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Dedicated to Gary Meisters

Abstract. In this paper we classify all Druzkowski maps F' = X + (A X)*3 from C°
to C for which J((AX)*3) is nilpotent. With this classification of maps we obtain
the complete set of representatives of Meisters’ cubic similarity relation in dimension
five. This paper is a summary of the very large paper [3].

1 Introduction

The first time I got interested in the subject of cubic similarity was back in 1993. It
was in the middle of June, a few days before I would go on a four week holiday to
Moscow. In order to get credits for a class on polynomial mappings by Arno van den
[issen, 1 had been working with two fellow students on linear cubic homogeneous
maps. When we handed in our paper with the final results, Arno reminded us that the
next day some American would give a talk about cubic linear maps. Naturally I went
there and I listened to a very nice talk by Gary Meisters. One of the most impressive
points in this talk was the point where he was showing some slides containing a
list of matrices which turned out to be the representatives of the cubic similarity
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relation in dimension three, four and five. Though Gary already showed 19 matrices
in dimension five, he was pretty sure that this list was not complete yet ...

Right after I returned from Moscow I started working on my Master’s Thesis on
cubic homogeneous maps. During the work done for this thesis I found that Gary’s
list in dimension four was complete.

After I started as a PhD-student in Nijmegen, I got back to this subject in the
spring of 1996. And this time I was able to solve the dimension five case.

The reason that two years had passed after finishing my Master’s Thesis and
starting with the final research to the five dimensional case, was the complexity of
this case. It was only in 1996 that we rediscovered the paper [1] by Druzkowski. In
conjuction with a theorem from my Master’s Thesis [2], we now were able to reduce
the general case to the triangular cubic linear case.

2 Reduction to triangular matrices
We start with a few basic definitions.
Definition 1 Let a = (a1,...,a,) € C*. Then a* := ay,...,a3).

Definition 2 Let A be a linear matrix over C. Then the map F = X + (AX)*
called cubic-linear or in Druzkowski form.

Note that in some other papers such a cubic linear map F' is called Druzkowski map
only if det(JF) = 1.

Definition 3 Let ' = X + (AX)*
automorphisms in Druzkowski form. Then the matrices A, B € Mat, ,(C) are called

cubic similar (A R B) if there exists a linear invertible polynomial map T with
T-'FT =G.

The idea behind this definition is that it is rather special that if T' is a linear invertible
map and F is a Druzkowski form one has that T~'FT is again on Druzkowski form
and therefore this property deserves a name.

Definition 3 is in terms of maps. For computational use however it is often
preferable to work in terms of matrices.

Lemma 1 Let F = X 4+ (AX)*

on Druzkowski form.
(AT X)*

Proof. The following statements can be read from top to bottom or the other way
round. In either case each statement is equivalent with the next one in the sequence.
AR B,

There exists an invertible map T with T-'FT = G.

There exists an invertible map T with T~1(TX + (AT X )*
There exists an invertible map 7" with X +T~1(ATX)*3
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e There exists an invertible map T' with T~ (AT X)*
e There exists an invertible matrix T with T=1(ATX)*
o There exists an invertible matrix T' with (AT X)*

This proves the lemma. |

From [2]

Theorem 1 Let r € N. If the Jacobian Conjecture holds for every polynomial map
F:C — C where F has the special form

Ty Hl(ml,...,mr)
o .'17'2 n Hg(ml,...,mr)
T, Hel@yy: s 12¢)

with H; = 0 or deg(H;) = 3 (H; homogeneous for all i € {1,..
n > r and all A € Mat, ,(C) the Jacobian Conjecture holds for all Druzkowski forms

G=X+(AX)*®
with rank(A) = r and X = (21,...,2,).

Before we present our main reduction theorem we show a few lemmas, which we will
need for the proof of this main theorem. The proofs can be found in (3].

two lemmas are proved purely theoretically. For the third and the fourth lemma we
had to do some computations to solve the corresponding systems of equations.

Lemma 2 Let F = X + (AX)*
Then there exists linear invertible T such that T~ FT = X + (BX)*
row of B is a null row.

Lemma 3 Assume rank(A) = 2. By lemma 2 we have that the last row is equal to
zero.

iy g My iy s il
o oy by by oy A by,
A €] & £y G4 COF CE
rI:_ |'.|." I:I;!_ ﬂl.-| ﬂlr_. r.I'ﬁ
o o o o a i 00 0 o

and we consider the Druzkowski form X' + (A’
may assume that A’
il 23 i thy [+ 1 &5 d3 LY 5
.J|£!1' .-'|i|1':|g A.}ﬂﬂ .:'|:I'.|.-| ['1 *!".! |!':"l 'Il'-i
.-||:|:I'_ .:l_'l.l'tq .Il._'|||1:| |"|_1|11| FF .-'l-:l.| T J.I'.". .-'l-\'.l;| + p'l:l; .-'l.'.'l:| - ,'.l".'l_-| .-'l.ﬂ.| = |'.I|!-'.1 }
Agmy Agmy  Agmy  Agay il ! 13 ]

and ds = 0.
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Lemma 4 et A and A’

15} I3 iy 24
1.. .-!'rll-l:l] .l'rl:-ﬂ 3 ':":'E:J .]n._.-l'11
2 Auey  Aumy  dzey Ay

Agry  Agqay Agng Ay,
441 1= =3 4144

Then there ezists a linear invertible map T € C[X] and B € Gls(k) such that
T=1o(X +(AX)"

Lemma 5 Let A and A’ be as in lemma 3. Assume

B iy 5 Ty
by by by by
Agyp 4 ,u'.l| Ay 4+ |I|:II.', Ay L+ |I|'|I.I:-| ."-lr.| - ||.-|'.u_
i ] i I

Then there ezists a linear invertible map T € C[X] and B € Gls(k) such that
T=1o (X +(AX)*

After these technical lemmas we can finally give the main reduction theorem, which
is an improvement of [1,

Theorem 2 If a polynomial map F = X + (AX)*
rank(A) < 3 or corank(A) < 3, then there ecists an invertible linear map L such
that Lo Fo 7' = X + (BX)*

Proof. Though the original theorem in Druzkowski’s paper [1]
is a tame automorphism, we can almost copy the proof as it is presented in that
paper. Simply because in three of the four cases it is shown that LFL™! has the
desired form (and hence F' is tame).
e rank(A4) =1.
e corank(A) = 1.
Druzkowski’s paper.
e corank(A) = 2.
Druzkowski’s paper.
e rank(A) = 2. This is the only part where Druzkowski doesn’t show that F' can
be transformed to the desired form. To prove this case we use the lemmas 3, 4
and 5.

a

Since we are working in dimension five, we have that either rank(A) < 3 or
corank(A) < 3 and hence:

Corollary 1 Let F = X + (AX)*
ezists an invertible linear map L such that [ o F o L7t = X + (BX)*
upper triangular with null diagonal.
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3 Meisters’ representatives

In [5]
respect to the cubic similarity relation in dimension five. The names of these matrices
are based on the following notions.

e A J indicates that the matrix is on Jordan normal form.

e An N indicates that it is a nilpotent matrix which is not on Jordan normal
form, but does not need parameters in it.

e A P indicates that it is a nilpotent matrix which contains parameters which
cannot be reduced to a single complex number.

e The first number is the rank of the matrix.

e Thesecond number is the nilpotence index of J((AX)*

e The small letters at the end are used as an index.

e For some P matrices an extra integer is appended to show the number of
parameters in it.

In [4] it is shown that the rank and the nilpotence index as mentioned above are
invariants with respect to the cubic similarity relation. Therefore it makes sense to
use these figures to assign proper names to the matrices. Note that the nilpotence
index of the matrix A itself is not an invariant. In fact A does not need to be nilpotent
at all.

01 0 0 0 01 0 0 0 01 0 0 O
0 0 0 0 0 0 0 0 0 o0 0 01 00
0 0 0 00 00 0 1 0 0 0 0 0O
0 0 0 0 0 0 0 0 0 o0 0 0 0 0O
0 0 0 0 O 00 0 0 O 0 0 0 0 O
7(1,2) J(2,2) J(2,3)
0 01 0O 01 0 0 0O 01 0 0 O
0 01 1 0 0 01 0O 0 0 1 0 0
0 0 01 O O 0 0 0 O 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 O
0 0 0 00O 00 0 0 o0 0 0 0 0 O
N(2,3a) 1(3,3) J(3,4)
0 0 1 00 01 1 0 0 0 01 0O
0 01 10 0 01 0O 00 1 1 0
0 0 0 1 1 0 0 01 O 0 0 0 1 O
g 0 0 0 0 0 0 0 0 0 0 0 0 01
0 0 0 0 0 0 0 0 0 Q O 0 0 0 O
N(3,3a) N(3,4a) N(3,4b)
0 01 0 Q ( 01 0 0 O \ 01 1 00
0 01 1 0O 0 0 1 0 O 0 0 1 0O
0 0 0 1 1 00 0 1 O 0 0 0t o0
0 0 0 01 0 0 0 0 1 0 0 0 0 1
00 0 0O 00 0 0 O 0 0 0 0 0
N(3,4c) J(4,5) N(4,5a)
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01 0 0 O 01 1 00 01 0 1 0
0 01 1 aQ 0 01 1 0 0 01 0 0
g 0 0 10 0 0 01O 0 0 010
00 0 0 1 00 0 01 0 0 0 0 1
00 0 0O 0 0 0 0O 0 0 0 0 0
N(4, 5b) N(4, 5¢) N(4, 54)

01 1 @& 0 01 1 6 0

0 01 a O 0 01 &« O

0 0 0 1O 0 0 0 1 0

000 01 0 0 0 01

0 0 0 00 0 00 0O

P(4,5c¢) P(4,5¢c2)

Remark 1 Note the following points:

e P(4,5¢) is not called P(4,5a), which should be natural if one uses the small
letter just as an index as with the V-matrices. However in this case the ¢ is used
because P(4,5¢)|,=1 = N(4,5¢c), where P(4,5¢)|,=1 means substitute a = 1 in
P(4,5c).

e Note also that P(4,5¢),—0 = N(4,5a). Hence we add the restriction that
« ¢ {0,1} for P(4,5c¢).

o P(4,5¢)aza, 7 P(4,5€)4—q, if a1 # az.

o P(4,5¢2)p=0 = P(4,5c), hence we add the restriction b # 0 for P(4,5c2). Note
that there are no restrictions on the a in P(4, 5¢2).

4 Classification of Druzkowski maps

Theorem 2 gives us the reduction we need. It means that the most general
Druzkowski map X + (AX)*3

0 o a3 Q4 das
0 0 b3 by b3
0 0 0 ¢4 o5 (4.1)
0 0 0 0 ds
0 0 0 0 O

Independent of the ten parameters in it this matrix is strong nilpotent. So this
matrix is in fact on its own a description of all Druzkowski maps with J((AX)*?)
is nilpotent. However since our final goal is finding representatives with respect to
the cubic similarity relation, it makes sense to split the general case into the five
possible values for the nilpotence index of the associated Jacobian matrix. As was
noted before, this nilpotence index is invariant under cubic similarity.

Using this observation we compute J((AX)*
that the resulting matrix is the null matrix. Obviously for n = 1 this means that
A equals the null matrix, which gives the identity map /5 : CC — C°. Therefore we
only consider the cases with nilpotence index > 2.
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4.1 Nilpotence index two

Assuming J((AX)*3)%2 = 0 gives a system of 119 equations in the ten parameters.
Solving this system gives fifteen solutions. In figure 1 we show the tree along which
we found these solutions. One starts at the top with the complete system. One solves
a few simple equations. Normally this gives a few possible partial solutions. Each
arrow presents such a solution. And each solution may imply some assumptions
on the parameters. After substituting these partial solutions one gets new reduced
systems of equations. And at this point the process is repeated. Hence each arrow
represents some assumptions; these are listed at the bottom. Furthermore, the boxed
numbers in the tree correspond to the numbered matrices given below.

The fifteen solutions are presented by their corresponding matrices. For each
matrix the rank is listed together with the assumptions used in the process to find
them as mentioned above. Naturally, assumptions of the form b3 = 0 are not shown
since they are already used in the matrix and hence b3 does not appear in the matrix
anymore.

0 0 00 as rank 2, a3 # 0, ds # 0.
0 00O b5 ¥ (Lzb‘g

L0000 e 0 f2=rme 04 G5
0 0 0 0 ds 6 0 0 0 0 b5
0 000 O ' 0 0 0 0 cs

rank 1. 0 0 0 0 0
[0 a2 as as as L0 0 0 0 0
00 0 0 0 rank 2, ag # 0, ¢s5 # 0.

2. 0 0 0 0 O i —agbg _ aac'é %
00 0 0 O 06z 63 —pg— %
00 0 0 0 00 0 0 bs

rank 1, ag # 0, 7. 0 0 0 0 cs
000 & o 00 0 0 ds
0 00 0 b5 0 0 0 0 0

3 0000 0 c rank 2, ap # 0, ds # 0
0 00 0 O 0 0 0 as as
00000 0 0 0 0 by bs

rank 2, ag # 0. 8. 0O 0 0 0 Cs
00 a3 a4 Qs 000 0 0
0O 0 0 0 bs 000 0 0

4 00 0 0 0 rank 2, by # 0.

00 0 0 0 00 a3 a4 0as
0o o 0 0 00 0 by bs
rank 2, a3 0. 9.l o0 0o 0o o
0 0 as -“353 as 000 0 0
0 o 615 ) 00 0 0 0

5 5

5. 0 0 0 0 o rank 2, a3 # 0, by # 0.
0 0 O 0 ds
0 0 O 0 0
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1:b3=0,c4=0

2:63=0,c47#0,d5=0

3:637#0,c4=0,a2=0

4:b3=0,c4=0,b4=0
5:63=0,c4=0,b4#0,a2=0,d5=0
6:63=0,c4=0,b4=0,a2=0,a3=0,a4=0
7:63=0,c4=0,b4=0,a2=0,a3=0,a4#0,d5=0
8:b3=0,c4=0,b4=0,a2=0,a3#0,d5=0,c5=0
9:63=0,c4=0,b4=0,a2=0,a3,d57#0
10:b3=0,c4=0,b4=0,a27#0,c5=0,b5=0,d5 =0

Figure 1.
0 0 0 a4 as
0 0 0 by b5
10 0 0 0 ca cs5
0 00 0 O
0 00 0 O
rank 2, ¢4 # 0.

11:63=0,c4=0,b4=0,a2,c57#0,d5=0
12:63=0,c4=0,b4=0,a2,d5 #0
13:63=0,c4=0,b4#0,a3=0,a2=0,d5=0
14:b3=0,c4=0,b4,a3#0,a2=0,d5=0,c5=0
15:63=0,c4#0,a22=0,a3=0,d5=0
16:b3=0,¢4,a270,a3=0,b5=0,b4=0,d5=0
17:63=0,c4,a2,b47#0,d5=0
18:b3#0,d5=0,c¢5=0,c4=0,a2=0
19:b3,d5#0,a3=0,a4=0,c4=0,a2=0
20:b3,ds5,a37#0,c4=0,a2=0

Solution tree for nilpotence index two

0 as 0 a4 Qs
0 0 0 0 O
11 0 0 0 ca o5
0 0 0 0 O
0 0 0 0 O

rank 2, ay # 0, ¢4 # 0.
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aqb3 0 0 0 0 as "
0 ay —%4 a4 as Ir. b3C3 °
-4 b 0 0 by — 3_5. bs
0 0 0 by 205 14. d3
12. c4 0 0 O 0 Cs
0 0 0 Ca Cs k 0 0 O 0 ds
0 0 0 0 0 00 0 0 0o
0 0 0 0 0 rank 2, b3 # 0, ds # 0.
rank 2, ap # 0, by # 0, ¢4 #0. I,r ascs
( 0 0 a3 a4 as 0 0 as __d'g as
0 0 bs by bs bscd
13./00 0 0 0 5] 00 b~ b
00 0 0 0 00 0 0 o5
000 0 0 00 0 0 ds
rank 2, b3 # 0. 00 0 0 0

rank 2, a3 #0, b3 # 0, ds # 0.

4.2 Nilpotence index three

In this case we have a system of 123 equations. Solving this system gives ten
solutions. Ordered by rank these solutions are:

( 0 ) a3 04 Qg IIll Il L) [ &4 05
0 0 b3 by bs 00 0 0 b
6. 0 0 0 0 O 200010 0 0 oy s
0 0 0 0 O g 0 n 0 i
0 0 0 0 O a o0 o oy
rank 2, a2 #0,b3 #0 rank 3, ag 7 0, d5 5 0.
0 0 0 ag as f0 0 ay oq i L
0 0 0 by b 00 0 by bs
17.1 0 0 0 ¢4 o5 2.1 0 0 0 0 e
0 00 0 ds 0o 0 0 dy
000 0 O \v0 0 0O 0 D
rank 2, ds # 0. rank 3, ay # 0, by # 0, dy # 0.
0 a; ay a4 as \ I.‘ il u—ir—: fy o
00 0 0 b5 - R
8.1 0 0 0 0 cs 4Ch
0 0 0 0 ds 2. |0 O 0 B 4
\o 0 0 0 0 0 0 0 oy oy
rank 2, a3 # 0, ds # 0. 0 0 0 0O 4y
0 a; a3 a4 &5 0 0 0 0 i
0 0 0 bs b rank 3, a3 # 0, by # 0, cs # 0,
19.1 0 0 0 ez o5 ds # 0.
0 0 0 0 O
0 0 0 0 O /
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00 a3 a4 Qs 0 0 a3z Qa4 Qs
0 0 b3 b4 b5 00 b3 b4 b5
23. 0 0 O 0 Cs 25. 00 0 Cq4 Cg
00 0 0 ds 00 0 0 0
00 0 0 O 00 0 0 O
rank 3, b3 # 0. rank 3,b3 # 0, cq # 0.
0 az a3z a43 as
0 0 b3 —1)3% bs
24, ds
0 0 O 0 Cs
0 0 O 0 ds
0 0 O 0 0
rank 3, ay # 0, ds # 0.

In [3] one can find the solution tree corresponding to these solutions.

4.3 Nilpotence index four

Here we have a system of 56 equations. There are only four solutions:

00 a3z Qa4 Gas 0 ay; a3 Qa4 as \
00 b3 b4 b5 0 0 b3 b4 b5
26. 0 0 O Cq4 Cs 28. 0 0 0 0 Cs
00 0 0 ds 0 0 0 0 ds
000 0 0 00 0 0 0/
rank 3. rank 3, ag # 0, b # 0.
0 a; a3 a4 as 0 a; a3 ag as
0 0 0 by bs 0 0 by by bs
27. 0 0 0 Cs4 Cp 29. 0 0 0 cq4 c5
0 0 0 0 ds 00 0 0 O
0 0 0 0 O 00 0 0 O
rank 3, az # 0. rank 3, a; # 0, b3 # 0, c4 # 0.

The solution tree is quite simple. It can be found in [3].

4.4 Nilpotence index five

Finally the last case gives one solution since all matrices of the form (4.1) are
nilpotent.

0 a2 a3 ay4 u5
0 0 by by by
30. ] 0 0 0 cq4 o |,rankd, op0, bs£0, 020, ds & 0.
00 0 0 d
0o 0 0 0 1
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5 Cubic similarity reduction
The basic result of the previous section is that we can reformulate corollary 1 to:

Corollary 2 Let F = X + (AX)*3 : C° — C° such that det(JF) = 1 then there
ezists an invertible linear map L such that Lo Fo L™! = X + (BX)*3, where B is
the null matriz or B is one of the thirty matrices presented in section 4.

The next thing we have to do is check whether these maps are cubic similar to the
matrices of section 3. In order to find these relations we use the fact that the rank is
an invariant of this matrix. At this point it is more practical to use the rank as an
invariant than the nilpotence index of the corresponding jacobian. This is because
we have to make some assumptions on the parameters still appearing in the matrices
of the previous section, and mostly the effect on the rank of these assumptions are
more clearly than the effects on the nilpotence index.
The basic approach taken is:

. Try to reduce A to cases already known by use of permutaion matrices.

. Take a general linear map T containing parameters.

Compute B where B is given by X + (BX)** =T o (X + (AX)*®) o T.
Compare B with the already known representatives.

. Guess which one of those can be identified with B. (Call this matrix M.)
. Solve B = M in the variables of T'.

. If this system has no solution:

e Guess another M.

e If all representatives have been tried, one probably has found a matrix
which is not equivalent to the known representatives.

e Reduce A as much as possible to M’, i.e. solve B; ; =0 or B; ; = 1 for as
many entries B;; as possible.

e Prove that the new M’ is indeed not cubic similar to all the old
representatives of the same rank.

8. If this system has at least one solution:

e Try to simplify the solution(s) by setting free parameters equal to zero or
to one in case they cannot be set to zero.

e Check if this T implies some new assumptions on the original parameters
in the matrices in order to have that T is invertible.

If it does not, you have found that A R M in general.
— If it does, assume these assumptions don’t hold and apply this
information to reduce A to A’ and repeat the complete process on
Al
In 3] this process is described for each of the thirty matrices. Here we will show one
example.
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Example 1 Consider F' = X + (AX)*3 where

0 0 0 a4 a5
0 0 0 by bs
A=]10 0 0 0 cs
000 0 O
000 0 O

We already know that b4 # 0. If we compute T, ' FT; = X + (BX)*® for a general
map T and try to solve the cases B = J(2,2), B = J(2,3) and B = N(2,3a) we
don’t get any solution at all. So most probably we have found a new representative.
If we try to reduce this B, we see that we can find T; such that By4 =1, By4 =1,
Bys =1and Bss = 1 and all other B;; = 0. We call this M’. Looking carefully at
the definition of cubic similarity shows that this M’ is indeed not cubic similar to
the known representatives with rank two. We call this new representative N(2, 2a).
The T; we have used is

3 3
(b5 a4 — b4 a5) T (b5 a4 — b4 a5) T9 3
3 ) 3 yC5 T3,
b4 42}

(bs ay — by as) Ty a5 Ty
—— —_ , Is
bsay a4

If we look at this 7, we see that it is invertible only if a4y # 0, ¢s # 0 and
bsas — bsas # 0. (We already know that by # 0.)

Now assume that a4 # 0 and cs5 # 0 but bsas — bsas = 0 and start the process
again. After taking a new T3 and compute T2_1FT2, we get a matrix B that can be
identified with J(2,2). Solving this system yields that T is

) ) bsz, =

3 3 542 2

(Is +a4”T3,04° 3,71, T4 — hios o
4C5’ Cs

Looking at 13 we note that we don’t need any new assumptions. From 7T it already
follows that we have to look at the cases where a4 =0 and c5 = 0.

Now assume a4 # 0 and bsayq — bgas # 0 but ¢s = 0. In this case the map T3
gives T; L F'Ty which is cubic similar to J(2,2) where 7} is given by

i 8
iy Ly Irg

f [Bgeq — by g * = (s g — by ag)” 23 ag iy #gly
L a/ _ b2 Sabs
iF

Note that this map 73 does not imply any new assumptions.

Now assume a4 # 0 but bsay — bsas = 0 and cs = 0. We can immediately skip
this case since it gives a matrix A with rank(A) = 1.

So the next case is ag4 = 0. In order to remain in a rank two case we must have
that either as # 0 or ¢s # 0. We may assume cs # 0 since a simple permutation
P = (&3, 29, ¢1, T4, T5) swaps the first and third row. So now we can use Ty is

: : : bs 4
(Es + as° 23,b4° 71, 05° T3, T4 — AL
to get that T; ' Ty is cubic similar to J(2,2).

And with this last case we have solved the case for this matrix completely, since
T4 does not imply any new assumptions.
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6 New representatives

Examining all thirty matrices from section 4 in a similar way as in example 1

completely classifies the Druzkowski maps in dimension five with respect to the cubic
similarity relation. This tedious process gives the following new representatives:

— — — — \I’l
o
o—0O~0O oO— O —0O cC so~0O cC so~0O (ool o)
———-O O/ -0 O
— - —-Oo O 11100,\.|.J/ 11100\mw = yw
dﬂ.g < < Al

~—— S~—————— N— ~— ~——————
-o oo -0 Qo =0 [eoNeNollo e TSSO~ 0O L OoO0 =0
—
- oo 3~ —00Q
00100@ 101..00\)” 0_1100\%/ - QO um. Aﬂ
N = $ -r—-o00o -
3 S - O OO —— O OO

foNeNokoNe)
—d -0 O~

MU.IOOOA....

~—
ILOOOODI

oCc cCc oo

Remark 2 Similar to remark 1 we note the following;:
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e In N(2,3b) the —1 seems a bit strange: why isn’t it P(2, 3a) with a parameter a
on the place of the —1? The answer is in fact pretty simple. As long asa ¢ {0,1},
P(2,3a) & N(2,3b). Furthermore P(2,3a),—0 ~ P(2,3a)ja=1 ~ N(2,3a). So
independent of the value of the parameter a, P(2,3a) can be reduced to a
matrix with no parameters left in it. So there’s no need to add a P-matrix.

. P(3 4a)j5=1 % N (3,4e) and P(3,44)js0 = N (3, 4b).
P(3,4¢)jaz1 ~ N(3,4¢) and P(3,4¢) om0 = N(3 4b).
P(3,4g)|a 1= N(3 4g) and P(3,49)|a=0 N N (3,4a).
(3,4h)|a=1 (3,4h) and P(3,4h)|s=0 2 N(3,4b).
(
(

o P
o P(3,4%)j4=1 = N(3,4i) and P(3,4i)j,=0 ~ N (3, 4a).
o P(3,4))ja=1 = N(3,45) and P(3,45) a0 ~ N(3,40).
o P(3,4a2)j,=0 = P(3,4c) and P(3,4a2),=0 = P(3,4a), hence P(3,4c2) would
have been a correct name also. ]
® P(3,452)(a=0 = P(3,47). Furthermore we have P(3,452),=0,=_1 2 N (3, 3a)

and P(314j2)|b=0,a#0,a;€~1 "\jJ N(3’4a)

o P(4,5€)j0=1 = N (4,5€) and P(4,5€)js—0 = N (4,5€).

e So we add for P(3,4a), P(3,4¢), P(3,4g), P(3,4h), P(3,4i), P(3,4j) and
P(4, 5€) the restriction that @ ¢ {0,1}. For P(3,4a2) and P(3,452) we add
a,b#0.

The final claim in this paper is that the seventeen matrices by Meisters in
section 3 together with the nineteen matrices in this section give a complete family of
inequivalent matrices with respect to Meisters’ cubic similarity relation in dimension
five. Unfortunately in dimension five the amount of work compared to the work in
dimension four has increased enormously. Therefore it doesn’t look very promising
to start with research on the dimension six case. Especially if one bares in mind that
the five-dimensional case only worked out because of the strong reduction theorem 2
and the fact that we don’t have such a theorem in dimension six. The problem for
this theorem is that we now have the possibility that rank(A) = corank(A) = 3
and we cannot use Druzkowski theorem anymore. But nevertheless, even with an
equivalent reduction theorem in dimension six, it would most probably still be too
complex to compute.
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