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Zusammenfassung

In der vorliegenden Arbeit werden drei verschiedene Quantenphaseniibergénge in
quasi-eindimensionalen Systemen mit Hilfe analytischer und numerischer Metho-
den untersucht.

Im ersten Teil widmen wir uns dem Ubergang von einem Band- in einen Mott-
Isolator. Solche Uberginge treten in Ladungs-Transfer-Systemen auf, fiir die das
halb gefiillte ionische Hubbardmodell einen Prototypen darstellt. In unserer Unter-
suchung wird zunachst ein effektives ‘Spin-Eins Modell’ abgeleitet, das wir dann
mit Hilfe der Dichtematrix-Renormierungsgruppe numerisch untersuchen. Ins-
besondere fithren wir eine sorgfaltige ‘finite-size’ Skalenanalyse der Massenliicke,
des Ordnungsparameters und der zugehorigen Suszeptibilitat durch. Hierbei wird
die Existenz zweier quantenkritischer Punkte bestatigt. Die Analyse der kritischen
Exponenten zeigt, dass der gefundene Ubergang vom Band-Isolator in die spon-
tan dimerisierte Phase zur 2D Ising-Klasse gehort. Der zweite Ubergang von der
dimerisierten Phase in den Mott-Isolator ist von unendlicher Ordnung.

Gegenstand des zweiten Teils der Arbeit ist der Mott-Metall-Isolator Ubergang
in einem halb gefiillten Hubbardmodell mit nachstem und {ibernachstem Nach-
barhiipfen. Wir verwenden hierbei die Methode der Bosonisierung sowie die Dich-
tematrix-Renormierungsgruppe. Mit Hilfe der Bosonisierungsmethode leiten wir
einen effektiven Niedrigenergie-Hamiltonoperator ab, der den Mott-Metall-Isolator
Ubergang beschreibt. Desweiteren werden DMRG Ergebnisse zur Ladungs-und
Spin- Verteilung in verschiedenen Bereichen des Phasendiagramms vorgestellt. Die
numerischen Resultate stiitzen das Szenario des effektiven Modells, wonach die
Ubergénge im Spin- und im Ladungssektor voneinander unabhéingig sind.

AbschlieBend werden im dritten Teil der Arbeit Ubergiinge zwischen raum-
lich homogenen und inhomogenen Phasen in niedrigdimensionalen Fermionen-
und Spinsystemen untersucht. Bei den inhomogenen Phasen handelt es sich um
dimerisierte, trimerisierte und inkommensurable Zustande. In diesem Zusammen-
hang schlagen wir einen neuen Zugang vor, in dem die Langenabhangigkeit der
‘von Neumann Entropie’ sowie das zugehorige Fourier-Spektrum ausgewertet wer-
den. Bei endlichen Wellenvektoren weisen Maxima im Spektrum auf ein oszil-
latorisches Verhalten von Korrelationsfunktionen hin und liefern dariiber hinaus
wichtige Informationen zu den Eigenschaften des Anregungsspektrums. Insbeson-
dere erlauben sie die Bestimmung von ‘weichen’ Moden kritischer Modelle.
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Abstract

We investigate three different types of quantum phase transition occurring in quasi
one-dimensional systems theoretically and numerically.

First, we study the band-insulator to Mott-insulator transition occurring in
charge-transfer complexes, for which the half-filled one-dimensional ionic Hubbard
model is considered to be the prototype model. The study is carried out by first de-
riving an effective spin-one model, and then studying the model numerically using
the density matrix renormalization group. We perform a careful finite-size scaling
analysis of the mass gaps, order-parameters, and relative susceptibility. We con-
firm the existence of two quantum critical points. Analysis of the critical exponents
confirms that the band-insulator-to-spontaneously-dimerized phase transition be-
long to the 2D Ising class. The spontaneously dimerized phase undergoes a phase
transition to the Mott-insulator which is an infinite-order.

Second, we investigate the Mott metal-insulator transition for the half-filled
Hubbard model with both nearest-neighbor ¢ and next-nearest-neighbor ¢’ hop-
ping terms. We study the model using the bosonization approach and density
matrix renormalization group simulations. An effective low-energy Hamiltonian
that describes the insulator-metal transition is derived. We present results of den-
sity matrix renormalization group calculations of spin and charge distribution in
various sectors of the phase diagram. The numerical results support the picture
derived from the effective theory and give evidence for the complete separation of
the transitions involving the spin and the charge degrees of freedom.

Finally, we investigate quantum phase transitions phases in low-dimensional
fermionic and spin models that go from uniform to spatially inhomogeneous, i.e.,
dimerized, trimerized, or incommensurate, phases. We propose a new approach
based on studying the length dependence of the von Neumann entropy and its
corresponding Fourier spectrum for finite segments in the ground state of finite
chains. Peaks at a nonzero wave vector are indicators of oscillatory behavior
in decaying correlation functions and also provide significant information about
certain relevant features of the excitation spectrum; in particular, they can identify
the wave vector of soft modes in critical models.
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Introduction

In condensed matter physics, the equations of non-relativistic quantum mechanics
describe all phenomena and play the role of a theory of everything® [1,2]. To
find solutions of the Schrodinger equation for many particles (N ~ 10%%) is an
extremely difficult problem and is the essence of condensed matter theory [3]. The
Schrodinger equation has the form of a wave equation

where, for a general condensed matter system,

Ne
H= — — —Z—VQ
J
Ye S Z,e e N ZaZpe?
- ;;\’Pa’ R,| Z|"‘ —"°k| Z|R — Rg|’

in first quantization. This description is parameterized by the atomic number Z,,
the mass M, and the position R, of nucleus a and the mass m, the charge e, and
the position r; of electron j in a system with NV, electrons and N; nuclei.

The problem is challenging because there is no analytical or numerical method
known that can solve this equation for such a large number of particles. We know
that only a small collection of successful recipes work in particular cases. Never-
theless, at certain energy scales, simpler effective theories emerge from the original
one, allowing us to explain phenomena such as the nature of metals, semiconduc-
tors, superconductors, superfluids, and the quantum Hall effect without solving
the full Schrodinger equation.

In solid state physics, the electrons move orders of magnitude faster than the
ions, which can be treated as being localized on the vertices of a lattice [4,5]. As
a consequence, the electronic and ionic degrees of freedom can be decoupled, and
the Schrodinger equation reduces, to zeroth order, to an electron-electron prob-
lem. This approach is called the Born-Oppenheimer approximation or adiabatic

'Relativistic effects are important in some systems, but can usually be treated as additional
interactions in a non-relativistic picture, e.g., the spin-orbit interaction.
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approximation [6], and the Hamiltonian can be simplified to
He:Te—i_‘A/ee—i_f/exta

where Te is the kinetic part of the electrons, f/ee the electron-electron interaction
and Vi is the potential acting on the electrons that is produced by the ions in
their equilibrium positions. The motion of ions can be included in the next order
as phonons.

Unfortunately, the equations obtained within the Born-Oppenheimer approxi-
mation are still quite difficult to solve. More insight into the ground-state prop-
erties is provided by the Hohenberg-Kohn theorem [7], which is the key to un-
derstanding the electronic structure of most materials. It states that the external
potential acting on electrons is uniquely determined by the electronic density p(r).
A corollary of the theorem says that the ground state wave function that would be
obtained by solving the full Schrodinger equation is also uniquely determined by
the electron density. In addition, the theorem states that the ground-state energy
E of a many-electron system is a functional of the electron density, i.e.,

E,[5) = Flil + / A v (1) dr

where F'[p] is unknown functional and E,[p] is minimized by the ground state.
In principle, this method is exact, but in practice, the correct functional is un-
known [8]. Today, density-functional theory (DFT) with the local density ap-
proximation (LDA) successfully describes the overall electronic properties of most
solids and molecules [9]. However, no known functional can correctly describe
low-dimensional systems in which the electrons are strongly correlated; for such
systems the local density approximation fails [10].

Strong correlation effects are particularly pronounced in low dimensional or
strongly anisotropic materials. The constraint on the motion of electrons and the
reduction of screening lead to a larger effective electron-electron interaction and
to a larger influence of the quantum fluctuations [11-13]|. Such materials manifest
collective quantum phenomena which are interesting theoretically [14-16], exper-
imentally [17], and technologically [18]. One important aspect of the effects of
strong correlations is that a small change in a relevant parameter can induce large
changes in the properties of a material. FExamples include the rich phase diagrams
of a number of organic materials [19], such as the Bechgaard salts [20], polyacety-
lene [21], and the chloranil compounds [22]. Another example is the phenomenon of
colossal magnetoresistance (CMR) [23,24]. In certain manganites, a small change
in the applied magnetic field can induce an enormous change in the resistance.
While this phenomenon is not yet well understood theoretically, it could poten-
tially have a large impact on hard disk storage technology. Another important
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class of strongly correlated materials is that of the high-temperature supercon-
ducting cuprates [15,25,26]. Small changes in doping induce a transition from an
antiferromagnetic insulator to a high-temperature superconductor. Despite many
years of work, the mechanism is not yet completely understood theoretically [27].

Recently, properties of strongly correlated systems have been used engineer
quantum devices. For example, spintronic devices use strong interaction effects
to manipulate the spin degrees of freedom of electrons [28]. In order to construct a
quantum computer [29], it is essential to control the necessarily strong interaction
between qubits [30].

Since first-principles methods either involve such rough approximations that
strongly correlation effects cannot adequately be described or lead to problems
that cannot be solved, it is useful to formulate simpler effective models that contain
the essential physics [10,31-37]. The prototypical model for strongly correlated
itinerant electrons is the Hubbard model, which describes electrons hopping on
a lattice under the influence of a localized Coulomb interaction. The Hubbard

Hamiltonian is I
H=- Z tigliolhe + o Z i oMi
1,750 10

where ¢, and ¢ operators destroy and create an electron of spin o, respectively,
and 7 is the particle number operator. The model can be extended by adding a
number of different interactions, such as longer-range Coulomb terms, modified
hopping terms, spin interactions, or an alternating potential. Much of the rest of
this thesis is concerned with such extended Hubbard models in one dimension. The
physics of the Hubbard model includes concepts such as the Tomonaga-Luttinger
liquid (in one dimension) [38-40], the Mott metal-insulator transition [41], anti-
ferromagnetism, ferromagnetism, and superconductivity [32,42].

In many cases, it is useful to treat the spin degrees of freedom as being localized.
This can be done using a quantum spin model. The prototypical model is the
Heisenberg model with Hamiltonian [43]

1’{[ - ZJz,]S'z . Sj,

1,J

where S; is the spin operator on lattice site 7. In general the local spin can take
on any value that is a multiple of a half integer. In the spin-one-half case, the
Heisenberg model is the strong-coupling limit of the Hubbard model at half filling.
It is also useful to consider higher values of the spin, in particular, spin one. This
can occur either when two or more electrons are localized on a site or, as we shall
see in chapter 3, when three local degrees of freedom are incorporated in an effec-
tive model. Anisotropy or additional exchange interaction, such as a biquadratic
exchange, can also be introduced to generalize the Heisenberg model. The physics
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of the antiferromagnetic Heisenberg model, which will primarily be considered in
this thesis, has been studied extensively and a number of results are known [42,44].
In two or more dimensions, the behavior on simple unfrustrated lattices is that of a
renormalized classical antiferromagnet. More interesting behavior occurs on non-
Bravais lattices and on frustrated lattices. In one dimension, the Haldane picture
describes completely the possible behavior of spin chains. Half-integer spin chains
are gapless and critical, whereas integer spin chains have a gap to spin excitations.

In this thesis, we address some interesting current issues in one-dimensional
quantum systems. One-dimensional systems are particularly well-suited to investi-
gate some fundamental aspects of interacting quantum systems for two reasons [10].
First, since quantum fluctuations are strongest in one dimension, non-classical phe-
nomena such as quantum phase transitions, critical phases, and collective quantum
effects are numerous. Second, there are a number of techniques, both analytical
and numerical, which make it possible to study these systems in an accurate and
well-controlled way. Analytic techniques include exact solutions such as the Bethe
ansatz and well-controlled field theoretical techniques such as the renormalization
group, bosonization, and conformal field theory [45]. Numerical techniques include
exact diagonalization, quantum Monte Carlo, and the density matrix renormaliza-
tion group (DMRG). Here we make use of results from these field-theoretical tech-
niques, and carry out numerical calculations with the DMRG [46,47], currently
the most effective numerical technique to calculate the ground-state properties of
one-dimensional interacting quantum systems.

The issues that we will study can be grouped into two main topics. The first
topic is the characterization of quantum phase transitions, i.e., phase transitions
occurring at zero temperature as the parameters of a system are changed. These
transitions have been of interest recently because their experimental signatures
have become more accessible and because the theoretical understanding has in-
creased [48]. The second, related topic is the relationship between the properties
of ground states, especially those with strong quantum effects, and the properties
of quantum phase transitions and quantum information. While the connection be-
tween quantum mechanical entanglement and quantum entropy has been known
for a long time, the relationship between the properties of strongly correlated states
and quantum information has only recently been elucidated [49].

In particular, we study three particular types of quantum phase transition: the
band insulator-Mott insulator transition, the Mott metal-insulator transition, and
homogeneous-inhomogeneous phase transitions. The ionic Hubbard model is the
simplest fundamental model for the band insulator—-Mott insulator transition be-
cause it contains two competing terms, the alternating ionic potential, which in-
duces a band insulator, and the local Coulomb repulsion, which induces a Mott
insulator. In order to study the detailed behavior of the transition, we derive
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an effective strong-coupling Hamiltonian, which contains the essential physics of
the transition. We analyze the critical behavior of this effective model using the
DMRG in conjunction with extensive finite-size scaling. We are able to verify the
presence of two phase transitions and a spontaneously dimerized phase between
the band- and Mott-insulating phases and can extract more detailed information
on the critical exponents than previously possible.

A purely interaction-induced Mott metal-insulator transition occurs in the Hub-
bard chain with next-nearest-neighbor hopping. We relate the Mott transition to
the commensurate-incommensurate transition associated with the change from a
two-point to a four-point Fermi surface. We confirm a theoretical picture based on
bosonization by carrying out detailed DMRG calculations of the relevant charge
and spin gaps, the momentum-space structure of the charge and spin oscillations,
and the momentum distribution. We thus obtain a full and intuitive picture of
origin of the phase diagram.

Homogeneous-inhomogeneous phases transitions occur in various models. We
study such transitions in three different models: the frustrated spin-1/2 Heisenberg
chain, the bilinear-biquadratic spin-one chain, and the Hubbard chain with next-
nearest-neighbor hopping also treated previously. In this case, we make use of
quantum information entropies, in particular, the block, single-site and two-site
entropies, to characterize the momentum-space structure of the phases. We show
that these quantities contain the full information needed to classify the various
phases and to extract universal parameters characterizing critical phases.

Structure of the Thesis

The thesis is structured in two parts. The first part, contained in chapters 1 and
2, focuses on the methods and tools used. The second part, consisting of chapters
3, 4 and 5, describes our results.

In chapter 1, we introduce the analytical methods to study quantum critical
phenomena in one dimension. The basic concepts of the Luttinger liquid, spin-
charge separation, and central charge are discussed. In chapter 2, we describe the
density matrix renormalization group method, which is our main numerical tool,
and its connection with quantum information.

In chapter 3, we derive an effective model for the band-to-Mott insulator transi-
tion that correctly describes the physics of the problem, allowing us to address some
outstanding questions. We supplement the analytical derivation with an extensive
numerical investigation using the DMRG and finite-size scaling aimed to charac-
terize the transition. In chapter 4, we study the Mott insulator-metal transition
occurring into the t—¢' Hubbard model with nearest-, ¢, and next-nearest-neighbor,
t', hopping terms. We propose a mechanism, based on bosonization and including
the commensurate-incommensurate transition, to explain the full phase diagram.
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We then check our conjecture using density matrix renormalization group calcu-
lations. In chapter 5, we use the von Neumann entropy to characterize different
phases and critical points. We test our method on the well understood spin-one-
half Heisenberg model and on the spin-one bilinear-biquadratic model, and, finally,
we apply it the ¢ — ¢ Hubbard model of chapter 4.

When appropriate, chapters conclude with a brief discussion or summary. In
the conclusion, we summarize the work and give an outlook.

Publications

Parts of this thesis have been already published or have been prepared for publi-
cation. Since other people were also involved in this process, I have taken care to
point out my contributions to each project at end of each chapter. In order, the
chapters related to each publication are:

Chapter 3

Effective model for the band-insulator-to- Mott-insulator transition in the ionic
Hubbard model
L. Tincani, R. M. Noack and D. Baeriswyl,

m preparation.

Chapter 4

Phases and phase transitions in the half-filled t — t' Hubbard chain
G. I. Japaridze, R. M. Noack, D. Baeriswyl and L. Tincani,
Physical Review B 76, 115118 (2007).

Chapter 5

Entropic analysis of quantum phase transitions from uniform to spatially
imhomogeneous phases

O. Legeza, J. Sélyom, L. Tincani and R. M. Noack,

Physical Review Letters 99, 087203 (2007).

Applications of Quantum Information in the Density-Matriz Renormaliza-
tion Group

0. Legeza, R. M. Noack, J. S6lyom and L. Tincani,

in Computational Many-Particle Physics, Lecture Notes in Physics, Vol. 739,
Fehske, H.; Schneider, R.; Weie, A. editors, Springer (2008).



1 Analytical Approach to Quantum
Phase Transitions

1.1 Theory of critical phenomena

The first theory of critical phenomena was proposed by Landau [50]. The Landau
theory unified all mean-field theories in a general framework and introduced the
concept of the order parameter. The order parameter m is a thermodynamic
quantity, which can be a scalar, a vector, or a tensor, that vanishes in one phase
and takes on a nonzero value on another one. The basis of the Landau theory
is that the effective free energy is an analytic function of the order parameter,
consistent with the symmetry of the problem [51-54]. Therefore, the value of
the order parameter is the one that minimizes the free energy and its vanishing
delineates the phase transition. The character of the transition, first or second
order, the exponents of the transition, and the explanation of the relation between
the soft modes and the fluctuations of the order parameter, are possible within the
theory. However, the exact solution of Onsager [55] and of the two dimensional
Ising model [56,57] showed that the Landau theory is not quantitatively correct
because it does not correctly treat the fluctuations of the order parameter near
criticality. In fact, according to the Ginzburg criterion, which states that there
must exist a dimensionality d. such that for d > d. fluctuations are unimportant,
the Landau theory is valid only for systems of dimension larger than d. [52].

In the 1960’s, critical phenomena were reinterpreted in terms of the new concepts
of scaling and universality [58-60]. The discovery of the scaling relations, called
scaling laws, that relate the different critical exponents and explain the observa-
tion of the universal collapse of data, has become central in the classification of
the critical phenomena. However, a more complete understanding of the problem
was achieved only after scaling ideas were expressed in terms of the renormaliza-
tion group (RG) by Wilson [61]. First, one generalizes the Landau functional by
expressing the partition function Z = e */T as a functional integral

Z=e"T = / D(ple 1)

where S[¢] is the action of a field ¢ that fluctuates around the average (¢) = m.
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The next step is to study the Landau-Ginzburg-Wilson functional using the renor-
malization group method [52,53,62,63]. In the lowest order (saddle point) ap-
proximation one recovers Landau theory. The central concept in the Wilson RG
approach to the critical point is the divergence of the correlation length &, which
is assumed to be the only important length scale and which dominates the long
wavelength physics. Therefore, all the smaller length scales can be integrated out.
The most important result is a complete and consistent derivation of the critical
exponents and scaling laws in term of the renormalization group transformation.
Concepts originating from the RG, such as fixed points of the RG flow and rele-
vant, marginal, and irrelevant parameters, now belong to the standard methods of
investigating critical phenomena [52,53, 63, 64].

In addition to the diverging correlation length scale &, there is also a diverging
time scale 7 [65]. The two scales are related by the dynamical exponent z as 7 ~ &*.
This gives rise to critical slowing down: a system relaxes towards equilibrium very
slowly near a critical point. In classical systems, the dynamic and static part of
the partition function can be decoupled. In the quantum case, the kinetic part
and the potential part of the Hamiltonian do not commute. Thus, the dynamic
and static contributions to the partition function cannot be decoupled and z must
be taken into account in the scaling of the free energy [48,66].

The Landau-Ginzburg-Wilson approach is an extremely powerful way of describ-
ing and classifying any critical phenomenon [67]. Nevertheless, there are some
quantum phase transitions that cannot be described by considering only the long
wavelength fluctuations of a local order parameter. Some mechanisms that can
invalidate the Landau-Ginzburg-Wilson approach are generic scale invariance [68],
deconfined quantum criticality [69], heavy fermion quantum criticality [70], and
impurity quantum phase transitions [71].

1.1.1 Finite-size scaling

Finite-size effects in critical phenomena have been investigated extensively in theo-
retical studies [53,72] and have recently begun to be studied experimentally in thin
films [73-78]. Finite-size scaling analysis is important in numerical work where the
linear dimension of the system has a finite value L.

The inverse of the system size acts as an additional parameter that moves the
system away from the critical point. Indeed, finite-size systems can not be critical
and they have to be gapped [79]. However, renormalization group theory applied to
such a system shows that the RG equations are not modified, restricting the system
to a finite one [64]. The difference appears in the solution of the equations because
correlation functions depend now on the system size [53,63]. Thus, knowing this
dependence, critical parameters of a system at the thermodynamic limit can be
obtained by the system-size scaling analysis of the corresponding thermodynamic
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quantities in finite-size systems [72].

When we study finite systems, there are two aspects to consider: the geometry
of the system and the boundary conditions [53,72]. There are three particular
interesting geometries. First, a completely finite system of volume V' in d dimen-
sions. Second, a d-dimensional layer system of infinite extended dimension in d —1
dimensions, but of finite thickness in the remaining one. Third, a system infi-
nite in one dimension, but finite in the other ones. Though they do not differ in
one-dimensional systems, in systems of dimensionality d > 2, different geometries
can give rise to the crossover scaling effect [72]: the exponents first take on one
value, than cross over to another when the system size reaches a particular value.
Whatever the geometry, restricting the domain of a system to a finite region in-
volves the introduction of boundaries and the imposition of boundary conditions.
Different boundary conditions lead to different surface critical behaviors. The
system can be separated into bulk and surface components, each with different
critical exponents. In the thermodynamic limit, the critical character of the bulk
is dominant. In addition, for a system away from criticality with open boundary
conditions, thermodynamic arguments suggest that the free energy contribution
to the total free energy is proportional to the surface volume. Such a contribution
would vanish identically for periodic or anti-periodic boundary conditions [53,72].

Now we formulate finite-size scaling and derive its consequences for transitions
obtained varying some non-thermal parameter €. In a quantum system in the
neighborhood of a critical point, there are only two scales that matter, the corre-
lation length in space &, and the analogous time 7. scale.

These two quantities diverge close to a critical point &,

£~ le—ed™, Te ~ |6 — e 7%, (1.1)
where v is the correlation length critical exponent and z is the dynamical critical
exponent [65]. As a consequence, at the critical point all observables diverge as
power laws. For example, the susceptibility diverges as

X~ le—el 7~ (1.2)
All critical exponents are related by the simple scaling relations,
a+20+v=2, 2—a=uvd, (1.3)

where a and (8 are the specific heat and order parameter exponents respectively
for a system of dimensionality d. The set of their values defines the universality
class of the transition [67].

The behavior of a critical system at zero temperature is characterized by the
absence of an energy gap between the ground state and first excited state [48].



1 Analytical Approach to Quantum Phase Transitions

This gap corresponds to the mass gap [80]
A, ~1/€7, (1.4)

where the smallest value of the energy gap E; — Ey is A,,.
For a finite system of size L, the correlation length cannot be larger than the
size of the system. Thus we expect that, at the critical point,

£~ L (1.5)

as L — oo or, equivalently, massive soft modes appear and scale as A,, ~ L™, In
other words, as the critical point is approached, the effective theory will become
closer and closer to that of free massless particles with a spectrum A,, ~ k* for
k — 0. Since the lattice is discrete, the smallest nonzero momentum must be
27/ L, leading to the 1/L* behavior of the gap [81]. We define the pseudo-critical
point £*(L) by the condition {[e*(L)] ~ L.

Due to the scaling hypothesis, all the other quantities have definite scaling be-
havior with system size: the susceptibility x(e., L) ~ L¥/¥, the order parameter,
D(e., L) ~ L7837 and the specific heat, c(g., L) ~ L*". In addition, the posi-
tion of the pseudo-critical point relative to the true critical point scales as L=/,
allowing us to extract the correct critical exponents from the scaling behavior of
pseudo-critical points [72].

Correlation functions can be calculated as well and can be used to extract the
exponent 7, i.e.,

G(e,r — 00) ~ |r|7(@F2)+2m,
However, one must be careful in the choice of which specific correlation function
is measured because it is difficult, a priori, to distinguish which one is dominant
in the thermodynamic limit. In addition, sufficiently large systems are necessary
to extract information about the r — oo behavior [82,83].

The above scaling analysis is applicable to second-order phase transitions, but
in nature a system can also undergo a transition that scales faster than any power
law, i.e., with an infinite exponent. Therefore an extension of finite-size scaling
to these transitions is necessary, but is not trivial [84,85]. One reason is that
the theory contains irrelevant variables which are difficult to deal with, leading to
logarithmic terms [53]. In addition, such transitions typically involve topological
order [86], i.e., no local order parameter can be used to discriminate between the
phases [87-90]. Technically, the two phases can be distinguished only using their
global properties [66].

The prototypical universality class for infinite-order transitions is that of the 2D
XY model, which is characterized by the Kosterlitz-Thouless (KT) critical behavior
[67,91-93]. According to the KT scenario, which is obtained using perturbation
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theory, the free energy has an essential singularity at €., and the correlation length
diverges exponentially as

§(t —0%) ~ e,
where t = /e, — 1, 0 = 1/2, and b is a positive non-universal constant. This
implies that the mass gap closes very quickly,

A~ 1/E~ e (1.6)
and that correlation functions decay exponentially
G(t — 0%, r) ~e /8

very close to the critical point. At the critical point, the asymptotic behavior of
the two-point correlation function for » — oo is
Inr)?
G(gm T) ~ u )

rie

where 7. = 1/4 and 6 = 1/16, and the exponent 6 takes into account the log-
arithmic corrections. An interesting approach that suppresses the logarithmic
corrections is achieved by a conformal rescaling of the correlation functions [94].

Assuming that the system is finite, we can still argue that the only relevant
spatial length scale is £(L), rounding off the transition at {(e.) ~ L. Therefore,
the growth of the susceptibility is given by

X(e, L) ~ L7 (In L),

where the logarithmic correction is explicitly included. Beyond the critical point,
the phase is completely critical, and one expects the scaling

x (e > e, L) ~ L¥1E

for L. — oco. As a consequence, the susceptibility does not exhibit a maximum in
the vicinity of the critical point, so that it cannot be used to extract the critical
coupling. The singular behavior of the specific heat is also known; it exhibits a
weak singularity [92] ¢ ~ £72. Such behavior is very difficult to observe as it be-
haves regularly in e..
Therefore, a regular behavior of the ground state energy as function of ¢, associ-
ated with a divergent correlation length or susceptibility as L increases, is a good
indicator that there is a K'T transition.

In two dimensional classical systems or in (1+ 1)-dimensional quantum systems,
a number of nontrivial models can be solved exactly [40,95-97], and, moreover,
conformal field theory gives exact predictions for the critical exponents and critical
behavior [53,98]. In fact, the critical phases can be classified on the basis of
the central charge. For instance, the 2D Ising universality class and the 2D XY
universality class correspond to CFTs with central charges ¢ = 1/2 and ¢ = 1,
respectively [99,100].

11



1 Analytical Approach to Quantum Phase Transitions

1.2 The Luttinger liquid and bosonization

The properties of one-dimensional systems of electrons moving on a lattice are
governed by the quantum nature of the particles, the interaction between parti-
cles, and the coupling with an external potential [39,80,101]. Quantum systems
in three dimensions are successfully described by the Landau Fermi-liquid the-
ory [34,97,102-107]. However, in one dimension, the (perturbative) renormal-
ization group [108,109] indicates different behavior [34,38] that of the Luttinger
liquid [110-115]. The Fermi surface consists of two discrete points (+kp), the
quasiparticle weight vanishes, there is no well-defined quasiparticle (peak), and
spin-charge separation occurs [108,116-119]. The perturbation theory approach
can be extended to stronger coupling by going to higher order in perturbation
theory [120], but it fails in the strong-coupling limit. The Luttinger liquid picture,
in contrast to its weak-coupling basis [108,121], sometimes survives in the strong-
coupling limit, as described within the bosonization approach [111,121-124]. In
fact, in one dimension the Pauli exclusion principle reduces to a boundary con-
dition. From this it follows that, for any interacting fermion problem, there is a
corresponding interacting boson problem. Therefore, we utilize the possibility of
mapping a strong-coupling problem to a weak-coupling one with different statis-
tics [125-128]. The new problem can then be treated by the (perturbative) renor-
malization group [129,130] approach, or by the more powerful functional renormal-
ization group method [131,132]. H. J. Schultz’s application of the bosonization
method to the Hubbard model provides a detailed description of the crossover
between weak and strong interaction as well as of the metal-insulator transition
at half filling [133,134]. An important result achieved using the bosonization ap-
proach is to show that the exponents of the correlation functions and the weight of
the Drude peak obtained for the Hubbard model, close to half filling, are generic
features of any Luttinger liquid [135].

1.2.1 Interacting electrons in one dimension

The starting point is the non-interacting Hamiltonian

Hy = Z 5(’“)62061@0 ’

k,o

where é;a(ék,g) is the creation(annihilation) operator for an electron with momen-
tum & and spin o [109]. The kinetic energy of an electron with respect to the Fermi
energy is given by the dispersion (k). The effective low-energy theory is defined
in terms of creation and annihilation operators linearizing the energy dispersion

12
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in the vicinity of the Fermi points

o= 3 [or b — ko) e Sk 4 vr (—k — ko) 2]
k,o

where ¢l(¢E T) and ¢f(¢f T) denote the electron annihilation(creation) operators
belonging to the left and right Fermi points, respectively. The Fermi velocity is
given by vp = J(e;/0k), calculated at the Fermi points.

The general two-body interaction for a translationally invariant fermion system
can be written as

1nt - E § FO’O’ C]H_q g’ck/ q U/Ckcrck’ !

oo’ k,k',q

In the low-energy limit, the interaction can be classified into the four different
types shown in Fig.1.1.

Figure 1.1: The four low-energy scattering process for right-moving (continuous
line) and left-moving (dashed lines) electrons in one dimension. The
coupling constants are ¢g; for backward scattering, g, for forward dis-
persion scattering, gs for umklapp scattering (g3 processes are possible
only at half filling) and g, for forward scattering.

The scattering process with coupling constant g; corresponds to backward scat-
tering of the electrons, with momentum transfer ¢ = 2kr. The process with
coupling ¢g» and g4 are forward scattering terms, and are associated with small
momentum transfer ¢. In the g, process, the left and right branches are connected,
while they are decoupled in the g4 processes. The umklapp process g3 contribu-
tion occurs only at half filling because of the conservation of crystal momentum.
The study of the evolution of the g coupling constants under the (perturbative)
renormalization group and the corresponding behavior of the response functions
is termed the g-ology technique [109,118,119,136-138].

13
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Linearization of the spectrum. We can generalize to all cases where the lin-
earization of the spectrum in the neighborhood of the Fermi points is reasonable
for a momentum cut-off A. Thus the effective Hamiltonian is then

krp+A —kp+A
He= Y  cek)efea+ Y e(k)éfer,
k=kp—A k=—kp—A

and the energy dispersion can be expanded as

Oe
e(k)rL = e(xkp) + (K F kp) 3—/: +0 [(k F k:F)Q] for k=~ +kp.
k=tkp

We work at zero temperature and can thus take e(+kp) = 0. In addition, we
define the Fermi velocity as vp = + ey, /0k|,_., . and separate the operators into
left and right movers

R = Chprk Ok = otk
The effective Hamiltonian then becomes
A
H =" vek (e - efef)
k=—A

where vg is the only remaining physical parameter and the energy cut-off is fixed
by vpA. One introduces slowly varying fields ¢ (x) and 1g(x) for the left and
right movers, so that

V(@) = Yr(@)e™™ + Py (x)e 0.

In the continuum, the chain has length ¢ = aN, the Fourier transform of the left
and right fields are

14
NV / ik
C = — e xZ).
k \/Z ) ¢L/R( )

Bosonic operators. We now introduce the Fourier-transformed particle-density
operator for the right and left movers

- Yl
k
where the a index can indicate either left (L) or right (R). Thus, the Hamiltonian

can be written in a simplified form in terms of these operators. In fact, the density
operators p“ are bosonic operators, i.e.,

o sgn (@) Lg
[pgqa p?’] = (Sozo/(sqq’i,/_r .
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1.2 The Luttinger liquid and bosonization

where sgn (R) = +1 and sgn (L) = —1. Their commutator with the noninteracting
Hamiltonian is

[Ho, ﬁ?] = sgn (a) vrgp(q) -

Thus, the bosonic algebra is complete. Defining the harmonic-oscillator-type rais-
ing operator

the Hamiltonian can be rewritten

. A pir Argn ™
Hy=vp ) (kaTka + bﬁ*bﬁ) + TF (n% +n7) .
k>0

This is the original Hamiltonian rewritten in terms of bosonic operators.

Left- and right-moving fermion densities. Defining the real-space fermion den-
sity as p%(z) = ¥, (2)1a(x) gives rise to divergences [110,111]. To overcome this,
we consider instead its normal ordering [39,139]

9% (@) = Wl (@)va(x) — (p%(2)) .

After some calculation, the right moving term becomes

, —iy/ENDT for k>0
ﬁkR:/ dx e+ :ﬁR(x)::Z:(ékRurk)Téﬁ:: ng for k=0
0 / . 7
. +iy /B for k<.

Performing the Fourier transformation of the preceding equation, we obtain the
expression for the normal-ordered right-moving density

1 [EN | ~p . NN n
. AR . E TR _ikx . R —ikx R
P (I’) L= Zk>0 ? |ilbk6 —Z<bk> € :| +7
1 ZOO TR 27y . (R f 2Ty nR
= Zn:1\/ﬁ|:lbn n —Z<bn) (& n :| +7,

where we set k = 27n/N. Similarly, the expression for the left moving density is

1 [kN ~\T N n
. AL .o = - (7L tkr 7L —ikx L
cp () 7 kio o {z <bk> e by e ] + va

N [7, (65) %o - i@ﬁe‘i%‘”] i )
n=1
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Boson field operator. In order to express our Hamiltonian as the standard
bosonic field theory, we define the bosonic operators

T S 1 i2T g7 —i2%z (1, f
on(x) =¢§+HRZ+; {e IR 4 e (bR)J

vVarn

L x > 1 —j2r ALT iz LT
qu(ZL‘)—d)O—FHLZ—FZI |:€ n (b) +en bn:|, (18)

vVarn n

where, for period boundary conditions, IIz = y/7ng and I1;, = \/mny, represent the
conjugate momentum operator of ¢r and ¢, respectively. Using these equations,
we can directly write the fermion densities as spatial derivatives of the new boson
fields

%GMR(IB)
cpk(x) s = %&cm@),

and the Hamiltonian maps to

A

= oy /0 dz {[Dodr(@)]? + [0 ()]} -

which is a massless bosonic field theory. Thus, we have succeeded in mapping the
free fermionic theory to a massless bosonic field theory.

Fermion field. In order to calculate the correlation functions, we need to intro-
duce well-defined fermion operators, expressed in terms of the bosonic fields [123].
The relations

Ur() o< exp [iVATon(@)| . vi(a) xcexp [<ivAmoL@)]  (19)

satisfy the anti-commutation relations between fermion fields and the commuta-
tion relation with the fermion densities [124,139]. Using these expressions for the
fermionic fields, we can express order-parameter operators as well as their corre-
lation functions and spectral functions in the bosonic language [39, 124].

Correlation functions. Within the linearized approximation, the important cor-
relations are (¥, ); the left and right movers are uncorrelated, i.e., (¥g1r) = 0.
The correlations in real space are given by

(Wl (@) = fvi:i’ffz(fx__yy)) ,

as expected for a free fermion system.
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Spin-charge separation. In order to explore spin-charge separation, we must
explicitly differentiate between the two spin species o =T, |. The spin-dependent
fermion densities are

o 1 .
:pR/L L= ﬁa$¢R/L($) UZT?l?

and the natural variables of the problem are the total charge density

N R Al
“PR/L = PRL + “PR/L

and the total spin density

RS N Al
.pE/L.—.pR/L. — PRyt

Therefore, we can define bosonic fields that correspond to the charge and spin
degrees of freedom:

1 1
/L = E ¢E/L($) + ¢E/L($) ) R/L = E [ﬁf’;/L(x) - d)%%/L(%)

This definition leads to expressions for the fermion fields that can be factorized
into charge and spin parts. However, due to the symmetries of the noninteracting
case, the resulting expressions are the same (aside from the spin index).

Dual field. 1t is customary to define the so-called dual boson field §(z), which
absorbs the chirality of the field,

$o(1) = 67 (x) + 07(z),  Oo(x) = 95 (2) — 95 (2).

As for the chiral fields, we can use the dual fields to define the corresponding
charge fields

ve=¢1+ 9y, Ue =101 +0,
and spin fields
Ys =1 — @, Us=0,—0,.

The dual field can only be expressed in terms of the conjugate momentum operator
as a nonlocal integral because 0,9 = —II [124,140].

Electron-electron interactions. The introduction of an interaction changes the
picture, primarily influencing the effective value of the g coupling constants. We
consider the general case where we have separated the spin and charge sectors,
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and denote the two sectors with the index = ¢, s. Let us rewrite the free part as

well,
=Y [ [0, + @]
I

The forward scattering processes bosonize to the two forms

fy, = 35 [ da (00, - 00

m

and

=3I e [(0,9,07 + (0007]

The sum of the previous three terms is the bosonized form of the exactly solv-
able Tomonaga-Luttinger model. In addition, we can combine these quadratic
expressions, and, after performing a Boguliobov transformation, find that

firs = 3 [ ety [ 000+ - @]

I

2
oo [T tgn o — 1+94 (%
P+ b+ gt me T s
2 T Gy

The parameter K, is the Luttinger-liquid parameter obtained from the Boguliobov
rotation angles. Rescaling the fields by

LZQDM/‘VK/M HL:VK/LHW

we obtain the noninteracting Hamiltonian. The spin and charge sectors are com-
pletely disconnected, and vy, v, are the excitation velocities, which can now differ.
The value of K, depends on the strength and type of the interaction terms. For
the noninteracting case, K, = 1, which corresponds to a critical model.

The backward scattering bosonizes as

flgl = 9 /da: cos <\/ gps)

where

2m

and depends only on the spin field. The umklapp scattering term, which is present
only at half filling, bosonizes to a similar expression

f[g3 = UFgg /dx CoSs <\/ gpc) ,

which depends only on the charge field.
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Gaps. The spin gap and charge gap are related to the presence of the mass term
in the renormalized Hamiltonian. The simplest way to understand the behavior of
the gaps is to look at the Dirac Hamiltonian Hp = —iv [ (wRawa — wﬂaxw)
for free fermions. We bosonize this term and add a mass term of the form
m (waR — wLwL). Adding such a term induces the system to open a gap in
the excitation spectrum around the Fermi energy of size 2m.

sine-Gordon model. The mass term can only be generated by the cosine term of
backward or umklapp scattering processes. The massive forward scattering term
is just renormalized. Let us consider the backward scattering term associated with
the spin part; the effective model is a bosonic Hamiltonian for K # 1, thus

Hy = g/dw [(83519’5)2 +(0:)) } + = cos (W@J :

The situation is quite complicated: there is a line of fixed points parameterized by
K, [91,124] rather than a single fixed point. Therefore, K is determined by the
renormalization flow equations coupling ¢j and Kj,

dK, 1 | dg;

e~ em T T
At weak coupling, the system flows towards strong coupling if |gf| > 27 (K — 1)
(g7 is then marginally relevant), while it flows to gj = 0 if |gj| < 27n(K; — 1)
(g7 is marginally irrelevant). Thus, we expect a spin gap for infinitesimal g{ and
K, < 1[109]. This expectation is fullfilled for K; = 1/2: the massive Dirac term
bosonizes to massive spinons. For a particular coupling of the sine-Gordon model,
K, = 1, we can refermionize the system and solve it exactly [141]. The resulting
theory is called the Luther-Emery model and is a free theory for spinons [142].

The above analysis can be repeated for the umklapp term, simply replacing g7

with ¢g§ and K, with K.. Thus the charge gap develops if K. < 1 or if |¢g§| >
2n(K. — 1). As before, massive holons occur when K, = 1/2 [109, 143]. For
K. =1/2, we can invert the transformation and write the Hamiltonian

2 AL A ATR A g3 L AR AfRATL
Hc:UFZ [(k_kF )élier + (—k — kp) éf R}WL%Z <01Tg e 2%kp + ¢ CITchka) :
k k

This form can be diagonalized in order to obtain the exact expression for the
energy dispersion,

= _2gf (Ks - 1) :

Ep = i\/vfp (k£7m/2)* + A2,

where A = g3/27 is the gap, and noting that kr = 7/2 at half-filling [144]. At
K. # 1/2 the scenario is not changed qualitatively, and we still have an insulator.
However, the dependence of the gap changes from linear to A ~ g, with v =
1/(2 — 2K.). This should clarify our interpretation of the charge gap.
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Momentum distribution. We have expressed the correlation functions in terms
of the Boguliobov transformation obtained for the forward scattering in the sim-
plified case where Ky, = 1 and K. # 1. Thus, the generic expression for the
momentum distribution is

(e73)

n(k) = n(kp) — const.sgn(k — kr)|k — kp

Y

where a, = (K + K~! — 2)/4. Therefore, the one-particle density of states di-
verges with the same exponent, p(w) ~ |w|*. Thus, the momentum distribution
function and the density of states have power-law singularities at the Fermi level,
with a vanishing single-particle density of states at the Fermi energy. The absence
of a step at kp in the momentum distribution function implies the absence of a
quasiparticle peak, and thus a behavior that differs from a Fermi liquid. Note
that the exponents of the bosonized version of the correlation functions associ-
ated with the relevant order parameters are determined by other combinations of
the Boguliobov parameter K, [39]. These correlation functions with their power-
law variations are experimentally [38,39,124] and numerically [145-147] accessible
quantities. However, since the precise expression of K, depends on the details of
the model [39,124], we cannot extract information from its value unless we already
know what happens [38,147-149]. The remarkable fact is that there is only one
coefficient, K, which determines all the asymptotic power laws [144].

Generalizations. We have discussed only the Abelian formulation of bosoniza-
tion, applicable because a single compact boson ¢ has U(1) symmetry. The
extension to non-Abelian bosonization can be particularly useful in the context
of the Wess-Zumino-Witten (WZW) models [98, 124, 140], and is relevant for
high spin models. More about bosonization can be found in the review arti-
cles [139, 140, 150-153]. Applications to ladder models can be found in Refs.
(34,39, 154,155]. The extension to higher dimension was originally obtained by
Luther [156], but was later formulated as the modern multidimensional scheme
[152] by Haldane [157]. An extension of his approach based on functional integrals
has also been derived [158-160].

We can conclude that any one-dimensional system dominated by the forward
scattering process is a Luttinger liquid. Nevertheless, spontaneous symmetry
breaking and dynamical gap generation can lead to different phases, and, due
to the spin-charge separation, these mechanism can take place differently in each
sector. The spin and charge sectors are almost always uncoupled in one dimension,
except that they can be coupled by an external field for particular filling [144,161].

New studies of exact solvable models, in connection with the random matrix the-
ory [162], have recently pointed out that highly non-homogeneous states have to be
related to a non-linear spectrum near the Fermi energy [163]. Any curvature of the
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spectrum mixes charge and spin degrees of freedom, making bosonization imprac-
ticable. To overcome the bosonization of non-linear theory, we push forward the
Luttinger-liquid paradigm and argue that a quantum system should be described
by collective modes and the non-linear effects are encoded in the hydrodynamic
equations [164].

1.3 Conformal field theory

In conformal field theory, the fields have particular space-time symmetries which
can be derived by conformal transformations. A conformal map or transforma-
tion is a function which preserves angles [165]. As we have seen at the begin of
the chapter, critical models are fixed points of the renormalization group, and
therefore they are scale invariant. Conformal invariance is a subgroup of scale
invariance, allowing us to apply conformal field theory to critical phenomena. In
two dimensions, conformal mapping is particular useful. In fact, the set of confor-
mal transformations is equivalent to the set of analytical functions on the complex
plane [166].

In the following, we briefly summarize the result obtained from applying confor-
mal field theory [167] to statistical mechanical models that are conformally invari-
ant on large scale at a critical point. More material can be find in a large collection
of lectures notes and review articles [168-173], and books [53, 98,100, 174].

The capabilities of conformal field theory include the classification of universality
classes, the calculation of the critical exponents, the calculation of other universal
amplitudes, including finite-size effects at criticality and ratios of thermodynamic
quantities away from criticality, and the calculation of correlation functions, both
at and away from criticality [98,100].

Conformal transformation and correlation functions

Let us consider a field ® which depends on the space-time variable x. The dynamics
is determined by the action

S[®] = / e L (D, 0,D) .

All physical quantities can be expressed by the path integral formalism as corre-
lation functions

(®1(x1) . .. Dy (%)) = % /[d(b]cbl(xl) By (e

where Z = [[d®]e=51®l is the partition function. Any symmetry transformation
changes position, x — x’, and field, ®(x) — ®'(x’) = F[P(x)], so that the action
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1 Analytical Approach to Quantum Phase Transitions

is unchanged: S[®'] = S[®]; i.e., the Jacobian is trivial. Therefore, correlation
functions transform as

(P1(x)) - Pu(x)) = (F[Pr(x1)] - - F[Pn(xn)]) -

In 1 + 1 dimensions, x represents a point in a real two-dimensional space, which
maps to complex variables z = 2° 4+ iz! and Z = 2° — iz!. In the complex
representation, rotation through an angle 6 becomes

o = 6292 = — 672927

and the correlation functions can be easily written
(B1(e?21,e77)) ... @, (Y2, e777,)) = & HTND (21,71) ... Pp(2n, Zn))

where s is the spin. In presence of scale invariance, the coordinates and the field
change as
X =X x  ®(Ox)=12d(x),

where A is the scale dimension of the field ®. Thus, correlation functions transform
as

(DAX1) ... D(Ax,)) = A~ B1FF2) (B (xy) ... D(x,,)) .

We combine the dilatation and the rotation and thus define the conformal weights
(h,h) as
h=tats) T=liaog
2 2 '
During a conformal transformation, fields change via a local dilatation, A(x), rather
than a uniform one. In two dimensions, the field that transforms as

¢ (w,w) = (2—7“;) - (Z—Z) ! ' (2,2)

under all conformal transformations is called the primary field.
The two-point correlation function (¢1¢s) of a conformal field theory in two
dimensions reduces to

(6 (2,2) 6(0,0)) = ( ! )h (_i)h « const,

22

It therefore follows that conformal field theories are critical, characterized by
power-law correlation functions, and that the conformal weights determine the
physics.
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1.3 Conformal field theory

A conformal field theory has to be covariant with respect to a conformal trans-
formation. Thus, we use an analytical transformation to map the plane to a finite
region, i.e., a cylinder of circumference L,

| 2w
w=—Inz 2z =exp—.
27 P L
The two-point correlation function on a cylinder is obtained by the simple trans-
formation

(001,002, Ty, = (2%)() i T =)] g 7]

Substituting in the result real coordinates w; — wy = u + v, and considering the
case with v >> L, we obtain

(8(10)6(0, 0)) eyt ~ ex (—M“) ,

L

where the exponential decay term sets the correlation length of the system to
&, = L/(2rA). The cylindrical space-time represents an infinitely long system
at finite temperature (L = # = 1/T) or a finite system at 7' = 0 with periodic
boundary conditions. In the last case, the coordinate w is the imaginary time 7.
In general, the two-point correlation function, (¢(z,0)¢(x, 7)), can be expanded
in eigenstates of the Hamiltonian [80],

(0(x,0)p(z, 7)) =Y e PP (0] (x,0)|n)|*.

In the limit 7 — oo, the gaps between the ground state and the lowest exited states
are the dominant contributions. It follows that (¢(z,0)é(z, 7)) ~ exp (Ey — Ep) T
for 7 — 00, and we can write

Thus, in finite-size systems in a critical regime, the mass gap has to scale to zero
linearly with the system size. However, the correct expression includes the velocity
of the excitation v.. In fact, the gap then scales as £y — Ey = (2rv.A)/L.

Central charge

Any quantum field theory must be translationally and rotationally invariant. Trans-
lation invariance leads to, via Noether’s theorem, the energy-momentum conser-
vation law [175-177]

0"l =0.
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1 Analytical Approach to Quantum Phase Transitions

where T}, is the stress energy tensor [45]. This operator is not a primary operator,
see Ref. [98,169,178]. In fact, its two-point function has form

o) = 4.

This expression defines the conformal anomaly number or conformal charge c. It
is an universal constant and depends on which particular fixed-point theory we
are considering. The extra conformal-charge term results from the mapping to a
finite system [165,179] and is a manifestation of the Casimir effect [180].

The central charge is additive. In fact, two field theories added together without
coupling have their energy-momentum tensor added. Thus, the central charge
adds. In a sense, the central charge measures the number of gapless modes which
a system has, weighting them differently because the central charge for fermions
differs from that for bosons.

In the following, we present a summary of the results obtained by conformal
field theory applied to several critical models. Many analogies arise interpreting
the central charge as number of “basic” modes. In fact, critical models with the
same central charge can always be mapped to each other.

Free boson. The action for the massless free boson CFT is
g
Slo| = B /dx@mp@“gp.

The two-point correlation function is then
_ _ 1
<90(Z7 Z)QO(U}, w)> = _4— In |Z - U)|2 )
g

and the central charge for the massless free boson is ¢ = 1.

Massless free fermion. An important example of CFT is the massless free
Majorana-Weyl fermion, for which the action is

S = £ [ dx (0% + 13

and the two-point correlation function

(@) = e —

T afz—w

The central charge for a Majorana fermion is ¢ = 1/2. Any Dirac fermion can be
defined as a combination of two Majorana fermions
1

Y(z) = 7 (x1(2) +ixa(2)) ,
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1.3 Conformal field theory

and the central charge of a Dirac fermion is ¢ = 1, and can be expressed as the
sum of two Majorana fermions or as one free boson.

Generalized free fermion. A generalization of the free-fermion system to include
two types of anti-commuting fermions, b and ¢, with weight j and 1—j, is called the
be-model. This model has central charge ¢ = —2(65%—65+1) [98,173]. A variation
of the model is the $~-model with two commuting fields # and ~ of weight 5 and
1 — j, respectively. In this case the central charge is given by ¢ = 2(65% — 65 + 1).

Boson with background charge. A variant of the free boson theory can be
obtained which includes a coupling between the boson and the scalar curvature

(V9), .
S[¢] = %//d%a@m%//d%\/gm.

The constant e is the background charge, and the expression for the central charge
is now ¢ = 1 — Ze.

Minimal models. An important class of CFT is that of the Minimal Models.
Minimal models corresponding to unitary CFTs identify many statistical models
as Ising and Potts model variants. The central charge is ¢ = 1 — T(fH) for r =
3,4,5,..., and the models are called Unitary Minimal models (UMM) [98, 169,

170,173].

Wess-Zumino-Witten models. The Wess-Zumino-Witten (WZW) models are
conformally invariant theories that have supplementary symmetries, e.g., SU(n).
The WZW field G is a matrix that represents a particular Lie group and the action
is

sG] = 8% / LT (9G19,G)
ik

127 Jg

where k is an integer representing the level of the model. The second term of the
action is a topological term and the central charge for these models is given by

3k
k42

P, Tr (GGG GGT19G) |

Therefore, this result combines with the bosonization idea. Abelian bosonization
establishes a correspondence between the Dirac field ¢ and the free massless boson
both with central charge one. Non-Abelian bosonization instead establishes a
correspondence between multiplets of fermions and different WZW models.
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1 Analytical Approach to Quantum Phase Transitions

Entropy

Recently, conformal field theory has been applied in the context of the holographic
principle [181]. Several predictions of the entanglement entropy have been derived
in models of black holes and quantum gravitation [182-184]. The field theories
used in condensed matter theory have been also explored [185-187].

As a system, we can consider an arbitrary lattice model or a quantum field theory
including conformal field theory. We start from the expression of the reduced
density matrix p4 to calculate the entanglement entropy S4. First, we evaluate
Trap’y, then differentiate it with respect to n, and finally take the limit n — 1.
Recalling that p4 is normalized so that Traps = 1, we calculate

Sa = —Trapalnpy
Traph — 1
= lim L/ e
n—1 1—n
O Ty uph (1.10)
= — —Tr .
an APA n=1
This is called the replica trick. The expression S, = Trfl‘f Xn_l is called the Tsallis

entropy [188]. Therefore, we have to evaluate Tryp, which is given in terms of
path integral on the n-sheeted replica surface as

w_ Z(n)
Pars = Zoor

Thus, this entropy is related to the product of correlation functions with the
corresponding boundary conditions [186, 189).

1.4 Summary

In this chapter, we have described how to characterize quantum critical phenom-
ena. The notion of the renormalization group and the finite-size analysis, which
we have introduced at the begin of the chapter, represents the set of knowledge
used to interpret our numerical data. Numerical simulations are performed on
finite systems, which behave in a way which can be far from the thermodynamic
limit. However, finite-size scaling analysis guarantees correct evaluation of the
critical point and the critical exponents without involving the thermodynamic
limit directly. Thus, we combine finite-size scaling analysis and the density ma-
trix renormalization group method, which we introduce in the next chapter, to
characterize phase transitions with high accuracy.

Bosonization and conformal field theory, introduced in the second part of the
chapter, represent the basis of our understanding of strongly correlated systems.
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1.4 Summary

Spin-charge separation, the opening of a charge gap or a spin gap, and the Lut-
tinger liquid concept, are all results derived using bosonization. Correlation func-
tions are also obtained by bosonization, and can then used to characterize par-
ticular phases. However, the success of the bosonization technique relies on the
correctness of the model to describe particular physical phenomena, and on the
correct use and interpretation of the bosonization recipes. Two of our projects
focus on testing the results obtained by bosonization.

Some of the results obtained in conformal field theory have been summarized to
make them more accessible to the reader. In the following chapters, the central
charge, the calculation of the critical exponents, the interpretation of finite-size
scaling, and the classification of the universality class are frequently used. Confor-
mal field theory can be seen as the theory of the critical region, where all numerical
methods have limitations. An understanding of CF'T can help to retain control of
the simulation and can be used to extract valuable information.

In the next chapter, we introduce the density matrix renormalization group
starting from basic notions, and discuss relevant extensions. In particular, we
discuss its close relation to exact diagonalization methods and its deep connection
with quantum information theory.
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2 Density Matrix Renormalization
Group

There are numerous numerical methods that can be used to study quantum-
mechanical many-body systems [190-192]. In the last years, due to the increasing
interest in strongly correlated systems, much effort has been invested to develop
new numerical techniques [193]. The main goal is to solve the Schrédinger equation
for a large system of interacting particles

H|W) = E|).

In principle, after mapping the problem onto a lattice and taking into account all
possible symmetries, a complete diagonalization can be carried out. However, this
is possible only for very small systems because it becomes extremely expensive
in terms of memory and computational effort as the system size increases. More
efficient methods use the concept of invariant subspaces and represent the Hamil-
tonian as a sparse matrix. The diagonalization is performed iteratively, building a
subspace of the Hilbert space, the Krylov space, from powers of the Hamiltonian
operator. The Lanczos algorithm belongs to this class, and it can be used to ob-
tain the low-energy spectrum of a finite system numerically exactly. Nevertheless,
iterative diagonalization imposes limits on the maximum size of the system that
can be studied. The Density Matrix Renormalization Group (DMRG) overcomes
some of these limitations by combining the concept of renormalization group and
quantum information theory. The algorithm uses techniques from iterative exact
diagonalization, but the system basis is not obtained exactly, but rather by per-
forming a basis truncation at each step of an iterative process in which the chain
is built up a site at a time. This algorithm can be considered to be exact only in
a variational way.

In the first section of this chapter, we briefly discuss the exact diagonalization
method and the numerical representation of the quantum mechanics basis, both of
which are also relevent to the DMRG. The second section introduces some basic
ideas and results from quantum information theory. In particular, we make a
connection between the property of criticality of a finite system and its description
in terms of a finite system basis. The last section describes the DMRG method:
the density matrix projection, the algorithm, the measurements, and concludes
with an analysis in terms of the von Neumann entropy [194].
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2 Density Matrix Renormalization Group

2.1 Exact diagonalization

In this section we introduce exact diagonalization as an iterative method, i.e.,
the Lanczos and the Davidson algorithms. However, a short digression on the
numerical representation of many-body states on a lattice is necessary, which also
serves to introduce the concept of a lattice and of a local basis for different systems.

The numerical study of a quantum Hamiltonian requires its definition on a finite
lattice, in contrast to the quantum field theory approaches that are defined in the
continuum and in the thermodynamic limit. The finite size L of a chain determines
the infrared cutoff. The momentum space is discrete with steps Ak = 2x/L. In
contrast, the lattice spacing a fixes the maximum momentum to 27 /a, defining the
ultraviolet cutoff. However, the low-energy properties of a continuum model should
not differ from those of the corresponding lattice model. If differences occur, they
occur at short distances, high energies, and short times [195,196]. Insight can be
gained from comparison with exact methods such as the Bethe Ansatz or matrix
product states, both of which are defined on a lattice [95,197-200].

The main idea is to diagonalize the Hamiltonian in a particular basis. For
example, we consider the Hubbard model expanded in Bloch states

_ . U N B
H = Z e(k)ek oCro + T Z Chy 1 Chy,| Chz, L Chrtha—ks,T 5
k.o k1,k2,k3

and expanded in Wannier states
H=—t Z éj,UéHLU +U Z (UREUN
©,0 A

The Bloch states diagonalize the kinetic term, but not the interaction term; the
latter term is difficult to reduce to any local short-range form [201,202]. Thus,
Bloch states are optimal only for weak interactions. In contrast, the Wannier states
diagonalize the interaction term and are therefore preferred for numerical calcula-
tion because it is possible to simulate local quantum and thermal fluctuations on
finite-size systems. Unless we explicitly include nonlocal terms, the matrix repre-
sentation is sparse, i.e., only a small portion of the matrix elements are nonzero.
This sparseness can be used to advantage in efficiently storing the matrix and in
calculating its product with vectors.

2.1.1 Numerical representation

In order to be able to represent all the states in a compact and efficient way and
take full advantage of the sparse matrix form of the Hamiltonian, we need to
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2.1 Exact diagonalization

choose our local basis optimally. In fact, the wave function of the system can be
represented in the space spanned by the tensor product of local basis states like

|¢]€>=|81,...,SL>2‘81>®"'®|8L>.

The local basis should be easy to generate and to perform operations on, should
require a modest amount of memory and should provide fast access. The use of
symmetries is also important. The description for spin and electronic systems
follows.

Spin-1/2 systems. The single-site basis consists of two states: spin up | 1), and
spin down | |). Instead of the spin value s7 = +1/2, it is useful to use the
occupation number of one of the spin types, n; = s + 1/2, as a basis. Starting
from the single-site basis, we can form a complete basis of a chain of length L by
forming the direct product of single-site states. The Hilbert space has size N' = 2F.
A convenient way of representing a state is to map it to an integer

L
I = Z nZQi*l .
i=1

This allows us to save storage and speed up the calculation by doing bitwise
operations [203]. For example

|p1) = | Tilalsla) — [1000) — T =1,
|p3) = | TiT2lsla) — [1100) — I =3,

and
sizsl¢3) = | Til2lsla) — [1110) = I =7 — |¢r).
Any state in the Hilbert space is a linear combination of such basis states

(0) = e)or)

1

Since, in many physical cases, the z-component of the total spin, S* = ZZL sZ,
commutes with the Hamiltonian, the matrix Hamiltonian is block-diagonal, and
the dimension of each sector reduces to

N(s7) = ( 5 +LL/2 ) ‘

Other symmetries, such as translation, reflection, discrete rotation symmetries,
can also be taken into account to decompose the Hamiltonian into smaller block-
diagonal matrices.
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2 Density Matrix Renormalization Group

Spin-1 systems. The approach is similar to the spin-1/2 system, but there are
three states per site: S7 = —1, 0, 1. The complete Hilbert space grows as 3%.
The generalization to higher spin value holds as well; for a spin S system we have
25 + 1 states each site, with S = —S, =S +1,..., S, and (25 + 1)L states in total.

Electron systems. Usually we use the Hubbard basis. For each site there are
four basis states:

|0>i7
| 1) = ¢ 110)i
= oy, 21)

’Tl)z: éI7Téj,l’0>i )
i

where ¢;  creates a spin o electron in the Wannier orbital centered on the site
1. The total Hilbert space of the lattice is the direct product of the single-site
Hilbert spaces. Therefore, the Hilbert space grows with the system size as 4%.
Generalizing the spin-1/2 encoding case, two integers are now required to index

the basis states: ; ;
[T:Znﬁi*l, [l:anT’*l,
i i

where nZT and nZl are the occupation numbers of spin up and spin down on site-z,
respectively. Therefore, a generic state is described by

vy =3 U )6 o).

Il

In systems where the spin and electron numbers are conserved, the total number
of electrons with spin up, N', and spin down, N!, are good quantum numbers.
Therefore, the number of states in a specific sector with given NT and N is

wr-(5)(%)

Eliminating the possibility of having double occupancy reduces this number even
further to Il
Tl v — — :
NN, NY, N =0) = NUNTY(L — NI — NI’
The use of translational invariance or other symmetries can further reduce the
dimension of the relevant sectors of the Hilbert space.
We are now able to represent a basis of different finite systems and to apply
any operator. We now proceed by describing iterative diagonalization. The first
method is the Lanczos algorithm, then the Davidson algorithm is also treated.
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2.1 Exact diagonalization

2.1.2 Lanczos method

Using the Lanczos algorithm [204], we iteratively construct a special basis in which
the Hamiltonian has tridiagonal form. The starting point is an arbitrary and
normalized wave function, |p;) that can be expanded in the basis {¢x} as

N
1) =Y axlon). (2.2)

We apply the Hamiltonian to |¢1) and construct a normalized vector |¢3), which
is orthogonal to the previous one

Balpa) = F[Wﬁ — ) - (2.3)

From the orthogonality condition (¢s|p1) = 0, we obtain a; = (¢1|H]|p;). From
the scalar product of (ps| and (ps|F2 with Eq.(2.3) and, requiring that (@s|ps) = 1,
we obtain (5 = (@o| H|p1) and 32 = (po] H?|@s) — o2, respectively.

We continue applying the Hamiltonian and construct a third state which is
orthogonal to the previous two,

Bslps) = H|pa) — aalz) — Yaler) (2.4)

where the conditions of orthogonality (pso|ps) and (p1|ps) require that ay =
(2] H|ps) and ~, = f5. The normalization of |¢s) demands that 35 = (@3] H|p,).

In the next step, an important property of the Lanczos procedure emerges.
Applying the Hamiltonian and projecting out the previous states, the expression
for the fourth state becomes

Balpa) = H|ps) — asls) — el 2) — Wlen) (2.5)

The conditions of orthogonality, (¢3|es), (@2|ps), and {(p1|ps) require that ag =
(<p3|ﬁ\<p3>, v = B3 and 7, = 0. Therefore, constructing |¢4) to be orthogonal to
lps) and |¢2) makes it automatically orthogonal to |p1), and |¢1) need not appear
explicitly in the equation.

The final form of the algorithm can be obtained by recursion, assuming that the
equation R

ﬁn-}—l“pn-i—l) = H|90n> - an|90n> - ﬂn“pn—ﬁ (26)
holds for [, 11) and showing that it is valid for [y, 42), where 3,1 = (gan]fI |on),
Bn = (pnlH|pn-1), and ay, = (@n|H |pn).

Altogether, at each Lanczos step, we have to orthogonalize the state vector with
respect to the previous two vectors. The implementation of the Lanczos algorithm,
which builds a orthonormal basis {|¢1), ..., |en)} for the Krylov subspace [205]
is summarized here:
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2 Density Matrix Renormalization Group

1. We set 31 =0, |¢o) =0,
2. fromi=1to M:

a) Evaluate the coeflicient a; at step i

a; = (@il Hlpi) .
b) Calculate the unnormalized state vector (rounded ket)
lpir1) = Hloi) = ilon) = Bilpi-a) -
c) Calculate the ;1 coefficient
@2“ = (Qir1lwir1) -

d) If ﬁi-l—l = O7 stop.

e) Normalize the vector

_ lit1)
‘(702+1> ﬁnJrl '

f) Continue from (a).

Some of these quantities have direct physical meaning, such as the average energy

of |on), ay = (gpn\f[\gpn), and its mean square energy deviation, (gpn\ﬁQ\gpn) —a? =

2.1+ 02, Rewriting Eq.(2.6) as

fﬂﬁon) = 6n+1‘<»0n+1> + an|90n> + 6n“»0n—1>

shows directly how, in this basis, the Hamiltonian becomes

ap B 0 ... 0
Br s B3 - 0

H=| 0 8 a5 - 0 |- (2.7)
: Do : Bus

0 0 0 ﬂM A
Thus it is tridiagonal and can be easily diagonalized using standard routines [203,

205-208]. The eigenvalues of (2.7) converge to the extremal eigenvalues of the
original Hamiltonian H, and its eigenstates can be expressed in the Lanczos basis,

[Wo) = Z%\%) - (2.8)
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2.1 Exact diagonalization

Since it is usually not convenient to store all of the Lanczos vectors |p;), we
calculate the ~; coefficients, storing only two vectors at the time. Subsequently,
we can reconstruct the eigenvectors by running a second Lanczos procedure in
order to build up |pg) in the original {|¢x)} basis. In practice, we can reduce the
original matrix eigenvalue problem to a more tractable problem, because n << N
and n ~ 102 steps are typically sufficient to converge to the ground state and only
few vectors must be stored.

Although the method is exact in theory, successive Lanczos vectors in fact lose
their orthogonality due to numerical round-off errors after many iterations. This
problem can also manifest itself as the appearance of ghost states in the spectrum.
The simplest cure is a full orthogonalization, where the new vectors have to be
explicitly orthogonalized with respect to all the previous ones. The cure is robust,
but the vectors need to be kept in memory and the cost of orthogonalization is
high. A more efficient solution originates from the Paige’s analysis [209-211],
which shows that the Lanczos vectors start to lose orthogonality as soon as an
eigenvalue of the H stabilizes and concludes that, until this situation occurs, no
full orthogonalization is required. A clever technique to do this was proposed by
Cullum and Willoughby [212].

Although the simplest form of the Lanczos algorithm is still used to find the
extremal eigenstates of large matrices, modified versions or other methods are
often better, depending of the type of problem to solve. However, the Lanczos
algorithm can be extended straightforwardly to calculate dynamical [193,213] and
temperature-dependent [214] quantities. Nevertheless, new techniques, such as
using a Chebyshev expansion to calculate dynamical quantities, can achieve better
stability [215].

2.1.3 The Davidson method

The method of Davidson [216] is usually suitable for problems where the Hamil-
tonian is sparse and has a large diagonal-dominance ratio. The term diagonal-
dominance ratio refers to the ratio d = miny;| (H; — H;;) /H;;|. In Lanczos, we
build an easy-to-compute three-term recurrence and project the Hamiltonian onto
the Krylov subspace of order M. However, a large number of iterations may be
required before a sufficiently invariant subspace is found.

The Davidson method reduces the number of iterations at the expense of a more
complicated step. In fact, a perturbative scheme is used to efficiently estimate
the eigenvectors. The vector basis is built up using the residual of the previous
vector and a diagonal preconditioner. Thus, the subspace formed provides better
information about the required eigenvectors than the Krylov subspace.

The algorithm to calculate the lowest k eigenvalues is summarized as follows:

35



2 Density Matrix Renormalization Group

1. Choose ¢ > k orthonormal vectors, |u1), |ua),..., |us) and define B as the
rectangular matrix containing these vectors as columns.

2. Apply the Hamiltonian to these states to form the vectors |w) = Hluy),
lwa) = Hlug), ..., |we) = H|ug) and the rectangular matrix A which con-
tains these vectors as columns.

3. Form the (¢ x £)-square matrix C = BT A and diagonalize it exactly, obtain-
ing the ¢ eigenvalues, A, -+, A}, and ¢ eigenvectors, |2%), ---, |25).

4. Test the convergence of the first k vectors by forming the residual vector
l4) = (A = XB) |2)

and calculate its norm. If || |¢°)|| < &, then consider the procedure converged
and stop, concluding that X, ---, A and [¢) = BJz{), -+, [1) = BlzL)
are eigenvalues and eigenstates of the Hamiltonian. Otherwise, continue.

5. Extend the basis by using the correction vector (diagonal preconditioner)
-1
) = (D= XNI) 1),

where D is a matrix containing the diagonal elements of H and I is the unit
matrix. Orthonormalize |rf) against |uy), - -+, |ue) to form |ugyq).

6. Expand the matrix B and A by adding |ugq1) and |weq) = f[!ue+1> as
additional columns. Set ¢ = ¢ + 1 and continue from step 2.

The starting point is usually a set of orthogonal random vectors. However, to
speed up the convergence and reduce the storage space needed, a set of vectors
from a previous step can be used instead and the process can be iterated. There is
a caveat: if we apply Davidson’s method to a diagonal matrix, it then stagnates.
However, the method is not restricted to the use of the diagonal preconditioner,
and a different preconditioner can be used instead [217].

2.2 Quantum information

In the past few years, there has been an increasingly active exchange of ideas
and methods between the formerly somewhat mutually insulated fields of quan-
tum information and many-body physics. This has been due, on the one hand,
to the growing sophistication of methods and the increasing complexity of prob-
lems treated in quantum information theory, and, on the other, to the recognition
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2.2 Quantum information

that a number of central issues in many-body quantum systems can fruitfully be
approached from the quantum information point of view [218,219].

The central concept is the entanglement. Entanglement describes a correlation
between quantum mechanical systems, such as spins and electrons, that does not
occur in classical physics [220-223]. A recent experiment pointed out that entan-
glement effects are also relevant on the macroscopic scale [224]. Therefore, not
only is the energy spectrum of a system important, but it is also important to
investigate quantities such the entanglement. A small amount of entanglement
can produce significant effects in the macroscopic world. The role of entanglement
has been shown to be fundamental at a phase transition [225].

Unfortunately, a unique definition of entanglement does not exist [226-228] and
many criteria have been proposed to distinguish separable states and entangled
states [229,230], such as the Schmidt rank or the von Neuman entropy [231]. In
the next section, we describe the density-matrix formalism as the basic description
of the system, and, using its properties, define the von Neumann entropy, which
we use as the measure of the entanglement.

2.2.1 The density matrix

To describe a phenomenon correctly and conveniently, we have to parameterize
the states of a physical system with a familiar and consistent basis set [232-236],
i.e., spin orientation, total angular spin, or number of particles. However, the real
state of the system is usually a superposition of these.

States of maximal information are often called pure states or simple states. A
pure state is characterized by the existence of an experiment that gives a certain
predictable outcome when the experiment is performed on the system in that state
and in that state only. However, quantum systems for which the information is
less than maximal also occur. These states are called mized states because they
can be described by the incoherent superposition of pure states. The description
of mixed states as a mixture of pure states is not unique.

In the ordinary formalism of quantum mechanics, a pure state can be expanded
in terms of a set of eigenvectors |n)

W pure) = Z ) (| Wpure) = Z cln)

n

where ¢, = (n|¥pu.). For a system in this state, the expectation value of an
operator O can be calculated as

<O> = Z Onn/c:;cn/ s
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2 Density Matrix Renormalization Group

where O,,,» = (n|O|n’). On the other hand, for a mixed states with weights p(®,
the mean value of O is given by the grand average

_ Zp(i)<0>i _ Z O Zp(i)cz(z)c( )
Therefore, defining the density matrix
= Z p(i)cz(i)cg) :
we can express the mean value of an observable as

=" Oupn = 3 [Oplun = Tr (Op).

nn’ n

The density matrix represents the minimum set of input data which is needed to
calculate the mean value of any operator for a system prepared in a given way.
The density matrix elements have the following properties and restrictions:

1. Since (O) is real for every Hermitian operator O, p also has to be Hermitian,

*
Pr'n = Ppn -

2. The trace of a density matrix is unity because the mean value of the identity
operator is also unity,

Tr (1p) = ann—l

3. The density matrix has to be positively definite, i.e., in every representation
or basis

Prn = 0.

4. Since the density matrix is Hermitian can be diagonalized by a unitary matrix
U,

pj 5’ Z U]nprm’

=Zp§§<zp]> =[Tr ()" =1.
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2.2 Quantum information

Indeed, a pure state is characterized by p? = p, and is represented by a density
matrix with one eigenvalue equal to one and all others equal to zero. Therefore,
p® expresses the mixing [237].

Let us consider the state of two interacting systems a and b represented by the
density matrix p®. An operator acting on system a can be treated as an operator
of the whole system, and we have

(O%) = Try [(Oa ® 1b) pab] = Tr, (O%p") ,

where p* = Tr, (p*°) represents the information on alone a contained in p™. The
states of the two systems are uncorrelated when

(0°0) = (0%)(0")
for all pairs O?OP. This requires that the total density matrix be a product,
pab — pa ® pb )

Given a density matrix of dimension N, pure states of the system Tr(p*) = 1
contain maximum information, and states with Tr(p?) = N~! instead contain
the minimum. This is because the statistical fluctuations of a physical quantity,
represented by (O?) — (O)?] tend to increase as Tr(p?) decreases from one to N~
Thus, the quantity Y . p? = Tr(p®) = (p) < 1 can be used as a measure of
information as well. However, information theory [238,239] implies that the total
quantity of information of a set of uncorrelated systems is the sum of the quantity
of information of the single ones. Since the density matrix p® of two uncorrelated
systems is the product of the density matrices p® and p° of the two systems, we

then have ) )
(0™) = Trap [(ﬂ“”) } = [Tra (p")]* [Trs ("))

Thus, In{p) = InTr (p?) is additive and corresponds to the concept of information
better than (p) = Tr (p?) itself.

Nevertheless, in statistical mechanics the entropy of a system coincides with the
mean value S(p) = —k(Inp), where k is the Boltzmann constant [240-242]. This
suggests that one uses (Inp) = Tr(pln p), or, still better, (In Np) = Tr (pIn Np),
as the suitable definition of the quantity of information. This definition allows one
to introduce a quantity of information operator In(Np), which has the additivity
property

In(Napp™) = In(Nyp®) + In(Nyp®)
whenever the states of a and b are uncorrelated, or not entangled. Notice that

(Inp) and (p) vary between the same limits and that their values are never very
different [233].
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Possible measures of entanglement are the Schmidt number and the single-copy
entanglement. The Schmidt number N corresponds to the number of density ma-
trix eigenvalues different from zero. Since states with zero weight do not contribute
to the description of the state, the number corresponds to the dimension of the
density matrix. This quantity can better characterize the entanglement of a fi-
nite system [243,244]. The single-copy entanglement is obtained from the highest
eigenvalue of the density matrix wy, £/ = —Inwy. Since the trace of the density
matrix is invariant and equal to unity, we clearly obtain information about the
entanglement from the highest eigenvalue. Moreover, for a critical system, this
quantity takes on exactly half the value of the entropy [245,246].

2.2.2 The von Neuman entropy

A correct definition of entropy is possible only in the framework of quantum me-
chanics [232,236,237,247]. Entropy can be interpreted as a measure of the amount
of mixing in a mixed quantum states or as the lack of information about the
system. Since statements in statistical mechanics are true only in the thermody-
namic limit, we expect properties such as ergodicity, mixing, or stability [248] to
hold strictly only in the thermodynamic limit [249].
The von Neumann entropy of a quantum system described by a density matrix
p is defined as
S(p) ==Tr(plnp) .
We consider the relation between the entropies of two subsystems and show one of
the most important results in the quantum theory of correlation, the Araki-Lieb
inequality [250]. Let p® and p° be the reduced density matrices of subsystem a
and b, respectively, and let p® be the density matrix of a composite system; then

S(p*) +5(6") = S(p™) = |S(p*) — S(p")|. (2.9)

Physically, the left-hand side implies that we have more information in an en-
tangled state than if the two states are treated separately. Considering the two
systems separately, we neglect the entanglement and therefore lose information.
An interesting result can be obtained considering the composite system to be in
a pure state; then S(p®) = 0, and it follows from the right hand side of Eq.(2.9)
that S(p?) = S(p?).

Two important properties of the entropy are [237] additivity,

S(p* @ p") = S(p*) + 50",

i.e., for two independent systems the entropies add up, and, concavity,

S (Z w) > Z XiS(p'),
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2.2 Quantum information

which reflects the fact that mixing increases uncertainty.

Now we define the von Neumann mutual information, which refers to the corre-
lation between the different partitions of a system. This quantity is particularly
useful in quantum chemistry DMRG [251-261]. The von Neumann mutual infor-
mation between two subsystems p® and p® of a joint system described by p® is
defined as

I(p": p"% p™) = S(p") + S(p") — S(p™).

This quantity can be interpreted as a distance between two quantum states [262—
265].
Defining the von Neumann relative entropy between two states o and p as

S(allp) = Trlo (lno —Inp)],
we can show that (after some algebra)
I(p": " p™) = S(p™|lp" ® p") .-

Therefore, the von Neumann mutual information can be understood as the distance
in the Hilbert space between the state p® and the uncorrelated state p® ® p°.
Furthermore, if we consider the entire system to be in a pure state, then the
expression reduces to I(p® : p’; p?) = 25(p?) = 25(p°).

Another key result in quantum information theory is the Holevo bound [266].
A quantum communication channel consists of N prepared states pq,..., py, en-
coding a message according to probabilities py,...,py. If we perform a set of
measurements to determine the correct sequence of states and probabilities, then
the accessible information is given by the mutual information between the mea-
surements and pq,..., py, and is bounded,

S (me) —~ ZpiS(m) > maxpl(E : p),

where F is the set of measurements.

The von Neumann entropy has been found to be intimately connected to many-
body properties of a quantum system such as the quantum criticality. In one
dimension, S(N) will increase logarithmically with N if the system is quantum
critical, but will saturate with N if the system is not [267,268]. If a quantum
critical system is also conformally invariant, additional, specific statements can be
made about the entropy [186]. In higher dimensions, the von Neumann entropy
will be bounded from below by a number proportional to the area (or length or
volume, as appropriate) of the interface between the two parts of the system [184].
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2.3 The DMRG method

In the first section, we have seen how big system sizes cannot be treated by ex-
act diagonalization. The basis of the Hilbert space becomes exponentially large;
therefore a method to systematically reduce the size of the basis is required. An
approach to do this for the Kondo problem, the numerical renormalization group
method (NRG), was develop by Wilson [269,270]. The Wilson procedure consists
of the following [271]: first, we start with a finite system that we can diagonalize
(completely). Second, we keep the m lowest energy eigenstates. Third, we add a
new site, and we iterate, keeping constant the number of states. The procedure
works excellently for a large class of quantum impurity models [168,171,272-277].

However, the limitations of applying the method to quantum lattice models
became clear soon after its invention, and a generalization of the method was
required [278]. The origin of the difficulties was pointed out some time later, in
terms of a simple noninteracting problem. The failure of the NRG could be related
to the effect of boundary conditions on the way the blocks are combined [279]. A
workable method for many-body systems was developed only a few years later,
when S. R. White discovered the optimal way to truncate the basis using the
block density matrix [46].

The DMRG algorithm can be explained in terms of a few important ingredients.
The first is to consider a bipartite system, where Schmidt decomposition is known
to hold, and to use a truncation scheme based on the density-matrix eigenvalues.
The second is to build up the system starting from a small one by adding sites to the
center of the chain until we reach the system size needed (warm-up). Finally, using
the block representations obtained in the warm-up, we converge to the ground state
by sweeping forward and backward, adding two new sites on the middle at every
step to regenerate previously missed states.

2.3.1 The density matrix projection

Consider a finite many-body system in a pure state |®). In practice, such a state is
obtained from an iterative diagonalization of the Hamiltonian of the system. Now,
we consider the system to be divided into two parts, A and B. In general, the parts
cannot be represented using a wave function, but only using the density matrix
representation [232,234,235]. Therefore, the two subsystems are characterized by
intrinsic mixing that limits the separability of the state of the system into the basis
of the two subsystems [229,230]. Our aim is to truncate the basis to the relevant
part and to eliminate the rest of the basis. Let us call \&)0> the new, approximate
representation of the original state |®g). We want to minimize the error erp

~ 2

erp = ||®o) — o)
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2.3 The DMRG method

by selecting m appropriate states in the A block. Given a basis {|i)} for the block
A and a basis {|j)} for the block B, we can represent |®q) as

\%=Z%Wﬂ

Note that the bases {|i)} and {|j)} do not necessarily have to be complete, but
must span the space that contains |®). The new basis states are formed by m
relevant elements, {|)}7Z,, and they can be expressed the previous basis {|i)} and
can be taken to be orthonormal, so that

€ =D uli),  (€lE) =D uf uf = b (2.10)
The approximation to |®g) can be expressed in terms of these states,

(Do) = Y e 1€)14) -
&

The (truncation) error then becomes

2

ors = 3 (- ot
ij 3

The truncation error must be minimized over the parameters under the orthog-

onalization condition, Eq.(2.10). In order to do this, we introduce the Lagrange
multipliers pier and solve

aETE - aETE - aGTE' —0
ou;  0de;  Opmee

After introducing the density matrix p of A with matrix elements
Piit = Z d)?jd)i’j
J
and carrying out some algebra, we obtain the expressions
bej = Z Gius, e = 0,
i
and the equation

Z pZZ/uf - Z uf uf/*pi/i”uf// - 0 .
i

ilillé/
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In vector notation, this equation can be rewritten

ll_gue () | oot o

This equation can be interpreted as a projector acting on the vector p - ué. The
projector removes all the components of the vector along one of the vectors u¢” as

! ! T "
ll—Zuf (uf)]-uf =0.
5/

We require that the basis spanned by {u‘} has to contain all vectors {p - u‘}.
Thus, a set of eigenvectors of p clearly satisfies this condition. We set {u®} to be
eigenvectors of p with eigenvalue \¢. It follows that

i j€ J

2
>0.

> i
i
Since the set of eigenvectors ué is orthonormal and complete,

Z)‘E - qu;jqbij(sii’ = an‘ = Z¢?j = 1.
13 i i

i’

Finally, inserting uf and gf;gj into the definition of the truncation error and selecting
m vectors, we obtain
m
ETE — 1-— Z )\5 .
¢=1

We conclude that the eigenvectors u® of p corresponding to the m largest eigen-
values A* are the optimal choice for the basis {|€)}7~;.

Originally, S. R. White arrived at similar conclusions [46,47] by considering the
singular value decomposition (SVD) [280,281]. The SVD is used in sound and im-
age signal compression [282] and its generalization to tensorial form could become
the key to extending the DMRG to two- and three-dimensional systems. The rela-
tionship of the SVD to the DMRG is contained in the Schmidt decomposition [283].
The relevant basis states {|€)}7, in B are given by

BEDILE
J
where the vectors v¢ are related to the vectors u® through the relations

1 1
£ § * o % £ E £
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2.3 The DMRG method

These basis states are orthonormal and they are indeed the largest eigenvectors of
the density matrix ,0;-3]-, =>. ¢;;¢ijr as can be seen by evaluating

Zp]]/v/ = \/TZQSUQSZ] ¢z] ¢”/u, _\/_Z¢”uf*_)\f 5

'y’

The ground state can be expressed in this basis as
[P0y =D diili)li) =D VAIEIE).
ij ¢=1

This is the Schmidt decomposition. For every basis state |£) in A there is exactly
one |€) in B. The number mg is the Schmidt dimension and can be at most the
smaller of the dimension of A and B. The approximation for the ground state can
be rewritten as [®q) = Deny VXEIE)|E), where m is the number of states that are
kept.

From the Schmidt decomposition, the two following conclusions can be reached:
first, if the truncation error is zero, then the approximate wave vector has proper-
ties identical to the original one. Second, the set of quantum numbers contained
in A determines the set of quantum numbers in B. Every vector |£) in A must have
the correct quantum number so that the sum with the quantum number of |£) in
B forms the required quantum numbers of the wave function |®y).

Density matrix and quantum numbers The density matrix has the same block
matrix structure as the block Hamiltonian. Suppose the system is in a pure state
a with quantum number Q. Dividing the system in two, we construct the state
combining the two bases of the subsystems with the right quantum numbers, Q =
q+q, B
Te (Q)) =D B (0)]i, q)4,7) -
]
Let us calculate the identity operator
I = 10 (Q) (W (Q)| = 303" () (4 () 1is g, a1, 7
iy iy

and trace over the subsystem B in order to obtain the reduced density matrix for
the subsystem A

Y0 5D =Y ) (¢ @) ) @ d1G a7 15.)

j j iy g’

i}me#@@WV
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Therefore, the density matrix has the same block structure as the block Hamilto-
nian. For instance, the Heisenberg Hamiltonian of a two-site chain embedded in a
four-site chain is

1 0 0 0
110 -1 2 0
H=410 2 -1 0 |
0 0 0 1
and its density matrix is
1 0 0 0
1 0 1146vV3 —2(5+3v3) 0
pP= —F7—=

12v/2+v3 | 0 —2(5+3V3) 11+6V3 0
0 0 0 1

Using this property, we can easily obtain the single-site density matrix because
states map one-to-one to quantum numbers.

Single-site density matrix For the spin-1/2 case, S7, is conserved, and the
single-site density matrix is of the form

_ (P 0
Ps1/2—( 0 Pll)

with py = 8, (5, +1) /2 and p;; = §,(8, — 1) /2. Thus, it is diagonal and it is
required to measure only s, and s2.

The spin-one case, when total .S, is conserved, can also be reduced to a diagonal
matrix

pir 0O 0
ps=1=1|{ 0 poo 0O
0 0 p-11

where pj; = S, <‘§z + 1) /2, poo=1-52and p_1_1 =S, <gz - 1) /2.
For the single-site Hubbard basis, in a system that conserves N' and N!, we
obtain

o 0 0 0
{0 p 0O 0
=l 0o , o |

000 0 pp

where Po = 1-— ﬁl — ﬁT + ﬁlﬁT, Pr = 2§g — §z> P = 2§§ + §Z, and Pl = ﬁlﬁT‘
The multi-site density matrix can also be calculated, but multi-point correlation
functions and different operators must be calculated [284-287]. For example, for
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o|le|e|oO O 0O O o|e|e|0O0 ©
S(py) S(py)
O oO|le|e|0 O O 0O O O o|e|e|oO
S(py) S(ps) .
.

———— -
O 0O O|e|e@|0 O O o 0O oO|e|e|0 O O

oo | ____ |
S(py) S(py)

Figure 2.1: The infinite-system DMRG algorithm on the left and the finite-system
DMRG on the right.

spinless fermions the two-site entropy reads

u- 0 0 0
0 w 2z 0
pr(l;m) = 0 z¢ w 0 ’
0 0 0 wut
where u= = 1+ (nyn,) — %(n@ — %(nm>, ut = (neny,) + %(n@ — %(nm>, w =

$(ne) + 3 (nm) — (nenyy), and z = %(czcm + ¢l o). Tt easy to note that the two-site
density matrix has the same block structure as the two-site block Hamiltonian.
The system block density matrix is a direct byproduct of the DMRG algorithm
and the single-site and two-sites entropies can be easily implemented as measure-
ments of observables. These and related entropies have been shown to be very
important in studying quantum phase transitions, e.g., the two-site entropy can

be used to characterize a transition to a dimerized phase [288].

2.3.2 The algorithm

Based on the previous ideas, we will first describe the infinite-system algorithm,
and then go on to describe the finite-system algorithm.
The infinite system algorithm can be summarized as follows; see also Fig.(2.1).

1. Form a superblock S containing ¢ + ¢ sites which is small enough to be
diagonalized. The basis can be written as the tensor product of a left part,
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L, formed from the first ¢ sites and a right part, R, formed from the remaining
V' sites

i3) s(erery = |9 L) @ |7) meery t=1,---,mg;j=1,--- ,mg.

Thus, the dimension of the entire Hilbert space is mg = my X mg.

. Using the Lanczos or the Davidson algorithm, diagonalize the superblock

Hamiltonian, obtaining the ground states eigenvalue Fy and eigenvector

Do (€ + 1)) = Z ¢fj+z/’i]'>5(e+e/) :

ij

. Form the reduced density matrix p* for the current system block from the

ground state wavefunction, tracing out the right block

L) OOl
Piir = § i P -

J

. Diagonalize p* completely to obtain all m eigenvalues and eigenvectors.

Use the m < my eigenvectors with largest eigenvalues as columns of the
projector PEO. Apply the projector that diagonalizes and truncates p* to
the largest m eigenvalues

10) £ :pL(€>|¢>L(€) =1, mii=1--,mp.

m

. Transform all relevant operators represented in the old basis to the new

reduced density matrix basis, |i) i), including the block Hamiltonian

HEO (1) = ('pé(é))T HEO (1, yPE)

and, similarly,
AHO (m) = (PO 4O m, PO,

where A is a generic operator inside the block.

6. Extend the left and right block by one site

D)Ly = )50 @ )

) r@e+1) =191 |7 r e



7.

8.

2.3 The DMRG method

Form a superblock of size L = ¢ + ¢’ + 2, combining the bases

i5) s(e+e+2) = |9) Le1) @ |7) reer+1)

Thus, the action of the superblock Hamiltonian operator on a wave function
|®) can be represented as

(g D)) =3y (AT Y GBI e
a i 3!

where A, and B, are pairs of operator defined on the left and right block,
respectively. For each «, this equation is equivalent to two matrix multipli-
cations.

Repeat, starting at step 2.

The cycle continues until a given system size is reached, L ~ 10% 10°. In
principle, we are interested in results converged to the thermodynamic limit. This
method has significant limitations. Good accuracy is obtained only very close to
the center of the chain, and, for very large systems, a spurious correlation length
appears [289-291]. However, the infinite-system algorithm can be used as the
initial stage of the finite system algorithm.

The finite system algorithm proceeds as follows, see also Fig.(2.1):

1.

Carry out the infinite system algorithm until the superblock reaches a par-
ticular size L, storing H*® and the operators needed to connect the block
at each step.

Carry out steps 3-5 of the infinite system algorithm to obtain H*+1) Store
it. (Now ¢ # (')

Form a super block of size L using HX+D | two single sites and HE' Y with
V=L—-1-2.

Repeat steps 2-3 until { = L — 3 (i.e. ¢’ =1). This is the left-to-right phase
of the algorithm.

Carry out steps 3-5 of the infinite system algorithm, reversing the roles of
H™® and HE®): je., switch directions to build up the right block and obtain
HEEHD ysing the stored HX® as the environment. Store HRE+1),

Form a super block of size L using HX~1, two single sites, and HEE D,

Repeat steps 5-6 until £ = 1. This is the right-to-left phase of the algorithm.
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8. Repeat, starting with step 2.

Modifications to this algorithm using different configurations, for example, the
three-block system [292,293], and tree lattices [294], have been also developed.
Note that for a three-block configuration, the Schmidt decomposition is more com-
plicated and is not always applicable [295].

Recently, a new scheme that is particularly efficient for PBC, has been proposed
by White [296]. In the usual case, the system is divided into two blocks and, to
each step, after projecting out unnecessary states, the two blocks are expanded
by adding two new sites at each block. Two new sites must be added in order to
facilitate convergence. In fact, after the truncation, the blocks can lack relevant
quantum sectors and states, and the addition of an additional site can restore
them. The original procedure becomes expensive for sites with many states or
complex hopping. Therefore, White proposed to add only a single site instead of
two, solving the problem of missed states by adding an explicit perturbation term
into the density matrix. For the Heisenberg chain one adds

Ap=a(SfpS; + 57087 + 8inS7) |

where typically a ~ 1072 —10~%, which is small enough to not affect the numerical
precision. This term allows transitions between different quantum numbers ex-
plicitly. The approach is similar to the description of the evolution of the density
matrix in the master equation, with the Lindblad operators acting on it [236,297].

2.3.3 Measurements

A single-site operator, O,, such as the spin density or charge density on a site,
with £ in the left block, can be calculated as

(PolOf| o) =D 67,1 Ocli)pirj = > (i Ocli") pist -

. )
i3J i

Alternatively, after having transformed the operator into the basis of eigenvectors
of the density matrix, we can sum the product of the diagonal values of the operator
and the corresponding eigenvalues of the density matrix.

For the expectation values of operators acting on different sites, O,0,,,, we have
to consider two separate cases. When the two sites are on different blocks, then

(0| 00O |Do) = > ¢35 (i Ouli") (G| Oml i) i

ii'jj'
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2.3 The DMRG method

When the two sites ¢ and m are on the same block we must use instead

(@] O0Om|B0) = $,(ilOOm]i') b (2.11)
i’
YD GOV 1| Ol i (2.12)
7'7’,7]], Z‘//

where (1|0,0,,|") is calculated as a single operator, because the basis {|i")} is
incomplete due to the truncation process. Since during the DMRG iterations ¢
and m can be either on the same block or on different ones, we have to keep track
of all ©,0,,, O, and O,, operators.

2.3.4 Wave-function transformation

In order to speed up the diagonalization process, a good starting wave vector is
necessary. Since different approximations to the same finite system are made at
each step of the finite system algorithm, an obvious starting point is the result <I>§ ©
of the previous system step. However, this wave function is not in an appropriate
basis for H® because it is formed using different superblock configurations. In
order to use the wave function <I)0L(e) obtained in the previous step ¢ as input for
the next step £+ 1, we must first transform the wave function into the new basis.

At step £, the superblock basis is given by
0030013600 0) = [0 @ Jsean) @ Jsesa) @ D).

where [i*(1:9)) is the basis of the left block containing the sites 1, ..., £, |[sp1), [Sei2)
are the single-site bases for the sites at positions £ 4 1 and ¢ + 2, and |jR+3E)) is
the basis for the right block formed by sites £+ 3,..., L.

Assuming the algorithm builds up the system block from left to right, these
states must be transformed to the configuration of the superblock at the next step

L(1,6+1) -R(e+4,L)> ‘

|i 50+250+3]

This transformation can be broken up into two steps. The left block is transformed
from the original product basis, |[i*(9)s,,;) to the truncated basis of the density

matrix
‘iL(l,é-I—l)) = Z LZ—H[S€+1]ie+1,ie‘iL(17€)> ® ‘8€+1>’

Sp4150¢

where the transformation matrix L**[s,.1];,,, ;, contains the density-matrix eigen-
vectors. Similarly, for the right basis one defines

‘jR(Z+37L)> = Z Re+3[s@+3]jz+37ﬂ+4‘3f+3> ® ‘jR(£+4)> :

S0+3,J0+4
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Transformations similar to these were introduced for the first time in the context
of the matrix-product-state picture [298].

To perform the wave function transformation, we expand the superblock wave-
function as

@) = > @i, Sea1, Sev2, Jevs)lie, Seat, Seva, Jess)

19Sg1 180420043

by inserting the quasi-identity 3,  [iet1)(ies1| =~ 1.
The coefficients of the wave function in the new basis can be calculated in two
steps, first forming the intermediate states

Slivs1s Sevarders) = Y L [seralio, i @(in, se1, se42, Jeys)

1¢Sp41

and then forming

. . . . /43
P(ie+1, Sevas Sess Jora) = Z P(iet1s Sera, Jers) R [Sevslieraiera -
Jess

An analogous transformation with the roles of L and R reversed is used for a step
in the right-to-left direction.

2.3.5 Accuracy and truncation errors

The reduction of the Hilbert space carried out in the DMRG method is closely
related to the problem of quantum data compression [299,300]. In quantum data
compression, the Hilbert space of the system A is divided into two parts: the
“typical subspace” Ayy,, which is retained, and the “atypical subspace” Agyp,
which is discarded. For pure states, there is a well defined relationship between
Ayyp and the von Neumann entropy s of the corresponding ensemble. In general,

it has been shown that
B =In(dimAyy) — s, (2.13)

is independent of the system size for large enough systems [243,244].

Since one fundamentally treats a bipartite system in the DMRG, each subsystem
is, in general, in a mixed state. In the context of the DMRG, the accessible infor-
mation [266,301] of mixed-state ensembles can be interpreted as the information
loss due to the truncation procedure. This information loss is a better measure of
the error than the discarded weight of the reduced density matrix

ere=1-) w,, (2.14)
a=1
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2.3 The DMRG method

(also called the truncation error). Here the w, are the eigenvalues of the reduced
density matrix p of either subsystem; both must have the same nonzero eigenvalue
spectrum.

Based on these considerations, the convergence of the DMRG can be improved
significantly by selecting the states kept using a criterion related to the accessible
information. In general, the accessible information must be less than the Holevo
bound [266]

I < 5(p) = Piyps(Pryp) — (1 = Pyp) $(Patyp) » (2.15)

where piyp OF patyp are the portions of the density matrix formed from the basis
states that are kept and discarded, respectively. The probability pyy, is chosen to
be appropriate for the corresponding binary channel. The behavior of the mutual
information for particular ensembles as a function of pyy,,, including various bounds
on the mutual information can be found in Ref. [301]. For the DMRG, the atypical
subspace should contain as little information as possible if the approximation is to
be accurate. Assuming that this is the case, we take py,, = 1, and the number of
block states are selected so that s(p) —s(ptyp) < Xx. This a priori-defined x satisfies
a well-defined entropy sum rule which is related to the total quantum information
generated by the DMRG. Deviations from this sum rule provide a measure of
the error of the DMRG calculation. Therefore, x can be chosen to control its
accuracy. Fig. 2.2 shows the relative error of the ground state energy, defined as
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Figure 2.2: The relative error of the ground state energy for the half-filled Hubbard
chain for various values of the on-site Coulomb interaction U on an
N = 80-site lattice with periodic boundary conditions as a function of
(a) the truncation error and (b) the threshold value of Holevo’s bound
on accessible information, Eq. (2.15). After Legeza [260].
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(EpMRG — Fexact )/ Fexact, Plotted on a logarithmic scale for various values of the
Coulomb interaction U for the one-dimensional Hubbard model. In Fig. 2.2(a), it
is plotted as a function of erg, whereas in Fig. 2.2(b), it is plotted as a function
of x. As can be seen, the error in the latter plot behaves very stably as a function
of x, even for very small values of the retained eigenvalues of piy,. On the other
hand, the error in the energy behaves somewhat less regularly as a function of etg.
Therefore, an extrapolation of the energy as a function of xy would be significantly
better behaved than one as a function of erg. We find that such behavior is
representative; generically, extrapolation with y is as stable or more stable than
extrapolation with e for a wide variety of systems [244].

2.3.6 DMRG and entropy sum rule

In the DMRG procedure, when we add a site to the left block of size ¢ the entropy
changes as

Sp(l)+ S+ 1) =S (0 +1)

where I7(¢) is the mutual information that quantifies the correlation between the
subsystem and the new site added [244]. A similar equation holds for the right
block

Sr(r) + Siye + Ir(r) = Sr(r +1).
Since we apply only unitary operations to each basis block, we cannot increase the
entanglement between the left and right block. Thus, the amount of information
generated by a forward renormalization step can be measured as

IL(K) = SL(K + 1) — SL(K) — Sg+1 ,

where ¢ runs from 1 to N — 1. The information generated by the backward sweep
is analogous. The total information gain of a full half sweep can be calculated as
Zévzl I (¢). Tt is easy to show that, if no truncation is applied, the sum rule

N-1

N
I(0) ==Y "5,
(=1

=1 —

holds, where we have set S;(1) = S; and S(N) = 0.

However, this equality does not hold in the DMRG calculation. In fact, during
the DMRG process Sr,(¢+1) is reduced to S7*¢(/+1). Once the DMRG converges,
the following equality holds:

N-1 N N

o4



2.4 Remarks

Therefore, the following equation can be used as an alternative check of the con-
vergence

Practically, an effective system of length N + 2 is formed by adding two noninter-
acting sites to the ends of the chain. Therefore, all the blocks from size 1 to N can
be generated.

2.4 Remarks

In this chapter, we have presented an introduction to the DMRG algorithm and
have discussed a few notions of quantum information [302]. Following the motto
Programming is Understanding [303] we dedicated part of the initial time to imple-
ment a new C++ DMRG code for spin-one chains. Therefore, it is natural that we
have summarized some of the technical details here [304]. A good implementation
of the algorithm requires an optimal bookkeeping of states and an efficient use of
the appropriate iterative method to diagonalize matrices.

Concepts coming from quantum information theory are necessary to understand
how quantum objects relate [43,305].

For one-dimensional models, the DMRG algorithm has become a state-of-art
tool. The results obtained with the DMRG achieve a formidable accuracy. The
deep connection with quantum information, and the possibility to extend the
method to dynamical processes, time-evoluting problems, and to systems at 7" # 0
makes the DMRG unique [306]. However, despite the great success, careful finite-
size scaling studies continue to be vital to make any conclusion about behavior in
the thermodynamic limit [289,307].
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3 Band-Mott insulator transition

The discovery of the neutral-ionic transition in charge-transfer complex [22] has led
to a fruitful field to investigate. Charge-transfer complexes are formed by stack of
m-electron donor (D), usually DMTTF molecules, and acceptor (A), CA molecules;
see Fig. 3.1. The neutral phase corresponds to uniform and neutral distribution of
charge, DYA°DPAY  and the ionic phase to an alternation of positive and negative
charges, DTA"D*A~. The ionic Hubbard model (IHM) is a simple description of
this phenomena that can be treated in a controlled way. The model is obtained
by extending the Hubbard model [308] with an alternating ionic potential; the
potential simulates the effects of the alternate charge distribution on the molecules
that electrons feel.

The ionic Hubbard model is also of interest in the context of a completely
different material: the ferroelectric perovskites [309]. These systems show an
enhancement of the electron-lattice interactions that may be due to purely strong
correlation effects [310]. Therefore, these phenomena represent a new class of
systems that spontaneously dimerize with a mechanism that is not the Peierls
one. Recently [311], the neutral-ionic transition has been measured in organic
charge-transfer complex close to zero temperature, T' = 0, motivating the interest
in it as a pure quantum phase transition.

3.1 lonic Hubbard model

The Hamiltonian of the ionic Hubbard model can be grouped into three terms, a
one-dimensional nearest-neighbor hopping term with matrix element ¢, an on-site
Coulomb repulsion of strength U, and an ionic alternating potential of depth A,

H = Hhopping + HCoulomb + Hionic s (31)
with

L—-1
Hhopping =1 Z é;‘rgéi-I—lU + é;‘r+1géia ) (32)

i=1,0

L
A U o
HCoulomb = 5 zl: NigNi—0o (33)
i=1,0
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Figure 3.1: The T'TF and chloranil QCl, are planar 7 electron donor and acceptor
molecules. The charge-transfer complex is formed by stacks of these
molecules: DTPAPDt?A~ DT’ A~" where p is the ionicity.

and

i A&
1on1c - 5 Z nzcr (34)

i=1,0

Here ¢ (¢,) are the usual creation (annihilation) operators on site i for an electron
of spin ¢ and n;, = éja Cio. Although the overall physics described by this model
is now fairly well known, many details of the transition are still unclear.

3.1.1 Atomic limit

Let us examine what happens in the atomic limit, ¢ = 0, which can be easily
treated. For U > A and at half filling, there is no double occupancy in the
ground state, which consists of a series of singly occupied sites with energy £A/2
so that the entire system has energy £ = 0. For U < A, double occupancy is
favorable, and the ground state consists of doubly occupied sites at energy U — A
alternating with empty sites so that the energy of the system is L(U — A)/2. At
(U —-A) — 0, a level crossing of two configurations occurs so that the transition
must be first-order.
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Figure 3.2: The band structure of the ¢t — A model showing the two-band structure.
A band gap opens linearly, A.; = A, near the Fermi level, at k£ =
+7/2. For A = 0, the same spectrum is obtained as that of the tight-
binding model, but the Brillouin zone is halved and folded into itself.

3.1.2 Non-interacting limit

In the non-interacting limit, U = 0, the two band Hamiltonian is diagonal in
k-space. Considering the lattice formed by two sub-lattices, we can write

B —-A/2  —tcos (k)
Hi-alk) = { —t cos (k) A/2 (3:5)
in order to obtain the energy dispersion
A2
e(k) = £4/4t% cos? k + T (3.6)

It follows that A opens a charge and spin gap at k = +7/2, and the two gaps have
the same value: exactly A, see Fig. 3.2. Therefore, the exponential decay of spin-
spin and charge-charge correlations confirm that the system is a band insulator.
Without the ionic potential, A = 0, the model reduces to the one-dimensional
Hubbard model, whose behavior is well understood, see Ch.1 and Refs. [312,313].
The scenario does not change with the inclusion of a weak interaction, U; the
electrons still prefer to doubly occupy sites with lower potential, and the system
remains a band insulator.
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3 Band-Mott insulator transition

3.1.3 Strong coupling limit

In the large-U limit, the double occupancy can be treated perturbatively and the
low-energy physics of the IHM is described by the effective spin one-half Heisenberg
model [314-317]

Hé;t)f:‘]zgléﬂrl—i_‘]/zélgﬂﬂa (37)

where the exchange coupling constants are given by

4t?
J=—
U

L 4P 144N =\
]__AQ U2 (1_)\2)3

and

;AT AN -\
U (1= a2

where A = A/U. Therefore, the strong-coupling limit of the IHM is the same as
the strong-coupling limit of the Hubbard model, but with different J and J’. For
J' < 0.24J the spin gap vanishes [318].

Since the fourth-order terms are irrelevant, the exactly solvable nearest-neighbor
Heisenberg model

@ _ 4 -
Hipr = g —pz 2 % S (3.8)

already correctly describes this regime.

It is important to note that the system restores translation invariance, and that the
charge and spin sectors are completely separated. We have gapless spin excitations,
and critical spin-spin correlations, while the charge gap, in contrast, scales as U for
large U. We call this phase the Mott-Heisenberg insulator [41]. This description
is robust for a wide range of parameters in the strong coupling limit, but fails
close to the transition line because perturbation theory breaks down in the critical
regime [45]. In fact, there are numerical indications [319,320] that show that
higher-order spin excitations mix into the charge degrees of freedom everywhere
in the Mott-Heisenberg phase.

3.1.4 Bosonization and more

A few years ago, Fabrizio, Gogolin and Nersesyan proposed a new, interesting sce-
nario based on field-theoretical arguments [321]. They argued that two quantum
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3.1 Ionic Hubbard model

transitions occur, an Ising transition between the band insulator and an intermedi-
ate spontaneously dimerized phase, followed by (for increasing U/A) a Kosterlitz-
Thouless-like transition between the dimerized phase and the Mott-Heisenberg
insulator. This scenario is based on an argument in which the transition is ap-
proached from two different limits: from the Mott-Heisenberg insulator side and
the band insulator, and demonstrates that two different types of transitions must
occur.
First, the authors consider the weak-coupling case, (U, A) << t, linearize the

spectrum, and take the continuum limit by making the substitution

ZE — ing (@) + (=) 4o (0)

\/a g g Y
where 9, p are the right and left components of the Fermi field. Thus, the fields are
bosonized within the standard abelian bosonization framework [124]. The effective
bosonized Hamiltonian is H.fy = H. + H, + H,s, where the charge, the spin, and
the spin-charge coupling contributions are

He = F 02+ 0]
2 _
—% cos vV &md, + M&@R@@L ) (3'9)
2 (ma ™

_ Us 2 2
H, = 5 [Hs+(8$<1>8)}

- 5 cos V81D, — gamspﬁx%h (3.10)
2 (rar) T
and
2A
H., = ——sinV2rd,cosV2rd,, (3.11)
T

respectively. Therefore, the spin and charge sectors are coupled by the parameter
A. Nevertheless, under the assumption that the spin sector is gapless and that
the charge sector is gapped, we integrate out the charge degrees of freedom and
the A term goes directly to renormalize g; into the spin sector

A2
91 =0 —vac-

Thus, the leading effective theory is the sine-Gordon Hamiltonian, which is known

to undergoes to a continuous transition (KT') from the spin gapless (Mott-Heisenberg)
phase to a spin gapped phase; the charge gap stays finite across the transition.
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3 Band-Mott insulator transition

Thus, for U small and (¢, A) << U, the ionic potential shifts the opening of the
spin gap to slightly larger U, compare with the Hubbard model

chzm?t%{lJrO {%H (3.12)

On the other hand, from the band-insulating side, they use free massive Fermions
to describe the non-interacting band insulator in absence of interactions

o =Y (o) | 0 i [ () e

c
bo k+mo

Subsequently, they introduce the most generic interaction compatible with the
symmetry of the original IHM, and characterize instabilities through their gen-
eralized susceptibilities [109]. The instability analysis shows that the interaction
drives the BI phase to a SDI phase via a transition in which the charge degrees of
freedom take part and the spin degrees of freedom are excluded. Therefore, two
different transitions must occur because of their entirely different nature. In fact,
for small U and A, the two transitions are definitively separate, with

Ueo const

Ua — In(t/a)

Finally, they treated the Hamiltonian H.;¢ as a phenomenological Landau-
Ginzburg energy functional; this allows them to investigate the nature of the
transition from BI to SDI in all regimes. The saddle points of the effective po-
tential in H.¢; identify two possible phases: the massive BI phase, characterized
by topological excitations carrying charge Q = £1/2 and spin S* = £1/2, and
the massive SDI phase, in which topological excitations have spin S* = 1/2 and
fractional charge. In addition, the effective potential becomes a massless p*-Ising-
theory exactly at the BI-SDI transition point. The Ising scenario is also supported
the behavior of the the charge degrees of freedom when the spin bosonic field is
locked, as the instabilities indicate to be the case in the BI phase. The resulting
effective model is a double sine-Gordon (DSG) Hamiltonian [322]

Hly o i = 5 (02 (0) + 00 (2)]}

I cos V8TK. D, (x)

m2ag

2A
——sin /27 K. D, (z) , (3.14)
Tag

in which a quantum phase transition of an Ising type is know to occur [323]. This
model can be mapped to two coupled quantum Ising chains in a transverse field;
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3.2 Effective model

one of the chains passes through a critical point and the order parameter of the
transition is proportional to the dimerization operator. Finally, Fabrizio, Gogolin
and Nersesyan argued that the Ising transition in the charge sector would change
to a first-order transition if an extra finite-range interaction, e.g., V') . n;n; 1 were
added to the model [322,324].

3.2 Effective model

At least one transition consistent with the band-insulator-dimerized insulator has
been found in all numerical work [288,316, 319,320, 324-328] published after Ref.
[321], although, for the most part, without characterizing the critical behavior.
However, even confirming that there is a second transition has been a quite dif-
ficult task. The two transitions turn out to be very close to one another and,
since the transition to the Mott-Heisenberg insulator is expected to be a KT-like
transition, it is very difficult to find and characterize using finite-size scaling stud-
ies [319]. Additionally, which energy scale characterizes the intermediate phase is
not obvious from the original model. For these reasons, study of an effective model
characterizing the region of the transition and the intermediate phase is useful.

Another very important subtlety is how to map the gaps from the field theoret-
ical model onto the original lattice model. In the ionic Hubbard model, the charge
gap, the one-particle gap, and the spin gap all behave differently at the transitions.
The one-particle gap is related to the charge and spin gaps, but the first implies
a change of one particle and the latter two are spectral gaps of excitations only
in the charge or spin sectors, respectively. One way of locating critical points is
to examine the smallest energy gap, i.e., the mass gap, as a function of the tun-
ing parameters. The critical point is then the point at which the gap vanishes in
the thermodynamic limit. However, this method has serious shortcomings when
the transition is difficult to find. As we shall see, it is usually advantageous to
use the static susceptibility related to the relevant order parameter to study the
transition [319].

3.2.1 Derivation of the effective Hamiltonian

In order to investigate the critical behavior of the ionic Hubbard model at half
filling, we derive an effective model, formulated in terms of spin-one operators,
valid for (U, A) >> t. In this limit, the doubly occupied state on the even sites
(with on-site potential A/2) and the unoccupied state on the odd sites can be
projected out. At half-filling, a double occupancy on an even site is necessarily
associated with a completely unoccupied odd site, with a cost in energy of U + A.
This procedure is a second-order strong-coupling expansion in (U, A)/t analogous
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3 Band-Mott insulator transition

Table 3.1: Mapping between the single-site basis states of the ionic Hubbard model
and those of the effective spin-one model.

—A/2 +A/2
|0) —  excluded |0) — | 0)
T = 1) T - 1)
= =1 = =)
|d) — | 0) |d) —  excluded

to that used to derive the ¢-J model from the Hubbard model. In fact, the resulting
model can equivalently be formulated in terms of ¢-J operators rather than spin-
one operators; we feel that the latter formulation is more intuitive for the half-
filled system [329]. The physical meaning of the spin-one states is as follows: the
S, = +1 state corresponds to a singly occupied site with a spin-1/2 electron with
spin up or down, while the S, = 0 state corresponds to an unoccupied site on the
even sites and a doubly occupied site on the odd sites.

The mapping of the states of the ionic Hubbard model to the effective spin-one
model is shown in Table 3.1. As we shall see, conservation of particle number leads
to a spin exchange process for the spin-one operators that is more restricted than
the Heisenberg exchange. Given this mapping of states, the effective Hamiltonian
can most easily be derived by first expressing the original Hamiltonian as a function
of the Hubbard operators [42,330] X™ = |a;)(8;], defined as

(i —TA;) L—np) &(1-n) 51(1T— i) E6

- (1l —n 1—n)n CrC —C|n
X0 = J(A ) ATAL) 1ooGa e (3.15)

Cl(lT—TnT) Gl ny (1 _TnT) )¢t

and then mapping it onto the spin-one model expressed in terms of the operators
L*" = |s;)(s}| in the spin-one basis [331],

(5:)°+8:  sesy (51)°
2 V2 ) 2
A~ o— &z A~ A §t3z
(57)° s80 (3)-%
2 V2 2 S8
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For instance, we rewrite the ionic potential and the Coulomb interaction as

L
iy, = Uy X

L/2
= UZ<X§521+X§;1),
j=1
and
A L
| _ = 1T Ll -dd
Hy = 221<X2. + X4 2%7)
ALZ
-3 (—ngil—xgjl 2X94 |+ XJ1 + XM 42X )

=1

.

The single-site Hilbert space truncation is defined as

X? 50 fora,f=0andi=2j—1
X -0  fora,f=dandi=2j . (3.17)
X% = L% otherwise

Hence, the interaction and the potential parts are transformed to

L2
Hy=UY L3 ;. (3.18)
j=1
A L2
Y Z <L%J 1T ngl:f + 2L3971 - L%; - Lgfjlfl) : (3.19)

Altogether, defining the coupling constant ¢ = U — A, the doping 6 = N — L, and
writing the terms using spin-one operators, the two-term contribution becomes

Agz—gi( ) ——L—g5 (3.20)

Likewise, the hopping part is translated to

L
Ho=t) <LO VLt — LOVLO v LD L10L2+110> (3.21)
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that, rewritten in the spin one language, becomes

L
. ¢ o A
=23 <_si+s;s;+155+1 + 878285 8z + h.c.) . (3.22)

i=1

In summary, the Hamiltonian for the effective spin-one model can thus be ex-
pressed in terms of the usual spin-one operators, yielding H® = Hf + HE + HE, .,
with the hopping term

T (O o ] CE SR S R CEs

i=1

the interaction term governed by the single parameter e = U — A

‘re € 2 a2\ 2
HZ = 5 221 <Sz) ; (3.24)

and the constant term o
e . =SL— 59 (3.25)

const — 2

Note that it is immediately clear from the effective model that the relevant
energy scale for the transition is set by ¢ = U — A. While the zeroth-order
argument (¢ = 0) indicates that there should be a transition between an ionic
and a Mott-like phase near U ~ A the nature of the transition(s) and possible
intermediate phases for finite ¢ still needs to be determined.

A sketch of the allowed processes is shown in Fig.3.3. These processes are a
relative small subset of those of the isotropic Heisenberg spin chain model, and
the AFM exchange in the IHM maps to two scattering process in the effective
model.

In particular, it is important to investigate whether the behavior in the vicinity
of ¢ = 0 agrees with previous numerical results for the ionic Hubbard model,
[316,319,324] as well as with field-theoretical treatments [321].

One relevant characteristic of the effective model is the extent to which the
symmetries of the original model are preserved or modified. The interaction term
Hg is local, translation invariant, and depends only on (5%)2, in contrast to the
on-site part of the IHM Hamiltonian (3.1). The greater symmetry of the effective
model is a consequence of the particle-hole symmetry of the IHM at half-filling.
(Note that the interpretation of the S* = 0 state is not translationally invariant.)
Since the spin exchange term has the same symmetries as the hopping term in the
IHM, the remaining symmetries of the original model are preserved in the effective
model. Conserved quantities in the original model, such as the total z-component
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3.2 Effective model

Figure 3.3: Sketch of the allowed processes, which are a relatively small subset of
those of the isotropic Heisenberg spin-chain model. The drawing show
how the AFM exchange in the IHM maps to two scattering process in
the effective model.

of the spin, s,, the total spin, s, and the number of particles, IV, are still conserved
in the effective model, but have different meanings.

One can also examine the expected phases in appropriate limiting cases. For
€ >> t, the on-site S* = 0 state is strongly suppressed so that the remaining
degrees of freedom, spin up and spin down, correspond to the localized spin-1/2
degrees of freedom of the MI phase of the original model. For ¢ — —o0, the
S* = +1 local states are suppressed, leading to a ground state that is a simple
product of local S* = 0 states, which maps to the band insulator. At the transition
between these two phases, the effective model allows the same low-lying charge and
spin fluctuations as well as the same spontaneous breaking of site parity (an exact
symmetry for periodic, but not open BCs) as the IHM.

Note that the derivation of the effective model can easily be extended to in-
clude additional interaction terms that do not break the symmetries of the original
model, such as a next-nearest-neighbor Coulomb repulsion.

3.2.2 Observables

Since the formulation of the effective model in terms of spin-one operators is a no-
tational convenience rather than physical, we are interested in studying observables
relevant to the original model rather than the usual spin observables. Therefore, it
is necessary to translate the observables relevant to the IHM into the language of
the spin-one model. The local spin operators map as (small letters: ITHM, capital
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letters: effective model)

1
~z Lz
SZ - 2 [
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the local charge operators as

A\ 2
(f) 1 = even

2 —<S%)2 i = odd,

1 -
Az -G
L
N 1~ 1 N 2 /. 2
a2 z z _ +
el e | —§:< )(s)
— (2 +)+4Z]:1 i J

As we can see, conservation of s* in the IHM leads to conservation of S* in the
effective model, with the spin scaled by a factor of one half. However, conservation
of the total spin in the ITHM does not lead to conservation of total spin for the
effective model, which is not SU(2)-invariant.

In Table 3.2 we show the mapping of the most important quantities from the
original ionic Hubbard model to the effective spin-one model.

3.3 Numerical simulation

We have investigated the effective model by performing DMRG calculations for
different system sizes, from L = 200 up to 600 sites, with open boundary conditions
(OBC). The algorithm performs best for even chains with OBC, but for small
chains boundary effects can be large, depending on the correlation length. Thus,
in order to minimize any dispersion due to the edges, or Friedel oscillations and
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Table 3.2:

Mapping of differt physical quantities to the effective spin one model.

Tonic Hubbard model

Effective spin one model

2 & , 9o L, \2
Tonicity I= Z;(‘D () I=2- z;(sg) )
Polarization P= 1 ix(fﬂ P= 1 Z(_l)il’ <(SZ)2> .
Z - L pat 1\t - 17 g g 4 D)
: - OP(Ey) OP(Ey)
Electric susceptibility Xe = — ———= o= —
aEI E.=0 aEa: E.=0
1 & 1 & s .
Bond order parameter D= 71 (_1)1<@;f@i+1 + é;rﬂél) D= 1 Z(—l)l {<( S+ S;SZ_H) SZ1)
i=1 i=1
(57 (S¢S0 +5784))]
s 0D(hp) oD(hp)
B.o.p. susceptibility D=— D=-—
Ohp 4,0 Ohp 4,0
1< 1< .
AFM order A=< PG IRER! A=< D ()85
A(B- A(B,
AFM susceptibility XAFM = — 8359 ) XAFM = — 8359 )
z 1B.=0 z |B,=0
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3 Band-Mott insulator transition

odd-even effects, we analyze systems of at least 200 sites. In order to achieve
sufficiently high accuracy, at least 5 sweeps must be performed, with up to 1280
states retained in the last one. The maximum system size that can be accurately
treated is than approximately 600 sites. The maximum discarded weight of the
density matrix for the effective model is then always less than 1078, and is typically
zero to within the numerical precision far from the critical points. We target the
ground state in the S* = 0 sector, both the ground state target and the first excited
state in the 5% = 0 sector, and the lowest state in the S* = 1 and 5% = 2 sectors.
These states correspond to the states needed in the original ionic Hubbard model
to calculate the ground state energy, the “exciton” gap, the charge gap, and the
spin gap.

We have repeated the same calculations using the dynamic block-state selection
(DBSS) approach [258,332], fixing the threshold of maximum quantum information
loss to x = 1079/L at each step. For instance, m ~ 500 basis states are enough to
correctly describe the ground-state wave function of a system 500 sites for ¢ = 1.23.
However, as we increase €, the number of states required increases, for example,
m ~ 900 states must be kept to obtain the ground state at ¢ = 2. For ground
states of other symmetry sectors, e.g., the lowest triplet excitation, this number is
typically the same order as the number required for the overall ground state, but
it can sometimes be much more larger despite the fact that its Fock subspace is
smaller when the excited state is delocalized. Nevertheless, since we are interested
in only the energy of these states and since measurements are carried out only on
the ground state, keeping of the order of a thousand states is usually sufficient.

Therefore, we consider simulations with up to 500 sites to be under good control
and those for L = 550 and 600 sites to possibly have a deficiency in accuracy when
Mumae = 1280, even near the critical region.

3.4 Bl to SDI transition

In this section we will explore the region where we observe that the minimum of the
mass gap goes to zero in the thermodynamic limit for . = 1.28(65) and reopens
again; see Fig. 3.4, which shows the mass gap as a function of the system size. A
level crossing is visible. For smaller ¢ values, the mass gap is purely determined
by the singlet and the triplet is at much higher energy. The triplet and the first
excited singlet cross just after the last reopens. For ¢ > 1.35 the triplet and the
first excited singlet are degenerate, and the gap goes to zero exponentially with ¢.
We have compared results from the effective model to DMRG results for the IHM
for (U, A) >> t in order to test the validity of the effective model [319]. All the
quantities that we measure: gaps, ionicity, bond order parameter and polarization,
are in good agreement to within a few percent.
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Figure 3.4: Mass gap as function of the coupling ¢ for different system sizes.

3.4.1 Dynamic critical exponent 2

For a quantum system related to a classical model by the transfer matrix, the
dynamical critical exponent can plays the role of an extra dimension, i.e., z = 1.
In general, space and time correlations can be coupled and the value of z can be
different from one. Therefore, an estimation of z is required to determine and
interpret all exponents. First, we identify the mass gap [80], which here is given
by

F(e,L) = E(e,L) — Ey(e, L), (3.26)

taking the gap scaling to zero most quickly close to the critical point. This gap is
proportional to the inverse of the correlation length, £~1. Subsequently, since £(L)
is limited by the system size L [72], the ratio

R.(N,M,e) = %% (3.27)

of the mass gaps for different system sizes behaves as R, (., N, M) ~ (N/M)'™*
for N, M >> 1, and thus depends only on the ratio of system sizes. We plot all
measured R, ratios in Fig. 3.5. In Fig. 3.5 (a), we show that all the gap ratios with
the same r cross R, = 1 at the same point. In Fig. 3.5 (b), curves with different
r, scaled by the L = 200 gap, also cross at the same point. Thus, it is clear that
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3 Band-Mott insulator transition

all curves cross each other approximately at the same value of ¢, ¢ ~ 1.3, where
R,(N, M) ~ 1, consistent with z =1 [81].
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Figure 3.5: Different system-size gap ratios as function of the coupling . (a) Sets
of gap ratios with the same ratio r. (b) Sets of gap ratios with different
r, scaled by the L = 200 gap.

3.4.2 Correlation length exponent v

Taking z = 1 from now on, we can use the definition of the logarithmic mass gap
ratio [84]

_ InF(e,L+2)—InF(e L)
B In(L+2)—1InL

to estimate a series of pseudo-critical points converging to the critical point in
the thermodynamic limit. The pseudo-critical points, £*(L), are computed so that
R(L,e*)+1 =0, as shown in Fig. 3.6. Since the mass gap goes to zero from both
sides, the curves of the scaled ratio cross the line at two points, defining two possible
sets of pseudo-critical points. Since this behavior could also indicate a first-order

transition, we check that the minima of the normal ratio Fz(f(ng)Q )% converges

R(L, ¢) (3.28)

to unity, as required if the transition is second-order [84]. We summarize all the
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3.4 BI to SDI transition

critical points in Fig. 3.6, which shows the two series of pseudo-critical points and
mass-gap minimums. All curves are fit very well with third-order polynomials. In
the thermodynamic limit they converge to the same point, to within the accuracy
of the extrapolation, as can be seen in Fig. 3.6. Extrapolating using either series of
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08 ¢ 1=300 ¢ L=500 ]
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Figure 3.6: Scaled logarithmic mass gap ratio and critical point extrapolation. The
pseudo-critical series of points are shown, as well as the gap minimum.
In the legend, &,, is the position of mass gap minimum, &, is the position
of the minimum of the scaled mass gap ratio, and, £, and ¢, are the first
and the second series of pseudo-critical points. The lines are guides to
the eye.

pseudo-critical points, which remain close to the gap minimum, can yield unreliable
results because the derivative of the mass gap is zero or close to zero. By fitting
the curves with a third-degree polynomial, we extrapolate to the thermodynamic
limit and thereby obtain the critical point

e, = 1.28(64). (3.29)

We can now use the finite-size version of the Callan-Symanzik [84, 85,333, 334]
[B-function to estimate the correlation-length exponent

. 1 0F(e, L)
Bes' (& 1) = F(e,L) 0e

(3.30)
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3 Band-Mott insulator transition
with the critical behavior )
Bes (€, L) ~ L7 . (3.31)

To calculate the exponent v, we proceed as follows: we calculate the ratio from
the second series of pseudo critical points, €5 = ¢;,(L):

Busle*, L+1)  (L+1\ "
Bes(e*, L) N(T)

in the thermodynamic limit. If |1/v| < 1 and L >> [, then
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Figure 3.7: (a) Scaling of the mass gap around the first critical point. The lines
are guides to the eye. The picture on the right (b) is rescaled using
F(e,L)L. The collapse of the data onto a single curve confirms that

v=1.
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L v
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and
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3.4 BI to SDI transition

Additionally, we use the limiting behavior

1 cs *,L 2) -1 cs *,L 1
In(L+2)—InL v

as a check. From the numerical extrapolation, we obtain
1
— =0.99(6) (3.33)
v

The plot of the mass gap collapse is shown in Fig.3.7.

3.4.3 Thermodynamic exponents 3, o and ~

The bond order parameter is the order parameter of the bond-order-wave (BOW)
phase. Fabrizio, Gogolin, and Nersesyan have argued that the bond order pa-
rameter is the right quantity to characterize the Ising-like transition in the IHM
[321,322]. The order parameter, expressed in the spin-one language, is

D(e,L) = +— i(—lf (880 + 5788 S2a)

—(87 (818 + 5785 )] 5 (3.34)

see Fig. 3.8.
We use the bond order parameter to determine the second critical exponent, (3

D(e~ee, L)~ L%, (3.35)

Using the logarithmic derivative

InD(e*, L+ 1) —InD(e*, L) o]

ImL+1l—1InL Ty (3.36)
we obtain:
g =0.12(4) (3.37)

The data are also ploted in Fig. 3.9. The excellent data collapse in Fig. 3.8(b)

confirms that the transition point belongs to the 2D-Ising universality class.
Since, in a quantum phase transition, the coupling plays the same role as tem-

perature in a thermal phase transition, we can define a corresponding “specific

heat” [80,335]

9 82E0(L)

CU(E,L) = —LW
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Figure 3.8: The bond order parameter as a function of the coupling ¢ around the
transition point. (a) The bond order parameter for different system
sizes near the first transition. (b) The collapse of the points as expected
for a 2D-Ising universality class with D(e, L)L'/®.

Note that this quantity does not correspond to the real specific heat. Nevertheless,
due to the scaling relations and its interplay with the other quantities, it has to
diverge with the exponent . The physical specific heat exponent is different and
is related to our a by the Griineisen parameter [336].

The specific heat usually contains a regular term that is typically larger in ampli-
tude than the singular one. Therefore, instead of using the logarithmic derivative
to estimate the exponent «/v, we instead use

Ley(L+2)—c(L) «

: 0 ~ (3.38)

To overcome possible problems in determining this exponent, we use the Hellman-
Feynman [337-339] theorem to exploit the accuracy of the DMRG in calculating
local quantities

e () (3.39)
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Figure 3.9: Finite-size behavior of the exponents v, 3, o and . The fit is to a
third-degree polynomial in 1/L. Note that the points for the smallest
1/L are not included in fitting ~.

This trick reduces the computational cost to that of calculating the first derivative
of the cubic spline, which interpolates the data points [207]. The result is the
following;:

% = 0.00(1) (3.40)

The finite-size behavior of the various exponents is plotted in Fig. 3.9. The first
scaling relation a = 2(1 — v) is fulfilled, see Eq.(1.3).

Finally, we determine the exponent v associated with the relevant susceptibility.
The susceptibility corresponding to the bond order parameter is

1 0D(e, L)

41
L ohp |, (3:41)

Xp(e) = :
p=0
In order to calculate this quantity, we turn once more to the Hellman-Feynman
theorem and to linear response theory. We perturb the Hamiltonian with a small
field hp conjugate to the order parameter D. The field has to be small enough
to reveal a linear regime in the changes, but not smaller than the actual DMRG
resolution; we use 20hp = 10~*t. Thus, we have measured the order parameter
for 4 points around hp = 0 in order to compute its first derivative at hp = 0.
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Figure 3.10: (a) Bond order parameter susceptibility as function of the coupling €
for different system sizes. (b) The collapsed curves obtained with an
exponent vy = 7/4.

Once we have evaluated the static susceptibility for different system sizes, we
proceed in the same way as for the previous exponents. The scaling relation is

x(ge, L) ~ LV (3.42)
Thus, from
1 “L+1)—1 * L
In(L+1)—InL v
we obtain the last thermodynamic exponent, as plotted in Fig. 3.9
T o172 (3.44)
v

As shown in the figure, the last points for the largest system sizes have been
excluded in calculating the exponent. The reason is that the calculation of the
susceptibility becomes uncontrolled for very big system sizes. In order to compen-
sate the occurrence of non-linear behavior in the response for larger system sizes,
we have to use a very small perturbation field. However, the effect of such a small
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3.4 BI to SDI transition

field can be difficult to distinguish from the numerical noise. In addition, we have
to carry out two cubic-spline interpolations: one to determine the derivative of
the bond order parameter as function of the perturbation field and one to fit its
susceptibility. For these reasons we prefer to neglect them. We see that the second
scaling relation v = 2(v — (3) is fulfilled to within our estimated error, see Eq.(1.3).

Other quantities such as the electric polarization and the electric susceptibil-
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Figure 3.11: (a) The electric polarization P. as function of the coupling ¢ for dif-
ferent system sizes. The collapsed curve in (b) confirms the Ising
character of the transition.

ity scale with the same exponents of bond order parameter and its susceptibility,
respectively. This confirms the universality class of the transition, see the data
collapse in Fig. 3.11 and Fig. 3.12.

In addition, we have calculated the value of the central charge using the method
of Ref. [291]. The scaling of the low-lying energy levels with system size is uniquely
determined by the conformal tower. This scaling can be used to determine the
central charge [100]. The value obtained, ¢ = 0.5(0), is consistent with that
expected for the 2D Ising model. We determine the central charge using the
entropy profile in chapter 5 and obtain the same value (¢ = 0.5) at e,.
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Figure 3.12: (a) The electric susceptibility x. as function of the coupling e for
different system sizes. The collapsed curve in (b) confirms the Ising
character of the transition.

3.5 SDI to MI transition

In this section we analyze how the spin gap closes in the vicinity of the second
critical point, see Fig. 3.4. This point corresponds to an essential singularity in
the energy gap and it delineates the beginning of the critical region. Presumably,
the transition is driven by marginal operators that induce logarithmic corrections
which are typical for a ¢ = 1 CFT [124]. Therefore, a more careful treatment than
at the 2D Ising transition point is required.

3.5.1 Correlation length and mass gap

Here we present numerical results on the second critical point and determine its
universality class. After the first critical point there is a change in the character of
the mass gap, which formerly was determined by the gap between the ground state
and the first singlet excited state. Here it is set by the gap between the ground
state and the lowest-lying triplet, which is degenerate with excited singlet states.

The behavior of the mass gap energy is a clear signal of KT critical behavior:
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3.5 SDI to MI transition

the mass gap closes exponentially to a second critical point distinct from the first
one; see Fig. 3.13. Therefore, in the thermodynamic limit and assuming that the
transition is a KT transition, we write the singular part of the correlation length

as
E(L=00) = Ce for 0<t<<1
E(L=00) = o© for t<0 (3.45)
where
t=(e.—¢) /ec,

and o is the exponent of the essential singularity. (The XY model has ¢ = 1/2.)
However, strictly speaking, we note that the expression for the correlation length
is valid only in a narrow region close to the KT critical point, requiring the study
of very large systems [340], or the inclusion of higher order corrections.

Nevertheless, neglecting the corrections, we consider a system of finite size L;
hence, the correlation length is limited by L: £ (L) ~ L. Therefore, we can define
a set of pseudo-critical points, e*(L), as for a second order transition, but it scales
to the critical point €. logarithmically,

e (L) —

Ee —1/o
~ (InL .
=% )

Analogously, all the points € > &* (L) constitute a pseudo-critical region. Since
the mass gap is related to the inverse of the correlation length, we can apply the

same arguments that we derived for the correlation length to it.
Furthermore, in a critical region described by a CFT the relation [178§]

2mx;v

L

E; (L) ) (L) =

is valid, where x; is the scaling index and v the “excitation” velocity. As a result, in
the plot of the mass gap times the system size L all curves merge into a single one
exactly at the critical point e.,; see Fig. 3.13. Therefore, the system is in a critical
regime above a critical coupling €., ~ 1.8. The point at which the curves merge
is clearly separated from the first critical point that we found at .4 = 1.28(64).
Since the distance between the two critical points is much bigger, Ae =~ 0.6, than
any deviation due to the logarithmic corrections, we conclude that there are two
phase transitions.

In addition, we plot the mass gap ratio, but now the curves do not cross the
line corresponding to a ratio of unity due to the logarithmic corrections [85]. Nev-
ertheless, the curves stay very close to one everywhere in the critical region; see
Fig. 3.14(a). The behavior of the mass-gap ratio curves further supports the KT
scenario. They grow with the system size for ¢ < 1.7 and scale to one for larger
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Figure 3.13: (a) Mass gap and (b) mass gap times L relative to the second critical
point as function of the coupling € and for different system sizes.

values of €. In addition, we define and calculate the scaled difference of mass gaps,

Q,

_L'F(s,L))-L'=F(g,L)- L
o L' — L '

Qe; L', L)

For an arbitrary L', the first-order finite-size scaling terms cancel out and @ (¢; L', L)
vanishes in the critical region. In Fig. 3.14(b) we show results for L/ = 500. We
conclude that the critical point occurs at .o ~ 1.8 and the gap closes exponentially.

We have also calculated the approximate §-function, see Eq. (3.30). However,
for this kind of transition, it has no zeros as we might expect [85]. Nevertheless, we
have extrapolated the value of the minima of the g-function to the thermodynamic
limit and have found eyin 3 = 1.9(2). The approximate -function does not capture
the peculiarity of a KT transition entirely because of the logarithmic corrections.
Therefore, we argue that this value is larger than it should be.

82



3.5 SDI to MI transition

1
o O O
a O
L] L] L
L 2R 4
T
SN
[elele]
[e]ele]
. i
o
QR N
[@Jeofe (o)l
QOO0
L L 1

OR
#

1.5F ¢ 1=200 L=350 4

O05F \ .
OoF \,\'\/s —_——————— —— — —

1.4 1.6 1.8 2 2.2
e

(b)

Q(e:L,L'=500)

Figure 3.14: (a) The logarithmic mass gap ratio plus one. (b) The scaled difference
of mass gaps Q for L’ = 500 and various values of L.

33



3 Band-Mott insulator transition

140

120

60

40

20

Figure 3.15: (a) The bond order susceptibility and (b) the electrical susceptibility
for the second transition point.

3.5.2 The bond-order and electric susceptibility

In order to classify the transition as a KT transition we examine the bond-order
susceptibility and the electric susceptibility; see Fig. 3.15. We look at the peak of
the bond-order susceptibility in order to estimate the exponent of the susceptibility,

. Iy (ghemo L4 2) = Inx (5o, L)
Tpeai (L) = (L +2)—InL ‘

Here we neglect the logarithmic corrections because the systems are not large
enough to appreciate any deviations. The position of the peak in the bond-order
susceptibility converges to the value epeax =~ 1.6(2) and the series of pseudo-
exponents, 5., (L), converges to v ~ 1.2(7) in the thermodynamic limit. For
comparison, we calculate the electric susceptibility, shown in Fig. 3.15(b). The
finite-size effects are much stronger for the electric susceptibility than for the bond-
order susceptibility. In fact, we observe a narrow peak that grows and moves with
the system size. However, we conclude that the coincidence of the gap closing
to zero exponentially with a diverging susceptibility corresponds to the typical
scenario of an infinite-order phase transition. The critical exponent of the suscep-
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Figure 3.16: Collapse of the bond order parameter relative to the band insulator
and Mott insulator phases. In (a) the scaling is relative to the band-
insulator phase and the bond-order parameter scales to zero as 1/L.
In (b) bond-order parameter scales to zero as 1/v/L plus corrections
in the Mott-insulator phase.

tibility v cannot be determined correctly because of the still strong influence of
the bond-order wave that scale to zero very slowly as 1/v/L, see Fig. 3.16(b).

Additionally, we have calculated the central charge from the expression of the
entropy profile that we use extensively in chapter 5. The result is consistent with
the finite-size scaling analysis to a good approximation. The fitting parameter of
the central charge has the value ¢ &= 1 (typical for a KT transition) near .. &~ 1.65.
At this point, the x? of the fit has a minimum. However, more investigation would
be necessary to address this issue.

3.6 Summary and outlook

In this chapter we have analyzed the band-to-Mott insulator transition in the
strong-coupling limit. Using simple energetic arguments, we have derived a sim-
pler effective model starting from the ionic Hubbard model. The effective model
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captures the physics of the transition and is less computationally demanding than
the ionic Hubbard model. The DMRG simulation has confirmed that there are
two well defined transitions separated by a finite energy scale. The extraction of
critical exponents for the first transition confirms that it belongs to the 2D Ising
universality class. Subsequently, we have observed that the mass gap closes expo-
nentially, and that all relevant susceptibilities diverge, behavior typical of a KT
transition.

The mapping can be adapted to similar models or to extensions of the ionic
Hubbard model, e.g., chains with other periodicities of the ionic potential or even
two-dimensional problems. Another potentially useful application would be to
relate exactly solvable spin-one models to electronic models and vice versa the spin-
one models to spin-one-half models via the spin-one composite representation. In a
similar context, related effective models were develop several years ago in Ref. [341]
and recently in Ref. [342].

Another possibility that we are investigating is to bosonize the ladder chain ob-
tained via the spin-one composite representation. This will determine which model
is most fundamental to describe the band insulator to Mott insulator transition.
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4 Mott insulator - Metal transition

During the last decades, the Mott metal-insulator transition has been the subject
of great interest [41,343,344]. In the canonical model for this transition — the single-
band Hubbard model — the origin of the insulating behavior is the on-site Coulomb
repulsion between electrons. For an average density of one electron per site, the
transition from the metallic to the insulating phase is expected to occur when the
electron-electron interaction strength U is of the order of the delocalization energy
(which is a few times the hopping amplitude ). The critical value (U/t). turns
out to be quite independent of the specific band structure [345]. It is important
to recall that the Mott transition is often preceded by antiferromagnetic ordering,
which usually leads to insulating behavior and thus masks the Mott phenomenon.

While the underlying mechanism driving the Mott transition is by now well un-
derstood, many questions remain open, especially about the region close to the
transition point where perturbative approaches fail to provide reliable answers.
The situation is more fortunate in one dimension, where non-perturbative an-
alytical methods together with well-controlled numerical approaches allow both
the ground state and the low-lying excited states to be determined in many
cases [40,312,313]. However, even in one dimension, apart from the exactly solv-
able cases, a full treatment of the fundamental issues related to the Mott transition
still constitutes a hard and long-standing problem.

In this chapter, we study the ¢ —¢ Hubbard chain, which includes both nearest,
t, and next-nearest-neighbor, ¢, hopping terms. We limit ourselves to an average
density of one electron per site (the half-filled band case). Depending on the ratio
between t' and t, the system has two or four Fermi points. Correspondingly, it
shows one- or two-band behavior and has a rich phase diagram. Therefore, it is not
surprising that the model has been the subject of intensive analytical and numerical
studies, including a weak-coupling renormalization group analysis [346], DMRG
calculations for charge and spin gaps [347-351], the electric susceptibility [352],
the momentum distribution function [353-356], and the conductivity [351] as well
as, very recently, a variational technique [357].

Unfortunately, conflicting results have been reported for the transition region,
in particular regarding the character of the transition, the number of different
phases and the number of gapless modes. In this work, we hope to settle some
of the unresolved issues using a combined analytical and numerical analysis. We
focus our attention on the insulator-metal transition as a function of ¢ for a fixed
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on-site repulsion U. An effective continuum theory allows us to show that in the
parameter range 0.5t < t' < t. the system exhibits the characteristic behavior
of a commensurate-incommensurate transition [358-361]. Close to the transition
point, additional scattering processes characteristic of two-band behavior [346] set
in. We argue that these processes induce a crossover to Kosterlitz-Thouless type
critical behavior, as found in Ref. [352]. The numerical analysis also allows us to
study the gaps in the excitation spectrum as well as the charge and spin density
distributions.

4.1 t —t' — U Hubbard model

The one-dimensional ¢ — ¢ Hubbard model is defined by the Hamiltonian

_ i
Ho= -t Z ( €joCitlo j+1,acj,a>
T
+ v Z < Ci.oCit2.0 j+2,ocj,a>

+ U Z (njp —1/2) (nj, —1/2), (4.1)
7,0
where c;’a (c;,) are electron creation (annihilation) operators on site j with spin

projection o =1, |, n;, = cj +Cjo» and U is the on-site Coulomb repulsion.

Figure 4.1: The t — ' Hubbard chain.

The model can be viewed either as a single chain with both nearest- and next-
nearest-neighbor hopping or, as illustrated in Fig. 4.1, as a system of two coupled
chains. The former view is appropriate for ¢ > t/, the latter for ¢’ > t.
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4.1 t —t' — U Hubbard model

For ¢ = 0, we recover the ordinary Hubbard model which is exactly (Bethe
Ansatz) solvable [312]. In the case of a half-filled band, the ground state is insu-
lating for arbitrary positive values of U; the charge excitation spectrum is gapped
while the spin excitation spectrum is gapless [312,313]. For U < t the charge gap
A, is exponentially small, A, ~ v/Ute 2™V while A, ~ U for U >t [313].

4.1.1 Noninteracting case

For ¢ # 0 the model is no longer integrable except in the non-interacting limit,
U = 0, where H is diagonalized by Fourier transformation and has a single-electron
spectrum

e(k) = —2tcosk + 2t' cos 2k . (4.2)

For ¢ < 0.5¢, the electron band has two Fermi points at kr = +m/2, separated
from each other by the umklapp vector ¢ = 7 (see Fig. 4.2). In this case, a
weak-coupling renormalization group analysis [346] predicts the same behavior as
for ¢ = 0 because the umklapp term of order U is not modified; it again leads to
the dynamical generation of a charge gap for U > 0, while the magnetic excitation
spectrum remains gapless. Note that the stability of the Mott insulating phase with
respect to the weak perturbation caused by the next-nearest-neighbor hopping is an
intrinsic feature of the 1D system, where the topology of the Fermi surface remains
unchanged for ¢ < 0.5¢. For instance, for the 2D half-filled ¢ — ¢ Hubbard model,
the ideal nesting of the square Fermi surface at ¢ = 0 is broken by an arbitrarily
small ¢’ # 0, thereby destroying the insulating behavior for U — 0 [362].

The two-chain band picture

For comparison with the ionic Hubbard model, we include the calculation for the
two-band picture. Dividing the lattice into two sublattices, one containing the odd
and one the even sites, we can rewrite the Hamiltonian

2t' cos k —2te™*/2 cos k /2
Huw (k) = ( —2tet /2 cos k /2 2t cos k ' (4.3)
The solution of the secular equation yields the dispersion relation of Eq. 4.2, but
the k-points are ordered differently. Since, the two diagonal elements are equal,
the system is gapless for any value of ¢ and t'.
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Figure 4.2: The t — ' noninteracting band picture for ¢ = 1 and different values of
t'. For 0 <t < 1/4, (a), there is a minimum at £ = 0 and there are
two Fermi points at k = +7/2. For 1/4 <t < 1/2, (b), there are two
minimum and the two Fermi points at k = 47 /2 remain. At exactly
t' = 1/2, there are three Fermi points at £k = 0 and +7/2. For ¢’ > 1/2,
(c) and (d), there are four Fermi points. Fig. (a), (b), (¢), and (d) are
relative to ¢’ =0,0.4,0.7,1.2.

Finite-size effects

The discretization of the finite-size lattice and a strong energy-dispersion curvature
can generate an artificial contribution to the gap. Increasing with system size,
this contribution scales to zero in an unpredictable way because of the strong non-
linearity of the energy spectrum near the Fermi points. For large ¢’ the finite-size
scaling is quite irregular. For small system size there is a quite big gap which
oscillates incommensurately and scales to zero only for very large system size (see
Fig.4.3). In the continuous case, all gaps are zero, in contrast to the lattice case
where zeros occur only at special values of L and ¢'/t. The interaction term U
reduces the finite-size effects because a gap is present. However, the problem is
still persist for small U.
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Figure 4.3: Finite-size effects in the incommensurate phase. (a) Dependence of the
gap 0e(kp) on t' for different system sizes. Note that the zeros occurs
at different ¢'-values for L = 40. (b) Finite-size scaling for various ¢/
values, illustrating the irregular behavior due to incommensurateness.

4.1.2 Strong-coupling limit

In the strong-coupling limit, U > ¢, ', the charge sector is gapped, while the spin
sector can be mapped onto a frustrated Heisenberg chain

H = Z (JSj-Sjs1 + J'S;-Sji2) (4.4)

J

with J = 4t2/U and J' = 4¢'*/U. This model has been extensively studied using
a number of different analytical methods [318,363-366] and has been found to
develop a spin gap for J'/J ~ (t'/t)? > 0.2412 [318,363-365] and incommensurate
antiferromagnetic order for J’/J > 0.5 [366]. This picture has been confirmed
numerically [348,350].

4.1.3 Two-chain limit

For ¢’ > 0.5t, the Fermi level intersects the one-electron band at four points (j:k}f)
This is the origin of more complex behavior for weak and intermediate values of
U. For weak coupling (U < t), the ground-state phase diagram is well understood
in the two-chain limit (# > t) [346]. In this case, the Fermi vectors kf are
sufficiently far from 7/2 to suppress first-order umklapp processes. Therefore, the
system is metallic. The infrared behavior is governed by the low-energy excitations
in the vicinity of the four Fermi points, in full analogy with the two-leg Hubbard
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model [367]. Thus, while the charge excitations are gapless, the spin degrees of
freedom are gapped [346, 350,351, 353,354, 367]. Higher-order umklapp processes
become relevant for intermediate values of U because the Fermi momenta fulfill
the condition 4(k} — k5) = 27 (at half-filling). Therefore, starting from a metallic
region for small U at a given value of ¢’ (¢’ > 0.5t), one reaches a transition
line U = U,.(t'), above which the system is insulating with both charge and spin
gaps [346].

4.2 The metal—-insulator transition

4.2.1 Bosonization

We first consider the regime U, t’ < t where bosonization is applicable. After some
standard algebra, we arrive at the bosonized version of the Hamiltonian (4.1)

H=H,+H.,
where both the spin part
_ 1 2 1 2
He = fdo {50007+ 5(0:0.)
0
ms
+ o cos(V8mys) }, (4.5)

and the charge part,

1

H, = Ucfd‘x {ﬁ(&v@cf +

m

K. 9
7((935190)

+

82 cos(\/ggoc)}, (4.6)

2T

are described by the massive sine-Gordon model, with parameters

Vs = Ve R Up,

(K.—1) = —2m?=2m~ -U/nt. (4.7)

There is an important difference between Hg and H,. due to the different stiffness
constants. In the spin sector with K, = 1, the system is in the weak-coupling
limit and scales to a Gaussian model with gapless spin excitations. In the charge
sector with K. < 1, the system is in the strong-coupling regime and the low-energy
behavior is dominated by the cosine term; see Ch.1. In the ground state, the field
@, is pinned at one of the minima of the cosine term and, correspondingly, there
is a finite energy gap for charge excitations.
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4.2 The metal-insulator transition

Let us now discuss what happens when ¢ increases and reaches values of the
order of t/2, where two additional Fermi points appear in the band structure.
For spin degrees of freedom, new scattering channels appear at ¢’ = ¢/2, and the
system scales to strong coupling. Therefore, a spin gap is expected to open for
t' > t/2, very much like in the case of two coupled Hubbard chains [367].

For the charge degrees of freedom, the situation is more complicated (and more
interesting) because the charge gap blocks new scattering channels until ¢’ is made
sufficiently large so that additional states emerge beyond the gapped region. Thus,
for ¢ slightly above t/2, the (bare) Fermi momentum changes without affecting
the Umklapp processes. To discuss this phenomenon, it is useful to measure the
single-particle energies with respect to the Fermi energy

{ =2t t' < 0.5t
EFp =

(4.8)

—¢2
sy 1> 0.5t

In addition, the bosonized version of the single-particle part of the Hamiltonian
introduces a chemical potential term —2¢'+/2/7 [ dzd,¢.. In order to allow for a
change of the particle number around the Fermi points +7/2, we therefore have
to add a topological term

2
0H, = —,ueg\/i/da: 0rpc (4.9)
T

(0 for ¢ < 0.5t
Heft 2 oy £ 0 for ¢ > 0.5¢.

2’

where

(4.10)

The Hamiltonian H.+dH. is the standard one for the commensurate-incommensurate
transition [39,124], and has been intensively studied in the past using bosoniza-
tion [358-361] and the Bethe Ansatz [368].

We now apply the theory of commensurate-incommensurate transitions to the
insulator-metal transition as a function of t'. At pu.gr = 0 and K, < 1, the ground
state of the field ¢ is pinned at

(0187 |0)g = 277 . (4.11)

The presence of the effective chemical potential makes it necessary to consider the
ground state of the sine-Gordon model in sectors with nonzero topological charge.
Using the standard expression for the charge density in the case of two Fermi
points, [124]

1

—ax c
V2T 4

12

pe()

+ Aok, cos(2kpx) sin(vV2mp,) cos(V2mps)
+  Ayp, cos(4dkpx) cos(V8mp,.) , (4.12)
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(A,

0

Figure 4.4: Sketch of the charge gap as a function of the parameter ¢'. The inset
shows an enlargement of the vicinity of the transition point.

we observe that the pinning of the field . in one of the minima (4.11) suppresses
the 2kpr charge fluctuations and stabilizes the 4kr component. Any distortion
of the 4kp charge distribution would require an energy greater than the charge
gap. This competition between the chemical potential term and commensurability
drives a continuous phase transition from a gapped (insulating) phase at peg < St
to a gapless (metallic) phase at

feft > flog = Ac (4.13)

where A, is the charge gap at peg = 0.

We now separately consider the qualitative behavior of the system in the fol-
lowing three parameter regimes: (i) t' < 0.5¢, (ii) 0.5t < t' < t., and (i) t' > ¢..
In regime (7), t' < 0.5t, we expect a charge gap A.(U,t") =~ A.(U,t = 0) and no
spin gap, as in the simple Hubbard model (¢ = 0). In regime (ii), 0.5t < t' < t.,
the spin gap opens while the charge gap is reduced as

AU, ) = AU, 0.5t) — presr, (4.14)

where piq is given by Eq. (4.10). Therefore, the charge gap decreases with increas-
ing ' and tends to zero at a t, qualitatively given by

A(U,0) — 2t +?/2t, = 0. (4.15)
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4.2 The metal-insulator transition

In regime (ii7), t' > t., the behavior of the system is characterized by four Fermi
points, j:k;ljﬁ. The charge excitations are gapless, while the spin excitations are,
generically, gapped [346,367]. Charge fluctuations will be characterized by two
dominant periodic modulations with wave vectors 2ky and 2kj.. For ¢’ slightly
larger than t., the usual charge-density wave (2k} =& ) is accompanied by a
long-wavelength modulation at 2k.

Note that the closing of the charge gap is directly connected with the appearance
of a “hole bag” at small momenta |k| < kg, which is compensated (at half-filling)
by the creation of occupied states at 7/2 < |k| < kj. (This will be discussed
in more detail in Sec. 4.2.3 below.) Such a redistribution of occupied states in
momentum space is generic for a transition in which the dynamically generated
gap competes with some external parameter which tries to shift the system from
the distribution most favored for gap formation. For example, in the case of
the standard repulsive Hubbard model at half-filling, the chemical potential tries
to shift the Fermi momenta of the system from the commensurate values +m/2,
where the umklapp scattering processes responsible for the charge gap formation
are relevant [124]. In the ¢ — ¢’ Hubbard model, the same effect takes place via an
increase of the next-nearest-neighbor hopping amplitude ¢’. Therefore, the gross
features of the metal-insulator transition in the ¢ — ¢ Hubbard model are similar
to those of the standard commensurate-incommensurate transition.

However, there is one important aspect which makes the metal-insulator transi-
tion in the t — ¢’ Hubbard model different from the case of the standard Hubbard
chain. In marked contrast to the latter case, the metal-insulator transition in the
t — ¢’ Hubbard chain is not associated with a change in the band filling. There-
fore, the “effective” chemical potential is not an external parameter, but is instead
determined by the hopping amplitudes ¢ and t. As a result, the change in the
topology of the Fermi surface does not lead to complete suppression of the scatter-
ing processes responsible for the charge gap formation. Near the transition point,
where the charge gap generated by the standard umklapp scattering processes
vanishes, states in the vicinity of £ = 0 will start to contribute to higher order
umklapp scattering processes. These processes are responsible for the opening of
a charge gap with increasing U in the two-band limit, i.e., when ¢ > t [346].
Therefore, a crossover to the regime of two-band behavior takes place in the pa-
rameter range where the renormalized one-band (Hubbard) gap (4.14) becomes
exponentially small. Therefore, the linear decay of the charge gap as a function
of t' crosses over to exponential behavior. The evolution of the charge gap as a
function of ¢’ is sketched in Fig. 4.4.
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4.2.2 Transition line

In order to investigate the detailed behavior of the metal-insulator transition and
to test the validity of the picture obtained from bosonization, we have carried out
numerical calculations using the DMRG [46,47].

U/t
[AN]
T T T T ‘ T T T T ‘ T T T T ‘ T T T T

Figure 4.5: The metal-insulator transition line in the ¢ — ¢’ — U model with ¢t = 1
obtained from DMRG studies [352,369] (black circles) and from Eq.
(4.15) (solid line).

We have calculated the properties of the ground state and low-lying excited
states for systems with open boundary conditions of lengths between L = 32 and
L = 128 sites, keeping up to m = 1000 density-matrix eigenstates. As we shall see
in the following, the finite-size effects are quite large in certain parameter regimes,
so that a careful finite-size scaling must be carried out.

The critical behavior of the metal-insulator transition as a function of U/t for
t" > 0.5t can be obtained from the behavior of the electric susceptibility, which
diverges in going from an insulator to a metal [352,369]. In Fig. 4.5, we display the
transition line in the ¢t — ¢ — U model at ¢t = 1 obtained from the DMRG [352,369]
and from Eq. (4.15). The agreement between the DMRG results and Eq. (4.15) is
remarkably good.
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4.2 The metal-insulator transition

4.2.3 Momentum distribution function

In order to investigate the redistribution of occupied momentum states discussed
at the end of Sec. 4.2.1, it is very instructive to examine the momentum dis-
tribution function calculated using the DMRG. The momentum distribution can
be calculated by taking the Fourier transformation of the single-particle density
matrix,

1
(ng) = 2T Z Z cos kr (cj7aci+r,a> (4.16)

with k& = %ﬁn where n = —L/2+1,..., L/2. Only the real part need be considered
because the single-particle density matrix is even in r. In a system with peri-
odic boundary conditions or an infinite system, the single-particle density matrix
<Cj’aci+r7g> would not depend on ¢ due to translational invariance. For the open
boundary conditions considered here, we carry out the average over i. While the
discrete Fourier transform we use here is formally correct only for a periodic sys-
tem, we find that using either an approximation to a Fourier integral or expanding
in single-particle basis functions for open boundary conditions does not make a
significant difference in the numerical results on the scale of the plots shown here.

In order to gauge the effect of the interactions, it is useful to compare with the
momentum distribution for the noninteracting system. For U = 0, all momentum
points within the Fermi points are fully occupied, i.e., (ny) = 1 only for |k| < kg
for |t'| < 0.5 and only for k. < |k| < ki for |¢/| > 0.5, and all other k points are
unoccupied, (ng) = 0; see also Fig. 4.2.

In Fig. 4.6, we present the momentum distribution as a function of ¢’ for U = 3t.
In the region 0 < ¢ < 0.6, (ng) shows no qualitative differences from the ¢ = 0
case. Its insulating character manifests itself as a smooth variation of (ny) at the
Fermi points +7/2, in contrast to the Fermi step or Luttinger liquid singularity
that one would expect for a metal. States near £ = 0 begin to be removed at
t' = 0.6t, significantly above the value at which the number of Fermi points changes
from two to four in the noninteracting system (¢ = 0.5¢). The formation of this
hole pocket proceeds continuously as t' is increased further. It is accompanied by
a steepening of the slope of (ny), both near k5 and near k}.. More studies will be
needed to determine the detailed behavior of the momentum distribution function
close to the Fermi points in this spin-gapped two-chain regime.

We have also performed simulations at larger values of U, where the first sign of
a hole pocket appears at larger values of ¢, following essentially the metal-insulator
transition line of Fig. 4.5. On the insulating side of this line, (ny) is smooth, as
expected.

Previously, we argued that the opening of the hole pocket occurs at the commensurate-
incommensurate transition and leading to a shift in the metal-insulator transition
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Figure 4.6: Momentum distribution (n;) for U/t = 3 and system size L = 80. The
white lines indicate the Fermi surface for U = 0, the black lines locate
the maximum of (ny).

to large values of t'. Fig. 4.7 shows the opening of the hole pocket at k = 0, which
occurs exactly where we know where the commensurate-incommensurate transi-
tion takes place. At this small system size, L = 32, the finite-size effects are strong
at small U values.

4.2.4 Charge and spin gaps

In order to investigate the predictions of the continuum theory, we calculate the
charge gap, defined as

A, = % [Eo(N +2,0) + Eg(N — 2,0) — 2Eo(N, 0)] (4.17)

and the spin gap,
As - EO(N71) _EO(N7 0)7 (418)

where Ey(N,S) is the ground-state energy for N particles and spin S on a chain
of fixed length L, using the DMRG.

We will first examine the charge gap, starting with its system-size-dependence.
In Fig. 4.8, we display the charge gap plotted as a function of the inverse chain
length for various values of ¢’ for U/t = 3. As can be seen, the scaling with
1/L is well-behaved for values of ¢’ from 0 to 0.8. For 0 < ¢’ < 0.6¢, the scaling
has a substantial positive quadratic term in 1/L and the gap is finite. For ¢’ =
0.65t and 0.8t, the extrapolated gap clearly vanishes and there is a negligible or
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Figure 4.7: The value of n(k = 0) as a function of U and ¢'. The red part corre-
sponds to populated & = 0 states and the blue to empty. The system
size is L = 32. The vertical dashed lines represent the ¢ = 1/2 and
t' = 1/v/2 special cases.

negative quadratic contribution. For ¢’ > 0.8 (not shown), the finite-size effects
become irregular due to incommensurability of the charge excitations, and finite-
size extrapolation becomes difficult.

In Fig. 4.9, the L = oo extrapolated value of the charge gap is displayed as
a function of ¢’ for U/t = 2 and U/t = 3. There is a clearly defined insulator-
metal transition at t. = 0.55¢ at U/t = 2 and ¢, = 0.65¢ for U/t = 3. Note
that the charge gap goes smoothly to zero above t' = 0.5t for U/t = 3. The
inset in Fig. 4.9 shows the charge gap for U/t = 3 as a function of the parameter
peg = 2" — t2/2t' for 0.5t < ' < 0.85t. As can be seen, the charge gap drops
off approximately linearly with pg, in agreement with Eq. (4.14). For U/t = 2,
there is a somewhat irregular behavior of the charge gap near the ¢ = 0.5¢. In
particular, there is a small peak exactly at ' = 0.5. The finite-size scaling for
this point is completely regular, however, and we estimate the size of the total
error, due to both the extrapolation and the DMRG accuracy, to be less than the
symbol size. Therefore, in our estimation, the peak at ¢ = 0.5 is a real effect. For
t' = 0.55, the value of the extrapolated charge gap is slightly below zero. This is
due to errors in the finite-size extrapolation due to slightly irregular behavior with
system size.

In Fig. 4.10, we display the spin gap as a function of ¢ at U/t =2 and U/t = 3
for various values of the chain length L. As can be clearly seen, for 0 < ¢’ < 0.5¢
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Figure 4.8: Charge gap of as a function of 1/L for U/t = 3 and various values of
t'/t.

the spin excitation spectrum on finite chains does not depend on t'. For ¢’ < 0.5¢,
the value of the spin gap is found to coincide with that of the half-filled Hubbard
model (# = 0) which vanishes in the infinite-chain limit [see Fig. 4.11].

A clear change in the #~dependence of the spin gap at U/t = 2 takes place at
t' = 0.5t, indicating the development of a new phase in the spin sector. It is known
from other studies [346, 350,351, 353,354, 367] that a spin gap opens at a critical
value of ¢’ which is approximately at or slightly above ¢ = 0.5¢, becoming weakly
larger at intermediate U values.

In Fig. 4.11, we display the spin gap plotted as a function of the inverse chain
length for three values of ¢ near the transition at U/t = 3. At ¢’ = 0.55¢, the spin
gap clearly scales to zero at infinite system size, with the values at a particular
system size virtually identical to the ¢ = 0 case and the scaling predominantly
linear in inverse system size. For ¢/ = 0.6t and ¢’ = 0.65¢, the dominant scaling
term is quadratic rather than linear in 1/L and there is clearly scaling to a finite
value of the gap. For t' = 0.65t, the size of the extrapolated gap is smaller
than for ¢ = 0.6¢, and there is a slight upturn in the gap at the largest system
size, which, however, is not significantly larger than the estimated error of the
DMRG calculation, approximately the symbol size. However, for larger values of
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Figure 4.9: Charge gap of as a function of ¢’ for U/t = 3 (black circles) and U/t = 2
(open circles). The inset shows the charge gap as a function of the
parameter pg for 0.5 < t' < 0.85¢.

t', the finite-size behavior becomes less regular, as can be seen in Fig. 4.10(a) and
(b). This behavior is due to the appearance of an incommensurate wave vector
characterizing the spin excitations that occurs when a substantial density of states
at all four Fermi points develops and makes it virtually impossible to carry out a
well-controlled finite-size scaling for larger values of t'.

The transition associated with the opening of the spin gap is independent of
the insulator-metal transition, as can be clearly seen for U/t = 3 (where the
effect of fluctuations is reduced). As is shown in Fig. 4.10(b) and Fig. 4.11, the
spin gap opens for ¢/ > 0.55¢, while the insulator-metal transition takes place at
t!. ~ 0.65¢ (see Fig. 4.9). Note that the critical value of the next-nearest-neighbor
hopping amplitude, corresponding to an opening of the spin gap at U/t = 3,
' > 0.55t, deviates from the line ¢, > 0.5t. Our findings agree with previous
studies [346,350, 351,353,354, 367].

4.2.5 Two-chain limit

We now discuss the limit of strong next-nearest-neighbor hopping (¢ > t). For
t = 0, the system is decoupled into two half-filled Hubbard chains and, for arbitrary
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Figure 4.10: Spin gap of as a function of ¢’ for (a) U/t = 2 and (b) U/t = 3.

U > 0, the ground state corresponds to a Mott insulator. The origin of the
insulating behavior is the commensurability of umklapp scattering between the
Fermi points, located at £7/4 and £37/4. When t # 0 this commensurability is
lost. The Fermi points are shifted with respect to their values at t = 0, and the
Fermi energy (the chemical potential for U = 0) moves away from 0 to ep &~ —t*/2t/
(for t < t'). For large enough values of ¢, the system is therefore expected to be
metallic.

In order to estimate the location of the Mott transition, we can use a similar
argument to the one given above for ¢’ ~ 0.5. As long as the chemical potential
is smaller than the charge gap, the system remains an insulator. A transition
to a metallic phase is expected to occur for e of the order of A, i.e., for t? ~
(Ut)7 exp(—2at'/U). A qualitative sketch of the phase diagram is given in Fig.
4.12.

4.3 Spin-charge separation

4.3.1 Spin and charge densities

Valuable insight into the nature of the insulator-metal transition can be obtained
by studying the charge density distribution in the ground state and the spin density
distribution in the triplet excited state. The local density deviation (ny,) — (n) on
site ¢ and its Fourier transformation

(Noy =Y e ((ne) — (n)) (4.19)
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Figure 4.11: Spin gap as a function of 1/L for U/t = 3 and various values of #'/t.

yields information about the spatial and momentum components present in the
ground state of a system with open boundary conditions because the ends behave
like impurities which produce Friedel oscillations [370,371]. Similar information
about the lowest spin excited state in the triplet sector can be obtained by exam-
ining (S7) and its Fourier transform (SZ), defined analogously to Eq. (4.19).

The Fourier transform of the charge distribution is shown in Fig. 4.13 for U = 3,
an intermediate interaction strength, as a function of . For ' < 0.6, there are
no significant fluctuations in the local charge density, as would be expected in
one-chain picture ({(ny) = 1 for all £ at ¢ = 0). At ¢’ ~ 0.6 and larger, we see the
development of peaks near ¢ = 0 and ¢ = 7 which rapidly and symmetrically shift
to higher and lower ¢ values, respectively, with increasing t’, going asymptotically
towards ¢ = 7/2 for large values of t/. These peaks reflect scattering processes
at 2k, (low ¢) and 2k} (high ¢). Above t' &~ 0.9, an additional peak at ¢ = /2
develops, quickly becoming dominant as ¢’ is further increased. This peak is at the
wave vector associated with scattering between the Fermi points, k. — k.

The behavior of the Fourier transform of the local spin density [(S7)| of the
ground state in the S* = 1 sector is depicted in Fig. 4.14. For t' ~ 0.5t and
smaller, there is a single well-defined peak at ¢ = ¢* slightly less than 7. This is
due to the soliton-antisoliton pair that makes up the lowest triplet excitation in a
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AU

Mott
I nsulator

Figure 4.12: Qualitative phase diagram of the half-filled repulsive ¢ — ' Hubbard
chain. A gapless charge excitation spectrum (metallic phase) exists at
U = 0 for arbitrary t and ¢’ and for U > 0 in the sector of parameter
space below the “roof” covering the area U < U, between the lines
t' = 0.5t and t = 0 in the U = 0 plane.

single-chain picture, and is present in the Heisenberg chain. We expect ¢* to shift
closer and closer to m with system size because the size of the soliton-antisoliton
pair is constrained by the number of sites. At ¢’ ~ 0.6, this peak disappears
rapidly with ¢’ and is then replaced with a pattern of weaker peaks similar to
those appearing in |(V,)|; compare with Fig. 4.13. The peaks starting near ¢ = 0
and ¢ = 7 can again be attributed to 2k, and 2k} scattering processes. The peaks
near ¢ = /2 are associated with scattering with wave vector ¢ = kjr — k.

Also evident in Fig. 4.14 are regular patterns as a function of ¢. There are
regular step-like structures in [(S7)| as a function of #'. At the steps, there are
interruptions in density, also marked by the appearance of peaks at additional
scattering vectors. These effects are due to commensurability between the available
low-lying scattering wave vectors, which change with ¢' and U, and the system size.
In other words, when the appropriate wavelength of the excitation is commensurate
with the system size, there is a shift and mirroring of the strongly weighted ¢
points. This corresponds to a qualitatively more commensurate behavior of (S?),
as viewed in real space. These effects are also closely related to the irregular finite-
size scaling of the spin gap, as seen in Fig. 4.10 for larger values of . Note that
weaker, but analogous effects are also present in the charge density [(V,)|, Fig.
4.13.
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Figure 4.13: Density plot of the Fourier transform of the charge distribution |(V,)|

as a function of ¢’ (vertical axis) for U = 3 on an L = 80 lattice.
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Figure 4.14: Density plot of the Fourier transform of the spin distribution [(S7)| in
the S% = 1 state with lowest energy for U = 3 on an L = 80 lattice.
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4.3.2 Charge and spin densities in the two-chain regime

We examine the behavior of the t —t' — U chain for large next-nearest hopping
(' > t), a limit which corresponds to two chains coupled with a weak zigzag
hopping. In particular, we numerically investigate the transition from a two-chain
(four-Fermi-point) metallic regime at weak U to the strong-coupling regime, for
which the effective model is two spin-S = 1/2 Heisenberg chains coupled with a
frustrating zigzag interaction at U > ¢ > t, i.e., J' > J.
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Figure 4.15: Fourier transform of the charge distribution |(V,)| in the ground state
of the t — ¢’ — U chain with L = 64, ¢’ = 3t and U/t = 4,8, 10, 20.

In Fig. 4.15, we show the Fourier transform (N,) of the charge distribution
in the ground state of the t — ¢ — U chain at U = 4,8,10,12 for ' = 3t. In
the metallic phase (U/t = 4 and U/t = 8), the strongest peak is at ¢ = /2,
which corresponds to alternating charge density along each chain. In addition,
there are side peaks which are due to weak alternations between the chains, as
well as an incommensurate peak near ¢ = 7w due to asymmetric end effects on
the two different chains, which shifts towards smaller ¢ and becomes weaker as U
is increased. As U/t is increased to 10, the amplitude of the charge fluctuations
between the chains is strongly suppressed, as seen in the near disappearance of the
peak at ¢ = 7/2. This indicates the transition to the insulating phase. The peak
near ¢ = m now moves towards larger ¢, but becomes yet weaker with U. Deeper
into the insulating phase, at U/t = 12, the Fourier transform of the charge density
is almost featureless, corresponding to a real-space charge density which is smooth
and equal between the chains.

In Fig. 4.16, we show the Fourier transform of the spin density distribution (S?)
in the SZ,,, = 1 state for ¢ = 3t and U/t = 4,8,10,20. As can be seen, the weak

otal
incommensurate peaks on either side of ¢ = 7/2 present for U/t = 4 and 8 become
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sharper and move towards ¢ = m/2 as U is increased. These large-U excitations
correspond to two-spinon excitations, as seen in the single Heisenberg chain, [372]
in each chain. This behavior, also seen in the frustrated Heisenberg chain at large
J'/J, indicates that the system behaves as two weakly coupled S = 1/2 Heisenberg
chains at large U.
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0.5
2.0
__ 15
g5 0 eecceee . =
= 20 F _ ]
— 15 E U/t= ]
0.5 E v
2.0 F _ E
1.5 F U/t= ]
0.5 [eoe000000008°08200%0009000000e
0 /4 /2 3r/4 &
q

z

Figure 4.16: Fourier transform of the spin distribution |(S7)| in the SZ ., = 1 state
of the t — ' — U chain with L = 64, t' = 3t and U/t = 4,8, 10, 20.

4.4 Discussion and related work

We have carried out a combined analytical and numerical analysis of the insulator-
metal transition in the half-filled one-dimensional ¢ —t'—U model. Using the weak-
coupling bosonization approach, we have shown that the gross features of the tran-
sition from an insulator to metal as a function of next-nearest-neighbor hopping
t' can be described within the standard theory of commensurate-incommensurate
transitions. We have derived an explicit expression for the critical line ¢.(U) sep-
arating the metallic phase from the spin-gapped insulator. We have checked our
conjecture by DMRG simulations.

Since I become involved in this project at a second stage, I point out my contri-
butions. First, starting from the theory proposed, I suggested and implemented a
better way to present the results. In particular, I characterized the charge and spin
inhomogeneities through their Fourier transformations. Second, it was illustrative
to connect the opening of the hole pocket with the commensurate-incommensurate
transition. Therefore, I carried out several simulations to calculate momentum
distribution, n(k). In the next chapter, we discuss further investigations of the
commensurate-incommensurate transitions via the von Neumann entropy.
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5 Homogeneous-Inhomogeneous
phase transition

Recently, the use of concepts of quantum information theory, such as the von
Neumann entropy and other measures of entanglement between parts of a quan-
tum system, has gained popularity in statistical physics and solid state physics.
In particular, it has been shown that because these quantities exhibit discon-
tinuities or extrema at transition points [373], they can be used to detect and
locate quantum phase transitions that occur as the coupling constants are varied.
This method has been used to study quantum phase transitions in low-dimensonal
spin [225,374-381] and fermionic [288,382-386] problems.

In this chapter, we describe a new procedure which can be used to obtain addi-
tional information from the von Neumann entropy. We will show how to determine
the wave vector characterizing the new phase when the system goes from a uni-
form to a spatially inhomogeneous phase. Similarly, if the system has soft modes,
the method can extract their wave vector. Moreover, this method is well-suited
for studying cases when no true phase transition takes place, but the decay of the
correlation function changes character. Thus, this method provides a powerful new
tool to determine the ground-state phase diagram of interacting quantum systems.

5.1 The entropy profile

The method we propose is based on the study of the length-dependence of the
von Neumann entropy of a finite segment of a one-dimensional quantum system.
It is known that this quantity behaves fundamentally differently for critical and
noncritical systems [185,267,268]. The entropy of a subsystem of length [ (in units
of the lattice constant a) in a finite system of length N saturates at a finite value
when the system is noncritical,

Inl if (<¢
8<£)N{1n§ it 0>¢

i.e., when the spectrum is gapped, while it increases logarithmically for critical,
gapless systems. An analytic expression has been derived [186,387] for models

109



5 Homogeneous-Inhomogeneous transition

that map to a conformal field theory [182]:

s(f) = gln [ﬂ sin (”—A‘f)] +g, (5.1)

™

and this form has been shown to be satisfied by critical spin models. Here c is the
central charge and ¢ is a constant shift due to the open boundary which depends
on the ground-state degeneracy. An additional alternating term, which decays as
a power law, appears near the boundary [388].

In order to analyze the oscillatory nature of the finite subsystem entropy s(¢),
it is useful to consider its Fourier transform

Sa) = 5 D0 e s(0), (52)

with s(0) = s(N) = 0 where ¢ = 2an/N and n = —N/2,...,N/2. Since s(¢)
satisfies the relation s(¢) = s(N — ¢), its Fourier components are all real and
symmetric, 5(q) = 5(—q); therefore, only the 0 < ¢ < 7 region will be shown.

As usual in the DMRG approach, we consider open chains. The numerical
calculations were performed using the dynamic block-state selection (DBSS) ap-
proach [244]. The threshold value of the quantum information loss x was set to
1078 for the spin models and to 10~ for the fermionic model, and the upper cutoff
on the number of block states was set to M.« = 1500.

The length dependence of the von Neumann entropy of a subsystem can, in fact,
display a much richer structure than discussed until now. Oscillations may appear;
if so, they can be conveniently analyzed through the Fourier spectrum of s(l) to
detect phases with particular dimerization. The method is especially appropriate
when the density-matrix renormalization-group (DMRG) algorithm [46,47] is used
because the density matrix of blocks of different lengths are generated in the course

of the procedure so that the von Neumann entropy can be easily calculated; see
Ch.2.

5.2 Frustrated spin 1/2 Heisenberg chain

The Hamiltonian of the spin 1/2 Heisenberg model with nearest-neighbor and
next-nearest-neighbor spin exchange,

L
H = Z (JSZ . SiJrl + J/SZ . Si+2) )

i=1

is the simplest extension of Heisenberg model [42,389]. The J’ = 0 case corresponds
to the AFM or FM spin-1/2 Heisenberg model for J > 0 and J < 0 respectively. In
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5.2 Frustrated spin 1/2 Heisenberg chain

the past, the model has been extensively studied analytically [318,363,365,390-393]
and numerically [364, 366, 394-396] and, except for the ferromagnetic case [397],
where some issues still have to be addressed, the phase diagram is well established
[398].

5.2.1 Classical limit

In the limit of classical vectors (S — o0), the elementary unit of the lattice is
a frustrated triangle with bonds J, J, and J', and the ground state can be pa-
rameterized by a spiral wave S; = S[cos(jr),sin(jk),0]. The phase diagram is
obtained by minimizing the energy density

E(k) = S?[J (cosk — 1) + J' (cos 2k — 1)]

with respect to k; see Fig. 5.1. In the case of J > 0, the phase diagram is divided

J=1 J=-1
T T T T T T T T T
6 —J=-1 1 6 [ 7
—J' =0
— g =1/8
4 —J'=1/a H 4F -
—J =1/2
J =1
2 \ ] 21 7
e 5
~ 0 — 0
R M
N — _92 i
—J =-1
—J =0
-4 N —4r — =18 ]
—J =1/4
—J =1/2
—6 I T —6 J =1
T T N L1 L
—-T  —m/2 0 /2 ™ -7 —7/2 0 /2 ™
K K
(a) (b)

Figure 5.1: The energy dispersion in the classical limit, with (a) showing the J > 0
case and (b) the J < 0 case.

into two regions: J'/J > 1/4, and J'/J < 1/4. The first region corresponds to a
spiral wave, where the pitch angle x = + arccos (J'/4.J); the other region is a Neél
phase with fixed kK = +7w. For J < 0, we also obtain two regions: a spiral wave
phase for J'/|J| > 1/4 with k = £ arccos (J'/4|J|) and a ferromagnetic phase for
J'J|J] < 1/4 with k = 0.

The classical problem can be extended to take into account quantum fluctua-
tions. The resulting model, the non-linear o-model (NLoM), with the inclusion
of the correct topological terms, correctly describes the physics of the frustrated
Heisenberg chain [399-401].
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5 Homogeneous-Inhomogeneous transition

5.2.2 The phase diagram

For J' > 0, the problem can be easily treated via bosonization [39,45,124]. After
expressing the Hamiltonian in term of spinless fermions via the Jordan-Wigner
transformation [125], the energy dispersion of the fermions reduces to

e(k) = Jcos(k) + J cos(2k) — u (J + J') .

The effective model is a sine-Gordon model and the difference of the coupling
constants J — J' fixes the energy scale. We have only two cases. In the first case
J' is smaller than some critical value Jy, and the cosine term flows to zero. Thus,
the J’ term has essentially no effect. In the second case, with J' > Jy, and the
cosine term becomes massive and the theory gapped. The transition point, Jg, is
fixed by the vanishing of the cosine term [39], and its value Jy & 0.241 can only
be determined numerically [364-366,402].

A=0 A>0
incommesu_rate
g > O g < O correlations

e vy Q] -

J =0 Jhy=0.2412 Jye=1/2

Figure 5.2: Phase diagram of the (quantum) AFM frustrated spin 1/2 Heisenberg
chain. The gap opens exponentially for 0 < J' — J; << 1 and stays
finite at larger values.

A sketch of the phase diagram for antiferromagnetic J is given in Fig. 5.2: for
0 < J < J., we have a spin gapless AFM phase [318,363] corresponding to a ¢ = 1
SU(2)g=1 WZW CFT [99,403]. The transition point, located at J., is slightly
shifted with respect the classical result, 1/4, and determines the boundary of this
phase. For J' > J/ the system is gapped and dimerized. The dimerization is
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5.2 Frustrated spin 1/2 Heisenberg chain

confirmed by the existence of the (exact solvable) Majumdar-Ghosh (MG) point
[404,405] for J'/J = 1/2. Starting from the MG point, the correlation functions
are characterized by incommensurate wave vectors, and this region extends to
infinitely large values of J’ [394]. In addition, the model represents an evident
test of the Lieb-Schulz-Mattis-Affleck theorem [406-410]; in fact, it exhibits in
detail the mechanism of transition through the Z, translation symmetry breaking
(SB). As follows from the Lieb-Schulz-Mattis-Affleck theorem, a system of fermions
(spin-1/2) in the thermodynamic limit has only two possibilities: to be gapless
with a unique ground state and a continuum of excitations, or to be gapped with
a degenerate (dimer) ground state separated from the continuous spectrum of
excitations by the energy gap.

For the FM case, J < 0, the ground state is multi-fold degenerate and the
quadratic energy dispersion, € ~ w?, prevents the use of bosonization. The excita-
tion spectrum shows an instability at J'/J = —1/4 due to a spin flip between the
state with $* = SL — 1 and S* = SL

E(w) =28[J (cosw — 1)+ J (cos2w — 1)] .

The curvature of the spectrum changes near w = 0, and the ground state is (L+2)-
fold degenerate [397,398]. Thus, for J'/J < 1/4, the ground state is in an SU(2)
ferromagnetic phase. On the other hand, for J'/J > 1/4, the system is believed
to be gapless with an incommensurate pitch angle 0 < w < 7/2 [366].

Finally, we want to remark that the classical limit fails to give any hint of
dimerization for J > 0, J' > J.; the dimer order observed in the AFM case is a
purely quantum phenomena.

5.2.3 Majumdar-Ghosh point

The MG ground state wave function is a perfect dimer, i.e., the spins form singlet
dimer pairs but are otherwise uncorrelated. Introducing the notation for the singlet
pair

_ 1

i, 7] = —= (1 Tily) = 1 LiT5)

2
and defining (under PBC)
®(L) = [1,2][3,4]...[L—1,L] (5.3)
dy(L) = [2,3][4,5]...]L,1], (5.4)

it can be shown that ®; and ®, are both eigenstates of the Hamiltonian with
energy

EME(L) = —%JL.

113



5 Homogeneous-Inhomogeneous transition

This energy can be proven to be the ground state energy. Note that the matrix
element (®;|P,) vanishes as

(D] ®y) = (—1) F/2217F2

so that the two states become orthogonal in the thermodynamic limit. The trans-
lation operator through one lattice constant, 7™, maps the two states to each
other: T(l)q)l(g) = ®y(1). The symmetric and antisymmetric linear combinations of
the two correspond to v/2&* = &; 4+ ®,, which have momentum wave vector k = 0
and k = 7, respectively; hence, ®* and ®~ are orthogonal. Therefore, the system
is characterized by a dimerized ground state with an energy gap, exponentially
decaying correlation functions, and long-range dimer order in the thermodynamic
limit, as predict by the Lieb-Schutz-Mattis-Affleck theorem. In fact, the two-spin
correlation function, S(i,j) = (5‘55”;), becomes

o 1 1
SMG(Z,]) = Z@',j + §5|zej|,1
and the structure function is then
~ 1
S(g) = 7 (I —cosq)

with a peak at ¢ = 7; see Fig. 5.3. The correlation length is fixed at {y;¢ = 2/ In 2.

L=t I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

qin
Figure 5.3: Spin structure function obtained using the DMRG. For J'/J = 1/2,
the structure factor is exactly known to be S(g) = 1(1 — cosgq). After
Legeza [411].

For open boundary conditions, ®; and ®5 do not have the same energy the [L, 1]
bond is not present in ®,; thus, the energy difference is §E = 3.J/8, equivalent
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5.2 Frustrated spin 1/2 Heisenberg chain

to surface corrections of order 1/L. As a result, the ground state for a finite
chain is not a perfect mix of the two, %(Cbl + ®,), but ®; is dominant. This
leads to an alternating oscillation on the entropy profile that goes to zero in the
thermodynamic limit. The MG model can be generalized to spin ladders or higher
values of the local spin, and, using the argument of Shastry and Sutherland [412],
it follows that a sufficient condition for the ground state to consist of a product of
singlets on all vertical bonds is given by [413]

/ 1/2, for S=1/2
J/J:TS{ R(S+1)]  for §>1

for S = 1/2 spins. All excited states are strictly localized and may be identified as
effective S = 1 spin objects. The connection between spin-1/2 ladders and spin-
one chains can therefore be made using a composite spin model technique [414] or
matrix product states [415].

The frustrated spin-1/2 Heisenberg chain develops incommensurate correlations
for J'/J > 0.5 [394]. This behavior can be seen in the movement of the peak
in the spin structure; see Fig. 5.3. We have found that the entropies of blocks
of length N/2 and N/2 + 1, although substantially different in value due to the
dimerization, both display a minimum as a function of .J'/J at the Majumdar-
Ghosh point [404,405], as can be seen in Fig. 5.4. On the other hand, the single-site
entropy does not show any particular change when this occurs. Thus, the transition

0.74} ‘ ‘ wnum 5(i — 50) |
0.72 000 S(i =49) | |
0.70

0.68

0.66

CEOOO I
ORS00 o
T T T T T T T p

.0 0.5 1.0 1.5 2.0
J/

Figure 5.4: Site entropy (top) and block entropy (bottom) of the frustrated spin-
1/2 Heisenberg chain of L = 200 sites.

from commensurate (dimerized) to incommensurate correlations is marked by the
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5 Homogeneous-Inhomogeneous transition

extremum of the block entropy. However, the C-IC transition is not a phase
transition, because the system never becomes critical. At the MG point, the wave

function is highly symmetric and can be compressed to a few states [244] because

the chain is made up of unentangled dimers.

5.2.4 Entropy analysis of the C-IC transition

In the incommensurate phase, a new peak that moves from ¢ = 0 towards ¢ = 7/2
appears in the Fourier spectrum; see Fig. 5.5. When we examine the behavior
of the block entropy of the lowest-lying triplet excited state, we observe two op-
One appears exactly where the peak was found

positely moving peaks in §(q).
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Figure 5.5: Fourier transform of the entropy profile as a function of J' and ¢; see
Fig.(a) The diamonds are maxima and the squares are inflection points.

Fig.(b) shows the Fourier transform for different value of J', where the
red points are maxima and the blue points are inflection points. The

system size is L = 200.

for the ground state, ¢*, while the other occurs at m — ¢*. By also calculating
S(q), we have found again that, to within the error of our calculation, this second
peak is located at the same (J'/J-dependent) wave vector at which S(q) has its

maximum [366].
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5.3 Bilinear-biquadratic spin one chain

5.3 Bilinear-biquadratic spin one chain

The most general form for a spin-rotationally invariant two-spin coupling for a
spin of magnitude S is [42]

~

Hy = J1S; - S5 + Jy (S : Sy)Q + ot Jas (S : Sj)QS + const .

Thus, in a spin-1/2 chain, all the higher-order terms can be absorbed into a renor-
malized coupling J; (and a constant), and the physics is essentially described by
the standard Heisenberg Hamiltonian. In contrast, for the S = 1 case, the bi-
quadratic term cannot be expressed as any bilinear combination, and it has to be
explicitly included. The resulting bilinear-biquadratic Hamiltonian is

H = Z {cos@ (5} . S'z‘+1> + sin 6 <S‘Z . S‘iH)Q} , (5.5)

where the angle 6 is the only relevant parameter; and the ratio of the couplings .J;
and Jy can be expressed in terms of the cosine and the sine of #. There are indi-
cations that strong biquadratic exchange is present in the quasi-one-dimensional
compound LiVGeyOg [416].

5.3.1 The AKLT point

We can rewrite the previous Hamiltonian into a different form by taking into
account that the combination of two neighboring S = 1 spins, S; and S’iﬂ, gives
rise to total spins S;,;4; = 0,1 and 2. The operators that project onto the three
different spin subspaces are [389]

PO = _1+l<g g )2

A R ALY

A 1/~ 4 1/~ 2
i1 1_§<i'si+1>_§<si'si+1> ,
- 1 1/~ =« 1 /. 4 2
2

Plig = §+§<Si'si+l>+6<si'si+l) )

We can form any possible isotropic interaction by taking a linear combination of
these operators; ie., H=73,> ¢ o, agPs 1

As a special case, we consider only those states for which every pair is in the
Sii+1 = 2 state [417]. Thus, the Hamiltonian may be written as

H = Jz(miﬂ —),
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-Ti/2

Figure 5.6: Phase diagram of the bilinear-biquadratic spin-one chain, represented
as a polar diagram in 6.

or, in terms of spin operators, as

H=JY [ssﬁ,} (ss)] |

Therefore, a state without any pair of neighbors in the S; ;41 = 2 sector has energy
Ey = —2/3NJ. A such state can be obtained as follows. First, we represent each
spin-one operator, SZ-, as the composition of two spin-1/2 operators, &; and 7;,
allowing only the symmetric combination. Then, we form singlet states between
site ¢ and i 4 1 using one of the 1/2-spins at each site. Finally, we notice that the
action of the projection operator P2 on these states is null, and a linear combination
of these states is the ground state of our Hamiltonian. Since the state consists of
singlets between nearest neighbors, such models are called valence bond solids
(VBS). The model is gapped, and the correlation length and correlation functions
are
éaxkir = 1/In3, <5~i5~j> - (_1)2'—3' ge~ =il Eaxur

respectively [418].

5.3.2 The phase diagram

The model has been studied extensively, and it shows a rather rich phase dia-
gram. The point with tanf = 1/3 is the AKLT point where the ground state
wave function is exactly known. The points § = 7 and § = 0 correspond to the
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5.3 Bilinear-biquadratic spin one chain

Heisenberg ferro- and antiferromagnet, respectively. It is firmly established that
the Haldane phase with a finite spectral gap occupies the interval —7/4 < 6 < /4,
and the ferromagnetic state is stable for 7/2 < 6 < 5n/4, while § = 57/4 is an
SU(3)-symmetric point with highly degenerate ground state [419].

An exact solution [420-422] is available for the Uimi-Lai-Sutherland (ULS) point
0 = /4 which has SU(3) symmetry. The ULS point was shown [423] to mark the
KT transition from the massive Haldane phase into a massless phase occupying
the interval 7/4 < 6 < 7/2 between the Haldane and the ferromagnetic phase;
this is supported by numerical studies [424].

The properties of the remaining region between the Haldane and the ferromag-
netic phases are more controversial. The other Haldane phase boundary § = —7 /4
corresponds to the exactly solvable Takhtajan-Babujian (TB) model [425,426]; the
transition at # = —7/4 is of the Ising type and the ground state at § < —x /4 is
spontaneously dimerized with a finite gap to the lowest excitations [424,427-433].
The dimerized phase extends at least up to and past the point § = —7/2, which
has a twofold degenerate ground state and a finite gap [434-438|.

There are suggestions, based on renormalization group arguments, that the
region with # € [57/4,6.], where 57/4 < 6. < 37/2, is a disordered nematic
phase [439,440]. Early numerical studies [441] apparently ruled out this possi-
bility [442,443]. However, more recent numerical results [444, 445] show that the
existence of this region cannot be ruled out completely, and it might exist in a
very narrow region.

5.3.3 Entropy analysis

The various phases and corresponding QPTs are reflected in the behavior of the
site and block entropies, Fig. 5.7. The jump in the entropy at § = 7/2 indicates a
first-order transition. At § = —3m /4, there is only a cusp in the block entropy, but
a jump in the single-entropy s indicates that this transition is first order [288]. The
cusps at # = —7/4 and 7/4 indicate second-order transitions, and the bifurcation
of the entropy curves for / = N/2 and ¢ = N/2+1 indicates that there is a spatially
inhomogeneous dimerized phase between —37/4 < 6 < —m /4.

Note that the entropy has a minimum at § = arctan1/3 ~ 0.10247, which
is at the valence-bond-solid (VBS) point [417], but that it remains a continuous
curve. The extremum of the entropy indicates a qualitative change in the wave
function and can also signal a phase transition even if it remains a continuous
curve. Such behavior has also been found in the 1/n-filled SU(n) n = 2,3,4,5
Hubbard model at U = 0, where an infinite-order (KT-like) phase transition takes
place [383,384,446]. Since there is no sharply defined transition in the entropy,
however, additional methods must be used to classify the ground state properties
on either side of an extremum. One possibility is an analysis of the entropy profile
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Figure 5.7: (a) Site entropy and (b) block entropy as a function of §. The two first-
order phase transitions are easily observed in the site entropy. The
other transition points are seen in the block entropy. The signature
of an inhomogeneous (dimerized) phase is already noticeable, between
0 = —3r/4 and —7 /4, and also between 6 = 7/4 and 7/2.

s(¢) as the subsystem size ¢ is changed from ¢ = 0 to N for fixed model parameters;
see below.

We will first consider QPTSs of the spin-one bilinear-biquadratic model [424,441,
447] that occur at the exactly solvable Takhtajan-Babujian (TB) [425,426] and
Uimin-Lai-Sutherland (ULS) [420-422] points, corresponding to § = —n/4 and
7 /4, respectively.

As shown in Fig. 5.8, a periodic oscillation is superimposed onto a curve that is
described by the analytic form given by Eq. 5.1 in both cases. At the TB point, the
period of oscillation is two lattice sites, while at the ULS point it is three lattice
sites. When the length [ is taken to be a multiple of two for the TB point or a
multiple of three for the ULS, the entropy s(I) can be well-fitted using Eq. 5.1
with ¢ approaching the known values, ¢ = 3/2 [428] and ¢ = 2 [423], respectively,
in the limit of large N.

Except for the large positive §(¢ = 0) component that grows with increasing
chain length, the other components are all negative. They are shown for the
two cases discussed above in Fig. 5.9. As can be seen, apart from the ¢ = 0
point, the Fourier spectrum exhibits (negative) peaks at ¢ = 7m and ¢ = 27/3,
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Figure 5.8: Length dependence of the von Neumann entropy of segments of length
[ of a finite chain with N = 60 sites for (a) the Takhtajan-Babujian
and (b) the Uimin-Lai-Sutherland models. The solid lines are our fit
using Eq. (5.1), taking every second and third data point in (a) and
(b), respectively.

respectively. This is related to the fact that the TB model has two soft modes,
at ¢ = 0 and 7, while the ULS model has three, at ¢ = 0 and +27/3. Although
finite-size extrapolation shows that these components vanish in the N — oo limit,
these peaks in the Fourier spectrum are nevertheless indications that the decay of
correlation functions is not simply algebraic in these critical models, but that the
decaying function is multiplied by an oscillatory factor. When the same calculation
is performed for 6 in the range —37w/4 < § < —n/4, where the system is gapped
and dimerized, the peak at ¢ = 7 remains finite as N — oo. On the other
hand, in the whole interval 7/4 < 6 < m/2, where the system is gapless and
the excitation spectrum is similar to that at the ULS point, the entropies for
block sizes that are multiples of three can be well-fitted with the form given in
Eq. 5.1 with ¢ = 2, and for finite chains, a peak appears in §(¢q) at ¢ = 27/3, in
agreement with Refs. [424,441,447] and [423]. Thus, peaks in the Fourier spectrum
of the length-dependent block entropy can provide useful information about the
excitation spectrum and the wave vector of soft modes, even when they scale to
zero in the thermodynamic limit.
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Figure 5.9: Fourier spectrum $§(q) (scaled by the system size N) of the length-
dependent von Neumann entropy of finite chains of length N =
30,60 and 90 for (a) the Takhtajan-Babujian and (b) the Uimin-Lai-
Sutherland models.

We can also demonstrate this procedure near the AKLT point [417], correspond-
ing to Oaxpr = arctan 1/3 ~ 0.1024. It is known [448] that this point is a disorder
point, where incommensurate oscillations appear in the decaying correlation func-
tion; however, the shift of the minimum of the static structure factor appears only
at a larger 6, = 0.1387, the so-called Lifshitz point. In earlier work [288], some
of us showed that s(/N/2) has an extremum as a function of 6 at Ok r. Here we
show that this extremum is the indication that, in fact, Oxkpr is a dividing point
which separates regions with a different behavior of s(I) and 35(q).

At and below the AKLT point, i.e., for —n/4 < 6 < Okpr, s(I) increases with
[ for small [, saturates due to the Haldane gap [449], and then goes down to
zero again as [ approaches N. The Fourier spectrum §(q) is a smooth function
of g (except for the ¢ = 0 component). The transformed entropy $(q) at the
AKLT point, depicted in Fig. 5.10, illustrates this behavior. For # slightly larger
than Oakpr, however, we find that s(I) does not increase to the saturation value
purely monotonically. Instead, an incommensurate oscillation is superimposed.
For somewhat larger 6 values, # > 0.13x, this oscillation persists in the saturated
region, i.e., for blocks much longer than the correlation length. This leads to
a new (negative) peak in §(¢) which moves from small ¢ towards ¢ = 27/3 as
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the ULS point is approached, and gets larger and narrower, as can be seen in
Fig. 5.10. This 6 value is slightly smaller than, but close to, the Lifshitz point.
It is also interesting to examine the behavior of the block entropy in the lowest-
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Figure 5.10: Fourier transform of the entropy profile as a function of # and ¢. In
(a), the white line delineates the AKLT point and the white points
indicate incommensurate peaks seen explicitly in (b). The system size
is L = 120.

lying excited state. Since, according to the AKLT picture [417], there are effective
spin-1/2 degrees of freedom at the end of the open chain. In the limit of a long
chain, the ground state is four-fold degenerate. Therefore, the first interesting
excitation is the quintet, which corresponds to the Haldane gap [450-452]. In fact,
the triplet behaves in a similar fashion as the ground state, where the system is
gapped, the entropy profile saturates to a constant value for sub-systems bigger
than the correlation length. For § — 7 /4, the system approaches the ULS critical
point. As we can see in Fig. 5.11, since only the larger sub-system can include a
growing correlation length, the constant central part of the entropy profile becomes
narrower and narrower. When £ > L, the finite system behaves pseudo-critically
and, since there are OBC, the oscillations of the entropy profile are related to the
wave vector pinned to the edges.

The situation is different for the quintet. The entropy profile for a gapped system
is basically a Gaussian centered in the middle of the chain. An oscillating term is
superimposed on the Gaussian curve once the incommensurability appears. This
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w/2 2mw/3m/4 a
1 q

Figure 5.11: (a) Entropy profile and its Fourier transform. (b) same as Fig. 5.10
(b) but showing the S%,, = 1 triplet excited state.

translates to a moving (negative) peak in the Fourier transform corresponding to
the incommensurate wave vector. However, when we move close the ULS critical
point, the character of criticality becomes more relevant. This is seen in the
Fourier-transformed representation, §(¢), in Fig. 5.12 for several 6 values. The
appearance of the new peaks are even more pronounced, and data for 6 < 6,
confirm that this approach can probe the incommensurate phase much closer to
the transition point than is possible using only the static structure factor S(q).
Although the new peak(s) in §(¢) in the incommensurate phase move in an opposite
sense to those in S(q) (see Ref. [394]), i.e., the peak approaches 27/3 from zero
and not from 7, they can be easily related to each other. By also calculating S(q),
we have found, to within the error of our calculation, that the location, ¢*, of the
peak in §(q) is related to the wave vector ¢ at which S(¢) has its maximum by

qg=m—q*/2.

5.4 The t — ' — U Hubbard model

In the previous section, we have demotrated the usefulness of studying the entropy
profile for models where the quantum critical points are known. We now turn to
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Figure 5.12: Same as Fig. 5.11, but for the S5, = 2 quintet excited state.

the commensurate-incommensurate transition in the 1D t —¢ — U Hubbard model

- tz < Cio H—lcr i-l—lacicr)
+ Z <Ciaci+20 + CI+2an> +U Z Nip M|
0 )

which has been investigated in the previous chapter and recently in Ref. [453].
For the half-filled case (and setting ¢ = 1), the competition between t' and the
Coulomb energy U will determine whether the system is an insulator (' < t.) or a
metal (¢’ > t.). For finite U values, this transition is preceded by the opening of a
spin gap at ¢, < t.. Between t, and t., the wave vector becomes incommensurate
for ¢’ > tj. Thus, the commensurate-incommensurate transition is independent
of the metal-insulator transition; see Ch.4 and Ref. [453].

As expected for a commensurate-incommensurate transition, we find that the
entropy of blocks of length N/2 display an extremum as a function of ¢'. For very
large U values, where the model is equivalent to the frustrated spin-1/2 Heisenberg
chain, the extremum occurs at tjo ~ 1/v/2 v/2, which maps to the Majumdar-Ghosh
point. The block entropy is shown in Fig. 5.14 (a) for U = 3, a value chosen so that
our results can be directly compared to those of the previous chapter. Compare
Fig. 4.7 and Fig. 5.14 (b), for example. This shows that the transition point can
accurately be detected and located on system sizes that are typically a factor of two
to four smaller than those needed with the standard methods used in Ref. [453].

(5.6)

125



5 Homogeneous-Inhomogeneous transition

4.0 T T T T T T T
3:5 '16 2
3.0 -114.4
-112.6
2.5
—110.8
% 2.0 t! -19.0
1.5 7.2
154
1.0 0.
0. 3.6
0.
0.5 0. 1.8
1.
T ! ! 0.0

0.0 I I
0 10 20 30 40 50 60 70 80

7

0 m/4 w2 3m/4 T

(b)

(a)

Figure 5.13: (a) Block entropy profile for different values of ¢ and (b) its Fourier
transformation. The system size is L = 80.

For ¢ > 0.6, an incommensurate oscillation in s(I) becomes apparent, as well as
in its Fourier-transformed representation, 5(¢). When 3(q) is analyzed, it is found
that a new peak appears in the spectrum and again moves from small ¢ towards
q = m/2 with the amplitude of §(m) decreasing with increasing ¢'. Therefore,
the commensurate-incommensurate phase boundary can be easily determined by
finding the extrema of s(N/2) as a function of ¢’ for various U values. This phase
boundary is depicted in Fig. 5.14(b).

5.5 Discussion

In conclusion, we have shown that the length dependence of the block entropy
and its Fourier spectrum, determined for finite systems, can be used to charac-
terize phases in which the correlation function has an oscillatory character. This
method also provides significant information about some features of the excitation
spectrum and allows one to identify soft modes in critical models. In addition,
an extremum in the block entropy as a function of the relevant model parameter,
which, in general, signals the appearance of or change in a symmetry in the wave
function, can also correspond to disorder points. In this case, however, the entropy
curve does not show anomalous behavior because this is not a phase transition in
the conventional sense. When the decaying correlation function has an incommen-
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Figure 5.14: (a) Entropy of blocks of length N/2 as a function of ¢’ for the 1D
t —t' — U Hubbard model for U = 3 and various chain lengths. The
dashed line is a spline through the minima. (b) Phase boundary of
commensurate-incommensurate transition in the ¢’-U plane obtained
from a finite-size extrapolation of the minima in (a). The line is a
spline through the indicated points.

surate oscillation, a new peak appears close to ¢ = 0 in the Fourier spectrum and
moves towards a commensurate wave vector as the control parameter is adjusted.
In the entropy of the spin-excited states, another peak can appear at the wave
vector of the peak in the static structure factor, in addition to a peak at the same
position as in the ground-state entropy.
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Conclusion

In this thesis, we have explored the properties of quantum phase transitions in
quasi one-dimensional systems using the DMRG, quantum information theory, and
quantum field theory. We have applied these techniques to the band-insulator to
Mott-insulator transition that occurs in the charge-transfer complexes, to the Mott
metal-insulator transition influenced by a commensurate-incommensurate phase
transition, and to different types of homogeneous-inhomogeneous transitions. Our
main findings are contained in chapters 3, 4 and 5.

In chapter 3, we have investigated the nature of the band-insulator to Mott-
insulator transition. We have found that the presence of a spontaneously dimer-
ized phase between these two very different insulators is a quite generic feature.
While such a scenario was already proposed a few years ago using arguments from
bosonization and field theory, existing numerical results did not provide a com-
plete and unambiguous picture of the details of the transition. Using the effective
model, we have been able to calculate the critical exponents of the quantum phase
transition using the DMRG and finite-size scaling analysis. This work supplies a
clear answer to this issue. Using an effective model that contains only the degrees
of freedom relevant to the transition rather than the original model has made it
possible to determine the critical properties with greater precision and to under-
stand the relevant energy scale. Note that the truncation and mapping scheme is
fairly general and can potentially be applied to other models.

In chapter 4, we have studied the Mott metal-insulator transition in the ¢ — ¢/
Hubbard model. First, we have derived an expression for the critical line separating
the metallic phase from the spin-gapped insulator. We have also used the DMRG
to perform a comprehensive calculation of the relevant quantities. In particular, we
have calculated the gap, the density, and the momentum-space distributions in the
spin and charge sectors. These results provide new insights into the Mott metal-
insulator transition. In particular, the numerical results support the suggestion
that the standard theory of the commensurate-incommensurate transition is the
relevant effective theory to describe the Mott metal-insulator transition in the ¢t —¢'
Hubbard model.

In chapter 5, we have used the length-dependence of the block entropy to charac-
terize inhomogeneous phases. In particular, we have concentrated on the quantum
homogeneous-inhomogeneous transition. We have been able to identify the dimer-
ized and the trimerized phases by examining the behavior of the peaks of the
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Fourier transform of the entropy profile. Finally, we have applied the method to
a model which has not previously been investigated with quantum information
entropy, the ¢t — ¢’ Hubbard model.

Our results contribute to the understanding of quantum phase transitions in
one-dimensional strongly correlated systems and indicate new directions for fur-
ther investigation. We have used different methods to investigate quantum phase
transitions and extract information from the simulation. First, we have used finite-
size scaling of charge gaps, spin gaps, order parameters and relative susceptibility
to extract the critical properties, i.e., critical exponents. Second, we have used
measures of quantum information based on the von Neumann entropy to find crit-
ical points and to extract the central charge. Although the two methods yield
different quantities in detail, both the exponents and the central charge can be
used to classify the universality class of the critical behavior. The two methods
have different advantages and limitations. The finite-size scaling analysis works
for any kind of transition and can be applied to both critical and non-critical
phases. However, such simulations become very expensive in critical regions be-
cause physical quantities must be calculated in both ground and excited states. In
addition, there are models in which the fluctuations in the finite-size scaling are so
strong that the behavior in the thermodynamic limit cannot determined. On the
other hand, quantum information quantities are ground state measures that are
generated as a natural by-product of the DMRG procedure. However, a full char-
acterization of the critical properties is possible only under the condition that the
effective theory is conformally invariant. For many situations, the two methods can
be used in combination: preliminary simulations can use anomalies in the entropy
to indicate the presence of transition points or inhomogeneous phases. A careful
finite-size analysis can then be used to characterize the transition completely.

Due to the rapid progress that has occurred in the use of the quantum informa-
tion theory in strongly correlated systems recently, there are many possibilities for
further research in the direction of this thesis. Therefore, we would like to con-
clude by giving a short outlook. In particular, it would be interesting to extend the
DMRG algorithm by making direct use of matrix product or tensor product states.
There have been a number of different proposals for such algorithms [306,454-459]
but it is not yet clear which ones are most effective for different problems. These
states have the potential to perform better than the DMRG in high dimensional
lattices. However, the entropy area law (see chapter 2) may provide an essential
limitation to the scaling of the computational effort with dimension. Algorithms
based on tensor product states can at least potentially reach this limit. Algorithms
based on matrix product states can also include the effects of finite temperature
or treat full time evolution [460,461].

Another fundamental problem that we have encountered in this thesis is how
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to better approach the thermodynamic limit for systems with strong finite-size
fluctuations. In particular, it would be useful to be able to test the convergence of a
physical quantity to the thermodynamic value by varying the boundary conditions
or including an infinite bath. This would avoid the need to carry out careful
finite-size scaling to such large system sizes, which is computationally quite costly.

There are also many interesting physical questions yet to be addressed. In order
to describe materials more realistically, more general models than the ones studied
here are often necessary. Some additional elements of the actual band structure of
a material, such as more realistic dispersion or multiple bands can be included. In
one dimension, it is often important to go beyond the on-site Coulomb interaction
considered in this thesis; the long-range part can be important, especially in non-
metallic phases. Another important element to take into account are phonons,
which lead to an additional interaction for the electrons and can significantly in-
fluence the behavior of the system. In particular, instabilities to lattice distortion
are especially important in one dimension. While adding such contributions makes
models more realistic, it complicates the simulations and increases their compu-
tational difficulty. However, improvements in the algorithms and in computer
capacity as well as a growing understanding of the simpler models, make such ex-
tensions both necessary and possible. Finally, it should be mentioned that recent
experimental developments in nanoscopic systems have opened up new classes of
systems to study. Examples include quantum dots, spintronic devices, and arrays
of Josephson junctions as well as cold atoms on optical lattices.
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