Aus dem Medizinischen Zentrum für Hals-, Nasen- und Ohrenheilkunde Geschäftsführender Direktor: Prof. Dr. J. A. Werner des Fachbereichs Medizin der Philipps-Universität Marburg in Zusammenarbeit mit dem Universitätsklinikum Gießen und Marburg GmbH Standort Marburg

Stimulation des EGF-Rezeptors in HNSCC-Zelllinien führt zu einer Hochregulation von Bcl-x_L und zeigt Abhängigkeiten vom untersuchten Zelltyp

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der gesamten Humanmedizin dem Fachbereich Medizin der Philipps-Universität Marburg vorgelegt von

Vanessa Elisabeth Wennekes

aus Essen

Marburg, 2008

Angenommen vom Fachbereich Medizin der Philipps-Universität Marburg am 30.10.2008 gedruckt mit Genehmigung des Fachbereiches **Dekan:** Professor Dr. M. Rothmund **Referent:** PD Dr. R. Mandic **Korreferent:** PD Dr. G. Straßmann Meinen Eltern und meinen beiden Schwestern In Liebe und Dankbarkeit

Inhaltsverzeichnis

1.	Einleitung	1
1.1.	Plattenepithelkarzinome des Kopf-Hals-Bereiches	1
1.2.	Apoptose	2
1.3.	Onkogene	4
1.4.	Die Bcl-2 Protein-Familie	5
1.5.	Zielsetzung	7
2.	Material	8
2.1.	Chemikalien	8
2.2.	Antikörper	11
2.3.	Puffer und Lösungen	11
2.4.	Zelllinien	14
2.5.	Gewebeproben	15
3.	Methoden	17
3.1.	Kultivierung von Karzinomzellen	17
3.2.	Kultivierung von Keratinozyten	18
3.3.	Stimulierung der Zellen mit EGF	19
3.4.	Proteinextraktion	19
3.5.	Bestimmung der Proteinkonzentration	20
3.6.	SDS-Polyacrylamidgelelektrophorese (PAGE)	21
3.7.	Protein Transfer (Western Blot)	22
3.8.	Inkubation mit Antikörpern	23
3.9.	Wiederverwendung der Nitrozellulosemembranen	23
3.10.	Detektion mit dem Enhanced Chemolumineszenzverfahren (ECL)	24
3.11.	Immunhistochemie	24
3.12.	Detektion der untersuchten Proteine	24
3.13.	qRT-PCR (Quantitative reverse transcription-polymerase chain reaction)	26

4.	Ergebnisse	27
4.1.	Bcl-2	27
4.1.1.	Western Blot Analyse der Gewebeproben	27
4.1.2.	Immunhistochemische Analyse der Gewebeproben	29
4.1.3.	Zelllinien	31
4.2.	Bcl-x _L	32
4.2.1.	Immunhistochemische Analyse der Gewebeproben	32
4.2.2.	Zelllinien	34
4.3.	Stimulation mit EGF	35
4.4.	Titration des EGF-Effektes	36
4.5.	Quantifizierung der Bcl-x _L mRNA mittels qRT-PCR	38
5.	Diskussion	39
5.1.	Die Bedeutung der Bcl-2 Proteinfamilie als Tumormarker	40
5.2.	Die Bedeutung des EGF-Rezeptors bei Plattenepithelkarzinomen des Kopf-Hal Bereiches	s- 44
5.3.	Die Hochregulation von Bcl- x_L nach EGF-Stimulation	46
6.	Zusammenfassung	48
7.	Literaturverzeichnis	50
8.	Anhang	58
8.1.	Verzeichnis der verwendeten Abkürzungen	58
8.2.	Tabellen	60
8.3.	Abbildungsverzeichnis	32
8.4.	Tabellenverzeichnis	63
8.5.	Vorträge und Publikationen	64
8.6.	Verzeichnis der Akademischen Lehrer	35
8.7.	Danksagung	66

1. Einleitung

1.1. Plattenepithelkarzinome des Kopf-Hals-Bereiches

Maligne Tumore des Kopf-Hals-Bereiches stellen weltweit etwa 6% aller Krebserkrankungen des Menschen dar; das entspricht einer jährlichen Inzidenz von etwa 500.000 [64]. Es handelt sich hierbei zu über 90% um Plattenepithelkarzinome (<u>H</u>ead and <u>Neck Squamous Cell Carcinoma</u>, HNSCC) [9]. Die Union Internationale Contre le Cancer (UICC) unterteilt maligne Tumore des Kopf-Hals-Bereiches anhand der Kriterien Tumorgröße, Lymphknotenmetastasen und Fernmetastasen in die vier klinischen Stadien I-IV. Von dem Stadium des Tumors bei der Diagnosestellung hängen die nachfolgende Therapie sowie die Prognose ab. Die Kriterien zur TNM-Klassifikation und die Stadieneinteilung von Plattenepithelkarzinomen der UICC können den Tabellen 1 und 2 entnommen werden (im Anhang).

Als etablierte Therapieformen gelten heute die Operation, die Radiotherapie und die Chemotherapie sowie deren Kombination. In Anlehnung an die Empfehlung der Deutschen Krebsgesellschaft und ihrer Arbeitsgemeinschaften stehen an erster Stelle der Therapie eine radikale chirurgische Resektion des Tumors mit den dazugehörigen Lymphbahnen. Patienten mit Tumoren in Stadium I haben mit >90% Heilungsrate eine gute Prognose nach operativer Entfernung des Tumors. Für Patienten mit fortgeschrittenen, lokal noch begrenzten und resektablen Tumoren wird zunächst die Resektion durchgeführt, anschließend wird eine adjuvante Radiotherapie durchgeführt. Bei nicht resektablen Tumoren wird mit Hilfe der Radio(Chemo)therapie zunächst ein resezierbares Stadium hergestellt und im Anschluss daran die Resektion versucht. Ziel der operativen Therapie der Karzinome ist immer eine sogenannte R0-Resektion, das heißt eine vollständige Entfernung des Tumors einschließlich vorhandener Lymphknotenmetastasen.

Bei Patienten mit Tumoren, die sich in Stadium I und II befinden, kann der Primärtumor durch eine operative Entfernung zur vollständigen Regression gebracht werden. Bei 60 – 90% dieser Patienten tritt innerhalb der folgenden zwei Jahre kein Rezidiv auf. Allerdings befinden sich bei der Erstdiagnose schon zwei Drittel der Tumore in Stadium III oder IV, wobei die 2-Jahres-Überlebensrate dieser Patienten trotz Radio(Chemo)therapie bei nur 40 – 50% liegt. Folge der immer noch spät gestellten Diagnose ist eine nur geringe Verbesserung der Fünf-Jahres Überlebensrate lässt sich einerseits durch die frühe lymphogene Metastasierung, welche zu regionalen Lymphknotenmetastasen und in Folge zu Fernmetastasen führt als auch durch das

- 1 -

Auftreten von Zweitkarzinomen im Bereich des oberen Aerodigestivtraktes erklären [71]. Dabei treten bei einem Drittel der Patienten Fernmetastasen und Zweitkarzinome und bei zwei Drittel der Patienten lokale Rezidive auf. Bei den Patienten mit einem lokalen Rezidiv liegt die Wahrscheinlichkeit einer Heilung bei unter 10% [32].

1.2. Apoptose

Einen wichtigen Faktor für die Pathogenese, die Aggressivität sowie das Ansprechen der Tumore auf eine Therapie stellt die Regulation der Apoptose, einer kontrollierten Form des Zelltodes dar. Der Begriff Apoptose stammt aus dem Griechischen und bezeichnete ursprünglich das Abfallen der Blätter von einem Baum. Der Begriff wurde erstmals 1972 von John F. R. Kerr, Andrew H. Wyllie und Alastair Currie verwendet [40]. Die Apoptose stellt eine kontrollierte, physiologische Form des Zelltodes zur Eliminierung von Zellen dar, die genetisch programmiert ist und charakteristische morphologische und biochemische Merkmale aufweist. Durch diesen biologischen Mechanismus werden einzelne Bestandteile des Organismus entfernt, ohne diesen zu schädigen oder zu zerstören. Die Embryogenese sowie die Aufrechterhaltung der Gewebshomöostase durch kontinuierlich stattfindende Zellerneuerung wären ohne den komplexen und gut organisierten Prozess der Apoptose nicht möglich [1]. Viele degenerative, virale und Autoimmunerkrankungen sowie Neoplasien sind durch eine gestörte Apoptose gekennzeichnet. Sobald eine Zelle zum Beispiel durch einen Virus infiziert wird oder entartet und damit für den Gesamtorganismus eine Bedrohung darstellt, wird diese Art des programmierten Zelltodes induziert. Die Induktion geschieht in erster Linie durch positive apoptoseauslösende Signale, aber auch durch den Verlust von Vitalitätsfaktoren; dabei kann die Induktion entweder durch Rezeptoren oder durch direkt innerhalb der Zelle angreifende Stimuli erfolgen. Die rezeptorvermittelte Auslösung der Apoptose ist besonders durch die Bindung des FAS (CD95)-Liganden an den FAS-Rezeptor und die Bindung des Tumor-Nekrose-Faktors (TNF) an den TNF-Rezeptor (TNFR) untersucht worden.

Nach Induktion der Apoptose bleibt die Membranintegrität der Zelle im Gegensatz zur Nekrose erhalten. Intrazellulär wird eine Kaskade von Proteasen, den sogenannten Caspasen in Gang gesetzt. Charakteristischerweise kommt es zu einer Kondensation des Chromatins im Nucleus und einer Zellkernschrumpfung. Die chromosomale DNA wird von Endonukleasen zwischen den Nukleosomen gespalten und im weiteren Verlauf der Apoptose im Inneren von exozytischen Membranvesikeln (apoptotic bodies) von der Zellmembran abgeschnürt. Durch die Exposition bestimmter Signalmoleküle markieren sich apoptotische Zellen und exozytische Membranvesikel

- 2 -

für die Phagozytose durch Immunzellen. Hierfür wird das Aminophospholipid Phosphatidylserin, welches sich unter physiologischen Bedingungen überwiegend an der zytosolischen Seite der Plasmamembran befindet, auf die Außenseite der Plasmamembran transloziert, wo es von Rezeptoren bestimmter Makrophagen erkannt wird [13]. Durch diesen Mechanismus können die Membranvesikel von benachbarten Zellen oder Makrophagen zusammen mit den darin enthaltenen Bestandteilen aufgenommen werden, ohne dass zytosolische Bestandteile in den extrazellulären Raum austreten [16], was zum Beispiel eine Entzündungsreaktion auslösen könnte.

Abbildung 1. Schematische Darstellung der Apoptose. Nach Induktion der Apoptose (a) kondensiert das Chromatin im Nucleus, was zu einer Zellkernschrumpfung führt (b). Endonukleasen spalten die exozytische chromosomale DNA und Membranvesikel werden abgeschnürt (c). Im Anschluß daran wird das Aminophospholipid Phosphatidylserin auf die Außenseite der Plasmamembran transloziert und den Makrophagen präsentiert (d). Letztendlich werden die Membranvesikel durch Makrophagen oder benachbarte Zellen aufgenommen (e). Modifiziert nach Cruchten und Broeck [79].

In einem gesunden Organismus ist ein ausgeglichenes Verhältnis zwischen Zellproliferation und Apoptose unentbehrlich. Schon eine geringe Veränderung der Vorgänge oder eine Störung der präzisen Abläufe der Apoptose kann durch den vorzeitigen Verlust von Zellen oder das Überleben von unerwünschten Zellen zu schwerwiegenden Folgen für den Gesamtorganismus führen. Die Apoptose kann auf verschiedenen Stufen gestört sein. Zum Beispiel kann das Tumor-Supressor-Protein p53 die Apoptose triggern; das auf einer späteren Stufe antiapoptotisch wirkende Bcl-2 entscheidet, ob die Apoptose voranschreiten darf. Abschließend ist eine Kaskade von Initiator- und Effektor-Caspasen daran beteiligt intrazelluläre Komponenten abzubauen. Zellen mit einer hohen Apoptoseschwelle tendieren dazu resistenter gegen Stress, anaerobische Verhältnisse, die Abwesenheit von Wachstumsfaktoren oder die Wirkung von Chemotherapeutika zu sein [42]. Daher ist die apoptotische Schwelle eine wichtige Determinante für die biologischen Eigenschaften sowohl von gesunden als auch von Tumorzellen. Die Suppression der Apoptose spielt vor allem bei der malignen Transformation von Zellen eine entscheidende Rolle [81]. Durch inaktivierende Mutationen pro-apoptotischer Proteine oder durch Überexpression anti-apoptotischer Faktoren entstehen Zellen, die unkontrolliert proliferieren und gegenüber intrinsischen

(p53) und extrinsischen (Immunsystem) Apoptosestimuli resistent sind. Die Kenntnis von Substanzen, die gezielt Apoptose auslösen können, ist ein zentraler Aspekt der Tumorforschung, da mittels solcher Stoffe Tumore in ihrem Wachstum gehemmt werden können. Die Auslöser für die Apoptose sind vielfältig. Ebenso vielfältig sind auch die unterschiedlichen Wege, über welche diese Auslöser wirken. Es gibt eine Reihe von Proteinen, die antiapoptotisch oder proapoptotisch wirken. Die antiapoptotisch agierenden Proteine wirken der Apoptose entgegen, die dafür kodierenden Gene stellen also potentielle Onkogene dar.

1.3. Onkogene

Onkogene entstehen zum Beispiel durch Mutation aus Proto-Onkogenen, entweder spontan oder durch transformierende Faktoren wie Viren, chemische Karzinogene und Strahlen. Onkogene lassen sich in dominante Onkogene und rezessive, beziehungsweise Tumorsuppressor-Gene unterteilen. Für die Tumorentwicklung ist entweder die Aktivierung von dominanten Onkogenen oder aber der Verlust von Tumorsuppressorgenen verantwortlich. Proto-Onkogene stellen zelluläre Gene dar, die das Zellwachstum, die Apoptose, die Zelldifferenzierung und die Zellmigration beeinflussen. Bei Veränderung zum Onkogen wird so das Wachstums- und Differenzierungsverhalten der Zelle verändert. Das Potential eines Onkogens zeigt sich darin, dass das Onkogen trotz unverändertem zweiten Allel des Proto-Onkogens eine tumorauslösende Potenz aufweist. Onkogene lassen sich auf Grund ihrer Funktion innerhalb einer Zelle in fünf verschiedene Klassen unterteilen [33]. Die erste Klasse stellen die Wachstumsfaktoren dar, die zweite Klasse besteht aus den Rezeptoren der Wachstumsfaktoren und Hormone, die sich erneut in Rezeptortyrosinkinasen und intrazelluläre Rezeptoren unterteilen lassen. Die dritte Klasse der Onkogene besteht aus den Proteinen für die intrazelluläre Signalübertragung, die sich wiederum in Tyrosinkinasen, Serin/Threoninkinasen, GTPasen und Adaptoren unterteilen lassen. Die vierte Klasse besteht aus nukleären Transkriptionsfaktoren und die letzte Klasse der Onkogene besteht aus den antiapoptotischen Proteinen.

Die meisten Onkogene kodieren für Proteine der Superfamilie der Proteinkinasen [34]. Obwohl weitaus mehr Serin- und Threoninkinasen bekannt sind [29], dominieren bei den Proto-Onkogenen die Tyrosinkinasen. Dies kommt mit großer Wahrscheinlichkeit daher, dass sie in viele Wachstums- und Differenzierungsprozesse der Zelle involviert sind. In gesunden Zellen sind nur ca. 0,05 % der Phosphorylierung von Proteinen Tyrosinphosphorylierungen. Bei Tumorzellen ist der Anteil durch konstitutiv aktive Tyrosinkinasen bedeutend höher. Diese konstitutive Aktivierung

- 4 -

scheint auf die neoplastische Entwicklung einer Zelle großen Einfluss zu haben [76] und kann entweder durch Überexpression oder durch Mutation der jeweiligen Tyrosinkinase enstehen.

Eine Gruppe von hoch relevanten Tyrosinkinasen umfasst die Rezeptortyrosinkinasen (RTKs). Die RTKs werden auf Grund ihrer Struktur in 16 verschiedene Untergruppen unterteilt. Die erstbeschriebene RTK war 1982 der Rezeptor für den Epidermalen Wachstumsfaktor (EGF). Die Überexpression des epidermalen Wachstumsfaktors ist ein Kennzeichen vieler epithelialer Tumore [49, 78]. insbesondere von Kopf-Hals-Tumoren [14, 54] und korreliert mit dem Fortschreiten der Tumorerkrankung, früher Metastasierung und einer schlechten Prognose [4, 19, 54]. Neben der Überexpression durch Gen-Amplifikation werden RTKs in Tumoren häufig durch Mutationen überaktiv. Eine onkogene Version des EGF-Rezeptors (EGFR vIII) ensteht zum Beispiel durch Deletion im Proto-Onkogen, was einen Verlust des ligandenbindenden extrazellulären Anteils des EGF-Rezeptors sowie seine konstitutive Aktivierung zur Folge hat [4].

EGFR ist ein Zelloberflächen-Rezeptor für verschiedene Wachstumsfaktoren, wie zum Beispiel EGF und TGF- α [59]. Nach Ligandenstimulation und Aufnahme von EGF recycled der Rezeptor entweder wieder zur Plasmamembran oder wird im Lysosomalen Apparat abgebaut [21]. Ein Zusammenhang zwischen der Hochregulation von Bcl-x über EGFR-abhängige Signalwege und eine daraus resultierende höhere Überlebensrate von Keratinozyten wurde in zwei vorhergehenden Untersuchungen beschrieben [67, 73]. Die Herunterregulierung von EGFR durch die intrazelluläre Aufnahme und den lysosomalen Abbau ist einer der Mechanismen, der durch diverse anti-EGFR Strategien verfolgt wird.

Eine neue Klasse von Onkogenen kodiert für antiapoptotische Proteine wie Bcl-2 und Bcl-x_L. Sie zeichnen sich dadurch aus, dass sie nicht durch eine Förderung der Zellproliferation onkogen wirken [36] sondern durch Hemmung der Apoptose, indem sie die Zellen dem natürlichen Entsorgungsmechanismus für fehlgesteuerte Zellen entziehen. Die Apoptoseinhibition ist neben der unkontrollierten Zellvermehrung also ein entscheidenderFaktor der neoplastischen Transformation.

1.4. Die Bcl-2 Protein-Familie

Die Regulation der Apoptose durch die Bcl-2 Proteinfamilie wurde ausführlich untersucht und beschrieben [18, 44, 83]. Diese Proteinfamilie besteht aus mehr als 20 Mitgliedern, die wiederum je nach ihrer Funktion in zwei Untergruppen als anti-(Bcl-2, Bcl- x_L) oder pro-(Bax, Bcl- x_S , Bak)apoptotische Proteine unterteilt werden können. Als

erstes Mitglied dieser Familie wurde das namensgebende anti-apoptotische Protein Bcl-2 identifiziert [77, 80]. Es wurde im follikulären B-Zell-Lymphom identifiziert und deckte die Existenz einer neuen Gruppe von Onkogenen auf, die Krebs nicht durch der Zellproliferation sondern vielmehr Anregung durch Verhinderung des physiologischen Zelltodes förderten [45]. Weitere Mitglieder wurden auf Grund von Sequenzhomologien oder durch Interaktion mit Bcl-2 entdeckt [18]. Während die heterodimere Bindung zwischen anti- und proapoptotischen Bcl-2-Proteinen die Proteine neutralisiert, potenziert die Dimerisierung zweier Aktivität beider proapoptotischer Proteine ihre Wirkungskraft. Zellen, die mit Bcl-2 transfiziert sind, weisen Resistenzen zu einer Vielzahl von Apoptose auslösenden Stimuli auf. Das Verhältnis der exprimierten Proteine zueinander entscheidet, ob die Apoptose induziert wird oder nicht. Das durch das Bcl-2-Gen kodierte Protein ist in der Lage, die Apoptose in einer Vielzahl von Zelltypen zu hemmen. Die verminderte Expression von Bcl-2 oder die vermehrte Expression seiner Inhibitoren ist jedoch oft nicht ausreichend, um Apoptose zu induzieren. Hohe Konzentrationen von Bcl-2 können Krebszellen vor dem Zelltod durch Apoptose schützen. Die Zusammensetzung und das Verhältnis der verschiedenen, der Bcl-2 Familie angehörenden Proteine, zueinander spielt höchstwahrscheinlich eine wichtige Rolle in der Pathogenese von Krebs und der Chemosensitivität von Tumoren. Die molekularen Details dieser Interaktionen sind jedoch noch nicht ausreichend erforscht. Die prognostische Bedeutung der Bcl-2 Epression bei Kopf-Hals-Tumoren wurde in der Vergangenheit ausführlich untersucht, die Resultate dieser Studien werden kontrovers diskutiert [25, 26, 30, 74, 82]. Es gibt verschiedene Hinweise darauf, dass die Expressionsgrade von Bcl-2 und Bcl-xL mit der Aggressivität von Karzinomen korrelieren [26, 43]. Dabei entscheidet das Verhältnis von proapoptotischer zu antiapoptotischer Fraktion in der Zelle über Leben und Tod.

1.5. Zielsetzung

Da es verschiedene Hinweise darauf gibt, dass die Expressionsgrade von Bcl-2 und Bcl-x_L mit der Aggressivität von Karzinomen korrelieren und die übermäßige Expression des EGF Rezeptors einen großen Einfluss auf die Progression von HNSCC- Erkrankungen hat, ist es das Ziel dieser Arbeit, die Abhängigkeit der Expression von Bcl-2 und Bcl-x_L vom EGFR-Aktivierungsstatus zu untersuchen. Von besonderem Interesse sind hierbei EGF-abhängige Änderungen in dem Grad der Expression der antiapoptotischen Proteine Bcl-x_L, und Bcl-2, da es in vorhergehenden Untersuchungen Hinweise auf den Zusammenhang ihrer Expression und der Progression von HNSCC-Erkrankungen gab [4, 39, 65]. Als Untersuchungsmaterial dienen etablierte Linien permanent wachsender Plattenepithelkarzinomzellen, die aus Kopf-Primärtumoren des und Halsbereiches, beziehungsweise deren Halslymphknotenmetastasen gewonnen wurden. Die Expression der Proteine aus den Zelllinien werden mit der Expression in Gewebeproben verglichen.

2. Material

Die wichtigsten Chemikalien und Verbrauchsmaterialien sind in alphabetischer Reihenfolge aufgeführt. Gesonderte Auflistungen der eingesetzten Medien, Puffer und Lösungen sowie Zelllinien finden sich in den nachfolgenden Unterkapiteln.

2.1. Chemikalien

Produkt *)	Firma
2-Propanol	Merck, Darmstadt
3,3'-Diaminobenzidine Tabletten	Sigma, Steinheim
Absolute QPCR SYBR Green Mix	Abgene, Hamburg
Aceton	Merck, Darmstadt
Acrylamid 30% ratiophorese Gel 30	Roth, Karlsruhe
Agarose (Electrophoresis grade)	Invitrogen Life Technologies, Karlsruhe
Ammoniumperoxiddisulfat (APS)	BioRad Laboratories GmbH, München
Amphotericin B	Bristol-Myers Squibb, München
BioRad-Protein Assay Farbstoffkonzentrat	BioRad Laboratories GmbH, München
Bovines Serum Albumin (BSA)	Sigma-Aldrich, St.Louis, USA
Bromophenol	Roth, Karlsruhe
Calciumchlorid	Merck, Darmstadt
Coomassie Blau 10%	Serva, Heidelburg
Dimethylsulfoxid (DMSO)	Merck, Darmstadt
di-Natriumhydrogenphosphat	Merck, Darmstadt
Dispase, Grad II, Bacillus polymyxa	Roche, Mannheim
Dithiothreitol (DTT)	BioTech, St. Leon-Rot
Dulbecco's Minimal Essential Medium (DMEM)	Bio Whittaker, Verviers, Belgium
ECL (Western blotting detection reagens)	Amersham, Bucklinghamshire, UK
Eisessig	Merck, Darmstadt
Epidermal Growth Factor (EGF)	Sigma-Aldrich, St.Louis, USA
Epinephrinhydrochlorid	Aventis, Frankfurt
Ethanol	Schmidt Chemikalien, Dillenburg
Ethidiumbromid	Sigma, München
Ethylendiamintetraacetat (EDTA)	Roth, Karlsruhe
Fetal Calf Serum, FCS (10%)	Seromed, Berlin
Fluorescent Mounting Medium	DakoCytomation, Carpinteria, USA
Formaldehyd	Merck, Darmstadt
Gentamycin, Refobacin 80mg	Merck, Darmstadt

Produkt *)	Firma
Glycerin	Roth, Karlsruhe
Glycin	Carl Roth GmbH & Co., Karlsruhe
Isopropanol	Merck, Darmstadt
Kaliumacetat	Riedel-de Haen, Seelze
Kaliumchlorid	Merck, Darmstadt
Keratinozytenmedium, Keratinocyte-SFM	Invitrogen Life Technologies, Karlsruhe
L-Glutamin	Gibco BRL, Eggenstein
Magermilchpulver	Merck, Darmstadt
Magnesiumchlorid	Sigma, München
Magnesiumsulfat	Merck, Darmstadt
Mayer's Hemalum Lösung	Merck, Darmstadt
Methanol	Merck, Darmstadt
Natriumacetat	Merck, Darmstadt
Natriumazid	Sigma, München
Natriumchlorid, NaCl	Merck, Darmstadt
Natriumdihydrogenphosphat	Merck, Darmstadt
Natriumdodecylsulfat (SDS)	Roth, Karlsruhe
Natriumhydroxid	Merck, Darmstadt
Natriumpyruvat	Gibco BRL, Eggenstein
Nonidet P-40	Fulka, Steinheim
Penicillin / Streptomycin-Gemisch	Invitrogen Life Technologies, Karlsruhe
Penicillin G	Jenapharm, Jena
Phenol	Sigma, München
Phosphatase Inhibitor Cocktail II	Sigma-Aldrich, St.Louis, USA
Phosphate buffered saline (PBS)	Biochrom AG, Berlin
Polyacrylamid	Serva, Heidelburg
Ponceau S solution	Sigma, Steinheim
Propidiumiodid	Sigma, München
Protease Inhibitor Cocktail	Sigma-Aldrich, St.Louis, USA
Protein G	Sigma-Aldrich, St.Louis, USA
Puffer Lösung (PH 4,00)	Merck, Darmstadt
Puffer Lösung (PH 7,00)	Merck, Darmstadt
Refobacin	Merck, Darmstadt
Roti-Histol	Roth, Karlsruhe
Saccharose (Sucrose)	Merck, Darmstadt
Salzsäure	Merck, Darmstadt

Produkt *)	Firma
Sodium-dodecyl-sulphate (SDS)	Serva, Heidelburg
Streptomycin, Strepto-Fatol	Fatol Arzneimittel GmbH
TEMED	Sigma, München
Tri-Natriumcitrat Dihydrat	Roth, Karlsruhe
Tris, Trizma Base	Carl Roth GmbH & Co., Karlsruhe
Tris-Base	Sigma, Steinheim
Tris-Cl	Roth, Karlsruhe
Trypsin	Biochrom AG, Berlin
Tween 20 (Polyoxyethylen-sorbitanmonolaurat)	Carl Roth GmbH & Co., Karlsruhe
Wasserstoffperoxid (30%)	Merck, Darmstadt
B-Mercaptoethanol	Schmidt Chemikalien, Dillenburg

*) alle Produkte entsprechen pro Analysi Qualität

2.2. Antikörper

 Tabelle 3. In dieser Arbeit verwendete Antikörper.

Antikörper	Klon	Spezies	Firma
Aktin (C11)	polyclonal	Ziege	Santa Cruz
anti-goat IgG-HRP	polyclonal	Esel	Santa Cruz
anti-mouse IgG-HRP	polyclonal	Ziege	Santa Cruz
Bcl-2	monoclonal	Maus	Sigma Aldrich
Bcl-x _L (H-5)	monoclonal	Maus	Santa Cruz

2.3. Puffer und Lösungen

Nährmedium für die Zellkultur:

Für die Inkubation der in Tabelle 4 genannten HNSCC-Zelllinien wurden zum DMEM Medium 10% Kälberserum, 200mM L-Glutamin, 1% Penicillin / Streptomycin 10.000U/ml / 10mg/ml), 0,1% Gentamycin (10mg/ml) und 0,1% Amphotericin (0,25mg/ml) hinzugegeben.

PBS:

 $CaCl_2$

 $MgCl_2$

Na ₂ HP0 ₄	6,5 mM
KH ₂ PO ₄	1,5 mM
KCI	2,5 mM
NaCl pH 7,25 autoklaviert	140 mM
TBS, pH 7,4 auf 1I a.d.:	
Tris pH 7,4	250 mM
NaCl	137 mM
KCI	50 mM

7 mM

5 mM

Laufpuffer für SDS-PAGE (10xElektrophoresepuffer, auf 2I a.d.:)

Tris Base	240 mM
Glycin	2,5 M
SDS	30 mM

Lysis-Puffer-NP 40:

Tris-Cl pH 8	20 mM
NaCl	137 mM
Glycerin	10% (v/v)
EDTA	2 mM
Nonidet P 40	1%

Sammelgel für Gelelektrophorese:

H ₂ O	2,7 ml
Acrylamid mix: Acrylamid	0,67 ml
(30%), Bisacrylamid (0,8%)	
1,0M Tris (pH 6,8)	0,5 ml
SDS (10%)	0,04 ml
APS (10%)	0,04 ml
TEMED	0,004 ml

Trenngel für Gelelektrophorese (12%):

H ₂ O	5 ml
Acrylamid mix: Acrylamid	6 ml
(30%), Bisacrylamid (0,8%)	
1,5M Tris (pH 8,8)	3,8 ml
SDS (10%)	0,15 ml
APS (10%)	0,15 ml
TEMED	0,006 ml

Blockpuffer:

3% Magermilchpulver in PBS

Transferpuffer Nass-Blot (pH 8,3, auf 11 a.d.):

Tris	20 mM
Glycin	190 mM

Strippuffer:

Tween

Tris/HCL pH 6,7	62,5 mM
SDS	2% (w/v)
β-Merkaptoethanol	100 mM
SDS – Probenpuffer, 2X:	
SDS 10%	4 ml
Glycerin	2 ml
Tris-HCI 0,5M pH 6,8	2,5 ml
Bromphenolblau 0,1%	0,5 ml
Aqua dest.	10 ml
SDS – Probenpuffer, 4X:	
SDS 20%	2 ml
Glycerin	4 ml
β-Merkaptoethanol	2 ml
Tris 2,0M pH 6,8	1,25 ml
Bromphenolblau 0,1%	0,4 ml
Lysispuffer für Immunofluore	eszenz:
Bovine Serum Albumine	3%
NP40	0,3%
PBS	pH 7,4
Natrium-Citrat-Puffer:	
tri-Natriumcitrat-Dihydrat	10 mM
destilliertes Wasser	
Waschpuffer:	
Tris/HCI, pH 7,9	100 mM
NaCl	1,5 M
	Tris/HCL pH 6,7 SDS β-Merkaptoethanol SDS 10% Glycerin Tris-HCI 0,5M pH 6,8 Bromphenolblau 0,1% Aqua dest. SDS 20% Glycerin β-Merkaptoethanol Tris 2,0M pH 6,8 Bromphenolblau 0,1% Glycerin β-Merkaptoethanol Tris 2,0M pH 6,8 Bromphenolblau 0,1% Lysispuffer für Immunofluore Bovine Serum Albumine NP40 PBS Natrium-Citrat-Puffer: tri-Natriumcitrat-Dihydrat destilliertes Wasser Waschpuffer: Tris/HCl, pH 7,9 NaCl

2,5%

2.4. Zelllinien

Zur Einschätzung der Proteinexpression Bcl-2 und von Bcl-x_L in Plattenepithelkarzinomen des Kopf- und Halsbereiches wurden Keratinozytenkulturen aus gesunder oraler Schleimhaut sowie 24 Plattenepithelkarzinomzelllinien für die Untersuchung verwendet. Insgesamt entstammen 19 der Zelllinien einem Primärtumor aus dem Kopf- oder Halsbereich und 5 Zelllinien Halslymphknotenmetastasen. Die Karzinomzelllinien der UM-SCC- und der UT-SCC-Reihe wurden uns freundlicherweise durch Dr. Thomas E. Carey (University of Michigan, MI, USA) bzw. durch Dr. Reidar Grénman (University of Turku, Finnland) zur Verfügung gestellt. Die UMB-SCC-Zelllinien sind wie zuvor beschrieben aus dem Zentrum für Hals-, Nasen- und Ohrenheilkunde der Philipps-Universität Marburg [55]. Als Referenzprobe wurden in der Klinik für Hals-, Nasen- und Ohrenheilkunde der Philipps-Universität Marburg gezüchtete Keratinozytenzelllinien verwendet. Die Keratinozyten wurden nach schriftlicher Einwilligung der Patienten im Rahmen diagnostischer und therapeutischer Routineeingriffe im oberen Aerodigestivtrakt gewonnen, die in der Klinik für Hals-, Nasen- und Ohrenheilkunde, Kopf- und Halschirurgie der Philipps-Universität Marburg durchgeführt wurden.

Name	Primärtumor	Gewebe	TNM	Grading	Alter	Geschlecht
UM-SCC-1	Mundboden	PT	T2N0M0	G2	73	m
UM-SCC-2	Alveolarkamm	PT	T2N0M0	G1	63	W
UM-SCC-3	Nase	LKM	T1N0M0	G1-G2	73	W
UM-SCC-4	Tonsille	PT	T3N2M0	G3	47	W
UM-SCC-9	Zunge	PT	T2N0M0	G1-G2	71	W
UM-SCC-11B	Kehlkopf	PT	T2N2M0		65	m
UM-SCC-14A	Mundboden	PT	T1N0M0	G2-G3	58	W
UM-SCC-14C	Mundboden	PT	T1N0M0	G3	58	W
UM-SCC-19	Zungengrund	PT	T2N1M0	G2-G3	67	m
UM-SCC-22B	Hypopharynx	LKM	T2N1M0	G2	58	W
UM-SCC-27	Zunge	LKM	T1N0M0		62	m
UMB-SCC-745	Oropharynx	PT	T4N2M0	G2	48	m
UMB-SCC-864	Zunge	PT	T2N2M0	G2	59	m
UMB-SCC-963	Pharynx	PT	T2N0M0	G2	63	m
UMB-SCC-969	Tonsille	PT	T4N2M1	G2	67	m
UT-SCC-8	Kehlkopf	PT	T2N0M0	G1	42	m

Tabelle 4. Daten der verwendeten HNSCC-Zelllinien

Name	Primärtumor	Gewebe	TNM	Grading	Alter	Geschlecht
UT-SCC-10	Zunge	PT	T1N0M0	G2	62	m
UT-SCC-12A	Nase	PT	T2N0M0	G1	81	W
UT-SCC-16A	Zunge	PT	T3N0M0	G3	77	W
UT-SCC-16B	Zunge	LKM	T3N0M0	G3	77	w
UT-SCC-19A	Kehlkopf	PT	T4N0M0	G2	44	m
UT-SCC-19B	Kehlkopf	PT	T4N0M0	G2	44	m
UT-SCC-24A	Zunge	PT	T2N0M0	G2	41	m
UT-SCC-26A	Hypopharynx	LKM	T1N2M0	G2	60	m

PT = Primärtumor, LKM = Lymphknotenmetastase.

2.5. Gewebeproben

Nach schriftlicher Einwilligung der Patienten wurden die untersuchten Gewebeproben während planmäßig durchgeführter Operationen bei Patienten mit Plattenepithelkarzinomen des oberen Aerodigestivtraktes entnommen. Die histopathologische Diagnose erfolgte im Institut für Pathologie des Uniklinikums Gießen und Marburg, Standort Marburg (Geschäftsführender Direktor: Professor Dr. R. Moll). Ein positives Ethikkommissionsvotum zu den in dieser Arbeit durchgeführten Patientengeweben liegt unter dem Titel "Zell-Untersuchungen an und Molekularbiologische Untersuchungen Geweben, Biomolekülen von und Kandidatengenen bei Erkrankungen des Kopf- Halsbereiches" vor.

Patient	Gewebe	TNM	Grading	Alter	Geschlecht
229	Parotis Referenzgewebe			39	m
1171	Larynx-Ca	T3 N2 M0	G3	62	m
1240	Mundboden-Ca	T2 N0 M0	G2	74	m
1252	Zungen-Ca	T4 N2 M0	G2	63	m
1256	NNH-Ca	T2 N0 M0	G2	72	W
1261	Hypopharynx-Ca	T4 N1 M0	G3	71	W
1280	Hypopharynx-Ca	T4 N2 M0	G2	69	m
1285	Mundboden-Ca	T2 N2 M0	G2	74	m
1286	Tonsillen-Ca	T3 N1 M0	G3	79	m
1292	Halslymphknoten	T2 N1 M0	G2	67	W
1303	Oropharynx-Ca	T2 N2 M0	G2	53	W

 Tabelle 5. Daten der verwendeten Gewebeproben.

Patient	Gewebe	ТММ	Grading	Alter	Geschlecht
1308	Zungengrund-Ca	T2 N0 M0	G2	65	m
1310	Hypopharynx-Ca	T2 N1M0	G3	57	m
1317	Larynx-Ca	T3 N1 M0	G2	64	m
1334	NNH-Ca	T2 N0 M0	G2	72	W
1347	Larynx-Ca	T3 N3 M1	G2	69	W
1353	Zungenrand-Ca	T2 N0 M0	G2	55	W

Insgesamt wurden 16 Biopsate verifizierter maligner Tumore für die Untersuchungen verwendet. Als Referenzprobe dienten Biopsate, die histologisch gesunder Schleimhaut des Gaumenbereiches entsprechen.

3. Methoden

3.1. Kultivierung von Karzinomzellen

Die in flüssigem Stickstoff gelagerten Karzinomzelllinien der UM-SCC-, der UT-SCCund der UMB-SCC-Reihe wurden unter sterilen Bedingungen schnell in einem Wasserbad oder durch Handwärme bei 37°C aufgetaut. Die Arbeiten fanden in einer Sicherheitswerkbank mit autoklavierten Glasmaterialien, sterilen Lösungen und Plastikutensilien statt. Da die Zelllinien zum Gefrierschutz mit 10% Dimethylsulfoxid (DMSO) versehen wurden, wurde die Zellsuspension mit 8 ml Dulbecco's modified Eagle Nährmedium (DMEM) in 15-ml-Zentrifugenröhrchen überführt und 5 Minuten bei 3000 U/min zentrifugiert. Dem Nährmedium wurden 10% fötales Kälberserum sowie 25mM HEPES, Penicillin, Streptomycin, Amphotericin, Gentamycin und L-Glutamin beigefügt. Der Überstand, der aus DMEM und DMSO bestand, wurde abgesaugt und das zurückgebliebene Zellpellet in 8 ml Nährmedium suspendiert. Die Suspension wurde in eine Zell- und Gewebekulturschale ausgesät und im Begasungsbrutschrank bei konstant 37°C mit 5% CO₂-Anreicherung und 95% Luftfeuchtigkeit (RH) inkubiert. Das Wachstum der Zellen wurde täglich unter einem invertierten Lichtmikroskop (binokulares Lichtmikroskop Talaval 31, Zeis) beobachtet, dabei wurde das Nährmedium regelmäßig gewechselt. Sobald der Kulturplattenboden vollständig bedeckt war (100% Konfluenz), wurde entweder eine Proteinextraktion zur Herstellung von Gesamtzellysaten durchgeführt oder sie wurden in flüssigem Stickstoff zur späteren Verarbeitung und Verwendung eingefroren oder aber auf neue Kulturschalen verteilt (gesplittet).

Wenn die Zellen mehr als 80% des Gefäßbodens bedeckten (80% Konfluenz), wurden sie gesplittet. Hierzu wurde zunächst das Nährmedium abgesaugt; die adhärenten Zellen verblieben auf dem Boden der Kulturschale. Die verbliebenen Zellen wurden mit phosphatgepufferter Salzlösung (PBS) gespült um eventuelles Nährmedium zu entfernen, da die Protease-Inhibitoren im Serum des Nährmediums das Lösen (Trypsinisieren) der Zellen verhindert hätten. Die Zellen wurden nach Zugabe von 1,5 ml Trypsin-EDTA-Lösung (0,025% Trypsin; 0,05% EDTA) einige Minuten bei 37°C inkubiert. Nachdem die Zellen sich gelöst hatten, wurden sie in 8 ml Nährmedium suspendiert und in einem Falcon Röhrchen 5 Minuten bei 3000 U/min zentrifugiert. Der Überstand wurde abgesaugt und das verbleibende Zellpellet erneut in 8 ml Nährmedium suspendiert. Durch die im Serum enthaltenen Protease-Inhibitoren wurde das überschüssige Trypsin inaktiviert. Die Suspension wurde auf mehrere Kulturschalen ausgesät und erneut im Inkubator bei konstant 37°C mit 5% CO₂-Anreicherung und 95% RH kultiviert.

Zur erneuten Lagerung wurden die Zellen nach Trypsinisierung und Herstellen einer Gefrierlösung (90% Gefrierlösung, 10% DMSO) überführt und langsam auf -80°C heruntergekühlt. Im Anschluss daran erfolgte der Transfer in flüssigen Stickstoff, um dort geschützt vor äußeren Einflüssen gelagert zu werden.

3.2. Kultivierung von Keratinozyten

Unmittelbar nach ihrer Entnahme im Operationssaal wurden die benignen Schleimhautproben zerkleinert, danach in DMEM überführt und anschließend bei 4°C bis zur Weiterverarbeitung gelagert. Die Etablierung der Keratinozytenkulturen erfolgte nach der modifizierten Methode von Saffran [69]. Die Schleimhautbiopsate wurden unter sterilen Bedingungen in eine Kulturschale überführt und dreimal in 10 ml PBS-Lösung gewaschen. Bindegewebige Anteile wurden mit einer Pinzette und einem Skalpell entfernt. Anschließend erfolgte für 1 Stunde eine Dispasebehandlung bei 37°C. Das Probenmaterial wurde erneut in PBS gewaschen, die Epidermis von der Dermis gelöst und im Anschluss daran wurden die Proben zur Disaggregation der Zellverbände bei 37°C in 5 ml einer 0,5% Trypsin-PBS-Lösung inkubiert. Um die Aktivität des Trypsins zu stoppen, wurde nach 20 – 30 Minuten fetales Rinderserum (FCS) zu den Proben gegeben. Die entstandenen Zellsuspensionen wurden in Falcon Röhrchen überführt und für 5 Minuten bei 800 U/min zentrifugiert. Der Überstand wurde abgesaugt und das verbleibende Zellpellet mit 5 ml Keratinozyten-Nährmedium resuspendiert. Dieser Vorgang wurde dreimal wiederholt, danach wurde die Zellsuspension in eine Zell- und Gewebekulturschale ausgesät und im Inkubator bei konstant 37°C mit 5% CO₂-Anreicherung und 95% Luftfeuchtigkeit kultiviert. Das Wachstum der Zellen wurde regelmäßig unter einem Lichtmikroskop beobachtet und das Nährmedium bei Bedarf gewechselt. Die Keratinozyten bildeten nach durchschnittlich 10 Tagen einen den Kulturplattenboden vollständig bedeckenden adhärenten Zellverband (100% Konfluent). Die Keratinozyten wurden nun entweder zur Aufbewahrung in flüssigen Stickstoff überführt oder es erfolgte eine Proteinextraktion.

3.3. Stimulierung der Zellen mit EGF

Der Wachstumsfaktor EGF wurde in aufsteigender Konzentration dem Medium der zu untersuchenden Zelllinien hinzugefügt. Hierbei wurde die erste Probe mit 0,1 ngEGF/ml, die zweite Probe mit 1 ngEGF/ml, die dritte Probe mit 10 ngEGF/ml, die vierte Probe mit 100ng/ml und die fünfte Probe mit 1000ngEGF/ml stimuliert. Nach 13 Stunden Inkubationszeit bei 37°C, 5% CO2 und 95% RH wurden die Zellen nach Trypsinisierung gesammelt und die Proteinextraktion durchgeführt.

3.4. Proteinextraktion

Für die Herstellung von Gesamtzellysaten wurden die Zellen zunächst trypsinisiert. Dann, anders als beim Splitten der Zellen neu ausgesät zu werden, wurde das Pellet nach der ersten Zentrifugation mit PBS suspendiert und erneut 5 Minuten bei 3000 U/min zentrifugiert. Nach Absaugen des Überstandes wurde das Zellpellet nach der NP-40-Lysis-Methode nach King [41] weiterverarbeitet. Der Lysispuffer bestand aus 20 mM Tris-Cl pH8, 137 mM NaC, 10% (v/v) Glycerin, 2 mM EDTA und 1% Nonidet P 40.

Hierzu wurde 1 ml des NP 40 Lysispuffer mit jeweils 50 µl Protease- und Phosphatase-Inhibitoren versetzt und auf Eis gelagert. Das Zellpellet wurde nun in zwei Volumenteilen (VT) Lysis-Puffer-Lösung aufgenommen, durch vorsichtiges Aufund Abpipettieren homogenisiert, in ein 1,5 ml Eppendorf Röhrchen überführt und abschließend 20 Minuten bei 4°C und 13.000 U/min zentrifugiert. Der Überstand, der die Proteine enthielt, wurde in ein neues Röhrchen überführt und auf Eis gelagert, beziehungsweise zur längerfristigen Lagerung bei -80°C aufbewahrt.

Für die Herstellung von Gesamtzellysaten aus den Gewebeproben wurden von den bei -80°C gelagerten Gewebeproben kleine Mengen entnommen, mit flüssigem Stickstoff übergossen und ohne Auftauen zu feinem Pulver verkleinert. Das gewonnene Gewebepulver wurde wiederum in Eppendorf Röhrchen überführt und wie das gewonnene Zellpellet aus den SCC-Zelllinien mit Lysis-Puffer-Lösung homogenisiert und anschließen zentrifugiert.

3.5. Bestimmung der Proteinkonzentration

Zur Messung der Proteinkonzentration wurden 3 µl des zu bestimmenden Lysates mit 1 ml BioRad Farbstoffkonzentrat (Verdünnung 1:5) gemischt und dann die Extinktion bei 595 nm in Mikroplastikküvetten bestimmt. Zur Erstellung einer Eichkurve wurde eine Rinderserum Albumin-Lösung (Bovine Serum Albumine, BSA) verwendet. Das Mischungsverhältnis entsprach dabei den Angaben von Tabelle 6.

	LW	St 1	St 2	St 3	St 4	St 5	Probe
Biorad 1:5	1 ml						
BSA	-	1 µl	2 µl	3 µl	4 µl	5 µl	-
Lysis-Puffer	3 µl	-					
Probenextrakt	-	-	-	-	-	-	3 µl

Tabelle 6. Mischungsverhältnis für Proteinbestimmung nach Bradford

LW = *Leerwert, St* = *Standard (zur Erstellung der Eichkurve)*

3.6. SDS-Polyacrylamidgelelektrophorese (PAGE)

Zur gelelektrophoretischen Auftrennung nach Molekulargewicht wurden die Proteine zunächst mit Natriumdodecylsulfat (SDS) denaturiert und mit β-Mercaptoethanol reduziert. Durch die Bindung von SDS an die hydrophoben Regionen der Proteine wird die Eigenladung der Proteine überdeckt, wobei alle Proteine negativ geladen werden. Durch die einheitliche Ladung hängt die Mobilität der Proteine im Acrylamidgel nicht mehr vom isoelektrischen Punkt sondern nur noch von ihrer Größe ab. Die Polyacrylamidgele bestehen aus einem Sammelgel und einem Trenngel. Das Sammelgel bewirkt eine Konzentration der Proteine, so dass die Proteine praktisch gleichzeitig in das Trenngel eintreten. Die Sammel- und Trenngele wurden entsprechend Tabelle 7 angesetzt, wobei die Konzentration des Trenngels von der Größe der untersuchten Proteine abhängt.

	Sammelgel	Trenngel 8%	Trenngel 10%	Trenngel 12%
H ₂ O	0,68 ml	2,3 ml	2,0 ml	1,7 ml
30% Acrylamidlösung	0,17 ml	1,3 ml	1,7 ml	2,0 ml
1,5 M Tris (pH 6,8)	0,13 ml	-	-	-
1,5 M Tris (pH 8,8)	-	1,3 ml	1,3 ml	1,3 ml
10% SDS	0,01 ml	0,05 ml	0,05 ml	0,05 ml
10% APS	0,01 ml	0,05 ml	0,05 ml	0,05 ml
TEMED	0,001 ml	0,003 ml	0,002 ml	0,002 ml
Gesamtvolumen	1 ml	5 ml	5 ml	5 ml

Tabelle 7. Zusammensetzung der Polyacrylamidgele für die SDS-PAGE

Die SDS-Polyacrylamid-Gele setzten sich aus dem oberen, der Fokussierung der Banden dienenden Sammelgel und dem Trenngel zusammen.

Das Mini-Elektrophorese System wurde bis etwa 1,5 cm unterhalb der oberen Kante mit Trenngel gefüllt, mit Isopropanol überschichtet, und nach 30 Minuten abgegossen. Dann wurde das Elektrophorese System mit Sammelgel aufgefüllt und ein Probenkamm möglichst luftblasenfrei eingesetzt. Während das Sammelgel mindestens 30 Minuten lang trocknete, wurden jeweils 60 µg der Proteinproben mit Lysispuffer auf 15 µl aufgefüllt, in 5µl 4x SDS-Puffer aufgenommen und 5 Minuten bei 95°C denaturiert.

Das Elektrophorese System wurde nun in den Elektrophoresepuffer überführt, die Probenkämme entfernt und die Proben in die entstandenen Taschen pipettiert. Um eine Referenz für das jeweilige Molekulargewicht zu erhalten wurde jedes Gel mit einer Standardlösung befüllt. Für die Elektrophorese wurde im Sammelgel eine Spannung von 40 Volt und nach dem Eintritt der Proteine in das Trenngel eine Spannung von 80 Volt angelegt. Nach etwa 2 Stunden war die Elektrophorese abgeschlossen und die Proteine nach ihrer Größe aufgeteilt.

3.7. Protein Transfer (Western Blot)

Die durch die SDS-Gelelektrophorese aufgetrennten Proteine müssen zur Weiterverarbeitung aus dem Gel auf eine Nitrozellulosemembran transferiert werden. Für diesen Transfer wurde ein Elektrophorese Transfer System benutzt. Dafür wurden je Gel 2 Schaumstoffpads, 2 Filterpapiere und eine Nitrozellulosemembran in Blotpuffer getränkt. Auf die Anode des Transfer Systems wurden nun eines der getränkten Schaumstoffpads, ein Filterpapier, die Nitrozellulosembran und das SDS-Gel gelegt. Den Abschluß bildeten das zweite Filterpapier sowie das zweite Schaumstoffpad. Vor dem Aufsetzen der Kathode wurde eine Pipette mit gleichmäßigem Druck über dieses Päckchen gerollt, um sicherzustellen, dass die einzelnen Schichten luftblasenfrei aufeinanderlagen. Der Proteintransfer erfolgte bei 100 Volt über 90 Minuten unter Kühlung. Die Übertragung des gefärbten Proteinmarkers auf die Zellulosemembran gab Auskunft darüber, ob der Transfer stattgefunden hatte. Zusätzlich wurde die Nitrozellulosemembran mit Ponceau-Farbstoff eingefärbt. Dieser Farbstoff färbt Proteine reversibel an und zeigt dadurch gegebenenfalls einen ungleichmäßigen Transfer und eventuell vorhandene Luftblasen auf der Membran an. Die Membran konnte nun entweder in Frischhaltefolie gewickelt bei 4°C gelagert oder für den immunologischen Nachweis weiterverarbeitet werden.

3.8. Inkubation mit Antikörpern

Um den Expressionsgrad der untersuchten Proteine darstellen zu können, werden die Proteine auf der Nitrozellulosemembran mit spezifischen Antikörpern hybridisiert. Um unspezifische Bindungsstellen abzusättigen, wird die Membran bei Raumtemperatur für mindestens 30 Minuten in 3% Magermilch-PBS-Lösung auf einem Kippschüttler inkubiert. Danach wird die Membran mit dem entsprechenden Primärantikörper, welcher das nachzuweisende Protein spezifisch erkennt bei 4°C über Nacht inkubiert. Der Primärantikörper wurde hierzu in der Verdünnung 1:1000 in 3% Magermilch-PBS-Lösung übertragen. Als Referenz für die untersuchten Proteine wurde Aktin gewählt, da die Aktinexpression relativ stabil ist. Die Konzentration der Aktinantikörper entsprach der Konzentration der anderen untersuchten Antikörper.

Am nächsten Morgen wurde die Membran fünfmal für jeweils fünf Minuten in der Magermilchlösung auf dem Kippschüttler gespült, um nicht gebundene Antikörper auszuwaschen. Anschließend wurde die Membran für 60 Minuten mit dem jeweiligen an das Enzym Horseradish Peroxidase (HRP) gekoppelten Zweitantikörper inkubiert. Der Zweitantikörper wurde hierzu in einer Verdünnung von 1:2000 ebenfalls in Magermilchlösung eingesetzt. Abschließend wurde die Membran wieder fünfmal für jeweils fünf Minuten in der Magermilchlösung gespült, um die nicht gebundenen Antikörper auszuwaschen. Die Detektion der Proteinbanden erfolgte durch das Elektrochemolumineszenz- (ECL-) Verfahren.

3.9. Wiederverwendung der Nitrozellulosemembranen

Die mit Antikörpern hybridisierten Membranen wurden bis zu viermal mit verschiedenen Antikörpern getestet. Nach der ersten Testung erfolgte zunächst die Loslösung der noch gebundenen Antikörper (Stripping). Hierzu wurde die Membran bei 50°C auf dem Kippschüttler in einer Stripping Puffer Lösung (62,5 mM Tris/HCL pH 6,7; 2% (w/v) SDS; 100 mM β -Merkaptoethanol) gewaschen. Nach 30 Minuten wurde die Membran zweimal 15 Minuten in PBS gespült und anschließend eine Stunde in 3% Magermilch inkubiert. Danach war die Membran bereit für eine erneute Inkubation mit einem anderen Antikörper.

3.10. Detektion mit dem Enhanced Chemolumineszenzverfahren (ECL)

Die Proteinbanden wurden mit Hilfe des Enhanced Chemolumineszenz- (ECL) Verfahrens sichtbar gemacht. Das Enzym HRP, das an den Zweitantikörper gekoppelt ist, bewirkt eine Anregung des in der ECL-Lösung vorhandenen Substrates Luminol. Die dabei auftretenden Lichtemissionen verursachen eine Schwärzung des Röntgenfilmes.

Für das ECL-Verfahren wurde die Membran für eine Minute in der ECL-Lösung inkubiert und anschließend auf Röntgenfilm exponiert. Abhängig von der Stärke des Signals betrug die Expositionszeit der Röntgenfilme zwischen einer und 30 Minuten.

3.11. Immunhistochemie

Die in formalinfixierten Gewebeproben wurden zunächst in Paraffinblöcke gegossen, und über Nacht bei 4°C aufbewahrt. Dann wurden aus den Blöcken ca. 5µm dicke Schnitte angefertigt (Mikrotom S35, Feather, Japan), diese auf Objektträger gelegt und für mindestens eine Stunde bei 60°C auf diesen fixiert. Nun wurden die Präparate durch 30-minütige Inkubation in Roti-Histol deparaffiniert und 15 Minuten in 100% Alkohol und jeweils fünf Minuten in 90% und 70 % Alkohol fixiert. Um falsche positive Ergebnisse zu vermeiden, werden die endogenen Peroxidasen blockiert. Hierzu werden die Präparate 30 Minuten in Methanol / 3% H₂O₂ inkubiert. Um das Biotin (Vitamin H) zu blockieren, wurden die Präparate fünf Minuten in destilliertem Wasser gespült, zehn Minuten in Natrium-Citrat-Lösung gekocht und mindestens 20 Minuten in der Natrium-Citrat-Lösung auf Raumtemperatur abgekühlt. Ab diesem Schritt musste kontinuierlich darauf geachtet werden, dass die Schnitte nicht eintrockneten. Nach dem Abkühlen wurden die Schnitte 30 Minuten in TBS gespült, mit einem Fettstift umrandet und mit 1:10 verdünnter Serum-PBS-Lösung bei Raumtemperatur in der feuchten Kammer inkubiert. Hierbei stammte das Serum aus der gleichen Tierart wie der Zweitantikörper.

3.12. Detektion der untersuchten Proteine

Nach 30 Minuten wurde das Serum entfernt und der Primärantikörper in der Verdünnung 1:100 auf die Objektträger gegeben. Die Antikörper inkubierten nun über Nacht bei 4°C in der feuchten Kammer. Als Sekundärantikörperkontrolle ohne Primärantikörper verblieb bei den Negativproben das Serum auf den Objektträgern.

Um die Präparate von überschüssigen Primärantikörpern zu befreien, wurden diese am nächsten Morgen 30 Minuten in PBS gewaschen. Danach wurde der Zweitantikörper in einer 1:100 Verdünnung auf die Objektträger gegeben und für 30

- 24 -

Minuten in der feuchten Kammer bei Raumtemperatur inkubiert. Nach fünfminütiger Waschung in PBS wurden die Präparate mit dem AB-Komplex (Avidin-Biotin-Komplex) inkubiert. Nach 30 Minuten wurden die Präparate erneut 5 Minuten in PBS gespült und 15 Minuten mit H_2O_2/DAB -Tris/HCl inkubiert.

3.13. qRT-PCR (Quantitative reverse transcription-polymerase chain reaction)

Um die zu einem bestimmten Zeitpunkt in der Zelle in Produktion befindlichen bzw. aktivierten Proteine zu bestimmen, wurde die Methode der qRT-PCR (Quantitative Reverse Transkriptase Polymerase Kettenreaktion) gewählt. Die qRT-PCR detektiert die Menge der zu einem bestimmten Zeitpunkt in der Zelle vorhandenen mRNA-Sequenzen für ein bestimmtes Protein; damit lassen sich zum Beispiel Veränderungen der Mengen von mRNA-Transkripen eines bestimmten Gens feststellen. Zunächst erfolgte die Isolierung der Gesamt-RNA, im Anschluss daran erfolgt die Reverse Transkription von RNA in cDNA, welche dann mittels PCR detektiert werden kann.

Die Isolierung der RNA aus Zelllinien erfolgte mit dem RNeasy MIDI System (Qiagen GmbH, Hilden) nach Angaben des Herstellers behandelt. Die gRT-PCR wurde in einem Mx30000P Lightcycler für 45 Zyklen bei einer Temperatur von 57 C° durchgeführt. Die PCR Reaktionen wurden mit Hilfe des Absolute QPCR SYBR Green Mix und einer Primer Konzentration von 0.2 µM nach der Anleitung des Herstellers durchgeführt. Mittels Probefinder (http://www.universalprobelibrary.com) wurde der optimale real-time PCR Assay für ENSG00000171552.3 Bcl-x₁ ermittelt. Der linke Primer TCACTGTCTTGTACCCTTGTGC, war hierbei der rechte GGCGTTTGGAGTGGTAGAAA. Die verwendeten Oligonukleotide wurden von MWG Biotech synthetisiert. Um eine Vergleichbarkeit der erhaltenen Ergebnisse gewährleisten zu können, wurde in jedem Versuch neben den Protein-RT-PCRs auch eine **RT-PCR** für Aktin durchgeführt. Hierfür wurden die 5′ AGAGGGAAATCGTGCGTGAC 3' und die 3' CAATAGTGATGACCTGGCCGT 5' Primer verwendet.

4. Ergebnisse

4.1. Bcl-2

4.1.1. Western Blot Analyse der Gewebeproben

Die Expression von Bcl-2 bei den in Tabelle 5 aufgeführten Gewebeproben wurde zunächst mittels Western Blot untersucht. Als Referenzprobe wurde hierfür Parotisgewebe, bei dem es histopathologisch keinen Anhalt auf eine pathologische Veränderung gab, verwendet. Wie in Abbildung 2a dargestellt, zeigte das Parotisgewebe eine eindeutige Expression von Bcl-2, die untersuchten HNSCC-Gewebeproben zeigten eine unterschiedlich ausgeprägte Expression des Proteins. Die Gewebeprobe eines Larynxkarzinoms (1171) wies keine Bcl-2 Expression auf. Die Gewebeproben aus Mundbodenkarzinomen (1240 und 1285) wiesen keine Expression des untersuchten Proteins auf. Auch die Gewebeproben eines Zungenkarzinoms (1252) und eines Nasennebenhöhlenkarzinoms (1256) wiesen keine Expression von Bcl-2 auf. Eine eindeutige Expression von Bcl-2 ließ sich in den Gewebeproben eines Hypopharynxkarzinoms (1286) und eines Tonsillenkarzinoms nachweisen.

Abbildung 2a. *Expression von Bcl-2 in HNSCC-Gewebeproben.* In der Western Blot Analyse zeigte das Referenzgewebe 229 eine schwächere Expression von Bcl-2. 1286 und 1261 zeigten eine starke Expression von Bcl-2, keine Expression zeigte sich bei den Gewebeproben 1171, 1240, 1252, 1256, 1280, 1285.

Wie in Abbildung 2b dargestellt, Gewebeprobe wiesen die einer Halslymphknotenmetastase eines Hypopharynxkarzinoms (1292), eines Oropharynxkarzinoms (1303) und eines Zungengrundkarzinoms (1308) eine schwache Expression von Bcl-2 auf. Die stärkste Expression von Bcl-2 zeigte sich in der Gewebeprobe eines Hypopharynxkarzinoms (1310). Keine eindeutige Expression des untersuchten Proteins Bcl-2 zeigte sich in den Gewebeproben aus Larynxkarzinomen (1317, 1347), aus einem Nasennebenhöhlenkarzinom (1334), und einem Zungenrandkarzinom (1353).

Abbildung 2b. *Expression von Bcl-2 in HNSCC-Gewebeproben.* In der Western Blot Analyse wurde Bcl-2 am stärksten in der Gewebeprobe 1310 exprimiert, eine schwächere Expression lag bei 1292, 1303 und 1308 vor. Keine Expression zeigte sich bei den Gewebeproben 1317, 1334, 1347 und 1353.

4.1.2. Immunhistochemische Analyse der Gewebeproben

Um weiterführende Informationen über die Expression und die Lokalisation von Bcl-2 zu erlangen, wurden die Gewebeproben immunhistochemisch untersucht. Wie schon in der Western Blot Analyse zeigte sich bei der Gewebeprobe eines Hypopharynxkarzinoms (1310) auch in der immunhistochemischen Untersuchung eine starke Expression von Bcl-2. Auch die Gewebeprobe eines Tonsillenkarzinoms (1286) zeigte in der immunhistochemischen Untersuchung, wie zuvor auch in der Western Blot Analyse, eine eindeutige Expression des untersuchten Proteins. Die Gewebeprobe einer Halslymphknotenmetastase eines Hypopharynxkarzinoms (1292), die in der Western Blot Analyse eine schwache Expression des untersuchten Proteins aufwies, wies in der immunhistochemischen Untersuchung eine deutliche Expression von Bcl-2 auf. Parallel zur schwachen Expression von Bcl-2 in der Western Blot Analyse wiesen die Gewebeproben eines Oropharynxkarzinoms (1303)und eines Zungengrundkarzinoms (1308) auch in der immunhistochemischen Analyse eine schwache Expression von Bcl-2 auf. Im Gegensatz zur durchgeführten Western Blot Analyse, in der sich keine Expression des untersuchten Proteins zeigte, wies die immunhistochemische Untersuchung der Gewebeproben aus Mundbodenkarzinomen (1240 und 1285) eine starke Expression des Proteins auf. Auch in der Gewebeprobe eines Zungenkarzinoms (1252) zeigte sich immunhistochemisch eine starke Expression von Bcl-2, obwohl sich in der Western Blot Analyse keine Expression dargestellt hatte. Im Gegensatz dazu zeigte sich bei der Gewebeprobe eines Hypopharynxkarzinoms (1261) in der immunhistochemischen Untersuchung keine signifikante Expression von Bcl-2, obwohl sich in der Western Blot Analyse eine Expression nachweisen ließ. Die Gewebeprobe aus einem Larynxkarzinom (1317) zeigte weder in der immunhistochemischen Untersuchung noch in der Western Blot Analyse eine Expression des untersuchten Proteins. Abbildung 3 zeigt die immunhistochemische Darstellung der Expression von Bcl-2 in den untersuchten Gewebeproben.

Abbildung 3. *Expression von Bcl-2 in Gewebeproben.* Die immunhistochemische Darstellung der untersuchten Gewebeproben. Die Zellkerne färben sich blau an, das untersuchte Protein Bcl-2 bildet ein braunes Präzipitat. Die stärkste Expression von Bcl-2 fand sich in den Gewebeproben 1240, 1252, 1285, 1286 und 1292. Die Gewebeproben 1261 und 1317 wiesen in der immunhistochemischen Untersuchung keine Expression von Bcl-2 auf.

4.1.3. Zelllinien

Die Expression von Bcl-2 bei den in Tabelle 4 aufgeführten Zelllinien wurde zunächst mittels Western Blot Analyse untersucht. Als Referenzprobe wurden hierfür Keratinozyten verwendet. Die Gewebeprobe 1310 wurde als Positivkontrolle verwendet, da unsere vorhergehenden Untersuchungen eine starke Expression von Bcl-2 in der Gewebeprobe 1310 nachweisen konnten. In den Western Blot Untersuchungen zeigte sich in den untersuchten Zelllinien eine unterschiedliche Expression von Bcl-2. Wie auch schon in unseren vorhergehenden Untersuchungen zeigte die Gewebeprobe 1310 eine deutliche Expression von Bcl-2. Die Keratinozyten zeigten keine Expression von Bcl-2. Die Zelllinie aus einem Primärtumor eines Mundbodenkarzinoms (UM-SCC-1), die Zelllinie aus einer Lymphknotenmetastase eines Nasenkarzinoms (UM-SCC-3), die Zelllinie aus einem Tonsillenkarzinom UM-SCC-4), die Zelllinie aus einem Zungenkarzinom (UM-SCC-9), die Zelllinie aus einem Kehlkopfkarzinom (UM-SCC-11B), die Zelllinie aus der Lymphknotenmetastase eines Hypopharynxkarzinoms (UM-SCC-22B) die Zelllinie und aus der Lymphknotenmetastase eines Zungenkarzinoms (UM-SCC-27) wiesen in der durchgeführten Western Blot Analyse keine Expression von Bcl-2 auf.

Die Zelllinie aus einem Primärtumor eines Zungenkarzinoms (UMB-SCC-864) wies in der Western Blot Analyse die stärkste Expression von Bcl-2 auf. Die Zelllinie aus einem Tonsillenkarzinom (UMB-SCC-969) und die Zelllinie aus einem Zungenkarzinom (UT-SCC-24A) zeigten in der Western Blot Analyse eine Expression von Bcl-2. Die anderen untersuchten Zelllinien, inklusive der Keratinozyten zeigten in der Western Blot Analyse keine signifikante Expression von Bcl-2.

Abbildung 4b. *Expression von Bcl-2 in Zelllinien.* Die Western Blot Analyse zeigte eine Expression von Bcl-2 in den HNSCC-Zelllinien UMB-SCC-864, UMB-SCC-969 und UT-SCC-24A. Die restlichen Zelllinien wiesen keine signifikante Expression von Bcl-2 auf.

4.2. Bcl-x_L

4.2.1. Immunhistochemische Analyse der Gewebeproben

Die Expression von Bcl-x bei den in Tabelle 5 aufgeführten Gewebeproben wurde mittels immunhistochemischer Analyse untersucht. Hierbei zeigte sich eine deutliche Expression von Bcl-x_L in der Gewebeprobe aus einem Mundbodenkarzinom (1240). Auch die Gewebeprobe aus einem Zungenkarzinom (1252) zeigte in der immunhistochemischen Untersuchung eine starke Expression von Bcl-x_L. In den Gewebeproben eines Hypopharynxkarzinoms (1310) und eines Tonsillenkarzinoms (1286) war die Expression von Bcl-x_L schwächer. Eine schwache Expression von Bcl-x_L zeigte sich in der immunhistochemischen Untersuchung der Gewebeprobe aus einem Larynxkarzinom (1317). Keine Expression von Bcl- x_L zeigte sich in den übrigen Gewebeproben, nämlich einem Mundbodenkarzinom (1285),einer Halslymphknotenmetastase eines Hypopharynxkarzinoms (1292) und einem Oropharynxkarzinom (1303). Die Abbildung 5 zeigt die immunhistochemische Darstellung der Expression von Bcl-x_L in den untersuchten Gewebeproben.

Abbildung 5. *Expression von Bcl-x_L in Gewebeproben.* Die immunhistochemische Darstellung der untersuchten Gewebeproben. Die Zellkerne färben sich blau an, das untersuchte Protein Bcl-x_L bildet ein braunes Präzipitat. Die stärkste Expression von Bcl-x_L findet sich in den Gewebeproben 1240 und 1252. Eine etwas schwächere Expression zeigt sich in den Gewebeproben 1310 und 1286. Schwach wird Bcl-x_L in der Gewebeprobe 1317 exprimiert. Keine Expression zeigt sich in den übrigen Gewebeproben 1285, 1292 und 1303.

4.2.2. Zelllinien

Die Expression von Bcl-x_L, bei den in Tabelle 4 aufgeführten Zelllinien, wurde mittels Western Blot Analyse untersucht. Wie in Abbildung 6 dargestellt, zeigte sich in der Western Blot Analyse in den untersuchten Zelllinien eine unterschiedliche Expression von Bcl-x_L. Am stärksten wurde Bcl-x_L in der Zellinie, die sich von einer Lymphknotenmetastase eines Nasenkarzinoms (UM-SCC-3) ableitet, exprimiert. Eine Expression zeigte sich in den Zelllinien, schwächere die aus einem Oropharynxkarzinom (UMB-SCC-745) und einem Zungenkarzinom (UMB-SCC-864) stammen. Die Zelllinien aus einem Mundbodenkarzinom (UM-SCC-14A), einer Lymphknotenmetastase Zungenkarzinoms eines (UM-SCC-27), einem Tonsillenkarzinom (UMB-SCC-969), einem Zungenkarzinom (UT-SCC-24A) und aus einer Lymphknotenmetastase eines Hypopharynxkarzinoms (UT-SCC-26A) wiesen eine schwache Expression von Bcl-x_L in der durchgeführten Western Blot Analyse auf.

Abbildung 6. *Expression von Bcl-x*_L *in HNSCC-Zelllinien.* Die Western Blot Analyse der Expression von Bcl-x_L zeigte die stärkste Expression in der Zelllinie UM-SCC-3. Eine schwächere Expression zeigte sich in den Zelllinien UMB-SCC-745 und UMB-SCC-864. Eine schwache Expression von Bcl-x_L zeigte sich bei den Zelllinien UMS-SCC-14A, UM-SCC-27, UMB-SCC-969, UT-SCC-24A und UT-SCC-26A.

4.3. Stimulation mit EGF

Der Einfluß von EGF auf die Expression von Bcl- x_L wurde bis zum jetzigen Zeitpunkt noch nicht untersucht, so dass wir diesbezüglich weitere Untersuchungen durchgeführt haben. Für unsere Untersuchungen wurden acht etablierte Zelllinien herangezogen [55] und auf die Expression der Proteine Bcl- x_L und Bcl-2 vor und nach EGF-Stimulation mit Hilfe der Western Blot Analyse untersucht. Hierfür wurden alle Zelllinien mit 100ng/ml EGF stimuliert. Wie in Abbildung 7 dargestellt zeigte sich, dass die Stimulation des EGF-Rezeptors mit seinem natürlichen Liganden EGF keine auffällige Veränderung der Bcl-2 Expression bewirkte, die Expression von Bcl- x_L dagegen zeigte eine deutliche Zunahme in allen fünf untersuchten Zelllinien.

Abbildung 7. Expression von BcI- x_L und BcI-2 in HNSCC-Zelllinien vor (-) und nach (+) Stimulation mit 100 ng/ml EGF. Die Western Blot Analyse der Expression von BcI-2 und Aktin zeigte keine Abhängigkeit von der Stimulation mit EGF. Dagegen nahm die BcI- x_L -Expression in allen fünf getesteten Zelllinien nach Stimulation mit EGF deutlich zu.

Am stärksten veränderte sich die Expression von Bcl-x_L nach EGF-Stimulation in der Zelllinie eines Oropharynxkarzinoms (UMB-SCC-745). Eine etwas schächere Zunahme der Expression von Bcl-x_L nach EGF-Stimulation zeigten die Zelllinien aus einem Tonsillenkarzinom (UMB-SCC-969) und einem Zungenkarzinom (UT-SCC-24A). Auch die während unseren Untersuchungen am schwächsten gesteigerte Expression von Bcl-x_L in den übrigen Zelllinien zeigte einen signifikanten Anstieg nach Stimulation mit EGF.

4.4. Titration des EGF-Effektes

Um die unterschiedlichen Ausprägungen in der Expression von Bcl-x_L nach EGF-Stimulation in HNSCC-Zelllinien weiter zu untersuchen, wurde eine Western Blot Analyse der Expression von Bcl-x_L nach Stimulation mit 0,1; 1; 10; 100 und 1000 ng/ml EGF in aufsteigender Reihenfolge durchgeführt. Hierbei zeigten sich unterschiedliche Ausprägungen der Expression von Bcl-x_L nach der Stimulation mit EGF. Wie in der Abbildung 8a abgebildet zeigte sich bei der Zelllinie, die aus einem Zungenkarzinom kultiviert wurde (UMB-SCC-864) bereits bei niedriger EGF-Konzentration von 0,1 ng/ml ein deutlicher Anstieg der Bcl-x_L Expression.

Abbildung 8a. Expressionsänderung von Bcl- x_L in der HNSCC-Zelllinie UMB-SCC-864 in Abhängigkeit einer Stimulation mit EGF. Die Western Blot Analyse zeigte bereits nach einer Stimulation mit 0,1 ng/ml EGF ein deutlicher Anstieg der Bcl- x_L -Expression.

Wie in Abbildung 8b dargestellt wurde bei den Zelllinien aus einer Lymphknotenmetastase eines Nasenkarzinoms (UM-SCC-3), eines Mundbodenkarzinoms (UM-SCC-14A) und einer Lymphknotenmetastase eines Hypopharynxkarzinoms (UT-SCC-26A)1 ng/ml benötigt um einen deutlichen Anstieg der Bcl-x_L-Expression nachzuweisen.

Abbildung 8b. Expressionsänderung von BcI- x_{L} in den HNSCC-Zelllinien UM-SCC-3, UM-SCC-14A und UT-SCC-26A in Abhängigkeit einer Stimulation mit EGF. In der Western Blot Analyse zeigt sich nach einer Stimulation mit 1 ng/ml ein deutlicher Anstieg der BcI- x_{L} -Expression.

Wie in Abbildung 8c dargestellt, waren bei der Zelllinie die aus einer Lymphknotenmetastase eines Zungenkarzinoms kultiviert wurde (UM-SCC-27) und der Zelllinie aus einem Oropharynxkarzinom (UMB-SCC-745) 10 ng/ml EGF-Konzentration nötig um einen deutlichen Anstieg der Bcl- x_L -Expression nachzuweisen.

Abbildung 8c. Expressionsänderung von Bcl- x_L in den HNSCC-Zelllinien UM-SCC-27 und UMB-SCC-745 in Abhängigkeit einer Stimulation mit EGF. Es zeigt sich nach einer Stimulation mit 10 ng/ml ein deutlicher Anstieg der Bcl- x_L -Expression.

4.5. Quantifizierung der Bcl-x_L mRNA mittels qRT-PCR

Die Methode der qRT-PCR wurde eingesetzt um die Menge der vorhandenen mRNA-Sequenzen von Bcl- x_{\perp} in HNSCC-Zelllinien vor und nach Stimulation mit EGF genauer quantifizieren zu können. Als repräsentative Zelllinien wurden UM-SCC-3 und UMB-SCC-864 ausgewählt, da sie bei den vorher durchgeführten Untersuchungen einen deutlichen Anstieg der Bcl- x_{\perp} Expression nach Stimulation mit EGF gezeigt hatten. Auch bei der Durchführung der qRT-PCR wurde die Titration mit 0,1; 1; 10; 100 und 1000 ng/ml EGF in aufsteigender Reihenfolge durchgeführt.

Abbildung 9. Expression von Bcl- x_L mRNA in HNSCC-Zelllinien. Nach der Stimulation mit 0; 0,1; 1; 10; 100 oder 1000 ng/ml EGF zeigte sich in der Zelllinie UM-SCC-3 ein nicht signifikanter Anstieg der Bcl- x_L mRNA-Sequenzen, bei der Zelllinie UMB-SCC-864 zeigte sich nach Stimulation ein nicht signifikanter Abfall der Anzahl der mRNA-Sequenzen.

Wie in der Abbildung 9 dargestellt, zeigte sich bei der Auswertung der relativen mRNA-Menge nach Stimulation mit EGF weder bei der Zelllinie UM-SCC-3 noch bei der Zelllinie UMB-SCC-864 eine signifikante Änderung in der Menge Bcl-x_L Transkripten. Als interne Kontrolle wurde Aktin verwendet.

5. Diskussion

Bösartige Tumore zählen neben Herz-Kreislauf-Erkrankungen zu den häufigsten Todesursachen, wobei maligne Tumore des Kopf-Hals-Bereiches einen Anteil von ca. 6% darstellen. Zu über 90% handelt es sich hierbei um Plattenepithelkarzinome (Head and Neck Squamous Cell Carcinoma, HNSCC) [9]. Vergleicht man die Publikationen der letzten drei bis vier Jahrzehnte, so kam es trotz großer Fortschritte in der chirurgischen sowie der Radio(Chemo)therapie zu nur geringen Verbesserungen der Fünf-Jahres-Überlebensrate bei Kopf-Hals-Malignomen. Anfängliche Therapieerfolge, die sich durch eine konventionelle Radio(Chemo)therapie erzielen ließen, werden im weiteren Verlauf durch häufig auftretende Therapieresistenzen gegenüber den ausgewählten Medikamenten aufgehoben. Ein Mechanismus hierfür basiert auf der unspezifischen Wirkungsweise der Chemotherapeutika. Durch deren Einsatz können zum Beispiel resistente Zellen selektiert werden. Durch eine Proliferation dieser resistenten Zellen manifestiert sich klinisch dann eine Resistenz des Tumors gegenüber Chemotherapeutika. Für eine spezifische Therapie ist es daher wünschenswert Ursachen und Mechanismen, welche zur Entstehung von Tumorerkrankungen führen, vollständig zu verstehen. Eine Änderung der Vorgänge oder eine Störung des Apoptosemechanismus spielen eine zentrale Rolle bei der Tumorentstehung und der Entwicklung von Therapieresistenzen. Von besonderer Bedeutung für das Ansprechen auf zytotoxische Tumortherapien sind die Komponenten des mitochondrialen Apoptosesignalwegs sowie dessen übergeordnete Regulatoren. Durch Analyse der zentralen Regulatoren der Apoptose, wie den Mitgliedern der Bcl-2 Protein-Familie, könnten daher Patienten mit besserer bzw. schlechterer Prognose identifiziert werden. Sowohl Hussein et al. als auch Gallo et al. haben in ihren Studien zeigen können, dass die kombinierte Analyse von einander nachgeschalteten Signalkomponenten, zum Beispiel p53, Bcl-2 und Bcl-xL der Analyse einzelner Markergene überlegen ist. So konnte nachgewiesen werden, dass Tumore die eine Mutation von p53 und eine Überexpression von Bcl-2 aufwiesen eine erhöhte Therapieresistenz gegenüber Radiotherapie sowie eine schlechtere Fünf-Jahres-Überlebensrate zeigten [27, 35].

Neben den deskriptiven genetischen Analysen an Tumorproben oder, wie von Chai et al. vorgeschlagen, dem Nachweis molekularer Tumormarker im Rahmen einer Speicheluntersuchung als Maßnahme zur Früherkennung [17], sollte die funktionelle Manipulation dieser Signalwege die Sensibilisierung von Tumorzellen für Radio(Chemo)therapie erhöhen können. Von großer Bedeutung für die auf molekularer Ebene wirkenden Therapien ist das genaue Verständnis der involvierten Signalwege.

- 39 -

Biochemische und genetische Analysen haben in den letzten Jahren zu einem erheblich verbesserten Verständnis der die Apoptose beinflussenden Signalwege beigetragen, allerdings gibt es in der Literatur unterschiedliche Angaben darüber, welche Signalwege in welchem Umfang zur Wirksamkeit zytotoxischer Tumortherapeutika beitragen. Dies gilt insbesondere für die Rolle der Rezeptor vermittelten Apoptosesignale und deren Stellenwert im Vergleich zu mitochondrialen Signalen. Wie Chai et al. und Le Tourneau et al. erörtern, zeigte eine Hemmung des EGF-Rezeptors, zum Beispiel durch monoklonale EGFR-Antikörper hierbei erste Erfolge [17, 46]. Bessere Ergebnisse ließen sich jedoch, wie von Bonner et al. beschrieben, durch die Kombination von Radiotherapie mit Cetuximab erzielen [12]. In aktuellen Untersuchungen von Littlejohn et al. zeigt sich, bisher nur bei Mäusen, dass die Kombination von Bcl-x mRNA Antisense-Nukleotiden und Cisplatin die Überlebensrate deutlich verbessert und die Sensibilisierung von Tumorzellen für Chemotherapie erhöht [50]. Cao et al. konnten nachweisen, dass die Chemosensitivität von Mesotheliomzellen die eine Überexpression von Bcl-x_L aufwiesen, durch Bcl-2/Bclx₁-Inhibitoren, wie zum Beispiel 2-Methoxy Antimycin A3 erhöht werden konnte [15]. Regulatoren der Apoptose, wie zum Beispiel apoptosefördernde Mitglieder der Bcl-2 Protein-Familie, könnten in Tumorzellen eingebracht werden um Resistenzen zu überwinden und die Apoptose einzuleiten. Eine genaue Analyse der an der Einleitung der Apoptose beteiligten Faktoren ist daher von eminenter Bedeutung. Weitere Ansätze zielen darauf ab, Signaldefekte in Tumoren, zum Beispiel als Folge einer Überexpression und Überaktivität des EGF-Rezeptors spezifisch zu attackieren.

5.1. Die Bedeutung der Bcl-2 Proteinfamilie als Tumormarker

In vorhergehenden Studien gab es keine eindeutigen Aussagen über den Einfluss eines hohen Expressionsgrades der antiapoptotischen Proteine Bcl-2 und Bcl-x auf die Progression maligner Tumorerkrankungen im Kopf-Hals-Bereich. Es gibt sowohl Untersuchungen die eine niedrige Expression der anti-apoptotischen Proteine mit einer schlechten Prognose, gemessen an der Fünf-Jahres-Überlebensrate verbinden als auch Untersuchungen mit dem gegenteiligen Ergebnis. So zeigten Jäckel et al., dass die Bcl-2 Expression in Gewebeproben von Larynxkarzinomen eine positive Beziehung zum histopathologischen Grading, zur TNM Kategorie und zum klinischen Tumorstadium aufwies. Eine prognostische Bedeutung der Expression oder ein Fünf-Jahres-Überlebensrate Zusammenhang mit der konnte jedoch nicht nachgewiesen werden [37]. Klatka dagegen hat in seinen Untersuchungen an Gewebeproben von Larynxkarzinomen weder eine signifikante Korrelation zwischen der Bcl-2 Expression und dem TNM-Stadium noch zwischen dem histologischen

Grading oder der Fünf-Jahres-Überlebensrate gefunden [43]. Matsumoto et al. haben in ihren Untersuchungen einen Zusammenhang zwischen der Expression von Bcl-x_L in Gewebeproben von Speiseröhrenkarzinomen damit und einhergehender Lymphknotenmetastasierung gesehen. Weiterhin sahen sie einen Zusammenhang zwischen einer hohen Bcl-x_L Expression und einer herabgesetzten Fünf-Jahres-Überlebensrate sowie einem hohen Grad der Tumorprogression und Tumorinvasivität [57]. Die vorliegenden Daten lassen vermuten, dass nicht die alleinige Expression der anti- oder pro-apoptotischen Proteine, sondern das Verhältnis aus pro- und antiapoptotischen Proteinen die Wahrscheinlichkeit der Induktion der Apoptose und damit die Prognose der Tumorerkrankung bestimmt. So konnten zum Beispiel Oltvai et al. nachweisen, dass nach Einleitung der Apoptose das Verhältnis von Bcl-2 zu Bax über das weitere Fortschreiten der Apoptose bestimmt [61]. In allen Studien zeigt sich, dass eine Inhibition der Apoptose eine entscheidende Rolle in der Entstehung von HNSCC Erkrankungen spielt. Weiterhin wurde eine Reihe von Faktoren identifiziert, die einen Einfluss auf die Induktion oder Inhibition der apoptotischen Vorgänge haben. Die Tatsache, dass ein Großteil der untersuchten Gewebeproben bzw. Zelllinien eine Expression mindestens eines der beiden Proteine zeigt, untermauert die Vorstellung, dass diese Protein-Familie eine bedeutende Rolle bei der Apoptoseregulation maligner Tumorerkrankungen im Kopf-Hals-Bereich spielt.

In den Untersuchungen von Pena et al. konnte bei etwa 30% der untersuchten HNSCC-Gewebeproben und HNSCC-Zelllinien keine Expression von Bcl-2 oder Bcl-x nachgewiesen werden. Trotz der fehlenden Expression von Bcl-2 und Bcl-x_L zeigten diese Tumore eine signifikante Resistenz gegenüber konventioneller Radio(Chemo)therapie. Die Fünf-Jahres-Überlebensrate unterschied sich nicht von der Überlebensrate der Patienten mit einer hohen Expression eines der beiden untersuchten Proteine [65]. Eine Möglichkeit hierfür wäre, dass die Tumoren ohne Expression dieser Proteine Mutationen in einem der vielen anderen die Apoptose regulierenden Proteine haben, die den Apoptosevorgang an einer anderen Stelle blockieren. Wie schon von Jacks et al. beschrieben, hat hier vor allem das inzwischen sehr gut untersuchte Protein p53 einen hohen Stellenwert [38]. Lowe et al. zeigten in ihren Untersuchungen, dass die Inaktivierung von p53 ebenso wie die Überexpression von Bcl-2 und Bcl-x_L mit einer erhöhten Resistenz gegenüber Radio(Chemo)therapie verbunden ist [52]. Mandic et al. konnten in in ihren Untersuchungen einen Zusammenhang zwischen Mutationen in p53, welche das nukleäre Lokalisationssignal betreffen, und einem herabgesetzten Ansprechen auf Cisplatin zeigen [56]. Eine Inaktivierung von p53 hat daher eine große Bedeutung in der Pathogenese von

- 41 -

Tumoren, die keine Überexpression der untersuchten anti-apoptotischen Proteine aufweisen.

Li et al. zeigten, dass eine hohe Bcl-x_L-Expression mit einer erhöhten Chemotherapieresistenz korreliert. Weiterhin konnten sie zeigen, dass eine Herunterregulierung von Bcl-x₁ die Apoptoseschwelle herabsetzt und das Ansprechen auf Chemotherapie verbessert [48]. In den Untersuchungen von Pena et al. zeigte sich entweder eine erhöhte Expression von Bcl-2, oder eine erhöhte Expression von Bcl-xL in einem Großteil der untersuchten Gewebeproben aus Plattenepithelkarzinomen des Kopf-Hals-Bereiches. Sie sahen sogar einen Zusammenhang zwischen einem hohen Expressionsgrad von Bcl-2 mit einer erhöhten Fünf-Jahres-Überlebensrate. Ein Zusammenhang zwischen der erhöhten Expression von Bcl-x und der Überlebensrate zeigte sich in ihren Untersuchungen nicht [65]. Auf den ersten Blick erscheinen diese Resultate paradox, da die Inhibition der Apoptose durch Bcl-2 theoretisch mit einer erhöhten Resistenz gegenüber Chemotherapeutika und Radiotherapie einhergehen und in einer schnellen Progredienz und hohen Metastasierungsrate resultieren müsste. Weitergehende Studien haben jedoch gezeigt, dass in Tumoren, die keine oder nur eine geringe Expression von Bcl-2 aufweisen, die Inhibition der Apoptose durch andere Faktoren, z.B. die Überexpression von Bcl-x_L, bestimmt werden kann. Die Inhibition der Apoptose über andere Signalwege könnte erklären, warum in einigen Studien eine paradoxe Korrelation zwischen erhöhter Bcl-2-Expression und einer verbesserten Prognose der Tumorerkrankung gesehen wurde.

Da sich Bcl-2 und Bcl- x_{L} in ihrer Struktur sehr ähnlich sind, wurde bisher angenommen, dass beide auch über ähnliche oder identische Signalwege bzw. Reaktionen in der äußeren Mitochondrienmembran agieren. Unter dieser Annahme ist es unklar, wie die Überexpression des einen Proteins eine signifikante Prognoseänderung der Tumorerkrankung bedeuten kann, während die Überexpression des anderen Proteins keinen Einfluss auf die Prognose hat. Genetische Alterationen während des Prozesses der Karzinogenese resultieren oft in histopathologisch nicht zu unterscheidenden Tumoren. Diese erscheinen auf den ersten Blick identisch, unterscheiden sich aber in Bezug auf ihre biologischen Eigenschaften wie Wachstumsraten, Potential zur Ausbildung von Metastasen und Ansprechen auf Therapien [24, 42]. Tumore, die eine Überexpression von Bcl-2 aufweisen, könnten zusätzlich genetische Veränderungen unterschiedlich von den Veränderungen in Tumoren mit einer Überexpression von Bcl- x_L aufweisen. Die Überexpression von Bcl-2 und Bcl- x_L könnte also ein Marker für andere genetische Alterationen sein, die Unterschiede im Phänotyp der Tumore bewirken. Wenn sie in einem vergleichbaren

- 42 -

Grad exprimiert werden, hat die Überexpression von Bcl-x einen größeren Einfluss auf die Resistenz der Tumore gegenüber gängigen Chemotherapeutika wie zum Beispiel Cisplatin, 5-Fluorouacil und Methotrexat. Untersuchungen zur Expression und anderer an der Apoptose beteiligten Proteine hat wahrscheinlich eine genauere Aussagekraft über die Prognose der untersuchten Gewebeproben. In den Untersuchungen von Bauer et al. zeigte sich, dass eine hohe Expression von Bcl-x₁- und Wildtyp p53 zur Chemotherapieresistenz des Tumors beitrug. Patienten, die niedrige Expressionsgrade von Bcl-x, und p53 aufwiesen zeigten die höchsten Überlebensraten, während Patienten mit einer hohen Bcl-x_L-Expression und einem erniedrigten Grad von p53-Expression die schlechtesten Überlebenschancen aufwiesen [6]. Simonian et al. konnten nachweisen, dass eine erhöhte Expression von Bcl-2 und Bcl-x mit einem schlechteren Ansprechen auf eine Chemotherapie einhergeht, wobei die Expression von Bcl-x₁ einen höheren Einfluss auf die Resistenz gegenüber Chemotherapeutika zeigte als die Expression von Bcl-2. Dies indiziert unterschiedliche molekulare Mechanismen der beiden untersuchten Proteine während des komplexen Prozesses der Apoptose [72]. Die Apoptoseschwelle wird durch Bcl-2-verwandte Proteine und die Interaktionen zwischen anti- und pro-apoptotischen Proteinen gesteuert. Zusätzlich müssen Bcl-2 und Bcl-x, bezüglich der Interaktion mit anderen an der Apoptose beteiligten Proteinen einen unterschiedlichen Mechanismus aufweisen, was zu einer erheblichen Differenz bezüglich des Einflusses auf den Progress der Tumorerkrankungen führt. Weiterhin haben Bcl-x_L und Bcl-2 nicht nur Einfluss auf die Regulierung der Apoptose sondern auch auf den Progress des Zellzyklus. Auch wenn sich hier auf den ersten Blick eine ähnliche Funktion zeigt, ist es sehr wahrscheinlich, dass sich vor allem in maligne entarteten Zellen erhebliche Unterschiede beider Proteine auf den Zellzyklus zeigen. Auch bei den Untersuchungen anderer solider Tumoren gibt es Hinweise auf eine Korrelation zwischen einem positiven klinischen Verlauf und der Überexpression von Bcl-2. So konnten Pezzella et al. einen Zusammenhang zwischen einer höheren Fünf-Jahres-Überlebensrate, fehlendem Auftreten eines Zweitkarzinoms, kleinerer Tumorgröße und fehlendem invasiven Wachstum mit einer Überexpression von Bcl-2 in nicht-kleinzelligen Bronchialkarzinomen, Adenokarzinomen des Urogenitaltraktes, Ovarialkarzinomen und Kolonkarzinomen nachweisen [66]. Higashiyama et al. konnten nachweisen, dass die Expression von Bcl-2 umgekehrt proportional mit dem Voranschreiten der untersuchten Tumore einherging [31]. Die molekularen Unterschiede zwischen den Funktionen von Bcl-2 und Bcl-x_L und die histopathologischen Unterschiede zwischen den Tumoren, die eine Überexpression eines der beiden Protein aufweisen, sind interessante

Forschungsfelder für die Zukunft und könnten die Planung der Therapie solider Tumore beeinflussen.

5.2. Die Bedeutung des EGF-Rezeptors bei Plattenepithelkarzinomen des Kopf-Hals-Bereiches

Der Rezeptor des Epidermalen Wachstumsfaktors (EGF-Rezeptor) wird nicht nur an der Oberfläche von gesunden Zellen exprimiert sondern in hohem Grade auch bei epithelialen Tumoren, insbesondere Plattenepithelkarzinomen des Kopf-Hals-Bereiches [14]. Die Überaktivierung des EGF-Rezeptors führt zu einer verstärkten Proliferation, daher erscheint eine Blockierung des Rezeptors therapeutisch sinnvoll. Während der letzten Jahre wurde eine neue Ära der molekularbiologischen Therapieansätze bei Tumorerkrankungen eingeleitet. Wie von Baselga erörtert stellt der EGF-Rezeptor heute ein primäres Ziel in der Tumortherapie dar. Hierbei kommen insbesondere monoklonale Antikörper gegen die extrazelluläre Domäne des EGF-Rezeptors, sowie Inhibitoren der intrazellulären Kinasen-Domänen zum Einsatz [5]. Unterschiede zwischen normalen und malignen Zellen aufzuschlüsseln ist von enormer Wichtigkeit für die Entwicklung tumorspezifischer Therapien. Der epidermale Wachstumsfaktor (EGF) und sein Rezeptor (EGFR, ErbB-1 oder HER-1) spielen nicht nur eine große Rolle beim zellulärem Wachstum und der Differenzierung von Zellen sondern auch in der Tumorgenese und dem Progress maligner Erkrankungen [2]. Bindung der natürlichen Liganden EGF und TGF-α führt zu einer Dimerbildung mit anderen EGFR Molekülen bzw. anderen HER-Familienmitgliedern. Diese Dimerbildung bewirkt eine Autoaktivierung der Tyrosinkinase, die einen intrazellulären Weg zur Inhibition der Apoptose aktiviert und eine vermehrte Zellproliferation, sowie ein verstärktes Metastasierungspotential und verstärkte Angiogenese auslöst [68].

Der EGF-Rezeptor ist von eminenter Bedeutung bei der Pathogenese von Plattenepithelkarzinomen des Kopf-Hals-Bereiches. Die Überexpression des EGF-Rezeptors und seiner Liganden TGF- α und EGF wurden mehrfach in Studien nachgewiesen. So konnten Grandis et al. zeigen, dass die Überexpression von mRNA des Transforming Growth Factors und des EGF-Rezeptors bereits in einem frühen Stadium von Plattenepithelkarzinomen des Kopf-Hals-Bereiches nachgewiesen werden konnte und als Frühmarker dienen kann [28]. Die Gruppe von Bei et al. konnte in ihren Untersuchungen nachweisen, dass sowohl eine erhöhte Expression von EGF-Rezeptor als auch die erhöhte Mutationsrate des EGF-Rezeptors mit einer erhöhten Metastasierungsrate bei allen untersuchten Tumoren einherging [8]. Ongkeko et al. konnten in weiterführenden Analysen herausfinden, dass eine Überexpression von

EGF-Rezeptoren in keinem der untersuchten Fälle mit einem Rezidivfreien Intervall einherging [62]. Auch ließ sich eine erniedrigte lokale Kontrollierbarkeit nach Radiotherapie bei Tumoren, die eine Überexpression von EGFR zeigten, nachweisen. Maurizi et al. zeigten, dass von 140 Patienten mit Plattenepithelkarzinomen des Kopf-Hals-Bereiches die Fünf-Jahres-Überlebensrate bei den Patienten ohne EGFR-Überexpression bei 81% lag, bei Patienten mit EGFR-Überexpression bei 25% [58]. Baumann et al. haben in ihren Untersuchungen gezeigt, dass einer erhöhte Expression des EGF-Rezeptors mit einer erhöhten Resistenz gegenüber Radio(Chemo)therapie einhergeht und empfehlen daher bei vorhandener Überexpression des Rezeptors die Durchführung einer höher dosierten Radio(Chemo)therapie [7]. Auch Demiral et al. empfehlen bei einer Überexpression des EGF-Rezeptors eine frühzeitige Kombinationstherapie aus Operation, Radio(Chemo)therapie und EGF-Rezeptor-Inhibitoren [20]. Wie von Shin et al. beschrieben, ist auch eine Zunahme der Expression des EGFR während des Übergangs von Zelldysplasien zu Karzinomzellen sowie beim Progress schon bestehender Tumorerkrankungen auffällig [70]. Bei Primärtumoren verschiedener Lokalisation finden sich ebenfalls unterschiedliche Expressionsgrade des EGFR. Wie bereits von Takes et al. beschrieben zeigt sich zum Beispiel im Gegensatz zur EGFR Expression bei HNSCC-Tumoren des Pharynx und der Mundhöhle in Malignomen des Larynx eine niedrigere Expression von EGFR [75].

Die Überexpression des EGF-Rezeptors kann sowohl das Resultat einer Genmultiplikation des EGF-Rezeptors als auch das eines reduzierten Abbaus sein. So haben Bandres et al. einen Einfluss des EGF-Rezeptor-Polymorphismus auf die Resistenz der untersuchten Tumore feststellten können [4]. Auch Lee et al. beschrieben bei malignen Erkrankungen der Lunge das Auftreten von Mutationen des EGF-Rezeptors, die zu einer Überexpression des Proteins und damit zu einer Beschleunigung der Erkrankung führten [47]. Lynch et al. konnten bei Tumoren der Lunge Mutationen des EGF-Rezeptors nachweisen, die auf eine EGF-Rezeptor-Inhibitor-Therapie besser ansprachen als solche Tumore ohne Mutation, so dass ein vorheriges Screening bezüglich Mutationen vor Einleitung einer Therapie bei bestimmten Tumoren sinnvoll erscheint [53]. Wie in der Veröffentlichung von Loeffler-Ragg et al. berichtet, wurde in HNSCC-Geweben bis zum jetzigen Zeitpunkt nur eine geringe Mutationsrate des EGF-Rezeptors gefunden, bei den untersuchten Zelllinien hingegen waren keine Mutationen nachweisbar [51].

Trotz der geringen Mutationsrate des EGF-Rezeptors konnten Astsaturov et al. nachweisen, dass ein kleiner Prozentsatz der Patienten mit einem Plattenepithelkarzinom des Kopf-Hals-Bereiches auf eine gezielte EGFR-gerichtete

- 45 -

Therapie anspricht [3]. Aktuelle Studien beinhalten die Suche nach weiteren Faktoren, die ein Ansprechen auf eine EGFR-gerichtete Therapie bedingen. Ein Faktor für die Aktivierung von EGFR in HNSCC ist eine Aktivierung durch EGFR-Liganden wie TGF- α . Eine Verbindung wurde hirbei zum Beispiel auch zwischen dem Inhalieren von Tabakrauch und einer erhöhten Produktion von Prostaglandin E2 (PGE2) gefunden. Zigarettenrauch erhöht die Expression von EGFR-Liganden in Epithelzellen der Mundhöhlenschleimhaut. Dies führt zu einer Aktivierung des EGFR und einer erhöhten Expression von Cyclooxygenase2 (COX2) und PGE2. PGE2 aktiviert den EGFR und bedingt damit einen weiteren Progress der Tumorerkrankung [23, 60, 63]. Der EGF-Rezeptor fördert nicht nur die Tumorerkrankung und erhöht die Apoptoseresistenz sondern induziert zusätzlich andere wachstumsfördernde Signalwege wie zum Beispiel COX2. In weiteren Studien wurde ein Überlebensvorteil von Patienten mit HNSCC durch die Kombination von EGFR-Inhibitoren und Radiotherapie beschrieben. Dies deutet darauf hin, dass eine Störung der anti-apoptotischen Signalwege das Ansprechen von Tumoren auf eine Strahlentherapie verbessern kann. Die Hälfte der Patienten wies jedoch nach dieser kombinierten Therapie Lokalrezidive auf [12]. Da die EGFR-Inhibitoren nur einen eingeschränkten Erfolg als Monotherapie aufweisen [11], kann die Suche nach EGFR-unäbhängigen Signalwegen, die zusätzlich zu der Hemmung des EGFR blockiert werden müssen, einen Weg zu einer effektiven Therapie darstellen [10].

5.3. Die Hochregulation von Bcl-x_L nach EGF-Stimulation

Jost et al. untersuchten die EGF-abhängige Überexpression von Bcl-x und assoziierten sie mit dem Überleben von Keratinozyten in Zellkulturen [39]. Um den Einfluss der EGF-Stimulation auf die Expression der anti-apoptotischen Proteine weiter zu beurteilen, haben wir mittels Western Blot Analyse die Expression der antiapoptotischen Proteine Bcl-2 und Bcl-x in Abhängigkeit von einer Stimulation mit EGF untersucht. Wir konnten zeigen, dass die Expression von Bcl-2 durch die Stimulation mit EGF nicht signifikant beeinflusst wurde, wohingegen die Bcl-x₁-Expression in allen untersuchten Zelllinien nach Stimulation deutlich zunahm. Interessanterweise zeigte sich zwischen den Zelllinien eine große Variabilität im Grad der EGF-Abhängigen Expression von Bcl-x₁. Zum Beispiel zeigte sich bei der Zelllinie UMB-SCC-864, die aus einem Zungenkarzinom kultiviert wurde, bereits bei niedriger EGF-Konzentration von 0,1 ng/ml ein deutlicher Anstieg der Bcl- x_L Expression. Bei den Zelllinien UM-SCC-3 aus einer Lymphknotenmetastase eines Nasenkarzinoms, UM-SCC-14A aus Mundbodenkarzinom einem und UT-SCC-26A aus den Zellen einer Lymphknotenmetastase eines Hypopharynxkarzinoms wurden 1 ng/ml benötigt um

- 46 -

einen deutlichen Anstieg der Bcl-x_L-Expression nachzuweisen. Bei der Zelllinie UM-SCC-27, die aus einer Lymphknotenmetastase eines Zungenkarzinoms kultiviert wurde und der Zelllinie UMB-SCC-745 aus einem Oropharynxkarzinom war ab 10 ng/ml EGF-Konzentration ein deutlicher Anstieg der Bcl-x_L-Expression nachzuweisen. Die zwischen den einzelnen Zelllinien variable Hochregulation von Bcl-x_L könnte ein Hinweis auf deutliche Unterschiede im Grad der EGFR-abhängigen Bcl-x_L-Expression in einzelnen Tumoren *in vivo* sein. Dies kann zumindest teilweise die häufig beobachtete, bei verschiedenen Patienten oft unterschiedlich starke Apoptose-Resistenz bei Kopf-Hals Tumoren erklären.

In der vorliegenden Arbeit wurde eine Abhängigkeit der Bcl-x_L-Expression vom Grad der EGFR-Aktivierung in allen untersuchten Zelllinien nachgewiesen. Um herauszufinden, ob es sich bei diesem Phänomen um eine erhöhte Transkriptionsrate handelt, wurde nach EGF-Stimulation mittels quantitativer RT-PCR die Anzahl der mRNA-Transkripte von Bcl-x_L ermittelt. Hierbei zeigte sich keine Zunahme der mRNA-Sequenzen nach Stimulation des EGFR. Da sich die Transkripte in unseren Untersuchungen nicht verändert haben, stellt weder die Erhöhung der Transkription noch ein verminderter Abbau der vorhandenen mRNA oder eine verlängerte Halbwertzeit der mRNA die Ursache für die erhöhte Expression des untersuchten Proteins nach Stimulation des EGF-Rezeptors dar. Dies impliziert, dass ein anderer Mechanismus als die EGF-abhängige Aktivierung der Transkription die EGFR-abhängige Expression von Bcl-x_L maßgeblich beeinflusst. Dies könnte zum Beispiel durch eine Verlängerung der Halbwertzeit des Proteins nach EGFR-Aktivierung erklärt werden.

Abschließend kann gesagt werden, dass die Bcl-x_L-Expression eine deutliche Abhängigkeit vom EGFR-Aktivierungsstatus aufweist. Die Durchbrechung einer solchen EGFR-abhängigen Resistenz durch Hochregulation von Bcl-x_L durch den Einsatz von Hemmstoffen des EGFR-Signalweges erscheint vor diesem Hintergrund von zentraler Bedeutung bei der Therapie von Kopf-Hals-Karzinomen.

6. Zusammenfassung

Bösartige Tumore zählen neben Herz-Kreislauf-Erkrankungen zu den häufigsten Todesursachen, wobei maligne Tumore des Kopf-Halsbereiches einen Anteil von ca. 6% ausmachen. Zu über 90% handelt es sich hierbei um Plattenepithelkarzinome (HNSCC, <u>h</u>ead and <u>n</u>eck <u>s</u>quamous <u>c</u>ell <u>c</u>arcinoma). In den vergangenen drei Jahrzehnten kam es trotz großer Fortschritte in der chirurgischen sowie der Radio(Chemo)therapie bei Patienten mit Kopf-Hals-Karzinomen zu einer nur geringen Steigerung der Fünf-Jahres-Überlebensrate. Eine Störung des physiologischen Apoptosemechanismus der maligne entarteten Zelle spielt eine zentrale Rolle bei der Progression der Tumorerkrankung sowie der Entwicklung von Therapieresistenzen, welche die Prognose des Patienten bestimmen. Aus diesem Grunde ist eine Analyse der zentralen Regulatoren der Apoptose, wie den Mitgliedern der Bcl-2 Protein-Familie von eminenter Bedeutung.

Der EGF-Rezeptor (EGFR, HER1, ErbB1), eine Rezeptor-Tyrosinkinase, ist in bis zu 100% von HNSCC Tumoren überexprimiert und korreliert in hohem Maße mit der Prognose der Erkrankung. Aus diesem Grunde war es das Ziel der vorliegenden Arbeit, die Abhängigkeit der anti-apoptotischen Mitglieder der Bcl-2 Protein-Familie, Bcl-2 und Bcl-x_L vom EGFR Aktivierungsstatus zu untersuchen.

Mittels Western Blot Analyse und immunhistochemischen Methoden wurden der Expressionsstatus von Bcl-2 und Bcl- x_L in HNSCC-Zelllinien und Tumorgeweben bestimmt. Weiterhin wurde mittels Western Blot Analyse die Abhängigkeit der Bcl-2 und der Bcl- x_L -Expression vom EGFR Aktivierungszustand untersucht. Die Ergebnisse zeigten, dass die Proteinexpression von Bcl-2 nach EGFR Aktivierung nicht sichtbar verändert wurde. Im Gegensatz hierzu nahm die Bcl- x_L -Expression in praktisch allen untersuchten Zelllinien nach EGF-Stimulation deutlich zu.

Um den EGFR abhängigen Effekt auf die Bcl- x_L Expression bei HNSCC Tumorzellen näher zu definieren, wurde die Expression von Bcl- x_L nach Titration des EGF-abhängigen Effektes mit 0,1; 1; 10; 100 und 1000 ng/ml EGF bestimmt. Hierbei zeigten sich bei den untersuchten Zelllinien unterschiedlich starke Änderungen der Bcl- x_L Expression in Abhängigkeit von der EGFR Aktivierung. Diese zwischen den einzelnen Zelllinien beobachtete, variable Hochregulation von Bcl- x_L deutet ebenfalls auf mögliche Unterschiede im Grad der EGFR-abhängigen Bcl- x_L Expression zwischen verschiedenen HNSCC Tumoren *in vivo* hin. Dies könnte, zumindest teilweise, die häufig beobachtete, bei verschiedenen Patienten oft unterschiedlich stark ausgeprägte Apoptoseresistenz bei Kopf-Hals Tumoren erklären.

Eine Quantifizierung der Bcl- x_{L} mRNA mittels qRT-PCR, zeigte keine signifikante Erhöhung der Bcl- x_{L} Transkripte in Abhängigkeit vom EGFR Aktivierungstatus. Da sich die Anzahl der Bcl- x_{L} -Transkripte nach Stimulation mit EGF nicht sichtbar veränderte, erscheint weder die Erhöhung der Transkription, noch ein verminderter Abbau der vorhandenen mRNA bzw. eine verlängerte Halbwertzeit der Transkripte eine wahrscheinliche Ursache für die erhöhte Bcl- x_{L} -Expression zu sein. Es ist daher zu vermuten, dass dieser Effekt am ehesten auf eine Verringerung des Proteinabbaus zurückzuführen ist. Dieses genauer aufzuklären ist ein Ziel weiterführender Untersuchungen.

Zusammenfassend kann gesagt werden, dass die Bcl-x_L-Expression in HNSCC Tumoren eine deutliche Abhängigkeit vom EGFR-Aktivierungsstatus aufweist, wobei die Aktivierung des Rezeptors am ehesten zu einer Verlängerung der biologischen Halbwertzeit des Proteins führt. Die Durchbrechung einer solchen EGFR-abhängigen Therapieresistenz aufgrund einer Hochregulation von Bcl-x_L unterstützt gegenwärtige Therapiekonzepte bei der Behandlung von Kopf-Halskarzinomen, welche eine Hemmung des EGF-Rezeptors zum Ziel haben. Der Einsatz von EGFR Hemmern, wie zum Beispiel monoklonalen gegen die EGFR-Ligandenbindungsstelle gerichteten Antikörpern oder Hemmstoffen der intrazellulären Kinasedomäne des Rezeptors erscheint vor diesem Hintergrund von großer Bedeutung bei der Therapie von Kopf-Hals-Karzinomen.

7. Literaturverzeichnis

- 1. Arends MJ, Wyllie AH. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 1991;32:223-54.
- Arteaga C. Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin Oncol 2003;30(3 Suppl 7):3-14.
- 3. Astsaturov I, Cohen RB, Harari P. EGFR-targeting monoclonal antibodies in head and neck cancer. Curr Cancer Drug Targets 2007;7(7):650-65.
- Bandres E, Barricarte R, Cantero C, Honorato B, Malumbres R, Zarate R, et al. Epidermal growth factor receptor (EGFR) polymorphisms and survival in head and neck cancer patients. Oral Oncol 2007;43(7):713-9.
- 5. Baselga J. Targeting the epidermal growth factor receptor: a clinical reality. J Clin Oncol 2001;19(18 Suppl):41S-44S.
- 6. Bauer JA, Kumar B, Cordell KG, Prince ME, Tran HH, Wolf GT, et al. Targeting apoptosis to overcome cisplatin resistance: a translational study in head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69(2 Suppl):S106-8.
- Baumann M, Krause M. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 2004;72(3):257-66.
- Bei R, Budillon A, Masuelli L, Cereda V, Vitolo D, Di Gennaro E, et al. Frequent overexpression of multiple ErbB receptors by head and neck squamous cell carcinoma contrasts with rare antibody immunity in patients. J Pathol 2004;204(3):317-25.
- Black RJ, Bray F, Ferlay J, Parkin DM. Cancer incidence and mortality in the European Union: cancer registry data and estimates of national incidence for 1990. Eur J Cancer 1997;33(7):1075-107.
- Boehm A, Sen M, Seethala R, Gooding WE, Freilino M, Wong SM, et al.
 Combined Targeting of EGFR, STAT3, and Bcl-XL Enhances Antitumor Effects in Squamous Cell Carcinoma of the Head and Neck. Mol Pharmacol 2008.
- 11. Bonavida B. Rituximab-induced inhibition of antiapoptotic cell survival pathways: implications in chemo/immunoresistance, rituximab

unresponsiveness, prognostic and novel therapeutic interventions. Oncogene 2007;26(25):3629-36.

- Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354(6):567-78.
- 13. Botto M. Phosphatidylserine receptor and apoptosis: consequences of a noningested meal. Arthritis Res Ther 2004;6(4):147-50.
- 14. Bourhis J, Tao YG, Zhang P, Deutsch E. [Epidermal growth factor receptor (EGF) in head-and-neck cancers]. Bull Cancer 2007;94(7 Suppl):F189-91.
- Cao X, Rodarte C, Zhang L, Morgan CD, Littlejohn J, Smythe WR. Bcl2/bcl-xL inhibitor engenders apoptosis and increases chemosensitivity in mesothelioma. Cancer Biol Ther 2007;6(2):246-52.
- Casey CA, Baldwin CR, Kubik JL, Hindemith AM, McVicker BL. Use of Flow Cytometric Analysis to Examine the Uptake of Apoptotic Bodies by Healthy Hepatocytes. Comp Hepatol 2004;3 Suppl 1:S40.
- 17. Chai RL, Grandis JR. Advances in molecular diagnostics and therapeutics in head and neck cancer. Curr Treat Options Oncol 2006;7(1):3-11.
- Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol 1998;16:395-419.
- Chung CH, Parker JS, Karaca G, Wu J, Funkhouser WK, Moore D, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 2004;5(5):489-500.
- Demiral AN, Sarioglu S, Birlik B, Sen M, Kinay M. Prognostic significance of EGF receptor expression in early glottic cancer. Auris Nasus Larynx 2004;31(4):417-24.
- Dikic I. Mechanisms controlling EGF receptor endocytosis and degradation. Biochem Soc Trans 2003;31(Pt 6):1178-81.
- 22. Dobrossy L. Epidemiology of head and neck cancer: magnitude of the problem. Cancer Metastasis Rev 2005;24(1):9-17.

- Du B, Altorki NK, Kopelovich L, Subbaramaiah K, Dannenberg AJ. Tobacco smoke stimulates the transcription of amphiregulin in human oral epithelial cells: evidence of a cyclic AMP-responsive element binding protein-dependent mechanism. Cancer Res 2005;65(13):5982-8.
- 24. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61(5):759-67.
- Friedman M, Grey P, Venkatesan TK, Bloch I, Chawla P, Caldarelli DD, et al. Prognostic significance of Bcl-2 expression in localized squamous cell carcinoma of the head and neck. Ann Otol Rhinol Laryngol 1997;106(6):445-50.
- 26. Gallo O, Boddi V, Calzolari A, Simonetti L, Trovati M, Bianchi S. bcl-2 protein expression correlates with recurrence and survival in early stage head and neck cancer treated by radiotherapy. Clin Cancer Res 1996;2(2):261-7.
- 27. Gallo O, Chiarelli I, Boddi V, Bocciolini C, Bruschini L, Porfirio B. Cumulative prognostic value of p53 mutations and bcl-2 protein expression in head-and-neck cancer treated by radiotherapy. Int J Cancer 1999;84(6):573-9.
- 28. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res 1993;53(15):3579-84.
- Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 1988;241(4861):42-52.
- Hellquist HB, Sundelin K, Di Bacco A, Tytor M, Manzotti M, Viale G. Tumour growth fraction and apoptosis in salivary gland acinic cell carcinomas.
 Prognostic implications of Ki-67 and bcl-2 expression and of in situ end labelling (TUNEL). J Pathol 1997;181(3):323-9.
- 31. Higashiyama M, Doi O, Kodama K, Yokouchi H, Nakamori S, Tateishi R. bcl-2 oncoprotein in surgically resected non-small cell lung cancer: possibly favorable prognostic factor in association with low incidence of distant metastasis. J Surg Oncol 1997;64(1):48-54.
- 32. Hotz MA, Bosq J, Zbaeren P, Reed J, Schwab G, Krajewski S, et al.Spontaneous apoptosis and the expression of p53 and Bcl-2 family proteins in

locally advanced head and neck cancer. Arch Otolaryngol Head Neck Surg 1999;125(4):417-22.

- 33. Hunter T. Cooperation between oncogenes. Cell 1991;64(2):249-70.
- 34. Hunter T. A thousand and one protein kinases. Cell 1987;50(6):823-9.
- 35. Hussein MR, Cullen K. Molecular biomarkers in HNSCC: prognostic and therapeutic implications. Expert Rev Anticancer Ther 2001;1(1):116-24.
- Jaattela M. Escaping cell death: survival proteins in cancer. Exp Cell Res 1999;248(1):30-43.
- Jackel MC, Sellmann L, Youssef S, Dorudian MA, Fuzesi L. [Prognostic significance of expression of p53, bcl-2 and bax in squamous epithelial carcinoma of the larynx--a multivariate analysis]. Hno 2001;49(3):204-11.
- 38. Jacks T, Weinberg RA. Cell-cycle control and its watchman. Nature 1996;381(6584):643-4.
- Jost M, Huggett TM, Kari C, Boise LH, Rodeck U. Epidermal growth factor receptor-dependent control of keratinocyte survival and Bcl-xL expression through a MEK-dependent pathway. J Biol Chem 2001;276(9):6320-6.
- 40. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26(4):239-57.
- 41. King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS.
 Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 1997;17(8):4406-18.
- 42. Kinzler KW, Vogelstein B. Life (and death) in a malignant tumour. Nature 1996;379(6560):19-20.
- 43. Klatka J. Prognostic value of the expression of p53 and bcl-2 in patients with laryngeal carcinoma. Eur Arch Otorhinolaryngol 2001;258(10):537-41.
- 44. Konopleva M, Zhao S, Xie Z, Segall H, Younes A, Claxton DF, et al. Apoptosis.Molecules and mechanisms. Adv Exp Med Biol 1999;457:217-36.

- 45. Korsmeyer SJ. Bcl-2: a repressor of lymphocyte death. Immunol Today 1992;13(8):285-8.
- Le Tourneau C, Faivre S, Siu LL. Molecular targeted therapy of head and neck cancer: review and clinical development challenges. Eur J Cancer 2007;43(17):2457-66.
- 47. Lee JW, Soung YH, Kim SY, Nam HK, Park WS, Nam SW, et al. Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin Cancer Res 2005;11(8):2879-82.
- 48. Li J, Shen F, Wu D, Wei LX, Wang YZ, Shi LH, et al. Expression level of Bcl-XL critically affects sensitivity of hepatocellular carcinoma cells to LIGHT-enhanced and interferon-gamma-induced apoptosis. Oncol Rep 2007;17(5):1067-75.
- Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 1985;313(5998):144-7.
- 50. Littlejohn JE, Cao X, Miller SD, Ozvaran MK, Jupiter D, Zhang L, et al. Bcl-xL antisense oligonucleotide and cisplatin combination therapy extends survival in SCID mice with established mesothelioma xenografts. Int J Cancer 2008;123(1):202-8.
- 51. Loeffler-Ragg J, Witsch-Baumgartner M, Tzankov A, Hilbe W, Schwentner I, Sprinzl GM, et al. Low incidence of mutations in EGFR kinase domain in Caucasian patients with head and neck squamous cell carcinoma. Eur J Cancer 2006;42(1):109-11.
- 52. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993;74(6):957-67.
- Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350(21):2129-39.

- 54. Mandic R, Eikelkamp N, Peldszus R, Sadowski M, Sesterhenn AM, Dunne AA, et al. Variations of EGF-R surface expression in squamous cell carcinomas of the head and neck region. Anticancer Res 2001;21(5):3413-8.
- 55. Mandic R, Lieder A, Sadowski M, Peldszus R, Werner JA. Comparison of surface HLA class I levels in squamous cell carcinoma cell lines of the head and neck. Anticancer Res 2004;24(2B):973-9.
- 56. Mandic R, Schamberger CJ, Muller JF, Geyer M, Zhu L, Carey TE, et al. Reduced cisplatin sensitivity of head and neck squamous cell carcinoma cell lines correlates with mutations affecting the COOH-terminal nuclear localization signal of p53. Clin Cancer Res 2005;11(19 Pt 1):6845-52.
- 57. Matsumoto M, Natsugoe S, Nakashima S, Okumura H, Sakita H, Baba M, et al. Clinical significance and prognostic value of apoptosis related proteins in superficial esophageal squamous cell carcinoma. Ann Surg Oncol 2001;8(7):598-604.
- Maurizi M, Almadori G, Ferrandina G, Distefano M, Romanini ME, Cadoni G, et al. Prognostic significance of epidermal growth factor receptor in laryngeal squamous cell carcinoma. Br J Cancer 1996;74(8):1253-7.
- 59. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene 2000;19(56):6550-65.
- Moraitis D, Du B, De Lorenzo MS, Boyle JO, Weksler BB, Cohen EG, et al. Levels of cyclooxygenase-2 are increased in the oral mucosa of smokers: evidence for the role of epidermal growth factor receptor and its ligands. Cancer Res 2005;65(2):664-70.
- 61. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993;74(4):609-19.
- Ongkeko WM, Altuna X, Weisman RA, Wang-Rodriguez J. Expression of protein tyrosine kinases in head and neck squamous cell carcinomas. Am J Clin Pathol 2005;124(1):71-6.
- 63. Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for

promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 2002;8(3):289-93.

- 64. Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer 1999;80(6):827-41.
- Pena JC, Thompson CB, Recant W, Vokes EE, Rudin CM. Bcl-xL and Bcl-2 expression in squamous cell carcinoma of the head and neck. Cancer 1999;85(1):164-70.
- 66. Pezzella F, Turley H, Kuzu I, Tungekar MF, Dunnill MS, Pierce CB, et al. bcl-2 protein in non-small-cell lung carcinoma. N Engl J Med 1993;329(10):690-4.
- 67. Rodeck U, Jost M, DuHadaway J, Kari C, Jensen PJ, Risse B, et al. Regulation of Bcl-xL expression in human keratinocytes by cell-substratum adhesion and the epidermal growth factor receptor. Proc Natl Acad Sci U S A 1997;94(10):5067-72.
- Roskoski R, Jr. The ErbB/HER receptor protein-tyrosine kinases and cancer.
 Biochem Biophys Res Commun 2004;319(1):1-11.
- Saffran S, Gorogh T, Lippert BM, Werner JA. [Cultivation of human keratinocytes of mucous membranes of the upper aerodigestive tract]. Laryngorhinootologie 1997;76(2):101-5.
- Shin DM, Ro JY, Hong WK, Hittelman WN. Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis. Cancer Res 1994;54(12):3153-9.
- 71. Silva N, Shedd DP. Pattern of lymphatic spread in pharyngeal cancer. J Surg Oncol 1971;3(4):415-9.
- 72. Simonian PL, Grillot DA, Nunez G. Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood 1997;90(3):1208-16.
- Song JI, Grandis JR. STAT signaling in head and neck cancer. Oncogene 2000;19(21):2489-95.
- 74. Spafford MF, Koeppe J, Pan Z, Archer PG, Meyers AD, Franklin WA.Correlation of tumor markers p53, bcl-2, CD34, CD44H, CD44v6, and Ki-67

with survival and metastasis in laryngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 1996;122(6):627-32.

- 75. Takes RP, Baatenburg de Jong RJ, Schuuring E, Litvinov SV, Hermans J, Van Krieken JH. Differences in expression of oncogenes and tumor suppressor genes in different sites of head and neck squamous cell. Anticancer Res 1998;18(6B):4793-800.
- Tsatsanis C, Spandidos DA. The role of oncogenic kinases in human cancer (Review). Int J Mol Med 2000;5(6):583-90.
- 77. Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985;228(4706):1440-3.
- 78. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984;309(5967):418-25.
- 79. Van Cruchten S, Van Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 2002;31(4):214-23.
- Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988;335(6189):440-2.
- 81. Vermeulen K, Van Bockstaele DR, Berneman ZN. Apoptosis: mechanisms and relevance in cancer. Ann Hematol 2005;84(10):627-39.
- 82. Wilson GD, Grover R, Richman PI, Daley FM, Saunders MI, Dische S. Bcl-2 expression correlates with favourable outcome in head and neck cancer treated by accelerated radiotherapy. Anticancer Res 1996;16(4C):2403-8.
- 83. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008;9(1):47-59.

8. Anhang

8.1. Verzeichnis der verwendeten Abkürzungen

AB-Komplex	Avidin-Biotin-Komplex
AD	Aqua Destillate
BSA	Bovine Serum Albumine
CLSM	confocal Laser Scanning mikroscopie
DMEM	Dulbecco's Modified Eagle Medium
DMSO	Dimethylsulfoxid
ECL	Enhanced Chemiluminescence
EDTA	Ethylendiaminotetraacetat
EGF	Epidermal Growth Factor
EGFR	EGF-Rezeptor
EGFR-P	Phosphorylierter EGF-Rezeptor
FCS	Fetal Calf Serum
FITC	Fluoreszeinthiocyanat
HNSCC	Head and Neck Squamous Cell Carcinoma
HRP	Horseradish Peroxidase
LKM	Lymphknotenmetastase
LW	Leerwert
MW	Molecular Weight
PBS	Phosphate Buffered Saline
PT	Primärtumor
RH	Relative Humidity
SDS	Sodiumdodecylsulfate

ST	Standard
TNM	Tumor-Node-Metastasis
UICC	Union Internationale Contre le Cancer
SCC	Squamous Cell Carcinoma
UMB	University of Marburg
UM	University of Michigan
UT	University of Turku
VT	Volumenteile
WB	Western Blot

8.2. Tabellen

Klinisches Stadium	Tumorgröße (T)	Lymphknoten (N)	Fernmetastasen (M)
0	Tis	0	0
I	1	0	0
II	2	0	0
III	3	0	0
	1	1	0
	2	1	0
	3	1	0
IV A	4	0	0
	4	1	0
	Jedes T	2	0
В	Jedes T	3	0
С	Jedes T	Jedes N	1

Tabelle 1. Stadieneinteilung von Plattenepithelkarzinomen (UICC 2002)

Primärtumor (T)	
Тх	Primärtumor kann nicht beurteilt werden
ТО	Kein Anhalt für Primärtumor
Tis	Carcinoma in situ
T1	Tumorausdehnung < 2cm
Τ2	Tumorausdehung 2-4cm
Т3	Tumorausdehnung >4cm
Τ4	Tumor infiltriert Nachbarstrukturen
Regionäre Lymphknoten (N)	
Nx	keine Beurteilung möglich
NO	keine regionären LK nachweisbar
N1	eine Metastase ipsilateral < 3c
N2a	solitäre Metastase ipsilateral 3-6 cm
N2b	multiple ipsilaterale LK alle <6 cm
N2c	bilaterale oder kontralaterale LK <6 cm
N3	Metastase ist > 6 cm
Fernmetastasen (M)	
Mx	keine Beurteilung möglich
MO	keine Fernmetastasen
M1	Fernmetastasen

 Tabelle 2. TNM-Klassifikation von Plattenepithelkarzinomen des Kopf-Hals-Bereiches

8.3. Abbildungsverzeichnis

Abbildung 1.	Schematische Darstellung der Apoptose, modifiziert nach [79]
Abbildung 2a.	Expression von Bcl-2 in HNSCC-Gewebeproben.
Abbildung 2b.	Expression von Bcl-2 in HNSCC-Gewebeproben.
Abbildung 3.	Expression von Bcl-2 in Gewebeproben
Abbildung 4a.	Expression von Bcl-2 in Zelllinien der UM-SCC-Reihe
Abbildung 4b.	Expression von Bcl-2 in Zelllinien der UMB-SCC- und der UT-
	SCC-Reihe.
Abbildung 5.	Expression von Bcl- x_{L} in Gewebeproben
Abbildung 6.	Expression von Bcl-x∟ in HNSCC-Zelllinien
Abbildung 7.	Expression von Bcl- x_{L} und Bcl-2 in HNSCC-Zelllinien vor (-) und
	nach (+) Stimulation mit 100 ng/ml EGF
Abbildung 8a.	Expressionsänderung von Bcl- x_L in der HNSCC-Zelllinie UMB-
	SCC-864 in Abhängigkeit einer Stimulation mit EGF.
Abbildung 8b.	Western Blot Analyse der Expression von Bcl- x_L in den HNSCC-
	Zelllinien UM-SCC-3, UM-SCC-14A und UT-SCC-26A in
	Abhängigkeit einer Stimulation mit EGF.
Abbildung 8c.	Western Blot Analyse der Expression von Bcl- x_L in den HNSCC-
	Zelllinien UM-SCC-27 und UMB-SCC-745 in Abhängigkeit einer
	Stimulation mit EGF.
Abbildung 9.	Expression von Bcl-x mRNA in HNSCC-Zelllinien

8.4. Tabellenverzeichnis

Tabelle 1	Stadieneinteilung von	Plattenepithelkarzinomen	(UICC 2002)
	otationententing von		(0100 2002)

- Tabelle 2. TNM-Klassifikation von Plattenepithelkarzinomen des Kopf-Hals-Bereiches
- Tabelle 3.In dieser Arbeit verwendete Antikörper.
- Tabelle 4.
 Daten der verwendeten HNSCC-Zelllinien
- Tabelle 5.Daten der verwendeten Gewebeproben.
- Tabelle 6.Mischungsverhältnis für Proteinbestimmung nach Bradford
- Tabelle 7.Zusammensetzung der Polyacrylamidgele zur SDS-PAGE

8.5. Vorträge und Publikationen

Originalarbeiten

- Gerdes B., Schnabel M, Wennekes VE, Hassan I, Schlosser K, Rothmund M: Warum werden chirurgische Vorlesungen nicht besucht, was muss sich ändern? GMS Z Med Ausbild 2005; 22(2):Doc22 (20050420).
- Gerke W, Breipohl W, Forster J, Hahn EG, Kraft HG, Öchsner W, Onur Ö, Schirlo C, Tullius M, Wennekes VE Medizinische Ausbildung und der Bologna-Prozess: Ein Positionspapier der GMA. GMS Z Med Ausbild. 2006;23(1):Doc24.

Poster und Abstracts

 Gerke W, Forster J, Kraft HG, Onur O, Schirlo C, Tullius M, Wennekes VE Medical Education and the Bologna Process – a GMA (German Section of AMEE) perspective

AMEE-Conference, Amsterdam (2005)

- Rueddel J, Wennekes VE, Werner J.A, Mandic R
 Comparison of EGFR and STAT-3 levels with p53 status in HNSCC cell lines (2005) 4th International Symposium on Advances in Head and Neck Cancer
- Wennekes VE, Borkeloh M, Rueddel J, Werner J.A, Mandic R
 Comparison of apoptosis markers with p53 status in HNSCC cell lines
 (2005) 4th International Symposium on Advances in Head and Neck Cancer
- 4. Wennekes VE, Hornung T

Die Bologna Deklaration aus Sicht der europäischen Medizinstudierenden 11. Tagung der Gesellschaft für Medizinische Ausbildung (2004)

- Mandic R, Rueddel J, Wennekes VE, Bette M, Weihe E, Werner J.A EGF Stimulation of HNSCC Cell Lines Results in Alpha Adaptin-Associated Internalization and Degradation of EGFR with Cytoskeletal Rearrangements and Cell Shape Changes and Points to the Presence of Heterodimers Anticancer Research 24(5D): 3557-3558 (2004)
- Wennekes V.E, Rueddel J, Borkeloh M, Werner J.A, Mandic R
 Differences in Bcl-2 Expression Levels between HNSCC-Cell Lines and Tumor Tissues

Anticancer Research 24 (5D): 3557 (2004)

8.6. Verzeichnis der Akademischen Lehrer

Meine akademischen Lehrer waren Damen / Herren in Marburg:

Aumüller, Alter Baum, Barth, Basler, Becker, Bette Canisius, Celik, Cetin, Czubayko, Christiansen Dalchow, Daut Eberhart Feuser, Folz Geks, Gemsa, Gerdes, Gotzen, Gress, Grimm, Griss Grundmann, Grzeschik, Gudermann Hasilik, Hertl, Hermann-Lingen, Herzum, Hesse, Hoeffken Jungclas Meißner Kienapfel, Kill, Klose, Koch, Koolman, Kretschmar, Krieg, Kroll, Kuni Lang, Lenz, Leonhardt, Lill, Lohoff Mandic, Mandrek, Maisch, Meyer, Mittag, Moll, Mueller, Mutters Neubauer, Noll Oertel, Opper Radsak, Remschmidt, Renz, Richter, Rothmund Schäfer, Schmidt, Schnabel, Schneider, Schrader, Seitz, Simon, Stachniss, Steininger, Stiletto, Strauch Tackenberg, Tebbe, Teymoortash Vogelmeier Wagner, Weihe, Weiler, Werner, Westermann, Wulff

8.7. Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. J. A. Werner, Direktor der Klinik für Hals-Nasen- und Ohrenheilkunde der Philipps-Universität Marburg, der mich nicht nur während meines Studiums, sondern auch darüber hinaus maßgeblich beeinflusst und unterstützt hat. Besonders möchte ich mich bei ihm für die Überlassung des Themas, die schnelle Korrektur und die gute Unterstützung bedanken.

Ganz besonders danken möchte ich auch Herrn Privadozenten Dr. R. Mandic, der mich als Laborleiter des Forschungslabors der HNO Marburg von Anfang an unterstützte und mir bei allen aufkommenden Fragen mit Rat und Tat zur Seite stand. Sein Engagement hat das gewohnte Maß bei weitem überschritten.

"Meinen" beiden MTAs R. Peldszus und G. Sadowski danke ich sehr für die hilfreiche Unterstützung bei der Durchführung des experimentellen Teils meiner Dissertation.

Herrn PD Dr. M. Bette vom Institut für Anatomie und Zellbiologie Marburg danke ich für die Benutzung des Olympus Mikroskops zur Durchführung der Immunhistochemie.

Herrn PD Dr. Wolfgang Meißner vom Institute of Molecular Biology and Tumor Research Marburg danke ich für die Unterstützung bei der Durchführung der qRT-PCR.

Meiner Mitdoktorandin Galina Makarova danke ich für die Unterstützung bei der Durchführung der Immunhistochemie.

Frau Dr. Michaela H. Beyerle danke ich für ihre große Unterstützung bei der Fertigstellung der endgültigen Version dieser Arbeit.