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Abbreviations 

°C  degree Celsius 
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Zusammenfassung 

Atmosphärischen Spurengasen kommt eine Führungsrolle in den derzeitigen klimatischen 

Veränderungen zu. Ein signifikanter Anteil am Austausch von atmosphärischen Spurengasen 

findet an der Schnittstelle zwischen Atmosphäre und „upland soils“ statt. Allerdings sind die 

für diese Dynamiken verantwortlichen Mikroorganismen nicht vollständig identifiziert und 

erforscht. Diese Arbeit befasst sich deshalb mit der Untersuchung mikrobieller Gruppen in 

terrestrischen Habitaten, die in die Aufnahme von atmosphärischen Spurengasen  (CH4, CO2, 

H2) involviert sind, und zwar das potentiell atmosphärisches Methan oxidierende „upland soil 

cluster α“ (USCα), die autotrophen Ammonium-oxidierenden Archaeen (AOA) und die 

Wasserstoff-oxidierenden Streptomyzeten. Verschiedene Methoden wurden angewandt, um 

die Aufnahme von markiertem Substrat in diese mikrobiellen Gruppen zu untersuchen und die 

Expression ihrer funktionellen Marker-Gene zu analysieren. Dabei handelte es sich um pmoA 

für die hoch-affine membran-gebundene (partikuläre) Methan-Monooxygenase von USCα, 

amoA für die Ammonium-Monooxygenase der AOA und hydB für die hoch-affine [NiFe]-

Hydrogenase von Streptomyces sp. PCB7. 

Trotz der Annahme, dass es sich bei dem “upland soil cluster α“ (USCα) in 

Waldböden um methanotrophe Bakterien handelt, die an atmosphärische Methan-

konzentrationen angepasst sind und denen demnach eine grundlegende Rolle in der 

Aufnahme und Beseitigung dieses Treibhausgases aus der Atmosphäre zuteil wird, war noch 

ungeklärt, ob diese Mikroorganismen ihren gesamten Energie- und Kohlenstoffbedarf mit 

Methan decken können oder zusätzlich auf andere Kohlenstoffquellen angewiesen sind. 

Stabile Isotopenbeprobung wurde angewandt, um den Einbau von markiertem CH4 und 

Acetat in Nukleinsäuren von USCα zu untersuchen. Die Ergebnisse dieser Studie weisen 

darauf hin, dass USCα atmosphärisches CH4 möglicherweise nur als zusätzliche 

Energiequelle oder Überlebensstrategie nutzt, und stattdessen andere 

Kohlenstoffverbindungen, z.B. Acetat, zum Wachstum verwendet. Somit repräsentiert USCα 

eher fakultative als obligate Methanotrophe. Die Anwendung von CARD-FISH, spezifisch für 

pmoA Transkripte, ermöglichte zudem die erste Visualisierung von USCα in situ. Diese 

Resultate erweitern unseren Wissensstand und das Verständnis in Bezug auf „upland soils“ 

als Senke für atmosphärisches Methan und die Mikroorganismen, die für diese Prozesse 

verantwortlich sind. 

Autotrophe Bakterien wurden lange Zeit alleinverantwortlich für die Ammonium-

Oxidation gehalten. Doch inzwischen liegen zunehmend Studien vor, die auf eine zusätzliche 

Beteiligung von Archaea an diesem Prozess hinweisen. Allerdings war bis heute unbekannt, 

ob Ammonium-oxidierende Archaeen im Boden CO2 assimilieren können und zu welchem 

Grad sie funktionell aktiv sind. Stabile Isotopenbeprobung von Nukleinsäuren unter 

Verwendung von 13CO2 demonstrierte eine aktive Beteiligung der Ammonium-oxidierenden 

Archaeen an der mikrobiellen Ammonium-Oxidation in einem Feldboden, verbunden mit 

autotropher CO2-Fixierung, vermutlich über den Hydroxypropionat-Hydroxybutyrat-Zyklus. 
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CARD-FISH zeigte weiterhin den hohen Anteil und damit die große Bedeutung der 

archaeellen Ammonium-Oxidierer in der gesamten archaeellen Gemeinschaft in dieser 

Umgebung. Diese Resultate liefern neue Belege für die substanzielle Beteilung der 

nitrifizierenden Archaea an der Ammonium-Oxidation und CO2-Fixierung in terrestrischen 

Habitaten. 

Obwohl Wasserstoff als einer der wichtigsten Energieträger der Zukunft gilt, ist der 

globale biochemische Zyklus dieses Spurengases noch größtenteils unerforscht. Nach 

neueren Forschungsergebnissen scheinen eher Mikroorganismen als „freie“ Enzyme für die 

Aufnahme von atmosphärischem H2 im Boden verantwortlich zu sein. Die CARD-FISH 

Analyse in dieser Arbeit belegte, dass die hoch-affine H2 Aufnahme-Aktivität nicht im 

Myzelium, sondern in den Sporen von Streptomyzeten exprimiert wird. Dies zeigt die 

essentielle Bedeutung von H2-oxidierenden Streptomyzeten, oder Aktinobakterien im 

Allgemeinen, für die Aufnahme von atmosphärischem H2 in „upland soils“.  
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Summary 

Atmospheric trace gases play a leading role in the changes occurring in the atmosphere at 

present, including climate change. A significant part of atmospheric trace gas fluxes occurs at 

the interface between atmosphere and upland soils. Unfortunately, the microorganisms in 

charge of these dynamics are not fully understood. This thesis therefore focuses on the 

investigation of microbial groups in terrestrial environments, responsible for or proposed to be 

involved in the uptake of atmospheric trace gases (CH4, CO2, H2), namely the potential 

atmospheric methane oxidizer upland soil cluster α (USCα), the autotrophic ammonia 

oxidizing archaea (AOA), and the hydrogen oxidizing streptomycetes. Several methods were 

tested to investigate the incorporation of labeled substrate and to monitor the expression of 

their functional marker genes, pmoA for the high-affinity particulate methane monooxygenase 

of USCα, amoA for the ammonia monooxygenase of AOA, and hydB for the high-affinity 

[NiFe]-hydrogenase of Streptomyces sp. PCB7. 

Although the upland soil cluster α (USCα) in forest soils is assumed to represent 

methanotrophic bacteria adapted to the trace level of atmospheric methane and to play an 

essential part in the removal of this greenhouse gas from the atmosphere, so far it is unclear 

whether these microorganisms are able to obtain all their energy and carbon solely from CH4 

or use additional carbon compounds. Stable isotope probing was applied to investigate 

incorporation of labeled CH4 and acetate into nucleic acids of USCα. The results of this study 

indicate that USCα might only use atmospheric CH4 as an additional energy source or 

survival strategy, but utilizes additional carbon compounds, such as acetate, for growth 

suggesting the USCα represents rather facultative than obligate methanotrophs. Furthermore, 

CARD-FISH of pmoA transcripts visualized USCα in situ for the first time. These findings 

promote the knowledge and understanding of upland soils as a sink for atmospheric methane 

and the microorganisms proposed to be responsible for this process. 

While for a long time autotrophic bacteria were believed to be solely responsible for 

the process of ammonia oxidation, there is now increasing evidence that also Archaea are 

involved. But to date it remained elusive whether ammonia oxidizing archaea in soil can 

assimilate CO2 and to what extent they are functionally active. Stable isotope probing of 

nucleic acids using 13CO2 showed that ammonia oxidizing archaea were actively involved in 

microbial ammonia oxidation in an agricultural soil and did fix CO2 autotrophically, presumably 

via the hydroxypropionate-hydroxybutyrate cycle. CARD-FISH further demonstrated the 

numerical importance of the archaeal ammonia oxidizers to the overall archaeal community in 

this environment. These results give novel evidence that the contribution of nitrifying Archaea 

to ammonia oxidation and CO2 fixation in terrestrial environments might be substantial. 

Although hydrogen is considered to be one of the most important future energy 

carriers, little is known about the global biogeochemical cycle of this trace gas. Previous 

findings indicate that microorganisms rather than free soil enzymes are responsible for the 

uptake of atmospheric H2 in soils. In this thesis, CARD-FISH analyses demonstrated that 
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streptomyces spores instead of the mycelia expressed the high-affinity H2 uptake activity. This 

suggests that H2-oxidizing streptomycetes, or actinobacteria in general, are essential for the 

uptake of atmospheric H2 in upland soils. 
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I. Introduction 

I.1 General introduction 

Dynamic processes shape the composition of Earth’s atmosphere. A prominent example from 

the past is the dramatic change from an anoxic to an oxic atmosphere, caused by the 

evolution of oxygenic photosyntheses by cyanobacteria, thus shifting the dominance of 

anaerobic to aerobic life (Holland et al., 1986). At present, the Earth’s atmosphere mostly 

consists of nitrogen (78% by volume) and oxygen (21% by volume). The remaining 1% of the 

atmospheric gases are generally considered as trace gases because they present such small 

concentrations. In particular several of these atmospheric trace gases play a leading role in 

the changes occurring in the atmosphere at present, as their increasing concentrations 

accelerate global warming (Intergovernmental Panel on Climate Change, 2007). The increase 

of CO2, CH4, and N2O since pre-industrial times furthermore initiates the destruction of the 

stratospheric ozone layer, the increase in the amount of tropospheric ozone, and changes in 

the density of clouds in the troposphere and of aerosol in the stratosphere due to changed 

emissions of dimethyl sulfate (DMS) and carbonyl sulfide (OCS), respectively (Conrad, 1996).  

Cycling of atmospheric trace gases mainly depends on biospheric processes. Therefore, a 

significant part of atmospheric trace gas fluxes occurs at the interface between atmosphere 

and upland soils. Upland soils are generally defined as non-water-saturated, well-aerated 

soils that are generally oxic, in contrast to wetland soils, which are water-saturated soils that 

are generally anoxic (Conrad, 1995). The upland soils generally provide a substantial sink for 

atmospheric trace gases, such as CH4, CO2, H2, and CO (Conrad, 1996), and occasionally 

also for N2O (Chapuis-Lardy et al., 2007). Considering the threat of global climate change, the 

biospheric processes responsible for uptake of these trace gases in soils are hence of special 

interest. But so far, the microorganisms in charge of these dynamics and the respective 

pathways are neither completely identified nor fully understood.  

This imposes a further challenge on the science of soil microbial ecology. However, 

the continuous development of advanced culture-independent molecular techniques supports 

the study of soil microbial communities. Biochemical markers, such as functional genes, 

ribosomal (rRNA) or messenger RNA (mRNA), can be analysed with respect to phylogeny 

and function, to gain more insight into the processes in the environment.  

An opportunity to link phylogeny to function regarding specific microbial groups and 

communities is provided by stable isotope probing (SIP) of nucleic acids and PLFAs (figure 

I.1-1). This technique allows the specific identification of microorganisms assimilating labeled 

substances, most commonly carbon from a particular 13C-labeled substrate (Manefield et al., 

2002; Dumont and Murrell, 2005; Neufeld et al., 2007; Chen and Murrell, 2010).  
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Figure I.1-1: DNA-based stable isotope probing (SIP) and 13C-phospholipid fatty acids (PLFA) analyses. 

A labeled substrate is added to an environmental sample (a) and incorporated, which allows further 

analyses of DNA (b) or PLFA (c). Adopted from Dumont and Murrell (2005).  

 

DNA and RNA are the most informative taxonomic biomarkers, and labeled molecules can be 

separated from unlabeled nucleic acids by density-gradient centrifugation. Once labeled DNA 

or RNA has been isolated, it can serve as a template in normal PCR or quantitative PCR 

(qPCR), using general primer sets that amplify rRNA genes of most known Bacteria and 

Archaea, or primer sets for specific functional genes. The analysis of the amplicons (e.g. by 

cloning, sequencing and subsequent phylogenetic analyses) allows the identification of 

microorganisms that have assimilated the labeled substrate.   

A different methodological field to target and visualize functional genes, rRNA, or 

transcripts in environmental samples is displayed by fluorescence in situ hybridization (FISH) 

techniques. FISH is a cultivation-independent technique for the in situ identification of 

microorganisms, based on phylogenetic staining using labeled nucleotide probes to target 

rRNA, mRNA, or genes of microbial cells in fixed samples (Pernthaler, 2010). Fluorescence in 

situ hybridization (FISH) of bacteria was first described more than 20 years ago (Amann et al., 

1990; DeLong et al., 1989) representing a significant progress in microbial ecology. However, 

since the fluorescence intensities of hybridized cells depend strongly on the concentration of 

the probe target, e.g. ribosomal RNA or mRNA, the hybridization intensities of cells in 

environmental samples are frequently below microscopic detection limits or lost in high 

background fluorescence. Therefore, an efficient way to improve the detection sensitivity is 

the use of horseradish peroxidase-labeled probes in combination with catalyzed reporter 

deposition (CARD) of fluorescently labeled tyramides (CARD-FISH) to detect rRNA or mRNA 
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in environmental samples (Pernthaler et al., 2002 and 2004). CARD–FISH combines CARD 

of fluorescently labeled tyramides with single-cell identification by FISH (figure I.1-2). The 

hybridization involves an oligo- or polynucleotice probe that is covalently crosslinked to one or 

more molecules which can be targeted with an antibody carrying a horseradish peroxidase 

(HRP) label or which are directly linked to HRP. Amplification of the signal relative to that 

achieved with probes that are labeled with a single fluorochrome is based on the 

radicalization of multiple tyramide molecules by a single horseradish peroxidase (Amann and 

Fuchs, 2008). Based on this enhanced sensitivity, CARD–FISH also enables the 

simultaneous detection of mRNA and rRNA in environmental bacteria, like the methanotrophs 

(Pernthaler et al., 2004), thereby linking the identification of single cells to the expression of 

particular genes. 
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Figure I.1-2: Principle of catalyzed reporter deposition – fluorescence in situ hybridization (CARD-

FISH).   

 

A different approach to obtain broader insight into the phylogenetic affiliation of members of 

microbial communities in the environment is to use a special variant of fluorescence in situ 

hybridization called recognition of individual genes (RING)-FISH (Zwirglmaier et al., 2004a) 

and to combine it with subsequent cell sorting (Zwirglmaier et al., 2004b). RING-FISH 

involves using polyribonucleotide probes that are multiply labeled with several reporter 

molecules, and is characterized by typical halo-shaped fluorescence signals in the periphery 

of the cells (figure I.1-3). These halo-shaped signals are hypothesized to occur due to folding 

of the single-stranded RNA probe molecules into secondary structures (Zwirglmaier et al., 

2003), which results in the formation of a network of probes around the cells during whole-cell 
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hybridization. RING-FISH has previously been used to successfully detect genes of the nitrite 

reductase (nirK) in denitrifiers in pure culture and environmental samples (Pratscher et al., 

2009), and glycerol aldehyde 3-phosphate dehydrogenase (GAPDH) in E. coli (Zwirglmaier et 

al., 2004a). 
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Figure I.1-3: Principle of recognition of individual genes – fluorescence in situ hybridization (CARD-

FISH).   

 
Most FISH methods can also be coupled to single-cell identification and quantification by 

either epifluorescence microscopy or flow cytometry, which also allows for fluorescence-

activated cell sorting (FACS) (Amann and Fuchs, 2008) and further identification of cells.  

These methods all open a wide range of possibilities to investigate the fundamentals 

underlying the uptake of atmospheric trace gases, such as CH4, CO2, and H2, by microbial 

groups in upland soils.   

 

I.2 Methane in the atmosphere and its uptake into upland soils  

Methane (CH4) is an important greenhouse gas with a global warming potential 20 times more 

effective than CO2 and a current atmospheric concentration of 1.7 ppmv. About 40% of the 

heat trapped by anthropogenic greenhouse gases is due to gases other than carbon dioxide, 

primarily methane (Shine and Sturges, 2007). The mixing ratio in the atmosphere changed 

from a pre-industrial concentration of 715 ppb in 1750 to 1,774 ppb in 2005. Ice core studies 

indicated that consistently lower concentrations were present in the atmosphere over the last 

650,000 years, varying between 400 ppb and 770 ppb (Spahni et al., 2005). More than 70% 

of atmospheric methane originates from biogenic sources including natural wetlands, rice 

agriculture, livestock, landfills, termites and oceans. Natural wetlands represent the largest 

single source accounting for about 35% of total emissions. Non-biogenic sources include 
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burning and mining of fossil fuel, waste treatment, biomass burning, and geological sources 

such as geothermal or volcanic methane (Intergovernmental Panel on Climate Change, 

2007). About 60% of the total emission can be attributed to anthropogenic activities. Most of 

the atmospheric CH4 results from CH4 production by methanogenic archaea as the final step 

in anaerobic degradation of organic matter (Conrad, 2009). These strictly anaerobic 

Euryarchaeota mainly use carbon dioxide and hydrogen or acetate as substrates for methane 

formation (Conrad, 1997; Thauer et al., 2008). However, only about 50% of the produced 

methane is finally emitted to the atmosphere, the remainder is oxidized by microbial groups in 

various environments. 

Biological methane oxidation is performed by a diverse group, the methane oxidizing 

or methanotrophic bacteria. Aerobic methane oxidizing bacteria generally belong to 16 genera 

within the γ- (type I methanotrophs: 10 different genera) and α- (type II methanotrophs: 

genera Methylocystis, Methylosinus, Methylocella, Methylocapsa) proteobacteria. The 

filamentous bacteria Crenothrix polyspora and Clonothrix fusca were also found to be 

methanotrophic (Stoecker et al., 2006; Vigliotta et al., 2007), both belonging to the 

Gammaproteobacteria and closely related to the type I methanotrophs. Very recently, three 

obligate methanotrophs of the phylum Verrucomicrobia were discovered in hot and acidic 

environments (Dunfield et al., 2007; Pol et al., 2007; Islam et al., 2008). The aerobic 

methanotrophs oxidize methane to carbon dioxide via the intermediates methanol, 

formaldehyde and formate. Type I methanotrophs assimilate C via the ribulose 

monophosphate pathway, while type II methanotrophs use the serine pathway (Trotsenko and 

Murrell, 2008). The key step in methane oxidation, the initial oxidation of CH4 to methanol, is 

catalyzed via the methane monooxygenase enzyme which occurs as a particulate, membrane 

bound form (pMMO), and as a soluble, cytosolic form (sMMO) (Hanson and Hanson, 1996). 

The two enzymes are distinct and present the result of two evolutionary independent 

processes. The pmoA gene, which encodes the α-subunit of pMMO, has been generally used 

as a biomarker to investigate methanotrophic communities in various environments. 

Besides the aerobic process, methane can also be oxidized anaerobically. Anaerobic 

methane oxidation is estimated to account for removing up to 90% of the methane produced 

in oceans by mobilization of gas hydrates, and thereby reducing the ocean contribution to 2% 

of the global methane sources. The microorganisms responsible for this oxidation are 

presumed to be three distinct clusters of methanotrophic archaea (ANME-1, ANME-2 and 

ANME-3), all related to Methanosarcinales and Methanomicrobiales, two orders of 

methanogens, found in cell aggregates together with sulfate reducing bacteria belonging to 

the δ-proteobacteria (Knittel and Boetius, 2009). But so far these microorganisms resisted 

cultivation. 

Another pathway was recently discovered that couples anaerobic oxidation of 

methane with the reduction of nitrite to dinitrogen. The anaerobic, denitrifying bacterium 

‘Candidatus Methylomirabilis oxyfera’ harbors the aerobic pathway for methane oxidation and 
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produces the O2 required for the methane monooxygenase reaction by dismutating nitric 

oxide (Ettwig et al., 2010). 

Ammonia oxidizers are also able to convert methane to methanol by an enzyme 

homologous to the methane monooxygenase of methanotrophs, the ammonia 

monooxygenase (amo). It seems, however, that they cannot use this process for growth 

(Jones and Morita, 1983). 

 

The major sink for atmospheric methane, accounting for >80% of the total, is the reaction with 

hydroxyl radicals in the troposphere. A small part also diffuses into the stratosphere. The 

most important biological sink for atmospheric methane is represented by upland soils 

(Intergovernmental Panel on Climate Change, 2007), with an uptake of approximately 30 Tg 

y-1 (Denman et al., 2007). However, the identity of the microorganisms performing this uptake 

raises a question. Almost all of the cultured methane oxidizing bacteria can not utilize and 

grow on the low CH4 concentrations in the atmosphere. Only several Methylocystis and 

Methylosinus species have been shown to utilize atmospheric CH4. They contain two types of 

pMMO, the conventional enzyme pMMO1 and pMMO2, a second monooxygenase, which 

catalyses oxidation of CH4 at atmospheric levels (Dunfield et al., 2002; Baani and Liesack, 

2008; Kravchenko et al., 2010). These strains, however, are also not able to grow at 

atmospheric concentrations of methane and might require additional carbon sources (Baani 

and Liesack, 2008; Belova et al., 2010; Dunfield et al., 2010). Phylogenetic analyses of soils 

showing uptake of atmospheric methane revealed the presence of predominant, possible 

“high affinity” methanotrophic bacteria, which represent novel sequence lineages of pmoA 

and were therefore named upland soil cluster (USC) α and γ (Knief et al., 2003; Ricke et al., 

2005; Kolb et al., 2005). Further studies showed that pmoA of USCα is most closely related to 

Methylocapsa acidiphila (Dedysh et al., 2002; Ricke et al., 2005) while USCγ exhibits next 

relation to the Methylococcaceae (Knief et al., 2003). These findings all indicate the potential 

role of those upland soil clusters in the removal of methane from the atmosphere (Kolb et al., 

2009). But so far no successful isolation approach has been reported. Previous studies 

investigated the assimilation of CH4 by USCα in soils showing uptake of atmospheric CH4 by 

using stable isotope probing of PLFAs or DNA, and detected labeling of lipids characteristic 

for USCα but no incorporation of labeled carbon into DNA (Knief et al., 2003; Chen et al., 

2008; Bengtson et al., 2009; Menyailo et al., 2010). Thus, unfortunately, only little is known 

about the molecular phylogeny and function of these microorganisms. 

 

I.3 CO2 fixation by ammonia oxidizing prokaryotes in terrestrial environments 

CO2 is a crucial  greenhouse gas and represents the largest single contributor to radiative 

forcing, responsible for global warming. Human activity, primarily burning of fossil fuels and 

deforestation, has led to a steep increase of CO2 in the atmosphere and shows to be 

responsible for more than 75% of the increase in atmospheric CO2 concentration since pre-
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industrial times. Thus, human activities are regarded as the single largest anthropogenic 

factor contributing to climate change (Denman et al., 2007). On the other hand, the natural 

carbon sinks, such as photosynthesis, respiration, decay and sea surface gas exchange, 

process only a comparatively small net uptake of CO2, approximately 3.3 GtC yr–1 over the 

last 15 years. Nevertheless, without these natural sinks atmospheric concentrations would 

have increased even more dramatically (Denman et al., 2007). One of these sinks for 

atmospheric CO2 is offered by the CO2 fixation of autotrophic ammonia oxidizing 

microorganisms in upland soils. 

Microbial ammonia oxidation, the first step in nitrification, is crucial for the global 

nitrogen cycle (see figure I.3-1). It is the only oxidative biological process linking reduced and 

oxidized pools of inorganic nitrogen in nature (Gruber and Galloway, 2008) and often shows 

to represent the rate-limiting step of nitrification in various environments, thus being critical to 

wastewater nitrogen removal and global N cycling (Kowalchuk and Stephen, 2001). 

The first step of ammonia oxidation, the oxidation of ammonia to hydroxylamine, is catalyzed 

by the ammonia monooxygenase (AMO), the key enzyme of nitrification (Kowalchuk and 

Stephen, 2001). This enzyme is evolutionary related to the membrane bound methane 

monooxygenase pMMO (Holmes et al., 1995). The ammonia monooxygenase is not highly 

substrate specific and able to oxidize several apolar compounds such as carbon monoxide, 

phenol, and other hydrocarbons, but at much lower rates than ammonia (Hooper et al., 1997). 

It is furthermore able to oxidize methane to methanol, however, also at much lower rates than 

the methane monooxygenase (Bedard and Knowles, 1989).  
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Figure I.3-1: The microbial nitrogen cycle. Modified after You et al. (2009). 
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For a long time, bacteria were believed to be solely responsible for this process and to 

exclusively possess the genes for the ammonia monooxygenase, but there is now increasing 

evidence that also Archaea are involved. amoA genes of Archaea encoding subunit A of 

ammonia monooxygenase have been found to occur in a wide variety of environments 

including marine systems, hot springs, and soils (Francis et al., 2005; Leininger et al., 2006; 

Wuchter et al., 2006, Reigstadt et al., 2008). Thus, the ammonia oxidizing prokaryotes can be 

divided into 2 groups: the ammonia oxidizing bacteria (AOB) and the ammonia oxidizing 

archaea (AOA). 

The slow-growing, autotrophic ammonia oxidizing bacteria utilize ammonia oxidation 

as their sole source of energy, carbon dioxide as a carbon source using the Calvin Benson 

cycle, and molecular oxygen as an electron acceptor. The growth rates of AOB are thus 

directly linked to the availability of ammonium and the kinetics of its oxidation. The 

chemolithotrophic AOB commonly belong to three main genera: Nitrosomonas 

(Betaproteobacteria), Nitrosospira (Betaproteobacteria), and Nitrosococcus 

(Gammaproteobacteria) (Koops et al., 2000). Nitrosomonas/Nitrosospira species seem to 

dominate natural and engineered systems, therefore AOB of the β-subclass Proteobacteria 

have been used as model organisms in microbial ecological studies (Kowalchuk and Stephen, 

2001). 

Ammonia can also be oxidized anaerobically. Anaerobic ammonium oxidation 

(anammox) bacteria, related to Planctomycetales, possess the unique metabolic ability to 

combine ammonium with nitrite (rather than O2) as the electron acceptor, which results in N2 

production (Kuenen, 2008). Therefore, this process represents a denitrification pathway using 

ammonium as electron donor. 

 

Molecular studies revealed that ammonia oxidizing archaea often outnumber the nitrifying 

Bacteria in most environments by orders of magnitude, especially in soils, where AOA 

showed to be 2- to 3000-fold more abundant than AOB (Leininger et al., 2006; Wuchter et al., 

2006, Di et al., 2009). These findings all demonstrate the potentially significant role of 

Archaea in the process of nitrification. New evidence also suggests the assignment of the 

ammonia oxidizing archaea to the new archaeal phylum Thaumarchaeota (Brochier-Armanet 

et al., 2008; Spang et al., 2010). The first representative of the marine AOA was reported by 

Könneke et al. (2005), who isolated Nitrosopumilus maritimus from a marine aquarium. 

Nitrosopumilus maritimus belongs to the marine group I Crenarchaeota, grows autotrophically 

with ammonia as the sole energy source, and converts ammonia to nitrite with concomitant 

increase in cell number. Another representative of marine AOA, Crenarchaeum symbiosum, 

which was enriched from a hot spring, showed to belong to the group I.1b Crenarchaeota, 

mostly found in soil (Hatzenpichler et al., 2008). Further isolates were all derived from 

mesophilic aquatic environments, such as Nitrososphaera gargensis (Hatzenpichler et al., 

2008) and Nitrosocaldus yellowstonii (de la Torre et al., 2008). But so far, AOA in soils 

resisted isolation. Therefore, the actual contribution and importance of these microorganisms 
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to ammonia oxidation in soil remains elusive, since currently little is known about the exact 

ammonia oxidation pathways in archaea (Hallam et al., 2006). 

The AOA could also be of importance for the global carbon cycle. The ammonia 

oxidizing archaea isolated from aquatic environments were all shown to be autotrophs 

(Könneke et al., 2005; de la Torre et al., 2008; Hatzenpichler et al., 2008), like their bacterial 

counterparts, and analysis of 13C-bicarbonate labeled lipid biomarkers of natural 

Crenarchaeota in the North Sea indicated an autotrophic metabolism (Wuchter et al., 2003). 

However, it is still unclear whether this also applies to ammonia oxidizing archaea in soil and 

to what extent they are functionally active. So far, DNA-SIP analyses successfully showed 

autotrophy of ammonia oxidizing bacteria in sediments of a lake (Whitby et al., 2001) and an 

estuary (Freitag et al., 2006), but failed to detect CO2 fixation of ammonia oxidizing archaea in 

agricultural soil (Jia and Conrad, 2009), although potential activity of these Archaea in soil 

was reported before (Schauss et al., 2009). Furthermore, it remains elusive which pathway 

the AOA might use for fixation of CO2. None of the chemolitoautotrophic archaea uses the 

Calvin cycle for CO2 fixation (Berg et al., 2010). Instead, two new autotrophic carbon fixation 

cycles have been recently described in Crenarchaeota, the dicarboxylate-4-hydroxybutyrate 

cycle and the 3-hydroxypropionate-4- hydroxybutyrate cycle, and all Crenarchaeota studied 

so far use either the former or the latter cycle (Berg et al., 2010). Thus, many questions 

concerning the physiological and functional traits of the ammonia oxidizing archaea still await 

to be answered. 

 

I.4 Biological uptake of atmospheric H2 

Molecular hydrogen (H2) is an indirect greenhouse gas present at trace level in the 

atmosphere (~530 ppbv). H2 experiences a large and fast turnover in the troposphere, with an 

estimated total rate of 79 Tg yr−1 (Hauglustaine and Ehhalt, 2002). Sources of atmospheric H2 

are mainly methane and non methane hydrocarbon (NMHC) oxidation, industries and fossil 

fuels, biomass burning, nitrogen fixation by-products, and oceans (Constant et al., 2009). 

Once in the troposphere, H2 exhibits a lifetime of 1.4–2.0 years (Rhee et al., 2006). 

Troposheric H2 is taken up predominantly by upland soils, accounting for ~80% of the global 

loss of atmospheric H2 (see table I.4-1). Although hydrogen is considered to be one of the 

most important future energy carriers (Turner et al., 2004), little is known about the global 

biogeochemical cycle of this trace gas (Rhee et al. 2006). Also its impact on the atmosphere 

is discussed controversially, suggesting that a future H2-based economy might change the 

oxidative capacity of the troposphere (Warwick et al., 2004). 
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Table I.4-1: The global budget of atmospheric H2 (Tg a−1). NH and SH stand for the Northern and 

Southern Hemisphere, respectively. Adopted from Rhee et al. (2006).  

 

In upland soils, H2 oxidation activity is localized within the upper soil layers, showing a 

biphasic kinetic with two different affinities for H2, a low- and a high-affinity activity (Schuler 

and Conrad, 1990; Häring and Conrad, 1994). The low-affinity activity is processed by a 

diverse group of aerobic H2-oxdizing microorganisms, the Knallgas bacteria. However, these 

microorganisms are restricted to high concentrations of H2 and are not able to consume 

atmospheric concentrations, due to their low affinity and high threshold for H2 (Conrad et al., 

1983). Atmospheric uptake of H2 in soils is catalyzed by a high-affinity activity, displaying a 

low Km(app) of 10-70 nM. Oxidation of atmospheric H2 was long thought to be driven by abiontic 

high-affinity soil hydrogenases (Conrad, 1996). Recent studies, however, identified and 

isolated Streptomyces species showing a high-affinity H2 uptake activity and possessing a 

[NiFe]-hydrogenase (Constant et al., 2008). The gene encoding the large subunit of this 

enzyme (hydB-like gene sequence) can furthermore act as a functional marker gene. These 

observations indicate that microorganisms rather than free soil enzymes are responsible for 

the uptake of atmospheric hydrogen in soils.   
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I.6 Objectives of this study  

Upland soils play an important role in the biological uptake and cycling of trace gases from 

the atmosphere. The physiological traits of many of the microbial groups involved in these 

processes are so far relatively uncharted, since most of them resisted isolation.   

The aim of this study was to investigate microbial groups involved in the uptake of 

trace gases from the atmosphere in upland soils, namely the potential atmospheric methane 

oxidizer upland soil cluster α (USCα), the autotrophic ammonia oxidizing archaea (AOA), and 

the hydrogen oxidizing streptomycetes. Therefore, culture-independent molecular techniques 

were applied, such as stable isotope probing (SIP) of nucleic acids and CARD-FISH. The 

following questions were addressed: 

 

Chapter III: Upland soil cluster α in Marburg forest soil 

The upland soil cluster α (USCα), assumed to represent methanotrophic bacteria adapted to 

the trace level of atmospheric methane and to play an essential part in the removal of this 

greenhouse gas from the atmosphere, so far resisted isolation. Therefore questions regarding 

phylogenetic traits of these microorganisms still await to be answered. 

 

 Does incorporation of CH4 take place by USCα in the Marburg forest soil? 

(chapter III.1: RNA- and DNA-SIP using CH4) 

 Can USCα cells expressing pmoA be detected in this soil? 

      (chapter III.1: mRNA CARD-FISH) 

 Are USCα restricted to methane as sole carbon and energy source or also able to 

utilize other carbon compounds, such as acetate? 

      (chapter III.1: RNA- and DNA-SIP using acetate) 

 Can USCα cells be isolated from Marburg forest soil? 

      (chapter III.2: RING-FISH coupled to cell sorting, and enrichment approaches)   

 
 

Chapter IV: Ammonia oxidizing archaea and bacteria in an agricultural soil 

Ammonia oxidation is an essential part of the global nitrogen cycling and was long thought to 

be driven only by Bacteria until recent findings expanded this pathway also to the Archaea. 

But most questions concerning the metabolism of ammonia oxidizing Archaea (AOA) yet 

remain open, especially for terrestrial environments. 

 
 Are AOA in soil able to autotrophically fix CO2, coupled to ammonia oxidation? Do 

they show the same response to different ammonia concentrations as the AOB?  

      (RNA- and DNA-SIP using CO2) 

 Which pathway do AOA use to fix CO2? 

(cloning of marker transcript/genes from gradient fractions) 
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 Can AOA cells expressing amoA be detected in the soil and what is their 

abundance? 

      (mRNA CARD-FISH and qPCR) 

 

Chapter V: H2-oxidizing streptomycetes in soil 

Previous findings suggest that actinobacteria could be responsible for atmospheric H2 soil 

uptake. However, the ecological importance of H2-oxidizing streptomycetes in soil awaits 

further investigation. 

 

 Where is the H2 uptake activity catalyzed within these streptomycetes? Where 

does expression of hydB take place in Streptomyces sp. PCB7?   

      (mRNA CARD-FISH) 

 
 

I.6 References 

Amann RI, Krumholz L, Stahl DA (1990) Fluorescent oligonucleotide probing of whole cells for 
determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172: 762–
770. 

 
Amann R, Fuchs B (2008) Single-cell identification in microbial communities by improved fluorescence 

in situ hybridization techniques. Nature Rev 6: 339-348. 
 
Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different 

methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 
105: 10203–10208. 

 
Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of Ch4, Nh4

+, and co 
oxidation by methanotrophs and nitrifiers. Microbiol Rev 53: 68-84. 

 
Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN (2010) Acetate utilization as a 

survival strategy of peat-inhabiting Methylocystis spp.. Environ Microbiol Rep (in press): 
doi:10.1111/j.1758-2229.2010.00180.x 

 
Bengtson P, Basiliko N, Dumont MG, Hills M, Murrell JC, Roy R, Grayston SJ (2009) Links between 

methanotroph community composition and CH4 oxidation in a pine forest soil. FEMS Microbiol 
Ecol 70: 356–366. 

 
Berg IA, et al. (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8: 447-460. 
 
Brochier-Armanet C, et al. (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the 

Thaumarchaeota. Nat Rev Microbiol 6: 245-252. 
 
Chapuis-Lardy L, Wrage N, Metay A, Chotte J-L, Bernoux M (2007) Soils, a sink for N2O? A review. 

Glob Change Biol 13: 1-17.  
 
Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L, Stralis-Pavese N, Murrell JC 

(2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by 
mRNA and SIP-PLFA analyses. Environ Microbiol 10: 446–459. 

 
Chen Y, Murrell JC (2010) When metagenomics meets stable-isotope probing: progress and 

perspectives. Trends Microbiol 18: 157-163. 
 
Conrad R, Aragno M, Seiler W (1983) The inability of hydrogen bacteria to utilize atmospheric hydrogen 

is due to threshold and affinity for hydrogen. FEMS Microbiol Lett 18: 207–210. 
 



I. Introduction 
 

 

 22

Conrad R (1995) Soil microbial processes involved in production and consumption of atmospheric trace 
gases. Adv Microb Ecol 14: 207-250. 

 
Conrad R (1996) Soil Microorganisms as Controllers of Atmospheric Trace Gases (H2, CO, CH4, OCS, 

N2O, and NO). Microbiol Rev 60: 609-640. 
 
Conrad R (1997) Production and consumption of methane in the terrestrial biosphere. Helas, G., 

Slanina, J., and Steinbrecher, R. (eds). Amsterdam: SBP Academic Publ., pp. 27-44. 
 
Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes 

involved. Environ Microbiol Rep 1: 285–292. 
 
Constant P, Poissant L, Villemur R (2008) Isolation of Streptomyces sp. PCB7, the first microorganism 

demonstrating high-affinity uptake of tropospheric H2. ISME J 2: 1066–1076. 
 
Constant P, Poissant L, Villemur R (2009) Tropospheric H2 budget and the response of its soil uptake 

under the changing environment. Sci Tot Environ 407: 1809–1823. 
 
de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic 

ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10: 810–818. 
 
DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: Ribosomal RNA-based probes for the 

identification of single cells. Science 243: 1360–1363. 
 
Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, et al. (2007) Couplings 

between changes in the climate system and biogeochemistry. In Climate Change 2007: The 
Physical Science Basis. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al. 
(eds). Cambridge, UK: Cambridge University Press, pp. 499–587. 

 
Di HJ, et al. (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat 

Geosci 2: 621-624. 
 
Dumont MG, Murrell JC (2005) Stable isotope probing – linking microbial identity to function. Nat Rev 

Microbiol 3: 499-504. 
 
Dunfield, P.F., Yimga, M.T., Dedysh, S.N., Berger, U., Liesack, W., and Heyer, J. (2002) Isolation of a 

Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol Ecol 41: 17–26. 
 
Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S et al. (2007) Methane oxidation by an 

extremely acidophilic bacterium of the phylum verrucomicrobia. Nature 450: 879-882. 
 
Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a 

facultatively methanotrophic bacterium possessing a particulate methane monooxygenase. Int 
J Syst Evol Microbiol (in press): doi: 10.1099/ijs.0.020149-0.  

 
Ettwig KF et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 

543-548. 
 
Farquharson M, Harvie R, McNcol AM (1990) Detection of messenger RNA using a digoxigenin end-

labeled oligonucleotide probe. J Clin Pathol 43: 423–428. 
 
Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia 

oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 
14683–14688. 

 
Freitag TE, Chang L, Prosser JI (2006) Changes in the community structure and activity of 

betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. 
Environ Microbiol 8: 684–696. 

 
Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451, 

293–296. 
 
Hallam SJ, et al. (2006) Pathways of carbon assimilation and ammonia oxidation suggested by 

environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4: e95. 
 
Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60: 439–471. 
 



I. Introduction 
 

 

 23

Häring V, Conrad R (1994) Demonstration of two different H2-oxidizing activities in soil using an H2 

consumption and a tritium exchange assay. Biol Fertil Soils 17: 125–128. 
 
Hatzenpichler R, et al. (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot 

spring. Proc Natl Acad Sci U S A 105: 2134–2139. 
 
Hauglustaine DA, Ehhalt DH (2002) A three-dimensional model of molecular hydrogen in the 

troposphere. J Geophys Res 107: 4330-4346. 
 
Holland HD, Lazar B, McCaffrey M (1986) Evolution of the atmosphere and oceans. Nature 320: 27-33. 
 
Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane 

monooxygenase and ammonium monooxygenase may be evolutionarily related. FEMS 
Microbiol Lett 132: 203–208. 

 
Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997) Enzymology of the oxidation of ammonia to 

nitrite by bacteria. Antonie van Leeuwenhoek 71: 59-67. 
 
Intergovernmental Panel on Climate Change (2007) Climate change 2007: The physical science basis. 

Summary for policymakers. Contribution of working group I to the fourth assessment report of 
the Intergovernmental Panel on Climate Change. Paris: Summary for policymakers formally 
approved at the 10th session of working group I of the IPCC. 

 
Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and 

pH 2 by a thermoacidophilic bacterium belonging to the verrucomicrobia phylum. Proc Natl 
Acad Sci USA 105: 300-304. 

 
Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an 

agricultural soil. Environ Microbiol 11: 1658-1671. 
 
Jones RD, Morita RY (1983) Methane oxidation by nitrosococcus oceanus and nitrosomonas europaea. 

Appl Environ Microbiol 45: 401-410. 
 
Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu 

Rev Microbiol 63: 311-334. 
 
Kolb S, Knief C, Dunfield PF, Conrad R (2005) Abundance and activity of uncultured methanotrophic 

bacteria involved in the consumption of atmospheric methane in two forest soils. Environ 
Microbiol 7: 1150–1161. 

 
Kolb S (2009) The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep 1: 

336–346. 
 
Könneke M, et al. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 

543–546. 
 
Koops HP, Purkhold U, Pommerening-Röser A, Timmermann G, Wagner M (2000) The lithoautotrophic 

ammonia-oxidizing bacteria. In The Prokaryotes. Dworkin, M. (ed). New York: Springer 
 
Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial 

ecology. Annu Rev Microbiol 55: 485–529. 
 
Knief C, Lipski A, Dunfield PF (2003) Diversity and activity of methanotrophic bacteria in different 

upland soils. Appl Environ Microbiol 69: 6703–6714. 
 
Kravchenko IK, Kizilova AK, Bykova SA, Men’ko EV, Gal’chenko VF (2010) Molecular analysis of high-

affinity methane-oxidizing enrichment cultures isolated from a forest biocenosis and 
agrocenoses. Microbiology 79: 106-114. 

 
Kuenen JG (2008) Anammox bacteria: from discovery to application. Nature 6: 320-326. 
 
Leininger S, et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 

442: 806–809. 
 
Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of 

linking microbial community function to phylogeny. Appl Environ Microbiol 68: 5367–5373. 
 



I. Introduction 
 

 

 24

Menyailo OV, Abraham W-R, Conrad R (2010) Tree species affect atmospheric CH4 oxidation without 
altering community composition of soil methanotrophs. Soil Biol Biochem  42: 101–107. 

 
Neufeld J, Dumont M, Vohra J, Murrell J (2007) Methodological considerations for the use of stable 

isotope probing in microbial ecology. Microb Ecol 53: 435–442. 
 
Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter 

deposition (CARD) for the identification of marine bacteria. Appl Environ Microbiol 68: 3094–
3101. 

 
Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in 

environmental bacteria. Appl Environ Microbiol 70: 5426–5433. 
 
Pernthaler A (2010) Identification of environmental microorganisms by fluorescence in situ 

hybridization. In: Handbook of Hydrocarbon and Lipid Microbiology. K. N. Timmis (ed.) DOI 
10.1007/978-3-540-77587-4_322 

 
Pratscher J, Stichternoth C, Fichtl K, Schleifer K-H, Braker G (2009) Application of recognition of 

individual genes-fluorescence in situ hybridization (RING-FISH) to detect nitrite reductase 
genes (nirK) of denitrifiers in pure cultures and environmental samples. Appl Environ Microbiol 
75: 802-810. 

 
Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ (2007) Methanotrophy 

below pH 1 by a new verrucomicrobia species. Nature 450: 874-878. 
 
Reigstad LJ et al. (2008) Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS 

Microbiol Ecol 64: 167–174. 
 
Rhee TS, Brenninkmeijer CAM, Röckmann T (2006) The overwhelming role of soils in the global 

atmospheric hydrogen cycle. Atmos Chem Phys 6: 1611–1625. 
 
Ricke P, Kube M, Nakagawa S, Erkel C, Reinhardt R, Liesack W (2005) First genome data from 

uncultured upland soil cluster alpha methanotrophs provide further evidence for a close 
phylogenetic relationship to Methylocapsa acidiphila B2 and for high-affinity methanotrophy 
involving particulate methane monooxygenase. Appl Environ Microbiol 71: 7472–7482. 

 
Schauss K, et al. (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two 

agricultural soils. Environ Microbiol 11: 446-456. 
 
Schuler S, Conrad R (1990) Soils contain two different activities for oxidation of hydrogen. FEMS 

Microbiol Lett 73: 77–83. 
 
Shine KP, Sturges WT (2007) CO2 Is Not the Only Gas. Science 315: 1804-1805. 
 
Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K. et al. (2005) 

Atmospheric methane and nitrous oxide of the late pleistocene from antarctic ice cores. 
Science 310: 1317-1321. 

 
Spang A, et al. (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea 

supports the phylum Thaumarchaeota. Trends Microbiol doi:10.1016/j.tim.2010.06.003 
 
Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C et al. (2006) Cohn's 

crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc 
Natl Acad Sci USA 103: 2363-2367. 

 
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically 

relevant differences in energy conservation. Nat Rev Microbiol 6: 579-591. 
 
Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl 

Microbiol 63: 183-229. 
 
Turner JA (2004) Sustainable hydrogen production. Science 305: 972-974. 
 
Vigliotta G, Nutricati E, Carata E, Tredici SM, De SM, Pontieri P et al. (2007) Clonothrix fusca Roze 

1896, a filamentous, sheathed, methanotrophic gamma-proteobacterium. Appl Environ 
Microbiol 73: 3556-3565. 

 



I. Introduction 
 

 

 25

Warwick NJ, Bekki S, Nisbet EG, Pyle JA (2004) Impact of a hydrogen economy on the stratosphere 
and troposphere studied in a 2-D model. Geophys Res Lett 31: L05107. 

 
Whitby CB, et al. (2001) 13C incorporation into DNA as a means of identifying the active components of 

ammonia-oxidizer populations. Lett Appl Microbiol 32: 398–401. 
 
Wuchter C, Schouten S, Boschker HTS, Sinninghe Damsté JS (2003) Bicarbonate uptake by marine 

Crenarchaeota. FEMS Microbiol Lett 219: 203–207. 
 
Wuchter C, et al. (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103: 12317–12322. 
 
Zwirglmaier K, Ludwig W, Schleifer K-H (2003) Improved fluorescence in situ hybridization of individual 

microbial cells using polynucleotide probes: The network hypothesis. System Appl Microbiol 
26: 327-337. 

 
Zwirglmaier K, Ludwig W, Schleifer K-H (2004a) Recognition of individual genes in a single bacterial 

cell by fluorescence in situ hybridization – RING-FISH. Mol Microbiol 51: 89-96. 
 
Zwirglmaier K, Ludwig W, Schleifer K-H (2004b) Improved method for polynucleotide probe-based cell 

sorting, using DNA-coated microplates. Appl Environ Microbiol 70: 494-497. 
 

 



II. Materials and methods 
 

 

 26

II. Materials and methods 

II.1 Chemicals and gases 

All chemicals, unless otherwise noted, were purchased in p.A. quality from the following 

suppliers: Ambion (Darmstadt, Germany), Applied Biosystems (Darmstadt, Germany), GE 

Healthcare (Munich, Germany), Invitrogen (Darmstadt, Germany), Promega (Mannheim, 

Germany), Qiagen (Hilden, Germany), Roche (Grenzach-Wyhlen, Germany), Roth 

(Karlsruhe, Germany), Sigma Aldrich (Taufkirchen, Germany), and Thermo Fisher Scientific 

(Dreieich, Germany). The technical gases for GC were purchased from Air Liquide 

(Duesseldorf, Germany). The 13CH4 (99 atom%) was purchased from Sigma Aldrich. 

II.2 Cultures and media 

The following pure cultures were used in this study: Methylocapsa acidiphila type strain (DSM 

13967) was obtained from the German Collection of Microorganisms and Cell Cultures 

(DSMZ, Braunschweig, Germany). Methylocystis sp. strain SC2 was provided by the group of 

Prof. Dr. Peter Frenzel at the MPI Marburg. Streptomyces sp. PCB7 and DNA of Paracoccus 

denitrificans were provided by Dr. Philippe Constant, also MPI Marburg. 

Methylocapsa acidiphila was grown in 20 ml DSMZ medium 922 (Table II.2-1) (Dedysh et al., 

2002) in 120 ml serum bottles. 20% (v/v) methane was added to the gas phase and the 

culture was incubated on a rotary shaker (120 rpm) at 25°C in the dark. 

Table II.2-1: Composition of medium 922 for growth of Methylocapsa acidiphila  

KH2PO4 100.00 mg 

MgSO4 x 7 H2O 50.00 mg 

CaCl2 x 2 H2O 10.00 mg 

Trace elements 1.00 ml 

Distilled water 1000.00 ml 

Trace elements:  

EDTA 5.00 g 

CuCl2 x 5 H2O 0.10 g 

FeSO4 x 7 H2O 2.00 g 

ZnSO4 x 7 H2O 0.10 g 

NiCl2 x 6 H2O 0.02 g 

CoCl2 x 6 H2O 0.20 g 

Na2MoO4 0.03 g 

Distilled water 1000.00 ml 

Final pH 4.5 – 5.8  
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Methylocystis sp. strain SC2 was grown in 20 ml NMS medium (Table II.2-2) (Dalton and 

Whittenbury, 1976) in 120 ml serum bottles. 20% (v/v) methane was added to the gas phase 

and the culture was incubated on a rotary shaker (120 rpm) at 25°C in the dark. 

Table II.2-2: Composition of medium NMS for growth of Methylocystis sp. strain SC2 

MgSO4 x 7 H2O 1.00 g 

CaCl2 x 2 H2O 200.00 mg 

Fe(III)NH4-EDTA 4.00 mg 

KNO3 1.00 g 

Trace element solution 0.50 ml 

KH2PO4 272.00 mg 

Na2HPO4 x 12 H2O 717.00 mg 

Distilled water 1000.00 ml 

Trace element solution:  

Na2-EDTA 500.00 mg 

FeSO4 x 7 H2O 200.00 mg 

ZnSO4 x 7 H2O 10.00 mg 

MnCl2 x 4 H2O 3.00 mg 

H3BO3 30.00 mg 

CoCl2 x 6 H2O 20.00 mg 

CaCl2 x 2 H2O 1.00 mg 

NiCl2 x 6 H2O 2.00 mg 

Na2MoO4 3.00 mg 

Distilled water 1000.00 ml 

Adjust pH to 6.8  

 

Streptomyces sp. PCB7 was grown on GYM medium agar plates (DSMZ medium 65) (Table 

II.2-3). Plates were incubated at 30°C in the dark. 

Table II.2-3: Composition of medium GYM for growth of Streptomyces sp. PCB7 

Glucose 4.00 g 

Yeast extract 4.00 g 

Malt extract 10.00 g 

CaCO3 2.00 g 

Agar 12.00 g 

Distilled water 1000.00 ml 

           Adjust pH to 7.2 before adding agar 

All media were sterilized by autoclaving for 20 min at 121°C and 1 bar overpressure.   
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II.3 Environmental samples and sampling procedures 

II.3.1 Marburg forest soil (MF) 

For the experiments targeting methanotrophs, upland soil was sampled in an acidic forest in 

Marburg, Germany (N 50° 48‘ 30.2‘‘ E 08° 48‘ 02.2‘‘). Before sampling, the humus layer of the 

soil was removed. Soil was sampled from the upper mineral horizon (Ah) using 10 cm long soil 

cores in October 2008 (for CH4 labeling, see II.7.1.1.1, and enrichments, see II.11) and in 

August 2009 (for acetate labeling, see II.7.1.1.2). Afterwards, the soil was homogenized, 

sieved through 3 mm mesh and stored at 4°C until further use. A small amount was also kept 

at -80°C for molecular analyses.  

 

II.3.2 Rauischholzhausen agricultural soil (RH) 

For the stable isotope incubations targeting ammonia oxidizing microorganisms in terrestrial 

environments (see II.7.1.2), soil was sampled using 40 cm long soil cores in April 2009 from 

maize plots at the long-term experiment field site of the University of Giessen in 

Rauischholzhausen, Germany (N 50° 45' 39.60" E 8° 52' 19.37"). Maize, wheat, and barley 

are annually rotated at the field site. The soil was air-dried, sieved through 1 mm mesh, 

homogenized, and stored at 4°C until further use. A small amount was also kept at -80°C for 

molecular analyses. 

 

II.4 Chemical analyses 

II.4.1 Determination of pH in soil samples 

Soil (15 g) was mixed with 30 ml of distilled water and stirred until pH remained stable. A 

digital pH meter (Microprocessor pH meter 539, Wissenschaftlich-Technische Werkstätten 

GmbH, Weilheim, Germany) with an InLab Semi-Micro pH electrode (pH 0 to 12, Mettler 

Toledo, Gießen, Germany) was used to determine pH-values. 

II.4.2 Gravimetric determination of soil moisture content 

Soil samples (10 g) were weighed in aluminium tins and dried for 24 h or over night at 105°C 

until constant weight. After cooling the dry weight was determined by weighing the samples 

again. The moisture content in dry weight basis was calculated in percent from wet weight 

(Ww) and dry weight (Dw) using the following formula: 

100
)(

x
Dw

DwWw 
  
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II.4.3 Determination of ammonium 

An ammonium microassay was used to determine ammonium concentrations in soil samples 

and incubations (Murase et al., 2006). Therefore, 0.15 g of soil or slurry was mixed with  

1.5 ml of 2 N KCl, vortexed, and shaken horizontally for 2 h at 4°C. Soil was pelleted by 

centrifugation for 5 min at 4,000 xg at 4°C and supernatants were filtered (<0.2 µm, Whatman 

filter units, Whatman, Dassel, Germany). In each well of a 96-well microplate, 200 µl of filtrate 

and 50 µl of Rxn buffer (see table II.4-1) were added and incubated for 10 min at 63°C. After 

cooling down the plate for 2 min at room temperature, the fluorescent intensity was measured 

at wavelength 410 nm and emission wavelength 470 nm on a Tecan Safire microplate reader 

(Tecan, Mainz, Germany). A 10 mM NH4Cl stock served as calibration standard.  

 

Table II.4-1: Solutions for ammonium microassay 

P-buffer:  

1 M KH2PO4 13.61 g in 100 ml A.bidest 

1 M K2HPO4 34.84 g in 200 ml A.bidest 

Adjust pH to 6.8 and autoclave  

  

Rxn buffer:  

15 mM O-phthalaldehyde  

50 mM 2-mercaptoethanol  

in 500 mM purified P-buffer pH 6.8  

1) Mix in a beaker: 

o 0.08 g O-phthalaldeyde (C8H6O2) 

o 20 ml P-buffer pH 6.8 

o 20 ml A.bidest 

2) sonicate to dissolve solution (15 min), cover beaker with Parafilm 

3) Add 137 µl 2-mercaptoethanol (under fume hood) 

4) Filter sterilize with 0.2 µm filter into transparent 50 ml Falcon tube 

5) Prepare Rxn-buffer 1 day before and leave on the rack exposed to light  

 

II.4.4 Analysis of nitrate and nitrite 

Nitrate (NO3
-) and nitrite (NO2

-) in soil samples were analyzed using ion chromatography (IC). 

Soil samples (0.5 g) were mixed with 0.5 ml water, shaken for 1 h at 200 rpm and 4°C, and 

centrifuged for 10 min at maximum speed (14,000 rpm). Supernatants were filtered (REZIST 
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13/0.2 PTFE, Schleicher and Schuell, Dassel, Germany) and stored at -20°C until analysis. A 

solution of 1 mM nitrate and nitrite served as calibration standard. 

Table II.4-2: Operating data for ion chromatograph 

IC system Solvent delivery system S1121, column oven S4260B, 

suppressor unit S4260A (all from Sykam, Fuerstenfeldbruck, 

Germany), sample injector S5200 (Schambeck SFD, Bad 

Honnef, Germany) 

Column 6 cm stainless steel column, i.d. 4.6 mm 

Eluant 5 mM Na2CO3, 1 ml l-1 modifier; flow rate: 1.5 ml min-1 

Detector Conductivity detector S3111; UV detector Linear UVis 200, 

wavelength 220 nm 

Oven temperature 70°C 

Integration Program Peak Simple (SRI-Instruments, Torrence, USA) 

Detection limit approx. 5 µM 

 

II.4.5 Quantification of acetate 

Quantification of acetate was performed on a high performance liquid chromatography 

(HPLC) system. Soil samples (0.5 g) were mixed with 0.5 ml water, shaken for 1 h at 200 rpm 

and 4°C, and centrifuged for 10 min at 4500 xg and 4°C. Supernatants were further purified 

through membrane filters (pore size 0,2 μm, PTFE membrane, Schleicher and Schuell GmbH, 

Dassel, Germany) and stored at -20°C until analysis. For HPLC analysis, 100 µl sample 

volume were injected and a 1 mM acetate standard was used for calibration. 

Table II.4-3: Operating data for HPLC 

HPLC system Pump Spectra System P1000 (Thermo Finnigan, Jan Jose, CA, 

USA), column oven S4110 (Sykam, Gilching, Germany) 

Sample injector Jasco 851-AS (Jasco, Japan) 

Column 30 cm stainless steel column, i.d. 7.8 mm 

Carrier material Sulfurized divinylbenzol styrene (Aminex HPX-87-H, BioRad) 

Eluant 1 mM sulfuric acid, flow rate: 0.3 ml min-1 

Detector Refraction Index (RI) detector ERC-7512 (ERMA CR. INC., 

Tokyo, Japan), operating temperature: 40°C; UV detector: UVis 

200 (LINEAR Instruments, Reno, USA), wavelength: 208 nm 

Oven temperature 65°C 

Integration Program Peak Simple (SRI-Instruments, Torrence, USA) 

Standard 1 mM acetate 
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II.4.6 Analysis of methane 

CH4 in the soil incubations was analyzed using a gas chromatograph SRI 8610C equipped 

with a flame ionization detector (GC-FID) (SRI Instruments, Torrance, CA, USA). Gas 

samples were taken directly before the analysis using a 0.5 ml pressure lock syringe (VICI, 

Baton Rouge, LA, USA) and sampling through the septum. The sample volume was  

0.2-0.5 ml. Defined CH4 concentrations (2 ppmv, 5 ppmv, and 100 ppmv) in nitrogen served 

as calibration gases. 

Table II.4-4: Operating data for gas chromatograph 

Column 1.8 m stainless steel column, i.d. 7.8 mm, carrier material: 

Poropack Q 80/100 mesh 

Carrier gas Helium 5.0 (20 ml min-1) 

Fuel gas Hydrogen 5.0 (25 ml min-1), synthetic air 5.0 (25 ml min-1) 

(20.5% oxygen 5.0, 79.5% nitrogen 5.0) 

Temperature Oven: 100°C; detector: 140°C 

Integration Program Peak Simple (SRI-Instruments, Torrence, USA) 

Detection limit 0.2 ppmv methane 

 

II.4.7 Calculation of the atmospheric methane oxidation rate (Vatm) 

To investigate the ability of the Marburg forest soil (MF) to oxidize atmospheric methane, 10 g 

of sieved soil were incubated at 25°C in 120 ml serum bottles closed with butyl rubber septa. 

Triplicates were incubated under atmospheric CH4 and the consumption of methane was 

followed over a period of 2 days depending on the activity of the sample and included 5-6 

measurement points. Incubation under atmospheric CH4 mixing ratios resulted in an 

exponential decrease in CH4, from which the specific affinity a0
s (first-order uptake rate 

constant) was calculated by using the least-squares iterative fitting procedure of Origin 6.1 

(Microcal Software, Inc., Northampton, Maine). 

xReAyy  0
0  

This equation shows the decrease in methane concentration (y) against time (x). While y0 is 

the threshold until which methane is oxidized, A is the initial methane concentration. The first-

order uptake rate constant R0 equals the specific activity (a0
s). The atmospheric methane 

oxidation rate (Vatm) was calculated by multiplying the specific activity with the atmospheric 

methane concentration. 

 

 



II. Materials and methods 
 

 

 32

II.4.8 Determination of 13CO2 

Analysis of 13CO2/
12CO2 in gas samples of the incubations with 13CO2 for stable isotope 

probing of ammonia oxidizers (see II.7.1.2) was performed using a gas chromatograph 

combustion isotope ratio mass spectrometer (GC-C–IRMS) system that was purchased from 

Finnigan (Thermo Fisher Scientific, Bremen, Germany). The principle operation was 

described by Brand (1996). The isotope reference gas was CO2 (99.998% purity; Air Liquide, 

Duesseldorf, Germany), calibrated with the working standard methylstearate (Merck). The 

latter was intercalibrated at the Max Planck Institute for Biogeochemistry, Jena, Germany 

(courtesy of Dr. W.A. Brand) against NBS 22 and USGS 24. 

Table II.4-5: Operating data for GC-C-IRMS 

GC Hewlett Packard 6890 (Waldbronn, Germany) 

Injector Split ratio 1:10; operating temperature: 150°C 

Column 
27.5 m Pora PLOT Q, i.d. 0.32 mm, 10 μm film thickness 

(Chrompack, Frankfurt, Germany) 

Carrier gas Helium 5.0; flow rate: 2.6 ml min-1 

GC/C-Interface 
Standard GC Combustion Interface III (Thermo Electron, Bremen, 

Germany), oxidation reactor at 940°C, reduction reactor at 650°C 

Detector IRMS: Finnigan MAT delta plus (Thermo Electron) 

Oven temperature 30°C 

Integration ISODAT™ NT 2.0 (Thermo Electron) 

 

II.5 Nucleic acid extraction 

II.5.1 Marburg forest soil 

Nucleic acid extraction from Marburg forest soil was performed using a 

hexadecyltrimethylammonium bromide (CTAB) -based protocol (Griffith et al., 2000). Soil  

(0.5 g) was sampled in 2 ml screw-cap tubes and either frozen immediately in liquid nitrogen 

and stored at -80°C until further processing or used directly for extraction. Extractions were 

performed by the addition of 0.5 ml of CTAB extraction buffer (see table II.5-1), 0.5 ml of 

phenol-chloroform-isoamyl alcohol (25:24:1; pH 8.0) and 200 µl of zirconia-silica beads  

(0.1 mm; Roth, Karlsruhe, Germany). Samples were vortexed, lysed in a FastPrep beat 

beating system for 30 s at 5.5 m s-1, and the aqueous phase containing nucleic acids was 

separated by centrifugation (16,000 x g) for 5 min at 4°C. The aqueous phase was then 

extracted again with an equal volume (750 µl) of phenol-chloroform-isoamyl alcohol (25:24:1; 

pH 8.0), followed by centrifugation (16,000 x g) for 5 min at 4°C. The aqueous phase was 

transferred to a new tube and phenol was removed by mixing with an equal volume (600 µl) of 

chloroform-isoamyl alcohol (24:1) followed by repeated centrifugation (16,000 x g) for 5 min at 
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4°C. Total nucleic acids were subsequently precipitated from the extracted aqueous layer with 

2 volumes of 30% (w/v) polyethylene glycol 6000 (Roth, Karlsruhe, Germany) – 1.6 M NaCl 

(see table II.5-1) for 2 h at room temperature, followed by centrifugation (18,000 x g) for 10 

min at 4°C. Pelleted nucleic acids were then washed in 700 µl ice cold 70% (v/v) ethanol, 

centrifuged again, and air dried briefly prior to resuspension in 50-100 µl of nuclease-free 

water (Ambion, Darmstadt, Germany).     

In case of the incubations with acetate, the samples showed a high release of fulvic and 

humic acids and had to be further purified using Illustra MicroSpin S-400 HR spin columns 

(GE Healthcare, Little Chalfont, UK) according to the manufacturer’s instructions (Wang et al., 

2009). Therefore, the resin in the column was resuspended by vortexing, the cap was 

loosened one quarter turn and the bottom closure was twisted of. The column was then 

centrifuged in a supplied collection tube for 1 min at 735 x g. The collection tube was 

discarded and replaced by a fresh nuclease-free 1.5 ml microcentrifuge tube, 50 µl of total 

nucleic acid extract were pipetted carefully on top of the resin and samples were centrifuged 

for 2 min at 735 x g. The column was discarded and purified extracts were kept at -80°C until 

further processing. Integrity of nucleic acids was checked on agarose gels (see II.6.6) and 

concentration was determined using a NanoDrop instrument (Thermo Fisher Scientific, 

Schwerte, Germany). 

Table II.5-1: Solutions for CTAB-extraction 

6% CTAB extraction buffer:  

1. 0.7 M NaCl in A.bidest 

2. 12% CTAB 3 g CTAB in 25 ml 0.7 M NaCl 

3. 1 M K2HPO4 8.71 g 1M K2HPO4 (174.18 g mol-1) in 50 ml A.bidest 

4. 1 M KH2PO4 6.81 g 1M KH2PO4 (136.09 g mol-1) in 50 ml A.bidest 

  

5. 240 mM potassium phosphate    

    buffer, pH 8.0 

11.28 ml 1 M K2HPO4  

+ 72 µl 1 M KH2PO4 

 + 38 ml A.bidest 

  

6. Extraction buffer 25 ml 12% CTAB – 0.7 M NaCl 

 + 25 ml 240 mM potassium phosphate buffer pH 8.0 

 autoclave and filter sterilize   

  

30% PEG – 1.6 M NaCl:  

PEG 6000 30 g 

NaCl 14.6 g 

Distilled water ad 100 ml 

 autoclave  
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II.5.2 Rauischholzhausen agricultural soil (SDS) 

Nucleic acid extraction from Rauischholzhausen agricultural soil was performed using a 

sodium dodecyl sulfate (SDS) -based protocol (Bürgmann et al., 2003). Soil (0.5 g) was 

sampled in 2 ml screw-cap tubes and either frozen immediately in liquid nitrogen and stored 

at -80°C until further processing or used directly for extraction. Extractions were performed by 

the addition of 1 ml SDS extraction buffer (see table II.5-2) and 200 µl of zirconia-silica beads 

(0.1 mm; Roth, Karlsruhe, Germany). Samples were vortexed, lysed in a FastPrep beat 

beating system for 45 s at 6 m s-1, and the aqueous phase containing nucleic acids were 

separated by centrifugation (18,000 x g) for 5 min at 4°C. The aqueous phase was then 

extracted twice with 850 µl of phenol-chloroform-isoamyl alcohol (25:24:1; pH 8.0), followed 

by centrifugation (18,000 x g) for 5 min at 4°C. The aqueous phase was transferred to a new 

tube and phenol was removed by mixing with 800 µl of chloroform-isoamyl alcohol (24:1) 

followed by repeated centrifugation (18,000 x g) for 5 min at 4°C. Total nucleic acids were 

subsequently precipitated from the extracted aqueous layer with 1 ml of 20% (w/v) 

polyethylene glycol 6000 (Roth, Karlsruhe, Germany) – 1.6 M NaCl precipitation solution (see 

table II.5-2) for 1 h at room temperature, followed by centrifugation (18,000 x g) for 30 min at 

20°C. Pelleted nucleic acids were then washed in 800 µl ice cold 75% (v/v) ethanol, 

centrifuged again (18,000 x g) for 10 min at 4°C, and air dried briefly prior to resuspension in 

50-100 µl of nuclease-free water (Ambion, Darmstadt, Germany). Extracts were stored at  

-80°C until further processing. Integrity of nucleic acids was checked on agarose gels (see 

II.6.6) and concentration was determined using a NanoDrop instrument (Thermo Fisher 

Scientific, Schwerte, Germany). 

Table II.5-2: Solutions for SDS-extraction 

SDS extraction buffer:  

SDS 2.5 g 

1 M sodium phosphate (pH 8.0) 20 ml 

5 M NaCl 2 ml 

0.5 M EDTA (pH 8.0) 10 ml 

Distilled water ad 100 ml 

 filter through sterile filters  

  

Precipitation solution:  

PEG 6000 20 g 

NaCl 14.6 g 

Distilled water ad 100 ml 

 autoclave  
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II.5.3 Pure cultures 

For nucleic acid extraction from pure cultures, a simple phenol-chloroform-isoamyl alcohol 

based protocol was used. In a 2 ml screw-cap tube, 2 ml of culture suspension were pelleted 

for 15 min at 10,000 x g and the pellet was resuspended in 500 µl of nuclease-free water. For 

extraction, the cell suspension was mixed with 200 µl of zirconia-silica beads (0.1 mm; Roth, 

Karlsruhe, Germany), and the samples were lysed twice in a FastPrep beat beating system 

for 45 s at 6.5 m s-1. Between the two beat beating steps, the samples were cooled on ice for 

2 min. The aqueous phase containing nucleic acids were separated by centrifugation (18,000 

x g) for 15 min at 4°C. The aqueous phase was then extracted twice with 1 volume of phenol-

chloroform-isoamyl alcohol (25:24:1; pH 8.0), followed by centrifugation (18,000 x g) for 5 min 

at 4°C. The aqueous phase was transferred to a new tube and phenol was removed with 1 

volume of chloroform-isoamyl alcohol (24:1) followed by repeated centrifugation (18,000 x g) 

for 5 min at 4°C. Total nucleic acids were subsequently precipitated from the extracted 

aqueous layer with 0.1 volume of sodium acetate (3 M, pH 5.2) and 3 volumes of ice cold 

96% (v/v) ethanol for 1 h at -80°C, followed by centrifugation (18,000 x g) for 30 min at 4°C. 

Pelleted nucleic acids were then washed in 1 ml ice cold 70% (v/v) ethanol, centrifuged again 

(18,000 x g) for 10 min at 4°C, and air dried briefly prior to resuspension in 100 µl of 

nuclease-free water (Ambion, Darmstadt, Germany). Extracts were stored at -80°C until 

further processing. Integrity of nucleic acids was checked on agarose gels (see II.6.6) and 

concentration was determined using a NanoDrop instrument (Thermo Fisher Scientific, 

Schwerte, Germany). 

 

II.5.4 Purification of RNA 

For stable isotope probing of RNA (see II.7.2), 50 µl of nucleic acid extract were treated with 

RNase-free DNase I (Qiagen, Hilden, Germany) for digestion of DNA. To 50 µl of extract,  

37.5 µl of nuclease-free water, 10 µl of buffer RDD, and 2.5 µl of RNase-free DNase I were 

added and gently mixed. Tubes were incubated for 10 min at room temperature. RNA was 

then purified using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions. Purified RNA was stored at -80°C until further usage. Integrity of 

RNA was checked on agarose gels (see II.6.6) and concentration was determined using a 

NanoDrop instrument (Thermo Fisher Scientific, Schwerte, Germany).  
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II.6 Amplification of DNA and cDNA by PCR 

DNA and cDNA fragments were amplified using PCR (polymerase chain reaction). The used 

primers are listed in Table II.6-1. For every amplification a negative control was performed by 

adding the appropriate amount of water instead of DNA template. DNA containing the target 

molecule for amplification served as positive control.  

Table II.6-1: Oligonucleotide primers used for PCR 

Target gene Primer Sequence (5’  3’) Reference 
pmoA A189f GGNGACTGGGACTTCTGG Holmes et al., 1995 

 A682r GAASGCNGAGAAGAASGC Holmes et al., 1995 

 mb661 CCGGMGCAACGTCYTTACC Costello et al., 1999 

 Gam643r ACGAAGCGGATGTACTCGGG Kolb et al., 2005 

 Forest675r CCYACSACATCCTTACCGAA Kolb et al., 2003 

 Forest 675r-T3 ATAGGTATTAACCCTCACTAAAGGGGC

CYACSACATCCTTACCGAA 

This studya 

amoA archaea amo111f TTYTAYACHGAYTGGGCHTGGACATC Treusch et al., 2005 

 amo643r TCCCACTTWGACCARGCGGCCATCCA Treusch et al., 2005 

 amo643r-T3 ATAGGTATTAACCCTCACTAAAGGGG 

TCCCACTTWGACCARGCGGCCATCCA 

This studya 

amoA bacteria amoA-1F GGGGTTTCTACTGGTGGT Avrahami et al., 2003 

 amoA-2R CCCCTCGGGAAAGCCTTCTTC Avrahami et al., 2003 

accA general PcB_388F GGBGGBGCMMGWATWCARGARGG Yakimov et al., 2009 

 PcB_1271R GGCCAHGCRTARTTNAYRTC Yakimov et al., 2009 

accA      Crena_529F GCWATGACWGAYTTTGTYRTAATG Yakimov et al., 2009 

Marine group I Crena_981R TGGWTKRYTTGCAAYTATWCC Yakimov et al., 2009 

hydB NiFe-1129f CCGCGGTGGTTCGACGGCAA Constant et al., 2010 

 NiFe-1640r TGCACGGCGTCCTCGTACGG Vignais et al., 2001 

 NiFe-1640r-T3 ATAGGTATTAACCCTCACTAAAGGGG 

TGCACGGCGTCCTCGTACGG 

This studya 

16S rRNA  A109f ACKGCTCAGTAACACGT Grosskopf et al., 1998 

archaea A934b GTGCTCCCCCGCCAATTCCT Grosskopf et al., 1998 

16S rRNA  Eub8-27F AGAGTTTGATCMTGGCTCAG Amman et al., 1995 

bacteria Eub1392-1407R ACGGGCGGTGTGTACA Amman et al., 1995 

Vector     T7f TAATACGACTCACTATAGGG Promega 

pGEM-T easy M13r CAGGAAACAGCTATGAC Promega 

Vector     pBAD forward ATGCCATAGCATTTTTATCC Invitrogen             

pBAD-TOPO pBAD reverse GATTTAATCTGTATCAGG pBAD TOPO® TA 

Expression Kit 

a For generation of RNA polynucleotide probes for RING-FISH and CARD-FISH (see II.10.1)    

 ‘Wobble’ positions: K = G/T; H = A/C/T; M = A/C ; N = A/C/G/T; R = A/G; S = G/C, W = A/T, Y = C/T 
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PCR reactions were performed in thermocyclers from Perkin Elmer (Tokyo, Japan) and 

Applied Biosystems (Darmstadt, Germany). The PCR conditions are listed in Table II.6-2. 

PCR for functional genes was performed using the Red Accu Taq® Polymerase (Sigma 

Aldrich, Taufkirchen, Germany). PCR targeting 16S rRNA genes and vectors was performed 

using Recombinant Taq DNA Polymerase (Invitrogen, Darmstadt, Germany). 

Table II.6-2: PCR reaction mixtures  

For functional genes: 

Component Stock conc. Final conc. Volume 
Forward primer 10 pmol/µl 0.2 pmol/µl 0.5 µl 

Reverse primer 10 pmol/µl 0.2 pmol/µl 0.5 µl 

dNTPs 10 pmol/µl 0.2 pmol/µl 0.5 µl 

BSA 4 µg/µl 0.4 µg/µl 2.5 µl 

10x Red Accu Taq® buffer 10x 1x 2.5 µl 

Red Accu Taq® Polymerase 1 U/µl 0.05 U/µl 1.25 µl 

DNA or cDNA-Template 25 ng/µl 1 ng/µl 1 µl 

A. bidest          ad 25 µl 

 

For 16S rRNA genes and transcripts, and vectors: 

Component Stock conc. Final conc. Volume 
Forward primer 10 pmol/µl 0.2 pmol/µl 1 µl 

Reverse primer 10 pmol/µl 0.2 pmol/µl 1 µl 

dNTPs 10 pmol/µl 0.2 pmol/µl 1 µl 

MgCl2 50 mM 1.5 mM 3 µl 

10x Invitrogen Taq buffer 10x 1x 5 µl 

Invitrogen Taq Polymerase 5 U/µl 0.05 U/µl 0.5 µl 

DNA or cDNA-Template 25 ng/µl 0.5 ng/µl 1 µl 

A. bidest          ad 50 µl 

 

 

II.6.1 Amplification of pmoA 

For amplification of pmoA from pure cultures, soil samples, DNA and cDNA, the following 

conditions were used. PCR temperature profiles consisted of an initial denaturation for 3-5 

min at 94°C, a specific amplification step (see table II.6-3), and a final elongation for 7 min at 

72°C, before samples were cooled down to 4°C. 
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Table II.6-3: Temperature profiles for PCR of pmoA 

Target gene Primer pair Temperature program Cycles 
pmoA general A189f/A682r 94°C, 60 s 35 

 A189f/mb661 62-55°Ca, 45 s  

  72°C, 60 s  

pmoA USCα A189f/Forest675r 94°C, 60 s 40 

 A189f/Forest 675r-T3 73.8 – 66.8°Ca, 45 s 

pmoA USCγ A189f/Gam643r 72°C, 60 s 
a Touchdown PCR: Annealing temperature was decreased by 0.5°C in every cycle until final 

temperature was reached. 

 

II.6.2 Amplification of amoA 

For amplification of amoA from pure cultures, soil samples, DNA and cDNA, the following 

conditions were used. PCR temperature profiles consisted of an initial denaturation for 4-5 

min at 94°C, a specific amplification step (see table II.6-4), and a final elongation for 10 min at 

72°C, before samples were cooled down to 4°C. 

Table II.6-4: Temperature profiles for PCR of amoA 

Target gene Primer pair Temperature program Cycles 
amoA archaea amo111f/amo643r 94°C, 45 s 40 

 amo111f/amo643r-T3 57°C, 60 s  

  72°C, 60 s  

amoA bacteria amoA-1F/amoA-2R 94°C, 45 s 30 

 57°C, 30 s 

  72°C, 60 s 

 

II.6.3 Amplification of accA 

To amplify and detect accA transcripts in cDNA fractions from stable isotope probing of 

Rauischholzhausen agricultural soil (RH), labeled with 13CO2 (see II.7.1.2), the following 

conditions were used. PCR temperature profiles consisted of an initial denaturation for 5 min 

at 94°C, a specific amplification step (see table II.6-5), and a final elongation for 10 min at 

72°C, before samples were cooled down to 4°C. 

Table II.6-5: Temperature profiles for PCR of accA 

Target gene Primer pair Temperature program Cycles 
accA general PcB_388f/PcB_1271R 94°C, 60 s 35 for DNA 

Marine group I Crena_529f/Crena_981R 53.5°C, 60 s 40 for cDNA 

  72°C, 120 s  
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II.6.4 Amplification of hydB 

To generate a template for the RNA polynucleotide probe used for CARD-FISH of hydB 

mRNA, the following conditions were used. PCR temperature profiles consisted of an initial 

denaturation for 5 min at 94°C, a specific amplification step (see table II.6-6), and a final 

elongation for 10 min at 72°C, before samples were cooled down to 4°C. 

Table II.6-6: Temperature profiles for PCR of hydB 

Target gene Primer pair Temperature program Cycles 
hydB  NiFe-1129f/NiFe-1640r 94°C, 45 s 30 

 NiFe-1129f/NiFe-1640r-T3 55°C, 45 s  

  72°C, 45 s  

 

II.6.5 Amplification of archaeal and bacterial 16S rRNA genes and transcripts  

For amplification of archaeal and bacterial 16S rRNA genes and transcripts from pure 

cultures, soil samples, DNA and cDNA, the following conditions were used. PCR temperature 

profiles consisted of an initial denaturation for 5 min at 94°C, a specific amplification step (see 

table II.6-7), and a final elongation for 5 min at 72°C, before samples were cooled down to 

4°C. 

Table II.6-7: Temperature profiles for PCR of 16S rRNA genes and transcripts 

Target gene Primer pair Temperature program Cycles 
16S archaea A109f/A934b 94°C, 30 s 25 

16S bacteria Eub8-27F/Eub1392-1407R 55°C, 45 s  

  72°C, 60 s  

 

II.6.6 Gelelectrophoresis and purification 

Gel electrophoresis was carried out as a visual control for a successful amplification. 

Therefore, 3-5 μl of PCR product or nucleic acid extraction was mixed with 3 µl of loading 

buffer (Gel loading solution, Sigma Aldrich), loaded onto a 1.5% (w/v) 1× TAE agarose gel 

(SeaKem LE, Biozym; in TAE-buffer), and separated for 35 min at 120V. A 1kb DNA 

Extension ladder (Invitrogen, Darmstadt, Germany) was used as size standard. Gels were 

stained in an ethidium bromide solution and documented using a Gel Jet Imager (Intas, 

Goettingen, Germany). If multiple bands appeared on a gel after amplification, the band 

matching the size of the desired amplicon was cut out of the gel. Afterwards, the Wizard SV 

Gel and PCR Clean-Up System (Promega, Mannheim, Germany) was used to purify the PCR 

product or gel fragments by following the preparation instructions of the manufacturer. The 

DNA was finally eluted in 30 μl of nuclease-free water and stored at -20°C. 
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II.6.7 Quantification 

Purified PCR products, nucleic acid extractions and polynucleotide probes for FISH were 

quantified using a NanoDrop ND-1000 instrument (Thermo Fisher Scientific, Schwerte, 

Germany) and 1.5 µl of respective sample. 

 

II.6.8 T-RFLP analysis 

Enrichment incubations with acetate for USCα (see II.11.2) were analyzed with T-RFLP 

(terminal restriction fragment length polymorphism) to monitor potential changes in bacterial 

population. Amplification of bacterial 16S rRNA genes from DNA extracts was carried out with 

the primers Eub8F and EuB1392R (see table II.6-7), the former was carboxyfluoresceine  

(= FAM) labeled (5’ end). The purified PCR products were digested over night at 37°C using 5 

µl of PCR, 1.1 µl of incubation buffer Tango (Fermentas), and 0.3 µl of restriction enzyme 

MspI (10 U µl-1). The batch was filled up with sterile H2O to a total volume of 10 μl. The 

restriction digestion was purified via the ‘Sigma SpinTM Post Reaction Clean-Up Columns Kit’ 

according to the preparation instructions. To prepare the samples for the T-RFLP analysis, 3 

μl of the purified restriction digestions were mixed with 0.3 μl of an internal lane standard 

(MapMarker® 1000, 50 to 1000 bp, x-rhodamine labeled, BioVentures Inc., USA) and 11 μl 

HiDiTM formamide (Applied Biosystems, Weiterstadt, Germany) and denatured for 3 min at 

95°C. The analysis of the digested PCR products was performed by separation using capillary 

electrophoresis with an automatic sequencer (3130 Genetic Analyzer, Applied Biosystems) 

for 30 min at 15 kV and 9 μA. The injection time per sample was 10 s. After capillary 

electrophoresis, the lengths of the fluorescently labeled T-RF’s were identified by comparison 

to the internal standard using the GeneMapper software (version 4.0, Applied Biosystems). 

The areas of the measured peaks were used to determine the relative abundances of the 

terminal restriction fragments. 

 

II.7 Stable isotope probing (SIP) of nucleic acids 

Stable isotope probing (SIP) is a method used for labeling microorganisms in environmental 

samples or directly in field studies using substrate enriched with a stable isotope (e.g., 13C). 

After consumption of the substrate, the cells that consumed the substrate become enriched in 

the isotope. Separation of labeled nucleic acids is performed by ultracentrifugation in either 

cesium trifluoroacetate (CsTFA) for RNA or cesium chloride (CsCl) for DNA. Labeled 

biomarkers, such as ribosomal RNA, mRNA, and functional genes can be analyzed with a 

range of molecular and analytical techniques, and used to identify and characterize the 

organisms that incorporated the substrate.  
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II.7.1 Incubation for SIP 

The following incubations were performed for stable isotope probing of RNA and DNA. 

 

II.7.1.1 Incubation of Marburg forest soil (MF) for SIP of Upland Soil Cluster α 

II.7.1.1.1 Labeling with CH4 

Incubation for stable isotope probing of Upland Soil Cluster α (USCα) with CH4 was 

performed in duplicates for each treatment. Marburg forest soil (5 g d.w.s., see II.3.1) was 

amended with 1 ml H2O and incubated at 25°C and darkness in 120 ml serum bottles capped 

with butyl stoppers. The methane concentration in the headspace was adjusted to and 

maintained at 20 ppmv, 200 ppmv, and 10% of CH4 (12CH4 or 13CH4), respectively. An 

additional incubation with 1000 ppmv 13CO2 was set up as a control for secondary labeling. 

Consumption of CH4 was monitored by GC (see II.4.6). Every week, 0.5 g of soil of each 

bottle were sampled, frozen immediately in liquid nitrogen and stored at -80°C until further 

processing. Nucleic acids were extracted from soil for SIP using a CTAB-based protocol (see 

II.5.1). RNA- and DNA-SIP were performed (see II.7.2 and II.7.3, respectively) and pmoA and 

16S rRNA genes and transcript were quantified from gradient fractions using quantitative 

PCR (see II.8). 

 

II.7.1.1.2 Labeling with acetate 

Incubation for stable isotope probing of Upland Soil Cluster α (USCα) with acetate was 

performed in duplicates for each treatment. Marburg forest soil (20 g d.w.s., see II.3.1) was 

amended with a final concentration of 10 mM acetate (12C or 13C), dissolved in 6 ml H2O, 20 

ml H2O, or 40 ml of medium DSMZ 922 (designed for Methylocapsa acidiphila; Dedysh et al., 

2002), respectively. Fully labeled 13C2 sodium acetate (99 atom%) was purchased from 

Campro Scientific (Berlin, Germany). Incubations were performed on a shaker (200 rpm) at 

25°C and darkness in 250 ml Schott bottles capped loosely to allow incubations to stay oxic. 

An additional incubation with 5% 13CO2 was set up as a control for secondary labeling. 

Acetate-free controls received an equal amount of distilled water. Every week, acetate 

treatments were renewed. For chemical analysis of pH (see II.4.1) and acetate, aliquots of the 

soil were removed from each treatment every week. Concentrations of acetate in the 

microcosms were analyzed by HPLC (see II.4.5). Every week, 0.5 g of soil of each bottle were 

sampled, frozen immediately in liquid nitrogen and stored at -80°C until further processing. 

Nucleic acids were extracted from soil for SIP using a CTAB-based protocol (see II.5.1). RNA- 

and DNA-SIP were performed (see II.7.2 and II.7.3, respectively) and pmoA and 16S rRNA 

genes and transcript were quantified from gradient fractions using quantitative PCR (see II.8). 
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II.7.1.2 Incubation of Rauischholzhausen agricultural soil (RH) with CO2 for SIP 

of ammonia oxidizing microorganisms  

Incubation for stable isotope probing of ammonia-oxidizing prokaryotes with 5% CO2 was 

performed in triplicates for each treatment. Rauischholzhausen agricultural soil (10 g d.w.s, 

see II.3.2) was incubated at 60% maximum water holding capacity (WHC), 25°C and 

darkness in 120 ml serum bottles capped with butyl stoppers. Five percent (~ 6 ml) of CO2 

(12CO2 or 13CO2) were added to the headspace and the soil was fertilized with either 100 µg or 

15 µg (NH4)2SO4-N g-1 d.w.s., respectively, dissolved in distilled water. Nitrogen-free controls 

received an equal amount of distilled water. Every week, bottles were flushed with synthetic 

air (20% O2, 80% N2), 5% of CO2 was added, and fertilization treatments were renewed. For 

chemical analysis of pH (see II.4.1), ammonium (II.4.3), nitrite, and nitrate (both see II.4.4), 

aliquots of the soil were removed from each treatment every week and analyzed. Additionally, 

CO2 concentration in the headspace was measured by GC-IRMS (see II.4.8). Also every 

week, 0.5 g of soil of each bottle were sampled, frozen immediately in liquid nitrogen and 

stored at -80°C until further processing. Nucleic acids were extracted from soil for SIP using 

an SDS-based protocol (see II.5.2). RNA- and DNA-SIP were performed for 8- and 12-week 

incubations (see II.7.2 and II.7.3, respectively) and amoA and 16S rRNA genes and transcript 

were quantified from gradient fractions and untreated soil using quantitative PCR (see II.8). 

Complementary DNA (cDNA) of the heavy and light fractions of the 13CO2 treatments with  

15 µg (NH4)2SO4-N g-1 d.w.s. was also used for PCR amplification (see II.6.) and phylogenetic 

analysis (see II.9.3) of acetyl-CoA carboxylase alpha subunit (accA) cDNA fragments and 

archaeal 16S rRNA transcripts. RNA- and DNA-SIP were performed (see II.7.2 and II.7.3, 

respectively) and pmoA and 16S rRNA genes and transcript were quantified from gradient 

fractions using quantitative PCR (see II.8). 

 

II.7.2 RNA stable isotope probing  

II.7.2.1 Solutions for RNA-SIP  

The following solutions were prepared for stable isotope probing of RNA. 

Table II.7-1: Solutions for RNA-SIP 

Gradient Buffer (GB): Final conc. Volume 

0.2 M EDTA 1 mM 0.5 ml 

1 M Tris-HCl (pH 8.0) 0.1 M 10 ml 

1 M KCl 0.1 M 10 ml 

Distilled water  79.5 ml 

 Prepare with RNase-free reagents in nuclease-free water, filter 

sterilize (0.2 µm), and autoclave in baked glassware. 
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II.7.2.2 RNA-SIP protocol  

For the preparation of one RNA gradient, 4.5 ml of CsTFA (~ 2 g ml-1, GE Healthcare, 

Munich, Germany) was mixed with 1 ml of gradient buffer (see table II.7-1), and 3.59% of 

formamide was added. The refractive index of this solution was measured (50 µl aliquot) on a 

refractometer (Reichert, Depew, NY, USA) to control pre-centrifugation average density. 

Refractive index (nD-TC) of this solution should be 1.3725 ± 0.0002 (≈ 1.79 g ml-1 CsTFA). If 

necessary, nD-TC was adjusted by adding 100 µl aliquots of GB or CsTFA. The medium was 

transferred into 6 ml polyallomer UltraCrimp tubes (Thermo Scientific, Dreieich, Germany) 

and mixed with up to 500 ng of purified RNA (see II.5.4). Tubes were balanced for rotor to  

± 0.01 g and sealed with UltraCrimp stoppers (Thermo Scientific, Dreieich, Germany). 

Ultracentrifugation was performed with a TV865 vertical rotor in a Sorvall Discovery 90 

ultracentrifuge (Thermo Scientific, Dreieich, Germany) for ~65 h (over weekend) at 20°C and 

39 krpm (130,000 x g). Deceleration was set to 0 to keep gradients intact. After centrifugation, 

tubes were carefully removed from the rotor and adjusted within the fractionation device. A 

sterile 0.4-mm needle was fit to the tubing of a syringe pump (Kent Scientific, Torrington, CT, 

USA), filled with nuclease-free water, and carefully poked into the centrifugation tube slightly 

above the centrifugation medium. With another sterile 0.4-mm needle, a hole was carefully 

poked into bottom of tube. The syringe pump was started at a flow rate of 0.45 ml min-1, 

displacing the gradient medium with nuclease free water at the top of the tube, and  

12 fractions (450 µl) in nuclease-free 2 ml cups were collected by manually shifting every  

60 seconds. nD-TC of fractions was measured (50 µl from each fraction), starting with the 

lightest (= 12th) fraction. Due to fractionation, the 12th fraction may contain some water and 

the refractive index might be lower than expected. In this case, the true density of the last 

fraction was estimated from the decreasing densities of the other fractions. Densities were 

calculated from refractive indices by the following equation: 

y = 384.4406x2-1031.00836x+692.65494  

RNA was precipitated from fractions with 0.1 volume (40 µl) sodium acetate (3 M, pH 5.2),  

20 µg (1 µl) glycogen (from mussels, Sigma Aldrich), and 2 volumes (1102 µl) of cold 96% 

(v/v) ethanol for 1 h or over night at -20°C. Precipitated RNA was pelleted by centrifugation 

(18.000 x g) for 30 min at 4°C, washed with 150 µl of ice cold 70% (v/v) ethanol, and 

centrifuged again. Pellets were air-dried briefly and resuspended in 5-15 µl of nuclease free 

water. 
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II.7.2.3 Reverse transcription of RNA fractions 

Before fractions could be analyzed by qPCR, RNA had to be reverse transcribed (RT) into 

cDNA. The following protocols were used for this purpose. cDNA was stored at -20°C. 

Table II.7-2: Conditions for reverse transcription of RNA 

a.) Protocol for RT of RNA fractions from Marburg forest soil (MF): 

1. Reaction set-up (on ice)  1x 
 Water  2.4 µl 
 50 ng/µl random hexamer primer 5 µl 
 (Invitrogen, diluted 1:60)   
 2 mM dNTP  5 µl 
    12.4 µl/tube + 1 µl RNA 
 > 65°C 5 min Remove tubes and place on ice 
     
2. For reactions   1x 
 5x reaction buffer 4 µl 
 DTT   1 µl 
 Superscript III RT  0.1 µl 

 
(all SuperScript® III reverse 
transcriptase kit, Invitrogen)  

 SUPERase-In (20 U/µl, A)   1 µl 
 (Applied Biosystems)    
 BSA (20 µg/µl, Roche)   0.5 µl 
    6.6 µl/tube and mix 
3. Continue thermocycler program: 
     
 > 25°C, 5 min   
 > 50°C, 60 min   
 > 70°C, 15 min   
 > heated lid off and hold at 8°C  

 

b.) Protocol for RT of RNA fractions from Rauischholzhausen agricultural soil (RH): 

1. Reaction set-up (on ice)  1x 
 Water  4 µl 
 Random hexamer primer 1 µl 
 (Roche, diluted 1:50)   
 RNA (up to 2 µg)   5 µl 
 > 75°C, 5 min Remove tubes and place on ice 
     
2. For reactions   1x 
 dNTPs 1 µl 
 M-MLV 5x reaction buffer (Promega) 4 µl 
 RNAse-Inhibitor(40 U/µl, Roche)  0.4 µl 
 M-MLV reverse transcriptase   0.8 µl 
 (200 U/µl, Promega)    
 Water   3.8 µl 
    10 µl/tube and mix 
 > 37°C, 1 h    
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II.7.3 DNA stable isotope probing  

II.7.3.1 Solutions for DNA-SIP  

The following solutions were prepared for stable isotope probing of DNA. 

Table II.7-3: Solutions for RNA-SIP 

Gradient Buffer (GB)  see table II.7-1 

  

CsCl solution [1.85 g ml-1]:  

CsCl (Sigma Aldrich) 50 g 

Gradient buffer (GB) 30 ml 

 Autoclave in baked glassware. nD-TC should be 1.4153 

  

30% PEG – 1.6 M NaCl  see table II.5-1 

 

II.7.3.2 DNA-SIP protocol 

For the preparation of one DNA gradient, 4.86 ml of CsCl (~ 1.85 g ml-1, see table II.7-3) was 

mixed with 1 ml of gradient buffer (see table II.7-1). The refractive index of this solution was 

measured (50 µl aliquot) on a refractometer (Reichert, Depew, NY, USA) to control pre-

centrifugation average density. Refractive index (nD-TC) of this solution should be 1.4029 ± 

0.0002 (≈ 1.72 g ml-1 CsCl). If necessary, nD-TC was adjusted by adding 100 µl aliquots of 

GB or CsTFA. The medium was transferred into 6 ml polyallomer UltraCrimp tubes (Thermo 

Scientific, Dreieich, Germany) and mixed with up to 5 µg of purified DNA (see II.5). Tubes 

were balanced for rotor to ± 0.01 g and sealed with UltraCrimp stoppers (Thermo Scientific, 

Dreieich, Germany). Ultracentrifugation was performed with a TV865 vertical rotor in a Sorvall 

Discovery 90 ultracentrifuge (Thermo Scientific, Dreieich, Germany) for ~36 h at 20°C and 45 

krpm (177,000 x g). Deceleration was set to 0 to keep gradients intact. After centrifugation, 

tubes were carefully removed from rotor and adjusted within the fractionation device. A sterile 

0.4-mm needle was fit to the tubing of a syringe pump (Kent Scientific, Torrington, CT, USA), 

filled with nuclease-free water, and carefully poked into the centrifugation tube slightly above 

the centrifugation medium. With another sterile 0.4-mm needle, a hole was carefully poked 

into bottom of tube. The syringe pump was started at a flow rate of 0.45 ml min-1, displacing 

the gradient medium with nuclease free water at the top of the tube, and 12 fractions (450 µl) 

in nuclease-free 2 ml cups were collected by manually shifting every 60 seconds. Refractive 

index (nD-TC) of fractions was measured (50 µl from each fraction), starting with the lightest 

(= 12th) fraction. Densities were calculated from refractive indices by the following equation: 

y = 17.0066x2-36.8684x+19.9749 
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DNA was precipitated from fractions with 2 volumes (800 µl) of 30% PEG (see table II.5-1) 

and 20 µg (1 µl) glycogen (from mussels, Sigma Aldrich) for 1 h at room temperature. 

Precipitated DNA was pelleted by centrifugation (18.000 x g) for 30 min at 4°C, washed with 

150 µl of ice cold 70% (v/v) ethanol, and centrifuged again. Pellets were air-dried briefly and 

resuspended in 30 µl of nuclease free water. Tubes were shaken (1,400 rpm) for 1 min at 

30°C in an Eppendorf Thermomixer (Eppendorf, Hamburg, Germany) to dissolve DNA-pellets. 

 

II.8 Quantitative PCR (qPCR) 

DNA and cDNA fragments were quantified using quantitative PCR (qPCR). Reactions were 

performed on iCycler IQ thermocyclers (Bio-Rad, Munich, Germany) in 96-well microplates 

(Bio-Rad). Solutions and oligonucelotide primers used for qPCR are listed in II.8.1 and II.8.3. 

Samples and standards were quantified in duplicates. After addition of the reaction mix, plates 

were sealed with optical tape (Bio-Rad, Munich, Germany). Fluorescein solution (FITC, 1mM, 

Biorad) was added to the reaction mix as calibration dye to optimize camera adjustments. To 

detect the amplification kinetics during qPCR, the ready-mix contained the DNA stain 

SybrGreen I (Sigma Aldrich) which leads to an increase in fluorescence intensity 

simultaneous to amplification of dsDNA during cycles. Data analysis was carried out with 

iCycler software (Bio-Rad). The cycle at which the fluorescence of a certain target molecule 

number exceeded the background fluorescence (threshold cycle [CT]) was determined from 

dilution series of target DNA with defined target molecule amounts. CT was proportional to the 

logarithm of the target molecule number. Thus, a CT measured in a sample could be 

converted to a target molecule number. 

 

II.8.1 Solutions for qPCR 

The following solutions were used for quantitative PCR. 

 

Table II.8-1: Solutions for qPCR 

Component: Source: 

Sybr Green Jumpstart Taq Ready-Mix Sigma Aldrich, Taufkirchen, Germany 

MgCl2 50 mM Provided with Ready-Mix (see above) 

Fluorescein (FITC) calibration dye Bio-Rad, Munich, Germany 

 dilute 1:1000 in nuclease-free water  

BSA 20 µg/µl Roche, Grenzach-Wyhlen, Germany 
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II.8.2 qPCR assays 

The used primers are listed in Table II.8-2. For every quantification a negative control was 

performed by adding the appropriate amount of water instead of DNA or cDNA template.  

Table II.8-2: Oligonucelotide primers used for qPCR 

Target gene Primer Sequence (5’  3’) Reference 
pmoA A189f GGNGACTGGGACTTCTGG Holmes et al., 1995 

 mb661 CCGGMGCAACGTCYTTACC Costello et al., 1999 

 Forest675r CCYACSACATCCTTACCGAA Kolb et al., 2003 

amoA archaea amo196f GGWGTKCCRGGRACWGCMAC Treusch et al., 2005 

 amo277r CRATGAAGTCRTAHGGRTADCC Treusch et al., 2005 

amoA bacteria amoA-1F GGGGTTTCTACTGGTGGT Avrahami et al., 2003 

 amoA-2R CCCCTCGGGAAAGCCTTCTTC Avrahami et al., 2003 

16S rRNA  A364aF CGGGGYGCASCAGGCGCGAA  Burggraf et al., 1997  

archaea A934b GTGCTCCCCCGCCAATTCCT Grosskopf et al., 1998 

16S rRNA  Ba519f CAGCMGCCGCGGTAANWC  Lane, 1991  

bacteria Ba907r CCGTCAATTCMTTTRAGTT  
 

Lane, 1991  

‘Wobble’ positions: K = G/T; H = A/C/T; M = A/C ; N = A/C/G/T; R = A/G; S = G/C, W = A/T, Y = C/T 

 

II.8.2.1 Quantification of USCα pmoA  

For quantification of pmoA genes and transcripts of USCα from DNA and cDNA SIP-fractions, 

the following conditions and temperature profile were used. USCα pmoA amplified from 

Marburg forest soil (MF) and cloned into E. coli Top10 competent cells using primers 

A189f/Forest675r (see II.6.1) was used as standard in dilution series (101-107 copies). 

Table II.8-3: qPCR conditions for quantification of USCα pmoA 

qPCR reaction mixture:  Thermal profile:  

Component Final conc. Volume Temperature program Cycles 

2x SybrGreen Ready-Mix 1x 12.5 µl 94°C, 6 min 1 

50 mM MgCl2 4 mM 2 µl 94°C, 25 s  

50 µM A189f 1 µM 0.5 µl 67°C, 20 s 45 (plate read) 

50 µM Forest675r 1 µM 0.5 µl 72°C, 45 s  

20 µg/µl BSA 0.5 µg/µl 0.625 µl 82°C, 10 s  

1:1000 FITC  0.25 µl 75.0 -94.8°Ca, 6 s 100 (melting curve) 

DNA or cDNA template  1 µl 4°C, 5 min 1 

Distilled water  ad 25 µl   

a Melting curve: Set point temperature decreased after cycle 2 by 0.2°C for each cycle. 

 

 



II. Materials and methods 
 

 

 48

II.8.2.2 Quantification of general pmoA  

For quantification of pmoA genes and transcripts of methanotrophs from DNA and cDNA SIP-

fractions, the following condition and temperature profile was used. pmoA amplified from 

methanotroph type I pure culture Methylomonas sp., cloned into E. coli Top10 competent 

cells was used as standard in dilution series (101-107 copies). 

Table II.8-4: qPCR conditions for quantification of general pmoA 

qPCR reaction mixture: Thermal profile:  

Component Final conc. Volume Temperature program Cycles 

2x SybrGreen Ready-Mix 1x 12.5 µl 94°C, 6 min 1 

50 mM MgCl2 4 mM 2 µl 94°C, 25 s  

50 µM A189f 0.667 µM 0.33 µl 65.5°C, 20 s 45 (plate read) 

50 µM mb661 0.667 µM 0.33 µl 72°C, 35 s  

1:1000 FITC  0.25 µl 72°C, 10 s  

DNA or cDNA template  1 µl 75.0 -94.8°Ca, 6 s 100 (melting curve) 

Distilled water  ad 25 µl 4°C, 5 min 1 
a Melting curve: Set point temperature decreased after cycle 2 by 0.2°C for each cycle. 

 

II.8.2.3 Quantification of archaeal amoA 

For quantification of amoA genes and transcripts of Archaea from DNA and cDNA SIP-

fractions, and soil extracts, the following condition and temperature profile was used. 

Archaeal amoA amplified from Rauischholzhausen agricultural soil (RH) and cloned into E. 

coli Top10 competent cells using primers amo111F/amo643R (see II.6.2) was used as 

standard in dilution series (101-107 copies). 

Table II.8-5: qPCR conditions for quantification of archaeal amoA 

qPCR reaction mixture:  Thermal profile:  

Component Final conc. Volume Temperature program Cycles 

2x SybrGreen Ready-Mix 1x 12.5 µl 95°C, 3 min 1 

50 mM MgCl2 4 mM 2 µl 95°C, 15 s 45 (plate read) 

50 µM amo196f 0.5 µM 0.5 µl 55°C, 45 s  

50 µM amo277r 0.5 µM 0.5 µl 95°C, 60 s 1 

20 µg/µl BSA 0.5 µg/µl 0.625 µl 55°C, 60 s 1 

1:1000 FITC  0.25 µl 68.0 -97.7°Ca, 10 s 100 (melting curve) 

DNA or cDNA template  1 µl 72°C, 10 min 1 

Distilled water  ad 25 µl 4°C, 5 min 1 
a Melting curve: Set point temperature decreased after cycle 2 by 0.3°C for each cycle. 
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II.8.2.4 Quantification of bacterial amoA 

For quantification of amoA genes and transcripts of Bacteria from DNA and cDNA SIP-

fractions, and soil extracts, the following condition and temperature profile was used. Bacterial 

amoA amplified from Rauischholzhausen agricultural soil (RH) and cloned into E. coli Top10 

competent cells using primers amoA-1F/amoA-2R (see II.6.2) was used as standard in 

dilution series (101-107 copies). 

Table II.8-6: qPCR conditions for quantification of bacterial amoA 

qPCR reaction mixture:  Thermal profile:  

Component Final conc. Volume Temperature program Cycles 

2x SybrGreen Ready-Mix 1x 12.5 µl 94°C, 15 min 1 

50 mM MgCl2 3 mM 1.5 µl 94°C, 45 s  

50 µM amoA-1F 0.5 µM 0.25 µl 57°C, 30 s 40 (plate read) 

50 µM amoA-2R 0.5 µM 0.25 µl 72°C, 3 min  

20 µg/µl BSA 0.2 µg/µl 0.25 µl 83°C, 10 s  

1:1000 FITC  0.25 µl 78.0 -97.8°Ca, 6 s 100 (melting curve) 

DNA or cDNA template  1 µl 72°C,10 min 1 

Distilled water  ad 25 µl 4°C, 5 min 1 
a Melting curve: Set point temperature decreased after cycle 2 by 0.2°C for each cycle. 

 

II.8.2.5 Quantification of archaeal 16S rRNA genes and transcripts 

For quantification of 16S rRNA genes and transcripts of Archaea from DNA and cDNA SIP-

fractions, and soil extracts, the following condition and temperature profile was used. 16S 

rRNA gene amplified from Methanosarcina barkeri, amplified using primers A109f/A934b (see 

II.6.5), was provided by Melanie Klose and used as standard in dilution series (7.83x101-

7.83x107 copies). 

Table II.8-7: qPCR conditions for quantification of archaeal 16S rRNA genes and transcripts 

qPCR reaction mixture:  Thermal profile:  

Component Final conc. Volume Temperature program Cycles 

2x SybrGreen Ready-Mix 1x 12.5 µl 94°C, 6 min 1 

50 mM MgCl2 3 mM 1.5 µl 94°C, 35 s  

50 µM A346aF 0.3 µM 0.15 µl 66°C, 30 s 45 (plate read) 

50 µM A934b 0.3 µM 0.15 µl 72°C, 45 s  

1:1000 FITC  0.25 µl 86.5°C, 10 s  

DNA or cDNA template  1 µl 75.0 -94.8°Ca, 6 s 100 (melting curve) 

Distilled water  ad 25 µl 4°C, 5 min 1 
a Melting curve: Set point temperature decreased after cycle 2 by 0.2°C for each cycle. 
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II.8.2.6 Quantification of bacterial 16S rRNA genes and transcripts  

For quantification of 16S rRNA genes and transcripts of Bacteria from DNA and cDNA SIP-

fractions, and soil extracts, the following condition and temperature profile was used. 16S 

rRNA gene amplified from Escherichia coli strain K12, amplified using primers 

Eub8F/Eub1392R (see II.6.5), was used as standard in dilution series (101-107 copies). 

Table II.8-8: qPCR conditions for quantification of bacterial 16S rRNA genes and transcripts 

qPCR reaction mixture: Thermal profile:  

Component Final conc. Volume Temperature program Cycles 

2x SybrGreen Ready-Mix 1x 12.5 µl 94°C, 8 min 1 

50 mM MgCl2 4 mM 2 µl 94°C, 20 s  

50 µM Ba519f 0.25 µM 0.125 µl 50°C, 20 s 35 (plate read) 

50 µM Ba907r 0.25 µM 0.125 µl 72°C, 50 s  

20 µg/µl BSA 0.2 µg/µl 0.25 µl 75.0 -94.8°Ca, 6 s 100 (melting curve) 

1:1000 FITC  0.25 µl 4°C, 5 min 1 

DNA or cDNA template  1 µl   

Distilled water  ad 25 µl   
a Melting curve: Set point temperature decreased after cycle 2 by 0.2°C for each cycle. 

 

II.9 Phylogenetic analyses 

For phylogenetic analyses of USCα pmoA and bacterial 16S rRNA sequences from Marburg 

forest soil, and of accA and archaeal 16S rRNA sequences from RNA- and DNA-SIP fractions 

from Rauischholzhausen agricultural soil, respective PCR products had to be cloned and 

sequenced. 

 

II.9.1 Cloning 

Purified PCR products from functional genes had to undergo an additional A-tailing prior to 

cloning. Conditions for A-tailing are listed in table II.9-1. A-tailed samples were cleaned up 

using the Wizard SV Gel and PCR Clean-Up System (Promega, Mannheim, Germany) (see 

II.6.6). 

Table II.9-1: A-tailing for blunt ended PCR products 

Sequencing reaction mixture:  Thermal profile:  

Component  Volume Temperature program Cycles 

dNTPs  1 µl 72°C, 10 min 1 

MgCl2  1.5 µl 4°C, ∞ 1 

10x Invitrogen Taq buffer  2.5 µl   

Invitrogen Taq Polymerase  0.3 µl   

Purified PCR  27-25 µl   
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The pGEM-T Vector System kit (Promega) was used for ligation. Therefore, 3 µl of PCR 

product were mixed with 5 µl Ligation buffer, 1 µl of pGEM-T vector, and 1 µl of T4 DNA 

Ligase. Reactions were shortly vortexed and incubated overnight at 4°C.  

For transformation, two LB-ampicillin-IPTG-XGal-agar plates (see table II.9-2) for each 

ligation reaction were equilibrated to room temperature prior plating (X-Gal = 5-Bromo-4-

chloro-3-indolyl-β-D-Galactopyranosid). Of each ligation, 2 µl were added to 50 µl of JM109 

High Efficiency Competent Cells (Promega) (from storage at -80°C, thawed on ice) and 

incubated on ice for 20 min. Cells were heat-shocked for 45 seconds in a water bath at 42°C 

and incubated on ice for 2 min. Pre-warmed SOC medium (950 µl; Sigma Aldrich) was added 

to the tubes and samples were shaken (400 rpm) for 1.5 hours at 37°C. Transformed cells 

were plated onto duplicate LB-ampicillin-IPTG-XGal-agar plates and plates were incubated 

overnight at 37°C.  

Table II.9-2: Solutions for LB-Amp-IPTG-XGal-agar plates 

IPTG stock solution (0.1 M)   

IPTG 1.2 g  

Distilled water 50 ml  

 Filter sterilize and store at 4°C 

   

X-Gal (50 mg ml-1)   

X-Gal 100 mg  

N,N’-dimethyl-formamide 2 ml  

 Cover with aluminium foil and store at -20°C 

   

LB medium   

Tryptone 5 g  

Yeast extract 2.5 g  

NaCl 2.5 g  

Agar 7.5  

Distilled water 500 ml  

 Adjust to pH 7.0 and autoclave 

   

After autoclaving, cool down to 45°C and add: 

100 mM IPTG 1.7 ml  

50 mg ml-1 X-Gal 333 µl  

0.1 g ml-1 Ampicillin 500 µl  

 Stir and pour 30-35 ml into 85 mm Petri dishes 

 

After incubation, plates were stored at 4°C, positive clones (blue-white selection) were 

screened by PCR (see table II.9-3), transferred to a fresh master plate, and PCR products 
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were checked on agarose gels. Products showing the right size were purified and used for 

sequencing (see II.9.2). 

Table II.9-3: Conditions and thermal profile for screening of clones 

Sequencing reaction mixture:  Thermal profile:  

Component  Volume Temperature program Cycles 

T7f or other forward primer  0.3 µl 94°C, 5 min 1 

M13r or other reverse primer  0.3 µl 94°C, 30 s  

dNTPs  0. 25 µl 55°C, 40 s 30 

50 mM MgCl2  0.375 µl 72°C, 1 min  

10x Invitrogen Taq buffer  1.25 µl 72°C, 7 min 1 

Invitrogen Taq Polymerase  0.1 µl 4°C, ∞ 1 

Distilled water ad 12.5 µl   

Add colony with sterile toothpick     

 

II.9.2 Sequencing 

Sequencing of purified PCR products was performed following the chain termination method 

(Sanger et al., 1977) using 4 different fluorescently labeled dideoxynucelotide triphosphates. 

The reaction containing these terminator dyes was set up using the ABI PRISM® BigDyeTM 

Terminator Cycle Sequencing Ready Reaction KitTM v.3.1 (Applied Biosystems). See table 

II.9-4 for conditions of PCR sequencing reaction and thermal profile. 

Table II.9-4: Conditions for sequencing reaction 

Sequencing reaction mixture:  Thermal profile:  

Component  Volume Temperature program Cycles 

BigDye Terminator Ready Mix  2 µl 96°C, 30 s 1 

BigDye Terminator 5x buffer   3 µl 94°C, 10 s  

T7f or M13r primer  0.125 µl 50°C, 5 s 25 

DNA template ~10-40 ng  x µl 60°C, 4 min  

Distilled water  ad 20 µl 4°C, ∞ 1 

 

Sequencing reactions were purified using AutoSeqTM G-50 spin columns (GE Healthcare, 

Little Chalfont, UK) or the SpinTM Post Reaction Clean-Up Columns (Sigma Aldrich) according 

to the manufacturer’s instructions. For samples with low concentration of DNA, the reactions 

were dried in a SpeedVac (DNA 110, Savant) for 20 min at 30°C and medium speed, and 

each pellet was resuspended in 20 µl of HiDiTM formamide (Applied Biosystems). For samples 

with higher concentrations of DNA, 10 µl of each reaction were directly mixed with 10 µl of 

HiDiTM formamide. All samples were denatured for 3 min at 90°C and kept at 4°C until 

sequencing. The sequencing was performed on an automatic sequencer (3130 Genetic 

Analyzer, Applied Biosystems).  
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II.9.3 Phylogenetic analyses 

Sequences derived from the automatic sequencer were controlled and extracted using the 

SeqMan 4.05 and EditSeq Software (DNASTAR, Madison, Wis, USA). The identities of the 

gene and transcript sequences were confirmed by searching the sequence databases using 

nucleotide and protein blast (http://www.ncbi.nlm.nih.gov/BLAST/). Phylogenetic analyses of 

the pmoA sequences from Marburg forest soil and the accA and archaeal 16S rRNA 

sequences from RNA- and DNA-SIP fractions from Rauischholzhausen agricultural soil, and 

deduced amino acid sequences were carried out using the ARB software package (Ludwig et 

al., 2004). Sequences were manually aligned with the related sequences obtained from the 

GenBank and RDP (http://rdp.cme.msu.edu/) database. Phylogenetic trees were 

reconstructed from sequence data by neighbor-joining approach, using 1000 bootstrap 

replicates, and maximum likelihood analyses of the data sets. 

 

II.10 Fluorescence in situ hybridization (FISH) 

Fluorescence in situ hybridization (FISH) provides a cultivation-independent method for the in 

situ identification of single cells and the analysis of the composition of microbial communities 

and their dynamics. Microbial cells are first treated with appropriate chemical fixatives and 

then hybridized under stringent conditions on a glass slide or in solution with specific probes. 

These probes are either labeled directly with a fluorescent dye or, in case of longer 

polynucleotide probes, are labeled with a component that can be detected using antibodies. 

After stringent washing, specifically stained cells are detected via epifluorescence 

microscopy. 

 

II.10.1 Generation of RNA polynucleotide probes – in vitro transcription  

For both RING-FISH and CARD-FISH of mRNA, long RNA polynucleotide probes are needed 

to guarantee sufficient signal amplification. This can be done by in vitro transcription of a DNA 

template using T3 or T7 RNA-polymerases of bacteriophages. For this purpose RNA 

polynucleotide probes were generated for pmoA of USCα, archaeal amoA and hydB of 

Streptomyces sp. PCB7. The genes were amplified by PCR as described in II.6.1, II.6.2 and 

II.6.4, respectively, with the only difference that a T3 RNA-polymerase promoter was attached 

to each reverse primer. After amplification, PCR products were purified and used for in vitro 

transcription as described in table II.10-1. Probes were labeled with either Digoxigenin-11-

UTP or Biotin-16-UTP. 
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Table II.10-1: Conditions and solutions for in vitro transcription of RNA polynucleotide probes 

DIG- or Biotin-Mix 

Component Initial conc. Final conc. Volume 

ATP 100 nmol µl-1 10.24 nmol µl-1 3.9 µl 

CTP 100 nmol µl-1 10.24 nmol µl-1 3.9 µl 

GTP 100 nmol µl-1 10.24 nmol µl-1 3.9 µl 

UTP 100 nmol µl-1 3.68 nmol µl-1 1.4 µl 

DIG-11-UTP 10 nmol µl-1 6.56 nmol µl-1 25 µl 

or Biotin-16-UTP (all purchased from Roche) 

 

Set-up for in vitro transcription 

Component Initial conc. Final conc. Volume 

DNA template 400 ng ca. 50 ng µl-1 4 µl 

T3-polymerase (Roche) 20 U µl-1 2 U µl-1 3 µl 

T3-buffer (Roche) 10x 1x 3 µl 

RNase-Inhibitor (Roche) 40 U µl-1 2 U µl-1 1.5 µl 

DIG-/Biotin-NTP-Mix 10.24 nmol µl-1 1.71 nmol µl-1 5 µl 

Distilled water   ad 30 µl 

 

Transcription was performed for 3-4 h at 37°C. To digest the DNA template, 3 µl of DNase I 

(RNase-free, 10 U µl-1; Roche) were added and the sample was incubated for 15 min at 37°C. 

Addition of 3 µl EDTA (0.2 M) was used to stop the reaction. To precipitate the RNA probe, 

0.1 volume of NaAc (3 M, pH 5.2) and 3 volumes of ice cold 96% (v/v) ethanol were added to  

the tube and the sample was incubated for 1 h at -80°C (or alternatively overnight at -20°C). 

The precipitated RNA was pelleted (18,000 x g) for 15 min at 4°C, washed with 1 ml of ice 

cold 70% (v/v) ethanol, and centrifuged again. The pellet was air dried for 5-10 min and was 

then resuspended in 30 µl of distilled water and 1 µl of RNase-Inhibitor (40 U µl-1, Roche). 

Integrity of probes was checked on agarose gels and concentration was determined using a 

NanoDrop instrument (Thermo Fisher Scientific, Schwerte, Germany) (see II.6.6 and II.6.7). 

 

II.10.2 Generation of expression clones as controls for FISH 

To produce controls for CARD-FISH of mRNA, expression clones of pmoA (USCα from 

Marburg forest soil, Methylocapsa acidiphila, Methylocystis sp. strain SC2), amoA (ammonia-

oxidizing archaea and bacteria from Rauischholzhausen agricultural soil), and hydB 

(Streptomyces sp. PCB7, Paracoccus denitrificans) were generated. Therefore, the 

respective genes were amplified from pure cultures and soil samples (see II.6) and cloned 

and expressed by using the pBAD TOPO® TA Expression Kit (Invitrogen, Karlsruhe, 

Germany). Fresh PCR product (2 µl) was mixed with 1 µl of Salt solution (1.2 M NaCl, 0.06 M 
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MgCl2), 1 µl of pBAD-TOPO® vector, and 2 µl of sterile water. Reactions were carefully mixed 

and incubated for 5 min at room temperature. For transformation, two LB-ampicillin-agar 

plates (see table II.9-2) for each ligation reaction were equilibrated to room temperature prior 

plating. Of each ligation, 2 µl were added to one tube of E. coli Top10 competent cells 

(Invitrogen) (from storage at -80°C, thawed on ice) and incubated on ice for 20 min. Cells 

were heat-shocked for 30 seconds in a water bath at 42°C and incubated on ice for 2 min. 

Pre-warmed SOC medium (250 µl; Invitrogen) was added to the tubes and samples were 

shaken (400 rpm) for 1 h at 37°C. Transformed cells were plated onto duplicate LB-ampicillin-

agar plates and plates were incubated overnight at 37°C. Clones were screened using 

primers pBADforward and pBADreverse (Invitrogen) (see table II.6-1), sequenced, and clones 

containing the right insert were chosen for induction. For expression of insert, clones were 

first inoculated in 2 ml of LB-ampicillin-medium and shaken overnight at 37°C. The next 

morning, 0.1 ml of overnight culture was transferred to fresh 10 ml of LB-Amp-medium and 

shaken for 2 h at 37°C. Expression was induced by adding 0.1 volume of 20% (w/v) L-

arabinose (Invitrogen), dissolved in sterile water and filter sterilized. Cells were incubated for 

another 3 h at 37°C, and then 2x 2 ml of culture were used for cell fixation (see II.10.4). 

Uninduced pmoA clones were also fixed and used for RING-FISH.  

 

II.10.3 Separation of microbial cells from soil 

For FISH of Marburg forest soil, cells were separated from the soil using a Histodenz-density-

gradient-centrifugation (Sigma Aldrich) to avoid disturbance of hybridization by 

autofluorescence of larger soil particles. First, the soil was mixed in a beaker with 1x PBS 

(see table II.10-2) and vortexed vigorously two times for 2 min. Tubes were placed on the 

bench for 10 min, to allow sedimentation of large soil particles and debris. From the 

supernatant, 40 ml were transferred to a 50 ml Greiner tube (Greiner Bio One, 

Frickenhausen, Germany) and centrifuged (5,000 rpm) for 10 min at 4°C (Universal 320 R, 

Hettich Zentrifugen). The supernatant was discarded and the pellet was resuspended in 10 ml 

of 1x PBS. The mixture was transferred to a sterile and transparent 50 ml Nalgene® 

centrifugation tube (VWR, Darmstadt, Germany) and 4 ml of Histodenz solution (80% w/v, in 

distilled water; density: ~ 1.3 g ml-1) were injected underneath the slurry using a long needle. 

Mixture of both phases before centrifugation had to be avoided. Gradient-density-

centrifugation was performed for 1.5 h at 4°C and 14,000 x g (Rotor SS-34, Sorvall RC B5 

Plus centrifuge, Thermo Scientific). After the centrifugation the gradient showed 4 phases 

(from bottom to top): a pellet of remaining soil particles, the Histodenz-phase, a thin cell-layer, 

and a large PBS-phase. The δ-value of the cell layer (~ 1.12 g ml-1) corresponds to the δ-

value of most microorganisms. This allows the concentration of microbial cells in a fine layer. 

Cell- and PBS-layer of every gradient were transferred to a new 15 ml tube and centrifuged 

for 25 min at 5,000 rpm. The supernatant was discarded, the pellet was resuspended in 300-

500 µl 1x PBS and subsequently used for cell fixation (see II.10.4). 
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II.10.4 Fixation of cells and environmental samples 

Fixation treatment of samples for FISH that takes place before hybridization is crucial to 

preserve the integrity and shape of cells and prevent cell loss through lysis. Samples for 

fixation (2 ml cell- or soil- suspension) were first sedimented for 10 min at 16,000 x g and 

resuspended in 300-500 µl of 1x PBS. Solutions prepared for fixation are listed in table II.10-

2.  

Clones for RING-FISH were fixed in 4 volumes of 4% (vol/vol) paraformaldehyde (PFA, see 

table II.10-2) for 12-16 h at 4°C, centrifuged for 10 min at 16,000 x g, and washed once with 

1ml of 1x PBS and twice with 1 ml of  50% ethanol in 1x PBS.  

Expression clones, pure cultures, and filter pieces from SSMS incubations of Marburg forest 

soil (see II.11.1) for CARD-FISH were fixed in 4 volumes of 2% (vol/vol) paraformaldehyde 

(see table II.10-2) for 30 min at room temperature, centrifuged for 10 min at 16,000 x g, and 

washed once with 1 ml of 1x PBS and twice with 1 ml of 50% ethanol in PBS.  

For CARD-FISH of archaeal amoA mRNA (see II.10.6.3 and II.10.6.5), samples from the RH 

soil SIP incubations after 12 weeks of fertilization with 15 µg NH4
+-N g-1 d.w.s. were amended 

with 1.5 ml of 4% (vol/vol) paraformaldehyde and vortexed three times for 1 min (Eickhorst et 

al., 2008). Larger soil particles were allowed to settle for 5 min. The supernatant was 

transferred to a new 1.5 ml tube and incubated for 5 h at 4°C. After incubation the sample 

was centrifuged for 5 min at 10,000 x g, washed once with 1ml 1x PBS, and centrifuged 

again.  

For FISH of Marburg forest soil incubations, cells were separated from the soil using 

Histodenz (see II.10.3), then fixed following the protocol for clones and pure cultures.  

For CARD-FISH of hydB mRNA (see II.10.6.4), samples of Streptomyces sp. PCB7 were 

fixed in 1.5 ml of 50% ethanol in 1x PBS for 24 h at 4°C, centrifuged for 10 min at 16,000 x g, 

and washed once with PBS.  

Finally, all cells and soil samples were resuspended in 150 µl – 1 ml 50% ethanol in 1x PBS 

and stored at -20°C until further processing. 

Table II.10-2: Solutions for fixation 

1x PBS  Final conc. Volume 

NaCl  130 mM 7.6 g 

K2HPO4  1.5 mM 3.26 g 

Na2HPO4  8 mM 1.13 g

KCl  2.7 mM 0.2 g

A. bidest   1000 ml

 Adjust pH to 7.4 and autoclave 
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2% PFA  Final conc. Volume 

PFA (Roth)  2% (w/v) 1 g 

1x PBS  1x 50 ml 

  

4% PFA  Final conc. Volume 

PFA (Roth)  4% (w/v) 2 g 

1x PBS  1x 50 ml 

 Dissolve in water bath (60°C), cool down, adjust pH 

to 7.2 and filter sterilize. 

 

II.10.5 RING-FISH targeting pmoA of USCα 

Recognition of individual genes-fluorescence in situ hybridization (RING-FISH) is a special 

variant of whole-cell hybridization. In RING-FISH a multiply labeled transcript polynucleotide 

probe is used to detect a single gene on the microbial chromosome during FISH. The folding 

of the single-stranded RNA probe molecules into secondary structures results in the formation 

of a network of probes around the cells during whole-cell hybridization, showing 

characteristical halo-shaped fluorescence signals in the periphery of the cells (see figure  

I.1-3). This network around the cell also offers the opportunity to combine RING-FISH with 

subsequent cell sorting. RING-FISH was performed with RNA probes targeting the pmoA 

gene of USCα to detect cells containing this gene in clones, pure cultures, and cells extracted 

from Marburg forest soil (see II.10.3). For each probe, formamide series (0-80% formamide in 

hybridization buffer) were used to determine optimal hybridization conditions. 

 

II.10.5.1 RING-FISH with RNA polynucelotide probe 

RING-FISH with A189f/Forest675r-T3 RNA polynucleotide probe (see II.10.1), targeting the 

pmoA gene of USCα, was used for clones, pure cultures and cells extracted from Marburg 

forest soil (see II.10.3) The following solutions were prepared for RING-FISH with RNA 

polynucleotide probes. 
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Table II.10-3: Solutions for RING-FISH with RNA polynucleotide probes 

Hybridization buffer Final conc. Volume 

NaCl, 5 M  75 mM  30 µl

Tris-HCl, 1 M pH 8 20 mM  40 µl

SDS, 10 % (w/v) 0.01%  2 µl

Formamide  variabel  variabel

Distilled water   ad 2 ml

 

Washing buffer Final conc.  Volume 

NaCl, 5 M  150 mM  30 ml

Tris-HCl, 1 M pH 8 100 mM  100 ml

SDS, 10 % (w/v) 0.01%  1 ml

Distilled water   ad 1 l

 adjust to pH 7.4  

 

 

II.10.5.1.1 Hybridization on slides 

Hybridization with RNA polynucleotide probe on slides, targeting the pmoA gene of USCα, 

was performed with clones, pure cultures, or cells extracted from Marburg forest soil (see 

II.10.3). Fixed sample (5-10 µl, see II.10.4) was applied to each well of a Teflon-coated glass 

slide (MAGV, Marburg, Germany) and dried for 10 min at 60°C. Cells were dehydrated in an 

ethanol series (50, 80, and 96%) for 3 min each and the slide was air dried. Fresh 

hybridization buffer (12 µl, see table II.10-3) was mixed with 2-4 µl (~2.5 µg) of RNA 

polynucleotide probe (see II.10.1) on a piece of Parafilm (Pechiney, Chicago, IL, USA) and 

applied to each well (except controls without probe). The slide was placed in a wet chamber 

with hybridization buffer (piece of tissue, soaked with 2 ml of hybridization buffer, in a 50 ml 

falcon tube) and denatured for 20 min at 80°C. Hybridization was performed in a hybridization 

oven (Hybaid, Heidelberg, Germany) for 22-24 h at 53°C. Afterwards, the slide was carefully 

rinsed with distilled water, air dried, and used for detection (see II.10.5.3). 

 

II.10.5.1.2 Hybridization in solution 

Hybridization with RNA polynucleotide probe in solution, targeting the pmoA gene of USCα, 

was performed with clones, pure cultures and cells extracted from Marburg forest soil (see 

II.10.3). Cell sorting using DNA-coated microplates was coupled to this protocol. Fixed 

sample (30 µl, see II.10.4) was mixed with 200 µl 1x PBS (see table II.10-2) in a 0.5 ml tube 

and centrifuged for 3 min at 11,000 x g to eliminate residual ethanol. The pellet was 

resuspended in 30 µl of fresh hybridization buffer (see table II.10-3) and mixed with 8 µl of 
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RNA polynucleotide probe (~5 µg). Samples were denatured for 20 min at 80°C and 

subsequently hybridized for 22-24 h at 53°C attached to the rotating device of the 

hybridization oven (Hybaid, Heidelberg, Germany). The tubes were centrifuged for 3 min at 

8,000 x g and cells were resuspended in 100 µl of washing buffer (see table II.10-3). Care 

was taken to avoid the formation of cell aggregates, as this could disturb the efficiency of cell 

sorting afterwards. The samples were further incubated for 30 min at 53°C to wash off 

unbound probe. The cells were pelleted for 3 min at 8,000 x g and resuspended in 15-30 µl 1x 

PBS. The hybridized cells could be used for detection (see II.10.5.3) or cell sorting using DNA 

coated microplates (see II.5.4). 

 

II.10.5.2 RING-FISH with synthetic oligo-oligonucleotide probes 

A different approach to specifically target cells containing pmoA of USCα with RING-FISH 

consisted of a novel type of polynucleotide probes, so-called oligo-oligonucleotide probes. For 

the design of these oligo-oligonucleotide probes, at first specific oligonucleotide probes 

targeting pmoA of USCα were identified using the ARB Probe_Design tool (ARB probe 

match) with the sequences of the phylogenetic tree generated for pmoA (see II.9). Also 

oligonucelotide probe Ra14-598, previously used for microarray analysis of pmoA and also 

specific for USCα (Bodrossy et al., 2003), was used to generate an oligo-oligonucleotide 

probe. The single stranded construct template consisted of an alternating sequence of the 

repetitive specific oligonucleotide sequence and poly-A or GC spacer regions. The T3 

promoter was localized at the 5´end and the whole sequence was ordered at Biomers (Ulm, 

Germany). The sequences of these probes are listed in table II.10-4. The ability of the probes 

to form secondary structures was checked using the free program RNADraw 

(www.rnadraw.com) to calculate melting profiles. 

Table II.10-4: Oligo-oligonucleotide probes for pmoA of USCα 

Probe DNA template 5’-3’ Length 

MF08_25-175 175 bp 

 without 

 T3 promoter 

  

 

ATAGGTATTAACCCTCACTAAAGTGCGGAAGCCGATGACATC

GGCCAAAAAAATGCGGAAGCCGATGACATCGGCCAAAAAAAT

GCGGAAGCCGATGACATCGGCCAAAAAAATGCGGAAGCCGA

TGACATCGGCCAAAAAAATGCGGAAGCCGATGACATCGGCCA

AAAAAATGCGGAAGCCGATGACATCGGCCAA  

RA14_GC121 121 bp 

 without 

 T3 promoter 

 

ATAGGTATTAACCCTCACTAAAGGGCATCGAGGTACGAACGT

TCGCGCGGCATCGAGGTACGAACGTTCGCGCGGCATCGAGG

TACGAACGTTCGCGCGGCATCGAGGTACGAACGTTCGCGCG

GCATCGAGGTACGAACGTT  

Underlined: T3 promoter; italics: spacer region

 

For generation of single stranded RNA probes, in vitro transcription from single stranded 

template DNA was performed. The DNA-dependent RNA polymerase is able to synthesize in 
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3’-5’ direction a single stranded RNA strand from different DNA templates. But at least the 

promoter region has to be double stranded. Therefore, it was necessary to built up a double 

stranded T3 promoter region. This has been performed by annealing of a single stranded 

nucleic acid primer constituting the T3 promoter sequence to a reverse complementary T3 

promoter sequence that was part of the 3’ prime end of the synthetic construct template. 

Therefore, 50 pmol of the single stranded synthetic probe DNA template were mixed with 50 

pmol of a single stranded T3 promoter primer (sequence: 

ATAGGTATTAACCCTCACTAAAG), denatured for 5 min at 94°C and incubated for 20 min at 

55°C using a PCR thermocycler. Afterwards, the samples were put on ice and used for in vitro 

transcription (see II.10.1). 

 

II.10.5.2.1 Hybridization on slides 

Hybridization with RNA oligo-oligonucleotide probes on slides, targeting the pmoA gene of 

USCα, was performed with clones, pure cultures, and cells extracted from Marburg forest soil 

(see II.10.3). Fixed sample (5-10 µl, see II.10.4) was applied to each well of a Teflon-coated 

glass slide (MAGV, Marburg, Germany) and dried for 10 min at 60°C. Cells were dehydrated 

in an ethanol series (50, 80, and 96%) for 3 min each and the slide was air dried. Fresh 

hybridization buffer (12 µl, 0-30% formamide, see table II.10-3) was mixed with 4 µl (~2.5 µg) 

of RNA oligo-oligonucleotide probe (see II.10.5.2) on a piece of Parafilm (Pechiney, Chicago, 

IL, USA) and applied to each well (except controls without probe). The slide was placed in a 

wet chamber with hybridization buffer (piece of tissue, soaked with 2 ml of hybridization 

buffer, in a 50 ml falcon tube) and denatured for 30 min at 80°C. Hybridization was performed 

in a hybridization oven (Hybaid, Heidelberg, Germany) for 4-22 h at 53°C. Afterwards, the 

slide was carefully rinsed with distilled water, air dried, and used for detection (see II.10.5.3).  

 

II.10.5.2.2 Hybridization in solution 

Hybridization with RNA oligo-oligonucleotide probes in solution, targeting the pmoA gene of 

USCα, was performed with clones and pure cultures. Cell sorting using DNA-coated 

microplates was coupled to this protocol. Fixed sample (30-100 µl, see II.10.4) was mixed 

with 3 volumes of 96% (v/v) ethanol, incubated for 3 min at 25°C and centrifuged for 3 min at 

11,000 x g. The pellet was resuspended in 30 µl of fresh hybridization buffer (0-30% 

formamide, see table II.10-3) and mixed with 8 µl of RNA polynucleotide probe (~5 µg). 

Samples were denatured for 30 min at 80°C and subsequently hybridized for 22 h at 53°C 

attached to the rotating device of the hybridization oven (Hybaid, Heidelberg, Germany). The 

tubes were centrifuged for 3 min at 8,000 x g and cells were resuspended in 100 µl of 

washing buffer (see table II.10-3). Care was taken to avoid the building of cell clumps, as this 

could disturb the efficiency of cell sorting afterwards. The samples were further incubated for 

30 min at 53°C to wash off unbound probe. The cells were pelleted for 3 min at 8,000 x g and 
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resuspended in 15-30 µl 1x PBS (see table II.10-2). The hybridized cells could be used for 

detection (see II.10.5.3) or cell sorting using DNA coated microplates (see II.5.4). 

 

II.10.5.3 Detection 

For detection of the digoxigenin labeled probes, anti-digoxigenin antibody coupled to the 

fluorescent dye fluorescein (Anti-digoxigenin-fluorescein, Fab fragments; Roche) was used. 

Probes labeled with biotin were detected using the antibody streptavidin coupled to the 

fluorescent dye Cy3 (Streptavidin-Cy3 Conjugate, Sigma Aldrich). For hybridizations on 

slides, 20 µl of Anti-DIG-fluorescein (diluted 1:2 in 1x PBS) or 20 µl of Streptavidin-Cy3 

(diluted 1:100 in 1x PBS) were added to each well and the slide was incubated in a wet 

chamber (distilled water) in the dark for 1 h at 27°C (DIG) or 28°C (Biotin). To wash of 

unbound probe, slides were incubated for 10 min at 28°C in washing buffer (for DIG, see table 

II.10-3) or for 20 min at 29°C in DPBS (for Biotin). Finally, slides were washed carefully with 

distilled water and air dried in the dark. For hybridizations in solution, 30 µl of Anti-DIG-

fluorescein (diluted 1:2 in 1x PBS) or Streptavidin-Cy3 (diluted 1:100 in 1x PBS) were added 

to the pellet resuspended in 15 µl 1x PBS. The solution was mixed and incubated in the dark 

for 1 h at 27°C (DIG) or 28°C (Biotin). Afterwards, the samples were transferred to 1.5 ml 

tubes, mixed with 1 ml of washing buffer (DIG) or DPBS (Biotin), and centrifuged for 15 min at 

18,000 x g. The washing step was repeated and the pellets were resuspended in 25 µl 1x 

PBS. 

 

 

II.10.5.4 Cell sorting using DNA-coated microplates 

Cell sorting provides a method to “fish” labeled cells out of a cell mixture or environmental 

sample. The procedure consists of two different hybridization steps. The first step is the 

hybridization of the target cells with an unlabeled polynucleotide probe in solution, following 

the protocols described in II.10.5.1.2 and II.5.2.3. The second step is a hybridization step for 

separating the already hybridized cells from non-target cells via binding to microplate cavities 

coated with DNA complementary to the RNA probe. For this purpose, NucleoLink microplates 

(Nalge Nunc, Roskilde, Denmark) were used (Fichtl et al., 2005). In these plates, 1-Ethyl-3-(3-

Dimethylaminopropyl)-Carbodiimide (EDC) is a common agent to crosslink carboxyl- or amino 

groups via carbodiimide condensation, so DNA is bound covalently. The principle is depicted 

in figure II.10-1. The solutions used for cell sorting are listed in table II.10-5. 
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Figure II.10-1: Cell sorting using microplates 

 

To generate the DNA to coat the microplates, a purified PCR product from USCα pmoA from 

Marburg forest soil was used as template for an asymmetric PCR of pmoA. The asymmetric 

PCR was performed as described in II.6.1, but without adding the reverse primer. Only the 

forward primer A189f was used. This way, a single stranded DNA sequence, complementary 

to the RNA polynucleotide probe, was generated. After the PCR, up to 10 PCR reactions 

were purified, pooled, and precipitated with 0.1 volume of NaAc (3 M, pH 5.2) and 2.5 

volumes of 96% (v/v) ethanol overnight at -20°C. Samples were centrifuged (18,000 x g) for 

20 min at 4°C, washed with 100 µl of ice cold 70% (v/v) ethanol, and centrifuged again. The 

pellet was shortly air dried, resuspended in 20-100 µl of nuclease-free water, and the 

concentration was determined using a NanoDrop instrument (Thermo Fisher Scientific, 

Schwerte, Germany) (see II.6.7).  For coating, the DNA was denatured for 10 min at 94°C and 

directly put on ice to avoid renaturation. Fresh ice cold EDC-PBS/MgCl2 was prepared (see 

table II.10-5) and 100 µl were mixed with 1 µg of DNA in each cavity of a microplate. For 

negative controls, only EDC-PBS/MgCl2 was added. The microplate was closed with PCR film 

(Peqlab, Erlangen. Germany) and prehybridized overnight at 37°C. The supernatants were 

carefully discarded and cavities were dried for 1-2 h at 60°C. Coated plates sealed with PCR 

film can be stored at 4°C for several weeks. Before continuing with the enrichment, cavities 

were washed with 100 µl PBS to remove unbound DNA. After the RING-FISH hybridization in 

solution (see II.10.5.1.2 and II.10.5.2.3), the hybridization samples were centrifuged for 5 min 

at 13,000 x g. Pellets were washed with 100 µl 1x PBS and centrifuged again. Cells were 

resuspended in 100 µl of MP buffer (see table II.10-5). 50 µl of each sample were added into 

a microplate cavity coated with DNA and into one uncoated cavity (negative control). The 

microplate was covered with PCR film and incubated for 1 h at 37°C (for chromosomal DNA 

targeted probes, 53°C for rRNA targeted probes). After enrichment hybridization, the solution 

(containing the unbound cells) was carefully pipetted off the cavities. Corresponding 

supernatants were pooled, centrifuged and used for PCR. Microplate cavities were carefully 
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washed 1-2 times with 100 µl of 1x PBS. The immobilized target cells in the cavities were 

directly used for PCR. Therefore, the bacterial 16S rRNA gene was amplified as described in 

II.6.5, with minor modifications. The reaction mix (50 µl) was directly added to the microplate 

cavities and the initial denaturation phase was set to 12 min at 94°C. Also a hot-start DNA 

polymerase (Platinum® DNA Polymerase, Invitrogen) was used. The microplate was sealed 

with PCR film and after thermal cycling PCR products were checked on an agarose gel (see 

II.6.6). 

Table II.10-5: Solutions for cell sorting using microplates 

PBS/MgCl2  Final conc. Volume 

MgCl2 0.1 M 10.15 g 

1x PBS (see table II.10-2) 1x 500 ml 

   

EDC-PBS/MgCl2 Final conc. Volume 

EDC (Thermo Scientific)  10 mM 19.2 mg 

PBS/MgCl2   10 ml 

 mix and cool for 5-10 min at -80°C 

    

20x SSC Volume   

NaCl 175.3 g   

Sodium citrate 88.2 g   

Distilled water 800 ml   

 adjust pH to 7.0, add 200 ml of distilled water and autoclave 

    

10% N-laurylsarcosin  Final conc. Volume 

N-laurylsarcosin  10% 10 g 

Distilled water   100 ml 

 filter sterilize    

    

MP buffer Initial conc. Final conc. Volume 

SSC 20x 5x 262.5 µl 

SDS 10% 0.02% 2.5 µl 

Blocking reagent (Roche) 10% 2% 250 µl 

N-laurylsarcosin 10% 0.1% 12.5 µl 

Formamide  34% 412 µl 

Distilled water   Ad 1.2 ml 
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II.10.6 CARD-FISH 

Catalyzed reporter deposition (CARD) is another FISH variant that can be applied to increase 

signal intensities in various immunochemical and FISH applications. Through the use of 

horseradish peroxidase (HRP) labeled antibodies to detect the probes, many tyramide 

molecules, preconjugated with either haptens or fluorescent reporters, are deposited in close 

vicinity to the HRP binding site, resulting in superior spatial resolution (see figure I.1-2). In 

combination with HRP-labeled antibodies, the CARD-FISH method has the potential to detect 

low-abundance mRNAs or 16S rRNAs. CARD-FISH was performed with RNA probes 

targeting mRNA of pmoA USCα (see II.6.2), archaeal amoA (see II.6.3), and hydB 

Streptomyces sp. PCB7 (see II.6.4). CARD-FISH of archaeal 16S rRNA was also carried out, 

coupled to detection of amoA of ammonia oxidizing archaea (see II.6.5). For each probe, 

formamide series (0-80% formamide in hybridization buffer) were used to determine optimal 

hybridization conditions. CARD-FISH for mRNA was performed based on a protocol by 

Pernthaler and Amann (2004). 

 

II.10.6.1 Solutions for CARD-FISH 

The following solutions were prepared for CARD-FISH. 

 

Table II.10-6: Solutions for CARD-FISH 

0.2 M HCl Volume 

1 M HCl 5 ml 

Distilled water 20 ml 

 

20% SDS Volume 

Sodium dodecyl sulphate 10 g 

Distilled water 40 ml 

 Stir, then fill up to 50 ml with water 

 

20x PBS Volume 

NaCl 160 g

KCl 4 g

Na2HPO4 28.8 g

KH2PO4 4.8 g

Distilled water 800 ml

 Adjust pH to 7.6 with HCl, fill up to 1 l with water, 

and autoclave 
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1x PBS Volume 

20x PBS 15 ml

Distilled water 285 ml

 

2x saline-sodium citrate buffer (SSC) Volume 

NaCl 17.53 g

Sodium citrate 8.82 g

Distilled water 800 ml

 Adjust pH to 7.0 with HCl, fill up to 1 l with water, 

and autoclave 

 

1x Maleic acid buffer Volume 

Maleic acid 5.8 g

NaCl 4.4 g

Distilled water 500 ml

 Adjust pH to 7.5 with NaOH pellets 

 

10% Blocking reagent Volume 

Blocking reagent (Roche) 50 g

1x Maleic acid buffer 500 ml

 Stir and heat up, until powder is completely 

dissolved. Aliquot, autoclave and store at -20°C (or at 

4°C when in use). 

 

Hybridization buffer - 50% formamide Volume 

5 M NaCl 3.6 ml

1 M Tris-HCl pH 8.0 0.4 ml

20% SDS 20 µl

10% Blocking reagent 2 ml

Dextran sulphate 2 g

Formamide 10 ml

Nuclease-free water 3.98 ml

 Dissolve at 40-60°C in water bath, aliquot, and 

store at -20°C 
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Amplification buffer Volume 

5 M NaCl 16 ml

20x PBS 2 ml

10% Blocking reagent 0.4 ml

Dextran sulphate 4 g

Nuclease-free water 21.5 ml

 Dissolve at 40-60°C in water bath and store at 4°C 

 

Hybridization buffer - 10% formamide Volume 

5 M NaCl 0.9 ml

1 M Tris-HCl pH 8.0 0.1 ml

20% SDS 5 µl

Dextran sulphate 0.5 g

Formamide 500 µl

Nuclease-free water 3.495 ml

 For CARD-FISH of archaeal 16S rRNA. Dissolve 

at 40-60°C in water bath, aliquot, and store at -20°C 

 

Washing buffer for 16S rRNA CARD Volume 

5 M NaCl 4.4 ml

0.5 M Na-EDTA 0.5 ml

1 M Tris-HCl pH 8.0 1 ml

20% SDS 25 µl

Distilled water 44.075 ml

 equivalent to 10% formamide in hybridization 

buffer 

 

1 mg ml-1 DAPI solution Volume 

4',6-diamidino-2-phenylindole (Sigma) 2 mg

Nuclease free water 2 ml

 

II.10.6.1.1 Synthesis of tyramide conjugates 

CARD is based on the deposition of a large number of labeled tyramine molecules by 

peroxidase activity. HRP reacts with hydrogen peroxide and the phenolic part of labeled 

tyramide to produce a quinine-like structure bearing a radical on the C2 group. This 

“activated” tyramide then covalently binds to tyrosine residues in the target cell. This results in 
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greatly enhanced FISH sensitivity as compared to probes with a single fluorochrome. 

Synthesis of tyramide conjugates was performed based on a protocol by Pernthaler et al. 

(2004) and is described below. 

Synthesis of tyramide labeled with 5- (and 6-) carboxyfluorescein: 

a) Active dye stock:  

100 mg 5- (and 6-) carboxyfluorescein succinimidyl ester (Invitrogen) 

+ 10 ml dimethylformamide 

 Don’t expose to light! 

 

b) Tyramine HCl stock: 

33 µl triethylamine   

+ 3.3 ml dimethylformamide 

+ 33 mg tyramine-HCl (Sigma) 

 

Mix 10 ml of active dye stock with 3.3 ml of tyramine HCl stock. Incubate for 6-12 h in 

the dark at room temperature. Add 86.7 ml 96% (v/v) ethanol to achieve 1 mg active 

dye ml-1. Aliquot (20 µl - 1 ml) and dry overnight in SpeedVac. Store dried tyramide 

conjugates at -20°C. Dissolve tyramides in dimethylformamide. 

 

Synthesis of tyramide labeled with Alexa546: 

a) Active dye stock:  

1 mg succinimidyl ester AlexaFluor546 (Invitrogen)              

+ 100 µl dimethylformamide 

 Don’t expose to light! 

 

b) Tyramine HCl stock: 

10 µl triethylamine   

+ 1 ml dimethylformamide 

+ 10 mg tyramine-HCl (Sigma) 
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Add 14.7 µl of tyramine HCl stock to active dye stock. Incubate for 6-12 h in the dark 

at room temperature. Add 875.3 ml 96% (v/v) ethanol to achieve 1 mg active dye ml-1. 

Aliquot (50 µl) and dry overnight in SpeedVac. Store dried tyramide conjugates at  

-20°C. Dissolve tyramides in 50 µl of dimethylformamide. 

 

II.10.6.2 CARD-FISH mRNA USCα pmoA  

CARD-FISH was performed with RNA polynucleotide probe A189f/Forest675r-T3 (see II.10.1) 

targeting the pmoA transcripts of USCα to detect cells expressing this gene in expression 

clones (induced and uninduced, see II.10.2), pure cultures, cells extracted from Marburg 

forest soil (see II.10.3), and in incubations of this soil on filters of soil substrate membrane 

systems (see II.11.1).  The protocol is described below. 

mRNA CARD-FISH of USCα pmoA: 

1. Pretreatment 

1. Add 5-10 µl of sample or a small filter piece to each well of a Teflon-coated glass 

slide (MAGV) 

2. Dry slide for 5-10 min at 46°C 

3. Boil up 0.1% low gelling point agarose (0.02 g in 20 ml distilled water), pour in 

Petri dish, let cool down to 35-40°C, and cover slide with agarose 

4. Dry slide for 15-20 min at 46°C 

5. Dehydrate slide in 50 ml 96% (v/v) ethanol for 1 min at room temperature 

6. Air dry slide 

7. Cover slide with 1 ml of 0.2 M HCl (see table II.10-6) and incubate for 10 min at 

room temperature 

8. Wash slide in 50 ml 1x PBS for 1 min at room temperature 

9. Incubate slide in 50 ml of 0.1% DEPC (50 µl DEPC + 50 ml 1x PBS, for 

carboxyethylation) for 12 min at room temperature 

10. Wash slide in 50 ml 1x PBS for 1 min at room temperature 

11. Wash slide in 50 ml distilled water for 1 min at room temperature 

 

2. Permeabilization 

1. Cover slide with 1 ml of lysozyme solution (5 mg ml-1 in 1x TE buffer) and 

incubate for 30 min at room temperature 

2. Wash slide in 50 ml distilled water for 1 min at room temperature 

3. Cover slide with 1 ml of proteinase K solution (1 µg ml-1 in 1x TE buffer) and 

incubate for 15 min at room temperature  not for clones! 

4. Wash slide 3 times in 50 ml distilled water for 1 min at room temperature 

5. Dehydrate slide in 50 ml 96% (v/v) ethanol for 1 min at room temperature 
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6. Air dry slide 

 

3. CARD-FISH 

1. Cover slide with 100 µl of hybridization buffer (50% formamide, see table II.10-6) 

2. Prepare wet chamber soaked with 2 ml of 50% formamide-1x SSC (1 ml 

formamide + 1 ml 2x SSC) 

3. Prehybridize slide in wet chamber for 1h at 58°C in hybridization oven 

4. Mix 100 µl of hybridization buffer with 50 ng of RNA polynucleotide probe (~ 2-4 

µl), denature mixture for 5 min at 80°C 

5. Add probe mixture to wells (final probe concentration: 250 ng ml-1) 

6. Prepare wet chamber soaked with 1 ml of hybridization buffer  

7. Hybridize slide in wet chamber overnight at 58°C in hybridization oven 

8. Wash slide in 50 ml of 50% formamide-1x SSC (25 ml formamide + 25 ml 2x 

SSC) for 1 h at 58°C 

9. Wash slide in 50 ml of 0.2xSSC-0.01% (w/v) SDS (5 ml 2x SSC + 25 µl 20% SDS 

+ 44.975 ml distilled water) for 30 min at 58°C 

10. Incubate slide in 50 ml of 1x PBS-0.5% blocking reagent (2.5 ml 20x PBS + 2.5 

ml 10% blocking reagent + 45 ml distilled water) for 30 min at room temperature 

11. Mix 975 µl 1x PBS with 10 µl 10% blocking reagent and 15 µl of anti-DIG-HRP 

antibody (= 0.75 U ml-1, Roche), add mixture on slide, and incubate for 1 h at 

37°C 

12. Wash slide 3 times in 50 ml 1x PBS for 10 min at room temperature 

13. Mix 1 ml of amplification buffer (see table II.10-6) with 10 µl 100x H2O2 stock (1 

ml 1x PBS + 5 µl 30% H2O2, Sigma Aldrich) and 5 µl of fluorescein labeled 

tyramide (see II.10.6.1.1) 

14. Add mixture on slide and incubate for 5 min at room temperature in the dark 

15. Wash slide in 50 ml 1x PBS for 3 min at room temperature 

16. Wash slide 3 times in 50 ml distilled water for 1 min at room temperature 

17. Dehydrate slide in 50 ml 50% (v/v) ethanol for 1 min at room temperature 

18. Dehydrate slide in 50 ml 96% (v/v) ethanol for 1 min at room temperature 

19. Air dry slide in the dark 

 

4. DAPI staining 

1. Add 20 µl of DAPI solution (see table II.10-6) per well and incubate for 10 min at 

room temperature 

2. Wash slide in 50 ml distilled water for 1 min at room temperature 

3. Dehydrate slide in 50 ml 96% (v/v) ethanol for 1 min at room temperature 

4. Air dry slide in the dark 

5. Continue with epifluorescence microscopy (see II.10.7) 
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II.10.6.3 CARD-FISH mRNA archaeal amoA  

CARD-FISH was performed with RNA polynucleotide probe amo111f/amo643r-T3 (see 

II.10.1) targeting the amoA transcripts of ammonia-oxidizing archaea to detect cells 

expressing this gene in expression clones (induced and uninduced, see II.10.2) and in 

incubations of Rauischholzhausen agricultural soil incubated for stable isotope probing (see 

II.10.2). The protocol is described in II.10.6.2 with the following modifications: 

2. Permeabilization 

3. Cover slide with 1 ml of proteinase K solution (15 µg ml-1 in 1x TE buffer) and 

incubate for 10 min at room temperature  for soil samples 

 

3. CARD-FISH  hybridization and washing temperature was 60.5° instead of 58°C! 

 

 

II.10.6.4 CARD-FISH mRNA hydB 

CARD-FISH was performed with RNA polynucleotide probe NiFe-1129f/NiFe-1640r-T3 (see 

II.10.1) targeting the hydB transcripts of Streptomyces sp. PCB7 to detect cells expressing 

this gene in expression clones (induced and uninduced, see II.10.2) and pure cultures. The 

protocol is described in II.10.6.2 with the following modifications: 

2. Permeabilization  for Streptomyces sp. PCB7 

1. Cover slide with 1 ml of lysozyme solution (10 mg ml-1 in 1x TE buffer) and 

incubate for 1 h at 37°C 

 

3. Cover slide with 1 ml of achromopeptidase solution (60 U ml-1 in 0.01 M NaCl 

and 0.01 M Tris-HCl; Sigma) and incubate for 30 min at 37°C 

 

 

II.10.6.5 CARD-FISH 16S rRNA archaea  

CARD-FISH of archaeal 16S rRNA was attached to CARD-FISH of archaeal amoA 

transcripts. HRP-labeled probe Arch915 (Biomers, Ulm, Germany) was used for detection of 

Archaea in soil samples with Alexa546-labeled tyramide. The protocol was inserted after step 

3.17 of the mRNA CARD-FISH protocol (see II.10.6.3) and is described below. 

CARD-FISH of archaeal 16S rRNA attached to mRNA CARD-FISH: 

1. Incubate slide in 0.01 M HCl for 10 min at room temperature (to inactivate anti-
DIG-HRP antibody) 

2. Wash slide in 50 ml 1x PBS for 1 min at room temperature 
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3. Wash slide in 50 ml distilled water for 1 min at room temperature 

4. Dehydrate slide in 50 ml 50% (v/v) ethanol for 1 min at room temperature 

5. Dehydrate slide in 50 ml 96% (v/v) ethanol for 1 min at room temperature 

6. Air dry slide in the dark 

7. Mix 200 µl of hybridization buffer (10% formamide, see table II.10-6) with 2 µl of 
probe working solution of HRP-labeled probe Arch915 ( 50 ng µl-1) and add 20 ml 
of solution to each well 

8. Prepare wet chamber with 1 ml of hybridization buffer (10% formamide) 

9. Hybridize slide in wet chamber for 2.5 h at 46°C in hybridization oven 

10. Wash slide in prewarmed washing buffer (see table II.10-6) for 15 min at 48°C 

11. Dip slide shortly in cold water (4°C) 

12. Wash slide in 50 ml 1x PBS for 15 min at room temperature 

13. Mix 1 ml of amplification buffer (see table II.10-6) with 5 µl of Alexa546 tyramide (1 
mg ml-1, see II.10.6.1.1) and add mixture on slide. 

14. Incubate slide for 10 min at room temperature 

15. Wash slide in 50 ml 1x PBS for 10 min at room temperature 

16. Wash slide in 50 ml distilled water for 1 min at room temperature 

17. Dehydrate slide in 50 ml 96% (v/v) ethanol for 1 min at room temperature 

18. Air dry slide in the dark 

19. Continue with DAPI-staining (mRNA CARD-FISH protocol, step 4.1)  

 

 

II.10.7 Fluorescence microscopy 

After hybridization and detection, all slides were mounted with the antifading agent Citifluor 

AF1 (Citifluor, London, UK), covered with a cover slide, and hybridization preparations were 

visualized by fluorescence microscopy (Axiophot; Carl Zeiss Microimaging GmbH, Jena, 

Germany). The different emission peaks of the fluorescent dyes (fluorescein: 523 nm, Cy-3: 

570 nm, Alexa546: 573 nm, DAPI: 461 nm) allowed for visual discrimination of the signals 

(fluorescein: green signal, Cy-3 and Alexa546: orange-red signal, DAPI: blue signal). Results 

of the hybridizations were documented using a camera (INTAS, Goettingen, Germany). 

 

 

 



II. Materials and methods 
 

 

 72

II.11 Enrichment of Upland Soil Cluster α 

The Marburg forest soil (MF) was also used for approaches to enrich Upland Soil Cluster α. 

The first approach was based on a soil substrate membrane system incubated at methane 

concentrations close to atmospheric concentration (see II.11.1). The second approach was 

based on incubating the soil with alternating incubation periods of acetate and methane (see 

II.11.2). Abundance of USCα was investigated in both enrichment approaches using a variety 

of molecular analyses (qPCR, T-RFLP, CARD-FISH, etc.). 

 

II.11.1 Soil substrate membrane system (SSMS) 

The soil substrate membrane system (SSMS) provides a technique to mimic the natural 

terrestrial environment of soil bacteria (Ferrari et al., 2008). The substrate used for cultivation 

consists of natural non-sterilized wet soil as the sole growth component. The soluble soil 

carbon components released after soil wetting is sufficient for microcolony-forming (mCFU) 

growth of microorganisms. This is supposed to facilitate the isolation and continued cultivation 

slow growing microorganisms in the soil. In the SSMS approach, microcolony formation 

occurs on a polycarbonate membrane (PCM) in immediate contact with the slurry of soil 

substrate. The principle of SSMS is depicted in figure II.11-1.  

 

                                          (Ferrari et al., 2008) 

Figure II.11-1: Principle of soil substrate membrane systems  
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The intention of using this method was to enrich Upland Soil Cluster α from Marburg forest 

soil. Therefore, 20 g of fresh MF soil were mixed with water and vortexed, until a homogenous 

slurry formed. 3 g of soil were each weighed carefully in 25 mm tissue culture inserts (TCI, 

0.02 µm Anopore membrane; Nunc, Roskilde, Denmark). To evenly distribute the soil in the 

TCI and to remove air bubbles, the benchtop mixer was turned on to full speed and touched 

carefully with the TCI at the edge of the vortexer plate. The vibrations cause the soil to evenly 

distribute over the whole membrane. Into the middle of a well within a sterile 6-well plate 

(Greiner Bio One), 500 µl of distilled water were pipetted to prevent the TCI from drying out 

during the incubation period. The TCI was inverted so that the membrane was facing upwards 

and placed in the middle of the well over the sterile water. For inoculation of the filters, 3 g of 

the previously homogenized soil were diluted 1:10 with 30 ml of sterile water in a 50 ml falcon 

tube, and vortexed vigorously. Large soil particles were allowed to sediment by letting the 

sample stand for 30 s. From the supernatant, 100 µl were diluted with 1 ml of sterile water, 

resulting in a 1:100 dilution of the soil. This dilution was used to inoculate the filters. 

Therefore, sample filtration manifold was set up and a vacuum pump was attached to its 

exhaust. For every TCI (except negative controls), a sterile 0.2 µm isopore polycarbonate 

membrane filter (PCM, 25 mm; Millipore) was placed on top of a prewet glass fiber filter. 

Then, a sterile cylinder was placed on top of the PCM on the manifold. 10 ml of sterile water 

was added into each cylinder followed by 50 µl of the 1:100 soil dilution. The solution was 

gently mixed by pipetting to ensure an even distribution of cells on the PCM during filtration. 

The vacuum pump was turned on to draw the diluted inoculum through the PCM. Valves were 

closed as soon as the inoculum had passed through the PCM. The PCM was carefully 

remove from the filtration manifold using sterile tweezers and placed on top of the inverted, 

prepared TCI, prewetted with ~10 µl of sterile water. To further prevent the SSMS from drying 

out during the incubation period 1 ml of distilled water was pipetted between the wells. The 6-

well plate was closed with a lid and sealed with Parafilm. The SSMS was transferred to a gas 

tight jar (2 l). The jar was closed and methane was added to a final concentration of 20 ppmv. 

The set-up is shown in figure II.1-2. The SSMS was incubated at 25°C in the dark. A filter 

without cell-inoculation was used as negative control. Methane concentration in the jar was 

monitored by GC (see II.4.6) and maintained at 20 ppmv CH4. Every week, the water level 

between the wells was readjusted. Every 3-5 days, the jar was flushed with fresh air. After 3 

and 6 weeks of incubation, single filters were taken off and quartered using a sterile and 

sharp scalpel. The quarters were used for CARD-FISH of pmoA USCα transcripts (see 

II.10.6.2) and DNA was extracted for qPCR (see II.8).  
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Figure II.11-2: Set-up of SSMS 

 

 

II.11.2 Incubation of Marburg forest soil with alternating acetate and CH4 treatments 

Because of recent results, showing that methanotrophs are capable of using acetate as 

carbon source, an enrichment approach was set up using alternating incubation periods of 

acetate and methane. Therefore, Marburg forest soil incubations were set up either as normal 

soil (20 g) or as slurry (20 g soil + 40 ml of medium DSM 922, see table II.2-1) in 120 ml 

serum bottles capped with butyl rubber stoppers. The soil was incubated with 2 ppmv,  

20 ppmv, and 100 ppmv of methane, respectively. Additionally, three different concentrations 

of acetate were added (100, 400, or 800 µg g-1 d.w.s.). Incubations were performed in 

duplicates for each treatment and at 25°C in the dark. Slurries were shaken at ~170 rpm. 

Methane concentration in the incubations was monitored by GC (see II.4.6). Every week, 

bottles were flushed with synthetic air (20% O2, 80% N2), and methane treatments were 

renewed. Acetate was added every 3rd week of incubation, to allow enough time for acetate to 

be depleted and to starve microorganisms depending on the acetate. Consumption of acetate 

was checked 1-2 days after a new acetate treatment using HPLC (II.4.5). During the 

incubation period, aliquots of the soil (0.5 g) were extracted (see II.5.1). The extracted DNA 

was used for qPCR to investigate the abundance of pmoA USCα and for T-RFLP to monitor 

potential changes in bacterial population (see II.6.8).  
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III.1.1 Abstract 

Forest soils are the major biological sink for atmospheric methane, yet the identity and 

function of the microorganisms responsible for this process remain unclear. Although 

members of the upland soil cluster α (USCα) are assumed to represent methanotrophic 

bacteria adapted to the trace level of atmospheric methane and to play an essential part in 

the removal of this greenhouse gas from the atmosphere, so far they resisted isolation. 

Especially the question, whether USCα are able to obtain all their energy and carbon solely 

from methane or use additional carbon compounds, still awaits to be answered. In this study, 

we performed stable-isotope probing (SIP) of RNA and DNA to investigate assimilation of 
13CH4 and 13C-acetate by USCα in an acidic forest soil. RNA-SIP using 13CH4 showed no 

incorporation of labeled carbon into nucleic acids of USCα, although CARD-FISH targeting 

pmoA mRNA of USCα still detected expression in the incubated soil. However, stable isotope 

probing of RNA using labeled acetate revealed assimilation by USCα, but DNA-SIP showed 

no growth, probably due to prolonged generation times. Our results demonstrate that the 

contribution of alternative carbon sources, such as acetate, to the metabolism of potential 

atmospheric methane oxidizers like USCα in upland forest soils might be substantial.   

 

III.1.2 Introduction 

Methane (CH4) is an important greenhouse gas with a global warming potential 20 times more 

effective than CO2 and a current atmospheric concentration of 1.7 ppmv. One major sink for 

atmospheric methane are upland soils, where aerobic methanotrophic communities consume 

approximately 30 Tg y-1 (1, 2). The key step in methane oxidation, the initial oxidation of CH4 

to methanol, is catalyzed via the methane monooxygenase enzyme which occurs as a 

particulate, membrane bound form (pMMO), and as a soluble, cytosolic form (sMMO) (3). The 

pmoA gene, which encodes the α-subunit of pMMO, has been generally used as a biomarker 
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to investigate methanotrophic communities in various environments. Phylogenetic analyses of 

soils showing uptake of atmospheric methane revealed the presence of predominant, 

possible “high affinity” methanotrophic bacteria, which represent novel sequence lineages of 

pmoA and were therefore named upland soil cluster (USC) α and γ (4-6). Further studies 

showed that pmoA of USCα is most closely related to Methylocapsa acidiphila (5, 7) while 

USCγ exhibits next relation to the Methylococcaceae (4). These findings all indicate the 

potential role of those upland soil clusters in the removal of methane from the atmosphere (8). 

Unfortunately, only little is known about the molecular phylogeny and function of these 

microorganisms. So far no successful isolation approach has been reported. Several 

Methylocystis and Methylosinus species have been shown to contain two types of pMMO, the 

conventional enzyme pMMO1 and pMMO2, a second monooxygenase, which catalyses 

oxidation of CH4 at atmospheric levels (9-11). These strains, however, are also not able to 

grow at atmospheric concentrations of methane and might require additional carbon sources 

(10, 12, 13).  

A promising method to link function of USCα to phylogeny is provided by stable 

isotope probing (SIP). This technique allows the specific identification of microorganisms 

assimilating labeled substances, most commonly carbon from a particular 13C-labeled 

substrate (14). Previous studies investigated the assimilation of CH4 by USCα in soils 

showing uptake of atmospheric CH4 by using stable isotope probing of PLFAs or DNA, and 

detected labeling of lipids proposed to be characteristic for USCα but no incorporation of 

labeled carbon into DNA (4, 15-19). 

The aim of this study was to investigate potential oxidation of methane and 

assimilation of acetate by upland soil cluster α in an acidic forest soil using the more sensitive 

RNA-SIP and DNA-SIP in comparison. We further wanted to monitor the expression of USCα 

pmoA by mRNA catalyzed reporter deposition – fluorescence in situ hybridization (CARD-

FISH). Our findings provide novel evidence that these potential atmospheric methane 

oxidizers in upland soils might not depend on methane as sole carbon and energy source.  

 

III.1.3 Results 

Methane oxidation activity in Marburg Forest soil 

A high-affinity CH4 oxidation potential of 41 pmol g.d.w. soil-1 h-1 at atmospheric methane 

concentration (~2 ppmv) was observed for the Marburg forest soil collected in July 2008. 

Addition of acetate (100, 400, 800 µg g-1 d.w.s) to “normal” soil incubations did not effect 

methane oxidation; however, methane oxidation was strongly inhibited when soil was 

incubated in slurry and shaken (see supplementary figure 1). USCα showed to be the 

predominant methanotroph in this soil and made up 94.6% of the methanotrophic bacterial 

community (1.42±0.11 x106 pmoA gene copies g-1 d.w.s.), while the general methanotrophs 

(all cultured methanotrophs) accounted only for 5.4% (8.12±0.15 x104 pmoA gene copies g-1 

d.w.s.), as detected by qPCR. 
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RNA-SIP using 13CH4 labeling 

After 6 and 10 weeks of incubation, the 200 ppmv CH4 microcosms had consumed a total of 

82.3 and 137.1 µmol 13C g.d.w. soil-1, respectively. Because incorporation of 13CH4 in the 

other incubations (2 ppmv and 20 ppmv) was not sufficient for stable isotope probing, only 

these microcosms were used for RNA-SIP of methane oxidizing bacteria. Therefore, buoyant 

density centrifugation was conducted with the respective RNA extracts from 12C and 13C 

microcosms after 6 and 10 weeks of incubation with 200 ppmv CH4. The quantitative 

distribution of pmoA transcripts in these gradients was analyzed by qPCR of cDNA (Figure 1). 

After 6 weeks of incubation the copy number of USCα pmoA transcripts peaked only in the 

‘light’ RNA fraction (1.77 - 1.79 g ml-1) and showed no detectable labeling in the ‘heavy’ 

fraction  (1.81 – 1.83 g ml-1). After 10 weeks of incubation still no enrichment of labeled RNA 

could be observed. pmoA transcripts of general methanotrophs (see supplementary figure 2) 

and controls with 12CH4 also did not show any labeling. These results suggest that the 13C 

was not incorporated into nucleic acids by the USCα, comprising 94.6% of the 

methanotrophic bacterial community. 

 

 

Fig. 1. Distribution of pmoA transcripts of USCα in RNA-SIP after 6 and 10 weeks of incubation with 200 

ppmv CH4 (
12C or 13C). Distribution of pmoA transcripts was measured by real-time PCR of cDNA from 

gradient fractions. 
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Fig. 2. Detection of pmoA mRNA transcripts of USCα by application of CARD-FISH with pmoA 

antisense probe in clones expressing pmoA of upland soil cluster α (A and B) or Methylocapsa acidiphila 

(E and F), and in an uninduced clone harboring pmoA of USCα (C and D). Fluorescence images for 

pmoA CARD-FISH (A, C, and E) and respective phase contrast (B, D, and F). Bars = 10 µm. 

 

mRNA CARD-FISH of USCα pmoA in soil 

To detect the expression of USCα pmoA mRNA in the Marburg forest soil, CARD-FISH of 

pmoA transcripts was conducted based on the protocol by Pernthaler and Amann (20). 

Clones and soil samples were hybridized with an USCα pmoA mRNA antisense probe, 

followed by detection with an anti-DIG-antibody labeled with horseradish peroxidase and 

signal amplification by catalyzed reporter deposition with fluorescein-labeled tyramide. The 

specificity of the pmoA mRNA antisense probe for USCα in the Marburg forest soil was tested 

with expression clones (Figure 2). Induced cells showed strong hybridization signals (Figure 

2A and B), whereas no signal was observed in uninduced cells (Figure 2C and D) or clones 

expressing the partial pmoA gene of Methylocapsa acidiphila (Figure 2E and F), indicating a 

high specificity of the pmoA mRNA CARD-FISH for USCα. The hybridizations with the soil, 

incubated with 200 ppmv, resulted in few but strong signals for the pmoA CARD-FISH (Figure 

3), demonstrating that pmoA was expressed in the incubations. USCα showed to be small, 

rod shaped cells with a length of approximately 1 µm.  
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Fig. 3. Detection of pmoA mRNA transcripts by application of CARD-FISH with USCα pmoA antisense 

probe in forest soil after 10 weeks of incubation with 200 ppmv CH4. Fluorescence images for pmoA 

CARD-FISH (A and D), DAPI DNA staining (B and E), and respective phase contrast (C and F). Bars = 

10 µm. 

 
 

Stable isotope probing using 13C-acetate 

After 3 weeks of incubation with 12C- and 13C-acetate, the microcosms and slurries had each 

consumed a total of about 400 µmol C g.d.w. soil-1. Gradient centrifugation of RNA was 

performed with all respective RNA extracts from 12C- and 13C-acetate exposed microcosms 

after 3 weeks of incubation. The quantitative distribution of pmoA transcripts in these 

gradients was analyzed by qPCR of cDNA (Figure 4). After 3 weeks of incubation with 10 mM 

acetate, the copy number of pmoA transcripts of USCα and general methanotrophs from the 

wet soil incubations was highest in the ‘light’ RNA fraction (1.77 - 1.79 g ml-1), and could not 

be detected in the ‘heavy’ fraction (Figure 4a and d). The pmoA transcripts of USCα in the 13C 

slurry treatments, however, showed a strong labeling and were nearly completely shifted into 

the ‘heavy’ (1.81 – 1.83 g ml-1) RNA fraction (Figure 4b and c). This could not be seen for the 

transcripts of general pmoA in these incubations, which still exhibited no labeling (Figure 4e 

and f). Also, no labeling was observed in the controls with 12C-acetate. This indicates that 

acetate was actively consumed by USCα in the slurry incubations but not by the general 

methanotrophic community in this forest soil. Differences in RNA-SIP results compared to the 

wet soil microcosms might be due to a better distribution and accessibility of the acetate in the 

slurry incubations. 
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Fig. 4. Distribution of pmoA transcripts of USCα (a-c) and general methanotrophs (d-f) in RNA-SIP after 

3 weeks of incubation with 10 mM acetate (12C or 13C). Acetate was added to the soil dissolved in 6 ml 

H2O (wet soil), 20 ml H2O (slurry H2O), or 40 ml of medium DSMZ 922 (slurry medium), respectively. 

Distribution of pmoA transcripts was measured by real-time PCR of cDNA from gradient fractions. 

 

For DNA stable isotope probing of methane oxidizing bacteria, buoyant density 

centrifugation was conducted with all respective DNA extracts from 12C and 13C microcosms 

after 3 weeks of incubation. The quantitative distribution of pmoA genes in these gradients 

was analyzed by qPCR of DNA (Figure 5). The copy numbers of the pmoA genes for both 

USCα (Figure 5a-c) and general methanotrophs (Figure 5d-f) peaked only in the ‘light’ 

fractions (1.69 – 1.72 g ml-1), suggesting that although USCα were actively involved in acetate 

oxidation, as shown in the RNA-SIP approach, replication did not occur. 

 

 

Fig. 5. Distribution of pmoA genes of USCα (a-c) and general methanotrophs (d-f) in DNA-SIP after 3 

weeks of incubation with 10 mM acetate (12C or 13C). Acetate was added to the soil dissolved in 6 ml 

H2O (wet soil), 20 ml H2O (slurry H2O), or 40 ml of medium DSMZ 922 (slurry medium), respectively. 

Distribution of pmoA genes was measured by real-time PCR of DNA from gradient fractions. 
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Furthermore, strong labeling of the bacterial 16S rRNA genes and transcripts in all 13C-

acetate incubations indicates that acetate was used significantly by the bacterial community in 

this soil (see supplementary figure 3).  However, no labeling of pmoA or bacterial 16S rRNA 

was observed in the controls with 5% 13CO2 (see supplementary figure 4), demonstrating that 

the ‘heavy’ RNA and DNA from the gradients indeed resulted directly from acetate 

incorporation into selected microbes and were not due to secondary labeling by CO2 (21, 22). 

 

III.1.4 Discussion 

Upland soils are a major sink for atmospheric methane, but to date it remains elusive whether 

the upland soil cluster α (USCα), proposed to exhibit a crucial role in atmospheric methane 

oxidation, rely on methane as sole carbon and energy source. Previous studies using stable 

isotope probing of DNA to detect assimilation of CH4 by USCα did not detect incorporation of 

labeled carbon, although tested soils consistently showed consumption of CH4 (18). PLFA-

SIP with labeled CH4, on the other hand, detected labeling of lipids proposed to be 

characteristic for USCα (4, 15-19). 

In our study, we tested the more sensitive RNA stable isotope probing approach to 

investigate potential incorporation of labeled 13C-CH4 into mRNA of USCα in an upland forest 

soil. RNA-SIP, however, also detected no labeling of USCα and general pmoA transcripts 

after 6 and 10 weeks of incubation with 200 ppmv CH4, although microcosms showed 

consistent uptake of methane. According to Neufeld et al. (23), 5-500 µmol 13C g.d.w. soil-1 

are required for efficient DNA-SIP. For the more sensitive RNA-SIP, these values might even 

be lower (24, 25). This suggests that enough labeled carbon was taken up by soil incubations 

to generally allow for detection of labeling in SIP, but USCα did not incorporate carbon from 

CH4 into nucleic acids and hence were not labeled. It is unlikely that the remaining general 

methanotrophic community in the Marburg forest soil, which besides the predominant USCα 

solely consists of type I methanotrophs (6), was responsible for the methane uptake at 200 

ppmv, since they do not possess a high affinity pMMO required for oxidation of methane <600 

ppmv (10). 

Nonetheless, cells expressing USCα pmoA could still specifically be detected by 

mRNA CARD-FISH in the soil incubated with CH4. This observation could indicate that 

expression of pmoA might not necessarily be coupled to enzyme activity in USCα, as 

previously reported for the type II methanotroph Methylocystis strain H2s, where transcripts of 

pmoA were detected although cells were grown on acetate without addition of methane (12). 

Additionally, Baani and Liesack (10) observed constitutive expression of the pmoCAB2 genes 

encoding for pMMO2, a particulate methane monooxygenase also able to oxidize methane at 

concentrations close to atmospheric level, in Methylocystis sp. strain SC2. As methane 

consumption, however, was observed during the whole incubation period, a more plausible 

explanation could be the use of CH4 by USCα, but solely for energy conservation (or 

restricted as carbon source for e.g. PLFAs) and not as general carbon source, as already 
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suggested for oxidation of atmospheric methane in forest soils (26). In this case, USCα might 

require and assimilate alternative carbon compounds, such as acetate. Furthermore, using 

CARD-FISH we were able to visualize USCα in situ for the first time, showing that cells 

exhibited a small, rod shaped appearance.   

Previous studies already described the ability of several type II methanotrophs to 

assimilate acetate (12, 13) as well as stimulation of atmospheric methane oxidation by 

acetate in an alpine tundra soil (27). Moreover, several Methylocella species were even found 

to be facultative methanotrophs, showing higher growth rates and carbon conversion 

efficiency on acetate than on methane, and inhibition of methane oxidation when acetate was 

present (28). Our results now reveal active assimilation of acetate by upland soil cluster α in a 

forest soil using an RNA-SIP approach. USCα pmoA transcripts were consistently labeled 

during incubation of soil slurries with 10 mM 13C-acetate for 3 weeks. Incubation of wet soil 

did not show any labeling, probably due to insufficient dispersal of the acetate in comparison 

to the slurry incubations. Controls with 12C-acetate and 13CO2 also did not show any labeling, 

confirming that labeling resulted from true label incorporation by assimilation of acetate. 

These findings support that USCα indeed are able to use other carbon sources and are not 

restricted to methane.   

Acetate, however, seems to be rather unsuitable for enrichment or isolation of upland 

soil cluster α from forest soil, since it also served as a carbon source for other 

microorganisms in this soil, which outgrew USCα as observed in stable isotope probing of 

bacterial 16S rRNA genes and transcripts. Addition of acetate also showed no effect on 

oxidation of methane in soil microcosms. But since methane oxidation was inhibited in 

slurries, where distribution of acetate is much better than in the microcosms, we can not 

exclude that this inhibition was due to acetate and could only not be observed in the “normal” 

soil because the major population of USCα did not get access to the acetate. Nevertheless, 

this supports the hypothesis that USCα might only utilize atmospheric CH4 as an additional 

energy source or survival strategy. 

In contrast to the RNA-SIP approach, we were not able to detect labeling of USCα 

pmoA when using DNA-SIP. While RNA-SIP targeting pmoA of upland soil cluster α in the 

slurry incubations clearly demonstrated that acetate was assimilated, DNA-SIP revealed no 

growth of these organisms. Since detection of label incorporation in DNA-SIP depends on 

active replication of cells, we assume that the USCα might have actively assimilated the 13C-

acetate, as seen in RNA-SIP, but probably grew insufficiently for detection in DNA-SIP. This 

is supported by previous findings where growth on acetate in Methylocystis species, initially 

described as obligate methanotrophs, was detected but found to be 3-10 times slower than 

growth on methane (12, 13). This suggests that USCα probably grew too slowly within the 3 

weeks of incubation to be detected in DNA-SIP or that replication did not occur due to still 

unfavourable growth conditions. 

Unlike for USCα, the pmoA transcripts and copies of the general methanotrophic 

community did not show any labeling in RNA- and DNA-SIP after 3 weeks of incubation with 
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13C-acetate. This was not surprising, since the only general methanotrophic bacteria in the 

Marburg forest soil have been found to be type I methanotrophs (6), which so far are not 

reported to possess the ability to utilize acetate. The observation, that pmoA transcripts could 

still be detected in both SIP incubations, although the general methanotrophic community in 

this soil showed neither incorporation of CH4 (at 200 ppmv) nor of acetate, also probably 

indicates a general high stability or large turnover without biosynthesis of new biomolecules of 

pmoA mRNA and other transcripts presumed to be involved in ‘high-affinity’ activities in soils 

and other environments. This has also been observed for pmoA transcripts in anoxic lake 

sediments (Dumont et al., unpublished) and for transcripts of a high-affinity naphthalene 

dioxygenase (NDO) of Acidovorax in a groundwater system (29). 

Considering all these observations, our results provide first insight into the function, 

morphology, and phylogeny of the upland soil cluster α, proposed to be substantially involved 

in the oxidation of atmospheric methane in many upland soils. Our data further strengthens 

the hypothesis that these potential atmospheric methane oxidizers might utilize additional 

carbon compounds for growth, such as acetate, and could use CH4 mainly as energy 

replenishment and survival strategy under limited conditions, suggesting the USCα represents 

rather facultative than obligate methanotrophs. These findings could promote the knowledge 

and understanding of upland soils as a sink for atmospheric methane and the microorganisms 

proposed to be responsible for this process. 

 

III.1.5 Materials and methods 

Soil incubation 

Soil was sampled using 10 cm long soil cores in October 2008 (for CH4 labeling) and in 

August 2009 (for acetate labeling) from a forest soil in Marburg, Germany. The field site and 

soil properties were described previously (4, 6). The soil was homogenized, sieved through 3 

mm mesh and stored at 4°C until further use. The rate of oxidation of ambient (~2 ppmv) CH4 

was measured over a 24 h period. 

Incubation for stable isotope probing with CH4 was performed in duplicates for each 

treatment. Soil (5 g d.w.s) was amended with 1 ml H2O and incubated at 25°C and darkness 

in 120 ml serum bottles capped with butyl stoppers. The methane concentration in the 

headspace was adjusted to and maintained at 2 ppmv, 20 ppmv, and 200 ppmv of CH4 (
12CH4 

or 13CH4), respectively. Every week, bottles were flushed with fresh air and CH4 treatments 

were renewed. An additional incubation with 1000 ppmv 13CO2 was set up as a control for 

secondary labeling.  

Incubation for stable isotope probing with acetate was performed in duplicates for each 

treatment. Soil (20 g d.w.s.) was amended with a final concentration of 10 mM acetate (12C or 
13C), dissolved in 6 ml H2O, 20 ml H2O, or 40 ml of medium DSMZ 922 (designed for 

Methylocapsa acidiphila; 7), respectively. Fully labeled 13C2 sodium acetate (99 atom%) was 

purchased from Campro Scientific GmbH. Incubations were performed on a shaker (200 rpm) 
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at 25°C and darkness in 250 ml Schott bottles capped loosely to allow incubations to stay 

oxic. An additional incubation with 5% 13CO2 was set up as a control for secondary labeling. 

Acetate-free controls received an equal amount of distilled water. Every week, acetate 

treatments were renewed. 

 

Chemical analyses 

For chemical analysis of pH and acetate, aliquots of the soil were removed weekly from each 

treatment. Concentrations of acetate in the microcosms incubated with either labeled or 

unlabeled acetate were analyzed by high pressure liquid chromatography (HPLC; Thermo 

Fisher Scientific, San Jose, CA, USA). For SIP incubations with methane, consumption of 

CH4 was monitored by gas chromatography (SRI 8610C gas chromatograph equipped with a 

flame ionization detector; SRI Instruments, Torrance, CA, USA). The 13CH4 (99 atom%) was 

purchased from Sigma-Aldrich Co. 

 

Nucleic acid extraction and SIP fractionation 

For both SIP incubations, every week 0.5 g of soil of each bottle were sampled, frozen 

immediately in liquid nitrogen and stored at -80°C until further processing. Nucleic acids were 

extracted from soil using a hexadecyltrimethylammonium bromide (CTAB) -based protocol 

(30) with minor modifications. Soil (0.5 g) was mixed with 200 µl of zirconia-silica beads (0.1 

mm; Roth, Karlsruhe, Germany), 0.5 ml of 6% CTAB extraction buffer, and 0.5 ml phenol 

chloroform isoamyl alcohol (25:24:1) in 2.0 ml screw-cap tubes. Cells were lysed in a 

FastPrep instrument (MP Biomedicals, Eschwege, Germany) for 30 s at 5.5 m s-1 and 

supernatants were extracted using twice phenol chloroform isoamyl alcohol (25:24:1) and 

chloroform isoamyl alcohol (24:1). Nucleic acids were precipitated with polyethylene glycol 

(PEG) 6000 solution (30%) and dissolved in 100 µl of nuclease free water. In case of the 

incubations with acetate, the samples showed a high release of fulvic and humic acids and 

had to be further purified using Illustra MicroSpin S-400 HR spin columns (GE Healthcare, 

Little Chalfont, UK) according to the manufacturer’s instructions (31).  

For stable isotope probing of RNA, 50 µl of extract were treated with RNase-free DNase I for 

digestion of DNA. RNA was purified using the RNeasy Mini Kit (Qiagen, Hilden, Germany) 

and stored at -80°C until further usage. Integrity of nucleic acids was checked on agarose 

gels and concentration was determined using a NanoDrop instrument (Thermo Fisher 

Scientific, Schwerte, Germany).  

Stable isotope probing fractionation of total DNA extract (5.0 µg) was performed with an initial 

cesium chloride (CsCl) buoyant density of 1.72 g ml-1 subjected to centrifugation at 177 000 x 

g for 36 h at 20°C (32). Gradient centrifugation of RNA was carried out in cesium 

trifluoroacetate (CsTFA) as described previously (32) with an initial buoyant density of 1.79 g 

ml-1 and centrifugation at 130 000 x g for 65 h at 20°C. DNA- and RNA-gradients were 

fractionated from bottom to top by displacing the gradient medium with nuclease free water at 

the top of the tube using a syringe pump (Kent Scientific, Torrington, CT, USA) at a flow rate 
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of 0.45 ml min-1, generating twelve fractions per density gradient. The density of each fraction 

was determined by refractometry (Reichert, Depew, NY, USA). DNA was recovered by PEG 

6000 precipitation with glycogen (23) and dissolved in 30 µl of nuclease free water. RNA was 

precipitated from CsTFA with two volumes of ethanol and 20 µg glycogen and resuspended in 

10 µl of nuclease free water. RNA samples from density gradient fractions were reverse 

transcribed with random hexamer primers and SuperScript III reverse transcriptase 

(Invitrogen, Darmstadt, Germany). 

 

Quantitative PCR of pmoA and 16S rRNA genes 

The abundance of USCα pmoA genes and transcripts in the different SIP fractions was 

quantified by quantitative PCR (qPCR) using primers A189f and Forest675r as previously 

described (33). The 25 µl reaction mixture contained 12.5 µl of SYBRGreen Jump-Start™ Taq 

ReadyMix™, 1 µM of each primer, 500 ng BSA ml-1, 4.0 mM MgCl2, 1.0 µl template DNA or 

cDNA (33).  

The abundance of general pmoA genes and transcripts in the different SIP fractions was 

quantified by qPCR using primers A189f and mb661 as previously described (33). The 25 µl 

reaction mixture contained 12.5 µl of SYBRGreen Jump-Start™ Taq ReadyMix™, 0.667 µM 

of each primer, 4 mM MgCl2, 1.0 µl template DNA or cDNA. 

qPCR of bacterial 16S rRNA genes and transcripts was performed using primers Ba519f and 

Ba907r as previously described (34). The 25 µl reaction mixture contained 12.5 µl of 

SYBRGreen Jump-Start™ Taq ReadyMix™, 0.25 µM of each primer, 200 ng BSA ml-1, 4 mM 

MgCl2, 1.0 µl template DNA or cDNA. 

All assays were performed in an iCycler™ (Applied Biosystems, Darmstadt, Germany), 

respective qPCR standards were used and controls were always run with water instead of 

DNA or cDNA extract. 

 

CARD-FISH of USCα pmoA mRNA 

To generate controls for mRNA CARD-FISH, partial pmoA genes of USCα from soil (positive 

control) and of Methylocapsa acidiphila DSM13967 and Methylocystis sp. SC2 (negative 

controls) were cloned into E. coli Top10 competent cells using primers A189f/Forest675r (33) 

for soil and A189f/A682r (35) for pure cultures, respectively, and expressed by using vector 

pBAD as previously described by Pernthaler and Amann (20). Clones were fixed in 2% 

(vol/vol) formaldehyde for 30 min at room temperature, centrifuged, and washed once with 

PBS and twice with 50% ethanol in PBS. Cells from the soil incubations after 10 weeks of 

incubation with 200 ppmv CH4 were extracted using a Nycodenz density centrifugation 

method (36), fixed in 4% (vol/vol) formaldehyde for 12-16 h at 4°C, centrifuged, and washed 

once with PBS. Cells were then resuspended in 50% ethanol in PBS and stored at -20°C until 

further processing. Polynucleotide antisense RNA probes of USCα pmoA were generated by 

in vitro transcription and were simultaneously labeled by incorporating digoxigenin-11-UTP 

(Roche Molecular Diagnostics, Basel, Switzerland) (37). The hybridization and detection 
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procedures were based on the protocol described by Pernthaler and Amann (20), with some 

minor modifications. Five microlitres of cell suspensions were applied to each well of a Teflon-

coated glass slide (MAGV, Marburg, Germany) and dried at 46°C. Expression clones of pmoA 

were permeabilized with lysozyme (5 mg ml-1 in Tris-EDTA buffer (TE); Sigma, Taufkirchen, 

Germany) for 30 min at room temperature. Hybridization was performed overnight at 58°C 

using a formamide concentration of 50% in the hybridization buffer. Finally, slides were 

stained with 4’,6-diamidino-2-phenylindole (DAPI), mounted with the antifading agent Citifluor 

AF1 (Citifluor, London, UK), and hybridization preparations were visualized by fluorescence 

microscopy (Axiophot; Carl Zeiss Microimaging GmbH, Jena, Germany). 

 

Acknowledgements 

We thank Peter Claus, Melanie Klose, and Bianca Pommerenke for skillful technical 

assistance. 

 



III. USCα in upland forest soil 
 

 

 87

III.1.6 Supplementary material 

 

SI figure 1. Uptake of methane in soil microcosms (A; 20 g of Marburg forest soil) and slurries (B; 20 g 

of Marburg forest soil mixed with 40 ml medium DSM 922) incubated under 20 ppmv and 100 ppmv of 

methane and amended with different concentrations of acetate (100, 400, or 800 µg g-1 d.w.s.). Methane 

concentrations were measured by gas chromatography. 

 

 
 

 
 

 

SI figure 2. Distribution of pmoA transcripts of general methanotrophs in RNA-SIP after 10 weeks of 

incubation with 200 ppmv CH4 (
12C or 13C). Distribution of pmoA transcripts was measured by real-time 

PCR of cDNA from gradient fractions. 
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SI figure 3. Distribution of bacterial 16S rRNA transcripts (a-c) and genes (d-f) in RNA-SIP and DNA-

SIP gradients, respectively, after 3 weeks of incubation with 10 mM acetate (12C or 13C). Acetate was 

added to the soil dissolved in 6 ml H2O (wet soil), 20 ml H2O (slurry H2O), or 40 ml of medium DSMZ 

922 (slurry medium), respectively. Distribution of bacterial 16S rRNA transcripts and genes was 

measured by real-time PCR of cDNA and DNA from gradient fractions. 

 

 
 
 
 

 
SI figure 4. Distribution of pmoA and bacterial 16S rRNA transcripts (A) and genes (B) in RNA-SIP and 

DNA-SIP gradients, respectively, after 3 weeks of incubation with 5% 13CO2. Distribution of transcripts 

and genes was measured by real-time PCR of cDNA and DNA from gradient fractions. 
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III.2 RING-FISH and enrichment of Upland Soil Cluster α in Marburg forest soil 

III.2.1 RING-FISH and cell sorting of Upland Soil Cluster α 

The probes that were designed for application of RING-FISH were first tested with E. coli 

clones harboring the partial gene of the particulate methane monooxygenase (pmoA) of 

Upland Soil cluster α from Marburg forest soil as positive control and partial pmoA genes of 

Methylocapsa acidiphila and Methylocystis sp. strain SC2 as negative controls. RING-FISH 

for all probes was evaluated under formamide concentrations of 5-55%. The potential of the 

probes to form secondary structures was analysed in silico (RNAdraw V1.1, 

www.rnadraw.com, Matzura et al., 1996). It was suggested (Zwirglmaier et al., 2003) that the 

feature of RNA polynucleotide probes to form a network within and around the cell envelope 

is decisive for the appearance of halo signals of target bacteria.  

 

III.2.1.1 RING-FISH with long RNA polynucelotide probe MF02 

The long RNA polynucleotide probe MF02 (~500 bp), derived from the PCR product of an 

USCα soil clone (see II.10.1), was analysed in silico using RNAdraw and showed a high 

potential to form secondary structures at hybridization conditions of 53°C and 15% of 

formamide (see figure III.2-1).  

 

Figure III.2-1: Secondary structure model (RNAdraw V1.1) of USCα pmoA RNA polynucleotide probe 

MF02 (~500 bp) with 15% formamide in the hybridization buffer and hybridization temperature of 53°C.  

 

Because USCα has not been isolated so far, no “real” cells of this cluster could be used as 

positive control for RING-FISH. Therefore, clones harboring the partial gene of the particulate 

methane monooxygenase of USCα from Marburg forest soil were used as positive control. 

These cells showed bright whole cell fluorescence after hybridization. Occasionally, halo 

signals could also be observed, but only in small, single areas on the well, never in larger 

areas or as dominating signal type after hybridization (see figure III.2-2). This was 
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independent from formamide concentration and incubation time. Above a formamide 

concentration of 35%, all signals completely disappeared.    

 

 

Figure III.2-2: Halo signals (A) and whole cell fluorescence (C) observed after RING-FISH of particulate 

methane monooxygenase (pmoA) genes of USCα in clones harboring pmoA of Upland Soil cluster α 

(positive control) using polynucleotide probe MF02. Fluorescence images (A and C) and respective 

phase contrast (B and D). Bars = 10 µm. 

 

The negative controls, E. coli clones harboring pmoA of Methylocapsa acidiphila and 

Methylocystis sp. strain SC2, also continuously showed whole cell fluorescence after RING-

FISH, independent from formamide concentration and incubation time (see figure III.2-3). 

Above a formamide concentration of 35%, signals completely disappeared. This indicates that 

hybridizations were not specific enough to target only pmoA of USCα, since successfull 

discrimination between the control clones could not be achieved with polynucelotide probe 

MF02.  
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Figure III.2-3: Whole cell fluorescence observed after RING-FISH of particulate methane 

monooxygenase (pmoA) genes of USCα in clones harboring pmoA of Methylocapsa acidiphila (A and B) 

and Methylocystis sp. strain SC2 (C and D) (negative controls) using polynucleotide probe MF02. 

Fluorescence images (A and C) and respective phase contrast (B and D). Bars = 10 µm. 

 

To exclude the possibility that these observations resulted from cells damaged by wrong 

fixation, thawing, or other circumstances, clones were fixed new every month and only fresh 

aliquots were used for hybridization. Also clones fixed with 2% paraformaldehyde instead of 

4% were tested. But all hybridizations resulted in either whole cell fluorescence or no signal of 

the positive and negative controls. 

Another negative control for RING-FISH was represented by Methylocapsa acidiphila. This 

was done to test whether actual methanotroph cells might behave differently in the 

hybridization procedure compared to clones harboring the same target gene. Methylocapsa 

acidiphila cells showed no signal after RING-FISH of pmoA gene of USCα in contrast to the 

E. coli harboring the same pmoA gene. This observation was independent from formamide 

concentration and incubation time, suggesting that the different cell morphologies of clones 

and the methanotroph might have had a significant impact on the hybridization results and 

therefore clones might not be universally applicable as controls in RING-FISH. Above a 

formamide concentration of 80%, cells suddenly showed a bright halo signal (see figure III.2-

4). To test the specificity of this halo signal, cells of Methylocapsa acidiphila were also 

hybridized with a probe targeting archaeal amoA as a negative control, also leading to bright 

halo signals. This indicates that formamide concentrations of 80% and above might have 

damaged the cell wall and allowed for unspecific formation of the probe network. 
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Figure III.2-4: Unspecific halos signals observed after RING-FISH of particulate methane 

monooxygenase (pmoA) genes of USCα in Methylocapsa acidiphila (negative control) at formamide 

concentration of 80% using polynucleotide probe MF02. Fluorescence image (A) and respective phase 

contrast (B). Bars = 10 µm. 

 

Hybridizations using RING-FISH probe MF02 with cells extracted from Marburg forest soil 

using Histodenz density gradient centrifugation (see II.10.3) showed sporadic halo signals 

when hybridized at 53°C with 15% formamide in the hybridization buffer (see figure III.2-5). 

Due to the unspecific results obtained with the clones, however, no statement can be made 

about the specificity of these signals in soil. 

 

 

Figure III.2-5: Halo signals observed after RING-FISH of particulate methane monooxygenase (pmoA) 

genes of USCα in cells extracted from Marburg forest soil using polynucleotide probe MF02. 

Fluorescence images (A and C) and respective phase contrast (B and D). Bars = 10 µm. 
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III.2.1.2 RING-FISH with monospecific oligo-oligonucleotide probes  

The monospecific RNA oligo-oligonucleotide probe MF08_25-175 (175 bp) targeting pmoA of 

USCα (see II.10.5.2), was analysed in silico using RNAdraw and showed a high potential to 

form secondary structures at hybridization conditions of 53°C and 15% of formamide (see 

figure III.2-6). 

 

Figure III.2-6: Secondary structure model (RNAdraw V1.1) of monospecific USCα pmoA RNA oligo-

oligonucleotide probe MF08_25-175 (175 bp) with 15% formamide in the hybridization buffer and 

hybridization temperature of 53°C.  

 

Also using this probe, cells from clones harboring pmoA of Upland Soil cluster α (positive 

control) showed bright whole cell fluorescence and only single partial halos, independent from 

formamide concentration and incubation time (see figure III.2-7). Above a formamide 

concentration of 30% and below an incubation time of 12 h, signals completely disappeared.   

 

Figure III.2-7: Partial halo signals (A) and whole cell fluorescence (C) observed after RING-FISH of 

particulate methane monooxygenase (pmoA) genes of USCα in clones harboring pmoA of Upland Soil 

cluster α (positive control) using the monospecific oligo-oligonucleotide probe MF08_25-175. 

Fluorescence images (A and C) and respective phase contrast (B and D). Bars = 10 µm.  
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The same was observed with the negative controls, clones harboring pmoA of Methylocapsa 

acidiphila and Methylocystis sp. strain SC2. Cells consistently showed whole cell 

fluorescence, independent from formamide concentration and incubation time (see figure III.2-

8). Above a formamide concentration of 30%, signals completely disappeared. This shows 

that also with this probe, no successful discrimination between the control clones to target 

pmoA of USCα could be achieved.  

 

 

Figure III.2-8: Whole cell fluorescence observed after RING-FISH of particulate methane 

monooxygenase (pmoA) genes of USCα in clones harboring pmoA of Methylocapsa acidiphila (A and B) 

and Methylocystis sp. strain SC2 (C and D) (negative controls) using the monospecific oligo-

oligonucleotide probe MF08_25-175. Fluorescence images (A and C) and respective phase contrast (B 

and D). Bars = 10 µm.  

 

Also with probe MF08_25-175, hybridizations using RING-FISH with cells extracted from 

Marburg forest soil using Histodenz density gradient centrifugation (see II.10.3) showed 

sporadic halo signals when hybridized at 53°C with 15% formamide in the hybridization buffer 

(see figure III.2-9). Due to the unspecific results obtained with the clones, however, no 

statement can be made about the specificity of these signals in soil. 
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Figure III.2-9: Halo signals observed after RING-FISH of particulate methane monooxygenase (pmoA) 

genes of USCα in cells extracted from Marburg forest soil using the monospecific oligo-oligonucleotide 

probe MF08_25-175. Fluorescence image (A) and respective phase contrast (B). Bars = 10 µm. 

 

 

The monospecific RNA oligo-oligonucleotide probe RA14_GC121 (121 bp) targeting pmoA of 

USCα (see II.10.5.2), was analysed in silico using RNAdraw and showed a high potential to 

form secondary structures at hybridization conditions of 53°C and 10% of formamide (see 

figure III.2-10). 

 

 

Figure III.2-10: Secondary structure model (RNAdraw V1.1) of monospecific USCα pmoA RNA oligo-

oligonucleotide probe RA14_GC121 (121 bp) with 10% formamide in the hybridization buffer and 

hybridization temperature of 53°C. 

 

After RING-FISH and detection, cells from clones harboring pmoA of Upland Soil cluster α 

(positive control) showed bright whole cell fluorescence and also only single partial halos, 

independent from formamide concentration and incubation time (see figure III.2-11). Above a 

formamide concentration of 30% and below an incubation time of 12 h, signals completely 

disappeared. 



III. USCα in upland forest soil 
 

 

 98

 

Figure III.2-11: Partial halo signals and whole cell fluorescence observed after RING-FISH of particulate 

methane monooxygenase (pmoA) genes of USCα in clones harboring pmoA of Upland Soil cluster α 

(positive control) using the monospecific oligo-oligonucleotide probe RA14_GC121. Fluorescence 

images (A and C) and respective phase contrast (B and D). Bars = 10 µm.  

 

Like for the monospecific oligo-oligonucleotide probe RA14_GC121, negative controls, clones 

harboring pmoA of Methylocapsa acidiphila and Methylocystis sp. strain SC2, continuously 

showed whole cell fluorescence after RING-FISH, independent from formamide concentration 

and incubation time (see figure III.2-12). Above a formamide concentration of 30%, signals 

completely disappeared. These results indicate that there was no difference in the 

hybridization efficiency and specificity between probe MF08_25-175 with poly-A spacer 

regions and probe RA14_GC121 containing GC spacers. Also with probe RA14_GC121, 

specific hybridization of only USCα pmoA was not possible.  
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Figure III.2-12: Whole cell fluorescence observed after RING-FISH of particulate methane 

monooxygenase (pmoA) genes of USCα in clones harboring pmoA of Methylocapsa acidiphila (A and B) 

and Methylocystis sp. strain SC2 (C and D) (negative controls) using the monospecific oligo-

oligonucleotide probe RA14_GC121. Fluorescence images (A and C) and respective phase contrast (B 

and D). Bars = 10 µm. 

 

As for the other probes, hybridizations using RING-FISH with probe RA14_GC121 cells 

extracted from Marburg forest soil using Histodenz density gradient centrifugation (see 

II.10.3) resulted in sporadic halo signals when hybridized at 53°C with 15% formamide in the 

hybridization buffer (see figure III.2-9). But again, due to the unspecific results obtained with 

the clones, no statement can be made about the specificity of these signals in soil. 

 

 
Figure III.2-13: Halo signals observed after RING-FISH of particulate methane monooxygenase (pmoA) 

genes of USCα in cells extracted from Marburg forest soil using the monospecific oligo-oligonucleotide 

probe RA14_GC121. Fluorescence image (A) and respective phase contrast (B). Bars = 10 µm. 
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III.2.3 Cell sorting 

Cell sorting was applied despite the unspecific RING-FISH results to test whether the probe 

networks around the target cells, essential for efficient cell sorting, after RING-FISH might be 

present but just not visible due to additional whole cell fluorescence. Cell sorting was carried 

out with E. coli clones harboring pmoA of USCα (positive control) or of Methylocapsa 

acidiphila (negative control), respectively, using RING-FISH RNA polynucleotide probe MF02 

and monospecific oligo-oligonucelotide probe RA14_GC121 targeting the pmoA gene of 

Upland Soil cluster α methanotrophs for hybridization in solution (see II.10.5.1.2 and 

II.10.5.2.2) prior to immobilization (see II.10.5.4). The microplate was directly used for PCR of 

the bacterial 16S rRNA gene. PCR directly targeting pmoA of USCα could not be used 

because this would also have amplified the pmoA DNA coating present in the wells. 

In most of the cell sorting approaches, no 16S rRNA gene PCR products of both clones were 

detectable. If the washing steps were decreased, PCR products could be detected, but were 

random and unspecific (see figure III.2-14), comparable to the RING-FISH results.  

 

 

Figure III.2-14: Unspecific PCR detection of E. coli clones harboring pmoA of USCα (positive control) or 

of Methylocapsa acidiphila (negative control) obtained after immobilization with reduced washing steps. 

For RING-FISH in solution, USCα pmoA gene targeted RING-FISH probe MF02 was used. 

 

This suggests that for the clones, no network formation of probe during RING-FISH in solution 

took place, hence cells could not hybridize to the DNA-coating of the wells, were finally 

washed out and not detected by PCR. Fewer washing steps led to unhybridized cells 

remaining in the wells, which were then detected by PCR. Specific and successful cell sorting 

could not be observed. Cells extracted from Marburg forest soil were also used as positive 
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control for cell sorting but detected bands were also very random and not linked to formamide 

concentration in the hybridization buffer. This might have resulted from unhybridized cell 

aggregates remaining in the wells, leading to different results in every immobilization. 

 

III.2.2 Enrichment approaches of Upland Soil Cluster α 

III.2.2.1 Enrichment approach 1: Soil substrate membrane system (SSMS) 

Enrichment or isolation of Upland Soil cluster α using conventional isolation strategies and 

media so far remained unsuccessful. Therefore, the soil substrate membrane system (SSMS) 

was tested in this study as an approach to enrich USCα because this technique closely 

mimics the natural terrestrial environment of soil bacteria, providing natural non-sterilized wet 

soil as the sole growth component in immediate contact with a polycarbonate membrane as a 

surface for microcolony formation. The system was set up using Marburg forest soil, 

incubated with 20 ppmv CH4 and potential growth of USCα was monitored using mRNA 

CARD-FISH (see II.10.6.2) and qPCR (see II.8). 

The SSMS consumed about 403 nmol CH4 per week, throughout the whole incubation period. 

After 3 weeks of incubation in the SSMS, mRNA CARD-FISH of USCα pmoA detected single 

cells, but no microcolonies on the filter pieces (see figure III.2-14).   

 

 

Figure III.2-14: Detection of USCα pmoA mRNA transcripts by application of CARD-FISH with USCα 

pmoA antisense probe on filters of soil substrate membrane system after 3 weeks of incubation with 20 

ppmv CH4. Fluorescence images for pmoA CARD-FISH (A and C) and respective phase contrast (B and 

D). Bars = 10 µm. 
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Also after 6 weeks of incubation, still no microcolonies could be observed by CARD-FISH, 

only single cells (see figure III.2-15). This indicates that USCα cells were present on the filters 

and actively transcribed pmoA but did not grow during the 6 weeks of incubation under 20 

ppmv CH4. Quantitative PCR with DNA extracts from filter pieces detected pmoA genes of 

USCα throughout the whole incubation period. Copy numbers, however, were not 

comparable, because quantities varied too much between duplicates and different incubation 

time points, probably due to an uneven distribution of the cells on the filters. 

 

 

Figure III.2-15: Detection of USCα pmoA mRNA transcripts by application of CARD-FISH with USCα 

pmoA antisense probe on filters of soil substrate membrane system after 6 weeks of incubation with 20 

ppmv CH4. Fluorescence images for pmoA CARD-FISH (A and C) and respective phase contrast (B and 

D). Bars = 10 µm. 
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III.2.2.2 Enrichment approach 2: Incubation of Marburg forest soil with 

alternating acetate and CH4 treatments 

Because of recent results showing that methanotrophs are capable of using acetate as 

carbon source (West & Schmidt, 1999; Dunfield et al., 2010), an enrichment approach was 

set up using alternating incubation periods of acetate and methane. The intention was to 

provide acetate for growth to USCα and methane for survival in between the acetate 

incubation when acetate was completely depleted. In increasing cycles, this should lead to 

the starvation of the microbial community during absence of acetate and to an enrichment of 

methanotrophs like USCα, which can survive on methane but might not necessarily grow on 

it. Normal soil (20 g) and slurry (20 g soil + 40 ml of medium DSM 922, see table II.2-1) 

microcosms were incubated under 2 ppmv, 20 ppmv, and 100 ppmv of methane, respectively, 

with three different concentrations of acetate (100, 400, or 800 µg g-1 d.w.s.). HPLC analysis 

(see II.4.5) showed that acetate was completely consumed in all incubations within 2 days 

after addition. The soil microcosms consistently oxidized methane during the incubation time 

(see figure III.2-16). Methane oxidation was higher using 100 ppmv CH4 compared to 20 

ppmv. The different acetate treatments did not affect methane uptake. Consumption of 

methane in the 2 ppmv incubations could not be measured, because bottles were constantly 

exposed to fresh air to avoid limitation of methane in the microcosms.  
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Figure III.2-16: Uptake of methane in soil microcosms incubated under 20 ppmv and 100 ppmv of 

methane and amended with different concentrations of acetate (100, 400, or 800 µg g-1 d.w.s.). Methane 

concentrations were measured by gas chromatography. 

 

The slurry microcosms consumed much less methane in comparison to the “normal” soil 

incubations (see figure III.2-17), possibly due to disturbance of the USCα during shaking. But 

also in this case, the different acetate treatments had no effect on the methane consumption.  

 



III. USCα in upland forest soil 
 

 

 104

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

days after CH4 addition

C
H

4 
co

nc
en

tr
at

io
n 

[p
pm

v] 100 µg - 100 ppmv

400 µg - 100 ppmv

800 µg - 100 ppmv

100 µg - 20 ppmv

400 µg - 20 ppmv

800 µg - 20 ppmv

 

Figure III.2-17: Uptake of methane in slurry microcosms (with medium DSM 922) incubated under 20 

ppmv and 100 ppmv of methane and amended with different concentrations of acetate (100, 400, or 800 

µg g-1 d.w.s.). Methane concentrations were measured by gas chromatography. 

 

After 4 cycles of acetate addition (~12 weeks), T-RFLP of the bacterial 16S rRNA genes in 

the microcosms incubated under 100 ppmv CH4 and treated with 400 µg acetate g-1 d.w.s. 

showed a strong enrichment of a 154 bp fragment in comparison to the untreated Marburg 

forest soil (see figure III.2-18). 

 

 

Figure III.2-18: T-RFLP analysis of bacterial 16S rRNA genes from soil microcosms. Untreated Marburg 

forest soil (A) and soil microcosms incubated under 100 ppmv CH4 and treated with 400 µg acetate g-1 

d.w.s. for 12 weeks (B and C) .  
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Soil from these incubations was inoculated into 20 ml of medium DSM 922 with 100 µg 

acetate ml-1 and 100 ppmv CH4, and shaken at ~170 rpm and 25°C in the dark. After 1 week, 

the enrichments turned slightly turbid and were further inoculated into fresh medium. After 2 

further inoculations, turbid growth could be observed within 2 days. The bacterial composition 

of these enrichments was checked by T-RFLP, showing the enrichments were nearly pure 

cultures with one very dominant peak at 154 bp fragment length (see figure III.2-19), as 

observed in the initial incubations.   

   

 

Figure III.2-19: T-RFLP analysis of bacterial 16S rRNA genes in enrichment culture. Restriction analysis 

was performed using MspI restriction enzyme. 

 

pmoA, however, could not be detected by PCR, which was supported by the fact that the 

enrichments did not consume methane and were not able to grow without addition of acetate. 

Quantitative PCR of pmoA (see II.8) also detected no growth of USCα. Copy numbers 

remained stable at around 14.2±0.11 x105 pmoA copies per gram dry weight of soil. 

Furthermore, the bacterial 16S rRNA gene contributing to the 154 bp peak observed in the T-

RFLP, was cloned and sequenced. Sequence analysis using NCBI nucleotide BLAST 

(www.ncbi.nlm.nih.gov/BLAST/) revealed that the sequence showed highest similarity to 

Burkholderia species (see figure III.2-20). This strongly indicates that USCα was not enriched 

in the soil microcosms, instead were other microorganisms, which were able to survive 

between the acetate treatments and finally overgrew the bacterial population.   

 

 

Figure III.2-20: 16S rRNA gene sequence comparison of enrichment culture using nucleotide BLAST. 

  154 bp 
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IV.1 Abstract 

Ammonia oxidation is an essential part of the global nitrogen cycling and was long thought to 

be driven only by Bacteria. Recent findings, however, expanded this pathway also to the 

Archaea. But most questions concerning the metabolism of ammonia oxidizing archaea, like 

ammonia oxidation and potential CO2 fixation, yet remain open, especially for terrestrial 

environments. Here, we investigated the activity of ammonia oxidizing archaea and bacteria 

in an agricultural soil by comparison of RNA- and DNA-stable isotope probing. RNA-SIP 

demonstrated CO2 assimilation coupled to ammonia oxidation by Archaea and Bacteria in an 

agricultural soil, while DNA-SIP showed no growth of ammonia oxidizing archaea, in contrast 

to their bacterial counterparts. Furthermore, the analysis of labeled RNA found transcripts of 

the archaeal acetyl-CoA/propionyl-CoA carboxylase (accA/pccB) to be expressed and 

labeled. This strongly suggests that ammonia oxidizing archaea in soil autotrophically fix CO2 

using the 3-hydroxypropionate-4-hydroxybutyrate cycle, one of the two new pathways 

recently discovered for CO2 fixation in Crenarchaeota. CARD-FISH targeting amoA mRNA 

and 16S rRNA of Archaea also revealed ammonia oxidizing archaea to be numerically 

relevant among the Archaea in this soil. Our results demonstrate that the contribution of 

ammonia oxidizing archaea in soil to nitrification and CO2 assimilation and their importance to 

the overall archaeal community might be larger than previously thought. 

 

IV.2 Introduction 

Ammonia oxidation, the first step in nitrification, is crucial for the global nitrogen cycle. While 

for a long time bacteria were believed to be solely responsible for this process and to 

exclusively possess the genes for the ammonia monooxygenase (AMO), the key enzyme of 

nitrification (1), there is now increasing evidence that also Archaea are involved. amoA genes 

of Archaea encoding subunit A of ammonia monooxygenase have been found to occur in a 

wide variety of environments including marine systems, hot springs, and soils (2-5). 
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Furthermore, molecular studies revealed that ammonia oxidizing archaea often outnumber 

the nitrifying Bacteria in most environments by orders of magnitude (3, 5, 6). These findings 

all demonstrate the potentially significant role of Archaea in the process of nitrification. New 

evidence also suggests the assignment of the ammonia oxidizing archaea to the new 

archaeal phylum Thaumarchaeota instead of to the Crenarchaeota (7, 8). In addition, these 

Archaea may be of importance for the global carbon cycle. The ammonia oxidizing archaea 

isolated from aquatic environments were all shown to be autotrophs (9-11), like their bacterial 

counterparts, and analysis of 13C-bicarbonate labeled lipid biomarkers of natural 

Crenarchaeota in the North Sea indicated an autotrophic metabolism (12). However, it is still 

unclear whether this also applies to ammonia oxidizing archaea in soil and to what extent they 

are functionally active. An answer to this question and a link of phylogeny to function could be 

provided by stable isotope probing (SIP) of nucleic acids. This technique allows the specific 

identification of microorganisms assimilating labeled substances, most commonly carbon from 

a particular 13C-labeled substrate (13). Direct demonstration of ammonia oxidation by this 

method is not possible, as nitrite, the product of ammonia oxidation, is not assimilated. But 

assuming that ammonia oxidation is coupled to autotrophic CO2 fixation, one should be able 

to identify the active autotrophic ammonia oxidizing prokaryotes using SIP. So far, DNA-SIP 

analyses successfully showed autotrophy of ammonia oxidizing bacteria in sediments of a 

lake (14) and an estuary (15), but failed to detect CO2 fixation of ammonia oxidizing archaea 

in agricultural soil (16), although potential activity of these Archaea in soil was reported before 

(26, 53). Efficiency of DNA-SIP, however, depends solely on replication of cells, thus 

excluding microorganisms that might be active but not growing. In this case, stable isotope 

probing of RNA (17) is assumed to yield more detailed information regarding activity. 

The aim of this study was to investigate CO2 assimilation linked to nitrification of ammonia 

oxidizing prokaryotes in an agricultural soil using RNA-SIP and DNA-SIP in comparison. We 

also wanted to detect expression of archaeal amoA by mRNA catalyzed reporter deposition – 

fluorescence in situ hybridization (CARD-FISH). Our findings provide novel evidence that the 

contribution of nitrifying Archaea to ammonia oxidation and CO2 fixation in terrestrial 

environments might be substantial. 
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IV.3 Results 

Nitrification activity in SIP incubations 

For stable isotope probing, agricultural soil microcosms were incubated with 5% 13C-labeled 

or unlabeled 12C-CO2 for 12 weeks. Concentrations of 1–5% CO2 are considered typical in 

soil (18). Weekly fertilization of the soil with either 15 µg or 100 µg (NH4)2SO4-N g-1 d.w.s. 

resulted in stepwise production and increase of nitrate (SI Fig. 1), while concentration in the 

unfertilized control did not increase. As expected, the largest nitrate production was observed 

in the microcosms fertilized with the higher concentration of ammonia (100 µg N g-1 d.w.s.). 

Ammonium and nitrite did not accumulate over time, indicating that nitrate production indeed 

resulted from ammonia oxidation. Ammonia and nitrate concentrations were not balanced 

because net nitrification generally underestimates gross nitrification in soils due to additional 

nitrogen cycling (54).   

 

RNA stable isotope probing   

For RNA stable isotope probing of ammonia-oxidizing prokaryotes buoyant density 

centrifugation was conducted with all respective RNA extracts from 12C and 13C microcosms 

after 8 and 12 weeks of incubation. The quantitative distribution of archaeal and bacterial 

amoA transcripts in these gradients was analyzed by qPCR of cDNA (Fig. 1). The obtained 

copy numbers represent mean results from the triplicate microcosms and repeated qPCR 

analyses. After 8 weeks of incubation with 5% 13CO2 and fertilization with 15 µg N g-1 d.w.s. 

the copy number of archaeal amoA transcripts was highest in the ‘light’ RNA fraction (1.77 - 

1.79 g ml-1), but also showed detectable labeling in the ‘heavy’ fraction  (1.81 – 1.83 g ml-1) 

already (Fig. 1a). This could not be seen in the fertilization treatment with 100 µg N g-1 d.w.s. 

(Fig. 1c). Instead, here a shift of the archaeal amoA mRNA towards the partially labeled, 

‘intermediate’ gradient fraction (1.79 – 1.80 g ml-1) of 13C gradients was observed. This 

indicates that Archaea might have been inhibited by the elevated ammonia concentration in 

the 100 µg N g-1 d.w.s. treatment, resulting in a slower activation and lower activity of 

ammonia oxidation. This is supported by the 12-week incubations. While the archaeal amoA 

transcripts in the 15 µg N g-1 d.w.s. treatment were nearly completely shifted into the ‘heavy’ 

fraction (Fig. 1b), the transcripts of the 100 µg N g-1 d.w.s. fertilization were still only partially 

labeled (Fig. 1d). The copy number of bacterial amoA transcripts, on the other hand, already 

peaked after 8 weeks of incubation in the fractions with ‘heavy’ RNA from the 13CO2 treatment 

(Fig. 1e and g), suggesting that the ammonia oxidizing bacteria were probably activated more 

rapidly and synthesised new mRNA faster than their archaeal counterparts. Here, the labeling 

was stronger in the 100 µg N g-1 d.w.s. treatment (Fig. 1e) than in the microcosms fertilized 

with 15 µg N g-1 d.w.s. (Fig. 1g). After 12 weeks, bacterial amoA mRNA of both treatments 

was completely shifted to the ‘heavy’ fraction (Fig. 1f and 1h). No labeling was observed in 

the unfertilized treatment and the controls with 12CO2 (SI Fig. 2), demonstrating that the 

‘heavy’ RNA from the other gradients indeed resulted from true label incorporation into 
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selected microbes in SIP (19, 20). The fact that no labeling was observed in the unfertilized 

treatment also shows that CO2 fixation was coupled to ammonia oxidation. 

 

 

 
Fig. 1. Distribution of amoA transcripts from Archaea (a-d) and Bacteria (e-h) in RNA-SIP gradients after 

8 (a, c, e, and g) and 12 (b, d, f, and h) weeks of incubation with 13CO2 and fertilization with either 15 µg 

(a-b, e-f) or 100 µg (c-d, g-h) (NH4)2SO4-N g-1 d.w.s.. Distribution of amoA transcripts was measured by 

qPCR of cDNA from gradient fractions. 

 
 

DNA stable isotope probing  

Gradient centrifugation of DNA was performed with all respective DNA extracts from 12CO2- 

and 13CO2-exposed microcosms after 8 and 12 weeks of incubation. The quantitative 

distribution of archaeal and bacterial amoA genes in these gradients was analyzed by qPCR 

(Fig. 2). The obtained copy numbers represent mean results from the triplicate microcosms 

and repeated qPCR analyses. After 8 weeks of incubation, the copy numbers of archaeal and 

bacterial amoA genes for both fertilization treatments peaked only in the ‘light’ fractions (1.69 

– 1.72 g ml-1) (Fig. 2a, c, e and g). Note that the small shift in buoyant density is due to 

different GC contents of Archaea and Bacteria (21, 22). While after 12 weeks of incubation 

still no labeling was detected for Archaea (Fig. 2b and d), the bacterial amoA genes were 

completely shifted to the ‘heavy’ fraction (1.73 – 1.76 g ml-1) (Fig. 2f and h). A difference 

regarding the N-fertilization treatments as seen for the RNA-SIP could not be observed. Also 

here, controls with 12CO2 and the unfertilized samples did not show any labeling (SI Fig. 3). 

These results suggest that although Archaea were actively involved in ammonia oxidation and 

CO2 assimilation, as shown in the RNA-SIP approach, they did not replicate. By contrast, the 

ammonia oxidizing bacteria acquired ‘heavy’ DNA to such an extent that those not 
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proliferating could no longer be detected in the ‘light’ DNA fractions. This was supported by 

comparison of the copy numbers of archaeal and bacterial amoA genes in the initial soil 

versus copy numbers in the incubated soil, determined by qPCR. While ammonia oxidizing 

bacteria showed strong growth within the 12 weeks of incubation (initial soil: 5.47±0.75 x106; 

12 week incubation: 7.80±0.67 x107 [copy number g-1 d.w.s.]), this could not be observed for 

the archaea containing amoA (initial soil: 4.77±0.51 x107; 12 week incubation: 5.35±0.39 x107 

[copy number g-1 d.w.s.]). 

 

 

 
Fig. 2. Distribution of amoA genes from Archaea (a-d) and Bacteria (e-h) in DNA-SIP gradients after 8 

(a, c, e, and g) and 12 (b, d, f, and h) weeks of incubation with 13CO2 and fertilization with either 15 µg 

(a-b, e-f) or 100 µg (c-d, g-h) (NH4)2SO4-N g-1 d.w.s.. Distribution of amoA gene abundance was 

measured by qPCR of DNA from gradient fractions. 

 

 
Phylogenetic analyses of archaeal 16S rRNA transcripts in RNA-SIP 

The ‘light’ and ‘heavy’ RNA fractions (1.815 and 1.783 g ml-1, respectively) from the 13CO2 

incubated and low fertilizer (15 µg N g-1 d.w.s.) treated microcosms were used after 8 weeks 

of incubation to analyze the sequences of archaeal 16S rRNA transcripts. Sequence analysis 

revealed that all sequences (40 clones), from both ‘light’ (20 clones) and ‘heavy’ fraction (20 

clones), showed highest similarity (95% maximum identity) to the ammonia oxidizer 

Nitrososphaera gargensis (SI Fig. 6). This homogeneity among the ‘light’ and ‘heavy’ fractions 

might be explained by an incomplete labeling and/or activation of the archaeal ammonia 

oxidizers after 8 weeks of incubation, as also observed in the RNA-SIP and qPCR of amoA 

transcripts (Fig. 1a). This indicates a high homogeneity of the community of ammonia 

oxidizing archaea in this soil regarding phylogeny and function.     
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Fig. 3. Phylogenetic affiliation of putative acetyl- and propionyl- CoA-carboxylase (AccA/PccB) transcript 

clones derived from 13CO2 RNA-SIP gradient fractions of soil after 12 weeks of incubation and 

fertilization with 15 µg N g-1 d.w.s.. Neighbor-joining analysis using 1000 bootstrap replicates was used 

to infer tree topology and the nodes with the percentage of bootstrap re-sampling above 90% is 

indicated by filled circles. The clones from 13C-labeled ‘heavy’ RNA are shown as Cluster RH_HF 

(GenBank accession numbers HM996921-HM996934). The tree is rooted with accA gene of 

Haloquadratum walsbyi DSM 16790 (YP_658717). The scale bar represents 10% amino acid sequence 

divergence. 

 

 

Archaeal accA transcripts detected in ‘heavy’ RNA fractions 

The labeled and unlabeled RNA fractions (1.815 and 1.783 g ml-1, respectively) from the 
13CO2 incubated and low fertilizer (15 µg N g-1 d.w.s.) treated microcosms were used after 12 

weeks of incubation to generate clone libraries targeting bacterial and archaeal acetyl-CoA 

carboxylase (accA) transcripts (Fig. 3). AccA sequences could only be detected in the library 

of the ‘heavy’ fraction and exclusively consisted of a cluster of archaeal accA sequences 

(Cluster RH_HF), most closely related to Nitrosopumilus maritimus, Crenarchaeum 

symbiosum and accA genes of marine Crenarchaeota from deep Thyrrhenian Sea (23). 

These results strongly indicate an involvement of the acetyl-CoA/propionyl-CoA carboxylase 

in the CO2-fixation process of ammonia oxidizing archaea in soil.  
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mRNA CARD-FISH of archaeal amoA and abundance of ammonia oxidizing archaea 

and bacteria in soil  

To visually investigate the expression of amoA mRNA in ammonia oxidizing archaea, CARD-

FISH of amoA transcripts and archaeal 16S rRNA was conducted, based on the protocol by 

Pernthaler and Amann (24). Clones and soil samples were hybridized with an archaeal amoA 

mRNA antisense probe, followed by detection with an anti-DIG-antibody labeled with 

horseradish peroxidase and signal amplification by catalyzed reporter deposition with 

fluorescein-labeled tyramide. For soil samples, detection of mRNA was also coupled to 

CARD-FISH of archaeal 16S rRNA using probe Arch915. The specificity of the amoA mRNA 

antisense probe for ammonia oxidizing archaea in this soil was tested with expression clones 

(SI Fig. 4). Induced cells showed strong hybridization signals (SI Fig. 4A and B), whereas no 

signal was observed in uninduced cells (SI Fig. 5) or clones expressing the partial amoA gene 

of ammonia oxidizing bacteria (SI Fig. 4C and D), indicating a high specificity of the amoA 

mRNA CARD-FISH. The hybridizations with the soil, incubated for 12 weeks with 5% CO2 and 

fertilized weekly with 15 µg N g-1 d.w.s., resulted in good signals, both for the amoA and 16S 

rRNA CARD-FISH (Fig. 4).  

 

 

Fig. 4. Detection of amoA mRNA transcripts by application of CARD-FISH with archaeal amoA 

antisense probe in agricultural soil after 12 weeks of incubation with 5% CO2 and fertilization with 15 µg 

N g-1 d.w.s.. Fluorescence images for amoA CARD-FISH (A and D) and respective phase contrast (C 

and F). Archaeal cells in the soil incubation were additionally detected by 16S rRNA CARD-FISH using 

HRP-labeled probe Arch915 (B and E). Bars = 10 µm. 

 

Only cells that exhibited a signal with the 16S rRNA probe Arch915 (Fig. 4B and E) also 

showed detection by amoA mRNA FISH (Fig. 4A and D). Out of the detected archaeal cells in 

this incubated soil, half of the cells also showed a signal for amoA expression. To further test 

this observation, a comparison of copy numbers of amoA genes versus 16S rRNA genes in 

the incubated soil, determined by qPCR, was performed. While ammonia oxidizing bacteria 
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slightly outnumbered their archaeal counterparts, most likely due to the proliferation also 

observed in DNA-SIP, and made up 4% of the bacterial communitiy (amoA: 7.80±0.67 x107; 

16S rRNA: 2.02±0.23 x109 [copy number g-1 d.w.s.]), archaea containing amoA accounted for 

54% of all archaea (amoA: 5.35±0.39 x107; 16S rRNA: 9.83±0.91 x107 [copy number g-1 

d.w.s.]), supporting the CARD-FISH observation. This indicates that ammonia oxidizing 

archaea might play an important role in the archaeal community in soil. 

 

IV.4 Discussion 

To date it remains elusive whether ammonia oxidizing archaea in soil can assimilate CO2. A 

previous study using this soil by Jia and Conrad (16) based on DNA-SIP only detected 

labeling of Bacteria by CO2 fixation and concluded that AOA in soil might be heterotrophic or 

mixotrophic rather than autotrophic. Here we were now able to demonstrate active CO2 

fixation coupled to ammonia oxidation by Archaea in an agricultural soil using an RNA-SIP 

approach. Archaeal amoA transcripts were consistently labeled during incubation of soil 

microcosms with 13CO2 and fertilization with either 15 µg or 100 µg (NH4)2SO4-N g-1 d.w.s.. 

Controls without fertilization and with 12CO2 did not show any labeling, confirming that CO2 

fixation was coupled to ammonia oxidation and that labeling resulted from true label 

incorporation. Labeling of ammonia oxidizing archaea due to cross-feeding on labeled organic 

carbon derived from autotrophic ammonia oxidizing bacteria was unlikely, since labeling of 

archaeal amoA mRNA was weaker and less pronounced with higher concentration of 

ammonia (100 µg N g-1 d.w.s.) although ammonia oxidizing bacteria showed better and faster 

labeling at the elevated concentration. If labeling of archaeal ammonia oxidizers had been 

coupled to labeling of bacterial nitrifiers due to cross-feeding, the same response in SIP of 

both groups to the different ammonia concentrations should have been observed. 

Furthermore, stable isotope probing of DNA showed assimilation of CO2 into biomass of 

ammonia oxidizing bacteria not until the time course from 8-week to 12-week incubation. This 

is supported by the fact, that also the main activity of ammonia oxidation was recorded during 

these four weeks. Hence, ammonia oxidizing bacteria grew very slowly and thus are unlikely 

to have provided organic carbon for cross-feeding of the Archaea. Our results show that NH4
+ 

fertilization stimulated CO2 assimilation by archaeal ammonia oxidizers, though CO2 fixation 

and ammonia oxidation were stimulated to a greater extent by lower concentration of 

ammonia (15 µg N g-1 d.w.s.). The 100 µg N g-1 d.w.s. treatment led to incomplete labeling of 

archaeal amoA mRNA even after 12 weeks of incubation. This strengthens the hypothesis 

that ammonia oxidizing archaea are rather adapted to low nutrient environments and inhibited 

by high fertilizations (25-28). Our results agree with previous findings in Nitrososphaera 

gargensis isolated from hot spring which was also inhibited by relatively high concentrations 

of ammonium (11) and a recent publication demonstrating growth of ammonia oxidizing 

archaea in soil only at acetylene-sensitive nitrification under low ammonia concentrations 

(53). Like Jia and Conrad (16), however, we also were not able to detect labeling of archaeal 
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amoA when using DNA-SIP. While RNA-SIP targeting amoA of ammonia oxidizing archaea 

clearly demonstrated that CO2 was assimilated, DNA-SIP revealed no growth of these 

organisms because detection of label incorporation in DNA-SIP can only take place when 

cells are actively replicating. We assume that the ammonia concentrations in the soil for both 

fertilization treatments might have allowed ammonia oxidation activity of Archaea, as seen in 

RNA-SIP, but still did not provide favourable conditions for them to grow. This uncoupling 

should generally be considered, when investigating the activity of microorganisms in natural 

environments. Because methods depending on cell growth to detect incorporation of label 

might not or only insufficiently detect cells that are active but grow more slowly. For these 

microorganisms, RNA-SIP might be the more appropriate approach. 

Unlike the Archaea, the amoA copies of ammonia oxidizing bacteria were completely labeled 

in RNA- and DNA-SIP for both fertilization treatments after 12 weeks of incubation. This was 

not surprising, since it has been known for a long time that ammonia oxidizing bacteria fix 

CO2 using the Calvin Cycle and its key enzyme, the ribulose bisphosphate carboxylase 

(RubisCO) (29, 30). The results of the stable isotope probing demonstrated activity and 

growth to such an extent that the whole community of ammonia oxidizing bacteria could only 

be detected in the ‘heavy’ fractions. The labeling of amoA mRNA took place more rapidly in 

the fertilization treatments with 100 µg N g-1 d.w.s., showing that nitrifying Bacteria, as 

expected, responded even better to higher concentrations of ammonia. In addition, we were 

able to specifically and quantitatively detect archaeal cells expressing amoA in incubated soil 

directly by mRNA CARD-FISH using expression clones as controls. The high abundance of 

ammonia oxidizing archaea (~ 50%) within the Archaea in this soil, as visualized by 

fluorescence microscopy, was also confirmed by qPCR of amoA and 16S rRNA genes. Since 

ammonia oxidizing archaea are thought to harbor only one copy of both the 16S rRNA gene 

and the amoA gene, like Nitrosopumilus maritimus, gene copy numbers derived by qPCR 

should be equivalent to cell numbers (31, 32). We also analyzed the archaeal 16S rRNA 

transcripts from light and heavy fractions of RNA-SIP and observed a high homogeneity 

within the archaeal ammonia oxidizers regarding phylogeny and function, and a close relation 

to Nitrososphaera gargensis. Taken together, these results demonstrate the high relative 

abundance of ammonia oxidizing archaea among the overall archaeal community in soil. 

Furthermore, we wanted to determine which pathway enables ammonia oxidizing archaea in 

soil to fix CO2. Two new autotrophic carbon fixation cycles have been recently described in 

Crenarchaeota, the dicarboxylate-4-hydroxybutyrate cycle and the 3-hydroxypropionate-4-

hydroxybutyrate cycle, and all Crenarchaeota studied so far use either the former or the latter 

cycle (33). Because of the oxygen sensitivity of some of its enzymes, the dicarboxylate-

hydroxybutyrate cycle is restricted to anaerobic or microaerobic Crenarchaeota of the orders 

Thermoproteales and Desulfurococcales (34-36). The enzymes of the hydroxypropionate-

butyrate cycle, on the other hand, are oxygen tolerant. Therefore, this cycle fits well with the 

lifestyle of aerobic Crenarchaeota (37). The hydroxypropionate-butyrate cycle occurs in the 

autotrophical crenarchaeal order Sulfolobales, e.g. Metallosphaera sedula (38-40). The CO2-
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fixing enzyme of this process is the bifunctional biotin-dependent acetyl-CoA/propionyl-CoA 

carboxylase (Acc/Pcc). Recent studies already detected sequences of the accA/pccB by 

genome analysis in members of the mesophilic marine group I Crenarchaeota, including 

ammonia oxidizers Crenarchaeum symbiosum and Nitrosopumilus spp. (33, 40, 41), and in 

metagenomic libraries of uncultured ammonia oxidizing marine Crenarchaeotes (23, 42-44), 

but existence of these sequences alone could not be linked to functionality so far. Our results 

now show that transcripts of this acetyl-CoA/propionyl-CoA carboxylase (accA/pccB), closely 

related to the sequences of the ammonia oxidizing marine Crenarchaeota, were not only 

expressed but furthermore also labeled by assimilation of 13CO2. This strongly suggests that 

ammonia oxidizing archaea in upland soils are able to autotrophically fix CO2 using the 

hydroxypropionate-hydroxybutyrate cycle, hence providing an additional sink for CO2 in 

terrestrial environments. 

In summary, we were able to show that ammonia oxidizing archaea were actively involved in 

microbial ammonia oxidation in an agricultural soil and did fix CO2 autotrophically, presumably 

via the hydroxypropionate-hydroxybutyrate cycle. These results and the observed numerical 

importance of the archaeal ammonia oxidizers to the overall archaeal community in this 

environment give new insights into the function and characteristics of ammonia oxidizing 

archaea in soil. 

 

IV.5 Materials and methods 

Soil incubation 

Soil was sampled using 40 cm long soil cores in April 2009 from maize plots at the long-term 

experiment field site of the University of Giessen, Germany. Maize, wheat, and barley are 

annually rotated at the field site. The field site and soil properties were described previously 

(16). The soil was air-dried, sieved through 1 mm mesh, homogenized, and stored at 4°C until 

further use. Incubation for stable isotope probing with 5% CO2 was performed in triplicates for 

each treatment. Soil (10 g d.w.s) was incubated at 60% maximum water holding capacity 

(WHC), 25°C and darkness in 120 ml serum bottles capped with butyl stoppers. Five percent 

of CO2 (
12CO2 or 13CO2) were added to the headspace and the soil was fertilized with either 

100 µg or 15 µg (NH4)2SO4-N g-1 d.w.s., respectively, dissolved in distilled water. Nitrogen-

free controls received an equal amount of distilled water. Every week, bottles were flushed 

with synthetic air (20% O2, 80% N2), 5% of CO2 was added, and fertilization treatments were 

renewed. For chemical analysis of pH, ammonium, nitrite, and nitrate, aliquots of the soil were 

removed from each treatment every week (see supplementary information). 

 

Nucleic acid extraction and SIP fractionation 

After 8 and 12 weeks of incubation with 13CO2 and 12CO2, respectively, 0.5 g of soil of each 

bottle were sampled, frozen immediately in liquid nitrogen and stored at -80°C until further 

processing. Nucleic acids were extracted from soil using a sodium dodecyl sulfate (SDS) -
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based protocol (45) with minor modifications. Soil (0.5 g) was mixed with 200 µl of zirconia-

silica beads (0.1 mm; Roth, Karlsruhe, Germany) and 1 ml of SDS extraction buffer in 2.0 ml 

screw-cap tubes. Cells were lysed in a FastPrep beat beating system for 45 s at 6 m s-1 and 

supernatants were extracted using phenol chloroform isoamyl alcohol (25:24:1) and 

chloroform isoamyl alcohol (24:1). Nucleic acids were precipitated with polyethylene glycol 

(PEG) 6000 solution (20%) and dissolved in 100 µl of nuclease free water. For stable isotope 

probing of RNA, 50 µl of extract were treated with RNase-free DNase I for digestion of DNA. 

RNA was purified using the RNeasy Mini Kit (Qiagen, Hilden, Germany) and stored at -80°C 

until further usage. Integrity of nucleic acids was checked on agarose gels and concentration 

was determined using a NanoDrop instrument (Thermo Fisher Scientific, Schwerte, 

Germany). Stable isotope probing fractionation of total DNA extract (5.0 µg) was performed 

with an initial cesium chloride (CsCl) buoyant density of 1.72 g ml-1 subjected to centrifugation 

at 177 000 g for 36 h at 20°C (21). Gradient centrifugation of RNA was carried out in cesium 

trifluoroacetate (CsTFA) as described previously (21) with an initial buoyant density of 1.79 g 

ml-1 and centrifugation at 130 000 g for 65 h at 20°C. DNA- and RNA-gradients were 

fractionated from bottom to top by displacing the gradient medium with nuclease free water at 

the top of the tube using a syringe pump (Kent Scientific, Torrington, CT, USA) at a flow rate 

of 0.45 ml min-1, generating twelve fractions per density gradient. The density of each fraction 

was determined by refractometry (Reichert, Depew, NY, USA). DNA was recovered by PEG 

6000 precipitation with glycogen (46) and dissolved in 30 µl of nuclease free water. RNA was 

precipitated from CsTFA with two volumes of ethanol and 20 µg glycogen and resuspended in 

10 µl of nuclease free water. RNA samples from density gradient fractions were reverse 

transcribed with random hexamer primers (Invitrogen, Darmstadt, Germany) and M-MLV 

reverse transcriptase (Promega, Mannheim, Germany). 

 

Quantitative PCR of amoA genes 

The abundance of archaeal amoA genes and transcripts in the different SIP fractions was 

quantified by quantitative PCR (qPCR) using primers amo196F and amo277R as previously 

described (5, 16). The 25 µl reaction mixture contained 12.5 µl of SYBRGreen Jump-Start™ 

Taq ReadyMix™, 0.5 µM of each primer, 200 ng BSA ml-1, 4.0 mM MgCl2, 1.0 µl template 

DNA or cDNA (47). The abundance of bacterial amoA genes and transcripts in the different 

SIP fractions was quantified by qPCR using primers amoA-1F and amoA-2R as previously 

described (16, 48). The 25 µl reaction mixture contained 12.5 µl of SYBRGreen Jump-Start™ 

Taq ReadyMix™, 0.5 µM of each primer, 200 ng BSA ml-1, 3.0 mM MgCl2, 1.0 µl template 

DNA or cDNA. All assays were performed in an iCycler™ (Applied Biosystems, Darmstadt, 

Germany), respective qPCR standards were used and controls were always run with water 

instead of DNA or cDNA extract. PCR efficiencies for all qPCR assays were between 90-

104% with r2 values between 0.976-0.997. 
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Analysis of archaeal 16S rRNA and accA transcripts from light and heavy fractions of 

RNA-SIP 

Complementary DNA (cDNA) of the heavy and light fractions of the 13CO2 treatments with 15 

µg (NH4)2SO4-N g-1 d.w.s. was used for PCR amplification of archaeal 16S rRNA cDNA 

fragments using primers Arch109F and Arch934R as previously described (49). Bacterial and 

archaeal acetyl-CoA carboxylase alpha subunit (accA) cDNA fragments were amplified by 

primers PcB_388F and PcB_1271R (23). PCR products were cloned using pGEM-T Easy 

vector and E. coli JM109 competent cells (Promega, Mannheim, Germany). Sequencing was 

carried out on an ABI 3130 genetic analyzer (Applied Biosystems, Darmstadt, Germany), and 

analyzed by DNAStar software package. Phylogenetic trees were reconstructed from 

sequence data using the ARB software package (50). accA tree topology was checked by 

neighbor-joining algorithm using 1000 bootstrap replicates and was verified with a tree 

calculated using maximum likelihood. Archaeal 16S rRNA tree topology was checked by 

neighbor-joining algorithm using 500 bootstrap replicates and Jukes-Cantor correction of 

distances. Data deposition: The sequences reported in this paper have been deposited in the 

GenBank database (accA: accession nos. HM996921-HM996934; archaeal 16S rRNA: 

accession nos. HQ293120-HQ293148). 

 

CARD-FISH of amoA mRNA and archaeal 16S rRNA 

To generate controls for mRNA CARD-FISH, partial archaeal (positive control) and bacterial 

(negative control) amoA genes from soil were cloned into E. coli Top10 competent cells using 

primers amo111F/amo643R (51) and amoA-1F/amoA-2R (52), respectively, and expressed 

by using vector pBAD as previously described by Pernthaler and Amann (24). Clones and soil 

samples after 12 weeks of fertilization with 15 µg NH4
+-N g-1 d.w.s. were fixed and CARD-

FISH was performed as described in supplementary information.  
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IV.6 Supplementary material 

Chemical analyses 

Soil NO3
--N and NO2

--N were measured by ion chromatography (Sykam, Fuerstenfeldbruck, 

Germany). Ammonium was extracted from 0.15 g of soil after mixing with 1.5 ml of 2 N KCl 

and measured fluorometrically at an emission wavelength of 470 nm on a SAFIRE microplate 

reader (TECAN, Crailsheim, Germany) (1). Additionally, CO2 concentration in the headspace 

was measured by a gas chromatograph-combustion-isotope ratio mass spectrometry system 

(2). The 13CO2 (99 atom%) was purchased from Sigma-Aldrich Co. 
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CARD-FISH of amoA mRNA and archaeal 16S rRNA 

Clones were fixed in 2% (vol/vol) formaldehyde for 30 min at room temperature, centrifuged, 

and washed once with PBS and twice with 50% ethanol in PBS. Samples from the soil 

incubations after 12 weeks of fertilization with 15 µg NH4
+-N g-1 d.w.s. were fixed in 4% 

(vol/vol) formaldehyde for 5 h at 4°C, centrifuged, and washed once with PBS. Cells were 

then resuspended in 50% ethanol in PBS and stored at -20°C until further processing. 

Polynucleotide antisense RNA probes of amoA were generated by in vitro transcription and 

were simultaneously labeled by incorporating digoxigenin-11-UTP (Roche Molecular 

Diagnostics, Basel, Switzerland) (3). The hybridization and detection procedures were based 

on the protocol described by Pernthaler and Amann (4), with some minor modifications. Five 

microlitres of cell suspensions were applied to each well of a Teflon-coated glass slide 

(MAGV, Marburg, Germany) and dried at 46°C. Expression clones of amoA were 

permeabilized with lysozyme (5 mg ml-1 in Tris-EDTA buffer (TE); Sigma, Taufkirchen, 

Germany) for 30 min at room temperature. Soil samples were additionally incubated with 

proteinase K (15 µg ml-1 in TE) for 10 min at room temperature (5). Hybridization was 

performed overnight at 60.5°C using a formamide concentration of 50% in the hybridization 

buffer. Subsequent 16S rRNA FISH with horseradish peroxidase (HRP) -labeled 

oligonucleotide probe was performed as described previously (5, 6). HRP-labeled probe 

Arch915 (Biomers, Ulm, Germany) was used for detection of Archaea in soil samples with 

Alexa546-labeled tyramide. Finally, slides were stained with 4’,6-diamidino-2-phenylindole 

(DAPI), mounted with the antifading agent Citifluor AF1 (Citifluor, London, UK), and 

hybridization preparations were visualized by fluorescence microscopy (Axiophot; Carl Zeiss 

Microimaging GmbH, Jena, Germany). 
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Supplementary figures 
 

 
 

 

 

SI figure 1. Changes in nitrate concentration in SIP microcosms over a time course of 12 weeks. The 

error bars are standard deviations of triplicate incubations.  
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SI figure 2. Distribution of amoA transcripts from Archaea (a) and Bacteria (b) in RNA-SIP control 

gradients after 12 weeks of incubation with 12CO2 and fertilization with either 15 µg or 100 µg 

(NH4)2SO4-N g-1 d.w.s., and incubation with 12C- and 13C-CO2 and no fertilization. Distribution of amoA 

transcripts was measured by real-time PCR of cDNA from gradient fractions. 
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SI figure 3. Distribution of amoA genes from Archaea (a) and Bacteria (b) in DNA-SIP control gradients 

after 12 weeks of incubation with 12CO2 and fertilization with either 15 µg or 100 µg (NH4)2SO4-N g-1 

d.w.s., and incubation with 12C- and 13C-CO2 and no fertilization. Distribution of amoA gene abundance 

was measured by real-time PCR of DNA from gradient fractions. 
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SI figure 4. Detection of amoA mRNA transcripts by application of CARD-FISH with archaeal amoA 

antisense probe in clones expressing amoA of ammonia oxidizing archaea (A and B) or bacteria (C and 

D). Fluorescence images for amoA CARD-FISH (A and C) and respective phase contrast (B and D). 

Bars = 10 µm. 

 

 

 
 

 

 

 
SI figure 5. Failed detection of amoA mRNA transcripts by application of CARD-FISH with archaeal 

amoA antisense probe in uninduced clones harboring but not expressing amoA of ammonia oxidizing 

archaea (A and B). Fluorescence images for amoA CARD-FISH (A) and respective phase contrast (B). 

Bars = 10 μm. 
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SI figure 6. Phylogenetic affiliation of archaeal 16S rRNA transcript clones derived from 13CO2 RNA-SIP 

‘light’ (LF) and ‘heavy’ (HF) gradient fractions of soil after 8 weeks of incubation and fertilization with 15 

µg N g-1 d.w.s.. Neighbor-joining analysis using 500 bootstrap replicates and Jukes-Cantor correction of 

distances was used to infer tree topology. The scale bar represents 10% nucleic acid sequence 

divergence. 

 

 

IV.7 References 

1. Kowalchuk GA, Stephen JR (2001) Ammonia oxidizing bacteria: a model for molecular microbial 
ecology. Annu Rev Microbiol 55: 485–529. 
 
2. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of 
ammonia oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 
14683–14688. 
 
3. Wuchter C, et al. (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103: 12317–
12322. 
 
4. Reigstad LJ, et al. (2008) Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS 
Microbiol Ecol 64: 167–174. 
 
5. Leininger S, et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. 
Nature 442: 806–809. 
 
6. Di HJ, et al. (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. 
Nat Geosci 2: 621-624. 
 
7. Brochier-Armanet C, et al. (2008) Mesophilic Crenarchaeota : proposal for a third archaeal phylum, 
the Thaumarchaeota. Nat Rev Microbiol 6: 245-252. 
 
8. Spang A, et al. (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea 
supports the phylum Thaumarchaeota. Trends Microbiol doi:10.1016/j.tim.2010.06.003 



IV. Ammonia oxidation coupled to CO2 fixation by Archaea and Bacteria in an agricultural soil 
 

 

 124

 
9. Könneke M, et al. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 
543–546. 
 
10. de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic 
ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10: 810–818. 
 
11. Hatzenpichler R, et al. (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a 
hot spring. Proc Natl Acad Sci U S A 105: 2134–2139. 
 
12. Wuchter C, Schouten S, Boschker HTS, Sinninghe Damsté JS (2003) Bicarbonate uptake by marine 
Crenarchaeota. FEMS Microbiol Lett 219: 203–207. 
 
13. Dumont MG, Murrell JC (2005) Stable isotope probing – linking microbial identity to function. Nat 
Rev Microbiol 3: 499-504. 
 
14. Whitby CB, et al. (2001) 13C incorporation into DNA as a means of identifying the active components 
of ammonia-oxidizer populations. Lett Appl Microbiol 32: 398–401. 
 
15. Freitag TE, Chang L, Prosser JI (2006) Changes in the community structure and activity of 
betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ 
Microbiol 8: 684–696. 
 
16. Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an 
agricultural soil. Environ Microbiol 11: 1658-1671. 
 
17. Whiteley AS, Thomson B, Lueders T, Manefield M (2007) RNA stable-isotope probing. Nat Protoc 2: 
838-844. 
 
18. Buyanovsky GA, Wagner GH (1983) Annual cycles of carbon dioxide level in soil air. Soil Sci Soc 
Am J 47: 1139–1145. 
 
19. Neufeld J, Dumont M, Vohra J, Murrell J (2007) Methodological considerations for the use of stable 
isotope probing in microbial ecology. Microb Ecol 53: 435–442. 
 
20. Lueders T (2009) Stable isotope probing of hydrocarbon-degraders. In: Timmis KN (ed). Handbook 
of Hydrocarbon and Lipid Microbiology. Springer: Berlin, Heidelberg, pp 4011–4026. 
 
21. Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable 
isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ 
Microbiol 6: 73–78. 
 
22. Carter C, Britton VG, Haff L (1983) CsTFA: a centrifugation medium for nucleic acid isolation. 
Biotechniques 1: 142–147. 
 
23. Yakimov MM, La Cono V, Denaro R (2009) A first insight into the occurrence and expression of 
functional amoA and accA genes of autotrophic and ammonia-oxidizing bathypelagic Crenarchaeota of 
Tyrrhenian Sea. DEEP-SEA RES PT II 56: 748-754. 
 
24. Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA 
in environmental bacteria. Appl Environ Microbiol 70: 5426–5433. 
 
25. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. 
Nat Rev Microbiol 5: 316–323. 
 
26. Schauss K, et al. (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two 
agricultural soils. Environ Microbiol 11: 446-456. 
 
27. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation 
kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461: 976-979. 
 
28. Di HJ, et al. (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen 
conditions. FEMS Microbiol Ecol 72: 386-394. 
 
29. Schramm A, De Beer D, Wagner M, Amann R (1998) Identification and activities in situ of 
Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl 
Environ Microbiol 69: 3480–3485. 



IV. Ammonia oxidation coupled to CO2 fixation by Archaea and Bacteria in an agricultural soil 
 

 

 125

 
30. Utåker JB, Andersen K, Aakra Å, Moen B, Nes IF (2002) Phylogeny and functional expression of 
ribulose 1,5-bisphosphate carboxylase/oxygenase from the autotrophic ammonia-oxidizing bacterium 
Nitrosospira sp. isolate 40KI. J Bacteriol 184: 468–478. 
 
31. Nelson KA, Moin NS, Bernhard AE (2009) Archaeal Diversity and the Prevalence of Crenarchaeota 
in Salt Marsh Sediments. Appl Environ Microbiol 75: 4211–4215. 
 
32. Walker CB, et al. (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for 
nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci U S A 107: 
8818-8823. 
 
33. Berg IA, et al. (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8: 447-460. 
 
34. Jahn U, Huber H, Eisenreich W, Hügler M, Fuchs G (2007) Insights into the autotrophic CO2 fixation 
pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon 
metabolism. J Bacteriol 189: 4108–4119. 
 
35. Huber H, et al. (2008) A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the 
hyperthermophilic archaeum Ignicoccus hospitalis. Proc Natl Acad Sci U S A 105: 7851–7856. 
 
36. Ramos-Vera WH, Berg IA, Fuchs G (2009) Autotrophic carbon dioxide assimilation in 
Thermoproteales revisited. J Bacteriol 191: 4286–4297. 
 
37. Berg IA, Ramos-Vera WH, Petri A, Huber H, Fuchs G (2010) Study of the distribution of autotrophic 
CO2 fixation cycles in Crenarchaeota. Microbiology 156: 256–269. 
 
38. Ishii M, et al. (1997) Autotrophic carbon dioxide fixation in Acidianus brierleyi. Arch Microbiol 166: 
368–371. 
 
39. Menendez C, et al. (1999) Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA 
carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in 
autotrophic carbon fixation. J Bacteriol 181: 1088–1098. 
 
40. Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate 
autotrophic carbon dioxide assimilation pathway in Archaea. Science 318: 1782–1786. 
 
41. Hallam SJ, et al. (2006) Pathways of carbon assimilation and ammonia oxidation suggested by 
environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4: e95. 
 
42. Venter JC, et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 
304: 66–74. 
 
43. Delong EF, et al. (2006) Community genomics among stratified microbial assemblages in the 
ocean’s interior. Science 311: 496–503. 
 
44. Mincer TJ, et al. (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in 
Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9: 1116–1175. 
 
45. Bürgmann H, Widmer F, Sigler WV, Zeyer J (2003) mRNA extraction and reverse transcription-PCR 
protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Appl Environ Microbiol 
69: 1928–1935. 
 
46. Neufeld JD, et al. (2007) DNA stable-isotope probing. Nat Protoc 2: 860-866. 
 
47. Kolb S, Knief C, Dunfield PF, Conrad R (2005) Abundance and activity of uncultured methanotrophic 
bacteria involved in the consumption of atmospheric methane in two forest soils. Environ Microbiol 7: 
1150–1161. 
 
48. Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to 
multifactorial global change. Proc Natl Acad Sci USA 101: 15136–15141. 
 
49. Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic 
community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene 
sequence retrieval. Appl Environ Microbiol 64: 960–969. 
 



IV. Ammonia oxidation coupled to CO2 fixation by Archaea and Bacteria in an agricultural soil 
 

 

 126

50. Ludwig W, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 
1363–1371. 
 
51. Treusch AH, et al. (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role 
of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7: 1985–1995. 
 
52. Avrahami S, Liesack W, Conrad R (2003) Effects of temperature and fertilizer on activity and 
community structure of soil ammonia oxidizers. Environ Microbiol 5: 691–705. 
 
53. Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is 
inhibited by acetylene. FEMS Microbiol Ecol 70: 99-108. 
 
54. Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous 
forests. Nature 385: 61-64. 
 

 



V. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake 
 

 

 127

V. Streptomycetes contributing to atmospheric molecular hydrogen soil 

uptake are widespread and encode a putative high-affinity [NiFe]-

hydrogenase 

 

Philippe Constant, Soumitra Paul Chowdhury, Jennifer Pratscher and Ralf Conrad 

 

Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, 

Germany 

 

Environmental Microbiology (2010) 12(3), 821-829 

 

V.1 Summary 

Uptake of molecular hydrogen (H2) by soil is a biological reaction responsible for ~80% of the 

global loss of atmospheric H2. Indirect evidence obtained over the last decades suggests that 

free soil hydrogenases with an unusually high affinity for H2 are carrying out the reaction. This 

assumption has recently been challenged by the isolation of Streptomyces sp. PCB7, 

displaying the high affinity H2 uptake activity previously attributed to free soil enzymes. While 

this finding suggests that actinobacteria could be responsible for atmospheric H2 soil uptake, 

the ecological importance of H2-oxidizing streptomycetes remains to be investigated. Here, 

we show that high affinity H2 uptake activity is widespread among the streptomycetes. Among 

14 streptomycetes strains isolated from temperate forest and agricultural soils, 6 exhibited a 

high affinity H2 uptake activity. The gene encoding the large subunit of a putative high affinity 

[NiFe]-hydrogenase (hydB-like gene sequence) was detected exclusively in the isolates 

exhibiting high affinity H2 uptake. CARD-FISH experiments targeting hydB-like gene 

transcripts and H2 uptake assays performed with strain PCB7 suggested that streptomycetes 

spores catalyzed the H2 uptake activity. Expression of the activity in term of biomass revealed 

that 106-107 H2-oxidizing bacteria per gram of soil should be sufficient to explain in-situ H2 

uptake by soil. We propose that specialized H2-oxidizing actinobacteria are responsible for the 

most important sink term in the atmospheric H2 budget.  

 

V.2 Introduction 

The biogeochemical cycle of molecular hydrogen (H2) is receiving renewed interest as 

reaction to controversial modeling studies suggesting that a future H2-based economy would 

alter the oxidative capacity of the troposphere (Schultz et al., 2003; Tromp et al., 2003; 

Warwick et al., 2004). Indeed, current atmospheric H2 budget estimations have considerable 
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uncertainties, especially in the case of soil uptake terms (Ehhalt and Rohrer, 2009). Although 

soil uptake accounts for ~80% of the global H2 loss, almost nothing is known about the origin 

and the environmental factors influencing the H2 oxidation activity (Constant et al., 2009).  

The H2 oxidation activity, which is located within the upper soil layers, displays a biphasic 

kinetic showing two different Km(app) for H2 (Schuler and Conrad, 1990; Häring and Conrad, 

1994). The “low affinity” H2 oxidation activity exhibits a high Km(app) (>800 nM) and is catalyzed 

by a metabolically diverse group of aerobic H2-oxidizing microorganisms, namely the Knallgas 

bacteria. These microorganisms are particularly abundant in soil surrounding legume nodules 

that are lacking uptake hydrogenases and are enriched in H2-treated soils (Maimaiti et al., 

2007; Zhang et al., 2009). Knallgas bacteria are unable to consume atmospheric H2 due to 

their elevated H2 threshold concentration and their low affinity for H2 (Conrad et al., 1983). 

Atmospheric H2 soil uptake is catalyzed by the “high affinity” H2 oxidation activity. This high 

affinity activity exhibits a low Km(app) (10-70 nM) and involves microorganisms or enzymes that 

have not yet been identified.  

Indirect evidence obtained over the last decades suggests that the uptake activity of 

atmospheric H2 is mediated by free soil hydrogenases (Conrad, 1996). For instance, 

fumigation of soil with chloroform or acetone is not inhibiting completely the H2 uptake, 

suggesting that cells membrane integrity is not required to support the activity (Conrad and 

Seiler, 1981). Attempts to extract free soil hydrogenases have resulted in recovery of ~2% of 

the original activity, but the responsible enzymes have neither been purified nor identified 

(Guo and Conrad, 2008). Interestingly, the recent finding that Streptomyces sp. PCB7 exhibits 

a high affinity H2 uptake activity has challenged the free soil hydrogenases hypothesis 

(Constant et al., 2008). H2 uptake activity by strain PCB7 implies that metabolically-active 

cells would be responsible for atmospheric H2 soil uptake, but further investigations are 

needed to assess the ecological importance of streptomycetes. With the exception of strain 

PCB7 and a few thermophilic isolates (Gadkari et al., 1990; Kim et al., 1998), H2 oxidation 

activity has not been reported for the streptomycetes. Genes encoding a putative [NiFe]-

hydrogenase have been observed in the genome of S. avermitilis (Ikeda et al., 2003), but 

experimental evidence is not yet available to confirm its H2 metabolism.  

The main objective of this article is to provide new evidence for the involvement of 

Streptomyces spp. in the H2 biogeochemical cycle. Therefore, we investigated the high affinity 

H2 uptake activity of S. avermitilis and developed primers targeting the large subunit of its 

[NiFe]-hydrogenase (hydB-like gene sequence). Strain PCB7 was used as model 

microorganism to develop a suitable assay to screen new environmental isolates for high 

affinity H2 consumption activity.  
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V.3 Results and discussion 

Streptomyces avermitilis displays a high affinity H2 uptake activity 

The presence of genes encoding for accessory (HypA-F, HypX, HupB) and structural (HydA-

B) proteins of a putative [NiFe]-hydrogenase was reported in the genome of S. avermitilis, but 

neither gene expression nor H2 oxidation activity have been analyzed (Ikeda et al., 2003). We 

evaluated the H2 uptake capability of S. avermitilis 46492T by growing the strain in sterile soil. 

After 10 days of incubation, the strain displayed a high affinity H2 uptake activity, with a Km(app) 

of 39 nM and a Vmax(app) of 1.51 nmol min-1 g-1. Since the genome of S. avermitilis contains a 

single [NiFe]-hydrogenase-coding region, this hydrogenase represents a potential candidate 

conferring the high affinity H2 uptake activity. Primers targeting the gene encoding the large 

subunit of the putative hydrogenase (hydB-like gene) were designed and utilized to detect the 

presence of this gene in strain PCB7. As anticipated, a hydB PCR amplification product was 

observed, and its expression was confirmed by RT-PCR (data not shown).  

 

Characterization of strain PCB7 H2 uptake activity  

Given that no molecular tools are yet available to detect high affinity hydrogenases, a 

cultivation-dependent approach combined with hydB-like genes detection was an obligatory 

first step to explore the ecological importance of H2-consuming streptomycetes. We used 

strain PCB7 as model microorganism to develop a suitable H2 oxidation assay. The strain was 

grown in liquid or agar-solidified R2A minimal medium, and in sterile soil before analyzing its 

H2 uptake activity. On R2A agar and sterile soil, strain PCB7 grew following the well-defined 

series of differentiation that is typical for streptomycetes. Growth began with substrate 

mycelium development and was followed by the formation of aerial mycelia and then, 

sporulation. On the other hand, substrate mycelia dominated the biomass when strain PCB7 

was grown in R2A broth. Indeed, liquid media do not support sporulation of streptomycetes, 

with only few exceptions (Karandikar et al., 1996). Spores of strains PCB7 harvested from 

R2A agar plates displayed a higher H2 uptake rate than the substrate mycelia grown in R2A 

broth (Figure 1). This lower activity in liquid media, as well as previous microscopic 

observation of the development stages of strain PCB7 during the monitoring of its H2 uptake 

activity (Constant et al., 2008) suggested that H2 was consumed at the sporulation stage.  

 

 

 

 

 

 

Figure 1. (A) H2 oxidation activity of strain PCB7 

biomass harvested from liquid (○) and agar 

solidified (■) R2A growth medium. 
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To visually investigate the expression of hydB mRNA in strain PCB7, hydB mRNA was 

detected by CARD-FISH (controls see Supplementary Fig. S1). Hybridizations of strain PCB7, 

grown on agar-solidified R2A medium, resulted in strong signals for the spores (Figure 2A-B), 

while no signal was observed for the mycelia (Figure 2C-D). This observation supports the 

results of the H2 oxidation assays performed in liquid and agar-solidified R2A medium, 

indicating that spores rather than mycelia are responsible for the H2 uptake activity. Cell cycle 

specific metabolism is typical for the streptomycetes and needs to be considered when 

assigning H2 consumption activity to environmental isolates. Consequently, environmental 

streptomycetes isolates being tested for their H2 uptake activity should be grown on R2A agar 

or sterile soil.  

 

 

 

Figure 2. Detection of hydB-like mRNA in Streptomyces sp. PCB7 by application of CARD-FISH with 

hydB antisense probe. (A, B) Biomass was harvested from R2A Agar and (C, D) R2A broth after 10 

days of incubation. Fluorescence images (A, C) and respective phase contrast (B, D). Bars = 2 µm. 
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H2-consuming streptomycetes are widespread  

The ecological importance of culturable H2-consuming streptomycetes was explored using 

soil samples collected from forest and agricultural ecosystems. Presumptive actinobacteria 

were distinguished from other bacteria by their morphology. Formation of aerial and/or 

substrate mycelia were the main criteria to select the isolates. A total of 40 presumptive 

actinobacteria isolates were maintained on starch casein agar and further examined. Analysis 

of the 16S rRNA gene sequences revealed that 14 different isolates (12 from agricultural soil, 

2 from forest soil) belonged to streptomycetes (Figure 3). 

 

Figure 3. Maximum-likelihood tree based on nearly complete 16S rRNA gene sequence (1374 bp) 

showing the relationships between the Streptomyces isolates and related Streptomyces type strains. 

High affinity H2 consuming strains are denoted by asterisk (*). The prefixes HP and MP indicate strains 

isolated from Heidelberg (agricultural soil) and Mainz (forest soil), respectively. The numbers at the 

branch points are tree puzzle support values. Only values greater than 50 are shown. The scale bar 

represents 10% sequence divergence. 
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All of the isolates grew well on R2A agar, but few formed spores under these conditions 

hampering the analysis of H2 uptake activity. Therefore, the isolates were inoculated into 

sterile soil before measuring their H2 uptake activity. After 10 days of incubation, white aerial 

sporulating mycelia were visible on soil particles, 6 out of the 14 streptomycetes isolates 

demonstrated a positive H2 uptake activity. These isolates displayed moderate to high affinity 

for H2 with Km(app) values between 39 nM and 374 nM (Table 1). 

 

 

Table 1. H2 uptake kinetic parameters and number of cfu of streptomycete isolates. 

 

a. Data from Häring and Conrad (1994), Conrad (1996) and Conrad (1999). 

b. See Conrad (1999) for calculations. Specific affinity (a0
S) is the ratio Vmax/Km where Vmax is expressed 

in mol(H2) C-molBiomass
-1 h-1 (derived assuming 1.4 x1014 CFU per C-molBiomass) and Km is expressed in 

mol(H2)L
-1. 

The oxidation rate of individual isolates exposed to 1.5 ppmv H2 was used to estimate the maximal 

population density sustained by H2. H2 uptake kinetic parameters of natural soil and theoretical 

population density sustained by typical H2 uptake rate are shown for comparison. 

 

 

It is noteworthy to mention that H2 uptake activity of the isolates was detected at the 

sporulation period, as observed with strain PCB7 (data not shown). The kinetic analysis 

reported in Table 1 showed that the Km(app) values of the H2-consuming streptomycetes were 

not clustered into a low affinity (>800 nM) and a high affinity (10-70 nM) group, but instead 

apparently covered a continuum of Km(app). This continuous range of Km(app) values may be 

explained by the different ability of the isolates to scavenge H2, or the variation caused by 

cells metabolism (Button, 1993; Dunfield and Conrad, 2000). Since estimation of kinetic 

parameters (Vmax and Km) is influenced by substrate diffusion limitation and physiological state 

of microorganisms, the specific affinity coefficient (a0
S = Vmax/Km) is considered as a better 

index for the ability of the cells to consume limiting substrate (Button, 1993; Dunfield and 

Conrad, 2000). Comparison of the calculated a0
S confirmed that isolates differed in their ability 

to consume H2. S. avermitilis and strain HP3 displayed the highest specific affinity for H2, with 

a0
S values being similar to those of natural soil (Table 1). No relationship was observed 

between the phylogenetical affiliation of the isolates and their affinity for H2 (Figure 3).For 

instance, the 16S rRNA gene sequences of strains HP12 and PCB7 shared 100% similarity 

but differed in their phenotypic characteristics and H2 uptake activities.  
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Based on microbial maintenance energy requirement, it has been estimated that a typical 

atmospheric H2 soil uptake rate could support a maximal population of 6.2 x107 H2-oxidizing 

bacteria per gram of soil (Conrad, 1999). Application of the same calculations to the H2 

uptake rates measured with the individual streptomycetes isolates revealed that the observed 

H2 uptake supported the maintenance energy requirement for 106-107 cells g-1
(soil). 

Interestingly, these estimates are on the same order of magnitude as the agar plate 

enumerations performed following the H2 uptake assays (Table 1). Hence, uptake of 

atmospheric H2 should be able to sustain the maintenance energy required for the survival of 

the isolates. The occurrence and the abundance of the streptomycetes have been reported 

for a broad variety of ecosystems, including desert soils, forests and peatlands (Xu et al., 

1996; Okoro et al., 2009; Pankratov and Dedysh, 2009). For instance, cultivation-dependant 

approaches revealed the presence of 105 streptomycetes g-1
(soil) in coastal sand dune and 

rhizospheric soil (Xu et al., 1996; Kurtböke et al., 2007; Yilmaz et al., 2008). Considering their 

ubiquity and their ecological importance, we propose that H2-consuming Streptomyces spp. 

are contributing to the atmospheric H2 soil uptake observed in the environment. The 

involvement of other nonculturable microorganisms or other bacteria harbouring functional 

genes encoding for putative high affinity hydrogenase is however not excluded, showing the 

importance to use specific molecular tools to detect other potential high affinity H2 consumers. 

 

Detection of putative high affinity [NiFe]-hydrogenases 

We used the primers targeting the hydB-like gene sequence of S. avermitilis and strain PCB7 

to test the streptomycete isolates. As anticipated, PCR amplification products were observed 

exclusively in the six isolates that also demonstrated the moderate-to-high affinity toward H2. 

The phylogenetic analysis of the amino acid sequences of hydB-like genes from strain PCB7, 

S. avermitilis and these six isolates shows that they are clustered together with the 

corresponding sequences from Mycobacterium spp., Frankia spp., Rhodococcus jostii RHA1 

and Ralstonia eutropha H16 (Figure 4). These clustered genes have previously been 

described as belonging to Group 1 of the [NiFe]-hydrogenases (Vignais and Billoud, 2007). 

Group 1 contains membrane-bound uptake hydrogenases responsible for either anaerobic or 

aerobic oxidation of H2 with the generation of energy. Phylogenetically this group is an 

assemblage of H2 uptake hydrogenases from mainly Bacteria and some thermophilic and 

methanogenic Archaea. 

So far, there has been no report that Group 1 [NiFe]-hydrogenases exhibit a high affinity H2-

uptake activity. Genes of these hydrogenases have been reported in genome sequencing 

projects and analysis of their G+C content suggests that they originate from lateral transfer of 

hydrogenase genes from actinobacteria (Cramm, 2009; Leul et al., 2009), but it is unclear 

what type of hydrogenase activity they code for. Previous experiments have shown that R. 

eutropha H16 displays only a low affinity H2 uptake activity in soil (Conrad et al., 1983). 
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Figure 4. Consensus tree of partial amino acid sequences translated from hydB-like gene sequences 

from Streptomyces isolates and large subunits of [NiFe]-hydrogenases gene sequences available in 

public databases. Different subgroups (L1-L4) were designated according to Vignais and Billoud (2007). 

The number of sequences in each subgroup has been indicated in brackets. The prefixes HP and MP 

indicate strains isolated from Heidelberg (agricultural soil) and Mainz (forest soil), respectively. The 

scale bar represents 10% sequence divergence. 

 

 

The genome of R. eutropha H16 encodes for four different hydrogenases: a soluble (SH) and 

a membrane-bound (MBH) hydrogenase involved in lithotrophic metabolism, a H2 sensor 

hydrogenase activating the MBH and SH gene expression, and a [NiFe]-hydrogenase (hyd4 

DNA region) of which the function has not been known (Schwartz et al., 2003; Cramm, 2009). 

The physiological role of Hyd4 enzyme is unknown since R. eutropha H16 mutant strains 

deficient in both MBH and SH genes is unable to grow in presence of H2 and CO2 (Kleihues et 

al., 2000). Our results show that the hyd4 gene is possibly affiliated to the streptomycetes 
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putative high affinity hydrogenase. Owing to the specificity of hydrogenase maturation 

systems involving cis- and trans-acting factors (Vignais and Colbeau, 2004), it is possible that 

hyd4 DNA region of R. eutropha H16 is not functional. On the other hand, a recent study on 

the phylogeny of uptake hydrogenases in Frankia revealed the presence of two different 

hydrogenase syntrons (Leul et al., 2009). Our phylogenetic tree provides evidence that the 

hydB like genes in the Streptomyces sp. PCB7 and the isolates are closely related to the 

hydrogenase syntron 1 genes of Frankia sp.. These hydrogenase genes have been shown to 

be quantitatively more expressed in free-living cells than in symbiotic cells that are exposed to 

an elevated H2 level, but measurements of the H2 oxidation activity have not been reported 

(Leul et al., 2007). Based on our data we propose that the hydB-like genes code for a high 

affinity [NiFe]-hydrogenase that is responsible for uptake of atmospheric H2 by soil. 

Considering the phylogenetic analysis presented in Figure 4, it is tempting to hypothesize that 

some Knallgas bacteria could express high affinity hydrogenase under specific conditions. 

However, there is currently no evidence for an implication of these microorganisms in the soil 

sink term of atmospheric H2. Indeed, Conrad et al. (1983) have shown that Knallgas bacteria, 

including Ralstonia eutropha H16, are unable to consume atmospheric H2 due to their high H2 

threshold concentration. Further investigation is required to characterize the newly identified 

putative high affinity [NiFe]-hydrogenases cluster in terms of activity and gene expression.  

Our study provides new evidence for the significant role of Streptomyces spp. in the H2 

biogeochemical cycle. Streptomyces spp. are usually chemoorganotrophs, degrading 

complex polymeric substrates during their initial development and consuming stored carbon 

during sporulation. Is uptake of atmospheric H2 providing a selective advantage for 

streptomycetes with high affinity H2 uptake under nutrient-limiting conditions? Identification of 

the structural and regulatory genes encoding the high affinity hydrogenase system of the 

streptomycetes isolates described in this study will be crucial to understand the metabolism 

and the diversity of microorganisms consuming atmospheric H2. As H2 uptake activity likely 

occurs at the sporulation period, environmental factors influencing the development of 

streptomycetes, including soil water and carbon content as well as C:N ratio may influence 

atmospheric H2 soil uptake activity.  
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V.4 Experimental procedures 

Isolation of streptomycetes from soil 

Streptomycetes were isolated from samples of a sandy soil collected from a deciduous forest 

(Fagus sylvatica) located in Mainz, Germany (50.00°N; 08.17°E) and from an agricultural soil 

collected from areas covered with white clover (Trifolium repens) located in Heidelberg, 

Germany (49.42°N; 08.61°E). Samples were collected from the upper 10 cm of the soil profile 

after removal of the litter. Mainz soil had a pH of 5.9, total nitrogen content of 0.1% and 

carbon content of 1.33%, while Heidelberg soil had a pH of 7.3, total nitrogen of 0.1% and 

carbon content of 0.88%. Soils were sieved (2 mm) before taking 500 mg sub-samples that 

were subsequently suspended in 5 ml sterile saline water (0.85% NaCl) and thoroughly 

vortexed at maximum speed to detach cells from soil particles. Soil suspensions were serially 

diluted (10-1 to 10-6) and 0.1 ml of each dilution was inoculated onto casein starch agar 

supplemented with cycloheximide (50µg ml-1) as antifungal agent (Kuster and Williams, 

1964). The agar plates were incubated for 14 days at 30°C. Putative streptomycetes were 

distinguished based on their colony morphology. Pure cultures were obtained after three 

sequential transfers of individual colonies onto casein starch agar. Individual colonies were 

then transferred onto oatmeal agar (60 g oatmeal and 12.5 g agar per litre of water) to 

determine the morphology characteristics of the isolates, and the biomass was utilized for 

genomic DNA extraction. Isolates were discriminated and identified on the basis of their 

morphology features (e.g. diffusive pigments, spores) and their 16S rDNA gene sequence. 

Stock cultures, prepared by transferring spores and mycelia of each isolate in 20% sterile 

glycerol, were stored at -80°C. Streptomyces avermitilis 46492T was provided by the German 

Collection of Microorganisms and Cell Cultures (DSMZ). 

 

DNA extraction 

Biomass was collected from oatmeal agar plates and mixed with 500 mg of glass beads 

(0.17–0.18 mm in diameter), 1.0 ml TEN buffer (50 mM Tris-HCl, 100 mM EDTA, 150 mM 

NaCl, pH 8.0) and 50 µl 10% SDS. The samples were transferred into a FastPrepTM 

instrument (Bio101 Thermo Savant) for two cycles of mechanical cell disruption of 45 s at 

speed 5.5, with a 5-min incubation on ice in-between the cycles. The tubes were centrifuged 

(10 min, 16 000g), and 500 µl of the supernatant was used for DNA purification using 

Wizard® DNA Clean-Up System (Promega, Madison, WI, U.S.A.) according to the 

manufacturer instructions. Purified DNA was quantified using Nanodrop 1000 (peqlab 

Biotechnologie GmbH, Erlangen, Germany) and kept frozen at -20°C. 

 

PCR amplification of 16S rRNA and hydB-like genes 

PCR reactions were performed in 50-µl reaction volumes containing the following 

concentrations or total amounts: 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 1.5 mM MgCl2, 200 

mM dNTP, 10 pM of each primer, 20 mg of bovine serum albumin, 2.5 U of Taq polymerase 

(Go Taq®, Promega, Madison, WI, U.S.A) and 20 ng DNA. The reactions were performed 
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using a Primus Thermocycler (MWG-Biotech AG, Ebersberg, Germany) at 94°C for 5 min, 

55°C for 5 min, followed by 30 cycles at 72°C for 45 s, 94°C for 45 s, 55°C for 45 s and a final 

extension period of 10 min at 72°C. 16S rRNA genes were amplified using the PA (5’-

AGAGTTTGATCMTGGCTCAG-3’) and PH (5’-AAGGAGGTGATCCARCCGCA-3’) primer pair 

that corresponds to the 8–27 and 1521–1541 positions in Escherichia coli 16S rRNA gene 

sequence (Edwards et al., 1989). hydB-like genes encoding the putative [NiFe]-hydrogenase 

large subunit of Streptomyces avermitilis 46492T were amplified using the NiFe-244f (5’-

GGGATCTGCGGGGACAACCA-3’) and NiFe-1640r (5’-TGCACGGCGTCCTCGTACGG-3’) 

primer pair. Primer NiFe-244f was specific to conserved L1 signature region of the NiFe-

hydrogenase large subunit (Vignais et al., 2001). Another forward primer (NiFe-1129f, 5’-

ccgcggtggttcgacggcaa-3’) was designed to generate shorter PCR amplification products 

appropriate for reverse transcription reactions and CARD-FISH probe synthesis (see below). 

 

H2 soil uptake activity assays 

H2 uptake measurements were performed using biomass grown in sterile soil, in liquid or in 

agar-solidified R2A medium (in g L-1: yeast extract 0.5, proteose peptone 0.5, casein 

hydrolysate 0.5, glucose 0.5, soluble starch 0.5, sodium pyruvate 0.3, K2HPO4 0.3, MgSO4.7 

H2O 0.05, and agar 12). For growth in sterile soil, 25 g of 2-mm sieved soil samples collected 

in Mainz forest were transferred into a 125-ml glass bottle and heat-sterilized (30 min, 121°C, 

1 bar) in two cycles  separated by a 24-h time interval. Single isolates were grown 48 hours at 

30°C in tryptic soy broth and transferred into the heat-sterilized soil samples to obtain a water 

content of 20%. Bottles were closed with a butyl rubber stopper and incubated at 25°C for 10 

days. Sterile packed cotton wool column fitted to a needle was inserted through the stopper to 

ensure aerobic conditions in bottle’s headspace throughout the incubation period. The packed 

column was removed during the H2 soil uptake measurements performed under a static 

headspace. In other experiments, biomass grown in liquid or agar-solidified R2A medium was 

aseptically harvested before being suspended in 5 ml modified sterile PBS buffer (phosphate 

buffered saline; 130 mM NaCl; 7 mM Na2HPO4.12H2O; 3 mM NaH2PO4.2H2O) (Caracciolo et 

al., 2005). The cells suspensions were then transferred into 60ml vials for H2 uptake activity 

measurements. 

Before performing the H2 uptake activity measurements, glass bottles containing biomass 

suspension or soil samples were flushed for 30 min with synthetic air (80% N2 and 20% O2). 

Pure H2 was then added into the headspace of the bottles to obtain an initial mixing ratio of 

1.5 – 1.8 ppmv H2. Decrease of the H2 mixing ratio was monitored as a function of time by 

analyzing aliquots (0.5 ml) of the headspace air in a Trace Analytical Reduced Gas Analyzer 

as previously described (Schuler and Conrad, 1990). In the case of liquid samples, bottles 

were continuously agitated at 100 rpm on an orbital shaker to enhance the transfer H2 from 

the gas into the liquid phase. Apparent first order H2 uptake rate constants were obtained by 

integrating the logarithmic decrease of headspace H2 mixing ratio. Reproducibility of the H2 

analyses was assessed before each set of experiments by repeated analysis of certified H2 
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standard gas (2.0 ppmv ±5%, 50 ppmv ±2% and 1000 ppmv ±2% H2, Messer Schweiz AG, 

Lenzburg, Switzerland), and standard deviations were typically <5%. No significant H2 uptake 

was observed for blank experiments involving sterile soil or phosphate buffer containing no 

biomass. 

H2 oxidation kinetic parameters (Km(app); Vmax(app)) were obtained by the addition of specified 

amounts of pure H2 into the headspace of glass bottles containing inoculated soils samples as 

previously described (Schuler and Conrad, 1990). Estimation of the kinetic parameters was 

performed 10 days following soils inoculation (Constant et al., 2008).  

 

Agar plate enumeration 

Agar plate enumerations of the streptomycetes strains were performed at the end of each H2 

uptake measurement series. Aliquots of the cell suspension (0.5 ml) or the soil (~1 g) were 

sampled in triplicate and serially diluted in 0.85% NaCl (10-1 to 10-6). An aliquot (0.1 ml) of 

each dilution was inoculated onto a R2A agar plate for colony-forming unit (CFU) 

enumerations. CFU enumerations were performed following 10 days of incubation at 25°C.  

 

CARD-FISH of hydB mRNA 

To generate controls for Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization 

(CARD-FISH) assays, partial hydB-like genes from Streptomyces sp. PCB7 (positive control) 

and Paracoccus denitrificans (Knallgas bacteria; negative control) were cloned and expressed 

in E. coli by using vector pBAD as previously described (Pernthaler and Amann, 2004). 

Polynucleotide antisense RNA probes were generated by in vitro transcription and were 

simultaneously labeled by incorporating digoxigenin-11-UTP (Roche Molecular Diagnostics) 

(Zwirglmaier et al., 2003). Clones were fixed in 2% (vol/vol) formaldehyde for 30 min at room 

temperature, centrifuged, and washed once with PBS and twice with 50% ethanol in PBS. 

Samples of Streptomyces sp. PCB7 were fixed in 50% ethanol in PBS for 24 h at 4°C, 

centrifuged, and washed once with PBS. Cells then were resuspended in 50% ethanol in PBS 

and stored at -20°C until further processing. The hybridization and detection procedures were 

based on the protocol described by Pernthaler and Amann (2004), with some minor 

modifications. 5 µl of cell suspensions were applied to each well of a Teflon-coated glass slide 

(MAGV, Rabenau-Londorf, Germany) and dried at 46°C. Expression clones of hydB were 

permeabilized with lysozyme (5 mg ml-1 in TE; Sigma) for 30 min at room temperature. 

Streptomyces sp. PCB7 samples were first incubated with lysozyme (10 mg ml-1 in TE; 

Sigma) for 1 h at 37°C, subsequently washed in Milli-Q water, and then incubated with 

achromopeptidase (60 units ml-1, dissolved in 0.01 M NaCl and 0.01 M Tris-HCl; Sigma) for 

30 min at 37°C (Sekar et al., 2003). Hybridization was performed overnight at 58°C using a 

formamide concentration of 50% in the hybridization buffer. For microscopic evaluation, slides 

were mounted with the antifading agent Citifluor AF1 (Citifluor, UK) and hybridization 

preparations were visualized by fluorescence microscopy (Axiophot; Carl Zeiss Microimaging 

GmbH, Goettingen, Germany).  
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Phylogenetic analysis 

PCR-amplified 16S rRNA and hydB genes from isolates were sequenced using the Applied 

Biosystems 3730XL Genetic Analyser (Max Planck Institute for Plant Breeding Research). 

Gene sequences were edited and assembled using BioEdit software (Hall, 1999). Gene 

sequences were compared with GenBank database using standard nucleotide-nucleotide 

BLAST search (Altschul et al., 1997). Phylogenetic analyses of 16S rRNA gene sequences 

were performed with ARB software package (Ludwig et al., 2004) and SILVA database 

containing aligned 16S ribosomal RNA sequences with a minimum length of 1200 bp for 

bacteria (Pruesse et al., 2007). Phylogenetic trees were constructed using Tree-Puzzle 

maximum-likelihood (Schmidt et al., 2002) and maximum-parsimony (Fitch, 1971) tree 

calculating algorithms. Robustness of the calculated trees was evaluated by 1000 puzzling 

steps and by bootstrap analysis based on 1000 resamplings. 16S rRNA gene sequences of 

the isolates were compared with those of Streptomyces type strains. The translated amino 

acid sequences of the hydB-like genes were aligned using the MUSCLE sequence alignment 

tool (Edgar, 2004). The alignment was corrected manually and trees were constructed using 

the aligned sequences by RAxML (Stamatakis et al., 2008), neighbor joining (Saitou and Nei, 

1987) and maximum parsimony algorithms. Robustness of the calculated trees was evaluated 

by bootstrap analysis based on 1000 resamplings. Consensus trees were obtained depicting 

the trees with most frequent branching supported by all the analyses. All sequences were 

deposited in the GenBank with accession numbers GQ867021 to GQ867035 for 16S rRNA 

genes and GQ867036 to GQ867042 for hydB gene sequences. 
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V.5 Supplementary material 

 

 

Figure S1. Hybridization of various expression clones with hydB mRNA antisense probe as controls for 

specificity. (A) E. coli clone expressing hydB of Streptomyces sp. PCB7. (C) Uninduced E. coli clone 

harbouring partial hydB gene of Streptomyces sp. PCB7. (E) E. coli clone expressing hydB of 

Paracoccus denitrificans. Panels B, D, and F show respective phase contrast images. Bars = 5 µm. 
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VI. Discussion 

VI.1 Upland Soil Cluster α in Marburg forest soil 

Forest soils are considered to represent the most effective biological sink for atmospheric 

methane, but to date it remains elusive which microorganisms process this uptake and 

whether they rely on methane as their sole carbon and energy source. The physiological 

properties of these atmospheric CH4 oxidizers remain unknown because so far organisms 

harbouring the key forest soil pmoA genotypes resisted cultivation. This applies particularly to 

the upland soil cluster α (USCα), proposed to exhibit a crucial role in atmospheric methane 

oxidation (Kolb, 2009). 

 

VI.1.1 Methane oxidation and use of alternative carbon sources 

The aim of this part of the thesis was to investigate the potential oxidation of methane and 

furthermore assimilation of acetate by upland soil cluster α in the acidic Marburg forest soil  

using RNA-SIP and DNA-SIP in comparison. Expression of USCα pmoA by mRNA catalyzed 

reporter deposition – fluorescence in situ hybridization (CARD-FISH) in the soil incubations 

was further monitored.  

Active assimilation of acetate by USCα was shown by RNA-SIP, while incorporation 

of methane could not be detected, although pmoA was constantly expressed. These results 

indicate that USCα (and also other potential atmospheric methane oxidizers) might not be 

restricted to methane as sole carbon and energy source. Furthermore, they might utilize 

additional carbon compounds for growth, such as acetate, and could use CH4 mainly as 

energy replenishment and survival strategy under limited conditions, suggesting the USCα 

represents rather facultative than obligate methanotrophs. 

(For detailed discussion see chapter III.1) 

 

VI.1.2 Applicability of RING-FISH with coupled cell sorting to target cells of USCα 

In this thesis, recognition of individual genes – fluorescent in situ hybridization (RING-FISH) 

was tested to target and, in combination with cell sorting, isolate cells possessing pmoA 

genes of USCα from Marburg forest soil (chapter III.2.1). Although all of the generated 

polynucleotide and monospecific oligo-oligonucleotide RNA probes showed a high potential to 

form secondary structures, required for the formation of a probe network around the cell 

during hybridization, and were checked for specificity, no specific hybridization could be 

achieved. Independent from formamide concentration and incubation time, cells of positive 

and negative controls both showed whole cell fluorescence and could not be discriminated. 

Halo signals were only observed sporadically and in single areas on the well. These 
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observations indicate that formation of the probe network did not take place and probes 

mainly accumulated inside the cells. Unfortunately, the exact conditions needed for a 

successful and specific network formation still remain unclear (Zwirglmaier, 2005), thus no 

explanation can be given, why these probes were not able to form specific probe networks. 

A comparison of both the negative controls also showed that cells of Methylocapsa 

acidiphila gave different hybridization results than E. coli clones harbouring the same pmoA 

gene. This indicates that, in contrast to CARD-FISH (chapter III.1), clones might not be 

suitable as general controls for RING-FISH because different cell morphologies between 

clones and “real” target cells might have a significant impact on the hybridization results. In 

particular in case of the methanotrophic bacteria, which possess extensive intercytoplasmatic 

membrane arrangements (see figure VI.1-1; Wartiainen et al., 2006; Dalton 2005; Dedysh et 

al., 2002), probably influencing or even inhibiting the formation of a potential probe network 

around the cell in RING-FISH. As fluorescent signals in CARD-FISH form and appear directly 

inside the cells, intracellular structures generally show no significant influence on the 

hybridization efficiency.  

 

 

Figure VI.1-1: Intercytoplasmatic membrane arrangements in Methylocapsa acidiphila. Adopted from 

Dedysh et al. (2002). Scale bar = 0.5 µm. 

 

Sorting of cells using microplates coated with pmoA DNA of USCα in combination with RING-

FISH in solution also proved to be unspecific. Cells of positive and negative control clones 

could not be separated, probably due to the missing formation of a specific probe network 

around the target cells during RING-FISH. The random and unspecific detection of PCR 

products most likely emerged from unhybridized cell aggregates inside the wells, which were 

not washed out completely and led to different results in every immobilization. A possible 

solution for this could be the use of sonication prior to hybridization, to separate cells, 

although care has to be taken not to alter or damage the membrane structure and integrity, 

since this could lead to unspecific formation of the probe network and therewith to false 

positive hybridization results (Fichtl, 2005).   
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VI.1.3 Enrichment strategies used for USCα 

A further attempt to unravel the phylogeny of the upland soil cluster α was to enrich these 

microorganisms using two different strategies (chapter III.2.2). The first approach consisted of 

a soil substrate membrane system (SSMS), set up using Marburg forest soil and incubated 

with 20 ppmv CH4. This system closely mimics the natural terrestrial environment for soil 

bacteria (Ferrari et al., 2008). However, no microcolonies of USCα could be detected on the 

filter pieces by pmoA mRNA CARD-FISH even after 6 weeks of incubation. On the other 

hand, expression of USCα pmoA in single cells was still observed and the SSMS consumed 

methane throughout the whole incubation period. These results indicate that the USCα did 

survive on methane and transcribed pmoA, as also observed in the 13CH4 RNA-SIP (chapter 

III.1) but probably still lacked compounds (e.g. other carbon sources) for growth (Degelmann 

et al., 2010), or were inhibited by other soil compounds diffusing through the membrane. 

The second enrichment approach implied an incubation of the Marburg forest soil in 

microcosms and slurries incubated with methane (2 ppmv, 20 ppmv, 100 ppmv) and pulses 

with acetate (100, 400, 800 µg g-1 d.w.s.). This strategy was based on recent publications 

showing that methanotrophs are capable of using acetate as carbon source (West & Schmidt, 

1999; Dunfield et al., 2010). In this approach, however, also no growth of USCα could be 

observed, even after 12 weeks of incubation. The amount of acetate added through the 

pulses was probably not sufficient, especially due to the strong competition for acetate by the 

remaining bacterial soil community, to allow growth of USCα. This suggests they might have 

survived on the methane provided, at least in the microcosms, but did not replicate, as also 

indicated by qPCR of pmoA genes. Copy numbers remained stable (14.2±0.11 x105 [copy 

number g-1 d.w.s.]) and fit to the population size of USCα reported before in Marburg forest 

soil collected in summer by Kolb et al. (2005; 21.3±7.3 x105 [copy number g-1 d.w.s.]). 

Instead, other microoganisms, like the enriched Burkholderia, showed faster growth on 

acetate and completely outcompeted and overgrew USCα. Therefore, acetate might be rather 

unsuitable for enriching USCα from forest soils, as already indicated by results of the 13C-

acetate SIP (chapter III.1). Furthermore, only very low consumption of methane could be 

observed in the slurry incubations in contrast to the “normal” soil microcosms, possibly 

suggesting that shaking disturbed methane oxidation and USCα use this process for energy 

replenishment only when exposed to air on a solid surface.  

 

VI.1.4 Outlook 

RNA-SIP using 13C-labeled acetate showed that the upland soil cluster α (USCα), assumed to 

represent methanotrophic bacteria adapted to the trace level of atmospheric methane and to 

play an essential part in the removal of this greenhouse gas from the atmosphere, are able to 

utilize other carbon compounds than methane (chapter III.1). We also know that they are 

predominantly abundant in a lot of upland soils, where uptake of atmospheric methane 

occurs, and seem to constitutively express genes encoding for a particulate methane 
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monooxygenase (Kolb et al., 2009). However, the involvement of USCα in atmospheric 

methane oxidation still remains unclear. To finally answer this question, isolation of a pure 

culture from soil would be required, followed by purification of the USCα pMMO enzyme and 

activity measurements in this culture. Acetate showed to be rather unsuitable for isolation or 

enrichment of USCα from forest soil, due to the large competition and better growth response 

of other soil microorganisms (chapter III.1 and III.2.2). However, further testing of other 

carbon sources that could be used by USCα might open the opportunity to obtain a carbon 

compound which allows for a more selective enrichment of these potential atmospheric 

methane oxidizers. In addition, the application of novel high-throughput sequencing 

approaches to investigate the microbial diversity in this soil could lead to identification of the 

16S rRNA phylogeny of USCα (Hirsch et al, 2010).   

More information regarding the activity of the USCα pMMO could also be gained by 

investigating the proteins present in the soil at the time point of atmospheric methane 

oxidation by environmental proteomics. This approach allows the proteome analyses of 

environmental samples (Keller and Hettich, 2009; Schneider and Riedel, 2010) and could 

answer the question, whether USCα pMMO is actually active (and when) or if expression of 

pmoA is uncoupled from enzyme activity. However, the fact that pMMO is a membrane-bound 

enzyme could present a problem in a proteomics approach.  

The observation that methane is incorporated into PLFAs of USCα (Chen et al., 

2008), which could also be true for acetate, could be used to specifically enrich USCα cells in 

a soil sample. But so far, no PLFA-targeted cell sorting methods have been reported. 

However, even a slight enrichment in USCα cells might allow the application of NanoSIMS, a 

secondary ion mass spectroscopy technique (reviewed in Wagner, 2009), to study the 

metabolism of labeled (or unlabeled) compounds.  

 

VI.2 Autotrophic CO2 fixation coupled to ammonia oxidation of archaea and 

bacteria in an agricultural soil 

This study was performed to investigate the potential fixation of CO2 coupled to oxidation of 

ammonia by ammonia oxidizing archaea (AOA) and their bacterial counterparts (AOB) in the 

Rauischholzhausen agricultural soil using RNA-SIP and DNA-SIP in comparison. Gradients 

were further analyzed regarding possible CO2 fixation pathways for the AOA. Expression of 

archaeal amoA by mRNA catalyzed reporter deposition – fluorescence in situ hybridization 

(CARD-FISH) in the soil incubations was visualized and compared with qPCR data to 

evaluate the abundance of AOA within the archaeal and overall microbial community in this 

soil.  

RNA-SIP demonstrated active fixation of CO2 coupled to ammonia oxidation by AOA 

and AOB in the agricultural soil. In contrast to the AOB, activity of AOA seemed to be 

inhibited by higher concentrations of ammonia. Furthermore, the detection of labeled archaeal 
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transcripts of a functional marker gene (accA) for the 3-hydroxypropionate-4-hydroxybutyrate 

cycle CO2 fixation pathway, recently proposed to function also within the Crenarchaeota, 

showed that ammonia oxidizing archaea in upland soils are able to autotrophically fix CO2 

using the hydroxypropionate-hydroxybutyrate cycle, hence providing an additional sink for 

CO2 in terrestrial environments. CARD-FISH targeting amoA mRNA of AOA and archaeal 16S 

rRNA also revealed a high abundance of ammonia oxidizing archaea (~ 50%) within the 

Archaea in the agricultural soil. These observations give new insights into the function and 

characteristics of ammonia oxidizing archaea in soil. 

Nevertheless, to closer investigate the function of this 3-hydroxypropionate-4-

hydroxybutyrate cycle in archaeal ammonia oxidizers in terrestrial environments, obtaining 

pure cultures of AOA from soil could be beneficial. But so far, no soil isolates have been 

published. More information might also be gained by using the RNA-SIP approach to 

compare various upland soils (unfertilized grasslands, forest soils) regarding the activity of 

autotrophic ammonia oxidizing archaea.  

(For detailed discussion see chapter IV) 

 

VI.3 Localized expression of hydB in H2-oxidizing streptomycetes in soil 

The aim of this study was to investigate the high-affinity H2 uptake activity of Streptomyces 

sp., to provide new evidence for the involvement of the streptomycetes in the H2 

biogeochemical cycle. Therefore, the assignment for this part of the PhD thesis was to 

localize the uptake activity within cells and spores of Streptomyces PCB7 by visualizing the 

expression of hydB, encoding the large subunit of the [NiFe]-hydrogenase, by mRNA 

catalyzed reporter deposition – fluorescence in situ hybridization (CARD-FISH).  

The study revealed that high-affinity H2 uptake is widespread among the 

streptomycetes. Furthermore, analyses showed that streptomyces spores instead of the 

mycelia catalysed the high-affinity H2 uptake activity. This indicates that H2-oxidizing 

streptomycetes, or actinobacteria in general, are essential for the uptake of atmospheric H2 in 

upland soils. 

Future research on this topic could focus on the high-affinity enzyme of this process 

and its control pathways regarding future application of these microorganisms in H2 fuel cell 

technologies (Constant et al, 2009). 

(For detailed discussion see chapter V) 
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VI.4 General discussion & outlook 

This thesis focused on the investigation of microbial groups in terrestrial environments, 

responsible for or proposed to be involved in the uptake of atmospheric trace gases (CH4, 

CO2, H2), namely the potential atmospheric methane oxidizer upland soil cluster α (USCα), 

the autotrophic ammonia oxidizing archaea (AOA), and the hydrogen oxidizing 

streptomycetes. While for some of these groups, uptake or oxidation of atmospheric trace 

gases showed to be mainly an energy replenishment and/or a survival strategy under limited 

conditions (USCα, chapter III.1; spores of Streptomyces sp. PCB7, chapter V), others seemed 

to depend on the utilization (autotrophic ammonia oxidizing archaea, chapter IV). Except for 

the H2 oxidizing streptomycetes, these groups so far resisted conventional isolation 

procedures and also did not show any growth in the incubation and enrichment experiments 

applied in this study. This indicates that the USCα and the AOA in terrestrial environments 

either grow very slowly or require yet unknown additional compounds or conditions for 

replication.  

Several methods were tested to investigate the function of these microbial groups in 

terrestrial environments and the incorporation of labeled substrate, and to monitor the 

expression of their functional marker genes, namely pmoA for the high-affinity particulate 

methane monooxygenase of USCα, amoA for the ammonia monooxygenase of AOA, and 

hydB for the high-affinity [NiFe]-hydrogenase of Streptomyces sp. PCB7.  

Stable isotope probing of nucleic acids was successfully applied in this study to monitor 

incorporation of labeled 13C-compounds (CH4, acetate, and CO2) into DNA and RNA of 

selected microbial groups, namely the methanotrophic community in an acidic forest soil 

(chapter III.1) and the ammonia oxidizing prokaryotes in an agricultural soil (chapter IV). RNA-

SIP proved to be competent to link expression of mRNA to function, but only if the labeled 

substrate was incorporated and used as carbon source. In cases where the labeled substrate 

might only serve as energy source, as presumed for the oxidation of atmospheric methane by 

USCα, SIP can not provide any information about utilization of this compound. In comparison 

to RNA-SIP, DNA-SIP, because of its restriction to label incorporation only during replication, 

showed labeling only when cells were actively growing. Therefore, RNA-SIP seems to be a 

more sensitive and effective approach for natural environments harboring slow growing but 

ecologically essential microbial groups. For RNA-SIP, a probable way to enhance the 

sensitivity regarding mRNA could be to exclude rRNA prior to density gradient centrifugation 

using commercially available kits. This pure mRNA-SIP could then serve for e.g. high-

throughput sequencing of labeled and unlabeled gradient fractions to gain more information 

about the metatranscriptome of a selected sample following label incorporation. These kits, 

however, have to be closely evaluated first regarding the introduction of biases during the 

selection procedure. In general, SIP provides a broad range of opportunities for further 

analyses of gradients. Once label incorporation took place and samples were subjected to 

density gradient centrifugation, gradient fractions can be used for quantitative PCR (qPCR) 

targeting functional marker genes or rRNA, cloning, or even high-throughput sequencing as 
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mentioned above. When designing a SIP experiment, care should be taken to incorporate 

adequate negative controls to exclude the possibility of cross-feeding or natural shifts in DNA 

density as a reason for label detection (Neufeld, 2007). 

Catalyzed reporter deposition – fluorescence in situ hybridization (CARD-FISH) 

targeting transcripts of functional marker genes (pmoA, amoA, and hydB) showed to be a 

reliable method for specific detection and localization of mRNA expression in pure cultures 

and environmental samples. Expression clones could successfully be used as general 

controls, which is especially advantageous when the targeted microorganisms have not been 

isolated yet and therefore no pure culture can serve as control, as in the case of the ammonia 

oxidizing archaea in soil and the upland soil cluster α. Furthermore, the coupling of mRNA 

CARD-FISH with normal 16S rRNA FISH or 16S rRNA targeted CARD-FISH provides an 

opportunity to specifically identify cells and link function (or at least expression) of important 

groups of biochemical processes in the environment to 16S rRNA phylogeny. Care should be 

taken, however, in the choice of a permeabilization procedure specific for the desired target 

microorganisms, as an insufficient or excessive permeabilization could lead to either false 

negative or false positive hybridization results, respectively.  

In contrast, a different FISH approach tested in this study, the recognition of individual genes 

– fluorescence in situ hybridization (RING-FISH), could not be effectively applied to detect 

pmoA genes of USCα in clones and soil samples. Hybridization results were highly unspecific 

and control clones exhibited different results than pure cultures harboring the same gene, 

indicating that clones are no suitable general controls for RING-FISH. Although RING-FISH 

had previously been used to successfully detect genes of the nitrite reductase (nirK) in 

denitrifiers in pure culture and environmental samples (Pratscher et al., 2009), and glycerol 

aldehyde 3-phosphate dehydrogenase (GAPDH) in E. coli (Zwirglmaier et al., 2004), it did not 

show specific results for USCα pmoA (chapter III.2), presumably because formation of the 

probe network was insufficient. Since the precise conditions required for this network 

formation are still unknown, RING-FISH proves to be a rather unreliable method that only 

seems to work for specific genes or microbial groups. Novel FISH methods targeting genes in 

microorganisms like geneFISH, first applied to detect crenarchaeotal amoA genes in 

seawater samples (Moraru et al., 2010), or in situ rolling circle amplification – fluorescence in 

situ hybridization (RCA-FISH), previously used for detection of denitrification genes in 

bacterial cells (Hoshino and Schramm, 2010), could provide a better approach to link gene 

presence to cell identity in microorganisms.  

Expression of mRNA is generally regarded as a marker for function and activity 

because mRNA is supposed to be very short-lived and thus should represent the active 

community at the time of extraction. In this study, however, pmoA transcripts of general 

methanotrophs could be detected in soil incubations even after 10 weeks, although there was 

no sign for activity of these microorganisms, indicating that transcripts presumed to be 

involved in the uptake of atmospheric trace gases in upland soils might exhibit a general high 

stability and longer half life than other gene transcripts. This has also been observed for 
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pmoA transcripts in lake sediments (Dumont et al., unpublished) and for transcripts of a high-

affinity naphthalene dioxygenase of Acidovorax in a groundwater system (Huang et al., 2009). 

In case of USCα, pmoA mRNA could also constantly be detected, although 13C of labeled 

methane was not incorporated into nucleic acids. Thus, despite the observed expression, a 

link to function could not be made. Of course, an irrefutable proof of enzyme activity can only 

be given by isolation of a certain pure culture from soil, followed by purification of the desired 

enzyme and activity measurements in this culture. Unfortunately, only an estimated 1% of all 

soil bacteria can be cultured using conventional laboratory procedures (Skinner et al., 1952), 

thus demanding culture-independent techniques to unravel questions important for microbial 

ecology. 

Application of DNA or RNA microarrays, for example, could give more detailed insight into the 

community structure and expression of important marker genes in soil environments. 

Microarrays are based either on 16S rRNA phylogeny like the PhyloChip, which targets nearly 

9,000 operational taxonomic units (OTUs) with an average of 24 probes each 25 bp long and 

was already successfully applied to soil (Brodie et al., 2006), or on functional gene sequences 

like the GeoChip, which can detect >10,000 genes in >150 functional groups (He et al., 2007). 

However, these microarrays give no information on single-cell level or about actual activity, 

and might miss yet unknown groups, since no DNA sequences are available for probe design. 

A novel technique allows the connection of microarrays with SIP. CHIP-SIP represents a 

combination of high-density phylogenetic microarrays (“chips”) and stable isotope probing 

(SIP) (Mayali et al., 2010). RNA extracted from incubations with stable isotope-enriched 

substrate is hybridized onto a microarray synthesized on a conductive surface and the array 

is subsequently imaged using high resolution secondary ion mass spectrometry (SIMS) with a 

NanoSIMS to detect isotopic enrichment. Nevertheless, the resolution of this method has to 

be evaluated, as this approach is not able to differentiate between fully and only partially 

labeled RNA. 

A new generation of single-cell approaches to study the function of microbial 

communities by uptake of stable-isotope-labeled compounds, notably the Raman 

microspectroscopy and secondary ion mass spectrometry (NanoSIMS) (both reviewed in 

Wagner, 2009), might also prove powerful to link phylogeny to function in various 

environments.  

The use of environmental proteomics, which allows the proteome analyses of environmental 

samples (Keller and Hettich, 2009; Schneider and Riedel, 2010), could further give more 

information regarding the activity of USCα or AOA in soil at the time point of atmospheric 

methane oxidation or ammonia oxidation and CO2 fixation, respectively. A different screening 

method, the high-throughput sequencing of 16S rRNA or functional genes/transcripts 

(MacLean et al., 2009; Hirsch et al, 2010), coupled to specific incubations might provide 

additional knowledge of phylogeny or behavior of these groups in soil. These high-throughput 

screening methods, however, demand a vast amount of bioinformatic sequence data analysis 

and are not able to detect less abundant microorganisms without pre-selection.   
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To summarize, stable isotope probing of RNA and DNA and the use of mRNA CARD-FISH 

revealed novel and significant insights into the phylogeny and function of microbial key 

players in the uptake of atmospheric trace gases in soils. Nevertheless, various questions 

concerning these groups yet remain open, thus new methodological developments could 

support further investigations. But despite the advancement of high-end single cell analyses 

and high-troughput screening methods, there is still need for well designed and specific 

experiments, particularly when investigating the activity and function of microbial groups 

showing high abundance but maybe only slow growth, like the microorganisms involved in the 

uptake of atmospheric trace gases in terrestrial environments.  
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