
 

 
 
 
 
 
 

Polymeric Micelles and Dendritic Amphiphiles 
for the Anticancer Drug Sagopilone: 

Solubilization, Formulation Development, 
and Toxicity Assessment 

 
 
 
 
 
 

Dissertation 
zur 

Erlangung des Doktorgrades 
der Naturwissenschaften 

(Dr. rer. nat.) 
 
 
 
 

dem Fachbereich Pharmazie 
der Philipps-Universität Marburg 

vorgelegt von 
 
 

Annett Richter 
 

aus Leisnig 
 
 
 
 
 

Marburg/Lahn 2010 



II 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vom Fachbereich Pharmazie der Philipps-Universität Marburg als Dissertation  
am 18.05.2010 angenommen. 
 
 
Erstgutachter:  Prof. Dr. Thomas Kissel 
 
Zweitgutachter:  Prof. Dr. Rainer Haag 
 
 
Tag der mündlichen Prüfung am 19.05.2010



III 

 
Die vorliegende Arbeit entstand unter der Leitung von 

 

Herrn Prof. Dr. Thomas Kissel 

 

am Institut für Pharmazeutische Technologie und Biopharmazie  

der Philipps-Universität Marburg  

 

und in enger Zusammenarbeit mit der Pharmazeutischen Technologie 

der Bayer Schering Pharma AG Berlin. 



IV 

 
 
 
 
 
 
 
 
 

Selbstzufriedenheit ist der Sargdeckel jeden Fortschritts. 

Philip Rosenthal 

 

 

 

 

 

 

 

 

 

 

 

Für meine Familie 

in Liebe und Dankbarkeit 

 



V 

Table of Contents 

Chapter 1 
Introduction ......................................................................................................... 1 

1. Solubilization with regard to anticancer drugs for parenteral application ..................... 2 

2. Limitations of current cancer therapy .......................................................................... 12 

3. Novel formulations to address limitations ................................................................... 17 

4. Objectives of this work ................................................................................................ 26 

References ............................................................................................................................ 28 

Chapter 2 
Solubilization of Sagopilone, a poorly water-soluble anticancer drug, using 
polymeric micelles for parenteral delivery ..................................................... 33 

Abstract ................................................................................................................................ 34 

1. Introduction .................................................................................................................. 35 

2. Materials and methods ................................................................................................. 38 

3. Results .......................................................................................................................... 43 

4. Discussion .................................................................................................................... 54 

5. Conclusion.................................................................................................................... 61 

References ............................................................................................................................ 62 

Chapter 3 
Polymeric micelles for parenteral delivery of Sagopilone: Physicochemical 
characterization, novel formulation approaches and their toxicity 
assessment in vitro as well as in vivo ................................................................ 66 

Abstract ................................................................................................................................ 67 

1. Introduction .................................................................................................................. 68 

2. Materials and methods ................................................................................................. 72 

3. Results and discussion.................................................................................................. 77 

4. Conclusion.................................................................................................................... 93 

References ............................................................................................................................ 94 



VI 

 

Chapter 4 
Non-ionic dendritic glycerol-based amphiphiles: Novel excipients for the 
solubilization of poorly water-soluble anticancer drug Sagopilone ............. 97 

Abstract ................................................................................................................................ 98 

1. Introduction .................................................................................................................. 99 

2. Materials and methods ............................................................................................... 103 

3. Results and discussion................................................................................................ 108 

4. Conclusion.................................................................................................................. 117 

References .......................................................................................................................... 118 

Chapter 5 
Summary and Perspectives/ Zusammenfassung und Ausblick .................. 120 

Summary ............................................................................................................................ 121 

Perspectives........................................................................................................................ 123 

Zusammenfassung.............................................................................................................. 125 

Ausblick ............................................................................................................................. 128 

Appendices ....................................................................................................... 130 

Abbreviations ..................................................................................................................... 131 

List of Publications............................................................................................................. 133 

Curriculum Vitae................................................................................................................ 135 

Danksagung........................................................................................................................ 136 

 



1 

 

 

 

CHAPTER 1 

 

 
INTRODUCTION 



Chapter 1 

2 

1. Solubilization with regard to anticancer drugs for parenteral application 

1.1 Solubilization – some remarks 

Successful drug development is a complex process from discovery and evaluation through 

pharmaceutical and clinical development to production and commercialization. Current drug 

discovery of new active pharmaceutical ingredients (APIs) displays an optimized selection 

process with regard to pharmacodynamic properties, mainly receptor/ target affinity and 

selectivity, using methods such as high throughput screening (HTS), combinatorial chemistry, 

and molecular genetics. However, the APIs selected by these methods are preferably 

lipophilic comprising poor to negligible water solubility. To date, approximately 40 % of the 

new drug compounds are considered poorly water-soluble [1]. In other words, 

“The more active a compound, the less water-soluble”. Thus, solubilization represents one 

of the major challenges in drug development. 

Solubilization is the process of making a compound soluble as well as enhancing its solubility 

using different techniques such as the use of cosolvents, complexing agents, or surfactants. 

It is a mandatory requirement to enable the therapeutic use of poorly water-soluble drugs. 

Almost every phase of the drug development process is faced by solubility hurdles. At the 

very early stages of development poorly water-soluble compounds are usually dissolved in 

organic solvents such as dimethyl sulfoxide or ethanol and further diluted with an appropriate 

buffer to test their activity and efficacy in vitro. Subsequent in vivo testing both at discovery 

and preclinical stages requires early formulations [1]. At this phase, solutions and suspensions 

are the preferred dosage forms for the discovery as well as the preclinical leads whereas the 

latter may also be formulated using novel formulations such as nano-suspensions or lipid-

based formulations [1]. Formulation development for use in clinical development represents 

the next hurdle, probably the most challenging one. Excipients used for this application have 

to be approved or generally regarded as safe by the authorities (GRAS status). Whereas oral 
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applicability offers a relatively broad range of approved excipients and dosage forms, 

parenteral application distinctly limits the choice of available solubilizers and the 

concentrations to be used. 

According to the OECD Guideline for Testing of Chemicals No. 105 the term 

‘water solubility’ is defined as the saturation mass concentration of a substance in water 

at a given temperature [2]. It is determined using a column elution or a flask method for 

compounds comprising a solubility below or above 0.1 g/L in a preliminary test, respectively. 

The results are expressed in mass of solute per volume of solution with the corresponding 

SI unit kg/m3. However, the unit g/L depicts the most commonly used one in practice. 

According to the respective values of the water solubility, the compounds are classified 

in groups ranging from very soluble to practically insoluble. The European Pharmacopoeia 

(Ph. Eur.) defines seven descriptive terms with respect to solubility, as shown in Table 1 [3]. 

Table 1: Solubility terms according to Ph. Eur.a 

Descriptive Term Approximate Volume of Solvent in 
Millilitres per Gram of Solute 

Approximate Solubility
(g/L) 

Very soluble  less than 1 > 1000 

Freely soluble  from 1 to 10  100 – 1000 

Soluble  from 10 to 30  33 – 100 

Sparingly soluble  from 30 to 100  10 – 33 

Slightly soluble  from 100 to 1000  1 – 10 

Very slightly soluble  from 1000 to 10 000  0.1 – 1 

Practically insoluble  more than 10 000 < 0.1 
a Referred to a temperature between 15 and 25 °C, if not stated otherwise. 

This stratified classification scheme allows a precise portrayal in terms of solubility 

characterization, but has not been implemented consistently in scientific publications, yet. 

Instead, the term “poorly water-soluble”, which is not listed in the Ph. Eur., is mainly used for 

drug substances comprising water solubility issues in general. In the present work the term 

“poorly water-soluble drug” is used for drugs that exhibit a water solubility less than 1 g/L. 
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1.2 Solubilization principles used in parenteral formulations 

The intravenous (i.v.) application of poorly water-soluble drugs requires the solubilization of 

the drug in an aqueous medium. The respective drug concentrations of the final formulations 

are often a multiple0 (up to 1000-fold) of the native solubility. In order to achieve this aim, 

various solubilization principles are used in the development of parenteral formulations 

including pH adjustment and the use of cosolvents, surface active agents, or complexing 

agents as well as the preparation of dispersed systems such as nano-suspensions, 

(micro)emulsions, and liposomes [4]. The resulting products are either ready-to-use 

formulations, infusion concentrates requiring further dilution, or lyophilizates intended for 

reconstitution and dilution prior to application [5]. 

Table 2 shows currently used solubilizing excipients and common concentrations in 

i.v. formulations. The present standard solubilization vehicles will be briefly introduced in the 

following sections. 

Table 2: Currently used solubilizers in parenteral formulations for i.v. application 

Solubilization 
Approach 

Excipients Concentration rangea 
(%, w/v) 

Maximum Potencyb 

(%) 
    

Poly(ethylene glycol)  0.0005 - 65  
 PEG 300 n.a.  50 - 65 
 PEG 400  n.a.  11.25 - 20.3 
Propylene glycol  4.6 - 60 (v/v)  30 - 82.04 
Alcohol  5.2  - 70 (v/v)  0.94 - 49 
Alcohol, dehydrated   0.03 - 80 

Cosolvents 

N,N-DMAcc 6.0 1.8 
    

Polyoxyl 35 castor oil  50 -  65  50 - 65 
Polysorbate 80  0.001 - 10  8 - 12.5 

Surface Active 
Agents 

Poloxamer 188 n.a.  0.22 -  0.6 
    

HPβCDd n.a. n.a. 
SBEβCDe n.a. 67.5 

Complexing 
Agents 

γ-Cyclodextrin n.a. 5 
    

n.a. Not available/ not listed in the respective source. 
a-b  Values according to (a) Powell [6] and (b) FDA Inactive Ingredients Database [7] 
c  N,N-dimethylacetamide 
d-e  (d) Hydroxypropyl-β-cyclodextrin, (e) heptasubstituted sulfobutylether-β-cyclodextrin (Captisol®) 
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Cosolvent systems 

The use of cosolvents is a simple and very common solubilization approach for parenteral 

formulation development. It allows for the formulation of compounds which are labile against 

hydrolysis due to the possibility to exclude water. Water-miscible cosolvents currently used in 

FDA-approved parenteral products include poly(ethylene glycol) (PEG), propylene glycol, 

ethanol, glycerine, and N,N-dimethylacetamide (DMAc) [4]. Acceptable dose levels are not 

defined, and a review of parenteral products reveals doses ranging from 10 to 100 % [4]. 

A selection of the latter derived from different sources is shown in Table 2. However, there 

are major concerns associated with their use including precipitation upon injection and the 

occurrence of adverse clinical effects ranging from moderate irritation to hemolysis and 

necrosis at the injection site [4]. Thus, the use of cosolvents has to be balanced from case to 

case depending on the total dose, the target group, and the duration of the therapy. 

Besides the empirical determination of the drug solubility in cosolvent systems, there are 

several theoretical approaches using log-linear solubility relationships, polarity indexes, and 

solubility parameters [4]. The use of dielectric constants is the most common and 

straightforward one whereas the calculation of solubility parameters such as the Hildebrand 

parameter provides a more accurate method to estimate the solubility of a drug in a 

solvent [8, 9]. The latter has been developed to describe the enthalpy change on mixing of 

simple liquids with subsequent extension to polar solvents and drugs by the inclusion of 

dispersive, polar, and hydrogen bonding interaction forces [8]. However, it is less frequently 

used by formulation scientists. 

Surfactants 

According to DIN EN ISO 862, surface active agents (surfactants) are amphiphilic 

compounds possessing surface activity when dissolved in water by lowering the surface or 

interfacial tension through preferred adsorption at the liquid/vapour or other interfaces. 
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Upon a characteristic concentration, known as the critical micelle concentration (CMC), these 

compounds self-assemble into colloidal aggregates (micelles). Solubilization of poorly 

soluble drugs takes place by drug adsorption to or incorporation into surfactant micelles, and 

it presents a widely used formulation strategy [10]. Despite the existence of a wide variety of 

surfactants, only a small number is available for use in parenteral formulations including 

polysorbate 80, poloxamer 188, Cremophor® EL, Cremophor® RH 40, Emulphor EL 719®, 

polysorbate 20, 40 and 60 [4]. They are all PEG-based amphiphiles with varying hydrophobic 

structures and composition, and their choice is mainly a matter of empirical investigation. 

Parenteral drug products are often formulated as infusion concentrates allowing for the 

exclusion of water, which will be diluted prior to administration [10]. Disadvantages of 

surfactant-based formulations are their toxicity and low drug loading capacity [11]. They will 

be discussed in more detail in the respective sections below. 

Polyoxyethylene castor oil derivatives, which are obtained from the reaction of either castor 

oil or hydrogenated castor oil with ethylene oxide, constitute complex mixtures of various 

hydrophilic and hydrophobic components [12]. Polyoxyl 35 castor oil (Cremophor® EL) and 

polyoxyl 40 hydrogenated castor oil (Cremophor® RH 40) are listed in the Ph. Eur. and are 

mainly used as solubilizers or emulsifying agents both in oral and parenteral 

formulations [12]. Cremophor® ELP is a commercially available, purified grade of 

Cremophor® EL containing lower amounts of water, potassium, and free fatty acids. It is 

primarily used in formulations of sensitive APIs since the higher purity of the excipient 

improves drug stability [13]. 

Polyoxyethylene sorbitan fatty acid ester (polysorbates) are partial fatty acid esters of sorbitol 

anhydride copolymerized with ethylene oxide. Polysorbate 20, 40, 60, and 80 are listed in the 

FDA Inactive Ingredients Guide [12]. Structurally, they are non-ionic surfactants containing 

20 moles of ethylene oxide per mol sorbitan coupled to a specific fatty acid. However, they 
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rather comprise a composition of different compounds than a definite single one. They are 

widely used as emulsifying (1 – 15 %) and solubilizing (1 – 10 %) agents in oral and 

parenteral formulations [12]. 

Poloxamers (syn. Pluronic®) are non-ionic ABA triblock copolymers consisting of two 

poly(ethylene oxide) (PEO) blocks flanking a central poly(propylene oxide) (PPO) block. 

Among several poloxamer grades executed in the FDA Inactive Ingredients Database, 

poloxamer 188 (Pluronic® F68, BASF Corp., Germany) is the sole compound currently used 

in i.v. formulations [7]. 

Complexing agents 

Complexation depicts another important solubilization principle in parenteral formulation 

development. A complex is a species of definite substrate (S) to ligand (L) stoichiometry 

(abbr. SmLn) that can be formed in an equilibrium process [14]. Inclusion complexes as well 

as molecular complexes between small molecules form the pharmaceutically used ones, and 

they are solely based on non-covalent interactions [14]. Cyclodextrins (CDs), cyclic 

oligosaccharides, are able to form inclusion complexes by incorporating the drug within their 

hydrophobic cavity. Parent α- and β-cyclodextrin have been associated with renal toxicity, 

probably due to their poor aqueous solubility, but hydrophilically modified derivatives as well 

as γ-cyclodextrin did not show nephritic damage and may be used for parenteral 

application [4]. Hydroxypropyl-β-cyclodextrin (HPβCD), a non-ionic β-cyclodextrin 

derivative, and sulfobutylether-β-cyclodextrin (SBEβCD), a polyanionic β-cyclodextrin 

derivative with sodium sulfonate salts separated from the lipophilic cavity by a butyl ether 

spacer group, represent the most commonly used CDs [14]. An evaluation of mono-, tetra-, 

and heptasubstituted SBEβCD has revealed SBE7-β-cyclodextrin (Captisol®, 

CyDex Pharmaceuticals, Inc., Lenexa, USA) to show the most desirable safety profile and 

drug carrier properties [15]. Relative to β-cyclodextrin, Captisol® provides a 50-fold increase  
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in the excipient water solubility while at the same time showing comparable or better 

complexation characteristics [15]. Although these agents are less toxic than most surfactants 

and cosolvents, they exhibit several disadvantages. For instance, they are not able 

to complex a wide variety of drugs determined by the fixed size of their internal cavity. 

Furthermore, solubility enhancement, especially of compounds comprising a low solubility, 

is very limited since most complexes are formed at a ratio of 1:1 necessitating very high 

amounts of excipients [14]. 

Liposomes 

Liposomes are vesicular structures composed of one or multiple phospholipid bilayers 

surrounding a hydrophilic core. Thus, water-soluble as well as poorly soluble drugs may be 

formulated by drug incorporation into the core or within the lipophilic phase of the bilayer, 

respectively. They have been intensively studied within the last four decades and several 

liposomal products have already entered the market [16]. They may be therapeutically 

beneficial by altering the therapeutic index of drugs with drug loading, bilayer rigidity, 

and surface properties such as an additional PEG-shell (PEGylation) being important factors 

of influence [4]. One clear advantage of these systems is the low toxicity of the phospholipids 

used. Disadvantages of these systems include their complex manufacturing process as well as 

reported hypersensitivity reactions mainly caused by PEGylated liposomes [17]. 
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1.3 Poorly soluble drugs in cancer therapy 

Among the poorly soluble drugs used in current chemotherapy, the taxane drugs Paclitaxel 

and its semi-synthetic analogue Docetaxel are the most prominent examples. Their water 

solubility is reported to be 0.3 – 1 µg/mL and 5 – 6 µg/mL, respectively, necessitating the use 

of solubilizing vehicles [18, 19]. As summarized in Table 3, the standard formulations 

Taxol® (Paclitaxel) and Taxotere® (Docetaxel) contain high amounts of solubilizers and 

alcohol as a cosolvent. Both formulations are associated with some major concerns regarding 

stability and severe side effects [16, 20]. Additionally, Taxol® requires specific filter 

equipment and the use of non-plasticized solution containers and administration sets. 

The contribution of the particular excipients to these effects will be discussed in detail in the 

respective sections of this work. 

Table 3: Composition and handling of Taxol® and Taxotere® [21, 22] 

Drug Product Taxol® Taxotere® 
   

Company Bristol-Myers Squibb 
New York, USA 

Sanofi-Aventis 
Paris, France 

   

Product Infusion concentrate Single-dose infusion concentrate 
Singe-dose diluent 

   

Predilution No predilution Mixing to form initial dilution 
   

 6 g/L Paclitaxel  10 g/L Docetaxel 
 527 g/L purified Cremophor® EL  260 g/L polysorbate 80 

Composition 

 49.7 % dehydrated alcohol, USPa  9.75 % ethanolb 

   

Preparation of 
Infusion Solution Dilution with physiological saline (0.9 %) or glucose solution (5 %) 
   

Final Drug Conc.  0.3 – 1.2 g/L  0.3 – 0.9 g/L 
   

a Concentration in (%, v/v) 
b Concentration in (%, w/w) 

Other examples of poorly soluble anticancer drugs intended for parenteral administration 

include the semisynthetic podophyllotoxin derivatives Etoposide (VePesid®) and 

Teniposide (Vumon®). They exhibit a solubility in water of approximately 100 µg/mL and 

20 – 30 µg/mL, respectively [23, 24]. Parenteral formulations of these compounds contain 
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surfactants (polysorbate 80 or Cremophor® EL) in combination with cosolvents such as 

N,N-DMAc, benzyl alcohol, PEG 300, and alcohol [4]. 

Most of the new compounds for anticancer therapy are initially developed for intravenous use 

and entail solubility issues such as the epothilones [25]. They present a novel class of 

microtubule-stabilizing anticancer drugs. Originally, they are naturally occurring secondary 

metabolites produced by the myxobacterium Sorangium cellulosum, with epothilone A and B 

being the two major compounds [26]. Their mechanism of action is similar to Paclitaxel but 

they exhibit superior features relative to the latter. Besides their activity against various 

tumour types, they show low susceptibility to key tumour resistance mechanisms in vitro, 

and most importantly, in vivo [26]. Thus, they are effective in tumours resistant to Paclitaxel 

making them very likely to become successors to taxane therapy. Structurally, they are made 

up of a 16-membered macrolide (see Figure 1). A range of synthetic and semisynthetic 

analogues were developed to improve their therapeutic window and antitumour efficacy. 

Figure 1 shows the four epothilone derivatives which either have been approved or are under 

current clinical development (phase II / III). 
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Figure 1: Structural formulas of naturally occurring epothilones and epothilone derivatives 
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Ixabepilone (Ixempra®, Bristol-Myers Squibb, New York, USA), a lactam analogue of 

epothilone B, was the first epothilone approved by the FDA in 2007 for the treatment of 

locally advanced or metastatic breast cancer [27]. Patupilone (Novartis, Basel, Switzerland), 

the natural epothilone B, is currently undergoing phase III clinical trials for the treatment of 

ovarian cancer [26]. Sagopilone (Bayer Schering Pharma AG, Berlin, Germany), a synthetic 

analogue, was selected by a lead optimization program out of 350 epothilone derivatives due 

to its outstanding preclinical properties [28], and it is currently undergoing phase II clinical 

trials for the treatment of various types of cancer [29]. 

Although epothilones are more water-soluble than Paclitaxel their actual water solubility is 

still insufficient with values as low as 12 µg/mL for Sagopilone. Thus, solubilization is 

mandatory for the preparation of parenteral formulations containing epothilones posing 

a significant challenge for formulation development. 
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2. Limitations of current cancer therapy 

2.1 Drawbacks of current solubilizers and implications for cancer therapy 

The main limitations of current solubilizers are (a) insufficient drug solubilization and 

(b) pharmacological effects of the formulation vehicles. This will be discussed in more detail 

using the example of polyoxyl 35 castor oil (Cremophor® EL), present in Taxol®, and 

polysorbate 80, present in Taxotere®, as shown in Figure 2. The implications accompanied by 

these formulations have initiated extensive research to develop alternative solubilizers as well 

as alternative taxane formulations. 

(A) (x + y + z ~ 35)

(B) (w + x + y + z ~ 20)

CH2-O-(CH2-CH2-O)x-CO-(CH2)7-CH=CH-CH2-CHOH-(CH2)5-CH3

CH-O-(CH2-CH2-O)y-CO-(CH2)7-CH=CH-CH2-CHOH-(CH2)5-CH3

CH2-O-(CH2-CH2-O)z-CO-(CH2)7-CH=CH-CH2-CHOH-(CH2)5-CH3

O

H-(O-CH2-CH2)w-O O-(CH2-CH2-O)x-H

O-(CH2-CH2-O)y-H

O-(CH2-CH2-O)z-CO-(CH2)7-CH=CH-(CH2)7-CH3

 

Figure 2: Structural formulas of (A) polyoxyl 35 castor oil and (B) polyorbate 80 

Insufficient drug solubilization implies no or negligible solubilization capacity as well as 

instability issues both prior to and after dilution. Although surfactants are widely used for 

drug solubilization, only a few products can be considered as pure micellar systems [11]. 

Usually, the solubilization capacity is too low and the addition of cosolvents such as ethanol 

is inevitable. This, in turn, increases the risk of side effects [4]. The second aspect, 

formulation stability after dilution, may also implicate the addition of cosolvents 
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in micellar systems. One example in clinical practice is Taxotere®. As shown in Table 3 its 

infusion concentrate (Docetaxel in polysorbate 80) requires a predilution step using 13 % 

ethanol as a cosolvent. This is mandatory to prevent drug precipitation in the final infusion 

dilution. Furthermore, the final dilution has to be done in a way to obtain solutions 

comprising a Docetaxel concentration of no more than 0.9 g/L since higher concentrations 

may lead to drug precipitation [30]. 

Pharmacological effects of formulation vehicles are either due to intrinsic biological 

effects of the excipients and/ or an alteration of the drug disposition [20, 31]. Biological 

properties exhibiting clinical implications to a greater or lesser extent are acute 

hypersensitivity reactions (HSRs), peripheral neuropathy, dyslipidaemia, inhibition of 

P-glycoprotein activity, and intrinsic antitumour effects [20]. 

Acute hypersensitivity is characterized by allergic reactions such as dyspnoea, tachycardia, 

hypotension, angioedema, chest pain, and generalised urticaria already occurring after the first 

exposure. Taxol® therapy is a prominent example that causes HSRs in clinical practice [32]. 

Although patients are pre-medicated with corticosteroids and antihistamines by default, 

40 % still suffer from minor reactions, and even 1.5 – 3 % develop major potentially life-

threatening reactions [20]. Furthermore, the risk of HSRs is higher for the 1-h compared to 

the 3-h or 24-h infusions of Taxol® [25]. Various (pre)clinical studies point to 

Cremophor® EL to play a crucial role in the occurrence of HSRs [25], and Szebeni et al. 

suggested a complement activation related pseudo-allergy (CARPA) by Cremophor® EL as an 

important contribution to these reactions [33]. CARPA is characterized by complement 

activation and a subsequent histamine release. Pharmacokinetic (PK) studies of 

Cremophor® EL showed a linear, dose-independent, but schedule-dependent PK behaviour 

with a remarkably decreased clearance at the short infusion duration resulting in higher 

systemic exposure and, in turn, a higher risk for carrier-related side-effects [25]. 
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This behaviour is possibly due to a saturation of serum esterase-mediated degradation of 

Cremophor® EL and correlates very well with the lower incidence of HSRs at a prolonged 

infusion duration [25]. Taxotere® and other therapies comprising polysorbate 80 exhibit 

HSRs as well. A comparative evaluation of non-haematological toxicities of patients treated 

with single agent regimens of either Taxol® or Taxotere® revealed a lower overall incidence 

of HSRs for the latter (15 %) compared to Taxol® (41 %) despite dexamethasone 

pre-medication in both groups [20]. 

Symptomatic peripheral neuropathy is another principal, clinically important adverse effect of 

formulations containing Cremophor® EL such as Taxol® and Sandimmune® (cyclosporine) 

after parenteral administration [20]. Electrophysiological investigations have provided 

evidence of both axonal degeneration and demyelinisation in patients with neuropathy after 

Taxol® therapy [20]. Cremophor is very likely to play an important causative role since 

radiolabelled Paclitaxel was not detected in peripheral nerve fibres of rats following systemic 

administration  [34]. The appearance of peroxidation products of unsaturated fatty acids is 

suggested to cause neurotoxicity, but the precise mechanism has not been elucidated so far. 

Treatment with Taxotere® is associated with neuropathy as well. However, its incidence is 

much lower (49 %) compared to Taxol® (60 %), and, interestingly, etoposide formulated in 

polysorbate 80 causes no neurotoxicity at all [20]. 

Besides intrinsic biological properties, the drug disposition pattern may be modulated by the 

formulation vehicle. In particular, Cremophor® EL has been shown to alter the PK profiles of 

drugs after i.v. administration with a substantial increase in the systemic drug exposure and 

a concomitantly reduced systemic clearance [20]. Paclitaxel formulated in Cremophor® EL 

displays a nonlinear PK profile with clearance values decreasing substantially with an 

increase in the Taxol® dose. This effect has been linked to Cremophor® EL since it was not 

evident when Paclitaxel was formulated in other vehicles [20]. Henningsson et al. showed that 
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the nonlinear PK profile of Paclitaxel is predominantly due to nonlinear binding to 

Cremophor® EL [35]. Therefore, higher doses of Cremophor® EL lead to a disproportionate 

increase in the portion of Paclitaxel entrapped in the micelles and a decreased unbound drug 

fraction. Congruent with the described schedule-dependent Cremophor® EL clearance, 

systemic exposure to unbound Paclitaxel is also a function of the infusion duration. This has 

been confirmed in a higher area under the plasma concentration time curve (AUC) 

of unbound Paclitaxel after 3-h compared to 1-h infusions [36]. Thus, the advantage of a 

lower incidence of carrier-related side effects at the 3-h infusion schedule is diminished by 

more severe haematological toxicity due to the higher unbound fraction of Paclitaxel. 

Although there are conflicting reports on the effects of polysorbate 80, the majority of the 

clinical studies has shown minimal alteration of the PK profile of agents formulated in 

polysorbate 80 [20]. This was attributed to the rapid degradation of polysorbate 80 by plasma 

esterases after i.v. application. However, nonlinear distribution pathways similar to Taxol® 

also exist in the case of Taxotere®, but they are not likely to have a significant impact at the 

dose level and administration schedule used in routine clinical practice [37]. The underlying 

mechanism is yet unclear, but it may also be related to the presence of surfactant micelles. 

Overall, these examples point out clinical implications of currently used solubilizers both in 

their ability to cause severe side effects and to modulate drug disposition in an unfavourable 

manner, particularly obvious in current taxane therapy. Furthermore, it clearly indicates that 

pharmaceutical formulation is a seriously underestimated aspect of both anticancer drug 

development and drug therapy. 
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2.2 Drawbacks of current cancer therapy 

Besides the limitations and serious side effects, which are mainly accompanied with the use 

of certain formulation vehicles, there are further limitations of current cancer therapy. 

Although small molecules such as Paclitaxel show a broad cytotoxicity against various 

cancer cells, not all malignancies are treatable in vivo due to insuperable obstacles faced on 

the drug’s way to the target location. The main hurdles include the crossing of the 

blood-brain barrier and with it the access to the central nervous system, the inability to 

penetrate solid tumours entirely, especially their interior regions, and the overcoming of 

multi-drug resistance (MDR) [38]. Furthermore, current chemotherapy is non-specific and 

exhibits serious side effects such as haematological and skin toxicity known from 

taxane therapy. The epothilones show significant advantages compared to taxane therapy as 

shown in Section 1.4 addressing some of the hurdles such as MDR. Nevertheless, dosing of 

epothilones is limited due to the occurrence of peripheral neuropathy, a typical side effect of 

these compounds. It recently gave reason to the refusal of the marketing authorisation for the 

epothilone derivative Ixabepilone by the European Medicines Agency (EMEA) [39]. Thus, 

it constitutes a challenge for formulation development in addition to drug solubilization. 

Overall, continuous research into novel formulations approaches as well as their applicability 

for various anticancer agents is one of the most important steps towards an improved 

chemotherapy besides the discovery of new targets and the development of novel drugs. 
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3. Novel formulations to address limitations 

There are several novel approaches under current investigation to address both the limitations 

of current solubilizers and cancer therapy ranging from prodrug formation for i.v. and 

oral delivery (e.g. Docosahexanoic acid-Paclitaxel, Taxoprexin®, Protarga Inc.) up to 

polymer-drug-conjugates (e.g. Paclitaxel-poly(L-glutamic acid)-conjugate, Xyotax®) [40, 41]. 

Main focus of attention is the development of alternative taxane formulations devoid of 

Cremophor® EL. Whereas some of them such as Tocosol® (OncoGenex Pharmaceuticals), 

a vitamin E-emulsion, already failed the clinical primary endpoint relative to Taxol® [42],  

three nanobiotechnology-based products have been approved by the authorities in 

the last five years. 

 

Figure 3: Types of Nanocarriers 
Illustration of different types of nanocarriers used in cancer detection and therapy 
(Reprinted by permission from Macmillan Publishers Ltd: Nat. Nanotechnol. (Vol. 2 (2007), 
751-760), copyright (2007)) 
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Nanotechnology for cancer therapy, also known as nanobiotechnology or nanomedicine, 

is one of the fastest growing areas of research in the fight against cancer with the aim of 

improving the therapeutic profile of anticancer drugs as well as establishing new therapeutic 

approaches [38, 43]. Nanotechnology-based drug delivery for cancer is mainly based on 

drug-loaded nanoparticles which are composed of a wide variety of materials such as 

polymers, lipids, dendrimers, and carbon as shown in Figure 3 [44]. 

They mainly function as drug carrier and drug delivery agents. The former represents their 

ability to accommodate a payload of drug molecules via chemical conjugation or physical 

entrapment. Poorly water-soluble drugs may be solubilized or encapsulated depicting an 

approach to make these compounds accessible to clinical application. Their function to 

specifically deliver drugs e.g. to solid tumours is based on passive or active targeting whereas 

the former relies solely on the natural biodistribution of the carrier itself [44]. 

 

Figure 4: EPR-Effect 
Illustration of the enhanced permeation and retention effect (EPR-Effect) within solid tumours 
(Reprinted by permission from Macmillan Publishers Ltd: Nat. Nanotechnol. (Vol. 2 (2007), 
751-760), copyright (2007)) 
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Passive targeting of nanocarriers in solid tumours is based on the enhanced permeability and 

retention (EPR) effect. It has been first described by Matsumura and Maeda in 1986 as 

a tumoritropic accumulation of smancs, a polymer-conjugated anticancer protein, and several 

other proteins [45]. This effect exploits two important characteristics of tumour biology, 

namely the high permeability of tumour blood vessels (“leaky vessels”) due to rapid and 

defective angiogenesis and the dysfunctional lymphatic drainage. As shown in Figure 4 

circulating nanocarriers may extravasate into tumour tissue via leaky vessels and accumulate 

due to ineffective lymphatic drainage. The threshold size was shown to be approximately 

400 nm, whereas particles with sizes < 200 nm in diameter have been shown to be more 

effective [44]. This effect represents the basis of research and clinical therapy of 

nanotechnology-based cancer therapy. In contrast, low molecular weight micelles such as 

Cremophor® EL show a very low volume of distribution after i.v. application implying no 

extravasation either into normal nor tumour tissues supported by the fact that excipient levels 

were not detectable in the corresponding mice tissues [25]. 

The main characteristics of approved Paclitaxel-containing nano-formulations devoid of 

Cremophor® EL are summarized in Table 4. Abraxane®, albumin-bound nanoparticles of 

Paclitaxel, as well as Genexol®-PM and Nanoxel®, two polymeric micellar formulations, were 

specifically designed to avoid Cremophor® EL-related toxicities, to deliver higher amounts of 

Paclitaxel and, thus, increase its therapeutic efficacy. All of them have met the primary target 

to avoid HSRs. Thus, pre-medication is not necessary anymore. Furthermore, Abraxane® and 

Genexol®-PM have shown higher maximum tolerated doses (MTD) compared to Taxol®. 

More precisely, Genexol®-PM revealed a significantly increased MTD (390 mg/m2) 

compared to Taxol® (200 mg/m2) as well as Abraxane® [46]. Hence, Paclitaxel dosing could 

be increased to 300 mg/m2, which is much higher than Taxol® (175 mg/m2), and significant 

antitumour efficacy has been achieved in advanced malignancies [47, 48]. 

 



Chapter 1 

20 

Table 4: Examples of nanobiotechnology-based formulations of Paclitaxel in clinical therapy 

 Abraxane® 
ABI-007 

Genexol®-PM Nanoxel® 

    

Company Abraxis BioScience, 
USA 

Samyang Pharmaceuticals, 
South Korea 

Dabur Pharma, H.P., 
India 

    

Approved USA, Canada, Europe, 
India 

Korea India 

    

Formulation nab-Paclitaxela Polymeric micelles 
(PEG-b-PLA)b 

Polymeric micelles 
(PVP-b-PNIPAM)c 

    

Drug Product Lyophilizate 
(Storage: 25 ± 2 °C) 

Lyophilizate 
(Storage: 25 ± 2 °C) 

Liquid formulation 
(Storage: 2-8 °C) 

    

Key advantages 
compared to 
Taxol® 

No HSR 
No pre-medication 
Increased MTD 

No HSR 
No pre-medication 
Increased MTD, higher 
than Abraxane® 

No HSR 
No pre-medication 
Infusion time: 1 hr instead 
of 3 hrs 

    

Current clinical 
trialsd 

phase I/II (57); III (3) phase I/II (4); III (1), 
IV (1) 

phase I (1) 
    

a Nanoparticle albumin-bound Paclitaxel 
 b PEG-b-Poly(D,L-lactide) 
c Poly(vinyl pyrrolidone)-b-Poly(N-isopropyl acrylamide) 
d active (recruiting and non-recruiting) clinical trials according to www.clinicaltrial.gov 
 (access date: 29/01/2010) with the total number of the respective studies in parentheses 

Consequently, polymeric micelles provide a promising formulation approach for poorly 

soluble anticancer drugs, and they will hopefully lead to the replacement of potentially toxic 

solubilizers currently used in parenteral formulations and safer therapies some day. Polymeric 

micelles as well as dendritic amphiphile micelles will be briefly introduced below. 
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3.1 Polymeric micelles for formulation of anticancer drugs 

Over the past 20 years various polymeric micelles have been extensively studied as drug 

delivery systems for (a) solubilization and (b) passive tumour targeting, especially in cancer 

therapy [49-51]. Recent approaches use additional tumour-specific ligands for active tumour 

targeting and/ or the simultaneous encapsulation of imaging and therapeutic agents, 

the so-called “theranostics” [52]. Aspects of formulation as well as clinical parameters will 

be described below. 

 

Figure 5: Polymeric micelles 
Self-assembly of amphilic block copolymers into polymeric micelles 
(Reprinted from Exp. Biolog. Med. (Vol. 234 (2009), 123-131)) 

Polymeric micelles are nanosized assemblies of amphiphilic block copolymers exhibiting an 

unique core-corona structure (see Figure 5). The hydrophilic corona is important to stabilize 

the micelles in an aqueous environment and to minimize clearance by the mononuclear 

phagocytic system (MPS) after systemic administration whereas the hydrophobic core 

functions as a drug reservoir [51]. In contrast to polymeric nanoparticles, the assembled 

polymers are in dynamic equilibrium with free unimers, and the particles are usually 

smaller (10 – 100 nm) displaying monodisperse size distributions [53]. 

The hydrophilic segment is usually composed of PEG or, alternatively, poly(N-vinyl-

pyrrolidone) (PVP). The block copolymers mainly used can be classified into four categories, 

namely PEG-b-Poly(ester), PEG-b-Poly(amino acids), PEG-Phospholipids, and 

Pluronic® copolymers [54]. The former constitute a group of widely employed synthetic  
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polymers including poly(lactide) (PEG-b-PLA), as present in Genexol®-PM, poly(glycolide) 

(PEG-b-PGA), or poly(ε-caprolactone) (PEG-b-PCL) because of their biocompatibility, 

biodegradability, and their use in medical advices approved by the FDA [55]. 

A typical diblock copopolymer is composed of PEG at a molecular weight between 1000 and 

12 000 g/mol and a hydrophobic block with a chain length equal to or less than the 

corresponding PEG length [55]. The selection of the corresponding blocks essentially 

influences the physico-chemical properties as well as the therapeutic efficacy. For instance, 

solubilization of hydrophobic drugs by physical entrapment is preferentially driven by the 

hydrophobic interactions between the drug and hydrophobic segments of the polymers. 

Thus, hydrophobicity plays a decisive role in the drug-loading process [56]. The preparation 

method is also crucial since inappropriate procedures may lead to supersaturated states with 

subsequent instability and drug precipitation during storage. Furthermore, the micelle 

morphology is reported to affect the solubilization capacity and biodistribution as shown 

for PEG-b-PCL worm-like micelles [57]. 

Compared to low molecular weight surfactants, major advantages of polymeric micelles 

include their high solubilization capacity without the need of additional solvents and low 

CMC values indicating their thermodynamic stability [53]. While liposomes and emulsions 

preferentially solubilize water-insoluble and fat-soluble drugs, respectively, polymeric 

micelles are suitable to solubilize both. Concerning product development, preparations 

free from water such as lyophilizates are needed to provide a storable form 

and prevent polymer degradation. 

To date, solely Genexol®-PM and Nanoxel® have been approved by the authorities, whereas 

the latter is not under evaluation outside India [58]. Aside, there are several polymeric 

micelles in clinical trial evaluation for cancer therapy [55, 59]. For instance, 

SP1049C (Doxorubicin-loaded Pluronic® L61/ F127 micelles) has shown a chemosensitizing 
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effect against MDR cancers which is attributed to the Pluronic® composition [55]. 

NK911 (PEG-b-Poly(aspartic acid) micelles containing Doxorubicin both chemically 

conjugated and physically entrapped) and NK105 (Paclitaxel-loaded PEG-b-Poly(4-phenyl-1-

butanoate aspartic acid) micelles) have been shown to act as true drug carriers exploiting an 

EPR-effect [55]. Both systems were specifically designed and modified for the particular drug 

since pure PEG-b-Poly(aspartic acid) micelles were not effective in terms of stable 

solubilization [55]. Hence, these polymers are not commercially available and/ or require 

chemical drug conjugation. This fact constitutes a disadvantage concerning the implement-

tation as novel standard solubilizers since versatile employment is an important prerequisite. 

As described earlier, Genexol®-PM (Paclitaxel in PEG-b-PLA) significantly improved the 

MTD of Paclitaxel compared to Taxol® due to the biocompatibility and nontoxicity of 

PEG-b-PLA. Thus, an important requirement for novel excipients is met. PK-studies of 

Genexol®-PM in humans revealed a decreased plasma half life (t1/2) and area under the 

concentration time curve (AUC) allowing two possible explanations [46, 55]. Either these 

micelles act as pure solubilizers rather than true drug carriers or the PK profile results from 

a shift of drug accumulation to tumour tissues as evidenced in the preclinical studies [60]. 

In fact, Burt et al. showed a rapid Paclitaxel dissociation from PEG-b-PLA micelles after 

i.v. administration suggesting a solely solubilizing function [55]. But finally, the absence or 

presence of an EPR-effect has not been shown to date. Moreover, these results highlight the 

discrepancy between the in vivo behaviour and current in vitro release assays suggesting 

a controlled release [53]. 

Other PEG-b-Poly(ester) such as PEG-b-PCL have shown promising preclinical results but 

have not been used in clinical evaluations, yet. For instance, solubilization of Hydroxy-

camptothecin resulted in an extended half life and increased an AUC after systemic 

administration [61]. Biodistribution studies of radiolabeled PEG5000-b-PCL5000 micelles have 
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shown a reasonable in vivo circulation half life comparable to other long-circulating colloidal 

particles (see Figure 6) [62]. Intact micelles were detectable in the central compartment even 

at doses that fall below the CMC upon injection revealing a prolonged circulation and 

a remarkably reduced uptake by liver, spleen, and kidney compared to the unimers. 

(a) 250 mg/kg

(b) 2 mg/kg(c) 0.2 mg/kg

 

Figure 6: Plasma clearance of mPEG5000-b-PCL5000 
Plasma clearance in Balb/C mice following i.v. injection of polymeric micelles at doses resulting in 
plasma concentrations (a) above and (b) below the CMC compared to (c) injection of polymer unimers 
(Reprinted from Eur. J. Pharm. Biopharm. (Vol. 65 (2007), 309-319)) 

Thus, dissociation of polymeric micelles does not stringently take place after parenteral 

administration and dilution below the CMC, and, in particular, PEG-b-PCL micelles may 

function as real drug carriers. 

Overall, these various results highlight the importance of polymer-drug compatibility and core 

stability. Among others the latter is determined by the core crystallinity, which has to be 

balanced concerning solubilization, stability, and degradation demands. 

In spite of their versatile potential especially for drug solubilization, the implementation of 

block copolymers such as PEG-b-PCL in the formulation workaday life has not been fulfilled 

yet. Further investigations are needed using various drugs to harness the full potential of the 

currently available polymers besides tailor-made polymer design. As a result, a well-

established structure-solubilization relationship together with the implementation of 

theoretical approaches supporting the polymer selection would be helpful. 
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3.2 Dendrimers and dendritic amphiphiles: Novel solubilizers 

Dendrimers and dendritic architectures have attracted great interest in drug solubilization and 

delivery throughout the last years [63, 64]. Unimolecular dendritic nanocarriers based on 

polyglycerol (PG), 3rd to 5th generation, or PEGylated poly(amido amine) (PAMAM) and 

poly(ethylene imine) (PEI) have been shown efficient solubilization of Paclitaxel and other 

small molecules [63]. Chemical modification of the core using hydrophobic moieties presents 

a promising approach to increase drug solubilization by non covalent interactions (Figure 7). 

However, this approach is limited to a certain degree determined by the threshold of the 

carrier water solubility. 

(B)(A)

 

Figure 7: Polyglycerol-based Nanocarriers 
(A) Core-functionalized polyglycerol (PG) and (B) dendritic PG-based amphiphile micelles 

For instance, p-phenylbenzyl-functionalized polyglycerol has shown a 47-fold solubility 

enhancement for Nimodipine [65]. Interestingly, the molar drug-polymer ratio was found 

to be 1:12, and further investigations confirmed a supramolecular polymer assembly instead 

of unimolecular drug solubilization. Preliminary investigations using a similarly 

core-functionalized polyglycerol (Mr 13 900 g/mol, DFCore 40 %) revealed a merely slight 

solubility enhancement for Sagopilone (unpublished data). 

However, dendritic polyglycerol-based amphiphiles forming well-defined micelles have not 

been evaluated so far and may be superior in terms of drug solubilization. Furthermore, the 

use of PG headgroups instead of PEG may provide benefits with regard to biocompatibility. 
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4. Objectives of this work 

In the present work, amphiphilic PEG-b-Polyester and novel dendritic amphiphiles are studied 

as drug delivery systems for Sagopilone, a poorly water-soluble anticancer drug. The aim is to 

develop and investigate novel alternative formulations allowing i.v. administration of 

Sagopilone without the need of potentially allergenic solubilizers such as Cremophor® EL 

or organic solvents. 

Intravenous application of poorly soluble anticancer drugs is mainly accompanied by serious 

side effects caused by currently used solubilizers as well as drug related adverse effects such 

as peripheral neuropathy. The latter is known to essentially limit the dosing of Sagopilone. 

To address these limitations, alternative formulation approaches using polymeric micelles and 

dendritic amphiphile micelles are investigated. 

Besides sufficient solubilization, safety and toxicity testing represent the main hurdles of the 

development and approval of novel excipients. Whereas PEG-b-Polyester have already 

proved non-toxicity in clinical or preclinical applications, polyglycerol (PG)-based dendritic 

amphiphiles represent novel solubilizers at the very early stages. 

In Chapter 2, PEG-b-PLA and PEG-b-PCL block copolymers will be investigated 

systematically in terms of Sagopilone solubilization with the aim to identify suitable polymers 

for parenteral delivery and to assess the predictive power of solubility parameters. It is 

hypothesized that the copolymer type and composition as well as the method employed for 

the preparation influence the extent of solubilization, the physicochemical stability, and the 

micelle morphology. Thus, a set of polymers with hydrophobic/hydrophilic-ratios (w/w) 

varying from 0.3 to 1.3 will be examined using both sonication and film formation. 

The apparent solid-state solubility of Sagopilone in the block copolymers will be investigated 

by means of thermal analysis. It is hypothesized that the latter correlates with the loading 
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capacity of the corresponding block copolymer micelles, thereby providing an approach 

for stability prediction. 

Clinical application of the resulting polymeric micellar formulations requires stability both 

prior to and after dilution. Concerning product development non-aqueous formulation 

approaches are needed to prevent drug and polymer degradation by hydrolysis as well as drug 

crystallization during storage. Additionally, their rapid and complete reconstitution later on 

has to be ensured. Thus, a comparative evaluation of the polymers identified in the screening 

process in Chapter 2 will be performed addressing these points, which will be described 

in Chapter 3. Drug loaded polymeric films of PEG-b-PLA, an intermediate in the micelle 

preparation procedure, will be investigated as a novel formulation approach in addition to 

lyophilization of polymeric micelles. Furthermore, the in vitro and in vivo toxicity will be 

studied in mice to assess the vehicle compatibility and to determine the maximum tolerated 

dose (MTD) for future studies in tumour models. 

The suitability of novel dendritic glycerol-based amphiphiles as solubilizing vehicles will be 

studied and described in Chapter 4. Novel solubilizers are desired both in preclinical as well 

as in clinical testing. In contrast to currently used solubilizers, these amphiphiles do not 

contain PEG. Furthermore, they exhibit a definite composition instead of the multicomponent 

mixtures such as Cremophor® EL. Various amphiphiles comprising identical non-ionic 

dendritic polyglycerol headgroups but various core structures will be investigated. It is 

hypothesized that the core hydrophobicity will have an impact on the Sagopilone 

solubilization, formulation stability, and cytotoxicity. Their potential will be assessed in direct 

comparison to standard solubilizers used in parenteral formulations nowadays. 
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Abstract 

Polymeric micelles were studied as a drug delivery system for Sagopilone, a poorly 

water-soluble anticancer drug, for passive tumour targeting. Poly(ethylene glycol)-b-

poly(lactide) (PEG-b-PLA) and poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL) 

were investigated to identify suitable copolymers and to assess the predictive 

value of solubility parameters. The impact of the copolymer composition 

(different hydrophobic/hydrophilic-ratios (w/w) from 0.3 to 1.3) and the preparation method 

(sonication; film formation) on the solubilization efficiency, size characteristics, and micelle 

stability were studied. Thermal analysis was used to determine the apparent solid-state 

solubility. PEG2000-b-PLA2200, PEG2000-b-PCL2600, and PEG5000-b-PCL5000 were identified 

as the most suitable delivery systems for Sagopilone. They exhibited efficient 

solubilization (≥ 70 %) yielding small (< 100 nm), monodisperse, and spherical micelles. 

(80 ± 12), (93 ± 0.4), and (96 ± 6) % of the drug still remained solubilized after 24 h, 

respectively. Calculated solubility parameters were not predictive since they showed 

a reversed order of preference relative to experimental data. High solubilization after film 

hydration was accompanied with a ‘supersaturation’. The reason for this well-known effect 

and the solubilization of Sagopilone within the block copolymer was elucidated by 

the evidence of glass solutions exceeding the solubilization capacity of the corresponding 

micelles. Overall, micellar drug delivery systems for Sagopilone were identified offering 

the potential for an improved therapy. 
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1. Introduction 

To date many potent drugs entering the developmental stage were selected from high 

throughput screening and passed through numerous pharmacodynamic evaluations in vitro 

as well as in vivo. These drug candidates frequently show poor or negligible water solubility. 
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Figure 1: Structural formulas of (A) PEG-b-PLA, (B) PEG-b-PCL and (C) Sagopilone 

Sagopilone (Fig.1) is a novel, potent derivative belonging to the group of epothilones, a new 

class of microtubule-stabilizing agents [1, 2]. It is currently undergoing Phase II clinical trials 

for the treatment of various types of cancer [3]. The parenteral administration of Sagopilone 

poses a challenge to formulation development due to its poor solubility in water (12 µg/mL). 

Furthermore, dosing of Sagopilone is limited due to the occurrence of peripheral neuropathy, 

a typical side effect of epothilones. Thus, the requirements of an ideal drug delivery system 

comprise (a) efficient and stable solubilization of the drug, (b) accumulation of the drug in 

tumour tissue, and (c) a reduction of drug related adverse effects at non-tumour sites. 

Solubilizers currently used for parenteral administration like Cremophor® EL or 

polysorbate 80 have been implicated in clinically important adverse effects like 

hypersensitivity reactions and a highly increased systemic drug exposure along with a reduced 

cellular uptake [4]. Among different approaches polymeric micelles were extensively studied 

and reviewed as drug delivery systems for the solubilization of hydrophobic drugs [5-9] 

exhibiting no or marginal carrier-associated side effects after intravenous injection  [10, 11]. 
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Examples of anticancer drugs used for solubilization are Paclitaxel [12], Doxorubicin [13] 

and Camptothecin [14]. Furthermore, they offer the potential to alter the pharmacokinetic 

behaviour of anticancer drugs after parenteral administration achieving long circulation times 

and enhanced permeation and retention of micelles in solid tumours (EPR-effect) [15]. Thus, 

they may provide a promising approach for more efficient and patient-friendly cancer 

therapy [5]. To date, approximately seven formulations based on this concept have already 

entered clinical trials [16]. The amphiphilic copolymers used mostly contain 

poly(ethylene glycol) (PEG) as the hydrophilic block and can be classified into four 

categories according to the nature of the hydrophobic block, namely 

PEG-b-Poly(amino acids), PEG-b-Poly(ester), PEG-Phospholipids and Pluronics® [17]. 

The formulation of Paclitaxel in PEG-b-Poly(lactide) (PEG-b-PLA) micelles, e.g. in 

Genexol®-PM, is an impressive example for polymeric micelles as solubilization vehicles 

although clear evidence of an EPR-effect has not been provided to date. The key advantage of 

this formulation is a significantly increased maximum tolerated dose (MTD) in humans 

compared to Taxol® and the absence of carrier-related side effects [10, 18-20]. 

PEG-b-Poly(ε-caprolactone) polymers (PEG-b-PCL) exhibit very promising 

pharmacokinetics in terms of a drastically decreased clearance and consequential prolonged 

circulation times in preclinical studies [21, 22] but have not been evaluated in 

clinical trials so far. Toxicity testing of PEG-b-PCL micelles revealed their biocompatibility 

in terms of low cytotoxicity and no acute toxicity after i.v. application in vivo  [21, 23]. 

Apart from the polymer structure also other factors such as the micelle size and morphology 

were reported to affect circulation times and biodistribution after parenteral 

administration [24]. Among the numerous literature, no reports appeared comparing 

PEG-b-PLA and PEG-b-PCL primarily with regard to their (a) solubilization capacity and 

(b) their effect on the pharmacokinetics of cytostatic drugs especially epothilones. 
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Thus, the aim of the present study was to investigate the solubilization of Sagopilone 

systematically using various PEG-b-PLA and PEG-b-PCL polymers (Fig.1). Solubility 

parameters were calculated to assess their predictive value. The hydrophobic/hydrophilic-ratio 

(w/w) of the block copolymers was varied in a range from 0.3 to 1.3 to define the optimum 

polymer composition in terms of the formation of monodisperse, spherical micelles and 

efficient, stable drug loading. Furthermore, two different preparation methods were applied 

and compared to each other. Using the film method a solid film is formed after complete 

removal of the organic solvent from a single-phase system und subsequent drying. This film 

could be suitable for storage, and the polymeric micelles are formed spontaneously upon film 

redispersion. However, ‘supersaturation’ with subsequent precipitation of the drug needs to be 

taken into account [6]. For comparison, direct dissolution was employed using sonication. 

Thermal analysis was performed to study the drug-polymer compatibility and the apparent 

solid-state solubility of Sagopilone within the block copolymers. 

Since the micellar morphology was reported to affect the biodistribution in vivo the selected 

candidates were investigated by transmission electron microscopy to identify micelle size 

and morphology. 
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2. Materials and methods 

2.1 Materials 

Sagopilone was obtained from Bayer Schering Pharma AG (Berlin, Germany). The block 

copolymers poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG2000-b-PCL500, PEG2000-b-

PCL1400, PEG2000-b-PCL2600 and PEG5000-b-PCL1600, PEG5000-b-PCL3600, PEG5000-b-PCL5000), 

poly(ethylene glycol)-b-poly(D,L-lactide) (PEG2000-b-PLA1200, PEG2000-b-PLA2200) and 

poly(ethylene glycol)-b-poly(L-lactide) (PEG5000-b-PLLA2400, PEG5000-b-PLLA6000) were 

purchased from Polymer Source Inc. (Dorval, Canada). For the definition of the abbreviations 

used for these polymers see Table 1 as well as Section 3.2. All other ingredients were 

obtained in analytical quality. 

 

2.2 Solubility parameter calculation 

Solubility parameters of Sagopilone and different polymers were obtained using Hansen’s 

approach [25]. It assumes that the total solubility parameter (δ), almost equal to the 

Hildebrand parameter, arises from dispersive (δd), permanent dipole-dipole interactions (δp), 

and hydrogen bonding forces (δh) according to Equation (1). 

 2222
hpd δδδδ ++=  (1) 

Calculation of the solubility parameters was done on the basis of the group contribution 

method by Hoy using the Solubility Parameter Software provided by Computer Chemistry 

Consultancy (Singen, Germany). Furthermore the difference of the three-dimensional 

solubility parameters between Sagopilone and various polymers (Δδ) were calculated 

(see Equation (2)). 

 2
21

2
21

2
21 )()()( hhppdd δδδδδδδ −+−+−=Δ  (2) 
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2.3 Acid value determination 

The Acid value is defined as the number that expresses, in milligrams, the quantity of 

potassium hydroxide required to neutralize the free acids present in 1 g of the substance [26]. 

It was determined by anhydrous titration according to method A of the European standard 

EN ISO 2114 with minor changes regarding the solvent due to the polymer solubility. Briefly, 

the polymer was dissolved in acetonitrile, phenolphthalein solution was added and the 

solution was titrated with potassium hydroxide solution (0.01 M) using a GP-Titrino 736 

(Metrohm AG, Switzerland) equipped with a Photometer 662 (Metrohm AG, Switzerland) 

measuring the transmission of light at 570 nm. Data was analysed with TiNet Software 2.4. 

All measurements were performed in triplicate. 

 

2.4 Preparation of polymeric micelles 

Two different preparation methods were carried out to prepare loaded as well as unloaded 

polymeric micelles. (A) The sonication method consisted of the following steps, weighing of 

the polymer (30 mg) and Sagopilone (3.0 mg) into a screw-top glass vial, addition of 3.0 mL 

phosphate buffer (pH 7.4) and subsequent sonication using a Sonoplus HD2070 

(Bandelin electronic, Berlin, Germany) at 100 % power in an unpulsed mode for 10 minutes. 

(B) The film formation method was performed as follows. Block copolymer (30 mg) and 

Sagopilone (3.0 mg) were weighed into a round-bottomed flask and dissolved in 3 mL 

acetonitrile. The solvent was evaporated under reduced pressure at room temperature with 

subsequent drying at 0.1 mbar for 1 h. The resulting film was redispersed with 3.0 mL 

phosphate buffer (0.05 M, pH 7.4) under shaking without additional heating or sonication. 

Empty micelles were prepared according to the same protocol in the absence of Sagopilone. 

The initial drug-polymer ratio was 1:10 for the drug-loaded samples and the resulting polymer 

concentration was kept uniformly at 10 g/L for all samples allowing comparisons between 

unloaded and loaded samples. Blanks were prepared without the addition of the polymer. 
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The samples were filtered using a syringe filter (Millex®-GV 0.22 µm, Millipore, USA) and 

the resulting micellar dispersions were used for further analysis. 

 

2.5 Characterization of micelle size and size distribution 

The micelle sizes and size distributions were determined by dynamic light scattering (DLS) 

using a Zetasizer Nano (Malvern Instruments Ltd., Worcestershire, UK). Briefly the principle 

is based on the measurement of the backscattered light fluctuations at an angle of 173° and the 

calculation of an autocorrelation function. The samples were measured undiluted at 25 °C 

adjusted to the temperature for 1 minute prior to the measurement. The autocorrelation 

functions were analysed using the DTS v5.1 software provided by Malvern and the 

hydrodynamic diameter of the micelles (dH) and their size distribution (PDI – polydispersity 

index) was calculated. Measurements were done in triplicate with 15 to 20 runs each and the 

calculated mean values were used. 

 

2.6 Determination of the Sagopilone drug loading 

The Sagopilone content of the micellar dispersions was determined by high performance 

liquid chromatography (HPLC) using an Agilent 1100 Series chromatography system 

(Agilent Technologies, Santa Clara, USA) consisting of a quaternary pump, an auto-injector, 

a column heater at 25 °C and a UV-detector. Two Chromolith® Performance RP-18e columns 

(100 x 4.6 mm, Merck, Germany) were used and a gradient was run from ACN/ water 

(25/75 v/v) to ACN/ water (45/55 v/v) in 10 min. followed by isocratic elution for 15 min. at a 

flow rate of 1 mL/min. Samples were diluted 5 – 10 times with ACN/ water (50/50 v/v) prior 

to analysis. The injection volume of the samples was 10 µL and Sagopilone was detected at a 

wavelength of 220 nm. The data was analysed using EmpowerTM 2 software 

(Waters Corporation, Milford, USA) and the amount of Sagopilone was determined by 

an external standard calibration. 
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The solubilization efficiency (SE) of Sagopilone was calculated according to Equation (3). 

 %100(%) ×=
mginfedSagopiloneofmass

mginloadedSagopiloneofmassSE  (3) 

 

2.7 Differential scanning calorimetry (DSC) 

DSC measurements were carried out on a DSC822e (Mettler Toledo, Switzerland) at 

a heating rate of 20 K/min using dry nitrogen purge gas. The samples were first heated to 

100 °C, subsequently cooled to -100 °C with liquid nitrogen and heated again to 180 °C. 

Polymeric films with varying Sagopilone weight fractions prepared by the film formation 

method were measured using aluminium sample pans. At least three individual samples were 

prepared with three individual measurements per sample and the data was analysed with 

STARe Software 9.10. The thermograms were normalized to the sample weight. The DIN 

midpoint of the slope change of the heat flow plot of the second heating scan was considered 

as the glass transition temperature (Tg). The melting (Tm) and crystallization (Tc) temperatures 

were taken as the maximum of the endothermic and the minimum of the exothermic peaks, 

respectively. Furthermore, the heat capacity change (Δcp) at the Tg has been determined for 

the drug and the polymers. 

 

2.8 Cryogenic transmission electron microscopy (cryoTEM) 

Samples were prepared for cryoTEM analysis by preserving in a thin layer of vitreous ice 

supported on C-Flat holey carbon films (Protochips, Inc.) on 400 mesh copper grids. 

Grids were cleaned in a Solarus plasma cleaner (10 seconds, 25 % O2 , 75 % Ar) immediately 

prior to vitrification using an FEI Vitrobot (4ºC, 95 % RH). Vitrified grids were transferred 

into the electron microscope using a cryoholder (Gatan, Inc.) that maintains the temperature 

of the grid below -170 ºC. Microscopy was performed using a Tecnai Spirit transmission 

electron microscope (FEI Co.) equipped with a 4k x 4k CCD camera. Images were acquired at 
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nominal magnifications of 52,000x (0.21nm/ pixel) and 21,000x (0.50nm/ pixel) using the 

Leginon data acquisition software [27] at a nominal underfocus of -6 µm (21,000x) and 

-3 µm (52,000x) with electron doses of 10-15 (e-/Å2). For shape investigations images were 

acquired at zero tilt (0°) as well as at a high tilt angle (55°). The alignment and classification 

process was done with the XMIPP processing package using the Kernel Probability Density 

Estimator Self-Organizing Map classification method as described in the literature [28, 29]. 

Briefly, algorithms in this package align the selected particles and sort them into self-similar 

groups of classes. Afterwards the class average diameters were measured. 

 

2.9 Statistics 

Data were recorded as mean ± standard deviation. All experiments were done at least in 

triplicate as specified in the Section 3. Means were analysed for statistical significance using 

unpaired student’s t-test. Differences were considered significant at p-values < 0.05. Linear 

regression analysis was processed using SigmaPlot 8.0 (Systat Software Inc., San Jose, CA). 
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3. Results 

3.1 Solubility parameters 

Following the theory that two solvents are miscible, when the difference in their solubility 

parameters is small enough, the theoretical drug-polymer compatibility was estimated. 

The total solubility parameters (δ) of Sagopilone, poly(lactide) and poly(ε-caprolactone) were 

calculated to be 23.78, 21.78 and 20.64 MPa1/2, respectively, resulting from dipole-dipole 

interactions, dispersive and hydrogen bonding forces. 

Concerning the partial solubility parameters, PLA and PCL exhibit similar differences in their 

hydrogen bonding interactions to Sagopilone with Δδh of 0.71 and 1.00 MPa1/2, respectively, 

but a distinct difference in the others. PCL reveals a high portion of dispersive/ van der Waals 

interactions with Sagopilone compared to PLA with Δδd of 1.11 and 2.97 MPa1/2, 

respectively. In contrast, permanent dipole-dipole interactions seem to be the major 

interaction forces between Sagopilone and PLA pursuant to Δδp of 0.25 MPa1/2 compared 

to 3.72 MPa1/2 for PCL. 

According to the lower difference in the total solubility parameter to Sagopilone, poly(lactide) 

(Δδ: 3.06 MPa1/2) seems to be superior to poly(ε-caprolactone) (Δδ: 4.01 MPa1/2) suggesting 

a better compatibility. This gives rise to the expectation that PEG-b-PLA micelles exhibit 

higher solubilization of Sagopilone and stability compared to PEG-b-PCL micelles. 

 

3.2 Characterization of block copolymers 

A set of 10 commercially available block copolymers was used in this study. These can be 

divided in two groups, namely (1) PEG-b-PCL and (2) PEG-b-PLA, which can be further 

subdivided according to the molecular weight of PEG at (a) 2000 and (b) 5000 Da. They were 

abbreviated as P2CL, P5CL, P2LA and P5LLA, respectively, as shown in Table 1. Within the 

particular groups the molecular weight of the hydrophobic blocks was varied. 
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The hydrophobic/hydrophilic-ratio, which is the quotient of the molecular weight of the 

hydrophobic and the hydrophilic block and stated in parentheses for the particular polymer, 

was varied in a range from 0.3 to 1.3 to ensure the formation of star-type micelles with 

a typical core-corona structure [30]. 

Table 1: Characteristics of PEG-b-PCL and PEG-b-PLA block copolymers 

PEG-b-PCLa Mb (g/mol) PDIc AVd 
(mg/g) 

PEG-b-PLAa Mb (g/mol) PDIc AVd 
(mg/g) 

P2CL(0.3) 2000-500 1.08 7.4±0.7     

P2CL(0.7) 2000-1400 1.20 4.9±0.2 P2LA(0.6) 2000-1200 1.13 31.9±0.8 

P2CL(1.3) 2000-2600 1.15 9.1±0.6 P2LA(1.1) 2000-2200 1.13 5.2±0.4 

P5CL(0.3) 5000-1600 1.07 8.4±0.2     

P5CL(0.7) 5000-3600 1.10 5.6±0.4 P5LLA(0.5) 5000-2400 1.04 7.1±0.2 

P5CL(1.0) 5000-5000 1.06 7.2±0.5 P5LLA(1.2) 5000-6000 1.04 23.2±1.0 
a Polymer terminology, with number of hydrophobic-hydrophilic-ratio (w/w) in parentheses 
b Values according to Polymer Data Sheets, determined by 1H NMR 
c Values according to Polymer Data Sheets, dermined by SEC 
d Acid value (n=3) 

The block copolymers investigated were characterized by the supplier using size exclusion 

chromatography (SEC), 1H nuclear magnetic resonance spectroscopy (1H NMR) and 

differential scanning calorimetry (DSC). To establish an additional quality control for these 

excipients, not listed in the pharmacopoeia yet, acid values of the polymers were determined. 

An anhydrous titration according to the European standard (EN ISO 2114:2000) was used to 

determine the free carboxyl groups in the form of free acids or homopolymers and anhydrides 

present in the material. The PEG-b-PCL polymers exhibited low acid values 

(4.5 – 9.5 mg KOH per g polymer) displaying neither a dependency on the PEG-content, 

the PCL/PEG-ratio nor the polydispersity of the polymers (see Table 1). For comparison, 

the limit values of standard excipients like polysorbates, polyoxyethylene castor oil 

derivatives, and sucrose ester are in a range of 2.0 – 6.0 mg KOH per gram raw material [26]. 
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In contrast, the acid values of PEG-b-PLA were in a broader range (4 – 32 mg KOH per 

gram polymer) with remarkable high values of 32 and 23 mg KOH per gram polymer 

for P2LA(0.6) and the P5LLA(1.2), respectively. 

 

3.3 Micelle preparation and characterization 

The film formation and sonication method were investigated with regard to method 

applicability and solubilization efficiency. The results were compared to each other and 

correlated with the polymer properties. 
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Figure 2: Characteristics of polymeric micelles prepared by different preparation methods 
Hydrodynamic diameter dH (bars) and polydispersity index PDI (dots) of unloaded polymeric micelles 
prepared by either sonication (  / ) or film formation (  / ) as a function of the 
hydrophobic/hydrophilic-ratio of the block copolymers; * film redispersion not possible (n=3-4) 

The PCL/PEG-ratio had a stake in the applicability of the preparation method as well as the 

micelle sizes as shown in Figure 2. At a constant molecular weight of PEG increasing PCL 

block lengths led to increasing micelle sizes in an almost linear manner (P2CL with 

R2 = 0.94; P5CL with R2 = 0.99) using the sonication method (Fig. 2). Independent of the 

molecular weight of PEG the PCL/PEG-ratio defined the redispersion behaviour of the 

polymeric films. A PCL/PEG-ratio of 0.3 allowed complete film redispersion (Fig. 2) and the 

corresponding polymeric films were clear with observable spherulites. In contrast, the films at 

higher PCL/PEG-ratios were turbid and not redispersible. Comparing P2LA and P5LLA 

revealed a different behaviour (Fig. 2). P2LA polymers with a PLA/PEG-ratio of 0.6 and 1.1 
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resulted in small, monodisperse micelles after film redispersion, which are almost equal in 

size at 16 nm and 19 nm, respectively. In contrast, sonication was not feasible to form 

monodisperse micelles for these polymers, indicated by PDI values in the range 

of 0.4 – 0.6 (Fig. 2). Using the same methods, the behaviour of P5LLA polymers was vice 

versa. The polymeric films were turbid and not redispersible. On the other hand, 

sonication led to the formation of monodisperse (PDI: 0.10 and 0.12), comparatively large 

(63 nm and 105 nm) micelles of P5LLA(0.5) and P5LLA(1.2), as shown in Figure 2. 

 

3.4 Solubilization of Sagopilone 

The impact of the mechanism of micelle preparation on the solubilization efficiency (SE) of 

Sagopilone was investigated (Fig. 3). Target concentration was constant at 1 g/L 

corresponding to a solubilization efficiency of 100 %. The drug content as well as the 

physicochemical characteristics were determined after preparation and after storage at room 

temperature for 24 h. 

P2CL and P5CL polymers showed similar results for the solubilization of Sagopilone, 

as shown in Figure 3a and b. Addition of Sagopilone did not alter the redispersion behaviour 

of the polymeric films. Hence, no solubilization was observed for the polymers with 

a PCL/PEG-ratio of 0.7 and higher using the film method. Solubilization efficiencies as high 

as (95 ± 6.8) %and (83 ± 1.2) % were achieved with P2CL(0.3) and P5CL(0.3), respectively, 

but a ‘supersaturation’ effect with subsequent precipitation of Sagopilone occurred 

(Fig. 3a and b). Using the sonication method the solubilization efficiency increased with the 

PCL/PEG-ratio in an almost linear manner within the group of P5CL (R2 = 0.98) but without 

linear correlation for P2CL (R2 = 0.82). The solubilization efficiency obtained with 

P2CL(0.3) and P5CL(0.3) of (15 ± 0.8) % and (16 ± 0.2) %, respectively, was similar to the 

drug content remaining after precipitation of the ‘supersaturated’ dispersions. The sonicated 

dispersions were stable for at least 24 h in contrast to dispersions prepared by film formation. 
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At the higher PCL/PEG-ratios of 0.7 and 1.0 – 1.3 solubilization efficiency of P2CL 

was higher than P5CL with (66 ± 5.4) % and (76 ± 1.6) % compared to (55 ± 1.1) % 

and (70 ± 4.2) %; respectively. 
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Figure 3: Solubilization of Sagopilone  
Solubilization efficiency (SE) after preparation either by sonication ( ) or film formation ( ) 
and after 24 h of storage at room temperature (  / ); c(polymer) of 10 g/L; 
* film redispersion not possible. (n=3) 

Interestingly, particle sizes of P2CL were not affected by drug loading in contrast to an 

increase in size for the P5CL micelles without a change in the size distribution (data not 

shown). In addition, the sonicated P5CL micelles still contained more than 95 % of initially 

loaded Sagopilone after 24 h compared to 91 % and 93 % within P2CL(0.7) and P2CL(1.3) 

micelles, respectively. 
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The P2LA polymers exhibited very low solubilization after sonication, namely (1.9 ± 0.9) % 

and (3.5 ± 0) % for P2LA(0.6) and P2LA(1.1), respectively (Fig. 3c). The application of the 

film formation method resulted in a high solubilization with (92 ± 7.1) % and (74 ± 0.8) %, 

respectively. These micellar dispersions showed the typical ‘supersaturation’ effect and 90 % 

and 20 % of the initially loaded Sagopilone precipitated within 24 h at a PLA/PEG-ratio of 

0.6 and 1.1, respectively (Fig. 3c). Micelles of P2LA(0.6) (dH = (16 ± 1) nm) remarkably 

increased after Sagopilone loading (dH = (145 ± 17) nm). The P5LLA polymers showed 

almost no solubilization of Sagopilone after sonication (Fig. 3d) with solubilization 

efficiencies as low as (1.2 ± 0.2) % and (1.5 ± 0) % for P5LLA(0.5) and P5LLA(1.2), 

respectively, compared to (0.8 ± 0.02) % for the blank. Film formation was not applicable 

since drug-loaded polymeric films were not redispersible at all. As a result of this systematic 

screening, three polymers were selected as optimum materials for the solubilization of 

Sagopilone, namely P2LA(1.1), P2CL(1.3), and P5CL(1.0). As film formation was applied 

for P2LA(1.1), sonication was most suitable for P2CL(1.3) and P5CL(1.0). The well-known 

‘supersaturation’ effect after film redispersion has been observed as well independent of the 

polymer used. 

 

3.5 Thermal analysis 

Thermal analysis was used to study the ‘supersaturation’ effect accompanying the film 

formation method more in detail, to provide an evidence of the solubility of Sagopilone 

within the amphiphilic block copolymers and to determine the apparent solid-state saturation 

solubility. Therefore, blank as well as drug-loaded polymeric films of P2CL and P2LA were 

analysed by DSC. 

First, the thermodynamic transition points of the unloaded polymeric films, especially the 

glass transition temperatures of the hydrophobic blocks, were determined. As shown 

in Table 2 the polymeric films of P2CL(0.3) exhibited a glass transition as well as a melting. 



Solubilization of Sagopilone using Polymeric Micelles 

49 

That was in good correlation with the observation of spherulites within the films, which are 

spherical semi-crystalline regions inside non-branched linear polymers by definition. With 

regard to the value of the glass transition temperature (Tg) at (-66.3 ± 0.5) °C, the amorphous 

phase was composed of PCL. An increase of the PCL/PEG-ratio to 0.7 and 1.3 led to an 

increase in the glass transition temperature and distinct shoulders of the PEG melting peak.  

Table 2: Thermal properties of blank polymeric films of PEG2000-b-PCL and PEG2000-b-PLA 
 compared to mPEG2000 and drug-loaded films of PEG2000-b-PCL (n=3x3) 

Blank Polymeric Films Sagopilone-loaded Filmsa Films 
1Tm 
(°C) 

2Tc 
(°C) 

3Tg 
(°C) 

3Δcp 
(J·g-1·K-1)

3Tm 
(°C) 

Tg 
(°C) 

bTg 
(°C) 

cTg 
(°C) 

Tg/ 
cTg 

P2CL 
(0.3) 49.1±1.2 5.4±16 -66.3±0.5 0.22±0.03 47.6±0.3 -50.6±1.8* -84.0 -51.1 0.99 

P2CL 
(0.7) 50.5±0.7 23.0±2.1 -57.0±0.6 0.29±0.03 48.1±0.2 -48.2±3.3* -70.7 -46.0 1.05 

P2CL 
(1.3) 50.2±0.3 18.7±6.5 

11.4±7.9 -52.3±0.2 0.35±0.04
43.8±0.2
45.4±0.2
49.7±0.2

-46.0±1.8* -64.2 -43.5 1.06 

P2LA 
(1.1) 40.7±2.0 - -37.1±0.8 - 38.7±0.3     

mPEG 
(2000 Da) 56.8±0.3 27.4±1.4 - - 54.8±0.3     

Sago-
pilone - - 50.2±0.5 0.33±0.04 -     

1-3 Determined at first heating scan (1), at cooling cycle (2), and at second heating (3) 
a Sagopilone weight fraction of 0.09 
b Theoretical Tg based on Fox Approach (see Equation (4)) 
c Theoretical Tg based on Couchman-Karasz equation (see Equation (5)) 
* Significant difference (p<0.05) in Tg compared to blank films 
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Furthermore, the thermogram of P2CL(1.3) revealed two separate exothermic peaks during 

cooling indicating the formation of a third phase composed of crystalline PCL separately from 

PEG. This, again, correlated very well with the film turbidity of those polymers, in contrast 
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to P2CL(0.3). P2LA also exhibited a melting and a glass transition temperature as shown 

for P2LA(1.1) (Table 2). In contrast to P2CL, the measured Tg was an artefact due to the 

inhibition of the crystallization of the molten PEG phase during cooling at DSC measurement. 

The Tg of the PLA phase at approximately 38 °C could not be determined because of 

an overlap with the delayed crystallization and subsequent melting of PEG. 

Hence, the apparent solid-state solubility of Sagopilone was investigated for P2CL based on 

the alteration of the glass transition of PCL. The Tg of drug-loaded polymeric films was 

determined and correlated to theoretical approaches. The films contained Sagopilone at 

a weight fraction equal to the solubilization experiments (Tab. 2). If Sagopilone functions as 

a plasticizer, Tg will be decreased as described by the Fox Approach (Equation (4), Tab. 2). 

In contrast, the formation of a glass solution is indicated by an increasing value of Tg 

compared to the blank according to the Couchman-Karasz equation (Equation (5), Tab. 2). 

The glass transition temperatures were significantly increased compared to the corresponding 

blanks, independent of the PCL/PEG-ratio (Tab. 2), and they correlated very well with 

the values calculated by the Couchman-Karasz equation. Hence, Sagopilone was solubilized 

within the glassy PCL region in terms of a glass solution. P2CL(0.3) showed the best 

correlation (deviation of 1.0 %) in comparison to the higher PCL/PEG-ratios. No alteration 

was observed for the other thermodynamic transitions (data not shown) underlying the phase 

separation nature of these films. 

P2CL(0.3) was investigated further in order to determine the saturation solubility of 

Sagopilone within this polymer (Fig. 4, left). The measured Tg correlated very well with 

the Couchman-Karasz equation at Sagopilone weight fractions of 0.09 and lower. At higher 

weight fractions the Tg was constant at approximately -60 °C, which was remarkably lower 

than the predicted values by Couchman-Karasz but still elevated in comparison to 

the blank film. Moreover, a Sagopilone melting peak appeared at weight fractions of 0.5 

and higher. The Tg observed at the higher drug loading of approximately -60 °C was similar to 
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the Tg of films comprising a Sagopilone weight fraction of 0.02 (Fig. 4, left). In addition, 

the micellar dispersions comprising a drug loading at this weight fraction (0.02) did not show 

the ‘supersaturation’ phenomenon as shown in the right graph of Figure 4, indicating 

a saturated loading. 
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Figure 4: Apparent solid-state solubility of Sagopilone (--) in films composed of P2CL(0.3) 
left: Measured and theoretical Tg according to Couchman-Karasz as a function of drug weight fraction 
(w) and determination of the apparent solid-state solubility (--); right: Drug weight fraction (w) of 
micellar dispersions after film redispersion and after 24 h at c(polymer) of 50 g/L. (n=5) 

 

3.6 Characterization of micelle morphology 

Morphology determination of the three selected micellar delivery systems was done by 

cryo transmission electron microscopy (cryoTEM) to preserve the three-dimensional structure 

of the micelles in their native hydrated state. 

The images revealed that the micelles were spherical with a monodisperse distribution in 

the absence of larger aggregates independent of the polymer and preparation technique used 

(Fig. 5). The PCL-containing micelles exhibited a hexagonal arrangement with a high degree 

of order as seen for P5CL(1.0) in contrast to P2LA(1.1) micelles. The latter were randomly 

spaced apart. 
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Table 3: Comparison of particle characteristics obtained by DLS and cryoTEM of micellar 
 dispersions 

Sample Polymer f  a 
(%) 

Preparation 
Method 

c 
(g/L)

DLS DLS 
dH (nm) PDI 

cryoTEM 
sizeb (nm) 

ΔSizec 

(nm) 

A P2LA(1.1) 47.6 Film formation 20 20.0 0.016 12.9 7.1 

B P2CL(1.3) 43.5 Sonication 20 32.6 0.145 16.9 15.7 

C P5CL(1.0) 50.0 Sonication 20 71.9 0.215 22.3 49.6 

a Hydrophilic fraction f of the block copolymer (w/w) 
b Median of measurement of 200 micelles (4 different images with 50 micelles each) 
c Difference between hydrodynamic diameter (dH) and size at cryoTEM 

 

200 nm

(B)

200 nm

(B)

200 nm

(C)

200 nm

(C)

200 nm

(A)

200 nm

(A)

 

Figure 5: CryoTEM images 
Images of polymeric micelles composed of (A) P2LA(1.1), (B) P2CL(1.3), and (C) P5CL(1.0) at 
a concentration of 20 g/L. The inset shows a small region (100 nm2) of the image at a larger scale. 

 
(a) (b)

 

Figure 6: CryoTEM tilt study 
Comparison of cryoTEM images of P5CL(1.0) micelles acquired at zero tilt (a) and at a high tilt angle 
of 55° (b) (bar = 200 nm). Underneath the respective class averages obtained by the described 
selection and classification process are represented (bar = 20 nm). 
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In addition, comparison of the values obtained by DLS and cryoTEM (Tab. 3) revealed 

a remarkable difference for the PCL-containing micelles although presumption for the size 

measurement by DLS, which is the existence of spherical particles, was fulfilled. This effect 

was pronounced most for P5CL(1.0). 

A cryoTEM tilt study of P5CL(1.0) micelles was performed to clarify the exact morphology 

since spheres may be simulated by single imaging of cylinders in a topview. The images were 

taken at tilt angle of 0° and 55°. The micelles were proven to be spherical as shown 

in Figure 6. Approximately 300 particles per image were selected and classified automatically 

resulting in four classes, which were represented below the full images. They were almost 

equal in size at the respective measurement angle as well as between the different tilts 

(25.8, 25.3, 25.4, 24.7 nm at 0° vs. 25.2, 26.0, 25.6, 24.6 nm at 55°). This was additionally 

displayed by the overlay of a black circle of a fixed diameter of 26 nm. 
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4. Discussion 

The method developed for acid value determination of amphiphilic block copolymers offers 

a fast and convenient test for purity assessment following standard tests of the European 

Pharmacopoeia. This is of high importance to their implementation as standardized 

excipients. Assuming the acid value is exclusively due to the cleavage of the polyester block, 

the emerging acids constitute a maximum of 2 % (w/w raw material) except for 

the outliers P2LA(0.6) and P5LLA(1.2). The latter may be due to the presence of possible 

by-products of the polymer synthesis such as poly(lactide) homopolymers and free lactic acid 

resulting from polymer degradation or cleavage of residual lactide present in the raw material. 

This fact has to be taken into account for result interpretation. Furthermore, future studies are 

needed to define threshold acid values for these novel excipients. 

The nature of the hydrophobic block, the preparation technique as well as the composition of 

the block copolymers has had a significant impact on the micelle formation and 

the solubilization of Sagopilone. Sonication was applicable to P2CL and P5CL exhibiting 

the same dependencies within the particular groups. In comparison with published data using 

a similar polymer, the micelles of P5CL(1.0) formed by sonication (69 nm, PDI 0.20) were 

smaller than micelles obtained by a co-solvent evaporation method (87.5 nm, PDI 0.198) [31]. 

But they were larger than those formed by solvent displacement with subsequent 

sonication (41.0 nm) [32]. Likewise, the sonicated micelles of P5CL(0.7) exhibited 

remarkably smaller sizes (55 nm, PDI 0.20) compared to the use of a co-solvent evaporation 

method (71.8 nm) [33]. The hydrophobic/hydrophilic-ratio was found be a crucial parameter 

for the applicability of the film formation for P2CL and P5CL. At values of 0.3 film 

redispersion was possible in contrast to the general statement that this preparation method is 

inappropriate for this kind of polymers [31]. These results support the published observations 

that the procedure of the micelle formation plays a significant role in determining the average 
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diameter and size distribution aside from the block copolymer molecular weight [31, 34]. 

Larger micelle sizes reported for the co-solvent evaporation method may be due to the 

precipitation driven micelle formation, in contrast to the self-assembly of amphiphilic block 

copolymers into micelles during direct dissolution using sonication. Comparison of the latter 

with micelles prepared by film formation, if applicable, revealed only small differences. 

This fact further corroborates the theory since film hydration is self-assembling driven 

as well. The application of identical procedures for PEG-b-PLA polymers revealed a distinct 

difference between P2LA and P5LLA due to the different stereoisomers of the lactic acid 

monomers. Film redispersion was only feasible if the hydrophobic block was formed of 

poly(D,L-lactide). In contrast, only P5LLA polymers containing a poly(L-lactide) block 

produced monodisperse micelles when sonicated. It is known that steric factors play 

an important role in chain flexibility, chain packing, and subsequent crystallization 

behaviour [35]. For this reason, P2LA micelles having an amorphous poly(D,L-lactide) core 

were almost similar in size (around 20 nm) independent from the MW of PLA. 

P5LLA micelles comprising a semi-crystalline poly(L-lactide) core were remarkably 

larger (63 and 105 nm) with a dependence on the PLA block length [36]. These findings 

are in good agreement with literature values [37-39]. 

Solubilization efficiency of P2CL and P5CL micelles prepared by sonication increased with 

the particular PCL/PEG-ratio with comparable results between the two groups. This is in 

contrast to previous observations reporting an increase in the drug loading e.g. of Paclitaxel 

with the PCL block length independent of the molecular weight of PEG [33]. However, 

the latter was observed for micelles prepared by co-solvent evaporation pointing out again 

the impact of the preparation method. Using the co-solvent evaporation method clustering of 

Sagopilone with the hydrophobic blocks is promoted since the drug and the polymer are 

dissolved prior to the micelle formation and encapsulation event. On the contrary, drug and 

polymer dissolution, micelle formation, and drug loading take place at the same time during 
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the sonication method displaying an additional loading hindrance due to the shield of the 

hydrophobic core by a PEG corona. This is very likely to be the reason for the higher 

solubilization of P2CL besides a partial degradation of the P5CL polymers. The latter can be 

excluded since it has not been observed in terms of higher acid values. Contrary to P2CL, 

the sizes of P5CL micelles increased after drug loading. This effect was not predictable since 

all possible alterations have been reported in the literature, namely an increase in size after 

solubilization of Cyclosporine A for P5CL(1.0) [31], no alteration in the size of 

Paclitaxel-loaded micelles of P5CL(0.8) [33] as well as a slight decrease in size of 

P5CL(1.0) micelles together with an increase of P2CL(1.0) micelles after Doxorubicin 

loading [32]. Possible explanations for this effect are the formation of a small amount of drug 

nanocrystals with diameters less than the pore size of the filter (0.22 µm), measurement 

artefacts due to the presence of dust, or an altered viscosity. However, the former have not 

been detected as a single size population at DLS and the corresponding blank samples 

exhibited negligible Sagopilone concentrations (0.8 ± 0.02 %). Further studies are needed to 

elucidate the effect of the drug used, the polymer structure and concentration, and, 

in particular, the measurement settings. 

Very high solubilization values after film hydration, if feasible, and the subsequent 

precipitation of Sagopilone coincide with the described ‘supersaturation’ effect of polymeric 

micelles especially obtained by a film formation method [6, 40]. The same range of the 

effective solubilization after precipitation and after sonication without subsequent 

precipitation provides an indication of the loading capacity of the particular micelles. 

A big discrepancy was observed in the solubilization capacity of micelles comprising 

a poly(D,L-lactide)- and poly(L-lactide)-core. This is not in accordance with the theory that 

the intermolecular forces between the hydrophobic drug and the core-forming block of the 

polymer are the major criterion for the solubilization capacity. The fact that Sagopilone was 

not solubilized by poly(L-lactide) was not predictable and may be due to a high degree of core 
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crystallinity without molecular dispersion of Sagopilone. The high accommodation of 

Sagopilone into poly(D,L-lactide)-containing polymeric micelles indicates that the amorphous 

core structure is superior for drug solubilization. Using the film formation for P2LA 

a ‘supersaturation’ effect has been observed as well with a distinct lower amount of drug 

precipitation at the larger PLA/PEG-ratio. The instability of P2LA(0.6) may be additionally 

enlarged by hydrolytic degradation of the polymer as indicated by the high acid value. 

Consequently, the hydrophobic/hydrophilic-ratio was best at approximately 1 regarding 

solubilization efficiency and stability. Thus, P2LA(1.1), P2CL(1.3), and P5CL(1.0) 

were selected as delivery vehicles for further studies along with the appropriate 

method of preparation. 

Correlation of the effects described with the calculated solubility parameters revealed that the 

latter were not predictive. According to the theoretical estimation PLA exhibits a better 

compatibility compared to PCL, whereas direct comparison of P2LA(1.1) and P2CL(1.3) 

micelles revealed similar to higher solubilization and, most notably, more stable drug loading 

of P2CL(1.3). This is in contrast to findings of Jubo et al. [41] demonstrating a good 

correlation between solubility parameters and drug formulation characteristics like drug 

loading for PEG-b-PLA and PEG-b-PCL micelles. As shown by the partial solubility 

parameters the portions of the different interaction forces between Sagopilone and PCL differ 

from those of PLA. Structurally, both polymers consist of a polyester backbone with possible 

hydrogen bonding between their carbonyl functions and free hydroxyl groups of Sagopilone. 

This is congruent with the similar difference in the particular hydrogen bonding parameter. 

Hence, the better compatibility of PEG-b-PCL is very likely to be due to the higher portion of 

dispersive/ van der Waals forces between Sagopilone and PCL as well as between PCL chains 

itself resulting in higher micelle stability. Further evidence of the non-correlation was shown 

by the inability of P5LLA to solubilize Sagopilone compared to sufficient solubilization of 

P5CL micelles. The distinct solubilization capacities of poly(L-lactide) and poly(D,L-lactide) 
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as core-forming blocks were not covered by this method since the solubility parameter does 

not distinguish between different stereoisomers. However, the difference in the 

stereochemistry of the lactic acid monomer results in different aggregation behaviour/ 

crystallinity of the resulting polymer, and this in turn highly affects the solubilization. Thus, 

the theoretical methods need to be adapted to accommodate this type of difference. 

Thermal analysis revealed a highly phase-separated composition of the polymeric films. 

As shown for P2CL(0.3-1.3) the films consisted of crystalline PEG, amorphous PCL, and 

crystalline PCL. The formation of the latter was essentially influenced by the PCL/PEG-ratio 

instead of the mere PCL molecular weight and determined the film redispersion behaviour. 

This is in good correlation with findings that nanoscale confinement of normally 

semi-crystalline PCL within blends with 100 nm dispersed phases impedes the crystallization 

of PCL, yielding liquid-state PCL domains at room temperature [42]. Thermo-analytical 

investigations of drug-loaded films indicated the presence of glass solutions comprising 

Sagopilone and PCL besides crystalline regions of the film. The good correlation with the 

theoretical approach describing glass solutions (Couchman-Karasz approach) provided clear 

evidence that Sagopilone was molecularly dispersed in the amorphous PCL phase. Complete 

molecular dispersion of the drug was obtained with P2CL(0.3) indicated by a deviation of 

only 1.0 % from the theoretical value. This finding is in contrast to a described plasticizer 

effect of drugs like propranolol after loading into PCL nanoparticles indicated by 

a decrease of Tg [43]. The findings of this study provide an explanation of the repeatedly 

described ‘supersaturation’ effect of polymeric micellar dispersions after film hydration. 

Sagopilone was shown to be completely dispersed in the liquid-like PCL phase of 

P2CL(0.3) films at a maximum drug weight fraction of 0.09. This value was not consistent 

with the solubilization capacity of the micelles as observed by the ‘supersaturation’ effect. 

Further thermal analysis revealed a saturation solubility of the films at a weight fraction 

of 0.02. This value correlated well with the solubilization capacity of the corresponding 
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micelles indicated by the absence of any ‘supersaturation’ (Fig. 4). This is a very promising 

approach for the determination of the solubilization capacity and has to be proven for further 

drugs. To expand this approach to PEG-b-PLA the measurement parameters have to be 

optimized with respect to a reliable determination of the Tg of PLA. 

Depending on the hydrophilic fraction f self-assembly of amphiphilic block copolymers leads 

to the formation of micelles with spherical (f > 50 %) or worm-like (f = 40-50 %) 

morphologies or vesicular structures called polymersomes (f = 25 – 40 %) [44]. Additionally, 

the preparation method has an impact on the formation of a specific morphology [45]. Thus, 

worm-like as well as spherical micelles may be expected for the three micellar dispersions 

selected comprising block copolymers with f-values ≤ 50 % using the particular preparation 

methods (Tab. 3). Particle analysis by cryoTEM provided clear evidence of spherical micelles 

independent of the type of the block copolymer. This was additionally confirmed in 

a cryoTEM tilt study to exclude misinterpretation of images of worm-like structures in 

a top view pretending spheres as well. Interestingly, an additional bright shell surrounding 

the particles was visualized after the addition of several pictures during the retrospective 

classification procedure. This shell was not detected at pictures of single measurements 

because they were taken with short times of electron beam to avoid liquidation of the vitrified 

sample. This finding provides a good explanation for the observed difference in the particle 

sizes obtained by DLS and cryoTEM (Tab. 3) since the latter describes the size of the core of 

the polymeric micelles. The size difference of approximately 50 nm as seen for P5CL(1.0) 

correlates very well with the theoretical thickness of the PEG-water-shell of 25 nm. The latter 

could be estimated by the constant particle interspaces of 50 nm observed within the 

hexagonal arrangement, the densest packing of spheres. The small difference in the core size 

between P5CL(1.0) and P2CL(1.3) (22 and 17 nm, respectively) is in good correlation with 

their almost similar solubilization capacity of Sagopilone. The remarkably larger 

hydrodynamic diameter of P5CL(1.0) (dH = 71.9 nm) compared to P2CL(1.3) (dH = 32.6 nm) 
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was due to the higher molecular weight of PEG. Furthermore, the distinct higher PDI-values 

of P2CL(1.3) and P5CL(1.0) micelles at DLS in spite of the spherical, monodisperse 

morphology imaged with cryoTEM may be due to the dense sphere packing and subsequent 

hindrance of the free Brownian-motion of the micelles. This theory is encouraged by the 

absence of such a long range order for P2LA(1.0) micelles along with a remarkably lower 

polydispersity at DLS. At least, the formation of larger aggregates, increasing the PDI value 

at DLS, has not been observed in any of the images taken. 
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5. Conclusion 

The poorly water-soluble anticancer drug Sagopilone was sufficiently solubilized by 

PEG-b-PCL and PEG-b-Poly(D,L-lactide) micelles with an optimum 

hydrophobic/hydrophilic-ratio of approximately 1 regarding the solubilization efficiency 

and stability. No solubilization was observed for PEG-b-Poly(L-lactide). Sonication was most 

suitable for polymers with a high PCL/PEG-ratio (≥ 0.7). Film formation was superior 

for poly(D,L-lactide)-containing polymers and those comprising a PCL/PEG-ratio of 0.3 

at the most. Drug loading into PEG-b-PCL micelles was superior to PEG-b-PLA due to the 

absence of a ‘supersaturation’ effect after sonication. Thermal analysis revealed the molecular 

dispersion of Sagopilone in the liquid-like PCL phase of the polymeric films in form of 

a glass solution. Contrary to previous publications, calculated solubility parameters were not 

suitable as predictive parameters. Against theoretical prediction, PCL was superior to PLA 

and the serious difference between the two stereoisomers of PLA in their ability to solubilize 

Sagopilone was disregarded by this approach. The three selected drug delivery systems 

composed of P2LA(1.1), P2CL(1.3), and P5CL(1.0) consist of small (< 100 nm), 

monodisperse, and spherical micelles with slightly different core sizes and distinct differences 

in their hydrodynamic shell. The impact of the core material as well as the PEG-shell at 

a constant Sagopilone loading and micelle morphology on the in vitro as well as in vivo 

behaviour is under further study with the aim to enhance the therapy of Sagopilone. 
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Abstract 

Purpose: The block copolymers PEG2000-b-PLA2200, PEG2000-b-PCL2600, and 

PEG5000-b-PCL5000 have been currently identified as optimal solubilizing agents for 

Sagopilone, a poorly water-soluble anticancer drug. In the present study, the stability, 

formulation feasibility, and in vitro as well as in vivo toxicity were evaluated. 

Methods: Dispersion media, storage conditions, and dilutions were varied for stability 

assessment. The critical micelle concentration (CMC) was determined using a fluorescent 

probe technique. Furthermore, the toxicity was studied in vitro and in vivo using HeLa/MaTu 

cells and a nude mouse model, respectively. 

Results: A drug-polymer-ratio as low as 1:20 (w/w) was sufficient to solubilize Sagopilone 

effectively and to obtain stable dispersions (24 h: drug content ≥ 95 %). Although the micelles 

exhibited a similar thermodynamic stability (CMC: 10-7 – 10-6 M), PEG-b-PCL micelles were 

kinetically more stable than PEG2000-b-PLA2200 (24 h at 37 °C: drug content ≥ 90 % compared 

to 30 %, respectively). Lyophilization of PEG-b-PCL micelles and storage stability of solid 

drug-loaded PEG2000-b-PLA2200 films (3 m, 6 °C: drug content of (95.6 ± 1.4) %) were 

demonstrated for the first time. The high antiproliferative activity has been maintained in vitro 

(IC50 < 1 nM). Carrier-associated side effects have not been observed in vivo and the 

maximum tolerated dose of micellar Sagopilone was determined to be 6 mg/kg. 

Conclusion: The results of this study indicate that polymeric micelles, especially PEG-b-PCL 

micelles, offer excellent potential for further preclinical and clinical cancer studies using 

Sagopilone. 
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1. Introduction 

Solubilization represents one of the major challenges in formulation development nowadays 

since approximately 40 % of the new compounds in drug discovery are poorly 

water-soluble [1]. This is of particular concern in the parenteral delivery field because the 

number of approved excipients is restricted. Furthermore, currently used solubilizers such as 

Cremophor® EL have been implicated in clinically important adverse effects and 

unfavourable alterations of the pharmacokinetics of drugs as shown for Paclitaxel [2]. 

Sagopilone (Fig. 1) is a novel poorly water-soluble anticancer drug belonging to the group of 

epothilones that is administered parenterally [3, 4]. The epothilones present a novel class of 

microtubule-stabilizing anticancer drugs originally occurring in Sorangium cellulosum. 

Their mechanism of action is similar to Paclitaxel but they exhibit superior features relative to 

the latter. Besides their activity against various tumour types, they show low susceptibility to 

key tumour resistance mechanisms in vitro, and most importantly, in vivo [5]. Thus, they are 

effective in tumours resistant to Paclitaxel making them very likely to become successors to 

taxane therapy. Sagopilone (Fig. 1) is a synthetic epothilone derivative which is currently 

under clinical trial evaluation [6]. Dosing of Sagopilone is limited due to the occurrence of 

peripheral neuropathy. This is a typical side effect of epothilones, which recently gave reason 

to the refusal of the marketing authorisation for the epothilone derivative Ixabepilone by the 

European Medicines Agency (EMEA) [7]. The agency concluded that the benefits in the 

treatment of breast cancer with Ixabepilone did not outweigh its risks due to neuropathy. 

Thus, an optimal delivery system for this class of anticancer drugs requires (a) solubilization 

of the drug, (b) accumulation of the drug at the tumour site due to enhanced permeation and 

retention (EPR-effect) [8, 9], and (c) reduction of drug-related adverse effects at non-tumour 

sites. Among several approaches, polymeric micelles offer great potential to meet these 
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demands [10-13] with regard to solubilization [1, 14-16], vehicle safety after 

administration [17, 18], and passive tumour targeting [19, 20]. 
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P2LA(1.1): n=45, m=30

P2CL(1.3): n=45, m=23 
P5CL(1.0): n=113, m=44  

Figure 1: Structural formula of (A) Sagopilone, (B) PEG-b-PLA and (C) PEG-b-PCL 

Until now, numerous publications have described various polymeric micellar systems with 

respect to solubilization and in vivo performance using different drugs and various animal 

models. For this reason, the results are difficult to compare. In our previous study, 

amphiphilic block copolymers composed of poly(ethylene glycol) (PEG) and a biodegradable 

polyester block of poly(lactide) (PEG-b-PLA) or poly(ε-caprolactone) (PEG-b-PCL) 

were investigated with regard to the solubilization of Sagopilone for parenteral delivery [21]. 

As a result, three polymers along with the appropriate method of preparation were selected as 

optimal solubilizing agents. The polymers used were: PEG2000-b-PLA2200, PEG2000-b-PCL2600, 

and PEG5000-b-PCL5000 (Fig. 1) abbreviated as P2LA(1.1), P2CL(1.3), and P5CL(1.0), 

respectively, in which the number in parentheses details the hydrophobic/hydrophilic-ratio 

(w/w) of the block copolymer. 
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A critical point for formulation development is the stability of polymeric micelles [22]. 

They have to be stable both prior to clinical application and after intravenous (i.v.) 

administration since intact micelles are considered an important prerequisite for passive 

tumour targeting. The stability of polymeric micelles is often considered sufficient in general 

due to their low critical micelle concentration (CMC) values. However, this view disregards 

the kinetic stability, which may exhibit serious differences depending on the nature and state 

of the micellar core [1], especially important in the field of drug delivery. Thus, the selection 

of a core-forming block providing a high degree of kinetic stability in conjunction with a slow 

rate of disassembly is described as a strategy for the preparation of micelles that stay intact 

until reaching the tumour site [23] besides other approaches like core-crosslinking [24] or the 

chemical modification of the core-forming block [25, 26]. Examining a set of PEG-b-PCL 

polymers Liu et al. showed superior in vitro as well as in vivo stability of P5CL(1.0) [23]. 

A significant portion of the copolymer remained assembled as intact micelles even 24 h after 

administration of thermodynamically unstable micelles (2 mg/kg body weight), that would 

likely fall to concentrations below the CMC following distribution [23]. In the present work, 

a comparative study of the physicochemical stability of PCL- and PLA-containing micelles 

was performed assuming that PCL-containing cores exhibit a higher stability due to their 

nature (higher hydrophobicity) and state (semi-crystalline) compared to amorphous 

poly(D,L-lactide). 

In addition, the applicability of polymeric micelles to clinical development requires stable 

formulations with sufficient shelf-life. Since the polymers used are sensitive to hydrolytic 

degradation, aqueous dispersions of the micelles are not suitable for ready-to-use 

formulations. This issue has been rarely addressed, especially for PEG-b-PCL micelles. With 

regard to the semi-crystalline nature of PCL, potential aggregation has to be taken into 

account during freeze-drying. With this in mind, the feasibility of lyophilization was studied 
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using different conditions to prevent crystallization of PCL and provide a storable formulation 

of PEG-b-PCL micelles. As an alternative to lyophilization, solid drug-loaded polymeric 

films of PEG-b-PLA were investigated as a novel approach for stabilizing 

parenteral formulations. 

Following the physicochemical and formulation studies, the in vitro as well as the preclinical 

in vivo toxicity were studied to determine the safety profile of the carriers and the maximum 

tolerated dose (MTD) of the drug-loaded micelles for future in vivo tumour efficacy studies. 
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2. Materials and methods 

2.1 Materials 

Sagopilone was obtained from Bayer Schering Pharma AG (Berlin, Germany). The block 

copolymers poly(ethylene glycol)-b-poly(ε-caprolactone), namely PEG2000-b-PCL2600 and 

PEG5000-b-PCL5000 (abbr.: P2CL(1.3) and P5CL(1.0), respectively), and the poly(ethylene 

glycol)-b-poly(D,L-lactide) PEG2000-b-PLA2200 (abbr.: P2LA(1.1)) were purchased from 

Polymer Source Inc. (Dorval, Canada). Pyrene, sucrose, trehalose, and mannitol were 

obtained from Merck KGaA (Darmstadt, Germany). Hydroxypropyl-β-cyclodextrin 

(abbr.: HPβCD) was purchased from Roquette (Lestrem, Fance). Polyvinylpyrrolidone 

(abbrev. PVP, Kollidon® 17PF, Mr = 7 000 – 11 000 g/mol) was purchased from BASF 

(Ludwigshafen, Germany). All other ingredients were obtained in analytical quality. 

 

2.2 Micelle preparation and drug loading 

Loading of Sagopilone within block copolymer micelles was done by the appropriate method 

of preparation as described previously [21]. In brief, sonication was used to prepare 

PEG-b-PCL micelles by simply weighing the polymer and Sagopilone, adding phosphate 

buffer (0.05 M, pH 7.4), and sonication for 10 min. Micelles composed of the PEG-b-PLA 

polymer P2LA(1.1) were prepared by a film formation method. The polymer and the drug 

were dissolved in acetonitrile, and the organic solvent was evaporated under reduced pressure 

at room temperature with subsequent drying at 0.1 mbar for 1 h. Micelle formation took place 

upon redispersion of the resulting film with phosphate buffer (0.05 M, pH 7.4) while shaking 

without additional heating or sonication. Unloaded micelles and blanks were prepared 

according to the same procedures in the absence of Sagopilone or the polymer, respectively. 

The resulting dispersions were sterilized by filtration through 0.22 µm syringe filters 

(Millex®-GV 0.22 µm, Millipore, USA). 

 



Chapter 3 

73 

2.3 Determination of drug content and micelle size 

The final Sagopilone concentration present in the micelles was determined by reversed-phase 

high performance liquid chromatography (RP-HPLC) using two Chromolith® Performance 

RP-18e columns (100 x 4.6 mm, Merck, Germany) and an Agilent 1100 Series 

chromatography system (quaternary pump, auto-injector, column heater at 25 °C, 

and UV-detector) from Agilent Technologies (Santa Clara, USA). The method used has been 

described in detail previously [21]. 

The solubilization efficiency (SE) and the loading (% and mol/mol) of Sagopilone were 

calculated according to Equation (1), (2), and (3), respectively. 

 %100(%) ×=
mginfedSagopiloneofmass

mginloadedSagopiloneofmassSE  (1) 

 

 %100(%) ×
mginm

mginm
Loading

polymer

Sagopilone
 (2) 

 

 
molinM

molinM
molmolLoading

polymer

Sagopilone
)/(  (3) 

 

The micelle sizes and size distributions were measured by Dynamic Light Scattering (DLS) 

at a scattering angle of 173° using a Zetasizer Nano (Malvern Instruments Ltd., 

Worcestershire, UK) with a temperature controller set at 25 °C. Autocorrelation functions 

were calculated and analysed using the DTS v5.1 software provided by Malvern. 

Measurements were done in triplicate with 15 to 20 runs each, and the calculated mean values 

of the hydrodynamic diameter (dH) and the size distribution (PDI: polydispersity index) 

were used. 
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2.4 Determination of critical micelle concentration 

The critical micelle concentration (CMC) of the amphiphilic block copolymers was 

determined by a fluorescent dye assay as reported previously [15]. In brief, excitation spectra 

of pyrene were obtained at a constant pyrene concentration of 6·10-7 M in the presence of 

amphiphilic block copolymers at concentrations ranging from 1·10-5 to 10 g/L using a 

Spex Fluorolog-2 spectrofluorometer (Horiba Jobin Yvon, Edison, NJ). The ratio of the 

intensity at 338 to 333 nm was plotted against the concentration of the block copolymer on 

a logarithmic scale to determine the CMC. 

 

2.5 Lyophilization 

Different lyoprotectants were added to the micellar dispersions (c(polymer) = 20 g/L) at 

varying polymer-lyoprotectant weight ratios ranging from 1:0 to 1:20. Two millilitres of the 

dispersions were filled in 6R-glass vials fitted with 13-mm lyophilization stoppers. 

The samples were either frozen by immersion in liquid nitrogen (-196 °C) or at -45 °C 

over 4.5 h. They were lyophilized for 56.5  h at 0.09 – 0.01 mbar in a Genesis Super XL 

(VirTis, USA) with a condenser temperature of -60 °C. The resulting lyophilizates were 

redispersed by adding 2 mL water and subsequent shaking. When redispersion was complete, 

the drug content and the micellar characteristics were determined. 

 

2.6 X-ray powder diffraction (XRPD) 

Data collection was carried out in transmission mode on the automated STOE Powder 

Diffractometer STADI P using germanium-monochromatized CuKα1-radiation (= 1.5406 Å). 

The X-ray tube with copper anode was operated at 40 kV and 30 mA. The 2Θ scans were 

performed using the small linear position sensitive detector with an angular resolution of 

0.08° between 12°≤ 2Θ ≤ 23° (step width 0.1°). The samples were enclosed between two 



Chapter 3 

75 

polyacetate films. Data acquisition and evaluation was performed using Version 2.07 of the 

STOE WinXpow software package. 

 

2.7 In vitro cytotoxicity 

For the in vitro cytotoxicity study, the human cervix carcinoma cell line HeLa/MaTu 

(Epo GmbH Berlin) was used. The cytotoxic activity was evaluated at five dilutions ranging 

from 10-6 to 200 µM Sagopilone using the crystal violet assay according to the standard 

method [27]. In brief, cells were harvested from exponential phase cultures growing in 

DMEM/HAMS F12 (Biochrom AG) medium supplemented with 2 mM L-Glutamine and 

10 % fetal calf serum, counted and seeded onto 96-well plates with a density of 3000 cells 

per well. After a 24 h recovery at 37 °C in a humidified atmosphere with 5 % CO2, the cells 

were incubated with 200 µL medium containing free Sagopilone or Sagopilone-loaded 

micelles. Each sample and concentration step was plated in octuplicate. Untreated (medium) 

and positive controls (Paclitaxel) were included as well. Following 4 days of exposure, 

the cells were treated with glutaraldehyde solution (10 %) for 15 min and washed three times. 

Afterwards, the viable cells were stained with crystal violet for 20 min, which was detected 

at 595 nm using a Tecan Sunrise Microplate reader after the addition of 10 % acetic acid. 

As a result, the inhibitory concentration IC50, which is the concentration of Sagopilone 

producing 50 % inhibition of cell proliferation, was determined as a mean from 

three independent experiments. 

 

2.8 In vivo toxicity 

In vivo tolerability studies were performed in healthy female, adult NMRI: nu/nu mice 

(6-8 weeks of age, lack of mature T-lymphocytes, Taconic, 4623 Lille Skensved, Denmark). 

To determine the acute tolerability of the carriers, unloaded micellar dispersions were 

administered intravenously at a dose of 200 mg/kg to two animals per carrier type. Mice were 

monitored daily for acute reactions and variation in body weight over 1 week. In the absence 
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of toxic effects of the carriers, the maximum tolerated doses (MTD) of the drug-loaded 

dispersions were determined according to OECD guideline No. 425 for one drug. Therefore, 

groups of adult NMRI: nu/nu mice (female, 33.5 ± 2 g) with three animals per group received 

slow i.v. bolus injections of Sagopilone-loaded micellar dispersions (application volume: 

0.2 mL per 20 g mouse body weight) at a dose of 6, 8, and 10 mg/kg. Mice were inspected 

daily for treatment-related toxicity. The body weight was determined daily, and changes in 

the body weight served as a parameter of toxicity. The MTD was defined as the dose where 

the median body weight loss does not exceed 15 % nor leads to remarkable changes in general 

behaviour or to death due to toxic side effects within 2 weeks after administration. Animals 

showing weight loss exceeding 20 % were sacrificed. 

All animal experiments were conducted in accordance with Recommendations from the 

Declaration of Helsinki, the UKCCCR regulations for the welfare of animals and the German 

animal protection law, in addition to approval by local authorities. 

 

2.9 Statistics 

Data were recorded as mean ± standard deviation. All experiments were done at least in 

triplicate as specified in the results section. Means were analyzed for statistical significance 

using unpaired Student’s t-test. Differences were considered significant at p-values < 0.05. 
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3. Results and discussion 

3.1 Solubilization capacity and stability of micellar dispersions 

Sagopilone was solubilized by polymeric micelles with the appropriate method of preparation 

for PLA- and PCL-containing block copolymers, using the film formation and sonication 

method, respectively. The aim was to reach the clinically relevant Sagopilone concentration 

of 1 g/L necessitating an 83-fold solubility enhancement compared to the solubility 

in water (12 µg/mL). Using a polymer concentration of 10 g/L resulted in comparable molar 

drug loading capacities of (0.57 ± 0) and (0.64 ± 0.01) mol Sagopilone per mol polymer 

for P2LA(1.1) and P2CL(1.3), respectively (Tab.1). This is distinctly lower compared to the 

loading capacity of the higher molecular weight polymer P5CL(1.0) at (1.29 ± 0.08) mol 

Sagopilone per mol polymer (Tab.1). Assuming that the drug was solubilized by the 

hydrophobic blocks within the micellar core, the corresponding loading capacities were 

almost equal at 14 % and 13 to 14 % (w/w hydrophobic block) for PLA and PCL, 

respectively. However, the block copolymer concentration was too low to reach the target 

concentration of Sagopilone. 

Table 1: Solubilization of Sagopilone (n=3) 

Sagopilone Loading of Sagopilone Sample Polymer 
c in g/L 

aPrep. 
Met. c (mg/L) SE (%) (wt.%) (mol/mol) 

Blank - FF 56.7 ± 8.5  5.7 - - 

P2LA(1.1) 10 FF 739.8 ± 8.1  74.0 7.40 ± 0.08 0.571 ± 0.006 

P2LA(1.1) 20 FF 997.2 ± 11.4  99.7 4.98 ± 0.24 0.385 ± 0.004 

Blank - SO 8.3 ± 0.2  0.8  - - 

P2CL(1.3) 10 SO 761.3 ± 15.9  76.1 7.61 ± 0.16 0.644 ± 0.013 

P2CL(1.3) 20 SO 996.8 ± 48.5  99.7 5.06 ± 0.16 0.422 ± 0.021 

P5CL(1.0) 10 SO 703.1 ± 41.9  70.3 7.03 ± 0.42 1.293 ± 0.078 

P5CL(1.0) 20 SO 1011.0 ± 31.8  101.1 4.99 ± 0.06 0.930 ± 0.029 
a Preparation method (Prep. Met.), either film formation (FF) or sonication (SO) 
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Therefore, the amount of the polymers was increased to 20 g/L, resulting in micellar 

dispersions that contained Sagopilone at a satisfactory concentration of 1 g/L (Tab.1), 

equivalent to a Sagopilone loading of 5 % (w/w). The corresponding solubilization 

efficiency was 100 %, indicating the absence of any drug loss during the preparation for 

all polymers used. 

The hydrodynamic diameters of the drug loaded micelles were (20.2 ± 0.1), (38.6 ± 0.9), 

and (68.4 ± 3.3) nm for P2LA(1.1), P2CL(1.3), and P5CL(1.0), respectively (Fig. 2A). 

PEG-b-PCL micelles exhibited a higher polydispersity (PDI: 0.13 – 0.21) compared to 

PEG-b-PLA micelles (PDI: 0.01 – 0.05), independent of the drug loading and polymer 

concentration (Fig. 2A). 
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Figure 2: Size characteristics of micellar dispersions 
(A) Particle Characteristics of unloaded (  / ) and Sagopilone-loaded (  /  ) polymeric micelles as 
a function of the polymer concentration. (B) Appearance of Sagopilone-loaded micellar dispersions at 
a polymer concentration of 20 g/L. (n=3) 

As previously shown in a cryoTEM study [21], the PEG-b-PCL micelles exhibited a uniform 

size distribution despite their higher PDI values, and aggregation was not observed. 

In contrast to the clear dispersions comprised of P2LA(1.1), unloaded as well as drug-loaded 

PCL-containing formulations showed a slight or intense white to pale blue opalescence 

(Fig. 2B), indicative of crystalline light scattering structures in the submicron size range. 

The particle sizes as well as the PDI did not differ between the unloaded and drug-loaded 
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micelles except for P5CL(1.0) at a concentration of 10 g/L (Fig. 2A). The exception revealed 

a significant increase in the micellar size (p = 0.01) while size distribution (PDI) did not 

change significantly (p = 0.25). This phenomenon may be due to the formation of a small 

amount of drug nanocrystals with diameters less than 0.22 µm. However, they may only 

account for a marginal proportion of the total number of particles, since they have not been 

detected as a single size population at DLS, and the corresponding blank samples exhibited 

negligible Sagopilone concentrations (Tab. 1). 

The dispersions were stored at room temperature and their remaining drug content was 

determined after 24 h to assess their stability. As shown in Figure 3A, all dispersions were 

stable at a polymer concentration of 20 g/L while precipitation of the drug occurred 

at a P2LA(1.1)-concentration of 10 g/L. Thus, a further requirement for clinical development 

or processing, namely the stability of the dispersions for a specific time period, was met. 

The previously described ‘supersaturation’ effect of P2LA(1.1)-dispersions prepared by a film 

formation method was not observed at the higher polymer concentration. The lower 

Sagopilone loading (5 wt.%, Tab. 1) did not exceed the loading capacity of the 

P2LA(1.1)-micelles, circumventing a subsequent precipitation of excessive Sagopilone, 

and (97.2 ± 1.3) % of the drug still remained solubilized after 24 h (Fig. 3A). In addition, 

the time dependent behaviour of the P2LA(1.1)-micelles was monitored by DLS (Fig. 3B). 

The “supersaturated” dispersions revealed a slightly ascending PDI during the first 9 h 

(PDI: 0.05 – 0.11) with a subsequent sharp increase from 0.11 to 0.20 whereas the 

polydispersity of the micelles comprising a higher polymer concentration of 20 g/L did not 

change for at least 48 h (Fig. 3B). This points to the importance of determining the drug 

content at multiple time points in addition to a single measurement after preparation. 

The latter often leads to a misinterpretation of the micellar loading capacity especially if the 

film formation method is used due to the ‘supersaturation’ effect. 
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Figure 3: Stability of micellar dispersions 
24h-Stability of Sagopilone-containing micellar dispersions (target conc. 1 g/L) at room temperature. 
(A) Remaining drug content after 24 h at a polymer concentration of 10 g/L ( ) and 20 g/L ( ) in 
phosphate buffer (0.05M, pH 7.4). (B) Absence of the ‘supersaturation’ effect of P2LA(1.1) at 
c(polymer) of 20 g/L ( ) compared to 10 g/L ( ) shown by a 24-h DLS measurement. (C) Remaining 
drug content after 24 h in dispersions comprising phosphate buffer (0.05M, pH 7.4) ( ) and 
phosphate buffer saline (0.05M, pH 7.4) ( ) at a polymer concentration of 20 g/L. (n=3) 

The previously described dispersions were prepared in phosphate buffer (0.05 M, pH 7.4) 

as a dispersion medium. The higher concentration of sodium chloride present in the phosphate 

buffer saline (0.05 M, pH 7.4) remarkably decreased the stability of P2LA(1.1)-micelles as 

drug content dropped to (16.0 ± 3.8) % after 24 h (Fig. 3C). Conversely, the stability of the 
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PEG-b-PCL micelles was not affected after 24 h. Thus, phosphate buffer (0.05 M, pH 7.4) 

was used for further investigations. 

 

3.2 Critical micelle concentration and stability upon dilution 

Using a fluorescent probe technique, the critical micelle concentration (CMC) was determined 

as a thermodynamic parameter characterizing the micelles’ stability during dissolution.  

Table 2: CMC-Values (determined at 25 °C, n=3) 

Polymer CMC (µg/mL) CMC 
(10-6 M) 

ΔGº 
(kJ/mol) 

P2LA (1.1) 7.3 ± 1.9 1.7 ± 0.5 -32.9 ± 0.7 

P2CL (1.3) 6.7 ± 2.7 1.5 ± 0.6 -33.5 ± 1.1 

P5CL (1.0) 5.3 ± 3.2 0.5 ± 0.3 -36.1 ± 1.4 

 
The three polymers tested exhibited a very low CMC on an order of magnitude of 10-7 to 

10-6 M as shown in Table 2. Furthermore, the free energy (ΔG°) of the micelle formation 

process was calculated according to Equation (4), where the CMC is expressed in units of 

mole fraction, R is the gas constant, and T is the absolute temperature of the system [28]. 

 )ln(CMCRTG =Δ o  (4) 

The obtained ΔG° values were negative, independent from the polymers used, indicating 

a self-assembly process. Thus, the spherical nanoparticles detected at DLS (Fig. 2A) and 

visualized by cryoTEM [21] were proven to be thermodynamically stable, self-assembled 

micelles. Based on their CMC values, the micellar dispersions (c(polymer) = 20 g/L) of 

P2LA(1.1), P2CL(1.3), and P5CL(1.0) may be diluted by a factor of 2740, 2990, and 3780, 

respectively, to fall below the CMC. As previously stated, the micelles are not necessarily 

destroyed after dilution below the CMC, depending on their kinetic stability [1, 20]. 

By definition, unimers exist in equilibrium with polymeric micelles at concentrations above 

the CMC. The rate of the exchange of polymer unimers between the micelles as well as the 

dissociation defines the kinetic stability. It may occur rapidly, gradually or not at all, 
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depending on the state of the core (liquid-like, glassy or crystalline), whereas the latter are 

known as ‘frozen’ micelles [1]. 
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Figure 4: Stability upon dilution 
Stability demonstrated by the remaining drug content of the dilutions after 24 h stored at 4 °C ( ) 
and 37 °C ( ). Dilution of micellar dispersions (1 g/L Sagopilone; 20 g/L polymer) in phosphate 
buffer (0.05 M, pH 7.4) with normal saline (0.9 %) in a ratio of 1:10 (v/v). (n=3) 

To define the kinetic stability at concentrations above the CMC, dilution experiments were 

performed by mixing the micellar dispersions (1 g/L Sagopilone, 20 g/L polymer) with 

normal saline (0.9 %) in a ratio of 1:10. Subsequently, the dilutions were stored at 4 °C and 

37 °C for 24 h and the remaining drug content was determined thereafter (Fig. 4). In contrast 

to P2LA(1.1), the PEG-b-PCL micelles exhibited a high stability upon dilution. 

(97.2 ± 2.2) % and (97.3 ± 0) % of the drug content remained solubilized after 24 h at 4 °C 

using P5CL(1.0) and P2CL(1.3), respectively, in contrast to (87.1 ± 2.2) % for P2LA(1.1). 

The superior stability of the PCL-containing micelles was even more obvious at 37 °C. At this 

temperature, more than 70 % of the initially solubilized drug substance precipitated in 

micellar dispersions of P2LA(1.1) whereas (96.4 ± 1.7) % and (90.1 ± 3.6) % of the drug 

remained solubilized in P2CL(1.3) and P5CL(1.0), respectively. 

By summarizing the dilution (Fig. 4) and stability experiments in the presence of sodium 

chloride (Fig. 2C), a remarkable difference in the stability of PLA- and PCL-containing 

micelles was observed. P2LA(1.1) and P2CL(1.3) exhibited similar values in their CMC, 

but P2LA(1.1)-micelles were less stable, both in phosphate buffer saline and after dilution 
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with normal saline despite the fact that the polymer concentration was beyond the CMC for 

all polymers tested. Hence, PEG-b-PCL micelles exhibited a superior kinetic stability despite 

the similar thermodynamic stability parameters for the PLA- and PCL-containing polymers. 

This is most likely due to the semi-crystalline core of the PEG-b-PCL micelles. As the 

amorphous portion of PCL solubilizes Sagopilone [21], the partial crystallinity leads to 

“frozen” micelles with very slow exchange rates between unimers and micelles and 

consequently an increased kinetic stability. In contrast, P2LA(1.1)-micelles comprise glassy 

cores at ambient temperature, which are kinetically less stable due to the absence of 

crystalline structures and subsequent unhampered exchange between unimers and polymeric 

micelles. Consequently, these systems are more susceptible to having their equilibrium 

affected by a higher amount of sodium chloride towards a destabilized state. The kinetic 

stability was additionally decreased at 37 °C since the glass transition temperature of PLA 

(approximately 38 °C) was reached, resulting in (a) an increased fluidity and exchange rate of 

the liquid-like core and (b) a shift towards free unimers since the polymer is more soluble 

at higher temperatures. The observed superior stability of P5CL(1.0) at concentrations above 

the CMC coincides with the described superior kinetic stability and a slow rate of disassembly 

of P5CL(1.0) at concentrations below the CMC [23]. Thus, CMC values can be used to 

provide evidence of a self-assembly process, but all facets of stability have to be considered. 

 

3.3 Formulation development 

Using different types and amounts of lyoprotective agents, both blank and Sagopilone-

containing dispersions (1 g/L Sagopilone, 20 g/L polymer) were freeze-dried as described in 

Table 3. Lyophilized P2LA(1.1)-micelles were completely redispersed even without the 

addition of lyoprotective agents. As shown in Figure 5a, the micelles did not change in size 

after lyophilization (prior: 20 nm; after: 19 – 22 nm) and this behaviour was not altered in the 

presence of Sagopilone (prior: 21 nm; after: 21 – 24 nm). 
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Table 3: Redispersion behaviour after lyophilization (n=3) 

P2LA(1.1)c P2CL(1.3)c P5CL(1.0)c 
Lyo-
protectant Ratioa Freezingb 

No 
drug 

Sago. 
1 g/L 

No 
drug 

Sago. 
1 g/L 

No 
drug 

Sago. 
1 g/L 

- -    > 1µm > 1µm > 1µm > 1µm 
Mannitol 1:1    > 1µm > 1µm > 1µm > 1µm 
Sucrose 1:1    > 1µm > 1µm > 1µm > 1µm 
Sucrose 1:20 x - - > 1µm > 1µm  > 1µm 
Trehalose 1:5 x - - > 1µm > 1µm > 1µm > 1µm 
Trehalose 1:20 x - - > 1µm > 1µm > 1µm > 1µm 
PVP 1:5 x - - > 1µm > 1µm > 1µm > 1µm 
PVP 1:20 x - -     
HPβCD 1:20 x - -     
a Polymer-lyoprotectant ratio (w/w) 
b Freezing by immersion with liquid nitrogen (-196 °C) prior to lyophilization 
c c(polymer) = 20 g/L 

 Complete redispersion possible 

For PEG-b-PCL micelles, a lyoprotective agent such as polyvinylpyrrolidone (PVP) or 

Hydroxypropyl-β-cyclodextrin (HPβCD) was necessary to obtain complete redispersion of the 

unloaded as well as drug-loaded samples. In addition, the dispersions were frozen by 

immersion in liquid nitrogen prior to lyophilization to avoid potential sedimentation and 

aggregation of the micelles. Interestingly, redispersion of lyophilizates containing P5CL(1.0) 

and a sufficient amount of sucrose were completely redispersible, but their drug-loaded 

counterparts were not. 

The addition of PVP or HPβCD to the micelle dispersions prior to lyophilization led to an 

alteration in the sizes measured by DLS as seen in Figure 5b and c. This is very likely to be 

due to a measurement artefact by the altered composition and viscosity of the dispersion 

medium affecting the micelle mobility, which in turn presents the basis for size calculations at 

DLS. A change in the micelle morphology is very unlikely since the polydispersity and size 

distributions did not change and precipitation phenomena were not detected. The altered sizes 

were used as comparative values in the assessment of the redispersion behaviour of the 
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corresponding lyophilizates. Micelles comprised of P5CL(1.0) revealed similar sizes prior to 

and after lyophilization (Fig. 5c), independent of the lyoprotective agent and drug loading. 

On the other hand, lyophilizates comprised of P2CL(1.3) and HPβCD exhibited a remarkable 

increase in their micellar size despite complete redispersion. This was also observed for the 

drug-loaded micelles of P2CL(1.3) using PVP as a lyoprotectant. Irrespective of the polymer 

used, the drug content did not change after redispersion (data not shown). 

 

d H
 (n

m
)

0

5

10

15

20

25

30

prior mannitol
1:1

sucrose
1:1

no lyo-
protector

d H
 (n

m
)

0

50

100

150

200

250

300

prior HPβCD
1:20

prior PVP
1:20

d H
 (n

m
)

0

50

100

150

200

250

300

prior HPβCD
1:20

prior PVP
1:20

a) P2LA(1.1)

b) P2CL(1.3) c) P5CL(1.0)

 

Figure 5: Lyophilization 
Hydrodynamic diameter (dH) of unloaded ( ) and Sagopilone-loaded ( ) micelles, prior to 
lyophilization and after redispersion of the lyophilizates, as a function of the lyoprotective agent 
added and its amount (polymer-lyoprotectant ratio (w/w)). The particle sizes of (b) and (c) prior to 
freeze-drying were measured in the presence of HPβCD or PVP. (n=3) 

 

Overall, lyophilization was feasible using the specified conditions and can be considered 

a viable option for parenteral formulations. The results of P2LA(1.1) are in good agreement 

with the described freeze-drying of Paclitaxel-loaded PEG-b-PLA micelles [26]. To date, 

the preparation of freeze-dried PEG-b-PCL micelles for storage and redispersion later on has 
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not been addressed extensively. There are only few reports addressing refreezing that present 

storable forms for PEG-b-PCL micelles [29]. 

Application of the same conditions used for PEG-b-PLA was not feasible for the 

lyophilization of PEG-b-PCL micelles. Again, the different nature of the hydrophobic blocks 

had a great impact. The amorphous structure of PLA itself was superior to semi-crystalline 

PCL with regard to the redispersion behaviour and the need for lyoprotection. Embedding of 

the latter within a dense matrix of PVP or HPβCD preserved the micellar structures resulting 

in complete redispersion. Despite the large molecular weight of PEG and PCL, P5CL(1.0) 

was superior to P2CL(1.3) with regard to aggregation behaviour. This may be due to the 

higher PEG content of P2CL(1.3) (0.22 mmol PEG per g polymer) compared to P5CL(1.0) 

(0.1 mmol PEG per g polymer). Previous freeze-drying studies of PEG-b-PLA nanoparticles 

[30] showed a clear relationship between the amount of grafted PEG and the degree of 

aggregation because of the formation of stable PEG crystallized bridges between 

neighbouring particles. This may also be due to an efficient shielding of the PCL core by 

longer PEG chains and subsequent prevention of the formation of PCL-aggregates. 

Optimization of the procedure as well as an elaborative elucidation of the change in the 

particle sizes will be the focus of future studies. 

As an alternative to freeze-drying, solid polymeric films for redispersion prior to clinical 

application were investigated. The films were composed of P2LA(1.1) and Sagopilone at a 

drug loading of 5 % (w/w) to avoid ‘supersaturation’ phenomena after redispersion. 

At a storage temperature of 6 °C, no crystallization of Sagopilone was observed as shown in 

the XRPD pattern (Fig. 7D, blue diffractogram). The observed peak at 19 2Θ corresponded to 

the crystalline PEG phase of the films, which was present in the blank films of P2LA(1.1) 

as well (Fig. 7C). Redispersion by the use of simple shaking by hand was easy and complete 

resulting in micellar dispersions with a mean drug content of (96 ± 1) % (Fig. 6, blue bars). 
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Precipitation did not occur afterwards, and the dispersions still exhibited (97 ± 2) % in drug 

content after 12-h storage at 2 to 8 °C (Fig. 6). 
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Figure 6: Film stability 
Stability of Sagopilone-loaded P2LA(1.1) films as a function of the storage time and temperature 
(6 °C: , 25 °C: , 40 °C: ) represented by the mean Sagopilone content of the micellar 
dispersions after redispersion (solid bars) and subsequent storage at 2 to 8 °C for 12 h (hatched bars). 
(n=6) 

Thus, polymeric films of P2LA(1.1) comprising a Sagopilone content of 5 % have been 

demonstrated as a novel solid formulation stable for at least 3 months of storage at 6 °C. 

Adjuvant excipients were not required to maintain the capability to form micellar dispersions 

in an aqueous medium. This is in contrast to previous publications [31] describing the 

necessity of the addition of PEG to obtain storable liquid formulations because redispersion 

had failed without it. 

The storage temperature has been identified as a key factor in stability. Although complete 

film redispersion was still possible after 1 month of storage at 25 °C, the resulting dispersions 

were not stable, and more than 60 % of the initially solubilized drug precipitated within the 

following 12 h (Fig. 6, grey bars). This precipitation phenomenon was very likely to be due to 

an enhanced degradation of PLA resulting in shorter PLA blocks with a subsequent decreased 

drug loading capacity of the corresponding micelles. After storage for another 2 months, 

Sagopilone crystallization occurred (Fig. 7D), impeding complete redispersion. 
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Figure 7: XRPD pattern of polymeric films 
XRPD pattern of blank and Sagopilone-loaded P2LA(1.1) films stored at 6 °C ( ), 25 °C ( ), 
and 40 °C ( ) after 1 and 3 months. As a comparison, the XRPD pattern of PEG (1500 Da) 
and Sagopilone is displayed below the blank and drug-loaded diffractograms, respectively. 

At 40 °C, crystalline Sagopilone patterns were detected even after 1 month (Fig. 7B, 

red diffractogram) along with incomplete redispersion (Fig. 6, red bars). Crystallization was 

promoted since the glass transition temperature of PLA (approximately 38 °C) was reached 

increasing the fluidity and coalescence of drug-loaded phases. Additionally, the blank matrix 

changed to a liquid state after 3 months with complete disappearance of the PEG peak 

(Fig. 7C). This is a clear indication of a high degree of degradation of PLA resulting in lactic 

acid, which is a colourless to slightly yellow syrupy liquid [32] dissolving the residual 

crystalline PEG. Thus, the storage temperature has to be maintained at 6 °C to prevent matrix 

degradation and drug crystallization. 
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3.4 In vitro cytotoxicity 

The in vitro cytotoxic activity of micellar and free Sagopilone was investigated in a 

proliferation assay using a human cervix carcinoma cell line (HeLa/MaTu). The activity is 

given as a concentration that inhibits cell proliferation by 50 % (IC50). For comparison, 

Sagopilone solutions containing HPβCD (drug-excipient-ratio of 1:200) or ethanol (0.1 %) 

were tested. Paclitaxel (ethanol solution) was used as an internal standard to verify the 

reliability of the results obtained with the given in vitro test system. Sagopilone’s high 

antiproliferative activity (IC50 < 1 nM) compared to Paclitaxel (IC50 > 1 nM) [3] was 

maintained. The IC50-values of the Sagopilone samples tested were in a range of 

0.14 to 0.26 nM (Tab. 4), showing no significant differences between the respective 

formulations and the ethanol solution (p > 0.05). Corresponding blanks did not show any 

cytotoxicity within the effective concentration range of Sagopilone. 

Table 4: In vitro cytotoxicity of different Sagopilone-loaded polymeric micelles compared to free 
 Sagopilone and Paclitaxel in human HeLa/MaTu cells (n=3x8) 

Vehicle Sagopilone Paclitaxel IC50 (nM) 
P2LA(1.1) x  0.21 ± 0.03 
P2CL(1.3) x  0.17 ± 0.04 
P5CL(1.0) x  0.14 ± 0.05 
HPβCD x  0.19 ± 0.08 

x  0.26 ± 0.07 
ethanol/ medium 

 x 1.17 ± 0.21 

 
Thus, micellar Sagopilone was proven to be still highly active on a cellular level. 

Encapsulation in polymeric micelles did not prevent drug internalization into the cells, 

a mandatory premise for Sagopilone’s activity. Although in vitro experiments do not allow 

a prediction of the in vivo behaviour of nanocarriers, they are considered as a necessary step 

towards in vivo testing. 
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3.5 In vivo toxicity 

Following the in vitro investigations, the toxicity of the polymeric micelles as well as the 

maximum tolerated dose (MTD) of the drug-loaded micelles were determined in vivo. 
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Figure 8: Safety of vehicles 
Mean relative body weight after i.v. injection of unloaded polymeric micelles (c = 20 g/L) comprising 
P2LA(1.1) ( ), P2CL(1.3) ( ), and P5CL(1.0) ( ) at a dose of 200 mg/kg (Mean ± Min/Max). (n=2) 

The polymeric micelles (c(polymer) = 20 g/L) revealed no acute toxicity or signs of 

hypersensitivity reactions after i.v. application to non-tumour-bearing nude mice at a polymer 

dose of 200 mg/kg (Fig. 8). The mice’ body weight did not change during 1 week. Thus, 

the PEG-b-PLA as well as the PEG-b-PCL vehicles were proven to be safe, which is an 

important requirement for the subsequent dose-finding study. 

For this study, drug-loaded micelles (drug-polymer-ratio 1:20) were administered at 

increasing doses as shown in Figure 9. The MTD was determined to be 6 mg/kg independent 

of the polymer used. At the higher dose of 8 mg/kg, the animals died or had to be sacrificed 

due to a weight loss exceeding 20 % with the exception of the group receiving P2CL(1.3) 

micelles, in which only 1 of 3 mice died (Fig. 9*). The MTD of micellar Sagopilone 

was decreased compared to a cyclodextrin-based formulation of Sagopilone 

(MTD = 10 mg/kg, data not shown). 
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Figure 9: Determination of maximum tolerated dose (MTD) 
Mean relative body weight after i.v. application of Sagopilone-loaded polymeric micelles of 
(A) P2LA(1.1), (B) P2CL(1.3), and (C) P5CL(1.0) at Sagopilone doses of 6 ( ), 8 ( ), and 
10 ( ) mg/kg and polymer doses of 120, 160, and 200 mg/kg, respectively. 
(n=3, except * 8 mg/kg: one animal has died) 

This may be due to an enhanced effective dose and biodistribution of Sagopilone 

accompanied by an enhanced toxicity. Furthermore, the degradation of Sagopilone by serum 

esterases may be hampered due to its encapsulation within polymeric micelles resulting in 

higher plasma levels of the effective drug after i.v. administration. 
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Comparatively, the MTD of micellar Paclitaxel (Genexol®-PM, 60 mg/kg) was threefold 

higher than that of conventional Paclitaxel (Taxol®, 20 mg/kg) using a polymer similar to 

P2LA(1.1) in a nude mouse model  [17]. Taxol® uses Cremophor®EL, which is known to 

cause severe side effects limiting the dose of Paclitaxel. Since the polymeric micelles 

(Genexol®-PM) did not exhibit any hypersensitivity reactions dosing of Paclitaxel could be 

increased, resulting in a higher MTD. As shown in the present study, the comparison with a 

cyclodextrin-based formulation revealed a decreased MTD suggesting an improved stability 

after i.v. administration and an enhanced lysosomal internalization of micellar Sagopilone 

into cells. The recommended dose was identified to be 6 mg/kg. The described micelles are 

believed to show an increased in vivo antitumour efficacy due to a decreased degradation of 

the drug and an enhanced permeation and retention of micellar Sagopilone in solid tumours. 
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4. Conclusion 

Polymeric micellar dispersions of P2LA(1.1), P2CL(1.3), and P5CL(1.0) were successfully 

used to solubilize Sagopilone at a clinically relevant concentration of 1 g/L, requiring a 

drug-polymer-ratio as low as 1:20 (w/w). The resulting micellar dispersions exhibited 

sufficient stability independent of the polymer type and composition. Precipitation 

phenomena due to a ‘supersaturation’ following particular preparation methods such as the 

film formation must not be mistaken with instability of the micelles and could be 

circumvented by simply adjusting the drug loading to values not exceeding the loading 

capacity as seen for P2LA(1.1). The demonstrated lyophilization of these dispersions, shown 

for the first time with PEG-b-PCL, promotes the further development of this kind of block 

copolymers as solubilizing agents. A novel solid formulation concept, namely drug-loaded 

polymeric films for redispersion prior to parenteral administration, has been demonstrated to 

be feasible for PEG-b-PLA even without additional excipients, in contrast to previous studies. 

This approach could be of considerable commercial interest due to the prevention of complex 

and costly lyophilization and the absence of water during the production process. Altogether, 

amphiphilic block copolymers should lend themselves well to become standard solubilizing 

excipients. The PEG-b-PCL micelles revealed a distinctly higher kinetic stability both in the 

presence of isotonic additives and upon dilution. For this reason, they may demonstrate 

superior stability after i.v. application and passive tumour targeting. The in vivo evaluations 

revealed no carrier-related side effects and decreased MTDs of Sagopilone-loaded polymeric 

micelles independent of the polymer used and despite their different kinetic stability. 

The polymeric micelles are believed to be superior in terms of delivering higher amounts of 

drugs to tumour tissue despite lower dosing due to an increased stability of the encapsulated 

drug against blood esterases as well as an enhanced permeation and retention of the delivery 

system in solid tumours. To provide evidence of this effect, tumour efficacy studies are 

needed, preferably using tumour models that represent the in vivo situation of leaky vessels. 
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Abstract 

The purpose of this study was to investigate dendritic glycerol-based amphiphiles as novel 

solubilizers using the poorly water-soluble anticancer drug Sagopilone. The effect of different 

core structures on the solubilization, formulation stability, and cytotoxicity using human 

umbilical vein endothelial cells (HUVECs) were investigated and compared to standard 

excipients. Structurally, all amphiphiles were composed of 2nd generation polyglycerol 

(PG[G2]) as the hydrophilic part and a single C18-chain (PG[G2]-C18), a C18-chain coupled by 

a diaromatic spacer (PG[G2]-DiAr-C18), a C18-chain with a naphthyl or bisphenyl end group 

(PG[G2]-C18-Naph/ -BiP), or two C18-chains (PG[G2]-(C18)2) as the hydrophobic part. 

They formed small (7-10 nm), monodisperse (PDI 0.04-0.20) micelles with the exception 

of PG[G2]-(C18)2. The amphiphiles revealed a 2-3-fold higher solubilization of Sagopilone 

than Cremophor® ELP and polysorbate 80 independent of the core structure. 

PG[G2]-DiAr-C18 exhibited the highest solubilization capacity (56.7±1.3 mg/g) compared to 

Cremphor® ELP (18.5±0.1 mg/g). The micellar dispersions were stable in drug content over 

3 days (≥ 97 %). In contrast to polysorbate 80, dilutions did not show any precipitation after 

3 days at 37 °C (remaining drug content: > 95 %). They did not induce significant 

cytotoxicity at a concentration of 0.01 g/L after 24 h, and PG[G2]-C18-Naph was the least 

cytotoxic structure after 72 h with values comparable to Cremophor® ELP and polysorbate 80. 

Overall, these amphiphiles possess superior solubilization properties compared to standard 

excipients used in parenteral formulations with an excellent formulation stability profile and 

comparable cytotoxicity. 
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1. Introduction 

Solubilization currently represents one of the major challenges in drug development because 

approximately 40 % of the new compounds are poorly water-soluble [1]. This is of particular 

concern in the field of parenteral delivery, but also impacts oral delivery and drug 

development in general [2]. The range of approved excipients used as solubilizers in 

parenteral formulations is limited to a select few such as Cremophor® EL, polysorbate 80, 

poloxamers, or cyclodextrins [3, 4]. Apart from these limitations regarding formulation 

development, the problem of poor aqueous solubility also affects the early development 

process [5]. For this purpose formulations comprising multiple doses of drug exposure are 

required for toxicity testing and existing solubilization/ dissolution strategies frequently fail. 

Furthermore, solubilizers currently used have been implicated in clinically important adverse 

effects such as peripheral neuropathy and hypersensitivity reactions (HSR) [6, 7]. 

One prominent example is Taxol®, a formulation of Paclitaxel in Cremophor® EL and 

ethanol, exhibiting potentially life-threatening HSRs in clinical practice [8]. Szebeni et al. 

suggested complement activation and subsequent histamine release by Cremophor® EL as an 

important contribution to these reactions [9]. Block copolymers like poloxamer 188 seem to 

trigger complement activation as well, and adverse responses after administration of 

poloxamer-based formulations are very likely to be secondary to this effect [10]. Even 

polyethylene glycol (PEG), which is generally regarded as safe and biocompatible, was found 

to trigger complement activation in a concentration- and molecular-weight-dependent 

 manner [11]. These findings may provide a plausible explanation for the unexplained 

anaphylaxis in species that have received medicines containing high levels of PEG 

as a solubilizer or carrier [11]. In addition to the potentially harmful intrinsic effects, 

solubilizers may modulate the disposition profiles of various drugs after parenteral 

administration, especially known from cancer therapy [6]. For example, the formulation of 
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Paclitaxel and Docetaxel in Cremophor® EL- and polysorbate 80-micelles, respectively, 

is accompanied by an increased systemic drug exposure, a simultaneously decreased 

clearance, and a reduced cellular drug uptake [6]. 

Besides causing these undesirable effects in humans, Cremophor® EL and polysorbate 80 are 

known to be very effective histamine releasers in certain species like dogs [12]. This fact 

poses a major problem in preclinical studies using this sensitive animal model. 

Thus, there is a need for the development of novel solubilizers taking into account 

both preclinical and clinical implications. 

With regard to the structural aspects, systematic studies of histamine release in dogs showed 

that unsaturated oxethylated oleic acid was the effective principle in Cremophor® EL [12] and 

saturated 12-hydroxystearic acid was the least harmful [13]. Moghimi et al. discovered 

a similar effect, namely the termination of complement activation after the removal of double 

bonds in diblock copolymers present in poloxamer 188 by catalytic hydrogenation [10]. 

Furthermore, complement activation was shown to be an intrinsic property of the 

macromolecular components instead of the small molecular weight constituents [10]. 

 

Figure 1: Micelles composed of dendritic amphiphiles for drug solubilization 

On the basis of these observations, a novel class of amphiphiles based on glycerol dendrons 

coupled to saturated alkyl chains may provide favourable properties in terms of solubilization 

and safety. Their synthesis was performed by the group of R. Haag and will be reported 
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elsewhere. As a result, they found that structures comprising a glycerol dendron of 2nd and 

3rd generation are optimal for the formation of small, spherical micelles (Fig. 1) showing 

a typical core-corona structure. 

The modular approach in their synthesis and the use of simple click-chemistry as the final 

coupling reaction lead to well-defined amphiphiles instead of mixtures of variable 

composition like Cremophor® EL. This is a good prerequisite for structure-response 

relationship investigations with regard to (a) solubilization, (b) micelle stability, and (c) first 

orientating toxicology testing in vitro. 
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Figure 2: Structural formula of Sagopilone 

The aim of the present study was to investigate five non-ionic dendritic glycerol-based 

amphiphiles comprised of different hydrophobic modifications with respect to solubilization 

and micelle stability using the novel anticancer drug Sagopilone (Fig. 2). It is a poorly soluble 

drug with a water solubility of 12 mg/L. Its application in chemotherapy requires a final 

formulation concentration of 1 g/L, and for this reason, solubilization is mandatory. 

First, the micelle formation and Sagopilone solubilization by the dendritic amphiphiles, 

as shown in Figure 3, were studied and compared to Cremophor® ELP, polysorbate 80, 

and Pluronic® F68. Structurally, all dendritic amphiphiles were composed of a 2nd generation 

polyglycerol dendron (PG[G2]) as the hydrophilic part and a single C18-chain coupled by 

a triazol ring as the hydrophobic part (PG[G2]-C18) (Fig. 3). The effect of different core 

structures was investigated by the introduction of a second C18-chain (PG[G2]-(C18)2) or 
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an additional aromatic group. The latter was incorporated through an additional phenyl group 

on the hydrophobic-hydrophilic interface of the amphiphile (PG[G2]-DiAr-C18) or a naphthyl 

or bisphenyl end group ((PG[G2]-C18-Naph/ -BiP). On the basis of the solubility 

investigations final formulations representing clinically relevant concentrations of 

Sagopilone (1 g/L) were prepared, and their stability was assessed both undiluted and 

after dilution. Second, an MTT assay was performed to assess the in vitro cytotoxicity 

using primary endothelial cells. 
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Figure 3: Structural formulas of dendritic glycerol-based amphiphiles 
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2. Materials and methods 

2.1 Materials 

The dendritic amphiphiles with the different hydrophobic structures were provided by 

the group of Prof. R. Haag (FU Berlin), and were used directly without further modification. 

Sagopilone was obtained from Bayer Schering Pharma AG (Berlin, Germany). The standard 

excipients Cremophor® ELP (BASF, Ludwigshafen, Germany) and polysorbate 80 

(Merck KGaA, Darmstadt, Germany) were used in European Pharmacopoeia grade. 

Pluronic® F68 was purchased from Sigma Aldrich (St. Louis, USA). All other ingredients 

were obtained in analytical quality. 

 

2.2 Molecular modelling 

Molecular mechanics calculations were performed for conformational searching 

of PG[G2]-C18 using MMFF94 of Spartan’08 software (Wavefunction, Inc., Irvine, USA). 

In brief, MMFF94 is a computational tool for automatic conformational analysis in the 

lowest dielectric. All possible conformations are calculated automatically and an optimized 

gas-phase structure is indicated afterwards. The latter was used to estimate the linear 

extension of the molecule. 

 

2.3 Preparation and characterization of unloaded and drug-loaded micellar 
 dispersions 

Micellar dispersions were prepared by direct dissolution of the particular dendritic 

amphiphiles in phosphate buffer (0.05 M, pH 7.4) with additional heating to 50 °C for 5 min, 

if necessary. The loading capacity of the micelles was determined by an excess method. 

In a typical experiment, 2.0 mg Sagopilone was weighed in screw-top glass vials and 2.0 ml 

of the micellar dispersion (1 or 10 g/L in phosphate buffer (0.05M, pH 7.4)) was added. 

The suspensions were stirred at ambient temperature for 24 h using a magnetic 
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stirrer (IKA® GmbH, Staufen, Germany). Afterwards, the remaining drug substance was 

removed by filtration through a syringe filter (Millex®-GV 0.22 µm, Millipore, USA). 

These experiments were performed in triplicate. 

The micelle characteristics were determined by Dynamic Light Scattering (DLS) using 

a Zetasizer Nano (Malvern Instruments Ltd., Worcestershire, UK). In brief, the principle is 

based on the measurement of the backscattered light fluctuations at an angle of 173° and the 

calculation of an autocorrelation function. The samples were measured undiluted at 25 °C, 

adjusted to the temperature for 1 min prior to the measurement. The autocorrelation functions 

were analysed using the DTS v5.1 software provided by Malvern, and the hydrodynamic 

diameter of the micelles (dH, equal to Z-Ave) and their size distribution (PDI: polydispersity 

index) were calculated. Measurements were done in triplicate with 15 - 20 runs per single 

measurement and the calculated mean values were used. 

The critical micelle concentration (CMC) was determined by measuring the surface tension of 

the amphiphiles in deionized water (Millipore system Milli-Q plus) by the pendant drop 

method. The contact angle tensiometer OCA20 (DataPhysics Instruments GmbH, Filderstadt, 

Germany) was used for these measurements and the temperature was set at 25 ± 0.5 °C. 

Calculation of the surface tension was done by using the Young-Laplace-Equation. 

The accuracy of measurements, checked by one replicate experiment and by control of γ 

for pure water, was ± 0.4 mN/m. The behaviour of the amphiphiles in water was studied over 

the concentration range of 4·10-7 to 1·10-3 M. Aqueous solutions were prepared 24 h before 

measurement. The surface tension γ was determined two times per minute and the 

measurement was stopped when the value γ did not change by more than 0.1 mN/m over 

three minutes. Equilibration time was generally between 50 - 80 min below the CMC 

and 25 - 50 min at higher concentrations. 
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The Sagopilone content was determined by High Performance Liquid Chromatography in 

combination with UV-detection (HPLC-UV) using an Agilent 1100 Series chromatography 

system (Agilent Technologies, Santa Clara, USA) consisting of a quaternary pump, an auto-

injector, a column heater at 25 °C, and a UV-detector. Two Chromolith® Performance RP-18e 

columns (100 x 4.6 mm, Merck, Germany) were used. A gradient was run from 

acetonitrile (ACN)/ water (25/75, v/v) to ACN/ water (45/55, v/v) in 10 min followed by 

isocratic elution for 15 min at a flow rate of 1 mL/min. Afterwards, the solvent was set to 

ACN/ water (70/30, v/v) to elute the dendritic amphiphiles with subsequent equilibration of 

the system using ACN/ water (25/75, v/v) for 8 min. Samples were diluted in a ratio of 1:5 to 

1:10 with ACN/ water (50/50, v/v) prior to analysis. The injection volume of the samples 

was 10 µL, and Sagopilone was detected at a wavelength of 220 nm. The data were analysed 

using EmpowerTM 2 software (Waters Corporation, Milford, USA), and the amount of 

Sagopilone was determined by an external standard calibration. To validate the method, 

the recovery of Sagopilone was determined in the presence of the amphiphiles. Therefore, 

Sagopilone solution (0.2 g/L in acetonitrile) and the particular micellar dispersion 

(1 g/L in water) were mixed in a ratio of 1:1 (v/v) and the drug content was measured. It was 

calculated according to Equation (1). 

 Recovery (%) = 100
g/L0.1

g/L)(
×Sagopilonec

 (1) 

 

2.4 Stability investigations 

Final formulations were prepared containing Sagopilone at a concentration of 1 g/L. 

To achieve this target concentration, the selected amphiphiles and the standard excipients 

were dissolved in phosphate buffer (0.05 M, pH 7.4) at a concentration of 30 and 60 g/L, 

respectively. Sagopilone (2.0 mg) was weighed in screw-top glass vials, 2.0 mL of the 

particular dispersion was added, and the suspensions were heated to 60 °C for 10 min 
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while stirring. After cooling to ambient temperature the volume was adjusted to 2.0 mL and 

the dispersions were filtered through a syringe filter (Millex®-GV 0.22 µm, Millipore, USA). 

Subsequent dilutions were prepared in a ratio of 1:10 with phosphate buffer (0.05 M, pH 7.4). 

The physicochemical stability for the formulations and the particular dilutions were 

investigated at storage temperatures of 21 °C (ambient temperature) and 37 °C, respectively. 

Samples were taken at designated time points for determining the physical stability and the 

remaining drug content. The latter was done after filtration to remove drug substance that 

precipitated during storage. 

 

2.5 In vitro cytotoxicity 

The colorimetric MTT assay was performed to study the in vitro cytotoxicity for human 

umbilical vein endothelial cells (HUVECs). Amphiphile and excipient dispersions with 

concentrations ranging from 0.01 to 1 g/L were prepared in endothelial cell growth medium 

(Clonetics® EGM, Lonza, Basel, Switzerland) and sterilized by filtration (Millex®-GV 

0.22 µm, Millipore, USA). The compounds were soluble in the cell culture medium at all 

concentrations used. HUVECs (Clonetics®, Lonza, Basel, Switzerland) were seeded onto 

96-well plates (TPP) with a density of 25 000 cells per well. After a 24 h recovery at 37 °C 

in a humidified atmosphere with 5 % CO2, the growth medium was replaced by 100 µL serial 

dilutions of the amphiphile and excipient dispersions. The cells were incubated for 24 h and 

72 h. Twenty microlitres of sterile filtered MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide, Sigma Aldrich, St. Louis, USA) stock solution (5 g/L in phosphate 

buffer saline) were added to each well 2 h prior to the final incubation time. After the 

completion of incubation, the medium was replaced by 100 µL of lysis medium 

(65.5 % SDS (30 %), 33 % DMF, 1.5 % glacial acetic acid). After 5 min at 37 °C and shaking 

for an additional 10 min at ambient temperature to ensure complete dissolution of the dark 
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blue formazan crystals, the absorption at 580 nm (test) and 675 nm (reference) was measured 

using an ELISA reader (Fluostar Optima, BMG Labtech GmbH, Offenburg, Germany). 

The cell viability (%) relative to the control wells containing cell growth medium without any 

excipients was calculated according to Equation (2). All experiments were run 8 times. 

 100
A(control)

A(test)  (%)  viabilityCell ×=  (2) 

 

2.6 Statistics 

Data were recorded as mean ± standard deviation. All experiments were done at least in 

triplicate as specified in the results section. Means were analyzed for statistical significance 

using the unpaired Student’s t-test. Differences were considered statistically significant 

at p-values < 0.05, if not mentioned specifically. 
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3. Results and discussion 

3.1 CMC, micelle characteristics, and molecular modelling 

All amphiphiles tested were water-soluble at a concentration of at least 10 g/L. The critical 

micelle concentration of the new amphiphiles was in a range of 3·10-6 to 7·10-6 M (Tab. 1). 

Thus, the minimum concentration of amphiphiles for the formation of micelles is remarkably 

lower compared to the standard excipients Cremophor® EL (3.6·10-5 M) [14], polysorbate 80 

(1.1·10-5 M) [15], and poloxamer 188 (1.1·10-4 M) [16]. This may be beneficial with regard to 

formulation stability especially after dilution prior to or after intravenous application. 

Table 1: CMC and particle characteristics of micellar dispersions 

CMCa  c = 1 g/Lb  c = 10 g/Lb PG[G2]- 
(g/L) (M)  dH (nm) PDI  dH (nm) PDI 

-C18 3.2·10-3 3.7·10-6  7.7 0.16  7.5 0.08 

-(C18)2 n.d. n.d.  11.8 0.33  10.8 0.24 

-DiAr-C18 6.7·10-3 6.9·10-6  9.2 0.04  9.2 0.04 

-C18-BiP 5.5·10-3 5.2·10-6  9.2 0.20  9.0 0.11 

-C18-Naph 5.7·10-3 5.5·10-6  8.6 0.12  8.3 0.04 
a Standard deviation ± 5 % (n=3) 
b Concentration of amphiphile in micellar dispersion 

As shown in Table 1, the amphiphiles formed small (7-10 nm), monodisperse 

(PDI: 0.04-0.11) micelles with the exception of PG[G2]-(C18)2. Due to the low polydispersity 

indices they are very likely to be spheres, whereas the higher polydispersity of the latter 

may be due to the formation of non-spherical micelles such as worm-like micelles. 

The correlation between the molecular length of the amphiphiles and the measured sizes of 

the corresponding micelles was exemplified for PG[G2]-C18 (Fig. 4). The optimized 

gas-phase conformation was calculated using conformational analysis by “MMFF94”, and its 

length dimension was estimated to be 3.3 nm (Fig. 4A). This is very likely to be the maximum 

length of this molecule. Assuming spherical micelles, their theoretical size is twice this length 
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in diameter, which is approximately 6.6 nm. The theoretical value (6.6 nm) correlated very 

well with the hydrodynamic diameter measured using DLS (7.5 nm) since the latter displays 

the size of the micelle including its hydrodynamic water shell, which is slightly larger than the 

pure micelle size by definition. 

In
te

ns
ity

(%
)

U
ndersize

1 10 100 1000
dH (nm)

10

20

20

40
60

80

0

100

0

3.3 nm

A)

B)

 

Figure 4: PG[G2]-C18 molecular and micellar sizes 
(A) Conformation of PG[G2]-C18 and (B) size distribution by intensity of the corresponding micelles 
in phosphate buffer (c(amphiphile) = 10 g/L) measured by DLS. (n=3) 

 

3.2 Solubilization capacity compared to standard excipients 

The solubilization capacity for Sagopilone of the micelles described was determined using 

HPLC-UV. Prior to these investigations, the drug recovery was tested in the presence of 

the amphiphiles. Sagopilone as well as the dendritic amphiphiles were detectable at a 

wavelength of 220 nm, as shown in Figure 5, with the exception of PG[G2]-(C18)2. 

Sagopilone (tR = 20-21 min) was clearly separated from the detected excipients 

(tR = 37-38 min) by the HPLC method used. The absence of an excipient peak of 

PG[G2]-(C18)2 may be due to a different absorption maximum or an increased hydrophobic 

interaction with the C18-modified column material and a remarkably increased retention time. 
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However, subsequent measurements were not affected, and the drug recovery was in a range 

of 98 - 105 % for all amphiphiles tested. Thus, the method suitability was proven. 
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Figure 5: Analysis of the Sagopilone content by HPLC-UV 
Chromatograms by HPLC-UV (λ = 220 nm) of unloaded (black) and drug-loaded (blue) micellar 
dispersions of PG[G2]-DiAr-C18. 

The solubilization effect for Sagopilone was determined after 24 h stirring at ambient 

temperature at a uniform excipient concentration of 1 and 10 g/L. As presented in Figure 6A, 

the dendritic amphiphiles showed a remarkably higher solubilization of Sagopilone 

(3- to 4.7-fold increase in water solubility) compared to Cremophor® ELP (CELP) and 

polysorbate 80 (PS80) (1.5- to 1.6-fold increase) as well as Pluronic® F68 (F68) 

(no solubilization enhancement at all). These results were achieved at a constant excipient 

concentration as low as 1 g/L, and the trend was equivalent at the higher concentration of 

10 g/L (Fig. 6B). However, the increase in the total factor of solubilization (5- to 8-fold) was 

non-linear with respect to the increase in the excipient concentration (10-fold). This effect 

was very likely to be due to the solubilization method itself, which is a slow distribution 

process. Nevertheless, a high solubilization of the poorly water-soluble drug was achieved 

with this method in the absence of any organic solvents or heat. The micelle characteristics 

did not change after drug loading (data not shown). Comparing the different hydrophobic 

structures of the dendritic amphiphiles, the best solubilization was achieved in the presence of 

a diaromatic spacer (Fig. 6, red bar). The introduction of aromatic end groups did result in 
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a similar solubilizing effect compared to the single C18-chain amphiphile, whereas a second 

C18-chain led to a slightly decreased solubilization. 
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Figure 6: Solubilization of Sagopilone 
Factor of Sagopilone solubilization (F: x-fold increase in solubility compared to water solubility) of 
dendritic amphiphiles (black, red bars) and standard excipients (grey bars) at  an excipient 
concentration of (A) 1 g/L and (B) 10 g/L. (n=3) 

 

3.3 Stability investigations 

Three amphiphiles were selected for formulation stability investigations in comparison to 

Cremophor® ELP and polysorbate 80. For this purpose final formulations were prepared 

comprising a clinically relevant Sagopilone concentration of 1 g/L equal to the formulation 

already used in clinical trials. The amounts needed of the particular excipients were estimated 

according to the solubilization capacity experiments to be 30 and 60 g/L for the novel and 

standard excipients, respectively (Tab. 2). 

The primary purpose to solubilize Sagopilone at a concentration of 1 g/L was successfully 

obtained with the novel as well as the standard excipients (Tab. 2). However, the amount 

needed of the latter was twice that of the dendritic amphiphiles. No drug substance was lost 

during the preparation process and subsequent sterile filtration. This fact displays a 

solubilization efficiency of 100 %, and meets primary requirements for parenteral formulation 

development. In addition, the method itself was convenient and feasible for scale-up. 
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Table 2: Solubilization of clinically relevant concentrations of Sagopilone (n=3) 

Final Formulations for Stability Testing Excipient Drug-
excipient-

ratioa c(excip.) 
(g/L) 

c(drug) 
(g/L) 

dH  
(nm) 

PDI 
 

PG[G2]-C18 1 : 21 30 1.04 ± 0.04 7.4 ± 0.04 0.06 

PG[G2]-C18-Naph 1 : 22 30 1.03 ± 0.01 8.1 ± 0.01 0.01 

PG[G2]-DiAr-C18 1 : 18 30 1.07 ± 0.02 8.4 ± 0.02 0.02 

Cremophor® ELP 1 : 54 60 0.98 ± 0.02 11.8 ± 0.02 0.02 

Polysorbate 80 1 : 54 60 0.97 ± 0.03 10.4 ± 0.03 0.08 
a Calculated from solubilization experiments with excipient concentration of 1 g/L (w/w) 

Second, the stability was investigated with regard to clinical application both prior to and 

after dilution. All formulations tested were stable for at least three days at ambient 

temperature as shown in Figure 7. Precipitation of the drug substance was not observed, 

and at least 98 % of Sagopilone still remained solubilized after three days of storage. 

In addition, the micellar characteristics also did not change (data not shown). 
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Figure 7: Formulation stability at ambient temperature 
Drug remaining (-- 98 %) after 24 h ( ) and 3 days ( ) of storage at ambient temperature. (n=3) 

There was no difference in the solubilization stability between the different core structures of 

the dendritic amphiphiles comprised of an unmodified C18-chain, a C18-chain coupled by a 

diaromatic spacer or a C18-chain modified by a naphthyl end group. In a previous publication, 

Carstens et al. reported an increased stability of mPEG-b-oligo(ε-caprolactone) micelles in the 

presence of an aromatic end group such as a benzoyl or naphthyl group [17]. A similar effect 
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has also been described for hydrophobically modified polymeric micelles [18, 19]. In contrast 

to these effects, dendritic amphiphiles exhibited stable Sagopilone solubilization both in the 

presence and absence of hydrophobic modifications of the micellar core. This may be due to a 

high kinetic stability with a slow exchange rate between amphiphilic unimers and micelles. 

Another explanation is the formation of mixed micelles composed of Sagopilone and the 

dendritic amphiphiles. This micelle type, e.g. mixed surfactant micelles, often performs better 

than a single surfactant with respect to solubilization and/ or stability [20]. 
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Figure 8: Stability of dilutions at elevated temperature 
Dilution of final formulations (1:10 with phosphate buffer pH 7.4) and drug remaining (-- 95 %) after 
6 h ( ), 24 h ( ), and 3 days ( ) of storage at 37 °C. (n=3) 

With regard to their clinical application, aliquots of the formulations were diluted at a ratio of 

1:10 with phosphate buffer (0.05 M, pH 7.4) and stored at an elevated temperature of 37 °C. 

The resulting dilutions were stable for drug content with a remaining drug content in solution 

of at least 95 % after three days of storage with the exception of the polysorbate 80-based 

formulation (Fig. 8). The latter exhibited Sagopilone precipitation if stored for more 

than 24 h. The others did not show any change in the micelle characteristics (data not shown). 

Again, no difference was observed between the dendritic amphiphiles with and without 

a hydrophobic modification in terms of stability upon dilution. 

Overall, the amphiphilic dispersions exhibited an excellent formulation stability profile, 

and additional co-solvents such as ethanol were not needed. 
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3.4 In vitro cytotoxicity 

The cytotoxicity was determined by measuring the metabolic activity after incubation of 

human umbilical vein endothelial cells (HUVECs). The choice of this cell line was governed 

by their potential exposure with the amphiphilic carriers after i.v. application [21]. Thus, 

this test may provide an indication of the local tolerance at the injection site. Figure 9 shows 

the cell viability relative to the viability of control cells upon exposure to different excipient 

concentrations for (a) 24 h and (b) 72 h. The concentrations tested were in a range from 

0.01 to 1 g/L for both the novel and the standard excipients, allowing direct comparisons. 
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Figure 9: In vitro cytotoxicity determined by MTT assay 
HUVEC viability after incubation with decreasing excipient concentrations (1 ( ), 0.1 ( ), and 
0.01 ( ) g/L) for (a) 24  h and (b) 72 h in comparison to cells treated with medium. (n=8) 

Generally, the viability after 72 h differed from the short-term effects after 24 h. As shown in 

Figure 9, cells treated with the compounds at the lowest concentration of 0.01 g/L (black bars) 

exhibited a high viability (~ 85 %) after 24 h independent of the compounds’ structure 

(p > 0.01). An incubation time of 72 h using identical excipient concentrations resulted in an 

overall decreased viability (20-65 %). Structurally, cells treated with PG[G2]-C18-Naph 

showed a significantly higher viability (p = 0.01) compared to the standard excipients. And in 

turn, the latter were significantly better tolerated compared to PG[G2]-C18 and 

PG[G2]-DiAr-C18 (p < 0.01). At the next higher concentration of 0.1 g/L (grey bars), 
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no viability was observed for the dendritic structures PG[G2]-C18 and PG[G2]-DiAr-C18, 

whereas cells treated with PG[G2]-C18-Naph showed an interesting behaviour. The long-term 

viability after 72 h (49 %) was significantly higher than the viability after an incubation for 

24 h (28 %). This is in contrast to the viability trend observed with the standard excipients 

comprising 67-71 % and 27-35 % viability after 24 h and 72 h, respectively. Thus, 

PG[G2]-C18-Naph exhibited a significantly lower long-term cytotoxicity (p < 0.01) compared 

to the standard excipients. Nevertheless, the actual viability values were in a comparable 

range. At the highest concentration of 1 g/L (white bars), viability was no longer observed for 

any of the excipients with the exception of PG[G2]-C18-Naph, which showed a low 

percentage of viable cells (11 %) after the short-term incubation of 24 h. 

The results obtained with polysorbate 80 were in good agreement with previously 

accomplished in vitro cytotoxicity testing using human fibroblasts [22], and this fact signifies 

the reliability of these results. The cytotoxic effects observed are very likely caused by an 

interaction with the cellular membranes, a well-known characteristic of surfactants [23]. 

As an example, the in vitro cytotoxicity of Cremophor® EL was postulated to be due to 

peroxidation of polyunsaturated fatty acids and subsequent formation of free radicals and/or 

a direct pertubing effect in the cell membrane, which causes fluidity and leakage [7]. 

Generally, Oros et al. have shown that the strength of the biological effects of non-ionic 

surfactants mainly depends on their hydrophobicity [24]. With regard to the chemical 

structure of the dendritic amphiphiles, the introduction of a hydrophobic naphthyl end group 

has had a significant impact on lowering cytotoxicity. This may be due to higher micelle 

stability and subsequent decreased surfactant-membrane interactions. Despite the membrane-

interacting effect, there are other parameters that may influence the results like a simple 

detachment of viable cells from the flasks during the experiment. However, the occurrence of 

the latter is very unlikely because detachment mainly results from cell death [23]. 
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Overall, an excipient concentration of 0.01 g/L was well tolerated by HUVECs after 

24 h incubation, but higher concentrations showed less viability compared to the standard 

excipients. Therefore, the novel dendritic amphiphiles may be considered biocompatible in 

terms of short-term cytotoxicity at concentrations of 0.01 g/L and below. Furthermore, these 

data indicate an acute effect on a cellular basis towards HUVECs at higher concentrations. 

A measure to address this could be to use highly diluted dendritic amphiphiles at a low 

infusion speed to avoid acute site reactions during injection. Long-term exposition revealed 

an overall superior viability of the dendritic amphiphile comprising a naphthyl end group 

and its actual cytotoxic effect was comparable to the standard excipients Cremophor® ELP 

and polysorbate 80. 

Kojima et al. have shown that in vitro cytotoxicity testing of surfactants required a treatment 

period longer than 24 h to acquire a good correlation with the in vivo Draize eye score [25]. 

Thus, the incubation for 72 h may reflect the in vivo situation better than the results 

obtained after 24 h. 

In general, cytotoxicity testing is an important step, but results largely depend on the cell type 

and test conditions used. The use of primary endothelial cells like HUVEC give an indication 

of local tolerability effects at the injection/ infusion site, but may be of limited predictive 

value due to short contact times in typical infusion protocols. Non-toxic behaviour on 

a cellular basis is often described as evidence of biocompatibility and a prerequisite for safety 

in vivo. However, in vitro – in vivo correlation studies, such as for in vivo ocular 

irritancy [23], are missing for the prediction of the toxicity after intravenous application. 

Thus, biocompatibility, especially a structure-response relationship of the histamine release 

and complement activation potential in vitro as well as in vivo, will be studied further 

and correlated to the findings of cytotoxicity. 
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4. Conclusion 

The novel dendritic glycerol-based amphiphiles showed superior solubilization behaviour for 

the poorly water-soluble anticancer drug Sagopilone compared to standard excipients used in 

parenteral formulations. The structure comprising a diaromatic spacer (PG[G2]-DiAr-C18) 

provided the best solubilization effect for Sagopilone out of the different dendritic 

amphiphiles tested. This indicates preferential drug localization on the interface between the 

hydrophobic core and the hydrophilic corona of the micelle. In contrast to the standard 

excipients, the dendritic amphiphiles are compounds of definite composition allowing easy 

analysis by HPCL-UV without any pre-treatment. In combination with their excellent 

formulation stability profile, both undiluted and after dilution, they fulfil important 

requirements to be considered as alternative solubilizing agents. Hence, they are worthy of 

being studied further as drug carriers. Cytotoxicity studies of the different structures showed 

a clear structure-response relationship with the structure comprising a naphthyl end group 

being the least cytotoxic. Its actual cytotoxicity values were comparable to the standard 

excipients Cremophor® ELP and polysorbate 80. Further in vitro and, particularly important, 

in vivo studies have to be performed to assess their biocompatibility, especially in terms of 

histamine release as well as complement activation. 

Overall, the PG[G2]-C18 derivatives and, in particular, the simple synthesis and variation of 

their chemical structure as well as their definite composition offer possibilities for optimizing 

a lead that may be developed as a solubilizing compound for preclinical and clinical use 

considering additional aspects such as histamine release potential. 



Chapter 4 

118 

References 

 1. G.S. Kwon. Polymeric micelles for delivery of poorly water-soluble compounds. 
Crit. Rev. Ther. Drug Carr. Syst. 20 (2003) 357-403. 

 2. S. Sweetana, M.J. Akers. Solubility principles and practices for parenteral drug dosage 
form development. PDA J. Pharm. Sci. Technol. 50 (1996) 330-342. 

 3. M.F. Powell, T. Ngueyen, L. Baloian. Compendium of Excipients for Parenteral 
Formulations. PDA J. Pharm. Sci. Technol. 52 (1998) 238-311. 

 4. R.G. Strickley. Solubilizing excipients in oral and injectable formulations. 
Pharm. Res. 21 (2004) 201-230. 

 5. P. Li, L. Zhao. Developing early formulations: Practice and perspective. 
Int. J. Pharm. 341 (2007) 1-19. 

 6. A.J. ten Tije, J. Verweij, W.J. Loos, A. Sparreboom. Pharmacological effects of 
formulation vehicles: implications for cancer chemotherapy. 
Clin. Pharmacokinet. 42 (2003) 665-685. 

 7. H. Gelderblom, J. Verweij, K. Nooter, A. Sparreboom. Cremophor EL: the drawbacks 
and advantages of vehicle selection for drug formulation. 
Eur. J. Cancer 37 (2001) 1590-1598. 

 8. R.B. Weiss, R.C. Donehower, P.H. Wiernik, T. Ohnuma, R.J. Gralla, D.L. Trump, J.R. 
Baker, Jr., D.A. Van Echo, D.D. Von Hoff, B. Leyland-Jones. Hypersensitivity 
reactions from taxol. J. Clin. Oncol. 8 (1990) 1263-1268. 

 9. J. Szebeni, F.M. Muggia, C.R. Alving. Complement activation by Cremophor EL as a 
possible contributor to hypersensitivity to paclitaxel: an in vitro study. 
J. Natl. Cancer Inst. 90 (1998) 300-306. 

 10. S.M. Moghimi, A.C. Hunter, C.M. Dadswell, S. Savay, C.R. Alving, J. Szebeni. 
Causative factors behind poloxamer 188 (Pluronic F68, FlocorTM)-induced complement 
activation in human sera: A protective role against poloxamer-mediated complement 
activation by elevated serum lipoprotein levels. 
Biochim. Biophys. Acta Mol. Basis Dis. 1689 (2004) 103-113. 

 11. I. Hamad, A.C. Hunter, J. Szebeni, S.M. Moghimi. Poly(ethylene glycol)s generate 
complement activation products in human serum through increased alternative pathway 
turnover and a MASP-2-dependent process. Mol. Immunol. 46 (2008) 225-232. 

 12. W. Lorenz, H.-J. Reimann, A. Schmal, P. Dormann, B. Schwarz, E. Neugebauer, A. 
Doenicke. Histamine release in dogs by Cremophor El and its derivatives: Oxethylated 
oleic acid is the most effective constituent. Inflamm. Res. 7 (1977) 63-67. 



Novel Excipients: Glyerol-based Dendritic Amphiphiles 

119 

 13. W. Lorenz, A. Schmal, H. Schult, S. Lang, C. Ohmann, D. Weber, B. Kapp, L. Lüben, 
A. Doenicke. Histamine release and hypotensive reactions in dogs by solubilizing 
agents and fatty acids: Analysis of various components in cremophor El and 
development of a compound with reduced toxicity. Inflamm. Res. 12 (1982) 64-80. 

 14. D. Kessel. Properties of Cremophor EL micelles probed by fluorescence. 
Photochem. Photobiol. 56 (1992) 447-451. 

 15. L.S.C. Wan, P.F.S. Lee. CMC of polysorbates. J. Pharm. Sci. 63 (1974) 136-137. 

 16. I.R. Schmolka. A review of block polymer surfactants. 
J. Am. Oil Chem. Soc. 54 (1977) 110-116. 

 17. M.G. Carstens, P.H.J.L.F. de Jong, C.F. van Nostrum, J. Kemmink, R. Verrijk, L.G.J. 
de Leede, D.J.A. Crommelin, W.E. Hennink. The effect of core composition in 
biodegradable oligomeric micelles as taxane formulations. 
Eur. J. Pharm. Biopharm. 68 (2008) 596-606. 

 18. P. Opanasopit, M. Yokoyama, M. Watanabe, K. Kawano, Y. Maitani, T. Okano. Block 
copolymer design for camptothecin incorporation into polymeric micelles for passive 
tumor targeting. Pharm. Res. 21 (2004) 2001-2008. 

 19. O. Molavi, Z. Ma, A. Mahmud, A. Alshamsan, J. Samuel, R. Lai, G.S. Kwon, A. 
Lavasanifar. Polymeric micelles for the solubilization and delivery of STAT3 inhibitor 
cucurbitacins in solid tumors. Int. J. Pharm. 347 (2008) 118-127. 

 20. R. Liu, N. Sadrzadeh, P.P. Constantinides. Micellization and Drug Solubility 
Enhancement. In: R.Liu (Ed.). Water-Insoluble Drug Formulation. Interpharm Press, 
Englewood (2000) 213-354. 

 21. J. Djordjevic, M. Barch, K.E. Uhrich. Polymeric micelles based on amphiphilic 
scorpion-like macromolecules: Novel carriers for water-insoluble drugs. 
Pharm. Res. 22 (2005) 24-32. 

 22. B. Arechabala, C. Coiffard, P. Rivalland, L.J.M. Coiffard, Y. De Roeck-Holtzhauer. 
Comparison of cytotoxicity of various surfactants tested on normal human fibroblast 
cultures using the neutral red test, MTT assay and LDH release. 
J. Appl. Toxicol. 19 (1999) 163-165. 

 23. M. Marinovich, E. Tragni, A. Corsini, C.L. Galli. Quantification of in vitro cytotoxicity 
of surfactants: correlation with their eye irritation potential. 
Cutan. Ocul. Toxicol. 9 (1990) 169-178. 

 24. G. Oros, T. Cserháti, E. Forgás. Use of spectral mapping and stepwise regression 
analysis for the assessment of the relationship between chemical structure and 
biological activity of surfactants. Chemometr. Intell. Lab. Syst. 39 (1997) 95-101. 

 25. H. Kojima, A. Hanamura, A. Sato, H. Konishi. Comparison of cytotoxicity of 
surfactants on a range of mammalian cells cultured under various conditions. 
AATEX 3 (1995) 111-120. 



 

120 

 

 

 

CHAPTER 5 

 

 
SUMMARY AND PERSPECTIVES 

ZUSAMMENFASSUNG UND AUSBLICK 



Chapter 5 

121 

Summary 

The present thesis describes the study of polymeric micelles and novel dendritic amphiphiles 

for the solubilization and parenteral administration of Sagopilone, a novel anticancer drug. 

Suitable colloidal carriers were identified and characterized in terms of solubilization, 

stability, formulation feasibility, and toxicity. 

Chapter 2 describes the systematic study of polymeric micelles using PEG-b-PLA 

(poly(ethylene glycol)-b-poly(lactide)) and PEG-b-PCL (poly(ethylene glycol)-b- 

poly(ε-caprolactone)) block copolymers as drug delivery systems for Sagopilone. It was 

aimed to identify suitable copolymers and to assess the predictive power of solubility 

parameters. Besides the copolymer type, the hydrophobic/hydrophilic-ratio (w/w) of the block 

copolymers and the preparation method were hypothesized to play a decisive role with regard 

to solubilization, stability, and micelle morphology. PEG2000-b-PDLLA2200, 

PEG2000-b-PCL2600, and PEG5000-b-PCL5000, abbreviated as P2LA(1.1), P2CL(1.3), 

and P5CL(1.0), were identified as being most suitable in terms of efficient solubilization 

(≥ 70 %) and stability. The number in parentheses depicts the hydrophobic/hydrophilic-ratio 

indicating its optimum at approximately 1. The corresponding micelles were shown to be 

small (< 100 nm), monodisperse, spherical micelles. Sonication was applied to P2CL(1.3) and 

P5CL(1.0), whereas P2LA(1.1) micelles require preparation by film formation. As a result 

(93 ± 0.4) %, (96 ± 6) %, and (80 ± 12) % of the drug still remained solubilized after 24 h, 

respectively. Contrary to previous reports, calculated solubility parameters were not 

predictive since they showed a reversed order of preference relative to experimental data, and 

the substantial difference in the solubilization capacity of the two stereoisomers of PLA was 

not covered. ‘Supersaturation’ is a preparation-specific phenomenon following film 

formation. Its cause as well as the solubilization of Sagopilone within the block copolymer 

films were elucidated by the evidence of glass solutions that exceeded the solubilization 
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capacity of the corresponding micelles in terms of Sagopilone content. The apparent 

solid-state saturation solubility of Sagopilone in the block copolymer was determined using 

the Couchman-Karasz approach and showed a good correlation with the loading capacity of 

the respective micelles. 

Chapter 3 describes the stability investigations of the resulting polymeric micelles, 

novel formulation approaches, and the toxicity testing in vitro as well as in vivo. 

A drug-polymer-ratio as low as 1:20 (w/w) was sufficient to effectively solubilize Sagopilone 

and to obtain stable dispersions that did not show any supersaturation (24 h: drug 

content ≥ 95 %). Although the micelles exhibited a similar thermodynamic stability 

(CMC: 10-7 – 10-6 M), PEG-b-PCL micelles were kinetically more stable than P2LA(1.1) 

prior to and after further dilution as well as at elevated temperatures. Lyophilization of 

PEG-b-PCL micelles was shown to be feasible in the presence of additional excipients that 

prevent PCL crystallization. Sagopilone-loaded polymeric films of P2LA(1.1) have been 

shown to be stable and easily redispersible for at least 3 months (3 months, 6 °C: drug content 

of (95.6 ± 1.4) %). This was demonstrated for the first time and the storage temperature was 

identified as the key parameter. In vitro, Sagopilone-loaded polymeric micelles were 

equipotent to Sagopilone cyclodextrin-based reference solutions using a cervix carcinoma 

cell line. In vivo, no carrier-associated side effects were observed, and the maximum tolerated 

dose (MTD) of micellar Sagopilone was determined to be 6 mg/kg using nude mice. 

However, the latter was decreased compared to a cyclodextrin-based formulation of 

Sagopilone (MTD = 10 mg/kg) possibly due to a hampered drug degradation by serum 

esterases resulting in an enhanced effective dose. Overall, these results highlight that 

polymeric micelles, especially PEG-b-PCL micelles, fulfil key requirements for their use in 

parenteral formulations. In particular, they offer an excellent potential for further preclinical 

and clinical cancer studies using Sagopilone. 
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Chapter 4 describes structure-response relationship investigations of novel dendritic 

glycerol-based amphiphiles in terms of Sagopilone solubilization, micelle stability, 

and cytotoxicity. These amphiphiles are composed of a hydrophilic headgroup composed of 

dendritic polyglycerol (2nd generation, PG[G2]) coupled to an alkyl chain (C18) and various 

hydrophobic modifications. They showed superior solubilization capacities of Sagopilone 

compared to standard excipients used in parenteral formulations. Looking at their different 

core structures, the best solubilization was achieved with a diaromatic spacer group 

(PG[G2]-DiAr-C18). This indicates that the hydrophobic-hydrophilic interface of the micelles 

is the main locus of drug solubilization. The definite chemical composition as well as the 

convenient analysis of these amphiphiles using HPLC-UV without any pre-treatment marks a 

further advantage of these solubilizers. They showed an excellent formulation stability profile 

both undiluted and after dilution independent of their core structure, which is another 

important requirement for novel solubilizers. Cytotoxicity testing in primary endothelial cells 

revealed the least toxicity in the presence of a naphthyl end group with values comparable 

to Cremophor® EL and polysorbate 80. Overall, these results highlight the potential offered 

by these novel dendritic amphiphiles. 

 
Perspectives 

Besides their excellent solubilization behaviour and safety, as shown in this work, polymeric 

micelles offer the potential for an improved drug therapy, especially in the treatment 

of cancer. Concerning stability issues the preparation of “mixed polymeric micelles” may 

provide a straightforward method for stability enhancement. Previous investigations revealed 

ambiguous results regarding the in vivo behaviour of PEG-b-Polyester, in particular 

the absence or presence of an EPR-effect. Thus, appropriate studies are needed with special 

emphasis on a comparison of different drugs, polymers, and tumour models. The toxicity 

evaluation presented here gives valuable information, especially compared to the 
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cyclodextrin-based formulation. Since previous studies primarily addressed the replacement 

of toxic solubilizers such as Cremophor® EL, the comparison with other solubilizers such as 

cyclodextrins in terms of the in vivo performance would be the next development step. 

This would in particular be necessary to further exploit the whole potential of these 

solubilizers, to assess their rank among currently used excipients, and to promote their 

entrance into standard formulation development. Hopefully, it will lead to an increased 

number of solubilizers available for parenteral formulation development with better 

tolerability properties such as Cremophor® EL, and that development in the area of polymeric 

micelles will make a significant contribution towards safer drug therapy. 

In contrast to the block copolymers, the dendritic amphiphiles studied are farther from clinical 

application. Nevertheless, the results obtained point to their utility as solubilizing agents 

fulfilling the physicochemical aspects for developing stable parenteral formulations. 

Furthermore, these results are particularly valuable for an optimization of a lead structure 

concerning additional physiological aspects such as histamine release. 

Generally, a high demand for alternative formulation vehicles exists both in the preclinical 

and clinical situation, and the polymeric micelles as well as the dendritic amphiphiles 

described herein present promising approaches towards its satisfaction. 



Chapter 5 

125 

Zusammenfassung 

Die vorliegende Dissertation beschreibt die Entwicklung neuer parenteraler Formulierungen 

für Sagopilon, einem neuen Wirkstoff für die Krebstherapie, basierend auf Polymermizellen 

sowie neuartigen dendritischen Amphiphilen. Geeignete kolloidale Trägersysteme wurden 

identifiziert und hinsichtlich ihres Solubilisationsvermögens, der Machbarkeit verschiedener 

Formulierungsansätze und ihrer Verträglichkeit bzw. Toxizität charakterisiert. 

Kapitel 2 beschreibt die systematische Untersuchung von Polymermizellen bestehend aus 

PEG-b-PLA (Polyethylenglykol-b-Polylaktid) und PEG-b-PCL (Polyethylenglykol-b-

Polycaprolakton) Block-Copolymeren als Wirkstoffträgersysteme für Sagopilon. Ziel dieser 

Studie war es, geeignete Copolymere zu identifizieren und die Vorhersagekraft von 

Löslichkeitsparametern zu bewerten. Es wurde vermutet, dass neben der Natur der einzelnen 

Polymerblöcke auch der Quotient „hydrophob/hydrophil“ des Block-Copolymers und die 

Herstellmethode entscheidenden Einfluss auf die Löslichkeitsverbesserung, die Stabilität der 

Formulierungen und die Mizellmorphologie ausüben. PEG2000-b-PDLLA2200, 

PEG2000-b-PCL2600 und PEG5000-b-PCL5000, abgekürzt als P2LA(1.1), P2CL(1.3) und 

P5CL(1.0), wurden als bestgeeignete Polymere hinsichtlich einer effizienten 

Wirkstoffsolubilisation (≥ 70 %) und Formulierungsstabilität identifiziert. Der in Klammern 

angegebene Wert beschreibt den Quotient „hydrophob/hydrophil“ des jeweiligen Block-

Copolymers und zeigt, dass dessen Optimum um den Wert 1 liegt. Die resultierenden 

kolloidalen Strukturen waren nachweislich kleine (< 100 nm) Kugelmizellen mit 

monomodaler Größenverteilung. Zur Mizellbildung konnte für die Blockcopolymere 

P2CL(1.3) und P5CL(1.0) eine Dispergierung mittels Ultraschall angewendet werden, 

während P2LA(1.1) eine Herstellung mittels Filmbildungsmethode erforderte. 

Dementsprechend lagen nach 24-stündiger Lagerung der Dispersionen noch (93 ± 0.4) %, 

(96 ± 6) % und (80 ± 12) % des Wirkstoffs in solubilisierter Form vor. Entgegen vorheriger 
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Berichte waren die berechneten Löslichkeitsparamter nicht prädiktiv, da sie eine 

gegensätzliche Präferenz zu den experimentell gewonnenen Daten aufwiesen. Außerdem 

wurde der beobachtete substanzielle Unterschied im Solubilisationsvermögen der beiden 

Stereoisomere des Polylaktids nicht abgedeckt. „Übersättigung“ der Mizellen ist ein 

herstellspezifisches Phänomen, welches nach Anwendung der Filmmethode beobachtet 

wurde. Die Ursache sowie die Löslichkeit von Sagopilon innerhalb der gebildeten Filme 

konnte durch den Nachweis der Bildung von Glaslösungen aufgeklärt werden, welche einen 

die Beladungskapazität der entsprechenden Mizellen überschreitenden Sagopilongehalt 

aufwiesen. Die Sättigungslöslichkeit des Sagopilons im Polymerfilm wurde unter 

Verwendung der Formel nach Couchman-Karasz bestimmt und wies eine gute Korrelation 

mit der korrespondierenden Mizellbeladungskapazität auf. 

Kapitel 3 beschreibt Stabilitätsuntersuchungen und verschiedene Formulierungsansätze für 

die aus der vorangegangenen Studie resultierenden Polymermizellen sowie deren 

Verträglichkeitstestung in vitro als auch in vivo. Ein Wirkstoff-Polymer-Verhältnis von 1:20 

war ausreichend, um stabile Formulierungen zu erhalten, welche Sagopilon effektiv 

solubilisieren und keine Übersättigung aufweisen (Wirkstoffgehalt nach 24 h: ≥ 95 %). Im 

Gegensatz zu der vergleichbaren thermodynamischen Mizellstabilität (CMC: 10-7 – 10-6 M) 

unterschieden sich die untersuchten Mizellen deutlich in ihrer kinetischen Stabilität. Dabei 

waren die PEG-b-PCL Mizellen sowohl unverdünnt als auch nach Verdünnung und bei 

erhöhten Temperaturen deutlich stabiler. Die Herstellung redispergierbarer Lyophilisate von 

PEG-b-PCL Mizellen war in Anwesenheit zusätzlicher, kristallisationsverhindernder 

Hilfsstoffe machbar. Ein neuer Formulierungsansatz für PEG-b-PLA Mizellen bestehend aus 

Sagopilon-beladenen Polymerfilmen zur späteren Dispergierung wies eine Mindesthaltbarkeit 

von 3 Monaten hinsichtlich Stabilität und Redispergierbarkeit auf (Wirkstoffgehalt nach 

3 Monaten bei 6 °C: (95.6 ± 1.4) %). Die Machbarkeit einer solchen Formulierung sowie der 

Nachweis der Temperatur als wichtigster stabilititätsbestimmender Faktor konnten zum ersten 
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Mal gezeigt werden. Unabhängig des verwendeten Polymers waren die Sagopilon-haltigen 

Polymermizellen gleichermaßen wirksam gegenüber Zevixkarzinomzellen wie die 

Cyclodextrin- und Ethanol-haltige Referenzlösung. In vivo wurde eine sehr gute 

Verträglichkeit der unbeladenen Trägersysteme beobachtet und eine maximal tolerierbare 

Sagopilon-Dosis von 6 mg/kg bestimmt. Dieser Wert ist erniedrigt gegenüber einer 

Cyclodextrin-haltigen Sagopilonformulierung (10 mg/kg) und möglicherweise auf einen 

verlangsamten Wirkstoffabbau im Serum und somit einer höheren effektiven Dosis 

zurückzuführen. In ihrer Gesamtheit machen diese Ergebnisse deutlich, dass 

Polymermizellen, insbesondere auf Basis von PEG-b-PCL, wichtige Bedingungen zur 

Herstellung und Anwendung parenteraler Formulierungen erfüllen. Außerdem weisen sie ein 

exzellentes Potenzial für die weitergehende präklinische als auch klinische Testung von 

Sagopilon in verschiedenen Tumormodellen auf. 

Kapitel 4 beschreibt Untersuchungen zur Struktur-Wirkungs-Beziehung neuartiger 

Glycerol-basierter Amphiphile hinsichtlich des Solubilisationsvermögens für Sagopilon, 

der Stabilität entsprechender Formulierungen und deren Zytotoxizität. Die untersuchten 

Amphiphile bestehen aus einer hydrophilen Kopfgruppe aus dendritischem Polyglycerol 

(2. Generation, PG[G2]) gekoppelt an einen C18-Alkylrest und verschiedenen hydrophoben 

Modifikationen. Sie wiesen deutlich höhere Solubilisationskapazitäten verglichen mit 

parenteralen Standardhilfsstoffen auf. Die größte Löslichkeitsverbesserung wurde in 

Anwesenheit einer diaromatischen Struktur an der Schnittstelle zwischen hydrophober 

Schwanz- und hydrophiler Kopfgruppe erzielt und macht die bevorzugte 

Wirkstofflokalisation an der Grenzfläche zwischen Mizellkern und –hülle deutlich. 

Die definierte Zusammensetzung sowie die einfache und bequeme HPLC-UV Analytik ohne 

jegliche Probenvorbehandlung markieren weitere Vorteile dieser neuen Hilfsstoffe. 

Unabhängig von der vorliegenden Kernstruktur wiesen alle Formulierungen ein 

ausgezeichnetes Stabilitätsprofil auf und erfüllen somit weitere wichtige Voraussetzungen für 
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neue Hilfsstoffe. Die geringste Toxizität gegenüber primären Endothelzellen zeigte die 

Struktur, welche eine Naphthylendgruppe enthielt, mit vergleichbaren Werten wie 

Cremophor® EL und Polysorbate 80. Somit weisen diese neuartigen Amphiphile ein großes 

Potenzial hinsichtlich der Solubilisation und Formulierung schwerlöslicher Wirkstoffe auf. 

 

Ausblick 

Neben ihres ausgezeichneten Solubilisationsvermögens und ihrer guten Verträglichkeit, wie 

in der vorliegenden Arbeit gezeigt, besitzen Polymermizellen das Potenzial zur Verbesserung 

der Arzneitherapie, insbesonders in der Krebstherapie. Bezüglich der notwendigen 

Mizellstabilität könnte die Herstellung von „Mischpolymermizellen“ einen unkomplizierten 

Ansatz zur Stabilitätsverbesserung bieten. Frühere Studien, welche das in vivo Verhalten von 

PEG-b-Polyestern untersuchen, kommen nicht zu einem eindeutigen Resultat, insbesondere 

im Hinblick auf die Ab- oder Anwesenheit eines EPR-Effekts. Demzufolge bedarf es hier 

geeigneter Studien, welche ihren Schwerpunkt auf den Vergleich verschiedener Wirkstoffe, 

Polymere und Tumormodelle legen. Die vorliegenden Ergebnisse der Toxizitätstestung 

enthalten wertvolle Informationen, besonders im Vergleich zu der Cyclodextrin-haltigen 

Formulierung. Während vorangegangene Studien primär auf den Ersatz potentiell toxischer 

Solubilisatoren wie Cremophor® EL ausgelegt waren, stellt der Vergleich hinsichtlich des 

in vivo Verhaltens mit anderen parenteralen Hilfsstoffen, beispielsweise den Cyclodextrinen, 

den nächsten Entwicklungsschritt dar. Dieser Schritt ist wichtig, um das gesamte Potenzial 

dieser Block-Copolymere auszuschöpfen, ihre Stellung innerhalb der derzeit zugelassenen 

Hilfsstoffe zu bewerten und somit ihren Eintritt in die Standardformulierungsentwicklung zu 

fördern. Im Ergebnis wird dies hoffentlich dazu führen, dass in Zukunft eine größere Auswahl 

parenteral anwendbarer Solubilisatoren zur Verfügung steht, welche eine besseres 

Verträglichkeitsprofil aufweisen als beispielsweise Cremophor® EL. Außerdem ist zu 
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erwarten, dass die Weiterentwicklung auf dem Gebiet der Polymermizellen einen 

bedeutenden Beitrag zu einer sichereren Arzneitherapie leisten wird. 

Im Gegensatz zu den getesteten Block-Copolymeren sind die untersuchten dendritischen 

Amphiphile weiter von einer klinischen Anwendung entfernt. Die erhaltenen Ergebnisse 

zeigen deutlich deren Nutzen als Solubilisatoren, welche die physikochemischen Aspekte für 

die Entwicklung stabiler parenteraler Formulierungen erfüllen. Außerdem enthalten Sie 

nützliche Informationen für die weitergehende Optimierung einer Leitstruktur, welche 

zusätzliche physiologische Aspekte wie Histaminausschüttung einbeziehen sollte. 

Kurz zusammengefasst: Sowohl die hier beschriebenen Polymermizellen als auch die 

dendritischen Amphiphile stellen viel versprechende Ansätze dar alternative 

Formulierungsvehikel für die präklinische und klinische Forschung zur Verfügung zu stellen. 
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ABBREVIATIONS 

1H NMR 1H nuclear magnetic resonance spectroscopy 

abbr. Abbreviated 

API Active pharmaceutical ingredient 

AUC Area under plasma concentration-time curve 

CARPA Complement activation related pseudo-allergy 

CD Cyclodextrin 

CELP Cremophor® ELP 

CMC Critical micelle concentration 

conc. Concentration 

Corp. Corporation 

cryoTEM Cryogenic transmission electron microscopy 

DFCore Degree of core functionalization 

dH Hydrodynamic diameter 

DLS Dynamic light scattering 

DMAc N,N-dimethylacetamide 

DSC Differential scanning calorimetry 

EMEA European Medicines Agency 

EPR-effect Enhanced permeation and retention effect 

F68 Pluronic® F68 

FDA Food and Drug Administration 

Fig. Figure 

GRAS Generally regarded as safe 

HPLC High performance liquid chromatography 

UV Ultraviolett 

HPβCD Hydroxypropyl-β-cyclodextrin 

HSR Hypersensitivity reactions 

HTS High throughput screening 

HUVEC Human umbilical vein endothelial cells 

i.v. Intravenous 

IC50 Inhibitory concentration 

Inc. Incorporation 

KOH Kalium hydroxide 
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MDR multi-drug resistance 

MPS mononuclear phagocytic system 

MTD maximum tolerated dose 

OECD Organization for Economic Co-operation and Development 

PAMAM Poly(amido amine) 

PDI Polydispersity index 

PDLLA Poly(D,L-lactide) 

PEG Poly(ethylene glycol) 

PEG-b-PCL Poly(ethylene glycol)-b-poly(ε-caprolactone) 

PEG-b-PGA Poly(ethylene glycol)-b-poly(glycolide) 

PEG-b-PLA Poly(ethylene glycol)-b-poly(lactide) 

PEI Poly(ethylene imine) 

PEO Poly(ethylene oxide) 

PG Polyglycerol 

Ph. Eur. European Pharmacopoeia 

PK Pharmacokinetic 

PLA Poly(lactide) 

PLLA Poly(L-lactide) 

PPO Poly(propylene oxide) 

PS80 Polysorbate 80 

PVP Poly(N-vinyl-pyrrolidone) 

RP-HPLC Reversed-phase HPLC 

SBEβCD Sulfobutylether-β-cyclodextrin 

SE Solubilization efficiency 

SEC Size exclusion chromatography 

syn. Synonym 

t1/2 Plasma half life 

Tab. Table 
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