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Abbreviations  

AA  

Å 

arachidonic acid 

Ångström (1Å = 10
-10

 m) 

Acc 

AEA 

AKR 

Ala 

AnD 

Arg 

Aro 

Asn 

Asp 

Hydrogen bond acceptor atom type probe  

anandamide; N-arachidonylethanolamide 

aldo-keto reductase 

Alanine 

Hydrogen bond doneptor atom type probe  

Arginine 

Aromatic atom type probe  

Asparagine 

Aspartic acid 

BACE1 

Bcl 

Bcr-Abl 

B-raf 

CDK 

CSD 

CUDA 

 

Cys 

beta-site APP cleaving enzyme 1  

B-cell lymphoma 

Breakpoint cluster region- Abelson 

Serine/threonine-protein kinase B-Raf 

Cyclin-dependent kinases 

Cambridge Structural Database 

NVIDIA‟s parallel computing architecture. It enables increases in 

computing performance by harnessing the power of the GPU.  

Cysteine 

Da 

DMSO  

Don 

Dalton 

Dimethylsulfoxide  

Hydrogen bond donor atom type probe 

DXI 

EctD 

ETP 

Fc 

D-xylose-isomerase 

ectoine hydroxylase 

Endothiapepsin 

calculated structure factor amplitudes 
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Fo 

FBDD 

FBLD 

FIH 

FXa 

Gln 

G-loop 

Glu 

Gly 

observed structure factor amplitudes 

Fragment based drug discovery 

Fragment based lead discovery 

factor inhibiting HIF (hypoxia-inducible factor) 

Factor X(10) a 

Glutamine 

Glycine rich loop 

Glutamic acid 

Glycine 

H-bond Hydrogen bond 

His Histidine 

Hsp 

HTS 

Hyd 

IC50 

Ile 

heat shock protein 

High throuput screening 

Hydropobic atom type probe 

Half maximal inhibitory concentration 

Isoleucine 

IspD 

K
+
 

Ki 

4-diphosphocytidyl-2C-methyl-D-erythritol synthase 

Potassium ion 

Competitive inhibition constant 

Kd 

Km 

LE 

Leu 

LFA-1 

LTA4A 

Lys 

Dissociation constant 

Michaelis Menten constant 

Ligand efficiency  

Leucine 

Lymphocyte function-associated antigen 1 

Leukotriene A4 Hydrolase 

Lysine 

M 

µM 

MD 

Met 

Molarity (mol/L) 

Micromolar 

Molecular dynamics 

Methionine 
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MMP 

nM 

NADP(H) 

NMR 

ns 

Matrix metalloproteinase 

Nanomolar  

Nicotinamide adenine dinucleotide phosphate (reduced form) 

Nuclear magnetic resonance 

nano second 

o/w 

PCR 

PDB 

PDGFR 

PEG 

pH 

Phe 

PKA 

Octanol/water partition 

Polymerase chain reaction 

Protein Data Bank 

Platelet-derived growth factor receptor 

Polyethylene glycol 

Potentialis hydrogenii 

Phenylalanine 

c-AMP dependent Protein Kinase A 

PPKA 

Pro 

Peroxisome proliferator-activated receptor 

Proline 

RMSD 

RNA 

RO3 

Root mean square deviation 

Ribonucleic acid 

Rule of three 

RO5 

SAP2 

Ser 

SPR 

Tm 

Thr 

TLN 

TPSA 

Trp 

Tyr 

Rule of five 

Secretory aspartyl protease 2  

Serine 

Surface Plasmon Resonance 

melting temperature  

Threonine 

Thermolysin 

Total polar surface area 

Tryptophane 

Tyrosine 

Val 

VEGF 

Valine 

Vascular endothelial growth factor 



 

12 

 



Table of Contents 

13 

Table of Contents 

Abbreviations .................................................................................................................. 9 

Table of Contents .......................................................................................................... 13 

1 Motivation .............................................................................................................. 17 

1.1 Aims of this Thesis........................................................................................... 17 

2 Introduction to Fragment Based Drug Design .................................................... 19 

2.1 General Concept of Fragment Based Drug Design .......................................... 19 

2.2 Fragment Growing Approach .......................................................................... 23 

2.3 Fragment Library Design ................................................................................. 24 

3 A Small Non-rule-of-3-compatible Fragment Library Provides a High Hit Rate 

of Endothiapepsin Crystal Structures with Various Fragment Chemotypes .. 27 

3.1 Introductory Remarks ....................................................................................... 27 

3.2 Abstract ............................................................................................................ 27 

3.3 Introduction ...................................................................................................... 28 

3.4 Results .............................................................................................................. 30 

3.5 Discussion ........................................................................................................ 44 

3.6 Conclusions ...................................................................................................... 45 

3.7 Materials and Methods ..................................................................................... 46 

4 HotSpot Analysis – a Promising Strategy for Lead Optimization; an 

Endothiapepsin Fragment Screen as Case Study ............................................... 53 

4.1 Introductory Remarks ....................................................................................... 53 

4.2 Introduction ...................................................................................................... 53 

4.3 Methods ............................................................................................................ 54 

4.4 Results .............................................................................................................. 57 

4.5 Conclusion and Outlook ................................................................................... 65 

5 Experimental Active Site Mapping as a Starting Point to Fragment Based 

Lead Discovery ....................................................................................................... 67 

5.1 Introductory Remarks ....................................................................................... 67 



Table of Contents 

14 

5.2 Introduction ...................................................................................................... 67 

5.3 Results and Discussion ..................................................................................... 69 

5.4 Conclusion ........................................................................................................ 90 

5.5 Materials and Methods ..................................................................................... 91 

6 From Probe to Fragment and Lead: A Combined Approach of Experimental 

Fragment Screening and Computational De Novo Design ................................. 93 

6.1 Introductory Remarks ....................................................................................... 93 

6.2 Introduction ...................................................................................................... 93 

6.3 Results and Discussion ..................................................................................... 95 

6.4 Conclusion ...................................................................................................... 112 

7 Early Steps of G-loop opening for Protein Kinase A (PKA) in complex with 

Phenol .................................................................................................................... 115 

7.1 Introductory Remarks ..................................................................................... 115 

7.2 Introduction .................................................................................................... 115 

7.3 Results and Discussion ................................................................................... 120 

7.4 Conclusions and Outlook................................................................................ 132 

7.5 Methods .......................................................................................................... 133 

7.6 Supplementary Informations .......................................................................... 134 

8 New Scaffolds for Aldose Reductase: A Virtual Screening Study ................... 141 

8.1 Introductory Remarks ..................................................................................... 141 

8.2 Drug Design .................................................................................................... 141 

8.3 Target Family of AKRs .................................................................................. 142 

8.4 Ligand Database and Targeted Library Design .............................................. 143 

8.5 Conformational and Pharmacophore Search .................................................. 145 

8.6 Docking .......................................................................................................... 145 

9 Development of a Thermal Shift Assay .............................................................. 149 

9.1 Introductory Remarks ..................................................................................... 149 

9.2 Introduction .................................................................................................... 149 

9.3 Concept of Thermal Shift Assay .................................................................... 149 

9.4 Indroduction to EctD ...................................................................................... 150 

9.5 Validation of the Method Using Different EctD Variants .............................. 152 



Table of Contents 

15 

9.6 Residues Likely to be Involved in 2-Oxoglutarate Binding by EctD ............ 156 

9.7 Materials and Methods: Fluorescence-Based Thermal Shift Assay .............. 157 

10 RNA Editing Modulates the Binding of Drugs and Highly Unsaturated Fatty 

Acids to the Open Pore of Kv Potassium Channels. ......................................... 159 

10.1 Introductory Remarks ..................................................................................... 159 

10.2 Abstract .......................................................................................................... 159 

10.3 Docking and Modelling Results ..................................................................... 160 

Conclusion and Outlook ............................................................................................. 163 

Zusammenfassung und Ausblick ............................................................................... 165 

Literature ..................................................................................................................... 167 

Danksagung ................................................................................................................. 179 

Erklärung .................................................................................................................... 181 

Curriculum Vitae ........................................................................................................ 183 



 

16 

 



Motivation 

17 

1 Motivation 

1.1 Aims of this Thesis 

In recent years fragment screening has become a popular approach to identify new lead 

structures. Fragments are usually defined by the Astex „rule of three‟ (RO3). SPR, 

NMR spectroscopy, biochemical assays and X-ray crystallography are efficiently 

applied screening techniques to discover prospective fragments as binders. These 

methods require as a starting point a fragment library assembled by some predefined 

criteria. For example commercially available fragment libraries are designed using the 

„RO3‟ as strict selection threshold.  

Nevertheless, in Chapter 3 we critically ask whether these rules are too stringent for the 

design of an optimal fragment library, holding candidates that leave sufficient room for 

subsequent chemical modifications. With respect to strategies focusing on fragment 

growing and fragment merging, an appropriate number of functional groups for follow-

up chemistry is required. Frequently, groups to enable a reasonable linking and growing 

chemistry display properties such as hydrogen bond donors and/or hydrogen bond 

acceptors. As such they can be used as favorable entry points to begin with the required 

optimization chemistry. 

Therefore, we have designed an in-house fragment library. During library design we 

modified the „RO3‟ from Astex, and we did no strict filtering by physico-chemical 

properties during fragment enumeration. We could assemble a rather small fragment 

library of 364 members which we validated on endothiapepsin - a well established in-

house target.  

The development of novel tools for computational approaches in the field of fragment-

based drug design and their validation with respect to experimental data are important 

tasks to estimate the scope and relevance of computational methods. In Chapter 4 and 5 

HotspotsX analyses using eleven determined endothiapepsin-fragment structures and 

using different molecular probes for diverse targets were performed. 
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Based on the molecular probe phenol, we performed a case study on protein Kinase A 

(PKA) in collaboration with Merck Serono which is presented in Chapter 6. Starting 

from a phenol molecule, we performed a virtual screening and discovered a prospective 

hit which could be structurally characterized in a second crystal structure. This initial 

seed was grown into the binding pocket and lead to a 70 µM lead compound. The 

affinity of this compound could be increased to 110 nM in three design cycles.  

The PKA-phenol complex structure displays surprisingly a rather closed G-loop 

conformation, which must be induced by the phenol molecules. MD simulations 

described in Chapter 7, were performed to get some first insights into the G-loop 

opening mechanism leading to the uncomplexed apo protein. 

In Chapter 8 a virtual screening approach was described which resulted in new scaffolds 

for the inhibition of aldose reductase.  

Biophysical assays are highly desired to detect fragment hits for a novel protein. In 

Chapter 9 a thermal shift assay is described which has been applied to detect fragment 

hits and which has also been used to characterize variant mutations of EctD. 

Nils Decher et al. experimentally observed the binding of arachidonic acid in a K
+
 ion 

channel. To rationalize these findings, a docking study is described in Chapter 10 that 

was performed to get first ideas about the possible binding mode and structural 

explanations of the experimentally observed data.  
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2 Introduction to Fragment Based Drug Design 

2.1 General Concept of Fragment Based Drug Design 

The more novel and interesting target structures for a therapeutic treatment are 

discovered and validated via proteomics and structural genomics, the higher will be the 

demand for efficient strategies to discover leads that interfere with protein function. In 

the nineties, high-throughput screening and combinatorial chemistry have been 

established to resolve the bottleneck for an efficient lead discovery. Subsequently, 

virtual computer screening has been added as an alternative to complement these 

approaches. However, success rates were not as expected and the size of the usually 

discovered hits was in the range of common drug molecules not leaving much space for 

optimization without significantly exceeding the molecular weight limit of approx. 500 

Da.
1
 To better rank the size of the discovered hits with their actual potency, the concept 

of ligand efficiency
2
 was introduced. Highly efficient leads exhibit good potency 

combined with low-molecular weight. 

Fragments are much smaller than usual HTS compounds. Due to the size difference 

between fragments and HTS candidate molecules the library to explore a certain 

chemical space will be much smaller for fragments.  

Figure 2.1 illustrates the difference in the theoretical chemical space. An HTS screen 

using a collection of 10
8
 compounds of a size up to 500 Da matches a rather small 

portion of the theoretically possible chemical space. However, a fragment library of 

approximately 1000 fragments matches a significantly larger portion of chemical space 

covering molecular weights up to 160 Da. Thus, in FBLD it appears simpler to cover a 

larger portion of chemical space compared to the required compound depository in 

HTS. 
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Figure 2.1 Chemical space used in HTS compared to FBLD approaches.
3
  

Advances in biophysical techniques to detect protein-ligand binding and increasing 

success to acquire structural information about protein-ligand complexes by 

crystallography
4-6

 or NMR spectroscopy
7-9

 allowed to push the limits of the compounds 

to be screened to lower molecular weight. Particularly NMR and Surface Plasmon 

Resonance (SPR) are nowadays reliable enough to detect very small and weak binders 

which still exceed sufficient and convincing potency (“high” ligand efficiency).
2
 Other 

approaches intend to screen directly with proteins in crystalline state.
6, 10

 Fragment-

type
11

 leads appear as special challenge as they provide – once characterized in terms of 

a crystal structure – wide opportunities for optimization into prospective drug 

candidates.  

Figure 2.2 illustrates the different starting points for drug development. The goal is the 

area indicated by the red square which represents the Lipinski-like drug molecules. The 

bottom right corner represents a drug candidate with ~ 500 Da/ ~ 35 heavy atoms and an 

affinity of ~ 10 nM. This compound would have a LE of 0.3 kcal/mol*heavy atom. 

Considering the different starting points it can be seen that a fragment as entry point 

with low affinity but high LE should be more convenient to develop a drug-like 

molecule, as affinity can be gained by directly growing the fragment. An HTS hit on the 

other hand is a starting point based on higher affinity and higher molecular weight but 

lower LE. First step in the development of such hits should be the increase of LE. 

Therefore, the molecular weight has to be reduced first without significant loss of 

affinity.  
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Figure 2.2 The starting points for drug development taken from Siegal et al.
12

 

Meanwhile, many examples have been described in literature and an impressive number 

of reviews has been written.
13-24

 Mostly, this method has been applied in industry or 

specialized small biotech companies. Primarily these studies considered the following 

targets: HSP90
25-30

, different kinases
31-38

, phosphatases
39-41

, antibacterial and anti-

infective targets
42-46

 , BCL-2 
47

 and BACE.
47-50

 Table 2.1 lists clinical candidates 

originally discovered and developed by fragment-based drug design approaches. 

Nowadays a significant number of pharmaceutical companies uses this approach to 

develop novel drug candidates.    
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Table 2.1 Fragments in the clinic Sep. 2010
51

  

Phase 3 

  PLX-4032 Plexxikon  B-RafV600E 

      

Phase 2     

ABT 263  Abbott  Bcl-2/Bcl-xL inhibitor 

ABT 869  Abbott  

VEGF & PDGFR 

inhibitor 

AT9283  Astex Aurora inhibitor 

LY-517717   Lilly/Protherics FXa inhibitor 

Indeglitazar  Plexxikon PPAR agonist 

VER-52296/ NVP-AUY-922  Hsp90 inhibitor 

      

Phase 1     

ABT-518 Abbott  MMP-2 & 9 inhibitor 

ABT-737  Abbott Bcl-2/Bcl-xL inhibitor 

AT13387 Astex Hsp90 inhibitor 

AT-7519  Astex  CDK1,2,4,5 inhibitor 

DG-051  deCODE  LTA4H inhibitor 

IC-776  Lilly/ICOS LFA-1 inhibitor 

LP-261 Locus  Tubulin inhibitor 

PLX-5568  Plexxikon Kinase inhibitor 

SGX-393  SGX  Bcr-Abl inhibitor 

SGX-523 SGX Met inhibitor 

SNS-314  Sunesis Aurora inhibitor 

 

Some of the compounds from industry have been published, mostly those of Astex 

Pharmaceuticals. Astex is a company with a business model that is entirely attributed to 

fragment-based approaches. Figure 2.3 illustrates the development of two kinase
38, 52

and 

one Hsp90 clinical candidates.
30
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Figure 2.3 Development scheme of some Astex clinical candidates. Top: the development of AT9283, an 

Aurora kinase inhibitor.
52

 Middle: the development of AT13387, an Hsp90 inhibitor
30

 and bottom: 

AT7519, a CDK inhibitor.
38

 

      

2.2 Fragment Growing Approach 

The idea to move towards smaller and smaller initial “leads” reminds of an old concept 

developed in the early phase of structure-based drug design. In the late eighties and 

early nineties computational de novo design was developed with much enthusiasm. 

Starting with a very small “seed”, initial ligands are gradually grown into the binding 

pocket of the target protein. Even though received with much sympathy in the 

beginning, the approach rapidly got out of fashion. This was either attributed to its high 
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complexity, too low success rate also due to limited crystallographic access and 

experience to determine complex structures or it was simply overrun by the upcoming 

high-throughput technologies; and at present we clearly witness that fragment screening 

tends to move into the high-throughput area again.  

Nevertheless, the appealing aspect of de novo design was its rigorous rational concept, 

only once ligand binding is fully understood this kind of design based on first principles 

can work. However, two decades later we have to confess that the binding process is 

still so little understood and therefore a purely rational approach remains as such still 

rather ambiguous.  

On the other hand, meanwhile our experimental techniques have been much better 

developed and allow much faster access to structural information. Therefore, it may be 

asked whether a combination of de novo design supported by multiple crystal structure 

analyses will now allow for an alternative strategy in lead discovery, reconsidering 

much of the early concepts of de novo design.  

Therefore, we picked a representative example from the heavily studied family of 

protein kinases to perform a feasibility study. Ongoing from very small, promiscuously 

binding probes to potent leads using the concepts of de novo design. However, strongly 

supported by iterative crystal structure analysis particularly in the early phase of drug 

design where the detection of ligand binding would be impossible applying routine 

screening techniques.  

2.3 Fragment Library Design 

Drug-like molecules are usually defined by the Lipinski rules („RO5‟).
1
 This „rule of 

five‟ tries to summarize properties to be met to achieve oral availability which is 

essential for an active substance as prospective candidate for clinical trials. Similar rules 

have been defined for fragments and became popular as the Astex „rules of three‟ 

(„RO3‟).
11

 These rules reduce the various thresholds from five to three. In particular, the 

crucial molecular weight is < 300 g/mol, the number of hydrogen bond donors and 

acceptors is ≤ 3, XlogP is ≤ 3,
11

 the number of freely rotatable bonds is ≤ 3 and the 

polar surface area is ≤ 60 Å
2
. As a consequence fragment libraries assembled and 
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offered commercially by many providers over the last years try to stick to these rules 

and select the fragments largely in agreement with Astex „RO3‟. 

In this context, we wanted to critically ask whether these rules are too strict for a 

fragment library holding candidates that leave sufficient room for subsequent chemical 

modifications. In terms of strategies focusing on fragment growing and fragment 

merging, an appropriate number of functional groups is required to still perform 

reasonable linking chemistry. Frequently, the groups used for the follow-up chemistry 

display properties as hydrogen donors and/or hydrogen acceptors. Therefore in the 

following they can be used also as synthetic handles to start the required optimization 

chemistry. As a consequence, we designed a small fragment library without adhering 

strictly to the RO3 criteria for fragments. It should be well suited either for 

crystallographic screening and follow-up chemistry. Subsequently, we screened 

endothiapepsin with this library. Besides finding new fragment binders for this protease 

and their crystallographic characterization, we were interested to find out how well the 

discovered fragments agree with the Astex „RO3‟.  

Endothiapepsin serves as a model system for the large group of pepsin-like aspartic 

proteases. In this family, there are many proteins that are involved in serious diseases 

such as malaria (plasmepsins), fungal infections (secreted aspartic proteinases), 

Alzheimer's disease (β-secretase) and hypertension (renin). In the eighties this protein 

was the working horse for the development of blood pressure depressions before the 

crystal structure of renin became available. This underlines the relevance of 

endothiapepsin as suitable reference protein. In the past it has already been successfully 

used as a model system by others. Here, it provided important information to understand 

the details of the catalytic mechanism
53

 as well as developing renin inhibitors.
54

 

Endothiapepsin was also a successful model in discovering novel fragments binding to 

β-secretase.
55
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3 A Small Non-rule-of-3-compatible Fragment Library Provides a 

High Hit Rate of Endothiapepsin Crystal Structures with Various 

Fragment Chemotypes 

3.1 Introductory Remarks 

The present study has been accomplished together with Helene Köster and the industry 

partners Boehringer Ingelheim, Proteros Biostructures and Merck Serono in the 

framework of a common BioChancePlus BMBF project. The following chapter has 

been prepared as a publication in a scientific journal. Therefore, some redundancies 

with the text in the previous chapter are present. My contribution to this work has been 

the data mining of the fragment library and the selection of fragments at the Marburg 

site.  

3.2 Abstract 

Drug-like molecules are defined by the Lipinski rules of five. Similar rules have been 

defined to characterize fragments. Reducing the various thresholds from five to three 

and became popular as Astex rule of three. They have been heavily applied during 

assembly of fragment libraries and providers frequently use these rules to select 

fragments for commercial offer. 

In this contribution, we ask whether these rules are too stringent to compose a fragment 

library with candidates leaving sufficient room for subsequent chemical modifications 

with respect to fragment growing and merging, where an appropriate number of 

functional groups for chemical transformations is required. Usually these groups exhibit 

properties as hydrogen bond donors and/or acceptors and provide favorable entry points 

to start the required optimization chemistry. Therefore, we designed a small fragment 

library without strictly applying criteria set by the rule of three on the physico-chemical 

properties. In consequence, our 364-membered fragment library is not consistent with 

the rule of three.  
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As a case study for fragment binding, we studied the aspartic protease endothiapepsin 

with our fragment library. As initial screening we employed a biochemical assay based 

on the cleavage of a fluorogenic substrate. All compounds were screened at 1 

millimolar concentration. In this pre-screen we defined „hits‟ to inhibit the target 

enzyme by at least 40 %. Fifty-five hits were suggested out of our 364-membered 

library; which were subsequently subjected to a crystallographic study by soaking them 

into native endothiapepsin crystals. Eleven complex crystal structures were determined 

covering fragments which exhibit diverse binding modes. They can be divided into 

three categories: direct binding to the aspartates of the catalytic dyad; binding to the 

aspartates mediated by a water molecule; and no direct interaction with the catalytic 

dyad. They cover binding to different specificity pockets of the protease. Only four of 

the eleven fragments are consistent with the Astex rule of three. Restriction of our 

library to this rule would have limited our list of fragment hits with respect to the 

variety of chemotypes.  

 

3.3 Introduction 

The accelerated discovery of novel and interesting target structures for therapeutic 

intervention, often stimulated by proteomics and structural genomics, increasingly 

demands for efficient strategies to provide first leads that interfere with protein function. 

In the nineties high-throughput screening and combinatorial chemistry have been 

established to resolve the bottleneck for an efficient lead discovery. Subsequently, 

virtual computer screening has been added as an alternative to complement these 

approaches. However, success rates were not as expected and the size of the discovered 

hits was in the range of common drug molecules, not leaving much space for 

optimization without significantly exceeding the molecular weight limit of about 

500 g/mol.
1
 To better evaluate the size of a discovered hit with respect to its actual 

potency, the concept of ligand efficiency
2
 was introduced. Highly efficient leads exhibit 

good potency combined with low molecular weight. 

Advances in biophysical techniques to detect protein-ligand binding and increasing 

success to acquire structural information about protein-ligand complexes by 
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crystallography
4-6

 or NMR spectroscopy
7-9

 allowed to push the limits of the compounds 

to be screened to lower molecular weight. Particularly NMR and Surface Plasmon 

Resonance (SPR) are nowadays supposed to be reliable enough to detect very small and 

weak binders which exhibit sufficient and convincing potency (“high” ligand 

efficiency).
2
 Other approaches intend to screen directly with proteins in crystalline 

state.
6, 10

 Fragment-type
11

 leads appear as special challenge as they provide – once 

characterized in terms of a crystal structure – wide opportunities for optimization into 

prospective drug candidates. Many examples have meanwhile been described in 

literature and an impressive number of reviews has been written
13-24

, mostly developed 

in industry or specialized small biotech companies along the following targets: 

HSP90
25-30

, different kinases
31-38

, phosphatases
39-41

, antibacterial and anti-infective 

targets
42-46

 , BCL-2
47

 and BACE.
47-50

 

Drug-like molecules are usually defined by the Lipinski rules („RO5‟).
1
 This „rule of 

five‟ tries to summarize properties to be met to achieve oral availability which is 

essential for an active substance as prospective candidate for clinical trials. Similar rules 

have been defined for fragments and became popular as the Astex „rules of three‟ 

(„RO3‟).
11

 These rules reduce the various thresholds from five to three. In particular, the 

crucial molecular weight is < 300 g/mol, the number of hydrogen bond donors and 

acceptors is ≤ 3, XlogP is ≤ 3,
11

 the number of freely rotatable bonds is ≤ 3 and the 

polar surface area is ≤ 60 Å
2
. As a consequence fragment libraries assembled and 

offered commercially by many providers over the last years try to stick to these rules 

and select the fragments largely conform with Astex „RO3‟. 

In this contribution we want to critically ask whether these rules are too strict for a 

fragment library holding candidates that leave sufficient room for subsequent chemical 

modifications. In terms of strategies focusing on fragment growing and fragment 

merging an appropriate number of functional groups is required. Frequently these 

groups display properties as hydrogen donors and/or hydrogen acceptors. They can be 

used also as synthetic handles to start the required optimization chemistry. Therefore, 

we designed a small fragment library without adhering strictly to the RO3 criteria for 

fragments. They should be well-suited either for crystallographic screening and follow-

up chemistry. Subsequently, we screened endothiapepsin with this library. Besides 
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finding new fragment binders for this protease and their crystallographic 

characterization we were interested to find out how well the discovered fragments agree 

with the Astex „RO3‟.  

Endothiapepsin serves as a model system for the large group of pepsin-like aspartic 

proteases. In this family there are many proteins that are involved in serious diseases 

such as malaria (plasmepsins), fungal infections (secreted aspartic proteinases), 

Alzheimer's disease (β-secreatase) and hypertension (renin). In the eighties, 

endothiapepsin was the working horse for the development of blood pressure 

depressions before the crystal structure of renin became available. This underlines the 

relevance of endothiapepsin as suitable reference protein. In the past, it has already been 

successfully used as a model system by others. Here, it provided important information 

to understand the details of the catalytic mechanism
53

 as well as developing renin 

inhibitors.
54

 Endothiapepsin was also a successful model in discovering novel fragments 

binding to β-secretase.
55

  

3.4 Results 

Library Design  

Initially, we inquired several chemical suppliers (ASINEX, ChemBridge, MayBridge, 

InterBio Screen, LifeChemicals, Enamine, Specs, Vitas M Laboratory) to name their 

commercially offered compounds with ≤ 20 non-hydrogen atoms, including only C, N, 

O, F, Cl, Br, P and an availability of at least 100 mg. In spring 2009, this resulted in 

238,224 compounds. Since the library was intended to be screened crystallographically, 

fragments containing strong X-ray scatterers such as bromine were considered 

advantageous. Due to the high molecular weight of such electron rich atoms we 

restricted the size of our fragments by the number of non-hydrogen atoms instead of 

molecular weight. Thus, we defined the fragments to have between 8 and 20 non-

hydrogen atoms. The range of the molecular weight in the final library is between 

122 g/mol and 359 g/mol with an average at 224 g/mol (Figure 3.1, Table 3.1). 
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Next, we filtered for particular functional groups to discard potentially toxic, unwanted 

or chemically unstable moieties. The applied filters are similar to those developed by 

Baurin and colleagues at Vernalis.
56

  

All physico-chemical properties have been calculated under the assumption of standard 

protonation states at physiological pH conditions using MOE.
57

 Rotatable bonds were 

not restrained (Figure 3.1). Therefore, the number of rotatable bonds in the final 

database varies from 0 to 7 with an overall average of 1.7 (Table 3.1). The logP value 

was calculated within the MOE software (clogP(o/w))
57

 and was filtered to be ≤ 3. For 

particular chemical motifs the threshold was expanded to 5.4 (Figure 3.1). Thus, the 

calculated lipophilicity spreads from -1.25 to 5.39 with a mean of 1.58 (Table 3.1). 

For hydrogen-bond acceptors we filtered differently from the „RO3‟ to be more 

comparable to the „RO5‟ criteria.
1
 There the number of hydrogen-bond acceptors is 

multiplied by a factor of two considering 10 hydrogen-bond acceptors as appropriate. 

Transferring this factor to the „RO3‟ for fragments, six hydrogen-bond acceptors are 

acceptable. Only in special cases we allowed fragments to exceed this number of 

hydrogen-bond acceptors as upper limit (Figure 3.1). In the final fragment library the 

hydrogen-bond acceptor range falls between 1 and 7 with an average of 3.7. The 

hydrogen-bond donors have been selected in agreement with the original „RO3‟. Only a 

few chemical scaffolds had a larger number of hydrogen-bond donors, so that this 

property finally varies from 0 to 4 with an average of 1.3. For the total polar surface 

area (TPSA) we increased the threshold from 60 Å
2
 to 80 Å

2
. Again, some chemotypes 

were allowed to deviate from this upper threshold. In the final library the TPSA ranges 

between 15 Å
2
 and 126 Å

2 
with a mean of 52 Å

2
.  

The filtered fragments were clustered, manually prioritized, and selected by visual 

inspection to avoid strong accumulation of similar chemotypes and to cover a sufficient 

range of differing chemical scaffolds. Every entry was requested to contain at least one 

ring system. The over-whelming majority shows one or two ring systems (frequently 

fused) and about 20 % contain three ring systems.  
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Figure 3.1: The distribution of physico-chemical and structural properties in the library. 
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Table 3.1: Physico-chemical parameters of the library. 

 min max average 

Number of heavy atoms 8 20 15 

Molweight 122 359 224 

Lipinski donor 0 4 1.3 

Lipinski acceptor 1 7 3,7 

clogP(o/w) -1.3 5.4 1.6 

Free rotabtable bonds 0 7 1.7 

TPSA 15 126 52 
 

Considering in detail the finally selected 364 compounds of our library, 141 fragments 

conform to the „RO3‟ whereas 223 fragments do not agree with the respective criteria. 

Finally, experimental solubility was determined to be > 1 mM for 76 % of the 

compounds. Considering upper and lower threshold limits of the „RO3‟, we exceed the 

ranges of all considered rules, but with respect to the average values our selection falls 

well into the limitation of the rules. Only the average number of acceptors is clearly 

beyond the range set by the original „RO3‟.  

Validating the library on Endothiapepsin 

To validate the suitability of our library for fragment-screening purposes, all entries 

were tested against endothiapepsin in a fluorescence-based competition assay. All 

compounds were screened at 1 mmol/L concentration. Due to insufficient solubility 

under the applied assay conditions 14 fragments were excluded and another 18 

compounds could only be screened at 500 µmol/L. Finally further 17 entries were 

excluded from the assay screen, due to self-fluorescence.  

For the screen, the hit criterion was set to at least 40 % inhibition of protein function, 

leading to 55 entries which entered into a subsequent crystallographic follow up screen. 

The fragments were soaked into native endothiapepsin crystals in mixtures of two 

compounds. In case one compound was identified in a crystal structure, the other one 

from the mixture was subjected to individual soaking. Simultaneous binding of two 

fragments was not observed. 

In total, eleven complex crystal structures were obtained. The hit rate of the 

fluorescence-based assay with 55 hits out of a 364 membered fragment library is 
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remarkably high. The observed eleven complex crystal structures out of the initially 

detected 55 hits suggests that either the composition of our assembled fragment library 

is efficiently done and the complete initial screening based on the fluorescence-based 

assay was a good filter. Table 3.2 shows the assay results. The inhibition of 

endothiapepsin ranges from 42 % to 100 %. Forty percent inhibition was set as 

threshold to accept a test candidate as „hit‟. The eleven fragments of which we could 

determine a crystal structure are highlighted. The percent inhibition does not correlate 

with the probability to penetrate into the crystals and reveal successfully a crystal 

structure. Interestingly enough we were not able to successfully determine crystal 

structures of the eight fragments suggesting full inhibition in the fluorescence-based 

assay, however, we were able to crystallize fragments with the enzyme that displayed 

less than 50 % inhibition. 

Table 3.2: Summary of the screening results. Hits leading to a crystal structure are highlighted. Values 

marked with an asterisk are measured at a 500 µmol/L inhibitor concentration. All other were measured at 

1 mmol/L. 

ID % Inhibition ID % Inhibition ID % Inhibition 

149 100 297 78 201 51 

177 100 * 186 76 065 50 

178 100 333 76 291 50 

236 100 175 75 041 49 

238 100 301 75 088 47 

042 99 040 73 137 47 

064 99 063 66 188 47 

017 97 252 64 261 47 

306 93 224 63 051 46 

003 92 159 60 141 46 

168 92 183 60 140 45 

005 89 335 60 216 45 

083 89 134 57 295 44 

109 89 176 55 362 43 

284 87 192 55 * 171 42 

255 84 266 54 *    

290 84 267 54     

142 80 308 53     

161 80 222 52     

093 79 148 51     
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Figure 3.2: Chemical formulae of the eleven hits that successfully provided complexes in crystal 

structure analysis. 

To find meaningful parameters that correlate with successful crystal soaking and 

structure determination we closely examined the crystallographically characterized 

fragments. Table 3.3 lists the physico-chemical parameters of these fragments. The 

molecular weight ranges from 168 g/mol to 262 g/mol which is in agreement with the 

Astex rules. All eleven fragments have between 1 and 3 hydrogen bond donors. 

Remarkably the hydrogen-bond acceptors show a different picture. Six out of the eleven 

hits possess four or more acceptors. Only five compounds exhibit between 1 and 3 

acceptors, the number principally allowed by the „RO3‟. Therefore, with respect to this 

criterion the majority of our discovered fragments do not match the Astex rules. The 

clogP is in most cases below 3 and agrees with the Astex „RO3‟. Only one fragment 

displays a clogP value of 3.3 and departs somewhat from these limits. The number of 

freely rotatable bonds range from 0 up to 6. The majority has less than three freely 

rotatable bonds, only two fragments differ and show 4 and 6 rotatable bonds. Thus, the 

last two fragments infringe the Astex rules. The total polar surface area is in all cases 

below 60 and thus fully agrees with the limitation set by the rules.  
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In summary, seven of the eleven fragments which lead to a crystal structure violate at 

least one parameter of the Astex „RO3‟. 

Table 3.3 Physico chemical parameter of the fragments with a crystal structure 

Id Heavy atoms 
Weight

57
 

[g/mol] 

Lip 

don
57

 

Lip 

acc
57

 
clogP

57
 

Free rotatable 

bond 

TPSA
57

 

[Å
2
] 

005 10 169 2 2 2.2 0 38.4 

041 19 262 1 5 1.6 3 50.8 

063 15 204 1 4 1.0 4 47.3 

109 15 207 3 4 1.0 2 58.4 

148 19 251 1 4 2.2 2 46.9 

216 13 261 3 2 3.3 1 49.9 

255 19 251 1 4 1.8 3 46.9 

284 18 253 1 3 2.0 6 32.7 

290 12 201 3 2 2.9 2 49.9 

291 18 242 1 4 1.7 2 43.4 

306 12 201 3 2 2.9 2 49.9 
 

Solubility has been discussed to be a crucial property.
30

 To investigate the impact of 

solubility, we measured the aqueous buffer solubility of our fragments at pH 7.4. 

During library design we applied computer tools
58, 59

 and property calculations to select 

fragments with expected high solubility. The most important parameter to predict this 

property was clogP which varied from -1.25 to 5.39 with an average of 1.58 (Table 3.1). 

The measured solubilities are presented in Table 3.4. A total of 36 fragments could not 

be evaluated due to self-fluorescence. 76 % of the fragments show solubility greater 

than 1 mmol/L indicating a quite successful computational selection procedure. To 

further characterize the discovered crystallographic hits, we compared the solubility of 

these compounds with the assay hits and with all entries of the library. As can be seen in 

Table 3.4  the solubility of the assay hits varies over the entire solubility range with a 

slight tendency towards better solubility. All fragments which also penetrate into the 

crystals show a solubility of greater than 1.5 mmol/L. This observation suggests that 

better soluble fragments are more likely to show up as an assay hit. With regard to the 

probability to penetrate into the crystals apart from reasonable inhibition properties 

pronounced solubility seems to be an even more important aspect. 
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Table 3.4: Solubility data for the entire library: first column, for the 55 initial hits second column and for 

the eleven crystal structure fragments. ND = not detected due to self-fluorescence. 

  all (364) Hits (55) Structure (11) 

N.D. 10 % 2 % 0 % 

0 1 % 0 % 0 % 

0 - 0.5 mM 6 % 2 % 0 % 

0.5 - 1 mM 7 % 2 % 0 % 

1 - 1.5 mM 10 % 14 % 0 % 

1.5 - 2 mM 38 % 53 % 64 % 

> 2 mM 28 % 27 % 36 % 

 

Analysis of the Crystal Structures 

Endothiapepsin is secreted by the fungus Cryphonectriaparasitica. Like most aspartic 

proteinases the protein is activated in acid media. After cleavage of the N-terminal 

propeptide, the active protein consists of 330 amino acids with a molecular weight of 

34 kDa. The catalytic site consists of two aspartates. While Asp35 is deprotonated 

Asp219 is supposed to carry one proton.
53, 60

 This protonation state is stabilized by the 

surrounding amino acids.
61

 In the uncomplexed state a water molecule is bound between 

the two aspartates. During the first step of proteolysis this water molecule is able to 

attack the scissile bond of a peptide leading to its cleavage. The active site of the protein 

is covered by the flap, a highly flexible ß-hairpin loop. The catalytic dyad as well as the 

most important pockets are shown in Figure 3.3. 
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Figure 3.3: Left: overall folding structure of endothiapepsin with the catalytic dyad in the center. Right: 

Blow-up of the uncomplexed binding pocket with the catalytic water and the two catalytic aspartates. The 

adjacent specificity pockets S1‟, S1 and S2 are indicated on the solvent accessible surface.  

Eleven crystal structures of a fragment in complex with endothiapepsin were obtained 

with resolutions ranging from 1.25 to 1.90 Å. The soaked fragments disclose their 

binding mode in all complexes by a well-resolved difference electron density and 

suggest population of at least 90 %. The compounds show diverse binding modes which 

can be divided into three categories: Direct binding to the two catalytic aspartates, 

binding to the two catalytic aspartates mediated by a water molecule and no direct 

interaction with the catalytic dyad.  

Direct binding to the two catalytic aspartates could be observed in seven cases making 

this the most prominent interaction motif (Figure 3.4). Fragment 109 addresses the two 

catalytic aspartates through its terminal nitrogen of the hydrazinocarbonyl moiety. The 

terminal nitrogen interacts with both aspartates and with a water molecule bridging an 

interaction to Gly37 in the front part of the S1‟ pocket. The major part of the ligand 

skeleton is oriented towards the S1 pocket. The fragment is populated to 90 % and 

shows some disorder concerning the two terminal ethyl substituents (Figure 3.4). 

Additionally, a DMSO molecule is bound in the front part of the S4 pocket interacting 

with Thr223. 

Fragment 005 binds to the catalytic dyad with its exocyclic amino group placed between 

the two aspartates. The endocyclic nitrogen atom of the five-membered ring forms a 

hydrogen bond to Thr222 of the S2 pocket. The fused aromatic benzene ring is located 

in the S1 pocket performing a π-stacking with Tyr79 (Figure 3.4).   
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Although fragments 148 and 255 are structurally similar their binding modes show 

interesting differences. Fragment 148 interacts only with one of the catalytic aspartates 

(Asp35). In addition, a hydrogen bond to Thr222 and to Gly221 is formed. Furthermore, 

this fragment forms via the carbonyl oxygen of the amide group an H-bond to the NH 

group of Gly80. Its benzimidazole moiety occupies the S1 pocket while the phenyl ring 

at the opposite end is orientated towards the S2 pocket. 255 binds above the catalytic 

dyad forming hydrogen bonds to both aspartates. Another hydrogen bond is formed via 

its carbonyl amide group towards the flap addressing Gly80. The larger fused 5-6-ring 

system occupies the S1 pocket similar to the binding mode of 148. While 148 is 

addressing the S2 pocket, in this case the phenyl ring is pointing towards the S1‟ pocket 

(Figure 3.4). 

Fragments 216, 306 and 290 are forming three most likely salt-type hydrogen bonds 

towards the catalytic dyad by placing an amidine group next to the two aspartates 

(Figure 3.4). All prefer a double paired hydrogen bond with Asp35 whereas Asp219 is 

only addressed via a single H-bond contact. It is difficult to speculate on the most likely 

protonation state of the dyad. Usually Asp35 is assumed to be fully deprotonated 

whereas Asp219 should carry one proton.
62

 Regarding the observed binding mode we 

suggest that this protonation is given here as well. 

Interestingly in β-secretase a complex with a benzamidine derivative has been reported, 

however with reverse orientation (PDB code: 3KMX).
50

 Nevertheless, the distances 

across the catalytic dyad in β-secretase are somewhat larger than in endothiapepsin 

which might - with some care - explain the deviating binding properties observed in the 

former protease. The aromatic portions of the inhibitor are positioned in front of the S1‟ 

pocket. 306 and 290 vary only in the position of the attached chlorine. While the para-

attached chlorine in 290 is pointing into the surrounding solvent environment, the ortho-

substitution in 306 enables the chlorine to interact with Phe194. Here, the chlorine atom 

is pointing with about 4 Å distance towards the ring plane of Phe194 ring. This 

geometry departs somewhat from the ideal interaction pattern described for chlorine- 

aromatic ring system contacts.
63

 In the structure of 216, an additional DMSO molecule 

is found exactly at the same position as in the complex with 109. 
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Binding mediated via a water molecule can be observed for 063 and 291 (Figure 3.5). In 

both cases, the catalytic water molecule bridges an interaction between a pyridine-type 

nitrogen and the catalytic dyad. 

Besides the interaction to the catalytic aspartates, 63 forms two hydrogen bonds with its 

secondary amino group at the opposite end of the fragment. The functional group is 

positioned between the flap aspartate (Asp81) and Ser115. The central part of the 

fragment binds to the S1 pocket. 

Fragment 291 also addresses Asp81 with a nitrogen. The pyridine ring is able to 

perform a π-stacking with Tyr79. The benzdioxane moiety reaches into the S3 pocket. 

Fragments 41 and 284 show no direct or possibly a very weak and extended interaction 

with the two aspartates of the catalytic dyad (Figure 3.6). Fragment 41 interacts with the 

flap residues by forming two hydrogen bonds, one through the piperidine nitrogen to the 

terminal carboxylate group of Asp81 and one via its amide carbonyl to the backbone 

NH group of the same residue. The adjacent amide nitrogen forms a hydrogen bond 

towards Thr222 in front of the S2 pocket. The aromatic piperonyl ring system is 

pointing towards the S1‟ pocket, whereas the hydrophobic portion of the piperidine ring 

occupies the S1 pocket.  

Fragment 284 forms hydrogen bonds via its hydroxyl function to the backbone nitrogen 

of Gly80 of the flap and to Gly221 at the bottom of the binding pocket. As this 

pyrrolidine nitrogen is most likely protonated under the acidic buffer conditions applied 

for soaking a second rather long H-bond contact (3.5 Å) is formed to the water molecule 

hosted at the pivot between both aspartates of the catalytic dyad. The hydrophobic 

portion of the pyrrolidine moiety occupies the S1 pocket while the opposing aromatic 

ring is oriented towards the S2 pocket.  

The difference electron densities of 41 and 284 are less well defined compared to the 

other nine fragments, indicating a rather large residual mobility of the fragments in the 

binding pocket. Possibly this observation is due to the fact that these fragments are not 

in direct contact with the strongly fixed, most likely negatively charged catalytic dyad.  
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Figure 3.4: The seven crystal structures which directly interact with the two catalytic aspartates. Nitrogen 

atoms are colored blue, oxygen atoms red, ligand carbon atoms in salmon and protein carbon atoms in 

white. The green mesh shows the Fo-Fc difference electron density at a ζ-level of 2.0. 
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Figure 3.5: The two fragments interacting with the catalytic aspartates by an interstitial water molecule. 

Nitrogen atoms are colored blue, oxygen atoms red, ligand carbon atoms in salmon and protein carbon 

atoms in white. Fo-Fc different electron density at σ-level of 2.0. 

 

Figure 3.6 Fragments showing no direct interaction with the two aspartates. Nitrogen atoms are colored 

blue, oxygen atoms red, ligand carbon atoms in salmon and protein carbon atoms in white. Fo-Fc different 

electron density at σ-level of 2.0. 

 

An overlay of all crystal structures is shown in Figure 3.7. Almost the entire volume of 

the various sub-pockets of this protease are occupied by the different fragments. Besides 
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binding to the catalytic dyad several preferred interactions can be observed. The 

following interactions highlight some of these contacts. Seven compounds (005, 041, 

148, 255, 284, 291 and 109) orient a hydrophobic ligand portion towards the S1 pocket. 

A ligand carbonyl group addressing the backbone nitrogen of the flap aspartate is 

observed in three cases (041, 148, 284). Thr222 at the bottom of the binding pocket is 

addressed by an NH functionality of 005 and 148. Remarkably, all these interactions are 

also observed for pepstatin, a well-known highly potent inhibitor of most aspartic 

proteases not designed by a medicinal chemistry program but optimized by 

microorganisms using principles of evolution.  

 

Figure 3.7: Overlay of all eleven fragment structures. Binding pocket is in surface representation, 

specificity pockets are indicated. Carbon atoms are colored in salmon, nitrogen in blue, oxygen in red, 

chlorine in green and fluorine in cyan.  
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Figure 3.8: Left: Pepstatin bound to EP (PDB code 4ER2). Right: The flap aspartate and Thr222 are 

shown in white. Two interactions performed by pepstatin are marked with dashed lines. 

3.5 Discussion 

The fluorescence-based assay screening results and the obtained crystal structures with 

endothiapepsin suggest that the library has been convincingly designed for 

crystallographic fragment screening; bearing in mind that this library was assembled for 

all kinds of targets and not specifically for aspartyl proteases. Nevertheless, this 

conclusion is preliminary and based on the result with one single target, for which we 

obtained eleven complex crystal structures out of the 364-membered library. In this 

context it is worth mentioning that confidential results obtained by one industry partner 

in this project suggested also remarkable hit rates for an additional target. 

The solubility of the fragments in the assembled library is very promising and 

underlines the importance of this property, as 66 % of the compounds showed at least 

solubility of 1.5 mmol/L and 76 % are at least 1 mmol/L soluble. This criterion is 

critical for success, because fragments are weak binders and therefore have to be 

applied in rather high concentrations for crystallization and assay experiments.  

As indicated earlier, the library design was not consistent with the „RO3‟ of Astex. The 

assembled compounds are in agreement with these rules with respect to molecular 

weight, logP and the TPSA. However, we cover a larger range concerning the number 
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of hydrogen-bond donors and in particular acceptors and in the number of free rotatable 

bonds. If we had designed a library strictly within the limitations of the „RO3‟, we 

would have missed seven fragments of our detected hits for endothiapepsin. Particularly 

remarkable is the fact that all four remaining RO3-conform crystallographically 

successful fragments have amidine-like moieties. However, with respect to drug design 

and medicinal chemistry follow-up programs they would provide a rather narrow range 

of chemotypes. Clearly a research study applying fragment-based lead discovery 

expects a much broader range of chemical diversity. Therefore, the strict threshold of 

less than three donors and acceptors and the number of rotatable bonds is questionable.  

With respect to fragment growing and fragment merging, a sufficient number of 

synthetically accessible functional groups is of utmost importance for subsequent 

chemical synthesis. Widening up such criteria will enlarge the available fragment pool 

and might lead to higher hit rates of binding fragments available for further ligand 

design. As a matter of fact, usually the functional groups are motifs that show 

hydrogen-bond donor or hydrogen-bond acceptor properties.  

3.6 Conclusions 

The suitability of a fragment library for successful crystallization and follow-up 

optimization is not only determined by the library design. The correct choice of the 

experimental screening conditions is equally essential to discover reasonable hits. The 

first step is usually a screening assay followed by a crystallographic hit validation. In 

our case we have chosen a functional assay at 1 mmol/L compound concentration and 

demanded at least 40 % protein inhibition. On the one hand, this criterion was quite 

successful, as we were able to determine eleven complex crystal structures out of 55 

assay hits. On the other hand it is remarkable that according to our crystallographic 

screen results no obvious correlation between potency observed in the assay and 

probability to obtain a crystal structure can be established. It might be even possible that 

there are still compounds with an even lower inhibition rate which would penetrate into 

the crystals and indicate their successful binding by the determination of their binding 

poses in the crystallographic screens. Ranking fragments by assay results seems 

indicative but by no means reliable. In literature, several protocols have been reported 
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applying alternative screening protocols based on techniques such as SPR, NMR, 

biochemical functional assay, mass spectrometry or replacement titration experiments to 

name a few. Interestingly, hit lists were generated showing sometimes minimal overlap. 

The physical basis for these observations is still rather unclear. However, structure-

based fragment lead discovery needs a well resolved structure as an entry point into a 

medicinal chemistry follow-up program. Usually this is a crystal structure. Thus final 

consequence of these observations might be to perform fragment screening primarily on 

protein crystals, a perspective presently not followed as the X-ray facilities would have 

to be expanded and adapted to this strategy. Most setups are not yet suitable for this 

concept and would require further automation and more frequent access to synchrotron 

beam time. Up to now, we also refrained from such attempts as it appears only feasible 

with the required automation and approved access to synchrotron beam time to include 

all library fragments into the screening process.  

Nevertheless, in this project eleven crystal structures with a fragment bound to 

endothiapepsin could be determined. These fragments show diverse binding modes 

filling up almost the entire volume of the various specificity pockets. They can be 

divided into three different categories which include direct contacts to the catalytic 

aspartates, binding mediated by a water molecule, and no direct binding to the catalytic 

dyad. The various binding modes provide novel ideas to address the active site of 

aspartic proteases. The fragment structures are also suitable to elucidate experimentally 

the hot spot of binding. An alignment of all structures enables us to “map out” possible 

interaction patterns and binding motifs with the protease. Remarkably, pepstatin, a 

potent non-selective aspartyl protease inhibitor uses all the prominent interactions 

highlighted by our fragments to achieve potent binding (Figure 3.8).  

3.7 Materials and Methods 
 

Inhibition Assay  

Endothiapepsin was purified from Suparen
®
 (provided by DSM food specialties) by 

exchanging the buffer to 0.1 M acetate buffer pH 4.6 using a Vivaspin 20 with a 

molecular weight cut off at 10,000 Da. The protein concentration was measured by 
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absorbance at 280 nM assuming an extinction coefficient of 1.15 for 1 mg/mL 

solutions.
64

 

A 100 mM stock solution in DMSO was prepared for all compounds of the fragment 

library. Due to solubility reasons, in 18 cases only 50 mM could be achieved. Fourteen 

compounds were not soluble in DMSO and therefore excluded from the screen. As 

substrate we used Abz-Thr-Ile-Nle-p-nitro-Phe-Gln-Arg-NH2 (purchased from 

Bachem). The assay was performed with a Tecan Safire
2 

microplate reader at an 

excitation wavelength of 337 nM and an emission wavelength of 414 nM. The Km of the 

substrate towards endothiapepsin was determined to be 1.6 µM. The assay buffer (0.1 M 

acetate buffer pH 4.6 containing 0.01 % Tween 20) was premixed with the substrate and 

the screening compound whereas the protein was added directly before measurement. 

The final reaction volume was 200 µM containing 4 nM endothiapepsin, 1.8 µM 

substrate and 1 mM test compound (or 500 µM in the cases where a 50 mM stock 

solution was used). Blanks were prepared in the same way using DMSO instead of the 

compound stock solution. During measurement the fluorescence increased due to 

substrate cleavage. For data analysis the initial slope of the fluorescence in the 

compound containing wells were compared to the initial slope of the blanks. Each 

compound was measured twice. The final result represents the average of both 

measurements. 

Crystallization and Structure Determination 

Crystals of unbound endothiapepsin were grown similarly as described previously.
55

 We 

used the sitting drop vapor diffusion method and a crystallization temperature of 16° C. 

The drops contained 2 µL of protein solution (5 mg/mL) and 2 µL of mother liquor. The 

reservoir solution consisted of 1 mL 0.1 M NH4Ac, 0.1 M acetate buffer pH 4.6 and 

26 % PEG 4000. Crystals were ready for soaking after about two weeks. For each 

compound, a 1 M stock solution in DMSO was prepared. The crystals were soaked 1-2 

days in reservoir buffer containing 25 % glycerol and a mixture of two compounds, 

each at a final concentration of 50 mM. To ensure a clear identification of the bound 

fragment the two compounds were chosen by maximal chemical shape diversity. In case 

the compound precipitated the precipitate was ignored. After soaking, the crystals were 

flash-frozen in liquid nitrogen. In case one compound was binding, the other one was 
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subsequently soaked again in a different mixture. Fragment 109 was soaked alone for 

practical reasons. In two cases (255, 148) the bound compound was soaked again 

because the difference density was not sufficient for placement of the fragment. These 

compounds were soaked without an additional fragment. In both cases the difference 

electron density improved significantly. 

In-house datasets were collected on a sealed Cu fine focus X-ray device using a 

MAR345 image plate detector. Synchrotron datasets were collected at BESSY beamline 

14.2 or 14.3 in Berlin. Bessy beamline 14.2 provides a Rayonix MX-255 CCD detector, 

beamline 14.3 a Rayonix SX-165mm CCD detector. All datasets were collected at 100 

K and processed using HKL2000.
65

 

The structures were determined by molecular replacement using the program Phaser.
66

 

Search model was the 0.90 Å structure of endothiapepsin bound to a short peptide (PDB 

code: 1OEW). For cross-validation of the refinement 5 % of the reflections were chosen 

at random for inclusion in the Rfree set. After initial simulated annealing with CNS, 

refinement was done using SHELXL.
67

 During the last cycles of refinement of the 

structures containing 109, 148, 216, and 290 anisotropic refinement was applied. The 

structure containing fragment 284 was refined using PHENIX.
68

 After each cycle the 

models were inspected and subsequently improved using Coot.
69

 In most structures 

some unexplained difference density remained after refinement. This additional density 

which also occurred in the binding pocket is probably due to the high amount of soaked 

compound leading to unspecific binding. It is also possible that this indicates some 

DMSO molecules showing limited occupancy as only in two structures fully occupied 

DMSO molecules could be assigned. 

Solubility Assay 

A 500 µM buffered compound solution was prepared using a 10 mM compound stock 

solution in DMSO.  This solution was transferred into three wells (100 µL /well, 

triplicates) of a 96 well filtration plate (Millipore; 0.2 µm, Hydrophilic PVDF, 

Durapore-MSGVN2250) and incubated at room temperature for 90 min while agitating 

at 100 rpm (sample wells). In parallel, the same solution was transferred into three wells 

(100 µL /well, triplicates) of a 96-well, UV transparent plate (Greiner, #655801) 

prefilled with 100 µL/well acetonitrile thereby assuring complete dissolution of the 
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compounds (control wells). In order to separate precipitate from dissolved compound 

the filtration plate was centrifuged (2000 rpm, 5 min, RT). The filtrates were collected 

directly in the wells of the UV transparent plate. After adding 100 µL/well acetonitrile 

to the filtrate wells, absorbance spectra were taken (250-500 nM). Spectra of the sample 

and control wells are integrated and averaged over the triplicates. Kinetic solubility was 

calculated by 500 µM x (integral sample wells / integral control / wells). 
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Crystallographic Table 1: 

Bound fragment 109 005 148 255 216 290 

PDB code 3PBZ 3PBD 3PMY 3PM4 3PCW 3PLD 

Data collection and processing 

Collection site BL 14.2 In-house BL 14.2 In-house BL 14.2 BL 14.3 

λ [Å] 0.91841 1.54178 0.91841 1.54178 0.91841 0.89440 

Space group P21 P21 P21 P21 P21 P21 

Unit cell parameters 

a [Å] 45.1 45.3 45.4 45.2 45.3 45.3 

b [Å]  73.3 73.1 73.1 73.5 73.1 73.0 

c [Å] 52.4 52.7 52.8 52.5 52.5 52.8 

β [°] 109.2 109.8 109.6 109.2 109.5 109.6 

Resolution [Å] 30 - 1.48 30 – 1.70 30 – 1.38 40 - 1.68 20 – 1.25 40 – 1.40 

Highest resolution shell 1.51-1.48 1.73–1.70 1.40-1.38 1.71-1.68 1.27-1.25 1.42-1.40 

Unique reflections 51357 35536 65186 37129 86999 63118 

Rsym[%]
a
 5.8 (25.5) 4.6 (20.8) 4.6 (21.9) 4.1 (21.2)  3.6 (18.9) 5.9 (33.0) 

Completeness [%] 
a
 95.5(86.0) 99.5(99.3) 97.7(87.5) 100(100) 98.0(84.5) 99.3(97.6) 

Redundancy
a
 2.7 ( 2.0) 2.8 (2.6) 3.0 (2.0) 3.9 (3.6) 3.6 (2.1) 3.1 (2.6) 

I/ζ
a
 15.9 (2.7) 29.4 (4.7) 22.1 (3.8) 31.4 (6.0) 27.9 (3.9) 18.5 (2.4) 

Refinement 

Final Rfree 17.9 19.6 16.2 19.3 15.0 16.6 

Final Rwork 12.8 15.3 12.2 15.3 11.6 12.9 

No. of water molecules 260 323 292 303 304 300 

Ramachandran plot 

Most favored regions (%) 94.2 92.8 94.6 93.9 93.5 94.6 

Additional allowed regions 

(%) 
5.8 7.2 5.4 6.1 6.5 5.4 

Mean B-factors (Å
2
) 

Protein atoms 14.2 16.3 11.4 16.5 12.0 13.0 

Water molecules 27.7 28.7 25.4 28.4 26.3 26.7 

Ligand (fragment) 28.3 28.6 31.0 20.5 21.5 23.7 

Ligand (other)
b
 27.6 24.4 17.5 25.0 24.3 19.9 

RMSD bond length [Å] 0.009 0.007 0.011 0.008 0.013 0.010 

RMSD bond angles 2.7 2.4 2.7 2.5 2.8 2.7 
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Crystallographic Table 2 

Bound fragment 306 63 291 41 284  

PDB code 3PLL 3PB5 3PI0 3PGI 3PMU  

Data collection and processing 

Collection site BL 14.3 In-house BL 14.3 In-house BL 14.2  

λ [Å] 0.89440 1.54178 0.89440 1.54178 0.91841  

Space group P21 P21 P21 P21 P21  

Unit cell parameters 

a [Å] 45.2 45.3 45.3 45.3 45.2  

b [Å]  73.1 73.0 73.0 72.8 73.7  

c [Å] 52.7 52.5 52.7 52.8 52.5  

β [°] 109.6 109.5 109.4 109.6 109.3  

Resolution [Å] 40 – 1.73 30 – 1.90 40 – 1.64 30 – 1.90 20 – 1.43  

Highest resolution shell 1.76-1.73 1.93-1.90 1.67-1.64 1.93-1.90 1.45-1.43  

Unique reflections 32328 25453 38684 25348 59547  

Rsym[%]
a
 7.2 (34.7) 7.2 (30.0) 5.3 (33.3) 6.5 (28.7) 7.3 (42.9)  

Completeness [%] 
a
 96.4(94.7) 100(99.6) 98.0(97.2) 99.2(96.0) 99.4(98.2)  

Redundancy
  a

 3.1 (2.8) 4.0 (3.6) 3.0 (2.6) 3.6 (3.2) 3.1 (2.7)  

I/ζ
  a

 13.2 (2.6) 19.0 (4.1) 20.4 (3.0) 26.7 (4.3) 14.3 (2.3)  

Refinement 

Final Rfree 22.0 22.2 18.4 21.5 18.9  

Final Rwork 16.3 16.1 15.1 16.2 16.5  

No. of water molecules 236 237 254 239 264  

Ramachandran plot 

Most favored regions (%) 93.1 92.8 94.2 93.1 93.9  

Additional allowed regions 

(%) 
6.9 7.2 5.8 6.9 6.1  

Mean B-factors (Å
2
) 

Protein atoms 14.8 17.1 13.0 21.4 13.7  

Water molecules 24.9 27.5 25.4 30.6 24.5  

Ligand (fragment) 18.2 30.8 25.5 46.0 32.9  

Ligand (other) 
b
 22.3 32.2 24.8 40.4 -  

RMSD bond length [Å] 0.007 0.006 0.008 0.006 0.005*  

RMSD bond angles 2.4 2.2 2.5 2.2 1.1*  

a
 values in parentheses are for the highest resolution shell 

b 
other ligands are Glycerol and/or DMSO 

* low values are due to stronger geometrical restrains used in PHENIX compared to SHELXL 
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4 HotSpot Analysis – a Promising Strategy for Lead Optimization; an 

Endothiapepsin Fragment Screen as Case Study 

4.1 Introductory Remarks 

The present study is based on eleven crystal structures of endothiapepsin with bound 

fragments. The structures were determined by Helene Köster (Univ. Marburg) and are 

described in the previous chapter 3 (page 27). This study was accomplished together 

with the master student Rajathees Rajaratnam and Gerd Neudert. 

4.2 Introduction 

Figure 4.1 shows the eleven fragments for which we were able to determine crystal 

structures in complex with endothiapepsin. Fragments are rather small molecules and 

therefore, a commonly agreed concept is the idea that fragments are bound due to a 

specific interaction with the target. The diverse chemical constitution of fragments will 

lead to different physico-chemical properties and thus to deviating binding profiles. In 

the present example, fortunately the entire pocket is occupied by the ensemble of all 

detected fragments. Therefore, we are able to map out the physico-chemical profile of 

the binding pocket of endothiapepsin by an experimental approach.  

As computational alternative, programs such as Grid
70

, SuperStar
71

 and our in-house 

program HotSpotsX are available to predict the physico-chemical properties of binding 

pockets. Currently, HotSpotsX is developed by Gerd Neudert and considering the 

experimentally derived physico-chemical fingerprint of the binding site of 

endothiapepsin, we wanted to validate HotSpotsX. 

Therefore, we asked the question whether the HotSpotsX predicted interaction maps are 

in agreement with the localization of corresponding atom types in the experimentally 

determined crystal structures. 
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Figure 4.1: Eleven fragments are shown as chemical formula (left) and a composed picture of their  

positions in the binding site of endothiapepsin (right). 

The eleven crystal structures show no significant backbone movements and no side 

chain rotation could be observed. Thus, the protein geometry as found in the complex 

structure with 005 has been used as a template.  

4.3 Methods 

In this study two programs, developed by Gerd Neudert, have been used (personal 

communication).  

4.3.1 fconv72 

The first program is named fconv and can be used for molecule data handling and data 

parsing problems. This program defines internal atom types to describe the local 

chemical environment, hybridization and bonding state for each atom in a molecule.  

In total, 157 atom types were defined and classified into five different generic physico-

chemical properties: H-bond donor, acceptor, doneptor, aromatic and hydrophobic 

portion. The atom types that did not match any of the properties have been defined X. 

Figure 4.2 shows one example for each property. 
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Figure 4.2: Examples for the defined physic-chemical properties  

Table 4.1 shows the final classification. 29 atom types have been defined as acceptors, 

15 atom types as doneptors; 9 atom types as aromatic, 11 atom types as donor and 18 

atom types as hydrophobic. 
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Table 4.1 Internal atom types of fconv sorted by physico-chemical properties. Acceptor (Acc), doneptor 

(AnD), aromatic (Aro), doneptor (Don) and hydrophobic (Hyd) properties  

Acc AnD Aro Don Hyd 

O.carb O.co2 O.3oh C.ar6 N.guh C.1s 

N.ar2 O.2po N.r3 C.ar6x N.ar6p C.2r3 

N.1 O.2so N.gu1 C.arp N.arp C.3r3 

N.oh O.2p N.gu2 C.arx N.ar3h C.1p 

N.aas3 O.2s N.mi1 C.ar N.ohac C.2p 

N.aat3 O.3po N.mi2 N.ar6 N.ims C.2s 

N.2n O.3so N.aap N.ar3 N.amp C.2t 

N.2s O.o N.2p O.ar N.ams C.et 

N.3t O.3es N.3n S.ar N.samp C.ohp 

O.r3 O.3eta N.3p 
 

N.sams C.ohs 

O.n O.3et N.3s   N.mih C.oht 

O.2co2 S.r3 O.h2o   N.4H C.3p 

O.2es S.thi O.noh     C.3s 

O.2hal S.2 O.3ac     C.3t 

O.am   O.ph     C.3q 

  
  

    S.sh 

          S.s 

     
S.3 

29 15 9 12 18 
 

4.3.2 HotSpotsX 

The second program used in this context is HotSpotsX. Based on different knowledge-

based potentials, this program can predict interaction fields for different atom types in 

the binding pocket. Areas with highly favorable interaction values are defined as 

hotspots. They result from specified contour maps which encompass the sum of the 

corresponding atom types. Negative values are favorable values. Due to the 

classification of the atom types, the physico-chemical properties of binding pockets can 

be predicted. The classification of the pyhsico-chemical properties is described in Table 

4.1, this gerneralized maps are the sum of the individual atom types and therefore, the 

absolute values are higher. Currently two different sets of potentials are available. One 

is based on stored structural data in the Cambridge Structural Database (CSD)
73

, the 

data depository of small molecule crystal structures. The second is derived from 
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structural information  in the Protein Data Bank (PDB)
74

; in this database protein crystal 

structures have been deposited. 

4.3.3 Pymol 

The PyMOL Molecular Graphics System, Version 1.1 was used to visualize the 

molecules and the images are rendered by this program.
75

 

4.4 Results 

Each of the eleven fragments was analyzed individually in terms of physico-chemical 

properties. 

4.4.1 Analysis of acceptor functionalities  

The ether functionality of 063 is a nice example for a hydrogen-bond acceptor. Figure 

4.3 displays on the left hand side the contour map for acceptors. This map was produced 

condidering 29 different atom types to describe acceptor probe atoms (Table 4.1).  

The oxygen of the ether motif coincides well with the acceptor density. On the right 

hand side the contour map of the atom type of O.3eta is shown, this atom type is defined 

for oxygens in ethers bound to an aromatic carbon. Also for this more specified atom 

type O.3eta the contour map reflects the actually found position of the acceptor hotspot 

convincingly well.  
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Figure 4.3: Fragment 063 in the binding site of endothiapepsin is shown. Left: The contour map of 

acceptors is shown at a map level of 59 % above the minimal map level (-293102/ -498904). Right: The 

contour map for the atom type O.3eta is shown at a map level of 56 % above the minimal  map level              

(-15947/-28467). 

4.4.2 Analysis of doneptor functionalities  

The exocyclic nitrogen of 005 is a good example for a doneptor functionality as it can 

act either as a hydrogen-bond donor or hydrogen-bond acceptor simultaneously. Figure 

4.4 displays the contour map for this type of doneptor functionality, and is therefore 

based on 15 different atom types representing donor probe atoms (Table 4.1). Figure 4.4 

displays the fragment in the binding pocket. On the left, the contour map of the 

doneptor property and on the right the contour map for the specific atom type N.aap is 

displayed which is defined as primary aromatic amine. The exocyclic nitrogen fits 

perfectly well into the calculated density. In the course of the catalytic mechanism, a 

water molecule is placed at exactly this pivotal position between the two aspartates of 

the dyad. Water molecules are well known to act as doneptors.  

It is remarkable that the computational approach predicts a doneptor functionality at this 

position and underlines that the results calculated by HotSpotsX_CSD are very useful 

indicators for hotspot analysis in ligand design.  

The nitrogen of 005 does not fit comparably well into the contour map for N.aap. The 

map is less significant as the position of this atom only becomes apparent at a map level 
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of 38 %. This fact suggests that the contour maps based on the merged atom-type 

properties are better suited to identify hotspots in a certain area of the binding pocket.  

 

 

Figure 4.4: Fragment 005 in the binding site of endothiapepsin is shown. Left:  The contour map of a 

doneptor property is shown at a map level of 79 % above the minimal map level (-189653/ -240154). 

Right: The contour map for the atom type N.aap is shown at a map level of 38 % above the minimal map 

level ( -9050/ -23841). 

The terminal nitrogen of the hydrazino-carbonyl functionality of fragment 109 also acts 

as a doneptor. In Figure 4.5 the fragment in the binding site with the corresponding 

contour map is shown. On the left, the map for the merged doneptor property is shown 

and on the right the map for the specific atom type N.3n is indicated. This atom type is 

defined as sp
3
 nitrogen bound to another nitrogen. In both cases, the calculated maps are 

in agreement with the experimentally determined position.  
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Figure 4.5: Fragment 109 in the binding site of endothiapepsin is shown. Left the contour map of a 

doneptor is shown at a map level of 79 % from a minimal map level (-189653/ -240154). Right the 

contour map for the atom type N.3n is shown at a map level of 75 % from a minimal map level (-14500/              

-19349). 

4.4.3 Analysis of donor functionalities 

The benzamidine functionality of fragment 216 is another example for a donor 

functionality. Figure 4.6 displays the fragment in the binding site. On the left hand side 

the contour map for donor functionalities is shown. To generate this map an atom type 

is used which has been merged from eleven different atom types. On the right hand side 

the contour map produced with the specific atom type N.mih is presented. This atom 

type is defined by nitrogens in protonated amidino groups (also set if protonation state 

is unknown). The hot spot is similar to the doneptor hot spot and it is placed next to the 

catalytic dyad. In both contour maps the amidino group coincides well with the 

extremum in the calculated map.  
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Figure 4.6: Fragment 216 is shown in the binding site of endothiapepsin. Left: The contour map of the 

donor is shown at a map level of 68 % above the minimal map level (-176722/ -260327). Right: The 

contour map for the specific atom type N.mih is shown at a map level of 65 % above the minimal map 

level (-17671/ -27017). 

The nitrogen of the carbamido-sulfanyl functionality of fragment 290 and fragment 306 

are also examples exhibiting donor functionalities. Figure 4.7 and Figure 4.8 show on 

the left hand side the contour map for general donor functionalities. On the right hand 

side the contour map for the specific atom type N.mih is presented. In both cases the 

nitrogen fits well into the calculated contour map. This result is not surprising, as the 

amidino motif of the fragments is exactly in the same orientation for all three fragments. 
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Figure 4.7: Fragment 290 is shown in the binding site of endothiapepsin. Left: The contour map of a 

donor is shown at a map level of 68 % above the minimal map level (-176722/ -260327). Right: The 

contour map for the specific atom type N.mih is shown at a map level of 65 % above the minimal map 

level (-17671/ -27017). 

 

 

Figure 4.8: Fragment 306 is shown in the binding site of endothiapepsin. Left: The contour map of a 

donor is shown at a map level of 68 % above the minimimal map level (-176722/ -260327). Right: The 

contour map for the specific atom type N.mih is shown at a map level of 65 % above the minimal map 

level (-17671/ -27017). 
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4.4.4  Analysis of aromatic functionalities 

 

Fragment 148 is a good example to study aromatic properties in the binding site of 

endothiapepsin. The fragment has two aromatic ring moieties linked by a spacer. The 

catalytic dyad is addressed by one ring nitrogen and one nitrogen found in the spacer. 

Figure 4.9 shows on the left hand side the contour map for an aromatic probe atom. This 

map was produced considering nine different atom types to describe an aromatic probe 

atom. On the right hand side the map for the specific C.ar6 is shown, this atom type is 

defined as a sp
2
 carbon in a benzene ring. The larger region preferred by aromatic 

properties coincides well with the aromatic moiety found in the fragment.  

 

 

Figure 4.9 Fragment 148 is shown in the binding site of endothiapepsin. Left: The contour map for 

aromatic probe is shown at a map level of 56 % above the minimal map level (-112067/ -199231). Right: 

The contour map for the specific atom type C.ar6 is shown at a map level of 63 % above the minimal map 

level (-18102/ -28799). 

Figure 4.10 shows fragment 255. This compound contains two aromatic moieties as 

well. The bicyclic system is well placed into the most favorable area of the calculated 

contour map. The catalytic dyad is addressed by two nitrogens, one is part of the larger 

bicyclic system and the other one is localized in the amide bond. Thus, the aromatic 

aminophenyl portion is in a different position compared to the benzyl moiety in 

fragment 148. In the environment of this aromatic ring system no highly favorable 



HotSpot Analysis – a Promising Strategy for Lead Optimization; an Endothiapepsin 

Fragment Screen as Case Study 

64 

aromatic interaction field is computed. This may be an indication that the hydrogen 

bond of the exocyclic nitrogen is orienting the attached aromatic ring in this area of the 

binding pocket. 

 

Figure 4.10: Fragment 255 is shown in the binding site of endothiapepsin. Left the contour map for 

aromatic probe is shown at a map level of 56 % above the minimal map level (-112067/ -199231). Right 

the contour map for the atom type C.ar6 is shown at a map level of 63 % above the minimal map level          

(-18102/ -28799). 

4.4.5 Analysis of hydrophobic functionalities  

Fragment 284 will be used to study hydrophobic interactions. Figure 4.11 displays the 

contour map for the hydrophobic functionalities. This map is from a generalized atom 

type based on 18 different atom types (Table 4.1). The pyrrolidine motif of this 

fragment is placed in the calculated map. In the figure on the right the contour map is 

computed for the specific atom type for C.3s. This atom type is defined as sp
3
 carbon 

connected to two non-hydrogen atoms. Here, the calculated contour map fits well.  
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Figure 4.11 shows fragment 284 in the binding site of endothiapepsin. Left: The contour map of a 

hydrophob probe is shown at a map level of 60 % above the minimal map level (-280171/ -463165). 

Right: The contour map for the specific atom type C.3s is shown at a map level of 62 % above the 

minimal map level (-21981/ -35206). 

4.5 Conclusion and Outlook 

Overall the calculated maps for endothiapepsin are predicting the positions of 

corresponding atom types actually found in small fragment crystal structures in the 

binding pocket remarkably well.  

For the acceptor, doneptor and donor probes the merged atom types performed slightly 

better then the single atom types. Only one case for the doneptor probe atoms was 

observed with a large difference, here the map level differ from 79 % to 38 %. For the 

hydrophobic and the aromatic probe atoms the single atom types had a slightly better 

predictive power compared to the merged atom types 62 % to 60 % and 63 % to 56 %, 

respectively.  

A reason for this phenomenon can be the different population of the defind atom types 

in the CSD database.
73

 The knowledge based potentials are driven form a subset of the 

CSD database. Here, the population of hydrophobic and aromatic atoms is higher 

compared to the hydrophilic atom types. Thus, the potentials for the hydrophobic and 

aromatic atom types are based on a larger data pool compared to the hydrophilic atoms. 

This could be an explanation for the better predictive power for the merging hydrophilic 

atom types.  
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On the basis of the predicted hot spots for the different atom types a design of putative 

ligands will be performed. The synthetic realization of these designed ligands is planned 

in the groups of Prof. Diederich in Marburg, Germany and Prof. Anna Hirsch in 

Groningen, Netherlands. 
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5 Experimental Active Site Mapping as a Starting Point to Fragment 

Based Lead Discovery  

5.1 Introductory Remarks 

This chapter is prepared to be published in a scientific journal. The present study is 

based on experimental HotSpot mapping performed by Dr. Jürgen Behnen
76

 and Helene 

Köster (Univ. Marburg). The experimental data were used to validate the computational 

HotSpot calculations with DrugScore. My contribution to this work was the calculation 

and interpretation of the DrugScore HotSpot maps. 

 

5.2 Introduction 

High-throughput-screening (HTS) is still considered as the major source for lead 

discovery in pharmaceutical drug research.
77

 However, the success rate of finding 

promising leads by HTS is still rather unsatisfactory after 20 years of experience, even 

though well-tailored screening libraries are scanned.
78

 Enormous HTS libraries have 

been assembled with up to several million compounds, often compiled by candidates 

from late-phase drug discovery projects. Therefore, more drug-like than lead-like 

molecules end-up in these depositories
79

 and leave little room for optimization 

concomitantly keeping their existing drug-likeness.
80

 Lead optimization involves 

attachment of novel and additional substituents which will for drug-size molecules 

easily exceed their molecular weight and hydrophobicity beyond the limits acceptable 

for drug-like molecules.
81

  

Contrary to HTS, fragment-based lead discovery (FBLD) starts with molecules of low 

molecular weight, typically in a range of 120-250 Da, however, binding affinities will 

only attain milli- to micro-molar range.
82

 To better estimate the actual perspective of a 

hit in FBLD “ligand efficiency” is consulted as a descriptor. It ranks the actually 

achieved potency of a discovered hit with its potential to be improved by fragment 

growing or fragment linking.
83-85

 Meanwhile, more than ten drug candidates developed 
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from initial fragment hits are in clinical trials, which underlines the growing relevance 

and acceptance of fragment-based approaches.
14, 86-89

 

The present study merges the concepts of multiple-solvent-crystal-structure 

determination (MSCS) and FBLD. MSCS was developed in the mid-nineties as a new 

crystallographic approach in the group of Dagmar Ringe.
90-92

 The idea of this concept 

was to soak small organic solvent molecules into protein crystals to map out their 

binding sites experimentally. The method was first applied to porcine pancreatic 

elastase.
93

 Here, we want to extend the MSCS approach from solvent to small highly 

soluble probe molecules still well beyond the molecular weight limits applied to 

standard-sized fragments, but with rather general applicability to a broad range of 

proteins. They help to map out active sites for their hot spots of binding with respect to 

hydrophilic and hydrophobic properties. Aside of an efficient active-site mapping, the 

detected probe poses are valuable indicators to establish a protein-based 

pharmacophore. Furthermore, they can serve as an entry point to embark into a 

fragment growing project (Chapter 6). 

Fragment growing projects are usually performed as an iterative study of experimental 

structural biology, computational design and synthesis.
14

 Starting with seminal 

approaches such as GRID by Peter Goodford
94

 and MCSS by Martin Karplus
95 

a 

plethora of tools have been developed to map out computationally the hot spots of 

binding in protein pockets.
96-100

 These methods are either based on sophisticated force 

fields and apply concepts of molecular dynamics simulations or they follow empirical 

approaches that are based on statistical potentials or occurrence propensities observed in 

experimental structures. Early on, we suggested the knowledge-based scoring function 

DrugScore
100

 to be used for such hot spots analyses. To further optimize DrugScore 

with respect to the retrieved data source and the applied atom-type definition
101

 we 

compared the experimentally determined poses of solvents up to small probe molecules 

with respect to the predicted hot spots. To estimate the potential whether the determined 

poses of our probe molecules can be used as a starting point for a fragment growing 

strategy, we compared the observed poses with larger, already characterized protein-

ligand complexes in the PDB. 
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An important criterion for the selection of appropriate probe molecules is their very 

high solubility. As we have to anticipate very low binding affinity, this fact can only be 

compensated by high ligand concentrations applied during soaking. In addition, such 

weak binding is difficult to detect reliably. Therefore, we performed our screening of 

small highly soluble molecules directly on protein crystals by X-ray crystallography.
102, 

103
  

To establish our experimental setup, we selected the zinc protease thermolysin (TLN) as 

target protein. This enzyme has already been used by others for extensive MSCS 

studies.
104, 105

 English et al.
105

 succeeded to soak isopropanol, acetonitrile, acetone, 

DMSO and phenol into thermolysin crystals. With our attempts we were able to expand 

this list by a set of additional molecules. Subsequently, we transferred these probe 

molecules to other enzymes such as protein kinase A (PKA), D-xylose-isomerase from 

Streptomyces rubiginosus (DXI), 4-diphosphocytidyl-2C-methyl-D-erythritol synthase 

(IspD) of the non-mevalonate pathway, and the aspartyl proteases endothiapepsin (ETP) 

and secretory aspartyl protease 2 (SAP2). 

 

5.3 Results and Discussion 

5.3.1 Probe molecule characterization by X-ray crystallography  

 

Thermolysin: As described in the study by English et al., phenol binds to the S1‟ pocket 

of TLN (PDB code 1FJW).
105

 For reasons of better crystallographic detection, we 

decided to use the phenol derivative 3-bromo-phenol containing the strongly diffracting 

bromine. As expected, 3-bromo-phenol binds in virtually the same way as previously 

found by English et al. As depicted in Figure 5.1 A and B, both phenol and 3-bromo-

phenol, bind to the S1‟ pocket of TLN forming hydrogen bonds to Glu143 and through 

long distance an electrostatic interaction (4.1 or 4.4 Å, resp.) to the catalytic zinc ion. 

Even though this fragment was successfully soaked, we decided to use in the following 

unsubstituted phenol. Due to its higher logP value [2.63 vs. 1.48 

(http://www.emolecules.com)], 3-bromo-phenol exhibits inferior solubility and puts 
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some limitations on this molecular probe. Then, we decided to soak other small soluble 

molecules with varying properties (for details see experimental section) into TLN 

crystals and revealed successfully X-ray structures with aniline, urea, N-methylurea, 2-

bromoacetate, 1,2-propanediol and N2O. The latter 1,2-propanediol was used as 

racemate, therefore we checked whether the R- or S-enantiomer could be assigned to 

the difference electron density map. Similar to phenol, aniline also binds in the S1´-

pocket of TLN (Figure 5.1 C). Surprisingly, aniline assumes a different binding mode 

compared to phenol. The aromatic ring system coincides with the binding pose of 

phenol, but the amino group binds via hydrogen bonds to Glu143, Ala113 and Asn112 

and it does not form the long-range electrostatic interaction with the zinc ion. The 

deviating orientation of the amino group results in an induced-fit adaption of Glu143 

moving this residue 1.8 Å towards Ala113 and forcing Asn112 into a slightly twisted 

orientation (Figure 5.1 D). 
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Figure 5.1 A: Surface representation of the S1‟ pocket of TLN. The solvent-accessible surface of the 

protein is shown in gray. Amino acids involved in interactions with 3-bromo-phenol (blue) are shown in 

white stick models. In all cases oxygen atoms are depicted in red, nitrogen atoms in blue, bromine in 

brown and the catalytic zinc ion is shown as gray sphere, water as red sphere. The difference electron 

density (Fo-Fc) for the 3-bromo-phenol molecule is shown in green at a level of 3.0 ζ. B: Close up view of 

the phenol/3-bromo-phenol binding geometry in the TLN complex. Phenol is shown in green and 3-

bromo-phenol in blue. The interacting side chains of amino acid residues are displayed as green stick 

models for phenol, in light-blue stick models for 3-bromo-phenol and as white stick models for the zinc 

coordinating residues (Glu166, His146 and His142). Dashes symbolize the interaction between one 

molecule and the respective partner. C: Surface representation of the S1‟ pocket of TLN. The solvent-

accessible surface of the protein is shown in gray. Amino acids involved in interactions with aniline 

(green) are shown as white stick models. The difference electron density (Fo-Fc) for the aniline molecule 

is shown in green at a level of 3.0 ζ. D: Close up view of the aniline/3-bromo-phenol binding geometry in 

the TLN complex. Aniline is shown in green and 3-bromo-phenol in blue. The interacting side chains of 

amino acid residues are displayed as green stick models for aniline, in light-blue stick models for 3-

bromo-phenol and as white stick models for the zinc coordinating residues (Glu166, His146 and His142). 
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Figure 5.2 A: Surface representation of the S1‟ pocket of TLN. The solvent-accessible surface of the 

protein is shown in gray. Amino acids involved in interactions with urea (yellow) are shown as white 

stick models. In all cases oxygen atoms are depicted in red, nitrogen atoms in blue, the catalytic zinc ion 

is shown as gray sphere and water molecules as small spheres. The difference electron density (Fo-Fc) for 

the urea molecule is shown in green at a level of 3.0 ζ. B: Surface representation of the S1‟ pocket of 

TLN. The solvent-accessible surface of the protein is shown in gray. Amino acids involved in interactions 

with N-methylurea (violet) are shown in white stick models. The difference electron density (Fo-Fc) for 

the N-methylurea molecule is shown in green at a level of 3.0 ζ. C: Close up view of the urea/N-

methylurea binding geometry in the TLN complex. Urea is shown in yellow and N-methylurea in violet. 

The interacting side chains of amino acid residues are displayed as green stick models for urea, including 

the respective water molecule, in light-blue stick models for N-methylurea, including the respective water 

and as white stick models the zinc coordinating residues (Glu166, His146 and His142). Dashes symbolize 

the interaction between one molecule and the respective partner. 
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Soaking experiments with urea as a probe involves the complication that its overall 

shape does not allow to distinguish between carbonyl and amino groups in the 

difference electron density. This complication stimulated us to also use N-methylurea as 

a lower symmetric analogue of urea. This molecule allows to distinguish carbonyl and 

amino groups in the electron density map. In both structures one molecule is found in 

the S1‟ pocket (Figure 5.2 A, B). Interestingly, as indicated in Figure 5.2 C, 

N-methylurea binds somewhat differently compared to urea and must therefore be 

regarded as a probe with deviating properties. In the S1´subsite N-methylurea adopts a 

binding pose that is rotated by 90° with respect to urea. The position of the urea 

carbonyl oxygen is occupied in the N-methylurea complex by a picked-up water 

molecule. The latter mediates a hydrogen bond network between Arg203 and the 

carbonyl group of N-methylurea. In the case of urea, the carbonyl oxygen is directly H-

bonded to the guanidinium group of Arg203 and forms an additional H-bond to the zinc 

ion transmitted by a water molecule. In both cases, additional hydrogen bonds are 

formed to Glu143, Ala113 and Asn112. 
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Figure 5.3 A: Surface representation of the S1‟ pocket of TLN. The solvent-accessible surface of the 

protein is shown in gray. Amino acids involved in interactions with S-1,2-propanediol (yellow) are shown 

as white stick models. In all cases oxygen atoms are depicted in red, nitrogen atoms in blue and the 

catalytic zinc ion is shown as gray sphere. The difference electron density (Fo-Fc) for the S-1,2-

propanediol molecule is shown in green at a level of 3.0 ζ. B: Close up view of the S-1,2-propanediol 

binding geometry in the TLN complex. S-1,2-propanediol is shown in yellow. The interacting side chains 

of amino acid residues are displayed as white stick models for S-1,2-propanediol and for the zinc 

coordinating residues (Glu166, His146 and His142). C: Surface representation of the S1‟pocket of TLN. 

The solvent-accessible surface of the protein is shown in gray. Amino acids involved in interactions with 

2-bromoacetate (pink) are shown in white stick models. The difference electron density (Fo-Fc) for the 2-

bromoacetate molecule is shown in green at a level of 3.0 ζ. D: Close up view of the 2-bromoacetate 

binding geometry in the TLN complex. 2-bromoacetate is shown in pink. The interacting side chains of 
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amino acid residues are displayed as white stick models for 2-bromoacetate and for the zinc coordinating 

residues (Glu166, His146 and His142). E: Cartoon model of TLN and the zinc displayed in gray. Three 

nitrous oxide molecules are shown as stick models with their corresponding difference electron density 

(Fo-Fc) shown at a  level of 3.0 ζ. F: Close up view of the nitrous oxide binding geometry within the TLN 

active site. Here, nitrous oxide interacts with Asp150, Asn165, His146 and a water molecule. The 

difference electron density (Fo-Fc) is displayed at a level of 3 ζ. 

 

The binding pose of S-1,2-propanediol in the S1‟pocket of TLN is displayed in Figure 

5.3 A and B. Interestingly, S-1,2-propanediol combines the previously described 

binding modes of 3-bromophenol, aniline, urea and N-methylurea by forming hydrogen 

bonds on one end with the 2-hydroxyl group to Glu143 and the backbone oxygen of 

Ala113 and on the other end with the 1-hydroxyl group to the guanidinium group of 

Arg203. We also succeeded to discover 2-bromoacetate as a probe molecule for TLN 

(Figure 5.3 C). It binds similarly to urea and 1,2-propanediol in the S1‟ pocket of TLN. 

The first carboxyl oxygen forms hydrogen bonds to Glu143 and Ala113 and the second 

to Arg203. In addition to Arg203, bromoacetate interacts with two water molecules 

(Figure 5.3 D). Finally, we attempted to pressure gases into TLN crystals. With N2O we 

were able to obtain a high resolution structure that allowed placement of three N2O 

molecules into the difference electron density (Figure 5.3 E). One N2O molecule is 

found at a deeply buried position where previous studies could detect xenon and phenol 

as binders.
105

 Nonetheless, this site is very narrow and clearly of no relevance for any 

drug binding. In the active site one molecule could be detected. The linear N2O 

mediates somewhat similar to interstitial water molecules long-range contacts in the 

unoccupied active site of thermolysin. For example, Figure 5.3 F shows an N2O 

molecule contacting via both terminal ends either Asp150, the backbone carbonyl of 

His146, Asn165, and His146Nδ. Similarly to urea, unambiguous assignment of nitrogen 

and oxygen to the N2O density remains ambiguous. Furthermore, the volatile molecule 

is not easy to fully populate in crystals. Due to its low diffraction power N2O is only of 

limited use and may be mistaken for a disordered water molecule. However, for highly 

resolved structures a binding pose might be proposed. Next, a gas of high diffraction 

power, xenon, was used as probe molecule to map out hydrophobic sites in the binding 

pocket of TLN. Here, assignment of the xenon atom to the electron density was 

straightforward. Unfortunately, xenon binding was not observed within the binding 
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pocket of TLN but in a remote hydrophobic cavity. While unsuitable for mapping of 

binding pockets, further xenon experiments with endothiapepsin and 

acetylcholinesterase revealed its potential for in-house SAD phasing (Behnen et al., 

unpublished results). 

Aside of the described probes a large number of additional substances were tested but 

failed. Among them the polar aromatic probe benzamidine that has been applied 

successfully to elucidate preferred binding sites next to aspartates. Possibly we failed 

with this probe in TLN due to the cationic character of the zinc-ion contained in the 

binding site. 

The results with thermolysin stimulated us to screen particularly the probe molecules 

phenol, N-methylurea and 1,2-propandiol against other proteins. To test benzamidine 

we included two aspartyl proteases in our test panel.     

Protein Kinase A: A crystal structure of PKA in complex with phenol shows three 

bound phenol molecules. Two address the active site of the protein (Figure 5.4 A, B), 

while a third is found in a remote position on the protein surface. The binding mode of 

the latter will not be further discussed as it does not coincide with the usually addressed 

ATP binding pocket. The first phenol probe addresses the hinge region adopting a 

binding mode which allows its hydroxyl group to act simultaneously as H-bond donor 

to the backbone carbonyls of Glu121 and Val123 (2.9 or 4.3 Å, resp.) and as acceptor to 

the backbone amino group of Val123 (2.8 Å). This interaction pattern is commonly 

found for many potent kinase inhibitors. The ring plane of the second phenol is twisted 

by approximately 90° and occupies the ribose sugar pocket. Its hydroxyl group interacts 

with Glu127, the backbone carbonyl of Leu49 and one water molecule. The phenyl 

moiety is located directly below the glycine rich loop (Figure 5.4 B). This usually very 

flexible loop is fixed in the present structure by two hydrogen bonds formed between 

the backbone NH and the hydroxyl group of Ser53 and the carboxylate of Glu184. 
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Figure 5.4 A: Surface representation of the active site of PKA. The solvent-accessible surface of the 

protein is shown in gray. Amino acids involved in interactions with phenol (blue) are shown in light-blue 

stick models. In all cases oxygen atoms are depicted in red and nitrogen atoms in blue. The difference 

electron density (Fo-Fc) for the phenol molecule is shown in green at a level of 3.0 ζ. B: Close up view of 

the phenol binding geometry in the PKA complex. Phenol is shown as stick model in blue. The 

interacting side chains of amino acid residues are displayed as light-blue stick models. Dashes symbolize 

the interaction between one molecule and the respective partner. 

 

D-xylose-isomerase (DXI) and 4-Diphosphocytidyl-2C-methyl-D-erythritol synthase 

(IspD): We could detect an S-1,2-propanediol molecule in the active site of DXI (Figure 

5.5 A). The 2-hydroxyl group coordinates one catalytic manganese ion, the carboxylate 

group of Glu180 and interacts with an additional water molecule. The 1-hydroxyl 

function is involved in H-bonds to Nε of His53 and fixes an incorporated water 

molecule (Figure 5.5 B). A R-1,2-propanediol molecule is found in the active site of 

both crystallographically independent monomers of IspD (Figure 5.5 C). Their binding 

modes are very similar, thus only one complex will be discussed in detail. The 1-

hydroxyl group of R-1,2-propanediol binds via hydrogen bonds to the backbone NH and 

the side chain hydroxyl group of ThrA140. Furthermore, a contact to the backbone 

carbonyl of AlaB163 is observed. The 2-hydroxyl group forms an H-bond to the 

carboxylate group of AspB106, the guanidinium group of ArgB109 and the side chain 

ammonium group of LysB213 (Figure 5.5 D).  



Experimental Active Site Mapping as a Starting Point to Fragment Based Lead 

Discovery 

78 

 

Figure 5.5 A: Surface representation of the active site of DXI. The solvent-accessible surface of DXI is 

shown in gray. Amino acids involved in interactions with S-1,2-propanediol (orange) are shown in light-

blue stick models and the two manganese ions as purple spheres. In all cases oxygen atoms are depicted 

in red and nitrogen atoms in blue. The difference electron density (Fo-Fc) for the S-1,2-propanediol 

molecule is shown in green at a level of 3.0 ζ. B: Close-up view of the S-1,2-propanediol binding 

geometry in the DXI complex. S-1,2-propanediol is shown in orange as stick model. The interacting side 

chains of amino acid residues are displayed as light-blue stick models for S-1,2-propanediol and as white 

stick models for the two manganese coordinating residues (Asp286, Asp244, Glu216, Asp254 and 

His219). Dashes symbolize the interaction between one molecule and the respective partner. C: Surface 

representation of the active site of IspD. The solvent-accessible surface of monomer1 is shown in gray 

and for monomer two in light-blue. Amino acids involved in interactions with R-1,2-propanediol (orange) 

are shown in light-blue stick models for monomer two and in white stick models for monomer one. The 

difference electron density (Fo-Fc) for the R-1,2-propanediol molecule is shown in green at a level of 

3.0 ζ. D: Close up view of the R-1,2-propanediol binding geometry in the IspD complex. R-1,2-

propanediol is shown in orange as stick model. The interacting side chains of amino acid residues are 

displayed as light-blue stick models for monomer two and as white stick models for monomer one.  

 

 

Secretory Aspartyl Protease 2 (SAP2) and Endothiapepsin (ETP): The active sites of 

both aspartyl proteases were probed with benzamidine, a popular molecule used to 

address Asp189 in the S1-pocket of trypsin-like serine proteases.
106, 107

 In SAP2 two 
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benzamidine probes could be detected, while ETP even contained three benzamidine 

molecules. The first amidine addresses in both enzymes with very similar geometry one 

aspartate (Asp32 SAP2, Asp35 ETP) of the catalytic dyad with twinned H-bonds, a 

second Asp is involved in hydrogen-bond contacts (Asp218 SAP2, Asp219 ETP, Figure 

5.6 A, B). The aromatic moiety is oriented towards the S1‟ pocket. In SAP, the second 

benzamidine is located in a completely different environment in the S2 pocket. It 

virtually bridges across the active site forming H-bonds with one NH2 group to the 

backbone carbonyl of Gly220 and the side chain OH of Thr221 (3.0, 2.8 Å). The 

opposing amino group involves the carboxylate side chain of Asp86 (2.9 Å) and the 

Tyr84 backbone carbonyl oxygen (3.4 Å) in an H-bonding network and forms a 2.7 Å 

hydrogen bond to the hydroxyl group of an additionally observed MPD (2-methyl-2,4-

pentanediol) molecule. The phenyl ring planes of both adjacent benzamidines are at 

about 4.5 Å in somewhat larger distance than a van der Waals contact (Figure 5.6 C). 

The second benzamidine is found in ETP to bind into the S1 pocket next to Asp81 and 

Ser115. It forms with one of its NH2 groups H-bonds to the carboxylate group of Asp81 

(2.7 Å) and to the hydroxyl group of Ser115 (3.0 Å), while the other NH2 group forms 

H-bonds to the backbone carbonyl oxygen of Ser115 (3.2 Å) and a water mediated 

contact to Asp119 (Figure 5.6 D). Apart from two benzamidine molecules observed in 

ETP (Figure 5.6 D), a DMSO molecule is found in the active site somewhat below the 

position where in SAP the second benzamidine is located.  The third benzamidine in 

ETP is located at the protein surface, forming twinned H-bonds to the carboxylate of 

Asp279 and a carbonyl oxygen interaction of Cys255. 
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Figure 5.6 A: Surface representation of the active site of SAP.  The solvent-accessible surface of SAP is 

shown in gray. Amino acids involved in interactions with benzamidine (light brown) are shown as white 

stick models. Furthermore a 2-methyl-2,4-pentanediol molecule is observed in close proximity to the 

benzamidine molecules. In all cases oxygen atoms are depicted in red and nitrogen atoms in blue. The 

difference electron density (Fo-Fc) for the shown molecules is displayed in green at a level of 3.0 ζ. B: 

Surface representation of the active site of ETP.  The solvent-accessible surface of ETP is shown in gray. 

Amino acids involved in interactions with benzamidine (light brown) are shown as white stick models. 

The difference electron density (Fo-Fc) for the two benzamidine molecules is displayed in green at a level 

of 3.0 ζ. C: Close up view of the benzamidine binding geometry in the SAP complex. Two benzamidine 

and a 2-methyl-2,4-pentanediol molecule are shown in light brown. The interacting side chains of amino 

acid residues are displayed as white stick models. Dashes symbolize the interaction between one molecule 

and the respective partner. D: Close up view of the benzamidine binding geometry in the ETP complex. 

Two benzamidine molecules are shown in light brown. The interacting side chains of amino acid residues 

are displayed as white stick models. 

 

5.3.2 DrugScore hot spot calculations 

Our approach of experimental binding-site mapping with several rather generally 

applicable probes can be used as a starting point to construct a protein-based 
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pharmacophore. Furthermore, as mentioned in the introduction, several computational 

tools have been developed to underscore the most favorable binding regions in an active 

site, the so-called hot spots of binding, among them the programs GRID, DrugScore or 

SuperStar.
98-100

 In this study we applied DrugScore based on our most recent atom type 

setting. This scheme is based on 157 distinct types and data collected from small 

molecule crystal structures in the CSD to characterize our crystallographically studied 

probes.
101

 The computational probes used in the different cases are listed in Table 5.1. 

For visualization purposes the contour level of carbon or aromatic atoms (black), 

oxygen or acceptor atoms (red), nitrogen or donor atoms (blue) and doneptor atoms (an 

atom type that can serve either as H-bond donor or H-bond acceptor, e.g. hydroxyl 

functionality, yellow) is shown at a level showing best clarity in the maps, but in most 

cases the contour level has been set to approximately 60 % above the value of the next 

local minimum in the studied active site. 
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Table 5.1 Probe characterization and DrugScore contour levels to the respective protein 

Probe characterization Enzym/Contour level 

Phenol: aromatic probe (Aro); doneptor probe 

(AnD); Br atom 

C.ar6 = sp2 carbon in an aromatic ring system;     

O.ph = phenolic hydroxyl group 

TLN: Aro: 54 % (-86000/ -159875), AnD: 64 %  

(-265000/ -410239), Br: 63 % (-10200/ -16207) 

PKA: C.ar6: 56% (-14000/ -25180), O.ph: 30 %  

(-2800/ -9326) 

Aniline: aromatic probe (Aro), donor probe 

(Don) 

TLN: Aro 63 % (-95000/ -149644), Don 63 %  

(-115000/ -182022) 

Urea: donor probe (Don), acceptor probe (Acc) 

TLN: Don 53 % (-100000/ -188767), Acc 67 %  

(-170000/ -252746)  

N-methylurea: donor probe (Don), acceptor 

probe (Acc) 

TLN: Don 59 % (-110162/ -185202), Acc 62 %  

(-160000/ -255317) 

1,2-Propanediol: doneptor probe (AnD), 

hydrophobic probe (Hyd) 

TLN: AnD 45 % (-62163/ -138674) Hyd 71 %  

(-265873/ -376115) 

IspD: AnD 37 % (-44800/ -120867) Hyd 83 %  

(-319000/ -385520) 

DXI: AnD 50 % (-78500/ -157084), Hyd 69 %  

(-300000/ -434688) 

Benzamidine: aromatic probe (Aro); donor 

probe (Don) 

 

ETP: Aro 64 % (-90000/ -140728), Don 68 %  

(-110000/ -162225) 

SAP:  Aro 52 % (-72000/ -137181), 70 % Don 

(-108000/ -153264) 

2-Bromoacetate: C.3s = sp3 carbon;  

Br atom 

TLN: C.3s: 70 % (-20576/ -29468), Br 70 %  

(-10934/ -15660)  

 

Phenol/Aniline: Comparing the crystallographically determined binding poses of                

3-bromo-phenol and aniline in TLN, DrugScore predictions indicate that the hot spots 

are in good agreement with the experimentally determined positions of the aromatic 
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ring moiety in aniline and phenol as well as the amino functionality of aniline (Figure 

5.7 A, B). Only the calculated favorable sites for a doneptor function and bromine 

atoms differs slightly from the position found in the X-ray structures as DrugScore does 

not predict the observed and electrostatically favored orientation towards the zinc ion. 

The DrugScore hot spot analysis of aromatic carbons in PKA agrees well with the 

observed binding modes of the two phenols in the active site of the protein. The polar 

OH group fits only for the phenol molecule binding to the hinge region. Figure 5.7 C 

shows the hot spot contouring for C.ar (black) and O.ph (red) together with the 

experimentally determined binding mode. 

 

Figure 5.7 A: DrugScore
HotSpot

 analysis of the TLN-3-bromo-phenol complex; bromo-phenol is displayed 

in blue and Glu143 as white stick model and the catalytic zinc ion as gray sphere. In all cases oxygen 

atoms are depicted in red, nitrogen atoms in blue, bromine atoms in brown. Interaction distances are 

displayed as dashed lines. Hotspots are displayed in color-coded mesh using the respective probes for 

aromatic atoms (black), doneptor atoms (yellow) and bromine atoms (brown) at a map level of 54 %              

(-86000/ -159875), 64 % (-265000/ -410239) and 63 % (-10200/ -16207) above the minimal map level, 

respectively. B: DrugScore
HotSpot

 analysis of the TLN-aniline complex; aniline is displayed in green and 

Glu143, Ala113 and Asn112 as white stick model and the catalytic zinc ion as gray sphere. Hotspots are 

displayed in mesh, aromatic (black) and donor (blue) at a map level of 63 % (-95000/ -149644), (- 

115000/ -182022) in both cases. C: DrugScore
HotSpot

 analysis of the PKA-phenol complex; phenol is 

displayed in blue and the interacting residues Glu121, Val123, Leu49 and Glu127 as light-blue stick 

model. Hotspots are displayed in mesh; C.ar6 (black) and O.ph (red) at a map level of 56 % (- 14000/       

-25180) and 30 % (- 2800/ -9326), respectively. D: DrugScore
HotSpot

 analysis of the TLN-N-methylurea 
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complex; N-methylurea is displayed in violet, the interacting residues Glu143, Ala113,Asn112 and 

Arg203 as white stick model and the catalytic zinc ion as gray sphere. Hotspots are displayed in mesh; 

donor atoms (blue) and acceptor atoms (red) at a map level of 59 % (-110162/ -185202) and 62 %           

(-160000/ -255317), respectively. E: DrugScore
HotSpot

 analysis of the TLN-urea complex; urea is 

displayed in yellow, the interacting residues Glu143, Ala113, Asn112 and Arg203 as white stick model 

and the catalytic zinc ion as gray sphere. Hotspots are displayed in mesh; donor atoms (blue) and acceptor 

atoms (red) at a map level of 59 % (-100000/ -188767) and 62 % (-170000/ -252746). 

Urea/N-Methylurea: As described above, one urea and one N-methylurea molecule bind 

to the S1‟-pocket of TLN. In both cases, the atom types for donor atoms (blue) and 

acceptor atoms (red) were used as probes for the DrugScore calculations. For N-

methylurea, the positions of the carbonyl and one amino function are correctly predicted 

in TLN (Figure 5.7 D). Unfortunately, only the position of the amino function of urea is 

in agreement with the crystallographically determined binding in TLN. Possibly the 

presence of the neighbouring highly charged zinc ion reduces the predictive power of 

our DrugScore maps again (Figure 5.7 E).  

2-Bromoacetate: For 2-bromoacetate as probe molecule, maps were calculated for 

aliphatic carbon (C.3s; black) and for bromine atoms (brown). As displayed in Figure 

5.8 A, the predicted favorable regions for an aliphatic carbon (black) and for the 

bromine generally agrees with the experimentally observed poses in TLN. 
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Figure 5.8 A: DrugScore
HotSpot

 analysis of the TLN-2-bromoacetate complex; 2-bromoacetate is 

displayed in pink, the interacting residues Glu143, Ala113 and Arg203 as light-blue stick model and the 

catalytic zinc ion as gray sphere. In all cases oxygen atoms are depicted in red, nitrogen atoms in blue and 

bromine in brown. Interaction distances are displayed as dashed lines. Hotspots are displayed in color-

coded mesh using respective probes C.3s (black) and Br (brown) at a map level of 70 % (-20576/                   

-29468), (-10934/ -15660). B: DrugScore
HotSpot

 analysis of the TLN-S-1,2-propanediol complex; S-1,2-

propanediol and Glu143, Ala113 and Arg203 are displayed as white stick model and the catalytic zinc ion 

as gray sphere. Hotspots are displayed in mesh; doneptor atoms (yellow) and hydrophobic atoms (gray) at 

a map level of 45 % (-62163/ -138674) and 71 % (-265873/ -376115), respectively. C: DrugScore
HotSpot

 

analysis of the DXI-S-1,2-propanediol complex; S-1,2-propanediol is displayed in orange and His54 and 

Glu180 as light-blue stick model and the catalytic manganese ion as purple spheres. Hotspots are 

displayed in mesh; doneptor atoms (yellow) and hydrophobic atoms (gray) at a map level of 50 %             

(-78500/ -157084) and 69 % (-300000/ -434688), respectively. D: DrugScore
HotSpot

 analysis of the IspD-

R-1,2-propanediol complex; R-1,2-propanediol is displayed in orange and the interacting residues 

ThrA140 as white stick model, AlaB163, ArgB109, AspB106 and LysB213 as light blue stick model. 

Hotspots are displayed in mesh; doneptor atoms (yellow) and hydrophobic atoms (gray) at a map level of 

37 % (-44800/ -120867) and 83 % (-319000/ -385520), respectively. E: DrugScore
HotSpot

 analysis of the 
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ETP-benzamidine complex; benzamidine is displayed in light brown and the interacting residues Asp219, 

Asp35, Asp81, Ser115 and Asp119 as white stick model. Hotspots are displayed in mesh; aromatic atoms 

(black) and donor atoms (blue) at a map level of 64 % (-90000/ -140728) and 68 % (-110000/ -162225), 

respectively. F: DrugScore
HotSpot

 analysis of the SAP-benzamidine complex; benzamidine is displayed in 

light brown and the interacting residues Asp32, Asp218, Asp86 and Thr221 as white stick model. 

Hotspots are displayed in mesh; aromatic atoms at aromatic atoms (black) and donor atoms (blue) at a 

map level of 52 % (-72000/ -139181) and 70 % (-108000/ -153264), respectively. 

 

1,2-Propanediol: In the case of 1,2-propanediol as probe molecule maps were calculated 

for hydrophobic (gray) and for doneptor atoms (yellow). As indicated in Figure 5.8 B – 

D, in all cases the predicted favorable region for a hydrophobic atom (gray) agrees with 

the experimentally observed poses and some of the calculated doneptor maps (yellow) 

coincide with the observed positions of hydroxyl groups on our probe molecule.  

Benzamidine: In the case of benzamidine as probe molecule the contour maps for 

aromatic carbon atoms (black) and donor groups (blue) have been calculated for ETP 

and SAP2. In both cases, two benzamidine molecules are present in the binding pocket. 

One of the molecules interacts with the catalytic dyad. For both proteins the calculated 

donor map fits remarkably well to the position of the polar nitrogens. The binding area 

of the aromatic moiety is reasonably well indicated in the maps (Figure 5.8 E, F). 

Interestingly enough the map of the aromatic atom probe predicts the hydrophobic 

portion of the bound MPD molecule very well. 

 

5.3.3 Superposition with larger ligands in related crystal structures 

To estimate how well the detected probe molecules actually reflect the binding of 

similar portions in much larger ligands, we compared the observed probe poses with 

crystallographically studied ligands in the respective enzymes. We elucidated whether 

position and orientation of the found probes match with functionalities embedded into 

larger scaffolds. The considered ligands are listed in Table 5.2. 
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Table 5.2 Schematic structures of reference ligands 

Abbreviation Structure 

Val-Lys (TLN) 

NH
2

NH O

O

OH

NH
2

 

ATP (PKA) 

N
O

N

N

OH OH

N

NH
2

O P O P O P OH

OH

O

O

OH

OH

O

 

D-Xylose (DXI) 

OH

OH

OH

OH

O

 

CDPME (IspD) 

N N

NH
2

O

O

OHOH

OPO

OH

O

PO

OH

CH
3

OH

OH O

OH

 

 

Thermolysin: We superimposed the probe molecules aniline, N-methylurea and 1,2-

propanediol in TLN with the dipeptide Val-Lys bound to the enzyme (PDB code 

8TLN).
108

 The aromatic ring system of aniline and the hydrophobic Val-side chain are 

located in similar position in the hydrophobic S1‟ pocket (Figure 5.9 A). Occupation of 

this pocket by hydrophobic ligand portions is quite essential for potent TLN binding.
109

 

More interestingly, the binding patterns of the N-terminus of Val-Lys (light-blue) as 

well as the NH2 groups of aniline (green) and N-methylurea (violet) agree well in space 

and deviate by only 1.1 Å. They all adopt the same orientation and form hydrogen 

bonds to Glu143, Ala113 and Asn112 (Figure 5.9 A). Moreover, the position of the first 

hydroxyl group of 1,2-propanediol falls next to the carbonyl group of the Val residue. 
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Both form H-bonds to the guanidinium function of Arg203. The second hydroxyl 

oxygen superimposes with the N-terminus and binds as this group to Glu143 and 

Ala113 (Figure 5.9 B). 

 

Figure 5.9 Superposition of A: aniline (green) and N-methylurea (violet) and B: S-1,2-propanediol 

(yellow) with Val-Lys (light-blue) in TLN. Aniline, N-methylurea, S-1,2-propanediol as well as the side 

chain amino acid residues are displayed as stick models. Amino acid residues from the aniline complex 

are displayed in green, from the N-methylurea complex in violet, the S-1,2-propanediol complex in 

yellow and the Val-Lys complex in light-blue. In all cases, oxygen atoms are depicted in red and nitrogen 

atoms in blue. Dashes symbolize the interaction between one molecule and the respective partner. 
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Superposition of C: phenol (yellow) and ATP (light-blue) at the hinge region of PKA and D: in the sugar 

pocket of PKA. ATP and phenol as well as the side chain amino acid residues are displayed as stick 

models in corresponding colors. E: Superposition of S-1,2-propanediol (yellow) and the linear form of D-

xylose (light-blue) in the active site of DXI. Both the linear form of D-xylose and S-1,2-propanediol as 

well as the side chain amino acid residues are displayed as stick models in corresponding colors. F: 

Superposition of R-1,2-propanediol (yellow) and CDPME (white) in the active site of IspD. Both 

CDPME and R-1,2-propanediol as well as the side chain amino acid residues are displayed as stick 

models in corresponding colors. 

Protein Kinase A: In case of PKA two phenol molecules were detected in the active site. 

In Figure 5.9 C these fragment structures have been superimposed with a complex of 

the substrate ATP (PDB code 1ATP).
110

 N1 and the exocyclic 6-NH2 group of the 

purine moiety of ATP (light-blue) and the hydroxyl group of phenol (yellow) address 

the hinge region Val123 and Glu121 in similar fashion (Figure 5.9 C). The phenyl 

portion of phenol also matches the hydrophobic centre of the purine ring system.  

The position of the second phenol coincides with the ribose sugar moiety of ATP 

(Figure 5.9 D). The hydroxyl groups at the 2-position of the five-membered ribose ring 

and of phenol form H-bonds to Glu127 at very similar sites. Additionally, the hydroxyl 

functionalities of the ribose and phenol interact with a water molecule found in both 

complexes.     

4-Diphosphocytidyl-2C-methyl-D-erythritol synthase and D-xylose-isomerase: Both in 

DXI and IspD, 1,2-propanediol molecules were detected. Their binding poses were 

compared with the substrate complexes of DXI and IspD. In case of DXI, the complex 

hosting the open-chain form of D-xylose (PDB code: 1XIC) was superimposed with our 

S-1,2-propanediol complex.
111

 The positions of both OH groups of the latter match 

perfectly well in position and orientation with the first and third hydroxyl group of 

open-chain D-xylose (Figure 5.9 E). They show very similar binding patterns. The first 

OH group of S-1,2-propanediol (yellow) and D-xylose (light-blue) form hydrogen 

bonds to His53 and one water molecule. The second OH group of the probe molecule 

and third OH group of D-xylose built-up a hydrogen-bond network to Glu180 and an 

additional water molecule mediates a contact to one of the catalytic manganese ions in 

the active site. 

For IspD, the R-1,2-propanediol complex was compared with that of the substrate 

CDP-methylerythritol (PDB code 1INI).
112

 The R-1,2-propanediol molecule (yellow) 
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matches perfectly well with the terminal OH group of methylerythritole (white) (Figure 

5.9 F). Both hydroxyl functionalities and even the methyl group coincide and both 

hydroxyl groups form hydrogen bonds to the carboxylate of AspB106, one guanidinium 

NH of ArgB109, the backbone carbonyl of AlaB136, the terminal NH2 of LysB213, and 

the backbone NH of ThrA140.  

5.4 Conclusion  

In this study, we demonstrated that different highly soluble molecular probes with 

molecular weight much lower than standard fragment size can bind to proteins 

originating from different classes: for TLN, PKA, DXI, IspD, ETA, and SAP2 probe 

fragment complexes with phenol, aniline, urea, N-methylurea, 2-bromoacetate, 1,2-

propanediol and benzamidine could be determined. Furthermore, we could find 

evidence that the positions of the polar H-bond forming functional groups and 

hydrophobic portions of these molecules are in good agreement with in silico hot spot 

predictions using DrugScore. Remarkably, the observed poses of the probe molecules 

coincide well in space and interaction pattern with similar molecular portions embedded 

in much larger ligands for which complex crystal structures have been determined. This 

observation confirms the fundamental hypothesis of fragment-based lead discovery that 

binding poses even of very small molecular probes do not strongly deviate or move 

once a ligand is grown further into the binding site. This underscores that these probes 

actually populate at a given hotspot of binding. In that respect the small probes can be 

regarded as relevant seeds for further design. This opens a very promising prospective 

to also use the binding poses of probes such as phenol, aniline, urea, N-methylurea, 2-

bromoacetate, 1,2-propanediol or benzamidine as convenient starting points of 

fragment-like de novo design. 

The hot spot prediction by DrugScore has significantly improved with the new atom-

type setting. Very fast to calculate, DrugScore can be consulted for further design to 

subsequently grow small initial seeds into the binding pocket by attaching further 

substituents in agreement with the predicted hot spots.  
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5.5 Materials and Methods 

DrugScore
HotSpots

 

For the calculation of hotspots for all protein-fragment-complexes the respective 

enzyme structure was used. The fragment and water molecules were not considered 

during hotspot analyses in order to derive sites of favorable interactions with the non-

complexed binding pocket. The atom-type assignment is based on the classification in 

DrugScore
CSD

.
113
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6 From Probe to Fragment and Lead: A Combined Approach of 

Experimental Fragment Screening and Computational De Novo 

Design 

6.1 Introductory Remarks 

This chapter is prepared to be submitted to a scientific journal. Accordingly, some 

redundancies with the Introduction to this thesis might occur. The study was 

accomplished together with Helene Köster, Dr. Sascha Brass, Hans-Dieter Gerber and 

Barbara Wienen (Univ. Marburg) in cooperation with Merck Serono in Darmstadt in a 

joint collaboration funded by the BioChancePlus BMBF-project FragScreen. My 

contribution to this study was the design and development of the compounds in the 

three subsequent cycles. 

6.2 Introduction 

The more novel and interesting target structures for a therapeutic treatment are 

discovered and validated via proteomics and structural genomics, the higher will be the 

demand for efficient strategies to discover leads that interfere with protein function. In 

the nineties high-throughput screening and combinatorial chemistry have been 

established to resolve the bottleneck for an efficient lead discovery. Subsequently, 

virtual computer screening has been added as an alternative to complement these 

approaches. However, success rates were not as expected and the size of the usually 

discovered hits was in the range of common drug molecules not leaving much space for 

optimization without significantly exceeding the molecular weight limit of perhaps 500 

Da.
1
 To better rank the size of the discovered hits with their actual potency, the concept 

of ligand efficiency
2
 was introduced. Highly efficient leads exhibit good potency 

combined with low molecular weight.  

Improvements in biophysical techniques to record protein-ligand binding and increasing 

success in the acquisition of structural information about protein-ligand complexes by 

crystallography or NMR spectroscopy allowed to push the limits of the compounds to 

be screened to lower and lower molecular weight. Particularly NMR and SPR are 



From Probe to Fragment and Lead: A Combined Approach of Experimental Fragment 

Screening and Computational De Novo Design 

94 

nowadays powerful enough to detect very small and weak binders which still exceed 

good and convincing potency (“high” ligand efficiency). Such fragment-type
11

 leads 

appear as special challenge as they provide – once characterized in terms of a crystal 

structure – wide opportunities for optimization into prospective drug candidates. 

Meanwhile, many examples have been described in literature and an impressive number 

of reviews have been written.
13-24

 These examples, mostly performed in industry or 

specialized small biotech companies, focused on the following targets: HSP90
25-30

, 

different kinases
31-38

, phosphatases
39-41

, antibacterial and anti-infective targets
42-46

 , 

BCL-2
47

 and BACE.
47-50

 

The wish to push towards smaller and smaller initial “leads” reminds of an old concept 

developed in the early phase of structure-based drug design. In the late eighties and 

early nineties computational de novo design was developed with much enthusiasm. 

Starting with a very small “seed”, a ligand was gradually grown into the binding pocket 

of the target protein. Even though received with much sympathy in the beginning, the 

approach rapidly got out of fashion. This was either attributed to its high complexity 

and too low success rate or it was simply overrun by the upcoming high throughput 

technologies; and we clearly witness at present that also fragment screening moves into 

the high throughput domain.  

Nevertheless, the appealing aspect of de novo design was its rigorous rational concept, 

only once ligand binding is fully understood this kind of design based on first principles 

can work. However, two decades later we have to confess that the binding process is 

still little understood and therefore a purely rational approach remains as such much too 

ambiguous.  

On the other hand, meanwhile our experimental techniques are much better developed 

and give fast access to structural information. Therefore, it may be asked whether a 

combination of de novo design supported by multiple crystal structure analyses on small 

molecule fragments or molecular probes will allow for an alternative strategy in lead 

discovery, reconsidering much of the early concepts of de novo design.  

Therefore, we picked a representative example from the heavily studied family of 

protein kinases to perform a feasibility study. Ongoing from small promiscuously 

binding probes, potent nanomolar leads were developed using the concepts of de novo 
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design. The process was strongly supported by crystal structure analysis particularly in 

the early phase where the detection of ligand binding would be impossible applying 

routine screening techniques. 

6.3 Results and Discussion 

6.3.1 Probing the active site 

We selected PKA as a well established model kinase as it is easily accessible, well to 

crystallize, and stable enough for many biophysical investigations. Also in the early 

nineties, Dagmar Ringe and Greg Petsko brought up a concept of soaking small 

molecule probes, mostly solvent molecules, into protein binding sites. Structures 

determined with these probes can be understood in the sense of a de novo design 

approach as initial “seeds” to grow from there to putative leads. We picked up this 

concept and searched for molecular probes that can be applied rather generally to many 

protein binding sites to probe their binding properties. This approach can be compared 

with a kind of “experimental active-site mapping” as usually performed 

computationally by programs such as GRID
70

, MCSS
114

, DrugScore
115

 or Super Star
71

.  

Among the most prospective probes we found phenol to access at least in our screens a 

fairly large number of proteins (Chapter 5). Apart from these, also water can be seen as 

such a “promiscuous” probe. Stimulated by these results we also tried to crystallize 

PKA with phenol. A screening using an SPR-based binding assay did not succeed in 

detecting any binding of this probe.  

However, the crystal structure of PKA with phenol shows three phenol molecules to be 

bound (Figure 6.1). Aside of two phenol molecules which access the ATP binding site 

of the protein, a third one is found in a remote site on the protein surface. The first 

phenol probe addresses the hinge region adopting a binding mode which allows the 

hydroxyl group to operate as H-bond donor towards the backbone carbonyl of Glu121 

and as an acceptor towards the backbone NH of Val123. This type of interaction pattern 

is common for many potent kinase inhibitors. The second phenol is twisted by 90° and 

occupies the sugar subpocket. Its hydroxyl group interacts with Glu127. The benzyl 

moiety occupied an area directly under the glycine rich loop (G-loop). This usually very 
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flexible loop is fixed by two hydrogen bonds built between the backbone NH and the 

hydroxyl group of Ser53 and the carboxylate of Asp184. In literature, three major 

conformational families and thus overall different positions of the glycine rich loop 

have been described. The first is represented by the APO structure (pdbcode:1J3H
116

); 

here the loop is in totally open geometry. The second is observed with some hinge 

binders (e.g. pdb code: 1JLU
117

); here the loop is in a medium open conformation. The 

third one is observed in the PKA-ATP (pdb code 1L3R
118

,1ATP
119

) complex structure, 

here the glycine rich loop interacts with the phosphate groups of ATP and is in closed 

state.
120

  

The third phenol is found on top of the G-loop outside the catalytic center and could 

possibly describe a potential new allosteric site (Figure 6.1). 

To complement this experimental active site mapping by computational means, we 

applied our recently extended DrugScore
CSD

 mapping approach (Neudert & Klebe, to be 

published) to the PKA active site. Using an aromatic carbon and a phenolic hydroxyl 

group as probes, the method quite nicely highlights those areas actually found to be 

accommodated by the phenol molecules (Figure 6.1).  
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Figure 6.1 Top left: The Fo-Fc difference electron density map for the two phenols in the ATP binding; 

Top right: The single phenol molecule on top of the G-loop; contouring at ζ-level 2.0; Bottom left: An 

overview of the phenol molecules with the kinase folding pattern; Bottom right: The calculated 

DrugScore contour maps of C.ar and O.ph of the PKA-phenol complex. Hotspots are displayed in mesh; 

C.ar6 (black) and O.ph (red) at a map level of 56 % (- 14000/ -25180) and 30 % (- 2800/ -9326), 

respectively. 

Based on our initial phenol seed we wanted to consult the computer to detect better 

suited and appropriately decorated phenol derivatives as putative fragment leads in 

order to keep the furcated H-bonded binding mode of the phenol molecule towards the 

hinge region.  

To obtain a broad scope of possible candidates we performed a targeted virtual 

screening. The test library was compiled from about 4,000 commercially available 
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fragment-like candidates that exhibited one ring portion with several decorations. All 

fragments satisfied the „rule of three‟ criteria as defined by Congreve et al..
11

 

FlexX
121

 was used for docking using the binding mode observed for the hinge binding 

phenol and further guided by a pharmacophore derived from the DrugScore maps. 

Among the best scored hits were several phenol derivatives. Confirming their binding to 

PKA by SPR failed, indicating that the affinity was clearly beyond 2 mM. However, 

with 2-methyl-4-acetylphenol we succeeded in obtaining a PKA complex crystal 

structure. In this complex only one phenol moiety is bound. It addresses, similarly to the 

unsubstituted phenol, the hinge region, places, as expected, its methyl group in a 

hydrophobic niche, and picks up via its carbonyl group of the acetyl substituent a water 

network in-between Thr183 and Lys72. Two water molecules remain as interstitial 

bridges in this region and mediate contact between the fragment and the protein. For 

this complex an open G-loop position is obtained (Figure 6.2). 

 

  

Figure 6.2 The virtual screen hit is shown; Left: The binding pocket of PKA in complex with the virtual 

screen hit; Right: The Fo-Fc electron density map of the virtual screening hit is presented in green mesh at 

a ζ-level of 2.0. 

Structural expansion of the initial seed 

Next, we consulted DrugScore
CSD 115

 again to suggest additional interactions to be 

picked up in our further design. Interestingly enough, an area remote from the water 

cluster, clamped from the top by the hydrophobic faces of the peptide backbone at the 
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tip of the G-loop (residues 51-53), from the far end of a small pocket by the aromatic 

phenyl portion of Phe54, a favorable binding region for an aromatic ligand moiety is 

suggested as well as an H-bond acceptor functionality is proposed to be placed under 

the G-loop. Another favorable position for an acceptor motif is suggested near Lys72. 

 

Figure 6.3 The HotSpotsX calculated maps for aromatic interactions (black contours) at a map level of 

52 % (-100000/ -193546); and O.co2 as an acceptor representative (red contours) at a map level of 32 % 

(-7500/ -23475) above the minimum of the map is shown. 

6.3.2 Design of a putative lead skeleton and synthesis strategy 

The composite picture of the different seed and fragment structures along with our 

experimental and computational active-site mapping can be summarized in the 

following design hypothesis. A phenol moiety decorated ortho to the OH group by a 

hydrophobic expansion (methyl, chlorine, methoxy, fused phenyl ring) has to be 

expanded in para position by a chain of about four members to bridge the gap towards 

the indicated aromatic moiety. The terminus of the linking chain should be decorated 

with a carbonyl group to interact with Lys72 in a similar fashion as the water molecule 

in the virtual screening hit and to coincide with the acceptor hot spot suggested by the 

DrugScore calculations. Furthermore, this linker should be the attachment point for an 

aromatic substituent to fill the cavity clamped by the peptide stretch and next to Phe54 

as indicated by DrugScore. The linker itself should be selected in a way to pick up the 

water network observed towards the side opposing the crevice formed by Thr183.  
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The described binding pattern has to be matched with an appropriate chemistry keeping 

synthetic accessibility and availability of a broad range of building blocks in mind. As 

central moiety in the linker, we went for substituted hydrazones as these derivatives can 

easily be made and the formed central group provides the correct spacer length and the 

required patterns of H-bond donor and acceptor facilities. The portion addressing the 

remote hydrophobic site and Thr183/Lys72 can then be represented by a broad range of 

phenyl acetic acid derivatives, as the hydrazone unit is introduced via hydrazine 

replacing the OH functionality at the carboxylate group of the latter derivatives. The 

produced mono-substituted hydrazide can then be reacted to the desired hydrazones 

with various 4-hydroxybenzaldehydes to introduce, with appropriate linker-geometry, 

the phenolic portion competent to address the hinge region. 

The selection and assemble of candidates for the first round of synthesis followed our 

recently described KNOBLE
122

 approach. About 200 putative candidates for synthesis 

were assembled in the computer and docked with FlexX against the PKA active site. 

Scoring the docking results suggested the following five molecules (Table 6.1) as first 

candidates for synthesis. 

6.3.3 Validation of the first leads 

Subsequent to synthesis, the binding potency of our first lead candidates was tested by 

an SPR assay. Binding in the range of 6.5 to 120 µM was recorded.  
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Table 6.1 The structure of the five synthesized compounds of the first synthesis cycle with the Kd and the 

ligand efficiency is shown. 

Name Structure 
Kd 

[µM] 

LE 

[kcal/mol*heavy 

atom ] 

1 

N
N
H

O

O
OH

 

70 0.27 

2 
N

N
H

O

O
OH

OH

 

35 0.28 

3 
N

N
H

O

O
OH

OH

 

6.5 0.31 

4 

N
N
H

O

O
OOH

 

>100  

5 
N

N
H

O

O
OH

 

15 0.26 

 

We succeeded to determine the crystal structures with two ligands (compound 1, 3) 

from the first synthesis campaign. As only difference they experience a deviating 

substitution pattern at the aromatic ring addressing the hinge region. The derivative 

lacking any substituent in ortho position next to the hydroxyl group (70 µM) binds very 

similarly to the initial phenyl probe and the virtual screening fragment hit. An additional 

meta substitution to the 1-hydroxyl group seems to increase the affinity by a factor of 
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two. Compound 3 forms, via the second OH group, an additional contact to a water 

molecule also interacting with Thr183. The methyl group at the other meta position 

seems ideal to fill the hydrophobic niche next to the hinge region. This additional 

substitution leads to a more potent derivative (6.5 µM). A methoxy substituent at this 

position (compound 4) seems detrimental to binding (>100 µM). Computer modeling 

suggests that this group cannot adopt the preferred coplanar arrangement with the 

phenyl portion. Most likely this is due to its more demanding steric bulk in the small 

hydrophobic niche and deviation from planarity costs some price in affinity. Modeling 

also suggests that the naphthyl derivative (compound 5, 15 µM) is to big to perfectly 

occupy the hydrophobic niche in the lower part of the hinge region. 

 

Figure 6.4 Top: The crystal structure of our initial lead compound 1 and bottom: Crystal structures of 

compound 3 from the fist synthesis cycle. Protein carbons are colored white, ligand carbons violet; 

oxygen in red; nitrogen in blue. The difference electron density is shown as green mesh at a ζ level of 3.0. 

Apart from these deviating interactions of the structurally varying phenolic portion, the 

unchanged remaining part of the two ligands binds to the protein in a very similar way 
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and conforms quite closely to our design hypothesis. The NH donor group of the 

hydrazone forms, as expected, an H-bond to the conserved water molecule and the 

carbonyl oxygen picks up an interaction pattern with Thr183 and Lys72. The second 

aromatic portion binding next to the glycine-rich loop and nicely fills the area indicated 

as preferred for aromatic carbons by DrugScore
CSD

 (Figure 6.5). The convincing 

predictive power of the novel CSD-based DrugScore potentials can be demonstrated by 

superimposing the previously calculated DrugScrore maps with subsequently determind 

crytal structure of compound 1. The contours encompass the ligand with nearly ideal 

shape (Figure 6.5).  

 

Figure 6.5 Calculated hotspots and the initial lead compound are shown. The HotSpotsX calculated maps 

for aromatic interactions (black contours) at a map level of 52 % (-100000/ -193546); and O.co2 as an 

acceptor representative (red contours) at a map level of 32 % (-7500/ -23475) above the minimum of the 

map is shown. 

In this first synthesis cycle the affinity could be increased towards single-digit 

micromolar range and further more the ligand efficiency could be increased from 

initially 0.27 to 0.33 kcal/mol*heavy atom.  

6.3.4 Extension of the first leads 

To increase potency we anticipated to introduce a newly formed salt bridge with the 

protein. To achieve this goal the scaffold would have to be expanded by a primary 

amino group. This basic motif can form a salt bridge towards the carboxylate of the 

adjacent Asp184 residue. Figure 6.6 displays the intended salt bridge.  
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Figure 6.6 The new design hypothesis of gaining affinity through the formation of a salt bridge between 

the newly attached amino group of the ligand and Asp184 is shown. 

For the hinge binder with the most promising substitution pattern the amino derivatives 

have been synthesized. Introducing the additional amino function to the lead structure 

creates a novel stereo center. The docking simulation with FlexX was consulted to 

predict the required stereochemistry. The docking tool suggests the S-phenylglycine 

derivatives as the active ones. Since synthesis required introduction of an α-amino acid, 

availability of chiral starting materials was crucial. Therefore, both stereo isomers of the 

unsubstituted phenylglycine were considered. In the next synthesis round we omitted 

the meta-methoxy group at the phenyl acetic acid compounds. Thus, enantiomerically 

pure compounds could be used as commercially available starting material.  

Table 6.2 displays the affinity data determined by SPR for the second synthesis cycle. 

Unfortunately, the affinity could not be enhanced as expected. The affinity of the 

synthesized candidates remained in the one-digit micromolar range. As a direct 

comparison of similarly substituted derivatives shows, the affinity of, e.g. compound 1 

with respect to compound 7 could be increased from 70 µM to 3.4 µM and 

simultaneously the LE improved from 0.27 to 0.38. Equally the affinity of compound 2 

and compound 8 could be increased from 35 µM to 2.4 µM and the LE enhanced from 

0.28 to 0.37. For the compounds pair 3/11 potency is nearly similar 6.5 µM and 

>10 µM. As LE could be increased in the second synthesis cycle in almost all cases, 
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introduction of an amino group appeared quite promising even though affinity could not 

be enhanced as expected. 

Table 6.2 Affinity data achieved for the derivatives of the second synthesis cycle. 

Name Structure 
Kd 

[µM] 

LE 

[kcal/mol*heavy 

atom ] 

6 
N

N
H

O
OH

NH
3
+   
 Cl

 -

 

3.8 0.31 

7 N
N
H

O
OH

NH3
+   
 Cl

 -

 

3.4 0.38 

8 N
N
H

O
OH

OH NH
3
+   
 Cl

 -

 

2.4 0.37 

9 

OH

Br

N
N
H

O

NH3

+   
 Cl

 -

 

1.8 0.38 

10 N
N
H

O
OH

F NH
3
+   
 Cl

 -

 

>10
*
  

11 N
N
H

O
OH

OH NH
3
+   
 Cl

 -

 

>10
*
  

*
 did not reach saturation state 
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Fortunately, crystal structure determination of two examples of the second synthesis 

cycle was successful. Figure 6.7 displays the crystal structures with compounds 9 and 

11. Both ligands address similarly to the initial seed the hinge region. The introduced 

amino group builds, as expected, the newly formed salt bridge with Asp184 (Figure 

6.7).  

 

Figure 6.7 Top: crystal structure of compound 9 of the second synthesis cycle. Bottom: Crystal structure 

of compound 11.  

With respect to the G-loop region of the binding pocket, the ligands of the first and the 

second synthesis round differ slightly in orientation (Figure 6.8). As a result of the 

newly formed salt bridge, the ligands of the second round are dragged towards Asp184. 

Thus, the initially designed H-bond between the carbonyl functionality and Lys72 is 

ruptured. The distance in the first series amounts to 2.8 Å (Figure 6.8 top, dashed red 

line) and the distance in the second series increases to 4.2 Å (Figure 6.8 bottom, dashed 

blue line). 
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Figure 6.8 Top: Crystal structure of compounds 1 (carbons light blue) and 9 (carbons violet), Bottom: 

Crystal structure of compounds 9 and 11 (light blue). Protein carbons are colored white; oxygen red and 

nitrogen in blue. 

For the compounds of the first cycle we expected some of the potency to result from the 

H-bond formed by their carbonyl functionality with Lys72 and from the aromatic 

interactions of the benzene moiety of the former phenyl acetic acid component. For the 

derivatives of the second cycle the H-bond between Lys72 and this carbonyl group is 

lost and the aromatic group is partly pushed out of its position as a price to form the 

new salt bridge. Anyhow, we could gain LE in the second design cycle, suggesting a 

more favorable contribution of the salt bridge compared to the C=O --- Lys72 H-bond 

and the geometrically slightly better contacts of the aromatic portion. 

To combine all interactions in a more favorable geometry, we initiated a third design 

cycle. We planned to introduce a spacer of one and two CH2 groups to place the amino 
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group in a more optimal position, still allowing the favorable geometry of the remaining 

skeleton as observed for our leads of the first design cycle. 

6.3.5 Introduction of a spacer 

In our third synthetic cycle we concentrated on the most promising hinge portions, the 

ortho Br-phenol or meta hydroxyphenol scaffolds. The phenyl acetic acid portion of our 

lead series, anticipated to occupy the back part of the pocket, has not been further 

optimized. The contribution of a methoxy substituent as investigated in our first series 

appeared not very promising. Therefore, we now considered a meta-chloro substituent 

as it appears for structural reasons ideally placed to form a chlorine-π interaction with 

Phe54. Table 6.3 summarizes the affinity data found for the derivatives of the third 

cycle.  

Table 6.3 Affinity data achieved for the derivatives of the third synthetic cycle. 

Name Structure 
Ki 

[µM] 

LE 

[kcal/mol*heavy 

atom ] 

12 

OH

Br

N
N
H

O

NH
3
+   
 Cl

 -

 

0.23 0.41 

13 

OH

Br

N
N
H

O

Cl

NH
3
+   
 Cl

 -

 

0.11 0.41 

14 

OH

Br

N
N
H

O

NH3
+   
 Cl

 -

 

0.36 0.38 
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15 

OH

Br

N
N
H

O

Cl

NH3
+   
 Cl

 -

 

0.20 0.38 

16 

OH

Br

N
N
H

O

NH
3
+   
 Cl

 -

 

10.89 0.31 

17 

OH

N
N
H

O

OH
NH3

+   
 Cl

 -

 

0.85 0.36 

18 

OH

N
N
H

O

Cl

OH
NH3

+   
 Cl

 -

 

0.33 0.39 

19 

OH

N
N
H

O

OH

NH3
+   
 Cl

 -

 

0.87 0.38 

The affinity increases for both, the compounds with the one- and two-membered 

methylene spacer. In the second cycle we introduced α-amino acids which are well 

accessible as enantiopure starting materials. Thus only E/Z isomers have to be regarded 

which were always produced at the hydrazone linker. In the third cycle we could not 

start as easily with similar enantiopure material to introduce the β- and γ- amino acids as 

they are not commercially available. The synthesis created therefore both stereo isomers 

at the introduced chiral center along with E/Z isomerism. Due to the mixture of four 

compounds being measured in the assay, some unspecific binding might be overlaid and 

therefore, it is important to be careful with the interpretation of the assay values. 
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Nevertheless, for compound 12 with a single CH2 spacer the affinity could be enhanced 

by a factor of 7 to 230 nM. The additional meta-chloro substituent in compound 13 

further improved potency to 111 nM.  

The derivatives with a two-membered CH2 spacer exhibit affinities of 359 nM for 

compound 14 and 200 nM for the corresponding meta-chloro derivative compound 15. 

Obviously this design cycle provided the affinity boost as expected for the introduction 

of the amino group. As there was an enantiomerically pure β-amino acid commercially 

available lacking the chloro substituent, however showing the wrong stereo chemistry at 

the chiral center, we also synthesized this derivative for validation purposes. It loses 

affinity (compound 16 (11 µM) vs. compound 12 (0.23 µM)) and underlines the 

importance of correct stereochemistry. Apart from our R-/S- chirality differences we 

face in all derivatives E/Z isomerism giving rise to a compound ratio between 20-80 % 

to 50-50 % according to NMR assignment. Considering that the sample subjected to our 

assay is actually a mixture of four diastereomers and keeping in mind that inversion of 

the stereochemistry could result in an affinity loss of nearly two orders of magnitude, 

most likely the active stereoisomer from our diastereomeric mixture is a rather potent 

one- to two-digit nanomolar inhibitor.   

We could determine structures with compounds 14 and 15 which also gave clarity about 

the stereochemistry of the most potent isomer. Figure 6.9 illustrates the binding mode of 

both compounds. The phenol moiety of compound 15 addresses, as in all examples, the 

hinge region and the carbonyl function interacts via an H-bond with Lys72; the amino 

function forms a salt bridge to Asp184 and an H-bond to Asn171; and the meta-chloro 

substituent interacts via a Cl-π stacking with Phe54. For compound 14, the phenol 

moiety addresses, similar to compound 15, the hinge region. The H-bond to Lys72 is 

also present. The amino function of the ligand shows in this case, however, two 

different conformations. One is similar to the conformation observed for compound 15. 

In the crystal structure this conformation is populated to 55 %. In the other 

conformation, the ligand amino function interacts with Thr51 instead of Asp184 and 

Asn171 (Figure 6.9 bottom) which shows the ligand amino side chain in particially 

eclipsed instead of gauche geometry. The second conformation and the competitive 

interaction with uncharged Asn171 might give an explanation why the compounds with 
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one spacer atom show a slightly better affinity. The previously described water 

mediated interaction to Glu127 is also present in this case. 

 

 

Figure 6.9 Top: Crystal structure of compound 15 in complex with PKA. This is a preliminary structure. 

Left and right picture are perpendicular. Bottom: Crystal structure of compound 14. Ligand carbon atoms 

are colored in violet; protein carbon in white; oxygen in red and nitrogen in blue. Electron density map is 

shown in green mesh at a ζ-level of 3.0. Left and right picture are perpendicular.  

Figure 6.10 illustrates a superposition of compounds 3, 9, 15 from the different design 

cycles. In all cases the phenol moiety interacts with the hinge region. For derivatives of 

the first and third cycles interactions between the ligand‟s carbonyl functions and Lys72 

are well established. In the second cycle, this H-bond is largely expanded due to the 

newly formed salt bridge introduced here. The terminal aromatic portion is dragged out 

of the optimal position. In the third cycle, this aromatic portion returns back and 

superimposes remarkably well with the geometry observed for the first cycle. The 

amino functions of the molecules 9 and 15 resulting from the second and third cycle are 

not superimposed, as their amino groups are separated by different spacer length. They 

both interact with Asp184. For 15 we observed additionally an H-bond with Asn171.  
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Figure 6.10 Superposition of compound 3 from the first cycle (carbon pink), compound 9 from the 

second cycle (carbons green) and compound 15 from the third cycle (carbon violet). The protein carbons 

are colored in light blue; oxygen in red and nitrogen in blue.  

 

6.4 Conclusion 

The experimentally detected probe molecule phenol has been used as a seed in 

combination with a computational HotSpots analysis as a starting point for a fragment-

type de novo design study. We generated an initial lead with 70 µM potency. The 

affinity of this starting structure could be increased to nanomolar potency through three 

iterative design cycles. In the first cycle the affinity could be increased to 6.5 µM and 

LE from 0.27 to 0.31. In the second cycle the affinity could be enhanced only 

marginally, but LE could be improved to 0.38. The minor improvement resulted from a 

non-ideal geometry of the groups introduced to the lead skeleton. One previously 

introduced polar interaction was sacrificed to form a newly introduced second one. The 

redesigned compounds from the last synthesis round are now in the low nanomolar 

range. Definite affinity assignment is difficult, as the final products yielded by the 

applied synthesis scheme resulted in a mixture of four diasteroisomers. However, 

crystal structure analysis shows which stereoisomer is the most potent binder. Targeted 

synthesis of the expected less potent stereoisomer indicates an affinity loss of about two 
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orders of magnitude and suggests strong dependence of binding affinity on the correct 

stereochemistry of the ligands. 
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7 Early Steps of G-loop opening for Protein Kinase A (PKA) in 

complex with Phenol 

7.1 Introductory Remarks 

The present study is based on a crystal structure of Protein Kinase A (PKA) in complex 

with phenol (PDB code: 3NX8). The analyzed structure is identical to the one already 

used as starting point in the design study presented in chapter 6 (page 93). This study 

was carried out in collaboration with Dr. Rafi Ahmad (The Norwegian Structural 

Biology Centre, University of Tromsø, Norway).  

7.2 Introduction 

Kinases, alternatively known as phosphotransferases, are enzymes which can 

phosphorylate target enzymes. Through this phosphorylation, the target enzyme is 

activated. The adversaries of kinases are the phosphatases which can remove phosphate 

groups from target enzymes. This dephosphorylation deactivates the target enzyme.  

.  

Figure 7.1 A schematic overview of the function of protein kinases is displayed.
123

 

Usually the terminal phosphate group of ATP is transferred to the hydroxyl group of a 

serine, threonine or tyrosine of the target enzyme (Figure 7.1). Due to the universal 

applicability of this activation mechanism kinases are involved in many different 

physiological processes e.g. transcription
124

 or apoptosis.
125

 One kinase can activate 

different targets. Therefore, the three-dimensional structures of many kinases show 

strong adaptive properties. Figure 7.2 displays the overall structure of PKA colored by 
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B-factors. The three-dimensional structure consists of different loop regions. These 

regions are colored in red as they have large B-factors due to high residual mobility. 

The glycine rich loop (G-loop) forms the top of the ATP binding site and is known to be 

structurally rather mobile.     

 

Figure 7.2 Left: The overall backbone structure of PKA is presented color-coded by B-factor. Regions 

colored in red are highly flexible and regions in blue are less flexible. Right: The G-loop region of PKA 

colored by B-factor (min 1.0Å
2
, mean 30.8 Å

2
, max 99.9 Å

2
). (pdb code: 1JLU) 

According to Taylor et al.
120

 three different conformational orientations of the rather 

flexible G-loop can be described. The structure of uncomplexed apo-enzyme of PKA 

has been determined in an open form of the G-loop. A kind of “intermediate form” is 

the most frequently found state in many PKA examples in the PDB database, as it 

adopts its geometry when a ligand binds to the hinge region. In complex with ATP, the 

closed form of the G-loop is found. This can be explained by the interactions 

experienced between the phosphate groups of ATP and the G-loop. Figure 7.3 

schematically shows the three possible conformations giving the trace of the backbone 

chain in three representative examples (pdb code: 1L3R, 1JLU, 1J3H). 
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Figure 7.3: Three known conformations of the G-loop are shown. In blue PKA is displayed in complex 

with ATP (1L3R) (closed form), in red (1JLU) the loop is found in a medium position and in yellow the 

apo PKA (1J3H) (open conformation) is given. Left and right images show the binding site in 

perpendicular orientation. 

Starting point of this study is a crystal structure of PKA in complex with phenol (PDB 

code: 3NX8) which interestingly shows the G-loop in a geometry closing up the ATP 

site even further as in the complex with the natural substrate. Figure 7.4 shows this 

complex. Three phenol molecules are bound to the protein. Two are placed in the ATP 

binding site of the kinase. One is bound to the hinge region and the other one is located 

below the glycine-rich loop (G-loop). The third phenol is found on top of this loop 

outside the catalytic center and could describe a potential new allosteric site. 
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Figure 7.4 Crystal structure of PKA in complex with three phenol molecules. The protein is shown in 

cartoon and the three phenols are presented as green sticks, red oxygens. Phenol1 is sitting on top of the 

G-loop (orange), phenol2 is bound to the hinge region and phenol3 is bound underneath the G-loop. 

The three orientations of the G-loop, all of which are described in literature 
120

, were 

compared with the observed position of the G-loop conformation in the PKA-phenol 

complex (orange). Interestingly, the G-loop is folded into the ATP binding site by an 

additional 4 Å (based on Cα Ser53) compared to the PKA-ATP complex (blue) (Figure 

7.5). Due to a relibase search (Jan. 2010) for PKA‟s in the PDB this observed G-loop 

conformation corresponds to the most inward-folded geometry of the 85 deposite PKA 

structures, the G-loop is fixed by two newly formed hydrogen bonds.  
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Figure 7.5 The three known G-loop orientations together with our PKA-phenol complex (orange) are 

shown. In blue, PKA in complex with ATP (1L3R), in red (1JLU) in a medium position, in yellow the 

apo PKA (1J3H) and in orange PKA in complex with phenol are shown. The images on the left and right 

are perpendicular. 

Two hydrogen bonds are formed by the backbone nitrogen and the hydroxyl group of 

Ser53, which resides on top of the G-loop, with the terminal carboxylate function of 

Asp184. The distances of the hydrogen bonds are 2.9 Å and 3.0 Å, respectively (Figure 

7.6). 
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Figure 7.6 The PKA-phenol complex is shown. The newly formed hydrogen bonds are represented by 

red dashed lines. The distances of the hydrogen bonds are 2.9 Å and 3 Å, respectively. 

As this complex represents the most inward-folded complex, the question arisis whether 

the third non-active-site phenol molecule found on top of the loop induces this G-loop 

folding and whether this could indicate a possible new allosteric binding site. If the G-

loop is in its closed state, ATP cannot enter the ATP-binding site and this might 

represent an alternative way to inhibit the kinase. Accordingly, we tried to obtain first 

insights of small structural movements of secondary structure elements by molecular 

dynamics (MD) simulation using the program AMBER.
126

  

7.3 Results and Discussion 

7.3.1 MD overview 

A series of six MD simulations was performed to investigate first steps of the G-loop 

opening. MD 1 considered all three phenol molecules to be part of the complex. We 

would expect for this structure that the G-loop would stay in a closed state.  

MD 2 was started with the two phenol molecules in the ATP binding site and the phenol 

molecule sitting on top of the G-loop was removed. If the phenol molecule occupies a 

putative allosteric pocket, we would anticipate that the G-loop would start to open up.  

MD 3 was performed considering the phenol molecule binding to the hinge region of 

the ATP binding site and the phenol molecule sitting on top of the G-loop. The phenol 
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molecule occupying the hydrophobic niche under the G-loop was removed. We would 

expect that during this simulation, the G-loop stays in a closed conformation as the 

proposed allosteric phenol molecule is present. 

MD 4 was performed representing the apo-enzyme starting with the geometry of the 

PKA-phenol complex. In this case all three phenol molecules were removed. The 

starting structure has an in-folded G-loop conformation. In this case we anticipate the 

G-loop to start the opening cascade.  

MD 5 was also performed representing the apo-enzyme starting with the geometry of 

the PKA-phenol complex. This expanded calculation was performed on a GPU server. 

Also in this case we anticipate the first opening movements of the G-loop. 

MD 6 was performed representing the apo-enzyme of PKA this time starting with the 

geometry of PKA with our virtual screening hit complex (chapter 6). In this case the G-

loop is in an intermediate position and we suggest the G-loop to close up or to oscillate.  

7.3.2 MD 1 considering all three phenols 

We first analyzed whether the observed crystal structure complexed by the three phenol 

molecules remains stable or whether an intermediate opening during the simulation is 

observed. The presence of the above-mentioned hydrogen bonds was used as an 

indicator to study the behavior of the G-loop along the MD trajectory. 

The hydrogen bonds between the backbone NH of Ser53 and the serine hydroxyl OH 

group and the carboxylate oxygens of Asp184 have been recorded in terms of their 

mutual distances. We defined as occurrence limit for the formation of a hydrogen bond 

a distance ≤ 2.2 Å between the hydrogen and the corresponding heavy atom. If a 

hydrogen-bond was present in a pico second time frame under consideration, the value 

for this frame was set to 1, else it was set to 0. For visualization the data points had to 

be condensed. 

For each picosecond we checked for the occurrence of a hydrogen bond; if a hydrogen 

bond was present, the value was set to 1; and if no hydrogen bond was present the value 

was defined to be 0. For the binned 100 ps timeframe we could easily sum the defined 

values and calculate a % value. The % values are presented on the y-axis. 
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Figure 7.7 displays the formation of a hydrogen bond between the hydroxyl group of 

Ser53 and the two carboxylate oxygens of Asp184. The statistics show that the hydroxyl 

group of Ser53 interacts with both oxygens of the acidic group, intermediately swapping 

the two oxygens as interaction partners. During the first approximately 11 ns it is mostly 

interacting with the OD1 oxygen. For the next 3 ns, it changes its partner to the OD2 

oxygen. Obviously the acid group performs an intermediate jump rotation of about 

180°. However, overall the hydrogen bond is present during the entire MD simulation. 

 

Figure 7.7 The occurrence of hydrogen bonds between the hydroxyl group of Ser53 and the two oxygens 

of the acid function of Asp184 is shown. Left picture is representing the OD1oxygen and the right picture 

presents the OD2 oxygen of Asp184. 

Table 7.1 summarizes the H-bond networks occuring during the MD simulations. 

The second putative hydrogen bond between the backbone NH and the carboxylate 

function of Asp184 is constantly present along the entire MD trajectory. Also here the 

actual interaction partner of NH found in the carboxylate group is swapped 

(Supplementary Informations).  

In total, an occurrence of more than two H-bonds between the functional groups of 

Ser53 and the carboxylate group of Asp184 is observed. This is likely due to the 

classification according to distance cutoffs. Nevertheless, the analysis clearly suggests 

that the short hydrogen bonded contact between Ser53 and Asp184 remains fully intact 

along the entire MD simulation. 
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Table 7.1 The setup of the six MD simulations and resulting H-bond networks is summerized. In the last 

five colums the defined H-bonds occurring during the simulation are listed with their corresponding time 

frames of existence. 

MD Phenol 
Starting 

structure 
Simulation 
time [ns] 

H-bond Network 

 
1 2 3 

  
Asp184
-Ser OH 

Asp166
-Ser OH 

Asp184
- SerNH 

Asp184
-Phe54 

NH 

Asp184
-Thr51 

OH 

1 yes yes yes close 20 0-20 ns - 0-20 ns - - 

2 no yes yes close 20 
0- 

12.5 ns 
12.5- 
20 ns 

0-20 ns - - 

3 yes yes no close 20 0-20 ns - 0-20 ns - - 

4 no no no close 32 6-12 ns 
0-6 ns 

and 12-
32ns 

0-20 ns 6-12 ns - 

5 no no no close 90 0-55 ns - 
0-39 

and 40-
55 ns  

39-
40ns 

and 55-
90 ns 

6 no no no 
inter-

mediate 
90 - - - - - 

 

In summary we can conclude that over the simulation time of 20 ns, the G-loop does not 

open for the complex containing to all three phenols. 

7.3.3 MD 2 lacking the phenol molecule in the assumed allosteric site 

It was even more interesting to investigate whether the structure would open in case the 

phenol molecule bound on top of the G-loop is absent during a molecular dynamics run. 

The other two phenol molecules were considered to be present in the active site during 

the MD simulation. To answer this question, we performed a 20 ns second MD 

simulation. The occurrence of the Ser53-Asp184 hydrogen bonds was again used as an 

indicator for the conformational properties of the G-loop during the MD simulation. 

The hydrogen bond between the hydroxyl group of Ser53 and either one of the two 

oxygens of the acidic function of Asp184 remains intact for the first approximately 

12.5 ns. At this point the hydrogen-bond ruptured and never re-forms. This could be a 

first indication that the G-loop opens up along an irreversible pathway. 
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To obtain a more detailed insight into the trajectory, an additional hydrogen bond must 

be analyzed. Once the hydroxyl group of Ser53 stops its interaction to Asp184 it rotates 

its hydroxyl group and builds another hydrogen bond to Asp166 (2.7 Å). Figure 7.8 

shows the two different orientations of the Ser53 OH side chain. It can obviously 

interact with both carboxylate groups of either Asp184 or Asp166 (Table 7.1).  

After 12.5 ns a new hydrogen bond between the hydroxyl group of Ser53 and the 

carboxylate function Asp166 is formed. Overall the hydroxyl group of Ser53 is involved 

in hydrogen bonding along the entire 20 ns simulation time. The simulation time of 

20 ns shows the change from Asp184 (2/3 of the time) to Asp166 (1/3 of the time) as 

one singular transition. Therefore, no conclusions of the occurrence frequency and the 

reversibility of this event can be drawn. However, the simulation underlines that both 

geometries can be adopted, likely with rather similar energy content (Table 7.1). 

 

 

Figure 7.8 The different orientations of the side chain of Ser53 are shown. Left: the hydrogen-bond is 

formed with Asp184. Right: The hydrogen-bond is formed with Asp166. 

A second hydrogen bond between the backbone NH of Ser53 and the terminal 

carboxylate of Asp184 can be observed. This contact is present over the entire 20 ns. 

During the time span of the MD simulation, the acidic function of Asp184 frequently 

performs jump rotations, swapping the interaction partner of the neighboring Ser53 NH. 

Obviously the movement of the side chain of Ser53 resulting in the H-bond formation to 

Asp166 has no influence on the hydrogen-bond contact of Ser53 NH and Asp184 

carboxylate. 
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In summary, the G-loop does not open in a 20 ns MD simulation. When the phenol 

molecule which binds on top of the loop is removed, one of the initial hydrogen bonds 

present in the complex with the three phenol molecules is lost due to the rotation of 

Ser53 OH. This side chain forms a new hydrogen bond to the carboxylate group of 

Asp166. Thus, over the whole simulation time the inventory of locally formed hydrogen 

bonds remains unchanged. The hydrogen bond build by the backbone NH to the 

carboxylate group of Asp184 remains unruptured during the 20 ns simulation period. 

Removal of the assumed allosteric phenol molecules shows some impact on the local H-

bonding network as the swapping of the Asp184 to Asp166 contact of Ser53 OH is only 

observed, once this phenol is not present. However, overall the G-loop remains in 

virtually the same geometry as observed in the crystal structure with the three phenol 

molecules. The change of the H-bond network suggests a pathway for the early step of 

the G-loop opening. 

7.3.4 MD 3 simulation lacking the phenol molecule below the G-loop 

In a further simulation run it was investigated whether the loop would open up in case 

the phenol molecule below the G-loop is removed. To answer this question another 

20 ns MD simulation was computed. The phenol molecule occupying the hinge region 

and the phenol molecule occupying the possible allosteric site were considered to be 

present during the MD simulation. The occurrence of the crucial hydrogen bonds has 

again been used to record the properties of the G-loop. 

The hydroxyl side chain of Ser53 interacts with the carboxylate function of Asp184 

over the entire MD trajectory. The rotation of this side chain, which was observed in the 

former simulations, cannot be seen in this case. Also the hydrogen-bond between the 

backbone NH group and the carboxylate function of Asp184 is constantly present along 

the entire MD simulation (Table 7.1).  

Summarizing the results of this simulation, the G-loop does not open within the 20 ns.  
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7.3.5 MD 4 simulations using the apo enzyme of PKA 

In the following we addressed the situation that results from the total removal of all 

three phenol molecules during the MD simulation. In principle, this should lead to the 

uncomplexed apo enzyme. It has been described in literature that the G-loop adopts an 

open conformation in this situation.
120

 Thus, we would expect the G-loop to open up 

during our simulation. As major movements are required, we expanded the computing 

time to 32 ns.  

In this simulation the rotation of Ser53-OH towards Asp166 occurs in the first frames of 

the trajectory. However, the hydrogen bond between the hydroxyl side chain of Ser53 

and the carboxylate group of Asp184 is reestablished during the time interval of ~ 6 ns – 

~ 12 ns. During the remaining time, the hydroxyl group is rotated towards Asp166 

(Table 7.1). Accordingly the Ser53 OH group is hydrogen-bonded during the entire MD 

simulation. Also the hydrogen bond between the backbone NH group and the 

carboxylate function of Asp184 is constantly present along the entire MD simulation. 

Further analysis of the trajectory indicates that another hydrogen bond is formed in the 

G-loop region. Figure 7.9 displays two snapshots of the MD simulation. The left part of 

the figure shows the hydroxyl group of Ser53 pointing toward Asp184. This snapshot is 

taken at about 10 ns. On the right hand side of the figure the hydroxyl group is pointing 

towards Asp166. Thereby, Phe54 is also shifted, leading to a new hydrogen-bond 

between the backbone nitrogen of Phe54 and the oxygen of Asp184. 
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Figure 7.9 The different orientations of the side chain of Ser53 are shown. Left: The hydrogen bond is 

formed between the hydroxyl group of Ser53 and a carboxylate oxygen of Asp184. Right: The hydrogen 

bond is formed between the hydroxyl group of Ser53 and one of the carboxylate oxygens of Asp166, an 

additional hydrogen bond between the backbone nitrogen of Phe54 and the oxygen of Asp184 can be 

observed. 

The newly formed hydrogen bond is present while the side chain of Ser53 is pointing 

towards Asp166. In the time slot between 6 ns – 12 ns the new hydrogen bond is hardly 

present. During this period the side chain of Ser53 points toward Asp184 most of the 

time. 

Obviously also during this 32 ns simulation the G-loop does not open. One of the initial 

hydrogen bonds found in the triphenol complex disappears upon rotation of Ser53. The 

side chain then forms a new hydrogen bond contact to Asp166 and simultaneously the 

backbone nitrogen of Phe54 experiences also a new hydrogen bond to Asp184. Thus, 

over the whole simulation period at least two hydrogen bonds are present. Mostly even 

three hydrogen bond connections can be recorded. Opening of the G-loop is not 

achieved in the 32 ns simulation.  

7.3.6 MD 5 simulation using the apo enzyme of PKA  

This MD simulation was started under very similar conditions as MD4, however to 

collect the trajectory over a longer time span (90 ns) we moved to AMBER11. 

AMBER11 provides the new feature to calculate on graphic cards (GPU), which are 

highly parallelized and therefore the calculation time can be reduced dramatically. For 

this simulation we expected the G-loop to open up. 
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The H-bond between the hydroxyl group of Ser53 and the acid function of Asp184 is 

mostly present during the first 55 ns; only for a short time interval (~ 2.5 ns) around 

40 ns this H-bond is not present. Surprisingly, after the 55 ns simulation period the 

hydroxyl group does not form any H-bond. In the MD simulations presented previously 

the hydroxyl group rotated towards Asp166 and formed an H-bond with the acid 

functionality of this adjacent residue.  

The H-bond between the backbone NH and the acid function of Asp184 is present for 

the first 55 ns with a short period of a complete loss in the frames next to ~ 40 ns. After 

the time period of the first 55 ns this H-bond breaks irreversibly.  

As the H-bonds previously observed in all other simulations are broken after 55 ns 

simulation time; we suggest that the G-loop further opens after that point. Nevertheless 

considering the overall geometry, the loop does not move in the remaining time span of 

35 ns MD simulation to a geometry which can be described as an open conformation. 

Figure 7.10 superimposes ten representative loop geometries. 

It can be seen that the G-loop remains inward-folded over the entire simulation time. 

These observations suggest that another H-bond network is formed.  
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Figure 7.10 Ten representative orientations of the G-loop along a 90 ns MD simulation of the apo form 

of PKA are shown. 

Detailed analysis shows that a new H-bond contact is formed between the hydroxyl 

function of Thr51 and the acid function of Asp184. Here, the acid function of Asp184 

rotates by approximately 90° (Figure 7.11). 

 

Figure 7.11 Left: The H-bond between Asp184 and Ser53. Right: The H-bond between Asp184 and 

Thr51 formed after 90° rotation of Asp184. 

This newly formed H-bond has already been transiently present at ~ 40 ns and it 

remains stable from 55 ns until 90 ns. Thus, Asp184 remains involved in at least one H-

bond over the entire simulation. One H-bond seems to be strong enough to hold the loop 

in a closed state. 
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7.3.7 MD 6 simulation using an intermediate G-loop conformation as a 

starting point 

A second expanded simulation (90 ns) with AMBER11 on GPU‟s started with an 

intermediate G-loop geometry. In this case we expect the loop to close up or to oscillate. 

The question is whether it can oscillate to a conformation which is able to form the 

above described H-bonds. 

Figure 7.12 shows some representative cluster means over a time period of 90 ns. The 

G-loop is moving over a rather large range of 9 Å (based on Cα of Ser53). Figure 7.13 

also includes the PKA-phenol complex (gray). The G-loop conformation of the PKA-

phenol complex is folded in by another 7 Å (based on Cα of Ser53) compared to the G-

loop conformations of the MD simulation.  

The G-loop of this simulation moves between the conformations known from literature. 

The loop oscillates between the apo enzyme, which is assigned to an open state and the 

ATP bound conformation which is known to be in a closed state. The simulation 

departing from the intermediate state does not indicate any movements of the G-loop 

towards a closed conformation. The trajectory does not pass through a conformation 

similar to the one present in our triphenol complex. 
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Figure 7.12 Ten representative clusters of a 90 ns MD simulation are shown. Starting point was an 

intermediate open structure, observed with the virtual screening hit (PDB code: 3OOG) presented in 

Chapter 6. Left and right picture are perpendicular.  

 

 

Figure 7.13 Ten representative clusters of a 90 ns MD simulation are shown. Starting point was an 

intermediate open structure observed with the virtual screening hit presented in chapter 6. In gray the G-

loop conformation found in the PKA-triphenol complex is displayed. Left and right picture are 

perpendicular. 
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7.4 Conclusions and Outlook 

Apparently, a time window of 90 ns is not large enough to observe major 

conformational transitions of the G-loop. 

Vogtherr
127

 and colleagues observed in their NMR studies that movements of the DFG-

loop in p38 kinases occurs on a rather long time scale clearly beyond the 90 ns 

considered in this study. This result leads to the conclusion that we would have to 

expand our simulation time by at least another order of magnitude. Due to limitations in 

computer power, the required calculations are currently hardly possible.  

The movements of single amino acids observed at the beginning of the simulation and 

leading to different H-bond networks indicate that small initial movements are the start 

for larger secondary structure movements supposedly initiating the overall irreversible 

opening of the G-loop.  

A 20 ns simulation considering all three bound phenol molecules remains stable over 

the entire simulation time. Removal of the anticipated „allosteric phenol‟ seems to allow 

for some larger movements also involving the swapping of H-bonds formed by Ser53. 

Moving to a simulation with all three phenol molecules removed from their crystal 

structure should relax into the geometry observed for the apo protein. However, as 

described, full relaxation to this state cannot be observed in the considered simulation 

time span. Instead some incipient changes initiated by rotations of Ser53 and Asp184 

seem to be the starting points for the irreversible opening of the G-loop. Nevertheless, 

the simulations also show that the presence of at least a single H-bond across these 

residues is sufficient to hold the G-loop in closed state. We interpret the observed 

movements as early steps towards an opening of the G-loop as found in the crystal 

structure of the apo protein. 
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7.5 Methods  

7.5.1 MD setups 

For the MD 1-5 the starting geometry was the PKA-phenol complex (PDB code: 

3NX9). For the different MD simulations the various phenol molecules were removed 

as described. For MD 6 the PKA-virtual screening hit complex structure (Chapter 6, 

PDB code: 3OOG) was used after removing the ligand.  

All preparing steps for the protein were performed using AMBER Tools 1.4
128

 using the 

ff99SB force field. For the phosphoserine and the phosphothreonine the contributed 

parameters form the University of Manchester were used ( phosphoserine with 

unprotonated phosphate group, SER-PO3 and phosphothreonine with unprotonated 

phosphate group, THR-PO3).
129

 

The parameters for the phenol molecules were computed with ANTECHAMBER
130

 

using the GAFF force field.
131

 

Hydrogen bond atoms were edited using the AMBER templates and two sodium 

counter ions were added. The TIP3P water box was added as an octahedron around the 

protein using a boxsize of 10 Å.  

The initial minimization of the solvent and ions was calculated in 3000 steps. The MD 

simulations were started by heating the system to 300 K over a time period of 50 ps and 

were equilibrated over a time span of 2.5 ns keeping the pressure and the volume 

constant. 

The simulations MD 1-4 have been calculated using the parallel pmemd of 

AMBER10
126

 on a supercomputer based in Tromsø, Norway. The expanded simulations 

(MD 5 and MD 6) have been calculated in-house on a CUDA based GPU server using 

AMBER11.
126

  

The analysis of the hydrogen bonds and the clustering was performed by ptraj, a 

program of AMBER Tools 1.4.
128

 

The hydrogen-bond plots were drawn with gnuplot.
132
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The PyMOL Molecular Graphics System, Version 1.1 was used to visualize the 

molecules and the pictures were rendered with this program.
75

 

7.6 Supplementary Informations 

7.6.1 MD 1 plots 

 

Figure 7.14 The occurrence of hydrogen bonds between the backbone NH of Ser53 and the two oxygens 

of the acid function of Asp184 are shown. In all following picture, the left picture represents the OD1 

oxygen and the right picture presents the OD2 oxygen of the carboxylate function of Asp184. 

7.6.2 MD 2 plots 

 

Figure 7.15 The occurrence of hydrogen bonds between the hydroxyl group of Ser53 and the two 

oxygens of the acid function of Asp184 are presented. Beyond about 12.5 ns the contact to Ser53 moves 

irreversibly into an H-bond towards Asp166 (s. Figure 7.16)  
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Figure 7.16 The occurrence of hydrogen bonds between the hydroxyl group of Ser53 and the oxygens of 

the acid function of Asp166 is shown. These contacts are only formed after 12.5 ns of simulation time. 

 

Figure 7.17 The occurrence of hydrogen bonds between the backbone nitrogen of Ser53 and the two 

oxygen of the acid function of Asp184 is shown. 
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7.6.3 MD3 plots 

 

Figure 7.18 The occurrence of hydrogen bonds between the hydroxyl group of Ser53 and one of the two 

oxygen of the carboxylate group of Asp184 is presented.  

 

 

Figure 7.19 The occurrence of hydrogen bonds between the backbone nitrogen of Ser53 and the two 

oxygens of the acid function of Asp184 is shown. 
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7.6.4 MD 4 plots 

 

Figure 7.20 The occurrence of hydrogen bonds between the hydroxyl group of Ser53 and the two oxygen 

of the acid function of Asp184 is shown. 

 

Figure 7.21 The occurrence of hydrogen-bond between the hydroxyl group of Ser53 and the oxygen of 

the acid function of Asp166 is shown. 

 

 

Figure 7.22 The occurrence of hydrogen bonds between the backbone NH group of Ser53 and the two 

oxygens of the acidic function of Asp184 is shown. 
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Figure 7.23 The occurrence of hydrogen bonds between the backbone nitrogen of Phe54 and the two 

oxygens of the acid function of Asp184 is shown. 

7.6.5 MD 5 plots 

 

Figure 7.24 The occurrence of hydrogen bonds between the hydroxyl group of Ser53 and the two oxygen 

of the acid function of Asp184 is shown. 

 

 

Figure 7.25 The occurrence of hydrogen-bond between the backbone NH of Ser53 and the oxygen of the 

acid function of Asp184 is shown. 
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Figure 7.26 The occurrence of hydrogen bonds between the hydroxyl group of Thr51 and the two 

oxygens of the acid function of Asp184 is shown. 
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8 New Scaffolds for Aldose Reductase: A Virtual Screening Study 

8.1 Introductory Remarks 

The present study was accomplished in cooperation with Jakub Gunera who performed 

his bachelor thesis
133

 and Cornelia Koch, who accomplished a PhD thesis on aldose 

reductase. Dr. Sascha Brass synthesized some of the suggested virtual screening hits. 

8.2 Drug Design 

One of the greatest challenges in the early stages of drug design is the search for novel 

lead structures. These structures are starting points for the development of potential 

drugs and templates for further optimization. Firstly, the affinity of these scaffolds has 

to be increased towards low nanomolar range, however simultaneously considering 

membrane permeability, lipophilicity and bioavailability. An experimental way to find 

lead structures is the so-called High Throughput Screening (HTS). This very costly 

screening method requires huge compound libraries (~ 1,000,000 compounds), an 

available robust assay and an elaborate experimental setup to screen fully automated the 

library. In consequence, only big companies can afford this method. Due to these high 

costs but also as methodological alternatives, other approaches such as virtual screening 

have been developed to find new leads. This computational method requires structural 

information about the target protein and computational resources. Fortunately, the 

number of determined protein-ligand complex structures has steadily increased over the 

last years (> 72000 structures deposited in the PDB
134

 as of April 2011) and the 

computational resources also became available, so that these approaches have gained 

popularity. By virtual screening even larger ligand libraries (~ 10,000,000 compounds) 

can be screened easily, usually based on a predefined pharmacophore, which comprises 

the physico-chemical properties within the binding site. Another approach is the 

development of new compounds by incremental construction of ligands within the 

binding site. This is called de-novo design.
135
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8.3 Target Family of AKRs 

The aldo-keto reductase (AKR) superfamily contains more than 140 proteins. They 

accomplish many different physiological roles. Most of them are NADP(H)-dependent 

oxidoreductases, which are responsible for metabolization of carbohydrates, steroids 

and prostaglandins. In addition, many other endogenous aldehydes and ketones, but also 

xenobiotics, are metabolized by AKRs. In the following we want to focus on an in-

house target, the human aldose reductase.  

 

Figure 8.1 Aldose reductase in complex with tolrestat (2FZD). Left: A schematic overview of the binding 

pocket and the binding mode of tolrestat. The H-bonds are presented in black as dashed lines, 

hydrophobic interactions are shown by green dashed lines. Right: The crystal structure of tolrestat. The 

key residues are colored gray, tolrestat in green and the co-factor in purple, H-bonds as dashed red lines. 

Figure 8.1 displays the binding pocket of Aldose Reductase. All known inhibitors of 

aldose reductase address the so-called „anion binding pocket‟ which is built by His110, 

Tyr48, Trp111 and the cofactor NADP
+
. Most of the known inhibitors are addressing 

this area of the pocket by a carboxylic acid or by a hydantoin moiety.  

Figure 8.2 displays known inhibitors of aldose reductase. It can be seen that all of these 

compounds exhibit a carboxylic acid or a hydantoin motif.  
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Figure 8.2 Known inhibitors for AKRs. 

 

8.4 Ligand Database and Targeted Library Design 

To embark onto Structure Based Drug Discovery (SBDD) by virtual screening more 

than crystallographic data of the target protein and its receptor-ligand structures are 

necessary. Easily accessible databases of commercially available and by some 

predefined criteria suitable compounds are of great importance to obtain reliable 

screening results. Therefore, the ZINC
136

 database was selected as a matter of choice for 

the ligand database. Out of more than 13 million 3D structures deposited in ZINC, the 

lead-like subset of 1,900,000 entries was selected. The lead-likeness was proposed as a 

further refinement of the concept of drug-likeness
1
, which is a collection of defined 

properties and constraints. These properties have been defined by Lipinski et al. 
1
and 

became recognized as the “rule-of-five”. The rule suggests that low oral availability is 

more probable whenever: 
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- there are more than five hydrogen-bond donors (cumulation of oxygen and 

nitrogen atoms with one or more hydrogens bound) 

 

- there are more than ten hydrogen-bond acceptors (cumulation of oxygen and 

nitrogen) 

 

- the molecular weight is above 500 Da 

 

- the octanol-water partition coefficient logP > 5  

 

ZINC defines lead-like molecules more strictly. They show lower molecular weight 

( < 350 Da) and lipophilicity (logP < 3). 

 

Derivatives of carboxylic acids and hydantoins are suitable functional groups to form 

interactions with key residues of the target protein aldose reductase. Figure 8.2 shows 

known potent inhibitors. As can be seen, all of them are derivatives of carboxylic acids 

or hydantoin. Furthermore, they have aromatic or hydrophobic moieties. Therefore, we 

decided to build a ligand library based on structures including the most prominent 

features found in these inhibitors.  

In the first step, the lead-like data subset of the ZINC
136

 database, containing 1,900,000 

entries, was filtered for carboxylic acid and hydantoin motifs. This substructure search 

was performed with our in-house tool fconv.
72

 The ligand set was reduced to 23,307 

compounds. To further decrease the number of entries, MOE
57

 was used to extract 

molecules with a maximum number of four rotatable bonds. This second filtering step 

reduced the dataset to 8,409 compounds. 

The considered ligand set was complemented by 45 compounds synthesized in the 

group of Prof. Schlitzer, Marburg. These compounds were particularly designed as 

putative inhibitors for aldose reductase. 
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8.5 Conformational and Pharmacophore Search 

As described in section 8.2, large ligand libraries up to 10,000,000 compounds can be 

scanned by virtual screening. As it is impracticable to perform a docking run with 

several million compounds, one of the major steps in the applied work flow of the 

screening process is the successive reduction of the large number of structures to those 

which actually satisfy some predefined crucial requirements. These can be a given 

molecular weight threshold, the number of H-bond donor/acceptor functionalities, the 

number of rotatable bonds or formal charges, etc. The program MOE provides the 

functionality to filter large datasets in terms of sterical and physico-chemical properties. 

Conformational search combined with a pharmacophore hypothesis reduces the initial 

dataset to a set of suitable compounds, which are then subjected to docking. In order to 

check conformance with the predefined pharmacophore hypothesis, an exhaustive 

generation of all biologically relevant conformations of the ligands is highly desirable.  

Therefore, ten conformations for each ligand have been generated leading to ~ 80 000 

conformations. The resulting database was used to perform the virtual screening. A 

pharmacophore constraint was constructed based on the tolrestat complex with Aldose 

Reductase. However, to allow for larger diversity, only two H-bond acceptor constraints 

with respect to His110 and Tyr48 were taken into account. Furthermore, the shape and 

volume of the active site was rebuilt by excluded volume constraints and added as a 

third constraint to prevent steric clashes of ligands with the active site. 

The pharmacophore query revealed 2,957 unique compounds, most of them derivatives 

of acetic acids. These virtual screening hits have been used for the subsequent docking 

approach. 

 

8.6 Docking  

The docking runs were performed with the program FlexX. Furthermore, we used two 

different scoring functions: The parent scoring functions implemented in FlexX and dsx 

(drugscoreX 0.46), an in-house developed scoring function.  

All docking solutions were rescored with dsx (drugscoreX) and the overall best 250 

poses were visually inspected in order to confirm a reliable orientation of ligand 
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functional groups with respect to interactions with the key residues Tyr48, His110 and 

Trp111.  

Among the most promising solutions we found sulfonamide derivatives which interact 

with the key residues via their carbonic acid portion (Figure 8.3).  

 

 

Figure 8.3 The docking solution of SB320 (s. Figure 8.4) is shown; The key residues are presented in 

stick representation; the cofactor NADP
+
 is shown in stick modus; carbon atoms of the cofactor are 

colored in pink; carbon atoms of the protein side chains are colored in gray; carbon atoms of the ligand 

are colored in cyan; oxygens in red; nitrogens in blue and sulphur atoms in yellow.  

We used commercially available compounds for this virtual screening approach, the 

selected sulfonamides were also easily accessible synthetically. Hence, a series of 

compounds was synthesized in-house. Figure 8.4 shows the chemical structures of these 

compounds and the measured Ki values. 
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Figure 8.4 The synthezised compounds with affinity data against aldose reductase  

SB320 is with 920 nM a rather promising starting point for subsequent lead 

optimization. Surprisingly, all other compounds from this narrow compound series 

show almost no inhibition. The predicted docking poses cannot explain the observed 

discriminations in the measured assay data. Therefore, before embarking onto lead 

optimization, a crystal structure determination of the SB320 in complex with aldose 

reductase would be necessary.  
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9 Development of a Thermal Shift Assay 

9.1 Introductory Remarks 

The present study was accomplished in cooperation with Prof. Klaus Reuter, Prof. E. 

Bremer and Marco Pittelkow. 

 

9.2 Introduction 

The experimental characterization of fragment binding to a target protein is still an area 

currently heavily explored. Presently, biophysical methods such as SPR, NMR and X-

ray crystallography or biochemical assays are used to determine fragment hits. In recent 

years, a further assay referred to as thermal unfolding or thermal stability assay has 

become popular to discover fragment hits. Here, protein stabilization due to ligand 

binding is measured as a function of increasing temperature. 

The ability to measure protein stability is a useful tool with regard to many different 

practical applications. For example, it can be used to determine optimal buffer 

conditions for protein storage, or to identify and characterize protein-ligand or protein-

fragment binding. In addition, measurements of protein stability can be used to screen 

for mutations that can lead to changes in protein stability.
137

 

We decided to validate the thermal stability method by performing a case study with 

mutant variants of the enzyme EctD. 

9.3 Concept of Thermal Shift Assay 

Cummings et al.
138

 introduced the concept of the thermal unfolding assay in 2006. 

Protein stability is measured as the ability of a protein to remain in its native folded 

state depending on temperature. This method is based on the real-time measurement of 

the fluorescence of a dye, such as SYPRO Orange, which has affinity for hydrophobic 

parts of a protein. SYPRO Orange shows weak fluorescence in its unbound state in 
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water and hydrophilic environments. However, its fluorescence strongly increases when 

the dye is bound to hydrophobic patches of a protein molecule which become better 

accessible upon protein unfolding. The measured fluorescence is linear to the amount of 

attached dye to the protein. In this method, the protein of interest is subjected to 

stepwise increases in temperature using a real-time PCR machine, in the presence of 

SYPRO Orange. 

Fluorescence is measured and plotted against temperature, enabling determination of the 

melting temperature (Tm). The Tm is usually defined as the inflection point of the 

sigmodial-like curve of fluorescence plotted against temperature. A high melting 

temperature indicates high protein stability.
137-140

 

 

Figure 9.1: Fluorescence of SYPRO Orange is dramatically increased when it is bound to hydrophobic 

patches exposed upon protein denaturation. Protein stability (e.g., Tm) can be estimated by analyzing the 

temperature dependence of fluorescence intensity. Addition of ligands that preferentially bind to either 

the native or denatured protein will affect Tm.
137

 

9.4 Indroduction to EctD  

The biochemical characterization of the ectoine hydroxylase EctD from the moderate 

halophile Virgibacillus salexigens (formerly Salibacillus salexigens)
141

 and from the 

soil bacterium Streptomyces coelicolor
142

 has revealed that the EctD enzyme is a 

member of the non-heme containing Fe
2+

 and 2-oxoglutarate dependent dioxygenases 



Development of a Thermal Shift Assay 

151 

superfamily (EC 1.14.11) (Figure 9.2). Members of this enzyme superfamily are found 

wide-spread in nature and catalyze a broad spectrum of oxidative reactions including 

cyclizations, ring fragmentations, C-C bond cleavages, epimerizations, desaturations, 

halogenations and hydroxylations of widely varying organic compounds.
143-145 

This 

group of enzymes typically couples the decarboxylation of 2-oxoglutarate with the 

formation of a high-energy ferryl-oxo intermediate that acts as a hydrogen-abstracting 

species. The formed Fe(IV)=O species is directly responsible for the oxidation of the 

organic substrate bound by the enzyme. Fe
2+

 and 2-oxoglutarate dependent 

dioxygenases probably constitute the most versatile group of all oxidizing biological 

catalysts.
146

 

Structural studies of a number of Fe
2+

 and 2-oxoglutarate dependent dioxygenases 

revealed a common protein fold that contains a highly conserved iron-binding motif, the 

so-called 2-His-1-carboxylate facial triad.
143-146 

The amino acid sequence of EctD 

possesses this iron-binding motif
141, 142, 147

 and the EctD enzyme catalyzes a type of 

reaction that is common among Fe
2+

 and 2-oxoglutarate dependent dioxygenases.
148

 In 

this reaction, O2-dependent hydroxylation of the substrate ectoine is accompanied by 

the oxidative decarboxylation of 2-oxoglutarate to form succinate and CO2. 
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Figure 9.2: Ribbon representation of ectoine hydroxylase, EctD, with the successive segments of the 

double-stranded -helix (DSBH) colored according to the scheme of Branden & Tooze.
149

 The bound 

Fe
3+

 is shown as a bright blue sphere. A disordered putative loop region connecting DSBH -strands IV 

and V is indicated by a dashed line. 

9.5 Validation of the Method Using Different EctD Variants 

To characterize wild-type EctD enzyme and different variants of EctD with respect to 

bivalent cation binding, we used the above-described fluorescence-based thermal shift 

assay.
139

 The method exploits the energetic coupling between ligand binding and 

protein unfolding, typically resulting in increased thermal protein stability in the 

presence of a specific ligand. Accordingly, the protein "melting point" (Tm), defined as 

midpoint temperature of the protein-unfolding transition, increases as a function of 

concentration and affinity of the ligand. In agreement with observations made by 

Ericsson et al.
150

 in thermofluor-based studies, no proper melting curves of EctD could 

be obtained in the presence of Fe(II) salts, since Fe
2+

 apparently quenches the 

fluoroprobe. Therefore, we tested if one of the bivalent cations, Mn
2+

, Co
2+

, Ni
2+

 and 

Zn
2+

, was able to substitute for Fe
2+

 within the active centre of EctD and thereby 
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increase the thermal stability of the protein. A number of crystal structures of Fe
2+

 and 

2-oxoglutarate dependent dioxygenases have shown that Fe
2+

 can often be replaced by 

these cations although the proteins complexed with these non-physiological cations are 

enzymatically inactive.
151-155

 Surprisingly, the presence of Co
2+

, Ni
2+

 or Zn
2+

 led, even 

at low concentrations (less than 1 mmol·L
-1

), to the immediate denaturation and 

precipitation of the protein. Precipitation of EctD by Co
2+

 and Ni
2+

 could be prevented 

by the addition of ectoine at a concentration of 100 mmol·L
-1

. The underlying 

mechanisms for this observation are unclear at present but it seems possible that ectoine 

serves as a chelator for various bivalent cations. In contrast, Mn
2+

 could be added to 

EctD at concentrations of up to 100 mmol·L
-1

 without precipitating the protein. The Tm 

of EctD (~ 32 °C in the absence of any ligand) was significantly increased when the 

Mn
2+

 concentration was raised (Figure 9.3 a). At a concentration of 10 to 20 mmol·L
-1

 

of Mn
2+

, maximal thermostabilization of EctD was reached resulting in an increase in 

Tm by ~ 6 °C. This Mn
2+

-dependent thermostabilization was not observed for the 

EctD(Asp148Ala) and, compared to wild-type EctD, drastically reduced for the  

EctD(His146Ala), EctD(Asp148Glu) and EctD(His248Ala) variants (Figure 9.3 a). 

These observations indicate that a substantial loss in affinity of EctD to the Fe
2+

 

substitute Mn
2+ 

occurs when a single amino acid residue of the Fe
2+

-complexing 2-His-

1-carboxylate facial triad is altered. This view is consistent with the lack of enzymatic 

activity of the mutated EctD enzymes under standard assay conditions and our inability 

to detect any iron in the enzyme preparations of these variant EctD proteins. Pavel et 

al.
156

 have shown, that binding of Fe
2+

 to the active centre of the Fe
2+

 and 2-

oxoglutarate dependent dioxygenase, clavaminate synthase, increases the affinity of the 

co-substrate 2-oxoglutarate to the enzyme by an order of magnitude. To investigate if, 

conversely, binding of the Fe
2+

 substitute Mn
2+

 to the EctD protein is influenced by the 

co-substrate, we determined the Tm of EctD at various Mn
2+

-concentrations in the 

presence of saturating concentrations of 2-oxoglutarate. In the presence of excess co-

substrate, a Mn
2+

 concentration as low as 0.5 mmol·L
-1

 induced a raise in Tm by ~ 9 °C 

(Figure 9.3 b). 

The highest applied Mn
2+

 concentration (50 mmol·L
-1

) caused a raise in Tm by 

~ 10.5 °C. This observation suggests that the presence of the co-substrate 2-oxoglutarate 
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causes an enhanced affinity of the EctD enzyme for Mn
2+

 and indicates - by inference - 

that binding of the natural ligand Fe
2+

 by EctD might be affected in a similar fashion as 

well. 

We also investigated if Mn
2+

 was, in the presence of saturating concentrations of 2-

oxoglutarate, able to cause thermostabilization of the mutated EctD variants defective in 

iron binding, EctD(His146Ala), EctD(Asp148Ala), EctD(His248Ala) and 

EctD(Asp148Glu). At a Mn
2+

 concentration of 50 mmol·L
-1

 an increase in Tm by 

~ 7.5 °C was observed for EctD(His146Ala) and by ~ 5.5 °C for EctD(Asp148Glu) 

indicating that also for these variants excess amounts of 2-oxoglutarate cause a gain of 

affinity to Mn
2+

. An effect of the co-substrate 2-oxoglutarate on Mn
2+

 affinity was noted 

for EctD(His248Ala) as well. For this variant, Tm was increased by ~ 3.5 °C at a Mn
2+

 

concentration of 50 mmol·L
-1

. A Tm shift of less than 1 °C, which was observed under 

these conditions for EctD(Asp148Ala) was not significant considering the error range of 

the used thermofluor assay (Figure 9.3 b). 

In summary, the data documented above provide evidence that binding of the bivalent 

cation to the EctD enzyme is facilitated by the presence of the co-substrate 2-

oxoglutarate. Since Fe
2+

 will certainly exhibit a considerably higher affinity to EctD 

than Mn
2+

, this may be of limited relevance for enzymes with an intact 2-His-1-

carboxylate facial triad. For SyrB2-like halogenases, however, in which the acidic 

residue of this triad is naturally replaced by alanine,
157

 binding of 2-oxoglutarate may be 

a prerequisite for efficient iron binding and enzymatic activity. In this context, it is 

noteworthy that all available crystal structures of SyrB2 and of FIH variants with 

mutated Asp201 which contain a bound Fe
2+

, contain the co-substrate 2-oxoglutarate as 

well.
157, 158 
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Figure 9.3: Thermostabilization of EctD and mutated derivatives dependent on ligand concentration. 

Each Tm value represents the mean value of multiple (at least three) individual measurements. (a) 

Concentration dependent thermostabilizing effect of Mn
2+

 on wild-type EctD and variants with mutated 

Fe
2+

 chelating residues. (b) as (a), but in the presence of 100 mmol·L
-1

 2-oxoglutarate. (c) Concentration 

dependent thermostabilizing effect of 2-oxoglutarate on wild-type EctD and variants in which Arg259 

was changed to alanine, glutamine or lysine. (d) as (c), but in the presence of 50 mmol·L
-1

 Mn
2+

. (e) 
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Concentration dependent thermostabilizing effect of 2-oxoglutarate on wild-type EctD and variants in 

which Phe143 was changed to alanine, tyrosine or tryptophan. (f) as (e), but in the presence of 

50 mmol·L
-1

 Mn
2+

, 2-OG, 2-oxoglutarate. 

 

9.6 Residues Likely to be Involved in 2-Oxoglutarate Binding by EctD  

In all Fe
2+

 and 2-oxoglutarate dependent dioxygenases the co-substrate is bound at the 

bottom of the binding cavity and participates in the coordination of the Fe
2+

 ion via its 

1-carboxylate and 2-oxo moiety in a bidentate manner. The 5-carboxylate is typically 

stabilized by a salt bridge formed with the basic group of an arginine or lysine side 

chain and by at least one hydrogen bond formed to a hydroxyl group of the protein.
144

 

With few exceptions, the basic residue salt bridging the 5-carboxylate of 2-oxoglutarate 

protrudes from the amino-terminus of the DSBH -strand VIII. In 57 EctD-type 

proteins compiled by us this residue is invariantly conserved and corresponds to Arg259 

in the V. salexigens EctD enzyme (Figure 9.2). In order to substantiate the idea that this 

residue is involved in 2-oxoglutarate binding by EctD, we changed Arg259 to alanine, 

glutamine or lysine residues, respectively. All these EctD variants were enzymatically 

inactive under standard assay conditions, consistent with the predicted role of Arg259 in 

2-oxoglutarate binding. We also analyzed binding of 2-oxoglutarate by the wild type 

EctD enzyme with the fluorescence-based thermal shift assay and compared these data 

with a corresponding analysis of the EctD(Arg259Ala), EctD(Arg259Gln) and 

EctD(Arg259Lys) variants. For the wild-type EctD protein, a substantial 2-oxoglutarate 

dependent thermostabilization was observed with Tm being increased by ~ 8 °C at a co-

substrate concentration of 150 mmol·L
-1

. In the presence of saturating amounts of Mn
2+

 

the cofactor-dependent thermostabilization of EctD was more pronounced since a 2-

oxoglutarate concentration of 150 mmol·L
-1

 led to an increase in the Tm by more than 

11 °C (Figure 9.3 c - f). In accordance with the results obtained by Pavel et al.
156

 for 

clavaminate synthase, our data suggest that an increased affinity of EctD for the co-

factor 2-oxoglutarate is caused by the bivalent cation. Saturating concentrations of Mn
2+

 

or the co-factor 2-oxoglutarate alone caused a thermostabilization by ~ 6 °C or ~ 8 °C, 

respectively. However, the combination of both Mn
2+

 and 2-oxoglutarate resulted in an 
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increase in Tm by more than 17 °C in comparison to the apo-form of EctD, suggesting a 

cooperative effect on thermostabilization of EctD by the binding of the bivalent cation 

and the co-substrate 2-oxoglutarate. 

The EctD(Arg259Ala) and EctD(Arg259Gln) variants are catalytically inactive under 

standard hydroxylation assay conditions. As expected, a considerably lower 2-

oxoglutarate dependent thermostabilization was observed for EctD(Arg259Ala) and 

EctD(Arg259Gln) in comparison to the wild-type enzyme. In the absence of Mn
2+

, an 

increase in Tm by ~ 4 °C was observed for both variants at 150 mmol·L
-1

 2-oxoglutarate. 

In the presence of saturating amounts of Mn
2+

, 150 mmol·L
-1

 2-oxoglutarate led to an 

increase of Tm by ~ 7 °C (Figure 9.3 c and d). This is a clear indication that each of the 

introduced mutations causes the loss of a protein-stabilizing interaction formed between 

EctD and the co-substrate. A less pronounced decrease in 2-oxoglutarate dependent 

thermostabilization was observed for EctD (Arg259Lys) which is also catalytically 

inactive under standard assay conditions. A concentration of 150 mmol·L
-1

 2-

oxoglutarate resulted in an increase of the Tm by ~ 7 °C. In the presence of 50 mmol·L
-1

 

Mn
2+

 this co-substrate concentration led to a raise of the Tm by ~ 10 °C (Figure 9.3 c 

and d). This suggests that the amino group of lysine is partially able to fullfil the role of 

the arginine guanidino function in salt bridging the 5-carboxylate of 2-oxoglutarate. 

However, the observation that a lysine residue is with respect to co-substrate binding 

only partially able to substitute for Arg259, emphasises the importance of the guanidino 

function in efficiently binding the 2-oxoglutarate. This is fully consistent with the 

finding that Arg259 is strictly conserved in 57 EctD-type ectoine hydroxylases 

compiled by us through data base searches of either completely or partially finished 

microbial genome sequences. 

9.7 Materials and Methods: Fluorescence-Based Thermal Shift Assay 

The thermal shift assay was carried out in 96-well thin-wall PCR plates (Bio-Rad) 

essentially as described in literature
139

 using an iQ
TM

5 Real Time PCR System (Bio-

Rad). SYPRO orange served as a fluorescent dye to monitor protein unfolding within a 

temperature range between 20 °C and 80 °C in increments of 0.5 °C. The wavelengths 

for excitation and emission were 490 and 575 nM, respectively. The final mass 
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concentration of EctD and its mutated variants was 200 µgmL
-1

 (~ 6 µmol·L
-1

). Each 

sample was buffered with 10 mmol·L
-1

 HEPES pH 7.5 in a volume of 100 µL. The 

thermofluor data were analyzed by means of an in-house Python script, the figures were 

generated using Gnuplot.
132
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10 RNA Editing Modulates the Binding of Drugs and Highly 

Unsaturated Fatty Acids to the Open Pore of Kv Potassium 

Channels. 

10.1 Introductory Remarks 

The present study was accomplished in cooperation with Nils Decher, Anne K. Streit 

and Jürgen Daut (Univ. of Marburg, Dept. of Physiological Chemistry). The 

experimental observation indicated that unsaturated fatty acids could block Kv 

potassium channels. To explain this phenomenon, we performed modelling and docking 

experiments. The results have been published in „The EMBO Journal‟
159

 The 

contribution to this publication is the docking of anandamide (AEA; N-

arachidonylethanolamide) into the pore channel and the modeling of a potassium ion 

with its square-antiprismatic solvation shell at the entrance of the blocked channel. In 

the following chapter, the focus will be on the modelling part of this study. 

10.2 Abstract 

The time course of inactivation of voltage-activated potassium (Kv) channels is an 

important determinant of the firing rate of neurons. In many Kv channels highly 

unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can 

induce fast inactivation. We found that these lipids interact with hydrophobic residues 

lining the inner cavity of the pore. We analyzed the effects of these lipids on Kv1.1 

current kinetics and their competition with intracellular tetraethylammonium and Kvβ 

subunits. Our data suggest that inactivation most likely represents occlusion of the 

permeation pathway, similar to drugs that produce „open-channel block‟. This open-

channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino 

acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric 

channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 

channels in different regions of the brain can profoundly alter the pharmacology of 

Kv1.x channels. Our findings provide a mechanistic understanding of lipid-induced 
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inactivation and establish RNA editing as a mechanism to induce drug and lipid 

resistance in Kv channels. 

10.3 Docking and Modelling Results 

10.3.1 Arachidonic acid (AA) can physically occlude the pore 

A pore homology model that was generated on the basis of the crystal structure of the 

open channel
160

 shows that the residues identified by our Ala-scan face into the central 

cavity (Figure 10.1 D). 
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Figure 10.1: The binding site for HUFAs in Kv1 channels. (A) Currents measured during voltage steps to 

+40 mV in Xenopus oocytes expressing WT or mutant Kv1.5 channels. Blue traces: WT and non-pore-

facing mutants in the presence of arachidonic acid (AA). Red traces: pore-facing mutants in the presence 

of AA. The mutation at site I508 (homologous to I400 in Kv1.1) is shown in a red box. (B) Ala-scanning 

mutagenesis of the pore domain of Kv1.5. Relative current (%) remaining after addition of AA, 

determined at the end of 1.5 s pulses to +40mV (ne, non-expressing); * indicates P<0.05, ** indicates 

P<0.01. (C) Relative inhibition of Kv1.1 by AA, measured with (J) or without (K) co-expression of 

Kvβ1.1. No significant voltage dependence of block was observed in the voltage range of 0 to +70 mV 

for both, Kv1.1 alone or Kv1.1+Kvβ1.1; * indicates P<0.05, ** indicates P<0.01. (D) Stereo-view of the 

channel shown with the lipid-binding site identified by the Ala-scan. For a better view into the central 

cavity only three subunits are depicted. The inset illustrates from which orientation of the homology 

model the close-up was made. Residue I508 is shown in red, valines in yellow, proline and isoleucines in 

white. (E–H) The open channel viewed from the cytosolic side. The solvent-accessible surface area of the 

protein is shown in blue. The PVP motif of the channel is highlighted in yellow. Residue T480 near the 

selectivity filter is indicated in red and white. (F) Closer view of the empty open-channel cavity shown in 

(E). (G) Spacefilling model of AEA (gray) in the cavity of the channel. (H) AEA (gray) and a potassium 

ion (purple) with its square-antiprismatic salvation shell in the entrance of the blocked channel. 

 

To test the plausibility of our hypothesis that arachidonic acid (AA), docosahexaenoic 

acid (DHA) and anandamide (AEA) can enter the inner cavity of Kv1 channels, we 

docked AEA into this pore homology model. In most cases, AEA penetrated into the 
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cavity, placing the ethanolamide group next to the threonine residues at the entrance of 

the selectivity filter and forming extended contacts with non-polar residues lining the 

wall of the channel cavity. The docking program GOLD
161, 162

 found multiple solutions 

that differed in the orientation of the C20 tail of the ligand, suggesting that there is not 

one distinct binding orientation for the probe ligand. Some of the most prominent 

solutions are shown in Figure 10.2.  

 

Figure 10.2 Model calculations for docking of AEA in the Kv1.5 pore. The solvent-accessible surface 

area of the protein is shown in blue. Yellow highlights the PVP motif of the channel. Red and white 

marks T480 near the selectivity filter. (A) Three subunits of the channel are shown with five different 

docking solutions for AEA (green). (B-E) Different docking solutions for AEA. (B and C) Docking 

solutions with the PVP motif highlighted in yellow. (D and E) Docking solutions with the lipid binding 

site identified by the Ala-scan and shown as a red surface. 

These relatively crude docking considerations are consistent with the idea that the pore 

is wide enough to fully accommodate a molecule such as AEA (Figure 10.1 E–G) and 

that the binding of the ligand (Figure 10.1 G) will significantly narrow the pore width so 

that its remaining diameter is too small to allow a potassium ion together with its 

square-antiprismatic solvation shell (K (H2O)8
+
) to pass through the channel (Figure 

10.1 H).  
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Conclusion and Outlook 

In recent years, fragment screening has become a popular approach to identify new lead 

structures. Fragments are usually defined by the Astex „rule of three‟ (RO3) (molweight < 

300 Da, H-bond acceptors and donors < 3, logP < 3, total polar surface area < 60 Å
2
). Surface 

Plasmon Resonance (SPR), Nuclear Magnetic Resonance spectroscopy (NMR), biochemical 

assays and X-ray crystallography are efficient screening techniques to discover prospective 

fragments as binders. However , these methods need an assembled fragment library.  

We designed an in-house fragment library, starting from approx. 380,000 commercially 

available fragments. During library design, we modified the RO3 and we did no strict filtering 

of physico-chemical properties during fragment enumeration (e.g. twice the number of H-bond 

acceptors was allowed). The fragments were stepwise reduced to 4,000 compounds. The last 

step was a visual inspection of the candidates, which lead to a final fragment library of 364 

fragments. To validate the quality of the library, we screened it against endothiapepsin. The 

biochemical screening suggested 55 hits, which were entered into a crystallographic screen. 

Eleven complex crystal structures were determined, pointing out the remarkably high hit rate of 

the designed library.  

HotspotsX is a program which predicts (based on knowledge-based potentials) the probability 

of a certain atom type at a certain position in the binding pocket of a target enzyme. The eleven 

crystal structures obtained before were used to validate the program HotspotsX. Due to 

chemical diversity and the different binding modes of the fragments observed for the library 

examples we obtained binding through aromatic- , H-bond donor- , acceptor- , doneptor- and 

hydrophobic interactions. The calculated HotspotsX maps coincide remarkably well with the 

crystallographically determined fragment positions inside the binding pocket. 

The program HotspotsX has also been validated with crystal structures of molecular probes like 

phenol, urea and methylurea. Crystal structures of these molecular probes were determined with 

different targets. Overall, the experimental hotspot analysis coincided well with the computed 

contour maps. Thus, the calculated maps by HotspotsX have an excellent predictive power.  

Based on the binding modes of the molecular probe phenol to the cAMP-dependent protein 

kinase A (PKA), we started a fragment growing approach. In the latter complex, three phenol 

molecules are bound. Two are occupying the ATP binding site and one is sitting on top of the 

glycine-rich loop (G-loop). A virtual screening, using the hinge binding phenol as constraint, 
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suggested a phenol derivative for which a crystal structure could be determined. Starting from 

this hit, a hotspot analysis was performed. This analysis indicates that growth in the direction of 

the G-loop, placing an aromatic portion under the G-loop and an acceptor functionality capable 

to address Lys72 is desired. The first compound of this de novo design had an affinity of 70 µM. 

In the following first design cycle, we were able to enhance the affinity to 6.5 µM. In the second 

design cycle an additional amino function was introduced, which did not improve affinity 

dramatically, but enhanced ligand efficiency to 0.38. In the last cycle, a spacer of one and two 

methylene groups was introduced and the affinity could be increased to about 110 nM for a 

diastereomeric mixture of four compounds.  

The phenol-PKA complex provides a putative allosteric site of PKA. The G-loop in this 

structure is in a closed state which is stabilized by two H-bonds. This G-loop conformation is 

probably induced by the phenol molecule sitting on top of the G-loop. Therefore, several 

molecular dynamics (MD) studies were performed, lacking different phenol molecules, to get 

insights into the G-loop opening. The MD studies suggest that after removal of the phenol 

sitting on top of the G-loop some first side chain movements are initiated that can indicate the 

first steps of the G-loop opening cascade. 

In a different project, a virtual screening approach was used to find new inhibitors for aldose 

reductase. A pre-filtered subset of the ZINC database was used as ligand dataset. For the best 

hit, a series of five compounds was synthesized. Among them one compound displayed an 

inhibition of 920 nM.    

The available assays to detect fragment hits are currently not sufficient. The challenges are the 

low affinity of the fragments and their poor solubility. Therefore, the known thermal shift assay 

was applied and adapted to detect fragment hits. To validate the method, it was used to 

characterize variant mutations of EctD. 

Lastly, a modeling study was used to get ideas about possible binding modes of arachidonic 

acid derivatives in a K
+
 ion channel. One predominant binding pose could not be suggested. The 

study proposes, however, that one arachidonic acid molecule can occupy the inner pore cavity, 

which is consistent with experimental data. 
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Zusammenfassung und Ausblick 

In den letzten Jahren wurden vermehrt Fragment-basierte Verfahren verwendet, um neue 

Leitstrukturen zu identifizieren. Fragmente werden normalerweise anhand der Astex-Dreier-

Regel (RO3) (Molekülgewicht < 300 Da, Waserstoffbrücken Akzeptoren und Donoren < 3, 

logP < 3, gesamte zugängliche polare Oberfläche < 60 Å
2
) definiert. 

Oberflächenplasmonenresonanzspektroskopie, Kernspinresonanzspektroskopie sowie 

biochemische Assays und Röntgenstrukturanalyse sind effiziente und gut entwickelte Verfahren 

um Fragmente zu entdecken. Diese Methoden müssen jedoch auf eine bereits bestehende 

Fragmentbibliothek angewendet werden. 

Wir haben daher unsere eigene Fragmentbibliothek entwickelt, wobei als Startpunkt rund 

380.000 kommerziell erhältliche chemische Verbindungen dienten. Während des Designs der 

Fragmentbibliothek haben wir die Astex-Dreier-Regel modifiziert. Es wurde kein strikter 

physiko-chemischer Filter verwendet (z.B. wurde die Anzahl der Wasserstoffbrückenakzeptoren 

verdoppelt). Die Fragmente wurden so schrittweise auf 4000 Strukturen heruntergefiltert. Im 

letzen Schritt wurden sie visuell inspiziert, was zu einer Bibliothek mit 364 Fragmenten führte. 

Um die Güte der Bibliothek zu überprüfen, haben wir diese gegen Endothiapepsin getestet. Als 

Ergebnis erhielten wir 55 Fragmente, welche den Umsatz eines fluorogenen Substrates durch 

das Zielenzym reduzieren. Diese wurden anschließend kristallographisch untersucht, wobei elf 

Kristallstrukturen bestimmt werden konnten, was eine hervorragende Trefferquote darstellt. 

Das Programm HotspotsX kann aufgrund von wissensbasierten Potentialen die 

Aufenthaltswahrscheinlichkeit von einem definierten Atomtyp in einer bestimmten Umgebung 

der Bindetasche des Zielenzyms vorhersagen. Mit Hilfe der zuvor erwähnten elf 

Fragmentkristallstrukturen haben wir das Programm HotspotsX validiert. Durch die chemische 

Diversität und die diversen Posen der Fragmente erhielten wir Hinweise auf aromatische, 

Donor, Akzeptor, Doneptor und hydrophobe Binder. Die berechneten HotspotsX Karten passen 

hervorragend zu den experimentell ermittelten Bindungsposen der Fragmente innerhalb der 

Bindetasche.   

Das Programm HotspotsX wurde ebenfalls an Kristallstrukturen von Sonden-Molekülen wie 

Phenol, Harnstoff und Methylharnstoff getestet. Die Bindungsposen dieser Sonden konnten in 

verschiedenen Zielenzymen mit Hilfe von Röntgenstrukturanalysen ermittelt werden.  Die 

meisten experimentell bestimmten bevorzugten Bindungsregionen passten hervorragend mit den 

computer-vorhergesagten Positionen überein, was die exzellente Vorhersageleistung des 

Programmes unterstreicht. 

Beginnend mit der Sondenstruktur von Phenol in der cAMP abhängigen Protein Kinase A 

(PKA) haben wir Fragment-basierte Prinzipien des de novo Designs angewendet. Sie beruhen 

auf dem Wachstum von inital entdeckten Fragmenten. In der Kristallstruktur findet man drei 

Phenolmoleküle, wobei zwei die ATP-Bindestelle besetzen und das andere auf der Glycin-

reichen Schleife (G-Schleife) sitzt. Eine computer-basierte Suche wurde durchgeführt, wobei 

für die Leitfragmente eine Bindungsgeometrie ähnlich dem Phenolmolekül an der Scharnier-

Region vorausgesetzt wurde. Es wurden Phenol-artige Strukturen vorgeschlagen und für eine 
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konnte eine Kristallstruktur bestimmt werden. Diese Struktur wurde verwendet, um die 

bevorzugten Bindungsregionen der Bindungstasche auszuleuchten. Das Programm schlug vor, 

den Liganden in Richtung der G-Schleife zu wachsen, in dieser Region eine aromatische 

Gruppe zu platzieren und Lys72 mit einer Akzeptorgruppe zu adressieren. Die erste 

Testverbindung hatte einen Inhibitionswert von 70 µM. Im folgenden ersten Design-Zyklus 

konnte die Affinität auf 6.5 µM gesteigert werden. Im zweiten Zyklus wurde eine zusätzliche 

Aminogruppe an die Leitstruktur synthetisiert, was die Affinität nur wenig steigerte, aber das 

Verhältnis Schweratome zu Affinität auf 0.38 anhob. Im letzten Zyklus wurden eine bzw. zwei 

Methylen-Gruppen als Brücken für die Aminogruppe synthetisiert. Die Affinität für das 

synthetisierte Diastereomerengemisch zusammengesetzt aus vier verschiedenen Isomeren zeigte 

eine Affinität von ca. 110 nM. 

Die Struktur des Phenol-PKA Komplexes zeigte eine mögliche allosterische Bindetasche. Die 

G-Schleife in diesem Komplex liegt in einer eingeklappten Konformation vor und wird durch 

zwei Wasserstoffbrücken stabilisiert. Diese Konformation könnte durch eines der drei 

Phenolmoleküle, das auf der G-Schleife sitzt, erzwungen werden. Mehrere Moleküldynamik 

(MD) Berechnungen wurden durchgeführt, wobei verschiedene Kombinationen bezüglich der 

Besetzung der drei Phenolmoleküle ausprobiert wurden, um einen Einblick in erste Schritte bei 

dem Öffnen der Schleife zu bekommen. Die MD Simulation, bei welcher das Phenolmolekül 

auf der Schleife fehlte, zeigte erste Anzeichen für ein Öffnen der Schleife, was die ersten 

Schritte eines kaskadenartigen Öffnens darstellen könnte.  

In einem weiteren Projekt wurde eine virtuelle Suche nach neuen Leitstrukturen der Aldose 

Reduktase durchgeführt. Dafür wurde die gefilterte ZINC Datenbank als Ligand-Datenbank 

genutzt. Von den besten Leitstrukturen wurden fünf Verbindungen synthetisiert und die 

Affinität gemessen. Unter diesen Leitstrukturen war eine Verbindung, die eine Affinität von 

920 nM aufwies.  

Die etablierten Affinitäts-Testsysteme sind, um Fragmente als Binder zu finden, noch nicht 

ausreichend. Die Herausforderungen liegen in der schwachen Affinität und der schlechten 

Löslichkeit der Fragmente. Daher wurde der bekannte Temperatur-Stabilitäts-Test auf 

Fragmente angewendet. Um die Methode zu etablieren, wurden verschiedene Mutanten von 

EctD charakterisiert.  

Im letzten Projekt wurden Bindungsposen von Arachidonsäurederivaten in einem K
+
 Kanal 

erzeugt, um eine Vorstellung zu bekommen, wie die Bindung aussehen könnte. Eine genaue 

Bindungspose konnte nicht bestimmt werden, es konnte allerdings gezeigt werden, dass nur ein 

einzelnes Arachidonsäuremolekül die innere Pore des Kanals blockieren kann. Dies ist 

konsistent mit den experimentellen Befunden.    
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