
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/112473

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16196918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/112473


Bayesian Network Modelling by Qualitative Patterns
Peter Lucas 1

Abstract. In designing a Bayesian network for an actual problem,
developers need to bridge the gap between the mathematical abstrac-
tions offered by the Bayesian-network formalism and the features
of the problem to be modelled. A notion that has been suggested in
the literature to facilitate Bayesian-network development is causal
independence. It allows exploiting compact representations of prob-
abilistic interactions among variables in a network. However, only
very few types of causal independence are in use today, as only the
most obvious ones are really understood. We believe that qualita-
tive probabilistic networks (QPNs) may be useful in helping under-
stand causal independence. Originally, QPNs have been put forward
as qualitative analogues to Bayesian networks. In this paper, we de-
ploy QPNs in developing and analysing a collection of qualitative,
causal interaction patterns, called QC patterns. These are endowed
with a fixed qualitative semantics, and are intended to offer develop-
ers a high-level starting point when developing Bayesian networks.

1 INTRODUCTION

The Bayesian network formalism offers a powerful framework for
the modelling of uncertain interactions among variables in a domain.
Such interactions are represented in two different manners. Firstly, in
a qualitative manner, by means of a directed acyclic graph. Secondly,
in a quantitative manner, by specifying a set of conditional probabil-
ity distributions for every variable in the network. These probabil-
ity distributions allow for expressing various logical, functional and
probabilistic relationships among variables; much of the power of the
Bayesian network formalism derives from this feature [6].

It is well known that ensuring that the topology of a Bayesian net-
work is sparse eases the assessment of its underlying joint probability
distribution, as the required probability tables will then be relatively
small. Unfortunately, designing a network with a topology that is
sparse is neither easy nor always possible. Researchers have there-
fore proposed special types of independence relationship in order to
facilitate probability assessment. In particular the theory of causal
independence fulfils this purpose [3]. The theory allows for the spec-
ification of the interactions among variables in terms of cause-effect
relationships and functions, adopting particular statistical indepen-
dence assumptions. Causal independence is frequently used in prac-
tical networks. However, a limitation of the theory of causal inde-
pendence is that it is usually unclear with what sort of qualitative
behaviour a network will be endowed when choosing for a particular
interaction type. As a consequence, only two types of interaction are
in frequent use: the noisy-OR and the noisy-MAX [1, 4, 6].

Qualitative probabilistic networks (QPNs) offer a qualitative ana-
logue to the formalism of Bayesian networks. They allow describing
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the dynamics of interaction among variables in a purely qualitative
fashion by means of the specification and propagation of qualitative
signs [7, 8]. Hence, QPNs abstract from the numerical detail.

The aim of the present work was to develop a theory of qualita-
tive, causal interaction patterns, QC patterns for short, in the context
of Bayesian networks. Interaction types are proposed, and QPNs are
then used to provide a qualitative semantic foundation for these in-
teractions. The Bayesian-network developer is supposed to utilise the
theory by selecting appropriate interaction patterns based on domain
properties, which thus can guide Bayesian-network development.

In the following section, the basic properties of Bayesian networks
are introduced, as are the notion of causal independence and quali-
tative probabilistic networks. We start the analysis by considering
various causal-independence models, unravelling the qualitative be-
haviour of these causal models using QPNs in Section 3. Finally, in
Section 4, it is summarised what has been achieved.

2 PRELIMINARIES

2.1 Bayesian networks

A Bayesian network is a concise representation of a joint probabil-
ity distribution on a set of statistical variables [6]. It consists of a
qualitative part and an associated quantitative part. The qualitative
part takes the form of an acyclic directed graph, or digraph for short,
G = (V (G), A(G)). Here, V (G) is a set of nodes standing for sta-
tistical variables; all variables V ∈ V (G) are assumed to be binary.
For abbreviation, we will often use v to denote V = � (true) and
v̄ to denote V = ⊥ (false). Sometimes, a variable’s values are kept
unspecified, i.e. it is utilise as a free variable. Arcs V → V ′ ∈ A(G)
are used to model statistical (in)dependence.

We use the notation V1, . . . , Vn\Vi, . . . , Vj to stands for the
set of variables {V1, V2, . . . , Vi−1, Vi+1, . . . , Vj−1, Vj+1, . . . , Vn}.
Furthermore, an expression such as∑

I1, I2
ψ(I1, . . . , In) = e

g(I1, . . . , In)

stands for summing over the firstly mentioned collection of vari-
ables, here the variables I1, I2, with the equality acting as a con-
straint. If these variables are not mentioned separately, the expression
ψ(I1, . . . , In) = e is interpreted as varying over all variables Ik in
the equality for which the constraint holds.

The quantitative part of a Bayesian network consists of a set of
conditional probabilities Pr(V | π(V )), for each V ∈ V (G), de-
scribing the joint influence of values for the parents π(V ) of V
on the probabilities of variable V ’s values. A Bayesian network
B = (G,Pr) provides for computing any probability of interest.

A real-life example is shown in Figure 1. In this network, it is mod-
elled that patients may become colonised by specific bacteria, for
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Figure 1. Example Bayesian networks, modelling the interaction among
bacteria possibly causing an infection in a patient after colonisation.

example P. aeruginosa, after admission to a hospital. As the actual
names of the bacteria do not matter here, they are simply calledA,B
and C. After having been colonised, the patient’s body responds to
the bacteria in various ways; for example, an infection may develop.
An infection is clinically recognised by symptoms and signs such as
fever, high white blood cell count (WBC), and increased sedimen-
tation rate of the blood (ESR). Clearly, the probability distribution
Pr(Infection | BRA,BRB ,BRC) specified for the network, where
BRX stands for ‘Body response toX’, is of great importance in mod-
elling interactions among the various mechanisms causing infection.

2.2 Causal independence

One way to specify interactions among statistical variables in a com-
pact fashion is offered by the notion of causal independence [3]. This
theory offers one half of our method of QC patterns.

2.2.1 Probabilistic representation

The general structure of a causal-independence model is shown in
Figure 2; it expresses the idea that causes C1, . . . , Cn influence a
given common effect E through intermediate variables I1, . . . , In.
The interaction function f represents in which way the intermedi-
ate effects Ik, and indirectly also the causes Ck, interact. Hence, this
function f is defined in such way that when a relationship between
the Ik’s and E = � is satisfied, then it holds that e = f(I1, . . . , In).
Under this condition, it is assumed that Pr(e | I1, . . . , In) = 1; oth-
erwise, when f(I1, . . . , In) = ē, it holds that Pr(e | I1, . . . , In) =
0. Using information from the topology of the network, the notion of
causal independence can be formalised for the occurrence of effect
E, i.e. E = �, in terms of probability theory as follows:

Pr(e | C1, . . . , Cn) =
∑

f(I1,...,In)=e

n∏
k=1

Pr(Ik | Ck) (1)

Based on the assumptions above, it also holds that

Pr(e | C1, . . . , Cn) =

∑
I1,...,In

Pr(e | I1, . . . , In)

n∏
k=1

Pr(Ik | Ck) (2)

Finally, it is assumed that Pr(ik | c̄k) = 0 (absent causes do not
contribute to the effect); otherwise, Pr(Ik | Ck) > 0.

C1 C2 . . . Cn

I1 I2 . . . In

E f

Figure 2. Causal-independence model.

An important subclass of causal-independence models is obtained
if the deterministic function f is defined in terms of separate binary
functions gk; it is then called a decomposable causal-independence
model [3]. Usually, all functions gk(Ik, Ik+1) are identical for each
k. Typical examples of decomposable causal-independence models
are the noisy-OR [1, 4, 6] and noisy-MAX [1, 3] models, where the
function g represents a logical OR and a MAX function, respectively.

2.2.2 Boolean functions

The function f in equation (1) is actually a Boolean function, which
can also be represented by the probabilities Pr(e | I1, . . . , In) in
equation (2). Recall that there are 22n

different n-ary Boolean func-
tions [2]; hence, the number of possible causal-independence models
is huge.

As mentioned above, in the case of causal independence it is usu-
ally assumed that the function f is decomposable, and that all binary
functions gk of which f is composed are identical. As there are 16
different binary Boolean functions, and a causal-independence model
contains at least two causes, there are at least 16 n-ary Boolean func-
tions, with n ≥ 2, in that case. These Boolean functions can be inter-
preted as Boolean expressions of the form In = I1�· · ·�In = E, if
� is a binary, associative Boolean operator. Not every binary Boolean
operator is associative; also note that a Boolean operator � need not
be commutative either, and hence i1 � In−1 = In−1 � i1, where
In−1 = I2� · · · � In, need not hold. Table 1 indicates which of the
operators are commutative and associative, and which are not.

We return to our example Bayesian-network model shown in Fig-
ure 1. If we assume that the bacteria A, B and C are all pathogenic,
and thus give rise to an infectious response if the patient becomes
colonised by them, the interaction among the ‘Body response’ vari-
ables could be modelled by a logical OR. This expresses the idea that
an infection must be caused by one or more pathogenic bacteria.

2.3 Qualitative probabilistic networks

Qualitative probabilistic networks (QPNs) are qualitative abstrac-
tions of Bayesian networks [7, 8]. Instead of conditional probabil-
ities, a QPN associates signs with its digraph, which serve to capture
the probabilistic influences and synergies between its variables.

A qualitative probabilistic influence between two variables ex-
presses how the values of one variable influence the probabilities of
the values of the other variable. For example, a positive qualitative
influence of a variable A on its effect B, denoted S+(A,B), ex-
presses that observing the value � for A makes the value � for B
more likely, regardless of any other direct influences on B, that is,

Pr(b | ax) ≥ Pr(b | āx) (3)



Table 1. The binary Boolean operators.

Commutative, associative operators
∧ and
∨ or
↔ bi-implication
� xor
� always true
⊥ always false

Commutative, non-associative operators
↓ nor
| nand

Non-commutative, associative operators
p1 projection to the first argument
p2 projection to the second argument
n1 negation of first argument
n2 negation of second argument

Non-commutative, non-associative operators
→ implication
← reverse implication
< increasing order
> decreasing order

for any combination of values x for the set π(B) \ {A} of causes of
B other thanA. A negative qualitative influence, denoted S−(A,B),
and a zero qualitative influence, denoted S0(A,B), are defined anal-
ogously, replacing ≥ in the above formula by ≤ and =, respectively.
If the influence of A on B is non-monotonic, that is, the sign of the
influence depends upon the values of other causes ofB, or unknown,
we say that the influence is ambiguous, denoted S?(A,B). With each
arc in a qualitative network’s digraph an influence is associated.

In addition to influences, a QPN includes synergies modelling in-
teractions between influences. An additive synergy between three
variables expresses how the values of two variables jointly influence
the probabilities of the values of the third variable. For example, a
positive additive synergy of the variables A and B on their common
effect C, denoted Y +({A,B}, C), expresses that the joint influence
of A and B on C is greater than the sum of their separate influences,
regardless of any other influences on C, that is,

Pr(c | abx) + Pr(c | āb̄x) ≥ Pr(c | ab̄x) + Pr(c | ābx) (4)

for any combination of values x for the set of causes of C other than
A andB. Negative, zero, and ambiguous additive synergy are defined
analogously. A qualitative network specifies an additive synergy for
each pair of causes and their common effect in its digraph.

A product synergy between three variables expresses how the
value of one variable influences the probabilities of the values of
another variable in view of an observed value for the third variable
[5]. For example, a negative product synergy of a variable A on a
variable B given the value � for their common effect C, denoted
X−({A,B}, c), expresses that, given c, the value � for A renders
the value � for B less likely, that is,

Pr(c | abx) · Pr(c | āb̄x) ≤ Pr(c | ab̄x) · Pr(c | ābx) (5)

for any combination of values x for the set of causes of C other
than A and B. Positive, zero, and ambiguous product synergy again
are defined analogously. A QPN also specifies a product synergy for
when the effect is false. Upon observation of a specific value for a
common effect of two causes, the associated product synergy induces
an influence between the two causes; the sign of this influence equals
the sign of the synergy. A qualitative influence that is thus induced
by a product synergy is termed an intercausal influence.

3 QUALITATIVE DESCRIPTION OF CAUSAL
INTERACTION

We next use QPNs to analyse and describe the interactions obtained
by various interaction functions f . We start by considering the quali-
tative influences among cause and effect variables, which is followed
by an analysis of synergies. Together, qualitative influence and syn-
ergies constitute a QC pattern for an interaction function.

3.1 Analysis of qualitative influences

Qualitative influences are investigated by considering the expression

Pr(e | C1, . . . , cj , . . . , Cn)− Pr(e | C1, . . . , c̄j , . . . , Cn) (6)

which results from expression (3), and is denoted by
δj(C1, . . . , Cj−1, Cj+1, . . . , Cn). The sign of the latter func-
tion determines the sign σ of the qualitative influence Sσ(Cj , E).

The following equation, obtained by using equations (2), enables
us to investigate qualitative influences in detail:

δj(C1, . . . , Cj−1, Cj+1, . . . , Cn) =

Pr(ij | cj)

⎡
⎢⎢⎣

∑
I1,...,In\Ij

d(In\Ij)

n∏
k = 1
k �= j

Pr(Ik | Ck)

⎤
⎥⎥⎦

where In = I1, . . . , In, and

d(In\Ij) =

Pr(e | I1, . . . , ij , . . . , In)− Pr(e | I1, . . . , ı̄j , . . . , In) (7)

Recall that a probability distribution Pr(E | I1, . . . , In) represents
a Boolean function. The multipliers

∏n

k=1,k �=j
Pr(Ik | Ck) are re-

sponsible for possible variation among signs of the difference (6), as
the difference d(In\Ij) is not dependent of the cause variables Ck.

The analysis starts by considering commutative, associative oper-
ators. Note that in that case it is permitted, without loss of generality,
to focus the analysis on an arbitrary (cause) variable Cj . Due to lack
of space, we will only give one proof to illustrate the approach taken.

Proposition 1 Let B = (G,Pr) be a Bayesian network representing
a causal-independence model with decomposable interaction func-
tion f that is equal to the bi-implication. Then, S?(Cj , E) holds for
any cause variable Cj and the given effect variable E.

Proof: Let In−1 = In\Ij , then (ij ↔ In−1) ∧ (̄ıj ↔ In−1) ≡ ⊥.
Therefore, difference (7) is either equal to 1 or to −1, and hence the
sign of (6) is ambiguous in general. �

Table 2 summarises the results for all the operators which are com-
mutative and associative. The results for the commutative, non-
associative operators are omitted. However, note that as some ar-
guments of the ↓ and | operators will be negated when using their
definitions in terms of ∨ and ∧, it can be predicted that their signs
will be either positive or negative, depending on argument position.

For the Boolean operators which are associative but non-
commutative, a distinction must be made between the situation where
the cause variable Cj is at the first, last or any other argument posi-
tion. For the operators which are neither commutative nor associa-
tive, a distinction must be made between whether the operator is as-
sumed to be left or right associative. The results are summarised in
Tables 3 and 4. Note that argument position may affect the sign of the
resulting influence. With the proviso that the first and last argument,



Table 2. Signs of qualitative influences for the commutative, associative
operators.

Operator Sign
∧ +
∨ +
↔ ?
� ?
� 0
⊥ 0

Table 3. Signs of qualitative influences for the non-commutative,
associative operators.

Sign
Operator First Non-first

p1 + 0
n1 − 0

Operator Last Non-last
p2 + 0
n2 − 0

and RA and LA need to be swapped, the results for the operators←
and > are identical to those of→ and <. This also holds for the ad-
ditive and product synergies discussed in the remainder of the paper.

We return to our example in Figure 1. It is known that some bac-
teria may protect a host against infection. Suppose that this holds for
bacteriaA and B, then each of these would make the development of
infection less likely, even though there could be circumstances where
these bacteria turn pathogenic. Now, let C be a bacterium with only
pathogenic strains, then the right-associative version of implication
(Table 4) would model this situation appropriately.

3.2 Analysis of additive synergies

Recall that in the case of causal independence, additive synergies de-
scribe how two causes jointly influence the probability of the effect
variable. Using definition (4) of an additive synergy—moving the
right-hand side to the left—and equation (1), and considering inter-
actions between the causes Cj−1 and Cj , we obtain:

δj−1,j(C1, . . . , Cj−2, Cj+1, . . . , Cn) =

∑
f(I1,...,In)=e

d(Ij−1, Ij)

j−2∏
k=1

Pr(Ik | Ck)

n∏
k=j+1

Pr(Ik | Ck)

where

d(Ij−1, Ij) =

Pr(Ij−1 | cj−1) Pr(Ij | cj) + Pr(Ij−1 | c̄j−1) Pr(Ij | c̄j)−
Pr(Ij−1 | cj−1) Pr(Ij | c̄j)− Pr(Ij−1 | c̄j−1) Pr(Ij | cj)

Let Pr(ij−1 | cj−1) = p and Pr(ij | cj) = q, then the value
d(Ij−1, Ij) is given in Table 5 for different values of Ij−1 and Ij .
The following equation is then obtained:

δj−1,j(C1, . . . , Cj−2, Cj+1, . . . , Cn) =

Table 4. Signs of qualitative influences for the non-commutative,
non-associative operators; RA: right associative; LA: left associative.

Sign for RA Sign for LA
Operator Last Non-last Last Non-last
→ + − + ?
< + − + ?

Table 5. Difference d(I1, I2) for various values of the variables I1 and I2.

I1 I2 d(I1, I2)

i1 i2 pq
ı̄1 i2 −pq
i1 ı̄2 −pq
ı̄1 ı̄2 pq

∑
I1,...,In\Ij−1 ,Ij

∑
Ij−1, Ij

f(I1, . . . , In) = e

σ(Ij−1 � Ij) pq ·

j−2∏
k=1

Pr(Ik | Ck)

n∏
k=j+1

Pr(Ik | Ck) (8)

where � represents the exclusive OR, and

σ(Q) =

{
−1 if Q ≡ �
1 otherwise

The multipliers
∏j−2

k=1
Pr(Ik | Ck)

∏n

k=j+1
Pr(Ik | Ck) ≥ 0, will

generally differ for different δj−1,j(C1, . . . , Cj−2, Cj+1, . . . , Cn).
The sum of terms σ(Ij−1�Ij)pq will not; which of those terms will
actually be included in the final sum is determined by the function f .

As before, a distinction has to be made between operators that are
associative and commutative, or not. Again, the proof for only one of
the Boolean operators is given; the results for the two commutative,
non-associative operators are again omitted.

Table 6. Signs of additive synergies for the commutative, associative
operators.

Operator Sign
∧ +
∨ −
↔ ?
� −
� 0
⊥ 0

Proposition 2 Let B = (G,Pr) be a Bayesian network representing
a causal-independence model with decomposable interaction func-
tion f that is equal to projection to the first argument. Then, it holds
that Y 0({Cj−1, Cj}, E) for any two cause variables Cj−1, Cj and
the given effect variable E.

Proof: The interaction function f is equivalent to
(I1 p1 I2 p1 · · · p1 In) ≡ I1. Now, if j > 2, then d(Ij−1, Ij) will
be computed for every value of Ij−1 and Ij , and hence, summing
these results yields 0. If j = 2, the sum is taken only over d(i1, i2)
and d(i1, ı̄2), which also yields 0. �

The proofs for the other non-commutative, associative operators are
similar, with results that are in fact identical. The reason for this is
that the operators select at most one argument, and hence, either all 4
possible Boolean combinations of the two interaction variables if the
selected variable is not among them, or two combinations of Boolean
values, with one of them fixed, need to be considered. In both cases,
there are an equal number of terms pq and −pq, which cancel out
each other.

The analysis of the non-commutative and non-associative opera-
tors is more difficult, as again a distinction must be made between
assuming the operators to be right associative or left associative. Due
to lack of space the results are summarised in Table 7 without proof.



Table 7. Signs of additive synergies for the non-commutative,
non-associative operators; RA: right-associative; LA: left-associative.

Sign for RA Sign for LA
Operator Last Non-last Last Non-last
→ + − + −
< − + − +

We return to our example in Figure 1. In the previous section, the
individual effects, but not the synergies, of the colonisation by bac-
teria A, B and C on the patient’s body response were modelled. It
appears that the right-associative version of implication also rightly
expresses that colonisation by both bacterium A and B makes devel-
opment of infection less likely, whereas bacteriumC is so pathogenic
that it overrides the preventive effects of bacteria A and B.

3.3 Analysis of product synergies

We basically use here for product synergies an approach similar to
the one employed in the previous section for additive synergies. For
the analysis of product synergies, the equation of interest is:

δE
j−1,j(C1, . . . , Cj−2, Cj+1, . . . , Cn) =∑

I1,...,In\Ij−1 ,Ij

{t(cj−1, cj ; In\Ij−1, Ij) · t(c̄j−1, c̄j ; In\Ij−1, Ij)−

t(cj−1, c̄j ; In\Ij−1, Ij) · t(c̄j−1, cj ; In\Ij−1, Ij)} ·
j−2∏
k=1

Pr(Ik | Ck)

n∏
k=j+1

Pr(Ik | Ck) (9)

where

t(Cj−1, Cj ; In\Ij−1, Ij) =∑
Ij−1, Ij

f(I1, . . . , In) = E

Pr(Ij−1 | Cj−1) Pr(Ij | Cj)

The arithmetic expression between the braces is the essential ele-
ment in the analysis below; it will be denoted by β. Furthermore,
we will once more use the abbreviations p = Pr(ij−1 | cj−1) and
q = Pr(ij | cj). As before, for the operators which are commuta-
tive and associative, we will focus the analysis on two arbitrary cause
variables Cj−1 and Cj , here, for simplicity’s sake, the interaction of
the two equally arbitrary variables C1 and C2. We present the proof
for the logical OR.

Proposition 3 Let B = (G,Pr) be a Bayesian network repre-
senting a causal-independence model with decomposable interac-
tion function f that is equal to the logical OR. Then, it holds that
X−({Cj−1, Cj}, e) for any two cause variables Cj−1, Cj given
that the effect is true; and X0({Cj−1, Cj}, ē) when the effect is as-
sumed to be false.

Proof: Let the interaction function be represented by the Boolean
expression In = I1 ∨ I2 ∨ In−2. First, we consider the situation
where E = �. There are two cases to consider. Let In−2 ≡ ⊥, then
β = 0 − pq = −pq. For In−2 ≡ �, we get β = 1 − 1 = 0. So,
summing over I3, . . . , In yields

∑−pq ·∏n

k=3
Pr(Ik | Ck) ≤ 0.

We conclude that X−({Cj−1, Cj}, e) holds.
Next, consider E = ⊥. This implies that both I1 and I2 must be

false. We get β = (1− p)(1− q)− (1− p)(1− q) = 0; this means
that δē

1,2(C3, . . . , Cn) = 0, and thus X0({Cj−1, Cj}, ē) holds. �

Table 8. Signs of product synergies for the non-commutative,
non-associative operators for e; RA: right-associative; LA: left-associative.

Sign for RA Sign for LA
Operator Last Non-last Last Non-last
→ + − + +
< 0 0 0 +

Due to lack of space, we have omitted the (other) results for the com-
mutative, (non)associative operators, and the tables for E = ⊥. For
all the non-commutative, associative operators we obtain a zero prod-
uct synergy. The remaining results are given in Table 8.

We return to the example in Figure 1. Now, assume that there is a
patient in hospital having an infectious disease. Recall that bacteria
A and B are known to be not particularly pathogenic, whereas bac-
terium C is. Assuming that the patient is colonised with bacterium
C makes it more likely that the patient is colonised with A or B, as
the infection is strong evidence that the conditions for colonisation
have been met. On the other hand, when we assume that the patient
is being colonised by bacterium A (or B), and we use these to ex-
plain the infection in the patient, it is less likely that the patient is
colonised by the other bacteria. This is because we are dealing here
with a pathogenic strain of bacteriumA (orB), causing the infection.
This probabilistic behaviour is again appropriately modelled by the
right-associative version of implication.

4 DISCUSSION

The qualitative characteristics of interactions in Bayesian networks
have been analysed and described in this paper, taking causal in-
dependence and QPNs as a basis. The integration of these two ap-
proaches into a coherent theory is the major, novel scientific con-
tribution of this paper. By determining the signs of the relations S,
Y and X for a specific interaction function f , we obtain the quali-
tative, causal pattern or QC pattern for the function. The number of
different QC patterns that emerged was limited, as Boolean functions
were defined in terms of single binary Boolean operators. As a con-
sequence, only a fraction of the possible QC patterns may have been
identified. As different Boolean functions may yield the same QC
pattern, it is as yet unknown whether all possible QC patterns can
be realised. This is something that requires further research. Another
important topic of future research is to associate clear conceptual
meanings with the various QC patterns, such that they can be easily
understood and used by Bayesian-network developers.
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