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Zusammenfassung in deutscher Sprache 

 

Mittels eines speziell entwickelten Gerätes ( Bonedias - Bone Diagnostic 

System) konnte am menschlichen Kniegelenk durch eine Roll-Gleitbewegung 

(Kniebeuge) eine physiologische Schallemission akustisch sichtbar gemacht werden. In 

der vorliegenden Studie wurden über 100 Patienten untersucht, einen Tag vor einer 

geplanten Operation (Arthroskopie oder Knieendoprothese ) untersucht, um eine 

mögliche Korrelation zwischen der akustischen Schallemission mit den intraoperativen 

pathologischen Befunden zu prüfen. Über 100 Patienten wurden evaluiert. Analogien 

zwischen den intraoperativen gefundenen Knorpelschaden und dem Alter, dem 

Geschlecht, der Länge des Oberschenkels, der Dicke des Oberschenkels, dem Body 

Mass Index und der Fehlstellung des Kniegelenkes wurden mituntersucht.  

Das Ziel dieser Studie ist die Evaluation eines nicht invasivem 

Untersuchungsverfahrens zur Beurteilung von Knorpelschadens am Kniegelenk, auch 

schon im Anfangsstadium. Bislang wurden teure oder invasive Diagnoseverfahren 

benutzt um Schädigungen im menschlichen Knie bewerten zu können. Die 

Schallemissionsanalyse ist ein nicht-invasives, kostengüngstiges Verfahren, das 

typische Signalmusters anbietet und die in der Zusammenschau mit den klinischen 

Befunden Hinweise auf vorliegende Knorpelläsionen erlaubt.                                                                           

Die Ergebnisse dieser Studie zeigen über 60% Übereinstimmung zwischen 

Schallemissionsanalyse und den fortgeschrittenen Knorpeldefekte (typ III und IV nach 

Outerbridge). Von höherem Stellenwert sind die Ergebnisse mit 50% Übereinstimmung 

für die Knorpelläsionen Typ 0, I und II nach Outerbridge, mit den Schallemissionen- 

Signalen. Die typischen Schallsignale, die mit den intraoperativen Befunde 

(artroskopische Befunde) korrespondiert werden können, zeigen die Bedeutung dieses 

Verfahren für die Diagnostik der beginnenden Knorpelschaden. Diese Methode ist noch 

nicht ausgereift. Die Ergebnisse der Schallemission sind statistisch nicht eindeutig der 

Knorpelschaden im Stadium 0-II zuzuordnen (50%). Dennoch bietet der Einsatz in viele 

Fällen weitere Informationen an, die in der Zusammenschau der klinischen 

Befundergebnisse in Zukunft in der weiteren Einschätzung der diagnostischen und 

therapeutischen Vorgehensweise  benutzt werden können. Das Verfahren ist noch nicht 

ideal um Schallsignale zweifelsfrei mit intra-arthroskopischen Befunde 



Cristina Zolog                 Acoustic Emission Measurement System in Diagnostic of Cartilage Injuries of the Knee 

5 
 

nebeneinanderzustellen. Jeder Patient muss separat untersucht und ausgewertet werden, 

was relativ viel Zeit in Anspruch nimmt:   20-30 Minuten für die 

Schallemissionsuntersuchung, klärende Fragen und klinische Tests, sowie weitere 15 

Minuten für die Auswertung der Signale und den Vergleich mit den intraoperativen 

Befunden. Im Rahmen einer wissenschaftlichen Studie ist dieser Zeitaufwand 

akzeptabel, kaum jedoch für die tägliche Praxis. Eine verfeinerte standardisierte 

Auswertung nach weiteren, größeren Studien könnte wichtige Vorteile und Gewinne 

bezüglich der Bestimmung von Knie-Knorpelschäden in frühen Stadien ergeben. 

Zusammenfassend bietet diese Studie maßgebliche Informationen über die Rolle 

der Schallemissionsanalyse bei Knorpelerkrankungen am Kniegelenk an, Informationen 

die für die zukünftige Studien benutzt werden können. Dieses Verfahren ist günstig und 

nicht-invasiv, zeitaufwändig und benötigt weitere Verbesserungen, damit die Methode 

hilfreich in der Diagnostik der früheren Stadien der Knorpelläsionen im alltäglichen 

Gebrauch angewendet werden kann.  
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Abstract 
 

The measurement system BONEDIAS (Bone Diagnostic System) was developed 

as a non-invasive diagnostic method, based on the analysis on the acoustic emission 

from the knee joint. Knee squats of a patient will release acoustic emission in high 

temporal resolution and well correlated to the angle of knee flexion. The physician will 

get the relevant information concerning arthritic lesions in the knee joint (well 

characterized acoustic emission, singular events without a follow up of further 

emission), acoustic emission due to elevated intra-articular friction caused by e.g. 

cartilage lesions, inappropriate surface roughness, a lack of synovial fluid or crack 

initiation in the femur. Over 100 patients were analyzed with the measurement system 

BONEDIAS, afterwards the results were compared with the intra-operative views 

(arthroscopy and arthroplasty of the knee).  Other parameters were studied, concerning 

the relation between the age and the sex of the subjects, the length of the femur, thigh 

thickness, the body mass index, the anatomical axis of the knee and the appearance and 

severity of the cartilage lesions.   

The study was made with the purpose to see if there was a correspondence 

between the cartilage disorders, the intraoperative views (arthroscopy and the 

arthroplasty of the knee) and the acoustic emission measurements, performed one day 

before the surgery. Because there aren`t at this moment cheap and standards methods 

who can determine the early cartilage injuries, this study is supposed (concording with 

the results) to open new ideas and new advantages in the diagnostic of this often 

disease, using the acoustic emission measurement system.  

The results obtained, 50% correspondence for the gr. 0, I and II Outerbridge 

lesions are more important, more significant that the other results, with over 60% 

correspondence for  the advanced osteoarthrosis. The obtained acoustic emission 

signals, corresponding to the intra-arthroscopic findings showed the importance of this 

method to identify the early cartilage injuries. The method is not perfect and the results 

(50%) are not really statistically significant, so that we can introduce this method on a 

large scale, but offers important information that should be used in the future. Also, 

there isn’t a perfect method to compare the acoustic emission signals with the intra-

arthroscopic findings. Every patient was analysed separately and with his corresponding  

measurement compared, that means a lot of time (20 – 30 minutes for the measurement 

and the other questions and clinical tests and another 15 minutes to analyse the signals 
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and compare them with the intra-operative findings). For a study this can be accepted, 

but for clinical every day use maybe not. A standard interpretation and analyse method, 

maybe after clinical large trials, if such a method can be developed, could bring big 

advantages for the early determination of the cartilage injuries. 

In conclusion, the study had offered important informations about the 

importance of accoustic emission measurements, that can be used for the future studies 

and with some improvements, this method , cheap and non-invasive, but at this moment 

a little beat time-consuming, can be helpful in the diagnose of the early cartilage 

injuries.  
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1. INTRODUCTION 

 

 
The measurement system BONEDIAS (Bone Diagnostic System) was developed 

as a non-invasive diagnostic method, based on the analysis on the acoustic emission 

from the knee joint.  

 

 

 

 

 

 

 

 

Knee squats of a patient will release acoustic emission in high temporal 

resolution and well correlated to the angle of knee flexion. The physician will get the 

relevant information concerning arthritic lesions in the knee joint (well characterized 

acoustic emission, singular events without a follow up of further emission), acoustic 

emission due to elevated intra-articular friction caused by e.g. cartilage lesions, 

inappropriate surface roughness, a lack of synovial fluid or other defects ( a plethora of 

continuous emission), crack initiation in the femur ( a burst type of acoustic emission 

followed by continuous emission, which is typical of relaxation phenomena in the crack 

banks). Over 100 patients were analyzed with the measurement system BONEDIAS, 

afterwards the results were compared with the intra-operative views (arthroscopy and 

arthroplasty of the knee).  Other parameters were studied, concerning the relation 

between the age and the sex of the subjects, the length of the femur, thigh thickness, the 

body mass index, the anatomical axis of the knee and the appearance and severity of the 

cartilage lesions.   

 

 

 
 

BONEDIAS  

Method of fracture diagnostic / German Patent P4422451.6 
Training system with a device of performing a procedure that stimulates the bone 
growth / EU Patent 0821929 
BONEDIAS Brand owner Nr. 304 64 589 
Patent application DE 10254065 A1 2004.06.03 
Owner of the patent B.Ziegler, Dr. H.-J. Schwalbe 
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2. ANATOMY OF THE KNEE 

 
The anatomy of the knee can be examined on a number of levels from the 

microscopic to gross and using a variety of techniques, including physical examination, 

anatomic dissection, radiographic and cross-sectional imaging and arthroscopic 

examination.  Some important aspects concerning the anatomy of the knee will be 

presented below, emphasizing my object of study, the articular cartilage.  

The knee joint consists of three bony structures – the femur, tibia and patella – 

that form three distinct and partially separated compartments: the medial, lateral and 

patellofemoral compartments. [52] 

The patella is the largest sesamoid bone in the body and sits in the femoral 

trochlea. The articulation between the patella and femoral trochlea forms the anterior or 

patellofemoral compartment. The architecture of the distal femur is complex. 

Furthermore, this area serves as the attachment site of numerous ligaments and tendons. 

The lateral condyle is slightly wider than the medial condyle at the center of the 

intercondylar notch. Anteriorly, the condyles are separated by a groove: the femoral 

trochlea. The sulcus represents the deepest point in the trochlea. Relative to the 

midplane between the condyles, the sulcus lies slightly laterally. 

The intercondylar notch separates the two condyles distally and posteriorly. The 

lateral wall of the notch has a flat impression, where the proximal origin of the anterior 

cruciate ligament (ACL) arises. On the medial wall of the notch is a larger site where 

the posterior cruciate ligament (PCL) originates. The mean width of the notch is 

narrowest at the distal end and widens proximally (1,8 to 2,3 cm); in distinction, the 

height of the notch is greatest at the midportion (2,4cm) and decreases proximally 

(1,3cm) and distally (1,8cm).  

The lateral condyle has a short groove just proximal to the articular margin, in 

which lies the tendinous origin of the popliteus muscle. This groove separates the lateral 

epicondyle from the joint line. The lateral epicondyle is a small but distinct prominence 

to which attaches the lateral (fibular) collateral ligament (LCL). On the medial condyle 

the prominent adductor tubercle is the insertion site of the adductor magnus. The medial 

epicondyle lies anteriorly and distally to the adductor tubercle and is a C-shaped ridge 

with a central depression or sulcus. Rather than originating from the ridge, the medial 

collateral ligament (MCL) originates from the sulcus. The epicondylar axis passes 

through the center of the sulcus of the medial epiconyle and the prominence of the 
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lateral epiconyle. This line serves as an important reference line in total knee 

replacement. Measurements of the width of distal femur along the transepicondylar axis 

suggest that women have narrower femurs than males relative to the anteroposterior 

dimension. (Fig. 2.1. and 2.2.) [52] 

 

  
Figure 2.1.. Bony landmarks with ligament and tendon attachment sites on the anterior (A), 

medial (B). 
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Figure 2.2. A) Bony architecture of the distal femur; B) Anatomic specimen of the distal femur. 
The femoral trochlea separates the lateral and medial femoral condyles. The deepest point lies 
slightly offset to the lateral side. The anterior aspect of the lateral condyle is more prominent 
than the medial side.  

     In a macerated skeleton, inspection of the tibial plateau suggests that the 

femoral and tibial surfaces do not conform at all. The larger medial tibial plateau is 

nearly flat and has a squared-off posterior aspect that is quite distinct on a lateral 

radiograph. In distinction, the articular surface of the narrower lateral plateau borders on 

convexity. Both have a posterior inclination with respect to the shaft of the tibia of 

approximately 10 degrees. However, the lack of conformity between the femoral and 

tibial articular surfaces is more apparent than real. In the intact knee, the menisci 

enlarge the contact area considerably and increase the conformity of the joint surfaces. 

The median portion of the tibia between the plateau is occupied by an eminence: the 

spine of the tibia. Anteriorly there is a depression, the anterior intercondylar fossa, to 

which, from anterior to posterior, the anterior horn of the medial meniscus, the ACL, 

and the anterior horn of the lateral meniscus are attached. Behind this region are two 

elevations: the medial and lateral tubercles. They are divided by a gutter-like 

depression: the intertubercular sulcus. Approximately 2 to 3 cm lateral to tibial tubercles 

is Gerdy`s tubercle, which is the insertion site of the iliotibial band (ITB). [52] 

 

    Hyaline / Articular cartilage 

Articular cartilage is a specialized connective tissue composed of hydrated 

proteoglycans within a matrix of collagen fibrils. Proteoglycans are complex 
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glycoproteins that are made up of a central protein core to which are attached 

glycosaminoglycan chains. The structure of hyaline cartilage is not uniform, but rather 

can be divided into distinct zones based on the arrangement of collagen fibrils and the 

distribution of chondrocytes. The density of chondrocytes is highest close to the 

subchondral bone and decreases toward the articular surface. Calcification occurs in a 

distinct basophilic zone at the deepest level of chondrocyte proliferation termed the 

tidemark. Beneath this region is a zone of calcified cartilage that anchors the cartilage to 

the subchondral plate. Cartilage is avascular and chondrocytes in the superficial zones 

are believed to derive nutrition from the synovial fluid. Deeper zones likely obtain 

nutrition from the subchondral bone. (Fig. 2.3.) 

 

 

Figure 2.3. A) Diagrammatic representation of the transition from articular cartilage to the bone. 
B) Normal articular (hyaline) cartilage, composed of water, collagen and proteoglycan. The 
sparsely cellular smooth superficial zone becomes increasingly cellular in deeper layers. A 
distinct basophilic line, the mineralization front, can be seen where cartilage becomes calcified. 
 

Examination of gross specimens or arthroscopic visualization reveals normal 

cartilage to be white, smooth and firm material. Articular cartilage damage or 

degeneration, termed chondromalacia, can be quite readily identified. These 

characteristic changes seen during arthroscopic examination have been classified by 

Outerbridge: grade 0 is normal, white-appearing cartilage; grade I is swelling or 

softening of an intact cartilage surface; grade II is represented by fissuring and 

fibrillation over a small area (<1,2 cm); grade III is the same pathological changes over 

a large area (>1,2 cm); grade IV represent erosion to the subchondral bone and are 
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indistinguishable from osteoarthritis. Chondral flap tears caused by delamination of the 

articular cartilage may be also encountered. (Fig. 2.4.) [52] 

These changes in the articular cartilage cannot be directly visualized on 

conventional radiographs but may be seen on magnetic resonance imaging (MRI) 

studies. However, even MRI is unreliable for detecting early stages of chondromalacia. 

These may appear as foci or areas of diffuse abnormal signal with a normal surface. 

Grad III or IV chondromalacia is visible as thinning, irregularity and fissuring of the 

cartilage. [52] 

Damage to the articular cartilage and joint surface may result indirectly from 

pathological changes in the subchondral bone. Both osteonecrosis and osteochondritis 

dissecans (OCD) may lead to destruction of the articular surface. In the knee, OCD 

tends to occur on the intercondylar aspect of the medial femoral condyle in young 

people. These lesions may separate from the surface and form a loose body. The base of 

these lesions will reveal vascular subchondral bone if debrided.  Classic radiographic 

findings include a lucent osseous defect that may have a fragmented or corticated 

osseous density within the lucency. On MRI studies, increased signal about the defect 

on T2-weighted  images represents joint fluid surrounding the lesion; irregularity of the 

articular surface may also be noted. Osteonecrosis results in a similar osteochondral 

fragment but tends to occur in elderly patients on the weightbearing aspect of the medial 

femoral condyle. In distinction to the lesions in OCD, fragments in ostenecrosis 

separate from a bed of avascular bone. Again, radiographs may reveal a lucent defect at 

the involved site, but MRI is more reliable for the evaluation of these defects. A 

curvilinear area of low signal with variable bone edema is characteristic. Although the 

articular cartilage is initially normal, both processes may lead to detachment of 

osteochondral loose bodies, fragmentation and collapse of the articular surface, resulting 

in degenerative changes.  

The menisci are two crescentic fibrocartilage structures that serve to deepen the 

articular surfaces of the tibia for reception of the femoral condyles. Each meniscus 

covers approximately the peripheral two-thirds of the corresponding articular surface of 

the tibia. The peripheral border of each meniscus is thick, convex and attached to the 

capsule of the joint; the opposite border tapers to a thin, free edge. The proximal surface 

of the menisci are concave and are in contact with the femoral condyles; the distal 

surfaces are flat and rest on the tibial plateau.  
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Figure 2.4. Arthroscopic views of articular cartilage. Normal white, smooth articular cartilage 
(Outerbridge grade 0) in the medial (A), lateral (B) and patellofemoral compartments (C and D). 
Softening of the articular surface of the lateral tibial plateau (E) and patellofemoral articulation 
(F) with indentation at the probe tip (Outerbridge grade 1) is noted. (G) A small fissure and 
fibrilation of the medial femoral condyle (Outerbridge grade 2). Extensive fibrilation of the 
articular cartilage involving the tibial plateau (H) and patella (I) (Outerbridge grade 3). Erosion 
of articular cartilage to subchondral bone involving the medial femoral condyle (J) and patella 
(K) (Outerbridge grade 4). Arthroscopic view of a chondral flap tear (L); the probe tip is deep to 
a flap of deliminated articular cartilage on the medial femoral condyle.  
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The menisci perform several important functions, including (1) load 

transmission across the joint, (2) enhancement articular conformity, (3) distribution of 

synovial fluid across the articular surface and (4) prevention of soft-tissue impingement 

during joint motion. The medial meniscus also confers some stability to the joint in the 

presence of ACL insufficiency where the posterior horn acts as a wedge to help reduce 

anterior tibial translation. However, the lateral meniscus does not perform a similar 

function. The rapid progression of degenerative changes, first observed by Fairbank, 

that occur as a result of complete meniscectomy have been well documented. These 

changes include (1) osteophyte formation on the femoral condyle projecting over the 

site of meniscectomy, (2) flattening of the femoral condyle and (3) narrowing of the 

joint space  on the involved compartment.[52] 
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3. IMAGING OF THE KNEE 

 
There are nowadays many methods for investigation the knee. Each method has 

its advantages and disadvantages. With some methods it can be better shown the 

osseous structures, with others the soft tissues or the effusions. In this chapter there will 

be presented the methods that exist till now, what can we see with the help of these 

methods and all that, to show the need of developing a new method for detecting the 

cartilage injuries.  

 

3.1. Radiographic examination of the knee 

A routine radiographic examination of the knee consists of standard 

anterioposterior (AP) and lateral and tangential axial ("sunrise") views. Other 

supplemental views include the tunnel view and the flexed, weightbearing 

posteroanterior (PA) view. [52] 

 

Normal radiographic findings 

Soft tissues 

The soft tissues of the knee are optimally demonstrated with low kilovoltage. On 

the lateral view, one can see the quadriceps, patellar tendons and the suprapatellar 

pouch. These soft tissue structures are normally straight, are of uniform thickness and 

are sharply demarcated posteriorly by fat. The soft tissues demonstrated on the AP view 

are the medial and lateral supporting ligaments; however, they have no distinguishing 

radiographic characteristics unless they are calcified. 

Osseous structures 

The osseous structures of the knee include the bones and their articulations. 

Radiographically, the mineralization alignment, integrity and articulation of the bones 

are examined. The bones of the knee are the distal femur, proximal tibia and fibula, 

patella and on occasion, a fabella and/or cyamella. The fabella is a sesamoid bone in the 

lateral head of the gastrocnemius and is identical on the lateral view posterior to the 

distal femur; on the AP view it is super imposed on the lateral femoral condyle. The 

cyamella is a sesamoid bone in the popliteus tendon and it is identified on the AP and 

oblique views in the groove in the lateral aspect of the lateral femoral condyle.  
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Three joint compartments comprise the knee joint: the medial and lateral femoral 

tibial compartments and the patello-femoral compartment. Alignment and joint space 

width of the medial and lateral compartments are best assessed on the AP view, whereas 

the patello-femoral compartment is most optimally assessed on the Merchant view. The 

width of the lateral joint compartment is normally wider than that of the medial 

compartment; this asymmetry should not be misinterpreted as cartilage loss. (Figure 

3.1., 3.2. and 3.3.) [52] 

 

 

            
 

Figure 3.1. Anteroposterior supine versus wheightbearing. The severe medial joint space 
narrowing is much more apparent on the weightbearing view (A) than on the supine view (B). 
 
 

Special Views  

Some radiographic techniques have special applications. Although these are not 

routinely obtained in the evaluation of patients with knee problems, in certain 

conditions these individual views may be indicated.  

Obliques 

Oblique radiographs of the knee are usually not necessary. They have limited 

usefulness for evaluating possible nondisplaced and/or stress fractures about the knee. 

They can conceivably also be helpful for evaluation of conditions such as 

osteochondritis dissecans or Salter fractures of the distal femoral or proximal tibial 
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physes. Two views are described, a lateral oblique and a medial oblique, each taken 45 

degrees from the AP plane.  

 

 
 

Figure 3.2. A) Normal anterioposterior view of the knee. The osseous structures are normally 
mineralzed and the articular cortices are smooth. The femoral tibial alignment is in 7° of valgus. 
The lateral compartment is normally slightly wider than the medial compartment. B) Lateral 
view of the knee. Blumensaat’s line (open arrow) represents the roof of the intercondylar notch. 
The physeal scar is indicated by the solid arrows. The patella is commonly located between 
these two lines, with the lower pole approximately at the level of Blumensaat’s line. The Insall-
Salvati ratio is a more accurate method of assessing patellar height; the length of the patellar 
tendon divided by the greatest diagonal length of the patella should be equivalent (0,8 to 1,2).  
 

 
Figure 3.3. Merchant’s view. A) Technique. B) Normal Merchant‘s view. Patellofemoral 
alignment is normal bilaterally and the osseous articular cortices are normal.   
 
 



Cristina Zolog                 Acoustic Emission Measurement System in Diagnostic of Cartilage Injuries of the Knee 

19 
 

Notch view 

The notch view radiograph is included in some routine knee series. It is a non-

weight-bearing view taken in the AP plane with the knee flexed approximately 60 

degrees. This view is most often used for evaluation of osteochondritis dissecans, 

osteonecrosis or loose bodies.  

Stress views 

Stress radiographs are those obtained while an examiner applies a force in 

certain direction to the knee. These could conceivably be of use in evaluation medial 

collateral ligament (MCL) or lateral collateral ligament (LCL) injuries, but their most 

common use is for evaluating occult growth plate fractures around the knee. It should be 

noted that obtaining stress radiographs of the knee in the setting of a possible growth 

plate injury is controversial. Although these types of radiographs may better delineate 

the fracture pattern, some believe that, by performing this radiographs, additional 

trauma is being inflicted on the growth plate and may adversely affect the eventual 

healing response of the fracture. Another use of stress fracture is to evaluate the amount 

of translation between the femur and tibia in knees with ACL or PCL injury. This can 

be useful for evaluating the success of operative procedures or in correlation with 

arthrometer measurements.  

Patological findings 

Soft tissues 

Radiographically, the most common abnormality in the knee is an oval, soft 

tissue density posterior to the quadriceps tendon. It indicates an abnormality distension 

of the suprapatellar pouch by either joint infusion or synovial hypertrophic tissue. A 

joint infusion may be synovial fluid, blood or pus.  

When a joint infusion is present in a patient with a clinically suspected occult 

fracture, a „cross-table“ lateral view is often helpful. This view is obtained with the 

patient supine, the cassette perpendicular to the table top and the central x-ray beam 

perpendicular to the cassette. A fracture that involves an articular surface bleeds into the 

joint, this blood contains bone marrow fat. Because fat has a lower specific gravity than 

blood, it separates from the blood and layers on top of it analogous to oil floating on 

water. The sharpe interface between the low density of fat and the soft tissue density of 

blood can be distinguished radiographically on this view, the so-called „fat fluid level“. 
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Popliteal (Baker’s) cysts often present as a soft tissue mass in the popliteal fossa. 

They are almost always accompanied by a joint infusion and represent communication 

of the synovial cavity with a bursa/recess at the postero-medial aspect of the knee. The 

communication of the knee between the joint and this recess exists between the tendon 

of the medial head of the gastrocnemius and the semimembranosus. Plain films are 

insensitive for diagnosing popliteal cysts, as the soft tissue density of the gastrocnemius 

muscles obscures their visualization. The cyst and communication with the joint can be 

accurately diagnosed most cost-effectively on ultrasonography and can also be clearly 

delineated on MRI.  

Calcifications 

Calcification of the knee can be extra-articular or intra-articular and the cause of 

these calcifications can often be determined by fairly specific distinguishing 

characteristics. Causes of extra-articular calcifications include normal anatomic 

structures (fabella, cyamella), tendon and ligament calcification (Pellegrini-Stieda 

disease – calcification around the medial colateral ligament; Osgood-Schlatter disease – 

calcification at the tibial tubercle insertion of the patellar tendon; Sinding-Larsen-

Johansson disease – calcification of the patellar attachment of the patellar tendon; 

myositis ossificans – ossification in the soft tissue), calcified bursitis, tendon 

calcification/ossification, calcified neoplasm (extra-articular; intra-articular 

calcification: within the articular cartilage or meniscal cartilage – chondrocalcinosis, 

calficied loose bodies, and calcification in the infra-patellar fat pad – Hoffa’s disease), 

aneurysm, and tumoral calcinosis.[52] 

Avulsion fractures 

Originally described in the 1879 and otherwise known as the lateral capsular 

sign, a Segond fracture is an avulsion lesion of the lateral aspect of the tibia. This can be 

seen on the AP radiograph or the flexion weight-bearing view. It is significant because 

it has a high level of association with ACL disruption.   

 

3.2. Radionuclide imaging 

Radionuclides may be used to image abnormalities of the knee that are not 

visible on radiographs. Radionuclide imaging is based on differences in uptake of 

radionuclides containing radioisotopes by normal and abnormal tissue because of 

physiological and biological differences rather than anatomic differences, as with 
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radiographs. The radioisotope emits gamma energy until it decays to a stable state. 

Gamma rays are detected by a gamma camera using a sodium iodide crystal. When the 

crystal absorbs the gamma ray or x-ray, it scintillates; that is, it emits light. This light is 

converted to an electrical pulse by photomultiplier tubes and is amplified. This sequence 

of events allows creation of an image based on the intensity and distribution of 

radioactivity in the body. Lead collimators focus the image and increase the resolution 

by absorbing scattered radiation. All-purpose or high resolution collimators are used 

routinely. Higher resolution and magnification of the image can be obtained by using a 

pinhole collimator, but this is at the cost of additional scanning time. Routine images on 

a gamma camera are two-dimensional (planar). Tomographic images can be obtained by 

rotating the gamma camera in an elliptical or circular arc around the imaged body part. 

This is known as single photon emission computed tomography (SPECT). 

Computerized reconstruction of the data allows tomographic images to be obtained in 

axial, coronal and sagittal planes. Although there are several reports showing increased 

accuracy of SPECT for diagnosing abnormalities in the knee, SPECT scanning is not 

used routinely because of addinional scanning time requiered. [52] 

Radionuclide bone scanning is highly sensitive in the detection of osseous 

disorders, but it lacks specificity. Increased vascularity and uptake in the delayed phase 

of a bone scan can result from infection, fracture, tumor, arthritis and recent surgery as 

well as other conditions. Correlation of the bone scan with clinical information, 

radiographs and other diagnostic imaging modalities may be necessary for a diagnosis 

in many cases. The appereance or pattern of uptake on the bone scan may also be 

helpful in increasing the specificity. [52] 

 

3.3. Arthrography 

In the last decade, arthrography has been nearly completely replaced by MRI 

and its indications for knee imaging are currently very limited. Arthrography allows 

visualization of the intra-articular structures of a joint by obtaining images following 

injection of positive contrast material alone (single-contrast) or contrast and air (double-

contrast). Before MRI, double-contrast arthrography was the standard imaging study for 

diagnosis of meniscal tears, cruciate ligament injuries, articular cartilage abnormalities 

and intra-articular loose bodies. A CT scan performed after the arthrogram (CT-

arthrography) provides cross-sectional visualization of surface abnormalities of articular 
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cartilage, intracapsular abnormalities and periarticular soft tissues. It is ideal for 

diagnosing chondromalacia patella, thickened synovial plicae and popliteal cysts. [52] 

 

3.4.  Ultrasound  

Ultrasound of the popliteal fossa is one of the first important applications of the 

technique in musculoskeletal radiology. A popliteal cyst is demonstrated easily and can 

be differentiated from an aneurysm of the popliteal artery and a fatty pad in the popliteal 

fossa. Occasionaly a neoplasm of soft tissue may arise at this site and some evaluation 

of such tumors may be made with ultrasound. The appearance of  a popliteal cyst is 

characterized by an echo-poor mass with smooth, well defined walls and occasional 

septations. Haemorrhage or infection within the cysts can result in multiple internal 

echoes. When these cysts are of long standing, actual calcification of contained debris 

may occur. The presence of a popliteal cyst can be established reliably if it is larger than 

1-2 cm in diameter. When such a cyst ruptures, ultrasound investigations may give false 

negative results due to decompression of the cyst. This error is particularly liable to 

occur when the cyst initially is rather small. However, with larger cysts this 

complication can be demonstrated by the poor definition of the inferior border of the 

cyst and surrounding oedema in the adjacent soft tissue of the calf.  

The normal popliteal artery is easily visible, ectasia or formation of an aneurysm 

being demonstrated as a fusiform swelling in continuity with the artery. The size of the 

popliteal aneurysm bears little or no direct relationship to the likelihood of 

complications, unlike, of course, the clinical situation with an aortic aneurysm. In 

addition to popliteal cysts and aneurysms, ultrasound is useful in the assessment of less 

common masses of the lower extremities, including haematomas, abscesses and 

neoplasms. A localized mass may be differentiated from diffuse oedema by its internal 

characteristics.  

More recently ultrasound has been used to assess the thickness and integrity of 

the articular cartilage of the femoral condyles. In patients with arthritis a decreased 

thickness of cartilage may be shown, as well as blurring or obliteration of the normal 

sharp margins of the cartilage. The normal menisci may be visualized with ultrasound 

and reports of demonstrations of tears have appeared recently in the literature. [114] 
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3.5.  Magnetic resonance imaging (MRI) 

Magnetic resonance imaging (MRI) has revolutionized diagnostic imaging of the 

musculoskeletal system. Non-invasive direct visualization of bone, marrow and 

supporting soft tissue structures are exquisitely and reproducibly obtained with this 

technology. The MRI examination is well tolerated by patients and the procedure has 

been widely accepted by referring physicians. The major limitations continue to be the 

high cost involved in the purchase, installation and maintenance of a system, as well as 

the limited access in certain geographic areas.  

MRI is a tomographic, multiplanar imaging technique, with the ability to display 

outstanding soft tissue contrast.  Striking anatomic sections throughout the human body 

can be obtained in any projection desired. With a firm understanding of the relevant 

anatomy or a handy cross-sectional atlas, MRI can be used very simply and effectively 

as an anatomic imaging device to demonstrate the location of an abnormality. [27] 

The MR signal is based on four separate components: the hydrogen proton 

density of a given tissue; two unique magnetic relaxation times called T1 and T2; and 

motion or flow. Hydrogen proton density (PD) most closely resembles standard x-ray 

film acquisition, in which electron density to a large extent determines how the resultant 

film will appear. Through the interactions of photoelectric effect and Compton 

scattering, the x-ray photons interact with the electrons of any tissue placed into the 

beam and the final image will reflect that tissue’s electron density. With MRI, PD is a 

requirement for imaging, but not the most important variable. A tissue with a very low 

PD will appear quite dark on all pulsing sequences; yet, a tissue with a high PD can 

appear bright, dark or intermediate. Cleary, other important variables contribute to the 

MR signal intensity and these are the relaxation times called T1 and T2.  

Safety 

There is a select group of patients who may be severely injured if placed into an 

MR scanner. In almost all cases this is not a result of the scan process itself, but of the 

strong magnetic field. The magnetic field is constant and cannot be turned on or off 

with the turn of a switch. Patients who should not be scanned are those with 

intracerebral aneurysm clips, cardiac pacemakers and cochlear implants. If the type of 

vascular clip or implant is known, available published lists will indicate possible 

deflection of the appliance in a strong magnetic field. Only those aneurysm clips and 

appliances tested with no magnetic deflection should be placed into the scanner. Cardiac 
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pacemakers are contraindicated for two reasons. First, a current may be induced in the 

pacing wire which may cause fibrilation or thermal injury. Second, the device may be 

damaged or rendered permanently inoperable, requiring replacement. Another 

contraindication is a metallic foreign body in the eye. If there is any history of possible 

metal in the eye, it is best to obtain orbital x-ray films. If metal is within the globe, the 

patient cannot be scanned. At least one case of unilateral blindness has been reported 

when a 2x 3,5 mm intraocular metal fragment dislodged and caused a vitrous 

hemorrhage. Prosthetic heart valves are generally safe, although the Starr-Edwards Pre 

6000 valve should not be scanned at field strengths above 0,35 T because of magnetic 

deflection. Internal orthopedic implants and hardware such as fixation plates, screws, 

wires, rods and total joints replacements are made from non-ferromagnetic materials 

and are safe for MRI. An additional concern with large metallic implants such as total 

joint replacements is adjacent tissue heating, which has been shown to be relatively 

insignificant with current MR scanning techniques. Shrapnel is also generally safe, 

although if located within or adjacent to vital structures such as the spine or central 

nervous system, those patients should not be scanned.  

 

3.5.1. Bone disorders 

Osteonecrosis 

Osteonecrosis, or avascular necrosis, is the death of marrow and bone cells as 

the result of ischemia. The cause of such ischemia varies with the clinical setting. For 

instance, fractures involving the femoral condyles or tibial plateau may interrupt the 

blood supply and produce osteonecrosis. On T1-weighted images, osteonecrosis usually 

appears as an area of decreased signal intensity reflecting the death of fat cells and 

infiltration of edema and fibrous elements. T2-weighted images also demonstrate areas 

of lower signal intensity than normal marrow, occasionally with a surrounding zone of 

increased signal, which may represent reactive bone. In patients with spontaneous 

osteonecrosis, a central area of high-signal intensity within the necrotic marrow has 

been described. (Fig. 3.6.)  

Osteochondritis dissecans 

Osteochondritis dissecans is a disease of children and young adults, usually 

male, in which a shearing or tangential injury produces an osteochondral fragment. The 

fragment may remain in situ, dislodge, or become a loose body within the joint. 
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Osteochondral fragments appear as subarticular; rounded areas of decreased signal 

intensity, as compared with normal marrow on T1-weighted images. The fragment 

appearance on T2-weighted images is more variable, ranging from bright to dark. (Fig. 

3.7.) 

Trauma 

MRI has the unique ability to detect early marrow changes associated with 

injury, with a sensitivity similar to nuclear medicine studies, while providing 

simultaneous anatomic detail. This includes not only the detection of stress fractures in 

patients in whom conventional radiographs are normal, but also the description and 

classification of occult fractures in trauma, which are also radiographically inapparent.  

Neoplastic conditions 

MRI can be very useful in the evaluation of soft tissue components and 

intramedullary extent of neoplasms and in monitoring chemotherapeutic responses. 

 
 
 

 
 
Figure 3.6. Osteonecrosis of the femoral condyles. A) Geographic areas of decreased 
signal intensity within both the medial and lateral femoral condyles on this coronal-
proton-density-weighted image. B) Sagittal image permits localization of the involved 
area of the posterior (arrow) portion of the femoral condyle. 
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Figure 3.7. Osteochondritis dissecans. A) An osteochondral fragment of the lateral aspect of the 
medial femoral condyle appears as an area of low signal on this proton-density-weighted image 
(arrow). B) A sagittal, T2-weighted image of the same lesion shows absence of high signal 
surrounding the now bright fragment (arrow), indicating that it is stable and has a high 
probability of healing. The overlying articular cartilage is intact. 

 

3.5.2. Articular disorders 

Arthritis 

MRI has shown great promise in the evaluation of articular cartilage and 

synovium. Normal cartilage exhibits at least three zones of signal intensity on MR 

scans-low signal adjacent to cortical bone, high signal in the midportion and low signal 

at the synovial surface.  

Currently, a popular sequence for the detection of cartilage abnormalities has 

been fat suppression T1 images in which cartilage appears white against the black 

background of cortical bone and suppressed bone marrow. Intraarticular injection of 

either gadolinium or saline has also been suggested by some authors as an adjunct to 

T1- or T2-weighted sequences, respectively, for detection of cartilage defects as small 

as 2 to 3 mm. 

Synovium is visualized on T1-weighted images as an intermediate intensity with 

an increase in brightness on T2-weighted images. Unfortunately, synovium may be 

difficult to visualize because these changes in signal parallel those of adjacent synovial 

fluid and therefore differentiation between the two may be limited. However, active 

inflammatory change in synovium demonstrates enhancement on T1-weighted images 

following the administration of intravenous gadolinium, in contrast to synovial fluid, 
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which remains dark and may aid in the monitoring of progression or regression of 

synovial disease.  

Osteoarthritis 

Hallmarks of osteoarthritis include cartilage defects or thinning, joint space 

narrowing, osteophyte formation, subchondral cysts and subchondral sclerosis. 

Cartilage abnormalities are best seen with fat suppression added to T1-weighted or 

GRASS images in which cartilage appears bright in contrast to the underlying black 

bone and marrow. Such cartilage abnormalities are usually most severe at the 

patellofemoral joint and medial femorotibial compartments, with eventual progression 

to a genu varus deformity caused by the latter. The distribution of ostephytes parallels 

that of cartilage abnormalities and is seen in continuity with the underlying bone. 

Subchondral cysts appear as intermediate signal-intensity fluid collections within the 

subchondral bone on T1-weighted images and as an increased signal intensity equal to 

synovial fluid on T2-weghted sequences. Accompanying subchondral sclerosis appears 

dark on both T1- and T2-weighted sequences. In evaluation of the extent and severity of 

osteoarthritis, MR has been shown to be superior to CT or plain radiographs. 

Rheumatoid Arthritis 

The diagnosis of this erosive disease of women in their childbearing years is 

primarily based on serologic studies and plain radiographic examinations. Synovial 

proliferations, erosions, effusion and cartilage destruction are all traits of rheumatoid 

arthritis that may be confirmed clinically and by plain radiography. However, recent 

studies have shown that plain radiographs underestimate the extent of the disease, as 

compared with MRI. The addition of intravenous gadolinium further helps distinguish 

active synovitis from chronic synovitis and joint fluid.  

 

3.5.3. Soft tissue disorders and synovial disorders  

    Cruciate ligaments ( a partial from a complete ACL tear, a PCL rupture),  

collateral ligaments ( tear of the medial collateral ligament, the lateral collateral 

ligament or the popliteus tendon also),  menisci,  tendons (sartorius, gracilis, 

semitendinosus, semimembranosus, gastrocnemius, popliteus, biceps femoris and the 

four distinct muscles of the quadriceps femoris), effusions (joint effusions, whether 

secondary to trauma or associated with arthritis), popliteal cysts or meniscal cysts, 

plicae (suprapatellar, mediopatellar and infrapatellar),  pigmented villonodular synovitis  

or  synovial osteochondromatosis can be very good detected with the help of MRI. [27] 
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MRI has a greatest importance in the evaluation of numerous disorders of the 

knee, from soft tissue, bone, articular, to synovial disorders and its application in the 

evaluation of the postoperative knee must still discussed.  

We see the importance and the great spectrum of the MRI, however this method 

has its limitations and one of them is the high costs.  
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4. RELEVANT BIOMECHANICS OF THE KNEE 

 
The knee transmits loads, participates in motion, aids in conservation of 

momentum and provides a force couple for activities involving the leg. The human 

knee, the largest and perhaps most complex joint in the body, is a two-joint structure 

composed of tibiofemoral joint and patellofemoral joint. The knee sustains high forces 

and moments and is situated between the body’s two longest lever arms (the femur and 

the tibia), making it particularly susceptible to injury. The knee is particularly well 

suited for demonstrating biomechanical analyses of joints because these analyses can be 

simplified in the knee and still yield useful data. Although knee motion occurs 

simultaneously in three planes, the motion in one plane is so great that it accounts for 

nearly all of the motion. Also, although many muscles produce forces on the knee, at 

any particular instant one muscle group predominates, generating a force so great that it 

accounts for most of the muscle force acting on the knee. Thus, basic biomechanical 

analyses can be limited to motion in one plane and to the force produced by a single 

muscle group and still give an understanding of knee motion and an estimation of the 

magnitude of the principal forces and moments on the knee. Advanced biomechanical 

dynamic analyses of the knee joint that include all soft tissue structures are complex and 

still under investigation.  

Analysis of motion in any joint requires the use of kinematic data. Kinematics is 

the branch of mechanics that deals with motion of a body without reference to force or 

mass. Analysis of the forces and moments acting on a joint necessitates the use of both 

kinematic and kinetic data. Kinetics is the branch of mechanics that deals with the 

motion of a body under the action of given forces and/or moments. [101] 

 

4.1. Kinematics 

Kinematics defines the range of motion and describes the surface motion of a 

joint in three planes: frontal (coronal or longitudinal), sagittal and transverse 

(horizontal). Clinical measurements of joint range of motion define the anatomical 

position as a zero position for measurement. (Fig. 4.1.) 

Of the two joints composing the knee, the tibiofemoral joint lends itself 

particularly well to an analysis of range of joint motion. Analysis of surface joint 

motion can be performed easily for both the tibiofemoral and the patellofemoral joint. 
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Any impediment of range of motion or surface joint motion will disturb the normal 

loading pattern of a joint and bear consequences. [3,4] 

 

 
 

Figure 4.1. A. Frontal, sagittal and transverse planes in the human body; B. Depiction and 
nomenclature of the six degrees of freedom of knee motion: anterior posterior translation, 
medial/lateral translation, and proximal distal translation, flexion/extension rotation, 
internal/external rotation, varus/valgus rotation. 

 

RANGE OF MOTION 

The range of motion of any joint can be measured in any plane. Gross 

measurements can be made with a goniometer, but more specific measurements require 

the use of more precise methods such as electrogoniometry, roentgenography, 

stereophotogrammetry, or photographic and video techniques using skeletal pins.  

In the tibiofemoral joint, motion takes place in all three planes, but the range of 

motion is greatest by far in the sagittal plane. Motion in this plane from full extension to 

full flexion of the knee is from 0° to approximately 140°.[97] 

Motion in the transverse plane, internal and external rotation, is influenced by 

the position of the joint in the sagittal plane. With the knee in full extension, rotation is 

almost completely restricted by the interlocking of the femoral and tibial condyles, 

which occurs mainly because the medial femoral condyle is longer than the lateral 

condyle. The range of rotation increases as the knee is flexed, reaching a maximum at 

90° of flexion; with the knee in this position, external rotation ranges from 0° to 

approximately 45° and internal rotation ranges from 0° to approximately 30°. Beyond 



Cristina Zolog                 Acoustic Emission Measurement System in Diagnostic of Cartilage Injuries of the Knee 

31 
 

90° of flexion, the range of internal and external rotation decreases, primarily because 

the soft tissue restrict rotation.  

Motion in the frontal plane, abduction and adduction is similarly affected by the 

amount of joint flexion. Full extension of the knee precludes almost all motion in the 

frontal plane. Passive abduction and adduction increase with the knee flexion up to 30°, 

but each reaches a maximum of only a few degrees. With the knee flexed beyond 30°, 

motion in the frontal plane again decreases because of the limiting function of the soft 

tissue.  

The range of tibiofemoral joint motion required for the performance of various 

physical activities can be determined from kinematic analysis. Motion in this joint 

during walking has been measured in all planes. The range of motion in the sagittal 

plane during level walking was measured with an electrogoniometer by Lamoreaux 

(1971) and Murray et al. (1964). Full or nearly full extension was noted at the beginning 

of the stance phase (0% of cycle) at heel strike and at the end of the stance phase before 

toe-off (around 60% of cycle). Maximum flexion (approximately 60°) was observed 

during the middle of the swing phase. These measurements are velocity-dependent and 

must be interpreted with caution. (Fig. 4.2.) 

 

 

 
 
 

Motion in the transverse plane during walking has been measured by several 

investigators. Using a photographic technique involving the placement of skeletal pins 

through the femur and tibia, Levens and associates (1948) found that total rotation of 

the tibia with respect to the femur ranged from approximately 4 to 13° in 12 subjects 

Figure 4.2. Range of motion of the tibiofemoral joint in the sagittal plane during level 
walking in one gait cycle.  
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(mean 8,6°). Greater rotation (mean 13,3°) was noted by Kettelkamp and coworkers 

(1970), who used electrogoniometry on 22 subjects. In both studies, external rotation 

began during knee extension in the stance phase and reached a peak value at the end of 

the swing phase just before heel strike. Internal rotation was noted during flexion in the 

swing phase. [101] 

 

SURFACE JOINT MOTION  

Surface joint motion, which is the motion between the articulating surfaces of 

the joint, can be described for any joint in any plane with the use of 

stereophotogrammetric methods. Because these methods are highly technical and 

complex, a simpler method, called the instant center technique is used. This method 

allows surface joint motion to be analyzed in the sagittal and frontal planes, but not in 

the transverse plane. The instant center technique provides a description of the relative 

uniplanar motion of two adjacent segments of a body and the direction of displacement 

of the contact points between these segments.  

The skeletal portion of a body segment is called a link. As one link rotates about 

the other, at any instant there is a point that does not move, that is, a point that has zero 

velocity. This point constitutes an instantaneous center of motion or instant center. The 

instant center is found by indentifying the displacement of two points on a link as the 

link moves from one position to another in relation to an adjacent link, which is 

considered to be stationary. The points on the moving link in its original position and in 

its displaced position are designated on a graph and lines are drawn connecting the two 

sets of points. The perpendicular bisectors of these two lines are then drawn. The 

intersection of the perpendicular bisectors is the instant center. Clinically, a pathway of 

the instant center for a joint can be determined by taking successive roentgenograms of 

the joint in different positions (usually 10° apart) throughout the range of motion in one 

plane and applying the Reuleaux method for locating the instant center for each interval 

of motion. When the instant center pathway has been determined for joint motion in one 

plane, the surface joint motion can be described. For each interval of motion, the point 

at which the joint surfaces make contact is located on the roentgenograms used for the 

instant center analysis, and a line is drawn from the instant center to the contact point. A 

second line drawn at right angles to this line indicates the direction of displacement of 

the contact points. The direction of displacement of these points throughout the range of 

motion describes the surface motion in the joint. In most joints, the instant centers lie at 
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a distance from the joint surface and the line indicating the direction of displacement of 

the contact points is tangential to the load-bearing surface, demonstrating that one joint 

surface is gliding on the other (load-bearing) surface. In the case in which the instant 

center is found on the surface, the joint has a rolling motion and there is no gliding 

function. Because the instant center technique allows a description of motion in one 

plane only, it is not useful for describing the surface joint motion if more than 15° of 

motion takes place in any plane other than the one being measured.  

In the knee, surface joint motion occurs between the tibial and femoral condyles 

and between the femoral condyles and the patella. In the tibiofemoral joint, surface 

motion takes place in all three planes simultaneously but is considerably less in the 

transverse and frontal planes. Surface motion in the patellofemoral joint takes place in 

two planes simultaneously, the frontal and transverse, but is far greater in the frontal 

plane. [101] 

TIBIOFEMORAL JOINT 

An example will illustrate the use of the instant center technique to describe the 

surface motion of the tibiofemoral joint in the sagital plane. To determine the pathway 

of the instant center of this joint during a flexion, a lateral roentgenogram is taken of the 

knee in full extension and successive films are taken at 10° intervals of increased 

flexion. Care is taken to keep the tibia parallel to the x-ray table and to prevent rotation 

about the femur. When a patient has limited knee motion, the knee is flexed or extended 

only as far as the patient can tolerate. [101] 

Two points on the femur that are easily identified on all roentgenograms are 

selected and designated on each roentgenogram. The films are then compared in pairs 

with the images of the tibiae superimposed on each other. Roentgenograms with marked 

differences in tibial alignment are not used. Lines are drawn between the points on the 

femur in the two positions and the perpendicular bisectors of these lines are then drawn. 

The point at which these perpendicular bisectors intersect is the instant center of the 

tibiofemoral joint for each 10° interval of motion. The instant center pathway 

throughout the entire range of knee flexion and extension can then be plotted. In a 

normal knee, the instant center pathway for the tibiofemoral joint is semicircular. (Fig. 

4.3.) 

After the instant center pathway has been determined for the tibiofemoral joint, 

the surface motion can be described. On each set of superimposed roentgenograms the 

point of contact of the tibiofemoral joint surfaces (the narrowest point in the joint space) 
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is determined and a line is drawn connecting this point with the instant center. A second 

line drawn at right angles to this line indicates the direction of displacement of the 

contact points. In a normal knee, this line is tangential to the surface of the tibia for each 

interval of motion from full extension to full flexion, demonstrating that the femur is 

gliding on the tibial condyles. During normal knee motion in the sagittal plane from full 

extension to full flexion, the instant center pathway moves posteriorly, forcing a 

combination of rolling and sliding to occur between the articular surface. The unique 

mechanism prevents the femur rolling off the posterior aspect of the tibia plateau as the 

knee goes into increased flexion. The mechanism that prevents this roll-off is the link 

formed between the tibial and femoral attachment sites of the anterior and posterior 

cruciate ligaments and the osseous geometry of the femoral condyles. (Fig. 4.4.) [61] 

 

 

  
 
 
 
 
 

     Figure 4.3. Locating the instant center                  Semicircular instant center pathway for 
                                                                                  the tibiofemural joint in a 19-year-old 

                                                                                 man with a normal knee 
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Figure 4.4. In a normal knee, a line drawn from the instant center of the tibiofemoral joint to the 
tibiofemoral contact point (line A) forms a right angle with a line tangential to the tibial surface 
(line B). The arrow indicates the direction of displacement of the contact points. Line B is 
tangential to the tibial surface, indicating that the femur glides on the tibial condyles during the 
measured interval of motion. 
 

Frankel and associates determined the instant center pathway and analyzed the 

surface motion of the tibiofemoral joint from 90° of flexion to full extension in 25 

normal knees; tangential gliding was noted in all cases. They also determined the instant 

center pathway for the tibiofemoral joint in 30 knees with internal derangement and 

found that, in all cases, the instant center was displaced from the normal position during 

some portion of the motion examined. If the knee is extended and flexed about an 

abnormal instant center pathway, the tibiofemoral joint surfaces do not glide 

tangentially throughout the range of motion but become either distracted or compressed. 

( Fig. 4.2.) Such a knee is analogous to a door with a bent hinge that no longer fits into 

the door jamb. If the knee is continually forced to move about a displaced instant center, 

a gradual adjustment to the situation will be reflected either by stretching of the 

ligaments and other supporting soft tissues or by the imposition of abnormally high 

pressure on the articular surfaces. (Fig. 4.5.) [28] 

Internal derangements of the tibiofemoral joint may interfere with the so-called 

screw-home mechanism, which is external rotation during extension of the tibia. The 

tibiofemoral joint is not a simple hinge joint; it has a spiral, or helicoid motion. The 

spiral motion of the tibia about the femur during flexion and extension results from the 

anatomical configuration of the medial femoral condyle; in a normal knee, this condyle 

is approximately 1,7 cm longer than the lateral condyle. As the tibia moves on the femur 

from the fully flexed to the fully extended position, it descends and then ascends the 

curves of the medial femoral condyle and simultaneously rotates externally. This 

motion is reversed as the tibia moves back into the fully flexed position. This screw-

A 

B 
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home mechanism ( rotation around the longitudinal axis of the tibia) provides more 

stability to the knee in any position than would a simple hinge configuration of the 

tibiofemoral joint. (Fig.4.6.) 

 

 

 
Figure 4.5. Surface motion in two tibiofemoral joints with displaced instant centers. The 
arrowed line at right angles to the line between the instant center and the tibiofemoral contact 
points indicates the direction of displacement of the contact points. The small arrow indicates 
that with further flexion, the tibiofemoral joint will be distracted. With increased flexion, this 
joint will be compressed. 
 

Matsumoto at al. (2000) investigated the axis of tibia axial rotation and its 

change with knee flexion angle in 24 fresh-frozen normal knee cadaver specimens 

ranging in age from 22 to 67 years. The magnitude and location of the longitudinal axis 

of tibia rotation were measured at 15° incremnets between 0 and 90° of knee flexion. 

The magnitude of tibia rotation was 8° and 0° 0f knee flexion. The tibial rotation 

increased rapidly as the knee flexion angle increased and reached a maximum of 31° at 

30° of knee flexion. It then decreased again with additional flexion. The location of the 

longitudinal rotational axis was close to the insertion of the anterior cruciate ligament at 

0° of flexion. At continuous flexion up to 60°, the rotational axis moved toward the 

insertion of the posterior cruciate ligament. Between 60 and 90° of flexion, the 

rotational axis moved anteriorly again. This study showed that the rotational axis 

remains approximately in the area between the two cruciate ligaments. Any change of 

direction and tension of the cruciate ligaments and surrounding soft tissue may affect 

the movement and the location of the longitudinal tibia axis of rotation and thereby 

affect joint load distribution. [87] 

 

                   Gliding                            Distraction                       Compression  
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Figure 4.6. Screw-home mechanism of the tibiofemoral joint. During knee extension, the tibia 
rotates externally. This motion is reversed as the knee is flexed.  

 
A clinical test, the Helfet test (Fig. 4.7.), is often used to determine whether 

external rotation of the tibiofemoral joint takes place during knee extension, thereby 

indicating whether the screw-home mechanism is intact. This clinical test is performed 

with the patient sitting with the knee and hip flexed 90° and the leg hanging free. The 

medial and lateral borders of the patella are marked on the skin. The tibial tuberosity 

and the midline of the patella are then designated and the alignment of the tibial 

tuberosity with the patella is checked. In a normal knee flexed 90°, the tibial tuberosity 

aligns with the medial half of the patella. The knee is then extended fully and the 

movement of the tibial tuberosity is observed. In a normal knee, the tibial tuberosity 

moves laterally during extension and aligns with the lateral half of the patella at full 

extension. Rotatory motion in a normal knee may be as great as half width of the 

patella. In a deranged knee, the tibia may not rotate externally during extension. 

Because of the altered surface motion in such a knee, the tibiofemoral joint will be 

abnormally compressed if the knee is forced into extension and the joint surfaces may 

be damaged. [45] 
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Figure 4.7. Helfet Test. A. In a normal knee flexed 90°, the tibial tuberosity aligns with the 
medial half of the patella. B. When the knee is fully extended, the tibial tuberosity aligns with 
the lateral half of the patella.  

 

4.2. Kinetics 

Kinetics involves both static and dynamic analysis of the forces and moments 

acting on a joint. Statics is the study of the forces and moments acting on a body in 

equilibrium (a body at rest or moving at a constant speed). For a body to be in 

equilibrium conditions must be met: force (translatory) equilibrium, in which the sum of 

the forces is zero, and moment (rotatory) equilibrium, in which the sum of the moments 

is zero. Dynamics is the study of the moments and forces acting on a body in motion (an 

accelerating or decelerating body). In this case, the forces do not add up to zero, and the 

body displaces and/or the moments do not add up to zero and the body rotates around an 

axis perpendicular to the plane of the forces producing the moments. Kinetic analysis 

allows one to determine the magnitude of the moments and forces on a joint produced 

by body weight, muscle action, soft tissue resistance, and externally applied loads in 

any situation, either static or dynamic, and to identify those situations that produce 

excessively high moments or forces. [101] 

 

4.2.1. Statics of the tibiofemoral joint  

Static analysis may be used to determine the forces and moments acting on a 

joint when no motion takes place or at one instant in time during a dynamic activity 

such as walking, running or lifting an object. It can be performed for any joint in any 
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position and under any loading configuration. In such analyses, either graphic or 

mathematical methods may be used to solve for the unknown forces or moments. A 

complete static analysis involving all moments and all forces imposed on a joint in three 

dimensions is complicated. For this reason, a simplified technique is often used. The 

technique utilizes a free-body diagram and limits the analysis to one plane, to the three 

main coplanar forces acting on the free-body, and to the main moments acting about the 

joint under consideration. The minimum magnitudes of the forces and moments are 

obtained.  

An example will illustrate the application of the simplified free-body technique 

for coplanar forces to the knee. In this case, the technique is used to estimate the 

minimum magnitude of the joint reaction force acting on the tibiofemoral joint of the 

weight-bearing leg when the other leg is lifted during stair climbing. The lower leg is 

considered as a free-body, distinct from the rest of the body, and a diagram of this free 

body is the stair-climbing situation is drawn. From all forces acting on the free-body, 

the three main coplanar forces are identified as the ground reaction force (equal to the 

body weight), the tensile force through the patellar tendon exerted by the quadriceps 

muscle and the joint reaction force on the tibial plateau. The ground reaction force (W) 

has a known magnitude (equal to body weight), sense, line of application (point of 

contact between the foot and the ground). The patellar tendon force (P) has a known 

sense (away from the knee joint), line of application (along the patellar tendon) and the 

point of application (point of insertion of the patellar tendon on the tibial tuberosity), 

but an unknown magnitude. The joint reaction force (J) has a known point of 

application on the surface of the tibia (the contact point of the joint surfaces between the 

tibial and femoral condyles, estimated from a röntgenogram of the joint in the proper 

loading configuration), but an unknown magnitude, sense and line of application. Using 

vectors calculations and triangles laws the joint reaction force (J) and the patellar tendon 

force (P) can be calculated. (Calculation Box 1) 

It can be seen that the main muscle force has a much greater influence on the 

magnitude of the joint reaction force than does the ground reaction force produced by 

body weight. In this example, only the minimum magnitude of the joint reaction force 

has been calculated. If other muscle forces are considered, such as the force produced 

by the contraction of the hamstring muscles in stabilizing the knee, the joint reaction 

force increases.  
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The next step in the static analysis is analysis of the moments acting around the 

center of motion of the tibiofemoral joint with the knee in the same position and the 

loading configuration shown in Calculation Box 1. The moment analysis is used to 

estimate the minimum magnitude of the moment produced through the patellar tendon, 

which counterbalances the moment on the lower leg produced by the weight of the body 

as the subject ascends stairs. (Calculation Box 2) [101] 

 

4.2.2. Dynamics of the tibiofemoral joint  

Although estimations of the magnitude of the forces and moments imposed on a 

joint in static situations are useful, most of our activities are of a dynamic nature. 

Analysis of the forces and moments acting on a joint during motion requires the use of a 

different technique for solving dynamic problems. As in static analysis, the main forces 

considered in dynamic analysis are those produced by body weight, muscles, other soft 

tissues and externally applied loads. Friction forces are negligible in a normal joint and 

thus not considered here. In dynamic analysis, two factors in addition to those in static 

analysis must be taken into account: the acceleration of the body part under 

consideration and the mass moment of inertia of the body part. (The mass moment of 

inertia is the unit used to express the amount of torque needed to accelerate a body and 

depends on the shape of the body). [102] 

The steps for calculating the minimum magnitudes of the forces acting on a joint 

at a particular instant in time during a dynamic activity are as follows: 

1) The anatomical structures are identified: definitions of structures, anatomical 

landmarks, points of contact of articular surface and lever arms involved in the 

production of forces for the biomechanical analyses. 

2) The angular acceleration of the moving body part is determined. 

3) The mass moment of inertia of the moving body part is determined. 

4) The torque (moment) acting about the joint is calculated. 

5) The magnitude of the main muscle force accelerating the body part is calculated. 

6) The magnitude of the joint reaction force at a particular instant in time is calculated 

by static analysis. 
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Calculation Box 1 

Calculation Box 1 
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In the first step, the structures of the body involved in producing forces on the 

joint are identified. These are the moving body part and the main muscles in that body 

part that are involved in the production of the motion. Great care must be taken in 

applying this first step. For example, the lever arms for all major knee muscles change 

according to the degree of knee flexion and gender.  

In joints of the extremities, acceleration of the body part involves a change in 

joint angle. To determine this angular acceleration of the moving body part, the entire 

movement of the body part is recorded photographically. Recording can be done with a 

stroboscopic light and movie camera, with video photogrammetry, with Selspot 

systems, with stereophotogrammetry, or with other methods. The maximal angular 

acceleration for a particular motion is calculated.  [138, 31, 110] 

Next, the mass moment of inertia for the moving body part is determined. 

Anthropometric data on the body part can be used for this determination. As calculating 

these data is a complicated procedure, tables are commonly used. The torque about the 

joint can now be calculated using Newton’s second law of motion, which states that 

Calculation Box 2 
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when motion is angular, the torque is a product of the mass moment of inertia of the 

body part and the angular acceleration of that part : 

T = Iα, where T is the torque expressed in newton meters (Nm), I is the mass 

moment of inertia expressed in newton meters x seconds squared (Nm sec²), α is the 

angular acceleration expressed in radians per second squared (r/sec²).  

The torque is not only a product of the mass moment of inertia and the angular 

acceleration of the body part but also a product of the main muscle force accelerating 

the body part and the perpendicular distance of the force from the center of motion of 

the joint (lever arms). Thus T = Fd, where F is the force expressed in newtons (N) and d 

is the perpendicular distance expressed in meters (m). Because T is known and d can be 

measured on the body part from the line of application of the force to the center of 

motion of the joint, the equation can be solved for F. When F has been calculated, the 

remaining problem can be solved like a static problem using the simplified free-body 

technique to determine the minimum magnitude of the joint reaction force acting on the 

joint at a certain instant in time.  

Static analysis can now be performed to determine the minimum magnitude of 

the joint reaction force on the tibiofemoral joint. The main forces on this joint are 

identified as the patellar tendon force (P), the gravitational force of the lower leg (T) 

and the joint reaction force (J). P and T are known vectors. J has an unknown 

magnitude, sense and line of application. The free-body technique for three coplanar 

forces is used to solve for J, which is found to be only slightly lower than P.  

As is evident from the calculations, the two main factors that influence the 

magnitude of the forces on a joint in dynamic situations are the acceleration of the body 

part and its mass moment of inertia. An increase in angular acceleration of the body part 

will produce a proportional increase in the torque about the joint. Although in the body 

mass moment of inertia is anatomically set, it can be manipulated externally. For 

example, it is increased when a weight boot is applied to the foot during rehabilitative 

exercises of the extensor muscles of the knee. Normally, a joint reaction force of 

approximately 50% of body weight results when the knee is slowly (with no 

acceleration forces) extended from 90° of flexion to full extension. In a person 

weighting 70 kg, this force is approximately 350 N. If a 10-kg weight boot is placed on 

the foot, it will exert a gravitational force of 100 N. This will increase the joint reaction 

force by 1,000 N, making this force almost four times greater than it would be without 

the boot.  
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Dynamic analysis has been used to investigate the peak magnitudes of the joint 

reaction forces, muscle forces and ligament forces on the tibiofemoral joint during 

walking. Morrison (1970) calculated the magnitude of the joint reaction force 

transmitted through the tibial plateau in male and female subjects during level walking. 

He simultaneously recorded muscle activity electromyographically to determine which 

muscles produced the peak magnitudes of this force on the tibial plateau during various 

stages of the gait cycle (Fig. 4.9.).  

 

 
 

Just after heel strike, the joint reaction force ranged from two to three times body 

weight and was associated with contraction of the hamstring muscles, which have a 

decelerating and stabilizing effect on the knee. During knee flexion in the beginning of 

the stance phase, the joint reaction force was approximately two times body weight and 

was associated with the contraction of the quadriceps muscle, which acts to prevent 

Figure 4.9.  

Figure.4.10. 
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buckling of the knee. The peak joint reaction force occurred during the late stance phase 

just before toe-off. This force ranged from two to four times body weight, varying 

among the subjects tested, and was associated with contraction of the gastrocnemius 

muscle. In the late swing phase, contraction of the hamstring muscles resulted in a joint 

reaction force approximately equal to body weight. No significant difference was found 

between the joint reaction force magnitudes for men and women when the values were 

normalized by dividing them by body weight.  

Andriacchi & Strickland (1985) studied the normal moment patterns around the 

knee joint during level walking for 29 healthy volunteers (15 women and 14 men with 

an average age of 39 years). Figure 4.9. depicts the flexion-extension, abduction-

adduction, and internal-external moments during the stance and swing phase of level 

walking. The moments are normalized to the individual’s body weight and height and 

are presented as a percentage. The flexion-extension moments during the stance phase 

are approximately 20 to 30 times larger than the moment produced in the frontal 

(abduction-adduction) and tranverse (internal-external) planes.[4] 

An increase in knee joint flexion-extension moment amplitude has been reported 

at increased walking speeds (Andriacchi & Strickland, 1985; Holden 1997). [4,48] An 

increase in the production of adduction knee joint moment during stair climbing 

compared with level walking was reported by Yu (1997). During the gait cycle, the joint 

reaction force shifts from the medial to the lateral tibial plateau. In the stance phase, 

when the force reaches its peak value, it is sustained mainly by the medial plateau 

(adduction moment); in the swing phase, when the force is minimal, it is sustained 

primarily by the lateral plateau. The contact area of the medial tibial plateau is 

approximately 50% larger than that of the lateral tibial plateau (Kettelkamp & Jacobs, 

1972). Also, the cartilage on this plateau is approximately three times thicker than that 

on the lateral plateau. The larger surface area and the greater thickness of the medial 

plateau allow it to more easily sustain the higher forces imposed on it. [65] 

In a normal knee, joint reaction forces are sustained by the menisci as well as by 

articular cartilage. The function of the menisci was investigated by Seedhom (1974), 

who examined the distribution of stresses in knees of human autopsy subjects with and 

without menisci. His results suggest that in load-bearing situations, the magnitude of the 

stresses on the tibiofemoral joint when the menisci have been removed may be as much 

as three times greater than when these structures are intact. Fukuda et al. (2000) studied 

in vitro the load-compressive transmission of the knee joint and the role of menisci and 
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articular cartilage. The load simulated was static and dynamic impact loading. The 

testing was done in neutral, varus and valgus alignment of the knee joints in 40 fresh-

frozen pig knee specimens. The compressive stress on the medial subchondral bone was 

up to five times higher with the menisci removed. This study points to the importance of 

the menisci as a structure to absorb load and protect the cartilage and subchondral bone 

under dynamic conditions. [29,120] 

In a normal human knee, stresses are distributed over a wide area of the tibial 

plateau. If the menisci are removed, the stresses are no longer distributed over such a 

wide area but instead are limited to a contact area in the center of the plateau. (Fig. 

4.11.) Thus, removal of the menisci not only increases the magnitude of the stresses on 

the cartilage and subchondral bone at the center of the tibial plateau but also diminishes 

the size and changes the location of the contact area. Over the long term, the high 

stresses placed on this smaller contact area may be harmful to the exposed cartilage, 

which is usually soft and fibrillated in that area. The menisci are thought to carry up to 

70% of the load across the knee. Movement during knee flexion of the menisci would 

therefore protect the articulating surfaces while avoiding injury to it.  [101] 

 

 
 

 
 
 

 
 

Figure 4.11. 
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5.  AIM OF THE STUDY  
 

 
 

The study was made with the purpose to see if there was a correspondence 

between the cartilage disorders, the intraoperative views (arthroscopy and the 

arthroplasty of the knee) and the acoustic emission measurements, performed one day 

before the surgery. In the same time there were analysed also another parameter, 

concerning the age, the sex, the length of the femur, the thigh thickness, the body mass 

index, the anatomical axis of the knee and the correspondence between these parameter 

and the appearance and the severity of the cartilage injuries. Because there aren`t at this 

moment cheap and standards methods who can determine the early cartilage injuries, 

this study is supposed (concording with the results) to open new ideas and new 

advantages in the diagnostic of this often disease, using the acoustic emission 

measurement system.  
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6. ACOUSTIC EMISSION MEASUREMENT SYSTEM 

FOR THE ORTHOPEDICALLY DIAGNOSTIC OF THE 

KNEE JOINT 
 

Quality control in the orthopedic diagnostic according to DIN EN ISO 9000 ff 

requires methods of nondestructive process control, which do not harm the patient 

neither by radiation nor by invasive examinations. To gain an improvement of health 

economy quality controlled and nondestructive measurements have to be introduced in 

the diagnostics and the therapy of human joints and bones. There is no non-invasive 

evaluation method for the state of wear regarding human joints and the cracking 

tendency of bones yet established.[119] 

The analysis of acoustic emission signals allows the prediction of bone rupture 

far below the fracture load. The evaluation of dry and wet bone samples revealed that it 

is possible to conclude from crack initiation to the bone strength and thus to predict the 

probability of bone rupture. Besides the fracture probability of bone acoustic emission 

allows to assess the tribological status of the knee joint. Simple states of wear without 

inflammation can be separated from states of wear complicated by inflammation 

(arthritis). For the assessment of tribological knee function and by the probability of 

fracture of the femur an adapted Acoustic Emission Measurement System named Bone 

Diagnostic System (BONDIAS) was developed. This system makes the in vivo analysis 

of the medical status possible.  [26] 

A natural center of the surveillance of joints is the analysis of the acoustic 

emission from joints moving under the typical daily load. Here, the typical loads 

comprise knee bending, climbing or descending the stairs, but also ergometric 

examinations. The analysis of acoustic emission from the knee joint clearly reveals 

cartilage lesions, arthritic degeneration of the knee joint with more or less inflammatory 

contributions and damage caused by the change of the inclination of the line of thrust. 

Acoustic emission from the knee (Fig. 5.1.) is registered by a sensor which is fixed by 

tapes to the skin over the medial condyle of the femur (Fig. 5.2.) during application of 

the natural load. [26, 118,119, 139] 
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The acoustic emission is registered over time and correlated to the angle of knee 

flexion. The kinetics of load and motion can reveal non stationary characteristics which 

can be typical of certain diseases. Knowing the kinetics of load and motion, the acoustic 

emission offers potential causes for the measurement phenomena. Whether the medial 

or the lateral femoral condyle or both are damaged can be tested by changes of the 

distribution of load and by the concomitant registration of the emission.  

The acoustic emission analysis allows for a multifaceted assessment of joint 

defects depending on the range of knee flexion medial or lateral condyles can be 

changed thereby. 

A short rise time of the acoustic emission characteristic for cartilage defects is 

correlated to a low signal damping by the cartilage layers. If in that case a cartilage 

lesion can be verified such a signal is really indicative of a low thickness of the cartilage 

Figure 
5.1. 

Figure 
5.2. 
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layer in the damaged area. To reach this diagnosis the individual damping 

characteristics of the knee cartilage have to be assessed. This information is drawn from 

a simple test. The analyzed patient is standing relaxed by on the two legs and then he 

quickly raises one leg. The fast increase in load of the loaded leg initiates reactions also 

in the additionally loaded knee cartilage. Acoustic emission typical of normal cartilage 

or of arthritis with more or less inflammatory contribution and of cartilage lesions are 

demonstrated in figures 5.3. to 5.5.  

Figure 5.3. demonstrates the acoustic emission from a knee joint caused by 

cartilage deformation due to the sudden change from a two legs stand to a one leg stand. 

The intermittent cartilage deformation is of visco-elastic nature. The graph of acoustic 

emission over time shows a correlation to the thickness of the deformed cartilage. Short 

signal duration is indicative of a thin cartilage layer. 

Acoustic emission from a cartilage lesion is shown in Fig. 5.4. Articulating 

cartilaginous counterparts literally “fall” into a cartilage lesion. In reality this process 

has to be considered as a sliding one. Sliding into the lesion – indicated by region 1 – 

over the ingoing visco-elastic edge of the cartilage lesion is accompanied by a low 

energy transfer. The concomitant acoustic emission is of low energy and amplitude. 

Sliding out of the lesion, however, as shown in region 2, the outgoing edge of the lesion 

is strongly deformed.  A higher volume of the cartilage is deformed visco-elastically 

with high energy. This is accompanied by acoustic emission with a high rise time 

representing both the sequence of motion and the deformation process of the cartilage. 

The latter is responsible also for this type of amplitude descent. [42,77,130,131,137] 

The acoustic emission from an arthritic defect is represented in Fig. 5.5. Arthritic 

defects are characterized by different events in the course of acoustic emission. This can 

be a signal typical of cartilage lesions where needle like signal peaks are superimposed. 

These signal peaks are usually due to stick-slip effects or to the interaction of bone 

structures in the contact areas.  [25,26,] 
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Figure 
5.3. 

Figure 5.4. 

Figure 5.5. 
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MEASUREMENT SYSTEM BONDIAS 

The measurement system BONDIAS has been developed for the automated 

assessment and evaluation of the acoustic emission from the human femur and knee 

joint for the orthopedic diagnosis. Knee bending of a patient will release acoustic 

emission in high temporal resolution and well correlated to the angle of knee flexion. 

However, the physician is not left alone with a bundle of data and the task to evaluate 

the acoustic emission. He will get the relevant information concerning: 

~ arthritic lesions in the knee joint: well characterized with acoustic emission, 

singular events without a follow up of further emission 

~ acoustic emission due to elevated intraarticular friction caused by cartilage 

lesions, inappropriate surface roughness, a lack of synovial fluid or other defects : a 

plethora of continuous emission 

~ crack initiation in the femur: a burst type of acoustic emission followed by 

continuous emission, which is typical of relaxation phenomena in the crack bands 

The energy and the frequency of signals are mostly indicative of the originating 

events and important characteristics for the evaluation of defects. [26] 

How does BONDIAS acoustic measurement function?  

The system is connected to 220-240V. The system is opening directly the 

program we need. We type in menu program the personal data of the patients, name, 

date of birth, sex, if the measurement is for the femur or knee joint, then the side, right 

or left (Fig.5.6.).  

 

                    Figure 5.6. Identification data of the patients 
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After that there will be introduced information about the knee joint pathology, if 

the arthritic lesions, cartilage injuries are already known and where is the pain, in patella 

region, medial or lateral femoral condyle, medial or lateral joint, medial or lateral head 

of the tibia, or head of the fibula.(Fig. 5.7. and 5.8.). There will be also introduced at 

which grade of flexion the pain appears and how strong is this pain, mild, medium or 

strong.  

  

Figure 5.7.-5.8. Introducing information about the knee joint pathology 

The transducer head will be then attached with a special glue on the patient knee. 

The patient`s knee has to be shaved, because the hair can interfere with the 

measurement. A vacuum pump will make void and will 

keep the transducer head attached to the skin. For 

acoustic emission measurement of the knee, the 

transducer head will be attached on the lateral knee 

joint. The flexion measurement guiding line will have to 

be at the medial side of the knee and smooth anteriorly 

flexed.  (Fig.5.9.) 

 

 

Figure 5.9. Attaching the transducer head on the patient knee 
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After that, the measurement will be done. This will take 10 seconds and the 

patient has to do three knee squats , slowly and regularly. After the measurement we can 

analyse the crack initiation in the femur or the cartilage lesions, what, from these both is 

wished in the beginning. There are for these both pathological lesions specific signal 

types. (Fig. 5.10. and Fig. 5.11.) The measurement can also indicate at which angle of 

flexion appears the lesion.  

 

                           

Figure 5.10. Example for a signal of crack initiation in the femur 

                           

Figure 5.11. Example for a signal of cartilage lesion of the knee 
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Each measurement is registered and saved under a number and the name of the 

patient and can be open and analysed each time. It can be also saved on an USB Stick 

and transferred on a computer. The measurement shows the three knee squats, how deep 

they are, how regularly and at which angle appear the signals. With a touching screen 

function the signal can be enlarged and in detail analysed. 
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7. MATERIAL AND METHODS 

 
In a period of time of 14 Months, from May 2008 till June 2009 there were 

analysed in Elisabeth Klinik Olsberg Bigge, clinic for orthopedics in 

Nordrheinwestfallen, Germany a number of 125 patients.  

These patients were analysed with the BONEDIAS acoustic measurement 

system. They were supposed to receive an arthoscopic surgery or an arthrotomy, with 

total knee replacement. The measurements were made one day before surgery, as the 

patients were  hospitalized and prepared for the surgery. We recruited only the patients 

who were supposed to receive a surgery because of the possibility to observe by the 

minimally invasive surgery or by the open surgical procedure the cartilage lesions and 

where exactly are they localized on the femur condyle. In the end, the measurements 

were compared with the intra-operative findings.  

For every patient was filled a protocol of study, which included the age, the sex, 

the height, the weight, the body mass index, the femur length of the measured knee, the 

thickness of the thigh of the measured knee, the knee side, the knee effusion, the axis of 

the knee, the range of motion of the knee which was subdued to the surgery.  

The protocol of study included also the diagnosis, the surgery which was 

proceed and the acoustic emission correspondence. After the surgery, the surgeon filled 

also a diagram with the cartilage lesions he observed on the femoral condyles, the 

location and the classification after Outerbridge of these lesions. The surgery protocols 

were also used for supplementary details. The diagram with the cartilage lesions and the 

protocol of study are shown in the figures 6.1. and 6.2.  
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                                                       Protocol of Study 
 
           Number of the patient :                                                Number of the measure :  

 

           Name of the patient and date of birth :  

 

           Age of the patient :         Years                                     Sex of the patient : M / F  

 

            Height :       cm                             Weight :      kg                        BMI :  

 

           The Length of the femur  :     cm      

 

           Thickness of the thigh :    cm (15cm above the knee joint) 

 

           Knee side :   left /right                                         Knee effusion : yes / no             

 

       Anatomic axis (clinical) : varus°/ normal / valgus°  

       Range of motion of the knee :  _ /   _ /   _  ° 

 

       Diagnostic :  

 

       Operation :  

 

      Diagram of the cartilage injury location on femoral condyle and grade of injury after  

      Outerbridge :   see attachment  

      Results of acoustic emission measurement system BONEDIAS :   

 

 

Figure 6.1.     Protocol of study 
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      Cartilage Disorders of the Femur Condyle 
 

                          
 
        Localisation and the grade of injury after Outerbridge :    
 
         
 

                                   

                                                                                                                      
          Localisation and the grade of injury after Outerbridge:  
 
Figure 6.2. The diagram of the cartilage injury location on the femoral condyle and grade of 
injury after Outerbridge 
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This protocol of study was completed for every patient. The acoustic emission 

measurement with the BONEDIAS system were in detail examined, for each patient, 

the signals, the types of signals and at which grade of flexion these signals appear and a 

short interpretation was filled in the protocol of study, concerning if there was a 

correspondence between the signals and the intra-operative findings.  

The other characteristics introduced in the protocol of study were made with the 

purpose of studying if there was a correspondence between all these parameters and the 

cartilage injuries and indirectly with the findings obtained with the BONEDIAS system.  

From the 125 recruited patients, 20 were excluded from the study, although the 

BONEDIAS measurements have been done, the errors appeared had eventually the 

following causes:  

~ the knee effusion over gr. II could (and was demonstrated also by the 

measurement) interfere with the measurement and give false results;  

~ the patients were not in the state to make three regularly and smoothly knee 

squats (because of the age, the pains or the incapacity to understand the importance of 

the regularity of the knee squats)  
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8. RESULTS 

The 105 study subjects had ages between 22 and 84 years old, with an average 

of 58,46 years old, as shown in Fig. 7.1. 

 

 

Figure 7.1. 

There were 41 men (39%) and 64 women (61%) who were investigated. The 

distribution on sex is shown in the Fig 7.2.  

 

 
 

 

Figure 7.2. 

Distribution on sex of the recruited patients 



Cristina Zolog                 Acoustic Emission Measurement System in Diagnostic of Cartilage Injuries of the Knee 

61 
 

The height and weight of the studied patients were filled in the protocol of study 

and the body mass index was calculated. The distribution of the patients regarding 

height, weight and the body mass index is illustraded in Fig. 7.3., 7.4. and 7.5. There 

were 11 patients with a height ≤1.59 m, 37 between 1.60-1.69, 31 between 1.70-1.79 

and 26 patients with a height over 1.80. There were 26 subjects between 50-69 kg, 43 

between 70-89 kg and 36 over 90 kg.  

 

 

Figure 7.3. 

 

Figure 7.4. 

Concerning the body mass index, there was no patient with underweight (BMI ≤ 

18.5), 28% were with normal weight (BMI = 18.5-24.9), 44% with overweight 
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(BMI=25-29.9) and 28 % obese (BMI ≥30). The body mass index was calculated after 

the known formula BMI = kg/m².  

 

Figure 7.5. 

The femur length and the thigh thickness were also measured. The knee side and 

the axis were introduced as study parameters and the results are shown in the next 

figures. There were 7 knees with a femur length between 30-40 cm (7%) , 75 between 

40-50 cm (71%) and 23 over 50 cm (22%). 27 (26%) patients had a thigh thickness 

between 40-50 cm, 58 (55%)between 50-60 cm and 20 subjects (19%) over 60 cm.  

There were analysed 44 left knees (42%) and 61 right knees ( 58%). 

          

                                                                      Figure 7.6. 
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Figure 7.7. 

 

Figure 7.8. 

There were observed 59 knees with a normal clinical anatomical axis, 17 knees 

with valgus axis, 11 till 5° valgus, 4 between 5-10° and 2 over 10°valgus and 29 knees 

with varus, 9 with varus till 5°, 18 between 5-10° and 2 over 10° varus. The patients 

with knee effusion were excluded from the study because of interferences with the 

measurement. A effusion grade I was accepted, because of good results by the accoustic 

emission measurements. The results are represented below.  
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Figure 7.9. 

From 105 patients, 55 received an arthroscopy and 50 a total knee replacement. 

After the classification of Outerbridge, grade 0 is normal, white-appearing cartilage, 

grade I swelling or softening of an intact cartilage surface, grade II represented by 

fissuring and fibrillation over a small area (<1,2 cm), grade III with the same 

pathological changes over a large area (>1,2 cm) and grade IV with erosion to the 

subchondral bone, indistinguishable from osteoarthritis we distinguished 
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chondromalacia grade 0 at 6 of the recruited patients, grade I at 4 patients, grade II at 6 

patients, grade III at 18 subjects and grade IV at 71 patients. There were a few patients 

who had solitary lesions of grade II, III or IV, the most of them had combined lesions 

and the lesion of upper grade was taking in study.  

 

 

Figure 7.10. 

 

Figure 7.11. 

From the signals obtained from the knee we could differentiate : signals for the 

crack initiation in the femur in 10 cases, signals for the cartilage lesion of the knee in 68 

cases, the combination of those two signals in 15 cases and no signals or no typically 

signals in 12 cases.  
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Figure 7.12. 

It was analysed and studied if there were a correspondence between  

~ the age and the sex of the subjects, the length of the femur, the thigh thickness, 

the BMI, the anatomical axis of the knee and the appearence and severity of the 

cartilage lesions  

~ the obtained signals with BONDIAS system and the intra-operative findings 

The statistical analysis was performed using Microsoft Office Excel and the 

WINKS Statistical Data Analysis Program.  

The relation between the age (VAR1) and the severity of cartilage injuries 

(VAR2) is shown in the next sequences and the next figure.  

For these data, 

the Mean(SD) of VAR1 for VAR2 = 0,00 is 34,5(11,2205), N= 6, 

the Mean(SD) of VAR1 for VAR2 = 1,00 is 37,5(15,1767), N= 4, 

the Mean(SD) of VAR1 for VAR2 = 2,00 is 48,1667(17,9044), N= 6, 

the Mean(SD) of VAR1 for VAR2 = 3,00 is 51,3889(16,3136), N= 18, 

and the Mean(SD) of VAR1 for VAR2 = 4,00 is 64,338(11,1008), N= 71. 

(Results must be interpreted in the context of the practical {i.e. clinical} 

   implications of any observed differences.) 

 

There can be observed that the severity of cartilage injuries increase with the 

age, as advanced with the age the patients are, increases the grade of cartilage disorders.  



Cristina Zolog                 Acoustic Emission Measurement System in Diagnostic of Cartilage Injuries of the Knee 

67 
 

 

Figure 7.13. Relation between age(VAR1) and cartilage injuries after Outerbridge(VAR2). 
 

Regarding the sex of the patients and the anatomical axis of the knee, there could 

not be found correspondences between the any of the both variable and the appearence 

and severity of the cartilage disorders.  

The relation between the length of the femur and the cartilage injuries was not 

offering any similarities. (VAR1=length of the femur, VAR2=grade of injuries after 

Outerbridge).  

For these data,  

the Mean(SD) of VAR1 for VAR2 = 0,00 is 48,5(6,1237), N= 6, 

the Mean(SD) of VAR1 for VAR2 = 1,00 is 50,5(5,4467), N= 4, 

the Mean(SD) of VAR1 for VAR2 = 2,00 is 49,8333(6,6458), N= 6, 

the Mean(SD) of VAR1 for VAR2 = 3,00 is 50,5556(5,8533), N= 18, 

and the Mean(SD) of VAR1 for VAR2 = 4,00 is 45,507(5,2505), N= 71. 

 

(Results must be interpreted in the context of the practical {i.e. clinical} 

implications of any observed differences.) 
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Figure 7.14. Relation between femur length(VAR1) and severity of cartilage 

injuries(VAR2). 
 

Afterwards it was analysed if there is a correlation between the thigh thickness 

and the grade of cartilage injuries. A directly correlation could not be noted neither in 

this case, a great thickness of the thigh being observed also at patients with no cartilage 

injuries, and also at those with arthritic defects.  

For these data,  

the Mean(SD) of VAR1 for VAR2 = 0,00 is 54,0(8,7407), N= 6, 

the Mean(SD) of VAR1 for VAR2 = 1,00 is 50,25(4,6458), N= 4, 

the Mean(SD) of VAR1 for VAR2 = 2,00 is 51,0(,8944), N= 6, 

the Mean(SD) of VAR1 for VAR2 = 3,00 is 54,0556(5,8256), N= 18, 

and the Mean(SD) of VAR1 for VAR2 = 4,00 is 54,8169(7,1939), N= 71. 

 

(Results must be interpreted in the context of the practical {i.e. clinical} 

implications of any observed differences.) 
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Figure 7.15. Correlation between thigh thickness(VAR1) and the severity of cartilage 
injuries (VAR2). 

 
The correspondence between the Body Mass Index (VAR1) and the cartilage 

damage severity (VAR2) is shown below. A direct correlation could not be observed, 

although the sever IV° injuries appeared by subjects with high body mass index, the 

most of them obese.  

For these data,  

the Mean(SD) of VAR1 for VAR2 = 0,00 is 26,265(5,1394), N= 6, 

the Mean(SD) of VAR1 for VAR2 = 1,00 is 25,3075(3,6038), N= 4, 

the Mean(SD) of VAR1 for VAR2 = 2,00 is 24,9917(3,7559), N= 6, 

the Mean(SD) of VAR1 for VAR2 = 3,00 is 27,4783(4,0058), N= 18, 

and the Mean(SD) of VAR1 for VAR2 = 4,00 is 28,7654(4,6820), N= 71. 

 

(Results must be interpreted in the context of the practical {i.e. clinical} 

implications of any observed differences.) 



Cristina Zolog                 Acoustic Emission Measurement System in Diagnostic of Cartilage Injuries of the Knee 

70 
 

 
Figure 7.16. Correspondence between BMI (VAR1) and Outerbridge cartilage 

damage(VAR2) 
 

To answer the second question, a diagram was filled for each patient (after the 

arthroskopically intervention or after the open surgery), where the lesions were 

schematically drawn, the location, the area and with the help of the diagram below, it 

could be noted at which grade of flexion the lesion appears.  

The patients with grade 0 and I of cartilage lesions after Outerbridge, because of 

the similarity, and not obvious differences of cartilage lesions, were analysed together, 

when they were compared with the accoustic signals.  

10 patients with chondromalacia gr. 0 and I had the following results with the 

BONDIAS system: by 5 measurements no signals were obtained (one patient had a 

medial meniscus lesion, one patient had a lateral meniscus ganglion, one patient had 

jumper`s knee, two had a plica syndrom, none of them had articular cartilage disorders), 

so we could interpret as a 50% correspondence. The other 5 measurements were with no 

typically signals or with signals of cartilage lesions, so we could not assess as similarity 

with the intra-operative findings (Figure 7.21.).    

From 6 patients with chondromalacia gr. II, 3 had signals by the measurement 

who corresponded with the intraoperative findings (Figure 7.22.). An example is shown 

below (Figure 7.17. and 7.18.). There were a II° lesion, on the medial femurcondyle, in 



Cristina Zolog                 Acoustic Emission Measurement System in Diagnostic of Cartilage Injuries of the Knee 

71 
 

the located area and the signal, typically for a cartilage lesion appeared at 119° of 

flexion.   

                                   

                                                                                                                      
Figure 7.17. 

 

Figure 7.18. 
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From 18 patients with chondromalacia III°, 12 correspondences (67%) are 

observed and 6 measurements (33%) that did not shown similarities (Fig. 7.23.). By the 

patients with chondromalacia IV°, most of them were with big areas of cartilage 

injuries, receiving a total knee arthroplasty. The signals were multiple and were 

combined signals of crack initiation in the femur with cartilage lesion signals. There 

were also patients with isolated IV° cartilage defects. An example is showed in the next 

images. A signal of cartilage lesion appeared at 42° of flexion, corresponded with the 

IV° injury in the trochlear groove ( Fig. 7.19. and 7.20.). For the patients with 

chondromalacia IV° ( 71) there were 45, where the signals were multiple, showing that 

the friction produced because of the lesions was high. Only in 17 cases with isolated 

IV° disorders was detected a correspondence between the grade of lesion and the its 

location. Considering that the 45 measurements showed also signs of cartilage lesions or 

crack initiation of femur, we evaluated these signals as corresponded with the intra-

operative findings. In 9 cases there were not similarities found (Fig. 7.24.). 

 

 

 
 

                     

Figure 7.19. 
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Figure 7.20. 

The results are represented schematically in the next figures (7.21.,7.22.,7.23. 

and 7.24.).  

 

 

Figure 7.21. 
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Figure 7.22. 

 

 

 

Figure 7.23. 
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Figure 7.24. 
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9. DISCUSSIONS 

BONEDIAS acoustic measurement system was developed in the last three years 

and there is no other similar device on market at this moment. Tribology, the science 

and technology of interacting surface in relative motion brings new perspectives in 

diagnostic of articulation diseases. Acoustic signals are used till now in stethoscopy and 

phonocardiography and there are good chances to be implemented also in the study of 

articulation pathology.  

BONEDIAS acoustic measurement system is a non-invasive and cheap method 

(in analogy with the other invasive – x-ray, or expansive – magnetic resonance imaging, 

methods). It doesn’t harm at all the patients, the only minimal problem would be a lack 

of understanding and for some patients (for example obese or with a not so good 

mobility) a difficulty to proceed slowly and regularly the knee squats. The system is 

also an easy method for the doctor, the nurse or technical assistant, whoever makes the 

measurement. The learning process takes a few minutes only. The measurement is also 

reproducible, it can be made many times and changes can be observed and interpreted in 

a period of time or before or after a surgery. 

An important observation is that there are typically signals for cartilage lesions 

because of the friction process in the articulation, so that we can interpret objective 

these lesions, when the signals appear. The signals because of the crack initiation in the 

femur appeared with the knee squats are also typically, so they give us also important 

information.  

The knee is the largest synovial joint in the body, it is a modified hinge joint and 

its biomechanic is not simple. The flexion and extension at this joint differ from those 

of a true hinge as the axis about which the movement occurs is not fixed, but translates 

upwards and forwards during extension and backwards and downwards during flexion. 

The knee joint possesses limited inherent stability from the bony architecture. The lack 

of conformity between bony surfaces allow 6° of freedom of motion about the knee 

including translation in 3 planes (medio-lateral, antero-posterior, proximo-distal) and 

rotation in 3 planes (flexion/extension, internal/external, varus/valgus). During normal 

knee motion in the sagittal plane from full extension to full flexion, the instant center 

pathway moves posteriorly, forcing a combination of rolling and sliding to occur 

between the articular surface. The unique mechanism prevents the femur rolling off the 

posterior aspect of the tibia plateau as the knee goes into increased flexion. The 
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mechanism that prevents this roll-off is the link formed between the tibial and femoral 

attachment sites of the anterior and posterior cruciate ligaments and the osseous 

geometry of the femoral condyles. With increased flexion, the tibio-femoral joint will be 

compressed. In a knee with cartilage lesions, the femoral condyles will glide in a defect 

zone and they will glide out from the defect zone. This will be registered, more or less, 

with the help of acoustic signals that are initialized because of the crack/contact in tibio-

femoral joint. There are still others components involved in the biomechanics of the 

knee, the cruciate ligaments, the collateral ligaments, the posterior capsule, the 

hamstrings, gastrocnemius muscles, the menisci. How much influence they have in 

appearance of these acoustic signals, this is not yet really defined and at this moments 

not able to be interpreted objective. The acoustic emission of the frictional behavior, 

however, allows an evaluation of the state of cartilage degeneration. The method 

indicates acoustically active defects in the human joint.  

A study with 125 knee recordings was performed in 1999 (Hans Joachim 

Schwalbe, Guido Bamfaste, Ralf Peter Franke).  Hence an apparatus for testing the wear 

in the knee joint was developed, which makes it possible to simulate a more or less 

physiological roll-glide friction. A qualitative differentiation between damaged and 

undamaged joints has been achieved. Artificially set defects cause typical acoustic 

emissions in a reproducible form. Clinical tests with this acoustic emission analytical 

system which were performed in parallel to the commonly used diagnostic methods, 

showed that the analysis emission allows a differentiation of joint defects and their 

consequences. The technique used was also the acoustic emission analysis. Acoustic 

emission is based on the phenomenon that under load stored energy is released 

spontaneously by crack initiation and propagation. This is the so called type of acoustic 

emission. Friction processes, too, cause acoustic emission. But the series of pulses are in 

the slope of the individual acoustic signal. This is the continuous form of acoustic 

emission. In the case, that the cracking is accompanied by friction in already existing 

crack banks, a continuous acoustic emission with low amplitude and energy overlaps 

the burst signal. The frictional behavior and the gliding mechanism in human joints, 

while moving under load, can be discriminated and analysed thanks to a well 

distinguishable form of emission. This form of acoustic emission, corresponding to the 

physiological roll-glide motion of a human knee joint with known lesions under well 

defined load. The long rise time of the acoustic signal is obvious. The slope of the 

signal does not follow an exponential course. The measuring device has to be adapted to 
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the characteristic signals of acoustic emission generated by crack initiation and 

propagation or by frictional behavior of articulation surfaces with regard to the 

surrounding noise. It turned out to be favourable to select from the broadband acoustic 

emission signal a band of frequencies where the difference of the signal amplitude and 

the interfering noise amplitude is as large as possible. In the study of Prof. Schwalbe a 

resonance frequency of the transducer of 100Hz was chosen. The transducer was fixed 

directly on the bone in the fracture- and friction-tests of the explanted bones or directly 

on the surface of the skin in the in-vivo-tests of patients. The transducer was an 

undamped piezoelectric converter, connected to an amplifier with an integrated 

impedance converter. The amplified acoustic signal was filtered by a band-pass within 

the resonant frequency band of the transducer. Depending on its intensity the signal was 

further amplified and then evaluated according to the test query. For a comparison 

between artificial damage in knee joints, a field test was carried out among volunteers 

of the faculty members and students of the Technical College Gießen Friedberg and 

patients with well known joints defects of the orthopaedic clinic Passauer Wolf. It was 

demonstrated that acoustic emission is reproducible and that there were a correlation 

between the extent of the damage and the acoustic emission, that an evaluation of the 

state of wear and friction of human joints under physical strain is possible. [26] 

Studies and works about the acoustic emission role in the diagnostic of bone 

diseases were made also in the United States in 2001, where a non-invasive bone 

condition data acquisition system performed sensitive and reliable clinical data 

acquisition, localization and classification of bone disease, particularly osteoporosis. 

The bone condition data acquisition system measured a correlation between a wideband 

acoustic emission signature and a spatially localized bone microarchitecture, which was 

used to determine fracture risk. The bone condition data acquisition system included 

processors and memory for analyzing acoustic emission signals from bone tissue to 

generate information-bearing attributes, for extracting a set of times-of-arrival and a 

feature vector from the attributes, for utilizing the set of times-of-arrival to derive the 

locations of the acoustic emission events and for responding to the feature vector to 

classify the bone using a neural network and a nearest neighbor rule processor. [78] 

This study was made with a provisional patent 6,213,958 ( “acoustic emission 

stimulation of biological tissue structures”, Winder), which was filed with the U.S. 

Patent and Trademark Office, which described an ultrasound device that employed 

nonlinear acoustics to stimulate biological tissue (such as bone tissue), for producing 
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acoustic emissions. The use of nonlinear acoustics in an ultrasound projector is a key 

requirement for developing a commercially viable acoustic emission monitoring device 

for medical applications. This technology was used with this patent to create a 

diagnostic system for acoustic emission monitoring. The proposed systems approach 

employs an acoustic model originally developed (and successfully used by the author) 

for various military sonar applications. There was a substantial scientific evidence 

suggesting that acoustic emission monitoring can be used to describe the strength and 

quality of bone tissue. This will provide a means for early detection, localization and 

characterization of metabolic bone disease and bone cancer. The ultimate goal was to 

build a database of acoustic fingerprints of specific pathological bone conditions, such 

as osteoporosis. The foundation of acoustic emission physics is based on what is 

reffered to as the “Kaiser Effect” and the “Felicity Effect”. The Kaiser Principle states 

that materials present acoustic emission only under unprecendented stress. Acoustic 

emission are attributed to frictional rubbing of grains against each other in 

polycrystalline materials and also from intergranular fractures. The Kaiser Effect states 

that many materials show low levels of acoustic emission beginning at very low stress 

levels, all the way through to final failure. The Kaiser Effect has been tested to be valid 

for various materials, including metals, woods and other mineral composites. The 

Felicity Effect is the exception to the Kaiser Principle. It states that when an acoustic 

emission occurs at stresses lower than the peak stress of the previous acoustic emission, 

it typically indicates significant permanent damage in the material.  

U.S. Patent 6,213,958 ( “Methods and apparatus for the acoustic emission 

monitoring detection, localization and classification of metabolic bone disease”, 

Winder, 2001) described a diagnostic system to detect, localize and characterize the 

acoustic emission produced by applying noninvasive mechanical stimulation to the 

musculoskeletal system. These wideband acoustic emission were extremely rich with 

information on tissue composition and structure that has not been at that time explored 

by investigators. Although it was not known with 100% certainty whether the acoustic 

emission method actually works for bone tissue, all the work performed for the past 

twenty-five years in the field of acoustic emission materials testing overwhelmingly 

supports the concept. Acoustic emission monitoring has been investigated by several 

researchers in the 1970’s as a diagnostic tool for osteoporosis. Hanagud, Clinton and 

associates [42] showed that the acoustic emission rate from cattle femurs subjects to 

bending loads is greater for low density specimens as compared to those with normal 
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density. These emissions were detected well before the actual bone failure. In a fairly 

study, Leichter and associates [77,78] examined the acoustic emission from cancellous 

bone under compression. They also found that the post-yield acoustic emission rates 

were significantly higher in both osteoporotic and osteoarthritic bone specimens, 

compared to normal bone. In an earlier study, Katz and Yoon [60] related ultrasonic 

wave propagation measurements to the structure and anisotropic mechanical properties 

of osteoporotic and osteopetrotic bone. Their results showed that osteoporosis is 

characterized by increased porosity or decreased density, while osteopetrosis forms 

calcified cartilage in bone and affects the elastic stiffness and Young’s modulus of bone 

tissue.  

Acoustic emission was studied also in Jerusalem Osteoporosis Center, where 

was investigated the relation between the nature of acoustic emission signals emitted 

from cancellous bone under compression and the mechanical properties of the tissue. 

The examined bone specimens were taken from 12 normal, 31 osteoporotic and 6 

osteoarthritic femoral heads. The mechanical behavior of the osteoporotic bone 

specimens was found to be significantly different from that of the normal specimens 

both in the pre-yield and post-yield ranges. In the osteoarthritic bones only the elastic 

behavior was significantly different. The rates of acoustic events before yield and 

beyond it were found to be significantly higher both in the osteoporotic and 

osteoarthritic bone specimens. The average peak amplitude of the signals was also 

significantly higher in the diseased bones. Stepwise regression analysis showed that a 

combination of the acoustic emission parameters could significantly predict some 

mechanical properties of the bone. The energy absorbed during compression and the 

ultimate compressive stress of the specimens could be estimated from the rate of pre-

yield acoustic events, the average amplitude of the signals and the rate of post-yield 

events. However, the explanation power of the acoustic emission parameters was only 

moderate. The nature of acoustic emission signals was thus demonstrated to be a 

potential tool for assessing bone quality. [77] 

A study about the prediction of mechanical properties of healing fractures using 

acoustic emission was made in Japan in 2000. The objective was to develop a non-

destructive method for monitoring fracture healing with acoustic emission. 

Experimentally produced fractures of the rat femur were tested in tension and in torsion 

at 4,6,8 and 12 weeks after the fracture. Acoustic emission signals were monitored 

during mechanical tests. The values for load and torque at the initiation of the acoustic 
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emission signal were defined as new mechanical parameters. The apparent density and 

ash density of the fracture site were also measured at each time period. Tensile strength, 

tensile stiffness, maximum torque and torsional stiffness of the fracture site increased 

with time. The acoustic emission signal was detected before complete specimen failure. 

Load and torque for initiation of acoustic emission increased proportionally with 

increasing mechanical properties. The mineral density, however, reached a plateau at 8 

weeks, when callus mechanical strength was approximately 50% of control. Load for 

initiation of acoustic emission was strongly correlated with the strength, stiffness and 

failure strain of the callus. Torque for initiation of acoustic emission was highly 

correlated with the maximum torque and torsional stiffness of the callus. The findings 

of the study indicated that some mechanical properties of healing fractures could be 

estimated by monitoring acoustic emission signals. [134] 

In Finland there was made a study where there were investigated several novel 

quantitative biophysical methods, including ultrasound indentation, quantitative 

ultrasound techniques and magnetic resonance imaging, for diagnosing the degenerative 

changes of articular cartilage, typical for osteoarthritis. In this study, the combined 

results of these novel diagnostic methods were compared with histological (Mankin 

score), compositional (proteoglycan, collagen and water content) and mechanical 

(dynamic and equilibrium moduli) reference measurements of the same bovine cartilage 

samples. Receiver operating characteristics analysis was conducted to judge the 

diagnostic performance of each technique. Indentation and ultrasound techniques 

provided the most sensitive measures to differentiate samples of intact appearance from 

early or more advanced degeneration. Furthermore, these techniques were good 

predictors of tissue composition and mechanical properties. The specificity and 

sensitivity analyses revealed that the mechano-acoustic methods, when further 

developed for in vivo use, may provide more sensitive probes for osteoarthritis 

diagnostics than the prevailing qualitative x-ray and arthroscopic techniques. 

Noninvasive quantitative MRI measurements showed slightly lower diagnostic 

performance than mechano-acoustic techniques. The compared methods could possibly 

also be used for the quantitative monitoring of success of cartilage repair. [68]   

Cartilage injuries are a real problem, disease of the joints, in which articular 

cartilage is degenerated and eventually, worn away. The early changes in cartilage 

tissue, associated with osteoarthritis, include loss of proteoglycans and degradation of 

the collagen fibril network (Buckwalter and Mankin, 1997). This leads to softening of 
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the tissue (Armstrong and Mow, 1982). Softened articular cartilage fails to resist impact 

forces during normal loading and this endangers this tissue to fissures and fibrillation 

(Palmoski and Brandt, 1981). Tissue degeneration leads to inflow of water and thereby, 

to an increase in water content of the tissue. At this stage, cartilage is even more prone 

to wearing. Besides degenerative changes in cartilage, the underlying bone undergoes a 

remodeling process that leads to a sclerosis of the subchondral bone (Radin, 1976). 

[108] The developing cartilage injuries increases pain, restricts exercise and limits 

physical capability. The earliest degenerative changes may be reversible, changing 

loading conditions, surgical operation or potentially pharmacological intervention may 

slow down the progression of cartilage lesions (Buckwalter and Mankin 1997, Freeman 

1999). When osteoarthritis progresses to its terminal point, cartilage tissue is almost 

completely worn away exposing the subchondral bone. Currently, there is no efficient 

way to re-establish eroded cartilage and, therefore, only palliative treatment or 

arthroplasty can be used to relieve patients. Therefore, it would be crucial to recognize 

the very early changes of cartilage injuries to target the treatment efficiently.  

Traditionally, the diagnosis of cartilage injuries is based on patients’symptoms 

and X-ray imaging. The measurement of joint gap narrowing in X-ray images is an 

indirect way to assess the thickness of articular cartilage between two articulating 

bones. Unfortunately, the changes visible with this method represent the final stages. 

Magnetic resonance imaging or arthroscopy are also used to evaluate the integrity of 

articular cartilage. The costs of these two methods are indeed very high and can be 

introduced as screening. Further, the emergence of novel surgical methods for repairing 

damage cartilage has increased the demand for sensitive assessment of the quality of 

repaired cartilage.  

The study below has the advantage of comparing the acoustic emission 

measurements with intra-operative findings, offering objective results. A 

correspondence between the age and the sex of the subjects, the length of the femur, the 

thigh thickness, the BMI, the anatomical axis of the knee and the appearence and 

severity of the cartilage lesions was studied supplementary. Beside the age of the 

patients, there were not fine any directly correspondences with the severity of the 

cartilage lesions and the acoustic emission signals. Important is that over 50% of the 

obtained acoustic emission signals were coresponded with the intra-operative findings. 

For the gr. 0, I and II after Outerbridge cartilage injuries, the corespondence, even if the 

correspondence only 50% was, its more significant, because the lesions in this case 
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were minimal and were at different grades of flexion. The correlation between the 

intraoperative findings of grade III and IV cartilage injuries and the acoustic emission 

signals was over 60%. The lesions were most of them on the big surfaces and were also 

combined with crack initiation in the femur. Here we can conclude that by severe 

cartilage disorders, acoustic emission measurement system offers us objective 

informations about the lesions. 

Actually, the problem are not the severe cartialge injuries, where the diagnostic 

can be achieved also clinically, but the lesions in incipient stadium. For these cases 

there are till now, none diagnostically methods who can accomplish certain criterion: 

they should be non-invasive, non-destructive, regarding that these investigations are 

addressed more the young people and they should be cheap, regarding the always 

problems of lack of money.  

Arthroscopy, the more objective investigation in diagnostic of cartilage injuries, 

however minimal, is an invasive technique. Will it ever be adopted for determination of 

early asymptomatic osteoarthritis? Maybe not. At present, each year hundreds of 

thousands of arthroscopies are performed to patients having problems with their knee. 

In addition to other pathologies such as meniscal tears, ligament injuries, these patients 

may also have cartilage lesions, asymptomatic early osteoarthritis or advanced 

osteoarthritis. These patients seeking relief to their joint problems is the population that 

might benefit best of the information obtained with the arthroscopic instrument. Could 

be these cartilage injuries before diagnosticated? This was the purpose and the goals of 

such a study, where non invasive cheap techniques have to be developed to obtain 

informations and prevent disease. The obtained informations could be used to study risk 

factors for osteoarthritis developement and later, the results of such studies could help 

to predict osteoarthritis risk as well as to apply appropiate procedures to prevent 

preogression of osteoarthritis changes. Also, direct mechanical measurements can help 

in future to judge objectively the results of cartilage repair techniques. Further, 

monitoring of tissue maturation after repair surgery will help the clinicians to determine 

optimal amount, pattern and time schedule of external stimulation, such as mechanical 

loading of the joint with repaired cartilage. For screening healthy, asymptomatic 

individuals, it is likely that low-cost non-invasive examinations, although not readily 

available, are needed.  The domains where such a system measurement can be 

implemented is diagnostic, rehabilitation, cartilage repair results, arthroplasty or even 

skeleton monitoring concerning daily or sportive solicitation.  
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My personal opinion concerning improving such a system device is the 

adjustment the sensor (maybe the physicists can develop a circular sensor around the 

knee), for emphasize the capture of sounds from the articulation and for giving more 

stability when the knee squats are executed. 

The application of tribology and the acoustic emission due to the friction is a 

domain not deeply explored, but because of the reduced costs and its harmless it should 

really be investigated more.  
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10. CONCLUSIONS 

Fibrillation of articular surface and depletion of proteoglycans are the structural 

changes related to early osteoarthrosis. These changes make cartilage softer and prone 

to further degeneration. The aim of the present study was to combine mechanical and 

acoustic measurements towards quantitative arthroscopic evaluation of cartilage quality. 

Osteoarthrosis is one of the most important joint diseases and results in 

considerable economic hardship and a decrease in the quality of life of individuals. One 

of the first histological signs of osteoarthrosis is cartilage tissue softening. After that, 

occurs cartilage fibrillation and disruption of the collagen network. While early changes 

without disruption are believed to be reversible, osteoarthrosis can only be diagnosed in 

advanced stages, when regenerative treatment concepts fail.  

Several magnetic resonance imaging, computer tomography and arhroscopic 

methods are under development for sensitive in vivo diagnostics of cartilage 

degeneration and early osteoarthrosis ( Appleyard et al.,2001; Burstein and Gray, 2003; 

Cherin et al., 1998; Dashefsky,1987; Hattori et al.,2004; Hermann et al.,1999; 

Kallioniemi et al.,2007; Kiviranta et al.,2007; Laasanen et al., 2002; Legare et al., 2002; 

Lvyra et al, 1995; Niederauer et al., 1998; Palmer et al. , 2006; Pellaumail et al.,2002). 

Arthroscopic indentation measurements have been used to determine the dynamic 

stiffness of cartilage in vivo ( Dashefsky, 1987; Lyvra et al.,1999). However, the results 

obtained with this method include uncertainties, as the effect of unknown tissue 

thickness on stiffness values cannot be fully eliminated (Hayes et al.,1972). 

The mechano-acoustic indentation method, ultrasound indentation, is based on 

characterizing the mechanical properties of cartilage by compressing. Ultrasound, 

acoustic emission can be used to characterize the roughness and integrity of cartilage 

surface (Kaleva et al.,2008; Laasanen et al.,2005; Saarakkala et al.,2004; Töyräs et 

al.,1999). Quantitative ultrasound measurements of cartilage properties have been 

shown to provide sensitive and specific measures to detect the early deterioration of 

cartilage (Brown et al.,2007; Hattori et al.,2005; Kiviranta et al.,2008; Laasanen et 

al.,2002; Pellaumail et al.,2002). 

The purpose of the study below was to determine the early cartilage lesions, to 

define if there is indeed a correspondence between the signals and the intra-operative 

findings. The idea is to determine a simply, efficient, cheap and non-invasive method to 

diagnose the early cartilage injuries, because there isn’t such a method till nowadays. 
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The results obtained, 50% correspondence for the gr. 0, I and II Outerbridge lesions are 

more important, more significant that the other results, with over 60% correspondence 

for  the advanced osteoarthrosis. The obtained acoustic emission signals, corresponding 

to the intra-arthroscopic findings showed the importance of this method to identify the 

early cartilage injuries. The method is not perfect and the results (50%) are not really 

statistically significant, so that we can introduce this method on a large scale, but offers 

important information that should be used in the future. Also, there isn’t a perfect 

method to compare the acoustic emission signals with the intra-arthroscopic findings. 

Every patient was analysed separately and with his corresponding  measurement 

compared, that means a lot of time (20 – 30 minutes for the measurement and the other 

questions and clinical tests and another 15 minutes to analyse the signals and compare 

them with the intra-operative findings). For a study this can be accepted, but for clinical 

every day use maybe not. A standard interpretation and analyse method, maybe after 

clinical large trials, if such a method can be developed, could bring big advantages for 

the early determination of the cartilage injuries. Microsoft Office Excel and the WINKS 

Statistical Data Analysis Program could permitt a correlation between what was wished 

to compare, but the developing of a special program for such a study can improve also 

the results. The adjustment of the sensor that captures the sounds from the articulation 

could also determinate a higher and accurate level of the measurement and reduce some 

errors due to the apllication of this sensor.  

In conclusion, the study had offered important informations about the 

importance of accoustic emission measurements, that can be used for the future studies 

and with some improvements, this method , cheap and non-invasive, but at this moment 

a little beat time-consuming, can be helpful in the diagnose of the early cartilage 

injuries.  
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