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CUBIC SIMILARITY IN DIMENSION FIVE 

ENGELBERT HUBBERS 
University of Nijmegen 
Toernooiveld, 6525 ED Nijmegen 
'The Netherlands 
hubbers@sci.kun.nl 

Dedicated to Gary Meisters 

Abstract. In this paper we classify all Druzkowski maps F = X + (AX)*3 from C5 
to CS for which J((AX)*3) is nilpotent. With this classification of maps we obtain 
the complete set of representatives of Meisters' cubic similarity relation in dimension 
five. This paper is a summary of the very large paper [3]. 

1 Introduction 

The first time I got interested in the subject of cubic similarity was back in 1993. It 
was in the middle of June, a few days before I would go on a four week holiday to 
Moscow. In order to get credits for a class on polynomial mappings by Arno van den 
Essen, I had been working with two fellow students on linear cubic homogeneous 
maps. When we handed in our paper with the final results, Arno reminded us that the 
next day some American would give a talk about cubic linear maps. Naturally I went 
there and I listened to a very nice talk by Gary Meisters. One of the most impressive 
points in this talk was the point where he was showing some slides containing a 
list of matrices which tu rned out to be the representatives of the cubic similarity 
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relation in dimension three, four and five. Though Gary already showed 19 matrices 
in dimension five, he was pretty sure that this list was not complete yet . . .  

Right after I returned from Moscow I started working on my Master's Thesis on 
cubic homogeneous maps. During the work done for this thesis I found that Gary's 
list in dimension four was complete. 

After I started as a PhD-student in Nijmegen, I got back to this subject in the 
spring of 1996. And this time I was able to solve the dimension five case. 

The reason that two years had passed after finishing my Master's Thesis and 
start.ing wit.h t.he final research to the five dimensional case, wa.s the complexit.y of 
this case. It was only in 1996 that. we rediscovered the paper [1] by Druzkowski. In 
conjuction with a theorem from my Master's Thesis [2], we now were able to reduce 
the general case t.o the t.riangular cubic linear case. 

2 Reduction to triangular matrices 

We start with a few basic definit.ions. 

fi . . ( ) If"'n h * 3 ( 3 3 ) De nrbon 1 Let. a = a1 , . . . , an E '-' . T en a := au"" an . 

Definition 2 Let A be a linear matrix over C. Then the map P = X + (AX)* 3 is 
called cubic-linear or in Druikowski form. 

Note that in some other papers such a cubic linear map F is called Druzkowski map 
only if det.(J F) = l. 

Definition 3 Let F = X + (AX)* 3 and G = X + (BX)* 3 be two polynomial 
automorphisms in Druzkowski form. Then the matrices A, BE Matn,n(C) are called 

cubic similar (A � B) if there exists a linear invert.ible polynomial map T with 
T-1FT = G. 

The idea behind this definition is t.hat it is rat.her special that if T is a linear invert.ible 
map and F is a Druzkowski form one has that T-lPT is again on Druzkowski form 
and therefore t.his propert.y deserves a name. 

Definition 3 is in terms of maps. For computational use however it is often 
preferable to work in terms of matrices. 

Lemma 1 Let F = X + (AX)* 3 and G = X + (BX)* 3 be two polynomial maps 
on Druikows/.:i form. Then A � B if and only if there exists T E Gln(C) with 
(ATX)* 3 = T(BX)* 3. 

Proof. The following statements can be read from top to bottom or the other way 
round. In either case each statement is equivalent with the next one in the sequence. 

• A� B. 
• There exists an invertible map T with T-1 FT = G. 
• There exists an invertible map T with T-1(TX + (ATX)* 3) = X + (BX)* 3. 
• There exists an invertible map T with X +T-1 (ATX)*3 = X + (BX)* 3. 
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• There exists an invertible map T with T-1 (AT X),, 3 = (BX)* 3. 
• There exists an invertible matrix T with T-1 (ATX)* 3 = (BX)* 3. 
• There exists an invertible matrix T with (ATX)* 3 = T(BX)* 3. 

This proves the lemma.. o 

From [2] we know that 

Theorem 1 Let r' E N. If the Jacobian Conjecture holds jor every polynomial map 
F : er -+ er where P has the special fOr'm 

F= 

with Hi = 0 or deg (H; ) = 3 (Hi homogeneous for' all i E {l, . . . , r}) the n jor' all 
T/, � r and all A E Matn,n (C) the Jacobian Conjecture holds for all Druikowski forms 

G = X + (AX)*3 

with rank (A) = r and X = (Xl, .. . , Xn ) . 

Before we present our main reduction theorem we show a few lemmas, which we will 
need for the proof of this main theorem. The proofs can be found in [3]. The first 
two lemmas are proved purely theoretically. For the third and the fourth lemma we 
had to do some computations to solve the corresponding systems of equations. 

Lemma 2 Let F = X + (AX)* 3 with A E Mat5,5(C) and J((AX)* 3) is nilpotent. 
Then there exists linear invertible T such that T-l FT = X + (BX),, 3 where the last 
row of B is a null row. 

Lemma 3 Assume rank(A) = 2. By lemma 2 we have that the last mw is e qual to 
zero. Now ij we write 

A' 

0 0 0  

and we consider the Druikowski form x' + (A' X')* 3 (where X, = (Xl,' . . , X4))  we 
may assume that A' equals 

and d5 = O. 
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Lemma 4 Let A and A' be as in lemma 3. Assume 

Then there exists a linear invertible map T E qX] and B E GI5(k) such that 
T-1 a (X + (AX)* 3) aT = X + (BX)* 3 with B is upper triangular with null diagonal. 

Lemma 5 Let A and A' be as in lemma 3. Assume 

Then there exists a linear invertible map T E qX] and B E GI5(k) such that 
T-1 a (X + (AX)* 3) aT = X + (BX)*3 with B is upper triangular with null diagonal. 

After these technical lemmas we can finally give the main reduction theorem, which 
is an improvement of [1, Theorem 2.1] for the case n = 5. 

Theorem 2 If a polynomial map F = X + (AX)* 3 : <cS -r <c5 has det(J F) = 1 and 
rank(A) < 3 or corank(A) < 3, then there exists an invertible linear map L such 
that La Fa L -1 = X + (BX)* 3, with B is upper triangular with null diagonal. 

Proof. Though the original theorem in Druzkowski's paper [1] only cla.ims that F 
is a tame automorphism, we can almost copy the proof as it is presented in that 
paper. Simply because in three of the four cases it is shown that LFL -1 has the 
desired form (and hence F is tame) . 

• rank (A) = 1. The proof is exactly the same as in [1]. 
• corank(A) = 1. From lemma 2 it follows that we are always in case (i) of 

Druzkowski's paper. 
• corank(A) = 2. From lemma 2 it now follows that we are always in case (iii) of 

Druzkowski's paper. 
• rank(A) = 2. This is the only part where Druzkowski doesn't show that F can 

be transformed to the desired form. To prove this case we use the lemmas 3, 4 
and 5. 

D 

Since we are vvorking in dimension five, we have that either rank(A) < 3 or 
corank(A) < 3 and hence: 

Corollary 1 Let F = X + (AX)* 3 : C5 -r C5 such that det (J F) = 1 then there 
exists an invertible linear map L such that La Fa L-1 = X + (BX)* 3, with B is 
upper triangular with null diagonal. 
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3 Meisters' representatives 

In [5] Meisters presents a list of seventeen mutually inequivalent matrices with 
respect to the cubic similarity relation in dimension five. The names of these matrices 
are based on the following notions. 

• A J indicates that the matrix is on Jordan normal form. 
• An N indicates that it is a nilpotent matrix which is not on Jordan normal 

form, but does not need parameters in it. 
• A P indicates that it is a nil potent matrix which contains parameters which 

cannot be reduced to a single complex number. 
• The first number is the rank of the matrix. 
• The second number is the nil potence index of J((AX)* 3, where A is the matrix. 
• The small letters at the end are used as an index. 
• For some P matrices an extra integer is appended to show the number of 

parameters in it. 

In [4] it is shown that the rank and the nilpotence index as mentioned above are 
invariants with respect to the cubic similarity relation. Therefore it makes sense to 
use these figures to assign proper names to the matrices. Note that the nil potence 
index of the matrix A itself is not an invariant. In fact A does not need to be nil potent 
at all. 

(I 1 0 0 i) (I 1 0 0 i) (I 1 0 0 i) 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0  0 0 0  o 0 0 
.1(1,2) .1(2,2) .1(2,3) 

(i 0 1 0 i) (I 1 0 0 !) (I 1 0 0 i) 0 1 1 0 1 0 0 1 0 
0 0 1 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 
0 0 0  0 0 0  o 0 0 
N(2,3a) .I(3,3) J(3,4) 

(I 0 1 0 !) (I 1 1 0 I) (I 0 1 0 !) 0 1 1 0 1 0 0 1 1 
0 0 1 0 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 
0 0 0  0 0 0  o 0 0 
N(3,3a) N(3,4a) N(3,4b) 

(I 0 1 0 n ( 0 1 0 0 o \ (I 1 1 0 !) 0 1 1 

U 
0 1 0 1 ) 0 1 0 

0 0 1 0 0 1 0 0 1 
0 0 0 0 0 0 0 0 0 
0 0 0  0 0 0  o 0 0 
N(3,4c) .1(4,5) N(4,5a) 
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illl) (I 1 1 0 
0 1 1  
0 0 1  
0 0 0  
0 0 0  
N(4,5e) N(4,5b) 

(j H H) (I 
P(4,5e) 

!) (I 1 0 1  
0 1 0  
0 0 1  
0 0 0  
0 0 0  
N(4,5d) 

� � 1 
0
1 ) 

o 0 0 
P(4,5e2) 

Remark 1 Note the following points: 

• P(4,5e) is not called P(4, 5a) , which should be natural if one uses the small 
letter just as an index as with the N -matrices. However in this case the e is used 
because P(4, 5c)la=1 = N(4, 5e), where P(4, 5e)la=1 means substitute a = 1 in 
P(4,5e). 

• Note also that P(4,5c)la=O = N(4,5a). Hence we add the restriction that 
a rJ {Q, I} for P(4, 5e). 

• P(4, 5c)la=a\ * P(4, 5c)la=a2 if at :f. a2· 

• P(4, 5e2)lb=O = P(4, 5e), hence we add the restriction b:f. 0 for P(4, 5c2). Note 
that there are no restrictions on the a in P(4,5e2). 

4 Classification of Druzkowski maps 

Theorem 2 gives us the reduction we need. It means that the most general 
Druzkowski map X + (AX)*3 in dimension five is given by the matrix A: 

(4.1) 

Independent of the ten parameters in it this matrix is strong nil potent. So this 
matrix is in fact on its own a description of all Druzkowski maps with J( (AX)*3) 
is nilpotent. However since our final goal is finding representatives with respect to 
the cubic similarity relation, it makes sense to split the general case into the five 
possible values for the nilpotence index of the associated Jacobian matrix. As was 
noted before, this nilpotence index is invariant under cubic similarity. 

Using this observation we compute J((AX)* 3)n for n = 1, . . . ,5 and assume 
that the resulting matrix is the null matrix. Obviously for n = 1 this means that 
A equals the null matrix, which gives the identity map 15 : C5 -t C5• Therefore ,ye 
only consider the cases with nil potence index � 2. 
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4.1 Nilpotence index two 

Assuming J((AX)*3)2 = 0 gives a system of 119 equations in the ten parameters. 
Solving this system gives fifteen solutions. In figure 1 we show the tree along which 
we found these solutions. One starts at the top with the complete system. One solves 
a few simple equations. Normally this gives a few possible partial solutions. Each 
arrow presents such a solution. And each solution may imply some assumptions 
on the parameters. After su bstituting these pa.rtial solutions one gets new reduced 
systems of equations. And at this point the process is repeated. Hence each arrow 
represents some assumptions; these are listed at the bottom. Furthermore, the boxed 
numbers in the tree correspond to the numbered matrices given below. 

The fifteen solutions are presented by their corresponding matrices. For each 
matrix the rank is listed together with the assumptions used in the process to find 
them as mentioned above. Naturally, assumptions of the form b3 = 0 are not shown 
since they are already used in the matrix and hence b3 does not appear in the matrix 
anymore. 

L (! 
0 0 0 a5 

1 
rank 2, a3 i= 0, d 5  i= O. 

0 0 0 b5 
0 

a2b� 
0 0 0 a2 --3- a4 a5 C5 C5 
0 0 0 d 5  

6. 
0 0 0 0 b5 

0 0 0 0 0 0 0 0 C5 
rank l. 0 0 0 0 0 

2 ( l 
a2 a3 a4 

n 
0 0 0 0 0 

0 0 0 rank 2, a2 i= 0, C5 i= O. 
0 0 0 -a2b� - a3c� 
0 0 0 0 a2 a3 d3 a5 
0 0 0 

5 
0 0 0 0 b5 

rank 1, a2 i= O. 7. 
0 0 0 0 C5 

( ! 
0 0 a4 a5 

1 
0 0 0 0 d 5  

0 0 0 b5 0 0 0 0 0 
3. 0 0 0 C5 rank 2, a2 i= 0, d 5  i= O. 

0 0 0 0 

( l 
0 0 a4 a, 

1 
0 0 0 0 0 0 b4 b5 

rank 2, 0,4 i= O. 8. 0 0 0 C5 

4 ( l 
0 a3 a4 a5 

1 
0 0 0 0 

0 0 0 b5 0 0 0 0 
0 0 0 0 rank 2, b4 i= O. 
0 0 0 0 

( ! 
0 a3 a4 a5 

1 
0 0 0 0 0 0 b4 b5 

rank 2, a3 i= O. 9. 0 0 0 0 
0 0 a3 

a3c� a5 0 0 0 0 
-7 '5 0 0 0 0 

5. 
0 0 0 0 b5 rank 2, a3 i= 0, b4 i= O. 
0 0 0 0 C5 
0 0 0 0 d 5  
0 0 0 0 0 
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* * 

6 12 

1;b3=O,C4=O 11;b3=O,C1=O,b4=O,a2,c5#O,d5=O 

2;b3=O,C4#O,d5=O 12;b3=O,c4=O,b4=O,a2,d5#O 

3;b3#O,C4=O,a2=O 13;b3=O,C4=O,b4#O,a3=O,a2=O,d5=O 

* 

4;b3=O,C4=O,b4=O 14;b3=O,C4=O,b4,a3#O,a2=O,d5=O,c5=O 

5;b3=O,C4=O,b4#O,a2=O,d5=O 15;b3=O,C4#O,a2=O,a3=O,d5=O 

6;b3=O,C4=O,b4=O,a2=O,aa=O,a4=O 16;ba=O,q,a2#O,aa=O,b5=O,b4=O,d5=O 

7;ba =O,C4 =O,b4 =O,a2 =O,aa=O,a4#O,d5=O 17;ba =O,C4 ,a2 ,b4 #O,d5=O 

8;ba=O,C4=O,b4=O,a2=O,a3#O,d5=O,C5=O 18;ba#O,d5=O,c5=O,C4=O,a2=O 

g;ba=O,C4=O,b4=O,a2=O,aa,d5#O 19;ba,d5#O,aa=O,a4=O,C4=O,a2=O 

10;ba=O,C4=O,b4=O,a2#O,c5=O,b5=O,d5=O 20;ba,d5,aa#O,C4=O,a2=O 

0 a4 
o 0 0 b4 

Figure 1. Solut.ion tree for nilpotence index two a5 
b5 0 0 0 0 

10. o 0 

( 0 0 

0 C4 C5 1 11. 0 0 0 C4 

(oa,oa. 
�' 1 C5 o 0 0 0 0 o 0 0 0 0 

0 0 0 0 0 o 0 0 0 0 
rank 2, C4 #- O. rank 2, a'2 #- 0, C4 #- O. 



Cubic Similarity in Dimension Five 83 

0 
a2b� 0 0 0 0 a5 

az C� 
a4 a5 b3C� 

b4C5 0 0 b3 
- d3 b5 

0 0 0 b4 14. 5 
12. C4 0 0 0 0 C5 

0 0 0 C4 C5 0 0 0 0 d5 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 rank 2, b3 f- 0, d5 f- O. 

rank 2, a2 f- 0, b4 f- 0, C4 f- O. 3 
0 0 

_ a3c5 

13 ( ! 
0 a3 a4 a5 ] a3 

d3 
a5 

0 b3 b4 b5 
53 b3c5 

0 0 0 0 15. 
0 0 b3 

- d3 b5 

0 0 0 0 
5 

0 0 0 0 C5 
0 0 0 0 0 0 0 0 d5 

rank 2, b3 f- O. 0 0 0 0 0 
rank 2, a3 f- 0, b3 f- 0, d5 f- O. 

4.2 Nilpotence index three 

In this case we have a system of 123 equations. Solving this system gives ten 
solutions. Ordered by rank these solutions are: 

16. (� �2 �; �: :;] 
o 0 0 0 0 
o 0 0 0 0 

rank 2, a2 f- 0, b3 f- O. 

17. (H � �: �: ] 
o 0 0 0 d5 
o 0 0 0 0 

rank 2, d5 f- O. 

18. (� y y �' �: ] 
o 0 0 0 d5 
o 0 0 0 0 

rank 2, a3 f- 0, d5 f- O. 

19. (� y y �: �: ] 
o 0 0 0 0 
o 0 0 0 0 

rank 3. 

22. o 

o 
o 
o 

o 

o 
o 
o 

o 

o 
o 
o 

rank 3, a3 f- 0, b4 f- 0, C4 f- 0, 

ds f- O. 
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( i 
0 a3 a4 a

, 

) 25 ( ! 
0 a3 a4 a

, 

) 
0 b3 b4 bs 0 b3 b4 bs 

23. 0 0 0 Cs 0 0 C4 � 0 0 0 d5 0 0 0 
0 0 0 0 0 0 0 

rank 3, b3 #- o. rank 3, b3 #- 0, C4 #- O. 
0 a2 a3 a4 a5 

0 0 b3 
b3C� 

b5 

24. 
-

d� 
0 0 0 0 C5 

0 0 0 0 d5 
0 0 0 0 0 

rank 3, a2 #- 0, d5 #- O. 

In [3] one can find the solution tree corresponding to these solutions. 

4.3 Nilpotence index four 

Here we have a system of 56 equations. There are only four solutions: 

(� 
0 a3 a4 a, 

) (
0 a, a3 a4 a

, 

) 
0 b3 b4 bs o 0 b3 b4 bs 

26. 0 0 C4 Cs 28. o 0 0 0 C5 
0 0 0 ds o 0 0 0 d5 
0 0 0 0 o 0 0 0 0 

rank 3. rank 3, a2 #- 0, b3 #- O. 

27 (! 
az a3 a4 a, 

) (! 
az a3 a4 

�) 
0 0 b4 b5 0 b3 b4 b5 
0 0 C4 C5 29. 0 0 C4 

� 0 0 0 d5 0 0 0 
0 0 0 0 0 0 0 0 

rank 3, a2 #- O. rank 3, a2 ¥- 0, b3 #- 0, C4 #- O. 

The solution tree is quite simple. It can be found in [3]. 

4.4 Nilpotence index five 

Finally the last case gives one solution 
niipotent. 

( 0 az 

30 0
l � � 

a3 a4 

b3 b4 

o C4 

o 0 
o 0 

slllce all matrices of the form (4.1) are 
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5 Cubic similarity reduction 

The basic result of the previous section is that we can reformulate corollary 1 to: 

Corollary 2 Let F = X + (AX)*3 
: C5 --t C5 such that det (J F) = 1 then there 

exists an invertible linear map L such that L 0 F 0 L -1 = X + (BX)*3) where B is 
the null matrix or B is one of the thirty matrices presented in section 4. 

The next thing we have to do is check whether these maps are cubic similar to the 
matrices of section 3. In order to find these relations we use the fact that the rank is 
an invariant of this matrix. At this point it is more practical to use the rank as an 
invariant than the nil potence index of the corresponding jacobian. This is because 
we have to make some assumptions on the pa.rameters still appearing in the m atrices 
of the previolls section, and mostly the effect on the rank of these assumptions a.re 
more clearly than the effects on the nilpotence index. 

The basic approach taken is: 
1. Try to reduce A to cases already known by use of permutaion matrices. 
2. Take a general linear map T containing parameters. 
3. Compute B where B is given by X + (BX)*3 = T-1 0 (X + (AX)*3) 0 T. 
4. Compare B with the already known representatives. 
5. Guess which one of those can be identified with B. (Call this matrix M.) 
6. Solve B = M in the variables of T. 
7. If this system has no solution: 

• Guess another !vt. 

• If all representatives have been tried, one probably has found a matrix 
which is not equivalent to the known representatives. 

• Reduce A as much as possible to M', i.e. solve Bi,j = 0 or Bi,j = 1 for as 
many entries Bi,j as possible. 

• Prove that the new M' is indeed not cubic similar to all the old 
representatives of the same rank. 

8. If this system has at least one solution: 
• Try to simplify the solution(s) by setting free parameters equal to zero or 

to one in case they cannot be set to zero. 
• Check if this T implies some new assumptions on the original parameters 

in the matrices in order to have that T is invertible. 
- If it does not, you have found that A � M in general. 
- If it does, assume these assumptions don't hold and apply this 

information to reduce A to A' and repeat the complete process on 
A'. 

In [3] this process is described for each of the thirty matrices. Here we will show one 
example. 
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Example 1 Consider F = X + (AX)*3 where 

( ! 
0 0 a4 a, 

1 
0 0 b4 b5 

A= 0 0 0 C5 
0 0 0 0 
0 0 0 0 

We already know that b4 i=- O. If we compute Tl-l FTl = X + (BX)*3 for a general 
map Tl and try to solve the cases B = J(2, 2), B = J(2,3) and B = N(2,3a) we 
don't get any solution at all. So most probably we have found a new representative. 
If we try to reduce this B, we see that we can find Tl such that Bl,4 = 1, BZ,4 = 1, 
B2,5 = 1 and B3,5 = 1 and all other Bi,j = O. We call this lVI'. Looking carefully at 
the definition of cubic similarity shows that this M' is indeed not cubic similar to 
the known representatives with rank two. We call this new representative N(2, 2a). 
The Tl we have used is ( 3 3  

) 
(b5 a4 - b4 a5) Xl (b5 a4 - b4 a5) Xz 3 (b5 a4 - b4 a5) X4 a5 X5 

3 ' 3 ,C5 X3, 
b 

- --, X5 
b4 a4 4 a4 a4 

If we look at this Tl we see that it is invertible only if a4 i= 0, C5 i= 0 and 
b5a4 - b4a5 i= o. (We already know that b4 i=- 0. ) 

Now assume that a4 i= 0 and C5 i= 0 but b5a4 - b4a5 = 0 and start the process 
aga.in. After taking a new T2 and compute T2-l FTz, we get a matrix B that can be 
identified with J(2, 2), Solving this system yields that T2 is 

( 
3 3 b5 X2 xz

) X5 + a4 X3, b4 X3, Xl, X4 - --,­
b4 C5 C5 

Looking at 12 we note that we don't need any new assumptions. From Tl it already 
follows that we have to look at the cases where a4 = 0 and C5 = O. 

Now assume a4 i=- 0 and b5a.4 - b4a.5 i= 0 but C5 = O. In this case the map T3 
gives T3-l FT3 which is cu bic similar to J (2, 2) where 13 is given by 

Note that this map T3 does not imply any new assumptions. 
Now assume 0.4 i= 0 but b5a4 - b4a5 = 0 and (;5 = O. We can immediately skip 

this case since it gives a matrix A with rank ( .4) = 1. 
So the next case is a4 = O. In order to remain in a rank two case we must have 

that either a5 i= 0 or C5 i= o. We may assume C5 i=- 0 since a simple permutation 
P = (X3, X2, Xl, X4, X5) swaps the first and third row. So now we can use T4 is 

( 
3 3 3 b5 X4 

) X5 + a5 X3, b4 Xl, C5 X3, X2 - �,X4 

to get that T4-lFT4 is cubic similar to J(2, 2). 
And with this last case we have solved the case for this matrix completely, since 

T4 does not imply any new assumptions. 
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6 New representatives 

Examining all thirty matrices from section 4 in a similar way as in example 1 
completely classifies the Druzkowski maps in dimension five with respect to the cubic 
similarity relation. This tedious process gives the following new representatives: 

(I 0 0 1 I) (! 0 0 1 f) (I 1 1 0 n 0 0 1 0 0 1 0 0 1 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 o 0 0 0 0 0 

N(2,2a) N(2,3b) N(3,3b) 

(I 0 1 0 I) (I 0 1 0 n (l 0 1 1 n 0 1 0 0 0 1 0 0 1 

0 0 1 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

N(3,4e) N(3,4f) N(3,4g) 

( I 0 1 1 !) (! 1 1 0 n (l 1 0 1 n 0 1 0 0 0 1 0 0 1 

0 0 1 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

N(3,4h) N(3,4i} N(3,4j) 

(l 0 1 a n (! 0 1 0 n (! 0 1 1 n 0 ] 1 0 1 1 0 0 1 

0 0 1 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 0 

0 0 0 0 o 0 0 0 0 

P(3,40) P(3,4c) P(3,4g) 

(! 0 1 1 n (! 1 0 0 n (I 1 0 1 n 0 I 0 0 0 1 0 0 1 

0 0 1 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

P(3,4h) P(3,4i) P(3,4j) 

( I 0 1 a n (! 1 a 1 !) (I 1 0 1 !) 0 1 1 0 0 1 0 1 1 

0 0 1 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 o 0 0 

P(3,402) P(3,4j2) N(4,5e) 

(l 1 0 1 D 0 1 a 
0 0 1 
0 0 0 
0 0 0 
P(4,5e) 

Remark 2 Similar to remark 1 we note the following: 



88 Engelbert Hubbers 

• In N(2, 3b) the -] seems a bit strange: why isn't it P(2, 30,) with a parameter a 
on the place of the -I? The answer is in fact pretty sim pIe. As long as a rf. {D, I}, 

3 3 3 
P(2,3a) "" N(2, 3b). Furthermore P(2, 3a)la=o "" P(2,3a)la=1 "" N(2, 30.). So 
independent of the value of the parameter a, P(2,3a) can be reduced to a 
matrix with no parameters left in it. So there's no need to add a P-matrix. 

3 
• P(3, 4a)la=1 f'.J N(3, 40.) and P(3, 4a)la=o = N(3, 4b). 

;; 
• P(3, 4c)la=1 "" N(3, 4c) and P(3, 4c)la=O = N(3, 4b). 

3 
• P(3, 4g)la=1 = N(3, 4g) and P(3, 4g)la=O "" N(3, 40.). 

3 
• P(3,4h)la=1 = N(3,4h) and P(3,4h)la=O "" N(3,4b). 
• P(3, 4i) la=l = N (3, 4i) and P(3, 4i) la=O ;::, N (3,40.). 
• P(3, 4j)la=1 = N(3, 4j) and P(3, 4j)la=o;::' N(3, 40,). 
• P(3,4a2)la=o = P(3,4c) and P(3,4a2)lb=O = P(3,4a), hence P(3,4c2) would 

have been a correct name also. 
• P(3, 4j2) la=O = P(3, 4j). Furthermore we have P(3, 4j2) Ib=O,a=-l � N(3,3a) 

;; and P(3, 4j2)lb=O,a;tO,a;t-l "-' N(3, 40.). 
• P(4, 5e)la=1 = N(4, 5e) and P(4, 5e)la=o = N(4, 5d). 
• So we add for P(3,40,), P(3,4c), P(3,4g), P(3,4h), P(3,4i), P(3,4j) and 

P(4,5e) the restriction that a rf. {D, I}. For P(3,4a2) and P(3,4j2) we add 
a, b i- D. 

The final claim in this paper is that the seventeen matrices by Meisters in 
section 3 together with the nineteen matrices in this section give a complete family of 
inequivaJent matrices with respect to Meisters' cubic similarity relation in dimension 
five. Unfortunately in dimension five the amount of work compared to the work in 
dimension four has increased enormously. Therefore it doesn't look very promising 
to start with research on the dimension six case. Especially if one bares in mind that 
the five-dimensional case only worked out because of the strong red uction theorem 2 
and the fact that we don't have such a theorem in dimension six. The problem for 
this theorem is that we now have the possibility that rank (A) = corank (A) = 3 
and we cannot use Druzkowski theorem anymore. But nevertheless, even with an 
equivalent reduction theorem in dimension six, it would most probably still be too 
complex to compute. 
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