Construct a new population

P(t+1)← selK(P(t),Po f f ) ;14

increase age of individuals in P(t+1) by 1;15

t← t +1;16

end17

p← the object component of best individual in P(t) ;18

end19

return p20

Note that the parameters involved in an FOT have generally different domains, for
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example, the parameter of a Hamacher t-norm is only valid in the interval [0,+∞].
However, the parameters of offsprings might lie out of corresponding domains due
to the recombination and mutation operators. To avoid generating offsprings with
invalid parameters, a validation step is integrated into the recombination and mutation
operators implicitly, which validates the parameters of newly generated offsprings
and adjusts the parameter values if necessary. For instance, if a Hamacher t-norm is
assigned to a negative parameter, the validation step would correct it into its definition
domain.

3.4 Experimental Evaluation

To evaluate the performance of the calibration techniques discussed in this chapter,
a number of experiments are arranged in this section. We conduct several experi-
mental studies to investigate the performance of calibration techniques of FOTs. All
experiments are carried on a computer with following configurations: Intel Dual-core
2.40GHz CPU; 2GB RAM; Microsoft Xp operating system.

To test the calibration techniques, two especially important questions are addressed
here:

1. Efficiency : Are these methods able to optimize FOTs within acceptable re-
quirements, such as runtime? Of course a fair comparison among these tech-
niques is desired to help applying FOT in practice. Beside this, the perfor-
mance of FOTs by handling discrete data (input/output) shall be investigated,
which is often used in many applications. To make these possible, we make
assumption that the training data are actually generated by FOT models, the
calibration techniques are set to try to find these hidden FOTs with given train-
ing data.

2. secondly we want to compare FOTs with other model classes in a learning
(classification) context, in order to show the advantages by applying FOTs in
case where expert prior knowledge about the qualitative structure of an evalu-
ation scheme is available.

3.4.1 Synthetic Data

We shall give the details how to generate synthetic data and related terminologies at
first, then a comparison among mentioned calibration techniques is conducted.

3.4.1.1 Data Generation

In this section, the synthetic data is generated by FOTs, we design the calibration
problems by varying the component complexity of FOTs, that is: Given a fixed com-
plexity in terms of a number of interior nodes, say C, an FOT is generated by starting
from a root node, and iteratively adding leaf nodes until the FOT has exact C inte-
rior nodes. Algorithm 3.4 shows this procedure, where in line 2 and 6 an aggregation
operator is selected randomly under the uniform distribution, namely each kind of ag-
gregation operator (Hamacher t-norm, t-conorm and mixnorm) has 1

3 probability to
be selected, then its parameters are initialized randomly in corresponding domains.
In case of OWA mixnorm, we have to ensure that the sum of parameters must be
one, for this purpose, there are firstly n−1 random numbers generated in [0,1], these
sorted n− 1 points can divide the unit interval into n parts, then the length of each
part is assigned to each parameter in an OWA mixnorm; in case of a Hamacher t-
norm or t-conorm, the parameter must be a positive number (domain: [0,+∞)). For
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convenience of use, this parameter is generated randomly in a fixed domain [0,10] by
default. In line 5, the position for newly generated aggregation operator is selected
randomly, again it follows a uniform distribution, where all possible positions can
be selected with equal probability. Visually Figure 3.16 shows an example for this
selection, where A denotes an aggregation operator, and dashed circles represent all
possible positions. For the sake of simplicity, we restrict aggregation operators have
exactly two children in this section, so that FOTs can be viewed as binary trees, the
number of children of aggregation operators is of course extendable in practice. In
line 10 fuzzy sets are inserted at positions of leaf nodes to complete the construction
of an FOT, we apply in this section the trapezoid membership function as standard
case to define fuzzy sets. Since a trapezoid membership function is characterized by
four parameters, we generate four parameters randomly following a uniform distribu-
tion in a predefined domain (default: [0,100]), then they are sorted ascendingly, and
the two parameters in the middle build the core of trapezoid membership function,
whereas the smallest and biggest parameters build the support of trapezoid member-
ship function.

Algorithm 3.4: FOT generator
Input: Complexity C
Output: An FOT F
begin1

F ← createNode() ;2

c← 1 ;3

for c < C do4

p← getRandomPos(F) ;5

a← createNode() ;6

insert a into F at position p ;7

c← c+1 ;8

end9

fill F with fuzzy sets.10

end11

return F12

Figure 3.16: Selection a
random position for FOT

generator

A

A A

A

After the tree structure of an FOT has been determined, a training data can be pro-
duced by generating a set of random input vectors, and using FOT to compute the
corresponding outputs, as the pseudo-code in Algorithm 3.5 shows.

Since the synthetic data in this section is generated from FOT models, there does
exist a parameter specification, so that a corresponding FOT makes no error on the
synthetic data. In following text, we check the aforementioned calibration techniques
whether they are able to find this parameter specifications of FOTs.
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Algorithm 3.5: Training data generator
Input: Complexity C, training data size N
Output: Training data D
begin1

F ← random generated FOT with C;2

D← /0 ;3

i← 0 ;4

for (i← N) do5

x← random generated input vector for F ;6

D← D∪ [x,F(x)] ;7

i← i+1 ;8

end9

end10

return D11

3.4.1.2 Comparison of Calibration Techniques

Our first experiment aims to gain an impression on performance of four studied cali-
bration techniques (GD,GD−direct,SA and ES), in which for a randomly generated
FOT, say F(x,θ), a candidate solution represented by a set of parameter in F is initial-
ized randomly for these techniques, then a training data based on F(x,θ) is generated
and delivered into these techniques, the performance of these techniques is evaluated
from following aspects:

• Mean squared error (MSE for short) : As the objective function of the cali-
bration of FOTs is introduced, we mention that squared error is the default used
loss function. Assume that the output of a calibration technique is F(x, θ̂), the
mean squared error of F(x, θ̂) is defined as:

MSE :=
1
N ∑

(x,y)∈D
(F(x, θ̂)− y)2

where N is the size of training data D, θ̂ is the parameter specification of F .
Notice that MSE gives greater weight to bigger difference between the real and
estimated outputs than smaller one.

• Success rate (Suc for short) : Since the parameter domain we considered in
calibration of FOTs is a continuous one, we use success rate to indicate whether
a solution lies near a global optimum closely enough. A calibration is treated
as successful, if the achieved MSE of its output is small enough, that is, its
MSE ≤ ε , where ε is a threshold, ε = 0.01 as default. Formally:

Suc :=

{
1 if MSE ≤ ε

0 otherwise

• Runtime (Time for short) : To compare the efficiency of mentioned calibration
methods, the running time of calibration process is recorded here.

Since the performance of calibration is strongly dependent on the randomly gener-
ated initial solution(s), we use a random restart technique here, in which the whole
calibration process can be restarted until to a fixed time, as long as it is not succeed,
namely failed to find a model with small enough MSE. Finally the best among all
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outputs from each restarted calibration processes is adopted. For gradient descent
and simulated annealing methods, a relative large restart number is allowed (default
10), while the small restart number for ES is set (default 3), because the influence of
randomness is smaller for the ES than other variants, where we maintain a population
that is initialized randomly.

In this experiment, all results are obtained based on 50 randomly generated FOTs
with 200 training examples, as the complexity of FOTs varies from 1 to 60. The
configurations for these calibration methods are listed in Table 3.2, and the compar-
ison results are shown in Figure 3.17. As one can see, the ES outperforms the other
three variants, which shows a reliable high success rate, although the success rate de-
creases a little as complexity becomes large. Neither gradient descent nor simulated
annealing can get close to a global optimum as complexity becomes large, obviously
because they get stuck in local optima. One interesting observation here is that the
GD−direct provides better results comparing to the GD, since the GD propagates the
overall error backward by estimating errors for interior nodes, this estimation brings
in turn error in the calibration. Unlike in the GD− direct method, using the chain
rule to compute partial derivatives is error-free from the mathematical point of view,
all parameters are updated based on the overall error simultaneously, which decreases
the error on training data. Of course the training time of ES is not comparable with
other variants, but still in an acceptable range (maximal 62.3s).

Table 3.2: Configurations
for calibration methods

Name Value Remark
For gradient descent (GD and GD−direct)
batch learning Yes
type 0 direct gradient descent
For simulated annealing (SA)
learning rate 0.1 decrease during iteration
temperature 1

t t the number of iteration
For evolution strategies (ES)
population size µ 10
#off-springs λ 20
#parents for recombination ρ 2
life span K 100
recombination type rec intermediate
max generation 100
stall generation 10

It is not surprised that the both greedy variants GD and GD−direct fail in calibration
of FOTs, since they often trap in the local optimum despite applying the restart tech-
nique, which tries to avoid local optimum by using different initializations. We have
arranged more experiments under various parameter settings on GD and GD−direct,
for example turning to online learning in stead of batch learning, changing the type
of update rules, and so on, there is no significant improvement achieved comparing
with the standard settings. Therefore, in following discussion we shall ignore these
two variants.

On the other hand, the SA also fails in this case, which is well-known for its ability
to escape from local optima and finally might reach the global optimum [LA87].
This might due to two reasons: Firstly we notice that the problem of calibration of
FOTs has extreme many local optima as the complexity of FOT becomes large, which
can be observed in that GD often fails in finding a global optimum despite various
initializations; Secondly the parameter settings of SA in this case are selected blindly,
which is of course not sufficient for success of SA. Although it is possible to tune
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Figure 3.17: Comparison
result on calibration
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the parameter settings of SA to increase its success rate, but it might also increase
the runtime of SA at the same time [Haj88]. From another aspect, SA and single trial
versions of ES ((1,1)−ES, namely with population size 1, comma selection and
offspring size 1) have a close relationship on optimization over continuous variables,
as Rudolph indicated in [Rud93], which only differ in the choice of the sampling and
acceptance distributions, namely how to generate a new solution and which rule to
accept it. Following the observations in [Rud93], the different between SA and ES
becomes less essential by designing massively parallel SA algorithm. Therefore we
shall concentrate on ES in following experiments and ignore SA too.

3.4.2 Parameter Determination in Evolution Strategies

Applying ES is usually computationally expensive, especially as applied to optimize
real-world problems, so the optimization on parameters in ES is always advisable,
this issue has been addressed in several scientific disciplines in last decades in terms
of experimental design [CMG+93, Joh02, Kle01, Mor02, BB03, BB05] or ES design

The experiments in this section aim to find out how the main parameters involved in
ES influence the overall performance. It is clear that no universal “optimal” parame-
ter specification exists for the calibration of FOTs for any case, however we want to
gain a general impression on important parameters in ES through these experiments.
In Table 3.3 the primary parameters of ES investigated in this section are listed, as
well as the respective domains and default values suggested in [Bäc96].

Table 3.3: Primary
parameters in ES Name Remark Domain Default

µ the population size N+ 15
λ the number of off-springs N+ 105
ρ number of parents for recombination {1, . . . ,µ} 15
rec recombination type {discrete, intermediate

intermediate}
K life span N+ 1

The goal of ES design is to find a parameter specification (also called a design point
in this context) for these five parameters, say φ ∈ Φ with Φ denotes the domain of
parameters, so that an ES specified with φ can optimize FOTs on given training data
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as well as possible. Note that a training data must be given and seen as fixed for ES
design, so that the learnt parameter specification is only optimal for the given train-
ing data. The goodness of a parameter specification can be measured with different
criteria over the training data, for instance, MSE is used to get the objective value
of a parameter specification. The experimental results of ES may reveal informa-
tion about the robustness of ES, which lead to new insights in the role of parameters
considered here, for example, the relationship between µ and λ , etc.

Since there are infinite potential parameter specifications in Φ, it is impossible to try a
complete enumeration of all parameter specifications. Instead, let us consider several
commonly used methods for this purpose:

• One-parameter-at-a-time : This method tries to vary one certain parameter
at a time, while the remaining parameters are held constant. It provides an
estimate of the influence of a single parameter at selected fixed conditions of
the other parameters. To run this method, one just simply need to decide the
order of parameters to be varied, and how to optimize single parameter while
others with constant values. However, it only works under the assumption that
the effect would be the same at other specifications of remaining parameters,
which requires in turn that effects of parameters behave additively in terms of
the objective value in respective domain. Furthermore it is difficult to deter-
mine interrelationship between parameters. So we do not recommend to use
this method.

• Statistical design of experiment: (DOE) This method has a long tradition
in statistics and has been developed for different applications in several areas,
such as computer simulation and deterministic computer experiments [Kle01,
BB05]. Let us review the basic idea of DOE at first. Generally if we consider
the relationship between design points and their objective values (default MSE
here), then a mathematical model can be represented as follows:

y = f (φ)

where φ ∈ Φ is a design point and y is its objective value (MSE) respectively,
f is a mathematical function, e.g. f : Rq → R for a design point with q real-
valued variables and the objective value of each design point is again a real
number. In order to find an optimal design point, we try to estimate the mathe-
matical function f at first, then find an optimal design point based on f . Since
the objective value of a design point is real-valued here, estimating f becomes
a typical regression analysis problem [HMS02]. Therefore, we try to approxi-
mate f by using different regression models, such as linear or quadratic models.

Let us demonstrate how to use DOE to design an experiment with q parameters.
Independent of the type of regression model applied in DOE, several design
points (called samples) are selected and their objective value are calculated, the
relevant question here is how many samples are necessary and how to select
them. Assume that there are n samples are selected, then the objective value
and design point for i-th sample can be expressed as yi and φ i, for all i ∈
{1, . . . ,n}. DOE applies simply a linear regression model to approximate f ,
which is represented in following form:

y = X ·β + ε

where y = [y1, . . . ,yn]′ and β is the vector with 1+q coefficients, ε denotes the
vector of n error terms, X stands for the (n× (1 + q)) matrix of independent
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regression variables, which is constructed as:

X :=


1 θ 1

1 . . . θ 1
q

1 θ 2
1 . . . θ 2

q
...

...
1 θ n

1 . . . θ n
q


where θ

j
i is the i-th parameter in j-th sample. Using least square methods to

estimate this linear model, one follows the optimal regression coefficient as:

β̂ = (X ′X)−1X ′y

with X ′ is the matrix transpose of X , and X−1 denotes the matrix inverse of X .
To simplify the computation of β̂ , each variable would be scaled to the range
[−1,1], called standardized here, then only the two endpoints of each variables
are considered for constructing design points, which results that X consists
only of −1 or 1. Furthermore, one of typical designs in DOE, factorial design,
takes 2q samples by combining available endpoints of each variable, so that
X is an orthogonal matrix, namely (XX ′) = nI with I is the identity matrix of
size n. Beginning at the middle point θ = [0,0, . . . ,0]′, to get a design point
with smaller objective value, a linear search is performed in the direction of the
steepest descent, which is given by −(β̂1, β̂2, . . . , β̂q), note that the component
with index 0 of β̂ is ignored here, since it is a constant coefficient. To regulate
the step sizes ∆θi, the largest absolute regression coefficient is selected: j =
argi max(θ̂i), then the update for other parameters can be scaled as:

∆θ j =− θ̂i

|θ̂ j|/∆θi

for all i ∈ {1, . . . ,q}. Along this direction, further design points can be ex-
amined, until a local optimum is found (further update decreases the objective
value or exceeds the boundaries).

Figure 3.18 demonstrates the basic idea of DOE for optimization problem
based on two standardized parameters θ1 and θ2. Four samples are taken in
this case at the corners of boundaries, from which the regression lines are esti-
mated (denoted with dashed lines). From the start point d0, several new design
points along the direction of steepest descent are selected and evaluated. The
result of DOE, say d′0, can be improved further by setting d′0 as central point
and constructing another DOE process.

Any parameter involve in DOE has to be standardized into the interval [−1,1],
this is quite easy for quantitative parameter, for example the population size,
say µ , ranges in [l,h], then it can be standardized as µ ′, using the linear trans-
formation µ = (l + h)/2− (l− h) · µ ′/2. Qualitative parameters, such as re-
combination operator, have to be treated separately, because a linear search
cannot be performed in this case.

The factorial design of DOE requires at least 2q samples, which becomes com-
putational expensive as the number of parameters to be optimized becomes
large. Another fractional factorial designs requires only 2q−k samples by
neglecting interactions between some (k) parameters [Kle01]. Other designs
have also been proposed, such as central composite designs by adding central
points and axial points. It has been shown that DOE is more efficient than
one-parameter-at-a-time strategy [Kle87].
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Figure 3.18: Path of
Steepest Ascent in DOE
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• Design and analysis of computer experiments (DACE) : In order to discover
the nonlinear dependencies, the DACE [LNS02, SWN03] assumes that the cor-
relation between errors is related to the distance between the sampling points,
whereas regression models used in DOE assume that the errors are indepen-
dent. Beside this, DACE can use different regression models to approximate
the mathematical function f , for example, quadratic or linear models.

The DACE considers samples placed in the interior of the design space, rather
than only on the boundaries as the DOE does. To determine N sampling points
for DACE, the Latin Hypercube Sampling (LHS) method [MCB79] is selected,
which provides a great flexibility in choosing the number of samples. In LHS
the interval of each parameter is partitioned into N sub-intervals with identical
lengths, so that there are exactly Nq rectangles for q parameters. Then N rect-
angles are selected randomly following the uniform distribution, and one de-
sign point is generated in each selected rectangle again following the uniform
distribution. Generating design points in this way is called Latin Hypercube
Design (LHD).

However the problems arise from DACE designs by dealing with qualitative
factors, even with the LHD, as Santner argued in [SWN03]. Moreover, the
advantages and disadvantages of using DACE are discussed in [JSW98] elab-
orately.

• Sequential parameter optimization (SPO) : Another method for the purpose
of experiment design is to generate the design points not at once, but sequen-
tially, which might profit from that the selection process for further design
points can include knowledge from the evaluation of previously generated de-
sign points. Since several works [SWN03, BB05] have shown that SPO out-
performs other alternatives, especially for evolution strategies, we shall apply
SPO to determine the parameters of ES in this section.

Sequential sampling approaches with adaptation have been proposed for DACE
[SWN03, SWMW89], here let us review the basic idea of Thomas Bartz-
Beielstein [BBLP05], which is also used in this section to determine the pa-
rameters of ES. As the name indicates, SPO begins with several design points
selected by using LHS, the evaluation results on these design points are used
to generate first DACE model. Based on this first DACE model, further de-
sign points are selected, and the DACE model would be improved with newly
evaluated design points. The crucial issue of this method is how to decide next
design point based on a DACE model. In Santner et al. [SWN03], a heuristic
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algorithm for unconstrained global minimization problems is presented. Let us
denote yk

min the smallest known objective value after k design points, for a new
design point φ , the improvement of φ is defined as:

I(φ) =

{
yk

min− y(φ), if yk
min > y(φ)

0 otherwise

with y(φ) the objective value of φ . As the exact value of y(φ) is unknown, the
goal is to optimize its expected value, the so called expected improvement, an
alternative to estimate expected improvement has been proposed in [Sch97]:

E(I(φ)) =

yk
min∫
−∞

(yk
min− f (φ)) ·ψ( f (φ))dφ

with ψ(·) as a probability density function representing uncertainty about f (φ).
Using DACE one can determine the mean squared error and estimation of f (φ)
for a newly selected design point φ , which enable to compute E(I(φ)) without
solving the integral. Regarding the values of E(I(φ)), a new design point φ ′

is selected in a design space, which is expected to contain special “good” de-
sign points or have high uncertainty. The newly selected design point would
be evaluated afterward, and inserted into DACE model. In this way, a DACE
model would be improved iteratively, until a design point with adequate quality
is found or a maximal number of iterations is reached.

The experiments to determine parameters of ES in this section are based on a se-
quential parameter optimization toolbox (SPOT), this is a MATLAB statistics tool-
box developed over the last years by Thomas Bartz-Beielstein et al1. Adapting SPOT
settings to determine parameter specifications of ES is very simple, where one just
need to point out the parameters to be determined and specify their domains. There
are two configuration files for SPOT:

1. the ROI file, which gives the parameters to be determined in SPOT and their
domains. Regarding the goal of this section to determine five primary parame-
ters of ES, a testRobq.roi file is designed with following content:

name low high isint pretty
p 2 60 TRUE ’population size’
parents 1 20 TRUE ’number of parents’
lifeSpan 0 500 TRUE ’lifespan’
lambda 2 120 TRUE ’off-springs’

A roi file has a clear and comprehensive syntax, so that the previous file can be
easily understood, e.g. the first parameter to be determined is the population
size, in which the interest range lies in [2,60], etc. Here the interest ranges
for four quantitative parameters are specified, in which the default setting sug-
gested in [Bäc96] is already contained. Note that the recombination type, the
sole qualitative parameter, is treated separately, since linear regression model
is not proper to approximate qualitative parameters. In this case, we simply
compare the performances under two alternative recombination type (discrete
and intermediate recombination), and choose the better one regarding their
performances.

1 Free available under http://www.gm.fh-koeln.de/ bartz/experimentalresearch/spot03.zip
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2. the configuration file for SPOT, which has an extension name like other MAT-
LAB scripts, e.g. testRobq.m in this case. The parameters to configure SPOT
are given in this file, e.g. the number of repetitions, or the parameter ρ for SPO
as mentioned before.

Since the previous works in this thesis are implemented in Java, to evaluate a design
point selected by SPOT, a small modification should be made in the file demoSpot-
Java.m, a template file designed specially for Java application, where the evaluation
process is called through:

dos(’java -cp robq.jar robq.experiment.ExperimentSPOT’);

To guarantee a fair comparison between different design points, special considera-
tions are taken on the stop-criteria of ES. Some stop-criteria are not appropriate for
this task, for instance, the maximal number of generation, apparently a design point
with larger population and offspring sizes has more chance to get a smaller objec-
tive value than one with smaller population and offspring sizes, since the former one
can simply try more individuals than the later one. From this aspect, only “fair”
stop-criteria are allowed to evaluate design points from SPOT, such as the maximal
runtime of ES. Moreover, a new stop-criterion is defined to limit the maximal times
to compute fitness of individuals, called maximal evaluation time. Since the fitness
of any individual is calculated based on given training data, this is the most time-
consuming part of ES, as the mount of provided training data becomes large. The
maximal evaluation time gives an upper bound for scanning over training data.

As arranging experiments in SPOT, the results can be given in different form. In
graphical form, the interrelationship between any two parameters can be shown in a
3-dimensional space regarding the objective value. As example, the SPOT is applied
to determine parameter specification of FOTs with fixed complexity (50 here), that is,
an FOT is generated randomly with 50 aggregation operators and a synthetic training
data is then created respectively (with 200 instances), SPOT is applied to determine
the four quantitative parameters of ES (the recombination type is set to discrete).
Figure 3.19 shows the distribution of objective values based on population size and
parents, where the black points represent evaluated design points. It is clear to see
that “better” design points lie in the region with higher population and parents size,
which is also plausible. Additionally, the mean square error of regression models
used in SPOT can be observed, as Figure 3.20 shows.

The detailed results can be found in a .bst file, in which the “best” design points found
so far are listed, for example a typical result file looks like:

Y p parents lifeSpan lambda CONFIG
0.004 50.7797 9.66162 190.904 38.0513 11
0.0049 50.7797 9.66162 190.904 38.0513 11

In this section, we arrange experiments according the complexity of FOTs (ranges
from 10 to 60) and the recombination type. Since SPOT can only give “best” design
point for a fixed problem, the experiment would be repeated up to a fixed time (10)
to get relative reliable results under each configuration. To this end, the mean values
of best parameters reported by SPOT are plotted for four quantitative parameters, as
well as their standard deviations in Figure 3.21 and 3.22.

It is clear to see that the dependency on complexity for these parameters is not so
strong in both cases, so that we do not need to extract a parameter specification for
each complexity, but only take one general optimal parameter specification for FOTs
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Figure 3.19: Objective
values depending on two

parameters (µ and ρ)
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Figure 3.20: Mean
square error depending
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Figure 3.21: Best
parameters reported by

SPOT (recombination
type: discrete)
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Figure 3.22: Best
parameters reported by

SPOT (recombination
type: intermediate)
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with different complexities. Considering the recombination type, the averaged objec-
tive value in case of discrete recombination (mean 0.0089, standard deviation 0.0069)
is clear lower than in case of intermediate recombination (mean 0.0104, standard de-
viation 0.0074). We get “best” parameter settings of ES in general case by taking
the averaged values (rounded to the nearest integer numbers) among all considered
complexities, which are listed in Table 3.4. Let us refer these parameter settings as
optimized design reported by SPOT, in order to show the improvement of optimized
design, we arrange experiments to compare the optimized design and the original
parameter setting listed in Table 3.2, denoted as original design, under the same con-
dition just as the previous section does. The results are shown in Figure 3.23, where
one can see that the performance of optimized design is clearly stabler than the orig-
inal design, even as the complexity increases, while the training time is a little higher
than the original design, but still in an acceptable range (around 1 minute for an FOT
with 60 interior nodes). In following experiments, ES is specified with parameters
listed in Table 3.4 without further remarks.

Table 3.4: Best
parameters

recommended by SPOT
for ES

Name Value
population size µ 40
#off-springs λ 60
#parents for recombination ρ 8
life span K 255
recombination type rec discrete

Figure 3.23: Comparison
between original design

and optimized design
recommended by SPOT
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3.4.3 Noisy Data

With synthetic data we have simulated an “ideal” case for the calibration problem of
FOTs, namely the prior knowledge of experts can be modeled in the form of FOT
perfectly, and training data provided by experts are also precise, in the sense that a
special FOT exists, which mimic the behavior of experts by assessing training data
correctly. However the condition for such “ideal” case with “precise” training data
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can hardly be observed in practice, for example, human experts prefer to give cate-
gorical rather than numeric assessment, or the uncertainty over quality might lead to
error in training data, etc. In this experiment, we consider error in training data, in
which we add random noise into the training data to test the calibration process on
noisy data. In the next section, we shall examine the ability of the calibration process
to handle categorical data.

The noise is simulated in this case as a random variable, say e, which follows normal
distribution with mean 0 and a positive standard deviation σ , namely e ∼ N(0,σ).
This noise is added into training data to deflect the real output, that is, the quality of
an input vector x in this case, say y, is set as:

y = max(min(F(x)+ e,1),0)

with F(x) denotes the real output by inputting x into an FOT F , and e a randomly
generated error. Due to the embedded noise in training data, the measurement used
to compute success rate becomes too strict. It is necessary to relax the condition in
this case, which can be done by assigning a bigger ε , or taking the embedded noise
into account, this leads to a modified success rate, defined as:

Suc =

{
1 if MSE ≤ ε + e′

0 otherwise

where MSE is the mean absolute error made by an FOT model as defined before, ε

is again a user-defined threshold (default ε = 0.01), e′ is the mean of squared noise
added into training data, i.e. the error of an FOT with optimal parameter specifica-
tions.

The experimental results are shown in Figure 3.24 according to different ε values.
The results are very similar to the previous noise-free scenario, but as the complexity
grows, the noise has a negative influence on the success rate, that is, the success
rate starts to deteriorate slightly. Notice that after adding noise in the training data,
the calibration process needs relatively more training time comparing of synthetic,
noise-free training data.

3.4.4 Discrete Data

In this experiment, categorical data are considered for the calibration of FOTs. Origi-
nally an FOT can only give numeric outputs, in order to transform the numeric output
of FOTs into discrete one, several “cut points” are used here to divide the unit interval
into several regions, each of them corresponds a discrete output. In this experiment
those cut points are randomly generated under the uniform distribution in the unit
interval, apparently it needs k− 1 cut points to generate k discrete outputs. In the
calibration phase, the ES are set to tune these cut points just considering them as
constraint parameters, this can be easily done in ES.

In contrast to the case of numeric outputs, the loss function MSE is newly defined
here for FOTs with categorical outputs:

• Mean squared error : Given an FOT F(x, θ̂) with categorical output, the
mean squared error of F(x, θ̂) is defined as:

MSE :=
1
N ∑

(xi,yi)∈D
γ(ŷi,yi)

2

where N is the size of training data D, θ̂ is the parameter specification of F ,
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Figure 3.24:
Experimental results on

noisy data
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ŷi = F(xi, θ̂) and γ is the all-threshold loss defined before (see Equation 3.1.3).

Correspondingly, the Suc in this case is updated with newly defined MSE. The ex-
periments with different number of outputs (k = 2,k = 3 and k = 4) have been carried
out and shown in Figure 3.25.

Again the success rate on different ks is very high and only starts to deteriorate
slightly as complexity increases. The calibration problem seems to become harder
for a larger k, namely a larger number of categories, as one can see the increased
runtime for k = 4.

3.4.5 Real Data

The goal of the study on real data is to compare FOTs with other model classes in
a learning (classification) context, in order to show that it can be usefully applied
in those cases, where expert knowledge about the qualitative structure of an evalua-
tion scheme is available. In this section, let us consider an interesting type of rating
problem, namely to evaluate strategic situations in the game of poker2. More specifi-
cally, we considered the pre-flop phase (two cards at first hand) in the Texas Hold’em
variant (see [Skl03] for general introduction), where a player can take one of two
possible actions: Raise and call 3. As a player will normally tend to raise in situ-
ations that appear to be favorable and call in less favorable ones, these two actions
can be considered as ordinal ratings, with call≺raise, i.e. assuming that a player can
evaluate the first hand by assign a numeric rating, then one will take raise in case of
a high rating, and take call otherwise. From a machine learning point of view, the
problem can obviously be seen as a binary classification task: Predict whether, in a
given situation, a poker player will raise or call.

2 Poker currently enjoys a great popularity in artificial intelligence research, especially in machine
learning [FK01].
3 Actually one can also use “fold" to quit the game, however in this case the card information is not
recorded, thus not interested here.
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Figure 3.25:
Experimental results on

discrete data
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The poker data is collected by the university of alberta computer poker research
group4, which contains currently over ten million records of information about poker
plays, such as number of players, cards on board, and so on. According to our poker
expertise, a relative small dataset is extracted from the original dataset, which con-
tains 71732 instances related to the our task in this thesis. Furthermore, six basic
evaluations are built with the help of our poker expertise, they are:

1. cardvalue : The quality of the first hand (with two cards) hold by a player.
According to the Sklansky table5, all possible first hands are categorized into
nine levels, a smaller level corresponds a higher quality of the first hand. To
modulate this input value, we define the fuzzy set of “strong hands" with a
membership function:

(c1,c2)→ r +
(1− r)S(c1,c2)

8

where c1 and c2 express the first two cards, S(c1,c2) is the Sklansky level, and
r ∈ [0,1) is a parameter to be learned.

2. street : The probability to extend the current hand to a street, using the (yet
unknown) three cards that follow. The fuzzy set modulating this input feature
is defined by:

(c1,c2)→
p(c1,c2)

maxc,c′ p(c,c′)

where p(c1,c2) is the probability to extend (c1,c2) to a street and defined by:

p(c1,c2) :=
|{(x,y,z)|(x,y,z) ∈ C ,street(x,y,z,c1,c2)}|

|C |

where C is the set of potential remaining three cards, which can build a hand

4 http://games.cs.ualberta.ca/poker/IRC/
5 http://www.onlinepokercenter.com/articles/poker_strategy/sklanskys_hand_rankings.php
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together with the two cards at first hand, street(x1, . . . ,x5) indicates whether
x1, . . . ,x5 can build a street or not.

3. flush : The probability to build a flush based on current hand. Since a flush
depends only on the color of cards, a fuzzy set modulating this input feature is
defined as:

(c1,c2)→

{
1 if c1 and c2 have same color
r otherwise

where r ∈ [0,1) is again a parameter to be learned.

4. pair : The probability to build a pair on current hand, which is simply defined
as:

(c1,c2)→

{
1 if c1 and c2 only differ in color
r otherwise

with the parameter r ∈ [0,1) to be learned.

5. #player : Since the best action also depends on the number of players involved
in the game, the larger the number of players, the smaller the chance to win the
game, thus the more probability to “call". Assuming that there are maximal 12
players, we define the modulating fuzzy set by:

n→ 1− r(n−2)
10

with a parameter r ∈ [0,1) to be learned and n the actual number of players.

6. position : From the strategic point of view, sitting at the end of the table is
better than sitting at the beginning, namely the later to play, the better a position
is. A fuzzy set of “good positions” is therefore defined by:

p→ r +
p(1− r)

n

with the parameter r ∈ [0,1) to be learned and p the actual position of player,
n the actual number of players.

According our modest poker expertise, an FOT is designed based on previous at-
tributes to model a utility function on the action attribute, as Figure 3.26 shows.
Needless to say, the features that we used will not completely determine the action
of a poker player, the real poker game is more complicated than in this experiment
here. Instead, a player may consider further aspects, different players have different
strategies (e.g. bluffing plays an important role in poker), eventually some random-
ness will also remain. As a result, the poker data can be considered as extremely
noisy, which makes the prediction on poker data very difficult from a learning point
of view.

To make a fair comparison with state-of-the-art algorithms, two well-known algo-
rithms are taken from tree-based and rules-based classifier packages of the Weka
package [FHT97] (C4.5 and Ripper). Table 3.5 lists these two algorithms and achieved
accuracy 6 and complexity7 on the poker data, with respective standard deviations.
As one can see, the poker data is indeed very hard to be learnt, two algorithms achieve

6 The accuracy is achieved by 10-fold cross-validation over all training data at an average.
7 For rule-based algorithm, the complexity is the number of rules used in the model; for tree-based
algorithm, the complexity is the number of nodes involved in the tree-like model.
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Figure 3.26: An FOT for
rating actions on first

hand in the poker game
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until about 68.8% accuracy, in which the C4.58 usually returns the better accuracy
than JRip 9. On the other hand, the models on these algorithms are quite complex
and difficult to be understood, even the simplest model learnt by JRip contains al-
ready about sixteen rules, although the length of single rule is still not considered.
For a poker player, this kind of model is of course not easy to be digested. The FOT
model on the poker data, in contrast, is very straightforward and intuitive, alone the
interpretability of FOT has shown its advantage.

Table 3.5: Reference
algorithms on the poker

data

Name Category Accuracy(%) Complexity
JRip Rule-based 68.60±0.45 15.01±3.07
C4.5 Tree-based 68.84±0.48 168.06±17.60

Following, we investigate the accuracy of our FOT model on poker data. To do this,
we randomly extract a finite number of training data, say T , and use the rest data
for purpose of testing. For each T , the reference algorithms and our FOT model
are provided a training data with exact T examples, and the accuracy is measured
by applying models on remaining testing data (with 71732− T instances). In this
way, the experiment would be repeated ten times, the results in terms of averaged
accuracies as a function of the number of training data T are shown in the upper half
of Figure 3.27, as well as averaged accuracies with standard deviations in the lower
half of Figure 3.27 (JRip is omitted for the sake to clearness).

One of the most interesting aspects of the results concerns the fact that FOT signifi-
cantly outperforms the other methods, if relatively few training data is available. As
the provided training data increases, this superiority decreases and finally disappears.
In fact, the improvement of FOT is drastic for the first few training examples, whereas
the rest of the examples does not contribute very much. Besides, the standard devi-
ations of the accuracy is significantly smaller for FOT than for the other models. To
explain this finding, note that our FOT has a very strong inductive bias, due to the
fact that it has a fixed, predetermined structure. Compared to this, the other models
are much more flexible, so that they can adjust its structure according the mount of
available training data, which reflects in the increased complexity of the learnt mod-
els (see Figure 3.29). It is well-known that, when learning models from data, a high
flexibility of a model comes along with a risk of over-fitting, which is especially high
for small data sets and becomes less severe for larger ones. Therefore, a strong induc-
tive bias is especially useful if data is not abundant. However, at least if the bias is not
perfect, if may also become hindering, namely to extract an optimal hypothesis even
from a very rich model class, when enough data is available; in this case, the bias may
8 In Weka it corresponds the J48 class.
9 An implementation in Weka for Ripper.
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Figure 3.27:
Experimental results on

poker data (accuracy and
variance)
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produce a problem of under-fitting. Exactly this phenomenon seems to be responsi-
ble for the results that we obtained. In order to illustrate this effect, the accuracies
on training and test data for these approaches are plotted in Figure 3.28, in which
the learnt models are applied to classify the training and test data respectively. These
results again confirm that our approach is especially useful if reliable background
knowledge is available, as it allows one to formalize and exploit such knowledge in
a convenient way, while alternative approaches may otherwise be preferable.

Figure 3.28:
Experimental results on
poker data (accuracy in

training and test data)
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To measure the interpretability, the complexity of models used in C4.5 and our FOT
is taken into account in this case, since both have a tree-like structure, the complexity
of models is defined as the number of nodes in the tree structure. Though models
in JRip have different structure as our FOT, we consider the complexity of JRip as
the number of rules involved in models, but we should keep in mind that the rules in
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JRip may have still various lengths. The complexities for two reference algorithms
and our FOT as a function of the number of training data T are shown in Figure 3.29.
Note that the structure of FOT is fixed in this case, so that its complexity is a constant
line here (complexity = 13).

Figure 3.29:
Experimental results on

poker data (complexity of
models)
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Let us again bring up the aspect of interpretability, which we consider as another
strong advantage of our approach. In fact, even though the C4.5 models (as well as
JRip classifiers) achieve a slightly higher classification rate if enough training data
is available, these models are quite complex and difficult to understand. The size of
the decision trees tends to increase with the size of the training data and can easily
contain as many as 60 interior nodes; besides the splitting conditions are often non-
intuitive. While such models might still be acceptable to predict actions in Poker,
interpretability becomes much more an issue in critical applications, such as quality
control or classification in medicine. In these fields, a human expert may not be
willing to trust in a decision tree model with 60 interior nodes.

3.5 Conclusions

In this chapter we address the optimization problem of specifying the parameters
involved in an FOT and several considered calibration techniques respectively. The
empirical evaluation with these calibration techniques has been investigated in this
chapter, which shows that the evolution strategies delivers a satisfied optimization
performance in terms of accuracy and running time, even on noisy and discrete data.
As applied to a real problem, the FOT model shows its superiority in special situation
against several well-known techniques, where an FOT model has strong inductive
bias, which becomes especially useful in the case that provided data is not abundant.
On the other hand, maybe more important argument to use FOTs, an FOT model has
the excellent interpretability, whereas many purely data-driven techniques are usually
too complicated to be understood by human being.
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4 Minimizing Evaluation Costs
for Fuzzy Operator Trees

In this chapter we address a cost issue when applying FOTs, namely how to minimize
evaluation cost on FOT, if the basic evaluations are associated with finite costs. The
motivation and related definitions for this problem are introduced in Section 4.1,
while Section 4.2 is devoted to the related considerations and algorithms.

4.1 Problem Statement

Let us start with the motivation for evaluation cost minimization on FOTs in Sub-
section 4.1.1, then we give related definitions in Subsection 4.1.2. An illustrative
example is shown in Subsection 4.1.3

4.1.1 Motivation

The problem of minimizing evaluation cost on FOT arises regarding following two
observations:

1. How precise do we need an assessment? An FOT is supposed to assess an
object by assigning a precise utility degree in the unit interval, which is spe-
cial useful and necessary for several applications, such as object comparison,
ordering, etc. But in other cases, user may not always need a precise assess-
ment, but have different requirements on precision level. Figure 4.1 illustrates
an example on product evaluation, where the precision level 1 can be used to
detect “defective” products by setting a threshold on 0.9, so a product will be
labeled as NIO, if the assessment reported by FOT lies in the interval [0,0.9),
otherwise it is labeled as IO. In this way, one can distinguish the quality of
product roughly and classify the products into two classes. In industrial area,
this might be very useful for early detection of serious errors in the production
process. On the other hand, a more precise level 2 with another four thresh-
olds is to determine “classes” of approved products, just like in the lower half
of Figure 4.1 shows. A more detailed classification on “approved” products
might be very useful for several tasks, for example, different prices can be set
down based on this classification, or assembling of components from differ-
ent “classes” can be arranged, etc. In a word, we do not always need precise
assessments, a rough classification is enough in many cases.
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Figure 4.1: Precision
levels of assessment on

FOT
0 0.9 1

0.9 0.92 0.94 0.96 0.98 1

Not in order

In order

∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗

Precision level 1:

Precision level 2:

Classification instead of precise assessment is the basic motivation for the
works in this chapter. Previously, in order to get a precise assessment of ob-
ject based on an FOT, measurements for all basic evaluations in the leaf nodes
must be carried out generally. However if the goal of quality assessment turns
to classify an object into classes regarding to quality threshold(s), not all mea-
surements have to be carried out, since the classification of object might be
determined based on just part of measurements, in this case the remaining mea-
surements are superfluous in the sense that they can not change the final clas-
sification of object, but only refine the assessment made by already evaluated
measurements. This motivates us to analyse the evaluation order according to
given precision levels.

2. In practice, the measurement of basic evaluations on an FOT is always asso-
ciated with an evaluation cost, for example considering the car selection prob-
lem introduced in Section 2.4.2.3, the basic evaluation (number of) “Doors” is
trivial, while for another basic evaluation “Safety”, it might be necessary to ar-
range several crash experiments to determine the safety factor. Of course from
a producer’s point of view, a minimization of overall evaluation cost is desired.

The goal of minimizing evaluation cost on FOTs is how to arrange the measurements
(since the basic evaluations of an FOT are built based on measurements though as-
sociated fuzzy sets, in the following text, we simply use the term basic evaluation
to refer a measurement and followed basic evaluation through associated fuzzy set
instead distinguishing both terms strictly), in order to determine the class of object
with given precision level, the objective criterion for such arrangement is the evalua-
tion cost on carried basic evaluations until the classification of object is determined,
generally the less evaluation cost needed, the better is an arrangement.

4.1.2 Formal Definition

For further discussion, we give related definitions and terminologies in this section.
Given an FOT F(xi,x2, . . . ,xn) with n basic evaluations, we assume that each basic
evaluation (in the unit interval [0,1]) follows a finite distribution (denoted as D(xi)),
which is represented in the form of a probability density function, so that each basic
evaluation can be seen as a random number under a fixed distribution. Furthermore,
the evaluation cost of the i-th basic evaluation xi is denoted as c(xi), which is assumed
to be normalized into the unit interval [0,1]. For the sake of clearness, we use the term
cost for the evaluation cost of basic evaluation and leave the term evaluation cost for
further purpose, as introduced later.
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Definition 4.1 (Evaluation Plan). An evaluation plan P (plan for short) on an FOT
F(x1,x2, . . . ,xn) is defined as a permutation of indices of xi from {1, · · · ,n}, formally,
P is a bijective mapping:

P : {1,2, . . . ,n}→ {1,2, . . . ,n}

An evaluation plan P gives the sequence, in which the basic evaluations should be
carried out, P(i) denotes the index of basic evaluation carried in the i-th step accord-
ing to an evaluation plan P. According to an evaluation plan, the basic evaluations
in an FOT would be carried out sequentially. In following text, we shall use F(i) to
denote an FOT F after the i-th evaluation steps, namely the first i basic evaluations
indicated by P have been carried out, and their outputs are known, whereas the re-
maining basic evaluations are still unknown. In particular, F(0) denotes an FOT F , in
which none of its evaluations is carried out. Furthermore, we use F(i)(x) to denote
the output of F(i), if the remaining basic evaluations are assigned with x.

Definition 4.2 (Quality Interval). Given an FOT F(x1,x2, . . . ,xn) and a plan P, an
quality interval (interval for short, denoted as [F(i)]) after the i-th evaluation step is
defined by:

[F(i)] := [F(i),F(i)]

where i ∈ {0,1, . . . ,n} and

F(i) := min
x∈Xn−i

(F(i)(x))

F(i) := max
x∈Xn−i

(F(i)(x))

in which Xn−i = [0,1]n−i is the domain of the remaining n− i basic evaluations to be
carried out.

Note that an interval indicates the range of possible output of an FOT after some basic
evaluations have been carried out. Apparently, as more basic evaluations are carried
out, the certainty of final output of an FOT increases, which corresponds a smaller
interval.

Proposition 4.3. Given an FOT F(x1,x2, . . . ,xn) and a plan P, it holds:

• [F(0)] = [0,1]

• [F(i)]⊆ [0,1], ∀i ∈ {0, . . . ,n}

• [F(i)]⊆ [F(i−1)], ∀i ∈ {1, . . . ,n}

• ∀x ∈ Xn−i : F(i)(x) ∈ [F(i)], ∀i ∈ {0, . . . ,n}

• ∀y ∈ [F(i)] ∃x ∈ Xn−i : F(i)(x) = y, ∀i ∈ {0, . . . ,n}

• F(i) = F(i)(0n−i) and F(i) = F(i)(1n−i), ∀i ∈ {0, . . . ,n}
where 0n−i (1n−i) indicates the case that all remaining n− i basic evaluations
have output of 0 (1), namely:

xP( j) = 0, ∀ j ∈ {i+1, . . . ,n}

or
xP( j) = 1, ∀ j ∈ {i+1, . . . ,n}
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The proofs of Proposition 4.3 are trivial and omitted here.

Definition 4.4 (Quality Threshold). To assess an object o on an FOT F , a quality
threshold (threshold for short) T is a real number in [0,1], which expresses the users
interest whether the assessment of o lies over or under T .

The term threshold is defined here to express a precision level, for example, the
precision level 1 in Figure 4.1 can be built with a threshold T = 0.9. Notice that
several thresholds build a multi-classes evaluation, namely given a set of thresholds
T = {T1,T2, . . . ,Tn} (0 ≤ T1 < T2 < .. . < Tn ≤ 1) and an object o, following classes
can be built: 

class 0 if 0≤ F(o) < T1;
class 1 if T1 ≤ F(o) < T2;
. . .
class n−1 if Tn−1 ≤ F(o) < Tn;
class n if tn ≤ F(o)≤ 1;

Definition 4.5 (Quality Approved). Given an FOT F(x1,x2, . . . ,xn), an integer i ∈
{1, . . . ,n}, a plan P and a threshold T , the quality of an object o is called approved
at the i-th step, if after the i-th basic evaluation being carried out, the quality of o is
ensured to be at least T , called positively approved (denoted as Q≥(i,F,P,T ) = 1),
or under T , called negatively approved (Q<(i,F,P,T ) = 1), otherwise the quality of
an object o is called not approved at the i-th step (Q≥(i,F,P,T ) = Q<(i,F,P,T ) = 0).
Formally, we have:

Q≥(i,F,P,T ) =

{
1 if [F(i)]⊆ [T,1]
0 otherwise

(4.1.1)

Q<(i,F,P,T ) =

{
1 if [F(i)]⊆ [0,T )
0 otherwise

(4.1.2)

where i ∈ {1, . . . ,n}. Since [F(i)] is a continuous interval and bounded by [0,1],
Equation 4.1.1 and 4.1.2 can also be rewritten as:

Q≥(i,F,P,T ) =

{
1 if F(i) ≥ T
0 otherwise

Q<(i,F,P,T ) =

{
1 if F(i) < T
0 otherwise

Together the quality of an object o is called approved at the i-th step, denoted as
Q(i,F,P,T ) = 1, if it can be either positively or negatively approved, otherwise de-
noted as Q(i,F,P,T ) = 0, that is:

Q(i,F,P,T ) = sgn(Q≥(i,F,P,T )+Q<(i,F,P,T ))

with sgn is the signum function.

Definition 4.6 (Evaluation Cost). Given an FOT F , a plan P and a threshold T , the
evaluation cost, written as E(F,P,T ), is the expected sum of costs of basic evalua-
tions, which contribute to quality approving. Note that Q(i,F,P,T ) is a random vari-
able based on the first i basic evaluations according to P. Formally, the evaluation
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cost is defined:

E(F,P,T ) :=
n

∑
i=1

c(xP(i))(1− p(Q(i−1,F,P,T ) = 1))

= min
∗∈{≥,<}

(
n

∑
i=1

c(xP(i))(1− p(Q∗(i−1,F,P,T ) = 1))

)
(4.1.3)

where p(·) denotes the probability function.

As we use Q(i,F,P,T ) to mark whether the quality of to be evaluated object is ap-
proved or not after the i-th evaluation step, the evaluation cost is an accumulative cost
of those basic evaluations, which are responsible for quality approving. Actually, the
cost of i-th basic evaluation would be counted, only if the quality is still not approved
before carrying the i-th basic evaluation, namely if Q(i−1,F,P,T ) = 0. Otherwise, in
the case that the quality is already approved before the i-th evaluation step, the basic
evaluations in the i-th step and after that are treated as superfluous, and not counted
into evaluation cost.

Notice that in the worst case, the evaluation cost could be maximal, namely the sum
of costs of all basic evaluations, since in that case, the quality can only be approved,
after all basic evaluation are executed. Otherwise, if we can find an evaluation plan,
in which the quality can be approved as “soon” as possible, then the total evaluation
cost can be decreased. Therefore, the challenge of minimizing evaluation cost in this
chapter is to find an optimal evaluation plan, which can minimize the evaluation cost,
under the condition that all involved basic evaluations are independent and follow
finite distributions.

Definition 4.7 (Optimal Evaluation Plan). Given an FOT F and a threshold T , let us
assume that P is the set of possible evaluation plans on F , then an optimal evaluation
plan P∗ is defined as:

P∗ := argmin
P∈P

E(F,P,T )

= arg min
p∈P,∗∈{≥,<}

(
n

∑
i=1

c(xP(i))(1− p(Q∗(i−1,F,P,T ) = 1))

)
(4.1.4)

To this end, the goal of minimizing evaluation cost on FOTs is to find an optimal
evaluation plan P∗, which is expected with minimal evaluation cost.

Proposition 4.8. The problem of minimizing evaluation cost on FOTs is NP-hard.

Proof. As usual, in order to establish NP-hardness of the problem of minimizing
evaluation cost, say P , it suffices to demonstrate that a certain problem, which is
known to be NP-hard, can be polynomially reduced to P .

On the one hand, let us start from a well-known NP-hard problem: The minimiza-
tion knapsack problem [KPP04, MT90], which is a minimization variant of the well-
known 0−1 knapsack problem [GJ79, GL79], let us refer the minimization knapsack
problem as P+ later. In following, there are n kinds of projects (I1, I2, . . . , In), asso-
ciated with each project Ii are two positive number p(Ii) and c(Ii). If S⊆ {1,2, . . . ,n}
is a subset of indices of projects, then the problem of P+ is to find an optimal subset
of {1,2, . . . ,n}, say S∗, which is defined by:

S∗ := arg min
S⊆{1,...,n}

(
∑
j∈S

c(I j)|∑
j∈S

p(I j)≥ d

)
(4.1.5)
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with a positive number d. According to [DK08], we can interpret c(I j) as the costs
for realization of the project I j and p(I j) as the money effect from its realization.
This problem is to find a set of projects the joint realization of those would provide
the budget revenue not less than d under minimal total costs for realization of this set.

On the other hand, we try to give an reformulation from P+ to the problem of min-
imizing evaluation cost, referred P as later. Let us consider a special case of P
firstly, in which an FOT F has n basic evaluations, any basic evaluation, say at posi-
tion i, is associated with a fixed number xi (xi ∈ [0,1]) as output and cost c(xi), that is,
all basic evaluations are not considered as random variables, but have fixed outputs.
Beside this, there is only one aggregation operator MOWA(1

n , . . . , 1
n) in F , as Figure 4.2

shows. Moreover, considering the parameter specification in MOWA, one can follow
that:

F(i) =
1
n

i

∑
j=1

xP( j)

According to Definition 4.1.4, it is enough to show the NP-hardness of a sub-problem
of P , namely to find an optimal evaluation plan for positive approving, denoted as
P ′. The problem of P ′ is to find a plan P∗, which is defined by:

P∗ := argmin
p∈P

(
n

∑
i=1

c(xP(i))(1− p(Q≥(i−1,F,P,T ) = 1))

)

= argmin
P∈P

(
k

∑
i=1

c(xP(i))|k ∈ {1, . . . ,n},
k

∑
i=1

xP(i) ≥ n ·T

)
(4.1.6)

with a threshold T , k is the number of evaluation steps, so that after the k-th evaluation
step, the quality can be approved positively. Notice that p disappears at the end of
Definition 4.1.6, because in this special case, all basic evaluations have fixed outputs.
As the outputs of basic evaluations are fixed in this special case, the problem of P
turns to find a subset of basic evaluations with minimal evaluation costs, so that the
quality can be positively approved.

Figure 4.2: A special
case for minimizing

evaluation cost problem

MOWA( 1
n , . . . , 1

n )

x2x1 . . . xn

Comparing Definition 4.1.5 and 4.1.6, it is not difficult to figure out the similarity of
the problem P+ and P ′. As a result, P+ can be reduced to P ′ through several
reformulations, which are listed in Table 4.1. For any valid solution for P+, say
S, we can simply construct a valid solution (denoted as P) for P ′ by, for instance,
concatenating the elements in S and {1, . . . ,n}\S.

Reversely, given a valid solution for P ′, say P, let us locate the number k in Defini-
tion 4.1.6 at first, by using:

k = min{ j|1≤ j ≤ n,
j

∑
i=1

xP(i) ≥ n ·T}

Then a valid solution for P+, say S, can be constructed as:

S := {P(i)|1≤ i≤ k}

Apparently, the reformulation from P+ to P ′ can be achieved in polynomial time.
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Finally, since P+ is NP-hard, so it follows that P ′ and P is also NP-hard, the more
general problem of minimizing evaluation cost is of course NP-hard.

Table 4.1: Reformulation
from the minimization

knapsack problem to the
problem of minimizing

evaluation cost.

Nr. In P+ In P ′ Remark
1 Ii i-th basic evaluation Project⇒ Basic evaluation
2 p(Ii) xi Money effect⇒ Output of basic evaluation
3 c(Ii) c(xi) Cost of realization⇒ Evaluation cost
4 d n ·T Budget revenue⇒ Threshold
5 S P Set of projects⇒

Permutation of basic evaluations

4.1.3 An Illustrative Example

An illustration example based on simplified car selection problem from Section 2.4.2.3
is shown in Figure 4.3, where every basic evaluation (at leaf node) has a fixed cost
denoted with c and for an exemplary object o, its basic evaluations are expressed in an
input vector X . For the sake of clearness, we assume that the norms involved in this
example are the minimum t-norm, the maximum t-conorm and the arithmetic mean
respectively. To get the precise utility of o, all basic evaluations in X are required
usually, then the utility of o could be read at the root node (marked with red in the
parenthesis), as well as all the intermediate results.

Figure 4.3: Evaluation
cost for car selection

example

∧

∨

buying
(c = 0.3)

maintain
(c = 0.6)

∅

∧

doors
(c = 0.1)

persons
(c = 0.1)

luggage
(c = 0.4)

safety
(c = 1.0)

Car (0.5)

Price(0.5) Tech(0.85)

Comfort(0.8)

X = 0.5 0.5 0.8 0.9 0.8 0.9

But if one interests in whether o can be positively approved regarding a given T , not
all basic evaluations in X are required to determine the quality of o. Let us assume a
threshold T = 0.9 is given, which can be read as: All objects are classified into two
classes according to their quality degrees, the “positively approved” class (quality
degree over or equal 0.9, indifferent among 0.91,0.95 and 1.0) and the “negatively
approved” class (quality degree under 0.9). Now we are considering two simple
evaluation plans:

P1 := [1,2,3,4,5,6]
P2 := [6,5,4,3,2,1]

namely the six basic evaluations involved in this example would be measured one
by one beginning from “Buying” rightwards under P1, and in reverse direction un-
der P2. As the evaluation process under both plans are plotted in Figure 4.4 to
4.5, it is not difficult to see that the evaluation cost denotes 0.9 (= 0.3 + 0.6) un-
der P1, namely the sum of costs of “Buying” and “Maintain”, since the “Price” factor
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based on them causes the overall quality of car to be limited in an interval [0,0.5]
due to the boundary rule of t-norm, which means o is approved negatively in any
way, no matter the remaining basic evaluations (denotes using “?"). On the other
side, the evaluation cost under P2 turns to be 1.6(= 0.1 + 0.1 + 0.4 + 1.0), since the
quality can only be approved until the first four basic evaluations are carried out
(“Doors”,“Persons”,“Luggage”,“Safety”). Obviously for this object o, the evaluation
cost under P1 is less than that under P2, actually P1 is one of optimal evaluation plans
on o in this case.

Figure 4.4: Evaluation
plan P1 for car selection

example

∧

∨

buying
(c = 0.3)

maintain
(c = 0.6)

∅

∧

doors
(c = 0.1)

persons
(c = 0.1)

luggage
(c = 0.4)

safety
(c = 1.0)

Car [0, 0.5]

Price(0.5) Tech

Comfort

X = 0.5 0.5 ? ? ? ?

Evaluation plan P1

Figure 4.5: Evaluation
plan P2 for car selection

example

∧

∨

buying
(c = 0.3)

maintain
(c = 0.6)

∅

∧

doors
(c = 0.1)

persons
(c = 0.1)

luggage
(c = 0.4)

safety
(c = 1.0)

Car [0, 0.85]

Price Tech(0.85)

Comfort(0.8)

X = ? ? 0.8 0.9 0.8 0.9

Evaluation plan P2

4.1.4 Background and Concepts

In this thesis, we shall consider two different ways to determine an evaluation plan:

• Static plan : In this case, the whole evaluation plan would be determined in
one step, i.e. before the real evaluation process begins, the whole evaluation
plan is determined and keeps fixed in the real evaluation process, which is in-
dependent of the instances to be evaluated. Obviously, there are n! candidate
evaluation plans for an FOT with n basic evaluations, the task here is to deter-
mine the “optimal” one among those candidates, we shall discuss this case in
Section 4.2.4;

• Online plan : Another way is that instead of deducing a complete evalua-
tion plan at one time, one can select one basic evaluation each time, then the
selected basic evaluation would be carried out, these two steps would be re-
peated until the quality can be approved. In this case, each instance has its own
evaluation plan, so this kind of plans is not fixed, but dynamic, more details are
given in Section 4.2.5
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Obviously, the background of determining a static plan is decision theory [How68,
KR76, Ana93, Cle95], as determining an optimal evaluation plan can be considered
as a decision process generally. Decision theory provides a principled framework for
decision making under uncertainty for a rational individual by using statistical tools,
probability theory, etc. There are a lot of related works to the problem discussed in
this chapter: First of all, the basic evaluation is associated with a cost function, the
more basic evaluations are executed, the more certainty about the quality of object
and the more has to be paid for that. This problem has been researched under the
concept of Value of information (VoI), which has long tradition in decision analysis
and gained great interests in different research areas [How66, DS05]. The general
idea to solve this kind of problems is to maximize the expectation of profit (or mini-
mize cost), for which the crucial point is to set up the expectation function for profit
(or cost).

On the other hand, to determine an online plan is a sequential decision making pro-
cess [BS95, BSW89], which is a fundamental task typically faced by intelligent agent
in a dynamical environment. Generally, the goal of a sequential decision making
problem is to decide the sequences of jobs, tasks or actions, so that some predefined
objective function can be optimized [SW78, JK02, Won80].

4.2 Estimating Optimal Evaluation Plan

Formally, the problem of minimizing evaluation cost is follows:

Given – an FOT F with n basic evaluations (x1,x2, . . . ,xn);

– a quality threshold T ;

– positive costs for basic evaluations c(xi), i ∈ {1, · · · ,n};
– distributions of basic evaluations D(xi), i ∈ {1, · · · ,n};

Find – an optimal evaluation plan P.

Note that here we take several assumption for convenience:

• Only one threshold is considered here, so our interest is whether the quality of
objects can be approved positively or negatively;

• The basic evaluations are independent of each other;

• The costs of basic evaluations are normalized into the unit interval [0,1], in
which the cost of each basic evaluation is scaled by dividing the maximal cost
among all basic evaluations, so that the nearer a cost to 1, the more cost is
associated with a basic evaluation. Since we are interesting in the sequence of
basic evaluations to be carried out, which needs the overall evaluation cost as
less as possible, but not the evaluation cost itself, the normalization will not
change the order of basic evaluations to be carried out;

• Any basic evaluation follows a statistical distribution, which is represented
with continuous probabilistic density function on the unit interval [0,1].

4.2.1 The Basic Idea

Let us denote the set of all possible plans for an FOT F(x1,x2, . . . ,xn) by P, for iden-
tifying an optimal evaluation plan P∗, an exhaustive search needs to check |P| (= n!)
plans, which becomes extreme time-consuming as the number of basic evaluations
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n increases. As Proposition 4.8 indicates, the identification of an optimal evalua-
tion plan is considered to be NP-hard, therefore, we try to approximate the optimal
evaluation plan by using heuristic approaches in this section.

An optimal evaluation is expected to approve the quality of an object with little costs
as possible, which can be interpreted in two ways: Firstly, the quality of an object
should be approved as “soon” as possible, which corresponds how to tighten the in-
terval according to predefined threshold quickly; secondly, the cost of selected basic
evaluation should be kept as small as possible. Both aspects are important to deter-
mine an optimal evaluation plan, because a “quick”, but “expensive” quality approv-
ing is not wished, neither a “cheap”, but “slow” one. The basic idea to find an optimal
evaluation plan here is to consider both aspects together by introducing a new mea-
surement, which combines the cost of basic evaluation and its possible contribution
to tighten the interval.

Nevertheless, as the previous example shows, the properties of aggregation opera-
tors involved in FOTs can be used to detect an optimal evaluation plan quickly, for
instance, the boundary property of t-norm is useful for negatively approving, etc.
Considering the special hierarchical structure of FOTs, we can analyse these prop-
erties of aggregation operators in a recursive manner, so that this problem can be
divided into several sub-problems following the hierarchical structure of FOTs.

In the following discussion, we shall start with an analysis about the useful properties
of aggregation operators in Subsection 4.2.2, then we discuss how to apply these
properties upon the hierarchical structure of FOTs in Subsection 4.2.3. To this end,
two algorithms are proposed to estimate an optimal evaluation plan in this section:

• a static algorithm decides a plan at the beginning of the evaluation process, and
the resulted plan stays fixed afterward, we shall take a closer look in Subsection
4.2.4;

• an online algorithm tries to determine the evaluation plan during the evalua-
tion process, so the resulted plan is different according to given object to be
evaluated. This algorithm would be discussed in Subsection 4.2.5.

4.2.2 Role of Norms

Let us start with an FOT in a simple form, say F , which consists of a single aggrega-
tion operator (denoted as A) and n basic evaluations with the evaluation cost (c) and
distribution (D) respectively, as Figure 4.6 illustrated.

Figure 4.6: An FOT in a
simple form

A

x2

(c(x2), D(x2))
x1

(c(x1), D(x1))

. . . xn

(c(xn), D(xn))

To investigate the influence of different kind of aggregation operators, let us get more
specification on an FOT in Figure 4.6, and assuming the aggregation operator A is
a t-norm and there are only two basic evaluations, say x1 and x2. In this case there
are only two possible evaluation plans, say Pa = [1,2] and Pb = [2,1], the question
here is which plan can get the smaller expected evaluation cost? Due to the boundary
property of t-norm, one can induce that:

x1 < T or x2 < T ⇒ y < T
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for any T ∈ [0,1], independent of the parameter specification in the t-norm. If the
first basic evaluation turns out lying under a given threshold T , the interval of FOT
is tightened into [0,T ), since zero is the absorbing element for any t-norm. So, in
this case, it is reasonable that we only try to approve the quality of FOTs negatively,
whereas for positively approving, it is necessary to carry out all basic evaluations,
which means the evaluation cost is in any case maximal. For negatively approving,
we get the estimated evaluation cost under both plans (Pa and Pb) as follows:

E(F,Pa,T ) = c(x1)+ c(x2)∗ (1− p(x1 < T ))

and
E(F,Pb,T ) = c(x2)+ c(x1)∗ (1− p(x2 < T ))

for given threshold T , where p(x1 < T ) denotes the probability that the basic evalu-
ation on x1 is lower than T . It is clear in this case that at least one basic evaluation
has to be carried out in any case, but whether the other one is also necessary to be
evaluated depends on the degree of basic evaluation carried before. As long as the
first basic evaluation lies above the given threshold T , the other one needs to be eval-
uated in any way, which is independent of which t-norm is used here. To compare
the evaluation costs under both plans, we give a new measurement in following text.

Definition 4.9 (Effective Cost). Given a threshold T , the effective cost of a basic
evaluation on xi, written as cp(xi,T ), is defined by:

cp(xi,T ) :=
c(xi)

p(xi,T )

where c(xi) is the cost of xi, p(xi,T ) is the probability of basic evaluation on xi lies
over or equal T in case of positive approving (called effective cost for positive ap-
proving), or under T in case of negative approving (called effective cost for negative
approving).

The new measurement effective cost combines the two important aspects related to
an optimal evaluation plan, namely the cost of basic evaluations and the probability
of contribution for quality approving. An effective cost scales evaluation cost pro-
portional to the probability, how the evaluation can distribute to quality approving,
where the probability can be extracted from its distribution easily. Following this, a
question arises, namely under which condition the evaluation cost on Pa can be lower
than that on Pb based the simple FOT? It can be expressed as:

E(F,Pa,T )≤ E(F,Pb,T )
=c(x1)+ c(x2)∗ (1− p(x1 < T ))≤ c(x2)+ c(x1)∗ (1− p(x2 < T ))
⇔c(x1)∗ p(x2 < T )≤ c(x2)∗ p(x1 < T )

⇔ c(x1)
p(x1 < T )

≤ c(x2)
p(x2 < T )

⇔cp(x1,T )≤ cp(x2,T ) (4.2.1)

which means, the optimal evaluation plan can be determined by the effective costs of
basic evaluations in this case, namely a plan which sort the effective costs of basic
evaluations increasingly. Intuitively a smaller effective cost should be carried out
earlier, which is quite plausible, since we want to decrease the overall evaluation
cost, which requires to check “cheap” evaluation (lower cost) at first generally, on the
other hand, the quality should be approved as “soon” as possible (higher probability
for approving).

Page: 99



Section 4.2: Estimating Optimal Evaluation Plan

Apart from this simple case, we give an important lemma to obtain an optimal eval-
uation plan based on the effective costs in a simple FOT.

Lemma 4.10 (Bubble Rule). Given an FOT F with only one aggregation operator
(the minimum t-norm) and n basic evaluations, an evaluation plan P related to F,
a bubble rule indicates that if one basic evaluation, say at position k (1 ≤ k < n),
has a higher effective cost than its successor one in P, then a new plan P′ by swap-
ping(bubbling) the positions of these both basic evaluations in P will lead to a lower
evaluation cost than P for negative approving. Formally:

∃k ∈ {1, . . . ,n−1} : cp(xPk ,T ) > cp(xPk+1 ,T )⇒ E(F,P′,T ) < E(F,P,T )

where T is a given threshold, cp(xi,T ) is the effective cost of a basic evaluation xi

for negative approving, and P′ is defined by:

P′(i) =


P(k +1) if i = k
P(k) if i = k +1
P(i) otherwise

for all i ∈ {1, . . . ,n}.

Proof. Obviously Equation 4.2.1 evidences the bubble rule in case of n = 2. To
simplify following proof statements, we use ci to replace c(xP(i)) for the evaluation
cost of i-th basic evaluation in P, pi instead of p(xP(i) < T ) for the probability of
P(i)-th basic evaluation having an evaluation degree lower than T . Then we have:

E(F,P,T ) =
n

∑
i=1

c(P(i))(1− p(Q<(i−1,F,P,T ) = 1))

= c1 + c2(1− p1)+ · · ·+ ck−1(1− p1) · · ·(1− pk−2)︸ ︷︷ ︸
L

+ ck(1− p1) · · ·(1− pk−1)+ ck+1(1− p1) · · ·(1− pk−1)(1− pk)︸ ︷︷ ︸
M

+ ck+2(1− p1) · · ·(1− pk+1)+ · · ·+ cn(1− p1) · · ·(1− pn−1)︸ ︷︷ ︸
R

E(F,P′,T ) =
n

∑
i=1

c(P′(i))(1− p(Q<(i−1,F,P′,T ) = 1))

= c1 + c2(1− p1)+ · · ·+ ck−1(1− p1) · · ·(1− pk−2)︸ ︷︷ ︸
L

+ ck+1(1− p1) · · ·(1− pk−1)+ ck(1− p1) · · ·(1− pk−1)(1− pk+1)︸ ︷︷ ︸
M

+ ck+2(1− p1) · · ·(1− pk+1)+ · · ·+ cn(1− p1) · · ·(1− pn−1)︸ ︷︷ ︸
R

Actually the evaluation cost under P and P′ can be divided into three parts, marked
in previous form as L,M and R, since the L and R parts under P and P′ are identical,
we need only to prove that the M part under P, say MP, is bigger or equal than one
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under P′, say MP′ . Furthermore we can extend the M part in following way:

MP ≤MP′ ⇔ (1− p1) · · ·(1− pk−1)(ck + ck+1(1− pk))
≤ (1− p1) · · ·(1− pk−1)(ck+1 + ck(1− pk+1))

⇔ ck + ck+1(1− pk)≤ ck+1 + ck(1− pk+1)

⇔ ck+1

pk+1
≤ ck

pk

⇔ cp(xP(k+1),T )≤ cp(xP(k),T )

The bubble rule provides a method to build an optimal evaluation plan in a special
case, namely there is only one aggregation operator (the minimum t-norm) in FOT.
In the proof of the bubble rule, a special property of the minimum t-norm is applied,
namely the result of the minimum t-norm only depends on one (minimal) basic eval-
uation, but independent of other ones, which is reflected in computing the evaluation
cost as:

E(F,P,T ) = c1 + c2(1− p1)+ · · ·+ ck(1− p1) · · ·(1− pk−1)+ . . .

=
n

∑
i=1

ci

i−1

∏
j=1

(1− p j) (4.2.2)

the cost of k-th basic evaluation would only be taken into account, when the overall
quality can not be negatively approved according all carried basic evaluations so far.
Regarding this, the bubble rule does not hold for other t-norms generally, for example
considering the product t-norm, assume that two basic evaluations are already carried
out and both return a degree 0.8, in order to approve the overall quality according
to a threshold T = 0.7, according to the bubble rule, one has to consider other basic
evaluations, since both degrees are greater than T . However from the definition of the
product t-norm, one can easily induce that the overall quality can not be over than 0.7,
therefore it can be approved negatively without checking further basic evaluations.

Nevertheless, according to the special role of the minimum t-norm (it is the greatest
t-norm), the bubble rule estimates the evaluation cost in a pessimistic way as applied
on other t-norms, as if it always assumes a basic evaluation as 1 if it turns out that a
carried basic evaluation fails approving the overall quality negatively, since 1 is the
neutral element for all t-norms. The overall quality is thus assumed only to depend
on unknown basic evaluations, but independent of already carried basic evaluations.
From this point of view, the bubble rule can be used to draw an upper bound on
evaluation cost of a simple FOT for any t-norm. Let us call the evaluation cost in
Equation 4.2.2 the pessimistic cost for purpose of negative approving in this case.

Actually according the bubble rule, one just need sort all basic evaluations accord-
ing their effective costs increasingly, their order becomes to an evaluation plan with
pessimistic cost.

Definition 4.11 (Ordering). An ordering, denoted as O, based on a set of basic eval-
uations with effective costs is defined as the permutation of indices of these basic
evaluations, so that their effective costs are sorted increasingly, formally for a simple
FOT with n basic evaluations:

O : {1, . . . ,n}→ {1, . . . ,n}

and
∀i, j ∈ {1, . . . ,n} : cp(xi,T ) < cp(x j,T )⇒ O(i) < O( j)
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Lemma 4.12 (Upper Bound of Evaluation Cost). For an simple FOT F with only
one t-norm and n basic evaluations with distribution D, and a predefined threshold
T , an evaluation plan P can be built by using an ordering on all basic evaluations
for purpose of negative approving, then for any optimal evaluation plan P∗, it holds:

E(F,P∗,T )≤ E(F,P,T )

Proof. The proof of this lemma can be obtained directly from the boundary rule of
t-norm.

Analog in the case of t-conorm, one can easily deduce the bubble rule on a simple
FOT with a t-conorm for positive approving regarding the boundary rule of t-conorm.
Furthermore, an upper bound of evaluation cost can be drawn by building an evalu-
ation plan using an ordering for propose of positive approving. In contrast to t-norm
and t-conorm, there is no universal boundary rule for the mixnorm, which is strongly
dependent on the parameter specification. In case of t-norm and t-conorm, the in-
terval can be tightened in one direction, for example, the interval in case of a t-norm
(t-conorm) can be expressed in a general form of [0, t) ([t,1]) with t ≥ 0 in any evalua-
tion step. But in case of a mixnorm, the interval would be tightened in both directions
during the evaluation process, for example, assume the aggregation operator A in Fig-
ure 4.6 is an OWA mixnorm (with parameters w1, . . . ,wn), then the interval after the
first k basic evaluations is:

[F(k)] = [
k

∑
i=1

wiyi,
n−k

∑
i=1

wi +
k

∑
i=1

wn−k+iyi]

where yi is the i-th largest element in the first k basic evaluations. Namely, the lower
bound of [F(k)] is achieved if all remaining basic evaluations return zero, whereas
the upper bound of [F(k)] is achieved if all remaining basic evaluations return one.
From the previous example, one can see that the interval in case of mixnorm depends
on the parameter specification of mixnorm and already known basic evaluations very
strongly. Therefore, we do not analyse this case explicitly, but simply use ordering
on all basic evaluations to get an evaluation plan. As later the experiments indicate,
alone the considerations on t-norm and t-conorm have shown very good performance.

Taking all previous results together, Table 4.2 summaries the considerations based on
FOTs in a simple form, where − denotes the case that it is expected that the quality
can be only approved after all basic evaluations have been carried out, which means
the evaluation cost would be maximal. For instance, for an FOT with a t-norm, the
quality can only be approved positively, when all basic evaluations have been carried
out. So in all cases marked with −, an evaluation plan would be again generated by
taking an ordering on all basic evaluations.

Table 4.2: Evaluation
plan on FOTs in a simple

form

Type of A Positive approving Negative approving
t-norm − Ordering

t-conorm Ordering −
mix-norm −

Finally for a simple FOT, one can always generate an evaluation plan using ordering,
either for positive and negative approving, which is independent of the type of ag-
gregation operator in the root node. Although according to Table 4.2, the bubble rule
only works in two cases under some constraints, we will see later that the resulted
evaluation plans can achieve very good performance.
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4.2.3 On Hierarchical Fuzzy Operator Trees

As mentioned before, an FOT can be constructed recursively regarding its hierarchi-
cal structure. Apart from the previous conclusions on a simple FOT, we can apply the
bubble rule in an FOT in a similar recursive manner to generate an overall evaluation
plan. The challenge here lies in how to get the cost and distribution for interior nodes,
since they are only provided for all basic evaluations. Figure 4.7 illustrates the costs
and distributions to be estimated (denoted with (?,?)) on the car selection example,
where the basic evaluations are assigned with fixed costs ci and distributions Di. In
this section, so long as no misunderstanding arises, we simply write c(xi) to ci and
D(xi) to Di.

Figure 4.7: Estimating
evaluation cost and

distribution for interior
nodes

∧

∨

x1:buying
(c1, D1)

x2:maintain
(c2, D2)

∅

∧

x3:doors
(c3, D3)

x4:persons
(c4, D4)

x5:luggage
(c5, D5)

x6:safety
(c6, D6)

Car (?, ?)

Price(?, ?) Tech(?, ?)

Comfort(?, ?)

It is clear that if cost and distribution for interior nodes can be calculated correctly, the
conclusions from previous subsection can be applied in any interior node, in which
any its children would be treated as a basic evaluation. We intend to estimate the cost
and corresponding distribution for interior nodes recursively in a bottom-up way.
Again, let us consider a general case in a two-level-hierarchy (see Figure 4.8), where
A denotes an aggregation operator and x stands for an aggregation operator with es-
timated cost and distribution or a basic evaluation with given cost and distribution.
Obviously an optimal evaluation plan might be in this simple case an ordering on all
basic evaluations, denotes as P, according to a given threshold T . The evaluation plan
here can be combined recursively also, that is

P := [Px1 ,Px2 , . . . ,Pxn ]

if it holds cp(x1,T ) ≤ cp(x2,T ) ≤ . . . ≤ cp(xn,T ) regarding to T , where Pxi is the
evaluation plan on xi in turn. Namely the evaluation plan on A is a sequential combi-
nation of the evaluation plan on basic evaluations, which are sorted by its (estimated)
effective costs.

Figure 4.8: Estimation on
evaluation cost and

distribution A (?, ?)

x2 (c2, D2)x1 (c1, D1) . . . xn (cn, Dn)

. . .

. . . . . . . . .

y

As long as P is determined, we can estimate the (upper bound of) evaluation cost of
A regarding the type of A:

Page: 103



Section 4.2: Estimating Optimal Evaluation Plan

• For purpose of negative approving, if A is a t-norm, then:

c(A) := c(1)+ c(2)(1− p(1))+ . . .

+ . . .+ c(n)(1− p(1))(1− p(2)) . . .(1− p(n−1))

:=
n

∑
i=1

c(i)
i−1

∏
j=1

(1− p( j)) (4.2.3)

This also holds in the case of positive approving and A is a t-conorm;

• Otherwise, the evaluation cost of A is considered in the worst case, namely the
sum of all costs of its children nodes, then:

c(A) :=
n

∑
i=1

c(i)

where c(i) is the evaluation cost on xP(i), p(i) denotes p(xP(i) < T ) in case of negative
approving and p(xP(i) ≥ T ) in case of positive approving.

The distribution of A’s output, say Dy, can also be estimated based on the known
distributions on x1, . . . ,xn, which is denoted as joint distribution. Formally we have
the probability density function of Dy:

Let D(a1, . . . ,an) =
n
∏
i=1

p(xi = ai)

with xi ∼ Di

Then y = A(x1, . . . ,xn)
Dy is the image of D under A.

(4.2.4)

under the assumption that x1, . . . ,xn are independent of each other.

Theoretically, a joint distribution of aggregation operator can be determined pre-
cisely, if the distributions of children nodes are known. However from the technical
point of view, it is impossible to calculate Dy in Equation 4.2.4 pointwise. Instead,
we try to estimate the joint distribution in an interval manner. A naive method to esti-
mate a joint distribution is developed in this section, which is illustrated in Figure 4.9,
where a joint distribution of z = f (x,y) based on both distribution x and y is estimated
in an interval manner, f is an aggregation function on x and y. For a given integer
number q, the distributions of x and y are divided into q equi-width intervals. Each
pair of intervals from x and y builds a representative point for the joint distribution
of z, whose probability is the product of probabilities reading from x and y, in this
example

pz = px · py = 0.2 ·0.05 = 0.01

and has a value of z = f (x,y), in this example

z = f (x,y) = f (0.7,0.3)

by taking the middle points of intervals on x and y. At the end, a histogram on all
these representative points estimates the joint distribution on z. In principle, as q
goes to infinity where the interval is divided small enough, the joint distribution can
be estimated precisely.

4.2.4 A Static Algorithm

Now we can give the first algorithm to estimate an optimal evaluation plan, as Algo-
rithm 4.1 shows. After recursively estimating the distribution and evaluation cost for
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Figure 4.9: Joint
distribution
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0.3

pz = pxpy = 0.2 ∗ 0.05 = 0.01

z = f(x, y) = f(0.7, 0.3)

z = f(x, y)

all interior nodes in both positive and negative approving cases, the lower estimated
evaluation cost is selected to generate an evaluation plan in the line 6.

Algorithm 4.1: A static algorithm to determine evaluation plan
Input: FOT F , distribution D, threshold T
Output: Evaluation plan P
begin1

estimate joint distributions for all interior nodes in F ;2

r← root of F ;3

cpos← estimateCost(F, r, positive);4

cneg← estimateCost(F, r, negative);5

if (cneg ≥ cpos) then6

P← getEstimatePlan(F, r, positive);7

else8

P← getEstimatePlan(F, r, negative);9

end10

end11

In order to illustrate the idea in Algorithm 4.1, Figure 4.10 demonstrates how to
combine an evaluation plan recursively on the car selection example, where the (com-
bined) evaluation plans are listed for interior nodes and root node. The P : [3,5,4,6]
at the right side of “Tech” gives an order on four basic evaluations involved in the
subtree on “Tech”, which is in turn combined into the plan on its parent node “Car”.

As mentioned before, a static algorithm builds an evaluation plan by using an order-
ing based on the effective costs of all basic evaluations, the resulted evaluation plan
(referred as static plan in following text) delivers an evaluation cost in a pessimistic
case when applied to evaluate data. The evaluation cost of static plan indicates an
upper bound of evaluation cost of an optimal plan.

However a static plan lacks of flexibility, in which a static plan shows the partial
completeness regarding to basic evaluations from subtrees.

Definition 4.13 (Partial Completeness). Given an FOT F , an evaluation plan P based
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Function estimateCost(F,r,p)
Input: FOT F , Node r, Is positive approving? p
Output: Evaluation cost at r
begin1

// estimate evaluation costs of non-leaf
children

for (n ∈ { non-leaf children of r}) do2

costn ← estimateCost(F, n, p)3

end4

cost ← 0 ;5

if (r is a t-norm ∧ p is false) then6

// using Ordering for negative approving on
t-norm

cost ← apply Equation 4.2.3 ;7

else if (r is a t-conorm ∧ p is true) then8

// using Ordering for positive approving on
t-conorm

cost ← apply Equation 4.2.3 ;9

else10

// sum of all evaluation costs
for (n ∈ { children of r}) do cost ← cost + costn;11

end12

end13

return cost14

Function getEvaluationPlan(F,r,p)
Input: FOT F , Node r, Is positive approving? p
Output: Evaluation plan at r
begin1

// get evaluation plan of non-leaf children
for (n ∈{non-leaf children of r}) do2

Pn← getEvaluationPlan(F, n, p)3

end4

// take ordering as evaluation plan on all
children nodes

P← combine all Pn after their (estimated) effective costs ;5

end6

return P7

Figure 4.10: Combine
evaluation plan

recursively
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Price P : [2, 1] Tech P : [3, 5, 4, 6]

Comfort P : [3, 5, 4]
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on F , P is called partial complete, if for any two nodes in F , say p1 and p2, which
have common parent, all basic evaluations involved in p1 must be carried out either
before or after those basic evaluations involved in p2.

Because an FOT can be constructed in a recursive manner, so any two nodes in an
FOT with common parent can be viewed as two FOTs (subtrees) again, which can
be either a basic evaluation, or an FOT in turn. Since a static plan of parent node
is sequential combination of static plans from children nodes, according to a static
plan, a subtree (all its involved basic evaluations) must be evaluated either before or
after another subtree completely, a plan containing basic evaluations from different
subtrees alternatively is not allowed. For example, on the car selection problem we
have:

Allowed plans:[1, 2, 3, 4, 5, 6]
[4, 5, 3, 6, 1, 2]
[6, 5, 3, 4, 2, 1]

Not allowed plan:[2, 6, 3, 1, 5, 4]

One can see that the pair of 1 and 2 (“Buying” and “Maintain”) from a subtree of
“Price” appears always together in allowed plans, as well as the pair of 3,4 and 5.

The partial completeness of a static plan causes to carry out some superfluous ba-
sic evaluations, even though they can not contribute to approve the overall qual-
ity. To illustrate this problem clearly, let us reconsider the car selection problem
in a similar situation as Figure 4.4 shows, namely according a static plan, the basic
evaluations would be carried out one by one beginning from “Buying” rightwards
(P1 = [1,2,3,4,5,6]) with a given threshold T = 0.8. Figure 4.11 demonstrates this
example in detail. In order to approve the overall quality positively, let us assume that
the basic evaluation on “Buying” turns out 0.8, from which the interval of “Price” and
“Car” can be tightened due to the boundary property of t-norm and t-conorm respec-
tively. According to the static plan P1, the basic evaluation “Maintain” should be
carried out. However the contribution of evaluating “Maintain” is very low on the
overall quality of “Car”, the output of “Maintain” can tighten the interval of “Price”
at the most, but have no influence of the interval of “Car”. In this case, evaluating
“Maintain" can be considered as superfluous, so any plan that prefers to select other
basic evaluations except “Maintain” might require less evaluation costs than the static
plan P1.

Figure 4.11: Partial
completeness of static

plan
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Evaluation plan P1

Due to the partial completeness, the evaluation cost of a static plan is usually higher
than it really expected for quality approving. Generally speaking, how the partial
completeness affects the overall evaluation cost depends on the complexity of an
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FOT, since the more complicate an FOT is, in terms of number of involved aggrega-
tion operators, the more superfluous evaluation costs might be required. In a extreme
simple case, where an FOT has only one aggregation operator, its effect of evaluation
cost disappears.

Though due to the partial completeness, a static plan is expected to carry out some
superfluous basic evaluations, a static plan is still very useful in practice. For instance,
it can be used to provide a general impression for an optimal evaluation plan before
handling any concrete data. Generally, a static plan can indicate the importance of
different basic evaluations for quality approving. Furthermore, as we will later see,
a static plan still outperforms other plans in most cases, which are generated in a
greedy or random manner.

4.2.5 An Online Algorithm

An online algorithm is developed here to decrease the influence of the partial com-
pleteness in a static plan. Taking a closer look at the partial completeness of a static
plan, one can easily find out that the problem lies in how to detect the superfluous
basic evaluations effectively, in other words, how to select a basic evaluation to carry
out, which has the most contribution in purpose of quality approving.

The idea behind the online algorithm is that instead of deducing a complete evaluation
plan at one time, we try to determine one step each time in an evaluation plan, namely
only one basic evaluation is selected and carried out, which has most contribution
for approving the overall quality. In order to determine such a basic evaluation, a
pseudo-plan is generated just as the static algorithm does, the first basic evaluation
indicated by this plan is selected in the online algorithm and carried out next. Note
that a static plan gives an order of basic evaluations, which can be viewed as an order
of importance to contribute for quality approving, the earlier does a basic evaluation
appears in the order, the more contribution it is expected. So taking the head of a
static plan to carry out is plausible in the online algorithm to achieve the “most”
contribution for quality approving.

Afterward it is possible to update the estimated evaluation costs and distributions on
all interior nodes according to newly carried basic evaluation. On which a new static
plan can be generated according to updated evaluation costs and distributions, then
the next basic evaluation can be determined recursively. Being applied to evaluate an
object, an online algorithm tries to update the estimations on interior nodes every time
after a basic evaluation is carried out. Algorithm 4.4 gives a pseudo-code for this idea,
where so long as the overall quality is not approved, the algorithm enters a loop. In the
loop, the same workflow is called as in the static algorithm, the only difference lies in
that just one basic evaluation determined by either positive or negative approving is
selected in the line 10. Finally the selected basic evaluation is carried out in the line
20, and its evaluation will be taken into account in next iteration for further estimation
and updating.

Notice that an online algorithm avoids the effect of the partial completeness in a static
plan, in which every time a new static plan would be generated based on updated
evaluation costs and distributions. If some basic evaluations are turned out that they
have little influence for purpose of quality approving, they will appear in the middle
or back part of the new static plan, so they are not selected in the online algorithm.
As a result, they do not have to be evaluated as the partial completeness requires, the
overall evaluation cost would be kept as lower as possible.

Figure 4.12 demonstrates the third iteration by applying this algorithm on the car
selection example, where the head of evaluation plan (P = [2,3]) is determined by
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Algorithm 4.4: An online algorithm to determine evaluation plan
Input: FOT F , distribution D, object o, threshold T
Output: Evaluation plan P
begin1

index← 1 ;2

n← number of basic evaluations in F ;3

selected← /0 ;4

while (Quality of o is not approved) do5

update joint distributions for all interior nodes in F ;6

r← root of F ;7

cpos← estimateCost(F, r, positive);8

cneg← estimateCost(F, r, negative);9

if (cneg ≥ cpos) then10

Ppos ← getEstimatePlan(F, r, positive);11

i← Ppos(1) ;12

else13

Pneg ← getEstimatePlan(F, r, negative);14

i← Pneg(1) ;15

end16

P(index)← i ;17

selected← selected ∪i;18

index← index+1;19

carry out the i-th basic evaluation ;20

end21

// insert remaining basic evaluation into P
for (each i ∈ {1, . . . ,n}\ selected) do22

P(index)← i ;23

index← index+124

end25

return P26

end27
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first two iterations, and the third iteration aims to determine the index (i) of basic
evaluation to be carried out next. As “Maintain” and “Doors” are already evaluated,
their evaluations (0.5 and 0.8) are considered to update the estimated evaluation costs
and distributions for interior nodes. The optimal evaluation plan on “Comfort” is
denoted as P : [5, . . .], because only the first element is interested in this step. To this
end, the evaluation plan P is extended with 5, namely “Luggage” should be evaluated
as next.

Figure 4.12: Online
algorithm to determine an

evaluation plan ∧
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x1:buying
maintain
(x2 = 0.5)

∅
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doors
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x6:safety

Car i := [5]

P := [2, 3] ∪ i

Price P : [1] Tech P : [5, . . .]

Comfort P : [5, . . .]

4.2.6 On Correlated Data

An important requirement by estimating joint distribution is the independence among
children nodes (see Equation 4.2.4), it might become difficulties to be fulfilled in
practice, for instance if the “Safety” factor is positively correlated with “Buying” in
the car selection problem, namely the safer a car is, the higher purchase price would
be expected, and vice verse.

In the case of correlated data, the joint distribution can only be deduced using the
original equation 4.2.4, in which the conditional probability is required. Conse-
quently the naive method to estimate a joint distribution described in Figure 4.9 does
not work any more. We give a sophisticated method on correlated data, in the case
that the analysis of correlation is not trivial or even impossible.

Since our goal here is to find out the distribution on interior nodes in an FOT of in-
termediate evaluations, we try to estimate the distribution directly instead from its
probabilistic density functions, in which every basic evaluation is treated as a ran-
dom number following a known distribution, and every complete evaluation process
on FOT leaves an intermediate output for each interior node. Theoretically if the
evaluation process can be rearranged in a random manner and be carried out enough
many times, the outputs of an interior node can be used to estimate its distribution,
for example using a histogram. Remember the training data provided for calibration
of FOTs contains exemplary data, which can be used to estimate the distribution on
interior nodes. Notice that this method can be applied on independent data also, as
long as there are sufficient training data available.

Unfortunately this method has its limitation that it only works in the case with suffi-
cient training data. If only insufficient training data is provided, the estimated distri-
bution might not be representative.

4.2.7 Complexity Analysis

Assume that the evaluation cost and distribution of basic evaluations can be assessed
in constant time, the procedure to compute the Ordering has the complexity of O(n2)
in worst case by using sorting algorithm, where n is the number of basic evaluations
involved in an FOT. However, the most time-consuming part for two algorithms intro-
duced in this section is to estimate the joint distribution of interior nodes. According
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to the idea of estimating the joint distribution, generating a static plan has a time
complexity O(c ·qk) with c the complexity of an FOT and q the number of represen-
tative points of distribution, k is the maximal number of children of an aggregation
operator. The time complexity of generating an online plan depends on the number
of really carried basic evaluations and their positions in an FOT, generally in average
case it can be written as: O(mc · qk) with m the expected number of really carried
basic evaluations. In the worst case, where all basic evaluation have to carried out,
the time complexity of generating an online plan is O(nc ·qk).

4.3 Experimental Evaluation

In this section the performance of evaluation cost minimization techniques on FOTs
is investigated. The experiment setup is introduced in Section 4.3.1, before the ex-
periments and results are shown in Section 4.3.2.

4.3.1 Experiment Setup

To make a comparison, we construct two evaluation plans in a random and greedy
manner respectively, which are used to compare the evaluation plan generated by the
static or online algorithms introduced before. These two plans are defined as follows:

• Random plan : A random plan is generated as a random permutation upon the
indices of basic evaluations.

• Greedy plan : A greedy plan is an order of indices of basic evaluations sorted
by their evaluation costs ascendingly. A greedy plan intends to select the
“cheapest” basic evaluation at each step, so that the evaluation cost can be
kept as lower as possible, but it ignores the distributions of basic evaluations
completely.

For experiments in this section, FOTs are created randomly as in the experimental
section 3.4. There are two main changes made: firstly, the number of children of an
aggregation operator is chosen randomly from {2,3,4} instead of {2}, that is, we al-
low an aggregation operator to have two until four children randomly, since this can
reflect the influence of type of aggregation operators, as Section 4.2.2 mentioned.
The second change lies in that different from creating complete FOTs by fulfilling
all leaf nodes with randomly generated fuzzy sets, the FOTs involved in this exper-
iment are fulfilled directly with numeric variables in the unit interval [0,1], which
ought to simulate the basic evaluations returned by fuzzy sets. Moreover every input
variable is assigned with a random evaluation cost and distribution. The former is
simply a numeric value normalized into a unit interval [0,1] following the uniform
distribution. To generate a random distribution of inputs of an FOT, a fixed num-
ber of representative points are generated, whose height (randomly selected in the
unit interval [0,2]) denotes a probability density for a fixed x value, then we simulate
a continuous probability density function in [0,1] by connecting the representative
points, as Figure 4.13 demonstrates. To make sure that the area under the probability
density function is 1, which indicates the sum of probabilities in the interval [0,1],
these representative points can be adjusted proportionally in order to make the under
area equal 1 approximately. The adjusted probability density function is plotted with
solid line in Figure 4.13.

Under a random distribution, the output of a basic evaluation can be viewed as a
random variable with a fixed probability density function. To generate random out-
puts of a basic evaluation in this case, the cumulative distribution function (CDF) is
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Figure 4.13: Generating
random distribution and

random number

y = F (x)

x = F−1(y)
x

10

p(x) random distribution
adjusted random distribution

applied here, which is defined as:

F(x) =
∫ x

−∞

p(x)dx

with p(x) the probability density function. At first, a random number in the unit
interval [0,1] is generated under the uniform distribution, denoted as y here. Then
we intend to find an x, which cause to F(x) = y as Figure 4.13 indicates, this can be
obtained by using the inverse function of the CDF, namely x = F−1(y).

Definition 4.14 (Evaluation Gain). Given an FOT F(x1, . . . ,xn), a threshold T , an
evaluation plan P based on F , a set of objects D to be evaluated, the evaluation gain,
denoted as EG(F,P,T ), is defined as the saved evaluation cost of D under P, which
is normalized into the unit interval [0,1]. Formally:

EG(F,P,T ) := 1−
∑

o∈D
E(o,F,P,T )

|D| ·E f ull

where E f ull is the sum of costs of all involved basic evaluations, namely E f ull =
n
∑

i=1
c(xi), and E(o,F,P,T ) is required evaluation cost for approving the quality of

object o, which is defined by:

E(o,F,P,T ) :=
n

∑
i=1

c(xP(i))(1−Q(i−1,F,P,T ))

To evaluate the experimental results, the evaluation gain assigns a number to indicate
how much evaluation cost are saved using a plan upon a set of objects. So the nearer
an evaluation gain lies to 1, the less evaluation cost is required, and the better the
corresponding plan is.

4.3.2 Experimental Results

Let us denote an evaluation plan deduced by the static algorithm as static plan, and by
the online algorithm as online plan respectively. Based on a randomly generated FOT,
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a fixed number of inputs are produced according to randomly generated distributions,
then evaluation cost under static plan, online plan, as well as random and greedy
plans are calculated according to a randomly generated threshold. For random plan,
a fixed number of random plans is generated to get a stable performance, to this end,
the evaluation cost on random plan is the averaged value among a fixed number of
random plans (here 100). In this section, following experimental results are averaged
among 50 repetitions.

At first, we investigate the influence of complexity of FOTs on evaluation costs, in
which the experimental results are grouped by the complexity of FOTs and sorted
by the provided mount of data. Figure 4.14 shows the averaged evaluation gains for
four evaluation plans (in four representative cases), where the standard deviation is
omitted for the sake of clearness.

Figure 4.14: Evaluation
gains regarding

complexity of FOTs
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The experimental result is quite promising, an online plan achieves an evaluation
gain around 94%(0.958), which corresponds to only 4% of the full evaluation costs
for quality approving on the average, and therefore outperforms the other three plans
(static plan 68%, greedy plan 64% and random plan 48%) considerably. On the other
hand, a static plan generated by static algorithm requires less evaluation cost than
a greedy plan in most case (54 in 60 observations), whereas a greedy plan needs
generally less evaluation cost than a random one.

As the amount of provided data increases, the performance of considered evaluation
plans does not change too much, which can be observed in that the relative position of
four evaluation plans is kept with various complexity and amount of data. Interesting
is to compare a greedy plan and static plan, theoretically a static plan is expected
to require much less evaluation costs than a greedy plan, as more data is provided,
since the main difference of both plans is whether they take the distribution of the
data into account. As more data is provided, the influence of distribution of data
becomes clearer, the superiority of static plan should be easier to be observed in
principle. However, the negative effect of partial completeness caused by a static plan
becomes clearer at the same time, in which the accumulative costs on superfluous
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basic evaluations becomes larger, so there is no explicit trend of the superiority of
static plan against greedy plan.

Following, the experimental results are reorganized in a reverse order, which is grouped
by the amount of provided data and sorted by complexity of FOTs, as Figure 4.15
shows (only in four representative cases here to save place). The similar observations
can be drawn from Figure 4.15, an interesting aspect in these experimental results
is that the evaluation gains increase as the complexity of FOTs becomes large, no
matter which evaluation plan is applied here. Since the number of basic evaluations
depends on the complexity of FOTs, the relationship between complexity of FOTs
and evaluation cost becomes clear that the more complicate an FOT is, in terms of
number of nodes, the less evaluation cost is required generally.

Figure 4.15: Evaluation
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Considering two comparable evaluation plans, a greedy plan and static plan, one can
see the clear superiority of static plan on FOTs with smaller complexities particularly,
for example with complexity 10 and 20, the evaluation costs of static plan lie clearly
under that of greedy plan. But as the complexity of FOTs becomes large, this superi-
ority reduces and vanishes, even in several cases, a greedy plan outperforms a static
one. Remember the partial completeness of static plan is caused by the hierarchical
structure of FOT, for a simple FOT with only one aggregation operator, the partial
completeness of static plan disappears. So the complexity of FOT determines the
effect of partial completeness of static plan directly. For FOTs with big complexity,
a static plan tends to require more evaluation costs than a greedy plan.

Amongst other, the evaluation cost required by an online plan is quite small, which
has also its price that an online algorithm needs much more runtime than other three
plans. Figure 4.161 shows the runtime used by four evaluation plans representatively
(with fixed complexity 10, but different provided data), where an online algorithm has
a much higher magnitude of required runtime. Figure 4.17 shows the runtime used
by four evaluation plans with 400 data under different complexity. Nevertheless, an

1 To observe this performance clearly, the runtime of other three plans is plotted in the right half with
much smaller magnitude additionally.
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online algorithm is still applicable in practice, even for relatively complicated FOTs
and big datasets (for example, runtime = 12.4 minute for complexity = 60 and #data
= 400).

Figure 4.16: Runtime (s)
of four evaluation plans
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Notice that an online algorithm delivers for each to be evaluated object an individ-
ual evaluation plan, while a static algorithm predicts only one plan, which ought be
able to minimize overall evaluation cost. Regarding this, one might apply these two
algorithms in different situations, such as a static algorithm can be used to estimate
an optimal evaluation plan before handling any concrete data. On the other hand, an
online algorithm provides a dynamic mechanism in order to minimize evaluation cost
on concrete data.

4.4 Conclusions

In this chapter we addressed a cost issue on FOTs, since a precise evaluation is not
always necessary when applying an FOT model, secondly the basic evaluations of an
FOT have different evaluation costs. To estimate an optimal evaluation plan, which
ought to require evaluation costs as less as possible, two algorithms are developed in
this chapter to estimate optimal evaluation plans. The experimental results show that
evaluation plans determined by both algorithms requires significant less evaluation
costs than other evaluation plans generated in a random or greedy manner.
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Figure 4.17: Runtime (s)
of four evaluation plans
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5 Related Work

In this chapter we give an overview of approaches related to the main topics presented
in this thesis. As mentioned before, an FOT model first of all serves as a convenient
tool for modeling utility functions, with which user preferences and utilities can be
modeled. A large number of techniques for modeling utility function have been pro-
posed in last decades. Modeling an FOT is characterized by its tree-like hierarchical
structure and the use of fuzzy logic-based operators as nodes. Both techniques are
of course not new and there are already a vast number of related works available.
Finally, the calibration of FOTs with sample data can be categorized into supervised
learning, a well-known machine learning field that has gained increasingly attentions
in recent years. As an exhaustive discussion of all related techniques from former
aspects is beyond the scope of this work, we primarily concentrate on those tech-
niques that touch on one of the topics of this work in terms of comparable objectives
or applied methods. However, we also attempt to provide relevant sources for further
investigations in related topics and to point out the main differences to the mentioned
approaches. According to the similarity to our works, the related approaches are
categorized into the following four classes, that is,

• the idea of utility modeling,

• the idea of hierarchical modeling,

• the use of fuzzy logic-based operators in decision making,

• the calibration of a network-like structure with given input/output data.

Note that this is a very ambiguous classification in the sense that many of them are
involved not only in single class, but in several ones, as we shall indicate later.

5.1 Utility Theory and Utility Modeling

The concept of utility was first applied in economics as a measure of the relative
satisfaction or desiredness from consumption of goods, which can be used to ex-
plain economic behavior and furthermore tries to increase one’s utility. The central
result of utility theory is a representation theorem that identifies a set of conditions
guaranteeing the existence of a function consistent with the preference of a decision
maker, the real-valued function is called utility function [NM53]. An overview of
the main issues and developments of utility theory in the economic area is given in
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[BHS98, BHS04]. Utility theory has been shown to be an efficient tool to help users
by decision making, especially under risk and uncertainty, the principle of maximiz-
ing expected utility has long been established as the guide to making rational deci-
sions [Sav72, LR57]. In [Cam95], the author summarizes the main contributions in
this special topic and provides a comprehensive overview of recent researches. An-
other survey of the main issues using utility theory for decision making in economics
is made by Fishburn in [Fis69].

To model a utility function for a decision problem, it is necessary to elicit a util-
ity model separately for each user, since every individual’s utility may be differ-
ent. Therefore, utility elicitation has been studied extensively in the area of de-
cision analysis (DA) [LR57, How68, How77, KR76]. It has started to gain more
attention in medical informatics [FS92, HHB92, HHB95] and artificial intelligence
[HHR+03, HH97, CP04, LHL97] recently. General speaking, there are two com-
mon approaches to utility function elicitation: The first is to base the determination
of the user’s utility function solely on elicitation of qualitative preferences, the sec-
ond makes assumptions about the form and decomposability of the utility function.
Decomposable utility functions support more inference and are easier to elicit from
user, our approach belongs to this category. In [CP04], the author provides a sum-
mary of different techniques for preference elicitation, where the user’s preference is
represented in the form of utility function (also called value function). Here we just
review several of them briefly:

• Value function elicitation : In [KR76], the author provides a relatively easy,
straightforward framework of eliciting an additive independent value function
by creating scales for each component of the value function and querying the
user about the behavior of each sub-value function. Under the assumption of
additive independence, the (sub-) value functions and scale factors are elicited
by asking the user several questions.

• Preference elicitation by criteria decomposition : The perhaps most re-
lated to our works, a well-known approach is the Analytical Hierarchy Pro-
cess (AHP), a decision support tool to solve multi-criteria decision problems
[Saa94]. Given a set of alternatives and related criteria, it constructs a multi-
level hierarchical structure, like our approach, by recursively splitting the cri-
teria into sub-criteria. Then the relative importance (weight) of the decision
criteria is obtained in the form of Eigenvalues of matrices, which are elicited
from user by pairwise comparisons. The users are proposed to express their
preference degree in predefined nine levels to make a comparison between two
criteria or measurements, questions like “How much better is Ai than A j on a
criterion?”. Nevertheless, difficulties related to AHP have been discussed in
several works, for example in [Dye90].

• Preference elicitation via theory refinement : A neural-network-like sys-
tem, Knowledge-Based Artificial Neural Network(KBANN), is proposed in
[HHR+03], which starts with approximate and incomplete domain knowledge
and then corrects for inaccuracies and incompleteness by training on examples.

• Case-based preference elicitation : In [HH03], a case-based preference elic-
itation model is built by using a new measure to compute the similarity of
personal preference, the key advantage of this measure is its extensibility to
accommodate partial preferences and uncertainty.

• Interactive preference elicitation : In [HS02], the author follows an infor-
mation theoretic approach to elicit utility functions automatically using user
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feedback. This approach has been extended and applied to the matchmaking
, which offers a general adaptation solution to learn the user preferences with
implicit and explicit user feedbacks [FM03a].

Another comprehensive overview of eliciting knowledge from experts is given in
[Hof89]. A summary of developments in the field of multi-criteria decision making
with the help of utility functions can be found in [PSZ95].

Our work in this thesis can be seen as another approach for the purpose of utility
elicitations. However, it differs from these approaches, amongst other, in that it is
characterized by its hierarchical structure, which makes use of tools and techniques
from fuzzy set theory. Moreover, the calibration of the structure is completely dif-
ferent, as different techniques are applied in previous mentioned approaches (for
instance, pairwise comparison between criteria). The calibration problem in our
works is solved by fuzzy set elicitations and calibrations on exemplary data. The
topic of utility elicitation has been successfully addressed in recent decades, and re-
sulting in a vast number of techniques proposed. For further reading, we refer to
[BB06, CP04, HH99, BBGP97, CGNS98, HF03, LJS03].

5.2 Hierarchical Modeling

The idea of hierarchical modeling is of course not new, hierarchical modeling of a
rating function is an intuitively appealing and commonly used strategy, which gener-
ally simplifies the overall evaluation of an alternative by rating different sub-criteria
at first, and then aggregates these ratings afterward. This idea has been employed in
many works, for purpose of utility modeling and decision making, for example, the
AHP approach mentioned in the previous section has gained the most similarity with
our approach, because both follow the sample proposal to construct the utility func-
tion, namely decomposing the utility function into sub-utility functions recursively.
In the following, let us examine some different approaches in short:

• Regarding the idea of hierarchical modeling, the perhaps most well-known re-
lated approach is a framework for evaluating documents proposed in [Yag00],
in which a document retrieval language is developed to enable user represent
their requirements by using appropriate aggregation operators. This frame-
work has been shown to support aggregation in a hierarchical structure based
on the OWA operators, which allowed a linguistic specification on the interre-
lationship between the involved attributes. The hierarchical structure and use
of OWA operator make this method very similar to our approach in this the-
sis. However, an FOT model generalizes this framework by allowing all fuzzy
logic-based operators including the OWA operator, and employing fuzzy sets
for basic evaluations instead of requiring them directly. From this point of
view, our approach is more comprehensible and reasonable for evaluation. An-
other, but maybe more important, difference lies in the structure calibration on
an FOT model, which adapts an FOT model according to exemplary data.

• Another related work in this regard is proposed in [BR88], in which a simi-
lar hierarchical structure is learned by analyzing the interrelationship between
attributes or criteria. To aggregate criteria at interior nodes, an elementary de-
cision table is assigned in a data-driven way. Unfortunately, such tables might
be difficult to understand, so the whole approach can be criticized from an in-
terpretable point of view. Beside that, the elementary decision table saved in
interior nodes is usually very large, its space complexity grows quickly as the
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size of dataset increases.

• The tree structure has been often used for supporting the inference of an ex-
pert system [Nil71], which is very useful in representing a backward-chaining
inference that tries to solve a problem by breaking it up into smaller problems
and solving them individually. As an example, the AND-OR graph proposed in
[LCK08] is used for making inferences in the expert system area, which can be
seen as a specialized symbolic-reasoning technique to solve difficult decision
making problem.

• The hierarchical fuzzy rule-based systems (HFRBS) haven been developed in
[WCM06, CHZ01], by decomposing the fuzzy models into a number of sim-
pler sub problems with smooth transitions between them, in which the simple
building process of the fuzzy rule base is extended in a hierarchical way in
order to make the system more accurate.

• In order to build an object recognition system, a learning algorithm is devel-
oped to give a membership value for recognized object in [WCH+95], in which
low-level membership values are combined through an and-or tree structure to
give an overall membership value. Although the AND and OR operators used
in this approach are fixed, an adaptation process (error back-propagation) is ap-
plied to adjust low-level membership functions based on training data, which
is, to our interest, comparable with the calibration part in this thesis.

For further reading we refer to [Yag93, Car82, Mor94, Wel85].

5.3 Fuzzy Logic-based Operators in Decision Making

Regarding this point, a huge amount of work has been done in the field of fuzzy pref-
erence modeling and multi-criteria decision making, especially in relation with fuzzy
sets and fuzzy aggregation operators. A review of all related work is clearly beyond
the scope of this thesis, for a comprehensive overview see [GOY02, PR02, Rou97,
PP03]. To the best of our knowledge, however, an approach directly comparable to
our FOTs, including a means for model calibration, has not been proposed so far.

A purposeful approach for fuzzy decision making consists in the usage of aggregation
procedures that realize the idea for compensation and compromise between conflict-
ing criteria, which are usually made with the help of aggregation operators. The first
ones introduced by L. Zadeh are for the logical operations AND, OR and NOT as
extensions of the binary logical operations in his seminal paper [Zad65]. Later, some
research works revealed that the degree of compensation through human aggregated
criteria is not expressed only by these operators. Thus, many operators have been
proposed to represent human decision making more accurately. Let us review several
works in the following text:

• Ordered weighted averaging (OWA) : In [Yag88], a family of aggregation
operators called OWA operator is proposed to realize trade-offs between cri-
teria by allowing a compensation between ratings. These operators provide
a natural framework to the inclusion of several types of behavioral properties
[GOY02]. Another similar operator is suggested in [ZZ80].

• Fuzzy integrals : Extending the concept of Lebesgue integral, Sugeno has
proposed the concept of fuzzy measure and fuzzy integral in [Sug74], called
Sugeno integral. Later, another definition was proposed in [MS89] by using a
concept introduced by Choquet in capacity theory, called Choquet integral.
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• Using type 2 Fuzzy Sets : In [SF07], the author uses the synthesis of the
tools of Type 2 and Level 2 fuzzy sets (see [Men95, MJ02]) to elaborate an
appropriate method for aggregation of fuzzy values in multiple criteria decision
making, which is successfully applied to solve a tool steel material selection
problem.

• Hierarchical aggregation operator : In [Dyc85], a hierarchical aggregative
operator (a more general “and-or” connective) is introduced by replacing the
associativity axiom with autodistributivity, so that aggregation of information
can be also achieved with the help of quasilinear means [Acz66].

Once the type of aggregation operators has been chosen for a particular application,
the remaining task is to identify the parameters of the chosen operator if necessary.
One of the backgrounds of this thesis is the issue of parameter estimation for aggre-
gation operators, which has been addressed, though, for simpler types of decision
models, especially for models using a single aggregation operator in many research
works. For example, the problem of fitting parameters on the basis of exemplary
outputs has been studied for weighted mean and OWA operators [FY98, Tor99], the
WOWA(weighted OWA) operator [Tor04], the Choquet integral [MR00, WLW+00],
and the Sugeno integral. In [CHHV98] a new method to calculate weights for the
OWA operators is proposed by using linguistic quantifiers that represent the con-
cept of fuzzy majority. Besides, attempts have been made to identify the parame-
ters of such models using other types of information, such as the so-called “orness”
or degree of disjunction [FM01, FM03b] as well as preferences and order relations
[CW85, MR05]. Another aggregation operator based on the Yager’s family of t-
norms is given in [Hau99], in which a procedure is described for controlling fuzzi-
ness in fuzzy arithmetic operators by fixing the parameter in the Yager’s family of
t-norms.

There is also a vast number of applications that makes use of aggregation operators,
for instance, Kevin Woods et al. [WCH+95] built an object recognition system by
learning membership functions, J.-R. Chang suggested dynamic fuzzy OWA model
for group multiple criteria decision making in [CHCC06], and another system ANFIS
(Adaptive-Network-Based Fuzzy Inference System) is put forward by J.R. Jang in
[Jan93]. Recently several methods have been published to extract a fuzzy system
from artificial neural networks (ANN), which is made of fuzzy “IF. . . Then. . . ” rules
and equivalent to the functionality of ANN [KM05], these methods are generalized
by using a new fuzzy operators in [Man07].

5.4 Calibration of a Network-like Structure

With respect to calibration of a network-like structure, the calibration of FOTs may
of course remind of related hierarchical models such as artificial neural networks
(ANN) because of the similarity in structure. There are, however, important differ-
ences between our approach and commonly used ANN models, such as multilayer
perceptrons. In particular, ANNs typically have a single type of node (associated with
an activation function), and only the weights on the edges are adapted. Moreover, the
topology is usually not a tree; instead, in feed-forward nets, two successive levels are
fully connected. Finally, ANNs do not offer an obvious logical interpretation. The
latter disadvantage is to some extend avoided by neuro-fuzzy systems [NKaRK97]
and related approaches such as ANFIS mentioned in previous section, in which ac-
tivation functions are replaced by logical operators. The other differences, however,
still remain also for these approaches.
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Calibration is a common task for models in the network-like structure in order to
make them more accurate, therefore many approaches have been proposed in nu-
merous research works for this purpose. In the field of neural networks, these ap-
proaches can be divided into two main groups: The supervised (associative) learning,
such as the well-known error back-propagation, gradient descent, error-correlation
learning, or competitive learning etc; or the unsupervised (self-organization) learn-
ing, which tunes the network to perform some kind of data compression like dimen-
sionality reduction or clustering. For a summary of these approaches we refer to
[NKaRK97, Ser94, AB99].

In the field of neuro-fuzzy system, which differs from neural network in that fuzzy
signals and/or fuzzy weights are employed, many calibration techniques are naturally
extended from those based on neural network, such as the fuzzy back-propagation
[NS01, HBC93], back-propagation on α-cuts [IOT92]. Furthermore a self-learning
and tuning strategy based on reinforcements is discussed in [BK92, CC98] and a
genetic algorithm has been applied to train a neural-fuzzy system in [ZH94, KW97].
A comprehensive overview on these approaches is given in [BH94].
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6 Conclusions and Future Work

This chapter concludes this thesis. In Section 6.1, we briefly recapitulate our main
results for modeling utility functions in the form of FOT models. In Section 6.2, we
give an outlook on future research directions, which could extend our FOT models
concerning several different aspects.

6.1 Conclusions

In this thesis, we have introduced fuzzy operator trees as a convenient tool for mod-
eling utility functions. The key idea of this approach, which appears to be appealing
from a modeling point of view, is to express a utility function in terms of a hier-
archical structure by decomposing criteria into sub-criteria in a recursive way. The
evaluation of sub-criteria can be combined by means of aggregation operators of dif-
ferent character: Conjunctive, averaging and disjunctive. Each sub-criterion is either
a basic evaluation, which can be extracted directly with the help of a user, or aggrega-
tion of other sub-criteria in turn. Additionally, the linguistic hedge is applied in FOTs
to weigh sub-criteria. A basic evaluation is associated with a fuzzy set, which gives
a numeric degree in [0,1] to describe the relative satisfaction upon the basic evalu-
ation. To this end, the utility of any object can be expressed as an aggregation over
a set of basic evaluations, the structure of FOT determines in which way those basic
evaluations are aggregated, as well as how exactly a criterion is calculated based on
sub-criteria. On the one hand, an FOT has a tree-like structure, which allows a user
to specify rating functions in a very intuitive and systematic way. On the other hand,
as the components of FOTs (node and edge) are associated with fuzzy sets, fuzzy
operators or linguistic hedges taken from fuzzy set theory, an FOT has an excellent
interpretability and can easily be expressed in natural language, so that the human
being can understand an FOT well.

Though the original motivation of developing FOTs comes from quality control,
where FOTs are intended to replace the traditional quality assessment method, we
like to emphasize that FOTs are much more general and can be applied for rating
all sorts of things. Decomposing a criterion into several sub-criteria is a typical ap-
proach commonly used in practice in order to evaluate objects and an FOT can be
easily constructed following this principle. Furthermore, many applications have a
modular structure, like a technical product, whose components can be decomposed
into subcomponents in a recursive way. From the modeling point of view, a com-
ponent can be modeled in the form of an FOT involving subcomponents and, at the
same time, be used as a (plug-in) subtree in a superordinate FOT at a higher lever.
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The “divide-and-conquer” strategy underlying FOTs makes the assessment of very
complex systems controllable.

To support a human expert in designing FOTs, several elicitation techniques are pro-
posed to build FOTs in an intuitive and convenient way. Afterward, we bring up
the idea of using FOTs in a machine learning context, namely as a model class un-
derlying regression and (ordinal) classification problems. We address the problem
of FOTs built by human expert, in which FOTs sometimes lack accuracy because
disagreements arise between an empirical evaluation by a human expert and an esti-
mated one by FOTs. In order to conquer this problem, we have developed a calibra-
tion method based on evolutionary strategies that fits the parameters of a (qualitative)
model structure to a given set of training data, which ought to mimic the behavior of
human expert as accurate as possible. Note that a training data can be constructed
by collecting the exemplary evaluations made by human expert. The experimental
results that we obtained are rather promising and show that the calibration method
reliably optimizes even quite complex FOTs and is very powerful to solve this kind
of problems. In terms of accuracy and running time, the calibration method shows
a satisfying performance compared with several related techniques. Even on noisy
and discrete data, which can often be observed in practice, the calibration method
can tune the parameters involved in an FOT to fit a given training data successfully
within an acceptable time.

Subsequently, we have used FOTs for modeling an evaluation strategy in the game
of poker, in order to investigate the performance of our method in this case, a fair
comparison has been made between FOT and several well-known approaches, which
work in a purely data-driven way. The experimental results show that our method is
powerful enough to be applied in practice, in which an FOT built by a human expert
has a very strong inductive bias, so that the risk of overfitting for a small amount of
training data can be reduced significantly. Although, as the amount of provided train-
ing data increases, the models delivered by other approaches can achieve a slightly
higher accuracy and might have less risk of underfitting, these models are becoming
quite complex and difficult to understand, in contrast to our FOT model, which has a
fixed structure and therefore a relatively small, constant complexity. Amongst other,
an FOT model provides an excellent interpretability independent of the amount of
provided training data, which becomes extremely important in several applications
such as quality control or classification in medicine, in these fields, no human expert
will trust in a model with very complex and instable structure.

Finally we have addressed a cost issue by applying FOTs, since in practice a pre-
cise evaluation is not always necessary and the basic evaluations of FOTs may have
different evaluation costs, which demand an evaluation plan to save evaluation costs
efficiently. We have proposed two algorithms to predict optimal evaluation plans. As
the experimental results show, the evaluation plans determined by both algorithms
require significant less evaluation costs than other evaluation plans generated in a
random or greedy manner.

6.2 Future Work

In this section, we sketch several interesting issues that remain to be addressed in
future work. Our intention is not to present complete solutions, but rather to convey
a feeling for the wide scope of extensions and applications based on the techniques
introduced in this thesis, a more detailed elaboration of the presented approaches
remains to be done in future work.
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Structure Adaptation From a machine learning point of view, it may also be in-
teresting to adapt the structure of an FOT, or at least parts thereof, in addition to
the model parameters. In this thesis, we restrict ourselves to use a fixed structure of
FOTs, which is built with the help of human experts. During the calibration process,
the structure of FOTs (qualitative part) is viewed as constant and can not be tuned
as the model parameters. In practice, the elicitation process to build an FOT with
the help of a human expert is sometimes not trivial, in cases where uncertainty might
exist. One possible approach to this problem is to parameterize the structure with
constraints and employ a discrete optimizer to fit given training data, such as genetic
algorithms [TF02].

Preparation of Training Data Furthermore an FOT model can be treated as a tool
to interpret the decision process with the help of fuzzy theory, which tries to extract
the preference of experts over a set of alternatives. In order to calibrate an FOT, a
set of alternatives reflecting the preference of experts is supplied as training data. In
this thesis, we require a training data labeled with single assessment, which can be a
numeric value, or a class label etc. According to [CHHV98], there are three different
ways to supply the information about the alternatives:

• As an utility function: In this case an expert supplies a real evaluation for
each alternative with a real number indicating the quality of that alternative
according to his point of view.

• As a fuzzy preference relation: In this case an expert supplies a fuzzy binary
relation over the set of alternatives, reflecting the degree to which an alternative
is preferred to another.

• As a preference ordering of the alternative: In this case the alternatives are
ordered from the best to the worst, namely labeled with a ranking, without any
other supplementary information.

Apparently our method to calibrate FOTs belongs to the first category, whereas the
last two categories are not touched in this thesis. How to utilize different kinds of
information about the alternatives is another challenge for extending an FOT model.

Ordinal Classification Problem In the machine learning context, FOTs can be
used to solve ordinal classification problems. In fact there are many applications
of learning methods, for example in the field of recommender systems [IS85], in
which the model to be induced can generally be considered as a kind of (discrete)
utility function. An extension of this work can be addressed in using FOTs as a kind
of learning tool, where the ability of FOTs to incorporate background knowledge
becomes especially advantageous.
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A Appendix: List of t-norms and
t-conorms

Table A.1: List of
t-conorm

Name Function
Algebraic S(x,y) = x+ y− x · y
Dombi Sλ (x,y) = 1

1+(( 1
x−1)−λ +( 1

y−1)−λ )−
1
λ

λ ∈ (0,∞)

Drastic (Weak) S(x,y) =


y if x = 0,

x if y = 0,

1 otherwise

Drastic S(x,y) =

{
0 if x = 0 and y = 0,

1 otherwise
the biggest t-conorm

Dubois & Prade Sα(x,y) = x+y−x·y−min(x,y,1−α)
max(1−x,1−y,α)

α ∈ [0,1]
Einstein S(x,y) = x+y

1+y·x

Frank Ss(x,y) = 1− logs(1+ (s1−x−1)·(s1−y−1)
s−1 )

s ∈ (0,+∞), s 6= 1
Hamacher Sr(x,y) = x+y−(2−r)·x·y

1−(1−r)·x·y
r ≥ 0

Lukasiewicz S(x,y) = min(1,x+ y)
also the called Bold t-conorm

Maximum S(x,y) = max(x,y)
also called the Zadeh t-conorm, the least t-conorm

Schweizer & Sklar Sp(x,y) = 1−max(0,(1− x)−p +(1− y)−p−1)−
1
p

p ∈ (−∞,+∞), p 6= 0
Weber Sp(x,y) = min(1,x+ y+(p−1) · x · y)

p≥ 0
Yager Sw(x,y) = min(1,(xw + yw)

1
w )

w ∈ (0,+∞)
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Table A.2: List of t-norm Name Function
Algebraic T (x,y) = x · y

also called product t-norm
Dombi Tλ (x,y) = 1

1+(( 1
x−1)λ +( 1

y−1)λ )
1
λ

λ ∈ (0,+∞)

Drastic (Weak) T (x,y) =


y if x = 1,

x if y = 1,

0 otherwise

Drastic T (x,y) =

{
1 if x = 1 and y = 1,

0 otherwise
the smallest t-norm

Dubois & Prade Tα(x,y) = x·y
max(x,y,α)

α ∈ [0,1], α =

{
0 Minimum t-norm
1 Algebraic t-norm

Einstein T (x,y) = x·y
2−x−y+x·y

Frank Ts(x,y) = logs(1+ (sx−1)·(sy−1)
s−1 )

s ∈ (0,+∞), s 6= 1
Hamacher Tr(x,y) = x·y

r+(1−r)·(x+y−x·y)

r ≥ 0, r =


1 Algebraic t-norm
2 Einstein t-norm
∞ Drastic t-norm

Lukasiewicz T (x,y) = max(0,x+ y−1)
also called the bold t-norm

Minimum T (x,y) = min(x,y)
also called the Zadeh t-norm, the greatest t-norm

Schweizer & Sklar Tp(x,y) = max(0,x−p + y−p−1)−
1
p

p ∈ (−∞,+∞), p 6= 0
Weber Tp(x,y) = max(0,x · y− p · (1− x) · (1− y))

p≥ 0, p =


0 Algebraic t-norm
1 Lukasiewicz t-norm
∞ Drastic t-norm

Yager Tw(x,y) = 1−min(1,((1− x)w +(1− y)w)
1
w )

w ∈ (0,+∞)
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B Appendix: A Java
Implementation

In this thesis, we have developed the system to provide an interactive framework for
building, visualizing, optimizing and analyzing FOTs, which is compressed in a Java
package robq. jar and named as RobQ for “Robot-based Quality Assessment Tool”1.
This system is based on a Java data mining package Weka [FHT97], which contains a
complete framework to arrange experiments, compare data mining algorithms, man-
age data sets, and so on. In following, we describe the class structure of the RobQ
system in Section B.1, and introduce the functionalities of the RobQ system in Sec-
tion B.2.

The RobQ system is implemented in following environments: Java(TM) 2 Runtime
Environment 1.5.0; Eclipse SDK 3.2.2; Weka 3.4.3.

B.1 The Class Structure

The RobQ system consists of five major packages, as Figure B.1 illustrates, they are:

1. Operator Package This package is a collection of fuzzy components to build
FOTs, as well as the parameter classes used in fuzzy components, loss func-
tions and classes for evaluation plans. Figure B.2 shows the structure of the
operator package. The involved classes can be categorized into following 3
groups:

(a) Norm and FuzzySet : The core of operator package is the operator inter-
face, which defines the common methods of fuzzy components of FOTs.
Not only fuzzy sets, but also norms and linguistic hedges used in con-
structing FOTs can be generalized as mapping, which take the outputs of
child operators as input, and return numeric output to the parent opera-
tor in turn. Furthermore the sub interfaces of fuzzy set and norm intend
to generalize the common properties of fuzzy set and norms, notice that
the linguistic hedge is built into operator with one additional parameter
upon output of operator. Extending the norm interface, the interfaces of
t-norm, t-conorm and mixnorm are defined.
The aforementioned interfaces give a general framework to define any

1 free available under http://www.mathematik.uni-marburg.de/~yi
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Figure B.1: Class
structure of RobQ
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Figure B.2: Operator
package of RobQ
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aggregation operator, so that one can easily develop new operators. All
common methods and member fields are collected in a direct inherited
abstract “Operator” class, so that just a little work is needed to define an
operator, that is, to characterize its distinct fields or functions.

(b) Operator Parameter : Since the optimization on FOTs bases mainly
on specifying parameters of operators in FOTs, the operator parameter
interface summarizes the operations on operator parameters. A numeric
parameter, no matter involved in fuzzy sets or norms, or linguistic hedges,
is characterized with its domains and excluding points. For example, a
valid parameter for the Hamacher t-norm can be defined as:

r := OperatorParameter(0,+∞,{0})

namely it has a domain [0,+∞] excluding 0.
All common operations on parameters are generalized in this class, such
as the delta rule of gradient descent methods, or mutation operation in
evolution strategies.

(c) Evaluation Plan : For the purpose of evaluation cost minimization on
FOTs, several related classes are developed here to present an evaluation
plan, or a distribution of operator, etc.

Beside these, several utility classes for operators are developed here:

• The Operator generator class helps to generate a random operator under
given limitations. For example, in order to generate artificial training
data, this class is used to generate an operator randomly with predefined
complexity.

• The Data generator class, as its name indicates, is able to generate a
random training data with given FOTs and other limitations, such as built-
in error.

• The Loss Function class generalizes the loss functions for the purpose of
comparison on FOTs with discrete outputs.

• The Differentiable interface collects the common methods of differen-
tiable operators, which is specially designed for the gradient descent
methods.

• The FuzzyOperatorTree class enables to save an FOT in the form of XML
file, and load an FOT saved in an XML file reversely.

2. Optimizer Package The Optimizer package is a collection of implementa-
tions of calibration techniques on FOTs. They are categorized into a “genetic”
package, which is devoted to the class of evolution strategies, and a “gradient-
descent” package, which includes the gradient descent class and its variants, as
well as the simulated annealing class.

Under the “genetic” package, there are still further packages to generalize the
crossover and mutation operation in the evolution strategies, as well as the
individual interface. The Optimizer package provides a flexible platform, on
which one can easily integrate an optimization technique into the RobQ system.

3. Experiment Package Like the experiment package in Weka, the Experiment
package here provides a complete framework to arrange the calibration exper-
iments on FOTs. As an extension of the Weka package, we have developed
following classes:
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(a) The Experiment class overwrites the default experiment class in Weka for
special tasks on FOTs, such as the experiments to evaluate the calibration
techniques or the algorithms for minimizing the evaluation cost.

(b) The WekaAnalyse class analyses the experimental results of FOTs. As
the Weka package provides a framework to run batch of experiments,
record the output of experiment into text files, and analyze experiment
output visually, this class takes over the analyse process of Weka on the
experiment output, and integrates the special tasks regarding respective
goals, such as outputting the result into text format, preparing further
graphical representation on experiment output, and so on.

4. GUI Package The GUI package in RobQ collects the classes and interfaces
for the graphical interactive tool on FOTs, which is described in more detail
later in Section B.2.1.

5. Utils Package This package contains the utility classes of Weka involved in
RobQ, so that the RobQ system becomes independent of the Weka system.

B.2 The Main Functionalities

The RobQ system enables the user to create, run, modify, and analyze FOTs in a
convenient manner under both graphical and command modules. In this section, we
describe how to run the RobQ system under both modules in detail.

B.2.1 Graphical Module

The most convenient way to explore the functionalities of the RobQ system is to
enter its graphical module, which is based on the open source widget toolkit SWT. If
the computer has a Java environment (both under MS windows and Linux), one can
enter the graphical module by double-clicking the RobQ package usually; otherwise
the following command line is needed:

java -jar robq.jar

The main panel of the RobQ system is shown in Figure B.3. We introduce its three
major panels in the following text.

B.2.1.1 The Model/Data Panel

The model/data panel consists of a model panel and a data panel. The former puts
the functionalities for building, modifying FOTs together, and the data panel manages
training data.

As one can see, an FOT is visualized in the model panel using the TableTree, where
each operator object takes a row in the nested table and consists of three columns:
“Node”, “Type” and “Parameter”. The nice property of the TableTree composite lies
in that the first column demonstrates the hierarchical relationship between operators,
while the rest columns describe the detailed information on related operators. The
toolbar at the top of the model panel contains a set of functional buttons, they are:

• creates a new FOT by removing the current operator and inserting one op-
erator. To guarantee the completeness of an FOT, only “Create” and “Modify”
operations are allowed, while “Add”(or “Insert") and “Remove” operations are
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Figure B.3: Graphical
interface of RobQ

package

1. Model / Data panel 2. Output panel

3. Calibration panel

not provided, since an FOT is only complete, if all its interior nodes are norms,
and its leaf nodes are fuzzy sets. The “Create” and “Modify” operations gener-
ate or change an operator and ensure that the current operator is complete, that
is, if the current operator is a norm, then the (default number of) leaf nodes are
automatically inserted. Otherwise its children nodes, if exist, are removed.

• modifies the property of selected operator. Generally to design the modifi-
cation panel is very time-consuming, since objects usually have different prop-
erties, sometimes its property is in turn an object. The idea of “generic object
editor” has been emerged originally in Weka to overcome this problem. The
generic object editor in Weka gives a framework to define the properties of ob-
jects, so that a uniform property editor can be applied in any objects following
this framework. Following this idea, we have developed an extended generic
property editor, in which not only numeric and text properties, but also nomi-
nal and object ones can be modified. Figure B.4 illustrates a generic property
editor to modify the properties of a Hamacher t-conorm, where the parameter
specifications on a Hamacher t-norm are listed and ready to be modified. As
one can see, the text and numeric properties are composed in the form of text
editor, while nominal property (like “inputExtendable" here) is composed in
the form of list editor. The built-in object property (the parameter r here) is in
turn modifiable by embedding another generic property editor recursively. The
common head of a generic property editor contains a “Choose” button, which
lists all alternative objects to current one, so that one can change the type of
operator (for instance changing to a t-norm or fuzzy set in this example is pos-
sible), and a description label summarizes current operator. With further four
buttons one can import or export the properties in the form of text file, confirm
or cancel the modifications.

To take the benefit of the generic property editor, one just needs to declare a
property with following methods:
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Figure B.4: Generic
Property Editor on a
Hamacher t-conorm

– the getXXX() method,

– the setXXX() method and

– the xXXTipText() method.

where XXX stands for the property name, and xXX for the property name with
first letter in lowercase. Then the modification on XXX is arranged automati-
cally with the help of the generic property editor, no further work is necessary,
as long as XXX is a numeric, text, nominal or object property.

• and randomize the involved parameters in current operator or FOT,
which is specially desired for generating artificial training data or initializing
FOTs before the calibration process.

• and allow user to import an FOT saved in an XML file or export an
FOT into an XML file reversely.

• generates an artificial training data based on current FOT, while sets
the data generator process.

The Data panel provides a quick view of data files in the form of .ar f f , which is the
standard format in the Weka package. In the Data panel, user can browse, import and
export training data, as well as modify the data, set the class attributes, etc. Figure
B.5 demonstrates a data panel.

B.2.1.2 The Output Panel

The output panel consists of following parts:

1. The Logging panel records the runtime information of operations called in
the following calibration panel.

2. The Visualization panel shows the intermediate results during the calibration
process graphically by drawing the important measurements in 2D spaces.
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Figure B.5: The Data
panel of RobQ package

3. The Diagram panel shows the current FOT in a real tree-like structure, in
which the color depth corresponds the parameter specifications, as Figure B.6.
For example, the maximal t-norm (the minimum t-norm) is colored with green,
which is at the same time the minimal mixnorm. On the other hand, a minimal
t-norm is colored with white. The diagram gives a general representation of an
FOT in a “fuzzy” way.

Figure B.6: Diagram of
an FOT

B.2.1.3 The Calibration Panel

This panel is especially developed for the experiments of calibration of FOTs by
specifying the experiment or analyser class with the help of generic property editor.
It consists of following three subpanels:

1. Under the Explore panel , one can arrange a single experiment by specify-

Page: 135



Section B.2: The Main Functionalities

ing an involved calibration technique and setting its parameters. The intermedi-
ate results of the calibration process is shown in the Logging and Visualization
panels.

2. Under the Experiment panel , one can arrange a set of experiments by spec-
ifying the modified experiment class, for a more flexible way to arrange exper-
iments see Section B.2.2.

3. The Analyse panel is designed to analyze the experimental results, the
analyse output is written into the Logging panel. Inherited from the Weka
package, one can also specify the format of analyse output, the columns to be
compared, and so on.

B.2.2 Command Module

While under the graphical module user can make use of the RobQ system in an inter-
active way, the command module is desired for arranging experiments and analyzing
the experiment outputs in a professional, efficient way. Without loading the graphical
components, running the RobQ system under the command module requires signif-
icant less memory and disk space. Moreover, all mentioned tasked in this thesis are
available under the command module, under the graphical module only several tasks
like calibration is allowed. Actually all experiments involved in this thesis are carried
out under the command module.

Under the command module, one can explore the RobQ system by specifying proper
parameters. A typical command under the command module looks like:

java -cp robq.jar -mx1024m robq.experiment.Experiment
-L 1 -U 1
-D robq.experiment.resultListener.Instances
-O optimizer.txt -T 50 -C 10 -I 200
-- -O 0620_c010.arff
-W robq.experiment.splitEvaluator.Optimizer

where the first line gives the classpath (robq. jar here), the required visual memory
(1024MB) and the main class (Experiment), the last parameter can be replace with
other class names for different tasks, for instance use

robq.experiment.analyser.WekaAnalyse

to analyse the experiment outputs. From the second line the parameter specification
is given pairwisely, in this example they are:

• L and U the lower and upper run number of experiments, which determines
how many times each experiment would be repeated. After applying the “restart”
technique, these both parameters are set to be identical. That is, the experiment
under each configuration would be carried out once.

• D indicates the format of experiment output, in this case it is in turn a classname
standing for the standard experiment output (.ar f f file).

• O gives the configuration filename for optimizer to be investigated.

• C is the complexity of randomly generated FOTs.
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• I is the number of instances in an artificial training data.

• −− is the separator to divide the parameters between different classes, like in
this case, the second parameter O is set to the experiment output as the output
filename.

• W indicates the evaluation class to generate the experiment output.

To show all available parameters, one can simply invoke a class without special pa-
rameter. For example, use

java -cp robq.jar -mx1024m robq.experiment.Experiment

to get a list of all available parameters for the Experiment class.
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