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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit der Methode der identitätsbasierten
Verschlüsselung. Hierbei wird der Name oder die Identität eines Zielobjekts zum Ver-
schlüsseln der Daten verwendet. Diese Eigenschaft macht diese Methode zu einem
passenden Werkzeug für die moderne elektronische Kommunikation, da die dort ver-
wendeten Identitäten oder Endpunktadressen weltweit eindeutig sein müssen. Das
in der Arbeit entwickelte identitätsbasierte Schlüsseleinigungsprotokoll bietet Vorteile
gegenüber existierenden Verfahren und eröffnet neue Möglichkeiten. Eines der Haupt-
merkmale ist die komplette Unabhängigkeit der Schlüsselgeneratoren. Diese Unab-
hängigkeit ermöglicht es, dass verschiedene Sicherheitsdomänen ihr eigenes System
aufsetzen können. Sie sind nicht mehr gezwungen, sich untereinander abzusprechen
oder Geheimnisse auszutauschen. Auf Grund der Eigenschaften des Protokolls sind
die Systeme trotzdem untereinander kompatibel. Dies bedeutet, dass Anwender einer
Sicherheitsdomäne ohne weiteren Aufwand verschlüsselt mit Anwendern einer anderen
Sicherheitsdomäne kommunizieren können. Die Unabhängigkeit wurde ebenfalls auf
ein Signatur-Protokoll übertragen. Es ermöglicht, dass Benutzer verschiedener Sicher-
heitsdomänen ein Objekt signieren können, wobei auch der Vorgang des Signierens
unabhängig sein kann.

Neben dem Protokoll wurde in der Arbeit auch die Analyse von bestehenden Syste-
men durchgeführt. Es wurden Angriffe auf etablierte Protokolle und Vermutungen
gefunden, die aufzeigen, ob oder in welchen Situationen diese nicht verwendet wer-
den sollten. Dabei wurde zum einen eine komplett neue Herangehensweise gefunden,
die auf der (Un-)Definiertheit von bestimmten Objekten in diskreten Räumen basiert.
Zum anderen wurde die bekannte Analysemethode der Gitterreduktion benutzt und
erfolgreich auf neue Bereiche übertragen.

Schlussendlich werden in der Arbeit Anwendungsszenarien für das Protokoll vorgestellt,
in denen dessen Vorteile besonders relevant sind. Das erste Szenario bezieht sich auf
Telefonie, wobei die Telefonnummer einer Zielperson als Schlüssel verwendet. Sowohl
GSM-Telefonie als auch VoIP-Telefonie werden in der Arbeit untersucht. Dafür wur-
den Implementierungen auf einem aktuellen Mobiltelefon durchgeführt und bestehende
VoIP-Software erweitert. Das zweite Anwendungsbeispiel sind IP-Netzwerke. Auch die
Benutzung der IP-Adresse eines Rechners als Schlüssel ist ein gutes Beispiel, jedoch
treten hier mehr Schwierigkeiten auf als bei der Telefonie. Es gibt beispielsweise dy-
namische IP-Adressen oder die Methode der Network Address Translation, bei der die
IP-Adresse ersetzt wird. Diese und weitere Probleme wurden identifiziert und jeweils
Lösungen erarbeitet.
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Abstract

Cryptographic protocols are used to encrypt data during their transmission over a net-
work or to store it on a data carrier. This thesis is about the method of identity-based
encryption. In this form of encryption, the name or identity of the target subject is used
to encrypt the data. This property makes it a perfect tool for modern electronic com-
munication, because all involved identities and endpoint addresses (e.g. IP addresses)
have to be unique worldwide and must be known in order to establish a communication.
The identity-based key agreement protocol that has been invented in this thesis has sev-
eral advantages compared to existing schemes. One important property is its complete
independence of key generators. This independence allows each participating security
domain to set up and maintain its own key generator. They are not forced to agree on
a common setup or a common secret anymore. Due to the properties of the protocol,
the security domains are still compatible to each other. Users from one security domain
can communicate with users from another security domain using encryption. This new
property of independence is also carried over to a signature protocol. It allows users
from different security domains to sign a certain object. Additionally, the act of signing
is independent and the signers do not need to communicate with each other.

Apart from the protocol and its security proofs with respect to standard definitions from
the literature, the thesis contains an analysis of existing schemes. Attacks on known
protocols and assumptions are presented, and it is shown under which circumstances
these become insecure. On the one hand, a completely new approach that is based on
defined or rather undefined objects in discrete structures is used. On the other hand,
the method of lattice based reduction is successfully applied to the new area of secret
sharing schemes.

Finally, application scenarios for the protocol are presented. These scenarios are chosen
such that the advantages of the protocol become apparent. The first application is
telephony, GSM as well as Voice over IP (VoIP). In this case, the telephone number of
the callee is used as the encryption key. Implementations on a modern mobile phone
as well as within existing Voice over IP software are presented. The second application
is IP networks. Here, the IP address of a communication unit is used as the encryption
key. However, in this case, there are more problems than in the GSM/VoIP case, e.g.,
dynamic IP addresses or network address translation (NAT) where an IP address is
substituted by another one. These are only two problems out of several for which
solutions are presented.
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1 Introduction

”Why should you care if you have nothing to hide?”

J. Edgar Hoover

Already at the time when nobody has even thought about electronic communication,

hiding or altering data was a usual method to prevent sensitive information from falling

into foreign hands. Short messages on the bottom of a filled water bucket, scratched

words on a scalp or a simple character substituting scheme were methods that have

already been used before Christ. In both cases, when receiving a message that is hidden

in something (stenographic) or encrypted with something (cryptographic), the sender

must have some previous knowledge. He must either know that there is a message hid-

den, in order to reveal it, or he must know the information how to decrypt the entire

data. Receiving unexpected messages from unknown senders confronts a sender with

a problem, since he does not know if there is something between the lines or how to

reconstruct the message. Consequently, the sender and the receiver must have commu-

nicated once before in order to generate a common knowledge. Therefore, they either

have met each other personally or they used another already existing secure commu-

nication channel. In the early periods of time, long travels for personal meetings were

the usual way to exchange information. In the age of electronic communication, this

investment nullifies the basic idea of the new and fast communication form. Despite

the advancements in cryptologic research, the core problem of encryption remains, that

is, all participants must have a key (the same) and they must receive it protected from

foreign access. Retrospectively, this kind of encryption is called Symmetric Cryptog-

raphy. It earns its name from the fact that every participant who has access to the

encrypted channel possesses the same key. This means, encrypting and decrypting is

done using the same secret.

1
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1.1 Public Key Cryptography

A conceptually new approach has been proposed by Diffie and Hellman in the seventies

of the 20-th century [40]. They have introduced a concept called Public Key Cryptog-

raphy (Abbr: PKC). The important improvement was that they did decryption and

encryption with different keys instead of the same. One key is a private key that is

used to decrypt incoming messages and has to be stored in a secure way. The other

key is a public key that is used by remote parties to encrypt messages addressed to

the key’s owner. The usage of two keys forms the name Asymmetric Cryptography,

since the symmetry in encryption and decryption has been given up. The advantage is

that the key to encrypt a message can be distributed publicly, since it can not be used

to decrypt a message. Using PKC, participants do not have to communicate in order

to negotiate a key, but a user can publish his encryption key, to be accessible for all

potential communication partners.

To make this principle work, their key idea was to use a mathematical object, called

one-way function. A one-way function f has the property to be easy to compute but

difficult to invert. This means f(x) = y can be computed easily but f−1(y) = x is hard

to find, i.e. in non-polynomial time. As an instance for the one-way function, Diffie and

Hellman used discrete exponentiation. This is the task to compute the integer r in the

congruence fg(e) ≡ ge ≡ r (mod p), given g, e, p, and can be done in parts of a second

on modern computers. The computation of f−1
g (r) = e given (g, r, p) is infeasible in

a reasonable amount of time and is called the Discrete Logarithm Problem. Note that

the owner of the one-way function instance knows the integer e, thus he knows the

inversion of the function per default. The fact that there exists no known algorithm

that can invert this function in a fast way (in polynomial time) allows to publish

the one-way function (and thus the public key) without any weakening consequences

regarding the protocol. As long as the Discrete Logarithm Problem stays a problem,

the protocol is safe, since also a potential adversary can not overcome this burden. The

protocol has become famous as the Diffie-Hellman protocol and can be classified as a

Key Agreement Protocol. The aim of a key agreement protocol is to let participants

agree onto a common key. Since it has not been designed to encrypt messages, it is not

practical and sufficient in all situations.

A short time later, Rivest, Shamir and Adleman introduced the first public key en-

cryption system [102], called RSA. They adopted the Diffie-Hellman approach, but

they utilized another one-way function. Instead of discrete exponentiation, they used
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multiplication. To make multiplication a one-way function, the factors have to be cho-

sen in a special way. They proposed to use two large primes P and Q to build the integer

N = PQ. The inverse operation, called factorization, is an infeasible operation for fac-

tors of sufficient size. In the RSA encryption scheme, the public key of a participant is

the tuple (N = PQ, e), whereof e is chosen randomly, but with the constraint that it

neither divides P − 1 nor Q− 1, which is equivalent to the statement gcd(e, ϕ(N)) = 1.

The private key d is then uniquely determined by the congruence ed ≡ 1 (mod ϕ(N)).

At this point, the one-wayness of multiplication is utilized, since no one can compute

the private key d from public integers e and N without knowing ϕ(N). However, if

someone is able to compute ϕ(N) or d, he is also able to factorize N, thus he finds

an inversion of the one-way function. For the actual message encryption, the authors

used another one-way function that is associated with the first one-way function but

is often formulated independently. Rivest, Shamir and Adleman have utilized that it

is infeasible to compute roots in ZN if the the factorization of N can not be found.

They transformed a message m into an integer M out of ZN and executed the one-way

function f(M, e) ≡ Me ≡ C (mod N), which makes C the ciphertext of M. Since

computing roots in ZN is assumed to be NP-hard (the integer M is the e-th root of

the ciphertext C), the ciphertext is protected. To decrypt a message, the ciphertext

is raised to the power of the secret key, which yields: Cd ≡ Med ≡ M1+ϕ(N)k ≡ M

(mod N).

PKC is one of the most important inventions in cryptography. However, the problem

of key distribution has not been solved completely. An adversary could still use the

phase of public key distribution to by-pass the encryption scheme. The reason is that

PKC provides no binding between the public key and its owner. A Man-In-The-Middle

Attack (Abbr: MITMA) can utilize this missing binding to subvert public key commu-

nication without breaking the underlying one-way function. A simple example helps

to understand the problem: Suppose in a public key scenario an adversary A manages

to substitute Alice’s public key with his own public key. This can be easier than its

sounds. Public keys are often stored on public ring servers, where anyone can publish a

key under an arbitrary name. If A publishes a key marking Alice as its owner, Bob can

accidentally grab this wrong key, believing to have Alice’s original key. Furthermore,

assume A has access to Alice’s mailbox (for administrators on certain systems this is

not unusual) or he has access to the network connection between Alice and Bob. If now

user Bob uses the fake public key of Alice and encrypts a message, A can decrypt the

message in Alice’s mailbox, since he is the correct owner of the public key and thus A

has also the corresponding private key. After copying the plaintext, he re-encrypts the
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message using Alice’s original public key and leaves the message in Alice’s inbox. Alice

will not notice anything, since she only comes upon a correctly encrypted message in

her mailbox.

1.2 Identity-based Cryptography

In 1984, Shamir, one of the inventors of RSA, published a paper [116] in which he

proposed an idea to overcome the problem of MITMA. He called his approach Identity-

based Cryptography (Abbr: IBC). His idea is to use the identity of a participant itself as

the public key rather than a specially crafted integer. This identity can be each unique

identifier of a participant that must be publicly known or can be retrieved in a reliable

manner. Here, the sender has to know something, namely the identity of the receiver.

However, it is much easier to get this identifier or to verify this identifier by a simple

look, rather than to be confronted with large columns of digits that have no relationship

to its owner. An often used example are e-mail addresses. If a user wants to send an

encrypted message, he at least has to know the e-mail address of its receiver. Otherwise,

he obviously can not even send the message. Thus, if the sender knowns the receiver’s

e-mail address, he knows his public key as well. Another example is to use telephone

numbers. If a participant is not sure about the number and the voice that picks up on

the other side of the line does not sound like the voice expected, something is wrong

with the phone number, thus something is wrong with the encryption key. However, if

the person responding is the person intended to be called, the correct number has been

dialed and thus a secure channel has been established. In this way, the user directly

gets feedback about the status of the encryption.

If an arbitrary string is used as a public key, then there also must be a corresponding

private key for each string. Obviously, a user can not generate his private key on his

own. If this was possible, than either also an adversary can generate the private key,

or the user has to utilize some additional one-way function. In the latter case, the one-

way function must be added to the user’s public key (the identity) and contradicts the

concept of a publicly known identifier. Thus, in order to generate the private keys, a

trusted generator is used, similar to the well adopted certificate authority in public key

infrastructures. These generators are called Identity Private Key Generators (ID-PKG).

Each trusted generator possesses a set of public parameters that are shared among

all participants. They can, e.g., be hardcoded into the protocol’s implementation.

These shared, public parameters define the basic parameters of the protocol, like the
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specification of the used modulus, involved fixed exponents or utilized hash functions.

These public parameters are based on one-way functions, where the inversion is only

known to the trusted generator, which enables the generator to generate the private

keys for each participant.

Since Boneh and Franklin [22] have published the first provably secure identity-based

encryption scheme in 2002, identity-based encryption has been evolved into an impor-

tant part of cryptography in the last years. Various encryption and key agreement

scheme have been developed. However, there are several open issues that have not

been solved satisfactorily.

1.3 Contributions

The contributions of this thesis are as follows:

• Based on well known assumptions in cryptography, a novel identity-based key

agreement scheme, called Secure Session Framework (Abbr: SSF), is proposed.

• SSF is the first identity-based key agreement scheme that can handle completely

independent ID-PKGs. In the existing literature, ID-PKGs are either forced to

agree on a common secret or to form some kind of hierarchical structure.

• Based on the key agreement scheme, an identity-based multi-signature scheme

is proposed that also supports independent ID-PKGs as well as non-interactive

signatures.

• Several attacks relevant for the presented scheme are analyzed. It is shown that

the Φ-Hiding assumption can be broken with non-negligible probability in a spe-

cific environment. What makes this result surprising is that the Φ-Hiding as-

sumption is deeply associated with the factorization problem that is still one of

the major problems in cryptology.

• Secret sharing schemes are analyzed. It is shown that if a secret sharing scheme

that is based on the chinese remainder theorem is used to split the integer ϕ(N)

in several pieces, the secret sharing scheme can be broken under certain circum-

stances. Using this result, the protocol by Iftene and Grindei [65] can be proven

to be insecure if enough malicious users collaborate.
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• Finally, two application scenarios for the proposed SSF scheme are presented.

The first scenario is the application to IP networks and the second the appli-

cation the GSM and VoIP communication. In this context, the problems NAT

traversal, dynamic IP addresses, and the distribution of involved keys/parameters

are solved.

1.4 Publications

The following publications have been produced during the work on this thesis:

• Christian Schridde and Matthew Smith and Tim Dörnemann and Ernst

Juhnke and Bernd Freisleben, An Identity-Based Security Infrastructure for

Cloud Environments, 2010 IEEE International Conference on Wireless Commu-

nications, Networking and Information Security (2010, Peking, China), (accepted

for publication), IEEE Press

• Christian Schridde and Matthew Smith and Björn Agel and Bernd

Freisleben, Secure Mobile Communication via Identity-based Cryptography

and Server-aided Computations, The Journal of Supercomputing, (accepted for

publication), Spring-Verlag, 2010

• Christian Schridde and Matthew Smith and Bernd Freisleben, Non-

Interactive Multi-Signatures with Multiple Independent Identity Key Generators,

2009 (submitted for publication)

• Christian Schridde and Matthew Smith and Bernd Freisleben, Partial

Key Exposure Attacks on Secret Sharing Schemes, 2009 (submitted for publica-

tion)

• Christian Schridde and Matthew Smith and Bernd Freisleben, TrueIP:

Prevention of IP Spoofing Attacks using Identity-based Cryptography, SIN’09 -

Proceedings of the 2nd International Conference on Security of Information and

Networks (2009, Gazimagusa, North Cyprus), pp.128-137, ACM Press

• Matthew Smith and Christian Schridde and Bernd Freisleben, Secur-

ing Mobile Phone Calls with Identity-Based Cryptography, ISA’09 - Proceedings

of the 3rd International Conference on Information Security and Assurance (2009,



7 1.4. PUBLICATIONS

Seoul, Korea), vol. 5576 of Lecture Notes in Computer Science, pp. 124-134,

Springer

• Matthew Smith and Christian Schridde and Bernd Freisleben, Identity-

Based Cryptography for Securing Mobile Phone Calls, HWISE - Proceedings of

the 5th IEEE International Workshop on Heterogeneous Wireless Sensor Net-

works (2009, Bradford, UK), pp. 29-33, IEEE Press

• Christian Schridde and Bernd Freisleben, On the Validity of the Phi-

Hiding Assumption in Asymmetric Cryptographic Protocols, ASIACRYPT - Ad-

vances in Cryptology (2008, Melbourne, Australia), vol. 5350 of Lecture Notes in

Computer Science, pp. 344-354, Springer

• Christian Schridde and Matthew Smith and Bernd Freisleben, An

Identity-Based Key Agreement Protocol for the Network Layer, SCN’08 - Pro-

ceedings of the 6th International Conference on Security and Cryptography for

Networks (2008, Amalfi, Italy), vol. 5229 of Lecture Notes in Computer Science,

pp. 409-422, Springer

• Matthew Smith and Christian Schridde and Bernd Freisleben, Se-

curing Stateful Grid Servers through Virtual Server Rotation, HPDC’08 - Pro-

ceedings of the 17th ACM/IEEE International Symposium on High Performance

Distributed Computing (2008, Boston, MA), pp. 11-23, ACM Press

• Matthew Smith and Matthias Schmidt and Nils Fallenbeck and Tim

Dörnemann and Christian Schridde and Bernd Freisleben, Secure On-

Demand Grid Computing, Journal of Future Generation Computer Systems, pp.

315-325, Elsevier, 2008

• Matthew Smith and Matthias Schmidt and Nils Fallenbeck and Chris-

tian Schridde and Bernd Freisleben, Optimising Security Configurations

with Service Level Agreements, Proceedings of the 7th International Conference

on Optimization: Techniques and Applications (2007, Kobe, Japan), pp. 367-381

• Christian Schridde and Hans-Joachim Picht and Michael Heidt and

Matthew Smith and Bernd Freisleben, Secure Integration of Desktop Grids

and Compute Clusters Based on Virtualization and Meta-Scheduling, Proceedings

of the German e-Science Conference (2007, Baden-Baden, Germany), pp. 23-28
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• Thomas Barth and Kay Dörnemann and Tim Dörnemann and Bernd

Freisleben and Thomas Friese and Manfred Grauer and Jürgen Jaku-

meit and Julian Reichwald and Christian Schridde and Matthew

Smith and Frank Thilo, Supporting Engineering Processes Utilizing Service-

Oriented Grid Technology, Proceedings of German e-Science Conference (2007,

Baden-Baden, Germany), pp. 1-10

• Patent Applications:

1. Nr. 10 2007 033 846.7,

Applicant: Christian Schridde, Dr. Matthew Smith, Prof. Dr.

Bernd Freisleben, Ansgar Kewitz

Title: Verschlüsselungssystem

2. Nr. 10 2007 033 848.3,

Applicant Christian Schridde, Dr. Matthew Smith, Prof. Dr.

Bernd Freisleben, Ansgar Kewitz

Title: Verschlüsselungssystem Spoofing und VPN

3. Nr. 10 2007 033 845.9,

Applicant Christian Schridde, Dr. Matthew Smith, Prof. Dr.

Bernd Freisleben, Ansgar Kewitz

Title: Verschlüsselungssystem VoIP

4. Nr. 10 2007 033 847.5,

Applicant Christian Schridde, Dr. Matthew Smith, Prof. Dr.

Bernd Freisleben, Ansgar Kewitz

Title: Verschlüsselungssystem NAT und DHCP

1.5 Organization

The thesis is organized as follows:

In Chapter 2, the fundamental problems that are referred to later in the thesis are

defined. Then, standard definitions about security attributes regarding encryption and

signature systems as well as a definition for a secure and authenticated key agreement

protocol are given. Finally, the Random Oracle Model is introduced.
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In Chapter 3, the new IBC scheme is presented. It begins with a short introduction to

related work and open problems regarding identity-based cryptography. Next, the four

main algorithms for the basic key agreement case and two additional algorithms for the

extension to the multi-authority case are presented. Finally, the algorithms that are

used to build and verify a signature are presented, both in the basic case and in the

multi-authority, multi-signature case.

In Chapter 4, security proofs of the presented algorithms are presented. It is shown

that the presented key agreement algorithm (single and multi authority) is secure in

the Canetti-Krawzky Model (Abbr: CKM) [30, 31], which makes SSF a secure and

authenticated identity-based key agreement protocol. Furthermore, a proof for the

signature algorithm in the random oracle model is provided and it is shown that its

security can be reduced to a well known NP-hard problem.

Chapter 5 is about related attacks. In particular, it is shown that the Φ-Hiding assump-

tion can be broken with non-negligible probability when it is applied to multi-power

moduli. This is of also of general interest in the area of cryptography. Next, it is

demonstrated that when a threshold-based approach is used to create the private keys

in the way that the master secret key is shared across several key generators, the cor-

responding secret sharing scheme has to be chosen carefully. Otherwise, the secret key

can be recovered in polynomial time using lattice based reduction methods.

In Chapter 6, it is shown how the presented algorithm applies to real world scenarios.

Therefore, problems that occur in IPv4 networks, SIP environments and GSM com-

munication are presented. Problems regarding private key distribution, public shared

parameter distribution, key revocation, dynamic identities and identity translation are

discussed. The end of this chapter is about an optimization that uses server-aided

cryptography to speed up expensive computations on less powerful devices, e.g., smart-

phones or PDAs.

In Chapter 7, measurements of the proposed scheme are presented. The measurements

concern the presented algorithms and are given for different devices. Finally, the effi-

ciency of the scheme is compared with another scheme from the literature.

In Chapter 8, the thesis is concluded with a summary and future work.





2 Fundamentals of Cryptography

”Equations, however impressive and complex can-

not arrive at the truth if the initial assumptions

are incorrect.”

Arthur C. Clarke

2.1 Introduction

Public key cryptography is feasible, because there are still mathematical problems

that can not be solved in an efficient way. PKC uses this fact and faces potential

adversaries with these problems. If an attacker finds a practical way to solve the

underlying mathematical problem, he will be able to break the protocol. However, the

reverse direction is not true for most of the existing protocols. This means, that it is

not known if a protocol can only be broken if the NP-hard problem it is based on can

be solved or if the protocol can be broken in a completely other way.

Definition 2.1.1 (negligible function) A function µ(x) : N→ R is said to be negli-

gible if for any c > 0 there is an Nc, such that for all x > Nc, |µ(x)| < 1
xc holds.

Negligible functions are often used in conjunction with the success probability of an at-

tacker to break a cryptographic system. Therefore, an advantage function describes the

success probability of an attacker in the long run to break the entire system. Regarding

a classical assumption, this concerns, e.g., to get the private key from the public key.

When applied to a decisional assumption, the advantage function compares the success

probability versus random guessing.

When using a mathematical problem, it can be abstracted as a function f that must be

inverted in order to break the system. In general, a function that is infeasible to invert

is called a one-way function. A hash function is a typical example for a (compress)

11
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one-way function. In PKC special one-way functions are used. These special functions

possess a trapdoor, which is hard to find, usually in non-polynomial time, whereby they

earned the name one-way functions with trapdoor. However, if the trapdoor is known,

the function can be inverted easily. The knowledge of this trapdoor is used as a user’s

secret key.

Definition 2.1.2 (One-Way Function) A function f : {0, 1}+ → {0, 1}+ is a one-way

function if

• efficient evaluation: there exists a polynomial-time algorithm Eval such that

Eval(x) = f(x) for all x ∈ {0, 1}+

• one-wayness: for any probabilistic polynomial-time algorithm A, the inversion

probability

Invf
A (n) = Pr[A (1n, f(x)) ∈ f−1(f(x))]

is negligible in n, where the probability is taken over x ∈R {0, 1}n. If additionally

f({0, 1}n) = {0, 1}n for all n ∈ N, f is a one-way permutation.

Unfortunately, it is not known if the functions that are presented next are indeed one-

way functions. It is also not known if one-way functions exists at all. However, until

now, no algorithms are known that can invert the functions in polynomial time in

the standard model. Thus, the correct name would be to say candidates for one-way

functions with trapdoor. But since it is widely believed that these functions are one-way

functions, we overtake the nomenclature from the existing literature and also use only

the name one-way function during the rest of the thesis. It should be remarked that in

the quantum model, Shor’s Algorithm [118] solves some of the problems in polynomial

time.

Weak and Strong Assumptions. A computational assumption is often said to be

weaker or stronger than another assumption. In general, a system should be based on

the weakest possible assumption.

An assumption A is weaker than an assumption B if the security of B depends on the

security of A. Formally, this is written as A⇒ B.

Before reaching the actual problems, a few useful notations are introduced. Let ZN :=

{0, 1, 2, . . . ,N − 1} denote the ring of integer modulo N whereof N is a positive integer.

The set Z∗
N ⊂ ZN consists of all integers that are coprime to N, i.e., Z∗

N = {x ∈
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ZN| gcd(x, N) = 1}. The number of elements in Z∗
N is ϕ(N), with ϕ(N) being Euler’s

Totient function, defined as:

N =
∏

p
νj

j ⇒ ϕ(N) =
∏

p
νj−1

j (pj − 1)

Another symbol that is utilized, is the Jacobi symbol, which can be evaluated efficiently

even for composite numbers with unknown factorization [42]. The Jacobi symbol Jp(r),

for P prime, generalizes the Legendre symbol and states information about quadratic

residues: If a2 ≡ r (mod p), for given integers r and p, has a solution in a, then

Jp(r) = 1, otherwise Jp(r) = −1 (if gcd(p, r) > 1, then Jp(r) = 0). For composite odd

integers, the Jacobi symbol is defined as JN(r) =
∏m

j=1 Jpj
(r)νj , if N = pν1

1 . . .pνm
m .

Last, the Chinese Remainder Theorem (CRT) is recalled, that is utilized several times

in the thesis.

Theorem 2.1.3 (Chinese Remainder Theorem) Let n1, . . . ,nk be integers with

gcd(ni, nj) = 1 whenever i 6= j. N =
∏k

i=1 ni and a1, . . . ,ak be integers. Then, the

system

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

. . .

x ≡ ak (mod nk)

has exactly one solution x ∈ ZN.

The CRT is a very helpful theorem in cryptography, since it allows to characterize an

integer by the help of a set of smaller integers. Since big integers are just the key to

success of cryptography, it is very grateful to have a tool at hand that can degrade

their size.

2.2 NP-hard Problems

Definition 2.2.1 (Integer Factorization Problem (Abbr: IFP)) Given an inte-

ger N = p · q, where p, q are primes. Find p and q in probabilistic polynomial time.
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The most established cryptographic hardness assumption is without doubt the IFP. The

IFP as presented above is a special form, where the integer N only has two unknown

primes and it is the usual way it is used in cryptography. It is obvious that factorization

is not always a hard problem. Small integers as well as integers with prime factors of

a special form or limited size can be factored in a short or reasonable time. This

leads to the fact that primes used in a cryptosystem (e.g., RSA) should not be selected

randomly, but in such a way, that they resist all known attacks and factorization

approaches. Today, the two most efficient algorithms to factor generic integers known

are the general number field sieve [74] and the quadratic sieve [100].

If N is of the described form (N = pq), the value of Euler’s Totient function becomes

ϕ(N) = ϕ(pq) = (p − 1)(q − 1). Note, that if this value (and N) is known to some

adversary, he obtains the system

p · q = N

(p − 1)(q − 1) = ϕ(N)
⇒ p2 + (ϕ(N) − N − 1)p + N = 0

which can be solved in p instantly. Thus, it is crucial for a system which relay on the

IFP to keep the value ϕ(N) as well as the primes safe.

Definition 2.2.2 (RSA Assumption (Abbr: RSAA)) Given the triple (N, e, C) with

N being an integer with unknown factorization, gcd(e, ϕ(N)) = 1, 2 < e < N and

0 < C < N. For any probabilistic polynomial time adversary A, the probability to find

the integer M that satisfies Me ≡ C (mod N) is negligible.

The RSAA can be directly derived from the definition of the RSA encryption system,

where C is the ciphertext and the tuple (N, e) is the involved public key. The RSAA

states that it is impossible to get the plaintext from an RSA ciphertext when only the

public key and the ciphertext is known. Since the RSAA can be broken if N can be

factored, the RSAA is a stronger assumption than the IFP, thus IFP ⇒ RSAA. It is

still not known whether the security of the RSAA does rely on the IFP only. There are

publications that show arguments in both direction, e.g., [23], [66] or [3].

An attacker who had success in computing ϕ(N) = (p − 1)(q − 1) can compute the

inverse element of e in Z∗
ϕ(N)

(the decryption key d) which can be written as

ed = 1 + ϕ(N)k.

The Extended Euclidean Algorithm is a sufficient tool for this purpose (see [125], Sec-
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tion 3.2). A theorem of Euler (see for instance [70] Proposition I.3.5) states that for

all m ∈ Z∗
N, mϕ(N) ≡ 1 (mod N) holds. Thus, the final computation of Cd ≡Med ≡

M1+ϕ(N)k ≡M (mod N) reveals M and breaks the RSAA.

Note that the definition can be also done using the term of negligible function and

advantage function. However, these kind of definition will only be used when it is

talked about decisional problems.

Definition 2.2.3 (Strong RSA Assumption (Abbr: sRSAA)) Given the tuple

(N, C) with N being an integer with unknown factorization and 0 < C < N. For any

probabilistic polynomial time adversary A, the probability to find the integer tuple (M, e)

that satisfies Me ≡ C (mod N) is negligible.

The sRSAA is often used to proof the security of signature schemes and is, as the name

suggests, a stronger assumption than the RSAA (IFP ⇒ RSAA ⇒ sRSAA). It states

that it is not only infeasible to compute the e-th root (with e fixed) in ZN, but it is

even infeasible to compute any root of a given integer when the factorization of N is

unknown. Thus, if an adversary is able to compute the e-th root (e fixed) of a random

integer M, he can also break the sRSAA, however the converse is not true.

Definition 2.2.4 (Φ-Hiding Assumption (Abbr: PHA)) Let p1 > 2 and p2 > 2

be two random, small primes and N be an integer that is constructed such that exactly

one of these two primes divides ϕ(N). Then, for any probabilistic polynomial time

adversary A , the advantage function, if pb divides ϕ(N), b ∈ {1, 2}

AdvPHA
A (k) :=

∣∣∣∣Pr[A(N, p1, p2) = b] −
1

2

∣∣∣∣

is a negligible function in k.

The PHA is a relatively new assumption and is stronger than the IFP, thus IFP⇒ PHA.

The IFP says that it is impossible to compute the integer ϕ(N) in reasonable time if N

is chosen properly. The PHA states that it is also impossible to reveal any properties

about the prime factors of ϕ(N). The PHA was proposed by Cachin et al. [27] in the

context of an algorithm for private information retrieval, based on this assumption. In

Chapter 5, it will be shown that the PHA is not valid for all integers N with unknown

factorization.

Definition 2.2.5 (Discrete Logarithm Problem (Abbr: DLP)) Let G be a finite,

cyclic subgroup of Z∗
P with a generator g and a large prime number P. For any proba-
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bilistic polynomial time adversary A who knows the triple (g, r, P), g, r ∈ Z∗
P, which is

connected by ge ≡ r (mod P), the probability to find the integer e is negligible.

The DLP forms a new root of assumptions similar to the IFP. The DLP can be formu-

lated in different groups, e.g., ZN, ZP or even Elliptic Curves, which makes it one of

the most utilized known computational assumptions. The DLP does not require the

factorization to be unknown, since the DLP can not be solved even if the factors are

known. Therefore, it is mostly defined over a prime field that reduces the necessary

bit sizes for the involved integers. There are a few cases in which the computation of

the discrete logarithm is easy. The Pohlig-Hellman algorithm [99] enables a fast way

to compute the DLP in ZP if the factorization of P − 1 is smooth, that means it only

consists of small prime factors. The algorithm of Smart [119] shows that special elliptic

curves are vulnerable to efficient attacks and in general discrete logarithms are easy to

compute in Z∗
P2 , if the exponent in question is less than P. For the arbitrary case, the

index-calculus algorithm [89] is the most efficient to compute discrete logarithm in ZP.

Definition 2.2.6 (Computational Diffie-Hellman Assumption (Abbr: C-DHA))

Let G be a finite, cyclic subgroup of Z∗
P with a generator g and a large prime number

P. For any probabilistic polynomial time adversary A who knows the tuple (gx, gy) of

elements in G, for unknown, random values x, y ∈ Z, the probability to find the element

gxy ∈ G is negligible.

The Diffie-Hellman key agreement scheme is based on the C-DHA. Basically it states

that an attacker can not compute the session key if he only eavesdrops the communi-

cation and learns the public keys, since he cannot compute discrete logarithms. The

C-DHA is a stronger assumption than the DLP (DLP ⇒ C-DHA). If the DLP could be

solved, the C-DHA is broken since the computation of dlogg(gx) and dlogg(gy) imme-

diately leads to the integer gxy, which is a solution of the C-DHA given (g, gx, P) and

(g, gy, P). However, it is not clear if an attacker has to solve the discrete logarithm

problem in order to solve the C-DHA. In some groups, Maurer and Wolf [82] were able

to show that these two problems are indeed polynomial time equivalent.

Definition 2.2.7 (Decisional Diffie-Hellman Assumption (Abbr: D-DHA)) Let

G be a finite, cyclic subgroup of Z∗
P, whereas P is a prime number of the form P = 2P ′+1,

with P ′ again being a prime number. Let g be the generator of the group with JP(g) = 1.

Given two group elements ga and gb of G, for any probabilistic polynomial time ad-
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versary A , the advantage function

AdvD−DHA
A (k)=

∣∣∣∣Pr[A(p, g, ga, gb, gβab+(1−β)c) = β] −
1

2

∣∣∣∣

for random values a, b, c ∈ Zp and random β ∈ {0, 1}, is a negligible function in k.

The D-DHA is an even stronger assumption than the C-DHA, but it does not hold in

all groups the C-DHA is assumed to be true (DLP⇒ C-DHA⇒ D-DHA). The D-DHA’s

statement is that it is not only infeasible to compute gab from the group elements ga

and gb, but it is even infeasible to decide if a given random integer gc is equal to gab

or not. In other words, it is hard to distinguish the integer gab from random and an

attacker cannot do better than random guessing with a probability of 1/2. However,

if someone is able break the C-DHA, he could simply compute gab and test if it is

equal to gc or not, thus he breaks the D-DHA. On the contrary, in some groups the

Jacobi-symbol can efficiently be used to decide if elements are equal, which excludes

some groups for the D-DHA. The parameters in the definition above show a setup, in

which the D-DHA is assumed to be true (P is a Sophie-Germain prime and the group

consists of quadratic residues only → JP(ge) = 1, ∀e ∈ N). Boneh showed more details

in his survey about the D-DHA [15].

Definition 2.2.8 (GAP Diffie-Hellman Assumption (Abbr: GAP-DHA)) Let G

be a finite, cyclic subgroup of Z∗
P with a generator g and a large prime number P. Given

a triple (g, ga, gb) of group elements, find the element gab with the help of a Decision

Diffie-Hellman Oracle.

The GAP-DHA defines the gap between the computational Diffie-Hellman assumption

and the decisional Diffie-Hellman assumption. That means, even an adversary who can

break the D-DHA, cannot break the C-DHA.

2.3 Security Definitions

In this paragraph, properties that are commonly used to characterize a cryptosystem

are described.
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2.3.1 Encryption Schemes

The first property regarding encryption schemes is called semantic security and was

first introduced by Goldwasser and Micali [53]. Semantic security offers only a weak

level of security, but is an important property that many schemes even do not fulfill.

The definition of semantic security is often replaced by an equivalent definition called

ciphertext indistinguishability, which is described next.

1 : Indistinguishability under Chosen Plaintext Attack (Abbr: IND-CPA): The

property is defined by the following game between a challenger Cl and the adversary

A:

1. Cl generates a key pair (public, private) = (PK, SK) and sends PK to A while

SK is kept secret.

2. A uses PK to encrypt a polynomial-bounded number of messages.

3. At any time A may submit two distinct chosen plaintexts m0 and m1 to Cl.

4. Cl choses b ∈ {0, 1} at random and sends the ciphertext C = E(PK, mb) back to

A.

5. A outputs a guess b ′ ∈ {0, 1} and wins if b = b ′.

The advantage of an IND-CPA adversary against E is the following function:

AdvE
A(k) := | Pr[b = b ′] −

1

2
|.

Definition 2.3.1 (IND-CPA Security) A system E is IND-CPA secure if for any poly-

nomial time adversary A, the function AdvE
A(k) is a negligible function in k.

The definition says that, if an adversary guesses more often correctly which plaintext

the challenger has encrypted than he would do by random guessing (probability of 1/2),

the adversary has an advantage about the encryption scheme. In the long run, he could

use this advantage to gain information about the encrypted plaintext.

Indistinguishability of chosen plaintext is a mandatory feature for encryption schemes.

To see this, imagine a political election that is done with the aid of electronic voting-
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machines, which use a non IND-CPA secure encryption scheme. Since a ballot paper

consists only of a few entries, the number of possible ciphertext is small. An extreme

example would be if there were only two values, say v1 and v2, to be encrypted, one

for ”‘yes”’ and one for ”‘no”’. If an adversary encrypts these two values on its own,

using the public key of the voting machine, he can easily compare his results to the

intercepted ciphertexts of the electors and thus can decide whether a citizen has voted

”‘yes”’ or ”‘no”’. An example for a scheme that is non IND-CPA is the RSA encryption

without padding, since it is deterministic. Whereas RSA with secure padding (e.g.

OAEP), which enables IND-CPA security, is until now one of the most utilized schemes

in practice. Another scheme that is IND-CPA secure is Paillier’s encryption system [94].

Note: A deterministic encryption scheme can never be IND-CPA secure. To gain the

property of IND-CPA, some kind of randomness has to be involved in the encryption

process to make the ciphertext differ each time the same plaintext is encrypted.

A more powerful property is Indistinguishability under Chosen Ciphertext Attack. In

this case, A has access to a decryption oracle. (The additional action compared to the

previous case is written in italics.)

2 : Indistinguishability under Chosen Ciphertext Attack (Abbr: IND-CCA):

The property is defined by the following game:

1. Cl generates a key pair (PK, SK) and sends PK to A while SK is kept secret.

2. A uses PK to encrypt a polynomial-bounded number of messages or A can ask

the decryption oracle a polynomially-bounded number of times.

3. At any time A may submits two distinct chosen plaintexts m0 and m1 to Cl.

4. Cl choses b ∈ {0, 1} at random and sends C = E(PK, mb) back to A.

5. A outputs a guess b ′ ∈ {0, 1} and wins if b = b ′.

Definition 2.3.2 (IND-CCA Security) A system E is IND-CCA secure if for any poly-

nomial time adversary A, the function AdvE
A(k) is a negligible function in k.

In this case, the adversary has access to a decryption oracle. The decryption oracle

shares the private key of the challenger and responds in a reliable way whenever it is
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asked for a decryption. Again, the batch RSA encryption system is vulnerable against

an IND-CCA capable attacker, which is demonstrated next. Therefore, let A be the

attacker who is facing a challenge with some challenger Cl. A chooses two random

integers m0 and m1 and sends them to the decryption oracle, that responses with

M0 ≡ md
0 (mod N) and M1 ≡ md

1 (mod N). Next, A sends the two received answers

(M0, M1) to the challenger. According to the rules of the game, Cl select one of them

randomly and computes Me
i ≡ ci (mod N), which he sends back to A. To decide

which message Cl chose for his encryption, A simply compares ci with m0 and m1,

since ci ≡ Me
i ≡ med

i ≡ mi (mod N). Thus attacker easily wins the game with

perfect probability.

Next, an even stronger case of security property is shown. It is the demanded security

level for an encryption system used in practice.

3. Indistinguishability under Adaptive Chosen Ciphertext Attack (Abbr:

IND-CCA2): The property is defined by the following game:

1. Cl generates a key pair (PK, SK) and sends PK to A while SK is kept secret.

2. A uses PK to encrypt a polynomial-bounded number of messages or A can ask

the decryption oracle a polynomially-bounded number of times.

3. At any time A may submits two distinct chosen plain-texts m0 and m1 to Cl.

4. Cl choses b ∈ {0, 1} at random and sends C = E(PK, mb) back to A.

5. A can query the decryption oracle a polynomially-bounded number of times (but

not ask for the decryption of C).

6. A outputs a guess b ′ ∈ {0, 1} and wins if b = b ′.

Definition 2.3.3 (IND-CCA2 Security) A system E is IND-CCA2 secure if for any

polynomial time adversary A, the function AdvE
A(k) is a negligible function in k.

In this case, the attacker cannot only ask the decryption oracle before submitting his

two plaintexts to Cl, but even after he receives the challenge. Obviously, he is not

allowed to ask for the decryption of the challenge directly, which would immediately

reveal the used message. But he is allowed to ask for any object, which could even
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have emerged from the challenge after it has been modified in an arbitrary way. Since

RSA is already non IND-CPA and non IND-CCA secure, it can not have the property of

IND-CCA2. For completeness it will be shown how an attacker could use the decryption

queries to break the batch RSA scheme. Let Ci = me
i (mod N) be a received ciphertext

A got from the challenger Cl. Now, the attacker A computes C ′
i ≡ Ci2

e (mod N) and

asks the decryption oracle for a decryption of C ′
i. Note that A does not ask for the

decryption of Ci itself, which he is not allowed to do, but for the decryption of the

product Ci2
e, which is a random element in ZN. As the result A receives 2mi, whereof

he can easily derive mi and wins the challenge. A cryptosystem that is IND-CCA2

secure is the Cramer-Shoup encryption system [39].

Malleability. Another property of a cryptosystem is malleability. Informally, an

encryption algorithm is malleable if it is possible for an adversary to transform a ci-

phertext E(m) = c of a message m into another ciphertext c ′ such that c ′ decrypts to

a desired plaintext m ′. A cryptosystem that is malleable should, for example, not be

used for money transactions or bidding auctions. Again, RSA used without a padding

scheme is malleable, as shown by a little example: In an online auction, A offers an

object for a certain start amount. A participant B encrypts its bidding value v and

sends it as a ciphertext c to A. Assume now a competitor K that also is interested in

the object offered by A. But instead of bidding more than competitor B, he decides

to let B bid less. Therefore, K intercepts and manipulates B’s encrypted value c by

computing cte ≡ (vt)e ≡ c ′ (mod n). Thus, K changes the original bidding amount

by a factor of t, since c ′ decrypts to tv instead of v.

On the other hand, some schemes are designed to be malleable and it is a mandatory

feature for some applications. For example, homomorphic schemes that are used for

encrypted computations (doing computations on encrypted data) are designed exactly

for this purpose. A cryptosystem which is IND-CPA and IND-CCA secure can still be

malleable, whereas a IND-CCA2 secure system is non-malleable per definition.

2.3.2 Signatures

Next, a definition that is related to the security of an identity based signature scheme

is given. For such a scheme, it is important that an adversary cannot issue a signature

for an identity, for which the adversary does not have the corresponding private key.
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1. A ID-based signature scheme is said to be secure against existential forgery on

adaptively chosen message and ID attacks (Abbr: ID-ACM) if no polynomial time

bounded adversary A has a non-negligible advantage against a challenger Cl in the

following game:

1. Cl creates the public shared parameters for the ID scheme and returns them

back to A.

2. A can make the following queries to Cl:

a) A Hash function query: A queries Cl for the hash value of a given input

(message or identity). Cl.

b) Extract query: A can ask Cl the private key for an arbitrary identity from

Cl

c) Sign query: A request Cl for the signature on m issued by the identity ID

3. A outputs (ID,m,s) as a forgery, where ID was not part of an Extract query

and (m,ID) not part of a Sign query before. A wins if the signature s is a valid

signature on m generated by ID.

Since the attacker has ”‘adaptive”’ skills, it is the most secure definition an ID-based

signature scheme can fulfill.

Definition 2.3.4 (ID-ACM Security) An ID-signature scheme E is ID-ACM secure if

for any polynomial time adversary A the probability to forge a signature is negligible.

2.3.3 Key Agreement Protocols

Since in a key agreement protocol no ciphertext occurs, the definitions from the previous

section can not be applied. The goal of a key agreement protocol is to let two users

negotiate a session key, whereas both users contribute to the key in an equal share. This

stays in contrast to a key exchange protocol, where only one participant determines the

session key. Thus, a key agreement scheme has per definition a higher level of security

than a key exchange protocol, but needs at least one more communication step for
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completion.

Several definitions for a secure key agreement protocol were given in the literature.

Here, the Canetti-Krawczyk Model [30, 31] is used. An abridged description of the

model is presented below. For more information the reader in referred to original

papers.

Canetti-Krawczyk Model (CKM). In the CKM, a key agreement protocol is exe-

cuted in a network of interconnected peers, which can run an instance of the protocol,

called a session. According to the specification of the protocol, a participant creates

and maintains a session state. He creates outgoing messages, receives incoming mes-

sages and eventually completes the session by outputting a session key at the end. If

EID1 and EID2 initiate a session among each other, a session identifier stored by the

EID1 is of the form (EID1, EID2, In1, Out1), where EID2 has (EID2, EID1, In2, Out2). If

In1 = Out1 and In2 = Out1, then the two sessions are matching.

An attacker is allowed to make the following queries to each participant, which are

answered honestly:

State-Reveal Query: This query is directed at a single, incomplete session and he

receives the session state for that single session.

Session-Key Query: The query is done on a completed session, which is responded

with the session key for this session.

Party Corruption Query: Using this query, the attacker learns all information from

the participant, that means all session keys/states and even the private identity key.

After a Party Corruption Query the affected participant is completely controlled by

the attacker.

Whenever a session is faced with one of the above queries, it is called exposed. Next, a

game is defined that an adversary has to win with an advantage over the long run to be a

successful key agreement attacker. Therefore, a simulator Sim simulates all participants

and messages. He executes arbitrary protocol runs between random parties. Whenever

he receives one of the above defined queries from the attacker, he answers honestly.

The goal of the attacker is to distinguish a session key of an unexposed session from a

random element.
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1. Sim generates the key agreement world with all participants and keys and exe-

cutes the protocol π between random peers.

2. Whenever the attacker A decides to query a State Reveal Query, a Session

Key Query or a Party Corruption Query he does so and gets answered

honestly.

3. At any time, A can decide to chose a test session that must be unexposed and

completed and notifies the simulator for a challenge.

4. Sim tosses a coin b, b ∈R {0, 1}. If b = 0, he submits the real session key of the

test session to A, else he submits a random value.

5. A can continue his queries to get more information, but he is not allowed to ask

queries on the chosen test session.

6. At the end, A outputs a guess b ′ and wins if b = b ′.

Definition 2.3.5 (Authenticated Key Agreement Protocol) A polynomial-time

attacker with the capabilities to make State Reveal Queries, Session Key Queries

and Party Corruption Queries is called a key agreement attacker. A key agreement

protocol π is called secure if for all key agreement attackers running against π the

following holds:

1. If two uncorrupted parties complete matching sessions in a run of protocol π, then

the session key output in these sessions is the same; and

2. the probability of the advantage function

Advπ
A(k) :=

∣∣∣∣Pr[b = b ′] −
1

2

∣∣∣∣

is a negligible function in k.

Some attack scenarios are not covered by the definition above and have to be defined

separately.

Perfect Forward Secrecy (PFS). A key agreement protocol is said to be secure
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with perfect forward secrecy if the compromise of the private identity key does not

compromise past session keys.

Key Compromise Impersonation (KCI). If an attacker obtains the private identity

key of an user EID, he is able to impersonate this user towards other members. However,

it should not be possible for an attacker to impersonate other identities to EID.

Unknown Key-Share (UKS). An entity EID1 cannot be coerced into sharing a key

with entity EID2 without EID1’s knowledge. That is, when EID1 believes the key is shared

with some entity EID3 6= EID2 and EID2 (correctly) believes the key is shared with EID1.

2.4 The Standard and the Random Oracle Model

To prove the security of a cryptographic scheme, one way is to show that the security can

be reduced to a problem that is already known to be hard (i.e. the problems introduced

in Paragraph 2.2). This means, it must be shown that any algorithm that breaks

the cryptographic scheme in question, can also be utilized to break the mathematical

problem the scheme is based on. This kind of proofs are called ”‘reductions”’ and have

often been used successfully to prove certain protocols.

There are two main models that are used for this purpose, first the Standard Model and

second the Random Oracle Model [12]. Proofs in the Standard Model only use assump-

tions about the time and space complexity which is necessary to solve the problem.

Even though this sounds easy, if already the underlying problem does need exponen-

tial time and space complexity, it is often difficult to proof a scheme in the Standard

Model. Just in the case when some kind of randomness is involved, which is essential

for a protocol to obtain the property of semantic security, a proof cannot be formulated

in the Standard Model easily. In this case, proofs take advantage of the Random Oracle

Model. In this model it is assumed that there is an instance (the Random Oracle) that

responds to every question with a truly random answer. The distribution of its answers

should be uniformly distributed from its output domain. Every time the oracle gets the

same input, it outputs the same answer as in the previous case. The Random Oracle

gives the prover a way to handle randomness by using the random model as its source.

The field of application for random oracles is to model mathematical abstraction from

objects which have no existing instantiations in real-life, like for example cryptographic

hash-functions. Random Oracles do not exist in real life, thus proofs relying on an ar-
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tificial object seem on the first sight disappointing. Even worse, in 2004 Canetti et. al

published a paper [28] that shows that there are protocols that can be proven secure in

the random oracle model but will result in an insecure protocol whenever the random

oracle is replaced by an existing function. However, an attacker will only succeed if he

demands unrealistic behavior from the random oracle, which is accepted to be sufficient

for a protocol to be secure.

There are two ways a random oracle is used in protocols. The first is to allow the

attacker free access to the random oracle which responds with random and non further

specified values. In the other case, another algorithm simulates the random oracle by

answering with certain values, which can not be distinguished from a random distribu-

tion but are meaningful for the oracle. These are called Programmable Random Oracles.

Mostly it is shown that if an attacker succeeds in breaking the protocol in question,

the involved programmed random oracle can use its generated answers as well as the

attacker as a subroutine and to break a certain assumption.

2.5 Summary

In this chapter, several notations and statements that are used during the rest of the

thesis were defined. The fundamental assumptions that are used in cryptography were

presented. Especially notable is the PHA, which is investigated in further detail in

Chapter 5. Security definitions for the three classes Encryption Scheme, Signature and

Key Agreement were given. The latter two will be used to prove the security of the

scheme presented in this thesis. Finally, a short overview of the Standard- and the

Random Oracle was given.
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”A good scientific theory should be explicable to

a barmaid.”

Ernest Rutherford

3.1 Introduction

In this chapter, the main contribution of this thesis is presented, namely the Secure

Session Framework (SSF). The chapter begins with the algorithms of the basic key

agreement scheme. Afterwards, the scheme is extended to support multiple independent

key generators. This novel extension method makes SSF the fist identity-based key

agreement scheme in the literature that supports such generators. The later part of

this chapter describes the algorithms that turn SSF into a multi-signature scheme. By

overtaking the methods that enable multiple generators in the key agreement case to the

signature case, SSF is the first framework that includes multi-signatures from multiple

independent ID-PKGs.

The main protocol has been published in [108]; the signature part has been published in

[109, 107]. Finally, four patent applications that contain the main parts of the scheme

have been filed [113, 112, 114, 111].

3.2 Key Agreement

Since the first mention of identity-based cryptography in 1984, several schemes have

been proposed. However, it took several years before a scheme was found that fulfills

the requirements for a secure system. In 2001, Cocks proposed a promising encryption

system [35] based on quadratic residues. Although it could achieve the high level of IND-

27
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CCA2 security, the scheme is inefficient in practice because of its enormous ciphertext

extension. That is, each bit of the plaintext is enlarged to the bit length of the entire

modulus, which is a factor of about > 10001. In 2003, Boneh and Franklin published

an identity-based encryption scheme [22] that is both IND-CCA2 secure and efficient

in practice. As a key approach, they utilized bilinear pairings on elliptic curves. The

usage of pairings was not new in cryptography and was already introduced in 2001 by

Menezes et. al [85] to reduce discrete logarithms from elliptic curves to finite fields.

However, the application to identity-based cryptography was a great idea to make it

work in practice. Since their publication, a multiplicity of identity-based systems were

proposed that either used the idea of using bilinear pairings [29, 62, 126, 21] or picked

up the idea of Cocks [20, 21].

The first key agreement protocols based on identity-based cryptography can be dated

back to the eighties of the 20-th century [116], [92], [93], [57], [83]. At later time, also

bilinear pairings were applied to key agreement protocols [32], [4], [117].

The most basic and efficient key agreement protocol known is the plain Diffie-Hellman

protocol [40]. It needs only two messages, one for each party, to agree on a common

integer. Furthermore, it gets along with only two exponentiations and is based on a

well reviewed number theoretic problem (the DLP). Even if it has come into ages, it

is still utilized in a large number of applications because of its simplicity and security.

However, the protocol completely misses key authentication and is thus vulnerable to

MITM attacks.

An identity-based scheme with the same complexity, but with authentication based on

the involved identity, is the Okamoto-Tanaka protocol (OkTa) [92]. Unfortunately, the

OkTa protocol is vulnerable with respect to several attacks, as shown later in the thesis.

One of the open problem in the IBC literature is to create a way to handle multiple

identity private key generators (ID-PKGs), hosted by different authorities, which can

operate completely independent of each other. The problem that occurs if users from

different ID-PKGs try to establish a key agreement is that the involved private keys

do only match to their identity regarding the set of public shared parameters that

belong to their assigned ID-PKG. With respect to the foreign set of public shared

parameters, the identity key and the identity do not have any relationship, making a key

agreement impossible. Furthermore, a solution should require only a minimum effort

for the involved parties. Neither the ID-PKGs nor the users should be burdened with

1Based on the fact that a modern secure system should at least use a modulus of size > 21024.
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additional communication or time consuming computation. Several solutions have been

proposed that allow multiple ID-PKGs to interoperate ([32, 64, 84, 24, 16]), but these

systems require either cooperation between the ID-PKGs or a hierarchical approach

with a trusted party at the top. Both of these approaches are difficult to use, e.g.,

in the Internet, due to organizational difficulties and conflicting business interests. As

demonstrated by approaches based on a Certificate Authority (CA), there will always

be competing organizations offering the same service for the same protocol (e.g. signing

RSA public keys) without wanting to cooperate on the corporate level.

Before the protocol and some related work is presented, notations and algorithms that

are commonly used in the area of IBC are introduced in order to simplify the description

of the schemes.

Notations and Protocol Overview. Whenever an entity (sometimes called identity)

is mentioned, the actual communication unit is meant, e.g. a person or a computer.

This entity is denoted with E. For an identifier (identity string), the symbol ID is used.

Finally, a specific entity E with an identifier ID is denoted as EID.

An identity-based key agreement protocol consists of the four algorithms: Setup, Ex-

tract, BuildSIK (SIK = Session Initiation Key) and Compute. Next, the four algorithms

are first described in a short and informal way to illustrate their functionality:

Setup: Given two bit length parameters k1 and k2, the Setup algorithm, executed by

the ID-PKG, generates a set of public shared parameters (PSP) and the corresponding

secret parameters (SP).

Extract: The Extract algorithm, executed by the ID-PKG, receives the PSP, SP and an

identity string ID ∈ {0, 1}∗ of an entity EID as its input. The output is an identity key

dID, which is EID’s identity key (or often called longterm secret key).

BuildSIK: The BuildSIK algorithm is executed by the entities performing the key agree-

ment and builds a Session Initiation Key, using the private identity key dID, a random

integer r and the PSP as its input. Each party in the key agreement generates a SIK

and sends it to the other party. The SIK can be interpreted as a temporary public key

used for a single key agreement.

Compute: The Compute algorithm is executed by the parties performing the key agree-

ment and takes a received SIK from the key agreement partner EID, the random private

integer r from its own BuildSIK step, the remote identity string ID and the PSP as its
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inputs. The output is a common integer S ∈ ZN shared by both key agreement parties,

which can be used as the input for a key derivation function to obtain the final shared

session key.

The four algorithms are all related to the case when all involved entities got keys from

the same ID-PKG. For a more generic case, the protocol also has to handle the case

when each or some of the entities got keys from different ID-PKGs.

Multiple ID-PKGs. In this case there are three algorithms, the extend algorithm

Extend, the build extended SIK algorithm BuildSIKMultIDPKG and also a compute algo-

rithm ComputeMultIDPKG. Again in an informal way, the three algorithm are introduced

next:

Extend: Given PSP1, PSP2, dID and the remote identity ID as its input, the Extend

algorithm extends the identity key dID to a new identity key d̃ID in ZN1N2 . It does the

same with the hash values of the remote H(ID) that is extended to a new integer H̃(ID)

in ZN1N2 . The algorithm is executed by each EID and does not need any SPs.

BuildSIKMultIDPKG: Given PSP1, PSP2, d̃ID and a random integer r as its input, this

algorithm computes an extended session initiation key (eSIK) in ZN1N2 . The algorithm

is executed by each EID and does not need any SPs.

ComputeMultIDPKG: The algorithm takes the eSIK from a communication partner EID of

a remote domain, the random private integer r, the extended hash value of the remote

identity H̃(ID) and the PSP1 and PSP2 as its inputs. The output is a common integer

S ∈ ZN1N2 shared by both key agreement parties, which can be used as the input for

a key derivation function.

3.3 Related Protocols

Before the main scheme is introduced, the identity-based key agreement protocols that

operate under similar circumstances are briefly reviewed.
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3.3.1 Maurer-Yacobi

The identity key agreement protocol of Maurer and Yacobi [83] is based one a certain

setting that allows to compute discrete logarithms in composite rings. To make this

possible, they run the following setup algorithm:

Algorithm 1 (Mau/Yac) Setup

Input: k, r
Output: {PSP, SP}

1. {p1, p2, ...,pr}
$← PRIMES(k)

2. N =
∏r

i=1 pi

3. Choose an integer G that is primitive in every Fpi
, i = 1, ...r

4. return {(N, G), (p1, p2, ...,pr)}

The public modulus N in their protocol is the product of r distinct prime numbers. To

avoid easy factoring, the bit length of each of these primes must be sufficiently large.

For private key extraction Algorithm 2 is utilized.

Algorithm 2 (Mau/Yac) Extract

Input: PSP, SP, ID

Output: private identity key dID

1. dID ≡ logG(ID2) (mod N)

2. return dID

As it can be seen, the identity key dID is the discrete logarithm of the squared identity.

Computing discrete logarithms is actually a one-way function and should be infeasible

even if the factorization of the modulus is known. However, if the involved prime num-

bers are moderate in size, the known discrete logarithm algorithms become tolerably

feasible on powerful computers. Thus, the protocol makes a dangerous trade-off be-

tween choosing primes that are large enough to resist factoring, but small enough the

let discrete logarithms be feasible to compute.

If the ID-PKG operator chooses a modulus N, that is known to be hard to factorize,

like an RSA modulus with N = pq (thus r = 2) and p and q primes both of size

≈ 1024 bit, the ID-PKG will not be able to compute discrete logarithms in a lifetime.

Reducing the size and increasing r eases the work of factoring but enables to compute

the necessary logarithms. A parameter analysis of the Maurer-Yacobi scheme from

2006 [71] shows that the scheme is hardly practical at all.
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3.3.2 Okamoto-Tanaka

The protocol of Okamoto and Tanaka [92] operates in RSA rings and has the following

setup:

Algorithm 3 (Ok/Ta) Setup

Input: k1,k2

Output: {PSP, SP}

1. R
$← {2k1−1, 2k1 − 1}odd

2. P
$← PRIMES(k2)

3. if R|(P − 1) goto 2

4. Q
$← PRIMES(k2)

5. if R|(Q − 1) goto 4

6. N← P ·Q
7. G

$← Z∗
N

8. return {(N, G, R), (P, Q)}

This is a usual setup for protocols that are based on the IFP. The Setup algorithm does

not utilize a hash function and neither does the Extract algorithm:

Algorithm 4 (Ok/Ta) Extract

Input: PSP, SP, ID

Output: dID

1. dID ≡ ID1/R (mod N)

2. return dID

The flaw of omitting the hash function step makes the protocol vulnerable to several

attacks:

1. Suppose the ID of a participant is not hashed before the private key is extracted

out of it. In such a system, an adversary A is able to reveal the private key of any

user. Therefore, the adversary selects an arbitrary user to attack, say the user with

identity ID1. Afterwards, A sets its own identity to IDA ≡ ID1r
R (mod N), for some

random value r ∈ ZN. The adversary requests its private key from the key generator

and receives

dIDA
≡ (ID1r

R)1/R ≡ dID1r (mod N).

After dividing out r, A is in the possession of the private key for ID1. On the contrary,

a protocol that uses hashing is prevented from this attack, since the adversary only

gets the private key for H(ID1r
R), which is non-related to H(ID1).
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2. If the identity is not hashed, Unknown Key Share (UKS) attacks are possible.

Again, the adversary A choses ID1 to attack. In this case A sets its own identity

to IDA ≡ ID1G
tR (mod N), with t a random integer, and G, R, N the usual system

parameters. During the key agreement of EID1 and EID2, A intercepts the initiating

packet p = Gr1dID1 of EID1 and replaces it with pGt and correctly marking it as a

packet coming from A. EID2 answers honestly with a message Gr2dID2 and A simply

relays the packet unchanged to EID1. Now EID1 computes

((Gr2dID2)
REID

−1
2 )2r1 ≡ G2Rr1r2 (mod N)

while EID2 computes

(pRID−1
A )2r2 ≡ (Gr1dID1G

t)RID1G
−tR)2r2 ≡ G2Rr1r2 (mod N)

The session key is the same in both computations, but EID1 associates the key with

EID2, while EID2 connects it with A.

3.4 SSF Key Agreement

3.4.1 With Single ID-PKG

In the sequel, the basic key agreement protocol proposed in this thesis is presented. It

comes with the same cost as the plain Diffie-Hellman protocol, but it does not suffer

from the same vulnerabilities as the Okamoto-Tanaka protocol.

Notation: All integers that are part of the public, shared parameters are written in

capital letters to distinguish them from the user based variables that are written in

small letters.

The first step is the Setup algorithm that is executed by the ID-PKG. This algorithm is

only executed once to create the secret parameters (SP) and the corresponding public

parameters (PSP).

The algorithm uses two security parameters k1 and k2 that determine the bit length

of two involved integers. The first parameter k1 can be rather small, e.g, 2 or 3. It

specifies the range of the integer R, which is equal to the public integer e in a RSA

encryption and has been proven secure also for small values. The second parameter k2
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Algorithm 5 (SSF) Setup

Input: k1,k2

Output: {PSP, SP}

1. R
$← {2k1−1, 2k1 − 1}odd

2. P
$← PRIMES(k2)

3. if R|(P − 1) goto 2

4. if (P − 1)/2 is not prime goto 2

5. Q
$← PRIMES(k2)

6. if R|(Q − 1) goto 4

7. if (Q − 1)/2 is not prime goto 4

8. N← P ·Q
9. G

$← Z∗
N

10. H(·)← collision-resistant hash function that maps into the group generated by G.
11. return {(N, G, R, H), (P, Q)}

determines the bit length of the involved prime numbers that make up the modulus N.

Regarding modern factorization algorithms and powerful hardware, k2 should chosen

sufficiently large. The algorithm checks whether P − 1 as well as Q− 1 is co-prime to R

and additionally whether the two primes are Sophie-Germain-Primes (Def : A prime

number p is called a Sophie-Germain-Prime if the integer (p − 1)/2 is also a prime

number). Such primes are often utilized in cryptography since they posses only a few

of subgroups in Zp, which countermeasures some factoring approaches.

Based on Algorithm 5, the public shared parameters as well as the private parameters

are defined as:

Public, Shared Parameters. The public, shared parameters (PSP) of the key agree-

ment scheme SSF is the quadruple PSP := (N, G, R, H)

Secret ID-PKG Parameters. The secret parameters (SP) of a ID-PKG of the key

agreement scheme SSF is the tuple SP := (P, Q).

The Extract algorithm creates the identity key for a given identity string. This algorithm

is executed by the ID-PKG. Note that the hash operation is applied before extracting

the roots.

The Extract algorithm actually describes a one-way function (see RSAA) and can only

be inverted knowing the secret parameters P and Q.

The BuildSIK algorithm is executed by the parties performing the key agreement. The
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Algorithm 6 (SSF) Extract

Input: PSP, SP, ID

Output: dID

1. dID ≡ H(ID)1/R (mod N)

2. return dID

SIK is in fact the product of the user’s private identity key and a Diffie-Hellman key.

The SIKs can be exchanged over an unsecured channel, since the owner’s identity is

involved, which makes them invulnerable to a MITMA as long as the identity is known.

Algorithm 7 (SSF) BuildSIK

Input: PSP, dID, k

Output: SIKID

1. r
$← {2k−1, 2k − 1}

2. SIKID ≡ Gr · dID (mod N)

3. return SIKID

The final step of the key agreement process is the computation of the session key

using the Compute algorithm that is executed by the participants performing the key

agreement.

Algorithm 8 (SSF) Compute

Input for EID1
: ID2, PSP, SIKID2 , rID1

Input for EID2
: ID1, PSP, SIKID1 , rID2

Output: common integer S

1. (SIKR
2 ·H(ID2)

−1)2rID1 ≡ ((GrID2 · dID2)
R ·H(ID2)

−1)rID1 ≡ G2RrID1
rID2 ≡ S (mod N)

2. (SIKR
1 ·H(ID1)

−1)2rID2 ≡ ((GrID1 · dID1)
R ·H(ID1)

−1)rID2 ≡ G2RrID1
rID2 ≡ S (mod N)

return S

The output is a common integer S shared between EID1
and EID2

. To derive a symmetric

session key, e.g., for an AES encryption, a key derivation function can be used (e.g.

SHA-256).

Lemma 3.4.1 The SSF key agreement algorithm is correct.

Proof 3.4.2 (of Lemma 3.4.1) The proof follows directly from the definition of the

Compute algorithm.

Protocol Flow. Figure 3.1 illustrates the actual protocol flow. It is assumed that

both participants possess the same set of public shared parameters. In the first step,

EID1 computes its session initiation key using Algorithm 7. Subsequent, EID1 sends the
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generated SIK to EID2 describing the identity ID1 as the packet’s source. In the third

step, EID2 generates a SIK on his part, which he sends to EID1 in step four, again,

appending his identity as the source. (x|y is used if packet y is send using identity x.

E.g., assume x is the source address in an IP packet.)

Setting: Both participants possess the PSP = (N, G, R, H)

EID1

v Generate SIK via Alg. 7: GrID1 dID1

EID2

v -
ID1|G

rID1dID1

vGenerate SIK via Alg. 7: GrID2 dID2

v�
ID2|G

rID1dID2

v Compute session key via Alg. 8

((GrID2dID2)
RH(ID2))

2rID1

vCompute session key via Alg. 8

((GrID1dID1)
RH(ID1))

2rID2≡mod N

Figure 3.1: The SSF protocol flow.

In the last step, both participants use the received SIK and execute Algorithm 8 to

compute the integer S.

Communication and Computational Cost. The efficiency of the protocol, as can

be seen from the Compute algorithm, regarding computational costs and communication

steps is the same as in a unauthenticated and plain Diffie-Hellman key agreement. One

message per participant is sufficient, which can be sent in any order and the message,

the SIK key, is a single group element in ZN. The computational cost is determined by

the two exponentiations of rID1 (and rID2), in the online as well as in the offline case.

A more detailed elaboration of the computational performance is done in Chapter 7.

3.4.2 With Multiple ID-PKGs

In the previous section, the four basic steps of the proposed key agreement scheme SSF

were presented, where a single ID-PKG generates the public, shared parameters, and

all identity keys. In this section, it will be shown how multi ID-PKG key agreement

can be achieved with independent ID-PKGs.
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Related Approaches. First of all, it is shortly resumed how the existing schemes

handle multiple ID-PKGs. The identity-based key agreement scheme from McCullagh

and Barreto [84] based on bilinear pairings is a good example for this purpose. In their

approach, two distinct ID-PKGs, D1 and D2, must agree on a common elliptic curve

E and two points on it, say P and Q. So, the ID-PKGs operate both on the same

curve, which is a key point for the compatibility. Assume a third ID-PKG comes into

play and wants to enable its users to communicate with the rest. Because the existing

ID-PKGs most likely do not want to reset their systems and keys, the new ID-PKG

is forced to overtake the used parameters E, P, Q. Can the ID-PKG in this case be

sure that these parameters were indeed chosen carefully? Even worse, the parameters

can be chosen maliciously in the way that they contain a secret backdoor, that allows

accessing the generated secret keys of the new ID-PKG. Consequently, this approach

does not guarantee a fair setup for all ID-PKGs. Only if every involved ID-PKG can

choose its parameters itself, they can be sure that the setup is sufficiently secure.

Proposed Approach. In the following, it is assumed without loss of generality that

there are two domains D1 and D2. Their public parameters are PSP1 = (N1, G1, R1,

H1(·)) and PSP2 = (N2, G2, R2, H2(·)), respectively. Every parameter can be chosen

independently and even the case that either (R2, ϕ(N1)) > 1 or (R1, ϕ(N2)) > 1 holds

is not critical, since no R-th roots must be computed regarding the other ID-PKGS’s

modulus. In the following, a participant EID1
of D1 wants to agree on a session key with

a participant EID2
of D2. Therefore, EID1

has to extend some of the involved integer

to make them compatible with the PSP of domain D2, i.e. PSP2. In the proposed

protocol, EID is able to perform the extension on its own without contacting a third

party.

To reach compatibility with the foreign PSPs, each involved user executes an Extend

algorithm, that extends its own identity key as well as the hash values of the remote

identity. The Extend algorithm does the following:

The output of the multiple ID-PKG extension algorithm is an extended SIK (eSIK(1,2))

that can be used to perform a key agreement with a participant from domain D2. (The

notation eSIK(1,2) represents an extended SIK between the domains D1 and D2.) The

public shared parameters of the two involved participants are combined to the new set

PSP1,2. This is done by multiplication of the first three items. However, this is not

the only possibility. Gennaro et al. [48] suggested to use R1,2 = lcm(R1, R2) and the
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Algorithm 9 (SSF) Extension (view of EID1
)

Input: PSP1, PSP2, dID1 , ID2

Output: d̃ID1 , H̃2(ID2)

1. PSP1,2 := (N1 ·N2, G1 ·G2, R1 · R2, H2)

//Use the CRT to compute the integer d̃ID1
:

2a. d̃ID1 ≡ dID1 (mod N1)

2b. d̃ID1 ≡ 1 (mod N2)

//Use the CRT to compute the integer H̃2(ID2):

3a. H̃2(ID2) ≡ H2(ID2)
R1 (mod N2)

3b. H̃2(ID2) ≡ 1 (mod N1)

return eSIK
(1,2)

ID1

Chinese Remainder result of

G1,2 ≡







G1 (mod N1)

G2 (mod N2)

However, using G1,2 = G1G2 and R1,2 = R1R2 does not lead to an insecure system, but

only to slightly larger values. And if R1 as well as R2 is prime, these values are actually

the same. However, when using G1,2 from the CRT, the proof of the protocol gets

simplified, thus the reader should remember that in the proof section the CRT value

rather than G1 ·G2 is used.

Algorithm 10 (SSF) BuildSIKMultIDPKG

Input: PSP1,2, d̃ID1

Output: eSIK
(1,2)

ID1

1. eSIK
(1,2)

ID1
≡ (G1 ·G2)

rID1 d̃ID1 (mod N1N2)

return eSIK
(1,2)

ID1

The key agreement is then performed by a similar algorithm as the standard Compute

algorithm, but using the extended values and the combined set of PSPs.

It has to be shown that the key agreement algorithm between users from independent

ID-PKGs is indeed correct.

Lemma 3.4.3 The SSF key agreement algorithm between users from different ID-

PKGs is correct.

Proof 3.4.4 (of Lemma 3.4.3) It has to be shown that the ComputeMultIDPKG algo-

rithm indeed outputs the same integer for both participants. More precisely, it has to
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Algorithm 11 (SSF) ComputeMultIDPKG (view of EID1
)

Input for EID1
: ID2, PSP(1,2), eSIK

(1,2)

ID2
, rID1 , H̃2(ID2)

Input for EID2
: ID1, PSP(1,2), eSIK

(1,2)

ID1
, rID2 , H̃1(ID1)

Output: common integer S

1.
(
((G1 ·G2)

rID2 d̃ID2)
R1·R2H̃2(ID2)

−1
)2rID1 ≡ (G1 ·G2)

2R1R2rID1
rID2 ≡ S (mod N1 ·N2)

2.
(
((G1 ·G2)

rID1 d̃ID1)
R1·R2H̃1(ID1)

−1
)2rID2 ≡ (G1 ·G2)

2R1R2rID1
rID2 ≡ S (mod N1 ·N2)

return S

be shown that for modulo (N1N2) it holds:

(
((G1 ·G2)

rID2 d̃ID2)
R1·R2H̃2(ID2)

−1
)2rID1 ≡

(
((G1 ·G2)

rID1 d̃ID1)
R1·R2H̃1(ID1)

−1
)2rID2 ≡ S

If the congruence above leaves the same remainders on both sides with respect to the

moduli N1 and N2, the CRT states that there will a unique integer S modulo (N1N2),

which is the output of the ComputeMultIDPKG algorithm.

For the left side, for modulo N1:

(
((G1 ·G2)

rID2 d̃ID2)
R1·R2H̃2(ID2)

−1
)2rID1 ≡

(
(G1 ·G2)

rID2 )R1·R2
)2rID1 ≡

(G1 ·G2)
2R1R2rID1

rID2 ≡ S1

For the left side, for modulo N2:

(
((G1 ·G2)

rID2 d̃ID2)
R1·R2H̃2(ID2)

−1
)2rID1 ≡

(
((G1 ·G2)

rID2 d̃ID2)
R1·R2H2(ID2)

−1
)2rID1

≡
(
((G1 ·G2)

rID2
R1·R2dR1·R2

ID2
)H2(ID2)

−1
)2rID1

≡
(
((G1 ·G2)

rID2
R1·R2H2(ID2)

R1)H2(ID2)
−1
)2rID1

≡
(
(G1 ·G2)

rID2
R1·R2

)2rID1 ≡
(
(G1 ·G2)

2rID1
rID2

R1·R2
)
≡ S2

For the right side, for modulo N1:

(
((G1 ·G2)

rID1 d̃ID1)
R1·R2H̃1(ID1)

−1
)2rID2 ≡

(
((G1 ·G2)

rID1 d̃ID1)
R1·R2H1(ID1)

−1
)2rID2

≡
(
((G1 ·G2)

rID1
R1·R2dR1·R2

ID1
)H1(ID1)

−1
)2rID2

≡
(
((G1 ·G2)

rID1
R1·R2H1(ID1)

R2)H1(ID1)
−1
)2rID2

≡
(
(G1 ·G2)

rID1
R1·R2

)2rID2 ≡
(
(G1 ·G2)

2rID1
rID2

R1·R2
)
≡ S1

For the right side, for modulo N2:
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(
((G1 ·G2)

rID1 d̃ID1)
R1·R2H̃1(ID1)

−1
)2rID2 (

((G1 ·G2)
rID1 )R1·R2

)2rID2 ≡
(
(G1 ·G2)

2rID1
rID2

R1·R2
)
≡ S2

Since the right and left sides leave the same remainders modulo N1 and N2, respectively,

a unique integer S can be obtained via the CRT. �

Protocol Flow. Figure 3.2 illustrates the actual protocol flow. It is assumed that both

participants possess the same set of public shared parameters. In the first step, EID1

computes its session initiation key using Algorithm 7. Subsequently, EID1 sends the

generated SIK to EID2 describing the identity ID1 as the packet’s source. In the third

step, EID2 generates a SIK on his part, which he sends to EID1 in step four appending

his identity as the source.

Setting: Both participants possess the PSP1 = (N1, G1, R1, H1)

and PSP2 = (N2, G2, R2, H2)

EID1

v Extend dID1
and H(ID2) via Algorithm 9

EID2

v Generate SIK via Algorithm 10: (G1G2)
rID1 d̃ID1

v -
ID1|(G1G2)

rID1 d̃ID1

vExtend dID2
and H(ID1) via Algorithm 9

vGenerate SIK via Algorithm 10: (G1G2)
rID2 d̃ID2

v�
ID2|(G1G2)

rID2 d̃ID2

v Compute session key via Alg. 11

(((G1G2)
rID2 d̃ID2

)R1R2H̃2(ID2))
2rID1

vCompute session key via Alg. 11

(((G1G2)
rID1 d̃ID1

)R1R2H̃1(ID1))
2rID2≡mod (N1N2)

Figure 3.2: The SSF protocol flow in the multi ID-PKG case.

Key Escrow. The term key escrow concerns the problem that another entity, e.g.

a trusted authority, possesses the private key as well. This essentially cancels the

meaning of a private key since it is not private anymore. When using IBC, the key

generator is actually such a trusted authority that knows the user’s private key. This

is often mentioned as a killing argument by some potential adopters. However, in

fact in almost all business environments that are based on public key infrastructures2,

2This fact was learned during a talk with the PGP corporation, one of the world’s leading companies
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the private key of each employee is not generated by the employee itself, but by the

company’s administrators. This is necessary because the company needs to be able

to decrypt data under unforeseen consequences, like for example, for the encrypted

harddisk of a released employee. Thus, the application of IBC would not bring a new

risk regarding key escrow.

Anyway, it would be a nice advantage if the ID-PKG would reduce some of its influence.

There are some publications in which the ID-PKG forfeits the ability to decrypt the

entire communication. For example, Goyal introduced a system [55] in which every

identity is associated with an exponential number of identity keys. Via an oblivious

transfer protocol (OTP), a user selects one of them. Based on the nature of an OTP, the

ID-PKG does not learn which key the entity has chosen and a malicious ID-PKG can

only select one of the exponential identity keys randomly. The argument is that if two

different identity keys are identified in the system, it will be a proof that a malicious

ID-PKG is running. Although this is a good idea, it does not solve the problem of key

escrow. Furthermore, detecting two equal identity keys (= private keys) is questionable,

since no one will present its private key without a very good reason.

Another approach is to use a threshold base generation process to compute the identity

keys, as proposed by Boneh and Franklin [22]. This means, several ID-PKGs are used

and no ID-PKG can generate an identity key on its own. Each one can only generate a

part of the key and those different parts are combined by the entity to create the entire

identity key. If the ID-PKGs cooperate among each other, the approach obviously fails.

Hence, the ID-PKGs should be maintained by different authorities to prevent an easy

way of cooperation. This approach is probably the best way, even if it circumvents the

core problem. Furthermore, it adds the need for an additional infrastructure and initial

cooperation between the ID-PKGs to agree on the parameters.

Note that in SSF, the power of the ID-PKG is reduced to active attacks. The ID-

PKG cannot subvert the encryption if it only eavesdrops the communication, since

the session key is based on the C-DHA. Other existing IBC schemes [84] state that

they can setup their scheme in escrow mode as well as in no-escrow mode. However,

this formulation is misleading. In their no-escrow mode, they only achieve the same

security as in the proposed protocol. That means, it is secure except for active attacks,

since their protocol in escrow-mode even allows the ID-PKG to passively decrypt the

messages.

for selling PKI infrastructures.
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3.5 Signatures

The continued proliferation of CPU, bandwidth and energy constrained devices in-

creases the need for bit and CPU efficient cryptographic protocols. Multi-signatures

allow multiple signers to jointly authenticate a message using a single compact sig-

nature. However, many applications require the public keys of the signers to be sent

along together with the signature, partly defeating the effect of a compact signature

[11]. While there are several multi-signature schemes, such as [91, 10] or [80], there are

relatively few identity-based multi-signature schemes. In 2006, Gentry and Ramzan [51]

and Chen et al. [33] presented identity-based multi-signatures (IBMSs) schemes, both

based on pairings. In 2007, Bellare and Neven [11] showed how the Guillou-Quisqater

scheme can be used as an IBMS. Bellare and Neven [11] have defined Bellare interac-

tivity and non-interactivity as an important attribute of an IBMS. A non-interactive

IBMS allows each participant to independently compute its share to the signature,

and anyone can combine these shares into a compact signature. Interactive schemes

require some form of cooperation between the entities, reducing the communication

benefit of identity-based cryptography. The schemes of Chen et al. [33] and Bellare

and Neven [11] require such an interaction. The scheme of Gentry and Ramzan [51]

is non-interactive. None of the IBMSs are capable of using multiple ID-PKGs. This

restricts their real world applicability, since in the mobile resource restricted scenarios

where multi-signatures are particularly relevant, it is unlikely that a single trusted ID-

PKG can be found. For instance, mobile phone operators are unlikely to agree on a

single ID-PKG for all their customers due to conflicting business interests and manage-

ment structures. To develop an IBMS for real world applications, the IBMS must be

capable of working with multiple ID-PKGs with little or no cooperation between the

operators of the ID-PKGs. Similar to Bellare and Neven’s definition of interactivity for

the signing entities, two classes of ID-PKGs for IBMS are defined. Dependent ID-PKGs

must cooperate to function in unison, e.g. they must share secret parameters or share

a single trusted root authority, whereas independent ID-PKGs can set up and operate

without requiring shared secrets or trust between the ID-PKGs.
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3.6 Related Protocols

Guillou-Quisquater/Bellare-Neven

The identity-based signature scheme of Guillou and Quisquater [60] has a similar setup

as the proposed scheme. It was later extended to a multi-signature scheme (but with

single ID-PKG) by Bellare and Neven [11]. The setup of the original scheme is shown

next.

Algorithm 12 (QQ) Setup

Input: k1,k2

Output: {PSP, SP}

1. P
$← PRIMES(k2)

2. if (P − 1)/2 is not prime goto 1

3. Q
$← PRIMES(k2)

4. if (Q − 1)/2 is not prime goto 3

5. N← P ·Q
6. v

$← {1, min(P, Q)}

7. H(·)← collision-resistant hash function, with |H(·)| < v

8. return {(N, G, R, H), (P, Q)}

Public Shared Parameter of GQSS: PSP := (N, v, H).

Secret Parameters of GQSS: SP := (P, Q).

The authors also use the IFP as the basic assumption for the protocol and keep the

factorization as the ID-PKG’s secret key. The secret identity key for each participant

is extracted by dID ≡ Red(ID)−v−1
(mod N). Note, that this key is similar to the

identity key of Okamoto-Tanaka as well as the one of the proposed protocol, except

for the additional inverse operation. Red(·) is here a reduction function, which can be

instantiated by a hash function, for example. The generation of a signature is done via

Algorithm 13 and the verifications steps are shown in Algorithm 14.

Algorithm 14 (QQ) SigVer

Input: PSP, (d, z, m, ID)

Output: true, if signature is valid, false otherwise
1. vl = d

2. vr = H(zv Red(ID)d (mod N), m)

3. return true if vl = vr else return false
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Algorithm 13 (QQ) SigGen

Input: PSP, m, dID

Output: (d, z, m, ID)

1. r
$← ZN

2. t ≡ rv (mod N)

3. d = H(t, m)

4. z ≡ r · dd
ID (mod N)

5. return (d, z, m, ID)

The correctness can be easily verified, since

vr = H(zv Red(ID)d (mod N), m) = H(rvdvd
ID Red(ID)d (mod N), m)

= H(rv Red(ID)−v−1vd Red(ID)d (mod N), m) = H(rv (mod N), m)

= H(t, m) = d = vl

Extension from Bellare-Neven to Multi-Signatures. Bellare and Neven were the

first authors who proved the security of the multi-signature extension of the Guillou-

Quisquarter scheme. To accumulate several signatures on one document to one single

signature S, they build the following product:

S ≡
∏

rv
i

∏

d
H(

∏
rv

i (mod N),m)

IDi
(mod N) (3.1)

However, this approach makes their multi-signature scheme clearly interactive, since

the exponent H(
∏

rv
i (mod N), m), which must be known by all signers, can only be

created if everyone knows all ri.

3.7 SSF Signatures

In this section, it is demonstrated that a signature scheme can be build upon the already

existing keys that also allows different participants to sign a single document.

3.7.1 Single Signatures

To be able to issue signatures with the SSF protocol, a small adaptation regarding the

PSP has to be done. The adaptation concerns the integer R that must not be a prime
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number in this case. The new definition follows below:

Public, Shared Parameters (PSP). The public, shared parameters of the signature

scheme SSF is the quadruple PSP = (N, G, R, H), N = PQ, P, Q ∈ P. The integer N is

chosen to be a RSA integer. G is a generator of a large subgroup in ZN. R is an integer

with the property gcd(R, ϕ(N)) = 1 and R must have at least one factor v > 1 such that

R can be written as R = vR̂ with R̂ > 1, with v, R̂ ∈ N. Finally, H is a collision free and

secure hash function that maps the input to an element of ZN.

First, the basic version of the proposed signature scheme is presented. Afterwards,

the scheme is extended in two steps. The first step enables multi-signatures and the

second step enables multi-signatures in a setup of independent ID-PKGs. First, the

PSP (N, G, R, H) are extended by another hash function Ĥ : {0, 1}∗ → {0, 1}w, which

produces a w-bit output. The bit length of the integer R is still k1.

Next, the two basic algorithms are defined: SigGen((N, G, R, H), m, k, dID, ID)→ S and

SigVer((G, N, R, H), S) → {true|false}. The SigGen-Algorithm (shown in Algorithm 15)

uses the following input parameters:

1. PSP: public shared parameters

2. m: the message to be signed

3. k: security parameter

4. dID: private identity key of the executing entity

5. ID: the identity of the executing entity

The algorithm returns the signature S of the message m signed by the identity ID.

The SigVer-Algorithm shown in Algorithm 16 uses the following input parameters:

1. PSP: public shared parameters

2. S: signature to be verified

It returns true if the signature is valid and false otherwise.

First, it has to be shown that the verification algorithm is correct. This means, if all
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Algorithm 15 (SSF) SigGen

Input: PSP, m, k, dID, ID

Output: (s1, s2, m, ID) = S

1. h← H(m)

2. check if R ∤ h, if yes return failure

//k is a security parameter that determines the maximum bit length of α

3. α
$← {1, ..., 2k}

4. Compute Gα (mod N)

5. s1 ≡ GhαdID (mod N)

6. s2 ≡ GR̂α (mod N)

7. return (s1, s2, m, ID)

Algorithm 16 (SSF) SigVer

Input: PSP, (s1, s2, m, ID)

Output:true, if signature is valid, false otherwise
1. h← H(m)

2. vl ≡ sR
1 H(ID)−1 (mod N)

3. vr ≡ svh
2 (mod N)

4. return true if vl = vr

operations are done as specified and no tampering occurred during transmissions, the

algorithm returns true. Thus, it has to be shown that vl = vr:

Lemma 3.7.1 (Correctness) The SSF Signature Verification algorithm is correct.

Proof 3.7.2 For vl and vr as defined in Algorithm 16 it holds (mod N):

vl ≡ sR
1 H(ID)−1 ≡

(
GhαdID

)R
H(ID)−1 ≡ GRhαH(ID)H(ID)−1 ≡ GRhα ≡ sh

2 ≡ vr

3.7.2 Multi-Signatures

If an identity-based signature scheme enables several identities to contribute to a sig-

nature, it is called an identity-based multi-signature scheme. Obviously, any signature

scheme could be converted to an IBMS by concatenating several signature to one multi-

signature. For efficient IBMS schemes, the generated n-identity signature (a signature

where n identities have contributed) should be less in size than n times a 1-identity

signature. Furthermore, multi-signature scheme can be also distinguished in the way

they allow each signer to contribute. If a scheme allows independent signatures in a

way that the signers do not have to interact to create signature, the scheme is called
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non-interactive. The property of non-interactive is important in scenarios where the

channel between the signers is only one-way. For example, multi-level security ar-

chitectures only allow users from different access levels to inter one-way. Interactive

multi-signature would reduce its operational area only to one layer instead of the whole

system. The IBMS presented below is both independent and non-interactive and thus

is the first IBMS that can fully benefit from the advantages of multi-signatures and is

applicable to real world problems.

It will be shown that the signature scheme allows n signers to sign a message m in

any order and that the i-th signer is not forced to verify the signature received so far,

but can independently contribute to the signature, thus earns the property of being

non-interactive. Even the verifier does not need to know the order the multi-signature

has been created.

We write dIDi
with 1 6 i 6 n for the participating identities. All corresponding entities

EIDi (the signers) share the same set of PSP and know the message m. We write

S(1,2,...,i−1) = (s
(1,2,...,i−1)
1 , s

(1,2,...,i−1)
2 , m, {ID1, ID2, ..., IDi−1})

for the (i − 1)-th signature. The associated generation algorithm is an extension of the

basic generation algorithm (Algorithm 15) using the (i−1)-th signature as an additional

input parameter.

Algorithm 17 (SSF) MultSigGen (from the view of the i-th signer)

Input: PSP, k, dID, ID, S(1,2,...,i−1)

Output: (s
(1,2,...,i)
1 , s

(1,2,...,i)
2 , m, {ID1, ID2, ..., IDi}) = S(1,2,...,i)

1. h← H(m)

2. check if R ∤ h, if yes return failure

3. αi
$← {1, ..., 2k}

4. Compute Gαi (mod N)

5. s
(1,2,...,i)
1 ≡ s

(1,2,...,i−1)
1 GhαidIDi

(mod N)

6. s
(1,2,...,i)
2 ≡ s

(1,2,...,i−1)
2 G

R
v αi (mod N)

7. return (s
(1,2,...,i)
1 , s

(1,2,...,i)
2 , m, {ID1, ID2, ..., IDi})

The multi-signature algorithm differs from the basic algorithm in the 5-th and 6-th line.

Here, there are two additional factors, which come from the (i − 1)-th signature. The

multi-signature algorithm encompasses the single signature algorithm through these

factors. The single signature case can be replicated by setting s
(1,2,...,i−1)
1 = 1 =

s
(1,2,...,i−1)
2 . The verification algorithm for the multi-signature case is shown in Algo-
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rithm 18.

Algorithm 18 (SSF) MultSigVer

Input: PSP, S(1,2,...,n) = (s
(1,2,...,n)
1 , s

(1,2,...,n)
2 , m, {ID1, ID2, ..., IDn})

Output:true, if signature is valid, false otherwise
1. h← H(m)

2. vl ≡ (s
(1,2,...,n)
1 )R

∏n
j=1 H(IDj)

−1 (mod N)

3. vr ≡ (s
(1,2,...,n)
2 )vh (mod N)

4. return true if vl = vr else return false

The difference of the multi-signature verification to the basic case is in Line 2, where the

verifier of a n-identity signature has to build the product over all contributed identities.

It can be seen that the order of creation does not need to be known because of the

involved commutative operations.

Signature Size. The size of a n-identity signature is a measure for its efficiency. The

size of a (i − 1)-th signature and a i-th signature differs by the length of the identity

string IDi, assuming that the two group elements roughly have the same size according

to their random characteristic.

[Successive Signature Difference] |S(1,2,...,i)| − |S(1,2,...,i−1)| ≈ |IDi|

Thus, the total size of a n-identity signature is

[Average Signature Size (bit)] |S(1,2,...,n)| ≈ 2
log2 N

2
+ log2 m +

n∑

j=1

|IDj|

covering the 2 group elements (being both roughly of length |N|/2), the message m and

all involved identities.

Fast Signature Aggregation. In the way the scheme is constructed, it allows to

combine the partial signatures in any order and subparts can be put to together by any

unit. If the message to be signed is initially known, then fast structures for signature

aggregation can be created. Figure 3.3 shows a simple binary tree approach. If in each

layer of the tree all participants are acting simultaneously, a significant speedup can be

achieved.
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Figure 3.3: Fast signature aggregation via binary structure.

An application would be, for example, Dynamic Hash Tables networks, where all repli-

cation repositories are signing their content. In this way, they can create a multi-

signature in fast way to prove that they all acknowledge to correct status of the stored

content.

3.7.3 Multi-Signatures with Multiple ID-PKGs

In this section, the multi-signature algorithm is further extended to allow the use of

multiple independent ID-PKGs. This is a critical issue for identity-based cryptography

in general, since the sensitive nature of the ID-PKG makes it highly unlikely that

competing organizations will cooperate in the setup and operation of their ID-PKGs.

However, customers from multiple organizations need to be able to sign a document

together. In general IBC systems there are efforts underway to mitigate the problem

of multiple ID-PKGs, however, apart from [108] they all require the ID-PKGs to trust

either each other and use shared secrets or a trust hierarchy with a single trusted root

entity [16, 24, 52, 64, 84].

In the following, the first IBMS that allows independent (i.e. no shared secret, no inter

ID-PKG trust and no trust hierarchy) operation of multiple ID-PKGs is presented. It

has the desired attributes of compactness, non-interactivity and independence of the

ID-PKGs. It does not require interaction between the signers, and the message can be

signed in any order and the final signature can be constructed by any entity. It also

allows singing entities to have received their identity keys from multiple different ID-

PKGs and it does not require the ID-PKGs to cooperate, i.e. share secrets or a single
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trusted authority. To speed up the operation of the IBMS, precomputation techniques

[54] are used for all exponentiation steps. A security analysis is presented using the

random oracle model. It will be shown that forging a signature is not possible assuming

the validity of the RSA assumption.

Each ID-PKG can create its private parameters and create identity keys independently

of any other ID-PKG. For reasons of simplicity it is required that the non-critical public

parameter R and the hash-function H are the same for all PSP. Requiring these two

parameters to be the same for all ID-PKGs does not affect the security of the ID-PKGs

and does not require the ID-PKGs to share any secret knowledge or form any kind of

trust relationship. If for any reason different Rs or Hs are required, this is also possible.

The protocol then loses the non-interactivity feature for signing entities.

In the multiple-ID-PKG scenario, participants possess identity keys created by multiple

ID-PKGs using different secret parameters tied to different PSPs. To deal with the

multiple PSPs, an adaptation of Algorithm 9 is presented which extends the identity

key to be valid for multiple PSPs. This extension algorithm can be executed by each

entity independently. This Extension algorithm is shown in Algorithm 19.

Algorithm 19 (SSF) IdKeyExt (from the view of the i-th signer)

Input: PSP1, PSP2,...,PSPw, dIDi

Output: d̃IDi

//Nj is part of PSPj

1. Use the Chinese Remainder Theorem to calculate the integer d̃IDi

by solving the system of w simultaneous congruences:

2. d̃IDi
≡ dIDi

(mod Ni)

3. d̃IDi
≡ 1 (mod Nj),∀j 6= i

4. return d̃IDi

Algorithm 20 (SSF) HashValExt (from the view of the i-th signer)

Input: PSP1, PSP2,...,PSPw, IDi

Output: H̃(IDi)

//Nj is part of PSPj

1. Use the Chinese Remainder Theorem to calculate the integer H̃(IDi)

by solving the system of w simultaneous congruences:

2. H̃(IDi) ≡ H(IDi) (mod Ni)

3. H̃(IDi) ≡ 1 (mod Nj),∀j 6= i

4. return H̃(IDi)

The HashValExt algorithm is the counterpart to the IdKeyExt algorithm and ensures

that the hash values from the identity string fit to the extended identity keys that
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are involved in the signature. Both extension algorithms make use of the Chinese

Remainder Theorem. It can be assumed that all involved Ni’s are co-prime, thus the

CRT can compute the unique integers d̃IDi
and H̃(IDi) efficiently. Note that each signer

can contribute independently to the signature, but the signer must know the message

m and the involved PSPs.

Finally, the generation algorithm for a multi-signature with multiple ID-PKGs is shown

in Algorithm 21 and demonstrates the actions of the i-th signer. Similar to the algo-

rithms for a single ID-PKG, the signer now has to use its extended identity key, the

product of all generators Gi and the product of all Ni.

Algorithm 21 (SSF) MultSigGenMultIDPKG (from the view of the i-th signer)

Input: S(1,2,...,i−1), PSP1, PSP2,...,PSPw, k, dIDi
, ID

Output: S(1,2,...,i)

1. d̃IDi
← IdKeyExt(PSP1, PSP2,...,PSPw, dIDi

)
2. h← H(m)

3. check if R ∤ h, if yes return failure

4. αi
$← {1, ..., 2k}

5. s
(1,2,...,i)
1 = s

(1,2,...,i−1)
1

(
∏w

j=1 Gj

)hαi

d̃IDi
(mod

∏w
j=1 Nj)

6. s
(1,2,...,i)
2 = s

(1,2,...,i−1)
2

(
∏w

j=1 Gj

)R
v αi

(mod
∏w

j=1 Nj)

7. return S(1,2,...,i) = (s
(1,2,...,i)
1 , s

(1,2,...,i)
2 , m, {ID1, ..., IDi})

The verification algorithm, shown in Algorithm 22, is similar to the previous versions.

The verifier uses the extended hash values as well as the product of all Ni for the

modulus.

Algorithm 22 (SSF) MultSigVerMultIDPKG

Input: S(1,2,...,n), PSP1, PSP2,...,PSPw, {ID1, ..., IDn}

Output: d̃IDi

1. For each IDi do H̃(IDi)← HashValExt(PSP1, PSP2,...,PSPw, IDi)

2. vl ≡ (s
(1,2,...,n)
1 )R

∏n
j=1 H̃(IDj)

−1 (mod
∏w

j=1 Nj)

3. vr ≡ (s
(1,2,...,n)
2 )vh (mod

∏w
j=1 Nj)

4. return true if vl = vr else return false

Before presenting the proof of the proposed IBMS schemes, it will be shown that the

multi-signature algorithm in the multiple ID-PKG case is correct.

Lemma 3.7.3 (Correctness) The MultSigVerMultIDPKG is correct.

Proof 3.7.4 Verification follows Algorithm 22, thus the verifier computes:
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vl = (s
(1,2,...,n)
1 )R

∏n
j=1 H̃(IDj)

−1 ≡
(
∏w

j=1 Gj

)Rh(
∑n

j=1 αj) ∏n
j=1 d̃R

IDj

∏n
j=1 H̃(IDj)

−1 (mod
∏w

j=1 Nj)

and

vr = (s
(1,2,...,n)
2 )vh =

(
∏w

j=1 Gj

)Rh(
∑n

j=1 αj)

(mod
∏w

j=1 Nj)

It has to be shown that
∏n

j=1(d̃IDj
)R

∏n
j=1 H̃(IDj)

−1 ≡ 1 (mod
∏w

j=1 Nj). Since for

i 6= j it holds

d̃IDj
≡ H̃(IDj) ≡ 1 (mod Ni)

and for i = j

(d̃IDi
)R ≡ H(IDi) ≡ H̃(IDi) (mod Ni)

the CRT guarantees to find a unique number, which proves the correctness.

3.8 Summary

In this chapter, the SSF scheme was presented. The basic scheme is actually comparable

to the OkTa scheme, but the flaws in the construction were removed. Then, the scheme

was extended to handle multiple ID-PKGs that can act independently of each other.

Also, no participant is forced to get another set of keys in order to communicate with

an entity of a foreign ID-PKG. The Chinese Remainder Theorem was used to transfer

the identity-key dID, which is an element in ZN1 , to a unique element in d̃ID ∈ ZN1N2

by adding the requirement d̃ID ≡ 1 (mod N2).

In the second part, a signature scheme based on the already existing SSF keys was in-

troduced. Therefore, the PSP of the original key agreement case were modified slightly.

Note, that these modified PSP can be also used in the key agreement case. The adap-

tation is that the public exponent R is not allowed to be a prime. This is necessary to

show that in any case the proof of the scheme can be reduced to the RSA assumption

(see next chapter). The basic signature scheme was then enhanced to issue multi-

signatures, which essentially is a successive execution of the basic scheme by different

signers. Finally, the novel multiple ID-PKG treatment to allow multi-signatures, each

from multiple ID-PKGs, was applied to the signature scheme.
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”For those who believe, no proof is necessary.

For those who don’t believe, no proof is possible.”

Stuart Chase

4.1 Introduction

After having presented the entire SSF scheme, it is time to show that the scheme is

actually secure regarding standard definitions from the literature. First, we show that

the basic key agreement algorithms of the SSF scheme form a secure and authenticated

key agreement protocol. The proof reduces the security of the scheme to the RSAA, the

C-DHA and the GAP-DHA. This means that an attacker who is capable of breaking the

key agreement in polynomial time can also break one of these NP-hard assumptions in

polynomial time. Second, the security of the key agreement with multiple ID-PKGs is

proven in a similar way, by utilizing the arguments of Gennaro et al. [48].

The later part of the chapter contains all the proofs regarding the SSF signature scheme.

In this case, the security is reduced to the RSAA. Three proofs are presented: one for

the single signature / single ID-PKG case, one for the multi-signature / single ID-PKG

case and one for the multi-signature / multiple ID-PKG case.

The material presented in this chapter has been published in [110] and [109].

4.2 SSF with Single ID-PKG

In this section, it will be proven that SSF is indeed a secure and authenticated key agree-

ment protocol. For this purpose, the Canetti-Krawczyk Model (CKM) as described in

Chapter 2, Section 2.3.3, Definition 2.3.5 is used.

53
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Theorem 4.2.1 (SSF - single ID-PKG) Based on the RSAA, the C-DHA and the

GAP-DHA assumptions, SSF is a secure and authenticated key agreement protocol in

the sense of the CKM, if the hash function H is modeled as a programmable, random

oracle.

Proof 4.2.2 The proof is done via reduction: It is shown that an adversary A who

is able to break the SSF protocol with non-negligible probability, can be utilized by a

simulator Sim to break the C-DHA and the GAP-DHA with non-negligible probability.

The goal of the adversary is always to get the session key S, whereas Sim simulates the

SSF protocol against the adversary A.

We distinguish between two cases: First, a passive adversary is assumed. In this case,

we show that Sim is able to break the C-DHA. In the second case, we assume an active

adversary who can manipulate packets in any way. In this case, we show that we can

build an algorithm that can break the RSAA with non-negligible probability.

Case 1: A Matching Test Session. Since Sim simulates the whole SSF world,

it is also responsible to generate the private keys of each user. Although Sim does

not know the ID-PKG’s secret (P and Q), he can simulate the private keys by ρR
ID

(mod N) := H(ID), where ρID is a random integer that is chosen differently for each

ID. By this construction, Sim knows the private identity key of each user, which is

ρID = dID. Furthermore, Sim changes the generator G to Ĝ ≡ GR (mod N). We now

assume Sim is facing the problem to compute Guv from Gu and Gv (that is an instance

of the C-DHA) and utilizes the SSF-breaking adversary A for this purpose. Sim is

prepared to run m sessions in total, for some polynomially bounded integer m. If the

attacker does not decide to attack the protocol during these runs, Sim resets the system

and restarts.

After starting the protocol, Sim initiates communications between various participants

and answers all State Reveal,Session Key and Party Corruption queries hon-

estly to the attacker.

Sim guesses that in the i-th protocol execution (i < m), A will eavesdrop the commu-

nication and uses the gained information to guess the session key and breaks the SSF

protocol with success probability asucc.

We assume that this i-th session takes place between Alice and Bob, with Alice being
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the initiator. Sim constructs the SIK in this round via

SIKAlice ≡ Ĝu/RdAlice (mod N) (4.1)

and

SIKBob ≡ Ĝv/RdBob (mod N) (4.2)

Since A is assumed to be passive, Bob and Alice have a matching conversation and

successfully agreed onto a session key, which is according to the Compute algorithm

H(S) = H((SIKR
AliceH(Alice)−1)v/R). (4.3)

Sim does not know this value, but he knows that it must look like this. Further substi-

tution shows that this is actual equivalent to

H(ĜRu/RρR
AliceH(Alice)−1)v/R ≡ H(Ĝuv/R) ≡ H(Guv). (4.4)

The session key between Alice and Bob is now the hash value of Guv, but which is still

unknown to Sim. However, since A needs to ask the random oracle about the hash value

H(Guv) to distinguish the result from random, Sim learns this value, too. Thus, Sim

breaks the C-DHA since he found Guv from Gu and Gv within the polynomially bounded

number of queries of A. Thus, the probability for Sim to break the C-DHA is

Pr[Sim(Gu, Gv, N) = Guv] =
asucc

m
(4.5)

which is non-negligible if asucc is non-negligible.

Case 2: No Matching Test Session. In this case, no matching session between

Alice and Bob can be assumed, since the attacker A could have manipulated all mes-

sages, which probably leads to different keys at Alice and Bob. However, we show that

an attacker who breaks the SSF protocol in this case successfully, can be utilized to forge

RSA signatures. Here, a forger F, adopts the role of the simulator. He behaves exactly

like the simulator Sim above and knows the private keys for all participants except the

one of Bob. The goal of F is to compute the private key for Bob without knowing the

factorization of N.

By knowing all other private keys, the forger can construct all SIKs during a key agree-

ment, except when he simulates key agreements between Bob and another participant.

However, whenever Bob interacts with another participant, say Charly, F must be able

to answer session key queries. Even F is not in possession of Bob’s private key, he can
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compute the session key between Bob and Charly by using Charly’s private key only.

To see this, we can assume that Bob’s SIK is

SIKBob ≡ GydBob (mod N) (4.6)

where Charly’s SIK can be written as

SIKCharly ≡ GzdCharly (mod N) (4.7)

with y and dBob unknown to F1. F can compute (SIKR
BobH(Bob)−1) ≡ GRy. Since F

knows Gz, he can respond always with the correct session key value G2Ryz.

More problematic are the session keys at Bob, which were generated by the attacker

pretending to come from Charly, since F does not know Bob’s private key nor the

secret exponent z in this case. Moreover, the session key from Charly (i.e. from A)

is not to be guaranteed to be an element of the group generated by G. However, since

N = PQ = (2P ′ + 1)(2Q ′ + 1), with P, P ′, Q, Q ′ ∈ P, the malicious SIK generated by A

can be written as

SIKCharly ≡ δGzdCharly (mod N),

with δ an element of order 2 in ZN. We need to show how F will respond to a session key

query by A: F uses the knowledge of Charly’s private key to compute G2z ≡ γ2/d2
Chary

and GRy as already shown above. He then checks if one of the past queries Q of the

attacker to the oracle satisfies DH(G2z, GRy) = Q. If so, F answers to a session key

query with H(Q), otherwise he answers with a random integer.

Simulation of the i-th run. In this run, the attacker tries to break the SSF protocol.

Assume that the run takes place between Alice and Bob, with Bob being the initiator.

A intercepts the packets and manipulates them in an arbitrary way. Since the attacker

succeeds in this run, he outputs the correct session key, which is G2Rxy.

Next, we show how this knowledge can be used to compute Bob’s secret key, that means

extracting the R-th root out of H(Bob). Therefore, F makes the session initiation key

from Alice as well as the base G dependent on Bob’s identity.

G ≡ (rH(Bob))2R, H(Alice) ≡ sR, SIKAlice ≡ (rH(Bob))fs

with r, s being random elements in the group of G, as well as f being a random integer

1Note, because H(Bob) maps into the group generated by G, such an y is guaranteed to exists.
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co-prime to R. Note, using this we can also write SIKAlice = G2−1f/RH(Bob)1/R ≡
G2xH(Bob)1/R. If the attacker sends an arbitrary session initiation key SIKBob, the

session key for this session is equal to K = (SIKR
Bob · H(Bob)−1)2x ≡ (SIKR

Bob ·
H(Bob)−1)f/R, thus

KR ≡ (SIKR
Bob ·H(Bob)−1)f ⇔ df

Bob ≡ SIKf
BobK−1

F learns this session key from A’s queries to the random oracle. With the help of K, F

knows two different powers of Bob’s private key: He knows both, dR
Bob ≡ H(Bob) and

df
Bob ≡ SIKf

BobK−1. Since R and f are co-prime, F can compute aR + bf = 1 using

the Extended Euclidean Algorithm. Afterwards, he reveals dBob by

(dR
Bob)a · (df

Bob)b ≡ H(Bob)a · (SIKf
BobK−1)b ≡ dBob

The success probability for F is the same as the probability for Sim in the first case,

since the success only depends on the guessed round and the winning probability of A.

Pr[Sim(H(Bob), e, N) = H(Bob)1/e] =
asucc

m
(4.8)

Q.e.d.

4.3 SSF with Multiple ID-PKGs

For the multiple ID-PKG case, we follow the proof given by Gennaro et al. who analyzed

the SSF protocol [48].

Theorem 4.3.1 (SSF - Multiple ID-PKGs) Assuming the RSAA, the C-DHA and

the GAP-DHA assumptions SSF with multiple ID-PKG is a secure, authenticated key

agreement protocol in the sense of the CKM, if the hash function H is modeled as a

programmable, random oracle.

Proof 4.3.2 Case 1: A Matching Test-Session. Consider the problem that the

Simulator Sim is faced with the problem to solve the C-DHA over the composite ring

ZN2: guv ← (U = gu, V = gv, N2).

Therefore, he sets the PSP of the first ID-PKG to D1 = {N1, R1, G1, H} with a known

factorization of N1 and R1, G1 and H according to the setup algorithm. For the sec-

ond ID-PKG, he uses the challenge value N2 and a special base: D2 = {N2, R2, G2 =
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g2R1R2 , H}. R2 and H2 are chosen also according to the setup algorithm. Note, since the

factorization of N2 is unknown, R1 and R2 can not be tested to be co-prime to ϕ(N2).

However, a large primes should be fulfill this requirement with overwhelming probability.

We denote as τ ≡ (2R1R2)
−1 (mod ϕ(N2)). As the common basis he uses the CRT to

compute Ĝ from G1 and G2. Next, Sim computes

Û = Ĝû =







Gu ′

1 (mod N1)

U (mod N2) = Gτu
2 (mod N2)

(4.9)

V̂ = Ĝv̂ =







Gv ′

1 (mod N1)

V (mod N2) = Gτv
2 (mod N2)

(4.10)

for random values u ′ and v ′. For all parties in the domain of ID-PKG1, Sim is able

to compute the private keys, since he knows the factorization of N1. For all users in

the domain of ID-PKG2 he programs the random oracle to set H(ID) = rR2 (mod N2),

thus Sim knows also those private keys.

Sim guesses that in the i-th protocol execution, A will eavesdrop the communication and

uses the gained information to guess the session key and breaks the SSF protocol with

success probability asucc.

We assume that this i-th session takes place between Alice and Bob, with Alice being

the initiator. Sim constructs the Alice’s SIK in this round via

SIKAlice ≡ Ûd̂Alice (mod N1N2) (4.11)

and Bob’s SIK is

SIKBob ≡ V̂d̂Bob (mod N1N2) (4.12)

The session key in this session is K = H(Ĝ2ûv̂R1R2) (mod N1N2), which reduces modulo

N2 to

K = H(Ĝ2ûv̂R1R2) ≡ H(G2ττuvR1R2
2 ) ≡ H(guv) (mod N2)

Among all polynomially bounded oracle queries by the attacker, Sim finds the query that

contains the value guv.

Case 2: No Matching Test Session. In this case, the SIK message can again

be tampered by a malicious user. Thus, the two participants will not have a matching

session. Like in the single ID-PKG case, we show that even here a protocol breaking
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attacker can be utilized to forge RSA signatures. Suppose F is faced with the problem

to compute a signature (the e-th root) out of H(Bob)1/e (mod N2). Therefore, he sets

the PSP of ID-PKG2 to D2 = {N2, R2 = e, G2, H}. The values for the first ID-PKG he

chooses according to the setup algorithm.

We can assume that F uses a signing oracle to learn all secret keys of the parties in of

ID-PKG2, except the one of Bob, since F tries to forge it. Since F has hence control

over all private keys, he can respond to all of the attacker queries unless he is queried

about Bob. Next, we show how F simulates the i-th run, that means the session in

which A attacks the SSF protocol.

Simulation of the i-th run. For simplification, we write

δ1,2 ≡ (2R1R2)
−1e2 (mod ϕ(N2))

(which is not known to F since he does not know the factorization of N2). Further-

more, the forger chooses the random integers r, s and f in ZN2, where gcd(f, e2) = 1.

Afterwards, the forger sets

G2 ≡ (rH(Bob))2R1R2 (mod N2) (4.13)

and

α̂ =







Gx
2H(Alice) (mod N1)

(rH(Bob))f (mod N2)
(4.14)

The choice implies that α̂ ≡ Gx
2 d̃Alice ≡ G

δ1,2d2f
2 (mod N2), remember that d̃Alice ≡ 1

(mod N2), thus x ≡ δ1,2d2f (mod ϕ(N2)). The attacker now outputs a random session

initiation key β and its guess for the session key K, such that K ≡
(
βR1R2H(Bob)−1

)2x

(mod N2), which can also be written as

K ≡
(
βe2(R1R2/e2)H(Bob)−R1R2/e2

)2δ1,2d2f

≡ βe2H(Bob)−d2f (mod N2) (4.15)

or equivalently

Ke2 ≡ βe2fH(Bob)−f (mod N2) ⇔ H(Bob)f ≡ βe2fK−e2 (mod N2) (4.16)

Now we utilize again that gcd(e2, f) = 1 and compute ae2 + bf = 1. Afterwards, F
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compute

H(Bob) = H(Bob)ae2+bf = H(Bob)ae2H(Bob)bf (mod N2) (4.17)

further

H(Bob)ae2H(Bob)bf (mod N2) ≡ (H(Bob)a)
e2
(
βbfK−b

)e2
(mod N2) (4.18)

which is equal to
(
H(Bob)aβbfK−b

)e2
(mod N2). But this means that

dBob ≡ H(Bob)d2 ≡ H(Bob)aβbfK−b (mod N2) (4.19)

Thus, F computes the e2-th root of H(Bob) in ZN2 despite he does not know the fac-

torization of N2, which contradicts the RSA assumption. Q.e.d

4.4 SSF Signatures

In this section, the proofs regarding the signature schemes are presented. The proofs

use the random oracle model and show a reduction to the RSA assumption. The proofs

build upon the approach of the signature proof presented by Gennaro et al. [47]. The

proofs cover the strong case, meaning that the scheme is secure against existential

forgery on adaptively chosen message and ID attacks.

4.4.1 Single Signature

Theorem 4.4.1 (Basic Version) Let the PSP = (N, G, R, H) be the public shared

parameters and let the output of H be a w-bit integer with 2w < R = v · R̂. If there is a

forger algorithm F that wins the ID − CM game with non-negligible probability a0, then

there also exists an adversary A that breaks the RSA assumption with non-negligible

probability of

Pr

[
re ≡ t (mod N); (N, e, d)← RSAgen;

t
rand← Z∗

N; r← A(N, t)

]
>

a0

4qH2

(4.20)

Proof 4.4.2 In the ID − CM game above, the adversary does not possess the private

keys since its goal is to solve the RSAA. Furthermore, the adversary is not allowed to
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ask adaptive queries to the extraction oracle, which would give the adversary access to

a solution to the RSAA, since RSA is not secure against adaptive adversaries. The

adversary only learns the private keys for a random integer, which are independent of

the RSAA instance the adversary has to solve.

The adversary assumes that the forger F will output its forgery using the j-th identity,

which was used as the input in the j-th hash query to H2. We also define that the

adversary makes two times more H2 queries than the maximum of the extract or sign

queries. The adversary makes the following preparation steps.

Phase 1: Preparation. A prepares for potential hash queries. Therefore, A chooses

the set of random integers (e1, ..., eqH1
) that are used for the answers to message hash

queries made to H1. As a second set, A chooses the random integers (f1, ..., fj =

t, ..., fqH2
) that it uses as answers for identity hash queries made to H2. At position

j, it contains the random number t that is part of the RSAA instance A has to solve.

Since all integer are random, they are independent of each other.

Whenever H1 or H2 receives a query, they maintain lists L1 and L2 that store the tuples

(mi, ei) and (IDi, fi) respectively.

Phase 2: Query. In the i-th message hash query, H1 answers with ei and in the i-th

identity hash query H2 answers with fi. If H2 receives an extract query for an identity

ID, H2 checks if ID maps to one tuple in L2. If not, H2 ignores the query. If H2 finds a

matching entry, say (IDl, fl) with ID = IDl, H2 checks if l = j. In this case, H2 aborts,

since it would have to ask the extraction oracle for the R-th root of fj = t. Otherwise,

A relays the answer from the extraction oracle to F. When receiving a signature query

on a message m and for an identity ID, H2 checks if both elements are part of the lists

L1 and L2. If not, A ignores the query. Again, if ID = IDj, H2 aborts. Otherwise, H2

answers honestly with a signature according to Algorithm 15.

Phase 3: Guess and Verification. Suppose in the j-th round, F tries the forgery

and gives the solution (s1, s2, mj, IDj) using the message hash value ej = H(mj) and

the identity hash value t = H(IDj). If the signature is incorrect, A aborts. Otherwise,

the signature (s1, s2, mj, IDj) of the forger F can be used to solve the RSAA, since

sR
1 s

−vej

2 ≡ t ≡ H(IDj) (mod N). Since v|R, the adversary computes

(
sR̂
1 s

−ej

2

)v

≡ H(IDj) ≡ t (mod N) (4.21)

and thus recovers a solution (sR̂
1 s

−ej

2 = r, v = e) for the given RSAA instance (N, t).
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The probability that A does not abort, but solves the RSAA successfully needs to be

calculated. Since j is chosen randomly from the qH2
integers that are used as the response

for an identity hash query, the chance that F chooses the j-th identity for its forgery

is 1/qH2
. Furthermore, A aborts either if F asks for an extract query on fj = H(IDj)

or F asks for a signature query regarding the identity IDj. We assumed that qH2 >

max(qE, qS)/2. Thus, the probability that F does not pick fj during its qE extract and

qS sign queries is > 1/4. And since the success rate of a valid forgery is a0, the total

probability to break the RSAA is > a0/(4qH2
), as demanded.

At this point, we have shown that the basic version can be reduced to the RSA as-

sumption, by simply setting H(IDj) = t. In the multi-signer case, the adversary has to

choose the responses to the H2 queries more carefully, as described below.

4.4.2 Multi-Signatures

Theorem 4.4.3 (Multi-Signatures) Let the PSP = (N, G, R, H) be the public shared

parameters and let the output of H be a w-bit integer with 2w < R = v · R̂. If there is

a forger algorithm F that wins the ID − CM game by forging a n-multi-signature with

non-negligible probability a0, then there also exists an adversary A that breaks the RSA

assumption with non-negligible probability of

Pr

[
re ≡ t (mod N); (N, e, d)← RSAgen;

t
rand← Z∗

N; r← A(N, t)

]
>

a0

4
−

a0(qH2
− n)

4qH2

(4.22)

Proof 4.4.4 The forger outputs its forgery using n identities. The adversary assumes

that the j-th identity that was used as the input in the j-th hash query to H2, will be

among these n identities. Also, we define that the adversary makes two times more

H2 query than the maximum of the extract or sign queries. The adversary makes the

following preparation steps.

Phase 1: Preparation. A prepares for potential hash queries. Therefore, A chooses

the set of random integers (e1, ..., eqH1
) that are used for the answers to message hash

queries made to H1. As a second set, A chooses the random integers (fv
1 , ..., fj =

t · 2v, ..., fv
qH2

), with fi random, which A uses as answers for identity hash queries

made to H2. Note that since the fi are independent and v is co-prime to ϕ(N), the fv
i

keep their independence and random character.
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Whenever H1 or H2 receive a query, they maintain lists L1 and L2 that store the tuples

(mi, ei) and (IDi, fi) respectively.

Phase 2: Query. Equal to Phase 2 in the basic version.

Phase 3: Guess and Verification. Suppose in the j-th round, F tries the forgery and

gives the solution (s1, s2, mj, {ID1, ...IDn}) using the message hash value ej = H(mj). If

the signature is incorrect, A aborts. Otherwise, the signature of the forger F can be

used to solve the RSAA since it holds sR
1 s

−vej

2 ≡ 2v · t ·
∏

fv
k (mod N). Since v|R, the

adversary computes

(
sR̂
1 s

−ej

2 (2

n∏

fk)−1

)v

≡ t (mod N) (4.23)

and thus recovers a solution (sR̂
1 s

−ej

2 (2
∏n

fk)−1 = r, v = e) for the given RSAA in-

stance (N, t).

The probability that A does not abort, but solves the RSAA successfully needs to be

calculated. Since j is chosen randomly from the qH2
integers that are used as the response

for an identity hash query, the chance that F chooses the j-th identity for its forgery

made of n identities is 1−
∏n−1

j=0

qH2
−j−1

qH2
−j

= 1−
qH2

−n

qH2
. Furthermore, A aborts either if

F asks for an extract query on fj = H(IDj) and or F asks for a signature query regarding

the identity IDj. We assumed that qH2 > max(qE, qS)/2. Thus, the probability that

F does not pick fj during its qE extract and qS sign queries is > 1/4. And since

the success rate of a valid forgery is a, the total probability to break the RSAA is

> a0/4 − a0(qH2
− n)/(4qH2

) as demanded.

4.4.3 Multi-Signatures with Multiple ID-PKGs

We now include multiple ID-PKGs. In this scenario, we show that a forged signature

would lead to a forged signature in the basic case and thus breaks the RSA assumption.

Theorem 4.4.5 (Multi-Signatures with multiple ID-PKG) Let the PSP = (N,

G, R, H) be the public shared parameters and let the output of H be a w-bit integer with

2w < R = v ·R̂. If there is a forger algorithm F that wins the ID − CM game by forging a

n-multi-signature with w independent ID-PKGs with non-negligible probability a0, then

there also exists an adversary A that breaks the RSA assumption with non-negligible
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probability of

Pr

[
re ≡ t (mod Nk); (Nk, e, d)← RSAgen;

t
rand← Z∗

N; r← A(N, t)

]
>

a0

w4
−

a0(qH2
− n)

w4qH2

(4.24)

Proof 4.4.6 In this case, the game between the adversary and the forger is similar to

the previous cases. The difference is the existence of several PSPs, which leads to a

change of the extract queries. The forger now has to additionally specify the modulus

the identity key is valid for. Thus, the L2 list keeps entries of the form (IDi, fi, Ni). The

forger is equipped with all involved w PSPs, where PSPk contains the integer Nk that

is the target modulus for the adversary regarding the RSAA. The adversary assumes

that the forger outputs its forgery using n different identities. It always holds that

w 6 n, and the equality occurs whenever each signer comes from a unique ID-PKG.

The adversary further assumes that the j-th identity that was used as the input in the

j-th hash query to H2 will be among these identities. Also, we define that the adversary

makes two times more H2 queries than the maximum of the extract or sign queries.

The adversary makes the following preparation steps.

Phase 1: Preparation. A prepares for potential hash queries. Therefore, A chooses

the set of random integers (e1, ..., eqH1
) that are used for the answers to message hash

queries made to H1 and (fv
1 , ..., fj = t ·2v, ..., fv

qH2
) that are used as answers for identity

hash queries made to H2. Whenever H1 or H2 receive a query, they maintain lists L1

and L2 that store the tuples (mi, ei) and (IDi, fi), respectively.

Phase 2: Query. Equal to Phase 2 in the basic version.

Phase 3: Guess and Verification. Suppose in the j-th round, F tries the forgery and

gives the solution (s1, s2, mj, {ID1, ...IDn}) using the message hash value ej = H(mj). If

the signature is incorrect, A aborts. At this point, the adversary only cares about the

integer Nk. The adversary tests if Nk is part of the multi-modulus by a simple GCD

computation. If it is not part of the product, A aborts. If A finds Nk as a factor of

the modulus, it obtains the congruence

(
sR̂
1 s

−ej

2

)v

≡ X (mod

w∏

i=1

Ni), (4.25)

where X is the product of the extended hash values received from the HashValExt algo-

rithm. If u is the number of signers that are associated with Nk, then X ≡ 2vt
∏u

l 6=j fv
l

(mod Nk) whenever F associated the j-th identity with the k-th moduli. Thus, A finds
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a solution to the RSAA that is
(
sR̂
1 s

−ej

2 (2
∏u

l 6=j fl)
−1 = r, e = v

)
.

The probability that A does not abort, but solves the RSAA successfully needs to be

calculated. Since j is chosen randomly from the qH2
integers that are used as the response

for an identity hash query, the chance that F chooses the j-th identity for its forgery

made of n identities is 1 −
∏n−1

j=0

qH2
−j−1

qH2
−j

= 1 −
qH2

−n

qH2
. Assigning IDj to the integer

Nk out of w possible is about 1
w

−
qH2

−n

wqH2
, which yields a total probability that A does

not abort of > a0/(w4) − a0(qH2
− n)/(w4qH2

) as demanded.

4.5 Summary

Chapter 4 presented the security proofs of the proposed scheme. The security of the

key agreement protocol was proven in both scenarios; in the single ID-PKG case as well

as in the multiple ID-PKG case. For a key agreement scheme it is sufficient to prove the

case of two involved ID-PKGs, since a key agreement always only takes place between

two participants. For the proof, the Canetti-Krawczyk Model was used; it is one of the

standard models to define the requirements for a secure and authenticated key agree-

ment protocol. If there is an attacker that successfully breaks the SSF protocol with

non-negligible probability, it was shown that this is sufficient to construct a scenario

where this attacker can be used as a subroutine to break the computational Diffie-

Hellman assumption or the RSA assumption. This is contradictory to the common

believe that these two problems can not be solved in non-negligible time.

For the proof of the proposed signature scheme, an adaptive adversary was taken, which

tries to forge a signature for an arbitrary identity. Three cases were distinguished: A

single signature with one ID-PKG, a multi-signature with one ID-PKG and a multi-

signature with multiple ID-PKGs. In all three cases, it was shown via reduction that

an adversary that can forge a signature with non-negligible probability is also able to

break the RSA assumption with non-negligible probability.





5 Related Attacks

”Human ingenuity cannot concoct a cipher which

human ingenuity cannot resolve.”

Edgar Allan Poe

5.1 Introduction

In this chapter, attacks that are related to the presented scheme are discussed. These

attacks do not apply to the presented scheme directly (note that its security was already

proven in the CK-Model), but to common extensions that could be applied to the

presented scheme. The first attack applies when the modulus is changed from N = PQ

to N = PQ2e. This attack is connected with the Φ-Hiding assumption. The second

attack is about Secret Sharing Schemes. Such schemes are used to distribute a secret

among a set of users who are not allowed to get the knowledge about the entire secret,

but only parts of it. Boneh and Franklin [22] proposed an approach to generate the

identity keys of each user to reduce the key escrow problem. In this chapter, it will

be shown that some of these secret sharing schemes are insecure when using them to

share the integer ϕ(N), which would be exactly the case when applying this approach

to the presented scheme.

The results of the attacks are described in [104] and [105].

5.2 The Φ-Hiding Assumption

In Chapter 4, the security of the proposed scheme regarding existing models from the

literature was proven. It was shown that SSF is a secure and authenticated key agree-

ment protocol and is secure against existential forgery on adaptively chosen message

67
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and ID attacks.

However, there are also other ways to weaken the scheme, e.g., by getting information

about the identity keys, that is by learning something about the integer ϕ(N). A related

assumption is the Φ-Hiding assumption, as defined by Cachin, Micali and Stadler[27].

It is about the difficulty to decide if a given integer is a divisor of ϕ(N) or not, where N

is a number whose factorization is unknown (and cannot be computed). The security

of several cryptosystems is based on the presumed difficulty of solving this problem

[26, 49, 50, 61].

The Φ-Hiding assumption is a stronger assumption than the integer factorization prob-

lem and it looks on the first sight pretty clear to be secure as long as the IFP resists

cryptanalysis. The IFP states that ϕ(N) is hard to compute if N is a larger integer;

the PHA states that ϕ(N) is not only hard to compute, but it is already infeasible to

decide if a given integer is a factor of ϕ(N) or not. Obviously, their exists a trivial

case, namely the integers 1 and 2 will always divide ϕ(N) and are thus excluded from

this assumption.

In the sequel it is shown that this glance of the PHA is wrong. It will be shown that,

despite the factorization of N is unknown, there can be gained information about ϕ(N)

if N is of the form N = PQ2e, where P, Q > 2 are primes, e > 0 is an integer and

P hides the prime in question. This information can lastly help to break the PHA

under the named circumstances. Moduli of the form N = PQ2e are not exceptional or

abnormal. These moduli are called Multi-Power RSA moduli and are used to speed up

cryptographic operations. Boneh [22] illustrates in a short survey the speedup when

using this kind of integers. In addition, it will be shown that if the PHA is instantiated

that a random composite integer is hidden instead of a prime, the probability of choosing

the integer that divides ϕ(N) reaches 99% if the integer has at least 7 prime factors.

In Chapter 2, the PHA was defined in its special form. Next, the PHA is redefined, once

in its plain version and once in the same way as in Section 2 for a better comparability.

The first definition illustrates the computational problem the assumption is based on.

Definition 5.2.1 (Φ-Hiding assumption (1)) Given an integer N with unknown

factorization, it is computationally hard to decide whether a prime pi with 2 < pi <<

N1/4 divides ϕ(N) or not.1

1Following the remarks of the original paper of Cachin, Micali and Stadler [27], N can be efficiently
factored when a prime > N1/4 of ϕ(N) is known, thus the Φ-Hiding assumption asks for very small
primes. Even if it is known which small primes pi divide ϕ(N), if log pi is significantly smaller
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The second definition represents a special case of the assumption, since it is assumed

that exactly one of two given integers divides ϕ(N).

Definition 5.2.2 (Φ-Hiding assumption (2)) Let p1 > 2 and p2 > 2 be two ran-

dom, small primes and N be an integer that is constructed such that exactly one of

these two primes divides ϕ(N). Then for any probabilistic polynomial time adversary

A , the advantage function, if pb divides ϕ(N), b ∈ {1, 2}

AdvPHA
A =

∣∣∣∣Pr[A(N, p1, p2) = b] −
1

2

∣∣∣∣ ,

is negligible.

In cryptographic protocols, Definition 5.2.2 of the Φ-Hiding assumption is used, since

in this case some previous knowledge is involved (i.e. which of the two primes divides

ϕ(N)), that can be used to create a necessary backdoor for asymmetric cryptography.

To the best of our knowledge, this is the first attack on the Φ-Hiding assumption until

now.

5.3 The Φ-Hiding Assumption Revisited

The Φ-Hiding assumption is only valid when it is applied to a composite number that

cannot be completely factored in feasible time, since otherwise it would be trivial to

decide whether a prime divides ϕ(N) or not. The proposed approach to decide whether

a prime divides ϕ(N) for a composite number N uses the Jacobi symbol. Furthermore,

a particular 2k-th root of unity is used to show that the values of the Jacobi symbol

are related to factors of ϕ(N), and that the Jacobi symbol adopts non-random values

when the evaluated integer r is a divisor of ϕ(N). Thus, the novel idea to use the

existence and the non-existence of 2k-th roots of unity in finite fields/rings allows to

gain knowledge about the divisors of ϕ(N), which in some cases can be used to make

the decision whether a given integer divides ϕ(N) or not. These results will be used

to show that the Φ-Hiding assumption as defined by Cachin, Micali and Stadler [27] is

not valid when applied to a modulus N = PQ2e, where P, Q > 2 are primes, e > 0 is

an integer and P hides the prime in question.

Next, the first Lemma 5.3.1 is defined, which is central for the approach:

than (log N)c, for a constant c between 0 and 1, N cannot be factored significantly faster.
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Lemma 5.3.1 Let ξ2k be any fixed primitive 2k-th root of unity and k ∈ N+, then:

i1−k
k−1∏

j=1

(
ξ

j
2k − ξ

−j
2k

)
= k (5.1)

Proof 5.3.2 (of Lemma 5.3.1) The polynomial f(X) = (Xk − 1)/(X − 1) = Xk−1 +

Xk−2 + ... + 1 has ξ
j
k for j = 1, ...,k − 1 as its roots, where ξk is any fixed primitive

kth root of unity. Writing f(X) in factored form f(X) =
∏k−1

j=1 (X − ξ
j
k), we obtain

f(1) =
∏k−1

j=1 (1 − ξ
j
k) = k. Since

i1−k
k−1∏

j=1

(ξ
j
2k − ξ

−j
2k) = i1−k

k−1∏

j=1

ξ
j
2k

k−1∏

j=1

(1 − ξ
−j
k ) = i1−kk

k−1∏

j=1

ξ
j
2k (5.2)

and since
∏k−1

j=1 ξ
j
2k = ξ

(k−1)k/2
2k = ξk−1

4 = ik−1, the product i1−k
∏k−1

j=1 ξ
j
2k vanishes

and we get

i1−k
k−1∏

j=1

(ξ
j
2k − ξ

−j
2k) = k (5.3)

which proves the lemma. �

The (k − 1) terms, covered by the product symbol in equation (5.1), can be rewritten

such that it contains a large square:

Lemma 5.3.3 (Square Lemma) Let k ∈ Z+ and k > 2. Then:

1. If k is odd:

k−1∏

j=1

(
ξ

j
2k − ξ

−j
2k

)
=

(k−1)/2
∏

j=1

(
ξ

j
2k + ξ

k−j
2k

)2

(5.4)

2. If k is even:

k−1∏

j=1

(
ξ

j
2k − ξ

−j
2k

)
= 2i

(k−2)/2
∏

j=1

(
ξ

j
2k + ξ

k−j
2k

)2

(5.5)

Proof 5.3.4 (of Lemma 5.3.3)

1. k is odd: Since k is odd, the jth and the (k − j)th factor for 1 6 j 6 k − 1 can be

paired. The result is:

(ξ
j
2k − ξ

−j
2k) · (ξk−j

2k − ξ
−(k−j)

2k ) = (ξ
j
2k − ξ

−j
2k) · (ξk−j

2k + ξ
j
2k)
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= ξ
j
2kξ

k−j
2k + ξ

j
2kξ

j
2k − ξ

−j
2kξ

k−j
2k − ξ

−j
2kξ

j
2k = −1 + ξ

2j
2k − ξ

k−2j
2k − 1

= ξ
2j
2k − 2 − ξ

k−2j
2k = ξ

2j
2k − 2 + ξk

2kξ
k−2j
2k

= ξ
2j
2k − 2 + ξ

2(k−j)

2k = (ξ
j
2k + ξ

k−j
2k )2

The pairing contains a square. Since k − 1 is even, no term is left and a product of

(k − 1)/2 squares is generated, which proves the case for odd values of k.

2. k is even: Since k is even, the jth and the (k − j)th factor for 1 6 j < k/2 and

k/2 < j 6 k − 1 can be paired, which leads to the same terms as in case 1. The

difference is that the factor
(
ξ

j
2k − ξ

−j
2k

)
with j = k/2 remains. For this factor,

ξ
k/2
2k − ξ

−k/2
2k = (−1)1/2 − (−1)−1/2 = i − i−1 = i(1 − 1/i2) = 2i, which proves the

case for even values of k. �

By Lemma 5.3.3, the product in equation (5.1) is transformed to a product with a

perfect square and the factor i1−k (k odd) and 2i2−k (k even), respectively. Square

numbers play an important role in cryptography, just when operating in a ring ZN,

with N of unknown factorization. Computing square roots is a one-way function in such

rings, even more, to decide if an integer actually has a square root is already infeasible.

However, cryptologists have access to the Jacobi symbol that decides for some integers

correctly if they have a square root in the ring or not, even if the factorization is

unknown. Integers that are already a square number, like the developed term in the

lemma above, are thus ignored by the Jacobi-symbol since they have already an integer

square root in Z, which make the Jacobi symbol always equal to one.

5.3.1 Application to Finite Fields and Rings

In this section, the results are applied to finite fields FP with P being a prime number.

It is distinguished between two cases. In the first case, it is assumed that a ξ2k ∈ FP

does not exist, and in the second case, it is assumed that a ξ2k ∈ FP exists.

5.3.1.1 Case 1: A ξ2k ∈ FP does not exist.

In this case, it is assumed that FP does not contain a 2k-th root of unity. As a conse-

quence, there is no integer of order 2k and thus the factors
(
ξ

j
2k + ξ

k−j
2k

)
are not defined

properly in FP. Thus, it cannot be assumed that the product
∏(k−1)/2

j=1

(
ξ

j
2k + ξ

k−j
2k

)2
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forms a valid square in FP and vanishes from the Jacobi symbol. The integer k, which

nevertheless exists, has no defined counterpart on the left side of equation 5.1. In this

case, JP(k) cannot be distinguished from a random coin flip between 1 and −1.

5.3.1.2 Case 2: A ξ2k ∈ FP exists.

This leads to the fact that the square
∏(k−1)/2

j=1

(
ξ

j
2k + ξ

k−j
2k

)2

obtained from Lemma

5.3.3 is valid in FP, since each ξ2k is defined properly. Therefore, equation (5.1) can be

written as a well defined congruence in FP. Corollary 5.3.5 shows the outcome when

the Jacobi symbol is applied to this congruence and the square obtained from Lemma

5.3.3 is inserted.

Corollary 5.3.5 Let P be an odd prime number, k ∈ FP. Assume that a ξ2k ∈ FP

exists, then:

1. If k is odd:

JP


(−1)(1−k)/2

(k−1)/2
∏

j=1

(
ξ

j
2k + ξ

k−j
2k

)2


 = JP((−1)(1−k)/2) = JP(k) (5.6)

2. If k is even:

JP


2(−1)1−k/2

(k−2)/2
∏

j=1

(
ξ

j
2k + ξ

k−j
2k

)2


 = JP(2(−1)1−k/2) = JP(k) (5.7)

After the square has vanished from the Jacobi symbol, a simple congruence is left.

This congruence indicates a relationship between the value of the Jacobi symbol and

the divisors of ϕ(P), because Corollary 5.3.5 is only valid if 2k divides ϕ(P). Again, this

implicitly shows that it is important to distinguish between the two cases of divisibility

introduced above, since the square vanishes only if it is defined properly. Otherwise,

the Jacobi symbol of an arbitrary integer k would always be equal to JP((−1)(1−k)/2)

or JP(2(−1)1−k/2), respectively, which obviously is wrong.

Example: Let P = 31 with ϕ(31) = 30. By setting k = 5 due to (2 · 5)|30, there

must be an integer of order 10, e.g. 23 or 15. It does not matter which of them

is chosen here, since it disappears after applying the Jacobi symbol. Now, calculate

(−1)(1−5)/2 = (−1)−2 = 1. Since k is odd, J31((−1)(1−5)/2) = J31(1) = J31(5) must

hold, which is true since both sides are equal to 1.
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Next, a theorem is stated that describes the relationship between JP(k) and ξ2k.

Theorem 5.3.6 Let P be an odd prime number, k ∈ FP. JP(k) and the divisors of

ϕ(P) are connected via following implications:

1. If k is odd, then:

If ξ2k ∈ FP exists ⇒ JP((−1)(1−k)/2) = JP(k).

If JP((−1)(1−k)/2) 6= JP(k) ⇒ ξ2k ∈ FP does not exist.

2. If k is even, then:

If ξ2k ∈ FP exists ⇒ J
(
2(−1)1−k/2

)
= JP(k).

If J
(
2(−1)1−k/2

)
6= JP(k) ⇒ ξ2k ∈ FP does not exist.

Proof 5.3.7 (of Theorem 5.3.6)

The proof of the theorem follows directly from Corollary 5.3.5. �

Theorem 5.3.6 indicates that either a divisor k of ϕ(P) must be known to conclude that

the corresponding Jacobi symbols JP(k) and JP((−1)(1−k)/2) (or J
(
2(−1)1−k/2

)
) are

equal, or it must be tested whether the two Jacobi symbols JP(k) and JP((−1)(1−k)/2)

(or J
(
2(−1)1−k/2

)
) are different in order to get the information that k cannot be a

divisor of ϕ(P). In the two other cases, no information can be obtained. The reason is

that either the kth root of −1 is not defined, or from the equality of the Jacobi symbols

it cannot be concluded that k divides ϕ(P).

To summarize, if 2k divides ϕ(P), the Jacobi symbol of k adopts non-random values.

Furthermore, Corollary 5.3.5 shows that the resulting congruences JP((−1)(1−k)/2) ≡
JP(k) and JP(2(−1)1−k/2) ≡ JP(k) for odd and even values of k are independent of the

chosen ξ2k. Thus, it is only essential that a ξ2k exists in FP, but it is not necessary to

know them.

5.3.2 Leakage Corollaries

In this section, tables for special composite integers N are presented that contain the

values the Jacobi symbol must adopt to leak information about the divisors of ϕ(N).

For composite integers N with unknown factorization, the order of an arbitrary integer

a is not known, but one can compute the Jacobi symbol JN(a). Thus, only the first
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implication of item 1 and and the second implication of item 2 of Theorem 5.3.6 can

be used. For clarity, the following Corollary divides these items further with respect to

different residue classes of a prime P and an integer k.

Corollary 5.3.8 (Leakage Corollary for prime numbers) Let P be an odd prime

number, k ∈ FP. In any of the following six cases, there does not exist a ξ2k ∈ FP.

If P ≡ 1 (mod 4):

If k is odd: If JP

(
i1−k

)
= 1 6= −1 = JP(k).

If k is even: If JP

(
2i2−k

)
= (−1)(p2−1)/8 6= JP(k).

If P ≡ 3 (mod 4):

If k ≡ 0 (mod 4): If JP

(
2(−1)1−k/2

)
= (−1)(P2+7)/8 6= JP(k).

If k ≡ 1 (mod 4): If JP

(
(−1)(1−k)/2

)
= 1 6= JP(k).

If k ≡ 2 (mod 4): If JP

(
2(−1)1−k/2

)
= (−1)(P2−1)/8 6= JP(k).

If k ≡ 3 (mod 4): If JP

(
(−1)(1−k)/2

)
= −1 6= JP(k).

The Corollary states which two Jacobi symbols must differ to be sure that the integer

k is not a divisor of ϕ(P). Thus, in some cases, the access to the Jacobi symbol

is sufficient to decide whether a prime divides P − 1 or not. Next, the Corollary is

extended to composite integers N being the product of two distinct prime numbers P

and Q. This leads to the tables shown in Figure 5.1.

The tables must be read in the following way: The four tables handle the four different

residues of k modulo 4. Furthermore, the first two tables (horizontal direction) show

the 64 combinations of the 8 different residues of P and Q modulo 16 (P, Q > 2) for

even residues of k. The third tables was reduced to one a single row since it contains

64 values of −1. The fourth table shows the 64 combinations of the 8 different residues

of P and Q modulo 16 (P, Q > 2) for k ≡ 3 (mod 4). The entries for each combination

of P and Q illustrate which value of the Jacobi symbol JN(k) reveals that there is no

integer of order 2k for at least one of the primes P and Q. For example, the first entry of

−1 in the upper left table represents the case k ≡ 0 (mod 4) and P ≡ Q ≡ 1 (mod 16).

Applying Corollary 5.3.8 to this combination yields JP

(
2i2−k

)
= JQ

(
2i2−k

)
= 1. The

corresponding table entry of −1 shows that JN(k) must be −1, therefore at least for

one of the primes P or Q, there is no integer of order 2k.

The conclusion is too weak to obtain knowledge regarding the Φ-Hiding assumption,

since φ(N) could still be divisible by 2k. Some integers, even with unknown factoriza-
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Q \ P

k=0+4s 1 3 5 7 9 11 13 15

1 -1 -1 +1 +1 -1 -1 +1 +1

3 -1 -1 +1 +1 -1 -1 +1 +1

5 +1 +1 -1 -1 +1 +1 -1 -1

7 +1 +1 -1 -1 +1 +1 -1 -1

9 -1 -1 +1 +1 -1 -1 +1 +1

11 -1 -1 +1 +1 -1 -1 +1 +1

13 +1 +1 -1 -1 +1 +1 -1 -1

15 +1 +1 -1 -1 +1 +1 -1 -1

Q \ P

k=2+4s 1 3 5 7 9 11 13 15

1 -1 +1 +1 -1 -1 +1 +1 -1

3 +1 -1 -1 +1 +1 -1 -1 +1

5 +1 -1 -1 +1 +1 -1 -1 +1

7 -1 +1 +1 -1 -1 +1 +1 -1

9 -1 +1 +1 -1 -1 +1 +1 -1

11 +1 -1 -1 +1 +1 -1 -1 +1

13 +1 -1 -1 +1 +1 -1 -1 +1

15 -1 +1 +1 -1 -1 +1 +1 -1

Q \ P

k=1+4s 1 3 5 7 9 11 13 15

* -1 -1 -1 -1 -1 -1 -1 -1

Q \ P

k=3+4s 1 3 5 7 9 11 13 15

1 -1 +1 +1 -1 -1 +1 +1 -1

3 +1 -1 +1 -1 +1 -1 +1 -1

5 -1 +1 +1 -1 -1 +1 +1 -1

7 +1 -1 +1 -1 +1 -1 +1 -1

9 -1 +1 +1 -1 -1 +1 +1 -1

11 +1 -1 +1 -1 +1 -1 +1 -1

13 -1 +1 +1 -1 -1 +1 +1 -1

15 +1 -1 +1 -1 +1 -1 +1 -1

Figure 5.1: The Jacobi-symbol JPQ(k) for different residues of P and Q modulo 16.

tion, allow to obtain more information about the divisors of ϕ(N). These are integers

of the form N = PQ2e, since one of the two involved primes is a square, which is ig-

nored by the Jacobi symbol. In this way, the Jacobi symbol leaks information about

the other prime involved. If N has the form N = PQ2e, then for the Jacobi symbol and

a co-prime integer k > 2, JN(k) = JPQ2e(k) = JP(k) · JQ(k)2e = JP(k).

Using this fact, the tables displayed in Figure 5.2 show the values the Jacobi symbol

JN(k) must adopt such that 2k does not divide ϕ(P).

Example: Suppose N = 1323801442080750176044871 and N is of the form N = PQ2e,

e > 0. Suppose one wants to test whether k = 41 divides P − 1. Since k ≡ 1 (mod 4),

the third table must be used. Thus, JN(41) = −1. The table shows that whenever the

Jacobi symbol of k is negative, k can not divide P − 1.

Q \ P

k=0+4s 1 3 5 7 9 11 13 15

* -1 -1 +1 +1 -1 -1 +1 +1

Q \ P

k=2+4s 1 3 5 7 9 11 13 15

* -1 +1 +1 -1 -1 +1 +1 -1

Q \ P

k=1+4s 1 3 5 7 9 11 13 15

* -1 -1 -1 -1 -1 -1 -1 -1

Q \ P

k=3+4s 1 3 5 7 9 11 13 15

* -1 +1 -1 +1 -1 +1 -1 +1

Figure 5.2: The Jacobi-symbol JPQ2e(k) for different residues of P and Q modulo 16.
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In the next section, the last two tables are used to invalidate the Φ-Hiding assumption

when using moduli of the form N = PQ2e and choosing P to hide the prime number in

question.

5.3.3 Application to the Φ-Hiding Assumption

In both Definitions 5.2.1 and 5.2.2, it is only required that N is a composite integer

with unknown factorization. By applying the results from the previous sections, it will

be shown that this requirement is not sufficient. If the PHA is applied to a modulus

of the form PQ2e, where the integer P is constructed in such a way that P hides a

given prime, then the Φ-Hiding assumption is violated with non-negligible probability.

Moduli of this form, mostly with e = 1, are used by several cryptographic protocols,

as described by Boneh and Shacham [22] and used, e.g., by Poupard and Stern [101],

to speed up some computations that profit from the form PQ2e with e > 0 instead of

PQ. Using the results of the previous sections, the following theorem can be stated:

Theorem 5.3.9 Let N = PQ2e and suppose that P hides p. Then, the Φ-Hiding

assumption from Definition 5.2.2 can be violated. An attacker can choose the hidden

prime with an advantage of

AdvPHA
A =

∣∣∣∣Pr[A(N, p1, p2) = b] −
1

2

∣∣∣∣ =
1

4
,

which is non-negligible.

The following notation is used: N is again of the form N = PQ2 and T(N, k) is the

value of the corresponding table entry of Figure 5.2.

Proof 5.3.10 (of Theorem 5.3.9) Suppose that either p1 or p2 divides ϕ(N) and

an attacker has to decide which of them divides ϕ(N). Without loss of generality, we

assume that p1 is the prime that is hidden by P. For this prime, JN(p1) 6= T(N, p1)

holds, because it divides P − 1 (see Theorem 5.3.6). Thus, the attacker will find at least

one matching Jacobi symbol concerning the primes p1 and p2. From the attackers point

of view, the probability that a prime pi, i ∈ {1, 2} divides ϕ(N) is

Pr[ϕ(N) ≡ 0 (mod pi)] =







0, JN(pi) = T(N, pi)

1, JN(pi) = T(N, pi)

1
2 , JN(pi) = JN(pi)

(5.8)
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where pi denotes the other one of the two primes. Note the factorization of N is not

needed to construct the tables in Figure 5.2. They are universally valid for moduli of the

form N = PQ2e and thus known to the attacker. Whenever the Jacobi symbol JN(pi)

is equal to T(N, pi), Theorem 5.3.6 states that pi cannot be a divisor of ϕ(N), thus

the probability is Pr[ϕ(N) ≡ 0 (mod pi)] = 0. Consequently, the Jacobi symbol JN(pi)

must be not equal to T(N, pi), which indicates that it is the hidden prime. If both Jacobi

symbols do not match the table entry, no information is leaked and the attacker cannot

argue in any direction. Thus, in this case the probability is Pr[ϕ(N) ≡ 0 (mod pi)] = 1
2 .

Since the primes pi are chosen randomly, it can be assumed that the Jacobi symbol

JN(p2) adopts random values of −1 and +1. The calculation of the total probability

for the attacker to choose the hidden prime correctly is as follows: Whenever a Jacobi

symbol evaluates to a value unequal to the table entry, it cannot be the prime that is

hidden by P, so the attacker chooses the other one, the hidden one, with a probability of

1. When both Jacobi symbols evaluate to 6= T(N, ·), the attacker chooses the right one

with a probability of 1
2 . Thus, in total there is an average probability of 1

2 · 1 + 1
2 · 12 = 3

4

to choose the correct prime, which proves Theorem 5.3.9. �

Composite Integers. The situation is even worse when the Φ-Hiding assumption is

used with composite integers n1 and n2 instead of the primes p1 and p2, as done, for

example, by Gentry et al. [49]. Assume that there is a modulus of the form N = PQ2

and one wants to determine whether the composite integer ni, which is the product of

m distinct primes greater than 2, divides ϕ(N). Suppose the Jacobi symbol is applied

and the result does not allow to decide whether ni divides ϕ(N) or not. In this case,

it can be proceeded with the prime factors of ni. Since ni is
∏m

j=1 pj, the Jacobi

symbol can simply be evaluated for all of its prime factors. If there is a prime pj with a

Jacobi symbol that leaks the required information, it can be concluded that ni cannot

divide ϕ(N), since from ni|ϕ(N) it follows that pj|ϕ(N) must also hold. If the integers

in question consist only of 7 prime numbers, there already is a success probability of

≈ 99% to choose the right integer.

Corollary 5.3.11 If n1 =
∏l1

j=1 pj and n2 =
∏l2

j=1 qj are two random, composite

integers that are odd and square free Let N = PQ2e and suppose that P hides n1. Then,

the Φ-Hiding assumption from Definition 5.2.2 can be violated. An attacker can choose

the hidden integer with an advantage of

AdvPHA
A =

∣∣∣∣Pr[A(N, n1, n2) = b] −
1

2

∣∣∣∣ =
1

2
−

1

2l2+1
,

which is non-negligible.
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l1 = l2 1 2 3 4 5 6 7

0.5 0.75 0.875 0.938 0.969 0.984 0.992

Table 5.1: Success Probability

Proof 5.3.12 Let n1 =
∏l1

j=1 pj and n2 =
∏l2

j=1 qj be two odd, square free integers. If

N = PQ2e and exactly one of the two integers n1 and n2 divides ϕ(N), the probability

to choose the right one of the two possibilities is as follows. The case l1 = l2 = 1 was

already addressed in the paper; it has a success probability of 3
4 . Note that if ni|ϕ(N),

then also each divisor of ni is a divisor of N. Thus, if we find a divisor of ni that does

not divide ϕ(N), we can conclude that ni is not the integer hidden by ϕ(N). Since the

same argument applies to all divisors that are prime numbers, it is sufficient to check

all prime factors of ni whether they are divisors of ϕ(N) or not.

Without loss of generality, we assume that n1 is the integer hidden by ϕ(N). For each

of its l1 prime factors pi, JN(pi) 6= T(N, pi) must hold. For the other integer n2,

it follows that for each of its l2 prime factors qi it holds with a probability of 1
2 that

JN(qi) 6= T(N, qi) and with a probability of 1
2 that JN(qi) = T(N, qi). Whenever

the first case occurs, no knowledge is gained. But whenever the latter case occurs, the

information that n2 cannot be a divisor of ϕ(N) is gained, so n1 is the hidden number.

The method fails if for all prime factors JN(qi) 6= T(N, qi) is obtained, which occurs

with a probability of
∏l2

i=1 Prob[JN(qi) 6= T(N, qi)] = 1
2l2

. Thus, the success probability

of choosing the right integer is (1 − 1
2l2

). �

Table 5.1 illustrates the success probability of choosing the right prime for different

numbers of prime factors.

5.4 Secret Sharing Schemes for ϕ(N)

Secret Sharing Schemes allow to distribute a secret among a set of users. Each user

receives part of the secret from a trusted dealer. The entire secret can only be recon-

structed if all participating users collaborate. If already a subset of users is sufficient

to reveal the secret, the scheme is called a Threshold Secret Sharing scheme. More

precisely, a scheme that allows t out of n users to reconstruct a secret, but not t − 1 or

less, is called a (n, t) threshold scheme.

The first practical secret sharing schemes were invented by Shamir [115] and Blakley

[13], both in 1979. Shamir proposed to use a polynomial of degree t − 1, say f(x) =
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s+
∑t−1

j=1 ajx
j, to share a secret s. In this case, the private part received from the dealer

is a function point (x, f(x)) for a random value x. Only if at least t users collaborate, the

function f can be reconstructed completely, e.g. by using the Lagrange interpolation

method. After reconstruction, the computation of f(0) = s finally reveals the secret

to all participating users. The approach of Blakley is based on the intersection of

n-dimensional hyperplanes. Whenever n n-dimensional and non-parallel hyperplanes

intersect, they define a single point that is the hidden secret. Other secret sharing

systems are based on the Chinese Remainder Theorem: the secret sharing scheme

proposed by Mignotte [86] and the secret sharing scheme proposed by Asmuth and

Bloom [6]. In both schemes, the secret integer s or a derivation of it is reduced modulo

several co-prime integers. The emerging residues are the partial secrets distributed to

each participating user. According to the definition of the CRT, these residues are

sufficient to reconstruct the entire secret if a sufficient number of users collaborate.

The problem of any secret sharing system is that once the secret has been revealed, i.e. t

or more users have decided to collaborate, the partial secrets are revealed, even those of

the users that did not participate in the collaboration. Thus, the system must be reset

and the dealer has to distribute new partial secrets. In some situations, this is quite

inefficient, e.g. when the shared secret is a signing key and the system collapses each

time a single signature is issued. Secret sharing schemes that overcome this problem

are called Function Sharing Schemes. These schemes allow sharing a function, e.g. a

signing function, among a set of users. The secret is shared among the users using a

standard secret sharing scheme. Using the partial secret as the input for the shared

function makes it inaccessible for others and allows users to conjointly create a signature

without having to reveal their partial secret.

When the secret shared among a set of users using a secret sharing scheme is a truly

random object, e.g. a string generated by a secure random number generator, combined

parts of the secret should not reveal any information about its missing components.

However, if the secret satisfies certain properties, this property cannot be guaranteed

even if less than the required t users collaborate. For example, this is the case when

the shared secret is the private integer d of the Rivest-Shamir-Adleman (RSA) [102]

encryption system, satisfying the equation ed = 1+ϕ(N)k, where ϕ(·) is Euler’s totient

function, i.e. the number of positive integers less than or equal to N that are coprime to

N. It has been shown that even partial information about the integer d is sufficient to

reconstruct the entire integer d in polynomial time. These attacks are called partial key

exposure attacks [45, 18, 14] and are based on the leakage of the most or least significant

bits of the private integer d that can be obtained, for example, by side-channel attacks.
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The leaked bits allow an adversary to generate an approximation of the actual integer

d that gets more precise when more bits are leaked. Under certain conditions, the

approximation and the public knowledge of the equation ed = 1 + ϕ(N)k are sufficient

to reconstruct the entire integer d. In a secret sharing scheme, each partial secret of a

user can be viewed as an approximation of the secret. If users start to collaborate and

start to combine their partial secrets, they get a better approximation that gets more

precise as more users collaborate.

Boneh and Franklin [22] proposed to use a threshold-based approach to forfeit the

abilities of an ID-PKG. If the ID-PKGs master keys are distributed across several ID-

PKGs, no single instance gets into the knowledge of a users identity key. This clearly

eliminates the drawback that someone else knows a private key, however it creates

additional overhead and the need for new infrastructure. If their approach is applied

to the SSF system, the integer ϕ(N) is the secret that needs to be distributed.

In this section, it is demonstrated that at a certain point the approximation by malicious

ID-PKGs is sufficient to recover the entire secret, which contradicts the definition of

a secure (n, t) threshold secret sharing scheme. To the best of our knowledge, partial

key exposure attacks against threshold sharing schemes have not been studied in the

literature yet. The main contribution is to show that if the secret sharing scheme of

Mignotte is used to share the secret key d of an RSA encryption system, as proposed

by Iftene and Grindei [65], the secret can be revealed in polynomial time even with less

than t users. An adversary who controls h users (h < t) can reconstruct the entire

secret under the condition that the term (t−h)/t is smaller than an upper bound that

only depends on the size of d. For this purpose, the lattice-based reduction results,

obtained by the analysis of partial key exposure attacks [45], are used. Furthermore,

it is shown that the original definition of the secret sharing scheme of Asmuth and

Bloom does not necessarily lead to a secure system. In particular, it is demonstrated

that two of the three systems proposed by Kaya and Selcuk [67, 68] are insecure if

an involved random integer is not sufficiently large. Additionally, it is shown that the

secret sharing scheme of Asmuth and Bloom is not further vulnerable to lattice-based

reduction attacks.



81 5.5. THE SECRET SHARING SCHEME OF ASMUTH AND BLOOM

5.5 The Secret Sharing Scheme of Asmuth and Bloom

The secret sharing scheme proposed by Asmuth and Bloom is based on the Chinese

Remainder Theorem. Informally, it utilizes the randomness that occurs if a random

integer, say w, is reduced modulo certain integers mi (1 6 i 6 n). The generated

residues are the partial secrets for the participating users. The CRT guarantees that

if all mi are pairwise co-prime, the integer w can be reconstructed from the residues

uniquely. The following definition shows the steps executed during the Asmuth and

Bloom sharing phase.

Definition 5.5.1 (Sharing in the Asmuth-Bloom scheme) To share a secret s

among a set of n participants in the secret sharing scheme of Asmuth and Bloom,

the dealer does the following:

1. He choses a set of n + 1 pairwise relative prime integers m0 < m1 < ... < mn

with M =
∏t

i=1 mi and:

M > m0

t−1∏

i=1

mn−i−1 (5.9)

2. He computes w with 0 6 w = s+m0 ·A < M, where A is chosen randomly from N.

3. He computes the part of the secret of the i-th user by wi ≡ w (mod mi)

Definition 5.5.1 is the original definition of the Asmuth and Bloom sharing phase. In

this form, it is used in several protocols. Next, the definition for the reconstruction of

the secret is presented.

Definition 5.5.2 (Reconstruction in the Asmuth-Bloom scheme) Let S be a set

of t collaborating users and let Mt,S =
∏

i∈S mi be the product of the corresponding

modulo values. Furthermore, Ii
Mt,S

mi
≡ 1 (mod mi), i ∈ S. To reconstruct a secret s in

the secret sharing scheme of Asmuth and Bloom, each user computes:

1. ui ≡ wiIi
Mt,S

mi
(mod Mt,S)

The trusted combiner collects all values ui and computes:

1. w =
∑

i∈S ui (mod Mt,S)
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2. s ≡ w (mod m0)

The reconstruction can also be invoked with less than t users, which yields an approx-

imation of the secret s. Such an approximation can always be used to write

w = ŵ + Mh,Sv (5.10)

where ŵ is the approximation, Mh,S is the product of the moduli values of the collab-

orating users and v is some unknown integer that is smaller, the more users collaborate

(v = 0, if h = t). The equation follows directly from the reconstruction definition of

the CRT.

The next sections contain attacks to the secret sharing scheme of Asmuth and Bloom

as defined above: (a) concerning the small random integer A (see Definition 5.5.1, Step

2), and (b) using lattice-based reduction.

5.5.1 Implications of the Small Random Integer A

Several protocols were invented during the last years that use secret sharing schemes

for different purposes. Recently, Kaya and Selcuk [67, 68], have proposed three robust

function sharing schemes that use the secret sharing scheme of Asmuth and Bloom to

distribute the partial secrets. The first function sharing scheme is a robust signature

system based on the RSA algorithm. The second and third function sharing schemes

are extension of their ideas to the Paillier encryption system [94] and the ElGamal

encryption system [43], respectively. In the next section, it is shown that Definition

5.5.1 of the secret sharing scheme of Asmuth and Bloom, also used by Kaya and Selcuk,

leads to an insecure function sharing scheme. The three function sharing schemes

proposed in these two papers are discussed and the weaknesses for two of them are

demonstrated. No lattice-base reduction methods are used for this purpose, but it is

shown that a straightforward computation can factor the entire modulus in the RSA

and Paillier cases if the integer A is too small.

The problem that can occur when A is too small is that not only w 6 M holds, but it

is also possible that w < Mh,S, where Mh,S is the product generated by the m values

hold by the attacker. Thus, the integer v in Equation 5.10 is zero. In this case, the

attacker obtains the secret w by simply invoking the reconstruction algorithm with h

users. The adversary can now use the integer w not only to break the function sharing
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scheme, but also to factor the used modulus. For the rest of the section it is assumed

that whenever an RSA integer N = pq is involved, it is a balanced RSA integer, which

means that both prime factors are of equal size. This property is one of the mandatory

features that makes an RSA integer more difficult to factor.

5.5.1.1 Threshold RSA Signatures

During the setup of the function sharing schemes proposed by Kaya and Selcuk [67, 68],

the authors suggest to set m0 = ϕ(N). Despite the original definition of the secret

sharing scheme of Asmuth and Bloom, they also require that m0 is kept secret, ”to

prevent the participating users to factor the public modulus N”. The secret integer

w is constructed by w = d + ϕ(N)A and A is chosen such that 0 6 w < M. y is

now a combination of three integers, all unknown to the participating users. If A is

not sufficiently large, such that w < Mh,S, an adversary can recover w. However, he

cannot use w directly to recover d or ϕ(N). But since the integer d is part of the

known equation ed = 1+ϕ(N)k, the adversary can use the recovered w and transform

the contained equation into the following equation:

W = ew − 1 = ed − 1 + eϕ(N)A = ϕ(N)(eA + k) (5.11)

Thus, after a multiplication with the RSA public integer e and a subtraction of 1, the

adversary obtains an integer W that is a multiple of ϕ(N). This integer W can now

be used to recover the factorization of N in probabilistic polynomial time using the

following well known algorithm:

Algorithm 23 Factoring using a multiple of ϕ(N)

Input: ϕ(N)A, N

Output: a factor of N

1. var← ϕ(N)A

2. while var is even

3. var← var/2

4. R
rand← ZN

5. r← Rvar (mod N)

6. if (N > g1 = gcd(r + 1, N) > 1) or (N > g2 = gcd(r − 1, N) > 1)
7. return max(g1, g2)

8. else goto 4.

The algorithm succeeds roughly with a probability of 1− 1
2l after l trials. Obviously, if w

can already be reconstructed by t−1 users, they can also already issue valid signatures.
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However, they are only able to reveal the partial secrets of the other (honest) users if

they factor the modulus. This can be done as described above, even if m0 is kept secret

to the dealer.

5.5.1.2 Threshold Paillier Signatures

Kaya and Selcuk have extended their ideas to Paillier’s encryption system [94]. Paillier’s

encryption system is also based on the integer factorization problem, but uses the

trapdoor to compute discrete logarithms in Z∗
N2 . The system makes use of the λ

function, defined as λ(N) = lcm(p− 1, q− 1), if N = pq, which makes λ(N) always less

than N. In this case, the authors construct the secret integer as w = λ + ϕ(N2)A =

λ + Nϕ(N)A. If the adversary obtains w because of a small chosen A and since

w < N < MS and N is public, the adversary can simply compute λ(N) = w (mod N)

and thus obtains λ(N), which can be used to factor N using Algorithm 23.

5.5.1.3 Threshold ElGamal Encryption

The third proposal of Kaya and Selcuk is an extension to the ElGamal encryption sys-

tem [43]. The ElGamal system is an encryption system based on the discrete logarithm

problem and is usually defined in Fp, for a suitable prime number p. In this case,

using the integer ϕ(p) as the dealer’s private m0 is useless, since p is a prime number

and thus ϕ(p) is equal to p − 1. As a workaround, the authors propose to again use

a composite modulus N, with factors p = 2p ′ + 1, q = 2q ′ + 1 and p, q, p ′, q ′ ∈ P.

The secret y is now constructed by w = α + 2p ′q ′A, where gα ≡ β (mod pq), with

(pq, β, g) public. In this case, α, 2p ′q ′ and A are unknown. No simple property, like

the RSA equation, can be used here. Despite the fact that the collaborating users can

issue signatures, there is no method to factor the modulus N in this case.

5.5.2 Lattice-Based Reduction and the Asmuth-Bloom Secret

Sharing Scheme

The main application area for lattice-based reduction in cryptography is to find roots

of polynomials. These roots can be, for example, the integer p + q of an RSA modulus

or even the plain text of an encryption scheme. The requirement to find these roots
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is that they are smaller than a certain upper bound that can be extracted out of the

lattice that is constructed using the coefficient vectors of the polynomial in question. To

get any new information from the constructed lattice, it has to be reduced to another

lattice with shorter vectors. Even if the challenge to find the shortest vector in a lattice

is NP-hard, a sufficiently short vector is often enough to find the roots in question.

Such short vectors can be found, for example, with the LLL-Algorithm [73] that runs

in polynomial time. The proper construction of a lattice is the key point for success,

so often not only the original polynomial is used for the construction, but even several

carefully chosen alterations of it. For more details on the application of lattice theory

in cryptography, the reader is referred to the papers of Coppersmith [37] and Coron

[38].

In the previous section, it was shown that if w < Mh,S, even a set of t − 1 (or even

less if A is sufficiently small) users can recover the entire secret. The reason is that the

original definition of the secret sharing scheme of Asmuth and Bloom does not require

the secret to be in a secure range (like Mignotte’s secret sharing scheme does), but only

to be smaller than M. In this section, it is assumed that this flaw is corrected and

w = d+ϕ(N)A is made sufficiently large by choosing an appropriate value for A. Note

that also here A cannot be arbitrarily large, since nevertheless w = d + ϕ(N)A < M

must hold, such that a set of t users can recover w in a unique way. Next, it is shown that

Asmuth and Bloom’s secret sharing scheme, in contrast to the secret sharing scheme of

Mignotte, is in this case almost secure against lattice-based reduction attacks based on

the approximation of w, despite the values t = 3 and t = 4 when an adversary controls

a set of t − 1 users (Mh,S = Mt−1,S) and thus gets the best possible approximation of

w.

After the secret w has been shifted into a sufficient size by means of choosing a larger

value for A, w is bounded by the following integers:

M > w = d + ϕ(N)A > Mt−1,S (5.12)

Since w is now larger than Mt−1,S, it cannot be completely revealed by less than t users,

but it can be approximated. This approximation can be written as w = ŵ + Mt−1,Sv.

Again, an adversary can utilize the relationship ed = 1 + ϕ(N)k, which enables him or

her to rewrite the approximation equation as (using ϕ(N) = N − (p + q − 1))

ew = 1 + N(eA + k) − (p + q − 1)(eA + k) = eŵ + eMt−1,Sv (5.13)
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To simplify the equation, Â = eA + k as well as R = eŷ − 1 is used. Furthermore, it is

x0 = v, y0 = Â, z0 = p + q − 1, which finally yields a function f of three unknowns

f(x, y, z) = eMt−1,Sx − Ny + zy + R (5.14)

with a root at f(x0, y0, z0). The arising monomials of the obtained function f(x, y, z)

match exactly those of the fLSB function defined by Ernst et al. [45]. Thus, their shift-

polynomials as well as their lattice can be used. Even though the monomials are equal,

the proportion among the variables differs in our case. Therefore, it is necessary to

define new upper bounds X, Y and Z for the three corresponding variables x,y and z.

The upper bound of x. From the inequality M > w = d + ϕ(N)A = ŵ + Mt−1,Sx0

it can be deduced that mt > M
Mt−1,S

>
(M−w)

Mt−1,S
> x0. Since from the basic requirement

of the secret sharing scheme of Asmuth and Bloom that
∏t

i=1 mi > m0

∏t−1
i=1 mn−i−1,

the mi values cannot be too different in size. This allows estimating the size of mt with

x < mt < M
1/(t−1)+ǫ

t−1,S = X, for some small value ǫ that depends on the gaps between

mi.

The upper/lower bound of y. For the upper bound Y for Â, we just write Y =

M
β
t−1,S > A and leave β unspecified in terms of t. Next, a lower bound for β is ap-

proximated. The requirement is that mnMt−1,S > d+m0A > Mt−1,S holds. Dividing

by m0 yields
mnMt−1,S

m0
>

d

m0
+ A >

Mt−1,S

m0
(5.15)

and since d < m0 = ϕ(N), it holds A >
Mt−1,S

m0
− 1 > M

(t−2)/(t−1)

t−1,S − 1, thus a lower

bound is obtained with β > (t − 2)/(t − 1).

The upper bound of z. The integer z0 is equal to z = N − ϕ(N) = p + q − 1. Since

it is assumed that N is a balanced RSA integer, z < 3
√

N < 3
√

2ϕ(N) < 5
√

ϕ(N).

Since the integer m0 is per definition (see Definition 5.5.1) less than any mi involved

in the product Mt−1,S, it follows that z < 5M
1/(2(t−1))

t−1,S = Z.

The three upper bounds can be substituted into the determinant inequality [45] which

yields

X1+3τY2+3τZ1+3τ+3τ2
6 W1+3τ (5.16)
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with W = max{eMt−1,SX, NY, YZ, R} > eMt−1,SX. After substituting the calculated

bounds, this turns into

M
(1+3τ)/(t−1)

t−1,S M
β(2+3τ)

t−1,S M
(1+3τ+3τ2)/(2(t−1))

t−1,S 6 M
(1+2/(t−1))(1+3τ)

t−1,S (5.17)

Using Ernst et al.’s [45] optimal value for τ = 1
2 −δ = 1

2 − 1
t−1 and solving the equation

to β yields a dependency of β and the number of malicious users (in this section fixed

to t − 1):

β 6
20t3 − 77t2 + 94t − 49

28t3 − 108t2 + 132t − 52
(5.18)

During the computation of the upper bound for y, it was also obtained a lower bound

for β depending on t: β > (t − 2)/(t − 1). Plugging this into the equation above yields

0 < β −
t − 2

t − 1
6

−8t3 + 59t2 − 118t + 55

28t3 − 108t2 + 132t − 52
(5.19)

which is fulfilled only for t = 3 and t = 4. In the case t = 3, β has to be between

5/8 = 0.625 and 0.5, and in the case t = 4, β has to be between 25/36 = 0.694 and

2/3, which are both possible combinations.

In this section, attacks against the secret sharing scheme of Asmuth and Bloom were

presented. The first attacks based on the small value A make a system using this

parameter insecure. However, this attack can easily be circumvented by choosing A

of sufficient size. The lattice-based reduction attacks are also of limited effect with

respect to the secret sharing scheme of Asmuth and Bloom, since the secret equation

w prevents the attacker from getting a better approximation of d.

5.6 The Secret Sharing Scheme of Mignotte

In this section, it is shown that Mignotte’s secret sharing scheme is much more vulnera-

ble against lattice-based reduction attacks and can be attacked whenever the number of

malicious users exceeds a bound that depends on the size of d. This difference between

Asmuth and Bloom’s secret sharing scheme and Mignotte’s secret sharing scheme oc-

curs in the sharing phase where the size of the involved integers as well as the partial

secret computation differs.
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Definition 5.6.1 (Sharing in Mignotte’s scheme) To share a secret s among a set

of n users in Mignotte’s secret sharing scheme, the dealer does the following:

1. He choses a set of n + 1 pairwise relative prime integers m0 < m1 < ... < mn

with M =
∏t

i=1 mi and:

M > s >

t−1∏

i=1

mn−i−1 (5.20)

2. He computes the part of the secret of the i-th user by si ≡ s (mod mi)

In the sharing phase, it is required that s lies in a secure interval. This requirement

prevents an adversary to apply the attacks presented in Section 5.5.1. No subset of less

than t users is able to generate the secret integer s. However, in contrast to the secret

sharing scheme of Asmuth and Bloom where the secret s in embedded into an equation,

the i-th user gets a partial secret si that is the direct remainder of s (mod mi). This

allows the successful application of the lattice-based reduction method, which fails in

the secret sharing scheme of Asmuth and Bloom, since the obtained approximation of

the colluding users is more precise in this case.

In the sequel, it is assumed that an adversary who controls h users with 1 6 h < t

exists. The following theorem is proved:

Theorem 5.6.2 Let d be the private integer of a balanced-RSA encryption system with

d < Nβ. Suppose d is shared with Mignotte’s secret sharing scheme with n users and

threshold t. If an adversary controls h users such that (t − h)/t < 1
6(5 − 2

√
1 + 6β)

holds, the adversary can recover d in polynomial time.

Proof 5.6.3 The approximation generated by the h collaborating users can be written

as d = d0 + Mh,Sd1, with d1 ∈ N unknown as long as s < t. Again, the adversary can

utilize the publicly known equation ed = 1 + ϕ(N)k to insert the approximation. The

result is Equation (5.21):

eMh,Sd1 + ed0 − 1 − Nk + (p + q − 1)k = 0 (5.21)

The monomials equal those of the previous case, but this time with N being the dominant

factor. After the unknowns are renamed to: x0 = d1, y0 = k, z0 = p + q − 1, a linear

polynomial (with R = ed0 − 1)

f(x, y, z) = eMh,Sx + R − Ny + zy (5.22)
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is obtained that has a root at f(x0, y0, z0).

In this case, the bounds X,Y and Z are defined according to the integer N. The number of

involved malicious users is not considered yet. We simply set x < X = Nδ, y < Y = Nβ,

z < Z = 3N1/2, and use again the equation

X1+3τY2+3τZ1+3τ+3τ2
6 W1+3τ (5.23)

with W = max{eMh,SX, NY, ZY, R} > eMh,SX = N1+β. After inserting the bounds for

X, Y and Z, this equation turns into

Nδ(1+3τ)Nβ(2+3τ)N(1+3τ+3τ2)/2
6 N(1+β)(1+3τ) (5.24)

Using Ernst et al.’s [45] optimal value for τ = 1
2 − δ, the solution of the equation is

δ 6
1

6
(5 − 2

√
1 + 6β) := B(β) (5.25)

This is exactly the bound also obtained by Ernst et al.

What is missing is to reconstruct the number of malicious users sufficient to establish

the attack. Thus, the values δ or β have to be linked with the number of malicious users

h. Per definition it was required that the secret s, in this case d, must lie between

t∏

i=1

mi > d = d0 + Mh,Sd1 >

t−1∏

i=1

mn−i−1 > Mh,S (5.26)

To obtain a general formula, one can write mi ≈< d1/t+ǫi for some small values ǫi.

These values depend on the differences of the mi integers. Since these integers cannot

be too different in size because of the definition M > s > Mt−1,S, these ǫi must be

small. In the following, we let these ǫ values all contribute to some error term O(ǫ).

Now, the product over the t mi values is larger than d, and a product with less factors

is not smaller than d. Thus, d1 has to be smaller than d(t−h)/t. Otherwise,

Mh,S · d1 =

h∏

d1/t+ǫi · d1 >

(
h∏

d1/t+ǫi

)
d(t−h)/t = d1+O(ǫ) (5.27)

holds, which would contradict the requirement from Equation (5.26). This finally leads

to

d1 < N(t−h)/t = Nδ ⇔ (t − h)/t = δ (5.28)
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β t h t−h
t

B(β)

0.1 50 30 0.4 0.411

0.2 50 34 0.32 0.338

0.3 50 37 0.26 0.275

0.4 50 40 0.2 0.218

0.5 50 42 0.16 0.166

0.6 50 45 0.1 0.118

0.7 50 47 0.06 0.073

0.8 50 49 0.02 0.030

β t h t−h
t

B(β)

0.1 20 12 0.4 0.411

0.2 20 14 0.3 0.338

0.3 20 15 0.25 0.275

0.4 20 16 0.2 0.218

0.5 20 17 0.15 0.166

0.6 20 18 0.1 0.118

0.7 20 19 0.05 0.073

0.8 20 20 0 0.030

Figure 5.3: Required number of malicious collaborators such that t−h
t

< 1
6(5 −

2
√

1 + 6β) := B(β)

which proves the theorem. Q.e.d.

The integer t is a fixed parameter for the adversary he cannot change. However, the

integer h is a variable that states how much partial secrets he must reveal to break the

sharing scheme. It can be seen that whenever the adversary controls all necessary t

users, thus h = t, the term (t − h)/t is zero, making the inequality always true. This

is necessary, since t users are per definition sufficient to reveal the secret.

Experimental Results

In this section, several experimental results with respect to attacking Mignotte’s secret

sharing scheme are presented. All measurements were performed on a Core2Duo 2.4

GHZ with 2 GB RAM under Windows XP using an implementation in Mathematica

v4.1. To build the lattice, the same set of shift-polynomials as defined by Ernst et

al. [45] are used. Since the performance of Mathematica is worse than optimized C

code, the obtained results are not optimal in terms of speed, but nevertheless show the

practicability of the attack.

Figure 5.3 shows the theoretical number of malicious users that are at least required

to perform the attack. Note that the term 1
6(5 − 2

√
1 + 6β) gets negative for β > 7/8,

thus only the values for β up to 0.8 are taken. The left table shows the bounds for a

threshold of a (50, n) setup, whereas the right table is for (20, n).

For very small values of d = Nβ, it is evident that nearly only half of the intended

users are sufficient to recover the entire secret. The more the secret integer grows, the

more users are needed to break the scheme, which is consistent with the results from
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partial key exposure attacks. When a size of β = 0.8 is reached, only one of the t = 50

users can be left out, which nevertheless breaks the definition of a (n, t) secret sharing

scheme threshold scheme. On the contrary, in the case t = 20 and β = 0.8, the attack

fails, which is due to the smaller value of t = 20, rather than t = 50.

Since the bounds obtained by Ernst et al. [45] are only asymptotic, they are not always

reached in practice. We made some measurements for a 256-bit modulus, showing

what values of h can be achieved in practice. The dimension of the lattice is varied by

changing the m and f values of the shift-polynomials:

gijk(x, y, z) = xiyjzkF(x, y, z)Xm−iYm−jZm+f−k,

for i = 0, . . . ,m, j = 0, . . . ,m − i, k = 0, . . . , j

hijk(x, y, z) = xiyjzkF(x, y, z)Xm−iYm−jZm+f−k,

for i = 0, . . . ,m, j = 0, . . . ,m − i, k = j + 1, . . . , j + f

g ′
ijk(x, y, z) = Nxiyjzk,

for i = 0, . . . ,m + 1, j = 0, . . . ,m + 1 − i, k = 0, . . . , j

h ′
ijk(x, y, z) = Nxiyjzk,

for i = 0, . . . ,m + 1, j = 0, . . . ,m + 1 − i, k = j + 1, . . . , j + f

where F(x, y, z) = R−1f(x, y, z) (mod N) ≡ 1 + ax + by + cyz.

In Figure 5.4, some measurements are shown. Using a lattice with a dimension of 16, is

was only possible to attack d values up to size N0.4. Using a lattice with a dimension of

40, it was also possible to get results for d = N0.6. For higher values, no solutions in a

reasonable amount of time could be found, which is probably due to the Mathematica

implementation. The runtime of the Mathematica method LatticeReduce[], perform-

ing the LLL-Algorithm, is the major runtime component and its used time is shown in

the last column of Figure 5.4 (in milliseconds). The solutions found are similar to the

theoretical bounds and demonstrate the practicability of the presented attack. Note, if

β 6 0.292 the private key can already be obtained by attacks from Boneh and Durfee

[17] or Wiener [127].

5.7 Summary

Φ-Hiding Assumption. In the first part of this chapter, it was shown that in some

circumstances it can be efficiently decided whether a given prime p divides ϕ(N) or

not. This can be done despite the factorization of N is unknown and if N is of the form
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256-bit modulus

β t h Dim ms

0.1 20 7 16 (m=f=1) 2031

0.2 20 8 16 (m=f=1) 2131

0.3 20 10 16 (m=f=1) 4121

0.4 20 14 16 (m=f=1) 4422

0.5 20 16 30 (m=2 f=1) 63549

0.6 20 18 40 (m=2 f=2) 720312

Figure 5.4: Measurements using a 256-bit modulus.

N = PQ2e, e > 0 and P hides the prime in question. The findings are based on the

novel approach to utilize if a certain equation is defined over ZN, which can be tested

by the Jacobi symbol. If someone implements a cryptographic protocol based on the

Φ-Hiding assumption and uses such moduli, an attacker has an average probability of
3
4 to choose the right prime, if the primes the attacker can choose from are selected

randomly.

In cases when it is desired to ask which composite number ni is hidden by P, the success

probability would be even greater than 3
4 , since for each prime factor of n the attacker

has the success probability of 3
4 .

There are two possible countermeasures to the presented attack. First, moduli of the

form PQ2e, e > 1 should not be used in conjunction with the Φ-Hiding assumption.

Second, the primes a user can choose from should not be selected randomly, but only

those primes that have a positive Jacobi symbol regarding N should be used. However,

the assumption as stated in the original form must be corrected to exclude this cases

where an attacker has non-negligible success probability.

Secret Sharing Schemes. The second part of this chapter was about an attack

on CRT-based threshold secret sharing schemes in the case when they are utilized to

share the integer ϕ(N) among a set of users. Based on the generalized partial key

exposure attacks by [45], it was proven that collaborating malicious users can break

the scheme even if their number less than the required threshold. The combination

of their partial secrets leads to an approximation which can be used, together with

lattice-based reduction methods, to recover the entire secret in polynomial time.



6 Applications

”Lots of people working in cryptography have no

deep concern with real application issues. They

are trying to discover things clever enough to write

papers about.”

Whitfield Diffie

6.1 Introduction

In this section, applications for the proposed protocol and the required issues for

practicability are discussed. Identity-based cryptography has several applications. It

can be applied to each environment where entities, human or artificial, have a unique

identifier that is used for communication. Examples are e-mail communication, secure

function or service calls in software architectures or GPS coordinates. However, here

we focus on the following two areas:

• IP networks. One of the most obvious choices when considering the Internet is

to choose an user’s Internet protocol address as its identity, hence as its public

key. During the construction of a working architecture, several problems were

identified:

1. How to distribute of the pubic shared parameters?

2. How to distribute of the identity keys?

3. How to handle dynamic IP addresses?

4. How to handle key expiration and network address translation (NAT)?

Furthermore, the problem of address spoofing or IP spoofing in particular, must

93
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be solved. It will be demonstrated how the SSF signature scheme can be used to

narrow down the ability to fake a source address of a packet by signing a certain

timestamp.

• Telephony. The second choice is human communication. We distinguish be-

tween GSM and VoIP telephony. In the first case, the telephone number and in

the second case, the VoIP address is used as the public key.

At the end of this chapter, an optimization of the proposed protocol is shown that

works for other cryptographic protocols as well. This optimization is in the area of

server-aided cryptography and is especially useful for the GSM scenario, where com-

plex algorithms must be executed on less powerful hardware. By outsourcing costly

algorithm to high-capacity servers, the speed for the actual online computations can

be increased significantly.

The results of this chapter were published in [110], [122], [121], [106].

6.2 SSF in IP Networks

IP networks are a well-working scenario for identity-based cryptography since each

participant has a unique identifier that is used for communication. Furthermore, the

existing infrastructure already possesses a solution to lookup the identity of a foreign

host, that is the domain name service (DNS). DNS translates a web-address to the

actual IP address of the hosted server, which is equal to a public key distribution

system when using IBC.

6.2.1 Distribution of Shared, Public Parameters

The distribution of public shared parameters is only necessary if more than one ID-

PKG is available. Since the proposed scheme focuses heavily on this case, this must be

considered. It should be noted that a main requirement is to try to minimize the number

of global distribution steps in favor of local distribution steps, since this distributes

the workload and reduces the risk of a global compromise. In a scenario with #prov

providers, each with #cust customers where #cust ≫ #prov, there are #prov · #cust

customers in total. This means that #prov · #cust private/identity keys need to be
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distributed. In a PKI, in the worst case in which everybody wants to communicate with

everybody else, (#prov ·#cust − 1) · (#prov ·#cust) public keys need to be exchanged

and managed. In SSF system, only the public parameters of the m providers need

to be exchanged. This reduces the number of transfers from #prov · #cust local and

(#prov · #cust − 1) · (#prov · #cust) global transfers to #prov · #cust local transfers

and only #prov global transfers, and since #cust≫ #prov, this is a large saving. Even

using traditional key distribution mechanisms, SSF system offers a significant saving

compared to a PKI in key escrow mode. In the following, further optimizations of

the distribution process which are possible due to the network centric approach of the

proposed solution will be suggested.

Like most other IBC approaches, the proposed system also uses shared public param-

eters. In a single domain scenario, the distribution of the public parameters is not a

problem. However, if each AS runs its own ID-PKG, the number of public parameters

and the binding between public parameters and identity keys becomes more complex.

As stated above, this distribution problem is still much smaller than the distribution

problem for traditional public keys where each entity has its own public key which

needs to be distributed. Of course, traditional PKI technology can be used to dis-

tribute the public parameters, but a more suitable solution is to integrate the public

parameters into the DNS lookup messages. In this way, the fact that a DNS lookup is

made anyway to resolve a host IP is utilized, and the public parameter transfer can be

piggybacked to the DNS reply. The technical details of the integration of IBE public

parameter information into DNS records were evaluated by Smetters and Durfee [120].

The positive evaluation lead us to adopt the public parameter distribution technique

for the SSF system. For more information on the details of how to incorporate this kind

of information into the DNS system, the reader is referred to [120] or [1]. To secure the

transport, either DNSsec can be used or the public parameters can be signed and trans-

fered with standard DNS, or a key agreement can be executed between the requesting

party and the DNS server if the public parameters of the DNS server are known. Since

the DNS server is usually in the same AS as the requesting customer, this is not a

problematic issue, because the public parameters are the same as the customer’s public

parameters. As stated above, this part of the system has been tried and validated by

several research groups.
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6.2.2 Distribution of the Identity Keys

The most critical element in all IBEs or PKIs in key escrow mode is the distribution of

the identity keys (private keys) and the prevention of identity misbinding. In traditional

PKI and IBE systems, this is usually done manually and out-of-band and thus creates

a lot of work. While it can be argued that due to the fact that on the AS level most

customers receive an out-of-band message when they receive their endpoint address,

adding a fingerprint to the identity key would not put much extra burden on the system.

However, a far more elegant solution for the long term is to integrate the key distribution

into the IP distribution system. For most networks, this means integration into the

DHCP server. This, however, is not trivial since DHCP on its own is an unsecured

protocol not suitable for transferring private information. The two main threats are

packet sniffing and MAC spoofing. If the identity key is sent in the clear via the DHCP

protocol in an unswitched network, an attacker can sniff the identity key, leading to

key compromise. With MAC spoofing, an attacker pretends to be the legitimate owner

of a foreign MAC address, and the DHCP server sends the identity key to the attacker.

Both forms of attacks make the plain use of DHCP for key distribution infeasible. In

the following, several solutions are presented geared towards different scenarios of how

the distribution of identity keys can be integrated into DCHP securely. In a fixed

corporate network environment using a switched infrastructure, the easiest solution

is to use the MAC lockdown function of modern switches. Using MAC lockdown,

each port gets a MAC address and will only serve that MAC address. Thus, if an

attacker wishes to spoof a MAC address to gain the key, physical access to the correct

port must be acquired, significantly increasing the risk and effort of the attack. This

scenario works fine in a corporate network where each MAC address is registered and

assigned to a port anyway. In a student dormitory, for example, it is less feasible since

managing the ever changing MAC addresses of the private devices used by students

would be very time consuming and error prone. Here, an IEEE 802.1X + Radius [36]

solution is more practical. The authorization is usually done in the form of a user-

name password check. The IP address and the corresponding identity key can either

be fixed (as set by the Radius and DHCP server) or dynamic and transient. Either

way, only the legitimate user receives the identity key, and it is not possible to spoof

the MAC address to receive a copy in the same key lifetime. If packet sniffing is an

issue, the DHCP request needs to be extended to include a protected session key with

which the identity can be protected from sniffing attacks. The client creates a session

key which is encrypted using the public parameter N (N can be used in the same way

as an RSA public key) of the key generator of the DCHP server and broadcasts the
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DHCP request. The session key can only be decrypted by the DHCP server who then

uses the session key to encrypt the identity key of the client, using e.g. the Advanced

Encryption Standard AES, which is then broadcasted. Thus, the identity key can

only be decrypted by the client. Apart from these two practical solutions based on an

extension of existing security mechanisms which can be used in the short term, it is also

presented a more speculative long term solution which does not rely on other security

mechanisms. In this case, the network layer key agreement scheme is bootstrapped on

the data link layer by using MAC addresses as public keys. As with IP addresses, it

cannot be assumed that there will be a single authority to generate the MAC identity

keys, but since the proposed system does not require cooperation between the ID-

PKGs, this can be handled. Each organization with the authority to distribute MAC

addresses runs its own ID-PKG and writes the identity key onto the networking card

at the same time as the MAC address. Since the MAC addresses are globally unique

and should not change over the lifetime of the networking card, a fixed identity key

is not a problem. On the contrary, a hardware based protection of the key creates

an added layer of security. Organizations with the right to distribute MAC addresses

have their own Organizationally Unique Identifier (OUI) which is encoded in the first

three octets of all MAC addresses distributed by this organization. Using this OUI,

the public parameters needed for the MAC address can be found. This entails a very

small and lightweight public parameter lookup mechanism matching OUIs to public

parameters. This is the only step where any form of cooperation is needed on the

organizational level, since all OUIs must be publicly available. However, since the

number of OUIs is small and does not change frequently, it is easy to solve this part of

the distribution. The huge benefit of this structure is that the identity key distribution

can now be automated in-band in a secure fashion without relying on extensive existing

security mechanisms. Using this approach, it is possible for the requesting entity to

add a proof of legitimate MAC address possession using the identity key of the MAC

address when requesting its IP address. This not only prevents the problem of MAC

spoofing, but also allows the DCHP server to send the identity key for the IP address

to the requesting entity protected with the MAC based identity encryption. Since this

mechanism is only used for requesting the identity key, which is done in an Intranet, the

proposed solution does not open a backdoor to the Network Interface Card producers

to decrypt the Internet traffic.
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6.2.3 Key Expiration

Another practical issue of network layer encryption is the fact that especially in IPv4

networks, IP addresses are reused. In a PKI or CA based IPsec solution, this creates

several problems, since the central PKI must be updated or the CA must be contacted

to resign public keys as the users swap IP addresses. Certificate Revocation Lists can

be used to accomplish this, but the response time until a change is propagated is quite

long and creates a fair amount of effort. In particular, public key caching mechanisms

can lead to problems. In Figure 6.1 the dynamic IP problem is illustrated. If an entity

EID1
(the filled circle) is assigned an IP address ip1 together with the corresponding

identity key dip1
, EID1

can not be forced to forget the identity key after the ip address

is released. Since ip1 will probably be reassigned to another entity EID2
(the non-filled

circle) after a reasonable amount of time, EID1
can impersonate EID2

during the key

agreement.

-
Assign IP address ip1 + dip1 v

v releases ip1,

but keeps dip1

-
Assign IP address ip2 + dip2 f

If ip1 = ip2 → dip1
= dip2

. Impersonation possible.

Figure 6.1: Problem: Dynamic IP addresses

In the proposed identity-based solution, natural key expiration techniques can be used

to cope with dynamic IP addresses. Boneh et al. [19] showed how keys can be given

a lifetime, which allows natural expiration of the identity key. This is done by the

concatenation of the ID, in this case the IP address, with a date.

E.g., the following identity key for Alice is only valid on the 20th of July in the year

1978:

ID = Alice→ H(Alice|20/07/1978)R ≡ dAlice|20/07/1978 (mod N)

The same technique can be used in the proposed solution. In the scenario where ISPs

have a pool of IP addresses which are allocated to customers on demand and reused

at will, this technique can be used such that no two customers ever receive the same
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identity key. Since IP address reuse is time-delayed in any case1, this time frame can

be used as the key lifetime to ensure that each successive owner lies in a new lifetime

slot. With the techniques introduced in this chapter, a frequent automatic in-band

key distribution can be safely executed and thus key renewal is far less of a problem.

Additionally, key expiration also reduces the risk of identity key theft, since the attack

window is restricted to a small time interval.

-
Assign IP address ip1 + dip1|t1 v

v releases ip1,

but keeps dip1|t1

Wait until lifetime of ip1 is over v
-

Assign IP address ip2 + dip2|t2 f
If ip1 = ip2 6→ dip1

= dip2
. Impersonation NOT possible.

Figure 6.2: Solution: Dynamic IP addresses

The points in time, when an IP address can be reassigned to a new entity, which make up

the concatenated time-stamp to the identity-key, must be known to the communication

partner, since he has to consider this date within his computations. However, since

these points in time are not security-relevant, they can be made public in some way.

6.2.4 NAT Traversal

The final practical issue is the NAT problem. While this mainly is a problem in IPv4

networks, there are also scenarios in IPv6 networks in which NAT is an issue. The main

problem when dealing with network layer encryption when NAT is involved is that the

NAT server substitutes its public IP address for the private IP address of the entity

being NATed. As such, the original identity key for the private IP address is no longer

valid, since it does not match the public IP address of the NAT router, hence any key

agreement would fail, as illustrated in Figure 6.3.

1Before an IP address is allocated to a new user, a certain amount of time must pass to prevent
attackers from impersonating the previous entity
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Figure 6.3: NAT - Problem

This problem is also faced by IPsec which has problems with NATed resources. When

working in a NAT environment, a certain level of trust must exist between the NAT

router and the NATed device. The NAT router substitutes its public IP address for the

private IP address of the NATed device. The NATed device must trust the NAT router

to substitute the right address, and the NAT router must be willing to forward the

packets on behalf of the NATed device. However, when using encryption, the NATed

device does not trust the NAT router with the plain text version of its communication.

Communication between the NATed device and the outside world should still be private.

Considering that the NAT router shares its public IP address with the NATed devices,

the proposed solution also lets the NAT router share the identity key of its public IP

address with the NATed devices (it will later be shown that this does not compromise

the security of either the NAT router or the NATed devices). The identity key of its

Intranet IP address is, however, kept private. Also, a private identity key is given to

each NATed device, corresponding to its Intranet IP address. When a NATed device A

in the Intranet establishes a connection to an external device B, it creates a SIK packet

using its private value GrA in combination with the identity key of the NAT router’s

public IP address. This is, in essence, an extension of the normal NAT procedure to

include an authenticated key exchange, and the trust relationship between the NAT

router and the NATed device is not changed. The sharing of an identity key belonging

to an IP address is not usual and should be avoided under normal circumstances,

since anyone in possession of the identity key can pose as the legitimate owner of the

corresponding IP address and thus can spoof the address or act as a man-in-the-middle

attacker. However, in the NAT scenario this is exactly the desired outcome, since the

NATed devices pretend to be the NAT router to the outside world, since as far as the

outside world is concerned, the packets originate from the NAT router. It is important

to note that although the identity key of the NAT routers’ public IP address is used

by the NATed device, the NAT router is not able to subvert the communication. To

successfully attack the communication as a man-in-the-middle, the NAT router would

also need to be in the possession of the private identity key of B, which is not the case.

It is also not critical if more than one device is behind the same NAT router, since



101 6.2. SSF IN IP NETWORKS

communication between the NATed devices and the NAT router is protected by the

private identity key of the NAT router’s Intranet IP address and the identity key of the

NATed device, which is different for each device. Thus, the NATed devices are not able

to subvert the communication of other devices in the Intranet nor are they able to spoof

the internal identity of the NAT router or other NATed devices. Should the Intranet

devices be connected to the NAT router with a pre-configured switch, the Intranet

identity keys are not necessary, since the private value GrA of the key agreement is

sufficient to protect the key exchange if there is a direct connection to the NAT router.

Figure 6.4 shows the solution for the NAT problem. The internal user A sends a SIK

using its own private value GrA in combination with the private key of the NAT router’s

IP address. When the NAT router substitutes the IP address with its own, it creates

a valid packet, since the value dEIDNAT
now belongs to the correct source address of the

packet.

v
EID1

-
�

ID1|G
r1dEIDNAT

ID2|G
r2dEID2

v
EIDNAT

︷ ︸︸ ︷

IDNAT |Gr1
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dEIDNAT

ID2|G
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Figure 6.4: NAT - Solution

6.2.5 SSF to Prevent IP Spoofing

Many approaches have been suggested by which IP spoofing and the resulting attacks

can be prevented or at least reduced. Since it is not possible to present all of them,

selected papers will be presented that cover a wide range of approaches. For a more

detailed survey of techniques for IP spoofing and attacks based on IP spoofing and

their prevention, the reader is referred to the paper of Peng et al. [96]. One of the

most well known techniques for the prevention of IP spoofing is ingress/egress filtering

as suggested by Ferguson and Senie [46]. Ingress filtering aims to prevent IP spoofing

by only allowing traffic to enter or leave the network if its source addresses are within

the expected IP address range. An essential requirement for this approach is to know

which IP range is served by which router. For complex networks, this knowledge is

hard to obtain and can change over time. One way to gain this information is reverse

path filtering [8]. Since a router generally knows which IP range is reachable via its

interfaces, it can check whether the return path of a packet would lie in this space. If
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this is the case, it forwards the packet; if not, the packet is dropped. This approach

has two major drawbacks: it does not work with asymmetric routing paths, and it does

not offer a personal incentive for deployment.

An approach aimed at detecting the source of spoofed IP packets during a DoS attack

through IP traceback has been proposed by Savage et al. [103]. The solution proba-

bilistically marks packets with partial path information as they arrive at routers. This

approach requires that an attack comprises a large number of packets to increase the

probability that an attack packet is marked. While each marked packet represents only

a sample of the path it has traversed, by combining a number of such packets, the tar-

get of the attack can reconstruct the entire path. This enables the target to locate the

approximate source of attack traffic without requiring the assistance of outside network

operators. This can also be done post mortem as long as the packets were logged. The

routing infrastructure of the Internet must be adapted to support this approach, since

the routers must participate in the marking of packets. The authors state that they

achieved a 99% backwards compatibility and create only a minimal overhead. However,

the approach does not work if an attacker distributes the attack over a wide area or

restricts the origin of the attack to parts of the network where the routers for the next

hops do not mark packets. Furthermore, if an attacker can compromise a router, false

traces can be inserted.

A related approach to prevent capability attacks has been presented by Parno et al.

[95]. Their system is not directly aimed at preventing IP spoofing, but through the

introduction of computational puzzles needed to create new connections, it limits the

number of connections a single client can create. What is particularly interesting is

that the puzzle is mathematically tied to the IP address of the sender, which prevents

the copying of puzzles to different hosts. The initial puzzle piece is distributed via

modified DNS entries. Based on the initial puzzle, the connection initiator can solve

a puzzle of a chosen difficulty level. If resources become scarce, servers can prioritize

clients who solve hard puzzles. This makes it difficult for a single host to deny service

to others by creating thousands of connections, since the computational demand for

many connections only allows easy puzzles to be solved, and thus the priority of the

connections goes down. The routing infrastructure is used to take the burden off the

end systems, and the existing communication infrastructure (i.e. DNS) is used to share

public parameters.

Unlike the above solutions, cryptographic methods can be used to offer IP address

correctness guarantees. For instance, if IPsec [69], which can be used for both IPv4
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and IPv6, were to be deployed as the standard protocol for Internet traffic, IP spoofing

would no longer be possible, since during the IPsec handshake, each host must use its

private key to initiate the communication. Thus, the attacker would need access to the

private keys for addresses that are to be spoofed. This would solve the problem of IP

spoofing, but since IPsec is a heavyweight protocol designed for secure communication,

it is not likely that it will be used for all traditional IP traffic anytime soon. There

are several reasons. First, IPsec requires a trust infrastructure (either a PKI, a CA

or pre-shared secrets) to enable communication between parties. Pre-shared secrets

is a common form of setting up small IPsec environments, but does not scale up to

the Internet. This leaves a CA and/or PKI approach in which private/public key

pairs are tied to the IP addresses of the host computer. Setting up and maintaining

this infrastructure presents a significant challenge if it is to be rolled out universally

[44]. When setting up an IPsec tunnel, a session key is exchanged using asymmetric

cryptography. In the case a PKI is utilized, the public key of the hosts must be accessed

from the key server to decrypt the session key. In the case of a CA setup, the CA public

key must be distributed to all participants. The public keys of the hosts are then

signed with the CA’s private key and can then be sent to the communication partner

in-band, since the validity of the public key can then be verified via the CA’s signature.

Once the session key has been exchanged, a cryptographically secured channel can be

established. The IPsec handshake requires nine messages to be sent back and forth to

establish a secure channel. Currently, IPsec is used for encryption purposes, creating

a high overhead for the ensuing communication as well as the handshake overhead.

However, even if IPsec were to be modified to transmit in the clear when encryption is

not required, the nine initiation handshake messages are too expensive to be used for

the prevention of IP spoofing in scenarios where encryption is not required.

In contrast to the certificate based approaches, Liu et al.[79, 78] have presented a

lightweight approach to authenticate the source of IP packets on the Autonomous

System (AS) level to hinder DoS attacks and increase accountability. The proposed

method uses HMAC [9] functions to create packet passports for the expected routing

path of a packet. Each AS agrees on a private key with all other AS using a PKI.

Once all AS involved have a separate private shared secret for all other AS, packets

can be sent. To this end, the border router of the AS creates a list of HMAC values

with the corresponding keys for each AS to be traversed by the packet. On route to the

destination, each intermediate AS can verify the validity of the passport for its domain

and thus authenticate the origin AS. This allow intermediate routers to discard packets

with invalid passports, which prevents inter-AS IP spoofing and gives valid packets



6.2. SSF IN IP NETWORKS 104

preferential treatment to unsigned packets in DoS situations. However, routing path

changes can lead to packets being wrongly dropped due to invalid passports for the

new route, and IP spoofing within the AS is not prevented, since packets receive their

passports at the border gateway, and no checks within the AS are executed. For this

reason, accountability is limited to the AS level.

A further approach to avoid a certificate infrastructure has been presented by Andersen

et al. [5]. Here, self-certifying addresses are introduced to replace IP addresses. The

Accountable Internet Protocol (AIPs) suggests to use two-level addresses containing

an autonomous domain address (AD) and a unique endpoint address (EIDs). The

addresses are created using a hash of the public key of the entity. To this end, the public

keys must be created before the address is created and registered. New name lookup,

interdomain routing and packet forwarding methods are also presented. Through the

introduction of the new routing and naming infrastructure, the addresses are self-

certifying. The binding of the public key to the endpoint is achieved via the hash

function, and the new infrastructure allows connections to be created between the

public key based endpoint.

Two similar approaches have been suggested in the context of secure IPv6 networking

protocols. The Host Identity Protocol (HIP) [88] removes the need for binding IP ad-

dresses to public keys using certificates by creating a completely new form of addresses,

namely HIP addresses that are constructed by hashing the public key of an entity. This

creates two requirements that a HIP system must meet: (a) the public keys must be cre-

ated before the address allocation can be performed and (b) a new protocol layer must

be implemented between the transport and network layer that maps HIP identifiers to

the routable IPv6 addresses and provides authentication. To address the latter issue,

Cryptographically Generated Addresses (CGA) [7] were proposed to encode a public

key into the 64-bit identifier of the IPv6 address, thus avoiding the need to change the

protocol stack. However, CGA still requires the public key to be created before the

IPv6 address and restricts the choice of addresses that can be used. Obviously, getting

ISPs to issue particular IPv6 addresses based on user keys is a difficult task, and it

remains to be seen if the effort is less than running a CA.

6.2.6 Denial-of-Service Attacks

One of the most relevant attacks based on IP spoofing is the Denial-of-Service attack

(DoS) [87]. A DoS attack is an attempt to make a computer resource unavailable to its
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intended users. Many DoS attacks flood the target with requests to achieve this goal.

To mask their attack and to make it more effective, the attackers often use IP spoofing.

6.2.6.1 Requirements

A viable approach to prevent or hinder IP spoofing and thus the described DoS attacks

must fulfill the following requirements:

• The approach must be able to deal with routing path changes. Requiring a

router to drop packets that do not stem from its field of responsibility reduces

the scalability and robustness of the Internet and thus is not acceptable.

• The approach must be able to deal with asymmetric routing paths. Asymmet-

ric routing paths are an important and common occurrence in large networks.

Restricting their use reduces the performance of the Internet.

• The approach should not require detailed knowledge of the network topology or

require large state information to be maintained.

• The approach should not require changes to the routing protocol currently in

place.

• The approach should not require modification of the core network of the Internet.

Any complexity added here reduces the maintainability and robustness of the

Internet.

• The approach should offer personal incentives to early adopters. Many IP spoofing

prevention schemes do not protect the deployer, but they protect the rest of

the Internet. For instance, if an Internet Service Provider (ISP) deploys ingress

filtering, the ISP is protecting customers of other ISPs from spoofed packets, but

their own users are still vulnerable to spoofed packets from other ISPs without

ingress filtering. The solution should offer benefits to the deployers to motivate

the adoption of the technology.

• The approach should offer some benefit for partial deployment. Any mechanism

that requires all parties to adopt the technology and only starts working when it

is deployed across the entire Internet, will have difficulties in getting adopted.
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• Finally, the complexity of the approach must not be tied to the complexity of the

underlying network. The solution needs to be as simple as possible to reduce the

risks of errors and misconfiguration.

6.2.6.2 Clock Synchronization

The presented signature algorithms use a timestamp that is created by the proving

entity and is checked by the verifier so that it is not outdated. To enable the verifier to

make a reasonable decision, the clocks in the system need to be loosely synchronized.

This can be achieved with the network time protocol (NTP). Since UTC time is used,

time zones do not present a problem. If transient identity keys are used (i.e. IP

addresses are reused, so different users get the identity key for the same IP address

but at different times), the identity key is extended by a validity period. This validity

period can be used by the verifier to detect whether the sender uses faked timestamps

that do not fall within the legitimate usage period. This can be achieved by using the

techniques proposed by Boneh and Franklin [19] (see also Section 6.2.3). Their basic

idea is to concatenate timestamps with the identities to vary the private key each time.

6.2.6.3 Puzzle Integration

An adversary interested in flooding the signature verification unit with malicious traffic

would probably not follow the steps to create a valid signature because of the incurred

computational costs. He would just generate random integers and send them out pre-

tending to send a well crafted signature. The generation of such random integers would

be very fast and thus an adversary could flood a verifier using these packets. To cir-

cumvent this problem, the technique proposed by Parno et al. [95] is used in SSF. The

verifier could require that either the hash value of the first or the last integer of the

signature must fulfill a desired property, such as the divisibility by a certain integer

D. The divisibility property can be satisfied by the creator of the signature, since a

random integer is involved in the generation process. The larger D is, the more time a

sending unit has to spend to generate a valid signature. The generation time increases

by a factor of D/2 on the average, since an adversary has to generate D/2 packets on

the average, such that, for example, the last integer of the pretended signature is a

multiple of D. Thus, the generation process can be easily slowed down, whereas the

verification process increases only marginally for the new task to check the divisibility

prior to the verification of the signature. Note that puzzles do not prevent IP spoofing,



107 6.2. SSF IN IP NETWORKS

but they do hinder an attacker from using the SSF verification mechanism for a DoS

attack.

6.2.6.4 Transport Layer Integration

One of the main benefits of SSF is the provable legitimate possession of an IP address

without the large overhead of an n-way handshake of a full encryption protocol like

IPsec. In SSF, a single packet can be used to prove the legitimate possession of an IP

address. The benefit of a single packet solution is that it does not open a further denial

of service attack vector (like the syn flooding vulnerability). The way how SSF handles

to the problem of Network Address Translation (NAT) is presented in [108].
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Figure 6.5: SSF setup for a TCP based application.

Since the proposed scheme requires only a single packet to prove the legitimate pos-

session of an IP address, its integration into the UDP protocol is easily possible. The

data field that carries the actual payload is used to carry the signature. UDP adopts

the characteristics of the underlying network layer. In the SSF case, it is the IP layer

that makes use of packets with 216 − 1 bytes at maximum. Subtracting the IP and the

UDP header leaves 65507 bytes for the actual payload that can be fragmented by the

IP protocol into pieces of a few kilobytes. Assuming that the modulus N has 2048 bits,

it follows that the integers GTαdID and GRα are smaller and yield at most ≈ 512 bytes

for the first two entries. The third entry, the timestamp, commonly is a 32-bit value,

i.e. 4 bytes in size. Adding both values together results in an upper bound of about 516

bytes in the data field. Note that the proof is only inserted into the first UDP packet
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Figure 6.6: SSF setup for a UDP based application.

but not into each UDP packet, since this would create an unacceptably high overhead

for many UDP applications. The first UDP packet is used to open a window for the

source IP in the firewall of the destination. This simple mechanism can be used to

make UDP DoS attacks based on IP spoofing more difficult, since only addresses that

recently contacted the host with a valid proof can be spoofed, significantly lowering the

number of spoofable addresses.

Unlike the UDP protocol, the TCP protocol is a stateful protocol that is more suitable

for SSF, since only the connection initiation needs to be complemented by a proof of

IP possession, because all further packets are part of the TCP stream. In this case,

no special rules or lists need to be implemented by the firewall to open timed windows

for further packets, since the TCP session can be used to identify legitimate packets.

The data field in the TCP header is unused in the standard SYN packet, which allows

to add a SSF signature there. The TCP/SYN packet is the first packet of the 3-way

handshake and normally does not contain any data. The TCP RFC, however, allows

TCP/SYN packets to contain data. This feature is used in SSF to piggyback a proof of

IP possession into the handshake. A standard TCP/IP implementation simply ignores

the data field of the SYN packet, making this approach backwards compatible.

This allows a simple integration of the proposed approach into legacy systems. If no

IP possession verifier is present, the kernel will ignore the proof in the data field of

the packet. If a verifier exists (e.g. integrated into a firewall), it reads the data field

and validates it and forwards the SYN packet only if the signature is valid. Thus, in
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both cases neither the routing protocol nor the application server need to be altered. If

the signature has been verified successfully, the IP address is either added to an allow

list or a SYN/ACK is send to establish the communication. Both actions are only

possible if the sender is the legitimate owner of the IP address. Session hijacking is a

problem that can occur after this point; it can be handled by the usual cryptographic

countermeasures.

6.2.6.5 Early Verification

In Figure 6.7, the concept of early verification is illustrated. AS 4 hosts the target

server, AS 1 and AS 2 have already adopted SSF, AS 3 has not. Each verification

enabled router simply drops connection requests that do not contain a valid proof, but

lets proven connections requests through. AS 4 which has not adopted SSF must be

blocked as usual and does not get serviced while the attack lasts. This entails that

legitimate users who have not adopted SSF get their connection dropped, which of

course is not desirable, but this is preferable to no users being able to use the resource

at all. Furthermore, this creates an incentive to adopt SSF, since the users who sign

their connection requests receive a higher grade of service and can continue using the

resource during a DoS attack.
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Figure 6.7: Early Router Filtering

6.2.6.6 Evaluation of Network Overhead

Apart from the cryptographic performance that is equivalent to a RSA-based approach,

the network overhead is a relevant factor to be evaluated. A comparison of SSF with
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a standard PKI approach using X.509 certificates signed by a Certificate Authority as

used in IPsec is presented in the following. To bind a public key to an IP address via a

certificate, the IP address and the signature of the CA must be part of the certificate.

The X.509 certificates also contain several additional parameters, like validity times-

tamps, the name of the issuer, the subject’s name (the IP address) etc. The lengths of

these additional parameters vary. Based on an analysis of the X.509 certificates used

in our department for both the web servers and other activities, the average of this

additional data is estimated to be ≈ 5000-bits. The CA key, the public key and the

PKG key have a length of 2048-bits each.

Certificate Approach. To prevent man-in-the-middle attacks, the following infor-

mation must be transmitted: (1) The certificate including the user’s public key, the

signature of the CA and the additional parameters of the X.509 certificate. (2) A signed

piece of data that can be verified by a third party using the user’s private key to proof

legitimate possession of the public key. Thus, there are 2048-bits (user’s public key)

+ 2048-bits (signature of CA) + 5000-bits (additional parameters) + 2048-bits (proof

signature) = 11144-bits in total. The above bit length can be reduced to 6144-bits by

omitting the additional X.509 parameters that could partially be hard-coded into the

verification system.

SSF. In SSF, the binding between key and IP address is done implicitly by the mathe-

matics creating the proof of possession, and thus no certificate is needed. The total bit

length is: 2048-bits (GTαdID), 32-bits (T), 2048-bits (GRα) = 4128-bits. This results in

a reduction of factor ≈ 2.7 compared to the standard CA based approach, and a factor

of ≈ 1.5 compared to a CA based approach omitting the additional X.509 parameters

mentioned above.

6.3 SSF to Secure Phone Calls

The proliferation of mobile telephones is extensive, with billions of handsets in active

use in almost all countries. However, unlike the area of network security, mobile phone

call security is severely lacking. In mobile phone networks, eavesdropping on a call is

easy, even for non-governmental forces. Since the encryption schemes in GSM (2G)

and UMTS (3G) only encrypt calls between the mobile phone and the base station,

an attacker positioned anywhere in the network between the two base stations can

usually intercept calls without great difficulty. Furthermore, since GSM base stations
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are not authenticated, an attacker can pose as a base station and intercept phone

calls in the vicinity. Due to backwards compatibility and UMTS coverage issues, most

UMTS devices allow network fallback to GSM, opening up UMTS devices to the same

man-in-the-middle attacks that afflict GSM networks. While it is possible to imple-

ment end-to-end encryption of mobile phone calls based on a Public Key Infrastructure

(PKI), the complexity of setting up and using a PKI is prohibitive, especially since

many users of mobile phones are not well versed in cryptographic procedures and are

quickly overwhelmed when confronted with public and private keys, certificates, signa-

tures and revocation lists.

Identity-based cryptography (IBC) promises to offer an approach to end-to-end encryp-

tion for mobile telephone calls in which the telephone numbers of the call participants

are used as the public keys to secure the communication channel, thus making the

cryptographic security procedure as easy as making a telephone call. The use of tele-

phone numbers as public keys has two major benefits. Firstly, since the caller knows

the number to be called, the caller also automatically knows the public key and does

not need a separate public key look-up or certification infrastructure. Secondly, tele-

phone numbers are easy to understand and users are confident in using them, such that

there is no need to educate users to understand the link between a telephone number,

a public key and/or its certificate, thus significantly lowering the complexity threshold

of phone call encryption.

6.3.1 GSM

In GSM networks, communication between a mobile system (MS) (i.e. a mobile phone)

and a base transceiver station (BTS) is encrypted using the A5 [98] cryptographic

protocol. Due to design flaws, A5 is vulnerable to cryptanalysis such that hackers can

eavesdrop on the communication. Updates to the A5 protocol have been proposed to

hinder further attacks, and the UMTS standard has replaced A5 by a more secure (and

open) protocol, making cryptographic attacks less of a concern. A simpler attack is

to subvert the communication setup before encryption. To allow a MS to authenticate

itself to the network provider, it gets a subscriber authentication key (SAK). The SAK

is stored both on the SIM card of the MS and in the Home Location Register (HLR)

of the provider. The BTS are connected to a Base Station Controller (BSC) that in

turn is connected to a Mobile Switching Center (MSC) and a Visitor Location Register

(VLR). These in turn are connected to the HLR and the Authentication Center (AuC)

that give access to the SAK of the MS. During the authentication process, a 128-bit
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random number is generated which using the A3 [34] is combined with the SAK to

create a 32-bit authentication key called SRES. The SRES key is then sent to the BTS.

The SRES key is then compared to the SRES* key that is computed by the AuC of the

provider also using the A3 algorithm and the HLR SAK. If the two values match, the

MS is authenticated and may join the network. The BTS does not authenticate itself

to the MS. This opens up the possibility of a Man-in-the-Middle (MITMA) attack.

Using an IMSI catcher, an attacker can pose as a BTS and intercept calls in the vicinity

by broadcasting a strong base station signal. MS are programmed to connect to the

strongest BTS signal, thus if the IMSI catcher has the strongest signal they serve their

current BTS connection and will connect to the IMSI catcher no questions asked. Since

the BTS is also responsible for selecting the security mechanism, the IMSI catcher can

then force the MS to turn off or select an insecure encryption algorithm and thus allow

the MITMA to operate. The downside to this attack is that the IMSI catcher cannot

function as a real BTS since it is not connected to the main phone network and must

forward calls using its own MS and SIM.

f
IMSI-Catcher

f

Normal BTS

v

Figure 6.8: Because of its stronger signal (properly due to its local closeness), the IMSI-
Catcher forces the cellphone to register at him rather than the original
BTS. After negotiating a non-encrypted communication, the IMSI-Catcher
forwards and eavesdrops all packets.

However, since the SIM in the IMSI catcher cannot register itself as the target SIM

(due to the authentication of the MS), the attacked MS is not registered at any BTS

and is not reachable while it is connected to the IMSI catcher. Thus, only outgoing

calls can be intercepted, since the network cannot reach the attacked MS. Furthermore,

the IMSI catcher is not a targeted attack. It affects all MS in its vicinity all of which
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are not reachable while they are connected to the IMSI catcher and whose calls would

need to be forwarded if the IMSI catcher is not to become noticeable. While this attack

should not be taken lightly, there are some real world problems in its execution.

A much simpler attack is enabled by cost saving measures in common practice when

setting up base stations. Since connecting all BTS to a secured wired network is costly,

BTS can also be connected to the main network via a directed microwave link. This

microwave signal is sent without encryption and can easily be intercepted, giving an

attacker clear text access to all calls going via this link without leaving a physical trace.

But even a wired connection is not safe if an attacker is willing to apply a physical tap

to the line. These link taps are particularly relevant since they can be used without

affecting the rest of the network and thus cannot be easily detected. They also allow

a large number of calls to be tapped simultaneously. For instance, a BTS located near

a firm, government building or celebrity house can be tapped, thus, making all mobile

calls made to and from that location available to the attacker. Since the equipment

needed to execute such a tap is becoming more portable and cheaper at a rapid rate,

this kind of attack will rapidly gain in relevance.

To prevent the above attacks, end-to-end protection of phone calls is required. However,

the solution must be able to be deployed in a multi-organization environment and be

usable by non-tech savvy users. As stated in the introduction, conventional PKI based

solutions are too complex both for the network providers and for the users. A simple

approach is required which can be implemented by network providers independently of

each other and which does not introduce added complexity for end users.

Zimmerman’s Protocol: ZRTP. It is easy to understand that telephony is a perfect

scenario for IBC since the remote identity (= telephone number) has to be known.

However, there is another approach which has become very popular in the last two

years which is called ZRTP [128]. ZRTP is an extension of the plain Diffie-Hellman

key-agreement protocol but not identity-based. ZRTP is restricted to telephony or

other type of communications forms where the two involved party can directly hear

each other. The users check the status of their encryption via a short authentication

string (SAS) which the users read and verbally compare over the phone. The SAS

will only be equal, if the key-agreement was successful. All further communications

between the same parties are secured via derived keys from the initial session key.

Therefore, each ZRTP endpoint maintains a long-term cache of shared secrets that it

has previously negotiated with the other party.

The security concept of ZRTP is based on the fact that the participants compare a

derived value from their actual encryption key over the voice channel. It is clear that
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Figure 6.9: The ZRTP protocol flow (with no available preshared/previous secret keys).

this will fail if no voice channel or the like is available, which hinders ZRTP to be a

generally applicable solution. On the first sight, it seems, that by the comparison of

the SAS via the voice channel, the security of the encryption process is completely

reduced to the mathematical problem of the DH key agreement. But this is not true.

In [97] it is explained how ZRTP can be attacked without touching the mathematical

process. For example, speech synthesizers are a promising option for an attacker. They

can be used to insert a fake speech block, which contains a SAS, that is spoken with

the voice of the intended participant. Even worse, most of the time, probably only one

participant will read the SAS string whereof the other one will simply acknowledge the

correctness with a short ”‘yes”’. The word yes can be even easier synthesized than all

possible SAS strings, which makes such an attack more practical.

A Perfect Scenario

In the sequel, a scenario is shown in which the GSM world is aligned to the application

of identity-based encryption.

We start with the construction of the cell phone. The public shared parameters of the

main providers can already be stored in memory at this point, likewise the certificates

of the main root CAs come with the installation files of a web browser.

Because the phone number is determined at a later point in time, a private key cannot

be computed at this stage.
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3|EPlus|(N3, G3, R3, H3)

4|Simyo|(N4, G4, R4, H4)
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Figure 6.10: The main providers PSP are stored within the cell phone during
construction.

After a customer orders a cell phone, a telephone number is chosen. Concurrently, the

key generator of the associated provider generates the private key for the corresponding

number and stores these information on the SimCard (see Figure 6.11). In this way,

the private key is not bound to a mobile phone, but to a telephone number as it is

supposed to be.

�

Tel: 0178 1234567
Private Key: 2901...9421

Figure 6.11: The private key for the associated telephone number is stored on the Sim-
card, whenever it is sold to a customer by a provider.

Whenever two participants from different providers want to communicate, the proce-

dure is as follows (see Figure 6.12). The caller Alice selects the callee, here Bob, from

the contact list in her cell phone. The prefix of his telephone number tells that he is

T-Com customer. Since Alice herself uses O2, she has to extend her private key as well

as the hash value of the Bob’s telephone number to make the key agreement possible.

After executing the Extend algorithm, Alice can build the session initiation key, which

she sends to Bob during the connection establishment. Bob himself sees Alice calling

and computes the extended keys on his part in the analog way.

6.3.2 Voice over IP

Telephony over the Internet or Voice over IP (VoIP) has earned much attention in the

last years and consequently gains market shares. However, beside the financial savings,
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Figure 6.12: Communication.

the risk of being eavesdropped increases a lot. In the last years, VoIP threats were

placed at the top of the lists of IT-security risks.

Around the de facto standard protocol for VoIP session establishment, the SIP protocol

(SIP: session initiation protocol), many RFC proposals have been made. Two of them

are widely accepted; the RFC 3711 SRTP and the RFC 3830 MIKEY. The first one is

an extension of the of RTP protocol, which is one of the most popular protocol in this

area. RTP expects a symmetric encryption key that must be known to all participants

to encrypt the entire communication. This key distribution is mostly done by MIKEY,

the latter one of the two RFCs. Therefore, MIKEY allows three modi: Pre-shared keys,

Diffie-Hellman and public key infrastructures.

All of these are armed with disadvantages. The pre-shared modus is generally non-

applicable for ad-hoc communication, Diffie-Hellman is non-authenticated and PKIs

causes a heavy overhead. A good approach would be to extend these modi by another

option that is based on IBC. Regarding implementation, this can be done using SIP

Extensions.

In Figure 6.13, an example connection establishment is shown when using SSF in a

VoIP environment based on SIP Extension.
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Figure 6.13: VoIP: Registering and Calling.

6.3.3 Implementations

As a reference implementation, a dll-library written in c++ was created. It contains all

algorithms of the proposed scheme. Using this library, the key agreement protocol was

integrated into the following applications:

• Jabbin: The proposed scheme was integrated in the VoIP-Softphone Jabbin

(www.jabbin.com), which is based on the XMPP-Server OpenFire (www.ignite-

realtime.org) and the P2P-Network implementation LibJingle from Google. Due

to the XML-based messages in LibJingle, the actual negotiation protocol could

easily be extended by a new attribute, that is the session initiation key. This

makes the extended version even compatible with non-SSF version, since if the

SIK attribute is absent, the applications switches to the normal insecure mode.

• Wengo: The proposed scheme was integrated in the VoIP-Softphone Wengo

(www.openwengo.org) based on the OpenSource SIP-Server MJSip. For this pur-

pose, the session initiation protocol was equipped with new attributes via SIP

Extensions. Due to the existing support of the plain Diffie-Hellman key agree-

ment, a simple substitution of the DH public key with the SSF session initiation

key could be made. All this was done in the SIP message type INVITE. The actual

implementation was done by Graf [56].

• Symbian (N95): The proposed scheme was integrated in the Symbian OS

9.2 FP1 using a lightweight version of our dll. The SSF algorithms itself ran
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well on the phone and outgoing calls could be established. Because of provider

problems regarding the necessary data channel, the implementation was not com-

pletely productive at the end. However, the practicability was shown. The actual

implementation was done by Agel [2].

6.4 Optimizations

Cryptographic protocols that use public/private keys are typically based on NP-hard

mathematical problems. To make such a problem infeasible to compute on modern

hardware, the involved integers or dimensions must be sufficient large. This leads to

computations with very large integers, which are very expensive regarding computa-

tional power and sometimes memory consumption. This extra cost can extend the

time to set up a secure channel significantly. A simple RSA encryption with an up-to-

date key size can take several seconds of time on a PDA, whereby the CPU utilization

reaches its maximum.

The most costly operation in this domain is exponentiation. Exponentiation with secure

bit sizes requires several hundred or thousands of multiplications, consuming quite some

time on small devices. Compared to the size of memory or the available bandwidth,

the actual bit size of the involved integers is relatively small, e.g. a 1024-bit exponent

does not need much space to store or much time to transfer, but used as an exponent

it entails much effort.

A portable device is always or most of the time connected to a network. Thus, an

interesting idea is to “outsource” expensive computations by submitting the relatively

few bits to a computationally powerful backend server B. Cryptographic operations

sometimes contain sensitive information such as a private key, but sometimes they in-

clude just a multiplication with publicly known integers. In the latter case, outsourcing

is without a risk, since no sensitive data can be stolen. The only damaging case that

can occur is when the backend server always responds with false results, making all

further computations needless. In the case when private information is involved, this

information must be blinded such that the remote server cannot extract useful infor-

mation from it. Obviously, the blinding operation itself should be less in cost than the

actual cryptographic operation in question. Figure 6.14 illustrates the task when two

participants use a key agreement protocol that enables outsourcing during the involved

steps. In step 1, participant 1 (the initiator) builds a packet with the help of the back-
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end server that sends the aided computation back in step 2. During step 3, participant

2 receives the packet and uses the server to handle the received packet (steps 4 and 5)

and to create its own packet (steps 6 and 7). In step 8, participant 2 responds. In step

9 and 10, participant 1 uses the backend server to process the received answer.

x
Participant 1

-�

m1
m2

m9
m10

6m3
?

m8
xParticipant 2

-�

m4
m5

m6
m7 v v v vv v v vv v v vv v v vv v v v

High-Performance Backend Server

Figure 6.14: A protocol using a compute cluster for cryptographic computations.

6.4.1 Server-aided Cryptography

The aim of server-aided cryptography is to support small devices in expensive oper-

ations. This is done by delegating these operations to powerful servers that do the

computations on behalf of the owner of the small device.

Here, the Algorithms 7 and 8 as well as the corresponding Algorithms 10 and 11 would

be candidates to be outsourced. These algorithms perform an exponentiation that

involves an exponent of non-negligible size. In the rest of this Chapter, it is focused on

Algorithms 7 and 8 only.

When using server-aided computations, it has to be investigated whether the utilized

server can be trusted or not. If the server cannot be trusted, the computational task

may be performed wrongly by the server in order to harm the client. In such cases,

the client has to verify the result in some way. If the server can be trusted, the client

can assume that the computation is done as demanded and the result does not need to

be verified. However, trusted or not, in no case the server is allowed to obtain a secret

key that can be involved in the computation. For example, if the task is to compute

Gr where r is a secret key, the server is not allowed to access the integer r at any time.

In such cases, the secret key has to be hidden or blinded.

It is assumed that the backend server B can be fully trusted and the packets pass



6.4. OPTIMIZATIONS 120

the network connection untampered. In proposed case, this is not unrealistic, since a

provider who wants to support its clients with server-aided computations is interested

in satisfying its customers. In this case, the Algorithm 7 can be outsourced as shown

in Figure 6.15.

Setting: Both participants possess the PSP = {N, G, R, H}

Preprocessing: (This is done only once for each mobile device)
1. EID computes a random integer ρ

2. EID computes s ≡ G−ρ (mod N)

3. EID stores (ρ, s)
EID

v r
rand← {2k−1, 2k − 1}

B

v r̂ = r + ρ
v -

r̂

vcompute t ≡ Gr̂ (mod N)
v�

t

v compute SIKID1
≡ s · t · dID1

≡ G−ρGr+ρdID1
≡ GrdID1

(mod N)

Figure 6.15: Outsourcing of Algorithm 7

EID adds a random integer ρ to the actual exponent, which hides the exponent from

disclosure. In the end, EID subtracts the integer by using a precomputed integer. It is

clear that r̂ releases almost no information about the real integer r. The computational

amount reduces from one exponentiation with O(log2 r) number of multiplications to

one addition and two multiplications (apart from the preprocessing step that only has

to done once for a device). Despite the additional cost of transferring the necessary

bits, this is a large speedup compared to the original runtime. This method has already

been proposed by Lim and Lee [77].

The reason why this simple but effective method works is that the base G is fixed,

which makes the preprocessing step possible. On the contrary, in Algorithm 8, things

are different. Here, the base (SIKR
2 ·H(ID2)

−1) ≡ GRrID2 is not known in advance. SIK2

as well as H(ID2) are both values that depend on the corresponding participant, thus

precomputation becomes impossible in this case. Computing the value G−ρ on the fly

would lead to the same computational effort as computing Gr directly. It is focused on

the exponentiation with 2r1 in Algorithm 8 only, since the inner exponentiation SIKR
2

can be neglected due to the fact that the integer R can be chosen very small.

An additional problem in Algorithm 8 is that the order of G in ZN as well as the

factorization of N is unknown. Consequently, the server-aided computation techniques

proposed in the literature [76, 77, 41, 63, 81] cannot be used. In particular, a satisfactory



121 6.4. OPTIMIZATIONS

solution for speeding up exponentiation by server-aided methods, where the base as well

as the exponent is random and secret, has not been published yet. All existing methods

make use of the property that either the order or the base is known or that the exponent

need not be kept secret.

Matsumoto et al. [81] have proposed an approach to let a server compute the integer

xd (mod N), where d and x can be secret. However, their approach utilizes the fact

that the client knows the factorization of N. Lim and Lee [76] have presented an

optimization of Matsumoto’s algorithm, but do not remove the need for knowing the

factorization of N. In a further paper [77], Lim and Lee focus on exponentiation modulo

p, which makes the order of the involved group always known. In 2005, Hohenberger

and Lysyanskaya [63] presented some new ideas to generic outsourcing methods, but

they also focus on computations modulo p only, as Nguyen et al. do [90]. Dijk et al.

[41] mention to do exponentiation modulo a composite number N, but they also require

that the client knows its factorization.

Thus, none of these approaches considers to compute a discrete exponentiation modulo

a composite integer N and its factorization is not known to either the client or the

server. Additionally, the base as well as the exponent are random, and the exponent

has to be kept secret.

A trivial approach would be to split the secret exponent into two parts r = r1 + r2 and

submit the exponentiation task to two different backend servers. One backend server

computes Gr1 , and the other one computes Gr2 . If the servers do not cooperate, they

do not gain information about r and the result can simply be obtained by Gr1 · Gr2

(mod N). However, this cannot be assumed.

The proposed solution makes use of the Repeated-Squaring Algorithm typically used

for discrete exponentiation. The algorithm is illustrated in Algorithm 24. It can be

seen that in each round of the for-loop, at most one multiplication is performed and

two if the i-th bit position of the exponent is equal to 1.

The general idea of the proposed solution is as follows: Assume B knows N and G.

In each round, B computes two integers. For the first integer, B assumes that the

i-th bit position in r is equal to 0, thus B skips Line 4 in Algorithm 24. For the

second integer, B assumes that the i-th bit position is equal to 1, thus B performs both

exponentiations, in Line 3 and Line 4. Afterwards, B submits the two integers to EID.

EID chooses the correct one, since he knows the exponent and thus knows if the i-th
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Algorithm 24 Exponentiation: Repeated Squaring

Input: G, r =
∑n−1

i=0 ci2
i, N

Output: Gr (mod N)

1. a← 1
2. for i = n − 1 to 0 by −1
3. a← a ∗ a (mod N)

4. if ci = 1 then a← a ∗G (mod N)

5. return a

bit is zero or not. After choosing the correct integer, he blinds it by adding a random

integer M of sufficient size and sends it back to B, which proceeds in the same way

for the next bit position. The blinding operation can be reversed by EID by reducing

modulo M.

After having explained the general idea, more details are necessary to prove that the

algorithm indeed computes the correct result and that B is not able to obtain r with a

non-negligible probability in the size of r. First of all, the complete algorithm is given

in Algorithm 25.

Algorithm 25 Outsourced Version of Algorithm (SSF) Compute

Input: G, r =
∑n−1

i=0 ci2
i, N

Output: Gr (mod N)

1. compute G1 ≡ G2 (mod N)

2. compute G2 ≡ G1G (mod N)

3. Mn−1 = N

4. for i = n − 2 to 0 by −1
5.a if ci = 0 then Wi+1 ← (G1 (mod Mi+1)) (mod N)

5.b else Wi+1 ← (G2 (mod Mi+1)) (mod N)

6. Mi
rand← {N3, N3 + ∆}

7. Wi ←Wi+1 + Mi

8. send Wi to B

9. receive (G1, G2)← (W2
i , W2

i G)

10. return Wi (mod Mi)

After skipping the most significant bit (since it must be equal to 1), the algorithm

parses the exponent from the most significant bit to the least significant bit. For each

bit (in Line 6), a random integer is chosen, which is added to the previous result in

Line 7. B computes the square of Wi as well as the square of Wi times G. EID reduces

the results first regarding Mi+1 and then regarding N (Line 5a/b), which reveals the

correct solutions in ZN. Figure 6.16 shows the communication and computation steps

in a single for-loop iteration.
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Setting: B knows G and N

EID

v Mi
rand← {N3,N3 + ∆}

B

v Wi ←Wi+1 + Mi
v-

Wi

vcompute (G1,G2) = (W2

i ,W2

i G)
v �

(G1, G2)

Figure 6.16: Outsourcing of Algorithm 8

Example: Let N = 6499, G = 17 and the exponent r = 11 = 10112. Thus, the

exponent is 4 bits long, and the for-loop runs from 2 to 0, as shown in Figure 6.17.

i G1 G2 Wi+1 Wi Mi+1 Mi bit
- 289 4913 n/a n/a 6499 n/a 10112

2 W2

i W2

i 17 289 21580589148265 6499 21580589147976 10112

1 W2

i W2

i 17 3075 207332088832074 21580589147976 207332088828999 10112

0 W2

i W2

i 17 5858 26566610735587 207332088828999 26566610729729 10112

Figure 6.17: Example for Algorithm 25

The first row shows the initialization step. Here, G2 and G3 are computed with respect

to the first bit, and also M3 is set to N. All further computations of W2
i and W2

i G are

done by B. The Mi values are just random integers. The final output is 5858, which

indeed is 1711 (mod 6499).

Correctness and Security. Let r be an n-bit integer. For the correctness it has to

be shown that the partial result in each round is equal to the term G⌊r/2i⌋ (mod N),

which is the usual partial term in the Repeated-Squaring Algorithm.

Lemma 6.4.1 Algorithm 25 is correct.

Proof 6.4.2 It can be argued via induction: Since EID knows the correct partial result

for the most significant bit, which is G itself, it can be assumed that the (n−1)-th partial

result has been obtained by (G⌊r/2n−1⌋ = G). Thus, EID already has Wi+1 ≡ G⌊r/2i⌋
(mod N) as the correct partial result. After submitting Wi+1 + Mi to B, EID receives

W2
i+1 + 2Wi+1Mi + M2

i (6.1)

W2
i+1G + 2Wi+1GMi + GM2

i (6.2)

Since Wi+1 < N and G < N it holds W2
i+1 < W2

i+1G < N3 < Mi. Thus, Equation
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(6.1) reduces to G2⌊r/2i⌋ and Equation (6.2) reduces to G2⌊r/2i⌋+1.

The next partial term is G⌊r/2i−1⌋, which is either 2
⌊
r/2i

⌋
or 2

⌊
r/2i

⌋
+ 1, depending

on whether the i-th bit is 0 or 1. Since EID knows this bit value, he can choose the

correct value from the two possibilities, thus obtaining the correct next partial result.

q.e.d

Lemma 6.4.3 During Algorithm 25, B does not obtain the secret integer r except with

a negligible probability.

Proof 6.4.4 To learn the exponent r, B must know whether the bit at the current

position is 0 or 1. In the each round, B computes both cases; one integer for the case that

the bit is 0 and one for the 1-case. Obviously, in this round B does not learn anything

about the bit value. In the next round, B receives one of the previously computed integers

added with an random integer Mi−1. If B could decide which integer is involved in

this packet, B knows which integer EID has chosen, thus B knows the corresponding bit

value. However, since Mi−1 is chosen completely randomly and independent of previous

rounds, both possibilities are still equally likely, thus B can not do better than random

guessing on each bit position, which is negligible in the length of r. q.e.d

6.4.2 Performance Gain

To measure the performance gain, the savings of the computational cost as well as the

additional overhead of the outsourcing procedure are counted. By looking at Algorithm

25, one gets the following costs: There are two multiplication at the beginning that

compute G2 and G3, both of which require time tmult. Next, there are two modular

reductions in each round (Line 5a/b), one modulo M and one modulo N. The total

time for these two reductions is denoted by tred. In Line 6, a random integer is chosen

from a given interval. Since N is a fixed public parameter, this random integer can be

precomputed, thus the time required for choosing the random integer is not considered.

The last computational operation in the for-loop is the addition Wi+1 + Mi. Addition

is a cheap operation and is often treated as getting it for free. However, the time for a

single addition is denoted by tadd. Finally, there is another single reduction of modulo

Mi+1. The total cost is

2tmult + (n − 1)(tred + t(M)add) + t(M)red (6.3)
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Since multiplication is much more expensive than reduction and addition, the cost is

2tmult + (n − 1)(tred + t(M)add) + t(M)red < O(n)tmult (6.4)

where the right side is the average cost for a multiplication with the Repeated-Squaring

Method. Consequently, the algorithm yields a large computational saving compared to

the standard case.

Next, the number of bits that need to be transferred during the algorithm are counted.

Since G and N are fixed PSP, it is assumed that they are already known by B. During

one loop (see Figure 6.16), the terms Wi+1 + Mi, (Wi+1 + Mi)
2 and (Wi+1 + Mi)

2G

are exchanged. The bit length of Mi is log2 Mi, and since Mi is much larger than

Wi+1 (remember that Wi+1 < N, since it was reduced modulo N in Line 5a/b), the

bit length of Wi+1 + Mi is ≈ log2 Mi. The same argument holds for the second term.

The squaring doubles the bit length, thus |(Wi+1 +Mi)
2| ≈ 2 log2 Mi. In the last term,

the factor G has been multiplied, which adds log2 N bits to the previous term. In total

there are

#bits = O (log2 r (log2 M + (2 log2 M) + (2 log2 M + log2 N))) (6.5)

bits that need to be transfered, which can be simplified to #bits = O (16 log2 r log2 N).

Depending on the size of N and r, this is a relatively high communication cost. However,

the larger the available bandwidth, the larger the speedup is.

6.5 Summary

In this section, applications were presented where identity-based cryptography is es-

pecially useful and where the advantage of the binding between identifier and public

key is apparent. E-mail communication is not mentioned here, since the relationship

between e-mail and identity-based cryptography has been discussed in the literature.

The application to IP networks is especially interesting due to the global DNS system,

which then turns into a public key distribution system.

The application to telephony is apparent, since the caller either has to know the number

or he can use the public telephone book to retrieve it. Together with the optimization

extension, the GSM scenario becomes even more practical.





7 Experimental Results

”Errors using inadequate data are much less than

those using no data at all.”

Charles Babbage

7.1 Introduction

This chapter presents measurements related to the entire scheme.

The presented algorithms were implemented on a standard laptop and also on a mobile

device (for the particular model and configuration, see below). Measurements regarding

different bit sizes of the modulus and of the involved random integers are described.

In the second part of the chapter, an efficiency comparison with the Guillou-Quisquarter

signature scheme [59] (Abbr: (GQSS)) is presented, based on the number of necessary

multiplications per signature. The Guillou-Quisquarter scheme is known to be efficient

and the number of multiplications is the usual method to show how good a scheme

performs.

Finally, the performance gain based on the the server-aided optimization algorithm

described in the previous chapter is presented.

The results of this chapter were published in [122], [121] and [110] and [106].

7.2 Measurements

The algorithms were implemented in three different languages. First, a C++ imple-

mentation using the MIRACLE arbitrary precision library [123], which can be used

127
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for academic purposes for free, was produced. Second, an implementation in Java

by using Sun’s native BigInteger library in the version v1.6, was performed. Last,

Mathematica v4.1 was used, which is a computer algebra system and supports natively

many number theory functions. All measurements were done on a 2.4 GHz DualCore

IBM Thinkpad with 2 GB of RAM.

7.2.1 Algorithms During Key Agreement

In Table 7.1, the time (in milliseconds) to execute the BuildSIK algorithm with different

involved bit sizes is shown. The BuildSIK algorithm generates the session initiation key

and is not executed during call establishment. The algorithm can be executed already

in advance (i.e. offline) to save time during key agreement.

Alg. BuildSIK

|rID|

|N|

512 1024 2048 4096
C++ Java M C++ Java M C++ Java M C++ Java M

64 0.2 0.4 0.5 0.7 1.4 1.2 2.6 5.4 3.5 10.5 21.5 11.0

128 0.4 0.8 1.0 1.2 2.8 2.5 4.3 10.7 7.9 17.6 41.2 24.0

256 0.7 1.6 2.1 2.1 5.4 5.4 7.7 21.0 16.0 29.7 80.5 51.6

512 1.3 3.0 4.4 4.0 10.7 11.0 14.5 41.0 32.0 56.3 158.0 103.1

Figure 7.1: BuildSIK. Unit = ms, Rounds = 5000, G = 2 and |R| = 16

On the contrary, the Compute algorithm must be executed online during key agreement,

since its input depends on the communication partner. It an be seen that even the most

secure combination with involved bit sizes of 4096 and 512 the algorithm only takes

61.9 ms when using C++ and 166 ms when using Java.

Alg. Compute

|rID|

|N|

512 1024 2048 4096
C++ Java M C++ Java M C++ Java M C++ Java M

64 0.3 0.6 1.1 1.0 2.2 2.7 3.5 7.8 7.5 13.7 30.7 22.4

128 0.4 1.0 1.8 1.4 3.4 4.6 5.2 13.5 12.8 20.5 50.0 40.9

256 0.7 1.8 3.1 2.3 6.0 8.7 8.7 23.8 24.8 33.3 89.7 79.4

512 1.3 3.3 6.1 4.3 11.4 16.2 15.5 45.0 49.1 61.9 166.0 154.1

Figure 7.2: Compute. Unit = ms, Rounds = 5000, G = 2 and |R| = 16

A remark should be made to the BuildSIKMultIDPKG and ComputeMultIDPKG algorithms.
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Essentially, these two algorithms are identical to the algorithms in the single ID-

PKG case, except that they expect larger input variables. Thus, the time for the

ComputeMultIDPKG algorithm with two 512-bit moduli involved and 128-bit random ex-

ponents, will be equal to the time for the Compute algorithm with a single 1024-bit

modulus and a 256-bit random exponent.

The Extend algorithm is used when a second ID-PKG is involved. Since no expensive

exponentiation is involved, the execution time of the algorithm is the shortest of all

algorithms.

Alg.: Extension

|rID|

|N1| = |N2|

512 1024 2048 4096
C++ Java M C++ Java M C++ Java M C++ Java M

N/A 0.02 1.0 1.5 0.05 3.0 3.4 0.5 10.0 8.6 1.6 42.0 24.1

Figure 7.3: Extension. Unit = ms, Rounds = 5000, G = 2 and |R| = 16

7.2.2 Algorithms for Signatures

The next two tables contain the measurements for the signature algorithms. The av-

erage time for the SigGen algorithm is shown in Table 7.4. It can be seen that the C++

implementation gets the more efficient the larger the involved exponents are. This is

probably due to the more sophisticated implementations of exponentiation algorithms

in the arbitrary precision library and the known better performance of C++ in general.

Alg. SigGen

log2 rID

log2 N

512 1024 2048 4096
C++ Java M C++ Java M C++ Java M C++ Java M

64 0.6 0.6 0.5 2.2 2.0 1.2 8.5 8.0 3.4 29.7 31.4 10.3

128 0.8 1.0 1.0 3.1 3.4 2.6 12.4 13.1 7.2 36.5 48.2 22.4

256 1.0 1.7 2.0 4.3 6.0 5.3 15.3 23.0 15.1 49.7 90.4 47.8

512 1.7 3.1 4.1 6.6 11.1 10.6 23.6 42.6 31.0 75.8 158.7 97.6

Figure 7.4: SigGen. Unit = ms, Rounds = 5000, G = 2 and |R| = 16

The signature verification is independent of the involved exponents and can be executed

much faster than the generation algorithm.
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Alg. SigVer

log2 rID

log2 N

512 1024 2048 4096
C++ Java M C++ Java M C++ Java M C++ Java M

N/A 0.5 0.6 0.6 1.7 1.9 1.4 6.1 7.3 3.9 24.5 28.4 11.3

Figure 7.5: SigVer. Unit = ms, Rounds = 5000, G = 2 and |R| = 16

7.2.3 Key Agreement on a Mobile Device

The basic protocol was also implemented on a state-of-the art mobile phone using C++.

Performance measurements were made on a Nokia N82-1 running Symbian 9.2 FP1

with a ARM-11 CPU running at 330 MHz. The measurements are only related to the

Compute algorithm, which is the main online computation method and determines the

delay noticed by a user. For each of the 64 parameter constellations, 100 runs were

performed to get a mean value. The results are presented in Figure 7.6.

512-bit modulus

log2 rID

R
3 17 513 65537

64-bit 38 45 47 51

128-bit 86 86 82 92

256-bit 156 166 161 167

512-bit 324 335 318 325

1024-bit modulus

log2 rID

R
3 17 513 65537

64-bit 161 174 172 180

128-bit 305 316 316 311

256-bit 620 618 629 625

512-bit 1219 1237 1240 1244

2048-bit modulus

log2 rID

R
3 17 513 65537

64-bit 622 670 670 700

128-bit 1192 1186 1208 1169

256-bit 2320 2421 2334 2435

512-bit 4577 4559 4582 4575

4096-bit modulus

log2 rID

R
3 17 513 65537

64-bit 2354 2485 2566 2680

128-bit 4586 4594 4734 4842

256-bit 8813 9280 9153 9100

512-bit 17641 18514 17497 17749

Figure 7.6: Mobile benchmarks. Compute. Unit = ms.

The mobile benchmarks illustrate the large difference between the execution of crypto-

graphic operations on a desktop PC and a mobile device. On the average, the execution

time is around 100 times larger compared to the desktop computer. This problem is

again addressed in Chapter 6.4.
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7.3 Comparison to the Guillou-Quisquater Scheme

GQSS uses the following setup. An integer N = PQ with P = 2P ′ + 1 and Q = 2Q ′ + 1

with P, Q, P ′, Q ′ ∈ P, with the mandatory requirement that all these primes are of

cryptographic secure size. A prime v with v < min(P, Q) and a one-way hash function

H with |H(m)| < v for some input m, see [58].

Public Shared Parameter of GQSS: PSP = (N, v, H).

Secret Parameters of GQSS: SP = (P, Q).

The parameters of this scheme have the same bit length as the corresponding parameters

of the SSF scheme.

Definition 7.3.1 (Bit length definitions for GQSS) Let (N, v, H) be the public, shared

parameters of the GQSS protocol with the following properties. N is a balanced RSA

integer of bit length n. The bit length of the integer v is γ. The hash function is defined

by H : {0, 1}∗ → {0, 1}w, thus producing a w-bit output.

Since GQSS also makes use of a hash-function the output length was set to w-bit, to

be equal Definition 5.2.1. Let ID be the identity of a participant with |ID| < N/2, then

the identity key in the GQSS is dID ≡ Red(ID)−v−1
(mod N). The function Red() is

the concatenation of ID and a redundancy depending on ID, see [59]. A signature for a

message m is a triple (d, z, m) which is constructed in the following way.

7.3.1 Precomputation Optimization

Whenever the base of an exponentiation is static and known in advance, precomputation

of certain integers gives a speedup in relation to the amount of precomputed data. In

the presented signature algorithm the three exponentiations can be reduced to only

two exponentiations, but with larger exponents. Therefore, the terms gαa and gαR are

computed directly, rather than in a successive way. The first exponent is α · h and the

second α ·R, which are of size ≈ k+w and ≈ k+λ respectively. The advantage is, that

both exponentiations are then done to the fixed base G, which enables precomputation

techniques.

Fast precomputation algorithm, like the BGMW-Algorithm [25] or the LimLee Algo-

rithm [75] (LLA) can give a significant speed-up, depending on the amount of precom-
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Okamoto-Tanaka and SSF Gen. GQSS Gen. Precomp. (bit)

Without Precomp. 3
2 (k + w + λ) 3

2 (w + γ) -

With Precomp . 2h−1

2h
(
⌈

k+w
h

⌉
+
⌈

k+λ
h

⌉
) +

⌈
k+w

hv

⌉
+
⌈

k+λ
hv

⌉
− 4 2h−1

2h

⌈
w
h

⌉
+
⌈

w
hv

⌉
− 2 + 3

2 γ (2h − 1)v log2 N

Table 7.1: Number of Multiplications

puted data. Setting a =
⌈

log2 e
h

⌉
and b =

⌈
a
v

⌉
and precomputing (2h − 1)v values,

the number of multiplications of the LLA is on the average 2h−1
2h a + b − 2. Since this

value can be arbitrary small if someone decides to precompute nearly all values, the

amount of precomputed data was set to a realistic value. For mobile phones, mainly

small resource constrained devices are used and not much storage can be spared for

precomputed data, thus the maximum amount of precomputed data is limited to 8KB.

The adjacent Table 7.1 shows the theoretical number of multiplications in the average

case when LLA is used for precomputation.

7.3.2 Performance Comparison

In this section, a performance comparison of the basic signature algorithm is given.

Since there are no other identity-based multi-signature schemes with independent ID-

PKGs, only the basic algorithm for the single signature case is compared, since for

this case the similarities with the Guillou-Quisquater identity-based signature scheme

[60] offers a good basis for comparison. The performance evaluation is done based

on the number of multiplications needed for signature generation and verification. A

brief introduction to the GQSS and the setup used for evaluation is shown to appendix

7.3. To allow for a neutral performance evaluation which is not affected by differences

in implementation the analysis only consider the involved number of multiplications,

which is the main factor determining the run time of the algorithm. Therefore, the

exponentiation computation is broken down into the number of multiplication when

using the Repeated-Squaring Method (Abbr: RSM) [25]. The average case of the RSM

are 3
2 log2(e) multiplications, when e is the given exponent. Later, the case is discussed

where the precomputation is used for the case where the base of an exponentiation

is known in advance. Only the multiplications in the exponentiation are taken into

account, since they are the dominant factor.

Signature Generation with the Okamoto-Tanaka and SSF Protocol. In the

basic algorithm for a signature generation, three exponentiations (Algorithm 15, Line 2
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- Line 4) are performed, one with a k-bit exponent, one with a w-bit exponent and one

with a λ-bit exponent. Using the mentioned average case of the RSM and assuming

that all these integers have random characteristic there are 3
2(k+w+λ) multiplications

on the average.

Signature Generation with the GQSS Protocol. In the GQSS algorithm for a sig-

nature generation two exponentiations (Algorithm 13, Line 2 & Line 4) are performed,

one with a γ-bit exponent and one with a w-bit exponent. Using the mentioned average

case of the RSM and assuming that all these integers have random characteristic there

are 3
2(w + γ) multiplications on the average.

In direct comparison this gives the Guillou-Quisquater signature scheme an advantage

of 3
2k multiplications. If a user decides to leave the random k-bit integer α in the

presented Okamoto-Tanaka and SSF signature algorithm random but fixed, the runtime

of both algorithm are equal. Furthermore, in both protocols the integer R and v can

be chosen to contain only few 1s in its binary representation.

Signature Verification in the Okamoto-Tanaka and SSF Protocol. In the algo-

rithm for a signature verification two exponentiations (Algorithm 16, Line 3 & Line 4)

are performed, one with a λ-bit exponent and one with a w-bit exponent. Using the

mentioned average case of the RSM and assuming that all the integers have random

characteristic there are 3
2(w + λ) multiplications on the average.

Signature Verification in the GQSS Protocol. In the GQSS algorithm for a signa-

ture verification two exponentiations (Algorithm 14, both Line 2) are performed, one

with a γ-bit exponent and one with a w-bit exponent. Using the mentioned average

case of the RSM and assuming that all the integers have random characteristic there

are 3
2(w + γ) multiplications on the average.

Since λ and γ can be chosen freely, the runtime of the two algorithms are equal.

However, since the GQSS protocol uses the random integer r in the base (Algorithm 13,

Line 2), rather than an exponent, like the proposed approach does, the precomputation

speedup presented in appendix 7.3.1 can not be applied to the GQSS protocol. Thus,

the presented protocol can outperform the GQSS protocol. In Table 7.2 example values

for different exponent sizes are shown for signature generation. The modulus is a 2048-

bit RSA integer, and the precomputation is determined by v = 4 and h = 3. The

precomputed data is within the 8KB limit. The value k is the bit size of an exponent

which need to be adequately large to prevent guessing of the exponent. It can vary
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bit sizes OkTa/SSF Gen. GQSS Gen. Precomp. (KB)
k = 64, w = 256, λ = γ = 256 237 479 7.198
k = 128, w = 256, λ = γ = 256 288 479 7.198
k = 256, w = 256, λ = γ = 256 381 479 7.198
k = 64, w = 256, λ = γ = 512 334 863 7.198
k = 128, w = 256, λ = γ = 512 383 863 7.198
k = 256, w = 256, λ = γ = 512 478 863 7.198
k = 64, w = 256, λ = γ = 1024 525 1631 7.198
k = 128, w = 256, λ = γ = 1024 576 1631 7.198
k = 256, w = 256, λ = γ = 1024 669 1631 7.198

Table 7.2: Number of Multiplications

between 264 and 2256. It is w = 256 since SHA-256 is a well known and often utilized

hash function that has 256 bit. Since v must be larger than H(m) it must hold γ > w.

And since λ and γ are equivalent in the two protocols it is λ = γ. As can be seen in

Table 7.2, the SSF algorithm requires significantly less multiplications than the GQSS

scheme.

7.4 Server-Aided Optimization

To estimate how much the outsourcing algorithm improves the performance of the over-

all execution time of the encryption process, the measurements of Table 7.6 in Chapter

7 have to be considered. The figure shows the time to compute the encryption key.

Obviously, the algorithm lasts longer, the larger the involved bit sizes are. To illustrate

the performance gain, we pick a 4096-bit modulus and choose different exponent sizes:

64-bit,128-bit,256-bit,512-bit and 1024-bit. The time for a computation for these sizes

on the mobile phone is around 2.4 seconds, 4.7 seconds, 8.9 seconds, 17 seconds, and

34.7 seconds, respectively. Thus, if the total transfer time to the backend (plus the

computation time on the backend B, which is mostly negligible compared to the other

terms) is less than these values in seconds, a theoretical speedup is achieved. How-

ever, the actual bandwidth and connection properties can have fluctuations, caused by

startup problems and jitter. In the latter case, this unknown factor is covered by an

additional term called tdelay.

In all measurements, R is neglected, since it does not change the time significantly.

The theoretical performance gain is due to the reduction of the execution time on the

mobile phone by the corresponding total transfer time. The plain transfer times are

shown in Figure 7.7, whereas the gained speedup in seconds is shown in Figure 7.8.
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Figure 7.7: Time (in seconds) to transfer all necessary bits for a 4096-bit modulus.

Example: Take the measurements of Chapter 7 Table 7.2 as a minimum speed-up.

The actual speedup when using a cluster node will be probably much higher. Suppose

there is a 3.5 Mbit/s connection and a 4096-bit modulus together with a 256-bit random

exponent. The time for the Compute algorithm based this combination on the Nokia

telephone is around 9.1 seconds. With a look at the Figure 7.7, it can be seen that

5 seconds are necessary for the transport of all arising bits. Thus, computation time

reduces from around 9 seconds to ≈ 5 seconds (C++ implementation).

It is evident that with a 1.5 Mbit/s connection, no speedup can be achieved. However,

already with a 2 Mbit/s connection, all differences are positive, which will probably

be counterbalanced by startup times and jitter. If the bandwidth increases further,

the obtained seconds become significant for the larger exponent sizes. To reduce the

waiting times for the phone call to be established by several seconds, is a quite noticeable

improvement for both callee and caller.

After having illustrated the theoretical speedup, the value tdelay will now be increased.

To uncover its effect, it is picked for a 4096-bit modulus and a 512-bit exponent. To total

amount of data that must be transferred in this constellation is, according to Eq. 6.5,

around 4.2 MBytes. The communication between the mobile device and the server is a

normal data connection with only a single connection establishment. Two computations
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Figure 7.8: Time gained (in seconds) based on the outsourcing method for a 4096-bit
modulus regarding different exponent sizes.

on the corresponding sites can be done on time, so no new connection must be built

up in each round. The theoretical transfer time of these 4.2 MBytes can now differ

regarding the value tdelay. Based on this fact, it is clear that this algorithm obtains

a speedup for computations in local rea networks or other high speed environments,

since there the time to transfer a few MBytes is negligible. In a GSM environment,

the average jitter time is per default set to 4 ms. This is the value that is given in

the literature and is used in many specifications. This means that the average transfer

time of a packet is, on the average, delayed by 4 ms. Additionally, we have a startup

delay that also decreases the performance but only occurs once. The average of this

startup delay is around 300 ms in the normal GSM network and below 50 ms in modern

environments like HSPA. However, this constitutes only an additional summand and

does not influence the performance as much as jitter does. In Figure 7.9, the jitter

parameter is varied from 0 to 2 times on the average, thus 8 ms per communication.

The startup delay is set to 300 ms.

High jitter and a low bandwidth leeds to a slowdown characterized by the upper right

negative table entries. But whenever the bandwidth reaches the 3 Mbit/s level (UMTS

speed), even a network with a 2 times average jitter gives a slight speedup. In a 5 Mbit/s

network with a 2 times average jitter, we gain 7 seconds compared to the case when

all computations are performed on the mobile phone. For comparison, the speedup in

local area network environments is also displayed.
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Mbits/s
jitter

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms

1.5 -4.35 -5.55 2566 -7.59 -8.61 -9.64 -10.66 -11.68 -12.70

2 1.06 0.03 -0.99 -2.01 -3.03 -4.05 -5.08 -6.10 -7.12

2.5 4.40 3.38 2.36 1.34 0.32 -0.71 -1.73 -2.75 -3.77

3 6.64 5.62 4.59 3.57 2.55 1.53 0.51 -0.52 -1.54

3.5 8.23 7.21 6.19 5.17 4.14 3.12 2.10 1.08 0.06

4 9.43 8.41 7.38 6.36 5.34 4.32 3.30 2.27 1.25

4.5 10.36 9.34 8.31 7.29 6.27 5.25 4.23 3.20 2.18

5 11.10 10.08 9.06 8.04 7.01 5.99 4.97 3.95 2.93

10 14.45 13.43 12.41 11.39 10.36 9.34 8.32 7.30 6.28

100 17.47 16.44 15.42 14.40 13.38 12.36 11.33 10.31 9.29

1000 17.49 16.74 15.72 14.70 13.68 12.66 11.63 10.61 9.59

Figure 7.9: Startup = 300 ms. The tables shows the gained speedup in seconds. That
means the 17.5 seconds from the mobile computation must be reduced by
the value from the table. E.g. for a 3 Mbit/s line and 2 ms jitter, the 17.5
seconds compute time is reduced by 4.56 seconds.

Obviously, the algorithm is not optimal for GSM networks, due to its its jitter and

startup times. However, it can lead to a speedup, at least at the UTMS speed level

and decreases the time a user has to wait to get the encrypted phone call established.

Furthermore, it is the first algorithm that allows to outsource an exponentiation where

the base is unknown and the exponent must be kept secret.

7.5 Summary

The measurements show that the proposed scheme performs well in general and in

comparison with the Guillou-Quisquater scheme. Even in the case of 4096-bit moduli,

the C++ implementation only needs around 62 ms to compute the session key, which

illustrates the time a user is delayed based on the key agreement process. The time

for the Extension algorithm, which is executed once when using two ID-PKGs, can be

neglected. The signature scheme performs well, too. It takes only 76 ms to generate

a signature using a 4096-bit modulus as well as a 512-bit exponent. The verification

is done in only 25 ms and is independent of the random exponent. In the contrast to

GQSS, the SSF scheme can benefit from precomputation, which allows to outperform

the GQSS. The analysis of the server-aided computation extension shows that the

algorithm performs a speedup whenever the available bandwidth is at least 3Mbit/s.





8 Conclusions

”A conclusion is the place where you got tired of

thinking.”

Arthur Bloch

8.1 Summary

The main contribution of this thesis is the development of the Secure Session Frame-

work. It consists of two main parts: first, a key agreement scheme with extensions

to multiple independent key generators, and second, a corresponding multi-signature

scheme. The key agreement is based on well known assumptions and is efficient in

the terms of communication and computational cost. It fulfills all necessary require-

ments for a secure and authenticated key agreement protocol, which was proven us-

ing the Canetti-Krawczyk Model [30, 31]. For the multiple ID-PKG case, the proof

given by Gennaro et al. [48] was followed. The signature scheme was proven secure

against existential forgery on adaptively chosen message and ID attacks. This property

was separately proven for all three introduced versions: single signature with single

ID-PKG, multi-signature with single ID-PKG and multi-signatures with multiple ID-

PKGs. Thus, with the proposed way to handle independent ID-PKGs, an open problem

in the field of IBC was solved.

The next part of the thesis was about related attacks. The Φ-Hiding assumption

was addressed and it was shown that this assumption can be broken with an average

advantage probability of 1/4 if the setup was chosen in a certain way. This is a quite

surprising result, since the Φ-Hiding assumption is deeply associated with the Integer

Factorization Problem, which again has not been solved for centuries. In the general

case (using composite integers to hide, rather than primes), the invented attack even

gets more powerful. This means that the probability to break the assumption increases

towards 1/2, the more prime factors the hidden integers contain. The second attack was

139
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directed to secret sharing schemes. In this case, the findings were as follows: Whenever

a CRT-based threshold secret sharing scheme is used to distribute the integer ϕ(N) (in

SSF: the master secret key) among several ID-PKGs, a subset of malicious ID-PKGs

can reveal the entire secret under certain circumstances using lattice based reduction

methods. Some publications, e.g. the one of Iftene and Grindei [65], indeed use this

kind of setup and could be shown to be insecure.

The last part of the thesis presented applications and experimental results. Its focus

was on two scenarios, IPv4 networks and GSM/VoIP communication. For the first

scenario, real world issues were discussed and problems an adopter has to deal with.

Dynamic IP addresses, NAT traversal and secure distribution of the involved keys are

some of these obstacles. Additionally, it was illustrated how the SSF signature scheme

can be used to prevent IP spoofing by signing a timestamp as a proof of possession. The

second scenario was about GSM and VoIP communication. Because the actual encryp-

tion used for GSM communication is insecure, the need for an end-to-end encryption

method is apparent. Therefore, it was shown how SSF can be built into a GSM archi-

tecture, and a prototype implementation on a Nokia N95 was performed. Regarding

VoIP, several implementations were made to show the practicability. The open source

implementations Jabbin and WengoPhone were extended with the SSF protocol and

corresponding SIP registrars were enhanced to generate the identity keys for each user.

Because of the limited computational power of mobile devices, an optimization was

presented by using server-aided cryptography to outsource expensive computation to

powerful backends.

8.2 Future Work

There are several open problems that need to be addressed:

Group Key Agreement / Group Signature. A key agreement is defined as an

action that takes place between two entities. For an application like VoIP or GSM

telephony it perfectly makes sense to utilizes this concept, since most of the time only

two participants communicate.

Based on further developments of Internet technology, by now participants tend to use

more and more conference conversations that allow to share a communication channel

between several entities. For a conference with n attendees, it would be possible to
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make a pairwise key agreement and to encrypt a message with n − 1 different keys.

However, this is an unnecessary overhead and could be reduced when using so called

group key agreements. Figure 8.1 illustrates the number of messages for both cases,

the pairwise key agreement and a normal group key agreement scheme. In the latter,

each participant sends a message to its left neighbor and the last receiver broadcasts

the final packet to each previous participant.
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Figure 8.1: The number of arrowheads indicate the number of messages involved. On
the left side, which shows pairwise key agreements, 4(4 − 1) = 12 messages
are necessary; on the right side, only 6 message are required.

Thus, an extension to the SSF scheme to allow group key agreements in a secure way,

by using similar ideas as Steiner et al. [124], is an interesting area of future work. Since

GSM, VoIP and even chat are perfect applications for IBC, conference conversation is

the next logical step.

Elliptic Curves. Elliptic curves have the advantage that they achieve the same level

of security as schemes that are based on classical assumptions, but require less bits.

Consequently, they are more efficient regarding bandwidth consumption. Since the

CRT can also be used to characterize points on elliptic curves, the idea to make a

completely independent ID-PKG work can perhaps be transferred to elliptic curves as

well.

Implementations. The implementation of SSF was done on various platforms and

devices. However, some of them were not completely elaborated. Using the data

channel of a mobile phone is the straightforward way for the implementation on a mobile

phone. Even if the data channel has a very low bandwidth, it is very comfortable to
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use since it offers reliable data transfer. But since the providers are going to narrow

the support for data channels and some even do not support them any more, one has

to switch from the data channel to the voice channel. This entails the problem that

the voice channel is subject to data compression. If a packet that contains encrypted

data is transferred and loses bits due to a compression routine, the decryption process

will fail. To make this implementation work, ideas as those described by LaDue et al.

[72] are good examples of how such a implementation should and could be done in the

future.
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