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Chaotic Polynomial Automorphisms;

counterexamples to several conjectures

Arno van den Essen Engelbert Hubbers

Abstract

We give a polynomial counterexample to a discrete version of the
Markus-Yamabe Conjecture and a conjecture of Deng, Meisters and
Zampieri, asserting that if F : C

n → C
n is a polynomial map with

det(JF ) ∈ C
∗, then for all λ ∈ R large enough λF is global analytic

linearizable. These counterexamples hold in any dimension ≥ 4.

Introduction

In [4] a new approach to the Jacobian Conjecture is introduced. The authors
conjecture that if F : Cn → Cn is a polynomial map with F (0) = 0 and
JF (0) = I, then for all λ > 1, λ large enough there exists an analytic
automorphism ϕλ : Cn → Cn such that ϕ−1

λ ◦λF ◦ϕλ = λI i.e. ϕλ conjugates
λF to its linear part. We also say that λF is analytic linearisable to its linear
part. We call this conjecture the DMZ-conjecture (after Deng, Meisters
and Zampieri). Of course this conjecture, if true, would imply the Jacobian
Conjecture since it follows readily that λF and hence F is injective. The
local existence of ϕλ is garanteed by the Poincaré-Siegel theorem (cf. [1,
section 25, p. 193]) since if λ > 1 the eigenvalues of λI are non-resonant.
Furthermore ϕλ(0) = 0 and ϕλ is unique if we assume that Jϕλ(0) = I, which
we can do without loss of generality. It was shown in [4] that ϕ−1

λ is entire,
however the convergence of ϕλ could only be proved in some neighbourhood
of 0. Meisters in [8] restricted the problem to polynomial maps of the form
F = X + H with H cubic homogeneous and det(JF ) = 1 (or equivalently
JH nilpotent) and conjectured that for such maps λF can be conjugated to
its linear part λI by means of polynomial automorphisms ϕλ, for almost all
λ ∈ C, except a finite number of roots of unity. In [5] the first author gave a
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counterexample to this conjecture for any dimension ≥ 4. On the other hand
it was recently shown by Gorni and Zampieri in [7] that this example can be
conjugated to its linear part for all λ with |λ| 6= 1 by means of an analytic
automorphism ϕλ! So the DMZ-conjecture remained open.

Another proof of the fact that the counterexample of [5] satisfies the
DMZ-conjecture was even more recently given by Deng in [3]. In his very
elegant and short paper he proves that an analytic map F : Cn → Cn with
F (0) = 0 can be analytically conjugated to its linear part if and only if
F is an analytic automorphism of Cn and 0 is a global attractor of F (i.e.
for every x ∈ C the sequence x, F (x), F 2(x), . . . tends to 0). In the same
paper he conjectured that if F = X +H with H cubic homogeneous and JH

nilpotent then 0 is a global attractor of F ◦ λ for all λ with |λ| < 1. (In fact
in the argument he gave to motivate this conjecture he does not use that H

is of degree 3.)

A similar kind of question was brought up independently by Cima, Gasull
and Mañosas in [2]. They studied the problem that if F : Rn → Rn is a
polynomial map with F (0) = 0 and such that the eigenvalues of JF (x) are
smaller then 1 in absolute value for all x ∈ Rn, then 0 is a global attractor
of F . They call it the discrete Markus-Yamabe Question and show that this
problem implies the Jacobian Conjecture and that it is true for triangular
maps.

In this paper we give a counterexample to the DMZ-conjecture of the
form F = X + H, where H is homogeneous of degree 5 in any dimension
n ≥ 4. Furthermore we show that if 0 < λ < 1 λF is a counterexample to
the discrete Markus-Yamabe Question.
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1 A counterexample to the discrete Markus-

Yamabe Question

Let n ≥ 4 and consider the polynomial ring R[X] := R[X1, . . . , Xn]. In R[X]
define the element

d(X) := X3X1 + X4X2

Theorem 1.1 Let n ≥ 4 and m ∈ N, m ≥ 1. Define the polynomial auto-
morphism

F = (X1 + X4d(X)2, X2 − X3d(X)2, X3 + Xm
4 , X4, . . . , Xn).

Then for each 0 < λ < 1 λF is a counterexample to the discrete Markus-
Yamabe Question. More precisely, if 0 < λ < 1 and a ∈ R is such that
aλ > 1 then the first component of (λF )k(a, a, . . . , a) tends to infinity if k

tends to infinity.

Definition 1.2 For each λ > 0 and a > 0 we put (λF )k(a) := (λF )k(a, a, . . . , a)
and denote the first component of this vector by fk(λ, a). So

fk(λ, a) := ((λF )k(a))1,

for all k ≥ 1. Furthermore we put

dk(λ, a) := d((λF )k(a)),

for all k ≥ 1.

Lemma 1.3 i). d(λF (X)) = λ2[Xm+1
4 d(X)2 + d(X) + Xm

4 X1]

ii). dk+1(λ, a) ≥ λ2(λka)m+1(dk(λ, a))2, for all k ≥ 1.

iii). fk+1(λ, a) ≥ λk+1a(dk(λ, a))2, for all k ≥ 1.

Proof. i) is easy to verify. Consequently, since all monomials in d(λF (X))
have positive coefficients, we get

dk+1(λ, a) = d((λF )(λF )k(a))

≥ λ2((λF )k(a))m+1
4 d((λF )k(a))2

= λ2(λka)m+1(dk(λ, a))2
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since the fourth component of (λF )k(a) equals λka. This proves ii). Finally

fk+1(λ, a) = (λF )1((λF )k(a))

≥ λ((λF )k(a))4d((λF )k(a))

(using that (λF )1 = λX4d(X)2 + λX1). So fk+1(λ, a) ≥ λk+1a(dk(λ, a))2,
which proves iii). 2

Proposition 1.4 We have:

fk(λ, a) ≥ λpkapk+(2m+1)(k−1)+4

dk(λ, a) ≥ λpk+m(k−1)+1apk+(2m+1)(k−1)+m+4

for all k ≥ 1, where p1 = 1 and pk+1 = 2pk + (2m + 1)(k − 1) + 4 for all
k ≥ 1.

Proof. Use induction on k. Details are left to the reader. 2

Proof of theorem 1.1. It follows immediately from the estimation of fk(λ, a)
in proposition 1.4 that limk→∞ fk(λ, a) = ∞ if λa > 1. Furthermore one eas-
ily verifies that λF = λX + H with JH nilpotent. So for all x ∈ Rn the
eigenvalues of JF (x) are equal to λ. 2

Corollary 1.5 Let m = 5 and 0 < λ < 1. Put F̃ := λFλ−1. Then F̃ =
X + H with H homogeneous of degree 5 and JH is nilpotent. However 0 is
not a global attractor of F̃ ◦ λ (= λF ).

2 A counterexample to the DMZ-conjecture

Let n ≥ 4 and consider the polynomial ring C[X] := C[X1, . . . , Xn]. In C[X]
define the element d(X) := X3X1 + X4X2.

Theorem 2.1 Let n ≥ 4 and m ≥ 3, m odd. Define the polynomial auto-
morphism

F = (X1 + X4d(X)2, X2 − X3d(X)2, X3 + Xm
4 , X4, . . . , Xn).

Then F is a counterexample to the DMZ-conjecture. More precisely, for
every λ > 0, λ 6= 1, λF is not global analytic linearisable to λX.
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The proof of this theorem is based on the following observation which is
due to Bo Deng (cf [3]).

Lemma 2.2 Let F : Cn → Cn be an analytic map with F (0) = 0. Put
A := JF (0) and suppose that the eigenvalues of A are smaller than 1 in
absolute value. If F is global analytic linearisable to its linear part A then 0
is a global attractor of F .

Proof. Let x ∈ Cn and let ϕ : Cn → Cn be the analytic automorphism of Cn

such that ϕ−1Fϕ = A. Then F = ϕAϕ−1 and hence F k(x) = ϕAkϕ−1(x),
for all k ≥ 1. By the hypothesis on the eigenvalues of A it follows that
Akϕ−1(x) → 0 if k → ∞. Consequently F k(x) = ϕ(Akϕ−1(x)) → 0 if
k → ∞. 2

Proof of theorem 2.1. i). From lemma 2.2 and theorem 1.1 it follows
that λF is not analytic linearisable if 0 < λ < 1.

ii). Now let λ > 1. Suppose that λF is analytic linearisable. We derive a
contradiction. Then (λF )−1 = F−1 ◦ λ−1 is also analytic linearisable.
Put µ := λ−1 and G := F−1. So G ◦ µ is analytic linearisable. One
easily verifies that

G = (X1−X4d̃(X)2, X2 +(X3−Xm
4 )d̃(X)2, X3−Xm

4 , X4, . . . , Xn) (1)

where
d̃(X) := d(X) − Xm

4 X1. (2)

Since 0 < µ < 1 it follows from lemma 2.2 that 0 is a global attractor
of G ◦ µ. However we will show below (corollary 2.6) that for every
0 < µ < 1 0 is not a global attractor of G ◦ µ. Hence we have derived
a contradiction.

2

So it remains to show that 0 is not a global attractor of G ◦ µ. First we
show that 0 is not a global attractor of µG if 0 < µ < 1. To prove this we
need some lemmas. So let G and d̃(X) be as in (1) resp. (2).

For each a > 0 let a∗ := (a,−a, a,−a, a, . . . , a) ∈ Rn. Then we define for
each a > 0 and µ > 0:

gk(µ, a) := ((µG)k(a∗))1

d̃k(µ, a) := d̃((µG)k(a∗))

for all k ≥ 1.
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Lemma 2.3 i). d(G(X)) = d̃(X).

ii). d̃((µG)(X)) = µ2d̃(X) − µm+1Xm
4 X1 + µm+1Xm+1

4 d̃(X)2.

iii). d̃k+1(µ, a) = (µk+1a)m+1(d̃k(µ, a))2 +µ2d̃k(µ, a)+µ(µk+1a)mgk(µ, a) for
all k ≥ 1.

iv). gk+1(µ, a) = µk+1a(d̃k(µ, a))2 + µgk(µ, a) for all k ≥ 1.

Proof. The proofs of i) and ii) are straightforward and left to the reader.
From ii) we deduce that

d̃k+1(µ, a) = d̃((µG)k+1(a∗))

= d̃((µG)((µG)k(a∗)))

= µ2d̃((µG)k(a∗)) − µm+1(((µG)k(a∗))4)
m((µG)k(a∗))1

+ µm+1(((µG)k(a∗))4)
m+1d̃((µG)k(a∗))2

Now observe that ((µG)k(a∗))4 = µk(−a), hence since m is odd ((µG)k(a∗))m
4 =

−(µka)m. So we get

d̃k+1(µ, a) = µ2d̃k(µ, a) + µm+1(µka)mgk(µ, a) + µm+1(µka)m+1(d̃k(µ, a))2

= (µk+1a)m+1(d̃k(µ, a))2 + µ(µk+1a)mgk(µ, a) + µ2dk(µ, a)

which proves iii). Finally

gk+1(µ, a) = ((µG)k+1(a∗))1

= (µG)1((µG)k(a∗))

= µ((µG)k(a∗))1 − µ((µG)k(a∗))4(d̃((µG)k(a∗)))2

= µgk(µ, a) − µ · µk(−a)(d̃k(µ, a))2

= µgk(µ, a) + µk+1a(d̃k(µ, a))2

which proves iv). 2

Corollary 2.4 i). d̃k+1(µ, a) ≥ (µk+1a)m+1(d̃k(µ, a))2 for all k ≥ 1.

ii). gk+1(µ, a) ≥ µk+1a(d̃k(µ, a))2 for all k ≥ 1.

Proof. By induction on k one readily verifies that for all k ≥ 1 both d̃k(µ, a)
and gk(µ, a) are polynomials in µ and a with coefficients in N. Then the result
follows from lemma 2.3 iii) an iv). 2
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Proposition 2.5 We have:

gk(µ, a) ≥ µqk(m+1)+ka(qk+2k)(m+1)+1

d̃k(µ, a) ≥ µ(qk+k)(m+1)a(qk+2k+1)(m+1)

for all k ≥ 1, where q1 = 0 and qk+1 = 2qk + 2k for all k ≥ 1.

Proof. Use induction on k. 2

Corollary 2.6 If µa > 1 and a > 1 then limk→∞((G ◦ µ)k(G(a∗)))1 = ∞.
So 0 is not a global attractor of G ◦ µ.

Proof. Observe that (Gµ)k(G(a∗)) = µ−1(µG)k+1(a∗). Then apply proposi-
tion 2.5. 2
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