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When you suffer an attack of nerves you're being attacked by the nervous system. 

What chance has a man got against a system?  

 

 ~Russell Hoban 
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Introduction 

 

Fear and anxiety from genes to behavior – a dynamic multilevel perspective 

From the perspective of a genome, danger is something bad. Danger means that the 

probability of primary or secondary needs of an organism being violated is larger than zero 

(and smaller than one). Eventually, such violations may have negative consequences for the 

survival and/or reproduction of an organism and its genes. To reduce danger, evolution may 

have equipped us with fear and anxiety, which are considered two general strategies in the 

present work. It is assumed that while fear has evolved to get us out of dangerous situations, 

for example by making us fight, flee or freeze (reactive danger reduction), anxiety helps us to 

not even get into a dangerous situation in the first place or at least reduce danger of an upco-

ming situation (proactive danger reduction). To be able to implement these strategies, fear and 

anxiety have access to a rich array of “tools”. For example, they can facilitate shifting our 

attention to potential signs of threat (Eysenck, 1992; E. M. Mueller et al., 2008), increase our 

awareness for errors (Hajcak, McDonald, & Simons, 2003a; Pailing & Segalowitz, 2004), 

potentiate our reflexes (M. Davis, 2001; E. M. Mueller, Hofmann, & Cherry, 2010), influence 

our peripheral nervous system (Stemmler, 2004; Wager, van Ast et al., 2009), make us menta-

lize about potential negative futures (i.e. worry; Borkovec, 2002; Borkovec, Robinson, Pru-

zinsky, & DePree, 1983) and affect how we make decisions (E. M. Mueller, Nguyen, Ray, & 

Borkovec, 2010). Most importantly, fear and anxiety are associated with an aversive expe-

rience, which biases us to behave in a way that reduces fear and anxiety (Mowrer, 1947). 

From the perspective of a genome then, it would make sense to establish a selection of 

genes that provide their carrier with those toolboxes associated with fear and anxiety. For a 

genome however, wrapped up and packed into hundred billions of cell nuclei, it must be in-

credibly difficult to influence the complex physiology, cognition and experience of an organ-



2 
 

 

ism about a million times larger. How can that be achieved? In the present work this question 

is addressed from a multilevel perspective inspired from cognitive neuroscience (Churchland 

& Sejnowski, 1988), where ”level” stands for levels of organization within the central nerv-

ous system. Due to gene expression (Molecules Level), neurotransmitters and receptors are 

built and transported to the synapse (Synapses Level) and thus affect the neurons they connect 

(Neurons Level). The interconnection of neurons leads to complex networks (Networks 

Level), which are in turn organized into increasingly higher levels of organization such as 

anatomical structures (Structures Level), systems of interconnected structures (Systems 

Level), and the central and peripheral nervous systems (CNS/PNS Level), which eventually 

compose a human being with feelings of fear or anxiety, physiological symptoms such as in-

creased heart rate and complex behaviors that serve to reduce present or future threats. This 

path is not unidirectional – in fact, behavior influences activity at anatomical structures and 

networks, influences synapse formation, and even indirectly influences the expression of 

genes (Philibert et al., 2010).  

Another important aspect of the herein presented view on fear and anxiety is that the 

abovementioned toolbox for fear and anxiety are considered dynamic. Which tools are used in 

a given instance of fear or anxiety (e.g., increased worrying vs. increased error monitoring), 

depends not only on genetic contributions, but also on factors such as individual learning ex-

periences (e.g., whether worrying has helped before, or whether errors have led to dangerous 

situations before), situational demands (e.g., if anticipated danger will lead to subsequent 

problems that must be solved, and whether the individual is performing at the moment), as 

well as their interactions. Both learning experiences and situational characteristics are also 

represented across levels of neuroscience, and thereby modulate fear and anxiety in complex 

ways.  

There is good support for attempts to discriminate fear and anxiety at multiple levels 

of neuroscience. For example, substances that modulate fear (i.e., panicolytics) are different 



3 
 

 

from those that modulate anxiety (i.e. anxiolytics: R. J. Blanchard, Griebel, Henrie, & 

Blanchard, 1997; A. M. Perkins et al., 2009).  Also, brain circuits that are related to fear proc-

essing (e.g. amygdala: LeDoux, 2007) only partially overlap with brain circuits implicated in 

anxiety (e.g. bed nucleus of the stria terminalis, hippocampus: M. Davis, 2006; Gray & 

McNaughton, 2000). In addition, trait anxiety is largely uncorrelated (Depue & Lenzenweger, 

2005, see also table 1 derived from Study 2 data), or moderately correlated (A. M. Perkins, 

Kemp, & Corr, 2007), with trait fearfulness.  

A predominant view on the difference between fear and anxiety is that fear is related 

to explicit stimuli whereas anxiety pertains to more diffuse situations with no specific threat 

stimuli (M. Davis, 2006). In contrast, the present view proposes that fear and anxiety should 

be distinguished with regard to their future orientation – with fear being considered present-

oriented, and anxiety future-oriented. This view is not orthogonal to the former given that 

processing of the present is much more closely tied to bottom-up processing of explicit stim-

uli, while future-related thinking is more diffuse and includes less specific details (Schacter & 

Addis, 2007). Note that the proposed link of anxiety and future-oriented processing provides 

an interesting explanation for the puzzling findings that (a) the main common target for a va-

riety of anxiolytics appears to be the hippocampus (Gray & McNaughton, 2000), which is 

usually thought of as a mainly memory-relevant structure, and that (b) most anxiolytics affect 

memory (Gray & McNaughton, 2000). There is now converging evidence that memory – and 

thus the hippocampus and related structures – are of particular relevance for future-oriented 

thinking (Addis, Wong, & Schacter, 2007). For the sake of completeness it should also be 

noted that the present vs. future distinction can also be applied to positive emotions, thereby 

enabling a distinction between liking (present-oriented) and wanting (future-oriented), which 

are also associated with distinct neurobiological correlates (Depue & Lenzenweger, 2005). 
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 BIS PSWQ NEO NA “Wor/Anx” “Fear” 

SS -.07 -.04 -.01 -.04 -.83 

HA .10 .06 .04 .06 .73 

“Wor/Anx” .82 .85 .71  .11 

“Fear” .08 .02 -.02 .11  

 

Table 1: Correlations (unpublished) between personality measures linked to fearfulness (SS, 
HA), worrying (PSWQ), and anxiety (BIS, NEO NA), with worry/anxiety (“Wor/Anx”) and 
fearfulness (“Fear”) factors derived thereof (taken from n=200 participants described in Study 
2). BIS: Behavioral Inhibition Scale (BIS/BAS scales; Carver & White, 1994), PSWQ: Penn 
State Worry Questionnaire (Meyer, Miller, Metzger, & Borkovec, 1990), NEO NA: Neuroti-
cism Anxiety Scale (NEO Personality Inventory - Revised; Costa & McCrae, 1992), SS: Sen-
sation Seeking Scale (Zuckerman-Kuhlman Personality Questionnaire; Zuckerman, 2002), 
HA: Harm Avoidance Scale (Multidimensional Personality Questionnaire; Tellegen & 
Waller, 2008). 
 

Taken together, the concepts of fear and anxiety in the present work can be defined as fol-

lows: 

Anxiety and fear are multilevel responses to the organisms’ challenge of reducing dan-

ger. They include complex and dynamic patterns of intra- and interlevel interactions that 

are orchestrated to adequately respond to anticipated and present situational demands. 

While the function of anxiety is to reduce danger in the future (“don’t get yourself into 

trouble!”), the function of fear is to reduce danger in the moment (“get yourself out of 

trouble!”). 

 

It should be noted that this concept of anxiety is in contrast to some prevailing ac-

counts. For example, Gray and McNaughton (2000) define anxiety as “the common actions of 

all clinically well-established anxiolytic drugs” (p. 4). Despite some circularity inherent in 

that approach (i.e., what constitutes an anxiolytic in the first place?), the concept of an anx-

iolytic is not compatible with a dynamic multilevel definition of anxiety because it implies a 
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direct and stable association between the molecular (i.e., substance) and the whole-system 

level, and thereby neglects or even negates any dynamics at intermediate levels. As another 

difference, Gray and McNaughton assume that anxiety is always the result of a conflict be-

tween incompatible goals (e.g. approach and avoidance tendencies). In contrast, the present 

framework suggests that avoidance tendencies are secondary to anxiety and its primary goal 

of proactively reducing danger. Avoidance tendencies are therefore seen as another tool that 

may become particularly relevant whenever situational or motivational characteristics in-

crease the likelihood of an approach-related behavior that is associated with some risk. In 

such cases, avoidance tendencies and behavioral inihibition may decrease the likelihood of 

risky behavior and thereby reduce future danger. As a result, in cases where approach tenden-

cies (driven by other motivational systems) persist, anxiety could thus contribute to (rather 

than result from) approach-avoidance conflicts. Similarly, this functional perspective provides 

an explanation for why anxiety is often associated with negative affect and depression: nega-

tive affect is a tool, which reduces future danger by tapering approach-motivated behavior 

(Izard & Ackerman, 2000). 

The present concept of anxiety also diverges from M.W. Eysencks’ (1992) account 

that “the primary function of anxiety is to facilitate the detection of danger or threat in poten-

tially threatening environments” (p.11). In the present view, the primary function of anxiety is 

not the detection, but the reduction of danger. Although the detection of danger is an elemen-

tary tool to prevent future or present danger, this tool by itself is without evolutionary purpose 

if there are no dynamic modulations at multiple levels that ultimately lead to adaptive behav-

ior, physiology, and cognition with regard to previously detected threats. 

Others have stated that the main purpose of anxiety is to reduce uncertainty (Depue & 

Lenzenweger, 2005). Again, from the present perspective it would be argued that the reduc-

tion of uncertainty can be an important tool for anxiety – whenever knowledge about the na-

ture of the threat helps to reduce danger in the future. However, there may be instances when 



6 
 

 

reductions of uncertainty do not resolve anxiety or may even increase anxiety. Hypervigi-

lance-avoidance patterns of attentional biases, for example, suggest that threat-related infor-

mation intake often is voluntarily avoided in anxious individuals following initial threat detec-

tion (E. M. Mueller et al., 2008). 

Taken together, the proposed functional definition of anxiety can integrate the con-

cepts of behavioral inhibition (Gray & McNaughton, 2000), threat detection (Eysenck, 1992), 

and uncertainty reduction (Depue & Lenzenweger, 2005), and can explain why they are often 

related to anxiety. It further explains why physiological changes, worrying, error monitoring, 

depression and other phenomena are related to anxiety –  because they may have shown 

phylo-, anthropo- and ontogenetic relevance for the reduction of danger. Importantly, the dy-

namic multilevel approach states that tools can be used flexibly in order to serve the function 

of reducing danger in the future. As a major strength, it can thereby explain the otherwise 

puzzling finding that situational characteristics appear to influence, for example, whether 

anxiety leads to behavioral inhibition (Gray & McNaughton, 2000) vs. activation (Sidman, 

1953), hypervigilance (MacLeod, Mathews, & Tata, 1986) vs. attentional avoidance (Y. P. 

Chen, Ehlers, Clark, & Mansell, 2002), and increased vs. unaffected error monitoring (Olvet 

& Hajcak, 2009).  

 

Fear and Anxiety across humans and species 

Humans differ with regard to how often, how strong, and in which situations they ex-

perience fear and anxiety. Valid and reliable questionnaires have been developed that measure 

interindividual differences in trait anxiety and fearfulness (Depue & Lenzenweger, 2005). The 

construct trait anxiety is closely related to what is also known as behavioral inhibition sensu 

Gray (Gray & McNaughton, 2000), neuroticism (Matthews & Gilliland, 1999), and negative 

affect (Brown, Chorpita, & Barlow, 1998; Campbell-Sills, Liverant, & Brown, 2004; D. Wat-

son, Clark, & Tellegen, 1988), while fearfulness is more closely linked to some harm avoid-
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ance measures (e.g. the harm avoidance scale of the  Multidimensional Personality Question-

naire; Tellegen & Waller, 2008) and low sensation seeking (Depue & Lenzenweger, 2005). It 

has been demonstrated that measures of trait anxiety have high heritability estimates 

(Lichtenstein & Annas, 2000; M. B. Stein, Jang, & Livesley, 1999) and some genes have al-

ready been identified that may explain a small proportion of variance in questionnaire meas-

ures (Lesch et al., 1996; Wacker, Reuter, Hennig, & Stemmler, 2005), but also in measures 

reflecting lower neuroscience levels such as brain activity in anxiety related structures (e.g. 

Hariri et al., 2002). Derived from the above multilevel approach it can be assumed that inter-

individual differences in anxiety should be manifest at different levels of neuroscience. As a 

consequence, the study of interindividual differences may provide valuable insights with re-

gard to the neurobiology of anxiety. For example, the finding that trait anxiety and fearfulness 

are not identical (A. M. Perkins et al., 2009) suggests that fear and anxiety may be related to 

distinct processes at different neuroscience levels. In fact, fear and anxiety have been linked 

to different anatomical structures and are reduced by different types of drugs (see above). 

Despite being essential for survival, fearfulness and anxiety may have dramatic conse-

quences for an individual if they are exaggerated. Almost 30 % of the population suffers at 

least once in their lifetime from a severe anxiety disorder such as Generalized Anxiety Disor-

der, Social Anxiety Disorder, Panic Disorder, Post Traumatic Stress Disorder, or Obsessive 

Compulsive Disorder, all of which dramatically decrease life-quality (Kessler, Berglund et al., 

2005). Although these conditions are associated with elevated levels of trait anxiety, addi-

tional factors such as maladaptive behavior that aims at avoiding the emergence of anxiety 

and impairments in emotion regulation may be critical for the development of an anxiety dis-

order (Brown et al., 1998). Understanding anxiety from a multilevel perspective may be of 

particular value for the treatment of anxiety disorders. For example, pharmacological treat-

ments (focussing on the neurotransmitter level) and psychotherapy (focussing on the cogni-

tive and behavioral level) alone have moderate efficiency for treating anxiety disorders 
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(Hofmann & Smits, 2008). However, novel translational approaches (Hofmann, 2007), for 

example administering D-Cycloserine – a pharmaceutical presumably supporting synaptic 

learning processes – prior to exposure therapy, have been shown to boost effect sizes dramati-

cally (Hofmann et al., 2006). On the other hand, research on anxiety disorders may also in-

form general models of anxiety. For example, the finding that selective serotonin reuptake 

inhibitors (SSRIs) not only improve depression but also anxiety disorders (Zohar & Westen-

berg, 2000) suggests that serotonergic neurotransmission plays an important role in fear 

and/or anxiety (Hariri et al., 2002; Lesch et al., 1996; E. M. Mueller, Stemmler, Hennig, & 

Wacker, submitted abstract). 

Given the evolutionary advantage of mechanisms that reduce present and future dan-

ger, defensive behavioral systems can be observed across vertebrates (D. C. Blanchard, Grie-

bel, & Blanchard, 2001), although the precise content of the “toolboxes” likely varies: worry-

ing would not be expected in rats, ultrasonic vocalization (Wohr, Borta, & Schwarting, 2005) 

would not be expected in man. However, there are many fear and anxiety-related phenomena 

that can be observed across species (D. C. Blanchard et al., 2001), such as fear-potentiated 

startle, which can be found in rats (M. Davis, 2006), mice (E. M. Mueller, Hofmann et al., 

2010), rhesus monkeys (Winslow, Parr, & Davis, 2002) and humans (Grillon, Ameli, Woods, 

Merikangas, & Davis, 1991). Thus, the study of animals – mostly rodents – has proven in-

valuable for understanding the neuropsychology of human fear and anxiety (D. C. Blanchard 

et al., 2001; M. Davis, 2006; Fendt & Fanselow, 1999; Gray & McNaughton, 2000; LeDoux, 

2007; Mowrer, 1947). 

 

The present thesis 

The present thesis on fear and anxiety is composed of four empirical studies. Partici-

pants of Studies 1 and 2 were healthy humans with varying levels of trait anxiety, Study 3 

tested individuals with Generalized Anxiety disorder, and Study 4 was conducted with fear-
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conditioned mice. All studies investigated fear- and anxiety-related tools, including cortically 

driven modulation of heart rate (Study 1), error monitoring (Study 2), decision-making (Study 

3), and fear-induced potentiation of reflexes (Study 4). The manipulated, or quasi-

manipulated, levels of neuroscience included the cell level (Study 4), the synapse level (Study 

2), the network level (Study 2), the structure level (Study 1), and the whole-system level 

(Study 3). Modulations where observed at the peripheral nervous system level (Study 1), 

structure level (Study 2), and whole-system/behavioral level (Study 3 and 4). 

The goal of this work was not to map a complete path from the molecule to the expe-

riential, behavioral, and cognitive manifestation of anxiety, but rather to find relevant connec-

tions between different levels of neuroscience. In an attempt to bring together (biological) 

neuroscience and (psychological) cognitive science into an integrative cognitive neuroscience, 

Churchland and Sejnowski (1988) have suggested that “the ultimate goal of a unified account 

does not require that it be a single model that spans all the levels of organization. Instead the 

integration will probably consist of a chain of models linking adjacent levels” (p. 242). 

Obviously, we are still far away from such a unified account with regard to anxiety. 

The multilevel perspective taken in the present work should therefore not be considered a 

complex model or complete chain of models that are to be tested. Instead the multilevel per-

spective should be considered a framework that integrates a rich variety of studies that have 

been conducted on fear and anxiety by others and myself. The following summary of the four 

studies presented herein may illustrate this variety. 

In short, the first study (E. M. Mueller, Stemmler, & Wacker, 2010a) investigated the 

association of brain and heart activity using a novel method that was based on intraindividual 

linear correlations between stimulus-locked single-trial EEG and heart period. It was shown 

that EEG amplitude 300 ms following a performance-feedback stimulus predicted subsequent 

changes in heart period. Moreover, the level of trait anxiety moderated this prediction such 
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that more anxious individuals showed heightened neurovisceral (i.e., brain-heart) connec-

tivity.  

Using Independent Component Analysis (ICA) on electroencephalographic data 

(Makeig, Bell, Jung, & Sejnowski, 1996), the second study (Mueller, Makeig, Stemmler, 

Hennig, Wacker, submitted) investigated how dopamine-related polymorphisms influence the 

processing of errors in anterior midcingulate cortex (AMC), and whether a dopamine-

antagonist (sulpiride) would further modulate such effects. This was based on previous find-

ings that linked error processing to dopamine (Holroyd & Coles, 2002) and anxiety (Gehring, 

Himle, & Nisenson, 2000). Although there was no direct relationship between error process-

ing and trait anxiety in that study, we found that the COMT Val158Met polymorphism, asso-

ciated with prefrontal cortex dopamine availability predicted electrophysiological and behav-

ioral correlates of error processing, and that sulpiride reversed the effect associated with 

COMT Val158Met.  

The third study (E. M. Mueller, Nguyen et al., 2010) looked at future-oriented deci-

sion-making in Generalized Anxiety Disorder (GAD). Consistent with the conceptualization 

of anxiety as a strategy to avoid future danger we expected that GAD-participants would 

make more future-oriented decisions in the Iowa Gambling Task (IGT), which has previously 

been used to measure the absence of future-oriented decision-making in patients with brain 

damage. In line with our expectations we found that GAD participants made more future-

oriented decisions than non-anxious control participants across two different versions of the 

IGT, thereby providing evidence for the proposed link between future-orientation and anxiety.  

Study four (E. M. Mueller, Hofmann et al., 2010) examined a part of an intracellular 

signaling cascade that is involved in the acquisition and extinction of fear and anxiety. Extinc-

tion learning involves the second messenger cyclic adenosine monophosphate (cAMP), which 

by modulating intracellular processes ultimately affects protein expression required for long-

term potentiation. Importantly, cAMP is broken down by cAMP specific phosphodiesterase 4 
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(PDE4). In Study 4 (Mueller, Hofmann, Cherry, 2010) we hypothesized that by delivering 

rolipram, a selective PDE4-inhibitor (Randt, Judge, Bonnet, & Quartermain, 1982), cAMP 

levels would be elevated and thus extinction learning could be enhanced. This hypothesis was 

particularly tempting because rolipram was previously shown to boost memory formation 

(Barad, Bourtchouladze, Winder, Golan, & Kandel, 1998), and because prior studies have 

succesfully ameliorated extinction learning with substances involving other signalling path-

ways (Walker, Ressler, Lu, & Davis, 2002). However, in a series of five experiments con-

ducted on fear-conditioned mice, we showed with the fear-potentiated startle paradigm that 

rolipram disturbed rather than enhanced the consolidation of extinction memory. In addition, 

rolipram showed panicolytic properties in fear-conditioned mice. 

The first study (E. M. Mueller, Stemmler et al., 2010a) was published in Neurosci-

ence, and parts of that study were previously published elsewhere (E. M. Mueller, Ahrens, 

Stemmler, Zangl, & Wacker, 2009; E. M. Mueller, Stemmler, & Wacker, 2010b). The second 

study (E. M. Mueller, Makeig, Stemmler, Hennig, & Wacker, submitted) was recently sub-

mitted to the Journal of Neuroscience and parts of that study were previously published (E. 

M. Mueller, Makeig, Stemmler, Hennig, & Wacker, 2010). The third study (E. M. Mueller, 

Nguyen et al., 2010) was published in the Journal of Behavior Therapy and Experimental 

Psychiatry, and parts of the study were previously published (E. M. Mueller, Nguyen, Ray, & 

Borkovec, 2009). The four experiments described in study four (E. M. Mueller, Hofmann et 

al., 2010) were published in Neuropharmacology. All included studies were written in first-

authorship. Two earlier studies published in Psychological Medicine (E. M. Mueller, 

Hofmann et al., 2009) and Neuropsychologia (Santesso et al., 2008) also investigated anxiety-

related tools (attentional biases to threat) at the behavioral and neural levels, but were not 

included in this dissertation thesis. 
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Methodological Considerations 

 

The most frequently used statistical tests for interindividual comparisons require nor-

mal distributions, homoscedasticity, and group size equality in order to be robust (Erceg-Hurn 

& Mirosevich, 2008; Keselman, Algina, Lix, Wilcox, & Deering, 2008; see also Figure 1). 

This is an issue when it comes to the investigation of decreasingly complex neuroscience lev-

els. The further we move towards specificity, the further we likely move away from normal-

ity. As we consider cellular or molecular processes, as opposed to orchestrated patterns of 

behavior, interindividual variations will be composed of fewer and fewer random variables, 

resulting in distributions with reduced entropy. A good example is independent component 

activity, which reflects activation of a single brain source, and whose distribution is less gaus-

sian than continuous EEG activity, which reflects a mixture of multiple brain processes 

(Makeig et al., 1996). If we move toward the molecular level and look at protein expression 

as a function of genes, for example, the entropy decreases even further and we will find rather 

discrete levels of protein expression as a function of genotype. In addition to non-normality 

issues, the investigation of genotype groups in an unselected population will lead to inequal 

group sizes that are due to the natural genotype distribution in the investigated ethnic group. 

An additional problem is that some alleles are so infrequent (i.e., the A1 allele of the DRD2 

Taq I A polymorphism) that groups have to be combined (i.e., A1/A1 carriers and A1/A2 

carriers will become the A1+ group), while others remain homogenous (i.e., A2/A2 carriers). 

If the dependent variable is related to the allele, such grouping will necessarily lead to inequal 

variances of the dependent variable in the two groups (i.e., increased variance in the com-

bined group). It is interesting to note that researchers almost exclusively use standard para-

metric tests even though a violation of its requirements is inherent in the hypothesis it is sup-

posed to test in such cases (i.e., that there is a relationship between the gene and the depend-

ent variable)! This becomes even more fascinating given that it has long been known that 
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variance and group size heterogeneity may dramatically increase false positive rates (see Fig-

ure 1). In order to circumvent these and other methodological issues a statistical package for 

Matlab (The Mathworks, Inc.) was constructed (E. M. Mueller, Makeig, Delorme, Stemmler, 

& Wacker, submitted) that uses winsorizing and bootstrap-based statistics which are more 

robust against the aforementioned violations (Keselman et al., 2008). The script is built on the 

freeware EEGLAB (Delorme & Makeig, 2004) and contains a series of functions, including 

(1) bootstrapping, (2) winsorizing, (3) automated independent component selection, (4) 

group-wise dipole position averaging, (5) displaying, (6) interindividual circular statistics 

based on the Van-Mises distribution that can be used for phase comparisons of 2 x 2 groups 

(inter-trial coherence), (7) corrections for multiple comparisons (based on a priori defined 

clustersize or on surrogate distributions), (8) anovas, (9) t-tests for event-related potentials, 

event-related spectral perturbations and intertrial coherence, (10) compass plots for inter-

subject phase coherence, and many more that are listed in Appendix IV. All analyses of Study 

2 were tested with that toolbox. Because they were conducted earlier, all other studies were 

conducted with parametric tests implemented in SPSS (Study 3 and 4) or matlab code written 

by myself (Study 1). 

 

     

Figure 1: Empirical false positive rates (based on 1000 simulations/cell) for comparing 
means of two unpaired groups with a nominal alpha of .1 as a function of standard deviation 
(x-Axis) and group size (y-Axis) of Group 1. Reference Group 2 has a standard deviation of 
10 and a group size of 50. Data of both groups is randomly sampled from populations with 
equal means and normal distribution. Depicted are false positive rates for a standard unpaired 
t-test (left panel) and a Welch-James test (right panel; Keselman et al., 2008). Light blue indi-

Welch-James test standard t-test 

standard deviation of Group 1 
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cates that the proportion of false positive rates matches the nominal alpha of .1. Note that the 
standard t-test but not the Welch-James statistic yields a strong increase in false positives (i.e. 
lack of robustness) when the relatively smaller group displays high variability and becomes 
overly conservative when the relatively smaller group displays reduced variability. These and 
similar simulations were used to test the statistical package developed for Study 2 (see Ap-
pendix IV). 
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Summaries of Empirical Studies 
 

Study 1 

“Oh the nerves, the nerves; the mysteries of this machine called man!  Oh the little that un-
hinges it, poor creatures that we are!”  ~Charles Dickens 

 

The orchestrated physiological patterns induced by fear (Stemmler, 2004) and anxiety 

(Epstein & Roupenian, 1970) typically include increases in heart rate. In humans such physio-

logical modulations can be triggered even by highly abstract stimuli, which may require some 

higher-level (i.e., prefrontal cortex, PFC) processing in order to extract the meaning structure 

(e.g. Damasio, 1996). One of the primary functions of an emotion like fear is to allocate bod-

ily resources (e.g., increased oxygen supply to extremities) to accomplish the emotions goals 

(e.g., escape from danger). Because this often must proceed very quickly (as in the case of a 

present threat) such PFC-heart communications should be able to operate relatively quickly. 

Although fMRI, lesion and pharmacological studies have indeed identified the medial pre-

frontal cortex, the insulae, the periaquaeductal grey and other regions as major structural 

components for the central regulation of autonomic nervous system activity (Critchley, 2005; 

Damasio, 1996) and heart period in particular (Benarroch, 1997; Critchley et al., 2003; 

Gianaros, Van Der Veen, & Jennings, 2004; Wager, Waugh et al., 2009) little is known about 

the timing of neurovisceral communication. While animal studies provide evidence that heart 

rate may decrease as early as 500 ms after direct stimulation of vagal fibers (Spear, Kronhaus, 

Moore, & Kline, 1979) and increase at least 1-2 seconds after sympathetic stimulation 

(Berntson et al., 1997) it is not known how long it takes in humans for cortical activity to trig-

ger changes in heart period. fMRI methods that have been previously used to study neurovis-

ceral connectivity (Wager, Waugh et al., 2009) lack the temporal resolution to identify the 

precise timing of such quick processes. In addition, the BOLD response itself is a measure of 

oxygenation and it is thus unclear whether correlations between the BOLD signal and cardio-
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vascular activity reflect true neurogenic associations. While EEG does have considerably 

higher (i.e., real time) temporal resolution and is less confounded with intracerebral blood 

circulation, the standard approach of averaging EEG over trials does not allow investigating 

functional (intraindividual) coupling of brain and heart activity because averaging eliminates 

any intraindividual variance. The primary goal of Study 1 was to develop a method to investi-

gate how quickly cortical activity may trigger modulations of heart rate by using non-

averaged EEG. The idea that there may be a signal in the EEG that is indeed linked to modu-

lations of cardiac speed was based on the observation that certain stimuli and/or experimental 

conditions have similar effects on modulations of event-related potential amplitudes and heart 

period. For example, when individuals perform a task in which they get performance feed-

back after each trial (positive vs. negative), both the amplitude of the frontocentral feedback-

related negativity (FRN; Miltner, Braun, & Coles, 1997) and the amount of cardiac decelera-

tion (Crone et al., 2003) are increased for negative vs. positive feedback. Other studies found 

that the same type of stimuli that elicit an increased P300 may also elicit an increased cardiac 

acceleration from about 2-6 s after stimulus presentation (Lang, Gatchel, & Simons, 1975; 

Otten, Gaillard, & Wientjes, 1995). Based on these early findings we thus hypothesized that 

our new method (described below) could reveal relationships between non-averaged EEG 

(e.g., single-trial FRN or single-trial P300) and evoked heart-period response. 

 

Method 

The method, which we have termed Cardio-Electroencephalographic-Covariance-

Trace (short: CECT) and which has been chosen for the front cover of the journal Neurosci-

ence, Volume 166, can be considered a two-level approach. At the first (intraindividual) level, 

time-lagged P-correlations (i.e. intraindividual correlations between two variables over time, 

Cattell, 1952) are computed between single-trial EEG magnitudes and single-trial modula-

tions of heart period. For that, the continuous EEG is first epoched such that each of k epochs 
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represents one trial. Then, each epoch is divided into a number (e.g., 100) of time-bins and for 

each time-bin the mean amplitude is calculated. Analogously, the cardiotach (trace of heart-

period changes over time) is epoched and each of k epochs is divided into a number (e.g., 10) 

of time-bins for which the mean heart period values are calculated. A P-correlation (over the k 

trials) is then computed for each of the 100 x 10 possible EEG x heart-period time-bin combi-

nations. At the second (interindividual) level, correlations are tested for statistical signifi-

cance. P-correlations are first Fisher transformed (Fisher, 1950) and then for each of the 10 x 

100 bins tested against zero over participants with one-sample t-tests. To account for the large 

number of tests the statistical threshold is adapted accordingly (e.g., using a Bonferonni-

correction). In the herein presented study, we analyzed the data of n = 31 college students 

who performed a gambling task where each trial terminated with a feedback stimulus indicat-

ing whether a participant had just won or lost a small amount of money. 

 

Results 

Replicating prior studies, conventional data analysis revealed that negative vs. positive 

feedback led to more negative frontocentral ERP amplitudes from 200 to 260 ms (FRN; Milt-

ner et al., 1997) and to relative cardiac deceleration from 1000 to 3500 ms after the feedback 

stimulus. Importantly, using the CECT-method we found that frontocentral EEG magnitude in 

time bins about 200 ms to 400 ms after the feedback stimulus correlated with cardiac accel-

eration from 2000 to 5000 ms (Figure 2). This correlation (termed N_300_4) was significant 

across individuals and similarly emerged for both feedback types and even remained highly 

robust after (a) conservative Bonferroni-correction for 10 x 110 = 1100 comparisons, (b) par-

tialling trial indices (to control for time effects), and (c) partialling baseline heart-rate (to con-

trol for baseline-effects on heart-rate modulation and EEG). Moreover, EEG was uncorrelated 

with HP modulations in the subsequent trial indicating that EEG and cardiac chronotropy 

were specifically correlated on a trial-by-trial basis. 
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Figure 2: Cardio–Electroencephalographic Covariance Trace (CECT). t-values for positive 
(red) and negative (blue) EEG_heart period P-correlations as a function of time in EEG (hori-
zontal axis) and heart period (vertical axis) at FCz. Clusters are named according to direction 
of the correlation (positive vs. negative), time in the EEG (in ms) and time in heart period (in 
s) as N300_4 and P600_4. 

 

Discussion 

Although feedback valence modulated both FRN and evoked heart period (replicating 

earlier studies), the magnitude of single-trial FRN seemed to not specifically predict modula-

tions of heart period, which is consistent with prior observations that different neurotransmit-

ter systems are involved in feedback valence effects on FRN and heart period (van der Veen, 

Mies, van der Molen, & Evers, 2008). In contrast, the EEG for a much longer time range than 

the FRN (i.e., from 200 to 400 ms following feedback) was correlated with heart period (such 

that a more positive amplitude predicted cardiac acceleration). Because both P300 (Donchin, 

1981; Rushby, Barry, & Doherty, 2005) – which typically peaks between 200 and 400 ms – 

and modulations of heart period (Graham & Clifton, 1966) have previously been linked to the 

orienting response, we interpreted our findings to indicate that “some anterior P300 genera-

tors are related to activation of a central autonomic network, for example to prepare the or-

ganism for action upon detection of changes in the environment or upon detection of other 

relevant signals” (p. 496). Interestingly, about one year after our article had been published, 
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Nieuwenhuis et al formulated a theory that similarly states that P300 and autonomic responses 

are functionally coupled in the orienting response (Nieuwenhuis, De Geus, & Aston-Jones, 

2011). 

Because cortico-cardiac connections play a central role in recent models of anxiety 

(Berntson, Sarter, & Cacioppo, 1998; Friedman, 2007; Thayer & Lane, 2009), we were also 

interested to probe whether trait anxiety moderated the strength of the correlation between 

EEG and cardiac acceleration. Interestingly, high trait-anxiety, as measured with the BIS-

scale (Carver & White, 1994), tended to be associated with stronger cortico-cardiac coupling 

following negative (r =  .36, p < .055) but not following positive feedback (r = .03). Although 

this latter finding was excluded from the final article due to a reviewer’s concern regarding 

the p-value, it is interesting to note that the coupling of cortical and subsequent cardiac activ-

ity following negative feedback may be elevated in anxious individuals. It should also be 

noted that there is now strong support for this association as we recently replicated a signifi-

cant correlation between cortico-cardiac coupling and the BIS scale for negative but not for 

positive or uncertain feedback in a different task in about 170 participants. For this, and be-

cause of predictions derived from recent models of panic, we currently use the CECT method 

to study cortico-cardiac connectivity in Panic Disorder, Depression and healthy individuals in 

an ongoing DFG-funded research project. In addition to that project, three further studies are 

currently being conducted to replicate the coupling of P300 and autonomic activity, and to 

better understand how lower neuroscience levels are implemented in cortico-cardiac coupling 

(i.e., involvement of particular neurotransmitters).  

The first follow-up study (unpublished) replicated an association of EEG activity from 

200 to 400 ms with a different EEG set and a different sample, and further showed that 

neurovisceral communication can also be triggered if the abstract stimulus is ambiguous (sig-

nals neither reward nor punishment). The second ongoing study investigates how dopamine 

(pharmacological challenge and dopaminergic polymorphisms) may affect neurovisceral re-
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sponses to negative, neutral and positive feedback in a different task. The third study investi-

gates – in cooperation with Dr. Van der Veen (Rotterdam, NL) – whether neurovisceral com-

munication is related to serotonergic neurotransmission that was challenged by depleting par-

ticipants with tryptophan, a precursor of serotonin (van der Veen et al., 2008). 
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Study 2 

 

“If I had to live my life over again, I’d try to make more mistakes next time.” – Nadine Stair 

 

Obviously, the commitment of an error can have quite dangerous consequences across 

all areas of life. Given that anxiety serves the goal to reduce danger in the future one could 

expect that anxiety is associated with elevated monitoring of ones actions for possible errors. 

Consistent with this notion, many researchers have reported a link between potentiated error 

monitoring and state (Pailing & Segalowitz, 2004), trait (Hajcak et al., 2003a), and pathologi-

cal (Olvet & Hajcak, 2008) anxiety. Interestingly, error monitoring seems to be closely related 

to dopamine-based neurotransmission (Frank, D'Lauro, & Curran, 2007; Holroyd & Coles, 

2002; Jocham & Ullsperger, 2009) and several studies have reported a link between anxiety 

and polymorphisms that affect cortical dopamine (Hettema et al., 2008; Hunnerkopf, Strobel, 

Gutknecht, Brocke, & Lesch, 2007; Joe et al., 2008; Wacker et al., 2005). Accordingly, it 

could be hypothesized, that such polymorphisms somehow enhance error monitoring as one 

component of the anxious phenotype. 

However, the mechanisms by which interindividual differences in dopamine may af-

fect error monitoring are not well understood. With regard to neuroanatomical structures, 

there is converging evidence from fMRI and EEG research for a prominent involvement of 

the anterior midcingulate cortex (AMC; Debener et al., 2005). Dopamine manipulations (i.e., 

manipulations at the molecular/synapse level) have been shown to affect error-monitoring 

correlates (Jocham & Ullsperger, 2009), and models have been proposed that link the molecu-

lar (i.e., neurotransmitter) to the maps (i.e., neuroanatomical structures) level (Frank, 2005; 

Holroyd & Coles, 2002; for summaries see Appendix V).  

Durstewitz and Seamans (2008) state that the amount of prefrontal cortex dopamine 

determines qualitatively different network states. According to their dual-state theory of pre-
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frontal cortex dopamine function, there exist two discrete dynamical regimes. D1-dominated 

states are characterized by higher energy barriers among different network patterns, which 

supposedly favor the online maintenance and relative stability of representations. In contrast, 

D2-dominated states are associated with a lower energy barrier, which may support flexible 

and fast switching among representational states. Durstewitz and Seamans assume that 

whether a network is in D1- or D2-dominated regimes depends on prefrontal cortex dopamine 

level. Following an inverted U-shape function, low and high dopamine levels are associated 

with D2-dominated states while intermediate dopamine levels are related to D1-dominated 

states. Because error-processing likely triggers and/or requires dynamic processes like orient-

ing (Notebaert et al., 2009), updating of representations (Holroyd & Coles, 2002), and adapta-

tion of behavior (Botvinick, Braver, Barch, Carter, & Cohen, 2001), we reasoned that error-

processing would be elevated in D2- rather than D1-dominated states, and we thus expected 

potentiated error-processing when prefrontal cortex levels of dopamine are presumably high 

or low rather than intermediate. 

Based on these theoretical accounts we tested whether interindividual differences in 

dopamine would relate to differences in error processing. For independent variables we (1) 

assessed a prominent single nucleotide polymorphisms tied to dopamine – Catechol-O-

Methyltransferase (COMT) Val158Met, and (2) manipulated dopamine experimentally with 

sulpiride, a selective dopamine receptor antagonist. For dependent variables we analyzed the 

error-related negativity (ERN) and post-error slowing (PES) as electrophysiological and be-

havioral markers of error monitoring, respectively. 

COMT. The enzyme COMT is crucial for the elimination of dopamine in humans es-

pecially in prefrontal cortex (J. Chen et al., 2004; Lachman et al., 1996). The gene coding for 

COMT is located on chromosome 22 and a common single nucleotide polymorphism at 

codon 158 leads to a substitution of the amino acid Methionine for Valine. This substitution is 

specific to humans (J. Chen et al., 2004) and can be found in 50 to 60% of the alleles in Euro-
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pean populations (Palmatier, Kang, & Kidd, 1999). In individuals homozygous for the Met 

allele, COMT activity and thermostability are strongly decreased relative to Val carriers (J. 

Chen et al., 2004; Weinshilboum, Otterness, & Szumlanski, 1999), which presumably results 

in increased levels of prefrontal cortex dopamine in Met vs. Val homozygotes and intermedi-

ate dopamine levels for Val/Met carriers (Bilder, Volavka, Lachman, & Grace, 2004). Asso-

ciations between the Met allele and a plethora of pheno- and endophenotypes including lower 

risk for schizophrenia (Egan et al., 2001), reduced agentic extraversion (Wacker & Gatt, 

2010; Wacker, Mueller, Hennig, & Stemmler, under revision), enhanced fluid intelligence 

(Wacker et al., under revision), reduced prefrontal cortex activation in cognitive demanding 

tasks (Mier, Kirsch, & Meyer-Lindenberg, 2009), and enhanced prefrontal theta activity dur-

ing rest (Wacker & Gatt, 2010) have been demonstrated. Although COMT has also been 

linked to fearfulness, trait anxiety, and anxiety disorders, the direction of this association was 

inconsistent across studies and may also be moderated by gender (Hettema et al., 2008; 

McGrath et al., 2004; M. B. Stein, Fallin, Schork, & Gelernter, 2005; Wray et al., 2008). 

Sulpiride. In the present study we pharmacologically challenged dopaminergic neuro-

transmission by administration of a single, relatively low dose (200 mg) of sulpiride – a sub-

stitute benzamide that is often prescribed as an atypical antipsychotic. Sulpiride blocks dopa-

minergic, but not adrenergic, cholinergic, gamma-aminobutyric (GABA) ergic, histaminergic, 

or serotonergic, receptors (Caley & Weber, 1995). Sulpiride is slowly absorbed from the gas-

trointestinal tract, with peak serum levels occurring within one to six hours after oral inges-

tion, and the average elimination half life in the range of 3 to 10 hours (Mauri, Bravin, 

Bitetto, Rudelli, & Invernizzi, 1996). There is evidence that sulpiride selectively acts at D2-

like receptors and that lower doses (e.g., 200 mg) have a predominantly pre-synaptic effect 

resulting in a blockade of inhibitory autoreceptors and presumably increased dopamine re-

lease (Frank & O'Reilly, 2006; Serra et al., 1990).  
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ERN. The ERN is a widely studied electrophysiological index of error monitoring. It is 

a negative-going event-related potential (ERP) component with a frontocentral scalp distribu-

tion that peaks within 100 ms after individuals commit errors in reaction time tasks 

(Falkenstein, Hoormann, Christ, & Hohnsbein, 2000; Gehring, Coles, Meyer, & Donchin, 

1995). Source localization studies (Gehring et al., 2000), theoretical considerations with re-

gard to brain structure (Holroyd & Coles, 2002), and combined EEG/fMRI studies (Debener 

et al., 2005) have identified the AMC (Vogt, 2005) as the generator of the ERN. Of relevance 

for the present study, interindividual differences in ERN-amplitude are relatively stable over 

time (Segalowitz et al.) and highly heritable (Anokhin, Golosheykin, & Heath, 2008), sug-

gesting a strong genetic component. 

A variety of studies have investigated whether there is a direct relationship between 

the ERN amplitude and dopaminergic polymorphisms with inconclusive results (for review 

see: Ullsperger, 2010). With regard to COMT, Frank and colleagues compared 11 Met/Met to 

28 Val carriers and found no significant group differences in ERN amplitude (Frank et al., 

2007). Krämer et al. compared 20 Met/Met carriers to 20 Val/Val carriers and found – for one 

type of error – a marginally significant effect for COMT, indicating that Val homozygotes 

had relatively larger ERN amplitudes than Met homozygotes (Krämer et al., 2007). However, 

given the presumably small effect sizes of single polymorphisms on such phenotypes 

(Ullsperger, 2010), the sample sizes used in those studies were likely insufficient for any ef-

fects to reach statistical significance in the first place. Pharmacological tests for the involve-

ment of dopamine in ERN generation also yielded unclear results. Low-dose dopamine-

antagonists (de Bruijn, Sabbe, Hulstijn, Ruigt, & Verkes, 2006; Zirnheld et al., 2004) and L-

DOPA (Jocham & Ullsperger, 2009) – both increasing phasic dopaminergic transmission – 

have led to reduced ERN amplitudes. In contrast, amphetamine – likely also increasing ex-

tracellular DA levels – has led to increased ERN amplitudes (de Bruijn, Hulstijn, Verkes, 

Ruigt, & Sabbe, 2004). 
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The relationship between ERN and anxiety has also been intensively studied. Potenti-

ated ERN amplitudes have been found in individuals with obsessive compulsive disorder 

(Gehring et al., 2000; Hajcak & Simons, 2002), high worry tendencies (Hajcak et al., 2003a), 

state anxiety (Pailing & Segalowitz, 2004), and high negative affect/neuroticism (Boksem, 

Tops, Wester, Meijman, & Lorist, 2006; Hajcak, McDonald, & Simons, 2004; Luu, Collins, 

& Tucker, 2000; Pailing & Segalowitz, 2004). However, there is now some evidence that this 

relationship disappears when feedback is given after each trial (Grundler, Cavanagh, Figue-

roa, Frank, & Allen, 2009; Nieuwenhuis, Nielen, Mol, Hajcak, & Veltman, 2005; Olvet & 

Hajcak, 2009), possibly because, if available, anxious individuals may rely on external rather 

than internal information for error monitoring. 

ICA. EEG that is recorded at scalp channels reflects a mixture of several brain proc-

esses that may be operating independently and in parallel. This is an issue for the interpreta-

tion of ERPs because it is unclear whether a certain waveform (such as the ERN), parameters 

derived thereof (e.g., the amplitude), and any effects of independent variables can be linked to 

one brain process or a mixture of several processes. Independent Component Analysis (ICA) 

is a method to find linear combinations of a recorded mixture that are maximally independent 

from each other (= independent components, ICs) and thus likely reflect separate brain 

sources. Although ICA is relatively methodologically advanced and is therefore not yet used 

in many laboratories around the globe, it was used in the present study to investigate the ef-

fect of dopamine on error-related brain dynamics. This was facilitated by a generous fellow-

ship Grant from the Society for Psychophysiological Research (SPR) to Erik Mueller to fi-

nance a four-month visit at the Swartz Center for Compuational Neuroscience in San Diego, 

where ICA was first used to analyze EEG data (Makeig et al., 1996). The underlying idea of 

ICA is summarized in Appendix V. 

PES. Following error commission, modulations of behavior can be observed. Among 

the most studied post-error behavioral phenomena is post-error slowing (PES) – the tendency 
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of participants to display increased reaction times in trials following an error (Eichele, Juvod-

den, Ullsperger, & Eichele, 2010; Rabbitt & Phillips, 1967) – possibly reflecting an adapta-

tion (Botvinick et al., 2001) or orienting process (Notebaert et al., 2009). Although some stud-

ies have found a correlation between PES and ERN amplitude (Debener et al., 2005), this 

association has not always been replicated (Hajcak, McDonald, & Simons, 2003b), possibly 

due to the use of R- rather than P-correlations, tapping into functionally less meaningful 

sources of variance (E. M. Mueller, Stemmler et al., 2010a). A robust association between 

neuroticism/anxiety and PES could not been shown in one prior study (Hajcak et al., 2004). 

With regard to dopamine, two studies using haloperidol as a dopamine-active drug (de Bruijn 

et al., 2006; Zirnheld et al., 2004) found that it did not affect PES, although olanzapine – a 

dopamine and serotonin receptor antagonist – did lead to impaired ERN amplitudes and PES 

(de Bruijn et al., 2006). In addition, there is some evidence that dopaminergic genes modulate 

PES (Krämer et al., 2007). 

The present study. As stated above, the goal of the present study was to investigate the 

role of dopamine in error processing. Based on the model of Durstewitz and Seamans we ex-

pected errors to have a stronger impact on brain activity (i.e., ERN) and behavior (i.e., PES) 

in Val vs. Met carriers, presumably occupying D2 states which should facilitate network up-

dating rather than network stability (Durstewitz & Seamans, 2008). Following their inverted 

u-shaped model (see Figure 3) we further hypothesized that experimentally elevating extracel-

lular dopamine availability by administration of low-dose sulpiride would lead to increased 

error-processing in Val but decreased error-processing in Met carriers. 
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Figure 3: Postulated relationship between prefrontal dopamine level, COMT and relative D1 
vs. D2 receptor activation as previously described by D. Durstewitz and J. K. Seamans 
(2008). Due to enhanced relative D2 receptor activation in Val vs. Met carriers we hypothe-
sized increased error-related negativity and post-error slowing in Val vs. Met carriers. By 
increasing PFC dopamine activity through presynaptic D2 receptor blockade sulpiride (200 
mg) is predicted to shift Val+ carriers into medium and Met/Met carriers into high dopamine 
levels (dashed arrows) resulting in reduction or enhancement of error-related negativity and 
post-error slowing. 

 

Method 

To test these hypotheses, n = 200 males participated in the present study. Following a 

clinical interview to rule out the presence of any psychopathologies, they were given sulpiride 

(200 mg) or placebo (double-blind), which they consumed together with a standardized break-

fast. They then filled out questionnaires and performed tasks for which the results will be re-

ported elsewhere (e.g. Wacker et al., under revision). Approximately 4 h after taking the pill, 

participants performed a standard Eriksen Flanker task in which five-letter strings were pre-

sented (S S H S S) and participants were instructed to respond with their index or middle fin-

ger if the central letter was an S or an H, respectively. The task was adaptive such that partici-

pants received the feedback “too slow” whenever their reaction time exceeded the mean reac-

tion time plus one standard deviation taken from the last preceding trial block. We recorded 

the EEG during that task and later decomposed the EEG using ICA. For each IC we fitted a 
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dipole in a standard brain volume and included ICs into a subsequent clustering procedure. 

ICs of all participants were then clustered based on their estimated dipole position. One clus-

ter included ICs, which were localized in proximity to the anterior midcingulate cortex previ-

ously linked to error processing and ERN (Debener et al., 2005). For those midcingulate cor-

tex ICs we computed the ERPs and measured the ERN amplitude (IC-ERN) as is usually done 

with non-decomposed scalp channel EEG. ERN amplitudes and PES were analyzed using a 

statistical package implemented in MATLAB by myself that is capable of parametric and 

bootstrap statistics (see Appendix IV). 

 

Results 

As expected, both, PES and IC-ERN amplitudes were modulated by a sulpiride x 

COMT interaction: Individuals who had received the placebo showed greater IC-ERN ampli-

tudes and more PES if they had a Val allele compared to Met homozygotes, mirroring the 

(marginally significant) findings from Krämer et al (2007). Importantly, sulpiride enhanced 

PES and IC-ERN amplitude in Met carriers but reduced IC-ERN and tended to reduce PES in 

Val carriers (see Figure 4). In contrast to our expectations, we found no association between 

either the IC-ERN amplitude or dopamine polymorphisms and trait anxiety or neuroticism, 

neither at the level of individual scales nor at the level of factors derived from factor analysis 

of several scales from the neuroticism/anxiety spectrum. 
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Figure 4: Interactions of sulpiride and COMT on neural and behavioral error-processing cor-
relates. (a) Grand average event-related potentials (ERPs) for a medial frontal independent 
component cluster (IC-cluster) following erroneous button presses (at latency 0) for Val+ 
(grey) and Met/Met (black) carriers, who received placebo (thick) or sulpiride (thin). Inde-
pendent component ERPs were normalized by the root mean square over the component scalp 
map projection to all channels prior to averaging. A standard brain image (Montreal Neuro-
logical Institute) indicates the region of maximum concentration (equivalent dipole density) 
of this IC-cluster. (b) Bar plots indicating means (and SEMs) of peak IC-cluster event-related 
potentials (left) and reaction-time slowing in the subsequent trial (right) following errors in 
the placebo (white) or sulpiride (grey) groups. 

 

Discussion 

The findings of Study 2 clearly support the involvement of dopamine in error-

processing and interindividual differences therein. Val carriers, presumably showing lower 

levels of PFC dopamine than Met homozygotes due to increased COMT activity, had en-

hanced behavioral (PES) and electrophysiological (IC-ERN) indicators of error processing. 

Moreover, the administration of low-dose sulpiride, presumably increasing PFC dopamine by 
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D2 autoreceptor blockade, reversed this effect. Assuming that reactive error-processing is fa-

cilitated in D2 dominated states of PFC networks, this pattern of findings can be explained 

with Durstewitz and Seamans’ (2008) dual-state theory applied to error-processing. Accord-

ing to their theory, Val carriers – due to low PFC dopamine levels – likely occupy D2-

dominated states, while Met carriers – with medium PFC dopamine levels – more likely oc-

cupy D1-dominated states. Because they assume that the relationship between PFC dopamine 

level and D1 vs. D2 ratio is inverted U-shaped, an elevation of dopamine would be expected to 

shift PFC network states of Val carriers towards relative D1, and of Met carriers towards rela-

tive D2, domination. 

In addition to demonstrating the involvement of dopamine in error processing, the pre-

sent finding has an important implication. It suggests that some effects of sulpiride, an antip-

sychotic that is often prescribed in Germany (“Dogmatil”), may depend on COMT genotype. 

Thus, sulpiride seems to elevate error processing in Met but reduce it in Val carriers. This 

should be interpreted with caution because error rates and reaction times were unaffected, and 

thus it cannot be stated that sulpiride is more beneficial for Met than for Val carriers. In fact, 

if ERN and PES reflect a distraction from ongoing behavior that is triggered by a self-

committed error (Notebaert et al., 2009) rather than an adaptive process, Val carriers may 

actually benefit more from acute low-dose sulpiride than Met carriers. Accordingly, in order 

to answer whether Val or Met carriers benefit more from sulpiride with regard to error proc-

essing, further research on the functional significance of ERN and PES must be conducted. 

Such research could be especially informative for the pharmacological treatment of schizo-

phrenia, as error monitoring (Alain, McNeely, He, Christensen, & West, 2002) and the 

COMT Val158Met polymorphism (Egan et al., 2001) have been linked to schizophrenia. 

We found no associations between dopaminergic genes, error processing and anxiety. 

The missing link between ERN and anxiety in the present study may be explained with the 

fact that we delivered trial-to-trial feedback in the Flanker task. As explained above, recent 
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reports suggest that trial-to-trial feedback diminishes the otherwise well-replicated correlation 

between ERN and neuroticism/anxiety (Olvet & Hajcak, 2009). In contrast to prior studies, 

we further found Val158Met and Taq I a to be unrelated to any measures of neuroticism or 

anxiety. While the link between COMT and anxiety may be female-specific (Hettema et al., 

2008) and thus would be absent in our male study-participants, the TaqIa correlation was pre-

viously found to be male specific (Wacker et al., 2005). A possible explanation for the miss-

ing associations with anxiety in the present study is that, due to (a) the exclusion of partici-

pants with pathological anxiety and (b) the required intake of a pill that could contain an an-

tipsychotic with potential side-effects (=potential danger in the future), our sample did not 

include participants with elevated trait anxiety in the first place. In line with this, the standard 

deviation of several neuroticism/anxiety measures was truncated (e.g. NEO PI-R Neuroti-

cism-Anxiety scale: SD = 4.3) relative to a normative population of young males (SD = 5.4; 

Ostendorf & Angleitner, 2004). Alternatively, the link between anxiety and error processing 

may predominantly involve other neurotransmitters such as serotonin, which has been related 

to anxiety more consistently (Lesch et al., 1996) and may also affect error and feedback proc-

essing (Beste et al., 2009; van der Veen et al., 2008). Future studies investigating the interac-

tion of serotonergic polymorphisms (e.g. 5HTTLP-R, Lesch et al., 1996) and serotonin ma-

nipulations (e.g. tryptophan depletion, van der Veen et al., 2008) on error processing and how 

it is correlated with anxiety may shed light on this hypothesis. 
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Study 3 

“Today is the tomorrow we worried about yesterday.”  ~Author Unknown 

 

Generalized Anxiety Disorder (GAD) is a condition that is characterized by excessive 

anxiety and worry concerning a number of domains. Individuals with GAD report difficulties 

to control the worry. The anxiety and worry are so severe that they are often associated with 

restlessness, being easily fatigued, difficulty concentrating, irritability, muscle tension and 

sleep disturbance (DSM IV). Within a period of 12 months, approximately 3% of the popula-

tion suffers from GAD, and its 12-month prevalence is thus comparable to alcohol abuse 

(2005). GAD shows a high comorbidity with major depression, which in most cases has its 

onset after the manifestation of GAD (D. J. Stein, 2001), suggesting that GAD may trigger 

depressive symptoms. According to Gray and McNaughton, GAD is “in essence the only 

clearly identifiable primary anxiety disorder. That is, it is a case of maladaptive anxiety in 

which the primary pathology lies in the control of anxiety itself” (p.323). Accordingly, GAD 

can be considered a clinical condition that is closely linked to the concept of trait anxiety. 

Consistent with the proposal that anxiety serves to reduce danger in the future, it has 

been observed that individuals with GAD are characterized by excessive worrying and being 

overly concerned with the future (Borkovec et al., 1983). Moreover, worry itself has been 

defined as ‘‘a future-oriented mood state in which one becomes ready or prepared to attempt 

to cope with upcoming events’’ (Brown, O’Leary, & Barlow, 1993, p. 139) – a state that may 

have dramatic consequences for life quality, as individuals with GAD often exhibit a failure 

to enjoy life or to live in the present moment (Borkovec, 2002; Borkovec, Alcaine, & Behar, 

2004; Borkovec & Sharpless, 2004). Based on these associations between GAD, anxiety or 

worry, and a preoccupation with the future, we hypothesized that decision-making under am-

biguity may also be biased in GAD, such that individuals with GAD would preferentially 

make future-oriented decisions. 
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Method 

To test this hypothesis we used the Iowa Gambling Task (IGT). Originally this task 

was designed to capture the lack of future-oriented decisions in individuals suffering from 

ventromedial prefrontal cortex damage (Bechara, Damasio, Damasio, & Anderson, 1994). 

These individuals (the case of Phineas Gage being the most prominent example), despite in-

tact intelligence and other cognitive functions, fail to act in a long-term oriented manner in 

every-day life and also show severe impairments in the IGT (Bechara et al., 1994; Bechara, 

Tranel, & Damasio, 2000). Similarly, conditions associated with high impulsivity and low 

future-orientation (e.g., attention deficit hyperactivity disorder, pathological gambling, sub-

stance abuse) have been correlated with below-average IGT performance (Bechara, Dolan, & 

Hindes, 2002; Cavedini, Riboldi, Keller, D'Annucci, & Bellodi, 2002; Garon, Moore, & 

Waschbusch, 2006). In contrast to these conditions, we hypothesized that if GAD is related to 

abnormally high future-orientation, individuals with GAD should show above-average per-

formance in the IGT. 

The IGT is a relatively simple task. The participant sees four decks of cards and is in-

structed to draw from each deck as he wishes. Each card leads to a fictional monetary reward 

that has the same value for all cards in a given deck ($100 for decks A and B, and $50 for 

decks C and D). Some cards lead to an additional punishment. The reinforcement schedule is 

designed such that the sum of additional punishments for ten cards taken from decks A or B is 

larger ($1250) than the sum of rewards for ten cards taken from decks A or B ($1000). In con-

trast the sum of additional punishments for ten cards taken from decks C or D is smaller 

($250) than the sum of rewards ($500). Thus, an advantageous or future-oriented strategy is to 

take many cards from decks C and D even though the maximum reward value in an individual 

trial is smaller than in decks A and B. Because punishments are given in an unsystematic 

fashion, this task is not as easy as it may sound and healthy adults often continue taking cards 
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from decks A and B even after 100 trials.  

An issue with the IGT is that if an individual prefers decks C and D over A and B, it is 

impossible to state whether he does so because these decisions are more long-term advanta-

geous or because decks C and D are associated with smaller magnitudes of infrequent pun-

ishments, which would indicate risk aversion (Smoski et al., 2008) rather than future-

orientation. In Study 3 we therefore not only used the standard IGT but also a variant thereof, 

in which the contingency table was multiplied by -1. That means that in this version each card 

from decks A and B yielded a punishment of $100, and over 10 trials the sum of infrequent 

rewards was $1250. Each card from decks C and D yielded a punishment of $50 and over 10 

trials the sum of infrequent rewards was $250. Thus, in contrast to the standard IGT decks C 

and D are long-term disadvantageous although they are still associated with a small magni-

tude of punishment values. 

The study was conducted over the course of two years at the Pennsylvania State Uni-

versity. As a course requirement, N = 1882 students of introductory Psychology classes had to 

complete a battery of questionnaires that included the GADQ-IV (Newman et al., 2002) – a 

self-report screening instrument for DSM-IV GAD criteria – and the Penn State Worry Ques-

tionnaire (Meyer et al., 1990) – a self-report instrument that measures trait worrying. Of these, 

students who met GAD criteria and non-anxious control participants were invited to partici-

pate in the study. The final sample consisted of n = 27 GAD and n = 20 control participants. 

They performed both versions of the IGT (each 100 trials) in counterbalanced order. The de-

pendent variable was the number of long-term advantageous decisions in blocks of 20 trials. 

 

Results 

In the first block of the task, both groups made equally few long-term advantageous 

decisions, and over the task both groups learned to make more advantageous decisions. As 
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expected, individuals with GAD learned significantly faster than control participants to make 

long-term advantageous decisions (see Figure 5). Importantly, this was the case for both the 

standard and the modified IGT version. Moreover, if participants were classified into learners 

and non-learners based on their advantageous decisions in the last trial block, learners had a 

significantly higher mean PSWQ score than non-learners. There were no group differences in 

the time needed to make a decision or in the level of conscious awareness of which decks 

were better. 

 

Discussion 

Consistent with our expectations, we found an advantage of GAD participants in 

learning to make long-term advantageous decisions. While the disadvantages of suffering 

from GAD are indisputable, it is important to be aware that there may be conditions for which 

a tendency for increased anxiety and heightened worrying is associated with long-term bene-

fits (see also: Adam M. Perkins & Corr, 2005). This finding may have relevant implications 

for understanding the etiology and maintenance of GAD because under circumstances where 

heightened worrying leads to long-term success, worrying may be positively reinforced. 

However, it may be trait rather than state worrying/anxiety that is linked to better IGT per-

formance. In a subsequent follow-up study we found no effects of worry induction vs. relaxa-

tion on IGT performance in healthy college students, although we did replicate a positive ef-

fect of trait anxiety on IGT performance (Skip and Erkic, 2009, term paper supervised by 

E.M., Figure 5), and another group reported the same phenomenon (Werner, Duschek, & 

Schandry, 2009). 

While this apparent future-orientation found in individuals with high anxiety is in line 

with the assumed function of anxiety to reduce danger in the future (see definition), it is un-

known how anxious individuals perform better in this task without being aware of the good 

decks. The authors of the IGT hypothesized that neurovisceral communication (“somatic 
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markers”) may be a key requirement for successful performance in the IGT because somatic 

states conditioned to bad decisions may bias future decisions of an individual towards more 

adaptive choices (Bechara, Damasio, Tranel, & Damasio, 1997). Our finding of enhanced 

neurovisceral communication in anxious individuals following negative feedback (cf. Study 

1) may explain why individuals with exaggerated anxiety were able to make better long-term 

oriented decisions despite not being consciously more aware of advantageous decisions. Con-

sistent with that interpretation, Werner et al (2009) reported a correlation between trait anxi-

ety and anticipatory and feedback-evoked peripheral reactions in the IGT and IGT perform-

ance. In addition, potentiated PFC reactivity to erroneous responses and/or negative perform-

ance feedback has been found in anxious individuals, and may reflect better learning from 

negative feedback in humans with high anxiety (as discussed in Study 2). 

Molecular genetic, electrophysiological or other psychophysiological measures were 

not collected in that study. Both dopamine and serotonin may relate to IGT performance 

(Bechara, Damasio, & Damasio, 2001) and GAD symptoms (D. J. Stein, Westenberg, & Lie-

bowitz, 2002), and we have recently found that high PSWQ values in healthy males are linked 

to the short variant of the serotonin transporter gene (E. M. Mueller et al., submitted abstract), 

which also predicts better early IGT performance in males (Stoltenberg & Vandever, 2010). 

Future studies experimentally manipulating dopamine and/or serotonin and assessing the in-

teractions of (1) trait-worrying or GAD, (2) catecholaminergic genes, and (3) neurovisceral 

communication on long-term oriented decision-making may be helpful to better understand 

the mechanisms of superior task performance in highly anxious individuals and may inform 

whether IGT-performance can be considered a valuable endophenotype for neuroti-

cism/anxiety. With regard to understanding neuroscience levels involved in anxiety, such a 

study would be especially informative if electrophysiological correlates of feedback process-

ing such as ERN/FRN (cf Study 2) and P300 (cf Study 1) would be included into analysis as 

indicators of relevant processes at medial prefrontal cortices. 
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Figure  5: Number of Iowa Gambling Task selections from long-term advantageous decks C 
and D in Study 3 (left panel) comparing participants with Generalized Anxiety Disorder to 
non-anxious control participants and an unpublished replication experiment (right panel) with 
healthy college students with high or low trait anxiety. 
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Study 4 

 

“We experience moments absolutely free from worry.  These brief respites are called panic.”  

~Cullen Hightower 

 

Despite high heritability estimates, anxiety and specific fears are not stable over the 

lifetime of an individual. Ever since Little Albert (J. B. Watson & Rayner, 1920), it is known 

that fears can be acquired or conditioned, and the effectiveness of exposure therapy for anxi-

ety disorders suggests that fears and anxiety can also be extinguished (Foa & Kozak, 1986). 

Based on the assumption that fear and anxiety are conditioned responses (CR) to stimuli (CS) 

previously paired with aversive sensations (US), exposure therapy tries to extinguish such 

associations by repeatedly exposing the individual to the CS while aversive consequences are 

absent. Although exposure therapy is highly effective for anxiety disorders, there are a large 

number of non-responders who still suffer from severe anxiety after exposure. In order to im-

prove exposure therapy outcome, there have been several attempts to discover substances that 

facilitate extinction learning (Hofmann, 2007). The biological mechanisms of extinction are 

not fully understood, however it is widely accepted that extinction is a particular type of new 

learning rather than just decay of old associations (Bouton, 2004). Accordingly, it has been 

speculated that substances that modulate proteins implicated in learning processes (e.g., long-

term potentiation) may boost extinction.  

The second messenger cyclic adenosine monophosphate (cAMP) is part of an intracel-

lular signaling pathway implicated in learning, memory formation (Alberini, 1999; R. L. 

Davis, Cherry, Dauwalder, Han, & Skoulakis, 1995) and fear extinction (Myers & Davis, 

2007). To give an example for such a pathway, (1) stimulation of dopamine D1 receptors (see 

Study 2) may (2) activate G-coupled receptors, which then (3) stimulate adenylil cyclase, 
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which (4) leads to an accumulation of cAMP, which then (5) affects protein kinase A (PKA) 

to (6) phosphorylate cAMP responsive element binding protein (CREB) in the cell nucleus, 

which in conjunction with other proteins may (7) affect the expression of genes, which may 

ultimately (8) play an important role in memory formation, although the mechanisms for this 

final step are not yet fully understood (Carlezon, Duman, & Nestler, 2005). Because cAMP is 

broken down by cAMP-specific type IV phosphodiesterases (PDE4), the administration of 

rolipram, a selective PDE4 inhibitor has been found to elevate cAMP levels (Barad et al., 

1998), increase CREB phosphorylation (Monti, Berteotti, & Contestabile, 2006), and improve 

learning (Rutten, Basile, Prickaerts, Blokland, & Vivian, 2008). 

Based on prior findings that rolipram may enhance learning and memory (Barad et al., 

1998; Bourtchouladze et al., 2003; Comery et al., 2005; Rutten et al., 2008; Zhang et al., 

2002), we tested in Study 4 whether rolipram may enhance the acquisition and/or extinction 

of fear. Moreover, based on previously reported anxiolytic properties of rolipram (Li et al., 

2009; Silvestre, Fernandez, & Palacios, 1999), we hypothesized that rolipram may affect the 

expression (or “experience”) of fear due to presumably overlapping neural circuits for fear 

and anxiety (M. Davis, 2006; Gray & McNaughton, 2000). For that purpose we conducted a 

series of five experiments in which fear was assessed using the fear potentiated startle (FPS) 

paradigm with mice. 

 

Methods 

The FPS paradigm is based on the observation that an acoustic startle reflex can be 

augmented if the startle stimulus is presented in the presence of a cue that has previously been 

paired with an aversive stimulus (M. Davis, 2006). In the present study we used a standard 

FPS paradigm in which shocks were initially conditioned to a neutral CS (i.e., a particular 
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tone; acquisition phase). To measure the degree of fear associated with the CS, a series of 

relatively loud (95 – 105 dB) noise bursts were randomly presented either alone or in combi-

nation with the CS (test phase). The difference in startle response was taken as a measure of 

fear. 

In the first experiment, we tested the panicolytic (i.e., fear reducing) effect of rolipram 

by probing whether fear conditioned mice would have reduced FPS if they had received rol-

ipram vs. saline prior to the test phase. In the second experiment, we tested whether rolipram 

would enhance fear acquisition by delivering rolipram vs. saline prior to the acquisition phase 

and testing FPS to the CS several days later. In the third experiment, we tested whether rol-

ipram would boost extinction. For that, there was an extinction phase after the first test phase 

in which the CS was presented alone (no shock) 20 times. Prior to extinction, mice had re-

ceived rolipram vs. saline. Following that extinction phase, there was a second test phase to 

compare the reduction of fear after extinction between saline and rolipram groups. In the 

fourth experiment, there were four extinction sessions, and prior to each session rolipram vs. 

saline was administered. In contrast to the third experiment, the CS during extinction was not 

presented alone, but coterminated with a startle burst. This allowed us to measure how startle 

responses decreased during extinction as an indicator for intra-session reduction of fear (i.e., 

within-session extinction). Moreover, we could compare whether the extinction effect of one 

session would be consolidated and still be evident in the next extinction session (i.e., be-

tween-session extinction). While within-session extinction is more closely related to acquisi-

tion, between-session extinction reflects consolidation, both of which may be differently af-

fected by rolipram. After the four sessions there was a final FPS test without prior rolipram 

delivery to test whether rolipram or saline groups had benefitted more from the extinction 

sessions. The fifth experiment was a replication of the fourth experiment. 
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Results 

Experiment 1, in which rolipram was delivered prior to the test phase, revealed that 

rolipram significantly reduced FPS amplitudes in a dose-dependent manner. Mice that had 

received 1 mg rolipram per 1 kg body weight 30 minutes prior to the test phase (n = 8) had a 

lower FPS score than mice that had received 0.2 mg/kg (n = 8), which had a lower FPS score 

than mice that had received 0 mg/kg (saline, n = 8). This pattern suggests that rolipram re-

duces the expression (and possibly the experience) of fear in mice in a dose-dependent man-

ner (Figure 5). Experiment 2, in which 1 (n = 9), .2 (n = 9), .03 (n = 9) or 0 mg/kg rolipram 

were delivered prior to the training phase, FPS scores assessed 24 h later revealed that rol-

ipram did not significantly affect fear acquisition. 

 

 

 

Figure 5: Rolipram reduced fear as measured with the FPS-score. White bars reflect mean 
FPS-scores (+/-SEM) with no prior injection and grey bars reflect FPS-scores 30 min after 
injection of saline or rolipram. 
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In Experiment 3, n = 61 mice were fear conditioned and tested for FPS scores. Based 

on these scores, mice were then assigned to one of four groups to achieve equivalent mean 

FPS scores. Groups were randomly determined to receive either 1 (n= 12), 0.2 (n = 16), 0.03 

(n = 15) or 0 mg/kg rolipram (n = 18) 30 min prior to an extinction session. FPS scores as-

sessed at a subsequent testing phase revealed that mice that had received saline prior to ex-

tinction showed a significant decline in FPS scores from before to after extinction. Impor-

tantly, this decline was significantly reduced in mice that had received any dose of rolipram. 

Thus, in sharp contrast to our expectations, rolipram did not ameliorate, but rather impair ex-

tinction learning. In fact, very small doses (.03 mg/kg) were sufficient to significantly weaken 

extinction (p < .001). 

In Experiment 4, we wanted to better understand why rolipram disturbed extinction as 

revealed by Experiment 3. N = 18 mice were trained, tested and assigned to two groups to 

achieve equivalent FPS scores. They then underwent four extinction sessions and were in-

jected saline (n = 9) or 1 mg/kg rolipram (n = 9) prior to each session. In those extinction ses-

sions the CS was presented 21 times and always co-terminated with a noise burst. Instead of 

FPS scores (as in Experiments 1 - 3) the startle response to that burst averaged over 7 trials 

(yielding 3 blocks for each session) served to indicate fear (CS-associated startle) during ex-

tinction. The results are displayed in Fig 6. As can be seen, for mice receiving saline, CS-

associated startle decreased within extinction sessions and between extinction sessions. Mice 

receiving rolipram were characterized by overall reduced startle amplitudes (replicating pani-

colytic properties of rolipram found in Experiment 1) and impaired between-session extinc-

tion despite intact within session extinction. At a final post-extinction test (i.e., when nothing 

was injected), the mean CS-associated startle of the rolipram group was significantly larger 

than that of the control group (replicating impaired extinction found in Experiment 3). These 

findings suggest that rolipram impairs extinction by affecting consolidation (i.e., between-

session extinction) rather than short-term acquisition (i.e., within-session extinction) per se. 
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The fifth experiment was a replication of Experiment 4 with the only difference being that, 

due to technical failure, CS-associated startles were not recorded on the fourth extinction ses-

sion. Again, the between-session extinction was significantly larger in the control compared 

to the rolipram group, where between-session extinction was not evident. The fifth experi-

ment (Experiment 4B) thus replicated the main finding of Experiment 4 – that rolipram im-

pairs extinction consolidation. 

 

 

Figure 6: The decline of fear-associated startle responses over four days of extinction training 
subdivided into three consecutive trial-blocks for each session. While rolipram does not affect 
within session extinction, increases in startle responses from the last block of one session to 
the first block of the next session suggest impaired between-session consolidation of fear ex-
tinction in the rolipram group (black lines). Consistently, CS-associated startle responses at a 
final “injection free” Post-Extinction Test indicate that rolipram- but not saline-treated mice 
still expressed high levels of fear after the extinction treatment. 
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Discussion 

The five experiments of Study 4 revealed that rolipram disturbs expression and extinc-

tion consolidation of conditioned fear in mice. Contrary to our expectations, the experimental 

elevation of cAMP presumably increasing CREB phosphorylation and expression of learning-

relevant genes, did not improve acquisition or extinction of fear but – if anything – impaired 

these processes. This finding contrasts with prior reports that rolipram may serve as a memory 

enhancer (for review see: Reneerkens, Rutten, Steinbusch, Blokland, & Prickaerts, 2009).  

The present study also differs from earlier investigations that found that rolipram 

boosts the acquisition of fear (Barad et al., 1998; Monti et al., 2006). Of relevance, these stud-

ies focussed on contextual fear conditioning, which is crucially dependent on hippocampal 

processes. Here, however, fear was conditioned to a tone for which the sensory cortices, tha-

lamic nuclei, lateral and basolateral nuclei of the amygdalae compose the core structures (M. 

Davis, 2006). Similarly, extinction consolidation involves non-hippocampal structures, such 

as the amygdala and the ventromedial prefrontal cortex (although extinction consolidation of 

contextual fear likely involves the hippocampus: D. Mueller, Porter, & Quirk, 2008). With 

regard to hippocampus-independent learning, other studies also indicate that rolipram does 

not enhance – or may even interfere with – learning (Barad et al., 1998; Gong et al., 2004), 

suggesting that rolipram may have different effects at different structure-dependent processes. 

Note that this view supports the herein proposed dynamic multilevel approach to fear and 

anxiety because it is assumed that the effect of molecular level manipulations (i.e., rolipram) 

on higher-level phenomena (i.e., extinction, acquisition and expression of fear) may crucially 

depend on intermediate levels (i.e., involvement of specific structures). In order to identify 

such intermediate stations on the pathway from molecules to modulation of fear, future exten-

sions of the present study could include the analysis of cAMP and/or pCREB levels in the 

aforementioned structures. 
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In contrast to Studies 1 through 3, Study 4 was conducted with mice instead of hu-

mans. However, affective modulation of the startle reflex can be found in humans and may be 

a valid endophenotype for exaggerated fearfulness (Corr et al., 1995; Vaidyanathan, Patrick, 

& Bernat, 2009). Moreover, rolipram has been considered for pharmacotherapy in humans 

due to its antidepressant (Li et al., 2009; Wachtel, 1983) and memory enhancing (Reneerkens 

et al., 2009) properties. Thus, future studies should test whether rolipram has panicolytic and 

anxiolytic effects in humans as well, and whether it disturbs extinction of fear in humans. 

While the former may be beneficial in some conditions (e.g., in the treatment of depression 

with comorbid anxiety disorders), the latter would counter-indicate rolipram treatment during 

exposure therapy.  

On the search for new extinction boosters, the present findings may also be of value – 

if inhibition of PDE4s impairs the extinction of fear, it could be speculated that cAMP-

dependent elevations of PKA hinder extinction. As a result, it could be further speculated that 

inhibition of PKA ameliorates extinction. Interestingly, Isiegas et al. (Isiegas, Park, Kandel, 

Abel, & Lattal, 2006) reported that extinction of contextual fear was indeed improved when 

PKA was inhibited in transgenic mice. With regard to humans, future studies could investi-

gate whether polymorphisms related to cAMP, PKA, and PDE4 are also related to fearfulness 

and/or exposure therapy outcome success. 
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Integration and Conclusion 

 

The four studies presented in this thesis independently provided support for a dynamic 

multilevel account for anxiety-related phenomena (see Table 2). Study 1 showed how medial 

prefrontal cortex activity (i.e., Structure Level) measured with EEG was related to heart rate 

(PNS Level) and provided some evidence that this association was dynamically linked to trait 

anxiety: in conditions of negative but not positive feedback did trait anxiety increase the link 

between cortical and cardiac activity. This modulation is consistent with the functional defini-

tion of anxiety given that negative but not positive feedback is normally associated with in-

creased danger in the future.  

Study 2 showed how dopaminergic genes (Molecule Level) and manipulations of do-

pamine (Synapse Level) presumably affected network states (Network Level), which then 

influenced brain activity at the AMC (Structure Level) and error-related behavior (Whole 

System Level). The unexpected finding that trait-anxiety was not related to error monitoring 

in that study can be explained post hoc by task characteristics (Olvet & Hajcak, 2009), again 

suggesting that some patterns of multilevel interactions are dynamically linked to anxiety.  

Study 3 tested individuals with GAD (manifest at the Whole System Level) using a 

neuropsychological test designed to measure future-orientation in patients with damage of the 

ventromedial prefrontal cortex (Structure Level) and resulting impairments in neurovisceral 

connectivity (Bechara et al., 1997) thus affecting the CNS and PNS-Levels. Consistent with 

(a) the assumed future-orientation of anxiety and (b) increased neurovisceral connectivity in 

anxiety (Study 1) individuals with GAD performed better in the IGT than non-anxious control 

participants.  

Finally, Study 4 manipulated intracellular signalling cascades (Molecule Level), 

thereby modulating synaptic learning and extinction learning (Synapse Level), which then 

affected fear-related reflex potentiation (CNS-Level and Whole Systems Level). In contrast to 
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prior studies that found improved extinction learning of hippocampus-dependent fear memory 

(e.g., fear conditioned to a place), Study 4 found that rolipram disturbed extinction learning of 

presumably hippocampus independent fear-memory (e.g., fear conditioned to a sound). To-

gether with these other studies, Study 4 thus provides further evidence that situational charac-

teristics (place vs. sound as cue for present danger) may influence various levels (including 

the Molecule Level) with regard to fear processing. 

As can be seen in Table 2, some studies covered different levels than others. Of 

course, the herein proposed subdivision into eight levels of organization should be seen as a 

flexible framework used for illustrating the multilevel perspective rather than as a rigid 

model. Future research may uncover that much more levels of organization are needed to ex-

plain certain phenomena, and there may also be cases when good predictions can be made 

based on fewer than eight levels. However, Table 2 also shows that guesses for most empty 

cells can be made based on existing theories and research findings. A critical exception may 

be the network level, and it has been noted by others that this level is underrepresented in 

cognitive neuroscience research. However, the network level may be particularly critical for 

linking what we know about substances, cells, synapses and neurons (mostly based on in vitro 

work) to what we know about anxiety relevant structures (based on neuroimaging, EEG and 

lesion studies). From this perspective, future studies that include the neural network levels 

when investigating danger-reduction phenomena may be indispensable stations for achieving 

a wholistic understanding of fear and anxiety. 

 



 Study 1 Study 2 Study 3 Study 4 

Danger reduction mechanism Physiological Adaptation Error-monitoring Future-oriented decisions Reflex potentiation 

Whole System Level Trait anxiety Post-error slowing GAD Startle response 

PNS/CNS Heart Rate Heart rate change (Hajcak et al., 

2003b) 

Decision-making 

Skin conductance change 

(Bechara et al., 1997) 

Potentiation of startle 

Systems Central Autonomous Network 

(CAN, Benarroch, 1997) 

Error-monitoring system 

(Holroyd & Coles, 2002) 

vmPFC-Amygdala connections 

(Damasio, 1996) 

Startle pathway (M. Davis, 

2006) 

Structure mPFC Anterior midcingulate vmPFC (Bechara et al., 1994) mPFC/ infralimbic cortex  (D. 

Mueller et al., 2008), Amygdala 

(M. Davis, 2006) 

Network ? D2- vs D1-state (Durstewitz & 

Seamans, 2008) 

? ?  

Synapse Serotonin (van der Veen et al., 

2008), Norepinephrine 

(Nieuwenhuis et al., 2011) 

Sulpiride Serotonin, 

Dopamine (Bechara et al., 2001) 

Norepinephrine (D. Mueller et 

al., 2008) 

Molecule COMT (unpublished 

observations) 

COMT 5HTTLPR (Stoltenberg & 

Vandever, 2010) 

cAMP, PDE4 

Dynamic modulation Positive vs. negative feedback Feedback given or not (Olvet & 

Hajcak, 2009) 

Independent of high vs. low risk Hippocampus-dependent vs. 

hippocampus-independent 

 

Table 2: The four studies placed in the present multilevel framework. Grey font indicates variables that can be hypothesized to be relevant for the 
mechanism of interest at this particular neurobiological level although that level was not included into the present analyses. mPFC = medial 
prefrontal cortex; vmPFC = ventromedial prefrontal cortex; cAMP = cyclic adenosine monophosphate; PDE4 = Phosphodiesterase 4; 5HTTLPR = 
serotonin transporter linked polymorphic region; GAD = Generalized Anxiety Disorder. 



49 
 

 

 

References 

Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining 

the future: common and distinct neural substrates during event construction and elabo-

ration. Neuropsychologia, 45, 1363-1377. 

Alain, C., McNeely, H. E., He, Y., Christensen, B. K., & West, R. (2002). Neurophysiological 

evidence of error-monitoring deficits in patients with schizophrenia. Cereb Cortex, 12, 

840-846. 

Alberini, C. M. (1999). Genes to remember. J Exp Biol, 202, 2887-2891. 

Anokhin, A. P., Golosheykin, S., & Heath, A. C. (2008). Heritability of frontal brain function 

related to action monitoring. Psychophysiology, 45, 524-534. 

Barad, M., Bourtchouladze, R., Winder, D. G., Golan, H., & Kandel, E. (1998). Rolipram, a 

type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-

lasting long-term potentiation and improves memory. Proc Natl Acad Sci U S A, 95, 

15020-15025. 

Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future 

consequences following damage to human prefrontal cortex. Cognition, 50, 7-15. 

Bechara, A., Damasio, H., & Damasio, A. R. (2001). Manipulation of dopamine and serotonin 

causes different effects on covert and overt decision-making. Society for Neuroscience 

Abstracts, 27, 126. 

Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously 

before knowing the advantageous strategy. Science, 275, 1293-1295. 

Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): myopia 

for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690-1705. 

Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making defi-

cit of patients with ventromedial prefrontal cortex lesions. Brain, 123, 2189-2202. 



50 
 

 

Benarroch, E. E. (1997). Central autonomic network: functional organization and clinical 

correlations. Armonk, NY: Futura Pub. Co. 

Berntson, G. G., Bigger, J. T., Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., 

et al. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psycho-

physiology, 34, 623-648. 

Berntson, G. G., Sarter, M., & Cacioppo, J. T. (1998). Anxiety and cardiovascular reactivity: 

the basal forebrain cholinergic link. Behav Brain Res, 94, 225-248. 

Beste, C., Domschke, K., Kolev, V., Yordanova, J., Baffa, A., Falkenstein, M., et al. (2009). 

Functional 5-HT1a receptor polymorphism selectively modulates error-specific sub-

processes of performance monitoring. Hum Brain Mapp, 31, 621-630. 

Bilder, R. M., Volavka, J., Lachman, H. M., & Grace, A. A. (2004). The catechol-O-

methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis 

and neuropsychiatric phenotypes. Neuropsychopharmacology, 29, 1943-1961. 

Blanchard, D. C., Griebel, G., & Blanchard, R. J. (2001). Mouse defensive behaviors: phar-

macological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev, 25, 

205-218. 

Blanchard, R. J., Griebel, G., Henrie, J. A., & Blanchard, D. C. (1997). Differentiation of anx-

iolytic and panicolytic drugs by effects on rat and mouse defense test batteries. Neuro-

sci Biobehav Rev, 21, 783-789. 

Boksem, M. A., Tops, M., Wester, A. E., Meijman, T. F., & Lorist, M. M. (2006). Error-

related ERP components and individual differences in punishment and reward sensi-

tivity. Brain Res, 1101, 92-101. 

Borkovec, T. D. (2002). Life in the future versus life in the present. Clinical Psychology: Sci-

ence and Practice, 9, 76-80. 

Borkovec, T. D., Alcaine, O. M., & Behar, E. (Eds.). (2004). Avoidance Theory of Worry and 

Generalized Anxiety Disorder: New York, NY, US: Guilford Press. 



51 
 

 

Borkovec, T. D., Robinson, E., Pruzinsky, T., & DePree, J. A. (1983). Preliminary explora-

tion of worry: some characteristics and processes. Behav Res Ther, 21, 9-16. 

Borkovec, T. D., & Sharpless, B. (Eds.). (2004). Generalized Anxiety Disorder: Bringing 

Cognitive-Behavioral Therapy into the Valued Present: New York, NY, US: Guilford 

Press. 

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict 

monitoring and cognitive control. Psychol Rev, 108, 624-652. 

Bourtchouladze, R., Lidge, R., Catapano, R., Stanley, J., Gossweiler, S., Romashko, D., et al. 

(2003). A mouse model of Rubinstein-Taybi syndrome: defective long-term memory 

is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci U S A, 100, 

10518-10522. 

Bouton, M. E. (2004). Context and behavioral processes in extinction. Learn Mem, 11, 485-

494. 

Brown, T. A., Chorpita, B. F., & Barlow, D. H. (1998). Structural relationships among dimen-

sions of the DSM-IV anxiety and mood disorders and dimensions of negative affect, 

positive affect, and autonomic arousal. J Abnorm Psychol, 107, 179-192. 

Brown, T. A., O’Leary, T. A., & Barlow, D. H. (1993). Generalized anxiety disorder. In D. H. 

Barlow (Ed.), Clinical handbook of psychological disorders: A step-by-step treatment 

manual (pp. 137–188). New York: The Guilford Press. 

Caley, C. F., & Weber, S. S. (1995). Sulpiride: an antipsychotic with selective dopaminergic 

antagonist properties. Ann Pharmacother, 29, 152-160. 

Campbell-Sills, L., Liverant, G. I., & Brown, T. A. (2004). Psychometric evaluation of the 

behavioral inhibition/behavioral activation scales in a large sample of outpatients with 

anxiety and mood disorders. Psychol Assess, 16, 244-254. 

Carlezon, W. A., Jr., Duman, R. S., & Nestler, E. J. (2005). The many faces of CREB. Trends 

Neurosci, 28, 436-445. 



52 
 

 

Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affec-

tive responses to impending reward and punishment: The BIS/BAS Scales. Journal of 

Personality and Social Psychology, 67, 319-333. 

Cattell, R. B. (1952). The three basic factor-analytic designs - Their interrelations and deriva-

tives. Psychological Bulletin, 49, 499 - 520. 

Cavedini, P., Riboldi, G., Keller, R., D'Annucci, A., & Bellodi, L. (2002). Frontal lobe dys-

function in pathological gambling patients. Biol Psychiatry, 51, 334-341. 

Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., et al. (2004). 

Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): ef-

fects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum 

Genet, 75, 807-821. 

Chen, Y. P., Ehlers, A., Clark, D. M., & Mansell, W. (2002). Patients with generalized social 

phobia direct their attention away from faces. Behav Res Ther, 40, 677-687. 

Churchland, P. S., & Sejnowski, T. J. (1988). Perspectives on cognitive neuroscience. Sci-

ence, 242, 741-745. 

Comery, T. A., Martone, R. L., Aschmies, S., Atchison, K. P., Diamantidis, G., Gong, X., et 

al. (2005). Acute gamma-secretase inhibition improves contextual fear conditioning in 

the Tg2576 mouse model of Alzheimer's disease. J Neurosci, 25, 8898-8902. 

Corr, P. J., Wilson, G. D., Fotiadou, M., Kumari, V., Gray, N. S., Checkley, S., et al. (1995). 

Personality and affective modulation of the startle reflex. Personality and Individual 

Differences, 19, 543-553. 

Costa, P. T., & McCrae, R. R. (1992). The Revised NEO Personality Inventory. Odessa, FL: 

Psychological Assesment Resources. 

Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integra-

tion. J Comp Neurol, 493, 154-166. 



53 
 

 

Critchley, H. D., Mathias, C. J., Josephs, O., O'Doherty, J., Zanini, S., Dewar, B. K., et al. 

(2003). Human cingulate cortex and autonomic control: converging neuroimaging and 

clinical evidence. Brain, 126, 2139-2152. 

Crone, E. A., van der Veen, F. M., van der Molen, M. W., Somsen, R. J., van Beek, B., & 

Jennings, J. R. (2003). Cardiac concomitants of feedback processing. Biol Psychol, 64, 

143-156. 

Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the pre-

frontal cortex. Philos Trans R Soc Lond B Biol Sci, 351, 1413-1420. 

Davis, M. (2001). Fear-potentiated startle in rats. Curr Protoc Neurosci, Chapter 8, Unit 8 

11A. 

Davis, M. (2006). Neural systems involved in fear and anxiety measured with fear-potentiated 

startle. Am Psychol, 61, 741-756. 

Davis, R. L., Cherry, J., Dauwalder, B., Han, P. L., & Skoulakis, E. (1995). The cyclic AMP 

system and Drosophila learning. Mol Cell Biochem, 149-150, 271-278. 

de Bruijn, E. R., Hulstijn, W., Verkes, R. J., Ruigt, G. S., & Sabbe, B. G. (2004). Drug-

induced stimulation and suppression of action monitoring in healthy volunteers. Psy-

chopharmacology (Berl), 177, 151-160. 

de Bruijn, E. R., Sabbe, B. G., Hulstijn, W., Ruigt, G. S., & Verkes, R. J. (2006). Effects of 

antipsychotic and antidepressant drugs on action monitoring in healthy volunteers. 

Brain Res, 1105, 122-129. 

Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D. Y., & Engel, A. K. 

(2005). Trial-by-trial coupling of concurrent electroencephalogram and functional 

magnetic resonance imaging identifies the dynamics of performance monitoring. J 

Neurosci, 25, 11730-11737. 



54 
 

 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-

trial EEG dynamics including independent component analysis. J Neurosci Methods, 

134, 9-21. 

Depue, R. A., & Lenzenweger, M. F. (2005). A neurobehavioral dimensional model of per-

sonality disturbance. In M. L. a. J. Clarkin (Ed.), Theories of Personality Disorders (2 

ed.). New York: Guilford Press. 

Donchin, E. (1981). Presidential address, 1980. Surprise!...Surprise? Psychophysiology, 18, 

493-513. 

Durstewitz, D., & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine 

function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. 

Biol Psychiatry, 64, 739-749. 

Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. 

E., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function 

and risk for schizophrenia. Proc Natl Acad Sci U S A, 98, 6917-6922. 

Eichele, H., Juvodden, H. T., Ullsperger, M., & Eichele, T. (2010). Mal-adaptation of event-

related EEG responses preceding performance errors. Front Hum Neurosci, 4, 65. 

Epstein, S., & Roupenian, A. (1970). Heart rate and skin conductance during experimentally 

induced anxiety: the effect of uncertainty about receiving a noxious stimulus. J Pers 

Soc Psychol, 16, 20-28. 

Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods: an easy 

way to maximize the accuracy and power of your research. Am Psychol, 63, 591-601. 

Eysenck, M. W. (1992). Anxiety: The Cognitive Perspective. Hove: Psychology Press. 

Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reac-

tion errors and their functional significance: a tutorial. Biol Psychol, 51, 87-107. 

Fendt, M., & Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of con-

ditioned fear. Neurosci Biobehav Rev, 23, 743-760. 



55 
 

 

Fisher, R. A. (1950). Statistical Methods for Research Workers (11th ed.). Edinburgh, Great 

Britain: Oliver and Boyd. 

Foa, E. B., & Kozak, M. J. (1986). Emotional processing of fear: exposure to corrective in-

formation. Psychol Bull, 99, 20-35. 

Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputa-

tional account of cognitive deficits in medicated and nonmedicated Parkinsonism. J 

Cogn Neurosci, 17, 51-72. 

Frank, M. J., D'Lauro, C., & Curran, T. (2007). Cross-task individual differences in error 

processing: neural, electrophysiological, and genetic components. Cogn Affect Behav 

Neurosci, 7, 297-308. 

Frank, M. J., & O'Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in 

human cognition: psychopharmacological studies with cabergoline and haloperidol. 

Behav Neurosci, 120, 497-517. 

Friedman, B. H. (2007). An autonomic flexibility-neurovisceral integration model of anxiety 

and cardiac vagal tone. Biol Psychol, 74, 185-199. 

Garon, N., Moore, C., & Waschbusch, D. A. (2006). Decision making in children with ADHD 

only, ADHD-anxious/depressed, and control children using a child version of the Iowa 

Gambling Task. J Atten Disord, 9, 607-619. 

Gehring, W. J., Coles, M. G., Meyer, D. E., & Donchin, E. (1995). A brain potential manifes-

tation of error-related processing. Electroencephalogr Clin Neurophysiol Suppl, 44, 

261-272. 

Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-monitoring dysfunction in obses-

sive-compulsive disorder. Psychol Sci, 11, 1-6. 

Gianaros, P. J., Van Der Veen, F. M., & Jennings, J. R. (2004). Regional cerebral blood flow 

correlates with heart period and high-frequency heart period variability during work-



56 
 

 

ing-memory tasks: Implications for the cortical and subcortical regulation of cardiac 

autonomic activity. Psychophysiology, 41, 521-530. 

Gong, B., Vitolo, O. V., Trinchese, F., Liu, S., Shelanski, M., & Arancio, O. (2004). Persis-

tent improvement in synaptic and cognitive functions in an Alzheimer mouse model 

after rolipram treatment. J Clin Invest, 114, 1624-1634. 

Graham, F. K., & Clifton, R. K. (1966). Heart-rate change as a component of the orienting 

response. Psychol Bull, 65, 305-320. 

Gray, J. A., & McNaughton, N. (2000). The Neuropsychology of Anxiety: An Enquiry into the 

Functions of the Septohippocampal System (2nd ed.) (2 ed.). Oxford, UK: Oxford 

University Press. 

Grillon, C., Ameli, R., Woods, S. W., Merikangas, K., & Davis, M. (1991). Fear-potentiated 

startle in humans: effects of anticipatory anxiety on the acoustic blink reflex. Psycho-

physiology, 28, 588-595. 

Grundler, T. O., Cavanagh, J. F., Figueroa, C. M., Frank, M. J., & Allen, J. J. (2009). Task-

related dissociation in ERN amplitude as a function of obsessive-compulsive symp-

toms. Neuropsychologia, 47, 1978-1987. 

Hajcak, G., McDonald, N., & Simons, R. F. (2003a). Anxiety and error-related brain activity. 

Biol Psychol, 64, 77-90. 

Hajcak, G., McDonald, N., & Simons, R. F. (2003b). To err is autonomic: error-related brain 

potentials, ANS activity, and post-error compensatory behavior. Psychophysiology, 

40, 895-903. 

Hajcak, G., McDonald, N., & Simons, R. F. (2004). Error-related psychophysiology and 

negative affect. Brain Cogn, 56, 189-197. 

Hajcak, G., & Simons, R. F. (2002). Error-related brain activity in obsessive-compulsive un-

dergraduates. Psychiatry Res, 110, 63-72. 



57 
 

 

Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). 

Serotonin transporter genetic variation and the response of the human amygdala. Sci-

ence, 297, 400-403. 

Hettema, J. M., An, S. S., Bukszar, J., van den Oord, E. J., Neale, M. C., Kendler, K. S., et al. 

(2008). Catechol-O-methyltransferase contributes to genetic susceptibility shared 

among anxiety spectrum phenotypes. Biol Psychiatry, 64, 302-310. 

Hofmann, S. G. (2007). Enhancing exposure-based therapy from a translational research per-

spective. Behav Res Ther, 45, 1987-2001. 

Hofmann, S. G., Meuret, A. E., Smits, J. A., Simon, N. M., Pollack, M. H., Eisenmenger, K., 

et al. (2006). Augmentation of exposure therapy with D-cycloserine for social anxiety 

disorder. Arch Gen Psychiatry, 63, 298-304. 

Hofmann, S. G., & Smits, J. A. (2008). Cognitive-behavioral therapy for adult anxiety disor-

ders: a meta-analysis of randomized placebo-controlled trials. J Clin Psychiatry, 69, 

621-632. 

Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: rein-

forcement learning, dopamine, and the error-related negativity. Psychol Rev, 109, 679-

709. 

Hunnerkopf, R., Strobel, A., Gutknecht, L., Brocke, B., & Lesch, K. P. (2007). Interaction 

between BDNF Val66Met and dopamine transporter gene variation influences anxi-

ety-related traits. Neuropsychopharmacology, 32, 2552-2560. 

Isiegas, C., Park, A., Kandel, E. R., Abel, T., & Lattal, K. M. (2006). Transgenic inhibition of 

neuronal protein kinase A activity facilitates fear extinction. J Neurosci, 26, 12700-

12707. 

Izard, C. E., & Ackerman, B. P. (2000). Motivational, organizational, and regulatory func-

tions of discrete emotions. In M. Lewis & J. M. Haviland-Jones (Eds.), Handbook of 

emotions (2 ed., pp. 253 - 264). New York: Guilford Press. 



58 
 

 

Jocham, G., & Ullsperger, M. (2009). Neuropharmacology of performance monitoring. Neu-

rosci Biobehav Rev, 33, 48-60. 

Joe, K. H., Kim, D. J., Park, B. L., Yoon, S., Lee, H. K., Kim, T. S., et al. (2008). Genetic 

association of DRD2 polymorphisms with anxiety scores among alcohol-dependent 

patients. Biochem Biophys Res Commun, 371, 591-595. 

Keselman, H. J., Algina, J., Lix, L. M., Wilcox, R. R., & Deering, K. N. (2008). A generally 

robust approach for testing hypotheses and setting confidence intervals for effect sizes. 

Psychol Methods, 13, 110-129. 

Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). 

Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the Na-

tional Comorbidity Survey Replication. Arch Gen Psychiatry, 62, 593-602. 

Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Preva-

lence, severity, and comorbidity of 12-month DSM-IV disorders in the National Co-

morbidity Survey Replication. Arch Gen Psychiatry, 62, 617-627. 

Krämer, U. M., Cunillera, T., Camara, E., Marco-Pallares, J., Cucurell, D., Nager, W., et al. 

(2007). The impact of catechol-O-methyltransferase and dopamine D4 receptor geno-

types on neurophysiological markers of performance monitoring. J Neurosci, 27, 

14190-14198. 

Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., & Weinshilboum, 

R. M. (1996). Human catechol-O-methyltransferase pharmacogenetics: description of 

a functional polymorphism and its potential application to neuropsychiatric disorders. 

Pharmacogenetics, 6, 243-250. 

Lang, P. J., Gatchel, R. J., & Simons, R. F. (1975). Electro-cortical and cardiac rate correlates 

of psychophysical judgment. Psychophysiology, 12, 649-655. 

LeDoux, J. (2007). The amygdala. Curr Biol, 17, R868-874. 



59 
 

 

Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., et al. (1996). As-

sociation of anxiety-related traits with a polymorphism in the serotonin transporter 

gene regulatory region. Science, 274, 1527-1531. 

Li, Y. F., Huang, Y., Amsdell, S. L., Xiao, L., O'Donnell, J. M., & Zhang, H. T. (2009). Anti-

depressant- and anxiolytic-like effects of the phosphodiesterase-4 inhibitor Rolipram 

on behavior depend on cyclic AMP response element binding protein-mediated neuro-

genesis in the hippocampus. Neuropsychopharmacology, 34, 2404 - 2419. 

Lichtenstein, P., & Annas, P. (2000). Heritability and prevalence of specific fears and phobias 

in childhood. J Child Psychol Psychiatry, 41, 927-937. 

Luu, P., Collins, P., & Tucker, D. M. (2000). Mood, personality, and self-monitoring: nega-

tive affect and emotionality in relation to frontal lobe mechanisms of error monitoring. 

J Exp Psychol Gen, 129, 43-60. 

MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. J Ab-

norm Psychol, 95, 15-20. 

Makeig, S., Bell, A. J., Jung, T. P., & Sejnowski, T. J. (1996). Independent Component 

Analysis of electroencephalographic data. Advances in Neural Information Processing 

Systems, 8, 145-151. 

Matthews, G., & Gilliland, K. (1999). The personality theories of H. J. Eysenck and J. A. 

Gray: A comparative review. Apr 1999. Personality and Individual Differences, 26, 

583-626. 

Mauri, M. C., Bravin, S., Bitetto, A., Rudelli, R., & Invernizzi, G. (1996). A risk-benefit as-

sessment of sulpiride in the treatment of schizophrenia. Drug Saf, 14, 288-298. 

McGrath, M., Kawachi, I., Ascherio, A., Colditz, G. A., Hunter, D. J., & De Vivo, I. (2004). 

Association between catechol-O-methyltransferase and phobic anxiety. Am J Psychia-

try, 161, 1703-1705. 



60 
 

 

Meyer, T. J., Miller, M. L., Metzger, R. L., & Borkovec, T. D. (1990). Development and vali-

dation of the Penn State Worry Questionnaire. Behaviour Research and Therapy, 28, 

487-495. 

Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2009). Neural substrates of pleiotropic action 

of genetic variation in COMT: a meta-analysis. Mol Psychiatry, 15, 918-927. 

Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event-related brain potentials 

following incorrect feedback in a time-estimation task: Evidence for a "generic" neu-

ral system for error detection. Journal of Cognitive Neuroscience, 9, 788-798. 

Monti, B., Berteotti, C., & Contestabile, A. (2006). Subchronic rolipram delivery activates 

hippocampal CREB and arc, enhances retention and slows down extinction of condi-

tioned fear. Neuropsychopharmacology, 31, 278-286. 

Mowrer, O. H. (1947). On the dual nature of learning—a re-interpretation of "conditioning" 

and "problem-solving." Harvard Educational Review, 17, 102-148. 

Mueller, D., Porter, J. T., & Quirk, G. J. (2008). Noradrenergic signaling in infralimbic cortex 

increases cell excitability and strengthens memory for fear extinction. J Neurosci, 28, 

369-375. 

Mueller, E. M., Ahrens, B., Stemmler, G., Zangl, M., & Wacker, J. (2009). Single trial EEG 

amplitude predicts subsequent changes in heart rate within individuals – the cardio 

electroencephalographic covariance trace. Psychophysiology, 46, S85. 

Mueller, E. M., Hofmann, S. G., & Cherry, J. A. (2010). The type IV phosphodiesterase in-

hibitor rolipram disturbs expression and extinction of conditioned fear in mice. Neu-

ropharmacology, 59, 1-8. 

Mueller, E. M., Hofmann, S. G., Santesso, D. L., Meuret, A. E., Bitran, S., & Pizzagalli, D. A. 

(2008). Electrophysiological evidence of attentional biases in social anxiety disorder. 

Psychol Med, 1-12. 



61 
 

 

Mueller, E. M., Hofmann, S. G., Santesso, D. L., Meuret, A. E., Bitran, S., & Pizzagalli, D. A. 

(2009). Electrophysiological evidence of attentional biases in social anxiety disorder. 

Psychol Med, 39, 1141-1152. 

Mueller, E. M., Makeig, S., Delorme, A., Stemmler, G., & Wacker, J. (submitted). Interindi-

vidual differences in independent brain components - methodological considerations. 

Paper presented at the Psychologie und Gehirn, 2011.  

Mueller, E. M., Makeig, S., Stemmler, G., Hennig, J., & Wacker, J. (2010). Both trait anxiety 

associations and dopamine antagonist-induced reductions of the error-related negativ-

ity are moderated by the D2 receptor gene. Psychophysiology, 47, S47 - S48. 

Mueller, E. M., Nguyen, J., Ray, W., & Borkovec, T. D. (2009). Entscheidungsverhalten bei 

Generalisierter Angststoerung: Erhoehte Sensitivitaet fuer zukuenftige Verluste. 

Zeitschrift für Klinische Psychologie und Psychotherapie, 38, 50. 

Mueller, E. M., Nguyen, J., Ray, W. J., & Borkovec, T. D. (2010). Future-oriented decision-

making in Generalized Anxiety Disorder is evident across different versions of the 

Iowa Gambling Task. J Behav Ther Exp Psychiatry, 41, 165-171. 

Mueller, E. M., Stemmler, G., Hennig, J., & Wacker, J. (submitted abstract). 5HTTLPR and 

general condition influence experimentally induced negative affect and trait worry in 

healthy individuals – evidence for a diathesis-stress interaction (abstract). Zeitschrift 

für Klinische Psychologie und Psychotherapie. 

Mueller, E. M., Stemmler, G., & Wacker, J. (2010a). Single-trial electroencephalogram pre-

dicts cardiac acceleration: a time-lagged P-correlation approach for studying neurovis-

ceral connectivity. Neuroscience, 166, 491-500. 

Mueller, E. M., Stemmler, G., & Wacker, J. (2010b). Studying the brain with the heart car-

dio-electroencephalographic covariance traces as an alternative to the event-related 

potential technique? . Paper presented at the 52. Tagung experimentell arbeitender 

Psychologen (TeaP).  



62 
 

 

Myers, K. M., & Davis, M. (2007). Mechanisms of fear extinction. Mol Psychiatry, 12, 120-

150. 

Newman, M. G., Zuellig, A. R., Kachin, K. E., Constantino, M. J., Przeworski, A., Erickson, 

T., et al. (2002). Preliminary reliability and validity of the Generalized Anxiety Disor-

der Questionnaire-IV: A revised self-report diagnostic measure of generalized anxiety 

disorder. Behavior Therapy, 33, 215 - 233. 

Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional 

relationship between the P3 and autonomic components of the orienting response. 

Psychophysiology, 48, 162-175. 

Nieuwenhuis, S., Nielen, M. M., Mol, N., Hajcak, G., & Veltman, D. J. (2005). Performance 

monitoring in obsessive-compulsive disorder. Psychiatry Res, 134, 111-122. 

Notebaert, W., Houtman, F., Opstal, F. V., Gevers, W., Fias, W., & Verguts, T. (2009). Post-

error slowing: an orienting account. Cognition, 111, 275-279. 

Olvet, D. M., & Hajcak, G. (2008). The error-related negativity (ERN) and psychopathology: 

toward an endophenotype. Clin Psychol Rev, 28, 1343-1354. 

Olvet, D. M., & Hajcak, G. (2009). The effect of trial-to-trial feedback on the error-related 

negativity and its relationship with anxiety. Cogn Affect Behav Neurosci, 9, 427-433. 

Ostendorf, F., & Angleitner, A. (2004). NEO-Persönlichkeitsinventar nach Costa und 

McCrae, revidierte Form (NEO-PI-R). Göttingen, Germany: Hogrefe. 

Otten, L. J., Gaillard, A. W., & Wientjes, C. J. (1995). The relation between event-related 

brain potential, heart rate, and blood pressure responses in an S1-S2 paradigm. Biol 

Psychol, 39, 81-102. 

Pailing, P. E., & Segalowitz, S. J. (2004). The error-related negativity as a state and trait 

measure: motivation, personality, and ERPs in response to errors. Psychophysiology, 

41, 84-95. 



63 
 

 

Palmatier, M. A., Kang, A. M., & Kidd, K. K. (1999). Global variation in the frequencies of 

functionally different catechol-O-methyltransferase alleles. Biol Psychiatry, 46, 557-

567. 

Perkins, A. M., & Corr, P. J. (2005). Can worriers be winners? The association between wor-

rying and job performance. Personality and Individual Differences, 38, 25-31. 

Perkins, A. M., Ettinger, U., Davis, R., Foster, R., Williams, S. C., & Corr, P. J. (2009). Ef-

fects of Lorazepam and citalopram on human defensive reactions: ethopharmacologi-

cal differentiation of fear and anxiety. J Neurosci, 29, 12617-12624. 

Perkins, A. M., Kemp, S. E., & Corr, P. J. (2007). Fear and anxiety as separable emotions: an 

investigation of the revised reinforcement sensitivity theory of personality. Emotion, 

7, 252-261. 

Philibert, R. A., Beach, S. R., Gunter, T. D., Brody, G. H., Madan, A., & Gerrard, M. (2010). 

The effect of smoking on MAOA promoter methylation in DNA prepared from lym-

phoblasts and whole blood. Am J Med Genet B Neuropsychiatr Genet, 153B, 619-628. 

Rabbitt, P. M., & Phillips, S. (1967). Error-detection and correction latencies as a function of 

S-R compatibility. Q J Exp Psychol, 19, 37-42. 

Randt, C. T., Judge, M. E., Bonnet, K. A., & Quartermain, D. (1982). Brain cyclic AMP and 

memory in mice. Pharmacol Biochem Behav, 17, 677-680. 

Reneerkens, O. A., Rutten, K., Steinbusch, H. W., Blokland, A., & Prickaerts, J. (2009). Se-

lective phosphodiesterase inhibitors: a promising target for cognition enhancement. 

Psychopharmacology (Berl), 202, 419-443. 

Rushby, J. A., Barry, R. J., & Doherty, R. J. (2005). Separation of the components of the late 

positive complex in an ERP dishabituation paradigm. Clin Neurophysiol, 116, 2363-

2380. 



64 
 

 

Rutten, K., Basile, J. L., Prickaerts, J., Blokland, A., & Vivian, J. A. (2008). Selective PDE 

inhibitors rolipram and sildenafil improve object retrieval performance in adult cyno-

molgus macaques. Psychopharmacology (Berl), 196, 643-648. 

Santesso, D. L., Meuret, A. E., Hofmann, S. G., Mueller, E. M., Ratner, K. G., Roesch, E. B., 

et al. (2008). Electrophysiological correlates of spatial orienting towards angry faces: 

a source localization study. Neuropsychologia, 46, 1338-1348. 

Schacter, D. L., & Addis, D. R. (2007). The cognitive neuroscience of constructive memory: 

remembering the past and imagining the future. Philos Trans R Soc Lond B Biol Sci, 

362, 773-786. 

Segalowitz, S. J., Santesso, D. L., Murphy, T. I., Homan, D., Chantziantoniou, D. K., & 

Khan, S. Retest reliability of medial frontal negativities during performance monitor-

ing. Psychophysiology, 47, 260-270. 

Serra, G., Forgione, A., D'Aquila, P. S., Collu, M., Fratta, W., & Gessa, G. L. (1990). Possi-

ble mechanism of antidepressant effect of L-sulpiride. Clin Neuropharmacol, 13 Suppl 

1, S76-83. 

Sidman, M. (1953). Avoidance conditioning with brief shock and no exteroceptive warning 

signal. Science, 118, 157-158. 

Silvestre, J. S., Fernandez, A. G., & Palacios, J. M. (1999). Effects of rolipram on the elevated 

plus-maze test in rats: a preliminary study. J Psychopharmacol, 13, 274-277. 

Smoski, M. J., Lynch, T. R., Rosenthal, M. Z., Cheavens, J. S., Chapman, A. L., & Krishnan, 

R. R. (2008). Decision-making and risk aversion among depressive adults. J Behav 

Ther Exp Psychiatry, 39, 567-576. 

Spear, J. F., Kronhaus, K. D., Moore, E. N., & Kline, R. P. (1979). The effect of brief vagal 

stimulation on the isolated rabbit sinus node. Circ Res, 44, 75-88. 

Stein, D. J. (2001). Comorbidity in generalized anxiety disorder: impact and implications. J 

Clin Psychiatry, 62 Suppl 11, 29-34. 



65 
 

 

Stein, D. J., Westenberg, H. G., & Liebowitz, M. R. (2002). Social anxiety disorder and gen-

eralized anxiety disorder: serotonergic and dopaminergic neurocircuitry. J Clin Psy-

chiatry, 63 Suppl 6, 12-19. 

Stein, M. B., Fallin, M. D., Schork, N. J., & Gelernter, J. (2005). COMT polymorphisms and 

anxiety-related personality traits. Neuropsychopharmacology, 30, 2092-2102. 

Stein, M. B., Jang, K. L., & Livesley, W. J. (1999). Heritability of anxiety sensitivity: a twin 

study. Am J Psychiatry, 156, 246-251. 

Stemmler, G. (2004). Physiological Process During Emotion. In P. Philippot & R. S. Feldman 

(Eds.), The Regulation of Emotion. Mahwah, New Jersey: Lawrence Erlbaum Associ-

ates. 

Stoltenberg, S. F., & Vandever, J. M. (2010). Gender moderates the association between 5-

HTTLPR and decision-making under ambiguity but not under risk. Neuropharmacol-

ogy, 58, 423-428. 

Tellegen, A., & Waller, N. G. (2008). Exploring personality through test construction: Devel-

opment of the multidimensional personality questionnaire. In G. J. Boyle, G. Mat-

thews & D. H. Saklofske (Eds.), The Sage handbook of personality and assessment 

(Vol. 2, pp. 161-292). London: Sage. 

Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart-brain connection: further 

elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev, 33, 81-

88. 

Ullsperger, M. (2010). Genetic association studies of performance monitoring and learning 

from feedback: the role of dopamine and serotonin. Neurosci Biobehav Rev, 34, 649-

659. 

Vaidyanathan, U., Patrick, C. J., & Bernat, E. M. (2009). Startle reflex potentiation during 

aversive picture viewing as an indicator of trait fear. Psychophysiology, 46, 75-85. 



66 
 

 

van der Veen, F. M., Mies, G. W., van der Molen, M. W., & Evers, E. A. (2008). Acute tryp-

tophan depletion in healthy males attenuates phasic cardiac slowing but does not affect 

electro-cortical response to negative feedback. Psychopharmacology (Berl), 199, 255-

263. 

Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nat 

Rev Neurosci, 6, 533-544. 

Wachtel, H. (1983). Potential antidepressant activity of rolipram and other selective cyclic 

adenosine 3',5'-monophosphate phosphodiesterase inhibitors. Neuropharmacology, 22, 

267-272. 

Wacker, J., & Gatt, J. M. (2010). Resting posterior versus frontal delta/theta EEG activity is 

associated with extraversion and the COMT VAL(158)MET polymorphism. Neurosci 

Lett, 478, 88-92. 

Wacker, J., Mueller, E. M., Hennig, J., & Stemmler, G. (under revision). How to consistently 

link extraversion and intelligence to the Catechol-O-Methyltransferase (COMT) Gene: 

On defining and measuring psychological phenotypes in neurogenetic research. Jour-

nal of Personality and Social Psychology. 

Wacker, J., Reuter, M., Hennig, J., & Stemmler, G. (2005). Sexually dimorphic link between 

dopamine D2 receptor gene and neuroticism-anxiety. Neuroreport, 16, 611-614. 

Wager, T. D., van Ast, V. A., Hughes, B. L., Davidson, M. L., Lindquist, M. A., & Ochsner, 

K. N. (2009). Brain mediators of cardiovascular responses to social threat, Part II: Pre-

frontalsubcortical pathways and relationship with anxiety. Neuroimage, 47, 836-851. 

Wager, T. D., Waugh, C. E., Lindquist, M., Noll, D. C., Fredrickson, B. L., & Taylor, S. F. 

(2009). Brain mediators of cardiovascular responses to social threat Part I: Reciprocal 

dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. 

Neuroimage, 47, 821-835. 



67 
 

 

Walker, D. L., Ressler, K. J., Lu, K. T., & Davis, M. (2002). Facilitation of conditioned fear 

extinction by systemic administration or intra-amygdala infusions of D-cycloserine as 

assessed with fear-potentiated startle in rats. J Neurosci, 22, 2343-2351. 

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief meas-

ures of positive and negative affect: the PANAS scales. J Pers Soc Psychol, 54, 1063-

1070. 

Watson, J. B., & Rayner, R. (1920). Conditioned emotional reactions. Journal of Experimen-

tal Psychology, 3, 1-14. 

Weinshilboum, R. M., Otterness, D. M., & Szumlanski, C. L. (1999). Methylation pharmaco-

genetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine 

N-methyltransferase. Annu Rev Pharmacol Toxicol, 39, 19-52. 

Werner, N. S., Duschek, S., & Schandry, R. (2009). Relationships between affective states 

and decision-making. Int J Psychophysiol, 74, 259-265. 

Winslow, J. T., Parr, L. A., & Davis, M. (2002). Acoustic startle, prepulse inhibition, and 

fear-potentiated startle measured in rhesus monkeys. Biol Psychiatry, 51, 859-866. 

Wohr, M., Borta, A., & Schwarting, R. K. (2005). Overt behavior and ultrasonic vocalization 

in a fear conditioning paradigm: a dose-response study in the rat. Neurobiol Learn 

Mem, 84, 228-240. 

Wray, N. R., James, M. R., Dumenil, T., Handoko, H. Y., Lind, P. A., Montgomery, G. W., et 

al. (2008). Association study of candidate variants of COMT with neuroticism, anxiety 

and depression. Am J Med Genet B Neuropsychiatr Genet, 147B, 1314-1318. 

Zhang, H. T., Huang, Y., Jin, S. L., Frith, S. A., Suvarna, N., Conti, M., et al. (2002). Antide-

pressant-like profile and reduced sensitivity to rolipram in mice deficient in the 

PDE4D phosphodiesterase enzyme. Neuropsychopharmacology, 27, 587-595. 



68 
 

 

Zirnheld, P. J., Carroll, C. A., Kieffaber, P. D., O'Donnell, B. F., Shekhar, A., & Hetrick, W. 

P. (2004). Haloperidol impairs learning and error-related negativity in humans. J Cogn 

Neurosci, 16, 1098-1112. 

Zohar, J., & Westenberg, H. G. (2000). Anxiety disorders: a review of tricyclic antidepres-

sants and selective serotonin reuptake inhibitors. Acta Psychiatr Scand Suppl, 403, 39-

49. 

Zuckerman, M. (2002). Zuckerman-Kuhlman personality questionnaire (ZKPQ): An alterna-

tive five-factorial model. In R. Bd & P. M (Eds.), Big Five Assessment. Göttingen, 

Germany: Hogrefe & Huber. 

 

 



69 
 

 

 

 

 

 

 

 

 

 

Empirical Studies 



70 
 

 

 

 

 

 

 

Study 1 

 

Mueller, E. M., Stemmler, G., & Wacker, J. (2010). Single-trial EEG predicts cardiac 

acceleration: A time-lagged P-correlation approach for studying neurovisceral connectivity. 

Neuroscience, 166, 491-500. 

 



S
A
S

E

P
1

A
c
a
s
r
h
p
l
b
l
h
c
m
a
c
s
W
p
t
l
t
r
r
p
m
u
f
L

K
h

T
c
L
e
w
p
o
r
e

*
6
E
A
t
e
n
p

Please cite this article in press as: Mueller EM, et al., Single-trial electroencephalogram predicts cardiac acceleration: A time-lagged
P-correlation approach for studying neurovisceral connectivity, Neuroscience (2009), doi: 10.1016/j.neuroscience.2009.12.051

Neuroscience xx (2009) xxx

0
d

ARTICLE IN PRESS
INGLE-TRIAL ELECTROENCEPHALOGRAM PREDICTS CARDIAC
CCELERATION: A TIME-LAGGED P-CORRELATION APPROACH FOR

TUDYING NEUROVISCERAL CONNECTIVITY

d
e
n
r
d
a
D
l
a
t
d
g
T

a
v
a
n
w
i
h
s
e
e

s
(
a
a
S
t
t
m
2

l
s
b
F
p
f
e
t
a
2
p
a
2

. M. MUELLER,* G. STEMMLER AND J. WACKER

hilipps-Universitaet Marburg, Faculty of Psychology, Gutenbergstr.
8, 35032 Marburg, Germany

bstract—Cortical efferences to the heart are important for
ardiovascular health, psychopathology, emotion regulation
nd other dimensions of human functioning. Although re-
earchers have already begun to outline the underlying neu-
oanatomy, the timing of neurovisceral communication in
umans is difficult to study non-invasively. A possible cou-
ling between the brain and the heart can be observed fol-

owing feedback stimuli, which have been shown to evoke
oth, early (i.e. <500 ms) signatures in the electroencepha-

ogram (EEG) and changes in the chronotropy of subsequent
eart beats. Because standard approaches may be insuffi-
ient to study how these responses are related, we suggest a
ethod termed “Cardio–Electroencephalographic Covari-

nce Tracing” (CECT), which is based on time-lagged P-
orrelations (i.e., correlations within individuals) between
ingle-trial EEG magnitudes and heart period changes.
hen CECT was applied to data from n�31 individuals who

erformed a gambling task, central midline EEG magni-
udes from 280 to 340 ms after feedback reliably P-corre-
ated with cardiac acceleration 2 to 5 s thereafter. In addi-
ion positive vs. negative feedback lead to enhanced event
elated potential amplitudes from 200 to 280 ms and to
elative cardiac acceleration from 1 to 3.5 s after feedback
resentation. The results imply that neurogenic cardiac
odulations begin to be affected 200 to 400 ms after stim-
lus presentation and demonstrate the utility of CECTs for

uture investigations. © 2009 IBRO. Published by Elsevier
td. All rights reserved.

ey words: EEG, feedback related negativity, P300, P2a,
eart period, P-correlation.

he relationships between the activity of the brain and the
ardiovascular system are highly complex (Thayer and
ane, 2009) and include multiple descending (e.g., Wager
t al., 2009) and ascending (Rau and Elbert, 2001) path-
ays. Cortico–cardiac and/or cardio–cortical connections
lay important roles in recent psychophysiological models
f anxiety (Berntson et al., 1998; Friedman, 2007), emotion
egulation (Thayer and Lane, 2000, 2009), social (Porges
t al., 1996) and psychopathological (Beauchaine, 2001)

Corresponding author. Tel: �49-6421-282-3555; fax: �49-6421-282-
559.
-mail address: erik.mueller@staff.uni-marburg.de (E. M. Mueller).
bbreviations: CECT, cardio–electroencephalographic covariance

race; ECG, electrocardiogram; EEG, electroencephalography; EOG,
lectrooculogram; ERP, event related potential; fMRI, functional mag-
c
etic resonance imaging; FRN, feedback related negativity; HP, heart
eriod.

306-4522/09 $ - see front matter © 2009 IBRO. Published by Elsevier Ltd. All right
oi:10.1016/j.neuroscience.2009.12.051

1

evelopment and may play a role in cardiovascular dis-
ase (Thayer and Lane, 2007). Numerous functional mag-
etic resonance imaging (fMRI), positron emission tomog-
aphy, neurological, and animal studies have established a
ominant role of the medial frontal cortex in neurogenic
utonomic regulation in general (Critchley et al., 2005;
amasio, 1996) and cardiovascular modulation in particu-

ar (Critchley et al., 2003; Gianaros et al., 2004; Wager et
l., 2009). In addition, an extended network of more pos-
erior and subcortical structures including insula, amyg-
ala, hypothalamus, periaqueductal gray, and other re-
ions is implicated in autonomic control (Benarroch, 1997;
hayer and Lane, 2009; Wager et al., 2009).

A widely used indicator for cardiovascular autonomic
ctivity is heart period (HP), which is cortically modulated
ia the nervus vagus and the sympathetic branch of the
utonomic nervous system, both projecting to the sinoatrial
ode. While sympathetic activations yield decreases in HP
ith a delay of several seconds, vagal bursts trigger quick

ncreases in HP levels (Berntson et al., 1997). Moreover,
igh frequency oscillatory HP modulations covary with re-
piratory phase (respiratory sinus arrhythmia), a phenom-
non, which reflects phasic vagal cardiac control (Berntson
t al., 2007).

Whether cortico–cardiac or cardio–cortical relation-
hips can be found in the human electroencephalogram
EEG), has been an active area of research (e.g., Dirlich et
l., 1998; Elbert et al., 1992; Groen et al., 2007; Kubota et
l., 2001; Lacey and Lacey, 1970; Lang et al., 1975;
chandry and Montoya, 1996; van der Veen et al., 2008)

hat may ultimately yield important information about the
iming of neurogenic autonomic changes and may supple-
ent fMRI approaches (Critchley, 2005; Wager et al.,
009), which have lower temporal resolution.

Phenomenological similarities between early event re-
ated potential (ERP) components and evoked cardiac re-
ponses have recently been reported with regard to feed-
ack processing (Crone et al., 2003; Groen et al., 2007).
or example, feedback evokes (a) mediofrontal EEG com-
onents about 200 to 300 ms post stimulus such as the
eedback related negativity (FRN; Miltner et al., 1997; Sato
t al., 2005) and the P2a (Potts et al., 2006), (b) modula-

ions of the P300 (Hajcak et al., 2005; Sato et al., 2005),
nd (c) changes in HP (Crone et al., 2003; Hajcak et al.,
003; Somsen et al., 2000). More specifically, negative vs.
ositive feedback evokes a more negative FRN (Gehring
nd Willoughby, 2002; Miltner et al., 1997; Potts et al.,
006) and cardiac deceleration within the next cardiac

ycles (Crone et al., 2003; Hajcak et al., 2003; Somsen et

s reserved.
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l., 2000; van der Veen et al., 2004). In addition, increasing
agnitudes of reward or punishment may have accelera-

ory effects on HP (Tranel et al., 1982) and potentiate the
300 (Sato et al., 2005). Given that both, regions impli-
ated in HP control (Critchley et al., 2000; Wager et al.,
009) and the sources of P2a (Potts et al., 2006) and FRN
Holroyd and Coles, 2008; Miltner et al., 1997), have been
apped to medial frontal cortices including the anterior

ingulate cortex, there may even be a structural overlap of
he generators of feedback-related ERP components and
f neurogenic HP changes. Because feedback stimuli in
eal-life often require quick behavioral and autonomic re-
ponses, a close connection between systems that evalu-
te external feedback and systems that control the viscera
ay be evolutionarily adaptive.

Previous investigations using R-correlations (i.e., cor-
elation of variables across individuals, see Cattell, 1952)
etween EEG components and HP changes have yielded
ixed or null findings (Hajcak et al., 2003; Otten et al.,
995; Palomba et al., 1997; van der Veen et al., 2000;
eisz and Czigler, 2006). However, due to differences, for

xample, in HP reactivity (Turner, 1989) and cortical fold-
ng (Zilles et al., 1988), individuals vary greatly in phasic
P modulations and ERP amplitudes. Moreover the slope
f the regression between HP modulations and ERP am-
litudes may differ between individuals. These and other
ources of between-subjects variance would necessarily
bscure correlations between HP and EEG when the R-
echnique is applied. Moreover, relationships between ag-
regated measures (such as standard ERPs and evoked
P responses averaged across trials) at one level (i.e. the
etween subjects level) cannot be attributed to the lower

evel (i.e. the within subjects-level) because this would
ntroduce an aggregation bias (e.g. Tabachnik and Fidell,
006). In contrast, P-correlations (i.e., correlation of vari-
bles across situations) tapping within-subjects variance
nd covariance only (Stemmler, 1992) may be more effi-
ient for the investigation of intraindividual cortico–cardiac
echanisms. Two issues emerge, however, with the P-

echnique in the present context: First, correlating across
ituations would require measuring ERP amplitudes of
ingle events. Single trial EEG however has a very poor
ignal to noise ratio and some components can hardly be
etected and measured without averaging. Second, a P-
orrelation identified within one individual does not permit
o draw conclusions about EEG-HP relationships in the
opulation.

In order to address these issues while exploiting the
dvantages of the P-technique, we suggest a technique

hat we term “cardio–electroencephalographic covariance
racing” (CECT). CECT can be used to systematically ex-
lore whether there are time windows in event-locked sin-
le-trial EEG magnitudes that are linearly related to
voked HP changes within individuals. This is achieved by
pplying a two-level approach, in which for each individual
uring a narrow time window EEG magnitude is P-corre-

ated (i.e., across trials) with HP changes (first-level) and
hen tested for significance across individuals (second

evel). Importantly, different time windows (i.e., lags) in the

m
s

Please cite this article in press as: Mueller EM, et al., Single-trial electr
P-correlation approach for studying neurovisceral connectivity, Neurosc
EG recording are P-correlated with different lags in the
P recording yielding covariance traces with two indepen-
ent time dimensions1. We hypothesized that there are
articular temporo–temporal positions in which the magni-
ude of a CECT (reflecting a particular P-correlation be-
ween an EEG time window and an HP time window) was
ifferent from zero.

EXPERIMENTAL PROCEDURES

articipants

total of n�39 right-handed psychology students (19 –31
ears) participated in this study in partial fulfillment of course
equirements. They provided informed written consent and
uaranteed that (a) no alcohol was consumed within the last 24
ours and (b) neither nicotine nor caffeine was consumed
ithin the last 5 hours. The study protocol was approved by the
thics committee of the German Society for Psychology (Ethik-
ommission der Deutschen Gesellschaft für Psychologie). Due

o bad EEG (n�4) or electrocardiogram (ECG) (n�4) record-
ngs a total of n�8 individuals had to be excluded from analy-
es, yielding a total of n�31 participants (14 female; average
ge, 22.6 years; SD�3.2 years).

rocedure

articipants reported to the laboratory and provided informed
onsent. They then filled out personality measures while EEG and
CG electrodes were applied. Afterwards, participants were
rought to the experimental room, where they were instructed to
it and relax for 10 min. During this baseline phase EEG was
ecorded (data reported elsewhere, see Wacker et al., unpub-
ished observation). After the resting phase the gambling task
egan. Then participants performed another task unrelated to this
tudy, and completed another resting phase before they were
ebriefed.

ask and stimuli

articipants performed a gambling task adapted from Sato et al.
2005). A trial began with a white fixation cross presented for 500
s in front of a black background and followed by a number

ignaling the amount of money that could be gained or lost on that
rial (i.e. “0,” “10,” or “50” cent) for 500 ms. Participants then saw
cue card with a face value of either 4 or 5. They were instructed

o press the left button if they believed that the next card would
ave a higher value, and the right button, if they believed the
ext card would have a smaller value. As soon as the partici-
ants made a response, the cue card disappeared, and 3 s

ater, a feedback stimulus (500 ms) signaled that the previous
ecision was either correct (“O”) or incorrect (“X”). Accordingly,
he participant either won or lost the amount of money previ-
usly shown. Participants started with an amount of €5 and
ere told to try to win as much as possible. The task had a fixed
utcome with equal numbers of losses and gains, which was
nknown to the participants. Trials were separated by 5 s

ntervals. The task consisted of six blocks of 60 trials each, 10

Note that it was not the goal to identify components in single trial
EG (which would allow to measure an amplitude), but instead to
easure the average voltages within small-time windows even if no

omponents were visible (thus measuring a magnitude). The underly-
ng logic is that even though each magnitude reflects a mixture of
ignal and noise, only signal should systematically covary with another
ariable (e.g., heart period). Accordingly, time windows, where the

agnitude contains relatively higher signal to noise ratios, should

how higher correlations (see also discussion).

oencephalogram predicts cardiac acceleration: A time-lagged
ience (2009), doi: 10.1016/j.neuroscience.2009.12.051
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f which were dummy trials with a face value of 2, 3, 6, or 7,
hich were not used for analysis.

EG recording

EG was measured with 13 InVivo-Metrics (Healdsburg, CA,
SA) Ag–AgCl electrodes (F3, F4, Fz, Fzc, C3, C4, PCz, P3, P4,
z, left and right mastoid; all referenced to Cz) using Easy Cap
lectrode caps (Falk Minow Services, Herrsching–Breitbrunn,
ermany). Impedance at all channels was kept below 5 k� for the
EG electrodes and below 1 k� for an additional ground electrode
laced on the forehead by cleaning the skin with alcohol and
reating it with a mild abrasive. To record eye blinks and vertical
ye movements electrooculogram (EOG) was recorded with elec-
rodes midline above and below the right eye (vertical EOG) and
n the outer canthi of both eyes (horizontal EOG). In the experi-
ental room the signal was fed into a head box where it was
reamplified at a gain of 30 and sent to the recording room. There,
32-channel SynAmps 5083 amplifier (NeuroScan, Sterling, VA,
SA) amplified the EEG with a gain of 500 (including preamplifi-
ation) and filtered the signal with a 1–50 Hz analog bandpass
lter. A Macintosh Power Mac G4/450 (Apple, Cupertino, CA,
SA) with a PCI 6503 SCSI card (National Instruments, Austin,
X, USA) performed recording and storage of the digitized EEG
ata under Labview 5.0 (National Instruments, Austin, TX, USA) at
sampling rate of 2000 Hz.

CG recording

CG was recorded with Ag/AgCl surface electrodes from VivoMed
Servoprax, Wesel, Germany) applied in a lead II configuration
right forearm, left leg) and connected to a Biopac MP100 system
ith an ECG100c amplifier module (Goleta, CA, USA). Analog
igh- and low-pass filters were set to 0.5 and 35 Hz, respectively,
mplification was set to a gain of 1000, and the signal was
ecorded at a sampling rate of 1000 Hz using Labview-based
oftware.

ata reduction and analysis

EEG. The EEG signal was downsampled to 250 Hz, re-
eferenced to linked mastoids and visually screened for artifacts
sing an adaptation of EEGLAB (Delorme and Makeig, 2004),
hich allowed simultaneous screening of EEG and HP. Whenever

here was a non-blink artifact in either EEG or HP the entire trial
as excluded from further analyses. Eye movement artifacts were

emoved using independent component analysis implemented in
EGLAB. The EEG was then segmented into epochs from �200

o 2000 ms relative to feedback markers. For ERP and CECT
nalyses each segment was further subdivided into 110, 20 ms

ong bins (i.e., lags). For each bin, the average signal amplitude
as calculated. In order to compute ERPs, segments were aver-
ged separately for trials with negative and positive feedback
each condition �150 trials) and the magnitudes of the five bins
rom 200 to 300 ms at channel Cz were used for statistical
nalyses of the FRN.

HP. R-waves in the ECG were automatically detected using
he algorithm implemented in Brain Vision Analyzer 1 (Brain Prod-
cts, Germany). The resulting cardiotach (plotting heart periods
gainst time) was manually screened for artifacts. It was then
egmented into epochs from 0 to 5000 ms relative to feedback
arkers and for baseline correction the HP at feedback onset was

ubtracted. For CECT and statistical analyses each 5000 ms
egment was subdivided into 10 bins reflecting the average HPs
f 500 ms epochs.

CECTs and statistical analyses. Lagged P-correlations

ere computed for each participant. For that purpose each of the

F
(

Please cite this article in press as: Mueller EM, et al., Single-trial electr
P-correlation approach for studying neurovisceral connectivity, Neurosc
10 EEG-bins was correlated with each of the 10 IBI-bins across
rials according to Equation 1

ra(d, c)�1 ⁄ k�
i�1

k (EEGaic�EEGac)(IBIaid�IBIad)
SacSad

(1)

here EEGaic denotes the mean EEG amplitude for one 20 ms bin
n lag c (running from 1 to 110) and trial i (running from 1 to k) of
articipant a and IBIaid denotes the HP change for a 500 ms bin in

ag d (running from 1 to 10) and trial i of the same participant.
hus, for each individual and each EEG channel resulted a matrix
ith 10�110 P-correlations. Correlations were either computed
cross all trials (k�300), or separately for positive and negative
eedback trials (k�150).

Fisher transformed (Fisher, 1950) P-correlations were then
ested against zero over participants with one-sample t-tests. To
ompare P-correlations of ERPs and HP changes with regard to
ositive vs. negative feedback, paired t-tests were used. Because
or the CECTs there were 10�110 P-correlations for each channel

conservative Bonferroni-corrected alpha of .01/1100�.000009
as chosen as a statistical threshold for all CECTs. For all other
easures an alpha of .05 (two-tailed) was applied. CECT-analy-

es were conducted using routines coded in MATLAB Version
.5.0 (Mathworks, Natick, MA, USA). All other statistical analyses
ere conducted using Stata Version 10.0 (StataCorp, College
tation, TX, USA).

RESULTS

RP-components

s shown in Fig. 1, positive and negative feedback evoked
positive complex from 140 to 380 ms. Around 200 ms this
omplex was maximal at Cz and FCz and propagated to
osterior electrodes with a maximum at Pz around 300 ms
Fig. 3c). Within that extended waveform there was a time
indow from 200 to 260 ms in which positive compared to
egative feedback elicited a more positive magnitude (Cz:
00–220 ms: t(30)�6.96, P�.0001; 220–240 ms: t(30)�
.18, P�.0001; 240–260 ms: t(30)�3.06, P�.005), but
ne bin later this pattern was reversed (280–300 ms:
(30)��2.9, P�.007). In addition to the positive waveform,
ig. 1. Grand average event related potentials (ERPs) to positive
black) and negative (grey) feedback measured at Cz.

oencephalogram predicts cardiac acceleration: A time-lagged
ience (2009), doi: 10.1016/j.neuroscience.2009.12.051
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subsequent negative complex was present from about
00 to 1100 ms. This component also showed a frontal
aximum during early, and a posterior maximum at later

tages.

P

eedback triggered a sinusoidal change in HP (Fig. 2).
egative compared to positive feedback led to relative
ardiac deceleration in all five 500 ms bins between 1000
nd 3500 ms after stimulus onset (all Ps�.05).

ECT

ECTs for channel FCz are displayed in Fig. 3. The color
epresents the magnitude of the z-transformed P-correla-
ion averaged across individuals, while the horizontal and
ertical axes reflect lags in the EEG (in steps of 20 ms) and
n the HP recording (in steps of 500 ms), respectively. Fig.
a shows t-values for intraindividual correlations across all
00 trials (not separated with regard to feedback type).
wo clusters can be visually identified. The blue upper left
luster indicates that EEG magnitude from about 200 to
00 ms after feedback negatively correlated with HP
hange from 2000 to 5000 ms after feedback. When
ECTs where thresholded with a Bonferroni-corrected P-
alue of P�.01, significant t-values within that cluster
merged for electrodes FCz, C4, Fz, F4 and Cz (in de-
cending order of maximum t-value) with maximum abso-
ute t-value at electrode FCz (t(30)��6.22). Temporally,
he cluster extended from EEG between 280 and 340 ms
nd HP changes between 3000 and 5000 ms. Because

ow HP values reflect a high heart rate, this negative cor-
elation indicates that the larger the ERP magnitude from
80 to 340 ms the larger was the cardiac acceleration 3 to
s later. We label this correlation cluster as N300_4 (i.e.,

egative correlations around lags 300 ms and 4 s for EEG

ig. 2. Changes in heart period locked to positive (black) and negative
grey) feedback stimuli averaged across individuals. Error bars repre-
ent the standard error of the mean.
nd HP, respectively). In addition to N300_4, a later win-
t
F

Please cite this article in press as: Mueller EM, et al., Single-trial electr
P-correlation approach for studying neurovisceral connectivity, Neurosc
ow of the EEG (460 to 840 ms) showed significant posi-
ive correlations with HP from 2500 to 5000 ms (red upper
ight cluster, P600_4, maximum t-value at electrode F4:
(30)�7.72, P�.01, Bonferroni-corrected)2.

Fig. 3b displays a CECT for a fixed HP window of 3500
o 4000 ms. As can be seen, later portions of the CECT-
aveforms have a similar morphology as the ERP-wave-

orms. Like ERPs, CECTs have components with ampli-
udes (i.e., points of maximum EEG-HP correlations),
hich can be measured for each individual. The spatial
istribution of N300_4 is displayed in Fig. 3c. P-correla-

ions, sorted with regard to their t-value, are maximal at
rontocentral sites with a tendency for larger values in the
ight hemisphere. In contrast, it should be noted that ERP-
agnitudes at the same time range are maximal at parietal
lectrodes.

Fig. 3d shows correlations that were computed sepa-
ately for positive and negative feedback. The temporal
istribution and the magnitudes of correlations were similar
or positive and negative feedback types. P-correlations
etween EEG and HP did not differ significantly after
ositive vs. negative feedback (Ps�.05, Bonferroni-cor-
ected).

upplementary control analyses

o rule out potential alternative explanations for the ob-
erved associations we conducted several control analy-
es. First, we wanted to know whether EEG magnitude
round 200 to 400 ms specifically predicted the HP change
f that particular trial. We therefore correlated the EEG
agnitudes with the HP change of the subsequent trial

nstead of the same trial. However, when EEG was corre-
ated with HP in the next trial, N300_4 and P600_4 asso-
iations completely disappeared suggesting that the re-
orted correlations were trial specific and not driven by
arry-over effects from preceding trials or by slow fluctua-
ions of both ERPs and HP across several trials in a row.

Second, due to habituation, EEG responses and HP
hanges may be smaller at later vs. earlier trials (Rushby
t al., 2005). In this case, low (high) EEG magnitudes
ould be automatically paired with low (high) HP changes
nd a positive correlation would emerge only due to con-
urrent habituation in both systems. To rule out this alter-
ative explanation we first linearly detrended the HP signal
o remove effects of time on baseline HP. To remove
ffects of time on the evoked changes in HP we then
artialled out the centered trial indices (running from �150
o 150 for the n�300 trials) from the HP changes (i.e. the
ifferences between HP at onset and HP at a particular lag
fter feedback) using a second-degree polynomial (i.e. for
ach lag and each individual we fitted a cubic regression
here the trial index served as predictor). When we re-
eated the CECT analyses using the residualized HP
hanges the findings did not change substantially (Ps for

The averages of the Fisher’s z transformed P-correlations across
articipants for N300_4 and P600_4 (measured at the spatiotemporo-
emporal positions of the maximum t-values) were FZ(r)��.079 and
Z (r)�.061, respectively.

oencephalogram predicts cardiac acceleration: A time-lagged
ience (2009), doi: 10.1016/j.neuroscience.2009.12.051
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he maximum t-values of N300_4 and P600_4 were below
05 after Bonferroni-correction).

Finally, it is possible that HP at the beginning of a trial
odulates both, the EEG (Lacey and Lacey, 1978) and

ubsequent HP changes (e.g., due to baroreceptor re-
exes). To control for that possibility we regressed all HP
hanges on the HP at feedback onset. Thus, the residuals
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y habituation (or other time-related effects) (c) and are not
ediated by baseline HP at feedback onset.

DISCUSSION

ortico–cardiac connectivity

he present study investigated relationships between
eedback-evoked modulations of EEG and HP. Thirty-one
articipants performed a gambling task in which positive
nd negative feedback was given. In line with previous
tudies, negative vs. positive feedback led to a more neg-
tive frontocentral amplitude from 200 to 260 ms in the
EG (Gehring and Willoughby, 2002; Miltner et al., 1997;
otts et al., 2006) and to a relative deceleration of subse-
uent heart beats (Crone et al., 2003; Hajcak et al., 2003;
omsen et al., 2000). However, the main question of the
resent study was, whether there are signals in the EEG
hat intraindividually relate to changes in HP. This was
ddressed by first P-correlating EEG magnitude in differ-
nt lags after feedback with HP changes in other lags and
hen testing P-correlations across individuals. The result-
ng CECTs revealed that across participants, EEG magni-
ude from 200 to 400 ms and from 500 to 1100 ms after
eedback correlated with later changes in HP from about
000 to 5000 ms post-feedback. These findings suggest,
hat CECTs can be used to assess cortico–cardiac phe-
omena, and that autonomic reactions to feedback may be
riggered in the cortex as early as 200 to 400 ms following
he feedback stimulus.

At frontocentral sites, the EEG magnitude from 200 to
00 ms was negatively related to HP change from 2 to 5 s
N300_4). Because the standard ERP waveform showed a
ositive complex in the same window, and because a
egative HP change value reflects a speeding of heart
ate, the correlations suggest that an enlarged positive
omplex predicts subsequent cardiac acceleration. Note,
hat an acceleration of HP can also be observed in the
veraged HP change (Fig. 2), which is preceded by an

nitial deceleration, which may reflect orienting and/or stim-
lus intake (Lacey and Lacey, 1978). In addition, there is
nother deceleration after the acceleration component.
imilar triphasic modulations of HP have been reported in
rior studies and the deceleration/acceleration compo-
ents have been linked to different processes (Gatchel and
ang, 1973; Otten et al., 1995). The present findings sug-
est that the magnitude of the positive complex in the EEG

s related to the acceleration component of evoked HP
hanges following feedback. This interpretation converges
ith the results from Otten et al. (1995) who demonstrated

hat specific experimental conditions leading to an in-
reased parietal ERP amplitude around 350 ms (i.e. P300)
lso increase cardiac acceleration in the event related
eart rate (see Lang et al., 1975 for similar findings).

In contrast to the ERP, which was maximal at parietal
lectrodes from 300 to 320 ms, the N300_4 was maximal
t frontocentral midline and right hemisphere sites. The

opography of N300_4 is therefore consistent with findings
hat relate mediofrontal brain regions to autonomic control

Benarroch, 1997; Critchley et al., 2000; Wager et al., (

Please cite this article in press as: Mueller EM, et al., Single-trial electr
P-correlation approach for studying neurovisceral connectivity, Neurosc
009) including heart period (Critchley et al., 2000; Wager
t al., 2009) and feedback/error processing (Holroyd and
oles, 2002; Potts et al., 2006) and their adaptive integra-

ion (Damasio, 1996). Moreover the right vs. left hemi-
phere has been implicated in chronotropic cardiac control
Ahern et al., 2001; Lane et al., 1992; Thayer and Lane,
009). Because we recorded EEG with only 11 electrodes,
ny statements with regard to cortical generators are spec-
lative. However, the fact that right insular activity has
een associated with HP modulations (Critchley et al.,
000; Oppenheimer et al., 1992) points to a possible can-
idate source for N300_4. Pathways by which medial pre-
rontal cortices, the cingulate cortex and the anterior insu-
ae may influence heart period have been suggested
ased on retrograde viral staining studies and pharmaco-

ogical manipulation studies (for example by disinhibiting
ctivity of the central nucleus of the amygdala leading to
a) disinhibition of sympathoexcitatory and (b) inhibition of
arasympathoexcitatory neurons, cf. Thayer and Lane,
009). Even though the present study cannot identify the
nderlying pathways, we speculate that N300_4 and
600_4 reflect the cortical modulation of vagal (as op-
osed to sympathetic) input to the sinoatrial node, because
hen we bandpass-filtered the original HP signal into a

ange that is affected by vagal but not sympathetic input
i.e. .15 to .5 Hz), neither P300_4 nor N600_4 were se-
erely affected (data available on demand).

An important question is how the observed positive
omplex in the ERP relates to more traditional compo-
ents. Because the complex begins rather early (140 to
60 ms) at frontocentral electrodes, it is somewhat similar
o a feedback evoked P2a (Potts et al., 2006). However,
iven its topography moving to posterior electrodes, we
uggest that the positive complex is best described as a
300-like component (Sutton et al., 1965; Polich, 2007)

he waveform of which may have been slightly blunted due
o the chosen high-pass filter settings (Duncan-Johnson
nd Donchin, 1979; note however, that such a distortion
ould not severely affect the P-correlations because trials
ith relatively larger positive complexes will still have rel-
tively larger positive complexes after filtering). Not only is
his interpretation in line with the previously discussed
ndings of Lang et al. (1975) and Otten et al. (1995), but it

s also consistent with the general observation that both,
300 (Donchin, 1981; Rushby et al., 2005) and evoked
hanges of heart period (Graham and Clifton, 1966) are
elated to the orienting reflex. The P300 can be differenti-
ted into an anterior and a posterior P300 (Polich, 2007)
nd it has been associated with different cortical genera-
ors including the anterior cingulate cortex (Linden, 2005).
n intriguing interpretation of the present data could be

hat some anterior P300 generators are related to activa-
ion of a central autonomic network (Benarroch, 1997), for
xample, in order to prepare the organism for action (Ver-

eger et al., 2005) upon detection of changes in the envi-
onment (context updating hypothesis of the P300,
onchin, 1981) or upon detection of other relevant signals
resource allocation: Isreal et al., 1980). CECTs could be

oencephalogram predicts cardiac acceleration: A time-lagged
ience (2009), doi: 10.1016/j.neuroscience.2009.12.051
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pplied to oddball paradigms to further investigate this
ypothesis.

In line with previous studies we found that negative vs.
ositive feedback elicited a more negative ERP from 200

o 260 ms. Similar to several other reports (Gehring and
illoughby, 2002; Miltner et al., 1997), the FRN was su-

erimposed on the extended positive complex/P300.
hen comparing the CECTs and the ERPs in Fig. 1, it

ppears as if it is rather the positive complex that is related
o HP changes and not the FRN. In fact, the CECT seems
o increase with the beginning of the positive complex and
hen to temporarily drop during the FRN time window.
oreover, heart activity also slowed down for negative vs.
ositive feedback in a time window, in which HP was
ncorrelated with EEG magnitudes (i.e., from 1 to 2 s).
hus, even though both, FRN and HP, seem to be sensi-

ive to feedback valence, they appear to be unrelated,
hich is consistent with other reports (van der Veen et al.,
008; Van der Veen et al., 2004). Instead of the FRN being
ssociated with HP changes, the present findings suggest
hat it is rather the feedback evoked P300, possibly reflect-
ng an evaluation and/or motivational process (Sato et al.,
005) that relates to HP. This could be tested in future
tudies.

In addition to the positive complex, there was also a
ustained negative complex in the EEG from 500 to 1100
s and EEG magnitude in that time range correlated pos-

tively with HP change 3 to 5 s afterwards (P600_4). Thus,
aralleling the N300_4 findings, an enlarged amplitude of
he negative complex predicts relative cardiac accelera-
ion. Even though negativities from 600 to 900 ms have
reviously been found to R-correlate with chronotropic
ardiac modulations (Palomba et al., 1997), the present
ndings imply that components with longer latencies de-
erve more attention in future research on feedback
voked EEG and cardiovascular relationships.

Two limitations of the present study should be dis-
ussed. First, each trial “only” lasted 10 s. Moreover, the
ime window that could be analyzed in the present study
as 5 s and P-correlations appeared to extend beyond that
indow. Thus, very slow changes in HP driven by feed-
ack related sympathetic activation may not have been

ully captured in the present design and/or may have even
istorted correlations by carry-over effects into the subse-
uent trial. However, EEG from 200 to 400 ms was not
orrelated with HP from 3 to 5 s of the subsequent trial

ndicating that carry-over effects cannot explain the
resent findings.

Second, it is possible that the correlations may reflect
ardio–cortical instead of cortico–cardiac communication.
n fact, a dampening effect of baroreceptor stimulation on
ate EEG waves has been reported (Elbert and Rau, 1995).
owever, these effects usually have latencies in the range
f seconds, while in the present study EEG as early as 300
s after feedback correlated with HP. Moreover, N300_4

emained robust even when HP at feedback onset was
tatistically removed. Thus it is relatively unlikely that the
orrelations reflect a cardio–cortical direction. However,

uture studies using CECTs in combination with pharma- a

Please cite this article in press as: Mueller EM, et al., Single-trial electr
P-correlation approach for studying neurovisceral connectivity, Neurosc
ological or mechanical challenges to experimentally ma-
ipulate cardiovascular afferents may yield further clarifi-
ation.

he CECT approach

he present method features some unique strengths and
onstraints worth mentioning. First, in contrast to previous

nvestigations using R-correlations between ERP compo-
ents and HP modulations, CECTs are based on P-corre-

ations. Therefore they are independent of between-sub-
ects variance and covariance of EEG and HP and are

ore powerful to detect existing neurovisceral relation-
hips within individuals. Moreover, the current approach
voids the problem of an aggregation bias, which arises
hen relationships between aggregated measures (such
s the standard ERP and evoked cardiac response) found
t one level (such as the interindividual level) are used to
ake inferences about a lower level (i.e. the intraindividual

evel).
A second characteristic of CECTs is the use of time-

agged correlations. By systematically correlating each
EG bin with each HP bin in defined time windows relative

o the stimulus, the temporal dynamics of cortico–cardiac
ommunication can be adequately mapped and explored.
o avoid inflation of type I error due to the resulting large
umber of correlations a conservative Bonferroni correc-
ion was used to adjust the alpha level for the statistical
hreshold.

Third, in order to calculate P-correlations, the CECT
pproach uses information in the trial-to-trial variability of
he EEG signal, which is neglected in standard ERP ap-
roaches. By plotting P-correlations against time a wave-
orm emerges that has some similarities with the standard
RP (plotting averaged voltages against time) but is also
istinct with regard to topography and specific compo-
ents. For example, it has been shown that the P300/
ositive complex is produced by activity in different gener-
tors with different functions and latencies (Linden, 2005).
s can be seen in Fig. 3b CECT waveforms showed a
orphology similar to the later, but not earlier part of the
ositive complex and had a different topography than the
RP (Fig. 3c). This dissociation suggests that CECTs
ontain additional information and could be helpful in at-
empts to decompose a complex ERP waveform (i.e. into
omponents that are associated with autonomic regulation
nd other components).

A fourth feature of the CECT method is the use of
agnitudes vs. amplitudes. Single trial EEG consists of
oth, noise and cortical activity (including non stimulus-

ocked activity, oscillatory activity and phasic stimulus-
ocked activity). This mixture makes it difficult to reliably
dentify stimulus-evoked components in the single-trial
EG (and then measure their amplitudes). However, by
easuring the mean voltages (i.e. magnitudes) during a
articular time window (reflecting the sum of noise and
ortical activity) and by correlating these magnitudes with
ubsequent HP changes over trials this issue is circum-
ented. The reason is that noise is by definition random

nd can thus not be correlated with changes in HP (or any

oencephalogram predicts cardiac acceleration: A time-lagged
ience (2009), doi: 10.1016/j.neuroscience.2009.12.051
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ther variable). Accordingly, any observed correlation can
nly be driven by that portion of the EEG variance that is
ignal variance and not by any noise-variance. Thus, even
hough CECTs reflect relationships between HP and
voked activity in the single-trial EEG, they do not require

he identification of any particular components and their
mplitudes in the raw data.

Fifth, normalizing P-correlations by Fisher’s z-trans-
orm and then testing these values across individuals al-
ows to determine whether the identified correlations gen-
ralize across subjects. Note, that this approach is ana-

ogues to the statistical mapping procedure in fMRI
esearch, with the differences that (a) fMRI studies usually
est intraindividual correlations between a canonical hemo-
ynamic response function and the measured signal
hange, whereas CECTs are based on intraindividual cor-
elations between EEG and HP, (b) the goal of fMRI is to
etect voxels in the three-dimensional space, whereas
ECTs detect significant “voxels” in two dimensions of

ime (i.e. time in EEG and time in HP) and one dimension
f space (i.e. the electrodes), and (c) intraindividual corre-

ations in fMRI are normalized by taking the beta-weights
hereas the CECT technique uses a Fisher’s z-transfor-
ation. Note, that in both cases, the grand-averaged val-
es are rather small due to low signal to noise ratios in the
ingle trial data (i.e. averaged standardized beta weights in
MRI studies are often below .1, the averaged z-trans-
ormed P-correlations for N300_4 was �.08). However, the
arge t-values imply that the phenomenon itself is rather
trong and generalizes across individuals.

One constraint of the CECT approach should also be
oted. First, CECTs plot the change of a correlation as
function of time(s) and space. This correlation may

lso be affected by changes in signal to noise ratio
nd/or changes in signal variance in the EEG or HP
ecording as a function of time and space. Thus changes
n CECT magnitude do not necessarily have to reflect
hanges in the true underlying relationship between
EG and HP but may also be modulated by changes in
ignal to noise ratio and signal variance. However, even
nder circumstances of optimal signal to noise ratio and
ignal variance, significant correlations would only
merge, if there was a non-zero relationship between
EG and HP. Thus, despite possible influences of signal
ariance, the present findings do provide evidence that
here is a significant relationship between the EEG from
20 to 340 ms and the HP change from 2 to 5 s.

CONCLUSION

he present study demonstrates the existence of intra-
ndividual correlations between feedback-evoked EEG
nd HP changes and that there are spatiotemporal po-
itions, where these correlations are robust across indi-
iduals and independent subsamples. Specifically, the
rontocentral EEG around 300 ms after feedback was
inearly related to modulations of HP from 2 to 5 s. It was
urther shown that cardiovascular covariance traces

ay be used to extract an HP-related signal from the

Please cite this article in press as: Mueller EM, et al., Single-trial electr
P-correlation approach for studying neurovisceral connectivity, Neurosc
vent-related EEG which resembles averaged ERP
aveforms for some, but not all, components. We con-
lude that CECTs can be used to investigate spatiotem-
oral aspects of neurovisceral connectivity.
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Abstract 

Brain dopamine (DA) and serotonin have been linked to error processing. A recent theory 

suggests that high and low (vs. medium) prefrontal cortex DA levels enhance network 

flexibility. We hypothesized that such flexibility may promote dynamic error processing. N = 

169 male participants were genotyped for the COMT Val158Met polymorphism, associated 

with low (Val allele) and medium (Met allele) PFC DA levels. In addition DRD2TaqIa and 

5HTTLPR, polymorphisms associated with striatal D2 receptor density and serotonin uptake, 

respectively, were assessed. Participants received placebo or a selective DA-D2 receptor 

blocker (sulpiride, 200 mg) and performed a Flanker task. EEG was recorded and later 

decomposed into independent brain components (ICs) using Independent Component 

Analysis. After errors participants displayed (a) a negative deflection in ICs source-localized 

to the proximity of the anterior midcingulate cortex (IC-error-related negativity, IC-ERN) and 

(b) slowing in the subsequent trial (post-error slowing, PES). Importantly, both, IC-ERN and 

PES were modulated by COMT x Sulpiride interactions such that the Val allele predicted 

elevated IC-ERN and PES after placebo while this association was reversed after sulpiride. 

Furthermore, this COMT x Sulpiride interaction was potentiated in carriers of lower vs. 

higher expressing 5HTTLPR alleles. Because by blocking presynaptic autoreceptors low 

doses of sulpiride presumably increase extrasynaptic DA, the COMT x Sulpiride interaction is 

consistent with the hypothesis that low (Val, placebo) and high (Met, sulpiride) vs. medium 

DA (Val, sulpiride; Met, placebo) levels elevate error processing. The influence of 5HTTLPR 

further indicates that serotonin influences dopaminergic mechanisms of error processing. 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Introduction 

Errors rapidly trigger cascades of behavioral (Rabbitt and Phillips, 1967) and neural (Gehring 

and Knight, 2000) sequelae in order to monitor and regulate performance. These include 

dynamic and flexible modulations of medial prefrontal cortex (PFC) neural activation patterns 

in response to the error (Holroyd and Coles, 2002) and/or associated response conflicts 

(Botvinick et al., 2001). The degree of flexibility vs. stability of prefrontal cortex networks 

has been linked to dopamine (DA) availability. According to the dual-state theory of PFC DA 

function (Durstewitz and Seamans, 2008), flexible switching among different network states 

is facilitated when DA levels are either very low or very high and thereby induce a relative 

dominance of D2 over D1 receptor activation (D2 state). In contrast, medium DA levels 

promote D1 activation states associated with network stability. Based on the assumption that 

error processing is a dynamic, DA-related process (e.g. Holroyd and Coles, 2002) it could be 

hypothesized that error processing is elevated in D2 dominated regimes (i.e. when DA levels 

are low or high). 

A predominance of D2-dominated regimes likely occurs in individuals who carry at 

least one copy of the Val allele (Val+) of the Catechol-O-Methyltransferase (COMT) 

Val158Met polymorphism (Durstewitz and Seamans, 2008), because the enzyme COMT 

metabolizes PFC DA, and carriers of the more functional Val allele presumably show 

relatively low PFC DA levels (Lachman et al., 1996). In contrast, individuals with no Val 

alleles (Met/Met carriers) display medium DA levels and are characterized by D1-state 

networks (Durstewitz and Seamans, 2008). Based on the assumption that D2 facilitates 

flexible network modulation we hypothesized that Val+ carriers show elevated dynamic error 

processing in comparison to Met/Met carriers. Furthermore, increasing PFC DA availability 

by administration of a selective D2 receptor blocker acting at presynaptic sites (e.g. sulpiride; 

Kuroki et al., 1999) would push Val+ carriers towards medium DA levels (associated with D1 

states) while Met/Met carriers would be pushed towards high DA levels (associated with D2 
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states, see Figure 1). Thus we hypothesized that administration of sulpiride should enhance 

error processing in Met homozygotes but reduce error processing in Val+ carriers. 

We tested these hypotheses using neural and behavioral indices for error 

processing. The error-related negativity (ERN), is an event-related potential component that 

peaks within 100 ms after error-commission, originates from anterior midcingulate cortex 

(Debener et al., 2005) and has been related to DA (Holroyd and Coles, 2002; Jocham and 

Ullsperger, 2009; Ullsperger, 2010). At the behavioral level we analyzed post-error slowing 

(PES) which reflects the tendency of participants to slow down after errors have been 

committed in speeded reaction time tasks (Rabbitt and Phillips, 1967). 

In addition to COMT, we investigated the effect of DRD2Taq I a, a polymorphism 

indirectly linked to presynaptic D2 receptor density in striatum (Zhang et al., 2007) and - 

because PFC dopaminergic neurotransmission is modulated by serotonin (5-HT; Fink and 

Gothert, 2007) -  we tested whether effects would be modulated by the 5-HT transporter 

polymorphism (5-HTTLPR), associated with 5-HT transporter expression and ERN amplitude 

(Fallgatter et al., 2004). 

 

 

Materials and Methods 

 

Participants 

N = 195 non-smoking, right-handed males completed the study. Prior to testing, the 

absence of any illnesses or DSM-IV diagnoses was confirmed using a standardized clinical 

interview (Margraf, 1994). All participants reported not having used any prescription or 

illegal drugs during the past three months. Participants were required to refrain from 

consuming alcohol, nicotine, and caffeine 12 hours before the beginning of the study. All 

volunteers gave written informed consent before participating and received a monetary 
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compensation of 70 EUR (90 USD) for approximately 7 hours involvement in the project. 

The study protocol was approved by the Ethics Committee of the German Society for 

Psychology (Deutsche Gesellschaft fuer Psychologie). Datasets containing grossly artifact-

contaminated EEG (n = 13; 6.7%) or less than three error trials remaining following artifact 

correction (n = 8; 4.1%) were excluded. Further, datasets for which the clustering algorithm 

described below assigned no independent component dipoles to an anterior midcingulate 

cortex cluster (n = 5; 2.5%) were excluded from further processing, yielding a final sample of 

n = 169 with an average age of 23.8 years (SD = 3.1; see table 1 for further description). 

 

Procedure 

When participants came to the laboratory they first gave informed consent and were 

then administered the standardized clinical interview. If no exclusion criteria applied, 

participants then received a standardized breakfast (water/juice, 1-2 rolls with cheese, 

marmalade or sausage) and ingested either a sulpiride (200 mg) or placebo capsule with a 

glass of water. Both capsules had the same appearance to ensure that the experimenter and the 

participants were blind to the pharmacological treatment. Thereafter participants performed 

several tasks (e.g., intelligence tests, personality questionnaires, learning tasks) for which 

results will be reported elsewhere. Approximately 4 h after administration of the pill 

participants started the Flanker task.  

 

Flanker Task 

The Flanker task, delivered using Presentation 12.0 (Neurobehavioral Systems, 

Albany, CA), consisted of three blocks of 140 trials each, plus an initial practice block to 

determine individual response speed, during which no EEG was recorded. A trial began with 

central screen presentation of a fixation cross for 1000 ms. Thereafter congruent (SSSSS, 

HHHHH) or incongruent (SSHSS, HHSHH) stimulus arrays were presented for 600 ms with 
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the central target letter onset coming 100 ms later than the four flanker letters. Participants 

were instructed to respond as quickly as possible by pressing one of two buttons under their 

right index and middle fingers in response to S and H targets, respectively. If participants 

reacted slower than their mean reaction time plus one standard deviation (both determined 

from the preceding trial block), the feedback “too slow” appeared for 500 ms beginning 900 

ms after the onset of the target stimulus. Otherwise (“error” or “correct”) performance 

feedback was given. If participants did not react within a window 100 ms to 900 ms after 

presentation of central target letter onset, the feedback read “no button press”. 

 

Behavioral data 

For behavioral analyses, reaction times were measured as the latency between 

central target letter presentation and the ensuing subject button press. All responses three 

standard deviations faster than the average reaction time were discarded. Post-error slowing 

(Rabbitt and Phillips, 1967) was computed as the difference in reaction times between an 

error trial and the subsequent trial. To compute a comparable measure for correct trials, for 

each error trial, a correct trial with similar reaction time was automatically identified and 

again the difference was taken between this (relatively fast) response and the response time in 

the subsequent trial. Error rates were also computed. 

 

EEG 

Recording 

EEG was recorded at a sampling rate of 512 Hz using an Active Two (BioSemi, 

Amsterdam, Netherlands) active electrode system with DRL and CMS as active and passive 

reference, respectively. EEG data of the first n = 99 and remaining n = 96 participants were 

recorded using 32- and 64-channel configurations, respectively. Because normalizing the 
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ERN-amplitudes within these two subsets did not affect the effects presented, we provide 

results for the two subject sub-groups pooled together. 

 

ICA decomposition 

Data were analyzed by custom Matlab (The Mathworks, Inc.) scripts built on the 

open source EEGLAB toolbox (Delorme and Makeig, 2004). The manually inspected and 

artifact-removed continuous EEG data was 1-Hz high-pass filtered and decomposed using an 

adaptive mixture ICA algorithm (AMICA; Palmer et al., 2006; Palmer et al., 2008). As 

explained in more detail elsewhere (Gramann et al., 2010), for each independent component 

(IC) scalp topography an equivalent current dipole was computed using a standard adult 

boundary element head model (BEM) implemented in the DIPFIT toolbox (Oostenveld and 

Oostendorp, 2002). Only ICs with dipoles localized within the brain and whose scalp 

projection (through a spherical forward head model) explained more than 90% IC scalp 

topography variance were used in further analyses. ICs of all participants were clustered using 

a K-means clustering algorithm applied to the estimated equivalent dipole positions. A total of 

15 IC clusters, plus one outlier cluster, were thus identified (see Figure 2). The outlier cluster 

was defined a priori to consist of all ICs whose estimated dipole positions were more than 3 

SD from any IC cluster centroid. As depicted in Figure 3, IC Cluster 9 had maximum dipole 

density in and near anterior midcingulate cortex (Vogt, 2005), a region of the brain previously 

implicated in error processing and ERN generation (Debener et al., 2005). N = 169 

participants had at least one IC component in this cluster. For participants with more than one 

IC in the cluster, the IC exhibiting the largest negative error-response time-locked ERP 

deflection within 150 ms was automatically identified as this subject’s cluster-component 

ERN (ERN-IC). Both activation time courses and scalp maps of cluster ICs with inverted 

topographies (e.g., a negative correlation between the IC scalp map and the IC cluster mean 

scalp map) were polarity reversed (multiplied by -1) before between-subject comparisons to 
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ensure that all IC activation time courses had comparable polarities. ERN amplitudes for the 

thus derived ERN-IC activations (for measurement see below) showed a substantial variance 

overlap with ERN amplitudes at frontocentral scalp channels Cz and Fz (or the average of 

both channels), yet they were not redundant (.53 < rs < .58). To measure and visualize dipole 

position spread, dipole density was computed using a 3-D gaussian smoothing function with 

SD=10 mm.  The result is plotted in Figure 3a. 

 

Error-related negativity 

For each participant, ERN-IC activations were baseline corrected (using the 

baseline interval from -800 to -600 ms relative to response onset), then averaged across trials, 

normalized to make the root-mean square component scalp map projection to all channels 

(across all time points in the data epochs) 1 µV, and 20-Hz low-pass filtered. Peak-to-peak 

ERN amplitude was measured as the difference between most negative-going ERN-IC 

activation value from 0 ms to 150 ms following the button press and the most positive-going 

activation value from -100 ms to 0 ms before it. In the same way we also measured the 

standard scalp-channel peak-to-peak ERN at electrode Fz re-referenced to linked earlobes.  

 

Genotyping 

DNA was extracted from buccal cells, purified and genotyped for COMT 

Val158Met as previously described (Reuter and Hennig, 2005). Using the methods reported 

by (Reuter et al., 2006), all participants were also genotyped for DRD2 TaqIA, a 

polymorphism associated with individual differences in D2 dopamine receptor density 

(Pohjalainen et al., 1998), presumably via linkage disequilibrium with another functional 

polymorphism located directly on the DRD2 gene (Zhang et al., 2007). Finally, we genotyped 

participants for 5HTTLPR as described before (Osinsky et al., 2008), which occurs in the 
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three variants S, LG and LA (Nakamura et al., 2000) the former two being associated with low, 

nearly equivalent 5-HT transporter expression (Hu et al., 2006). 

The resulting genotype distributions were as follows. COMT Val158Met: n = 33, 

86, and 50 for Val/Val, Val/Met, and Met/Met. DRD2TaqIa: n = 6, 47, and 116 for A1/A1, 

A1/A2, A2/A2. 5HTTLPR: n = 27, 10, 70, 0, 11, and 50 for S/S, S/LG, S/LA, LG/LG, LG/LA 

and LA/LA. For all statistical analyses, homozygotes of the major allele were compared with 

the remainder. This resulted in the following comparisons: Met/Met (n = 50) vs. Val+ (n = 

119), A2/A2 (n = 116) vs. A1+ (n = 53) and LA/LA (n = 50) vs. LG+, S+ (n = 119). With 

regard to 5-HTTLPR LG+ and S+ were grouped based on the almost identical 5-HT 

transporter expression (Hu et al., 2006). All genotype distributions were in Hardy-Weinberg 

equilibrium (all X2s < .3). 

 

Sulpiride 

Sulpiride is a substituted benzamide that acts as a selective D2-receptor antagonist. 

A single acute dose of 200 mg sulpiride results in considerably lower levels of D2 receptor 

occupancy than considered efficacious in the treatment of schizophrenia and is thought to 

primarily block presynaptic autoreceptors thereby leading to increased DA activity (Mereu et 

al., 1983; Kuroki et al., 1999). Sulpiride is generally well tolerated, does not appear to 

significantly block other types of receptors (e.g. histaminergic, cholinergic, serotonergic, 

adrenergic, and Gamma aminobutyric acid (GABA-) receptors), it is slowly absorbed from 

the gastrointestinal tract, with peak serum levels occurring within one to six hours after oral 

ingestion, and the average elimination half life is in the range of 3 to 10 hours (Mauri et al., 

1996).  

 

Statistical analyses 
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To reduce the impact of potential outliers, we first winsorized the data (both, 

reaction-times and IC-activations) by replacing the lower and upper 10% of the data with the 

respective 10th and 90th percentile values, respectively (Erceg-Hurn and Mirosevich, 2008). 

To test for main effects or interactions we computed standard parametric ANOVAs with the 

repeated measures factor Response (error vs. correct) and the between-subjects factors COMT 

(Val+ vs. Met/Met) and Substance (Sulpiride vs. Placebo) and performed post hoc 

comparisons using unpaired t-tests with one-tailed significance thresholds for predicted 

effects. All statistical tests were conducted using SPSS 15.0. 

 

 

Results 

 

Behavioral Data 

As expected, reaction times following errors were significantly larger than reaction 

times following rt-matched correct responses, indicating significant PES (Main effect 

Response: F(1, 165) = 259.6, p < .0001, ηp
2 = .61).  Importantly, the Response x COMT x 

Substance interaction (F(1, 165) = 4.9, p = .03, ηp
2 = .03) was significant (see Figure 3). To 

follow up on this interaction we calculated difference scores (slowing after errors minus 

slowing after rt-matched correct trials) and compared COMT genotypes on this error-specific 

net effect separately for placebo and sulpiride. As predicted, in the placebo group, Val+ 

carriers showed significantly more error-specific slowing than Met/Met carriers (t(78) = 2.75, p 

= .004, one-tailed). When analyzing the raw scores in a next step this effect could be 

attributed to slowing following errors (t(78) = 4.0, p < .001, one-tailed) rather than slowing 

following correct responses t(78) = .99, p > .15, table 1). Of particular relevance, the genotype 

effect on the difference score was completely planished in participants who received sulpiride 

(t(87) = .22, p > .4, one-tailed), primarily due to a significant reduction in Val+ carriers after 
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sulpiride vs. placebo intake (t(117) = 2.57, p = .006, one-tailed) and a non-significant increase 

in Met/Met carriers (t(48) = 1.02, p = .16, one-tailed). There were no main effects or 

interactions on the total number of errors or on the mean reaction time following correct trials 

supporting the specificity of the present findings with regard to post-error processing. 

 

EEG Data.  

Independent-Component data. As shown in Figure 3, errors triggered a clear 

negative deflection in independent EEG sources localized to anterior mid-cingulate cortex 

(i.e. IC-ERN) that was dramatically reduced following correct responses (main effect 

Response: F(1, 165) = 225.3, p < .0001, ηp
2    = .57). Mirroring the behavioral data, there was a 

significant Response x COMT x Substance interaction (F(1, 165) = 6.8, p = .01, ηp
2   = .04, see 

Figure 3). Analogous to the behavioral data we followed up on this three-way interaction by 

first calculating difference scores indicating the error-specific net effect (amplitude error 

minus amplitude correct) and then testing these difference scores separately for both 

substance conditions. In the placebo group, Val+ carriers showed significantly higher 

difference scores than Met/Met carriers (t(78) = 1.98, p = .026, one-tailed). Analysis of the raw 

amplitudes revealed that this effect was driven by IC-amplitudes after error-trials (t(78) = 1.8, p 

= .04, one-tailed ,Figure 3) rather than correct responses t(78) = .22, p > .8, table 1). Similar to 

the behavioral data, sulpiride increased the difference score in Met/Met carriers (t(48) = 1.99, p 

= .03, one-tailed) but decreased the difference score in Val+ carriers  (t(117) = 1.84, p = .04, 

one-tailed).  

Scalp-channel data. Following the same pattern as PES and IC activation, the 

Response x COMT x Sulpiride interaction on the ERN-amplitude at channel Fz was 

marginally significant (F(1, 165) = 3.2, p = .07, ηp
2   = .02). With regard to difference scores 

(amplitude error minus amplitude correct) sulpiride induced a decrease in scalp-channel ERN 

in Val carriers (t(117) = 1.85, p = .03, one-tailed) and a non-significant increase of  amplitude 
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in Met/Met homozygotes (p > .15, see also table 1). The reduced effect sizes in scalp-channel 

vs. IC data are consistent with lower signal-to-noise ratio in the former (Makeig et al., 2004). 

 

Behavioral and EEG data.  

To test, whether individual differences in IC-ERN and PES were related, we 

correlated IC activation peaks and reaction time slowing separately for error and correct trials. 

IC-activation after errors (i.e. IC-ERN) showed a significant correlation with PES (r (169) = 

.16, p = .02, one-tailed) but not with slowing after rt-matched correct responses (p > .3). 

Moreover, IC-activation after correct responses correlated neither with PES nor with slowing 

after rt-matched correct responses (all ps > .15), indicating that there is an association 

between anterior midcingulate cortex IC-activation and reaction time slowing that is specific 

to error responses. 

 

Epistasis effects with DRD2Taq I a and 5-HTTLPR 

To test for epistasis effects we separately included DRD2TaqIa and 5-HTTLPR 

into the previously reported ANOVAs (for the distributions of DRD2TaqIa and 5HTTLPR 

over the COMT Val158Met genotypes see Table 1). There were no significant main-effects or 

interactions on PES, error-related IC activation or scalp-channel EEG that involved the 

DRD2TaqIa polymorphism. However, when 5-HTTLPR was included, there was a COMT x 

5-HTTLPR interaction on reaction time slowing independent of Response and Substance 

(F(1,160) = 4.52, p = .04, ηp
2  = .03) indicating that among carriers with the less functional 5-

HTTLPR alleles (LG and S) Val carriers slowed more (F(1,114) = 8.01, p < .006), while this 

effect was absent in LA homozygotes (p > .5). Importantly, a significant Response x COMT x 

5-HTTLPR x Substance interaction on IC activation (F(1,160) = 3.18, p = .05, ηp
2   = .02), 

indicated that the previously reported Response x COMT x Substance interaction on error-
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related IC activation was potentiated in carriers of the less functional 5-HTTLPR variant 

(F(1,114)  = 8.94, p < .005, ηp
2   = .07) but absent in LA homozygotes (p > .8; see Figure 4).  

 

Discussion 

We have shown that a dopaminergic genotype and a dopaminergic drug interact on 

human error processing, previously linked to DA. Although prior studies have investigated 

the effect of DA genotypes (for review: Ullsperger, 2010) or pharmacological challenges (for 

review: Jocham and Ullsperger, 2009) alone, this is the first study, to the best of our 

knowledge, that combines the two approaches to investigate the involvement of DA in error 

processing. Based on (1) the dual-state theory of PFC DA functioning, claiming that D2 states 

associated with low and high DA levels promote network flexibility (Durstewitz and 

Seamans, 2008), and because (2) it has been suggested that PFC DA plays a substantial role in 

error processing (Holroyd and Coles, 2002), we hypothesized that the DA-related COMT 

Val158Met polymorphism and intake of a selective D2 blocker would interact such that 

individuals with presumably low or high DA levels show elevated indices of dynamic error-

processing in comparison to individuals with medium DA levels. We tested our hypothesis in 

N = 169 healthy male participants, who were genotyped for COMT Val158Met, and who 

received a DA D2 receptor blocker or placebo and then performed a Flanker task while EEG 

was recorded. We found that carriers of the COMT Val158Met Val allele who had taken 

placebo and Met homozygotes, who had received sulpiride showed relatively high PES and 

error-related brain activity. In contrast, Val carriers who had received sulpiride and Met/Met 

carriers who had received placebo, showed relatively lower PES and error-related brain 

activity. This pattern of results provides strong support for a role of DA and the COMT 

Val158Met polymorphism on individual differences in ERN amplitude and PES and for the 

applicability of the flexibility/stability model to error processing. 
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In individuals who had received placebo, the IC-ERN amplitude was significantly 

smaller in Met/Met vs. Val+ carriers. This was mirrored by the behavioral data, where –after 

placebo- Met/Met carriers showed significantly less PES than Val+ carriers. Because Val+ 

carriers presumably show reduced DA-levels and may thus occupy D2 rather than D1 states 

(Durstewitz and Seamans, 2008) these findings are consistent with the hypothesis, that D2 

states facilitate dynamic error-processing. The finding of reduced PES and ERN in Met vs. 

Val carriers who received placebo further is in line with the pattern of results reported by 

Krämer et al. (2007) for a small sample of unmedicated participants, although the effect failed 

to reach significance in this former study. 

Because 200 mg of sulpiride presumably increase dopamine availability by 

blocking presynaptic D2-receptors (Mereu et al., 1983; Kuroki et al., 1999) we hypothesized 

that sulpiride would increase error processing in Met/Met carriers by pushing them from 

medium towards high DA levels and thereby into D2 states, and decrease error processing in 

Val+ carriers by pushing them from low DA towards medium DA levels and thereby into D1 

states. As expected, sulpiride significantly interacted with COMT on both, ERN and PES, in 

the expected directions. Following sulpiride intake, Val+ carriers showed a significant 

reduction of PES and a significant decrease of ERN amplitude. In contrast, Met/Met carriers 

who had received sulpiride vs. placebo, showed a significant increase in ERN-amplitude and 

a non-significant increase in PES. Together, this pattern of findings suggests a u-shaped 

association between PFC DA availability and dynamic error processing. Similar non-linear 

associations have been found with regard to DA availability and other brain processes 

(Goldman-Rakic et al., 2000; Tunbridge et al., 2006; Durstewitz and Seamans, 2008). With 

regard to the processing of infrequently occurring response errors, a possible mechanism for 

these effects involves D1- versus D2-dominated states in PFC as outlined above, which may 

suppress or enhance network flexibility and thereby affect reactivity to erroneous events (see 

Figure 1).  
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Alternatively, thermoinstable COMT in Met carriers may modulate the ERN by 

elevating postsynaptic DA at mid-cingulate cortex pyramidal cell neurons, phasic dips of 

which are assumed to underlie ERN generation (Holroyd and Coles, 2002), although this 

model may not be able to explain why presumably low levels of DA (as in Val carriers who 

received placebo) would enhance the ERN. While the dual state theory of dopamine 

functioning (Durstewitz and Seamans, 2008) and the Holroyd and Coles (2002) account focus 

on PFC, phasic DA signaling in the basal ganglia may also be implicated in error processing 

(Frank et al., 2007) and may likewise be potentiated in Val vs. Met carriers (Bilder et al., 

2004). The extent to which subcortical DA evokes individual differences in error processing 

could be investigated with future studies combining molecular genetics and pharmacological 

challenges in conjunction with neuroimaging techniques. 

A follow-up analysis revealed that the COMT x Substance interaction was 

potentiated in carriers of the less functional 5-HTTLPR variant. This variant is linked to 

reduced 5-HT uptake (Lesch et al., 1996) and 5-HT could affect PFC DA-neuron firing, for 

example by inhibiting GABAergic interneurons that otherwise constrain DA release (Fink and 

Gothert, 2007). Of relevance, the same alleles of 5-HTTLPR that predicted reactivity to 

dopamine manipulation depending on COMT genotype in the present study have previously 

been linked to enhanced vulnerability for depression after stressful life-events (Caspi et al., 

2003). Although 5-HTTLPR may have pleiotropic effects on dopamine-related error-

processing and depressive symptoms after stressful life events, together with evidence for 

stressful life events affecting the DA system (Pruessner et al., 2004) the present findings 

indicate that epistasis effects involving 5-HT and DA could be targeted in future studies of 

negative affect/depression, error processing, and their interrelation (Hajcak et al., 2004). The 

present study may also be of relevance for schizophrenia, for which D2 antagonists are among 

the most effective known treatments. Furthermore, the COMT Val allele has been associated 

with slightly increased risk for schizophrenia (Egan et al., 2001), particularly when present in 
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combination with the less functional 5-HTTLPR allele (Borroni et al., 2006). Although the 

presence of psychiatric disorders was an explicit exclusion criterion in this study, the present 

findings of opposing effects triggered by acute low-dose neuroleptic intake as a function of a 

dopaminergic and a serotoninergic genotype may inform future research on 

neuropharmacological treatment of depression and schizophrenia, both of which correlate 

with error-processing (Alain et al., 2002; Holmes and Pizzagalli, 2008; Olvet and Hajcak, 

2008). 

Finally, the limitations of the present study should be acknowledged. Because 

dopaminergic polymorphisms have previously been shown to have sexually dimorphic effects 

(Stein et al., 2005; Wacker et al., 2005) we constrained our sample to male participants. In 

addition, participants were recruited from a not previously genotyped sample resulting in 

heterogeneous cell sizes for some analyses (particularly those involving 5-HTTLPR or DRD2 

in addition to COMT). Although the 5-HTTLPR x COMT x Substance interaction did 

nevertheless reach statistical significance, future studies investigating men and women which 

were preselected based on genotypes would allow further generalization of the present 

findings. Finally, for pragmatic reasons (i.e. safety, statistical power, conductibility) we only 

investigated the effect of 200 mg sulpiride in comparison to placebo. Future studies including 

different doses and/or D2 agonists may help to verify and/or modify the interpretations we 

derived from our findings. 

Despite these limitations the present study clearly shows a link between 

dopaminergic genes, a dopaminergic challenge and error processing thereby extending prior 

work using smaller samples and either genetic or pharmacological approaches alone in 

important ways (for reviews see: Jocham and Ullsperger, 2009; Ullsperger, 2010). The 

present findings suggest (1) that a significant effect of COMT Val158Met on error processing 

can be demonstrated using a sufficiently large sample and ICA-decomposed EEG (Makeig et 

al., 2002), (2) that modulations of mid-cingulate ERN amplitudes after administration of D2 



17 

antagonists (Zirnheld et al., 2004) depend on COMT Val158Met genotype. Moreover, the 

present study provides initial evidence for a modulating involvement of 5-HT in 

dopaminergic mechanisms of error processing opening up novel research perspectives. 
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Table 1 

Sample characteristics and descriptive statistics 

 

 Placebo  Sulpiride 

 Val Met Val Met 

N 54 25  65 25 

A1- 39 16 47 14 

S+ and LG+ 39 17 49 13 

Age 23.8 (.4) 23.4 (.6) 23.8 (.4) 23.5 (.4) 

Weight (kg) 77 (2) 79 (3) 78 (2) 81 (3) 

Height (cm) 183 (8) 183 (7) 183 (8) 181 (7) 

Number of Errors 19.6 (1.3) 18.5 (1.9) 20.0 (1.2) 20.5 (2.3) 

Reaction Time (ms) 366 (4) 357 (5) 364 (3) 358 (4) 

Post-error slowing (ms) 77 (4) 56 (4) 72 (3) 70 (5) 

Post-correct slowing (ms) 34 (3) 29 (4) 40 (3) 36 (2) 

IC-ERN (error trials) -3.0 (.2) -2.4 (.2) -2.6 (.2) -3.1 (.3) 

IC-ERN (correct trials) -1.1 (.1) -1.2 (.1) -1.1 (.1) -1.1 (.1) 

IC-ERN (error – correct) -1.9 (.2) -1.2 (.3) -1.4 (.2) -1.9 (.3)  

Channel-ERN (error – correct) -23.3 (1.7) -19.5 (2.5) -19.4 (1.6) -23.8 (2.5) 

 

Notes. First row: Number of subjects per group. Second and third row: Number of A1- 

carriers (DRD2Taq I a) and S+ LG+ carriers (5-HTTLPR) per group. Below: Values given as 

means (SEM). Channel ERN reflects the difference score (amplitude error minus amplitude 

correct) measured at scalp channel Fz. 
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Figure 1 Postulated relationship between prefrontal dopamine level, COMT and relative D1 

vs. D2 receptor activation as previously described by D. Durstewitz and J. K. Seamans 

(2008). Due to enhanced relative D2 receptor activation in Val vs. Met carriers we 

hypothesized increased error-related negativity and post-error slowing in Val vs. Met carriers. 

By increasing PFC dopamine activity through presynaptic D2 receptor blockade sulpiride 

(200 mg) is predicted to shift Val+ carriers into medium and Met/Met carriers into high 

dopamine levels (red arrows) resulting in reduction or enhancement of error-related 

negativity/post-error slowing, respectively. 

 

Figure 2 Cluster-mean independent component (IC) scalp topographies for outlier (top left) 

and other IC clusters. Cluster 9 (highlighted) was used for analyses of error-related brain 

activity in the present study.  

 

Figure 3 Interactions of sulpiride and COMT on neural and behavioral error-processing 

correlates. (a) Grand average event-related potentials (ERPs) for a medial frontal independent 

component cluster (IC-cluster) following erroneous button presses (at latency 0) for Val+ 

(grey) and Met/Met (black) carriers, who received placebo (thick) or sulpiride (thin). 

Independent component ERPs were normalized by the root mean square over the component 

scalp map projection to all channels prior to averaging (see Methods). A standard brain image 

(Montreal Neurological Institute) indicates the region of maximum concentration (equivalent 

dipole density) of this IC-cluster. (b) Bar plots indicating means (and SEMs) of peak IC-

cluster event-related potentials (left) and reaction-time slowing in the subsequent trial (right) 

following errors in the placebo (white) or sulpiride (grey) groups. 
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Figure 4 Interactions of sulpiride, COMT and 5HTTLPR on peak IC-cluster event-related 

potentials. Bar plots indicating means (and SEMs) of peak IC-cluster event-related potentials 

following errors in the placebo (white) or sulpiride (grey) groups. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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a b s t r a c t

Generalized Anxiety Disorder (GAD) and excessive worrying are characterized by a preoccupation with
the future. Thus, enhanced identification of potential future punishments or omissions of reward may be
related to the disorder. To test this hypothesis, n¼ 47 students meeting GAD criteria according to the
GADQ-IV (GAD analogues) or not (control participants) performed the Iowa Gambling Task, which has
been related to sensitivity to future consequences. In order to disentangle sensitivity to future loss and
sensitivity to high short-term loss magnitudes, which could also lead to enhanced Iowa Gambling Task
performance, participants also performed a modified version of the task with reversed contingencies. In
both versions, GAD analogues learned to avoid decisions with high probability of long-term loss
significantly faster than control participants. Results, therefore, indicate that GAD is characterized by
enhanced processing of potential future losses rather than sensitivity to large short-term loss.

! 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Worry can be defined as a mental preoccupation with potential
negative events that may occur in the future. According to this
definition, there are three important elements of worrying. First,
worrying is associated with negative events that are, in terms of
learning theory, some kind of punishment or omission of reward.
Second, these negative events are to some extent unpredictable and
thus follow a probabilistic as opposed to deterministic schedule.
Third, worrying is mostly future-oriented. Similarly, Brown, O’Leary,
andBarlow (1993)describeworryas ‘‘a future-orientedmoodstate in
which one becomes ready or prepared to attempt to cope with
upcoming events’’ (p. 139). From these perspectives, it could be
hypothesized that people suffering from GAD (characterized by
excessive worrying and being overly concerned with the future;
Borkovec, Robinson, Pruzinsky, & DePree, 1983) would deploy
attentional (e.g. Mathews & MacLeod, 1985; Mogg & Bradley, 1998)
andworkingmemory (Hayes, Hirsch, &Mathews, 2008) capacities to
constantly search for cues of possible future losses, thus leading to
a failure to enjoy life or to live in the present moment (Borkovec,
2002; Borkovec, Alcaine, & Behar, 2004; Borkovec& Sharpless, 2004).

The above specified elements of worrying can be found across
different models of Generalized Anxiety Disorder. For example,
Wells (1999) has proposed a cognitivemodel of Generalized Anxiety
Disorder according to which there are two types of worry. Type 1
worry refers to worry about external events and non-cognitive
internal events (e.g. ‘‘my boyfriend will break up with me’’). Type 2
worry or metaworry refers to worry about one’s own thinking (e.g.
‘‘I must stop worrying or I’ll lose control.’’). Metaworry is a critical
part of the model because it explains why individuals with GAD
avoid worry-inducing situations: they fear that worrying leads to
negative future consequences. Thus, a common feature of both
types of worry is that they are related to the anticipation of possible
negative futures (i.e. loss of a beloved person and losing control).

From a different perspective, Dugas, Gagnon, Ladouceur, and
Freeston (1998) emphasize that worrying is characterized by intol-
erance touncertainty, includinguncertainty about the future (i.e. ‘‘My
mind can’t be relaxed if I don’t know what will happen tomorrow’’;
Freeston, Rheaume, Letarte, Dugas, & Ladouceur, 1994). Obviously,
not knowing what lies ahead should be especially aversive to those
individuals who overly process possible negative futures (Dugas,
Freeston, & Ladouceur, 1997). In other words, states of uncertainty
may encourage the mental processing of negative probabilistic
futures, which according to the above definition reflects worrying.

Finally, the avoidance theory of GAD (Borkovec et al., 2004)
assumes that worrying is motivated by its ability to (a) suppress
somatic aspects of anxious experience and (b) to remove the
perceived threat itself. This perceived threat generally is an
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anticipated bad event in the close or distant future, as opposed to
a real danger in the present situation (Borkovec et al. 1983). Thus,
according to the avoidance theory of worry and GAD, worrying is
strongly related to the anticipation and avoidance of future bad
events that are probabilistic and rarely happen in reality (Borkovec,
Hazlett-Stevens, & Diaz, 1999). Taken together, Borkovec et al.’s
(2004),Dugas et al.’s (1998), andWells’ (1999) andmodels ofGADare
consistent with the hypothesis that individuals with GAD show
exaggerated processing of uncertain/probabilistic negative events
that occur in the future.

In order to experimentally test in the present experiment
whether GAD and/or chronic worrying is associated with hyper-
sensitivity for future (probabilistic) outcomes, participantswith and
without GAD symptoms performed the Iowa Gambling Task (IGT,
Bechara, Damasio, Damasio, & Anderson, 1994). In the IGT, partici-
pants are instructed to pick cards from four different decks. Each
card of a given deck always leads to the samefictional reward,which
is $100 for decks A and B, and $50 for decks C andD. In addition, each
card can also lead to a loss, which is unpredictable on a trial-by-trial
basis. However, in the long run, the losses of decks A andB sumup to
be proportionally higher than the losses of decks C and D. Accord-
ingly, participants must learn to avoid decisions that lead to high
short-term but low long-term gain (i.e. decks A and B) and to make
decisions instead that lead to low short-term but higher long-term
gain. In sum, successful IGT performance requires processing of
exactly those elements (i.e. probabilistic future losses) that are
hypothesized above to relate to GAD and chronic worrying.

The IGT was initially developed in conjunction with the somatic
marker hypothesis from Damasio (1994), which relates decision-
making to the ventromedial region of the prefrontal cortex (VMPFC)
and states that signals from the bodymay influence decision-making
under conditions of ambiguity. It was based on the observation that
patients with lesioned VMPFC in real life often (a) do not produce
physiological responses to anticipated emotional events and (b)
show a failure to act in a future-oriented manner despite intact
intelligence (Bechara et al., 1994). Even though some aspects about
the hypothesis have been a matter of debate (for review see Dunn,
Dalgleish, & Lawrence, 2006), the IGThas beenable to experimentally
establish the lack of future-oriented behavior in individuals with
lesioned VMPFC (Bechara et al., 1994; Bechara, Damasio, Damasio, &
Lee, 1999). Moreover, this test has been intensively used to demon-
strate hyposensitivity to future outcomes in impulsive, pathological
conditions such as pathological gambling (Cavedini, Riboldi, Keller,
D’Annucci, & Bellodi, 2002), attention deficit/hyperactivity disorder
(Garon, Moore, &Waschbusch, 2006; Toplak, Jain, & Tannock, 2005),
delinquency (Schmitt, Brinkley, & Newman, 1999), and substance
abuse (e.g. BecharaDolan et al., 2001; Bechara, Dolan,&Hindes 2002)
(for reviews see Buelow & Suhr, 2009 and Dunn et al., 2006).

In contrast to these disorders, which are characterized by a failure
to act in a future or long-term oriented manner, it has been
hypothesized above that GAD is rather related to enhanced future-
oriented processing of cues that may signal punishments and/or
reward omissions. Accordingly, one would expect that individuals
who frequently worry are better than non-worriers in the IGT.
Interestingly, one study (Garon et al., 2006) found that children
suffering from ADHD performed worse than healthy children, but
this was not the case if they had a comorbid diagnosis of GAD. In
addition, some other studies have reported preliminary evidence for
positive relationships between IGT performance and conditions
related to worrying and anxiety (van Honk, Hermans, Putman,
Montagne, & Schutter, 2002; Peters & Slovic, 2000; Schmitt et al.,
1999; Smoski et al., 2008; but see Miu, Heilman, & Houser, 2008). In
sum, even though decision-making deficitswith stimuli unrelated to
reward andpunishment have been reported inGAD (Metzger,Miller,
Cohen, Sofka, & Borkovec, 1990), there is theoretical and empirical

support for the hypothesis that worrying would be associated with
enhanced performance on a decision-making task that measures
future orientation with regard to probabilistic punishment.

However, as described above, the upper, long-term disadvan-
tageous decks in the IGT also have larger loss magnitudes in single
trials (e.g. $200 or $300 for deck A, $1250 for deck B) than the lower,
advantageous decks (e.g. $50 or $25 for deck C, $250 for deck D).
Thus, if an individual avoids the upper decks of the IGT, it cannot be
judged whether this reflects an enhanced sensitivity for long-term
loss or an enhanced sensitivity for short-term loss magnitudes.1 In
order to test whether GAD would rather be associated with the
avoidance of short-term lossmagnitudes or an enhanced sensitivity
for future loss we included an additional IGT version in which
future loss could only be avoided by accepting relatively large
consistent short-term loss magnitudes (Bechara, Tranel, & Damasio,
2000; Crone, Vendel, & van der Molen, 2003). In this version, the
contingency table of the original IGT was inverted (see Table 1).
Thus, there were decks with high consistent loss magnitudes and
with low consistent loss magnitudes. While the former also
brought proportionally higher inconsistent rewards (which made it
long-term advantageous) the latter was associated with propor-
tionally smaller inconsistent rewards (which made it long-term
disadvantageous).

Taken together, if GAD is characterized by increased sensitivity
to short-term loss, lowered IGT performance would be expected in
the modified version (in which avoiding decks with larger short-
term loss leads to overall long-term loss), whereas enhanced
performance would be expected in the standard version (in which
sensitivity to both long and short-term loss would lead to advan-
tageous selections). In contrast, if GAD is related to hypersensitivity
to inconsistent future long-term losses, these participants should
perform better in both versions of the IGT. To test these competing
hypotheses, the present study investigated participants with and
without GAD symptoms who performed both versions of the IGT in
a repeated-measures design.

The pair of advantageous decks (C and D) and the pair of
disadvantageous decks (A and B) of the standard IGT each consists
of one deck with frequent low punishments (C and A) and one deck
with infrequent high punishments (D and B). To test whether GAD
is associated with avoidance of infrequent high punishments
(regardless of long-term advantage), we also compared groups
with regard to the pooled selections from decks D and B of the
standard IGT. Because this score is insensitive for long-term
consequences, we had no particular hypotheses for these analyses.

2. Method

2.1. Participants

Three cohorts of undergraduate students (N¼ 1882) completed
a battery of questionnaires during group screening procedures at
the beginning of the semester. Of these, 155 students met GAD
criteria according to the GADQ-IV (see below) and agreed to be
contacted for participation in later studies. These 155 students and
a similar number of students who did not meet GAD criteria were
contacted by email and offered class credit for participation in

1 In the context of the IGT, the avoidance of short-term loss magnitudes could be
driven by ‘‘risk avoidance’’, which has previously been linked to anxiety (e.g. Maner &
Schmidt, 2006). However, given that the subjective risk for a deck dynamically changes
throughout the course of the IGT (as more knowledge about the decks is acquired cf.
Brand et al., 2006), and because risk avoidance may not be limited to avoidance of
short-term risk but may also include avoidance of long-term oriented risk, we have
used themore narrow term ‘‘sensitivity to short-term loss’’ and define it as a tendency
to avoid decisions associated with relatively large single-trial loss magnitudes.
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a decision-making study. Participants who were selected according
to the DSM-IV criteria had an average score in the Penn StateWorry
Questionnaire (PSWQ, Meyer, Miller, Metzger, & Borkovec, 1990) of
66.5 (SD¼ 7.6), whereas participants who did not meet DSM-IV
criteria had a mean PSWQ score of 45.11 (SD¼ 12.3). The final
sample consisted of N¼ 27 students meeting GAD criteria (23
female, 4 male; age:M¼ 19.35 years; SD¼ 1.3 years; 4 left-handed;
one Asian, one Hispanic) and 20 control participants (12 female, 8
male; age:M¼ 18.90 years; SD¼ 0.8 years, 3 left-handed, twoAsian,
one Hispanic) who alsomet an average of 1.2 GAD criteria (SD¼ 1.3)
in the GADQ-IV. As expected, GAD participants of the final sample
had higher scores in the PSWQ (M¼ 65.9, SD¼ 12.6) than control
participants (M¼ 43.8, SD¼ 8.1), (t(42)¼ 0.7.03, p< 0.001) and also
had higher scores in the social interaction anxiety scale (SIAS,
Mattick & Clarke,1998) (M¼ 37.7, SD¼ 10.4, vs.M¼ 26.3, SD¼ 11.7),
(t(42)¼ 3.34; p< 0.005). Groups did not differ with regard to
handedness (p> 0.9), age (p> 0.15) or ethnicity (p> 0.6). However,
there were significant differences in the number of females
(c2(1)¼ 3.83; p¼ 0.05). The factor ‘Gender’ was, therefore, included
in all subsequent analyses. In addition, we re-conducted the main
analyses with subsamples of the two groups (n¼ 14) that were
matched according to gender, age and handedness.

2.2. Materials

2.2.1. Questionnaires
The GADQ-IV is a 9 item self-report measure that assesses DSM-

IV GAD criterial symptoms and reliably identifies participants who
meet criteria for GAD (Newman et al., 2002). Because the suggested
cutoff score of the GADQ-IV has been found to overdiagnose indi-
viduals (Behar, Alcaine, Zuellig, & Borkovec 2003),weused themore
conservative criterion that all of the following DSM-IV criteria had
to be satisfied2: (a) excessiveworry, (b) difficulty in controlling their

worrying once it started, (c) having at least two topics of worry, (d)
being bothered by excessive and uncontrollable worries more days
than not during the past six months, and (e) reporting at least three
out of six associated symptoms. In addition to the GADQ-IV,
participants filled out the Penn State Worry Questionnaire (Meyer
et al., 1990) and the Social Interaction Anxiety Scale (SIAS, Mattick &
Clarke, 1998) during the group screening procedure and for 44
participants of the present study this data was also available for
analysis. The SIAS is a measure of social anxiety, which shows
moderate correlations with depression questionnaires (Mattick &
Clarke, 1998) and lower correlations with the GADQ-IV (Newman
et al., 2002). The SIAS and the PSWQ were included in the present
study to test the specificity of the hypothesized role of worrying.

2.2.2. Iowa Gambling Task
The IGT was adapted from the descriptions in Bechara et al.

(1999) study. A trial beganwith a display of four decks of cards (A, B,
C and D) and immediately after the participant selected a card by
button press, feedback on the amount won and lost in that trial and
on the total amount left was given. For the standard version of the
IGT, the selection of the upper (A and B) and lower (C and D) decks
always lead to a gain of $100 and $50, respectively. The amount of
losses per trial was non-systematic (see Bechara et al., 1994).
However, over 10 selections, losses summed up to $1250 for the
upper and $250 for the lower decks, leading to a net loss of $250 for
the upper ($1250#10$ $100) and a net gain of $250 for the lower
decks. Therefore, every selection of a lower deck in the standard
version was considered ‘advantageous’, because despite being
unpredictable at a molecular trial-by-trial level, every lower deck
selection was advantageous on a global molar level.

The modified version of the IGT had the reversed contingencies
of the standard version (Bechara et al., 2000). The disadvantageous
decks (G and H) had a constant loss of $50 and a total win of $250
over 10 trials, whereas the advantageous decks (E and F) had
a constant loss of $100 and a total win of $1,250 over 10 trials.
Whereas A and B vs. C and D were arranged horizontally in the
standard version G and H vs. E and F were arranged vertically in the
modified version in order to reduce effects of learning. Contin-
gencies and positions of the decks for the two versions are further
illustrated in Table 1.

Table 1
Contingency table for the first 12 selections of the standard and modified versions of the IGT.

Standard version Modified version

Deck A B C D E F G H

Position Upper left Upper right Lower left Lower right Upper right Lower right Upper left Lower left

Constant gain/loss þ100 þ100 þ50 þ50 #100 #100 #50 #50

Selection #
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 #150 0 #50 0 þ150 0 þ50 0
4 0 0 0 0 0 0 0 0
5 #300 0 #50 0 þ300 0 þ50 0
6 0 0 0 0 0 0 0 0
7 #200 0 #50 0 þ200 0 þ50 0
8 0 0 0 0 0 0 0 0
9 #250 #1250 #50 #250 þ250 þ1250 þ50 þ250
10 #350 0 #50 0 þ350 0 þ50 0
11 0 0 0 0 0 0 0 0
12 #350 0 #25 0 þ350 0 þ25 0

Net gain/loss over 10 trials #250 #250 þ250 þ250 þ250 þ250 #250 #250

For example, every timedeckAwas chosen in the standardversion theparticipant received a gainof $100. The third timedeckAwas chosen (regardless ofwhether other deckswere
selected in between) the participant also received a loss of $150. Thus, 10 selections from deck A lead to a net loss of $#250 ((10$ $100)# $150# $300# $200# $250# $350). In
contrast, 10 selections fromdeck E in themodified version lead to a net gain of $250 ((10$# $100)þ $150þ $300þ $200þ $250þ $350). Note, that the positions of advantageous
decks were different in the two versions in order to reduce learning effects. The complete contingency table for the standard version can be found inBechara et al. (1994) and by its
inversion (multiplication by #1) the contingency table for the modified version can be constructed.

2 Tovalidate the increased specificity of the all-criteria vs. standard composite score,
we compared the PSWQ scores of the two GAD groups that would result from either
method in the first cohort. As expected, the GAD group according to the all-criterion
score had a higher average PSWQ (M¼ 66.7; SD¼ 7.43) than theGADgroup thatwould
result from applying the composite score (M¼ 63.4; SD¼ 9.9).
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Each version consisted of a total of one hundred selections,
separated into five blocks of 20 trials. After a block, there was
a subjective awareness check asking the participants which deck
they believed lead to the highest overall gain. Due to a software
problem, this variable was not recorded for n¼ 9 (GAD: n¼ 4;
Control: n¼ 5) participants.

2.3. Procedure

Participants reported to the laboratory and read and signed an
informed consent form. They were then brought to a small sound-
shielded room where participants read the instructions for the
gambling task and performed one practice trial. Half of the partic-
ipants in each GAD and non-GAD group began with the standard
version of the gambling task, and the other half with the modified
version, followed by a 1-min break. After the break, participants
engaged in the other version of the task. The order of the conditions
was randomly assigned within the GAD- and the control group.

2.4. Statistical analyses

For both versions, the primary dependent variable was the
number of advantageous selections within a block of 20 trials
(C and D in the standard version and E and F in the modified
version). Repeated-measures ANOVAs with the between-subject
factors GROUP and GENDER and the within factors BLOCK and
VERSION were performed to analyze the number of advantageous
decisions (i.e. the main hypothesis) and to analyze the number of
selections from decks BþD (i.e. the disadvantageous and advan-
tageous infrequent high loss decks). Preliminary tests were con-
ducted prior to these main analyses. First, independent t-tests on
the number of advantageous decisions in the first block were per-
formed to assure that there were no group differences at the
beginning of the task. To further confirm that participants in both
groups had taken similar amounts of time to come to their deci-
sions, and to confirm that groups did not differ in the cognitive
penetration of the task we also compared reaction times (measured
from the beginning of a trial until the button press and averaged
across conditions) and the number of correct answers in awareness
checks between groups with independent t-tests. Because it has
recently been criticized that not enough is known about the reli-
ability of the IGT (Buelow & Suhr 2009), we also assessed internal
consistency of the five blocks (across groups). This also allowed
investigating whether performance in each block was related to
a homogenous construct (cf. Brand, Labudda, & Markowitsch,
2006). All statistical analyses were conducted using SPSS version
11.5.1.

3. Results

3.1. Preliminary analyses and reliability of the measure

Groups did not differ in the number of advantageous decisions
in the first block of the standard (t(45)¼ 1.05; p> 0.3) or the
modified version of the IGT (t(45)¼ 0.08; p> 0.9), indicating that
there were no a priori differences in preference for particular
choices. In addition, participants in the two groups did not differ in
the time they took to make a decision (t(45)¼ 0.12; p> 0.9) and for
those participants where subjective awareness data was recorded,
there were no GAD vs. control group differences in awareness of
advantageous decks (t(36)¼ .79; p> .4). A preliminary Order-
$Version$ Block ANOVA revealed no main effect or interaction
involving order (all ps> 0.2), suggesting that there were no
substantial test re-test effects. Cronbach alphas for the standard
(a¼ 0.83) and the modified (a¼ 0.86) versions were high.

3.2. Advantageous selections

As shown in Fig. 1, GAD participants showed a more pronounced
increase of advantageous selections over the five blocks than did
the control participants. Statistically this was confirmed with the
Group$Gender$ Block$Version ANOVAwhich revealed a signif-
icant Group$ Block interaction (F(1, 43)¼ 3.14; p< 0.023; partial
e2¼ 0.07).3 This interactionwas characterized by a group difference
in the linear increase across blocks (F(1, 43)¼ 5.07; p< 0.03; partial
e2¼ 0.11), with a steeper slope in the GAD than non-GAD group. In
addition, there were main effects for Block (F(1, 43)¼ 17.42;
p< 0.0001; partial e2¼ 0.28) and Version (F(1, 43)¼ 13.78;
p< 0.001; partial e2¼ 0.24), which were further qualified by a Ver-
sion$ Block interaction (F(1, 43)¼ 2.79; p< 0.033; partial
e2¼ 0.06), indicating that learning (i.e. a linear increase in advan-
tageous decisions over the five consecutive blocks) occurred faster
in the modified version of the task. Group$Version and Group -
$Version$ Block interactions were not significant (ps> 0.9).

To further test whether enhanced learning was specifically
related to worrying, we divided the sample into learners (i.e. indi-
viduals that made less than 50% disadvantageous decisions in the
final block of both versions) and non-learners (i.e. individuals that
made less than 50% advantageous decisions) and then compared the
PSWQ and SIAS scores of these groups. Consistentwith the previous
analyses, learners (n¼ 35) hadhighermean PSWQscores (M¼ 58.6;
SD¼ 15.3) than non-learners (n¼ 9, M¼ 47.7, SD¼ 10.5)
(t(42)¼ 2.01; p< 0.05). In contrast, learners and non-learners did
not differ in their SIAS scores (t(42)¼ 1.08, p> 0.2).

3.3. High vs. low frequency loss selections in the standard version of
the IGT

To test whether aside from long-term advantageous selections,
GAD vs. control participants also differed in their avoidance of
infrequent large loss magnitudes (as opposed to more frequent but
smaller losses) we analyzed the sum of selections from decks A
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Fig. 1. Estimated marginal means% SEM of the total number of cards selected from
advantageous decks (C and D) in each block of 20 cards for GAD (squares) and control
participants (diamonds) reflecting the averaged performance from both versions of the
task.

3 When analyses were re-conducted with subsamples of the two groups (both:
n¼ 14) which were matched according to age, gender and handedness this effect
(i.e. group$ block interaction) was replicated [F(1,24)¼ 3.55; p< 0.018].
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(disadvantageous, high frequency of relatively low losses) and C
(advantageous, high frequency of relatively low losses) for the five
blocks of 20 trials. When we conducted a Group$Gender$ Block
ANOVA on these scores there was a main effect for Group (F(1,
43)¼ 9.37, p< 0.01, partial e2¼ 0.18), indicating that GAD analogues
avoided decks with large infrequent loss (Fig. 2). In addition, there
also was a Gender$Group interaction (F(1, 43)¼ 8.67, p< 0.01,
partial e2¼ 0.17), indicating that the group difference was stronger
in male vs. female participants.

4. Discussion

The present study used a decision-making paradigm to assess
sensitivity to future reward and loss among participants with and
without GAD symptoms. GAD analogues learned significantly faster
than control participants to avoid selections associated with long-
term loss. This effect was observed regardless of whether long-term
loss was due to decisions associated with a larger probability of
high punishments (standard version) or with a smaller probability
of high rewards (modified version). Moreover, groups did not differ
in their reaction times and subjective awareness scores, making it
unlikely that GAD analogues simply took more time to decide on
which choice to make or that GAD analogues had a higher level of
cognitive penetration of the task. Finally, GAD participants in the
standard IGT also showed significant avoidance of decks with
infrequent large vs. frequent small punishments when selections
were collapsed across long-term advantageous and disadvanta-
geous decks but separated with regard to loss frequency.

Previous studies have found a relationship between perfor-
mance in the standard IGT and anxiety (Schmitt et al., 1999;
Werner, Duschek, & Schandry, 2009) or depression (Smoski et al.,
2008). This study not only replicated these prior results in
a different clinical sample but also extended the finding of superior
IGT performance in anxious participants to the modified version.
Here, even though the long-term advantageous decks were asso-
ciated with large consistent short-term loss, participants with GAD
symptoms selected from them. This pattern of findings suggests,
that improved IGT performance in anxious individuals is not due to
enhanced sensitivity for short-term loss. Instead, in line with
models of GAD (e.g. Borkovec et al. 2004), the findings support the
view, that GAD is associated with an enhanced sensitivity for

unpredictable long-term loss. However, IGT performance (in both
versions) reflects the balancing effects of sensitivity to loss and
sensitivity to reward. Thus, the interpretation that GAD analogues
reliably learned in both versions to choose decks with high long-
term gain (instead of avoiding long-term loss) at the cost of missing
opportunities for even higher (relative) short-term gains is also
possible. The design of the IGT does not allow disentangling reward
and punishment sensitivity regarding the two groups. However, the
long-term advantageous selections across inverted contingency
matrices of the IGT provide experimental evidence for long-term
oriented decision-making in GAD.

At least two separate processes are involved in complex real-life
decision-making as simulated by the IGT. Individuals must learn
about probabilistic contingencies between stimuli and outcomes,
and they must make a decision based not only on this learning
experience but also on general motivational tendencies (e.g. to
avoid punishment or approach reward). The present findings may
reflect either one or both of these processes, because both enhanced
acquisition of negatively valenced associations (Zinbarg & Mohl-
man, 1998) and related motivational aspects (Maner & Schmidt,
2006) have been related to anxiety before. However, the group
difference in the linear increase of advantageous selections across
blocks suggests that enhanced learning to avoid decks associated
with long-term losses plays a major role in the present findings and
thusmaypotentially be a characteristic of GADbehaviour in general.

Additional support for the involvement of learning differences
comes from recent electrophysiological studies. Error-related
negativity (ERN; Gehring, Coles, Meyer, & Donchin, 1995), or
specifically the feedback-related negativity (Miltner, Braun, & Coles
1997), is an EEG-component that is enlarged for negative as opposed
to positive feedback. It is likely triggered by dopamine signals
involved in learning via negative (Holroyd & Coles, 2002) and
possibly also positive reinforcement (Santesso et al., 2008) and has
been shown to be sensitive to feedback in similar gambling tasks
(e.g. Gehring & Willoughby, 2002; Hajcak, Moser, Holroyd, &
Simons, 2006, 2007). Importantly, potentiated ERNamplitudes have
also been associatedwith GAD (Ladouceur, Dahl, Birmaher, Axelson,
& Ryan, 2006), worrying (Hajcak, McDonald, & Simons, 2003), and
related personality traits (e.g. Boksem, Tops, Wester, Meijman, &
Lorist, 2006; Hajcak, McDonald, & Simons, 2004). Thus, investi-
gating whether the behavioural results reported here are mediated
by the ERN may not only yield important insight on long-term
oriented reward and punishment processing in excessive worriers
but also information concerning the hypothesized role of dopami-
nergic transmission in GAD (Stein, Westenberg, & Liebowitz, 2002)
and IGT performance (Bechara, Damasio, & Damasio, 2001).

Independent of IGT performance, GAD analogues chose less
often decks with infrequent large losses (i.e. decks B and D) than
control participants. On average, control participants selected 15
out of 20 cards from large infrequent loss decks, which is consistent
with prior reports that healthy participants fail to recognize the
infrequent loss deck B as disadvantageous (Lin, Chiu, Lee, & Hsieh,
2007). In contrast to the controls, GAD participants selected only 10
out of 20 cards from large infrequent loss decks. This pattern may
reflect that non-anxious participants have an optimistic bias during
the task (e.g. ‘‘I will not receive another large punishment when
choosing deck B/D’’), whereas chronic worriers may show a more
pessimistic (or in this case realistic) anticipation of loss contin-
gencies. Because this pattern was more pronounced in the male
participants, who constitute a smaller part in the GAD population
(and similarly, in the present sample) it should be interpreted with
some caution. Note, however, that a pessimistic/realistic anticipa-
tion of loss contingencies in GAD is consistent with an enhanced
sensitivity for future loss as reflected in the performance related
analyses.

5 

10 

15 

1 2 3 4 5 

# 
of

 s
el

ec
tio

ns
 

Block 

Selections from High Loss Decks 

Control GAD 

Fig. 2. Estimated marginal means% SEM of the total number of cards selected from
infrequent loss decks (B and D) in each block of 20 cards for GAD (squares) and control
participants (diamonds) in the standard version of the IGT.
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The present results indicate that chronic worrying does not have
to be non-adaptive per se. By showing that GAD analogues out-
performed non-GAD participants, these findings contribute to
reports that trait worrying in combination with high mental ability
may be associated with relatively better job performance than trait
non-worrying (Perkins & Corr, 2005). These types of findings are
crucial to the understanding of GAD and related disorders, as they
provide a candidatemechanism for howexcessiveworryingmay be
strengthened by positive reinforcement. It has been noted that
most individuals believe that worrying may prevent disaster
(Freeston et al., 1994) and that positive meta-beliefs about worry
play a crucial role in the initiation and maintenance of worry
(Borkovec et al., 2004; Wells, 1999). Heightened awareness of
possible future punishments and opportunities that could be
missed may sometimes indeed lead to more advantageous deci-
sions in real life. However, the cost may be reduced awareness for
the present, and thus an appropriate therapeutic strategy is to teach
clients to focus more on the present moment (Borkovec, 2002;
Borkovec & Sharpless, 2004). This may be achieved through
cognitive therapy or applied relaxation techniques (Borkovec et al.,
2004), both of which have been found effective for the treatment of
GAD (Arntz, 2003).

Two limitations of the present study should be acknowledged.
First, although the groups were formed on the basis of a reliable
self-report diagnostic measure (Newman et al., 2002), the GAD
participants were not treatment seeking. However, the relatively
high point-prevalence of students meeting GAD criteria in the
present study (8%) compared to GAD patients in the general pop-
ulation (3%, e.g. Kessler, Chiu, Demler, Merikangas, &Walters, 2005)
is similar to other studies using student samples (e.g. 7% in Ruscio,
2002). Moreover, GAD patients identified with the Anxiety Disor-
ders Interview Schedule for DSM-IV (ADIS-IV; Di Nardo, Brown, &
Barlow, 1994) have been shown to have average PSWQ score of 67
(Behar et al., 2003) and 68 (Fresco, Mennin, Heimberg, & Turk,
2003), which closely resemble the values of the present sample
(66). Second, we did not control for depression, which based on
very recent reports (Smoski et al., 2008) that could have been
another variable of interest. However, the relationship between IGT
and depression is inconsistent (Buelow & Suhr, 2009) and we did
not find an association between IGT performance and ameasure for
social anxiety, which is also closely related to depression (Mattick &
Clarke, 1998). Moreover, in a recent study (manuscript in prepara-
tion) with German college students, we were able to show
a significant positive correlation between trait-anxiety, PSWQ
score, and IGT performance, thus replicating the present findings
on a subclinical sample. Importantly in that study, depression
scores and negative mood scores were unrelated to IGT perfor-
mance. Together these and the present findings support the inter-
pretation that IGT performance is rather related to worrying and/or
anxiety than to depression or negative affect per se.

Aside from these limitations, the present study shows that GAD
is related to superior performance in gambling tasks in which
probabilistic punishment and reinforcement histories must be
integrated in order to achieve high long-term gains. The results
suggest that GAD is not necessarily characterized by a tendency to
avoid consistent short-term losses, but rather by an increased
sensitivity for unpredictable future losses.
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a b s t r a c t

Recent studies suggest that intracellular signaling pathways involving cyclic adenosine monophosphate
(cAMP) may be related to fear processing and long-term memory formation. The type IV phosphodi-
esterase (PDE4) inhibitor rolipram prevents breakdown of cAMP, enhances long-term memory and may
reduce anxiety. In the present study we investigated the role of rolipram in the expression (0, 0.2, or
1 mg/kg), acquisition (0, 0.03, 0.2 or 1 mg/kg), and extinction (0, 0.03, 0.2, 1 mg/kg) of fear using a fear-
potentiated startle paradigm in mice. It was shown that rolipram reduced the expression (Experiment 1),
did not influence acquisition (Experiment 2) and disturbed between-session extinction (Experiments 3
and 4) of fear responses to conditioned tones. Because within-session extinction was not impaired by
rolipram and because low (i.e. 0.03 and 0.2 mg/kg) doses strongly affected extinction but not expression
of fear, these findings suggest that the effect of rolipram on extinction is not directly dependent on its
effect on fear expression. Taken together, these experiments indicate that preventing breakdown of
cAMP interferes with the expression and extinction consolidation of conditioned fear.

! 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the neurobehavioral mechanisms underlying the
expression and reduction of fear may help improve pharmacologic,
psychotherapeutic and combined treatments for anxiety disorders
(Hofmann, 2007). The intracellular signaling pathway involving the
second messenger cyclic adenosine monophosphate (cAMP) is part
of a mechanism implicated in learning and memory formation
(Davis et al., 1995; Alberini, 1999) and possibly also in fear extinc-
tion (Myers and Davis, 2007). Cyclic AMP triggers protein kinase A
(PKA)-mediated phosphorylation of the cAMP response element
binding protein (CREB), which in turn activates intracellular
signaling cascades that have been implicated in memory processes,
anxiety and other phenomena (Carlezon et al., 2005). Importantly,
cAMP is broken down by cyclic nucleotide phosphodiesterases,
a large family of enzymes that includes the type IV or cAMP-specific
phosphodiesterases (PDE4) that are expressed throughout the
brain (Cherry and Davis, 1999; Perez-Torres et al., 2000). Admin-
istration of the PDE4-specific inhibitor rolipram leads to elevation
of cAMP levels (Barad et al., 1998), increased CREB phosphorylation

(Monti et al., 2006) and a number of behavioral sequelae, including
anti-depressant (Li et al., 2009; Wachtel, 1983; Zeller et al., 1984;
Zhang et al., 2002), anti-psychotic (Kanes et al., 2007), spinal
neurotransmission (Kehne et al., 1991) and anxiolytic effects
(Li et al., 2009; Silvestre et al., 1999a).

Acute (Silvestre et al., 1999a) and chronic (Li et al., 2009)
delivery of rolipram has been shown to reduce the expression of
anxiety. Consistent with that finding, low levels of CREB in the
central nucleus of the amygdala and bed nucleus of the stria ter-
minalis have been associated with relatively high anxiety and fear,
respectively (Meloni et al., 2006; Pandey et al., 2005). Fear and
anxiety are regulated by distinct, albeit overlapping neural circuits
(Davis, 2006; Gray andMcNaughton, 2000) with varying degrees of
responsiveness to different pharmacologic treatments (Blanchard
et al., 1997). Because the effect of rolipram on anxiety but not
fear expression has been previously tested, Experiment 1 investi-
gated whether the administration of rolipram would also lead to
suppression of fear.

There is also substantial evidence to suggest that rolipram can
improve long-term hippocampal-dependent fear memory (Barad
et al., 1998) as well as reverse memory deficits induced pharma-
cologically (Randt et al., 1982; Zhang et al., 2000, 2004; Rutten et al.,
2006) or by genetic lesions (Bourtchouladze et al., 2003; Comery
et al., 2005). We reasoned that rolipram, which has been shown
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to increase hippocampal CREB (Nibuya et al., 1996; Monti et al.,
2006) might also potentiate cue-specific fear conditioning, for
example, by elevating CREB levels in the basolateral amygdala
(Josselyn et al., 2001). Experiment 2, therefore, tested whether
rolipram supplied prior to acquisition would enhance the condi-
tioning of fear.

Further, PDE4 inhibitors may affect fear extinction. Mice that
exhibit increased cAMP levels due to an overexpression of adenylyl
cyclase display impaired extinction (Wang et al., 2004), suggesting
that cAMP elevation, through PDE4 inhibition (e.g. Barad et al.,
1998) might interfere with extinction of conditioned fear. In fact,
mice receiving subchronic rolipram during contextual fear condi-
tioning displayed delayed extinction of fear, perhaps because roli-
pram produced a stable fear conditioning (Monti et al., 2006). It is
not known what effect rolipram may have if it is present during
extinction. Therefore, Experiment 3 investigated the hypothesis
that delivery of rolipram interferes with the extinction of fear.

Like other types of learning, extinction involves acquisition and
consolidation phases (Quirk and Mueller, 2008), which may be
differentially affected by drugs. To test whether rolipram affects the
acquisition or consolidation phase of fear extinction, Experiment 4
probed the dynamics of fear expression both during extinction
sessions (as an index for extinction acquisition) and between
extinction sessions (as an index for extinction consolidation).

In the present study rolipramwas administered to mice prior to
examining the expression (Experiment 1), conditioning (Experi-
ment 2) or extinction (Experiments 3 and 4) of conditioned fear in
a fear-potentiated startle (FPS) paradigm, a valid and widely used
measure for studying conditioned fear (for review see Davis, 2006).

2. Methods

2.1. Subjects

Six to eight week old male Swiss Webster mice were obtained from Taconic
Farms (Germantown, NY) and used within one week of arrival. Mice were housed in
groups of four and maintained on a 12/12-h light/dark cycle (lights on at 07:00 h).
Food and water were available at all times. All procedures involving animals fol-
lowed National Institutes of Health guidelines for the care and use of laboratory
animals and were approved by the Boston University Charles River Campus Insti-
tutional Animal Care and Use Committee.

2.2. Apparatus

Testing was conducted in sound-attenuating cubicles (30" 26" 17 cm) using an
acoustic startle system from Coulbourn Instruments (Allentown, PA). Each cubicle
contained a load-cell platform onto which an animal holder was placed. The holder
was an opaque plastic tray (16 " 9 " 4.5 cm) with a gridded floor consisting of six,
4.5 mm dia. steel rods spaced 13 mm apart, and a hinged, dome-shaped top

constructed of 6.5 mm dia. aluminum bars spaced 6mm apart. White noise and pure
tones were generated by a small speaker located in the chamber. Sound pressure
levels were determined with a Radio Shack (Fort Worth, TX) digital sound level
meter.

2.3. Testing procedures

Parameters for assessing and analyzing fear-potentiated startle followed those
described in Waddell et al. (2004), and are detailed below. An outline of specific
procedures used in each experiment is provided in Table 1.

2.4. Acclimation tests

In all tests, a 5-min acclimation period during which no stimuli were presented
was given after placing mice in the startle apparatus. Mice were habituated to
handling and the behavioral chambers by exposing them on each of three separate
days to the startle stimuli (20-ms white noise pulses). Ten stimuli each at intensities
of 95, 100, and 105 dB were presented each day with a mean inter-trial interval (ITI)
of 30-s within a range of 15e45 s. Performance in these tests was not a part of any
subsequent statistical analysis.

2.5. Training

Fear-conditioning sessions consisted of 10 tone plus shock trials inwhich a 30-s,
4-kHz 70-dB tone coterminated with a 0.25-s, 0.4-mA foot shock (see descriptions of
individual experiments for the number of sessions given). The ITI for conditioning
was a pseudorandom duration of between 1 and 3 min that averaged 2 min for the
10 trials.

2.6. Rolipram delivery

Rolipram (Sigma, St. Louis, MO) was administered by intraperitoneal injections
at 0, 0.03, 0.2, or 1.0 mg/kg in 10% cremophor to facilitate dissolubility.

2.7. Pre-training/FPS tests

A pre-training test was given prior to fear conditioning to determine the
unconditioned effect on startle amplitudes of the 4 kHz tone that served as the
conditioned stimulus (CS). The pre-training test consisted of nine startle stimulus-
alone trials (three each at 95, 100 and 105 dB) followed by an additional 18 trials:
nine startle stimulus-alone trials (three each at 95, 100 and 105 dB), and nine
CS þ startle stimulus trials (three each at 95, 100 and 105 dB) in which the startle
stimulus occurred 29.75 s after the onset of the CS. Trials were presented in
a pseudorandom order such that at least one startle stimulus of each intensity
occurred within any block of 6 trials, and no stimulus occurred more than twice in
a row. Parameters for the FPS test were identical to the pre-training test.

2.8. FPS scores

Startle responses occurring following noise pulses were transduced by the load
cell and digitized at 1 kHz. The peak response within 200 ms after the onset of the
startle stimulus was recorded as the startle response for each trial. FPS scores were
computed separately for 95, 100 and 105 dB pulses by subtracting for each animal
the mean startle amplitude in response to noise pulses only from the mean startle
amplitude in response to noise pulses preceded by the CS.

Table 1
Experimental Design for Experiments 1e4.

Experiment 1 Training FPS Test Extinction (4 days) Training 2 FPS Test
Rolipram/saline delivery X
Fear assessment O O

Experiment 2 Training FPS Test
Rolipram/saline delivery X
Fear assessment O

Experiment 3 Training FPS Test Extinction (1 day) FPS Test
Rolipram/saline delivery X
Fear assessment O O

Experiment 4 (A and B) Training FPS Test Extinction (4 days)* FPS Test
Rolipram/saline delivery X
Fear assessment O O O

Stages for each experiment are shown from left to right in temporal order. The letter indicates stages where fear was measured (O) and/or rolipram/saline was administered
(X). Mice also went through an acclimation stage and a pre-training test prior to their first training session (not listed in table); mice in Experiment 4 had received additional
training and extinction prior to being given the series of tests shown. * denotes extinction tests with a CS (tone) only (no noise pulses). See Methods for additional details of
procedure.
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2.9. Rolipram and expression of fear (Experiment 1)

Prior to evaluating the effect of rolipram on the expression of conditioned fear,
we conducted preliminary tests to verify that the chosen parameters were appro-
priate for training, testing and extinguishing fear in mice. Following an initial
acclimation and pre-training test, n ¼ 24 mice were fear conditioned for three days
(10 trials of tone plus shock each day) and on the following day given a test for FPS
without rolipram injections. As expected, relative to startle responses in the pre-
training test (Mean: 3.3; SEM: 1.5) mice showed significant FPS responses (averaged
over loudness levels) in the first FPS test ((Mean: 39.5; SEM: 4.4), t(23) ¼ 9.15,
p < 0.001), demonstrating that the fear-conditioning procedure was effective.
Thereafter mice received four days of 42 extinction trials (presentation of CS only) to
confirm that the procedure would lead to extinction of conditioned fear (data not
shown). Mice next received two re-training days during which 10 trials with tone
plus shockwere delivered. 24 h later mice were injectedwith 0 (n¼ 8), 0.2 (n¼ 8) or
1 (n ¼ 8) mg/kilogram of rolipram. Assignment of mice to substance groups was
based on scores from the first FPS test: mice were pseudorandomly placed in groups
to achieve equivalent mean FPS scores, and groups were then randomly assigned to
receive one of three rolipram doses. Mice were given a second FPS test 30 min after
injections to measure the effect of rolipram on the expression of fear.

2.10. Rolipram and acquisition of fear (Experiment 2)

Following the initial acclimation and pre-training tests, n ¼ 36 mice were
pseudorandomly assigned to groups to achieve equivalent mean pre-training test
scores. On the next day mice received an injection of 0 (n ¼ 9), 0.03 (n ¼ 9), 0.2
(n ¼ 9) or 1 (n ¼ 9) mg/kg rolipram and fear conditioning began 30 min later. To test
the effect of rolipram on fear acquisition, an FPS test was conducted 24 h later.

2.11. Rolipram and extinction of fear (Experiment 3)

Following initial acclimation and pre-training tests, n ¼ 61 mice were fear
conditioned. Conditioning consisted of one session conducted 24 h (cohorts 2 and 4) or
two sessions conducted 24 and48h (cohorts 1 and 3) after the pre-training test. One or
two days after conditioning, micewere returned to the startle chamber for an FPS test
identical to the one described in Section 2.5 except that 6more acclimation trials were
included. The FPS scores were determined and mice were assigned to one of four
groups to achieve equivalent mean FPS scores. Twenty-four hours later mice were
given 0 (n ¼ 18), 0.03 (n ¼ 15), 0.2 (n ¼ 16) or 1.0 (n ¼ 12) mg/kg of rolipram. 30 min
later extinction trials (n ¼ 20) consisting of the 30-s CS only (no startle stimuli) were
delivered in the cubicle, with a mean ITI of 45 s (range ¼ 30e60 s). Forty-eight hours
later, FPS tests were administered that consisted of 51 startle trials. The first nine trials
were used for acclimation and consisted of the white noise pulse alone. The following
42 consisted of the noise pulse alone (n ¼ 21) intermixed with noise plus CS trials
(n ¼ 21). Because there was strong within-session extinction across groups (i.e.
comparison of FPS in the first vs. the secondhalf of the session: t(60)¼ 7.27, p< 0.001),
only the first 21 trials were analyzed. Because mice were tested in a total of 4 cohorts,
the comparabilityof cohortswas confirmedwitha one-factorial (i.e. cohort) ANOVAon
the initial FPS scores (prior to extinction), F(3, 57) ¼ 1.11, p > 0.3.

2.12. Rolipram and expression of fear during extinction training (Experiment 4)

In Part A of this experiment (4A), n ¼ 18 mice participated that were previously
subjects in another fear-conditioning study where they had received saline (n ¼ 3),
rolipram (0.03 mg/kg, n ¼ 1; 0.2 mg/kg, n ¼ 3; or 1 mg/kg, n ¼ 5), or D-cycloserine
(10 mg/kg, n ¼ 3, or 30 mg/kg, n ¼ 3) 21 days before the first day of this experiment.
All mice had the same level of exposure to previous procedures and were fear
extinguished two weeks prior to the present experiment.

Mice were trained with one session of 10 tone plus shock trials. A pre-extinction
FPS test was conducted 24 h later in order to assign mice to one of two groups with
equivalent FPS. Two, 4, 6 and 8 days later, mice received an extinction session, during
which n ¼ 21 tones with a duration of 30 s were presented. Each tone coterminated
with a noise pulse (95, 100 or 105 dB) in order to assess fear expression during
extinction. Thirtymin prior to each extinction sessionmice received either 0 (n¼ 10)
or 1 (n ¼ 10) mg/kg of rolipram (groups did not differ with regard to substance
history in the previous study, X2(5) ¼ 5.2, p > 0.35). Four days after the last
extinction session, a post-extinction FPS test was conducted in order to assess the
effectiveness of the prior extinction sessions.

Because noise pulses were never presented without the CS during extinction
trials, no FPS scores could be calculated for the extinction sessions. Therefore, the
startle amplitudes measured in response to noise pulses preceded by the CS
(CS-associated startle) served as an indicator of fear.

To show that prior use of mice from an earlier experiment would not affect the
reproducibility of results, the above experiment was replicated (Experiment 4B)
using the same procedure with n ¼ 14 fear conditioned mice that were either given
saline (n ¼ 8) or rolipram (n ¼ 6) 30 min prior to each of four extinction sessions. As
in Experiment 4A, these mice had previously been exposed to rolipram (n ¼ 7) or
DCS (n ¼ 7) in an unrelated experiment (washout period: 16 days).

2.13. Statistical analyses

For Experiments 1 and 2, the FPS scores were analyzed using an ANOVAwith the
within-factor Loudness of noise pulse (95 vs. 100 vs. 105 dB) and the between factor
Substance Group (0 vs. 0.2 vs. 1 mg/kg). In Experiment 1, where FPS scores were
obtained for animals before they had been exposed to the drugs (i.e. the first FPS
test), the within-factor Session (first vs. second FPS test) was also included. Sphe-
ricity was confirmed using the Mauchley test.

For Experiment 3 the Mauchley test revealed a violation of the sphericity
assumption with regard to the Loudness of noise pulse " Session (pre vs. post-
extinction) covariance structure, (X2(2) ¼ 12.8, p < 0.003). Therefore a MANOVA
with the FPS scores for the three loudness types as dependent variables, Session as
a repeated measures factor and Substance Group as a between subjects factor was
computed.

In Experiments 4A and 4B, CS-associated startle amplitudes were analyzed using
an ANOVA with the within-factors Extinction Session (1e4) and Block (1e3), and the
between factor Substance Group (0 vs. 1 mg/kg). The factor Block reflects the first vs.
second vs. third set of n ¼ 7 trials during extinction and was added in that experi-
ment to investigate effects of rolipram on within-session extinction (startle ampli-
tudes to 95, 100 and 105 dB tones were used to achieve a sufficient number of trials
for each block). To test the effect of rolipram on the long-term effectiveness of
extinction, CS-associated startle amplitudes at the post-extinction FPS test were
compared between groups using an independent t-test.

Also in Experiment 4B, to control for the difference in past exposure to drugs, the
type of previous drug was evenly distributed over the saline and rolipram groups
and the factor Prior Exposure (to rolipram vs. DCS) was included in the Substance
Group " Extinction Session " Block ANOVAmodel. Due to apparatus failure only data
for the first three extinction sessions were recorded and analyzed (although mice
did receive four extinction sessions).

3. Results

3.1. Rolipram and expression of fear (Experiment 1)

As shown in Fig. 1a, the administration of rolipram 30 min prior
to the second FPS test reduced FPS amplitudes relative to the first
FPS test (i.e. when no rolipram was given) in a dose-dependent
manner. In the second FPS test (given after fear was extinguished
and subjects were subsequently re-trained) FPS scores were
maximally reduced for the 1 mg/kg group (mean FPS: 5.3; SEM:
3.8), marginally reduced for the 0.2 mg/kg group (mean FPS: 22.5;
SEM: 3.4) and unchanged relative to the first FPS test in the saline
group (mean FPS: 40.0, SEM: 10.8). Statistically this was confirmed
with a significant Substance Group " Session interaction: (F
(1,21) ¼ 3.86, p < 0.05, partial eta squared ¼ 0.27). Post hoc t-tests
revealed significant differences between the 0 vs. 1 mg/kg group,
t(14) ¼ 3.03, p < 0.01, and between the 0.2 vs. 1 mg/kg group,
t(14) ¼ 3.40, p < 0.005, with regard to scores of the second FPS test,
but not of the first FPS test. In addition there was a main effect for
Session indicating that FPS scores were reduced in the second FPS
test, F(1,21) ¼ 12.91, p < 0.005, partial eta squared ¼ 0.38. Because
there was no main effect or interaction involving loudness of noise
pulse the means presented in Fig. 1 represent the average over the
three loudness types. As can be seen in Fig. 1b the Substance
Group " Session interaction cannot be ascribed to general group
differences in startle reactivity (e.g. Kehne et al., 1991): rolipram
treatment had no effect on startle amplitudes to noise only trials.
Note also that FPS scores from rolipram-treated mice were elevated
again in a follow-up FPS test conducted four days after the second
FPS test (without prior injections, data not shown), suggesting that
rolipram did not affect the fear memory per se.

3.2. Rolipram and acquisition of fear (Experiment 2)

Rolipram injected 30 min prior to training did not enhance the
acquisition of conditioned fear. In contrast there was a mild decline
of FPS scores as a function of rolipram dose (Fig. 2). However, none
of the effects reached significance (p > 0.4).
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3.3. Rolipram and extinction of fear (Experiment 3)

The administration of rolipram strongly disturbed extinction
(multivariate interaction Session " Substance Group: F(3,57) ¼ 2.66,
p < 0.008, partial eta square ¼ 0.125). Univariate analyses revealed
that this interaction was significant for the 100 dB tones
(F(3,57) ¼ 6.08, p < 0.001) but not for the 95 dB and 105 dB tones
(p > 0.5). To analyze this interaction further we computed the
decrease of FPS scores after extinction (i.e. post-extinction FPS
minus pre-extinction FPS) for 100 dB tones. Post hoc t-tests on
these difference scores revealed that in comparison to saline,
0.03 mg/kg (t(31) ¼ 4.69; p < 0.001), 0.2 mg/kg (t(32) ¼ 2.11
p < 0.027) and 1 mg/kg (t(28) ¼ 3.53; p < 0.001) of rolipram
decreased the effectiveness of extinction (Fig. 3). There were no
significant differences between doses of rolipram (all p > 0.1).

3.3.1. Rolipram and fear expression during
extinction training (Experiment 4A)

As expected, there was a decline of CS-associated startle
amplitudes over extinction sessions, F(1, 16) ¼ 11.80, p < 0.001
(Fig. 4). Importantly, and consistent with Experiment 1, rolipram-
treated mice displayed generally low CS-associated startle ampli-
tudes during extinction sessions, which only moderately declined
over the four sessions. In contrast, control mice initially displayed
large amplitudes, which continuously declined over the four
sessions. Statistically this was confirmed by a significant Substance
Group " Extinction-Session interaction, F(1, 16) ¼ 3.89, p < 0.03,
which represents a significant linear decrease of CS-associated
startle amplitudes over the four sessions in the control group
F(1, 8) ¼ 17.20, p < 0.005, but not in the rolipram group F(1,
8) ¼ 4.00, p ¼ 0.08. Moreover, there was a strong decrease of CS-
associated startle amplitudes within sessions as reflected by a main
effect for Block, F(1, 16) ¼ 23.66, p < 0.001. This effect was stronger
in rolipram-treated mice (Substance Group " Block, F(1, 16) ¼ 4.04,
p < 0.032), especially during the first two sessions (Substance
Group " Block " Extinction Session, F(1, 16) ¼ 2.33, p < 0.012).
Notably, when subjects’ substance history (Rolipram vs. D-Cyclo-
serine vs. Saline) was included in the above ANOVA model, there
was no main effect or interaction involving this factor. However,
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the Substance Group " Extinction Session interaction remained
significant (p < 0.05). This control analysis shows that pharmaco-
logical adaptations or related processes are unlikely to have influ-
enced the reported results (see also replication experiment).

Consistent with Experiment 3, the post-extinction FPS test
revealed that mice that had received rolipram during extinction
showed significantly larger CS-associated startle responses than
control mice, t(16) ¼ 2.32, p < 0.04.

3.3.2. Rolipram and fear expression during
extinction training (Experiment 4B)

Paralleling Experiment 4A, there was a significant Extinction
Session " Substance-Group interaction F(1, 10) ¼ 4.49, p < 0.032
indicating significant between-session extinction in the control
(F(1,6) ¼ 16.99 p < 0.001) but not rolipram group (F(1,4) ¼ 1.32,
p > 0.3). The factor Prior Exposure showed neither main effects nor
interactions (ps > 0.25). Again, mice that had received rolipram
during extinction displayed a tendency for larger CS-associated
startle amplitudes (Mean: 68.3; SEM: 10.1) than control mice
(Mean: 52.8; SEM: 8.6) at the post-extinction test (t(12) ¼ 1.17,
p < 0.13, one-sided) and when data for Experiments 4A and 4B
were pooled to increase power this effect was statistically
confirmed (t(30) ¼ 2.54, p < 0.017). Moreover, when a Substance
Group " Prior Exposure ANOVA was performed on the post-
extinction startle scores there was only a main effect for Substance
Group, F(1,27) ¼ 4.67, p < 0.04 but no effects involving Prior Expo-
sure (p > 0.25). Thus, in neither the original or follow-up experi-
ment was there evidence that prior drug exposure could account
for the effect of rolipram on extinction.

4. Discussion

Experiment 1 indicates that rolipram reduces fear expression in
a dose-dependent manner. Fear was first conditioned and assessed
(first FPS test), then extinguished, re-conditioned and assessed
again (second FPS test). Mice received 0, 0.2 or 1 mg/kg rolipram

only prior to the second FPS test. Relative to the first FPS test, saline-
treated mice showed very similar mean FPS scores. In contrast,
mice that received 0.2 or 1 mg/kg rolipram displayed moderate and
high reductions of FPS scores, respectively, suggesting that higher
doses lead to more suppression of fear. Because rolipram had no
effects on startle amplitudes per se, the reduced FPS scores cannot
be attributed to effects of rolipram on spinal neurotransmission or
other unspecific effects. Instead they imply that rolipram specifi-
cally interferes with processing of the conditioned fear stimulus,
possibly disturbing retrieval of the fear memory and/or the
expression of fear. We acknowledge that because mice were
previously trained and fear extinguished the rolipram-related
decrease of fear expression could also reflect enhanced retrieval of
extinction memory. However, as outlined below, the finding of
decreased between-session extinction in rolipram-treated mice
(Experiment 4A) indicates that rolipram disturbs rather than
enhances retrieval of cued fear extinction memory.

Previous studies have found that rolipram has anxiolytic prop-
erties (Li et al., 2009; Silvestre et al., 1999a). The present study
extends these findings by showing that rolipram also reduces fear
expression in mice. Fear and anxiety may be regulated by different
neuronal structures: while fear regulation has been primarily
attributed to the amygdala (LeDoux, 2007), the bed nucleus of the
stria terminalis (BNST) may play a role in anxiety (Davis, 2006).
However, others have suggested that the BNST may also be impli-
cated in fear processing (Meloni et al., 2006). Because PDE4 genes
are also expressed in these regions (Cherry and Davis, 1999; Perez-
Torres et al., 2000), it could be speculated that rolipram prevents
fear expression by elevating pCREB levels in one of these structures.

Experiment 2 probed the effects of rolipram on the acquisition
of fear. When rolipram vs. saline was given 30 min prior to fear
conditioning, mice that had received rolipram did not show
enhanced FPS scores on a test that was conducted three days later.
This finding is consistent with other reports that rolipram does not
enhance (or may even interfere) hippocampus-independent
memory formation (Barad et al., 1998; Gong et al., 2004). Given that

Fig. 4. Mean ($SEM) CS-associated startle amplitudes (i.e. startle amplitudes to noise pulses preceded by the fear conditioned CS) for each of four blocks of k ¼ 7 trials during four
consecutive extinction sessions and at the final post-extinction test (aggregated over the 95, 100 and 105 dB tones). Mice received 1 mg/kg of rolipram (black) or saline (gray) before
extinction sessions but not prior to the post-extinction test. *p < 0.05.
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studies reporting enhanced fear acquisition after rolipram delivery
only examined contextual (i.e. hippocampus-dependent) fear
conditioning (Barad et al., 1998; Monti et al., 2006), the present
results suggest that fear acquisition per se is not enhanced by PDE4
inhibition. In light of the literature that emphasizes the therapeutic
potential of rolipram as a memory enhancer (for review see:
Reneerkens et al., 2009), the results of Experiment 2 thus deserve
attention, because they imply that rolipram could also retard the
consolidation of some types of associations. Although non-signifi-
cant, the trend of higher rolipram doses given during training to
increasingly disrupt FPS acquisition indicates that the potential for
non-hippocampal effects of rolipram (and other PDE4 inhibitors)
should be carefully considered in future studies.

Experiment 3 found that in contrast to controls, mice that had
received any dose of rolipram prior to an extinction session (0.03,
0.2 or 1 mg/kg) showed almost no reduction of previously acquired
FPS after extinction training. Follow-up analyses of the significant
MANOVA suggested that this effect wasmost evident for the 100 dB
tones, which is consistent with reports from other groups that also
reported larger effect sizes for 100 vs. 95 or 105 dB pulses in startle
paradigms with mice (Kanes et al., 2007). Fear-potentiated startle
reflects the modulation of a polysynaptic startle reflex (Davis,
2006), which requires that (a) the reflex itself is reliably produced
and (b) the magnitude of the (unpaired) startle response does not
approach the limit of what is physiologically possible (i.e. there is
room for potentiation). Possibly, in the present experiment
prerequisites (a) and (b) were not met for the 95 and 105 dB pulses,
respectively.

Previous work has established that 0.1 mM/kg (¼0.028 mg/kg)
and larger doses of rolipram given directly after fear conditioning
enhances retrieval of fear memory 24 h later (Barad et al., 1998;
Randt et al., 1982), suggesting that rolipram may prevent forget-
ting and/or unlearning of conditioned contextual fear. In addition,
0.1 mM/kg rolipram given prior to training may also improve
contextual fear-conditioning in vivo, and long-term potentiation in
vitro is enhanced when hippocampal slices are stimulated in
solutions of 0.1 mM rolipram (Barad et al., 1998). The present find-
ings extend these prior studies by suggesting that similar doses of
rolipram may interfere with the extinction of fear, a process that is
clearly distinct from forgetting (Bouton, 2004). Such interference
could be driven by elevation of cAMP levels, which could result in
heightened protein kinase A activity and subsequent modulation of
CREB phosphorylation. This interpretation is consistent with Wang
et al. (2004), who reported disturbed extinction when cAMP levels
were heightened through overexpression of adenylyl cyclase, as
well as with Isiegas et al. (2006), who found improved extinction
when protein kinase A activity was inhibited. Because extinction is
highly dependent on the prefrontal cortex (Morgan et al., 1993;
Quirk and Mueller, 2008) the current result corroborates the
more general finding that administration of rolipram/increasing
protein kinase A activity impairs prefrontal cortical functioning in
aged monkeys and rats (Ramos et al., 2003).

Results from Experiment 4 suggest that rolipram disturbs
extinction consolidation but not extinction acquisition. Mice that
received rolipramduring extinction showed significantly potentiated
startle responses at the post-extinction FPS test (i.e. after extinction
sessions and rolipram delivery). This finding replicates and extends
the results from Experiment 3 by showing that rolipramalso disturbs
the extinction of fear when (a) several rather than one extinction
sessions are performed and (b) when fear is not measured with FPS
scores but with CS-associated startle amplitudes.

The decreased slope of the CS-associated startle amplitudes over
the four sessions in the rolipram vs. control group provides further
evidence for the rolipram-induced disturbance of between-session
extinction. Note that this finding also rules out state-dependent

learning (e.g. Overton, 1991) as an alternative explanation: even
though the same substance was administered prior to each
extinction session (i.e. thus inducing the same “state”), rolipram-
treated mice showed a blunted decline of fear expression over the
extinction sessions compared to control mice.

Moreover, the decreased extinction in the rolipram group
cannot be ascribed to impaired within-session extinction (i.e.
extinction acquisition). In fact, mice that received rolipram showed
even greater within-session extinction than control mice (although
this effect was not significant in the replication experiment). Of
relevance, the intact within-session extinction in the rolipram
group demonstrates that rolipram-induced fear suppression (as
demonstrated in Experiment 1) is unlikely to account for the effects
of rolipram on extinction: if extinction was impaired due to
blockade of the CR (Rescorla, 1997; Krupa and Thompson, 2003),
both within- and between-session extinction should have been
attenuated in the rolipram group. However, only between-session
extinction was impaired in rolipram-treated mice. In addition,
rolipram maximally suppressed fear expression at a dose of
1 mg/kg and only moderately suppressed fear at lower doses
(Experiment 1). If fear extinction were directly related to fear
expression, one would expect that fear extinction would show
a similar dose-dependent pattern. However, very low doses of
rolipram (i.e. 0.03 mg/kg) were sufficient to produce a maximum
disturbance of extinction (Experiment 3). Taken together, the
pattern of findings suggests that rolipram has two independent
effects on fear processing: one that is rather initiated by larger
doses, is immediate and reduces the expression and/or experience
of fear, and another for which small doses are sufficient and which
is rather related to retarded long-term consolidation of fear
extinction. While the former parallels anxiolytic properties of
rolipram reported previously (Silvestre et al., 1999a), the latter
showsmore similarities with deficits in fear extinction due to cAMP
elevation (Wang et al., 2004) and is consistent with prior rolipram
studies insofar that rolipram affects long- but not short-term
memory processes (Barad et al., 1998; Bourtchouladze et al., 2003).
However, it should be emphasized that these studies reported
enhanced long-term memory of hippocampus-dependent fear
memory whereas the present findings show that rolipram hinders
the formation of enduring cued fear extinction memory.

As a potential limitation of Experiment 4, subjects had previ-
ously been used in another fear-conditioning study. However, mice
received only a single injection of a drug (or saline control) and
then were given a 2e3 week washout period before commencing
these experiments; moreover, therewere no statistically significant
relationships between prior drug exposure and performance in
Experiments 4A or 4B. A second issue is that these mice had also
been fear conditioned and extinguished in the previous experiment
in which they participated, so strictly speaking the present exper-
iment investigated re-extinction, which may differ from initial
extinction in some regards (Kim and Richardson, 2008). Even
though differences in these processes have been linked to NMDA
receptor activation (Laurent et al., 2008; Langton and Richardson,
2008), future studies may also systematically probe the role of
cAMP-related mechanisms in re-extinction. The present findings,
however, suggest, that rolipram similarly disturbs both initial
extinction (Experiment 3) and re-extinction (Experiment 4).

In recent years much interest in PDE inhibitors has focused on
their ability to act as cognitive enhancers (Reneerkens et al., 2009).
In particular, their potential to improve memory function has been
shown in paradigms involving contextual fear conditioning (e.g.
Barad et al., 1998; Gong et al., 2004), suggesting a potential use of
rolipram for the treatment of Alzheimers Disease (Gong et al.,
2004) and other conditions of mnestic dysfunctions (Barad, 2003;
Bourtchouladze et al., 2003). The present study, however, shows
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with multiple experiments that in cued fear conditioning, rolipram
retards performance and extinction learning and possibly also
interfereswith the acquisition of cued fear. This implies that the use
of rolipram as a cognitive enhancer should be more carefully
evaluated with paradigms that probe hippocampus-independent
memory processes before it is considered for pharmacotherapy.
Given the high comorbidity of depression and anxiety disorders in
humans (e.g. Kessler et al., 2003), the present findings may further
indicate that potentially negative effects of PDE4 inhibitors on
extinction and exposure-based treatments for anxiety could
undermine the practical usefulness of PDE4 inhibitors for anti-
depressant therapy (Wachtel, 1983; Li et al., 2009).

In sum, the present study has demonstrated that the PDE4
inhibitor rolipram disturbs the expression and between-session
extinction of fear. These findings strongly suggest that the potential
clinical usability of rolipram should be further evaluated with
paradigms that probe negative effects of rolipram on hippocampus-
independent cognitive processes. In addition, these results should
stimulate further research on the relationship between the cAMP/
PKA/CREB pathway and extinction of fear (Myers et al., 2006). Such
studies may yield novel ways to ameliorate extinction (Isiegas et al.,
2006), which may impact strategies for treatment of anxiety
disorders (Hofmann, 2007).
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Summary in German 

Es ist davon auszugehen, dass biologisch implementierte Mechanismen zur 

erfolgreichen Bewältigung von Gefahrensituationen einem positivem Selektionsdruck 

unterliegen und eine Vielzahl solcher Mechanismen im Laufe der Phylo- und Anthropogenese 

evolviert ist, um auch im menschlichen Genom konserviert zu werden. In der vorliegenden 

Konzeptualisierung werden solche Mechanismen mindestens einer von zwei generellen 

Strategien zugeordnet. In der sogenannten proaktiven Gefahrenbewältigung werden vor 

Auftreten eines konkreten Gefahrenreizes organismische (z.B. neuronale, zelluläre, 

endokrinologische, motivationale, kognitive, behaviorale) und damit auch extra-

organismische (z.B. Auswahl von Situationen betreffende) Faktoren dahingehend moduliert, 

dass spätere Gefährdungen des Organismus (bzw. des Fortbestandes seiner Gene) maximal 

abgeschwächt werden. In der reaktiven Gefahrenbewältigung werden hingegen organismische 

und extra-organismische Faktoren dahingehend moduliert, dass augenblickliche 

Gefährdungen maximal abgeschwächt werden. Mechanismen der proaktiven 

Gefahrenbewältigung beinhalten unter anderem Aufmerksamkeitsverzerrungen gegenüber 

potentiellen Gefahrenindikatoren, Fehlervermeidung, peripherphysiologische 

Anpassungsprozesse, Unsicherheitsreduktion, Verhaltenshemmung, aversive und negative 

Affektivität und verminderte Antriebsmotivation. Die prominentesten Mechanismen der 

reaktiven Gefahrenbewältigung sind Kampf-, Flucht- und Todstelltendenzen. Während 

proaktive Gefahrenbewältigungsmechanismen in der vorliegenden Arbeit unter dem Begriff 

„Angst“ subsummiert werden, ist der reaktiven Gefahrenbewältigung der Begriff „Furcht“ 

zugeordnet. 

In der vorliegenden Arbeit wird weiterhin davon ausgegangen, dass um diese teilweise 

genetisch vorprogrammierten Mechanismen im Verhalten des Individuums auf adaptive und 

situationsangepasste Weise implementieren zu können, multiple Organisationsebenen und 

deren Interaktionen erforderlich sind. Als Organisationsebenen werden dabei ausschließlich 
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intraindividuelle neurobiologische Ebenen (z.B. Molekülebene, Synapsen-Ebene, 

Netzwerkebene, Strukturebene, Systemebene, ZNS/PNS-Ebene, Gesamtsystemebene) 

betrachtet. So kann sich Angst beispielsweise auf die Molekülebene (z.B. Genexpression), 

Synapsen-Ebene (erhöhte Serotonin-Ausschüttung), Netzwerkebene (erhöhte neuronale 

Erregbarkeit), Strukturebene (erhöhte Aktivität in bestimmten Nuclei der Amygdala), 

Systemebene (Modulation fronto-striataler Kommunikation), PNS-Ebene (Erhöhung der 

Herzfrequenz) und Gesamtsystemebene (subjektives Erleben von Angst) auswirken. Dass sich 

darüber hinaus die als Furcht und Angst bezeichneten Gefahrenbewältigungststrategien auch 

auf extraindividuellen Ebenen manifestieren (z.B. Phänomene wie Massenpaniken oder 

kollektive Angst nach Naturkatastrophen) und entsprechend auf der Dimension reaktiv vs. 

proaktiv  trennen lassen können sei hier nur der Vollständigkeit halber erwähnt. 

Der Mehrebenenansatz zur Defintion von Furcht und Angst erlaubt, dass deren 

Phänotype von situativen Faktoren beeinflusst werden können und gestattet somit eine 

dynamischere Perspektive als herkömmliche Konzeptualisierungen. Beispielsweise kann ein 

intrazellulärer Botenstoff die Extinktion von Furcht fördern, falls diese Furcht an einen 

bestimmten Ort gekoppelt ist, aber er kann die Extinktion stören, falls die Furcht an einen Ton 

gekoppelt ist (zur Erklärung siehe Studie 4). Mit einer eindimensionalen Perspektive im Sinne 

von „Botenstoff fördert Furchtextinktion“ kann diese Dynamik nicht erklärt werden. Erst 

durch Hinzunahme einer weiteren Ebene (z.B. Strukturebene) kann diese Interaktion 

ermöglicht werden (z.B. Botenstoff in Hippokampus fördert Furchtextinktion, Botenstoff 

außerhalb des Hippokampus behindert Furchtextinktion). Zusammengenommen werden 

Angst und Furcht somit als pro- und reaktive Strategien mit hoher evolutionärer Relevanz 

betrachtet, die sich dynamisch auf unterschiedlichsten Organisationsebenen und deren 

Interaktionen manifestieren, um als (ultimates) Ziel den Fortbestand des Genoms vor 

Gefahren zu schützen. 
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In der vorliegenden Untersuchungsreihe bildet diese Mehrebenenperspektive das 

zentrale Rahmenmodell zur Integration von vier sehr unterschiedlich angelegten Studien (z.B. 

human- vs. tierexperimentell, pharmakologisch, molekulargenetisch) zur Neurobiologie von 

Furcht und Angst bzw. Furchtsamkeit und Ängstlichkeit. Dabei soll betont werden, dass es im 

Kern nicht um die Überprüfung des Modells geht, sondern darum, die einzelnen Studien in 

einen Gesamtzusammenhang einzuordnen. Nichtsdestotrotz hat die vorliegende Arbeit den 

Anspruch zu verdeutlichen, dass diese oder ähnliche Konzeptualisierungen von Furcht und 

Angst ein besonderes Potenzial haben um (a) die Modell- und Ergebnisdiversität aus der 

pharmakologischen, molekulargenetischen, lerntheoretischen, tierexperimentellen, 

strukturell/bildgebenden, und vielen weiteren Richtungen der Furcht- und Angstforschung zu 

integrieren und (b) die Relevanz unterrepräsentierter Forschungsfelder (z.B. 

Netzwerkmodellierung) re-evaluieren zu können. Die anhand des Rahmenmodells in der 

vorliegenden Arbeit integrierten Studien sollen im Folgenden kurz zusammengefasst werden. 

Die erste Studie untersuchte Mechanismen neuroviszeraler Kopplung mittels einer von 

uns entwickelten Korrelationsmethode (sog. Cardio-Electroencephalographic-Covariance-

Traces, CECTs) zur Erfassung intraindividueller Zusammenhänge zwischen Einzeltrial-EEG 

und chronotroper (die Schlagfrequenz betreffender) Herzaktivität. Dabei zeigte sich, dass die 

frontozentrale EEG-Amplitude um 300 ms nach einem Feedback-Stimulus in einer 

Glücksspielaufgabe vier Sekunden später einsetzende Veränderungen der Herzschlagfrequenz 

signifikant vorhersagen konnte. Darüber hinaus wurde diese Prädiktion bei negativen 

Feedback-Reizen durch Trait-Ängstlichkeit dahingehend moderiert, dass ängstlichere 

Probanden durch ein erhöhtes Ausmaß neuroviszeraler Kopplung charakterisiert waren. 

Diesen Moderationseffekt konnten wir jüngst in einem anderen Paradigma mit n = 180 

Probanden replizieren, was dafür spricht, dass wir mit den CECTs einen Indikator für einen 

dynamischen (da von Feedback-Valenz abhängigen) ängstlichkeitsrelevanten Mechanismus 

identifizieren konnten. 
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In der zweiten Studie wurde die dopaminerge Grundlage neuronaler 

Fehlerverarbeitung mittels EEG, molekulargenetischen Assessments und einer 

pharmakologischen Challenge durch einen selektiven Dopamin-D2-Rezeptorantagonisten 

(Sulpirid, 200 mg) untersucht. Grundlage hierfür waren vorherige Studien, die einen 

Zusammenhang der durch Performanzfehler evozierten ERP-Komponente Error-Related 

Negativity (ERN) mit Ängstlichkeit bzw. Angststörungen und Dopamin zeigen konnten. 

Anhand einer modernen EEG-Auswertungsmethode (Independent Component Analysis, 

ICA), konnten wir zeigen dass (a) der mit präfrontaler Dopaminverfügbarkeit assoziierte 

COMT Val158Met Polymorphismus die Independent Component ERN-Amplitude und 

Verhaltensmaße der Fehlerverarbeitung modulierte, und (b) Sulpirid die Richtung dieser 

Modulation umkehrte. Darüberhinaus gab es erste Hinweise darauf, dass der für D2-

Rezeptorendichte im Striatum prädiktive DRD2TaqIa Polymorphismus mit Sulpirid 

interagierte, um neuronale Korrelate der Fehlerverarbeitung und deren Zusammenhang zu 

Ängstlichkeit zu modulieren. Zusammengenommen sprechen die Ergebnisse der zweiten 

Studie somit für eine dopaminerge Grundlage interindividueller Unterschiede in der 

Fehlerverarbeitung, einem für die proaktive Gefahrenbewältigung hochrelevanten 

Mechanismus. 

Die dritte Studie untersuchte zukunftsorientiertes Entscheidungsverhalten in 

Probanden mit Generalisierter Angststörung (Generalized Anxiety Disorder, GAD). Im Sinne 

einer proaktiven Gefahrenbewältigung gingen wir davon aus, dass GAD-Probanden in 

höherem Ausmaß als nicht ängstliche Kontrollprobanden zukunftsorientierte Entscheidungen 

im Iowa Gambling Task (IGT) treffen. Der IGT ist ein Instrument das ursprünglich zur 

Erfassung von Zukunftsinsensitivität bei Patienten mit Läsionen im ventromedialen 

präfrontalen Kortex konstruiert wurde und Entscheidungsverhalten unter Ambiguität (d.h. 

ohne explizites Wissen über die mit einzelnen Entscheidungen verbundenen Risiken) misst. 

Unsere Erwartungen bestätigend fanden wir, dass GAD-Probanden in zwei unterschiedlichen 
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Varianten des IGT mehr zukunftsorientierte Entscheidungen trafen als Kontrollprobanden, 

was dafür spricht, dass zukunftsorientiertes Entscheidungsverhalten einen weiteren 

angstrelevanten Gefahrenbewältigungsmechanismus widerspiegelt. 

Die vierte Studie untersuchte tierexperimentell einen wichtigen Bestandteil einer 

intrazellulären Signaltransduktionskaskade, die sowohl für den Erwerb als auch für die 

Extinktion von Furcht von Bedeutung ist. Der Second Messenger cAMP (cyclic adenosine 

monophosphate) aktiviert intrazelluläre Vorgänge, die zur Expression von bestimmten 

Proteinen führen, die für synaptisches Lernen erforderlich sind. cAMP wird durch die cAMP-

spezifische Phosphodiesterase 4 (PDE4) abgebaut. Frühere Studien in der Arbeitsgruppe um 

den Nobelpreisträger Eric Kandell konnten zeigen, dass rolipram, ein selektiver PDE4-

Hemmer intrazelluläre cAMP-Verfügbarkeit steigert und Gedächtnisformation in vitro und in 

vivo steigern kann. Darauf aufbauend vermuteten wir, dass rolipram ebenfalls die 

Konsolidierung von Furchtextinktion potenzieren kann und somit als sog. „Extinction 

Booster“ in Frage kommen könnte. Solche Extinction Booster (z.B. D-Cycloserine) wurden 

im letzten Jahrzehnt intensiv beforscht da sie die Effektivität von Expositionstherapien bei 

Angststörungen steigern können. Die Hypothese, dass rolipram Furchtextinktion verbessert, 

testeten wir in einer Serie aus fünf einzelnen Experimenten bei denen Mäuse zunächst an 

einen Ton furchtkonditioniert wurden und das Ausmaß der Furcht dann vor und nach einer 

Extinktionsbehandlung über die furchtreizgetriggerte Verstärkung des Startle-Reflexes 

gemessen wurde. Im Gegensatz zu unseren Erwartungen zeigten unsere Ergebnisse jedoch 

deutlich, dass rolipram die Konsolidierung von Extinktionsinhalten dramatisch beeinträchtigte 

statt sie zu verbessern. Darüber hinaus dämpfte rolipram den Ausdruck von Furcht. 

Zusammengenommen sprechen die Ergebnisse aus Studie vier dafür, dass der cAMP-

Kreislauf für den Ausdruck und die Extinktion von Furcht von Bedeutung ist, dass PDE4-

Hemmer jedoch nicht uneingeschränkt Gedächtnisfunktionen verbessern, sondern die 

Extinktion von an explizite Reize konditionierter Furcht beeinträchtigen können. 
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Obgleich sich die Ergebnisse der vier Studien durch ihre Vielfältigkeit schwer direkt 

zueinander in Beziehung setzen lassen, können sie anhand des Rahmenmodells integriert 

werden. Wie aus Tabelle 2 ersichtlich handelt es sich sowohl bei der peripherphysiologischen 

Regulierung (Studie 1), als auch bei der Fehlerverarbeitung (Studie 2), der 

zukunftsorientierten Entscheidungsfindung (Studie 3) und der Reflexpotenzierung (Studie 4) 

um Mechanismen, die das ultimate Ziel haben, Gefahren für den Organismus zu reduzieren 

und neurobiologisch auf mehreren Ebenen dynamisch implementiert sind. Trotz des 

gemeinsamen Ziels, dürften die genauen Zusammenhänge der einzelnen Mechanismen 

zueinander relativ komplex sein und unter anderem in Abhängigkeit von Spezien, Individuen, 

Ebenen und situativen Bedingungen variieren. Wie auch in Tabelle 2 (s. Hauptteil) 

angedeutet, eröffnet das Rahmenmodell somit eine Vielzahl neuer Forschungsperspektiven. 
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Additional Remarks to Study 2 
 
Models on dopamine and error processing 

The prominent reinforcement learning theory by Holroyd and Coles (D. Mueller et al., 

2008) states that the commitment of an error (or the presentation of negative performance 

feedback) ideally triggers an internal negative prediction error (“events are worse than 

expected”), which is used for reinforcement learning in order to perform better in the future. 

In short, it is assumed that this prediction error is signaled by the mesencephalic dopamine 

system as a cessation in dopamine burst firing (cf. Stoltenberg & Vandever, 2010), which is 

carried to the anterior (mid-) cingulate cortex (AMC). The theory states that one function of 

the AMC is to select among the inputs of various available motor controllers (e.g., 

dorsolateral prefrontal cortex, amygdala) all of which may intend a different motor response. 

According to the theory, the AMC learns from the phasic dip in dopamine which motor 

controller not to choose in future similar situations. The theory further states that the error-

related negativity (ERN, see below) occurs as a consequence of such a negative prediction 

error phasic dip in prefrontal cortex dopamine. Another relevant theory, the 

neurocomputational model by Frank (2009), focuses on basal ganglia – rather than prefrontal 

cortex – dopamine, and states that error processing is associated with No-Go signals mediated 

by dopamine D2 receptors (Holroyd & Coles, 2002) in dorsal striatum cells. In sum, from both 

theories it can be derived that interindividual differences in error processing may be due to 

interindividual differences in dopamine (Frank, 2005; Schultz, 1998). 

 

The principles of Independent Component Analysis (ICA) 

To understand the principles of ICA, one can imagine a room (or a skull) in which 

several persons (or brain processes) who independently talk at the same time are recorded 

with several microphones (or EEG-sensors). Spatiotemporal ICA is a blind source separation 

technique that finds a way to linearly combine the information at all microphones such that 
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new time courses (i.e., independent component time courses) that are maximally independent 

from each other are generated. Assuming that the speakers all talked independently, each of 

these IC-time-courses reflects what one speaker said. In addition, by inspecting the relative 

weight that is given to each microphone in order to generate one IC time-course, one can 

model where in the room the speaker associated with that IC stood (i.e., if the weight is equal 

for all microphones he would have stood in the middle of the room; if it is high for one 

microphone he would have stood in proximity thereto, etc.). Similarly for EEG research, the 

scalp topography of ICs (reflecting how much each electrode contributes to one IC-signal) 

can be used to estimate the localization of a given IC/brain process. 

ICA-algorithms are relatively complex and beyond the scope of this thesis (for an 

introduction the interested reader is referred to: Frank et al., 2007). However, the basic idea is 

that under some conditions the activity distribution of a sum of independent random variables 

tends toward gaussian distribution according to the Central Limit Theorem. Accordingly, the 

sum of two independent random variables will be more gaussian than any of the two random 

variables alone. In other words, if there were two mixtures (each reflecting the sum of two 

random variables), a linear combination of these mixtures that is maximally non-gaussian 

would reflect only one random variable rather than the sum of both random variables (i.e., the 

weight of the other random variable would become zero). This can be extended to multiple 

sources and mixtures, and ICA uses iterative algorithms to find such linear combinations with 

maximum non-gaussianity (or minimum mutual information). 
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