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Summary 
Nonribosomal peptides (NRPs) constitute a large and diverse class of pharmacologically 
important natural products that find useful therapeutic application as immunosuppressants, 
antibiotics, or anticancer agents. The biological activity of many of these compounds relies 
on the macrocyclic structure of their peptide backbone and the incorporation of a wide 
assortment of building blocks including proteinogenic and nonproteinogenic amino acids 
as well as modified fatty acid moieties. Particularly, these structural features are key 
determinants of nonribosomal lipopeptide antibiotics that are in the focus of this thesis. 
To provide rapid access to these structurally demanding compounds, a chemoenzymatic 
approach towards the synthesis of the lipopeptide antibiotics daptomycin and A54145 was 
developed, based on the combined utilization of powerful solid-phase peptide synthesis 
and the recombinant daptomycin and A54145 thioesterase (TE) domains. In vitro studies 
with these so-called peptide cyclases revealed their ability to catalyze the macrocyclization 
of linear peptidyl-thiophenol substrates with relaxed specificity for the cyclization 
nucleophile and electrophile. Ten lipopeptide variants were synthesized in order to explore 
the relatively sparse known acidic lipopeptide structure-activity relationship. Remarkably, 
this small library included a lipopeptide hybrid with a minimal inhibition concentration 
close to that of chemoenzymatic derived daptomycin as well as a bioactive macrolactam 
variant of A54145. Thus, single amino acid residues within the daptomycin and A54145 
peptide sequences could be identified that are crucial for their antimicrobial potency. 
Additionally, a unique and hitherto unknown type of imine macrocyclization as found for 
the cyanobacterial nostocyclopeptide (ncp) was investigated during the course of these 
studies. Experiments with ncp-CoA substrate mimics showed that a reductase (R) domain 
located at the C-terminal end of the ncp nonribosomal peptide synthetase (NRPS) is 
responsible for the reductive release of a reactive peptide aldehyde. Subsequently, imine 
macrocyclization occurs enzyme-independent under physiological pH conditions as proven 
with synthetic analogs of the ncp peptide aldehyde. An alanine scan experiment elucidated 
structural elements within the linear heptapeptide precursor that are essential for imine 
macrocyclization. Further, the biochemical characterization of ncp R also revealed its 
broad tolerance towards the C- and N-terminal amino acids of ncp substrate mimics. 
In the third part of this work, the tailoring enzymes HxcO and HcmO from the 
calcium-dependent antibiotic (CDA) trans-2,3-epoxyhexanoic acid biosynthetic pathway 
were chosen as a model system to investigate fatty acid modification during nonribosomal 
lipopeptide synthesis. While HxcO was characterized as a novel type of enzyme with dual 
function as an FAD-dependent fatty acid oxidase paired with intrinsic epoxidase activity, 
HcmO could be identified as a second epoxidase acting on 2,3-unsaturated fatty acids. 
Experiments with acyl-CoAs, acyl-CoAs loaded onto an acyl carrier protein (ACP), and 
chemoenzymatically synthesized CDA variants revealed that both enzymes only accept 
ACP-bound substrates. To compare these ACP-bound HxcO and HcmO reaction products 
with synthetic standards a novel experimental approach had to be developed. Based on the 
thermodynamic activation inherent to thioester derivatives, the enzymatic products were 
cleaved from the ACP under mild conditions utilizing an amide ligation reaction and 
directly transformed into derivatives of smaller size suitable for HPLC-MS analysis. By 
the application of this versatile method the trans-2,3-epoxyhexanoic acid products of 
HxcO and HcmO were ascertained to have opposite absolute configuration, namely 
(2R,3S) and (2S,3R), respectively. In general, the established experimental approach holds 
great potential for the detailed analysis of all biochemical systems involving carrier 
protein-bound intermediates. These include integrated enzymes from NRPS and polyketide 
synthase (PKS) assembly lines or in trans acting tailoring enzymes. 
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Zusammenfassung 
Nichtribosomale Peptide (NRPs) bilden eine große und vielseitige Klasse von pharmakolo-
gisch bedeutsamen Naturstoffen, die als Immunosupressiva, Antibiotika oder Antikrebs-
Wirkstoffe nützliche therapeutische Anwendung finden. Die biologische Aktivität vieler 
dieser Verbindungen beruht auf der makrozyklischen Struktur ihres Peptidrückgrats und 
der Inkorporierung eines großen Sortiments an Bausteinen, das proteinogene und nicht-
proteinogene Aminosäuren sowie modifizierte Fettsäurereste umfasst. Diese strukturellen 
Merkmale sind Schlüsseleigenschaften nichtribosomaler Lipopeptidantibiotika, die im 
Fokus dieser Arbeit stehen. 
Um einen Zugang zu den strukturell anspruchsvollen Lipopeptiden Daptomycin und 
A54145 zu schaffen, wurde ein chemoenzymatischer Ansatz entwickelt, der auf dem 
kombinierten Einsatz von leistungsstarker Peptid-Festphasensynthese und rekombinanten 
Thioesterase-Domänen basiert. In vitro Studien mit diesen so genannten Peptidzyklasen 
zeigten deren Fähigkeit, lineare Peptidyl-Thiophenol-Substrate mit entspannter 
Substratspezifität zu zyklisieren. Zehn Lipopeptidanaloga wurden hergestellt, um die 
relativ unbekannte Struktur-Aktivitäts-Beziehung der aziden Lipopeptide zu erforschen. 
Bemerkenswerterweise enthielt diese kleine Bibliothek einen Lipopeptidhybrid mit einer 
minimalen Inhibitionskonzentration ähnlich der von chemoenzymatisch hergestelltem 
Daptomycin, sowie eine bioaktive A54145-Makrolactamvariante. Somit konnten einzelne 
Aminosäurereste in der Daptomycin- und A54145-Peptidsequenz identifiziert werden, die 
essentiell für deren antimikrobielle Eigenschaften sind. 
Des Weiteren wurde im Rahmen dieser Arbeit eine bisher unbekannte Form der 
Iminmakrozyklisierung, wie sie für das cyanobakterielle Nostocyclopeptid (ncp) auftritt, 
untersucht. Experimente mit ncp-CoA-Substratmimikry zeigten, dass eine außerge-
wöhnliche Reduktase (R)-Domäne, die sich am C-terminalen Ende der ncp nicht-
ribosomalen Peptidsynthetase (NRPS) befindet, für die reduktive Freisetzung eines 
reaktiven Peptidaldehyds verantwortlich ist. Anschließend verläuft die Iminmakro-
zyklisierung enzymunabhängig unter physiologischen pH Bedingungen, was durch 
synthetische ncp-Aldehyde belegt werden konnte. Ein Alanin-Scan-Experiment 
identifizierte einzelne strukturelle Elemente im linearen Heptapeptidvorläufer, die ent-
scheidend für den intramolekularen Zyklisierungsprozess sind.  
Im dritten Teil dieser Arbeit wurden die CDA Tailoring Enzyme HxcO und HcmO des 
trans-2,3-Epoxyhexansäure Biosynthesewegs als Modellsystem gewählt, um die 
Fettsäuremodifikation in der Synthese nichtribosomaler Lipopeptide zu untersuchen. 
Während HxcO als ein neuer Enzymtyp mit dualer Funktion als FAD-abhängige 
Fettsäure-Oxidase mit intrinsischer Epoxidaseaktivität charakterisiert wurde, konnte HcmO 
als eine zweite Epoxidase identifiziert werden, die an 2,3-ungesättigen Fettsäuren arbeitet. 
Experimente mit Acyl-CoAs, Acy-CoA beladenem Acyl Carrier Protein (ACP) sowie 
chemoenzymatisch hergestellten CDA-Varianten ergaben, dass beide Enzyme nur 
ACP-gebundene Substrate akzeptieren. Um diese ACP-gebundenen Reaktionsprodukte mit 
synthetischen Standards vergleichen zu können, musste ein neuer experimenteller Ansatz 
entwickelt werden. Aufgrund der thermodynamischen Aktivierung von Thioesterderivaten, 
wurden die Enzymprodukte über eine Amidligationsreaktion unter milden Bedingungen 
vom ACP abgespalten und direkt in kleinere Derivate überführt, die für die HPLC-MS-
Analyse geeignet sind. Es wurde ermittelt, dass die trans-2,3-Epoxyhexansäure-Produkte 
von HxcO und HcmO entgegensetzte absolute Konfiguration, nämlich (2R,3S) bzw. 
(2S,3R), besitzen. Der etablierte experimentelle Ansatz birgt ein hohes Potenzial für die 
Analyse aller biochemischen Systeme, die an Carrier Protein-gebundenen Intermediaten 
arbeiten, wie z.B. integrierte Enzyme aus NRPSs und Polyketidsynthasen (PKSs) oder 
andere in trans agierende Tailoring Enzyme. 
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1 Abbreviations 

aa   amino acid 
Ac   acetyl 
AcOH   acetic acid 
ACP   acyl carrier protein 
A domain  adenylation domain 
Aloc   allyloxycarbonyl 
Amp   ampicillin 
AMP   adenosine-5’-monophosphate 
ADP   adenosine-5’-diphosphate 
AT   acyltransferase 
ATP   adenosine-5’-triphosphate 
Boc   tert-butyloxycarbonyl 
bp   base pairs 
BSA   bovine serum albumin 
calcd.   calculated  
CDA   calcium-dependent antibiotic 
C domain  condensation domain 
CoA   coenzyme A 
CP   carrier protein 
Cy domain  heterocyclization domain 
Da   Dalton 
DCC   dicyclohexylcarbodiimide 
DCM   dichloromethane 
Dec   decanoyl 
DHB   dihydroxybenzoyl 
DMSO   dimethyl sulfoxide 
DIPEA   diisopropylethylamine 
DMF   N,N-dimethylformamide 
DH   dehydratase 
dNTP   2‘-desoxynucleosid-5‘-triphosphate 
E domain  epimerization domain 
EDCI   1-(3-dimethylaminopropyl)-3-ethylcarbodiimide 
EDTA   ethylene-diamino-tetraacetic acid 
ESI-MS  electron spray ionization – mass spectrometry 
eq.   equivalent 
ER   enoylreductase 
FA   fatty acid 
FAAL    fatty acyl-AMP ligase  
FAD   flavin adenine dinucleotide 
FAS   fatty acid synthase 
Fen   fengycin 
FMN   flavin mononucleotide 
Fmoc   9-fluorenylmethyloxycarbonyl 
FPLC   fast performance liquid chromatography 
FT-MS Fourier-transform mass spectrometry 
h hours 
HBTU 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate 
Hepes   2-N’-[N-(2-hydroxylethyl)-piperazinyl]-ethansulfonic acid 
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Hex   hexanoyl 
HOBt   1-hydroxybenzotriazole 
HPLC   high performance liquid chromatography 
IPTG   isopropyl-β-D-thiogalactoside 
Kan   kanamycin 
KR   ketoreductase 
KS   ketosynthase 
Kyn   kynurenine 
LB medium   Luria-Bertani medium 
LC/MS  liquid chromatography/mass spectrometry 
LG   leaving group 
MALDI-TOF  matrix assisted laser desorption ionization-time of flight 
MCS   multiple cloning site 
ME   methylation 
MIC   minimal inhibitory concentration 
Min   minutes 
MS   mass spectrometry 
MW   molecular weight 
n.d.   not detected 
NADH   nicotinamide adenine dinucleotide 
NADPH  nicotinamide adenine dinucleotide phosphate 
Ncp   nostocyclopeptide 
NMR   nuclear magnetic resonance 
NRP   nonribosomal peptide 
NRPS   nonribosomal peptide synthetase 
NTA   nitrilotriacetate 
OD   optical density 
PAGE   polyacrylamide gel electrophoresis 
PCP   peptidyl carrier protein or thiolation domain 
PCR   polymerase chain reaction 
PEGA   poly(ethylene glycol)acrylamide copolymer 
PK   polyketide 
PKS   polyketide synthase 
PheGly  phenylglycine 
PLP   pyridoxal phosphate 
ppan   4’-phosphopantetheine 
PPi   inorganic pyrophosphate 
PPTase 4’-phosphopantetheine transferase 
PyBOP benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium 

hexafluorophosphate 
R domain reductase domain 
rpm   rounds per minute 
RT    room temperature 
SAM   S-adenosylmethionine 
SDS   sodium dodecylsulfate 
Sfp   4’-phosphopantetheine transferase involved in surfactin production 
SNAC   N-acetylcysteamine 
SPPS   solid-phase peptide synthesis 
SPh   thiophenol 
Srf   surfactin 
tBu   tert-butyl 
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TCEP   tris(carboxyethyl)phosphine 
TE domain  thioesterase domain 
TFA   trifluoroacetic acid 
TFE   trifluoroethanol 
THF   tetrahydrofuran 
TIPS   triisopropylsilane 
tR   retention time 
Trt   trityl 
v/v   volume per volume 
w/v   weight per volume 
 
 
Table 1.1: Proteinogenic amino acids: abbreviations and molecular weights. 

Amino acid 3-Letter code 1-Letter code MW[g/mol] 

alanine Ala A   89 

arginine Arg R 174 

asparagine Asn N 132 

aspartate Asp D 133 

cysteine Cys C 121 

glutamine Gln Q 146 

glutamate Glu E 147 

glycine Gly G   75 

histidine His H 155 

isoleucine Ile I 131 

leucine Leu L 131 

lysine Lys K 146 

methionine Met M 149 

phenylalanine Phe F 165 

proline Pro P 115 

serine Ser S 105 

threonine Thr T 119 

tryptophan Trp W 204 

tyrosine Tyr Y 181 

valine Val V 117 
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2 Introduction 

Nonribosomal peptides (NRPs) and polyketides (PKs) have been the source for a multitude 

of therapeutic agents used in different medical fields including infectious diseases 

(daptomycin), cancer (epothilone) or immunosupression (cyclosporine) [1-3]. These 

molecules are biosynthesized by the consecutive condensation of amino acids or 

acyl-CoAs, which is achieved by large multi-domain enzymes, termed nonribosomal 

peptide synthetases (NRPSs) and polyketide synthases (PKSs) that follow a parallel 

biosynthetic mechanism.  

Remarkably, the complex chemical scaffolds of these valuable compounds mostly have 

restricted conformations for selective recognition by their specific molecular receptors. 

The required molecular constraints are typically introduced by thioesterase (TE) domains 

at the C-terminal end of the biosynthetic assembly lines that catalyze the formation of 

intramolecular covalent linkages between distant parts of the molecule. In addition to being 

cyclic, nonribosomal peptides often have a second outstanding structural feature necessary 

for proper biological activity: the presence of highly diverse monomer building blocks. 

Besides the 20 canonical amino acids, various pathway-specific enzymes are responsible 

for the production of the unusual monomer units that include modified amino acids as well 

as functionalized fatty acid moieties.  

This introduction chapter aims to give a brief outline of NRPS and PKS biosynthetic 

principles with a focus on macrocyclization and precursor biosynthesis. Special attention 

will be given to the class of acidic lipopeptide antibiotics, which are addressed separately 

in the last paragraph. 

 

2.1 Versatility of macrocyclization strategies in complex natural products 

Many diverse natural products, including polyketides, nonribosomal peptides and other 

biologically active peptides and proteins have restricted conformations for their selective 

recognition by biological targets. A common strategy employed by nature to achieve this 

aim is the introduction of an intramolecular covalent linkage between distant parts of the 

molecule. Thereby the immense number of possible conformations of linear molecules is 

dramatically reduced, and the proper orientation of the bioactive molecule, required for the 

specific interaction with the receptor protein, becomes entropically favored [4]. 

Additionally, macrocyclization leads to an increased physicochemical stability of the 
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corresponding compound and confers protection against enzymatic degradation by 

peptidases [5]. 

2.1.1 Macrocyclic nonribosomal peptides 

Among the multitude of nonribosomal peptides different types of macrocyclization 

strategies can be found that principally vary in two major respects - the nature of the 

chemical bond and the type of cyclic structure formed.  

The peptide antibiotic tyrocidine (Figure 2.1) for example, is cyclized “head-to-tail” via an 

amide bond linkage between the N-terminal D-Phe1 and the C-terminal Leu10 of the linear 

decapeptide chain [6, 7]. In addition to this type of closed structure, branched-cyclic 

peptidolactams and -lactones exist, as illustrated by bacitracin and the last-resort antibiotic 

daptomycin [8-10]. In the case of the dodecapeptide bacitracin, amide bond formation 

occurs between the C-terminal Asn12 residue and an amino nucleophile arising from the 

ε-amino group of Lys6. A similar lariat structure is displayed by daptomycin, but the side 

chain nucleophile is the hydroxyl group of Thr4 instead of an amine, resulting in an 

intramolecular ester bond with the C-terminal kynurenine (Kyn).  

 

 
Figure 2.1: Macrocyclic nonribosomal peptides. Amide bonds are indicated in grey, esters in red and 
thioesters in orange. 
 

A variation of this type of macrocyclization is present in the cyclooligomerized 

nonribosomal peptides, including the trilactone enterobactin (Figure 2.1) [11]. This iron-

chelating siderophore, produced by Escherichia coli, is built up by the trimerization of 

2,3-dihydroxybenzoyl-seryl dipeptide units to generate a 12-membered macrocyclic ring. 

Analogously, the decapeptide antibiotic gramicidin S consists of two identical 

pentapeptides that are linked to each other head-to-tail by the formation of two amide 



2 Introduction 

 18

bonds [12]. Among those cyclooligomerized compounds, an unusual thioester variant is 

displayed by the antitumor agent thiocoraline [13]. This two-fold symmetric octapeptide 

with DNA intercalating properties is cyclized via two thioester bonds between the SH 

group of the D-Cys1 side chain and the C-terminal Cys4 of each monomer. Interestingly, a 

second molecular constraint is introduced to this molecule by an additional disulfide bridge 

that actually divides the thiodepsipeptide into a bicyclic compound. 

Another modification concerning the nature of the macrocycle forming chemical bond 

occurs for the nostocyclopeptide (Figure 2.2), a cytotoxin produced by the terrestrial 

cyanobacterium Nostoc sp. ATCC53789 [14]. Instead of the well-known formation of an 

amide, ester or thioester bond, a stable imino bond covalently links both ends of the linear 

heptapeptide chain in this case. One of the most exceptional natural products in this class 

of compounds is the potent telomerase inhibitor telomestatin (Figure 2.2) [15]. This highly 

constrained molecule is built up by eight heterocycles - five oxazoles, two methyloxazoles 

and one thiazoline derived from serines, threonines and cysteines respectively - that are 

directly linked to each other. Remarkably, by amino acid side chain heterocyclization a 

second level of molecular constraint is introduced into this astonishing macrocyclic 

molecule. 

 

 
 
Figure 2.2: The nostocyclopeptide A2 contains an intramolecular imino bond indicated in orange. In 
telomestatin macrocyclization is achieved via the formation of eight heterocycles indicated in grey. 
 

2.1.2 Macrocyclic polyketides and polyketide/nonribosomal peptide hybrids 

As for nonribosomal peptides, similar macrocyclization strategies are employed by nature 

during the synthesis of polyketides. In PKS assembly lines, the nucleophiles for 

intramolecular macrocyclization commonly arise from hydroxyl groups, leading to the 

formation of lactones. Such scaffolds can be found for the 12-membered 

10-deoxymethynolide or the 14-membered 6-deoxyerythronolide B, the aglycones of the 

macrolide antibiotics methymycin and erythromycin (Figure 2.3) [16-19]. Macrocyclic 



2 Introduction 

 19

lactams are displayed by the ansa-bridged antibiotics rifamycin and geldanamycin 

(Figure 2.3) [20, 21]. 

As the parallel logic of type I PKS and NRPS assembly line machinery suggests, there are 

natural products that are polyketide/nonribosomal peptide hybrids [22]. Based on similar 

molecular architecture, nature has mixed NRPS and PKS modules into hybrid assembly 

lines that produce such valuable compounds as the immunosuppressant FK506 or the 

antitumor agent epothilone (Figure 2.3) [23-25]. 

 

 
Figure 2.3: Macrocyclic polyketides and NRPS/PKS hybrid molecules. Amide bonds are indicated in 
grey, esters in red. 
 

2.1.3 Macrocyclic ribosomal peptides 

The existence of other naturally occurring macrocyclic peptides with ribosomal origin 

impressively underlines the fact that biological activity often relies on conformationally 

constrained structures. Lantibiotics, as the model compound nisin for example (Figure 2.4), 

are ribosomally synthesized antimicrobial agents that show cyclic structural elements [26, 

27]. Specifically, extensive post-translational modification, including the enzyme assisted 

formation of five characteristic thioether rings, is required for the proper functionality of 

this 34-residue peptide. After the dehydration of serine and threonine to 

2,3-dehydroalanine and 2,3-dehydrobutyrine residues, respectively, a single zinc-

dependent enzyme catalyzes five distinct cyclization reactions to generate the typical 

lanthionine and methyllanthionine thioether bridges [28]. 
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Figure 2.4: The lantibiotic nisin contains five macrocyclic rings formed by lanthionine thioether 
bridges as indicated. 
 

2.2 NRPS assembly line logic: synthesis of the peptide backbone 

The unique structures of many hundreds of nonribosomal peptides share a common mode 

of synthesis that is achieved by modularly organized enzymes termed NRPSs. These 

multienzyme complexes simultaneously specify the sequence of the peptide products and 

catalyze all necessary chemical reactions for the activation and subsequent condensation of 

the amino acid building blocks [29-31]. In principle, NRPSs are comprised of an array of 

distinct modular sections, each of which is responsible for the incorporation of one defined 

monomer into the final peptide product. Consequently, in linear NRPSs, the number of 

these so-called modules exactly matches the number of amino acids found in the backbone 

of the corresponding peptide (Figure 2.5) [32]. 

 

 
 
Figure 2.5: Molecular organization of the tyrocidine biosynthetic complex. The tyrocidine synthetase 
consists of three subunits, TycA, TycB, and TycC. The identity and order of modules, indicated in blue 
and grey shades, direct the incorporation of the amino acid building blocks into the peptide backbone 
of tyrocidine. The modules can be further dissected into independent catalytic domains (C, A, PCP, E, 
and TE) that catalyze the single synthetic steps during peptide assembly. 
 
Modules can be further subdivided into catalytically active domains, each responsible for a 

specific synthetic step during peptide production. At least three essential domains are 
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needed to carry out the elongation of a growing peptide chain for one amino acid residue 

(Figure 2.6).  

 

 
Figure 2.6: 3-D structures of NRPS core domains. The minimum set for the elongation of a growing 
peptide chain by one amino acid residue consists of a condensation domain (C), an adenylation domain 
(A), and a peptidyl carrier protein (PCP). Structures of the stand-alone C domain (VibH) from the 
vibriobactin synthetase, the A domain (PheA) from the first module of the gramicidin S synthetase, 
and the PCP (TycC3) from the tyrocidine biosynthetic complex are shown. Indicated in yellow are the 
catalytically active His residue of the C domain, the A domain bound amino acid substrate with AMP, 
and the phosphopantetheinylation site of the PCP. 
 

The first step in nonribosomal synthesis is the selection of a specific amino acid from the 

pool of available substrates by an adenylation domain (A domain; ~500 amino acids), 

followed by the generation of an aminoacyl-AMP mixed anhydride (Figure 2.7) [33]. This 

reactive intermediate is further transferred onto the thiol moiety of a 

4’-phosphopantetheine (ppan) prosthetic group that is attached to a peptidyl carrier protein 

(PCP; ~100 amino acids) [34]. The PCP, also referred to as a thiolation domain, is 

responsible for the transport of the resulting energy-rich thioester-bound substrates and all 

elongation intermediates between the catalytic active domains. In the next step of 

nonribosomal peptide synthesis, peptide bond formation is mediated by so-called 

condensation domains (C domains; ~450 amino acids). The C domain catalyzes the 

nucleophilic attack of the downstream PCP-bound acceptor amino acid with its α-amino 

group onto the activated thioester of the upstream PCP-bound donor amino acid or peptide 

(Figure 2.7) [35, 36]. The resulting peptidyl-intermediate is thereby translocated down the 

NRPS assembly line for subsequent condensation and modification steps. 
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Figure 2.7: Chemical reactions catalyzed by NRPS core domains. Peptide assembly starts with the 
selection of a specific amino acid building block and formation of an aminoacyl-AMP by an A domain. 
The activated amino acid is subsequently transferred onto the free thiol of the PCP-bound cofactor 
phosphopantetheine (ppan). Amide bond formation occurs by the action of a C domain that mediates 
the nucleophilic attack of the downstream amino acid on the upstream electrophilic aminoacyl- or 
peptidyl-thioester. The growing peptidyl-intermediate is thereby translocated down the NRPS 
assembly line. Domains in action are highlighted in blue. 
 
 

2.3 Peptide release mechanisms  

2.3.1 The thioesterase domain 

When the full-length peptide chain has reached the ultimate PCP, it has to be cleaved off 

from the covalent tethering in order to release the mature product and to regenerate the 

multienzyme complex for the next catalytic cycle. Most commonly, this disconnection 

from the NRPS is carried out by a C-terminal thioesterase domain (TE domain; ~280 

amino acids) that serves as a chain termination catalyst [37, 38]. In the last biosynthetic 

step, the linear peptide chain is transferred to a catalytically active serine residue of the 

TE domain and the so called acyl-O-TE intermediate is formed. Depending on the nature 

of the NRPS template, there are two possibilities for further reaction: sometimes hydrolysis 

leads to the formation of linear peptide acids as observed during the biosynthesis of the 

vancomycin-type antibiotics. More commonly for compounds of medicinal interest, the 

reaction with intramolecular nucleophiles results in cyclic structures as represented by the 

macrolactone daptomycin (Figure 2.8). 
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Figure 2.8: Enzymatic peptide cyclization during daptomycin biosynthesis. A thioesterase (TE) domain 
catalyzes the formation of the characteristic 10-membered macrolactone ring. The acyl-O-TE 
intermediate is cleaved by the attack of a threonine side chain nucleophile onto the activated 
C-terminus and the cyclized product is released from the modular assembly line.  
 

Significant progress towards the understanding of the principles underlying TE-mediated 

peptide cyclization has been made by solving the crystal structures of the excised 

TE domains from the surfactin (Srf) and fengycin (Fen) NRPSs [39, 40]. TE domains 

belong to the α/β-hydrolase superfamily that includes diverse enzymes such as lipases, 

proteases and esterases. Thus, TE domains possess a conserved catalytic triad of Asp, His 

and Ser which forms the active site. 

 
Figure 2.9: Crystal structures of the thioesterase domains from the surfactin synthetase (Srf TE) and 
the fengycin synthetase (Fen TE). The conserved catalytic triad (Asp-His-Ser) is indicated in yellow. 
 

The overall structure of Srf and Fen TE has been described as a globular α/β-sandwich, 

corresponding to the characteristic α/β-hydrolase fold that lacks the commonly found 

amino terminal β-strand. Like other bacterial lipases, these two proteins contain a 

characteristic insertion between core β-strands, also referred to as the lid region. Sequence 

alignments showed that this lid region can significantly differ between single TE domains.  

For Srf TE, this structurally flexible part of the protein is extended over three α-helices and 

can adopt two distinct conformations. In the “open” state of the enzyme the lid is folded 

back, allowing access to the active site cavity, whereas in the closed state the active site is 
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covered almost completely by this part of the enzyme. Hence, an important role for this 

part of the Srf TE in substrate binding and catalysis has been deduced. In contrast to this, 

the lid region of Fen TE is the shortest observed for NRPS TE domains. This results in an 

open structure of the Fen TE active site with a freely accessible catalytic triad. In this case, 

the lid region seems to have a more indirect influence on substrate recognition and may 

simply serve as a “sieve” for sterically demanding substrates. Taken together, the general 

role of the lid region can not be finally defined at this point, and further crystallographic 

studies might be necessary to clarify its function in stereo- and regioselective peptide 

cyclization.  

Additionally, the crystal structures enabled the identification of enzyme-substrate 

interaction sites and underlined the importance of substrate preorganization for the 

regioselective intramolecular cyclization reaction. Srf TE, for example, has bowl shaped 

active site geometry, forming a distinct cavity large enough to host the surfactin 

heptapeptide substrate. Within this predominantly hydrophobic environment, two 

positively charged amino acids Lys111 and Arg120 were experimentally confirmed to be 

crucial in substrate binding via the coordination of the negatively charged residues Glu1 

and Asp5 of the surfactin peptide sequence [41]. Similarly, Fen TE exhibited binding sites 

for the C-terminal amino acid Ile11 of the fengycin decapeptide and a model of the 

fengycin substrate binding was deduced, suggesting that the substrate specificity of NRPS 

TE domains is mostly dependent on both, the electrophilic and the nucleophilic amino acid 

residues of the peptidyl substrate [40]. 

2.3.2 TE-independent chain termination 

Alternative TE-independent routes of chain termination are mediated by other assembly 

line domains, which can replace the canonical TE domain in several NRPS systems [42]. 

The NRPSs of myxochelin or linear gramicidin, for example, contain a relatively rare 

C-terminal reductase domain (R domain; ~350 amino acids). In these cases the associated 

compounds are linear alcohols or amines, arising from further enzymatic modification of 

the initially formed peptide aldehydes [43, 44]. Additionally, it has been shown during the 

course of this study that R domains can also trigger the formation of macrocyclic imines 

such as the nostocyclopeptide A2 (Figure 2.2) [14, 45]. 

In addition to NAD(P)H-dependent R domains, C domains can also be implicated in 

peptide release. The formation of the head-to-tail linkage between the amino group of 

D-Ala1 and the carbonyl group of L-Ala11 of the immunosuppressant cyclosporine, for 

example, is predicted to be performed by a C-terminal C domain [46]. Usually, C domains 
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catalyze the nucleophilic attack of an α-amino group of a downstream PCP-bound amino 

acid on the upstream thioester-linked peptide or amino acid. The C domain of the 

cyclosporine synthetase is proposed instead to function in an analogous manner, but the 

nucleophile is an intramolecular amino group, rather than the next amino acid building 

block.  

 

 
 
Figure 2.10: Chain termination strategies found in NRPSs. The C-terminal module in NRPS assembly 
lines ends with a thioesterase (TE), a reductase (R), or a condensation (C) domain. In some cases, 
TE domains release the mature peptide chain by hydrolysis; predominantly cyclization via 
intramolecular nucleophiles occurs. R domains are involved in the formation of peptide aldehydes, 
which spontaneously form a macrocyclic imine or are further enzymatically modified to alcohols or 
primary amines. Sometimes the TE domain function can be replaced by a C domain. 
 

2.4 Chemoenzymatic strategies towards cyclic peptides 

With the genomic sequences of several antibiotic-producing microbes available, there have 

been sophisticated efforts to reengineer secondary metabolite biosynthetic pathways in vivo 

for the production of novel structural variants [3, 47, 48]. This has led to a robust platform 

for the generation of structural diversity, as recently illustrated for acidic lipopeptide 

antibiotics by Cubist pharmaceuticals [49-51]. However, a major challenge of these labour 

intensive genetic engineering approaches remains the size of new compound libraries, due 

to the time consuming construction of genetically manipulated organisms. On the other 

hand, classical chemical methodology can provide access to altered natural products, but 

usually involves multistep organic synthesis and can also suffer from low yields caused by 

inefficient acyl chain macrocyclization methods [52]. Confronted with these hurdles, the 

past seven years have seen a rapid increase in the development of alternative 

chemoenzymatic synthesis approaches towards bioactive macrocyclic nonribosomal 

peptides and polyketides [37, 38, 53, 54]. 
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The chemoenzymatic synthesis of macrocyclic nonribosomal peptides combines powerful 

chemical methods for the generation of the linear precursor molecules by solid-phase 

peptide synthesis (SPPS) with stereo- and regioselective enzymatic macrocyclization. To 

activate the artificial substrates, they are C-terminally coupled with the short cofactor 

mimic N-acetylcysteamine (SNAC) that imitates the natural situation where the mature 

acyl chain is bound to the biosynthetic machinery via the cofactor 4’-phosphopantetheine 

(Figure 2.11). Upon incubation with the recombinant TE, the reactive SNAC-thioesters are 

nucleophilically attacked by the catalytic triads’ serine residue and regioselective 

macrocyclization occurs. In some cases, for example during the chemoenzymatic synthesis 

of fengycin and mycosubtilin, the use of different substrate activation strategies, such as 

the thiophenol leaving group, commonly used in native chemical ligation, revealed 

superior yields, due to improved reaction kinetics [55, 56]. 

 

 
Figure 2.11: Natural vs. chemoenzymatic peptide cyclization. During nonribosomal peptide 
biosynthesis, as shown for daptomycin, the mature linear peptide chain is bound to a peptidyl carrier 
protein (PCP) of the NRPS via the cofactor 4’-phosphopantetheine. The reactive thioester is 
subsequently attacked by the catalytically active serine residue and macrocyclization occurs. For the 
chemoenzymatic synthesis of macrocyclic peptides artificial substrates are provided by chemical 
means, for example powerful solid-phase peptide synthesis (SPPS), and C-terminally activated with the 
cofactor mimic N-acetylcysteamine (SNAC). After incubation with the recombinant TE domain, 
stereo- and regioselective macrocyclization is efficiently catalyzed.  
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Initial contributions from the Walsh group impressively demonstrated that TE domains 

excised from biosynthetic assembly lines can act as versatile tools for the in vitro 

macrocyclization of chemically derived peptide substrates [7, 57-60]. Especially powerful 

SPPS enabled detailed studies on the substrate tolerance of several NRPS TE domains and 

provided rapid access to a multitude of synthetically demanding compounds with clinical 

relevance including for example the antibiotic tyrocidine [7, 57-60], type B streptogramins 

[61, 62], or potential anticancer agents of the cryptophycin class [63, 64].  

 

2.5 Enzymatic tailoring of NRP scaffolds 

2.5.1 The diverse building blocks of nonribosomal peptides 

A diagnostic feature of nonribosomal peptides is the presence of a wide variety of amino 

acid monomers that are not found in proteins and peptides with ribosomal origin. In 

addition to the rather uniform set of 20 canonical L-amino acids, NRPs include 

D-configured, α,β-unsaturated, and β-amino acids, or even fatty acid building blocks. This 

leads to a high density of functional groups and to a significant structural diversity, which 

is often closely connected to the biological activity of these complex compounds. While 

some of the utilized monomers are primary metabolites, many of them require dedicated 

free-standing enzymes that are clustered with the NRPS assembly line genes for coordinate 

regulation of precursor synthesis [65]. 

The lipopeptide antibiotics from the daptomycin-class, such as CDA, contain several 

nonproteinogenic amino acids including a conserved β-methylglutamate residue at the 

penultimate position of their peptide backbone (Figure 2.12). Together with in vivo data 

obtained by the Micklefield laboratory, the biochemical characterization of the 

recombinant methyltransferase GlmT from the CDA system showed that the corresponding 

β-keto acid is methylated with an electrophilic methyl group from S-adenosylmethionine 

(SAM) followed by transamination to yield the unique β-methylglutamate [66, 67]. 

Another intriguing monomer unit of CDA is a β-hydroxylated asparagine residue, which 

can even be further modified to β-phosphohydroxyasparagine in certain CDA variants 

(Figure 2.12). During biosynthesis, a non-heme FeII α-ketoglutarate-dependent oxygenase 

AsnO converts asparagine into β-hydroxyasparagine. This unusual amino acid is also part 

of the closely related lipopeptide A54145 [68, 69]. 

In addition to this, there are many secondary metabolites that contain halogenated amino 

acids, such as the indolocarbazole natural product rebeccamycin or the enediyne antitumor 
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compound C-1027. The unusual 7-chlorotryptophan residue of rebeccamycin, for example, 

arises from the chlorination of the electron rich tryptophan side chain by a flavin-

dependent halogenase RebH (see also Discussion section). The chlorinated amino acid 

present in C-1027 is a 3-Cl-4,5-(OH)2-β-phenylalanine residue. Recently, this outstanding 

chlorinated β-amino acid was shown to be generated out of tryptophan by extensive 

enzymatic tailoring [70]. 

 

 
 
Figure 2.12: Structurally diverse amino acid building blocks found in nonribosomal peptides and 
related natural products. 
 

The generation of the elaborated monomer building blocks of many nonribosomal peptides 

is achieved by enzymes acting on free amino acid substrates. Sometimes, in contrast, 

nature employs different strategies and precursor tailoring occurs on carrier protein-bound 

amino acids that are isolated from the cellular pool of substances. 

2.5.2 Tailoring on assembly lines in cis and in trans  

Besides the A domain, the PCP and the C domain, which together form the minimal set for 

the synthesis of a linear peptide, the modification of the monomer building blocks can be 

achieved by optional domains that are integrated parts of the NRPS assembly line 

machinery. These in cis acting tailoring enzymes include epimerization domains 

(E domain; ~450 amino acids) for the generation of frequently found D-configured amino 

acids (Figure 2.5) or N-methyl transferase domains (Me domain; ~420 amino acids) to 

control the methylation state of the peptide products. For example, seven out of the eleven 

residues in cyclosporine are N-methylated. Another remarkable alteration of backbone 

connectivity in NRP scaffolds occurs when cysteine, serine, or threonine side chains are 

intramolecularly cyclized and dehydrated to the thiazoline and oxazoline rings, 

respectively, by cyclization domains (Cy domain; ~450 amino acids) [71, 72]. In the 

biosynthesis of the previously mentioned telomestatin further enzymatic oxidation 

presumably leads to the finally observed oxazoles and thiazoles (Figure 2.2). 
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Additionally, tailoring enzymes working in trans as isolated proteins on assembly lines are 

known in literature and have been biochemically characterized. During the biosynthesis of 

the vancomycin-type glycopeptides, there are three heme iron monooxygenases, 

OxyA, -B, -C, that act to cross-link the heptapeptidyl-S-PCP, generating two aryl ether 

linkages between Tyr2 and PheGly4 and Tyr6 and a direct C-C cross-link between PheGly5 

and PheGly7 [73, 74]. Oxidative cross-linking significantly contributes to the rigidification 

of vancomycin or balhimycin – both molecules share the same aglycon – necessary to bind 

its biological target, the bacterial peptidoglycan D-Ala-D-Ala termini, with high affinity. 

Analogously, biosynthesis of coronamic acid (1-amino-1-carboxy-2-ethylcyclopropane), 

which is a building block of the pseudomonal phytotoxin coronatine, involves 

intermediates that are covalently bound to carrier proteins. The cyclopropyl ring is formed 

out of a γ-Cl-L-allo-Ile moiety, which is in turn produced by the chlorination of a 

L-allo-Ile-S-carrier protein substrate by a mononuclear non-heme iron halogenase [75, 76]. 

 

 
 
Figure 2.13: Enzymatic tailoring in trans to NRPS assembly lines occurs during coronatine and 
vancomycin biosynthesis. The unusual coronamic acid moiety of coronatine and the oxidative cross 
bridges of vancomycin are highlighted. 
 

2.5.3 Post-assembly line tailoring 

In this context it is worth noting that many NRPs can be enzymatically tailored in the state 

of the readily assembled molecule, which has been cleaved off from the molecular 

assembly line [65]. In the above discussed examples of vancomycin or the enediyne 

antitumor compound C-1027, the mature aglycon scaffolds are further decorated by the 

attachment of carbohydrates (Figure 2.12 and 2.13) [77, 78]. The incorporation of sugar 
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molecules can modulate the water-solubility of natural products since sugars contain 

hydroxyl groups or increase the affinity to biological macromolecules by serving as 

interaction partners for hydrogen bonding [79]. 

 

2.6 Biosynthetic analogies with other multimodular enzymes 

2.6.1 Basic principles of polyketide assembly 

Since PKSs and NRPSs follow a parallel synthetic logic, utilizing similar thioester 

chemistry and enzymatic macrocyclization strategies, it is very useful to compare both 

closely related types of assembly line-organized multienzyme complexes [1, 3, 80]. In 

contrast to the vast variety of monomer building blocks employed in nonribosomal peptide 

biosynthesis, structurally diverse PKs arise from the consecutive condensation of only a 

few simple acyl-CoA substrates. Acetyl-CoA, malonyl-CoA, and methylmalonyl-CoA, 

available from the microbial producer’s primary metabolism, represent the monomer units 

for the acyl chain assembly and complexity is introduced by an iterative sequence 

involving ketone reduction, dehydration, and enone reduction. 

Comparable to the function of an A domain, the acyltransferase domain (AT domain; 

~450 amino acids) selects a distinct acyl-CoA substrate to be incorporated and transfers it 

to an acyl carrier protein (ACP; ~100 amino acids), where it is bound as a thioester to a 

ppan arm (Figure 2.14). C–C bond formation between two acyl-thioesters is catalyzed by 

the ketosynthase domain (KS domain; ~400 amino acids), analogous to the role of a 

C domain in nonribosomal peptide biosynthesis. The KS domain transiently binds the 

upstream acyl substrate, which is nucleophilically attacked by the downstream thioester 

enolate intermediate resulting from previous decarboxylation.  

Together, the KS-AT-ACP catalytic domains represent the catalytic core set required for 

each chain elongation step. In addition to this obligatory repeating unit, ketoreductase 

(KR), dehydratase (DH), and enoylreductase (ER) domains can be embedded in the 

multienzyme for further diversification of the condensation product. In full analogy to 

nonribosomal peptide biosynthesis, the most downstream domain within PKS assembly 

lines is usually a dedicated thioesterase (TE) domain that performs the regio- and 

stereospecific formation of a macrolactone between a hydroxyl group on the polyketide 

chain and the enzyme-bound oxoester. 
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Figure 2.14: A: Template-directed polyketide and nonribosomal peptide assembly follows a parallel 
biosynthetic logic. The core set of domains required for polyketide synthesis consists of a ketosynthase 
(KS), an acyltransferase (AT) and an acyl carrier protein (ACP). The KS domain catalyzes C–C bond 
formation, the AT domain selects and activates a distinct monomer, and the ACP carries the thioester 
intermediates bound to the cofactor phosphopantetheine (ppan). B: A Claisen condensation leads to 
C-C bond formation during polyketide biosynthesis. Decarboxylation of the downstream ACP-bound 
(methyl)malonyl unit leads to the generation of a nucleophilic ester enolate that subsequently attacks 
the upstream KS-bound acyl chain.  
 

The close relationship between both, NRPS and PKS biosynthetic logic, is reflected by the 

existence of NRPS/PKS hybrids. In those mixed biosynthetic machineries, catalytic 

domains from both types of systems act together in assembly line fashion or as distinct 

enzymes, and produce mixed NRP/PK hybrids such as epothilone or FK 506 (Figure 2.3) 

[22]. 

2.6.2 Fatty acid synthesis in primary metabolism 

Another even closer relationship exists between PKSs and fatty acid synthases (FASs) that 

are involved in primary metabolism as reviewed by Lu and White [81, 82]. FASs function 

very much like PKSs, starting with malonyl-CoAs as carbon monomers that are built from 

acetyl-CoA and CO2 by biotin carboxylase [83, 84]. Through the action of 

malonyl-CoA-ACP transacylase (MAT) [85], malonyl-CoA is loaded onto an ACP to 

isolate the growing lipid chain from the cellular milieu (Figure 2.15). Next, a 

ketoacyl-ACP synthase III (KSIII) elongates the carbon chain via decarboxylative addition 

of malonyl-CoA on acetyl-CoA to give acetoacetyl-ACP, the starter unit for fatty acid 

synthesis [86]. The β-carbon of the ACP-bound intermediate undergoes subsequent 

reduction by a KR and dehydration by a DH before an ER fully reduces the Cβ-carbon to 

methylene. Further elongation of the resulting acyl-ACP proceeds in subsequent rounds of 

synthesis by other KSs, each of which catalyzes the condensation with an additional 

malonyl-ACP to extend the lipid chain by two carbon atoms. This process can be multiply 

repeated until the growing fatty acid chain has reached its specific length [87, 88]. 
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Figure 2.15: Reactions catalyzed by fatty acid synthases (FASs). Instead of forming a modular 
assembly line, the catalytic domains of type II FASs are independent proteins that interact with the 
ACP-bound substrate in trans. 
 

According to their architectural configuration FASs and PKSs can be classified: FASs and 

PKSs from type I are similar to NRPSs multimodular proteins with molecular weights up 

to several hundred kilo Daltons containing the catalytic domains required for product 

extension. Type II FASs and PKSs function in full analogy to type I systems, but instead of 

forming a multi-domain assembly line each catalytic domain is a separate polypeptide 

chain that interacts with the ACP in trans [80]. In general, type I FASs accomplish fatty 

acid synthesis in the cytosol of eukaryotes [89-91], whereas type II FASs systems are 

found in prokaryotes and plants [92, 93]. 

 

2.7 Lipopeptide antibiotics 

Among the multitude of medicinally relevant nonribosomal peptides, lipopeptide 

antibiotics such as daptomycin and the calcium-dependent antibiotic (CDA) are of 

considerable interest. The last-resort antibiotic daptomycin, for example, is highly active 

against multi-drug resistant pathogens including those resistant to vancomycin and 

represents the first member of a new structural class of natural antimicrobial agents to be 

approved for clinical use in over 30 years [94-97]. 

A structural key feature of such lipopeptide antibiotics is the eponymous long chain fatty 

acid, which is invariably attached to the macrocyclic peptide core. Straight and branched 

chain fatty acids that can significantly differ in the degree of saturation and the oxidation 

state are frequently found and contribute to the high structural diversity of this class of 

compounds (Figure 2.16). In particular, the lipid portion has a high impact on the 

biological properties of these molecules, since antimicrobial behavior and toxicity are 

dramatically affected by the nature of the incorporated fatty acid group [95, 98]. However, 

today we still lack a detailed understanding of the biochemical mechanisms underlying 

fatty acid incorporation in nonribosomal lipopeptides and the dedicated tailoring steps for 

the generation of modified fatty acid building blocks.  
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Figure 2.16: Chemical structures of nonribosomal lipopeptides containing modified fatty acid building 
blocks. Unsaturated fatty acids (grey) and Cβ-modified fatty acids (orange) are predominantly found. 
The calcium-dependent antibiotic CDA contains a trans-2,3-epoxidized hexanoyl moiety (red) with 
unknown absolute configuration. 
 

2.7.1 Lipidation of nonribosomal peptides 

Recently, important contributions from the Walsh laboratory elucidated the activation and 

tailoring processes involved in the formation of the β-amino fatty acid moiety of the 

octalipopeptide mycosubtilin (Figure 2.16) [99-101]. This potent antifungal is produced by 

Bacillus subtilis and synthesized by an NRPS/PKS hybrid system consisting of four 

proteins: FenF, MycA, MycB, and MycC. The first enzymatic subunit MycA is comprised 

by NRPS and PKS domains and additionally shows elements of FASs [102]. In vitro 

studies with the excised AL-ACP1 from MycA characterized the AL domain to function as 

a fatty acyl-AMP ligase (FAAL), that in analogy to an A domain found in NRPSs activates 

the fatty acid substrate as an acyl-adenylate and further transfers it to the adjacent ACP 

[100, 103]. FenF is a free-standing acyltransferase (AT) enzyme that has been shown to 

load malonyl-CoA onto the second ACP of MycA in trans, before condensation via a 
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KS domain gives a β-ketoacyl thioester that is reductively aminated by the AMT domain 

(Figure 2.17) [99]. 

 

 
 

Figure 2.17: Fatty acid activation and modification during mycosubtilin biosynthesis. PKS elements of 
MycA are indicated in blue. 
 
The NRPSs of the lipopeptide antibiotics from the daptomycin-class do not contain 

integrated PKS elements. Instead, different biosynthetic pathways for fatty acid activation 

and modification can be deduced from their biosynthetic gene clusters [9, 104, 105]. In the 

daptomycin biosynthetic system, the stand-alone proteins DptE and DptF are a putative 

fatty acyl-AMP ligase and an ACP, respectively, responsible for activation of the fatty acid 

building blocks [9, 95]. In analogy to the above discussed AL domain of MycA, DptE is 

likely to recruit fatty acids provided by primary metabolism and to activate them as 

acyl-adenylates, which are subsequently transferred to the carrier protein DptF. A fused 

equivalent of DptE and DptF is present in the A54145 NRPS system, where LptEF was 

proposed to carry out the same biosynthetic function during lipoinitiation. After fatty acid 

activation and attachment to the respective ACP, the activated intermediates are possibly 

transferred to the amino acid that is bound to the first module of the daptomycin or A54145 

peptide synthetase (Figure 2.18). 

 

 
Figure 2.18: Proposed model for fatty acid activation and transfer during daptomycin biosynthesis. 
DptE is a putative fatty acyl-AMP ligase that activates decanoic acid as decanoyl-adenylate under the 
consumption of ATP. DptF is a free-standing ACP possibly loaded in trans by DptE. Finally, the 
thioester-bound decanoyl moiety is transferred to tryptophan that is tethered to the first module of 
DptA. 



2 Introduction 

 35

2.7.2 Fatty acid tailoring during CDA biosynthesis 

As with the generation of the exceptional amino acid monomers found in NRPs, enzymatic 

modification leads to the diversification of the fatty acid building blocks found in 

lipopeptide antibiotics. Recently, the cloning and sequencing of the CDA biosynthetic gene 

cluster suggested that enzymatic tailoring mediated by stand-alone enzymes working 

in trans to the assembly line machinery could be responsible for fatty acid modification. 

A putative fatty acid biosynthesis (fab) operon adjacent to the genes encoding for the 

NRPS, comprised of five open reading frames, was predicted to be involved in the 

synthesis and modification of the unique trans-2,3-epoxyhexanoyl moiety of CDA 

(Figure 2.19) [104]. 

 

 
 

Figure 2.19: The fab operon implicated in the biosynthesis of the 2,3-epoxyhexanoic acid of CDA. 
 

While SCO3249 encodes for a protein with similarity to an ACP from FASs and PKSs, the 

gene product of fabH4 was predicted to be a KSIII that catalyzes the first condensation 

reaction of acetyl and malonyl units, resulting in acetoacetyl-ACP. FabF3 is likely to be 

responsible for the second condensation reaction to give β-ketohexanoyl-ACP. Since genes 

encoding for additional FAS enzymes, like acetyl and malonyl transacylases, ΚRs, DHs, as 

well as an ERs are absent from the cluster, presumably enzymes from primary metabolism 

contribute to the synthesis of the fatty acid moiety precursor. HxcO was suggested to 

encode for a fatty acid modifying enzyme that functions in analogy to acyl-CoA oxidases, 

which utilize FAD in the desaturation of acyl-CoAs to enoyl-CoAs during fatty acid 

degradation. Further it was anticipated that HcmO subsequently epoxidizes the 

hexenoyl-CoA product generated by HxcO. In order to elucidate the function of the two 

enzymes HxcO and HcmO in CDA biosynthesis, fatty acid tailoring was reconstituted 

in vitro during the course of this study. 
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2.7.3 Acidic lipopeptide mode of action 

A large number of papers and reviews have appeared in recent literature on the mode of 

action of daptomycin, the far most prominent representative of the lipopeptide class of 

compounds [95, 106]. The general consensus at present is that the biological target of 

daptomycin is the bacterial cell membrane, to which it binds in a calcium-dependent 

manner. Initially, the lipid tail of the peptide is supposed to partly insert into the 

cytoplasma-membrane, followed by calcium-dependent integration of the daptomycin 

molecules into the membrane and the formation of aggregates. Finally, cell death occurs 

via membrane perforation leading to an efflux of potassium from the bacterial cell, which 

causes dysfunction of macromolecular synthesis (Figure 2.20) [107]. 

 

 
 

Figure 2.20: Daptomycin’s mode of action works via the cell membrane. 
 

To understand the molecular mechanism of how daptomycin goes on to perturb bacterial 

membranes in more detail, its three-dimensional structure has been determined by NMR 

spectroscopy in three separate studies [108-110]. Two of these investigated daptomycin 

solutions in the presence of calcium (holo-daptomycin) [108, 109], while a third focused 

on calcium-free solutions (apo-daptomycin) [110]. Whereas the 3-D structure derived by 

Ball et al. indicates no significant conformational change upon calcium binding, Jung and 

coworkers postulated distinct structural transitions caused by Ca2+-ions (Figure 2.21). 

Binding of Ca2+-ions was proposed to draw the core decapeptide closer together, with Asp3 

and Asp7 probably coordinating the divalent cation. In addition to reducing the net charge 

of the overall cationic daptomycin from −3 at neutral pH to −1 and constraining the 

conformational freedom of the peptide core, calcium binding was further suggested to 

increase the solvent exposed surface of the daptomycin molecule. Redistribution of 
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charged side chains towards the top of the peptide ring and the clustering of the lipid chain 

with the hydrophobic Trp1 and Kyn13 at the bottom or the ring structure is supposed to 

overall lead to an increased amphipathicity that facilitates interaction with the phospholipid 

membrane and the oligomerization of the lipopeptide. 

 

 
Figure 2.21: Structures of daptomycin in the absence (A,C) and presence (B,D) of Ca2+-ions. Backbone 
(A,B) and surface (C,D) representations of the apo- and holo-structure are shown. Negative charges 
are indicated in red, positive charges in blue and uncharged residues and regions are indicated in grey. 
This figure is adopted from Ball et al. [108]. 
 
 

 
Figure 2.22: Structures of the acidic lipopeptide family. The peptide backbones of these compounds 
contain several aspartate and glutamate residues colored in red, leading to the overall acidic nature. At 
least two D-configured amino acids, colored in blue, can be found for each member. Macrocyclization 
occurs via the formation of lactones and lactams as highlighted in grey. 
 
Since other acidic lipopeptide antibiotics such as CDA, A54145, friulimycins, and 

amphomycins share several characteristic structural features with daptomycin, they are 

likely to function via a similar mode of action based on the calcium-dependent interaction 

with the bacterial cytoplasma membrane. To illustrate the close relationship between these 

compounds, it should be noted that, besides the conserved decapeptidelactone or -lactam 

ring, all members of the acidic lipopeptide family contain two conserved aspartic acid 
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residues at ring positions 7 and 9, followed by glycine at position 10, using the daptomycin 

numbering convention (Figure 2.22). Moreover, D-configured and achiral amino acids 

commonly occupy positions 5 and 8 of the acidic peptide core, while position 11 is strictly 

reserved for D-configured amino acids, suggesting a general importance of these conserved 

structural motifs for antibacterial activity. 

 

2.8 Tasks of this study 

One aim of this study was to investigate the synthetic potential of the excised peptide 

cyclases from the daptomycin and A54145 gene clusters. In addition to the question, 

whether these two enzymes are suited for the chemoenzymatic generation of daptomycin 

and A54145 analogs, their substrate specificity should be explored with synthetic peptidyl-

thiophenol substrates. Based on this information, lipopeptide variants could be synthesized 

and tested for antimicrobial activity. 

In the context of macrocyclic lipopeptide antibiotics, which are commonly lactones and 

lactams, an unusual type of peptide cyclization, as found for the nostocyclopeptide (ncp), 

via an intramolecular imino bond was of interest. Thus, one aim of this thesis was the 

biochemical characterization of an exceptional reductase domain located at the C-terminal 

end of the ncp NRPS. In detail, assays with the recombinant enzyme, chemically produced 

substrate mimics, and linear peptide aldehydes were envisioned. 

The third task of this thesis was to explore the enzymatic tailoring reactions catalyzed by 

HxcO and HcmO during the formation of the unusual trans-2,3-epoxyhexanoic moiety 

residue of CDA. Experiments to test three possible biosynthetic routes were planned with 

acyl-CoA substrates, acyl substrates loaded on an ACP, and chemoenzymatically derived 

CDA variants. An additional goal of these investigations was to examine the substrate 

specificity of HxcO and HcmO for different fatty acids. 
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3 Materials 

3.1 Chemicals, enzymes, and general materials 

Chemicals that are not listed were purchased as standard compounds from other 

manufacturers in p.a. quality. 
 
Table 3.1: Chemicals, enzymes, and general material. 
Manufacturer (location) Product 

 

Agilent Technologies (Böblingen) 2,5-dihydroxybenzoate matrix 

Amersham Biosciences  

(Braunschweig) 

various restriction endonucleases, ampicillin, IPTG, 

kanamycin, yeast extract, Coomassie brilliant blue G 

and R250, agar Nr.1, HiTrap™-desalting columns 

Bachem (Weil am Rhein) Nα-Fmoc-protected amino acids, Nα-Boc-protected 

amino acids 

Böhringer Mannheim (Mannheim) ExpandTM Long Template PCR Kit, lysozyme 

Eurogentech (Seraing, Belgium) agarose, electroporation cuvettes 

Fermentas (St. Leon-Rot) PageRulerTM Protein Ladder 

Fluka (Neu-Ulm) SDS, TEMED, DMF 

Finnzymes (Heidelberg) Phusion DNA Polymerase 

Invitrogen (Karlsruhe)  pBAD Directional TOPO® Expression Kit,              

Champion TM pET SUMO Protein Expression 

System 

Macherey and Nagel (Düren) C18-Nucleodur HPLC column,                                        

C18-Nucleosil-HPLC column 

Merck (Darmstadt) silica gel 60 F254 plates 

Millipore (Bedford, USA) Amicon® Ultra-4 Centrifugal Filter Devices 

MPBiomedicals (Solon, USA) coenzyme A 

New England Biolabs 

(Schwalbach) 

desoxyribonucleotides (dATP, dTTP, dGTP, dCTP), 

prestained protein molmarker, various restriction 

endonucleases, 1kb-DNA-ladder 

Novabiochem (Darmstadt) Nα-Fmoc-protected amino acids,                                

2-chlorotritylchloride resin, HBTU, HOBt, PyBOP 

Oxoid (Wesel) agar Nr.1, tryptone, oxoid nutrient broth (ONA) 
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Qiagen (Hilden) QIAquick-spin PCR purification kit, 

Ni2+-NTA-agarose, QIAexpress vector kit ATG, 

QIAEXII extraction kit 

Qiagen-Operon (Köln) oligodeoxynucleotides 

Roth (Karlsruhe) ethidiumbromide, β-mercaptoethanol,               

acrylamide for SDS-PAGE, piperidine 

Schleicher & Schüll (Kassel) Whatmann-3MM paper 

Serva (Heidelberg) Visking dialysis tubes, APS 

Sigma (Deisenhofen) EDTA, N-acetylcysteamine, thiophenol,            

nucleotide pyrophosphatase 

Stratagene (Heidelberg) PfuTurbo DNA polymerase 

 

3.2 Equipment 

Table 3.2: Equipment 
Device Manufacturer 

 

Autoclave Tuttnauer 5075 ELV 

Bidestilled water supply Seral Seralpur Pro90CN 

Centrifugation Heraeus Biofuge pico 

Sorvall RC 26 plus, rotors SS34 und SLA3000                 

Sorvall RC 5B Plus 

Clean-Bench Antair BSK 

DNA-gel documentation Cybertech CS1, thermoprinter Mitsubishi Video Copy 

processor 

Electrophoresis Mini-PROTEAN®, Bio-Rad Laboratories GmbH 

Electroporation-pulse control Bio-Rad Gene Pulser II 

Emulsifier (cell disruption) Avestin (EmulsiFlex-C5) 

ESI-MS Agilent Technologies (1100 MSD, Series A) 

FTICR (Finnigan LTQ-FT) Thermo Scientific 

FPLC-system Pharmacia FPLC-biotechnology FPLC-System 250: 

gradient-programmer GP-250 

Pump P-500 

Uvicord optical device UV-1 (λ = 280 nm) 
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Uvicord control element UV-1 

2-channel printer REC-102 

Injection valve V-7 

3-way-valve PSV-100 

Fraction collector FRAC-100 

FPLC-columns Amersham Biosciences HiTrap® desalting columns 

Amersham Biosciences HiLoad Superdex gelfiltration 

French Press SLM Aminco; French-Pressure Cell-Version 5.1; 20k 

Rapid-fill cell (40 mL) 

HPLC-system Agilent series 1100 HPLC-system with DAD-detection, 

vacuum degasser, quaternary pump, auto sampler and 

HP-chemstation software 

HPLC-columns Macherey & Nagel  

Nucleosil 250/3, pore diameter 120 Å, particle size 3 µm 

Nucleodur 250/3, pore diameter 100 Å, particle size 3 µm

Nucleodur 250/21, pore diameter 100 Å, particle size       

3 µm 

Incubator Köttermann 2736 

Lyophilizer Christ 

NMR Bruker Avance AC-300 

MALDI-TOF Per Septive Biosystems Voyager-DE RP 

BioSpectrometry, Bruker FLEX III 

MS-MS sequencing Applied Biosystems, API Qstar Pulsar I  

Peptide synthesizer Advanced ChemTech APEX 396 synthesizer 

Photometer Pharmacia Biotech Ultraspec 3100 pro 

Shaker New Brunswick Scientific Series 25 Incubator Shaker, 

New Brunswick Scientific Innova 4300 Incubator, 

Heidolph Instruments GmbH 

Speed-Vac Savant Speed Vac Concentrator, 

Uniequip Univapo 150 

Vortexer Scientific Industries Vortex Genie 2 

Thermocycler eppendorf mastercycler personal 

Water bath Infors Aquatron Shaker 
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3.3 Vector systems 

3.3.1 The pET28a(+) vector 

The pET28a(+) vector system (Novagen) was used for the production of recombinant 

proteins (Figure 3.1). The vector allows Ni2+-NTA chromatography purification by fusing 

a His6-tag to the C- or N-terminus of the overproduced protein. The transcription of the 

cloned genes is dependent on the T7 RNA polymerase and IPTG-induced.  
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Figure 3.1: Physical map of pET28a(+). 

 

3.3.2 The pQTEV vector 

The pQTEV vector is a derivatized pQE60 vector (Qiagen) that allows purification of 

recombinant proteins by Ni2+-NTA chromatography, by fusing a His7-tag to the N-terminal 

end of the produced protein (Figure 3.2). After purification, the His7-tag can be removed 

from the recombinant protein via a recognition site of the tobacco etch virus (TEV) 

protease. The pQTEV vector carries two lac-operators in the promotor region and can 

therefore be precisely induced with IPTG for protein expression. The tandem lac-operators 

may also represent a disadvantage since excisive recombination is frequently observed at 

this site.  
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Figure 3.2: Physical map of the pQTEV vector. 

 
 

3.4 Primer 

Primers used for vector construction are listed in Table 3.3. 

 
Table 3.3: Primers used in this study (restriction sites are underlined). 
Primer 
name 

Primer sequence  
(5’-3’) 

Restriction 
site 

Expression 
vector Target gene 

FK01 AAAAAAGGTACCGGCGCGCACC
CCAGTCGC KpnI 

FK02 AAAAAAAAGCTTTCAGGTGCCG
GCGCCCAGCC 

HindIII 
pQTEV dap PCP-TE 

FK03 AAAAAAGGTACCCGGCGTACGA
CCCGTTCGAGAC KpnI 

FK02 AAAAAAAAGCTTTCAGGTGCCG
GCGCCCAGCC 

HindIII 
pQTEV dap TE 

FK19 AAAAAGGATCCGGCCGTCCGCC
GCGCGAC BamHI 

FK17 AAAAAAGCGGCCGCTCATACCT
CTCGTTTCTTCGTGGTGGCTCC NotI 

pQTEV A54 PCP-TE 

FK15 AAAAAAGGATCCGGCGCCGAAC
GCCGCGCC BamHI 

FK17 AAAAAAGCGGCCGCTCATACCT
CTCGTTTCTTCGTGGTGGCTCC NotI 

pQTEV A54 TE 

FK19 AAAAAAGGATCCATGGACACGA
AAGCCTGCACAGCACCC BamHI 

FK20 AAAAAAGCGGCCGCTTAGCGTC
GGGGGGCGAGTCGCC NotI 

pQTEV ncp R  
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FK40 
 

AAAAAAGGATCCATGAGTACGG
ACCCCAAGTCGGTTG BamHI 

FK41 AAAAAAAAGCTTTCACGCCGCT
TCCAGACCCG HindIII 

pQTEV ACP 
(SCO3249) 

FK42 AAAAAAGAATTCACGCAACGCG
AAGAAGAGCTGGCC EcoRI 

FK43 AAAAAACTCGAGCGGGCGTACT
CCGGCCTGCA XhoI 

pET28a(+) hxcO 

FK44 AAAAAAGAATTCCCGAAGCTGC
GGATCGCAGTCG EcoRI 

FK45 AAAAAACTCGCTCGAGCGGCGG
CGGCAGCGGTG XhoI 

pET28a(+) hcmO 

 

3.5 Microorganisms 

3.5.1 E. coli TOP 10 

E. coli TOP 10 (Invitrogen) was used for cloning and sequencing purposes. The genotype 

is as follows: F-mcrA. (mrr-hsdRMS-mcrBC) 80lacZ.M15.lacX74 deoR recA1 araD139. 

(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG. 

3.5.2 E. coli BL21(DE3) 

The E. coli strain BL21(DE3) (Novagen) with the genotype F- ompT[Ion]rb
-mb

- was used 

as a bacterial host for the expression of plasmid DNA. It is characterized by a deficiency of 

the Lon and OmpT protease (protein of the outer membrane). The strain further contains 

the IPTG-inducible T7 RNA polymerase gene, which is inserted in the chromosome after 

lacZ and the promoter lacuV5 on a λ-prophage. This is essential for the IPTG induction of 

genes under T7-promotor control. 

3.5.3 Streptomyces 

S. fradiae (NRRL 18158) and S. coelicolor A3(2) (DSM 40783) were cultivated for the 

subsequent preparation of genomic DNA. 

 

3.6 Media 

The following media were used for the cultivation of microorganisms. Culture plate 

medium was prepared by adding 1.2% (w/v) of agar no.1 to the respective medium, which 

was heated at 121 °C and 1.5 bar for 30 min. Antibiotics for selection were added after 

cooling down to 55 °C in the following standard concentrations: 100 µg/mL ampicillin, 

50 µg/mL kanamycin. 
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3.6.1 LB Medium 

E. coli strains were grown in LB media. 

 

LB Medium (adjusted to pH 7.0): 

Bactotrypton  16 g/L 
Yeast-extract  10g/L 
NaCl   5 g/L 
 

3.6.2 Medium 65 

Streptomyces species were grown in medium 65.  

 

Medium 65: 

glucose  4 g/L 
yeast-extract  4 g/L 
malt-extract  10 g/L 
CaCO3   2 g/L 
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4 Methods 

4.1 Molecular biology techniques 

4.1.1 Streptomyces cultivation and DNA preparation 

Streptomyces species were grown in liquid culture under agitation (250 rpm) at 28 °C for 

5-7 days. The isolation of chromosomal DNA was carried out as described previously 

[111]. 

4.1.2 Construction of overexpression plasmids 

Amplification of all gene fragments was performed by polymerase chain reaction (PCR) 

with Phusion DNA Polymerase (Finnzymes) according to the manufacturer’s protocol for 

GC-rich DNA templates. Purification of PCR products was performed by the 

“QIAquick-spin PCR purification kit” following the manufacturer’s manual (Qiagen). All 

constructs were analyzed by restriction digests and DNA-sequencing (carried out by 

GATC-Biotech, Konstanz). 

 

Construction of pQTEV[dap PCP-TE] – The dap PCP-TE gene fragment was amplified 

from genomic DNA of S. roseosporus by PCR using the primer pairs listed in the Materials 

section (Table 3.3). The resulting amplicons were digested with the enzymes indicated in 

Table 3.3 and cloned into appropriate restriction sites of a pQTEV vector. The resulting 

overexpression plasmids were checked by DNA sequencing and transformed into E. coli 

BL21(DE3) for protein production. 

 

Construction of pQTEV[dap TE] – The dap TE gene fragment was amplified from 

genomic DNA of S. roseosporus by PCR using the primer pairs listed in the Materials 

section (Table 3.3). The resulting amplicons were digested with the enzymes indicated in 

Table 3.3 and cloned into appropriate restriction sites of a pQTEV vector. The resulting 

overexpression plasmids were checked by DNA sequencing and transformed into 

E. coli BL21(DE3) for protein production. 

 

Construction of pQTEV[A54 PCP-TE] – The A54 PCP-TE gene fragment was amplified 

from genomic DNA of S. fradiae by PCR using the primer pairs listed in the Materials 

section (Table 3.3). The resulting amplicons were digested with the enzymes indicated in 

Table 3.3 and cloned into appropriate restriction sites of a pQTEV vector. The resulting 
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overexpression plasmids were checked by DNA sequencing and transformed into E. coli 

BL21(DE3) for protein production. 

 

Construction of pQTEV[A54 TE] – The A54 TE gene fragment was amplified from 

genomic DNA of S. fradiae by PCR using the primer pairs listed in the Materials section 

(Table 3.3). The resulting amplicons were digested with the enzymes indicated in Table 3.3 

and cloned into appropriate restriction sites of a pQTEV vector. The resulting 

overexpression plasmids were checked by DNA sequencing and transformed into E. coli 

BL21(DE3) for protein production. 

 

Construction of pQTEV[ncp PCP-R] – The ncp PCP-R gene fragment flanked by BamHI 

and NotI was synthesized by solid-phase oligonucleotide synthesis (EZBiolab). After 

enzymatic digest, the synthesized DNA fragment was cloned into appropriate restriction 

sites of a pQTEV vector. The resulting overexpression plasmids were checked by DNA 

sequencing and transformed into E. coli BL21(DE3) for protein production. 

 

Construction of pQTEV[ncp R] – ncp R was amplified from pQTEV[ncp PCP-R] by PCR 

using the primer pairs listed in the Materials section (Table 3.3). The resulting amplicons 

were digested with the enzymes indicated in Table 3.3 and cloned into appropriate 

restriction sites of a pQTEV vector. The resulting overexpression plasmids were checked 

by DNA sequencing and transformed into E. coli BL21(DE3) for protein production. 

 

Construction of pQTEV[acp] – The acp gene fragment from the CDA fab operon was 

amplified from genomic DNA of S. coelicolor A3(2) by PCR using the primer pairs listed 

in the Materials section (Table 3.3). The resulting amplicons were digested with the 

enzymes indicated in Table 3.3 and cloned into appropriate restriction sites of a pQTEV 

vector. The resulting overexpression plasmids were checked by DNA sequencing and 

transformed into E. coli BL21(DE3) for protein production. 

 

Construction of pET28a(+)[hxcO] – The hxcO gene fragment from the CDA fab operon 

was amplified from genomic DNA of S. coelicolor A3(2) by PCR using the primer pairs 

listed in the Materials section (Table3.3). The resulting amplicons were digested with the 

enzymes indicated in Table 3.3 and cloned into appropriate restriction sites of a pET28a(+) 
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vector. The resulting overexpression plasmids were checked by DNA sequencing and 

transformed into E. coli BL21(DE3) for protein production. 

 

Construction of pET28a(+)[hcmO] – The hcmO gene fragment from the CDA fab operon 

was amplified from genomic DNA of S. coelicolor A3(2) by PCR using the primer pairs 

listed in the Materials section (Table 3.3). The resulting amplicons were digested with the 

enzymes indicated in Table 3.3 and cloned into appropriate restriction sites of a pET28a(+) 

vector. The resulting overexpression plasmids were checked by DNA sequencing and 

transformed into E. coli BL21(DE3) for protein production. 

 

4.2 Protein methods 

Standard methods frequently used in protein analysis, such as SDS-PAGE and Coomassie 

staining have been described elsewhere [112, 113]. 

4.2.1 Gene expression 

4.2.1.1 Expression with the pQTEV vector system 

0.5 L of cultures in 2 L Erlenmeyer flasks were inoculated with 5 mL of an overnight 

culture and grown to an optical density of 0.5 at 37 °C. The temperature was lowered to 

30 °C and cultures were induced by the addition of IPTG to a final concentration of 1 mM. 

The cultures were incubated for another 3 to 4 h, then harvested by centrifugation 

(7000 rpm, 4 °C, 30 min). The pellet resulting from 5 L expression culture was 

resuspended in 50 mL Hepes A buffer (50 mM Hepes, 300 mM NaCl, pH 8.0). The cell 

suspension was stored at -20 °C. 

4.2.1.2 Expression with the pET28a(+) Vector System 

0.5 L of cultures in 2 L Erlenmeyer flasks were inoculated with 5 mL of an overnight 

culture and grown to an optical density of 0.5 at 37 °C. The cultures were cooled to 16 °C 

and protein production was induced by the addition of IPTG to a final concentration of 

0.1 mM. The cultures were incubated for another 14-16 h, then harvested by centrifugation 

(7000 rpm, 4 °C, 30 min). The pellet resulting from 5 L expression culture was 

resuspended in 50 mL Hepes A buffer (50 mM Hepes, 300 mM NaCl, pH 8.0). The cell 

suspension was stored at −20 °C. 
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4.2.2 Protein purification 

For purification of the His-tagged proteins, cell suspensions were thawed and disrupted by 

the use of an EmulsiFlex®-C5 High Pressure Homogenizer (Avestin). After centrifugation 

(17000 rpm, 4 °C, 30 min) the supernatant was carefully removed and applied to Ni2+-NTA 

chromatography on an FPLC® system (Amersham Pharmacia Biotech). Briefly, the protein 

raw extract was run over a column filled with 500 µL Ni2+-NTA superflow resin (Qiagen) 

with a flow rate of 0.5 mL/min. The bound proteins were washed with Hepes A buffer 

containing 2% Hepes B buffer (50 mM Hepes, pH 8.0, 300 mM NaCl, 250 mM imidazole) 

for 5 min and eluted by applying a linear gradient of 2-50% buffer B over 30 min with a 

flow rate of 0.7 mL/min. 

Fractions containing the recombinant proteins were monitored by SDS-PAGE, pooled, and 

dialyzed against the respective assay buffer using Hi-TrapTM desalting columns 

(Amersham Biosciences). In the case of the FAD-dependent enzymes HxcO and HcmO the 

flavin cofactor was added in a 5-fold molar excess to increase protein stability. The 

recombinant proteins could be stored at −80 °C for 3 months without significant loss of 

activity. 

4.2.3 Determination of protein concentrations 

Generally, the concentrations of the purified proteins were determined 

spectrophotometrically using the calculated extinction coefficient at 280 nm, which was 

determined by the program “Protean” (DNAStar). 

 

Table 4.1: Theoretical extinction coefficients (λ=280 nm) 
Recombinant protein Theoretical extinction coefficient [mg/mL] 

Dap PCP-TE 1.14 

Dap TE 0.92 

A54 PCP-TE 1.11 

A54 TE 0.89 

Ncp PCP-R 0.88 

Ncp R 0.80 

ACP 4.48 

HxcO 1.10 

HcmO 0.73 
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Due to the FAD cofactor of HxcO and HcmO, the Bradford assay was used for 

concentration determination in these cases [114]. During the Bradford assay, the blue dye 

Coomassie G 250 binds to proteins and shifts their absorption maximum from 465 nm 

(blue) to 595 nm (orange) in an acidic solution. Based on the absorption intensity at 

595 nm the amount of a protein in solution can be quantified. 

 

4.3 Biochemical methods 

4.3.1 Enzymatic cyclization assay 

Enzymatic macrocyclization reactions were carried out in a total volume of 50 µL, 

containing 25 mM Hepes, 50 mM NaCl, and 5% DMSO (v/v) at pH 7.0. The mixture 

containing 250 µM peptidyl-thiophenol substrate and 5 µM enzyme was incubated at 

25 °C for 2.5 h. All assays were analyzed by LC-MS on a C18 Nucleodur column 

(Macherey and Nagel, 250/3, pore diameter of 100 Å, particle size of 3 µm) with the 

following gradient: 15-60% acetonitrile, 0.1% TFA in water, 0.1% TFA over 40 min at 

0.3 mL/min and 45 °C. Identities of the products were verified by ESI-MS.  

Connection regiochemistry of cyclic products was determined by MS-MS analysis on an 

API Qstar Pulsar i Q-q-TOF mass spectrometer (Applied Biosystems). Concentrations of 

various peptidyl-thioesters were calculated using experimentally determined extinction 

coefficients at a wavelength of 220 nm. The extinction coefficient of peptidyl-thiophenol 

substrates was assumed to be identical to that of cyclized and hydrolyzed products.  

For kinetic studies, the substrate concentration was varied from 50 µM to 1 mM, and 

reactions were quenched by the addition of 35 µL of a 4% TFA/H2O solution. Kinetic 

characterization of the cyclization reactions was performed by determining initial rates at 

5-10 substrate concentrations using two time points at each concentration within the linear 

region of the enzyme verified by time courses. 

4.3.2 Preparation of cyclic peptides for bioassays  

For the semipreparative scale preparation of cyclic acidic lipopeptides, the reactions were 

carried out in a total volume of 3-6 mL with 5 µM purified TE domain, 250 µM 

peptidyl-SPh substrate, 25 mM Hepes, 50 mM NaCl, and 5% DMSO (v/v) at pH 7.0 and 

25 °C. The reaction was monitored by analytical HPLC and thin-layer chromatography 

(TLC) on silica gel 60 F254 
plates (Merck) and visualized under UV (365 nm). After 3-5 h, 

the reaction mixture was directly run over a 250/21 Nucleodur 100-5 C18 reverse phase 
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column (Macherey and Nagel) by applying a linear gradient from 35 to 55% acetonitrile, 

0.1% TFA in water, 0.1% TFA over 30 min at a flow rate of 20 mL/min and 25 °C. The 

purity of the obtained products was analyzed by analytical HPLC (>95% purity). 

4.3.3 Antimicrobial activity assays 

To determine the antimicrobial activity of the synthesized lipopeptides, the 

chemoenzymatically cyclized compounds were assayed against Bacillus subtilis PY79. 

Minimal inhibition concentrations (MICs) were obtained from 2-fold serial dilutions of the 

cyclic peptides and authentic daptomycin prepared in microtiter plates as previously 

described using LB medium containing 74 mg Ca2+/L [57]. Therefore, 80 µL of an 

overnight culture diluted 1:10000 was added to each well and incubated at 37 °C for 18 h 

prior to visual determination of MICs. 

4.3.4 Enzymatic reduction assays 

Enzymatic reduction assays wit Ncp PCP-R and Ncp R and peptidyl-thioester derivatives 

were carried out in a total volume of 100 µL containing 20 µM ncp PCP-R or ncp R, 

250 µM peptidyl-CoA substrate, 1.5 mM NADPH, 10 mM MgCl2, and 10 µM MnCl2 in 

50 mM Hepes, 50 mM NaCl at pH 6. All assays were incubated at 25 °C for 1 h. The 

reactions were stopped by the addition of 1 mL MeOH and stored at –20 °C for 1 h. The 

supernatant was separated from the precipitant by centrifugation for 15 min at maximum 

speed. After removing the solvent under vacuum at 30 °C, the remaining pellet was 

resuspended in 100 µL 10% acetonitrile in water and analyzed by LC-MS on a C18 

Nucleodur column (Macherey and Nagel, 125/2 pore diameter of 100 Å, particle size of 

3 µm) with the following gradient: 10-80% acetonitrile in water over 25 min at 0.2 mL/min 

and 45 °C. It was crucial that TFA was not added to the solvents as a modifying agent, as 

the low pH would destroy the macrocyclic imine.  

For kinetic studies the assay was carried out as described above and followed 

spectrophotometrically (Pharmacia Ultrospec 3100 pro UV/visible spectrophotometer). 

This direct monitoring is possible, because the reduction of each peptidyl-thioester 

substrate consumes one equivalent NADPH leading to a decrease in absorption at 340 nm. 

Following the extinction coefficient 6220 M-1cm-1
 for NADPH, KM and kcat values for the 

reduction reaction were determined. 
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4.3.5 Imine macrocyclization assay with peptide aldehydes 

For the imine cyclization assay 50 µM peptide aldehyde were incubated in a total volume 

of 100 µL containing 50 mM NaCl, 50 mM Hepes at pH 6 for 2 h at 25 °C. For the 

cyclization assay with enzyme 5 µM ncp PCP-R was added to the reaction mixture. Assays 

were immediately analyzed as reported above.  

4.3.6 HPLC analysis of HxcO and HcmO flavin cofactors 

A 50 µL sample of purified HxcO (30 µM) or HcmO (30 µM) was boiled for 5 min and 

denatured protein was removed by centrifugation. The flavin present in the supernatant 

was analyzed by HPLC on a C18ec Nucleodur column (Macherey and Nagel, 250/2, pore 

diameter of 100 Å, particle size of 3 µm) with the following gradient: 0-70% acetonitrile, 

0.1% TFA in water, 0.1% TFA over 30 min at a flow rate of 0.2 mL/min at 40 °C. Product 

elution was monitored at 445 nm. Additionally, the identity of the cofactor was proven by 

mass spectrometry. 

4.3.7 In vitro 4’-phosphopantetheinylation of ACP 

A reaction mixture containing 200 µM fluorescein-CoA/acetyl-CoA, 200 µM ACP, 

10 mM MgCl2, and 50 µM recombinant B. subtilis 4’-phosphopantetheine transferase 

(PPTase) Sfp in assay buffer was incubated at 30 °C for 30 min and analyzed directly by 

LC-ESI-MS. The loading of fluorescein-CoA onto the ACP, which was prepared as 

previously reported [57, 115], was monitored by measuring the in-gel fluorescence. 

4.3.8 Assays with ACP-bound acyl substrates 

Acyl-phosphopantetheinylation of the ACP was achieved by incubating the carrier protein 

with Sfp and acyl-CoA substrates. The reaction mixture was incubated at 30 °C for 30 min 

and contained 200 µM ACP, 200 µM Acyl-CoA substrate, 2 mM MgCl2, and 50 µM Sfp in 

a 25 mM Hepes buffer pH 7.5. The solution was desalted using a Micro Bio-Spin 6 column 

(Bio-Rad).  

4.3.8.1 HxcO oxidation/epoxidation assay 

A typical reaction mixture (150 µL) for the detection of HxcO epoxidation product was 

prepared using 100 µM loaded acyl-ACP substrate, 5 µM HxcO and 250 µM FAD in assay 

buffer. After incubation at 25 °C for 30 min, 10 µg trypsin (Promega) were added to the 

reaction mixture and incubated for 5 min at 30 °C. Finally, 15 µL formic acid were added 

and the samples were subjected to HPLC and high-resolution ESI-FTICR-MS analysis was 
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carried out with an LTQ-FT mass spectrometer (Finnigan, Bremen) using the following 

gradient: 25-50% acetonitrile, 0.045% formic acid in water, 0.05% formic acid over 

30 min at a flow rate of 0.2 mL/min on a Jupiter C4 column (Phenomenex, 150x2 mm, 

5 µm) at 40 °C. To achieve maximum sensitivity of the described ESI-FTICR-MS method, 

the MS experiment was carried out at single-reaction monitoring (SRM) mode of the LTQ 

mass analyzer. Masses selected for MS-MS are listed in Table 4.2. 

 
Table 4.2: [M+H]2+ mass fragments of fatty acid-S-Ppan-PCP (Lys57-Arg71) subjected to MS-MS. 
FA = fatty acid. 

Chain length Saturated FA Unsaturated FA Epoxidized FA 

C4 1032.5 1030.5 1038.5 

C5 1039.5 1037.5 1045.5 

C6 1046.5 1044.5 1052.5 

C7 1053.5 1051.5 1059.5 

C8 1060.5 1058.5 1068.5 

C10 1074.5 1072.5 1080.5 

 

To study the kinetics of (2R,3S)-2,3-epoxyhexanoic-S-ACP formation mediated by HxcO, 

samples were trypsinized at different time points following initiation of the enzymatic 

reactions. Reaction volumes were then fractionated and analyzed by HPLC-MS-MS. The 

percentage of HxcO reaction product tethered to the ACP was plotted as a function of time. 

4.3.8.2 HcmO epoxidation assay 

Typical incubations (150 µL) for the detection of HcmO epoxidation products were 

prepared using 100 µM loaded acyl-ACP substrate and 10 µM HcmO, 250 µM FAD and 

250 µM NAD(P)H in assay buffer. After 30 min at 25 °C, 10 µg trypsin (Promega) were 

added and incubated for another 5 min at 30 °C. The tryptic digest was stopped by the 

addition of 15 µL formic acid and the reaction volumes were analyzed by ESI-FTICR-MS 

as reported for HxcO assays.  

4.3.9 Analysis of ACP-bound products by direct amide ligation 

To further characterize the ACP-bound products of HxcO and HcmO reactivities, the 

undigested reaction mixtures were incubated with a 1000-fold excess of D-Phe-OMe at 

60 °C for 2 h. The precipitated proteins were removed by centrifugation. Protein pellets 

were washed twice with 25 µL assay buffer and the combined fractions were concentrated 

to 50 µL prior to HPLC-MS analysis. 
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For epoxide product detection, the reaction volumes were compared to the synthesized 

standards using the following gradient: 0-60% acetonitrile, 0.1% TFA in water, 0.1% TFA 

from 0 to 20 min at a flow rate of 0.4 mL/min on a ChiraDex® Gamma column 

(Merck KGaA, Darmstadt, 250/4, particle size of 5 µm) at 30 °C. 

The HPLC-MS analysis of the 2,3-hexenoyl moiety was carried out on a standard C18ec 

Nucleodur column (Macherey and Nagel, 250/2, pore diameter of 100 Å, particle size of 

3 µm) with the following gradient: 0-60% acetonitrile, 0.1% TFA in water, 0.1% TFA over 

20 min at 0.2 mL/min and 30 °C. 

4.3.10 Assays with chemoenzymatically derived CDA analogs 

4.3.10.1 HxcO assay 

The reaction mixture contained 100 µM hexanoyl-CDA, 20 µM enzyme, and 60 µM FAD 

in a total volume of 75 µL. After incubation at 25 °C for 30 min the reaction was quenched 

by the addition of 15 µL formic acid and directly analyzed by LC-ESI-MS.  

4.3.10.2 HcmO assay 

The reaction mixture contained 100 µM hex-2-enoyl-CDA, 20 µM enzyme, 60 µM FAD, 

100 µM NAD(P)H in a total volume of 75 µL. After incubation at 25 °C for 30 min the 

reaction was quenched by the addition of 15 µL formic acid and directly analyzed by 

LC-ESI-MS. 

4.3.11 Assays with acyl-CoA substrates  

Reaction mixtures for the detection of HxcO oxidation/epoxidation products were prepared 

using 250 µM hexanoyl-CoA substrate, 5-50 µM HxcO, and 100 µM FAD in assay buffer. 

Reaction mixtures for the detection of HcmO epoxidation products were prepared using 

250 µM hexenoyl-CoA substrate, 10 µM HcmO, 250 µM FAD, and 250 µM NAD(P)H in 

assay buffer. Incubations were carried out at different temperatures and several periods of 

time. 
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4.4 Chemical synthesis 

4.4.1 Solid-phase peptide synthesis (SPPS) 

The synthesis of the peptide substrates used in this work has been carried out by 

Fmoc-based solid-phase peptide synthesis (SPPS). In SPPS the peptide chain is assembled 

by the sequential addition of α-amino and side chain protected amino acid building blocks. 

During the whole synthesis process, the growing peptide chain is attached to an insoluble 

polymer via its C-terminus and can be separated from reagents and by-products simply by 

filtration. Peptide synthesis was carried out on an automated peptide synthesizer 

(APEX 396 synthesizer, Advanced ChemTech). As solid support 2-chlorotritylchloride 

resin (Novabiochem, Darmstadt) was used. To prevent side reaction with the functional 

groups of amino acid side chains the following protection groups were employed: 

tert-butyl (tBu), trityl (Trt), allyloxycarbonyl (Aloc), tert-butyloxycarbonyl (Boc), and 

pentamethyldihydro-benzofuran-5-sulfonyl (Pbf). 

4.4.1.1 Initiation: Coupling of the C-terminal amino acid to the resin 

The first step in SPPS is the loading of the 2-chlorotritylchloride resin with the C-terminal 

amino acid. The efficiency of this loading reaction is essential for the whole synthesis 

process, because it will determine the yield and the purity of the final product. Sites on the 

resin that are not initially acylated can potentially react in later synthesis cycles leading to 

truncated peptides. To achieve an efficient loading, the resin was swelled in DCM, 

followed by incubation with 2 eq. of Fmoc protected amino acid and 8 eq. of DIPEA. This 

non nucleophilic base deprotonates the carboxyl function, which subsequently attacks the 

2-chlorotrityl cation and the first amino acid is attached to the resin (Figure 4.1). After 2 h 

of incubation the solvent was removed by filtration and the resin was washed several times 

with DCM. Unreacted sites of the resin were capped by using methanol. 

 

 
 

Figure 4.1: Initiation of SPPS. The C-terminal amino acid is loaded onto the 2-chlorotritylchloride 
resin.  
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4.4.1.2 Elongation 

Elongation of the peptide chain requires deprotection of the N-terminal Fmoc group of the 

resin bound amino acid or peptide, respectively. The removal was usually achieved under 

mild basic conditions by the treatment with 15% piperidine in DMF for 20 min. The 

deprotonation of the fluorene gives an aromatic cyclopentadiene-type intermediate that 

rapidly eliminates to form the dibenzofulvene and carbon dioxide (Figure 4.2).  

 

 
Figure 4.2: Fmoc-group removal reaction. 

 
Peptide bond formation requires the activation of the carboxyl group of the Fmoc-protected 

amino acid. The in situ coupling method that was applied in this work made use of the 

coupling reagents HBTU and HOBt in DMF. After deprotonation of the carboxyl group by 

a 10-fold excess of DIPEA it attacks the electrophilic carbenium ion of the acyluronium 

salt HBTU. A highly reactive tetramethylurea intermediate is generated, which is 

subsequently converted into the reactive benzotriazole ester in the presence of the 

nucleophile HOBt. The free N-terminus of the resin bound amino acid/peptide then attacks 

this intermediate giving rise to the elongated peptide chain. To ensure quantitative 

reactions, a 3-fold excess of protected amino acid is used.  

 

 
 

Figure 4.3: Peptide bond formation using HBTU/HOBt. 
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4.4.1.3 Termination 

Cleavage of the mature peptide from the resin was achieved by incubating 2-chlorotrityl 

resin with TFE/AcOH/DCM (2:7:1). Under these conditions the used side chain protected 

groups are stable and the protected peptide acids can be selectively released from the resin. 

Finally the protected peptides were precipitated with hexane.  

4.4.2 Synthesis of peptide aldehydes 

For the synthesis of peptide aldehydes H-Thr-Gly-NovaSyn® TG resin (Novabiochem) 

preloaded with leucin or phenylalanine amino aldehydes, respectively, was used 

(Figure 4.4). The resin was suspended in DMF, left swelling for 30 min and was then 

suitable for the Fmoc protocol reported above. After assembly of the target sequence 

protecting groups were removed by treatment with anhydrous TFA (2 x 10 min). The resin 

was washed with DCM and the product was cleaved from the resin by treatment with 

AcOH/water/DCM/MeOH (10:5:63:22) for 30 min to obtain the deprotected peptide 

aldehyde. Purification of the crude product was carried out by semipreparative HPLC 

(Agilent 1100 system) with a reversed-phase 250/21 Nucleodur 100-5 C18ec column 

(Macherey and Nagel) using the following gradient: 5-55% of acetonitrile, 0.1% TFA in 

water, 0.1% TFA was applied over 30 min at 20 ml/min and 25 °C. Identification of the 

derived peptide aldehydes was achieved by LC-MS (Table 4.6). The purified product was 

dissolved in DMSO to a final concentration of 10 mM. 

 

 
 

Figure 4.4: Preparation of peptide aldehydes using H-Thr-Gly-NovaSyn® resin. 
 

4.4.3 Synthesis of peptidyl-SNAC and peptidyl-thiophenol substrates 

Side-chain protected peptides (1 eq.) were dissolved in DCM, followed by the addition of 

DCC (2 eq.), HOBt (2 eq.), thiophenol or N-acetylcysteamine (10 eq.). After 30 min a 

catalytic amount of K2CO3 was added and stirring was continued for 2.5 h. After removal 

of the solvent, the protected peptide thioesters were treated with 2 mL TFA/H2O/TIPS 

(95:2.5:2.5) at room temperature for 2 h. Precipitation of the deprotected peptide thioesters 

was carried out with ice-cold ether (30 mL). After centrifugation the peptide thioesters 

were dissolved in DMSO and purified by semipreparative HPLC carried out on an Agilent 
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1100 system with a reversed-phase 250/21 Nucleodur 100-5 C18ec column (Macherey and 

Nagel). Applied gradients are 20-60% acetonitrile, 0.1% TFA in water, 0.1% TFA for 

lipopeptide derivatives and 10-70% acetonitrile, 0.1% TFA in water, 0.1% TFA over 

30 min at a flow rate of 20 mL/min at 40 °C for nostocyclopeptide peptidyl-SNAC and 

peptidyl-SPh substrates. 

Identification of the peptidyl-SNAC and peptidyl-SPh substrates was achieved by LC-MS 

(Tables 4.3 and 4.5). 

4.4.4 Synthesis of 4’-phosphopantetheine (ppan) 

One equivalent of coenzyme A trilithium salt, 0.2 eq. of TCEPxHCl, and 0.5 unit/µmol 

nucleotide pyrophosphatase (Sigma) were dissolved in Hepes buffer (50 mM, pH 7.5). 

After incubation at 30 °C for 18 h the mixture was lyophilized and the identity of the 

products was confirmed by LC-MS. 

4.4.5 Synthesis of peptidyl-CoA and peptidyl-ppan substrates  

For the preparation of peptidyl-CoA and peptidyl-ppan substrates 1.5 eq. of ppan/CoA, 

1.5 eq. of PyBOP, and 4 eq. of K2CO3 were added to 1 eq. of the side chain protected 

peptide and dissolved in THF/water (1:1). The reaction mixture was stirred for 2 h at room 

temperature and the solvent was removed. 

Cleavage of the side-chain protecting groups was carried out using a mixture containing 

TFA/TIPS/H2O (95:2.5:2.5). The deprotected peptidyl-ppan/peptidyl-CoA substrates were 

precipitated in ice-cold diethyl ether and purified by semipreparative HPLC carried out on 

an Agilent 1100 system with a reversed-phase 250/21 Nucleodur 100-5 C18ec column 

(Macherey and Nagel). The following gradient was applied: 5-55% of acetonitrile, 

0.1% TFA in water, 0.1% TFA over 30 min at a flow rate of 20 mL/min and 25 °C.  

Identification of the peptidyl-CoA and peptidyl-ppan substrates was verified by LC-MS 

(Table 4.5). 

4.4.6 Synthesis of acyl-CoA substrates 

The synthesis of acyl-CoA derivatives was based on the synthesis of peptidyl-CoA 

substrates as reported in 4.4.5. Briefly, 1 eq. CoA trilithium salt, 2 eq. of the fatty acid, 

1.5 eq. of PyBOP and 4 eq. of K2CO3 were dissolved in 4 mL THF/water (1:1) and 

incubated for 2 h at room temperature. After lyophilization, the resulting white solids were 

dissolved in water and purified by HPLC (Agilent, 1100 series) on a preparative Nucleodur 

C18ec column (Macherey and Nagel, 250/2, pore diameter of 100 Å, particle size of 3 µm) 
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with a gradient of 5-70% acetonitrile, 0.1% TFA in water, 0.1% TFA over 30 min at a flow 

rate of 20 mL/min. Product elution was monitored at 215 nm and the identity was 

confirmed by MALDI-TOF MS analysis (Table 4.8). 

4.4.7 Synthesis of N-(9-Fmoc)-L-kynurenine 

Kynurenine sulfate (306 mg, 1 mmol) and K2CO3 (252 mg, 3 mmol) were dissolved in a 

mixture of acetone (2.5 mL) and water (2.5 mL). After addition of Fmoc-OSu 

(Novabiochem) (337.3 mg, 1 mmol), the solution was stirred overnight. The mixture was 

acidified to pH 2 with concentrated hydrochloric acid, and the acetone was removed by 

rotary evaporation. The product was extracted with chloroform and washed with 0.1 N HCl 

and water. After drying over anhydrous sodium sulfate, the combined organic phases were 

evaporated and the product was confirmed by ESI-MS and NMR: Fmoc-L-Kyn m/z 431.1 

[M + H]+ (431.2 calc.); 1H-NMR (300 MHz, CD3OD): δ = 3.46 (dd, 3JCHβ
h

, CHα = 4.6 Hz, 
2JCHβ

h
, CHβ

t = 17.5 Hz, 1 H, CHβh), 3.59 (dd, 3JCHβ
t
, CHα = 6.4 Hz, 2JCHβ

t
, CHβ

h = 17.5 Hz, 1 H, 

CHβt), 4.22 (t, 3JFmoc-CH, Fmoc-CH2 = 7.0 Hz, 1 H, Fmoc-CH), 4.34 (d, 3JFmoc-CH2, 

Fmoc-CH = 7.0 Hz, 2 H, Fmoc-CH2), 4.71 (dd, 3JCHα, CHβ
h = 4.6 Hz, 3JCHα, CHβ

t = 6.4 Hz, 1 H, 

CHα), 6.60 (t, 3JCHarom, CHarom = 7.4 Hz, 1 H, CHarom), 6.75 (d, 3JCHarom, CHarom = 8.6 Hz, 1 H, 

CHarom), 7.27 (m, 3 H, CHarom), 7.36 (m, 2 H, CHarom), 7.64 (d, 3JCHarom, CHarom = 7.4 Hz, 2 H, 

CHarom), 7.76 (m, 3 H, CHarom). 

 

4.5 Analytical methods 

4.5.1 Mass spectrometry  

4.5.1.1 MALDI-MS  

Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) is an 

analytical method to determine the molecular mass of peptides and proteins in high 

vacuum. For sample preparation 0.5 µL of peptide sample with 0.5 µL DHB-matrix 

solution (Agilent Technologies) were mixed, and pipetted onto a metallic probe target and 

dried under air. The cocrystallized samples were investigated with a “Bruker FLEX III” 

(Bruker Daltronics, Leipzig).  

4.5.1.2 HPLC-MS 

High Performance Liquid Chromatography (HPLC) was used to characterize substrate and 

product by retention time on a chromatography column and by mass. Reversed-phase 
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chromatography is based on hydrophobic interactions with the unpolar stationary phase 

(C18 
or C8 

coated silica gel). Elution is mediated by the unpolar organic solvent acetonitrile 

which competes with the adsorbed analytical compounds for binding positions. The 

retention time of the analytical compound is monitored by UV-detection. An electrospray-

ionization mass detector allows the mass analysis of liquid compounds at atmospheric 

pressure. Ionization of the analytical compound was achieved by adding 0.1% TFA. In 

general, experiments were carried out on an Agilent 1100 system. For the identification of 

peptide fragments from tryptic digests after enzyme assays, Fourier Transform Ion 

Cyclotron Resonance-MS was applied (FTICR-MS). FTICR-MS is a high-resolution 

technique that allows determining the composition of molecules based on their accurate 

mass. Experiments were carried out on a Finnigan-LTQ-FT-mass spectrometer (Thermo 

Electron Corp, Bremen).  

 

All substrates and products synthesized during this study were confirmed by HPLC-MS or 

MALDI-MS: 

 
Table 4.3: Characterization of lipopeptide substrates and products by mass. (n.d. = not 
detected; * = cyclization via L-Orn; ‡ = cyclization via L-Kyn )  
Compound Observed mass (calculated mass) [M+H]+ [Da] 

 Substrate Cyclized product Hydrolyzed product 

A54145(Val) 1694.6 (1694.7) 1584.6 (1584.7) 1602.6 (1602.7) 

A54145(Ile) 1708.6 (1708.7) 1598.6 (1598.7) 1616.6 (1616.7) 

A54145(Kyn) 1784.7 (1784.8) 1675.8 (1675.8) 1692.8 (1692.8) 

A54145(Thr3) 1651.7 (1651.7) 1541.7 (1541.7) 1558.6 (1658.7) 

A54145(Thr5) 1694.7 (1693.8) 1584.7 (1583.8) 1502.7 (1502.8) 

A54145(Thr6) 1693.8 (1693.8) 1583.8 (1583.8) 1601.8 (1601.8) 

A54145(NXNG) 1692.8 (1692.8) 1582.8 (1582.8) 1600.8 (1600.8) 

A54145(DXNG) 1693.7 (1693.8) 1583.7 (1583.8) 1601.7 (1601.8) 

A54145(NXDG) 1693.7 (1693.8) 1583.6 (1583.8) 1601.6 (1601.8) 

A54145(DAP) 1692.7 (1692.8) 1583.7 (1583.8) 1601.7 (1601.8) 

Dap 1716.8 (1716.7) 1606.8 (1606.7) 

1606.8 (1606.7)* 

1606.8 (1606.7)‡ 

1624.6 (1624.7) 

Dap-Aloc 1800.7 (1800.7) n.d. 1691.6 (1691.7) 

Dap(DAP) 1701.6 (1701.7) n.d. 1609.6 (1609.7) 
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Dap(Thr3) 1672.6 (1672.7) 1562.6 (1562.7) 1580.6 (1580.7) 

Dap(Thr5) 1730.6 (1730.7) 1620.6 (1620.7) 1638.6 (1638.7) 

Dap(Thr6) 1672.7 (1672.7) 1562.7 (1562.7) 1580.7 (1580.7) 

Dap(A541-6) 1701.6 (1701.7) 1691.6 (1691.7) 1709.6 (1709.7) 

Dap(A541-3) 1730.7 (1730.7) 1620.6 (1620.7) 1638.7 (1638.7) 

CDA(DAP) 1562.3 (1562.6) n.d. 1471.3 (1470.6) 

CDA 1575.4 (1575.6) 1465.4 (1465.6) 1483.4 (1483.6) 

 
Table 4.4: Characterization of semipreparative scale generated cyclic lipopeptides by ESI-MS. 

Compound Observed mass 

[M+H]+ [Da] 

Calculated mass 

[M+H]+ [Da] 

Dap 1606.8  1606.7 

Dap(A541-6) 1691.6  1691.7 

Dap(A541-3) 1620.6  1620.7 

A54145(Val) 1584.6  1584.7 

A54145(Ile) 1598.6  1598.7 

A54145(Kyn) 1675.8  1675.8 

A54145(DAP) 1583.7  1583.8 

A54145(NXNG) 1582.8  1582.8 

A54145(DXNG) 1583.7  1583.8 

A54145(NXDG) 1583.6  1583.8 

 
Table 4.5: Characterization of ncp peptidyl-thioester substrates by ESI-MS. 

Compound Observed mass  

[M+H]+ [Da] 

Calculated mass 

[M+H]+ [Da]  

ncpA1 1526.5  1526.3 

ncpA2 1560.5  1560.4 

ncpCT 1514.5 1514.6 

ncpCK 1541.5 1541.5 

ncpCD 1528.5 1528.5 

ncpS2 1573.5 1573.6 

ncpS3 1503.5 1503.4 

ncpS4 1518.5 1518.4 

ncpS5 1544.5 1544.3 
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ncpS6 1534.5 1534.6 

ncpNL 1510.5 1510.6 

ncpNT 1498.5 1498.6 

ncpNK 1525.5 1525.5 

ncpND 1512.5 1512.6 

ncpA1-ppan 1151.5 1151.6 

ncpA2-ppan 912.4 912.5 

ncpA1-SNAC 1117.5 1117.6 

ncpA2-SNAC 878.4 878.5 

ncpA1-SPh 903.4 902.8 

ncpA2-SPh 869.4 869.4 

 
Table 4.6: Characterization of peptide aldehydes by ESI-MS. 

Compound Observed mass  

[M+H]+ [Da] 

Calculated mass  

[M+H]+ [Da] 

ncpA1-CHO 761.4 761.4 

ncpA2-CHO 795.4 795.4 

 
Table 4.7: Characterization of chemoenzymatically generated CDA by ESI-MS. 

Compound Observed mass  

[M+H]+ [Da] 

Calculated mass  

[M+H]+ [Da] 

CDA 1466.7 1466.6 

EN-CDA 1464.7 1464.5 

 
Table 4.8: Characterization of synthesized acyl-CoA derivatives by MALDI-MS. 

Acyl-CoA  

(chain length is indicated) 

Observed mass  

[M+H]+ [Da] 

Calculated mass  

[M+H]+ [Da] 

C4 838.2 838.1 

C5 852.2 852.2 

C6 866.1 866.2 

C7 880.2 880.2 

C8 894.1 894.2 

C10 922.2 922.2 

C6-EN2 864.1 864.2 
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C8-EN2 892.2 892.2 

C4-EN2 (crotonyl) 836.2 836.1 

C6-EN3 864.2 864.2 

C6-EN3cis 864.2 864.2 

 

4.5.1.3 Protein fingerprinting 

To verify the identity of recombinant proteins mass spectrometry based fingerprinting was 

applied. Therefore, SDS-PAGE bands from the protein of interest were excised and 200 µL 

of washing solution were added. After incubation at 37 °C for 30 min, the washing solution 

was removed and gel bands were dried in vacuo at 37 °C for 30 min. Subsequently, in band 

proteolytic cleavage was achieved by the addition of 15-20 µL trypsin solution. After 

incubation for 45 min at 37 °C the excess of trypsin solution was removed and incubated 

for another 16-18 h under otherwise identical conditions. Finally, the peptide fragments 

were eluted with 20-25 µL diffusion solution under sonication (45 min, RT). Sample 

analysis was carried out by nano spray-LC-MS. The obtained fingerprint sequences were 

applied to the MASCOT database. 

 

Washing solution: 

NH4HCO3  200 mM 
CH3CN  50% (v/v) 
 

Trypsin solution (adjusted to pH 8.1): 

trypsin   0.02 µg/µL 
NH4HCO3  10% (v/v) 
CH3CN  10% (v/v) 
 

Diffusion solution (adjusted to pH 8.1): 

TFA     1% (v/v) 
CH3CN  10% (v/v) 
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5 Results 

5.1 Chemoenzymatic design of acidic lipopeptide derivatives  

The acidic lipopeptides, including the clinically approved antibiotic daptomycin, constitute 

a class of structurally related branched cyclic peptidolactones and peptidolactams 

synthesized by multimodular NRPSs in nature. In this study, the excised peptide cyclases 

from the A54145 and daptomycin NRPS systems were shown to be able to catalyze the 

macrocyclization of peptidyl-thioester substrates, which were chemically generated by 

solid-phase peptide synthesis (SPPS). Both enzymes showed remarkable substrate 

tolerance in vitro and catalyzed the formation of macrolactones with ring sizes from 9-11 

amino acids. 

Further, the described chemoenzymatic approach towards derivatives of A54145 and 

daptomycin enabled the semipreparative production of model compounds. Minimal 

inhibition concentrations (MICs) were determined and a lipopeptide hybrid with a MIC 

close to that of chemoenzymatic derived daptomycin, as well as a bioactive macrolactam 

variant of A54145 were identified. Additionally, the two conserved aspartate residues at 

positions 7 and 9 were shown to be crucial for antimicrobial potency, suggesting their 

participation in calcium binding. Together the identified structural elements may be 

promising sites for the introduction of further modifications. An overview of all 

synthesized peptide substrates, including their characterization by mass spectrometry, is 

given in Table 4.3. 

5.1.1 Overproduction of dap PCP-TE and A54145 PCP-TE 

Dap PCP-TE and A54145 PCP-TE gene fragments were cloned and overexpressed in 

E. coli BL21 as described in the Methods section. The recombinant proteins were purified 

by Ni2+-NTA chromatography and the concentrated proteins were resolved by SDS-PAGE 

(10%) and visualized by Coomassie stain. 
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Figure 5.1: Coomassie-stained SDS-PAGE of purified recombinant daptomycin PCP-TE (lane 1, 
41.2 kDa) and A54145 PCP-TE (lane 2, 44.5 kDa). 
 

5.1.2 In vitro macrocyclization activity of daptomycin and A54145 cyclases 

For the biochemical characterization of the daptomycin and A54145 cyclases linear 

peptide substrates according to the daptomycin and A54145 peptide sequences were 

synthesized by SPPS and C-terminally activated with a thiophenol (SPh) leaving group 

(Figure 5.2). For synthetic reasons, the peptidyl-thioester Dap contained L-glutamate at 

position 12 instead of L-3-methylglutamate, which can be found in the peptide backbone of 

authentic daptomycin. With regards to the fact, that A54145 occurs in nature as a mixture 

of two major compounds, containing either valine or isoleucine at the C-terminal position 

of their peptide sequence, the peptide substrates A54145(Val) and A54145(Ile) were 

synthesized. Deviating from the natural A54145 sequence the noncanonical amino acids 

L-3-O-methylaspartic acid at position 9 and L-3-hydroxyasparagine at position 3 were 

replaced with L-aspartic acid and L-asparagine, respectively. 

 

 
Figure 5.2: Peptidyl-thiophenol substrate analogs of daptomycin and A54145. Amino acid substitutions 
compared to the naturally occurring compounds are indicated in grey. 
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The reaction of daptomycin PCP-TE with Dap afforded two main products in the 

HPLC-MS analysis (Figure 5.3). The expected cyclic product (tR = 34.1 min) was formed 

along with the hydrolysis product (tR = 33.3 min) (cyclization-to-hydrolysis ratio of 9:1). 

The kinetic data for the cyclization of Dap catalyzed by daptomycin PCP-TE revealed a 

KM value of 50.09 ± 4.48 µM and a kcat of 0.18 ± 0.02 min-1. 

In addition to the main product, two minor peaks (tR = 35.4 min and tR= 33.4 min) were 

observed. As shown by MS-MS fragmentation and an orthogonal Aloc-protected Dap 

substrate (see below) these two species arise from the cyclization via alternative side chain 

nucleophiles, namely the amino group of L-Orn6 or L-Kyn13. The non-enzymatic origin of 

the by-products was evidenced by a negative control experiment with the heat denatured 

enzyme, in which both species are more apparent than in the enzyme assay (Figure 5.3). 

 

 
Figure 5.3: Cyclization of the peptidyl-thiophenol substrate Dap by daptomycin cyclase followed by 
HPLC-MS. The blue trace is the result of the assay with the native enzyme. The red trace corresponds 
to a negative control with the heat denatured enzyme. Su stands for the chemically synthesized 
thioester substrate analog and Cy for the cyclized product. Hy indicates hydrolysis; Cy(Kyn) and 
Cy(Orn) are side-products due to the reaction of the activated C-terminus with the side chain 
nucleophile of L-ornithine and L-Kyn, respectively. 
 

To prove the identity of the 8-membered macrolactam via Orn6, an orthogonal Aloc side 

chain protected variant of Dap, Dap-Aloc, was synthesized. In contrast to Dap, for this 
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substrate the formation of the 8-membered lactam via ornithine was not observed in 

experiments with and without daptomycin cyclase.  

The identity of the other species was proven by MS-MS fragmentation (Figure 5.4). In the 

case of the 10-membered macrolactone via Thr4, a fragment containing the intramolecular 

ester bond was detected directly (Figure 5.4 A).  

The kynurenine cycle Cy(Kyn) was identified by comparison of its fragmentation pattern 

with the fragmentation pattern of the Dap hydrolysis product Hy (Figure 5.4 B). While Hy 

shows the y1-fragment m/z = 209.1, indicating the C-terminal carboxyl function, for the 

7-membered lactam via Kyn, the y1-fragment m/z = 209.9 was not detected. 

 

 
A 
compound molecular formula species observed mass of 

fragments 
(calculated mass) 
[Da] 

C64H90N15O25 1 1435.6 (1435.6) 
C20H32N7O10 2   530.3   (530.2) 

decapeptide lactone 
of Dap 

C53H72N11O17 

[M+H]+ 

3 1134.5 (1134.5) 
B 
hydrolysis Hy 
observed mass (calculated mass)          
[M+H]+ [Da] 

cyclization via Kyn13 Cy(Kyn) 
observed mass (calculated mass)            
[M+H]+ [Da] 

y1 y1-H2O y1 y1-H2O 
209.1 (209.1) 191.1 (191.1) 191.1 (191.1) n.d 

 
Figure 5.4: MS-MS fragmentation of products derived from Dap. A: MS-MS fragmentation of the 
decapeptide lactone (cyclization via L-Thr4). Fragments arising from the cleavage of two bonds (1-3) 
are shown. The patterns giving rise to the above listed fragments are illustrated by solid and dotted 
lines. B: Depiction of the y1-fragment of the hydrolysis product Hy and the 7-membered kynurenine 
cycle Cy(Kyn).  
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Analogously, the reaction of A54145 cyclase with A54145(Val) led to the formation of the 

expected cyclic product (tR = 33.0 min), which was identified by ESI-MS (Figure 5.5). The 

flux towards hydrolysis (tR = 31.9 min) was remarkably low, revealing a 

cyclization-to-hydrolysis ratio of 12:1.  

After incubation of A54145(Ile) with A54145 cyclase, the cyclization product was 

detected (tR = 33.9 min) and the occurrence of the undesired hydrolysis product 

(tR = 32.9 min) was as low as that for A54145(Val) with a cyclization-to-hydrolysis ratio 

of 12:1 (Figure 5.5). The kinetic data obtained for A54145 PCP-TE revealed a KM value of 

80.17 ± 7.70 µM and a kcat of 0.22 ± 0.01 min-1 with A54145(Ile) and a KM value of 

76.64 ± 8.60 µM and a kcat of 0.24 ± 0.02 min-1 with A54145(Val). 

 

 
 
Figure 5.5: Cyclization of the peptidyl-thioester substrates A54145(Val) (A) and A54145(Ile) (B) by 
A54145 cyclase followed by HPLC-MS. Red traces represent the enzyme assay. Blue traces correspond 
to a negative control assay with the heat denatured enzyme. Su stands for the chemically synthesized 
thioester substrate analog and Cy for the cyclized product. Hy indicates hydrolysis. 
 
The identity of the observed species was confirmed by MS-MS fragmentation. For both 

substrates cyclization was shown to occur via threonine at position 4, leading to the desired 

10-amino acid macrolactone (Figure 5.6). 
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compound molecular formula species observed mass of 
fragments 
(calculated mass) 
[Da] 

C40H64N12O18
+ 1 1001.5 (1001.5) 

C36H60N11O17
+ 2   918.5 (918.4) 

C33H55N10O16
+ 3   847.4 (847.4) 

C30H50N9O15
+ 4   776.4 (776.3) 

decapeptide 
lactone 
A54145(Val) 

C26H45N8O12
+ 5   661.4 (661.3) 

C41H66N12O18
+ 1.1015.5 (1015.5) 

C37H62N11O17
+ 2   932.4 (932.4) 

C34H57N10O16
+ 3   861.4 (861.4) 

C31H52N9O15
+ 4   790.3 (790.3) 

decapeptide 
lactone 
A54145(Ile) 

C27H47N8O12
+ 

[M+H]+ 

5   674.4 (675.3) 
 
Figure 5.6: MS-MS fragmentation of products derived from A54145(Val) and A54145(Ile). Fragments 
arising from single bond cleavage (1) or simultaneous cleavage of two bonds (2-5) are shown. The 
patterns giving rise to the above listed fragments are illustrated by solid lines (1) and dotted lines (2-5). 
Evidence for the connection via L-Thr4 is given due to the fact that the alternative side chain 
nucleophile L-Lys6 can not lead to the fragments (1-5). 
 

5.1.3 Variation of the ring size 

Next, we addressed the question whether daptomycin and A54145 cyclases are able to 

catalyze the formation of macrolactones with different ring sizes. Therefore, six peptidyl-

thioester substrates, Dap(Thr3), Dap(Thr5), Dap(Thr6), A54145(Thr3), A54145(Thr5), 

and A54145(Thr6), were synthesized (Figure 5.7). The cycle-forming L-threonine, 

originally found at position 4 of the daptomycin and A54145 peptide backbone, was placed 

at amino acid position 3, 5, or 6, respectively, while L-alanine occupied position 4 of those 

peptidyl-thioester substrates. Consequently, after cyclization, a macrolactone consisting of 

11, 9, or 8 amino acids should be formed. 
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Figure 5.7: Peptidyl-thiophenol substrates with the cycle forming L-threonine side chain nucleophile at 
position 3, 5, and 6, respectively. Threonine side chains are indicated in grey.  
 

 
 
Figure 5.8: Formation of 9-11 amino acid cyclic macrolactones mediated by A54145 cyclase. Left: 
HPLC analysis of the cyclization reaction. Right: peptide sequences of the assayed thioester substrates; 
the ring size and the cycle-forming threonine are highlighted. Su stands for the chemically synthesized 
thioester substrate analog and Cy for the cyclized product. Hy indicates hydrolysis. 
 

As shown in Figure 5.8, A54145(Thr3) was cyclized (tR = 34.2 min), but hydrolysis 

(tR = 33.1 min) was favored (cyclization-to-hydrolysis ratio of 1:3). Branch point 
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movement of one amino acid position was also tolerated in the case of A54145(Thr5) in 

forming the nonapeptide lactone (tR = 33.4 min) after incubation with A54145 PCP-TE. 

Interestingly, the occurrence of hydrolysis (tR = 32.5 min) was decreased compared to that 

of A54145(Thr3), revealing the cyclization-to-hydrolysis ratio of 4:1. In contrast to the 

reaction with A54145(Thr3) and A54145(Thr5), attempts to cyclize A54145(Thr6) with 

A54145 PCP-TE resulted exclusively in hydrolysis of the peptide thioester substrate 

(tR = 32.3 min) and did not lead to the eight-membered lactone.  

Assaying Dap(Thr3) and Dap(Thr5) for cyclization revealed that both substrates were 

cyclized (tR = 34.9 min and tR = 34.6 min), indicating that branch point movement of one 

amino acid was also tolerated by Dap PCP-TE. Incubation of Dap(Thr6) with 

Dap PCP-TE led only to the hydrolysis product (tR = 32.4 min). In contrast to the results 

with A54145 PCP-TE, the formation of the macrolactones derived from Dap(Thr3) and 

Dap(Thr5) was accompanied by a stronger occurrence of hydrolysis (Figure 5.9). 

 

 
Figure 5.9: Formation of 9-11 amino acid cyclic macrolactones mediated by daptomycin cyclase. Left: 
the HPLC analysis of the cyclization reaction. Right: peptide sequences of the assayed thioester 
substrates; the ring size and the cycle-forming threonine are highlighted. Su stands for the chemically 
synthesized thioester substrate analog and Cy for the cyclized product. Hy indicates hydrolysis. 
Cy(Kyn) and Cy(Orn) are side products due to the reaction of the activated C-terminus with the side 
chain nucleophile of L-ornithine and L-Kyn, respectively. 
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5.1.4 Macrolactam formation 

All members of the acidic lipopeptide family have macrocyclic structures in order to 

constrain their biological active form. Interestingly, this structural constraint is not always 

achieved via the formation of a macrolactone as for daptomycin and A54145 since 

friulimycin [116], amphomycin [117], and laspartomycin [95] contain a 10-membered 

macrolactam (Figure 5.10).  

 

 
Figure 5.10: The conserved ten-membered macrocyclic ring of lipopeptides can either be achieved by 
the formation of a macrolactone (daptomycin) or -lactam (friulimycin). 
 

To explore the ability of the recombinant cyclases of A54145 and daptomycin to catalyze 

the formation of macrolactams, the three peptidyl-thioester substrate analogs Dap(DAP), 

A54145(DAP), and CDA(DAP) were synthesized carrying the cyclization nucleophile 

L-diaminopropionate (DAP) instead of L-threonine at position 4 or 2 of their peptide 

sequence (Figure 5.11).  

 

 
Figure 5.11: Peptidyl-thiophenol substrates containing diaminopropionate (DAP) instead of L-Thr as 
cyclization nucleophile. 
 

Remarkably, A54145(DAP) was cyclized efficiently by A54145 PCP-TE (tR = 32.3 min) 

as shown in Figure 5.12. The cyclization reaction revealed a very low flux toward 

hydrolysis (tR = 30.9 min) (cyclization-to-hydrolysis ratio of 12:1) in analogy to the 

macrolactonization reaction of the peptidyl-thioester substrates A54145(Val) and 

A54145(Ile). To confirm the amide linkage between DAP and the C-terminal amino acid 

of A54145, MS-MS fragmentation clearly identified that the observed macrolactam is 
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formed via DAP4 and Ile13 (Figure 5.13). In contrast to this result, no cyclization of 

Dap(DAP) or CDA(DAP) was observed after incubation with either the daptomycin or 

CDA cyclization catalyst. Additional attempts to cyclize Dap(DAP) and CDA(DAP) with 

A54145 PCP-TE also failed. 

 
Figure 5.12: Cyclization of A54145(DAP) with A54145 cyclase leads to the formation of a macrolactam 
analog of A54145 analyzed by HPLC-MS. Shown are the enzyme assay (blue trace) and the negative 
control with the heat denatured enzyme (red trace). Su is the chemically synthesized peptide substrate, 
Cy the cyclized product. Hy indicates hydrolysis. 
 
 

 
compound molecular formula species observed mass of fragments 

(calculated mass) [Da] 
C44H72N15O19

+  1 1114.5 (111.4.5) 
C40H66N13O17

+  2 1000.5 ( 1000.5) 
C37H60N11O16

+  3   914.4 (914.4) 

decapeptide 
lactone of 
A54145(DAP) 

C34H55N10O15
+  

[M+H]+ 

4   843.4 (843.4) 
 
Figure 5.13: MS-MS fragmentation of the decapeptide lactone cyclized via L-DAP4. Shown are 
fragments arising from single bond cleavage (1) and (2), or simultaneous cleavage of two bonds (3) and 
(4). The patterns giving rise to the above listed fragments are illustrated by solid and dotted lines. The 
intensity of fragments (3) and (4) is much lower than for (1) and (2), indicating that branch point is 
L-DAP at position 4, since cleavage of single bond is much more likely than simultaneous cleavage of 
two bonds. 
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5.1.5 Enzymatic cross reactivity 

To gain further information about the substrate specificity of daptomycin and A54145 

cyclases the ability of these enzymes to cyclize the peptidyl-thioester substrate analogs of 

daptomycin (Dap), A54145 (A54145(Val)), and CDA (CDA) was examined. In addition 

to this, the substrate specificity of the previously characterized CDA cyclase was evaluated 

with these three peptidyl-substrates. Table 5.1 summarizes the results, including 

cyclization-to-hydrolysis ratios. As shown before, each recombinant cyclase was able to 

catalyze its associated substrate analog. Interestingly, A54145 PCP-TE cyclized Dap and 

Dap PCP-TE was able to cyclize A54145(Val). On the other hand, only hydrolysis was 

observed for the substrate analog CDA after incubation with A54145 or daptomycin 

cyclase, respectively. It was previously shown that CDA PCP-TE is able to cyclize Dap 

[118]; A54145(Val) in contrast was not converted after incubation with CDA cyclase. 

Remarkably, the cyclization-to-hydrolysis ratio for Dap with A54145 PCP-TE 

(cyclization-to-hydrolysis ratio of 10:1) was as high as that for the naturally associated pair 

of cyclase and substrate analog (cyclization-to-hydrolysis ratio of 9:1). Further, the 

A54145 analog A54145(Val) was cyclized with less than 10% hydrolysis 

(cyclization-to-hydrolysis ratio of 12:1) by A54145 PCP-TE, revealing the excellent 

in vitro activity of this recombinant TE domain. 

 
Table 5.1:Substrate specificity of lipopeptide cyclases with cyclization-to-hydrolysis ratio. 
 Dap PCP-TE A54145 PCP-TE CDA PCP-TE 

Dap 9:1 10:1 2:1 

A54145 5:1 12:1 no turnover 

CDA hydrolysis hydrolysis 6:1 
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5.1.6 Structure-activity studies 

To identify structural features of the acidic lipopeptides that are important for antibacterial 

activity, a small library consisting of ten peptidyl-thioester substrates (Dap, A54145(Val), 

A54145(Ile), A54145(Kyn), Dap(A541-3), Dap(A541-6), A54145(DAP), A54145(NXDG), 

A54145(DXNG), and A54145(NXNG)) was synthesized (Figure 5.14 and 5.15).  

 

 
Figure 5.14: Peptidyl-thiophenol substrates for semipreparative macrocyclization and minimal 
inhibition concentration (MIC) determination. 
 
Based on the results obtained when testing enzymatic cross reactivity, A54145 and 

daptomycin PCP-TE were found to be the most efficient cyclization catalysts for these 

substrates. After enzymatic cyclization in a semipreparative scale, the obtained products 

were purified with reversed-phase HPLC and checked for purity by HPLC-MS (Table 4.4). 

Subsequently, antibacterial activity was measured by determining the minimal inhibition 

concentration (MIC) against B. subtilis PY79. In this strain, the own production of 

secondary metabolites is knocked-out to prevent cooperative effects with the tested 

compound. 
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Figure 5.15: Derivatives of daptomycin and A54145 tested for antimicrobial activity. The macrocyclic 
compounds were derived from peptidyl-thioester substrates after incubation with A54145 or 
daptomycin cyclase, respectively. Amino acids from the daptomycin peptide sequence are indicated in 
orange, those from A54145 peptide sequence in blue. Substitution of acidic amino acids with Asn is 
indicated in red. The macrolactam analog of A54145 contains DAP as the cycle forming amino acid 
side chain instead of threonine, as marked in grey. 
 
Table 5.2: Minimal inhibition concentrations (MICs) of the lipopeptides shown in Figure 5.15. 
Compound MIC90 (µg/mL) at 73.6 mg Ca2+/L 

authentic daptomycin 2 

Dap 11 

A54145(Val) 200 

A54145(Ile) 25 

A54145(Kyn) 15 

Dap(A541-3) 20 

Dap(A541-6) 20 

A54145(DAP) 25 

A54145(NXDG) >900 

A54145(DXNG) >900 

A54145(NXNG) >900 
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In comparison to authentic daptomycin with a MIC of 2 µg/mL, the cyclic peptide Dap 

(at position 12, glutamate is incorporated instead of 3-methylglutamate) displayed a 

MIC value of 11 µg/mL (Table 5.2). 

Since naturally occurring A54145 variants differ at position 13, the peptidolactones 

A54145(Val) and A54145(Ile) were generated. Interestingly, the MIC value of 

A54145(Ile) was 25 µg/mL, while A54145(Val) was less effective against B. subtilis, 

revealing a MIC of 200 µg/mL. The A54145 analog A54145(Kyn) displayed a MIC of 

15 µg/mL that comes close to chemoenzymatic derived Dap. With regard to the fact that 

both compounds differ only in one amino acid position, these results underline the great 

importance of single side chain substitutions for bactericidal activity.  

Additionally, two hybrid molecules of A54145 and daptomycin were synthesized 

(Figure 5.15). To explore the relevance of the exocyclic amino acids, a peptidyl-thioester 

substrate based on the natural daptomycin peptide sequence carrying the three N-terminal 

amino acids of A54145, Dap(A541-3), was designed. Surprisingly, the exchange of the 

amino acid tail did not crucially affect bioactivity, indicating that these residues are not 

substantial for antimicrobial behavior. To better approximate A54145, the bioactivity of 

cyclized Dap(A541-6), a daptomycin/A54145 hybrid containing the amino acids 1-6 of 

A54145 and 7-13 of daptomycin’s peptide’s sequence, was further examined. Compared to 

Dap(A541-3) the MIC for Dap(A541-6) did not change significantly.  

The antibacterial activity of A54145(DAP), which has been cyclized by A54145 PCP-TE, 

was characterized by a MIC value of 25 µg/mL and is in good agreement with the MIC 

value of the macrolactone A54145(Ile). 

Finally, to prove the significance of acidic amino acid residues for the antibacterial 

behavior of A54145, three peptidolactones, A54145(NXDG), A54145(DXNG), and 

A54145(NXNG) were synthesized and tested as reported above. Single deletion of aspartic 

acid as well as the double deletion of both aspartate residues led to the total loss of 

antibacterial activity (Table 5.2). 
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5.2 Peptide macrocyclization triggered by the nostocyclopeptide reductase domain: 

the self-assembly of a macrocyclic imine. 

Many biologically active natural products have macrocyclic structures. In nonribosomal 

peptides (NRPs) macrocyclization is commonly achieved via the formation of 

intramolecular ester or amide bonds catalyzed by thioesterase domains during biosynthesis. 

A unique and so far unknown type of peptide cyclization occurs in the nostocyclopeptide 

(ncp), a macrocyclic imine produced by the terrestrial cyanobacterium Nostoc sp. 

ATCC53789 [14]. 

The next paragraph deals with the biochemical characterization of the reductive imino 

bond formation triggered by the C-terminal reductase domain ncp R from the ncp 

biosynthetic system. During these studies, it could be shown that the reductive release of a 

linear peptide aldehyde is followed by the spontaneous formation of a relatively stable 

imino head-to-tail linkage. This is the first time that such a type of imine macrocyclization 

induced by the reductive release of reactive peptide aldehydes has been investigated. 

5.2.1 Overproduction of ncp PCP-R and ncp R 

The gene fragments ncp PCP-R and ncp R of the nostocyclopeptide biosynthetic gene 

cluster were cloned and overexpressed in E. coli BL21 as described in the Methods section. 

The recombinant proteins were purified by Ni2+-NTA chromatography and the 

concentrated proteins were resolved by SDS-PAGE (12%) and visualized by Coomassie- 

stain. 

 

 
Figure 5.16: Coomassie-stained SDS-PAGE of purified recombinant ncp PCP-R (lane 1, 58.6 kDa) and 
ncp R (lane 2, 48.6 kDa). 
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5.2.2 In vitro reductase activity of ncp PCP-R and ncp R 

In order to characterize the role of the ncp R domain in imine macrocyclization, the 

reductase activity of ncp PCP-R was tested in vitro with peptidyl-thioester substrates that 

were generated via SPPS (Figure 5.17).  

 
Figure 5.17: Peptidyl-thioester substrates used for the biochemical characterization of ncp PCP-R. The 
C-terminus is activated with a thioester leaving group (LG): coenzyme A (CoA), phosphopantetheine 
(ppan), N-acetylcysteamine (SNAC), or thiophenol (SPh).  
 
For synthetic reasons the naturally occurring 4-methylproline was replaced with proline. 

Since the ncp occurs in nature as a mixture of two compounds that differ in the C-terminal 

amino acid position, the Leu7 and Phe7 variants ncpA1 and ncpA2 were synthesized. To 

achieve enzymatic recognition, the linear peptide substrates were C-terminally activated 

with four different leaving groups such as thiophenol, SNAC, ppan, and CoA. These 

substrate analogs mimic the natural situation where the fully assembled peptide chain is 

thioester-bound to the PCP of the last module. 

HPLC-MS analysis of the assay with ncpA1 and ncpA2 revealed product formation for 

peptidyl-CoA substrates in the presence of NADPH (Figure 5.18). NADH was not 

accepted as electron donor. Mass analysis confirmed that the two linear substrate mimics 

ncpA1 and ncpA2 were converted mainly into the corresponding cyclic imines 

(tR = 15.2 min and tR = 15.6 min) and only traces of ncpA1 and ncpA2 aldehydes were 

detected. 

 

 
Figure 5.18: HPLC-MS analysis of the ncp PCP-R activity assay. 
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In contrast to CoA- and ppan-activated substrates, thiophenol and SNAC were not suited as 

leaving groups.  

The kinetic rates of the peptidyl-CoA reduction mediated by ncp PCP-R were determined 

spectrophotometrically. This direct monitoring is possible, because the reduction of each 

substrate molecule is accompanied by the consumption of one equivalent NADPH leading 

to a decrease in absorption at 340 nm. Following the extinction coefficient 6220 M-1cm-1 

for NADPH, the below listed KM and kcat values were determined (Table 5.3).  

Remarkably, ncp PCP-R was the first recombinant R domain excised from NRPSs that 

exhibited multiple turnover reactivity in vitro. Nevertheless, the alone standing R domain 

displayed significantly lower catalytic activity. Therefore, all subsequent experiments were 

performed with recombinant ncp PCP-R.  

 
Table 5.3: Kinetic parameters for peptidyl-CoA reduction by ncp PCP-R. 
Substrate KM (µM) kcat (min-1) kcat / KM (min-1mM-1) 

ncpA1 101.90 ± 14.48 9.77 ± 1.18 89.65 ± 6.33 

ncpA2 102.52 ± 10.48 6.19 ± 0.89 59.34 ± 8.48 

 

5.2.3 Imine self-assembly via peptide aldehyde formation 

To investigate the role of the ncp R domain in imino bond formation, linear peptide 

aldehydes, ncpA1-CHO and ncpA2-CHO with sequences identical to ncpA1 and ncpA2 

were chemically synthesized (Table 4.6 and Figure 5.19).  

 

 
Figure 5.19: Peptide aldehydes with sequences of ncpA1 and ncpA2. 

 
NcpA1-CHO and ncpA2-CHO were incubated in aqueous buffer solution at pH 7 with 

and without the recombinant ncp PCP-R under otherwise identical conditions. In both 

cases, the formation of the macrocyclic imine (tR = 15.2 min and tR = 15.6 min) was 

detected in identical amounts (Figure 5.20). These results were significant, as they 

demonstrated that the macrocyclization of the linear heptapeptide aldehydes was not 

influenced by recombinant ncp PCP-R. With this experiment, the imine formation was 
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uncoupled from the R domain mediated reductive release, demonstrating that this type of 

macrocyclization can occur enzyme-independent. 

 

 
 
Figure 5.20: Cyclization assay with the chemically synthesized peptide aldehydes ncpA1-CHO (left) 
and ncpA2-CHO (right). The formation of the macrocyclic imines is not dependent on the recombinant 
reductase ncp PCP-R. 
 

5.2.4 Alanine scan 

To identify structural elements of the ncp peptide sequence that are important for the imine 

self-assembly, an alanine scanning mutagenesis was performed. Therefore, several 

peptidyl-CoA substrates were synthesized according to the ncpA2 sequence. In each 

substrate, one single amino acid at positions 2-6, respectively, was substituted by 

L-alanine, while all other amino acids remained conserved (Table 4.5 and Figure 5.21).  

 

 
 
Figure 5.21: Peptidyl-CoA substrates used for the alanine scan experiment. Amino acid substitutions 
are indicated in grey. 
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Incubation with the recombinant ncp PCP-R revealed that all synthesized substrates were 

enzymatically reduced to the corresponding peptide aldehydes. The imine self-assembly 

was observed for ncpS4, ncpS5, and ncpS6. Replacement of D-Gln3 and Gly2 instead, as 

realized in the substrates ncpS2 and ncpS3, had significant influence on macrocycle 

formation by reducing imine formation to less then 5% based on the comparison of the 

intensity of the observed mass signals (Figure 5.22 and Table 5.4).  

 

 
Figure 5.22: HPLC-MS analysis of the alanine scan experiment. TFA was not added to the solvent as a 
modifying agent as the low pH would destroy the macrocyclic imine. Therefore, linear peptide 
aldehydes ncpS2 and ncpS3 elute as bright signals, instead of defined peaks. 
 
Table 5.4: Results of the alanine scan experiment with masses of the observed products. Calculated 
masses are given in brackets. n.d. = not detected. 
Compound Retention 

time (tR) 

Cyclic imine  

[M+H]+ [Da]  

Retention 

time (tR) 

Peptide aldehyde             

[M+H]+ [Da] 

ncpS2 15.4 790.4 (790.4) (<5%) 15.4 808.4 (808.4) 

ncpS3 17.6 720.3 (720.4) (<5%) 17.6 738.4 (738.4) 

ncpS4 14.5 735.4 (735.4) n.d. 

ncpS5 17.0 761.4 (761.4) n.d. 

ncpS6 14.8 751.5 (751.4) n.d. 
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5.2.5 Substrate specificity of ncp PCP-R 

According to previous studies on TE domain mediated peptide cyclization, an important 

role for the C- and the N-terminal amino acids was anticipated. However, ncp occurs in 

nature as a mixture of two compounds, ncpA1 and ncpA2, that differ in the C-terminal 

position, which can be occupied by either phenylalanine or leucine. Despite these aromatic 

and aliphatic amino acids, substrates containing threonine, lysine, or aspartate at this 

position were prepared. In other peptidyl-CoAs phenylalanine remained at the C-terminus, 

while the N-terminal tyrosine was substituted with threonine, lysine, aspartate or leucine, 

respectively (Table 4.5 and Figure 5.23).  

 

 
Figure 5.23: Peptidyl-CoA substrates with modified N- and C-termini. Substituted amino acid 
positions are indicated in grey.  
 

Remarkably, ncp R reduced all modified peptidyl-CoA substrates, although those carrying 

aspartate or lysine either at the C- or N-terminus were not capable of imine-cycle 

formation (Figure 5.24 and Table 5.5).  
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Figure 5.24: HPLC chromatograms of experiments evaluating the substrate specificity of ncp PCP-R 
for the C- and the N-terminal amino acids.  
 

 
Table 5.5: Results of C- and N-terminal substitutions with masses of the observed products. Calculated 
masses are given in brackets.  
Compound Retention 

time (tR) 

Cyclic imine  

[M+H]+ [Da] 

Peptide aldehyde  

[M+H]+ [Da] 

ncpCT 11.2 731.4 (731.4) n.d. 

ncpCK 19.5 n.d. 776.4 (776.4) 

ncpCD 19.8 n.d. 763.4 (763.4) 

ncpNT 15.9 715.5 (715.6) n.d. 

ncpNK 18.6 n.d. 761.2 (761.4) 

ncpND 18.6 n.d. 747.5 (747.7) 

ncpNL 18.2 724.7 (724.7) n.d. 
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5.3 Fatty acid tailoring during lipopeptide biosynthesis 

A structural key feature of lipopeptide antibiotics, such as daptomycin, CDA, and A54145, 

is the eponymous long chain fatty acid, which is invariably attached to the N-terminus of 

the cyclic peptide core. Straight and branched chain fatty acids that can significantly differ 

in the degree of saturation and the oxidation state are frequently found and contribute to 

the high structural diversity of this class of compounds. In particular, the lipid portion has a 

high impact on the biological properties of these molecules, since antimicrobial behavior 

and toxicity are dramatically affected by the nature of the incorporated fatty acid group 

[95, 98]. 

To gain a better understanding of the mechanisms underlying the generation of the diverse 

fatty acid building blocks, the enzymatic tailoring steps leading to the 

trans-2,3-epoxyhexanoyl moiety found in CDA were reconstituted in vitro. Therefore, 

different scenarios with acyl-CoA substrates, acyl-CoAs loaded onto an ACP, and 

chemoenzymatically derived CDA were tested. During these studies a new experimental 

approach utilizing an amide ligation reaction was developed, which was crucial to assign 

the stereochemistry of the acyl carrier protein (ACP)-bound reaction intermediates. The 

application of this mild and versatile method enabled the detailed characterization of the 

two fatty acid tailoring enzymes HxcO and HcmO from the CDA biosynthetic pathway. 

5.3.1 Overproduction of SCO3249 

Similar to the synthesis of NRPs and PKs, the assembly of fatty acids catalyzed by fatty 

acid synthases (FASs) occurs on carrier proteins (CPs), to which the substrates, reaction 

intermediates and products are covalently tethered during biosynthesis [30]. SCO3249 of 

the CDA cluster, in the following referred to as ACP, showed strong sequence homology 

to CPs from other NRPSs and PKSs and was likely to be involved in the biosynthesis of 

the CDA lipid portion.  

The N-terminally His7-tagged ACP was overproduced in E. coli BL21(DE3) and purified 

as described in the Methods section. The identity of the expressed protein was proven by 

mass spectrometry and SDS-PAGE (Figure 5.25).  
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Figure 5.25: Coomassie-stained SDS-PAGE (15%) of purified ACP (11.5 kDa). 

 

5.3.2 Characterization of SCO3249 as an acyl carrier protein 

To test whether ACP could be loaded in vitro, the recombinant protein was incubated with 

the 4’-phosphopantetheine transferase (PPTase) Sfp from B. subtilis and fluorescein-CoA. 

The 4’-phosphopantetheinylation of ACP was monitored by the in-gel fluorescence of the 

loading mixture (Figure 5.26 A); positive and negative control experiments are shown. 

Additionally, the loading with fatty acid CoA-substrates to the ACP was verified by mass 

spectrometry (Figure 5.26 B). 

 

 
Figure 5.26: In vitro phosphopantetheinylation of apo-ACP. A: Coomassie-stained SDS-PAGE (left) 
and in-gel-fluorescence (right) of the ACP loading mixture with (+) and without (-) Sfp (28 kDa), the 
phosphopantetheine transferase from B. subtilis. B: FTMS broad band spectrum of ACP before 
(c.m.: 11464.7) and after (c.m.: 11901.9) loading with hexanoic acid. 
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5.3.3 Overproduction of HxcO and HcmO 

The hxcO and hcmO gene fragments of the CDA fab operon were cloned and 

overexpressed in E. coli BL21(DE3). Ni2+-NTA chromatography gave ~1.0 mg pure 

protein per liter of culture. The identity of the proteins was confirmed by mass 

spectrometry and SDS-PAGE (Figure 5.27).  

 
Figure 5.27: Coomassie-stained SDS-PAGE (10%) of purified HxcO (lane 1, 66.8 kDa) and HcmO 
(lane 2, 47.0 kDa). 
 

5.3.4 HxcO and HcmO cofactor analysis 

For the identification of HxcO and HcmO cofactors, an overview absorbance spectrum was 

recorded for both proteins. HxcO was colorless and showed no spectral absorbance typical 

for the flavin cofactor. In contrast to HxcO, HcmO was bright yellow in color and showed 

absorption maxima at 377 and 450 nm, which is characteristic for FAD (Figure 5.28 B). 

To further specify the nature of the observed flavin cofactor, protein samples of HxcO and 

HcmO were heat denatured and the supernatants were applied to HPLC-MS analysis 

(Figure 5.28 A). For HxcO and HcmO, FAD was shown to be the electron accepting 

cofactor.  

 
Figure 5.28: A: HPLC analysis of HxcO and HcmO cofactor. B: The UV-visible spectrum of HcmO 
shows the typical flavin absorption maxima at λmax = 377 and 450 nm.  
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5.3.5 Characterization of HxcO as a fatty acid-S-ACP oxidase with intrinsic epoxidase 

activity 

HxcO shows sequence homology in the range of 30% to several members of the acyl-CoA 

dehydrogenase/oxidase superfamily that catalyze double bond formation between C-2 and 

C-3 of their thioester substrates [119]. Based on the sequence homology, it was also 

postulated that HcmO is responsible for the oxidation of a hexanoyl-CoA substrate to 

2,3-hexenoyl-CoA [104]. Alternatively, different scenarios with an ACP-bound HxcO 

substrate or the possibility that the oxidation occurs at the state of the already assembled 

CDA molecule, are conceivable. Accordingly, in vitro assays to examine all three possible 

routes were conducted (Figure 5.29). 

 

 
Figure 5.29: Possible substrates for the tailoring enzyme HxcO from the CDA biosynthetic pathway: 
hexanoyl-CoA, hexanoyl-S-ACP, and hexanoyl-CDA.  
 

To test if acyl-CoAs are the physiological substrates of HxcO, the purified enzyme was 

assayed with synthetic hexanoyl-CoA under a variety of assay conditions typical for acyl-

CoA dehydrogenases and oxidases [120, 121]. No oxidation products were detected by 

HPLC-MS. Additional substrates with a chain length from 4-10 C-atoms (Figure 5.30 and 

Table 4.8) were tested, but did not reveal the enzymatic introduction of a double bond.  

 

 
 

Figure 5.30: Acyl-CoA substrates used for the biochemical characterization of HxcO. 
 
Analogously, experiments with a macrocyclic CDA analog, hexanoyl-CDA, were carried 

out. Hexanoyl-CDA (Table 4.7) was generated chemoenzymatically by the use of CDA 
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cyclase as reported previously [56]. In vitro assays clearly evidenced that fatty acid 

oxidation by HxcO does not occur in the state of the mature CDA molecule. 

Next, Sfp, which had previously been shown to be promiscuous for the in vitro 

phosphopantetheinylation of various acyl- and peptidyl-CoA substrates onto carrier 

proteins [122], was employed to assay the alternative ACP-mediated pathway. The 

required hexanoyl-ACP substrate was prepared and incubated with HxcO. After tryptic 

digest, the samples were subjected to HPLC high-resolution FT-MS to analyze product 

formation. In a so called ppan ejection assay [123], the ACP fragment with the covalently 

attached enzyme product is subjected to tandem mass spectrometry (MS-MS), which leads 

to the elimination of the product-ppan arm from the ACP fragment that is subsequently 

analyzed (Figure 5.31 A). 

The ppan ejection assay of samples obtained from negative control reaction volumes 

without the enzyme resulted in the observation of a 1734.8 Da signal corresponding to the 

active site ACP fragment (Lys57-Arg71) without the ppan arm that was cleaved off during 

gas-phase fragmentation. Additionally, a fragment ion of 359.2 Da was detected, which is 

consistent with the calculated mass of the hexanoyl-ppan MS-MS fragmentation product 

(Figure 5.31 B). After incubation with HxcO, a fragment ion of 373.2 Da (Figure 5.31 C) 

and a second signal of 357.2 Da (Figure 5.31 D) with ~15% intensity compared to the 

373.2 Da signal, could be detected. These masses are consistent with the calculated masses 

of the hex-2-enoyl-ppan (357.2 Da) and the epoxyhexanoyl-ppan (373.2 Da) fragmentation 

products. HxcO showed no conversion of the unsaturated fatty acid-S-ACP in the presence 

of FAD and NAD(P)H cofactors, which are commonly used for the generation of FADH2 

by flavin-dependent monooxygenases. This suggests that HxcO generates FADH2 in situ 

by the oxidation of the saturated fatty acid substrate. The reduced cofactor is then the 

reactive species for the epoxidation reaction. 

To proof whether the unexpected epoxyhexanoyl-product, which was predominantly found 

(~85%), is of enzymatic origin or caused by H2O2 formed in vitro during the reoxidation of 

FADH2, catalase was added to the assay in different concentrations. Further, reaction 

buffers with different pH values in the range from 5-9 were tested to decompose 

potentially formed H2O2. No influence on product formation was observed. Therefore, 

epoxyhexanoyl-S-ACP was clearly identified to be the main product of HxcO. HxcO 

displayed epoxide formation (Figure 5.32) with a kobs = 0.3 min-1, whereas double bond 

formation did not increase over the examined period of time. 
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Figure 5.31: HxcO assay with hexanoyl-S-ACP. A: Experimental setup. HxcO reaction products were 
digested with trypsin and subjected to HPLC prior to tandem FTMS spectrometry. B: Single reaction 
monitoring (SRM; 1046.5→[1732.30-1737.30]) of hexanoyl-S-ACP (Lys57-Arg71) and MS-MS data of 
the ppan ejection assay resulting from a reference assay without HxcO. C: SRM 
(1054.5→[1732.30-1737.30]) of epoxyhexanoyl-S-ACP (Lys57-Arg71) and MS-MS data of the ppan 
ejection assay resulting from a HxcO assay. D: SRM (1046.5→[1732.30-1737.30]) of 
hex-2-enoyl-S-ACP (Lys57-Arg71) and MS-MS data of the ppan ejection assay resulting from a HxcO 
assay. This HxcO side product is formed in ~15% compared to epoxyhexanoyl-S-ACP (indicated by 
areas in C and D). 
 
The substrate specificity of HxcO was evaluated with additional linear fatty acids 

(4-10 C-atoms) loaded onto ACP (Figure 5.30). As with the physiological substrate, these 

reactions revealed the formation of an enoyl product paired and a fragment ion with a mass 

of +16 compared to the enoyl product as the most apparent species (~85%). 
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Figure 5.32: Kinetics of (2R,3S)-2,3-epoxyhexanoic-S-ACP formation mediated by HxcO. Samples 
were trypsinized at different time points following initiation of the enzymatic reactions, and were then 
fractionated and analyzed by HPLC-MS-MS. The percentage of HxcO reaction product tethered to the 
ACP is plotted as a function of time. 
 

5.3.6 Characterization of HcmO as a fatty acid-S-ACP epoxidase 

HcmO shows amino acid homology to the diverse class of flavin-dependent 

monooxygenases, particularly salicylate hydroxylases [124] and the zeaxanthin epoxidases 

[125] in the range of 40% and 30%, respectively. To determine whether HcmO acts on 

ACP-bound hexenoyl-substrates, on coenzyme A thioesters, or on the mature CDA all 

three possibilities were assayed. 

In analogy to HxcO, HcmO did not epoxidize hexenoyl-CoA and chemoenzymatically 

generated hex-2-enoyl-CDA (Table 4.8). In order to test ACP-bound substrates, a 

hexenoyl-moiety was loaded onto the ACP with Sfp and subsequently incubated with 

HcmO at a 25-fold molar excess of NAD(P)H and FAD. Subsequent FTMS of the 

proteolytic mixture resulting from tryptic digest was used to characterize HcmO reactivity 

(Figure 5.33 A). The ppan ejection assay of samples obtained from negative control 

reaction volumes without the enzyme resulted, in addition to the 1734.8 Da signal 

corresponding to the active site ACP fragment (Lys57-Arg71) without the ppan arm, in a 

fragment ion of 357.2 Da, which is consistent with the calculated mass of the 

hex-2-enoyl-ppan MS-MS fragmentation product (Figure 5.33 B). The HcmO reaction 

revealed the formation of the fragment ions of the active site ACP(Lys57-Arg71) without the 

ppan arm (1734.8 Da) accompanied by the epoxy acid ppan product (373.2 Da), both 

resulting from MS-MS fragmentation (Figure 5.33 C). A hexanoyl-S-ACP substrate could 

not be converted into the epoxide product by HcmO. 
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Figure 5.33: HcmO assay with hexanoyl-S-ACP. A: Experimental setup. HcmO reaction products were 
digested with trypsin and subjected to HPLC and tandem FTMS spectrometry. B: Single reaction 
monitoring (SRM; 1046.5→[1732.30-1737.30]) corresponding to the hex-2-enoyl-S-ACP (Lys57-Arg71) 
and MS-MS data of the ppan ejection assay from a reference without HcmO. C: SRM 
(1054.5→[1732.30-1737.30]) of the HcmO reaction product 2,3-epoxyhexanoyl-S-ACP (Lys57-Arg71) 
and MS-MS data of the ppan ejection assay. 
 

The substrate specificity of HcmO was assessed with additional enoyl-ACP substrates 

(Table 4.8 and Figure 5.34). Whereas variations of the position and the configuration of the 

double bond were not tolerated, a crotonyl-moiety with a chain length shorter than the 

physiological C6 substrate was accepted. HcmO was able to epoxidize the hexenoyl-

substrate utilizing both NADH and NADPH cofactors.  

 

 
 

Figure 5.34: Acyl-CoA substrates used for the biochemical characterization of HcmO. 
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5.3.7 Stereochemical assignment of HxcO and HcmO reaction products via direct 

amide ligation 

To further characterize the ACP-bound epoxide products formed by HxcO and HcmO, an 

HPLC-based comparison with synthetic standards was envisioned. Therefore, conditions 

that would allow the efficient transformation of the modified fatty acid-S-ACPs into 

derivatives of smaller size, which would then in turn be analyzed by HPLC, had to be 

established. Initial experiments using an excess of a simple amine, such as benzylamine, 

showed that this approach was indeed valid (Figure 5.35 A).  

 

 
 
Figure 5.35: A: Cleavage of ACP-bound thioesters with a nucleophile (benzylamine) allows the 
comparison of enzymatic reaction products with synthetic standards. B: Amide ligation products of 
HxcO reactions and benzylamine analyzed by HPLC-MS. Shown are extracted ion chromatograms 
(EICs). 
 
For example, after incubation of an HxcO assay with benzylamine, LC-MS analysis of the 

reaction mixture showed the formation of the expected mass for the amide ligation 

products (Figure 5.35 B). However, it was not possible to determine the stereochemistry of 

the epoxide formed by HxcO by comparison with a synthetic standard as the two 

enantiomeric benzylamides (2S,3R and 2R,3S) showed the same retention time using a 

chiral cyclodextrin-based HPLC-column. 
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Therefore, chiral ligation partners, such as D-α-methylbenzylamine, 

(S)-2-phenyl-1-propylamine, and D-Phe-OMe were tested instead. In this case, the possible 

products are diastereomeric instead of enantiomeric, and therefore supposed to be separate 

from each other more easily by HPLC analysis. 

 

 
 

Figure 5.36: Chiral amines used as ligation partners for the cleavage of ACP-bound substances. 
 

Accordingly, in cooperation with Dr. Markus Oberthür (Philipps-Universität Marburg) a 

racemic mixture of 2,3-epoxyhexanols 4/5 was oxidized with RuCl3/NaIO4 [126] and the 

resulting carboxylic acids 6/7 were coupled with different chiral amines using EDCI/HOBt 

(Figure 5.37). 1 

 
Figure 5.37: Synthesis of chemical standards. EDCI = 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide 
hydrochloride, HOBt = 1-hydroxybenzotriazole monohydrate.  
 

Best results in terms of separation of the reaction products were obtained using the amino 

acid derivative D-Phe-OMe (2) as a ligation partner and a chiral column for the HPLC 

analysis of the diastereomeric mixture of amides 8 and 9 (Figure 5.37). In order to 

establish the exact stereochemistry of amides 8 and 9, one of the stereoisomers, 

                                                 
1 The described syntheses were carried out by Dr. Markus Oberthür. Experimental details and analytical data 
are given in: Kopp et al. (2008). Harnessing the chemical activation inherent to carrier protein-bound 
thioesters for the characterization of lipopeptide fatty acid tailoring enzymes. J. Am. Chem. Soc., online. 



5 Results 

 95

i.e. amide 8, was synthesized selectively. For this purpose, enantiomer 4, obtained by 

Sharpless epoxidation of hex-2-enol [127], was oxidized [126] and coupled with 

D-Phe-OMe 2 to provide the (2R,3S)-configured amide 8 (>90% ee, Figure 5.37). 

Comparison of the HPLC retention time of stereoisomer 8 with the two peaks obtained 

from the diastereomeric mixture 8/9 then led to the structural assignments shown in 

Figure 5.38.  

The HPLC analysis of HxcO reaction products utilizing D-Phe-OMe as the nucleophilic 

amide ligation partner established that the HxcO reaction product has the 

(2R,3S)-configuration (Figure 5.38 A). The formation of the 2,3-hexenoic acid side 

product, which occurred only to a minor extent, was also proven by comparison with the 

synthetic standard 3, which was obtained by EDCI/HOBt-mediated coupling of 

hex-2-enoic acid (1) and D-Phe-OMe (2, Figure 5.37). 

Further, the ensuing application of the established amide ligation strategy enabled the 

comparison of the HcmO reaction product with synthetic standards (Figure 5.38 B) and 

proved the formed product to be (2S,3R)-2,3-epoxyhexanoic acid.  

 

 
 
Figure 5.38: Comparison of HxcO and HcmO reaction products with synthetic standards by direct 
amide ligation. Cleavage of ACP-bound thioesters with a nucleophile (D-Phe-OMe) allows the analysis 
of enzymatic reaction products by HPLC-MS. A: Amide ligation products of HxcO reactions coelute 
with the (2R,3S)-2,3-epoxyhexanoyl-D-Phe-OMe standard 8 ([M+H]+ = 291.1). The HxcO side product 
was proven to be identical with the synthetic hexenoyl amide 3 ([M+H]+ = 275.1). B: The HcmO 
reaction product coelutes with the (2S,3R)-2,3-epoxyhexanoic acid 9 ([M+H]+ = 291.1). Shown are 
extracted ion chromatograms (EICs).  
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6 Discussion 

6.1 Chemoenzymatic design of acidic lipopeptide hybrids 

Natural products play an important role in modern medicine, which is exemplified by the 

fact that most antibiotics and anticancer drugs in human use are derived from such 

compounds [97, 128]. Recently, acidic lipopeptide antibiotics, including the clinically 

approved daptomycin, have received significant attention and different strategies for the 

derivatization of these compounds have been developed [98, 129, 130]. However, 

modification of the daptomycin scaffolds has been restricted to two sites so far, namely the 

α-amino group of L-Trp1 and the δ-amino group of L-Orn7. 

In nature, macrocyclization of nonribosomal lipopeptides is catalyzed by TE domains, the 

C-terminal catalytic unit of NRPSs. In the herein described chemoenzymatic approach, the 

excised TE domains from the daptomycin and A54145 systems have been shown to retain 

cyclization activity towards chemically prepared peptidyl-thioesters with relaxed substrate 

specificity. Together with powerful SPPS, that enables the rapid generation of linear 

peptides, these viable cyclization catalysts make the class of lipopeptide antibiotics more 

readily accessible for derivatization.  

Several analogs of daptomycin and A54145 have been chemoenzymatically prepared to 

explore the relatively sparse known structure-activity relationship (SAR) of this class of 

compounds. Altogether a small library of ten peptidyl-thiophenol substrates was cyclized 

efficiently by daptomycin and A54145 cyclases and the significance of specific amino acid 

residues for antimicrobial activity became evident. In summary, the chemoenzymatic 

approach described herein provides new opportunities to develop novel molecules related 

to daptomycin with an improved or modified spectrum of activity. 

6.1.1 Biochemical characterization of daptomycin and A54145 cyclases 

On the basis of sequence information derived from acidic lipopeptide biosynthetic gene 

clusters [9, 105], daptomycin and A54145 cyclases were expressed and purified together 

with their adjacent PCP domains. Notably, both isolated enzymes were active as 

macrocyclization catalysts when tested with peptidyl-thiophenol analogs of their natural 

substrates, A54145(Val), A54145(Ile), and Dap.  

In general, enzymatic peptide cyclization mediated by NRPS cyclases can be limited by 

low yields due to the occurrence of hydrolysis of the enzyme-bound peptidyl-residue, the 

so called acyl-O-TE intermediate (Figure 6.1) [131, 132]. Previous studies with excised 
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NRPS cyclases from the tyrocidine [131] and pristinamycin [62] synthetases revealed 

cyclization-to-hydrolysis ratios of 1:1 and 3:1, respectively, for their natural substrate 

analogs, which is typical for isolated TE domains. In contrast to this, A54145 and 

daptomycin cyclases show extraordinary cyclization-to-hydrolysis ratios of 12:1 and 9:1 

towards peptidyl-thiophenol analogs of their natural substrates, enabling the formation of 

the desired macrolactones with less than 10% hydrolysis. Therefore, these two enzymes are 

suitable cyclization catalysts for the rapid synthesis of daptomycin derivatives in a 

semipreparative scale.  

 

 
 

Figure 6.1: Enzymatic peptide cyclization by excised NRPS cyclases. The desired macrolactone 
formation competes with the attack of an external water nucleophile that leads to hydrolysis of the 
acyl-O-TE intermediate.  
 
To further explore the utility of these two enzymes for peptide cyclization, thiophenol 

substrate analogs with the cyclization nucleophile L-threonine at different amino acid 

positions were tested. Thus, lipopeptide analogs with different ring sizes were expected. 

Our experiments showed that macrocyclic rings containing nine and eleven amino acids 

can be generated by A54145 and daptomycin cyclases (Figure 6.2). Unfortunately, the 

relocation of the cyclization nucleophile leads to a simultaneous increase in substrate 

hydrolysis, which significantly limits the yields of the obtained macrolactones. For 

substrates designed to yield an 8-membered macrocyclic ring intramolecular cyclization is 

completely prevented and only hydrolysis occurs. Taken together, these observations 
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suggest that the substrate binding pockets of the examined lipopeptide cyclases seem to be 

highly optimized to accommodate 10-membered peptidolactone rings. Movement of the 

threonine nucleophile obviously impairs the intrinsic conformation of the peptide substrate 

or its prefolding through the TE domain. Overall, the spatial proximity of the cyclization 

nucleophile and electrophile necessary for an intramolecular reaction seems to be not 

sufficient any longer for the tested substrates. 

 

 
Figure 6.2: The formation of macrolactams with different ring sizes is mediated by A54145 
TE domain. The cyclization nucleophile L-threonine is indicated in grey. The ring size of the formed 
macrolactone is indicated in red.  
 
From the structural point of view, the acidic lipopeptides show several striking similarities. 

Daptomycin, A54145, and CDA share five common amino acids at identical ring positions, 

and their nonribosomal assembly is achieved by a highly similar biosynthetic pathway 

(Figure 2.22) [9, 105]. The final step in biosynthesis, the release of the mature peptide 

product, is achieved by the TE domains of the associated NRPS systems. In comparison to 

the overall level of TE identity of ~15%, the level of sequence identity among the acidic 

lipopeptide cyclases is in the range of 40% (Figure 6.3) [30]. Because of this fact, 

enzymatic cross reactions of A54145, daptomycin, and CDA cyclases were expected 

(Table 5.1).  

When using the cyclases of A54145 and daptomycin to cyclize the substrate analog CDA, 

only hydrolysis and no product formation was observed. A reasonable explanation for this 

could be that the undecapeptidyl-substrate, CDA, with the shorter hexanoyl fatty acid 

moiety, is not large enough to fill the substrate pocket of A54145 and the daptomycin 

cyclase active site, which are optimized for the tridecapeptides that contain a decanoyl 

fatty acid tail. Therefore, the admission of water molecules and the hydrolytical cleavage 



6 Discussion 

 99

of the acyl-enzyme intermediate could be favored in this situation. In contrast, A54145 

cyclase was able to cyclize the peptidyl-thioester analog of Dap and vice versa 

Dap PCP-TE cyclized A54145(Val).  

Although enzymatic cyclization activity was found to be relaxed for internal amino acid 

substitutions of the peptidyl-thioester substrates, C- and N-terminal recognition elements 

are essential for efficient peptide cyclization. CDA and daptomycin contain aromatic 

amino acids at the C-terminus, and A54145 contains an aliphatic isoleucine or valine 

residue at this position. Consequently, CDA cyclase was permissive towards daptomycin 

substrate analogs, but did not catalyze the cyclization of peptidyl-thioester A54145(Val).  

 

 
 
Figure 6.3: Sequence alignment of cyclases of the acidic lipopeptides. Conserved residues are indicated 
in orange, partially conserved residues are indicated in grey. The canonical catalytic triad is indicated 
in blue. The C-terminal parts of the enzymes show less homology, while the N-terminal parts show 
many conserved regions. 
 

Interestingly, within the acidic lipopeptide family intramolecular cyclization is achieved by 

the formation of either peptidolactones or peptidolactams. For friulimycin, amphomycin, 

or laspartomycin, the macrocyclic ring is formed via an amide linkage between the 
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C-terminal proline and diaminopropionic or -butyric acid (Figure 2.22). Daptomycin and 

CDA cyclases did not exhibit any cyclization activity towards Dap(DAP) and CDA(DAP). 

In contrast, A54145(DAP) was efficiently converted to the macrolactam after incubation 

with A54145 cyclase. Hence, A54145 PCP-TE is the first excised cyclase of a branched 

lipopeptide NRPS that catalyzes both macrolactonization and macrolactamization 

(Figure 6.4). The molecular reasons for this outstanding catalytic versatility of 

A54145 cyclase can not be deduced from sequence alignments as shown in Figure 6.3. 

Further crystallographic studies might be necessary to obtain a well funded answer to this 

question. 

 

 
Figure 6.4: A54145 cyclase catalyzes macrolactonization and macrolactamization. To achieve 
macrolactamization, the cyclization nucleophile Thr4 was substituted against 2,3-diaminopropionate 
(DAP). 
 

6.1.2 Structure-activity relationship studies 

Encouraged by the versatile catalytic properties of the acidic lipopeptide TE domains, 

A54145 and daptomycin cyclases were employed for the synthesis of lipopeptide 

molecules in a semipreparative scale. Subsequent determination of antimicrobial activity 

by measuring the minimal inhibition concentration (MIC) in the presence of Ca2+-ions 

allowed further conclusions about the acidic lipopeptide SAR.  

Assaying compounds Dap, A54145(Val), and A54145(Ile), which are closely related to 

authentic daptomycin (L-Glu instead of L-3-methylglutamate at position 12) and A54145 

(L-Asp instead of L-3-O-methylaspartate at position 3 and L-Asn instead of 

L-3-hydroxyasparagine at position 9), against B. subtilis PY79 underlined the importance 

of unusual and C-terminal amino acids for bioactivity. Cyclized Dap revealed a MIC value 

that was 6-fold higher than that of authentic daptomycin, reflecting the crucial role of the 

nonproteinogenic amino acid L-3-methylglutamate (Table 5.2). The two A54145 analogs 

A54145(Val) and A54145(Ile) displayed a significant difference in the MIC value that was 

increased 8-fold for A54145(Val) compared to that of A54145(Ile). 
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Remarkably, the A54145 macrolactam variant A54145(DAP) had a MIC value of 

25 µg/mL similar to that of A54145(Ile), revealing that the substitution of an ester bond 

through an amide bond does not affect antimicrobial behavior primarily. Up to now 

resistance against daptomycin is an isolated event and there are no known resistance 

mechanisms against lipopeptide antibiotics [133-135]. However, one could speculate with 

respect to their structure that enzymatic inactivation of these compounds could either occur 

by the cleavage of the N-terminal fatty acid tail through a fatty acid amide hydrolase or by 

the action of ring-opening bacterial lyases. The latter case is true for type B streptogramin 

antibiotics, where the vulnerable intramolecular ester linkage of these hexadepsipeptides is 

cleaved in a Mg2+-dependent mechanism [136]. Whether macrolactam variants of 

lipopeptide antibiotics display a lower susceptibility towards potential inactivating 

enzymes of pathogens remains to be seen. Obviously, additional studies would be 

necessary to draw a conclusion in terms of the improved in vivo stability. However, 

clinically used antibiotics inevitably select for resistant microbes and there is a continuous 

need for the discovery of new and the further development of already used antibiotics.  

Previous studies have shown that the antibacterial activity of the acidic lipopeptide 

antibiotics is calcium-dependent and that daptomycin and A54145 reach their maximum 

antimicrobial activity in the presence of a calcium concentration of ~50 mg/L as found in 

human serum [137]. To learn more about the significance of acidic amino acid residues of 

A54145 for the interaction with Ca2+-ions, the peptidolactones A54145(NXDG), 

A54145(DXNG), and A54145(NXNG) were synthesized and tested for biological activity. 

Notably, the replacement of aspartic acid at positions 7 and/or 9 lead to a total loss of 

bioactivity for all three compounds and showed that these two amino acids are important 

structural elements. In addition to the results obtained in this study with 

chemoenzymatically derived A54145 analogs, experiments with modified CDAs derived 

from a mutasynthesis approach [104] and daptomycin derivatives that contained aspartate 

to asparagine substitutions [118] are in good agreement. This also underlines the general 

importance of the aspartate residues at positions 7 and 9 for acidic lipopeptide 

antimicrobial potency. 

The closer inspection of the peptide sequences from different members of the acidic 

lipopeptide family reveals that these two aspartate residues are part of a conserved four 

amino acid motif DXDG within the characteristic 10-membered macrocyclic ring 

(Figure 2.22). This DXDG motif is also part of the EF-hand motif of ribosomally produced 

calmodulin, a calcium-dependent regulator protein in eukaryotes (Figure 6.5) [138]. 
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Figure 6.5: Alignment of the conserved DXDG amino acid motif (highlighted in grey) found in 
ribosomally produced calmodulin (orange) and nonribosomally synthesized acidic lipopeptide 
antibiotics [138]. 
 

Compared to those of A54145, the three exocyclic amino acids of daptomycin are only 

subtly different. Both compounds contain tryptophan at position 1, followed by a 

D-configured amino acid at position 2. Additionally, one acidic residue and asparagine or 

3-hydroxymethylasparagine can be found at position 3. These characteristics suggest a 

similar conformation for this exocyclic part of the tridecapeptide molecules in aqueous 

solution. In accordance with this, the chemoenzymatically synthesized 

daptomycin/A54145 hybrid Dap(A541-3) did not show a significant change in 

antimicrobial potency compared to Dap. The observation that Dap(A541-3) retained 

bioactivity although aspartate at position 3 was replaced by asparagine, gives rise to further 

speculations. Either Asp3 is not essential for the binding of Ca2+-ions, in contrast to the 

model derived by Jung et al., where Asp3 is suggested to coordinate Ca2+ together with 

Asp7 (see also Introduction section) [109]. Otherwise, D-Glu2 in Dap(A541-3) might be able 

to compensate the function of Asp3 and coordinates calcium instead. 

Further, successive substitution of the daptomycin peptide backbone with amino acids 

from A54145 as in Dap(A541-6) was possible, illustrating the opportunity to construct 

structural hybrids of these two compounds. As reported in Table 5.2, the MIC of 

Dap(A541-6) was similar to that of Dap(A541-3), indicating the importance of the 

C-terminal halves of these molecules. Accordingly, the synthesized analogs of the two 

major found A54145 variants displayed a significant difference in MIC values; that of 

A54145(Val) was increased 8-fold compared to that of A54145(Ile). On the basis of these 

results, A54145(Kyn) was synthesized with the unusual amino acid kynurenine at 

position 13. The MIC of A54145(Kyn) was almost as low as for enzymatically cyclized 

Dap, revealing the crucial role of kynurenine at position 13. 

Interestingly, the opposite effect occurred in subsequent studies from Cubist 

pharmaceuticals, in which modified lipopeptides were successfully generated by 

reprogramming the daptomycin and A54145 biosynthetic gene clusters through the 

exchange or replacement of NRPS modules [50, 51]. The daptomycin derivatives produced 

by the engineered strains contained isoleucine and valine, as found in A54145, at amino 
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acid position 13 of their peptide backbones. In contrast to the increased bioactivity 

observed for A54145(Kyn) during this study, the substitution of kynurenine through 

isoleucine or valine caused a reduced antimicrobial potency of the derived daptomycin 

analogs compared to that of authentic daptomycin [50, 51]. 

Taken together, it can be assumed that the introduction of the aromatic kynurenine leads to 

an increased amphipathicity of the A54145 lipopeptide analog A54145(Kyn). The 

daptomycin NMR structure derived by Ball et al., for example, indicates a hydrophobic 

cluster with Trp1, Kyn13, and the decanoic acid moiety at the bottom of the macrocyclic 

ring structure [108]. Moreover, recent contributions from the Straus laboratory showed that 

divalent cations, such as Ca2+ or Mg2+, have a significant effect on Trp1 and Kyn13 

residues, suggesting an important role of these two amino acids in the oligomerization 

process of daptomycin and the interaction with the bacterial membrane [139]. 

In conclusion, the identification of structural elements that are important for lipopeptide 

bioactivity makes them promising sites for the introduction of further chemical 

modifications. The herein described chemoenzymatic approach towards the synthesis of 

lipopeptide analogs should allow the lipopeptide SAR to be further extended through the 

construction of more comprehensive libraries. Having selected promising peptide leads, 

complementary in vivo genetic engineering approaches, as established by Cubist, might be 

helpful for the large scale production of lead molecules for clinical studies. 

 

6.2 The reductase of the nostocyclopeptide synthetase triggers the formation of a 

macrocyclic imine 

One goal of this study was to investigate different types of peptide macrocyclization 

including the unusual formation of a macrocyclic imine, as displayed by the 

nostocyclopeptides (ncps). Imines are rather unusual structural elements to constrain the 

conformation of a peptide by macrocyclization compared to chemically more stable 

intramolecular ester and amide bonds, which are frequently found in biologically active 

peptides. Nevertheless, Moore et al. isolated ncpA1 and ncpA2 from the terrestrial 

cyanobacterium nostoc sp. ATCC53789 and elucidated their biosynthetic origin, which is 

mediated by a NRPS system [14, 140]. In contrast to most other NRPSs, the termination 

module contains an uncommon reductase domain instead of the canonical TE domain. 

In this study the nostocyclopeptide imine formation was examined biochemically in vitro. 

By the synthesis of linear peptide aldehydes it was possible to show that imine 

macrocyclization takes place via self-assembly after the reductive release of a reactive 
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peptide aldehyde by the reductase (R) domain. This distinguishes the ncp R domain from 

all other known NRPS reductase domains that are engaged in the formation of linear 

peptide alcohols or amines.  

6.2.1 The biochemical characterization of the nostocyclopeptide reductase domain 

The sequencing of the ncp biosynthetic gene cluster revealed that the assembly of the 

linear heptapeptide chain is achieved by a linear NRPS consisting of two subunits NcpA 

and NcpB [14]. The third module contains an E domain to generate D-Gln, which is found 

at amino acid position 3 of the ncp peptide backbone. Remarkably, instead of the 

commonly found TE domain, a relatively rare reductase (R) domain, containing a putative 

NAD(P)H binding motif, is found at the C-terminal end of NcpB (Figure 6.6). 

Recombinant ncp R and ncp PCP-R displayed reductase activity in vitro with 

peptidyl-thioester substrates that were C-terminally activated with CoA or ppan. 

Thiophenol- and SNAC-activated peptides in contrast were not accepted by the reductase 

domain, indicating a high enzymatic specificity for substrates that closer mimic the natural 

situation, where the mature peptide chain is covalently attached to the terminal PCP.  

 

 
 
Figure 6.6: The nostocyclopeptide NRPS consists of two subunits, NcpA and NcpB. Seven modules are 
responsible for the incorporation of seven amino acids. Instead of the commonly found thioesterase 
domain an R domain occupies the C-terminal position of NcpB. 
 
Interestingly, the reductase activity of ncp PCP-R was significantly higher than for the 

excised R domain. This observation suggests that the secondary structure of the excised 

enzyme may be negatively influenced by the absence of the natural protein environment 

within the NRPSs. The PCP, as a stable autonomous folding unit, may have stabilizing 

effects, leading to improved catalytic properties of the ncp R domain.  

Since assays with ncp R and peptidyl-CoA substrates showed the formation of cyclic 

imines instead of linear peptide aldehydes, the existence of a second enzyme involved 

within imine macrocyclization could be excluded. However, the role of the reductase 

domain in peptide cyclization remained unclear at this state. 
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To further investigate this issue peptide aldehydes with sequences similar to ncpA1 and 

ncpA2 were synthesized (for synthetic reasons 4-methylproline was substituted by 

proline). For both compounds imine macrocyclization occurred without the need of ncp R. 

With this experiment imine formation was uncoupled from the ncp R-mediated reductive 

release of the ncp aldehydes and it was shown that the macrocyclization reaction is 

enzyme-independent. This leads to the conclusion that the offloading of the reactive 

peptide aldehyde by ncp R triggers the self-assembly of the macrocyclic imine 

(Figure 6.7). A prerequisite for this process would be that the free linear heptapeptide 

aldehyde can adopt a “product-like” conformation without the help of ncp PCP-R, so that 

the distant ends of the peptide aldehyde are in close proximity for intramolecular 

cyclization. 

 

 
 
Figure 6.7: Macrocyclization during the biosynthesis of the nostocyclopeptide A2 is triggered by a 
terminal reductase (R) domain. The release of a peptide aldehyde results in the spontaneous formation 
of the macrocyclic imine. 
 

6.2.2 Alanine scan experiment  

The hypothesis that imine macrocyclization relies on the elaborated prefolding of the linear 

ncp peptide chain was further supported by an alanine scanning mutagenesis experiment. 

CoA-derivatives, in which one single amino acid at positions 2-6 of the ncp peptide 

sequence was substituted by L-alanine, revealed that Pro6, Ser5, and Ile4 side chains were 

not crucial for imine self-assembly, whereas the replacement of D-Gln3 and Gly2 by 

L-alanine predominantly afforded the linear peptide aldehydes (Figure 6.8).  

These experiments strongly suggest that Gly2 may serve as a flexible hinge that allows the 

peptide to achieve a precyclic conformation. Interestingly, D-Gln3 is the amino acid with 

the highest polarity within the ncp peptide sequence and could be involved in hydrogen 

bonding with the peptide backbone. Alternatively, as the only D-configured amino acid 
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within the heptapeptide, D-Gln3 could be part of a turn motif that critically contributes to 

the preorganization of the linear molecule.  

 

 
Figure 6.8: Crucial structural elements for imine macrocyclization identified by alanine scanning 
(indicated in grey). 
 

NMR studies from the Geyer laboratory (Philipps-Universität Marburg) provided a more 

detailed picture of the intriguing conformation of the linear and cyclic ncpA2 in aqueous 

solution. As shown in Figure 6.9, it was confirmed that the linear ncp precursor in fact has 

a distinct “horseshoe-like” conformation.  

 

 
 

Figure 6.9: Overlay of 10 snap shots (taken in 10 ps steps) of a Molecular Dynamics simulation of the 
linear ncpA2-CHO. Carbon atoms are shown in green, oxygen atoms in red, and nitrogen atoms in 
blue. Structural features that contribute to the peptide prefolding are indicated. A: The N-terminal 
Tyr1 side chain is highly flexible with Gly2 acting as a dynamic hinge. B: The D-Gln3-Ile4-Ser5 segment 
adopts a β-turn motif. C: The C-terminus is rigidified by a stacking interaction between Phe7 and Pro6 
side chain residues. This figure was kindly provided by S. Enck. 
 

The intermediate segment D-Gln3-Ile4-Ser5 adopts a β-turn and is already preorganized for 

macrocyclization of the linear peptide chain. The C-terminal amino acids Phe7 and Pro6 

show an unusually strong stacking interaction, which restricts the dynamics of this 

molecular part. Further, the high mobility of the N-terminal Tyr1 adjacent to the 
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“glycine-hinge” became evident. This molecular flexibility is likely to enable the 

interaction between the C- and N-terminal part of the molecule, which is necessary for 

imine formation. In summary, the individual role of each structural element identified by 

the alanine scanning experiment during peptide prefolding could be specified in more 

detail by the NMR data, which impressively show that the outstanding conformation of the 

linear ncp is the basis for imine self-assembly. 

6.2.3 Ncp PCP-R substrate specificity 

According to previous studies on TE domain-mediated peptide cyclization, we anticipated 

an important role for the C- and the N-terminal amino acids. However, ncps occur in 

nature as a mixture of two compounds, ncpA1 and ncpA2, that differ in the C-terminal 

position, which is occupied by either leucine or phenylalanine. Despite these aromatic and 

aliphatic amino acids threonine, lysine, or aspartate were incorporated at this position to 

cover different types of the 20 proteinogenic amino acids. In additional peptidyl-CoA 

substrates phenylalanine was conserved at the C-terminus, while the N-terminal tyrosine 

was substituted with leucine, threonine, lysine, or aspartate.  

Remarkably, ncp R displayed broad substrate tolerance and reduced all modified 

peptidyl-CoA substrates, although those carrying aspartate or lysine either at the C- or 

N-terminus were not capable of imine-cycle formation. One explanation for this could be 

that electronic effects caused by the charged amino acid substitutes may in general have a 

high impact on the conformation of the linear heptapeptide. Additionally, the hydrophobic 

structural motif at the C-terminus may be a necessary structural constraint for the 

interaction of the N-terminal tyrosine with the C-terminal aldehyde function.  

6.2.4 Macrocyclic imines as model systems for peptide cyclization 

In general, macrocyclic imines are rather unusual structural elements for the rigidification 

of a peptide’s conformation compared to stable ester and amide bonds. Imino bonds can be 

easily hydrolyzed in aqueous solution (Figure 6.10) and possibly for this reason imines are 

only rarely found as structural elements in nature, playing a more important role as 

metabolic intermediates [141]. Remarkably, the cyclic ncps could be isolated from the 

cryptophycin producing cyanobacterium Nostoc sp. ATCC53789, revealing their 

comparatively high stability. Although the ncps showed cytotoxicity against human 

carcinoma cells as reported by Moore and colleagues, the exact biological function of this 

molecules remained unclear [14]. 
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Figure 6.10: Reversibility of the imine macrocycle formation. 

 
Based on the reversibility of imine formation, dependent on the pH value and temperature, 

Enck et al. were able to quantify the equilibrium constants of the imine cyclization process 

by NMR. This in turn enabled the calculation of the entropy loss of the linear peptide chain 

upon macrocyclization (Enck, S., unpublished results). In future, this novel experimental 

approach may be applicable to determine the cyclization entropy of other macrocyclic 

peptides of medicinal interest, such as tyrocidine or gramicidin S, if synthetic linear 

peptide aldehydes corresponding to these compounds also show spontaneous imine 

formation. 

6.2.5 Chain termination by reductase domains during the biosynthesis of other 

secondary metabolites 

Although C-terminal reductase domains are known in a few other NRPS systems, for 

example those of the myxobacterial natural products myxochelin A and B [43, 143, 144] 

and linear gramicidin [44], the associated compounds are primary amines and alcohols, 

obtained by further enzymatic transformation of the released aldehydes. These molecules 

do not possess a macrocyclic structure. 

Our results elucidate a unique and novel type of peptide cyclization via the formation of a 

macrocyclic imine. In general, the reductive release of reactive peptide aldehyde 

precursors prior to an intramolecular cyclization reaction may be more commonplace 

during the biosynthesis of complex NRPs and PKs than originally thought. The antitumor 

antibiotic safracin B, for example, is likely to undergo a speculated intramolecular Schiff 

base reaction after the formation of a peptide aldehyde precursor (Figure 6.11) [145, 146]. 

It will be of interest to see whether this cyclization process is also triggered by a putative 

reductase domain. 
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Figure 6.11: Proposed chain termination during safracin biosynthesis. A C-terminal reductase domain 
(R) is likely to catalyze chain release and concomitant aldehyde formation. 
 
Analogously, a similar reductive thioester cleavage leading to the release of a reactive 

aldehyde species is likely to be involved in the biosynthesis of pseurotin A, a hybrid 

PK/NRP produced by the filamentous fungus Aspergillus fumigatus [147]. The C-terminal 

reductase domain has been proposed to release the underneath depicted aldehyde 

intermediate. After intramolecular cyclization further enzymatic tailoring finally yields 

pseurotin A (Figure 6.12). 

 

 
 
Figure 6.12: Proposed chain termination during pseurotin A biosynthesis. Reductive thioester cleavage 
presumably leads to the formation of a reactive aldehyde precursor of pseurotin A. 
 
 

6.3 Fatty acid tailoring during lipopeptide synthesis 

Intensive studies on modular biosynthetic assembly line machinery have provided 

researchers with a profound knowledge of how nonribosomal peptides (NRPs) and 

polyketides (PKs) are produced in nature. Especially nonribosomal lipopeptides, like CDA 

and the last-resort antibiotic daptomycin have been in the focus of interest recently. Since 

the biological properties of these compounds depend to a large extent on the nature of the 

incorporated fatty acid chain, one goal of this thesis was to investigate the enzymatic 

tailoring steps underlying the generation of the unique trans-2,3-epoxyhexanoic acid 

building block of CDA. 
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In the course of these studies it has been shown that fatty acid tailoring enzymes HxcO and 

HcmO act on ACP-bound substrates. HxcO turned out to be a novel type of enzyme with 

dual function as an FAD-dependent fatty acid-S-ACP oxidase paired with intrinsic 

epoxidase activity. HcmO was characterized as a second epoxidase, responsible for the 

production of another 2,3-epoxyhexanoic enantiomer during CDA biosynthesis.  

To assign the stereochemistry of the enzymatic reaction products, a new experimental 

approach based on the chemical activation inherent to thioester-bound intermediates was 

developed. Utilizing an amide ligation reaction, it was possible to transform the 

ACP-bound substances into derivatives of smaller size suitable for the rapid and sensitive 

detection by standard HPLC-MS. Using this powerful approach, the reaction products of 

the tailoring enzymes HxcO and HcmO from the CDA trans-2,3-epoxyhexanoyl 

biosynthetic pathway could be stereochemically characterized, which was not possible via 

established methodology. Moreover, the herein presented method holds great potential for 

the detailed analysis of other biochemical processes involving CP-bound intermediates – 

a central paradigm in secondary metabolism. 

6.3.1 Biochemical characterization of HxcO and HcmO  

In order to biochemically characterize the enzymes HxcO and HcmO from the 

CDA biosynthetic gene cluster in vitro, three possible biosynthetic routes of the CDA 

trans-2,3-epoxyhexanoyl side chain were experimentally evaluated. Therefore acyl-CoA 

substrates, acyl substrates loaded onto an ACP, and chemoenzymatically prepared CDA 

variants were generated and tested as substrates for HxcO and HcmO. These assays were 

analyzed by high-resolution FT-MS, the time-dependency was examined as well as the 

enzymes’ substrate specificity for different types of fatty acids. 

The obtained results are surprising in two aspects: first, predictions based on sequence 

similarities favoured HxcO and HcmO to be a fatty acid oxidase and epoxidase, 

respectively, both acting on acyl-CoA substrates. However, our experiments clearly 

demonstrate that only fatty acids loaded onto the recombinant ACP (SCO3249) are turned 

over by the recombinant enzymes. In addition to the physiological substrate 

hexanoyl-S-ACP, HxcO accepted a range of ACP-bound substrate analogs, namely linear 

fatty acids of 4-10 C-atoms. HcmO epoxidation activity, instead, showed more restricted 

substrate specificity and was limited to hex-2-enoyl- and shorter crotonyl-S-ACP 

substrates. Second, whereas HcmO showed the expected epoxidase activity, the 

experiments with the putative dehydrogenase HxcO showed the time-dependent formation 

of epoxyhexanoyl-S-ACP as the main product. 
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6.3.2 Proposed mechanism of epoxidation catalyzed by HxcO and HcmO in the context 

with other flavoproteins 

The fact that HxcO is a new type of FAD-dependent acyl-ACP oxidase with intrinsic 

epoxidase activity responsible for the desaturation and subsequent epoxidation of the 

initially formed enoyl-ACP product, gives rise to speculations on the HxcO epoxidation 

mechanism. In analogy to the related acyl-CoA oxidases, HxcO generates the reduced 

cofactor FADH2 by the oxidation of the fatty acid-S-ACP substrate. Subsequently flavin 

C4a-hydroperoxide (FADH-OOH) is formed during the reoxidation of FADH2 by 

molecular oxygen (Figure 6.13). Instead of decomposing to FAD and H2O2, FADH-OOH 

could be deprotonated and directly serve as a nucleophile in the subsequent epoxidation of 

the electron deficient double bond. Therefore, the enoyl-substrate can undergo conjugated 

addition with the reactive FAD-OO− species following a mechanism that has been 

proposed for the Baeyer-Villiger type oxidation of cyclic ketones by FAD-dependent 

epoxidases (Figure 6.13) [148]. 

HcmO was characterized as a second flavin-dependent epoxidase, also responsible for the 

formation of a 2,3-epoxyhexanoyl residue while acting on the ACP-bound 

hexenoyl-substrate. In contrast to HxcO, FADH2 is likely to be generated by the oxidation 

of NAD(P)H through the reductase component of HcmO. The reduced cofactor is then 

available for the epoxidation reaction that occurs in analogy to HxcO with FAD-OO− as 

the nucleophilic species (Figure 6.13).  

 
Figure 6.13: Proposed mechanism of epoxidation catalyzed by HxcO and HcmO. During fatty acid 
oxidation (HxcO) or by the consumption of NAD(P)H (HcmO) the reduced cofactor FADH2 is 
generated. The reaction with molecular oxygen affords the flavin C4a-hydroperoxide intermediate, 
which acts as a nucleophile in the attack of the 2,3-hexenoyl-S-ACP substrate. Finally, the 
C4a-hydroxyflavin intermediate dehydrates to regenerate the oxidized FAD.  
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In the epoxidation mediated by HxcO and HcmO the C4a-hydroperoxide intermediate 

nucleophilically attacks the electrophilic enoyl substrate in order to install the epoxide 

function. Depending on the protonation state of the C4a-hydroperoxide intermediate, this 

versatile peroxide species can also deliver an electrophilic hydroxyl group “OH+” to 

nucleophilic substrates [149]. The prototypical reaction for an electrophilic 

monooxygenation is the ortho hydroxylation of 4-hydroxybenzoate, wherein the 

electron-rich phenol ring allows transfer of an “OH+” equivalent from the reactive 

FAD-OOH (Figure 6.14) [150-152]. 

The diverse properties of flavin cofactors are further illustrated by natural product 

flavoprotein halogenases. The generation of 7-chlorotryptophan by the flavin-dependent 

halogenase RebH during biosynthesis of rebeccamycin, for example, employs similar 

mechanisms for the chlorination of natural product scaffolds [153, 154]. After the 

formation of C4a-hydroperoxide a chloride ion, Cl−, can react either with the distal or the 

proximal oxygen atom of the peroxide species to produce an HOCl equivalent or an 

FAD-OCl, each of both with presumably comparable reactivity as sources of “Cl+” 

(Figure 6.14). 

 

 
Figure 6.14: Oxygenation and halogenation reactions catalyzed by natural product biosynthetic 
enzymes. Trans-2,3-epoxyhexanoic side chain formation in CDA biosynthesis works via the 
deprotonated C4a-hydroperoxide species that acts as an OH− equivalent. In p-hydroxybenzoate 
hydroxylase the reactive C4a-hydroperoxide species delivers an “OH+” electrophile in the aromatic 
substitution of position 3 of p-hydroxybenzoate. Chlorination by flavin-dependent halogenases, such as 
RebH from the rebeccamycin biosynthetic system, is also mediated by FAD-OOH, which is likely to 
oxidize Cl− to form a “Cl+” equivalent for subsequent halogenation. The enzymatic product of RebH is 
7-chlorotryptophan. 
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6.3.3 Stereochemical assignment of HxcO and HcmO reaction products by direct 

amide ligation 

The stereochemistry of the two epoxides generated by HxcO and HcmO was assigned via 

comparison with synthetic standards. Initially, these attempts to characterize the enzymatic 

products were hampered by the problem that standard methodology for the cleavage and 

analysis of CP-bound substances could not be applied. Enzymatic cleavage by the 

hydrolyzing enzyme TEII is only possible for peptidyl carrier protein (PCP)-bound 

substrates [155] and the use of ACP hydrolases is restricted by their high specificity for 

native ACPs [80, 156]. Relatively harsh alkaline treatment, on the other hand, would 

obviously hydrolyze the epoxy function and could further lead to racemization.  

To establish alternative conditions that would allow the direct transformation of the 

ACP-bound enzyme products into derivatives of smaller size appropriate for standard 

HPLC-MS analysis, the cleavage of the reactive acyl-S-ACP thioesters by incubation with 

amine nucleophiles was envisioned, thereby taking advantage of the chemical activation 

already inherent to thioester-bound substrates. Initial experiments with hydrophobic 

amines, e.g. benzylamine, showed indeed the formation of the desired amide ligation 

products suitable for HPLC analysis and comparison with synthetic standards. However, it 

was not possible to determine the absolute stereochemistry of the epoxides generated by 

HxcO and HcmO, respectively, because enantiomeric synthetic standards were not well 

resolved by HPLC using a chiral column. 

Accordingly, the utilization of chiral ligation partners, such as D-α-methylbenzylamine, 

(S)-2-phenyl-1-propylamine or amino acid methyl esters, e.g. D-Phe-OMe was envisioned. 

The rational for this change was the now diastereomeric relationship of the two possible 

epoxyhexanoyl amide ligation products, which was anticipated to lead to a better 

separation by HPLC. Synthesis of 2,3-epoxyhexanoyl amides using racemic 

2,3-epoxyhexanoic acid and the amines mentioned above and analysis of the 

diastereomeric product mixtures by HPLC using a chiral column showed that only in the 

case of the N-acylated phenylalanine esters 8 and 9 (Figure 5.37) a sufficient peak 

separation was obtained. Gratifyingly, phenylalanine derivative 2 could also successfully 

be used as a nucleophile in the amide ligation reaction, where it efficiently cleaved the 

ACP-bound thioesters. Using this strategy, we could clearly establish that the epoxide 

generated by HxcO has the (2R,3S)-configuration (Figure 5.38). Interestingly, the 

2,3-epoxyhexanoyl moiety generated by the second putative tailoring enzyme studied here, 

HcmO, was shown to be of opposite configuration (2S,3R) based on HPLC analysis of the 
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ligation product (Figure 5.39). This experimental approach was therefore essential for this 

study, since it enabled the detailed analysis of the CP-bound HxcO and HcmO enzyme 

products as well as the unambiguous assignment of product stereochemistry by comparison 

to synthetic standards. 

6.3.4 Proposed model for 2,3-epoxyhexanoyl side chain biosynthesis 

Since the absolute configuration of the trans-2,3-epoxyhexanoyl moiety in the CDA 

natural product is unknown, the existence of two epoxidases HxcO and HcmO with 

different stereoselectivity gives rise to speculations on the overall role of these enzymes in 

the CDA fatty acid moiety biosynthesis. 

A total of five genes comprise the putative fab operon that is involved in fatty acid 

biosynthesis and tailoring of CDA (Figure 2.19). The hexanyol-ACP substrate for HxcO is 

likely to be produced by the interplay of FabH4 and FabH3, putative β-ketoacyl-ACP 

synthases encoded within the fab operon, together with enzymes from primary metabolism 

(Figure 6.15). Subsequently, fatty acid tailoring by HxcO occurs on the ACP-bound 

hexanoyl moiety and results in the (2R,3S)-2,3-epoxyhexanoyl product and minor amounts 

of the hex-2-enoyl-ACP, as demonstrated in this study. This “side-product” of HxcO 

reactivity could then serve as the substrate for subsequent epoxidation by HcmO. 

Alternatively, the hex-2-enoyl-ACP substrate for HcmO could be directly provided by the 

same enzymes that are responsible for the generation of the hexanoyl-ACP substrate, but 

without the final reduction step of the respective ER (Figure 6.15). However, such a 

scenario would bypass the general need of a fatty acid-S-ACP oxidase activity that is a 

component of HxcO.  

 

 
Figure 6.15: Proposed model for the ACP-mediated biosynthesis pathway of the unique 
2,3-epoxyhexanoyl moiety found in CDA. The two epoxidases HxcO and HcmO are responsible for the 
generation of the two shown 2,3-epoxyhexanoyl enantiomers. Either FAS enzymes from primary 
metabolism together with FabH3 and FabH4, or HxcO are likely to produce the hex-2-enoyl substrate 
for HcmO. The configuration of the epoxyhexanoyl side chain in the CDA antibiotics is unknown up to 
now. CDA PSI = CDA Peptide Synthetase I. 
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Overall, it can not be answered at the moment, whether the two enantiomers produced by 

HxcO and HcmO are then transferred from the ACP to the first module of the CDA peptide 

synthetase, because of the unknown stereochemistry of the epoxyhexanoic side chain 

found in the natural product. NMR studies allied with a total synthesis approach are 

currently underway to investigate the absolute configuration of the 

trans-2,3-epoxyhexanoyl moiety in naturally produced CDA. 

Recently, our results were accomplished by in vivo data concerning the biosynthetic origin 

of the CDA 2,3-epoxyhexanoyl fatty acid side chain [157]. The Micklefield and Smith 

laboratories could show that the deletion of hxcO gene results in CDA products with 

saturated hexanoyl side chains. First, this indicates that the unmodified hexanoyl-S-ACP is 

able to initiate lipopeptide biosynthesis and that fatty acid transfer to the substrate serine on 

the CDA peptide synthetase is not specific for the epoxidized hexanoyl-moiety. 

Consequently, it becomes more likely that both epoxyhexanoyl enantiomers formed by 

HxcO and HcmO are incorporated into the CDA scaffold during biosynthesis. Second, 

since no epoxidized products were detected for the ∆hxcO mutant, one can speculate that 

the 2,3-hexenoyl-S-ACP originating from HxcO is the favored substrate for HcmO. 

Otherwise, products containing the 2,3-epoxyhexanoyl side chain should have been 

observed, due to the action of HcmO on 2,3-hexenoyl-S-ACP formed during fatty acid 

synthesis. 

A second S. coelicolor mutant with a hcmO gene deletion was screened for CDA 

production but did not reveal the formation of any CDA-like compounds. While this result 

supports the view that HcmO is essential for CDA biosynthesis, it does not explain why the 

(2R,3S)-2,3-epoxyhexanoyl and 2,3-hexenoyl products of HxcO should not be recognized 

by the NRPS. 

6.3.5 Implications for the biosynthesis of modified fatty acid building blocks found in 

other nonribosomal lipopeptides 

The biochemical data from this study demonstrate that fatty acid epoxidation during CDA 

assembly occurs on ACP-bound substrates. However, are similar biosynthetic concepts 

also applied during the biosynthesis of other nonribosomal lipopeptides? The cloning and 

sequencing of the gene clusters of enduracidin [158], ramoplanin [159], and friulimycin 

[160, 161] revealed fatty acid tailoring enzymes encoding segments in close proximity to 

the genes encoding for the NRPS. Additionally, each of these biosynthetic systems also 

included a putative ACP.  
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In the friulimycin NRPS system gene knock-outs confirmed the role of an 

acyl-CoA-dehydrogenase to be involved in the formation of the cis double bond of the 

N-terminal lipid moiety, but the enzymatic activity could not be reconstituted in vitro with 

fatty acid-CoA substrates [160, 161]. In light of the results obtained in this study, it is most 

likely that the cognate substrates of the recombinant acyl-CoA dehydrogenase are fatty 

acid-S-ACPs rather than fatty acid-CoAs in analogy to the ACP-mediated 

oxidation/epoxidation of HxcO (Figure 6.16 A). Another intriguing feature of the 

friulimycin NRPS is the absence of a C domain that usually represents the first domain 

within the initiation modules of NRPSs responsible for the biosynthesis of lipopeptides. 

Persumably, the stand-alone acyltransferase LipE compensates the C domain function 

during friulimycin lipoinitiation. Taken together, these considerations lead to a 

biosynthetic model for fatty acid tailoring as depicted in Figure 6.16. 

 

 
 
Figure 6.16: Proposed model for fatty acid tailoring during the biosynthesis of friulimycin (A) and 
enduracidin (B). 
 
Further, the enduracidin cluster also contains an open reading frame encoding for an 

ACP-like protein. Fatty acid tailoring leading to the 2Z,4E-unsaturated lipid tail by a 

putative acyl ligase/oxidase fusion protein (Orf45), an additional oxidase (Orf44), and a 

double bond isomerase (Orf39) is also likely to occur on ACP-bound substrates 

(Figure 6.16 B). Counterparts of these proteins are found in the ramoplanin pathway, 
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which incorporates a shorter, but otherwise structurally identical unsaturated lipid tail as 

enduracidin [159]. It will be of interest to see, whether the hypothesis that fatty acid 

tailoring generally occurs on ACP-bound substrates can be confirmed by follow-up studies. 
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